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ABSTRACT

COLLECTIVE ANOMALY DETECTION IN TIME SERIES USING PITCH
FREQUENCY AND DISSIMILARITY FEATURES

Erkus, Ekin Can
Ph.D., Department of Biomedical Engineering
Supervisor: Prof. Dr. Vilda Purutcuoglu
Co-Supervisor: Assist. Prof. Dr. Aykut Eken

June 2023, 203| pages

Collective anomalies appear in the majority of time series data modalities due to a
variety of factors. They appear frequently in biomedical signals as a result of elec-
trode displacement, motion, or faulty equipment. These anomalies have a negative
impact on model and analysis performance and are frequently identified in order to

be eliminated or detected in order to observe unwanted data behavior.

This thesis describes a novel method for detecting collective anomalies in quasi-
periodic time series data. By leveraging pitch frequency estimation techniques com-
monly used in audio signal processing, the proposed algorithm combines the strengths
of both the time and frequency domains. It provides a comprehensive view of anoma-
lous patterns and can be customized and adapted to different domains and datasets,
making it useful for a wide range of applications. By employing a sliding windows
approach and utilizing previous data information to dynamically learn structural pat-
terns, the proposed algorithm also excels in real-time anomaly detection. It is effec-
tive in detecting subject-specific anomalies, although it may not locate single-sample

outliers that do not significantly affect window properties. The algorithm was de-



veloped specifically for quasi-periodic data and may be limited in its applicability to

non-quasi-periodic time series data.

Both synthetically generated and benchmark electrocardiogram (ECG) datasets are
used to assess the effectiveness of the proposed algorithm under a variety of condi-
tions. The performance of the proposed approach is compared to other features com-
monly used in anomaly detection, as well as some benchmark time series anomaly de-
tection algorithms. The findings show that the proposed method consistently outper-
forms the compared algorithms in detecting both outlier-like and inlier-like anoma-
lies. It also outperforms other non-parametric approaches in terms of computational

efficiency.

Keywords: anomaly detection, time series, pitch frequency, dissimilarity, sliding win-

dows
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0z

PITCH FREKANSI VE BENZESMEZLIK OZNITELIKLERI
KULLANILARAK ZAMAN SERILERINDE KOLEKTIF ANOMALI
TESPITI

Erkus, Ekin Can
Doktora, Biyomedikal Miihendisligi Boliimii
Tez Yoneticisi: Prof. Dr. Vilda Purutguoglu
Ortak Tez Yoneticisi: Dr. Ogr. Uyesi. Aykut Eken

Haziran 2023 ,[203|sayfa

Kolektif anomaliler, ¢esitli faktorler nedeniyle zaman serisi veri modalitelerinin ¢o-
gunda goriiliir. Biyomedikal sinyallerde elektrotlarin yer degistirmesi, hareket veya
hatal1 ekipman nedeniyle siklikla goriiliirler. Bu anomaliler model ve analiz perfor-
mansi iizerinde olumsuz bir etkiye sahiptir. Bu yiizden, onlar1 veriden kaldirmak veya

verideki farkli davraniglar1 yakalamak icin tespit edilmeleri 6nemlidir.

Bu tez, yar1 periyodik zaman serisi verilerindeki kolektif anomalileri tespit etmek
icin yeni bir yaklasim 6nermektedir. Onerilen algoritma, ses sinyali islemede yay-
gin olarak kullanilan perde frekansi tahmin tekniklerinden yararlanarak hem zaman
hem de frekans alanlarinin gii¢lii yonlerini birlestirmektedir. Bu sayede, anomaliler
icin farkli agilardan degerlendirmeler ile daha iyi bir performans sunmasi hedeflenek-
tedir. Kayan pencereler yaklasimini kullanarak ve yapisal oriintiileri dinamik olarak
o0grenmek icin Onceki veri bilgilerini kullanarak, onerilen algoritma gercek zamanl

anomali tespitinde de kullanilabilmektedir. Pencere 6zelliklerini énemli ol¢iide etki-
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lemeyen tek 6rnekli aykir1 degerleri tespit etmek icin gelistirilmemis olsa da, kolektif
anormallikleri tespit etmede etkilidir. Algoritma 6zellikle yar1 periyodik veriler i¢in
gelistirilmigtir ve yar1 periyodik olmayan zaman serisi verilerine uygulanabilirligi si-

nirli olabilir.

Onerilen algoritmanin etkinligini gesitli kosullar altinda degerlendirmek icin hem
sentetik olarak olusturulmus hem de karsilastirmali elektrokardiyogram (EKG) veri
kiimeleri kullanilmistir. Onerilen yaklasimin performansi, anomali tespitinde yaygin
olarak kullanilan diger 6znitelikler ve temel anomali tespit algoritmalari ile kargilasti-
rilmistir. Bulgular, 6nerilen yontemin kolektif anomalileri tespit etmede karsilagtirilan
algoritmalardan genelde daha iyi performans gosterdigini ve ayrica hesaplama verim-
liligi agisindan diger parametrik olmayan yaklasimlardan daha hizli oldugunu ortaya

koymaktadir.

Anahtar Kelimeler: anomali tespiti, zaman serileri, perde frekansi, benzemezlik, ka-

yan pencereler
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CHAPTER 1

INTRODUCTION

This chapter provides a brief introduction to the general concepts, describes the main
problems, and provides the motivation along with the aims of the thesis with a possi-

ble contribution to the literature.

1.1 Time Series

Time series refers to a sequence of consecutive samples of data that are collected at
regular intervals over a span of time, and usually recorded at a fixed sampling rate [1].
Each data sample has a specific timestamp, which reveals the relationship between
different samples and allows the analysis of the behavior and patterns exhibited by the
data as time progresses [2]]. This temporal dependence indicates that each data sample
is impacted by its preceding values and may have a causal dependence on them [3].
Consequently, the posterior patterns in the data can be analyzed and by using this
information, new models can be developed that can forecast future values [4]. By
utilizing time series analyses, the hidden patterns, trends, and causal relationships

within the data, and the related systems can also be examined.

While numerous disciplines such as engineering, medicine, finance, economics, and
meteorology heavily rely on time series data, this thesis specifically concentrates on
the field of biomedical engineering. In this domain, time series data are typically ob-
tained from biological sources or subjects, using specialized equipment or software
that adheres to a fixed sampling rate [5]. Analyzing these biomedical time series
modalities can help with disease or disorder diagnosis, patient monitoring for anoma-

lous body responses, and prediction of overall health conditions [6, [7]. Moreover,



biomedical time series data often display periodic behavior, referred to as seasonality,

where recurring patterns occur in a predictable manner [8]].

1.1.1 Periodic Data Behavior

The existence of repeating patterns that appear at regular intervals is known as peri-
odicity, and it is a fundamental property of many time series data [9]. Periodicity en-
ables the identification and analysis of cyclic phenomena which uncovers underlying
patterns, trends, and relationships within the data [2]]. The process of accurate fore-
casting, anomaly detection, and decision-making is made possible by the analysis of
the periodicity in time series, which includes the discovery of dominant frequencies,
harmonics, and seasonality patterns [10} [11]. Apart from the ideal periodic behav-
ior, biomedical time series data frequently exhibits quasi-periodicity, an intriguing
phenomenon that displays patterns resembling periodicity but lacking strict regular-
ity [12, [13]]. In other words, contrary to periodicity, where patterns repeat at regu-
lar intervals, quasi-periodic patterns happen at irregular or varying intervals. Other
than biological data, ecological systems, mechanical systems, and time-dependent
data from social sciences are also some examples that frequently exhibit this quasi-
periodic characteristic because their ideal periodicity is also influenced by a variety

of factors and interactions [14!, (15} [16]].

Quasi-periodic anomalies, which appear in datasets exhibiting quasi-periodic behav-
ior, are commonly observed in various domains, including biology, mechanics, and
seasonal measurements [17]. Detecting such anomalies in time series data has been
the subject of extensive research, leading to a variety of approaches. These ap-
proaches involve techniques like frequency domain transformation, modeling, and
the use of sliding windows [[18]]. While some studies claim superior performance of
their methods, it is important to recognize that the effectiveness of these approaches
depends on factors such as dataset characteristics, application settings, and parameter
selection [19, 20]. Therefore, choosing the right approach to detect quasi-periodic

anomalies requires careful consideration of these contextual elements [21]].
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1.1.2 Biomedical Time Series

Biological data contributes to a wide range of time series data types, which are typ-
ically collected using specialized equipment with unique specifications [22]]. As a
result, biomedical signals take on various forms to represent different aspects of an
organism’s biological conditions. These signals often exhibit quasi-periodic behav-
ior and have distinct characteristics across different data modalities [23]. However,
working with quasi-periodic time series data presents challenges due to issues like
device malfunctions, noise interference, or missing data intervals. Therefore, detect-
ing anomalies in quasi-periodic medical data is essential for identifying deviations
from expected patterns, which may indicate underlying health issues or abnormalities

requiring further investigation and intervention [24].

Biomedical signals encompass a diverse range of types, serving as representations
of various aspects of an organism’s biological conditions [25]. These signals often
exhibit regular periodic behavior, exhibiting distinctive characteristics across differ-
ent data modalities [26]]. It is crucial to acknowledge that the behavior of biological
systems can vary due to factors such as disorders, age, gender, and physical condi-
tions of the subject while excluding environmental factors and artifacts [27]. When
controlling for other factors, accurately diagnosing disorders within subject groups
becomes a critical component of the treatment process [28]]. Consequently, achiev-
ing precise diagnoses relies on the recognition and detection of variations in the data
behavior [29]. In the field of time series biomedical data analysis, most data types
demonstrate quasi-periodic behavior, influenced by body rhythms like heartbeats, cir-
cadian rhythm, temperature dependence, and electromagnetic interference [30]. An-
alyzing and comprehending these quasi-periodic patterns can yield valuable informa-
tion about the functioning of biological systems and facilitate the identification of

abnormalities or anomalies [31]].

1.2 Outliers and Anomalies

Outliers are data samples that deviate considerably from the anticipated or standard

range of values in a dataset, while anomalies encompass any atypical or abnormal



behavior or pattern in the data that does not adhere to the anticipated or standard pat-
terns [32, 33]]. Although the majority of the researchers claim to know the concept
of anomalies and outliers, their definitions drastically differ across different research
fields, and they are often categorized by different names based on their types. Statis-
tically, an outlier is defined as a sample with a significantly larger amplitude than the
rest of the data [34]. Therefore, in definition, outliers are generally considered as the
point anomalies with significantly different amplitudes than the rest of the data base-
line, which may statistically change the instantaneous characteristics of the data [35]].
On the other hand, anomalies can appear in various forms, such as individual sam-
ples, groups of samples, or specific data intervals, exhibiting distinct characteristics

compared to the rest of the data [36].

Anomalies disrupt the expected behavior of time series data and can obscure valu-
able information within the dataset [[37]. These anomalies can arise from various
sources such as motion artifacts, non-systematic noises, missing values, or the com-
bination of multiple data sources, often impacting specific time intervals and dimin-
ishing the effectiveness of data analysis techniques [38]. Therefore, it is crucial to
identify and remove these anomalies prior to conducting the main analyses. Extensive
research has been conducted on anomaly and outlier detection, resulting in the devel-
opment of specialized approaches for time series data [39, 40, 41, 42]]. Anomalies
can manifest within single intervals or exhibit irregular or quasi-periodic patterns in
the data. Quasi-periodic anomalies, in particular, may exhibit different probabilistic
distributions compared to the baseline data [43]. Consequently, detecting anomalies
often requires prior knowledge of the examined data, emphasizing the importance
of understanding the behavior of the baseline data. While many studies focus on
directly detecting anomalies from the given data, some approaches leverage the dis-
tributional information of the baseline data to enhance the accuracy of anomaly de-
tection (44, 45, 46]]. Each data modality demonstrates its unique behavior and distinct
types of anomalies, underscoring the significance of selecting the most appropriate

outlier detection algorithm with minimal false positive rates [47].

In the context of biomedical data modalities, both outliers, and anomalies can arise
due to instrumentation errors, environmental noise, subject conditions, or artifacts

caused by motion and the characteristics of the data [48]. Detecting and managing



outliers is crucial during the preprocessing stage of biomedical data as they can signif-
icantly impact the efficiency of subsequent analyses [49]. Furthermore, in computer
vision, artificial intelligence, and biomedical applications, anomaly detection plays a
pivotal role in offline and real-time data processing, contributing to decision-making,

disorder diagnosis, and live monitoring [S0]].

1.2.1 Types of Outliers and Anomalies

The presence of faults in data manifests in various forms, including point outliers or
collective anomalies comprised of a series of outlying samples [51]. Additionally,
certain anomalies can manifest as unexpected sequences within the data, creating a
distinctive outlying structure within time series data [52]]. These outliers or anomalies
can be categorized into three types: type I, type II, and type III, based on their dis-
tinctive behavior within the data [52]. Furthermore, another categorization considers
whether the outliers appear as single-point anomalies, sequential outliers consisting
of a continuous series of samples, or periodic outliers [S3]]. In many studies, type 11
and type III anomalies are commonly referred to as anomalies. Given the variation
in outlier types, it becomes essential to employ appropriate outlier detection methods
tailored to detect each specific type of outlier. Thus, the initial step in the outlier
and anomaly detection process should involve identifying the outlier type present in
the data. This enables the selection of suitable approaches and optimal parameter

settings.

1.2.1.1 Type I Anomalies (Point Outliers, High Magnitude Anomalies)

Type I anomalies encompass various statistical properties or features that distinguish
them from the rest of the data, regardless of the data modality. Point, sequential, and
periodic outliers all may fall under the category of type I anomalies as long as their
amplitudes are comparably greater than the baseline data range [52]. Type I anomalies
are commonly defined across different research fields. For example, in engineering
studies, outliers are defined as samples that exceed a predefined set of thresholds,

while statistical studies consider samples as outliers when their standardized values
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reach a predetermined quantile 54} 155].

In one-dimensional biomedical data, type I anomalies often arise from noise and mo-
tion artifacts, abnormal readings associated with subjects such as disorders or mark-
ers, instrument defects, and environmental changes during measurements [56, 157, 6].
However, in two and three-dimensional biomedical data, additional outlier-causing
phenomena may include abnormal readings related to subjects such as lesions, tumor-
ous tissues, or sudden changes in heat [S8, |59]. Motion artifacts and device-related
artifacts are particularly common in ECG data, leading to type I anomalies. Motion
artifacts tend to persist for a longer duration and can cause trending or level shifts in
the data, while noise artifacts, with their shorter appearances, can mimic individual

structures and hinder automated algorithms from detection [60, 61]].

Figure[I.Talprovides an example of a type I outlier sequence in ECG data caused by a
motion artifact, while Figure illustrates a point outlier of type I within a regular
PQRST structure of ECG data.
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(a) ECG data with a motion artifact in the form of a type I outlier sequence.

A regular ECG waveform of one period with a point outlier

sanid : :
TPoint Outlier

Amplitude

Time

(b) A regular PQRST structure of ECG data with an added point outlier of type I.

Figure 1.1: Example representations of type I anomalies.

Type I outlier samples typically exhibit statistically different behavior, often mani-
fested as deviations in the mean value of the data. Compared to type II and type
IIT anomalies, type I anomalies are relatively easier to detect using statistical outlier
detection algorithms [40]. After basic preprocessing steps specific to the data modal-
ity, such as noise elimination and detrending operations, parametric outlier detection

algorithms can be employed.



Figure [I.2] provides another example of a type I outlier. It showcases a randomly
generated data set with a normal baseline distribution (N(0,1)), with an outlier syn-

thetically placed at the 80th sample.
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Figure 1.2: Example data generated using Gaussian Normal distribution, and a low-

amplitude outlier placed at the 80th sample.

1.2.1.2 Type II Anomalies (Contextual Anomalies, Spatial Outliers)

Type II anomalies, also known as contextual outliers, are the most commonly ob-
served outliers in datasets, exhibiting irregular behavior within a regular period of
data behavior [52]. While the data in these datasets display periodic patterns with lo-
cal peaks or sinks, the outlying samples deviate from this periodic behavior, making
their detection dependent on analyzing the temporal neighbors of suspected data sam-
ples rather than considering the entire dataset [62]. Although most type IT anomalies
can be considered as inliers according to the statistical definition of outliers, meaning
that they do not significantly deviate from the overall data mean [55]], standard statis-
tical outlier detection approaches may fail to identify them unless specific preliminary

steps are taken.



Contextual outliers in time series data can sometimes resemble type I anomalies, ei-
ther as individual samples or sequential samples. However, the key distinction lies
in the fact that type II anomalies have amplitude values within the normal range of
the data rather than representing extreme data points. Consequently, type Il anoma-
lies do not dramatically alter the statistical properties of the data, but they can hinder
the effectiveness of processing algorithms applied to the data. Furthermore, they of-
ten indicate issues in data recording, such as minor motion artifacts, disorder-related
problems, or unexpected variations in regular periodic data behavior. Figure [I.3]il-
lustrates an example of a motion artifact-related type II outlier, where the sequence of
type II outliers deviates irregularly from the rest of the PQRST structure of the ECG
data, highlighted in red.
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Figure 1.3: ECG data with a motion artifact in the form of a type II outlier sequence.

Detecting type Il anomalies necessitates employing more sophisticated methods com-
pared to standard parametric techniques. Initially, it is crucial to determine either the
period or the expected behavior of the data, which can be achieved through frequency
domain approaches, segmentation, or moving/sliding window analyses. After iden-
tifying the regular period of the data, additional analysis is carried out within each

period. One potential approach involves detrending each period of the data segment
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and applying periodic outlier detection methods to pinpoint the outlying samples [63].
This involves removing any underlying trends or patterns from each period to focus
solely on the irregular occurrences that characterize type Il anomalies. By applying
specialized techniques designed for detecting outliers within periodic data, it becomes
possible to effectively identify the type II anomalies that deviate from the expected
behavior within each period. Such adaptive approaches enable the detection of con-
textual outliers that may not exhibit extreme values but disrupt normal temporal pat-

terns.

In the literature, numerous methods can be found that can be applied to detecting type
IT outliers, even though they may not have been specifically developed for this pur-
pose. For example, modeling-based moving window approaches have proven to yield
robust results in detecting point-type II outliers in periodic data. Auto-regression-
based algorithms like ARIMA [64], median-based non-parametric outlier detection
algorithms such as median-difference window subseries score (MDWS) [65]], and al-
gorithms based on short/long-term pattern recognition [[66] are some examples of such
methods. Another avenue is the use of learning-based approaches, such as employing
a deep learning approach using an encoder-decoder system [67] for detecting type
IT outliers in ECG data. Modeling and frequency domain-based techniques are also
utilized for identifying contextual outliers. One approach involves utilizing wavelet
transform-based regression [68]. Furthermore, combining the frequency domain ap-
proach with the autocorrelation structure, known as Fourier auto-correlation structure
(FLAC), has demonstrated high efficiency in detecting contextual outliers in multi-

channel ECG data [69]).

In the context of ECG datasets with type II outliers, clustering-based approaches are
commonly employed. These approaches typically involve segmenting heartbeats and
grouping together beats that exhibit similar shapes. A popular clustering algorithm for
outlier detection is normalized cross-correlation clustering (NCCC), which adopts an
iterative approach using cross-correlation values. The algorithm continues iterating
until a type II outlier is detected in a heartbeat, where the cross-correlation of that par-
ticular heartbeat significantly differs from the rest of the group [70]. Another widely
used clustering-based outlier detection algorithm is the density-based spatial cluster-

ing of applications with noise (DBSCAN), which relies on the sparsity of anomalous
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segments within ECG data [71]].

1.2.1.3 Type III Anomalies (Collective Outliers) (Anomalies)

In addition to the statistical properties, the periodicity of outliers plays a crucial role
in detecting anomalies, particularly in seasonal or periodic datasets where outlier be-
havior appears periodically and differs statistically from the overall data [33]. In
quasi-periodic data, certain intervals may exhibit non-periodic behavior or period-
icity with varying frequencies within a periodic dataset. Unlike the detection and
removal of outliers in biomedical datasets, this periodic behavior often represents the
distinguishing characteristics of the data modality. Much of the literature on ECG
data anomalies focuses on the detection of type III anomalies, which are anomalies

falling under the category of cardiac arrhythmias [[72].

Arrhythmias encompass a wide range of sub-categories, and their causes can in-
clude signaling malfunction, hormonal instability, nutrition dependence, cardiovas-
cular system degeneration, or disease-related malfunctions [73]. While each cause
can be further explored, their primary effect on ECG data is the alteration of its regu-
lar periodic behavior. Moreover, such distortion of the regular periodic behavior can
sometimes result from the temporal combination of independent components within
the ECG data, leading to narrowed or prolonged sub-intervals in the PQRST structure
and the emergence of a new outlying structure [[/4]]. A clinical example of an outlying
periodicity within the ECG data can be observed in Figure [I.4] where a Ventricular
Tachyarrhythmia interval during an ECG recording generates a distinct structure that
deviates from the rest of the periodic behavior due to an increased heart rate and

severe desynchronization of the PQRST structure [75]].

Detecting type III anomalies, which correspond to different types of arrhythmia in-
tervals in ECG data, is generally more straightforward compared to the detection
of type II anomalies. Several commonly used methods are available for detecting
type III anomalies in ECG data, each with its own advantages for identifying specific
types of arrhythmias. Frequency domain approaches, such as the wavelet transform,
Fourier transform variants, and spectral analyses like moving window and autore-

gressive modeling, are frequently employed for detecting type III anomalies. These
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Figure 1.4: ECG data with ventricular tachyarrhythmia as a type III outlier sequence

(red).

methods enable the analysis of frequency components and variations in the ECG data,
aiding in the identification of specific arrhythmia patterns [40, 55, [76]. Learning and
modeling approaches, including deep learning, neural networks, and support vector
machines, offer the capability to learn complex patterns and relationships within the
ECG data. These techniques can effectively detect various arrhythmia types by lever-
aging their ability to capture intricate dependencies and features in the data. Clus-
tering and density-related approaches, such as k-means and k-medoids algorithms,
can be utilized to group similar ECG patterns together. This clustering-based analy-
sis helps identify abnormal arrhythmia intervals that deviate from the typical patterns
observed in the data. Distribution-related approaches, like the Kolmogorov-Smirnov
test, examine the statistical distribution of the ECG data to identify deviations from
expected distributions. Such methods can effectively identify anomalies that exhibit
significant differences in their distribution properties compared to normal ECG pat-
terns. Mathematical approaches, such as derivative analysis, focus on analyzing the
rate of change in the ECG signal. By examining the derivatives or gradients of the
data, these methods can detect abrupt variations or abnormal trends associated with

specific arrhythmias. Each of these approaches offers specific advantages in detecting
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different types of arrhythmias within ECG datasets.

1.2.2 Anomalies in Biomedical Data

Biomedical time series data encompasses various modalities such as electrocardiog-
raphy (ECG), electromyography (EMG), skin conductance rate (SCR), and electroen-
cephalography (EEG) [77]. These modalities capture different aspects of an organ-
ism’s biological conditions, and data from biological sources are typically collected
using specialized equipment with unique specifications [22]]. As a result, biomedical
signals exhibit diverse forms and quasi-periodic behavior, with signal characteristics

varying across modalities [23]].

The devices used for measuring quasi-periodic time series data in biomedical appli-
cations can occasionally experience malfunctions, produce noise, or miss intervals,
making it essential to maintain proper electrode placement and connection to min-
imize the noise in the recorded data [/8]. Anomalous conditions can disrupt the
periodic behavior of biomedical signals, resulting in noisy intervals that can obscure
or alter the underlying physiological signals [79]. Detecting these anomalous data
intervals is crucial for various purposes, such as fine-tuning data models, diagnosing
disorders, recognizing patterns, and improving the accuracy of future sample predic-

tions [24, [80]].

Anomalies in biomedical data can stem from diverse sources, presenting challenges
to accurate analysis and interpretation such as measurement errors, including instru-
ment calibration issues, data acquisition malfunctions, artifacts in medical images and
recordings, such as motion artifacts or noise or human errors during data collection
[81L 182]. Moreover, environmental factors like ambient noise, electromagnetic inter-
ference, or variations in experimental conditions can introduce unexpected variations
and distort the data [83]]. Systematic errors caused by faulty sensors or malfunctioning
medical devices can even introduce consistent, or collective anomalies [84]. Outliers,
on the other hand, extreme values deviating significantly from the expected range in
biomedical time series data, originate mostly from the device or recording malfunc-

tions and can distort statistical analysis and compromise result reliability [83]].
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Inconsistencies and anomalies in biomedical data may also arise when integrating
multimodal data from different sources that have varying quality and protocols [86].
Anomalies can also be generated through biased or incomplete data, resulting from
sample selection, collection processes, or inadequate data preprocessing techniques,
such as handling missing values or imputing erroneous data [6]. Anomalies can also
arise from complex variable interactions or hidden patterns in the data. Addition-
ally, anomalies can be introduced unintentionally through insufficient quality control
measures during data acquisition, as well as errors during data transmission, storage,
entry, or labeling [[87]. Statistical anomalies and biased results can arise from small

sample sizes or imbalanced datasets too [40].

Detailed analysis of data characteristics enables the prediction of past and future be-
havior of biological systems, but this predictability is typically limited to stable inter-
nal and external environments. Unexpected conditions like disorders or environmen-
tal changes, irrespective of the organism, disrupt stability and cause irregular changes
in signal behavior, resulting in anomalies [6, 36]. Unfortunately, anomalies with
a higher intensity often result in more significant changes in signal characteristics,
leading to inconsistent analysis results and failure in disorder diagnosis, particularly

when the anomaly stems from an external cause [88, 89].

Understanding the diverse sources of anomalies in biomedical data is crucial for de-
veloping robust anomaly detection methods and ensuring the reliability and integrity
of research findings and clinical decision-making [87]]. Successful classification of
biological datasets relies on detecting and extracting unique features. Furthermore,
understanding the behavior of quasi-periodic anomalies enables the forecasting of
future occurrences of similar anomalies [90]. The emergence of new technologies
and novel data sources brings about new possibilities for the detection of a variety
of anomalies in biomedical data, necessitating continuous monitoring and adaptive

analysis techniques.

14



1.3 Anomaly Detection

Anomaly detection is a well-researched field, with a wide range of statistical outlier
detection methods available in the literature [91, |62]]. These methods can be cate-
gorized as parametric, non-parametric, or semi-parametric approaches [92]. Para-
metric methods involve data modeling and statistical moments and can be further
divided into depth, distribution, and graph-based methods [90]]. Parametric meth-
ods are particularly effective in detecting outliers with significant deviations from
the mean, making them suitable for detecting outliers with higher amplitudes [93,
94, 34]. For example, the z-score method, among parametric approaches, performs
well with small sample sizes and large outlier amplitudes [90]. On the other hand,
non-parametric methods do not rely on data modeling and can be classified as dis-
tance, clustering, or density-based methods [95]. Non-parametric approaches tend
to be more effective when dealing with larger sample sizes and a smaller number of
outliers [96]. The box plot is a commonly used non-parametric method that works
well with discrete data and limited samples, allowing for visualization of the median
features of outlying samples in comparison to the overall median [97]]. In addition
to purely parametric or non-parametric methods, there are hybrid or more complex
outlier detection techniques available, such as the sketching method [98], suffix tree-
based noise resilient (STNR) approach [99, [100], iterative Grubbs approaches [[101],
autonomous anomaly detection [102]], and the Tietjen-Moore test [103]. Frequency
domain-based outlier detection methods also exist, utilizing algorithms that incor-
porate the frequency domain [104, 105} [106} 107, 108}, [109]]. For the detection of
periodicity in time series data, the warping for periodicity (WARP) method has been
developed [110]. However, it is important to note that these approaches either use
the frequency domain for modeling purposes or as support for other outlier detection
algorithms. It is crucial to recognize that there is no universally superior method for
detecting all types of outliers across different data distributions. Each method has
its own strengths and weaknesses depending on the characteristics of the outliers and
the data itself [[111} 34, 40]. Detailed information about the commonly used methods
and the ones compared in the proposed algorithm can be found in Chapter [2]in the

technical background section.
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In preprocessing time series data, particularly in biomedical data, anomaly detection
is crucial for the accurate prediction of future samples and for preparing the data
for main analyses. Identifying distinctions between control and test groups can be
critical, as data from subjects with disorders often exhibit specific outlier patterns
[112, [18]]. For instance, in regular ECG data, the periodic pattern created by the
PQRST structures is characterized by common units. However, heart disorders or
malfunctions in the heart’s signaling pathway can disrupt the ECG data pattern by
suppressing/enhancing or altering the timing of the PQRST components, ultimately
affecting the regular beat frequency [113]. Therefore, the classification of healthy in-
dividuals versus those with a heart disorder may rely on the identification of anoma-

lous patterns.

1.3.1 Real-time Anomaly Detection

In real-time operating systems, data is typically received from sensors at fixed sam-
pling rates and transmitted in batches for efficient processing [114]. The amount
of data forwarded to the anomaly detection algorithm within a specific time frame
has a significant impact on its functionality and performance. Smaller data pack-
ets can improve computational speed, reduce lag, and enable swift processing [[115].
However, it is important to consider that reducing the data quantity may compromise
the accuracy of the anomaly detection algorithms [116]. Finding the right balance
between computational efficiency and accurate anomaly detection is crucial. While
fewer data points in a batch can enhance computational speed, the selected data quan-
tity must still be sufficient for precise anomaly detection [[117]. Excessively reducing
the data amount can impair the algorithm’s ability to accurately identify anomalies
[L18]. Therefore, determining the optimal data quantity is essential for efficient pro-
cessing and accurate anomaly identification in real-time systems as there are two
primary reasons for the potential decline in accuracy [119]]. First, the algorithm may
fail to capture meaningful features in the received data batch. Second, if the batch is
shorter than a prolonged anomalous pattern, the algorithm may not detect the anomaly

unless it compares feature values with those from the previous data batch [40].

Real-time anomaly detection is widely used across various industries and domains to
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enhance security, improve operational efficiency, prevent financial fraud, ensure pa-
tient safety, optimize logistics, and maintain critical infrastructure integrity [[/4]. In
the cyber security field, it plays a crucial role in promptly identifying and mitigating
security breaches by monitoring network traffic, user behavior, and system logs in
real-time, enabling organizations to quickly detect and respond to malicious activities
[120]. The financial sector utilizes real-time anomaly detection to detect fraudulent
transactions, identify abnormal trading patterns, and prevent money laundering ac-
tivities [121]]. In the manufacturing industry, it is applied by monitoring sensor data
from equipment and machinery to identify and predict equipment failures or produc-
tion deviations, minimizing downtime and optimizing operational efficiency [122].
Transportation and logistics companies leverage real-time anomaly detection to mon-
itor fleet operations, track vehicle routes, control autonomous vehicle patterns, and
identify deviations or irregularities in delivery schedules, ensuring efficient logistics
management [123]]. Furthermore, real-time anomaly detection finds applications in
the energy and utility sectors for monitoring power grids and detecting abnormalities

that may indicate power outages or potential equipment failures [[124].

Real-time anomaly detection is highly applicable in biomedical engineering, provid-
ing valuable insights and advancements in healthcare. It has significant use cases,
including patient monitoring, where real-time anomaly detection algorithms can ana-
lyze physiological signals like electrocardiogram (ECG), blood pressure, and oxygen
saturation levels to identify abnormal patterns that may indicate potential health is-
sues [125] [126]. For instance, these algorithms can detect heart attacks in patients
and identify real-time driver drowsiness, enabling healthcare professionals to inter-
vene promptly and provide appropriate medical attention [[127]. Another use case is
the analysis of medical imaging data, such as X-rays, CT scans, and MRIs, where
real-time anomaly detection algorithms can identify abnormalities or lesions in these
images, facilitating early disease diagnosis, such as cancer, and enabling timely treat-

ment [128 74].
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1.3.2 Subject-specific Anomaly Detection

Subject-specific anomaly detection refers to the detection of anomalies or abnormal
patterns specific to a particular subject or individual within a given context [[129].
It involves the analysis of subject-specific data and the identification of deviations
from expected behavior or patterns. Parameters in subject-specific anomaly detection
typically include the characteristics and attribute specific to the subject under study.
By tailoring the anomaly detection algorithms to the subject’s unique characteris-
tics, subject-specific anomaly detection can provide more accurate and personalized
results, improving the detection and interpretation of anomalies within a specific sub-

ject or population [21].

Subject-specific anomaly detection plays a critical role in the field of biomedical en-
gineering, particularly in healthcare, where personalized approaches are paramount
[129]. By incorporating individual factors such as genetic information, medical his-
tory, and physiological signals, subject-specific anomaly detection contributes to early
disease detection, personalized treatment planning, and improved patient outcomes
[130]. It empowers healthcare professionals to detect subtle deviations from expected
patterns, aiding in disease diagnosis and treatment monitoring. Leveraging subject-
specific anomaly detection techniques, biomedical engineers can enhance the accu-
racy, efficiency, and personalization of healthcare interventions, thereby advancing

the field and benefiting patients [40].

Detecting anomalies in individual biomedical data is challenging due to the unique
signal patterns exhibited by each person within a population [131]]. This challenge
is particularly amplified in human physiology, making anomaly detection even more
difficult. As a result, subject-specific anomaly detection becomes necessary for in-
dividuals whose regular signal patterns deviate significantly. The literature presents
various algorithms for subject-specific anomaly detection in generalized time series
data [132 [111]. While subject-specific anomaly detection algorithms generally offer
improved accuracy, they often come with higher computational complexity compared
to generalized algorithms [87,1133,134]. Many subject-specific anomaly detection al-
gorithms operate offline due to their longer computational times, which limits their

real-time applicability [87]]. Despite the computational costs associated with subject-
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specific anomaly detection, it is often necessary to achieve higher true positive rates

[135].

1.3.3 Features for Anomaly Detection

Features play a vital role in time series anomaly detection, as they are extracted to
capture various characteristics of the data that may indicate abnormal behavior. Sev-
eral types of features can be used for this purpose, including statistical features, fre-
quency domain features, dissimilarity and similarity measures, transformational fea-
tures, and other types of features [[136]]. Each type offers unique insights into the time
series data, making them valuable for detecting anomalies, particularly in biomedi-
cal applications. With recent developments in machine learning algorithms, the need
for unique feature extraction has become a trending topic in achieving accurate data
classification [[137]. As the number of unique features increases, since their overall
representation of the data improves, the classification success rate generally improves
while keeping sufficient sample sizes to prevent overfitting, and avoiding the curse of

dimensionality [138}139].

Statistical features provide a comprehensive view of the distributional properties of
the time series. The most commonly used complicated statistical features are gen-
erally derived from the basic statistical moments or their variations such as mean,
median, standard deviation, variance, skewness, and kurtosis [140]. Here, mean and
median provide information about the central tendency of the data, standard devia-
tion, and variance capture their dispersion, skewness indicates the asymmetry of the
distribution, and kurtosis measures the tails’ thickness [141]. By comparing these
statistical features with expected values or normal ranges, anomalies can be detected

based on significant deviations from the expected patterns.

Frequency domain features analyze the signal in the frequency domain and are de-
rived from algorithms like the Fourier Transform or other spectrum estimation meth-
ods including power spectral density, band frequency, fundamental frequency, and
other frequency components [[142]. Detecting anomalies involves identifying changes
in spectral composition or the presence of abnormal frequencies, where the spectral

features are useful for capturing quasi-periodic patterns or oscillatory behavior in
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time series data [[143]. To detect periodic components, frequency domain algorithms
like the Fourier Transform are used to reveal the relationship between the frequency
domain and quasi-periodic time domain elements [[144]. This relationship allows for
effective classification by extracting unique features from the data [145]. In cases
with oscillatory quasi-periodic behavior with high sampling rates, frequency domain

approaches generally outperform time domain approaches [44].

Dissimilarity metrics are often used to measure the distance between two or more
time series, where these metrics calculate the distances between individual samples
and provide an overall score for the entire dataset [146]. Commonly used dissimilar-
ity metrics include Euclidean, Manhattan, and Chebychev distances, which require
the time series data to have equal lengths and are suitable for numerical comparisons
[147]. On the other hand, similarity metrics such as cross-correlation assess posi-
tional similarity by examining the displacement of one data part into another [148],
and cross-covariance explores the relationship between different data parts and is
sometimes employed in multivariate classification problems [149]. These dissimilar-
ity and relationship metrics offer distinct representations of the differences between
datasets and can be used as features for anomaly detection in time series data [[150].
Dissimilarity metrics, such as Euclidean, Manhattan, and Chebychev distances, com-
pare the numerical differences between time series data by matching samples one-to-
one, whereas, temporal similarity metrics like cross-correlation evaluate the similarity
between different parts of the data by analyzing their displacement or positional sim-
ilarity [151]]. Higher dissimilarity or lower similarity values can indicate the presence

of anomalies.

When analyzing biomedical time series data, the selection of suitable features relies
on the distinctive characteristics of the data and the specific anomalies under consider-
ation. It is customary to employ a combination of different types of features to capture
diverse aspects of the data [[152]. Various feature types may perform exceptionally
well in different scenarios or for particular types of anomalies. Hence, meticulous
feature selection and evaluation are crucial for achieving accurate anomaly detec-
tion in biomedical time series data [153]. Employing domain-specific techniques in
each field of study, including biomedical analysis, can provide unique advantages in

addressing specific tasks, even though there may be some overlap with approaches
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from other fields [[154]. This is because each field has its own set of algorithms and

methods tailored to its unique challenges and requirements.

1.3.4 Detection of Quasi-periodic Outliers

Quasi-periodic outliers in time series data exhibit a quasi-periodic pattern, which can
be observed as peaks in the frequency domain. For instance, by applying the discrete-
time Fourier transformation (DFT), the time domain signal with periodic outliers,

as shown in Figure [I.5] can be transformed into the frequency domain, resulting in

Figure[1.6
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Figure 1.5: Randomly generated time-domain data with periodic outliers placed per

50 samples with random amplitudes.

As observed in Figure[I.6] the peaks in the frequency domain are more distinguishable
compared to the fluctuations in the time domain shown in Figure [I.5] The first peak
after the first sample in the frequency domain corresponds to the main oscillation
frequency in the time domain data, representing the periodicity of the outliers. It
is important to note that automated computation in a computer environment can be
challenging in identifying this first peak, particularly when low-frequency periodicity
is inherent in the data. Therefore, developing an algorithm that can detect all peaks

and perform computations based on the detected peaks would be a better alternative
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Figure 1.6: The frequency domain estimation of the same data in Figure using

DFT transformation.

for identifying the main periodicity of the quasi-periodic outliers. By analyzing all
the peaks and their harmonics, which provide information about the periodicity of the

data, a more comprehensive understanding of the time series can be achieved [155]].

1.4 Motivation, and Possible Contributions to the Literature

Collective and contextual anomalies in quasi-periodic time series data can display in-
tricate patterns, as demonstrated in Section [I.2.1.3]and Section [[.2.1.2] respectively.
However, since the baseline data also exhibit quasi-periodic behavior and often en-
compass a broader range than the anomalies themselves, detecting these anomalies
becomes challenging when relying solely on features from a single domain. There-
fore, it is hypothesized that leveraging both time domain and frequency domain prop-
erties would be beneficial in detecting collective and contextual anomalies in quasi-

periodic time series data.

Following this motivation, this thesis introduces a new anomaly detection approach,
designed to detect collective anomalies in quasi-periodic time series data. Inspired

by the FOD algorithm [44], and the WFOD algorithm , the proposed approach
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employs pitch frequency estimation in the spectral domain, a technique commonly
utilized in audio signal processing [[156}157]]. The pitch frequency, also known as the
fundamental frequency, captures the primary oscillatory frequency and the highest en-
ergy component of the data [158]]. The proposed approach employs a moving window
strategy for real-time analysis. Within each window, it estimates the spectral domain
and identifies the pitch frequency, which is then transformed into the time domain. By
leveraging dissimilarity measures, the proposed approach effectively discerns normal
behavior from potential anomalies. This hybrid algorithm capitalizes on the strengths
of both time and frequency domains, enabling the detection of anomalies over short

and long-term periods.

Consequently, the proposed approach provides a comprehensive perspective on anoma-
lous patterns, making it particularly valuable in real-time scenarios. Moreover, this
study introduces a distinctive feature extraction approach incorporating a comparative
analysis of engineering and statistical methodologies. The objective of the proposed
approach is to extract unique features from time series data in the moving windows
approach and establish an anomaly detection pipeline that supports real-time analy-
sis. Furthermore, it utilizes a reinforcement learning approach to update the decision-
making behavior as it progresses through the data, which makes it adaptable to any
subject by learning the subject-specific patterns. Therefore, the proposed approach

algorithm can be considered as the subject-specific anomaly detection approach too.

In summary, this thesis study makes valuable contributions to the literature on signal
processing, time series analysis, biomedical data processing, and machine learning.

Hereby, the following novelties and remarks are presented in this thesis:

e The proposed algorithm is a novel method that employs both time and fre-
quency domain properties to identify collective anomalous intervals in quasi-

periodic time series data.

e An evaluation is conducted to compare the performance of the proposed ap-
proach with other anomaly detection methods on electrocardiography (ECG)

data.

e The proposed algorithm is highly customizable and adaptable, as it seamlessly
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integrates new features and adjusts to evolving data characteristics in a multi-

variate anomaly detection pipeline.

e The proposed approach holds the potential for real-time monitoring and de-
tection of anomalies in biomedical or similar quasi-periodic time series data

measurement devices or environments.

e The proposed approach adjusts the anomaly decision criteria by dynamically

learning from the data, making it a subject-specific anomaly detection approach.

The remaining sections of the paper are organized as follows. Firstly, Chapter [2]
provides a concise overview of the technical background related to the algorithms
employed in the proposed method or used for testing purposes in the experimental se-
tups. Subsequently, Chapter [3|presents the previous research and studies conducted to
develop the final version of the proposed method. Chapter [4 offers a comprehensive
explanation of the proposed approach, including a detailed description of the com-
putational steps, their utilization, and the calculation of specific parameter values.
The applications of the proposed algorithm, experimental setups, comparisons with
other benchmark methods, experimental results, and their evaluation can be found in
Chapter 5| Finally, Chapter [6] serves as the conclusion of the thesis, summarizing
its content, highlighting the contributions of the proposed algorithm to the existing

literature, and discussing potential future works and research directions.
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CHAPTER 2

TECHNICAL BACKGROUND

This chapter presents the technical background for the used or referenced algorithms.
Hereby, the chapter is divided into several sections, including the general definition
and properties of the time series, which are linked and continued by the frequency
domain and some algorithms and definitions related to it. Then, a section contains
the most commonly used outlier and anomaly detection methods in the literature.
Moreover, the dissimilarity measures are presented as they are used in the proposed
algorithm as feature extraction techniques. Following that, the machine learning sec-
tion takes place, which includes the most commonly used machine learning classi-
fiers as well as the performance evaluation steps and properties for a classification
task. Therefore, instead of beginning with an interconnected methods-like chapter,
this chapter presents quick reference information for the reader to maximize their

comprehension of the proposed algorithm.

2.1 Some Properties of Time Series

Since time series are thoroughly mentioned in Chapter |1} this section is prepared to
present some of the main properties of time series related to their spectral domain
estimations, such as sampling rate, stationarity, and periodicity as they are heavily

referenced in this thesis research.
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2.1.1 Stationarity

Stationarity refers to the statistical properties and joint probability distribution of a
time series remaining constant over time [[159]]. A stationary time series exhibits con-
sistent characteristics on the probabilistic data distribution and statistical moments,
such as constant mean, constant variance, and stable autocovariance structure through
time [160]. Many statistical signal processing methods work properly on stationary
time series data or its weaker subset, namely, wide sense stationary (WSS) which
provides weaker stationarity by assuming a constant mean and stable autocovariance
[161]]. Let’s consider a discrete-time time series x;, C'(7) denoting the autocovariance
function with ¢ denoting the time index, and 7 as the lag in time. Then, a time series

can be considered WSS if it satisfies Equation [2.1] and Equation[2.2]

= Elz;] = constant (2.1)

C(r) = E[(z(t) — p)(z(t + 7) — )] = constant (2.2)

Understanding the stationarity characteristics of ECG signals helps in the accurate
diagnosis and monitoring of cardiac conditions [[162]. In the context of ECG signals,
stationarity implies that the average heart rate, heart rate variability, and amplitude
characteristics of the ECG signal remain consistent throughout the recording [[163]].
This also indicates that statistical measures such as mean heart rate, heart rate variabil-
ity, or power spectral density can be calculated accurately, enabling the detection of
abnormalities and arrhythmias [164]. On the other hand, non-stationary ECG signals
may exhibit time-varying characteristics, such as changing mean heart rate, varying
heart rate variability, or amplitude fluctuations, and may indicate changes in cardiac
activity due to physiological or pathological conditions and disorders [165]. Such

abnormal conditions are often referred to as anomalies in the data.
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2.1.2 Periodicity

Periodicity is a fundamental characteristic of time series data, indicating the presence
of recurring patterns or cycles at regular intervals [166]. For a time series z(t) to be
considered periodic, it must exhibit a repeated pattern or cycle over a period 7', as

expressed in Equation [2.3]

z(t) = x(t + kT), (2.3)

Here, k is an integer denoting the number of complete cycles.

In the context of biomedical time series data, achieving perfect periodicity over long-
term measurements is highly challenging due to the inherent instability and slight
changes in the periodic behavior of biological systems over time [167]]. Consequently,
the term "quasi-periodicity" is more suitable in the field of biomedical engineering,

as it acknowledges the deviation from strict periodicity.

2.1.2.1 Quasi-periodicity

Quasi-periodicity pertains to a pattern or behavior observed in a time series that
demonstrates approximate periodicity while also exhibiting variations or irregulari-
ties [[168]. These deviations can arise from external factors, underlying physiological
processes, or intrinsic variations within the system being observed [[169]. In contrast
to purely periodic signals that precisely repeat at regular intervals, quasi-periodic sig-
nals display slight variations in phase, denoted as ¢y, for each periodic component £k,

or exhibit modulations in their periodic behavior, as exemplified in Equation [2.4]

K
2(t) =Y Ay - cos(2mfit + r), (2.4)
k=1
In this equation, A represents the amplitude, while f; denotes the instantaneous
frequency.
ECG signals exhibit a quasi-periodic nature due to the repetitive patterns present in
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the cardiac cycle, such as the distinct PQRST structures [[170]. The identification
and analysis of different components and intervals in ECG signal heavily rely on
their periodic characteristics. The duration between successive R peaks, referred to
as the R-R interval, represents the periodicity of the cardiac cycle and they may not
always exhibit perfectly periodic behavior but instead demonstrates a quasi-periodic
pattern [171]. Changes in the variation of this periodicity can indicate irregular heart
rhythms associated with certain disorders, and abnormal heart activities, including

types of tachycardia and bradycardia [172].

2.1.3 Sampling Rate

In time series analysis, the sampling rate determines how frequently data points are
collected over time, directly influencing the temporal resolution of the data [173]]. Al-
though the choice of sampling rate is often dictated by the data collection hardware,
it holds significant importance as it impacts the types of analyses and the amount of
information contained in each data batch, particularly in biomedical data modalities
[[174]. Data collection devices convert continuous systems into discrete time series
data with a specific sampling rate, enabling signal processing in a digital environ-
ment [175]. The sampling rate is measured in Hertz (Hz), where 1 Hz is equal to
571 (seconds). The sampling rate of a time domain signal is inversely related to the
corresponding time interval, denoted as 7§, and the relationship between the sam-

pling interval and the sampling rate, or sampling frequency, fs, can be expressed by

Equation

1

T, =
fs

(2.5)

Considering the frequency and periodicity information provided by Equation the
relationship between the continuous-time signal, z(t), and its discrete counterpart,

x[n], can be mathematically represented by the sampling theorem, as shown in Equa-

tion[2.6] [176].

z[n] = x(nTy) = z(t) (2.6)

t=nT}s
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Here, n represents the sample index, while ¢ represents the time index.

A lower sampling rate leads to a coarser representation of the continuous-time signal,
which can result in information loss, particularly when dealing with rapidly chang-
ing or irregular events [[177]. Moreover, fine details and high-frequency components
may be missed with low sampling rate values, which can reduce the accuracy of
subsequent analyses [178]. Conversely, a higher sampling rate involves collecting
more data points, leading to larger datasets with generally larger data sizes, posing
challenges in terms of data storage, computational requirements, and processing time

[L79].

In the case of ECG signals, a higher sampling rate allows for a more detailed represen-
tation of the cardiac electrical activity, enabling accurate detection of specific features
such as the PQRST structure complex. This level of detail is crucial for identifying
arrhythmias and other cardiac abnormalities [180]. If the ECG signal is sampled at
a rate lower than the periodicity of the underlying signal behavior, the resulting time
series will provide a coarser representation of the cardiac electrical activity, which
may lead to the loss of fine details and high-frequency components, compromising
the accuracy of subsequent analyses and diagnostic interpretations [177)]. Therefore,
selecting an appropriate sampling rate for biomedical time series, such as ECG sig-
nals, is essential to ensure an accurate representation and meaningful analysis of the

underlying physiological processes.

2.2 Frequency Domain and Spectral Analysis

The frequency domain refers to the representation of a signal’s spectral content in
terms of its frequency components, including information about amplitude and phase
[181]. This representation is achieved through a mathematical transformation known
as the Fourier transform (FT), which converts a signal from the time domain to the
frequency domain [182]. The FT projects the time signal onto sinusoidal functions
with discrete frequencies, allowing any time series data with periodic components
and a sampling rate to be expressed as a sum of sinusoids with specific frequencies

[183].
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To apply the discrete Fourier transform (DFT), Equation [2.7|can be utilized.

N—

[y

% z(n)e” i , 2.7)
In this equation, N — 1 represents the maximum unique frequency component for the
given sampling, corresponding to 7 radians of the periodic data (as defined by the
Nyquist theorem). The variable n represents the sample index, while x(n) denotes
the amplitude in the time domain at sample n. The term k/N represents the number
of cycles k per N samples, j represents the imaginary unit, and e~/ represents Euler’s

formula for the orthogonal sinusoidal components.

Frequency domain analysis provides valuable insights into the characteristics of a
signal and finds applications in various fields such as signal processing in telecom-
munications, electromagnetic fields, control systems, and biomedical signal process-
ing [184, [185]. In biomedical applications, frequency domain and spectral analysis
techniques are commonly employed for diverse purposes, particularly in signal fil-
tering, which is used to eliminate noise or undesired frequency components from
biomedical signals [186]]. Digital infinite impulse response (IIR) and finite impulse
response (FIR) filters, as well as their well-known sub-types such as low-pass, high-
pass, and band-pass filters, are commonly used in preprocessing steps for a wide range
of biomedical signal analyses [[187]. Additionally, the notch filter is widely used in
biomedical signal processing to remove noise caused by electrical power lines, known
as hum noise which often occurs around 50-60 Hz and manifests as noise in the time
domain data [[188]. Eliminating this noise from biomedical data may significantly

improve the performance of models and analyses [[189]].

2.2.1 Quefrency

The quefrency domain, also known as the cepstral domain, provides information
about the unique time-domain characteristics of a signal [190]. It offers insights into
the periodicity and structure of the signal, making it particularly useful in peak detec-

tion for spectral analyses [191].
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To obtain the quefrency representation of a signal, the following steps are typically

followed:

1. Compute the Fourier transform X (k) of the time domain signal z(n).

2. Compute the logarithm of the magnitude of the Fourier transform, resulting in

the logarithmic power spectrum.

3. Apply the inverse Fourier transform to the logarithmic power spectrum.

The resulting signal in the quefrency domain is referred to as the quefrency function
or cepstrum. Mathematically, the quefrency representation C' of a signal x(n) can be
derived using Equation where F denotes the Fourier transform operator, and F !

represents the inverse Fourier transform operator.

C = F " {log (1F {z(n)} ")} 8)

Detecting peaks in the time domain can be challenging, especially when dealing with
noise or overlapping peaks [192]. Peaks in the quefrency domain, on the other hand,
are often more distinct and separated, making them easier to detect while also provid-
ing valuable insights into the periodicity and structure of the signal, assisting in the

identification of relevant peaks [[166].

A common approach in peak detection using quefrency analysis involves identifying
peaks in the quefrency function and then mapping them back to the time domain to
obtain the corresponding peaks in the original signal [[193]. This technique enhances
the accuracy and robustness of peak detection algorithms, particularly in situations
where traditional time-domain methods may struggle [194]]. Additionally, quefrency
analysis proves beneficial in analyzing the time-varying characteristics of the signal
for non-stationary signals, where the frequency content of the signal varies over time

[195].
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2.2.2 Pitch (Fundamental) Frequency

The smallest harmonic frequency component of a periodic signal is known as the
fundamental frequency, and it appears as the first peak among a sequence of periodic
peaks in the frequency domain [160]. In the context of speech and audio processing,
this frequency component, also known as the pitch frequency, represents the lowest
harmonic frequency of sound vibrations [196]. As the pitch frequency increases, the
sound becomes treble, higher-pitched, resulting in a shorter main signal period [[197].
Detecting the pitch frequency is valuable as it provides insight into the properties of
the sound [198]]. Figure [2.1] provides an illustration of the pitch frequency, highlight-
ing its appearance at 225.684Hz.

Sound Signal (MATLAB built-in signal: singing-a-major.ogg - first note)
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Figure 2.1: An illustration of the pitch frequency at 225.684Hz (bottom graph), ob-
tained by the DFT of the upper sound data.

The fundamental frequency f; of a periodic time series signal x(t) can be defined
as the fundamental period’s, 7y, reciprocal, which represents the duration between

successive cycles of the periodic data [199]. Such an expression can be found in
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Equation 2.9

fo=+ (2.9)

Pitch frequency is commonly utilized as a prominent feature in speech recognition al-
gorithms, as it can capture distinctive characteristics of the sound source [200]. Con-
versely, the use of pitch frequency in anomaly detection for time series, beyond audio
signals, is infrequent, and the outcomes are typically task-specific [201]. The pitch
frequency can also be applied to analyze periodic characteristics in other biomedical
data modalities, such as ECG signals. In the case of ECG, the concept of pitch fre-
quency, along with its reciprocal, the fundamental period ¢, can provide insights into
the regularity of heart rate and the cardiac cycle [18]. Therefore, analyzing the pitch
frequency of ECG signals can be particularly valuable for diagnosing arrhythmias

[202].

2.2.3 Pitch Frequency Estimation Methods

This subsection exclusively focuses on the selected pitch frequency algorithms used
in the proposed algorithm and its previous versions, namely the Normalized Corre-
lation Function (NCF), Pitch Estimation Filter (PEF), Cepstrum Pitch Determination
(CEP), Log-Harmonic Summation (LHS), and Summation of Residual Harmonics
(SRH). These algorithms are chosen due to their direct availability within the MAT-
LAB environment, specifically in the "Signal Processing" toolbox [203]. Hence, they

are included in this subsection.

2.2.3.1 Normalized Correlation Function (NCF)

The Normalized Correlation Function (NCF) algorithm is utilized for pitch frequency
estimation and is based on detecting peaks in the cross-correlation function in the

frequency domain [204]. The algorithm follows these steps:
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1. Compute the means and standard deviations of the reference pitch frequencies:

N

1
My = Nzyia

=1

1 N
Oy = NZ(yi_Uy)2>
=1

(2.10)

where NV represents the total number of reference pitch frequencies, and y;

denotes the ith reference pitch frequency.

2. Normalize the reference pitch frequencies:

=4t @11

Oy

where y; represents the normalized reference pitch frequency.

3. For each frame of the input signal, calculate the normalized correlation coeffi-

cients:

1 M
0y = MZ(%—M, (2.12)

Jj=1

where M is the length of each frame, z; denotes the jth sample of the input

signal, and i, is the normalized mean.

4. Normalize the frame:

@ = i~ He (2.13)

Oz

where ; represents the normalized sample of the frame.

5. Compute the cross-correlation between the normalized frame and each normal-

ized reference pitch frequency:

Ry = &tk (2.14)



where Ry, denotes the correlation coefficient with the kth reference pitch fre-

quency.

6. Identify the pitch frequency f, with the highest correlation coefficient:

fo=arg mgx Ry (2.15)

The NCF algorithm demonstrates robustness to noise, enabling accurate estimation
even in challenging environments, and making it suitable for real-time pitch fre-
quency estimation applications [205]. However, NCF assumes a dominant pitch fre-
quency, which limits its accuracy in signals with multiple overlapping frequencies or
harmonics where the estimation accuracy is influenced by the range of reference pitch
frequencies used [206]. Additionally, the computational complexity is impacted by
the number of reference pitch frequencies, which poses limitations in certain applica-

tions with a large number of possible pitch frequencies [21]].

2.2.3.2 Pitch Estimation Filter (PEF)

The Pitch Estimation Filter (PEF) algorithm employs a filter bank to enhance the
pitch-related components of a signal while suppressing unwanted noise and interfer-
ence [207]. The steps involved in the PEF algorithm can be described as the follow-

ing:

1. The input signal is decomposed into sub-bands using a filter bank:

]~

hi.(n) * x(n), (2.16)

CCsub(n) -
k=1

where z(n) represents the input signal, zy(n) is the sub-band signal, hy(n)
denotes the impulse response of the kth filter in the filter bank, and * represents

the convolution operation.

2. A nonlinear operation is applied to each sub-band signal to enhance the pitch-
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related components:

Ysun () = Flzan(n)], (2.17)
where F'[-] represents the nonlinear operation applied to each sub-band signal.

3. The enhanced sub-band signals are combined to obtain the pitch estimation fy:

. (2.18)

fo = argmax
n

Z Ysub (’I’L)

The PEF algorithm effectively enhances the pitch-related components of the signal,
leading to improved accuracy in pitch frequency estimation [208]]. By incorporating a
filtering approach, PEF enables noise reduction and enhances robustness against inter-
ference [207]]. Furthermore, PEF allows for adjustable filter characteristics, making
it adaptable to different signal and noise conditions [208]]. Furthermore, the per-
formance and computational complexity of PEF are heavily dependent on the filter
design and the selection of nonlinear operations, necessitating careful consideration

and optimization [209]].

2.2.3.3 Cepstrum Pitch Determination (CEP)

The Cepstrum Pitch Determination algorithm utilizes the cepstral representation of
a signal to determine its fundamental frequency [210]. The algorithm involves the

following steps:

1. Obtain the magnitude spectrum of the input signal:

X (k) = [F(x(n))], (2.19)

where X (k) represents the magnitude spectrum of the input signal x(n), and F

denotes the Fourier transform.

2. Take the logarithm of the magnitude spectrum to obtain the log-spectrum:

Y (k) = log(X (k). (2.20)
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3. Apply the inverse Fourier transform to obtain the cepstrum:

y(n) = F LY (k). (2.21)

4. Identify the peak in the cepstrum corresponding to the pitch period, ¢:

ty = arg max y(n). (2.22)

5. Calculate the pitch frequency estimate using the pitch period y:

4

fo " (2.23)
0

where f, represents the sampling frequency.

Cepstrum analysis effectively separates the pitch-related components from background
noise by utilizing the quefrency domain, resulting in robust pitch frequency estima-
tion [211]]. It can handle signals with multiple harmonics or complex spectral struc-
tures, making it suitable for various sound sources while also the implementation of
CEP allows for real-time pitch estimation applications [212]]. Nevertheless, cepstrum-
based analyses may encounter periodicity ambiguity in the presence of overlapping
harmonics which makes the pitch estimation performance highly dependent on the

presence and prominence of the harmonic spectral peaks [213].

2.2.3.4 Log-Harmonic Summation (LHS)

The Log-Harmonic Summation algorithm estimates the fundamental frequency by
summing the logarithmic amplitudes of harmonic peaks in the spectrum [214]. The

algorithmic steps of the LHS algorithm can be found below:

1. Obtain the magnitude spectrum of the input signal:

X (k) = [F(x(n))], (2.24)

where X (k) represents the magnitude spectrum of the input signal x(n), and F

denotes the Fourier transform.
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. Take the logarithm of the magnitude spectrum:

Y (k) = log(X (k). (2.25)

. Identify the peaks, H (k) in the logarithmic spectrum corresponding to harmon-

1CS:

Hk)={k:Y(k)>Y(k—1)and Y (k) > Y(k+1)}. (2.26)

. Sum the logarithmic amplitudes of the harmonic peaks:

Lk)= > Y(k). (2.27)

ke H (k)

. Calculate the pitch frequency estimate f; using the Log-Harmonic Sum L(k):

_ [s
Jo= m, (2.28)

where f; represents the sampling frequency.

LHS is effective in extracting the harmonic structure of the signal, making it strong

for noise interference [215]. It can accurately estimate the pitch frequency even in

the presence of overlapping harmonics or non-periodic components, and in real-time

pitch estimation applications [216]. Yet, the accuracy of pitch estimation depends on

the prominence and accuracy of spectral peak detection, which can be affected by

noise or variations in the signal [217].

2.2.3.5 Summation of Residual Harmonics (SRH)

The Summation of Residual Harmonics (SRH) algorithm estimates the fundamental

frequency by summing the residual harmonics obtained from the difference between

the original signal and a synthesized harmonic model [218]]. The algorithm consists

of the following steps:
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1. Generate a harmonic model of the input signal by synthesizing harmonics:

K
#(n) = Apsin2mfoknT, + é), (2.29)
k=1

where Z(n) represents the synthesized harmonic model, K is the number of
harmonics, A and ¢ denote the amplitude and phase of the kth harmonic, f;
is the estimated fundamental frequency, n represents the sample index, and 7

is the sampling period.

2. Calculate the residual signal by subtracting the harmonic model from the orig-

inal signal:

r(n) = x(n) — z(n), (2.30)
where z(n) is the original input signal.

3. Identify the peaks in the magnitude spectrum of the residual signal correspond-

ing to residual harmonics, H (k):

H(k) = {k : |F(r(n))| (k) > threshold} , (2.31)

where F denotes the Fourier transform, | F(r(n))| (k) represents the magnitude

spectrum of the residual signal, and the threshold is a predetermined value.

4. Sum the identified residual harmonics:

fo= > k- fo (2.32)

keH(k)

The SRH algorithm focuses on the residual components, making it more resilient to
noise and interference in the original signal which enables it to accurately estimate
the pitch frequency in signals with complex spectral structures or non-harmonic com-
ponents [219]. Nonetheless, the accuracy of pitch estimation is highly dependent on
the identification of spectral peaks and the optimization of the appropriate threshold

[218].

39



2.3 Dissimilarity Metrics and Temporal Similarity Measures

Dissimilarity metrics and temporal similarity measures are essential for data analysis
and pattern recognition tasks. Temporal similarity measures are designed to capture
temporal similarities between time series data. The choice of metric depends on the

specific characteristics of the data and analysis goals.

2.3.1 Linear Dissimilarity Metrics

Dissimilarity in time series is the difference between two different time series, and
there are several distance-based dissimilarity metrics used in literature. These in-
clude Euclidean, square Euclidean, Manhattan, Chebychev, and their general form:
Minkowski distances[147]]. These dissimilarity metrics are frequently used to quan-
tify the numerical difference between time series data by matching the samples one-
to-one, which necessitates that the time series data be of equal length [146]. The
dissimilarity metrics used in this study and their calculation formula, where x and y

indicate the samples, can be found in Table 4.1}

Table 2.1: Common dissimilarity metrics and their formulation.

Dissimilarity Metric Formula

Minkowski (|z1 — yi|P + |22 — Z/2|p)%, p: order
Euclidean V(T —y1)2 + (22 — yo)?

Square Euclidean (1 —1)* + (22 — y2)?

City Block |21 — y1| + |22 — y2

Chebyshev maz(|zy — yil, |22 — yal)

Given the formulae of the dissimilarity metrics, each metric has distinct properties,
advantages, and disadvantages, making them suitable for a variety of data and analysis

tasks.

The Minkowski distance is a generalized distance metric that includes, as special

cases, the Euclidean and Manhattan distances [|220]]. It allows for distance calculation
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customization by varying the parameter p. However, selecting an appropriate value

for p can be subjective and have a significant impact on the results.

The Euclidean distance is the most commonly used and well-known dissimilarity
metric, calculating the straight-line distance between two points in an n-dimensional
space [221]. It is easy to compute and interpret, and it is widely used in a wide range
of applications. But, it is assumed that the dimensions are equal in importance and

are not affected by scaling differences.

The squared Euclidean distance is similar to the Euclidean metric, but it avoids taking
the square root. It reduces the computational cost of calculating square roots, making
it more suitable for large-scale applications [222]]. However, it magnifies the effect of

large coordinate differences and can result in distorted dissimilarity measurements.

The city block distance, also known as the Manhattan distance, calculates the dis-
tance between two points by adding their absolute coordinate differences. When the
dimensions are not equally weighted or have different scales, it provides an appropri-

ate measure [223]]. But, it is affected by the dimensions’ ordering and scaling.

The Chebyshev distance, also known as the chessboard distance, calculates the great-
est difference between two points’ coordinates along any dimension. It focuses on
the maximum difference and is appropriate when outliers are expected or extreme
values are desired [224]]. On the other hand, it disregards intermediate differences
between coordinates and may not be appropriate in cases where subtle variations are

significant.

2.3.2 Dynamic Time Warping (DTW)

Dynamic Time Warping (DTW) is a similarity measure specifically designed for
comparing sequences with varying lengths or temporal distortions [225]. DTW is
a dynamic programming optimization and similarity measurement algorithm used to
measure phase shifts between two time series [226]]. It finds the optimal alignment
between two sequences by warping the time axis and minimizing the total distance
between corresponding elements and is useful for comparing time series data that

may exhibit phase shifts or temporal distortions [227]. However, it has a drawback of
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its computational complexity due to its quadratic function optimization [228]].

The warping path W = wl,w2,...,wL is optimized for the two sequences X =
xl,22,...,aM and Y = yl,y2,...,yN as follows:

L
Dist(W) =Y _ c(wai, wy;), (2.33)

1=1
, where L is the length of the warping path and c¢(wM,wN), is the distance met-
ric between the ith and jth elements of the sequences X and Y, respectively. The
main DTW value is then computed using the Dist(1V) values for each corresponding

sample of ¢ and j for the compared time series, such as [226]:

||z1(3), 22 (5)|| + min{D(i,5 — 1),D(G —1,5),D(i — 1,5 — 1)}, ifi,5 > 1

D(z’,j) _ [lz1(3), z2(3)I| + D(3,5 — 1), ifi=1,7>1 (2.34)
[lz1(2), z2(9)I| + D(i — 1, 7), ifj=1,i>1
[1z1(2), m2()Il, ifj=1,i=1

This formula leads the algorithm into an alignment path optimization problem in a 2D
map of the DT'W (i, j) values along the path from one edge to the other. To solve this
optimization problem, some conditions must be met for the constrained optimization
of the DTW algorithm, such as boundary condition, monotonicity condition, and step
size constraint [229]]. Taking into account those constraints, the optimal path is found,

whose metric values as given in Equation [2.34] yield the warping distance.

2.3.3 Temporal Similarity Measures

Cross-correlation and cross-covariance are mathematical techniques used to measure
the similarity and relationship between two time series signals, and they are essen-
tially used in signal processing, time series analysis, image processing, and machine

learning [230].

Cross-correlation is based on the displacement of one data part into another, inferring

positional similarity, which measures the similarity between two signals by examining
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the degree of similarity between their respective time shifts [[160]. Given two signals
x(t) and y(t), the cross-correlation function between them is defined in Equation
2.35]

Cy(t) = / () - y(t + 7)dt. (2.35)

where 7 stands for the temporal displacement between the signals. Cross-correlation
is based on linear relationships and stationary signals and can detect time delays or
phase shifts between two signals, which can help with synchronization, alignment,
and event detection [231]. However, it is sensitive to noise and may produce inaccu-

rate results when signal-to-noise ratios are low.

Cross-covariance measures the linear relationship and similarity between two signals,
taking into account their mean values, which can be used in a multivariate fashion
during a classification problem [232]. The cross-covariance function between two

signals z(t) and y(¢) is defined in Equation [2.36]

Koy(ty, t2) = El(z(tr) — paltr)) - (y(t2) — my(t2))], (2.36)

where E[] denotes the expected value, p, and p, represent the means of the sig-
nals z(t) and y(t), respectively. Cross covariance provides information about linear
dependence, lead-lag relationships, and similarity between two signals, making it
valuable in finance, econometrics, and multivariate analysis [233]. However, it can
be sensitive to outliers and non-linear relationships and assumes that the signals are
stationary and their statistical properties remain constant over time. It is useful for
investigating cause-effect relationships, time series forecasting, and dynamic analysis

[234].

2.4 Machine Learning Classifiers

Machine learning classifiers are algorithms that use features to categorize or predict

the class labels of input data. The most appropriate classifier is determined by factors

43



such as the specific problem at hand, the characteristics of the data, and the desired
balance of interpretability, accuracy, and computational efficiency [235]]. To make an
informed decision, it is necessary to conduct experiments with various classifiers and

carefully consider the problem’s unique aspects.

24.1 K-Means Clustering

The k-means clustering algorithm is an unsupervised technique for pattern recogni-
tion and data grouping based on features [236]. The algorithm minimizes the sum of
squared distances within each cluster by iteratively updating the centroids. The basic

k-means algorithm is shown below:

1. Begin the algorithm by selecting k cluster centroids at random.
2. Use the Euclidean distance to assign each data point to the nearest centroid.

3. Take the mean of all data points assigned to each centroid to recalculate the

centroids.

4. Steps 2 and 3 should be repeated until convergence occurs, where the centroids
no longer change significantly, or until the maximum number of iterations is

reached.

K-means is a fast and simple algorithm that works well with large datasets and high-
dimensional data and it is sensitive to the initial centroid selection and may converge
to suboptimal solutions [237/]]. It has applications in a wide range of fields, such
as image segmentation, customer segmentation, anomaly detection, data structure
exploration, identifying homogeneous groups, and reducing dataset dimensionality
[238, 1239, 240]. However, it may not be appropriate for datasets with complex non-

linear relationships or clusters with irregular shapes [241]].

2.4.2 K-Nearest Neighbour (k-NN) Classifier

The k-nearest neighbor (k-NN) algorithm is a supervised, non-parametric classifica-

tion algorithm that classifies new data points by considering their proximity to known

44



data points [242]. It is straightforward to understand and implement and can han-
dle noisy data better than other classifier algorithms. K-NN follows the following

algorithmic steps to classify the data:

1. Save the training data points and their associated class labels.

2. Calculate the distances to all training data points for a given test data point

using a distance metric (e.g., Euclidean distance).
3. Choose the k closest neighbors based on the shortest distances.

4. By majority vote among the k neighbors, assign the class label to the test data

point.

5. Repeat steps 2-3-4 for each test data point.

K-NN is an algorithm that does not make strong assumptions about the underlying
data distribution but is computationally expensive [243]]. It is suitable for pattern
recognition, recommendation systems, and anomaly detection, and is beneficial when
dealing with complex and non-linear decision boundaries or datasets with overlapping
classes [244,245]]. However, k-NN-based algorithms may not be suitable for datasets
with a large number of features or imbalanced class distributions, unless they are

modified for the task [246].

2.4.3 Decision Trees

Decision trees are algorithms that are used to classify data by applying rules to divide

it into smaller groups, with the following computation steps [247]]:

1. Initiate the algorithm parameters such as maximum depth, and minimum num-

ber of samples per leaf.
2. Choose the most informative feature as the tree’s root node.
3. Divide the data into child nodes based on the selected feature.
4. Repeat steps 2-3 for each child node.
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5. Continue recursively splitting the data until a stopping criterion is met.

6. Assign the majority class label to each leaf node’s samples.

Decision trees have the ability to partition data by selecting the most informative
feature at each node, guided by a splitting criterion like information gain or the Gini
index [248]]. This process results in a hierarchical structure where predictions are
made at each leaf node. Decision trees offer several advantages, such as their ease
of interpretation and visualization, ability to handle both categorical and numerical
features, and capability to capture non-linear relationships [249]]. However, they can
be sensitive to minor data variations and prone to overfitting, and may not be well-

suited for complex and non-linear class boundaries [250].

2.4.4 Support Vector Machines (SVM)

Support vector machines (SVM) seek a hyperplane that best separates the training
data by optimizing the margin between each class, in which testing samples are as-
signed to a class based on their proximity to the hyperplane’s side while taking into
account parameters such as kernel type and coefficients [251]. An SVM algorithm

employs the following steps:

1. Map the input data to a high-dimensional feature space using a kernel function.

2. Find the optimal hyperplane in the feature space that maximizes the margin

between different classes.

3. Classify the new data samples based on their position relative to the hyperplane.

SVMs are effective in handling high-dimensional data and data with complex, non-
linear decision boundaries, and can be memory-efficient when utilizing kernel func-
tions [252]. However, they may suffer from slow training time when dealing with
large datasets and can be sensitive to the choice of hyperparameters and the presence

of outliers [253]].
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2.4.5 Naive Bayes Classifier

Naive Bayes classifiers are based on Bayes’ theorem and assume independence among
features, and they calculate the posterior probability of each class and assign the sam-
ples to the class with the highest probability [254]. The implementation steps of a

Bayesian classifier are as follows:

1. Estimate the class prior and class-conditional probabilities based on the training

data.

2. Using Bayes’ theorem, compute the posterior probabilities for each class for a

given input instance.

3. Assign the input instance the class label with the highest posterior probability.

The Bayes theorem for calculating the posterior probability is shown in Equation

P(a|c)P(c)

Py (2.37)

P(clx) =

where P(c|x) refers to the posterior probability, P(z|c) is the likelihood, P(c) is the
class prior probability, and the denominator term P(x) represents the predictor prior

probability [255].

Naive Bayes classifiers are suitable for both binary and multi-class classification prob-
lems, and large datasets due to their fast computational times [249]. They are useful
when dealing with high-dimensional data and large feature spaces, but may not be
suitable when the independence assumption among features is violated or when cap-

turing complex feature interactions is crucial [256].

2.5 Validation and Performance Evaluation

Validation and performance evaluation are critical for determining algorithm efficacy

and reliability, evaluating method performance, comparing results to ground truth,
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and computational success, and subjecting it to rigorous testing [257]. Hereby, the
confusion matrix and its commonly used metrics, and k-fold cross-validation methods

are explained in this section.

2.5.1 Confusion Matrix and Common Performance Metrics

The confusion matrix is a table that summarizes the performance of a classification
model by displaying the counts of true positive (TP), true negative (TN), false positive
(FP), and false negative (FN) predictions, and can be found in Table [258]]. It is

widely used in machine learning to evaluate the performance of classification models.

Table 2.2: Confusion matrix for two classes

Actual Class

Positive | Negative
Positive TP FP
Negative FN TN

Predicted Class

A variety of widely utilized performance metrics can be calculated based on the val-
ues in the confusion table. These metrics include sensitivity, specificity, precision,
and accuracy, which are commonly used, along with more intricate metrics such as
the f1-score and Mathew’s correlation coefficient [259]. These performance metrics
provide valuable insights into the performance of classification models and aid in
making informed decisions based on the specific requirements of the problem at hand

[260].

2.5.1.1 Sensitivity (Recall or True Positive Rate)

Sensitivity, also known as recall or true positive rate, quantifies the ratio of correctly
predicted positive instances (TP) to the total actual positive instances (TP and FN).

It evaluates the model’s ability to capture all positive instances and can be calculated
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using Equation[2.3§]

TP
Sensitivity = ———— 2.38
YT TPYFN (238)
Sensitivity is essential when the cost of false negatives is high and is frequently used
in situations where the goal is to maximize the identification of positive instances,
such as in fraud detection or medical diagnosis. When the cost of false positives is

high or the negative class is more important, the sensitivity might not be the best

metric.

2.5.1.2 Specificity (True Negative Rate)

Specificity quantifies the proportion of correctly predicted negative instances (TN)
out of the total actual negative instances (TN and FP). It measures the model’s ability

to avoid false positives and can be calculated using Equation [2.39][261]].

TN
Specificity = ———— 2.39
pecificity TN+ FP ( )
When the cost of false positives is high and accurately identifying negative instances
is important, such as in the classification of disorders or the detection of product flaws,

specificity is helpful [262]. When the cost of false negatives is high or the positive

class is more important, it might not be the best metric to use.

2.5.1.3 Precision

Precision measures the proportion of correctly predicted positive instances (TP) out of
the total predicted positive instances (TP and FP). It provides insights into the model’s
ability to avoid false positives and can be calculated using Equation [2.40] [263]].

TP
Precision = ———— 2.4
recision = —— —FP (2.40)
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Precision is valuable when the cost of false positives is high and the goal is to mini-
mize them. It is commonly employed in tasks where reducing false positives is cru-
cial, such as in legal case predictions or credit risk assessment [264]. However, preci-
sion may not be the most appropriate metric when the cost of false negatives is high

or when the negative class is more critical.

2.5.1.4 Accuracy

Accuracy evaluates the overall correctness of the model’s predictions and is defined
as the ratio of correct predictions (TP and TN) to the total number of predictions (TP,

TN, FP, and FN). It can be calculated using Equation [2.41] [265]].

TP + TN
A _ 2.41
WY = TP Y TN+ FP+ FN (2.41)

When the dataset’s classes are evenly distributed and have comparable importance,
accuracy is frequently used. When both positive and negative misclassifications have
comparable effects, it is appropriate for evaluating the model’s overall performance
[261]. But when classes are unbalanced and the costs of misclassification vary greatly

between classes, accuracy can be deceiving.

2.5.1.5 F1 Score

The F1 score combines precision and recall into a single metric that balances both

measures. It is the harmonic mean of precision and recall and can be calculated using

Equation [2.42] [265]].

Precision x Recall
F1S =2 242
core x Precision + Recall ( )

The F1 score is commonly used when a balance between precision and recall is de-
sired [266]]. It is useful in tasks where achieving a balance between precision and

recall is important, such as in information retrieval or sentiment analysis [267]].
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2.5.1.6 Matthew’s Correlation Coefficient (MCC)

Matthew’s correlation coefficient is a comprehensive measure of binary classification
quality, considering all four elements of the confusion matrix. It ranges from -1 to
1, with 1 representing a perfect prediction, O representing a random prediction, and
-1 representing complete disagreement between the prediction and the actual class

[265]. MCC can be calculated using Equation [2.43

TP _FPxF
MCC — X TN - FP X FN (2.43)
/(TP + FP)(TP+ FN)(TN + FP)(TN + FN)

It is appropriate when a comprehensive evaluation metric that takes into account all
elements of the confusion matrix is required, which makes MCC an appropriate met-
ric to use for imbalanced classes [268]]. However, when the classes are balanced or
the cost of misclassification varies significantly between classes, MCC may not be

the best metric to use.

2.5.2 K-Fold Cross Validation

K-fold cross-validation is a widely used technique for evaluating the performance and
robustness of machine learning models [269]. The main objective of k-fold cross-

validation is to assess the efficiency of pattern recognition models [270].

The k-fold cross-validation procedure involves dividing the dataset into £ equal-sized
subsets or folds. Each fold, denoted as D;, contains approximately n/k instances,
where n is the total number of instances in the dataset. The steps of k-fold cross-

validation can be summarized as follows:

1. Divide the dataset into £ equal-sized subsets (folds), denoted as D;.

2. For each iteration, use one fold D; as the test set, and the remaining k& — 1 folds

as the training set.

3. Train the model on the training set and evaluate its performance on the test set.
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4. Calculate the performance metrics for each iteration based on the model’s pre-

dictions and the true values from the test set.

5. Aggregate the calculated performance metrics over all k iterations to provide

an overall assessment of the model’s performance.

K-fold cross-validation is commonly employed in machine learning for tasks such
as model selection and hyperparameter tuning and it is also useful when dealing
with limited data samples and serves as a resampling procedure [271]. It allows for
a fair comparison among multiple models or parameter settings by considering the
combinations of the different partitions of the dataset [272]. By using k-fold cross-
validation, a more accurate estimate of the model’s performance and generalization
ability can be obtained, reducing the risk of overfitting and providing a more realistic

assessment of the model’s behavior on unseen data [273]].
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CHAPTER 3

RELATED ANOMALY DETECTION STUDIES AND RECENT
DEVELOPMENTS

This chapter provides a general view of the anomaly detection methods that are com-
monly used for a variety of purposes and approaches. Moreover, the recent and di-
rectly related methods in the literature with their problems in computation are also
provided in this chapter. The proposed outlier and anomaly detection approach fo-
cuses on three major classes of methods: statistical, frequency domain-based, and
dissimilarity-based approaches. These classes are chosen based on their relevance to
the development and testing stages of the proposed approach, as well as their com-
parison to the current version of the proposed approach. While there are other classes
of outlier and anomaly detection methods available, they are not specifically included
in the proposed approach due to their limited relevance or comparability. Therefore
the following anomaly detection families and methods are selected based on their
relationship with the proposed approach in their methodologies, and their common

usages.

3.1 Common Outlier and Anomaly Detection Methods in Literature

3.1.1 Statistical Approaches

From a variety of outlier detection methods [274], three widely used statistical anomaly
detection methods, namely z-score, box-plot, and the Grubbs method, are chosen for
this thesis and the development process of the proposed algorithm. These methods
are employed for comparing different versions of the proposed approach. Statistical

outlier and anomaly detection algorithms are commonly utilized in the analysis of
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time series data to detect unusual patterns or observations that deviate significantly
from the expected behavior. However, these methods assume stationarity in the data

and may not be appropriate for non-stationary time series data.

3.1.1.1 z-score Test

The z-score test is a commonly utilized method for detecting outliers in univariate

datasets [275]. It calculates a standardized z-value for each data point using the Equa-

tion [3.1] [93]].

3.1

where 2 represents the standardized value, Y is the value of a data point, Y is the
mean of the data, o is the standard deviation, and n is the sample size. The z-score

measures the number of standard deviations that a data point deviates from the mean.

To identify outliers, a threshold value for z is selected. Typically, values with |z| > 3
are considered outliers. This choice is based on the observation that values with
|z| < 3 account for approximately 99% of the data and are close to the mean value

[93]. Values with |z| > 3 are regarded as extreme and flagged as outliers.

It is important to note that the z-score test is a parametric method that relies on the
statistical moments of the data, which implies that its effectiveness can be influenced
by the variability of outlier fold changes in comparison to the data without outliers
[44) 276]. If individual outliers exhibit high variances in fold changes or relatively
low fold changes compared to the rest of the data, the z-score method may not ac-
curately detect these outliers. Nevertheless, despite this limitation, the z-score test
remains widely employed for outlier detection in various types of datasets due to its

computational simplicity [277, 278]].
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3.1.1.2 Box-plot Test

The box-plot is a visual representation of standardized data that offers valuable in-
sights into the distribution of a dataset [97]. It presents key summary statistics, in-
cluding the minimum and maximum values, median, quartiles, and lower and upper
extreme value limits [279]. The box portion of the plot represents the interquartile
range (IQR), formed by the first and third quartiles, encompassing the middle 50% of

the data around the median value [280].

To detect outliers using the box-plot method, horizontal lines are drawn above and
below the box to represent the limits within which 95% of the data typically falls, and
observations that lie beyond these horizontal lines are considered potential outliers

[281]. In Figure @, the red crosses indicate such outliers.

Quantile

Dataset

Figure 3.1: A representation of the box-plot graph. The red crosses denote the out-

liers.

However, similar to the z-score method, the box-plot approach’s effectiveness can be
affected by the variability of outlier fold changes and their relationship to the rest of
the data [282]. Another drawback of the box-plot method is its uniform application
across different types of datasets, regardless of their underlying nature, which may

cause a lack of adaptability to specific data characteristics that can result in subopti-
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mal outlier detection outcomes in certain scenarios [44].

3.1.1.3 Grubbs Method

The Grubbs’ method, introduced by Grubbs in 1969 [93], is a statistical approach
commonly used for outlier detection and anomaly detection. It employs the z-value

as a measure to identify outliers. The test statistic G is defined in Equation

G="1"1 (3.2)

where Y; represents the ith sample that could potentially be an outlier, Y is the mean

of the data, and s is the standard deviation.

One notable characteristic of the Grubbs’ method is its suitability for handling outliers
in time series data [40]. The Grubbs’ test assumes a normal distribution for the data
and can be applied iteratively until no outliers remain in the dataset [44]. Unlike the
z-score method that operates on the entire dataset at once, the Grubbs’ test examines
individual samples one by one during each iteration. This feature makes the Grubbs’
method more appropriate when there are only a few outliers or a single outlier present

in the data [48]].

It is important to consider that due to its iterative nature, the Grubbs’ method can
be more computationally demanding compared to the z-score method [44]. Conse-
quently, the Grubbs’ test is recommended when there are a small number of outliers
or a single outlier in the dataset, as its practicality may diminish when dealing with

large datasets containing numerous potential outliers [103].

3.1.2 Frequency Domain Related Approaches

The frequency domain-based approach is a class of outlier and anomaly detection
methods that focuses on analyzing the frequency content of the data. These tech-
niques utilize various frequency domain transformations such as Fourier analysis,

wavelet transforms, or spectral analysis to examine the data in the frequency domain.
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By analyzing the frequency components, these methods aim to identify unusual pat-
terns or irregularities that may indicate the presence of outliers or anomalies in peri-

odic time series data.

3.1.2.1 Spectral Residual (SR) Method

: The Spectral Residual (SR) method is a frequency domain-based approach for
anomaly detection that utilizes the spectral properties of the data [283]. It aims to
identify outliers by examining the difference between the original spectrum and a
smoothed spectrum where the underlying assumption is that anomalies possess dis-

tinct spectral signatures that stand out in the residual spectrum [284]].

Let X (f) represent the magnitude spectrum of the data. The Spectral Residual (R(f))
is computed by taking the logarithm of the magnitude spectrum and subtracting the

smoothed logarithmic spectrum:

R(f) =log(IX(f)]) — S(og(IX(f)])), (3.3)

where log denotes the natural logarithm and S refers to the smoothing function ap-

plied to the logarithmic spectrum.

The SR method is particularly effective in detecting anomalies that possess unique
spectral characteristics by comparing the spectral residual values with predefined
thresholds [283]. However, it relies on the assumption that anomalies exhibit dis-
cernible spectral signatures, which may not always hold true in practical scenarios

[285].

3.1.2.2 Singular Spectrum Analysis (SSA)

Singular Spectrum Analysis (SSA) is a frequency domain-based technique that de-
composes a time series into a set of components known as singular vectors [286].
These singular vectors are derived from the time series data and provide valuable in-

formation about its behavior. Anomaly detection using SSA involves examining the
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characteristics of these components to capture both local and global patterns in the

data, enabling the detection of anomalies of various scales [287].

When applying SSA, the time series data X (¢) is decomposed into singular vectors
or components denoted as C;(¢). Unlike some other methods, SSA does not rely on
specific assumptions about the data distribution, making it more versatile in handling
different types of time series [288]. However, one challenge in using SSA for anomaly
detection is determining the appropriate number of singular vectors or components
consider, which depends on the specific characteristics of the data and the anomalies
being targeted [289]. Additionally, SSA may not be as effective for datasets with
irregular or noisy patterns, as these can complicate the decomposition process and

potentially impact the accuracy of anomaly detection results [287].

3.1.2.3 Autoencoder-based Anomaly Detection

Autoencoder-based anomaly detection is a machine learning approach that leverages
autoencoder neural networks to identify anomalies in the frequency domain [290].
By learning the normal behavior of the data, it can detect deviations from this learned
representation, indicating the presence of anomalies [291]. The frequency domain
representation of the data is used as input to an autoencoder neural network, which
is trained to approximate the input itself, with the goal of reconstructing the original
frequency domain representation as accurately as possible [292]. The reconstruction
error is then calculated as the difference between the input X and the output of the
autoencoder f(X). Anomalies are detected based on the magnitude of the reconstruc-
tion error which measures the dissimilarity between the input and the output of the

autoencoder and is commonly used as an indicator of anomaly likelihood [293]].

Autoencoder-based methods offer several advantages. They can capture complex pat-
terns and nonlinear relationships in the data, allowing them to effectively identify
anomalies with diverse characteristics [294]. Furthermore, they can detect both global
anomalies, which affect the entire dataset, and local anomalies, which are specific to
certain regions or patterns within the data [295]. Nevertheless, the training process
of autoencoders can be computationally expensive, particularly for large datasets,

which may hinder their scalability to real-world applications [291]. Furthermore, the
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performance of autoencoder-based methods is heavily dependent on the quality and

representativeness of the training data [296].

3.1.2.4 Power Spectral Density (PSD) Analysis

Power Spectral Density (PSD) analysis is a technique used to examine the power
distribution across different frequencies in the frequency domain [297]. Anomalies
can manifest as unusual spikes or drops in power within specific frequency bands,
and by estimating the power at each frequency, enables the detection of anomalies
by identifying deviations from the expected power distribution [298]. To perform

PSD analysis, the magnitude spectrum of the data, denoted as X (f), is utilized as in

Equation [3.4]

S(f) =X (3.4)

Anomalies can be detected by comparing the PSD values with a predefined thresh-
old or by analyzing the power distribution across different frequency bands and are
particularly effective in identifying anomalies that exhibit distinct frequency charac-
teristics [299]. It provides valuable insights into the power distribution of the data
across various frequency bands, which can aid in understanding the underlying pat-
terns and abnormalities present in the dataset [87]. On the other hand, determining
an appropriate threshold for anomaly detection can be challenging and may require

domain knowledge or prior information about the expected power distribution [300].

3.1.2.5 Hilbert Transform-based Methods

Hilbert Transform-based methods analyze the analytic signal derived from the origi-
nal signal using the Hilbert Transform, which uses the phase information of the ana-
lytic signal to identify anomalies [301]. Let z(¢) be the time series data. The Hilbert
Transform of x(t) yields the analytic signal z(t) as in Equation

2(t) = x(t) +i- H(z(t)), (3.5)
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where H (-) represents the Hilbert Transform.

Hilbert Transform-based methods can detect phase-based anomalies in analytic sig-
nals by analyzing changes in their instantaneous phase or frequency as they are useful
for detecting sudden changes or transient events [302]]. However, Hilbert Transform-
based methods may be sensitive to noise and outliers in the data, which may obstruct

the phase information [303]].

3.1.2.6 Cepstrum Analysis

Cepstrum analysis is a technique that involves transforming the magnitude spectrum
of the data into the cepstral domain [304]]. To perform cepstrum analysis, the inverse
Fourier Transform of log(|X (f)|) is taken to obtain the cepstral coefficients, which
represent the envelope of the spectrum, and anomalies can be identified by analyzing

the variations in these coefficients [305].

Cepstrum analysis is particularly effective in capturing anomalies in signals with
complex frequency components, which can uncover irregularities and unexpected pat-
terns that are not easily detected in the original magnitude spectrum [304]]. However,
selecting the appropriate cepstral coefficients or threshold values for anomaly detec-

tion can be a difficult optimization problem for multivariate datasets [306].

3.1.2.7 Wavelet-based Methods

Wavelet-based methods are effective in detecting anomalies based on deviations from
expected wavelet coefficients and analyzing data in both the time and frequency do-
mains using wavelet transforms [307]. To apply wavelet-based methods, the time
series data is decomposed using wavelet transforms, which provide a representa-
tion of the data at different scales or resolutions [308]]. The wavelet coefficients
obtained from the decomposition are then analyzed to locate the deviations or sig-
nificant changes in the wavelet coefficients as they indicate the presence of anomalies

[309].
One of the key advantages of wavelet-based methods is their ability to capture both
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time and frequency information simultaneously which makes them well-suited for
detecting transient or time-varying anomalies that may occur at specific time inter-
vals or exhibit frequency variations [310]. By performing multi-resolution analysis,
wavelet-based methods can detect anomalies at different scales, allowing for a com-
prehensive examination of the data [286]. But, different wavelet bases have varying
properties and may be more suitable for specific types of data or anomalies, and the
computational complexity of wavelet transforms may pose challenges, particularly

when dealing with large datasets [44].

3.1.3 Dissimilarity-based Approaches

The dissimilarity-based approach to anomaly detection revolves around quantifying
the dissimilarity or distance between data points in order to identify outliers and
anomalies. This family of methods relies on various techniques, such as comparing
two time series data, clustering, or non-parametric approaches like nearest neighbor

analysis, to identify data points that significantly deviate from the rest [311].

In the dissimilarity-based approach, the focus is on measuring the dissimilarity or
distance between data points rather than making assumptions about their underlying
distribution [[146]. By computing the dissimilarity between data points, it becomes
possible to identify those that exhibit distinct characteristics or patterns compared to

the majority of the data.

3.1.3.1 Higher Order Time Series Symbolic Aggregate Approximation (HOT-
SAX)

HOTSAX (Hierarchical Ordered Time SEries Approximation) is a dissimilarity-based
method that uses symbolic representation to detect anomalies in time series data

[312]. The HOTSAX algorithm can be computed using the following steps:

1. The time series data x(t) undergoes a discretization algorithm to obtain a sym-
bolic sequence representation. Let z(t) = [x1, X, ..., z,] denote the time se-

ries data. Through the discretization process, z(t) is divided into subsequences
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of equal length, and symbols are assigned to each subsequence.

2. A distance matrix D is computed to quantify the dissimilarity between pairs
of symbolic sequences. The elements of the distance matrix, denoted as D;;,
correspond to the dissimilarity between the symbols s; and s;. The distance
measure used can be a function d(s;, sj), such as the Euclidean distance, or
a specialized distance function designed for symbolic sequences [313]. The

distance matrix can be expressed as shown in Equation [3.6]

-d(81,51) d(s1,s2) .. d(sl,sm)-
o d(s%,sl) d(sz.,52) - d<3235m> (3.6)
| d(sm,s1)  d(Sm,52) .. d(Sm,Sm) |

3. Utilizing the distance matrix, hierarchical clustering is performed to group the
symbolic sequences. Initially, each symbolic sequence is treated as an individ-
ual cluster. The clustering process involves iteratively merging clusters accord-

ing to their pairwise dissimilarity.

4. Subsequently, the hierarchical structure is examined to identify anomalies. Anoma-
lies are characterized by clusters or subtrees that exhibit significant deviations
from the overall data. By analyzing these aspects, anomalies can be detected

within the hierarchical structure.

HOTSAX can handle large-scale datasets and longer time series that are possessing
a regular baseline behavior [55]. However, selecting the appropriate parameters is

critical for the algorithm’s performance.

3.1.3.2 LDOF (Local Distance-based Outlier Factor)

The LDOF (Local Density-Based Outlier Factor) algorithm is a dissimilarity-based
method that measures the local outlierness of each data point based on its distance to
its neighbors [314]. It calculates an outlier factor, known as the LOF, to quantify the
degree of outlierness for each data point where the outliers are detected by comparing

the LDOF of each point to a predefined threshold [315]].
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Let x; represent the ith data point in a dataset, and d(x;, ;) denote the distance be-
tween z; and its neighbor z;. The local outlier factor for z; is calculated using Equa-

tion[3.7]

LOF(z;) = 1 i _di ) (3.7)
Yok p max(d(x;),€) '

Here, d(z;, xj) represents the reachability distance between x; and z;, k is the number
of nearest neighbors considered, and ¢ is a small value. Anomalies are identified if

the LOF for a data point exceeds the predefined threshold.

The LDOF algorithm is effective in detecting local outliers and anomalies as it is
capable of handling datasets with varying densities or clusters [316]. However, it may

not perform well for high-dimensional datasets due to the curse of dimensionality.

3.1.3.3 Autonomous Anomaly Detection (AAD) Method

The autonomous anomaly detection (AAD) method [102] is a non-parametric and
unsupervised approach for outlier detection [317]. The algorithm utilizes Voronoi

tessellations [318] to partition the data into distinct data clouds.

To identify outliers within the data clouds, the AAD method follows a multi-step
process. In the first step, candidate samples for global anomalies, denoted as {z} pa 1,
are identified based on multimodal typicality [319]. Similarly, in the second step,
locally anomalous candidate samples, denoted as {z} p 4 o, are identified using locally
weighted multimodal typicality [319]. These local and global anomaly candidate
samples are combined as {x}ps < {z}pa1 + {x}pa2, and the autonomous data
partitioning algorithm (ADP) [[102] is employed to generate data clouds denoted as
{C}pa [319].

In the ADP algorithm, the average distances between local areas are used to define the
average radius of the local area of influence, referred to as the granularity [317]. The
density of the data, forming local cells within the Voronoi tessellation, is calculated
within local hyperspheres [317]. In the final stage of the AAD algorithm, the actual

outliers, denoted as {x} 4, are detected from the potential outliers {z}p4 by consid-
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ering if they fall below the average support of the data cloud they belong to [317].
This method is particularly designed for time series datasets [319]. However, since
the detection of anomalies (i.e., outliers) is empirically determined for each dataset,

its application is not automated.

3.2 Frequency Domain Based Outlier Detection (FOD) Algorithm

The Frequency Domain-based Outlier Detection (FOD) approach has been developed
as a robust non-parametric algorithm for identifying periodic outliers in time series
data [44]]. By applying a frequency domain-based outlier detection algorithm, which
utilizes the Fourier Transform, the periodic nature of outliers can be effectively cap-
tured. In the frequency domain, peaks correspond to periodic behavior, albeit with a
periodicity that is inversely related to the periodicity of outliers in the time domain
due to the scaling property of the Discrete Fourier Transform (DFT) [320]. Specif-
ically, when there are fewer or more widely spaced periodic outliers in the time do-
main, resulting in lower frequencies, a peak emerges at the beginning of the frequency
domain, indicating a low-frequency value. The periodic behavior of peaks in the fre-
quency domain arises from the harmonics of the primary oscillation frequency, which
are influenced by the repeated periodicity of outliers. Consequently, the location of
the first peak in the frequency domain holds the most meaningful information. Conse-
quently, two distinct scenarios can be considered for the frequency domain response
based on the data’s characteristics. First, when the data exhibits negligible trends
and a random-like distribution, such as those following normal or log-normal dis-
tributions, their frequency domain representation will also exhibit periodic behavior
with harmonics of similar amplitudes to the main oscillation frequency peak. Second,
when the data contains trends or periodic patterns, as observed in various real-world
data such as ECG, annual temperature, and circular/seasonal data, the outliers mani-
fest as peak values within their respective patterns. In such cases, a high peak appears
in the initial samples of the frequency domain, indicating low-frequency components,
typically dependent on the data collection sampling rate and perception [320]. These
high peaks correspond to the main oscillation frequency of the periodic pattern. Since

periodic patterns encompass multiple data samples (unlike the "one sample-outlier"
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scenario in simulated data), they tend to exhibit harmonics with decreasing ampli-
tudes. Detecting the main oscillatory frequency can be challenging for various data
types, including those with trends, and high levels of randomness/noise with low fre-
quencies. The difficulty in identifying the main oscillatory frequency in such data can

be attributed to:

1. The highest peak in the frequency domain may correspond to a harmonic fre-

quency rather than the main oscillatory frequency.

2. It is possible for there to be peaks preceding the main oscillatory frequency in

the frequency domain.

3. The amplitude of the peak representing the main oscillation frequency may be

lower than that of other peaks in the frequency domain.

The scaling properties of Fourier Transform, which are known as scaling in frequency
and scaling in time, are widely recognized and are inversely proportional to each other
[320]. The relationship between the intervals in time (%) corresponding to the in-
tervals between peaks in the time domain and the intervals in the frequency domain
(fint) due to harmonics can be established by exploiting these properties. This for-
mula highlights the inverse relationship between the intervals in time and frequency
domains and provides a useful tool for the analysis of periodic outliers in the fre-
quency domain based on their corresponding intervals in the time domain. Therefore,
the prehistoric form of the FOD algorithm, named the "Single-step FOD Algorithm,"
is developed by applying the new peak detection approach and utilizing the implica-
tion of the relation between frequency scaling and time scaling in Equation (3.8|in the

frequency domain, as described in Section

L

t' t —
o fint

(3.8)

3.2.1 Single-step FOD Algorithm and Applications

The single-step FOD algorithm aims to detect periodic outliers in the time series

data, using the frequency domain information, and the relationships between the time
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and frequency domains as preliminary defined in Equation [3.8] Although the multi-
step versions of the FOD algorithms are planned and their fundamental research and
development have been completed in several different studies [145, 321}, 322]], the
multi-step approaches of the FOD and related algorithms do not take part in this
thesis study. The single-step FOD algorithm is developed for the time series data in

which the outliers are periodically scattered in the data. The algorithm is given below:

1. Compute the Discrete Fourier Transform (DFT) of the time domain data, rep-
resenting the frequency components in Hertz. Remove the symmetrical half of
the frequency domain, centered around OHz, as per the Nyquist theorem [323]].
This results in a signal length of % +1, where L is the length of the time domain

data.

2. Apply the recent peak detection approach in the frequency domain, described in
Section[3.2.3.1] to identify the M largest peaks. The value of M is determined

using the formula given in Equation [3.9]

3. Once the M largest peaks are detected, calculate the frequency interval f;,;
by determining the distances between each pair of peak locations and finding
the mode of these distance values. Empirical results indicate that with proper
selection of M, accurate estimation of f;,; can be achieved. Utilize Equation
and the computed f;,; values to determine the time intervals between the

actual outliers.

4. Assume that the absolute global extreme of the time domain data represents an
outlier and is part of a sequence of outliers occurring periodically. Locate this
outlier sample and shift its position by ¢;,;, which allows for the identification

of all equidistant outliers exhibiting periodic behavior.

The FOD algorithm can be represented in simple pseudo codes as in [I] but it has its
extensions in multiple Fourier Transform-based approaches, namely, the multi-step
FOD algorithm (NFOD) as in [145) 321} 322]]. But they are not explained in this

thesis.
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Algorithm 1 Single-Step FOD

1: Compute the Discrete Fourier Transform (DFT) of z(¢) using the Fast Fourier

Transform (FFT) algorithm

2: Discard the first symmetric part of the DFT estimation

3. Find the value of M using Equation [3.9]

4: Find the highest M peak samples with dynamically changing parameters for peak
detection (improvements can be made for generalization)

5. Find f;,; as the mode of the distances between the locations of all M peaks

6: if N is odd then

7: Calculate t;,,; using Equation |3.8

8: end if

9: Find max x(n), the maximum value of the time domain data

10: Shift the location of max x(n) forward and backward by t;,,; to identify the peri-

odic outliers

With the application of the FOD algorithm, several analyses were conducted to eval-
uate its computational performances with some of the benchmark methods. The ex-
perimental setup including the simulations and the challenging condition to evaluate

the performances of the FOD algorithm can be found in Section [3.2.2]

3.2.2 Simulations to measure FOD algorithm performances

In order to assess the performance of the FOD algorithm, a simulation experiment
was conducted, where several other outlier detection methods from the literature were
evaluated under the same conditions for comparability. A brief description of these
other methods can be found in Section [3.1] The simulations were carried out using
a Monte Carlo simulation study with 100 runs. In each iteration, random time series
data was generated with periodic outliers placed within it. The independent variables
considered in the simulations included the data length, outlier fold change, percent-
age of outliers relative to the data length, and the data distribution used to generate
the baseline signal. Additionally, the computational times of the algorithms were

recorded. The performance evaluations were conducted using the F1-score [324]] to
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enable comparisons across different sizes of the evaluation metrics. The F1-score
ranges from O to 1, with a value of 1 indicating the complete detection of all out-
liers in the given data. Since there were multiple simulation conditions due to the
varying independent variables, the F1 scores were averaged and presented in the ta-
bles below. Each table focuses on the impact of a specific independent variable. The
Fl-scores were calculated by considering the correct identification of outliers, total

identification attempts, and false identifications in the F1-score formula.

Firstly, the impact of data length on the performance of outlier detection algorithms
was evaluated. Table [3.2] presents the results of the simulation experiment, focusing
on the effects of baseline distributions and outlier fold changes on the performance
of the outlier detection algorithms. The fold change is determined by generating out-
liers with varying mean values and a fixed variance parameter of 1, which introduces
deviation in the values. The F1 scores were used as the performance metric for com-

parison.

Table 3.1: The average F1-scores for the effects of data length on the performance of

the outlier detection algorithms

Data Length | Box-plot | z-score | Grubbs | AAD | FOD

200 0,129 0,096 0,097 0,015 0,237
1000 0,166 0,170 0,116 0,071 0,337
10000 0,365 0,410 0,306 0,152 0,796

Based on the results presented in Table[3.1] it can be observed that the FOD algorithm
achieves the highest F1 scores compared to the other algorithms. Furthermore, there is
a significant improvement in performance as the data length increases. This suggests
that the FOD algorithm is effective in detecting outliers, and longer data sequences
provide more reliable results. By analyzing the table, it can also be observed that the
FOD algorithm consistently outperforms the other methods across different baseline
distributions and fold change values. The F1 scores indicate that FOD achieves better
detection of outliers compared to the alternative algorithms. The performance of
all algorithms tends to improve as the fold change increases, indicating that larger

deviations in the outlier values facilitate their detection. These findings highlight the
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effectiveness of the FOD algorithm in detecting outliers, regardless of the baseline

distribution and the magnitude of the fold change.

Table 3.2: The average Fl-score values for the effects of baseline data distribution

and outlier fold change.

Baseline Dist. | Outlier Dist. | Box-plot | z-score | Grubbs | AAD | FOD
Gauss. (1,1) 0,381 0,350 0,164 0,000 0,487
Gauss.(0,1) | Gauss. (3,1) 0,361 0,414 0,301 0,082 0,846
Gauss. (5,1) 0,360 0,431 0,295 0,274 0,849
Log-n. (1,1) 0,147 0,152 0,110 0,049 0,354
Log-n.(0,1) | Log-n. (3,1) 0,147 0,125 0,186 0,1112 0,344
Log-n. (5,1) 0,146 0,084 0,200 0,094 0,189
t(v=3) v=9 0,146 0,158 0,098 0,033 0,350

According to the results presented in Table [3.2] the FOD algorithm consistently
achieves higher average F1 scores compared to the other outlier detection methods,
except for the Grubbs method in the case of the largest fold change of outliers in the

log-normal distributed baseline signal.

In general, FOD demonstrates strong performance across different baseline distribu-
tions and outlier distributions. It particularly excels in detecting outliers in Gaussian
distributed baseline and outlier signals, consistently outperforming the other meth-
ods. However, there is a slight decrease in the performance of FOD for the largest
fold change of outliers in the log-normal distributed baseline signal. This decrease
in performance can be attributed to the high inner variance of the log-normal distri-
bution, which makes it challenging for the FOD algorithm to accurately detect the
peaks in the frequency domain. The results highlight the effectiveness of the FOD al-
gorithm in various scenarios, especially for Gaussian distributed baseline and outlier
signals. It provides reliable outlier detection performance, outperforming the alterna-

tive methods in most cases.

The performance of the FOD algorithm was evaluated in terms of the effect of the

percentage of outliers, which represents the ratio of the number of outliers to the
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data length. The results of this investigation provide insights into the algorithm’s

performance under varying outlier conditions. The results for this simulation are

presented in Table[3.3]

Table 3.3: The average F1-scores for the effects of outlier percentage in the data.

Outlier Percentage (%) | Box-plot | z-score | Grubbs | AAD | FOD
1 0,106 0,130 0,116 0,065 0,426
2 0,157 0,205 0,186 0,118 0,402
3 0,315 0,332 0,307 0,079 0,422
4 0,302 0,235 0,083 0,056 0,577

According to Table [3.3] the FOD algorithm exhibits the best performance among the
methods in terms of average F1 scores for the effect of outlier percentage in the data.
Furthermore, it is observed that the FOD performance improves as the percentage of

outliers in the data increases, especially after the 2% outlier percentage condition.

Finally, Table [3.4] provides an overview of the computational times required for each
iteration in the Monte-Carlo simulations for the outlier detection methods. The re-
sults show that the FOD algorithm demonstrates faster computation compared to the
complex algorithms, namely Grubbs and AAD. However, it is relatively slow when

compared to the basic methods, such as Box-plot and z-score.

Table 3.4: The average computational time (milliseconds) for each iteration for data

length effect.
Data Length | Box-plot | z-score | Grubbs | AAD | FOD
200 2,5 1,6 5,6 6,9 3,6
1000 3,4 2,6 10,2 40,6 44
10000 12 33 56 2974 18,2

According to the table, the FOD algorithm exhibits faster computational times com-
pared to complex algorithms, such as Grubbs and AAD. However, it is slightly slower

than the basic methods, such as Box-plot and z-score. The computational time in-

70



creases as the data length increases for all the methods, and FOD shows a reasonable

increase in computational time compared to the other methods.

3.2.3 Conclusion and Problems of the FOD Algorithm

This paper introduces the frequency domain-based outlier detection method (FOD)
for detecting periodic outliers and quasi-periodic patterns in time series data. The
FOD algorithm is applied to various distributions, sample sizes, and percentages of
outliers, and compared to other outlier detection methods. The Monte Carlo studies
show that FOD consistently outperforms box-plot, z-score, Grubbs, and AAD meth-
ods in terms of accuracy. It is particularly effective in detecting fully periodic patterns
and quasi-periodic patterns in normal distributions. Moreover, FOD demonstrates fa-
vorable computational efficiency compared to non-parametric methods and similar
computational time to the parametric z-score method. The performance evaluation
on real datasets further supports the effectiveness of FOD. Overall, FOD presents a
preferable method for detecting periodic outliers and quasi-periodic patterns in time

series data.

On the other hand, the FOD algorithm is developed as an offline and proper for the
detection of periodic outliers in time series data. Moreover, since it does not utilize
a batch-data processing approach such as moving windows, it can not be directly
adapted to the real-time environment. Furthermore, a thresholding problem appears
that is critically affecting the performance of detecting the periodic outliers in the
data. Hereby Section [3.2.3.1|refers to the quick solution to the thresholding problem.
However, considering the adaptability and more generalized use, a moving windows-
based version of the proposed algorithm is required. Therefore, a new and moving-

windows-based approach is developed later, which can be found in Section

3.2.3.1 Problem with the FOD Algorithm: Thresholding

In the thresholding process of the FOD algorithm during the frequency domain calcu-
lations, the selection of an appropriate threshold value in the frequency domain is cru-

cial. This task involves considering various statistical properties of the data, such as
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mean, maximum, minimum, and median. Several approaches have been explored to
determine the threshold value, including combinations of statistical moments and dy-
namic adaptation based on data behavior. Each of these methods has shown promise

for specific types of data but may not be suitable for others.

Alternatively, instead of using a fixed threshold value, the FOD algorithm adopts a
different strategy by detecting the M largest peaks in the frequency domain. The
value of M is calculated using Equation [3.9] which takes into account the length of
the time series data L and the range between the minimum and maximum values in

the frequency domain.

Mo Dxmmin (3.9)

max

In Equation [3.9] M is determined as the product of the normalized range (max-min)
divided by the maximum value, and the data length L. This calculation ensures that
M 1is directly proportional to the data length and adjusts the range relative to the
maximum value. This dynamic approach in detecting frequency peaks has yielded

improved results for the FOD algorithm.

3.3 Windowed Frequency Domain Based Outlier Detection (WFOD)

The WFOD method is derived from the frequency domain-based outlier detection
method (FOD) [44] and adapts the moving windows approach that has iterative steps
in both the temporal and frequency domain (FOD). In this study, a novel hybrid fea-
ture called the WFOD feature is proposed [140], which combines properties from

both the time and frequency domains.

The WFOD algorithm, a modified and simplified version of the FOD algorithm, is
utilized for feature extraction and modeling purposes. The algorithm is outlined be-

low:
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Algorithm 2 WFOD: Windowed FOD
1: Compute Periodogram.

2: Limit the searching window in periodogram: Between the frequency values, cor-
responding to 0.25 seconds and 2 seconds in time domain, which are representing

the 240bpm and 30bpm respectively for the extreme cases, by using the relation
3.10/in and 3.1 1|respectively.

DataLength
fingmaz 0.25 x Sampling Rate (3.10)
DataLength
Jingmin 2 x Sampling Rate -11)
3: Detect the peaks between f;,;min and f;,;max.
4. Get the frequency value of the highest peak: f;,;.
5: Find the WFOD periodicity, t;,,;, by using Equation [3.12]
. A 2 x WindowSize (3.12)

fint

Following the WFOD algorithm in Algorithm 2] firstly, the periodogram of the data is
estimated using a defined window size. The window size is initially chosen to cover
at least five heartbeats, allowing for clear patterns to emerge in the frequency domain.
The second step involves identifying the principal frequency in the periodogram plot.
To ensure accurate detection and exclude extreme or erroneous cases, such as heart-
beats above 240 bpm or below 30 bpm, a search window is defined within the pe-
riodogram plot. The upper limit of the search window, f;,;maz, is computed using
Equation [3.10] where the constant 0.25 represents the time interval between beats for
a heart rate of 240 bpm. Similarly, Equation [3.11]is used to calculate the lower limit
of the search window, f;,;min, with the constant 2 corresponding to the time interval

between beats for a heart rate of 30 bpm.

Finding the principal frequency can be challenging for datasets exhibiting multiple
periodic behaviors or noise. To address this, the algorithm proceeds by detecting the
peaks within the defined frequency interval, f,1min and finemaz, providing a selective

approach to identify the correct peak. The peak with the highest amplitude and the
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first peak encountered is selected. If they correspond to the same frequency, that
frequency is considered the principal frequency, f;,;. Otherwise, the frequency value
associated with the peak of the highest amplitude is chosen. It is important to note
that further improvement is required in the detection of the principal frequency as a

potential area for future work.

Using the modified FOD algorithm, WFOD (Algorithm [2)), the common period of
the data within the window, t;,;, can be determined. The key idea behind this algo-
rithm, which enables its use as a feature, lies in the location of the second peak in
the periodogram. If the data within the window is regular and devoid of secondary
oscillations or artifacts, the peak can be easily detected. However, in the presence of
anomalies or artifacts, the location of the peak may shift or become undetectable. As
a result, the values of ¢;,,; can serve as indicators of various types of anomalies in the

data.

Furthermore, the value of ¢;,; can be utilized in the transformation of the data into
a more basic and stationary form known as the WFOD transform. The transformed
data is represented by a zero vector of length equal to the window size (WindowSize)
and single-point impulse peaks. These impulse peaks have an amplitude equal to the
global extreme value (either minimum or maximum) that has the highest absolute am-
plitude value within the data window. The impulses are positioned equidistantly from
each other with an interval of ¢;,,. Consequently, the data window can be succinctly
described by the common periodicity and the impulses. Hence, when the data in the
window are regular and devoid of secondary oscillations or artifacts, the peak can be
easily detected. Conversely, in the presence of anomalies or artifacts, the location of
the peak may change or become undetectable. Such cases indicate the presence of
anomalies in the current time window being iterated by the algorithm. Therefore, the
values of t;,; can serve as a preliminary indicator of various types of anomalies. The

pseudo-code for the WFOD transformation is presented in Algorithm 3]
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Algorithm 3 WFOD Transformation
1: Obtain the data window with length WindowSize.

2: Retrieve t;,,; from Algorithm 2] and Equation [3.12]

3: Create a zero vector of length WindowSize.

4: Determine the global extremum value G Eqpiitude and its location G Ejocqtion
within the data window.

s: Place impulses of amplitude G'Eqpiitude at the location G'Ejpeqrion, by shifting
the location backwards and forwards by ¢;,; on the zero vector. This forms the

WFOD transformed data window.

Figure [3.2] depicts the application of the WFOD transformation on real data [325].
The original data is represented by the blue line, while the red line represents its cor-
responding WFOD transformation. Notably, the figure displays equidistant impulses

with a distance of ¢;,,, and an amplitude of G Eqpiitude-
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Figure 3.2: A representation of the windowed data (Blue) and their WFOD Transform
(Red) on real ECG data from BIDMC Congestive Heart Failure database

The transformed data can be leveraged to extract additional features that capture prop-
erties in both the frequency and time domains. By implementing the WFOD trans-
formation using the information of ¢;,,, and Algorithm 3] a new feature family can be
derived based on the average fundamental period which is determined by the value

of ¢;,+, computed using Algorithm [2] and Equation [3.12] Moreover, the WFOD real-
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time single-window data transformation features are obtained following the WFOD
transformation of the windowed data using Algorithm [3] the dynamic time warping
(DTW) algorithm (as described in Section [2.3.2) is applied between the windowed
data and its WFOD-transformed counterpart. The purpose is to calculate the DTW
value, which serves as an indicator of the distortion between the original data and
its WFOD transformation for the respective window. To illustrate, the DTW value
is computed between the data represented by the blue line and its WFOD transform

shown in the red line in Figure [3.2]

Therefore, by applying the WFOD transformation, a new feature represented by the
DTW value can be obtained, encapsulating both the time and frequency domain char-

acteristics of the data.

Figure [3.3]showcases a real-time analysis of the WFOD transform and its associated
features, namely *"WFOD periodicity’ and "'DTW between the data and their WFOD
transformation’. The figure demonstrates the windowing process applied to real ECG

data from the BIDMC Congestive Heart Failure Database [325].

In the figure, the ECG data is divided into consecutive windows, as indicated by the
vertical dashed lines. For each window, the WFOD transformation is performed,
resulting in the red line representing the transformed data. The equidistant impulses
within the transformed data correspond to the common periodicity captured by the

WEFOD periodicity feature.

Additionally, the DTW algorithm is employed to calculate the DTW value between
the original data (represented by the blue line) and its WFOD transformation (repre-
sented by the red line). The DTW value serves as a feature that quantifies the dis-
tortion or dissimilarity between the two data representations. This real-time analysis
demonstrates how the WFOD transform and its associated features can be applied to

capture and analyze the characteristics of the ECG data.

3.3.1 Evaluation of the WFOD Feature Performances and Results

The performance of this new feature is evaluated in a classification study using an

open-access ECG motion artifact dataset. The feature is constructed by pairing sta-
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Figure 3.3: A representation of the windowing process and the WFOD features on

real ECG data from BIDMC Congestive Heart Failure database.

tistical moments (mean, variance, skewness, and kurtosis) with each other, both with
and without the WFOD feature. Four classifiers, namely the tree classifier, linear dis-
crimination analysis (LDA), K-nearest neighbor (K-NN), and Naive Bayes classifier,
are employed to independently classify the features. The results are compared, and
the discrimination performance of the WFOD feature for different cases of ECG data

is investigated.

The DTW dissimilarity metric exhibited subpar performance in discriminating syn-
thetic ECG data, necessitating the testing of the WFOD algorithm, which incorpo-
rates DTW within its algorithms. In this phase of the study, the effectiveness of
the new feature is evaluated using an open-access ECG motion artifact dataset in a

classification study. Statistical moments (mean, variance, skewness, and kurtosis)
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are combined both with and without the WFOD feature to assess their impact. Four
classifiers (tree classifier, linear discrimination analysis (LDA), K-nearest neighbor
(K-NN), and Naive Bayes classifier) independently classify the features. The WFOD
feature is included as an additional feature in half of the experimental conditions to
observe its effects on classification performance. Due to the curse of dimensionality
[326], the number of features is limited to a maximum of three, leading to the use
of pairs of statistical moments in the experiments. The results are compared, and the
discriminatory performance of the WFOD feature for different cases of ECG data is

investigated.

To evaluate the classification performance of the proposed WFOD feature, a publicly
available motion artifact-contaminated ECG dataset with three conditions [327] is
utilized. This dataset, obtained from the Physionet website [328], includes ECG data
collected from three subjects while they were in the standing, walking, and jumping
conditions, allowing the observation of motion artifact contamination. The standing
condition serves as the control, the walking condition represents the low anomaly
condition, and the jumping condition reflects the high anomaly condition. The data
has a sampling rate of 500Hz, with each case consisting of 8 seconds of measure-
ments. Three offsets of electrode patches (0, 45, and 90 degrees) are considered
as repetitive measures of the same subject in this study. Experimental conditions
for classification are generated in pairs, such as standing-walking, standing-jumping,
and walking-jumping cases, and classifications are independently performed on these
pairs. The dataset prepared for the classification part comprises 18 instances of mea-
surement, with 9 measurements per group in binary classification. Figure[3.4provides
a visualization of the standing-jumping condition pairs in a concatenated dataset from
the motion artifact-contaminated ECG dataset [[327]], where the red markers indicate
the jumping intervals. The stimuli are applied at the 4000th, 12000th, and 20000th

samples.

The provided tables below present the classification accuracy results for different
feature pairs and classifiers in three pairs of experiments. Here, Table shows
the results for the standing-walking experiment, Table [3.6] presents the results for
the standing-jumping experiment, and Table displays the results for the walking-

jumping experiment.
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Figure 3.4: Visualization of standing-jumping condition pairs in a concatenated

dataset from the motion artifact-contaminated ECG dataset.

In all analyses, the well-known classification approaches, namely, the tree algorithm,
linear discriminant analysis (LDA), K-nearest neighbor approach (K-NN), and naive
Bayes methods, are implemented while comparing the performance of different fea-

ture pairs.

Table [3.3] indicates that the inclusion of the WFOD feature does not have a signif-
icant impact on the classification accuracies of the classifiers. The WFOD feature
either slightly decreases or increases the accuracies by 1% to 6%, without a consis-
tent pattern. This suggests that the WFOD feature does not significantly contribute to
discriminating the control and low anomaly groups. Additionally, the tree classifier

generally outperforms the other classifiers in terms of classification accuracy.

Moving to Table [3.6] which focuses on the comparison between the control and high
anomaly groups, it can be observed that the WFOD feature mostly leads to an im-
provement in classification accuracy ranging from 0% up to 14%. However, there are
a few cases where the WFOD feature slightly decreases the accuracy by up to 4%.
Overall, the tree classifier demonstrates better performance compared to the other

classifiers for this pair of groups.
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Table 3.5: Classification accuracy of statistical feature pairs with and without WFOD

feature for standing - walking experiment under distinct classification methods.

Feature Pairs Tree LDA K — NN Naive Bayes
Mean + Variance 0.58 0.60 0.52 0.48
Mean + Variance + WFOD 0.57 0.61 051 0.49
Mean + Skewness 0.67 048 0.61 0.51
Mean + Skewness + WFOD 0.66 048 0.63 0.51
Mean + Kurtosis 0.73 0.53 0.56 0.49
Mean + Kurtosis + WFOD 0.67 0.52 0.62 0.50
Variance + Skewness 0.67 0.52 0.61 0.50
Variance + Skewness + WFOD 0.64 0.51 0.60 0.51
Variance + Kurtosis 0.73 0.58 0.56 0.53
Variance + Kurtosis + WFOD  0.72  0.56 0.63 0.47
Skewness + Kurtosis 0.70 0.52 0.67 0.60
Skewness + Kurtosis + WFOD 0.67 0.51 0.64 0.53
WFOD 0.66 0.51 046 0.50

Finally, Table presents the results for discriminating the low and high anomaly
groups. In this case, the WFOD feature shows superior performance, with accuracy
improvements of up to 25% in differentiating the groups. The WFOD feature per-
forms exceptionally well in this pair of groups. Similar to previous experiments, the

tree classifier achieves the highest accuracy compared to the other classifiers.

3.3.2 Conclusion and Problems of the WFOD Algorithm

In this study, a new hybrid feature called the WFOD feature is proposed, which com-
bines the time and frequency domain characteristics of data. The performance of this
feature is evaluated in comparison to statistical moments as features in a classifica-
tion study. The results demonstrate that the WFOD feature generally enhances the

classification accuracies of ECG data with different anomaly groups. Particularly,
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Table 3.6: Classification accuracy of statistical feature pairs with and without WFOD

feature for standing - jumping experiment under distinct classification methods.

Feature Pairs Tree LDA K — NN Naive Bayes
Mean + Variance 0.75 057 0.73 0.56
Mean + Variance + WFOD 0.84 0.72 0.68 0.62
Mean + Skewness 0.87 0.73 0.71 0.68
Mean + Skewness + WFOD 0.88 0.80 0.76 0.66
Mean + Kurtosis 0.87 0.66 0.61 0.58
Mean + Kurtosis + WFOD 0.88 0.80 0.70 0.62
Variance + Skewness 0.86 0.71 0.75 0.72
Variance + Skewness + WFOD 0.87 0.81 0.73 0.72
Variance + Kurtosis 0.87 0.66 0.68 0.62
Variance + Kurtosis + WFOD  0.83 0.78 0.73 0.67
Skewness + Kurtosis 0.86 0.74 0.76 0.76
Skewness + Kurtosis + WFOD 0.89 0.80 0.75 0.76
WFOD 0.81 0.66 0.67 0.66

the WFOD feature shows the highest impact on improving the classification accuracy
for distinguishing low and high anomaly groups, achieving an improvement of up to
25%. Furthermore, when used in unimodal classification, the WFOD feature achieves

a good classification rate of up to 87% for the low and high anomaly groups.

To gain a better understanding of the behavior of individual features, it is proposed
to conduct a dedicated study step to investigate each feature separately. Additionally,
employing dimension reduction techniques such as principal component analysis or
correlation-based analyses before further analysis would be beneficial in reducing
computational time, especially for large or multivariate datasets. Moreover, the com-
parison of classifiers reveals that the tree classifier consistently achieves the best ac-
curacy values among the tested classifiers. Therefore, in future extensions of this
study, particularly in the analysis of biomedical data, the tree classifier will be used

as the primary classifier to identify the optimal combination of classifiers and fea-
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Table 3.7: Classification accuracy of statistical feature pairs with and without WFOD

feature for walking - jumping experiment under distinct classification methods.

Feature Pairs Tree LDA K — NN Naive Bayes
Mean + Variance 0.78 0.66 0.65 0.53
Mean + Variance + WFOD 0.90 0.71 0.67 0.63
Mean + Skewness 0.77 0.69 0.69 0.66
Mean + Skewness + WFOD 090 0.65 0.73 0.71
Mean + Kurtosis 0.84 0.70 0.69 0.65
Mean + Kurtosis + WFOD 0.89 0.66 0.73 0.67
Variance + Skewness 0.77 0.67 0.67 0.66
Variance + Skewness + WFOD 092 0.67 0.69 0.66
Variance + Kurtosis 0.81 0.69 0.59 0.66
Variance + Kurtosis + WFOD 093 0.68 0.69 0.63
Skewness + Kurtosis 0.68 0.71 0.65 0.71
Skewness + Kurtosis + WFOD 093 0.69 0.70 0.70
WFOD 0.87 0.62 0.76 0.60

ture extraction methods. Based on these promising results, it is believed that further
modifications to the WFOD algorithm could potentially enhance the performance of
the WFOD feature in classifying time series data. Additionally, in addition to the
WEFOD periodicity and DTW value, the plan is to incorporate additional features into

the WFOD feature family to further enhance its classification capabilities.

However, a problem arises with the grand averaging of the WFOD algorithm, as it
does not align the grand average patterns for the regular data behavior. Therefore,
the anomalies which have different patterns than the baseline data become hard to
detect unless the window size and slide size parameters are well-adjusted in a moving
windows approach. The definition and the solution to this grand average alignment

problem are defined in Section
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3.3.3 Problem with the WFOD Algorithm: Grand Average Alignment

The data intervals are shifted throughout the entire dataset, represented by the red
dashed vertical lines in the upper graph of Figure 4.4l Each of these intervals forms
a data structure, which tends to exhibit similarities in quasi-periodic datasets. There-
fore, all of these data structures are grand averaged to obtain a common shape for the

data, as illustrated in Figure [3.5]for the current example.

Grand Average (red) of the Structures (blue)
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Figure 3.5: Computation of the grand average by cropping the structures as shown in

Figure @

However, aligning the windows in this manner can distort the data behavior, espe-
cially when using a higher number of windows. Therefore, a better alignment ap-
proach is needed. To address this, a basic solution is employed, aligning the windows
based on their highest amplitude sample. In this approach, the maximum value within
each window is identified. A temporary window is then formed by centering the max-
imum value and shifting the window boundaries accordingly. This alignment method
effectively resolves alignment issues for quasi-periodic datasets. Figure [3.6]and Fig-
ure [3.7] provides two examples of applying this approach to synthetic quasi-periodic
data. Additionally, the maximum-shift aligned version of the data from Figure [3.5]is
utilized in the latest version of the proposed algorithm, as depicted in Figure 4.5
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Figure 3.6: Grand average pattern for quasi-periodic data consists of two epochs with

the same amplitudes and different periods.

Data in Prior 10 Windows

Amplitude
o

1 L 1 L 1 1 L 1

0.2 0.4 0.6 0.8 1 . 1.2 1.4 1.6 1.8 2
Samples (time) <104

Grand Average of the Windows (Shifted Midpoint)

Amplitude

L L L L L L L L L
200 400 600 800 1000 1200 1400 1600 1800 2000
Samples (time)

Figure 3.7: Grand average pattern for quasi-periodic data consists of two epochs with

the same periods and different amplitudes.

An alternative approach to this partitioning step is to locate the global maximum
value in the data, which appears at the 316th sample in the upper graph of Figure 4.5]
This global extreme point is then centered within a data interval of length ¢;,;, and
the algorithm proceeds. Once the grand average of the structures is computed and
each structure is identified, the algorithm advances to the extraction of dissimilarity

features.
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CHAPTER 4

THE PROPOSED APPROACH

A novel algorithm is proposed for the analysis of quasi-periodic time series data, and
it is an extension of the FOD [44]], the WFOD [140], and the PAD [21]] algorithms.
Moreover, there are also several extension studies regarding the usage and perfor-
mances of the various components of the proposed approach such as the comparison
of the dissimilarity metrics as features which can be found in Section and a
comparison of the pitch frequency estimation algorithms that can be found in Section

AT2

The proposed algorithm incorporates various fundamental approaches that utilize
pitch frequency in the calculations. The algorithm can be applied to the entire dataset
or to sliding windows. However, the sliding windows approach is preferred due to
its computational efficiency and potential for real-time implementation. Currently,
the proposed algorithm is implemented in MATLAB, which limits its computational
performance and the selection of sub-task algorithms to MATLAB references. A fu-
ture plan for the approach involves converting the algorithm into the Python domain
and creating a library to make it open source. This would enable wider accessibil-
ity and usage of the proposed algorithm. The flowchart of the proposed algorithm is
presented in Figure d.1] while a pseudo-algorithm is provided in Algorithm ]

4.1 [Initialization of the Sliding Window Approach

The proposed algorithm is designed to operate in sliding windows with a defined
window size and step size. The window size is estimated to cover at least some

(say 5+) periods of data oscillation to capture the pitch frequency effectively. Sliding
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Figure 4.1: Flowchart illustrating the proposed approach.

windows are used to process the data, where the window length and slide distance are
automatically determined by the algorithm. In real-time reading, the step size should
be set to ensure timely processing and avoid any lag. However, if the data is inputted
in intervals with sufficient length, the window length may match the data length, and

the step size becomes irrelevant.

A challenge arises when the data length is not suitable to fit the window and shift size
for complete scanning of the data. To address this, a solution has been implemented
by gradually increasing the pre-auto-determined window size until the expression in

Equation .1 becomes an integer.

DataLength — WindowS'ize
ShiftSize

4.1

By making a slight adjustment to the window length, the sliding windows can be
aligned with the data. Within each window, feature extraction and evaluation steps

take place, which are further explained in the subsequent subsections.

In real-time applications, ML models are typically unsupervised. To introduce super-
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vision, a dynamic learning approach can be implemented, which is particularly useful
for subject-specific diagnosis in biomedical applications where unique patterns may

exist for each subject.

The sliding windows method is used to simulate the real-time processing of time
series data. While the window and parameter settings should ideally match the real-
time specifications of the device, this study omits such limitations. To mimic real-
time operation, parameters such as the window size and slide size need to be defined.

These parameters are illustrated in Figure

Window 1 Window 2 Window 3
[ E— s, L]

—_—
Slide Size

Window Size

Figure 4.2: Illustration of window size and slide size.

The analysis of preprocessed data begins by defining the window and slide sizes for
the sliding windows approach. Within each sliding window, the first step is the de-
meaning operation. This involves subtracting the mean value of the samples within a
window from each individual sample. The purpose of this demeaning operation is to
ensure comparability between future and past windows in the iterative sliding window
process. By considering the trending behavior of the data over time, this step helps
maintain consistency in the analysis. Standardization is not employed since it would
further reduce the range of all samples, including potential outliers. The proposed
algorithm relies on anomalies’ statistical and spectral characteristics, and their vari-
ances may not be homogeneous. In fact, anomalies often lead to increased variances,
providing valuable information for the proposed algorithm to identify anomalies by
leveraging the spectral domain and the resulting changes in pitch frequency estima-

tion performance.
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4.2 The Pitch Frequency Estimation

The next step is to compute the frequency domain estimation of the windowed data
using the Fast Fourier Transform algorithm [329]]. The frequency-domain estima-
tion of the quasi-periodic data behavior often results in a peak at the fundamental
frequency. The finding of such a peak in the frequency domain in audio signal pro-
cessing is often called "pitch frequency estimation". There are several other methods
for estimating pitch frequency such as Normalized Correlation Function (NCF) [204],
Log-Harmonic Summation (LHS) [214], Summation of Residual Harmonics (SRH)
[218], and Pitch Estimation Filter (PEF) [207]. Their basic technical background and
algorithmic steps can be found in Section However, thanks to the faster com-
putational speed of the Cepstrum Pitch Determination (CEP) algorithm [210]], and
the fact that it provides slightly better classification metrics compared to others, ac-
cording to the extension studies regarding the pitch frequency estimation algorithms
as some can be found in Section [A.1.2] the proposed algorithm adopts the CEP al-
gorithm for real-data analyses, and NCF or PEF for the synthetic data with specific

purposes.

The selected pitch frequency estimation algorithm is expected to yield the pitch fre-
quency value, fy, within the operating window, by following the respective algo-
rithmic steps as can be found in Section 2.2.2] and the next steps of the proposed

algorithm proceed.

4.3 The Relationship Between Frequency and Time Domain

The time and frequency domains exhibit an inverse relationship with respect to sam-
ple and frequency indices. This relationship allows us to convert the estimated pitch
frequency, denoted as fj, to its corresponding time domain counterpart, referred to as

tint, using Equation 4.2

fs

tint - %

4.2)

Here, t;,; represents the average oscillation period, which corresponds to the average
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distance between consecutive quasi-periodic peaks in the time domain data. It is
inversely related to the pitch frequency, fjy, and scaled by the sampling frequency,
fs. An illustrative example of the relationship between f, and ¢;,; values can be
observed in Figure 4.3] In this example, the signal has a sampling rate of 16000Hz,

and the pitch frequency is marked as the first harmonic peak in the frequency domain

at 225.684.
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Figure 4.3: The relationship between f, and t;,; values.

The upper graph in Figure .3|corresponds to a signal that can be accessed by loading
the "singing-a-major.ogg" file in MATLAB (R2021b) and cropping the first cluster of
data. In this case, the distance between subsequent peaks in the time domain fluctu-
ates around the value of 71. This value approximately represents the average period
of the quasi-periodic oscillation and can be computed by subtracting the consecutive
peak location values, such as 1093, 1021, and 946, as indicated by the marked sam-
ples in the upper sub-figure of Figure d.3] Furthermore, the value 71 corresponds to
the rounded integer value of 16000/225.684, where 16000 is the sampling rate in this
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example, and 225.684 denotes the location of the first peak in the frequency domain,

as shown in the lower sub-figure of Figure 4.3

It is hypothesized that a collective anomaly may alter this average oscillation period,
either increasing or decreasing its value or even causing the oscillation to disappear
from the recorded data for a certain interval. Such anomalies can arise due to sta-
tistical changes in the time domain that impact the frequency domain as well. For
instance, during the measurement of quasi-periodic data, an electrode disconnection
interval often introduces random noise, which obstructs the regular data pattern from
emerging during that duration. As a result, the fundamental peaks in the frequency
domain may flatten or entirely merge with other smaller peaks. Consequently, the
main principle of the proposed algorithm lies in identifying abrupt changes in the
main oscillation frequency over time. Various types of features are proposed and
tested to measure such changes in the time domain, with the objective of observing

differences in these features between resting and anomalous conditions of the data.

To provide an alternative perspective and proceed to the next step of the algorithm,
a segment of the audio data from Figure [4.3] is extracted, spanning the 14000th to
15000th samples, and the proposed algorithm is applied. The ¢;,; value is calculated

using Equation 4.2}

4.4 Data Partition and Grand Averaging

The subsequent step involves dividing the windowed data into smaller segments of

length ¢,,,;, represented by the red dashed vertical lines in Figure

Once the windowed data has been partitioned as shown in Figure each partition
is independently shifted around its maximum value while maintaining a fixed length
of t;,; throughout the windowed data. This shifting operation may result in overlaps
or unused samples, but these areas are most susceptible to the presence of anomalies,
making them the focus of anomaly detection in the proposed algorithm. In essence,
each of these shifted partitions represents a similar segment in the absence of anoma-
lous behavior within the quasi-periodic data. Consequently, for the current example,

computing the grand average of these partitions yields a common pattern across the
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Figure 4.4: Formation of initial sequential partitions with a length of ¢,,,,.
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data, as depicted in Figure [4.5]

3000

During the progression of the algorithm, in each windowed data, each partition con-

tributes to the updating of the grand average, allowing for a comprehensive analysis

of the data from start to end. This updating process enables the algorithm to learn

subject-specific partitioning, leading to a personalized approach to anomaly detec-

tion. The update is performed using weighted sample-wise averaging, where the

weights assigned to the new partition are 1, and the weight assigned to the previous

sample-wise grand average is g — 1, where g represents the total number of partitions

involved in the sample-wise grand average thus far. Mathematically, the update of

the grand average G/[i] with its previous version G[i — 1] and the partition P[i] is
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Samples

Figure 4.5: Computation of the grand average of partitions obtained from Figure

expressed by Equation 4.3}

G[i]:(g—l)*Gz_l]—i_P[i]. 43)

It should be noted that the grand average update operation, as described in Equation
is performed for each iterated window and partition P|i] within a window. Here, i
denotes the current cumulative number of partitions. In the proposed algorithm, prior
to updating the grand average of the partitions (G[i]), the dissimilarity and distance
metrics are employed to compare the current partition (P]i]) with the previous grand

average (G[i — 1]).

4.5 Dissimilarity Computation as Feature Extraction

Once the grand average of the partitions is computed and each partition is separated
within an iterated data window, the algorithm proceeds to extract dissimilarity fea-
tures. Dissimilarity metrics are employed to measure the distance between two dif-
ferent time series by evaluating the distances between individual samples and deriving
an overall score for the entire dataset. Generally, dissimilarity metric values increase

as the two time series differ, often in a statistical sense. Therefore, higher dissimi-
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larity metric values are expected in anomalous data intervals. When comparing data
with distinct behaviors, each dissimilarity metric has its own advantages and disad-
vantages. The current analyses utilize the most commonly used dissimilarity metrics

listed in Table

Table 4.1: The dissimilarity metrics applied in the proposed algorithm and their for-

mulations.

Dissimilarity Metric Formula

Euclidean V(@ — )2+ (22 — 32)?
Square Euclidean (1 —y1)* + (22 — y2)?
City Block |21 =y [+ 22— 92 |
Chebyshev max(| x1 — 1 |, | 22 —y2 |)

Time-dependent similarity functions, such as cross-correlation and cross-covariance,
are incorporated in addition to the dissimilarity metrics used in the multivariate clas-
sification process. Thus, the application of these functions is chosen under the as-

sumption of wide-sense stationarity (WSS) of time series data, as shown in Table

4.2

Table 4.2: The formulations of the time-dependent similarity metrics applied in the

proposed algorithm under the WSS assumption.

Time-dependent Similarity Metric Formula

Cross-correlation (WSS assumed) Rxy (t1,t2) = E[X;, Y3, ]
Cross-covariance (WSS assumed) Ky (t1,t2) = E[(Xy, — pux(t1)) (Y, — py (t2))]

During the sliding window iteration of the proposed algorithm, all the dissimilarity
measures from Table 4.1 and Table [4.2] are independently averaged across the parti-
tions, as explained in Section4.4] to enable the comparison of windows with different
partition sizes. The underlying assumption is that anomalous windows have a distinct
number of partitions compared to normal windows due to the computed #;,; and a
varying spread of averaged values. Once the partitions within a window are averaged,
the resulting averaged dissimilarity measure features are utilized in the clustering pro-

cess to make a decision about the current window.
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The four most commonly used dissimilarity metrics for the Minkowski distance gen-
eralization are selected based on the preliminary work and empirical results obtained
from toy data, as presented in Table 4.3] It has been observed that improved su-
pervised classification performance is achieved by the multivariate usage of certain
combinations of dissimilarity metrics, although this comes at the expense of a slight
increase in computational cost [330]]. The toy dataset is synthetically generated, with
the anomalous data interval being covered by 5% of the subject data, generated from
a Gaussian Normal distribution and sequentially located in the middle of the data.
The baseline data is generated using a sinusoidal waveform with an amplitude of 1, a
period of 1000 samples, and an oscillation around 0. This results in a total of 100,000
samples for each of the 100 synthetic subjects, with additional noise under a signal-to-
noise ratio of 10dB. The preliminary proposed algorithm is applied to the generated
toy dataset, and F1-scores are obtained for each of the dissimilarity metrics applied
individually. The differences in F1-score values are expected to arise from the repre-

sentation of various aspects of the data in a multidimensional clustering approach.

Table 4.3: Preliminary F1-score values of the proposed algorithm for different uni-

variate dissimilarity metrics, obtained using the toy data.

Feature Average F1-score
Euclidean 0.80
Square Euclidean 0.65
City Block 0.77
Chebyshev 0.82
Multivariate 0.84

Based on the preliminary F1-score results shown in Table 4.3|for the toy data, the de-
cision is made to use the multivariate approach with dissimilarity metrics, despite the
associated increase in computational time. Therefore, both the dissimilarity metrics
and the time-dependent similarity functions specified in the proposed algorithm are

employed in the multivariate clustering approach.

During each iteration of the sliding window process, when a new data partition is

created, a set of feature values is extracted as a 1 x 6 vector, referred to as the dis-
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similarity values vector. The number 6 represents the total number of features, which
includes the dissimilarity and time-dependence features defined in Table {.1] and Ta-
ble [4.2] respectively. As the iteration progresses through the data partitions within a
window, these vectors are stored for the corresponding window, forming a p X 6 ma-
trix called the dissimilarity values matrix. Here, p denotes the number of partitions
in the window. If all data partitions in a window are considered, the dissimilarity
values matrix is column-wise averaged, resulting in a vector of length 1 x 6 known
as the anomaly score vector for that window. Since the sliding windows approach
is utilized, the anomaly score vectors for each window are concatenated to form an
anomaly score matrix of size w x 6, where w represents the number of windows.
Considering the slightly better performance observed using the multivariate feature
classification approach, as indicated in the preliminary results in Table [4.3] each new
anomaly score vector in the sliding windows approach is evaluated by the trained
model using the anomaly score matrix containing the anomaly score vectors from all

previously processed windows.

4.6 Clustering for the Decision of Anomaly

The iterative process involves creating a feature vector for each window, which is
stored and referred to as an "anomaly score." These multivariate feature vectors are
utilized for unsupervised binary classification of each window, enabling real-time
anomaly detection using the proposed algorithm. The windows are clustered based on
their predicted multivariate anomaly scores, determining whether they are anomalies

or not.

To perform binary classification in each iteration of the sliding windows, the K-
medoids clustering algorithm is adapted. Specifically, the Partitioning Around the
Medoids (PAM) algorithm is employed, which is a greedy algorithm that evaluates
all possible swaps between the medoids and the feature values to identify any poten-
tial decrease in distance values [331]]. The distances between centroids and features

are measured using the Euclidean distance.

After each iteration, the windows are re-clustered, and the smaller cluster is consid-
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ered the anomaly group. This approach is based on the assumption that anomalies
are sparsely distributed throughout the entire data. The proposed algorithm classifies
the iterating windows as either anomalies or non-anomalies, assuming that there are
fewer anomalous data windows than regular ones. The smaller cluster is chosen it-
eratively as the anomaly group by the proposed algorithm. As the number of data
windows increases, this assumption becomes more valid due to the convergence of
the data distribution to a Gaussian distribution, as predicted by the law of large num-
bers. In this case, the anomalous structures are expected to correspond to the tails of

a Gaussian distribution.

4.7 The Proposed Algorithm Pseudocode

The overall process for finding anomalous windows and intervals in time series data
is summarized in Algorithm [T} As previously mentioned, the resolution of samples
detected by the proposed algorithm depends directly on the initialized window and
slide sizes used in the calculation. However, a detailed analysis of the effects of
window and slide sizes, as well as finding the optimal values for them, is left for

future work.

It is worth noting that the specific choice of window size and slide size can affect
the resolution and accuracy of the detected anomalies. Therefore, as a future work,
an automatic determination of the optimized window and slide size is planned to be

developed.

4.8 The Time Complexity

In order to observe and quantize the time complexity of the proposed approach, it’s
computational times are measured when it is applied to the data with different lengths.
This part of the study involves both synthetical and real data analyses. The first part
of the time complexity analysis is performed on the synthetically generated datasets,
where the samples are randomly produced using the Gaussian Normal distribution

with the mean value of 0, and unit standard deviation. The overall data are generated
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Algorithm 4 The proposed algorithm

Input the window size and slide size, the total number of dissimilarity features as 6, w = 1, the

anomaly score vector of size w X 6, and initialize sliding windows:

1

2

3.

4,

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Initiate the w!" windowed data.
. Utilize the selected pitch frequency estimation algorithm to find the pitch frequency, fo.
Convert fj into t;,,; using Equation[4.2]

Split the windowed data into P sequential partitions, each with a length of ¢;,,; and centered

around the sample p X t;,+, where p is the currently iterated partition number.

Initialize p = 1 and the grand average vector with a length of ¢;,,;, and start data partitioning.
Find the maximum value of the partition.

Shift the partition, locating the maximum value as the middle sample.

Compute the dissimilarity values vector with a size of 1 x 6 between the current data partition

and the current grand average.

Append the dissimilarity values vector to the dissimilarity values matrix with a size of p x 6.
Update the grand average of the data partitions using Equation4.3]

Increment p by 1.

Proceed to Step[I3]if p = P; otherwise, return to Step[6}

Compute the partition-wise mean of the dissimilarity values matrix to obtain the anomaly

score vector of length 1 x 6 of the current window. .
Erase the dissimilarity values matrix.
Update the cumulative anomaly score matrix of size w X 6.

Classify the current anomaly score vector as the test set and the current anomaly score matrix
as the train set using the k-medoids clustering algorithm and record the label for the current

window.
Increment w by 1.

Stop the algorithm if w = W; otherwise, proceed to the next window, i.e., Stepm

100 times under the fixed data lengths, i.e., 1000, 10000, 100000, and 1000000 sim-

ulating a Monte-Carlo experiment with 100 runs, but with different data in each run

that are generated using the same probabilistic distribution. Here, the window size

has been set to cover 5% of the overall data length for each of the conditions with

different data lengths in each moving windows iteration with the same slide size that
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is resulting in no overlapping windows. The results for the synthetic data experiment

for the time complexity can be found in Table #.4]

Table 4.4: The average computational times for randomly generated datasets consist-

ing of 100 subjects in each with fixed length under Gaussian Normal Distribution.

Data Length Computational Time (seconds)

1000 2.60
10000 18.01
100000 162.98

1000000 1467.04

Additional to the synthetic data experiment, the proposed approach is tested on the
real, time series ECG data, namely MIT-BIH Malignant Ventricular Ectopy Dataset
[332]. In this experiment, the window size is also set fixed to the overall data length to
cover 10% of the data in each iteration. Hereby, the results of this real data experiment

can be found in Table

Table 4.5: The average computational times for real benchmark dataset MIT-BIH
Malignant Ventricular Ectopy with cropped data lengths.

Data Length Computational Time (seconds)

5250 9.91
10500 18.33
21000 35.32
52500 75.43
105000 179.64
210000 341.08
525000 839.35

Note that, both of these experiments are performed on the same computer with the
processor specifications 11th Gen Intel(R) Core(TM) i7-11700KF @ 3.60GHz with-
out using any accelerator or hardware boost. Before the simulations are run, all of the
non-necessary user-based applications except the MATLAB 2021b, academic license

are closed where the simulations are performed with. Considering the computational
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times as recorded by the built-in functions of the MATLAB software as given in Table
H4.4]and Table 5] respectively for the synthetic and real data experiments, the change
in the computational times for the tested data lengths is found that it is almost lin-
early changing by the data length. The slight decrease in the computational times is
believed to originate from the data reading and process optimization by the MATLAB
software. Hence, the proposed approach can be considered to possess a linear time

complexity, i.e., o(n).
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CHAPTER 5

APPLICATIONS, RESULTS AND DISCUSSION

This chapter presents a series of experiments conducted to assess the applicability
of the proposed algorithm and compare its performance with other existing methods.
The experiments are categorized into two sections: synthetic data analyses and real
data analyses. The synthetic data analyses aim to simulate extreme data conditions
to observe the behavior and performance of the proposed algorithm. Conversely, the
real data analysis aims to demonstrate the effectiveness of the proposed algorithm
in capturing regular data behavior and distinguishing faulty data intervals from the

baseline data.

5.1 Synthetic Data Analyses

The synthetic data analysis part is divided into two analyses. The first one is con-
ducted to observe the dissimilarity metric features that are used in the proposed algo-
rithm and compare them with the other common features from several feature fami-
lies, namely, statistical, spectral, and transformational. On the other hand, the second
synthetic data analysis is conducted to observe the fundamental effects of the sliding
window parameters, especially when the window size and the slide size match with
the specific ratios with the baseline data periodicity. Hereby, in both of the analyses,
the dataset generation, the experimental setup, and other methods to compare, and the

results of the experiments are explained in different subsections.
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5.1.1 Synthetic Data Analysis 1: Comparison of Feature Extraction Methods

This section is dedicated to observing the classification performances of the different
basic features that are extracted from a variety of data conditions, and the results are
used to further modify the proposed approach regarding its performance compared to

those basic features.

5.1.1.1 Synthetic Dataset 1 Generation

The evaluation of the proposed algorithm’s performance initially relies on testing
with synthetically generated datasets. These datasets are crucial in assessing the
algorithm’s effectiveness under various data distributions and parameters for both
anomaly and non-anomaly conditions. In this paper, eight different synthetically gen-

erated datasets are presented for performance evaluation.

Each dataset consists of 50 subject data, each containing 50 sequential anomaly inter-
vals and 50 sequential non-anomaly intervals. The data intervals for each subject are
generated using two independent probabilistic data distributions, each with its own set
of parameters. Both anomaly and non-anomaly data intervals have equal sample sizes
of 1000 samples and are sampled at a rate of 100Hz. Therefore, the total data length
for each subject 1s 100,000 samples, comprising a combination of 50 data intervals
with 1000 samples each. The selected distributions for the non-anomaly condition
have relatively low variance and mean values, representing normal data behavior.
Conversely, for the anomaly conditions, distributions with contrasting characteris-
tics are chosen to simulate abnormal data behavior. Additionally, white noise with
a signal-to-noise ratio (SNR) of 10dB is applied to each dataset to introduce further

randomness.

Table [5.1] provides details of the eight synthetically generated datasets, including the
data distributions used for each condition. These datasets are designed to observe
the discriminability of the proposed algorithm in different scenarios, ranging from
random data with high mean or variation to periodic data with high oscillation, am-

plitude, or both.
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Table 5.1: The list of simulated datasets.

Rest Data Distribution Event Data Distribution Aim to Observe the Discriminability of
Gaussian, y: 0, 02: 1.00 Gaussian, j: 10, o2: 1.00 Random data with high mean
Gaussian, y: 0, 02: 1.00 Gaussian, y: 0, 02: 10 Random data with high variation
Gaussian, y: 0, o%: 1.00 Exponential, Rate: 5 Random data with high variation
Gaussian, y: 0, 02: 1.00 Student’s t, v: 5 Random data with high variation
Gaussian, y: 0, 02: 1.00 Log-normal, y: 0, 02: 5 Random data with high amp. outliers
Sinusoidal, Amp.: 1.00, Fi: 5 Sinusoidal, Amp.: 1.00, F: 10 Periodic data with high osc.
Sinusoidal, Amp.: 1.00, F: 5 Sinusoidal, Amp.: 2, Fi: 5 Periodic data with high amp.

Sinusoidal, Amp.: 1.00, F,: 5 Sinusoidal, Amp.: 2, F§: 10 Periodic data with high osc. and amp.

Here, Figure[5.1] Figure[5.2] Figure[5.3] and Figure[5.4|provide visual representations
of each simulated dataset, corresponding to the distributions and parameters listed in
Table In these graphs, the red dashed vertical lines indicate the stimulus points,
dividing the data into the rest condition (left side of the stimulus) with 1000 samples

and the event data intervals (right side of the stimulus) with 1000 samples.

5.1.1.2 Other Benchmark Features to Compare

This section aims to select features for the study based on their common usage in
the literature and their suitability in terms of computational times, accessibility, and
availability in MATLAB software. The statistical feature group includes time domain
metrics, such as moments. The features in this group are computed using notations
where x represents the data point, 1 denotes the mean, n indicates the number of sam-
ples, x(t) represents the time domain signal and k£ = 0, 1,2, ...,n — 1. The statistical
features consist of the mean, variance, skewness, kurtosis, median, range, and root-
mean-square. The spectral feature group comprises three features that are computed
from the frequency domain estimation of the data. These features consider the en-
tire one-sided frequency domain for their computations. The spectral features include
power, mean frequency in the frequency domain, and median frequency in the fre-
quency domain. Lastly, the transformational feature group utilizes the discrete cosine
transform (DCT). The DCT coefficients are considered individual features during the
classification step. By selecting these features, a comprehensive representation of the

data and an effective classification analysis are aimed. Table[5.2] presents the chosen
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Figure 5.1: Simulated datasets, part 1.

benchmark features, categorized into three groups: statistical, spectral, and transfor-

mational, where x represents a sample, . represents the mean, n corresponds to the

number of samples, z(t) denotes the time domain signal and k ranges from 0 to n — 1.

104



Synthetically Generated Data - Rest: Gaussian, Mean: 0, Variance: 1 | Event: Exponential, Rate: 5 | Red lines: Stimuli

3

Time (Samples)

apryyduty

10!

~10%

(a) Rest: Gaussian, u: 0, 2: 1.00, Event: Exponential, Rate: 5

Synthetically Generated Data - Rest: Gaussian, Mean: 0, Variance: 1 | Event: Students t, Degree of freedom: 5 | Red lines: Stimuli

x10"

Time (Samples)

(b) Rest: Gaussian, y: 0, o%: 1.00, Event: Student’s t, v: 5

Figure 5.2: Simulated datasets, part 2.
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Figure 5.3: Simulated datasets, part 3.

5.1.1.3 Results and Discussion for Synthetic Data Analysis 1

The classification matrix is generated by applying the proposed algorithm to compute

individual feature values, as well as extracting benchmark features. For classification,
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Figure 5.4: Simulated datasets, part 4.

the K-NN algorithm with a value of K set to 10 is employed, along with the K-
fold cross-validation method using K set to 10 for evaluating accuracy. To manage

the extensive results, only accuracy values are reported, but additional evaluation
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Table 5.2: The compilation of feature groups and their corresponding features utilized

in this investigation.

Feature Group Feature Formula
Mean %
Variance Z(”T_W
Skewness (Zﬁ—l_)’;);
Statistical Kurtosis n%
Median ”T“
Range max — min

> a?

ffooo 22 |z(t))*dz

%, frequency domain

Root-mean-square

Power

Spectral Features Mean frequency

Median frequency "3,

DCT coefficients (1) 3>""! 2(n)cos(k2mu/n)

n

frequency domain

Transformational

metrics such as sensitivity and specificity, derived from the confusion matrix, are

also computed and available upon request.

Since the number of units in both the rest and event conditions is equal, the classi-
fication accuracies are unbiased. When both conditions are random or exhibit indif-
ference with respect to the feature used, the accuracies converge to 0.5. Therefore,
an accuracy value of 0.5 indicates poor discrimination performance, suggesting that
the feature contributes minimally or not at all. Conversely, an accuracy value of 1
signifies perfect discrimination between the two data categories using the respective
feature. Roughly speaking, accuracy values ranging from 0.8 to 0.9 can be consid-
ered good, while values above 0.9 can be regarded as very good for such experiments.
The features are evaluated in both univariate and multivariate conditions to observe
their discrimination performances. Accuracy values are reported as the primary eval-
uation metric, indicating the performance of the features in discriminating between
rest and event conditions. The unbiased nature of the classification accuracies and the
reference values provide insights into the discrimination capabilities of the features

used.
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Univariate Classification Accuracies: Table [5.3| presents the accuracy results for
the proposed algorithm using NFC as the pitch detection method. The performance
of the algorithm is evaluated on different datasets, and the results are discussed inde-

pendently before comparing them.

Table 5.3: The accuracy results of the proposed algorithm with the NFC pitch fre-
quency detection method. Abbreviations: G.: Gaussian, E.: Exponential, L.: Log-

normal, S.: Sinusoidal, A.: Amplitude.

Feature G,u:0,0%1 G,p:0,0%1 G,u0,0%:1 G,p:0,0%1 G,u:0,0%1 S,A:1L,F:5 S,A:LF:5 S,A:LF:5
G., p: 10, o%1 G., 0, 02:10 E. Rate: 5 St,v:5 L., 0, 0%5 S,A:LF:10 S,A:2 F:5 S.,A:2 F:10
Euclidean 0.97 0.81 091 0.68 0.80 0.78 1.00 1.00
Square Euc. 0.98 0.81 091 0.67 0.80 0.68 1.00 1.00
City Block  0.97 0.81 0.84 0.60 0.80 0.69 0.95 0.94
Minkowski  0.98 0.80 0.90 0.68 0.80 0.78 1.00 1.00
Chebyshev ~ 0.92 0.80 0.92 0.79 0.80 0.66 1.00 1.00
DTW 0.98 0.81 0.84 0.59 0.81 0.77 1.00 1.00
tint 0.98 0.51 0.63 0.51 0.52 0.61 0.64 0.77

According to Table for datasets with varying mean or amplitude values, the
proposed algorithm with NFC achieves good accuracy results (>0.8). However, for
datasets with lower mean differences, the algorithm’s performance ranges from bad
to average (0.59 to 0.81). Notably, the proposed algorithm with NFC is not suitable
for datasets with periodicity differences, as it yields relatively lower accuracies (0.66

to 0.78).

Comparing the dissimilarity metrics, there is no significant difference in their per-
formances across different datasets. However, when dealing with datasets exhibiting
high variance and outliers, choosing the Chebyshev distance metric is recommended.
On the other hand, the ¢,,; feature yields poor results compared to the dissimilarity

metrics.

Overall, the proposed algorithm with NFC pitch detection shows good discriminabil-
ity in datasets with different mean or amplitude values. However, its performance is
poorer for datasets with lower mean differences or periodicity differences. Among the
dissimilarity metrics, the choice of Chebyshev distance is preferable for datasets with
high variance and outliers. Conversely, the ¢;,, feature does not provide satisfactory

discrimination results.
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Table [5.4] presents the accuracy values for proposed algorithm features with the PE-
FAC pitch detection method for eight simulated datasets.

Table 5.4: The accuracy results of the proposed algorithm with the PEFAC pitch
frequency detection method. Abbreviations: G.: Gaussian, E.: Exponential, L.: Log-

normal, S.: Sinusoidal, A.: Amplitude.

G,u: 0,031 G,u:0,0%:1 G,u0,0%1 G,u:0,0%1 G,u:0,0%1 S,A:1,F:5 S,A:1,F:5 S,A:1,F:5
Feature

G.,p: 10,0% 1 G, pu:0,0% 10 E., Rate: 5 St,v: 5 L,u:0,0%5 S,A:1,F:10 S,A:2,F:5 S,A.:2 F:10
Euclidean 0.53 1.00 1.00 0.80 1.00 0.59 0.99 0.97
Square Euc.  0.52 1.00 1.00 0.79 1.00 0.59 1.00 0.98
City Block  0.52 1.00 1.00 0.60 1.00 0.60 0.87 0.84
Minkowski  0.53 1.00 1.00 0.81 1.00 0.60 0.99 0.97
Chebyshev  0.51 1.00 1.00 1.00 1.00 0.56 1.00 0.99
DTW 0.51 1.00 1.00 0.62 1.00 0.63 0.95 0.92
tint 0.50 0.51 0.51 0.51 0.81 0.51 0.50 0.52

The results in Table [5.4] show that, in contrast to the NFC method, the PEFAC method
fails to discriminate the data conditions with mean value differences. However, the
proposed algorithm achieves perfect accuracy values (1.00) in discriminating data

conditions with higher variances, outliers, and oscillations.

Among the dissimilarity metrics, the Chebyshev distance yields better results overall
compared to other metrics, particularly for datasets with more outliers. On the other
hand, Dynamic Time Warping (DTW) is preferable (0.63 to 0.95) for discriminating
data conditions with different periodicity. However, the ¢;,,; value is not recommended
as a feature on its own. Instead, it is suggested to be converted into dissimilarity

metrics for better discrimination performance.

The accuracy values for different statistical features are presented in Table[5.5]

Table 5.5: The accuracy results of the statistical features. Abbreviations: G.: Gaus-

sian, E.: Exponential, L.: Log-normal, S.: Sinusoidal, A.: Amplitude.

G,pu:0,0%1 G,u0,0%1 G,u:0,0%1 G,u:0,0%1 G,u:0,01 S,A:1,F:5 S,A:1,F:5 S,A:1,F:5
Feature

G., p: 10,0% 1 G, u:0,0% 10 E., Rate: 5 St,v: 5 L,u 0,025 S,A:1,F:10 S,A:2,F:5 S.,A:2, F:10
Mean 1.00 0.90 1.00 0.53 1.00 0.51 0.50 0.50
Var. 0.50 1.00 1.00 1.00 1.00 0.50 1.00 1.00
Skew. 0.50 0.50 1.00 0.76 1.00 0.50 0.62 0.64
Kurt. 0.51 0.50 1.00 1.00 1.00 0.50 1.00 1.00
Med. 1.00 0.89 1.00 0.50 1.00 0.50 0.57 0.56
Ran. 0.50 1.00 1.00 1.00 1.00 0.50 1.00 1.00
RMS 1.00 1.00 1.00 1.00 1.00 0.50 1.00 1.00
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Table [5.5] provides insights into the performance of these features when applied to
random datasets generated under specific statistical distributions. Upon analyzing the
results, certain patterns emerge. The mean and median features demonstrate remark-
able discrimination capabilities, achieving perfect accuracy (1.00) in distinguishing
datasets with high mean differences. Similarly, the variance feature performs ex-
ceptionally well, achieving perfect accuracy (1.00) in identifying datasets with high

variance conditions, as expected.

However, the statistical features encounter challenges when it comes to identifying
periodic signals with varying oscillation rates. In these cases, the features exhibit
lower accuracy values, ranging from 0.50 to 0.51. This suggests that the statistical

features struggle to effectively capture the characteristics of such periodic signals.

Among the statistical features, the root mean square (RMS) stands out as the most
reliable and consistent discriminator. It consistently achieves perfect classification
accuracy (1.00) across a wide range of datasets, indicating its robustness. However,
it should be noted that the RMS feature fails to differentiate sinusoidal datasets with

the same amplitude, resulting in an accuracy of 0.50 for this particular condition.

The accuracy values for spectral features are presented in Table[5.6]

Table 5.6: The accuracy results of the spectral features. Abbreviations: G.: Gaussian,

E.: Exponential, L.: Log-normal, S.: Sinusoidal, A.: Amplitude.

G,p: 0,01 Guu:0,0%1 G,u0,0%1 G,u:0,0%1 G,pu:0,0%1 S,A:1LF:S5 S,A:LF:5 S,A:1F:5
Feature

G., p: 10,021 G, u:0,0% 10 E., Rate: 5 St,v: 5 L,pu:0,0%5 S,A:1,F:10 S,A:2,F:5 S,A:2 F:10
Power 1.00 1.00 1.00 1.00 1.00 0.50 1.00 1.00
Mean Fr. ~ 1.00 0.51 1.00 0.51 0.91 0.83 1.00 1.00
Median Fr. 1.00 0.52 1.00 0.50 0.83 1.00 1.00 1.00

Table [5.6) provides the accuracy results for the spectral features that are evaluated
based on their ability to discriminate random datasets with different statistical distri-
butions. Upon analyzing the results, it is evident that the performance of spectral fea-
tures varies across different conditions, ranging from poor to perfect accuracy (0.50
to 1.00). Among the spectral features, the power feature stands out as the best overall
performer. It achieves perfect accuracy (1.00) in most cases, except for the sinusoidal

dataset with the same amplitude condition, where its accuracy drops.
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The power feature demonstrates consistent and reliable discrimination capabilities
across a wide range of datasets. It effectively captures the power characteristics of the
signals and performs well in distinguishing datasets with varying statistical distribu-
tions. In addition to the power feature, other spectral features such as mean frequency

and median frequency also exhibit reasonably good discrimination abilities.

Table showcases the accuracy results of using discrete cosine transformation

(DCT) coefficients as independent features.

Table 5.7: The accuracy results of the DCT coefficient features. Abbreviations: G.:

Gaussian, E.: Exponential, L.: Log-normal, S.: Sinusoidal, A.: Amplitude.

G,pu: 0,041 G,u0,0%1 G,u0,0%1 G,pu:0,0%1 G,u:0,0%1 S,A:1,F:5 S,A:1,F:5 S,A:1,F:5
Feature

G, p: 10,0% 1 G, p: 0,0% 10 E., Rate: 5 St,v: S L,u 0,055 S,A:1LEF:10 S,A:2,F:5 S,A:2 F: 10
DCT-1 1.00 1.00 1.00 0.86 1.00 0.69 1.00 1.00
DCT-5 1.00 1.00 1.00 0.97 1.00 0.98 1.00 1.00
DCT-10 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00

Table includes different statistical distributions and their corresponding accura-
cies. When examining the results, it becomes evident that as the number of DCT co-
efficients used increases, the classification accuracy generally improves, which aligns
with expectations. The accuracy of DCT coefficients tends to be high across various
statistical distributions. Specifically, the DCT-1 coefficient achieves high accuracy in
most cases, except for the sinusoidal dataset with an amplitude of 1 and a sampling
frequency of 5, where the accuracy drops to 0.69. The DCT-5 and DCT-10 coeffi-
cients consistently exhibit perfect accuracy (1.00) in almost all conditions. It should
be noted that using a higher number of DCT coefficients increases the computational
complexity. However, the trade-off for increased accuracy may justify the additional

computational resources required.

By comparing the results in Table [5.3] and Table [5.4] some conclusions about the
performance of the PEFAC and NFC pitch frequency detection algorithms within
the proposed algorithm can be made. Firstly, the PEFAC algorithm is suggested for
datasets with changing values, characterized by higher variances and outliers. It ex-
cels in such scenarios, as it can effectively detect pitch frequency variations. On the

other hand, if the data exhibits more deterministic behavior with mean value changes
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between different conditions, the NFC algorithm is a suitable choice for pitch fre-

quency detection.

When comparing the proposed algorithm results with other feature groups, it becomes
evident that its performance varies depending on the datasets being analyzed. The dis-
similarity metrics used in the proposed algorithm, particularly when combined with
the PEFAC pitch frequency detection algorithm, can be advantageous for anomaly
detection in datasets with high variance. In such cases, the proposed algorithm can

achieve perfect classification accuracies (1.00).

In summary, the choice between the PEFAC and NFC pitch frequency detection al-
gorithms within the proposed algorithm depends on the characteristics of the data.
The PEFAC algorithm is suitable for datasets with changing values, while the NFC
algorithm is more appropriate for data with deterministic behavior. Proper parame-
ter tuning or smart parameter selection algorithms are necessary for optimizing the
performance of the proposed algorithm. When compared to other feature groups,
the proposed algorithm, particularly with the PEFAC pitch frequency detection algo-
rithm, can be highly effective in detecting anomalies in datasets with high variance,

offering the potential for perfect classification accuracies.

Multivariate Classification Accuracies: The feature groups are combined to cre-
ate a classification matrix, allowing the data to be classified in multiple dimensions.
The classification accuracies of these feature groups can be seen in Table [5.8] As
expected, the multivariate classification accuracies are higher compared to the ac-
curacies achieved using univariate features. However, it is important to note that
the computational complexity increases significantly when utilizing multivariate fea-
tures, resulting in longer computational times compared to the respective univariate

classifications.

Table[5.8|provides an overview of the multivariate classification accuracies for differ-
ent feature groups. According to these results, employing multivariate feature groups
generally improves classification accuracies compared to using univariate features.
However, it is important to consider that the use of multivariate features yields higher

computational complexity. The choice of feature group depends on the dataset char-
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Table 5.8: The multivariate classification accuracies of feature groups. Abbreviations:

G.: Gaussian, E.: Exponential, L.: Log-normal, S.: Sinusoidal, A.: Amplitude.

G,u:0,0%1 Gou:0,0%:1 G,u:0,0%1 G,u:0,0%1 G,u:0,0%1 S,A:LF:5 S,A:1L,F:5 S,A:1F:5
Feature

G.,p: 10,0* 1 G, p:0,0% 10 E., Rate: 5 St,v: 5 L, 0,05 S,A:1LF:10 S,A:2,F:5 S,A:2 F:10
Prop. alg. Dist. (NCF) 0.96 0.81 0.90 0.80 0.80 0.96 1.00 1.00
Prop. alg. All (NCF) 0.97 0.81 0.91 0.81 0.80 0.97 1.00 1.00
Prop. alg. Dist. (PEF) 0.52 1.00 1.00 1.00 1.00 0.75 1.00 1.00
Prop. alg. All (PEF) 0.50 1.00 1.00 1.00 1.00 0.78 1.00 1.00
Stat. Moments 1.00 1.00 1.00 1.00 1.00 0.50 1.00 1.00
Stat. All 1.00 1.00 1.00 1.00 1.00 0.50 1.00 1.00
Spect. All 1.00 1.00 1.00 1.00 0.92 1.00 1.00 1.00
All Features 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

acteristics, but combining all available feature families tends to yield the best perfor-

mance, achieving perfect classification accuracies.

5.1.2 Synthetic Data Analysis 2: Comparing the Moving Windows Parameters

The primary objective of this study is to present preliminary findings on the applica-
bility of dissimilarity metrics for future research on anomaly detection in time series
data. Additionally, the study aims to investigate the performance of dynamic time
warping (DTW) in detecting anomalies in quasi-periodic data, serving as a basis for
future studies. Another goal is to introduce a novel approach for calculating the grand
average within sliding windows. To achieve these objectives, three synthetic datasets
are initially generated, each representing a distinct data behavior. Furthermore, nois-
ier versions of each dataset are created by introducing additional noise. Periodic
anomalous intervals are also included in each dataset to simulate real-world scenar-
ios. The datasets are then processed using sliding windows to simulate real-time data

analysis.

5.1.2.1 Synthetic Dataset 2 Generation

Three synthesized datasets are utilized to evaluate dissimilarity-based anomaly detec-
tion approaches. Each dataset consists of a single time series with 1,000,000 samples.
The data is divided into baseline and event conditions, with 500 instances of each.

These conditions are concatenated to form the datasets. Additionally, two versions
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of each dataset are created: one with relatively low noise (signal-to-noise ratio of
10dB) and another with high noise (signal-to-noise ratio of 0dB). The noise is added
to each sample using a Gaussian distribution to enhance the realism of the generated
datasets. The event data is generated with different distributional parameters com-
pared to the baseline data, inducing anomaly-like structures in the time series. Each

dataset exhibits distinct characteristics of anomalies.

The first dataset represents anomalous structures with higher mean values compared
to the baseline data, while the overall data behavior is not quasi-periodic. The baseline
data in this dataset is produced by a Gaussian distribution with a mean value (x) of
0 and a variance value (02) of 1 (white noise). On the other hand, the event data
is generated using a Gaussian distribution with a variance of 1 and a mean value of
3. Figure [5.5] provides a visual representation of this dataset, where groups of lower
amplitude samples correspond to the baseline, and the others represent anomalous

conditions.
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Figure 5.5: Generated dataset 1 (upper) and zoomed in (lower). Baseline: Gaussian

with ;4 = 0 and 02 = 1. Anomalous: Gaussian with = 3 and 0 = 1.

The second dataset aims to test high-amplitude anomalous conditions in quasi-periodic

data behavior. The samples in this dataset are generated from a sinusoidal function
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with a predefined amplitude and sampling rate (Fs). The baseline data is generated
with a sampling rate of 5 Hz, and its oscillation amplitude, including the added noise,
is set around 1. In contrast, the event data samples have the same sampling rate but
an oscillation amplitude of 3. Figure [5.6 displays a snapshot of this dataset, where

the baseline data segments can be distinguished by their lower amplitudes.
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Amplitude
o

Figure 5.6: Generated dataset 2 (upper) and zoomed in (lower). Baseline: Sinusoidal
with amplitude = 1 and sampling rate = 5 Hz. Anomalous: Sinusoidal with amplitude

= 3 and sampling rate = 5 Hz.

The final dataset conveys the quasi-periodic characteristics of the previous dataset
though with a different sampling rate for the anomalous condition compared to the
baseline data. In this case, the oscillation amplitudes are set to 1, but the sampling rate
for the anomalous condition is selected as 15 Hz. This dataset aims to test the effect
of higher oscillatory periodic behavior in anomalous data. Figure [5.7) provides an
example representation of this dataset, showing the distinguishably higher oscillation

rate in the anomalous data, despite the similar amplitudes.
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Figure 5.7: Generated dataset 3 (upper) and zoomed in (lower). Baseline: Sinusoidal
with amplitude = 1 and sampling rate = 5 Hz. Anomalous: Sinusoidal with amplitude

= 1 and sampling rate = 15 Hz.

5.1.2.2 Experimental Setup and Feature Extraction

In this study, to maintain simplicity, both the window size and slide size are kept
constant. The window size is set to 1000, which matches the size of the conditions
(baseline and event) in the datasets. Additionally, a window size of 2000 is used to
cover both condition sizes in independent trials. The slide size, on the other hand, is
set to 500, 1000, and 2000 independently for different analysis cases. The slide size
determines the step size or overlap between consecutive windows. The processing
algorithm operates on the cropped sliding windows, one at a time, and applies the
necessary operations for analysis, such as feature extraction and decision-making.
After processing a window, the algorithm proceeds to the next window based on the

window size and slide size.

The determination of samples in the next window depends on the window size and the
chosen slide size. For example, if the window size is 1000 and the slide size is 500,

the next window will start 500 samples after the previous window’s starting point.
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This process continues until all sliding windows have been processed.

In the feature extraction step of this study, the dissimilarities between the i*" grand
average (G'A;) and the i*" window (W;) are computed sample-wise. These dissimi-
larities serve as the feature values for anomaly detection. Three dissimilarity metrics
are selected for this purpose: Euclidean distance, Chebyshev distance, and dynamic

time warping (DTW) distance.

Euclidean distance is a commonly used distance measurement that calculates the lin-
ear and one-to-one dissimilarity between corresponding sample pairs of two vectors

with the same length. It can be seen as the L2 norm and is represented by the formula:

deue(GAL W) = | > (GA;; — Wiy)? (5.1)

j=i

Here, j represents the sample number, n is the window size, G A; denotes the grand

average, and IV, represents the window.

Chebyshev distance, also known as the Loo norm, measures the maximum sample-
wise difference between G A; and W;. It relies on one-to-one matching between the

samples and can be calculated using the formula:

dcheb(GAz'7 VVZ) = max |GAZ'J' — Wi,j| (52)
J

The final dissimilarity metric used in this study is dynamic time warping (DTW).
DTW allows for a non-linear matching between the samples of G A; and W; through
an optimization process involving various constraints. However, due to its computa-
tional complexity, DTW is typically slower compared to Euclidean and Chebyshev
distances. A simplified formulation of DTW dissimilarity between G A; and W is as
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follows:

datw(GA;, Wi) = |GA; j — Wik| + mjin D(Gj—1,k-1) (5.3)
D(k—1)

Here, j and k represent the sample numbers, and D is the optimization function used

in DTW.

These dissimilarity metrics capture different aspects of similarity or dissimilarity be-
tween the grand average and each window, providing valuable information for detect-
ing anomalies in the time series data. It should be noted that the computational com-

plexity of DTW makes it slower compared to Euclidean and Chebyshev distances.

5.1.2.3 Clustering and Decision Making

The final step in the algorithm involves determining whether a window is anomalous
or not based on the extracted dissimilarity metric values. The unsupervised clustering
algorithm used for this classification task is k-medoids, also known as the partitioning

around medoids (PAM) algorithm.

The k-medoids algorithm begins by setting the number of clusters parameter, de-
noted as k. In this study, since there are two classes to classify (anomalous and
non-anomalous), the value of % is chosen as two. The algorithm selects k arbitrary
feature values as initial seeds. The remaining feature values are then assigned to one
of these initial seeds based on their distances from the seed values. The distance is
computed for each remaining feature value and measures the difference between the
feature values and the initial seeds. This process is repeated by selecting different
arbitrary values for & until the difference is minimized. Finally, based on the assigned
seeds, the feature values are labeled into respective classes. Therefore, according to
the main hypothesis, windows marked as anomalous are assumed to have a different

cluster of values compared to the rest of the windows.

The clustering approach in this study follows a subject-wise learning approach, where
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the classification model is dynamically trained and updated to reduce the classifica-
tion error rate. Since no prior information is available about the data, the error rate is
expected to be high. To mitigate this, a small portion of the data from the beginning
is selected as the training set. After conducting empirical experiments with different
percentages (0.5%, 1%, 2%, 3%, 5%, and 10%), it is found that a training set size of
2% of the total data length yields the most suitable results with the minimum training
set size. In other words, using smaller training set percentages (0.5% and 1%) resulted
in poor performance, while increasing the training set percentage did not significantly

improve the performance.

The training portion of the data is marked from the start of the data where the algo-
rithm operates, but the decisions made for the respective windows are not considered.
The unsupervised classification is applied to the entire data, resulting in decisions
for each window during the operation. As more data are processed, the accuracy of
detecting anomalous windows increases. After the entire data is processed, the over-
all accuracy is computed by dividing the number of correctly identified anomalous

windows by the total number of anomalous windows in the simulated datasets.

5.1.2.4 Results and Discussion for Synthetic Data Analysis 2

A MATLAB figure is created to provide real-time monitoring of the data processing.
This figure allows the user to visualize various components, including the cropped
window, cumulative data, recent data, cumulative feature values, grand average up to
the current window, and the decisions made for each window so far. A snapshot of

this MATLAB figure is shown in Fig/5.§]

In the first experiment, the impact of window size on accuracy is examined by com-
paring the accuracies achieved with window sizes of 1000 and 2000. The window
size of 1000 is specifically chosen to match the exact length of the anomalous con-
dition in the simulated datasets. Each window with a slide size of 1000 represents a
unique window in the data, alternating between the baseline and anomalous intervals

in each iteration.

On the other hand, the window size of 2000 is selected to create windows composed

120



Wmdowed Data Cumulative Data

—— — N T T T T T — —

W r"w ¥ p’ Hf ! W

.
100 200 300 400 500 600 700 800 1000 1 2 3 4 5 6 7 8 9 10
Samples (time) | Windows: 1000/ 1000 Samples (time) x10%

Data in Prior 10 Windows Z-score Standardized Feature Values of Windows with Decision Threshold

(M
|' wwl |‘[ |H " W

\ . . L . . . .
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 100 500 600 700 8
Samples (time) Samples (time)

Grand Average of the Windows (Shifted Midpoint)

Amplitude

Amplitude
L b o v & o

2

Amplitude
Ampmude

9 EN

w.

Final Decision on Cumulative Feature Windows

Amplitude
o IS
s o
T

——
Label 0 or 1

o

I I il L A A~ o oy etk gy ge]
100 200 300 400 500 600 700 800 20 1000 100 200 300 400 500 600 700 800 900
Samples (time) Samples (time)

Figure 5.8: Snapshot of the real-time operation in a single MATLAB figure.

of both baseline and anomalous parts with equal length. With a slide size of 1000, the
window alternates between baseline and anomalous for half of its length. This means
that each window, except the first and the last, is processed twice. The accuracy results
for different window sizes in each simulated dataset, using the Euclidean dissimilarity

metric and a slide size of 1000, are presented in Table [5.9]

From the results in Table 5.9 it can be observed that the matching window size of
1000 achieves better accuracy in detecting anomalies in the sinusoidal dataset with
different amplitude values compared to the window size of 2000. In fact, the match-
ing window size of 1000 perfectly detects the anomalous windows in this sinusoidal
dataset. However, for the other datasets, a window size of 2000 yields better results
than the matching window size. This difference in performance might be attributed to
the distinct patterns and harmonic formations in the grand average of the sinusoidal

dataset with varying amplitude values, as depicted in Fig[5.9]

The second experiment focuses on comparing different slide sizes while keeping the
window size fixed at 1000 samples. The matching window size of 1000 samples is

selected as the standard. The slide sizes are set as 500, 1000, and 2000.
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Table 5.9: Comparison of accuracies for window size using the Euclidean dissimi-
larity metric, with a slide size of 1000. 'B’ refers to baseline, ’Sinus’ abbreviates
sinusoidal, A’ stands for anomalous windows, *SNR’ refers to signal-to-noise ratio,

"Fs’ is the sampling rate.

Dataset generation conditions Window size
Distribution SNR 1000 2000

0 0.7661 0.7534

10  0.6835 0.7787

1.000  0.8991

10 0.9980 0.7105

0.7189 0.8226

10 0.5305 0.5749

B: Gaussian. p=0, 02 =1 and A: Gaussian. p=3,02 =1

B: Sinus. Amplitude = 1, Fs = 5 and A: Sinus. Amplitude = 3, Fs =5

B: Sinus. Amplitude = 1, Fs = 5 and A: Sinus. Amplitude = 1, Fs = 15

With a slide size of 500 samples, except for the first and last windows, the samples
are investigated twice, alternating between perfectly matching and half-matching of
the correct anomalous windows. A slide size of 1000 ensures perfect matching of the
windows, while a slide size of 2000 is used as a control set, capturing only the baseline
parts. The accuracy results for different slide sizes using the Euclidean dissimilarity

metric and a window size of 1000 can be found in Table [5.10

Table 5.10: Comparison of accuracies for different slide sizes using the Euclidean
dissimilarity metric, with a window size of 1000. ’B’ refers to baseline, ’Sinus’
abbreviates sinusoidal, ’A’ stands for anomalous windows, ’SNR’ refers to signal-

to-noise ratio, 'Fs’ is the sampling rate.

Dataset generation conditions Slide size
Distribution SNR 500 1000 2000

0 0.7918 0.7661 0.5020
10 0.7037 0.6835 0.5183

0.5665 1.000 0.5102
10 0.5395 0.9980 0.5061

0.7506 0.7189 0.5000
10 0.5485 0.5305 0.5082

B: Gaussian. p=0, 02 =1 and A: Gaussian. p=3,02 =1

B: Sinus. Amplitude = 1, Fs = 5 and A: Sinus. Amplitude =3, Fs =5

B: Sinus. Amplitude = 1, Fs = 5 and A: Sinus. Amplitude = 1, Fs = 15

From the results in Table[5.10} it is evident that the selection of the correct slide size

is crucial for accurate analysis. In the case of the sinusoidal dataset with different
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Figure 5.9: Snapshot of the real-time operation in a single MATLAB figure where a

pattern observed in the grand average analysis.

amplitude values for data conditions, matching the patterns of the grand average with

the window is essential. The classification accuracy drops to 56% for a slide size that

is half-matching compared to perfect matching.

The third experiment compares the performances of different dissimilarity metrics for
a fixed window size of 1000 samples and a slide size of 1000 samples. The classi-

fication accuracy results of the dissimilarity metrics in discriminating the anomalous

windows are presented in Table[5.11]

From the accuracy values of the dissimilarity metrics in Table[5.11] it can be observed
that the Euclidean distance performs better than the Chebyshev distance in all situa-
tions. However, for the sinusoidal datasets, the dynamic time warping (DTW) metric
achieves the highest accuracy, with perfect classification in some cases. The superior
performance of DTW in the sinusoidal datasets can be attributed to its ability to han-

dle non-linear matching of the periodic peaks between the current window and the

grand average.

Indeed, the results from Tables[5.9] and [5.T1|suggest that noise can have a detri-
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Table 5.11: Comparison of accuracies for different dissimilarity metrics with a win-
dow size of 1000 and a slide size of 1000. B’ refers to baseline, ’Sinus’ abbreviates
sinusoidal, A’ stands for anomalous windows, *SNR’ refers to signal-to-noise ratio,

"Fs’ is the sampling rate.

Dataset generation conditions Dissimilarity metric

Distribution SNR Euclidean Chebyshev DTW

0 0.7661 0.6354 0.5479
B: Gaussian. p=0, 02 =1 and A: Gaussian. p=3,02 =1
10 0.6835 0.6415 0.5794
1.000 1.000 0.9980
B: Sinus. Amplitude = 1, Fs = 5 and A: Sinus. Amplitude =3, Fs =5

10 0.9980 0.9084 0.9919

0.7189 0.6863 1.000

B: Sinus. Amplitude = 1, Fs = 5 and A: Sinus. Amplitude = 1, Fs = 15
10  0.5305 0.5092 0.8870

mental effect on the performance of anomaly detection in the datasets. Therefore,
applying a noise reduction operation before the anomaly detection process could po-
tentially improve the performance. Noise reduction techniques such as filtering or
denoising algorithms can help remove unwanted noise from the data and enhance
the detectability of anomalies. However, it’s important to consider the computational
complexity of these techniques, especially in real-time analyses where efficiency is
crucial. Noise reduction operations can introduce additional computational overhead,
which may not be desirable in real-time applications where quick response times are

required.

Finally, the computational times of the dissimilarity metrics were compared to an-
alyze their performance. The results, presented in Table [5.12] provide the average

computational times in seconds for the window sizes of 1000 and 2000.

Table 5.12: Comparison of average computational times (in s) of dissimilarity metrics

for the number of windows.

Window size

Dissimilarity metric

1000 2000
Euclidean 167.54 178.57
Chebyshev 164.41 171.05

Dynamic time warping 198.90 216.73
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From the findings in Table [5.12] it can be observed that the Chebyshev dissimilarity
metric exhibits the fastest computational requirements among the evaluated metrics.
This makes it a favorable choice when computational efficiency is a primary concern.
However, it is important to note that the selection of a dissimilarity metric should not
solely depend on computational time. The accuracy and performance of the metric
in detecting anomalies must also be taken into account. While the Chebyshev metric
offers faster computation, it may not provide the highest accuracy compared to the
Euclidean or Dynamic Time Warping (DTW) metrics, especially when dealing with

datasets containing periodic or quasi-periodic patterns.

5.2 Real Data Analyses

The datasets used in this study are sourced from publicly available data on the Phy-
sionet website [328]. Three real electrocardiogram (ECG) datasets are selected to
evaluate the performance of the proposed approach. Anomalies are intentionally in-
troduced in specific segments of the data to assess the effectiveness of the proposed

algorithm in detecting anomalies.

5.2.1 Real Data Analysis 1: Introducing Displacement Noise to an Interval

This part of the analysis includes the introduction of the random Gaussian Noise to
the fixed interval of the real regular ECG datasets. This modification simulates the
electrode displacement during a measurement, and results in a collective anomaly

interval. This section is based on the author’s publication [21]].

5.2.1.1 Real Datasets and Experimental Design

The data utilized in this study were sourced from three publicly available benchmark
datasets accessible on the Physionet website [328]]. These datasets include the MIT-
BIH Long Term ECG dataset, the MIT-BIH Normal Sinus Rhythm dataset [333]], and
the European ST-T database [334]. The selection of these benchmark datasets was

driven by the requirement for quasi-periodic data and the availability of standard-
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ized datasets for comparative analysis. The Physionet website was deemed a suitable

resource for obtaining such standardized quasi-periodic datasets [328]].

Each dataset consisted of recordings with 1,000,000 samples per subject, captured at
varying sampling rates. The MIT-BIH Long Term ECG dataset comprised 7 subjects
with recordings at a sampling rate of 128 Hz, the MIT-BIH normal sinus rhythm
ECG dataset comprised 18 subjects with recordings at 128 Hz, and the European ST-
T database comprised 90 subjects with recordings at 250 Hz. The data from each
subject’s recordings were extracted into ‘.mat‘ files and checked for any missing or

corrupted samples.

A unique modification introduced in this study involved replacing 5 percent of se-
quential samples, specifically between the halfway point and towards the end of the
data, with random Gaussian noise. This modification was carried out under four ex-
perimental conditions that varied the relative data range values. The Gaussian normal
distribution, known as random white noise, was considered an anomalous distribution
due to its association with faulty measurements and natural imperfections. Sensor dis-
placement or disconnection, a common measurement error, often results in the emis-
sion of hum noise with a Gaussian distribution. Consequently, the decision was made

to utilize the Gaussian distribution as the primary anomaly condition for detection.

Considering the nature of the data modality (i.e., ECG), the four anomalous condi-
tions were defined as anomalous intervals and served as the test anomalies. These
intervals were specific segments of samples in the subjects’ data, ranging from the
middle sample (50%) to the samples corresponding to 55% of the total data length.
Synthetic Gaussian normal distribution data was generated to replace these intervals.
The anomalous conditions were represented by outlier-rich cumulative anomaly in-
tervals, with S as a scale factor determined by the minimum and maximum values
of the subjects’ data. The noise samples were generated using a normal probabilistic
data distribution with a mean of O and a standard deviation of 1, which were then
rescaled to match the subject-wise data range. Four different anomalous conditions
were created by employing scale factors of 2, 1, 0.5, and 0.25, with O representing a

DC signal where hum noise is suppressed or very low compared to the base data.

Figure [5.10] displays a visualization of the analysis-ready datasets for the MIT-BIH
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Long Term ECG dataset. Similarly, Figure[5.11|showcases the analysis-ready datasets
for the MIT-BIH normal sinus rhythm dataset, and Figure[5.12]illustrates the analysis-
ready datasets for the European ST-T change dataset. These visualizations provide a
comprehensive overview of the datasets, including the presence of anomalies and
their variations based on the different scale factors applied.
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Figure 5.10: Sample data from the MIH-BIH Long Term ECG dataset and examples
of the modified data from this dataset.

Each of the figures presents eight sub-figures in a grid layout, representing the differ-
ent visualizations for the corresponding dataset. The sub-figures are arranged from
left to right and top to bottom, depicting the following: the complete raw data, a
zoomed-in view of the raw data, the anomaly interval, and the modified data with
anomaly additions. The scale factors used for the anomaly additions are 2, 1, 0.5,

0.25, and 0, respectively, for the datasets mentioned above.

To evaluate the performance of the proposed anomaly detection approach, we com-
pare it with other benchmark approaches commonly used for sequential anomaly de-
tection tasks in the literature. The selected benchmark approaches for comparison are
HOTSAX (Heuristically Ordered Time Series using Symbolic Aggregate ApproXi-
mation), LDOF (Local Distance-Based Outlier Factor), and Grubbs’ algorithm.

The HOTSAX algorithm utilizes symbolic representation to label intervals in time
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Figure 5.11: Sample data from the MIT-BIH normal sinus rhythm dataset and exam-
ples of the modified data from this dataset.
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Figure 5.12: Sample data from the European ST-T change dataset and examples of

the modified data from this dataset.

series data and then compares them to detect anomalous intervals. On the other hand,

the LDOF algorithm calculates the LDOF scores of each sample by dividing the sum
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of the K-nearest neighbor distances of a sample by the inner K-nearest neighbor dis-
tance. Similarly to the proposed anomaly hypothesis, anomalous samples often yield
higher LDOF values, making them distinguishable. Finally, Grubbs’ approach is a
statistical algorithm that computes test statistics for each sample based on data stan-
dardization. It uses the absolute difference between a sample value and the data mean,
divided by the standard deviation. The more anomalous a sample is, the higher its test

score becomes.

Based on the observations from Figure Figure and Figure both

datasets can be assumed to be wide-sense stationary (WSS) since they exhibit negli-
gible trend, a constant mean, and quasi-constant variance throughout the data. There-
fore, these datasets can be analyzed using parametric statistical approaches such as

Grubbs’ approach.

The experimental parameters used in the study include a data size of 1,000,000 sam-
ples per subject obtained from the Physionet public access database pool [328]. For
the moving windows approach, the window size and slide size are set to 5000 samples
per window, ensuring that there is no overlap between windows and that all samples
in the datasets are covered by windowing-based approaches like HOTSAX. The se-
lection of these window parameters is based on the requirement of covering at least
10 PQRST structures in each window for both datasets and ensuring computational
efficiency suitable for the hardware used. Having more than 10 PQRST structures
in the ECG data is crucial for spectral domain estimation and the pitch frequency
detection process employed in the proposed algorithm. The remaining benchmark
approaches are applied to the entire set of subjects’ data without predefined window
and slide size parameters. The specific parameters for the benchmark approaches are
selected based on their default or commonly used values. The significance score for
Grubbs’ approach is set to 0.05, the K-value for the LDOF approach is set to 100, and
the number of symbolic segments for the HOTSAX algorithm is set to 4.

5.2.1.2 Results and Discussion for Real Data Analysis 1

The performance evaluation of the anomaly detection applications is carried out using

a confusion matrix. The true positives represent correctly labeled anomaly intervals,
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which account for 5% of the overall data. False negatives occur when anomaly inter-
vals are incorrectly labeled. True negatives are obtained by correctly classifying the
remaining 95% of the samples as non-anomalies. False positives arise when regular
data intervals are incorrectly classified as anomalies. The confusion matrix scores
are computed for each iteration of the applied approaches, based on their detection of
anomalies in the iterated data window. The scores in the confusion matrix are cumu-
latively added for each subject, resulting in the final confusion matrix after analyzing

all the subjects for their anomalous intervals.

Several performance metrics are computed using the final confusion matrix for each
applied approach. These metrics include accuracy, sensitivity, specificity, the F1-
score, and Matthew’s correlation coefficient. Due to the class imbalance caused by
the heterogeneous number of anomalous and non-anomalous intervals, accuracy is
not a reliable metric. However, it is included in the results tables as it is a popular
performance measure. The performance metrics for each dataset and method are

recorded and reported.

Following the application of the selected algorithms under the experimental condi-
tions, Table [5.13| presents the performance metric results for the applications on the
MIT-BIH Long Term ECG dataset. Similarly, Table [5.14] displays the results for the
MIT-BIH normal sinus rthythm dataset, and Table shows the results for the Eu-
ropean ST-T change dataset.

According to the findings in Table the proposed algorithm appears to be highly
sensitive to the anomaly scaling factor. As the size of the anomalies decreases, so
does the performance of the proposed algorithm. The proposed algorithm has poor
sensitivity and F1-scores, especially for scaling factors of 0.25 x Min — Maz and
0 * Min — Max, which can be considered inlier-like anomalies. These findings
suggest that the proposed method may produce a high number of false negatives for
inlier-like anomalies, and that the effectiveness of the proposed algorithm may be
heavily dependent on the amplitudes of the cumulative anomalies. Nonetheless, the
overall results in Table [5.13] show that the proposed algorithm outperforms HOT-
SAX, LDOF, and Grubbs in terms of accuracy, sensitivity, specificity, F1-score, and
MCC metrics.
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Table 5.13: The performance results of the methods for the modified MIT-BIT Long
Term ECG dataset. MCC stands for Matthew’s Correlation Coefficient.

Performance Metric

Anomaly Scaling Method
Accuracy Sensitivity Specificity F1-Score MCC

HOTSAX 0.91 0.69 0.96 0.79 0.71
LDOF 0.63 0.12 1.00 0.21 0.26

2*Min-Max
Grubbs 0.96 0.94 0.96 0.95 0.91
Proposed alg. 0.99 1.00 0.99 0.99 0.99
HOTSAX 0.68 0.40 0.75 0.47 0.26
LDOF 0.64 0.11 0.98 0.20 0.15

1*Min-Max
Grubbs 0.95 0.34 0.95 0.51 0.58
Proposed alg. 0.99 0.98 0.99 0.98 0.97
HOTSAX 0.60 0.08 0.78 0.14 0.05
LDOF 0.66 0.13 1.00 0.23 0.00

0.5*Min-Max
Grubbs 0.95 0.03 0.95 0.06 0.00
Proposed Alg. 0.90 0.35 0.99 0.52 0.61
HOTSAX 0.65 0.17 0.85 0.26 0.14
LDOF 0.62 0.10 0.98 0.18 0.16
0.25*Min-Max

Grubbs 0.95 0.00 0.95 0.00 0.00
Proposed alg. 0.62 0.09 0.97 0.16 0.14
HOTSAX 0.90 0.15 0.93 0.26 0.26
LDOF 0.61 0.10 1.00 0.18 0.00

0*Min-Max
Grubbs 0.95 0.00 0.95 0.00 0.00
Proposed alg. 0.59 0.11 1.00 0.20 0.00

According to Table[5.14] when dealing with larger anomalies, the proposed algorithm
on the modified MIT-BIT Normal Sinus ECG dataset achieves perfect scores for ac-
curacy, sensitivity, specificity, F1-score, and MCC. However, for inlier-like anomalies
with smaller amplitudes, it’s performance drops significantly, resulting in poor sensi-
tivity and F1-scores. The amplitudes of the anomalies in the dataset heavily influence
the algorithm’s effectiveness. For larger anomaly scaling factors, it consistently out-
performs Grubbs’ and LDOF methods. However, for smaller inlier-like anomalies,
the algorithm may produce a high number of false negatives, indicating its limitations

in detecting subtle anomalies effectively.
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Table 5.14: The performance results of the methods for the modified MIT-BIT Nor-
mal Sinus ECG dataset. MCC stands for Matthew’s Correlation Coefficient.

Performance Metric

Anomaly Scaling Method
Accuracy Sensitivity Specificity F1-Score MCC

HOTSAX 0.93 0.85 0.92 0.89 0.80
LDOF 0.65 0.12 1.00 0.21 0.0

2*Min-Max
Grubbs 0.96 0.99 0.96 0.99 0.93
Proposed alg. 1.00 1.00 1.00 1.00 1.00
HOTSAX 0.59 0.10 0.61 0.17 0.00
LDOF 0.60 0.11 1.00 0.19 0.00

1*Min-Max
Grubbs 0.95 0.35 0.95 0.49 0.41
Proposed alg. 0.99 1.00 0.99 0.99 0.98
HOTSAX 0.73 0.45 0.74 0.53 0.27
LDOF 0.76 0.18 1.00 0.30 0.00

0.5*Min-Max
Grubbs 0.94 0.05 0.95 0.10 0.13
Proposed alg. 0.98 1.00 0.98 0.74 0.62
HOTSAX 0.82 0.71 0.82 0.76 0.62
LDOF 0.63 0.12 1.00 0.21 0.00
0.25*Min-Max

Grubbs 0.94 0.00 0.95 0.00 0.00
Proposed alg. 0.98 0.81 0.99 0.89 0.82
HOTSAX 0.88 0.75 0.87 0.80 0.69
LDOF 0.55 0.00 0.92 0.00 0.00

0*Min-Max
Grubbs 0.94 0.00 0.95 0.00 0.00
Proposed alg. 0.68 0.17 0.93 0.25 0.17

Finally, The proposed algorithm’s performance was evaluated on the modified Euro-
pean ST-T Change ECG dataset, and the results are shown in Table [5.15] Overall,
the algorithm showed promising performance, outperforming LDOF in most cases,
and other methods for higher anomaly scaling cases in terms of accuracy, sensitivity,

specificity, F1-score, and MCC metrics.

The modified simulation conditions applied to the MIT-BIH Long Term and Euro-
pean ST-T Change ECG datasets, which have the same data modality, yield similar
outcomes for the employed approaches, as shown in Table[5.13] Table[5.14] and Table

aligning with our expectations. Notably, as evidenced by higher F1-score and
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Table 5.15: The performance results of the methods for the modified European ST-T
Change ECG dataset. MCC stands for Matthew’s Correlation Coefficient.

Performance Metric

Anomaly Scaling Method
Accuracy Sensitivity Specificity F1-Score MCC

HOTSAX 0.95 0.89 0.95 0.91 0.85
LDOF 0.58 0.07 0.96 0.12 0.16

2*Min-Max
Grubbs 0.96 0.99 0.96 0.91 0.90
Proposed alg. 0.99 1.00 0.99 0.99 0.99
HOTSAX 0.57 0.12 0.58 0.18 0.00
LDOF 0.61 0.10 0.98 0.17 0.19

1*Min-Max
Grubbs 0.95 0.54 0.95 0.69 0.59
Proposed alg. 0.96 0.58 0.99 0.73 0.74
HOTSAX 0.60 0.17 0.72 0.24 0.19
LDOF 0.66 0.11 0.98 0.20 0.28

0.5*Min-Max
Grubbs 0.95 0.04 0.95 0.07 0.07
Proposed alg. 0.84 0.21 0.98 0.35 0.35
HOTSAX 0.68 0.16 0.81 0.24 0.16
LDOF 0.59 0.07 0.97 0.13 0.00
0.25*Min-Max

Grubbs 0.95 0.00 0.95 0.00 0.00
Proposed alg. 0.70 0.13 0.98 0.25 0.18
HOTSAX 0.93 0.70 0.94 0.80 0.69
LDOF 0.48 0.00 0.91 0.00 0.00

0*Min-Max
Grubbs 0.95 0.00 0.95 0.00 0.00
Proposed alg. 0.92 0.04 0.94 0.08 0.06

Matthew’s correlation coefficient metrics, the proposed approach consistently outper-
forms the other benchmark methods in detecting induced anomalous intervals. When
the simulation conditions are examined, it is discovered that as the amplitude of the
anomalous time intervals increases, the proposed algorithm achieves higher F1-score
and Matthew’s correlation coefficient values, achieving perfection (score of 1) in both
evaluation criteria. Its effectiveness, however, decreases for smaller inlier-like anoma-
lies. In summary, the proposed algorithm produced promising overall results but had

limitations in handling smaller anomalies and the absence of anomalies.

In addition to the performance metrics, the computational times for each algorithm
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were recorded and averaged during the simulations for each subject. The simulations
were conducted on a personal computer equipped with an 11th Gen i7-11700KF pro-
cessor running at 3.60 GHz. The computational times were then rescaled relative to
the proposed algorithm, which served as the baseline (assigned a value of 1x), and

the results can be found in Table[5.16)

Table 5.16: The relative average computational times corresponding to the proposed

algorithm through the simulations.

Algorithm  Relative Average Computational Time

Proposed alg. Ix
HOTSAX 5.8x
LDOF 0.76x
Grubbs’ 0.03x

According to Table [5.16] the relative average computational times reveal that the
proposed algorithm outperforms other non-parametric approaches, such as HOTSAX,
in terms of speed. Specifically, the proposed algorithm demonstrates a significant
speed advantage over HOTSAX, with a relative computational time of 1x compared
to 58x. On the other hand, the LDOF algorithm shows a slightly faster performance
than the proposed algorithm, with a relative computational time of 0.76x. Meanwhile,
Grubbs’ approach exhibits the fastest computational time among the methods, with
a relative value of 0.03x. However, it is important to note that Grubbs’ approach

requires stationary datasets to function properly.

5.2.2 Real Data Analysis 2: Frequency Search Range Effect on Pre-annotated
Benchmark ECG Datasets

This part of the analysis consists of testing the algorithm’s performance on the pre-
annotated anomalies in some benchmark ECG datasets. Here, two of the benchmark
datasets are selected based on their containing the type III anomaly from the Phys-
ionet Databank [328]]. Hence, the two datasets, namely, the MIT-BIH Malignant Ven-
tricular Ectopy [332] and the CU Ventricular Tachyarrhythmia [/5] are selected to

observe the frequency range selection effects to locate the pitch frequency within the
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CEP [210], pitch frequency detection algorithm. Moreover, both of those benchmark
datasets include annotations for both the ventricular anomalies and some other signal-

related discords with shorter durations, which can be considered type II anomalies.

5.2.2.1 Real Datasets and the Usage of the Annotated Data

The first dataset, namely the MIT-BIH Malignant Ventricular Ectopy [332] consists
of 22 different ECG recordings from subjects who have ventricular disorders that can
be considered anomalies, such as ventricular tachycardia, flutter, or fibrillation. Each
subject in this dataset consists of 525000 samples provided on the website. On the
other hand, the CU Ventricular Tachyarrhythmia Dataset [75] consists of recordings
from 35 subjects, each with around 127000 samples. Both of the benchmark datasets

have sampling rates of 250 Hz.

In this part of the analysis, all of the pre-annotated intervals in the benchmark, in-
cluding ventricular anomalies are considered anomaly intervals, and the remaining
data are considered non-anomaly data. On the other hand, both datasets include some
other annotations, such as changes in signal quality, short artifacts, premature beats,
and other short-time rhythm-related anomalies. Hence, the proposed algorithm has
been tested in both of the annotation cases. The first test includes all of the non-
normal annotations as given as the benchmark, and the second test includes only
the ventricle-related annotations such as ventricular flutter, ventricular tachycardia,
and ventricular fibrillation. Since ventricle-related disorders have relatively higher
changes in the signal baseline, it is expected that those anomalies will be detected

with higher performance by the proposed approach.

To perform the experiments and obtain the classification results, the data intervals cor-
responding to the pre-annotated data samples on the Physionet Website are labeled as
1, and the rest of the data samples are labeled as 0. Such labeling is required to form
the ground truth for the data samples. Hence, the proposed algorithm is operated
through the data of all 22 subjects for the MIT-BIH Malignant Ventricular Ectopy
Dataset [332], and 35 subjects for the CU Ventricular Tachyarrhythmia Dataset [[75]]
without any manipulation, subject removal, or data modification. Here, in the analy-

ses of both datasets, the window and slide sizes are selected as 2000 samples, arbi-
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trarily to cover at least 8 seconds of the recordings, which corresponds to 5-8 QRS
complexes in each window, as the requirement for those parameters is mentioned in

Section[d.11

5.2.2.2 Results and Discussion for Real Data Analysis 2

The experiments are performed to set the frequency search ranges for the CEP al-
gorithm to locate the pitch frequencies within. Hereby, four scenarios are formed,
namely, 1-50 Hz, 1-75 Hz, 1-100 Hz, and 1-125 Hz. The aim of this part is to observe
the effects of the frequency search ranges on the classification performance while

testing the proposed approach on untouched benchmark ECG datasets.

The results presented in Table depict the outcomes of using the CEP algorithm
for pitch frequency detection on real annotated benchmark ECG datasets as described
in Section The table showcases different frequency search ranges in Hz and
the corresponding classification performance metrics such as accuracy and f1-scores

for the selected frequency ranges, datasets, and types of annotations.

Table 5.17: The frequency range effect of the pitch frequency detection using the CEP

algorithm on real annotated benchmark ECG datasets.

All Annotations Only Ventricular Anomalies

Dataset Freq. Search Range (Hz)
Accuracy fl-score Accuracy f1-score
1-50 0.704 0.329 0.830 0.519
MIT-BIH 1-75 0.700 0.328 0.823 0.507
Malignant Ventricular Ectopy 1-100 0.692 0.324 0.822 0.504
1-125 0.690 0.323 0.815 0.502
1-50 0.792 0.452 0.892 0.631
CU 1-75 0.780 0.449 0.880 0.607
Ventricular Tachyarrhythmia 1-100 0.774 0.438 0.853 0.599
1-125 0.772 0.432 0.840 0.592

From Table it can clearly be observed that the narrower frequency search range
tends to provide slightly better classification performances when the CEP algorithm is
used for the pitch detection algorithm. The results show that the performance metric

values, i.e., accuracy and fl-score, slightly increase through the narrower frequency
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search ranges. On the other hand, the table also compares the algorithm’s perfor-
mance between all annotations and only ventricular anomalies and finds that the pro-
posed algorithm provides better results for the ventricular anomalies in the data, as
expected due to their more distinctive behavior. This highlights the importance of
accurate annotation and targeted analysis to improve the algorithm’s performance in
detecting specific conditions. It is found that the proposed approach reaches up to
89% accuracy to detect ventricular anomalies, and up to 79% accuracy for all anno-

tated anomalies.

When the datasets are compared, the CU Ventricular Tachyarrhythmia dataset is
found to yield better anomaly detection scores than the MIT-BIH Malignant Ven-
tricular Ectopy Dataset. These differences can be attributed to variations in dataset
characteristics such as data size, diversity of anomalies, noise levels, and other data-

recording conditions.
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CHAPTER 6

CONCLUSION AND FUTURE WORKS

6.1 Conclusion

This thesis introduces a novel anomaly detection method designed to detect collec-
tive anomalies in quasi-periodic time series data. The proposed algorithm leverages
pitch frequency estimation in the spectral domain, a technique commonly used in au-
dio signal processing. By combining the strengths of both the time and frequency
domains, the proposed approach provides a comprehensive perspective on locating
anomalous patterns. Moreover, the proposed algorithm is highly customizable and
adaptable, seamlessly integrating new features and adjusting to evolving data char-
acteristics in a multivariate anomaly detection pipeline. This flexibility ensures its
applicability across various domains and datasets, enhancing its practicality not only
in the biomedical engineering field but also for all quasi-periodic time series data

modalities.

One key feature of the proposed algorithm is its real-time anomaly detection capabil-
ity. It employs a customizable sliding window approach, allowing it to continuously
analyze incoming data for anomalies. Additionally, the algorithm utilizes previous
data information in time series data, enabling it to compare new data with previ-
ous values and dynamically learn structural patterns. This adaptability makes the
proposed algorithm highly effective in detecting anomalies specific to the subject at
hand, rendering it a subject-specific anomaly detection algorithm with the linearly in-

creasing time complexity by the data length, providing an o(n) complexity function.

However, it is important to note that the proposed algorithm may not be suitable

for locating single-sample outliers that are not significant enough to affect window
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properties. Furthermore, as the algorithm is specifically designed for quasi-periodic
data behavior, its theoretical suitability for time series data that does not exhibit quasi-

periodic behavior may be limited.

To evaluate the effectiveness of the proposed algorithm, this study tests it in both
synthetic and real data analyses to observe its characteristics. While the synthetic
data analyses involve randomly generated data under probabilistic distributions that
induce some extreme conditions, the real data analyses focus on testing it on the
electrocardiogram (ECG) data modality, which exhibits quasi-periodic time series

behavior and is a primary research interest in biomedical signal analysis.

The synthetic data analysis part is further divided into two sub-analyses. The first
sub-analysis aims to examine the dissimilarity metric features utilized in the pro-
posed algorithm and compare them with other commonly used features belonging to
statistical, spectral, and transformational feature families. On the other hand, the sec-
ond sub-analysis focuses on investigating the impact of sliding window parameters,
particularly when the window size and slide size are set to specific ratios aligned with

the baseline data periodicity.

In the real data analysis part 1, three benchmark ECG datasets, namely, the MIT-BIH
long-term ECG dataset [328], the MIT-BIH Normal Sinus Rhythm dataset [333], and
the European ST-T dataset [334]], are adapted to compare the performance of the
proposed algorithm against three other benchmark time series anomaly detection al-
gorithms: HOTSAX [312], LDOF [335], and Grubbs’ algorithm [336]. The datasets
are augmented with random noise across four different range scales for each subject,
covering the data interval between half and 5% percent towards the end sample. The
performance of the simulations is evaluated using confusion matrices and their asso-

ciated measures to assess the proposed approach’s ability to detect anomaly intervals.

The results indicate that the proposed approach consistently outperforms the bench-
mark time series anomaly detection algorithms in most simulation conditions and
performance metrics. This demonstrates the superiority of the proposed approach in
detecting both outlier-like and inlier-like anomalies. Moreover, the proposed algo-
rithm exhibits favorable computational efficiency compared to other benchmark non-

parametric approaches designed for non-stationary data. However, it may not outper-
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form the parametric Grubbs’ approach in terms of computational time. Nonetheless,
the combination of utilizing both spectral and time domains and achieving superior
performance values makes the proposed algorithm a promising approach for the de-

tection of quasi-periodic collective anomalies in quasi-periodic time series data.

Finally, the proposed approach is tested in the detection of benchmark annotated real
datasets, namely, the MIT-BIH Malignant Ventricular Ectopy [332] and the CU Ven-
tricular Tachyarrhythmia [75] Datasets without any modification or alteration in the
annotations or the data. It is found that the proposed approach can locate the anno-
tated data samples with acceptable rates, providing up to 89% accuracy in detection

of the ventricular anomalies.

6.2 Future Works

In terms of future work, the proposed algorithm can be further improved by extend-
ing the feature extraction, selection, and testing processes. This expansion aims to
enhance the classification performance of the algorithm. Additionally, the proposed
algorithm’s multivariate dynamic clustering approach can be evaluated using various
dissimilarity metrics from the time series literature. Computational efficiency can

also be enhanced through code and algorithm optimization.

In subsequent research, efforts will be made to make the proposed algorithm smarter
by selecting the appropriate methods from the available options based on the encoun-
tered data. Additionally, the algorithm parameters will be automatically optimized to
improve its performance. Implementing a smart selection mechanism for pitch fre-
quency computation algorithms will enable the algorithm to choose the most suitable
approach based on the data characteristics. This enhancement is expected to increase

the algorithm’s performance at the expense of slightly longer computation times.

Moreover, a major future endeavor involves transferring the entire codebase to the
Python environment. This transition will enable the comparison of the proposed
approach with a larger set of existing methods. Additionally, a toolbox written in
Python will facilitate the adoption of the proposed algorithm, making it more ac-

cessible and widely applicable. And another future work plan involves developing
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a time series anomaly detection pipeline that incorporates most benchmark anomaly
detection methods, including the proposed algorithm. The Python repository will be
available at "https://github.com/EErkus".
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Appendix A

APPENDIX

A.1 Extension Works

A.1.1 Comparison of Dissimilarity Metrics as Features

In this section, a comparison is made between the discriminability of the linear dis-
similarity metrics including Euclidean, square Euclidean, city block, Chebyshew, and
their generalization, namely, Minkowski and dynamic time warping (DTW) metric as
a non-linear feature are tested in terms of their usability as a dissimilarity feature to
classify the anomalous intervals in the data. To perform the classification, a synthetic
ECG dataset is generated using a publicly available ECG data generation toolbox
[337] obtained from the Physionet website [338]] under various experimental condi-

tions.

The dataset is subjected to different levels of noise, represented by Signal-to-Noise
Ratio (SNR) values ranging from 10dB to -10dB, resulting in a total of 9 SNR values.
The purpose is to observe the impact of noise on the performance of the dissimilar-
ity metrics within the range of 10dB to -10 dB. However, for simplicity, this report
only presents the results for SNR values of 10dB, 0dB, and -10 dB. Results for the

remaining SNR values can be provided upon request.

For each SNR case, two sets of data are generated for each of the four sub-experimental
conditions, representing the control and anomaly groups. The default parameter val-
ues correspond to a regular heartbeat sequence with a heart rate of 80 bpm, proper
amplitude, and PQRST structure intervals. The parameter settings are as follows: am-

plitude of 1000 units, QRS width of 0.1 seconds, T-wave amplitude of 500 units, data
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length of 10 seconds, and a sampling rate of 500 Hz. The generated data intervals are

concatenated to simulate stimulus conditions applied at equal intervals. The four sub-

experimental conditions are defined independently by altering the default parameters

for each condition. These conditions include:

1. SNR =10dB

(a)

(b)

(c)

(d)

Arrhythmia, with the change in the heart beat rate, representing type III
outliers.

The control group has 60 bpm and the event group has 110 bpm. The
rest of the parameters are unchanged and remained the default values.
The data can be visualized in Figure[A.T] overall and zoomed-in formats,

respectively for a) and b).

Anomaly in the amplitude of R peaks, representing type I outliers.

The control group has R peak amplitudes of about 1000 units, and the
event group has 2000 units. The rest of the parameters are unchanged and
remained the default values. The data can be visualized in Figure [A.2]

overall and zoomed-in formats, respectively for a) and b).

Extended and narrowed QRS width, representing type II outliers.

The control group has 0.07 seconds of the QRS structure width, whereas
the event group has 0.12 seconds. The rest of the parameters are un-
changed and remained the default values. The data can be visualized in

Figure[A.3] overall and zoomed-in formats, respectively for a) and b).

Abnormal t wave amplitude, representing type II outliers.

The control group has t wave amplitudes of around 500 units, while the
event group has around 1000 units. The rest of the parameters are un-
changed and remained the default values. The data can be visualized in

Figure overall and zoomed-in formats, respectively for a) and b).

The same data generation process is applied for the remaining 8 different SNR

values as well. The following part includes the visualizations for the SNR

values of -10dB, representing noisy data.

2. SNR =-10dB
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(a) Overall data.

Wi LLEL

(b) Zoomed data with a random interval.

Figure A.1: Synthetic ECG data, illustrating arrhythmia with 60 and 110 bpm values,
generated under SNR of 10dB.

(a) Arrhythmia, with the change in the heart beat rate, representing type I1I

outliers.

The control group has 60 bpm and the event group has 110 bpm. The
rest of the parameters are unchanged and remained the default values.
The data can be visualized in Figure[A.5] overall and zoomed-in formats,

respectively for a) and b).
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(a) Overall data.

1
1.08

§4

(b) Zoomed data with a random interval.

Figure A.2: Synthetic ECG data, illustrating type I outliers with 1000 and 2000 units
in R peak amplitudes, generated under SNR of 10dB.

(b) Anomaly in the amplitude of R peaks, representing type I outliers.

The control group has R peak amplitudes of about 1000 units, and the
event group has 2000 units. The rest of the parameters are unchanged and
remained the default values. The data can be visualized in Figure [A.6]

overall and zoomed-in formats, respectively for a) and b).

(c) Extended and narrowed QRS width, representing type II outliers.
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(a) Overall data.
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AR O

(b) Zoomed data with a random interval.

Figure A.3: Synthetic ECG data, illustrating narrowed and extended duration of QRS
structures with 0.07 and 0.12 seconds values, generated under SNR of 10dB.

The control group has 0.07 seconds of the QRS structure width, whereas
the event group has 0.12 seconds. The rest of the parameters are un-
changed and remained the default values. The data can be visualized in
Figure overall and zoomed-in formats, respectively for a) and b).

(d) Abnormal t wave amplitude, representing type II outliers.

The control group has t wave amplitudes of around 500 units, while the

181



(a) Overall data.

1 1
1.04 1.05 1.06 1.07 1.08 1.09

(b) Zoomed data with a random interval.

Figure A.4: Synthetic ECG data, illustrating t-wave abnormality with 500 and 1000
units in amplitude, generated under SNR of 10dB.

event group has around 1000 units. The rest of the parameters are un-
changed and remained the default values. The data can be visualized in

Figure[A.§ overall and zoomed-in formats, respectively for a) and b).

In this study, a total of 10 virtual subjects were generated for each of the four sub-
experimental conditions and for each signal-to-noise ratio (SNR) value. The gener-

ated data were divided into control and event intervals, with an imaginary stimulus in
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(a) Overall data.

132 1.34 136 138 14 1.42 144 146 1.48

(b) Zoomed data with a random interval.

Figure A.5: Synthetic ECG data, illustrating arrhythmia with 60 and 110 bpm values,
generated under SNR of -10dB.

between, enabling the performance of classification studies. The classification study
followed a supervised approach, involving the extraction of control and event inter-
vals from the data and the computation of their grand average. The feature extraction
step iteratively examined each data interval without considering its label. During each
iteration, dissimilarity metrics were calculated as features by comparing the current
data interval with the grand average. After performing feature extraction, dissimilar-

ity values were computed for each interval and dissimilarity measure.
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(a) Overall data.

(b) Zoomed data with a random interval.

Figure A.6: Synthetic ECG data, illustrating type I outliers with 1000 and 2000 units
in R peak amplitudes, generated under SNR of -10dB.

The classification step involved training the extracted features using classifier algo-
rithms such as Tree classifier, linear discriminant analysis (LDA), K-nearest neighbor
classifier (K-NN), and Naive Bayes classifier. These algorithms were used to vali-
date the data. Testing was performed using the k-fold validation algorithm, resulting
in a confusion matrix. Various measures including accuracy, sensitivity, specificity,
F-Score, and Matthew’s correlation coefficient were computed, but only accuracy is

reported in this study for brevity.
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(a) Overall data.

116 118 1.2 122

(b) Zoomed data with a random interval.

Figure A.7: Synthetic ECG data, illustrating narrowed and extended duration of QRS
structures with 0.07 and 0.12 seconds values, generated under SNR of -10dB.

The provided tables, namely Table [A.T] Table[A.2] Table[A.3] and Table[A.4] present
classification accuracy results for different dissimilarity metrics, classifiers, and signal-

to-noise ratio (SNR) values in the context of synthetic ECG data analysis.

Table [A.T| focuses on the effect of heart rate variation (ranging from 60 to 110 bpm)
on classification accuracy. The dissimilarity metrics evaluated include Euclidean dis-

tance, square Euclidean distance, city block distance, Minkowski distance, Cheby-
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(a) Overall data.

1.44

(b) Zoomed data with a random interval.

Figure A.8: Synthetic ECG data, illustrating t-wave abnormality with 500 and 1000
units in amplitude, generated under SNR of -10dB.

shev distance, and Dynamic Time Warping (DTW) distance. The classifiers used are
Tree, LDA, KNN, and NBayes. The results demonstrate that DTW distance performs
less effectively compared to other dissimilarity metrics when dealing with purely ar-

rhythmic anomalies.

Table[A.2]investigates the impact of R peak amplitude differences (ranging from 1000

to 2000 units) on classification accuracy. The dissimilarity metrics, classifiers, and
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Table A.1: The classification results of synthetic ECG database with 60 to 110 bpm.

Accuracy (in range of 0-1)
Dissimilarity Distance Feature Classifier
SNR 10dB  SNR 0dB SNR -10dB

Tree 1 1 0.78
LDA 1 1 0.78

Euclidean Distance
KNN 1 1 0.77
NBayes 1 1 0.79
Tree 1 1 0.76
LDA 1 1 0.79

Square Euclidean Distance

KNN 1 1 0.77
NBayes 1 1 0.79
Tree 1 1 0.77
LDA 1 1 0.78

City Block Distance
KNN 1 1 0.77
NBayes 1 1 0.78
Tree 1 1 0.78
LDA 1 1 0.78

Minkowski Distance
KNN 1 1 0.76
NBayes 1 1 0.78
Tree 1 1 0.79
LDA 1 1 0.78

Chebyshev Distance
KNN 1 1 0.75
NBayes 1 1 0.78
Tree 1 0.99 0.67
LDA 1 0.99 0.68

DTW Distance

KNN 1 0.99 0.62
NBayes 1 0.99 0.68

SNR values remain the same as in the previous table. Similar to the previous table,
DTW distance exhibits lower accuracy values, indicating its unsuitability for pure

Type I outliers.

Table[A.3|examines the classification results for different QRS width variations (rang-
ing from 0.07 to 0.12 seconds). The dissimilarity metrics, classifiers, and SNR values
remain consistent with the previous tables. Once again, DTW distance performs in-
feriorly compared to other dissimilarity metrics in distinguishing synthetic ECG data

with varying QRS structure widths.

Lastly, Table [A.4] presents the classification accuracy results for different T wave
amplitude differences (ranging from 500 to 1000 units). The dissimilarity metrics,

classifiers, and SNR values remain unchanged. The findings align with the previ-
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Table A.2: The classification results of synthetic ECG database with R peak ampli-
tude of 1000 to 2000 units.

Accuracy (in range of 0-1)
Dissimilarity Distance Feature Classifier
SNR 10dB  SNR 0dB SNR -10dB

Tree 1 1 0.96
LDA 1 1 0.96

Euclidean Distance
KNN 1 1 0.95
NBayes 1 1 0.96
Tree 1 1 0.98
LDA 1 1 0.97

Square Euclidean Distance

KNN 1 1 0.98
NBayes 1 1 0.98
Tree 1 1 0.95
LDA 1 1 0.96

City Block Distance
KNN 1 1 0.96
NBayes 1 1 0.96
Tree 1 1 0.95
LDA 1 1 0.96

Minkowski Distance
KNN 1 1 0.96
NBayes 1 1 0.96
Tree 1 1 0.95
LDA 1 1 0.96

Chebyshev Distance
KNN 1 1 0.96
NBayes 1 1 0.96
Tree 0.71 0.70 0.60
LDA 0.71 0.69 0.61

DTW Distance

KNN 0.70 0.69 0.55
NBayes 0.71 0.69 0.59

ous tables, with DTW distance demonstrating lower accuracy values, indicating its

inadequacy as a sole dissimilarity metric for discriminating synthetic ECG data.

Despite the lower performance of DTW distance in these experiments, it should be
noted that DTW offers advantages in capturing non-linear mappings between time
series and comparing time intervals of different lengths. This property can be partic-
ularly valuable for analyzing biomedical responses with varying durations, which is
often encountered in real-time scenarios. Therefore, rather than dismissing DTW dis-
tance entirely, there is a need to improve and incorporate it into a more robust feature

extraction algorithm for ECG data analysis.
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Table A.3: The classification results of synthetic ECG database with QRS width of
0.07 seconds to 0.12 seconds.

Accuracy (in range of 0-1)
Dissimilarity Distance Feature Classifier
SNR 10dB  SNR 0dB SNR -10dB

Tree 1 1 0.62
LDA 1 0.99 0.63

Euclidean Distance
KNN 1 0.99 0.58
NBayes 1 1 0.63
Tree 1 1 0.62
LDA 1 1 0.62

Square Euclidean Distance

KNN 1 1 0.59
NBayes 1 1 0.62
Tree 1 0.99 0.60
LDA 1 0.99 0.63

City Block Distance
KNN 1 1 0.57
NBayes 1 1 0.62
Tree 1 1 0.62
LDA 1 0.99 0.63

Minkowski Distance
KNN 1 1 0.57
NBayes 1 0.99 0.63
Tree 1 1 0.62
LDA 1 0.99 0.63

Chebyshev Distance
KNN 1 0.99 0.56
NBayes 1 1 0.63
Tree 1 0.54 0.50
LDA 1 0.58 0.52

DTW Distance

KNN 1 0.55 0.54
NBayes 1 0.57 0.48

A.1.2 Comparison of Pitch Frequency Algorithms

The purpose of this study is to compare the pitch estimation methods defined in Sec-
tion [2.2.2] that are available in a single MATLAB library: *pitch.m’ [203]]. Their per-
formances are compared to each other, as well as some other statistical and spectral
features, under a variety of experimental conditions, including univariate and multi-
variate usages in conjunction with the three most commonly used machine learning
classifiers: the Tree classifier, LDA classifier, and K-NN classifier. The brief back-

ground information for these classifiers can be found in Section [2.4]

Four different synthetic datasets have been generated, each consisting of 50 subjects.
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Table A.4: The classification results of synthetic ECG database with t wave amplitude
of 500 to 1000 units.

Accuracy (in range of 0-1)
Dissimilarity Distance Feature Classifier
SNR 10dB  SNR 0dB SNR -10dB

Tree 1 1 0.97
LDA 1 1 0.98

Euclidean Distance
KNN 1 1 0.97
NBayes 1 1 0.98
Tree 1 1 0.98
LDA 1 1 0.98

Square Euclidean Distance

KNN 1 1 0.98
NBayes 1 1 0.99
Tree 1 1 0.97
LDA 1 1 0.98

City Block Distance
KNN 1 1 0.97
NBayes 1 1 0.98
Tree 1 1 0.96
LDA 1 1 0.98

Minkowski Distance
KNN 1 1 0.97
NBayes 1 1 0.98
Tree 1 1 0.97
LDA 1 1 0.97

Chebyshev Distance
KNN 1 1 0.97
NBayes 1 1 0.97
Tree 1 0.83 0.55
LDA 1 0.85 0.56

DTW Distance

KNN 1 0.86 0.51
NBayes 1 0.85 0.55

The datasets have a total of 1,000,000 samples, with equal numbers of sequentially
concatenated control and experimental data samples, each containing 1,000 samples.
All of the control data intervals are generated using a Gaussian Normal distribution

with zero mean and unit variance.

On the other hand, the experimental data sequences for the first synthetic dataset are
generated using a Gaussian distribution with a mean value of 3 and unit variance
to test the capturability of fold changes. The second dataset is generated using an
exponential distribution with a rate of 5 for the experimental sequence of samples.
The third dataset is similarly generated but using the log-normal distribution with

zero mean and a standard deviation of 5. The fourth dataset is generated using the
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Student’s t-distribution with a degree of freedom of 5. And finally, a real, publicly
available ECG dataset, namely "MIT-BIH Long Term ECG Dataset’, obtained from
Physionet website [338] 328] is used to test the experimental setup to compare the
pitch estimation algorithms on the proposed algorithm, PAD, feature performances.
Here, the intervals between P to T waves are considered as the experimental, and the

intervals from T to P waves are considered the control samples.

The accuracy and computational time results of the above-mentioned experiments are
presented in Table Based on the performance results, one of the pitch estimation
methods is chosen to proceed with the initial experimental tests of the proposed algo-

rithm.

The accuracy results in Table [A.5] show that the majority of feature groups achieve
high accuracy (A=1) in both univariate and multivariate analyses. In both types of
analyses, the statistical features consistently produce perfect accuracy, indicating their
effectiveness in distinguishing between classes. The spectral features perform well as
well, with A=1 for the majority of feature types. However, the accuracy of PAD
features ranged from 0.69 to 1, depending on the specific feature and distance metric

used. It implies that the discriminative power of PAD features may be variable.

In terms of computational time, statistical and spectral features have generally shorter
processing times, ranging from 3.43 to 8.61 units on average. The PAD features,
on the other hand, require more computation time, with the average ranging from
19.64 to 37.71 units. It implies that PAD feature extraction and analysis may be more
computationally intensive than statistical and spectral features. The results show that
statistical and spectral features are effective in achieving high classification accuracy
on the synthetic dataset. The PAD features, while slightly less accurate, still provide
adequate performance. It is worth noting, however, that the PAD features require

more computational time than the other feature groups.

Looking at the accuracy results as presented in Table[A.6] the Statistical feature group
achieves the best performance, as all univariate and multivariate features achieve per-
fect accuracy (A = 1). The Spectral feature group achieves perfect accuracy for the
Band Power feature but less so for Mean Frequency and Median Frequency. With

different distance metrics, the PEF, CEP, and NCF groups also achieve relatively high
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Table A.5: Synthetic Dataset: S1, Univariate and multivariate results. A’ stands for

accuracy, and ’t’ is for computational time.

Tree Classifier LDA Classifier K-NN Classifier
Feature Group Feature Univar. Multivar. Univar. Multivar. Univar. Multivar.
A t A t A t A t A t A t

Mean 1 4.59 1 3.89 1 5.49
Variance 1 3.98 099 3.95 1 5.09
Skewness 1 3.63 1 3.82 1 6.47

Statistical Kurtosis 094 426 1 586 085 398 1 549 094 6.03 1 1576
Median 1 4.32 1 3.66 1 5.99
Range 1 4.1 1 3.83 1 5.98
RMS 1 3.75 1 3.78 1 6.38
Band power 1 343 1 3.79 1 542

Spectral Mean freq. 1 354 1 861 1 3.78 1 8.13 1 691 1 1321
Median freq. 1 3.86 1 3.69 1 5.28
Euclidean 1 4.18 098 4.16 1 6.59
Square Eucl. 1 4.16 093 4.03 1 7.04

PAD - PEF Manhattan 099 437 1 3421 094 38 1 3353 099 63 1 3771

Chebyshev 1 3.88 0.99 3.89 1 6.5

DTW 0.99 4.28 095 3.96 099 8.11
Euclidean 098 7.73 092 7.89 0.98 10.49
Square Eucl. 0.99 7.8 0.86 7.31 0.99 10.24

PAD - CEP Manhattan 086 7.68 1 19.64 084 7.5 098 1944 085 9.63 1 21.18
Chebyshev 1 7.81 096 17.59 1 9.44
DTW 0.88 897 0.85 8.18 0.88 11.34
Euclidean  0.95 8.88 0.87 8.85 095 16.79
Square Eucl. 098 9.3 0.82 895 0.97 16.49

PAD - NCF Manhattan  0.69 9.72 1 20.69 0.67 9.13 099 20.88 0.69 20.8 1 235
Chebyshev 1 9.44 095 9.24 099 14.27
DTW 0.71 10.85 0.71 10.46 0.7 19.72
Euclidean 1 9.09 097 8.43 1 12.53

Square Eucl. 1 8.01 0.91 8 0.97 13

PAD - LHS Manhattan 094 88 1 2093 0.87 9.36 1 2077 094 1752 1 405
Chebyshev 1 9.49 099 8.24 1 1449
DTW 096 9.58 09 951 095 1691

accuracy (A > 0.8).

The Statistical feature group has the shortest computational time requirements for
both univariate and multivariate features. The PAD Features groups, specifically PEF,

on the other hand, require the most computational time for both univariate and multi-
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Table A.6: Synthetic Dataset: S2, Univariate and multivariate results. A’ stands for

accuracy, and ’t’ is for computational time.

Tree Classifier LDA Classifier K-NN Classifier
Feature Group Feature Univar. Multivar. Univar. Multivar. Univar. Multivar.
A t A t A t A t A t A t

Mean 0.89 532 0.51 6.61 0.89 12.11
Variance 1 5.06 1 4.98 1 9.99
Skewness  0.52  7.17 05 483 0.51 17.37

Statistical Kurtosis 052 703 1 575 05 583 1 577 052 1274 1 152
Median 0.89 6 053 6.48 0.72 11.93
Range 1 6.06 1 4.88 1 13.54
RMS 1 5.52 1 4.77 1 13.01
Band power 1 5.53 1 5.69 1 10.56

Spectral Mean freq. 0.5 809 1 833 0.5 59 1 813 05 1431 1 1658
Median freq. 0.52 7.46 05 6.62 0.52 1553
Euclidean 1 11.85 1 11.24 1 1832
Square Eucl. 1 10.42 098 10.5 1 1712

PAD - PEF Manhattan 1 1071 1 4511 098 104 1 4444 1 1585 1 54.59
Chebyshev 1 11.18 1 11.02 1 2151
DTW 1 1652 098 16.42 1 222
Euclidean 1 7.21 095 7.35 1 1317
Square Eucl. 1 7.04 0.89 7.03 1 12.62

PAD - CEP Manhattan ~ 0.96 8 1 1908 087 765 1 1895 096 17.19 1 2504
Chebyshev 1 8.15 1 7.99 1 1353
DTW 0.97 10.76 0.88 10.06 0.95 30.95
Euclidean 1 8.52 095 8.22 1 1925
Square Eucl. 1 7.66 09 17.86 1 17.88

PAD - NCF Manhattan 096 7.63 1 2099 087 7.06 1 21.06 096 1473 1 29.69
Chebyshev 1 7.07 099 7.18 1 16.83
DTW 097 8.53 0.88 8.25 097 15.36
Euclidean 1 6.73 1 6.96 1 1649
Square Eucl. 1 7.13 096 7.34 1 1437

PAD - LHS Manhattan 1 883 1 1891 093 95 1 1883 1 1519 1 3218
Chebyshev 1 6.95 1 7.54 1 1644
DTW 1 8.4 096 8.81 1 13.14

variate cases.

Overall, the Statistical feature group outperforms the other feature groups in terms of
accuracy and computational time, making it a good choice for classification tasks on

synthetic datasets. It is important to note, however, that the selection of feature group
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and classifier may be influenced by the specific characteristics and requirements of

the dataset and the problem at hand.

Table A.7: Synthetic Dataset: S3, Univariate and multivariate results. A’ stands for

accuracy, and ’t’ is for computational time.

Tree Classifier LDA Classifier K-NN Classifier
Feature Group Feature Univar. Multivar. Univar. Multivar. Univar. Multivar.
A t A t A t A t A t A t
Mean 1 4.72 1 4.39 1 8.07
Variance 1 4.82 1 4.45 1 14

Skewness  0.95 5.08 0.94 448 0.94 10.72

Statistical Kurtosis 0.76 5.24 1 478 0.76 4.59 1 484 0.76 1223 1 9.67
Median 1 4.78 1 4.28 1 11.51
Range 097 497 0.97 438 097 11.37
RMS 1 4.96 1 4.83 1 10.56
Band power 1 4.74 1 4.25 1 12.18

Spectral Mean freq. 1 5.96 1 7.59 1 59 1 7.56 1 1028 1 14.84
Median freq. 0.97 6.26 0.95 6 0.97 10.73
Euclidean  0.86 10.91 0.85 10.46 0.86 18.01
Square Eucl. 0.89 11.15 0.88 10.92 0.89 15.41

PAD - PEF Manhattan  0.78 11.2  0.99 37.08 0.78 9.97 0.98 3648 0.78 1938 1 46.94
Chebyshev 091 10.13 09 9.28 091 16.63
DTW 0.78 13.21 0.78 13.06 0.78 28.25
Euclidean  0.66 8.81 0.66 7.79 0.67 23.94
Square Eucl. 0.7 9.63 0.7 7.8 0.7 19.26

PAD - CEP Manhattan  0.58 9.12 0.96 2492 0.59 7.72 092 245 059 23.03 096 34.25
Chebyshev  0.76  7.85 076 74 0.76 15.55
DTW 06 1138 0.6 10.65 0.61 23.93
Euclidean  0.74 9.56 0.67 9.35 0.74 2285
Square Eucl. 0.79 9.25 0.72  8.62 0.79 20.1

PAD - NCF Manhattan  0.69 999 099 314 051 10.87 0.99 31.08 0.69 24 1 3736
Chebyshev  0.83 10.51 0.82 9.35 0.82 17.96
DTW 0.69 13.04 0.51 13.78 0.68 25.25
Euclidean  0.69 8.59 0.66 7.59 0.69 27.68
Square Eucl.  0.71 10 0.67 8.46 0.71 2391

PAD - LHS Manhattan  0.67 8.09 09 2003 0.6 793 0.69 1928 0.67 3133 0.94 31.31
Chebyshev 0.7 8.2 0.65 8.17 0.7 2322
DTW 0.69 943 0.61 9.21 0.69 23.42

According to Table for most feature groups and classifiers, the results show that
the multivariate approach outperforms the univariate approach. In terms of accuracy,
the multivariate method achieves an average of 0.97, while the univariate method

achieves an average of 0.81. This suggests that combining multiple features improves
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discrimination and classification performance when compared to using individual fea-

tures separately.

In terms of computational time, the multivariate approach takes slightly longer than
the univariate approach. However, the differences are minor, with the multivariate
approach taking an average of 20.97 seconds and the univariate approach taking an
average of 8.39 seconds. As a result, despite slightly longer processing times, the

multivariate approach is still practical for practical implementation.

According to the results in Table [A.§] in terms of accuracy, the multivariate approach
outperforms the univariate approach across all feature groups and classifiers. In most
cases, the multivariate approach’s accuracy is close to one, indicating good classi-
fication performance. In all classifiers, the statistical feature group achieves perfect
accuracy (A=1) for both univariate and multivariate approaches. Similarly, the PEF
features achieves high accuracy (A>0.9) in most classifiers for both approaches. The
CEP and NCF features are also accurate, albeit slightly less so than the other two

groups.

In terms of computational time, the multivariate approach consistently takes longer
than the univariate approach. This is to be expected because the multivariate approach
deals with features of higher dimensionality, resulting in increased computational
complexity. Despite the longer computation time, the multivariate approach is still
viable, with an average time of 21 to 24 seconds. The univariate approach, on the
other hand, takes significantly less time to compute, ranging from 7 to 11 seconds on

average.

In terms of accuracy, the multivariate approach consistently outperforms the uni-
variate approach for all feature groups and classifiers. In most cases, multivariate
accuracy is significantly higher (greater than 0.9) than univariate accuracy (around
0.6-0.8). This suggests that combining multiple features yields more discriminative
information for classification tasks. However, as indicated by the higher values of
computational time for multivariate results, the multivariate approach requires more

computational time than the univariate approach.

When compared to the Statistical and Spectral feature groups, the PAD features
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Table A.8: Synthetic Dataset: S4, Univariate and multivariate results. A’ stands for

accuracy, and ’t’ is for computational time.

Tree Classifier LDA Classifier K-NN Classifier
Feature Group Feature Univar. Multivar. Univar. Multivar. Univar. Multivar.
A t A t A t A t A t A t
Mean 1 4.58 1 447 1 6.65
Variance 1 4.05 1 4.11 1 8.06
Skewness  0.72 542 0.72  5.66 0.73 8.81
Statistical Kurtosis 096 5.38 1 494 094 471 1 505 096 8.28 1 10.75
Median 1 4.41 1 4.39 1 5.98
Range 099 45 099 4.88 098 6.07
RMS 0.52 5.49 051 592 052 9.1
Band power 0.52  6.31 051 6.1 052 933
Spectral Mean freq. 0.7 599 1 7.15 0.69 5.71 1 6.57 0.7 838 1 11.8
Median freq. 1 54 1 5.32 1 7.81
Euclidean  0.88 9.85 0.88 9.37 0.88 12.04
Square Eucl. 0.93 9.32 09 9.05 093 11.53
PAD - PEF Manhattan 0.8 9.71 098 34.18 0.8 941 097 3396 0.8 13.12 099 37.49
Chebyshev  0.92 11.24 092 937 092 1551
DTW 0.8 13.29 0.81 122 0.81 16.99
Euclidean  0.63 8.23 0.63 833 0.64 10.8
Square Eucl.  0.67 8.04 0.68 7.26 0.68 12.01
PAD - CEP Manhattan  0.56 8.27 0.93 2246 0.55 7.34 092 2223 057 10.82 094 23.33
Chebyshev  0.74 9.2 0.74 8.34 0.74 12.58
DTW 0.57 10.03 0.57 9.01 0.58 11.19
Euclidean 0.75 8.8 0.71 843 0.75 13.08
Square Eucl.  0.82  9.09 0.77 9.16 0.81 12.39
PAD - NCF Manhattan  0.69 10.75 0.98 30.66 0.53 1095 0.98 30.19 0.68 1553 0.99 31.44
Chebyshev  0.83 9.41 0.83  9.09 0.83 12.21
DTW 0.69 12.01 0.53 1241 0.69 15.1
Euclidean  0.65 6.9 058 6.6 0.64 14.81
Square Eucl.  0.63  7.12 0.58 6.67 0.62 11.09
PAD - LHS Manhattan  0.72  6.76 091 1627 0.65 723 0.76 1638 0.66 10.24 093 17.34
Chebyshev  0.76  7.11 0.53 8.08 0.76 11.97
DTW 073 8.1 0.67 17.63 0.68 13.27

achieve higher accuracy. This suggests that the phase-amplitude duration features
extracted from ECG signals contain useful information for classifying patients. How-
ever, the PAD features require more computational time, as evidenced by higher com-

putational time values when compared to the Statistical and Spectral features.

The results of the analysis suggest that utilizing multivariate feature sets leads to
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Table A.9: Real Dataset: MIT-BIH Long Term ECG, Univariate and multivariate

results. A’ stands for accuracy, and ’t’ is for computational time.

Tree Classifier LDA Classifier K-NN Classifier
Feature Group Feature Univar. Multivar. Univar. Multivar. Univar. Multivar.
A t A t A t A t A t A t

Mean 0.61 522 0.61 393 0.61 20.33
Variance ~ 0.87 4.81 0.8 3.96 0.86 16.17
Skewness  0.81 4.8 05 6.15 0.81 27.49

Statistical Kurtosis 085 499 098 582 0.84 443 089 511 0.84 2129 099 112
Median 0.58 544 0.57 441 0.58 18.07
Range 095 4.72 0.83 4.44 095 11.35
RMS 0.83 4.72 0.82 4.04 0.83 10.73
Band power 0.83 4.26 0.76  3.91 0.83 15.06

Spectral Mean freq. 08 7.68 095 11.1 08 7.17 0.88 1057 0.8 2351 095 3026
Median freq. 0.84 7.52 0.84 6.88 0.84 21.58
Euclidean 0.8  8.78 0.77 835 0.81 28.72
Square Eucl. 0.8 8.74 0.69 8.33 0.8 403

PAD - PEF Manhattan  0.82  9.12 0.92 2824 0.77 843 0.85 27.57 0.82 1823 0.95 38.61
Chebyshev  0.83 8.84 0.77 8.32 0.82 35.35
DTW 0.81 9.76 0.78 9.24 0.81 1533
Euclidean 0.7 10.93 0.66 1041 0.69 24.08
Square Eucl.  0.77 10.72 0.71 9.87 0.77 17.85

PAD - CEP Manhattan  0.68 11.89 0.96 39.56 0.62 11.23 0.82 39.04 0.67 22.28 0.97 50.56
Chebyshev  0.71 11.2 0.7 10.78 0.71 19.06
DTW 0.67 14.15 0.62 13.71 0.67 32.67
Euclidean  0.71 1047 0.68 9.68 0.71 2691
Square Eucl.  0.78  9.89 0.73  9.46 0.78 2091

PAD - NCF Manhattan 0.7 11.09 0.95 3849 0.65 9.88 0.78 37.79 0.68 2394 0.96 43.37
Chebyshev  0.72 10.67 0.7 995 0.71 19.47
DTW 0.69 11.81 0.66 13.02 0.7 3477
Euclidean  0.51 7.56 05 6.96 0.52 11.95
Square Eucl.  0.52 8.49 05 754 0.51 15.19

PAD - LHS Manhattan  0.51 9.04 0.51 2368 0.5 7.09 0.51 1741 052 1443 051 32.82
Chebyshev  0.51 7.41 05 6.46 0.51 19.46
DTW 0.52 949 05 7.01 0.51 13.51

improved classification accuracy compared to using individual features separately.
Although the multivariate approach may require slightly longer computational times,
the performance gain justifies the additional processing effort. These findings em-
phasize the importance of considering multiple features simultaneously for achieving
more accurate and reliable classification results, with a trade-off between accuracy

and computational time.
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A.2 The Classification Graphical User Interface (GUI)

All of the analyses of the thesis study are performed in MATLAB software, using

custom-made scripts over the built-in or pre-proven functions. Moreover, in order

to perform the analyses, a new GUI for feature extraction and classification is made.

Hereby, Figure [A.9| represents the snapshot of the current version of the GUI which

is made for this thesis study.
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Figure A.9: A snapshot of the GUI that is made for analyses.

The GUI is capable of properly reading multimodal datasets, preprocessing them with

several options, performing feature extraction with a variety of features, classifying

and validating the extracted features, outputting the performance measures, perform-

ing multimodal classification, and saving the outputs. However, it will be improved

even further with the needs and detailed analyses.
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