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ABSTRACT

COORDINATION UNDER RANDOM YIELD AND

RANDOM DEMAND

The aim of this study is to fill a gap in coordination literature by providing

answers to two distinct research questions on two different systems: A newsvendor

system and an assembly system.

First part of the study analyzes a newsvendor problem with random yield and

random demand. Recalling the centralized solution, the system is decentralized and

five different contracts are studied. It is shown that some of the contracts coordinate

the chain while the others can coordinate with additional assumptions. In addition to

the expected chain profit, variance of expected chain profit is written in closed form

and the relation between the parameters and the expected profit and variance of the

expected profit and the optimal order quantity is illustrated with numerical examples.

Second part of the study deals with an assembly system. As well as the demand,

the yield of the suppliers are random. Concavity of expected chain profit of both two-

supplier and N -supplier assembly system is shown. Instead of solving the optimal order

quantities explicitly, the expected profit of the manufacturer and the chain is written is

such a way that the manufacturer’s function becomes a portion of that of the chain’s.

Four different contracts are proposed which are shown to coordinate the chain under

forced compliance. The contracts are mixed type of contracts which includes payments

from different contract schemes. Several different scenarios are created and numerical

examples for centralized solution and contract schemes are provided.
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ÖZET

RASSAL ARZ VE RASSAL TALEP ALTINDA

KOORDiNASYON

Bu tezin amacı iki ayrı sistem üzerinde yapılan çalışmalara cevaplar bularak

koordinasyon literatüründeki bir boşlug̃u doldurmaktır.

Çalışmanın ilk bölümü rassal talep ve rassal arz altındaki bir gazeteci çocuk

problemini analiz etmektedir. Sistemin merkezi çözümü hatırlatıldıktan sonra dag̃ıtık

çözüm ve beş ayrı kontrat incelenmiştir. Bazı kontratların sistemi koordine ettig̃i,

bazılarının ise ancak ek varsayımlar ile koordine edebildig̃i gösterilmiştir. Beklenen

zincir kârına ek olarak, bu kârın varyansı kapalı formda yazılmış ve parametreler ile

beklenen kâr, beklenen kârın varyansı ve optimal sipariş miktarı arasındaki ilişkiler

sayısal örneklerle gsterilmiştir.

Tezin ikinci kısmı ise montaj sistemlerini incelemektedir. Talebin yanı sıra,

tedarikçilerin ürünleri de rassaldır. İki tedarikçi ve N-tedarikçi sistemlerin beklenen

kâr fonksiyonlarının dış bükey oldug̃u gösterilmiştir. Optimal sipariş miktarlarını

teker teker çözmek yerine beklenen kâr fonksiyonları, tedarik zincirinin kâr fonksiy-

onu, üreticinin kâr fonksiyonunun bir katı haline gelecek şekilde yazılmıştır. Zorunlu

uyum rejimi altında koordinasyon sag̃layan dört kontrat sunulmuştur. Bu kontratlar

farklı kontratların ödemelerini içeren karma kontratlardır. Farklı seneryolar ile merkezi

çözüm ile konratlar üzerine sayısal örnekler sunulmuştur.
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1. INTRODUCTION

With improvement of production techniques and technology, variety of all prod-

ucts increased to a significant level. Today many products, from cars to cellular phones,

offer so many alternatives that nobody can resist. However this variety brought diffi-

culty to the production processes as well. Thus the companies started to diversify and

focused on the areas at which they do best. Some started to manufacture products,

some started to transport products, some started to market products.

The companies gradually became an expert at one topic rather than doing all the

processes for selling a product. This change caused the formation of chains in which

every company provides a certain aspect of the whole supply process: Supply Chains.

However the companies saw that the overall profits of the supply chains may

be lower than the expectation. This difference is mainly due to the fact that every

company tries to maximize their own profits. In the past, since supply process usually

was completely owned by a single company, there was a single decision maker. However,

today there are various players who want more income.

This problem increased the importance of contracts which are simply the pay-

ments between the firms in a supply chain. With carefully designed contracts, every-

body acts in coordination such that the overall profit of a chain increases to the case

where there is a single decision maker.

This thesis deals with two problems. First problem is to implement well-known

contracts in a random yield newsvendor setting and study whether the contracts provide

coordination in the chain or not. The second problem is to design and implement

contracts for an assembly system in which each supplier produces distinct components

which are then assembled by a manufacturer in order to meet the random demand. As

well the randomness in the demand, the suppliers’ yields are random. Stochastically

proportional yield structure is used in both of the problems.
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The rest of the thesis is organized as follows. Chapter 2 provides an overlook

for the studies about both of the problems. Contracts and their performances in the

newsvendor problem with random yield are studied in Chapter 3. Chapter 4 deals

with coordination in two and N supplier assembly systems. After theoretical work,

we present numerical illustration in Chapter 5. The last chapter is conclusion for the

thesis and provides some further research topics.
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2. LITERATURE REVIEW

This work mainly focuses on two main problems. First problem is selling to the

newsvendor with random yield. Newsvendor problem is studied by many researchers

in recent years and coordination is one of the topics which has attracted attention.

However coordination in random yield and random supply systems has not been studied

yet. The second problem is an assembly system with random demand and random

yield. The suppliers produce distinct components which are later assembled by the

manufacturer to meet the random demand. The suppliers are unreliable and the yield

comes out to be lower than the order quantity. The research on assembly systems

focuses on choosing the optimal order quantity. There are some papers which study

coordination but there is no work that studies coordination in assembly systems with

random yield and random demand.

2.1. Newsvendor Problem

The first problem is a system with single retailer and single supplier having ran-

dom yield and random demand. The literature about this system can be categorized

into three main groups. In the first group, the centralized solution for the system is

reviewed. In the second group, coordination mechanisms for systems having only ran-

dom demand (classical newsvendor problem) are investigated. The third group includes

reviews and other helpful papers about random yield.

2.1.1. Centralized Solution

Shih[1] studies both EOQ and newsvendor problem under random yield and ran-

dom demand. Shih includes holding and shortage costs and shows that the total cost

function of the newsvendor problem is convex in quantity ordered. Shih shows that

deciding the optimal order quantity by assuming perfect yield instead of random yield

results in a higher cost. Noori and Keller [2] also investigate a system with stochas-

tic demand and random yield. Introducing the bias factor(amount received/amount
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ordered), they analyze the system when the demand is uniformly distributed and nor-

mally distributed. It is found that the quantity ordered depends on mean and most

of the time the variance of demand, and is inversely proportional to the bias factor.

Ehrhardt and Taube [3] work on a model in which the replenishment quantity is a ran-

dom fraction of the quantity ordered. Linear cost structure is employed. They show

that a very simple heuristic accounting only for the expected value of the replenishment

quantity, not the variability, performs quite well for normally and negative binomially

distributed demand.

Gerchak, Vickson and Parlar [4] study a periodic review production model with

variable yield and uncertain demand. The optimal order quantity solves a ratio which

resembles the one in this study(the random yield, u, is between (0,1] and there is

no inventory I because this work deals with only single period). They found a critical

ratio including the distribution of the yield and demand which depends on price, salvage

value, cost of production and mean of the yield. They show that the order point does

not change even the yield is random. However, the quantity ordered is not simply the

difference of the order point and the available stock. As well as the final period(single

period), two period and n-period problems are also investigated. It is found that the

optimal policy for the general finite-horizon problem is not myopic, making the multi-

period case hard to solve explicitly. It is shown that the order-up-to policies are not

optimal.

Henig and Gerchak [5] work on a system with random yield and random demand.

They prove that the ordering point does not change with randomness of the yield by

using a very general cost structure. They use the stochastically proportional yield

model which is also used in the previous papers that are cited above. For multi-period

problem they show the existence of a critical reorder point and nonorder-up to optimal

policy. Infinite horizon problem is shown to have a solution which approximates a long

horizon problem. It is also shown that the critical reorder points are equal or greater

than the the reorder points in the perfect yield models.
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This group of papers analyze random yield newsvendor models but they do not

include any study regarding coordination. In this research, coordination in newsvendor

problem with random yield and random demand is analyzed.

2.1.2. Decentralized Models and Coordination

To cite papers about coordination, Lariviere and Porteus [6] deal with coordi-

nation through wholesale price contract, Weng [7] studies quantity discount contracts

and Giannoccaro and Pontrandolfo [8] and Cachon and Lariviere [9] work on revenue

sharing contracts. Cachon [10] reviews the contracts in details. In this research several

contracts in classical newsvendor setting are investigated. Wholesale price, buy-back,

revenue sharing, quantity flexibility, sales rebate and quantity discount contracts are

studied in this work. As well as dealing with classical newsvendor problem, Cachon

works on price dependent demand and effort dependent demand. He also studies coordi-

nating multiple newsvendors and coordinating with demand updating. The framework

in the first part of this thesis mainly stems from this review of Cachon’s.

This group of papers deals with coordination but they do not study random yield

models. This thesis studies random yield as well as the coordination.

2.1.3. Other Papers

Yano and Lee [11] provide a review of literature about the random yield models.

They classify the papers as general, single stage continious-time models, discrete time

models and complex manufacturing systems. They study the random yield newsvendor

problem in the discrete time models, single stage - single period part. It is shown that

the cost function of this system is convex. Khouja [12] gives a literature review and a

classification of the papers dealing with the newsvendor problem, including the random

yield literature.

Parlar and Wang [13] study diversification between the suppliers for single period

when the yield is random. The concavity of the expected profit function is proved and
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they propose an approximation to find the global optimum. Anupindi and Akella [14]

also study diversification of the suppliers when the yield is random. They analyze three

different models with single and multi period horizons. It is found that there are two

critical numbers which indicates from whom to order(both, one or none). Agnihothri,

Lee and Kim [15] study a single period random yield model with a known and fixed

demand, and a penalty cost when the demand is not met. They find distribution free

results and show that there are two critical numbers for optimal ordering.

Ciarallo, Akella and Thomas [16] work on a single product problem having ran-

dom demand and random capacity. They study single, multi and infinite horizon

problems. Wang and Gerchak [17] extend this problem to a random yield environ-

ment. They show that for finite horizon problem there is a single critical point and

solution of the finite horizon problem converges to infinite horizon problem’s solution.

To summarize, the papers about random yield and random demand do not con-

sider coordination. Additionally the papers about coordination do not study systems

having randomness both in yield and demand. Our model deals with coordination in

systems having both random demand and random yield.

2.2. Assembly Problem

The second problem is coordination assembly systems having random yield. The

assembly system studied in this thesis has two distinct components produced by the

suppliers. These components are then assembled by the retailer to meet the demand.

As well as the demand, the suppliers’ yields are random. The papers can be categorized

into two main groups. First groups deals with the centralized solution where as the

second group studies coordination and contracts.

2.2.1. Centralized Solution

Yao [18] works on assembly systems to figure out the optimum run quantities.

Solution procedures are developed under yield distributions having increasing failure
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rates and convex setup cost functions. Gerchak, Wang and Yano [19] model an assembly

system for a single period. They work on two models: components with identical costs

and yield distributions and components with non-identical cost and yield distributions.

They formulate the cost function and show the optimality conditions. Gurnani, Akella

and Lehoczky [20] add a choice of joint supplier from whom the assembler can supply

a set(both) of the components. They work on single and multi periods and show that

it might be optimal to order more due to the randomness in the supply and sourcing

from the joint supplier is optimal if the inventory level is below a critical ratio.

Gurnani, Akella and Lehoczky [21] study on an assembly system facing a random

demand and random yield due to production yield losses. They formulate the exact

cost functions with target level of finished products to assemble and the order quantity

of the components from the suppliers as the decision variables. Then they propose

a modified cost function to find the optimal ordering quantity and target level to

assemble. In multi-period case it is found that it might be optimal to order extra

components for future use. Also the optimal ordering policy and assembly target level

policy are shown to be an order-up-to type of policy.

This group of papers focus on establishing the profit function of the chain and

finding the optmimal order quantity. However they do not consider decentralized set-

ting and coordination in the chain.

2.2.2. Decentralized System and Contracts

Gurnani and Gerchak [22] study assembly systems where demand is determinis-

tic but supply is random due to yield losses. They propose two contracts, one with

only punishment for undelivered items and other one with extra punishment to the

worst one. They show that with extra penalty the suppliers interact and there is a

nash equilibrium when coordination is achieved. Gerchak and Wang [23] were the first

that study coordination in decentralized assembly systems having random demand.

They worked on two systems; vendor managed inventory systems with revenue-sharing

contracts and wholesale price based systems. They proposed two new contracts: Rev-
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enue sharing plus surplus subsidy contract and wholesale price plus buy back contract.

They showed that these contracts can coordinate the chain and there is a continuum

of such contracts which allows continuum of equilibrium allocation of channel profits.

This papers deal with coordination in assembly systems but they do not study both

random yield and random supply. When the papers are considered as a whole, there is

no study that consider coordination in a random yield and random demand assembly

system. This thesis deals with coordination in assembly systems with randomness both

in demand and yield.
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3. SELLING TO THE NEWSVENDOR WITH RANDOM

YIELD

3.1. Problem Definiton

In this single period inventory control problem, there are two entities. The retailer

faces a random demand. In order to meet this demand, he orders to the supplier.

However, the retailer cannot receive the full order. Because of the randomness in the

supply process, the supplier receives a portion of the order he placed due to quality

problems. The distribution of the demand and the distribution of the fraction of the

received order is independent and known by all the players. The cost parameters and

the price is also known by the supplier and the retailer. The notation is as follows:

Q: Order size (Decision Variable)

r: Selling price per unit(Exogenous)

gr: Opportunity loss of the retailer per unit

h: Holding cost of the retailer per unit

c: Cost of production per unit for the supplier

D: Single period random demand

α: portion of received order(yield), (0,1]

f(),F(): Density and CDF of α, respectively

g(), G(): Density and CDF of D, respectively

αQ : Stochastically Proportional Yield

µα : expected value of α

µD: expected value of the demand

We need following assumption because only µα portion of order is received on the

average. That is the cost of a delivered order comes out to be c/µα. So the retailer has

to sell the units more than the expected cost of that unit:

r ≥
c

µα

(3.1)
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The profit of the chain can be written as

πc(Q) = r[Sales] − gr[Lost Sales] + h[End-product Inventory] − cQ (3.2)

Sales of the system is min(αQ,D). The expected sales is:

S(α,Q) = E[min(αQ,D)]

=

∫ 1

0

∫

∞

αQ

αQf(α)g(D)dDdα +

∫ 1

0

∫ αQ

0

Df(α)g(D)dDdα

= µαQ +

∫ 1

0

∫ αQ

0

[D − αQ]f(α)g(D)dDdα (3.3)

3.2. Centralized Setting

In centralized setting, the decisions is given by a single decision maker. The

system acts as a whole, such that they belong to a single owner. Under this setting,

decisions which maximize the profit of the chain are made. The centralized profit

function of the system is given as:

π (Q) = r min (αQ,D) − gr [D − αQ]+ − h [αQ − D]+ − cQ (3.4)

Taking the expectation, we have:

E [π (Q)] = r

{
∫ 1

0

∫

∞

αQ

αQf(α)g(D)dDdα +

∫ 1

0

∫ αQ

0

Df(α)g(D)dDdα

}

− gr

∫ 1

0

∫

∞

αQ

(D − αQ) f(α)g(D)dDdα

− h

∫ 1

0

∫

∞

αQ

(αQ − D) f(α)g(D)dDdα − cQ
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=

∫ 1

0

∫

∞

αQ

[αQ (r + gr) − grD] f(α)g(D)dDdα

+

∫ 1

0

∫ αQ

0

[D (r + h) − hαQ] f(α)g(D)dDdα − cQ

= µαQ (r + gr) − grµD − cQ

+ (r + gr + h)

∫ 1

0

∫ αQ

0

[D − αQ] f(α)g(D)dDdα

= (r + gr + h)S(α,Q) − hµαQ − grµD − cQ (3.5)

We now establish the shape of expected profit function:

Proposition 3.1 Expected profit function given in (3.5) is concave in Q if r+gr +h ≥

0.

Proof:

∂ (E [π (Q)])

∂Q
= µα (r + gr) − c − (r + gr + h)

∫ 1

0

αf(α)G(αQ)dα

∂2 (E [π (Q)])

∂Q2
= − (r + gr + h)

∫ 1

0

α2f(α)g(αQ)dα (3.6)

Every term in the integral is positive and the cost parameters are positive by

assumption. Hence the expected profit function is always concave. ¤

As the function is concave, first order conditions are necessary and sufficient for

the global optimum. If Q* is the optimum quantity for the centralized setting:

d (E [π (Q)])

dQ
= 0

µα (r + gr) − c − (r + gr + h)

∫ 1

0

αf(α)G(αQ∗)dα = 0
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∫ 1

0

αf(α)G(αQ∗)dα =
µα (r + gr) − c

r + gr + h
(3.7)

In fact, (3.7) resembles the critical ratio in newsvendor problem. We make make

the following definitions:

K(a) =

∫ 1

0

αf(α)G(αa)dα

K(Q∗) =

∫ 1

0

αf(α)G(αQ∗)dα

K(Q∗) =
µα (r + gr) − c

r + gr + h
(3.8)

Proposition 3.2 Optimal Q∗ found from (3.7) is unique.

Proof:

∂K(Q)

∂Q
=

∫ 1

0

α2f(α)g(αQ) > 0 (3.9)

The function is strictly increasing in Q and K(0) = 0. For Q = ∞:

lim
Q→∞

K(Q) = µα < ∞

then there is a solution if:

µα >
µα (r + gr) − c

r + gr + h

µαh > −c

which always holds since µα and h are nonnegative. Thus Q* is unique and well

defined.¤.
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When we analyze the classical newsvendor problem, that is when there is no

random yield, the optimal order quantity turns out to be:

G(Q∗) =
r + gr − c

r + gr + h
(3.10)

So the randomness in the yield effects the left and the right hand side of the

equation. α and f(α) appear at the left hand side of the equation and the µα appears

at the right hand side. So when µα = 1, then the right hand side of (3.7) is just equal

to that of newsvendor problem.

3.3. Decentralized Setting

In the decentralized setting, the retailer and supplier act as independent decision

makers. They try to maximize their own profits. There is a transfer payment, T(),

between two parties paid by the retailer to the supplier. The profit function of the

retailer and its expected value are:

πr (Q) = r min (αQ,D) − gr [D − αQ]+ − h [αQ − D]+ − T (·)

E [πr (Q)] = µαQ (r + gr) − grµD

+ (r + gr + h)

∫ 1

0

∫ αQ

0

[D − αQ] f(α)g(D)dDdα − E[T (·)] (3.11)

The profit function of the supplier and the expected value of it are:

πs (Q) = −cQ + T (·)

E [πs (Q)] = −cQ + E[T (·)] (3.12)
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3.4. Contracts

Contracts are different transfer payments. Several different transfer payments

described in the previous section comes out to be the contracts between the supply

chain entites. The profit of the chain under decentralized setting is always less than or

equal to the profit of the chain in centralized setting. When the system is decentralized,

every player tries to maximize its own profit. As a result of that, for example the

retailer orders a quantity that is different from the one which maximizes the chain’s

profit. The aim of the contracts is to establish transfer payments between the players

so that the retailer chooses the order quantity that maximizes the chain’s profit. In

this section we consider wholesale price contract, buy-back contract, revenue sharing

contract, quantity flexibility contract and quantity discount contract. Main issue is to

discuss whether they can coordinate the chain or not.

3.4.1. Wholesale Price Contract

In wholesale contract, the retailer pays to the supplier a wholesale price of w

units.

E[Tw(Q,w)] = wµαQ

The profit function of the retailer and the expected value of this function are:

πr (Q,w) = r min (αQ,D) − gr [D − αQ]+ − h [αQ − D]+ − wµαQ

E [πr (Q,w)] = µαQ (r + gr) − grµD

+ (r + gr + h)

∫ 1

0

∫ αQ

0

[D − αQ] f(α)g(D)dDdα − wµαQ (3.13)
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The expected profit function of the supplier is:

πs (Q,w) = wµαQ − cQ

E [πs (Q,w)] = wµαQ − cQ (3.14)

Concavity check of E [πr (Q,w)] results in:

Proposition 3.3 Expected profit function given in (3.13) is concave in Q if r+gr+h ≥

0.

Proof:

∂ (E [πr (Q,w)])

∂Q
= µα (r + gr) − (r + gr + h)

∫ 1

0

αf(α)G(αQ)dα − wµα

∂2 (E [πr (Q,w)])

∂Q2
= − (r + gr + h)

∫ 1

0

α2f(α)g(αQ)dα ≤ 0

¤

Let Q be the optimal quantity for the retailer. Then:

∂ (E [πr (Q,w)])

∂Q
= 0

µα (r + gr) − (r + gr + h)

∫ 1

0

αf(α)G(αQ)dα − wµα = 0

Then for Q to be equal to Q∗:

K(Q) =
µα (r + gr) − wµα

(r + gr + h)
=

µα (r + gr) − c

(r + gr + h)
= K(Q∗)

w =
c

µα

(3.15)
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So simply the retailer gives back the supplier the cost that the supplier spends for

the order. Then clearly the profit of the supplier is zero. This phenomenon is known

as double marginalization [24].

3.4.2. Buy-back Contract

In the buy-back contract the retailer pays wb for every unit that comes to her, at

the end of the season the supplier pays a premium of b to the retailer for every unit

that is not sold.

Tb(Q,wb, b) = wbαQ − b[αQ − min(αQ,D)]

E[T (Q,wb, b)] = wbµαQ − bE[αQ − min(αQ,D)]

= wbµαQ + b

∫ 1

0

∫ αQ

0

[D − αQ] f(α)g(D)dDdα

The profit function of the retailer and its expected value are given as:

πr (Q,wb, b) = r min (αQ,D) − gr [D − αQ]+ − h [αQ − D]+

− wbαQ + b[αQ − min(αQ,D)]

E[πr (Q,wb, b)] = µαQ (r + gr − wb) − grµD

+ (r + gr + h − b)

∫ 1

0

∫ αQ

0

[D − αQ] f(α)g(D)dDdα (3.16)

The profit function of the supplier and the expected value of this function are:

πs (Q,wb, b) = wbαQ − b[αQ − min(αQ,D)] − cQ

E [πs (Q,wb, b)] = wbµαQ + b

∫ 1

0

∫ αQ

0

[D − αQ] f(α)g(D)dDdα − cQ (3.17)
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Proposition 3.4 Expected profit function given in (3.16) is concave in Q if r + gr +

h − b ≥ 0.

Proof:

∂ (E [πr (Q,wb, b)])

∂Q
= µα (r + gr − wb)

− (r + gr + h − b)

∫ 1

0

αf(α)G(αQ)dα

∂2 (E [πr (Q,wb, b)])

∂Q2
= − (r + gr + h − b)

∫ 1

0

α2f(α)g(αQ)dα

b is the buy-back price of the left over inventory. So it is meaningless for b to

be greater then the selling price r. This verifies the concavity of the function given in

(3.16). ¤

Now let Q be the optimal quantity for the retailer.

∂ (E [πr (Q,wb, b)])

∂Q
= 0

µα (r + gr − wb) − (r + gr + h − b)

∫ 1

0

αf(α)G(αQ)dα = 0

Then for Q to be equal to Q∗:

K(Q) =
µα (r + gr − wb)

r + gr + h − b
=

µα (r + gr) − c

(r + gr + h)
= K(Q∗)

wb = b
K(Q∗)

µα

+
c

µα

wb = b
µα(r + gr) − c

µα(r + gr + h)
+

c

µα

(3.18)
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When (3.18) is analyzed, it can be seen that wb decreases with an increasing µα:

∂wb

∂µα

=
c[b − (r + gr + h)]

µ2
α(r + gr + h)

< 0

However, we cannot figure out what the optimum quantity will be with an in-

creasing µα. One point we can emphasize, increasing yield decreases the wholesale

price. The retailer pays to the supplier wb per unit delivered, µαQ. That is, when

µα increases, then the quantity delivered by the retailer increases, and wb decreases.

So increasing wb means that overall the retailer tries to stabilize the payment for the

whole delivery.

The contract parameters that satisfies (3.18) coordinate the system. However not

all of them are acceptable. For the parameters to be fine for the players, the contract

must allow them to make profits. To find the acceptable range, we define the following:

µα(r + gr − wb) = λ[µα(r + gr) − c]

r + gr + h − b = λ(r + gr + h)

b = (1 − λ)(r + gr + h)

wb =
(1 − λ)µα(r + gr) + λc

µα

which means that when λ = 1 there is no buy-back process and wb just becomes the

wholesale price. So when λ = 1 this contract becomes a wholesale price contract.

E [πr (Q,wb, b)] becomes a fraction of the whole chain’s profit function:

E [πr (Q,wb, b)] = λ {E[πc(Q)]} + (λ − 1)grµD (3.19)

Also the supplier’s profit function and its expected value are:

E [πs (Q,wb, b)] = (1 − λ) {E[πc(Q)]} + (1 − λ)grµD (3.20)
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Retailer gets all the profit when λ = 1 while supplier gets it with:

λ =
grµD

grµD + E[π(Q)]
≤ 1

Therefore, a buy-back contract coordinates the chain under random yield and

can arbitrarily allocate profits between the supplier and the retailer.

When the classical newsvendor problem is considered, the parameters are:

wb = b
r + gr − c

r + gr + h
+ c (3.21)

which shows that the buy-back parameters found from (3.18) simplifies to that of

classical newsvendor when µα = 1. Also in classical newsvendor the parameters which

are set as:

b = (1 − λ)(r + gr + h) (3.22)

wb = (1 − λ)(r + gr) + λc

result in same profit share as in (3.19) and (3.20). This result reduces to that of

Cachon’s[10].

This shows that the contract parameters are only affected by distribution of α,

in fact only by µα. Although one can think that the variance of yield does not have

a significant effect, it can be seen that this is not true when the critical ratio in (3.7)

is analyzed. The optimal order quantity is dependent on the distribution of α. So the

variance effects the selection of optimal order quantity. The retailer orders more (or

less) according to the variance and distribution of α.

If h < 0, that is h stands for salvage value. Transfer payments are not affected

since buy-back process is not related with the salvage value or holding cost.
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wb gets its lowest value when b = 0, that is when the contract becomes a wholesale

price contract. Thus following inequality always holds:

wb > w (3.23)

3.4.3. Revenue Sharing Contract

With a revenue sharing contract the retailer pays wr for every unit that she

purchases. She also pays a part of her revenue, which is (1 − φ) r.[min(αQ,D)], to the

supplier, keeping φ portion of the revenue. The transfer function is:

Tr(Q,wr, φ) = wrαQ + (1 − φ)r[min(αQ,D)]

E[Tr(Q,wr, φ)] = wrµαQ + (1 − φ)rS(α,Q)

= wrµαQ + (1 − φ)r

∫ 1

0

∫ αQ

0

[D − αQ] f(α)g(D)dDdα

The profit function of the retailer and the expected value of this function are:

πr (Q,wr, φ) = r min (αQ,D) − gr [D − αQ]+ − h [αQ − D]+

− wrαQ − (1 − φ)r[min(αQ,D)]

E[πr (Q,wr, φ)] = µαQ (φr + gr − wr) − grµD

+ (φr + gr + h)

∫ 1

0

∫ αQ

0

[D − αQ] f(α)g(D)dDdα (3.24)

The profit function of the supplier and the expected value of this function are:

πs (Q,wr, φ) = wrαQ + (1 − φ)r[min(αQ,D)] − cQ
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E [πs (Q,wr, φ)] = wrµαQ

+ (1 − φ)r

∫ 1

0

∫ αQ

0

[D − αQ] f(α)g(D)dDdα − cQ (3.25)

Proposition 3.5 Expected profit function given in (3.25) is concave in Q if φr + gr +

h ≥ 0.

Proof:

∂ (E [πr (Q,wr, φ)])

∂Q
= µα (φr + gr − wr)

− (φr + gr + h)

∫ 1

0

αf(α)G(αQ)dα

∂2 (E [πr (Q,wr, φ)])

∂Q2
= − (φr + gr + h)

∫ 1

0

α2f(α)g(αQ)dα

As all the cost parameters and the functions in the integral is positive, expected

profit function given in (3.25) is concave in Q.¤

Now if we define Q be the optimal quantity for the retailer:

∂ (E [πr (Q,wr, φ)])

∂Q
= 0

µα (φr + gr − wr) − (φr + gr + h)

∫ 1

0

αf(α)G(αQ)dα = 0

then for Q to be equal to Q∗:

K[Q] =
µα (φr + gr − wr)

φr + gr + h
=

µα (r + gr) − c

(r + gr + h)
= K(Q∗)

wr = (1 − φ)r[
K(Q∗)

µα

− 1] +
c

µα

wr = φ
r(µα + c)

µα(r + gr + h)
+

h(c − µαr) + grc

µα(r + gr + h)
(3.26)
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For the parameters satisfying (3.26), coordination is satisfied. As it can be seen

from the equation, wr increases with φ. This means the retailer gets higher revenue

share when wr gets higher. One another critical point is that the sign of h(c−µαr)+grc

is not clear. Following condition must hold for wr to be nonnegative:

h(c − µαr) + grc > 0

c

µα

> r
h

h + gr

(3.27)

If we analyze the limits of the parameters:

h >> gr ⇒ r
h

h + gr

= r (3.28)

which means that from (3.1) wr can be negative when φ is small enough. However if:

h << gr ⇒ r
h

h + gr

= 0 (3.29)

then wr is positive. However the supplier gets more revenue share with a small φ. Thus

it is not an unacceptable offer for the supplier.

When (3.26) is analyzed, it can be seen that wr decreases with an µα:

∂wr

∂µα

=
−c(φr + h + c)

µ2
α(r + gr + h)

< 0

Again, we do not know what the optimal order quantity be with an increasing

µα. So the only that can be derived from here is that staying everything the same,

the wholesale price decreases when the uncertainity in the yield decreases. This is the

same result we get from the buy-back contract.
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The parameters satisfying (3.26) coordinates the chain. However, like the buy-

back contract, one another point is to see which range is applicable:

µα (φr + gr − wr) = λ[µα(r + gr) − c]

φr + gr + h = λ(r + gr + h)

φ =
λr − (1 − λ)(h + gr)

r

wr =
λc − hµα(1 − λ)

µα

(3.30)

which means that when λ = 1 all the sales revenue goes to the retailer and contract

becomes a wholesale price contract just like buy-back contract. It is found from (3.26)

that wr increases with φ. So it can be seen that both results agree. When λ gets larger,

wr gets larger. As wr gets larger, the revenue share of the retailer φ gets larger because

the closer the contract is to the wholesale price contract, the more the retailer gets.

E [πr (Q,wr, φ)] becomes a fraction of the whole chain’s profit function:

E [πr (Q,wr, φ)] = λ {E[πc(Q)]} + (λ − 1)grµD

and the supplier’s profit function is:

E [πs (Q,wr, φ)] = (1 − λ) {E[πc(Q)]} + (1 − λ)grµD

Retailer gets all the profit when λ = 1 while supplier gets it with:

λ =
grµD

grµD + E[π(Q)]
≤ 1
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Another important point is that Buy-Back and Revenue Sharing contracts are

equivalent when the parameters have following relations:

wr = wb − b (3.31)

b = (1 − φ)r (3.32)

which means that wb is greater than wr. Also it can be seen from (3.30) that wr gets it

highest value,c/µα when λ = 1. So following condition can be written for the wholesale

prices of the contracts:

wb > w > wr

The relation in (3.32) is also valid in classical newsvendor problem without ran-

dom yield[10]. It is preserved under random yield as well. When the classical newsven-

dor problem is considered, the parameters are as follows:

wr = φ
r(1 + c)

r + gr + h
+

h(c − r) + grc

r + gr + h
(3.33)

which shows that the parameters found from (3.26) simplifies to that of classical

newsvendor when µα = 1. Also in classical newsvendor, when the parameters are

set as:

φ =
λr − (1 − λ)(h + gr)

r
(3.34)

wr = λc − h(1 − λ)

then the supplier and the retailer has same profit shares as in (3.19) and (3.20).

The affect of α and its distribution is explained in buy-back contract. When µα

increases, wr decreases which means that the retailer tries to stabilize the payment for

the whole delivery. Additionally there is one point that must be analyzed carefully.
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The wholesale price wr can be negative when λ becomes less than h/h + c. For this to

be happen, the following inequality must hold:

cgrµD < hE[πc] (3.35)

This case may happen when selling price, r, has a very big value or when pro-

duction cost, c, has a very small value. So this means that when r gets higher or c

gets lower, the retailer wants some compensation from the supplier. In fact, this is a

case that a supplier does not accept. However, for wr to be negative λ should have a

very small value and from (3.20) we know that the profit is allocated to supplier more,

when λ gets smaller. So this will not be a problem for the supplier since negativity in

the wholesale price in fact means that at the end he gets more profit. Additionally,

when h stands for a salvage value, then there will not be any negativity for wr.

The transfer payments and the structure of the contract changes if h < 0, that

is h stands for salvage value and the retailer gives a share from the salvage addition

to the revenue. Transfer payment includes an additional −(1 − φ)h[αQ − D]+ units.

Retailer’s expected profit function is:

E[πr (Q,wr, φ)] = µαQ (φr + gr − wr) − grµD

+ (φr + gr + φh)

∫ 1

0

∫ αQ

0

[D − αQ] f(α)g(D)dDdα

which is concave since φr + gr + φh > 0 because r > |h| since salvage cannot be more

than selling price. The contract parameters are:

wr =
φ(r − h)(c − µαh)

r + gr + h)µα

+
grc + hµα(r − h)

r + gr + h)µα

which shows that wr increases with φ like the setting with holding cost.
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The behaviour of wr with respect to µα is also same when compared with the

setting with holding cost:

∂wr

∂µα

= −
c[φ(r − h) + gr]

(r + gr + h)µ2
α

For the applicable range, define following:

φ =
λ(r + gr − h)

r − h

wr = (1 − λ)h +
λc

µα

(3.36)

With these transformations, the expected profit function of the retailer and sup-

plier becomes the ones presented in (3.19) and (3.20) respectively. Allocation of the

profits with λ is same with the values of the setting with holding cost. Additionally,

(3.36) reduces to the result in Cachon[10].

3.4.4. Quantity Flexibility Contract

In this contract, the retailer pays wf for every unit received. Then supplier gives

a credit for either the left over inventory, or a predetermined portion of the order that

the retailer received. The choice is made by looking at which one is the smaller part.

k is the parameter that determines the quantity to be credited.

Tq(Q, k, wf ) = wfαQ − (wf + h) min[(αQ − D)+, kαQ]

E[Tf (Q, k, wf )] = wfµαQ −(wf + h)

∫ 1

0

∫ αQ

αQ(1−k)

[αQ − D] f(α)g(D)dDdα

−(wf + h)

∫ 1

0

∫ αQ(1−k)

0

kαQf(α)g(D)dDdα
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The profit function of the retailer and the expected value of this function are:

πr (Q,wf , k) = r min (αQ,D) − gr [D − αQ]+ − h [αQ − D]+

− wfαQ + (wf + h) min[(αQ − D)+, kαQ]

E[πr (Q,wf , k)] = µαQ (r + gr − wf ) − grµD

+ (r + gr − wf )

∫ 1

0

∫ αQ

0

[D − αQ] f(α)g(D)dDdα

−(wf + h)

∫ 1

0

∫ αQ(1−k)

0

[αQ(1 − k) − D] f(α)g(D)dDdα (3.37)

The profit function of the supplier and the expected value of this function are:

πs (Q,wf , k) = wfαQ − (wf + h) min[(αQ − D)+, kαQ] − cQ

E [πs (Q,wf , k)] = wfµαQ − cQ

− (wf + h)

∫ 1

0

∫ αQ

αQ(1−k)

[αQ − D] f(α)g(D)dDdα

− (wf + h)

∫ 1

0

∫ αQ(1−k)

0

kαQf(α)g(D)dDdα (3.38)

Proposition 3.6 Expected profit function given in (3.37) is concave in Q if h+wf ≥ 0

and r + gr − wf ≥ 0

Proof:

∂ (E [πr (Q,wf , k)])

∂Q
= µα (r + gr − wf )

− (r + gr − wf )

∫ 1

0

αf(α)G(αQ)dα

− (wf + h)

∫ 1

0

α(1 − k)f(α)G[Qα(1 − k)]dα
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∂2 (E [πr (Q,wf , k)])

∂Q2
= − (r + gr − wf )

∫ 1

0

α2f(α)g(αQ)dα

−(wf + h)

∫ 1

0

α2(1 − k)2f(α)g[Qα(1 − k)]dα

(3.39)

h and wf are positive parameters. wf is expected not to be greater than r,

because the retailer cannot pay to the supplier more than he earns for a product. So

the function is concave meaning that first order conditions are necessary and sufficient

to find the optimal order quantity.¤

Now let Q be the optimal quantity for the retailer.

∂ (E [πr (Q,wf , k)])

∂Q
= 0

µα (r + gr − wf )

− (r + gr + h − wf )

∫ 1

0

αf(α)G(αQ)dα

−(wf + h)

∫ 1

0

α(1 − k)f(α)G[Qα(1 − k)]dα = 0 (3.40)

Then for Q to be equal to Q∗:

K(Q) = K(Q∗) =
µα (r + gr) − c

(r + gr + h)

We want retailer to choose Q as the centralized optimal Q∗. Substitute the value

in (3.8) in (3.40) to find the value of wf . If we define the function X(Q) as:

X(Q) =

∫ 1

0

α(1 − k)f(α)G[αQ∗(1 − k)]dα (3.41)
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Then wf is found as follows:

wf =
h[K(Q∗) − X(Q∗)] + c

µα + X(Q∗) − K(Q∗)

wf =
(µαh + c)(r + gr + h)

µαh + c + (r + gr + h)X(Q∗)
− h (3.42)

wf does not only depend on µα. There is a closed form of function of k and α

which does not let us to take the derivative of wf with respect to µα. However we can

see the behaviour of wf with respect to k :

∂wf

∂k
=

(µαh + c)(r + gr + h)2
∫ 1

0
αf(α) [G(αQ(1 − k)) + αQ(1 − k)g(αQ(1 − k))]

[µαh + c + (r + gr + h)X(Q∗)]2

which is a positive value. This means that wf is strictly increasing in k which is

meaningful. If the supplier gives credit for more, obviously he requests more wholesale

price to compensate that. The extreme values of k is important to see the range where

the parameters are applicable and the allocation of profit. When k=0 :

X(Q∗) =

∫ 1

o

αf(α)G(αQ)dα

= K(Q∗)

=
µα (r + gr) − c

r + gr + h
(3.43)

wf =
(µαh + c)(r + gr + h)

µαh + c + (r + gr + h)µα(r+gr)−c

r+gr+h

− h

=
c

µα

(3.44)

which is simply the wholesale price.
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The profit of the supplier is:

E [πs (Q,wf , k)] = wfµαQ − cQ

− (wf + h)

∫ 1

0

∫ αQ

αQ(1−0)

[αQ − D] f(α)g(D)dDdα

− (wf + h)

∫ 1

0

∫ αQ(1−0)

0

0αQf(α)g(D)dDdα

= (
c

µα

)µαQ − cQ

= 0

The supplier gets no profit while the retailer takes the whole chain profit, just

like the wholesale price contract.

When k=1 :

X(Q∗) =

∫ 1

0

αf(α)(1 − 1)G[αQ(1 − 1)]

= 0

wf =
(µαh + c)(r + gr + h)

µαh + c + (r + gr + h)0
− h

= r + gr

This time the wholesale price is higher than the sales price. So the wholesale

price is manufacturing cost and a premium for random yield. The expected profit of

the supplier is:

E [πs (Q,wf , k)] = wfµαQ − cQ −

(wf + h)

∫ 1

0

∫ αQ

αQ(1−1)

[αQ − D] f(α)g(D)dDdα −

(wf + h)

∫ 1

0

∫ αQ(1−1)

0

1αQf(α)g(D)dDdα
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= (wf + h)(µαQ −

∫ 1

0

∫ α

0

[αQ − D]f(α)g(D)dDdα)

−hµαQ − cQ

= E[πc(Q)] + grµD (3.45)

So supplier gets more than the supply chain’s profit, meaning that the retailer is

in loss. The supplier’s profit function is continuous in k; so every type of profit share is

possible for k in [0,1). Another main point is that both of the extremes do not violate

the concavity conditions given in Proposition 3.6.

When we consider the system without random yield, contract parameters are:

wf =
(1 − G(Q∗))(r + gr + h)

1 + (1 − k)G(Q∗(1 − k)) − G(Q∗)
− h

=
(r + gr + h)(h + c)

(r + gr + h)(1 − k)G(Q∗(1 − k)) + h + c
(3.46)

which is the simplified form of the (3.42) when:

µα = 1

X(Q∗) = (1 − k)G(Q∗(1 − k))

The parameters result in same values for extreme cases of k. When k = 0:

wf = c

E[πs(Q,wf , k)] = 0

which is the same result with random yield when µα = 1. When k =1:

wf = r + gr

E[πs(Q,wf , k)] = E[πc(Q)] + grµD
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which is completely same with that of random yield model since there is no relation

with µα in this case.

When h stands for salvage value instead of inventory holding cost, everything

result stays same if c
µα

> |h|. This condition holds because it is a must for this

contract. The average production cost is c
µα

and the salvage value cannot be bigger

than the production cost because the system orders infinitely many quantities if the

products can be salvaged more than the production cost.

3.4.5. Quantity Discount Contract

In this contract, the unit price of a product is decreasing with respect to order

quantity. So the more the retailer orders, the less she pays for a unit:

Td(Q,wd(Q)) = wd(Q)αQ

E[Td(Q,wd(Q))] = wd(Q)µαQ

Retailer’s profit function and its expected value are:

πr (Q,wd(Q)) = r min (αQ,D) − gr [D − αQ]+ − h [αQ − D]+

− wd(Q)αQ

E[πr (Q,wd(Q))] = µαQ (r + gr) − grµD − wd(Q)µαQ +

(r + gr + h)

∫ 1

0

∫ αQ

0

[D − αQ] f(α)g(D)dDdα (3.47)

Supplier’s profit function and its expected value are:

πs (Q,wd(Q)) = wd(Q)αQ − cQ

E [πs (Q,wd(Q))] = wd(Q)µαQ − cQ (3.48)
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One way is to write the price wd(Q) as a portion of the chain’s profit function.

We define:

wd(Q) =
1

µαQ
(1 − λ)(r + gr + h)

∫ 1

0

∫ αQ

0

[D − αQ]f(α)g(D)dDdα

+
λ

µα

c + (r + gr)(1 − λ)

= (1 − λ)
(r + gr + h)

µα

S(α,Q)

Q
− (1 − λ)h +

λc

µα

(3.49)

where λ is a parameter between 0 and 1. S(α,Q)
Q

is decreasing in Q. If the coefficient

of S(α,Q)
Q

is positive, then wd(Q) is decreasing in Q. Then the coefficient should satisfy

the following conditions:

(1 − λ)
(r + gr + h)

µα

> 0

1 > λ

r + gr + h > 0

all of which hold.

As it is expected, when λ = 1, the contract becomes a wholesale price contract

and all the profit goes to the retailer.

When we define wd(Q) as in (3.49), the expected profit function of retailer and

the supplier are the same with (3.19) and (3.20). Retailer gets all the profit when λ = 1

while supplier gets all when λ = grµD

πc+grµD

.

Another way to find wq(Q) for retailer to choose Q∗, is to set ∂E[πr(Q,wd(Q))]
∂Q

to

zero. It is a necessary but not a sufficient condition:

µα (r + gr) − wd(Q)µα − w
′

d(Q)Qµα − (r + gr + h) K(Q) = 0

K(Q) =
µα (r + gr) − wd(Q)µα − w

′

d(Q)Qµα

r + gr + h
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For the retailer to chose Q∗, we substitute (3.8) into the equation above:

µα (r + gr) − wd(Q)µα − w
′

d(Q)Qµα

r + gr + h
=

µα (r + gr) − c

r + gr + h

Then a simple differential equation comes out:

w
′

d(Q) +
wd(Q)

Q
=

c

µαQ

wd(Q) =
c

µα

+
κ

Q
(3.50)

where κ is a constant. When we analyze wd it can be seen that it decreases with Q

which is the main condition of this contract. Additionally, Q has a decreasing function

in µα. In fact, the result that occurs in buy-back and revenue sharing contracts holds

here again. The retailer tries to stabilize the money that he pays for the whole delivery.

Actually he does. The retailer pays wd for the delivered units. The supplier’s profit is:

E[πs[Q,wd]] = Qµα(
c

µα

+
κ

Q
) − cQ

= cQ + κµα − cQ

= κµα (3.51)

which means that whatever the yield is, the retailer gives the production cost to the

supplier and then gives a fixed price of κµα. The fixed price, however, decreases with

decreasing yield. So retailer makes a higher payment when the yield of the supplier is

high.

If two different wd(Q) solutions are compared, (3.49) and (3.50), the similarity

can be seen easily. For sake of completeness they are as follows:

wd(Q) =
λc

µα

+ (1 − λ)
(r + gr + h)

µα

S(α,Q)

Q
− (1 − λ)h

wd(Q) =
c

µα

+
κ

Q
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In the first equation, everything except the order quantity is fixed. When λ is

set to a value then the equation becomes λc
µα

+ Constant
Q

. So both of the contracts has

one part which compensates for the production cost of the supplier and one part which

decreases with Q. One difference is that while the first one compensates partially the

second one completely pays the production cost.

Now we have to establish whether E[πr(Q,wd(Q))] is concave. The second deriva-

tive is:

∂2E[πr (Q,wd(Q))]

∂Q2
= −(r + gr + h)

∫ 1

0

α2f(α)g(D)dα

−2w
′

d(Q)µα − w
′′

d(Q)Qµα

= −(r + gr + h)

∫ 1

0

α2f(α)g(D)dα

−2(−
κ

Q2
µα) −

2κ

Q3
Qµα

= −(r + gr + h)

∫ 1

0

α2f(α)g(D)dα ≤ 0

Then for every value of κ the function is concave and for different values of κ, the

contract is a coordinating contract. If we compare it with the classical newsvendor:

wd(Q) = (1 − λ)(r + gr + h)
S(Q)

Q
− (1 − λ)h + λc

wd(Q) =
κ

Q
+ c

we see that the parameter µα drops from both of the equations. Additionally, S(α,Q)

simplifies to S(Q) since there is no random yield.
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3.5. Supplier’s Action under Voluntary Compliance

For a contract to coordinate the chain, the retailer should order the optimal or-

der quantity that maximizes the chain’s profit. However the quantity that the retailer

orders may not be the optimal quantity for the supplier. In other words the supplier’s

profit function may reach to optimum with another quantity. With forced compliance,

the supplier has to produce the quantity that retailer orders, whether or not this quan-

tity is optimum for its profit function. If the order quantity of the retailer(or optimal

order quantity of the chain) is also optimal for the supplier, then the supplier produces

the ordered quantity voluntarily. This is called voluntary compliance. Until this point

we presented which contract coordinates the chain under a forced compliance regime.

We analyze the supplier’s action to see whether the contracts can also coordinate under

voluntary compliance.

3.5.1. Buy-back Contract

The supplier’s expected profit function is given in (3.17). To establish its con-

cavity with respect to Q:

Proposition 3.7 Expected profit function given in (3.17) is concave in Q if b ≥ 0.

Proof:

∂E [πs (Q,wb, b)]

∂Q
= wbµα − c

− b

∫ 1

0

αf(α)G(αQ)dα

∂2E [πs (Q,wb, b)]

∂Q2
= −b

∫ 1

0

α2f(α)g(αQ)dα (3.52)

is negative since b is nonnegative which provides the concavity of supplier’s function

in Q.¤
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Now for Q∗ to be optimal:

wbµα − c − b

∫ 1

0

αf(α)G(αQ)dα = 0

wb = b
K(Q∗)

µα

+
c

µα

which is the same with retailer’s first order condition in (3.18). So supplier chooses Q∗

as well meaning that even under voluntary compliance buy-back contract coordinates

the chain.

3.5.2. Revenue Sharing Contract

Revenue sharing contract coordinates the chain under forced compliance like buy-

back. For voluntary compliance, optimum order quantity for the supplier’s expected

profit function in (3.25) must be same with Q∗

Proposition 3.8 Expected profit function given in (3.53) is concave in Q if r ≥ 0.

Proof:

∂E [πs (Q,wr, φ)]

∂Q
= µα(wr + (1 − φr)) − c

− (1 − φ)r

∫ 1

0

αf(α)G(αQ)dα

∂2E [πs (Q,wr, φ)]

∂Q2
= − (1 − φ)r

∫ 1

0

α2f(α)g(αQ)dα (3.53)

Since r and φ are nonnegative, function is concave. ¤

Now for supplier to chose Q∗ we see that same condition is needed with the

retailer as it is proposed in (3.26):

wr =
(1 − φ)r[K(Q∗) − µα]

µα

+
c

µα
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Hence supplier chooses the same quantity with the retailer which means that

revenue share contract coordinates the chain under voluntary compliance regime.

3.5.3. Quantity Flexibility Contract

Quantity flexibility contract is found to coordinate the chain under forced com-

pliance. The supplier should produce Q∗ for voluntary compliance. To find the optimal

order quantity for supplier we need to check the concavity of the expected profit func-

tion of the supplier given in (3.37)

∂(E[πs(Q,wf , k)])

∂Q
= −c + wfµα − (wf + h)

∫ 1

0

αf(α)G(αQ)dα

(wf + h)

∫ 1

0

α(1 − k)f(α)G[Qα(1 − k)]dα

∂2(E[πs(Q,wf , k)])

∂Q2
= (wf + h)

∫ 1

0

α2f(α)[(1 − k)2g[αQ(1 − k)] − g(αQ)]dα

The concavity is not guaranteed. Therefore we cannot say that this contract is

always a coordinating contract without forced compliance. Nevertheless it is helpful to

see the first order conditions of the supplier’s expected profit functions. For supplier

to choose Q∗

∂(E[πs(Q,wf , k)])

∂Q
= 0

−c + wfµα − (wf + h)

∫ 1

0

αf(α)G(αQ)dα

(wf + h)

∫ 1

0

α(1 − k)f(α)G[Qα(1 − k)]dα = 0

wf =
c + h[K(Q∗) − X(Q∗)]

µα + K(Q∗) − X(Q∗)
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where X(Q) is defined in (3.41). So again, both retailer and supplier have the same first

order conditions. Hence if this point can be found to be global optimum, then quantity

flexibility contract can coordinate the chain under voluntary compliance. Also, if the

function of expected profit of the supplier is found to be concave when distribution of

yield and demand are realized, then the contract again coordinates the chain under

voluntary compliance.

3.5.4. Quantity Discount Contract

Quantity discount contract coordinates the chain under voluntary compliance.

For voluntary compliance, Q∗ must maximize supplier’s expected profit. For the con-

tract parameters in (3.49), the profit of the supplier is a portion of the chain. So Q∗

optimizes the expected profit function of the supplier. If the contract parameter in

(3.50) is employed, then:

E[πs(Q,wd)] = −cQ +

{

κ

Q
+

c

µα

}

Qµα

= κµα

which means that the profit for the supplier is independent of the ordered quantity,

Q, but it is proportional to the constant κ. So the supplier accepts every quantity the

retailer orders.
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4. ASSEMBLY SYSTEMS UNDER RANDOM YIELD

4.1. Two Suppliers

4.1.1. Problem Definition

In this part, an assembly system with two suppliers and an assembler (manu-

facturer) is studied. A single product is produced by assembling two subcomponents

obtained from two suppliers. As it is discussed in the literature review part, there is

no such work that studied coordination in assembly systems with random demand and

random yield. In this study, the centralized solution of the system is derived. Then the

system is decentralized and contracts are discussed in order to see whether they are

able to coordinate or not. Coordination with forced compliance regime is considered,

that is the coordinating contracts assure that in decentralized solution, the manufac-

turer orders the optimal order quantity of the centralized system. The suppliers either

accept to produce the ordered quantity under the contract conditions or reject the con-

tracts all together. It turns out that some of the contracts that coordinate this chain

are mixtures of well known contracts.

The centralized profit function is shown to be concave. Then, instead of solving

the order quantity explicitly, the profit function of the manufacturer is written is such a

way that it becomes a fraction of the chain’s profit which guarantees that the quantity

which maximizes the profit of the chain also maximizes the profit of the manufacturer.

The system is shown in Figure 4.1. The demand, D, is random and the density

function and CDF of the demand is known by all the players. The manufacturer orders

two distinct components from two suppliers, Q1 and Q2 in order to satisfy the demand.

Each supplier produces different components and these components are used by the

manufacturer to produce the final product. As well as the demand being random,

due to the unreliability of the suppliers, the yield is also random. That is, when the

manufacturer orders components from the suppliers, only a fraction of the ordered
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Figure 4.1. Assembly System

quantity is received by the manufacturer, Y1 = α1Q1 and Y2 = α2Q2 where α1 and

α2 are random variables taking values in (0,1]. There is a cost for lost sales, gr and

holding the inventory of the components, h1 and h2. The unsold finished products are

salvaged with a value of h. The notation is:

Qi: Order size for supplier i (Decision Variable)

r: Selling price of the end product

gr: Opportunity loss of the manufacturer

h: The salvage value of the end product, if not sold

hi: Holding cost of the component i; i=1,2

ci: Cost of production per unit of supplier i

D: Demand

αi: Portion of received order from supplier i, between 0 and 1

fi(), Fi(): Distribution function and CDF of α

g(), G(): Distribution and CDF of D, respectively

Yi: αQi, Stochastically proportional yield of supplier i

µi : Expected value of α for supplier i

µD: Expected value of the demand
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The profit of the chain is:

πc(Q1, Q2) = r[Sales] − gr[Lost Sales] + h[End-product Inventory] − c1Q1 − c2Q2

− h1[Inventory of component 1] − h2[Inventory of component 2]

where sales is minimum of delivered units or demand. Let’s define the expected sales

of the assembly system under random yield as following:

Sn(αi, Qi) = E[min(α1Q1, α2Q2, . . . , αnQn, D)] (4.1)

4.1.2. Centralized Setting

As it is cited in the newsvendor section, the system is said to have centralized

setting if there is a single decision maker. When the parties in the system decide on

their own to maximize their own profit, then the system is decentralized. The optimal

solution of the centralized system is the maximum profit that the chain can make. So

before decentralizing the chain, centralized solution of the system must be evaluated

in order to analyze performance of the decentralized solution:

πc(Q1, Q2) = r [min(α1Q1, α2Q2, D)] − gr[D − min(α1Q1, α2Q2)]
+ − c1Q1 − c2Q2

+ h[min(α1Q1, α2Q2) − D]+

− h1[α1Q1 − α2Q2]
+ − h2[α2Q2 − α1Q1]

+ (4.2)

When (4.2) is transformed to the following,the expected profit function of the

chain becomes easier to analyse. For details please see Appendix B.

πc(Q1, Q2) = (r + gr − h)[min(α1Q1, α2Q2, D)] + h[min(α1Q1, α2Q2)]

+ h1[α2Q2 − α1Q1]
− + h2[α1Q1 − α2Q2]

−

− grD − c1Q1 − c2Q2
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E[πc(Q1, Q2)] = (r + gr − h)S2(αi, Qi) + hE[min(α1Q1, α2Q2)]

+ h1E
[

[α2Q2 − α1Q1]
−

]

+ h2E
[

[α1Q1 − α2Q2]
−

]

− grµD − c1Q1 − c2Q2 (4.3)

where [x]− denotes min(0, x).

We first prove an intermediary result:

Lemma 4.1 The hessian matrix of linear functions are both negative semi-definite and

positive semi-definite.

Proof: We take a linear function:

f(x1, x2...xn) = a1x1 + a1x1... + anxn

where ai are constants. When we take the partial derivative with respect to any

variable, xk:

∂f(x1, x2...xn)

∂xk

= ak

we see that the result is a constant. Thus, the derivatives having degree of more than

two, result in zero which means that the hessian matrix of f() are composed of zeros.

So f() is jointly concave in x1, x2...xn.¤

Proposition 4.1 Expected profit function given in (4.3) is jointly concave in Q1 and

Q2 if r + gr − h ≥ 0.

Proof: We analyze the function one by one:

S2(αiQi)

This function is min(α1Q1, α2Q2, D). The functions under minimum operation

are linear functions of Q1 and Q2 and D is a constant and independent of Q. Linear
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functions are jointly concave by Lemma 4.1 Concavity is preserved under minimum

operation[25]. So S2(αiQi) is concave when r + gr − h > 0

min(α1Q1, α2Q2)

This function is again minimum of two linear functions. They are jointly concave

by Lemma 4.1. As concavity is preserved under minimum operation, min(α1Q1, α2Q2)

is concave.

[αjQj − αiQi]
−

This function is in fact min[(αjQj −αiQi), 0]. The part (αjQj −αiQi) is a linear

function and jointly concave in Q1andQ2 by Lemma 4.1. Thus it is a linear function

of Q1 and Q2 and concave 0 is a constant, so a linear function. Then the whole part,

[αjQj − αiQi]
− is concave since concavity is preserved under minimum operation.

−grD − c1Q1 − c2Q2

This function is a linear function of Q1 and Q2. So it is concave by Lemma 4.1

So all parts are concave. Since sum of concave functions are concave[25], the

profit function of the chain given is concave. Also since concavity is preserved under

expectation, the chain’s expected profit function in (4.1) is concave.

Although it may seem that this proof can be made also for convexity, it cannot

be made since minimum operation violates convexity. ¤
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4.1.3. Decentralized Setting

like the newsvendor problem, the players make their own decisions in decentral-

ized setting. In the decentralized setting the profit function and the expected profit

function of the players are shown in the equation below:

πr(Q1, Q2) = (r + gr − h)[min(α1Q1, α2Q2, D)] + h[min(α1Q1, α2Q2)]

+ h1[α2Q2 − α1Q1]
− + h2[α1Q1 − α2Q2]

− − grD

− T1() − T2()

E[πr(Q1, Q2)] = (r + gr − h)S2(αi, Qi) + hE [min(α1Q1, α2Q2)]

+ h1E
[

[α2Q2 − α1Q1]
−

]

+ h2E
[

[α1Q1 − α2Q2]
−

]

− grµD

− E[T1()] − E[T2()]

πsi
(Q1, Q2) = Ti(·) − ciQi

E[πsi
(Q1, Q2)] = E[Ti(·)] − ciQi

4.1.4. Contracts

The profit in decentralized setting is always less than or equal to the centralized

profit. Since the aim of each player is to maximize its own profit, they deviate from

the solution of the centralized system. Aim of the contracts is to modify the players’

functions such that they choose the optimal order quantity which maximizes the whole

chain’s profit. In these contracts forced compliance is employed.
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4.1.4.1. Wholesale Price Contract. The manufacturer only pays a wholesale price for

the products. The profit function of the manufacturer is:

πr = (r + gr − h)[min(α1Q1, α2Q2, D)] + h[min(α1Q1, α2Q2)]

+ h1[α2Q2 − α1Q1]
− + h2[α1Q1 − α2Q2]

− − grD

− w1Q1 − w2Q2 (4.4)

E[πr] = (r + gr − h)S2(αi, Qi) + hE[min(α1Q1, α2Q2)]

+ h1E
[

[α2Q2 − α1Q1]
−

]

+ h2E
[

[α1Q1 − α2Q2]
−

]

− grµD

− w1Q1 − w2Q2 (4.5)

Proposition 4.2 Expected profit function given in (4.5) is jointly concave in Q1 and

Q2 if r + gr − h ≥ 0.

Proof:

Please see the proof of Proposition 4.1.

When the equation above is compared with (4.3), it can be seen that the only

way to coordinate is, the wholesale prices should be equal to the cost of production,

that is wi = ci/µαi. This means that the suppliers make zero profit. Coordination can

be achieved via franchising payments.

4.1.4.2. Buy-Back Contract. One of the contracts which coordinate the chain in the

previous chapter is the buy-back contract. So the buy-back contract is worth studying

for the assembly system. The aim is to write the contract in such a way that the

manufacturer’s profit becomes a portion of the chain.
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In this contract, the manufacturer pays to the suppliers a wholesale price, wb,i for

each delivered units. The suppliers pay bi to each manufacturer for the components

which are not assembled(or in other words, not sold). The transfer payment is:

Ti(Q1, Q2, wb,i, bi) = wb,iQi − bi[αiQi − min(α1Q1, α2Q2, D)]+

Then the manufacturer’s profit function is:

πr = (r + gr − h − b1 − b2)[min(α1Q1, α2Q2, D)]

+ (h + b1 + b2)[min(α1Q1, α2Q2)]

+ (h1 − b1)[α2Q2 − α1Q1]
− + (h2 − b2)[α1Q1 − α2Q2]

−

− grD − wb,1Q1 − wb,2Q2

E[πr] = (r + gr − h − b1 − b2)S2(αi, Qi)

+ (h + b1 + b2)E [min(α1Q1, α2Q2)]

+ (h1 − b1)E
[

[α2Q2 − α1Q1]
−

]

+ (h2 − b2)E
[

[α1Q1 − α2Q2]
−

]

− grµD − wb,1Q1 − wb,2Q2 (4.6)

Proposition 4.3 Expected profit function given in (4.6) is jointly concave in Q1 and

Q2 if r + gr − h − b1 − b2 ≥ 0 , h + b1 + b2 ≥ 0, h1 − b1 ≥ 0 and h2 − b2 ≥ 0.

Proof:

Please see the proof of Proposition 4.1. ¤

Although the manufacturer’s expected profit function is concave, it cannot be

written as a fraction of the chain’s profit which is the solution procedure we are trying

to employ. However we cannot say it can coordinate or not with this information. First

of all, the derivative of the expected profit function in (4.6) with respect to Q1 and

Q2 must be found. Then both of the derivatives must be set to zero by substituting



48

the optimal order quantity which is derived from (4.3). After substituting the optimal

order quantity, the contract parameters which provides that derivative to be equal

to zero have to be found. If such parameters exist, then buy-back contract is said to

coordinate the chain. However, instead of solving all the derivatives, we try a buy-back

contract with additional features.

4.1.4.3. Buy-Back with Sales Revenue Share and Recovery Payment. This contract is

a mixed type of revenue share and buy - back. The manufacturer only shares the

revenue for the sales, not for the salvage values. There is also a recovery payment for

the worst player. That is the worst player gets a payment of V for every component it

actually delivers.

Define φ = 1 − φ1 − φ2 where φi is the share of the revenue for the supplier i.

The transfer payment and manufacturer’s profit function respectively are:

Ti(Q1, Q2, wb,i, bi, φi, V ) = wb,iQi − bi[αiQi − min(α1Q1, α2Q2, D)]+

+ rφi[min(α1Q1, α2Q2, D)]

+







V αiQi αiQi < αjQj

0 o/w
(4.7)

πr = (r(1 − φ1 − φ2) + gr − h − b1 − b2)[min(α1Q1, α2Q2, D)]

+ (h + b1 + b2 − V )[min(α1Q1, α2Q2)]

+ (h1 − b1)[α2Q2 − α1Q1]
− + (h2 − b2)[α1Q1 − α2Q2]

− − grD

− wb,1Q1 − wb,2Q2

E [πr] = (r(1 − φ1 − φ2) + gr − h − b1 − b2)S2(αi, Qi)

+ (h + b1 + b2 − V )E [min(α1Q1, α2Q2)]

+ (h1 − b1)E
[

[α2Q2 − α1Q1]
−

]

+ (h2 − b2)E
[

[α1Q1 − α2Q2]
−

]

− wb,1Q1 − wb,2Q2 − grµD (4.8)
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Proposition 4.4 Expected profit function given in (4.8) is jointly concave in Q1 and

Q2 if r(1 − φ1 − φ2) + gr − h − b1 − b2 ≥ 0 , h + b1 + b2 − V ≥ 0, h1 − b1 ≥ 0 and

h2 − b2 ≥ 0.

Proof:

Please see the proof of Proposition 4.1.

Now if φ = φ1 + φ2 and A = r + gr − h we make the following definitions:

(A − rφ) − b1 − b2 = λ(r + gr − h) ⇒ rφ = (1 − λ)(A − h1 − h2)

h + b1 + b2 − V = λh ⇒ V = (1 − λ)(h + h1 + h2)

h1 − b1 = λh1 ⇒ b1 = (1 − λ)h1

h2 − b2 = λh2 ⇒ b2 = (1 − λ)h2

wb,1 = λc1

wb,2 = λc2

(4.9)

In the relations above, λ is a parameter between 0 and 1. In the Proposition 4.4,

it can be seen that several assumptions must hold for concavity. By changing the value

of λ the payment scheme changes. As long as λ stays between the specified values(0

and 1), the expected profit function is concave and by definition λ is between 0 and 1

meaning that the expected profit function of the manufacturer is concave.

If r + gr > h + h1 + h2, then this contract is a buy-back and revenue share mix.

However, if the reverse is true, then this contract is a buy-back and sales-rebate type

of contract. Both coordinate the chain but the first one is more elegant.

Then the manufacturer’s expected profit is:

E [πr] = λE [πc] − (1 − λ)grµD (4.10)
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As for the profit share we can see that manufacturer gets all the profit with λ = 1

while the suppliers get it when λ = grµD

E[πc]+grµD

.

4.1.4.4. Buy-Back with Revenue Share and Recovery Payment. This contract is just

like the previous one, but this time there is revenue share for both sales r and salvage

h.

Ti(Q1, Q2, wb,i, bi, φi, V ) = wb,iQi − bi[αiQi − min(α1Q1, α2Q2, D)]+

+ rφi[min(α1Q1, α2Q2, D)]

+ hφi[min(αiQi, αjQj) − D]+

+







V αiQi αiQi < αjQj

0 o/w
(4.11)

If we define φ = 1 − φ1 − φ2, the profit function and its expected value are:

πr = (rφ + gr − hφ − b1 − b2)[min(α1Q1, α2Q2, D)]

+ (hφ + b1 + b2 − V )[min(α1Q1, α2Q2)]

+ (h1 − b1)[α2Q2 − α1Q1]
− + (h2 − b2)[α1Q1 − α2Q2]

−

− wb,1Q1 − wb,2Q2 − grD

E [πr] = (rφ + gr − hφ − b1 − b2)S2(αi, Qi)

+ (h(1 − φ) + b1 + b2 − V )E [[min(α1Q1, α2Q2)]]

+ (h1 − b1)E
[

[α2Q2 − α1Q1]
−

]

+ (h2 − b2)E
[

[α1Q1 − α2Q2]
−

]

− wb,1Q1 − wb,2Q2 − grµD (4.12)
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Proposition 4.5 Expected profit function given in (4.12) is jointly concave in Q1 and

Q2 if r(1 − φ1 − φ2) + gr − h(1 − φ1 − φ2) − b1 − b2 ≥ 0 , h(1 − φ) + b1 + b2 − V ≥ 0,

h1 − b1 ≥ 0 and h2 − b2 ≥ 0.

Proof:

Please see the proof of Proposition 4.1.

Now if φ = φ1 + φ2 and φ̄ = 1 − (φ1 + φ2) we make the following definitions:

rφ̄ + gr − hφ̄ − b1 − b2 = λ(r + gr − h) ⇒ φ = (1 − λ) r+gr−h−h1−h2

r−h

hφ̄ + b1 + b2 − V = λh ⇒ V = (1 − λ) r(h1+h2)−grh

r−h

h1 − b1 = λh1 ⇒ b1 = (1 − λ)h1

h2 − b2 = λh2 ⇒ b2 = (1 − λ)h2

wb,1 = λc1

wb,2 = λc2

(4.13)

λ being a parameter between 0 and 1, assures the concavity of the system, like

the previous contract.

According to the parameters, paying scheme can be different. Again, we need to

cite that if r + gr − h − h1 − h2 > 0, then we have a revenue share. However, we need

to take care of one more point. If r(h1 + h2) − grh > 0 then this contract includes a

recovery payment. If the reverse is true, the worst one is punished per delivered unit,

meaning its wholesale price is cut down. The manufacturer’s expected profit is:

E [πr] = λE [πc] − (1 − λ)grµD (4.14)

When we look at the profit share we can see that manufacturer gets all the profit

with λ = 1 while the suppliers get it when λ = grµD

E[πc]+grµD

.
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4.1.4.5. Modified Buy-Back Contract. In a single supplier production system, the

sales is just the minimum of the demand and the delivered units, so there is just one

way for a buy-back contract. However the system we studied here is an assembly sys-

tem meaning that there may be different types of buy-back contracts. In the previous

contracts, the suppliers buy back the units which are more than sales. For example,

if the realized sales is α1Q1, remember sales is min(α1Q1, α2Q2, D), then supplier 2

buys back (α2Q2 − α1Q1) units. If sales is D, then supplier 2 buys back (α2Q2 − D)

units. However if the sales is D, then it means that there is some inventory left which

is salvaged. Let’s assume the realized values are D < α1Q1 < α2Q2. Then (α1Q1 −D)

units are salvaged and (α2Q2−α1Q1) units are left for inventory. So supplier buys back

(α2Q2 − α1Q1) units. As well as buy-back price, the manufacturer pays a wholesale

price wm to the suppliers. The transfer payments are:

Ti(Q1, Q2, wmi
,mi) = wm,iQi − mi[αiQi − αjQj]

+

The manufacturer’s profit function is:

πr = (r + gr − h)[min(α1Q1, α2Q2, D)] + h[min(α1Q1, α2Q2)]

+ (h1 − m1)[α2Q2 − α1Q1]
− + (h2 − m2)[α1Q1 − α2Q2]

−

− wm,1Q1 − wm,2Q2 − grD

E[πr] = (r + gr − h)E[min(α1Q1, α2Q2, D)]

+ hE[min(α1Q1, α2Q2)]

+ (h1 − m1)E
[

[α2Q2 − α1Q1]
−

]

+ (h2 − m2)E
[

[α1Q1 − α2Q2]
−

]

− wm,1Q1 − wm,2Q2 − grµD (4.15)

Proposition 4.6 Expected profit function given in 4.15 is jointly concave in Q1 and

Q2 if r + gr − h ≥ 0 , h ≥ 0, h1 − m1 ≥ 0 and h2 − m2 ≥ 0.



53

Proof:

Please see the proof of Proposition 4.1.

As the manufacturer’s function is concave, her contract parameters can be found

for optimum Q. However we cannot write this function as a fraction of the chain’s

expected profit function. The procedure that is cited in Section 4.1.4.2 applies here

too. Hence, again, we add more mechanism.

4.1.4.6. Modified Buy-Back with Sales Revenue Share and Recovery Payment. This

contract includes, addition to the contract in Section 4.1.4.5, a recovery payment to

the worst supplier for every unit it ships. The manufacturer pays a revenue share to

the suppliers for the sold units, but not for the salvaged units. Transfer payment is:

Ti(Q1, Q2, wm,i,mi, φi, V ) = wm,iQi − mi[αiQi − αjQj]
+

+ rφi min(α1Q1, α2Q2, D)

+







V αiQi αiQi < αjQj

0 o/w
(4.16)

The manufacturer’s profit function is be as follows:

πr = (rφ + gr − h)[min(α1Q1, α2Q2, D)]

+ (h − V )[min(α1Q1, α2Q2)]

+ (h1 − m1)[α2Q2 − α1Q1]
− + (h2 − m2)[α1Q1 − α2Q2]

−

− wm,1Q1 − wm,2Q2 − grD

E [πr] = (r(φ + gr − h)S2(αi, Qi) + (h − V )E[min(α1Q1, α2Q2)]

+ (h1 − m1)E[α2Q2 − α1Q1]
− + (h2 − m2)E[α1Q1 − α2Q2]

−

− wm,1Q1 − wm,2Q2 − grµD (4.17)
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Proposition 4.7 Expected profit function given in (4.17) is jointly concave in Q1 and

Q2 if r(1 − φ1 − φ2) + gr − h ≥ 0 , h − V ≥ 0, h1 − m1 ≥ 0 and h2 − m2 ≥ 0.

Proof:

Please see the proof of Proposition 4.1.

Now if φ = φ1 + φ2 we make the following definitions:

r(1 − φ) + gr − h = λ(r + gr − h) ⇒ rφ = (1 − λ)(r + gr − h)

h − V = λh ⇒ V = (1 − λ)h

h1 − m1 = λh1 ⇒ m1 = (1 − λ)h1

h2 − m2 = λh2 ⇒ m2 = (1 − λ)h2

wm,1 = λc1

wm,2 = λc2

(4.18)

With the transformations above, the manufacturer’s expected profit function can

be written just like (4.10) showing that the contract can coordinate the chain. Man-

ufacturer gets all the profit with λ = 1 while the all the profit goes to the suppliers

when λ = grµD

E[πc]+grµD

.

4.1.4.7. Modified Buy-Back with Revenue Share and Recovery Payment. This cont-

ract is just like the previous one, additionally there is a revenue share for salvage as

well as the sales.

Ti(Q1, Q2, wm,i,mi, φi, V ) = wr,iQi − mi[αiQi − αjQj]

+ rφi min(α1Q1, α2Q2, D) + hφi[min(αiQi, αjQj) − D]+

+







V αiQi αiQi < αjQj

0 o/w
(4.19)
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If we define φ = 1 − φ1 − φ2, manufacturer’s profit function is:

πr = (rφ + gr − hφ)[min(α1Q1, α2Q2, D)]

+ (hφ − V )[min(α1Q1, α2Q2)]

+ (h1 − m1)[α2Q2 − α1Q1]
− + (h2 − m2)[α1Q1 − α2Q2]

−

− wr,1Q1 − wr,2Q2 − grD

E [πr] = (rφ + gr − hφ)S2(αi, Qi)

+ (hφ − V )E[min(α1Q1, α2Q2)]

+ (h1 − m1)E
[

[α2Q2 − α1Q1]
−

]

+ (h2 − m2)E
[

[α1Q1 − α2Q2]
−

]

− wr,1Q1 − wr,2Q2 − grµD (4.20)

Proposition 4.8 Expected profit function given in (4.20) is jointly concave in Q1 and

Q2 if rφ + gr − hφ ≥ 0 , hφ − V ≥ 0, h1 − m1 ≥ 0 and h2 − m2 ≥ 0.

Proof:

Please see the proof of Proposition 4.1.

Now if φ = φ1 + φ2 let’s make the following definitions:

rφ + gr − hφ = λ(r + gr − h) ⇒ φ = (1−λ)(r+gr−h)
r−h

hφ − V = λh ⇒ V = −h (1−λ)gr

r−h

h1 − m1 − s2 = λh1 ⇒ m1 = (1 − λ)h1

h2 − m2 − s1 = λh2 ⇒ m2 = (1 − λ)h2

wr,1 = λc1

wr,2 = λc2

(4.21)

Here we found out that V should be negative, meaning that the worst one should

be punished for every unit it send. That is the worst supplier’s wholesale price is cut
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down V many units. The profit of the manufacturer is the same as in (4.10) so the

value of λ is same for profit shares, that is manufacturer gets all the profit with λ = 1

while the all the profit goes to the suppliers when λ = grµD

E[πc]+grµD

.

4.1.4.8. Revenue Share with Modified Buy-Back without Salvage . The setting is sa-

me with the contract presented in Section 4.1.4.7. Now we assume that the end items

are not salvaged. In fact, as there is no holding cost, it can be assumed that there is a

salvage value so that the cost of assembly and maintenance is netted from the salvage.

As h=0, this setting is also same with Section 4.1.4.6. There is no recovery payment

to the worst, because the manufacturer now makes less profit so an extra payment

distorts manufacturer’s behavior. Staying consistent with the notation manufacturer’s

profit function:

Ti(Q1, Q2, wmi
,mi, φi) = wr,iQi − mi[αiQi − αjQj] − si[αjQj − αiQi]

+ + rφi[Sales]

πr = (rφ + gr)[min(α1Q1, α2Q2, D)]

+ (h1 − m1)[α2Q2 − α1Q1]
− + (h2 − m2)[α1Q1 − α2Q2]

−

− wr,1Q1 − wr,2Q2 − grD

E [πr] = (rφ + gr)S2(αi, Qi)

+ (h1 − m1)E
[

[α2Q2 − α1Q1]
−

]

+ (h2 − m2)E
[

[α1Q1 − α2Q2]
−

]

− wr,1Q1 − wr,2Q2 − grµD (4.22)

Proposition 4.9 Expected profit function given in (4.22) is jointly concave in Q1 and

Q2 if rφ + gr ≥ 0 , h1 − m1 ≥ 0 and h2 − m2 ≥ 0.

Proof:

Please see the proof of Proposition 4.1.
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Like previous coordinating contracts, we make following statements:

rφ + gr = λ(r + gr) ⇒ φ = (1−λ)(r+gr)
r

h1 − m1 = λh1 ⇒ m1 = (1 − λ)h1

h2 − m2 = λh2 ⇒ m2 = (1 − λ)h2

wr,1 = λc1

wr,2 = λc2

The manufacturer’s profit function is a portion of the chain’s, as defined in (4.10).

The lambda values for profit share is same.
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4.2. N Suppliers

4.2.1. Problem Definition

We now extend the results of two-supplier models to N suppliers. First of all,

the profit function and its expected value is derived and then its concavity is estab-

lished. Then without solving the ordering quantities explicitly, the contracts proposed

in two supplier system are implemented and coordination mechanisms are studied. The

contracts proposed in the previous section seem to suit well for N-supplier system.

In short, the system is same with the previous assembly system, except, now

there are N suppliers. Staying consistent with the notation, the profit of the chain is:

πc = r[Sales] + h[FinishedGoodsInventory]

− gr[Lost Sales] −
∑

N

ciQi −
∑

N

hi[Inventory of component i]

4.2.2. Centralized Setting

The chain’s profit function can be written as:

πc = r[min
i

(D,αiQi)] + h[min
i

(αiQi) − D)]+

− gr[D − min
i

(αiQi]
+ −

∑

N

ciQi

−
∑

N

hi[αiQi − min
i

(αiQi)]

which, by the transformatin in Appendix C, can be written as:

E[πc] = (r + gr − h)SN(αi, Qi) − grµD + hE[min
i

(αiQi)]

− E

[

∑

N

(hiαiQi)

]

+ E
[

min
i

(αiQi)
]

∑

N

hi −
∑

N

ciQi (4.23)
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Proposition 4.10 Expected profit function given in (4.23) is jointly concave in Q1,. . . ,

QN if r + gr − h ≥ 0 ,h ≥ 0 and
∑

i hi ≥ 0 .

Proof:

For sake of simplicity, now let’s take one by one the components of the function:

SN(αi, Qi)

This is the sales which is in fact min(α1Q1, . . . , αNQN , D). The functions under

the minimum operation are linear functions which are jointly concave in Q1, ..., QN by

Lemma 4.1. Concavity is preserved under minimum operation[25], so this part of the

function is concave.

mini(αiQi)

Linear functions are jointly concave by Lemma 4.1 and concavity is preserved

under minimum operation.

∑

N(hiαiQi)

This part is simply sum of linear functions. In fact this is a linear function of

Q1, . . . , QN . Thus this part is concave.

mini(αiQi)
∑

N hi

It is known that mini(αiQi) is concave. This part is simply product of a concave

function with a constant,
∑

N hi. So this part is concave.

−
∑

N ciQi − grD

Simply a linear function of Q1, . . . , QN . Linear functions are jointly concave by

Lemma 4.1.
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Since sum of concave functions are concave[25], the profit function of the chain

is concave. Concavity is preserved under expectation, so the expected profit function

is concave.¤

One might think that since linear functions have a hessian of zeros, this function

is also a convex function too. However, minimum operation only preserves concavity

while convexity is preserved under maximum operation.

4.2.3. Decentralized Setting

Manufacturer’s and suppliers’ profit functions are:

πr(Q1, ..., QN ) = r[min
i

(D,αiQi)] + h[min
i

(αiQi) − D]+

− gr[D − min
i

(αiQi]
+ −

∑

N

hi[αi − min
i

(αiQi)] −
∑

N

Ti(·)

πsi
(Q1, ..., QN ) = Ti(·) − ciQi

4.2.4. Contracts

4.2.4.1. WholeSale Price Contract. The manufacturer pays the suppliers only a whole-

sale price. The profit function of the manufacturer is:

πr = (r + gr − h)[min
i

(D,αiQi)] − grD + h[min
i

(αiQi)]

−
∑

N

(hiαiQi) + min
i

(αiQi)
∑

N

hi −
∑

N

wiQi

E [πr] = (r + gr − h)SN(αi, Qi) − grµD + hE[min
i

(αiQi)]

− E

[

∑

N

(hiαiQi)

]

+ E
[

min
i

(αiQi)
]

∑

N

hi −
∑

N

wiQi (4.24)

Proposition 4.11 Expected profit function given in (4.24) is jointly concave in Q1,. . . ,

QN if r + gr − h ≥ 0 ,h ≥ 0 and
∑

i hi ≥ 0 .
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Proof:

Please see the proof of Proposition 4.23

When the profit function is compared with the decentralized solution in (4.23),

it can be seen that, the only way to coordinate is to set the wholesale prices to the

production cost of the suppliers, which does not let the suppliers to make profit. As

the suppliers get zero profit, this contract cannot coordinate the chain as long as there

is no end-of-term or franchising type of payments.

4.2.4.2. Buy-Back with Sales Revenue Share and Recovery Payment. This contract is

N supplier type of the contract defined in Section 4.1.4.3. The transfer payment and

the manufacturer’s profit function are:

Ti(Qi, wb,i, bi, φi, V ) = wiQi − bi[αiQi − min
i

(D,αiQi)] + rφi min
i

(D,αiQi)

+







V αiQi αiQi < αjQj ∀ j 6= i

0 o/w
(4.25)

πr = (r(1 −
∑

N

φi) + gr − h −
∑

N

bi)[min
i

(D,αiQi)]

+ (h − V +
∑

N

bi)[min
i

(αiQi)] −
∑

N

(hi − bi)[αiQi − min
i

(αiQi)]

− grD −
∑

N

wb,iQi

E[πr] = (r(1 −
∑

N

φi) + gr − h −
∑

N

bi)SN(αi, Qi)

+ (h − V +
∑

N

bi)E[min
i

(αiQi)] −
∑

N

(hi − bi)E[αiQi − min
i

(αiQi)]

− grµD −
∑

N

wb,iQi (4.26)

Proposition 4.12 Expected profit function given in (4.26) is jointly concave in Q1,. . . ,

QN if r(1 −
∑

N φi) + gr − h −
∑

N bi ≥ 0 ,h − V +
∑

N bi ≥ 0 and
∑

i(hi − bi) ≥ 0 .
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Proof:

Please see the proof of Proposition 4.23

When we define
∑

N φi = φ and 1 −
∑

N φi = φ̄, we can write the following:

(rφ̄ + gr − h −
∑

N bi) = λ(r + gr − h) ⇒ φ =
(1−λ)(r+gr−h−

∑

N
hi)

r

h − V +
∑

N bi = λh ⇒ V = (1 − λ)(h +
∑

N hi)

hi − bi = λhi ⇒ bi = (1 − λ)hi

wb,i = λci

Like the contract in Section 4.2.4.5, there is a point that must be clarified in this

contract. The contract payment scheme changes according to the parameter values. If

r + gr > h +
∑

N hi then related part of the payment scheme is a revenue share. But if

not, then the related part resembles a sales rebate contract. Both coordinate the chain

but the first one seems more relevant.

Then, manufacturer’s profit function is the same with (4.10). The λ values are

also the same. The manufacturer gets all the profit with λ = 1 and zero profit when

grµD

E[πc]+grµD

.

4.2.4.3. Buy-Back with Revenue Share and Recovery Payment. Contract presented in

this section is N supplier type of the contract defined in Section 4.1.4.4. The transfer

payment and the manufacturer’s profit function are:

Ti(Qi, wb,i, bi, φi, V ) = wbi
Qi − bi[αi − mini(D,αiQi)]

+ hφi[min
i

(αiQi) − mini(D,αiQi)]
+ + rφi[mini(D,αiQi)]

+







V αiQi αiQi < αjQj ∀ j 6= i

0 o/w
(4.27)
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πr = (r(1 −
∑

N

φi) + gr − h(1 −
∑

N

φi) −
∑

N

bi)[min
i

(D,αiQi)]

+ (h − V +
∑

N

bi)[min
i

(αiQi)] −
∑

N

(hi − bi)[αiQi − min
i

(αiQi)]

− grD −
∑

N

wb,iQi

E[πr] = (r(1 −
∑

N

φi) + gr − h(1 −
∑

N

φi) −
∑

N

bi)SN(αi, Qi)

+ (h − V +
∑

N

bi)E[min
i

(αiQi)] −
∑

N

(hi − bi)E[αiQi − min
i

(αiQi)]

− grµD −
∑

N

wb,iQi (4.28)

Proposition 4.13 Expected profit function given in (4.28) is jointly concave in Q1,. . . ,

QN if r(1 −
∑

N φi) + gr − h(1 −
∑

N φi) −
∑

N bi ≥ 0 ,h − V +
∑

N bi ≥ 0 and
∑

i(hi − bi) ≥ 0 .

Proof:

Please see the proof of Proposition 4.23

When we define φ =
∑

N φi and φ̄ = 1 − φ, we can write the following:

(rφ̄ + gr − hφ̄ −
∑

N bi) = λ(r + gr − h) ⇒ φ =
(1−λ)(r+gr−h−

∑

N
hi)

r−h

hφ̄ +
∑

N bi − V = λh ⇒ V = (1 − λ)
r

∑

N
hi−grh

r−h

hi − bi = λhi ⇒ bi = (1 − λ)hi

wb,i = λci

This contract is a bit different from the others. The paying scheme changes

according to the parameters. If r + gr > h +
∑

N hi, then the contract is a revenue

share, otherwise a sales rebate contract; like the previous one. Also, like the contract in

Section 4.1.4.4, we need to check r
∑

N hi > grh. If so, then there is recovery payment.

Otherwise V is a punishment, rather than being a recovery payment to the worst. It

is such as cutting down the wholesale price of that(the worst) supplier.
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The manufacturer’s profit function and the lambda values are the same with

(4.10). Manufacturer gets all the profit with λ = 1 and zero profit when grµD

E[πc]+grµD

.

4.2.4.4. Modified Buy-Back with Sales Revenue Share and Recovery Payment. This

contract is N -Supplier form of the contract defined in Section 4.1.4.6. Every supplier

is paid wm,i for each unit ordered, plus a revenue share from the sales(not salvage).

Each supplier then pays a penalty of mi for each units that excess the sales.

Transfer payment and the manufacturer’s profit function is shown below:

Ti(Qi, wm,i,mi, φi, V ) = wiQi + rφi[min
i

(D,αiQi)]

+







V αiQi αiQi < αjQj ∀ j 6= i

0 o/w

− mi[αiQi − min
j

(αjQj)]
+

πr = (r(1 −
∑

N

φi) + gr − h)[min
i

(D,αiQi)] − grD

+ (h − V )[min
i

(αiQi)]

−
∑

N

(hi − mi)[αiQi − min
i

(αiQi)] −
∑

N

wiQi

E[πr] = (r(1 −
∑

N

φi) + gr − h)SN(αi, Qi) − grµD

+ +(h − V )[min
i

(αiQi)]

−
∑

N

(hi − mi)[αiQi − min
i

(αiQi)] −
∑

N

wiQi (4.29)

Proposition 4.14 Expected profit function given in (4.29) is jointly concave in Q1,. . . ,

QN if r(1 −
∑

N φi) + gr − h ≥ 0 ,h ≥ 0 and
∑

i(hi − mi) ≥ 0 .

Proof:

Please see the proof of Proposition 4.23
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Now, staying consistent with the previous notation, if we write:

(r(1 −
∑

N φi) + gr − h) = λ(r + gr − h) ⇒
∑

N φi = (1−λ)(r+gr−h)
r

h − V = λh ⇒ V = (1 − λ)h

hi − mi = λhi ⇒ mi = (1 − λ)hi

wm,i = λci

then the profit of the manufacturer is the same as in (4.10) that is manufacturer gets all

the profit with λ = 1 while the all the profit goes to the suppliers when λ = grµD

E[πc]+grµD

.

4.2.4.5. Modified Buy-back with Revenue Share and Recovery Payment. Like the pre-

vious contracts, this one is N suppliers type of the contract defined in Section 4.1.4.7 .

The transfer payment and manufacturer’s expected profit function are as follows:

Ti(Qi, wm,i,mi, φi, V ) = wiQi + rφi[min
i

(D,αiQi)] + hφi[min
j

(αiQi) − D]+

+







V αiQi αiQi < αjQj ∀ j 6= i

0 o/w

− mi[αiQi − min
j

(αjQj)]
+

πr = (r(1 −
∑

N

φi) + gr − h(1 −
∑

N

φi))[min
i

(D,αiQi)]

+ (h − V )[min
i

(αiQi)] −
∑

N

(hi − mi)[αiQi − min
i

(αiQi)]

− grD −
∑

N

wiQi

E[πr] = (r(1 −
∑

N

φi) + gr − h(1 −
∑

N

φi))SN(αi, Qi)

+ (h − V )E[min
i

(αiQi)] −
∑

N

(hi − mi)E[αiQi − min
i

(αiQi)]

− grµD −
∑

N

wiQi (4.30)
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Proposition 4.15 Expected profit function given in (4.30) is jointly concave in Q1,. . . ,

QN if r(1 −
∑

N φi) + gr − h(1 −
∑

N φi) ≥ 0 ,h − V ≥ 0 and
∑

i(hi − mi) ≥ 0 .

Proof:

Please see the proof of Proposition 4.23

When we define the following:

(r(1 −
∑

N φi) + gr − h(1 −
∑

N φi)) = λ(r + gr − h) ⇒
∑

N φi = (1−λ)(r+gr−h)
r−h

h(1 −
∑

N φi) − V = λh ⇒ V = −gr(1−λ)h
r−h

hi − mi = λhi ⇒ mi = (1 − λ)hi

wm,i = λci

Here we can see that the recovery payment in fact comes out to be a punishment

to the worst one. It can be thought as cutting down the whole sale price of the worst

one, as it comes out to be in the contract defined in Section 4.1.4.7. The manufacturer’s

profit function is the one defined in (4.10). The lambda values are same like the others,

that is manufacturer gets all when λ = 1 and suppliers get all when grµD

E[πc]+grµD

.

4.3. Observations

In the assembly systems with random yield, coordinating mechanisms are found

by starting to implement buy-back contracts. It is seen that buy-back contract alone

cannot achieve coordination using the way we employed. Then an addition is made

to the contract, a recovery payment(V). It is the payment that is made to the worst

supplier per unit it delivers.

In a single supplier model, buy-back contracts are easy to implement because the

sales either equals to demand or delivered units. So if the retailer has an inventory

after the demand is realized, then the supplier buys them back. If there is no inventory,

then there is no buy-back process. Buy-back is a guarantee to the retailer that the
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supplier compensates the loss by ordering more. So the supplier encourages the retailer

to order more. If there is any inventory left at the end of the season, then it is more

likely to be due to the supplier’s action. In short, like all the other contracts, it is a

form of risk sharing between the players.

However, in an assembly system, this is not only the case. If there is an inventory

at the end of the period, this might be due to supplier’s behavior. Let’s say there are

suppliers A and B and let the demand realized be 145. If A sends 145 and B sends 10,

there is an inventory of 135 because of the supplier B.

The buy-back contract proposed is such that the supplier pays for the component

inventory if delivered quantity is larger than the sales. That is, if supplier’s quantity

delivered is larger than the sales, then it is punished. In modified-buy-back contracts,

the suppliers are punished for the real inventory, that is for the items that cannot

be assembled. This means that even if there are end-products that are not sold, the

suppliers are not punished for those, because they are salvaged. In short, the suppliers

are punished for the components which costs the manufacturer for holding inventory.

Although the names of the contract implies that the contracts are composed of

buy-back and revenue sharing contracts plus a recovery payment, after solving the

parameters it comes out that in both of the buy-back contracts, the scheme can be

a sales rebate depending on the salvage, inventory holding, lost sales and revenue pa-

rameters. Additionally, the recovery payment in buy back with revenue share contract

can be a cut-down price. This scheme cannot be manipulated because these contract

parameters are found from the exogenous cost and price parameters. Thus one cannot

determine a contract to be a sales rebate or to be a revenue share.

Different from the others, modified buy-back contract with revenue share certainly

has a cut-down price whatever the exogenous parameters are, instead of a recovery

payment.



68

The contracts are written in such a way that the manufacturer’s profit function

becomes a portion of the chain’s profit, that is:

E [πr] = λE [πc] − (1 − λ)grµD

There are common points in the contracts. The contract parameters like revenue

share parameter(φ) and recovery payment(V) change from contract to contract. How-

ever the buy-back and modified buy-back parameters are same in all of the contracts:

mi = bi = (1 − λ)hi (4.31)

If the contracts are analyzed carefully, it can be seen that all the contracts turn

out to be a wholesale contract in which the manufacturer gets all the profit when λ

equals to one. For example let’s check the modified buy-back contract parameters:

(rφ̄ + gr − hφ̄ −
∑

N bi) = λ(r + gr − h) ⇒ φ =
(1−λ)(r+gr−h−

∑

N
hi)

r−h

hφ̄ +
∑

N bi − V = λh ⇒ V = (1 − λ)
r

∑

N
hi−grh

r−h

hi − bi = λhi ⇒ bi = (1 − λ)hi

wb,i = λci

When λ equals to one, all the other payments become zero, thus the contract

turns into a wholesale price contract, meaning that the profit goes to the manufacturer.

However when λ is less than one, then the other payments come to the scene and at

the point where λ hits grµD

E[πc]+grµD

, all the profit goes to the suppliers.

The profit can be placed entirely either to the manufacturer or to the suppliers.

However, it is not completely figured out what is the share between the suppliers. The
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profit can be allocated between the suppliers up to a limit with the parameter φ. The

sum of the φs is found to be equal to a value, but there is no restriction over the

individual φs. So this allows the contract allocate the profit at least to some extent.

One other point is that, why does the manufacturer order different quantities

from the suppliers instead ordering the same quantity like the one in Gurnani and

Gerchak[22]? To understand this point, let’s start from the beginning. The system

has a random yield structure. That is the suppliers are unreliable and they do not

deliver the exact quantity the manufacturer orders. So the delivered quantity has to

be, somehow, corrected. What is important is that, this correction can either be made

by the supplier, or by the manufacturer.

When the manufacturer orders the same amount from all the suppliers, then the

suppliers should correct the amount because randomness of yield at each supplier is not

necessarily the same. For example if one supplier ships 90 percent and the other one

ships 50 percent of the order quantities on average, then it is ridiculous to order the

same amount from both under a forced compliance regime. If the suppliers’ randomness

are different and the manufacturer orders the same amount from all of them, then the

suppliers should be allowed to change the amount for sake of profitability of the chain.

Accepting quantities that are more than the quantity ordered is up to the manufacturer.

If the correction is made by the manufacturer, then the manufacturer should

order different quantities from the suppliers, accounting for their different randomness

structure. As the manufacturer makes the correction, the suppliers should obey the

order quantity. If suppliers also change the quantity, then there is double correction in

the order quantity which corrupts the system, especially the system in which all the

players know all the parameters and distributions. This double correction may work

better in systems in which the players have limited information about each other. So in

our model, the manufacturer makes the correction by ordering different quantities from

the suppliers taking care of their different randomness structures. This coordination

mechanism is completed by the forced compliance.
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5. NUMERICAL ILLUSTRATIONS

So far we have analyzed the systems in terms of closed form functions. Further

insight can be obtained by using numerical examples. For example the optimal order

quantity’s behavior according to mean of demand and yield or the expected profit

function’s pattern with respect to the variance of demand cannot be evaluated from

closed form functions. Additionally they are also some kind of validation for the results

that are derived in the previous chapters. We used MatLab 7.0.1 to prepare this

numerical study.

5.1. Newsvendor Problem

Numerical examples are helpful to see the behavior of the parameters over the

contract. The centralized system is investigated under a predetermined setting and

then sensitivity analysis is performed on the parameters. In the sensitivity analysis,

the optimal order quantity and the profit are studied with respect to changing cost and

revenue parameters. In the following example the parameters are set as r = 25, c = 5,

h = 4 and gr = 3. Demand is assumed to be normally distributed with µ = 100 and

σ = 10. The supplier’s yield has a uniform distribution between (0,1]. One parameter

is changed gradually while keeping others constant and the expected chain profit and

optimal order quantity are observed. All of the results are found as expected. One

critical point is that, when changing the parameters, the conditions of concavity in

Proposition 3.1 should not be violated.

Figures 5.1 and 5.2 show the relation between the selling price (r) versus optimal

order quantity and versus chain profit.

As it is expected, both the quantity and the optimal profit increases when r

increases. When the manufacturer is able to sell a good with a higher price, then it

orders more and, of course, makes a higher profit.
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Other figures of sensitivity analysis are in Appendix D. Figures D.1 and D.2 show

the relation between the production cost (c) versus optimal order quantity and versus

chain profit.

When production cost increases, the manufacturer orders less because the system

pays for every unit ordered but only sells the goods which are delivered. When every

parameter stays constant but only production cost increases, this obviously decreases

the chain’s expected profit.

The same sensitivity analysis for holding cost(h) is shown in Figures D.3 and D.4.

When holding cost increases, the manufacturer is not eager to hold inventory so the

optimal order quantity decreases. Holding an inventory is a cost so when h increases

the optimal profit decreases as well.

Figures D.5 and D.6 show how the optimal order quantity and expected chain

profit change with gr. When gr increases, the manufacturer orders more in order to

meet the demand and not to fall into lost sales. This increases the optimal order

quantity. However gr is a cost and a higher cost decreases the profit.

The stair like shapes of the figures in optimal order quantity graphs is due to the

fact that order quantities are assumed to be integers. Thus when the range is small

like in the graph of gr, the plot is a step function.

Another main issue is to find the expected chain profit and optimal order quantity

when the variance of the demand changes. Calculation of variance is given in Appendix

A. Holding other parameters constant, Figure 5.3 shows how the optimal order quan-

tity changes when variance of demand changes. The order quantity increases when

the variance of the demand increases. At first this may seem unreasonable, however

the distribution used for demand is a truncated normal. When the variance increases,

(untruncated) normal distribution becomes flatter and its tail hits the y axis. Contin-

uing to increase the variance causes negative demands. However negative demand is

meaningless, so the probability that belongs to negative values are distributed over the
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Figure 5.5. Demand Variance versus Expected Chain Profit Variance

positive values proportionally to the probability values of positive values not allowing

any occurrence of negative demand. That is how the distribution is truncated. Hence,

the actual variance and mean is different.

The behavior of profit when variance increases is shown in Figure 5.4. The

profit first decreases but then increases. This can be explained again by the truncated

distribution. The tail of the normal distribution hits the negative part after a variance

of sixty, as it is seen on in Figure D.7. After computing the expected profit, the variance

of the expected chain profit is also calculated and the relation between two variances

is shown in Figure 5.5. As it is expected, the variance of the expected profit function

increases with the increasing variance of the demand.
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5.2. Assembly Systems

Numerical examples for the assembly system are quite important to observe the

performance of the contracts. To achieve that, first the centralized system profit is

plotted. Optimal order quantities and expected chain profit is studied under several

scenarios which are shown in Table 5.1. The demand has a normal distribution with

µ = 100 and σ = 25. Both of the suppliers’ yield has a uniform distribution between

(0,1].

The scenarios are shown in Table 5.1. First run is the base case that we compare

the other runs with. If we start from that it can be seen that the optimal order

quantity for the first component is lower than the second one. This is because the

first component is more expensive than the second one, regarding both for holding and

production costs. If the selling price decreases(r), then obviously we expect the profit to

decrease and the optimal order quantities to decrease, which is the case. Then salvage

value is set to zero. Salvage is a revenue for the manufacturer, so setting it to zero

forces the system to order less. Obviously this decreases the chain’s expected profit.

In the fourth run, the production cost of the first component is set to a lower value.

This dramatically increased both of the order quantities, while the increase in the first

component is higher as expected. This huge increase is due to the fact that this cost is

paid for every unit ordered which increases the cost seriously. Then the same thing is

done with the production cost of the second component. The optimal order quantity

for both of the components increases while the second one has a much more increase.

Both actions (decrease in the production costs) increases the profit as expected. Setting

holding cost of the first component to a lower value results in an increase in the order

quantity of the first component but a slight decrease in order quantity of the second

one. Setting this to zero yields the same results. Component 1 increases however

component 2 slightly decreases with respect to the basic first run. The same thing

is observed when we play with the holding cost of the second component. When it

is set to half of the original value, there is a slight decrease in component 1, but an

increase in component 2 quantities. Setting it to zero results again in an increase in

order quantity of the second component. Component 1 stays same with respect to the
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basic run. Decreasing the holding costs increases the profit as it is expected. The last

parameter to change is the lost sales. When cost of lost sales is set to zero, it can be

seen that the order quantities decrease and the profit increase because as there is no

punishment for the lost sales, the system now tries to keep less inventory. The reverse

also works fine. When cost of lost sales increases, both of the order quantities increase,

component 1 having a less increase. This is an expected result because lost sales is

punished severely so system orders more not to fall into lost sales. Expected profit

decreases with respect to the basic setting when cost of lost sales has a higher value.

Table 5.1. Assembly System Solution with Two Suppliers having Random Yield

r h c1 c2 h1 h2 gr Q1 Q2 Profit

1 40 5 4 3 2 1 2 198 224 743.78

2 30 5 4 3 2 1 2 156 175 197.97

3 40 0 4 3 2 1 2 180 205 695.16

4 40 5 2 3 2 1 2 281 266 1210.6

5 40 5 1 3 2 1 2 368 303 1530.2

6 40 5 4 1.5 2 1 2 226 317 1139

7 40 5 4 3 1 1 2 203 222 773.85

8 40 5 4 3 0 1 2 214 223 806.21

9 40 5 4 3 2 0.5 2 197 228 765.36

10 40 5 4 3 2 0 2 198 237 788.2

11 40 5 4 3 2 1 0 190 215 825.56

12 40 5 4 3 2 1 7 214 243 542.18

One important point is that, what is the effect of variance of the yield over the

chain? In other words, what does a reliable supplier bring to the chain? In Table 5.2,

supplier one has a constant yield of 0.5 and the other supplier’s yield is same with the

previous setting, having a uniform distribution between (0,1].
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First of all, the significant change in the profit can be seen easily. Thus a reliable

supplier increases the profit of the supply chain. Another effect can be seen when the

fourth and the fifth settings are compared. There is an increase in the order quantities

in this system, however this increase is smaller than the one in the previous system.

This shows that the system gives more reaction to the production cost of a component

which has random yield.

Table 5.2. Assembly System Solution with Constant Yield at Supplier One

r h c1 c2 h1 h2 gr Q1 Q2 Profit Increase

1 40 5 4 3 2 1 2 231 244 1285.3 72.8 %

2 30 5 4 3 2 1 2 210 205 547.1 176.4 %

3 40 0 4 3 2 1 2 219 233 1233.2 77.4 %

4 40 5 2 3 2 1 2 267 260 1778.8 46.9 %

5 40 5 1 3 2 1 2 318 278 2065.7 35 %

6 40 5 4 1.5 2 1 2 243 316 1698.6 49 %

7 40 5 4 3 1 1 2 233 241 1313.1 69.7 %

8 40 5 4 3 0 1 2 236 240 1341.7 66.4 %

9 40 5 4 3 2 0.5 2 230 256 1321.5 72.7 %

10 40 5 4 3 2 0 2 229 272 1363.6 73 %

11 40 5 4 3 2 1 0 227 236 1333.7 61.6 %

12 40 5 4 3 2 1 7 238 259 1170.8 115.9 %

Table 5.3 shows the optimal order quantities and expected profit of the chain when

the first supplier has perfect yield. Increase1 column shows the increase of the profit

with respect to the random yield system and Increase2 column shows the increase of

the expected chain profit with respect to the model with supplier one having constrant

yield in Table 5.2. The significant increase in the profit with respect to the random

yield model can be seen easily. There are two important points. When selling price is

low, then increase in the yield makes a greater increase in the profit. However when

the production cost of the component which has a perfect yield is low like the one in
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Table 5.3. Assembly System Solution with Perfect Yield at Supplier One

r h c1 c2 h1 h2 gr Q1 Q2 Profit Increase1 Increase2

1 40 5 4 3 2 1 2 133 251 1715 130.6 % 33.4 %

2 30 5 4 3 2 1 2 124 217 948.27 379 % 73.3 %

3 40 0 4 3 2 1 2 121 235 1634.3 135.1 % 32.5 %

4 40 5 2 3 2 1 2 158 266 1999.5 65.1 % 12.4 %

5 40 5 1 3 2 1 2 213 298 2180.6 42.5 % 5.5 %

6 40 5 4 1.5 2 1 2 141 325 2140.2 87.9 % 25.9 %

7 40 5 4 3 1 1 2 136 249 1751 126.2 % 33.3 %

8 40 5 4 3 0 1 2 140 246 1789.4 121.9 % 33.3 %

9 40 5 4 3 2 0.5 2 132 268 1778.5 132.3 % 34.5 %

10 40 5 4 3 2 0 2 131 289 1851.7 134.9 % 35.7 %

11 40 5 4 3 2 1 0 131 245 1758.9 113 % 31.8 %

12 40 5 4 3 2 1 7 136 266 1610 196.9 % 37.5 %

fifth setting, then the increase in the yield does not significantly affect the profit of the

chain.

Table 5.4 shows the optimal order quantities and the expected chain profit when

two suppliers have constant yield of 0.5. Again the significant increase in the chain’s

expected profit can be seen from the table. The increase of the chain’s profit with

respect to the system having one supplier with constant yield (Table 5.2) is shown

in the last column. As well as the significant increase in the profit, the reaction of

the system to the change in production cost can be seen in the sixth run. In the

system with supplier two having random yield, the change in optimal order quantity

of component two is 82 . In this system, the change in the optimal order quantities

are 15 in both. So randomness in the yield causes the system to give more reaction to

the change in the production costs. Another important point in this system is that,

in all of the settings, the optimal order quantities for two components are equal, so

the system does not have any inventory holding costs which explains the same order

quantities in the settings having different holding costs.
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Table 5.4. Assembly System Solution with Constant Yields

r h c1 c2 h1 h2 gr Q1 Q2 Profit Increase

1 40 5 4 3 2 1 2 235 235 2310.5 79.8 %

2 30 5 4 3 2 1 2 222 222 1354.6 147.6 %

3 40 0 4 3 2 1 2 221 221 2218.3 79.9 %

4 40 5 2 3 2 1 2 255 255 2799.1 57.4 %

5 40 5 1 3 2 1 2 270 270 3061.2 48.2 %

6 40 5 4 1.5 2 1 2 250 250 2673.1 57.4 %

7 40 5 4 3 1 1 2 235 235 2310.5 76 %

8 40 5 4 3 0 1 2 235 235 2310.5 72.2 %

9 40 5 4 3 2 0.5 2 235 235 2310.5 74.8 %

10 40 5 4 3 2 0 2 235 235 2310.5 69.4 %

11 40 5 4 3 2 1 0 232 232 2317.9 73.8 %

12 40 5 4 3 2 1 7 240 240 2293.9 95.9 %

Table 5.5 shows the optimal order quantities and the expected chain profit of

the assembly system with two suppliers having perfect yield. Significant increase in

the chain’s expected profit with respect to the random yield structure (Table 5.1) is

shown in Increase1 column and the increase with respect to the assembly system with

suppliers having constant yield of 0.5 (Table 5.4) is shown in Increase2 column. In

addition to the increase in the profit of the chain, there is no inventory holding cost

in this system like the model with two suppliers having constant yield in Table 5.4.

In the fifth setting, since the salvage value is bigger than the production cost of an

end product, the system produces infinitely many products. Same reason causes the

multiple optima in fourth run. Thus the production of the first product is changed to

2.1 from 2 just for this fifth setting.

Figure 5.6 shows the graph of expected chain profit versus order quantities under

the first setting. As it can be seen from the graph, the expected profit function of the

chain is concave.
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Figure 5.6. Expected Chain Profit versus Q1 and Q2

After plotting the expected chain profit, it is important to see how the contracts

perform. We showed that all of the profit can be allocated either to the manufacturer

or to the suppliers but we can not say anything about what the share is between the

suppliers. For all of the contracts, when λ = 1 all the profit goes to the manufacturer

and for λ = grµD

E[πc]grµD
all the profit goes to the suppliers. The λ value is the same for

all of the contracts because it is independent of the contract parameters. All of the

parameters of the contracts are shown in Table 5.6. The parameters are calculated

from (4.9), (4.13), (4.18) and (4.21).

When λ is set to 0.2119 all the profit is allocated to the suppliers. All the contract

parameters are calculated from the exogenous parameters and λ. This means that all

of the parameters are fixed at a certain value for suppliers to get all of the profit.

This condition also holds for the total revenue share parameter φ. However, individual

revenue share parameters are free to choose as long as their sum stays constant, meaning

there is one degree of freedom to choose the revenue share parameters.
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Table 5.5. Assembly System Solution with Perfect Yields

r h c1 c2 h1 h2 gr Q1 Q2 Profit Increase1 Increase2

1 40 5 4 3 2 1 2 140 140 3198.6 330 % 38.4 %

2 30 5 4 3 2 1 2 136 136 2205.4 1014 % 62.8 %

3 40 0 4 3 2 1 2 124 124 3037.8 337.0 % 36.9 %

4 40 5 2 3 2 1 2 170 170 3482.4 187.7 % 24.4 %

5 40 5 1 3 2 1 2 - - - - -

6 40 5 4 1.5 2 1 2 155 155 3418 200.1 % 27.9 %

7 40 5 4 3 1 1 2 140 140 3198.6 313.3 % 38.4 %

8 40 5 4 3 0 1 2 140 140 3198.6 296.7 % 38.4 %

9 40 5 4 3 2 0.5 2 140 140 3198.6 317.9 % 38.4 %

10 40 5 4 3 2 0 2 140 140 3198.6 305.8 % 38.4 %

11 40 5 4 3 2 1 0 140 140 3199.8 287.6 % 38.0 %

12 40 5 4 3 2 1 7 142 142 3196 489.5 % 39.3 %

Tables 5.7 and 5.8 show the profit shares of the suppliers when revenue share

parameters(φ1 and φ2) change from one extreme point, 0, to another extreme, φ. It

can be seen that when the revenue share parameter of the suppliers are at level zero

then the suppliers make a loss, meaning that they pay to the other supplier. Reverse

is also true. If revenue share of a supplier is at its maximum level, that is φi = φ,

then this supplier makes a higher profit than the chain, meaning that it takes extra

payment from the other supplier. In the tables, there are also the values of the φs at

which the supplier has zero profit or takes all the profit.

Finally, the last figure show how the profit share occurs with respect to the profit

share of first supplier in buy-back with sales revenue share contract. The figure for

the other contracts are in Appendix E. The dotted line is the profit share of the first

supplier. The graph is drawn with respect to the revenue share of first supplier, thus

the dotted line increases with increasing profit share. The other line, dashed one is the

profit share of the second supplier. As it is expected, the profit starts at its maximum

point when φ1 = 0 and then comes to its minimum point when φ1 = φ. The black box
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Table 5.6. Contract Parameters

Contracts φ V b1(m1) b2(m2) w1 w2 λ

BBSRS 0.6699 6.3047 1.5762 0.7881 0.8476 0.6357 0.2119

BBRS 0.7656 2.4768 1.5762 0.7881 0.8476 0.6357 0.2119

MBBSRS 0.729 3.9404 1.5762 0.7881 0.8476 0.6357 0.2119

MBBRS 0.8331 -0.2252 1.5762 0.7881 0.8476 0.6357 0.2119

Table 5.7. Profit Share of Supplier 1

Supplier 1

φ1 for φ1 for

Contracts φ1 = φ φ1 = 0 Zero Profit Full Profit

BBSRS 1131.7000 -431.8748 0.1850 0.5037

BBRS 1243.4000 -587.5180 0.2457 0.5567

MBBSRS 1191.7000 -509.9204 0.2185 0.5371

MBBRS 1313.2000 -679.2968 0.2840 0.5950

is the applicable range because out of that box the suppliers make negative profits.

The straight line in the figures is just the sum of the profits of two suppliers. It stays

constant at the value of 743.78 which is the expected profit of total chain. As it is

mentioned before, the parameter λ is adjusted such that all the profit is allocated to

the suppliers.

One might think that, this profit share can only be achieved when the suppliers

have similar cost structures. So we try another run in which everything stays same but

cost of production for supplier 1 increased to 20 and its holding cost increased to 4.

For the system not to make loss, the revenue is also increased to 80. The centralized

profit comes to be 476,53 with 117 units of component1 and 224 units of component2.

The results are shown in Tables 5.9, 5.10 and 5.11.
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Table 5.8. Profit Share of Supplier 2

Supplier 2

φ2 for φ2 for

Contracts φ2 = φ φ2 = 0 Zero Profit Full Profit

BBSRS 1175.7000 -387.9655 0.1662 0.4849

BBRS 1331.3000 -499.6226 0.2089 0.5199

MBBSRS 1253.7000 -447.8867 0.1919 0.5105

MBBRS 1423.1000 -569.3959 0.2381 0.5491

Table 5.9. Contract Parameters

Contracts φ V b1(m1) b2(m2) w1 w2 λ

BBSRS 0.6339 7.0437 2.8175 0.70437 5.9125 0.8869 0.2956

BBRS 0.6762 3.6627 2.8175 0.70437 5.9125 0.8869 0.2956

MBBSRS 0.678 3.5219 2.8175 0.70437 5.9125 0.8869 0.2956

MBBRS 0.7232 -0.0939 2.8175 0.70437 5.9125 0.8869 0.2956
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Figure 5.7. φ1 versus Profit Shares in BBSRS



84

Table 5.10. Profit Share of Supplier 1

Supplier 1

φ1 for φ1 for

Contracts φ1 = φ φ1 = 0 Zero Profit Full Profit φ

BBSRS 924.5303 -1414.5000 0.3833 0.5125 0.6339

BBRS 958.9667 -1543.5000 0.4171 0.5458 0.6762

MBBSRS 958.8569 -1542.6000 0.4181 0.5473 0.6780

MBBRS 995.6847 -1680.5000 0.4541 0.5829 0.7232

Table 5.11. Profit Share of Supplier2

Supplier 2

φ2 for φ2 for

Contracts φ2 = φ φ2 = 0 Zero Profit Full Profit φ

BBSRS 1891.1000 -447.9997 0.1214 0.2506 0.6339

BBRS 2020.0000 -482.4360 0.1304 0.2591 0.6762

MBBSRS 2019.2000 -482.3262 0.1307 0.2599 0.6780

MBBRS 2157.0000 -519.1540 0.1403 0.2691 0.7232
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6. CONCLUSIONS

6.1. Selling to the Newsvendor with Random Yield

With this study, coordination of a system consisting of a supplier and a retailer

is investigated. There is a random yield in addition to the random demand. Different

known contracts are studied to establish coordination. As far as it is known, this is the

first study that analyzes the coordination of newsvendor under random demand and

random yield. To summarize the coordination success of contracts:

• Buy-back, revenue-sharing and quantity discount contracts coordinate the chain

under both forced and voluntary compliance regimes.

• Quantity flexibility contract can coordinate the chain under forced compliance

regime. Under voluntary compliance, concavity of the supplier’s profit function

cannot be established. Thus we cannot make any conclusions about voluntary

compliance.

• Wholesale price can coordinate only in forced compliance regime because the

supplier makes zero profit under this contract. Thus, coordination in voluntary

compliance can only be achieved via franchising payments or end-of-term pay-

ments.

There are also some interesting notes when we look over the whole work:

• The optimal order quantity is found from a critical ratio like the classical newsven-

dor problem.

• Buy-back and revenue sharing contracts are equivalent when the needed trans-

formations are made.

• In quantity flexibility contract, the supplier’s action cannot be characterized.

However, it is interesting to note that the supplier’s and the retailer’s first order

conditions are same. Thus the quantity that optimizes the chain’s profit is a

critical point for the supplier’s expected profit function.
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• Wholesale price contract is found to coordinate with franchising payments or

end-of-term payments. Quantity discount contract just show the validity of this

comment. The parameters of the quantity discount are such that the suppliers

get a payment for their production cost and then a constant payment which can

be thought as a franchising payment with a wholesale price contract.

• The parameters which coordinate the chain are found to be dependent only on

µα. However the optimal order quantity depends on all the parameters of yield

and demand. Also the random yield contract parameters turn out to be equal to

classical newsboy parameters when µα = 1.

• When the relation of contract parameters with respect to µα is analyzed, it can

be seen that there is a tendency of the retailer to stabilize the wholesale price

payment for the whole delivery.

• When the contract parameters is written with λ, then we see that when λ become

one, the retailer gets all the profit. In fact, all those contracts whose parameters

can be written in λ become a wholesale price contract when λ = 1.

• In the numerical examples part, the relations with the exogenous cost parameters

and the decision variable Q can be seen clearly. One interesting thing is that the

profit decreases when the variance of the demand increases, but then starts to

increase, which stems from the fact the we used a truncated normal distribution.

When the graph of truncated normal distribution is analyzed, it can be seen that

after some threshold, the left tail of the distribution hits zero, so the probability

of negative demands are distributed proportionally to the positive values which

means that after some value of variance, mean of the distribution in fact moves

to a higher value.

6.2. Assembly Systems under Random Yield

In the second part of this thesis, coordination of an assembly system is analyzed.

Unlike the newsvendor problem, we only analyzed forced compliance regime for coordi-

nation. Again, as far as we know, there is no previous work that studied coordination

of an assembly system with random demand and random yield. There are two ways

followed in this study.
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• The first one is to establish the concavity of the assembly system’s profit func-

tion and expected value of this function. Instead of writing huge integrals and

drowning in pages of equation, a simple way is employed.

• The second way is that after establishing the concavity, instead of finding the

optimal order quantity explicitly, the manufacturer’s function is written is such a

way that it becomes a fraction of the chain’s profit function. Thus, the parameters

that can satisfy this condition are said to coordinate the chain, as in Cachon[10]

By following this way, four coordinating contract mechanisms has been proposed.

The contracts are derived from buy-back and revenue sharing contracts by adding a

transfer payment, recovery payment(V). Addition to its use in single period model,

in a multi period model the worst suppliers can benefit from this recovery payment

and can recover from that worst position among the suppliers to a better one. So at

each period the worst supplier is given a recovery payment which is used to enhance

the improvement of the quality of production in that supplier. In addition to that,

in a game-theoretic analysis, the suppliers try to produce less than the other to get

this payment but since recovery payment increases with the quantity delivered, the

suppliers produce more to get more recovery which will enhance the performance of

voluntary compliance. The important points in the contracts are:

• All of the contract allow the profit to be allocated either to the suppliers or to

the manufacturer.

• Although tha profit share between the suppliers cannot be completely established,

numerical results show that all of the contracts perform well.

• The profit is allocated according to the parameter λ. When λ = 1, all the profit

goes to the manufacturer. In fact, all the contracts become a wholesale contract

and it is shown that in wholesale contract the suppliers cannot make profit.

• The contracts have equal payments as well as different payments. In all of the

contracts, buy-back parameters and wholesale prices are same. However, the

revenue share and recovery payment parameters change in each contract.
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• Although the parameters in the contracts are called revenue share or recovery

payments, sometimes these parameters turns out to be sales rebates or cut-down

prices when the parameters are solved.

• From numerical examples, the effect of random yield can be seen easily. There

is a significant increase in the profit when the supplier one has a constant yield.

Additionally, the system gives more reaction to the change in the production costs

when the supplier has random yield. When the suppliers have constant yields,

the system does not hold any inventory of the components as expected.

• Since random yield decreases the profit significantly, the recovery payment be-

comes more important especially in multi period analysis. Thus the contracts

having recovery payments are the best for use in multi-periods. If the exogenous

parameters makes the recovery payment a cut-down price, then that contract can

be used for single period systems, although all contracts are suitable because they

provide coordination in the chain.

In both newsvendor and assembly systems, when the profit is written as a fraction

of the expected chain profit, all of the profit goes to the supplier(s) when λ = grD

grD+E[πc()]

Although this ratio seems to be a random one, in fact it is not. grµD is the expected

cost of the system when there is no order. E[πc] is the expected chain profit when

optimal quantities are ordered. So this ratio is: no order / (no order + optimal order).

For further studies, two extensions can be added:

• Multi-period analysis: This study deals with a single period model. Solution and

contract designs for multi-period can be analyzed. In fact, the contract parameter

Recovery Payment, V, in the assembly system is an important point to analyze

in multi-period systems especially when the yield is modeled to be related with

V. That is, if the yield becomes larger with a recovery payment, the performance

of all the system can improve period bu period.

• Game-Theoretical Analysis: In the assembly systems the contracts are analyzed

under a forced compliance regime. The scheme can be extended to a game be-

tween suppliers by letting the contract be implemented under a voluntary com-
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pliance regime. Applying both multi-period and game-theoretic analysis will be

a complete and a hard study.
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APPENDIX A: VARIANCE OF EXPECTED CHAIN

PROFIT

The variance of the expected profit function of the chain is found as follows:

g(α,Q) = (r + gr + h)min(αQ,D) − hαQ − grD

V ar(g(α,Q)) = Eα[V ar(g(α,Q)|α)] + V arα(E[g(α,Q)]|α)

Eα[V ar(g(α,Q)|α)]:

V ar(g(α,Q)|α) = E[g(α,Q)2|α] − E[g(α,Q)|α]2

E [V ar(g(α,Q)|α)] = E
[

E[g(α,Q)2|α]
]

− E
[

E[g(α,Q)|α]2
]

E[g(α,Q)|α] = (r + gr + h)

[
∫ αQ

0

Dg(D)dD +

∫

∞

αQ

αQg(D)dD

]

− hαQ − grµD

E[g(α,Q)|α] =

∫ αQ

0

[(r + h)D − hαQ]g(D)dD +

∫

∞

αQ

[(r + gr)αQ − grD]g(D)dD

E[g(α,Q)2|α] =

∫ αQ

0

[(r + h)D − hαQ]2g(D)dD +

∫

∞

αQ

[(r + gr)αQ − grD]2g(D)dD

Eα[V ar(g(α,Q)|α)] =

∫ 1

0

{
∫ αQ

0

[(r + h)D − hαQ]2g(D)dD

+

∫

∞

αQ

[(r + gr)αQ − grD]2g(D)dD

}

f(α)dα

−

∫ 1

0

{

(r + gr + h)

[
∫ αQ

0

Dg(D)dD

+

∫

∞

αQ

αQg(D)dD

]

− hαQ − grµD

}2

f(α)dα
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Eα[V ar(g(α,Q)|α)] =

∫ 1

0

{
∫ αQ

0

[(r + h)D − hαQ]2g(D)dD

+

∫

∞

αQ

[(r + gr)αQ − grD]2g(D)dD

}

f(α)dα

−

∫ 1

0

{
∫ αQ

0

[(r + h)D − hαQ]g(D)dD

+

∫

∞

αQ

[(r + gr)αQ − grD]g(D)dD

}2

f(α)dα

V arα(E[g(α,Q)]|α)

V arα(E[g(α,Q)]|α) = E[E[g(α,Q)|α]2] − E[E[g(α,Q)|α]]2

E[g(α,Q)|α] = (r + gr + h)

[
∫ αQ

0

Dg(D)dD +

∫

∞

αQ

αQg(D)dD

]

− hαQ − grµD

=

∫ αQ

0

[(r + h)D − hαQ]g(D)dD +

∫

∞

αQ

[(r + gr)αQ − grD]g(D)dD

V arα(E[g(α,Q)]|α =

∫ 1

0

{

(r + gr + h)

[
∫ αQ

0

Dg(D)dD

+

∫

∞

αQ

αQg(D)dD

]

− hαQ − grµD

}2

f(α)dα

−

{
∫ 1

0

(

(r + gr + h)

[
∫ αQ

0

Dg(D)dD

+

∫

∞

αQ

αQg(D)dD

]

− hαQ − grµD

)

f(α)dα

}2
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=

∫ 1

0

(
∫ αQ

0

[(r + h)D − hαQ]g(D)dD

+

∫

∞

αQ

[(r + gr)αQ − grD]g(D)dD

)2

f(α)dα

−

{
∫ 1

0

(
∫ αQ

0

[(r + h)D − hαQ]g(D)dD

+

∫

∞

αQ

[(r + gr)αQ − grD]g(D)dD

)

f(α)dα

}2

Variance

V ar(g(α,Q)) = Eα[V ar(g(α,Q)|α)] + V arα(E[g(α,Q)]|α)

= E
[

E[g(α,Q)2|α]
]

− E
[

E[g(α,Q)|α]2
]

+ E[E[g(α,Q)|α]2] − E[E[g(α,Q)|α]]2

=

∫ 1

0

{
∫ αQ

0

[(r + h)D − hαQ]2g(D)dD

+

∫

∞

αQ

[(r + gr)αQ − grD]2g(D)dD

}

f(α)dα

−

∫ 1

0

{

(r + gr + h)

[
∫ αQ

0

Dg(D)dD

+

∫

∞

αQ

αQg(D)dD

]

− hαQ − grµD

}2

f(α)dα

+

∫ 1

0

{

(r + gr + h)

[
∫ αQ

0

Dg(D)dD

+

∫

∞

αQ

αQg(D)dD

]

− hαQ − grµD

}2

f(α)dα

−

{
∫ 1

0

(

(r + gr + h)

[
∫ αQ

0

Dg(D)dD

+

∫

∞

αQ

αQg(D)dD

]

− hαQ − grµD

)

f(α)dα

}2
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=

∫ 1

0

{
∫ αQ

0

[(r + h)D − hαQ]2g(D)dD

+

∫

∞

αQ

[(r + gr)αQ − grD]2g(D)dD

}

f(α)dα

−

{
∫ 1

0

(

(r + gr + h)

[
∫ αQ

0

Dg(D)dD

+

∫

∞

αQ

αQg(D)dD

]

− hαQ − grµD

)

f(α)dα

}2

=

∫ 1

0

{
∫ αQ

0

[(r + h)D − hαQ]2g(D)dD

+

∫

∞

αQ

[(r + gr)αQ − grD]2g(D)dD

}

f(α)dα

−

{
∫ 1

0

(
∫ αQ

0

[(r + h)D − hαQ]g(D)dD

+

∫

∞

αQ

[(r + gr)αQ − grD]g(D)dD

)

f(α)dα

}2
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APPENDIX B: ASSEMBLY SYSTEM WITH TWO

SUPPLIERS

When taking expectation, first of all the cases are written. In two supplier case,

there are six cases. Let’s write the profit function of the chain in (4.2) again:

πc(Q1, Q2) = r [min(α1Q1, α2Q2, D)] − gr[D − min(α1Q1, α2Q2)]
+ − c1Q1 − c2Q2

+ h[min(α1Q1, α2Q2) − D]+ − h1[α1Q1 − α2Q2]
+ − h2[α2Q2 − α1Q1]

+

In the following formulations we neglect the production cost part, −c1Q1 − c2Q2,

because they are constant at all cases:

Case 1: α1Q1 < α2Q2 < D

rα1Q1 − gr(D − α1Q1) − h2(α2Q2 − α1Q1)

Case 2: α1Q1 < D < α2Q2

rα1Q1 − gr(D − α1Q1) − h2(α2Q2 − α1Q1)

Case 3: α2Q2 < α1Q1 < D

rα2Q2 − gr(D − α2Q2) − h1(α1Q1 − α2Q2)
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Case 4: α2Q2 < D < α1Q1

rα2Q2 − gr(D − α2Q2) − h1(α1Q1 − α2Q2)

Case 5: D < α1Q1 < α2Q2

rD + h(α1Q1 − D) − h2(α2Q2 − α1Q1)

Case 6: D < α2Q2 < α1Q1

rD + h(α2Q2 − D) − h1(α1Q1 − α2Q2)

It can be seen that Case 1 and Case 2 are same, like Case 3 and Case 4. Now

let’s rename the cases and call Case 1 and Case 2 as Case A, Case 3 and Case 4 as

Case B, Case 5 as Case C and Case 6 as Case D :

Case A: α1Q1 is minimum

rα1Q1 − gr(D − α1Q1) − h2(α2Q2 − α1Q1)

Case B: α2Q2 is minimum

rα2Q2 − gr(D − α2Q2) − h1(α1Q1 − α2Q2)

Case C: D < α1Q1 < α2Q2

rD + h(α1Q1 − D) − h2(α2Q2 − α1Q1)
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Case D: D < α2Q2 < α1Q1

rD + h(α2Q2 − D) − h1(α1Q1 − α2Q2)

With this notation, the function cannot be re-organized or no comments can be

made for concavity. So let’s add and subtract some values which sum up to zero in

order to get some insight. Every line is one case and every change in each step is

underlined to be followed easily:

⇒ rα1Q1 −gr(D − α1Q1) −h2(α2Q2 − α1Q1)

rα2Q2 −gr(D − α2Q2) −h1(α1Q1 − α2Q2)

rD +h(α1Q1 − D) −h2(α2Q2 − α1Q1)

rD +h(α2Q2 − D) −h1(α1Q1 − α2Q2)

⇒ rα1Q1 −gr(D − α1Q1) +α1Q1(h − h) −h2(α2Q2 − α1Q1)

rα2Q2 −gr(D − α2Q2) +α2Q2(h − h) −h1(α1Q1 − α2Q2)

rD −grD + grD +h(α1Q1 − D) −h2(α2Q2 − α1Q1)

rD −grD + grD +h(α2Q2 − D) −h1(α1Q1 − α2Q2)

⇒ (r + gr − h)α1Q1 −grD +hα1Q1 −h2(α2Q2 − α1Q1)

(r + gr − h)α2Q2 −grD +hα2Q2 −h1(α1Q1 − α2Q2)

(r + gr − h)D −grD +hα1Q1 −h2(α2Q2 − α1Q1)

(r + gr − h)D −grD +hα2Q2 −h1(α1Q1 − α2Q2)
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which in fact turns out to be:

⇒ (r + gr − h) min(α1Q1, α2Q2, D) − grD + h min(α1Q1, α2Q2)

−h1 max[(α1Q1 − α2Q2), 0] − h2 max[(α2Q2 − α1Q1), 0]

⇒ (r + gr − h) min(α1Q1, α2Q2, D) − grD + h min(α1Q1, α2Q2)

+h1 min[(α2Q2 − α1Q1), 0] + h2 min[(α1Q1 − α2Q2), 0]

(B.1)
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APPENDIX C: ASSEMBLY SYSTEM WITH N

SUPPLIERS

Arrangement of the function resembles that of two supplier system. To find the

expectation of the profit function of N supplier system, (N+1)! cases have to be

evaluated. We neglect the production costs
∑

N ciQi because they are constant at all

cases. Let’s establish three cases in which delivery of supplier 1 is the smallest:

Case 1: α1Q1 < α2Q2 < . . . < αkQk < αk+1Qk+1 < . . . < αNQN < D

⇒ rα1Q1 − gr(D − α1Q1) − h2(α2Q2 − α1Q1) . . .

−hk(αkQk − αkQk) − hk+1(αk+1Qk+1 − α1Q1) . . . − hN(αNQN − α1Q1)

Case 2: α1Q1 < α2Q2 < . . . αkQk < D < αk+1Qk+1 < . . . < αNQN

⇒ rα1Q1 − gr(D − α1Q1) − h2(α2Q2 − α1Q1) . . .

−hk(αkQk − αkQk) − hk+1(αk+1Qk+1 − α1Q1) . . . − hN(αNQN − α1Q1)

Case 3: α1Q1 < D < α2Q2 < . . . < αkQk < αk+1Qk+1 < . . . < αNQN

⇒ rα1Q1 − gr(D − α1Q1) − h2(α2Q2 − α1Q1) . . .

−hk(αkQk − αkQk) − hk+1(αk+1Qk+1 − α1Q1) . . . − hN(αNQN − α1Q1)

It can be seen that all of the cases results in same values. Thus let’s merge the

cases where a supplier has the minimum delivery and call them Case mini.
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Now let’s write Case 1, that is the case where delivery of supplier 1 is minimum.

Then add and subtract some values which sum up to zero and does not affect the result

but helpful to manipulate the function easily:

Case min1: α1Q1 is minimum

⇒ rα1Q1 − gr(D − α1Q1) − h2(α2Q2 − α1Q1) . . .

−hk(αkQk − αkQk) − hk+1(αk+1Qk+1 − α1Q1) . . . − hN(αNQN − α1Q1)

⇒ rα1Q1 − gr(D − α1Q1)−h1(α1Q1 − α1Q1) − h2(α2Q2 − α1Q1) . . .

−hk(αkQk − αkQk) − hk+1(αk+1Qk+1 − α1Q1) . . . − hN(αNQN − α1Q1)

⇒ rα1Q1 − gr(D − α1Q1) −
∑

N(hiαiQi) + α1Q1)
∑

N hi

which can be generalized as:

Case mini: αiQi is minimum

⇒ rαiQi − gr(D − αiQi) −
∑

N(hiαiQi) + mini(αiQi)
∑

N hi (C.1)

Now again let’s write three cases where yield of supplier 1 is greater than demand

but less than others:

Case 1: D < α1Q1 < α2Q2 < . . . < αkQk < αk+1Qk+1 < . . . < αNQN

⇒ rD + h(α1Q1 − D) − h2(α2Q2 − α1Q1) . . .

−hk(αkQk − αkQk) − hk+1(αk+1Qk+1 − α1Q1) . . . − hN(αNQN − α1Q1)
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Case 2: D < α1Q1 < . . . αkQk < αk+1Qk+1 < . . . < αNQN < α2Q2

⇒ rD + h(α1Q1 − D) − h2(α2Q2 − α1Q1) . . .

−hk(αkQk − αkQk) − hk+1(αk+1Qk+1 − α1Q1) . . . − hN(αNQN − α1Q1)

Case 3: D < α1Q1 < α2Q2 < . . . < αk+1Qk+1 < . . . < αNQN < αkQk

⇒ rD + h(α1Q1 − D) − h2(α2Q2 − α1Q1) . . .

−hk(αkQk − αkQk) − hk+1(αk+1Qk+1 − α1Q1) . . . − hN(αNQN − α1Q1)

Like the previous cases, the results turn out to be same. So let these results

merge into one called Case minD,1 and write it as a single case:

Case minD,1: D < α1Q1 < . . .

⇒ rD + h(α1Q1 − D) −
∑N

t=1(htαtQt) + α1Q1

∑N

t=1 ht

which can be generalized as:

Case minD,i: D < αiQi < . . .

⇒ rD + h(αiQi − D) −
∑N

t=1(htαtQt) + αiQi

∑N

t=1 ht (C.2)

We have generalized the cases of the profit function. To be able to comment on

the profit function, it must be modified into an elegant form. In the equations below,

every line is a case and we add and subtract some value which sum up to zero:

⇒ rD +h(αiQi − D) −
∑N

t=1(htαtQt) + αiQi

∑N

t=1 ht

rαiQi −gr(D − αiQi) −
∑N

t=1(htαtQt) + αiQi

∑N

t=1 ht
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We can see that the summations for component holding costs are common. So

let take them out for simplifying

⇒ rD −gr(D − D) +h(αiQi − D)

rαiQi −gr(D − αiQi) +h(αiQi − αiQi)

⇒ (r + gr − h)D −grD +hαiQi

(r + gr − h)αiQi −grD +hαiQi

which simplifies into the following equation:

πc() = (r + gr − h) min
i

(D,αiQi) − grD + h min
i

(αiQi)

−

N
∑

t=1

(htαtQt) + αiQi

N
∑

t=1

ht (C.3)
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APPENDIX D: NUMERICAL ILLUSTRATIONS -

NEWSVENDOR PROBLEM

In this part, there are results of numerical examples for the newsvendor prob-

lem. The figures below shows the relation between the exogenous parameters and the

expected chain profit and optimal order quantity. Figure D.7 shows the probability

density function of a normal distribution with µ = 100 and σ = 60:
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Figure D.1. c versus Optimal Order Quantity
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Figure D.4. h versus Chain Profit
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Figure D.5. gr versus Optimal Order Quantity



105

0 1 2 3 4 5 6 7 8 9 10
550

600

650

700

750

800

850

900

gr

E
xp

ec
te

d 
C

ha
in

 P
ro

fit

gr versus Expected Chain Profit

Figure D.6. gr versus Chain Profit
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APPENDIX E: NUMERICAL ILLUSTRATIONS -

ASSEMBLY SYSTEM

Following figures show the profit allocation of suppliers in the two-supplier assem-

bly system under different contracts. The figures show the profit share of the suppliers

versus the revenue share parameter of the first supplier, φ1
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