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ABSTRACT

COORDINATION UNDER RANDOM YIELD AND
RANDOM DEMAND

The aim of this study is to fill a gap in coordination literature by providing
answers to two distinct research questions on two different systems: A newsvendor

system and an assembly system.

First part of the study analyzes a newsvendor problem with random yield and
random demand. Recalling the centralized solution, the system is decentralized and
five different contracts are studied. It is shown that some of the contracts coordinate
the chain while the others can coordinate with additional assumptions. In addition to
the expected chain profit, variance of expected chain profit is written in closed form
and the relation between the parameters and the expected profit and variance of the

expected profit and the optimal order quantity is illustrated with numerical examples.

Second part of the study deals with an assembly system. As well as the demand,
the yield of the suppliers are random. Concavity of expected chain profit of both two-
supplier and N-supplier assembly system is shown. Instead of solving the optimal order
quantities explicitly, the expected profit of the manufacturer and the chain is written is
such a way that the manufacturer’s function becomes a portion of that of the chain’s.
Four different contracts are proposed which are shown to coordinate the chain under
forced compliance. The contracts are mixed type of contracts which includes payments
from different contract schemes. Several different scenarios are created and numerical

examples for centralized solution and contract schemes are provided.



OZET

RASSAL ARZ VE RASSAL TALEP ALTINDA
KOORDiINASYON

Bu tezin amaci iki ayr1 sistem tlizerinde yapilan caligmalara cevaplar bularak

koordinasyon literatiiriindeki bir boslugu doldurmaktir.

Caligmanin ilk boliimii rassal talep ve rassal arz altindaki bir gazeteci ¢ocuk
problemini analiz etmektedir. Sistemin merkezi ¢oziimii hatirlatildiktan sonra dagitik
¢oziim ve beg ayri kontrat incelenmistir. Bazi kontratlarin sistemi koordine ettigi,
bazilarinin ise ancak ek varsayimlar ile koordine edebildigi gosterilmistir. Beklenen
zincir karina ek olarak, bu karin varyansi kapali formda yazilmig ve parametreler ile
beklenen kar, beklenen karin varyansi ve optimal siparig miktar1 arasindaki iligkiler

sayisal orneklerle gsterilmigtir.

Tezin ikinci kismi ise montaj sistemlerini incelemektedir. Talebin yani sira,
tedarikgilerin tirtinleri de rassaldir. Iki tedarik¢i ve N-tedarikgi sistemlerin beklenen
kar fonksiyonlarimin dig biikey oldugu gosterilmistir. Optimal siparig miktarlarin
teker teker ¢ozmek yerine beklenen kar fonksiyonlari, tedarik zincirinin kar fonksiy-
onu, iireticinin kar fonksiyonunun bir kat1 haline gelecek sekilde yazilmigtir. Zorunlu
uyum rejimi altinda koordinasyon saglayan dort kontrat sunulmustur. Bu kontratlar
farkli kontratlarin 6demelerini igeren karma kontratlardir. Farkli seneryolar ile merkezi

¢oziim ile konratlar iizerine sayisal ornekler sunulmustur.
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1. INTRODUCTION

With improvement of production techniques and technology, variety of all prod-
ucts increased to a significant level. Today many products, from cars to cellular phones,
offer so many alternatives that nobody can resist. However this variety brought diffi-
culty to the production processes as well. Thus the companies started to diversify and
focused on the areas at which they do best. Some started to manufacture products,

some started to transport products, some started to market products.

The companies gradually became an expert at one topic rather than doing all the
processes for selling a product. This change caused the formation of chains in which

every company provides a certain aspect of the whole supply process: Supply Chains.

However the companies saw that the overall profits of the supply chains may
be lower than the expectation. This difference is mainly due to the fact that every
company tries to maximize their own profits. In the past, since supply process usually
was completely owned by a single company, there was a single decision maker. However,

today there are various players who want more income.

This problem increased the importance of contracts which are simply the pay-
ments between the firms in a supply chain. With carefully designed contracts, every-
body acts in coordination such that the overall profit of a chain increases to the case

where there is a single decision maker.

This thesis deals with two problems. First problem is to implement well-known
contracts in a random yield newsvendor setting and study whether the contracts provide
coordination in the chain or not. The second problem is to design and implement
contracts for an assembly system in which each supplier produces distinct components
which are then assembled by a manufacturer in order to meet the random demand. As
well the randomness in the demand, the suppliers’ yields are random. Stochastically

proportional yield structure is used in both of the problems.



The rest of the thesis is organized as follows. Chapter 2 provides an overlook
for the studies about both of the problems. Contracts and their performances in the
newsvendor problem with random yield are studied in Chapter 3. Chapter 4 deals
with coordination in two and N supplier assembly systems. After theoretical work,
we present numerical illustration in Chapter 5. The last chapter is conclusion for the

thesis and provides some further research topics.



2. LITERATURE REVIEW

This work mainly focuses on two main problems. First problem is selling to the
newsvendor with random yield. Newsvendor problem is studied by many researchers
in recent years and coordination is one of the topics which has attracted attention.
However coordination in random yield and random supply systems has not been studied
yet. The second problem is an assembly system with random demand and random
yield. The suppliers produce distinct components which are later assembled by the
manufacturer to meet the random demand. The suppliers are unreliable and the yield
comes out to be lower than the order quantity. The research on assembly systems
focuses on choosing the optimal order quantity. There are some papers which study
coordination but there is no work that studies coordination in assembly systems with

random yield and random demand.

2.1. Newsvendor Problem

The first problem is a system with single retailer and single supplier having ran-
dom yield and random demand. The literature about this system can be categorized
into three main groups. In the first group, the centralized solution for the system is
reviewed. In the second group, coordination mechanisms for systems having only ran-
dom demand (classical newsvendor problem) are investigated. The third group includes

reviews and other helpful papers about random yield.

2.1.1. Centralized Solution

Shih[1] studies both EOQ and newsvendor problem under random yield and ran-
dom demand. Shih includes holding and shortage costs and shows that the total cost
function of the newsvendor problem is convex in quantity ordered. Shih shows that
deciding the optimal order quantity by assuming perfect yield instead of random yield
results in a higher cost. Noori and Keller [2] also investigate a system with stochas-

tic demand and random yield. Introducing the bias factor(amount received/amount



ordered), they analyze the system when the demand is uniformly distributed and nor-
mally distributed. It is found that the quantity ordered depends on mean and most
of the time the variance of demand, and is inversely proportional to the bias factor.
Ehrhardt and Taube [3] work on a model in which the replenishment quantity is a ran-
dom fraction of the quantity ordered. Linear cost structure is employed. They show
that a very simple heuristic accounting only for the expected value of the replenishment
quantity, not the variability, performs quite well for normally and negative binomially

distributed demand.

Gerchak, Vickson and Parlar [4] study a periodic review production model with
variable yield and uncertain demand. The optimal order quantity solves a ratio which
resembles the one in this study(the random yield, u, is between (0,1] and there is
no inventory I because this work deals with only single period). They found a critical
ratio including the distribution of the yield and demand which depends on price, salvage
value, cost of production and mean of the yield. They show that the order point does
not change even the yield is random. However, the quantity ordered is not simply the
difference of the order point and the available stock. As well as the final period(single
period), two period and n-period problems are also investigated. It is found that the
optimal policy for the general finite-horizon problem is not myopic, making the multi-
period case hard to solve explicitly. It is shown that the order-up-to policies are not

optimal.

Henig and Gerchak [5] work on a system with random yield and random demand.
They prove that the ordering point does not change with randomness of the yield by
using a very general cost structure. They use the stochastically proportional yield
model which is also used in the previous papers that are cited above. For multi-period
problem they show the existence of a critical reorder point and nonorder-up to optimal
policy. Infinite horizon problem is shown to have a solution which approximates a long
horizon problem. It is also shown that the critical reorder points are equal or greater

than the the reorder points in the perfect yield models.



This group of papers analyze random yield newsvendor models but they do not
include any study regarding coordination. In this research, coordination in newsvendor

problem with random yield and random demand is analyzed.

2.1.2. Decentralized Models and Coordination

To cite papers about coordination, Lariviere and Porteus [6] deal with coordi-
nation through wholesale price contract, Weng [7] studies quantity discount contracts
and Giannoccaro and Pontrandolfo [8] and Cachon and Lariviere [9] work on revenue
sharing contracts. Cachon [10] reviews the contracts in details. In this research several
contracts in classical newsvendor setting are investigated. Wholesale price, buy-back,
revenue sharing, quantity flexibility, sales rebate and quantity discount contracts are
studied in this work. As well as dealing with classical newsvendor problem, Cachon
works on price dependent demand and effort dependent demand. He also studies coordi-
nating multiple newsvendors and coordinating with demand updating. The framework

in the first part of this thesis mainly stems from this review of Cachon’s.

This group of papers deals with coordination but they do not study random yield

models. This thesis studies random yield as well as the coordination.

2.1.3. Other Papers

Yano and Lee [11] provide a review of literature about the random yield models.
They classify the papers as general, single stage continious-time models, discrete time
models and complex manufacturing systems. They study the random yield newsvendor
problem in the discrete time models, single stage - single period part. It is shown that
the cost function of this system is convex. Khouja [12] gives a literature review and a
classification of the papers dealing with the newsvendor problem, including the random

yield literature.

Parlar and Wang [13] study diversification between the suppliers for single period

when the yield is random. The concavity of the expected profit function is proved and



they propose an approximation to find the global optimum. Anupindi and Akella [14]
also study diversification of the suppliers when the yield is random. They analyze three
different models with single and multi period horizons. It is found that there are two
critical numbers which indicates from whom to order(both, one or none). Agnihothri,
Lee and Kim [15] study a single period random yield model with a known and fixed
demand, and a penalty cost when the demand is not met. They find distribution free

results and show that there are two critical numbers for optimal ordering.

Ciarallo, Akella and Thomas [16] work on a single product problem having ran-
dom demand and random capacity. They study single, multi and infinite horizon
problems. Wang and Gerchak [17] extend this problem to a random yield environ-
ment. They show that for finite horizon problem there is a single critical point and

solution of the finite horizon problem converges to infinite horizon problem’s solution.

To summarize, the papers about random yield and random demand do not con-
sider coordination. Additionally the papers about coordination do not study systems
having randomness both in yield and demand. Our model deals with coordination in

systems having both random demand and random yield.

2.2. Assembly Problem

The second problem is coordination assembly systems having random yield. The
assembly system studied in this thesis has two distinct components produced by the
suppliers. These components are then assembled by the retailer to meet the demand.
As well as the demand, the suppliers’ yields are random. The papers can be categorized
into two main groups. First groups deals with the centralized solution where as the

second group studies coordination and contracts.

2.2.1. Centralized Solution

Yao [18] works on assembly systems to figure out the optimum run quantities.

Solution procedures are developed under yield distributions having increasing failure



rates and convex setup cost functions. Gerchak, Wang and Yano [19] model an assembly
system for a single period. They work on two models: components with identical costs
and yield distributions and components with non-identical cost and yield distributions.
They formulate the cost function and show the optimality conditions. Gurnani, Akella
and Lehoczky [20] add a choice of joint supplier from whom the assembler can supply
a set(both) of the components. They work on single and multi periods and show that
it might be optimal to order more due to the randomness in the supply and sourcing

from the joint supplier is optimal if the inventory level is below a critical ratio.

Gurnani, Akella and Lehoczky [21] study on an assembly system facing a random
demand and random yield due to production yield losses. They formulate the exact
cost functions with target level of finished products to assemble and the order quantity
of the components from the suppliers as the decision variables. Then they propose
a modified cost function to find the optimal ordering quantity and target level to
assemble. In multi-period case it is found that it might be optimal to order extra
components for future use. Also the optimal ordering policy and assembly target level

policy are shown to be an order-up-to type of policy.

This group of papers focus on establishing the profit function of the chain and
finding the optmimal order quantity. However they do not consider decentralized set-

ting and coordination in the chain.

2.2.2. Decentralized System and Contracts

Gurnani and Gerchak [22] study assembly systems where demand is determinis-
tic but supply is random due to yield losses. They propose two contracts, one with
only punishment for undelivered items and other one with extra punishment to the
worst one. They show that with extra penalty the suppliers interact and there is a
nash equilibrium when coordination is achieved. Gerchak and Wang [23] were the first
that study coordination in decentralized assembly systems having random demand.
They worked on two systems; vendor managed inventory systems with revenue-sharing

contracts and wholesale price based systems. They proposed two new contracts: Rev-



enue sharing plus surplus subsidy contract and wholesale price plus buy back contract.
They showed that these contracts can coordinate the chain and there is a continuum
of such contracts which allows continuum of equilibrium allocation of channel profits.
This papers deal with coordination in assembly systems but they do not study both
random yield and random supply. When the papers are considered as a whole, there is
no study that consider coordination in a random yield and random demand assembly
system. This thesis deals with coordination in assembly systems with randomness both

in demand and yield.



3. SELLING TO THE NEWSVENDOR WITH RANDOM
YIELD

3.1. Problem Definiton

In this single period inventory control problem, there are two entities. The retailer
faces a random demand. In order to meet this demand, he orders to the supplier.
However, the retailer cannot receive the full order. Because of the randomness in the
supply process, the supplier receives a portion of the order he placed due to quality
problems. The distribution of the demand and the distribution of the fraction of the
received order is independent and known by all the players. The cost parameters and
the price is also known by the supplier and the retailer. The notation is as follows:

Q: Order size (Decision Variable)

r: Selling price per unit(Ezogenous)

gr: Opportunity loss of the retailer per unit

h: Holding cost of the retailer per unit

c: Cost of production per unit for the supplier

D: Single period random demand

a: portion of received order(yield), (0,1]

1(),F(): Density and CDF of «, respectively

9(), G(): Density and CDF of D, respectively

a) : Stochastically Proportional Yield

o expected value of a

ip: expected value of the demand

We need following assumption because only p, portion of order is received on the
average. That is the cost of a delivered order comes out to be ¢/p,. So the retailer has

to sell the units more than the expected cost of that unit:

o

r>— (3.1)
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The profit of the chain can be written as

7(Q) = r[Sales| — g.[Lost Sales| + h|End-product Inventory] — cQ (3.2)

Sales of the system is min(a@, D). The expected sales is:

S(a,Q) = FEmin(a@, D)]

- // aQf(a dDda+// Df(a)g(D)dDda

= ,an—l-// D — aQ]f(a)g(D)dDda (3.3)

3.2. Centralized Setting

In centralized setting, the decisions is given by a single decision maker. The
system acts as a whole, such that they belong to a single owner. Under this setting,
decisions which maximize the profit of the chain are made. The centralized profit

function of the system is given as:

7(Q) = rmin (aQ, D) — g.[D — aQ]" — h[aQ — D]" — cQ (3.4)

Taking the expectation, we have:

ER(Q) = {/ /aQan dDda+// Df(a ()dDda}
. / / (D =@ f(a)g(D)Dda

_ // (aQ — D) f(a)g(D)dDda — cQ
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- / / : 0Q (r + g,) — 9.D] f(a)g(D)dDda

1 pra@
+ /0 /0 D (r + h) — haQ)] f(@)g(D)dDda — cQ

= NaQ T"'_gr — grptp — €Q
aQ
+ T+gr+h// D — aQ)] f(a)g(D)dDdo

= (r+g-+n)S(,Q) = hitaQ — grpip — cQ (3.5)

We now establish the shape of expected profit function:

Proposition 3.1 Expected profit function given in (3.5) is concave in Q if r+g.+h >
0.

Proof:

%Q@D () — e (gt B) / af(a)G(aQ)da

& (Elr Q) _

002 —(r+g-+h) /o a’ f(@)g(aQ)da (3.6)

Every term in the integral is positive and the cost parameters are positive by

assumption. Hence the expected profit function is always concave. [J

As the function is concave, first order conditions are necessary and sufficient for

the global optimum. If Q* is the optimum quantity for the centralized setting:

d(Elr(Q)])
dQ

o (7 ;) — = (r+ g, + ) / af()G(aQ )da = 0
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a(r—l'gr)_c
r+gr+h

/0 af(a)G(aQ")da = a (3.7)

In fact, (3.7) resembles the critical ratio in newsvendor problem. We make make

the following definitions:

K(a) = /Oaf(&)G(aa)d&

K(Q) = / o f(0)C(0Q")do

fa (r +9gr) —
r+g,+h

Proposition 3.2 Optimal Q* found from (3.7) is unique.

Proof:

ag—y _ / 0 f(@)g(aQ) > 0 (3.9)

The function is strictly increasing in Q and K(0) = 0. For @ = oo:

lim K(Q) = pta < 00

Q—o0
then there is a solution if:
,ua > Ma(r+gr)_c
r+g-+h
tah > —c

which always holds since p, and h are nonnegative. Thus Q* is unique and well

defined.O.
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When we analyze the classical newsvendor problem, that is when there is no

random yield, the optimal order quantity turns out to be:

r+g,—c

G(Q) = P— (3.10)

So the randomness in the yield effects the left and the right hand side of the
equation. a and f(«) appear at the left hand side of the equation and the pu, appears
at the right hand side. So when p, = 1, then the right hand side of (3.7) is just equal

to that of newsvendor problem.
3.3. Decentralized Setting

In the decentralized setting, the retailer and supplier act as independent decision
makers. They try to maximize their own profits. There is a transfer payment, T(),
between two parties paid by the retailer to the supplier. The profit function of the

retailer and its expected value are:

WT(Q) = Tmln(aQ,D)—gT[D—aQ]+—h[aQ—D]+—T()
Em(Q)] = @ +g)— grpin
aQ
+ (rtg+h) // D — aQ] f(a)g(D)dDda — E[T()] (3.11)

The profit function of the supplier and the expected value of it are:

T (Q) = —cQ+T()
Elr (Q)] = —cQ+ E[T()] (3.12)
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3.4. Contracts

Contracts are different transfer payments. Several different transfer payments
described in the previous section comes out to be the contracts between the supply
chain entites. The profit of the chain under decentralized setting is always less than or
equal to the profit of the chain in centralized setting. When the system is decentralized,
every player tries to maximize its own profit. As a result of that, for example the
retailer orders a quantity that is different from the one which maximizes the chain’s
profit. The aim of the contracts is to establish transfer payments between the players
so that the retailer chooses the order quantity that maximizes the chain’s profit. In
this section we consider wholesale price contract, buy-back contract, revenue sharing
contract, quantity flexibility contract and quantity discount contract. Main issue is to

discuss whether they can coordinate the chain or not.
3.4.1. Wholesale Price Contract

In wholesale contract, the retailer pays to the supplier a wholesale price of w

units.

ET,(Qw)] = wu.@

The profit function of the retailer and the expected value of this function are:

7 (Quw) = ruin(aQ. D)~ g, [D—aQ]" — h[aQ — D' — wpnQ
E [7T7” <Q7 w)] = :an T+ gr — griD
aQ
+ 7”+g7«+h// D = aQ] f(a)g(D)dDda — wpaQ (3.13)



The expected profit function of the supplier is:

s (Qv UJ) = w,an - CQ
Elr (Qw)] = wpaQ — cQ

Concavity check of E [m, (Q,w)] results in:

15

(3.14)

Proposition 3.3 Expected profit function given in (3.13) is concave in Q if r+g,+h >

0.
Proof:
o(E [Wég),w)]) — (9 —(r+g, +h)/0 af(@)G(aQ)da — wig
02 (E [gngvw)]) . (7’ 4 gr + h)/o a2f(a)g(aQ)da S 0

O

Let @ be the optimal quantity for the retailer. Then:

0 (Em (Q w)])

90 =0

1
Ho (1 + 92) — (r + g, + B) / o f(0)G(aQ)da — wyy = 0
0
Then for Q to be equal to Q*:

— _MQ(T—i-gr)_wNa_Na<r+gr>_c_ *
K@) = (r+g.+h)  (r+g.-+h) = K@)

(3.15)
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So simply the retailer gives back the supplier the cost that the supplier spends for
the order. Then clearly the profit of the supplier is zero. This phenomenon is known

as double marginalization [24].

3.4.2. Buy-back Contract
In the buy-back contract the retailer pays w, for every unit that comes to her, at

the end of the season the supplier pays a premium of b to the retailer for every unit

that is not sold.

Ty (Q, wy, b) = wpaQ — bla) — min(aQ), D)]

PIT@Q b)) = woQ ~bE[0Q ~ min(aQ, D)
wbuamb// D — aQ] f(a)g(D)dDda

The profit function of the retailer and its expected value are given as:

T (Q,wy,b) = rmin(aQ,D)—g,[D—aQ]" —h[aQ — D]*
— wpa@ + bla@) — min(aQ, D)]
E[ﬂ—r (Q> Wy, b)] = MQQ (T +gr — — griD
aQ
+ (T+gr+h—b// D — aQ)] f(a)g(D)dDdo  (3.16)

The profit function of the supplier and the expected value of this function are:

7 (Qunb) = waQ - baQ — min(aQ, D)] - cQ
OtQ
Elr (@ unb)] = wppa@+b / / D - aQ] f(a)g(D)dDda - cQ (3.17)
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Proposition 3.4 Ezxpected profit function given in (3.16) is concave in Q if r + g, +
h—b>0.

Proof:

0 (E [m (Q,wy,b)])
0Q

fa (T + gr — ws)

—(r+g-+h—>0) /0 af(a)G(aQ)da

O (E [m, (Q, ws, b)])
0Q?

STy a2 (a)g(aQ)da

b is the buy-back price of the left over inventory. So it is meaningless for b to
be greater then the selling price r. This verifies the concavity of the function given in

(3.16). O

Now let @ be the optimal quantity for the retailer.

9 (E [7Tr (Qa Wy, b)])
oQ

ua(r+gr—wb)—(r+gr+h—b)/o af(a)G(aQ)da = 0

Then for ) to be equal to Q*:

—~ o (rtgr—wy)  pa(r+g)—c *
K@) = r+g.+h—0b  (r+g +h) = K@)

K *
[la Lo
w, — plelito)—c c (3.18)

,Ua(r +gr + h) Ha
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When (3.18) is analyzed, it can be seen that wj, decreases with an increasing fi,:

owy,  c[b—(r+gr+h)]

= <0
Ofta p2(r + g+ h)

However, we cannot figure out what the optimum quantity will be with an in-
creasing (i,. One point we can emphasize, increasing yield decreases the wholesale
price. The retailer pays to the supplier w, per unit delivered, p,@Q. That is, when
[t increases, then the quantity delivered by the retailer increases, and wj, decreases.
So increasing w;, means that overall the retailer tries to stabilize the payment for the

whole delivery.

The contract parameters that satisfies (3.18) coordinate the system. However not
all of them are acceptable. For the parameters to be fine for the players, the contract

must allow them to make profits. To find the acceptable range, we define the following:

Ma(r +9r — wb) = A[Ma(r +gr) - C]
r+g-+h—>b = MNr+g +h)

b = (1=Nr+g-+h)
(1= N pa(r+g,) + Ac
Ha

Wy =
which means that when A\ = 1 there is no buy-back process and w, just becomes the

wholesale price. So when A = 1 this contract becomes a wholesale price contract.

E [m. (Q,wy, b)] becomes a fraction of the whole chain’s profit function:

E [ (Q,w, b)] = ME[r(Q)]} + (A = 1)grpp (3.19)

Also the supplier’s profit function and its expected value are:

Ems (Qwp, 0)] = (1= N {E[r(Q)]} + (1 = A)grpip (3.20)
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Retailer gets all the profit when A = 1 while supplier gets it with:

o griD
"~ gopup + E[7(Q)] =1

Therefore, a buy-back contract coordinates the chain under random yield and

can arbitrarily allocate profits between the supplier and the retailer.

When the classical newsvendor problem is considered, the parameters are:

_br+gr—c

wy = +e 3.21
" gt h (3.21)

which shows that the buy-back parameters found from (3.18) simplifies to that of
classical newsvendor when p, = 1. Also in classical newsvendor the parameters which

are set as:

b = (1=XN)(r+g-+h) (3.22)

wy, = (1=XN)(r+g-)+Ac

result in same profit share as in (3.19) and (3.20). This result reduces to that of
Cachon’s[10].

This shows that the contract parameters are only affected by distribution of «,
in fact only by p,. Although one can think that the variance of yield does not have
a significant effect, it can be seen that this is not true when the critical ratio in (3.7)
is analyzed. The optimal order quantity is dependent on the distribution of a. So the
variance effects the selection of optimal order quantity. The retailer orders more (or

less) according to the variance and distribution of «.

If h < 0, that is h stands for salvage value. Transfer payments are not affected

since buy-back process is not related with the salvage value or holding cost.
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wy, gets its lowest value when b = 0, that is when the contract becomes a wholesale

price contract. Thus following inequality always holds:

wy > W (3.23)

3.4.3. Revenue Sharing Contract

With a revenue sharing contract the retailer pays w, for every unit that she
purchases. She also pays a part of her revenue, which is (1 — ¢) r.[min(a@, D)], to the

supplier, keeping ¢ portion of the revenue. The transfer function is:

T(Q,wr, ¢) = wya@Q + (1 — ¢)r[min(aQ, D)

E[TT(Q,IUT,QS)] = wrﬂaQ"’(l_ngS( aQ
— wQ+ (10 // D - aQ) f(a)g(D)dDda

The profit function of the retailer and the expected value of this function are:

7 (Qund) = rmin(aQ, D)~ g, D — Q" —h[oQ - DI
~ w0Q — (1 - ¢)rfmin(aQ. D)
Elm (Q wr,d)] = pa@Q(¢r+ g, — gruD
4 ¢7“+g7«+h// D - aQ) f(a)g(D)dDda  (3.24)

The profit function of the supplier and the expected value of this function are:

s (Q,w,, ¢) = wra@Q + (1 — ¢)rmin(a@, D)] — cQ
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E [7Ts (Q? Wr, ¢)] = Wrpa®Q ) 0
+ (1- (;5)7"/0 /0 [D — aQ)] f(a)g(D)dDda — @ (3.25)

Proposition 3.5 Ezxpected profit function given in (3.25) is concave in Q if ¢r+ g, +
h > 0.

Proof:

0 (FE [, é%, wy, P)]) = o (Or + gr — w,)

— (r 49 +h) / of(0)G(aQ)do

O (E [m, (Q,wy, d)])
902

(or gt ) /O o f(@)g(aQ)da

As all the cost parameters and the functions in the integral is positive, expected

profit function given in (3.25) is concave in Q.0

Now if we define  be the optimal quantity for the retailer:

0 (E[m (Q,wy, 9)])
o

o (67 + g1 — w,) — (61 + o + 1) /0 af(0)C(aQ)da = 0

then for @ to be equal to Q*:

—_Ma(qbr—l—gr_wr)_ua(r_‘_gr)_c— *
Klol= ¢or+g.-+h  (r+g.+h) — i@

g B@)
w, = (1—¢)r - 1]+ua

r(pa + ¢ h(c — par) + grC
fa(r+g-+h)  pa(r+g.+h)

(3.26)
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For the parameters satisfying (3.26), coordination is satisfied. As it can be seen
from the equation, w, increases with ¢. This means the retailer gets higher revenue
share when w, gets higher. One another critical point is that the sign of h(c— o)+ gr-c

is not clear. Following condition must hold for w, to be nonnegative:

h(c — por) +g.¢c > 0

c h
= > 3.27
Ha "t (3:27)
If we analyze the limits of the parameters:
h>>g, = h (3.28)
. r =r .
I h+ gr

which means that from (3.1) w, can be negative when ¢ is small enough. However if:

h
h<<g. = =0 3.29
g "t (3.29)

then w, is positive. However the supplier gets more revenue share with a small ¢. Thus

it is not an unacceptable offer for the supplier.

When (3.26) is analyzed, it can be seen that w, decreases with an p,:

ow,  —c(¢r +h+c) <0
e, p2(r + g, + h)

Again, we do not know what the optimal order quantity be with an increasing
[t S0 the only that can be derived from here is that staying everything the same,
the wholesale price decreases when the uncertainity in the yield decreases. This is the

same result we get from the buy-back contract.
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The parameters satisfying (3.26) coordinates the chain. However, like the buy-

back contract, one another point is to see which range is applicable:

Ma(¢r+97‘_w7‘) = )‘[Ma(r—i_gr)_c]

or+g-+h = Ar+g-+h)
Ar— (1 =N (h+gr)
¢ = r
Ac — hpo (1 = ))

w, = 3.30
Hao (3.50)

which means that when A = 1 all the sales revenue goes to the retailer and contract
becomes a wholesale price contract just like buy-back contract. It is found from (3.26)
that w, increases with ¢. So it can be seen that both results agree. When \ gets larger,
w, gets larger. As w, gets larger, the revenue share of the retailer ¢ gets larger because
the closer the contract is to the wholesale price contract, the more the retailer gets.

E[m (Q,w,, )] becomes a fraction of the whole chain’s profit function:

E[m (Q, wr, ¢)] = ME[m(Q)]} + (A = 1)grpip

and the supplier’s profit function is:

Ers (Q wr, ¢)] = (1 = M) {E[me(Q)]} + (1 = A)grpip

Retailer gets all the profit when A = 1 while supplier gets it with:

o griD
" gup + E[7(Q)] =1
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Another important point is that Buy-Back and Revenue Sharing contracts are

equivalent when the parameters have following relations:

w, = w,—>b (3.31)

b = (1—9¢)r (3.32)

which means that w, is greater than w,. Also it can be seen from (3.30) that w, gets it
highest value,c/ 1, when A = 1. So following condition can be written for the wholesale

prices of the contracts:

wp > W > W,

The relation in (3.32) is also valid in classical newsvendor problem without ran-
dom yield[10]. Tt is preserved under random yield as well. When the classical newsven-

dor problem is considered, the parameters are as follows:

r(t+e)  hle=r)+gc
r+g+h o r+gth

w, = ¢ (3.33)
which shows that the parameters found from (3.26) simplifies to that of classical
newsvendor when p, = 1. Also in classical newsvendor, when the parameters are
set as:

Ar— (1 =X)(h+ g,

r

w, = A—h(1-=2X\)

then the supplier and the retailer has same profit shares as in (3.19) and (3.20).

The affect of o and its distribution is explained in buy-back contract. When p,,
increases, w, decreases which means that the retailer tries to stabilize the payment for

the whole delivery. Additionally there is one point that must be analyzed carefully.
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The wholesale price w, can be negative when A becomes less than h/h + ¢. For this to

be happen, the following inequality must hold:

cgrpip < hE[m] (3.35)

This case may happen when selling price, r, has a very big value or when pro-
duction cost, ¢, has a very small value. So this means that when r gets higher or ¢
gets lower, the retailer wants some compensation from the supplier. In fact, this is a
case that a supplier does not accept. However, for w, to be negative A should have a
very small value and from (3.20) we know that the profit is allocated to supplier more,
when A\ gets smaller. So this will not be a problem for the supplier since negativity in
the wholesale price in fact means that at the end he gets more profit. Additionally,

when £ stands for a salvage value, then there will not be any negativity for w,.

The transfer payments and the structure of the contract changes if h < 0, that
is h stands for salvage value and the retailer gives a share from the salvage addition
to the revenue. Transfer payment includes an additional —(1 — ¢)h[a@ — D] units.

Retailer’s expected profit function is:

Eln (Q,w,,9)] = paQ(ér+ g, —wr) — gfip
aQ
- (¢r+gr+¢h// D — aQ] f(a)g(D)dDda

which is concave since ¢r + g, + ¢h > 0 because r > |h| since salvage cannot be more

than selling price. The contract parameters are:

¢(r —h)(c — pah)  grc+ hpo(r — h)
r+ gr + h)pia T+ gr + h) e

T

which shows that w, increases with ¢ like the setting with holding cost.
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The behaviour of w, with respect to u, is also same when compared with the
setting with holding cost:

Ow, _ clo(r —h) + g

a,u/a (7" + gr —+ h),ui

For the applicable range, define following:

5 A7+ g, —h)
N r—nh
e
w, = (1=XNh+ ,U_ (3.36)

With these transformations, the expected profit function of the retailer and sup-
plier becomes the ones presented in (3.19) and (3.20) respectively. Allocation of the
profits with A is same with the values of the setting with holding cost. Additionally,
(3.36) reduces to the result in Cachon[10].

3.4.4. Quantity Flexibility Contract
In this contract, the retailer pays wy for every unit received. Then supplier gives
a credit for either the left over inventory, or a predetermined portion of the order that

the retailer received. The choice is made by looking at which one is the smaller part.

k is the parameter that determines the quantity to be credited.

T,(Q,k,wp) = wraQ — (wy+ h) min[(a@ — D)", kaQ)]

1 pra@
BIQ kwp) = wpeQ (s #) [ [ [0Q D) p(apg(D)apda

1 raQ(l-k)
—(wy +h) /0 /0 kaQ f(a)g(D)dDda
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The profit function of the retailer and the expected value of this function are:

Ty (vaka) = Tmin(anD) — Gr [D_O“/Q]Jr _h[aQ_D]+
— wpaQ + (wy + h) min[(a@Q — D), kaQ)]

E[WT (Q7 wy, k)] = 1aQ (T + gr — — griD
aQ
+ (r+g —wy / / —aQ)] f(a)g(D)dDda

aQ(1-k)
—(wy + h)/o /0 [@Q(1 — k) — D] f(a)g(D)dDdee (3.37)

The profit function of the supplier and the expected value of this function are:

s (Q,wp, k) = wraQ — (wy + h) min[(aQ — D), kaQ)] — cQ

E [Ws (Q»wf’ k)] = wf:an —cQ)
- wf+h//Q [a@Q — D] f(a)g(D)dDdo

— (w4 h) / / Y 1aQ (@)g(D)dDdo (3.38)

Proposition 3.6 Expected profit function given in (3.37) is concave in Q if h+wy > 0
and r+ g, —ws >0

Proof:

9 (E [r, (a% Wkt g — wy)

1

— (14 g, —wy) i af(a)G(aQ)do
— (wp+ h)/o a(l — k) f(o)GlQa(l — k)]da
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0% (E [m (Q, wy, k)])
0Q)?

C(r g —wy) / o f(@)g(aQ)da

—(wy + h) /l *(1 - k) f(a)g]Qa(l — k)]da
: (3.39)
h and w; are positive parameters. wy is expected not to be greater than r,
because the retailer cannot pay to the supplier more than he earns for a product. So
the function is concave meaning that first order conditions are necessary and sufficient

to find the optimal order quantity.lJ

Now let @ be the optimal quantity for the retailer.

0 (Em (Q,wy, k)])

50 =0
o (r+ gr — wy)
—(r+g-+h—wy) /0 af(a)G(oz@)da
—(wy + h)/o a(l — k) f(@)G[Qa(l — k)lda = 0 (3.40)

Then for @ to be equal to Q*:

fo (T4 gr) — C

We want retailer to choose @ as the centralized optimal Q*. Substitute the value

in (3.8) in (3.40) to find the value of wy. If we define the function X(Q) as:

X(Q = [ al1=0f(@)GloQ (1 = Blda (3.41)
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Then wy is found as follows:

hE(Q") = X(Q7)] +¢
fa + X (Q*) — K(Q)
B (ah +¢)(r + g- + h)
YT bt (rt g+ )X(QY) h (342)

wy does not only depend on f,. There is a closed form of function of k£ and «
which does not let us to take the derivative of w; with respect to .. However we can

see the behaviour of wy with respect to &:

dwp  (pah +¢)(r + g, + 1) Jy af(a) [G(aQ(1 — k) + aQ(1 — k)g(aQ(1 — k))]

ok [tah + c + (7 + gr + h) X (Q*)]

which is a positive value. This means that w; is strictly increasing in & which is
meaningful. If the supplier gives credit for more, obviously he requests more wholesale
price to compensate that. The extreme values of k is important to see the range where

the parameters are applicable and the allocation of profit. When k=0:

X(Q) = / 0f(0)G(0Q)da

= K(Q)
fo (74 gr) — C
T rtg.+h (3.43)
(ah +c)(r+ g+ h)
wr = h _|_< + h po(r+gr)—c —h
fah =+ ¢+ (r =+ gr 4+ h) =50
= = (3.44)
[

which is simply the wholesale price.
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The profit of the supplier is:

E [7Ts (Q7wf7 k)] = wf,an - CQ
1 a@
- wen [ f 1, [8@ = D f(@)g(D)aDd
1 raQ(1-0)
— (wy+ h)/o /0 0aQ f(a)g(D)dDdo

- (M—Zmacz—cQ
= 0

The supplier gets no profit while the retailer takes the whole chain profit, just

like the wholesale price contract.

When k=1:

X(Q) = / af(e)(1 - )GlaQ(1 - 1))
= 0

(Hah +)(r+g-+h)
pah +c+ (r+g. +h)0
= r—|—gT

U)f:

This time the wholesale price is higher than the sales price. So the wholesale
price is manufacturing cost and a premium for random yield. The expected profit of

the supplier is:

Elrs (Qwp, k)] = wrpaQ = cQ -

1 ra@Q
wren) [ 1, [2@ = Dl f@)g(D)dDda -

1 raQ(1-1)
win [ [T 10Qs@u(D)iDda
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= (wy 1) (1@ — / / "[0Q - D] f(a)g(D)dDdo)
—hpaQ — cQ

So supplier gets more than the supply chain’s profit, meaning that the retailer is
in loss. The supplier’s profit function is continuous in k; so every type of profit share is
possible for k in [0,1). Another main point is that both of the extremes do not violate

the concavity conditions given in Proposition 3.6.

When we consider the system without random yield, contract parameters are:

(1-G@))(r+g-+h)
14+ (1 - k)G@Q*(1 - k) — G(Q¥)
(r+g-+h)(h+c)

N (r+g.+h)(1—-kGQ(1—-k)+h+c (3.46)

—h

which is the simplified form of the (3.42) when:

Po = 1
X(@) = (A1=-KGQ(1-Fk)

The parameters result in same values for extreme cases of k&. When k = 0:

'LUf:C

Elms(Q,wy, k)] = 0

which is the same result with random yield when p, = 1. When k =1:

wy = r4g

E[WS(Qa wy, k)] = E[WC(Q)] + 9riD



32

which is completely same with that of random yield model since there is no relation

with p, in this case.

When h stands for salvage value instead of inventory holding cost, everything

result stays same if ML > |h|. This condition holds because it is a must for this

contract. The average production cost is #i and the salvage value cannot be bigger

than the production cost because the system orders infinitely many quantities if the

products can be salvaged more than the production cost.
3.4.5. Quantity Discount Contract

In this contract, the unit price of a product is decreasing with respect to order

quantity. So the more the retailer orders, the less she pays for a unit:

Ta(Q,wa(Q)) = wa(Q)aQ
ET3(Q,wa(Q))] = wa(Q)raQ

Retailer’s profit function and its expected value are:

T (Q wa(Q)) = rmin(aQ,D) —g,[D—aQ]" —h[aQ — D"
— wa(Q)aQ

E[WT (Q7 wd(Q))] = ﬂaQ T+ gr — 4grD — wd(Q)#aQ +
(r+g,+h) / / D — aQ)] f(a)g(D)dDdo (3.47)

Supplier’s profit function and its expected value are:

T (Q,wa(Q)) = wa(Q)aQ — cQ
Elr (Q,wa(Q))] = wa(Q)paQ — cQ (3.48)
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One way is to write the price wg(Q) as a portion of the chain’s profit function.

We define:

we(Q) = an(l_)\ 7°+gr+h// D — aQ|f(a)g(D)dDdo
+ —c+(7"+gr)(1—)\)
g+ S(0,Q) A
= (1-2MX) o 0 —(1=XNh+ " (3.49)

where A is a parameter between 0 and 1. S(OéQ is decreasing in Q. If the coefficient

of S@‘TQ is positive, then w,(Q) is decreasing in Q. Then the coefficient should satisfy

the following conditions:

(r+g.+h)

==,

0
1 > A

r+g.+h > 0
all of which hold.

As it is expected, when A = 1, the contract becomes a wholesale price contract

and all the profit goes to the retailer.

When we define wy(Q) as in (3.49), the expected profit function of retailer and
the supplier are the same with (3.19) and (3.20). Retailer gets all the profit when A = 1

grkD

while supplier gets all when A = e

Another way to find w,(Q) for retailer to choose Q*, is to set %&;’d@m to

zero. It is a necessary but not a sufficient condition:

fo (7 + g7) — wa(Q)pta — wy(Q)Qpa — (r + gr + h) K(Q) =0
e (1 + g0) — wa( Qe — wa(Q)Qpta
k@)= r+ge+h




34
For the retailer to chose @Q*, we substitute (3.8) into the equation above:

fo (1 + gr) — wa(Q)pta — W (Q)Qpa o (r+go) — ¢

r+gr+h r+g-+h

Then a simple differential equation comes out:

, wg(Q) ¢
wa(Q) = #i + g (3.50)

where k is a constant. When we analyze wy it can be seen that it decreases with @
which is the main condition of this contract. Additionally, () has a decreasing function
in pi,. In fact, the result that occurs in buy-back and revenue sharing contracts holds
here again. The retailer tries to stabilize the money that he pays for the whole delivery.

Actually he does. The retailer pays wy for the delivered units. The supplier’s profit is:

Elm[Q,wy] = @ua<§ + g> —Q
= cQ+ Kig — cQ
= Kl (3.51)

which means that whatever the yield is, the retailer gives the production cost to the
supplier and then gives a fixed price of ku,. The fixed price, however, decreases with
decreasing yield. So retailer makes a higher payment when the yield of the supplier is

high.

If two different w,4(Q) solutions are compared, (3.49) and (3.50), the similarity

can be seen easily. For sake of completeness they are as follows:

(T+gr +h) S(Q,Q)

+(1=X) .

—(1—Nh

AC
Ca + K
pao @
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In the first equation, everything except the order quantity is fixed. When A\ is
set to a value then the equation becomes ;‘—z + % So both of the contracts has
one part which compensates for the production cost of the supplier and one part which
decreases with Q. One difference is that while the first one compensates partially the

second one completely pays the production cost.

Now we have to establish whether E[r,(Q, wq(Q))] is concave. The second deriva-

tive 1s:

PE[r, (Q,wa(Q))]
902

(r g+ h) / o f()g(D)da

!

—2wy(Q) fta — w;/ (Q)Qfa

— ~(+g+h) [ @Fla)g(D)da
0
K 2K
_2(_@#@) - _3Quoc

=t th) / o2 f(0)g(D)dar < 0

Then for every value of x the function is concave and for different values of , the

contract is a coordinating contract. If we compare it with the classical newsvendor:

wy(Q) = (1—/\)(r+gr+h)%—( — Nh+ A

wd(Q) = +c

il
Q

we see that the parameter p, drops from both of the equations. Additionally, S(a, Q)

simplifies to S(Q) since there is no random yield.



36

3.5. Supplier’s Action under Voluntary Compliance

For a contract to coordinate the chain, the retailer should order the optimal or-
der quantity that maximizes the chain’s profit. However the quantity that the retailer
orders may not be the optimal quantity for the supplier. In other words the supplier’s
profit function may reach to optimum with another quantity. With forced compliance,
the supplier has to produce the quantity that retailer orders, whether or not this quan-
tity is optimum for its profit function. If the order quantity of the retailer(or optimal
order quantity of the chain) is also optimal for the supplier, then the supplier produces
the ordered quantity voluntarily. This is called voluntary compliance. Until this point
we presented which contract coordinates the chain under a forced compliance regime.
We analyze the supplier’s action to see whether the contracts can also coordinate under

voluntary compliance.

3.5.1. Buy-back Contract

The supplier’s expected profit function is given in (3.17). To establish its con-
cavity with respect to Q:

Proposition 3.7 Ezxpected profit function given in (3.17) is concave in @ if b > 0.

Proof:

OF [ms (Q, wy, b)]

90 = Wpla —C
~ /0 af(@)G(aQ)da
0 E[wsa (QQ2 wp b)) _ /0 a?f(a)g(aQ)da (3.52)

is negative since b is nonnegative which provides the concavity of supplier’s function

in Q.00
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Now for @Q* to be optimal:

1
Wplle — C — b/ af(a)G(aQ)da =0
0

which is the same with retailer’s first order condition in (3.18). So supplier chooses Q*
as well meaning that even under voluntary compliance buy-back contract coordinates

the chain.
3.5.2. Revenue Sharing Contract

Revenue sharing contract coordinates the chain under forced compliance like buy-
back. For voluntary compliance, optimum order quantity for the supplier’s expected

profit function in (3.25) must be same with Q*

Proposition 3.8 Expected profit function given in (3.53) is concave in @ if r > 0.

Proof:

aE {71'3 (Q7 Wr, ¢)]
oQ

= Ha(w, + (1= 9¢r)) —c

~ (- / o f(0)G(aQ)da

OB [ry (Q,wr, 6)]
0Q? N

1

(1-a)r [ a*fla)g(aQ)da (3.59)
0

Since r and ¢ are nonnegative, function is concave. [

Now for supplier to chose @* we see that same condition is needed with the
retailer as it is proposed in (3.26):
(1= )r[K(Q) —pa] | ¢

Wy = + —
Ha Ha
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Hence supplier chooses the same quantity with the retailer which means that

revenue share contract coordinates the chain under voluntary compliance regime.

3.5.3. Quantity Flexibility Contract

Quantity flexibility contract is found to coordinate the chain under forced com-
pliance. The supplier should produce Q* for voluntary compliance. To find the optimal
order quantity for supplier we need to check the concavity of the expected profit func-

tion of the supplier given in (3.37)

O(E[rs(Q, wy, k)))
oQ

——c+uga— (0 +h) [ af(@)GlaQ)da

(wyp + h)/o a(l — k) f(o)GlQa(l — k)]da

0*(Elms(Q, wy, k)])
0Q)?

— (wy + h) / o F(@)[(1 — k)glaQ(1 — k)] — g(aQ)lda

The concavity is not guaranteed. Therefore we cannot say that this contract is
always a coordinating contract without forced compliance. Nevertheless it is helpful to
see the first order conditions of the supplier’s expected profit functions. For supplier

to choose Q*

O(Elm(Q, wy, k)])
oQ

=0

—c+ wepe — (wy + h)/o af(a)G(aQ)do

<wf+h>/0 a(1 = k) f(@)CQa(l — Kda = 0
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where X (@) is defined in (3.41). So again, both retailer and supplier have the same first
order conditions. Hence if this point can be found to be global optimum, then quantity
flexibility contract can coordinate the chain under voluntary compliance. Also, if the
function of expected profit of the supplier is found to be concave when distribution of
yield and demand are realized, then the contract again coordinates the chain under

voluntary compliance.
3.5.4. Quantity Discount Contract

Quantity discount contract coordinates the chain under voluntary compliance.
For voluntary compliance, J* must maximize supplier’s expected profit. For the con-
tract parameters in (3.49), the profit of the supplier is a portion of the chain. So Q*
optimizes the expected profit function of the supplier. If the contract parameter in

(3.50) is employed, then:

K

Elns(Q,wg)] = —cQ+ {Q

—= /{/’[’Oé

C
+ —} Qlta
o

which means that the profit for the supplier is independent of the ordered quantity,
Q, but it is proportional to the constant x. So the supplier accepts every quantity the

retailer orders.
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4. ASSEMBLY SYSTEMS UNDER RANDOM YIELD

4.1. Two Suppliers

4.1.1. Problem Definition

In this part, an assembly system with two suppliers and an assembler (manu-
facturer) is studied. A single product is produced by assembling two subcomponents
obtained from two suppliers. As it is discussed in the literature review part, there is
no such work that studied coordination in assembly systems with random demand and
random yield. In this study, the centralized solution of the system is derived. Then the
system is decentralized and contracts are discussed in order to see whether they are
able to coordinate or not. Coordination with forced compliance regime is considered,
that is the coordinating contracts assure that in decentralized solution, the manufac-
turer orders the optimal order quantity of the centralized system. The suppliers either
accept to produce the ordered quantity under the contract conditions or reject the con-
tracts all together. It turns out that some of the contracts that coordinate this chain

are mixtures of well known contracts.

The centralized profit function is shown to be concave. Then, instead of solving
the order quantity explicitly, the profit function of the manufacturer is written is such a
way that it becomes a fraction of the chain’s profit which guarantees that the quantity

which maximizes the profit of the chain also maximizes the profit of the manufacturer.

The system is shown in Figure 4.1. The demand, D, is random and the density
function and CDF of the demand is known by all the players. The manufacturer orders
two distinct components from two suppliers, ()1 and ()5 in order to satisfy the demand.
Each supplier produces different components and these components are used by the
manufacturer to produce the final product. As well as the demand being random,
due to the unreliability of the suppliers, the yield is also random. That is, when the

manufacturer orders components from the suppliers, only a fraction of the ordered
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Figure 4.1. Assembly System

quantity is received by the manufacturer, ¥ = a;@Q); and Yy = as()e where a; and
ay are random variables taking values in (0,1]. There is a cost for lost sales, g, and
holding the inventory of the components, h; and hy. The unsold finished products are
salvaged with a value of h. The notation is:

Q;: Order size for supplier i (Decision Variable)

r: Selling price of the end product

gr: Opportunity loss of the manufacturer

h: The salvage value of the end product, if not sold

h;: Holding cost of the component i; i=1,2

c;: Cost of production per unit of supplier i

D: Demand

«;: Portion of received order from supplier i, between 0 and 1

1i0), Fi(): Distribution function and CDF of «

9(), G(): Distribution and CDF of D, respectively

Y;: aQ);, Stochastically proportional yield of supplier i

Wi Erpected value of a for supplier i

ip: Erpected value of the demand
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The profit of the chain is:

Te(Q1,Q2) = r[Sales] — g.[Lost Sales] + h[End-product Inventory] — c1Q1 — caQo

—  hi[Inventory of component 1] — he[Inventory of component 2]

where sales is minimum of delivered units or demand. Let’s define the expected sales

of the assembly system under random yield as following:

Sn(ai, Qi) = Elmin(a;Q1, a2Qa, . . ., 0 Qy, D)) (4.1)

4.1.2. Centralized Setting

As it is cited in the newsvendor section, the system is said to have centralized
setting if there is a single decision maker. When the parties in the system decide on
their own to maximize their own profit, then the system is decentralized. The optimal
solution of the centralized system is the maximum profit that the chain can make. So
before decentralizing the chain, centralized solution of the system must be evaluated

in order to analyze performance of the decentralized solution:

Te(Q1,Q2) = r[min(aQ1, 2Qs, D)] — g,[D — min(oy Q1, 02Q2)]" — c1Q1 — Q2
+  hmin(a1Q1, 2Q2) — D|*

— hon@Q — 042Q2]+ — hafan@Q2 — 041Q1]+ (4.2)

When (4.2) is transformed to the following,the expected profit function of the

chain becomes easier to analyse. For details please see Appendix B.

T(Q1,Q2) = (7“ + Gr — h)[min(%@l, 2@, D)] + h[min(alQla 042@2)]
+ hiaaQy — Q1] + helarQr — aaQs]”
GrD — c1Q1 — c2Q
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Elr(Q1,Q2)] = (r+ g, — h)S2(0i; Qi) + hE[min(on @1, a2Q2)]
+ ME [[02Q2 — arQ1] 7] + hoE [[1 Q1 — a2Qs]7 ]
— Griip — C1Q1 — 2Q2 (4.3)

where [z]~ denotes min(0, x).

We first prove an intermediary result:

Lemma 4.1 The hessian matrix of linear functions are both negative semi-definite and

positive semi-definite.

Proof: We take a linear function:

f(z1, x9...x,) = 121 + a121... + apx,

where a; are constants. When we take the partial derivative with respect to any

variable, xy:

Of (x1, x9...y)
aZL‘k

:a’k

we see that the result is a constant. Thus, the derivatives having degree of more than
two, result in zero which means that the hessian matrix of f() are composed of zeros.

So f() is jointly concave in xy, zs...x,.0

Proposition 4.1 Ezpected profit function given in (4.3) is jointly concave in Q1 and
QQ Zfr-l-gr—hZO

Proof: We analyze the function one by one:

So(a;Q;)

This function is min(a;Q1, @2Q2, D). The functions under minimum operation

are linear functions of (); and ()2 and D is a constant and independent of Q. Linear
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functions are jointly concave by Lemma 4.1 Concavity is preserved under minimum

operation[25]. So Sy(;Q;) is concave when r + g, —h > 0

min (o Q1, 22Q2)

This function is again minimum of two linear functions. They are jointly concave
by Lemma 4.1. As concavity is preserved under minimum operation, min(a;Q1, @2@2)

1S concave.

[ Q) — Qi)™

This function is in fact min[(a;Q); — @;Q;),0]. The part (a,;Q; — ;@) is a linear
function and jointly concave in Qiand@, by Lemma 4.1. Thus it is a linear function
of @)1 and ()2 and concave 0 is a constant, so a linear function. Then the whole part,

[a;Q; — ;Q;]™ is concave since concavity is preserved under minimum operation.

—g,D — c1Q1 — Q)

This function is a linear function of (); and ). So it is concave by Lemma 4.1

So all parts are concave. Since sum of concave functions are concave[25], the
profit function of the chain given is concave. Also since concavity is preserved under

expectation, the chain’s expected profit function in (4.1) is concave.

Although it may seem that this proof can be made also for convexity, it cannot

be made since minimum operation violates convexity. [
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4.1.3. Decentralized Setting

like the newsvendor problem, the players make their own decisions in decentral-
ized setting. In the decentralized setting the profit function and the expected profit

function of the players are shown in the equation below:

T(Q1,Q2) = (r+gr —h)min(Q1, 22Q2, D)] + h{min(oQ1, a2Q)2)]
+ M@ — a1@Qi]” + holai Q1 — Qo] — g, D
- Ti() — T2()

Elr(Q1,Q2)] = (r+gr—h)S2(e, Q) + hE min(a1Q1, a2Qs)]
+ ME [[02Q2 — a1Qu] 7] + hoE [[01Q1 — 02Qs] 7| — grpip
— E[MN()] - E[T20)]

ﬂ-si(QlaQQ) = Tz’(')—CiQi
Elrs, (Q1.Q2)] = E[T()] — aQ;

4.1.4. Contracts

The profit in decentralized setting is always less than or equal to the centralized
profit. Since the aim of each player is to maximize its own profit, they deviate from
the solution of the centralized system. Aim of the contracts is to modify the players’
functions such that they choose the optimal order quantity which maximizes the whole

chain’s profit. In these contracts forced compliance is employed.
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4.1.4.1. Wholesale Price Contract. The manufacturer only pays a wholesale price for

the products. The profit function of the manufacturer is:

T, = (r+ g — h)min(oQ1, %2Q2, D)] + himin(oQ1, a2Q)2)]

+ hifeQr — a1Q1]” + hola Q1 — aaQa]” — g, D

— w1Qr — w2l (4.4)
Elm] = (r+ g, — h)Sa(ai, Qi) + hE[min(a1Q1, o Qs)]
+ b [[042@2 - 061@1]7} + ho B [[041@1 - OézQQ]f} — 9rkD
— wiQ1 — wal (4.5)

Proposition 4.2 Ezxpected profit function given in (4.5) is jointly concave in Q1 and
QQ Zfr—f—gr—hZO

Proof:

Please see the proof of Proposition 4.1.
When the equation above is compared with (4.3), it can be seen that the only
way to coordinate is, the wholesale prices should be equal to the cost of production,

that is w; = ¢;/a;. This means that the suppliers make zero profit. Coordination can

be achieved via franchising payments.

4.1.4.2. Buy-Back Contract. One of the contracts which coordinate the chain in the

previous chapter is the buy-back contract. So the buy-back contract is worth studying
for the assembly system. The aim is to write the contract in such a way that the

manufacturer’s profit becomes a portion of the chain.
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In this contract, the manufacturer pays to the suppliers a wholesale price, wy; for
each delivered units. The suppliers pay b; to each manufacturer for the components

which are not assembled(or in other words, not sold). The transfer payment is:

Ti(Q1, Qo, wy i, b;) = wy Qs — bila;Q; — min(a1Q1, aQo, D)] T

Then the manufacturer’s profit function is:

7, = (r+g.—h—>by —by)min(a1Q1, 2Q3, D)]
+ (h+ b+ by)[min(a;Q1, aaQs)]
+ (hy = by)[ae@Q2 — a1@Q1] + (hg — ba) [ Q1 — 2Q2]™

- gD~ wb,lQl - wb,2Q2

Elr] = (r+g, —h—>b1—by)Sa(i, Q;)
+ (A + b1+ bo) E [min(a1Q1, a2Q2)]
+ (b = b1)E [[09Q2 — an Q1] 7] + (ha — b2) E [[1Q1 — Q] ]

= grip — wp1Q1 — W2 Qs (4.6)

Proposition 4.3 Ezxpected profit function given in (4.6) is jointly concave in Q1 and
QQ z‘fr—l—gr—h—bl—bgzO 5 h+b1+b220, hl—bl >0 (Indhg—bzzo.

Proof:

Please see the proof of Proposition 4.1. [J

Although the manufacturer’s expected profit function is concave, it cannot be
written as a fraction of the chain’s profit which is the solution procedure we are trying
to employ. However we cannot say it can coordinate or not with this information. First
of all, the derivative of the expected profit function in (4.6) with respect to () and
()2 must be found. Then both of the derivatives must be set to zero by substituting
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the optimal order quantity which is derived from (4.3). After substituting the optimal
order quantity, the contract parameters which provides that derivative to be equal
to zero have to be found. If such parameters exist, then buy-back contract is said to
coordinate the chain. However, instead of solving all the derivatives, we try a buy-back

contract with additional features.

4.1.4.3. Buy-Back with Sales Revenue Share and Recovery Payment. This contract is

a mixed type of revenue share and buy - back. The manufacturer only shares the
revenue for the sales, not for the salvage values. There is also a recovery payment for
the worst player. That is the worst player gets a payment of V for every component it

actually delivers.

Define ¢ = 1 — ¢ — ¢ where ¢; is the share of the revenue for the supplier i.

The transfer payment and manufacturer’s profit function respectively are:

Ti(Q1, Q2 wh i, biy i, V) = wy Qi — bifeu Qi — min(an Q1 a2Qs, D)J*
+ r¢imin(aQ1, @2, D)]
Va,Qi Qi < a;Q;
0 o/w

T, = (r(1 —¢1 — ¢2) + gr — h — by — by)[min(a1Q1, 2Q2, D))
+ (h+by 4+ by — V)[min(a1Q1, aeQs)]
4+ (hy = b1)[2Q2 — a1 Q1] + (he — b2)[a1Q1 — 2 Q2] — g, D

- wb,l@l - wb,zQz

Elm] = (r(1—=¢1—¢2) +gr — h — by — b2)Sa(cvi, Qs)
(h+ b1 + by — V) E [min(a;Q1, 2 Q2)]
(h = b1)E [[aaQ2 — a1 Q1] 7] + (he — bo) B [[a1 Q1 — 2Qa] 7]

- wb,lQl - wb,2Q2 — 9riD (4-8)

+
+
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Proposition 4.4 Ezxpected profit function given in (4.8) is jointly concave in Q1 and
Qifr(l—¢1—¢a)+ g —h—by—by >0, h+b +by—V >0, hy —b >0 and
hy — by > 0.

Proof:

Please see the proof of Proposition 4.1.

Now if ¢ = ¢1 + ¢ and A = r + g, — h we make the following definitions:

(A—=r¢)—by—ba= ANr+g.—h) = rop= (1—XN)(A—h —hy)
h4by+by—V = Ah = V= (1=XN(h+h+h)
hi—by= Ay = b= (1-Nh (4.9)
hy — by = Ahs =  by= (1—=XAhy
w1 = ACq
Who = AC2

In the relations above, A is a parameter between 0 and 1. In the Proposition 4.4,
it can be seen that several assumptions must hold for concavity. By changing the value
of A the payment scheme changes. As long as A stays between the specified values(0
and 1), the expected profit function is concave and by definition A is between 0 and 1

meaning that the expected profit function of the manufacturer is concave.
If r + g. > h + hy + hs, then this contract is a buy-back and revenue share mix.
However, if the reverse is true, then this contract is a buy-back and sales-rebate type

of contract. Both coordinate the chain but the first one is more elegant.

Then the manufacturer’s expected profit is:

E [WT] = \E [WC] - (1 - )‘)gr,uD (410)
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As for the profit share we can see that manufacturer gets all the profit with A = 1

while the suppliers get it when A\ = E[ﬁ%-

4.1.4.4. Buy-Back with Revenue Share and Recovery Payment. This contract is just

like the previous one, but this time there is revenue share for both sales r and salvage

h.

Ti(Q1, Q2w i, biy 01, V) = wpiQi — biaiQi — min(anQy, aaQy, D)]*
+ rgimin(iQy, a3Qq, D)]
+  h¢ilmin(a;Q;, a;Q;) — DI*
VaiQi Qi < a;Q;
0 o/w

_I_

(4.11)

If we define ¢ = 1 — ¢ — ¢, the profit function and its expected value are:

T = (r¢+ g, —hé — by — by)[min(a1Q1, 2Qs, D))
(h¢ + by + by — V)[min(a1Q1, 22Q2)]
(h1 = b1)[2Q2 — ar @] + (hg — b2)[1 Q1 — a2Qo] ™

- wb,l@l - wb,2Q2 — gD

+
+

Elm] = (ré+gr —hé — by — by)Sa(ev, Q;)
+ (M1 =9)+ b+ b= V)E [[min(1Q1, 2Q>)]]
+ (= b)E [[09Q2 — a1 Q1] 7] + (ha — b)) E [[1Q1 — Qo] ]

- wb,1Q1 - wb,zQz — 9rHD (4-12)
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Proposition 4.5 Ezxpected profit function given in (4.12) is jointly concave in Q1 and
Qo ifr(l—d1—d2)+g- —h(1— 1 — ) — by — b >0, h(1—¢)+ by +bs—V >0,
hl—bl 20 andhg—bQZO.

Proof:

Please see the proof of Proposition 4.1.

Now if ¢ = ¢1 + ¢ and ¢ = 1 — (¢1 + ¢) we make the following definitions:

r¢+g —hp—bi—by= Ar+g. —h) = ¢= (1- )tk
hg+bi+by—V = Ah = V= (1-))tuth)oeh
hohm - s U (4.13)
hy — by = Ahy = by= (1—MNhy
Wp1 = ACy
Who = AC2

A being a parameter between 0 and 1, assures the concavity of the system, like

the previous contract.

According to the parameters, paying scheme can be different. Again, we need to
cite that if r + g. — h — hy — hy > 0, then we have a revenue share. However, we need
to take care of one more point. If 7(hy + ha) — g-h > 0 then this contract includes a
recovery payment. If the reverse is true, the worst one is punished per delivered unit,

meaning its wholesale price is cut down. The manufacturer’s expected profit is:

E [ﬂ-r] = A\E [WC] - (1 - )‘)gr,uD (414)

When we look at the profit share we can see that manufacturer gets all the profit

with A = 1 while the suppliers get it when A = E[g%

7Tc}+ngD :
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4.1.4.5. Modified Buy-Back Contract. In a single supplier production system, the

sales is just the minimum of the demand and the delivered units, so there is just one
way for a buy-back contract. However the system we studied here is an assembly sys-
tem meaning that there may be different types of buy-back contracts. In the previous
contracts, the suppliers buy back the units which are more than sales. For example,
if the realized sales is a;Q)q, remember sales is min(a;Q1, @2Q2, D), then supplier 2
buys back (apQ — @1Q)1) units. If sales is D, then supplier 2 buys back (@2 — D)
units. However if the sales is D, then it means that there is some inventory left which
is salvaged. Let’s assume the realized values are D < a1Q1 < as@s. Then (1@ — D)
units are salvaged and (apQe — a1 Q1) units are left for inventory. So supplier buys back
(e@Q2 — a1 Q1) units. As well as buy-back price, the manufacturer pays a wholesale

price w,, to the suppliers. The transfer payments are:

Ti(Q1, Qa, Wy, M) = Wi i Qi — My Qs — Q51"

The manufacturer’s profit function is:

. = (r+ g — h)[min(a1Qy, 2@, D)] + h[min(a;Q1, a2 Q2)]
+ (b1 —ma)[a2Qr — a1 Q1] + (R — ma)[a1 Q1 — @]

- wm,lQl - wm72Q2 - gT‘D

E[r,] = (r+ g, —h)Emin(a1Q1, aQ2, D)]
+  hE[min(a;Q1, a2Q>)]
+ (h—m)E [[02Qs — a1 Q7] + (hy — ma) E [[01Q1 — Q] ]

wm,lQl - wm,2Q2 — grMD (4-15)

Proposition 4.6 Ezxpected profit function given in 4.15 is jointly concave in Q1 and
Q2 ifr+g.—h>0,h>0, hy —my >0 and hy —my > 0.
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Proof:

Please see the proof of Proposition 4.1.
As the manufacturer’s function is concave, her contract parameters can be found
for optimum Q. However we cannot write this function as a fraction of the chain’s

expected profit function. The procedure that is cited in Section 4.1.4.2 applies here

too. Hence, again, we add more mechanism.

4.1.4.6. Modified Buv-Back with Sales Revenue Share and Recovery Payvment. This

contract includes, addition to the contract in Section 4.1.4.5, a recovery payment to
the worst supplier for every unit it ships. The manufacturer pays a revenue share to

the suppliers for the sold units, but not for the salvaged units. Transfer payment is:

Tz‘(Qh Qz,wm,z‘, mi, G5, V) = wm,z’@i - mi[aiQi - anj]+
+ r¢; min(a1Q1, a2Q2, D)

V@i ;0 < a;Q;
+ Qi Qs < 05 (4.16)
0 o/w

The manufacturer’s profit function is be as follows:

T = (ré+g- — h)[min(1Q1, a2Qs, D)]
+ (b = V)[min(a,Q1, a2Qs)]
+ (b1 —ma)[a2Qr — a1 Q1] + (R — ma)[a1 Q1 — @]

- wm,lQl - wm,QQ2 - grD

Elm,] = (r(¢+ g — h)S2(as, Q) + (h — V) E[min(oy Q1, 2Qs)]
+ (hl - ml)E[a2Q2 - OélQl]_ + (h2 - m2)E[Oé1Q1 - Oéz@z]_

- wm,lQl - wm,2Q2 — 9r4D (417)
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Proposition 4.7 Ezxpected profit function given in (4.17) is jointly concave in Q1 and
Qo ifr(1—¢1—¢2)+9-—h>0,h—=V >0, hy —my >0 and hg —my > 0.

Proof:

Please see the proof of Proposition 4.1.

Now if ¢ = ¢1 + ¢ we make the following definitions:

rl—¢)+g-—h= XNr+g.—h) = ro= (1-=XN(r+g.-—h)
h—V = \h = V= (1-Xh
hi —my = My = m= (1-Nh (4.18)
hoy —mg = Ahy = mo= (1-MNhy
W1 = ACp
W = ACy

With the transformations above, the manufacturer’s expected profit function can
be written just like (4.10) showing that the contract can coordinate the chain. Man-
ufacturer gets all the profit with A\ = 1 while the all the profit goes to the suppliers

— griD
when A\ Frronn

4.1.4.7. Modified Buy-Back with Revenue Share and Recovery Payment.  This cont-

ract is just like the previous one, additionally there is a revenue share for salvage as

well as the sales.

Ti(Q1, Q2, Wi, My, 03, V) = w,iQs — myaiQ; — a; Q]
+ r¢;min(a1Qr, 02Q2, D) + hg;[min(a;Q;, a;Q;) — D]*
Vo,Qi Qi < a;Q;

+ (4.19)
0 o/w
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If we define ¢ = 1 — ¢; — ¢, manufacturer’s profit function is:

Ty = (Ta +gr — h@) min(a1Q1, 2Q2, D)]
+ (hE — V) [min(oQ1, 22Q2)]
+ (b —ma)[a2Qr — a1 Q1] + (he — ma)[a1 Q1 — Q)™

- wr,lQl - wr,2Q2 - grD

Elr] = (ré¢+gr —h¢)Sa(ou, Qi)
+ (h¢ — V)E[min(a1Qy, 2Q)]
+ (b —m)E [[02Qs — a1 Q] 7] + (hy — ma) E [[a1Q1 — Q5] ]

wr,lQl - wr,2Q2 — 9rHD (420)

Proposition 4.8 Ezxpected profit function given in (4.20) is jointly concave in Q1 and
Q2 if ro+g,—hd >0, h¢—V >0, by —my >0 and hy — my > 0.

Proof:

Please see the proof of Proposition 4.1.

Now if ¢ = ¢ + ¢2 let’s make the following definitions:

ro+g—hp= Ar+g —h) = ¢= UNte
h¢ —V = A\h - V= —h%
nomenm - A (4.21)
hy —mg —s1 = Mho = mo= (1—=MNhy
w1 = Acy
Wro = AC2

Here we found out that V should be negative, meaning that the worst one should

be punished for every unit it send. That is the worst supplier’s wholesale price is cut
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down V many units. The profit of the manufacturer is the same as in (4.10) so the

value of A is same for profit shares, that is manufacturer gets all the profit with A =1

9rtD

while the all the profit goes to the suppliers when A = Frdrem:

4.1.4.8. Revenue Share with Modified Buy-Back without Salvage . The setting is sa-

me with the contract presented in Section 4.1.4.7. Now we assume that the end items
are not salvaged. In fact, as there is no holding cost, it can be assumed that there is a
salvage value so that the cost of assembly and maintenance is netted from the salvage.
As h=0, this setting is also same with Section 4.1.4.6. There is no recovery payment
to the worst, because the manufacturer now makes less profit so an extra payment
distorts manufacturer’s behavior. Staying consistent with the notation manufacturer’s

profit function:

Ti(Qb Q2, W, My, ¢i) = wr,iQi —m; [%’Qi - Oéij] - Si[Oéij - OéiQi]+ + 7“¢i[5a163]

T = (r¢+ g,)[min(a1Q1, a2Q2, D))
+ (b —m)[0eQy — 1 Q1] + (he — ma)[a1Q1 — a2Qs]”
- wr,lQl - wr,2Q2 - grD

Elm] = (r¢+ gr)Sa(ci, Q)
+ (h—m)E [[02Qs — a1 Q1] 7] + (hy — ma) E [[1Q1 — aQs]”]

- wr,lQl - wr,2Q2 — 9rHD (422)

Proposition 4.9 Expected profit function given in (4.22) is jointly concave in Q1 and
Q2 if 1+ g, >0, hy —my >0 and hy — my > 0.

Proof:

Please see the proof of Proposition 4.1.
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Like previous coordinating contracts, we make following statements:

1”54—97,: )\(r-}-gr) = Qb: M

T

hi —m; = My = m= (1-Nh
hoy —mg = Ahy = me= (1—=Ahy
Wyl = Acy
Wro = ACy

The manufacturer’s profit function is a portion of the chain’s, as defined in (4.10).

The lambda values for profit share is same.
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4.2. N Suppliers
4.2.1. Problem Definition

We now extend the results of two-supplier models to N suppliers. First of all,
the profit function and its expected value is derived and then its concavity is estab-
lished. Then without solving the ordering quantities explicitly, the contracts proposed
in two supplier system are implemented and coordination mechanisms are studied. The

contracts proposed in the previous section seem to suit well for N-supplier system.

In short, the system is same with the previous assembly system, except, now

there are N suppliers. Staying consistent with the notation, the profit of the chain is:

. = r[Sales| + h|FinishedGoodsInventory]

gr[Lost Sales] — Z Qi — Z hi[Inventory of component 1|
N N

4.2.2. Centralized Setting

The chain’s profit function can be written as:

me = r[min(D, @;Q;)] + h[min(a;Q;) — D)]*
— ¢;[D — min(,Q;]" — Z ciQi
N
- Z hilou Qi — miin(aiQi)]

N

which, by the transformatin in Appendix C, can be written as:

Elr] = (r+g-—h)Sv(e, Qi) — grpip + hE[Iniin(O‘iQi)]

Z(hiaz‘@z‘)

- B

+ B min(@@Q)] Yohi- Y@ (423)

N
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Proposition 4.10 Expected profit function given in (4.23) is jointly concave in Qq,. . .,
Qn ifr+g—h>0,h>0and)  h;>0.

Proof:
For sake of simplicity, now let’s take one by one the components of the function:

Sn (o, Qi)

This is the sales which is in fact min(a;Q1, ..., any@y, D). The functions under
the minimum operation are linear functions which are jointly concave in @)1, ..., Qx by
Lemma 4.1. Concavity is preserved under minimum operation|25], so this part of the

function is concave.

min (a; Q)

Linear functions are jointly concave by Lemma 4.1 and concavity is preserved

under minimum operation.

EN(hiaiQi)

This part is simply sum of linear functions. In fact this is a linear function of

@1, ...,Qn. Thus this part is concave.

mini(aiQi) ZN hi

It is known that min;(o;Q);) is concave. This part is simply product of a concave

function with a constant, ), h;. So this part is concave.

— > yCQi — gD

Simply a linear function of ()q,...,Qy. Linear functions are jointly concave by

Lemma 4.1.
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Since sum of concave functions are concave[25], the profit function of the chain
is concave. Concavity is preserved under expectation, so the expected profit function

is concave.[]

One might think that since linear functions have a hessian of zeros, this function
is also a convex function too. However, minimum operation only preserves concavity
while convexity is preserved under maximum operation.

4.2.3. Decentralized Setting

Manufacturer’s and suppliers’ profit functions are:

T (Q1,...,Qn) = r[min(D, @;Q;)] + h[min(aiQi) - DJ*
— gD - mln (; Q4" Zh - mln (; Q)] — ZTZO
Tsi (@1, Qn) = Ti(1) — Qi

4.2.4. Contracts

4.2.4.1. WholeSale Price Contract. The manufacturer pays the suppliers only a whole-

sale price. The profit function of the manufacturer is:

T = (r+g, — h)min(D, 2;Qs)] — gD + hlmin(;Q;)]

— Z(hl-aiQ )+ mm (@ Z h; — Zlez

Elm] = (r+g —h)Sn(o, Qi) — griip + hE[H{}D(%‘Qi)]
- F Z(hiaiQi) +F [miin(aiQi)] Z h; — Zle, (4.24)

Proposition 4.11 Ezxpected profit function given in (4.24) is jointly concave in Q1,. . .,
Qn ifr+g,—h>0,h>0and > h; >0.
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Proof:

Please see the proof of Proposition 4.23

When the profit function is compared with the decentralized solution in (4.23),
it can be seen that, the only way to coordinate is to set the wholesale prices to the
production cost of the suppliers, which does not let the suppliers to make profit. As
the suppliers get zero profit, this contract cannot coordinate the chain as long as there

is no end-of-term or franchising type of payments.

4.2.4.2. Buv-Back with Sales Revenue Share and Recovery Payment. This contract is

N supplier type of the contract defined in Section 4.1.4.3. The transfer payment and

the manufacturer’s profit function are:

Ti(Qiwe s, bi, 66, V) = wiQs — by Qs — miin(D, ;Q;)] + 1o miin(D, ;Q;)

N Va Qi 0;Qi < ojQ; YV j#1 (4.25)
0 o/w

o= (r(l=) ) +g—h—>)_ bi)[min(D, ;i Qs)]

+ (b= V4 b)min(e,Qi)] = Y (h — b)[eiQ; — min(a;Qy)]

N
- grD - Zwb,iQi
N

Elm] = (r(1- Z¢z) +gr—h— Z bi)Sn (i, Qi)
+ (h=V 4+ b;) B[min(e,Q;)] — > (hi = b)) Elos Qi — min(a;Q;)]

— Gop — Y wpiQ; (4.26)
N

Proposition 4.12 Expected profit function given in (4.26) is jointly concave in Qq,. . .,
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Proof:

Please see the proof of Proposition 4.23

When we define Y5 é; = ¢ and 1 — Y ¢ = ¢, we can write the following:

(=N (r+gr—h=3" y hi)

(ro+g-—h—=>yb)= Ar+g.—h) = ¢= :
h—V+> ybi= A = V= 1-=-Nh+>yh)
h— b= Ay = b= (1-\h
Wy = A¢

Like the contract in Section 4.2.4.5, there is a point that must be clarified in this
contract. The contract payment scheme changes according to the parameter values. If
r+ g, > h+ )y h; then related part of the payment scheme is a revenue share. But if
not, then the related part resembles a sales rebate contract. Both coordinate the chain

but the first one seems more relevant.

Then, manufacturer’s profit function is the same with (4.10). The A values are

also the same. The manufacturer gets all the profit with A = 1 and zero profit when

griD
Elrel+grip

4.2.4.3. Buy-Back with Revenue Share and Recovery Payment. Contract presented in

this section is N supplier type of the contract defined in Section 4.1.4.4. The transfer

payment and the manufacturer’s profit function are:

Ti(Qi, we s, bi, 66, V) = wy, Qi — bs[oyy — min; (D, ; Q)]
+  hei[min(o;Q;) — ming(D, a;Q;)]T + réi[ming(D, o; Q)]

V@i Qi <a;Q; YV j#i
0 o/w

(4.27)
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. = (r(1- Z¢z) +gr —h(1 - Z¢z) - Zbi)[miin(D, Q)]

N N

+ (h—=V+ Z bi)[rniin(aiQi)] - Z (hi = bi)[iQ; — miin(oziQi)]

N

- gD - Zwb,iQi
Elr] = (r(1- Z¢z) +gr — h(1 — Z ¢i) — Zb‘)SN(CYz', Qi)
+ (h—=V+ Z b)) E| mln (i Qy)] Z (hi — b)) E[c;Q; — mm(ale)]

N

— Grkp — Z wp,;Q; (4.28)
N

Proposition 4.13 Expected profit function given in (4.28) is jointly concave in Qq,. . .,
Qn if r(1—=> noi) + g —h(1 =D i) =D 80 >0 A=V +> b >0 and
> i(hi —=b;)>0.

Proof:
Please see the proof of Proposition 4.23
When we define ¢ = ¢; and $» =1 — ¢, we can write the following:

(=N (r+gr—h=3" y hi)

(r§5+gr_h¢§_ZNbi): )‘(T+g7"_h) = QZS: —h
hé+ S nbi—V = M = V= (1-)\)Zalioeh

wbyi = )\Ci

This contract is a bit different from the others. The paying scheme changes
according to the parameters. If r 4+ ¢, > h+ > h;, then the contract is a revenue
share, otherwise a sales rebate contract; like the previous one. Also, like the contract in
Section 4.1.4.4, we need to check 7Y\, h; > g,h. If so, then there is recovery payment.
Otherwise V is a punishment, rather than being a recovery payment to the worst. It

is such as cutting down the wholesale price of that(the worst) supplier.
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The manufacturer’s profit function and the lambda values are the same with

(4.10). Manufacturer gets all the profit with A = 1 and zero profit when E[ﬂﬁf%‘

4.2.4.4. Modified Buvy-Back with Sales Revenue Share and Recovery Payment. This

contract is N-Supplier form of the contract defined in Section 4.1.4.6. Every supplier
is paid wy,; for each unit ordered, plus a revenue share from the sales(not salvage).

Each supplier then pays a penalty of m; for each units that excess the sales.

Transfer payment and the manufacturer’s profit function is shown below:

T;(Q;, Wi, M, Os, V) = wiQ; +r¢; [miin(D, ;iQ;)]
VaQi Qi < Q5 YV j#i
0 o/w
- [szQz mln(aJQJ)]

+

T = (r(l— Z ®i) +g- — h) [miin(D, @;Q:)] — g.D
+ (b= V)min(e;Q;)]
— Z (hi —mi) [0, Q; — min (i Qy)] Zw,@z

N

Elm] = (r(1- Z ¢i) + gr — h)Sn (i, Qi) — gritp
+ +(h— V)[mln(olel)]

_ Z (h; — m;)[0;Q; — mm (i Qi) Zlel (4.29)

N

Proposition 4.14 Expected profit function given in (4.29) is jointly concave in Qy,. . .,

Proof:

Please see the proof of Proposition 4.23
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Now, staying consistent with the previous notation, if we write:

(r(l=>y¢)+g-—h)= Xr+g.—h) = > yoi= W#*h)

h—V = M = V= (1-\h
Wi = A

then the profit of the manufacturer is the same as in (4.10) that is manufacturer gets all

9rtD

the profit with A = 1 while the all the profit goes to the suppliers when A = Frd o

4.2.4.5. Modified Buy-back with Revenue Share and Recovery Payment. Like the pre-

vious contracts, this one is N suppliers type of the contract defined in Section 4.1.4.7 .

The transfer payment and manufacturer’s expected profit function are as follows:

Ti(Qi, Wi, mi, @3, V) = wiQ; + T¢i[m}n(Da a;Q;)] + hébi[mjin(aiQi) - D]+

V@i Qi <a;Q; YV j#1
0 o/w

— m;laQ; — Irljin<04j@j)]+

+

o= (1= )+ g —h(1-) ¢))[min(D, ;Q;)]
+ (b= V)min(a;Q)] = Y (b — my) i Qs — min(e, Q)

N
N

Em] = (r1= ) +g —h(1= ¢))Sn(a;, Q)

N

+ (h— V)E[miin(oziQi)] - Z (h; — m;)Elo;Q; — miin(oziQi)]

N

— gehp — > wiQ; (4.30)
N
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Proposition 4.15 Expected profit function given in (4.30) is jointly concave in Qq,. . .,
Qn ifr(1 = yodi)+g —h(1=>5¢d:)) >0 ,h—=V >0 and ) ,(h; —m;) >0 .

Proof:

Please see the proof of Proposition 4.23

When we define the following:

1= nd) + 6 —h(1=Sx )= Ar+g.—h) = Yy¢= (eh

hMl=S i) =V = M = V= el
Wi = AG

)

Here we can see that the recovery payment in fact comes out to be a punishment
to the worst one. It can be thought as cutting down the whole sale price of the worst
one, as it comes out to be in the contract defined in Section 4.1.4.7. The manufacturer’s
profit function is the one defined in (4.10). The lambda values are same like the others,
that is manufacturer gets all when A\ = 1 and suppliers get all when ——%£2

Elmcl+grup”

4.3. Observations

In the assembly systems with random yield, coordinating mechanisms are found
by starting to implement buy-back contracts. It is seen that buy-back contract alone
cannot achieve coordination using the way we employed. Then an addition is made
to the contract, a recovery payment(V). It is the payment that is made to the worst

supplier per unit it delivers.

In a single supplier model, buy-back contracts are easy to implement because the
sales either equals to demand or delivered units. So if the retailer has an inventory
after the demand is realized, then the supplier buys them back. If there is no inventory,

then there is no buy-back process. Buy-back is a guarantee to the retailer that the
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supplier compensates the loss by ordering more. So the supplier encourages the retailer
to order more. If there is any inventory left at the end of the season, then it is more
likely to be due to the supplier’s action. In short, like all the other contracts, it is a

form of risk sharing between the players.

However, in an assembly system, this is not only the case. If there is an inventory
at the end of the period, this might be due to supplier’s behavior. Let’s say there are
suppliers A and B and let the demand realized be 145. If A sends 145 and B sends 10,

there is an inventory of 135 because of the supplier B.

The buy-back contract proposed is such that the supplier pays for the component
inventory if delivered quantity is larger than the sales. That is, if supplier’s quantity
delivered is larger than the sales, then it is punished. In modified-buy-back contracts,
the suppliers are punished for the real inventory, that is for the items that cannot
be assembled. This means that even if there are end-products that are not sold, the
suppliers are not punished for those, because they are salvaged. In short, the suppliers

are punished for the components which costs the manufacturer for holding inventory.

Although the names of the contract implies that the contracts are composed of
buy-back and revenue sharing contracts plus a recovery payment, after solving the
parameters it comes out that in both of the buy-back contracts, the scheme can be
a sales rebate depending on the salvage, inventory holding, lost sales and revenue pa-
rameters. Additionally, the recovery payment in buy back with revenue share contract
can be a cut-down price. This scheme cannot be manipulated because these contract
parameters are found from the exogenous cost and price parameters. Thus one cannot

determine a contract to be a sales rebate or to be a revenue share.

Different from the others, modified buy-back contract with revenue share certainly
has a cut-down price whatever the exogenous parameters are, instead of a recovery

payment.
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The contracts are written in such a way that the manufacturer’s profit function

becomes a portion of the chain’s profit, that is:

E [ﬂ-r] = \E [WC] - (1 - A)f]r“D

There are common points in the contracts. The contract parameters like revenue
share parameter(¢) and recovery payment(V) change from contract to contract. How-

ever the buy-back and modified buy-back parameters are same in all of the contracts:

m; = b; = (1— \)h (4.31)

If the contracts are analyzed carefully, it can be seen that all the contracts turn

out to be a wholesale contract in which the manufacturer gets all the profit when A

equals to one. For example let’s check the modified buy-back contract parameters:

(ré+ g —hdp—Xyb) = Ar+g —h) = ¢= UNro—hdyh)
ho+3 b=V = Ah S V= (1-a)Zahiceh
hi — b, = Mh; = b= (1-MNh
Whi = NG

When A equals to one, all the other payments become zero, thus the contract
turns into a wholesale price contract, meaning that the profit goes to the manufacturer.
However when A is less than one, then the other payments come to the scene and at

: ; grit i
the point where A hits Fn] +§rup’ all the profit goes to the suppliers.
The profit can be placed entirely either to the manufacturer or to the suppliers.

However, it is not completely figured out what is the share between the suppliers. The
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profit can be allocated between the suppliers up to a limit with the parameter ¢. The
sum of the ¢s is found to be equal to a value, but there is no restriction over the

individual ¢s. So this allows the contract allocate the profit at least to some extent.

One other point is that, why does the manufacturer order different quantities
from the suppliers instead ordering the same quantity like the one in Gurnani and
Gerchak[22]? To understand this point, let’s start from the beginning. The system
has a random yield structure. That is the suppliers are unreliable and they do not
deliver the exact quantity the manufacturer orders. So the delivered quantity has to
be, somehow, corrected. What is important is that, this correction can either be made

by the supplier, or by the manufacturer.

When the manufacturer orders the same amount from all the suppliers, then the
suppliers should correct the amount because randomness of yield at each supplier is not
necessarily the same. For example if one supplier ships 90 percent and the other one
ships 50 percent of the order quantities on average, then it is ridiculous to order the
same amount from both under a forced compliance regime. If the suppliers’ randomness
are different and the manufacturer orders the same amount from all of them, then the
suppliers should be allowed to change the amount for sake of profitability of the chain.

Accepting quantities that are more than the quantity ordered is up to the manufacturer.

If the correction is made by the manufacturer, then the manufacturer should
order different quantities from the suppliers, accounting for their different randomness
structure. As the manufacturer makes the correction, the suppliers should obey the
order quantity. If suppliers also change the quantity, then there is double correction in
the order quantity which corrupts the system, especially the system in which all the
players know all the parameters and distributions. This double correction may work
better in systems in which the players have limited information about each other. So in
our model, the manufacturer makes the correction by ordering different quantities from
the suppliers taking care of their different randomness structures. This coordination

mechanism is completed by the forced compliance.
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5. NUMERICAL ILLUSTRATIONS

So far we have analyzed the systems in terms of closed form functions. Further
insight can be obtained by using numerical examples. For example the optimal order
quantity’s behavior according to mean of demand and yield or the expected profit
function’s pattern with respect to the variance of demand cannot be evaluated from
closed form functions. Additionally they are also some kind of validation for the results
that are derived in the previous chapters. We used MatLab 7.0.1 to prepare this

numerical study.

5.1. Newsvendor Problem

Numerical examples are helpful to see the behavior of the parameters over the
contract. The centralized system is investigated under a predetermined setting and
then sensitivity analysis is performed on the parameters. In the sensitivity analysis,
the optimal order quantity and the profit are studied with respect to changing cost and
revenue parameters. In the following example the parameters are set as r = 25, ¢ = 5,
h = 4 and g, = 3. Demand is assumed to be normally distributed with ¢ = 100 and
o = 10. The supplier’s yield has a uniform distribution between (0,1]. One parameter
is changed gradually while keeping others constant and the expected chain profit and
optimal order quantity are observed. All of the results are found as expected. One
critical point is that, when changing the parameters, the conditions of concavity in

Proposition 3.1 should not be violated.

Figures 5.1 and 5.2 show the relation between the selling price (7) versus optimal

order quantity and versus chain profit.

As it is expected, both the quantity and the optimal profit increases when r
increases. When the manufacturer is able to sell a good with a higher price, then it

orders more and, of course, makes a higher profit.
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Other figures of sensitivity analysis are in Appendix D. Figures D.1 and D.2 show
the relation between the production cost (c) versus optimal order quantity and versus

chain profit.

When production cost increases, the manufacturer orders less because the system
pays for every unit ordered but only sells the goods which are delivered. When every
parameter stays constant but only production cost increases, this obviously decreases

the chain’s expected profit.

The same sensitivity analysis for holding cost(h) is shown in Figures D.3 and D.4.
When holding cost increases, the manufacturer is not eager to hold inventory so the
optimal order quantity decreases. Holding an inventory is a cost so when h increases

the optimal profit decreases as well.

Figures D.5 and D.6 show how the optimal order quantity and expected chain
profit change with g.. When ¢, increases, the manufacturer orders more in order to
meet the demand and not to fall into lost sales. This increases the optimal order

quantity. However g, is a cost and a higher cost decreases the profit.

The stair like shapes of the figures in optimal order quantity graphs is due to the
fact that order quantities are assumed to be integers. Thus when the range is small

like in the graph of g,, the plot is a step function.

Another main issue is to find the expected chain profit and optimal order quantity
when the variance of the demand changes. Calculation of variance is given in Appendix
A. Holding other parameters constant, Figure 5.3 shows how the optimal order quan-
tity changes when variance of demand changes. The order quantity increases when
the variance of the demand increases. At first this may seem unreasonable, however
the distribution used for demand is a truncated normal. When the variance increases,
(untruncated) normal distribution becomes flatter and its tail hits the y axis. Contin-
uing to increase the variance causes negative demands. However negative demand is

meaningless, so the probability that belongs to negative values are distributed over the
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Demand Varaince vs Expected Chain Profit Variance
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Figure 5.5. Demand Variance versus Expected Chain Profit Variance

positive values proportionally to the probability values of positive values not allowing
any occurrence of negative demand. That is how the distribution is truncated. Hence,

the actual variance and mean is different.

The behavior of profit when variance increases is shown in Figure 5.4. The
profit first decreases but then increases. This can be explained again by the truncated
distribution. The tail of the normal distribution hits the negative part after a variance
of sixty, as it is seen on in Figure D.7. After computing the expected profit, the variance
of the expected chain profit is also calculated and the relation between two variances
is shown in Figure 5.5. As it is expected, the variance of the expected profit function

increases with the increasing variance of the demand.



75

5.2. Assembly Systems

Numerical examples for the assembly system are quite important to observe the
performance of the contracts. To achieve that, first the centralized system profit is
plotted. Optimal order quantities and expected chain profit is studied under several
scenarios which are shown in Table 5.1. The demand has a normal distribution with
@ = 100 and o = 25. Both of the suppliers’ yield has a uniform distribution between
(0,1].

The scenarios are shown in Table 5.1. First run is the base case that we compare
the other runs with. If we start from that it can be seen that the optimal order
quantity for the first component is lower than the second one. This is because the
first component is more expensive than the second one, regarding both for holding and
production costs. If the selling price decreases(r), then obviously we expect the profit to
decrease and the optimal order quantities to decrease, which is the case. Then salvage
value is set to zero. Salvage is a revenue for the manufacturer, so setting it to zero
forces the system to order less. Obviously this decreases the chain’s expected profit.
In the fourth run, the production cost of the first component is set to a lower value.
This dramatically increased both of the order quantities, while the increase in the first
component is higher as expected. This huge increase is due to the fact that this cost is
paid for every unit ordered which increases the cost seriously. Then the same thing is
done with the production cost of the second component. The optimal order quantity
for both of the components increases while the second one has a much more increase.
Both actions (decrease in the production costs) increases the profit as expected. Setting
holding cost of the first component to a lower value results in an increase in the order
quantity of the first component but a slight decrease in order quantity of the second
one. Setting this to zero yields the same results. Component 1 increases however
component 2 slightly decreases with respect to the basic first run. The same thing
is observed when we play with the holding cost of the second component. When it
is set to half of the original value, there is a slight decrease in component 1, but an
increase in component 2 quantities. Setting it to zero results again in an increase in

order quantity of the second component. Component 1 stays same with respect to the
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basic run. Decreasing the holding costs increases the profit as it is expected. The last
parameter to change is the lost sales. When cost of lost sales is set to zero, it can be
seen that the order quantities decrease and the profit increase because as there is no
punishment for the lost sales, the system now tries to keep less inventory. The reverse
also works fine. When cost of lost sales increases, both of the order quantities increase,
component 1 having a less increase. This is an expected result because lost sales is
punished severely so system orders more not to fall into lost sales. Expected profit

decreases with respect to the basic setting when cost of lost sales has a higher value.

Table 5.1. Assembly System Solution with Two Suppliers having Random Yield

r{hlc| e |hi| hy | g | Q| Q2 | Profit
1 (40|54 3 | 2| 1 |2 |198|224 | 743.78
2 1305143 2|1 |2]|15 175 197.97
3 40|04 | 3 | 2] 1] 2]180]205| 695.16
4 (40|52 3 | 2| 1 |2 |281]266]| 1210.6
5 (405 (1| 3 2] 1] 2]|368]|303| 1530.2
6 40|54 |15 2| 1 | 2|22 317 | 1139
7040|5141 3 |1 | 1 |2]203]|222)| 773.85
8 40|54 | 3 | 0] 1 |2]214]223] 806.21
9 (40|54 | 3 | 2 (052|197 | 228 | 765.36
10 (40|54 3 |2 0 |2 198|237 | 7882
11 (40 (54| 3 [ 2| 1 |0 ]190 215 | 825.56
12 140 |5 (4| 3 | 2| 1 | 7 |214 243 | 542.18

One important point is that, what is the effect of variance of the yield over the
chain? In other words, what does a reliable supplier bring to the chain? In Table 5.2,
supplier one has a constant yield of 0.5 and the other supplier’s yield is same with the

previous setting, having a uniform distribution between (0,1].
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First of all, the significant change in the profit can be seen easily. Thus a reliable
supplier increases the profit of the supply chain. Another effect can be seen when the
fourth and the fifth settings are compared. There is an increase in the order quantities
in this system, however this increase is smaller than the one in the previous system.
This shows that the system gives more reaction to the production cost of a component

which has random yield.

Table 5.2. Assembly System Solution with Constant Yield at Supplier One

r{hlci| co | h| hy | g | Q1 | Q2 | Profit | Increase
1 (40|54 3 | 2| 1 |2 231|244 | 1285.3 72.8 %
2 130|543 2|1 |2]210]|205| 547.1 176.4 %
3 (401014 3 | 2| 1 |2]219]|233| 12332 7.4 %
4 (40|52 3 | 2| 1 | 21267260 17788 46.9 %
5 40 (5|1 | 3 | 2| 1 |2]318|278| 2065.7 35 %
6 (40|54 |15 2 | 1 |2 ]|243| 316 | 1698.6 49 %
7040|541 3 [ 1| 1 |2]233]241 | 1313.1 69.7 %
8 (40|54 | 3 | 0| 1 | 2236|240 | 1341.7 66.4 %
9 (40|51 4] 3 | 2 05| 2]230]| 256 | 1321.5 72.7 %
10 140|514 3 | 2| 0 | 2]229]|272| 1363.6 73 %
11 (40|54 3 | 2| 1 |0 |227]236| 1333.7 61.6 %
12 (40|54 | 3 | 2| 1 | 7238|259 | 1170.8 | 1159 %

Table 5.3 shows the optimal order quantities and expected profit of the chain when
the first supplier has perfect yield. Increasel column shows the increase of the profit
with respect to the random yield system and Increase2 column shows the increase of
the expected chain profit with respect to the model with supplier one having constrant
yield in Table 5.2. The significant increase in the profit with respect to the random
yield model can be seen easily. There are two important points. When selling price is
low, then increase in the yield makes a greater increase in the profit. However when

the production cost of the component which has a perfect yield is low like the one in
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Table 5.3. Assembly System Solution with Perfect Yield at Supplier One

r{hlci| c | h| hy | g- | Q1 | Q2 | Profit | Increasel | Increase2
1 140|543 2] 1 |2|133]251| 1715 130.6 % 33.4 %
2 130514 3 |2 | 1 |2]124]217| 948.27 379 % 73.3 %
31401014 3 |2 |1 |2]121]|235| 1634.3 135.1 % 32.5 %
4 (40|52 3 |2 | 1 |2]158]266] 1999.5 65.1 % 12.4 %
5 (405 1| 3 | 2| 1 | 2213|298 2180.6 42.5 % 5.5 %
6 (40|54 |15 2 | 1 | 2141|325 2140.2 87.9 % 25.9 %
7140|504 3 | 1| 1 |2]136|249| 1751 126.2 % 33.3 %
8 (40|54 | 3 | 0| 1 |2 ]140| 246 | 1789.4 121.9 % 33.3 %
9 (40 (5| 4| 3 | 2 [05|2|132)|268]| 1778.5 132.3 % 34.5 %
10 |40 |5 (4| 3 | 2| 0 | 2 |131 289 1851.7 134.9 % 35.7 %
11 (40|54 3 [ 2| 1 |0 |131]245 | 1758.9 113 % 31.8 %
12 {40 |5 4| 3 | 2| 1 |7 |136|266 | 1610 196.9 % 37.5 %

fifth setting, then the increase in the yield does not significantly affect the profit of the

chain.

Table 5.4 shows the optimal order quantities and the expected chain profit when
two suppliers have constant yield of 0.5. Again the significant increase in the chain’s
expected profit can be seen from the table. The increase of the chain’s profit with
respect to the system having one supplier with constant yield (Table 5.2) is shown
in the last column. As well as the significant increase in the profit, the reaction of
the system to the change in production cost can be seen in the sixth run. In the
system with supplier two having random yield, the change in optimal order quantity
of component two is 82 . In this system, the change in the optimal order quantities
are 15 in both. So randomness in the yield causes the system to give more reaction to
the change in the production costs. Another important point in this system is that,
in all of the settings, the optimal order quantities for two components are equal, so
the system does not have any inventory holding costs which explains the same order

quantities in the settings having different holding costs.
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Table 5.4. Assembly System Solution with Constant Yields

r|hlci| co | h| hy | g- | Q1 | Q2 | Profit | Increase
1 (4054 3 [ 2| 1 |2/|23|23 ]| 23105 79.8 %
2 (30|54 3 | 2| 1 |2]222]222] 1354.6 | 147.6 %
3 (401014 3 | 2| 1 |2]221|221| 22183 79.9 %
4 (40|52 3 | 2| 1 | 2255|255 2799.1 57.4 %
5 (40 (5|1 | 3 | 2| 1 |2 |270|270| 3061.2 48.2 %
6 (40|54 15 2 | 1 | 2250|250 2673.1 57.4 %
7 140|514 3 | 1| 1 | 2|235]23]| 23105 76 %
8 (40514 | 3 |0 | 1 |2]23]235/| 2310.5 72.2 %
9 (40514 | 3 | 205|223 235 2310.5 74.8 %
10 |40 |5 14| 3 [ 2] 0 |2 |235|235]| 2310.5 69.4 %
11 140|514 3 | 2| 1 |0|232]232)| 23179 73.8 %
12 140|514 3 | 2| 1 | 7 (240|240 | 2293.9 95.9 %

Table 5.5 shows the optimal order quantities and the expected chain profit of
the assembly system with two suppliers having perfect yield. Significant increase in
the chain’s expected profit with respect to the random yield structure (Table 5.1) is
shown in Increasel column and the increase with respect to the assembly system with
suppliers having constant yield of 0.5 (Table 5.4) is shown in Increase2 column. In
addition to the increase in the profit of the chain, there is no inventory holding cost
in this system like the model with two suppliers having constant yield in Table 5.4.
In the fifth setting, since the salvage value is bigger than the production cost of an
end product, the system produces infinitely many products. Same reason causes the
multiple optima in fourth run. Thus the production of the first product is changed to

2.1 from 2 just for this fifth setting.

Figure 5.6 shows the graph of expected chain profit versus order quantities under
the first setting. As it can be seen from the graph, the expected profit function of the

chain is concave.
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Figure 5.6. Expected Chain Profit versus (); and ()5

After plotting the expected chain profit, it is important to see how the contracts
perform. We showed that all of the profit can be allocated either to the manufacturer
or to the suppliers but we can not say anything about what the share is between the

suppliers. For all of the contracts, when A = 1 all the profit goes to the manufacturer

and for A\ = E[g:]% all the profit goes to the suppliers. The A value is the same for
all of the contracts because it is independent of the contract parameters. All of the

parameters of the contracts are shown in Table 5.6. The parameters are calculated

from (4.9), (4.13), (4.18) and (4.21).

When A is set to 0.2119 all the profit is allocated to the suppliers. All the contract
parameters are calculated from the exogenous parameters and A. This means that all
of the parameters are fixed at a certain value for suppliers to get all of the profit.
This condition also holds for the total revenue share parameter ¢. However, individual
revenue share parameters are free to choose as long as their sum stays constant, meaning

there is one degree of freedom to choose the revenue share parameters.
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Table 5.5. Assembly System Solution with Perfect Yields

r{hlci| c | h| hy | g- | Q1 | Q2 | Profit | Increasel | Increase2
1 140|514 3 | 2| 1 | 2140|140 | 3198.6 330 % 38.4 %
2 30|54 3 |21 ]2]13]136 | 22054 1014 % 62.8 %
31401014 3 |2 |1 |2]124]| 124 3037.8 337.0 % 36.9 %
4 (4052 3 |2 | 1 |2]170]170 | 34824 187.7 % 24.4 %
5 (405 1| 3 | 2|1 |2 - - - - -
6 (40 |5 |4 |15 2 | 1 |2 |155 155 | 3418 200.1 % 27.9 %
7140|504 3 | 1| 1 | 2140 140 | 3198.6 313.3 % 38.4 %
8 (40|54 3 |0 | 1 | 21140 140 | 3198.6 296.7 % 38.4 %
9 (40|54 3 |2 05| 2|140 | 140 | 3198.6 317.9 % 38.4 %
10 40|54 3 [ 2| 0 | 2140 | 140 | 3198.6 305.8 % 38.4 %
11 (40|54 3 [ 2| 1 |0 |140| 140 | 3199.8 287.6 % 38.0 %
12 140 |54 3 | 2| 1 |7 |142]142| 3196 489.5 % 39.3 %

Tables 5.7 and 5.8 show the profit shares of the suppliers when revenue share
parameters(¢; and ¢,) change from one extreme point, 0, to another extreme, ¢. It
can be seen that when the revenue share parameter of the suppliers are at level zero
then the suppliers make a loss, meaning that they pay to the other supplier. Reverse
is also true. If revenue share of a supplier is at its maximum level, that is ¢; = ¢,
then this supplier makes a higher profit than the chain, meaning that it takes extra
payment from the other supplier. In the tables, there are also the values of the ¢s at

which the supplier has zero profit or takes all the profit.

Finally, the last figure show how the profit share occurs with respect to the profit
share of first supplier in buy-back with sales revenue share contract. The figure for
the other contracts are in Appendix E. The dotted line is the profit share of the first
supplier. The graph is drawn with respect to the revenue share of first supplier, thus
the dotted line increases with increasing profit share. The other line, dashed one is the
profit share of the second supplier. As it is expected, the profit starts at its maximum

point when ¢; = 0 and then comes to its minimum point when ¢; = ¢. The black box



Table 5.6. Contract Parameters

Contracts ) 1% bi(my) | ba(ma) wq Wo A
BBSRS 0.6699 | 6.3047 | 1.5762 | 0.7881 | 0.8476 | 0.6357 | 0.2119
BBRS 0.7656 | 2.4768 | 1.5762 | 0.7881 | 0.8476 | 0.6357 | 0.2119

MBBSRS | 0.729 | 3.9404 | 1.5762 | 0.7881 | 0.8476 | 0.6357 | 0.2119
MBBRS | 0.8331 | -0.2252 | 1.5762 | 0.7881 | 0.8476 | 0.6357 | 0.2119

Table 5.7. Profit Share of Supplier 1
Supplier 1

¢, for ¢, for

Contracts | ¢, = ¢ ¢1 =0 | Zero Profit | Full Profit
BBSRS 1131.7000 | -431.8748 0.1850 0.5037
BBRS 1243.4000 | -587.5180 0.2457 0.5567
MBBSRS | 1191.7000 | -509.9204 0.2185 0.5371
MBBRS | 1313.2000 | -679.2968 0.2840 0.5950
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is the applicable range because out of that box the suppliers make negative profits.

The straight line in the figures is just the sum of the profits of two suppliers. It stays

constant at the value of 743.78 which is the expected profit of total chain. As it is

mentioned before, the parameter X is adjusted such that all the profit is allocated to

the suppliers.

One might think that, this profit share can only be achieved when the suppliers

have similar cost structures. So we try another run in which everything stays same but

cost of production for supplier 1 increased to 20 and its holding cost increased to 4.

For the system not to make loss, the revenue is also increased to 80. The centralized

profit comes to be 476,53 with 117 units of componentl and 224 units of component2.

The results are shown in Tables 5.9, 5.10 and 5.11.
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Table 5.8. Profit Share of Supplier 2

Supplier 2
¢, for ¢y for
Contracts | ¢, = ¢ ¢y =0 | Zero Profit | Full Profit
BBSRS 1175.7000 | -387.9655 0.1662 0.4849
BBRS 1331.3000 | -499.6226 0.2089 0.5199
MBBSRS | 1253.7000 | -447.8867 0.1919 0.5105
MBBRS | 1423.1000 | -569.3959 0.2381 0.5491
Table 5.9. Contract Parameters
Contracts 1) V bi(my) | ba(ms) wy Wo A
BBSRS 0.6339 | 7.0437 | 2.8175 | 0.70437 | 5.9125 | 0.8869 | 0.2956
BBRS 0.6762 | 3.6627 | 2.8175 | 0.70437 | 5.9125 | 0.8869 | 0.2956
MBBSRS | 0.678 | 3.5219 | 2.8175 | 0.70437 | 5.9125 | 0.8869 | 0.2956
MBBRS | 0.7232 | -0.0939 | 2.8175 | 0.70437 | 5.9125 | 0.8869 | 0.2956

Profit Share of the Suppliers in Buy—Back Contract with Sales Revenue Share
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Figure 5.7. ¢, versus Profit Shares in BBSRS



Table 5.10. Profit Share of Supplier 1

Supplier 1
¢, for ¢, for
Contracts 01 = ¢ 01 =0 Zero Profit | Full Profit 0]
BBSRS | 924.5303 | -1414.5000 0.3833 0.5125 0.6339
BBRS | 958.9667 | -1543.5000 0.4171 0.5458 0.6762
MBBSRS | 958.8569 | -1542.6000 0.4181 0.5473 0.6780
MBBRS | 995.6847 | -1680.5000 0.4541 0.5829 0.7232
Table 5.11. Profit Share of Supplier2
Supplier 2
¢y for ¢, for
Contracts | ¢ = ¢ ¢ =0 | Zero Profit | Full Profit )
BBSRS 1891.1000 | -447.9997 0.1214 0.2506 0.6339
BBRS 2020.0000 | -482.4360 0.1304 0.2591 0.6762
MBBSRS | 2019.2000 | -482.3262 0.1307 0.2599 0.6780
MBBRS | 2157.0000 | -519.1540 0.1403 0.2691 0.7232

84



85

6. CONCLUSIONS

6.1. Selling to the Newsvendor with Random Yield

With this study, coordination of a system consisting of a supplier and a retailer

is investigated. There is a random yield in addition to the random demand. Different

known contracts are studied to establish coordination. As far as it is known, this is the

first study that analyzes the coordination of newsvendor under random demand and

random yield. To summarize the coordination success of contracts:

e Buy-back, revenue-sharing and quantity discount contracts coordinate the chain
under both forced and voluntary compliance regimes.

Quantity flexibility contract can coordinate the chain under forced compliance
regime. Under voluntary compliance, concavity of the supplier’s profit function
cannot be established. Thus we cannot make any conclusions about voluntary

compliance.

e Wholesale price can coordinate only in forced compliance regime because the

supplier makes zero profit under this contract. Thus, coordination in voluntary
compliance can only be achieved via franchising payments or end-of-term pay-

ments.

There are also some interesting notes when we look over the whole work:

The optimal order quantity is found from a critical ratio like the classical newsven-
dor problem.

Buy-back and revenue sharing contracts are equivalent when the needed trans-
formations are made.

In quantity flexibility contract, the supplier’s action cannot be characterized.
However, it is interesting to note that the supplier’s and the retailer’s first order
conditions are same. Thus the quantity that optimizes the chain’s profit is a

critical point for the supplier’s expected profit function.
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e Wholesale price contract is found to coordinate with franchising payments or
end-of-term payments. Quantity discount contract just show the validity of this
comment. The parameters of the quantity discount are such that the suppliers
get a payment for their production cost and then a constant payment which can
be thought as a franchising payment with a wholesale price contract.

e The parameters which coordinate the chain are found to be dependent only on
[to. However the optimal order quantity depends on all the parameters of yield
and demand. Also the random yield contract parameters turn out to be equal to
classical newsboy parameters when u, = 1.

e When the relation of contract parameters with respect to p, is analyzed, it can
be seen that there is a tendency of the retailer to stabilize the wholesale price
payment for the whole delivery.

e When the contract parameters is written with A, then we see that when A become
one, the retailer gets all the profit. In fact, all those contracts whose parameters
can be written in A become a wholesale price contract when A = 1.

e In the numerical examples part, the relations with the exogenous cost parameters
and the decision variable (Q can be seen clearly. One interesting thing is that the
profit decreases when the variance of the demand increases, but then starts to
increase, which stems from the fact the we used a truncated normal distribution.
When the graph of truncated normal distribution is analyzed, it can be seen that
after some threshold, the left tail of the distribution hits zero, so the probability
of negative demands are distributed proportionally to the positive values which
means that after some value of variance, mean of the distribution in fact moves

to a higher value.

6.2. Assembly Systems under Random Yield

In the second part of this thesis, coordination of an assembly system is analyzed.
Unlike the newsvendor problem, we only analyzed forced compliance regime for coordi-
nation. Again, as far as we know, there is no previous work that studied coordination
of an assembly system with random demand and random yield. There are two ways

followed in this study.
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e The first one is to establish the concavity of the assembly system’s profit func-
tion and expected value of this function. Instead of writing huge integrals and
drowning in pages of equation, a simple way is employed.

e The second way is that after establishing the concavity, instead of finding the
optimal order quantity explicitly, the manufacturer’s function is written is such a
way that it becomes a fraction of the chain’s profit function. Thus, the parameters

that can satisfy this condition are said to coordinate the chain, as in Cachon[10]

By following this way, four coordinating contract mechanisms has been proposed.
The contracts are derived from buy-back and revenue sharing contracts by adding a
transfer payment, recovery payment(V). Addition to its use in single period model,
in a multi period model the worst suppliers can benefit from this recovery payment
and can recover from that worst position among the suppliers to a better one. So at
each period the worst supplier is given a recovery payment which is used to enhance
the improvement of the quality of production in that supplier. In addition to that,
in a game-theoretic analysis, the suppliers try to produce less than the other to get
this payment but since recovery payment increases with the quantity delivered, the
suppliers produce more to get more recovery which will enhance the performance of

voluntary compliance. The important points in the contracts are:

e All of the contract allow the profit to be allocated either to the suppliers or to
the manufacturer.

e Although tha profit share between the suppliers cannot be completely established,
numerical results show that all of the contracts perform well.

e The profit is allocated according to the parameter A\. When \ = 1, all the profit
goes to the manufacturer. In fact, all the contracts become a wholesale contract
and it is shown that in wholesale contract the suppliers cannot make profit.

e The contracts have equal payments as well as different payments. In all of the
contracts, buy-back parameters and wholesale prices are same. However, the

revenue share and recovery payment parameters change in each contract.
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e Although the parameters in the contracts are called revenue share or recovery
payments, sometimes these parameters turns out to be sales rebates or cut-down
prices when the parameters are solved.

e From numerical examples, the effect of random yield can be seen easily. There
is a significant increase in the profit when the supplier one has a constant yield.
Additionally, the system gives more reaction to the change in the production costs
when the supplier has random yield. When the suppliers have constant yields,
the system does not hold any inventory of the components as expected.

e Since random yield decreases the profit significantly, the recovery payment be-
comes more important especially in multi period analysis. Thus the contracts
having recovery payments are the best for use in multi-periods. If the exogenous
parameters makes the recovery payment a cut-down price, then that contract can
be used for single period systems, although all contracts are suitable because they

provide coordination in the chain.

In both newsvendor and assembly systems, when the profit is written as a fraction

D

of the expected chain profit, all of the profit goes to the supplier(s) when A = Miiw

Although this ratio seems to be a random one, in fact it is not. g,up is the expected
cost of the system when there is no order. E[r.| is the expected chain profit when

optimal quantities are ordered. So this ratio is: no order / (no order + optimal order).
For further studies, two extensions can be added:

e Multi-period analysis: This study deals with a single period model. Solution and

contract designs for multi-period can be analyzed. In fact, the contract parameter
Recovery Payment, V, in the assembly system is an important point to analyze
in multi-period systems especially when the yield is modeled to be related with
V. That is, if the yield becomes larger with a recovery payment, the performance
of all the system can improve period bu period.

e Game-Theoretical Analysis: In the assembly systems the contracts are analyzed

under a forced compliance regime. The scheme can be extended to a game be-

tween suppliers by letting the contract be implemented under a voluntary com-
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pliance regime. Applying both multi-period and game-theoretic analysis will be

a complete and a hard study.
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APPENDIX A: VARIANCE OF EXPECTED CHAIN
PROFIT

The variance of the expected profit function of the chain is found as follows:

g(O‘v Q) = (7’ + gr + h)mln(QQ> D) - haQ - gT‘D
Var(g(a,Q)) = Eu[Var(g(e, Q)|la)] + Vara(Elg(a, Q)]|a)

Ea[Var(g(a, Q)|o)]:

Var(g(a, Q)la) = Elg(@,Q)*|o] — Elg(a, Q)|a]?
EVar(g(e,Q)le)] = E[E[g(e,Q)*|o]] - E [Eg(er, Q)l0]?]

Elg(a,Q)la) = (r+g, +h) U;Q Dg(D)dD + /:O

a@g(D)dD} — haQ = gup
Q

o0

Elg(o,Q)la] = / [(r + 1)D — haQlg(D)dD + /Q[<r+gr>aQ—gTD]g<D>dD

[e.9]

Elg(a,Q)a] = / ((r + h)D — haQg(D)dD + /Q[<r+gT>a@—grDPg<D>dD

E,[Var(g(a,Q)|a)] = { [(r + h)D — haQ)*g(D)dD

[e.9]

r 4 6,)0Q — g, D]’ <D>dD}f<a>da
Q

It
1{r+g7~—|—h V Dg(D)dD

(e 9]

+
o\ho\

a@g(D)dD} —hoQ - WD} f(a)da

+
T

Q
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1 a@
EVar(o(o. @) = [ { 64100~ haqpg(pyap

(r+ g,)aQ — grDPgw)dD} f()da

|
. { /OQQ[(rJrh)D—hOéQ]g(D)dD

Vara(Elg(a, Q)]|e)

Vara(Elg(e, Q)lla) = E[Elg(a, Q)|a]*] — E[E[g(ex, Q)|o]]*

Elg(a,Q)la]

a@ 00
(r+ g+ h) { /0 Dy(D)dD + / ) a@g(D)dD} ~ haQ — g

(e o]

aQ
||+ 1D~ haQlgD)a + | i+ g1 — . Dls(D)aD

Vara(Elgla. Qlla = [ 1 {<7~ Lyt h) [ / " pg(p)ap

0

00 2
+ [ a@u)ap] - 1aQ - gun | fa)da
aQ

- {/01 ((r+gr+h) U;ng(p)dp

+ /a;o an(D)le — haQ — grﬂD) f(@)al@}2



+

—

o

—N
8°\H

T

[e.9]

Q

( /0 "+ D — haQlg(D)AD

(r + g,)aQ gTD]gw)dD) F(@)da
a@
( /0 (r + h)D — haQlg(D)dD

(r + g.)aQ - grD]gw)dD) f(a)da}

Eo[Var(g(e, @)|a)] + Vara(Elg(e, Q)l|a)
E [Elg(a, Q)*|a]]

E [Elg(e, Q)lo]*] + E[E[g(er, Q)la]’] — E[E[g(a, Q)]a]]*

- [

Q
/ r+ h)D — haQ2g(D)dD
0

/Q[( £ 0,)0Q — ¢, DPg(D)d }f<a>da

- {a/o (( g+ ) [/ Dg(D)dD
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/0{/ r+h)D — haQ)2g(D)dD

/ (r+ g,)aQ — g.D]%g )dD}f( )da
-

+

Q

i (r+g +h) [/ Dg(D)dD

¥ /aQanm p| - hae - gpp)f(a)da}Q

{/OQQ[(T + h)D — haQ)?g(D)dD

o0

+

—

O

(r + g)0Q — gTDPgw)dD} F(a)da
a@
(/0 [(r 4+ h)D — haQlg(D)dD

+

—N—

(7 + gr)aQ — gTD]g(D)dD> f(a)doz}
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APPENDIX B: ASSEMBLY SYSTEM WITH TWO
SUPPLIERS

When taking expectation, first of all the cases are written. In two supplier case,

there are six cases. Let’s write the profit function of the chain in (4.2) again:

Te(Q1,Q2) = rmin(a1Qq, x2Qs, D)] — g,[D — min(a1Q1, 062@2)]+ — Q1 — Q2
+  h[min(aQ1, 02Q2) — DI — hy[on Q1 — a2Qs]" — hafaaQy — anQq]*

In the following formulations we neglect the production cost part, —c;Q)1 — c2Q2,

because they are constant at all cases:

Case 1: OélQl < OéQQQ <D

ron@Qr — gr(D — a1Q1) — ha(2Q2 — 1 Q)

Case 2: 11 < D < an)s

ra;@ — gr(D - alQl) - hz(@2Q2 - 041Q1)

Case 3: OéQQQ < OélQl <D

rasQy — gr(D — 042Q2) - hl(OélQl — asQ)s)
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Case 4: as(s < D < a1

ragQ)s — 9r<D - OéQQQ) - hl(alQl - OzzQz)

Case 5: D < a1Q1 < 02Q>

rD + h(a1Q1 — D) — ho(aaQ2 — a1Q1)

Case 6: D < )y < a1y
rD + h(aeQy — D) — hi(a1Q1 — a2@)2)
It can be seen that Case 1 and Case 2 are same, like Case 3 and Case 4. Now
let’s rename the cases and call Case I and Case 2 as Case A, Case 3 and Case j as
Case B, Case 5 as Case C' and Case 6 as Case D:

Case A: ()7 is minimum

ron@Qr — gr(D — a10Q1) — ha(2Q2 — 1 Q)

Case B: as@)s is minimum

rag@)s — gr(D - 062Q2) - hl(alQl - 042Q2)

Case C: D < a1Q1 < aa@o

rD + h(a1Q1 — D) — ha(aa@Q — a1 Q)
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Case D: D < Qs < a1 Q1

rD + h(aeQs — D) — hi(a1Q1 — a2@)2)

With this notation, the function cannot be re-organized or no comments can be
made for concavity. So let’s add and subtract some values which sum up to zero in
order to get some insight. Every line is one case and every change in each step is

underlined to be followed easily:

= rai@r —g (D —aiQr) —ha (@2 — a1Q1)
rasQz —gr(D — as@Q2) —hi(Q1 — aa@s)

rD +h(a1@Q1 — D) —ha(aaQs — a1Q1)

rD +h(Qs — D) —hi(a1Q1 — Q)

= ra1@Qr —gr(D—a1Q1) +aQi(h—h)
raz@Qy —gr(D — a2Q2) +aaQa(h—h) —h

( )
(1 Q1 — a2@2)
rD —9:D+ gD  +h(an@Qi— D) —hy(aeQ2 — a1Q1)
rD =g D+gD +h(a@Qz— D) —hi(a1Q1 — Q)

= (r+g-—ha1@Q1 —g.D +ha1Q1 —he(aQ — a1Qy)
(r+gr —h)asQ2 —g;:D +hasQs —hi(a1Q1 — 22Qs)
(r+g-—h)D  —g.D +haiQr —hy(aQs — a1Q1)
(r+g-—h)D  —g.D +hasQs —hi(a1Q1 — aaQ2)
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which in fact turns out to be:

= (r+g- —h)min(a1Q1, 2Q2, D) — g.D + hmin(a1 Q1, a2Qs)
—hy max[(a;Q1 — @2Q2), 0] — he max|(asQs — a1 Q1), 0]

= (r+ g, —h)min(a;Q1, ¥Q2, D) — g, D + hmin(a;Q1, a2Q>)
+hy min[(ae@Q2 — a1Q1), 0] + ho min[(a1Q1 — a2Qs), 0]

(B.1)
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APPENDIX C: ASSEMBLY SYSTEM WITH N
SUPPLIERS

Arrangement of the function resembles that of two supplier system. To find the
expectation of the profit function of N supplier system, (N+1)! cases have to be
evaluated. We neglect the production costs ), ¢;Q; because they are constant at all

cases. Let’s establish three cases in which delivery of supplier 1 is the smallest:

Case 1: a1Q1 < oo < ... < pQk < g 1Qp1 < ... < an@Qny < D

= ra1Q1 — g, (D — a1Q1) — ha(eQ2 — 1Q1) . ..
—hp(uQr — Qi) — hir1 (s 1Qrir — 1Q1) ... — hn(anQn — 1 Q1)

Case 2: 1@ < aoQo < ... xQr < D < g 1Qps1 < ... < anyQy

= ra1Q1 — gr(D — a1Q1) — ha(eQ2 — a1Qy) . ...

—hp(uQr — Qi) — hig1 (i 1Qper — 1Q1) ... — hn(anQn — 1 Q1)

Case 3: 01Q1 < D < asQs < ... < apQr < apy1Qpi1 < ... < anyQn

= ragQq —gr(D—le) — ha(a2Q2 —041Q1)~-

—hp (o Qr — Qi) — hig1 (1 Qi1 — 1Q1) ... — hn(anQn — 1 Q1)

It can be seen that all of the cases results in same values. Thus let’s merge the

cases where a supplier has the minimum delivery and call them Case min;.
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Now let’s write Case 1, that is the case where delivery of supplier 1 is minimum.
Then add and subtract some values which sum up to zero and does not affect the result

but helpful to manipulate the function easily:

Case ming: a1()1 is minimum

= ra1@Q1 — g-(D — a1Q1) — ha(ae@Qs — a1 Q1) . ..
—hi (o Qr — kQr) — hi1 (1 Qra1 — 1Q1) ... — hv(an@n — a1Q1)
= ra;@Qr — g-(D — a1@Q1)—h1(anQ1 — a1 Q1) — ha(e@Qs — a1 Q) . . .
—hy(eQr — Qr) — hir1 (1 Qra1 — 1 Q1) ... — hv(an@n — a1Q1)
= ron@r — gr(D — 1@Q1) — Xy (hii@Qi) + 1Q1) Doy h

which can be generalized as:

Case min;: o;Q); is minimum

Now again let’s write three cases where yield of supplier 1 is greater than demand

but less than others:

Case I: D < a1Q1 < asQs < ... < apQp < apy1Qpi1 < ... < any@Qn

= rD + ]’L(OélQl — D) — hQ(OZQQQ — alQl) .
—hp (o Qr — Qi) — hig1 (1 Q1 — a1Q1) ... — hn(anQn — 1 Q1)
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Case 2: D < a1 < ... pQr < ap11Qp11 < ... < any@Qn < as@)o

= rD + h(a1Q1 — D) — hQ(OéQQQ — OélQl) R

—hi (o Qr — uQr) — hi1 (1 Qi1 — 1 Q1) ... — hn(anQn — 1 Q1)

Case 3: D < OélQl < OC2Q2 <... < Oék+1Qk+1 <... < OCNQN < Ckak

= rD + h(CYlQl — D) — hg(OéQQg — OélQl) R

—hi(arQr — arQr) — M1 (1 Qry1 — a1@1) .. — hn(an@Qn — a1 Q1)
Like the previous cases, the results turn out to be same. So let these results
merge into one called Case minp; and write it as a single case:
Case minp1: D < a1y < ...
= 1D+ h(an@Q1 — D) — Zil(htatQt) + a1 Zi\il hy
which can be generalized as:
Case minp;: D < o;Q; < ...
= D+ h(iQ; — D) — o1 (hewQr) + iQi S, hy (C.2)
We have generalized the cases of the profit function. To be able to comment on

the profit function, it must be modified into an elegant form. In the equations below,

every line is a case and we add and subtract some value which sum up to zero:

= D +h(ei@Q; — D) =30 (heow@Qy) + Qi S By
ra;Q; —gr(D — a;Q;) - 21{,\;1(ht05tQt) + a;Q; Zi\il hy
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We can see that the summations for component holding costs are common. So

let take them out for simplifying

= rD —9-(D — D) +h(a;Qi — D)
ra;Q; —9r(D — Q) +h(0iQi — Q)
= (r+g.—h)D —g;D +ho,Q;
(r+ g, — h)euQ; —9:D +ha;Q;

which simplifies into the following equation:

() = (r+ g» — h) min(D, a;Q;) — g, D + hmin(o;Q;)

N N
- Z(htatQt) + @iQi Z hy (C.3)
t=1 t=1
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APPENDIX D: NUMERICAL ILLUSTRATIONS -
NEWSVENDOR PROBLEM

In this part, there are results of numerical examples for the newsvendor prob-
lem. The figures below shows the relation between the exogenous parameters and the
expected chain profit and optimal order quantity. Figure D.7 shows the probability

density function of a normal distribution with p = 100 and o = 60:

c versus Q
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Figure D.1. ¢ versus Optimal Order Quantity



¢ versus Expected Chain Profit
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h versus Expected Chain Profit
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gr versus Expected Chain Profit
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Figure D.6. g, versus Chain Profit
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Figure D.7. Truncated Normal Distribution with ¢ = 100 and o = 60
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APPENDIX E: NUMERICAL ILLUSTRATIONS -
ASSEMBLY SYSTEM

Following figures show the profit allocation of suppliers in the two-supplier assem-
bly system under different contracts. The figures show the profit share of the suppliers

versus the revenue share parameter of the first supplier, ¢,

Profit Share of the Suppliers in Buy—Back Contract with Revenue Share
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Figure E.1. ¢; versus Profit Shares in BBRS
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