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ABSTRACT

SUPERSYMMETRIC COHERENT STATES AND SUPERQUBIT
UNITS OF QUANTUM INFORMATION

In this thesis, we study the set of maximally entangled Bell based super-coherent
states, involving both fermionic and bosonic components. By extending the supersymmet-
ric annihilation operator introduced by Aragone and Zypmann, we develop four distinct
types of supersymmetric coherent states, related to the Bell two-qubit quantum states.
These Bell super-qubit states form the basis for the Bell-based supersymmetric coherent
states, which are constructed using a displacement operator. When these states are com-
bined with separable bosonic coherent states, represented as points on the super-Bloch
sphere, the resulting structure is called Bell-based super-coherent states. The entangle-
ment between the bosonic and fermionic components is analyzed through a displacement
bosonic operator, which acts on a super-qubit reference state. For these entangled super-
coherent states, uncertainty relations are expressed by concurrence. The monotonic rela-
tionship between uncertainty and concurrence C indicates the influence of entanglement
on uncertainty relations. Then, we observe quadrature squeezing in the uncertainties of
position and momentum. Furthermore, we describe an infinite sequence of super-coherent
states, whose uncertainty relations are characterized by the ratio of two Fibonacci num-
bers.

For generalization of previous results, we introduce the generic super-qubit quan-
tum state, where the single super-particle state is defined by a complex parameter £. This
leads us to description of PK-super-qubit quantum states, which are characterized by two
unit spheres. These states form the basis for what we refer to as PK-supersymmetric co-
herent states, for which we have analyzed the entanglement properties. The pq-deformed

super-coherent states and particular case as q-deformed super-coherent states are studied.
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OZET

SUPERSIMETRIK ES UYUMLU DURUMLAR VE KUANTUM
BILGISININ SUPERKUBIT BIRIMLERI

Bu tezde, hem fermiyonik hem de bozonik bilesenleri iceren, maksimum dolanik
Bell tabanl siiper-es uyumlu durumlar kiimesini inceliyoruz. Aragone ve Zypmann tarafin-
dan tanitilan siipersimetrik yok edici operatorii genisleterek, Bell iki-kiibit kuantum du-
rumlariyla iligkili dort farkli siipersimetrik es uyumlu durum gelistiriyoruz. Bu Bell siiper-
kiibit durumlari, yer degistirme operatorii kullanilarak insa edilen Bell tabanl siiper-
simetrik es uyumlu durumlarin temelini olusturur. Bu durumlar, siiper-Bloch kiiresi iiz-
erinde noktalar olarak temsil edilen ayrik bozonik es uyumlu durumlarla birlestirildiginde,
ortaya ¢ikan yapiy1 Bell tabanli siiper-es uyumlu durumlar olarak adlandirilir.. Bozonik ve
fermiyonik bilesenler arasindaki dolaniklik, siiper-kiibit referans durumu iizerinde etkili
olan bir bozonik yer degistirme operatorii aracilifiyla analiz edilir. Bu dolanik siiper-es
uyumlu durumlar i¢in belirsizlik iligkileri concurrence C ile ifade edilir. Belirsizlik ile
concurrence arasindaki monoton iligki, dolanikligin belirsizlik iligkileri tizerindeki etk-
isini gostermektedir. Daha sonra, konum ve momentum belirsizliklerinde kuadratiir sikis-
mas1 gozlemliyoruz. Ayrica, belirsizlik iligkileri iki Fibonacci sayisinin orani ile karak-
terize edilen sonsuz bir siiper-es uyumlu durum dizisi tanimliyoruz.

Onceki sonuglar1 genellestirmek amaciyla, tek bir siiper-parcacik durumunun Kar-
magik bir parametre { ile tamimlandig1 genel bir siiper-kiibit kuantum durumu tanitiy-
oruz. Bu tamimlama, iki birim kiire ile karakterize edilen PK-siiper-kiibit kuantum du-
rumlarina yol agmaktadir. Bu durumlar, PK-siipersimetrik es uyumlu durumlar olarak
adlandirdigimiz yapilarin temelini olusturur ve bu durumlarin dolaniklik 6zelliklerini in-
celiyoruz. Son olarak, pg-deforme siiper-es uyumlu durumlar1 ve 6zel bir durum olarak

g-deforme siiper-es uyumlu durumlari ele aliyoruz.
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CHAPTER 1

INTRODUCTION

The qubit as a unit of quantum information is described by two level quantum

system, basis states of which can be represented by vectors in C2,
1 0
0) = . ) = . (1.1)
0

The qubit state is superposition of these states, which after normalization, up to global

phase, takes the standard form
0 . 0
6, ) = cos §|0> + ¢ sin Ell}, (1.2)

where angles 0 < 6§ < 7 and 0 < ¢ < 27 determine points on the unit sphere. This sphere
is called the Bloch sphere, so that there is a one-to-one correspondence between points on
Bloch sphere and qubit quantum states (Benenti et all, 2019, 100-101).

To realise qubits in quantum optics, it is necessary to have two orthogonal states
of photons. photons, which can be constructed from special quantum states of photons
called coherent states. These states were first introduced by Schrodinger (Schrodinger,
1926, 664-665) to establish a link between quantum and classical harmonic oscillators.
He constructed non-stationary states with probability densities in the form of Gaussians,
whose centres oscillate according to the classical equations of motion of harmonic os-
cillators.It has been shown that these states minimize the coordinate-momentum uncer-
tainty relations and therefore they are considered to be the quantum states that are closest
to classical states. Three different approaches to these coherent states, also known as
standard coherent states (Peremolov, 1986, 13-23) or Glauber coherent states (Glauber,
1963, 2769-2775), have been proposed. The first one is minimization of the Heinsenberg

uncertainty relation. In the second approach, they are formulated as eigenstates of the



annihilation operator. In the last one, the application of unitary displacement operator to
the vacuum state gives the coherent state. For Glauber states, these three approaches are
equivalent.

The direct use of coherent states to describe a qubit is not possible because the
Glauber coherent states are not orthogonal. As it was proposed in 1974 (Dodonov et all,
1974, 600-603), even and odd combinations of Glauber coherent states are orthogonal and
could be used to describe a qubit. These states are called the Schrondinger cat states. By
using finite superposition of coherent states with mod-n symmetry, it is also possible to
construct an arbitrary number of orthogonal states (Pashaev and Kocak, 2019, 8-9). They
can be used to describe generalizations of the qubit state as the qutrit, the ququad and the
qudit quantum states. However, it should be noted that such type of superposition is not
minimizing uncertainty relation and they represent non-classical quantum states.

Another type of orthogonal states can be produced by application of displacement
operator not only to vacuum state but also to [1),]2),|3), ..., |n) photon number states in
the Fock space. This infinite set of states is called the displaced coherent states, but these
states are not coherent states because they are not minimizing uncertainty relation. The
displaced coherent states are closely related with the so called photon-added states(P.A.C)
( (Agarwal and Tara, 1991, 492-493) and (Francis and Tame, 2020, 3-5)), described by
adding finite number of photons to the coherent state. As it is known, in contrast to co-
herent state as maximally classical states, the photon added states are non-classical states
with several specific properties as quadrature squeezing, Poisson distribution, etc. (Fran-
cis and Tame, 2020, 3-8). As non-classical states, they attract interest in applications to
quantum sensing, continuous variable quantum information processing, quantum state en-
gineering and probing fundamental properties of quantum mechanics (Francis and Tame,
2020, 5-11).

To implement transition from classical to non-classical states, the superposition
of coherent states with PAC states where studied theoretically and experimentally (see
(Zavatta et all, 2004, 660-662) and references therein). Denoting the Glauber coherent
state as |0,@) = D(@)|0), the displaced Fock state |1,a) = D(a)|1) can be represented
as such type superposition of |1, @) = a'|0, @) + @0, @). Then, the generic superposition
of the coherent state and the PAC state appears as displaced state ¢y|0, @) + c¢i|l,a) =

D(a@)(co|0) +c1|1)) of the one qubit state cy|0) + c1|1). For ¢; # 0, the state is linearly inde-



pendent of |0, @), so that if we combine the states as two component spinor of Fock states,
it becomes descriptive of entangled fermion-boson states of supersymmetric quantum os-
cillator (Pashaev and Kocak, 2025, 5-13). This allows us to study transition from classical
to nonclassical states in framework of supersymmetric quantum mechanics (Cooper et all,
2001, 7-30), and its dependence on entanglement between fermions and bosons.

The purpose of the present thesis is description of coherent states in supersym-
metric quantum mechanics and their relations with units of quantum information, which
we call as the super-qubit quantum states. By using displacement bosonic operator, the
states are generated by acting on a reference state, in addition to traditional vacuum state
[¥o) = 10),®|0);, includes superposition with the one super-particle state. This superposi-
tion is naturally called as the super-qubit state. The usual qubit state is a superposition of
|0) and [1) computational states, as eigenstates of the number operator N. Inspired from

this, we define the super-qubit state as a superposition
0 . 8 ;
6, ¢)s = cos §|O>S + sin §€l¢|1>s (1.3)

where |0)s and |1)g are super-computational basis states, as eigenstates of the super-
number operator N, which counts number of superparticles. The states are parametrized
by coordinates on the unit sphere, which we call as the super-Bloch sphere. Contribution
of superparticles to energy is the same and does not distinguish fermions from bosons, so
that the superqubits are the degenerate states, but with different level of fermion-boson
entanglement. In this thesis, we first work with superqubit state as a superposition of
separable |0)s state and maximally entangled |1)g state. For the last one we use the first
pair of Bell states in fermion-boson basis. After applying displacement operator to the
superqubit state we get the first pair of super-coherent states. The second pair of states is
generated from the second pair of fermion-boson Bell states, being not exact eigenstates
of the supernumber operator (but only in averages).

We show that the fermion-boson entanglement in super-coherent state is equal to
the one in the corresponding super-qubit reference state and does not depend on displace-
ment parameter . The entangled super-coherent states describe non-classical behavior
in non-minimal form of uncertainty relations, quadrature squeezing and sub-Poissonian

distribution. The entanglement of states is independent of time evolution and in con-



trast to Glauber coherent states, which are never orthogonal, the super-coherent states
can be orthogonal. Depending on value of concurrence, we have the full circle of the
equidistant maximally entangled states (C=1), orthogonal to the given one, and the pair
of orthogonal antipodal states for arbitrary 0 < C < 1. For C = 1, three mutually
orthogonal states, associated with equilateral triangle in complex plane are found. For
separable states with C = 0, no orthogonal states are possible. This shows that entangle-
ment of bosons with fermions is required to have orthogonality of coherent states. The
entanglement affects also uncertainty relations. The coordinate-momentum uncertainty
for supercoherent states, represented in terms of monotonically growing function of the
concurrence, allows us to relate the uncertainty with level of boson-fermion entangle-
ment. For the states along equator of the super- Bloch sphere, with C = % we find the
representation of uncertainty by ratio of two Fibonacci numbers 7Fs/F¢. Then, by using
the sequence of concurrences C, = VF,_»/F,.1, convergent to C = ¢/, we obtain the
sequence of uncertainties iF,/F,,, in the limit n — oo convergent to the Golden ratio
uncertainty 7/¢.

Similar to superposition of coherent states with PAC states, making the state non-
classical, our supercoherent states show the quadrature squeezing - when uncertainty in X
variable is lower than 1/2, by expense of increasing uncertainty in P variable, bigger than
1/2, and vice versa. This result can improve the measurement limits in SUSY quantum
oscillator and can be applied in several fields as quantum communications and quantum
sensing, quantum optics and information processing. More general super-qubit states and
corresponding super-coherent states appear if we notice that the one super-particle state
is not unique and is parametrized by complex number { (Pashaev and Kocak, 2025(3, 5-
10)). The pg-deformed super-coherent states also provide another type of supersymmetric
deformed quantum oscillator states.

Here we briefly describe existing literature in the field (list of which never could
be complete) and the differences with our paper. The supersymmetric coherent states
were studied in several papers from different points of view. In first and seminal paper
(Aragone and Zypman, 1986, 2268-2270), for simplest ( N = 1) supersymmetric gen-
eralization of the standard quantum mechanical harmonic oscillator, the supersymmetric
annihilation operator A, = [ r®a+ f ® I, entangling bosons with fermions was defined.

The super-coherent states as the eigenstates of this operator were determined by using



Fock space expansion. The difference with (Aragone and Zypman, 1986, 2271-2275)
we have in representation of supersymmetric states, by using fermion number operator
N; = diag(0, 1), which leads to opposite number of fermions in the given state. Though
both definitions are correct and a matter of preference is dictated by the goal, our choice
is motivated by standard notations in quantum computation and quantum information the-
ory (Benenti et all, 2019, 49-110), where computational qubit basis state |0) we associate
with zero fermions, while state |1) - with one fermion. The same definition is used also
in (Cooper et all, 2001, 8-20). An extension of the Fock state expansion by application
of the displacement operator, acting on different reference states as super-qubit states,
has several advantages. It allowed us to identify the reference state in paper (Aragone
and Zypman, 1986, 2272-2274) as the fermion-boson Bell state and extend the set of
super-coherent states to other Bell states. The approach, together with calculation of con-
currence and von Neumann entropy greatly simplifies much the calculations and clarifies
meaning of uncertainty relations and the entanglement property. In addition, it allows
us to find orthogonality of entangled coherent states, quadrature squeezing, Fibonacci
sequences and Golden uncertainty. One more specific is that we have four different super-
annihilation operators A, Ai, which include not only f operator, annihilating |0) state, but
also f7, annihilating |1) state. The paper Berube-Lauziere (1993) works with Ay = I; ® a,
as another super-annihilation operator, trying to formulate three equivalent definitions
of supercoherent states, similar to the Glauber states. More general forms of nonlinear
super-annihilation operator were studied in (Kornbluth and Zypman, 2013, 2-5) by Fock
space expansion. The group-theoretical approach to supercoherent states with Grassman
variables was subject of paper (Fatygaetall, 1991, 1405-1410), and (Nieto, 1991, 95-99)
proposed interpretation of the Grassman coherent state as the photino, the superpartner of
photon.

The influence of squeezing operator on uncertainty relation for SUSY oscillator
was counted in paper (Orszag and Salamo, 1988, 61-64). It was shown that unitary
displacement operator for super-coherent states could be in the form /® D(a) only, and this
is exactly the one we are using in present paper.The idea to use displacement operator for
supersymmetric construction of displaced number states was explored in (Zypman, 2015,
1019-1025), where specific form of displacement operator as the translation operator,

written in terms of AI — Ay were considered. In our paper (Pashaev and Kocak, 2025, 15-



19) we use similar idea, but with different super-displacement operator, given by direct
product with pure bosonic displacement operator .

The entanglement of bosons with fermions in SUSY, was not much explored. Fi-
nite supersymmetry transformations and highly entangled combinations of bosons and
fermions, invariant under supertranslations were worked out in (Iliyeva et all, 2004,
119-127). In (Laba and Tkachuk, 2020, 2-7), by exploring the Pauli Hamiltonian, en-
tanglement of spin variables of electron in uniform magnetic field, which exhibit SUSY
was examined. They have determined the concurrence by the mean value of spin and cal-
culated it explicitly for SUSY quantum mechanical states. The entanglement entropy in
Gaussian states, related by SUSY is subject of discussion in paper (Jonsson et all, 2021,
7-12). In paper (Motamedinasab et all, 2018, 1167-1175) an entanglement of general-
ized supercoherent states with nonlinearly extended operator A were studied by applying
the concurrence formula, given by single determinant of coefficients for two-qubit states,
where one of them is chosen as coherent state. In paper (Pashaev and Kocak, 2025,
18-22), by using the reduced density matrix approach, the concurrence formula obtained
which includes an infinite number of 2x2 determinants, covering all Fock states. In that
paper the set of Bell based supersymmetric coherent states was studied, as well as the
several applications.

The thesis is organized as follows.

In Chapter 2, we briefly review main definition and properties of Glauber coher-
ent states. The pg—deformation of coherent states and corresponding pg calculus are
described in Chapter 3. Chapter 4 is devoted to fermionic oscillator, fermionic- bosonic
oscillator and the supersymmetric harmonic oscillator.

For description of supercoherent states in Chapter 5, we use supersymmetric an-
nihilation operator, which was proposed in the first time by Aragone and Zypmann. We
called the eigenstates of this operator as the AZ-supersymmetric coherent states. Section
5.2 introduces the Supersymmetric Bloch sphere (Section 5.2.1) and uncertainty relations
for the supersymmetric Bloch sphere (Section 5.2.2). The coordinate and momentum
representation of these states are described in Section 5.3.

It turns out that supersymmetric coherent states can be seperable or entagled
fermion-boson quantum states. For description of entanglement for fermion-boson states

in Chapter 6, we introduce characteristic of fermion-boson entanglement in terms of the



concurrence, related to the linear entropy, and the Von-Neumann entropy. By using these
characteristics, we calculate entanglement of super number states in Section 6.2. Then,
the fermion-boson Bell states are constructed in Section 6.2.2. Superposition of these
states with the vacuum state in Section 6.2.3 produces the Bell based super-qubit states.
In Section 6.3, by applying displacement operator we construct the Bell-based super-
symmetric coherent states. Entanglement of these states and orthogonality properties are
subject of Section 6.4. In section 6.5., we show that during the time evolution of these
states, the entanglement of fermion-boson states is time independent. In Section 6.6, we
calculate uncertainty relations and entanglement for the Bell based super coherent states.
In Section 6.6.1, we show quadratic squeezing of coordinate and momentum uncertain-
ties. The infinite set of super coherent states, related with Fibonacci numbers and limiting
case n — oo, producing uncertainty relation with Golden ratio are subject of Section 6.6.2.

In Chapter 7, we study entanglement of PK-super-qubit quantum states and super-
coherent states. Since in supersymmetric quantum mechanics, one superparticle number
state is not unique and can be parametrized by complex number {, (Pashaev and Ko-
cak, 2025(3)) introduced the PK-supersymmetric annihilation operator (Section 7.2) for
description of corresponding super-qubit states. Application of displacement operator
to PK-superqubit states produce PK-super coherent state. Entanglement of such PK-
super coherent state is subject of Section 7.2.1 . In Section 7.3, we describe flipped PK-
superqubit states. Uncertainty relations for these states and related Fibonacci sequence
are derived in Section 7.4.

Chapter 8 is devoted to pg-deformed supersymmetric annilation operator and cor-
responding coherent states. Uncertainty relations for these states are subject of Section
8.2.

As a particular, but more explicit form of pg-deformed oscillator, in Chapter 9
we describe g-deformed supersymmetric coherent states. In Section 9.2, we discuss g-
supersymmetric annihilation operator and corresponding g—super-coherent states. Un-
certainty relations are derived in Section 9.3. The time evolution of g supersymmetric
coherent states is subject of Sections 9.4,9.5 and 9.6.

In Conclusion, we summarize our results. Details of some calculations are given

in Appendices A,B and C.



CHAPTER 2

GLAUBER COHERENT STATES

This chapter provides an overview of the definition and fundamental properties of
coherent states. For further details, we refer to (Peremolov, 1986, 7-37) and (Wolfgang,
2001, 295-311).

2.1. The Heisenberg-Weyl Algebra and Bosonic Oscillator

In quantum mechanics, the coordinate operator X and momentum operator p are
Hermitian operators. They act in the Hilbert space H and satisfy Heisenberg commutation

relations:
[&.p]=int, |%1]=[p.0]=0. 2.1)

Here I is the identity operator and 7 is Planck’s constant, and the bracket means the com-
mutator [A, B] = AB — BA. Instead of operators £ and p, another pair of operators as the

annihilation operator & and creation operator &' is defined (m = 1)

aT:wx—zp ’ &:wx+zp. 2.2)
2hw 2hw

Motivation of introducing these operators is to solve harmonic oscillator problem alge-

braically. The commutation relation for these operators follows from (2.1) and (2.2)
la.a'|=aa"-a'a =1, (2.3)

and is called the bosonic commutation relation. For two vectors |¢) and [¥) describing

the quantum states in the Hilbert space, the Hermitian inner product is denoted by (‘Y|¢).



There is a vacuum vector |0) € H defined as
al0y =0, where (0[0) =1. 2.4)

Succesive applications of creation operator to the vacuum state generates n-particle state

N
(f/l' 0y, n=012 .. (2.5)
n!

In) =

The set of vectors |n) form a basis in H, which is called the Fock space. The action of

operators on these states are given by
alny = Valn -1y & a'lny= Vn+ ln+1). (2.6)

The number operator N, defined by product of operators & and &', is Hermitian and has

eigenvalues n, as natural numbers

—

N=a'a = Nmy=nn) ,n=0,1,2..... 2.7)

The bosonic Hamiltonian H , written in terms of the annihilation and creation operators,
allows one to determine the energy spectrum of H. The Hamiltonian for the quantum
harmonic oscillator is
. . 1 ~ 1
H=hwla'a+=]=hw|N+ =],

and corresponding energy levels are quantized as
1
E, :hw(n+§), n=0,1,2....

Each eigenstate |n) has energy E,, based on integer values of n, with the ground state

energy Ey = %hw, representing the zero-point energy.



2.2. Coherent States and Complex Plane

In this section, we introduce main properties of coherent states (Peremolov, 1986,
7-37). A coherent state is the specific quantum state introduced by Schrédinger (Schrodinger,
1926, 664-665) for the quantum harmonic oscillator, which has dynamics most close to

the behaviour of classical harmonic oscillator.

Definition 2.1 The Glauber coherent state |a) is defined as eigenstate of the annihilation

operator a , with eigenvalue @ € C,

ala) = ala). (2.8)

By using the displacement operator D(a) = e“at@a(see Appendix Eqn.(C.1)), these coher-

ent states can be generated from the vacuum state(2.4).

Proposition 2.1 Coherent states are obtained by applying displacement operator D(«)

to the vacuum state:

lo) = D()|0). (2.9)

Proposition 2.2 The state @) = D(@)|0) satisfies the eigenvalue problem (2.8) for coher-

ent states.

Proof We start with the assumption that the displacement operator D(a) acting on the
vacuum state |0) gives the coherent state |@). Then, applying the annihilation operator a

to both sides of this equation gives aD(a)|0) = ala), due to the following relation

aD(a) = faD(@) = D(@)D' (@)aD(@) ‘S’ D(a) (@ + @) = D(a)a + D(@)a,  (2.10)

we obtain eigenvalue equation

dla) = ala).

10



The coherent state |@) can be written in terms of |0) in a compact form,

aal

V e|CY|2

0)

la) =

by Baker—Campbell-Hausdorff formula(See Appendix (C.9)).

Proposition 2.3 Representation of coherent states in the Fock basis is

_llalz - an
) = e 21" Y ——n,
n=0 n!

where |n) is the eigenstate of number operator (2.7).

2.2.1. Inner Product of Coherent States

Proposition 2.4 Inner product of two coherent states is equal to
(@|p) = e 212 bap,

This implies the following corollary.

Corollary 2.1 Coherent states are not orthogonal,

KB = (alB)(Bla) = el +BF=a8Bo) — el o

(2.11)

(2.12)

(2.13)

Since the exponential function is never zero, coherent states are not orthogonal. An addi-

tional characteristic for coherent states is that they form an overcomplete basis, spanning

the entire space that allows reconstruction of any arbitrary state through integration over

coherent state parameters. Mathematically, the completeness relation for a set of coherent

states |a) is given by following proposition.

11



Proposition 2.5 (Peremolov, 1986, 15) The collection of coherent states |a), where a €

C, forms an overcomplete set

1 f laXa| d*a =1, (2.14)
T Jc

where d*a = idada,, o = a) + ias.

2.2.2. Heisenberg Uncertainty Relation

Another essential property that defines coherent states is their ability to minimize
the uncertainty relation. In quantum mechanics, the Heisenberg uncertainty principle
establishes a lower bound on the product of the uncertainties (or dispersions) in position

X and momentum p: (m = l,w = 1)

ARAp >

N St

Coherent states are unique in that they achieve this bound exactly, minimizing the uncer-
tainty product. This minimum uncertainty condition is what gives coherent states their
"classical-like" behavior, as they resemble the most localized wave packets allowed by
quantum mechanics. For coherent state |@), the uncertainties in position and momentum

satisfy:
aan N
AXAp = 5 (2.15)

Thus, the condition of satisfying the minimum uncertainty relation provides alternative
definition of coherent states. In the proof of Heinsenberg uncertainty relation for the

coherent state |a), one uses definition of & and p operators in terms of & and a':

12



The expectation value of X and p operators in the coherent state |@) are

<a|a%|a>:<a|\/ﬁ(&+a*)la>: ﬁ(a+a>,
2 2

N [ __.\/ﬁ o
(alpla) = (a] z\g(a aNla) = ~iq|5 (@-a) .

Then, the variance for coordinate and momentum operators takes the form,

(Ba

(P)a

(e = (@lPe) = §<a| (a+a’) la) = g((a +a@)+1),

(e = (alp?le) = —§<a| (a-a') |y = —g (-2 -1).

Ultimately, relationships between the expectation values and variances of the position and

momentum operators in the coherent state |@) can be expressed as:

. h . b h
<£2>a = <x>(2y + E s <p2>a = <P>Czy + E

Using these results, along with the definition of uncertainty (see Eq.(B.17)), the uncer-

tainties in position and momentum for coherent states are obtained as follows:

\/(Afc)i =A%), = /(B — (D)3 = \/g ,
- o _ |h
(PPa — (D)2 = \/; -

These expressions confirm that coherent states |@) satisfy the minimum uncertainty rela-

(AP = (AP),

tion. Calculating the deviations of the coordinate and momentum operators in the coherent
state |a) reveals that these deviations are independent of the parameter @. Consequently,
the results for an arbitrary « align with those obtained when @ = 0, which corresponds to

the vacuum state:

h h
(AR)Z = (AR); = 3 (AP), = (AP)G = > (2.16)

13



2.3. Coordinate Representation of Coherent States

Coherent states in coordinate representation give non-stationary wave function of
Gaussian form, which is the generating function of Hermite Polynomials. It was shown
by Schrodinger (Schrodinger, 1926) that it provides solution of quantum harmonic os-
cillator, where position of Gaussian function oscillates according to equation of classical
harmonic oscillator. To find the coordinate representation of the coherent state, we begin

with evaluating the wave function:

lr[/a(x) = (xla) = e_%l‘llz Z a” (2.17)
n=0

ﬁ(xm),
— \/n!

where the terms (x[n) represent the position space representation of the number states,

given by

o

X

1 e

—H,(x). 2.18
/4 2n/2\/m (x) ( )

(xln) =

After substituting these expressions, we use the generating function for Hermite polyno-
mials H,(x):

X

t
Z —H(2) = e EHUx (2.19)

n=0 "’

to simplify the wave function to the Gaussian form

1 2
(xa) = e T TV (2.20)
s

The probability density for this state is

I (-} s,
a0 = —pe V0] e, 2.21)

showing a Gaussian distribution centered at “—12, where @ = @ + ia,.



CHAPTER 3

PQ-DEFORMED COHERENT STATES

This chapter is devoted to pg-calculus, which serves as the basis for generalized
coherent states for pg-deformed quantum oscillator. We start by outlining the fundamen-
tals of pg-calculus, followed by an exploration of pg-coherent states, extending traditional

coherent state concepts.
3.1. pgq calculus

The pg—calculus is the two base quantum calculus, (Arik et all, 1992, 90-94),
(Chakrabarti and Jagannathan, 1991, 711) with pg—number, defined in terms of two num-
bers p and q (Nalci and Pashaev, 2014, 75-142).

Definition 3.1 The pg-number is defined as follows

pn _ qn
(nlpg = —,

M=,y
where p # q. This expression is symmetric in p and q, so that [n],, = [n]gp.

The following addition/substraction and multiplication/division formulas for pg-numbers

are valid

[n+mlp, = p'lmlpg + q" (1], 3.1

[n—mlyg = p"l-mlpy + g "]y (3.2)

[nm]pg = [n]pg[mlpgyr = [mlpg[nlpgym, (3.3)
nj 1 1

o e

15



The pgq factorial forn = 1,2, 3, ... is defined as

[n]pg! = [1pg[2]pg--[1] g

and [0],,! = 1.

Definition 3.2 In pg-calculus, the pg-derivative of a function f(x) is defined as

D) = 1D =10 (’z;)__ q];iqx) : (3.5)

for p # g and x # 0, where D, acts on an arbitrary function f(x).

Proposition 3.1 The pg-analogue of Leibnitz formula is

D (f(0)8(x)) = Dpq f(x)8(px) + f(gx)Dpeg(x), (3.6)

Dyp(f(X)g(x)) = Dpq f(x)8(gx) + f(pX)Dpeg(x). (3.7

Definition 3.3 The (pq) -Exponential functions are defined in the following form (, Nalci
and Pashaev, 2014, 107-110)

SR

€= ) = ) T (3.8)
n=0 prq:
= 1 n(n—1

B =Ep) = ) om0 (3.9)
n=0 Pq:

Convergency region for these functions depend on values of p and q. These functions

satisfy following pg—difference equations

Dygepg(x) = €pg(x),  DpyEpy(x) = Epy(pgx).

16



The pg—calculus for particular choice of p and q can be reduced to several important
cases of quantum or g—calculus. We transit through non-symmetrical and symmetrical
g-calculus approaches, and eventually arrive with the Fibonacci calculus and the Tamm-
Dankoff calculus. In the first case, by choosing p = 1 we obtain non-symmetric g-

calculus,

1=ag"

[n], = 1_?, (3.10)
<) = 149 = )
Pal 0= =

In the limit ¢ — 1, we get [n],-; = n. For the symmetrical g-calculus, by setting p = [—11,

we establish a symmetric quantum calculus,

n —n

9 —4

[n],1 = [nlz = =y (3.11)
y flgx) = flg”'%)
D, f(x) = Dif(x) = AV
C (q—q)x
Next, if we set p = “2‘/5 =gpandg = I_T‘B = ¢ =~ as the Golden and the Silver ratio,
which are the roots of equation
=g+l
we have pg numbers as Fibonacci numbers(The Binet formula)
¢ = (=)
[nl, 1 = ——F*— =F,, (3.12)
¢ ()0 + =

and pq derivative as Golden derivative

flex) = fle'x) _ flpx) = fl=¢™'x)
(p—¢)x e+ Hx

D f(x) =

17



As a final reduction, when we take limit p — ¢, the pg—number becomes

n_ . n +e) =gt
[y = lim 2L =y 4+~

= nqn_l, (313)
r—q p—dg -0 €

and corresponding derivative is

This type of quantum calculus is called the Tamm-Dankoft calculus.

3.2. The pg-Quantum Harmonic Oscillator

+

For the pg- harmonic oscillator, we have creation operator a,,

annihilation op-

erator a,, and Hermitian number operator N = a*a, satisfying commutation relations:

[N, a;;q] = a;q, [N, a,,] = —ap,.. The algebraic relations between these operators are
given by following;
Apglng = Plppg = 4", (3.14)
Apgln, = qay,Apg = pV. (3.15)

Then, by using definition of pg-number operator,

+

[Ny, = a;qapq, [N + 11,y = apgay,

we have

[N + 1]pq - p[N]pq = qN,

[N + 1]pq - q[N]pq = pN’

18



and [N],, = M. The orthonormal basis in the Fock space is defined by eigenstates of
Pq P

this pg—number operator

+ \n
apq)

|n>pq = ,—[n]pq!

10)pg » (3.16)
with a,,|0),, = 0, where |0),,—vacuum state, so that

[N]pq|n>pq = [n]pq|n>pq s

and
a;qln)pq = (Jn+1n+1),,,
Apgln)pg = [2]pgln = 1) pg.
Here the pg—number is [n],, = %. Now, we can define the pg—deformed position and

momentum operators in terms of the pg-creation and annihilation operators

(a;q + dpy),

P4 2mw
mhw
P,y =i 5 (g = pg)-

The Hamiltonian of the pg-Harmonic oscillator is

2

1 w
— P 2y2 _ 7 + +
H,, = o + 2ma) X, = > (apqapq + apqapq).

19



By action on corresponding eigenstates |1,

hw hw
Hpyln)pg = 7(apqa;q + a;qapq)m)pq = 7([N]pq + [N + 1] ppln)pg
hiw

= 7([n]pq + [l’l + I]Pq)|n>l74’

we get the energy spectrum

h
E, = f([n]pq + [0+ 1),

where n = 0, 1,2, ... Consequently, the energy levels are not equally spaced for general

values of p and ¢, but the ground state energy remains the same as %‘” We can express

+

pq- operators a,, ,

a,, in terms of bosonic operators a and a™,

[N + 1] [NV
a,, = a Ny - a’, (3.17)

[IN+1] [[N]
apy = Tl”a:a N”‘]. (3.18)

The commutation relation between a;;q and a,, 18

+7 + + _
[al’q’apq] = ApgQpg = Apgpg = [N+ 1]pg = [Nlpg-

It can be demonstrated that the same set of eigenvectors |n), spans the Hilbert space for
both, the standard harmonic oscillator and the pg—deformed one. In order to establish the

link between the vacuum state |0) and pg—vacuum state |0),,, we apply (3.18) as

[N +1]
Apgl0)pg = \/ Tlpq al0)p, = 0.

This gives that a|0),, = 0. From another side , if a|0),, = 0, it implies a,,|0),, = 0.

Therefore, the vacuum state |0) for ordinary oscillator is exactly the same as for pg—

20



deformed oscillator vacuum state [0) = [0),.
To compare n-particle states for both oscillators, we apply (a,,)" to the vacuum

state |0),, and use relation

v [INF1L) L [N+l A
(a,)" = (a ~i1 ]—(a)\/ Rk (3.19)

so that

s L e [N Rl N N .
(@)'10)pg = (a>\/ [N]pq?q N+ e = @ )'10),

It implies that
|n>pq = |n).
The eigenstates of both, the standard and the pg-deformed harmonic oscillators are iden-

tical, though their energy eigenvalues differ. In the case of the standard oscillator, the

energy eigenvalues are determined by natural number n,

but for deformed oscillator, they are provided by the corresponding equations related to
pg-number [n],,,

h
E, = %([n]pq +[n+ 11,0).

3.2.1. Non-symmetrical g-Oscillator

For non-symmetrical g—calculus, the following algebraic relations are valid

a,a, —a,a, = q", (3.20)

a,a, —qaza, =1, (3.21)

21



where a, and a, are annihilation and creation operators of non-symmetric g—calculus.

The definition of non-symmetrical g— number operator

aja, =[Nl aga; =[N +1],

gives

[N + l]q _Q[N]q =1,

[N + 1], - [N], = ¢".

In this case, the Fock space basis [n), 1s defined by

_ (@))o),

ny, T

and operators act on the basis as following

[N]q|n>q = [n]q|n>q s

agln)q = /[n+1],n+1),,

aql”)q = [n]qln - 1>q
The energy levels for the corresponding eigenstates |n), are

h
E, = f([n]q +[n+11,)

wheren =0,1,2, ..

22



3.2.2. Symmetrical g-Oscillator

In symmetric g—calculus, the algebraic relations take following form

+ + _ N
aqaq - qaqaq =q ,

+ -1_+ _ N
aqaq—q aqaq—q .

Using the definition of symmetric g-number operator
a;;ag = [N]q, agag = [N + l]q
gives

[N+1];—q[Nl; =g 7",

[N +1];—q '[N]; = 4.

The basis in the Fock space is defined by

(@})'10y;
)y = ——,
[n]5!

and the action of the operators on the basis gives

[N]glnyg = [nlzln)z

aqfln)q = /[n+1]3n + 1)5,

aqll’l)q = [n]qll’l - 1)51
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The eigenvalues of the energy are written in symmetrical g-basis as
E, = T%w([n]q +[n+1]p),

wheren =0,1,2, ..

3.2.3. Fibonacci Oscillator

For Fibonacci calculus, algebraic relations have the following form

W
ardp — papap = (—;) , (3.22)

1
aray + —ayar = ¢". (3.23)
2

Fibonacci g—number operator satisfies

W
[N + 1] — ¢[N]r = (—;) )

1—1
[N+ 1]F + (; [N]F = SON,

where ajar = [N]r, aray =[N + 1]¢. The basis in the Fock space is written by

(az)"

VIn]r!

10)r,

In)r =

and actions on |n) give

[N]rln)r = [nlrln)r,
aplnyr = \[n+ 1pln + Dp,
arlnyr = V[’l]F|n - D).

24



3.3. The pg-Coherent states

Definition 3.4 The pg-coherent states are defined as eigenstates of operator a,,

Apgla) g = ala)pg, (3.24)

taking the form |a),, = Z

nOV

Proposition 3.2 Inner product of two pg-coherent states |a),, and |B) ,, is

|n>pq (without normalization).

paBla)pg = e}fg’

where e, is defined by Eq.(3.8) and

palal@)py = elal

Definition 3.5 The normalized pq-coherent states are

\—1/2 ]
(ell?/ql) |a>pq = epq2 Z |a/n|n>l7(] = |0’ a/>pq-

Definition 3.6 The action of the pg—derivative operator (3.5) to the state ;’)pq , we de-

note as

n—1

@ 1 & [nlye ‘a'>
— = - — ) =) . (3.25)
,1>pq A Z /[n]pqun—l " pq 1 .

n=1

a
pPq

For particular values 4 = 1 and A = pqg, we have respectively

a >
Pq Pq

ng |a>pq = |a >pq 9 DQ

pq>m
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Proposition 3.3 Action of the pq creation and annihilation operators, a,, and a,,;, on

L) state
| Z >pq

S

pPq

a Q’,
..
z pq A pPq

B a/'oz>
pq ala pq’

> = AD gq
pq

~|Q

Qpq

~|R
~~——

can be represented by following operators

a, — aD°, (3.26)
(0%
—4 3.27
dpg = 2 (3.27)

Proof Action of a;;q to the state

(e8]

a" - a"
- a = _ 1 1
n:EO 7 [n]pq!apqlmpq n:EO PN T An+ Ipgln + 1),

~|R
—_——
bS]
<
|

=) n

(04
- ZO A \In+ 1],

[n+ 140+ 1),

after changing summation index gives

a [n]pqan—l © [n]pqa,n—l a
a’ —> = — )y =4 ) ————|n),, = AD? —>
M1l Zl P IR Z gt A
or by using (3.25),
a 04 CZ/
al —> = AD¢ —> = /l'—> . (3.28)
b A q = 1 rq A prq
Eqn.(3.27) is evident from definition of the pg—coherent states (3.24) . |
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Proposition 3.4 Action of a,,, operator on “7> state gives
pq

a

a,, _ (0%
Pq _> - /leq

/lpq

) -t )
A pq Pl pq A Pq

or

T = AT
A pPq A pPq

and for the action of a,,, we have two equivalent forms

+
Clpq

’

a> B qaa'> +1pa>
/qu /l/ll’q /l/lpq’

B pa/a/> +1qa>
oAl Al al,y

Apq

Proof

states |1 4

o, 1’> S Iy o il D
Alpg o= A y/Inly! 1 AT 1!
= [ = 1],4[n] 00" >

Z pql’*lpq 1) pg

= ! Vinlp!
o ")
/l(Da )2 ( a_ Pq ) ,

which we can express as

n+ 1),

(3.29)

(3.30)

(3.31)

The relation (3.29) follows from expanding the state in terms of the number
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To establish the second result, the following approach is used from Eqn.(3.25),

’ o0

a [n] an—l

o1 A !

Qpq

n—1

S - 1)
£ IY ,—[n]pq! rq Pq

[n+1],,0"
Z Q! Wl Ypq

nO

and applying [n + 1],, = g[nl,, + p",(see Eqn.(3.1)) gives

— (gln]y, + pHa”

o
7>pq - ; Antl /[l’l]p' |n>pq

_qcvm[n]a/”1 [ pa

4 (Z Mp? o >”q) (Z( )MM " >”"]

_ qala >+1pa/>
oAlal,, alal,,

As aresult of the p & g exchange symmetry, the second form (3.31) is obtained as

Apq

In particular case 4 = pg, we have

a> aa> +la
a — _— — —_— —
"l pql pg plpaly  palq
010/> loz>
N Rt S o
q\pqipq Pqlp
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CHAPTER 4

SUPERSYMMETRIC HARMONIC OSCILLATOR

This chapter examines the fermionic oscillator and then addresses the fermion-
boson harmonic oscillator which is characterized by fermionic and bosonic states. Finally,
the supersymmetric harmonic oscillator is introduced, which interplays between fermions

and bosons within the framework of supersymmetry (Cooper et all, 2001, 7-30).
4.1. Fermionic Oscillator

The fermionic oscillator is a fundamental quantum system that describes particles
obeying Fermi-Dirac statistics, such as electrons, protons, and neutrons. Unlike bosonic
oscillator, which allows multiple particles to occupy the same quantum state, fermionic
oscillator is governed by the Pauli exclusion principle, which restricts each quantum state
to be occupied by at most one fermion. The mathematical structure for fermionic oscil-
lator is built upon the algebra of fermionic creation f' and annihilation f operators, that

satisfy anticommutation relations
A A AT ) ATl —
(£F) =77 +7F=1 {f 7] =0, {f.F] =o.
These operators can be represented by 2 X 2 matrices, given by

~ 10 1 - 00 — N 00
VS I B I B VR I
00 1 0 01
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The operator N r represents the number operator for fermions, and its eigenvalues corre-

spond to the fermionic occupation numbers 0 and 1,

The action of the fermionic operators f and ' on these states is defined by

floy=11y & fiy=0,
fy=10) & floy=0. (4.1)

This structure reflects the essential properties of fermions, where each state can be either
occupied or unoccupied, corresponding to the fermionic occupation numbers 0 and 1.

The Hamiltonian for fermionic oscillator is defined as

I h A ol h e » N ~ 1
Ay ==L -1 = SR -1 = Ay = ho, (Nf : 5),

or in the matrix representation
b, i 1\ wr|l 0]
= ('Uf I 2 - 2 _ - 2 g3,
where 7 is set to 1. The energy eigenstates are defined by the occupation numbers,

— ~ U)f
Nil0) =010) = Hyl0) = =—0),

Ngl1) =1]1) = Hf|l) = +7|1).
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providing associated energies, E( and E; for two level quantum system,

1
En:(,()f(l/l—i), I’l:(),l.

4.2. Fermion-Boson Harmonic Oscillator

The Hamiltonian A of the Fermion-Boson Harmonic Oscillator is expressed as
H = Hy+ Hy, where Hp represents the bosonic part (the usual harmonic oscillator Hamil-
tonian) and H represents the fermionic part , which includes the creation and annihilation

operators for fermions. This can be expressed as:
A — — — — WpR (. At WF M F - 1 - 1
H:IF®HB+HF®IB:7{a,a}+—[f,f]:a)3 NB+§ +wp|Nrp—=].

In the matrix form, it can be written as

o~ |Hy 0] wr[-1 0] [wpNg+eser 0
H=TroHs+Holy=| = _ [+ — [T 2 R ,
0 Hg) 2|0 1 0 wpNp + YL
or equivalently,
~TA WB—WF
— —~ W wgd'a + 0
H=Hy-Loy=|" 2 | . 4.2)
2 0 wpad’ — 52

For this composition, the number operator can be formally represented in a matrix-like

form:
-~ Ny 0
N:IF®NB+NF®IB: .
0 Np+1

b
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and its eigenstates are defined as |np, ng) = |np) ® |ng), where |ng) represents the bosonic
states and |np) represents the fermionic states. These eigenstates satisfy the eigenvalue

problems

Nglng) = nglng),

Nelnp) = nplng),

with np = 0,1,2,... for bosons and ny = 0,1 for fermions. The energy levels of the

system are given by:

— 1 1
Hlnp,ng) = [(UF (nF - E) + Wp ("B + E)] Inp,ng) = Eyp p4lne, ng),

where the energy eigenvalues are

1 1
EnF,nB = WFr (I’lp = 5) + wp (HB + E) .

The total number of particles, combining bosonic and fermionic particles in the system,

is given by
Nlng,ng) = (np + np)lnr, np),
where the eigenstates for the combined system are represented as

Ing)
0, ng) = . Hp,ng) =
[ng)

These expressions define the energy structure and state composition of the Supersymmet-

ric harmonic oscillator.
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4.3. The Supersymmetric Harmonic Oscillator

The supersymmetry implies that the frequencies of the harmonic oscillators are
equal to each other wp = wr = w for both bosonic and fermionic particles. This ensures
that the energy levels of bosonic and fermionic states are degenerate. The Hamiltonian is

then given by(h = 1)

where the supercharges Q and Q' are defined as
0=vVwasf, 0'=+wa'ef

The corresponding eigenstates become

ﬁ[0>] ] "w[lz>]’ ﬁ[ln : 1>] ] "w[ln : 1>]'

with energies E, = nw forn > 0 and Ey = 0 for n = 0. This degeneracy implies that
any arbitrary superposition of these states will also have the same energy. Therefore, the

solution to the equation H| |¥,) = E,|¥,) can be written as

¥,) = a +ﬁ , Euso=nw,
0 n—1)

where « and 3 are constants. The ground state of the system, with energy Ej = 0, is

0
) } (4.3)
0

For normalized states, the coefficients & and 8 must satisfy |a|* + |8]* = 1.

o) =
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CHAPTER 5

THE SUPERSYMMETRIC ANNIHILATION OPERATOR

In the previous section, we have introduced supersymmetric harmonic oscillator.
Thus, a natural question arises: if a supersymmetric harmonic oscillator exists, does a su-
persymmetric extension of standard coherent states exist as well? This question becomes

important due to role of supersymmetry in classification the spectra of various nucleons.

5.1. Aragone-Zypmann AZ supersymmetric annihilation operator

The first response to the question comes from the work of Aragone and Zypman.
They introduced the supersymmetric annihilation operator, as referenced in (Aragone and

Zypman, 1986, 2271-2272), associated with the vacuum state (4.3)

1

A=a@l+13® f = (5.1

a
0

D

ensuring that ;\\l‘Po) = 0. The operator satisfies the commutation relation [Zf, ﬁ] = w;f,
similar to [&, Hp] = wa for the bosonic harmonic oscillator. This operator provides a basis
for defining supersymmetric coherent states as eigenstates of this operator. Consequently,
we have

HIY,) = E,|¥,) = H(AY,)) = E,_1(A]¥,))),

demonstrating that the operator A reduces the number of quanta in the state |¥,) by one.
The AZ-supersymmetric coherent states |@), are introduced, as the eigenstates of the

supersymmetric annihilation operator A from (5.1):

Alw)az = |z, (5.2)
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which can be expressed in terms of standard (bosonic) coherent states. To solve this

equation, we expand |a),z in terms of the basis eigenstates

o)

leading to

@)z = @0l0) + > aulb) + ) calf)-
n=1 n=1

Substituting this expansion into (5.2) yields the following relations

a” 1 _
a, = — (aoa/” — cina” 1),

resulting in

where we define

Thus, we have

la)az = apla), + cila)s,

(5.3)

(5.4)

where @) = Z{la)} = 22, 11y and Ja) = Y, %In) are not normalized bosonic

vVl
coherent states. The action of & and &' on |a) and |@') gives

ala’y = |y + ala’y,

2
a'ley =la) = a'la)y = o) = 32"

35



From these relations, we obtain the inner products

(@la) = e = (ala’) = % {(ala)} = ae", (5.5)
(ala"y = %22 {(ala)} = a’e"F, (5.6)
@le’y = % {tala)} = (1 + |y, (5.7)
(@la’) = —_%22 ((ala)} = &2 + lef)e. (5.8)

It is evident from these inner products that ,(a|a), # 0, so |a@), and |@), are not orthogonal.

However, we can define a new state |a), as a linear combination of the states in (5.4)

0 = Liay + @, = |01
(S \/z b \/E s \/§ |a,> >

which is orthogonal to |a),. The states |a), and |a), are orthogonal, each with the same

norm
alay, =, (alay, = (ala) = . (5.9)

The AZ-supersymmetric coherent state can then be written as a superposition of two

orthogonal states |a), and |a);,

@) az = Yla)y, + Bla)s (5.10)

where y and 3 are complex coefficients, with

o =[]y L[ =1
b = s s = T = .
0 V2 )

The norm of this supersymmetric coherent state is then sz{a@|a)sz = (|)/|2 + |B|2)e""2.
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5.2. Uncertainty for Supersymmetric AZ-Coherent States

Equation (5.9) allows us to define the normalized orthogonal states in the follow-

ing form

|A)p = e‘%mb = ez[ ) ] (5.11)
0
a2 - ’
o2 7| aa) —la)
Ay, = e Flay, = S| © : (5.12)
V2 [ )

so that ,(A|A), = 1 = ((AJA),,, (A]A), = 0. Now, we can introduce bosonic and fermionic

eigenstates of coordinate and momentum operators

|x) 0
1), = 0)F ® [x)p = [ } . 0= 1Dr®x)p = [ ] (5.13)
0 )
and
|p) 0
P =10)r ®|p)s = . Ipr=1Dr®Ip)p = . (5.14)
0 Ip)

Since the state |A), has only bosonic component |@), the following relations are equivalent

to the usual bosonic coherent state case,

() = p(AIRIA), = V2Re(a), (5.15)

By = w(AIPIAY, = V2Im(a), (5.16)
1

(AR))p = (B — (B} = > (5.17)

) (5.18)

| =

APy = (PP — (P; =
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and it corresponds to minimal uncertainity relation
. . 1
(A%), (Ap), = X (5.19)

Similar calculations for the state |A), yield

(R), = (AIRIA), = V2Re(a), (5.20)
(P)s = (AlplA), = V2Im(a), (5.21)
(#)s = (A|R%A)s = 1 + 2(Re(@))?, (5.22)
(P7)s = (AIP*A) = 1+ 2(Im(a))’, (5.23)

so that the uncertainty relation for |[A); is
(AR), (Ap), = 1. (5.24)

Comparing the uncertainty relations (5.19) and (5.24) reveals that the state |A), is a mini-
mal uncertainty state, making it the closest to classical behavior. In contrast, |A); does not

minimize the uncertainty, indicating it is less classical than |A),.
5.2.1. Supersymmetric Bloch Sphere

We can introduce a generic normalized supersymmetric coherent state |a) 4z in the

form
laYaz = cplA)p + c5lA)s,

where the normalization condition is |c,|> + |c,]* = 1. This state can be parametrized, up
to a global phase, as

0 i . 0
cp,=CosS—, ¢;=e?sin—,
2 : 2
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leading to the expression
0 s . 0
@6, @)az = cos 51A), + ¢’ sin 714 (5.25)

where 0 < 6 < mand 0 < ¢ < 2. This parametrization allows |@)4z to be represented
by points on a unit sphere, referred to as the supersymmetric Bloch sphere (Pashaev and
Kocak, 2025, 14-18). In this framework, the bosonic state |A), maps to the north pole, and
|A), to the south pole. The probabilities of collapsing to each component state in (5.25)
are:

0 0
Py = |,(Ala; 0, $)az|* = cos? 2 P, = |(Ala; 6, pyaz|* = sin’ 5

and P, + P, = 1.

IA),
~/J: )
_____ - Ji_'ses
\ " r
S b _-"{
|A),

Figure 5.1. Supersymmetric Bloch Sphere

Figure (5.1) displays the supersymmetric Bloch sphere. Note that the state |a; 6, ¢p)az
also depends on the complex parameter @, which defines the photon number |a|? for the

|A), state.

39



5.2.2. The uncertainty relations for Supersymmetric Bloch Sphere

The Supersymmetric Bloch Sphere provides a geometric framework for repre-
senting and analyzing uncertainty in supersymmetric quantum states. By mapping the
combined bosonic and fermionic components onto the sphere’s coordinates, (6, ¢), we
can easily calculate average values and variations. Before moving to uncertainty calcu-
lations, we need to obtain the mean values of {£, p, 2, p*} in the following form for the

state(5.25),

1
(R)az = azl@: 6, Rl 0, ¢)az = V2Re(a) — 5 cosgsino,

. R I . .

(Paz = azle: 6, 8pla; 6, pyaz = V2Im(a) — 3 sin ¢ sin 6,
1 0

(a7 = 1 + 2(Re())* — 5 cos’ h V2 Re(a) cos ¢ sin 6,

1,0
(PMaz = 1 +2(Im(@))* — 5 cos g V2 Im() sin ¢ sin 6.

In the limiting case, 6§ = 0 simplifies equation (5.15) for the |A), state, while the case

0 = m yields (5.20) for the |A); state. For dispersions, we have

1 6 1
(AR, = (e — (B2, =1 - 3 cos? 371 cos” ¢ sin” 6,
1 6 1
(AP):y = (PPYses — (PYoy = 1 — 3 cos’ 571 sin® ¢ sin” 6.

The uncertainty relation for the AZ—supersymmetric coherent states can then be expressed

as

1 6 6 o .0
(A, (BN, = 5 (1 #sin' 5+ 2sin S + sin® 2¢ sin' 5 cos* 5), (5.26)

or equivalently,

1 7 7 0 0
(A (AP = \/ (1 #sin' 2+ 2sin® 2 + sin® 26 sin' 5 cos* E)' (5.27)
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This relation is bounded between % and 1, corresponding to the values for the states |A),
and |A),

1

E < (A-)%)scs (Aﬁ)scs < 1 ’
for & = 0 and 6 = m, respectively. For a given 6, small oscillations in the angle ¢ can be

observed, as illustrated in Fig. (5.2).

AxAp

1.0

0.8 |

0.6 |-

04l

0.2

0 v 1 2
— 6=0 B=11/4 6=11/3 B=11/2

T S R ]
4 5 6

w |

— 0=211/3 —— 6=311/4 — O0=57/6 == O=TT

Figure 5.2. Uncertainity relation for supersymmetric coherent states on Bloch sphere

5.3. Coordinate and Momentum Representation for the

Supersymmetric AZ-Coherent States

Now, we can find coordinate and momentum representation of AZ-supersymmetric
coherent states. The coordinate X and momentum p operators for bosons are defined in

usual form as

1 w .
f=—=@+a), p=i 7@ -,
V2w 2

with corresponding eigenstates given by

Xlx) = x|x) & plp) = plp).
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To proceed, we use the representation for the supersymmetric bosonic state |A),, which is

written as

[N

lof2 e

Ay =€ =e

N\

D

n=0 n!

® |n).

This form allows us to compute the position and momentum wave functions by projecting
|A);, onto the position and momentum eigenstates and we use the position and momentum

states in the bosonic representation, which is given in (5.13),

105 = 00 ® [x)p = '? & Ipy=10elpys=|

Using these definitions, we can compute the coordinate wave function A,(x) as follows

ity = e Z

n=0

Expanding this expression and using the form of the harmonic oscillator eigenstates in the

position representation, we get

WA = 6#2 N (5.28)

M"‘N

(2 I’l x @ 2
lo e )= 1 6_7676_()6_%).

1
= e‘TZ m H,(x
—4 ! T4 o2\ ml/4

Thus, we obtain the coordinate wave function

1 2 = - :
M) = Ay = e F et 1)
/4

42



In a Similar way, we calculate the momentum wave function A,(p) as

W2 e @
WplAY, = e 7 (pln) (5.29)
2
e @ (=) eTT o2 P —(pﬂi)z
= 2 = 2 o2 V2
e ; \/ﬁﬂ'l/zt 2n/2\/_l n( ) 71_1/46 eze

and this can be written as
1 o2 2 o 2
Ap) = o(plAYy = e FeE ]

These wave functions allow us to derive the probability distributions for position and

momentum, similar to those found in a standard harmonic oscillator

1 2
xlA 2 L e—(x—\/iRe(a)) ,
|p(x[A )] _\/%
1 2
(PN = ——e (- V2Im@) (5.30)

R

This result indicates that the probability distributions for AZ-supersymmetric coherent
states follow Gaussian forms in both position and momentum spaces, with peaks centered
around the real and imaginary parts of «, respectively. The state |A), is composed of both
bosonic and fermionic components, which distinguishes it from purely bosonic states.
Then, we can introduce coordinate representations for the bosonic and fermionic parts,
defining them as eigenstates of the coordinate operator X and represent the bosonic and

fermionic coordinate eigenstates as

X} = 10)F ® |X)p = l)(? s Xy =1Dr®lx)p = (5.31)

X))

These eigenstates, |x), for the bosonic part and |x), for the fermionic part, allow us to
calculate the wave functions of the state |A) by taking inner products with these respective

coordinate eigenstates. First, let us calculate the wave function for the bosonic component
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of the state |[A),. This is done by projecting |A), onto the bosonic coordinate eigenstate

|x), as

2 1 alay — o)
(xAy, = T — 0 (5.32)
v ‘ \/5( i )[ |ar) ]

_laf? _lef?

= % (&(xloz) — (xlo/)) = eﬂl—/:e_(x_‘[/%) e%( V2 Re(a) - x).

We can also express this as

_le
e 2

71-1/4

oxlA), = e 8) % (VEIRe(@) - x).

Next, we calculate the wave function for the fermionic component of |A); by projecting

onto the fermionic coordinate eigenstate |x) s,

Gy, = % (o <|) la) = la') (5.33)
f s = — X .
V2 )
_lef? _lef? 2
e 2 e —(x—2 2
= <x| > = ( ‘&) e 2.
V2 24
Thus, we have the fermionic wave function
_l 2
iy, = -2l 5.34
HxlA), = \/§n1/4€ er. (5.34)

These wave functions allow us to compute the probability distributions for the bosonic
and fermionic components of the |A), state. The corresponding probability distributions
are as follows. For the fermionic component of |A); , the probability distribution is given

by
1 2
A ; 2_ _ - —(x—\ﬁRe(a)) ) 5.35
| {xIADs| 2\/%6 (5.35)
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For the bosonic component of |A), , the probability distribution takes the form
1 2
[p{xlA) 2 = —=e (= V2R@) (¢ — V2 Re()). (5.36)
\r
Lastly, for the bosonic component of |A), , the probability distribution is

(AN = \iﬁe-@-@‘“m)z. (537)

These distributions characterize the probability densities with peaks centered at V2 Re(«),
showing where each component is most likely to be found based on the real part of a.
From these formulas, we observe that the probability distribution in (5.35) is half the value
of that in (5.37). Additionally, for (5.36), the distribution has a zero at x = V2 Re(a),
which is the center of the Gaussian distribution. This indicates that at x = V2 Re(a), the
probability in (5.36) reaches a local minimum of zero.

For the momentum representation of |A),, the momentum eigenstates are defined

as

Using these eigenstates, we find the following expressions for the components of |A), in

the momentum representation

jdi — - 2 p2
#HPlA)s C (pla) = e i) e7, (5.38)

for the fermionic component, and

_lo? _le?
2

WplAy, = & ﬁ (@pla) - (pla) = i~ i) 5 (p - Vam(@)) (539)
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for the bosonic component. The corresponding probability distributions in the momentum

representation are given by:

H(PIA)P = ﬁe‘("‘@“"))z, (5.40)
(pAYP = %e-@-@m))z(p V2 Im(@)) (5.41)

These distributions in the momentum representation have the same form as those in (5.35)

and (5.36) for the coordinate representation.

5.3.1. Coordinate and Momentum Representation for SuperBloch

states

The coordinate representation of the AZ—supersymmetric coherent states (5.25) is
defined by combining the bosonic and fermionic components. We start with the fermionic

part of the coordinate representation:
0 iv . 0
Hxla; 0, p)az = cos 5 {x[A), + € sin 3 H{xlA)s,

which can be simplified to

_la? 2
e 2 l¢ . 9 ﬁ _( {1)
e"sin—-eze

5.42
e sing (542)

Xl 0, ¢)az =
Similarly, for the bosonic component in the coordinate representation, we have

9 9
o630, P)az = cos 5 5(xIA), + ¢ sin 7 v(HA),
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which expands to

laf2

2

o .0 e
p{(Xla; 6, ¢y = S (cos — + ¢? sin =( V2 Re(a) - x))e ( \5) ) (5.43)
/4 2 2

In the momentum space, the fermionic and bosonic components similarly based on the

parameters 6 and ¢. For the fermionic component, we write

0 .0
7Pl 6, $az = cos = ((plA), + e sin 5 1(plA)s,

leading to

e 0 2 (pvis )2
¢ sin —eTe VTV (5.44)
\2ri/4 2

Hpla; 0, ¢)az =
For the bosonic component in the momentum representation, we obtain
0 i .. 0
ppla 0, $)az = cos = p(plA)y + €7 sin = p(plA),

which can be expanded as

et 0 ' 0 . 2
ol 0, @az = e (cos 3 — i€ sin S(V2Im(0) - p))e (i) (545
T
Setting @ = &\é’m, we derive the probability distributions for the state |@),., in the coordi-

nate representation as follows

e—(x—xo)2 0

| (Xl 0, p)azl® = v sin’ > (5.46)
¢~ 0 0
lp(xla; 0, $Yazl” = [COS2 — + (x — x0)*sin® =
= 2 2

—(x — x¢) sin 6 cos ¢], (5.47)

47



and in the momentum representation as

e—(P_P0)2 . 0

|(plas 0, $yazl® = vy (5.48)
e—(P—PO)Z 9 ) 0

lb(pla; 0, p)azl* = N [0082 2+ (p — po)* sin’ >

—(p — po)sinfsin @|. (5.49)

Analyzing these equations, we find that the probability distribution (5.47) reaches zero at

the point

X = X9+ \/zcot(g)cos(qbw_L ;—T),

which acts as the center of the Gaussian distribution. This implies that at this central

location, the probability attains a minimum value of zero.

— 6=0 6=r1/4 6=11/3 6=r1/2
— 0=211/3 — 6=31/4 — BO=57T1/6 === O=7T

Figure 5.3. Probability for |a; 8, ¢ = 0)4, state when V2Re(a) = 1

— 6=0 6=r1/4 6=11/3 6=r1/2
— 6=211/3 — 6=371/4 — O=571/6 = O=7T

Figure 5.4. Probability for |a; 0, ¢ = )4, state when \/ERe(cx) =1
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In Fig.(5.3) and Fig.(5.4), the zeros are moving while 6 is changing with corre-

sponding ¢ = 0 and ¢ = m, respectively. For probabiliy distribution (5.46), we can see

that there is no zero as in Fig.(5.5).

025
020
015,
010

o5

_/
-4 -2 2 4
— 6=11/4 6=r1/3 6=r1/2 — 6=2711/3
— 6=3m/4 — 6=5m/6 — 6=1

Figure 5.5. Probability for |a; 6, ¢)47 state when V2Re(a) = 1

49



CHAPTER 6

THE BELL BASED SUPER COHERENT STATES

6.1. Fermion-Boson States

Let f and f7 are fermionic annihilation and creation operators, ff + f'f = I. The
eigenstates |0), and [1); of Ny = f7f, corresponding to fermionic numbers ny = 0 and
n; = 1 we denote as the qubit basis states. Normalized linear combination of these states

determines the qubit unit of quantum information
0 0 .
6, #) = cos §|O>f + sin Ee"’bll)f,

parametrized by points on the Bloch sphere §?: 0 < § < m, 0 < ¢ < 2x. To address
fermionic and bosonic states, we first introduce the qubit-qudit state within the Hilbert
space Hy® H,. In order to obtain the Fock space corresponding to bosonic states, we take

the limit as n — oo. The qudit state is characterized by the computational basis vectors

|0),11),...,|n = 1). The general qubit-qudit state can be formulated as
n—1 n—1
W) = " cad0)r ®1K) + > cull)y ® 1K),
k=0 k=0

The state can be rewritten in two different forms. The first one

) = [0}, ® o) + 1) ® gy = Wor |
1)
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represents it in terms of the pair of one qudit states

n—1 n—1

oy = D col), ) = D cud).

k=0 k=0
In the second one,

n—1

%) = leo)r ®10) + 1) @ 1) + .. + 1) ®In— 1) = Z lon s @10)
=0

it is given by n, the one qubit states |¢;), [ = 0, ...,n — 1, defined as

Col
o) = [ ) = col0) ¢ + ¢yl 1)y
c

11

Now, we send dimension of the qudit state, n — oo, so that the space of states
H, becomes the Fock space Hj, and the computational basis of qudit states transforms
to Fock number states |k)o, = |k), kK = 0, 1,2, .... The fermionic-bosonic basis states are
formed by tensor product of fermionic (qubit) states with Fock states, |0)®|k), and |1)®|k),

k=0,1,2,... and for arbitrary state

(o)

¥ = D" coul @ Wy + ) cull)y @ [k, (6.1)
k=0

k=0

from H; ® H,, Hilbert space, we have following two representations. The first one is

) =10) @ o) + 1) @ Y1) =[ :Zoi ] (6.2)
1

where two bosonic states

oy = D cal), ) = D cud). (6.3)
k=0 k=0
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are vectors in the Fock space. Here and in some cases, where notations are clear by

meaning, we skip bosonic and fermionic indices. The second representation
%) = lpo) @ 10) + lp1) ® 1) + .. + ) @ 1) + .. = " I @ I,
n=0

is determined by infinite set of qubits |¢,), n = 0, 1,2, ..., defined as

Con
lpn) = [ ] = conl0) + c1al1). (6.4)
c

1n

6.1.1. Entanglement of Fermion-Boson States

The fermionic-bosonic state from H; ® H, is separable if [¥) = |®), ® |=),, where
|®) is the one qubit or the fermionic state, and |=);, is bosonic state from the Fock space.

If the state |¥) is not separable, then it is entangled.

Proposition 6.1 The state (6.1) is separable if and only if in representation (6.2) two Fock

states (6.3) are linearly dependent, [ry) = Al ).

If these states are linearly independent, the state (6.1) is entangled. To find the
level of entanglement for the generic pure state (6.1), we calculate the reduced density

matrices. For normalized state in (6.2) the density matrix is

lo)Wol o)yl
p=|¥XD| = ,

i Yol )<yl

and due to normalization condition, Yo o(lco|* + |c1,[*) = 1,

trp = (Yolyo) + (Wil = L. (6.5)
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For the reduced bosonic density matrix

Py =ty p = Wo)Wol + Y1)y

we obtain
trpy = Wolbo)” + Wilyn)? + 2Kl
and for the fermionic one N
pr=1rpp = Z |n)(nl
n=0
the expression is

KpulpmdP*.

M
M

trp; =
0

I
(=]
3
I

n

(6.6)

As easy to check by direct computation, it coincides with the bosonic one, so that trp; =

trpi.. The first one we rewrite in the form

trpy = (Wolbo) + Wilyn))* — 2(WolwoX Wil — (ol Y lvo))

and by taking into account the squared equation (6.5), we get

Wolvo)  Woly1)
1- trpf) =2

Wilbo) ilyr)

(6.7)

Deviation of the trace from unity gives a simplest characteristics of the level of entan-

glement. It is known as the linear entropy (Buscemi, 2007, 3-6), appearing in the linear

approximation of the von Neumann entropy. In following, for this difference we introduce

definition of the concurrence C in the determinant form, normalized as for the two qubit

states (Parlakgorur and Pashaev, 2019, 2-3).

Definition 6.1 The concurrence C of a pure fermion-boson state is defined by reduced
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density matrix py (or py) as the number

C= \/E,/l—rrp;,

satisfying
1
trpj +5C* = 1. (6.8)

From (6.8) and (6.7), we find the concurrence square as determinant of the Hermitian
inner product metric g;; = (¥;|¢/;), (the Gram determinant), of two vectors (i, j = 0,1) in

Fock space,

Wolo)  Woly1)
C’=4 ,

Wilo) Wilyr)

and for the generic quantum state (6.1),

Wolwo) (ol
C=2 |det . (6.9)

Wilko) ilyn)

Due to relation
(@ulen)  {@ulom)

trpi =1- i i ,
n=0 m=0

(@mlen)  {@mlom)

the concurrence can be represented also in another form

(@ulen)  {@ulm)

T (onlon) (Pl
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By using explicit form of the one qubit states (6.4) it can be rewritten as an infinite

sum of modulus squares of all 2 X 2 minors of the coefficient matrix c,,,,

2
Con Com

(o)

C2=4 Z

O=n<m
Cln Cim

This provides us two equivalent expressions for the concurrence.

Proposition 6.2 For generic normalized fermion-boson state (6.1) from Hilbert space

Hy ® Hy, the concurrence is equal

2

Wolwoy Wolyr) Con  Com
C=2 |det =2 Z . (6.10)

Wilgo) Wl Cin Cim

Corollary 6.1 The determinant of 2 X 2 inner product metric in Fock space can be repre-
sented by an infinite sum of modulus squares of minors of the infinite matrix from coeffi-

cients ¢y, of the state (6.1),

2

Wolvo) (oly1) || con Com

det = Z

O=n<m

Wilvo) Wnly) Cin Cim

By using the definition and above expressions for the concurrence, now we calculate

entanglement in fermion-boson system by the von Neumann entropy.

Proposition 6.3 The entanglement, as the value of the von Neumann entropy

Ef = —l‘l"(pf 1Og2pf) (611)
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forp;in (6.6) is

I+ VI-C*> 1-+VI-C? 1-+Vl-C?

E;= > 5 log, ——>——  (6.12)

0g,

1+\/1—C21
2

where the concurrence C is given by (6.10). The value of concurrence is bounded between

0<C<1L

Proof 6.1 The characteristic equation for matrix py,
/12—/l+detpf =0

has two real eigenvalues

1 1
dip = 5t \/Z — det py,

where the determinant of py can be expressed by the concurrence as

2
Con  Com
o0

1
detpy = Z = ZC

O=n<m
Cln Cim

We note that for the fermion-boson system the entanglement E is function of C

only, though the last one includes infinite sum of modulus squares of 2 X 2 minors.

6.2. Super-Number States

The supersymmetric(SUSY) harmonic oscillator is a composition of fermionic

and bosonic harmonic oscillators with equal frequencies (Cooper et all, 2001, 7-30),

H=H,+H = %{a,a""}+%[f"",f] = WN.
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Here, the super-number operator N

N 0
N:If®N+Nf®Ib: , (6.13)
0 N+1,

has eigenstates |n, ns) = |ns) ® |np), where n, = 0,1,2,... and ny = 0, 1 are eigenvalues
of bosonic and fermionuc number operators correspondingly, N|n,) = npln,), Nelng) =
n¢lng). It counts the total number of fermions and bosons n = n;, + ny in state |ny, nys).
The eigenstates |0) ® [n), and |1) ® |[n — 1) have the energy E, = nw,n > 0 and Ej; = 0,
for n = 0. This shows that fermionic and bosonic quanta have the same energy w, and the
states have the same number n of supersymmetric boson-fermion quanta (super-particles
or super-quanta). The difference between states is the number of fermions, which is zero
in the first case (pure bosonic state) and is one in the second case. Moreover, as was
noticed first time in (Aragone and Zypman, 1986, 2271-2272), an arbitrary superposition
of these two states is also state with n super-quanta, which after normalization can be

written as the super-number state

o In) 0 . 0
n,0,¢) = cos = + sin —e" . (6.14)
2l o 2 |\ m=-1

This shows that the energy levels with n super-quanta E,.o = nw are double de-
generate with arbitrary 0 < 6 < 7, 0 < ¢ < 2n. For n = 0 the state [¥o) = [0); ® [0),
is the ground state with Ey = 0. The super-number state (6.14) contains n super-quanta,
Nin,6,¢) = nin, 6, ¢), in superposition of the zero fermionic state |0); ® |[n) and the one
fermionic state |[1); ® [n — 1). For this superposition, the probabilities do not depend on n

and are equal

0 ., 0
<na 99 ¢|P0|l’l, 95 ¢> = COSZ z = Do, <l’l, 97 ¢|P1|na 97 ¢> = Sln2 5 = D1 (615)

where projection operators are Py = (|0)0]) ® I, and P; = (|]1)(1]) ® I,. This allows us

to represent the super-number state (6.14) as a state on the Bloch type sphere, which is
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natural to call as the super-Bloch sphere, where the north pole of the sphere 6 = 0, corre-
sponds to the zero fermion state and the south pole 8 = & to the one fermion state. The
states along the equator 6 = 7 are in maximally random superposition of these states. The
randomness of the state in given basis is determined by Shannon entropy, as advocated in
paper (Deutsch, 1983, 631-633) and explored for geometric probabilities and quantum
coins.

In this manner, we obtain a geometrical representation of the degeneracy of the n

super-quanta state using the super-Bloch sphere.
6.2.1. Entanglement of Super-Number States

To evaluate level of entanglement between bosons and fermions in the super-
number states (6.14), we use the reduced density matrix method. The density matrix

for the pure state (6.14) is equal

cos? £ [n)(n| cos & sin Ze™|n)(n — 1|
Pn = |n,0,0)n,0,p| =

9

cos 3 sin gei¢|n — 1){n| sin’ g n—1)n-—1|

It satisfies trp, = 1, trp? = 1. By taking partial trace of p, according to fermionic states

we get the reduced bosonic density matrix (See Appendix C.4)
., 0 , 0
Py = 1Ty p, = sin > |n—1)n— 1| + cos > |n){n|,

as an infinite dimensional matrix with only two nonzero diagonal terms, sin’ g and cos?

N[

at positions n and n + 1, correspondingly. The partial trace according to bosonic states

gives fermionic density matrix as 2 X 2 diagonal matrix

0 ., 0
pr=tryp = cos? 3 |0)¢0] + sin’ 3 [1)(1].
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For trace of the square of both reduced density matrices (See Appendix C.5), we get
trp? =trp2 =1- ! sin® 6
f b 2 :

Then, by using formula (6.8) we obtain that the reduced bosonic, as well as fermionic

state is mixed and the generic state |n, 6, ¢) is entangled with concurrence
C = sin6. (6.16)

It is bounded 0 < C < 1 and does not dependent on n. The north pole state |n,0 = 0, ¢)
(n-bosons state), and the south pole state |n,0 = &, ¢) (n-1 bosons and one fermion state)
are separable for any n, and correspond to C = (0. Contrary, the states along the equator
on super-Bloch sphere, |n, 6 = 7, ¢) with the concurrence C = 1 are maximally entangled

states. The general form of these states is

T i .
In,§,¢>—\/§(l0>®ln>+e 1) ® [n —1)). (6.17)

6.2.2. Fermion-Boson Bell States

For the case of n = 1, the maximally entangled states are

1

\/§(|0>f|1>b +e“(1)£(0,),

ILg) = |1, §,¢> =

giving the fermion-boson analog of the Bell states (¢ = 0, 7),

1

g = \/§(|O>f|1>bi|1>f|0>b)~ (6.18)
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Definition 6.2 The states with n-superparticles are defined as

,i>=L

7—2r \/i(l())fln)b £ |Dyln = 1)), (6.19)

where n = 1,2, .... For n = 1 the states become just the fermionic-bosonic Bell states |L..)

asin (6.18).

The infinite set of these states is maximally entangled, C = 1, for any positive integer n

and satisfies orthonormality conditions
(m, xln, £) = 6, m, (m,Fn,+)=0. nm=1,2,.. (6.20)

In addition to the pair of Bell states (6.18) we introduce another pair of fermionic-

bosonic Bell states

1
= —(|0)£l0), £ [1)¢[1)p). 6.21
\/i(l 2100 = 1) £|1)s) (6.21)

B.)

The four Bell states (6.18),(6.21) are orthonormal

(LilLy)y = (L-JL-) =1, (LL-)=0, (6.22)
(Bi|By) = (B_|B-)=1, (B.B-)=0, (6.23)
(B:lLs) = (B:lLz) =0, (6.24)

and represent maximally entangled complete set of basis states

\L )Ll + |LCL-| + [Bo)XBy| + |B_)(B-| = Iy ® I,

It is noticed that in contrast with |L.), the states (6.21) are not eigenstates of the
supernumber operator. In fact, states |L.) are exact eigenstates of N with one superpar-

ticle n = 1, N|L.) = |L.), while states |B.) are not the eigenstates and only the average
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number of superparticles in these states is one, (B.|N|B.) = 1(See Appendix C.1).

6.2.3. The Bell based Super-qubit States

To generate coherent states, we use the displacement operator D(«), as defined
in (6.40). If this operator is acting on the vacuum (n = 0) state, [¥p) = [0); ® |0},
annihilated by operator Ay = Iy ® a, so that, Ay|¥y) = 0, the corresponding coherent
state as the eigenstate of this operator, would be separable. Another state, annihilated
by this operator [¥';) = [1); ® |0),, is the one particle state with n = 1, and it is also
separable. Moreover, any superposition of these two, the vacuum and one particle states,
@(10) ®10);) + B(11)r ®10)5) = (a|0)s + Bl1) ) ®|0),, is separable. To create an entangled
fermionic-bosonic coherent state, instead of this, we have to choose the reference state as
the entangled state. To proceed in this direction, we first describe the maximally entangled
states (C = 1) and then take superposition of these states with the separable ones (C =
0). This way we get entangled states, depending on the concurrence parameter C and
implementing transition from separable to maximally entangled state. The natural choice
for maximally entangled states is the set of four fermionic-bosonic Bell states (6.18),
(6.21). Due to entanglement of bosons with fermions, these states are not annihilated
by pure bosonic annihilation operator A, and require a mixture of bosonic and fermionic
operators. In fact, for every Bell state we have its own annihilation operator, which in
addition to bosonic annihilation operator a includes the fermionic annihilation or creation

operators, f and f'. We define four operators

a =+1

A, = =[®azx I, (6.25)
0 a
a 0

AT = =l;@a+f I, (6.26)
+1 a
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annihilating the following Bell states (See Appendix C.2)

A(lL-)

0, A_|Ly) =0, (6.27)

AT|B.) 0, AT|B,) =0, (6.28)

and acting as quantum gates, transforming the states to each other,

Ai|B.) +|L.), A_i|B.) = F|L-), (6.29)

ATILs) = |B), AL|Ly) = |B.). (6.30)

The annihilation operator A,;, entangling bosons with fermions was first intro-
duced in (Aragone and Zypman, 1986, 2268-2270). After recognition of their super-

coherent state as one of the super-Bell states, and generalization of construction to four

T
+1°

super-Bell states, we found four specific annihilation operators A.;,A’,, corresponding
to every state.

The above supersymmetric annihilation operators include also creation operator
f%. It should be not surprising, since action of this operator on one fermion state gives
zero f'|1); = 0. This is why, the set of the annihilation operators become richer and it is
valid for any two level system or any qubit state.

The first pair of states |L.) can be generated from the vacuum state [') and vice

versa (See Appendix C.3)

1
AT W), o) = —=AulL.),

V2

1
ILi) = —
V2
and the second pair of states |B..) from the one fermion state ['¥';) by

1

1
B,y =x—(AL)Y), |¥1)=+—ALB.).
+1 1 \/§ +1
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The vacuum state is annihilated by two operators

Ail|\P0> = 0’

and it is orthogonal to the pair of Bell states |L,) and L_). By taking superposition of the

state with these Bell states we get two normalized reference states,

0,C, ¢y, = V1I-C|¥y) + VCe?|L,), (6.31)

which are annihilated by operators

A+110,C, ¢}, = 0. (6.32)

The states are parametrized by real number C, bounded between 0 < C < 1. It represents
the concurrence, calculated from formula (6.10) and showing the level of fermion-boson
entanglement in the reference state.

The parametrization allows us to give two physical interpretations of concurrence

C. In the first one, it shows probability to measure the one superparticle state |L. ) or |L_)

C =(0,C,¢|P1|0,C, ¢) = p

in the superposition (6.31) of vacuum (zero superparticle state) and |L.) (one superparticle
state). The second meaning of C is the average value of supernumber operator in the
superposition state

C =1.(0,C,¢INI0,C, ¢)...

To calculate the second pair of reference states we notice that application of f*

63



operator on the vacuum state |¥) generates one fermion state

. _ _ 0
%) = ¥1) , (6.33)
|0)

annihilated by operators

A§1|‘P1) =0
and orthogonal to the second pair of Bell states |B,) and |B_). Superposition of the state
with these Bell states gives another pair of reference states,
0,C,¢)5. = V1-C¥,)+ VCe”|B.), (6.34)
which are annihilated by operators

AL0,C, )5, = 0. (6.35)

As a result, we have constructed four, the Bell type reference states

0,C, ). = V1—-C|¥)+ VCe”|L.), (6.36)
0,C, ¢, = V1-C¥))+ VCe?B.), (6.37)

with the inner products

L, (07 C7 ¢|0’ C9 ¢>L_ = 1 - C’ B, <0’ Ca ¢|0’ Ca ¢>B_ = 1 - C

and corresponding fidelity F = (1 — C)?, expressed in terms of the concurrence C. The
reference states are characterized by real number C, bounded as 0 < C < 1, and the
angle 0 < ¢ < 2x . This is why geometrically, every state represents the point on surface

of circular cylinder with radius one and height C. Another geometrical image of these
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states is associated with the unit disk |z| < 1 in complex plane z = VCe. One more
representation is given by points on unit sphere, parametrized by two angles 0 < 6 < &

and 0 < ¢ < 2m, related to concurrence by sing = /C, cos g = vV1-C.

Definition 6.3 The reference states

0 0 ,;
0.6, @)1, = cos5[¥o) + sin Ee’qlei), (6.38)

as superposition of zero super-particle state and one super-particle state are called the
super-qubit states. Every state is represented by point on the unit sphere, which we call

the super-Bloch sphere.

The north pole of the sphere corresponds to separable vacuum state, while the south pole
to maximally entangled Bell state. Similarly to the usual qubit state, the north pole state
Vo) = |0)s is n = O superparticle state, N|0)s = 0|0)s, and the south pole state |L.) =
|1)s is n = 1 superparticle state, N|l1)s = 1|1)s. However, the state is fermion-boson
entangled and the computational basis for this super-qubit state is made from |0)g and
|1)s eigenstates of super-number operator N.

The second pair of reference states is defined as
0 .0,
0.6 ¢)s, = cos5[¥y) +sin ie"plBi), (6.39)

but basis states are not eigenstates of N operator. In next section, by applying the dis-

placement operator to these states, we generate four orthogonal super-coherent states.
6.3. The Bell based Supersymmetric Coherent States

To construct supersymmetric coherent state we follow the displacement opera-
tor approach. Specific form of displacement operator in AI — A, was explored in paper

(Zypman, 2015, 1019-1025).
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6.3.1. Displacement Operator

We introduce the bosonic displacement operator as the direct product

D(a)
0 D(a)

=1;®D(a) = I; ® ™', (6.40)

D(a) = [

satisfying unitarity condition D(a)D'(a) = I. Applying this operator to vacuum state [¥()

and the one fermion state (6.33) we get corresponding supersymmetric coherent states

D(a)|0 0,
D<a>|%>:[ @) >]:[' 0‘>], (6.41)
0 0
0 0
D(a)|¥y) = = : (6.42)
D@y | | 10,0

The commutator

D (@)AoD(@) = Ay + al - [Ag, D(@)] = aD()

applied to state |\V)

Ao(D(@)F)) = a(D(a)F)) + D(@)Aol'Y),

gives the eigenvalue problem

Ao D)) = a(D()|Y)),

if the reference state [¥') is annihilated by operator Ay: Ag|¥Y) = 0. Therefore, the coherent

states, created from reference states |'Vy) and [¥;) and their superposition |¥) = co|'Po) +
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c1|¥1) , satisfy eigenvalue problem

Ao(col0)y + a1l D) ®10, @) = a (col0)s + c1l1)p) ® 10, @), (6.43)

and are separable. To create entangled super-coherent state we have to choose different
reference state with entangled bosons and fermions. In present work we consider the set

of maximally entangled four Bell reference states (6.18), (6.21), as super-qubit states.

Definition 6.4 The Bell super-coherent states are defined as

o, L) = D(@)|L:), e, B.) = D(@)|B.). (6.44)

Proposition 6.4 The Bell super-coherent states are eigenstates of corresponding super-

symmetric annihilation operators

Al |a,’ L—> = (Yla’, L—)& A—llala L+> = alla’ L+>’ (645)

Alle,B) = ala,B.), A”\la,B,) = ala, B,). (6.46)

The states are orthonormal and maximally entangled. In explicit form the states are

expressed as

1
V2
1
V2

lor, L) (10)411, @) £ [1)£10, @)), (6.47)

|, B..) (105410, @) = [1)4[1, @), (6.48)

in terms of the displaced Fock states(See Appendix C.3)

0,0y = D()|0) = e 2 |a),

11, @)

11,2 d
D(a)|1) = e 2! (Z | — ala)).

67



Here |a) is the Glauber coherent state (not normalized).

The proof is given in Appendix C.11. The linear combination of these, maximally entan-
gled states with orthogonal separable states produces the set of four supercoherent states.

These states are created by displacement operator, acting on super-qubit reference states.

Proposition 6.5 The states (6.31) annihilated by A, and A_, operators correspondingly,

as in (6.32), determine the pair of super-coherent states

o, C, 9)1. = D(@)I0,C, @),

which are eigenstates of super annihilation operators

Aile,C,¢) =ala,C, ¢y, A_ila,C,¢)r, =ala,C,d);,

Proposition 6.6 The pair of reference states (6.34), annihilated by Eq. (6.35), gives the

pair of super-coherent states

o, C, ¢) ., = D(@)0,C, p)p,.,

which are eigenstates of operators

A{'(I, C’ ¢>B, = CZ'(I, C» ¢>B,’ Ai] |CZ, C’ ¢>B+ = a/|a, C’ ¢>BJr

Then we have following definition.
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Definition 6.5 The super-coherent states as displaced super-qubit states

o, C, ¢). = V1 =Cl0); ®0,a) + VCe’|a, L),
la, C, ¢y, = V1 = Cl0); ®10, ) + VCe|a, L),
la,C,¢)5. = V1= C|1);®0,a) + VCe|a, B_),
la, C, ¢)s, = V1 = C|1); ®|0,a) + VCe|a, B.).

We call as the super-Bell based states.

On the super-Bloch sphere these states take form

6| 10,a 6 .1 1,
|, 0,9). = cos g + sin = — el )
2o 2 V2| =
0 6,1 0
la, 0, ¢)p, = cos= + sin —e"Y— ,
2{ 10,a) 20 V2| #1,e)
or explicitly
0 | l) 6 % ) — @la)
o .
|a/’ 0’ ¢>L¢ = COS _e_T + Sin —el¢ ,
? 0 2 V2| Fe
9 \(xlz 0 9 . e‘% |a>
la,0,¢)p, = cos—e > + sin —¢ _
g @) 2 V2| Floy xalw

The states are eigenstates of super-annihilation operators

Ail |a, 9’ ¢>L¢

Ail |a/a 0, ¢>B¢

a/|a,9 95 ¢>L¢ ’

ala, 6’ (b>Bjr )

(6.49)
(6.50)
(6.51)
(6.52)

(6.53)

(6.54)
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with inner products

0
L@, 6,¢la, 6,4y, = cos’ 3 = 5.(0, 0,91, 0,8)s .

It is noted that supercoherent state |«, 6, ¢);._, for angle ¢’ = ¢ + m coincides with the one,
p g

derived early in (Aragone and Zypman, 1986, 2272-2274)).
6.4. Entanglement of Supercoherent States

In this section, we will calculate the entanglement of the supercoherent states. The
first step is to determine the concurrence for the reference states (6.36) and (6.37). Then
we show that concurrence is independent of action of the displacement operator on the
states, and as follows it is independent of @. Consequently, we find that the concurrence
of the super-qubit reference state is identical to that of the corresponding super-coherent

state.
6.4.1. Entanglement of Super-qubit States

First,we start by computing the entanglement of the superqubit states (6.38). For

these states

0 1 6 . 1 0 .
0,6, )., =10);® (cos §|O>b + —sin —€”|1), | + 1) ® — sin §€l¢|0>b

V2 2 V2

the reduced density matrices are expressed by the same form, but in fermionic [0), 1),

(two-component) and bosonic |0),, |1), (infinite component) states,

1 1 1 : .
b =p5 = (cos® g + 3 sin g)lO)(Ol + 3 sin’ §|1><1| + ﬁ sin B(e"*10)(1] + €|1){0])
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so that

1 0
trpi = trpfc =1- 3 sin* 5

Comparing with (6.8), we obtain the concurrence for the reference states (6.38)
C =sin" —. (6.55)

The result can be obtained also from general formula (6.9) by identification with reference

states (6.36), written in terms of C,
NS ! - 1 .
o) = VI=Cl0) + —=VCe¥I), 1) = +—=VCe[0)
V2 V2
so that

1 1
Wolo) =1 = EC’ Wilgr) = EC’

—_— 1 .
Wolwr1) = Wilo) = +—=+/C(1 = C)e”.

S

By calculating determinant (6.9), we obtain formula (6.55). The formula implies that on
the super-Bloch sphere the concurrence is monotonically increasing function of 6, so that
the minimal value C = 0 at the north pole (6 = 0) corresponds to separable state [\Vy),
while the maximally entangled state with C = 1 relates to the south pole (§ = 7). On
the equator (¢ = 7) concurrence of the states is equal C = % Equation (6.55) justifies
representation (6.36) of reference states by concurrence C and shows that entanglement
is independent of angle ¢.

The same results for concurrence we obtain in case of the second couple of refer-

ence states (6.37) or (6.39). Thus, we have following proposition.

Proposition 6.7 The concurrence C, 0 < C < 1, for four reference states (6.38) and
(6.39) is equal

9
C = sin’ =.
Sin 2

The states can be parametrized by this concurrence as in (6.36) and (6.37).
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The proof is given in Appendix C.12. In the following section, we demonstrate
that the same formula for concurrence applies to the supersymmetric coherent states

(6.53).
6.4.2. Entanglement for Displaced States

An arbitrary normalized state |®) from H; ® H,

1 o
@)= > > calidy @ 1),

i=0 n=0
where

1 00
DD el =1,

i=0 n=0
after application of the displacement operator D(a) becomes

1 o0 1 o
@, 0) = D@ID) = > " calidy @ D@)ny = > " culi)y @ln, ),

i=0 n=0 i=0 n=0

where |n,@) = D(a)ln) are displaced Fock states. This can be rewritten in two forms

according to following propositions.

Proposition 6.8 For an arbitrary state from Hy ® H), represented as

|D) =0} ® |o) + 1) ® 1)

by two states in Fock space

oy = > coalm), )y = D culn),
n=0 n=0
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the displaced state is

D, @) = D()|P) = [0); ® Yo, @) + 1) ® Y1, @)

where
oo oo
o, @) = Z conln, @), W, @) = Z Cialn, @),
n=0 n=0

and the displaced Fock states are |n,a) = D(a)|n). The last states satisfy orthonormality
conditions

(m, aln, @) = (mID (@)D(@)|n) = (min) = 6,

and completeness relation

> Ina)n,al = D(@) ) In)nD'(a) = D(@)D'(@) = I.

n=0 n=0

Proposition 6.9 For arbitrary state from Hy ® Hy, represented by sum of infinite number

of qubits

n=0 Cln

)= o) o = f}{ o }®|n>
n=0

the displaced state is

n=0 Cln

®) = > lg) @ In, @) = Z[ o ]®|n,a>.
n=0

As we have seen in (6.9) the concurrence of a state depends on inner products of two

bosonic states. By calculating the inner product for the displaced states

Wi, @) = D(@)li), i=0,1,

we find that it is invariant under displacement operation and independent of «,

Wi, alyj, @) = WilD (@) D@y ;) = Wil ;, ).
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This suggests that entanglement for generic state |®) and the displaced one |®,a) =

D(a)|D) is the same. Indeed, from density matrix for displaced state
p(@) = 1@, aX®, al = D(@)|PKPD (@) = D(@)pD (@)
we get reduced density matrix

Pp(@) = o, @)W, @l + 1, @)1, ] = D(@)(WoXwol + 1)y )D'(a),

so that py(@) = D(a)p,D'(@) and pi(a) = D(a)p;D'(a). By taking trace from both sides
we find 7rp; (@) = trp;. This shows that the concurrence C* = 2(1—trp;) and entanglement
for both states is the same and don’t depends on complex parameter a. Therefore, we

present following proposition.

Proposition 6.10 The concurrences (entanglement) for state |®) and the displaced state

|D, @) = D(a)|D) are equal.

Corollary 6.2 For supersymmetric coherent states |, C, ¢)1_, la, C, ¢) ., defined in (6.49)-

(6.52), the concurrence is independent of a and is equal

For these states, the concurrence C = p; coincides with the probability of transition to
maximally entangled states and represents the geometric probability, as relative area of

spherical cup on super-Bloch sphere C = Ay/A.

In Fig.(6.1), the concurrence C and the von Neumann entropy E are shown as functions
of the angle 8 on the super-Bloch sphere.
As an example, by using determinant formula (6.9) for Hermitian metric, with two

states

o, @) = V1 —C|0, ) + L \/Eei¢|1,a), Wi, ) = ii \/Eei¢|0, )
V2 V2
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Figure 6.1. Concurrence and Entanglement versus angle 6 on super-Bloch sphere

we find the same concurrence for states (6.49), (6.50). The second state is the Glauber
coherent state, while the first one is superposition of Glauber state with the one photon
added coherent state. The last one is adding non-classical property to the coherent state,
and as we can see it is responsible for entanglement between fermions and bosons in

supercoherent state.

6.4.3. Orthogonality of Super Coherent States

Here, we evaluate the inner product of two super-coherent states at the same posi-
tion on the super-Bloch sphere (6, ¢) and show that, in contrast to Glauber coherent states,

they can exhibit orthogonality. The product formulas for our displacement operators

D@)D(B) = ™ P DB)D(a) = "™ P Dia + )

give

(0,6, 91D (B)D()|0, 6, )
= M0, 6, 91D(a - P10, 6, ¢)

(8,0, ¢l, 0, ¢)

= e 'MEN0, 0, pla - B, 6, ).
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By using matrix elements (See Appendix C.9)

OD@I0) = e, (1ID@)0) = ae™2"T,

OID@)I1) = —ae (D@1} = (1 - [aP)ae 2T,

we find

sin @

22

2
LAB.0. 9\, 0, 9),, = e MV kb '2( (@-Pp)e’ —(@~Pre™) - 'Bl 2)

(See Appendix Defn.C.4). In the limiting case 8 = 0, (separable state at the north pole)

we have the usual inner product formula for bosonic coherent states
— p-tla? ~3BP Jpa
<B’O7¢|a507¢>_e 2 e 2 eﬁ7

which is never zero. For another limit 6 = &, (maximally entangled state at the south pole)

it becomes
1 _
LB, m Pla,m, ¢y, = (1 — —|a /3|2)e Slaf? ,~ 3182 SBar

In contrast with pure bosonic coherent states, in this case the states can be orthogonal.

The set of orthogonal maximally entangled states satisfies condition

o = BI* =

and belongs to the circle in complex plane with radius » = V2 around point @. Then,
every state on the circle, parametrized by 8 = @ + V2e”, 0 < t < 2x is orthogonal
to state @. From this set it is always possible to choose the pair of states §; and 8, at
distance |8; — 8] = V2 and as a result, orthogonal to each other. So, we have three
mutually orthogonal states @, 81 = & + V2™ and 8, = a + V2¢/1*3), located at vertices
of equilateral triangle.

In general case of arbitrary states @ and S, the orthogonality condition takes the
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complex form

1 0 1
—|wf?sin® = + ——=(w —w)sinf — 1 = 0,
2 2 2\/5

where w = (a — B)e™, equivalent to the pair of real equations

(w—w)sind = 0,
1 0
5|w|2s,ir125 = 1.

It has solutions for 6 = «, considered above. In addition, for arbitrary 0 < 6 < &, such that

sind # 0, and w = w is real, we have two solutions

giving in terms of concurrence C,

B Ze®
ax—p==x —e’.
C

This implies that for any state a exists two (antipodal) states 3, and _, orthogonal to the

Bi=a+ \/gew’, ﬁ_:a—\/gei"’.

These states exist for any level of entanglement 0 < C < 1 and for separable states with

state «,

C = 0 they move to infinity. For maximally entangled states with C = 1, in addition to
this pair, appears the circle of states, orthogonal to state @. Similar calculations for second
pair of states |, 6, ¢)p, give the same conditions of orthogonality.

The above result relates entanglement of super-coherent states with orthogonality,
so that to be orthogonal, the states should be necessarily entangled and non-classical.lt
should be noticed that orthogonality of super coherent states is related with orthogonality
of the displaced Fock states |n, @). The displaced Fock states were studied in many pa-
pers, and orthogonality property was emphasised in the paper (Baranov, 1991), (see also
references in that paper). The super-coherent states in (97), (98) are spinors in displaced

vacuum state |0, @) and one particle state |1, @), this is why these states are involved in
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orthogonality condition for super-coherent states. The level of involvement depends on
concurrence, this is why the set of orthogonal super-coherent states depends on boson-

fermion entanglement.

6.5. Time Evolution and Time Independence of Entanglement

The time evolution of coherent states is governed by the evolution operator, which
describes how the states evolve over time in a given quantum system. By applying the
evolution operator, we can explore how these states maintain certain properties, such as
minimal uncertainty, or how they transform under different conditions. Time dependence

of coherent states is determined by following evolution operator

eV 0 10
(l/{(t) s e—int — 4 ® e_ith.

0 e—iwt(N+l) 0 e—iwt

Proposition 6.11 The concurrence for arbitrary time dependent state |®(t)) = U(t)|D) is

independent of time C(t) = C.

Proof 6.2 For an arbitrary state (6.1), decomposed as

D) =10} ® [ho) + [1)f ® Y1),

where
oy = D coalnd, ) = ) cualn),
n=0 n=0

the time dependent state is

D) = UDID) = [0); @ Iro(D) + ™ [1) @ Iy (1),
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where (a = 0, 1),

Wa®) = e M) = )" can(®lny = D cane™ ).
n=0 n=0

By calculating the inner products of these time dependent states and using (6.9), we have

time independence of the concurrence

WoOlpo(1)y  WoOli(1))e ™

Il
[\

det
\ Wn@lpo@)e™ Wiy (1))

C()

Wolwo)  (Wolyr)e ™
= 2 ||det =C.

| Cwilwode  wilwr)

6.6. Uncertainty Relations and Entanglement on Super-Bloch Sphere

At this point, we determine the uncertainty relations for a quartet of supercoherent
states |, 6 and @), |, 0, ¢)p,. Calculations of averages for states |a, 0, ¢),, and |, 0, ¢)p,
give the same results, this is the reason we omit the index of the states. The sign difference
appearing for state |a, 6, ¢)p_ would be noticed in proper place. The coordinate and mo-
mentum operators, given in fermionic-bosonic base X = 1 f®%(a+a7'), P=1 f®%(a1'—a),

transformed by displacement operator (6.40) to

a+a

V2

a—«a

DI @XD(@) =X +1;® X+1;® V2Rea,

Z)h"(a/)PZ)(oz)zX+If®i =P+I;® V2Ima.
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The mean values of the operators in supercoherent state

o, C, ¢) = V1 = Cla, ¥o) + VCe|a, L)

reduce to the forms

(a,C, ¢ X|a, C, @) (0, C, $|D"(@)XD()|0, C, p) = V2Rea +(0,C, #1X|0, C, ¢),

(a,C, ¢|Pla, C, ¢) (0,C, | D (@) PD()|0,C, ¢) = V2Ima + (0, C, $|P|0, C, ¢),

which include the mean values in the reference super-qubit state,

0,C,¢y = V1= C 0 + VCet L & .
0 V2| <o)

For the final ones, we obtain

(0,C,¢|X|0,C,¢) = ~/C(1—C)cosg, (6.56)
(0,C,lPI0,C,¢) = +/C(I—C)sing, (6.57)

which are valid for the first three states and including sign minus in the r.h.s. for the state

la, 8, ¢)p_. The proof is given in Appendix C.13. Then, we have

(@,C, ¢l X|a,C,¢) = V2Rea + /C(1 —C)cos e, (6.58)
(@,C,¢|Pla,C,¢) = V2Ima + +/C(1 - C)sin¢. (6.59)

In Fig.(6.2), we display average X = («, C, ¢|X|a, C, ¢) and in Fig.(6.3), P = {(a, C, ¢|P|, C, $)

as functions of the concurrence C and angle ¢, where @ = (1 + i)/ V2.
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Figure 6.2. The average value X as function of C and ¢, for @ = (1 + i)/ V2 a) 3D

plot b) Contour Plot

The averages of a and a' operators are

0,C.¢|l;®al0,C. 4y = JEQ§£Q@
K“;Oa%

(0,C,¢lI; ®a'l0, C, ¢)

and

(a,C, ¢l ® ala, C, ¢)

C(1 - .
L. Jaaa,.
2
,C 1-C) _.
a+ %e_"ﬁ.

(a,C,¢ll; ® d'la, C, ¢)

For the states with vanishing average values
(@, C, ¢l X, C,¢) = 0, (@,C,¢lPle,C, ) = 0

this gives

_ /C(l—C) it
a= — ¢
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Figure 6.3. The average value P as function of C and ¢ for @ = (1 + i)/ V2: a) 3D plot
b) Contour Plot

so that |a> = C(1 — C)/2. Equations (6.58), (6.59) show that for states with C = 0 and

C = 1, the average position and momentum are the same as for the bosonic coherent

states. It deviates from classical averages, when 0 < C < 1 and the difference reaches

maximal value for C = %, corresponding to states on the equator of the super-Bloch sphere
1

|, % ¢) = \/E(Ia, ¥o) + e“la, Ly)). (6.60)

To calculate the average of X* and P?, we use

(a,C,¢ll; ® a’la, C, ¢) (0, C,¢|D" (@) ® a*D(a)|0, C, ¢)

(0,C, ¢ll; ® (a + @)*|0,C, ¢),

(@.C.oll; ®a”|a,C.¢) = (0,C,dD"(@); ®a" D(@)0,C, ) 6.61)

(0,C,¢ll; ® (@' + @)*|0,C, ¢),
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and

(0,C,¢ll; ®a'al0, C, ¢)

I
|
o

(0,C,¢lI; ® aa’l0, C, ¢)

Il
|
a
+
J—‘

so that

(@, C, 9| X?|a, C, ¢) = %[(a/ +a@)’ +2V2(a+@)+\C(1 = C)cosg + 1 + C],(6.62)
(a,C, ¢|P*a,C,p) = %[—(a — @)’ = 2V2i(@ - a@)\/C(1 = C)sing + 1 + C(6.63)

(See Appendix C.15). By calculating the dispersions, we derive the following theorem.

Theorem 6.1 Dispersions of coordinate X and momentum P in all super-coherent states

la, C, @)1, and |a, C, ¢)p, are the same and equal

(AX)2 = (XP)y — (X)? = %(1 +C) - C(1 - C)cos” ¢, (6.64)

(AP)2 = (P%), —(P)2 = %(1 +C) - C(1 - C)sin® ¢. (6.65)

They do not depend of «, (AX)i = (AX)%, and (AP)?, = (AP)S.

The proof is given in Appendix C.15. The dispersions satisfy "the Pythagoras theorem"
in the phase plane

(AX)* + (AP)* = 1 + C?

for the right triangle with sides, AX, AP and hypotenuse V1 + C?. Then, the uncertainty
relation AXAP = A is given by the area of rectangle with diagonal V1 + C?2. The sides of

the triangle are bounded between

1 1
5(1 —C+2CH < (AX) < 5(1 +0),

1 1
5(1 —C+2C*) < (AP)* < 5(1 +O).
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The uncertainty relation for the supersymmetric coherent states are found as mono-

tonically growing function of C,

1
AXAP = 3 \/1 +C2 +2C3 + C2(1 - C)?sin” 24, (6.66)

with small periodic dependence on angle ¢. It is shown in Fig.(6.4)

I |
0.8 1.0

Figure 6.4. Uncertainty relation versus concurrence C and angle ¢ : a) 3D plot b)
Contour Plot

This implies inequality

1 1
5 V1 +C2+2C3 < AXAP < 5(1 +Ch,

37 Sn In

with minimum value at ¢ = 0 and the maximal one at ¢ = %, a7 7. In the last case,

the triangle becomes isosceles triangle, so that dispersions are equal,

1 + C?
(AX)* = (AP)* = 7
or
2
AX = AP = o/ +2C .

The area of the square as the double area of the triangle is maximal for fixed C and gives
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uncertainty relation

2
AXAP = 1+2C . (6.67)

It is noted from (6.64) and (6.65), that similarly to the bosonic coherent states (Klauder,

1985), the dispersions are not dependent on «, but on the reference super-qubit state,
corresponding to @ = 0, (which is not the vacuum state), so that (AX)i = (AX)(%, and
(AP); = (APY.
The right hand side of equation (6.66) is monotonically growing function of C,
bounded between 1 and 1,
% <(AX)(AP) < 1.

The lower limit
(AX) (AP = 3
corresponds to C = 0 and the state |a, (), while the upper limit for C = 1,
(AX)(AP) =1,

to the state |, L.). Obtained relations show that for zero fermionic state the uncertainty
reaches the minimal value, corresponding to pure bosonic coherent state as most classical
quantum state and it is separable state with C = 0. Then, mixing bosonic and fermionic
degrees, due to nonclassical nature of fermions, increases non-classicality of the states
and corresponding uncertainty. It reaches maximal value for C = 1, which corresponds to

maximally entangled bosonic and fermionic states as maximally non-classical states.

6.6.1. Quadratic Squeezing of Coordinate and Momentum

Uncertainties

As we have seen from uncertainty relation (6.66), the product (AXAP)? reaches
minimal value i for C = 0. This suggests that minimal uncertainty as in pure bosonic

case of Glauber coherent states, should corresponds to (AX)? = (AP)* = % But, it is not
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the case. In fact, depending on value of ¢, and C, (AX)? reaches local minima, smaller

than % The uncertainty in X as functions of two variables
1
(AX)* (C,¢) = f(C,¢) = (1+0)=C(1 = C)cos” g,

describes two dimensional surface. It is shown in Figure 5. For this surface, we have

conditions for first derivatives

fo(C, 9) % +(2C-1)cos’¢p =0,

fd)(c’ ¢)

C(1-0C)sin2¢ =0,
giving two critical points

(6.68)

By using second derivatives

fec =2c08* ¢, fas =2C(1 = C)cos2¢, fes = foc = (1 —2C)sin2¢,

we calculate the Gaussian curvature as determinant of the Hessian

H = focfap — [y = 4C(1 = C) cos 2¢ cos” ¢ — (1 — 2C)” sin® 2¢.

For the critical points (6.68) we get positive Gaussian curvature H = % and due to fcc =

2 > 0, the local minimum. The value of dispersions at these critical points is

) >
4 4

SIS

1
=5 (6.69)

0|

(AX)? :f(l ()) :f(l,n) _ T < 8 _ %’ (AP =
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The boundary values of f(C,¢) at ¢ = 0,27 and C = 0,1 do not affect the minimum

value. The inequalities show that in the super-coherent states

1 V3 1 1 V3 1
|, Z,O>Li = TW, Yo) + §|C¥, L), a, Z’7T>Li = TW, Yo - §|C¥, L.)
the X dispersion is maximally squeezed to value (AX)* = % < %, while (AP)* = % > %
Positions of these states on the super-Bloch sphere are (6 = §,¢ = 0) and (6 = 5,¢ = 7)

correspondingly, and in complex plane representation at 7 = +

L
i

Figure 6.5. Quadrature squeezing for dispersion AX? versus concurrence C and angle
¢ : a) 3D plot b) Contour Plot

In Fig.(6.5), we plot dispersions versus the concurrence C at angles ¢ = 0 and ¢ = 7.

Similar calculations for states

1 n V3 i 1 37 V3 i
> 10~ = a\P + = ’Li’ s 7 T~ = ’lP - A aLia
. 72 0. = ol Yoy + Sl Le), s 70— = —-les Wo) = e Ly)
at critical points on super-Bloch sphere (6 = 5,¢ = 7), (0 = 5,¢ = 37”) or in complex
plane z = J_r%, give maximal squeezing for the momentum dispersion, (AP)* = % < %,
(AX)? = % > % This quadrature squeezing is known for photon added coherent states, as

non-classical property, and now we have established it also for boson-fermion entangled

super-coherent states.
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Figure 6.6. Plot of Quadrature squeezing for dispersion AX? and AP? versus concur-
rence for angle ¢ = 0,7

6.6.2. Golden Uncertainty Relation and Fibonacci Numbers

In above calculations (6.69) we have seen that dispersion (AP)* = % = 2—2 is equal
to the ratio of two Fibonacci numbers. Depending on angle ¢, for C = }‘ we distinguish
two cases: a) ¢ = 0,7, then from (6.64), (6.65) we have (AX)* = &, (AP)* = 2, and b) for
¢ =73,itis (AX)? = % (AP)? = 17—6. In fact, we are going to show that the whole sequence
of Fibonacci numbers and the Golden Ratio can be involved to uncertainty relations for

super-coherent states. For maximally random states (6.60) with C = 3, located on the

1
2’

equator of the super Bloch sphere, the uncertainty relation is

1
AXAP = 3 /24 + sin® 2¢. (6.70)

For angle ¢ = 7 it gives ratio of two Fibonacci numbers
5 F
AXAP = — = —. 6.71
8 F ©.71)

In addition, we notice that the minimal uncertainty % = % (corresponding to bosonic
coherent states) and the maximum uncertainty 1 = % (for maximally entangled boson-

fermion states) also represent the ratio of two Fibonacci numbers. In all these cases the
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uncertainty is equal to the ratio FF -, where n = 1,2, 5. Now, we define the inverse ratio

™

n+1

Pn

for arbitrary positive integer n, representing the Golden sequence, satisfying equation

1
©On = 1+ s
©On-1

and having the Golden ratio as the limit ¢, — ¢, when n — oo. This suggests that for
supersymmetric coherent states exist the sequence of uncertainties, equal 1/¢, for any

positive n, giving in the limit n — oo the Golden Ratio uncertainty

AXAP:l: z :\5_1.
© 1+15 2

(6.72)

To determine the Golden sequence for any n, we fix the angle ¢ = 7, then dispersions are

equal AX,, = AP, and due to (6.67) they can be chosen as

1 F, 1+C?
(AX,)? = (AP,)* = AX,AP, = — = = . (6.73)
99n 17n+1 2

This implies the infinite sequence of concurrences, determined by equation

F,
C:+1=2—".

n+l

Using properties of Fibonacci numbers, F,,; = F, + F,_, it can be simplified as
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so that

F,_
C,= 2.
Fn+1
In particular case n = 5 it gives value Cs = % considered above (6.71), and for n = 1 and

n = 2, the maximal and minimum uncertainties, 1 and %, correspondingly. For successive

nand n + 1 terms, dispersions in X

F Fpi
AX,)* = =, AXpi1)? = =,
(AX.)" = (AXo1)” = &

n+l n+2

relate uncertainties for different n by fractional transformation

1

AX, ) = ———.

The product

F,
(AX11+1)2(AXH)2 = s
Fn+2

in the limit n — oo takes the form of the Silver Ratio

:\/5—1

2 _ 2 _
(AX)” = (APy)” = 7

This formula shows how the Golden (Silver) Ratio naturally appears in supersymmetric
quantum oscillator.
The set of super-coherent states corresponding to the Golden sequence of uncer-

tainties (6.73) is

e F,_ 1+i(F,- tA
/ 2 ">L+ 2 |a/ W) + —’( 2) @, L.).
Fri Fi Fii

In the limit n — oo, the concurrence C, is represented by the Golden Ratio Co, = ¢

-3/2
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and the sequence of corresponding states converges to the Golden super-coherent state,

1 = B 1 1+1
p32 \/§¢3/4

|a’ Li)

For this state we have the Golden Uncertainty relation (6.72) in the form

AXAP =

(here we recovered the Planck constant). The relation determines the Golden proportion

_h
~ AxAp

¥

in the phase plane cells, as ratio of Plank constant with area of the cell. Moreover, the
uncertainty value i/2n¢ corresponds to the length of the circle 2rp with radius r = ¢.
Inversion of this circle in the unit one gives the circle with radius 1/¢ and the length
27 /¢, which determines the Golden Angle. This angle appears in the theory of sunflowers
(Newell and Pennybacker, 2013, 90-105) as efficiency model of sunflowers packing, and it
would be interesting to see how it can be combined with phase space structure in quantum
mechanics.

Another, non-symmetric in X and P sequence appears from (6.64), (6.65), when

¢ = g, so that
1 1
(AX,)* = S+ C), (AP,)* = S =Cu+ 2C).

For concurrence Cs = % it gives (AXs)? = % = % This suggests the sequence of concur-
rences,

F,_

C,= 22
Fn+1

satisfying equation (1 + C,)/2 = F,/F,,1, and giving uncertainties

F FoFoy+F>2, F>+F>_ +(-1)
2_ In 2 _ n2 _ I'n n-2
(AXI’!) - F,,H_] ’ (APn) - F2 - F2

n+l n+l

2
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where in the last equation we used Cassini’s identity. In the limit n — oo we get uncer-

tainties, which includes Golden Ratio and Fibonacci numbers

(AX.) = }D (APLY = 3(5 - 3¢),

(AX)*(APL)? = 3(5¢ - 8).

Identification of uncertainty relations for supersymmetric coherent states and the
squared quadratures, with first few Fibonacci numbers was unexpected and it motivated
us to find the sequence of uncertainty relations with Fibonacci oscillations. By introduc-
ing an infinite, countable set of super-coherent states, we got the limit state, the Golden
super-coherent state, with Golden ratio in uncertainty relations. The uncertainty rela-
tions in general, result from operator commutation relations for observables, suggesting
to find deformed commutators with Golden ratio as a parameter. Such type of the Golden
quantum oscillator, where Fibonacci operator plays the role of pg-number operator with
Golden and Silver ratios as deformation parameters, has been studied in (Pashaev and
Nalci, 2012, 5-18). The spectrum of this oscillator is given by Fibonacci sequence and
coherent states are determined by Fibonomials (Pashaev, 2015, 3-11) . It would be inter-
esting to combine such Golden deformed quantum oscillator with supersymmetric quan-
tum states. A more general spectrum in form of Fibonacci divisors and the quantum
algebra deformed by powers of the Golden ratio naturally appeared in the infinite hier-
archy of Golden deformation for bosons and fermions (Pashaev, 2021, 3-8). Fibonacci
numbers and Golden ratio were involved also in entangled qubit quantum states, where
the concurrence and transition amplitudes of entangled N-qubit spin coherent states in
computational basis are determined by Fibonacci and Lucas numbers (Pashaev, 2012, 4-
12) . The Golden ratio and Fibonacci numbers in quantum computation and information

theory were encountered also in quantum coin flipping problem with constraints.
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CHAPTER 7

ENTANGLEMENT OF PK-SUPER-QUBIT QUANTUM
STATES AND SUPER-COHERENT STATES

The super-qubit quantum state introduced in (Pashaev and Kocak, 2024(2, 3-5))
and (Pashaev and Kocak, 2025(3)), is characterized by a superposition of the zero and
one super-particle states, which are represented as points on the super-Bloch sphere. As a
preliminary step in the creation of the super-qubit, we use states which have same number

of particles. The normalized generic n super-number state

n,g) =

1
VI + 1P (

1 Iy
0} @ lnby + 1)y @ — 1)) = Tmz[él n 1>]’ Y
n_

where ( is an arbitrary complex number, is the eigenstate of the super-number operator
Nin,¢) = n|n, ). The origin of the complex plane, { = 0, corresponds to n pure bosons,
while infinity in the extended complex plane, z = oo, corresponds to one fermion and n— 1
bosons. By stereographic projection, the extended complex plane can be projected to the
unit sphere by the formula

‘= tan(%)e"¢l, (7.2)

so that the state becomes

In, 01, ¢1) = cos (%)[b:] + sin(%)ei"" (l 0 1>] , (7.3)
n—

where 0 < 6, <7, 0 < ¢; < 2x are angles on the sphere.
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7.1. Entanglement of /-super-number states

Corollary 7.1 The concurrence of the n-super-particle state (7.1) is independent of n and

is given by

_ 2l
R

(7.4)

For ¢ = 0 and { = oo, the states are separable and C = 0. On the unit circle |{|* = 1, the

state is maximally entangled with C = 1.

For n = 1, we have the state

! L[
11,) = ——=10),®|1), + {|1); ®10))) = —— , (7.5)
\/1+|§|2( 81 +2iD;©10%) N [am]

which is a fermion-boson entangled one super-particle state. The level of entanglement
is determined by formula (7.4). In terms of stereographic projection (7.2) and (7.3), the
concurrence becomes,

C =sind,. (7.6)

This formula provides a simple geometrical meaning of concurrence on the sphere. The
concurrence is equal to the distance from the point (6, ¢;) on the sphere, corresponding
to the state |1, 6y, ¢;), from the vertical axis. Alternatively, it is equal to the radius of the
circle in the horizontal plane, intersecting the vertical axis at: z = V1-C2? = cos 0. The

von Neumann entropy as a function of z is given by,

1 1-27° z 1+z
E=—1 - =1 —. .
3 ng( 4 ) 5 ng(l —Z) (1.7)

Probabilities of collapse to the states at the poles [0); ® |1);, and |1); ® |0); are:

Po = cos® = = p1 = sin? — = —=, (7.8)

0 1+z 6 1-z
2 2’
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Geometrically, these probabilities correspond to half-distances from the vertical projec-
tion of the state to the north and south poles. For the one super-number state, N|1,{) =

1|1, £). In addition, for n = 0, we have the separable state:

10)
10,4) = 10); ®10), = ol (7.9)

which satisfies N|0, ) = 0|0, ) and is orthogonal to the first state (0,|1,{) = 0. The

states are related by the creation supersymmetric operator:

TIPS S ) s S (7.10)
CU TP laoy) VTPl oo ) '

By taking the superposition of n = 0 and n = 1 states, we obtain the PK—super-qubit
state( (Pashaev and Kocak, 2024(2, 5-10), (Pashaev and Kocak, 2025(3)).

Definition 7.1 The super-qubit quantum state is defined by ( (Pashaev and Kocak, 2024(2,
6-11), (Pashaev and Kocak, 2025(3))

6, ¢, ) :cos§|0,§>+sin gé"’ll,(), (7.11)
or in explicit form:
610> 9 , 1 1)
10,9,y = cos = +sin —e"Y —— , (7.12)
2 [ o] 2 Vv [§|0>]

which is characterized by two real parameters 6, ¢ and one complex parameter (.

For this state, the first two parameters 6 and ¢ are angles on the unit sphere, which we
call the super-Bloch sphere. The north pole of the sphere at 6 = 0 corresponds to the zero
number of super-particles in the state |0, 0, {), while the south pole at § = 7 corresponds

to the one super-particle in the state |x,0, ). Any point on the sphere represents a su-
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perposition of these two states with varying levels of entanglement. The probabilities of

measuring the basis states are:

0 0
po = 10,16, ¢, OHI = cos® > P =K1.20.9, O = sin® > (7.13)

The super-qubit state is a natural generalization of the fermionic or bosonic one-qubit

states.

Proposition 7.1 In the limiting cases, the PK—super-qubit state (7.12) reduces to sepa-

rable qubit states: 1. For { = 0, the state is a separable one-qubit bosonic state:

0 il
16, ¢, 0) = cos i { >) + sin Qe“’5 (| >] =10); ®16, ¢y, (7.14)
210 2 {o

2. For { = oo, the state is a separable one-qubit fermionic state:

0 10
>] + sin ge"”[ ] = |6', ¢>f ® |0>b (715)
2 oy

0
|97¢’ OO> = COS = |
2\ o

In general, the state is entangled.

Proposition 7.2 For { = €7, so that |[|*> = 1, the PK—super-qubit state reduces to the

o 6 {10) 0,1 1)
|9,¢,67)—cos§[0]+sm§e %[e’ﬂO)]’ (7.16)

form:

fory = 0,nr, giving the pair of states:

0 ) 1
|6, ¢, £) = cos 0 [l >J + sin ge“’j ! [ D , (7.17)
0

2 2 V2 +|0)

which are considered as the reference states in (Pashaev and Kocak, 2025). The corre-
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sponding one super-particle states

. : 1[I
m, ¢, €7y =|1,e%) = — ; (7.18)
V2 [ef7|o>]

are maximally entangled states with C = 1.

Proposition 7.3 The super-qubit state (7.11) is a fermion-boson entangled state with con-

currence in the product form:

6 2
sin’ Iy

C =S T

(7.19)

For { = 0 and { = 1, the super-qubit state is separable, and C = 0. For || = 1, the
concurrence is:

0
C = sin® > (7.20)

as in the special super-qubit case (Pashaev and Kocak, 2025, 5-11).

7.2. PK-supersymmetric annihilation operator

Proposition 7.4 The super-qubit state (7.11) is the reference state annihilated by the

super-annihilation operator:

a

_1
Al/(:(g 4], A_110,¢,0) = 0. (7.21)

This follows from the observation that for the basis states A_;,/|0,{) = 0 and A_;|1,{) =

0. The operators satisfy the following commutation relations with the super-number op-

erator:
[N Ayl ==Aye  INAT 1=AT) (7.22)
1
Ay, AL =1+ o O h- (7.23)
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In the limit { — oo, the operator becomes the direct product /; ® a, and the algebra
becomes identical to that of the bosonic operators. In a similar manner to previous chapter,

we can introduce supersymmetric coherent state.

Definition 7.2 The PK—supersymmetric coherent state, associated with the PK—super-

qubit reference state (7.11), is defined as

|, 0,¢.0) = D)6, ¢, ) (7.24)

where D(a) given in (6.40).

Proposition 7.5 The PK—super-coherent state can be represented as:

610, @) 0 . 1 1, )
la, 6, ¢, ) = cos — +sin - — , (7.25)
2l o ] 2 1+ [ao, a)]

where |0, @) = D(a)|0) and |1, @) = D(a)|1) are defined in (C.17) and (C.18).

Proposition 7.6 The super-coherent states (7.25) are eigenstates of the super-annihilation

operator A_y;:
A—l/{la’ H’ ¢’ §> = CYl(l’, 0’ ¢a g) (726)

Proof We begin by noting the commutation relation:

[A_1/0, D(@)] = A_y); D(@) = D(@)A_y); = aD (),

which will be useful when applying this operator to the state. Now, we apply A_;, to the

state |a, 6, ¢, () as follows

A—l/{lal’ 9’ ¢’ §> = A—l/{D(a)w’ ¢’ §>,
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by the commutation relation, this can be rewritten as

A_yifda, 0,0,0) = D(@)A-1 (|0, ¢, ) + aD(@)|6, ¢, ).

The first term on the right-hand side vanishes due to the property A_; /|6, ¢, {) = 0, leaving

us with

A—l/{|a9 9’ ¢’ §> = CYlCl’, 0’ ¢’ §>

7.2.1. Entanglement of PK-supersymmetric Coherent states

In order to calculate the entanglement of the state (7.25), we note that

@, 0,¢.0) = D(@)lf, ¢, £) = 10)s ® D(@)lho) + |1)f ® D(@)1),

where for the reference state, we have

160, 6, 0> = 10} @ b0} + 1) ® [th1),
and

|, 6,,0) = 10)5 ® [tho, @) + [1)f ® Y1, @).

Since the Fock states are connected by a unitary transformation

o, @) = D(@)lWo), W, a) = D(@)ly),

the inner products do not depend on a:

Wi, alyj, @)y = WD (@)D(@)y ;) = Wily ),

(7.27)

(7.28)

(7.29)

(7.30)

(7.31)
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as well as the Gram determinant (6.9) of the inner products. Consequently, the concur-

rence C is also independent of .

Corollary 7.2 The concurrence for the super-coherent state (7.25) coincides with that of

the super-qubit state (7.11) and is given by:

2|21

C = sin’ g TP (7.32)
7.3. Flipped PK-Super-Qubits and Super-Coherent States
The flipping operator is defined as
X=XQI,=0,®1,.
It acts on the fermion number of states as
XNy @ 1,)X = Ny ® I, (7.33)

where N, = diag(1,0) corresponds to interchanging the number of fermions. Applying

operator X to the n- super-number state (7.1), we get the flipped state

1Dy ® ), +{10), ®ln — 1), 1 {n=1)
Xln,¢) = = . (7.34)
VI+IcP VI+IP [ In) ]
Proposition 7.7 The flipped one super-particle state is given by:
1 210y | 210}, @10y, + 1), @ 11)
X, = —— = , (7.35)
Vi +|§|2[ 1y ] VI+1gP
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The flipped PK—super-qubit state is:

g| 0 9 ., 1 £10)
X|0,¢,) = cos = + sin =€ —— . (7.36)
2[ |0>] 2 \/1+|§|2[ Iy ]

Proposition 7.8 The concurrence for the state |¥) and the flipped state X|\P') is the same.

Proof If the state |¥') is represented as [¥) = |0); ® [/o) + |1)f ® |¢), then the flipped
state is

XI¥) = X10)r ® o) + X1 @ 1) = [1) 5 ® o) + [0) f ® 7). (7.37)

This implies that the result of flipping is an interchange of the Fock states |) and [i/y).
From the representation of concurrence by the Gram determinant (6.9), it is clear that
the determinant is invariant under such interchange, and thus the concurrence remains

unchanged. O

Corollary 7.3 The concurrence for the flipped state (7.35) is equal to that of the state

I1.0):
_ 2
L+l

(7.38)

The concurrence for the flipped super-qubit state (7.36) is equal to that of the super-qubit

State:

2/Z]
L+

9
C = sin® 3 (7.39)

Proposition 7.9 Applying the flipping gate to the super-annihilation operator gives the

transposed operator

XA X=AT), = . (7.40)

_1
i a

The flipped super-qubit state is annihilated by this operator
AT, ,X10,6,0) = 0. (7.41)

Definition 7.3 The flipped PK—super-coherent state is defined by the action of the dis-
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placement operator on the flipped super-qubit state:

|, 60, ¢, ), = D(@)X|6, , ). (7.42)

Since the operators D(a) and X commute, [D(a), X] = 0, we have the following propo-

sition.

Proposition 7.10 The flipped PK—super-coherent state can be represented as:

g O 6., 1 210, @)
Xla,0,¢,0) = cos = + sin —e" —— . (7.43)
2[ |o,a>] 2 V1+iP( 11,0
It is the eigenvalue of the operator AT, i’
Al Xla,0,¢,0) = aXla,6,¢,0), (7.44)

and has the same concurrence (7.39) as the PK-super-qubit state.

7.4. Uncertainty Relations and Fibonacci Sequence for

PK-supersymmetric Coherent states

Proposition 7.11 The average values of the X and P operators in super-coherent states

are:

in 6 cos ¢
(@.0,6.0X|0,0,6.) = V2Re(a) + ——22_ (7.45)
a,0,¢,l|X|a,0,¢,l e(a NN
(@,0,,|Pla,6,¢,0) = V2Im(a)+ $in6sin ¢ (7.46)

Definition 7.4 The classical values of coordinate and momentum are denoted as x. =

V2Re(@) and y. = V2Im(a) in the complex plane «. The spherical coordinates on the
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super-Bloch sphere are:

x =sinfcos¢, y=sinfsing, z=cosb, (7.47)

sothatZsinzg =l-zandx*+y*+72 =1.

Corollary 7.4 The average values of the coordinate and momentum are projections:

X
,9,,X9955 Cc T = —>
(@,0,9,{|X|a,0,¢,0) X+\/§m

y

et ——.
R

(@,6,¢,{|Pla,0,¢,)

Proposition 7.12 The dispersions of the X and P operators in super-coherent states are

independent of « and are given by:

(AX)? (7.48)

1 2sin® £ — sin” 6 cos® ¢
E[ i 1+ 2P J
1 2 sin’ - sin® fsin® ¢
5( " e )

(AP) (7.49)

or in terms of the Cartesian coordinates on the super-Bloch sphere:

2 _
. Y

1-z-y°

2
(1+_1 2 x), (7.50)

(AP)’

D= N =

For ¢ = 7, the coordinates x = y and the dispersions are equal. For the corresponding

state in the equatorial plane 6§ = 7, we have:

2 _ 2 _ l 1
(AX)* = (AP)® = 5 (1 METTEr) |{|2>)' (7.52)
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From this formula, for states with || = 1, we have:

2_app=>-5
(AX) = (APY = 5= 2. (7.53)

This suggests constructing the sequence of states with the ratio of Fibonacci numbers for

any n.

Proposition 7.13 The sequence of circles in the complex plane { is given by:

F,_ 1
2 n—1
n = — 7.54
120l F, 2 (7.54)
where F, denotes the Fibonacci numbers. The dispersions are determined as:
2 2 Fn
(AX,)" = (AP,)” = ; (7.55)
Fn+1
and the uncertainty relations are:
Fy,
AX,AP, = . (7.56)
Fn+l

1 oscillates around the value

Corollary 7.5 The square of the radius of the circles |{,

corresponding to the limit n — oo, where:

1
IZal* = ¢ - 5 (7.57)

with ¢ being the Golden Ratio. In this limit, we obtain the Golden dispersions:

(AX.) = (APL)* = }D, (7.58)

1
and the Golden uncertainty relation: AX APy, = —.
2
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CHAPTER 8

PQ-DEFORMED SUPERSYMMETRIC ANNIHILATION
OPERATOR

This Chapter introduces the pg-deformed supersymmetric annihilation operator
and supersymmetric quantum states under pg-deformation. First, we define the super-

symmetric pg-annihilation operator as

N pa 1
Apg=| """ (8.1)

0 qay,

and corresponding supersymmetric pg-coherent state as eigenstate of this operator

ApglA)py = @AY, (8.2)

We notice that pg numbers are symmetric under p < g exchange. However, definition

(8.1) is not symmetric to p < g exchange and bosonic, fermionic state definition. The

different choice of p and g parameters gives following particular reductions.
1)Supersymmetric non-symmetric g-annihilation operator: When we choose p =

1, the supersymmetric pg-annihilation operator becomes in g—deformed form

0 qa,
where a, is annihilation operator of non-symmetric g-calculus (9.1). If in addition g — 1,

then we get AZ—supersymmetric annihilation operator (5.1).

2)Supersymmetric, symmetric g-annihilation operator : By choosing p = é, we
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get supersymmetric annihilation operator in the following form,

where az = a. , is annihilation operator of g-symmetric oscillator.

¢

3)Supersymmetric Golden-Fibonacci annihilation operator: If we choose p = ¢
and g = ¢, so that [n],, = F,, the corresponding Supersymmetric annihilation operator
is

A=
0 ¢ar

where ar is annihilation operator of Golden-Fibonacci calculus (3.22).

4)Supersymmetric Tamm-Dankoff annihilation operator: When p — g, we get

Supersymmetric Tamm-Dankoff annihilation operator

r garp 1 arp
Arp = R =q R ’
0 gqarp 0 arp

Here arp is TD annihilation operator.

106



8.1. pq-Supersymmetric Coherent States

The coherent state |A),, can be splitted to the two parts,

o
|Ab>pq = Cb s
0
=
;;qq,%|%>pq —€pq Q|;_q>pq
|As>pq =C; s

lof?

1 |a
€pq |3>17q

where normalization constants(See Appendix B.2.2) are

- T A S B (A 2 \?
-2 _ »? 7 Lk »? p? | _ 2| ,r%a
¢ = [(epq) (epq T € |t~ 5€pq |P|€pa ||€ra q |€pq
P pPq
Y (g Y jop H (4 Fal
i P q P ' P P vt | 2| ,pta
= [ €pg | |€pa T Z€pq | T 2 2€pq |4|€pa ||€pa q | €pq ]’
V4 pPq
2
-2 _ P2
C,” = epy-

These states are orthonormal states (See Appendix B.2.1)
palAnlAp)pg = pgfAslAs)pg =1, pgfAslAs)pg = 0,
so that an arbitrary pg—supersymmetric coherent state is
|A) pg = ColAp)pg + C11As) pgs
where ,,(A|A},, = 1, and as follows |co|* + |¢1|* = 1. By choosing

Co = COSE ,c1 = €% sin =,
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we obtain the superbloch sphere representation of supersymmetric pg—coherent states

0 .0
la; 6, ¢, = cos §|Ab)pq + ¢ sin §|As>pq . (8.3)

8.2. Uncertainty relations for pq-Supersymmetric Coherent States

The pg—deformed coordinate and momentum operators are defined as

at,, +a : (dat,, —a A
qu:[u Iy,  ppg=i| ——="|®I. (8.4)

V2 V2

ays N A~ AD A .
Proposition 8.1 The mean values of X4, Ppgs X, Ppgs 11 |1Ab) pq State are

. 1
pq<Ab|qu|Ab>pq = ; ZRG(Q/),

. 1
pq<Ab|ppq|Ab>pq = ; ‘/Elm(a),

i -1
. L N[5
pal Al |ApY pg = e P+t + 0+l +p? (e,,g )(e,;j ,
L o2\ (u£)"
pq(Ab|1512,q|Ab>pq = 2_]92 P —-ad?+(+ q)|af|2 + p2 (epz )(elfq ) .

The proof is given in Appendix B.5.

Proposition 8.2 Dispersions of X and p in |Ay),, state are equal,

iAol (D) A6dg

1 o) (5£)7
e (g - Dlal* + p* (ep; )(e,;;,) ,

pq(Abl (A)Acpq)z |Ab>pq
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and uncertainty relation is
1 2y, of i B
A, AP pg = 37 (g—Dlal"+p (ep‘; )[ep"q ) . (8.5)

Proposition 8.3

22 2
g+1 p+ 7‘ e
@laf + 2l )+( o )|a|4)(e;7;q) o)
P2q

+1 o2 mz
(p+2q+(p+q)°) - ’%)| | )[epq) ery

(AR JA Dy = |Cs|2[(2 —

1 _
+(2 5 2(cx2+cx2)+(2 —
2 2 2
|a,|2 Ia\Z a2 |l |2 S, p+1 y lof? %
2p e”q € il 7 3q4(a/ +a)+2p3q4|a/| e | €pq'
3 212 2 212 2
+g+1( 1 A WA laf
& (e) +(2—q2<a2+a2+<q+ 1>|a|2>) (ep”j) efy + 5(655] e

2 2

—2, 2012 g+1 ol

(@ +cv|0z|)+(2p6 = )| |)[ »2q el
2

1
_ 2
pAP2 Ay = IC] [(2p4q2
+1 \n\z |a|2

-1, 1
+(2p2q2(a +a)+(2p3 S(p+29+(p+q)°) -
2 2 2
| ? |a\2 o2 —|a? _ p+1 T g
21? pq pa + W(a2+a2)+ 2p3q 4|a/|4 epq e;xzzqz
pra+1( =Y (-1 AN 2\ pef
z—lﬂ(epq) +(2—q2(a +a? - (q+ 1)|a|2))(e;q) ey +§(e;q) eps .

Then,

2
2 R 1
pq<As| (A)’epq) |As>pq = pq<As|xiq|As>pq - (& \/ERC(G,’)) s

1 2
AN (8Dpe) A s = pal AP Ay ( ﬁlm(a)) .

The uncertainity relation for |A), takes the form (A%), (Ap), = 1 as p,q — 1,. The proof

is given in Appendix B.4.2.
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CHAPTER 9

Q-DEFORMED SUPERSYMMETRIC COHERENT STATES

This chapter explores g-deformed supersymmetric coherent states and their dy-
namics. We begin with the g-deformed quantum oscillator and the associated g-coherent
states, followed by an examination of their time evolution. Then, this chapter introduces
the g-supersymmetric annihilation operator, which is essential for defining these states
within a supersymmetric framework. We also look at the uncertainty relations, specific to

g-supersymmetric coherent states and explore how these states change over time.

9.1. The q-deformed quantum Oscillator and q-Coherent states

For non-symmetrical case, the g-number is defined as

and the following algebraic relations are valid

a,a, —a;a, = qv, 9.1

a.a, —qaza, =1, 9.2)

where a, and a; are annihilation and creation operators of non-symmetric g—calculus.

The definition of non-symmetrical g— number operator

a;aq = [N1,, aqa:; =[N+1],
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gives

[N + 1], —¢[N], =1, 9.3)

[N + 1], - [N, = ¢". (9.4)

In this case, the Fock space basis |n), is defined by

o (@)io),
SN Rk

where a,|0), = 0 and operators act on the basis as following

[N]q|n>q = [n]q|n>q s
aylnyg = {fln+ 1] n + 1),
aql”)q = [n]qln - 1>q
The Hamiltonian is
fiw
Hq = 7([1\]](] +[N + 1]q) >

with energy levels for the corresponding eigenstates 1), ;

hw
E, = —
2(

[n]y +[n+ 1]y,

where n = 0, 1,2, .. The limit n — oo for [n], gives

lim[n], = | 9.5)
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so that when |¢| < 1

Theorem 9.1 The sequence of eigenstates E,,n = 0, 1,2, ..., is the Cauchy sequence for

lql < 1.

Corollary 9.1 The maximum value of the energy spectrum for |q| < 1 is

h
EoozlimE,,:l—w

n—oo — q

For the g-deformed quantum oscillator, we can define the g-coherent states as states that

generalize the concept of classical coherent states to this deformed case.

Definition 9.1 The g-coherent states are defined as eigenstates of a, operator

ag4lay, = ala),, (9.6)

o0 an
where |a), = ———1n),.(not normalized state
DY N )

n=0

Proposition 9.1 The inner product of two g-coherent states |a), and |B), is
ABlay, = &P,
where e, is defined by Eq.(3.8) and

—_ Ll
HSalay, = e, -
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9.1.1. Time evolution of q-Coherent states

We define Hamiltonian in terms of g—Number operator

H, = ’%‘” (IN1, + [N +11,) .

then, the time evolution operator becomes

U(t) = e—i"’T“’([N]q+[N+1]q)t.

It provides the time evolution of g-coherent states, calculated as

—i"% ([n],+[n+1]y)t

Jin,!

U, = | thy = Ny(®) Y " n),
n=0

. o 5o e
with normalization (N, (¢))™* = .
! Z Vinl,!
—iwt

For normalized coherent states with ¢ = 1, the average gives a(t) = a(0)e ™", as
solution of the classical harmonic oscillator equation, () + w?a(f) = 0. For arbitrary

g-coherent states, the average is the superposition

3o Ao i g D

n=0 [nl,! 0
S tlagla, 1), = ay(0) = @ —— = D,
2in=0 N =0

+1
where we have defined frequency w,(g) = quq”, and functions

2n
a 4
a,(t) = o™ e~ hn(@1

e 4/[n],!
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satisfying
(1) + WA(@)an(t) = 0

They represent the set of harmonic oscillators with frequencies in geometric progression.

The normalized time evolved g-coherent states also can be rewritten in following form

2
A™ isipiqrn

|
o> % [n]q .
€q

gﬁ@

ay(1)

_ il( l—( +1)t)2| lzn
k q
\/eq k=0
= 2 Z —( i=(q + 1)t) edlor
ea|2 =0 k‘ 2
V€
&9 1 eq |(I|2
_ azﬁ( l—(q+ l)t) N
k=0
€q
Definition 9.2 Function of two variables F,(x, 1), is defined as
Fy(x,7) = kz(; Hrkezkx = Z(; ] x”e" T 9.7

Proposition 9.2 Function F,(x, 7) satisfies the initial value problem for differential-difference

equation,

DZFq(x, T) = Fy(x, q7), (9.8)
0

EF‘](X’ 7) = Fy(qx,7), 9.9)
Fy(x,0) = ¢, ,F,(0,7) = €. (9.10)
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Proof We aim to demonstrate the existence and uniqueness of function F,(x, 1) that

satisfies the initial conditions. To achieve this, we expand the function in two variables

Fy(x,7) = i i bymx"t".

n=0 m=0

and substitute to equations (9.8) and (9.9),respectively,

Dy F,(x,7) iibnm X = iibnmxn(qf)
n=1 m=0 n=0 m=0
—F (X, 7) :ii by mx"mt ! :iibnm(qx)" "

These give the recurrence relations for b, ,,;

q
bn m =

T 1,

bn,m+l = q— nams
m+ 1

and by (9.10),
bym = —boo .
" Inlgtm!

Therefore, the solution has following form
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Since F,(0,0) = 1, then by = 1.Thus, we have it in the form

i = S5 o
OO @)Y o L
= i 2 =

or

Proposition 9.3 The solution a,(t) can be expressed by the function (9.7) as follows:

Fy(a, —i§(g + D)

VF(lal?,0)

(9.11)

a,(t) =a

9.2. g-Supersymmetric annihilation operator

In Chapter 5 and Chapter 7, we considered supersymmetric annihilation operator
A in terms of bosonic operator a and deformation of it by parameter {. Here, by using 4,

operators we propose a new supersymmetric annihilation operator in the form
A, = . (9.12)

When g = 1 itreduces to the one in Eq.(5.1). This operator determines the g—supersymmetric

coherent state |A), as eigenstate of this operator,

A lA), = alA),. (9.13)
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This supersymmetric q-coherent state |A), can be in two forms

A, = Cy Dl (9.14)
0
| Zj2), - 12,
Ay), = Cy . (9.15)
),

These states are orthonormal with normalization constants

C—Z

N

2 2\l
((q—l)livl +q )ef 4 dof
q

-2 _ P
C,” = e, .

9.3. Uncertainty relations for g—supersymmetric coherent state

The g-coordinate and the g-momentum operators are defined as

TooA TA
a, +a N a;, —dad A
2, :[ d q)@lp . Pe= i[ g q]@)lp. (9.16)

For average values of these operators in supersymmetric g-coherent states |A), and |A;),,,

we have

R 1
AADIR ALY, = . V2 Re(a),

1
A A PgALY, = p V2 Im(a).
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To calculate uncertainty relations, one needs to find the averages of operators Xf] and Pi,

@)+ (a)* + (g + DIN], + 1 of

N

Xq®IF— 2 F»
ATN2 2

N . —(a)) —(ay)*+ @+ D[N],+1 .

P, - @ =@ 2<q N +1 o

By using addition formulas in (9.3) and (9.4) for average in state |A;),, we get

1 &2 02 | |2
AlR2A = 2 |1+ 5 + 5 +(1+ )—]
! T2l ¢ @ ¢
1 C_L’z a,2 | |2
(AP2IALY, = —[ - LS han )—]
! T2l ¢ ¢ ¢

Proposition 9.4 The dispersions of X and p operators in |A,), state are equal,

A5 140y = oAl (A5,) 1AW, = ((qq Dig |2)

Corollary 9.2 The uncertainty relation in state |Ay), is

-1 »
A%,Ap, = ( ||
q q 2 q
Proposition 9.5 The averages for the state |Ay), are

AAR A, = V2Re(),
AAblPgALY, = V2Im(a),
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then

52 | |2 |ar |2 |
AAIX A, = IC,I? 7+ g+ Dg+2)+ 1) — —(q 2)(]_
|ar |4 |arf* |le|4
+(q + 1) ct(g+ )— -(q+ 1)—
a2+cx2| P a2+a2| P @2+a2 (g+2) ‘;%2
alt - e
243 24" 24> 24> 4
@+a* g+l , 1 2
||
(5 e et e

and

2 2 2
q<Av|IS§|As>q = |Cv| [(l | + ((q + 1)(q + 2) + 1) u - ( 2)%

ol lorf* |a|4
+(q + 1) ct(g+ )— -(q+ 1)q_
a2+a2| |2+a/2+a2| o a+a* (g+2) 7‘22
- r e
243 204 26]2 2q2 q
F+a* g+1, 5, 1\ .
|
o et )]

These give dispersions in the form

SAN(8D,) 14,

2 2 2 2
WAw;-u@+nm+m+nLL—< mgi—%é

LA (A%,) 14,

laf?

1 1 g-1 4, qg+2\ %=
+|l—+—-—=]|@+ Dlaf* - laf* + )e"
( q5) q* 24> |7

2¢% 243
NCETRS e
or
£ (o + 1) el
q
2 A 1 ¢g-1 T o~ + 1
(qu)s - (qu) = 5 + |a/|2 + : Jof2

_ 2
q% (qq—zlla/I2 + 1)eq + ela‘
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Then, the uncertainty relation for state |Ay), is

S

1 (g1 e la?
q—2(7ld’|2+ l)eq +€q

9.4. Time evolution of g—supersymmetric coherent state

To describe time evolution of g—supercoherent states we first show time evolution

of AZ-supercoherent states.
9.4.1. Time evolution of AZ—supersymmetric coherent states

The time evolution operator U(t) for supersymmetric oscillator is defined as

O e—ia)(N+ Dt

. L e—int 0
U(l) — e—l%HZ‘ — e—tht — [ )

Application of operator U(t) to state |A,) gives

) —iwNt o2
A, 1) = UDIAY, = e( el ] = e”(z[ e ] (9.17)
0 0

where a(f) = ae ™" and for state |A,),

e_% [ @e‘intla) _ e—intla’> }
A, 1), = U®IA), = . (9.18)
V2 e+l )
i [ 80I0) a0 010
|la(1))
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This shows that time evolution of supersymmetric coherent state |A, ), is described by ro-

tation in complex plane « : a(f) = ae™™, with frequency w. For supersymmetric coherent

state |A, ), ,we have an additional phase factor ¢!,

9.4.2. Time evolution of g—deformed supersymmetric coherent states

For supersymmetric g-oscillator, the Hamiltonian is

H‘]ss =W =w = [Nss]q >

and time evolution operator U(?) is (w = 1),

e~ ilNlgt 0
U@ = .
0 il +1]g1

Lemma 9.1 For complex number a, the following relation holds

(Ing)"
n!

(Ing)"
n!

o3 13
anqa/N — elnanqa,N —

(aDZ)n o

DM 1M

A \N g N
(1) o = o =

3
I
o

where N is an arbitrary natural number. Then, for arbitrary analytic function f(a) = Z Cya®,

. . . N:0
the relation is valid

o0 o0 00 N-
q(zD‘q’f(a,) — q(zD‘q’ Z CNCL’N — Z CNq[N]qa,N — Z Cy qua/N’
N=0 n=0 N=0

s=0

—

Proposition 9.6 The time evolution of q-supersymmetric coherent states, as given by
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equation (9.14), can be expressed formally as follows

1 e—i[N]qt 0 |%>q
|Ap(D)g = UDIAL()), = . (9.20)
,egl|2/q2 0 e*l[N+l]q t 0
1 e—i[N]qt a
- ) ] 9.21)
lrf?/g?
/ el q 0
Proof To begin , we start with formula
—i[N], t = (-it)n A\
My, = ) = (I8),) ), 9.22)
n=0 '
O (=i -
= ) . (D2 la), = e Pija), (9.23)
n=0 :
N N_1 a
where [N],|a), = l — lar), la >q_ 1| >qlcz)q = ozDZIcy)q. Then, by using the above lemma,
we have

N-1
{ 2 N-1 N-1 2 (N s
q[N]q = Ma+qtq +..+q") _ ,Ing, (ng)q ,(ng)q"~ _ q.4°.q° “_qu D _ | |qq . (9.24)
s=0

Since g-number can be expressed by Bernoulli polynomials,

R o (In g)"
[V, =N+ Z‘f (Br (V) = Buon O f o (9.25)
we can write
A0 p e a
o = 2
e Wallgy, = e NZO [N]q!|N>q (9.26)
. 00 N 0 _ir(lng) B(A}LIIU,V)
= (ae)" Y - >q,]—[e ) 9.27)

. B, °
720 VINIg! jor gm0y
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Then,

1| e,
|Ap(1))g = UDIAL(2)), = — i (9.28)
/ elqozl /q 0
1 . © N o —it(lng) 35211()1!\’ !
- (ae-")N N ]—[e . —(9.29)
\/elglz/qz 820 @Y VNG oy et @iy
O
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CHAPTER 10

CONCLUSION

In the present thesis, we have studied new class of coherent states for supersym-
metric quantum oscillator and its relations with superqubit unit of quantum information.
By generalizing supersymmetric annihilation operator of Aragone and Zypmann, we con-
structed four different type of supersymmetric coherent states related with the Bell two-
qubit quantum states. These Bell super-qubit states determine the Bell-Based supersym-
metric coherent states, which we created by using displacement operator. These states are
entangled and we quantified the level of entanglement between bosons and fermions by
the concurrence characteristics and the Von-Neumann entropy. We studied several prop-
erties of these Bell based super coherent states, as orthogonality and time evolution of en-
tanglement. Uncertainty relation for these entangled super coherent states are expressed
in terms of the concurrence. Monotonical dependence of uncertainty in concurrence C
shows that the uncertainty relations can be also considered as a measure of entanglement.
In fact, minimum uncertainty corresponds to seperable coherent stateas and maximal un-
certainty corresponds to maximally entagled states. This allowed us to see the influence
of entanglement on uncertainty relations. Particularly, we found quadrature squeezing
of coordinate and momentum uncertainties. Moreover, we describe infinite sequence of
super coherent states with uncertainty relations, determined by ratio of two Fibonacci
numbers. The limiting state n — oo is the Golden-supercoherent state and corresponding
uncertainty relation is determined by the Golden ratio.

As a generalization of previous results, we introduced the generic super-qubit
quantum state, where the one super-particle state is determined by complex parameter
{ as stereographic projection of corresponding unit sphere. This allowed us to intro-
duce the concept of PK-super-qubit quantum states, which are parametrized by two unit
spheres. These states determine the so called PK-supersymmetric coherent states and we
found entanglement of these states. The information content of PK-super-qubit quan-
tum states is twice bigger than the standard qubit state. For PK-supersymmetric coher-

ent states, we constructed corresponding flipped states. Then, Fibonacci sequence of
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PK-supersymmetric coherent states with correponding uncertainty relations was derived.
Finally, we described pg—deformed supersymmetric annihilation operator, correspond-
ing pg—supersymmetric coherent states and uncertainty relations. More explicit form of
these calculations, including time evoluiton, we did for particular case of g—deformed

supersymmetric coherent states.
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APPENDIX A

GENERALIZATION OF SUPERSYMMETRIC
ANNIHILATION OPERATOR

In Section 7.2, we have introduced the supersymmetric annihilation operator and

corresponding PK—supercoherent states. By using conformal mapping & = —%, we get

annihilation operator in the form
a €

) (A.1)
0

where ¢ € C is a complex parameter. When ¢ = 1, this operator reduces to the super-
symmetric annihilation operator defined in equation (5.1). For & = 0, it simplifies to
A, = 1® a. The operator A, satisfies the commutation relation [A,, ﬁ] = wA, and has

an internal commutation structure

- L+lef 0 ~
[A, Al] = =1 +|efos.
0 1-JeP

In particular, for £ = 0, this reduces to [Ag=o,Az:0] = T, while for € = 1, it yields
[ASZI,AZZI] =T-N ¢.The supercoherent states |a),., are defined as the eigenstates of

the supersymmetric annihilation operator A,(A.1),
As|a>scs = ala')scs- (Az)
These states can be expressed as a linear combination of two basis eigenstates

|a'>scs = Cl()lCZ)b + C]l&)s,
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where the basis states are given by

o) _ 1| —&la)
), = , oy = — ) (A.3)
o 0 ¢ V2| o)

However, these basis states are not orthogonal, a new state can be defined as
la)s = Aa), + pla),,

which is orthogonal to |@), when A = gua. Thus, the orthogonal set of states consists of

la), and |a)s = p(eala), + |a),) . After normalization, the orthogonal states are obtained

as
2 ’
o | la) T gala) — ela)
|A€>b =e > |As>s ) p——
0 V1 + el o)

It is observed that the state |A.), does not depend on & and is determined solely by the

Glauber coherent state |a). Therefore, the index ¢ is omitted for this state.

A.1l. Coordinate and Momentum Representation of

e-Supersymmetric coherent States

Since |A.), = |A),, their representations are identical, it is sufficient to perform
calculations for |A.),;.The coordinate representations for the e-supersymmetric state |A),
provide the following wave functions. For the bosonic component, the coordinate wave

function is given by

a2

V2e '
——e

1+ e 7

b(XAg)s = %) eT(V2Re(@) - ), (A.4)
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while the fermionic component has the form

Lt ey

=5 e
I+ e 7/

w1

XA = (A.5)

From these wave functions, the corresponding probability distributions in the coordinate
representation can be derived. For the fermionic component, the probability distribution

is

1 1 2
Ag)s ?= — o (v V2Re@) ’ A.6
rxlAe)s” = 77 P \/Ee (A.6)
and for the bosonic component,
e 1 2 2
|b<x|A£>x|2 = i_e—(x—\/iRe(a)) (X - \/ERe(a)) . (A7)

1+ el r

Similarly, the momentum representations of the e-supersymmetric states |A.), can be cal-
culated based on the momentum eigenstates. The bosonic momentum representation for

|Ag)s 18

_le 2
V2e e _(pHi) 2
e e

HPIAL), = ’\/ﬁ e UV e (p - V2Im(@)). (A8)

and the fermionic component in the momentum representation is

_lai® 2
L e fpug) 2

f<p|Aa>s =

The probability distributions in the momentum representation for these components are
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1 1 —(p- m(a ’
B v A (A1)
2 _ 2lef? L ~(p-V2Im@) ¢, _ \2 2
l{PIA)s|” = T+ 1eP \/Ee (p — V21Im(a))". (A.11)

A.2. Uncertainity in Superqubit state

To calculate the uncertainty, it is necessary to determine both the mean (x) and the

mean of its square, (%*). Since the operators £ and p are given by

1 AL (W
\/2—(a+aT),P=l\/§(aT—a),
w

we find that the expectation values in the states |A.); and |A), are

=
1]

a+a
V2w’

~ ~ . ,(1) _
s<A8|p|A£>s = b<A|P|A>b =1 E(al - (l’),

S<A8|5e|A8>S = b<A|£|A>b =

where these results are independent of €. Additionally, we have the following off-diagonal

elements:

R &
{AelRIA)y = ———,
V2w(1 + |g?)
N . €
s<A8|p|A>b =l
V2w(1 + |g?)
R P
p(AlXIAL)s = ————,
V2w(1 + |g?)
b<A|ﬁ|A£>s =i

E
V2o(l + &)

133



Definition A.1 The state |a; €, 0, ¢) s represents a superqubit state given by:
0
la; €,0, s = cOS —|A>b + ¢ sin = |A8>v, (A.12)

and is parameterized by points on the super-Bloch sphere (0 < 0 < m1,0 < ¢ < 2m). For
e = 0, this state is a direct product of a single-qubit state |0, ¢) = cos gIO) + ¢ sin gll)

and the Glauber coherent state:

a; €= Oa67¢>5w |6 ¢>®|Q>€ 2 .

If we calculate for the state in (A.12), then the expectation values of x and p for the state

la; &, 0, ¢) s are

< 6,413 6.6) a+a sin 6 (sew + ée"‘")
ses\&5 E, 0, QIX|QE,0, Q) scs = - 5
V20 2w + e 2

ses{ @ €, 0, Blpla; &, 6, P)ses = l((w @) +1i

w _sinéd (sei“’ - ée‘i“’)

2 \JT+1eP 2

To calculate the mean values of the operator 22 in the states |A), and |A,),, we start by

representing £ in terms of the creation and annihilation operators & and &' as follows:

2
2 ( ! (a+a*)) (( N2+ a2 +2“A+1)
P o= (\/7( —a)) ((&T) +a —2aa—1)

Next, we evaluate the mean values for the terms in these expressions. First, for the state

|A),, we get

WAlRPA), =a® , AI@ 1A, =3, p(AlaTalA), = lef.
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Similarly, for the state |A,); , we obtain
2 2 2 2 ¥ 2 lel?
KANCIA)s = @7, (Ad@)IADs =&, (Add"alA,), = ol +

We also calculate additional cross terms

(Aga?AY, =0, (Al@hH?|AL)s =0

A -2 . —2ae
(AN@)IA), = ———,  JAR7IA), = ——
N NiEpe
At A —a€ N —ae
s<A€|a a|A>b — b<A|aTa|As>s =

VI+le? Vi+ el

By using above relations, we can expand the mean of £ in |A), as

H(AIR|AY,

|pAl2> + @) + 2a"a + 114), ]

[(c‘x+a)2+l].

[\ [\ [\®]
=8| -&|-

1+ lel*

| (A1), + WA V1A, + 2 1(Ala"alAY, +, (AIAY |,

For the cross terms in |A), and |A,), when calculating the mean value of the %> operator,

we find

. Lo
WA, = o |@+ ) +1]
w
1| 2lel?
) _ s 2
S(AclXNA)s = 0 »(a +ta) +1+ T+ eF
—-& a+a
KAIRA), = — —)
W\ 41 + g
-&| a+a
(ANRIAY, = — —)
W /1 + |gf?
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and for the mean value of the p? operator, the cross terms are given by

) _ Tw =2
WAPPIAY, = —[(@-ar -1
-w| _ 2le)?
sAsAzAss = - 2_1_
(AclplAL) ) »(a a) T+ 1P
—w [ 2e(@ — @)
KAIPPIAL)s = — —)
2 1+ e
—w | 2&(a — @)
(AP?lAY, = ———————)
2 (V1+leP

Then, the mean values of the operator % for the super qubit state |a; &, 6, )., is expanded

by

0 0 0 .
scs(a; &, 9, ¢|5€2|a/, &, 0’ ¢>scs COS2 5 b<A|5&2|A>b + COS E sin §€l¢ b(AljezlAa)x

0 . 6 _, 0
+ cos3 sin Ee—’q’ (AG|R2A), + sin® 3 SANRAL,

lef?

1+ gl

| 5 1 .,6
= %[(a+a)+l]+asm§

sinf @+«

20 T+ [P

(€' + 8e™).

Corollary A.1 The mean values of the operators 3> and p* in the super qubit state

la; €, 0, )5 are given by

@6 0.0P00 60,0 = o [@rar 4]+ Do 8|
SCS Lt A 9 &y Yy RYor) 2w w 2 1+ |8|2
1 +
— sing—2¢ (se"” + &e "”) ,
w 1 +ef
and
. A2 —w ) ., 0] 2lel?
scs(aaga 9’ ¢|p Ia, &, 9’ ¢>scs 7 [(CL’ - (l’) - 1] + 3 Sin 5 T |g|2
w
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Using the previous calculations, we determine the dispersions for the superqubit state
s €, 6, P)ses

2 ) i _ is )
(A)%)%Y = L + l Sin2 g |8| _ L sin“ @ | e’ + ge
2 2 ) i = it 5
(Aﬁ)%m = + w si ZQ lel W sin 0 [ee Ze
T2 T2 2w leP| T 2Tl | 2

Corollary A.2 For the superqubit state |a; &, 0, )., the uncertainty relation is expressed
as

(AR) s (AP

L 8][4 (| et
2 21+ 1ep 2 21+ 201 + [eP)
sin*@  [82e%¢ — (8)%e724

b 4(1+|g|2)2[ 4

where w = 1.

This expression is consistent with the uncertainty formula in Equation (5.27) when & = 1.

For 6 = 0 and 8 = «, representing the states |A), and |A,.), respectively, we obtain

o ]
(AR); (AP); = 7

1 e Y
AR (A ==+ ——| .
(AL (A9); (2+1+|e|2)

The first result is independent of &, while the second is bounded by

| =

a1 |ef*
< (A%, (Ap), = 5t

3
< Z
L+]er ~ 27

depending on || — 0 or |g] — oo. In the limit |g] = 0, the arbitrary superqubit state
achieves the minimum uncertainty

. . 1
(Ax)scs (Ap)scs = E
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A.2.1. Coordinate and Momentum Representation for c—superqubit

state

The coordinate representation of supersymmetric coherent states |@; €, 6, ¢),.; can
be expressed in terms of fermionic and bosonic components. The coordinate representa-

tion of the fermionic part of the supersymmetric coherent state is given by
0 i . 0
7410 £, 0, @) ses = €08 5 ({xlA)p + 7 sin o (x|A)s,

and expanding this expression, we get

_lef?

1 e 2 0#_(«)2

e?sin —e7Te
i+ (7' 2

f(Xla’; &,0, ¢>scs =

The bosonic component of the supersymmetric coherent state in coordinate representation

can be expressed as
0 L. 0
px; 8,6, B)es = €08 5 p(x|Ay + ¢ sin 5 1 (xlA),,

which can be simplified to

V2e
V1 + gl

=
I\)‘N

lo2 2
- 2 0 : 0 —(x—
p(Xla; €, 0, @) ses = ¢ 12 e? |cos = + ¢ sin =( V2 Re(a) — x) |e ( ‘/5) .
/A 2 2

The momentum representation of the supersymmetric coherent states |@; €, 6, ¢),.; for the

fermionic part is given by

9 9
Pl 2,0, @) s = cos 2 (plAY, + ¢ sin 5 K{PIAL)s,
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which can be written as

lof? 2
1 e .02 —( +ii)
é?sin—eze V) |,

1+ el | V2r'/4 2

f<P|(l; &, 0, ¢>scs =
For the bosonic part, it is expressed by
0 i . 0
p(Pla; €,0,¢) s = cos 2 p(PlA)p + €¥ sin 5 p(PlAc)s,

which expands further as

= pz 0 2 ) ] 9 B i 2
pla; e, 0,d) s = g T [cos 5~ (L] ie sin 5( \/Elm(a) -p)le (p+ ﬁ) .

e
/A V1 + e
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APPENDIX B

PQ-COHERENT STATES

B.1. Inner products of pg-coherent states

In this section, we explore the inner products of pg-coherent states, which are
crucial for understanding the overlap between different coherent states in a given basis.
These inner products form the foundation for calculating various physical observables and
expectation values in the pg-coherent state. The analysis of these overlaps also provides
insight into the behavior of pg-deformed systems, revealing how quantum properties such

as uncertainty and coherence are affected by the deformation parameters p and q.

Proposition B.1 The inner product of the states |§> and |%> is given by the following
pq prq

expression

Ble\ _ B %
<z‘;>pq = Eel,q. (Bl)

Furthermore, for the case B = a, the inner product becomes:

), -5
Al - Au

where A and u are real numbers.

Proof The inner product between the states is computed using the differentiation oper-

ator ng, which acts on the coherent state overlap. Then, we continue with substituting

the known result for the inner product and it results as following

B|a o [Ble o t_B %
</_l ; = qu /_l ; = quepz = ﬂep‘;.
rq Pq
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O

Lemma B.1 The inner product between the states |ﬁ7> and |%> can be computed as
pq pq

| 1 p% o &
<’%‘_> = /l—eg,;“ +q—/1ﬁze;’; (B.2)
K oy M (A
o af

/l/lepq + p(/l’u)zepq. (B.3)

Proof  The inner product is computed by applying the derivative operators D, and D’zq.

First, by applying the derivative operator Df,q to the exponential function, we obtain

F10V oo (1702 = o (@02
<I; pq:qu ngepf] :qu @el’g :

By using equations (3.6) and (3.7) for the action of the differentiation operators, the ex-

pression becomes

B a'> 1 p% afB %
—l—) =—e, +q s
<ﬂ wl,, ™t

or equivalently

B cy'> 1 2 af o
=—e, +p er.
< by AT (g

This completes the proof. O

Corollary B.1 When 8 = a, the inner product between the states simplifies to the follow-

ing forms

o |o (g 0, o

—|— = —|—lal"e,; +e,," |, (B.4)
< A ‘ H >pq Ap (/l/l e r
p ) lal qﬁ

= E(Elal ep +ep | (B.5)
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B.2. Orthogonality and Normalization of |A,),, and |A;),, states

To solve the eigenvalue problem in Eq. (8.2), we expand the state |A),, in terms

of the basis eigenstates

0 0
{|0>pq:[ | >pq ]’ |bn>pq:[ |i’l>pq ]’ |fn>pq:[ ]},
0 0 In—1)pg

then, the state |A),, can be written as

|A>P(1 = aOlO)Pq + Z anlbn>pq + Z Cn'ﬁt>pq- (B6)
n=1

n=1

Substituting this expression into Eq. (8.2) gives the following relations among the coeffi-

cients
a" a,n—l a,n—l
Cp = (1 ,

—C1 [I’l] !7
Py g Ay ¢ Tl

and this leads to the following expression for |A),,

a, = a,

1) ~q1%) ~ ~
|A>pq = Clo[ p()pq + (g |a1;q M= aOlAb>pq + CllAs>pq-
q/r4q

Here, we define the states |A,),, and |A,),, as

|Zb>pq E[ |;(>)pq ]’ |Xs>pq E[ —Q|E>pq ]

a
|E>pq

This representation allows |A),, to be expressed in terms of the modified basis states |Zb> g

and |A,) »q>» Which are defined by the parameters a, p, and g. To examine the properties of
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the states |Zb> pq and IZS) »q» We calculate their inner products as follows

o
2

pq<Ab|Ah>pq = eppq s
— 1 el AN
2 q
pq<As|As>pq = E (pzq |a/| e;;ql + 652 ) + equ ?

which can also be expressed as

— L1 o 85 ey e
_ 2 p*q roq q
paSAslAs) pg = ? pqzlal €pg t€pg | T €pg-

From these calculations, it is clear that the states |Xb> pq and IZS> pq are neither normalized

nor orthogonal, as shown by the non-zero inner product: ,,(A,|A,),, # 0.
B.2.1. Orthogonal |A,),, and |A;),, states

To construct a state orthogonal to |Xh>pq’ we introduce a new state defined as
|As)pg = ylgfb)pq + ,3|;(s>pq, where the coeflicients y and S are chosen to satisfy the or-

thogonality condition pq<ASIZI,> pq = 0. Specifically, let

= ol lot?

a e~

— p=q — P
Y=C5€4, B=cCep,

with ¢ being a normalization constant. This yields two orthogonal states:

{1,
|Ab>pq =Cp s
and
a rq|a P a
_zepq _> - qepq |_>
|As>pq = ¢, 14 P‘Iﬁ P4q
2
el

Thus, these states |A;),, and |Ay),, are orthogonal, with ,,(A,lA;),, = 0.
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B.2.2. Normalization of |A;),, and |A;),, states

For normalization, the first step is to compute the following inner product

lof?  lo?

W2N\Z | 2 ,
2| lal® ja|a e Yo ja|a
(AAY, = |cs|2[[epzq) LY e 2(2] <)
Prq Pq prq p4 p p q pPqg ~prq p2 p pq g

%@q_a/a @2 ala %zaaf
S BRI L) ) (E) )
Pe\pqlplpq Pq\pq/lpq q14/ pq

This expression represents the full inner product in terms of the states involved, using the
results of previous calculations for the inner products between states which is derived in

(B.1) and (B.2) . An alternative form of the inner product can be written as:

s\ o (BB (Y e
2
palAslAs)pg = 1G4 [(egqq) F (ezfq ) + (615,1 ) [e;q )

212 2 2 2 2 2
S8 1 (o B ) g (ep 2
T || 3 7€pg T €pg |~ €pq €pg I €pq ||

P2
Then, the expression must satisfy the following equation:

W2\ (o W2\ e
j— 2 ]72 qz 132 pzz]
el AslAs)pg = 1C] [(epq ) (epq ) + '3 (epq €pq

of e (B (Y
e e o)l 1=

From this equation, the normalization constant C; can be computed. Solving for C;? is

achieved by using different form of inner product given in (B.4) and (B.5),

A I A W IV Ry (g i )
-2 _ P q r*q P P q 21 rq
¢~ = [ €pq | |€pq T I?epq + P €pq |P|€pq ||€pa | — 4 |€pq ]
laf2 laf2 1 k2 2 el o2 lal? 2 \2
AR Pra 7l L i O e | DY 7
(epq ) (epq + l?epq ) + e €pq |49\ €pq ||€pa |~ 4 |€prq

S
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Definition B.1 The normalized states |A),q and |Ay) g,

[ o)
|Ab>pq =Cy PP >
0

lof? [
2, = 2
ngq%|%>pq — epq q'?,_()pq
|As>pq =C;

laf2

e
€pq |§>pq

where

p
N - ST A NI G AV B \?
(eppq ) (elfﬂl + ?652 ) + P €pq q(elfq )(e;qq ) -q [e;;qq) ] (B.8)

C,? = el, (B.9)

form orthonormal basis for |A) .

B.3. Expectation Value

In quantum mechanics , the expectation value is the probabilistic expected value

of the result of an measurement.

Definition B.2 Let A be an operator on a Hilbert space and |¢) is a normalized state,

then the expectation value of A in the state ) is defined as
(A) = (A), = (plAlp) (B.10)

Proposition B.2 For all o, € C, the transition elements involving the annihilation op-
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erator a,, between the states are given by the following relations:

A

Qpq

P‘I<§

&

o)
M1 pq

H
M ! pq

A

Qpq

’

)
H 1 pq

A

Qpq

(5

m,
K1 pg

For the special case where B = a, A = pq, and u = p, the relations become:

a b
;epq
(rﬁ 2[8
(p +@)eps +q° 20 epq
(yﬁ Zﬁ aﬁ
(p+q)epq +p? e — 3¢
1 p% > 4 5
—e,,) +Ba—se);
1 pd +B A2 Pq
Lo - p &
- + Ba—e,,
Py pg TP 42 Pq
@ 5
/Luz r4q

laf?

(B.11)

(B.12)

(B.13)

(B.14)

(B.15)

(B.16)

’ ’ 2
a |, |a a
<p_q a p_q> = P [p (q+p)epq + Ialzelﬁq" )
p mz R “2"22
= p q [C[ (q+p)epqq + |a'| e;;q J
’ o2 2 \a@
<g a i> — 1 e|1’|<1 4+ — | | p q
pl " pql g pa T g
11/2 (Yz
L b
pg M prg
a @ a? L
<_ &Pq _> = 3 261]7)1;'
pq Pl pq P q

Proof The first relation follows directly from the definition of the pg—annihilation op-
erator. We now compute matrix element denoted as equation in (B.12). Using the action

of the annihilation operator from relation (3.30) gives following

,B'A @ 3 ﬂ' qaa' 1| pa
Pl Py R i s Py A
H ! pq KR pg  HIH Tpg

/ ’ 1 ’
qa ﬂ_‘“_ o1 ﬁ_'&
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and after putting the inner product relation from equation (B.2), the matrix element be-

comes

B - B39 -)
A ] g p A p Au\ A

B 25
04 p— ﬁ
= W(P + Q)epc;# /12,u epq'
Next, by symmetry, the matrix element in equation (B.13) can be derived similarly. Ap-

plying the action of the annihilation operator from equation (3.31) and alternative form of

inner product, we obtain

G5, = GG, %))
_apq_ —_— | +__
1 M pg ANt lpg  pl e Ipg

pa ﬁ"d Ll ﬁ"pa

B3 paf 1 q‘Zﬁ ap % 1 (ag pZ
- epg +P—epg ||+ (5 €pa
u Ap Au\ap "

a qE , B o
= —(p+qe,) +p——e
Au? P+ ey +p° A3 M

Then, the third expression can be written as following sum by using expansion of

the states,

Apq

> B 1 @ [m+ 1],
[Z n T, ')[_Z) um\/[m]pq!]”Q<nlm>”q’

(Ba)"
_ Z oy inl [n+ 1] .

(rl),

and by applying the relation [n + 1],, = p" + g[n],,, this becomes

Bl, | _ 130(,Be) 1 " (B

(7 u>pq M[Z(p/lu) [n]pq!) Z(Z(u) [n—l]]
1 ke i

= MP +ﬁa'/1712 Pq-

A

Qpq
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If the alternative relation [n + 1],, = ¢" + p[n],, is used instead, the expression becomes

providing a symmetric alternative form for the matrix element. For the last equation,

while using the action of the pg—annihilation operator, the expression is written as

<¢i’apqz> :g<€‘g> _a(a fz)
A MUlpg  p\ A plpg o\ Al

by applying the inner product result from equation (B.1). This concludes the proof. O

Proposition B.3 The expectation value of the annihilation operator a,, in the state |A) ,,

is given by the following expression:

paSAslapglAs)pg = —
Proof First, while using the expansion for the state |A;),,, the expectation value can be

expressed as

o2 o2 /
“ [0 [0 2, 1 qa |, (04
AdlandAdpy = 1CF] ( )— o) = endety Do)
pg\slpglAs/pg 4 | P\ 7| pg e
"" of? ga | a lof? ? s a
— eliel <—A —> +(e” ) q <—€l —>
PP p2 \ pg P pal "lpqly,

+

)¢

The matrix elements of the annihilation operator a,, used in this expression are derived
from the proposition (B.2), where each term of the expectation value corresponds to spe-

cific transitions between states. Alternatively, simplifying the terms, the expression can
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be written as

paSAslpglAs)pg =

|w|2 |a/|2 \a|22 @ a @

|C] [( ) o (pe;q)+(e;q) (Ee;q)
@ 2 @ |a|2 ) |a\2

4 ) q [ o (q (p+@epy +lalfe), ]]

(e
| |2 Ia\

P‘I

Lai |‘r;|2 q (- a? % o}

- e (ap_q +a(pqepq e ])]
%2p+q¢ 1 % 1 e
- codf {58 1 -5
ol? lo? lof? loi?
+|a| ( ! (ei’,’zq) elg + #(e;;) epzz
1 (Y e £\ e
- [] e ~ (] et )|

To simplify the expectation value of the annihilation operator a,, in the state |A;),,, we

begin by combining terms as follows:

pq(A |apq|As>pq = |Cslza (gl(|a|2) + |0/|2g2(|a/| )) >

where the functions g, (|a|*) and g-(|a|?) are defined as

1 \n\z 2 |a\2 \a|22
‘I
g epq €pq +p € |
1 |w|2 2 |a\2 o2 \2
2 e 2 e _ 2 ep2q
Pepg € —4q |epq | |-

g1l

By using the normalization condition from equation (B.7), the resulting expression for

the expectation value simplifies significantly. Applying this normalization condition to

the calculation leads to:
pq(Aslapq|As>pq = -

Thus, the expectation value is simplified to the final form

Corollary B.2 The expectation values of the operators X,, and p,,, defined in equation
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(8.4), in the state |Ay),q are given by the following expressions:

R 1
pq<As|qu|As>pq 5 \/ERC(CL’),

A 1
pq(Aslppq|As>pq 5 \/ilm(a)

These results show that the expectation values of the position operator X,, and the mo-
mentum operator p,, are proportional to the real and imaginary parts of the parameter

a, respectively, scaled by é V2.

B.4. Uncertainty(Deviation)

Definition B.3 The uncertainty of the observable A is a measure of the spread of results
around the mean (A). It is defined in the usual way, that is the difference between each

measured result and the mean is calculated.

(AA), = (A%, — (A). (B.17)

B.4.1. Uncertainty for |A,),, state

In order to find uncertainty for state |A;),,, we need to have following proposition

Proposition B.4 Let a,, and at pq Tepresent the pg—annihilation and pq—creation oper-

ators, respectively, and A, u, a, and B be complex parameters. The following identity
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holds:

pq<§fl§q %>m = Z—ze;‘;, (B.18)
-2

o (B.19)

pq<§‘;pq&pq %>pq = %egf (B.20)

pq<§ &qu}lﬂi %>pq = Zt?;"'pﬁ_zeﬁgv (B.21)

ej,;% + qB—ae[%. (B.22)

Proof The first two cases follow directly from the definition. For the third case, we
may proceed to prove the final case, as it can be derived by taking the Hermitian conju-
gate.Then, we start by evaluating the matrix element by applying the inner product from

equation (B.2),

and we can derive an alternative form of the same expression by using (B.3),

P4<§

Aped pg|—) =€, +q—e
ra% pq Pq rq
H A

a> a5 Ba %
rq

oy A2 A2 I
Proposition B.5 Let X, and p,, represent the pg—position and pg—momentum squared

operators. For the state |Ap) ,q, the expectation values of fcf,q and ﬁ]z,q are given by:
2\ p? ra

) 1{a*® o2 o 2 o
A A = 5| T3+ T+ @ DI e e ||,
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and B
1 @ & o> el (e
A2 —_ J
pq(AblppqlAb>pq - E (_1? - ]? + (q + 1)? + eplq eppq .
roo o compute the expectation value of x  for the state |A,),,, we first express it in
Proof T pute the expectat lue of &7, for the state |A,;),,, we first express it

terms of the creation and annihilation operators. The matrix element can be written as:

M -1 (L;szi;apq)z O |Q>
pq(Ablﬁ;qu)Pq = (e,f;) (pq<g| 0 ) ’ S o \2 e
P a’ pgt+a
0 pgtapg 0
(#5=)
A N2
- (@ (_+] )
p V2 P! pq
AN
- 48] (e, -
2™ quppq p pqppq
+ <g aAquapq g> “'<g &pququ g> )
P P! pq p P/ pq

-1
1(a* o a2 e Lf
= E(?+?+(q+l)?+ep’; eppq s
and substituting the given relations from Prop.(B.4) to the expression yields
1@ o o ek
Al A == | =+ = +(@+1D)— +e,) |e, .
rq Pq Pq 2 pz p2 pz rq Pq
By following similar steps for the momentum operator ﬁf,q, we find:

- o2 -1
v +(g+ 1)|a|2 + e% (e’lz)
Y rq | ¢pq

P p?

A 1
pq(Ablp?;qlAb>pq == (_ ?

2

Proposition B.6 The uncertainty relation for the state |Ay) ,, is given by

iAol (D) WAsdpg = Aol (g 1An)g

1 w2\ ()
27 ((CI - Dlaf* + p? (epf/ )(epp; ) )
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B.4.2. Uncertainty for |A),, state

Before proceeding with the calculation of the uncertainty for the state |A;),,, it is
necessary to first determine the transition of the operator fcf,q. This requires deriving the

following relations

Proposition B.7 Forall o, € C, the following transition relations hold for the operators

apq and a,, in terms of the parameters p, g, A, and p

ﬁ/ ~2 |la B af ﬁz aﬁ
<j a' g ;>pq = 2 P+ ey | + ¢~ JEm ——€p (B.23)
2. af n2 (yﬁ
= ﬁ ((p + q)eq w) p2§3# epq (B.24)
’ 2 @
<ﬁ_ 2, ﬁ> 45 % (B.25)
A M1 pq A
| 2 B %, @ ot
5 - = B.2
</1 a pqap‘] /J>pq (/l/.l)z pq o /l/.l ( 6)
2 (t,B aﬁ
= Pt (B.27)
H H
ﬁ/ a aﬁ a2ﬁ jﬁ
<I ApgQ' pq /_l>pq = _(CI + P)ep + qz ) €pq (B.28)
B 5
= —(q + p)epq +p’ W) €pq- (B.29)

Moreover, for the special case where 8 = a, A = pq, and u = p, the relations become:

a|~2 |a alel* ¢ @ o2

—|a® —> = ert + ——=(p+qey (B.30)
<pq Miplyg  pq ™ PP e

’ 3 lef?

a|., a> o

N P 1 L (B.31)
<pq Pplyg  ptq ™

o o' ala? % la?

—la' ,.a —> = e, +—ep (B.32)
<pq P pleg Pl " p2g ™

a a ala)? ‘,“z',, “"2

—\ayat . |—) = y + —(q +pleyy - (B.33)
<pq re p>pq p* Pq
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Proof We begin by considering the first expression, which can be expanded as follows

by using relation (3.30)

A, A,

:
a’ pgQ' pq

<% %>pq

pu ﬁ_"i N @’1’

TIR
~~—
<
<
Il

if we substitute the inner product from equation (B.2) into the above expression , then this

substitution results

~2
pPq

g> _ L%, ALY N B
11 pg A\ T Q| T A\ P

B p* ﬂz nﬁ
ﬁ (P + Q)ept;ﬂ + q2 /lf;luepq-

Applying a different formulation, we obtain

%>m ) <% %>pq

G3n  Bu ﬁ/'a, 7 Qﬁ‘d
= p— T2y 5 E

B n ryﬂ 2 af
(B3) pﬁﬂ eq ® i p ap ol LM q/J’ e,’;j“
2\ TP Qe W\ au

_ 5
= £ ((p + Q)epq )+ P’ /1’%8 €pq

A A

Q' pqgQ’ pq

For the second expression, we start by using the properties of the operator 42, which

ra
allows us to rewrite this expression as

o’ B
« ,3 (L
0 5 36pq

pq pq

In the case of the third formula, we begin by evaluating the matrix element. First, we

rewrite the expression using the definition of the annihilation operator and action of the
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creation operator which is defined in equation (3.30) as

>
Al pg
2/l,u

i i)
Alplpg AN Apl pg

- )
(B.1) qaﬁ ¢ a pf

Q2

a/> a/<,8' A
s = Z(E|g
KT pq pu\a

a_B<ﬁ’

pq

Alternatively, applying relation from equation (3.31) follows

D, = )
- = (Elg |=
H 1 pq p\Aa Al pq

aff ,8"04 « | Bla
AN Al pg A\ A g
(B.1) @B L« g%

E p(/w)ze;fl + Eepq .

pPq

Next, we turn to the last expression as applying the relation from equation (B.2) and this

yields

3

5

A

A A-’-
ApqQ’ pq Qpq

a B a
R 1
M7 pq z KT pq
(3.30) <,8 ‘a > <ﬂ ' a/>
= qgal{—|—) +{(—=|p—
Al pg ATl pg

1 (p2 aoff 2 a pZ
= anga e+ o)) e r s
_ @ PE . LB %
= E(C[ + p)epqy +q (/lﬂ)zel’l‘}'
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As another option, by using the inner product result from equation (B.3) after applying

(3.31), we get

q

(B.29) - <i

(0

M >pq

N AT
pa’ pq

3

B a

aliml),

’

A

a

pl Pqﬂ

pa<%‘%>pq " <§‘q%>m

. 1 { 4% g o o
W pa (e + p L))+ gt
o % 2B
= E(q+p)€p;“ +P2(ﬁu)z€3‘é

O
Proposition B.8 The expectation values of fcf,q for the states are given as follows
o2 —2 2 2 W2\ 7L e
al., |@ 1 o> @& o | e der
Glsle), = 3 (7 T o] o) e
=2 2 2\ |l 2
al,., |a 1o « la|”\ “r lol”
<; qu ;>pq = 5 ((E + F + (q + 1)F) e;q ol ep’; s (B35)
<i 52 g> = Y GieP 1 o + alaf? + qalap) et (B.36)
pal ™™ply — 2\piq 1 . '
1 _ la2
YR ((p + @)@ + qa + (¢* + pgaes ) (B.37)

Proof The first two results follow

easily from Eqs.(B.18) — (B.22). For the third expres-

sion, we proceed as using the decomposition of fczq in terms of the creation and annihila-

tion operators

1

2

<

1

a
rq

a
P

2
*pq

hn

pPq

’

a
pPq

(01

p

a a

) (s
P! pq pPq

A

p pPq

~2

~2
i
Apq

al”]

{

’
(0

>Pq
(0

P

A

¥4 a4 ot
a’ pglpq ApgQ' pg

)

2
| P 3 2 N~
(T(aflal +a +alal” + galal)e,,

2\p*q

P’q?

laf?

((p+ @)@ + ga + (¢ + pgaess

)
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Next, taking the Hermitian conjugate of this expression, we get

1
2, =3 =2y 2
E(;}T(alal +a +alal” + galal e,

lai?

\n\z )

(B.38)

Proposition B.9 Let a,, and at pq Yepresent the pg—annihilation and pg—creation opera-

a . .
|7)pq are given as follows:

2

ﬁ_/\z a ( y N ) aﬁ+ 3 3,8 ap
g a,, ol P +pg+q €pq 2 epq
2 ( 4 N ) Zf + 3 3ﬁ B
P’ +pg+q ep 2 epq
Bl~ . | ,322“" ap 1 2%
<I a’ g0, ;>pq p (/l,u)-”epq W )2(p + 2pq)ep + Eemﬂ
ﬂz 2 ar/f ﬁ Otﬁ 1 pZLB
(/l )3 ;,Z + (/l )2 (q + 2pq)epq" + Eepq/w
When a = B and A = u = pq, the following holds:
CZ, " CY, B 2 Ia\ 302|Q|2 &
o ! o e A S el
2 la 2 2 \tvl
a - la|® 5=
= (pq)4(q pg+peny +q ) e
s | al' 5, lof o o
<pqapqapq pq> = pque;qq (P+2 )e ’q+ qzeé;
| a|4 “2"22 | alz |§x|2 \a|22
= p6q38pq 4q3(q+2p)el’,"q T3 €pq -

’
Y
[7 >P¢1

and

(B.39)

(B.40)

(B.41)

(B.42)
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Proof  For the first expression, we can rewrite the matrix element by using action of a,,

as in Eqn.(3.31),

), ol
—_— __a —
p\a H T pq

pa Blae\ , q2(B|q@
fi), - S5, - e Gl

rq

%>M - </l

(3.31) <

Now, using the inner product results from (B.1) and (B.3), we substitute the known forms

of the inner products:

B .2 a/> p2a/2( 1 q?ﬁ af £\ @ 2 45
—la,,|— = epy TP —=€pg |t —=(pg+q ey
< M1 b w2\ ) "

2 op 3. .30 of
_ 2 2\ 9% a'p L
= Tm(p +pq+qHe,y +/12—#4€;/:1'

For the second expression, we follow a similar approach, but now using the alternative

form of the action of the annihilation operator (3.30):

/ A2 7’ _ / . ’

B @ qa ﬁ a 1/6], PCV
1| e - T\ a,,q j o

M/ pg H 1 pgq

= S )
pq Al pg
2 Q) (yﬂ
@By g (1 ps o?
- ,U2 (ﬂﬂe”qy e )Ze”q)Jr 4 2 PO+ P
2 gap =

= (p +pq+q )ep”" + JEE ——e€p-

Also, the hermition conjugate above equation gives following

’ 4 —2 3 3
a ~2 ﬁ arﬂ ﬁ (tﬁ
<'u af z> = (p +pg+q )ep + FOr epq
_2 (rﬁ 3 3ﬁ

= (p +pg+ et + 4 T €py-

158



Z)
rq

which involves the product of the creation and annihilation operators. By applying the

For the last expression, we begin by evaluating the matrix element < at palpg

action of the annihilation operator from equation (3.31), we express the matrix element as

0/> ( ﬁ/'pﬁ qﬁ|1)(pa a/> 1qa> )
", pq__"'pq__ —\|=) Tl
M1 pq A\ T lpg  plp g

zﬁaﬁ‘ Bg'@
rq

q

(e

; A
a’ pglpq

%’3‘_ %'ﬂ
Pq

Then, we apply the corresponding inner product results from equations (B.1) and (B.3),

which simplifies to the following result

(Au)* \ 4 ()2
ap qiﬁ 1 7%

Pyt " e

ﬁz 2 aﬁ QB 1 qzwﬁ
p (/1/1)3% (/l,u)z(p +2pq)epq +E€pq .

Bl~ . | Ba ® g af3 q“ﬁ
<z a¥ pglpg _> = P2 —,8a/ pqg T ep + pg——=ep,
Pq

For an alternative formulation, by applying the action of the annihilation operator from

equation (3.30), we can express the matrix element in a similar form

Bl . | _ B' 9B pﬂ 1\ (ga|a\  1|pa
2| paleal - = pq__"'pq_z =) T
H T'pq KT pg KT K T pg
_ 213“ B '_ é‘lﬂ
Pa
e
pq AN AT L pg .
(BB 5 ,3 ‘jf p‘if af p(;ﬁ
= q o )2 (—,8 aep, + e, )+pq(/l 2 €pq

B
aﬁ pﬂ,u 1 pzjy

+ + —e

(/l,U)2 €pq /l,u prq

2.2 (rﬁ ap 1 2(715
- PPk op (@ +2p9)epg" +——epg”

A
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Thus, all transitions are derived, completing the proof. O

oy . o, A2
Proposition B.10 The expectation value of the squared position operator X, for the state

can be expressed as

(v
Pq

)
'qu

’ 2
a > 1(( o 5, 5 el |a|4) P
— = ~||m=@+a)+——+ e (B.43)
P! pq 2\\ P3¢ pq°  p*q®) "™
Prpa+q 5 el AW
+ (T(af +a)+p3q4(p+2q+(p+q) ))e;,’qq

l+p+gqg e";f';
prq¢ )"

Proof Now, we compute the expectation value of the squared position operator fcf,q for

the state |Z—q>. The transitions for each of these terms are derived from Proposition(B.9),

and substituting the relevant expressions gives

’

<a' - a'> 1(<a n2 a/> +<a’ 0 a/>
— X5l — = [{—la",,|— —a,,|—
ral " pql g 2\\pql "Ipql g \pql "1pql g
4 <ia% ; 1’> +<1& i 1’> )
pal” " pgl g \pgl ™" Mlpgl

1( ( e, o et et 4
= 3 (" +a)+ + el
2\ pg° pe® P

2+ pg+q? 2
+ (p—p’:;]4 T (o? +3) + 1|963y|q4

l+p+g e%z
p¢ |

laf2

(p+2q+(p+ q>2>) et

+

O

After all, the expectation value of the squared position operator fcf,q for the state

|Ay)pq 1S given by:
2 2 @2|a|2a2a o gl , |
(AR A g = |C‘c|([€p”) —<—fc —> —eble —<—5c —>
prq pq prq 14 p4 p prq p g prqg ~pq p2 p rq pq g
@%qaa'za' %zza'za
_ P _<_;c _> +(ep)q<_fc _>
PP p2 \pgl P pgl g T pal " pql g
ol \2
Y o a
¥ [e;;) (3le.f2) )
q q /! pq
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This result follows from the previous calculations of the expectation values for the terms

+

»q» and their corresponding matrix elements, as derived earlier. The final

involving a,,, a
expression incorporates those results to evaluate the expectation value of fclz,q for the state
|As),q, where the exponential factors and inner products have been computed from earlier
transitions. This calculation is important as it will help to determine the uncertainty in
the position operator %,,. By combining this with the expectation value of the momen-

tum operator, the uncertainty can be calculated using the standard quantum mechanical

uncertainty relations.
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APPENDIX C

FERMION-BOSON BELL STATES

Bell states are a specific set of maximally entangled quantum states of two qubits.
Bell states are maximally entangled. This means that if you measure one qubit in a Bell
state, the state of the other qubit becomes instantly determined, regardless of the distance
between them. The four Bell states form an orthonormal basis for the two-qubit Hilbert
space.

To express the Bell states in terms of fermion-boson states, we use the tensor
product notation, where the fermionic states are denoted by [0); = |0) and |1), = [1), and

the bosonic states are denoted by |0), and |1),.

B.) = %<|00>+|11>>=\%(|0>f®|0>b+|1>f®|1>b)
B.) = %<|00>—|11>>=%(|0>f®|0>b—|1>f®|1>b)
L) = %(|01>+|10>>=%(|0>f®|1>b+|1>f®|0>b)
Ly = %<|01>—|10>>=%(|0>f®|1>b—|1>f®|0>b)

If we take n = 1 and choose 6 = 7 as in (6.17), we have the maximally entangled
state
.20 =—
2 2 b ,ﬁ

providing the fermion-boson analog of the Bell states for ¢ = 0 and ¢ = 7,

(10) 1) + €11)£10)s),

T 1
=, £) = —=(10) 1), £ [1)£|0)).

2 \/i f f

Proposition C.1 The states |L.) are exact eigenstates of the operator N with one super-

particle (n = 1), such that N|L.) = |L.). In contrast, the states |B.) are not eigenstates

of N; however, the average number of superparticles in these states is one, given by
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(B:IN|B:) = 1.
Proof To prove this, let us consider that the operator N is defined in such a way that

it counts the number of superparticles in a given state. Since |L.) represents a state with

exactly one superparticle (n = 1), applying N to |L.) yields:

NIL:) =n|Ly) = 1-|Ly) = |Ls).

The expectation value of N in the state |B, ) is given by

(BUNIB.) = L( - <1|) N 0 1 [0
b V21t 0 N+1 V2|1,
1 0 1

= 5 (w0 )|, [z amn =1

Parallel calculations can similarly be performed for B_.This shows that, while |B..) are not
eigenstates of N, the expected average number of superparticles in the states(the mean

value) is one. O

Proposition C.2 For each Bell state, there is an associated annihilation operator that
combines the bosonic annihilation operator a with the fermionic annihilation or creation

operators, f and f'. We define four such operators as follows:

a =*=1

Aq = =I;®a+f®Il,
0 a
a 0

AT = =l;@axf &I,
+1 a

These operators annihilate the corresponding Bell states as follows:

AylL-) 0, AL|Ly) =0,

ATIBy = 0,  ATB.)=0.
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Proof Let’s start by proving each statement one by one. In following expressions,
the action of the bosonic annihilation operator a on the states |0) and |1) yields, a|0), =
0, all), = |0Y,. Also, the fermionic annihilation operator f and creation operator f' act
as fl0), = 0, fll)y = 10)4, f"’lO)f = 1) f"'|1>f = 0. Applying operator A; to the

state L_) with the following actions of @ and f gives

AilL-)

I
—_

I;@a+f®I)IL.)

Sl-

(Q®a+f®@ﬂm»®ﬂn—ﬂh®mh)

&l-

((I0>f ®all)y) = (1) ®al0),) + (f10); @ (1)) = (fI)f ® |0>b))

&l-

(|0>f ®10) — 0+ 0 — [0); ®10);) =

The same type of calculations can be applied to |L, ) for the operator A_;. Now consider

the action of the transposed operator A{ to the state |B_),

Al|B.)

Il
—

I;®a+f ®1,)|B)

soalel-g

(1f®a + 1@ 1) (10, ®10) — 1) ® (1))

((|0>f ®al0),) — (1) ® all),) + f710); ®0), — fT[1); ® |1>b)

( ~ 1), ®0), + 1), ®0), = 0) =0

After these steps, it is easy to find Afl |B,) = 0. We have shown that the operators annihi-

late their respective Bell states. O

Proposition C.3 The states |L.) can be obtained from the vacuum state |¥y) = |0); ®10);

by applying the creation operators A’

S

and conversely. Explicitly, these relations are
given by:

1 1
|Li>::17§ALJ%wx |qb>::5J§A¢nLi»
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Proof Recall the definitions of the operators A.; and their Hermitian conjugates AL,

Applying the operator AL to the state |¥y) provides

1 1| a 0|10
—AL Y = — )
V2 V2| +1 4 0
1| a'0y 1
= — =— (10, @), =1}, ®[0);) = |L.).
V2| <0y, ] \/5( )
Comparable computations can be carried out for other formula. O

Since vacuum state is annihilated by two operators A.;|[Yy) = 0, and orthogonal to the

pair of Bell states |L.), then we can use them to express the following state.

Definition C.1 The normalized reference states can be written as
0,C. ). = V1-CN¥)+ VCeIL,),

combination of the vacuum state and Bell states L., which are annihilated by operators
A+110,C, @)1, = 0.The states are parametrized by real number C, bounded between 0 <

C<1L

C.1. Entanglement of Super-Number States

Proposition C.4 For super number state

01 In 0 . 0
|n, 8, $) = cos - In? + sin =™ ,
21 o 2 |\ m=-1
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the density matrix for pure state is

cos® § [n)(n| cos £ sin $e7|n)(n — 1|
pl’l = |n’ 0’ ¢><n7 97 ¢| =

cos &sindeln— 1| sin® ¢ |n—1xn -1

Then, reduced bosonic and fermionic density matrices are following

6 9
py = tryp, =sin’ 3 In — 1)(n — 1| + cos® 3 [n)(nl,

0 0
pf = tryp, = cos’® 3 |0)¢0| + sin’ 3 |1)(1].
Proof To prove the expressions for the reduced density matrices , we can rewrite p, by

explicitly showing the fermionic state contributions |0) and |1)

(4

0
cos® § [n)(n| cos §

sin ge‘i‘bln)(n -1

Pn In, 6, $)<n, 0, ¢| =

cos Zsinfeln— 1)n|  sin*Zin— 1)n -1

(cos2 §|o><0|) )| + (cos g sin ge—"¢|o><1|) ny(n — 1|

+

(cos g sin gei¢|1>(0|) n— 15(n] + (sin2 g|1><1|) n—15n - 1|

In order to compute the reduced bosonic density matrix, we need to trace out the fermionic

basis states and evaluating each term separately, which gives

7/ pn = Olpal0) + (1]oul1)
(0l{cos 2100 ) 10) + <11 (s’ Sl = 1t~ )i

0 0
2 3 In = 1)%n - 1] + cos? 3 In)nl,

Pb

sin

infinite dimensional matrix with only two nonzero diagonal terms, sin’ ¢ and cos® § at

positions n and n + 1. The same strategy is valid for reduced fermionic density matrix, we
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compute the partial trace over the bosonic states so that it becomes 2 x 2 diagonal matrix,

0 L0
pf = trbpn:COSZEIO><O|+sm2§|1><1|.

Proposition C.5 The squares of both reduced density matrices have equal traces, given
by
trp% =trp2 =1 - 1 sin® 0
f b 2 :

Proof First, we start with computing the square of ps
0 0 : 0 0
% = (cos? S10X0] + sin Z{1)(11) = cos* S00] + sin* Z|1)(1].

where |0)(0| and |1){1]| are orthogonal projectors, their cross terms vanish. Then, taking

the trace of p7 gives

0 6 9 9
trpfc = tr (cos4 §|0>(0| + sin* 5|1)(1|) = cos? 3 + sin? 5

We can express the result as

1
tp =1 - 5 sin” 6.

Similarly calculations can be done for trp;. O

By using formula (6.8) we obtain that the reduced bosonic, as well as fermionic state is

mixed and the generic state |n, 6, ¢) is entangled with concurrence

C = siné.
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C.2. Displacement Operator

Now, we want to define displacement operator which generates the coherent states

from vacuum state. The displacement operator D(«), where a € C, is defined by

D(a) = €%~ (C.1)

Proposition C.6 Properties of displacement operator is given by the following relations

e D'(a) =D '(a) = D(-a) (C.2)
e Di(v)aD(a) =a+a (C.3)
e D'(@a'D(a)=ad"+a (C.4)
e D(a +p) = D(a)D(B)e” " (C.5)

Proof In order to prove the second relation, we will use the Eq.(C.8) by choosing

A = a4’ — @é and B = a so that

Di(@)aD(a) = e (0@'-00)gpod'~aa _ 5 4 o (C.6)

with commutator [&a — aa’,a] = a. To compute D'(@)a’ D(a), we will use the Baker-
Campbell-Hausdorff formula by letting A = @@ — aa" and B = a'. Then, we start comput-

ing the commutator [A, B] which can be separated into two commutators

[A,B] = [aa —ad',a'l = ala,a'] - ald’, 0" = @ (C.7)

where [a,a"] = 1.After applying the formula and since higher commutators vanish, the

series terminates after the first term. Therefore, the desired relation is

D' (@)a'D(a) = &' - a.
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Lemma C.1 For operators A and B with commutator [A, B), The Baker-Campbell-Hausdor(f

Sformula which is in its exponential form, states

| A | B

A

ABe = B+[A, B+ (C.8)

with involving nested commutators [A, B].

Definition C.2 The Baker—Campbell-Hausdorff formula for the product of the exponen-

tials of two operators A and B is

eAeB — eA+B+[A,B]/2+... (C9)

which involves nested commutators of A and B.

Corollary C.1 An important special case where an exact formula exists is
ete’ = PP (A, B] = ¢ (C.10)

where c is a constant (or [c,A] = [¢, B] = 0).

Proposition C.7 The displacement operator D(a), where a € C, can be written in the

form

D(a) = °4'~% = gm3loP oi’ g0t (C.11)
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Proof We will prove this equation by using (C.10). The commutator of A = a4’ and

B = —aa can be calculated as

[A,B] = [ed,-aa] = [a,-aala’ +ald’,—-aa] (C.12)
- « (—a*aa + @&&T)) (C.13)

= —aald’a-aa’) = -le[a’,a] = of*. (C.14)

O

By substituting this result into (C.10) , we get

N Va2 aat —as
etd'aa _ 5 lal el g ) (ClS)

Proposition C.8 The displacement operator for fermion-boson states can be written as

the direct product form

D(a)
0 D(a)

= [;®D() = I; ® ™ ™, (C.16)

D(e) = [
Definition C.3 The displaced Fock states is defined by using (C.1).

10, &) D(@)|0) = e 2" |a), (C.17)

e d
1,0 = D(a)|l) = e 21 (%Icy)—c'xla/)). (C.18)

Proof We can prove first relation by following steps

0,@) = D(a)|0) = €24'73|0) = ¢73laF ¢ad" ¢=0|0)
— —LaP aat N (_a,)n AL
= et ) S @'
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For the second case, the application of D(«) gives

D@1y = e e o)

(C:.S) e_§|a/| adt (-a + &T)€_6&|0> = (é\lT - C_l')D(a')l())

Since application of &' to the state | provides derivative relation,

> a" -1 a,n—l d
Z:;\/T '”*Z”\/n—,'m:@'@

n=1

\/n+ n+ 1)

Q)

a'ly =

we can get

Lae, d
11, @) = D(@)|1) = e (%IOO - ala)).

O
Proposition C.9 The matrix elements of the displacement operator are defined as
D@0y = €2, (1D(@)|0) = ae 2", (C.19)
OD@I) = —ae ", D@ = (1 - laf)e 2",

Proof The relations can be proven step-by-step process. For the first one, we will use

expansion of not normalized Glauber coherent state,

OID@)|0) =" e (Ola) = e~ z'a'zz?mm = ¢Hof
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Then, the second relation requires to use derivative relation

©D@I1) ‘= e '“'2<0|( ) — a|a>)

~4la? f: o 5 5o~ Sla?
= e ? l’l\/_ - = —qe ? .
|

n=1 n.

After that, we can easily have
(UID@)0) ‘L7 e (1]a) = 3o Z <1|n> = aetir

As a final step, we obtain

(o)

@iy 2 et Yy

n=1

n—1

(Ilny —a(lja) | = e 2 (1 — a(llay) = e 2 (1 - o)

n!

Proposition C.10 The homogeneous and non-homogeneous problem for annihilation op-

erator a gives

alo, a) a|0, @),

all, a) all,a) +10, @)
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Proof The first relation comes from definition by |0, @) = D(a)|0). For the next, we

have following

all,a) = aD(a)|1) aD(a)a’|0)

= D(@D'(@)aD(a)a'|0)

= D(a)(a+a)a'l0)

= (D(aa' + aD(@)a') |0)

= D(a)(1 +a'a)|0) + aD(a)a’|0)

=  D()|0) + aD(a)[1)
so that

al,a) = «all,a)+10,a)

Proposition C.11 The Bell super-coherent states are eigenstates of corresponding super-

symmetric annihilation operators

A]l(l’, L—) = alaa L—)a A—llaa L+> = a,|a7 L+>7

A{la’ B—> G“/|a’ B—>7 A7_—1|Gf, B+> = a|a7 B+>'

The states are orthonormal and maximally entangled. In explicit form the states are

expressed as

lov, L) %(l())fll’ @) £ [1)£10, @)),
1
lo, B.) = —=(10)10, @) = [1)/[1, @)).

V2
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Proof Firstlet’s consider how the displacement operator D(a) acts in the tensor product

form and substituting the expression for A.,

D (@)A1 D(a) D)y ®a+ f&1,)D(a)

= (;®D'(@)I;®a+ f®I)I;®D())

= I;®(D'(@aD(@)) + (I;f1y) ® (D'(@)],D(@)
= I;®(D'(@)aD(a)) + f ® (D' (@)I,D())

= I;®(D'(@)aD(@)) + f® I,

= II®@+al)xf®Il,

= (;®a)+al;®1) = (f®1,)

= Ay +Q(If®]b)

O

This shows how the displacement operator modifies the operator A.; by adding a
scalar multiple of the identity matrix to it. In this proposition, the proof of the eigenvalue

problems (6.45) and (6.46) follows from unitary displacement transformation of operators
DN @A D(@) = Auy +al, D'(@AT D(a) = AT, + al,
or
AuD(@) = DAy +aD(a), AL D(@) = DAL +aD(a).
By applying these transformations to the Bell states, we get the result

Asile, Lz) = Ay D(a)|Lz) = D(a) (ALilLz)) + aD(@)|Lz) = ala, Lz),

ALjla, Bz) = AL, D(a)|B=) = D(a) (AL|B=)) + aD()|B=) = ala, B-),
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where annihilation of Bell states by (6.27) and (6.28) were used. Orthogonality of the
states follows from definition of states (6.44) and the displacement of orthogonality con-
ditions (6.22), (6.23), (6.24). The maximal entanglement of Bell super-coherent states is
shown, by observation that the concurrence for these states is independent of e, this is
why itis equal C = 1, as for the Bell states itself. Explicit form of the states (6.47), (6.48)

in terms of displaced Fock states results from calculation

|, L) = D(@)|L.)

1
(I® D(a))ﬁ(l())fll)b £ [1)£10))
1

V2
R

V2

(10) tD(@)[1), £ |1) 1 D()[0))

(10)£11, @)y, £ [1)£10, @)p),
and the similar on for |, B..). This concludes the proof of Proposition (C.11).
C.3. Entanglement of Supercoherent States

Proposition C.12 The concurrence C, 0 < C < 1, for four reference states (6.38) and
(6.39) is equal

9
C = sin’ =.
Sin 2

The states can be parametrized by this concurrence as in (6.36) and (6.37).

Proof As a first step, we find concurrence for the reference state in (6.38). In order to
calculate the entanglement level of the reference state, we can write it as fermion boson

form;

0 0 .
0,0,$)L. = cos §|‘Po> + sin §€'¢|Li>

0% 0 1D
+ S1In —¢
0 2| oy,

0 1 0 . 1 0 .
0)r ® (cos —|0), + — sin —e’¢|1)b) +|1); ® — sin =€"|0),
! 27" Va2 N2

co o
S_
2
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Now, we can express the density matrix in terms of the tensor product:

0 1 0 . 1 6 .
p = (IO)f ® (COS §|O>b + ——sin ie"pll)b) 1), ® @ sin Ee’d’lO)b)

V2
0 1 0 _. 1 0 .
0 =0 —ssin—e (1|, | £ (1 — sin —e (0|, |.
® (( |f®(cos2< |b+\/§sm2e (|b)+(|f®\/§sm2e (|b)

Expanding the terms gives

i)
I

0 1 6 .06 _,
(10¢01) @ (cos2 1000l + = cos 7 sin e 101l

1 0 0 . 1 0
—— cos = sin =€ 1),(0], + 3 sin’ —|1)b(1|b)

V2 o202

+

+

0y (1
(10)11y) ® i

1 0
n— e’¢ (cos —[0),(0|, + — sin —¢ ¢|1>b(0lb)
V2 2

1 0
sin e P (COS =10)5¢0l, + —= sin 2€’¢|O>b<1|b)
si

+

&\~&|~

+

)
(I1y0l) ®
)

sin’ _|0>b<0|b

[NSH

(In<1ly) @

Thus, the density matrix p is expressed as a tensor product of the states in fermionic-space
and bosonic-space. To find the reduced density matrix p, for the subsystem b, we take

the partial trace over the subsystem f, p, = Tr/(p). This involves summing over the basis

states of the subsystem f:
pv =7 <0lpl0) +7 (Llpl1).
Substitute the expanded form of p and compute

0 0 6 _.
pp = cos’ §|0>b »{0| + — cos = sin —e |0),(1],

V2 22

1 0 0 . 1 0 1 ]
+ —— cos = sin =€|1),(0|, + = sin® =|1),(1|, + = sin’ §|0>b<0|,,.

V2 o202 27 27T
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Combine like terms

0 1  ,0 1 . .
oy = (0052 ) sin’ E) 10),<0l, + N sin 0 (e 710)p( 11, + €*[1),(0ls)

1 .,0
+ 5sm?§|1>b<1|;,.

When we calculate the reduced density matrix py, it is clear that it can be expanded in the

same form but in different dimension. Then, computing square of these gives

p;p=p; = [cos? 0 + = ! sin 9)2 10){0[ + (L sin 9)2 10X{0
b 22 22

+ e_i¢21_\/§ sin 0) 01| + (e"quL\/E sin 0) [1)¢0]

2
+ 2—1/§sin9) |1><1|+(l sin —) 1)1

so that

) ) L0 1 . ,60V 1 . .60 1 .,
trp, = trp; = |cos §+zsm§ +4sm §+4sm9
coszg+1sn92+1s'n49+sin2900s29
= —_ 1 p— — — —_ —_
2 2 2 4 2 2 2
6 1 0 0 6 1 0
= cos4§+§sin4§+2sin2§coszz¢§sin4§
1 0
= 1-—sin*=
2 2

Comparing with (6.8), we find the concurrence for the reference states (6.38)

0
C = sin” ~.
Sin >
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C.4. Inner product of Super Coherent States

Definition C.4 The inner product between two supercoherent states is provided by the

following expression

sin @

_ap
V2 ((d/ - P - (a —,B)e_i¢) _le 2ﬁ| sin” g) .

Proof By using definition of 6.53, the inner product can be calculated as following for

L. <ﬁ’ 0, ¢|aa 0, ¢>Li = e_iIm(ﬁ@)e—%la—/jP (1 _

L. and the result will be same for L_

L, <ﬂ’ 67 ¢|a’ 67 ¢>L+ = <O, 67 ¢|DT(ﬁ)D(a’)|Oa 07 ¢>

(@) gmimBa) g g, Al D(a - p)10, 0, )
o D(a -
= BN g g [ (a=p) ] 0, 6, ¢)
0 D(a - pB)

_ i) (cosz Q<O|D(a — B)|0) + e o sin §<0|D(a -pI)

2 V2 22
—igp
n % cos g sin g(llD(a - B)I0)

1 0
3 sin’ 5 (OID(a = B)10) +{11D(e —,3)|1>))

with expressions for matrix elements in (C.9),

i a 9 i¢ 9 0 _
S (COSZ 56_%|a_ﬁ|2 B e_\/§ cos 5 sin 5(5 — B)e2leAr
+ %(5 _B)e_%l(l—ﬂIZ + +§ Sln2 5 (2 _ |a _Blz) e—ékl—ﬁz)
we obtain the inner product
o i B | o ;
.48, 0, pla, 6, ). = e_’Im('Ba)e_%m_ﬁlz (1 B ;H\l/i ((C_V —ﬁ)ehﬁ —(a —,B)e‘l"’) - % sin? 5) .
O
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C.5. Average values for supercoherent state

Proposition C.13 The average values for the reference state is

(0,C, ¢|X]0,C,9) = ~C(1-C)cosg, (C.20)
0,C,¢|PI0,C,¢) = +/C(1-C)sing. (C.21)

Proof First, we start with calculating action of operator X to the reference state for L_

in (6.31),

1 C .
X0.C.p = g+ a’) ( V1= Cloy10), + \ge@ (10341135 = [1)410)s )

1-C N C . _
\ T 10(a + ahioy, + ge"” (10 (a +ahi1y, = [1)(a + a0,

1-C C .
—5 1011y + ge@ (10),(10% + V212),) = [1)411),)

then average value of X become

Cc .
(0,C, ¢1XI0,C,¢) = «/l—cf<0|b<0|+\/;e"¢(f<0|b<1|— A110])

1-C C .
\ 50D + ge@ (10),(10% + V212)5) = [1)411);)

_ VC(12_ C)eiqs " Vc(lz_ C)e—ifl’ = C(1-C)cos¢. (C.22)

Similar steps gives the average for momentum operator. The results will be same for three

reference state, just B_ includes minus. O

The following proposition allows us to find average of X? in L_.
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Proposition C.14 The average for a*,a,a’a and aa’ is given by

<0’ C’ ¢|If ® a2|0’ C’ ¢> =0

0,C,¢ll; ®al0,C, ¢) = \/@ew
0,C, 81, ©a'10,C, ) = \/@ i ©23)

; 1
0,C,¢ll;®a'al0,C, ¢) = EC

1
(0,C,¢ll; ® aa’|0,C, ¢y = EC +1

Proof Let’s start with acting a® to the reference state and it gives
C .
I;®d%0,C,¢) = V1-Cl0)a%0), + w/ge’“’ (10),a(1), = 11)a*(0);) = 0.

Then,it is easy to show the others comes from the proof of previous proposition. The next

expression gives

. _ C,
I;®a'a0,C,¢) = I;®a'aV1-Cl0)0), + \/;el¢(|0>f|1>b—|1>f|o>b)
= V1 -Cl0ysa’al0y, + \/;e”’ (10sa’all), — [1),a"al0))
C 4 C ,
= \ge"ﬁ (10)saal1)s) = \ge@ (10)411y,)
so that

1
(0.C.¢ll;@a'al0,C.¢) = 5C
and by using commutation relation [a, a'] = 1, the last one results

. 1
0.C.ll; ®ad’l0.C.¢) = ZC+1.
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Proposition C.15 The average value of X* and P? for Bell-Super coherent states

(@, C,¢|X*|a, C, ¢) = %[(a/ +@)” +2V2(@+a)\/C(1=C)cos¢ + 1 + C,
(@, C, §|P*|a, C, p) = %[—(a — @) -2V2i(@ - a@)\/C(1 = C)sing + 1 + C].

Proof Due to the definition of operator X, the average can be provided by the following

expression

(@,C, 91X, C, ¢)

(0, C, ¢lD" () X>D()|0, C, p)
= (0,C,¢ll; ® D'(@)X*D(@)|0, C, ¢)
_ %(0, C.¢ll; ® D' (a* +a” +aa’ + a'a) D(2))0, C, ¢)
= %(0, C.oll; @ ((a+a) + (@ +ay
+(a+a)a" +a) +(a +a)a+a)|0.C.¢)
- %(0, C.oll; ® (e +@)? +d* +a" +2a(a + @)

+2a'(a + @) +aa’ +a'al[0,C, ¢)
so that
(a,C, ¢|X?|a, C, ) = %[(a/ +@)? +2V2(@+ @) \C(1 = C)cos ¢ + 1 + C]

for the reference states L. and B,. A corresponding calculation may similarly be per-

formed for the momentum operator. O
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In order to find the dispersion (or variance) of the operators X, we substitute the

values for (6.58) and (6.62)

(AX)? (@,C, ¢IX*|a, C, §) - (@, C, ¢l Xla, C, $))*

_ %[(a+&)2+2\/§(a+@)MCos¢+l+C]
2 2

B (a\-;;+mcos¢)

= %[(a+&)2+2\/§(a+@)mcos¢+1+C]

(@ + @) - 2
2 +\/§(a+a)mcos¢+c(l_c)cos ¢

= %(1 +C) - C(1 — C) cos” ¢,

and it helps to represent the uncertainty in position operator in the super-coherent states.
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