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ÖZET 

 

Aktaş, A. Genelleştirilmiş Eşitlik Kestirimi (“GEE”). Hacettepe Üniversitesi 

Sağlık Bilimleri Enstitüsü Biyoistatistik Programı Yüksek Lisans Tezi, Ankara, 

2005. 

Sağlık alanında en çok rastlanan durumlardan biri de bir denekten belli aralıklarla 

tekrarlı ölçümlerin alınmasıdır. Bu tekrarlı ölçümlerin analizlerinde farklı yöntemler 

kullanılmaktadır. Bunlardan biri de Genelleştirilmiş Eşitlik Kestirimidir (GEK).  

Bir denekten farklı zamanlarda alınan ölçümler arasında ilişki olduğu 

düşünüldüğünde Genelleştirilmiş Eşitlik Kestirimi kullanılmaktadır. Bir denekten 

elde edilen tekrarlı ölçümlerin arasındaki ilişki, ilişki matrisi ile belirlenir. GEK, 

yanıt değişkenin ortak dağılımı ile ilgilenmez. Ölçümlerin sürekli olmasının yanı sıra 

genellikle sayılabilir ya da kategorik olması durumunda kullanılır. Bu çalışmada, 

bağımlı değişkenin tekrarlı ölçümlerden oluştuğu GEK çözümlemesi için, Hacettepe 

Üniversitesi Diş Hekimliği Fakültesi Diş Hastalıkları ve Tedavisi Anabilim Dalına 

ait veriler kullanılacaktır. Kliniğe gelen hastaların dişlerindeki renk uyumunu 

etkileyen değişkenler belirlenmiş, bu değişkenlere göre uygun ilişki yapısı bulunmuş 

ve GEK çözümlemesi uygulanmıştır. Ayrıca verilere Tekrarlı Ölçümlerde Varyans 

Çözümlemesi de uygulanmıştır. Çalışmada Varyans Çözümlemesinin gerekli 

varsayımları sağlanmadığından GEK çözümlemesinin sonuçlarının daha doğru 

olduğu sonucuna varılmıştır.  

 

Anahtar kelimeler: İlişkili Veriler, Tekrarlı Ölçümler, İlişki Matrisi, Bağıntı 

Fonksiyonu, GEK. 
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ABSTRACT 

 

Aktaş, A. Generalized Estimating Equations (“GEE”). Hacettepe University 

Institute of Health Sciences, Master Thesis in Biostatistics, Ankara, 2005.  

One of the most utilized measures in health studies cover the usage of repeated 

measurements taken on same subjects. There are different methods developed for 

analysis of repeated measures. One of these methods is the Generalized Estimating 

Equation (GEE).  

GEE is generally used when it is thought there is a relationship between repeated 

measurements of the same subject. This relationship is determined by “Working” 

Correlation Matrix. In GEE, no assumptions on the joint distribution of the subject’s 

response vector exist. GEE method is especially used for categorical and count 

outcomes as well as continuous outcomes. In this study, data was taken from 

Hacettepe University Faculty of Dentistry. In the first stage of the study, the 

variables of interest were determined and Analysis of Variance for Repeated 

Measures method was applied. In the second stage, different correlation structures 

were calculated for Working Correlation Matrix and after the selection of suitable 

correlation structure, GEE method was applied. At the end of the study, it has been 

concluded that the results obtained by GEE is more accurate than that of Analysis of 

Variance because of the violation of the assumptions. 

 

Key words: Correlated Data, Repeated Measures, Working Correlation Matrix, Link 

Function, GEE  
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BİRİNCİ BÖLÜM 

 

1. GİRİŞ 

 

Verilerin çözümlenmesi sırasında en önemli durum, değişkenlerin bağımlılığı 

ya da bağımsızlığıdır. Sağlık alanında en çok rastlanılan durumlardan biri, bir 

denekten belli zaman aralıklarında ölçümler alınmasıdır. Bu ölçümler, bağımlı 

ölçümlerdir. Çünkü tekrarlı ölçümler arasında bir ilişki bulunmaktadır.  

 

Bir denekten alınan tekrarlı ölçümlerin ilişkili olduğu düşünüldüğünde, 

tekrarlı ölçümlere (verilere) özel yöntemlerden yararlanılır. 

 

Genelleştirilmiş Eşitlik Kestirimi (GEK), bağımlı değişkenin tekrarlı 

ölçümlerden oluşması ve gözlemlerin dağılımının bilinmediği durumlarda kullanılır. 

GEK, ilişkili verilerde Genelleştirilmiş Doğrusal Modellerin (GDM) uzantısıdır. 

GEK, daha çok kategorik ya da sayılabilir verilerde kullanılmasına rağmen, sürekli 

verilerde de kullanılmaktadır (29). 

 

GEK, bağımlı değişkenin ortak dağılımı ile ilgilenmez. Onun yerine zaman 

aralığındaki tekrarlı ölçümlerin marjinal dağılımını kullanır. GEK, GDM’in bir 

uzantısı olduğundan, GEK çözümlemesinde öncelikle doğrusal kestirici belirlenir 

sonra bir bağıntı fonksiyonu kullanılır. Örneğin varyans, ortalamanın bir fonksiyonu 

olarak tanımlanır. GEK’nin diğer eşitlik kestirim yöntemlerinden farklılığı, tekrarlı 

ölçümler arası ilişki yapısını (Working Correlation Matrix) göz önüne almasıdır. 

İlişki yapısı bu nedenle önem taşımaktadır. İlişki yapısının doğrudan kestirimi 

mümkün değildir. İlişkinin yapısı tam olarak belirlenemese de GEK etkin bir 

kestirime olanak sağlar (29). 

 

Farklı şekillerde ilişki yapıları bulunmaktadır. Kestirimler için bu ilişki 

yapılarının bilinmesi önemlidir. Doğru ilişki yapısının belirlenmesi farklı şekillerde 

olabilmektedir.  
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GEK, ülkemizde çok yaygın olarak kullanılmamakla beraber, yurtdışında 

birçok araştırmada tercih edilen bir yöntemdir. Yalnızca sağlık alanında değil sosyal 

bilimler ve ekonomi alanlarında da kullanılmaktadır. 

 

Araştırıcılar sıklıkla uzunlamasına (uzun dönemli) ya da kümelenmiş verilerle 

ilgili çözümlemelerle ilgilenmektedirler. Bu çözümlemelerde parametre kestirimleri 

olarak “En Küçük Kareler Kestirimi”, ”Yarı-olabilirlik”, ”EM algoritması”, ”En 

Çok Olabilirlik Kestirimi”, “Bağımsız Eşitlik Kestirimi” ve “Genelleştirilmiş Eşitlik 

Kestirimi”’ yöntemlerinden yararlanılmaktadır. 

 

Bu kestirim yöntemlerini kullanabilmek için bazı varsayımların sağlanması 

gereklidir. Bu varsayımlar genellikle dağılım üzerinedir. En küçük kareler yöntemi, 

yarı-olabilirlik, en çok olabilirlik kestirimi, EM algoritması için gözlemlerin 

dağılımlarının bilinmesi gerekir. Bağımsız eşitlik kestiriminde koşul, küme içi 

deneklerin bağımsız olmasıdır. GEK çözümlemesinde bu varsayımlara gerek 

duyulmaz.  

 

Bazı uzun dönemli çalışmalarda, gözlemler arasında ilişkinin olduğu tekrarlı 

veriler kullanılır. Eğer veriler yaklaşık olarak normal dağılım gösteriyorlarsa, 

yukarıda adı geçen yöntemler oldukça yaygın kullanılmaktadır. Eğer veri tipi ikili 

yani “binary” ya da sayılabilir ise farklı yaklaşımlar kullanılabilir (1). 

 

GEK’in incelendiği bu çalışmanın ilk bölümünde farklı parametre kestirimleri 

açıklanacak, ikinci bölümde, genelleştirilmiş doğrusal modellerin içeriği hakkında 

bilgi verilecek, üçüncü bölümde genelleştirilmiş eşitlik kestirimi açıklanacaktır. 

Dördüncü bölümde GEK için, sağlık alanında kullanılan veri yapısı hakkında bilgi 

verilecek, beşinci bölümde de verinin tanımlayıcı istatistikleri, gözlemlere ilişkin 

ilişki yapısı ve model için elde edilen katsayılar verilecektir. İlişki yapısı, bağımsız 

model altında yarı-olabilirlik bilgi ölçütü (QIC: quasilikelihood under the 

indepedence model information criterion) kullanılarak belirlenecek ve ilişki 

matrisinin elde edilmesiyle gerekli değerlere ulaşılacaktır. Son bölümde sonuçlara ve 

tartışmalara yer verilecektir. 
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1.1. En Küçük Kareler Kestirimi 

 
Parametre kestirim yöntemlerinden biri en küçük kareler kestirimidir. 

Regresyon çözümlemeleri için en küçük kareler kestirimi aşağıdaki şekildedir: 

 
        ii10i xY εββ ++= εi   ~N(0,σ2

)     (1.1) 

 

 ∑
=

−=
n

i

ii yyD
1

2)ˆ()(β      (1.2) 

 
Burada parametre vektörü β=(β0,β1)

’ için ortalama aşağıdaki gibidir: 

 

 ii x10
ˆˆˆ ββµ +=   (1.3) 

 

En Küçük Kareler kestiriminde amaç, kareler toplamının en küçük olmasıdır. 

D(β)’nın en küçüklenmesi için gerekli adımlar aşağıdadır. 

1. )(   ve)( β
β

β
β

DD
10 ∂

∂
∂
∂

 türevleri hesaplanır. 

2. Bu eşitlikler sıfıra eşitlenir. 

3. β0 ve β1  çözülür. Elde edilen kestirimler aşağıdadır.  
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 1.4’deki eşitlikleri farklı bir ifadeyle gösterirsek 1.5 eşitlikleri elde edilir. 
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 0)(   )(
10

=
∂
∂

=
∂
∂ β

β
β

β
DD  eşitliğinin çözümü ile 0);,( 100 =yββψ  ve 

0);,( 101 =yββψ  eşitliklerinin çözümü, β0, β1 katsayıları için aynı çözümü verir. ψ0 

ve ψ1 eşitlik fonksiyonları olarak adlandırılır ve ψ0 =0, ψ1=0 ile katsayılar kestirilir 

(3). Ancak modeli oluşturabilmek için normal dağılım koşulunun sağlanması 

gereklidir (3). 

 

1.2. En Çok Olabilirlik Kestirimi 

 

Parametre kestirim yöntemlerinden biri de en çok olabilirlik kestirimidir.  

 

X1 ,..., Xn, n tane rastgele değişken olmak üzere ),( θxf , rastgele 

değişkenlerin yoğunluk fonksiyonu olsun. Rastgele değişkenler gözlendiğinde, 

θ’’nın bir fonksiyonu olan ortak yoğunluk fonksiyonu, olabilirlik fonksiyonu olarak 

adlandırılır ve ),( xl θ  ile gösterilir. x vektörü verildiğinde; ),( xl θ ’nin en 

büyüklemesi için olabilirliğin logaritmasının )),(( xL θ  türevi sıfıra eşitlenir ve θ için 

çözüm elde edilir. En çok olabilirlik kestirim yöntemi için değişkenlerin dağılımının 

bilinmesi gerekir. Bu dağılımlar; Poisson, Binom, çok değişkenli dağılımlar olabilir. 

Üstel bir aile için, [E(Y)=µ]; β1, ... , β p parametrelerine bağlı ise herhangi bir β 

parametresi için en çok olabilirlik kestirimi eşitliği Eşitlik 1.6’da verildiği gibidir 

(10): 

 

  ∑
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∂
∂−
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β
 (1.6) 

 

1.3. Yarı - Olabilirlik Kestirimi “(Quasi-Likelihood)” 

 

 Bağımlı değişken Y’nin dağılımı tam olarak belirlenemediğinde yalnızca 

ortalama ve varyans modellenebildiğinde β’nın kestirimi tutarlılık ve asimptotik 

normal özelliklerine sahip ise bu kestirim yöntemine yarı-olabilirlik denir (3). 
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1.3.1 Yarı-Olabilirlik Fonksiyonu: 

 

Z1,...,Zn; µi beklenen değere ve φV(µi) varyansa sahip olsun. Burada V bilinen 

fonksiyon olmak üzere her bir gözlem için yarı-olabilirlik fonksiyonu K(zi; µi) ile 

tanımlanırsa aşağıdaki eşitlik elde edilir: 

 

   
)(

),(

i

ii

i

ii

V

zzK

µφ
µ

µ
µ −

=
∂

∂
 (1.7) 

 
Kestirim yöntemlerinden biri olan yarı-olabilirlik fonksiyonu olabilirlik 

fonksiyonu ile benzerlik gösterir. µ; β1 ,... βp parametrelerin bir fonksiyonu olsun. Bu 

durumda kestirimler aşağıdaki eşitlikler yardımıyla elde edilir: 
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 Bu iki eşitlik Bilgi “Information” matrisinin elemanlarıdır. Eşitlik kestirimi, 

en çok olabilirlik eşitlik kestirimlerine benzerlik gösterir: 
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 Varyans, “Sandwich” kestirimi kullanılarak kestirilir ve aşağıdaki eşitliklerle 

ifade edilir (10 ): 
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 Yarı-olabilirlik kestirimi, değişkenliğin fazla olduğu ve ortalamanın küçük 

olduğu durumlarda çok iyi çalışır. İlişkili veriler için de ikinci dereceden bir en 

iyileme sağlamaktadır (10). 

 

1.4. EM Algoritması 

 

Çözümlemeler sırasında sıkça karşılaşılan bir durum eksik gözlemlerin 

varlığıdır. Eğer gözlemler tümüyle rastgele olarak eksik (MCAR) ise ortalama için 

yansız kestirim yöntemleri tanımlanmıştır (1, 14). Bu yaklaşımlardan biri de 

“EXPECTATION MAXIMIZATION” (EM) algoritmasıdır. 

 

EM algoritması, veriler tamamlanmamış ya da eksik gözlemlere sahipse 

verilen veri setinin dağılımını oluşturan parametrelerinin, en çok olabilirlik 

kestirimlerini  bulmada kullanılan genel bir yöntemdir ve oldukça ayrıntılı bir 

tekniktir (23, 24). EM algoritmasının hem üstün hem de eksik yönleri bulunmaktadır. 

Bunlar sırasıyla aşağıda belirtilmiştir: 

 

• Sayısal olarak süreklilik sağlar. Her döngüde gözlemlenmiş verilerin 

olabilirliği artar. 

• Zor da olsa parametrelerin bulunmasında yardımcı olmaktadır. 

• En iyi noktaya yaklaştıkça algoritma çok yavaşlamaktadır. 

• Bazı durumlarda eyer (semer) noktasına yaklaşım olabilmektedir. 

 

1.4.1. Algoritma Yapısı: 

 

X=(Y,Z) için, olasılık model f(Y,Zθ) olsun ve yalnızca Y değeri 

gözlemlensin. Bu durumda olabilirlik fonksiyonu aşağıdaki şekildedir: 

 
  l(θ)=f(yθ)=∫ f(y,zθ) dz (1.13) 

 
Amaç, )(θl  değerini en büyük yapmaktır. EM algoritması, olabilirliği en 

büyük yapan bir yöntemdir. EM algoritmasının E- adım ve M-adım olmak üzere iki 

adımı bulunmaktadır (11, 19). Bu adımlar aşağıdaki gibi sıralanmaktadır:  
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İlk olarak bir başlangıç noktası θ0 belirlenir ve i=0,1,2,..., olmak üzere 

E-adımı; 

 
 Q(θθi)=∫ log f(z,yθ)f(zθi,y)d 

   =E[log(Z,Yθ)Y,θi] (1.14) 

 
fonksiyonu elde edilir.  
 
M-adımı; 

 Q(θθi) fonksiyonu θ’’ya göre en büyük yapılır. En büyük θi+1 belirlenir  

Bu adımlar tek bir noktaya ulaşıncaya kadar devam eder. 

 

E-adım da amaç, sabit parametre değerleri ve gözlenen Y değeri verildiğinde 

tam verinin (X) yeterli istatistiklerini kestirmektir. M-adım da ise amaç, bu 

istatistikleri en büyük yapmaktır (23, 24). Bu iki adımın tekrarlanması her döngüde 

olabilirliğin artmasını ve olabilirlik fonksiyonun en büyüğe yaklaşmasını sağlar (11). 

 

EM algoritması, bağımlı değişken y’nin eksik gözlenmesi ve bağımsız 

değişken X’in tam olarak gözlenmesi durumunda uygulanabilir. Normal dağılım 

gösteren veriler için EM algoritması, eğer veriler rastgele olarak eksikse (MAR) 

tutarlı parametre kestirimleri oluşturmada kullanılabilir (11, 19). 

 

1.5. Bağımsız Eşitlik Kestirimleri  

 
Bu kestirim yöntemi, genellikle kontrollü denemelerde tercih edilir. Geniş 

aralıklı modellerde ve eşit küme genişlikleri için kullanılan bağımsız eşitlik 

kestirimleri (BEK), aşağıdaki koşulların sağlanması durumunda etkilidir: 

 

1. Küme içindeki yanıt değişkenleri bağımsız olmalı 

2. Küme içindeki tüm ortak değişkenler sabit olmalı 

3. Tüm ortak değişkenler ortalama dengeli olmalı  
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örneğin; p küme ortalaması aşağıdaki gibidir: 

 

p1jx
i

i

T

1i

itjT
1 ,...,, =∑

=

 (1.15) 

 
4. Ortak değişkenler, küme içindeki sabit olan ortak değişkenlerin ve ortalama 

dengeli ortak değişkenlerin bir karışımı olmalıdır (2). 

 

BEK, en çok klinik denemelerde uygulanmaktadır. Paralel grup düzenlerinde 

deneğin tekrarlı ölçümlerinin bulunduğu küme için tedavi etkileri sabittir, çapraz 

düzenli çalışmalarda ise tedavi etkileri kümede çeşitlidir ancak ortalama dengelidir. 

2x2 çapraz düzenlerde başlangıç (baseline) ölçümler, ilk tedavi periyodundan sonra 

bağımlı değişkenler için ortak değişken gibi alınabilir, ancak başlangıç ölçümler 

kümede sabittir. Paralel düzenlerde ise x değişkenleri yalnızca başlangıç değerleri ve 

tedavi etkilerini içerdiğinden kümede sabittir. 

 

Diğer taraftan, çapraz düzenlerde taşıyıcı etki bulunabileceğinden yanıt 

değişkeni y sadece asıl etkiye değil ilk önceki tedaviye de bağımlıdır. Böyle bir 

durumda koşulların ilki çiğnenmiş olmaktadır. Bu gibi durumlarda, varsayımların 

sağlanmaması, BEK kullanılmasını engellemektedir (2). 
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İKİNCİ BÖLÜM 

 

2. GENELLEŞTİRİLMİŞ DOĞRUSAL MODELLER 

 

GDM, ilişkili verilerin modellenmesinde kullanılan bir algoritmadır. 

Olabilirlik temelli model olan GDM, bireylerin ya da gözlemlerin bağımsızlığı 

varsayımını temel alır. GDM’yi tanımlamak için gerekli birkaç ifade aşağıda 

belirtilmiştir (17,32): 

 

• Bağımlı değişkenin dağılımı üstel aileden olmalı 

• Bağıntı fonksiyonu tanımlanmalı 

• Bağımsız değişkenler belirtilmelidir. 

 

2.1. Model Yapısı 

 

 Genel olarak doğrusal yapı modeli Eşitlik 2.1’de verildiği gibidir:  

 

y i= x i
′β+ε i (2.1) 

 
yi; i-inci gözlem için yanıt değişkenini, xi; i-inci gözlem için ortak 

değişkenlerin sütun vektörü ya da açıklayıcı değişkeni ifade etmektedir. Bilinmeyen 

katsayı vektörü β; y verisine uygun olarak en küçük kareler yöntemi ile kestirilir. εi ; 

bağımsız olduğu varsayımı altında sıfır ortalamalı, sabit varyanslı normal dağılımlı 

rastgele değişkendir. 

 

yi’nin beklenen değeri µi ile gösterilirse, doğrusal ifade Eşitlik 2.2’deki gibi 

tanımlanır (32).  

 
 µi= x i

′β (2.2) 

 
Genel doğrusal modeller, istatistiksel veri çözümlemelerinde kullanılırken, 

doğrusal modeller (µi= x i
′β) bazı sınırlamalar altında kalır (13). Bu durumlardan 

birkaçı aşağıda belirtilmiştir: 
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1.Verilerin normal dağılım varsayımı sağlanmayabilir. Örneğin, Normal 

dağılım varsayımı, gözlemlerin kesikli olması durumunda geçerli değildir.  

2.Verilerin ortalaması sınırsızdır ancak bazı durumlarda örneğin; sağ-kalım 

ya da sayılabilir veriler için ortalama, negatif değer almazken, oranlar ya da 

ikili veriler için ortalama [0,1] birim aralığında değer alabilir. 

3.Tüm gözlemler için verilerin varyansının sabit olduğu varsayımı gerçekçi 

olmayabilir (13). 

 

GDM, üstel aileden gelen tek değişkenli veriler için regresyon modeli 

oluşturmada kullanılan standart bir yöntem olarak tanımlanmıştır (5). GDM’deki 

bağımlı değişken Y için olasılık yoğunluk fonksiyonu: 

 
 f y(y,θ,φ)=exp{(yθ − b(θ))/a(φ)+c(y,φ)} (2.3) 

 
şeklinde ifade edilmektedir. a(.), b(.) ve c(.) verilmiş fonksiyonlar, θ ; yer 

parametresi, φ; yayılım parametresidir (5, 12, 19, 21). 

 

Genelleştirilmiş doğrusal modeli oluşturan bileşenler aşağıda tanımlanmıştır: 

• Doğrusal ifade Eşitlik 2.4’deki gibidir (21, 29): 

 
 ηi=x i

′β  (2.4) 

 
• Doğrusal kestirici (ηi) ile ilişkili olarak yi’nin beklenen değerini tanımlayan g 

bağlantı “link” fonksiyonu aşağıdadır (13, 16, 18). 

 
 g(µi)= g(E[Yi])= x i

′β (2.5) 

 
• Yanıt değişkeni yi (i=1,2,...), bağımsız ve üstel aileden gelen bir dağılıma 

sahip olsun. µ ortalamaya bağlı olarak yanıt değişkenin varyansı aşağıdadır. 

 
  var(yi)=φV(µi)/ w i  (2.6) 
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wi her gözlem için bilinen ağırlıktır ve yayılım parametresi φ, bilinir ya da 

kestirilir (19). 

 

GDM’nin özelliklerinden birisi, doğrusal olmayan modelleri bağıntı 

fonksiyonu yardımıyla doğrusal modellere dönüştürebilmesidir. Örneğin, g(.) 

bağlantı fonksiyonunun uygun seçimi ile negatif binom, geometrik, binom, poisson, 

gamma, ters-Gauss, normal dağılımlar doğrusal model biçiminde yazılabilir (5). 

 

2.2. Bağıntı Fonksiyonu 

 

Sonuç değişkenin beklenen değeri µ, açıklayıcı değişken x ve bilinmeyen 

parametre vektörü β olmak üzere, i-inci gözlemin beklenen değeri monoton bir 

bağıntı fonksiyonu olan g içinde bir doğrusal kestirim ile ilişkilidir. Bu ifade 

aşağıdadır (19). 

 
  g(µi)=x i′β    (2.7) 

 
Her dağılım için kullanılan bağıntı fonksiyonları da farklılık gösterir. 

Dağılımlar ve dağılımlara karşılık gelen bağıntı fonksiyonları aşağıdaki gibidir: (20, 

22, 28). 

 

• Normal  Özdeşlik 

• Poisson  Logaritmik 

• Binom  Logit 

• Bernoulli   Logit  

• Negatif Binom   Log-ratio 

• Geometrik   Log-ratio 

• Üstel   Karşılıklı 

• Gamma   Karşılıklı 

• Ters Normal   Güç 

• Çok değişkenli   Logit 
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GDM’deki varsayımlardan biri gözlemlerin bağımsız olarak dağılmasıdır. 

Fakat bazen bu varsayım gerçekleşmeyebilir. Bu durumda GDM yetersiz 

kalmaktadır. 

 

2.3. Uyum İyiliği Testi 

 

GDM’in uyum iyiliğinin değerlendirilmesinde yardımcı olacak iki istatistik; 

ölçeklendirilmiş olabilirlik sapma istatistiği (scaled deviance) ve Pearson Ki-kare 

istatistiğidir. Yayılım parametresi φ’nin belli bir değeri için sapma istatistiği, 

regresyon parametrelerinin en çok olabilirlik kestirimlerinin log-olabilirliği ile elde 

edilen log-olabilirliğinin en büyüğü arasındaki farkın iki katı olarak tanımlanır (19). 

 

Eğer L(y,µ), ortalama değerin (µ) ve yanıt değişkeninin (y) bir fonksiyonu 

olarak belirtilirse, ölçeklendirilmiş sapma istatistiği, aşağıdadır. 

 
  D

* (y, µ)=2(L(y,y) – L(y,µ)) (2.8) 

 
 Özel dağılımlar için, bu eşitlik 

 
  D

* (y, µ)= D(y, µ) / φ (2.9) 

 
şeklinde ifade edilebilir. D, sapma istatistiğini göstermektedir. Farklı dağılımlar için 

farklı sapma istatistikler bulunmaktadır. Örneğin, wi; her gözlem için ağırlık olmak 

üzere normal dağılım için sapma istatistiği aşağıdadır.  

 
  ∑ −=

i

2

iii ywD )( µ   

 
Diğer istatistik, Pearson ki-kare istatistiği Eşitlik 2.10 ile gösterilmektedir:  

 

  ∑ −
=

i i

2

iii2

V

yw
X

)(

)(

µ
µ

   (2.10) 

 
 Ölçeklendirilmiş Pearson ki-kare istatistiği, X2 

/ φ ile ifade edilmektedir.  
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 Bu iki ölçeklendirilmiş istatistik, belli koşullar altında, sınırlandırılmış ki-kare 

dağılımına sahiptir. Yayılım parametresi, bilinmediği durumlarda, sapma istatistiği 

ve Pearson ki-kare istatistiği kullanılarak aşağıdaki eşitliklerle kestirilir: 

)/(ˆ

)/(ˆ

2 pnX

pnD

−=

−=

φ

φ
 (2.11) 

 
 Serbestlik derecesi (n-p) de, parametre sayısı (p) ile gözlem sayısının (n) 

farkına eşittir (19). 

 

2.4. Genelleştirilmiş Doğrusal Model Fonksiyonları 

 

 GDM’de genellikle bağımsız veriler üzerine model çıkarımlar kullanılır. Bu 

modeller, olabilirlik temelli regresyon modelleridir. Bağımsız verilere ilişkin model 

belirlendikten sonra, belirli parametreler yardımıyla log-olabilirlikler kestirilerek ya 

da ek parametreler kullanılarak çözümlemeler yapılabilir. Bu olabilirlik kestirim 

yapısının ilki Tam Bilgiye Dayalı En çok Olabilirlik (TBEO) (full information 

Maximum Likelihood), diğeri de Sınırlı Bilgiye Dayalı En çok Olabilirlik (SBEO) 

(limited information maximum likelihood) olarak adlandırılır. Kestirimler en iyileme 

yöntemi kullanılarak belirlenir. Bu konuda en çok kullanılan yöntem ise Newton-

Rapshon yöntemidir (16). 

 

 TBEO kestiriminde, doğrusal, poisson ve bernoulli regresyon modelleri 

kullanılır. Bu üç regresyon modeli için üç dağılım kullanılır. Bu dağılımlar sırayla 

Normal, Poisson ve Bernoulli dağılımlarıdır. Bu dağılımların olasılık yoğunluk 

fonksiyonu ve/veya olasılık fonksiyonları kullanılarak olabilirlik fonksiyonları 

belirlenir. Olabilirlik temelli modellerde, kestirim eşitlikleri log-olabilirlik modelin 

türevinden elde edilir (16). 

 

 SBEO kestirim eşitliğinde üstel aile kullanılır. Üstel ailenin üstünlüğü birçok 

dağılımı içinde bulundurmasıdır. Bu dağılımlar Normal, Bernoulli, Binom, Poisson, 

Gamma, Ters-Normal, Geometrik ve Negatif Binom dağılımlarıdır. Model ve 
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kestirimlerin elde edilmesinde ki yöntem, TBEO kestirim eşitliklerinde kullanılan 

yöntemle benzerlik gösterir (16). 

 

2.5. Kestirimlerin Varyansının Elde Edilmesi 

 

Varyans kestirimleri, olabilirlik fonksiyonunun ikinci türevlerinin 

oluşturduğu matrisin (Hessian) tersi ya da ikinci türevinin beklenen değerinden 

oluşan Fisher skor matrisi ile hesaplanır. Bu hesaplamalar aynı kestirimleri verir. 

Varyans kestirimleri, 
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şeklindedir (16). j,k= 1, ... ,p (p; X’in sütun boyutunu ifade etmektedir)  

 

Hessian matrisi, olabilirlik fonksiyonun ikinci türevlerinden oluşmaktadır.  

 

  
ppkj

l
H

×











∂∂
∂

=
ββ

2

 

 
 Fisher skor matrisi de, olabilirlik fonksiyonun ikinci türevlerinin beklenen 

değerlerinden oluşmaktadır.  
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Bu iki yaklaşım, bilgi matrisinin iki farklı yapısını temel alır. Olabilirlik 

temelli modellerde, dağılımların log-olabilirliğinin yani ∂l/ ∂β ikinci türevi ile 

eşitlikler kestirilir. 

 

Varyansın “Sandwich” kestiriminin genel yapısı T1BAA −−  biçimindedir. A; 

bilgi matrisinin varyans kestirimi, B; kovaryans matrisidir. A ve B matrisinin elde 

edilmesi için gerekli eşitlikler aşağıdadır (16). 
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Gözlemlerin bağımsızlığı varsayımı altında yukarıdaki eşitliğin ikinci ifadesi 

sıfır olacağından, B matrisinin kestirimi aşağıdaki gibi olur:  

 

[ ]∑
=

=
n

1i

i

T

iii xxB )ˆ,(ˆ)ˆ,(ˆˆ βψβψ  (2.14) 

 
 Bu durumda genel varyansın “sandwich” kestirimi de aşağıdadır. 

 

 )(ˆ)(ˆ)(ˆ)(ˆ ββββ
))))

1

H

1

Hs VBVV −−=  (2.15) 

 
Eğer ilişkili gözlemler, bağımsız kümeler altında toplanabilirse varyans, farklı 

bir şekilde kestirilir. Bu tür varyans “modified sandwich” varyans olarak adlandırılır.  

 

)(ˆ)(ˆ)(ˆ)(ˆ ββββ
))))

1

HMS

1

HMS VBVV −−=  (2.16) 

 
Bu varyans kestiriminde kovaryans matrisi, her bağımsız kümedeki 

gözlemlerin toplamı olarak kestirilir. [∑ ∑ ∑i t t

T

itit ))(( ψψ ] 

 

“Sandwich” varyans kestirimi, örneklem genişliğine de bağlıdır. “Sandwich” 

varyans için kullanılan çarpan, n / (n-p) dir. n, örneklem genişliğini; p, modeldeki 

ortak değişken sayısını göstermektedir. “Modified Sandwich” varyans için kullanılan 

çarpan, n/(n-1) dir (16). 
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2.6. Boylamsal (Longitudinal) Veriler 

 

Bireylerin belirli özelliklerinin, bir zaman aralığı içinde, ikiden çok kez 

ölçüldüğü çalışmalar oldukça yaygındır. Özellikle klinik çalışmalar, insan ve 

hayvanların gözlemlendiği çalışmalar bu tip verilere örnek gösterilebilir. Deneğe 

ilişkin ölçümler farklı zamanlarda olabilir. Ölçümlerin alındığı zamanlar her denek 

için farklılık gösterebilir. Bu nedenle verilerin toplanması oldukça zaman alıcıdır. 

Fakat boylamsal veriler, bilimsel olarak daha etkili ve daha güçlü sonuçlar ortaya 

koyar (31).  

 

 Boylamsal verilerin çözümlemesi için bazı yaklaşımlar bulunmaktadır. İlk 

olarak, kolay bir yaklaşım kullanılır. Bu yaklaşım için tekrarlı ölçümler arasındaki 

ilişki göz ardı edilir ve geleneksel doğrusal regresyon çözümlemesi kullanılır. Fakat 

burada bir tehlike bulunmaktadır. Varyansın çok büyük olması ve varsayımların 

sağlanamaması yanlış test sonuçlarına, etkisiz parametre kestirimlerine ve yanlış 

çıkarımlara neden olur. Tekrarlı ölçümler arasındaki ilişki değerlerini göz önüne alan 

yaklaşımlar gerekebilir. Bu nedenle daha genel yaklaşımlar belirtilmiştir. Bunlar, 

marjinal modeller (GEK) ve rastgele etkili modellerdir (30, 31). 

 

2.7. Panel Veri 

 

Panel veri, kümeli veri ya da tekrarlı ölçüm verisi olarak da adlandırılır. 

Panel veri, aynı kategoriye ilişkin farklı deneklerin, tekrarlı ölçümlerinin 

bulunduğu kümeye denir. Bu veriler ilişkili verilerdir. Örneğin, kadın hastalar 

paneli oluşturuyorsa, kadın hastalara ait kan değerlerinin tekrarlı ölçümleri panel 

veriyi oluşturur. Eğer küme içindeki veriler, aynı deney birimlerinden geliyor ve 

zamana bağımlı ise uzun dönemli veri olarak adlandırılır. Paneller içindeki tekrarlı 

ölçümler ilişkilidir. Sonuç değişkenleri arasında ilişki yokken gözlemlerin bağımsız 

olması durumunda kullanılan yöntem GDM’dir. Marjinal modeller (GEK) ve 

rastgele etkili modeller ilişkili veriler için kullanılır (16). 
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Panel veriler için iki durum söz konudur. Gözlemler i=1,2,…,n panele 

ayrılsın. Her panelde t=1,2,…,ni gözlem bulunsun. Eğer her panelde bulunan 

gözlemler birbirine eşitse dengeli panel (balanced panel), paneller farklı örneklem 

genişliğine sahip ise dengeli olmayan panel (unbalanced panels) olarak 

açıklanmaktadır. Dengeli olmayan paneller, örneklem seçimi ile ortaya çıkmıştır. 

Paneller oluştuktan sonra da panel içinde bulunan gözlemlere benzer gözlemler 

dahil edilebilir (33). Panel verilerin modellenmesi değişik şekillerde olabilir. Bu 

modellerden ikisi, sabit etkili model ve rastgele etkili modeldir. (16) 

 

2.7.1. Bileşik (Pooled) Kestirim  

 

 Panel verinin modellenmesinde basit bir yaklaşım; verideki panelin 

bağımlılığını yok saymaktır. Bu yaklaşım, bileşik kestirim olarak adlandırılır ve 

veriler bir kümede birleştirilir. Sonuçta kestirilen katsayı vektörü tutarlı iken, etkili 

değildir. GDM’den elde edilen varyans kestirimi HV̂  , verinin bulunduğu panellerin 

bağımsız olması durumunda kullanılır. O nedenle “sandwich” varyans kestiriminin 

kullanılması daha uygun görülür. Fakat bu durumda ki varyans kestirimi de 

olabilirlik temeline uygun görülmemektedir (16). 

 

2.7.2. Sabit Etkili ve Rastgele Etkili Modeller  

 

Eşitlik kestirimlerinde her küme için bir etki bulunmaktadır. Bu etkiler sabit 

ve rastgele etkilerdir. Sabit etki de kendi içinde koşullu ve koşullu olmayan sabit 

etkiler olmak üzere ikiye ayrılır. Koşullu modeller, yalnızca küçük grup 

genişliklerine ilişkin durumlar için uygundur. Rastgele modeller, yanıt değişkenin 

dağılımını, grup değişkenlerinin rastgele olması koşulu altında modeller (12). 

 

2.7.2.1. Koşullu Olmayan Sabit Etkili Modeller 

 

Koşullu olmayan sabit etkili modeller, panele ilişkin bir etki içerir. Koşullu 

olmayan sabit etkili modelde katsayılar ve etki, üstel dağılım ailesinden gelen 
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dağılımlar ve yarı-olabilirlikler kullanılarak kestirilir (16). Üstel aile için koşullu 

olmayan sabit etkili eşitlik kestiriminde doğrusal kestirici aşağıdadır. 

 
  iitit vx += βη  (2.17) 

 
 β ve v’ye göre kestirimler eşitlikten ayrı ayrı elde edilir. 

 

2.7.2.2. Koşullu Sabit Etkili Modeller 

 

Bu tür kestirimler, koşullu olabilirlikler kullanılarak türetilir. Modeller, üstel 

dağılım ailesinden değil de belli dağılımlardan (Poisson, bernoulli, gibi) türetilir. 

Bu modeller için sonuç değişkeni, belirli bir dağılıma sahiptir. Bir kümeye ait tüm 

gözlemlere ilişkin ortak dağılım hesaplanır ve sabit etki için yeterli istatistik 

bulunarak yeterli istatistiğin dağılımı elde edilir. Yeterli istatistiğin dağılımına göre 

verilerin koşullu dağılımı bulunur. Koşullu dağılım kullanılarak katsayılar 

kestirilir. Tüm panellerin koşullu log-olabilirlik eşitliği aşağıdadır.  

 

 ∏∏
==

==
n

1i

ii3

n

1i

i2i1 yyfyfyfL ))(;(ln))(()(ln ξβξ  (2.18) 

 

 )( iyξ ; yeterli istatistiği, ))(;( ii3 yyf ξβ ; koşullu dağılımı ifade etmektedir. 

Bu dağılım sabit etkiden bağımsızdır (16). 

 

2.7.3. Rastgele Etkili Modeller 

 

Rastgele etkili modeller, parametreleri kestirilebilecek bir dağılım 

varsayımına göre rastgele etkiyi kestirir. Bu durum, hem sonuç değişkenin hem de 

rastgele etkinin dağılımına bağlıdır. Rastgele etkili model için log-olabilirlik 

aşağıdadır. 
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 Burada fy; tüm model için yoğunluk fonksiyonunu, f; rastgele etki vi’nin 

yoğunluk fonksiyonunu göstermektedir. Bu integralin çözülebilmesi için uygun 

dağılım varsayımına göre kestirimler hesaplanır. Bu tip modeller, deneğe özgü 

modeller olarak adlandırılır ve kümenin marjinal dağılımı yerine bireye ilişkin 

gözlemlerin dağılımını kullanır. Bu model, koşullu sabit etkili modellerdeki 

varsayımları kullanır (16). 

 

2.7.4. Kitle Ortalamalı ve Deneğe Özgü Modeller (Population-Averaged 

          and Subject-Specific Models) 

 

Verinin küme yapısı için iki durum bulunmaktadır. Bunlar kitle-ortalamalı 

model ve deneğe özgü modeldir. Kitle ortalamalı model, tüm panellerdeki ortalama 

etki ile panel içi bağımlılığı belirtir. Marjinal model olarak bilinen kitle-ortalamalı 

model, panel kovaryans yapısı ile elde edilir. Panel kovaryansı (ya da ilişkisi), 

panellerin tümüne ilişkin ortalama kullanılarak kestirilir.  

 

 Deneğe özgü model, belli bir panelin rastgele bileşenleri ile panel içi 

bağımlılığı belirtir. Deneğe özgü model, bir panel etkisinin belirtilmesi durumunda 

yani panel kovaryansı ile hesaplanır. Her bir panel etkisi yalnızca belirli bir panel 

içindeki bilgiler kullanılarak kestirilir (16). 
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ÜÇÜNCÜ BÖLÜM 

 

3. GENELLEŞTİRİLMİŞ EŞİTLİK KESTİRİMİ 

 

İncelenen verilerin çözümlemeleri için her zaman gerekli varsayımlar 

sağlanamayabilir. Birinci bölümde tanımlanan kestirimlerin uygulanabilmesi için 

bazı varsayımlar gereklidir. Bu kestirim yöntemleri için özellikle verilerin 

dağılımlarının bilinmesi gereklidir. Örneğin, en çok olabilirlik yöntemi yanıt 

değişkenin dağılımını gerektirir. En çok olabilirliğe alternatif olarak gösterilen yarı-

olabilirlik, ilk iki momentin varlığını ve bağlantı fonksiyonunu gerektirir. Ayrıca 

farklı kümelerde bulunan gözlemler aynı örneklem genişliklerine sahip olmalıdır 

(27). GEK, bu tür varsayımlara gerek duymaz.  

 

GEK ile ilgili bazı tanımlar verilmektedir. Bunlardan birkaçı aşağıda 

belirtilmiştir: 

 

• GEK, ilişkili verilerin regresyon modelini oluşturmak için parametrelerin 

kestirim yöntemi olarak açıklanır. 

• Uzun dönemli verilerin çözümlemesi için yarı-olabilirlik yönteminin çok 

daha genişletilmiş ifadesidir. 

• İlişkili gözlemler için genelleştirilmiş doğrusal modellerin kullanılmasını 

sağlar ve oldukça çok kullanım alanına sahiptir. 

 

GEK’nin kullanıldığı yerler üç başlıkta toplanabilir. Bunlar; uzun dönemli 

(boylamsal) veriler, klinik denemeler, epidemiolojik çalışmalardır. GEK 

çözümlemesi, yanıt değişkeninin kesikli, ikili ya da kategorik veri tipinde olması 

(mümkünse binom ya da poisson dağılım ailesinden) durumunda daha çok 

kullanılırken, yanıt değişkenlerin sürekli veri tipi için de uygulanabilmektedir (1, 10, 

29). 

 

GEK’e ilişkin olarak regresyon modelinin tanımlamasında gerekli birkaç 

ifade aşağıda belirtilmiştir (5, 17): 
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• Bağımlı değişkenin dağılımı (üstel aile üyesi olmalı) tanımlanmalı 

• Bağlantı fonksiyonu tanımlanmalı 

• Bağımsız değişkenler belirtilmeli 

• Tekrarlı ölçümlerin kovaryans yapısı elde edilmelidir. 

 

3.1. Genelleştirilmiş Eşitlik Kestirim Yaklaşımı  

 

Yij ,j=1,...,ni, i=1,...,K olmak üzere i-inci denekteki j-inci ölçümü göstersin. i-

inci denek üzerinde ni tane ölçüm alınsın ve bu durumda toplam ölçüm, K denek 

üzerinden ∑
=

K

i

in
1

 tanedir (5, 18, 27, 32). 

 

İlişkili veriler, bağımsız gözlemlerde olduğu gibi aynı bağlantı fonksiyonu ve 

doğrusal kestirim bileşimi kullanılarak modellenir. Bağımsız durumlardaki gibi 

varyans fonksiyonu da tanımlanır ancak farklı olarak ilişkili ölçümlerin kovaryans 

yapısı modellenmelidir. 

 

i-inci denekteki ölçüm vektörleri ve ortalamaları sırasıyla 

],,[,],,[ 11 ′=′=
ii iniini YYY µµµ LL  olsun. V; Y’nin kovaryans matrisi olsun. i-inci 

denekteki j-inci ölçüm için bağımsız ya da açıklanan değişken vektörü, 

Xij=[xij1,...,xijp]
’ ile gösterilsin. İlişkili veriler için px1’lik regresyon parametresi 

β’nın kestirimi, aşağıdaki eşitlikten elde edilir: 

 

 

βµ
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β
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K
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ii

1
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xg
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∂
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=∑
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−

)(

))(()(
 (3.1) 

 

g bağlantı fonksiyonu olmak üzere i-inci denek için regresyon 

parametrelerinin ortalamaya göre kısmi türevlerini gösteren inp× ’lik matris 

aşağıdaki şekilde ifade edilmiştir (27):  
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3.2. İlişki Matrisi (Working Correlation Matrix) 

 

R(α); α parametre vektörleri tarafından belirlenen ilişki matrisi olsun. Y’nin 

kovaryans matrisi aşağıdaki gibi modellenir (4, 6, 8, 16, 18, 26, 27, 29, 32):  

 
 Vi=φAi

½
R(α)Ai

½ 

 
φ, yayılım parametresi, Ai ;j-inci köşegen elemanları v(µij) olan ii nn ×  

köşegen matris olmak üzere eğer R(α), Y’ nin doğru ilişki matrisi ise, V’de Y’nin 

doğru kovaryans matrisidir. İlişki matrisi genellikle bilinmez, bu nedenle kestirim 

yoluna gidilir. Pearson artıklarının uygun fonksiyonları ile β parametre vektörünün 

değerleri kullanılarak kestirilir. Artıklar aşağıdaki gibi ifade edilir (7, 16, 18): 

 

  
)µ(

µ

ij

ijij

ij
v

y
e

−
=  (3.3) 

 
İlişki matrisinin her zaman doğru ilişki yapısını göstermesi beklenemez, 

ancak doğru belirlenirse, kestirimlerin kesinliği artmaktadır. Eğer ilişki matrisi R0=I 

yani birim matris olarak belirlenirse, GEK, bağımsız eşitlik kestirimlerine indirgenir 

(16, 18).  

 

3.2.1. Bağımsız İlişki 

 

Gözlemlerin farklı deneklerden alındığı ve gözlemler arasında hiçbir ilişki 

olmadığı durumdur. Yani bir deneğe ait tüm gözlemler bağımsızdır (5, 16, 26, 27, 29, 

32). İlişki matrisi yapısı aşağıdaki gibidir: 
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3.2.2. Değiştirilebilir İlişki  

 

İlişki matrisinin en basit formudur ve bu yapı, bir küme içindeki gözlemler 

arasında sabit bir ilişkiyi göstermektedir. Bu ilişki de α ile gösterilmektedir. 

Değiştirilebilir ilişki matrisi yapısı aşağıdaki gibidir (5, 9, 16, 26, 27, 29): 
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Bu ifade, aynı deneğe ilişkin gözlemlerin zamana bağlı olmadığı veri setleri 

için geçerlidir. Bu modelde gözlemler arası ilişki sabittir (α). Değiştirilebilir ilişki 

yapısı, Pearson artıklar kullanılarak hesaplanabilir. Artıkların kullanılmasıyla elde 

edilen α’ nın kestirimi ise aşağıdadır: 
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3.2.3. Yapısal Olmayan (Unstructured) İlişki 
 

Bu ilişki yapısında varsayım; aynı deneğin tüm gözlemlerinin ilişkili 

olmasıdır. İki değişken arasındaki ilişki, αij ile gösterilmektedir ve bilinmeyen 

parametre sayısı n(n-1)/2 tanedir (16). Yapısal olmayan ilişki yapısı aşağıdaki gibidir 

(5, 9, 16, 26, 27): 
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α, Pearson artıkların (eij ,ejk) kullanımı ile kestirilebilir.  
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3.2.4. Sabit İlişki 

 

Sabit ilişki matrisi aşağıda verildiği gibidir (5, 16, 18, 26): 
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3.2.5. Otoregresif (Autoregressive) İlişki AR(1) 

 

Küme içindeki tekrarlı gözlemler doğal bir sıra içindeyken gözlemler 

arasındaki ilişkinin zamana bağımlı olması halinde kullanılır (9, 16). Otoregresif 

ilişki matrisi (5, 16, 26, 27, 29): 
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şeklinde belirtilmiştir. İlişki ve ilişki katsayısı aşağıdaki gibidir: 
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 3.2.6. Durağan (Stationary) İlişki  

 

Durağan ilişki, M-bağımlı olarak da adlandırılmaktadır. Otoregresif zaman 

serisine alternatif olarak, bazı küçük zaman aralıklarında örneğin k gibi bir zaman 

aralığında ilişkinin varlığı için kullanılabilir. Bu durumda, ilişkili olabilecek 

gözlemler için en büyük zaman aralığı belirlenir (16). Durağan ilişki matrisi 

aşağıdaki gibidir (5, 16, 18, 26, 32): 
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3.2.7. Durağan Olmayan (Nonstationary) İlişki 

 

Durağan ilişkide olduğu gibi bir g aralığında, ilişkinin varlığı için kullanılır. 

Durağan ilişkiden farkı ise köşegenlerin altındaki ilişki katsayılarının sabit olmadığı 

varsayımını taşır (16). Durağan olmayan ilişki matrisi aşağıda belirtildiği gibidir: 
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3.3. En İyi İlişki Yapısını Belirleme  

 

Genelleştirilmiş eşitlik kestiriminde değişkenlere ilişkin katsayıları 

kestirebilmek için ilişki yapısının belirlenmesi gerekmektedir. Farklı ilişki yapıları 

bulunmaktadır. Bu ilişki yapıları içinden en doğru ilişkinin belirlenmesi gerekir. 

 

Olabilirlik temelli modeller için model yapısının uygunluğunda kullanılan 

ölçülerden biri de Akaike Bilgi Ölçütüdür (AIC). AIC ölçütü aşağıdaki gibidir: 

 
  AIC=-2L+2p (3.17) 

 
 L; log-olabilirliği, p; model parametrelerinin sayısını göstermektedir. Amaç, 

yarı–olabilirlik modeller için bu ölçüyü genelleştirmektir. Bu kesimde yarı-olabilirlik 

ifadesi Q ile ifade edilecektir. AIC, genelleştirilince yeni ölçü olarak QIC 

tanımlanmıştır. Modeller için yarı-olabilirlik aşağıdadır (16).  

 

  ∫
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µ
µ
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y
yQ  (3.18) 

 
 Yarı-olabilirlik, bağımsızlık varsayımı altında (R=I) hesaplanır. QIC(R) 

ifadesi aşağıdadır. 

 

  )(2))((2)( ,
11

RMSIR VAtracexgQRQIC −− +−= β  (3.19) 

 
Eşitlik 3.19’nin sağ tarafında bulunan; 

• Q(y;g-1(xβR)), R ilişki yapısı için modelden hesaplanan yarı-olabilirliğin 

değerini göstermektedir. Yarı-olabilirlik için µ yerine )ˆ(ˆ 1
Rxg βµ −=  

kullanılmaktadır. g-1( ) model için bağıntı fonksiyonunu göstermektedir. 

• VMS,R , R ilişki yapısı için modelden elde edilen “sandwich” varyans 

kestirimini belirtmektedir. 

• AI bağımsız modelden elde edilen varyans matrisini ifade etmektedir. 
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 İlişki yapılarından uygun olanı QIC ölçütüne göre belirlenir. AIC ölçütünde 

en küçük değer anlamlı olduğundan QIC ölçütü için de en küçük değerli ilişki yapısı 

en uygun olanıdır.  

 

 İlişki yapısının belirlenmesinde göz önüne alınacak ifadeler aşağıda 

belirtilmiştir: 

1. Eğer panellerin örneklem genişliği küçük ve veri tam ise, yapısal olmayan 

ilişki yapısı kullanılabilir.  

2. Eğer panellerdeki gözlemler aynı örneklem birimlerinden çok fazla 

alınmışsa zamana bağlı bir yapı kullanılabilir. 

3. Eğer gözlemler kümelenmiş (zamana bağlı değilse) ise değiştirilebilir ilişki 

yapısı kullanılabilir. 

4. Eğer panellerin sayısı az ise, bağımsız model uygundur, ancak hipotez testi 

ve katsayıların yorumu için “sandwich” varyans kestirimini hesaplamak 

gerekir. 

5. Eğer birden fazla ilişki yapısı uyumlu ise, QIC kullanılarak en iyi ilişki 

yapısı seçilebilir (16). 

 

3.4. Yayılım Parametresi 

 

Yayılım parametresi φ’nin kestirimi aşağıdaki gibidir: 
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N toplam ölçüm sayısı ve p’de parametre sayısı olmak üzere GEK’nin 

uygulanmasında izlenen bir algoritma yapısı bulunmaktadır (16,18): 
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3.5 Algoritma 

 

GEK’nde modelin elde edilebilmesi için belli bir algoritma bulunmaktadır. 

Bu algoritma olabilirlik kullanan bir yöntem değildir, bu nedenle olabilirlik 

çıkarımlar GEK’de mümkün değildir. Algoritma yapısı şu şekildedir: 

1. Bağımsızlık varsayımı altında genelleştirilmiş doğrusal modeller 

kullanılarak ilk β’lar hesaplanır. 

2. İlişki matrisi R, hesaplanır. Sonra standartlaştırılmış artıklar hesaplanır. 

3. Kovaryans, aşağıdaki eşitlik yardımıyla kestirilir:  

 
Vi=φAi

½
R(α)Ai

½
 (3.21) 

 
4. β’lar  
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eşitliği ile yinelenir. 

5. Adımlar 2-inci ve 4-inci adımlar arasında belli bir noktada birleşinceye 

        kadar tekrarlanır (18, 29, 32). 

 

3.6. Kovaryans Parametresinin Kestirimi 

 

 Zeger ve Liang (1986), ilişki matrisinin belirlenmesi sırasında β ’nın kestirim 

değerlerini bulmak için kovaryans parametresine ilişkin bazı yaklaşımlar 

önermişlerdir. Çünkü kovaryans parametresi tam olarak belirlenemeyebilir. Bu 

yaklaşımlar; deneysel ve model temelli kestirimlerdir (5, 26). 
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)ˆ(βCov ’nin model temelli kestirimi aşağıdadır (29): 
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Bu eşitlik, β’nın en çok olabilirlik kestiricisinin kovaryans kestirimi olarak 

genelleştirilmiş doğrusal modellerde, çok sık kullanılan Fisher bilgi matrisinin 

tersidir. Eğer model ve ilişki matrisi doğru olarak belirtilirse β̂ ’nın kovaryans 

matrisi tutarlı bir kestirimdir (18). 

 

β̂ ’nın kovaryans matrisinin deneysel (robust, sandwich) kestirimi aşağıdadır 

(18, 29): 
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İlişki matrisi hatalı olarak belirtilse bile, β̂ ’nın kovaryans matrisinin 

kestiricimi tutarlılık özelliğini korur (18). Bu nedenle uygulamalarda, deneysel 

kovaryans matrisi daha çok tercih edilir. 

 

Biometri, epidemiyoloji, sosyal bilimler ve ekonomi alanlarında bazı 

varsayımlara, özellikle değişkenlerin bağımsızlığına ve değişkenlerin dağılımına 

ulaşmak mümkün olmayabilir. Örneğin, sayılabilir veriler ya da ikili veriler (hasta 

olan ya da olmayan insanların sayısı gibi) normal dağılım göstermezler. Sonuç 

değişkenlerin bağımsızlığı da verilmez. Birkaç tedavi gören tek bir hastadan alınan 

farklı ölçümler buna örnek olarak gösterilebilir (1). 
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Bağımsızlık varsayımları, aynı bireye ilişkin tekrarlı ölçümler kullanıldığında 

bozulur. Bağımlılığın ve tekrarlı gözlemler arasındaki ilişki yapısının belirlenebildiği 

durumlar için GENELLEŞTİRİLMİŞ EŞİTLİK KESTİRİMİ önerilmiştir. 

 

GEK; marjinal modeller ailesindendir. GEK’de amaç, bağımsız değişkenlerin 

bir fonksiyonu olarak bağımlı değişkenlerin beklenen değerlerini modellemektir. 

Doğrusal modeller ortalama ve varyansın fonksiyonel bağımsızlığını gerektirirken, 

GDM’de kümelerde bağımlılığın önemi yoktur. GEK bu modellerin bir sentezidir (1, 

32). 

 

GEK, GEK1 ve GEK2 olarak iki sınıfa ayrılmaktadır. GEK1, regresyon 

parametrelerinin (β) ve ortak parametrelerinin (α) kestirimlerinin birbirinden 

bağımsız (ortogonal) olduğu varsayımını içerir ve yalnızca birinci momentlerin 

tutarlı kestirimini sağlar. GEK1’de amaç, bağımlı değişkenin beklenen değerini 

bağımsız değişkenin bir fonksiyonu gibi tanımlamaktır. Doğru ortalama yapısı 

belirlendiğinde GEK1, tutarlı kestirimler sağlar.  

 

Çözümlemede amaç, ortak yapıyı belirlemek ise GEK2 kullanılır. GEK2’de 

amaç, çözümlemelerin ortalamanın dışında ilişki yardımıyla da yapılabilmesidir. 

GEK2, regresyon parametreleri ile ortak parametrelerin ikisini de içinde bulundurur 

böylece birinci momentler yanında ikinci momentlerin kestirimini de sağlar. 

GEK2’de bu parametrelerin kestiriminin ortogonal olduğu varsayımı yoktur. GEK2, 

ortak yapı doğru belirlenemese de ortalamanın tutarlı kestirimlerini sağlar. GEK2, 

GEK1’in daha genel halidir (1, 15, 25).  

 

3.7. Değişen Lojistik Regresyon (ALR) 

 

Yanıt değişkenler ikili olduğunda ölçümler arasında ilişkinin tanımlanması 

için farklı bir yöntem bulunmaktadır. Bu yöntem Değişen Lojistik Regresyon 

(Alternating Logistic Regression) olarak adlandırılmaktadır. ALR algoritması, log 

odds oranı ile yanıt değişken çiftleri arasındaki ilişkiyi modellemektedir (18). 

Pearson artıkları ile ilişkiyi kestirmek yerine ALR algoritması yardımıyla 
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karşılaştırılmak istenen çiftin odds oranları kestirilir ve ölçümler arasındaki ilişki 

elde edilir (16) 

 

İkili veriler için j-inci ve k-ıncı yanıt değişkenleri arasındaki ilişki aşağıdaki 

gibi tanımlanmaktadır: 
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),min(),Pr(),max( ikijikijikij 1Y1Y10 µµµµ ≤==≤−+  kısıtlaması ile paydaki ortak 

olasılığa bir sınırlama getirilmiştir (16, 18).  

 

Odds oranı ikili veriler için aşağıdaki gibi tanımlanabilir(4, 16, 18): 
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ALR algoritması, odds oranının logaritması şeklinde ifade edildiğinde 

aşağıdaki eşitlik ile tanımlanır: 
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α; qx1’lik regresyon parametresi vektörü ve zijk katsayı vektörleri olmak üzere 

γijk parametresi (-∞,∞) aralığında herhangi bir değeri alabilir. γijk=0 değeri ilişki 

olmadığını gösterir (18). İlişki matrisi, lojistik regresyonda log odds oranı ile 

kestirilebilir. İlişki yapısı ile parametrelerin her biri için odds oranı kestirimleri elde 

edilebilir (16). 

 

Log odds oranını kullanarak ikili veriler için GEK modeli belirlenebilir. İkili 

veriler için ortalama model, uygun bağlantı fonksiyonlarından (lojistik, probit yada 
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tamamlayıcı log-log gibi) kullanılarak oluşturulabilir. ALR algoritması için α ve 

β’nin değerleri, standart hataları ve kovaryansları gereklidir (16, 18). 

 

3.8 Kayıp Veri 

 

Kayıp veriler için bazı yöntemler tanımlanmıştır. Bu yöntemler genel olarak 

veri MCAR olduğunda yalnızca ortalama için yansız kestirimler vermektedir (26). 

Kestirimlerin yansızlığı için genel bir yaklaşım; tamamlanmamış verinin varlığında 

GEK’den yararlanmaktır (1, 5). GEK’de kayıp verilerle ilgili birkaç yaklaşım 

sunulmuştur.  

 

 Bir yaklaşım; eğer bağımlı değişken yit eksik gözlenmişse GEK1 yaklaşımı 

uygulanabilir. Bu yaklaşımda bağımsız değişken, Xi’lerin tam olarak gözlenmesi 

gereklidir. GEK1, ortalaması µi ve varyansı Σi olan çoklu normal dağılımın eşitlik 

kestirimleri gibi yorumlanabilir.  

 

 Diğer bir yaklaşım ise eğer veri MAR olarak gözlenmişse, bağımlı ve/veya 

bağımsız değişkenlerin eksikliğinde hem GEK1 hem de GEK2 nin ikisinin birden 

uygulanabilmesidir (1, 15) 
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DÖRDÜNCÜ BÖLÜM 

 

4. GEREÇ ve YÖNTEM 

 

 Aynı denekten belirli zaman aralıklarında alınan ölçümler tekrarlı ölçümlerdir 

ve bu tekrarlı ölçümler arasında bir ilişki bulunmaktadır. Aynı denekten alınan 

tekrarlı ölçümlerinin dağılımlarının bilinmemesi, ölçümlere ilişkin varyans–

kovaryans yapısının homojen olmaması ve kullanılan verinin tipi hakkında 

bilgimizin olmaması durumunda Tekrarlı Ölçümlerde Varyans Çözümlemesi 

uygulamak yerine GEK uygulamak daha doğru bir seçenektir. 

 

 Bu çalışmanın amacı, bir denek üzerinden belirli zaman aralıklarında alınan 

tekrarlı ölçümlerin birbirine bağımlı olmasından dolayı kullanılan GEK 

çözümlemesini incelemek, uygun ilişki yapısını ve veri yapısına göre uygun modeli 

belirlemektir.  

 

Çalışmada kullanılan veriler,  Hacettepe Üniversitesi Tıp Fakültesi Diş 

Hekimliği Diş Hastalıkları ve Tedavisi Anabilim Dalı tarafından sağlanmıştır. 

Çalışma 26 hasta üzerinde uygulanmıştır. Diş sağlığı kontrollerine gelen hastaların 

yaş, cinsiyet, dişin renk uyumunda kullanılan USPHS ölçütleri ile yenilenme 

(restorasyon) değişimi kaydedilmiştir. USPHS ölçütleri, iki seviyede ölçülmüştür. 

USPHS ölçütleri, dişin yenilenmesine gerek olmayan ve mükemmel yenilenme ile 

düşmüş ya da yenilenmesini gerektirecek düzeyde değişime uğramış yenilenme 

olarak alınmıştır.  

 

  0 (Charlie):  Düşmüş ve yenilenmesine gerek duyulan 

USPHS=  

  1 (Alfa ve Bravo): Mükemmel ve yenilenmesine gerek olmayan 

 

Dişte zamanla meydana gelen renk değişikliği doğrudan klinik gözlemlere 

dayalı olarak incelenmektedir. Zaman içerisinde meydana gelen renk değişikliği ve 

translüsensinin analitik yöntemlerle kantitatif olarak ölçümünün zor olmasından 
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dolayı doğrudan klinik gözleme dayalı değerlendirme yapılmaktadır. Renk 

uyumunun belirlenmesinde USPHS ölçütleri başarılı bir şekilde yapılmaktadır. 

Araştırmacılar; yenilenmeyi çevreleyen diş dokusunu ya da komşu dişi dikkate 

alarak, yenilenmenin renginin koyulaşması ya da açılmasına göre değerlendirme 

yaparlar. Diş hekimliğine gelen hastaların renk uyumu değerleri 0., 6., 12., 18. ve 24. 

aylarda ölçülmüş ve kaydedilmiştir. Zamana göre değişim gösteren dişin renk uyumu 

değişkeni bağımlı değişken, yaş ve cinsiyet değişkenleri açıklayıcı değişken olarak 

alınmıştır. Açıklayıcı değişken olan cinsiyet kesikli değişken, yaş ise sürekli 

değişken olarak alınmıştır.  

 

Tablo 4.1. Çalışmada Kullanılan Değişkenler  

 

 

 

 

 

 

 

 

 Uygulama bölümünde verilere öncelikle tekrarlı ölçümlerde varyans 

çözümlemesi uygulanmıştır. Bu uygulama için SPSS 11.5 paket programı 

kullanılmıştır. Daha sonra verilere GEK çözümlemesi uygulanmıştır. GEK 

çözümlemesinde iki istatistik paket programı kullanılmıştır. Değişkenlere ilişkin 

parametre kestirimlerinin ve parametre kestirimleri için gerekli olan ilişki matrisinin 

elde edilebilmesi için SAS istatistik paket programı kullanılırken, ilişki matrisinin 

seçimi için kullanılan program STATA istatistik paket programıdır. STATA paket 

programında ilişki yapısı belirlendikten sonra SAS paket programı kullanılarak GEK 

çözümlemesine ilişkin sonuçlar elde edilmiştir. SAS programında GEK çözümlemesi 

için gereken program GENMOD başlığı altında yazılmaktadır. Bu program Tablo 

4.2’de verilmektedir. 

 

Değişkenler Veri Tipi Kod  

Yaş Sürekli  (Bağımsız) 

Erkek (Bağımsız) Cinsiyet Kesikli 

Kadın  

Renk uyumu 

(USPHS ölçütü) 

Kesikli 0: Düşük 

1: Mükemmel 

(Bağımlı) 
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Tablo 4.2. Genelleştirilmiş Eşitlik Kestirimi Çözümlemesi İçin SAS   Programında 

Komutlar  

proc genmod data=work.tezveri; 
class hasta cinsiyet; 
model ab=yas cinsiyet/d=bin; 
repeated subject=hasta / type=exch covb corrw; 

   run; 

proc genmod data=work.tezveri; 
class hasta cinsiyet; 
model ab=yas cinsiyet/d=bin; 
repeated subject=hasta / type=ind covb corrw; 

   run; 

 
Kullanılan komutlara ilişkin açıklamalar şu şekildedir: 

Class: Sınıflandırılmış verileri tanımlar. 

D/dist: Dağılımın türünü tanımlar. Ayrıca dağılıma ilişkin bağıntı fonksiyonunu 

belirler. 

Repeated: Modelin belirlenmesinde kovaryans yapısını tanımlar. 

Type: İlişki matrisinin yapısını belirtir. 

 

GEK’ne ilişkin regresyon modelinin belirlenmesinde ilişki matrisinin tipinin 

belirlenmesi önemlidir. Uygun ilişki yapısının belirlenmesi için algoritma yapısı 

STATA paket programı kullanılarak elde edilmektedir. Algoritma Tablo 4.3’de 

verilmektedir. 
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Tablo 4.3. İlişki Tipinin Belirlenmesine İlişkin STATA Algoritma Yapısı  

capture program drop qicm 
 program define qicm 
  quietly {  
matrix V = e(V)  
matrix Vi= syminv(V) 
matrix T = Vi*V 
matrix B = trace(T)  
scalar cc =B[1,1] 
tempvar mu ql 
predict double  `mu', mu 
gen  double `ql' = (ab*log(`mu'/(1-`mu'))+log(1-`mu'))  
summ `ql',meanonly 
} 
display in green "QIC = " in yellow %8.4f  2*(cc-r(sum))    
display `ql' 
end 
 
xtgee ab yas cinsiyet, i(hasta) t(z) fam(bin) corr(exch) robust  
qicm exch 
 
xtgee ab yas cinsiyet, i(hasta) t(z) fam(bin) corr(ind) robust  
qicm ind 
 
xtgee ab yas cinsiyet, i(hasta) t(z) fam(bin) corr(ar 1) robust  
qicm "ar 1" 
 
xtgee ab yas cinsiyet, i(hasta) t(z) fam(bin) corr(ar 2) robust   
qicm "ar 2" 
 
xtgee ab yas cinsiyet, i(hasta) t(z) fam(bin) corr(unst) robust  
qicm unst 
 
xtgee ab yas cinsiyet, i(hasta) t(z) fam(bin) corr(sta 2) robust  
qicm "sta 2" 
 

 
 İlişki matris tipinin belirlenmesi için algoritmada kullanılan komut, ‘qicm’ 

komutudur. En küçük qicm değeri en iyi ilişki yapısını vermektedir. 
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BEŞİNCİ BÖLÜM 

 

5. BULGULAR 

 

5.1. Tanımlayıcı İstatistikler 

 

 Hacettepe Üniversitesi Diş Hekimliği Fakültesine  Mayıs 2003 ile Mayıs 

2005 tarihleri arasında gelen 26 hastaya ilişkin tanımlayıcı bilgiler verilecektir. 

Araştırma kapsamında bulunan 26 hastaya 5 tekrarlı ölçüm yapıldığından 

araştırmada 130 gözlem bulunmaktadır. Bu 130 gözlemin yaşına ilişkin tanımlayıcı 

istatistikler Tablo 5.1’ de verilmiştir. 

 

Tablo 5.1. Yaş Değişkenine İlişkin Tanımlayıcı İstatistikler 

Değişken N Minimum Maksimum Ortalama Standart 
sapma 

Yaş  26 29 67 47.15 9.51 

 

 Çalışmaya katılan 26 hastanın %26.9’u (n=7) erkek ve %73.1’i (n=19) 

kadındır. Çalışmada bağımlı değişken olan dişteki renk uyumunun yenilenme 

değerleri Tablo 5.2’de verilmiştir. 

 
Tablo 5.2. Bağımlı Değişkene İlişkin Tanımlayıcı İstatistikler 

 
 

 

Renk 
uyumu 

Düşük 

Sayı                       % 

Mükemmel 

Sayı                         % 

Başlangıç 0                   0.0 26                 100.0 

6.ay 2                   7.7 24                    92.3 

12.ay 3                 11.5 23                   88.5 

18.ay 5                 19.2 21                   80.8 

24.ay 8                 30.8 18                   69.2 
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 Çalışmada, dişin renk uyumu ile ilgili olarak yenilenme 5 farklı zamanda 

ölçülmektedir. 26 hastanın dişine ilişkin tekrarlı renk uyumu ölçümleri, hastaların 

yaşları ve cinsiyetlerini gösteren veriler Tablo 5.3’de verilmektedir. 

 
Tablo 5.3. Hastaların Dişlerinin Renk Uyumu,Yaş ve Cinsiyet Değişkenlerine İlişkin  

      Veriler 

hasta cinsiyet yas renk zaman 
1 e 49 1 1 
1 e 49 1 2 
1 e 49 1 3 
1 e 49 1 4 
1 e 49 1 5 
2 e 54 1 1 
2 e 54 1 2 
2 e 54 1 3 
2 e 54 1 4 
2 e 54 1 5 
3 k 37 1 1 
. . . . . 
. . . . . 
. . . . . 
9 e 53 1 3 
9 e 53 1 4 
9 e 53 1 5 

10 k 33 1 1 
10 k 33 1 2 
. . . . . 
. . . . . 
. . . . . 

15 k 53 1 3 
15 k 53 1 4 
15 k 53 1 5 
16 k 47 1 1 
16 k 47 1 2 
. . . . . 
. . . . . 
. . . . . 

25 k 35 1 4 
25 k 35 1 5 
26 k 38 1 1 
26 k 38 1 2 
26 k 38 1 3 
26 k 38 1 4 
26 k 38 0 5 
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5.2. Tekrarlı Ölçümlerde Varyans Çözümlemesi  

 

 26 hastanın her birinden dişlerinin renk uyumu ile ilgili 5 farklı ölçüm 

alınmıştır. Bu ölçümlere Tekrarlı Ölçümlerde Varyans Çözümlemesi uygulanırsa 

Normal dağılım varsayımı altında Şekil 5.1’e ulaşılmıştır. 

  

AYLAR

24.ay18.ay12.ay6.aybaslangic

5
 a
y
lik
 r
e
n
k
 u
y
u
m
u
 o
rt
a
la
m
a
la
ri

1,1

1,0

,9

,8

,7

,6

 

Şekil 5.1. Hastaların Aylara Göre Renk Uyumunu Gösteren Grafik 
 

Gözlemler Normal dağılım göstermemektedir. Normal dağılım gösterdiğini, 

varyans yapısının homojen olduğunu ve ölçümlerin sürekli olduğunu düşünerek 

Tekrarlı Ölçümlerde Varyans Çözümlemesi uygularsak sonuçlar Tablo 5.4’de ve 

Tablo 5.5’de verilmiştir. 

 

Tablo 5.4. Tekrarlı Ölçümlerde Varyans Çözümlemesine İlişkin Sonuçlar 

Değişken Kareler 
Toplamı 

Serbestlik 
derecesi 

Kareler 
Ortalaması 

F p-değeri 

Sabit 
YAS 
CINS 
Hata 

6,292 
 ,716 
 ,794 

     1,414 

 1 
 1 
 1 

23 

6,292 
  ,716 
  ,794 
  ,061 

102,381 
  11,647 
  12,914 

,000 
,002 
,002 
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Tablo 5.5. Tekrarlı Ölçümlerde Varyans Çözümlemesi İçin Parametre Kestirim 

Değerleri 

      Standart          %95 Güven 

Değişken      Kestirim      Hata                   Aralığı               t-değeri         p-değeri 

Sabit 
yas 

erkek 
kadın 

1.194 
-0.008 
0.179 
0.000 

0.112 
0.002 
0.050 
0.000 

0.962 
-0.013 
0.076 
0.000 

1.426 
-0.003 
0.281 
0.000 

10.643 
-3.413 
3.594 

 

0.000 
0.002 
0.002 

 

 
Varyans Analizi sonucunda değişkenler anlamlı bulunmuştur.  

 

5.3 Genelleştirilmiş Eşitlik Kestirimi 

 

Çalışmada 26 hasta bulunmaktadır. Bu hastaların her birinden 5 farklı 

zamanda ölçüm alınmıştır. Bu nedenle çalışmada 130 gözlem bulunmaktadır. SAS 

programında veri girişi Tablo 5.3’de olduğu gibidir. Verilere ilişkin uygun ilişki 

matrisinin sonuçları Tablo 5.6’da verilmiştir. 

 
Tablo 5.6. En İyi İlişki Yapısına İlişkin Sonuçlar 

İlişki Yapıları QIC 

Değiştirilebilir İlişki 

Bağımsız İlişki 

Otoregresif 1 İlişki 

Otoregresif 2 İlişki 

Yapısal olmayan 

Durağan İlişki 

99.4018 

99.4018 

99.4047 

99.4072 

100.1857 

99.4065 

 
 Bu sonuçlara göre ilişki matrisi için en uygun yapı değiştirilebilir ya da 

bağımsız ilişki yapılarıdır. Değiştirilebilir ve bağımsız ilişki yapılarına göre verilere 

komut yapısı uygulandığında (Bkz.Tablo 4.2) uyum iyiliği testinin sonuçları Tablo 

5.7’de verilmiştir.  
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Tablo 5.7. Uyum İyiliği Sonuçları 

Ölçümler       SD               Değer             Değer/SD 

Sapma 

Ölçeklendirilmiş Sapma 

Pearson Ki-Kare 

Ölçeklendirilmiş Pearson Ki-kare 

Log-olabilirlik 

    127 

    127 

    127 

    127 

 

93.4018 

93.4018 

134.0037 

134.0037 

-46.7009 

0.7354 

0.7354 

1.0551 

1.0551 

 

 
Gözlemlerin birbirinden bağımsız olduğu varsayımı altında değişkenlere 

ilişkin ilk katsayı kestirim değerleri Tablo 5.8’de verilmiştir. 

 
Tablo 5.8. İlk Parametre Kestirim Değerleri 

                                            Standart          %95 Güven 

Değişken  SD    Kestirim         Hata                 Aralığı               Ki-kare     p > Ki-kare 

Sabit 
yas 

erkek 
kadın 

1 
1 
1 
0 

 

4.2432 
-0.0564 
2.0992 
0.0000 

 

1.3358 
0.0261 
1.0516 
0.0000 

 

1.6250 
-0.1076 
0.0381 
0.0000 

 

6.8614 
-0.0053 
4.1603 
0.0000 

 

10.09 
4.67 
3.98 

 
 

0.0015 
0.0307 
0.0459 

 
 

 

Yapılan çözümleme sonucunda yaş ve cinsiyet değişkenleri anlamlı 

bulunmuştur. 

β katsayılarının kestirimi için ilişki matris tipine göre ilişki matrisi Tablo 5.9 

ve Tablo 5.10’da verilmiştir.  

 

Tablo 5.9. Değiştirilebilir İlişki Yapısı Altında İlişki Matrisi 

                       0.ay             6.ay                12.ay               18.ay            24.ay 

 
0.ay 
6.ay 

12.ay 
18.ay 
24.ay 

 
1.0000 

-0.1037 
-0.1037 
-0.1037 
-0.1037 

 
-0.1037 
1.0000 

-0.1037 
-0.1037 
-0.1037 

 
-0.1037 
-0.1037 
1.0000 

-0.1037 
-0.1037 

 
-0.1037 
-0.1037 
-0.1037 
1.0000 

-0.1037 

 
-0.1037 
-0.1037 
-0.1037 
-0.1037 
1.0000 

 

Gözlemlere ilişkin tüm tekrarlı ölümler arasında zıt bir ilişki bulunmaktadır. 
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Tablo 5.10. Bağımsız İlişki Yapısı Altında İlişki Matrisi 

                      0.ay          6.ay             12.ay                18.ay         24.ay 
 

0.ay 
6.ay 

12.ay 
18.ay 
24.ay 

1.0000 
0.0000 
0.0000 
0.0000 
0.0000 

0.0000 
1.0000 
0.0000 
0.0000 
0.0000 

0.0000 
0.0000 
1.0000 
0.0000 
0.0000 

0.0000 
0.0000 
0.0000 
1.0000 
0.0000 

0.0000 
0.0000 
0.0000 
0.0000 
1.0000 

 

İlişki matrisinin elde edilmesinden sonra β katsayının kestirimi için gerekli 

olan değiştirilebilir ilişkiye ilişkin model-temelli ve deneysel kovaryans matrisi 

Tablo 5.11 ve Tablo 5.12’de verilmektedir. 

 

Tablo 5.11. Değiştirilebilir İlişki Yapısına Göre Model-Temelli Kovaryans 

    Matrisi 

                      Sabit                  Yaş                      Cinsiyet 
 

sabit 
yaş 

cinsiyet 
 

 
1.04442 
-0.01997 
-0.04364 

 

 
-0.01997 

0.0003988 
-0.000014 

 

 
-0.04364 

-0.000014 
0.64724 

 
 

Tablo 5.12. Değiştirilebilir İlişki Yapısına Göre Deneysel Kovaryans Matrisi 

       Sabit                    Yaş                   Cinsiyet 

 
Sabit 

Yaş 
Cinsiyet 

 
1.02637 
-0.02054 
-0.08329 

 
-0.02054 

0.0004243 
-0.002336 

 
-0.08329 

-0.002336 
0.99162 

  

Bağımsız ilişkiye ilişkin model-temelli ve deneysel kovaryans matrisi  

Tablo 5.13 ve Tablo 5.14’de verilmiştir.  
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Tablo 5.13. Bağımsız İlişki Yapısına Göre Model-Temelli Kovaryans Matrisi 

         Sabit                 Yaş                  Cinsiyet 

 
sabit 

yaş 
cinsiyet 

 
1.78446 
-0.03412 
-0.07457 

 
-0.03412 

0.0006814 
-0.000023 

 
-0.07457 

         -0.000023 
1.10585 

 
Tablo 5.14. Bağımsız İlişki Yapısına Göre Deneysel Kovaryans Matrisi 

          Sabit                 Yaş               Cinsiyet 
 

Sabit 
Yaş 

Cinsiyet 

 
1.02637 
-0.02054 
-0.08329 

 
-0.02054 

0.0004243 
-0.002336 

 
-0.08329 

-0.002336 
0.99162 

 
Parametre kestirimlerinin GEK çözümlemeleri, değiştirilebilir ve bağımsız 

ilişki yapıları için aynıdır. Çünkü deneysel kovaryans matrisleri her iki ilişki yapısı 

için değişim göstermemektedir. Çözümleme sonuçları Tablo 5.15’de verilmiştir. 

 

Tablo 5.15. Değiştirilebilir ve Bağımsız İlişki Yapısı İçin Genelleştirilmiş Eşitlik 

Kestirimi Çözümlemeleri 

                                       Standart          95% Güven 
  Değişken    Kestirim     Hata                Aralığı                    Z            P > |Z| 

Sabit 
yaş 

erkek 
kadın 

4.2432 
-0.0564 
2.0992 
0.0000 

1.0131 
0.0206 
0.9958 
0.0000 

2.2575 
-0.0968 
-4.0509 
0.0000 

6.2288 
-0.0160 
-0.1475 
0.0000 

4.19 
-2.74 
-2.11 

 

<.0001 
0.0062 
0.0350 

 

 

GEK çözümleme sonucuna göre değiştirilebilir ve bağımsız ilişki yapısı 

alındığında değişkenlerin modele katkısı anlamlı bulunmuştur. 

 

 GEK çözümlemesi sonucunda, model aşağıdadır. 

  E(y)=4.2432-0.0564yas+2.0992cinsiyeterkek 

 

 Bu modele göre, erkek hastaların dişlerinde yenilenmeye gerek duyulmaması 

olasılığı, bayan hastalara göre 2.09 kat daha fazladır. Ayrıca yaş arttıkça, dişin 

yenilenmeme olasılığı azalmaktadır. 
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SONUÇ 

 

 Sağlık, sosyal ve ekonomi alanlarında toplanan veriler genellikle tekrarlı 

ölçümlerden oluşmaktadır. Bu ölçümler için farklı yöntemler uygulanmaktadır. Bu 

yöntemlerden biri de, son yıllarda oldukça fazla kullanılan GEK’dir. Bu kestirim 

yöntemi, bir denek üzerinden alınan ölçümlerin arasında ilişki durumunu inceler. 

Çoğu kestirim yöntemi, ölçümlere ilişkin dağılımların bilinmesi durumunda 

kullanılır ve bazı varsayımları şart koşar. GEK’ni diğerlerinden ayıran en önemli 

özelliklerden biri de bu varsayımlara gerek duymamasıdır.  

 

 Çalışmada kullanılan verilere Tekrarlı Ölçümlerde Varyans Çözümlemesi ve 

Genelleştirilmiş Eşitlik Kestirimi uygulanmıştır. Her iki çözümleme sonucunda elde 

edilen parametre kestirim değerleri anlamlı bulunmuştur. Bu durum Tablo 6.1’de 

belirtilmiştir  

 

Tablo 6.1. Tekrarlı Ölçümlerde Varyans Çözümlemesinden ve Genelleştirilmiş 

Eşitlik Kestirim Çözümlemesinden Elde Edilen Parametre Kestirim 

Değerleri 

Tekrarlı Ölçümlerde Varyans Çözümlemesi 

Değişken             Kestirim                  p-değeri 

Sabit 
Yaş 

Erkek 
Kadın 

1.194 
       -0.008 
         0.179 
         0.000 

0.000 
0.002 
0.002 

- 

Genelleştirilmiş Eşitlik Kestirimi Çözümlemesi 

Değişken            Kestirim                  p-değeri 

Sabit 
Yaş 

Erkek 
Kadın 

4.2432 
-0.0564 
2.0992 

      0.0000 

<.0001 
0.0062 
0.0350 

- 
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Varyans Çözümlemesi, ayrı ayrı her hastanın aylara göre ölçüm değerlerini 

kullanmaktadır. GEK çözümlemesinde ise her hastanın aylara göre ölçümleri bir 

küme gibi düşünülerek, kümeler için kestirimler hesaplanmaktadır. 26 hastanın 

dişlerindeki renk uyumuna ilişkin değerlerin kestirimleri Tablo 6.2’de verilmiştir. 

 

Tablo 6.2. Tekrarlı Ölçümlerde Varyans Çözümlemesinden Kestirilen Değerler 

HASTA 0.ay 6.ay 12.ay 18.ay 24.ay 
1 1,00 1,00 1,01 0,87 1,01 
2 1,00 1,00 0,93 0,80 0,95 
3 1,00 0,88 1,00 0,91 0,69 
4 1,00 0,92 0,49 0,52 0,34 
5 1,00 0,88 1,13 1,01 0,78 
6 1,00 1,00 1,00 0,85 1,00 
7 1,00 0,88 1,08 0,97 0,74 
8 1,00 1,00 1,05 0,89 1,03 
9 1,00 1,00 0,94 0,81 0,96 

10 1,00 0,88 1,07 0,96 0,73 
11 1,00 0,90 0,74 0,71 0,51 
12 1,00 1,00 1,01 0,87 1,01 
13 1,00 0,90 0,79 0,75 0,55 
14 1,00 0,92 0,51 0,53 0,35 
15 1,00 0,90 0,73 0,70 0,50 
16 1,00 0,90 0,83 0,78 0,57 
17 1,00 0,91 0,68 0,66 0,47 
18 1,00 0,90 0,81 0,77 0,56 
19 1,00 0,89 0,93 0,86 0,64 
20 1,00 0,91 0,66 0,65 0,45 
21 1,00 0,90 0,76 0,73 0,52 
22 1,00 0,89 0,86 0,81 0,59 
23 1,00 1,00 1,06 0,91 1,04 
24 1,00 0,89 0,91 0,84 0,63 
25 1,00 0,88 1,03 0,93 0,71 
26 1,00 0,89 0,98 0,90 0,67 

 
 Varyans çözümlemesinde, ayrı ayrı hastaların ölçümlerinin kestirilen 

değerlerin ortalaması alınır. GEK çözümlemesinde ise kümelerin ortalaması alınır. 

İki çözümleme yöntemi, aylara göre dişlerin renk uyumu değişiminin ortalamaları 

bakımından karşılaştırılmak istenirse elde edilen sonuçlar Tablo 6.3’de verilmiştir. 
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Tablo 6.3. Varyans Çözümlemesi ve Genelleştirilmiş Eşitlik Kestirimi ile Elde 

Edilen Ortalama Değerlerinin Karşılaştırılması 

TÖVÇ GEK 
0,977 0,97282 
0,937 0,96428 
0,895 0,89620 
0,653 0,61374 
0,960 0,93131 
0,969 0,97129 
0,936 0,91966 
0,993 0,97565 
0,945 0,96617 
0,928 0,91539 
0,774 0,78740 
0,977 0,97282 
0,799 0,81436 
0,661 0,62703 
0,766 0,77781 
0,815 0,83082 
0,742 0,74719 
0,807 0,82274 
0,863 0,87325 
0,734 0,73638 
0,782 0,79670 
0,831 0,84609 
1,001 0,97696 
0,855 0,86687 
0,912 0,90623 
0,887 0,89083 

 
 Her iki çözümleme sonunda elde edilen ortalama değerleri arasında büyük bir 

farklılık bulunmamaktadır  

 

 İki yönteme göre elde edilen kestirimler arasında fark olmaması, kullanılan 

veriye özgü olup karşılaştırma için kesin kanıt olamaz. Varyans çözümlemesinde 

bağımlı gözlemlere ilişkin ayrı ayrı kestirimler elde edilirken; GEK’de her denek için 

bağımlı gözlemlerin ortalamaları önceden belirlenen ilişki yapısına göre 

kestirilmektedir. Bunun en önemli nedeni, GEK’nin dağılım varsayımı olmayışıdır. 

Varyans çözümlemesinde ayrı kestirimler kullanılan bağımlı gözlemler arasındaki 

ilişki sonradan test edilir. 
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