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OZET

Bu calismada, giiniimiizde yaygin olarak kullanilan santrifiij pompalarin akis
alan1 ve performans analizi ele alinmistir. Ornek bir pompa icin akis karakteristikleri
incelenmistir.

Nominal debide ve nominal debinin ¢esitli katlar1 seklinde olan kismi debilerde
kanatsiz difiizoriiyle birlikte analiz edilen pompanin CFD c¢oziimiinde k-¢ tiirbiilans
modeli kullanilirken duvar fonksiyonu iginse olceklendirilebilir duvar fonksiyonlari
kullanilmistir. Pompanin biitiiniiniin CFD analizi hesap zamanini ¢ok arttiracagindan
sadece bir pasaj geometrisi alinarak diger pasajlarla birlestigi noktalarda periyodik sinir
sartlar1 tanimlanmigtir. Ayrica rotorun hareketli, difiizoriinde hareketsiz olmasi
nedeniyle bu iki yiizeyin birlesme noktalarinda akiskan-akigkan baglantinin 6zel bir
sekli olan MFR (Multiple Frame of Reference) tanimlanmustir.

Nominal debi degeri icin eldeki deney datalar1 ile CFD ¢6ziimii
karsilagtirilmistir. Kismi debi degerleri icin giriste ve difiizor kismindaki sirkiilasyon
bolgeleri arastirilmig, debi degerinin degisimine baglh olarak cesitli basing ve hiz
grafikleri elde edilmistir. Olusan sirkiilasyonlar ve lokasyonlart degiskenlik

gostermistir.

ANAHTAR KELIMELER: Hesaplamali Akigkanlar Dinamigi, Turbomakineler,

Santrifiij Pompa, Performans Analizi, Kanatsiz Difiizor
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ABSTRACT

In this study, the flow field and performance analysis of centrifugal pumps
which are widely used were investigated. The flow characteristics of a sample pump
were examined.

In order to obtain the CFD solution of the centrifugal pump with vaneless
diffuser, the k-¢ turbulence model with scalable wall functions was used. To gain from
computation time one passage of the pump was modelled and periodic boundary
conditions were implemented on the conjunction surfaces. Since the rotor is rotating and
the diffuser is fixed special type of fluid-fluid connection called as MFR was used to
combine these two surfaces.

For nominal flow rate, the results were compared with test results available in
literature. At partial flow rates, circulations in the inlet region and diffuser circulations
were investigated. The pressure and velocity fields were obtained for different flow

rates. Variations in circulation zones and their locations were also examined.

KEY WORDS: Computational Fluid Dynamics, Turbomachinery, Centrifugal Pump,

Performance Analysis, Vaneless Diffuser
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SIMGELER

fvme, (m/s?)

a

A Alan, (m?)

C Mutlak hiz, (m/ s)

c Ses hizi, (m/ s)

C, Mutlak hizin tegetsel bileseni, (m/ s)

C. Eksenel hiz bileseni, (m/ s)

c, Sabit hacimdeki 6zgiil 1s1, (J / kg K)

c, Sabit basinctaki 6zgiil 1s1, (J / kg K)

F Kuvvet, (N)

g Yercekimi ivmesi, (m/s*)

h Entalpi, (J/ kg)

H,_ Manometrik basma yiiksekligi, (m)

H, Geometrik yiikseklik, (m)

k Birim kiitle icin tiirbiilans kinetik enerji, (m®/s*)
Kiitle, (kg)

m Kiitlesel debi, (kg /s)
M Moment, (N m)

n Devir sayisi, (dev / dk)

n, Mil giiciine gore hesaplanmis 6zgiil hiz, (dev / dk)
n, Debiye gore hesaplanmis 6zgiil hiz, (dev / dk)

P Basing, (Pa)

p' Modifiye basing, (Pa)

Tiirbiilans Prandtl sayist, ¢ .u /A,
Q Debi, (m’/s )
Q, Nominal debi, (m’/s)

r Yarigap, (m)
R Cap, (m)
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Re Reynolds sayisi, u.d /v

t Zaman, (s)

T Sicaklik, (K)

U Tiirbiilanslt akista dalgalanma hiz bileseni, (m / s)
u, v, w Kartezyen koordinatlarda hizlar, (m/ s)

U Hiz, (m/s)

\Y Hacim, (m?)

W Bagil hiz, (m/ s)

X, Y,z Kartezyen koordinatlar, (m)

Y Ozgiil enerji, Y = g.Hm(mZ/sz)
o Akis agist
B Kanat acis1
g Tiirbiilans dissipasyonu, (m’/s’)
¢ Bulk viskozitesi, (kg / m s)
n, Genel verim
0 Theta agis1

Von Karman sabiti, 0.41

Ikinci viskozite terimi, (kg / ms)
i Dinamik viskozite, (kg / m s)
K, Tiirbiilans viskozitesi, (kg / m s)

[T Efektif viskozite, (kg / m s)

p Yogunluk, (kg/m®)
o, k-¢ tiirbiilans modeli sabiti, 1.3
T Kayma gerilmesi veya molekiiler gerilme tensorii, (kg m/s”)
0 Acisal hiz, (rad / s)
r Difiizivite, (kg / m s)
r, A bileseninin molekiiler difiizyon katsayisi, (kg / m s)
I, Tiirbiilans difiizivitesi, (kg/ms)
A
I Tiirbiilans yogunlugu, 1=

14
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0 Genel skaler bir degisken
KISALTMALAR

CFD  Computational Fluid Dynamics
DNS  Direct Numerical Simulation
GGI  General Grid Interface

ILU Incomplete Lower Upper
LDV  Laser Doppler Velocimeter
MFR  Multiple Frame of Reference
MG Multigrid

RANS Reynolds Averaged Navier-Stokes Equations
INDISLER

abs Absolute

advect Advection

diffus Diffusion

eff Effective

ip Integral Point

ref Reference

spec  Specific

stat Static

stn Stationary

tot Total
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1. GIRIS

Icerisinden gecen akiskandan enerji alan veya enerji veren makinelere “akim
makineleri” denilmektedir. Makineden gecen akiskan gaz veya sivi olabilir. Bu
baglamda en basit tanimiyla pompa; i¢inden gecen akiskana enerji kazandiran bir akim
makinesidir. Fakat pompa tabiri sadece sikistirllamayan bir akiskan (s1vi, camur, hamur
vb.) s6z konusu oldugunda gecerli olmaktadir.

Bu enerji kimi zaman akiskana belli yiikseklik kazandirilmasinda kimi zaman
akigkanin artan basincindan faydalanilmasinda kullanilmistir. Akiskana enerji aktarmasi
nedeniyle pompalar enerji doniistiiriicii makinelerdir. Mekanik enerjiyi belli bir verimle
hidrolik enerjiye doniistiiriirler.

IIk bilinen pompa, M.O. 300 yilinda Archimedes tarafindan yapilan
Archimedes Vidasi’dir (Archimed’s Screw). Pompalar yiizyillardir kullanilmakta olup
asil gelisimlerini akigkanlar mekanigi bilimindeki biiyiik gelismelere paralel olarak 17.
yiizyildan sonra gostermislerdir. Giiniimiizde bilgisayarlardan uzay araglarina, 1sitma-
havalandirma sistemlerinden enerji santrallerine kadar cok degisik alanlarda
kullanilmaktadirlar. Cok genis gii¢ araliginda yaygin kullanim alanm1 olan bu makineler
cok degisik tip ve yapida olabilmektedirler. Bu bakimdan verimlerinin iyilestirilmesi ve

performanslarinin arttiritlmasi igin ¢alismalar devam etmektedir.

1.1 Tezin Amaci

Bu c¢alismada temel amag bir santrifiij pompanin ¢ark ve difiizériinde hiz ve
basin¢ alanlarin1 sayisal olarak elde etmek, olusan girdap bolgelerini ve bunlarin
pompanin performansi ile iligkilerini incelemektir.

Bu amacla nominal debi i¢in ana karakteristikleri belli olan bir santrifiij pompa
modellenerek, ¢arkindaki ve difiizoriindeki akis sayisal olarak incelenmistir. Coziimde
ticari bir CFD kodu kullanilmis olup, sonu¢lar varolan deney verileriyle karsilastirilarak
CFD (Hesaplamali Akiskanlar Dinamigi) simiilasyonuyla gercek Olctimlerin tutarliligi
incelenmistir.

Kismi debilerde (nominal debinin 0.4, 0.6, 0.8, 1.2 katlar1 icin) olusan giris ve
cikis sirkiilasyonlarin1 yakalamak amaciyla CFD simiilasyonlarina devam edilmistir.
Bulunan sirkiilasyon bolgeleri literatiirde varolan calismalarla karsilastirilmis ve pompa

performansina etkileri incelenmistir.



2. KAYNAK ARASTIRMASI

Yiizyillardir insanoglunun hizmetinde olan, sivilarin bir yerden bir yere
nakillerini veya hidrolik enerji seviyelerinin degismesini saglayan pompalarin gercek
gelisimi akiskanlar mekanigi bilimindeki ilerlemelerle birlikte 17. yiizyildan itibaren
gerceklesmistir.  21. ylizyilda artan akiskanlar mekanigi bilgisi, bilgisayar
teknolojisindeki gelismeler, giiclenen sayisal ¢oziim yontemleri ve ¢ok cesitli Ol¢ctim
yontemleri sayesinde pompalar daha verimli ve daha performanshi olarak
tiretilmektedirler. Bu etkiler pompalarin en yaygin kullanima sahip olan ¢esidi santrifiij
pompalar iizerinde de goriilmektedir. Nitekim bu calismada bdyle bir santrifiij
pompanin performansinin ve akisin karakteristiginin belirlenmesi amacina yoneliktir.
Ozellikle son yirmi sene igersinde bilgisayar ¢oziimleriyle desteklenen calismalar
tasarimcilara yeni ufuklar agcmis, performanslart ve verimleri yiiksek pompalar dizayn
etmede onemli olan akis karakterlerinin anlasilmasinda yol gostermistir.

Uzerinde calisma yapilan santrifiij pompa, gercekte, kismi debilerde giris ve
cikistaki sirkiilasyonlarin tespiti amaciyla *“ Société Hydrotechnique de France (SHF) ”
tarafindan, endiistriyel bir benzeri baz alinarak tasarlanmistir. Bu pompa ve benzeri
varyasyonlar1 ile ilgili Avrupa’da cesitli laboratuar ve iiniversitelerde calismalar
yapilmistir. Fransa Lyon’daki INSA, Isvicre Lozan’daki EPF, Italya Milan’daki
HYDROART ve Fransa Lille’deki ENSAM laboratuarlarinda bu ¢alismalar yiiriitiilmiis
olup Barrand ve arkadaslar1 (1984 ve 1985), Bois ve Rieutord (1990), Caignaert ve
arkadaslar1 (1985 ve 1989) tarafindan yayimlanmistir. Fakat bu datalarin alindigi
modellerin geometrileri, kullanilan akiskanlar (hava veya su) ve deney teknikleri
kisacasi test sartlart ¢ok cesitli oldugundan datalarin bir¢ogunun kullanimi miimkiin
olamamustir. Bu caligmalar sonucundaki ortak noktalar asagidaki gibi siralanmustir:

- Her test calismasinda giris sirkiilasyonlar1 agisindan kritik debi aralig1 0.64 Q, ile
0.69 Q, arasinda bulunmustur. Ayrica bu kritik akis debisi Fraser (1982)

tarafindan da ¢ok iyi tahmin edilmistir.
- Cikista ise kritik akis debisi; su veya hava kullanimi, doniis hizi, difiizor
geometrisi, deneysel yontem gibi test sartlarina daha ¢ok bagiml ¢ikmistir. Cikis

sirkiilasyonlar1 0.63 Q, - 0.84 Q, araliginda degisim gostermistir.



Sayisal ¢oziimlerin yeterliliklerinin denenmesi amaciyla iiniversiteler ve bazi
kuruluslar nominal ve kismi debiler icin kendi kodlarmi calistirmislardir. Quasi-3D,
Euler 3D (Combes 1985), 3D Boundary Layer (Ubaldi 1985) bu kodlardan bazilar1 olup
sonuglarin bir kismi ise 1985°te Philibert ve Verry, 1986’da Ubaldi ve arkadaslar
tarafindan yayimlanmistir.

Cesitli siirtiinmesiz akis analiz calismalari, ¢ikis akis agisini ve diisiiyli ¢cok

yakin tahmin etmelerine ragmen 0.7 Q_ altinda cikis sirkiilasyonlar1 nedeniyle ayn

basartyr gosterememislerdir.  Siirtiinmesiz  analizlerin  hi¢cbiri  giris  ve c¢ikis
sirkiilasyonlarin1 tahmin edememistir. Bu sonuglar kullanilarak nominal ve kismi
debilerde akis karakteri hakkinda daha dogru bilgilere sahip olmak ancak sinir tabaka ve
ikincil akislarin hesaplanmasi ile miimkiin olmustur. Difiizordeki akisin karakterinin
tahmini hakkinda Senoo (1984) tarafindan ¢esitli debilerde difiizérde olusan ayrilmalart
gosteren basarili bir model gelistirilmistir.

Tirbiilansli akis analizi icin Martelli ve Michelassi (1989) Baldwin-Lomax
modelini, Combes (1991) ise sonlu elemanlar tabanli bir 3D k-¢ tiirbiilans modelini
kullanarak nominal debi i¢in cesitli sonuglara ulasmislardir. Bois (1992) ise tek
boyutludan ii¢ boyutluya santrifiij pompalarda akigin tahmini ile ilgili modellerin bir
karsilagtirmasini yapmaistir.

Turbomakine uygulamalarinda kullanilan CFD tekniklerinin kapsamli bir
incelemesi Lakshminarayana (1991) tarafindan yapilmistir. Yayinlanan ¢ogu tiirbiilansl
akis hesaplamalar1 kompresorlerdeki veya tiirbinlerdeki sikistirilabilir akis iizerine
olmustur. Pompalardaki sikistirllamaz akis hesaplari i¢in Moore’un (1990) basing
diizeltme teknigi ve Goto’nun (1990) Pseudo-compressible teknigi cok faydali
olmustur.

Giileren ve Pinarbasi (2004) standart k-¢ tiirbiilans modelini kullanarak
difiizorii de kanatli olan bir santrifiij pompadaki akis1 modellemislerdir. Bu calismada
sirkiilasyonlar ve stall olay1 iizerinde durulmustur. Difiizorii kanat icermeyen bir pompa
sistemindeki akis ise Tsurusaki ve Kinoshita (2001) tarafindan incelenmistir. Diisey
milli ¢cok kademeli bir pompanin performans degerlerinin ticari bir CFD yazilimi ile
hesaplanip deney sonuglariyla karsilastirildigi diger bir calismada Gelisli ve arkadaslar
(2004) tarafindan yapilmistir. Cok kademeli pompalar icin performans ve verim

degerlerinin tespiti amaciyla benzer bir calisma Konuralp ve arkadaslari (2004)



tarafindan gergeklestirilmistir. Hesaplamali akiskanlar dinamiginin pompa tasariminda
kullanimina dair bir calisma da Basesme (2004) tarafindan yapilmstir.

Cark difiizor etkilesimi nedeniyle olusan basin¢ dalgalanmalar1 hakkinda bir
calismada Shi ve Tsukamato (2001) tarafindan yapilmistir. Cheng ve arkadaslari
(1999) bir vakum pompasindaki akisi sayisal olarak modelleyerek ¢ozmiisler ve belirli
calisma  basinclarinin  distiinde  sikistirma  oranmnin 1’in altina  diistiiglinii
gozlemlemislerdir. Kiiresel yiizeyli bir pompa statorundaki akisin RNG k-¢ tiirbiilans
modeli ile ¢oziimii Plutecki ve Skrzypacz (2003) tarafindan gerceklestirilerek LDV
sonuglariyla karsilastirilmastir.

Yu ve arkadasalar1 (2000) ise sayisal ve deneysel verilerin karsilastiriimasi
calismasini santrifiij bir kalp pompasi iizerinde gerceklestirmislerdir. Santrifiij kalp
pompalarinin dizayn asamalarinda CFD kullanimi ile ilgili baska bir calisma da
Miyazoe ve arkadaslar1 (1998) tarafindan gerceklestirilmistir.

Suda donen parcalarda akis Olciimleriyle ilgili ¢cok fazla yayin bulunmamakla
birlikte Adler ve Levy (1979) tek bilesenli bir LDV ile, Kannemans (1980) tamamen
transparan bir radyal pompa carkindan LDV ile cesitli 6l¢timler yapmislardir. Grison
(1984) bir endiistriyel pompa tiirbin modeli i¢in Quasi-3D hesaplartyla LDV 06l¢iim
sonuglarini karsilagtirmistir. Cark etrafinda hizlarin 6l¢iimii amaciyla Hamkins ve Flack

(1987) ve Miner (1989) bir laboratuar santrifiij pompasi tizerinde ¢aligsmislardir.



3. MATERYAL VE YONTEM

3.1 Pompalar

Akim makineleri arasinda pompalar (tulumbalar), vantilatorler (fanlar) ve
kompresorler akiskanlara enerji kazandiran makinelerdir. Bu makineler dis bir
kaynaktan (motordan) aldiklar1 enerjiyi akigskana belli bir verim ile aktaran
makinelerdir. Pompa tanimi sikistirilamayan akiskanlar (sivi, camur, hamur, vb.)
icin kullanilir. Akiskan sikistirilabilir (gaz) ise fakat akiskanin sikistirilabilirligi
ithmal edilebiliyorsa bu tiir makinelere vantilator denmektedir. Vantilatorlerde
kullanilan akiskan gaz olmakla beraber hizlar ve sikistirma orant kiiciik
oldugundan akiskan yogunlugu sabit alinabilmektedir. Sikistirilabilir akiskan
kullanan kompresorlerde ise sikistirma orani yiiksek olup yogunluk degisir ve bu
islem genel olarak politropik sikistirma olayidir.

M.O. III. asirda Yunanistan’da gerceklestirilen Archimedes vidasinin en eski
pompalardan birisi oldugu sanilmaktadir. Alet silindirik bir kilif icersinde donen
helisel bir vida olup, o tarihlerde, disaridan bir kol vasitasiyla insan giiciiyle
dondiiriilmekteydi. Giiniimiizde, ayn1 alet veya degisik varyasyonlar1 motorla
tahrikli bicimde degisik yerlerde kullanilmaktadir.

Ne insan ne de hayvan kullanmaksizin ¢alisan ilk pompa, tarihi gelisim
icerisinde, Cin’de yapilmistir. Bu aletin prensibi bir su tankerinin gole daldirilmis
hortumla su almasini1 andirmaktadir.

Cinliler ilk defa su ¢arkini bulmuglardir. Cark milinin ortas1 delik olup, suya
dalan alt kismina bambu bitkisinden ucu kivrik borular konulmustur. Su carki
donerken, ucu donme yoniine agik borulardan su igeriye girerek mil i¢inde yiikselip
depoya akmaktadir. Depoda su seviyesi yiikseldik¢e, su carkinin devir sayisina da
bagli olarak, su debisi azalmaktadir. Arazi sulamalarinda bu sistem, siirekli olarak
kullanilmaktayd1 ve bu sisteme "noria" denilmekteydi. (Yal¢in 1998)

Ileriki yillarda noria iizerinde bir degisiklik yapilmistir. Doner bir cark
cevresine oynak gecmeli ¢ubuklar ve bu cubuklara da kovalar baglanarak giiniimiizde

lunaparklarda gordiigiimiiz donme dolaplar benzeri bir sistem gerceklestirilmistir.



Akigkana enerji veren bu makineler giinlimiizde bilgisayarlardan uzay
araclarina, 1sitma -havalandirma sistemlerinden enerji santrallerine kadar ¢ok degisik
alanlarda kullanilmaktadir. Cok genis bir gii¢ aralifinda yaygin kullanim alan1 olan
pompalar ¢ok degisik tip ve yapida olabilmektedir. Bunlarin imalat ve tasariminda
g0z Oniinde bulundurulan en temel iki faktor ise istenen karakteristiklerde olmasini
saglamak ve Ozellikle yiiksek giicli makineler icin verimin yiiksek olmasini

saglamaktir.

3.1.1 Pompalarin Siniflandirilmasi

Degisik sekillerde siniflandirilmakla beraber ¢alisma veya enerji verme sekline
gore akigkanlara enerji veren makineleri iki ana grupta toplamak miimkiindiir.

. Tiirbo (Rotadinamik) makineler: Bu makinelerde siirekli olarak donen
ve {izerinde bulunan belli sayida kanat vasitasi ile akiskana enerji aktaran bir rotor (¢ark)
vardir. Hiz vektoriiniin hem biiyiikliigiinde hem de yoniinde bir degisim yaratarak enerji alis
verisi saglanir. Bunlarda enerji aligverisi siirekli, atalet kuvvetleri diisiik ve devir sayilari
genelde daha yiiksektir. Bu tiir makineler ii¢ ana gruba ayrilabilir.

1. Radyal
2. Yar1 eksenel
3. Eksenel (aksiyal)

e  Hacimsel (Pozitif deplasmanli) makineler: Bu tip makinelerde enerji
aktarilmasi belli bir hacme alinan akiskanin sikistirilmasi veya nakledilmesi esasina
dayanir. Bunlarda bir veya belli sayida hiicre mevcut olup bu hiicreler akigkan basma
esnasinda dolup bosalacaklarindan makinenin giris (emme) kismu ile ¢ikis (basma) kism
arasinda baglanti da daimi degildir. Dolayisiyla bu makinelerde enerji alis verisi kesintili
olup genelde atalet kuvvetleri daha yiiksek ve devir sayilart daha disiiktiir. Tiirbo
pompalara gore bu tiir pompalarda genel olarak debi daha diisiik buna karsilik basma
basinci daha yiiksektir. Hacimsel pompalarin teorisi ve hesab1 daha kolay iken imalat
hassasiyeti daha yiiksek olmak durumundadir. Bu ozelliklerinden dolayr sabit debi
gereken yerlerde, hidrolik kumanda devrelerinde yaygin olarak kullanilirlar. Ancak darbeli

basing veya debinin zarar verebilecegi yerlerde dikkat edilmeli veya bu darbeleri



elimine etme yoluna gidilmelidir. Hacimsel makineler gidip gelme hareketli ve donel

(rototif) olmak tizere iki ana gruba ayrilir.

3.1.2 Pompalarla ilgili Genel Tammlar

Pompalar icin kullamlan temel parametreler devir sayisi(n), debi(Q, rﬁ), basma

basinci veya manometrik basma yiiksekligi ile gii¢ ve verimdir. Bir kismini agiklarsak:

Manometrik basma yiiksekligi (H,_ ): Makinenin, basilan birim agirhktaki

akiskana kazandirdig toplam enerjiye (potansiyel ve kinetik enerjiler toplam1) manometrik
basma yiiksekligi veya daha kisa olarak, manometrik yiikseklik denir. Bu tanima gore
manometrik basma yiiksekligi makine cikisi ve girisi arasindaki enerjiler farki olarak

H, =(Z+L+U—2j -(Z+L+U—2j 3.1)

p.g 2.8 ). p.g 2.g e
seklinde metre akiskan siitunu birimi cinsinden yazilabilir. Manometrik basma yiiksekligi,
makinenin basma ve emme tarafindaki degerlerin deneysel Olciiliip yukaridaki denklemde
kullanmlarak bulunmas1 gereken bir biiyiikliiktiir. Manometrik basma yiiksekliginin
yercekimi ivmesi ile carpilmis haline 6zgiil enerji de denilmektedir. Buna gore 6zgiil
enerji,

Y=gH, (3.2)
olarak ifade edilir. Daha ziyade pompalar i¢in kullanilan manometrik basma yiiksekligi
yerine vantilatdrlerde genelde toplam basing farki biiyiikliigii kullanilir. Yogunlugun sabit
alinmast halinde toplam basing farki, agirlik kuvvetleri ihmal edilebileceginden,

Ap,=p.gH =p.Y (3.3)
seklinde ifade edilebilir. Burada, toplam basing ile statik ve dinamik basinglarin

toplami kastedilmektedir.

Mil giicii (Efektif gii¢) (N ): Akim makinesine dis kaynaktan (motor) verilen

giic efektif giic veya mil giicli olarak adlandirilir. Pompanin motordan aldigi bu giiciin
tamaminin akigkana aktarilamayacag aciktir. Zira makine i¢indeki mekanik siirtiinmeler,

akigkan siirtiinmeleri, kacak debi gibi nedenlerle olusan enerji kayiplar1 s6z konusudur.



Bu kayip enerjilerin toplam1 miimkiin mertebe kiiciik olacak sekilde tasarim ve imalat

yapilmasi makinenin verimli olmasini saglar.

Net gii¢ (N, ): Mil giiciinden biitiin kayiplara harcanan gii¢ ¢iktiktan sonra geriye

kalan miktar akiskana aktarilan gii¢ olup buna net gii¢ veya teorik gii¢ ad1 verilir. Bu giic,
manometrik basma yiiksekliginin birim zamanda gecen akiskanin agirligi ile carpimindan

bulunabilir:

N, =p.2QH, =p.Y.Q

= Ap,Q= m.Ap,/p (34)

Genel Verim (mn,): Bilindigi gibi makinenin performansini belirlemek,

dis kaynaktan aldig1 giicili, amacina uygun olarak ne 6l¢iide iyi kullandiginin, kisaca,
ne kadar ekonomik c¢alistigini tespit i¢cin genel verim tanimi yapilir ve net giiciin mil

giicline oran1 olarak

N p.gQH Q.Ap
n=—2= m = ! (3.5)
g N N N

€ [ €

seklinde tanimlanir. Genel verim igerisinde mekanik siirtiinmelerden, akiskan akisi
esnasindaki siirtiinme gibi tersinmezliklerden ve kagaklardan dolayr olusan kayiplar s6z
konusudur.

Tiirbinlerde oldugu gibi genel verim ii¢ ayr1 verimden olusur. Bunlar mekanik
siirtinmeleri ifade eden mekanik verim, kacaklar1 ifade eden kagak verim (voliimetrik

verim) ve akiskan siirtiinmelerini ifade eden hidrolik verim olarak siralanabilir.

3.2. Santrifiij Pompalar

Rotadinamik pompalardan onemli bir kismi1 6zgiil hiz1 diisiik olan radyal
tipte carklara sahiptir. Bunlarin hesab1 ve imalati nispeten basit oldugu i¢in yaygin
olarak kullanilirlar.

Santrifiij pompa ile ilgili ilk bilimsel yaklasimi, italya’da, Leonardo Da
vinci (1452-1519) yapmistir. Bu maksatla, silindirik bir kap icerisinde bulunan bir

stvinin, kap ekseni etrafinda donerken, cidar iizerinde ylikselip cevreye dogru



tasmasini, yani cebri vorteks hareketini esas almistir. Cidarlara dogru bu hareket
egilimi basing artisina neden olmaktaydi.

Santrifiij pompay1 hayal eden, teorisini yapip ilk uygulayan Denis Papin
(1647-1714) olmustur. Bu sahada yapmis oldugu bilimsel ve deneysel calismalar
giinlimiizde de aynen gecerlidir. Papin’den sonra bu sahada yapilan ¢alismalar, 6nceki
calismalar1 dogrulamis, fakat bir yenilik ilavesi yapamamuistir.

Isvicre’de Leonhard Euler (1707-1783) ve Daniel Bernoulli (1707-1783)
hidrolik bilimi {izerinde O©nemli teoriler gelistirmislerdir; bu teorileri akim
makineleri (santrifiij pompalar ve buhar veya gaz tiirbinleri) {lizerine de
uygulamiglardir. Bu yeni yaklasimlar da Denis Papin’in calismalarina kayda deger
ilaveler yapamamistir.

Papin’in gelistirdigi seviyede santrifiij pompalarin hidrolik verimleri diisiik
cikmakta idi. 1818 yilinda Amerika’da Massachusetts pompa fabrikasi, santrifiij
pompalar1 seri halde imal etmeye basladi. 1850 yilinda, Ingiliz fizikcisi, J.
Thomson pompa verimini, dagitict kanatlar (difiizor) kullanarak yiikseltmeyi
basardi. Uzerinde yapilan c¢esitli deneysel c¢alismalarla, santrifiij pompalar,
uygulamada biiyiik bir kullanim alanina yayildi. 1900 yillar1 basinda, ancak 40 bar
basinclara kadar kullanilabilirken, giinimiizde 400 bar basin¢ saglayan santrifij

pompalar yapilabilmektedir.

3.2.1 Santrifiij Pompalarin Genel Yapisi

Bir santrifiij pompa temel olarak donen c¢ark ve aksami, sabit govde ve
kanallar ile sizdirmazlik elemanlarindan olusur. Sekilde tek kademeli bir santrifiij
pompanin genel yapis1 ve temel elemanlar1 goriilmektedir. Bir motorla tahrik
edilen pompa carki emme borusundan emilen akiskanin enerjisini arttirarak basma
borusuna salyangoz vasitasiyla génderir. Pompanin normal c¢alisabilmesi i¢in carkin
akiskana verdigi enerji, bagli oldugu boru sistemindeki kayiplar1 yenip akiskani

istenen yiikseklige c¢ikartacak mertebede olmalidir.



1-

Sekil 3. 1. Bir santrifiij pompanin ana elemanlar1

Salyangoz: Pompanin dis muhafazasi ve govdesi konumunda olan
salyangoz spiral bir yapiya sahiptir. Ana gorevi ¢ark ve difiizorden
kacan akiskani toplayip cikis borusuna géondermektir.

Difiizor: Bazi pompalarda ¢ikis hizi fazla olup bu yiiksek hiz
sirtiinmelerin artmasina neden olmaktadir. Bunu engellemek {iizere
carktan cikan akiskan difiizor denen elemandan gecirilerek akiskanin
kinetik enerjisinin bir kismi basin¢ enerjisine doniistiiriilerek hiz
azaltilir. Difiizor sekildeki gibi kanath veya bazi pompalarda oldugu gibi
kanatsiz da olabilir.

Cark: Enerji aligverisini saglayan ana eleman olan c¢ark iizerinde
belli sayida kanat vardir. Akiskan c¢arka merkezden eksenel yonde
girerken radyal yonde cikmaktadir. Cark donerken olusan santrifiij
kuvvetler cark icindeki akigskant disariya dogru iter. Bu esnada
akiskan hizinin hem biiyiikliigli hem de dogrultusu degiserek enerji
transferi gerceklesmektedir. Carkin bir kama ile iizerine sabitlendigi mil
hareketini genelde bir kavrama ile dogrudan bagli oldugu
motordan alirken mil de bir yatak icerisinde donmektedir. Genel olarak,
bronz, teflon gibi 6zel malzemelerden yapilmis yataklar kullanildigi gibi,

rulmanh yataklar da kullanilir.
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Pompa hesaplarinda genellikle iki problemle karsilasilmaktadir. Bunlardan birisi
mevcut bir sistem veya tesisatta kullamlacak en uygun (verim ve isletme masraflari
bakimindan) pompanin piyasada mevcut pompalardan secimidir. Ikincisi ise istenen
ozellikleri saglayacak bir pompanin projelendirilmesi ve imali problemidir. Pompalarin
projelendirilmesi hem teorik hem deneysel bilgilere dayanir. Bu bilgiler de genelde
0zgiil hiza bagl olarak verilir. Bilindigi gibi 6zgiil hiz carkin en azindan genel
yapisini ortaya koyan karakteristik bir biiyiikliiktiir.

Projelendirmeye esas olan karakteristik degerler pompanin maksimum verimle
calismas1 durumundaki degerlerdir. Pompa dizayn noktasi disinda calistirilirsa

verimde karakteristik pompa egrisine gore belli bir azalma olacaktir.

3.2.2 Santrifiij Pompalarin Basitlestirilmis Teorisi

Sekil 3. 2. Bir santrifiij pompada akigkan partikiiliine etki eden faktorler

Cark kanatlar arasinda donme merkezine gére OM = r uzakliginda bir akigskan
partikiilii diistiniilsiin. Partikiiliin hacmi dV, 6zgiil kiitlesi p iken kiitlesi dm = p.dV olur.

Cark disariya kapali oldugunda Newton hareket yasasina uygun olarak, cark donerken,
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partikiil dF=dm.a kuvvetinin etkisinde kalir. Burada a partikiilin dénme hareketi

sirasindaki ivme vektorii, dF donme hareketi nedeniyle partikiile etki eden kuvvettir.
Cark disartya kapali iken, benzer her partikiil, O noktasinda sekil diizlemindeki eksen

etrafinda dairesel donme hareketi yapar. Partikiiliin yar1 kutupsal koordinat sisteminde
ivme vektdrii (e, , e, ) diizleminde:

a=(1-1.0%)e +(Q2r+1.0)e, (3.6)
olur. Partikiillerin hareketi daireseldir ve buna ek olarak ¢ark sabit devir sayisinda da

dondiiriilirken r =0 ve 0 =sabit = 0 = 0 yazilinca, gz oniine alinan tanecigin ivme

vektorii:
a=-1.0"¢ (3.7)
halini alir. Buradan partikiile etki eden kuvvet:
dF=dma = dF=-dmr.0”e, , santrifiij kuvvet dF, =dm.r.8e, olur.
Hareket sirasinda, partikiiliin radyal dogrultuda iki yiizeyi g6z Oniine alinirsa:
dP. =p.dAe, -(p-dp,).dAe, =-dp,.dAe, (3.8)
tanecige etki eden bileske basin¢ kuvveti olup radyal kuvvet nedeniyle olusmaktadir.

Gerekli ara islemler yapilirsa:
1 1
p,-p, = E.p.wz.(rzz -17)=p-p, ZE.p.mz.(rz -1) (3.9)

bulunur. Hareket dairesel oldugundan u = w.r yazildiginda y = p.g 6zgiil agirlig ile,

2 2
pP-p, _u -y (3.10)
Y 2g

formiili elde edilir. Santrifiij pompalarda akis1 anlayabilmek i¢in bu formiil

degerlendirirken asagidaki hususlar g6z oniinde bulundurulmalidir:
1- Cark iizerinde M(r) konumunda bir partikiil diisiiniilsiin, skaler hiz1 u=w.r
olup sekil 3.2°de cizildigi gibi, noktadan noktaya bu hiz lineer degismektedir. 3.9

denklemine gore M(r) noktasindaki basing:

P=p ‘le.uz-zl.ul2 :>p:A+B.u2 ve u=
g g

alinirsa,

p=A+Cn’r’ (3.11)
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elde edilir. Bu bagintiya gore, donme merkezinden itibaren radyal dogrultuda statik
basing, yarigapla parabolik olarak degisir. Bir noktada basing, devir sayisinin karesiyle

orantil1 degisir.
2- p,=A+Ca’r; carki simrlayan cidar iizerine sivi partikiillerinin uyguladig

basingtir. Cidar iizerine delikler acildiginda, sivi tanecikleri bu basincin etkisi altinda
disantya fiskirir. Disartya sivi atilirken, kap icinde basing diiser, bu yiizden sivi emme
borusu iizerinden kaba girerken, giren sivi yeniden disar1 atilir. Emme ve basma olaylari

stirekli olur ve bu haliyle sistem bir santrifiij pompadir.

P u;
3- X2 ‘nin yiiksek olabilmesi i¢in —%*
Y

‘nin yiiksek olmasi gerekir. Yani carkin

yarigapr ve tahrik motorunun devir sayist yiiksek olmalidir. Pompa p, basincinda bir
ortama s1v1 basacak ise p, > p, olmalidir. Santrifiij pompanin basacag debi kars1 dirence

onemle baghdir.

4- Cebri vorteks hareketini gdz Oniine alarak, santrifiij pompanin ozellikleri
tizerinde yaklasimlarda bulunulmustur. Gergek bir santrifiij pompada, ¢ark merkezinden
cevresine dogru sivi partikiilleri akis halindedir. Carktan ¢ikisa dogru akis oldugunda artik

bu denklemler gecerliligini yitirmektedir ve akis Euler Teoremi yardimiyla incelenmelidir.

Euler Teoremi

(a) (b)
Sekil 3.3. (a) Donme hareketi yapan bir akiskan partikiilii (b) Kanatlar aras1 akig hacmi

Oxyz referans sistemine gore hareket eden bir P maddesel noktasi diisiiniilsiin. t

aninda P(x,y,z) noktasindan U vektdrel hiziyla gecmekte olsun. Bu durumda,
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jﬁdt =m.(ui -u) (3.12)

yazilabilir. Bir maddesel nokta egri bir yoriinge lizerinde sabit skaler hizla hareket etse
bile, yoriinge iizerinde noktadan noktaya vektorel hizi degiseceginden momentumu
degisir yani cark kanatlari arasinda sivi partikiillerinin momentumu, akis sirasinda
degismektedir. Partikiillerin hizlar1 skaler olarak ve vektorel olarak degisir. Su halde,
cark girisindeki sivinin cark c¢ikisina gecebilmesi icin, carkin siviya bir kuvvet
uygulamast gerekir. Sekilde 3.3’te goriildiigii gibi, t aninda S dis yiizeyi ile sinirli bir
akiskan bolgesi diisiiniiliip uygun bir At secimiyle, A ve A bolgeleri D ortak bolgesine
sahip olurlar. Buradan hareketle gerekli yaklasimlar ve ara islemler yapildiginda daimi

(D bolgesi igcersinde hareket miktar1 degisimi olmayacak) bir akis i¢in D bolgesine etki

eden dis kuvvetlerin bileskesi asagidaki sekilde yazilabilir:
R =[[p.(Un)UdA (3.13)

S(]

Euler Teoreminden Hareketle Santrifiij Pompalarda Hidrolik Moment,

Giic ve Verim

Sekil 3. 4. Bir santrifiij pompa rotorundaki girig ve ¢ikis hiz iicgenleri

Bir si1v1 partikiiliiniin kanatlar arasinda hareketi incelenilsin. Partikiil t aninda
M noktasindan ge¢cmekte ise cark lizerindeki yoriingesi 1~M~2 egrisi olur. Cark 0

noktasinda sekil diizlemindeki Oz ekseni etrafinda donmekte iken M noktasinda donme
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hiz1 u = r.© olarak yazilabilir. Partikiil M noktasinda iken, dF=dm.r.0> santrifiij
kuvvetiyle radyal dogrultuda hareket eder. Boylece cark iizerinde bir partikiil, bir
yandan carkla birlikte dondiiriiliirken, bir yandan da santrifiij kuvvet etkisiyle radyal
yonde ilerler.

Carkin saat ibresinin tersi yonde donmekte oldugu diisiiniiliirse M partikiilii
carka gore, 1~M~2 yoriingesi iizerinde hareket eder ve (2) noktasinda ¢arki terk eder.
Partikiil t aninda, carkin (1) noktasindan ¢arka giriyorsa ¢arki t+ At aninda terk ederken
carkin (2) noktasina gelir. Oxy sabit eksen takimina gore At zaman sonra carkin (2)
noktast (2 )ne gelmis olur ve burada partikiil ¢arki terk eder.

Bu tanimlamaya gore, siv1 partikiilii, cark lizerinde carka gore, cark nedeniyle
de sabit Oxy referans sistemine gore hareket etmektedir. Cark iizerinde cizdigi
yoriingeye bagil yoriinge, Oxy referans sistemine gore cizdigi (1-2) yoriingeye de
mutlak yoriinge denilmektedir.

Partikiillerin cark iizerindeki hareketi Oxy referans sistemine gore birlesik bir
hareket olup, kati cisimler dinamigine uygun olarak, bir partikiiliiniin (1),(M),(2)
noktalarindan gecerken hiz vektorleri soyle ifade edilebilir:

M):C=U+W (3.14)

U : siiriiklenme hiz vektorii. Sivi partikiilii t aninda, ¢arka ait M noktasidan
gecerken, bu noktanin Oxy sabit referans sistemine gore hizidir.

W : bagil hiz. M partikiiliiniin carka gore yaptigi hareketindeki iz vektorii
olup, sekilde goriildiigii gibi, bagil yoriingeye t aninda tegettir.

C: mutlak hiz. Partikiiliin, Oxy sabit referans sisteminde hareketine ait hiz
vektorii olup, t aninda mutlak yoriingeye tegettir.

(U, W) vektorleri bilindiginde C vektorii de bulunabilir. Sekil 3.4°te (1) ve
(2) noktalarinda (C—l ,C—2 ) vektorleri bu sekilde bulunmus olup, noktalarla taranmis
ticgenlere giris-cikis hiz tiggenleri denilir.

Partikiillerin, a mutlak hiziyla A, ~ B, kesiti iizerinden ¢arka girdikleri ve C,
mutlak hiziyla A, ~ B, kesiti lizerinden carki terk ettikleri diisiiniildiigiinde giris-¢ikis

arast s1vi akimi nedeniyle dogacak hidrolik momenti, bir baska deyisle carkin siviya,
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giriste uygulayacagr moment hesaplanabilir. Akis daimi oldugundan Euler teoreminden

elde edilen denklem cark girisine ve ¢ark ¢ikisina uygulanabilir:

R = j j p.(Un).U.dA (3.15)

U bu genel formiilde bir sivi partikiiliinin mutlak izt yani U=C, , n=e, dir.
Boylece
R = [[p(C e).C,dA (3.16)
S]

yazilir ve de C, = C,.Cosa,.e, +C,.Sina,.e, = C,.e, = C,.Sino, eklenirse,

R, =|[p.C,.Sina,.C,.dA (3.17)
S]

elde edilir. Akis S, ~S, kesitleri arasi tek boyutlu-daimi akis kurallarina uymasi
durumunda,

R: = pC,Sina,.S,C, (3.18)
olurken bu hidrolik kuvvetin 0 merkezine gére momentini yazildiginda, e? i donme

ekseni tizerindeki birim vektor olmak tizere,

OM, AR1,OM, =T, ¢, (3.19)
ve
Q =C,.Sina,.S, = OM, AR = p.Q.r, .C,.Coso, e, (3.20)
yazilir. Cark cikist hidrolik kuvvet R, hidrolik moment O—M; A fz olup, ayn islemler
uygulandiginda, cark cikis kesiti S, olmak iizere, Q ayn1 kalacagindan,
OM, AR, =p.Q.r,.C,.Cosa, e, (3.21)

bulunur. Euler teoremine uygun olarak, carkin biitiiniinii g6z oniine alarak, ¢ark i¢i debi

Q olduguna gore toplam hidrolik moment yazilabilir,

OM, =OM, AR, -OM, AR, = M, =p.Q.(r,.C,.Cosa, —1, .C,.Cosa,).e, (3.22)
Hidrolik giic ise N, = M, .o tanimindan,
N—h =p.Q.(wr,.C,.Cosa, —ar, .C,.Coso,) = u =o.r yerine yazilirsa,

N, =p.Q.(u,.C,.Cosa, -u,.C,.Cosa,) (3.23)



17

olarak elde edilebilir. Hidrolik gii¢ c¢arkin kanatlar1 arasindan ge¢mekte olan siviya
saglayacag1 giictiir. Akis nedeni ile siirtiinme kayiplart ve lokal kayiplarda meydana

gelir. Bu sebeple carkin hesaplanandan daha fazlasini siviya vermesi gerekir. Bulunan
deger ise kayipsiz deger olan N, = N, .n, dir.

N, =7.Q.H_ =n,.0.Q.(u,.C,.Cosa, -u,.C,.Cosa,) =

M = uz.Cz.Cosj;I—{fll1 .C,.Cosa, G249
olur. Bu formiille carkin giris ve c¢ikis kosullarina bagli olarak hidrolik verimi elde
edilmis olur. Ancak, hesapladigimiz bu hidrolik verim, cark ici akisin tek boyutlu akis
kurallarina uymasi halinde gecerlidir. Gergekte cark i¢indeki akis karmasik bir akistir.
Bu nedenle carkin gercek hidrolik verimi deneylerle belirlenebilir. Aynm1 denklem

yardimiyla carkin siviya saglayacagi manometrik basma yiiksekligi de yazilirsa,

_1,.G,.Cosa, -u,.C,.Cosa,
m *"lh

8

H

(3.25)

seklinde bir esitlik elde edilir.
Santrifiij pompalarin teorisi incelenirken sonsuz kanat olmasi hali(akisin tek
boyutluymus gibi kabul edilmesini saglar) ve sonlu sayida kanat olmasi hali

incelenmelidir.

1- Sonsuz Sayida Kanat Olmasi Hali

Kanat sayisinin sonsuz oldugunu (kanat kalinliklar1 sonsuz ince) ve pompa
icinde kayip olmadigini kabul ederek Bu sartlar altinda pompanin manometrik basma
yiiksekligini debi cinsinden bulmaya calisilsin. Cark girisinde suyun mutlak hizinin
tegetsel bileseninin olmadigl kolaylikla varsayilabilir. Buna gore giris hiz liggeni dik
ticgen olur.

Cikis iicgeninde ise sonsuz kanat halinde, yani kanatlar arasindaki kanallarin

sonsuz dar olmasi halinde su kanada tam teget olarak c¢ikacaktir. Dolayisiyla WZ hiz1 da
kanadin ¢ikistaki yoniine aynen uyacak, B, kanat agis1 aym1 zamanda hiz liggeninde WZ

ile U—2 arasindaki aciya esit olacaktir. Buna gore de ¢ikis hiz iicgeni yukaridaki sekilde

olmaktadir. Hidrolik verim bagintisi ele alinir ve 1, =1 alinirsa,
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_u,.C,.Cosa, -u,.C,.Cosa,
me = P (3.26)

H

olur. Giriste tegetsel hiz bileseni sifir oldugundan (C,.Cosa, =0),

H = u,.C,.Cosa, (3.27)
k
g
yazilabilir ve C,.Cosa, =u, - W,.Cosp, yerine yazilirsa,
2
Ho =YW WoCosBy) _w | g coep, L (3.28)
‘ 8 8 8

olur. Diger taraftan c¢ikista cark genisligi b,olmak iizere debi Q=C_,.n.D,.b,

yazilabilir ve C , = W,.Sinf, oldugundan bu bagmtilar H,, bagimtisina yazilirsa,

u :u_i_ u,.Q
" g wD,.b,.g.tanf,

(3.29)

elde edilir. Bu sonuncu ifade geometrik boyutlar1 ve devir sayis1 belirli bir carkta debiye
gore manometrik basma yiikseklik degerini ve degisimini vermektedir. Cark ve devir

say1s1 sabit ise bu fonksiyon H_ = A-B.Q seklinde lineerdir.
i 0

ﬂ2< 90

==K, 590"

@

S

Sekil 3. 5. Debiye gore manometrik basma yiiksekliginin degisimi

Baska bir deyisle H_ = f(Q) karakteristigi ideal sartlar altinda dogrusaldir. f3,

acisinin  degerine goOre teorik manometrik basma yiiksekligi yukaridaki grafikte

goriildiigii gibi alcalan veya yiikselen bir durum gosterir.
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2- Sonlu Sayida Kanat Olmasi Hali
Gercekte kanat sayist sonlu olup iki kanat arasinda oldukc¢a genis, 1raksak bir

kanal vardir. Bunun etkileri asagidaki sekille birlikte incelenecek olursa:

Sekil 3. 6. Sonlu sayida kanat halinde olusan hiz dagilimi ve sirkiilasyon

Cark kanallarindan birinin giris ve ¢ikisi sekildeki gibi kapatilsin. Cark ekseni
etrafindaki hareketine devam ederken, bir an icin siirtiinmeleri ihmal edilirse her sivi
partikiili kendi eksenini korumak isteyecektir. Halbuki kapali bolge cark ekseni
etrafinda bir donme hareketi yaptigindan partikiiller zorunlu olarak siiriiklenecekler ve
kendi ataletlerinden dolay1 kapali bolge icinde bagil olarak (doniisiin aksi yoniinde) bir
donme hareketi (sirkiilasyon) sebep olacaklardir. Sekil 3.6’da bu sirkiilasyon ve
dogurdugu bagil hizlar gosterilmistir. Bir sonraki adimda giris ve cikis arasindaki
engelleri kaldirip normal akisa miisaade edilse donme hareketi de esas akisla siiperpoze

edilecektir. Sonug¢ olarak kanal i¢indeki akista hizlar iiniform olmayacak ve kanadin

arka yliziinde hiz artacak, On yliziinde ise azalacaktir. Ayrica sirkiilasyon bagil hizin u,
ile yaptig1 aciy1r kiiciiltecektir. Yani gercek hiz {icgeninde P, agisindan kiiciik bir

degerde olacaktir.

Bu ag¢inin sonlu kanat halinde kiigiilecegi gercegine bagka bir goriis ile de
ulasmak miimkiindiir. Bir hidrolik moment tatbik edildigine gore kanatlarin 6n ve arka
yiizlerine gelen basinglar farklidir. Bir kanadin ©6n yiiziindeki basin¢ arka
yiiziindekinden fazla olacagi rahatlikla goriilebilmektedir. Bagil harekette 6n yiize yakin
bir ip¢ik (Sekil 3.6’da (a) ipgigi) ile arka ylize yakin bir ipcik (Sekil 3.6’da (b) ip¢igi)
arasinda ayn1 yarigaptaki noktalardaki basin¢lar ayn1 sekilde farkli olacaktir. Bagil akist
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siirtiinmesiz ve potansiyel olarak kabul edersek her iki ipcik i¢in de bagil harekette
Bernoulli teoreminin sabitleri esit olacagindan basinci fazla olan (a) ip¢iginin hiz1 az,

basinci diisiik olan (b) ipciginin hizi ¢ok olacaktir. Bu da sekildeki gibi bagil hizlar

bakimindan iiniform olmayan bir hiz dagilimin1 verirken sonucta sirkiilasyonlar

-

olusacaktir.

Sekil 3.7. Sonlu sayida kanat halindeki teorik ve gercek hiz ticgenleri

Cikis hiz iicgeni sonlu kanat halinde anlatilan nedenler yiiziinden degisecektir.
Sekil 3.7°de teorik hiz iicgeni ile gercek hiz iicgeni arasindaki fark gosterilmistir.

Goriildiigii gibi gergek tiggende bagil hizin agisinin kiiglilmesi ¢, agisinin bilyiimesine
neden olmustur. Bunun neticesi olarak mutlak hizin tegetsel bileseni olan C,,

kiiciilmiistir. Bu nedenle manometrik basma yiiksekligZi de aym oranda

kiigtilmiistiir. Yani

h_& (3.30)

H Cu.

too

olur.

Sekil 3.8. Teorik basma yiiksekligi ve bunu azaltan kayiplarin gosterimi
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Bu yiizden cark i¢inde hi¢cbir kayip olmasa dahi manometrik basma yiiksekligi

H_ degerini koruyamayacaktir. O halde sonlu kanat halinde sirkiilasyon yiiziinden

Sekil 3.8’de goriildiigii gibi karakteristik daha asagiya (yine dogrusal olarak) kayar.
Bundan sonra karakteristik, kayiplar yiiziinden tekrar degisime ugrar. Normal hidrolik
siirtinme kayiplari, yani yiik kaybi, debinin karesi ile orantili oldugundan sekildeki gibi
karakteristik asagiya biikiiliir. Diger taraftan optimum c¢alisma durumundan sapilinca
yani debi nominal degerinden daha biiyilk veya daha kiiciik olunca kanat giris ve
cikislarinda ilave olarak ¢arpma (kanat girisinde cidardan ayrilmalar) dogmaktadir. Bu

kayiplar sapma ile daha fazla arttigindan sonug¢ olarak H_ =1f(Q) karakteristigi sekilde

gosterilen formu almaktadir.

3.2.3 Ozgiil Hiz Tamimlar ve Santrifiij Pompalarin Simflandiriimas:

Tiirbo makinelerde cok degisik ve cesitli 0zgiill hiz tanimlamalar

yapilmaktadir. En genel kullanim mil giiciine gore hesaplanan n_ 06zgiil hizidir. Bu

0zgiil hiz tamimlamast,

n :d/dak
no= | N [d/dak] H :m (3.31)
o VWA, N, :BG

seklinde yapilabilmektedir. Ayrica pompalar i¢in siklikla kullanilan 6zgiil hiz tanimi

debiye gore yapilan n, tanimlamasi olup,

o) n :d/dak
n /
n, =——. |7— [d/dak] H, :m (3.32)
JH JH
° o Q:m’/s

seklinde ifade edilebilir.

Santrifiij pompalar ise c¢ok degisik sekilde siniflandirilabilirler. Ceviren
motorun cinsine goére motopomp veya elektropomp olarak simiflandirilirken eksen
durumuna gore yatay veya diisey eksenli, kademe sayisina gore tek veya cok kademeli
olarak siniflandirirlar. Ancak en anlamli siniflandirma yukarida tanimlamalari
yapilan 6zgiil hizlara gore yapilan siniflandirmadir. Bu siniflandirma:

Tam Santrifiij(tam radyal)Pompalar................. n =60~150 dev/dak
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Heliko Santrifiij(Yar1 Eksenel)Pompalar............. n,=150~400 dev/dak
Eksenel Santrifiij Pompalar.............................. n, =400~700 dev/dak
seklinde yapilabilir.

EK.1’de ise pompa debisinin artmasiyla birlikte ¢ark seklinin radyal halden

eksenel hale doniistiigii goriilmektedir.
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3.3. Korunum Denklemleri

Bu boliimde anlatilan denklemler ve yaklagimlar kullanilan ticari kodun
cozdiigii denklemler ve kullandigi yaklasimlari anlatmaktadir. Oncelikle her CFD
kodunda ortak oldugu gibi c¢oziilen (zamana bagl Navier-Stokes Denklemleri) korunum
denklemlerinin genel halleri kisaca,

Sireklilik denklemi

%P+vc(p[ y=10

(3.33)

Momentum denklemleri

E}SI +Ve(pURU) = Vo(—pd+ (VU + {TL’} ) +8,,
(3.34)
Enerji denklemi
WPhe 9
— 2 P Ve(pUh, ,) = Ve(LV
pr 5 + Ve(pUh,,,) *(AVT) + 5% (3.35)
seklinde yazilabilir. Eger viskoz is fazlaysa bu durumda enerji denkleminde viskoz

kaymalarin etkisini hesaba katabilmek i¢in sag tarafa ek bir terim eklenmesiyle

denklem,
dph -
'a:‘” %f +Ve(pUh, ) = Ve(AVT) + 'F-(u'f*'{:+ vl - gv-t:a{:]+ S

(3.36)
halini almaktadir. Eger kinetik enerjinin toplam enerjiye etkisi thmal edilebiliyorsa bu

durumda denklem asagidaki gibi olur,

dph : ; .
2+ Ve(plUh) = VoA VT + 5
or + VPR = Ve(AVI) + g (337)

Bu denklemlerde S kaynak terimlerini ifade etmektedir. Ayrica denklemlerde
bulunan yedi tane bilinmeyene (u, v, w, p, T, h, p) karsilik bes denklem bulunmaktadir.
Bilinmeyenlerin tamamini bulabilmek icin gerekli diger iki denklem ise Durum
Denklemi ve Yapisal Denklemdir.

Bu calismada yapilan sayisal ¢oziimler i¢in siireklilik s6z konusu oldugundan
denklemlerdeki zamana bagh terimler ihmal edilmis ve ayrica akiskan sikistirillamaz
oldugundan yogunluk, operatdriin veya integralin disina alinabilmistir. Bu

sadelestirmeler yapildiginda korunum denklemleri:
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VeU=0 (3.38)
pVe(U®U)=Ve(-pd+w(VU+(VU)")) +S,, (3.39)
pVe(Uh)=Vee(QAVT)+S, (3.40)

halini almaktadirlar. Korunum denklemleri bu halleriyle siirekli ve sikistirilamaz akisi

karakterize etmektedirler.

3.4. Tirbiilans Modelleri ve Duvar Modellemesi

Tiirbiilans kavrami akis hacminde herhangi bir zamandaki ve yerdeki
dalgalanmalar1 anlatmak icin kullanilmaktadir. Ug boyutlu, zamana bagh ve birgok
Olcegi icermesi nedeniyle ¢cok kompleks bir olaydir. Tiirbiilansin akis iizerinde cok
onemli etkileri olabilmektedir. Tiirbiilans atalet kuvvetlerinin viskoz kuvvetlere oranla
daha etkin oldugu durumlarda ortaya c¢ikmaktadir ve yiiksek Reynolds sayilariyla
karakterize edilmektedir.

Teoride Navier-Stokes denklemleri herhangi bir ek bilgiye ihtiya¢c duymadan
hem laminer hem de tiirbiilansli akiglar1 tamimlamaktadirlar. Fakat yiiksek Reynolds
sayilarindaki tiirbiilansh akislar sayisal ¢oziim i¢in olusturulan sonlu hacim agindan ¢ok
daha kiiciik olgiiler gerektirmekte ayrica ¢ok genis bir tiirbiillans uzunlugu ve zaman
skalasinda degisim gostermektedirler. Bu sekildeki bir ¢oziim igin direkt sayisal
simiilasyon (DNS) yontemlerinin ihtiyac1 olan hesaplama giicli, giiniimiiz
bilgisayarlarinin kat ve kat {istiinde bir gii¢ gerektirmektedir.

Bugiin CFD kodlarinda tiirbiillansin  akis  iizerindeki etkilerinin
hesaplanabilmesi amaciyla ¢esitli tiirbiilans modelleri gelistirilmistir. Ve tiirbiilansin bu
etkilerinin sayisal hesabin ag yapist ve DNS yontemlerine bagimliliktan kurtarilmasi
izerine yogunlasilmistir. Hemen hemen biitiin tiirbiilans modelleri istatistiksel modeller
olmakla birlikte Large Eddy Simiilasyon Teorisi ve Detached Eddy Simiilasyon Teorisi
bu modellerden ayr1 bir platformda degerlendirilmesi gereken modellerdir. Tiirbiilans
modellerini teorilerine gore iki sinifa ayirmak miimkiindiir:

- RANS (Reynolds Ortalamali Navier-Stokes Denklemleri)Tiirbiilans

Modelleri
- Eddy Viskoziteli Tiirbiilans Modelleri
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RANS Tiirbiilans Modelleri
Tiirbiilans modelleri transport denklemlerini ortalamali ve dalgalanmali
degerlerle modifiye ederek bir ¢6ziim ararlar. Mesela hiz U ortalama bilesen ve zaman

degiskeni bilesenine ayrilarak,

U=U+u (3.41)
seklinde yazilabilir. Burada ortalama bilesen,
f+ At
0= 1 [ va
At
t (3.42)

olarak tarif edilir. At tiirbiilans dalgalanmalarina bagimliligi fazla iken denklemlerin
¢oOziildiigii zaman skalasina ise az bagimhidir.

Ortalama degerlerin transport denklemlerine yerlestirilmeleriyle,

%2 +Ve(pl) = 0

” (3.43)
dp‘[;_i_ Ve{pUR U} = Ve{Tpu®@u} + SH
T . (3.44)
apd Ve(pU¢) = Ve(TVo—pud) + Sz

o (3.45)

denklemleri elde edilir. Burada t molekiiler gerilme tensoriidiir. Goriildiigii iizere
kiitlenin korunumu denkleminde bir degisiklik soz konusu degil iken momentum ve

skaler transport denklemleri molekiiler difiizyon akisina ek olarak tiirbiilans akisi

terimlerini de igermektedirler. Bunlar ( P# @ #) Reynolds Gerilimi ve (PH b Reynolds

akist degerleridir. Bu degerler ortalamasiz tranport denklemlerindeki nonlineer
konvektif terimlerden kaynaklanmaktadir. Tiirbiilans hizi dalgalanmalar1 konvektif
terim iizerinde karisikligi cogaltacak ve molekiiler boyutta termal dalgalanmalar1 da

arttiracaktir. Reynolds ortalamali enerji denklemi,

aphmf 3 d
‘e H AT = —p
5+ Ve(pUh,, .+ puh—-rVT) 5 (3.46)

olmaktadir. Burada toplam entalpi,

1,2
J = h+=U +k
'tor 2 (3.47)
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seklinde tanimlanmaktadir. Ortalama akis kinetik enerjisine ek olarak toplam entalpi

tirbiilans kinetik enerjisi k’ y1 da igerir,
k= lifz
2 (3.48)

Eddy Viskoziteli Tiirbiilans Modelleri

Bu yaklasimda tiirbiilans, Reynolds gerilmelerinin ortalama hiz gradientleriyle
orantili olarak siirekli sekillendirdigi ve dagittig1 kiiciik girdaplardan olusmaktadir.

Eddy viskozitesi modeli Reynolds gerilmelerinin ortalama hiz gradientleriyle
iligkili oldugunu ve gradient difiizyon hipotezi ile birlikte anolojik olarak bir bakima
Newtonian bir akistaki gerilme ve uzama tensorleri arasindaki iliskiye benzerligini su

formiille gosterir,

- 2 2 - TTT T
—pu Hy = _Epkﬁ—iur?ui;ﬁ+ MF{T[ +{?I} ) (3.49)

Burada p, Tirbiilans viskozitesi veya Eddy viskozitesidir. Eddy vizkozite hipotezine
benzer olarak eddy difiizyon hipotezi skaler bir Reynolds akisinin ortalama skaler
gradientle lineer degistigi yani,

~pu¢ = T, V¢ (3.50)

seklinde oldugunu gostermektedir. I', burada Eddy Diffusivity (gecirgenligi) olup

1l
I, = P_J+
Tt (3.51)

seklinde tanimlanmaktadir. Ayrica Pr, tiirbiilans Prandtl sayisidir.
Bu denklemler p, tiirbiilans viskozitesi biliniyorsa ortalama degisken

fonksiyonlarin tiirbiilans dalgalanma terimlerini ifade eder. k-¢ ve k- tiirbiilans
modelleri iste bu degiskeni saglarlar.

Bu hipotez 1s183inda Reynolds ortalama momentum ve skaler transport

denklemleri,
dpU . -
Ve = vV Ve A V
o +Ve(pU®U) = B-Vp + Ve(lu f‘f'{ U+ [,} )) (3.52)
ap¢ -
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haline gelir. Burada B cisim kuvvetleri, p . efektif viskoziteyi , I', ise efektif

gecirgenligi ifade etmekte olup,

Hegr = I re;f =T+,

(3.54)
seklinde yazilabilirler. Ayrica p modifiye edilmis basing ise,
: 2 _ 2
p=p+ —pk+'~?-[{—u —Q)
3 3"elf (3.55)
olarak yazilabilir. Reynolds ortalamal1 enerji denklemi ise su sekli alir,
NPhr) 9P H,
——— —— + Ve(pUh = Ve ANT+ —Vh |+ 5§
ot ar T PPy ; E
d (3.56)

Burada molekiiler difiizyon terimi kesin olmamakla birlikte tiirbiilans difiizyonu bu

terime oranla cok biiyiik oldugundan ihmal edilebilir.

Eddy viskoziteli modeller eddy viskozitesini ve eddy gecgergenligini

kullanmalariyla ayirt edilebilirler.

Tiirbiilans Modellerinin Siniflandirilmasi

e Eddy Viskoziteli Tiirbiilans Modelleri

o

o

)

)

o

©)

Zero-Equation

k-¢

k-o

Shear Stress Transport (SST)
RNG k-¢

(k-¢),; Eddy Viskozite Modeli

¢ Reynolds Gerilme Modelleri

)

o

o

BSL (Baseline k- Modeli)
SSG Reynolds Gerilme Modeli
LLR Reynolds Gerilme Modeli
QI Reynolds Gerilme Modeli
o Reynolds Gerilme Modeli
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3.4.1. k-¢ Tiirbiilans Modeli

Iki denklemli tiirbiilans modellerinden biri olan k-¢ tiirbiilans modelinde hiz ve

uzunluk skalas1 ayr1 iki denklem olarak ¢oziiliir. k tiirbiilans kinetik enerjisi (hizdaki
dalgalanmalarin degisimi) olup birimi (L*T?), ¢ ise tiirbiilans girdap dagilim1 olup
(hiz dalgalanmalarinin dagilim orani) birimi ( L* T~ ) dir.

k-¢ tiirbiilans modeli, denklem sistemine iki yeni degisken getirmektedir.

Boylece kiitlenin korunumu ve momentum denklemleri,

dp r
P Ve(pl) (3.57)
apU +Ve(plU ® U) - v"l“eﬁ"v{?} = Vp' + 'ffi{pgﬁ.? I +B

dt (3.58)

seklini alir. Burada B cisim kuvvetleri, p,efektif viskoziteyi gostermektedir.p

modifiye edilmis basin¢ olmak {izere her tiir akis igin,

p=p+ Epk
3 (3.59)
olarak tanimlanir. k-¢ tiirbiilans modeli de eddy viskozitesi tabanli oldugundan
= pn+
Hegr = M H, (3.60)

seklinde yazilir. k-¢ tiirbiilans modelinde tiirbiilans viskozitesi, tiirbiilans kinetik enerjisi

ve dissipasyonuyla

& (3.61)

formiiliyle iliskilendirilir. C, sabit bir deger olup degeri 0.09 dur. Tirbiilans kinetik

enerji ve tiirbiilans dissipasyon orani icin gerekli k ve € degerleri direkt olarak kismi

transport denklemlerinden gelmektedir,

I
a{gk} + Ve(plUk) = ?-[[p. +— ]"FF{} + Pk‘ PE
' Ok (3.62)
d(pe . M .
{5:} + Ve(ple) = ‘G’-Hp + CF_F ]"EE‘.:| + ELCHPFCazpﬁJ
£ (3.63)

Buradaki bazi1 degerler sabitler olup degerleri ise,

C, =144 C,=192 6,=1.00 o, =13
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seklinde verilmektedir. P, viskoz kuvvetlerin ve kaldirma kuvvetlerinin iirettigi
tiirbiilans olmak iizere asagidaki sekilde yazilir,

. . T 25 o .
Pp=n VU (VU+VU J_E‘FtLLSMI‘FtL + pk)+ Py (3.64)

Bu calismadaki gibi sikistirllamaz akigkanlar i¢in V.U degeri ¢ok kiiciiktiir ve
sag taraftaki ikinci terimin tiirbiilans iiretimine katkisi ¢ok ¢ok azdir. Sikistirilabilir
akiglarda ise V.U degeri sok gibi yiiksek hiz diverjanslarinin bulundugu yerlerde
biiyiiktiir.

3u, terimi  “Frozen  Stress” (Donmus  Gerilim) yaklasimindan

kaynaklanmaktadir. Bu yaklasimla soklarda k ve & degerlerinin ¢ok biiyiik degerler

almas: Onlenmis olur. Kullanilan ticari kodda direkt olarak p, Oniindeki faktore

miidahale edilmesi miimkiindiir.
3.4.2. Cidara Yakin Akisin Modellenmesi
Matematiksel Teorisi

Duvar fonksiyon yaklasiminda viskozite etkisindeki alt tabakada yakin cidar
sinir sartlarinda, ortalama hizi ve tiirbiilans transport denklemlerini saglamak icin ¢esitli
ampirik formiiller uygulanmaktadir. Bu formiiller duvar sartlariyla cidara yakin diigiim
noktalarindaki (sinir tabaka icersindeki tam tiirbiilansh bolgedeki) bagimli degiskenleri
iligkilendirmektedir.

CFX’ te duvar fonksiyonu yaklasimi Launder ve Spalding (1974) tarafindan
gelistirilen metodun bir uzantis1 seklindedir. Log-law bolgesinde cidara yakin tegetsel
hiz duvar kayma gerilmesi ile logaritmik bir iligki i¢indedir.

Duvara yakin boyutsuz hiz i¢in geometrik baginti,
o= = lnln [_1:+J +C
o K (3.65)
olarak verilmekte olup burada boyutsuz mesafe
pAyu,

u (3.66)

+
.}'I =
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(3.67)
olmaktadir. u* yakin duvar hizi, u_ siirtinme hizi, U, hizin cidardan Ay (Ay tanimi
cesitli duvar fonksiyonlar1 yaklagimlar1 i¢in degisik sekillerde yapilmaktadir)
uzakliktaki tegetsel bileseni, y* cidardan olan boyutsuz uzaklik, z, duvar kayma

gerilmesi, k von Karman sabiti ve C ise cidar piiriizliiliigiine bagh olan logaritmik

tabaka sabitidir.

Olceklendirilebilir Duvar Fonksiyonu Yaklasimi (Scalable Wall Function)

3.65 genel formiilinde yakin cidar hizi, U, , sifira yaklasirken ayrilma
noktalarinda tekillikler olusturmaktadir. Bu nedenle logaritmik bolgede alternatif bir hiz

skalast u”, u* nin yerine kullanilabilir,

174 1.2
*=C k
u m (3.68)

Bu skalanin en 6nemli faydas1 yakin cidar hizi, U, sifira yaklagsa bile bu degerin sifira

gitmemesidir yani tiirbiilansh akista k degeri hicbir zaman tamamen sifir olmamaktadir.

Bu tanimlardan su acik formiile ulasilabilir,

— [-Irz

U, = T

-In(y*)+C

K (3.69)

t, duvar kayma gerilmesinin mutlak degeri ise,
T = Puug (3.70)
burada,

vt = (putAy)/u (3.71)

seklinde tanimlanmakta olupu’ ise daha dnce tanimlandig gibidir.

Duvar fonksiyonu yaklagiminin en temel dezavantaji ise ilk diigiim noktasinin
cidardan uzaklhigina ve cidara yakin ag yapisina ¢ok duyarli olmasidir: Grotjans ve
Menter (1998) calismalarinda ag yapisinin iyilestirilmesinin sonucun dogruluguna ¢ok
etki etmedigini gozlemlemistir. Bu tutarsizliklar ise CFX tarafindan gelistirilen

Olgeklendirilebilir Duvar Fonksiyonu yaklasimi ile giderilmistir. Bu yaklasim istenilen
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1yi bir ag yapisina Reynolds sayisina bagl olarak tutarli ag iyilestirmelerinden bagimsiz
olarak uygulanabilmektedir.

Olgeklendirilebilir Duvar Fonksiyonu yaklastmimin altinda yatan temel fikir

logaritmik formiilasyonda kullanilan y  degerini y =max(y ,11.06) gibi daha diisiik

bir degerle sinirlamaktir. Burada 11.06 degeri logaritmik duvar profili ve lineer yakin

duvar profillerinin kesisimleri ile elde edilmistir. Ve hesaplanan y degerinin bu limitin

altina diismesine izin verilmez. Boylece biitiin ag noktalar1 viskoz alt tabakanin disinda
kalarak tutarsizlik giderilmis olur. Bu olay su acilardan 6nemlidir:
e Sinir tabakayr tamamen c¢ozebilmek i¢in bu tabakada en az 10 diigiim
bulunmasi gerekmektedir.

¢ Gerekmedikce Standart Duvar Fonksiyonlar1 kullanilmamalidir.

e vy degerinin iist limiti Reynolds sayisinin bir fonksiyonu seklindedir.
Mesela bir gemi icin Reynolds sayist 10” olabilir ve y*degeride bu
durumda 1000 olabilir. Ama daha diisiik Reynolds sayilarinda (kiiciik
bir pompada oldugu gibi) biitiin sinir tabaka y* =300 degerine kadar

uzanabilir. Bu durumda da daha kiigiik araliklarla duvara yakin bir ag
yapis1 gerekir.
Eger sonuclarda biiyiik sapmalar goriiliiyorsa bu durumda yakin duvar ag

yapisinin modifiye edilmesi faydali olacaktir.

y* ve Coziicii y* Degerleri

Coziicti ¢iktisinda yakin duvar y*araliklar i¢in iki deger mevcuttur. y* nin
genel CFD kullanimindaki standart tanimi,
L Ap-An

v (3.72)

+
y =

seklindedir. Burada An duvardan sonraki birinci ve ikinci diigiimler arasindaki uzaklik

olarak tanimlanmistir. CFX’te buna ek olarak Coziicii y* (Solver y*) denilen kavram

coziicti tarafindan logaritmik profili bulmakta kullanilan y* degeridir. Tecriibe edilmis

degerler ise su sekilde onerilmektedir,
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e Standart Duvar Fonksiyonu (Ay = An/4 )

¢ Olgeklendirilebilir Duvar Fonksiyonu( Ay = An/4)

e Otomatik Duvar lyilestirmesi (Ay = An )
Olgeklendirilebilir Duvar Fonksiyonunda y* degeri,

utAnsd

vt o= maxiv*,11.06) pt =
' ) : v (3.73)

ile ifade edilmistir.

3.4.3. Rotasyonel Kuvvetler ve Degisimli Donme Modeli

Rotasyonel Kuvvetler
Bir referans eksenine gore sabit agisal bir hizla donme hareketinin oldugu
akislarda (pompa icindeki akis gibi) Coriolis kuvvetinin ve santrifiij kuvvetlerin hesaba

katilabilmesi i¢in ek bir momentum kaynagi yazilmalidir.

SM‘ rot — SCO:' + S:‘fg (3.74)
olur ve burada
Seor = 2poox U
Sq,rg = —pe X (M xXF) (3.75)

olmaktadir. Formiillerde r yer vektorii iken U ise bagil eksen hizidir. Enerji
denkleminde ise toplam entalpi , rotalpinin (donme entalpisi- I) adveksiyonuyla asagida
gosterildigi gibi yer degistirir.

1,2 1 2.2
S!(I?I+EL _Em R (3.76)

Rotasyon enerjisi, enerji denklemindeki transient terimde olmadigindan

I=h

transient ¢coziimlerde agisal hiz sabit oldugunda bu donme entalpisi korunmaktadir.

Degisimli Donme Modeli
Momentum denklemindeki adveksiyon terimindeki bagil hiz normalde,

E]IE}L::;-Fv'{PI;@ '['} = ?'{—p5+ H{TI""{?I‘-}I}}—EQWX IT—PU}X{UJXF}

(3.77)
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verilmektedir. Kullanilan ticari kodda bulunan degisimli donme modelinde ise bagil
eksen hizi yerine mutlak eksen hizi kullamilmaktadir. Bu adveksiyon terimindeki
degiskenin  degistirilmesi  Coriolis  teriminde de modifikasyon yapilmasini

gerektirmektedir. Denklemin son sekli ise asagidaki gibi olur,

E%f{+ Ve(pU® U be) = Ve(—pd+ u{?[7+{'\?{f}r}]—pmxI.-'_pmx[mxr}

a

(3.78)
3.5. Hesaplamah Akiskanlar Dinamigi (CFD)

Hesaplamali Akiskanlar Dinamigi (CFD) akiskan akisi, 1s1 transferi ve diger
ilgili fiziksel olaylarin bilgisayarlar yardimiyla simiile edilmesini saglayan bilim dali
olarak tanimlanabilmektedir. Verilen sinir sartlar1 altinda ilgili hacimde korunum
denklemlerini ¢ozerek simiilasyon gergeklestirilir.

Bilgisayarlar akis problemlerinin cOziimiinde uzun yillardir
kullanmlmaktadirlar. Ozgiin problemleri veya 6zgiin problem siiflar1 ¢ozmek icin bircok
program yazilmistir. Ozellikle 1970’lerin ortalarindan itibaren kompleks matematik
denklemleri, algoritmalarin anlagilabilmesi i¢in genel CFD coziiciileri gelistirilmeye
baslanmistir. Bunun etkisi ise 0zellikle bilgisayarlarin ¢ok giiclenmeye basladigi 1980’11
yillarda kendini gostermistir. CFD ilk baslarda sadece arastirmalarda kullanilan bir
aracti. Bilgisayar teknolojisindeki gelismeler, giiclii grafikler ve 3D sanal
manipiilasyonlardaki gelismeler, laboratuar caligmalarina gére CFD modelleme ve
cOziimiindeki zamani ve dolayisi ile maliyetleri azaltmistir. Giiniimiiziin gii¢li CFD
kodlar1 akis problemlerinin makul bir siire icersinde ¢oziimiine olanak tanimiglardir.

Bu faktorler sonucunda CFD bugiin endiistriyel bir tasarim araci olarak da
kullanilmaktadir. CFD o6lgek model testlerinin ve ¢ok cesitli simiilasyonlarin hizli
bicimde, diisiik maliyetle yapilabilmesine olanak saglamaktadir. CFD, bilim adamlari
ve miihendisler tarafindan kimya endiistrisinden tip bilimine kadar ¢ok genis alanlarda
kullanilmaktadir.

Momentum, 1s1 ve kiitle transferini tanimlayan Navier-Stokes denklemleri 19.
yiizyilda elde edilmis olup analitik olarak bilinen bir ¢oziimleri mevcut degildir ve

sayisal olarak coziilmektedirler. Yanma gibi diger islemleri ihtiva eden denklemler
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Navier-Stokes denklemleriyle ortak ¢oziilmektedir. Siklikla bu ek denklemler tiirbiilans
modellerinde oldugu gibi bir yaklagim kullanilarak denklem sistemine dahil olurlar.
CFD kodlarinda kullanilan bir¢ok ¢oziim metodu bulunmaktadir. Bu
metodlardan en ¢ok kullanilani ise sonlu hacim teknigidir. Bu teknikte ilgilenilen alan
kontrol hacmi denen ufak alt hacimlere ayrilir. Denklemler her kontrol hacmi i¢in
ayriklastirilarak iteratif olarak coziiliir. Sonu¢ olarak her degiskenin yaklasik degeri

hacim icersindeki 6zel noktalarda hesaplanmis olur.

3.5.1. CFD ile Akis Coziim Asamalar:

CFD dizayn asamasinda bir sistemin performansini elde etmede veya varolan
bir sistemin gelistirilmesinde kullanilabilir. Ornek olarak bir akis sistemindeki basing
diististinii  hesaplamak icin yapilacak ilk is ilgilenilecek alanin belirlenmesidir.
Boylelikle ilgilenilecek geometride belirlenmis olur ve ilgili hacim icin ag iiretilir. Bu
ag CFD kodunun pre-processor kismina alinarak simiilasyon i¢in gerekli sinir sartlari,
akiskan ozellikleri gibi degiskenler tanimlanir.

Akis coziiciisii hiz, basing ve diger degiskenlerin degisimlerini hesaplamak
tizere calistirilir. Sonuglar bir post-processor ortam yardimiyla gorsel hale getirilir.

Bu sayede geometri degisikligi yapilarak dizayn modifikasyonlarinin tasarima
etkisi incelenebilir. Anlatimdan anlasilacag tizere bir CFD simiilasyonun gerceklesmesi

dort temel adimin yapilmasi ile,

GEOMETRI / AG  |—-{FIZKSEL TANIMLAMA f—=] COZUCU  |——jm| POST-PROCESS

Sekil 3. 9. Bir CFD probleminin ¢oziimiindeki islem adimlar1

olmaktadir.

Ag iiretiminde kullanilabilecek 4 temel hacim ag tipi vardir:
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Prizma Eleman Hexahedral Eleman

Sekil 3.10. CFD analizlerinde kullanilan hacim eleman tipleri

Bu eleman tiplerinden kullanimi en yaygin ve iiretilmesi en basit olan tetra
elemandir. Ozellikle kompleks geometrilerde hexa basta olmak iizere diger
elemanlardan iiretilmesi cok zaman alict ve zor oldugundan tetra kullanilmaktadir.
Fakat bu calismada oldugu gibi tiirbomakinelerde yapilan analizlerde (sinir tabaka
etkilerinin 6nemli oldugu problemlerde, ayrilma noktasi tespiti icin yapilan analizlerde
vb.) hexa kullanimi daha dogru ve hassas sonuglar icin ka¢inilmaz olmaktadir. Hexanin
en biiyiik avantajlarindan birisi eleman kalitesi ¢ok bozulmadan sinir tabakada istenilen
sayida diigiim olusturulmasina izin vermesidir. Bu sayede sinir tabakadaki akis daha iyi

bir bi¢imde analiz edilebilmektedir.

3.6. Ayriklastirma, Coziim Teorisi ve Hatalar

Korunum Denklemlerinin Ayriklastirilmasi

Navier-Stokes denklemlerinin analitik ¢Oziimleri sadece basit akislar icin
miimkiin olabilmektedir. Gercek ve karmasik akislara ¢oziimler elde edebilmek icinse

bu denklemler cebrik yaklasimlarla sayisal bir metod kullanilarak ¢oziilebilecek sekle

getirilebilmektedirler.
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Bu yaklasim uzaysal akis alamimi bir ag kullanarak sonlu kontrol hacmi
yaklagimiyla ¢ozmeyi igermektedir. Korunum denklemlerinin her kontrol hacminde
integralleri alinarak her denklem ayriklastirilir

Asagidaki sekil birim derinlikte (2D) tipik bir ag elemanin1 gostermektedir
Taral1 bolge ile kontrol hacminin bir yiizeyi temsil edilmektedir

AN
/ T
Eleman Yiizeyi Merkezi ’h“\
B o
s
; AR
Eleman N
™,

Sonlu Hacim Yizeyi

Sekil 3.11. Bir ag elemaninin bilesenleri

Sekil 3.11°de goriildiigii iizere her node (diiglim) noktas: kontrol hacmini olusturan

yiizeylerle cevrilmistir. Biitiin ¢oziim degiskenleri ve akiskan ozellikleri bu eleman
diigtimlerinde depolanmaktadir

Kiitle korunumu, momentum korunumu ve pasif bir skalerin adi formunu
kartezyen koordinatlarda diisiinelim

op, 9

g I_{p{.-J_} =0

(3.79)
9 2 , 3P 9 U, o, ]]
ot ale. Ji ox S eff {;1 d‘j (.50
_ J d
“:“1’” “”’ ) = ax.(raﬁ f.])*%

(3.81)

Bu denklemler bir kontrol hacmi {izerinden integre edilir ve hacim

integrallerinin yiizey integrallerine doniisiimii Gauss Diverjans Teoremi ile saglanir

Zamanla deforme olmayan bir kontrol hacmi i¢in zaman tiirevleri, hacim integrallerinin
disina cikarilabilir ve denklemler
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%‘Jrﬂ'ﬂ” + Jp[,:,.n’nj. =0

4 s (3.82)
dr - . - (U Uy
a_r.l pU,dV +JpI.-J_.L:.a*nJ,. = _JP””; + J“eﬁ" ey + o, dn ; + J SV

V 5 5 5 J Vv (3.83)
D ogdV + [pU.ddn, = |T [—¢]d= + |s.av
n’f.lj . Jj jren; = J eff dx nj J ¢

v s s ’ v (3.84)

seklinde elde edilebilir. Burada V ve s sirasiyla hacim ve yiizey integral bolgelerini ve
dn; normal yiizey vektoriiniin diferansiyel Kartezyen bilesenidir. Yiizey integralleri
akilarin integre edilmesinden olusurken, hacim integralleri ise kaynak terimlerini veya
biriktirme terimlerini temsil etmektedirler. Kontrol hacminin deforme olmasi nedeniyle
bu denklemlerde olusan degisiklikler asagidaki gibi agiklanabilir.

Sekil 3.12°deki gibi izole olmus bir ag elemani diisiinelim,

Wil () n2

integral Hoktas:

Eleman Yiizeyi Merkezi

Sektirler p2 ™~

n3

-

Sekil 3. 12. Bir ag elemanindaki integral noktalar1 ve eleman yiizey merkezi

Stireklilik denkleminin ayrik forma doniistiiriilmesinde yiizey akilari,
integrasyon noktalarinda ayrik bir sekilde temsil edilmelidirler. Integrasyon noktalart
3D boyutlu elemani1 cevreleyen biitiin yiizey parcalarinin merkezlerinde olmaktadir.

Integral denklemlerinin ayrik formlar ip integral noktas1 olmak iizere,

o
AP—P T —
I( At )-i— Z{j)LJ,—ﬁ;'?J.-pr =10
ip (3.85)
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pf

pl’ pai‘_"g
i~ i . r _ y
T] + zm:-p{ L ‘,-ij = 2 {Pjnf}ip +
ip ip
E]I'I EJI-" _
Z Hevﬁ" 81 (jl\ j.i"i'“I +S[_-_rj]:'

ip ip

[’N’ . ] + Dy = 3T effa““’ J,ﬁ SV

ir /4 (3.86)
yazilabilir. Burada V kontrol hacmini, toplam sembolii sonlu hacimdeki biitiin integral

noktalarmin toplamini, An; disariya dogru olan ayrik yiizey vektoriinii, At ise zaman

adiminm1 gostermektedir. o ise bir 6nceki zaman adimini simgelemektedir. Ayrica burada
Birinci Dereceden Geriye Euler kullanilmissa da ikinci dereceden bir yontem, ileriki
paragraflarda anlatilacagi iizere, kullanilabilir. Sonlu hacmin bir yiizeyinden olan kiitle

akigt ayrik formda yazilirsa,

T o

olur.

Basin¢-Hiz Birlesimi (Coupling)
Basing ve/veya hizin birlesik ¢oziimiinde tek hiicreli, asamasiz, siral1 ag yapisi

kullanilmaktadir. Kiitle korunumunun tek boyutlu temsili,

(22) LAxa(d'p) o
dx J; dm |4 4]
i

dx (3.88)

seklinde yazilabilirken burada,

m = pl.An,
i (3.89)

seklinde ifade edilmektedir. Siireklilik denklemi hizda birinci dereceden tiirev, basincta
dordiincii dereceden tiirev ikinci dereceden merkezi fark yaklasimi kullanmakta olup
basing etkisini yayacak sekilde davranmaktadir. Bu degiskenler siralanirken olusan sinir
kontrol osilasyonlarini gidermektedir.

Ag yapist iyilestirildikge, denklemdeki ikinci terimin siddeti, hiz tiirevine gore
Ax® oranminda sifira giderken siireklilik denkleminin istenilen kismi forma daha cabuk

gelmesi saglanmaktadir.
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Transient (Zamana Bagh) Terim
Yapilan calisma transient olmadigindan sadece denklemler verilecektir. Birinci

derece geriye Euler icin yazilirsa,

- P
i) e

(3.90)
olur. Ikinci derece geriye Euler icin yazilirsa,
dir_ . . |_p¥F(3 o laa]
cT:(J p‘t"“] - m(z‘i" 207 +30
v (3.91)
olmaktadir.
Sekil Fonksiyonlari

Coziim alanlar ag diigiim noktalarinda depolanmaktadir. Fakat denklemlerdeki
degisken terimler integral noktalarinda degerlendirilen c¢oziimler veya ¢Oziim
gradientleri gerektirmektedirler. Bu nedenle ¢oziim degisimlerini eleman igerisinde
hesaplayan bir yola ihtiya¢ duyariz. Bu yolda sonlu eleman sekil fonksiyonlaridir.

Bir ¢ degiskeni eleman i¢inde

an:df

b= ) N,

i=1 (3.92)
seklinde degissin. Burada N, i. diigiim i¢in sekil fonksiyonu, ¢ ise i. diigiimdeki ¢
degeridir. Bu toplam elemanin biitiin diigimlerini icermektedir. Sekil fonksiyonlarinin
anahtar Ozellikleri,

LT
“Vnode

Z N; =1

i=1 (3.93)

ve j Diigiim noktasinda,

(3.94)
olur. Burada sekil fonksiyonlar1 parametrik koordinatlarin lineer halidir. Bunu basit bir

hexa ag elemaninda inceleyelim,
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[+

Sekil 3. 13. Bir hexa eleman iizerindeki diigiim noktalar1

Burada her diigiim i¢in sekil fonksiyonlar1 yazilirsa asagidaki gibi olur,

Nils.tou) = (1=s)(1—r)(1—-u)

Ny(s,tou) = s(1-1)(1 —u)

_-'1'\'1-3[.5', tou) = st(l—w)

Nyls,t,u) = (1-s)r(1 —u)

Nels,tou) = (1=s)(1—r)u

_-""-rﬁ[s, tou) =s{l—1u

Nols, t,u) = stu

Ngls.t,u) = (1—s)tu (3.95)

Sekil fonksiyonlar1 ayrica cok cesitli geometrik degerleri hesaplamada da
kullanilir,(integral noktasinin koordinatlari, yiizey alan vektorii vb.). Bu miimkiindiir,

clinkii denklem 3.92 su koordinat bilgilerini de icermektedir,

‘l,‘ A

P 7
N node “¥node

AT
“Ynode

X = Z "\"f""f y = Z ;"lf:-.'_ls- z = Z :Iln':-.ds-
i=1

r=1 =1 (3.96)
Difiizyon Terimi
Standart sonlu eleman yaklasimindan hareketle sekil fonksiyonlar: biitiin
difiizyon terimlerinin tiirevlerini degerlendirmede kullanilir. Mesela x yoniinde ip

integral noktasindaki tiirev,
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_ <V,

ip p 9 lip (3.97)

olur ve eleman icin biitiin sekil fonksiyonlarinin toplamidir. Sekil fonksiyonlarinin

dé
dx

kartezyen tiirevleri Jacobian transformasyon matrisi araciliiyla terimlerinin yerel

tiirevleri seklinde ifade edilebilir,

oN|  |ox o 22| o]
dx ds ds ds ds
dN dx E]_J oz dN

-1

dy at 9t dt| |ar
ox| o ay 22| |
| dz | | du du du| | du| (3.98)

Sekil fonksiyonu gradientleri her integral noktasinin gercek yerinde (gercek
ticlii-lineer interpolasyon) veya her integral noktas1 yiizeyinin eleman kenariyla kesistigi

yerlerde (lineer-lineer interpolasyon) degerlendirilebilir.

Basin¢ Gradienti Terimi
Basing gradientinin momentum denklemlerindeki yiizey integralleri su ifadenin
degerlendirilmesi ile miimkiindiir,

(PAn. ).
Pip (3.99)

P, degeri sekil fonksiyonlarindan,

P.r'p = ZN}:{S{&’ r.r'p' prJPn
n (3.100)

seklinde bulunur. Difiizyon teriminde oldugu gibi P degerini interpole eden sekil
fonksiyonu gradientleri her integral noktasinin gercek yerinde (gercek iiclii-lineer
interpolasyon) veya her integral noktasi yiizeyinin eleman kenariyla kesistigi yerlerde

(lineer-lineer interpolasyon) degerlendirilebilir.

Adveksiyon Terimi

Adveksiyon teriminin ayriklastirilmasini tamamlayabilmek igin ¢, degiskeni
¢ nin diigiim degerleriyle iligkilendirilmelidir. Adveksiyon su formda verilebilir,

bip = dyp + BV AF (3.101)
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Burada ¢, ilerideki digiimdeki deger, V, ¢ nin gradienti ve 7 ise ileriki
diigiimden intregral noktasina dogru olan vektordiir. B se¢imi ise degisik yontemleri

karsimiza ¢ikarmaktadir.

Birinci dereceden ileri farklar yontemi

Bu yontem P = 0 degerine denk gelmektedir. CFD’de kullanilan bir¢cok fark
yontemleri siirekli fonksiyonlarin Taylor serisi gibi serilerle acilmasiyla gelistirilmistir.
Ne kadar fazla terim birakilirsa dogru yaklasim yapilma ihtimalide o kadar artacaktir.
(Tabi buda hesap yiikiiniin artmasina sebep olacaktir) Yontemlerin dereceleri serideki
en biiyiik terimin derecesi tarafindan belirlenmektedir.

Birinci dereceden ileri farklar yontemi (UDS-Upwind Difference Scheme)
sayisal olarak dengeli olup fiziksel olarak mantiksiz kokleri de ayirmaktadir. Fakat
sayisal difiizyon veya gradient lekesi denen ilerleyen boliimlerde bahsedilecek olgudan

cok cabuk etkilenmektedir.

Sayisal adveksiyon diizeltme yontemi ( min istenilen degerde secimi)

B icin O ile 1 arasinda secilerek UDS nin difiisif etkileri azaltilabilir. PV - AF
degeri sayisal adveksiyon diizeltme degeri olup ileri siipiirme yontemine eklenmis anti
difiisif bir aki olarak diisiiniilebilir. B = 1 se¢imi ikinci derecen ¢6ziimiin dogrulugunu

verebilmektedir. Fakat bu yontem UDS’den daha saglam olmayip sayisal difiizyona

sebep olabilmektedirler.

Yiiksek coziiniirliiklii yontem (High Resolution Scheme)

Bu yontemde B degeri yerel olarak miimkiin oldugunca 1’e yakin degerlerde
otomatik olarak hesaplanmaktadir. Yontem temelde Barth ve Jesperson’in
yaklasimlarindan faydalanmistir. Yiiksek coOziiniirliklii yontemde hem saglam bir
yakinsama hem de sinirlara uyum mevcuttur. Vektor degerleri icin bilesenler 0 ile 1

arasindaki degerlerde sinirlandirilmislardir. Bu nedenle bir vektor degerinde P siddeti

/3 kadar biiyiik olabilmektedir.
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Merkezi fark yontemi

Bu yontemde ise ¢, ’in degeri ugli-lineer sekil fonksiyonlarim kullanilarak

bulunur,
¢.f_,t= = Z"""'r}r{sfp’ fip ”fpmlrr
n (3.102)
Ikinci dereceden saglam bir yakinsama karakterine sahipte olsa sadece LES

simiilasyonlar1 i¢in uygun bir yontemdir.
Birlesik Denklem Sistemleri (Coupled)

Akis alanindaki tiim elemanlara sonlu hacimler yonteminin uygulanmasiyla

ortaya c¢ikan denklemler ayrik korunum denklemleridir. Olugan denklemler sistemi,

nh
Z"f ¢; = b;
nb, (3.103)
formunda yazilabilir. Burada ¢ ¢6ziimii, b sag tarafi, a denklemlerin katsayilarini, i

sonlu hacim yada diiglim tanim indisini gostermektedir ve nb ise komsu anlamina gelip
ayrica 1. yerdeki c¢oziimle carpilan merkezi katsayiyr igermektedir. Diigiim noktasi
herhangi bir sayida komsuya sahip olabilir ki boylece bu yontem hem yapisal olan hem
de yapisal olmayan ag yapilarina uygulanabilir. Ve biitiin sonlu hacimler lineer

denklem sistemini olusturmus olur. Skaler denklemler i¢in (entalpi, tiirbiilans kinetik
enerjisi vb.) her a'”, ¢, ve b, tek bir sayidir. Birlesik ¢oziicii igin kiitle ve momentum

denklemleri 4*4 matris veya 4*1 vektor seklinde kurulurlar ve soyle ifade edilebilirler,
B nk

D v Tuw Tup
nb Ayu Ty Tyw Yyp

Bu Dy D Typ

“pu Tpv Tpw “pp|; (3.104)

ve
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¢f = v
w
i
bi{
B
v
b; =
E’w
b |
L Al (3.105)

Birlesik olmayan veya parcali (segregated) yaklasimlara gore birlesik ¢oziimiin
avantajlari; saglamlik, verimlilik, genellenebilirlik ve basitliktir. Buna kars1 en biiyiik

dezavantaji ise biitiin katsayilar i¢in yiiksek depolama kapasitesine ihtiya¢ duymasidir.

Birlesik Coziicii Stratejisi(Coupled Solver Strategy)

Parcali (segregated) coziiciiler tahmini bir basing ve bu basinctan elde edilen
bir basin¢ diizeltme denklemi alarak ilk olarak momentum denklemlerini ¢ozerler.
Bahsedilen “tahmin et ve diizelt” yaklagimi nedeniyle lineer sistemlerin dogas1 geregi
cok fazla iterasyon ve degiskenler icin rolaksasyon parametrelerinin hassas sec¢imi
gerekmektedir.

Kullanilan CFD kodu ise hidrodinamik denklemleri(u,v,w ve p icin) tek bir
sistem gibi ¢ozen birlesik bir ¢oziiciiye sahiptir. Coziicii denklemleri verilen zaman
adimi i¢in tamamen kapali (implicit) ayriklastirma ile ¢ozer. Zamana bagli olmayan
coziimlerde ise hizlandirici bir parametre gibi davranir ve siirekli durumun yaklasik
¢Ozlimiinii fiziksel bir tabana oturtmus olur. Bu siirekli bir akis alaninin ¢6ziimiindeki
iterasyon sayisimi azaltir veya transient analizlerde her zaman adimi i¢in c¢oziimleri

bulur.

Genel Coziim

Coziiciide her denklem sistemi sayisal olarak iki yogun operasyondan gecer:
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1- Non-lineer denklemlerin lineerlestirilmesi (katsay1 iterasyonu) ve ¢oziim
matrisinin olusturulmasi

2-  Algebraic Multigrid Yontemi ile lineer denklemlerin (denklem ¢6ziim
iterasyonu) ¢ozimii

Zamana bagli olmayan analizlerde zaman adimu iterasyonlar: ya fiziksel zaman
adimiyla global olarak yada yerel bir zaman adimi faktoriiyle local olarak kontrol
edilirler.

Transient analizlerde ise zaman adimi1 ve katsayi iterasyonlarinin kontrolii agik
olarak kullaniciya baghdir.

Asagidaki akis semasi kullanilan genel ¢6ziim prosediiriinii vermektedir.

Cizelge 3.1. Kodun Coziim Algoritmasi (CFX 5.7.1 User’s Manual, 2005)

¢ STRT D

Initialise Seolution Fields and Advance in Time / False Time

Solve Mesh Displacement (Transient Only) |

——
[ Solve Wallscale | -
—..| Solve Hydrodynamic System |
‘ Solve Volume Fractions ‘
T ‘ Solve Additional Variables ‘
Ilteration withiri~,
the Timestep/' v
L T l — ‘ Solve Radiation ‘ L
7 Advance ™, * /’Advance ™,
\_inTime _/ \._False Time_/
i - ‘ Solve Energy ‘ T I
‘ Solve Turbulence ‘
L]
‘ Solve Mass Fractions ‘
‘ Solve Fully Coupled Particles ‘ NO
NO
Y e \“\
A ) " Convergence ™_
~ Maximum Time <~ Transient? < Criteria/Max ™
~._Reached? \\Iteration Satisfied?
»\\\ ’/// .
YEST NO YES N
vEs| .~ Coefficient Loop-..
Criteria Satisfied?~ Solve One Way
- Coupled Particles
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Lineer Denklem Coziimii

Kullanilan kod lineerlestirilmis denklemlerin ¢Oziimiinde Multigridle
Hizlandirilmis Tamamlanmamis Alcak ve Yiiksek Faktorizasyon teknigini (Multigird
‘MG’ accelerated Incomplete Lower Upper ‘ILU’ factorisation technique)
kullanmaktadir. Bu iteratif bir c¢oziicii olup denklemlerin kesin ¢Oziimlerine bir
iterasyon dizisi sonunda yaklasilmaktadir.

Ayrik denklemlerin lineerlestirilmis sistemleri genel matris formunda,

[ﬁ] [tb] = [5’] (3.106)

seklinde tanimlanabilir. Burada [A] katsayilar matrisi, [ ¢ | ¢6ziim vektorii ve [b] ise sag
taraf1 olusturmaktadir.

Yukaridaki denklem iteratif olarak yaklasik bir ¢oziimle,f", baslanarak
¢oziilebilir ve ¢coziim ¢' gibi bir diizeltme faktorii ile iyilestirilerek daha iyi bir ¢6ziim

olan f"*' hesaplanmis olur.

£ I .
0" ="+ (3.107)
Burada ¢',
Ap =" (3.108)
¢Oziimii olup, r", kalani ise,
" n
ro=b-Ad¢ (3.109)

den elde edilmektedir.

Bu hesaplamalarin tekrarlanmasi ile sonugta istenen coziimler elde edilmis
olur.

ILU gibi iteratif ¢oziiciilerin yapisi geregi eleman sayisi arttikga performansta
bir diisiis olur. Eger eleman aspect oranlar1 biiyiikse bu durumda da performansta
siddetli bir diisiis gozlenir. Bahsedilen performans diisiisleri ‘Multigrid’ teknigi
uygulanarak biiyiik 6lciide iyilestirilir.

Algebraic Multigrid
Matris ¢Oziim tekniklerinin yakinsama davranislart ‘Multigrid’ denen bir

yontem kullanarak iyilestirilebilir. Multigrid islemi 1yi ag lizerinde yapilmis iterasyon
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degerlerini alarak sanal daha kaba bir ag iizerinde iterasyonlar1 devam ettirmesinden
ibarettir. Ve daha sonrasinda sonuglar gercek aga transfer edilmektedir.

Sayisal acidan multigrid yaklagimi bir ¢ok avantaj sunmaktadir. Verilen bir ag
icin iteratif c¢oziicliler sadece ag araliklarinin dalga boylar1 mertebesinde hatay1
azaltabilmektedirler. Boylece kisa dalga uzunluklu hatalar ¢abuk kaybolurken uzun
dalga boylarinda ise ag biiylikliigline bagh olarak hatalarin kaybolmasi ¢ok zaman
almaktadir. Multigrid ise uzun dalga boylarinin olusmasina izin vermeyecek sekilde
sanal kaba bir ag yapisi olusturmaktadir. Sonlu hacimlere ayrilacak geometrideki agin
araliklarimin belirli degerlerde kalma zorunlulugunda kurtulabilmek amaciyla CFX,
Algebraic Multigrid kullanmaktadir.

Algebraic Multigrid iyi ag denklem degerlerini toplayarak kaba bir ag icin
ayrik denklemler sistemini olusturur. Ag araliklarinin sanal kabalastirilmasiyla elde
edilen sonuglar gercek ag yapisina aktarilir. Bu teknik yakinsama oranlarinin biiyiik
tyilesme goOstermesini saglar. Algebraic Multigrid diger multigrid yontemlerine gore
non-lineer denklemlerin ayriklastirilmas1 sadece gercek ag i¢in yapildigindan daha az
yiik getirmektedir.

Kullanilan CFD kodu, Algebraic Multigrid’in 6zel bir bicimi olan Additive
Correction’t (Katki Diizeltmesi) kullanmaktadir. Ayrik denklemlerin bir sonlu
hacimdeki korunmus degerlerin dengesini temsil ediyor olmasi gerceginin getirdigi
avantaji kullanmaktadir. Kaba ag denklemleri orijinal sonlu hacimlerin daha biiyiik
elemanlar olusturacak sekilde birlestirilmesiyle saglanabilir. Korunum gereklilikleri
daha biiyilk hacim i¢in saglanacagindan uzun dalga boylarinin sebep oldugu hata
bilesenleri artitk bulunmayacaktir. Sekil 3.14’de birlestirilmis kaba bir sonlu hacim
aginin olusumunu gostermektedir. Her ne kadar burada diizenliymis gibi gosterilse de

gercekte elemanlar ¢ok diizensiz sekiller almaktadirlar.
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Orjinal Ag Yapisi

ilk Kaba Aj Yapisi { Sanal )

Daha Kaba Aq Yapisi ( Sanal )

Sekil 3. 14. Multigrid yaklagiminda olugturulan sanal ag yapilari

Kalanlarin Normalize Edilmesi Prosediirii

Islenmemis kalan olan [r] ayrik denklemin lineer sistemdeki dengesizligi
olarak tarif edilmektedir. Daha sonrasinda bu bilgi c¢oziim izleme ve yakinsama
kriterinin saglanip saglanmadigin1 gozleyebilmek i¢in normalize edilir. Normalizasyon
prosediirii su sekilde olmaktadir.

Her ¢6ziim degiskeni ¢ i¢in normalize edilmis kalan genel olarak

(3.109)

seklindedir. Burada r, islenmemis kalanin kontrol hacmi dengesizligini, a, kontrol

hacmi katsayisin1t ve A¢ ise akis hacmindeki degiskenin degisim araligini temsil

etmektedir. Ayrica asagida siralanan hususlarin bilinmesi de faydali olacaktir:
1- Normalize edilmis kalanlar zaman adim1 se¢iminden bagimsizdir.
2- Normalize edilmis kalanlar baslangi¢c tahminlerinden bagimsizdir.
3- Cok fazli akiglarda hacim bdleni(Volume fraction) yaklasimi nedeniyle

kalanlarin biiyiik degerler almasin1 6nlemektedirler.
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Ayriklastirma Hatalari

Her sayisal yaklasimin bir hata mertebesi vardir. Bazi hatalar seri
acilimlarindaki bir kisim terimlerin atilmasindan kaynaklanir. Digerleri ise kullanilan
yontemin bir sonucu olarak ortaya c¢ikar.

Bu etkilerin ¢ogu, neden kaynaklandiklarin1 ve sonucu ne zaman etkilediklerini

tespit edilerek azaltilabilir.

Sayisal Difiizyon

Sayisal difiizyonla genellikle adveksiyon teriminin ¢Oziimiindeki fark
denklemlerinde tekil dereceli bir yontem (mesela UDS-Upwind Difference Scheme)
kullanildiginda ortaya ¢cikmaktadir.

Uc boyutlu kartezyen bir koordinat sistemi diisiinelim. Dortgensel bir
elemanlarda akis yonii her elemanin yiizeyine dik sekilde olabilir. Bu durumda bir
elemandan digerine olan akis agin sinirlarini ¢ok iyi bir sekilde temsil edebilir.

Akisin eleman yiizeylerine dik olmadigi, bir sirkiilasyon bolgesi gibi, bir
durumda ise bir elemandan olan akis birden fazla eleman iizerinde etkili olmaktadir.
Cogunlukla akisin bir boliimii sekilde goriildiigti gibi bitisik elemanlara dogru olacaktir.

Asagidaki sekilde ilk ag yapis1 daha dogru bir yap1 olarak nitelendirilebilir.

- "

-
ik

-
&

| ]

Sekil 3. 15. Sayisal difiizyon agisindan iki agin karsilastirilmasi (ilk ag daha dogrudur)

Bu etkiyi asagidaki diyagram esliginde anlatacak olursak; giris sinir sart1 olarak
ag ile ortiisgmeyen bir step fonksiyonu verilmis olsun. Bu akista adim fonksiyonu
ozelliklerini sekildeki gibi kaybedecektir. Bu olgu kimi zaman ‘Gradient Smearing’

diye de amilmaktadir.
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[ [

= X - X

Sekil 3. 16. Giris sinur sart1 olarak aga uyumsuz step fonksiyonu verildigindeki sayisal difiizyon

Bu etki agin akis yoniiyle ortiisme derecesine bagli olarak degisik sekillerde
olacaktir. Basit akislarda (bir kanal icinde akis gibi) sonug¢ cok etkilenmemekle birlikte
agla ortiismeyen akis yoniiniin oldugu kompleks akislarda bu durumun sonuca etkisi
biiytiktiir.

Tamamen yapisal olmayan tetrahedral elemanlardan olusan bir agda sayisal
difiizyon agisindan avantajli bir akis yonii yoktur. Bu nedenle tetrahedral elemanlarda
akis yoniiyle Ortiisen hexahedral elemanlardan daha fazla sayisal difiizyon goriiliir.
Buna ragmen tetraheral elemanlarda difiizyon hatalar siirekli ve ayn1 derecedir. Gergek
akislar acisindan tetrahedral elemanlar tiirbiilans bolgelerinde oldugu gibi tek bir akis
yOoniiniin olmadig alanlarda agla akis yOniiniin uyusma ihtimali daha yiiksek

olmaktadir.

Sekil 3. 17. Sayisal difiizyon agisindan tetra ag yapilarinin karsilastiriimast (Iki ag da dogrudur)

Sekil 3.17°de goriilen iki ag yapisi da dogru ag yapilaridir.
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Gercekte UDS’ nin tetrahedral elemanlarla kullanimi diizgiin bir hexahedral ag
yapisina gore daha biiyiik dereceden sayisal difiizyona sebep olacaktir. Fakat bu durum
adveksiyon ayriklastirilmasinin ikinci dereceden yapilmasiyla ve agdan bagimsiz
coziimler bulunmasiyla nispeten giderilecektir. Bu nedenlerden 6tiirii analizlere UDS ve

ag diizgiinlestiricisi kullanarak baslanmasi ve takip eden asamalarda ikinci dereceden

ayriklastirma kullanilmasi faydali olacaktir.

Sayisal Dispersiyon

Sayisal  dispersiyon
denklemlerinin ¢ift dereceli bir yontemle ¢oziilmesi sonucu ortaya ¢ikmaktadir. Daha

genellikle  adveksiyon teriminin  ayriklastirma

oncede bahsedildigi lizere sayisal adveksiyon diizeltme B =1 alindiginda yontem ikinci

dereceden oluyordu. Bu bazi durumlarda sayisal dispersiyona sebep olmaktadir.
Dispersiyon 0Ozellikle asirt akis gradientlerinin oldugu yerlerde(sok olan

bolgelerde) sonuclarda osilasyonlara neden olur. Sekil 3.18’de sayisal dispersiyonun

etkisi yine adim fonksiyonu kullanilarak gosterilmistir.
A n

A
I (1) A
\ YA
|| I"ul W o—

W N

= X

Sekil 3. 18. Aga uyumsuz step fonksiyonu verildigindeki sayisal dispersiyon

Rhie-Chow Ayriklastirma Hatalar

CFX basing ve hiz alanlarim agda aym diigiim noktasinda konumlandirabilmek
icin Rhie-Chow interpolasyonunu kullanmaktadir. Rhie-Chow terimi veya esiti olan
dordiincii derece basing diizgiinlestiricisi uzun yillardir aym diigiimde fiziksel olarak

mantikli hesaplara izin veren bir faktordiir. Bu terim basing bolgesinde diizgiin sonuclar

saglarken kiitle tasiyan hizlart da minimum etkilemektedir.
Kiitle tasityan hizlar(mass carrying velocities) basincin yiiksek tiirevleriyle

carpim seklinde iigiincii dereceden sifir terimi olarak ortaya ¢ikarlar. Bazi analitik akig
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alanlarinda, kaba aglarda, Rhie-Chow terimiyle ifade edilen ve hiz alanlarim1 ihmal
edilemeyecek derecede etkileyen bir hata olugsmaktadir.

En bilinen iki ornekten birisi kat1 cisim donmesi (radyal basing gradientinin
rotasyonel akisi dengeledigi) ve digeri hareketsiz bir hacimde tamimlanmis bir
momentum kaynagi terimiyle dengelenen basing gradientidir.

Daha once bahsedilen kiitle tasiyan hizlar(sifir olmalar1 gerekirken) ve basincin
yiiksek tiirevleri bu iki ornekte sifir degildir. Kesin hizlar sifir iken hesaplanmis hiz
alamiyla oOlceklendirildiklerinde bozulmalar belirginlesmektedirler. Buna ragmen sifir
olmayan sonu¢ hiz degerleriyle karsilastirildiklarinda ¢ok  kiiciik  olduklart
goriilmektedir.

Bu hata iniform bir ag iyilestirildik¢e iiciincii dereceden azalmaktadir. Mesela
eleman boyutlari iki kat azaltilirsa hatanin azalma faktorii sekiz olacaktir.

Ozetle, bazi durumlarda her ne kadar sonuclar etkilese de ¢cogu genel akista

(hiz skalast sifir olmayan) bir problem teskil etmemektedirler.
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3.7. Smir Sartlari,, GGI, MFR ve Degisken Tanimlamalar
3.7.1. Sinir Sartlari

Sinir sartlar1 basligi altinda sadece calismada kullanilan smir sartlart kisaca

tanimlanmustir.

a) Giris Sir Sartlar
Normal hiz: Giris hizimin siddeti verilir ve uygulama yonii ise sinira dik
sekildedir. Bu yon kisitlamasi akis yOniiniin sinir giriste her eleman
yiizeyinde hesaplanan yiizey normaline paralel olmasini1 gerektirmektedir.
Kartezyen hiz bilesenleri
E"anfef = Uspecf—‘h V.s_vecj+ Wrs_veck (3.110)

seklinde tanimlanmaktadir.

Kiitlesel debi: Kiitlesel debi degeri bir yon bileseni ile birlikte
tanimlanmaktadir. Kitlesel aki,

. _
[z
S

ile hesaplanirken payda, verilen ag ¢oziiniirliigiinde giris ylizey alaninin integrasyonu ile

pL

(3.111)

elde edilen degerdir. Alanin ag ¢oziiniirligli ile degismesi giris yiizeyinin ne kadar iyi
karakterize edildiginin bir gostergesidir. pU degeri ise biitiin giris yiizeyi boyunca sabit
kalmaktadir.

Tiirbiilans: k-¢ tiirbiilans modeli icin k ve & degerleri ya direkt olarak
verilebilir yada giris tiirbiilans siddeti (I) dagilim skalasina gore tanimlanmis
ifadelerden hesaplattirilabilir.

I=+
U (3.112)

Giris akisinda k ve € degerleri adveksiyon ve difiizyonu igerirler,
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k k k
QIHIQI = Qﬂn’\-e5r+ Qn’:;ffu.s

£ £ £
QIH!GI o Qﬂdw-ecr+ Qn’rffus

(3.113)
Adveksiyon akislar1 k ve €'nin hesaplanan giris degerlerinden bulunurlar,
k .
Qadvecr = mksper
£ .
“adveect — mE.spvzz{

(3.114)
Difiizyon akislart ise adveksiyonun yaninda ihmal edilebilecek kadar kiiciik

olup sifir kabul edilirler. Calisma ¢oziimlerinde kabul edilen ‘Default intensity and
Autocompute length scale’ hesap mantigi ise soyledir:

Onceden ayarl (default) giris tiirbiilans siddeti secildiginde deger,
i
I = — = 0.037
L (3.115)
alinmaktadir ki bu deger boru i¢inden akistaki degere yakin bir degerdir. Giris tiirbiilans
enerjisi ise,
3.2 2
kI nlet — §I v

(3.116)
ile hesaplanir. Tiirbiilans dissipasyonu ise,
2
£ = pC k
Inler = | 'ul_l'
t

(3.117)
ile hesaplanirken burada tiirbiilans viskozitesi asagidaki gibi alinmaktadir.

l, = 10007u (3.118)

b) Cikis Simir Sartlari

Statik Basing: Cikista bagil statik basing su sekilde tanimlanmaktadir:
Pstat, Outler = pspec

(3.119)

Ortalama Statik Basing: Cikis bagil statik basinci ortalama bir deger
tanimlandiginda formiilasyon,
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_ 1
p.sper = EJ‘pndA
5 (3.120)

olurken burada integral tiim ¢ikis yiizeyinde toplam almaktadir. Bu sart1 saglamak igin

her sinir integrasyon noktasinda basing,

pr’p = ﬁJ‘UEC * (pamcfe_ﬁnade} (3.121)

olarak ayarlanir. Bu durumda integrasyon noktasi basinci, tanimlanmis degere, yerel
diigtim degeri ile ortalama cikis sinir basinci arasindaki farkin eklenmesiyle bulunur.
Boylece cikis sinir sarti basing profili bu degerin disma cikabilirken ortalama deger

tanimlanmis degerle kisitlanmistir.

Tiirbiilans: Skaler degerler icin hesaplarda cikista sabit gradient kisiti

kullanilmaktadir.

¢) Acik Cikis Simir Sartlan
Acik sinir sart1 akiskana sinir boyunca her iki yonde de hareket edebilme izni
vermektedir. Mesela acik sinirda akiskanin hepsi kontrol hacminden ¢ikiyor olabilir,
giriyor olabilir veyahut bu ikisinin karisimi bir akis olabilir. Acik sinir sarti akiskanin
her iki yonde de hareket ettiginin bilindigi durumlarda kullanilmasi en uygun

yontemdir.

Basing ve Yon: Acik bir sinir sart1 bir bagil basing degeriyle de tanimlanabilir:
pﬂpenfﬂ'g = pspec (3.122)

Bu deger giren akislar icin bagil toplam basing degeriyken ¢ikan akislar i¢in
bagil statik basinctir. Ayrica yon bilesenleri ya tanimlanmali yada ¢ikis yiizeyine dik
alinmalidir. Bu sayede hiz siddeti ¢dziimiin bir parcasi haline gelmis olur.

Istege bagl olarak acik sinir sartinda bir hiz bileseni ile birlikte bir kayip

katsayis1 da tanimlamak miimkiindiir,

I = fspec (3.123)

Basing diisiisii ise,



56

12
.ﬁ = =7Ip E-"
Ploss = 3/PU; (3.124)

ile hesaplanmaktadir. Burada U agik sinir alanina dik olan hiz bileseninin siddetidir.

Iceriye donen akislar icin basing ve hiz kisiti,

1 2 |
p‘gpgc_ivfpal” = Pstar ™ Ep[”n (3.125)
olurken disariya olan akislar i¢inse,
| 2
p.spec * Efpt"r.' = Pstar (3.126)

olmaktadir.

d) Duvar Simir Sarti
Kaymanin Olmadign Durum: Duvarlarda akigkanin hizi sifir olarak

verilmektedir ve hiz i¢in sinir sart1 su sekilde olmaktadir,

Upranr = 0 (3.127)

e) Periyodik Ara Yiizey Sarti

Pratikte bir¢ok durumda akis oOzelliklerini es yiizeylerde tekrarlamaktadir.
Rotasyonel bir makinede mesela tek bir tiirbin veya pompa kanatciginin etrafindaki akis
bu duruma Ornek olarak gosterilebilir. Bu tiir problemler biitiin bir bicimde
modellenebilecegi gibi tek bir kanatcik alinarak etrafinda periyodik sinir sartinin
tanimlanmas1 daha mantikli bir yol olacaktir.

Burada diger bir hususta ag birlesme noktalarindaki durumdur. Bu bolgelerde
iki durum sz konusu olabilir:

1- Birebir Baglanti: Adindan da anlagilacagi gibi birlesme ylizeyinin iki
tarafindaki aginda es oldugu ve diigtimlerin birebir oturdugu durum.

2- GGI Baglanti: Daha once bahsedildigi gibi bu baglant1 ara yiizeyde diigiim
diiglime Ortiismeyen aglar1 baglamaktadir.

Periyodik ara yiizeyler i¢in iki kisit vardir. Bunlar:

1- Bir periyodik yiizey akigkan hacmi ile kati hacmini birlestirmekte

kullanilamaz. Bu durumda baglanti Akiskan — Kat1 baglantis1 seklinde tanimlanmalidir.
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2- Eger iki periyodik yiizey aym diigiimleri paylasiyorsa, farkli periyodik
transformasyonlar kullaniyorlarsa ikisine birden birebir baglanti yapilmasi miimkiin
degildir. Bu durumda GGI baglantis1 kullanilmalidir.

Periyodik ara yiizeylerle ilgili diger konu ise periyodikligin hangi tiirde
oldugudur. Periyodiklik tiirleri sunlardir:

1- Gegis (Translational) Periyodik Tiirii: Bu durumda ara yiizeyin iki yiizii de
paralel olmalidir. Bu tiir mesela tiirbin kanatciklarinda lineer bir kaskatin analizinde
kullanilabilir.

2- Donel (Rotational) Periyodik Tiirii: Bu tiirde ise yiizeyler doner bir eksen
tizerinde dondiiriildiiklerinde yiizeylerinin birbirine tam oturdugu yerlerde kullanilir. Bu

en ¢ok tek bir kanat pasajinin analizinde kullanilmaktadir.

3.7.2. Genel Ag Ara Yiizeyi ve Coklu Referans Ekseni Teorisi (GGI ve
MFR)

General Grid Interface ve Multiple Frame of Reference diye isimlendirilen bu
yaklagimlardan ilki farkli hesap aglarinin ara yiizeylerindeki gecis islemlerini
tanimlarken ikincisi bir hesap aginin digerine gore bagil bir hareketi (difiizor ve pompa
arasindaki bagil hareket gibi) oldugunda kullanilmaktadir.

Kontrol yiizeyi yaklasimi GGI ile aglarin veyahut periyodik yiizeylerin
iliskilendirilmesinde ag ve fiziksel modellerin degistirilmesine miisade eden genel bir
kesisim yiizeyi algoritmasidir. Bu algoritma, yiizeyler fiziksel olarak tam kesigsmese bile
yiizey budama ve benzeri fonksiyonlariyla degen ilgili yiizeyler arasinda bir hesap ara
yiizeyi olusturmaktadir.

MFR yaklasimi ise 6zellikle rotor-stator etkilesimlerinde Donmug Rotor Eksen
Degisimi Modeli kullanarak (Frozen Rotor Frame Change Model) birbirine gore izafi
hareket eden hesap aglarindaki ¢oziimleri yapmasidir. MFR yaklasimi temelde GGI

yaklasimindan olusmustur.

Ara Yiizey (Interface) Karakterleri
Kontrol yiizeyi (GGI) uygulamalarindaki temel sayisal algoritmalar ara ylizey

tizerinde yapilan hesaplarin  gecerliligini ve saglamligi  korumak iizere
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olusturulmuslardir. Burada ara yiizey boyunca korunum denklemleri ve ara ylizey
akilart tamamen implicit (kapali) olarak c¢oziilmektedir. Bu da bize multigrid ¢oziicii
kullanabilme imkan1 vermektedir. Cesitli tipteki GGI'lar asagidaki ortak ozellikleri
gostermektedir:
1- Ara yiizey boyunca akilarda ve denklemlerde siki bir korunum saglanmasi
2- Tamamen kapali ¢6ziim sayesinde yakinsamay1 etkilememesi
3- Sikistirnllamaz, subsonik, transsonik, siipersonik durumlara ve biitiin
modellere uygulanabilme (tiirbiilans modelleri, ¢ok fazli modeller, karisim
modelleri vb.)
4- Adim degisimi etkilerini (pitch change) otomatik olarak hesaplama
5- Herhangi bir hesap aginda istenilen veya gereken kadar GGI tiirii ara
yiizeylere izin vermesi
Ara yiizeyin iki ylizeyindeki akilar diigiimden bagimli degiskenler olarak ve

kontrol yiizeyi denklemlerinden ve de degiskenlerinden bagimli olarak ayriklastirilirlar.

GGP’nin Sayisal Yaklasim

GGTI’da ara ylizeyin her iki tarafindaki yiizey akisi standart aki ayrilastirilmasi
kullanilarak c¢oziimlenir. Bu ¢oziilen denklemlere kontrol hacmi denklemlerinden farkli
olarak kontrol yiizeyi denklemleri denilmektedir. Bu denklemler yiizeyin iki tarafinda
da dengenin saglanacak bi¢imde ¢oziimiin devamini saglamaktadirlar.

Daha detayli deginilecek olursa GGI asagidaki bicimde uygulanir,

1- Ara yiizeyde kontrol yiizeyi denklemlerinin dengelenecegi bolgeler
belirlenir. Her kontrol yiizeyinde yeni bagimli degiskenler tanimlanir. Bunlara arayiizey
degiskenleri denir. Mesela bir tiirbomakinede Stage ara yiizeyinde denge doniis
yoniinde saglanirken diger tiim ara yiizey modellerinde ise ara yiizey ag yapisi
¢Oziiniirliglinde denge saglanir.

2- Ara yiizeyin her iki yiizeyindeki akis hacimlerindeki hesap degerleri
incelenerek her yiizeydeki degerler kontrol edilir. Yiizey akiglarinin standart yaklasimla
incelenmesi sirasinda adveksiyon, difiizyon, momentumdaki basin¢ ve kiitle akisi
degerlendirilmektedir. Mesela adveksiyon i¢in eger akis ara ylizeye dogruysa bu
durumda ara yiizey degiskeni adveksiyon degerine esit olacaktir. Asagida bir ara

yiizeydeki biitiin ortak aki ayriklagtirilmalar1 verilmistir,



59

Adveksiyon: Ara ylizeyden disartya dogru olan kiitle akislart i¢in diigiim
degerleri kullanilirken arayiizeye dogru olan akiglar i¢in kotrol ylizeyi degerleri
kullanilir.

Difiizyon: Bir difiizyon gradienti diizenli sekil fonksiyonu tabanli gradient
katsayilarindan elde edilir. Fakat bu gradient degeri ara yiizey iizerindeki ag
noktalarindan arayiizey degerine dogru degisim gostermistir.

Momentumdaki basing: Yerel ag noktasi ve kontrol yiizeyi basinclariyla sekil
fonksiyonu interpolasyonlariyla degerlendirilirler.

Kiitle dagiliminda yerel basin¢g gradientleri: Bu degerlendirmede aynen
difiizyondaki gibi olmaktadir. Fakat farkli olan burada yerel basing gradientlerinin
kullanilmasidir.

3- Eger bir yiizey birden fazla kontrol yiizeyi denge denklemiyle baglantili ise
her integrayon noktasinda genel ara yiizey bilinmeyenleriyle akilarin ayriklastirilmasi,
akinin N kere(N, ylizeyle kontakli yiizeylerin sayis1) ve her defada farkli kontrol yiizeyi
degiskeni agirlik faktoriiyle degerlendirilmesi sonucu elde edilir. Her kismi akis
¢Oziimii, kontrol hacmi ve kontrol yiizeyi ¢oziimiiyle elde edilir.

4- Her yiizey akisinin degerlendirilmesi iki faktor igerir; ara ylizey kontrol
hacim denklemi ve bitisik kontrol yiizeyi denklemi. Biitiin ara yiizeyler hesaplandiktan
sonra sonu¢ denklemi asagidaki sekilde kurulur:

- Biitiin ara ylizey kontrol hacmi denklemleri tamdir. Biitiin denklemlerin
komsu ag noktasina gore ve ara yiizey degiskenlerine gore olan katsayilar1 vardir.

- Biitiin ara yiizey kontrol yiizey denklemleri tamdir. Biitiin denklemlerin
komsu ag noktasina gore ve ara yiizey degiskenlerine gore olan katsayilart vardir.

5- Biitiin ag noktalarindaki ve ara yiizeydeki degiskenler icin lineer denklemler

¢cOziliir.

Akiskan-Akiskan Baglant1 Sarti (Fluid-fluid Connection)

Akiskan akiskan baglanti, akiskanin bagka kosullarin gecerli oldugu bir kontrol
hacmine girdiginde veya tek bir geometrinin ayr1 aglardan olusturulup bu aglarin
iliskilendirilmesinde kullanilmaktadir. Bu calismada akiskan baska kosullara
gectiginden ‘Frame Change’ modeli ve onun alt kolu olan ‘Frozen Rotor’ baglantisi

kullanilmastir.
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Bu kavramlardan ‘Frame Change’in izafi hareketler olmasi durumunda soz
konusu olur.Bir taraf duruyor(mesela stator), diger tarafta doniiyorsa(mesela rotor)
veyahut birbirlerine gore olan hizlar1 farkliysa bu durumda bu baglant1 kullanilmalidir.

‘Frozen Rotor’ kavraminda ise ‘Frame of Reference’ degismekte fakat ara
yiizey boyunca bilesenlerin bagil yonlendirilmeleri sabit kalmaktadir. Boyle iki frame
birbirlerine gore sabit bagil pozisyonlar: olacak sekilde birlestirilebilirler ama ara yiizey
boyunca yaklagik bir taslak transformasyonu olusmaktadir. Bu model MFR
(MULTIPLE FRAME of REFERENCE) problemlerine siirekli rejimde sonuglar
saglamaktadir. Frozen Rotor analizleri en ¢ok akisin merkezkac varyasyonlari, bilesen
adimlarina (pitch) gore biiyiik oldugunda faydalidir. Bu modelin en biiyiik dezavantaji
transient etkilerin modellenmesine izin vermemesidir. Bu modelde doner yiizeyler

tamamen oturmalidir.
3.7.3. Degisken Tanimlamalari

Referans Basinci: Referans basinci(p, ), diger basing degerlerin bu basinca

gore alindigi mutlak basing degeridir. Biitiin bagil basin¢ tanimlamalar1 bu basing

degerine gore yapilmaktadir.

Statik Basin¢: Bagil statik(termodinamik) basing(p,, ), mutlak basin¢ p,, ’la

alakali olarak su sekilde hesaplanmaktadir:
Pabs = Pstar ™ pref (3.128)

Modifiye Basin¢: k-g¢ tiirbiilans modeli kullanildiginda dalgalanan hiz
bilesenleri ek basing teriminde bir yiikselme meydana getirirler. k tiirbiilans kinetik
enerjisi olmak iizere,
2pk

3 (3.129)

Bu durumda kod modifiye basing degerlerini ¢dzmektedir. Bu degisken kullanilan

P = Psgar*

kodda ‘Basing (Pressure)’ adi altinda yer almaktadir.



61

Toplam Basing: Toplam basing (p,, ), akiskanin statik basinci ile dinamik

enerjisinin kayipsiz bir sekilde basinca doniistiiriilerek toplanmasiyla elde edilen basing
degeridir. Bu deger sikistirllamaz (p=sabit) akiskan iceren(diisiik hizda hareket eden

gazlar, sivilar vb.) akislarda Bernoulli denklemiyle su sekilde tanimlanir,

1 -
Piot = Pstar +EP(L -U) (3.130)

Kayma Uzama Oram: Uzama orani tensorii asagidaki sekilde verilebilir,
| [a U. B'L'j]
S.= -|—+—¢
7o 2| dx ; ox;

Bu tensor degismeyen ii¢ adet skalere sahiptir. Bunlardan bir tanesi kayma uzama orani

(3.131)

diye adlandirilmakta olup,

U,
PR = | —
SSIrnr = hax.s‘j

T
o

|

(3.132)

diye tanimlanir. Hiz bilesenleri (U _, Uy, U, )olmak iizere ifade agilirsa,

oU \2 0U \2 U 2] ,AU_ 9U 2 QU U2 90U, U2
sstrnr = | 2 (—- 1) +(—-_ J) +(—‘) +(_._ e -3) +(___ -’f+__-) +( YV —]
dx dy dz dv  ox dz  ox dz oy

(3.133)

b | —

olur. Non-Newtonian akiskanlarin viskozitesi kayma uzama oranmn bir fonksiyonu

olarak ifade edilir.

Acisal Donme Nedeniyle Tanimlanan Degiskenler

Sabit bir eksene gore donen bir akis alanindaki hiz,

[..}. = I,J—me (3.134)

olurken burada ® agisal hiz, R yerel yaricap vektori, U_ ise sabit akis alanindaki

hizdir.

P, statik basin¢ olmak iizere sikistirilamaz akiskanlar icin donen akig alam

toplam basinci(Rotating Frame Total Pressure),
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1 -
Piot = Pspar+ EI}(LP U, —(0XR-®XR)) (3.135)

olarak tanimlanirken sabit akis alan1 toplam basinci (Stationary Frame Total Pressure),

1 . -
pmr,s = Pstar Ep([ 5 '['5) (3.136)

olarak tanimlanmaktadir.
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4. SANTRIFUJ POMPANIN CFD ANALIiZi VE SONUCLARI
4.1. Pompanin Genel Boyutlar1 ve Olusturulan Geometri

Analizi yapilacak pompanin bir kanadinin taslagi ve olgiileri sekil 4.1°de

verilmistir.
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Sekil 4.1. Kanadin taslagi ve olgiileri

Pompanin temel karakteristikleri ise su sekildedir:
Kanat Sayis1:7
Giris Cap1: 220 mm.
Cikis Capr: 400 mm.
Cikis Kanat Acisi: 22.5°
Acisal Hiz(Donme Hizi): 1200 dev/dak

Nominal Debi: 0.1118 m*/s
Nominal Basma Yiiksekligi: 31 m.

Difiizor Tipi: Kanatsiz difiizor
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Model Geometrisi ve Ag Uretimine Uygun Hale Getirilmesi
Modelleme ve ag olusturma islemleri icin ICEM CFD yazilimi kullanilmugtir.
Elde edilen tam pompa modelinden ara yiizeyler alinarak 7 kanattan biri yani bir pasaj

modellenmistir.

Sekil 4.2. Pompa ¢arkinin difiizor ile birlikte tam geometrisi

Sekil 4.3. Tek bir kanadin arka yiizey (shroud) iistiindeki konumu
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Bir sonraki asamada tam pompa modelinden bir pasaj elde edilmek iizere
tamamen es iki yiizey olusturulmustur. Bu yilizeyler periyodik smnir sarti ile
tanimlanacak olup bu sayede biitiin pompanin analiz edilmesine gerek kalmayacaktir.
Boylece agdaki eleman sayis1 ¢cok cok azaltilmig olmaktadir veyahut tek bir pasaja daha
stk ve diizgiin bir ag atabilmek icin eleman sayisini arttirmak miimkiin olmaktadir.
Nitekim sekil 4.4’te tek bir pasaj alindiktan sonra geometrideki degisimler ve sinir
sartlar1 ayrintili bicimde gosterilmistir.

MER Yiizeyi

Cikis Yiizeyi Periyodik Yiizeyler

Rotor Hacmi

Periyodik Yiizeyler
Diftizér Hacmi

Y . Giris Yiizeyi

Sekil 4.4. Bir pompa pasajinin CFD analizine uygun hale getirilmis geometrisi

Geometrinin olusturulmasi veya hazir geometrinin temizlenmesi ve ag liretimi
islemleri herhangi bir bilgisayar destekli miithendislik analizinde en ¢ok vakit ve emek
harcanan, diizgiinliikleri sonuglar1 direkt olarak etkileyen asamalar olarak karsimiza
cikmaktadir. Yukaridaki islemler sonucunda ilk asama olan geometrinin CFD analizi
icin gerekli olan agin olusturulmasina uygun hale getirilmesi tamamlanmis olup ag

iiretimi iglemine gecilmistir.
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Olusturulan hexa agin genel goriiniisleri ve detayli goriiniisleri takip eden

4.2. Sayisal Coziim Aginin Olusturulmasi

sekillerde gosterilmistir.
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Sekil 4.6. Kanat 6n ucu ve arka ucu etrafindaki agin iist yiizey (hub) iizerindeki ag elemanlar1
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Sekil 4.7. Difiizor hexa aginin genel goriiniimii

Sekil 4.8. Kanat tizerindeki quad ag yapisi

Olusturulan ag 379753 hexa hacim elemani, 51859’u quad (dortgen) yiizey ag
eleman1 icermektedir. Dortgen elemanlar cidarlardaki hexa hacim elemanlarinin
yiizeylerinden ibarettir. Agdaki diigiim sayis1 ise 407064 adettir.

Ag kalitesinin incelenmesi (negatif hacim var midir, min ve maksimum agilar

istenen smirlar icinde midir vb.) kalite grafikleriyle yapilabilir. Cesitli grafikler
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yardimiyla bu kontrollerin yapilmasi miimkiin olup sekil 4.9°da iiretilen agin hexa
hacim elemanlarimin (skew) kalite degerleri verilmektedir. Bu grafik, her bir elemanin
hesaplanan kalite degerinin O ile 1 arasindaki degerlere atanmasiyla olusturulmaktadir.
Skew kavraminin hacim elemanlar1 (hexa) ve ylizey elemanlar1 (quad) icin tarifi farkl
olmaktadir. Hacim elemani (hexa) i¢in, bitisik yiizeyler alinarak normalleri hesaplanir. 1
tamamen paralel yiizeyleri ifade ederken O ise dik yiizeyleri ifade etmektedir. Yiizey
elemanlar1 (quad) icinse yiizeyin iki kosegeninin oramiyla belirlenir. 0 miikemmel
dortgeni ifade ederken 1 ise en carpik elemani ifade etmektedir.

Bir CFD probleminde agin her zaman ¢ok kaliteli olmasi istenirken geometrik
kisitlar yiiziinden ¢ogu model de bu saglanamamaktadir. Bu durumda bir ag yapisinin
minimum kalite degerlerini saglamasi istenmektedir. Skew degeri i¢in bu degerin ¢ogu

zaman 0.12‘nin {izerinde olmasi yapilacak analiz i¢in yeterli olmaktadir.
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Sekil 4.9. Hexa elemanlarin ‘skew’ kalite degerleri

4.3. Nominal ve Kismi Debilerde Pompanin CFD Analizi

Bir CFD analizindeki ilk iki asama olan geometri olusturma ve ag iiretme
islemleri tamamlandiktan sonra eldeki sinir sartlar1 probleme uygulanarak ¢6ziim elde
edilmektedir. Bu ¢alismada deneysel verilerle karsilastirabilmek icin 6ncelikle nominal

debi degeri i¢in ¢oziim elde edilmistir.
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Yapilan biitiin analizlerde akiskan 6zellikleri ayn1 olup su sekildedir:
e Akiskan Ozellikleri:
Akiskan: Su

Akiskanin Yogunlugu: 1000 [kg/m’]
Akiskanin Viskozitesi: 0.000658 [kg/ms]

Elde edilen ag yapisi ile analiz icin akiskan 6zellikleri belirlenmis oldugundan
sinir sartlarinin belirlenmesi gerekmektedir. Giris hiz1 disindaki diger tiim sinir sartlar
biitiin analizlerde ortak alinmistir.

¢ Nominal debi ve kismi debiler i¢in sinir sartlar1:

Nominal Debi i¢in (Qn) Giris Hizi: 3.04 [m/s]

0.4 Qn i¢in Giris Hiz1: 1.216 [m/s]

0.6 Qn icin Giris Hiz1: 1.824

0.8 Qn icin Giris Hiz1: 2.432

1.2 Qn icin Giris Hiz1: 3.648 [m/s]

Cikis Statik Basinci: 290 kPa (Sinir Tipi: Outlet)

Giris Tirbiians Siddeti(I): % 5

Rotasyonel Hiz: 1200 [dev/dak]

Donme Ekseni: Global Z

Periyodik yiizeyler ve MFR ara yiizeyi disindaki tiim yiizeyler kayma olmayan
adyabatik duvar olarak kabul edilmislerdir. Difiizor sabit, rotor donmekte oldugundan
MER arayiizeyi ‘Fluid-Fluid Interface’ olarak tantmlanmustir.

Sinir sartlar ve ilgili lokasyonlar sekilde goriilmektedir.
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Sekil 4.10. Co6ziim modeli tizerinde sinir sartlarinin gosterimi

Tanimlanan akigskan 6zellikleri ve sinir sartlarindan sonra ¢oziiciide problem
kurulumu sayisal olarak ¢oziilmektedir. Nominal debi icin modelin ¢oziimii 107
yakinsama kriteri i¢in 591 iterasyon sonucu gerceklesmis olup Pentium 4- 2.8 GHz, 1
Gb RAM’li bir bilgisayarda 11 saatte yakinsama saglamistir. Sekil 4.11°de saglanan
yakinsamanin grafigi verilmektedir. Burada kalanlar RMS (Root Mean Square) olup
normalize edilmis kalanlardir. Kirmizi egri siireklilik denkleminden elde edilen
degerler, sar1 z yoniindeki momentum, yesil x yoniindeki momentum iken mavi ise y

yoniindeki momentum denkleminden elde edilen degerlerdir.
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Sekil 4.11. Nominal debi icin yakinsama grafigi

Pompanin nominal debide genel karakteristigi ve CFD sonuglart ise:

Nominal Debi: 0.1118 m’/s (tek bir pasaj icin= 15.97 kg/s)

Nominal Basma Yiiksekligi: 31 m.

Analiz Sonucu Bulunan Debi: 15.96 kg/s

Analiz Sonucu Bulunan Diisii: 30.96 m.

Basma yiiksekligi hesab1 yapilirken daha once tanimlanan ‘Total Pressure in
Stn Frame’ degiskeninin kullanilmasi gerekmektedir. Giris ve MFR ara yiizeyindeki
bahsedilen basinclarin farki pompanin basma yiiksekligini vermektedir. Giris ve ¢ikis
arasinda bu basing farkina bakildiginda ise difiizordeki kayiplar nedeniyle basma
yiiksekligi 29.96 m. olmaktadir.

Takip eden sekil ve grafiklerde nominal debi ve kismi debilerde bulunan

sonuglar incelenmistir.
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Sekil 4.12. Cesitli debilerde span 0.5 (orta yiizey) igin statik basing konturlart
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Sekil 4.12°’de basincin pompa c¢ikisina dogru kademe kademe artisi
goriilmektedir. Ayrica kanat etrafinda basincin yiiksek oldugu basing tarafi (pressure
side) ve basincin diisiik oldugu emme tarafi (suction side)goriilmektedir. Cesitli debi
degerlerinde basing konturlarinda biiyiik degisimler olmasa da debi arttik¢a basing

degerleri artmaktadir.

Velodi S 45,
[me3§|$]y (Spang . 5)

{a] u“ 0‘000' - ‘y) ‘

{b) 0.4Qn RN
(c) 0.6Qn

{d) 0.8Qn

(el 1.20n

[\,C.EISDA(_“'}]V (Span0.5)

ol

%, <3, %,

00,0, 0y
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Velocity (Span0.5) 4 CF)(G.*,
Veloity (Span0.5) CEXe? sid

Sekil 4.13. Cesitli debilerde span 0.5 (orta yiizey) i¢in bagil hiz konturlari

Sekil 4.13’te cesitli debilerdeki bagil hizlar goriilmektedir. Burada rotordan
difiizére yani donen bir parcadan duran bir pargcaya gecis oldugundan rotor hacminin ug
kisimlarinda hiz yiiksektir. Diger bir hususta giris sirkiilasyonlarinin oldugu ve
difiizorde biiylik sirkiilasyon bolgelerinin goriildiigii 0.4 Qn ve 0.6 Qn debilerinde
rotorun u¢ kisminda olusan yiiksek hiz konturlarinin (kirmizi bolgeler) difiizore dogru
genislemesidir. Buralardaki yiiksek hizlarda bu iki debide olusan biiyiik sirkiilasyon
bolgelerinin sebebi olabilir.

{a) Qn

{b) 0.4Qn
(c) 0.6Qn
{d) 0.8Qn
(el 1.20n




75

y in Stn Frame (Vector)

Velocit
[msh-1

]y in Stn Frame (Vectd

[m"sA-1

Velocit

ly in Stn Frame (Vector)

Velocit:
[m sA-1

<]
g
T
3
2
@
E
e
b
£
a
£
2

[m sh-1.

Velocit

hiz vektorleri

icin

Sekil 4.14. Cesitli debilerde span 0.5 (orta yiizey)
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Sekil 4.15. Cesitli debilerde kanadin basing tarafindaki statik basing konturlart
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Sekil 4.15’te kanadin basing tarafindaki statik basin¢ konturlar1 goriilmektedir.
Basing kanat 6n ucundan arka ucuna dogru kademe kademe artmaktadir. Fakat
akiskanin kanatla ilk carpistigt nokta olmasi sebebiyle kanat 6n ucundaki basing

konturlar arka ugtaki gibi diizenli degildir.

(a) Qn o .
Pressure (Kanatcik_SuctionSide) (P}\ﬁ
(b) 0.40n b
{c) 0.6Qn
(d) 0.80n
{e) 1.20n
e ; . e
Pressure (Kanateik_SuctionSide) CFX& pressure (Kanatck_Suctionside) CFXe?
A
R — T .
B A N e 2,88 0 g7
R, {b) (c)
B S iy W, K, XpXg XptXp & 8 8 8 S %0, %0, 70, %0, 0,
% 00,%, %, aa;’av @, %, %, %5 %; 5%, %, %, aa:a? 0, %0, %5 %5 %5
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Sekil 4.16. Cesitli debilerde kanadin emme tarafindaki statik basing konturlari

Sekil 4.16’da kanadin emme tarafindaki statik basing konturlar1 goriilmektedir.
Basing tarafinda oldugu gibi akiskanin kanatla ilk temas ettigi On ugta basing
konturlarinda bir diizensizlik bulunurken arka uca dogru konturlardaki degisimler daha

diizenli hale gelmistir.

velogty (Vector 1)
{a) Qn

{b) 0.4Qn
(c) 0.6Qn
{d) 0.8Qn
(el 1.20n
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Sekil 4.17. Girise yakin kisimlarda periyodik yiizey iizerindeki hiz vektorleri

Sekil 4.17°de cesitli debi degerleri i¢in girise yakin bolgelerdeki hiz vektorleri
gosterilmistir. Burada 0.8 Qn, Qn ve 1.2 Qn i¢in giriste herhangi bir sirkiilasyon bolgesi
mevcut degilken 0.4 Qn ve 0.6 Qn icin sirkiilasyonlar tespit edilmistir.Ayrica debi

diistiik¢ce girise yakin olusan bu sirkiilasyon bolgelerinin biiyiidiigi gozlemlenmistir.
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{a] l:!“ [TPg]taI Pressure in Stn Frame (Giris) CF)@*
(b) 0.40n
(c) 0.6Qn {a)
(d) 0.80n
(el 1.20n
X
]
[Tpglta\ Pressure in 5tn Frame (Giris) CFE?
Total Pressure in Stn Frame (Giris) ( ] t
Pal
- (
NN 3
. AN
Toal Pressure in Stn Frame (Giis) CFX&3 ELg]tal Pressure in Stn Frame (Giris) CFX&2
(d)
(e)

Sekil 4.18. Giristeki toplam basing konturlari

Sekil 4.18’de giristeki toplam basing konturlar1 goriilmektedir.Girise yakin

sirkiilasyonun olustugu 0.4 Qn ve 0.6 Qn i¢in diisiik basing bolgesi (koyu mavi alanlar)
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mile (donme merkezine) yakin iken giriste sirkiilasyonun kalktig1 0.8 Qn ve iizerindeki
debilerde ise yiiksek basing bolgesi mile dogru, diisiik debilerde huba(0.4 Qn ve 0.6 Qn)
yaklagmistir. Nitekim huba (iist ylizeye) dogru giden bu diisiik basin¢ bolgesine,

akiskanin yiiksek basin¢ bolgesinden hareketi sonucu sirkiilasyonlar olusmustur.

[ﬂ] an [I:o]tal Pressure i Stn Frame (Cikis} n,: {yé?
o 3
(b) 0.4Qn —
() 0.6Qn REARARERAAR (@)
= @ -90 \9‘9 \95 \9&:’) 0’:9 03:’) at%) /'/") /'?v_‘

i 0.8 e s 0 0
(d) 0.8Qn %y 5 %5 5 %y p % e %,
(el 1.20n

Total Pressure in St Frame (Cikis) YA 'Lo]tal Pressure in Stn Frame (Cikis) (

o CrXe 2

ELo]taI Pressure in Stn Frame (Cikis) CFXe2 [Loltal Pressure in Stn trame (Cikis)
a = a

Sekil 4.19. Cikistaki toplam basing konturlari
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Sekil 4.19°da cikistaki toplam basing konturlart goriilmektedir. Burada 0.4 Qn
icin ¢ikis basing konturlarinda yiiksek basing baskin iken debi arttik¢a yiiksek basing

konturlar1 shrouda (arka yiizeye) dogru hareket etmektedirler.

[a] l:]I"I anzbl.sll’gnz?e Kinetic Energy (r=0.1636 m) C g:
(b} 0.4Qn - ‘

[[:] 0.60n AL ¥ il A

(d) 0.8Qn

{e) 1.20n

Turbulence Kinetic Energy (r=0.1636 m)
[m~2 s7-2]
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Turbulence Kinetic Energy (r=0.163
[m~2 s7-2]

Sekil 4.20. r = 0.1636 m. i¢in tiirbiilans kinetik enerjisi konturlar1

Sekil 4.20’de cesitli debi degerleri icin r=0.1636 m’de tiirbiilans kinetik
enerjileri verilmistir. Burada giriste ve cikista sirkiilasyon bolgelerinin olustugu 0.4 Qn
ve 0.6 Qn debi degerleri icin Ozellikle emme tarafinda yiiksek bir tiirbiilans kinetik
enerjisi goriilmektedir. Nitekim bu debilerdeki akisin tiirbiilansa ve sirkiilasyona daha

yatkin oldugu gozlemlenmistir.

Olusan Sirkiilasyon Bolgeleri

e »

— T —

Sekil 4.21. 0.4 Qn i¢in girise yakin olusan sirkiilasyon
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Velocity Meridional (Vector 1) ("
Im s"‘—l]y

Sekil 4.22. 0.4 Qn i¢in difiizorde olusan sirkiilasyon bolgeleri

p . A
[\rlwelsg\c_l}]y |d|onal (Vector 1) (,1 )(f,.

Sekil 4.23. 0.4 Qn icin difiizérde olusan sirkiilasyonlarin yakindan goriiniisii

0.4 Qn debi degeri i¢in herhangi bir calisma bulunmamakla birlikte bu debi
degerinde 0.6 Qn degerine kiyasla girise yakin olusan sirkiilasyon bolgesinin biiytidiigii,
difiizorede hem hubta (iist ylizeyde) hem de shroudta (arka yiizeyde) olusan sirkiilasyon

bolgelerinin bilyiidiigii gdzlemlenmistir.
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Sekil 4.24. 0.6Qn i¢in girise yakin olusan sirkiilasyon bolgesi ve Combes'in (1992) deneysel sonuglarina

gore 0.6 Qn i¢in girise yakin olusan sirkiilasyon

qug

=y
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|
>
&3
00

Velocit
Im s~-1

Sekil 4.25. 0.6 Qn i¢in difiizorde elde dilen sirkiilasyon bolgeleri ve deney sonuglarinda bulunan

sirkiilasyon bolgeleri (Combes 1992)
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i s A 2% Velocity Meridional (Periyodik, e
[\r{’elsqgl‘t]y Meridional (Periyodik) b= [meg§l1]y ericional (Periyodik) %

Sekil 4.26. 0.6 Qn'de difiizorde olusan sirkiilasyon bolgelerinin yakindan goriiniisti

0.6 Qn icin girise yakin bolgede ve difiizorde olusan sirkiilasyon bolgeleri sekil
4.24, 4.25 ve 4.26’da verilmistir. Burada sayisal ¢oziim sonucu elde edilen sirkiilasyon
bolgeleri literatiirdeki calisma (Combes 1992) ile uyum gostermistir. Ayrica sirkiilasyon

bolgelerinin 0.4 Qn debi degerine gore kiigiildiigii gdzlemlenmistir.

Velocit]y Meridional (Periyodik} i:ﬁ
[m s~-1 l l

el I

Sekil 4.27. 0.8 Qn i¢in difiizor hubinda (iist ylizeyinde) elde dilen sirkiilasyon bolgesi ve deney
sonuglarinda bulunan sirkiilasyon bolgesi (Combes 1992)
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0.8 Qn icin difiizér hubinda (iist ylizeyinde) olusan sirkiilasyon bolgesi sekil
4.27°de verilmistir. Burada sayisal ¢oziim sonucu elde edilen sirkiillasyon bolgesi
literatiirdeki calisma ile (Combes 1992) 0.6 Qn degerinde oldugu gibi uyum
gostermigtir. Ayrica yine literatiirdeki calismayla (Combes 1992) paralel olarak girise
yakin herhangi bir sirkiilasyon bolgesine rastlanilmamistir.(Bkz. Sekil 4.17)

Velocit]y Meridional {Vector) f:z
[m s~-1

s,

xxxxxxxxxx

Sekil 4.28. 1.2 Qn icin ¢ikisa yakin olusan sirkiilasyon bolgesi

1.2 Qn i¢in difiizér hubinda (iist yiizeyinde) olusan kiiciik sirkiilasyon bolgesi
sekil 4.28’de verilmistir. Bu debi degeri i¢in herhangi bir calisma bulunmamakla
birlikte difiizor hubindaki ufak sirkiilasyon bolgesi disinda giriste de herhangi bir
sirkiilasyona rastlanilmamistir.(Bkz. Sekil 4.17)

4.4. Nominal Debi Icin Coziimiin Deney Sonuclari ile Karsilastirilmasi

Kargilastirma yapilacak degerlerden radyal ve tegetsel hiz degerleri Fransa
Lyon’daki INSA laboratuarindaki LDV 6l¢iim degerleri olup basing degerleri ise Fransa
Lille’deki ENSAM laboratuari 6l¢iim degerleridir. Bu degerler sadece nominal debi i¢in
elde edilmis degerlerdir ve eldeki deneysel datalar yeterli miktarda bulunmamaktadir.

Radyal ve tegetsel hizlarin karsilastirilmas1 amaciyla yarigap 0.1957 m. icin

cesitli z koordinatlarinda cizilen yaylarin her biri iizerindeki onalti noktadaki radyal ve



88

tegetsel hizlarin ortalamalari hesaplanmistir. Basing Olgtimleri ise ilk altist basing
tarafinda (pressure side), son altisi da emme tarafinda (suction side) olmak iizere
toplam on iki noktada gerceklestirilmistir. Basing Ol¢iimlerinin yapildigi noktalarin

koordinatlar1 ve sekil izerinde gosterimleri ¢izelge 4.1 ve sekil 4.29°deki gibidir.

Cizelge 4.1. Statik basing degerlerinin karsilagtirildigi noktalarin koordinatlari

Koordinatlar X [m] Y[m] Z[m]
1 -0.0703 0.04771 -0.0171
2 -0.0756 0.05092 -0.034
3 -0.0829 0.05565 -0.0484
4 0.18918 0.05958 0.0075
5 0.18908 0.05975 0
6 0.18906 0.05975 -0.0075
7 -0.0665 0.0456 -0.018
8 -0.0717 0.0502 -0.0356
9 -0.0792 0.05746 -0.0514

10 0.1901 0.05322 0.0075
11 0.18999 0.05335 0
12 0.19005 0.05332 -0.0075

Sekil 4.29. Numaralarina gore noktalarin kanadin her iki yiizeyindeki lokasyonlar1
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Basing Tarafi (1-2-3 Noktalar)

0 Deneysel(Combes 1992)

30 ¢ —= CFD(Bu Calisma)
4— CFD(Kim 1994)
25 | :
o
T A
20 +
— —+ [m]
[\]
o
X 1
o 15+ o
c T A
o
© 1
o 1
10 4
51
-0,0171 -0,034 -0,0484
Z[m]
Sekil 4.30. 1-2-3 noktalari i¢in statik basing degerlerinin karsilagtirtlmasi
Basin¢ Tarafi ( 4-5-6 Noktalari)
0 Deneysel(Combes1992)
225 +
1 —&— CFD(Bu Galisma)
t CFD(Kim 1994)
222 +
§ 219
o~ I
o il .\'\.
c 1
8 216 ¢ o o o
s I
213 |
210 I | | | | |
-0,0075 0 0,0075
Z[m]

Sekil 4.31. 4-5-6 noktalari icin statik basing degerlerinin karsilagtirilmasi
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Sekil 430 ve 4.31'de ilk altt nokta icin statik basing degerleri
karsilastirilmistir. Kanadin basing tarafindaki ilk ii¢ nokta (1-2-3) kanat 6n ucuna yakin
konumda iken diger ii¢ nokta (4-5-6) kanat arka ucuna yakindir.Bu grafiklerde deney
sonuglariyla farkliligin muhtemel sebebi 6n veya arka ucun akigkanin kanada carptigl ve
kanadi terk ettigi noktalar olmasidir. Bu nedenle u¢ bdlgelerinde basing degisimleri

fazla olmaktadir.
Emme Tarafi ( 7-8-9 Noktalari)

O Deneysel(Combes1992)

25 —m— CFD(Bu Galisma)
I CFD(Kim 1994)
-20 T m] o
';' I
& 157
o 1
1 T
o -10 +
a T
@ 1
5
o ‘ : :
-0,018 -0,056 -0,0514
Z[m]
Sekil 4.32. 7-8-9 noktalar1 i¢in statik basing degerlerinin karsilagtiriimasi
Emme Tarafi ( 10-11-12 Noktalar1)
O Deneysel(Combes1992)
210 7 —= CFD(Bu Calisma)
CFD(Kim 1994)
205 |
©
o
X 4
S 200 + o o
: €
]
©
m o
195 +
190 : | ‘ ; ;
-0,0075 0 0,0075

Z[m]

Sekil 4.33. 10-11-12 noktalar icin statik basing degerlerinin karsilagtirilmasi
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Sekil 4.32 ve 4.33’te son alti nokta igin statik basing degerleri
karsilagtirilmistir. Burada dikkat ¢eken husus 10 nolu nokta icin (z=0.0075) deney
sonuglartyla CFD sonuclarinin zit degisim gostermesidir. Zit degisim lokal bir kotii ag
elemanindan kaynaklanabilecegi gibi kullanilan tiirbiilans modeli veya duvar

fonksiyonu ile ilgili de olabilir.

Ortalama Radyal Hizlar (r = 0.1957 m)

O Deneysel(Combes1992)
—@— CFD(Bu Galisma)
—4&— CFD(Kim 1994)

RadyalHiz[ m/s]

0 F ]
-0,0135 -0,012 -0,0105 -0,0075 -0,003 0 0,003 0,0075 0,0105 0,012 0,0135
Z[m]

Sekil 4.34. r =0.1957 m. i¢in ortalama radyal hizlarin karsilastiriimasi

Sekil 4.34’te r=0.1957 m. i¢in radyal hizin, z’ye bagli olarak olusan yay
izerinden hesaplanan ortalama degerlerinin karsilastirilmasi goriilmektedir. Grafikteki
verilerin seyri benzer olsa da maksimum %18’e varan farkliliklar bulunmaktadir. Bu
farkliliklar ag yapisindan, tiirbiilans modelinden veya kullanilan duvar fonksiyonundan
kaynaklamiyor olabilir. Zaten sonlu hacimler yonteminde akis hacmi sonsuz kiiciik
parcalara boliinemediginden yontemin dogasi geregi bir hata mevcuttur. Tiirbiilans
modeli de veyahut kullanilan duvar fonksiyonu da sonucta birer yaklasim olduklarindan

deneysel sonuclarla CFD sonuglarinda birebir tutarlilik beklemek olanaksizdir.
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Ortalama Tegetsel Hizlar (r = 0.1957 m)
O Deneysel(Combes1992)

—=— CFD(Bu Calisma)
CFD(Kim 1994)

—_
D

)

—

—
N
| 1

e
! R EE

L] < r s ..

—_
N

L

—

—
o
———

Tegetsel Hz[m /s ]

o+—+—— +
-0,014 -0,012 -0,011 -0,008 -0,003 0 0,003 0,0075 0,0105 0,012 0,0135
Z[m]

Sekil 4.35. r=0.1957 m. i¢in ortalama tegetsel hizlarin karsilastiriimasi

Sekil 4.35’te r=0.1957 m. i¢in tegetsel hizin, z’ye bagh olarak olusan yay
izerinden hesaplanan ortalama degerlerinin karsilastirilmasi goriilmektedir. Burada
deneysel sonuclarla CFD sonuglar1 daha tutarli bir seyir izlemistir (maksimum fark %?2).
z=0.003 i¢in bu calisma sonucu ulasilan sayisal ¢Oziim artarken deney sonucunun
azaldigr goriilmektedir. Bu farklililk lokal bir ag elemaninin bozuklugundan

kaynaklanmis olabilir.

4.5. Nominal Debide ve Kismi Debilerde Sonuclarin Karsilastirilmasi

Oncelikle nominal debide deneysel olciimlerin ve sayisal ¢oziimlerin
karsilagtirildigr on iki nokta icin degerler grafiklere dokiilmiistiir. Daha sonra ise ¢esitli
yiizeylerin kesisimi sonucu olusturulan ¢izgiler tizerindeki degerler analiz yapilan debi

degerleri i¢in grafiklere doniistiiriilmiistiir.
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Basin¢ Tarafi ( 1-2-3 Noktalari )

80

60

40
—_ *\_)‘\K —e—0.4Qn
g 20 —= 060N
= 0 0.8Qn
<
8 -20 Qn
@ '\¢\. —%—1.2Qn

-40

-60 — . -

-80 - } } } }

-0,0171 -0,034 -0,0484
Z[m]

Sekil 4.36. 1-2-3 noktalarinda ¢esitli debi degerleri i¢in statik basinglarin karsilastirilmasi

Basing Tarafi ( 4-5-6 Noktalari)

235
230
225 e
220

215
210
205
200

—e—04Qn

—=— 0.6 Qn
0.8 Qn
Qn

Basing [ kPa ]

195

190

185

180 * * —e

175 4 : } ! | | |
0,0075 0 -0,0075

Z[m]

—%—1.2Qn

Sekil 4.37. 4-5-6 noktalarinda ¢esitli debi degerleri i¢in statik basinglarin karsilastirilmasi

Sekil 4.36, 4.37, 438 ve 4.39°da kanadin basing ve emme tarafinda
koordinatlar1 cizelge 4.1’de verilen noktalardaki statik basing degerleri verilmistir.
Grafiklerden de anlasilabilecegi iizere debi degerinin 0.4 Qn’den 1.2 Qn artis1 ile
birlikte kanat iizerinde ilgili 12 noktada basin¢ artmistir. Fakat basing tarafindaki basing

beklenildigi tizere emme tarafindan yiiksektir.
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Emme Tarafi ( 7-8-9 Noktalari)

——0.4Qn

—=—0.60Qn
0.8Qn
Qn

—x—1.2Qn

Basing [ kPa ]
(&)
o

-100
-110 1

-0,018 -0,0356 -0,0514
Z[m]

Sekil 4.38. 7-8-9 noktalarinda cesitli debi degerleri icin statik basinglarin karsilagtirilmasi

Emme Tarafi ( 10-11-12 Noktalari)

Basing [ kPa ]

215
210 *\K/>K
205
200
——0.4Qn
195 —=06Qn
190 0.8Qn
185 Qn
\ —m —%—1.2Qn
180
175
R o
170 - *
165 1
0,0075 0 -0,0075

Z[m]

Sekil 4.39. 10-11-12 noktalarinda cesitli debi degerleri i¢in statik basinglarin karsilastirilmasi
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Noktalardaki sayisal ¢oziim degerlerinden sonra span 0.5 icin ¢esitli yiizeylerde
(kanat yiizeyi, MFR yiizeyi, rotor periyodik yiizeyi ve difiizor periyodik yiizeyi)

gosterilebilecek (hiz, basing gibi) degerler grafiklere dokiilmiistiir.

Sekil 4.40. Kanat etrafinda degerlerin hesaplandig ¢izgiler
(C

o g I?

E X
D AE

Difluzor
Periyodik

Cizgisi

Rotor
Periyodik
Cizgisi

Sekil 4.41. MFR yiizeyinde ve periyodik yiizeylerde degerlerin hesaplandig1 cizgiler
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Kanat Etrafindaki Basin¢ Degerleri ( Span = 0.5, Basing¢ Tarafi )

260000 -
230000 1
200000 7
170000 5
140000 ]
110000 -
80000 ]
50000 1
20000
-10000 ]
-40000 1
-70000 +
-100000 ¥
-130000 +
-160000 - 1 1 1 1 1 1 1 1

0,200 0,187 0,172 0,155 0,138 0,124 0,112 0,100 0,088

Yaricap [ m ]

—0.4Qn
—0.6 Qn
0.8Qn
—AQn
—1.2Qn

Basing [ Pa]

Sekil 4.42. Span 0.5'te (orta yiizey) ¢esitli debilerde kanadin basing tarafindaki statik basing degerleri

Kanat Etrafindaki Basin¢ Degerleri ( Span = 0.5, Emme Tarafi )

260000
230000
200000
170000
140000
110000
80000
50000
20000
-10000
-40000
-70000
-100000 ¥
-130000 +
-160000 1 1 1 1 1 1 1 1
0,087 0,097 0,109 0,121 0,135 0,151 0,169 0,184 0,200
Yaricap [ m]

——0.40Qn
——0.6Qn
0.8Qn
—AQn
—1.2Qn

Basin¢ [ Pa]

Sekil 4.43. Span 0.5'te (orta yiizey) ¢esitli debilerde kanadin emme tarafindaki statik basing degerleri
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Sekil 4.42 ve 4.43’te orta yiizeyin (span 0.5) kanatla kesistigi ¢izgi tizerindeki
basing degerleri verilmektedir. Debi arttik¢a basing ve emme tarafindaki basincin arttigi
goriilmektedir. Grafikte goriilen negatif degerler ¢ikis sinir sart1 olarak verilen 290 kPa
degerinden kaynaklanmaktadir. Nitekim bu deger analizi yapan tarafindan atanir ¢oziicii
kodda bu degeri baz alarak diger basin¢ degerlerini hesaplar. Bu deger referans

basincina eklenen deger yani efektif basinctir.

MFR Yiizeyi Uzerinde Basin¢ Degerleri ( Span = 0.5)

270000 +
260000 +
250000 -+
—_ ] ——04Qn
& 240000 | ——06Qn
4 0.8Qn
§ 230000 I an
] —1.2Qn
220000 +
210000 +
200000 -

0,627 0,727 0,827 0,927 1,027 1,148 1,278 1,408
Theta[rad ]

Sekil 4.44. Cesitli debiler icin MFR yiizeyi tizerindeki statik basing degerleri

Sekil 4.44’de cesitli debiler icin MFR yiizeyi ile orta ylizeyin kesismesi sonucu
elde edilen c¢izgi lizerindeki basin¢ degerleridir.Burada ufak basing dalgalanmalari
(pikler) dikkat cekmektedir. MFR yiizeyi hareketli parcadan sabit parcaya gecis ylizeyi

oldugundan piklerin bu ani degisimden kaynaklanmas1 muhtemeldir.
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Rotor Periyodik Yiizeyindeki

Basinglar ( Span = 0.5)

300000
250000 ]
200000
1 ——040Qn
= 150000 -
o ] 0.6 Qn
o 100000 - 0.8Qn
@ 1 ——an
@ 50000 4
1 —1.2Qn
01
-50000 |
-100000 : : 1 1 1 1 : 1 1 1
0,240 0,220 0,193 0,161 0,126 0,098 0,078 0,067
Yaricap [m ]

Sekil 4.45. Cesitli debiler i¢in rotorun periyodik yiizeyi tizerindeki statik basing degerleri

Sekil 4.45’te cesitli debiler i¢in rotor periyodik yiizeyi ile orta ylizeyin
kesisiminden olusan cizgi {izerindeki basing degerleri goriilmektedir. Burada kanat 6n
ucunun basladigi r=0.098 m. civar1 artan bir trendde yiikselmeye baslamistir. Bu

grafikteki ufak piklerin sebebi ag yapis1 veya kullanilan tiirbiilans modeli olabilir.

Difiizér Periyodik Yiizeyi Uzerinde Basinglar ( Span = 0.5 )

300000 -
290000
280000
270000

260000 ]

Basing [ Pa]

250000 ]

240000 ]

230000 +

220000 - ; 1 ; 1 ‘ 1 ‘ 1 ‘ | ‘ |
0,420 0,401 0,377 0,349 0,320 0,283 0,250
Yaricap [ m]

Sekil 4.46. Cesitli debiler icin difiizoriin periyodik yiizeyi iizerindeki statik basing degerleri
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Sekil 4.46’da difiizor boyunca cikisa dogru artan basing goriilmektedir. Biitiin

debiler icin cikis sinir sartt degeri olarak 290 kPa verildiginden r=0.42 m. de(cikis

yaricapi) basinglar kesismistir. Fakat r=0.24 m. de (difiizor giris yaricapi) basing

yiiksekliginin debiyle dogru orantili oldugu goriilmektedir.

14

1,2 1

08}
06 |
04+

02+

Tirbllans Kinetik Enerjisi[ m22 /s/2]

0]

MFR Yiizeyi Uzerinde Tiirbiilans Kinetik Enerjisi ( Span = 0.5)

1 \/—\/
] ——0.4Qn

0,62

741 0,72735 0,82731 0,92727 1,02722 1,14811 1,27793 1,40776
Theta[rad]

Sekil 4.47. Cesitli debiler icin MFR yiizeyi iizerindeki tiirbiilans kinetik enerjisi degerleri

Sekil 4.47°de MFR yiizeyi ve orta yiizeyin kesisimindeki tiirbiilans kinetik

enerjisi goriilmektedir. Burada sirkiilasyonun fazla oldugu diisiik debi degerlerinde

turbiilans kinetik

enerjisi (tiirbiilansa yatkinlik) yiiksek cikmustir.

Pompanin cesitli debilerde analizi sonucu ulasilan basma yiiksekligi—debi

(H,, -Q) grafigi sekil 4.48’de verilmistir.

45
40
35
30
25
20
15
10

Basma Yiiksekligi [ m ]

Basma Yiksekligi - Debi (Hm - Q)

26,8

Sekil 4.

0,04472 0,06708 0,08944 0,1118 0,13416
Debi [ mA3/s]

48. Analiz yapilan debiler i¢cin pompanin basma yiiksekligi-debi grafigi
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Bu grafikten faydalanarak nominal debide pompanin c¢ark sekli (cark sekilleri
ek 1’de verilmistir) ile ilgili hesaplar1 yapacak olursak 6zgiil hiz,

N, =p.g.QH,
N, =1000.9,81.0,1118.31=34kW

L [N _1200 34136
T H, | JH,

n, =112d/dk
olarak bulunur. Ayrica giris ve ¢ikis ¢aplart oranini hesaplayacak olursak,
b, = 400 _ =1,82
D, 220

bulunur. Ek 1°deki c¢ark sekilleri incelendiginde ikinci satirdaki cark sekli ve
karakteristigin analizi yapilan pompanin dahil oldugu simif olarak karsimiza ¢iktigi

goriilmektedir. (n,=110~200, D,/D, =1,5~2)
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5. ARASTIRMA SONUCLARI ve TARTISMA

Bu calismada radyal bir santrifiij pompanin nominal debideki ve kismi
debilerdeki akis karakteristikleri incelenmis olup sonuglar asagidaki gibi 6zetlenebilir.

1- Nominal debide sayisal c¢oziim (CFD) ile deney datalar1 uyumluluk
icersindedir. (Sekil 4.30 ile 4.35 aras, sekil 4.24, 4.25, 4.27)

Fakat sekil 4.34’te ortalama radyal hiz verilerinin seyri benzer olsa da
maksimum %18’e varan farkliliklar bulunmaktadir. Sekil 4.35’te ise ortalama tegetsel
hizlardaki maksimum fark %2 civarindadir. Bu farkliliklar ag yapisindan, tiirbiilans
modelinden veya kullanilan duvar fonksiyonundan kaynaklaniyor olabilir. Zaten sonlu
hacimler yonteminde akis hacmi sonsuz kiigiik parcalara boliinemediginden yontemin
dogas1 geregi bir hata mevcuttur. Tiirbiilans modeli, kullanilan duvar fonksiyonu da
sonugta birer yaklasim olduklarindan deneysel sonuclarla CFD sonuglarinda birebir
tutarlilik beklemek olanaksizdir.

2- Nominal debi i¢in giris kisminda herhangi bir sirkiillasyon bolgesi
bulunmamaktadir. (Sekil 4.17a)

3- Nominal debinin 0.4 katinda akis, nominal debinin 0.6 katinin gosterdigi
karakteri gostermekte olup sirkiilasyon alanlar1 biiyiime gostermistir. Ayrica difiizorde
shroud (arka yiizey) lizerindeki sirkiilasyon bolgesinin genisledigi hub iistiinde ¢ikisa
yakin sirkiilasyon bolgesinin ise daraldigi gozlemlenmistir. (Sekil 4.21, 4.22, 4.23)

4- Nominal debinin 0.6 kat oldugu durumda giris kisminda kanat¢iga yakin
sirkiilasyon tespit edilmistir. Ayrica difiizor kisminda hem hubta hem de shroudta
sirkiilasyon bolgelerinin olustugu gozlemlenmistir. (Sekil 4.24, 4.25, 4.26)

5- Nominal debinin 0.8 kat1 i¢in giriste herhangi bir sirkiilasyon bolgesine
rastlanmamigken difiizorde ise hub tarafinda sirkiilasyona rastlanmstir. (Sekil 4.27)

6- Debi, nominal debinin altinda iken manometrik basma yiiksekligi artarken
nominal debinin iistiindeki degerde azalmistir. (Sekil 4.48)

7- Basing pompa cikisina dogru kademe kademe artmaktadir. Ayrica kanat
etrafinda basing tarafinda (pressure side) yiiksek basing ve emme tarafinda (suction
side) ise diisilk basing konturlart mevcuttur. Cesitli debi degerlerinde basing
bolgelerinde biiyiik degisimler olmasa da debi arttikca basing degerleri artmaktadir.
(Sekil 4.12)
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8- Bagl hizlar en yiiksek degerleri difiizor girisine yakin yerlerde
almaktadirlar. Burada rotordan difiizore yani donen bir par¢adan duran bir parcaya gecis
oldugundan rotor hacminin uc¢ kisimlarinda hiz yiiksektir. Diger bir hususta giris
sirkiilasyonlarinin oldugu ve difiizorde biiyiik sirkiilasyon bolgelerinin goriildiigii 0.4
Qn ve 0.6 Qn debilerinde rotorun u¢ kisminda olusan yiiksek hiz konturlarinin (kirmizi
bolgeler) difiizore dogru genislemesidir. Buralardaki yiiksek hizlarda bu iki debide
olusan biiyiik sirkiilasyon bolgelerinin sebebi olabilir. (Sekil 4.13)

9- Mutlak hiz vektorleri akigkanin rotorun doniis yonii boyunca difiizorden
salyangoza hareket ettigini gostermektedir. Ayrica vektorlerin c¢izdirildigi span 0.5
yiizeyinde (orta yiizey) herhangi bir sirkiilasyon olmadig: goriilmektedir. (Sekil 4.14)

10- Kanat {iizerindeki basing, kanat 6n ucundan arka ucuna dogru kademe
kademe artmaktadir. Fakat akigkanin kanatla ilk ¢arpistigi nokta olmasi sebebiyle kanat
on ucundaki basing konturlar1 arka uctaki gibi diizenli degildir. (Sekil 4.15) Basing
tarafinda oldugu gibi akiskanin kanatla ilk temas ettigi on ugta basin¢ konturlarinda bir
diizensizlik bulunurken arka uca dogru konturlardaki degisimler daha diizenli hale
gelmistir. (Sekil 4.16)

11- Girise yakin sirkiilasyonun olustugu 0.4 Qn ve 0.6 Qn i¢in diisiik basing
bolgesi mile (donme merkezine) yakin iken giriste sirkiilasyonun kalktigi 0.8 Qn ve
tizerindeki debilerde ise yiiksek basin¢ bolgesi mile, diisiik debilerde huba(0.4 Qn ve 0.6
Qn) yaklagmustir. Nitekim huba (iist yiizeye) dogru giden bu diisiik basing bolgesine,
akigkanin yiiksek basing bolgesinden hareketi sonucu sirkiilasyonlar olusmustur. (Sekil
4.18)

12- 0.4 Qn icin cikis basin¢ konturlarinda yiiksek basing baskin iken debi
arttikca yiiksek basing konturlar1 shrouda (arka ylizeye) dogru hareket etmektedirler.
(Sekil 4.19)

13- Giriste ve ¢ikista sirkiilasyon bolgelerinin olustugu 0.4 Qn ve 0.6 Qn debi
degerleri icin Ozellikle emme tarafinda yiiksek bir tiirbiilans kinetik enerjisi
goriilmektedir. Nitekim bu debilerdeki akisin tiirbiilansa ve sirkiilasyona daha yatkin
oldugu gozlemlenmistir. (Sekil 4.20)

Farkli bir calisma olarak birkac cesit ag yapisinda (eleman sayis1 farkli, eleman
tipi farkli vb.) ilgili debilerde pompanin incelenmesi miimkiin olabilir. Ayrica kanat

izerinde performansi arttiric1 degisiklikler yaparak bunun akisa etkisi de incelenebilir.
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EK 1. Santrifiij pompalarda 6zgiil hiza bagh olarak ¢ark seklinin degisimi
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