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YÜKSEK LİSANS TEZİ
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5. SONUÇ ................................................................................................................ 53
KAYNAKLAR......................................................................................................... 55
EKLER .................................................................................................................... 57

EK A.1 :................................................................................................................ 59
1.1 Temel ART Yapısı için Uyanıklık Katsayısının Etkisi: Küçük boyutlu örnek 59
EK A.1 :................................................................................................................ 63
2.1 Temel ART Yapısı için Uyanıklık Katsayısının Etkisi: Harfler ..................... 63
EK A.1 :................................................................................................................ 67
3.1 Algoritmik ART Yapısı için Uyanıklık Katsayısının Etkisi: Harfler.............. 67
EK A.1 :................................................................................................................ 71
4.1 Epilepsi veri seti Temel ART yapısı ilk durum için farklı p değerlerine
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ilişkin sonuçlar................................................................................................ 79
EK A.1 :................................................................................................................ 83
7.1 Epilepsi veri seti Algoritmik ART yapısı ilk durum için farklı p
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durum portresi..................................................................................... 15
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farklı p değerine bağlı öbekleme başarısı ........................................... 20
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Şekil 3.6 : p=0.1 değerine bağlı harf öbeklemesi ............................................... 25
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Şekil B.3 : Uyanıklık katsayısına p=0.4 değerine bağlı harf öbeklemesi............ 64
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Şekil C.2 : Uyanıklık katsayısına p=0.3 değerine bağlı harf öbeklemesi............ 67
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UYARLAMALI YANKILAŞIM TEORİSİ İLE EPİLEPSİ VERİLERİNİN
ÖBEKLENMESİ VE BİR EPİLEPSİ MODELİ

ÖZET

Bu tez çalışmasının amacı, yapay zeka alanında son yıllarda daha da dikkat
çekmeye başlayan yapay sinir ağı yapılarından biri olarak bilinen ve özellikle
mühendislik uygulamalarında öbekleme probleminin çözümünde kullanılan adaptif
rezonans teorisine (ART) ilişkin temel yapıyı incelemektir. Adaptif rezonans teorisi
aslında primat beyninin anlaşılmasına yönelik bir yapı koyup, davranışları açıklayacak
bir model oluşturmak amacıyla önerilmiş ve ilk önerildiği 70’li yıllardan bu yana
çeşitli şekillerde temel yapı genişletilerek birçok nörolojik ve davranışsal olguya ilişkin
modeller sunulmuştur.

Bu tezde ilk olarak temel ART yapısı ele alınacak ve bu yapıya ilişkin diferansiyel
denklemlerden yararlanılarak küçük boyutlu bir problemin çözümünde neler olmakta
olduğu durum uzayındaki davranışlar elde edilerek açıklanacaktır. Sonra genel olarak
kullanılan ART algoritması tanıyılıp, bu algoritma ile asıl yapı arasındaki ilişki
açıklanacaktır.

Dünya Sağlık Örgütü verilerine göre yeryüzünde 50 milyonu aşkın kişi epilepsi
ile başetmek durumundadır ve epilepsi en yaygın nörolojik hastalıktır. Epilepsinin
tanısının konulması ve oluşumunda meydana gelen sürecin açıklanması için
farklı şekillerde matematiksel modellerden ve bu matematiksel modellere dayanan
benzetimlerden yararlanılmaktadır. Tezin bir bölümünde ilk olarak epilepsi hakkında
kısa bir bilgi verildikten sonra, önce bir başka yapay sinir ağı yapısı çok katmanlı
algılayıcı ile elde edilen sınıflandırma sonuçlarının nasıl elde edildiği açıklanacak,
sonra ART yapısı ile öbekleme yapılarak elde edilen sonuç sınıflandırma problemi
olarak ele alındığında elde edilen sonuç ile karşılaştırılacaktır. En son olarak da
Epilepsi’ye ilişkin verilen bir model olan Jansen modeli ele alınıp bu model ile elde
edilen sonuçlar verilecektir.
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CLUSTERING EPILEPSY DATA WITH ADAPTIVE RESONANCE THEORY
AND

AN EPILEPSY MODEL

SUMMARY

The aim of this thesis is to examine the basic structure of the adaptive resonance theory
(ART), which is known as one of the artificial neural network structures used for
clustering. It started to draw attention in the field of artificial intelligence, especially
in engineering applications, but adaptive resonance theory was originally proposed
to establish a model for understanding the primate brain, and to explain behaviors.
ART has been used to model many neurological and behavioral phenomena and it is
developed by expanding the basic structure in various ways since the 70s.

In this thesis, the basic ART structure will be discussed first and its structure will
be given by the differential equations. How these differential equations define the
processes each substructure realize will be explained by giving state space results for a
simple example. Then, the ART algorithm used in machine learning applications will
be introduced and the relationship between this algorithm and the actual structure will
be explained.

According to the data of the World Health Organization, more than 50 million people
in the world have to cope with epilepsy, and epilepsy is the most common neurological
disease. Different forms of mathematical models and simulations based on these
mathematical models are used to diagnose epilepsy and explain the process occurring
in its formation. In the second part of the thesis, after brief information about the
epilepsy data is given, the data classified by multi-layer perceptron. The same data
then is considered without labels and clustering results are obtained with dynamic
ART structure and algorithmic ART structure. Finally, the Jansen model, which is a
model related to Epilepsy, is introduced and the results obtained with Jansen model is
discussed using power spectrum analysis and state space representation.
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1. GİRİŞ

Öğrenmenin bir tanımı, devam eden olay ve durumların arasındaki ilişkinin açıklanıp,

gerekli eylemlere yönelik uygun tepkilerin üretilmesi işlemidir. Bu işlem, tek hücreli

canlılardan en gelişmiş memeli türü olarak kabul görmüş insan ırkına kadar birçok

farklı türden canlı tarafından yaşamları boyunca farklı şekillerde ve durumlarda

gerçekleşmektedir. Birçok canlı türü değişen dünya düzeni karşısında uyum sağlamayı

öğrenme yetisi sayesinde gerçeklerken, uyum sağlayamayan türler ise varlıklarını

sürdürememiştir [4]. Canlıların öğrenme sürecinden esinlenerek son yıllarda birçok

akıllı sistem geliştirilmiş ve karmaşık konu ve problemlerin çözülmesinde kolaylık

sağlamıştır [5, 6].

Tıp alanında birçok hastalığın teşhis edilebilmesi için de bu yöntemlere başvurulur

hale gelinmiştir [7]. Bu hastalıklardan biri de epilepsi hastalığıdır [8–10]. Sinir

hücrelerinde geçici olarak meydana gelen anormal elektriksel aktivite sonucu meydana

gelen bu hastalık dünya üzerinde yaklaşık 50 milyon kişide görülmektedir. Teşhis

edildiği taktirde, yüzde 70 oranında tedaviye yanıt verebilir özellikte olması erken

teşhis edilmesini önemli kılmaktadır. Genellikle EEG verileri üzerinden tanısı konulan

bu hastalığın diğer beyin işaretleri içerisinden ayrıştırıp belirlenmesi karmaşık bir

problem olarak karşımıza çıkmaktadır.

Epilepsi verilerini incelenip, veri üzerinden değerli öznitelikler elde edilerek, akıllı bir

sistem tarafında bu özniteliklerin öğrenilmesi teşhis sürecini önemli ölçüde kısaltmakta

ve başarılı sonuçlar vermektedir [11]. Kullanılan sınıflayıcı yöntemler genellikle

öznitelikler belirlendikten sonra, sınıflandırma ölçütleri dahilinde veriyi değerlendirme

yoluyla çalışmaktadır.

Halen nedenleri hakkında çok fazla bilgi sahip olmadığımız bu hastalık için öbekleme

yaklaşımı ile çalışan eğiticisiz öğrenme yöntemleri ile yeni bilgi elde etmek ve bu

yönde var olan matematiksel modelleri geliştirmek önemli olabilir.
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Bu amaçla, tez çalışmasında öbekleme probleminin çözümü için makina öğrenmesinde

kullanılan bir eğiticisiz öğrenme yöntemi olan Uyarlamalı Yankılaşım Teorisi epilepsi

verilerinin öbeklenmesi için ele alınmıştır. Ancak bu yöntem alışılageldiği biçimi ile

değil, özgün olarak önerildiği biçimi olan diferansiyel denklemler ile gerçeklenmiştir.

Ayrıca, sadece epilepsi tanısı için verilerden yararlanmanın dışında, hastalığa ilişkin

bilgi edinmenin bir yolu olarak epilepsinin oluşmasında etkin olduğu düşünülen nöral

yapıların modellenmesi de tez çalışmasının bir bölümünde ele alınmıştır.

Tez çalışmasında ele alınan Adaptif Rezonans Teorisine (ART) ilişkin yapı,

genellikle mühendislik uygulamalarında kullanıldığından daha farklı olarak, önerildiği

diferansiyel denklemler ile 2. Bölümde ele alınmıştır. İlk olarak bu diferansiyel

denklemlerin gerçekledikleri süreçler açıklanmış, daha sonra görsel olarak takip

edilebilmesi için küçük boyutlu veriler ile durum portreleri ve zamanla değişimleri

çizilerek anlatılmıştır. 2. bölümde son olarak, makina öğrenmesi için yapılan

çalışmalarda kullanılan ART yapısına ilişkin algoritma verilmiştir. 3. Bölümde, ART

yapısına ilişkin MATLAB ortamında hazırlanan kod ile harf öbekleme problemi, hem

diferansiyel denklem yapısı ile hem de algoritmik yapı ile çözülmüş ve Epilepsi veri

setine uygulanmadan önce kodun çalışmakta olduğu sınanmıştır. 3.2 alt bölümünde

[12] çalışmasında kullanılan Epilepsi veri seti kullanılmıştır,Burada öncelikle Epilepsi

veri seti tanıtılmış ve bu veri setinden öbekleme ve sınıflama problemlerinde

kullanılacak özniteliklerin nasıl elde edildiği anlatılmıştır. 3.3 alt bölümünde veri setini

daha iyi anlamak için veri seti ile yine MATLAB ortamında hazırlanan m-file ile çok

katmanlı algılayıcı yapısı oluşturulmuş ve sınıflandırma problemi çözülmüştür. 3.4 alt

bölümünde ise ART yapısı Epilepsi verisini öbeklemek için veriler önce ikili tabanda

kodlanmıştır sonra öbekleme problemi hem dinamik sistem olarak ele alınan ART

yapısı ile hem de Bölüm 2.3’de verilen ART yapısına ilişkin makine öğrenmesinde

kullanılan algoritmik yapı ile çözülmüştür. 4. Bölümde, tezde bu aşamaya kadar

yapılan çalışmadan farklı olarak, Epilepsi’ye ilişkin bir dinamik sistem modeli Jansen

yapısından faydalanarak verilmiştir. 5. Bölümde tezde yapılanlar kısaca özetlendikten

sonra, elde edilen sonuçlar yorumlanmıştır.

Tez çalışmasında Cem Yücelgen tarafından 2011 yılında hazırlanan "Uyarlamalı

Yankılaşım Kuramı ve Pekiştirmeli Öğrenme ile Uygulanması",isimli bitirme ödevi

ile Nevroz Aslan tarafından 2002 yılında hazırlanan"Adaptif Rezonans Teorisi" isimli

2



bitirme ödevinden faydalanılmıştır. Tez çalışmasının 4. bölümünündeki sonuçlar, 2017

yılında BİYOMUT kongresinde sunulmuştur.

3



4



2. UYARLAMALI YANKILAŞIM KURAMI

Bu bölümde 1970’li yıllardan günümüze geliştirilmekte olan ve Grossberg tarafından

psikolojideki klasik şartlanmaya dayalı öğrenmeyi gerçeklemeye yönelik olarak

önerilen Uyarlamalı Yankılaşım Kuramı (Adaptive Resonance Theory-ART) ele

alınacaktır [13]. ART yapısı, zaman içinde bilişsel süreçlerin açıklanması için de

genişletilip bu bilişsel süreçlerin oluşmasında yer alan beyindeki bölgelerin işlevlerini

de açıklanmakta kullanılmıştır [14, 15]. Temel olarak esneklik (plasticity) kararlılık

(stability) ilkesine dayanan ART yapısı bir dizi birbirini etkileyen differansiyel

denklem takımı ile verilmiştir. Ancak, özellikle öbekleme problemini çözmek için

mühendislik uygulamalarında bir makina öğrenmesi yapısı olarak kullanılan ART

algoritması, bu birbirlerini etkileyen dinamik sistemlerin kararlı denge noktalarına

oturduktan sonraki davranışlarına dayalı algoritmik bir yapıdır. Bu bölümde ART

yapısı öncelikle bir dinamik sistem olarak ele alınarak, her bir alt yapıya ilişkin

denklemler açıklanacak ve basit bir örnek üzerinden durum uzayında gözlemlenen

sonuçlar ile ART yapısının gerçeklediği süreçler belirtilecektir. Sonra makina

öğrenmesinde kullanılan algoritma verilecektir.

2.1 ART yapısının genel tanıtımı

Burada ele alındığı yapı itibariyle Uyarlamalı Yankılaşım Kuramı(ART), Eğiticisiz

(Unsupervised) bir öğrenme yöntemi olarak reel değerlerden oluşan örüntüler ile

çalışabilme esnekliğine sahip bir yapay sinir ağı modelidir. Bu modelin öğrenmesi,

insanın öğrenme mekanizmasına benzer nitelikte olup model, algılama ve algılanın

var olan belleğin içerisinde sorgulandığı, buna göre algılanan bilginin yeni bilgi olup

olmadığının kararının verildiği bir yapı olarak kurgulanmıştır.

ART, yeni bilgi olarak tanımladığı her bir örüntü için kendi içerisinde yeni bir nöron

oluştururken, var olan nöronları ile temsil edebileceği bilgiler için, var olan nöronların

içinden gelen uyarana ilişkin temsilci nöronda güncelleme yaparak öğrenme sürecinde

bir pekiştirmeye gitmektedir. Ağın yeni nöron yaratma ve eskiden var olan nöronları
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üzerinde değişiklik yapma kararı ağın bir parametresi olan uyanıklık katsayısı ile

sağlanmaktadır. Uyanıklık katsayısı ile belirlenen bir eşiğin aşılamadığı uyarlama

olarak nitelendirilen durumda, ağın kendini yeni duruma adapte etmesi, rezonans

yani yankılaşım ya da etkileşim diye adlandırılır ve bu durumda, ağın algılayacağı

bir örüntünün ağın var olan yapısıyla etkileşmesi dolayısıyla ağın örüntüyü yeni bir

nöron kullanmadan daha iyi temsil etmesi sağlanır.ART, yeni durumlar söz konusu

değilken, eski durumları kararlı bir şekilde uzun süreli belleğinde tutabilir. Kararlılık

ile belirlenen, bir daha, eski durumlar ile karşılaşıldığında yeni bir nöron kullanımına

gerek duyulmamasıdır. Hem kararlı hem de yeni bilgi öğrenebilme esnekliğine sahip

olan bu yapı kararlılık-esneklik ikilemi üzerine kurgulanmış uzun süreli bellek(USB)

mekanizması ile çalışır. Bu belleğin oluşumu, çağrışımsal azalma kuralı (Associative

Decay Rule), Weber ilkesi kuralı (Weber Law Rule) ve yukarıdan-aşağıya öğrenme

şablonu kuralının (Top-down Template Learning Rule) sistemli bir şekilde çalışması

ile sağlanır. Sonuç olarak, ART modeli kendini yeni durumlara uyarlayabilen ve sahip

olduğu bellek sayesinde geçmişle etkileşimi olan bir sinir ağı modelidir.

Şekil 2.1 : ART Sinir Ağı Modeli

Bu bölümde seksenli yıllarda önerilen [16, 17] ART yapısı kullanılmıştır. Bu model

Şekil 2.1 görüldüğü üzere iki katmanlı bir yapıya sahiptir. Bu katmanlardan ilki olan

F1 katmanı giriş örüntüsünün tanınması sürecini yönetmektedir. İkinci katman olan

F2 katmanı, yeni gelen örüntüyü var olan örüntülere ilişkin gösterimlerle kıyaslama

işlemini yürütmektedir. Bu iki katman bir ölçüde ağın kısa süreli belleğini (Short Term

Memory, STM) oluşturan yapılardır. Bu yapılar arasında aşağıdan yukarı(bottom-up)

ve yukarıdan aşağı(top-down) bilgi akışına izin veren sinaptik boşluk vardır. Bu
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yapı öğrenme eylemine bağlı dinamik bir yapıya sahiptir. Bu kısım ağın uzun süreli

belleğini oluşturur. Ayrıca, ağın kontrol birimleri olan A, B ve C’de katmanlar

arasında haberleşme ve gelen bilginin kontrolü sağlanır. Bu ağ yapısında ateşleyici

ve baskılayıcı işaretin oluşması her bir katmana ilişkin sürecin sonunda elde edilen

çıktıya göre şekillenmektedir.

2.2 Dinamik Bir Sistem Olarak ART

Bu bölümde ele alınan ART yapısı [16,17] için katmanlardaki süreçlere karşılık düşen

işlemler diferansiyel denklem takımları ile tanımlanacak ve bu diferansiyel denklem

takımlarının modellediği dinamik davranışın anlaşılması için basit bir veri kümesi ile

ağın öğrenmesi aşamaları durum portreleri verilerek açıklanacaktır.

ART yapısını tanımlayan denklem takımları öğrenmenin süreçsel bir eylem olduğu

varsayımı üzerine kurgulandığı için süreci diferansiyel denklem takımları olarak ele

almıştır. Bu bağlamda ağın girişine gelen örüntü üç boyutlu bir vektör olarak

tanımlanarak süreç boyunca bu örüntünün öğrenme adımları sırasında geçirdiği

değişimler her bir katmanın çıkışında o katmana ilişkin durum uzayındaki davranışı

verilerek incelenecektir.Veri kümesi olarak [0 1 0] değerlerinden oluşan basit bir örüntü

ART’a ilişkin dinamik sürecin görsel olarak takip edilebilmesi için kullanılacaktır.

F1 Katmanı Örüntü Etkileşimi

İlk olarak, Şekil 3.9’de blok diyagramı gösterilen, bir örüntünün ART yapısının tanıma

katmanı olarak bilinen F1 katmanında geçirmiş olduğu dinamik süreç izah edilecektir.

Örüntü olarak süreç boyunca ele alınacak olan ikili tabanda tanımlanmış üç boyutlu

bir giriş örüntüsü kullanılarak durum uzayında bu örüntünün ne şekilde davranış

sergilediği incelenecektir.

Giriş örüntüsünün F1 katmanını,ateşleyici davranış ile uyaracağı büyüklük, Denklem

2.1 tarafından belirlenmektedir. Bu değer J+i olarak tanımlanmıştır. Giriş

örüntüsünden gelen Ii işareti ile yukarıdan aşağıya şablon örüntüsü Vi’nin toplamı

olarak ifade edilir. bu süreçte ağın girişine gelen örüntünün F1 katmanı ile ilk

etkileşime geçtiği için Vi = 0 dır. Bu nedenle F1 katmanı sadece giriş örüntüsü Ii

tarafından uyarılır.
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Şekil 2.2 : 3 girişli örüntü ile F1 katmanı etkileşimi

J+i = Ii +Vi (2.1)

F1 katmanına gelen örüntü Denklem 2.2 ile belirtilen dinamik bir süreç tarafından

ilk kez algılanır. Diferansiyel bir denklem olarak tanımlanmış olan bu denklemde A1

kazanç kontrol birimi ve Ii giriş örüntüsü değeri, başlangıçta rastgele tanımlanmış olan

xi değerini sürecin sonunda Ii giriş örüntüsü değerine yaklaştırır.

ε
d
dt

xi =−xi +(1−A1xi)Ii (2.2)

F1 katmanında gerçekleşen dinamik süreç sonunda elde edilen xi, bir aktivasyon

fonksiyonu olan Denklem 2.3 uygulanarak katman çıkışında sinaptik boşluğa iletilecek

bilgi olan S işaretini oluşturur. Bu bilgi uzun süreli belleğin bir parçası olan aşağıdan

yukarı sürece etki eder. İkili tabanda bilgi olarak ifade edilen S işareti F1 katmanında

gerçekleşen süreç sonunda işaretin ateşleme eşiğine ulaşıp ulaşmadığının bilgisini

uzun süreli belleğe taşıma özelliğine sahiptir.

S = h(X∗i ) =

{
1 X∗i > 0
0 diğer

(2.3)

Giriş Örüntüsü [0,1,0]T tanımlanarak, ART yapısı içerisinde tanıma katmanı olan F1

üzerinde ne gibi davranış sergilediği Şekil 2.3 görülmektedir. Bu grafikte yeşil ile
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Şekil 2.3 : F1 katmanı için dimanik denklemin durum portesi

belirtilen noktadan dinamik sisteme ilişkin süreç başlar ve xi değerleri sürecin sonunda

ağın girişine verilen değerler ile belirtilen noktalara erişerek sonlanır. Burada, F1

katmanında oluşan örüntünün Ii giriş örüntüsü değerlerine yakınsadığı görülmektedir.

Aşağıdan Yukarı Süreç

Burada, uzun süreli belleği oluşturan süreçlerden biri olan aşağıdan yukarı süreç ele

alınmıştır. Şekil 2.4’de blok diyagramı verilen bu süreç F1 katmanı çıkışından F2

katmanı için giriş değeri oluşumuna kadar geçen süreci kapsamaktadır.

Denklem 2.4 ile aşağıdan yukarı sürecin oluşumundan sorumlu Ei j elde edilmektedir.

Bu değer F1 katmanın çıkışındaki değer ile model için tanımlı L değişkeni etkisinde

oluşmaktadır. Burada L değişkeni nörotransmitterlerin inaktive edilme ve serbest

bırakılma oranlarını ifade etmekte olup ART yapısının ele alınan örüntü için uzun

süreli bellekten çağıralacağı öbeğe karar verme sürecine etki etmektedir.

Ei j = h(xi)+L−1 ∑
k 6=i

h(xk) (2.4)

Ele alınan örüntü için aşağıdan yukarı süreçte Denklemi 2.5 deki dinamik süreç

sonunda bir temsil oluşturulur. Bu temsil zi j olarak tanımlanmıştır. Bu değerin
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Şekil 2.4 : 3 girişli örüntü için aşağıdan yukarı süreç

oluşumunda aşağıdan yukarı süreçte seçilen ağırlıkları temsil eden bir skaler olan

f (x j), Denklem 2.4 ile elde edilen Ei j ve F1 katmanından sinaptik boşluğa bırakılan

işareti temsil eden h(xi) etkilidir. Dinamik sürecin sonunda zi j değeri Şekil 2.5

eksenleri belirtilen noktalarda konumlanmaktadır.

Şekil 2.5 : Aşağıdan yukarı ağırlık oluşum süreci için dinamik denkleme ilişkin
durum portresi

d
dt

zi j = K1 f (x j)[−Ei jzi j +h(xi)] (2.5)
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Aşağıdan yukarı süreç sonunda F2 katmanına uyaran olarak gelecek işaret Denklem

2.6 ile belirlenir.

Tj = D2 ∑
i

h(X∗i )zi j (2.6)

Bu süreç sonunda F2 katmanına ulaşan uyaranın değeri Denklem 2.7 ile elde edilir.

J+j = Ii +Tj (2.7)

F2 Katmanı Örüntü Etkileşimi

Şekil 2.6 : 3 girişli örüntü ile F1 katmanı etkileşimi

Bu süreç, Şekil 2.6 blok diyagram olarak ifade edilen, aşağıdan yukarı süreç sonucunda

meydana gelen J+j işareti ile tetiklenir. Yukarıdan aşağı sürecin başlamasını tetikleyen

U işareti oluşuncaya kadar ki süreci kapsamaktadır.

ε
d
dt

x j =−x j +(1−A2x j)J+j (2.8)

Denklem 2.9 ile F2 katmanı içerisinde gerçekleşecek olan dinamik süreç başlar. Bu

süreçte F2 katmanını uyaran J+j işareti ile kontrol birimi parametresi olan A2 etkilidir.

Üç boyutlu giriş örüntüsü için F2 katmanında gerçekleşen süreç Şekil 2.7’deki yeşil

nokta üzerinde başlayarak değerleri verilen nokta üzerinde tamamlanır.

U = f (X∗j ) =

{
1 T j = max(Tk)

0 diğer
(2.9)
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Şekil 2.7 : F2 katmanı için dimanik denklemin durum portesi

F2 katmanı çıkışında oluşan sürecin sonunda x j işareti elde edilir. F2 katmanı çıkışında

sinaptik boşluğa bırakılacak uyaran U ile denklem 2.9’deki gibi oluşturulur. U işareti

yukarıdan aşağı süreçte hangi ağırlığın seçileceğinin belirlenmesi açısından önemlidir.

U işareti aşağıdan yukarı süreçte örüntüyü F2 katmanına en fazla başarı ile ulaştırmış

ağırlığı seçilmesi ile belirlenir. Belirlenen ağırlık ile uzun süreli belleğin diğer bir

parçası olan yukarıdan aşağı dinamik süreç tetiklenir.

Yukarından Aşağıya Süreç

Şekil 2.8’de blok diyagramı verilen, yukarıdan aşağı süreç F2 katmanından gelen

U işareti ile başlatılır. Bu süreç, F1 katmanını uyaracak işaretin oluşumuna kadar

geçen süreci kapsar. Dinamik bir değişken olan ve z ji değişkeni ile belirtilen süreç

f (X∗j ) işaretinin belirlediği ağırlık kullanılarak Denklem 2.10 ile belirlenir. Bu sürecin

sonunda Denklem 2.11 ile F1 katmanını uyaracak Vi işareti oluşturulur.

d
dt

z ji = K2 f (x j)[−E jiz ji +h(xi)] (2.10)

Burada Vi değeri, ağın ilk örüntü alması nedeniyle doğrudan ilk tanımlanmış F(X∗j )

değeri üzerinden hesaplanarak F1 katmanına uyaran olarak yansımaktadır.

12



Şekil 2.8 : Yukarıdan aşağıya ağırlık oluşum süreci için blok diyagramı

Vi = D1 ∑
j

f (X∗j )z ji (2.11)

zi j işaretinin uzun süreli bellek mekanizması ile dinamik değişimi Şekil 2.9

görülmektedir. Grafikte yeşil işaretli nokta başlangıç noktasını belirtmektedir ve

elde edilen zi j değeri ile ilk örüntü için yukarıdan aşağı süreçte uzun süreli

belleğin oluşması sağlanmaktadır. Bu sürecin sonunda grafikte görüldüğü üzere giriş

örüntüsüne yakın değerler civarına yakınsama yaptığı görülmektedir.

F1 Katmanı ile İkinci Etkileşim

Şekil 2.10 blok diyagramı verilen, bu süreçte F1 katmanı hem giriş örüntüsü hem de

uzun süreli belleğin bir parçası olan yukarında aşağı sürecin çıktısı olan Vi tarafından

uyarılmaktadır. Bu süreç bir bakıma hem giriş örüntünün hem de ağın bu örüntüyü

kendi içinde değerlendirmesi sonucu oluşan çıktının F1 katmanı üzerinde yaratmış

olduğu etkiyi gözlemlememize olanak sağlamaktadır.

ε
d
dt

xi =−xi +(1−A1xi)(Ii +Vi) (2.12)
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Şekil 2.9 : Yukarıdan aşağıya ağırlık oluşum süreci için durum portresi

Şekil 2.10 : Örüntünün F1 katmanı ile ikinci kez etkileşme sürecine ilişkin blok
diyagram

Örüntünün F1 katmanı ile ikinci kez etkileşmesine ilişkin dinamik süreç Denklem 2.12

ile sağlanmaktadır. Bu süreci belirten xi işaretinin durum uzayında ilerleyişi Şekil

2.11 gösterilmektedir. Burada yeşil işaretli nokta üzerinden süreç başlamıştır. Bu

nokta sürecin sonunda belirtilen noktalar üzerine oturmaktadır. Bu sürecin sonunda

ele alınan örüntü ile ağın etkileşimi tamamlanır.

ε
d
dt

xi =−xi +(1−A1xi)J+i − (B1 +C1xi)J+i (2.13)

ε
d
dt

x j =−x j +(1−A2x j)J+j − (B2 +C2x j)J−j (2.14)

14



Şekil 2.11 : Örüntünün F1 katmanı ile ikinci kez etkileşme sürecine ilişkin durum
portresi

Bu kısıma kadar ART yapısını oluşturan katmanlar için tanımlı denklem takımlarının

bir örüntü ile ilk karşılaşmasında nasıl işlemlerin gerçekleştiği açıklandı. Burada

kısa süreli bellek olan F1 ve F2 katmanları için ilk örüntünün dışında başka

örüntülerde ağa sunulduğunda, bu örüntülerin değerlendirilmesi için önerilen kazanç

kontrol mekanizmasında etkili olan A,B,C parametre değerleri ele alınacaktır. Bu

parametrelerin etkisi Denklem 2.13 ve Denklem 2.14 ile oluşturulmaktadır. F1 katmanı

için tanımlanmış Denklem 2.13 ile bu parametrelerin aktif duruma gelmesi J+i ,J−i

işaretlerinin 1 olması durumu ile sağlanırken pasif duruma geçmesi bu işaretlerin

0 olması ile sağlamaktadır. F2 katmanı için ise Denklem 2.14’de tanımlı J+j ,J
−
j

değerinin 0 ve 1 olma durumuna göre kazanç kontrol mekanizmasından sorumlu

parametrelerin pasif ve aktif olması sağlanmaktadır. Bu değerlerin 0 ve 1 olması

bir önceki katmanın çıkış sonucuna göre belirlenir. Bu mekanizmalar sayesinde ağın

bozuk örüntüler ile eğitim sürecinde kısa süreli belliğinde müdahale ederek uzun süreli

belleğinde yanlış bilgi tutulması durumunun önüne geçilir.

Uyanıklık Testi

ART yapısında ağa sunulan veriler öbeklenirken, öbeklerdeki verilerin birbirlerine

benzerleğine dair bir ölçüt uyanıklık katsayısı p ile belirlenir. Uyanıklık katsayısı

kullanıcı tarafından belirlenir ve 0 ile 1 arasıda değer alır. 1 sayısına ne kadar yakın ise

öbeğe giren verilerin benzerliği o kadar fazladır. Dolaysıyla, ağa sunulan bir veri için
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öbeklerden biri belirlendiğinde bu verinin öbekdeki verilere benzerliği ayrıca uyanıklık

katsayısının değeri gözönüne alınarak test edilir. Bu katsayının değerine göre Denklem

2.15 ve Denklem 2.16 koşullarına bağlı olarak ağa sunulan veri için belirlenen öbeğin

temsil ettiği verilere göre benzerlik değerlendirmesi yapılır. Bu testin varlığı ART

yapısına esneklik özelliği katmaktadır. Bilginin ağ içersindeki belleklerde tutulup

tutulmama kararı bu testin sonucuna göre belirlenir.

p >
∑i X
∑i I

(2.15)

Ağ ile etkileşmiş örüntünün giriş örüntüsüne oranı bu p uyanıklık katsayısı değerinden

küçük olması durumunda Denklem 2.15 ile verilen koşul sağlanır. Bu durumu sağlayan

örüntüler için katmanlarda resetleme işlemi gerçekleştirilir. Bu tanımlı J−i veya

J−j değerlerini 1 yaparak kazanç kontrol birimlerinin katmanlar içerisinde devreye

girmesini sağlar. Bu durum ağ ile etkileşmiş bu örüntünün bellekten uzaklaştırılmasını

sağlamaktadır.

p≤ ∑i X
∑i I

(2.16)

Denklem 2.15 ağ ile etkileşmiş örüntünün giriş örüntüsüne oranı uyanıklık

katsıysından büyük veya eşit olması durumunda ağ J−i ve J−j işaretlerini 0 yaparak

kazanç kontrol birimlerinin katmanlar içersinde devre dışı bırakarak örüntünün ağ

içinde etkileşiminin belleklerde kalmasını sağlar. Bu sayede ART yapısı esnek ve

kararlı bir öğrenme davranışı sergiler.

p uyanıklık katsayısı değerinin belirlenmesi ağın öğrenme sürecinde kritik öneme

sahiptir. Ele alınan öbekleme probleminin doğasına göre en uygun p değeri değişiklik

göstermektedir. Uygunluk değerinin en uygun değerinin altındaki p değeri için

ART örüntüleri daha az sayıdaki öbeklerle temsil etmek isteyecektir. Bu durum

ayrışması öngürülen örüntülerin aynı öbekler üzerinde tutulmasına neden olacaktır.

Ele alınan probleme göre p katsayısını uygunluk değerinin üstünde tanımlandığı

durumda ART örüntüleri daha çok öbeklerle temsil etmek isteyecektir. Bu durum aynı

öbek içinde olması öngürülen örüntülerin farklı öbeklerle temsil edilmesi sonucunu

ortaya çıkaracaktır.

16



Bu bölüm içersinde ART yapısında var olan katmanlar dinamik ilişkinin anlaşılması

için [0,1,0] üç boyutlu örüntü ele alınmıştır ve bu örüntü için kısa ve uzun süreli

belleklerde oluşan değerler durum portreleri ile verilmiştir. Aynı boyutta tanımlanmış

([0 1 0],[1,0,0],[1,0,0],[1,1,0],[1,1,1],[0 1 0],[1,0,0],[1,0,0],[1,1,0],[1,1,1]) 5 farklı

örüntü içeren kümenin ART yapısı içerisinde öbekleme süreci incelenmiştir uyanıklık

katsayısının etkisini göstermek için p katsayısını farklı değerlerine bağlı olarak elde

edilen öbekleme başarısı incelenmiştir.

Şekil 2.12 : Uyanıklık katsayısı p=0.2 için öbekleme başarısı

Şekil 2.13 : Uyanıklık katsayısı p=0.4 için öbekleme başarısı
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Şekil 2.14 : Uyanıklık katsayısı p=0.7 için öbekleme başarısı

Şekil A.1’den Şekil C.7 arasında üç boyutlu örüntü kümesi için değişen p uyanıklık

katsayısı için ağın sergilemiş olduğu öbekleme başarısı görülmektedir. Burada

p=0.7 olarak tanımlanmış uyanıklık katsayısı değerinden sonra ağın bütün örüntüleri

beklenen öbeklere yerleştirdiğini görülmektedir. Ağın bu değerin altında tanımlı p

uyanıklık katsayısı değeri için öbekleme hatasının arttığı görülmektedir. Bu model ile

farklı p değerleri için elde edilen sonuçlar EK’ler kısmında paylaşılmıştır.

2.3 Makina Öğrenmesi Uygulamalarında Kullanılan ART Algoritması

Şekil 2.16 blok diyagramı gösterilen makina öğrenmesinde kullanılan ART yapısı iki

katmanlı kısa süreli bellek yapısı ile bu iki katman arasında oluşan uzun süreli bellek

üzerine kurulmuştur. p uyanıklık katsayısı değeri ile ağın öğrenme süreci yönetilir.

Süreç içerisinde ikili tabanda örüntüler ile çalışılmaktadır.

Ağın içerisinde bilgi zi j yukarıdan aşağı bağlantılar ve w ji aşağıdan yukarı bağlantılar

sayesinde tutulmaktadır. Bu bağlantıların ilk tanımlaması denklem 2.17 belirtildiği

şekilde yapılmaktadır. Burada n değeri ağa sunulan örüntünün boyutunu temsil

etmektedir. x değişkeni ile belirtilen ve ele alınan her bir örüntü F1 katmanında

denklem 2.18 belirtildiği gibi aşağıdan yukarı bağlantı ile etkileşime girer.

w ji(0) =
1

1+n
;zi j(0) = 1 (2.17)
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Şekil 2.15 : Makina öğrenmesinde kullanılan ART yapısının blok diyagramı

y j = wT
j x (2.18)

Bu etkileşme sonucunda Denklem 2.19 ile kazanan nöron belirlemesi yapılır.Ağ

yapısında F2 katmanında kazanan her nöron aslında oluşturulan bir öbeği temsil

etmektedir.

y∗ = max(y j) (2.19)

p <
zT x
‖x‖

(2.20)

Bu aşamadan sonra yukarıdan aşağı bağlantınında etkili olduğu Denklem 2.20 ile

uyanıklık testi yapılır. Bu denklem şartı sağlanırsa Denklem 2.21 ve Denklem 2.22

ile ağırlık güncellemesi yapılır.

zi j(k+1) = zi
∗
j(k)x j (2.21)

w ji(k+1) =
zi
∗
j(k)x j

0.5+ zi
∗
j(k)x j

(2.22)
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Bu şartın sağlanamadığı durumda F2 katmanına yeni örüntü, yeni bir öbeğin oluşması

için yeni bir nöron olarak yerleştirilir ve ilgili aşağıdan yukarı ve yukarıdan aşağı

bağlantılar düzenlenir. Süreç kendini yeni gelen örüntülere göre şekillendirerek yeni

öbek açma ve var olan öbekler ile temsil edilecek verileri belirleme sürecini devam

ettirir.

Algoritmik ART yapısı ile ([1 1 0 0 0 0 1],[0 0 1 1 1 1 0],[1 0 1 1 1 1 0],[0 0 0 1 1 1

0],[1 1 0 1 1 1 0]) 7 boyutlu 5 örüntü etkileşime girmiştir. Elde edilen sonuçlar Şekil

2.16 gösterilmektedir.

Şekil 2.16 : Makina öğrenmesine ilişkin ART algoritması ile örüntülerin farklı p
değerine bağlı öbekleme başarısı
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3. ADAPTİF REZONANS TEORİSİ İLE BAZI UYGULAMALAR

Bölüm 2’de tanıtılan ART yapısı ile MATLAB ortamında m-file olarak hazırlanan

kodun öbekleme problemini çözdüğünü göstermek için öncelikle siyah üstüne

beyaz yazı ile verilmiş ikili tabanda kodlanmış alfabedeki harfler ve birimleri yer

değiştirilerek bozulmuş harflerden oluşan verilerin öbeklenmesi problemi ele alınmış

ve farklı uyanıklık katsayıları ile elde edilen sonuçlar verilmiştir. Bu öbekleme

problemi çözülürken sadece diferansiyel denklem takımları çözülerek oluşturulan

ART yapısı değil aynı zamanda makina öğrenmesinde öbekleme için kullanılan ve

bir Bölüm 2.3’de açıklanan algoritma ile gerçeklenen ART yapısı ile de sonuçlar

elde edilmiştir. ART yapısı ile hastalıklı ve sağlıklı epilepsi veri seti ile verilen

epilepsi verilerinin öbeklenmesinden önce, veri setinin analizi yapılıp, öznitelikler

belirlenmiştir. Sonra bu özniteliklerden yararlanarak epilepsi teşhisi amacıyla

sınıflandırma problemi yine MATLAB ortamında m-file olarak oluşturulan çok

katmanlı algılayıcı ile çözülmüşdür. Bu bölümde son olarak veri kümesi bir sınıf etiketi

gözönüne alınmadan öbekleme problemi olarak ele alınararak, dinamik denklemler ile

ele alınan ART yapısı ve algoritma ile verilen ART yapısı ile farklı uyanıklık katsayıları

için irdelenmiştir.

3.1 ART ile Harf Öbekleme problemi

Bu bölümde daha önceki bölümlerde irdelenen ART yapısına ilişkin tez kapsamında

MATLAB ortamında m-file geliştirilen kod ile harf öbekleme problemi ele alınmıştır

ve farklı uyanıklık katsayısı ile elde edilen sonuçlar verilmiştir.

Dinamik bir sistem olarak ele alınan ART yapısı ve Algoritmik ART yapısı için

ağın girişinde ikili tabanda kodlanmış Şekil 3.1’de görülen alfabedeki bazı harfler ve

bu harflerin birimleri yer değiştirilerek elde edilmiş bozuk harflerden oluşan örüntü

kümesi kullanılmıştır. ART yapılarından beklenti bu veri setinde bulunan aynı harflerin

düz ve bozuk hallerini aynı öbeklerde tutarken farklı harfleri ayrı öbeklerde tutması

şeklindedir. Bu bağlamda farklı p için elde edilen sonuçlar paylaşılmıştır.
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Şekil 3.1 : ART yapısı için kullanılan harf örüntü kümesi

Dinamik ART yapısı ile Harf Öbekleme

Burada 5 farklı harfin düzgün ve bozuk hallerini içeren Şekil 3.1’deki örüntü kümesi

kullanılmıştır. Farklı uyanıklık katsayısına bağlı dinamik ART yapısının öbekleme

sonuçları paylaşılmıştır. Burada süreç olarak öğrenmeyi modelleyen yapı için her

açılan yeni öbekte temsil edilen örüntü ekrana gelecek şekilde uzun süreli belleğin

çıkışına yansıyan sonuçlar paylaşılmıştır.

Şekil 3.2 : p=0.1 değerine bağlı harf öbeklemesi
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p = 0.1 seçilerek yapılan öbekleme sonucunda ağın uzun süreli belleğinde Şekil 3.2’de

görüldüğü gibi ilk karşılaşılan A harfi için bir öbekleme yapılmıştır. Geriye kalan

28 örüntü bu öbek ile temsil edilmektedir. Kısaca küçük bir uyanıklık katsayısı ile

verilerdeki farklılıklar çok kaba bir şekilde ele alındığından tüm harfler tek bir öbeğe

atanmıştır.

Şekil 3.3 : p=0.8 değerine bağlı harf öbeklemesi

p = 0.8 seçilerek yapılan öbekleme sonucunda ağın uzun süreli belleğinde Şekil

3.3’da görüldüğü gibi dinamik ART yapısı farklı tip harfler için farklı örüntüler ile ilk

karşılaştığında bu örüntülere ilişkin öbekler açmıştır ve kimi bozukluklar olsa da bütün

harfleri düzgün bir şeklide ilgili harf öbeğinin içerisine atmıştır. Bu ölçüde başarılı

öbekleme Algoritmik ART ile denenen farklı p değerleri için gözlenmemiştir.

p = 0.9 seçilerek yapılan öbekleme sonucunda ağın uzun süreli belleğinde Şekil 3.4

de görüldüğü gibi ağın öbekleme sayısında ART yapısının doğası gereği artan p

değerine bağlı olarak uzun süreli belleğinde tutmuş olduğu öbekleme sayısında artış

görülmektedir.Kimi bozuk harfleri, yeni örüntüler olarak belirleyip bu harfler için ayrı

öbek oluşturmuştur.

Farklı uyanıklık katsayısı değerine bağlı olarak harflerin aynı öbekle temsil edilme

durumuna ilişkin sonuçlar Şekil 3.5 de görülmektedir. Ağın bozuk örüntüleri de doğru

şekilde sınıfladığı uyanıklık katsayısı değerleri 0.7 ve 0.8’dir. Burada incelenen her bir

katsayı değeri haricindeki sonuçlar ekte paylaşılmıştır.
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Şekil 3.4 : p=0.9 değerine bağlı harf öbeklemesi

Şekil 3.5 : uyanıklık katsayısına bağlı öbekleme başarı yüzdesi

Algoritmik ART yapısı ile Harf Öbekleme

Burada dinamik ART yapısı kullanılarak yapılan incelemenin bir benzeri Algoritmik

ART yapısı için yapılmıştır. Yine 5 farklı harfin düzgün ve bozuk halleri Şekil

3.1 görüldüğü sırada bu ART yapısına sunulmuştur. Ağın öbekleme davranışından

beklenilen, aynı harf temsillerini bir arada tutabilen öbekler oluşmasıdır. İstenilen bu

duruma p değerinin etkisini gözlemlemek için farklı p değerleri ile ağın öbekleme

sonuçları incelenmiştir.
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Şekil 3.6 : p=0.1 değerine bağlı harf öbeklemesi

p = 0.1 seçilerek yapılan öbekleme sonucunda ağın üç öbek üzerine örüntüleri

öbeklediği Şekil 3.6 görülmektedir. Burada farklı harf örüntülerinin birarada

bulunduğu öbekler dikkat çekmektedir.

Şekil 3.7 : p=0.5 değerine bağlı harf öbeklemesi

p = 0.5 seçilerek yapılan öbekleme sonucunda ağın beş öbek üzerine örüntüleri

öbeklediği Şekil 3.7 görülmektedir. Burada A ve Ç harflerine ilişkin öbeklerde sadece

bu harfler gözükürken, B harfine ilişkin öbekte Ç harfi, D öbeğine ilişkin öbekte ise B

25



harfi bulunmaktadır. Ayrıca, B harfine ilişkin bozuk örüntülerin bir kısmını B harfine

ilişkin öbeğe yerleşmemiş, yeni bir öbek oluşmuştur.

Şekil 3.8 : p=0.7 değerine bağlı harf öbeklemesi

p = 0.7 seçilerek yapılan öbekleme sonucunda ağın yedi öbek üzerine örüntüleri

öbeklediği Şekil 3.8 görülmektedir. Sadece A harfleri başarılı bir şekilde

öbeklenmiştir.Burada p = 0.5 durumuna benzer sonuçlar gözükmektedir. Bozuk

örüntüler için daha fazla öbek oluşturulmuştur. Ekte bu ART yapısı ile farklı uyanıklık

katsayıları denenerek elde edilmiş sonuçlar paylaşılmıştır.

Yukarıda da belirtildiği gibi, dinamik ART yapısı ile elde edilen sonuçlar Algortimik

ART yapısına göre daha başarılıdır.

3.2 Epilepsi Veri Seti

Elektroensefalogram (EEG) sinyali, ilk ölçülebildiği yıllarda beyin hasarlarının belir-

lenmesi ve anatomik kaynaklı bozuklukların teşhis edilmesi amacı ile kullanılmıştır.

Ancak sonrasında nörolojik hastalıkların teşhisinde daha anlamlı sonuçlar verdiği

gözlemlenmiştir [18]. Bu yöntem, beyinde geçici elektriksel aktivite bozukluğu

oluşmasına neden olan ve sık bilinen nörolojik bir hastalık olan epilepsinin teşhisi

sürecinde başvurulan ilk yöntemlerdendir. Epilepsi rahatsızlığı, kronik yapıda

olabiliyor olması ve nöbet geçirme anında kontrol kaybına bağlı olarak ciddi fiziksel

hasarlar ortaya çıkmasına neden olması tedavi sürecinde erken teşhisi önemlidir.
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Dünya nüfusunun yaklaşık yüzde 4 – 5’i bu hastalığa sahip olmasına karşın, nöbet

geçirmeden bu hastalığın teşhisi mümkün olmadığından bu hastaların belirlenmesi

yüzde 1 gibi düşük bir oranda kalmıştır [8].

Epilepsinin diğer beyin işaretleri içerisinden ayrıştırılıp varlığının tahmin edilmesi

uzun süreli EEG kayıtları alınıp, detaylı inceleme ile olasıdır. İnsan kontrolünde

böylesi bir analizin yapılıp nöbet öncesinin tahmin edilmesi çok düşük oranlarda

kalmıştır [8]. Bu oranı yükseltmek amaçlı epilepsinin bilgisayarlı tespiti ve EEG

sinyallerinin sınıflandırılması için yöntem arayışı son yıllarda birçok bilim insanının

araştırma konusu olmuştur [9].

Son dönemde Kaotik EEG verileri üzerine yoğun araştırmalar yapılmıştır. Andrze-

jak’ın çalışması [1], farklı fizyolojik ve patolojik durumlar da birçok ekstrakraniyal ve

intrakraniyal kayıt bölgelerindeki elektriksel beyin aktivitesinin dinamik özelliklerini

sabit analiz parametreleri kullanarak karşılaştırmayı amaçlamıştır. EEG zaman

serilerindeki deterministik ve düşük boyutlu yapıların göstergelerini sıfır hipotezine

karşı test etmiştir.

Doğrusal olmayan teknikler uygulayarak epilepsiyi tespit etmek için de birçok çalışma

yapılmıştır. Bunlardan biri, yeni bir yöntem olarak önerilmiş LAMSTAR Sinir

Ağı kullanarak epileptik nöbetlerin saptanması ile ilgili çalışmadır [9, 19] . İki

farklı EEG veri seti kullanarak çalışma yürütülmüştür. Bu veri setlerinden epileptik

nöbetleri karakterize etmek için epileptik vuru genliği ve epileptik vuru oluşum

sıklığını ele alan iki özellik kullanılmıştır [8]. Bu veri setlerinden ilki gözleri

açık normal kişilerden ölçülen EEG zaman serilerini içerirken diğer set epileptik

nöbetlerin ortaya çıkması sırasındaki ölçülen EEG kayıtlarından oluşmaktadır. Burada

LAMSTAR ağı yüzde 98.4 doğrulukla epilepsiyi saptayabilmiştir. Bir başka çalışmada

Shannon’ın entropisi, Renyi’nin entropisi ve Kolmogorov — Sina entropisi gibi farklı

entropi tahmin edicileri bir önceki çalışmaya benzer nitelikteki EEG veri setlerine

uygulayarak epilepsi tahmin edicisi oluşturulmuştur [9]. Bu sınıflayıcı yaklaşık yüzde

90 doğrulukta sonuçlar üretmektedir. EEG sinyallerinin sınıflandırılmasına dayanan

bir başka çalışma, Abdulhamit Subaşı’nın veri üzerinden dalgacık dönüşümü ile

öznitelik çıkartma temelli denetimli modüler sinir ağı kullanarak yürütmüş olduğu

çalışma olmuştur. Bu çalışma yüzde 94.5’lik sınıflama başarısına sahiptir [19].
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Problem için diğer bir sınıflandırma yöntemi olarak uyarlanabilir Bulanık-Sinir Ağı

Sistemi (ANFIS) kullanılmıştır [20]. Burada iki aşamada karar verme süreci içeren

yapı; dalgacık dönüşümü (WT) kullanılarak öznitelik çıkarımı yapılmış ve geri

yayılımlı gradyan iniş yöntemi ile ANFIS eğitilmiştir. Uygulamak amaçlı bu tezde

de kullanılan A, B, C, D, E veri kümesi olan beş tip EEG sinyali kullanılmıştır.

Veri setlerinde bu 5 veri setinin ANFIS ağı ile sınıflanma başarısı yüzde 98.68

doğrulukla gerçekleşmiştir. Epileptik nöbetlerin saptanması ve sınıflandırılmasına

yönelik incelenen çalışmaların sonuncusu Kaya’nın çalışmasıdır [21]. Bu çalışmada,

epileptik EEG sinyallerinin sınıflandırılması için aşırı öğrenme makinesi (ELM)

kullanılmıştır. ELM, tek bir gizli katmanlı ileri beslemeli yapay sinir ağı (YSA)

modelidir. Burada, ayrık dalgacık dönüşümü ile elde edilen istatistiksel özellikler

sınıflandırma sürecinde kullanılmıştır. Bu bölümde detaylı incelenen veri seti ile

yürütülen çalışma, A-D, A-E veri setlerini yüzde 100 oranında doğru sınıflamıştır.

3.2.1 Kullanılan veri seti içeriği

Kullanılan veri seti 23.6 saniye süren veri kaydı olup 100 parçadan oluşan EEG

segmenti halinde beş farklı setten (A-E ile ifade edilecek biçimde) oluşmaktadır. Bu

segmentler, kas aktivitesi veya göz hareketleri nedeniyle oluşabilecek gürültülerden

temizlenmiştir. Set A ve B, Şekil 3.9 de dizilimi gösterilen standart bir elektrot

yerleştirme şeması kullanılarak beş sağlıklı gönüllü denek ile yapılan ölçümler ile elde

edinilmiştir. Uyanık haldeki katılımcıların rahat bir vaziyette bulunmaları durumunda

önce gözetilerek sırasıyla gözleri açık vaziyette A veri seti elde edilmiş, sonra gözleri

kapalı olma durumunda B veri seti edinimi sağlanmıştır. D seti beynin epileptojenik

bölge içinden ve C setindeki veriler beynin karşı yarıküresinin hipokampal yapıdan

kaydedilmiştir. C ve D veri seti içeriğinde nöbet geçirilmediği aralıklardaki ölçülen

aktiviteyi içerirken, E setindeki veri içeriği sadece nöbet aktivitesi içermektedir.

Tüm EEG sinyalleri, genel ortalamanın referans alındığı, patolojik aktivite (C, D ve E)

veya güçlü göz hareketi aktivitelerini (A ve B) içeren elektrotların ihmal edildiği aynı

128 kanallı amplifikatör sistemi ile kaydedilmiştir. 12 bit analog-dijital dönüşümden

sonra, veriler 173.61 Hz örnekleme hızında veri toplama amaçlı bilgisayar sistemine

iletilmiş ve burada veri kaydı disklere yazılmıştır. Şekil 3.11’de bu tez çalışması için
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Şekil 3.9 : Uluslararası 10-20 sistemi esas alınarak oluşturulmuş elektrot dizilimi
esaslı EEG cihazı kullanılmıştır. Burada elektrot adlandırması anatomik

konum üzerinden türetilmiştir. A ve B setleri için kayıtlar bu düzen
esasında edinilmiştir [1].

Şekil 3.10 : Epilepsi hastalarının ameliyat öncesi değerlendirilmesi için implante
edilen intrakraniyal elektrot şeması esaslı ölçüm yöntemi [2].

ele alınan Bant Geçiren Filtre ayarları 0.53-40 Hz özelliğindeki filtre uygulanmış bu

veri setlerinden örnekler gösterilmektedir.

Bu çalışmada, esas alınan A ve D veri setleri olmuştur. Bu veri setleri hem sağlıklı

gönüllülerin epilepsi tanısı koymak hem de epilepsi hastalarının kriz öncesi epileptik

bulgularını sınıflandırmak için anlamlı bilgi içeriği sunmaktadır. Analizlerde hastadan

alınan EEG belirteçlerinin sınıflandırılması, gözler açık sağlıklı gönüllüler (set A) ve

epilepsi öncesi (set D) veri seti ile eğitilmiş öğrenme algoritmaları sağlanmıştır [8]. Bu

iki veri setinin zaman serisi olarak gösterimi Şekil3.12 verildiği gibidir.

3.2.2 Öznitelik çıkarma yöntemleri

Ayrık Dalgacık Dönüşümü Tekniği

Dalgacık dönüşümü, herhangi bir genel fonksiyonun sonsuz bir dalgacık serisi

olarak ifade edilebildiği bir gösterimdir.Ele alınan fonksiyon baz vektörleri dalgacık

fonksiyonları olmak üzere ifade edilmektedir. Dalgacık analizi, bir sinyali, ana
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Şekil 3.11 : Yukarıdan aşağıya: A-E’yi sıralanmış beş veri setinin her birinden örnek
EEG zaman serileri gösterimi.

Şekil 3.12 : A ve D veri setlerinden örnek veriler

dalgacık olarak adlandırılan tek bir fonksiyonun kaydırılması ve genişletilmesiyle

elde edilen belirli bir baz fonksiyon grubunun doğrusal bir kombinasyonu olarak

ifade edilebileği fikri üzerine kurulmuştur.Bu durumda ele alınan sinyal, dalgacık

katsayıları ile ağırlıklandırılmış, dalgacık fonksiyonlarının doğrusal bir kombinasyonu

olarak yeniden oluşturulmaktadır. Sinyalin düzgün ifade edilebilirliği için yeterli

çoklukta katsayı hesaplanmalıdır. Dalgacıkların en önemli özelliği zaman-frekansı

lokalizasyonuna sahip olmasıdır. Bu durum dalgacık enerjisinin çoğunun sınırlı

bir zaman aralığıyla sınırlanabilir olduğu anlamına gelir. EEG sinyaline uygulanan

dalgacık tekniği, özellikle sinyalin Fourier dönüşümü ile zaman geçişlerindeki anlık

bilgilerin kaybını önemli ölçüde telafi etmektedir [19] .

30



Ayrık dalgacık dönüşüm tekniği (DWT) denklem 3.1 ile ifade edilmektedir.

w(i, j) = ∑
j
∑
k

x[n]2
− j
2 φ(1/2 jn− k) (3.1)

Burada xn sinyalin kendisi ve Φ ana dalgacıktır. DWT farklı frekans bantlarındaki

sinyali farklı çözünürlüklerle analiz etmemizi sağlar.Böylece sinyal hem ayrıntılı

hem de kaba bir yaklaşımla ifade edilmiş olur. Ayrıntılı terimlere ilişkin katsayılar

için yüksek geçiren, yaklaşık katsayıları için ise alçak geçiren filtreler uygulanır.

Bir X sinyalinin n çok çözünürlüklü ayrıştırma prosedürü Şekil 5’te şematik olarak

gösterilmektedir. Bu şemanın her aşaması, iki dijital filtre ve iki aşağı örnekleyiciden

oluşur. İlk filtre, h [.] ayrık ana dalgacık, ikincisi, g [.] ayna versiyonu olarak ifade

edililir [20, 21].

Şekil 3.13 : DWT uygulamasının alt bant ayrışması; h [n] yüksek geçiren filtre, g [n]
düşük geçiren filtre [3].

DWT kullanarak sinyallerin analizinde uygun dalgacık seçimi ve ayrışma seviyesi

sayısı büyük önem taşımaktadır. Ayrışma seviyelerinin sayısı, sinyalin baskın frekans

bileşenlerine göre seçilir. EEG sinyallerinin 30 Hz’nin üzerinde herhangi bir yararlı

frekans bileşeni olmadığından, ayrışma seviye sayısı 5 olarak hesaplanmıştır. Böylece,

EEG sinyalleri D1-D5 bileşeni ile son ayrışımı A5 olmuştur. EEG sinyallerindeki

değişiklikleri saptamak için genellikle 4. sıradaki Daubechies dalgacığının (db4) ve 10.

sıradaki Symmlet’in (sym10) yumuşatma özelliği kullanılmaktadır. Ele alınan veri seti

için Şekil 6’da, db4 dalgacık zaman-frekans lokalizasyonu sonuçları elde edilmiştir.

Daha düşük frekanslarda, A veri kümesi D veri kümesinden daha yüksek genlik

değerlerine sahiptir. Bu çalışmada, normal ve epileptik denekleri ayırt etmek için

belirli bir frekans aralığındaki genlik değerleri toplanarak özellik olarak eklenmiştir.

31



Şekil 3.14 : A seti içeriğinden elde edilmil db4 dalgacık spektrumu sonucu, D seti
içeriğinden elde edilmil db4 dalgacık spektrumu sonucu.

Shannon Entropisi

EEG sinyali karmaşık, doğrusal ve durağan olmayan rastgeleliktedir. Doğrusal

olmayan bir analiz yöntemi olan Entropi, EEG verileri için analiz amaçlı başvurulan

yöntemlerden olmuştur. Burada, Entropi belirsizliğin bir ölçüsüdür ve veri içeriğindeki

kaos seviyesini ölçütünü yansıtmaktadır [22]. Bu çalışmada Shannon’ın entropisi

normal ve epileptik EEG sinyallerini incelemek ve araştırmak için kullanıldı. Ayrık

tip RV X’in Shannon Entropisi [23] şu şekilde tanımlanır:

H(X) =−
N

∑
i=1

pilogb pi (3.2)

Şekil 3.15 : A ve D seti içeriğinden elde edilmiş Shannon Entropisi.
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Burada N olası durumların sayısını ifade ederken π , X = xi olayının gerçekleşme

olasılığını ifade etmektedir. π> 0 olduğu varsayılarak olay ele alınır; en sık kullanılan

değerler b = 2 ve b = e’dir [9, 23].

Enerji

Genel hastalık senaryolarında enerji kavramı hasta ve sağlıklı birey ayrımında önemli

bir metrik olarak kabul görmüştür. Burada, EEG sinyallerinin enerjisi normal ve

epileptik veri setlerini belirler. Ayrık zamanlı sinyaldeki x (n) sinyal enerjisi şu şekilde

tanımlanmaktadır:

E =
∞

∑
n
|x(n)|2 (3.3)

Şekil 3.16 : Veri setleri içeriğinden elde edilmiş enerji değerleri.

Standart sapma

Şekil 3.17 : Veri setleri içeriğinden elde edilmiş standart sapma Değerleri.

Sistematik faktörlerden ve rastgelelikten ortaya çıkan durumların sayısal ifadesini

sağlayan bu yöntem Denklem 3.4ile ifade edilir.
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S =

√
1

N−1

N

∑
i=1
|Ai−µ|2 (3.4)

µ , A’nın ortalamasıdır.

Bu bölümde anlatılan büyüklükler, epilepsi verilerinin sınıflandırılması ve öbeklen-

mesi için gereken öznitelik kümesini oluşturmakta kullanılmıştır.

3.3 Çok katmanlı Algılayıcı Sonuçları

Bir önceki bölümde açıklanan epilepsi veri seti için çok katmanlı algılayıcı (ÇKA) ile

sınıflandırma sonuçları bu bölümde paylaşılmıştır. Burada, yapılan çalışmalar [20, 21]

baz alınarak işaret üzerinden Tablo 3.1’de belirtilen 12 farklı öznitelik çıkarılarak ağ

üzerinde sınıflandırma başarısı test edilmiştir. Sınıflama amaç ölçütü A ve D veri

setlerinin birbirinden ayrıştırılması şeklindedir. Bu bağlamda, Tablo 3.1 belirtilen

öznitelikler; Shannon Entropi, işaretin her bir bölümü için enerji değeri,genliğin en

yüksek olduğu değer, işaretin standart sapma değeri, frekans hesabında maksimum

değerin reel kısmı, frekans domeninden ve dalgacık dönüşümünden gelen parametre

değerleri öznitelik olarak alınmıştır. Öncelikle ağın bu örüntülerin hepsi dahil

edilerek sınıflandırma başarısı incelenmiştir. Sonrasında Tablo 3.1 görüldüğü gibi

her bir öznitelik hariç tutularak ağın sınıflandırma başarısı test edilmiştir. Her bir

özniteliğin dahil edildiği 1.durum sonucunda elde edilen sınıflandırma başarısının

altında kalan öznitelikler için 14.durumda tekrardan sadece bu özniteliklerin ağa

verildiği bir eğitim süreci tasarlanmıştır. Elde edilen sınıflandırma başarısı bütün

özniteliklerin sürece dahil edildiği durum ile kıyaslanmıştır.Sonuç olarak frekans tanım

bölgesine geçiş sırasında elde edilen öznitelikler ve dalgacık dönüşümünden gelen

özniteliklerden oluşan toplam 4 öznitelikli durum ile 12 öznitelik kullanılan durum

arasında sınıflandırma başarısı olarak benzerlik gözlenmiştir.

Bu ağın sınıflandırma işlemi süresince eğitim ve test aşamlarında aktivasyon

fonksiyonu olarak tanjant hiperbolik fonksiyonu kullanılmıştır. İki gizli katmanlı

bir yapı üzerinden tanımlanmış olan bu ağ için ağırlıklar başlangıçta Gauss dağılımı

(Gauss distribution) ile elde edilen bir rastgelelikle tanımlanmıştır. Eğitim ve test

kümesi verileri yine bir Gauss dağılımı üzerinden seçilerek yüzdesel olarak 80’lik

kısmı ile eğitim 20’lik kısmı ile test seti oluşturulmuştur. Eğitim sırasında ağın
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çıkışında gözlemlenen ortalama karesel hata değeri üzerinden eğitimin tamamlanması

kararı verilmiştir.Ağın tutarlılığını ortaya koymak adına her bir sınıflandırma durumu

20 kez tekrarlanan bu süreç için her bir test başarısı sonucu Tablo 3.1 elde edilmiştir.
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3.4 ART ile Epilepsi Verilerinin Öbeklenmesi

Burada Bölüm 3 içerisinde ele alınan epilepsi veri seti Dinamik ART ve Algoritmik

ART yapıları ile öbekleme problemi olarak ele alınmış ve elde edilen sonuçları

paylaşılmıştır. Bölüm 3.2.2 ile veri seti üzerinden çıkarılan öznitelikler bu ağ

yapılarında giriş örüntüsü olarak düzenlenmiştir. Bu düzenleme için öncelikle ele

alınan öznitelik verilerine her bir öznitelik boyutuna Denklem 3.5 uygulanarak veri

her öznitelik boyutu için 0 ile 1 arasında tanımlı reel sayılara dönüştürülmüştür. 100

örnekten oluşan 12 boyutlu bu veri seti, her iki ART yapısı içinde analiz edilebilmesi

için ikili tabana dönüştürülmüştür. Bu dönüşüm için 0 ile 1 arasında reel sayılardan

oluşan her bir öznitelik değerinin ondalıklı kısmının iki basamağını ifade etmesi amaçlı

ikilik tabanda 7 boyutlu veri açılmıştır. Öznitelik veri kümesinde 12 farklı öznitelik

tanımlı olduğundan ART yapısı için ikili tabanda tanımlı örüntü 84 boyutlu hale

dönüşmüştür. Böylece elde edilen 100 örnekli 84 boyutlu örüntü kümesi, Dinamik

ART ve Algoritmik ART yapıları ile öbeklenmiştir.

x∗ =
x−min(x)

max(x)−min(x)
(3.5)

3.4.1 Dinamik sistem yaklaşımı ile öbekleme

İkili tabana dönüştürülmüş epilepsi öznitelik verileri, Bölüm 2.2’de açıklanan

dinamik ART yapısı kulanılarak öbekleme işlemine tabi tutulmuştur.Burada, farklı

p değerlerine bağlı öbekleme başarıları sınanmıştır. Başarı ölçütü, ağın veri seti

içerisindeki hastalıklı ve sağlıklı veri örneklerinin farklı öbeklere ayırabilmesi olarak

tanımlanmıştır. Veri seti 50 hastalıklı ve 50 de sağlam kişiye ait 100 örnekten

oluşmaktadır. Burada ağın başarısına etkisi olup olmadığını incelemek adına;

ilk durum olarak sağlıklı ilk 50 veri sırasıyla örüntü girişi olarak tanımlanmıştır.

Sonrasında hastalıklı veri örnekleri örüntü olarak uygulanarak öbekleme başarısı

değerlendirilmiştir.

Bu başarı puanı oluşturulurken maksimum öbek sayısınca örüntülerin temsil edildiği

öbeklere bakılmıştır. Her öbek içeriğindeki örüntüler hastalıklı ve sağlıklı veri setine

ait olma durumu ile incelenmiştir. Öbek içerisinde sayıca yoğun örüntüye göre
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Şekil 3.18 : İlk durum için farklı p değerine bağlı elde edilen öbekleme başarısı

hastalıklı veya sağlıklı öbek olarak nitelendirilmiştir. Örneğin bir öbekte 5 tane

sağlıklı olarak etiketlenmiş veri 3 tane hasta olarak etiketlenmiş veri var ise bu

öbek sağlıklı duruma karşı düşen öbek olarak belirlenmiştir. Bu durumda niteliğin

dışında kalan örüntülerin hatalı öbekleme olduğu kanaatine varılır. Öbek içerisinde

eşit yoğunlukta örüntü bulunması durumunda her iki örüntününde kusurlu öbeklendiği

kararı verilmiştir.

Şekil 3.19 : İlk durumda p=0.1 için elde edilen öbekleme sonuçları

Bu başarı koşulları altında sağlıklı veri setlerinin öncelikle sunulduğu birinci durum

için farklı p değerlerine bağlı elde edilen başarı yüzdeleri Şekil 3.18 görülmektedir.

Düşük p değerlerinde öbekleme başarısının az olduğu görülmektedir. Buna ağın düşük

uyanıklık katsayına bağlı olarak örüntüleri temsil etmek için az sayıda öbek oluşturma

eğiliminde olması neden olmaktadır. Bu durum, p = 0.1 gibi düşük p için elde edilen

Şekil 3.19 öbekleme sonuçlarında net bir şekilde görülmektedir. Burada ART yapısı
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örüntüleri tek bir öbek içerisinde tutma yönünde davranış sergilemektedir. Şekil 3.18

p değerinin artmasına bağlı olarak öbekleme başarısının arttığı görülmektedir. Bu

duruma kaynaklık eden, ART yapısının yüksek p değerine bağlı olarak ağın ele aldığı

örüntüler için öbek sayısını arttırma eğiliminde olmasıdır. Şekil 3.20 de p = 0.95

değeri için elde edilen sonuçlar bu durum için örnek olarak verilebilir.

Şekil 3.20 : İlk durumda p=0.95 için elde edilen öbekleme sonuçları

Burada, örüntü sayısı kadar öbek açılmasına bağlı olarak öbekleme başarısı yüksek

olmaktadır. Ancak burada veriler arasında ilişkinin kaybolduğu görülmektedir. Bu

noktada öbekleme sürecinde uygun p değerinin belirlenmesi büyük önem taşımaktadır.

Şekil 3.21 p = 0.5 değeri için hastalıklı ve sağlıklı veri örüntülerinin iki ayrı öbek

üzerinde etkin bir şekilde ayrıldığı görülmektedir. Burada alt öbeklerde toplanan

örüntülerde de belirgin ayrışmalar görülmektedir.

Şekil 3.21 : İlk durumda p=0.5 için elde edilen öbekleme sonuçları
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Hastalıklı örüntülerin ilk olarak sunulduğu sonrasında sağlıklı örüntülerin sunulduğu

ikinci durumda farklı p değerine bağlı ağın öbekleme başarısı Şekil 3.22

gösterilmektedir.

Şekil 3.22 : 2. durum için farklı p değerine bağlı elde edilen öbekleme başarısı

Burada ilk duruma benzer nitelikte p değeri düşük olduğu durumda ağın başarısının

düşük olduğu, p değerinin artmasına bağlı olarak öbekleme başarısının arttığı

gözlemlenmektedir.

Şekil 3.23 : 2.durumda p=0.1 için elde edilen öbekleme sonuçları

Şekil 3.23 p = 0.1 değeri için örüntülerin bir öbek üzerinde toplandığı görülmektedir.

p = 0.95 gibi yüksek p değeri için Şekil 3.24’de görüldüğü üzere, ağın örüntü

sayısı ölçütünde öbek oluşturmasına bağlı olarak yüksek öbekleme başarısı ortaya

çıkmaktadır.

40



Şekil 3.24 : 2.durumda p=0.95 için elde edilen öbekleme sonuçları

Şekil 3.25 : 2.durumda p=0.5 için elde edilen öbekleme sonuçları

Şekil 3.25 de p= 0.5 değeri için belli öbeklerde hastalıklı ve sağlıklı örüntülerin görece

yoğun bulunduğu öbekler görülmektedir.

Hastalıklı ve sağlıklı örüntülerin rastgele ağa sunulduğu 3. durum için p değerine bağlı

öbekleme başarı sonuçları Şekil 3.26 görülmektedir.

Burada diğer durumlara benzer nitelikte düşük p değeri için Şekil 3.27 görüldüğü gibi

ağ tek bir öbek üzerinde bütün öbekleri toplamak yönünde davranış sergilemektedir.

Şekil 3.28 yüksek p değeri için ağın her örüntü için bir öbek oluşturduğu

görülmektedir. p = 0.5 için ağın sağlıklı örüntülerin yoğun bulunduğu öbekler

oluşturduğu görülmektedir.
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Şekil 3.26 : 3.durum için farklı p değerine bağlı elde edilen öbekleme başarısı

Şekil 3.27 : 3.durumda p=0.1 için elde edilen öbekleme sonuçları

Şekil 3.28 : 3.durumda p=0.95 için elde edilen öbekleme sonuçları

Örüntüler arasındaki ilişkiyi koruyarak yapılan öbeklemeleri belirlemek için farklı

uyanıklık katsayıları için ağın öbekleme davranışları gözlemlemek amaçlı denemeler

yapılmıştır. Bu yönde elde edilen sonuçlar ekte paylaşılmıştır.
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Şekil 3.29 : 3.durumda p=0.5 için elde edilen öbekleme sonuçları

3.4.2 Algoritmik yaklaşım ile öbekleme

İkili tabana dönüştürülmüş epilepsi öznitelik verileri Algoritmik ART yapısına da

uygulanmıştır. Hastalıklı ve sağlıklı veri setinden oluşan bu örüntülerden ilk olarak

sağlıklı veriler ağa sunulduğu durumda p değişimine bağlı öbekleme başarısı Şekil

3.30 görülmektedir.

Şekil 3.30 : 1.durum için farklı p değerine bağlı elde edilen öbekleme başarısı

p= 0.1 için örüntülerin öbeklenmesi Şekil 3.31 görülmektedir. Burada örüntüler için 4

öbek oluşturulmuştur.2. ve 4. öbekleri sağlıklı örüntülerden oluşurken diğer iki öbekte

her iki veri kümesinden örüntü içermektedir.
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Şekil 3.31 : 1.durumda p=0.1 için elde edilen öbekleme sonuçları

p = 0.95 yüksek p değeri için örüntülerin öbeklenmesi Şekil 3.32 görülmektedir.

Yüksek p değeri için elde edilen sonuçlara benzer nitelikte her örüntü için öbek

oluşturulduğu görülmektedir.

Şekil 3.32 : 1.durumda p=0.95 için elde edilen öbekleme sonuçları

Dinamik ART yapısı için öbekleme başarısı yüksek olan p = 0.5 için sağlıklı

verilerin önce uygulandığı durumda elde edilen Algoritmik ART sonucu Şekil 3.33

görülmektedir. Algoritmik ART yapısında bu p değeri için öbekleme başarısı daha

düşük olduğu görülmektedir.

Hastalıklı verilerin öncelikli olarak ağa uygulandığı 2.durum için farklı p değerlerinde

elde edilen öbekleme başarısı Şekil 3.34 görülmektedir. Bu sonuçların sağlıklı

örüntülerinin ağa ilk verdiği durum ile benzerlik göstermektedir.Bu durum ve aşağıda
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Şekil 3.33 : 1.durumda p=0.5 için elde edilen öbekleme sonuçları

verilen 3. durum için Algoritmik ART yapısına ilişkin sonuçlar farklı p değerleri için

Ekte verilmiştir.

Şekil 3.34 : 2.durum için farklı p değerine bağlı elde edilen öbekleme başarısı

Sağlıklı ve hastalıklı örüntülerin ağa rastgele bir şekilde verildiği 3.durumda elde

edilen öbekleme başarı sonuçları Şekil3.35 görülmektedir. Bu sonuçlar örüntülerin

öncelik sırası ile ağa sunulması durumlarına göre görece daha başarısız öbekleme

sonuçları verdiği görülmektedir.

Epilepsi verilerini öbeklemek için iki farklı ART yapısı kullanılmıştır.ÇKA ile

elde edilen sınıflandırma başarılarına yakın öbekleme başarısı elde edilmiştir. Bu

öbeklemeler ART yapısının p uyanıklık parametresine bağlı olarak şekillenmektedir.

Yüksek p değerleri ağın çok sayıda öbek açması ile örüntüler arasında ilişkiyi

kaybetmesine neden olduğundan yüksek öbekleme başarısının bir anlamı bulunma-

maktadır.Düşük p değeri, ağın öbek sayısını azaltmakta ve öbeklerin içinde farklı
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Şekil 3.35 : 3. durum için farklı p değerine bağlı elde edilen öbekleme başarısı

özellikteki verilerin alınmasına neden olmaktadır. Burada esas amaç veriler arasındaki

ilişkiyi koruyarak öbekleme imkanı tanıyacak p değerinin belirlenmesidir. Bu amaç

için farklı p değerleri ile ART yapılarının öbekleme davranışı gözlemlenmiştir. Bu

yönde elde edilen sonuçlar Ekte paylaşılmıştır.
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4. JANSEN KORTİKAL KOLONLAR MODELİ İLE EPİLEPSİ MODELİ

Bölüm 3’de EEG verilerinin yapay sinir ağ yapıları ile sınıflandırılması ve

öbeklenmesine dayanarak epilepsi tanısı konulmasına ilişkin tez kapsamında yapılan

çalışmalara ilişkin sonuçlar verilmiştir. Bu bölümde ise, hesaplamalı sinir bilim

bakış açısı ile EEG kayıtlarına yansıyan epilepsi işaretlerine odaklanılacaktır. Bu

işaretlerin nasıl oluştuğuna ilişkin yapılan çalışmalar ve bu yönde elde edilen sonuçlar

verilecektir. Burada, EEG kayıtlarına yansıyan epilepsi işaretlerinin oluşumunda yer

alan nöral yapıların bir modeli Jansen’ın Kortikal Kolonlar Modeli ile ele alınacaktır.

Jansen’in modeli hesaplamalı sinirbilim alanında ele alınan değişik seviyelerdeki

modellerden, bir nöral popülasyonun davranışını modellemeye yönelik Nöral Kütle

Modelidir [24]. Tez kapsamında Jansen modeline dayanarak önerilen, model, epilepsi

sırasında izlenen davranışları ve beyinde oluşan alfa dalgaları boyundaki işaretlerin

oluşmasına ilişkin sonuçlar sunmaktadır.

Şekil4.1’de blok diyagramı olarak görüleceği üzere, nöron grupları seviyesinde [24]

çalışmasından esinlenen bir modelleme yapılmaktadır. Bu çalışmanın [24]’de verilen

çalışmadan farkı olarak modelin üretmiş olduğu işaretlerin durum uzayında sergilemiş

olduğu davranışlara bakılmıştır. Ayrıca işaretin frekans bileşenlerine bakılmış beyinde

gerçekleşen süreçlerdeki frekans aralıklarıyla uyumlu olduğu görülmüştür.

Model;ateşleyen, sönümleyen ve piramidal nöron gruplarından oluşmaktadır. Bu

yapılardan, ateşleyen ve sönümleyen nöron grupları piramidal nöron grubu üzerine

sırasıyla ateşleyici ve sönümleyici yönde giriş uygulamaktadır. Bu giriş, piramidal

nöron grubu tarafından ateşleyici yönde, aynı nöron gruplarına geri beslenmektedir.

Ayrıca bu grup üzerine diğer kolonları ve talamus gibi korteks altı yapıları temsil

edecek şekilde ateşleyici yönde harici bir P gürültüsü uygulanmaktadır.

Bu modeldeki piramidal hücre grubuna ilişkin işaret, EEG işaretlerine karşı

düşmektedir. Bu işaret Şekil 4.1’de y değişkeni ile ifade edilmiştir. y, y1

ateşleyen davranış sergileyen hücre gövdesinin sinaptik boşluğa bıraktığı işaret ile y2

sönümleyen davranış sergileyen hücre gövdesinden sinaptik boşluğa bırakılan işaretin
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Şekil 4.1 : Jansen kortikal kolonlar modeli blok diyagramı.

farkına karşılık gelmektedir. Şekil 4.1 de bu hücre gruplarının birbirleri ile etkileşimli

oldukları görülmektedir. Zamana bağlı olarak ortaya çıkan bu etkileşimi sağlamak

adına her bir nöron grubu için diferansiyel denklem takımları kullanılarak davranışları

modellenmiştir.

.
y0 (t) = y3(t)
.
y3 (t) = AaSigm[y1(t)− y2(t)]−a2y0(t)

(4.1)

2. mertebeden bir diferansiyel denklem takımı olan Denklem 4.1 ile piramidal hücre

grubunun davranışı lineer olmayan bir dinamik sistem ile ifade edilmiştir. Burada

piramidal hücre grubunun sinaptik boşluğa bıraktığı işaret y0 ile belirtilmiştir. Bu

işaret ateşleyen ve sönümleyen nöron gruplarının sinaptik boşluğa bırakmış olduğu
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işaretlerden etkilendiği görülmektedir. Bu etki hücre gövdesini temsil eden sigmoid

bir fonksiyon üzerinden sinaptik boşluğa aktarılmaktadır. Burada sinaptik boşluğa

bırakılan y0 işareti ateşleyen ve sönümleyen davranış sergileyen hücre grublarına

Denklem 4.4 ile tanımlı ağırlıklar oranında etki etmektedir.

.
y1 (t) = y4(t)
.
y4 (t) = Aa[p(t)+C2Sigm[C1y0(t)]]−2ay4(t)−a2y1(t)

(4.2)

Ateşleyen davranış sergileyen hücre grubunu taklit etmek için Denklem 4.2

kullanılmaktadır. Burada korteks altı yapıların davranışlarını ifade eden tek düze

stokastik bir dağılıma ilişkin P(t) işareti ve piramidal hücre grubunun sinaptik boşluğa

bıraktığı işaret olan y0’in etkili olduğu görülmektedir. Bu denklem de ateşleyici hücre

gövdesinin sinaptik boşluğa bıraktığı işaret y1 ile ifade edilmektedir.

.
y2 (t) = y5(t)
.
y5 (t) = BbC4Sigm[C3y0(t)]−2by5(t)−b2y2(t)

(4.3)

Nöral yapıların davranışını temsil eden bir diğer popülasyon sönümleyici davranış

sergileyen hücre grubudur ve bu hücre grubunun davranışı Denklem 4.3 ile

modellenmiştir. Temel olarak piramidal hücre grubunun sinaptik boşluğa bıraktığı

işaret olan y0’in etkili olduğu görülmektedir. Bu nöral yapıların etkileşimi sonucunda

elde edilen işaret y2 ile ifade edilmektedir. Farklı popülasyonların birbirine etkilerine

ilişkin katsayılar Denklem 4.4 ile denklemler içerisinde kullanılan diğer sabitler için

belirtilen değerler Çizelge 4.1 ile verilmiştir.

C1 =C

C2 = 0.8C

C3 = 0.25C

C4 = 0.25C

(4.4)

Bu değerlere bağlı olarak model üzerinden çıkış, piramidal nöron grubunun

gövdesindeki giriş işareti üzerinden gözlemlenmiştir. Bu işarete ilişkin zaman serisi

Şekil 4.2 ile verilmiştir. Ayrıca, işaretin frekans analiz yapıldığında Şekil 4.3
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Çizelge 4.1 : Jansen Model Genel Parametreler Çizelge.

Parametre Tanımlar Tipik Değerler
C Popülasyonlar arasındaki ortalama sinaps sayısı 135
A Ortalama ateşleyici sanaptik kazanç 3.25 mV
B Ortalama sönümleyici sinaptik kazanç 22 mV

α−1 Ateşleyici nöron popülasyonları için sinaptik iletimdeki gecikme sabiti 10 ms
b−1 Sönümleyici nöron popülasyonları için sinaptik iletimdeki gecikme sabiti 20 ms
υo maksimum ateşleme oranının yarısına ulaşma değeri 6 mV

υomax Nöron popülasyonlarının maksimum ateşleme oranı 5 s−1
r υodasigmoid f onksiyonunegimi 0.56 mV−1

Şekil 4.2 : Farklı A parametre değerine bağlı olarak modelin ürettiği dört farklı
zaman serisi işareti

Şekil 4.3 : Jansen Modeli çıkışında elde edilen işaretin frekans analizi sonuçları

sonuçlar elde edilmiştir. Burada işaretin frekans bileşenlerinin beyinden kaydedilen

EEG kayıtlarına yansıyan işaretlerin sahip olduğu aralıkta bulunduğu görülmektedir.

Epilepsi için yapılan çalışmalarda elde edilen sonuçlarla uyumlu şekilde baskın olarak
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alfa bandında frekans bileşeni görülmektedir [10]. Buna ilaveten belirgin şekilde

teta ve beta dalga boylarının varlığı da güç spektrumunda gözükmektedir. Ancak,

epilepsi nöbet anı verisini temsil eden işaretin model için seçilen parametre değerleri

ile doğrudan gözlemlenemediği ortaya konmuştur.

(a) (b)

(c) (d)

Şekil 4.4 : Jansen Modeli için 4 farklı durum portresi sonucu: (a) Deterministik
sistemde C=135 değeri için modelin durum portresi; (b) Deterministik

sistemde C=270 değeri için modelin durum portresi; (c) Stokastik
sistemde C=135 değeri için değeri modelin durum portresi ; ve, (d)

Stokastik sistemde C=270 değeri için modelin durum portresi.

Zaman serisi ve frekans analiz ile modele ilişkin elde edilen sonuçlar yapılan

çalışmalar [25] ile uyumlu olarak elde edildikten sonra, bu sonuçlara ilişkin durum

porteleri de elde edilmiştir. Burada, Jansen Modeline ilişkin P değerinin stokastik

ve deterministik seçilmesine bağlı olarak durum portrelerinin incelendiği çalışma

üzerinde durulmuştur [25]. Modelin çıkışında bu bağlamda elde edilen sonuçlar

Şekil 4.4 görülmektedir. Burada, deterministik değerler ile elde edilen sistem

davranışında daha belirgin olan tuhaf çekiciler, stokastik değerler için elde edilen

sistem davranışında benzer bir çekicinin perturbasyonu olarak elde edilmiştir.
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5. SONUÇ

Bu tez çalışmasında temel olarak iki konu ele alınmıştır. İlk olarak ART yapısının

farklı şekillerde gerçeklenmesi üzerine odaklanmıştır. ART aslında diferansiyel

denklem takımları ile önerilmiş, doğrusal olmayan dinamik bir sistemdir. Yapı

önerilirken bilişsel süreçlerdeki esneklik ve kararlılık özelliklerinin gerçekleştirilmesi

hedeflenmiştir ve belli bir giriş için bir denge noktasına oturan sistemin ancak faklı bir

giriş için bir başka kararlı denge noktası oluşturup o denge noktasında sonlanmasının

sağlanması ile bu hedef gerçekleştirilmiştir. Bu tez çalışmasında da ilk olarak ART

yapısını tanımlayan diferensiyel denklemler tek tek ele alınarak, öbeklemenin nasıl

gerçeklendiği durum portreleride incelenerek açıklanmıştır. ART yapısının özellikle

mühendislik uygulamalarında ve makine öğrenmesinde kullanılan algoritması da ele

alınmış ve açıklanmıştır. Böylece tez çalışmasında ilk olarak ele alınan ART yapısı

çok kullanılmayan bir açısı ile incelenmiştir.

Tez çalışmasının ikinci konusu epilepsi ile ilgili sonuçlar elde etmektir. Bunun için

de farklı iki yol tutulmuştur. İlk olarak EEG ölçümü ile epilepsi tanısının konulması

için makine öğrenmesinde yer alan çok katmanlı algılayıcı yapısı gerçekleştirilmiştir.

Ancak bunun için EEG verilerinden öznitelikler çıkarılmıştır. Sonra bu öznitelikler

kullanılarak veri seti tezin ilk kısmında ele alınan ART yapıları ile öbeklenmiştir.

Epilepsi ile ilgili olarak ikinci olarak korteks için bir model ele alınarak bu model

ile epilepsinin modellenmesi için çalışılmıştır.

Yapılan çalışmalara biraz daha detaylı olarak bakarsak, dinamik ART yapısının

küçük boyutlu örüntü kümesi üzerinde öbekleme süreci durum portreleri ile ortaya

konmuştur.

Dinamik ART yapısı için oluşturulan kodun etkinliğinin test edilmesi için, ikili

tabanda oluşturulan harf örüntüleri ile harf öbekleme süreci ele alınmış ve başarılı

bir şekilde gerçekleştirilmiştir. Ayrıca karşılaştırmak amaçlı Algoritmik ART modeli

de kullanılmıştır. Dinamik ART yapısının Algoritmik ART yapısına kıyasla, bozuk

harfleri öbeklemede çok daha başarılı sonuçlar verdiği ortaya konulmuştur.
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Epilepsi veri seti üzerinde ayrık dalgacık dönüşümü, enerji, entropi, standart sapma

gibi 12 farklı öznitelik çıkarılmıştır. Çıkan bu öznitelikler ÇKA ile sınıflandırma

işlemine tabi tutulmuş hastalıklı ve sağlıklı veri setlerinin ayıştırılması noktasında

başarılı sonuçlar elde edilmiştir.

12 boyutlu öznitelik uzayında farklı öznitelik kombinasyonları ile ÇKA’da

sınıflandırma işlemine yapılmıştır. 12 boyutlu öznitelik uzayı ile elde edilen

sınıflandırma başarısının 4 boyutlu öznitelik ile sağlanabileceği ortaya konmuştur.

Epilepsi veri setindeden elde edilen öznitelikler ikili tabanda dönüşüm yapılarak her

iki ART yapısı için öbekleme problemi olarak ele alınmıştır. Öbekleme başarısını

gözeterek en etkili uyanıklık katsayını aramak amaçlı farklı p değerleri için öbekleme

sonuçları elde edilmiştir. Burada anlamlı bilgi taşıyan alt öbeklerin gözlemlenmesine

olanak tanıyan uyanıklık katsayı değerleri araştırılmıştır.

Epilepsi işaretini oluşturan bir model üretmek amacıyla Jansen’in önermiş olduğu bir

nöral kütle modeli olan Kortikal Kolonlar Modeli gerçeklenmiştir. EEG işaretlerine

benzer nitelikte sonuçlar gözlemlenmiştir.

İleriye yönetik olarak, bu çalışmadan yola çıkılarak epilepsi gibi kompleks bir sürecin

daha iyi anlaşılması adına, ART gibi öbekleyici sistemler ile analiz yapılıp alt

öbeklerden anlamlı bilgi keşfedip var olan modeller iyileştirilebilir.
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Şekil C.1 : Uyanıklık katsayısına p=0.2 değerine bağlı harf öbeklemesi
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Şekil D.5 : ilk durumda p=0.7 için elde edilen öbekleme sonuçları
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Şekil E.3 : 2.durumda p=0.4 için elde edilen öbekleme sonuçları
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Şekil I.2 : 3.durumda p=0.2 için elde edilen öbekleme sonuçları

93
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Şekil I.7 : 3.durumda p=0.7 için elde edilen öbekleme sonuçları
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ÖĞRENİM DURUMU:

• Lisans: 2015, Namık Kemal Üniversitesi, Mühendislik Fakültesi, Biyomedikal
Mühendisliği
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YAYINLAR

• Bacaksiz, Ahmet Hifzi and Sengor, Neslihan Serap, “Testing of the Jansen Cortical
Columns Model to Simulate Different Brain Activities in MATLAB,” in 21st
National Biomedical Engineering Meeting (BIYOMUT), 2017.

• Bacaksız, Ahmet Hıfzı and Esgin, Eren, “Extraction of Numerical data from
Categorical Data Set and Artificial Neural Networks,” in 3rd International
Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT),
2019.

99


