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Atom çekirdeğinde nükleon sayısının değişimine bağlı gözlenen yapısal değişimleri 

belirten şekil faz geçişleri, nükleer fiziğin önemli konularından biridir. Çekirdeğin yapısını ve 

faz geçişlerini incelemede kullanılan en başarılı modeller Etkileşen Bozon Modeli (EBM) ve 

Kolektif Modeldir. Birbiriyle tamamen zıt olan bu iki model, Eşevreli Durum Yaklaşımı (EDY) 

ile bağlanmıştır. Bu çalışmada, kütle numarası 160 civarında olan çift-çift çekirdeklerin yapıları 

EDY kullanılarak incelenmiştir. Bu amaçla 20 tane çift-çift izotop seçilmiştir. Seçilen her bir 

izotop için taban-durum, beta ve gama bant enerjileri hesaplanmıştır. Taban-durumu için 

elektrik kuadrupol geçiş oranları da hesaplanmıştır. Elde edilen teorik bulgular deneysel 

verilerle karşılaştırılmış ve aralarında çok iyi bir uyum olduğu görülmüştür. 
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Shape phase transitions, which indicate the structural changes observed due to the 

change of the nucleon number in the atomic nucleus, are important topics of nuclear physics. 

Interacting Boson Model (EBM) and Collective Model. These two models, which are 

completely opposite to each other, are connected by the Coherent State Approach (CSA). In this 

study, the structures of even-even nuclei with a mass number of 160 were investigated using 

EDY. For this purpose, twenty double-double isotopes were chosen. Energies of the ground 

state, beta and gamma bands were calculated for each selected isotope. Electric quadrupole 

transition rates were also calculated for the ground state band. The obtained theoretical findings 

were compared with the experimental data and it was seen that there was a very good agreement 

between them. 
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1. GİRİŞ 

 

Temel parçacıklar, bilinen hiçbir alt parçacığı yapısında barındırmayan parçacıklardır. 

Bu parçacıklar evreni oluşturan maddelerin temel yapıtaşlarıdır. Standart 

Model'de kuarklar, leptonlar ve ayar bozonları temel taneciklerdir. Standart Model, 

gözlemlenen maddeyi oluşturan, şimdiye dek bulunmuş temel parçacıkları ve bunların 

etkileşmesinde önemli olan 3 temel kuvveti açıklayan kuramdır. 

Sözü geçen 3 temel kuvvet: Elektromanyetik kuvvet, zayıf nükleer kuvvet (elektro-zayıf 

kuvvet) ve güçlü nükleer kuvvettir. Standart Modelin en büyük başarısı şimdiye dek 

birçok kez sınanmış olmasına rağmen atom altı parçacıkların özellikleri ile aralarındaki 

etkileşmelerine ait gözlenebilir nicelikleri büyük hassaslıkta tahmin edebilmesidir. 

Standart Modele göre evren birbirinin kopyası gibi duran 3 aileden oluşmaktadır. 

Birinci aile maddeyi oluşturan ailedir(Kobayashi et al. 1974).  Standart Modelde yer 

alan parçacıklar ve bu parçacıkların özellikleri Şekil 1.1’de gösterilmiştir 

 

Şekil 1.1 Standart Model Parçacıkları (Cern 2013)  

Bilinen tüm bozonların spini bir iken yakın zamanda keşfedilen Higgs Bozonunun spini 

sıfırdır. Higgs bozonu, maddeye kütlesini veren parçacık olarak tanımlanır. Tüm 

parçacıkların ise Higgs alanı adlı bir alandaki hareketinden dolayı kütlesinin oluştuğu 

düşünülmektedir. Standart Modelin eksik kalan parçacığı olarak yıllardır ispatı beklenen 

https://tr.wikipedia.org/wiki/Evren
https://tr.wikipedia.org/wiki/Standart_Model
https://tr.wikipedia.org/wiki/Standart_Model
https://tr.wikipedia.org/wiki/Kuark
https://tr.wikipedia.org/wiki/Lepton
https://tr.wikipedia.org/wiki/Ayar_bozonlar%C4%B1
https://tr.wikipedia.org/wiki/Temel_par%C3%A7ac%C4%B1k
https://tr.wikipedia.org/wiki/Kuvvet
https://tr.wikipedia.org/wiki/Elektromanyetik_kuvvet
https://tr.wikipedia.org/wiki/Zay%C4%B1f_n%C3%BCkleer_kuvvet
https://tr.wikipedia.org/wiki/Elektro-zay%C4%B1f_kuvvet
https://tr.wikipedia.org/wiki/Elektro-zay%C4%B1f_kuvvet
https://tr.wikipedia.org/wiki/G%C3%BC%C3%A7l%C3%BC_n%C3%BCkleer_kuvvet
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parçacık, teorik hesaplamalarla yıllardır denklemlerde kullanılmasına(Higgs 1964) 

karşın yakın zamandaki deneysel keşfiyle Standart Model tamamlanmıştır.  

Atom çekirdeği atomun merkezinde yer alan, proton ve nötronlardan oluşan küçük ve 

yoğun bir bölgedir. Atom çekirdeği 1911 yılında Ernest Rutherford tarafından 

keşfedildi. Bu keşif, 1909 yılında gerçekleştirilen Geiger-Marsden altın levha deneyine 

dayanmaktadır. Nötron’un 1932 yılında keşfinden sonra, çekirdeğin proton ve 

nötronlardan oluştuğu modeli Dmitri Ivanenko ve Werner Heisenberg tarafından 

geliştirildi. Atomun kütlesinin neredeyse tamamı çekirdek içerisindedir. Elektron 

bulutunun atom kütlesine katkısı yok denebilecek kadar azdır(Rohlf 1994). 

Protonlar ve nötronlar birbirinden farklı eş spin kuantum değerlerine 

sahip fermiyonlardır. Bu yüzden iki proton ve iki nötron aynı uzay dalga 

fonksiyonunu paylaşabilir. Bunlar bazen aynı parçacık olan nükleonun farklı kuantum 

numaraları olarak görülmektedir. İki fermiyon çifti gevşek olarak birbirine bağlı 

olduğunda bozon gibi davranabilmektedir(Rohlf 1994). Atom çekirdeği güçlü nükleer 

kuvvet tarafından bir arada tutulur. Bu kalıcı güçlü kuvvet, kuarkları birbirine 

bağlayarak proton ve nötronların oluşmasını sağlayan güçlü etkileşimin temelidir. Bu 

kuvvet nötronlar ile protonlar arasında daha zayıftır. Çünkü kendi içlerinde nötr hale 

getirilmektedir. Aynı şekilde nötr atomlar arasındaki elektromanyetik kuvvet, atomun 

parçacıklarını içten birlikte tutan elektromanyetik kuvvete göre oldukça zayıftır(Cohen 

1971). 

Çekirdeğe dair geliştirilmiş bir başka model çekirdeğin dönen sıvı damlası gibi 

değerlendirildiği model olan Sıvı Damlası Modelidir. Bu modelde, uzun mesafeli 

elektromanyetik kuvvet ve görece kısa menzilli nükleer kuvvetin birlikte belli bir 

davranışa neden olduğu söylenmektedir. Bu davranış değişik boyutlardaki sıvı 

taneciklerinin üzerindeki yüzey gerilim kuvvetine benzerlik göstermektedir. Bu 

yaklaşım çekirdeğe dair çoğu önemli olguyu başarıyla açıklayabilmektedir. Örneğin 

çekirdeğin boyutu ve parçacıkları değiştiğinde toplam bağlanma enerjisinin nasıl 

değiştiğini açıklayabilmektedir. Fakat bu yaklaşım proton ya da nötronların çok fazla 

olduğu çekirdeklerdeki kararlılık durumunu açıklayamamaktadır. 

https://tr.wikipedia.org/wiki/Atom
https://tr.wikipedia.org/wiki/Proton
https://tr.wikipedia.org/wiki/N%C3%B6tron
https://tr.wikipedia.org/wiki/Ernest_Rutherford
https://tr.wikipedia.org/w/index.php?title=Dmitri_Ivanenko&action=edit&redlink=1
https://tr.wikipedia.org/wiki/Werner_Heisenberg
https://tr.wikipedia.org/wiki/Elektron_bulutu
https://tr.wikipedia.org/wiki/Elektron_bulutu
https://tr.wikipedia.org/wiki/Fermiyon
https://tr.wikipedia.org/wiki/Dalga_fonksiyonu
https://tr.wikipedia.org/wiki/Dalga_fonksiyonu
https://tr.wikipedia.org/wiki/N%C3%BCkleon
https://tr.wikipedia.org/wiki/Bozon
https://tr.wikipedia.org/wiki/G%C3%BC%C3%A7l%C3%BC_n%C3%BCkleer_kuvvet
https://tr.wikipedia.org/wiki/G%C3%BC%C3%A7l%C3%BC_n%C3%BCkleer_kuvvet
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Aynı boyutta ve birbirine benzer nükleonlar çok küçük bir hacime sıkıştığında her bir iç 

nükleonun belirli bir sayıda nükleonla teması söz konusudur. Bundan dolayı nükleer 

enerji hacimle doğru orantılıdır. Çekirdeğin yüzeyindeki bir nükleon, çekirdeğin 

içindeki bir nükleona oranla, daha az sayıda nükleonla etkileşime girmektedir. Bu 

yüzden çekirdeğin yüzeyindeki nükleonun bağlanma enerjisi, merkeze yakın olan 

nükleona göre daha düşüktür. Yüzey enerjisi negatiftir ve yüzey alanı ile doğru 

orantılıdır. Çekirdekteki her çift proton arasındaki elektriksel itici kuvvet kendi 

bağlanma enerjisinin düşmesine sebep olur. Bu yüzden çift sayılı parçacıklar tek sayılı 

parçacıklardan daha kararlıdır. 

Atom yapısını açıklamaya yardımcı bir diğer model ise Kabuk Modelidir. Çekirdek 

kabuğu modeli ya da nükleer kabuk modeli, atom çekirdeği için oluşturulan ve Pauli 

dışarlama ilkesini kullanarak çekirdek yapısını enerji seviyeleri açısından açıklayan 

modeldir. İlk kabuk modeli 1932'de, Dmitriy İvanenko tarafından ortaya atıldı. Bu 

model 1949'da, Maria Goeppert-Mayer ve Hans Jensen tarafından bağımsız olarak 

geliştirildi(Mayer 1949). Tabakalı model diye de bilinen kabuk modeli, atom yapısının 

karmaşık ayrıntılarını açıklamakta başarılı olmuştur. Atomik kabuk modelinde, 

kabuklar giderek artan enerjili elektronlarla Pauli prensibine göre yerleşirler. Böylece, 

tamamen dolu kabuklar ve birkaç değerlik elektronlarından oluşan bir durum gözlenir. 

Atomik özellikler bu değerlik elektronları tarafından belirlenir. Bu model, nükleer 

yapıya uygulandığında bazı farklılıklarla karşılaşılır. Atomik durumda potansiyel, 

çekirdeğin Coulomb Alanı ile sağlanır. Yörüngeler ise bir dış kaynak tarafından 

oluşturulur. Çekirdekte böyle bir kaynak yoktur. Nükleonlar kendilerinin yarattığı bir 

potansiyel içinde hareket eder. Kabuk modelinde, bir nükleonun hareketi, diğer tüm 

nükleonların oluşturduğu potansiyel tarafından belirlenir. Kabuk modeli çözümü için ilk 

adım potansiyel seçimidir. Sonsuz kuyu ve harmonik osilatör potansiyelleri için 

Schrödinger denklemi çözülürse enerji düzeyleri elde edilebilir. Ancak Kabuk Modeli 

orta-ağır ve ağır çekirdeklerde başarılı değildir. Bizim çalışmamızda orta ağır 

çekirdekler kullanıldığı için Sıvı Damlası Modeli ve Kabuk Modeline sadece kısa tanım 

olarak yer verilmiştir. 

 

https://tr.wikipedia.org/wiki/Atom_%C3%A7ekirde%C4%9Fi
https://tr.wikipedia.org/wiki/Pauli_d%C4%B1%C5%9Farlama_ilkesi
https://tr.wikipedia.org/wiki/Pauli_d%C4%B1%C5%9Farlama_ilkesi
https://tr.wikipedia.org/w/index.php?title=Dmitriy_%C4%B0vanenko&action=edit&redlink=1
https://tr.wikipedia.org/wiki/Maria_Goeppert-Mayer
https://tr.wikipedia.org/wiki/Hans_Jensen
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Atom çekirdeklerinde, nükleon sayısının değişimine bağlı olarak gerçekleşen şekil faz 

geçişleri, nükleer yapı fiziğinin son yıllarda ilgilendiği en önemli konuların başında 

gelmektedir. Kütlesi az olan veya kapalı bir kabuğu olan çekirdekler, şekil olarak 

küresel simetrik bir yapıdadır. Proton ve nötron sayısının artışına bağlı olarak 

çekirdeğin şekli küresel yapıdan uzaklaşır. Bu durumun sonucu olarak da çekirdeğin 

elektrik kuadrupol momenti artar. Bu olgu, orta ve ağır çekirdekler için deneysel olarak 

da gösterilmiştir. 

Bohr ve Mottelson’un oluşturduğu Kolektif Model küresel yapının dışında kalan 

nükleonların kolektif hareket ettiğini öngördüğü bir modeldir (Bohr et al. 1987).  

Kolektif Model, orta ve ağır çekirdekler üzerinde oldukça başarılı bir modeldir. 

Çekirdeklerde iki tip kolektif hareket durumu gözlenir. Bu hareketler titreşim ve 

dönmedir. Deformesi fazla olan çekirdeklerde simetri eksenine dik olan eksen etrafında 

bir dönme gözlenir (Bohr  et al. 1987). Eğer deforme durumu geçiciyse çekirdeğin 

herhangi bir andaki şekli eksensel asimetriktir (γ-kararsız rotor). 

Atomik çekirdeklerin yapılarını açıklamada en başarılı ve Kolektif modele zıt olan 

modellerden biri Etkileşen Bozon Modeli (EBM)’dir. Bu modelin ilk versiyonunda, 

protonlar ve nötronlar arasında ayrım yapılmaz ve çiftlenen her nükleon bir bozon 

oluşturur ve en fazla 0ℏ veya 2ℏ birim açısal momentum taşıyabilir ( Edmonds1957). 

Son kapalı kabuğun dışında kalan nükleonlar proton veya nötron olduğu ayırt 

edilmeden, her iki nükleonun tek bir bozon oluşturacağı kabul edilerek işlem yapılır. 

Elde edilen bozonlar sırasıyla s ve d bozonu olarak adlandırılır. s ve d bozonlarının 

manyetik izdüşümleri dikkate alındığında 6 farklı durumla karşılaşılır ve bu sistem, 

grup teori dilinde U(6) grubu ile ifade edilir. U(6)’nın alt grupları U(5), SU(3) ve O(6) 

olup sırasıyla küresel vibratör, deforme rotor ve gama kararsız rotor yapıları olarak 

adlandırılır. 

 

Etkileşen Bozon Modeli zaman içinde farklı parametreler kullanılarak geliştirilmiştir. 

Bu modelin ilk hali EBM-1olarak adlandırılmıştır (Wilets et al. 1956).  Orta-ağır ve ağır 

çift-çift çekirdeklerde oldukça başarlı olan EBM-1’de protonlar ve nötronlar simetrik 

kabul edilmiştir. Fakat düşük uyarılma (<3 MeV) durumlarında uzak sonuçlar verir. Bu 

uyarılma durumlarının daha iyi elde edilebilmesi için protonlar ve nötronlar arasında 
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ayrımın yapılması gerektiği görülmüştür ve geliştirilen model EBM-2 adını almıştır. 

Her iki model de yalnızca çift sayıda proton ve nötron içeren çekirdekler için geçerlidir. 

Tek sayı nükleonlu çekirdeklerin yapısı ise, tek kalan fermiyonun çift sayıda nükleon 

içeren kor’a çiftlendiğinin kabul edildiği Etkileşen Bozon-Fermiyon Modeli (EBFM) ile 

açıklanır. 

Bu çalışmada (Schaaser et al. 1984) SU(3) ile O(6) arasındaki geçiş bölgesinde yapı 

sergileyen A~160 civarındaki çekirdeklerin yapıları Eşevreli Durum Yaklaşımı (EDY) 

ile incelenmiştir.  İncelen izotopların uyarılma enerji spektrumu ve durumlar arası 

elektrik kuadrupol geçiş oranları elde edilmiştir. Teorik sonuçların, deneysel verilerle 

oldukça uyumlu olduğu görülmüştür. 
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2. MODELLER 

 

2.1. Etkileşen Bozon Modeli 

 

Atom çekirdeklerinin yapılarını açıklamada en başarılı olan ve Kolektif modele zıt olan 

modellerden biri Etkileşen Bozon Modeli (EBM)’dir. Bu modelin ilk versiyonunda, 

protonlar ve nötronlar arasında ayrım yapılmaz ve çiftlenen her nükleon bir bozon 

oluşturur. Son kapalı kabuğun dışında kalan nükleonlar nötron veya proton olduğu ayırt 

edilmeden iki nükleonunda tek bir bozon oluşturacağı kabul edilerek işlem yapılır. 

Etkileşen Bozon Modeli farklı parametreler kullanılarak geliştirilmiştir. EBM (I-IV) 

modelleri 1974 yılında Iachello ve Arima tarafından geliştirilmiştir.  Bu modelin ilk 

versiyonu EBM-1olarak adlandırılmıştır. Orta-ağır ve ağır çift-çift çekirdeklerde 

oldukça başarılı olan EBM-1’de protonlar ve nötronlar simetrik kabul edilmiştir. Fakat 

düşük uyarılma (<3 MeV) durumlarında uzak sonuçlar ortaya çıkmıştır. Bu uyarılma 

durumlarının daha iyi elde edilebilmesi için protonlar ve nötronlar arasında bir ayrımın 

yapılması gerektiği görülmüştür ve geliştirilen model EBM-2 adını almıştır. Her iki 

model yalnızca çift sayıda proton ve nötron içeren çekirdekler için geçerlidir. Tek sayı 

nükleonlu çekirdeklerin yapısı ise tek kalan fermiyonun çift sayıda nükleon içeren kor’a 

çiftlendiğinin kabul edildiği Etkileşen Bozon-Fermiyon Modeli (EBFM) ile açıklanır.        

Etkileşen Bozon Modelinin ilk hali olan bu model(EBM-1) s ve d bozonlarının 

etkileşim durumları üzerine kurulmuştur. Bu modelde sınırlama yoktur. Tek sınırlanmış 

durum toplam bozon sayısıdır. Proton ve nötron sayılarının son kapalı kabuğa olan 

mesafesinden bozon katkısı hesaplanır ve sistemin toplam bozon sayısı bulunur. Bu 

bozonlar arasındaki etkileşim ile bozon türü ve sayısı kullanılarak EBM-1 üzerinden 

temel durumları, operatör ve Hamilyoniyeni oluşturulabilir. Temel durumlar s ve d 

bozon sayılarına ek olarak iki kuantum sayısı daha kullanılır. Temel durumlar 

|𝑁 𝑛𝑑𝑣 𝑛𝛥 𝐿〉                 (1)  

Burada N toplam bozon sayısı, 𝑛𝑑 d bozonları sayısı,  𝑣  sıfır açısal momentumu 

vermek için çiftlenmemiş d bozonlarının sayısı, 𝑛𝛥  sıfır açısal momentumu vermek için 

çiftlenmiş d bozon üçlülerinin sayısı ve L toplam açısal momentum kuantum sayısıdır. 

Temel durumları bağlayan Hamiltoniyeni, ikinci kuantizasyon dilinde yazarsak burada 
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sadece 𝑠𝑠† ve  𝑑𝑑† operatörlerinin kombinasyonlarına izin verilir. Her yaratılma 

operatörüne bir yok etme operatörü eşlik etmekle beraber bunun tersi durumda 

yazılabilir. Bu operatörlerin yazılması iki cisim etkileşimine sınırlama getirir. Bu 

formdaki en genel Hamiltoniyenin multipol formu (Davidson 1932) aşağıdaki gibidir.  

 

En düşük uyarılma durumlarını anlatmak için sadece tek-cisim ve iki-cisim etkileşim 

terimlerinin yeterli olduğu kabul edilirse, Hamiltoniyen aşağıdaki gibi yazılabilir. 

𝐻 = 𝜀′′ 𝑛̂𝑑+ 𝑎0𝑃̂
†𝑃̂ + 𝑎1𝐿̂

2 + 𝑎2𝑄̂
2 + 𝑎3𝑇̂3

2+𝑎4𝑇̂4
2                        (2) 

 

 𝑛̂𝑑 = √5 𝑇0                 (3) 

 𝑃̃ =
1

2
(𝑑̃. 𝑑̃ − 𝑠. 𝑠)                (4) 

 𝑇̂ℓ = (𝑑†𝑑̃ )(ℓ); ℓ=0,1,2,3,4               (5) 

 𝑄̂  = (𝑑†𝑠̃ + 𝑠†𝑑̃) − 
√7

2
𝑇2               (6) 

 𝑑̃𝑚 = (1)𝑚𝑠̃ 𝑑−𝑚                (7) 

Değerlerine sahiptir.   

 

2.1.1 U(6) Lie Cebiri 

Matematikte, Lie cebiri içinde sonsuzküçük dönüşümler kavramını incelemek için 

tanıtılan cebirsel yapılardır. 1930'larda Hermann Weyl'in önsözünde, Sophus Lie'a 

itafen Lie cebiri terimini kullanmıştır. O zamandan itibaren Sonsuz Küçük Dönüşümler 

ya da Lie Cebiri adıyla kullanılmıştır. 

U(6) grubunun temel yapıtaşları aşağıda verilen operatörlerle tanımlanır: 

𝐺𝐾
1(𝑙𝑙′) = [𝑏† ⊗ 𝑏̃𝑙′]𝐾

𝑘             (8) 

Burada ⊗ ifadesi, tensör çarpımını gösterir ve iki operatör için aşağıdaki gibi 

tanımlanır. 

https://tr.wikipedia.org/wiki/Matematik
https://tr.wikipedia.org/wiki/Sonsuzk%C3%BC%C3%A7%C3%BCk_d%C3%B6n%C3%BC%C5%9F%C3%BCmler
https://tr.wikipedia.org/wiki/Sophus_Lie


8 
 

[𝑇
𝑘1 ⊗ 𝑇

𝑘2]
𝑘3 = ∑ (𝑘1𝑘1𝑘2𝑘2|𝑘3𝑘3)𝑇𝑘1

𝑘1𝑇𝑘2

𝑘2
𝑘1𝑘2

             (9) 

 (𝑘1𝑘1𝑘2𝑘2|𝑘3𝑘3) Bu terimler Clebsh-Gordan katsayılarıdır. 

[𝑇𝑘 ⊙ 𝑈𝑘 ] = (−1)𝑘 √2𝑘 + 1[𝑇𝑘 ⊗ 𝑈𝑘 ]0
0 = ∑ (−1)𝑘 𝑇𝑘

𝑘𝑈−𝑘
𝑘         (10) 

Burada 𝑙, 𝑙′ = 0,2 ve 𝑙, 𝑙′ = 𝑠, 𝑑’dir. Bu operatörlerin kendi aralarındaki komütasyon 

ilişkileri, U(6) Lie cebirinin 6 boyuttaki üniter dönüşümlerin komütasyon ilişkileri ile 

aynıdır. Dolayısıyla bu operatörler U(6) Lie cebirinin kuvvet taşıyıcıları olarak 

tanımlanır. EBM-1 modelinde yazabileceğiniz en genel hamitoniyenin yapı taşları 

oldukları için, Hamiltoniyenin U(6) grup yapısına sahip olduğu söylenir. Açıkça okunan 

bu kuvvet taşıyıcılarından toplam 36 = 62 adet vardır (Bonatsos 1988) 

𝐺0
0(𝑠𝑠) = [𝑠† ⊗ 𝑠̃ ]0

0 Bu operatörde 1 adet kuvvet taşıyıcısı vardır. 

𝐺0
0(𝑑𝑑) = [𝑑† ⊗ 𝑑̃ ]0

0 Bu operatörde 1 adet kuvvet taşıyıcısı vardır. 

𝐺𝐾
1(𝑑𝑑) = [𝑑† ⊗ 𝑑̃ ]𝐾

1  Bu operatörde 3 adet kuvvet taşıyıcısı vardır. 

𝐺𝐾
2(𝑑𝑑) = [𝑑† ⊗ 𝑑̃ ]𝐾

2  Bu operatörde 5 adet kuvvet taşıyıcısı vardır. 

𝐺𝐾
3(𝑑𝑑) = [𝑑† ⊗ 𝑑̃ ]𝐾

3  Bu operatörde 7 adet kuvvet taşıyıcısı vardır. 

𝐺𝐾
4(𝑑𝑑) = [𝑑† ⊗ 𝑑̃ ]𝐾

4  Bu operatörde 9 adet kuvvet taşıyıcısı vardır. 

𝐺𝐾
2(𝑑𝑠) = [𝑑† ⊗ 𝑠̃ ]𝐾

2  Bu operatörde 5 adet kuvvet taşıyıcısı vardır. 

𝐺𝐾
2(𝑠𝑑) = [𝑠† ⊗ 𝑑̃ ]𝐾

2  Bu operatörde 5 adet kuvvet taşıyıcısı vardır. 

Tüm kuvvet taşıyıcılarını toplarsak 1+1+3+5+7+9+5+5=36 adet olduğu görülecektir 

(Iachello et al. 1991). 

 

2.1.2 En genel formdaki EBM-1 Hamiltoniyeni 

 

Problemin cebirsel yapısı belirlendikten sonra, incelenen çekirdeği tanımlayan 

Hamiltoniyen yazılabilir. Düşük enerjili kuantum faz geçişlerini tanımlamak için, 

sadece tek vücut ve çift vücut teriminin yeterli olduğu varsayılırsa Hamiltoniyende ikili 

bozon ve dörtlü bozon sisteminin olduğu ortaya çıkar (Bonatsos 1988). 
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𝐻 = 𝜖𝑠(𝑠
† ⊙ 𝑠̃) + 𝜖𝑑(𝑑

† ⊙ 𝑑̃) + ∑
1

2
𝐿=0,2,4

√2𝐿 + 1𝑐𝐿[[𝑑
† ⊗ 𝑑†]𝐿 ⊗ [𝑑̃ ⊗ 𝑑̃]𝐿]0

+
1

√2
𝑣̃2[[𝑑

† ⊗ 𝑑†]2 ⊗ [𝑑̃ ⊗ 𝑠̃]2 + [𝑑† ⊗ 𝑠†]2 ⊗ [𝑑̃ ⊗ 𝑑̃]2]0

+
1

2
𝑣̃0[[𝑑

† ⊗ 𝑑†]0 ⊗ [𝑠̃ ⊗ 𝑠̃]0 + [𝑠† ⊗ 𝑠†]0 ⊗ [𝑑̃ ⊗ 𝑑̃]0]0 + 𝑢2[[𝑑
†

⊗ 𝑠†]2 ⊗ [𝑑̃ ⊗ 𝑠̃]2]0 +
1

2
𝑢0[[𝑠

† ⊗ 𝑠†]0 ⊗ [𝑠̃ ⊗ 𝑠̃]0]0                      (11) 

Bu Hamiltoniyen dokuz parametre içerir. İkisi multipol formda, tek parça oluşturan 

parametrelerdir. Bunlar (𝜖𝑠, 𝜖𝑑) dir. Yedi multipol parametre çift durum oluşturan 

parametrelerdir. Bunlar (𝑐0, 𝑐2, 𝑐4, 𝑣̃0, 𝑣̃2, 𝑢0, 𝑢2) tür. Toplam bozon sayısı N, toplam 

değerlik nükleon çifti sayısına eşittir. EBM de N değeri kesinlikle korunur. Bu 

kısıtlamayla (N değeri) Hamiltoniyen  9 − 1 = 8 parametreyle aşağıdaki formda yazılır 

(Iachello et al. 1991). 

𝐻 = 𝜖𝑠𝑁 +
1

2
𝑢0𝑁(𝑁 − 1) + 𝜖′(𝑑† ⊗ 𝑑̃)  + ∑

1

2
𝐿=0,2,4

√2𝐿 + 1𝑐𝐿
′ [[𝑑† ⊗ 𝑑†]𝐿 ⊗ [𝑑̃

⊗ 𝑑̃]𝐿]0 +
1

√2
𝑣̃2[[𝑑

† ⊗ 𝑑†]2 ⊗ [𝑑̃ ⊗ 𝑠̃]2 + [𝑑† ⊗ 𝑠†]2 ⊗ [𝑑̃ ⊗ 𝑑̃]2]0

+
1

2
𝑣̃0[[𝑑

† ⊗ 𝑑†]0 ⊗ [𝑠̃ ⊗ 𝑠̃]0 + [𝑠† ⊗ 𝑠†]0 ⊗ [𝑑̃ ⊗ 𝑑̃]0]0             (12) 

 

Hamiltoniyende N değeri bu şekilde denklemde yazılırsa 

 𝑁 = (𝑠† ⊙ 𝑠̃) + (𝑑† ⊙ 𝑑̃)             (13)  

 (𝑑†𝑠†) ⊙ 𝑑̃𝑠̃ = 𝑛𝑑𝑛𝑠             (14) 

 𝑠†𝑠†𝑠̃𝑠̃ = 𝑛𝑠(𝑛𝑠 − 1)             (15) 

𝑛𝑠 𝑣𝑒 𝑛𝑑 , s ve d bozon operatörleridir. Eski parametrelerle yeni parametlerin bağlantısı 

aşağıdaki denklemle ifade edilir. 

 𝜖′ = 𝜖𝑑 − 𝜖𝑠 +
1

√5
𝑢2(𝑁 − 1) −

1

2
𝑢0(2𝑁 − 1)          (16) 

 𝑐𝐿
′ = 𝑐𝐿 + 𝑢0 − 2𝑢2              (17) 

Hamiltoniyenin yeni formundaki ilk iki terim sadece toplam bozon sayısına bağlı 

olduğu için, çekirdeğin herhangi bir uyarılmış durumuna aynı katkıyı yapacaktır. Bu 
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nedenle uyarılma enerjilerini değil, sadece bağlanma enerjisini etkilerler. EBM-1 de 

farklı çekirdeklerin bağlanma enerjilerini değil tek bir çekirdeğin kuantum faz 

geçişlerini incelenir (Dieperink et al. 1980). Bu yüzden bağlanma enerjisi terimiyle 

ilgilenilmez ve ilk iki terim atlanır. Bu sayede altı serbest parametresi olan bir 

Hamiltoniyen kalır (𝜖′, 𝑐0
′ , 𝑐2

′ , 𝑐4
′ , 𝑣̃0, 𝑣̃2 ). Yapılan varsayımlarla orta ve ağır çekirdekler 

için, düşük enerjili kuantum faz geçişlerinde kullanılabilecek en genel Hamiltoniyene 

ulaşmış oluruz (Dieperink et al. 1980). 

 

2.1.3 U(6) Zinciri Altkümeleri 

 

Fiziksel sistemin Hamiltoniyeni belirlendikten sonra, sistem diyagonalleştirilmek 

istenir. Bunu yapabilmek için kuantum faz durumlarını bilmek gerekir. Genellikle 

kullanılan teknik, kuantum faz durumlarını(yörünge enerjileri=bant enerjileri) 

Hamiltoniyenin U(6) simetrisiyle ilişkili cebirin bir alt cebir zincirinin çeşitli 

indirgenemez temsillerini karakterize eden kuantum sayılarıyla etiketlemektir. 

Dolayısıyla bir sonraki adım, tam U (6) cebirinin tüm olası alt cebirlerini belirlemektir. 

Bir alt cebir, tam cebirin bir alt kümesi tarafından üretilir ve komütasyon altında 

kapanır. Mevcut durumda olası alt cebir zincirleri olduğu ortaya çıkacaktır (Bonatsos 

1988). 

2.1.4 Birinci zincir yapısı 

 

A) Yukarıda verilen 36 kuvvet taşıyıcısından 𝐺0
0(𝑠𝑠), 𝐺𝐾

2(𝑑𝑠) 𝑣𝑒 𝐺0
0(𝑠𝑑)’yi silin. U(5) 

ten gelen 25 operatör kalır. 5 boyutta üniter dönüşümler grubu oluşur. 

B) Geriye kalan 25 operatörden de  𝐺0
0(𝑑𝑑), 𝐺𝐾

2(𝑑𝑑)𝑣𝑒 𝐺𝐾
4(𝑑𝑑) operatörlerini çıkarınca 

10 operatör kalır. Bu üniter grup 5 boyutlu dik grup O(5) olur. 

C) Kalan 10 operatörden (kuvvet taşıyıcısından)  𝐺𝐾
3(𝑑𝑑) çıkarılırsa, olacak üniter grup 

O(3) olur ve bu grup 3 operatörlü iyi bilinen dönme grubudur. Bu operatörün 𝐺𝐾
1(𝑑𝑑) 

açısal momentumları orantılıdır (Iachello et al. 1991).  

 𝐿⃗ = √10[𝑑† ⊗ 𝑑̃]1              (18) 
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D) Son olarak da kalan 3 operatörden 𝐺+1
1 (𝑑𝑑) ve 𝐺−1

1 (𝑑𝑑) silinirse sadece 𝐺0
1(𝑑𝑑) 

operatörü kalır. Bu grup Z ekseni etrafındaki dönüşleri tanımlar. 

Dolayısıyla, olası bir alt cebir zinciri aşağıdaki gibi olur. 

U(6)⸧ U(5)⸧ O(5)⸧ O(3)⸧ O(2) 

 

2.1.5 İkinci zincir yapısı 

 

A) 9 operatörle hesaplama yapılırsa;    

 𝐺0
0(𝑠𝑠) + √5𝐺0

0(𝑑𝑑) = [𝑠† ⊗ 𝑠̃]0
0 + √5[𝑑† ⊗ 𝑑̃]0

0          (19) 

 𝐺𝐾
1(𝑑𝑑) + [𝑑† ⊗ 𝑑̃]𝐾

1              (20) 

 𝐺𝐾
2(𝑑𝑠) + 𝐺𝐾

2(𝑠𝑑) ∓
√7

2
𝐺𝐾

2(𝑑𝑑) = [𝑑† ⊗ 𝑠̃ + 𝑠† ⊗ 𝑑̃]𝐾
2 ∓

√7

2
[𝑑† ⊗ 𝑑̃]𝐾

2        (21) 

Bu operatörler komütasyon ile kapanır ve U(3) alt cebirini oluşturur. 

B) Yukarıda verilen operatörlerden ilkini sileriz. Geri kalan 8 operatör SU(3) grubunun 

kuvvet taşıyıcılarıdır. 

C) Zincir 1’de olduğu gibi 3 operatör 𝐺𝐾
1(𝑑𝑑), O(3) alt cebirini oluşturur. 

D) Zincir 1’de olduğu gibi 𝐺0
1(𝑑𝑑) operatörü O(2) alt cebirini oluşturur. 

Dolayısıyla, ikinci bir olası alt cebir zinciri: 

U(6)⸧ U(3)⸧ SU(3)⸧ O(3)⸧ O(2) 

Görüldüğü gibi, dört kutuplu kuvvet taşıyıcısında çift işaret vardır. Bu işaretler, iki ayrı 

durumla cebirin kapanmasına izin verir. İki durum da matematiksel olarak eşdeğer 

olmasına rağmen, her farklı işaret uygulamalarda farklı bir fiziksel anlama gelmektedir. 

Aslında daha sonra göreceğimiz gibi SU(3) simetrisi (Schaaser et al. 1984), kalıcı 

olarak deforme olan çekirdekleri tarif eder. Eksi işareti prolate deformasyonu (puro 

gibi) belirtmek için kullanılmıştır. pozitif işaret oblate deformasyonu (pankek gibi) 

gösterir. 



12 
 

 

2.1.6 Üçüncü zincir yapısı 

 

A) 15 operatör içermektedir. Operatörler komütasyon altında kapanarak O(6)'nın alt 

cebirini verir. O(6) 6 boyutlu ortogonal gruptur. 

 𝐺𝐾
1(𝑑𝑑) = [𝑑† ⊗ 𝑑̃]𝐾

1  

 𝐺𝐾
3(𝑑𝑑) = [𝑑† ⊗ 𝑑̃]𝐾

3  

 𝐺𝐾
2(𝑑𝑠) + 𝐺𝐾

2(𝑠𝑑) = [𝑑† ⊗ 𝑠̃ + 𝑠† ⊗ 𝑑̃]𝐾
2  

B) Yukarıda verilen operatörlerden son 5'i silinirse, kalan 10 operatör O(5) alt cebirini 

oluşturur. 

C) Önceki iki zincirde olduğu gibi, 𝐺𝐾
1(𝑑𝑑) operatörü O(3) alt cebirini oluşturur. 

D) Önceki iki zincirde olduğu gibi, 𝐺0
1(𝑑𝑑) operatörü, O(2) alt cebirini oluşturur. 

Böylece, üçüncü bir olası zincir aşağıdaki gibi olacaktır. 

U(6)⸧ O(6)⸧ O(5)⸧ O(3)⸧ O(2) 

Gruplar serbest şekilde doğdu. Onları zincirlere koyduk (S. Pittel). 

Bunların, bu problem için elde edebileceğimiz tek olası zincirler olduğunu söylemek 

mümkündür.  

(Eğer O3'ün zincirde bulunması gerektiğinde ısrar edilirse bu gereksinim, açısal 

momentum L'nin iyi bir kuantum sayısı olmasını talep etmekle eşdeğerdir). 

 

2.1.7 Yörüngelerin sınıflandırılması 

 

Bir grup zinciri belirlendikten sonra, ilk önemli uygulama Hamiltoniyenin 

köşegenleştirilebilmesi için bir temel oluşturmaktır. Bunu yapabilmek için zincirde 

görünen grubun, indirgenemez temsillerini karakterize eden bantları bilmek gerekir. 

Ayrıca, bir G alt grubunun düzensizliklerini karakterize eden kuantum sayılarının hangi 



13 
 

değerlerinin daha büyük G grubunun düzensizliklerini karakterize eden kuantum 

sayılarının belirli değerleri için izin verildiğini bilmek gerekir (Bes 1959). 

Örneğin; 3 boyutlu uzayda iyi bilinen rotasyon grubunu düşünün, O(3). İndirgenemez 

temsiller açısal momentum ve L değerleri ile karakterizedir. Bu grubun, z ekseni 

etrafındaki dönüşlere karşılık gelen bir O(2) alt grubuna sahip olduğu bilinmektedir. Bu 

alt grubun indirgenemez temsillerinin açısal momentum, M'nin z bileşeni ile karakterize 

olduğu bilinmektedir. Bu nedenle grup O(3)⸧O(2) zincirindeki durumlar, |𝐿𝑀〉 

sınıflandırma şeması ile karakterize edilir. Belirli bir açısal momentum değeri için L, 

M'nin izin verilen değerlerinin 𝑀 = −𝐿,−𝐿 + 1,… ,+𝐿 olduğu iyi bilinmektedir. 

Daha önce açıklanan üç grup zinciri durumunda durum daha karmaşıktır. Çeşitli 

grupların indirgenemez temsillerini karakterize eden kuantum sayılarını ve daha büyük 

grubun(ikincisi building up süreci olarak bilinir) belirli bir indirgenemez temsilinde 

bulunan bir alt grubun indirgenemez temsillerini bulabilen genel prosedür eklerde 

bulunabilir. Burada sadece tartışmanın sürdürülmesinde gerekli olan nihai sonuçlar 

verilecektir. Özdeş bozonlar sistemi ile uğraştığımız gerçeği, aşağıda görüldüğü gibi 

bazı basitleştirmelere neden olmaktadır (Bonatsos 1988). 

 

2.1.8 Birinci zincir yapısı 

 

A) Genel olarak U(6) indirgenemez temsilleri altı ayrı kuantum sayısı ile ifade edilir. 

Daha sonra karşılık gelen Young tabloları [𝑓1, 𝑓2, … , 𝑓6] olarak belirtilir. Fakat 

mevcut durumda özdeş bozonlar sistemi ile uğraşıldığı için sadece en simetrik 

düzensizlikler meydana gelebilir. Böylece U(6) indirgenemez temsilleri sadece bir 

kuantum sayısı, toplam bozon N sayısı ile etiketlenir ve [N] ile gösterilir. 

B) Genel olarak U(5) indirgenemez temsilleri beş kuantum sayısı ile ifade edilir. 

Mevcut durumda Bose istatistiklerinin bir sonucu olarak, sadece bir kuantum sayısı 

gereklidir. Böylece U(5) indirgenemez temsilleri kuantum sayısı d-bozonu, 𝑛𝑑 ile ifade 

edilir. Belirli bir N değeri için izin verilen 𝑛𝑑 değerleri  𝑛𝑑 = 0,1, … ,𝑁 şeklindedir 

(Bonatsos 1988). 
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C) Genel olarak O(5) indirgenemez temsilleri iki kuantum numarası ile ifade edilir. 

Bose istatistikleri nedeniyle, burada yalnızca bir kuantum numarası olması gerekir. 

Dolayısıyla O(5) indirgenemez temsilleri taban durum olarak adlandırılan ve sıfır açısal 

momentuma sahip, bozon çiftlerinin sayısı olarak tanımlanan kuantum sayısı 𝑣 ile ifade 

edilir. 

𝑣 = 𝑛𝑑 , 𝑛𝑑 − 2,… ,1 veya 0    ; 𝑛𝑑 = çift veya tek 

D) O(3) indirgenemez temsilleri L açısal momentum kuantum sayısı ile ifade edilir. 

Ancak O(5)'ten O(3)'e giderken ek bir problem ortaya çıkar. Yani verilen O(5) temsili 𝑣 

'sinde L değerine sahip birden fazla durumun yer alması bir problem ortaya çıkarır. Bu 

meydana geldiğinde, O(5) ile O(3) arasındaki adımın tamamen ayrıştırılamadığını ve 

durumları karakterize etmek için ek bir kuantum sayısına ihtiyaç duyulduğunu söyler. 

Bu kuantum sayısının belirlenmesi ve değerlerin bulunması grup teorisindeki en zor 

problemlerden biridir. Sonuç olarak bu özel durumda, 𝑛𝛥 tarafından belirtilen ekstra 

kuantum sayısı, sıfır açısal momentuma bağlı olmayan bozon üçlülerinin sayısı olarak 

seçilir. U(5)'in her indirgenemez temsiller 𝑛𝑑 'sinde bulunan L değerleri aşağıdaki 

algoritma ile verilir. İlk olarak, 𝑛𝑑 aşağıdaki ifadeyle verilir (Bonatsos 1988). 

 

 𝑛𝑑 = 2𝑛𝛽 + 3𝑛𝛥 + 𝜆              (22) 

 𝑛𝛽 =
𝑛𝑑−𝑣

2
               (23) 

 𝑛𝛽0,1, … ,
𝑛𝑑

2
  veya 

𝑛𝑑−1

2
             (24) 

 𝐿 = 𝜆, 𝜆 + 1, 𝜆 + 2,… ,2𝜆 − 2,2𝜆            (25) 

2𝜆 − 1 değeri yasaklıdır. Hesaplamada 2𝜆 − 1 değeri alınmaz.  

E) O(2) indirgenemez temsilleri, açısal momentumun z bileşeni, M tarafından ifade 

edilir. Verilen bir L değeri için izin verilen M değerlerinin olduğu bilinmektedir. 

 – 𝐿 ≤ 𝑀 ≤ 𝐿 

Dolayısıyla zincir 1 için tam sınıflandırma şeması aşağıdaki gibi olacaktır. 

 |[𝑁](𝑛𝑑)𝑣𝑛𝛥𝐿𝑀 >              (26) 
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Örneğin 𝑛𝑑 = 6 olacak şekilde işlem yaparsak 

Dört ayrı durum için işlem yapmamız gerekir (Bonatsos 1988). 

A)𝑣 = 6, için  𝑛𝑑 = 2𝑛𝛽 + 3𝑛𝛥 + 𝜆’ye göre işlem yaparsak 𝑛𝛽 = 0 olur. 

 6 = 0 + 3𝑛𝛥 + 𝜆 

B) 𝑣 = 4, için  𝑛𝑑 = 2𝑛𝛽 + 3𝑛𝛥 + 𝜆’ye göre işlem yaparsak 𝑛𝛽 = 1 olur. 

 6 = 2 + 3𝑛𝛥 + 𝜆 

C) 𝑣 = 2, için  𝑛𝑑 = 2𝑛𝛽 + 3𝑛𝛥 + 𝜆’ye göre işlem yaparsak 𝑛𝛽 = 2 olur. 

 6 = 4 + 3𝑛𝛥 + 𝜆 

D) ) 𝑣 = 0, için  𝑛𝑑 = 2𝑛𝛽 + 3𝑛𝛥 + 𝜆’ye göre işlem yaparsak 𝑛𝛽 = 3 olur. 

 6 = 6 + 3𝑛𝛥 + 𝜆 

A) 6 = 0 + 3𝑛𝛥 + 𝜆 için 3 ayrı 𝑛𝛥 değeri yazılabilir. 𝑛𝛥 = 0,1,2 değerlerini alabilir. 

𝑛𝛥 = 0 için 𝜆 = 6 olur.  L değerini 𝐿 = 𝜆, 𝜆 + 1, 𝜆 + 2,… ,2𝜆 − 2,2𝜆  üzerinden 

hesapladığımızda  L=6,7,8,9,10,12 değerlerini alabilir. L=11 değeri 2𝐿 + 1’e denk 

geldiği için alınmaz. 2𝐿 + 1 değeri yasaklıdır. 

𝑛𝛥 = 1 için 𝜆 = 3 olur.  L değerini 𝐿 = 𝜆, 𝜆 + 1, 𝜆 + 2,… ,2𝜆 − 2,2𝜆  üzerinden 

hesapladığımızda  L=3,4,6 değerlerini alabilir. L=5 değeri 2𝐿 + 1’e denk geldiği için 

alınmaz. 2𝐿 + 1 değerinin yasaklı olduğunu bir üst hesaplamada da söylemiştik. 

𝑛𝛥 = 2 için 𝜆 = 0 olur.  L değerini 𝐿 = 𝜆, 𝜆 + 1, 𝜆 + 2,… ,2𝜆 − 2,2𝜆  üzerinden 

hesapladığımızda  L=0 değerini alabilir.  

B) 4 = 3𝑛𝛥 + 𝜆 için2 ayrı 𝑛𝛥 değeri yazılabilir. 𝑛𝛥 = 0,1, değerlerini alabilir. 

𝑛𝛥 = 0 için 𝜆 = 4 olur.  L değerini 𝐿 = 𝜆, 𝜆 + 1, 𝜆 + 2,… ,2𝜆 − 2,2𝜆  üzerinden 

hesapladığımızda  L=4,5,6,8 değerlerini alabilir. 

𝑛𝛥 = 1 için 𝜆 = 1 olur.  L değerini 𝐿 = 𝜆, 𝜆 + 1, 𝜆 + 2,… ,2𝜆 − 2,2𝜆  üzerinden 

hesapladığımızda  L=2 değerini alabilir (Bonatsos 1988). 

C) 2 = 3𝑛𝛥 + 𝜆 için bir tane 𝑛𝛥 değeri yazılabilir. 𝑛𝛥 = 0 değerini alabilir. 
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𝑛𝛥 = 0 için 𝜆 = 2 olur.  L değerini 𝐿 = 𝜆, 𝜆 + 1, 𝜆 + 2,… ,2𝜆 − 2,2𝜆  üzerinden 

hesapladığımızda  L=2,4 değerlerini alabilir. 

D) 0 = 3𝑛𝛥 + 𝜆 için bir tane 𝑛𝛥 değeri yazılabilir. 𝑛𝛥 = 0 değerini alabilir. L=0 değerini 

alabilir (Bonatsos 1988). 

 

2.1.9 Dinamik simetri 

 

Bu bölgedeki ilgili grup zinciri U(6)⸧ SU(3)⸧ O(3)⸧ O(2) 

Dinamik simetri; en genel Hamiltoniyendeki 𝜖′′′, 𝛼′, 𝛽′ ve 𝜂′ nin yok olmasına karşılık 

gelir. Hamiltoniyenin durumu ise aşağıdaki gibi olur 

𝐻′′ = δ′𝐶2𝑆𝑈(3) + 𝛾′𝐶2𝑂(3)              (27) 

𝐻′′ beklenen değerini veren ifade ise |[𝑁](𝜆, 𝜇)𝑥𝐿𝑀 >           (28) 

Denklemidir (Arima et al. 1976). 

 

Şekil 2.1 N=6 için tipik SU(3) spektrumu. Parantez içindeki ifade kuantum numaraları 

(𝜆, 𝜇)(𝐼𝑎𝑐ℎ𝑒𝑙𝑙𝑜 1979) 
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Şekil 2.2 𝐺𝑑64
156  için deneysel veriler ve SU(3) bölgesinde EBM-1 Hamiltoniyeni ile 

hesaplanmış teorik sonuçlar (Iachello 1979) 

 

 

𝐻′′ = δ′ 6

9
[𝜆2 + 𝜇2 + 𝜆𝜇 + 3(𝜆 + 𝜇)] + 𝛾′2𝐿(𝐿 + 1)          (29) 

Herhangi bir doğrusal 𝐶2𝑆𝑈(3)  𝑣𝑒 𝐶2𝑂(3) kombinasyonu denklem üretmek için 

kullanılabilir.  

EBM’de geçiş bölgeleri ise üç dinamik simetri yapısını limit olarak belirlemiştir. Fakat 

bazı çekirdeklerde, saf simetri yapılarına sahip olduklarını gösteren deneysel kanıtlar 

bulunmaktadır. Gerçek hesaplamalarsa bu limitlerin dışına çıkmayı ve bu limitlerden 

birbirine geçişin olabileceğini göstermektedir. Bu iç limit ile beraber O(6) → SU(3), 

U(5) → SU(3) ve U(5) → O(6) geçiş bölgeleri EBM Casten Üçgeni adı verilen şemayla 

anlatılmaktadır (Ginocchio et al. 1980). 
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Şekil 2.3 Üç simetri limitini ve geçiş bölgelerini gösteren EBM Casten Üçgeni (Casten 

2006). 

 

 

Şekil 2.4 Harmonik Osilatör, Deforme  -Soft Rotor ve Rotor Yapılarını Üreten 

Potansiyel Enerji Yüzeyleri (Fortunato et al. 2003). 

 

2.2 Kolektif Model 

 

Düşük enerji seviyesinde Çift-çift çekirdekler karakteristik band yapıları sergiler. Teorik 

olarak bandlar, belirli değerdeki kuantum sayılarıyla, enerji seviyelerinin tayininde 

kullanılır. İsimlendirilirken banttaki en düşük enerjili bant dikkate alınır. İlk elde edilen 
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değer 01
+olarak ifade edilir. Bu değer taban durum bandı olarak isimlendirilir. Birinci 

değer oluşu sağ alt indis ile ifade edilir. İkinci 02
+ değeri ise 𝛽-bandının başlangıç 

değeridir. İkinci 0+ değeri olduğu yine sağ alt indisten anlaşılacaktır. 23
+ değeri ise 𝛾-

bandının ilk değeridir. Kolektif Model çerçevesinde, bu bantlar nükleer yüzeyin titreşim 

ve dönme hareketi ile ilişkilendirilerek anlatılır. Deforme olmuş nükleer yüzey, polar 

koordinatlarda aşağıdaki şekildedir (Casten 2006). 

𝑅(𝜃, 𝜑, 𝑡 ) = 𝑅0 ∑𝛼𝜆,𝜇
∗

𝜆,𝜇

𝜇(𝑡)𝑌𝜆,𝜇(𝜃, 𝜑)                                                                                (30) 

𝑅0 çekirdeğin denge durumu küresel olduğu durumdaki yarıçapıdır. 𝑌𝜆,𝜇(𝜃, 𝜑) ise 

küresel harmonik fonksiyonlardır. Zamana bağlı 𝛼𝜆,𝜇
∗  değeri çekirdeğin titreşimi anlatır, 

kolektif koordinat olarak görev yapar. Eğer 𝛼𝜆,𝜇
∗  değeri küçükse, deformasyondan 

kaynaklanan potansiyel enerji ve kinetik enerji sırasıyla aşağıdaki gibidir (Ciftci et al. 

2005). 

𝑉 =
1

2
∑𝐶𝜆

𝜆,𝜇

|𝛼𝜆,𝜇|
2
                                                                                                                 (31) 

              

𝑇 =
1

2
∑𝐵𝜆

𝜆,𝜇

|𝛼𝜆,𝜇|
2
                                                                                                                 (32) 

 

𝐶𝜆 ve𝐵𝜆 nükleer maddenin yapısı dikkate alınarak belirlenir. Bu şekilde bir sistem için 

Hamiltoniyen 

𝐻 = 𝑉 + 𝑇 = ∑
1

2𝐵𝜆
𝐵𝜆

𝜆,𝜇

|𝜋𝜆,𝜇|
2
+

𝐶𝜆

2
|𝛼𝜆,𝜇|

2
                                                                    (33) 

𝜋𝜆,𝜇 konjuge momentumdur. Yüzey titreşimleri; 

 𝜔𝜆 = √
𝐶𝜆

𝐵𝜆
             (34) 

frekanslı harmonik osilatör sistemidir. 

𝜋𝜆,𝜇 =
𝜕𝑇

𝜕𝛼̇𝜆,𝜇
= 𝐵𝜆𝛼𝜆,𝜇

∗                                                                                                             (35) 



20 
 

Farklı mertebelerdeki çok kutuplu deformasyonlar incelendiğinde düşük enerji düzeyin 

için en önemli durumun 𝜆 = 2 olduğu görülmüştür. Çünkü 𝜆 = 0 monopol modu için  

𝑌0,0 sabittir. Nükleer maddenin sıkıştırılması yüksek bir enerji gerektirdiği için bu 

monopol dezenformasyon düşük enerji sistemi için önemsizdir. 𝜆 = 1 dipol durumu 

deformasyonu arttırmaktan ziyade, kütle merkezinin yer değiştirmesiyle ilişkilidir. 𝜆 =

3 oktupol deformasyonunu negatif pariteli bant yapısına karşılık gelir, çif-çift 

çekirdekler için uygun değildir ve şekli asimetriktir. 𝜆 = 4 hekzadekapol deformasyonu 

nükleer yapı için önemli olabilecek yüksek dereceli multipol deformasyon olmasına 

karşın deneysel olarak bu durumu açıklayan bir spektrum gözlenmemiştir (Iachello et al. 

1987). 

 𝜆 = 2 kuadrupol deformasyon için nükleer yüzey 

𝑅(𝜃, 𝜑, 𝑡) = 𝑅0 ∑𝛼2𝜇

𝜇

𝜇(𝑡)𝑌2𝜇(𝜃, 𝜑)                                                                                  (36) 

 𝑅(𝜃, 𝜑) yarıçapı reel olduğundan 𝛼𝜆,𝜇 = (−1)𝜇𝛼𝜆,−𝜇
∗  olması gerekir. 𝛼 katsayılarının   

küçük değerlerinde genel  kuadrupol deformasyon, uzayda rastgele yönelim sergileyen 

elipsoidi temsil eder. (𝜃, 𝜑) doğrultusundaki birim vektörün kartezyen koordinatlarda 

bileşenlerinin uzunluğu 

𝑥 = 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑,           𝑦 = 𝑠𝑖𝑛𝜃, 𝑠𝑖𝑛𝜑,       𝑧 = 𝑐𝑜𝑠𝜃,           𝑥2 + 𝑦2 + 𝑧2 = 1         (37) 

Şeklindedir. Bu bileşenlerin cinsinden küresel harmonikler, 

 𝑌2,∓1. (𝜃,𝜑) = ∓√
15

8𝜋
𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝑒∓𝑖𝜑 = ∓√

15

8𝜋
(𝑥𝑧 ∓ 𝑖𝑦𝑧)          (38) 

 𝑌2,0 (𝜃,𝜑) = ∓√
5

16𝜋
3𝑐𝑜𝑠2𝜃 − 1 = ∓√

5

16𝜋
(2𝑧2 − 𝑥2 − 𝑦2)        (39) 

 𝑌2,∓2 (𝜃,𝜑) = ∓√
15

32𝜋
𝑠𝑖𝑛2𝜃𝑒∓2𝑖𝜑 = ∓√

5

16𝜋
(𝑥2 − 𝑦2 ± 2𝑖𝑥𝑦)       (40) 

Bulunur ve yarıçap yeniden yazılırsa, küresel deformasyon parametreleri Kartezyen 

deformasyon bileşenleri türünden aşağıdaki gibi bulunur (Flügge 1994). 

 

𝑅(𝑥, 𝑦, 𝑧) = 𝑅0(1 + 𝛼𝑥𝑥𝑥
2 + 2𝛼𝑥𝑦𝑥𝑦 + 𝛼𝑦𝑦𝑦

2 + 2𝛼𝑦𝑧𝑦𝑧 + 𝛼𝑧𝑧𝑧
2+2𝛼𝑧𝑥𝑧𝑥     (41) 
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 𝛼2±1 = √
8𝜋

15
(𝛼𝑥𝑧 ± 𝑖𝛼𝑦𝑧)            (42) 

 𝛼20 = √
8𝜋

90
(2𝛼𝑧𝑧 − 𝛼𝑥𝑥 − 𝛼𝑦𝑦)           (43) 

 𝛼2∓2 = √
8𝜋

60
(𝛼𝑥𝑥 − 𝛼𝑦𝑦 ± 2𝑖𝛼𝑥𝑦)           (44) 

Çekirdeğin şekli ve uzaydaki yöneliminin tam olarak belirlenebilmesi için, yukarıdaki 

ifadeler çekirdeğin temel eksen koordinat sistemi S’de yazılırsa, Kartezyen 

deformasyon tensörü diogonal olur. Bu yüzden 𝛼𝑥𝑦
′ = 𝛼𝑦𝑧

′ = 𝛼𝑧𝑥
′ = 0 olacaktır ( Cejnar 

et al. 2010). 

 𝛼2±1
′ = 0              (45) 

 𝛼20
′ = √

8𝜋

90
(2𝛼𝑧𝑧

′ − 𝛼𝑥𝑥
′ − 𝛼𝑦𝑦

′ ) = 𝛼0           (46) 

 𝛼2∓2
′ = √

8𝜋

60
(𝛼𝑥𝑥

′ − 𝛼𝑦𝑦
′ = 𝛼2            (47) 

𝛼20
′  parametresi 𝑧′ ekseninin 𝑥′ ve 𝑦′-eksenlerine göre uzamasını belirtir. 𝛼2∓2

′  

parametresi  𝑥′ ve 𝑦′-eksenleri arasındaki uzunluk farkını gösterir. Temel eksenler 

sistemi 𝑆′’nün laboratuar sistemi S’ye göre yönelimi Euler açıları (𝜃, 𝜑, 𝜓) açıları ile 

verilir (Cejnar et al. 2010). 

Bohr ve Mottelson 𝛼0 ve 𝛼2  parametrelerini farklı bir biçimde tanımlamıştır. Daha 

genel bir biçimde kullanmıştır. 

𝛼0 = 𝛽cos𝛾,                  𝛼2 =
1

√2
𝛽sin𝛾          (48) 

∑ |𝛼2,𝜇|
2
=𝜇 ∑ |𝛼2,𝜇

′ |
2
=𝜇 𝛽2            (49) 

Olup, 𝛽 çekirdeğin toplam deformasyonunu ölçer. Temel eksenler sisteminde küresel 

harmonikler cinsinden yarıçap aşağıdaki gibidir. 

𝑅(𝜃, 𝜑) = 𝑅0 [1 + 𝛽√
5

16𝜋
(cos𝛾(3 cos2

 𝜃 − 1) + √3sin𝛾sin2𝜃 cos 2𝜑)]               (50) 
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Elipsoidin üç-yarı ekseninde artış 𝛽 ve 𝛾 değişkenleri cinsinden 

𝛿𝑅𝑥′ = 𝑅 (
𝜋

2
, 0) − 𝑅0 = 𝑅0√

5

4𝜋
𝛽 cos (𝛾 −

2𝜋

3
)                                                              (51) 

𝛿𝑅𝑦′ = 𝑅 (
𝜋

2
,
𝜋

2
) − 𝑅0 = 𝑅0√

5

4𝜋
𝛽 cos (𝛾 +

2𝜋

3
)                                                              (52) 

𝛿𝑅𝑦′ = 𝑅(0,0) − 𝑅0 = 𝑅0√
5

4𝜋
 𝛽cos𝛾                                                                                  (53) 

Olarak bulunur. Aşağıdaki şekilden, sabit bir 𝛽 değerine karşılık, 𝛾 açısının fonksiyonu 

olarak eksenlerdeki artış miktarı açık bir şekilde görülmektedir (Wilets et al. 1956). 

 

Şekil 2.5 𝛾 parametresinin fonksiyonu olarak çekirdeğin(korun) temel yarı eksenlerinin 

değişimi 

𝛾 = 0 için elipsoid 𝑧′-ekseni boyunca diğer iki eksene göre fazla uzamıştır. Diğer iki 

eksenin değişimi eşit olduğundan böyle bir yapı eksenel simetrik prolate deforme yapı 

olarak adlandırılır. 𝛾 =
𝜋

3
 için elipsoid eksenel simetrik oblate şeklini alır ama bu kez 

simetri ekseni x olacaktır. Ara bölgede ise üç üçgenin boyları birbirinden farklıdır. 

Görülecektir ki her 
𝜋

3
 lük dilimde mümkün olan tüm deformasyonlar yer alır ( Fortunato 

et al. 2003). 
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Sistemin kinetik enerjisi, titreşim ve dönme enerjisinin toplamıdır. 

𝑇𝑡𝑖𝑡 =
1

2
𝐵(𝛽̇2 + 𝛽2𝛾̇2)                                                                                                             (54) 

𝑇𝑟𝑜𝑡 =
1

2
∑ 𝐽𝑘𝜔𝑘

2

3

𝑘=1

                                                                                                                      (55) 

𝜔𝑘  cisim- merkezli koordinat sisteminin eksenleri (𝑥′, 𝑦′, 𝑧′) etrafındaki açısal hız olup, 

eylemsizlik momentleri aşağıdaki gibidir. 

 𝐽𝑘 = 4𝐵𝛽2𝑠𝑖𝑛2 (𝛾 −
2𝜋

3
𝑘)                                                                                                   (56) 

 

2.3 Eşevreli Durum Yaklaşımı 

 

Eşevreli Durum Yaklaşımında incelenen çekirdeklerin enerji özdeğerleri, Etkileşen 

Bozon Modeli Hamiltoniyeni ile Kolektif Model parametreleri (β, γ) kullanılarak 

yazılan özfonksiyonlar sayesinde hesaplanır. Bu nedenle bu yaklaşım, EBM ile Kolektif 

model arasında köprü görevi görür. İncelenen U(5) – SU(3) bölgesi için multipol 

momentler cinsinden EBM Hamiltoniyeni aşağıdaki gibi verilir (Inci et al. 2009).  

𝐻̂ = 𝜅3𝑄̂. 𝑄̂ − 𝜅′𝐿̂. 𝐿̂ + 𝜅′′𝑃†. 𝑃̃          (57) 

Burada Q, L ve P sırasıyla kuadrupol moment, açısal momentum ve çiftlenim 

operatörleri olup s ve d bozon operatörleri cinsinden şöyle tanımlanır,                                                                                                                    

𝑄̂ = (𝑑+𝑠 + 𝑠+𝑑) + 𝜒𝑇̂2                     (58) 

𝐿̂ = √10 𝑇̂1            (59) 

𝑃̃ =
1

2
(𝑑̃. 𝑑̃ − 𝑠. 𝑠)            (60) 

𝑇̂ℓ=(𝑑†𝑑̃ )(ℓ); ℓ=0,1,2,3,4          (61) 

𝜅3 ve  𝜅′, taban durum bandı ile gamma bandı 2+enerjilerine bağlı olup    

𝜅3 =
𝐸𝛾(2+)−𝐸𝑔(2+)

3(1−2𝑁)
           (62) 
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𝜅′=−
3

8
𝜅3 −

1

6
𝐸𝛾(2

+)                       

(63) 

ifadesiyle belirlenir. 𝜅′′ise, tamamıyla serbest parametredir. Kuadrupol operatöründe 

bulunan düzen parametresi 𝜒 ise U(5) limitinde 0 ve SU(3) limitinde  −√7/4 değerini 

alır (Inci et al. 2014). 

Kapalı kabuk dışında 2N tane nükleondan yani N tane bozondan oluşan bir çift-çift 

çekirdek sisteminin taban durumu, bozon yoğunlaşması olarak adlandırılan |0> durumu 

üzerine N defa taban durum için bozon yaratma operatörü 𝑏𝑔
† uygulanarak elde edilir,  

𝑏𝑔
†(𝑎𝜇) = 𝑠†+∑ 𝑎𝜇𝜇 𝑑𝜇

†
             (64) 

N tane değerlik bozon içeren sistemin taban durumu bozon yoğunlaşması adıyla 

tanımlanır. EBM’ne göre sadece s ve d bozonları sistemde olduğu için bozon üretme 

operatörleri, bu bozonlara karşılık gelen operatörlerin ortogonal kombinasyonları ile 

verilir. Taban durumu üreten bozon operatörü aşağıdaki denklemde verilmiştir. 

𝑏𝑔
†(𝛽, 𝛾) =

1

√1+𝛽2
[𝑠† + 𝛽 cos 𝛾 𝑑0

† +
𝛽

√2
sin 𝛾 (𝑑2

†+𝑑−2
† )]         (65) 

Burada 𝛽 𝑣𝑒 𝛾, Bohr Hamiltoniyenindeki (Bohr et al. 1998) iç kolektif değişken 

anlamındadır. N tane bozondan oluşan sistemin taban durumu yukarıda tanımlanan 

bozon operatörünün N defa |0〉  ile gösterilen vakum durumuna uygulanmasıyla elde 

edilir. 

 |𝛽, 𝛾〉𝑔 = 
1

√𝑁!
(𝑏𝑔

†(𝛽, 𝛾))𝑁|0〉𝑔             (66) 

İç uyarılmalar taban durumundaki, bozon sayısının değişmesine neden olacaktır. 

Böylece durum fonksiyonundaki, taban durum operatörlerinden bir tanesi uyarılmayı 

sağlayan başka bir operatörlere yer değiştirecektir. İlk uyarılmayı sağlayan operatör 𝛽 

titreşimini üretir. Aşağıdaki operatör ilk uyarılmayı sağlayan operatördür (Caprio et al. 

2007). 

𝑏𝛽𝑣
† (𝛽, 𝛾) =

1

√1+𝛽2
[−𝛽𝑠† + cos 𝛾 𝑑0

† +
1

√2
sin 𝛾 (𝑑2

†+𝑑−2
† )]        (67) 
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𝛽 titreşim bandı durumları ise aşağıdaki denklemlerle elde edilir. 

 

|𝛽, 𝛾〉𝑔 = =  
1

√𝑁!
𝑏𝛽𝑣

† (𝛽, 𝛾) 𝑏𝑔.𝑠.
† (𝛽, 𝛾) 𝐼𝑔.𝑠.(𝛽, 𝛾)          (68) 

 |𝛽, 𝛾〉𝑔 = =  
1

√(𝑁−1)!
𝑏𝛽𝑣

† (𝛽, 𝛾)( 𝑏𝑔
†(𝛽, 𝛾))𝑁−1|0〉          (69) 

Bir sonraki uyarılma durumu ise 𝛾 titreşim bandı olup buna karşılık gelen üretici 

operatör ve sistemin durumu ve ile verilir. 

𝑏𝛾𝑣
† (𝛽, 𝛾) = [− sin 𝛾 𝑑0

† +
1

√2
cos 𝛾 (𝑑2

†+𝑑−2
† )]          (70) 

|𝛽, 𝛾〉𝛾 = =  
1

√𝑁!
𝑏𝛾𝑣

† (𝛽, 𝛾) 𝑏𝑔.𝑠.
† (𝛽, 𝛾) 𝐼𝑔(𝛽, 𝛾)          (71) 

|𝛽, 𝛾〉𝛾 = 
1

√(𝑁−1)!
𝑏𝛽𝑣

† (𝛽, 𝛾)( 𝑏𝑔
†(𝛽, 𝛾))𝑁−1|0〉          (72) 

                                                                                                                                                                                         

|𝑁; 𝑎𝜇〉
𝑔 = 𝑁𝑁(𝑏𝑔

†(𝑎𝜇))
𝑁|0〉             (73) 

Burada 𝑁𝑁 normalizasyon sabiti, 𝑎𝜇 (𝜇= -1,-2,0,1,2) beş reel değişkeni olup Bohr şekil 

parametreleriyle orantılıdır ( Bohr et al. 1998). Taban durum enerjisi ise Hamiltoniyenin 

beklenen değerinin hesaplanması ile elde edilir.  

 𝐸𝑔(𝑁, 𝑎𝜇) = 〈𝑁; 𝑎𝜇
𝑔

|𝐻̂|𝑁; 𝑎𝜇〉
𝑔            (74) 

Taban durum bandından daha yüksek enerjili bantları elde edebilmek için taban 

durumdaki bir bozon yaratma operatörü, bu operatör ile ortagonal olan başka bir 

operatör ile yer değiştirmelidir. β ve 𝛾 titreşimlerini verecek bozon yaratma operatörleri 

sırasıyla, 

𝐸𝛾(𝑁, 𝑎𝜇) = 〈𝑁; 𝑎𝜇
𝛾

|𝐻̂|𝑁; 𝑎𝜇〉
𝛾            (75) 

Beta bandının enerji ifadesi de bu şekilde tanımlanır. 

 𝐸𝛽(𝑁, 𝑎𝜇) = 〈𝑁; 𝑎𝜇
𝛽

|𝐻̂|𝑁; 𝑎𝜇〉
𝛽            (76)  
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I =
(dLx/da1)

2

d2𝐸𝑔/da1
2                                                                                                                           (77) 

                         

Burada I, çekirdeğin eylemsizlik momentidir. Aynı enerji bandında farklı açısal 

momentumlu seviyelerin enerjileri ise sırasıyla taban durumu, 𝛽 ve 𝛾 bantları için şu 

şekildedir (Davidson 1932). 

 𝐸𝑔
𝑒𝑥𝑐(𝑁, 𝐿) =

𝐿(𝐿+1)

2I
              (78) 

 𝐸𝛽
𝑒𝑥𝑐(𝑁, 𝐿) =

𝐿(𝐿+1)

2I
+ (𝐸𝛽 − 𝐸𝑔)            (79) 

 𝐸𝛾
𝑒𝑥𝑐(𝑁, 𝐿) =

𝐿(𝐿+1)

2І
+ (𝐸𝛾 − 𝐸𝑔)            (80) 

𝐼𝑔 =
−42Nn𝛽2(1+𝛽2)

𝐴.𝜅′+𝐵𝜅′′+𝐶.𝑘3
             (81) 

𝐴 = 42(1 + 𝛽2)(1 + 2(−1 + Nn)𝛽2)           (82) 

𝐵 = 7(−1 + Nn)𝛽2(−1 + 𝛽2)            (83) 

𝐶 = [28 + 2√14(−1 + Nn)𝛽𝜒 − 6√14(−1 + Nn)𝛽3𝜒 − 7𝜒2 + 2(−1 + Nn)𝛽4𝜒2 −

𝛽2(28 + 5𝜒2 + 2Nn(−28 + 𝜒2))]                                              (84) 
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3. SONUÇLAR VE TARTIŞMA 

 

Diğer bir nicelik ise her çekirdek için farklı olan bozon sayısı (N)’dir. Toplam bozon 

sayısı, son kapalı kabuğa göre işlem yapılarak proton ve nötron sayıları toplanıp ikiye 

bölünerek bulunur. Her bir çekirdek için bulunan bozon sayısı Tablo 3.1 de N 

sütununda gösterilmiştir. Proton ve nötron sayılarının oluşturacağı bozon sayısı hesabı,  

sihirli sayılara (2,8,20,28,50,82 ve 126) yakınlık kuralına göre yapılmaktadır. Örneğin; 

𝐺𝑑64
152 ’un 64 protonu ve 88 nötronu bulunmaktadır (Bohr 1952). Başta proton ve nötron 

sayısının hangi sihirli sayıya yakın olduğu hesaplanarak işlem yapılmaktadır. 88 

nötronun en yakın olduğu sayı 82, 64 protonun ise 50 sihirli sayısıdır. Sihirli sayılar 

kapalı kabukta bulunabilecek maksimum nükleon sayılarını göstermektedir. Bozon 

sayısının hesabı ise şu şekildedir. Nötronun çekirdeğe bozon katkısı  
(88−82)

2
= 3, 

protonun çekirdeğe bozon katkısı ise  
(64−50)

2
= 7’dir. Buradan 𝐺𝑑64

152  için toplam bozon 

sayısı (N), 7+3=10  olarak bulunur. Burada her iki nükleonun bir bozona karşılık geldiği 

bir düzene göre işlem yapılmaktadır. Çekirdeğin serbest nükleonlarının (kabuk tabir 

edilen bölümün dışında kalan nükleonların) kuantum faz geçişleri üzerine etkisinin ne 

kadar fazla olduğunu göstermektedir. Tablo 3.1 Hamiltoniyen içindeki serbest 

parametreleri, bozon sayılarını ve sabitleri içermektedir. 
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Tablo 3.1 İzotopların deneysel uyarılma enerjilerini veren Hamiltoniyen parametreleri. 
  

İzotop N   𝜿𝟑 𝜿′ 𝜿′′ 

𝑁𝑑60
150  9 1.2733 -18.45 -13.8 -15.2 

𝐺𝑑64
152  10 0.8216 -13.42 -52.3 3.9 

𝑆𝑚62
152  10 1.3188 -16.91 -13.82 -23.9 

𝐷𝑦66
154  11 0.8024 -11 -51.54 7.7 

𝐺𝑑64
154  11 1.2566 -13.86 -15.3 -12 

𝑆𝑚62
154  11 1.3936 -21.56 -5.58 -19.7 

𝐷𝑦66
156  12 1.1561 -10.91 -18.87 0.9 

𝐸𝑟68
156  10 0.8235 -10.26 -53.65 51 

𝐺𝑑64
156  12 1.2742 -15.43 -9.03 5.8 

𝐷𝑦66
158  13 1.1859 -11.29 -12.24 19.4 

𝐺𝑑64
158  13 1.2629 -14.76 -7.71 13.9 

𝐸𝑟68
160  12 1.1292 -10.55 -17 23.7 

𝐺𝑑64
160  12 1.1669 -11.27 -8.31 43.8 

𝐷𝑦66
162  15 1.1342 -9.28 -9.96 47.6 

𝐸𝑟68
162  13 1.1484 10.64 -13.01 30.08 

𝐷𝑦66
164  16 1.1830 -7.38 -9.56 16.2 

𝐸𝑟68
164  14 1.1297 -9.48 -11.67 42.5 

𝑌𝑏70
166  13 1.1644 -11.06 -12.91 25.6 

𝐻𝑓72
168  12 1.1239 -10.88 -16.59 25.9 

𝑌𝑏70
168  14 1.1857 -11.05 -10.52 26.7 

 

Tablodaki  deformasyon parametresidir.  Denklem 72’nin deformasyona göre birinci 

türevinin sıfıra eşitlenmesiyle bulunur. Yani  değeri taban durum enerjisinin minimum 

yapan deformasyon parametresidir. 

Yukarıda verilen parametre setleri baz alınarak ve deneysel verilerin yardımıyla PHINT 

paket programı kullanılarak elde edilen uyarılma enerji spektrumları, veri-teori 

uyumunun daha net görülebilmesi için şekillerde en düşük enerjili beş band için 

verilmiştir. Bu şekillerde tüm enerjiler keV cinsinden olup siyah renkle gösterilen 

düzeyler teorik sonuçları, mavi ile gösterilen düzeyler ise deneysel verileri 
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belirtmektedir. Her durumun spin-paritesi, teorik düzeylerin üstünde yer almaktadır ve 

aynı spin-pariteli deneysel düzeyler, noktalı çizgilerle teorik olana bağlanmıştır. Bu 

şekiller incelendiğinde 𝑁𝑑60
150  hariç taban durum (GS-band) bandında +8 açısal 

momentumlu duruma kadar teori ile deney çok uyumludur. Durumların açısal 

momentum değeri arttıkça teorik sonuçların daha hızlı arttığı görülmektedir. Bununla 

birlikte tüm izotoplar için  -bandında tahminler oldukça iyi, taban durum bandında 

gözlenen hızlı artış bu bantta görülmemektedir.   bandında ise deneysel verilerin 

kısmen az olması, karşılaştırma yapmayı güçleştirmektedir. 

Bu şekiller dışında, diğer tüm izotoplar için hesaplanan enerji değerlerinin deneysel 

verilerle karşılaştırılması da verilmiştir.  

 

 

Şekil 3.1  𝑁𝑑60
150  için teorik (siyah) sonuçların deneysel (mavi) verilerle (derMateosian 

et al. 1950) karşılaştırılması. Enerjiler keV cinsindendir. 
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Şekil 3.2  𝐺𝑑64
156  için teorik (siyah) sonuçların deneysel (mavi) verilerle (Reich 2009) 

karşılaştırılması. Enerjiler keV cinsindendir. 

 

 

Şekil 3.3  𝐷𝑦66
158  için teorik (siyah) sonuçların deneysel (mavi) verilerle (Helmer 2004) 

karşılaştırılması. Enerjiler keV cinsindendir. 
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Şekil 3.4  𝐺𝑑64
158  için teorik (siyah) sonuçların deneysel (mavi) verilerle (Helmer 2004) 

karşılaştırılması. Enerjiler keV cinsindendir. 

 

Şekil 3.5  𝑌𝑏70
166  için teorik (siyah) sonuçların deneysel (mavi) verilerle (Baglin 2008) 

karşılaştırılması. Enerjiler keV cinsindendir. 
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Şekil 3.6 𝑌𝑏70
168  için teorik (siyah) sonuçların deneysel (mavi) verilerle (Baglin 2010) 

karşılaştırılması. Enerjiler keV cinsindendir. 
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Tablo 3.2 Taban durumu için hesaplanan teorik sonuçlar ve deneysel veriler. Enerjiler 

keV cinsindendir. (derMateosian et al. 1950, Singh 2001, Baglin 2002, Singh 2002, 

Reich 2003, Helmer 2004, Reich 2005, Reich 2007, Baglin 2008, Reich 2009, Baglin 

2010) 
 

İzotop 

𝐸(21
+) 𝐸(41

+) 𝐸(61
+) 𝐸(81

+) 𝐸(101
+) 

Teori Deney Teori Deney Teori Deney Teori Deney Teori Deney 

𝑁𝑑60
150  115 130 383 381 804 720 1379 1130 2107 1599 

𝐺𝑑64
152  343 344 1143 755 2400 1227 4114 1746 6286 2300 

𝑆𝑚62
152  117 122 389 366 818 707 1402 1125 2142 1609 

𝐷𝑦66
154  334 334 1114 747 2340 1224 4011 1748 6128 2304 

𝐺𝑑64
154  119 123 396 371 831 718 1425 1144 2177 1637 

𝑆𝑚62
154  80 82 266 267 558 543 957 903 1462 1333 

𝐷𝑦66
156  133 138 445 404 934 771 1601 1216 2446 1725 

𝐸𝑟68
156  346 344 1153 797 2422 1340 4152 1959 6344 2635 

𝐺𝑑64
156  85 90 284 288 597 585 1024 965 1565 1416 

𝐷𝑦66
158  95 99 317 317 666 638 1141 1044 1744 1521 

𝐺𝑑64
158  76 79 254 261 533 538 913 905 1395 1351 

𝐸𝑟68
160  121 126 405 390 850 766 1457 1229 2226 1761 

𝐺𝑑64
160  72 75 239 248 501 514 859 871 1313 1308 

𝐷𝑦66
162  77 81 258 266 541 548 927 921 1417 1374 

𝐸𝑟68
162  98 102 327 329 687 667 1177 1097 1799 1602 

𝐷𝑦66
164  71 73 238 242 501 501 858 844 1311 1261 

𝐸𝑟68
164  88 91 293 299 615 614 1054 1025 1610 1518 

𝑌𝑏70
166  98 102 328 330 689 668 1181 1098 1805 1606 

𝐻𝑓72
168  120 124 399 386 837 757 1435 1213 2192 1736 

𝑌𝑏70
168  84 88 281 287 591 585 1013 970 1548 1425 
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Tablo 3.3 Beta için hesaplanan teorik sonuçlar ve deneysel veriler. (keV) (derMateosian 

et al. 1950, Singh 2001, Baglin 2002, Singh 2002, Reich 2003, Helmer 2004, Reich 

2005, Reich 2007, Baglin 2008, Reich 2009, Baglin 2010) 

 
 

İzotop 
𝐸(02

+) 𝐸(22
+) 𝐸(42

+) 𝐸(62
+) 𝐸(82

+) 

Teori Deney Teori Deney Teori Deney Teori Deney Teori Deney 

𝑁𝑑60
150  735 676 850 850 1118 1138 1539 - 2113 - 

𝐺𝑑64
152  587 615 930 931 1730 1282 2987 1668 4702 2139 

𝑆𝑚62
152  684 685 801 810 1074 1023 1502 1310 2086 1667 

𝐷𝑦66
154  571 660 905 905 1685 152 2910 1658 4582 2163 

𝐺𝑑64
154  680 681 798 815 1075 1048 1511 1366 2105 1757 

𝑆𝑚62
154  1100 1100 1180 1178 1365 1371 1658 1577 2057 - 

𝐷𝑦66
156  676 675 809 829 1121 1089 1610 1438 2277 1859 

𝐸𝑟68
156  874 930 1220 1220 2027 1546 3296 - 5026 - 

𝐺𝑑64
156  1043 1049 1129 1129 1328 1298 1641 1540 2068 1849 

𝐷𝑦66
158  990 990 1086 1085 1307 1280 1656 1547 2132 - 

𝐺𝑑64
158  1183 1196 1259 1260 1437 1407 1716 1635 2096 - 

𝐸𝑟68
160  894 894 1016 1007 1299 - 1744 - 2351 - 

𝐺𝑑64
160  1380 1379 1451 1436 1618 - 1881 - 2239 - 

𝐷𝑦66
162  1376 1400 1453 1543 1634 1574 1917 1767 2303 1985 

𝐸𝑟68
162  1073 1087 1171 1171 1400 1369 1760 - 2250 - 

𝐷𝑦66
164  861 - 932 - 1099 - 1362 - 1719 - 

𝐸𝑟68
164  1226 1246 1314 1315 1519 1469 1841 1707 2280 2069 

𝑌𝑏70
166  1043 1043 1141 1144 1371 1342 1732 1608 2224 1853 

𝐻𝑓72
168  939 942 1059 1058 1338 1284 1776 - 2374 - 

𝑌𝑏70
168  1148 1154 1233 1233 1430 1391 1739 - 2162 - 
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Tablo 3.4 Gama için hesaplanan teorik sonuçlar ve deneysel veriler. (keV) 

(derMateosian et al. 1950, Singh 2001, Baglin 2002, Singh 2002, Reich 2003, Helmer 

2004, Reich 2005, Reich 2007, Baglin 2008, Reich 2009, Baglin 2010) 

 

 

İzotop 
𝐸(21

+) 𝐸(31
+) 𝐸(41

+) 𝐸(51
+) 𝐸(61

+) 

Teori Deney Teori Deney Teori Deney Teori Deney Teori Deney 

𝑁𝑑60
150  1043 1061 1158 1200 1311 1353 1503 - 1732 - 

𝐺𝑑64
152  1126 1109 1469 1434 1926 1550 2497 1861 3183 1998 

𝑆𝑚62
152  1079 1086 1195 1234 1351 1372 1546 1560 1780 1728 

𝐷𝑦66
154  1051 1027 1385 1334 1831 1443 2388 1740 3057 1885 

𝐺𝑑64
154  993 996 1112 1127 1270 1263 1468 1432 1705 1607 

𝑆𝑚62
154  1411 1440 1491 1539 1597 1665 1730 1805 1889 1946 

𝐷𝑦66
156  892 890 1025 1022 1203 1169 1426 1336 1693 1525 

𝐸𝑟68
156  986 930 1332 1243 1793 1351 2370 1663 3062 - 

𝐺𝑑64
156  1129 1154 1214 1248 1328 1355 1470 1506 1641 1643 

𝐷𝑦66
158  929 946 1024 1044 1151 1164 1309 1315 1499 1486 

𝐺𝑑64
158  1156 1187 1232 1265 1334 1358 1461 1481 1613 1623 

𝐸𝑟68
160  845 854 967 987 1332 1317 1858 1743 2546 2244 

𝐺𝑑64
160  953 988 1025 1057 1121 1148 1240 1261 1383 1392 

𝐷𝑦66
162  860 888 938 963 1041 1061 1169 1183 1324 1324 

𝐸𝑟68
162  882 900 980 1002 1111 1128 1274 1286 1471 1460 

𝐷𝑦66
164  749 761 821 828 916 916 1035 1025 1178 1155 

𝐸𝑟68
164  838 860 926 946 1043 1059 1189 1197 1365 1359 

𝑌𝑏70
166  914 932 1012 1039 1144 1163 1308 1327 1505 1482 

𝐻𝑓72
168  864 875 984 1031 1143 1216 1343 - 1582 - 

𝑌𝑏70
168  959 983 1044 1067 1156 1171 1297 1302 1466 1445 
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Tablo 3.5 Taban durum bandı için, elektrik kuadrupol geçişlerinin deneysel verilerle 

teorik sonuçların karşılaştırılması. (derMateosian et al. 1950, Singh 2001, Baglin 2002, 

Singh 2002, Reich 2003, Helmer 2004, Reich 2005, Reich 2007, Baglin 2008, Reich 

2009, Baglin 2010) 

 
 

İzoto
p 

(21
+) →( 01

+) (41
+) → (21

+) 𝐸(61
+) → (41

+) (81
+) → (61

+) (101
+) → (81

+) 𝒆𝑩 

Teori Deney Teori Deney Teori Deney Teori Deney Teori Deney  

𝑁𝑑60
150  91 115 176 175 200 212 211 236 217 - 0.85 

𝐺𝑑64
152  74 - 144 - 163 - 172 - 178 - 0.77 

𝑆𝑚62
152  92 - 180 - 203 - 214 - 221 - 0.77 

𝐷𝑦66
154  86 97 167 137 189 190~ 199 190~ 205 190~ 0.76 

𝐺𝑑64
154  111 - 216 - 244 - 258 - 266 - 0.70 

𝑆𝑚62
154  130 176 253 245 287 289 302 319 312 314 0.83 

𝐷𝑦66
156  133 149 259 261 293 200 309 289 318 366 0.78 

𝐸𝑟68
156  56 66 109 117 124 124 131 50 135 58 0.67 

𝐺𝑑64
156  136 187 264 263 299 295 315 320 325 314 0.78 

𝐷𝑦66
158  153 183 298 266 337 340 356 340 367 320 0.77 

𝐺𝑑64
158  147 196 286 289 324 - 342 330 352 340 0.75 

𝐸𝑟68
160  122 166 237 240 268 262 283 300 292 290 0.75 

𝐺𝑑64
160  198 201 385 - 436 - 460 - 474 - 0.87 

𝐷𝑦66
162  148 204 288 289 325 301 343 346 354 350 0.66 

𝐸𝑟68
162  189 191 368 - 417 - 440 - 453 - 0.86 

𝐷𝑦66
164  145 209 283 272 320 325 338 310 348 354 0.61 

𝐸𝑟68
164  132 218 257 258 291 - 307 343 317 358 0.67 

𝑌𝑏70
166  133 191 259 272 293 291 309 320 319 310 0.72 

𝐻𝑓72
168  128 154 250 244 283 285 298 350 307 370 0.77 

𝑌𝑏70
168  201 209 392 - 443 - 468 - 482 - 0.82 

 

 

Tablodaki 𝒆𝑩 etkin bozon kütlesidir. İncelenen çekirdeklerde enerjiyi minimum yapan  𝛽 

değeri, deneysel olarak verilen birinci taban durumu 21
+ uyarılma enerjisi ile daha 

yüksek olan enerji bantlarından 𝛽 bandının 02
+ durum enerjisi veya 𝛾 bandının 

23
+enerjisini en yakın şekilde doğru verebilmesi için ayarlanmıştır. Deneysel değerleri 

yakın bir biçimde tahmin edebilmek için tüm serbest parametreler hassas biçimde 

ayarlanmıştır. Tablo 1 den deformasyon parametresinin 0 ile √2 arasında olduğu 
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görülmektedir. Ayrıca 𝜅′′ parametresi pozitif değer alırsa, diğer parametrelerin değerleri 

ne olursa olsun enerji minimumu daima 0 olmaktadır. Bu parametre belli bir negatif 

değerde minimum enerjiyi sıfırda verirken, belli bir değerin ötesine geçildiğinde faz 

geçişi gözlenir ve enerji minimumu √2 değerine doğru kayar. Bu parametrenin taban 

durum enerji yüzeyine etkisi farklı 𝜅′′değerlerinde de değişmektedir. 
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