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OZET

Aktas, A. Genellestirilmis Esitlik Kestirimi (“GEE”). Hacettepe Universitesi
Saghk Bilimleri Enstitiisii Biyoistatistik Program Yiiksek Lisans Tezi, Ankara,
2005.

Saglik alaninda en ¢ok rastlanan durumlardan biri de bir denekten belli araliklarla
tekrarli 6lgtimlerin alinmasidir. Bu tekrarli 6lgtimlerin analizlerinde farkli yontemler
kullanilmaktadir. Bunlardan biri de Genellestirilmis Esitlik Kestirimidir (GEK).

Bir denekten farkli zamanlarda alinan Olgiimler arasinda iliski oldugu
diisiiniildiiginde Genellestirilmis Esitlik Kestirimi kullanilmaktadir. Bir denekten
elde edilen tekrarli 6l¢iimlerin arasindaki iliski, iliski matrisi ile belirlenir. GEK,
yanit degiskenin ortak dagilimu ile ilgilenmez. Olgiimlerin siirekli olmasinin yani sira
genellikle sayilabilir ya da kategorik olmasi durumunda kullanilir. Bu ¢alismada,
bagimli degiskenin tekrarli 6lglimlerden olustugu GEK ¢ozlimlemesi i¢in, Hacettepe
Universitesi Dis Hekimligi Fakiiltesi Dis Hastaliklar1 ve Tedavisi Anabilim Dalina
ait veriler kullanilacaktir. Klinige gelen hastalarin dislerindeki renk uyumunu
etkileyen degiskenler belirlenmis, bu degiskenlere gore uygun iliski yapis1 bulunmus
ve GEK ¢dziimlemesi uygulanmustir. Ayrica verilere Tekrarli Olgiimlerde Varyans
Cozliimlemesi de uygulanmistir. Calismada Varyans Coziimlemesinin gerekli
varsayimlari saglanmadigindan GEK ¢6ziimlemesinin sonuglarinin daha dogru

oldugu sonucuna varilmastir.

Anahtar kelimeler: Iliskili Veriler, Tekrarli Olgiimler, iliski Matrisi, Baginti
Fonksiyonu, GEK.
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ABSTRACT

Aktas, A. Generalized Estimating Equations (“GEE”). Hacettepe University
Institute of Health Sciences, Master Thesis in Biostatistics, Ankara, 2005.

One of the most utilized measures in health studies cover the usage of repeated
measurements taken on same subjects. There are different methods developed for
analysis of repeated measures. One of these methods is the Generalized Estimating
Equation (GEE).

GEE is generally used when it is thought there is a relationship between repeated
measurements of the same subject. This relationship is determined by “Working”
Correlation Matrix. In GEE, no assumptions on the joint distribution of the subject’s
response vector exist. GEE method is especially used for categorical and count
outcomes as well as continuous outcomes. In this study, data was taken from
Hacettepe University Faculty of Dentistry. In the first stage of the study, the
variables of interest were determined and Analysis of Variance for Repeated
Measures method was applied. In the second stage, different correlation structures
were calculated for Working Correlation Matrix and after the selection of suitable
correlation structure, GEE method was applied. At the end of the study, it has been
concluded that the results obtained by GEE is more accurate than that of Analysis of

Variance because of the violation of the assumptions.

Key words: Correlated Data, Repeated Measures, Working Correlation Matrix, Link
Function, GEE
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BIRINCi BOLUM

1. GIRIS

Verilerin ¢ézlimlenmesi sirasinda en 6énemli durum, degiskenlerin bagimlilig
ya da bagimsizligidir. Saglik alaninda en ¢ok rastlanilan durumlardan biri, bir
denekten belli zaman araliklarinda Olglimler alinmasidir. Bu Olgiimler, bagiml

Olgtimlerdir. Ciinkii tekrarli 6l¢timler arasinda bir iligki bulunmaktadir.

Bir denekten alinan tekrarli Slglimlerin iligkili oldugu diisiiniildiigiinde,

tekrarli 6l¢iimlere (verilere) 6zel yontemlerden yararlanilir.

Genellestirilmis Esitlik Kestirimi (GEK), bagimli degiskenin tekrarli
Olciimlerden olusmasi ve gézlemlerin dagiliminin bilinmedigi durumlarda kullanilir.
GEK, iligkili verilerde Genellestirilmis Dogrusal Modellerin (GDM) uzantisidir.
GEK, daha ¢ok kategorik ya da sayilabilir verilerde kullanilmasina ragmen, siirekli

verilerde de kullanilmaktadir (29).

GEK, bagimli degigkenin ortak dagilimi ile ilgilenmez. Onun yerine zaman
araligindaki tekrarli ol¢imlerin marjinal dagilimini kullanir. GEK, GDM’in bir
uzantis1 oldugundan, GEK c¢o6ziimlemesinde Oncelikle dogrusal kestirici belirlenir
sonra bir bagint1 fonksiyonu kullanilir. Ornegin varyans, ortalamanin bir fonksiyonu
olarak tanimlanir. GEK’nin diger esitlik kestirim yontemlerinden farkliligi, tekrarl
Olctimler arasi iliski yapisint (Working Correlation Matrix) goz Oniine almasidir.
Iliski yapist bu nedenle 6nem tasimaktadir. iliski yapisinin dogrudan kestirimi
miimkiin degildir. Iliskinin yapis1 tam olarak belirlenemese de GEK etkin bir

kestirime olanak saglar (29).

Farkli sekillerde iliski yapilar1 bulunmaktadir. Kestirimler icin bu iligki
yapilarinin bilinmesi 6nemlidir. Dogru iliski yapisinin belirlenmesi farkli sekillerde

olabilmektedir.



GEK, iilkemizde c¢ok yaygin olarak kullanilmamakla beraber, yurtdisinda
bir¢ok arastirmada tercih edilen bir yontemdir. Yalnizca saglik alaninda degil sosyal

bilimler ve ekonomi alanlarinda da kullanilmaktadir.

Aragtiricilar siklikla uzunlamasina (uzun donemli) ya da kiimelenmis verilerle
ilgili ¢oziimlemelerle ilgilenmektedirler. Bu ¢oziimlemelerde parametre kestirimleri
olarak “En Kiiciik Kareler Kestirimi”, “Yari-olabilirlik”, "EM algoritmast”, “En
Cok Olabilirlik Kestirimi”, “Bagimsiz Esitlik Kestirimi” ve “Genellestirilmis Esitlik

’

Kestirimi’” yontemlerinden yararlanilmaktadir.

Bu kestirim yontemlerini kullanabilmek i¢in bazi varsayimlarin saglanmasi
gereklidir. Bu varsayimlar genellikle dagilim {izerinedir. En kiigiik kareler yontemi,
yari-olabilirlik, en ¢ok olabilirlik kestirimi, EM algoritmasi i¢in gozlemlerin
dagilimlarinin bilinmesi gerekir. Bagimsiz esitlik kestiriminde kosul, kiime i¢i
deneklerin bagimsiz olmasidir. GEK ¢6ziimlemesinde bu varsayimlara gerek

duyulmaz.

Bazi uzun donemli ¢alismalarda, gozlemler arasinda iligkinin oldugu tekrarli
veriler kullanilir. Eger veriler yaklasik olarak normal dagilim gosteriyorlarsa,
yukarida adi gegen yontemler oldukca yaygin kullanilmaktadir. Eger veri tipi ikili
yani “binary” ya da sayilabilir ise farkli yaklasimlar kullanilabilir (1).

GEK’in incelendigi bu ¢aligmanin ilk boliimiinde farkli parametre kestirimleri
aciklanacak, ikinci boliimde, genellestirilmis dogrusal modellerin igerigi hakkinda
bilgi verilecek, iiglincii boliimde genellestirilmis esitlik kestirimi aciklanacaktir.
Dordiincii bolimde GEK i¢in, saglik alaninda kullanilan veri yapisi hakkinda bilgi
verilecek, besinci boliimde de verinin tanimlayicr istatistikleri, gézlemlere iliskin
iliski yapis1 ve model icin elde edilen katsayilar verilecektir. Iliski yapisi, bagimsiz
model altinda yari-olabilirlik bilgi ol¢iitii (QIC: quasilikelihood under the
indepedence model information criterion) kullanilarak belirlenecek ve iliski
matrisinin elde edilmesiyle gerekli degerlere ulasilacaktir. Son boliimde sonuglara ve

tartismalara yer verilecektir.



1.1. En Kiiciik Kareler Kestirimi

Parametre kestirim yontemlerinden biri en kiigiik kareler kestirimidir.

Regresyon ¢ozlimlemeleri i¢in en kiiglik kareler kestirimi asagidaki sekildedir:

Y=, +Bx +& & ~N0,0) (1.1)
D(B)=Y.(7, - 5,)’ (12)

Burada parametre vektorii f=(f3, ;) i¢in ortalama asagidaki gibidir:
i = P+ B, (13)

En Kiiciik Kareler kestiriminde amag, kareler toplaminin en kiigiik olmasidir.
D(p)’nin en kiigiiklenmesi i¢in gerekli adimlar asagidadir.

0 0
AT

2. Bu esitlikler sifira esitlenir.

1

D(p) tiirevleri hesaplanir.

3. fyve B coziliir. Elde edilen kestirimler asagidadir.

. Z(y,- = y)(x; = Xx.)
B = Z(xi —)_C.)Z
B, =7.- Bx. (1.4)

i = /éo + /[;)1xi
1.4°deki esitlikleri farkl: bir ifadeyle gosterirsek 1.5 esitlikleri elde edilir.

o (B B15Y) :Z(yi =By + B,x)

(1.5)
v, (B, B3 y) = Z(yi = (B, + B,X)-x,



0 D(p) :iD(,B):O esitliginin ¢ozimi ile w (B,,05,;y)=0 ve
P, p,

v, (B, B,;y) =0 esitliklerinin ¢6ziimil, £y, £; katsayilar1 i¢in ayn1 ¢ozlimii verir. yp

ve y; esitlik fonksiyonlart olarak adlandirilir ve yy =0, y;=0 ile katsayilar kestirilir

(3). Ancak modeli olusturabilmek i¢in normal dagilim kosulunun saglanmasi

gereklidir (3).
1.2. En Cok Olabilirlik Kestirimi
Parametre kestirim yontemlerinden biri de en ¢ok olabilirlik kestirimidir.

X; ,.... X, n tane rastgele degisken olmak ftizere f(x,0), rastgele
degiskenlerin yogunluk fonksiyonu olsun. Rastgele degiskenler gozlendiginde,
¢ ’nin bir fonksiyonu olan ortak yogunluk fonksiyonu, olabilirlik fonksiyonu olarak
adlandirilir ve [(€,x) ile gosterilir. x vektorii verildiginde; /(6,x)’nin en
bliyliklemesi i¢in olabilirligin logaritmasinin (L(8,x)) tiirevi sifira esitlenir ve € i¢in
¢ozlim elde edilir. En ¢ok olabilirlik kestirim yontemi i¢in degiskenlerin dagiliminin
bilinmesi gerekir. Bu dagilimlar; Poisson, Binom, ¢ok degiskenli dagilimlar olabilir.
Ustel bir aile igin, [E(Y)=u]; B, ... , S, parametrelerine bagl ise herhangi bir f
parametresi i¢in en c¢ok olabilirlik kestirimi esitligi Esitlik 1.6’da verildigi gibidir
(10):

oL, _ v (v =) Ou;

; = (1.6)
op, =T V() on,

1.3. Yar1 - Olabilirlik Kestirimi “(Quasi-Likelihood)”
Bagimhi degisken Y’nin dagilimi tam olarak belirlenemediginde yalnizca

ortalama ve varyans modellenebildiginde A'nin kestirimi tutarlilik ve asimptotik

normal Ozelliklerine sahip ise bu kestirim yontemine yari-olabilirlik denir (3).



1.3.1 Yari-Olabilirlik Fonksiyonu:

Zi,....2,; w; beklenen degere ve @V(1;) varyansa sahip olsun. Burada V bilinen
fonksiyon olmak iizere her bir gozlem i¢in yari-olabilirlik fonksiyonu K(z;, 1) ile

tanimlanirsa asagidaki esitlik elde edilir:

oK (z;, 1) _Zi T H,
Ol oV (1)

(1.7)

Kestirim yontemlerinden biri olan yari-olabilirlik fonksiyonu olabilirlik
fonksiyonu ile benzerlik gosterir. 1, f;,... 3, parametrelerin bir fonksiyonu olsun. Bu

durumda kestirimler asagidaki esitlikler yardimiyla elde edilir:

oK |
A3 ) "
P ('é)_EG_KOK __F o’K | 1 ou ou (1.9)
e o) \oBB. ) #V(w) B, op, '

Bu iki esitlik Bilgi “Information” matrisinin elemanlaridir. Esitlik kestirimi,
en ¢ok olabilirlik esitlik kestirimlerine benzerlik gosterir:

%ZZX i —#) 01 _ (1.10)

op, = #V(u) on,

Varyans, “Sandwich” kestirimi kullanilarak kestirilir ve asagidaki esitliklerle

ifade edilir (10 ):

B:Z%Vﬂc{)v(x W O (1.11)
= op op

V.(B) =V, (BBPBV, (B (1.12)



Yari-olabilirlik kestirimi, degiskenligin fazla oldugu ve ortalamanin kiigiik
oldugu durumlarda ¢ok iyi ¢alisir. Iliskili veriler i¢in de ikinci dereceden bir en

tyileme saglamaktadir (10).
1.4. EM Algoritmasi

Coziimlemeler sirasinda sikga karsilasilan bir durum eksik gozlemlerin
varhigidir. Eger gézlemler tiimiiyle rastgele olarak eksik (MCAR) ise ortalama igin
yansiz kestirim yontemleri tanimlanmistir (1, 14). Bu yaklagimlardan biri de

“EXPECTATION MAXIMIZATION” (EM) algoritmasidir.

EM algoritmasi, veriler tamamlanmamis ya da eksik gozlemlere sahipse
verilen veri setinin dagilimini olusturan parametrelerinin, en ¢ok olabilirlik
kestirimlerini  bulmada kullanilan genel bir yontemdir ve olduk¢a ayrintili bir
tekniktir (23, 24). EM algoritmasinin hem {istiin hem de eksik yonleri bulunmaktadir.

Bunlar sirasiyla agsagida belirtilmistir:

e Sayisal olarak siireklilik saglar. Her dongiide gozlemlenmis verilerin
olabilirligi artar.

e Zor da olsa parametrelerin bulunmasinda yardimei1 olmaktadir.

e En iyi noktaya yaklastik¢a algoritma ¢ok yavaslamaktadir.

e Bazi durumlarda eyer (semer) noktasina yaklasim olabilmektedir.
1.4.1. Algoritma Yapisi:

X=(Y,Z) i¢in, olasilik model AY,Z / €) olsun ve yalnizca Y degeri

gbzlemlensin. Bu durumda olabilirlik fonksiyonu asagidaki sekildedir:

KO=Ay /0)=Ify,z/6) dz (1.13)

Amag, /(f) degerini en biiylik yapmaktir. EM algoritmasi, olabilirligi en
bliylik yapan bir yontemdir. EM algoritmasinin E- adim ve M-adim olmak iizere iki

adim1 bulunmaktadir (11, 19). Bu adimlar asagidaki gibi siralanmaktadir:



[1k olarak bir baslangic noktas1 6, belirlenir ve i=0,1,2,..., olmak iizere

E-adimz;

0(8/6)=11og fiz.y |Ofiz /G,y)d
=E[log(Z,Y/6) /Y,6] (1.14)

fonksiyonu elde edilir.

M-adimu;
Q(6’/ 6,) fonksiyonu & ’ya gore en biiyiik yapilir. En biiyiik 6 belirlenir

Bu adimlar tek bir noktaya ulagincaya kadar devam eder.

E-adim da amag, sabit parametre degerleri ve gozlenen Y degeri verildiginde
tam verinin (X) yeterli istatistiklerini kestirmektir. M-adim da ise amag, bu
istatistikleri en biiyiik yapmaktir (23, 24). Bu iki adimin tekrarlanmasi her dongiide

olabilirligin artmasini ve olabilirlik fonksiyonun en biiylige yaklagmasini saglar (11).

EM algoritmasi, bagimli degisken y’nin eksik gozlenmesi ve bagimsiz
degisken X’in tam olarak gozlenmesi durumunda uygulanabilir. Normal dagilim
gosteren veriler i¢cin EM algoritmasi, eger veriler rastgele olarak eksikse (MAR)

tutarli parametre kestirimleri olusturmada kullanilabilir (11, 19).

1.5. Bagimsiz Esitlik Kestirimleri

Bu kestirim yontemi, genellikle kontrollii denemelerde tercih edilir. Genis
aralikli modellerde ve esit kiime geniglikleri i¢in kullanilan bagimsiz esitlik

kestirimleri (BEK), asagidaki kosullarin saglanmasi durumunda etkilidir:

1. Kiime i¢indeki yanit degiskenleri bagimsiz olmali
2. Kiime i¢indeki tiim ortak degiskenler sabit olmali

3. Tiim ortak degiskenler ortalama dengeli olmali



ornegin; p kiime ortalamasi asagidaki gibidir:

T;
L3 )= 1. (1.15)
i=1

4. Ortak degiskenler, kiime i¢indeki sabit olan ortak degiskenlerin ve ortalama
dengeli ortak degiskenlerin bir karisimi olmalidir (2).

BEK, en c¢ok klinik denemelerde uygulanmaktadir. Paralel grup diizenlerinde
denegin tekrarli 6l¢limlerinin bulundugu kiime i¢in tedavi etkileri sabittir, ¢apraz
diizenli ¢alismalarda ise tedavi etkileri kiimede cesitlidir ancak ortalama dengelidir.
2x2 c¢apraz diizenlerde baslangi¢ (baseline) olglimler, ilk tedavi periyodundan sonra
bagimli degiskenler i¢in ortak degisken gibi alinabilir, ancak baslangi¢ Ol¢timler
kiimede sabittir. Paralel diizenlerde ise x degiskenleri yalnizca baslangic degerleri ve

tedavi etkilerini icerdiginden kiimede sabittir.

Diger taraftan, capraz diizenlerde tasiyict etki bulunabileceginden yanit
degiskeni y sadece asil etkiye degil ilk onceki tedaviye de bagimlidir. Boyle bir
durumda kosullarin ilki ¢ignenmis olmaktadir. Bu gibi durumlarda, varsayimlarin

saglanmamasi, BEK kullanilmasini engellemektedir (2).
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2. GENELLESTIRIiLMiS DOGRUSAL MODELLER

GDM, iliskili verilerin modellenmesinde kullanilan bir algoritmadir.
Olabilirlik temelli model olan GDM, bireylerin ya da goézlemlerin bagimsizlig
varsayimini temel alir. GDM’yi tamimlamak icin gerekli birkac¢ ifade asagida

belirtilmistir (17,32):

e Bagimli degiskenin dagilimi tistel aileden olmali
e Bagint1 fonksiyonu tanimlanmali

e Bagimsiz degiskenler belirtilmelidir.

2.1. Model Yapis1

Genel olarak dogrusal yap1 modeli Esitlik 2.1°de verildigi gibidir:

yi=xifre 2.1

vi, i-inci gozlem icin yamit degiskenini, x; i-inci gozlem icin ortak
degiskenlerin siitun vektorii ya da agiklayici degiskeni ifade etmektedir. Bilinmeyen
katsay1 vektorii f; y verisine uygun olarak en kiiciik kareler yontemi ile kestirilir. & ;
bagimsiz oldugu varsayimi altinda sifir ortalamali, sabit varyansli normal dagilimli

rastgele degiskendir.

y;’nin beklenen degeri g ile gosterilirse, dogrusal ifade Esitlik 2.2°deki gibi

tanimlanir (32).

. 2.2)

Genel dogrusal modeller, istatistiksel veri ¢oziimlemelerinde kullanilirken,
dogrusal modeller (= x /[)’) bazi sinirlamalar altinda kalir (13). Bu durumlardan

birka¢1 asagida belirtilmistir:
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1.Verilerin normal dagilim varsayimi saglanmayabilir. Ornegin, Normal
dagilim varsayimi, gézlemlerin kesikli olmasi durumunda gegerli degildir.

2.Verilerin ortalamasi sinirsizdir ancak bazi durumlarda 6rnegin; sag-kalim
ya da sayilabilir veriler i¢in ortalama, negatif deger almazken, oranlar ya da
ikili veriler i¢in ortalama [0,1] birim araliginda deger alabilir.

3.Tiim gozlemler igin verilerin varyansinin sabit oldugu varsayimi gergekei

olmayabilir (13).

GDM, iistel aileden gelen tek degiskenli veriler i¢in regresyon modeli
olusturmada kullanilan standart bir yontem olarak tanimlanmistir (5). GDM’deki

bagimli degisken Y icin olasilik yogunluk fonksiyonu:

1, 6. P=expi(y0 —b(6))a(P)+(y, §)} (2.3)

seklinde ifade edilmektedir. a(.), b(.) ve c(.) verilmis fonksiyonlar, € ; yer

parametresi, ¢; yayilim parametresidir (5, 12, 19, 21).

Genellestirilmis dogrusal modeli olusturan bilesenler asagida tanimlanmistir:

e Dogrusal ifade Esitlik 2.4’deki gibidir (21, 29):

n=x i 3 (2.4

e Dogrusal kestirici (7;) ile iliskili olarak y;’nin beklenen degerini tanimlayan g

baglant1 “link” fonksiyonu asagidadir (13, 16, 18).

g(u)= g(E[Y)=x 3 (2.5)

e Yanit degiskeni y; (i=1,2,...), bagimsiz ve istel aileden gelen bir dagilima

sahip olsun. y ortalamaya bagli olarak yanit degiskenin varyansi agagidadir.

var(y)=eV(w)/ w (2.6)
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w; her gézlem i¢in bilinen agirliktir ve yayilim parametresi ¢, bilinir ya da

kestirilir (19).

GDM’nin ozelliklerinden birisi, dogrusal olmayan modelleri baginti
fonksiyonu yardimiyla dogrusal modellere doniistiirebilmesidir. Ornegin, g(.)
baglanti fonksiyonunun uygun se¢imi ile negatif binom, geometrik, binom, poisson,

gamma, ters-Gauss, normal dagilimlar dogrusal model bi¢iminde yazilabilir (5).

2.2. Baginti Fonksiyonu

Sonug degiskenin beklenen degeri u, agiklayici degisken x ve bilinmeyen
parametre vektorii £ olmak flizere, i-inci gozlemin beklenen degeri monoton bir

bagint1 fonksiyonu olan g iginde bir dogrusal kestirim ile iligkilidir. Bu ifade
asagidadir (19).

g()=x ;B 2.7)

Her dagilim i¢in kullanilan baginti fonksiyonlar1 da farklilik gosterir.
Dagilimlar ve dagilimlara karsilik gelen baginti1 fonksiyonlar1 asagidaki gibidir: (20,
22, 28).

e Normal Ozdeslik

e Poisson Logaritmik
e Binom Logit

e Bernoulli Logit

e Negatif Binom Log-ratio

e Geometrik Log-ratio

e Ustel Karsilikli

e (Gamma Karsilikli

e Ters Normal Giic

e (Cok degiskenli Logit
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GDM’deki varsayimlardan biri gozlemlerin bagimsiz olarak dagilmasidir.
Fakat bazen bu varsayim gerceklesmeyebilir. Bu durumda GDM yetersiz
kalmaktadir.

2.3. Uyum Tyiligi Testi

GDM’in uyum iyiliginin degerlendirilmesinde yardimci olacak iki istatistik;
Olceklendirilmis olabilirlik sapma istatistigi (scaled deviance) ve Pearson Ki-kare
istatistigidir. Yayilim parametresi ¢'nin belli bir degeri i¢in sapma istatistigi,
regresyon parametrelerinin en ¢ok olabilirlik kestirimlerinin log-olabilirligi ile elde

edilen log-olabilirliginin en biiyligli arasindaki farkin iki kati olarak tanimlanir (19).

Eger L(y,u), ortalama degerin (1) ve yanit degiskeninin (y) bir fonksiyonu

olarak belirtilirse, 6lgeklendirilmis sapma istatistigi, asagidadir.

D"y, )=2(L(v.y) — Ly, 1)) (2.8)

Ozel dagilimlar igin, bu esitlik

D"y, )=D(, 1)/ ¢ (2.9)

seklinde ifade edilebilir. D, sapma istatistigini gostermektedir. Farkli dagilimlar i¢in
farkl1 sapma istatistikler bulunmaktadir. Ornegin, w;; her gozlem icin agirlik olmak

tizere normal dagilim i¢in sapma istatistigi asagidadir.
D= ziwi(yi _ILI[)Z

Diger istatistik, Pearson ki-kare istatistigi Esitlik 2.10 ile gdsterilmektedir:

w, (Y, —
= ) 2.10
Z‘ Viu,) (10

Olgeklendirilmis Pearson ki-kare istatistigi, X/ ¢ ile ifade edilmektedir.
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Bu iki dl¢eklendirilmis istatistik, belli kosullar altinda, sinirlandirilmis ki-kare
dagilimina sahiptir. Yayilim parametresi, bilinmedigi durumlarda, sapma istatistigi
ve Pearson ki-kare istatistigi kullanilarak asagidaki esitliklerle kestirilir:

¢
¢

D/(n—p)

(2.11)
X /(n—p)

Serbestlik derecesi (n-p) de, parametre sayisi (p) ile gozlem sayisinin (n)

farkina esittir (19).

2.4. Genellestirilmis Dogrusal Model Fonksiyonlar:

GDM’de genellikle bagimsiz veriler lizerine model ¢ikarimlar kullanilir. Bu
modeller, olabilirlik temelli regresyon modelleridir. Bagimsiz verilere iliskin model
belirlendikten sonra, belirli parametreler yardimiyla log-olabilirlikler kestirilerek ya
da ek parametreler kullanilarak c¢oziimlemeler yapilabilir. Bu olabilirlik kestirim
yapisinin ilki Tam Bilgiye Dayali En ¢ok Olabilirlik (TBEO) (full information
Maximum Likelihood), digeri de Sinirli Bilgiye Dayali En ¢ok Olabilirlik (SBEO)
(limited information maximum likelihood) olarak adlandirilir. Kestirimler en iyileme
yontemi kullanilarak belirlenir. Bu konuda en ¢ok kullanilan yontem ise Newton-

Rapshon yontemidir (16).

TBEO kestiriminde, dogrusal, poisson ve bernoulli regresyon modelleri
kullanilir. Bu ii¢ regresyon modeli i¢in ii¢ dagilim kullanilir. Bu dagilimlar sirayla
Normal, Poisson ve Bernoulli dagilimlaridir. Bu dagilimlarin olasilik yogunluk
fonksiyonu ve/veya olasilik fonksiyonlar1 kullanilarak olabilirlik fonksiyonlari
belirlenir. Olabilirlik temelli modellerde, kestirim esitlikleri log-olabilirlik modelin

tiirevinden elde edilir (16).

SBEO kestirim esitliginde {istel aile kullanilir. Ustel ailenin iistiinliigii birgok
dagilimi i¢inde bulundurmasidir. Bu dagilimlar Normal, Bernoulli, Binom, Poisson,

Gamma, Ters-Normal, Geometrik ve Negatif Binom dagilimlaridir. Model ve
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kestirimlerin elde edilmesinde ki yontem, TBEO kestirim esitliklerinde kullanilan

yontemle benzerlik gosterir (16).

2.5. Kestirimlerin Varyansinin Elde Edilmesi

Varyans kestirimleri, olabilirlik  fonksiyonunun ikinci tlirevlerinin
olusturdugu matrisin (Hessian) tersi ya da ikinci tiirevinin beklenen degerinden
olusan Fisher skor matrisi ile hesaplanir. Bu hesaplamalar ayn1 kestirimleri verir.

Varyans kestirimleri,

Vi(B) = {— aﬂé(;ﬂ ]} (2.12)

seklindedir (16). j,k=1, ... ,p (p; X in siitun boyutunu ifade etmektedir)

Hessian matrisi, olabilirlik fonksiyonun ikinci tiirevlerinden olugsmaktadir.

H:{ 0 }
op 0P, o

Fisher skor matrisi de, olabilirlik fonksiyonun ikinci tiirevlerinin beklenen

degerlerinden olusmaktadir.

2
- _E 0’1
08,08 |,

Bu iki yaklasim, bilgi matrisinin iki farkli yapisim1 temel alir. Olabilirlik

temelli modellerde, dagilimlarin log-olabilirliginin yani 6/ 0B ikinci tiirevi ile

esitlikler kestirilir.

Varyansin “Sandwich” kestiriminin genel yapist 47'BA™" big¢imindedir. 4;
bilgi matrisinin varyans kestirimi, B; kovaryans matrisidir. 4 ve B matrisinin elde

edilmesi i¢in gerekli esitlikler asagidadir (16).
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{vx = Zw (x, ﬁ)} =[0],.,

e E(aw(ﬂ)J o)
op
B=Y Ely, . ! oD+ XY Ely (. ] (5 )

Gozlemlerin bagimsizlig1 varsayimi altinda yukaridaki esitligin ikinci ifadesi

sifir olacagindan, B matrisinin kestirimi asagidaki gibi olur:
B- Z[w G VT (3 )] (2.14)
Bu durumda genel varyansin “sandwich” kestirimi de agsagidadir.
V(B =V, (BBBV, (B) (2.15)

Eger iliskili gozlemler, bagimsiz kiimeler altinda toplanabilirse varyans, farkli

bir sekilde kestirilir. Bu tiir varyans “modified sandwich” varyans olarak adlandirilir.
Vis(B) =V (B)Bs (B, (B) (2.16)

Bu varyans kestiriminde kovaryans matrisi, her bagimsiz kiimedeki

gozlemlerin toplam olarak kestirilir. [ D" (O w,)Q w,)" ]

“Sandwich” varyans kestirimi, orneklem genisligine de baghdir. “Sandwich”
varyans i¢in kullanilan ¢arpan, n / (n-p) dir. n, 6rneklem genisligini; p, modeldeki
ortak degisken sayisini gostermektedir. “Modified Sandwich” varyans i¢in kullanilan

carpan, n/(n-1) dir (16).
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2.6. Boylamsal (Longitudinal) Veriler

Bireylerin belirli 6zelliklerinin, bir zaman araligi iginde, ikiden c¢ok kez
olgiildiigii ¢alismalar olduk¢a yaygindir. Ozellikle klinik ¢alismalar, insan ve
hayvanlarin gozlemlendigi caligmalar bu tip verilere 6rnek gosterilebilir. Denege
iliskin olgiimler farkli zamanlarda olabilir. Olgiimlerin alindig1 zamanlar her denek
icin farklilik gosterebilir. Bu nedenle verilerin toplanmasi olduk¢a zaman alicidir.
Fakat boylamsal veriler, bilimsel olarak daha etkili ve daha gii¢lii sonuglar ortaya

koyar (31).

Boylamsal verilerin ¢dziimlemesi igin bazi yaklasimlar bulunmaktadir. Ilk
olarak, kolay bir yaklagim kullanilir. Bu yaklasim i¢in tekrarli 6lgiimler arasindaki
iliski g6z ard1 edilir ve geleneksel dogrusal regresyon ¢oziimlemesi kullanilir. Fakat
burada bir tehlike bulunmaktadir. Varyansin ¢ok biiyiikk olmasi ve varsayimlarin
saglanamamas1 yanlis test sonuglarina, etkisiz parametre kestirimlerine ve yanlis
cikarimlara neden olur. Tekrarli 6lglimler arasindaki iliski degerlerini géz oniine alan
yaklasimlar gerekebilir. Bu nedenle daha genel yaklasimlar belirtilmistir. Bunlar,

marjinal modeller (GEK) ve rastgele etkili modellerdir (30, 31).

2.7. Panel Veri

Panel veri, kiimeli veri ya da tekrarli 6l¢iim verisi olarak da adlandirilir.
Panel veri, aymi kategoriye iliskin farkli deneklerin, tekrarli Ol¢iimlerinin
bulundugu kiimeye denir. Bu veriler iliskili verilerdir. Ornegin, kadin hastalar
paneli olusturuyorsa, kadin hastalara ait kan degerlerinin tekrarli 6l¢iimleri panel
veriyi olusturur. Eger kiime i¢indeki veriler, ayn1 deney birimlerinden geliyor ve
zamana bagimli ise uzun donemli veri olarak adlandirilir. Paneller i¢indeki tekrarlt
Olctimler iligkilidir. Sonug¢ degiskenleri arasinda iliski yokken gézlemlerin bagimsiz
olmast durumunda kullanilan yontem GDM’dir. Marjinal modeller (GEK) ve

rastgele etkili modeller iliskili veriler i¢in kullanilir (16).
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Panel veriler i¢in iki durum séz konudur. Goézlemler i=1,2,...,n panele
ayrilsin. Her panelde 7=1,2,...,n; gozlem bulunsun. Eger her panelde bulunan
gozlemler birbirine esitse dengeli panel (balanced panel), paneller farkli 6rneklem
genisligine sahip ise dengeli olmayan panel (unbalanced panels) olarak
aciklanmaktadir. Dengeli olmayan paneller, 6rneklem se¢imi ile ortaya ¢ikmustir.
Paneller olustuktan sonra da panel i¢inde bulunan goézlemlere benzer gozlemler
dahil edilebilir (33). Panel verilerin modellenmesi degisik sekillerde olabilir. Bu

modellerden ikisi, sabit etkili model ve rastgele etkili modeldir. (16)
2.7.1. Bilesik (Pooled) Kestirim

Panel verinin modellenmesinde basit bir yaklasim; verideki panelin
bagimliligim1 yok saymaktir. Bu yaklasim, bilesik kestirim olarak adlandirilir ve

veriler bir kiimede birlestirilir. Sonucta kestirilen katsay1 vektorii tutarl iken, etkili
degildir. GDM’den elde edilen varyans kestirimi VH , verinin bulundugu panellerin
bagimsiz olmasi durumunda kullanilir. O nedenle “sandwich” varyans kestiriminin

kullanilmas1 daha uygun goriiliir. Fakat bu durumda ki varyans kestirimi de

olabilirlik temeline uygun goriilmemektedir (16).
2.7.2. Sabit Etkili ve Rastgele Etkili Modeller

Esitlik kestirimlerinde her kiime i¢in bir etki bulunmaktadir. Bu etkiler sabit
ve rastgele etkilerdir. Sabit etki de kendi i¢inde kosullu ve kosullu olmayan sabit
etkiler olmak {izere ikiye ayrilir. Kosullu modeller, yalnizca kiigiikk grup
genisliklerine iliskin durumlar i¢in uygundur. Rastgele modeller, yanit degiskenin

dagilimini, grup degiskenlerinin rastgele olmasi kosulu altinda modeller (12).
2.7.2.1. Kosullu Olmayan Sabit Etkili Modeller

Kosullu olmayan sabit etkili modeller, panele iligkin bir etki icerir. Kosullu

olmayan sabit etkili modelde katsayilar ve etki, iistel dagilim ailesinden gelen
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dagilimlar ve yari-olabilirlikler kullanilarak kestirilir (16). Ustel aile igin kosullu

olmayan sabit etkili esitlik kestiriminde dogrusal kestirici agagidadir.

My =X, B+, (2.17)

L ve v’ye gore kestirimler esitlikten ayr1 ayri elde edilir.
2.7.2.2. Kosullu Sabit Etkili Modeller

Bu tiir kestirimler, kosullu olabilirlikler kullanilarak tiiretilir. Modeller, iistel
dagilim ailesinden degil de belli dagilimlardan (Poisson, bernoulli, gibi) tiiretilir.
Bu modeller i¢in sonug¢ degiskeni, belirli bir dagilima sahiptir. Bir kiimeye ait tiim
gozlemlere iligkin ortak dagilim hesaplanir ve sabit etki i¢in yeterli istatistik
bulunarak yeterli istatistigin dagilimi elde edilir. Yeterli istatistigin dagilimina gore
verilerin  kosullu dagilimi bulunur. Kosullu dagilim kullanilarak katsayilar

kestirilir. Tiim panellerin kosullu log-olabilirlik esitligi asagidadir.
L= [£,0f,CE@) =[] f:(r:AEG)) (2.18)
i=1 i=1

&E(y,); yeterli istatistigi, f,( yl.;ﬁ|§( ¥;)); kosullu dagilimi ifade etmektedir.

Bu dagilim sabit etkiden bagimsizdir (16).
2.7.3. Rastgele Etkili Modeller

Rastgele etkili modeller, parametreleri kestirilebilecek bir dagilim
varsayimina gore rastgele etkiyi kestirir. Bu durum, hem sonug¢ degiskenin hem de
rastgele etkinin dagilimina baghdir. Rastgele etkili model i¢in log-olabilirlik

asagidadir.

L=w[][r0, ){f[ £, B+, )}dv,- (2.19)

i=1 o
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Burada f;; tliim model i¢in yogunluk fonksiyonunu, f; rastgele etki v;’nin
yogunluk fonksiyonunu gostermektedir. Bu integralin ¢oziilebilmesi i¢in uygun
dagilim varsayimina gore kestirimler hesaplanir. Bu tip modeller, denege 06zgii
modeller olarak adlandirilir ve kiimenin marjinal dagilimi yerine bireye iliskin
gozlemlerin dagilimini kullanir. Bu model, kosullu sabit etkili modellerdeki

varsayimlari kullanir (16).

2.7.4. Kitle Ortalamali ve Denege Ozgii Modeller (Population-Averaged
and Subject-Specific Models)

Verinin kiime yapisi i¢in iki durum bulunmaktadir. Bunlar kitle-ortalamali
model ve denege 6zgli modeldir. Kitle ortalamali model, tiim panellerdeki ortalama
etki ile panel i¢i bagimhilig: belirtir. Marjinal model olarak bilinen kitle-ortalamali
model, panel kovaryans yapisi ile elde edilir. Panel kovaryansi (ya da iliskisi),

panellerin tiimiine iligskin ortalama kullanilarak kestirilir.

Denege 6zgli model, belli bir panelin rastgele bilesenleri ile panel ici
bagimlilig1 belirtir. Denege 6zgii model, bir panel etkisinin belirtilmesi durumunda
yani panel kovaryansi ile hesaplanir. Her bir panel etkisi yalnizca belirli bir panel

icindeki bilgiler kullanilarak kestirilir (16).
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UCUNCU BOLUM

3. GENELLESTIRILMIS ESITLIK KESTIRIMI

Incelenen verilerin ¢oziimlemeleri icin her zaman gerekli varsayimlar
saglanamayabilir. Birinci bolimde tanimlanan kestirimlerin uygulanabilmesi igin
bazi varsayimlar gereklidir. Bu kestirim yontemleri igin &zellikle verilerin
dagilimlarinin bilinmesi gereklidir. Ornegin, en c¢ok olabilirlik ydntemi yanit
degiskenin dagilimini gerektirir. En ¢ok olabilirlige alternatif olarak gosterilen yari-
olabilirlik, ilk iki momentin varligin1 ve baglanti fonksiyonunu gerektirir. Ayrica
farkli kiimelerde bulunan goézlemler ayn1 6rneklem genisliklerine sahip olmalidir

(27). GEK, bu tiir varsayimlara gerek duymaz.

GEK ile ilgili bazi tanimlar verilmektedir. Bunlardan birkac¢1 asagida

belirtilmistir:

e GEK, iligkili verilerin regresyon modelini olusturmak i¢in parametrelerin
kestirim yontemi olarak agiklanir.

e Uzun donemli verilerin ¢oziimlemesi i¢in yari-olabilirlik yonteminin ¢ok
daha genisletilmis ifadesidir.

e Iliskili gozlemler i¢in genellestirilmis dogrusal modellerin kullanilmasini

saglar ve oldukc¢a ¢ok kullanim alanina sahiptir.

GEK’nin kullanildig1 yerler {i¢ baslikta toplanabilir. Bunlar; uzun doénemli
(boylamsal) veriler, klinik denemeler, epidemiolojik ¢alismalardir. GEK
cOzlimlemesi, yanit degiskeninin kesikli, ikili ya da kategorik veri tipinde olmasi
(miimkiinse binom ya da poisson dagilim ailesinden) durumunda daha c¢ok
kullanilirken, yanit degiskenlerin siirekli veri tipi i¢in de uygulanabilmektedir (1, 10,

29).

GEK’e iliskin olarak regresyon modelinin tanimlamasinda gerekli birkag

ifade asagida belirtilmistir (5, 17):
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Bagimli degiskenin dagilimi (iistel aile {iyesi olmali) tanimlanmali

Baglant1 fonksiyonu tanimlanmali

Bagimsiz degiskenler belirtilmeli

Tekrarl1 6l¢timlerin kovaryans yapisi elde edilmelidir.
3.1. Genellestirilmis Esitlik Kestirim Yaklasinm

Y j=1,...,n;, i=1,...,.K olmak {lizere i-inci denekteki j-inci l¢limii gostersin. i-
inci denek ilizerinde »; tane 6l¢iim alinsin ve bu durumda toplam 6l¢iim, K denek

K
lizerinden ) n, tanedir (5, 18, 27, 32).

i=1

Mliskili veriler, bagimsiz gdzlemlerde oldugu gibi aym baglant1 fonksiyonu ve
dogrusal kestirim bilesimi kullanilarak modellenir. Bagimsiz durumlardaki gibi
varyans fonksiyonu da tanimlanir ancak farkli olarak iligkili dl¢limlerin kovaryans

yapist modellenmelidir.

i-inci  denekteki  Ol¢iim  vektorleri ve  ortalamalar1  sirasiyla
Y=[Y,,.Y, Vs u=[u, -, u,] olsun. V; Y’nin kovaryans matrisi olsun. i-inci
denekteki j-inci Olglim icin bagimsiz ya da aciklanan degisken vektori,
X,j=[x,ﬂ,...,x,]p]’ ile gosterilsin. Iliskili veriler icin px1’lik regresyon parametresi

S nin kestirimi, asagidaki esitlikten elde edilir:

N ey _
S(ﬂ)—; op VoY, — 1, (B) =0 (3.1)
g(uy;) = x,f8

g baglanti fonksiyonu olmak {izere i-inci denek i¢in regresyon

parametrelerinin ortalamaya gore kismi tiirevlerini gosteren pxn,’lik matris

asagidaki sekilde ifade edilmistir (27):
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Xitn KX
y g' () g (1)
| : (3.2)
op
xllp xm,p
| &' (1)) g (1) |

3.2. iliski Matrisi (Working Correlation Matrix)

R(@); a parametre vektorleri tarafindan belirlenen iliski matrisi olsun. Y nin

kovaryans matrisi agagidaki gibi modellenir (4, 6, 8, 16, 18, 26, 27, 29, 32):
Vi=¢d/"R(a)4;"

¢, yayitlim parametresi, 4; ;-inci kosegen elemanlart v(z5;) olan n, xn,
kosegen matris olmak iizere eger R(«), Y’ nin dogru iligki matrisi ise, /’de Y nin
dogru kovaryans matrisidir. iliski matrisi genellikle bilinmez, bu nedenle kestirim

yoluna gidilir. Pearson artiklarinin uygun fonksiyonlar1 ile £ parametre vektoriiniin

degerleri kullanilarak kestirilir. Artiklar asagidaki gibi ifade edilir (7, 16, 18):

Iliski matrisinin her zaman dogru iliski yapisin1 gostermesi beklenemez,
ancak dogru belirlenirse, kestirimlerin kesinligi artmaktadir. Eger iliski matrisi Ry=/
yani birim matris olarak belirlenirse, GEK, bagimsiz esitlik kestirimlerine indirgenir

(16, 18).
3.2.1. Bagimsiz Iliski
Gozlemlerin farkli deneklerden alindigi ve gozlemler arasinda hicbir iliski

olmadig1 durumdur. Yani bir denege ait tiim gozlemler bagimsizdir (5, 16, 26, 27, 29,

32). Iliski matrisi yapis1 asagidaki gibidir:
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R=I1I=| . ) 3.4)
00---1

3.2.2. Degistirilebilir Tliski

Iliski matrisinin en basit formudur ve bu yap1, bir kiime i¢indeki gdzlemler
arasinda sabit bir iligskiyi gostermektedir. Bu iliski de « ile gosterilmektedir.

Degistirilebilir iliski matrisi yapist asagidaki gibidir (5, 9, 16, 26, 27, 29):

1 aa -~ «
al o o
Ra)=|la al - «
o a «a 1_
(3.5)
1 =k
Rjk:{ /
a j#k

Bu ifade, ayn1 denege iliskin gézlemlerin zamana bagli olmadig veri setleri
icin gecerlidir. Bu modelde gozlemler arasi iliski sabittir (o). Degistirilebilir iligki
yapisi, Pearson artiklar kullanilarak hesaplanabilir. Artiklarin kullanilmasiyla elde

edilen o’ nin kestirimi ise asagidadir:

] K
—ZZ%%

(N* - p)P T ik

N° :ini(ni —-1)
i=1

a=

(3.6)
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3.2.3. Yapisal Olmayan (Unstructured) Qliski

Bu iliski yapisinda varsayim; ayni denegin tiim gozlemlerinin 1iligkili
olmasidir. Iki degisken arasindaki iliski, «; ile gosterilmektedir ve bilinmeyen
parametre sayisi n(n-1)/2 tanedir (16). Yapisal olmayan iligski yapis1 asagidaki gibidir
(5,9, 16, 26, 27):

1 O, O 27

a, 1 a3 o,

A oy 1 Ain
K O, Ayyn 1 ]

a, Pearson artiklarin (e;; ,e;) kullanima ile kestirilebilir.

1 j=k
R, =
ajk j#k

K (3.8)

a= Zyjk

(K- p) i=1
3.2.4. Sabit liski

Sabit iliski matrisi agagida verildigi gibidir (5, 16, 18, 26):

L n, N
rl 2 1 7"2 n

R(a) - . (3.9)
rl,n r2,n 1




3.2.5. Otoregresif (dutoregressive) liski AR(1)
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Kiime icindeki tekrarli gozlemler dogal bir sira igindeyken gozlemler

arasindaki iligkinin zamana bagimli olmasi halinde kullanilir (9, 16). Otoregresif

iliski matrisi (5, 16, 26, 27, 29):

1 al 2 an—l
1 1 1 an—Z
Rla)=|a’ o' 1 "
an—l an—Z an—_’) 1

seklinde belirtilmistir. iliski ve iliski katsayis1 asagidaki gibidir:

Corr(Y[jayvi,_/H):at t:()alaza"'ani_j
1 K
G=—"D D

(K, - p)¢ =T 5

K, = i(”z -1

3.2.6. Duragan (Stationary) iliski

(3.10)

3.11)

Duragan iliski, M-bagimli olarak da adlandirilmaktadir. Otoregresif zaman

serisine alternatif olarak, baz1 kii¢iilk zaman araliklarinda 6rnegin & gibi bir zaman

araliginda iliskinin varligi i¢in kullanilabilir. Bu durumda, iliskili olabilecek

gozlemler i¢in en biiyilk zaman aralifi belirlenir (16). Duragan iliski matrisi

asagidaki gibidir (5, 16, 18, 26, 32):

1 a o, a,
a, 1 a, a,,
R(O() = A, a, 1 T a, s

(3.12)
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1 =0
Corr(Y;,Y, ) =40, t=12,---.m
0 t>m

K

a, = (K p) Z Z ] 1]‘H

> (3.13)
Kz = Z(nz _t)

3.2.7. Duragan Olmayan (Nonstationary) Qliski

Duragan iliskide oldugu gibi bir g araliginda, iliskinin varlig1 i¢in kullanilir
Duragan iligkiden farki ise kdsegenlerin altindaki iliski katsayilarinin sabit olmadigi

varsayimini tasir (16). Duragan olmayan iliski matrisi asagida belirtildigi gibidir

] al aZ at—] |
a, 1 a, a,,
Rla)=|a, «a, 1 Qs (3.14)
& &, Oy 1 |
Corr(Y , ”H) a, t=0,12,---n —j

o 2
G = (3.15)
Zz 12:1 ’f/

gl,lei,l 81,29 1€ E1.1,€i1€ 0,
2
G = 851621 85,6 82,,€i2€i
2
gn ]etnell gn Zetn i,2 gnn in

= [Zn:](i,u,v)j_

(3.16)
) 1 u,v e i—1ncikiime
I(i,u,v) = 0 dh
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3.3. En lyi Iliski Yapisim Belirleme

Genellestirilmis  esitlik  kestiriminde degiskenlere iliskin katsayilar
kestirebilmek icin iliski yapisinin belirlenmesi gerekmektedir. Farkli iliski yapilar

bulunmaktadir. Bu iliski yapilari iginden en dogru iliskinin belirlenmesi gerekir.

Olabilirlik temelli modeller i¢in model yapisinin uygunlugunda kullanilan

dlciilerden biri de Akaike Bilgi Olgiitiidiir (AIC). AIC 6lgiitii asagidaki gibidir:
AIC=-2L+2p (3.17)

L; log-olabilirligi, p; model parametrelerinin sayisin1 gostermektedir. Amac,
yari—olabilirlik modeller i¢in bu 6l¢iiyii genellestirmektir. Bu kesimde yari-olabilirlik
ifadesi Q ile ifade edilecektir. AIC, genellestirilince yeni 06l¢ii olarak QIC
tanimlanmistir. Modeller i¢in yari-olabilirlik asagidadir (16).

£

Oy = Iy/(_;) du” (3.18)

Yari-olabilirlik, bagimsizlik varsayimi altinda (R=I) hesaplanir. QIC(R)
ifadesi agagidadir.

QIC(R) = -20(g " (xB;)) + 2trace(4; Vs ) (3.19)

Esitlik 3.19’nin sag tarafinda bulunan;

e O(:g’(xfr), R iliski yapisi i¢in modelden hesaplanan yari-olabilirligin
degerini gdstermektedir. Yari-olabilirlik i¢in u yerine g=g' (x,é’R)
kullanilmaktadir. g'( ) model i¢in bagint fonksiyonunu gostermektedir.

o Vusr , R iliski yapisi icin modelden elde edilen “sandwich” varyans
kestirimini belirtmektedir.

e A4;bagimsiz modelden elde edilen varyans matrisini ifade etmektedir.
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Iliski yapilarindan uygun olan1 QIC 6lgiitiine gére belirlenir. AIC Slgiitiinde
en kiiciik deger anlamli oldugundan QIC 6lg¢iitii i¢in de en kiigiik degerli iliski yapisi

en uygun olanidir.

Iliski yapisinin  belirlenmesinde gdz oniine alinacak ifadeler asagida

belirtilmistir:

1. Eger panellerin 6rneklem genisligi kiiclik ve veri tam ise, yapisal olmayan
iliski yapis1 kullanilabilir.

2. Eger panellerdeki gozlemler ayni Orneklem birimlerinden ¢ok fazla
alinmigsa zamana bagl bir yap1 kullanilabilir.

3. Eger gozlemler kiimelenmis (zamana bagh degilse) ise degistirilebilir iligki
yapisi kullanilabilir.

4. Eger panellerin sayis1 az ise, bagimsiz model uygundur, ancak hipotez testi
ve katsayilarin yorumu i¢in “sandwich” varyans kestirimini hesaplamak
gerekir.

5. Eger birden fazla iligki yapisi uyumlu ise, QIC kullanilarak en iyi iligki
yapist segilebilir (16).

3.4. Yayilim Parametresi

Yayilim parametresi ¢’ nin kestirimi asagidaki gibidir:

n;

A 1 & K
¢p=—— e; N=) n (3.20)
N _ p g = y 21—1

N toplam oOl¢lim sayist ve p’de parametre sayist olmak ilizere GEK’nin

uygulanmasinda izlenen bir algoritma yapis1 bulunmaktadir (16,18):
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3.5 Algoritma

GEK’nde modelin elde edilebilmesi i¢in belli bir algoritma bulunmaktadir.
Bu algoritma olabilirlik kullanan bir yontem degildir, bu nedenle olabilirlik
¢ikarimlar GEK’de miimkiin degildir. Algoritma yapisi su sekildedir:
1. Bagimsizlik varsayimi altinda genellestirilmis dogrusal modeller
kullanilarak ilk £’lar hesaplanir.
2. Tliski matrisi R, hesaplanir. Sonra standartlastiriimis artiklar hesaplanir.

3. Kovaryans, asagidaki esitlik yardimiyla kestirilir:

Vi=¢A;"R(2)A;" (3.21)
4. Plar
ﬁm—ﬂ,{;aﬁm aﬁ} {;aﬂn ¥, u,-)} (3.22)

esitligi ile yinelenir.
5. Admmlar 2-inci ve 4-inci adimlar arasinda belli bir noktada birlesinceye

kadar tekrarlanir (18, 29, 32).

3.6. Kovaryans Parametresinin Kestirimi

Zeger ve Liang (1986), iliski matrisinin belirlenmesi sirasinda £ nin kestirim
degerlerini bulmak i¢in kovaryans parametresine iliskin bazi yaklasimlar
onermislerdir. Ciinkii kovaryans parametresi tam olarak belirlenemeyebilir. Bu

yaklasimlar; deneysel ve model temelli kestirimlerdir (5, 26).
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Cov( /?) nin model temelli kestirimi asagidadir (29):

> (B =1
(3.23)
S ! a,uz
,Z op £ op

Bu esitlik, f/nin en ¢ok olabilirlik kestiricisinin kovaryans kestirimi olarak

genellestirilmis dogrusal modellerde, ¢ok sik kullanilan Fisher bilgi matrisinin
tersidir. Eger model ve iliski matrisi dogru olarak belirtilirse /? ‘nin kovaryans

matrisi tutarh bir kestirimdir (18).

,@ ‘nin kovaryans matrisinin deneysel (robust, sandwich) kestirimi asagidadir

(18, 29):

Y =L (3.24)
K '
Za Ly oy, Wi (3.25)
i=1 aﬂ aﬂ

Iliski matrisi hatali olarak belirtilse bile, /? ‘nin  kovaryans matrisinin

kestiricimi tutarlilik o6zelligini korur (18). Bu nedenle uygulamalarda, deneysel

kovaryans matrisi daha ¢ok tercih edilir.

Biometri, epidemiyoloji, sosyal bilimler ve ekonomi alanlarinda bazi
varsayimlara, Ozellikle degiskenlerin bagimsizligina ve degiskenlerin dagilimina
ulasmak miimkiin olmayabilir. Ornegin, sayilabilir veriler ya da ikili veriler (hasta
olan ya da olmayan insanlarin sayist gibi) normal dagilim gostermezler. Sonug
degiskenlerin bagimsizligi da verilmez. Birkag¢ tedavi goren tek bir hastadan alinan

farkli 6l¢iimler buna 6rnek olarak gosterilebilir (1).
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Bagimsizlik varsayimlari, ayn1 bireye iliskin tekrarli Sl¢timler kullanildiginda
bozulur. Bagimliligin ve tekrarli gézlemler arasindaki iliski yapisinin belirlenebildigi

durumlar i¢cin GENELLESTIRILMIS ESITLIK KESTIRIMI 6nerilmistir.

GEK; marjinal modeller ailesindendir. GEK’de amag, bagimsiz degiskenlerin
bir fonksiyonu olarak bagimli degiskenlerin beklenen degerlerini modellemektir.
Dogrusal modeller ortalama ve varyansin fonksiyonel bagimsizligin1 gerektirirken,
GDM’de kiimelerde bagimliligin 6nemi yoktur. GEK bu modellerin bir sentezidir (1,
32).

GEK, GEKI1 ve GEK2 olarak iki smifa ayrilmaktadir. GEKI1, regresyon
parametrelerinin (f) ve ortak parametrelerinin () kestirimlerinin birbirinden
bagimsiz (ortogonal) oldugu varsayimini igerir ve yalnizca birinci momentlerin
tutarlt kestirimini saglar. GEK1’de amag, bagimli degiskenin beklenen degerini
bagimsiz degiskenin bir fonksiyonu gibi tanimlamaktir. Dogru ortalama yapisi

belirlendiginde GEK1, tutarli kestirimler saglar.

Coziimlemede amag, ortak yapiy1 belirlemek ise GEK2 kullanilir. GEK2’de
amag, ¢Oziimlemelerin ortalamanin disinda iligki yardimiyla da yapilabilmesidir.
GEK2, regresyon parametreleri ile ortak parametrelerin ikisini de i¢inde bulundurur
boylece birinci momentler yaninda ikinci momentlerin kestirimini de saglar.
GEK2’de bu parametrelerin kestiriminin ortogonal oldugu varsayimi yoktur. GEK2,
ortak yapi dogru belirlenemese de ortalamanin tutarli kestirimlerini saglar. GEK2,

GEK1’in daha genel halidir (1, 15, 25).

3.7. Degisen Lojistik Regresyon (ALR)

Yanit degiskenler ikili oldugunda Slglimler arasinda iligkinin tanimlanmast
icin farkli bir yontem bulunmaktadir. Bu yontem Degisen Lojistik Regresyon
(Alternating Logistic Regression) olarak adlandirilmaktadir. ALR algoritmasi, log
odds orami ile yanit degisken ciftleri arasindaki iliskiyi modellemektedir (18).

Pearson artiklar1 ile iliskiyi kestirmek yerine ALR algoritmasi yardimiyla
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karsilastirilmak istenen ciftin odds oranlart kestirilir ve Olglimler arasindaki iligki

elde edilir (16)

Ikili veriler igin j-inci ve k-mnc1 yamt degiskenleri arasindaki iliski asagidaki

gibi tanimlanmaktadir:

_ Pr(Y, =LY, =1)— p;pty
s (1= gy (1= ) (3.26)
Hy =Pr(Y,; =1)

Corr(¥,.¥,)

max(0, y; + w4, — 1) <Pr(Y,; = 1Y, = 1) <min(y,, ;) kisitlamasi ile paydaki ortak

olasiliga bir sinirlama getirilmistir (16, 18).

Odds orani ikili veriler i¢in asagidaki gibi tanimlanabilir(4, 16, 18):

(Pr(Yij = ], Yik = ]) Pr(K-j = 0’ Yvik — 0))
(Pr(Yij = J’Yik = O)Pr(Yzj = 0, Yik — ]))

OR(Y,.Y,) = (3.27)

ALR algoritmasi, odds oranmnin logaritmas: seklinde ifade edildiginde

asagidaki esitlik ile tanimlanir:

Vi =l0g(OR(Y;,Y;))
e e (3.28)
Vik = Zip&
a; gx1’lik regresyon parametresi vektori ve z;; katsay1 vektorleri olmak tlizere
¥jx parametresi (-c0,00) araliginda herhangi bir degeri alabilir. y;=0 degeri iliski
olmadigin1 gosterir (18). Iliski matrisi, lojistik regresyonda log odds orani ile

kestirilebilir. Iligki yapisi ile parametrelerin her biri i¢in odds orani kestirimleri elde

edilebilir (16).

Log odds oranini kullanarak ikili veriler icin GEK modeli belirlenebilir. Ikili

veriler i¢in ortalama model, uygun baglant1 fonksiyonlarindan (lojistik, probit yada
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tamamlayic1 log-log gibi) kullanilarak olusturulabilir. ALR algoritmas1 i¢in a ve

['nin degerleri, standart hatalar1 ve kovaryanslar1 gereklidir (16, 18).

3.8 Kayip Veri

Kayip veriler i¢in baz1 yontemler tanimlanmistir. Bu yontemler genel olarak
veri MCAR oldugunda yalnizca ortalama icin yansiz kestirimler vermektedir (26).
Kestirimlerin yansizli1 i¢in genel bir yaklagim; tamamlanmamis verinin varliginda
GEK’den yararlanmaktir (1, 5). GEK’de kayip verilerle ilgili birka¢ yaklasim

sunulmustur.

Bir yaklasim; eger bagimli degisken y; eksik gozlenmisse GEK1 yaklasimi
uygulanabilir. Bu yaklasimda bagimsiz degisken, X;’lerin tam olarak gdzlenmesi
gereklidir. GEK1, ortalamas1 g4 ve varyansi Z; olan ¢oklu normal dagilimin esitlik

kestirimleri gibi yorumlanabilir.

Diger bir yaklasim ise eger veri MAR olarak gozlenmisse, bagimli ve/veya
bagimsiz degiskenlerin eksikliginde hem GEK1 hem de GEK2 nin ikisinin birden
uygulanabilmesidir (1, 15)
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DORDUNCU BOLUM

4. GEREC ve YONTEM

Ayni denekten belirli zaman araliklarinda alinan 6l¢iimler tekrarli 6l¢timlerdir
ve bu tekrarli Ol¢iimler arasinda bir iligki bulunmaktadir. Ayni1 denekten alinan
tekrarli Ol¢limlerinin  dagilimlarinin  bilinmemesi, Olgiimlere iligkin varyans—
kovaryans yapisinin homojen olmamasi ve kullanilan verinin tipi hakkinda
bilgimizin olmamasi durumunda Tekrarli Olgiimlerde Varyans Coziimlemesi

uygulamak yerine GEK uygulamak daha dogru bir segenektir.

Bu calismanin amaci, bir denek iizerinden belirli zaman araliklarinda alinan
tekrarli  Olciimlerin  birbirine bagimli olmasindan dolayr kullanilan GEK
coziimlemesini incelemek, uygun iliski yapisini ve veri yapisina gore uygun modeli

belirlemektir.

Calismada kullamilan veriler, Hacettepe Universitesi Tip Fakiiltesi Dis
Hekimligi Dis Hastaliklart ve Tedavisi Anabilim Dali tarafindan saglanmistir.
Caligma 26 hasta iizerinde uygulanmistir. Dis saglig1 kontrollerine gelen hastalarin
yas, cinsiyet, disin renk uyumunda kullanilan USPHS o6lgiitleri ile yenilenme
(restorasyon) degisimi kaydedilmistir. USPHS ol¢iitleri, iki seviyede oOl¢iilmiistiir.
USPHS olciitleri, disin yenilenmesine gerek olmayan ve miikemmel yenilenme ile
diismiis ya da yenilenmesini gerektirecek diizeyde degisime ugramis yenilenme

olarak alinmustir.

0 (Charlie): Diigmiis ve yenilenmesine gerek duyulan
USPHS=

1 (Alfa ve Bravo): Miikemmel ve yenilenmesine gerek olmayan

Diste zamanla meydana gelen renk degisikligi dogrudan klinik gozlemlere
dayal1 olarak incelenmektedir. Zaman igerisinde meydana gelen renk degisikligi ve

transliisensinin analitik yontemlerle kantitatif olarak OGl¢iimiiniin zor olmasindan
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dolaytr dogrudan klinik gozleme dayali degerlendirme yapilmaktadir. Renk
uyumunun belirlenmesinde USPHS o0lgiitleri basarili bir sekilde yapilmaktadir.
Aragtirmacilar; yenilenmeyi c¢evreleyen dis dokusunu ya da komsu disi dikkate
alarak, yenilenmenin renginin koyulasmasi ya da agilmasina gore degerlendirme
yaparlar. Dis hekimligine gelen hastalarin renk uyumu degerleri 0., 6., 12., 18. ve 24.
aylarda Sl¢iilmiis ve kaydedilmistir. Zamana gore degisim gdsteren disin renk uyumu
degiskeni bagimli degisken, yas ve cinsiyet degiskenleri aciklayic1 degisken olarak
alinmistir. Aciklayici degisken olan cinsiyet kesikli degisken, yas ise siirekli

degisken olarak alinmistir.

Tablo 4.1. Calismada Kullanilan Degiskenler

Degiskenler Veri Tipi | Kod

Yas Stirekli (Bagimsiz)

Cinsiyet Kesikli Erkek (Bagimsiz)
Kadin

Renk uyumu Kesikli 0: Diistik (Bagimli)

(USPHS olgiitii) 1: Miikemmel

Uygulama boliimiinde verilere oncelikle tekrarli Olglimlerde varyans
¢Oziimlemesi uygulanmistir. Bu uygulama i¢in SPSS 11.5 paket programi
kullanilmistir. Daha sonra verilere GEK ¢6ziimlemesi uygulanmistir. GEK
cozlimlemesinde iki istatistik paket programi kullanilmigtir. Degiskenlere iliskin
parametre kestirimlerinin ve parametre kestirimleri i¢in gerekli olan iliski matrisinin
elde edilebilmesi i¢in SAS istatistik paket programi kullanilirken, iliski matrisinin
secimi i¢in kullanilan program STATA istatistik paket programidir. STATA paket
programinda iligki yapist belirlendikten sonra SAS paket programi kullanilarak GEK
¢Oziimlemesine iliskin sonuglar elde edilmistir. SAS programinda GEK ¢6zlimlemesi
icin gereken program GENMOD baslig1 altinda yazilmaktadir. Bu program Tablo
4.2°de verilmektedir.
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Tablo 4.2. Genellestirilmis Esitlik Kestirimi Coziimlemesi I¢in SAS  Programinda

Komutlar

proc genmod data=work.tezveri;

class hasta cinsiyet;

model ab=yas cinsiyet/d=bin;

repeated subject=hasta / type=exch covb corrw;
run;

proc genmod data=work.tezveri;

class hasta cinsiyet;

model ab=yas cinsiyet/d=bin;

repeated subject=hasta / type=ind covb corrw;
run;

Kullanilan komutlara iligskin agiklamalar su sekildedir:
Class: Siniflandirilmig verileri tanimlar.
D/dist: Dagilimin tiiriinii tanimlar. Ayrica dagilima iligkin baginti fonksiyonunu
belirler.
Repeated: Modelin belirlenmesinde kovaryans yapisini tanimlar.

Type: Iliski matrisinin yapisim belirtir.

GEK’ne iligkin regresyon modelinin belirlenmesinde iligki matrisinin tipinin
belirlenmesi 6nemlidir. Uygun iligki yapisinin belirlenmesi i¢in algoritma yapisi
STATA paket programi kullanilarak elde edilmektedir. Algoritma Tablo 4.3°de

verilmektedir.



Tablo 4.3. Iliski Tipinin Belirlenmesine iliskin STATA Algoritma Yapisi

capture program drop qicm
program define qicm
quietly {
matrix V = e(V)
matrix Vi= syminv(V)
matrix T = Vi*V
matrix B = trace(T)
scalar cc =B[1,1]
tempvar mu ql
predict double "mu’', mu
gen double ‘gl' = (ab*log('mu'/(1-'mu'))+log(1-"mu'))
summ "ql',;meanonly
}
display in green "QIC =" in yellow %8.4f 2*(cc-r(sum))
display “ql'
end

xtgee ab yas cinsiyet, i(hasta) t(z) fam(bin) corr(exch) robust
gicm exch

xtgee ab yas cinsiyet, i(hasta) t(z) fam(bin) corr(ind) robust
gicm ind

xtgee ab yas cinsiyet, i(hasta) t(z) fam(bin) corr(ar 1) robust
gicm "ar 1"

xtgee ab yas cinsiyet, i(hasta) t(z) fam(bin) corr(ar 2) robust
gicm "ar 2"

xtgee ab yas cinsiyet, i(hasta) t(z) fam(bin) corr(unst) robust
gicm unst

xtgee ab yas cinsiyet, i(hasta) t(z) fam(bin) corr(sta 2) robust
gicm "sta 2"
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Iliski matris tipinin belirlenmesi igin algoritmada kullanilan komut, ‘qicm’

komutudur. En kiigiik gicm degeri en 1yi iligki yapisin1 vermektedir.
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BESINCi BOLUM
5. BULGULAR
5.1. Tamimlayiel Istatistikler

Hacettepe Universitesi Dis Hekimligi Fakiiltesine Mayis 2003 ile Mayis
2005 tarihleri arasinda gelen 26 hastaya iliskin tanimlayici bilgiler verilecektir.
Arastirma kapsaminda bulunan 26 hastaya 5 tekrarli Ol¢lim yapildigindan
aragtirmada 130 gozlem bulunmaktadir. Bu 130 gozlemin yasina iliskin tanimlayici

istatistikler Tablo 5.1 de verilmistir.

Tablo 5.1. Yas Degiskenine Iliskin Tanimlayicr istatistikler

Degisken N Minimum | Maksimum | Ortalama Standart
sapma
Yas 26 29 67 47.15 9.51

Calismaya katilan 26 hastanin %26.9’u (n=7) erkek ve %73.1°1 (n=19)
kadindir. Calismada bagimli degisken olan disteki renk uyumunun yenilenme

degerleri Tablo 5.2°de verilmistir.

Tablo 5.2. Bagimli Degiskene Iliskin Tanimlayicr Istatistikler

Renk Diisiik Miikemmel

Hyunmu Say1 % Say1 %
Baslangic | 0 0.0 26 100.0
6.ay 2 7.7 24 923
12.ay 3 11.5 23 88.5
18.ay 5 19.2 21 80.8
24.ay 8 30.8 18 69.2
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Calismada, disin renk uyumu ile ilgili olarak yenilenme 5 farkli zamanda

Olciilmektedir. 26 hastanin disine iliskin tekrarli renk uyumu O6lg¢limleri, hastalarin

yaslar1 ve cinsiyetlerini gésteren veriler Tablo 5.3’de verilmektedir.

Tablo 5.3. Hastalarin Dislerinin Renk Uyumu,Yas ve Cinsiyet Degiskenlerine iliskin

Veriler

hasta
1
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15
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5.2. Tekrarh Ol¢iimlerde Varyans Coziimlemesi
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26 hastanin her birinden dislerinin renk uyumu ile ilgili 5 farkli 6l¢lim

almmistir. Bu 6lgiimlere Tekrarli Olgiimlerde Varyans Coziimlemesi uygulanirsa

Normal dagilim varsayimi altinda Sekil 5.1°e ulasilmigtir.

1.1

1,0

5 aylik renk uyumu ortalamalari

baslangic  6.ay 12.ay 18.ay 24.ay

AYLAR

Sekil 5.1. Hastalarin Aylara Gére Renk Uyumunu Gosteren Grafik

Gozlemler Normal dagilim gostermemektedir. Normal dagilim gosterdigini,

varyans yapisinin homojen oldugunu ve Olgiimlerin siirekli oldugunu diisiinerek

Tekrarli Olgiimlerde Varyans Coziimlemesi uygularsak sonuglar Tablo 5.4’de ve

Tablo 5.5’de verilmistir.

Tablo 5.4. Tekrarli Olgiimlerde Varyans Coziimlemesine iliskin Sonuglar

Degisken Kareler Serbestlik Kareler F p-degeri
Toplam derecesi Ortalamasi

Sabit 6,292 1 6,292 102,381 ,000

YAS , 716 1 , 716 11,647 ,002

CINS , 794 1 ,794 12,914 ,002
Hata 1,414 23 ,061
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Tablo 5.5. Tekrarli Olgiimlerde Varyans Coziimlemesi Icin Parametre Kestirim

Degerleri
Standart %95 Gliven
Degisken  Kestirim  Hata Araligi t-degeri p-degeri
Sabit 1.194  0.112 0.962 1.426 10.643 0.000
yas -0.008  0.002 -0.013 -0.003 -3.413 0.002
erkek 0.179  0.050 0.076 0.281 3.594 0.002
kadin  0.000  0.000 0.000 0.000

Varyans Analizi sonucunda degiskenler anlamli bulunmustur.

5.3 Genellestirilmis Esitlik Kestirimi

Calismada 26 hasta bulunmaktadir. Bu hastalarin her birinden 5 farkli
zamanda Ol¢iim alinmistir. Bu nedenle calismada 130 gozlem bulunmaktadir. SAS
programinda veri girisi Tablo 5.3’de oldugu gibidir. Verilere iligkin uygun iligki

matrisinin sonuglar1 Tablo 5.6’da verilmistir.

Tablo 5.6. En lyi iliski Yapisina iliskin Sonuglar

Iliski Yapilari QIC
Degistirilebilir iliski 99.4018
Bagimsiz Iliski 99.4018
Otoregresif 1 Tliski 99.4047
Otoregresif 2 Iliski 99.4072
Yapisal olmayan 100.1857
Duragan Iligki 99.4065

Bu sonuglara gore iliski matrisi i¢in en uygun yapi degistirilebilir ya da
bagimsiz iligki yapilaridir. Degistirilebilir ve bagimsiz iligski yapilarina gore verilere
komut yapis1 uygulandiginda (Bkz.Tablo 4.2) uyum iyiligi testinin sonuglar1 Tablo

5.7°de verilmistir.
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Tablo 5.7. Uyum lyiligi Sonuglari

Olgiimler SD Deger Deger/SD
Sapma 127 93.4018 0.7354
Olgeklendirilmis Sapma 127 93.4018 0.7354
Pearson Ki-Kare 127 134.0037 1.0551
Olgeklendirilmis Pearson Ki-kare 127 134.0037 1.0551
Log-olabilirlik -46.7009

Gozlemlerin birbirinden bagimsiz oldugu varsayimi altinda degiskenlere

iliskin ilk katsay1 kestirim degerleri Tablo 5.8’de verilmistir.

Tablo 5.8. ilk Parametre Kestirim Degerleri

Standart %95 Giiven
Degisken SD Kestirim Hata Aralig Ki-kare p > Ki-kare
Sabit 1  4.2432 1.3358  1.6250 6.8614 10.09 0.0015
yas 1 -0.0564 0.0261 -0.1076  -0.0053 4.67 0.0307
erkek 1  2.0992 1.0516  0.0381 4.1603 3.98 0.0459
kadm 0  0.0000 0.0000  0.0000 0.0000

Yapilan c¢oziimleme sonucunda yas ve cinsiyet degiskenleri anlaml

bulunmustur.

p katsayilarinin kestirimi i¢in iligki matris tipine gore iliski matrisi Tablo 5.9

ve Tablo 5.10°da verilmistir.

Tablo 5.9. Degistirilebilir Iliski Yapis1 Altinda Iliski Matrisi

0.ay 6.ay 12.ay 18.ay 24.ay
0.ay 1.0000 -0.1037 -0.1037 -0.1037 -0.1037
6.ay -0.1037 1.0000 -0.1037 -0.1037 -0.1037
12.ay  -0.1037 -0.1037 1.0000 -0.1037 -0.1037
18.ay  -0.1037 -0.1037 -0.1037 1.0000 -0.1037
24.ay  -0.1037 -0.1037 -0.1037 -0.1037 1.0000

Gozlemlere iliskin tiim tekrarli 6liimler arasinda zit bir iliski bulunmaktadir.
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Tablo 5.10. Bagimsiz Iliski Yapis1 Altinda iliski Matrisi

0.ay 6.ay 12.ay 18.ay 24.ay
O.ay 1.0000  0.0000 0.0000 0.0000 0.0000
6.ay 0.0000 1.0000 0.0000 0.0000 0.0000
12.ay 0.0000 0.0000 1.0000 0.0000 0.0000
18.ay 0.0000  0.0000 0.0000 1.0000 0.0000
24.ay 0.0000  0.0000 0.0000 0.0000 1.0000

Iliski matrisinin elde edilmesinden sonra f katsayinin kestirimi igin gerekli
olan degistirilebilir iligskiye iliskin model-temelli ve deneysel kovaryans matrisi

Tablo 5.11 ve Tablo 5.12°de verilmektedir.

Tablo 5.11. Degistirilebilir Iliski Yapisina Gore Model-Temelli Kovaryans

Matrisi
Sabit Yas Cinsiyet
sabit 1.04442 -0.01997 -0.04364
yas  -0.01997 0.0003988 -0.000014
cinsiyet  -0.04364 -0.000014 0.64724

Tablo 5.12. Degistirilebilir Iliski Yapisina Gore Deneysel Kovaryans Matrisi

Sabit Yas Cinsiyet

Sabit 1.02637 -0.02054 -0.08329
Yas -0.02054 0.0004243 -0.002336
Cinsiyet -0.08329 -0.002336 0.99162

Bagimsiz iligkiye iliskin model-temelli ve deneysel kovaryans matrisi

Tablo 5.13 ve Tablo 5.14’de verilmistir.
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Tablo 5.13. Bagimsiz Iliski Yapisina Gére Model-Temelli Kovaryans Matrisi

Sabit Yas Cinsiyet

sabit 1.78446 -0.03412 -0.07457
yas  -0.03412 0.0006814 -0.000023
cinsiyet  -0.07457 -0.000023 1.10585

Tablo 5.14. Bagimsiz Iliski Yapisina Gore Deneysel Kovaryans Matrisi

Sabit Yas Cinsiyet

Sabit 1.02637 -0.02054 -0.08329
Yas -0.02054 0.0004243 -0.002336
Cinsiyet -0.08329 -0.002336 0.99162

Parametre kestirimlerinin GEK ¢6zlimlemeleri, degistirilebilir ve bagimsiz
iliski yapilar i¢in aynidir. Ciinkii deneysel kovaryans matrisleri her iki iligki yapisi

icin degisim gostermemektedir. Coziimleme sonuglart Tablo 5.15’de verilmistir.

Tablo 5.15. Degistirilebilir ve Bagimsiz Iliski Yapisi I¢in Genellestirilmis Esitlik

Kestirimi Cozlimlemeleri

Standart 95% Giliven
Degisken Kestirim Hata Aralig1 Z P>1Z|
Sabit  4.2432 1.0131 2.2575  6.2288 419 <.0001
yas  -0.0564 0.0206 -0.0968 -0.0160 -2.74  0.0062

erkek  2.0992 0.9958 -4.0509 -0.1475 -2.11  0.0350
kadin ~ 0.0000 0.0000 0.0000 0.0000

GEK ¢oziimleme sonucuna gore degistirilebilir ve bagimsiz iliski yapisi

alindiginda degiskenlerin modele katkis1 anlamli bulunmustur.

GEK ¢ozlimlemesi sonucunda, model asagidadir.

E(y)=4.2432-0.0564yas+2.0992cinsiyeteek

Bu modele gore, erkek hastalarin dislerinde yenilenmeye gerek duyulmamasi
olasiligi, bayan hastalara gore 2.09 kat daha fazladir. Ayrica yas arttik¢a, disin

yenilenmeme olasilig1 azalmaktadir.
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SONUC

Saglik, sosyal ve ekonomi alanlarinda toplanan veriler genellikle tekrarh
Olctimlerden olusmaktadir. Bu Ol¢timler i¢in farkli yontemler uygulanmaktadir. Bu
yontemlerden biri de, son yillarda oldukg¢a fazla kullanilan GEK’dir. Bu kestirim
yontemi, bir denek iizerinden alinan Slgiimlerin arasinda iliski durumunu inceler.
Cogu kestirim yontemi, Olc¢limlere iliskin dagilimlarin bilinmesi durumunda
kullanilir ve bazi varsayimlan sart kosar. GEK’ni digerlerinden ayiran en onemli

ozelliklerden biri de bu varsayimlara gerek duymamasidir.

Calismada kullanilan verilere Tekrarli Olgiimlerde Varyans Coziimlemesi ve
Genellestirilmis Esitlik Kestirimi uygulanmistir. Her iki ¢6ziimleme sonucunda elde
edilen parametre kestirim degerleri anlamli bulunmustur. Bu durum Tablo 6.1°de

belirtilmistir

Tablo 6.1. Tekrarli Olgiimlerde Varyans Coziimlemesinden ve Genellestirilmis
Esitlik Kestirim Coziimlemesinden Elde Edilen Parametre Kestirim

Degerleri

Tekrarh Ol¢iimlerde Varyans Céziimlemesi

Degisken Kestirim p-degeri
Sabit 1.194 0.000
Yas -0.008 0.002
Erkek 0.179 0.002
Kadin 0.000 -

Genellestirilmis Esitlik Kestirimi Coziimlemesi

Degisken Kestirim p-degeri
Sabit 4.2432 <.0001
Yas -0.0564 0.0062
Erkek 2.0992 0.0350

Kadin 0.0000 -
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Varyans Cozlimlemesi, ayri ayrt her hastanin aylara gore Ol¢lim degerlerini
kullanmaktadir. GEK ¢6ziimlemesinde ise her hastanin aylara gdre Slglimleri bir
kiime gibi disiiniilerek, kiimeler i¢in kestirimler hesaplanmaktadir. 26 hastanin

dislerindeki renk uyumuna iligskin degerlerin kestirimleri Tablo 6.2’de verilmistir.

Tablo 6.2. Tekrarli Olgiimlerde Varyans Coziimlemesinden Kestirilen Degerler

HASTA  0.ay 6.ay 12.ay 18.ay 24.ay
1 1,00 1,00 1,01 0,87 1,01
2 1,00 1,00 0,93 0,80 0,95
3 1,00 0,88 1,00 0,91 0,69
4 1,00 0,92 0,49 0,52 0,34
5 1,00 0,88 1,13 1,01 0,78
6 1,00 1,00 1,00 0,85 1,00
7 1,00 0,88 1,08 0,97 0,74
8 1,00 1,00 1,05 0,89 1,03
9 1,00 1,00 0,94 0,81 0,96
10 1,00 0,88 1,07 0,96 0,73
11 1,00 0,90 0,74 0,71 0,51
12 1,00 1,00 1,01 0,87 1,01
13 1,00 0,90 0,79 0,75 0,55
14 1,00 0,92 0,51 0,53 0,35
15 1,00 0,90 0,73 0,70 0,50
16 1,00 0,90 0,83 0,78 0,57
17 1,00 0,91 0,68 0,66 0,47
18 1,00 0,90 0,81 0,77 0,56
19 1,00 0,89 0,93 0,86 0,64
20 1,00 0,91 0,66 0,65 0,45
21 1,00 0,90 0,76 0,73 0,52
22 1,00 0,89 0,86 0,81 0,59
23 1,00 1,00 1,06 0,91 1,04
24 1,00 0,89 0,91 0,84 0,63
25 1,00 0,88 1,03 0,93 0,71
26 1,00 0,89 0,98 0,90 0,67

Varyans c¢oziimlemesinde, ayr1i ayr1 hastalarin Olgiimlerinin  kestirilen
degerlerin ortalamasi alinir. GEK ¢6ziimlemesinde ise kiimelerin ortalamasi alinir.
Iki ¢dziimleme yontemi, aylara gore dislerin renk uyumu degisiminin ortalamalar:

bakimindan karsilastirilmak istenirse elde edilen sonuglar Tablo 6.3°de verilmistir.
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Tablo 6.3. Varyans Coziimlemesi ve Genellestirilmis Esitlik Kestirimi ile Elde

Edilen Ortalama Degerlerinin Karsilagtirilmasi

TOVC GEK
0,977 0,97282
0,937 0,96428
0,895 0,89620
0,653 0,61374
0,960 0,93131
0,969 0,97129
0,936 0,91966
0,993 0,97565
0,945 0,96617
0,928 0,91539
0,774 0,78740
0,977 0,97282
0,799 0,81436
0,661 0,62703
0,766 0,77781
0,815 0,83082
0,742 0,74719
0,807 0,82274
0,863 0,87325
0,734 0,73638
0,782 0,79670
0,831 0,84609
1,001 0,97696
0,855 0,86687
0,912 0,90623
0,887 0,89083

Her iki ¢oziimleme sonunda elde edilen ortalama degerleri arasinda biiyiik bir

farklilik bulunmamaktadir

Iki yonteme gore elde edilen kestirimler arasinda fark olmamasi, kullanilan
veriye 0zgli olup karsilastirma i¢in kesin kanit olamaz. Varyans ¢oziimlemesinde
bagimli gdzlemlere iliskin ayr1 ayr1 kestirimler elde edilirken; GEK’de her denek i¢in
bagimli gozlemlerin ortalamalari 6nceden belirlenen iliski yapisina gore
kestirilmektedir. Bunun en 6nemli nedeni, GEK’nin dagilim varsayimi olmayisidir.
Varyans ¢oziimlemesinde ayr1 kestirimler kullanilan bagimli gozlemler arasindaki

iliski sonradan test edilir.
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