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Enstitü Müdürü 
 



1. GİRİŞ ve KAYNAK BİLDİRİŞLERİ 
 
 

Bu çalışmada bazı dizi uzayları arasında var olan lineer operatörlerin 
kompakt olmaması derecelendirilecektir.  

∞<≤ p 1
p
∞ω

1

p
p ωω ,0

 olmak üzere kuvvetli C  toplanabilir ve sınırlı dizilerin kümeleri 

 olup  , Maddox (1968) tarafından tanımlanmıştır ve bu kümelerin her 
biri  
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ile ilgili bir  uzayıdır ve , ’ya sahiptir (Wilansky, 1964). AK

Malkowsky ve ark. (2000)’da " 1l=X ( )∞<≤ p ve Y  " 
yada "

= ∞
ppp 1  ,, 0ωωω

∞= ωX  ve ( )∞≤≤= p ∞Y  " veya " p 1  l = ω ,,0X  ve  

 " iken bir ( ∞<≤ p )=Y pp ,,0 ωω ∞
p 1  ω X dizi uzayını bir dizi uzayı içine 

dönüştürmede sonsuz matrisler için gerekli ve yeterli şartlar verilmiştir.Ayrıca; 
kompakt olmak üzere bu uzaylar arasında bir lineer operatör altında kompakt 
olmama Hausdorff derecesine ilişkin gerekli ve yeterli şartlarda verilmiştir. 

Y

ωω ,,0 ωω

Malkowsky ve ark.’da (2001) ise,  toplanabilir veya sınırlı olan 
dizilerin keyfi K , X  uzayları ve Y  uzayları arasındaki lineer operatörleri 
incelenerek, X ’i Y ’ye dönüştüren A  sonsuz matrisleri için gerekli ve yeterli 
koşulları verilmiştir. Ayrıca, bir kompakt operatör olan A  için gerekli ve yeterli 
koşulları vermek suretiyle kompakt olmama derecesine ilişkin uygulama yapılmıştır. 

( )qN ,
B

 
Önerme 5.1.1.  
 

( 0,qN )  , ( )  , qN ,  kümelerinin her biri, ∑
=

n

k
kk xq

0
=

nn
N Qx

q

1sup  

ile tanımlı normuna bağlı bir K  uzayıdır (Aljarrah ve ark., 1998). 

( )∞qN ,

qN B

 
Önerme 5.2.2.  
 

 X  ve Y , uzayları olsun. O zaman, ( )YX , ⊂  yani her 
 ve ( Y, ) LX ( ) ( )xAxAA )∈=    iken bir ( )YXBLA ,∈  elemanı tanımlayabilir. 

Ayrıca; ( ) ∞<AL=nA *=
n

A * sup

( )k

⇔∞A ,l

( )∞k

∈ X  olur. Nihayetinde; eğer 

 , =0b X ’in bir tabanı ve Y  , 1 Y ’nin kapalı bir alt uzayı iken Y  ile Y  ,  
uzayları ise, o zaman  

BK ( )YXB ,
∈ ( Xx

1 FK
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( ) ( ) ( ) 1Yb k ∈1    ve,için   ,...1,0, AYXAkYXA ∈=∀⇔∈  ( )

olur (Malkowsky ve ark., 1998). 
X  ve Y  iki Banach uzayı olsun.  uzayı ile ’nin operatör normu 

için ( ){ }1: =xsup= xLL  yazılabilir. Eğer X bir uzayı ve  ise, o 

zaman 






1






= ∑
∞

=0

*a
k

βXa ∈

=: x

Q

xa kk ’nin sağ tarafı var ve sonlu olacak şekilde 

sağlatılır.  olduğunda da bu geçerlidir (Wilansky, 1984). 

( )YXB , N
ω∈aBK

Bilindiği üzere; Tanım 2.17.’deki verilenlerle birlikte, eğer   bir 
X metrik uzayının sınırlı bir altkümesi, o zaman Q ’nun kompakt olmama 

Hausdorff derecesi,  ile gösterilir ve  ( )Qχ
( ) { }sahip ağabir sonlu  de' , :0inf −>= εεχ X QQ  

yazılıp χ  fonksiyonu, kompakt olmama Hausdorff derecesi diye adlandırılır (Banas 
ve Goebl, 1980; Akhmerov ve ark., 1992; Rakocevic, 1994). 

Şimdi de Banas ve Goebl (1980) ile Akhmerov ve ark.’de (1992) bahsi 
geçen bir sonuca bakalım: 
 
Önerme 5.3.1.  
 

X , bir  Schauder tabanlı bir Banach uzayı; , ’in sınırlı bir 
alt kümesi ve , XX →Pn : { }nee ,...,2e ,1 ’nin lineer gereni üzerine bir projektör 
olsun. O zaman; n

n
PIa −=

∞→
suplim  iken,  

{ },..., 21 ee Q X

( ) ( ) ( )xPI n−
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xPI
a xn

n
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olur.  
Önerme 5.3.1.’deki  sayısı ile ilgili bilindiği üzere; =  ise, o zaman 

 ve fakat, eğer  ise, o zaman 1=a c= 2X =a ’dir (Banas ve Goebl, 1980). 

Sonuç 5.2.1.’e bağlı olarak kompakt olmama derecelerine göre, şunu elde 
ederiz: 
 
Teorem 5.3.1.  
 

A , Sonuç 5.2.1.’deki gibi olsun ve herhangi n, tamsayısı için, ( )rnr >  
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oluşturalım. 
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X ’ya )0,q  yada ( )qN ,  ile A∈  olsun. O zaman, (N ( )0,cX

r
AL =χ                                      (5.23) ( )rA

∞→
lim

yazılabilir. 
X ’ya )0,q  yada ( )qN ,  ile A ∈  olsun. O zaman, (N ( )cX ,

       ( ) ( )rA
∞→

lim
r

A
r

r
LA

∞→
≤≤lim

2
1

χ                      (5.24) 

X ’ya ( ),qN 0 , ( )q,N  yada ( )∞qN ,  ile A  olsun. O zaman, ( )∞∈ l,X

    
r

AL ≤≤ χ0                             (5.25) ( )rA
∞→

lim

olur. 
Bu çalışmanın son aşamasında bu teorem kullanılarak ortaya koyduğumuz 

problemle ilgili olarak daha genel teoremler ispatlandı ve sonuçlar elde edildi. 
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2. TEMEL TANIM ve TEOREMLER  
 
 
 Bu bölümde daha sonraki bölümlerde kullanılacak olan temel tanım ve 
teoremler verilecektir. 
 
 
Tanım 2.1. (Lineer Uzay) 
 
 X  boş olmayan bir cümle ve  reel veya kompleks sayıların bir cismi 
olsun. 

K

XX →X ×+  :  
XX →×• K:  

fonksiyonları aşağıdaki özellikleri sağlıyorsa X  cümlesine  cismi üzerinde bir 
lineer uzay denir. Her 

K
K∈µ  ve yx ∈,,  için, λ, Xz

(L1)    x +=+  xyy
(L2)    ( ) xzyx =++  ( )zy ++

 (L4)     olacak şekilde bir  vardır. xx =+ θ X∈θ
 (L3)    Her   için X∈ + xx  olacak şekilde bir  vardır. x ( ) θ=− ( ) Xx ∈−
 (L5)    1  xx =.

yx (L6)    ( )yxλ +=+  λλ
 (L7)    ( ) yxxµλ +  µλ +=

( )x (L8)    ( )x λµµλ =

,X K ,M

 
 
Tanım 2.2. (Lineer Alt Uzay) 
 
   cismi üzerinde bir lineer uzay ve  X  in boş olmayan bir alt 
cümlesi olsun. Eğer her K∈µ  ve M∈, My için x ∈+ µλ  oluyorsa M ’ye 
X ’in bir lineer alt uzayı denir. 

λ, yx

 
Tanım 2.3. (Normlu Lineer Uzay) 
 
   cismi üzerinde bir lineer uzay olsun. ,X K

R→⋅ X : 
x, K∈

 
dönüşümü  ve ∀Xy ∈∀ λ  için 
 (N1)    =x 0  θ=⇔ x

 (N2)    x x λλ =  

 (N3)    yx +yx ≤+   (üçgen eşitsizliği) 

özelliklerini sağlıyorsa X  üzerinde norm adını alır ve bu durumda  ikilisine 
normlu lineer uzay veya kısaca normlu uzay denir.  

( )⋅,X
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Tanım 2.4. (Dizi Uzayları) 
 

{ xkxxx k →→==  , :   )(: 0 KNω ( )}kxk =:

kx

 
kümesi 

)ky())(),(( kk yx +→    ve   )( kx))(,( kx λλ →  

ile tanımlı toplama ve skalerle çarpma işlemleri ile birlikte K  üzerinde bir lineer 
uzaydır. ω  lineer uzayı ve ω ’nin her bir lineer alt uzayı dizi uzayı olarak 
adlandırılır.  , sırasıyla, sıfır dizileri dizi uzayı, yakınsak dizilerin dizi 
uzayı ve sınırlı dizilerin dizi uzayı olarak adlandırılırlar.  dizi uzayları 

∞l    vec

∞l    ve c
 ,0c

,0c

k
k

xsup=x  normu ile birlikte birer normlu uzay oluştururlar. 

 Çalışmamızda kullanacağımız diğer bazı dizi uzayları ve normları aşağıda 
verilmiştir: 







∞<kx






∈== ∑
∞

=0k
 : )(: kxx ωγ  ,  

yakınsak seri teşkil eden bütün dizilerin dizi uzayıdır ve ∑
=

n

k
k

n
x

0
sup=x : γ  normu ile 

birlikte bir normlu uzaydır. 







∞<kx






∈=== ∑
∞

=0
1  :)(:  : 

k
kxx ωll  ,  

mutlak yakınsak seri teşkil eden bütün dizilerin dizi uzayıdır ve ∑
∞

=

=
0k

kx1 : x  

normu ile birlikte bir normlu uzaydır. 

{ }∑ ∞<2
kx∈==2  : )(: kxx ωl  ,  

dizi uzayı 2 : 

= ∑x  normu ile birlikte bir normlu uzaydır.  

212




kx







∞<k
p







∈== ∑
∞

=0k
x : )(: kp xx ωl  ,  

dizi uzayı ∞<1  için (px : ∑=  normu ile birlikte bir normlu uzay, 

 için 10 << p
p

kx∑=: x  normu ile birlikte bir -normlu uzaydır. 

) pp
kx

1
≤ p

p

Bu dizi uzayları arasında, 

ωγ ⊂∞l⊂⊂⊂⊂l cc01  

kapsam bağıntıları vardır. Ayrıca, sınırlı kısmi toplamlara sahip bütün dizilerin 
kümesini bs , bütün toplanabilir dizilerin kümesini de cs , bütün sonlu sıfırdan farklı 
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dizilerin kümesini ϕ  ile göstereceğiz.  

  ve e   ile ;e ( )n n( ),...1,0= ,...1,0=k için 1=ke  ve nk ≠  için  ve 

 olacak şekildeki dizileri göstereceğiz.  

( ) 1=ne
( )n
k

1,0=

0=e
 
Örnek 2.1.  
 
 Eğer her n  için ,... E , ( )nk0  1 ≤≤=nke

cs
 ve  

biçiminde tanımlı bir matris ise, bu durumda 
( )nk >  0enk =

Ec=  ve ( )∞= lbs  yakınsak ve 
sınırlı serilerinin kümeleridir.  
 
Tanım 2.5. (Lineer Operatör)  
 
 X  ve Y  lineer uzaylar ve T  bir fonksiyon olmak üzere her 

 ve her 
YX →:

x2, K∈X∈x1  için  µλ,
)( 2xT)()( 121 xTxxT µλµλ +=+  

şartı sağlanırsa T ’ye bir lineer operatör veya lineer dönüşüm denir.  veya 
 olması durumunda ise C=Y T ’ye bir lineer fonksiyonel denir. 

R=Y

 
Tanım 2.6.  
 
 X ,  cismi üzerinde bir lineer uzay olsun. Eğer  fonksiyonu 
aşağıdaki özellikleri sağlıyorsa 

K R→X:g
g  reel fonksiyonuna bir paranorm ve  

ikilisine de bir paranormlu uzay denir. Her 
( )gX ,

K∈σ  ve Xyx ∈,  için,  

 (i)  ( ) 0=θg

( )xg −=

( )

 (ii)  ( )xg

 (iii) ( ) gyxg +≤+  ( )ygx

 (iv) Eğer ( )nσ ,  olacak şekilde skalerlerin bir dizisi ve  de 
 olacak biçimde vektörlerin bir dizisi ise, o zaman çarpımın 

sürekliliği gereğince 
(xg n ) 0→

( − xxnng σσ ’dır.  

σσ →n ( )nx
− x

) 0→

 Eğer Wilansky (1964) gereğince ( ) 0= xxg  oluyorsa bir g  
paranormuna tamdır denir. Yani, aşağıdaki tanımın özelliklerini sağlayan bir tam 
paranorm ve onun uzayı söz konusudur. 

0=⇒

 
Tanım 2.7. (Banach uzayı)  
 

Bir Banach uzayı tam normlu bir lineer uzaydır. Buradaki tamlık   
için  X∈xn 0→nx−mx   (m   olduğunda bir ∈  mevcuttur öyle ki,  )∞→n, Xx
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0→− nxmx   (m  )∞→n,

∞l R→∞l

L

olur.  

 
Tanım 2.8. (Banach Limiti)  
 

 üzerinde tanımlı bir  lineer fonksiyoneli aşağıdaki 
özellikleri sağlıyorsa ’ye bir Banach limiti denir. 

:L
α , bütün Banach limitlerinin 

kümesini göstersin. Bu durumda;  

B.1  Her için  olmak üzere ,...1,0  =n 0≥nx ( ) 0≥xL

(xLD=B.2   , burada ( )xL ) { }( )= nx

( ),...1,1=

∞∈ lx

nxDDx  { }1+=

B.3  ,  ( ) 1=eL e

olur.  
 
Tanım 2.9. (Hemen Hemen Yakınsak Dizi)  

 
Bir dizisinin bütün Banach limitleri çakışıyorsa, x ’e hemen hemen 

yakınsak dizi denir. , hemen hemen yakınsak dizilerin kümesini göstersin.Bu 

durumda, 

f

( ){ xpxf =∈= ∞ :l  olur. Hemen hemen  yakınsak dizilerin 

uzayı  ile, sıfıra yakınsayan hemen hemen yakınsak dizilerin uzayı  ile 

gösterilecektir.  

f

( )}xp −−

0f

YX →: Xx

 
Tanım 2.10. (Sınırlı Lineer Operatör) 
 
  bir lineer operatör olmak üzere T ∈∀  için  

XxMYxT ≤)(  

olacak şekilde bir M  sabiti varsa T ’ye sınırlı lineer operatör denir. Bir sınırlı lineer 
operatörün normu  

∞<
x
x)(

C→X:

=
≠

TT
x
sup

θ
 

olarak tanımlanır. 
  sınırlı lineer fonksiyonelinin normu f

{= xxxff )(sup  }θ≠
olarak verilir. 
 ’den ’ya bir pl ql )( nkaA =  ,...)2,1,0,( =kn  matris dönüşümünün normu 

ise  
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n k
nkq aAx







= ∑ ∑  

qq

kx

1








olmak üzere 

{ :sup, ≤= pxqqp AxA  }1 

şeklinde tanımlanır.  
 
Tanım 2.11.  
 

X  normlu uzayını  normlu uzayına dönüştüren tüm sınırlı lineer 
operatörlerin kümesi  ile gösterilir.  bir normlu lineer uzaydır. 

Y
),( YX ),( YXBB

YX = B ),(X olması durumunda sadece  notasyonu kullanılır. Yani  )(X B X  bir 
normlu uzay olmak üzere X ’den X ’e tanımlı tüm sınırlı lineer operatörlerin 
normlu lineer uzayıdır. Özel olarak; Y  kompleks sayılar olduğunda 
X üzerindeki bütün lineer sürekli fonksiyonellerin kümesi için  ve 

sürekli lineer fonksiyonelinin normu için 

( )C,XB* =X

f ( ){ } ( )*   1 Xff ∈= :xfsup x =  
yazılabilir.  

C=

 
Tanım 2.12.  
 

, Y metrik uzayları ile bir dönüşümü verilsin. YX →:f  X

 (i) X⊂Q olmak üzere, eğer ’nun kapanışı Y ’nin bir kompakt alt 
kümesi ise, ( )Qf ’ya Y ’nin bağıl kompakt alt kümesi denir. 

( )Qf

 
 (ii) Şayet , ’in her sınırlı  altkümesi için Q Y ’nin bir kompakt alt 
kümesi olursa, bir kompakt dönüşüm veya kompakt operatördür diye ifade edilir. f

( )Qf X

 
Tanım 2.13. (Matris Dönüşümü) 
 
 ≠X Ø, ≠Y Ø, ω  uzayının herhangi iki alt kümesi ve  

 kompleks sayılardan oluşan bir sonsuz matris olsun. Bir 

 dizisinin  dönüşüm dizisi her  için  

);( nka=
0

k Ax 0N∈n

∑
=0

knk xa

Yxn

A
,...)2,1,

X∈)

,( kn

x = (

=

x
∞

=: )(
k

n xA  

yakınsak serisi ile verilen A(  dizisidir. A ’ya X ’den Y  içine bir matris 
dönüşümü ve ’e de Ax x ’in A -dönüşüm dizisi denir. (  ile ),YX X ’den Y  içine 
olan bütün matrislerin sınıfı,  ile de )P,,( YX X ’den Y  içine limiti koruyan, yani 

∈))(
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nxlim) =n xA (lim , olan bütün A  matrislerinin sınıfı gösterilir. Burada 
’dir.  ),( YX⊂

∑
∞

=on
na , )ns

∞
=0,) knnk

).,( PYX

A

( )nt n

( ),n

∑
∞

=0n
na

∑ na

c

( ns1C

n→
σlim na

( )1C

 
Tanım 2.14. 
 

  sonsuz bir seri ve bu serinin kısmi toplamlar dizisi (  olsun. 

Ayrıca  sonsuz matrisi verilsin. = (a  dizisinin A -dönüşüm dizisini 

 ile gösterelim. Yani, t  olsun. Bu durumda =
k

ks A , diziden-diziye bir 

dönüşüm tanımlar. Eğer  bir t s  limitine yaklaşıyorsa o zaman ( )ns  dizisi veya 

 serisi s ’ye A  toplanabilirdir denir. Bu çalışma boyunca aksi belirtilmedikçe 

 ile  sonsuz serisi ve ∑
∞

=n 0
an ( )ns  ile de bu serinin kısmi toplamlar dizisi 

gösterilecektir. 

( )ns

∑
∞

=0
nka

 
Tanım 2.15. (Cesaro Toplanabilme Metodu) 
 







+= nnk
     0

      1
1

>

≤

nk
nk

,
, :  

)1,C

,n )
elemanları ile tanımlı alt üçgensel sonsuz matrise Cesaro matrisi denir ve (  yada 

 ile gösterilir.   kısmi toplamlar dizisi ile verilen sonsuz bir seri 

olsun. 
∑a

∑
=

+

n

v
vs

0
1

1
=n n

σ  

ile tanımlanan diziden diziye dönüşümüne, dizisinin Cesaro ortalaması denir. 

Eğer sn =  ise, ∑  serisi s  değerine  yada  toplanabilirdir denir.  )1,C

( )ns

∞
( 1C

1C  , bir basamaklı bir Cesaro matrisi olup; 

( ),...2,1=   
  ,  0

 1 ,  1





>
≤≤

= n
nk
nkn

nk  

biçiminde de ifade edilebilir.  
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Teorem 2.1. (Hölder Eşitsizliği)  
 

  ,1>p ,11
=+ q , 21 aa1

p   ve b  olsun. Bu taktirde,  0≥na , 21 b,..., 0,..., ≥nb

∑ ∑∑
= ==
















≤

n

k k

pn

k

p
kkk aba

1

1

1





qn

q
kb

1

1

,..., 0,..., ≥nb

 

olur.  
 
Teorem 2.2. (Minkowski Eşitsizliği) 
 
   ve  olsun. Bu taktirde,  ,1≥p , 21 aa 0≥na , 21 bb

pn
p
kb

1

1





∑

=

∞<< p 1C

k

pn

k

p
k

pn

k

p
kk aba

1

1

1

1
)( 





+










≤










+ ∑∑

==

 

olur.  
 
Tanım 2.16.  
 

(i)  olmak üzere kuvvetli  toplanabilir ve sınırlı dizilerin 
kümeleri 

0

( )[ ] 





=




0p












∈== ∑

=
∞→

1lim:
1

00 1

n

k
k

nC
p x

n
xc p ωω  , 

{p x sa baz :ωω ∈= l için yısı kompleks ı x   −  }pe 0ω∈l

olup  

( )[ ] 





∞<



p

p












∈== ∑

=
∞∞

n

k
k

n
C

p xnxp

1

1sup:
1

ωω l  

Maddox (1968) tarafından tanımlanmıştır ve ispatlanabilir ki; bu kümelerin her biri 
normlu − ( )1<p0 <  bir uzayıdır ve  −FK

 

1

∞<≤

<<

p

p

B

1   ,  
2
1sup

0     ,  
2
1sup

1
12

20

12

20

1

1











































=

∑

∑
−

=≥

−

=≥

+

+

x

x

x
p

k

p
kvv

k

p
kvv

v

v

v

v

                          (2.1) 

normu ile ilgili bir K  uzayıdır ve , ’ya sahiptir.  p
0ω AK

 (ii) ∀  dizisi; ( )kxx = pωk ∈∞
=1 C∈l x − ,  olacak şekilde  pe 0ω∈l
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( ) ( )− kel∑
∞

=

+=
1k

kxex l                                                (2.2) 

biçiminde bir tek temsile sahiptir. 1=p ω için  yazılır (Wilansky, 1964). ...1
00 ω=

p
0

p
∞ω Aslında;  ,  ve  kümelerinin tanımlamasına denk bir yol, 

(2.1)’deki blokların orijinal tanımındaki kısımlara yer vermekten geçer. (2.1)’deki 
norm ile  

ω pω

n

kn n
x p

1

1sup




= ∑

=
∞ω                                         (2.3) 

p
p

kx

1







ile tanımlı  doğal normu denktirler (Malkowsky ve Rakocevic, 2000).  p
∞ω~

x ∈ ∑
∞

=0n
nnbλ

( )∞
=0nnλ

 
Tanım 2.17. (Schauder Tabanı)  
 

 Eğer her  için  olacak şekilde skalerlerin bir tek 

 dizisi varsa, lineer bir 

X =x

X  metrik uzayında  herhangi bir  dizisine 
bir Schauder tabanı denir. 

( )∞
=0nnb

( )∞
=0,knnk

 
Tanım 2.18.  
 

  kompleks sayıların sonsuz bir matrisi ve = aA  ve 
 olsun.O zaman  ∞<< p0

ω∈x

( ) =
k

n xA ∑
∞

=0
knk xa  (n  , ),...1,0=

( ) = AxA ( )( )∞
=0nn x  , ( ) ∑

∞

=

=
0k

p
n xA p

knk xa  (n  ),...1,0=

ve  

( ) ( )∞=0n
px= n

p AxA  ( )
yazabiliriz. 

ω ’nun herhangi X  alt kümesi için; ( ){ }XxAxX A ∈∈= :ω , X ’deki 

A ’nın matris bölgesi olarak adlandırılır. Ayrıca; [ ] ( ){ A:ωx ∈X A p =  

kümesini de tanımlayabiliriz. 

}Xx p ∈

=p p

[ ]BX=
1

1

 için,  indislisini benzer yollarla tarif edebilir ve kısaca, 
 ile yazabiliriz.  [ ]BX



 12

Tanım 2.19. 
 

 (i) Sonsuza giden pozitif reel sayılarının azalmayan bir  dizisi 

olsun. Ayrıca; 

( )∞
=0nnµ=µ

( ) ( )100 <<<= nn
( ) ( ) 11 −+≤≤ vnkvn

n ( ) ∞
=0vvn olacak şekilde verilen bir ( )  dizisi 

için,  koşulunu sağlayan bütün  tamsayılarının kümesini k
vK  ile göstereceğiz. Sırasıyla,  ’deki bütün ’ları üzerine alan toplam ve 

maksimum sembolü için de ile  kullanacağız.  
k

v
max∑

v

≤0     

( ) ...2

vK

(ii)   


=b n

nk           ,  0
,  1 λ

 
<
≤

nk
nk

 
ve  

( )






= +vn
vkb

  ,  0

   ,   1~ 1λ

∉

∈
v

v

Kk

Kk

( )nk ( )∞ =0,
~

kvvkb 01 =−

 

ile  ve matrislerini tanımlayacağız. Ayrıca; ∞
=0,kn =

~B= bB µ  

olmak üzere  

( ) (   
halde aksi  ,  0

        ,  
1      ,  1







= ),...1,0=
−=−

=∆
−

nnk
n

n

n

nk µ
µ

µ  

ile bir  matrisini tanımlayalım. Yine;  ( )µ∆

 ( ) ( )[ ]( )
( )µ

µ
∆B= cc 00  , ( ) ( )[ ](µ

∆
= B~c00c~  , )

( )µ

 ( ) ( ){ }µωµ 0c: exxc ∈−∈= l  , ( ) { ωµ :~ cexxc ∈−∈= l  , 

( ) ( )
0

~ ( )}µ

 ( ) ( )[ ] ( )µ
µ

∆B∞∞ =c l  , ( ) (µ
∆∞∞ = B~c~ l   )[ ] ( )µ

kümelerini tarif edelim. 

 Malkowsky’e (1995) göre; (0c , ( )µc  ve  uzaylarının her biri,  )µ ( )µ∞c

( ) ( )( ) 




−− kx 11

B






−=∆= ∑

=≥
∞

n

k
kkk

nn
xxBx

00

/ 1sup µµ
µ

µ  

ile birlikte bir K  uzayıdır, 0c  AK  özelliğine sahiptir ve her  

dizisi 

( )xx k= µck ∈∞
=0

( )µ0cex ∈− l  olacak biçimde  elemanı için  ile 

bir tek gösterime haiz bir değer vardır.  

(
k

kxex ∑
∞

=

−+=
1

l

( )µ

C∈l ) ( )kel
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Tanım 2.20. 
 

Pozitif reel sayıların bir  dizisi; eğer herhangi  tamsayısı için 

 aralığında en az bir 

( )∞
=0nnλ v

)1, +vv m

=Λ

n[m λ  var olacak biçimde bir  tamsayısı varsa, 
üssel sınırlıdır diye tarif edilir. Malkowsky’den (1995) bilinmektedir ki; pozitif 
reellerin azalmayan bir Λ  dizisi üssel sınırlıdır 

2≥m

0( )∞
== nnλ ⇔  Aşağıdaki koşul 

sağlanır: " bazı dizisi için,  ( ) )∞
=0v( +vnλ 1

( )

( )
( ),...1,0=v   

1
∀≤≤

+
ts

vn

vn
λ
λ

 

olacak şekilde açık birim aralıkta  
ts ≤  

reelleri vardır "                                                                                                        (2.4) 
 Burada (2.4) şartını sağlayan üssel sınırlı bir  dizisinin bir 

 alt dizisi, ortak (birleşik) alt dizi diye adlandırılır. 

( )∞
=0nnλ

( )( )∞
=+ 01 vv

=Λ

nλ

O zaman, ( ) ( )Λ= 0Λ0
~cc  , ( ) ( )Λ=Λ cc ~  ve ( )Λ ∞c∞c ~ ’dır. Ayrıca;  ( )Λ=

/x ile ( ) ( )( )
( ) 





−− kx 11





−=Λ∆= ∑

+≥∞
v

kkk
vnv

xxBx
10

1sup~ λλ
λ

 

normları, ( )Λ0c  ,  ve ( )Λc  uzayları üzerinde denktirler. Böylece;  , 
 ve ( )Λc ( )Λ∞c  uzaylarının her biri, Malkowsky (1995) ve Wilansky (1984) 

gereğince  ile birlikte bir  uzayıdır.  

( )Λ∞c ( )Λ0c

BK
 
Tanım 2.21. 
 
 (i) ω⊂X  ve  olacak şekilde yerel bir  konveks uzayına bir 

−K uzayı denir ve burada τ , X  üzerinde bir −K topolojisidir.  
( )τ,Xττω ⊂

 (ii) Bir tam metriklenebilir yerel konveks uzaya (Frechet) uzayı denir. 
Ayrıca; bir (Frechet) uzayı bir tam lineer metrik uzaydır.  

F
F

− (iii) Hem bir K uzayı hem de bir (Frechet) uzayı olan yerel konveks 
bir 

F
( )  uzayına bir uzayı denir ve burada τ , X  üzerinde bir 

−FK topolojisidir. Yani, eğer bir X  F (Frechet) uzayında yakınsaklık 
koordinatsal yakınsaklığı gerekli kılıyorsa bir uzayı adını alır.  

τ,X −FK
ω⊂

−FK

 (iv) Normlu bir uzayına bir uzayı denir ve burada onun 
topolojisi de aynı zamanda bir topolojisidir. uzayı, sürekli koordinatlara 
sahip bir Banach dizi uzayıdır. Yani, bir −BK uzayı Banach uzayı özelliklerini 
taşıyan bir uzayıdır.  

−FK
−BK

−BK
−BK

−FK
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 (v) Bir ,X  −K uzayı, , keyfi bir x ∈=  verilsin. Bu 

durumda, ’e [ ]nx ( xx0 ,..., )∑
=

=
n

k 0
=k

k ex n , ’in bölgesi denir. Eğer  

ise, 

.n [ ] xx n →

x  AK  (bölgesel yakınsak)’ya sahiptir denir. { }sahip ya' : AKxXxS X ∈=  
olmak üzere, eğer S  olursa, X=X ( )τ,X ’ya bir −AK uzayı denir.  

( ) Xxk( )τ X⊂ϕ

,...0 x

 Bir ϕ⊃X   uzayı, eğer her dizisi bir tek 

gösterimine sahipse, 

( )xx k= Xk ∈∞
=0

( )n∑
∞

=0n
nex=x ’ya da sahiptir diye ifade edilir.  

BK

AK

 Bir ϕ⊃X  uzayı; eğer her , bir tek  

gösterimine sahip ise, 

( )xx k= Xk ∈∞
=0

( )∑
∞

=1

n
nex=

n
x

AK  özelliğine sahiptir diye adlandırılır.  

−FK
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3. BELİRLENMİŞ BAZI DİZİ UZAYLARI ARASINDA  
    LİNEER OPERATÖRLERİN KOMPAKT OLMAMA DERECESİ 
 
 
 Bu bölümde; belirlenmiş bazı X  ve Y  dizi uzayları arasında lineer 
operatörleri inceleyeceğiz. Diğer durumların yanı sıra, eğer X  herhangi bir 

normlu uzayı ve Y  ise, −p ∞c  ( ) ( )µµω= yada  ,, 0
1
0 ( )µω c,1 c, A  için X ’i ’ye 

dönüştürecek biçimde gerekli ve yeterli koşullar bulunabilir. O zaman; kompakt 
olmama Hausdorff derecesi, bir kompakt operatör olacak biçimde  için gerekli ve 
yeterli koşulların verilmesi suretiyle tatbik edilebilir.  

Y

A

 
 
3.1. Dual Uzaylar ve Matris Dönüşümleri 
 
 X  ve , iki Frechet uzayı olsun. Daha önceden verilen tanımları ile birlikte 

 ve  uzayları var olsun. Eğer 
Y

B ( )C,XB( YX , ) *X = X , normlu ve Y , 

normlu,  ise; o zaman ’nin norm operatörü için, − BL ∈

−p
*p ( )YX , L

     ( )                                            
(3.1) 

{ } 1:sup == xxfL

yazılır. Ayrıca; (3.1)’deki norm ile ( ){ )*   1:sup xxff == Xf ∈ * normu X  
uzayı içindir.  

} (

  ; 






ıyak






∈∀∈= ∑
∞

=

 için   :
0k

kk xaXxaX ωβ nsar ω ’nın herhangi X  alt 

kümesi için, X ’in −β duali diye adlandırılır.  
 Eğer X  bir lineer metrik uzay ise, o zaman onun metriği bir tam g  
paranormu ile verilir ve [ ] ( ){ } ( )XxxxgXxxS ∈>≤−∈= 0  00 ;  0   : δδδ  ile ifade 
edilir.  
  bir ( gX ,  uzayı ve  olsun. Bu durumda; sağındaki terimi var ve 
sonlu olarak sağlanan 

) FK ω∈a

[ ]0:sup 1
0

*













∈= ∑
∞

=

Sxxaa D
k

kkD ( )0   >D

βXa ∈

 

değeri elde edilir. Öyle ki; Wilansky (1984) gereğince  olduğu her durumda 
bu söz konusudur. Eğer X  bir −p normlu FK  uzayı ise, o zaman  







= 1: x






= ∑
∞

=

sup
0

* xaa
k

kk  

olur. 

 Şimdi ise Maddox (1968) gereğince daha sonra kullanılacak olan aşağıdaki 
bazı sonuçları yazabiliriz: 
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 ∞<< p0  ve [ ]12, 1 −+v2= vvK   (v   verilsin. Bu durumda;  ),...1,0=

( )













=∞<<















∞<










∈













∞<∈

=

∑ ∑

∑
∞

=

∞

=

  ;  1    ,  2:

                             ,  max2:

0

1
0

qpaa

aa

v

q

v

q
k

pv

v
k

v
pv

p

ω

ω

M

−

≤<

1

 10

pp

p

pa M∈

 

ve her  için,  
























=

∑ ∑

∑
∞

=

∞

=

a

a

a

v

q

v

q
k

pv

v
k

v
pv

p

    ,   2

    ,  max2

0

1
0

M

∞<<

≤<

p

p

1

10

 

elde edilir.  

 O zaman, ( ) ( ) ( )β pM=ppp == ∞
ββ

ωωω0  ve  de pM pa M=

( )∞
=0nnλ

( )( )∞
=+ 01 vv

a *  şeklinde 
yazabiliriz.  
 Pozitif reel sayıların azalmayan üssel sınırlı bir  dizisi ve 

 birleşik bir alt dizisi olsun. Bu durumda;  

=Λ

nλ

( ) ( )






∈=Λ ∑∑
∞

=

∞

=
+

nkvv
vnaC λω max:

0
1  







∞<
k
ka

λ

ve her  için,  ( )Λ∈ Ca

( ) ( )∑
∞

=
+Λ =

vv
vnCa λ max

0
1  ∑

∞

=nk k

ka
λ

) ( )Λ= Cβ

( )Λ

yazılır. O halde;  
( )( ) ( )( ) (( )Λ=Λ=Λ ∞ccc ββ

0   
ve C ’da  

( )ΛCa=a *
 

olur.  

 Eğer A  sonsuz bir matris ise, o zaman A ’nın satırındaki diziler için  
yazılır. ’nın herhangi iki X  ve Y  alt kümeleri için; ( )YX ,  , X ’i ’ye 
dönüştüren tüm sonsuz matrislerin sınıfını göstermek üzere,  

.n nA
ω Y

( )YX ,A ∈  olur ⇔   ,  βXAn ∈

n x∀her  için var ve  için X∈ ’dir.  ( ) YxA ∈
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 Şimdi aşağıdaki iki sonuca ihtiyacımız vardır:  
Teorem 3.1.1. X  ve Y  birer FK  uzayı olsun. O zaman;  
 
 (i) ( ) ( )YXB ,YX , ⊂ ’dir yani; her ( )Y,XA ∈  için ( ) ( ) ( )Xx ∈xAxLA =   

( YXB ,
( ∞l, 0>D

 
olacak biçimde bir  elemanı tanımlanabilir.  )LA ∈
 (ii)   bazı  için  ) ⇔∈A X

    ∞<*
DnA=* sup

n
DA                                                

(3.2) 
olur. Ayrıca; eğer X  normlu uzay ve A  ise, o zaman  −p ( )∞∈ l,X

    == n
n

AA ** sup                                       

(3.3) 

∞<AL

∞
=0kb

olur.  

 (iii) Eğer ( )  , ( )k X ’in bir bazı ve Y  , Y ’nin bir kapalı alt uzayı 
olacak şekilde  ile  birer 

1

Y 1Y FK  uzayı ise, o zaman ( )1,YXA ∈ ’dir  

 ve  için 

⇔

∈ ( ) =∀kYX ,A ,...1,0 ( )b k ∈

( )xAn

1YA ’dir.  ( )

 
 İspat : (i) Bu, Wilansky (1984) gereğince görülebilir.  
    (ii) İlk olarak; varsayalım ki, (3.2) sağlanır. Bu durumda,  
serisi her  ve her n x  için yakınsar ve ∞∈lxA ’dur. [01 DS

βX

]

Xx ∈∀
( )∈xA

 kümesi 

Wilansky (1964) gereğince emiliyor olduğundan, her n  için  ve  
için  sonucuna ulaşılır. Buradan; 

An ∈

∞l ( )∞∈ l,XA  elde edilir. 

[ ]01 DS∈ ( )

 Tersine; ∈A  verilsin. O zaman; (i) kısmı ile  
bulunur. Böylece; 

( )∞l,X ( )YXB ,LA ∈
[ ]0 xN⊂S1 D  ve N∈∀  için 1≤xAL  olacak biçimde X  

üzerinde ’ın bir  komşuluğu ile reel bir  vardır. Buda (3.2) koşulunu 
ifade eder.  

0 N 0>D

( )

 Eğer  X  normlu bir uzay ise, o zaman LA ∈  gerektirir ki; her 
1= ( )x  için, ( ) ( ) ALAn

n
xLxAxA ≤∞  olur. Böylece; her  ve her 

1=x  için ( ) An Lx ≤A ’dır ve  normunun tanımı gereğince,  

−p ( )YXB ,
==∞ sup n

*

AL≤*
n

n
Asup                                              (3.4) 

elde edilir. Dahası; verilen 0>ε  için ( ) ≥∞xA AL  olacak biçimde  
ile  vardır ve  

2ε− 1=x
Xx ∈

( )( ) ( ) 2ε−∞

( )xn

≥ xAxA xn  

olacak şekilde bir  tamsayısıvardır. Sonuç olarak, ( )( ) ε−AL≥xn xA  olur.  
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Bu sebeple,  
ε−AL

0>

≥= n
n

AA ** sup  

olur. ε  keyfi olduğundan, A  ve (3.4) ile de AL=*

( )1,YX∈
)

A  elde edilir.  AL≥*

(iii)  için koşulların gerekliliği açık olarak görülebilir. Tersine; 
eğer  ise, o zaman  (i) kısmı ile 

A
( YXA ,∈ A ∈  olur.  , ’nin bir kapalı 

alt uzayı olduğundan,  ve Y ’nin 
1Y Y

1Y FK  topolojileri Wilansky (1984) gereğince 

aynıdır. Sonuç olarak; ( )1,YXBLA ∈ ’dir. Neticede; ( )( )∞=0k
kb  , X ’in bir bazı ile  

{ }k

( )YXBL ,

bspanX =  

ve  

( )( )   1∈ kYbf k ( ),...1,0=

AL

 

ile ’nın sürekliliği gerektirir ki;  

( ) ( ){ } ( ){ }( ) 11 YY =⊂bspanLbspanLxL k
A

k
AA ⊂





∈  

olur.  

 ω ’nın bir X  alt kümesi; eğer X , bazı  için her ne zaman 

kk x≤y  şartını sağlıyorsa, normal diye adlandırılır.  
Xx ∈y ∈

 

Teorem 3.1.2.  

 

 (i) T  bir üçgen matris olsun. Bu durumda ; ω ’nın keyfi X  ve Y alt 
kümeleri için,  

( )TY,XA∈  ⇔  TA∈  ( )YX ,

yazılır.  

 (ii) B  bir pozitif üçgen matris ve Y  dizilerin bir normal kümesi olsun. Her 
 için ,  ve bütün  dizilerinin kümesi  

olsun. Her 
,...1, Nm ⊂

N

0=m ( )∞
=0mmN N N{ }m,...,1,0 =N

∈N  için,  

=
mN

nmntNS A∑
∈n

m  

yani 
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( ),...1,0=,  = ∑
∈

kmats
mNn

nkmn
N
mk  

olacak biçimde  matrisini tanımlayabiliriz. O zaman; ’nın keyfi X  alt 
kümeleri ve dizilerin herhangi Y normal kümesi için,  

NS ω

[ ]( )BYX ,A∈    üzerindeki bütün  dizileri için  yazılır.  ⇔ N N ( )YX ,∈

[ ]

S N

 

 İspat. (i) Bu, Malkowsky (1996) gereğince görülebilir. 

     (ii) İlk önce, A ∈  alalım. O zaman;  

 gerektirir ki, her 

βXAn ∈

( ),...1,0= ,...n 1,0=m  ve her N  için  olur. XS N
m ∈

y =  alalım. Bu durumda, ( )xA [ ]BY∈  yani Yy ∈  ve Y ’nin normalliği ile 

her  için  gerektirmesi ile birlikte yine her N∈ SN xN ( ) Y∈ N∈N  için,  

( )BYX ,

∈N β

( )( )xAB

( )    
00

≤== ∑ ∑∑
∈

∞

=

∞

=

myxabxsxS m
Nn k

knkmn
k

k
N
mk

N
m

m

 ( ),...1,0=

N ( )YX ,∈

( )YX ,∈ N∈N
N
m { }( )∞

=0mm
βXAm ∈

0≠mm
βXAm ∈ Xx

yazılabilir. Böylece, her  için,  olur.  N∈ S N

 Tersine; her N∈N  için  olsun. O zaman, her  ve her  

için  olur. Aslında;  için  

S N

=N

m
βX∈S

bS mm
N
m =  

vardır. Böylece; b  olduğu için  elde edilir. Yine, ∈  alalım. 
Her  değerleri için,  ,...1,0=m

( )
( ) { }

( )∑∑
∈⊂

∈

=
m

m
m NnmN

Nn
nmn bxAb

,...,0
max

0
nmn xA

( )0
mN

 

olacak biçimde bir  kümesi seçebiliriz. O zaman, Peyerimoff (1957) tarafından 
verilen ve iyi bilinen bir eşitsizlik gereğince  

( )
( )

xAby
Nn

nmnm

m
0

44 =≤ ∑
∈

 
( )

( )xS N 0

( )
( ) Yx ∈

0

( )
olur. Hipoteze göre S ’dir. Bu durumda ise, Y ’nin normalliği N

( xA ) YBy ∈= ’yi gerektirir yani A  yazılır. Buradan  ( ) [ ]BYx ∈
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[ ]( )BYX ,A∈  

görülebilir. 
 

 Teorem 3.1.1 ve 3.1.2’nin bir üst sonucu olarak şunu elde ederiz: 

Sonuç 3.1.1.  

 

 X  bir keyfi  uzayı olsun. Ayrıca,  sonsuza giden pozitif 

reellerin azalmayan bir dizisi olsun. Kısaca;  gibi yazacağız ve buna göre  

=µ
1
00 ωω =

FK ( )∞
=0nnµ

( )
{ } 








∑
*

DN
n

m

A







=

∈⊂≥
∞

,...,11

1maxsup,
nmNm m m

XM ω  

ve  

    ( )( )
{ }







−= ∑

∈
−

⊂≥
∞ 1

,...,00

1maxsup,
Nn

nnn
mmNm

m
m

AcXM µµ
µ

µ  ( )








−

*

1

D

nA

( ∞

yazılabilir. 
 (i) O zaman, )∈ ω,XA  ⇔  bazı  için  0>D
     ( ,XM                                               
(3.5) 

) ∞<∞ω

olur. Eğer ( )( )k ∞
=0kb  , X ’in bir bazı ise, o zaman ( )0,ωXA∈  ⇔  (3.5) koşulu 

sağlanır ve her  için  ,...1,0=k

    1lim
1






∑

=
∞→

m

n
n

m
bA

m
                                       

(3.6) 

( )( ) 0=



k

( )olur. Ayrıca da; X∈A  ⇔  (3.5) koşulu sağlanır ve her k değeri için 
yine  

ω, ,...1,0=

   ( )( ) 0=




k e1lim

1





−∑

=
∞→

m

n

k
n

m
bA

m
l                                           

(3.7) 

olacak biçimde kompleks ( ),...1,0  =kkl  sayıları vardır.  
 Eğer X  bir normlu uzayı ve Y , ω  yada ∞ω  için ( )YX ,A ∈  ise , 
o zaman  

−p 0ω=
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{ } 







∑
*

mN
nA








=

∈⊂≥∞ ,...,11

* 1maxsup
m nmNm m

A ω  

için  
    *4

∞
≤ ωA

∞<

*
∞

≤ω LA A                                              

(3.8) 
olur.  
 (ii) ( )( )∈ ∞ µcXA ,  ⇔  bazı  için  0>D
     ( ∞ µcXM ,                                      
(3.9) 

( )) ∞<

biçiminde bir son durum da elde edilir. Eğer ( )kb  , X ’in bir bazı ise, o zaman 
( ))( µ0,cXA∈   (3.9) koşulu sağlanır ve bu durumda da her değeri için  

( )∞=0k
⇔ ,...1,0=k

   ( )( ) ( )( ) 0=



k1lim
0

11




−∑

=
−−

∞→

m

n
nn

k
nn

mm
bAbA µµ

µ
              

(3.10) 

olur. Diğer taraftan; ( µcX ,A∈  ⇔  (3.10) koşulu sağlanır ve her değeri 
için  

( )) ,...1,0=k

( )( )( ) ( )( ) 0=




kl

1lim
0

11




−−−∑

=
−−

∞→

m

n

k
nnk

k
nn

mm
bAbA l µµ

µ
       (3.11) 

olur. Neticede; eğer X  bir normlu uzayı ve (0cY = , ( )µc ( ) yada  için 
 ise , o zaman  )A

)µ−p µ∞c
( YX ,∈

{ }






−= ∑

∈
−

⊂≥∞ 1
,...,10

* 1maxsup
m

m Nn
nnn

mmNm
c AA µµ

µ
 ( )









−

*

1nA

için  
    ( ) ( )

*
µ∞cA* 4µ∞

≤≤ Ac LA                                (3.12) 

elde edilir.  
 
 İspat : Bütün göstermemiz gereken (3.8)-(3.12) eşitsizlikleridir. Bu 

doğrultuda; 0ω=Y , ω , ∞ω  iken A ∈  olsun. O zaman her m  için 

 ve mN⊂N 1=x  olduğu her durumda  

( )YX , ,...2,1=

( )
m

n
n

Nn
n AmxAm

m

≤ ∑∑
=∈ 1

11  ( ) ALx ≤
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yazılır. Bu durum ise gerektirir ki,  

     AL≤
∞

0>

A *
ω                                                

(3.13) 

olur. Verilen ε  için  

( ) ( ) 2ε−AL1sup
11

≥









= ∑

=≥

m

n
n

m
xA

m
xA  

olacak şekilde 1=x Xx şartlı ∈  vardır ve  

( ) ( )
( )

( ) 2ε−x

( )x

1

1
≥∑

=

AxAxm

xm

n
n  

olacak biçimde bir m  tamsayısı da mevcuttur.  
 Sonuç olarak,  

( ) ( )
( )

( ) ε−xA≥∑
=

xA
xm

xm

n
n

1

1  

yazılabilir. Buna ilave olarak, Peyerimoff (1957) tarafından verilen ve iyi bilinen bir 
eşitsizlik gereğince  

( ) ( ){ } ( ) ( )
( )

( ) ( )
( )

≥≥














∑∑
=∈⊂

xm

n
n

Nn
n

xmN
xAxmxAxm

xm
xm 1,...,1

11max4 ε−AL  

olur ve böylece buradan ε−AL 0>ω ≥
∞

A *4  elde edilir. ε  keyfi olduğundan 

AL≥
∞

A *4 ω  yazılır. (3.13) ile verilen eşitsizlik dikkate alınarak, (3.8) sağlanır. 

(3.12)’deki eşitsizlikler benzer yollarla ispatlanır.  
 
Uyarı 3.1.1.  
 
 Eğer X  bir normlu −  uzayı ve Y ’de 0ω  , ω  , ∞ω  , (0c ,  
yada ( )µ∞c  uzaylarından herhangi biri ise; o zaman ( )Y,XA ∈  için koşullar, X ’in 

−β dualleri üzerindeki doğal normlar tarafından (3.5) ve (3.9) koşullarında  
normları yer değiştirilerek Sonuç 3.1.1.’deki uygun durumlarındaki gibi istenen 
görülebilir. Ayrıca burada bazı yerlerde,  

)µ ( )µcp FK

*
D

( )∞

∞

ise  

ise ,

µ

ωω
{ }

{ }
( ) ( )





=

=

⊂

⊂
,,   ,   max

,                  ,  max

0
,...,1

0
,...,0

µµ

ω

cccY

Y

mN

mN

m

m  
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için  , 1  için 
mN

max ∞< )1−= ppq  ve ( ) nnknnknn aa kna ,11 −−−=∆ µµµ  

eşitliği ile  için  ve 
1 v

max
2 1−+v2 ≤v k

max
≤

∑
−≤ + 12 1v≤k2v

için ∑
v

kullanacağız.Buna göre;  

< p (

 (i) ( )∞<<= pX p 0  l  için,  

( )











































































=

∑ ∑

∑
∞

= ∈

∈
∞

am

a
m

M q

k Nn
nk

Nm

Nn
nk

kNm

p

m
m

m
m

0   ,  1maxsup

     ,  1supmaxsup

,

1

ωl

∞≤<

≤<

p

p 10

 

ve  
 

( )( )
( )

( )













































∆




























∆

=

∑ ∑

∑
∞

= ∈

∈
∞

a

a

cM q

k Nn
nknn

mNm

Nn
nknn

mkNm

p

m
m

m
m

0   ,  1maxsup

     ,  1supmaxsup

,

1
µ

µ

µ
µ

µl

∞<<

≤<

p

p 10

( )1<<

  

yazılır.  
 (ii) 0  = ∞X pω  için,  

   ( )
































































































=

∑ ∑∑

∑∑

∈

∞

=

∈

∞

=

∞∞

am

a
m

M qq

v Nn
nk

v

pv
Nm

Nn
nk

vv

pv
Nm

p

m
m

m
m

1      ,  12maxsup

        ,  1max2maxsup

, 1

0

0

ωω

∞≤<

≤<

p

p 10

  

ve  

( )( )
( )

( )



































































∆




























∆

=

∑ ∑∑

∑∑

∈

∞

=

∈

∞

=

∞∞

a

a

cM qq

v Nn
nknn

mv

pv
Nm

Nn
nknn

mvv

pv
Nm

p

m
m

m
m

1      ,  12maxsup

        ,  1max2maxsup

, 1

0

0

µ
µ

µ
µ

µω

∞<<

≤<

p

p 10

olur.  
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 (iii)  , pozitif reellerin üssel sınırlı bir dizisi ve ( )∞
=0kkλ ( )=Λ ( )∞

=0vvkλ  , 

birleşik bir alt dizi olsun. Burada, ( ) (≤≤ v k

∑
v

kkvk  olacak biçimde bütün  

tamsayıları üzerine alan maksimum ve toplam sembolü için  ile  

kullanacağız. Bu durumda; 

v
max

( )Λ= ∞cX  için,  

) 11 −+

      ( )( ) ( )



















=Λ ∑∑

∞

= ∈

∞

=
+∞∞

k njvv
vk

Nm m mcM 11maxmaxsup,
0

1 λ
λω  





















∑

j N
nj

m

a

ve  

    ( ) ( )( ) ( )



















∆=Λ ∑ ∑∑

∞

= ∈

∞

=
+∞∞

kj Nn
nn

mjvv
vk

Nm
m

m

ccM µ
µλ

λµ 11maxmaxsup,
0

1  ( )




















nka

AL

Q

yazılır.  
3.2. Kompakt Olmama Derecesi ve Dönüşümler  
 

Bu bölümde, bir  operatörünün kompakt oluşunu inceleyeceğiz. 
Çalışmamız daha çok kompakt olmama derecesi kullanma üzerine olacaktır.  

Bilindiği üzere; Tanım 2.12’deki verilenlerle birlikte, eğer  bir X metrik 
uzayının sınırlı bir altkümesi, o zaman Q ’nun kompakt olmama Hausdorff derecesi, 

 ile gösterilir ve  ( )Qχ
( ) { }sahip ağabir sonlu  de' , :0inf −>= εεχ X QQ  

yazılır.  
χ  fonksiyonu, kompakt olmama Hausdorff derecesi diye adlandırılır 

(Banas ve Goebl, 1980; Akhmerov ve ark., 1992; Rakocevic, 1994).  
Şimdi bazı tanımları burada ifade edelim:Öncelikle, Q ’nun kapanışı  ile 

gösterilsin. Eğer , , ve Q  bir 1Q 2 ( )dX ,  metrik uzayının sınırlı alt kümeleri ise, 
o zaman,  

Q
Q

     ( )Qχ  bir tam sınırlı küme, Q⇔= 0

( ) ( )Qχ=Qχ  ,  
    ( )121 QQQ χχ ≤⇒⊂

( )
, 

({ }2, Q1Q21 maxQQ χχχ =∪
( )

, 
( ){ }2Q1 ,Q21 minQQ χχχ ≤∩  

( )2Q
) ( )

( )
olur.  

Eğer X  uzayı bir normlu uzay ise; o zaman burada  fonksiyonu 
lineer yapıyla bağlantılı olan bazı ilave özelliklere sahiptir. Mesela; 

( )2QQ ( 1Q ) ( 2Q )1 χχχ +≤+ , her C∈λ  için ( ) ( )QQ χλλχ =  vardır.  

( )Qχ−p
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Eğer X  (sırasıyla, ) bir Y normlu (sırasıyla, normlu) uzay ve 
 ise; o zaman (X ,A χA  ile gösterilen A ’nın kompakt olmama Hausdorff 

derecesi; { : }1≤∈= xXxK , X ’de bir birim küre olmak üzere ( )AKA χχ =  ile 

tanımlanmaktadır. Ayrıca; A  kompakttır ⇔  0=χA  ve ’dır.  

−p −q
)Y∈

AA ≤χ

Banas ve Goebl (1980) yada Akhmerov ve ark.’da (1992) görülebileceği 
üzere aşağıdaki iyi bilinen sonucu hatırlayalım:  

X , bir  Schauder tabanlı bir Banach uzayı; , ’in sınırlı bir 
alt kümesi ve , XX →Pn : { }nee ,...,2e ,1 ’nin lineer gereni üzerine bir projektör 
olsun. O zaman; n

n
PIa −=

∞→
suplim  iken,  

{ },..., 21 ee Q X

( ) ( ) ( )xPI n−

( )

xPIa xn
n

xn
≤≤








−

∈∈∞→ QQ
Q supinfsupsuplim1 χ  

        



− xPn




≤

∈∞→
I

xn Q
supsuplim                    (3.14) 

elde edilir.  
 Bu bölümün esas sonucu aşağıdaki teoremdir:  
 
Teorem 3.2.1.  
 

A , X  ve Y ; Sonuç 3.1.1’deki gibi tanımlı olsun.  
 
 (i) Eğer X  bir normlu uzay yada Y 0ω  ,ω  , ∞ω  için  
ise, bu taktirde;  

( )YX ,∈A−p =

( )
{ } 








∑
*

,kmN
iA








=

∈+⊂>∞ ,...,1,

1maxsup
km ikmNmk

m
k

A ω                        (3.15) 

için eğer =Y  ise,  0ω

( )
m

A
m

m
LA

∞∞→
≤≤ χω 4lim                                   (3.16) ( )mA

∞∞→ ωlim

=Yve eğer ω  ise,  

( ) ( )mA
∞∞→ ωlim

=
m

A
m

m
LA

∞∞→
≤≤ χω 4lim

2
1                               (3.17) 

ile Y  ise,  ∞ω

m
AL ≤≤ χ lim40                                                   (3.18) ( )mA

∞∞→ ω

elde edilir.  
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 (ii) Eğer X  bir normlu uzay yada −p =Y (0c , ( )µc ( ) yada  için 
 ise, o zaman  Y,A













−= ∑

∈
−

+⊂>∞
1

,...,1
,

1
,

1maxsup
km

km Ni
iiii

kkmNmk

m
c AAA µµ

µ

*

)µ µ∞c
( )X∈

( )
{ }

            (3.19) 

için eğer =Y  ise,  ( )µ0c

( )
m

A
m

cm
LA

∞∞→
≤≤ 4lim χ                                   (3.20) ( )m

cA
∞∞→

lim

= ( )ve Y  ise,  µc
( ) ( )m

cA
∞∞→

lim

= ( )

m
A

m
cm

LA
∞∞→

≤≤ 4lim
2
1

χ                               (3.21) 

ile Y  ise,  µ∞c

m
AL

→
≤≤ lim40 χ                                        (3.22) ( )m

cA
∞∞

olur.  
 

İspat : (3.16) ve (3.20)’deki limitler var olsun. Ayrıca da; 
∈= XxK  alalım. (3.14) eşitsizliği ile =Y  durumunda; 00:mP  

,  biçiminde ilk m  koordinatlı bir projektör yani 
 , 

2,1=m
( ) ( 1m xxP = ),...0,0,m,...,, 2 xx 0ω∈= ixx  biçiminde 

{ }1: ≤x 0ω ωω →
,...

( )

   ( ) ( ) 


AxPm

0>





−==

∈∞→
IAKL

Kxm
A suplimχχ                         

(3.23) 
yazabiliriz. Verilen ε  için;  

( ) ( )−>− PIAxPI mm A

Kx ∈

                                       (3.24) 2ε−

olacak şekilde  vardır. Ayrıca;  

( ) ( )
( )

( ) 2ε−Ax

( )( )mx >

1

1
−>∑

+=

PIxA
xk m

xk

mi
i                                  (3.25) 

olacak biçimde ile belirli bir k  tamsayısı mevcuttur. Peyerimoff 
(1957) tarafından verilen ve iyi bilinen bir eşitsizlik gereğince,  

( )xk

   
( ) ( ){ } ( ) ( )

( )
( )∑

=∈+⊂
≥













 k

iNi
i

xkmN xk
xA

xk
xkm

xkm ,...,1

11max4
,

,

                (3.26) ( )
( )

∑
+

x

m
i xA

1

olur. Yine (3.24) ve (3.25) gereğince,  
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( ) ( ){ } ( ) ( )

( )

−≥














∑
∈+⊂

PIxA
xk

Ni
i

xkmN
xkm

xkm
,

,

1max4
,...,1

                   (3.27) ( ) ε−Am

0>elde edilir. ε  keyfi ve  olduğundan her  için (3.27)’den dolayı,  Kx ∈ m

  ( )
{ } 













∑

kmN
iA

,

mk >














≤−

∈+⊂> km ikmNmk
m k

API
,

1maxsup4
,...,1

                     (3.28) 

yazılır. Böylece (3.23) ve (3.28) gereğince (3.16)’da ki ikinci eşitsizliği buluruz. 
(3.16)’da ki birinci eşitsizliği ispatlamak için, varsayalım ki; m  bir tamsayı, , 

{ }k,...,1mN km, +⊂  ve ’dır. O zaman,  Kx ∈

IxAkxAkxAk

k

mi
i

Ni
i

Ni
i

kmkm

≤≤≤ ∑∑∑
+=∈∈ 1

111

,,

  ( )AxPm−

>olur. Buradan; her m  ve k  için, m
Ni

i IAk
km

−≤∑
∈ ,

1  değerine sahip 

oluruz ve (3.23) yada (3.14) gereğince; (3.16)’da ki ilk eşitsizliği elde ederiz. 
(3.17)’yi ispatlamak için; dikkat çekildiği üzere, her  dizisi = kxx
x  olacak biçimde l  elemanı için  C

( ) Am LP

( ) ω∈∞
=0k

ω∈− el ∈

( ) ( )k
k e− l

k
xex ∑

∞

=

+=
1

l   

ile bir tek gösterime haiz bir değer vardır. Öte yandan; mP  , 

 , ( ) (
m

k
m xexP ∑

=

+=
1

l ( )k =m biçiminde bir tanım yapalım. 

,...2,1=   ,   2=− mPI m olduğu kolayca ispatlanabilir. Ayrıca; (3.17)’nin ispatı 
(3.16)’nın ispatına benzer olduğundan istenen kolayca elde edilebilir.  

ωω →:

)k e− l ,...2,1

 (3.18)’yi ispatlayalım. Buna göre;  

∞∞ → ωω:mP  , ( ) ( ),...0,mx,...,, 21m xxxP =  , ( ) ∞∈= ωixx  ,  ,...2,1=m

biçiminde tanımlama yapalım. Açıktır ki;  

( ) (IAKPAK m −+⊂  )( )AKPm

olur. Ayrıca, χ  fonksiyonunun elementer özellikleri ile,  

( ) ( )( ) ( PIAKPAK m −+≤ χχχ  )( )( )AKm
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       (( )AKmPI −= χ  )( )

       ( )AxPmI
Kx

−≤
∈

sup                          (3.29) 

elde edilir. (3.18)’deki limit açıkça var olduğundan, (3.29) ile (3.16)’da ki ikinci 
eşitsizliğin ispatından dolayı (3.18) bulunur. Dikkat edileceği üzere; (3.20), (3.21) ve 
(3.22) eşitsizlikleri (3.16), (3.17) ve (3.18) eşitsizlikleri ile benzer bir biçimde 
ispatlanabilir.  

 
Sonuç 3.2.1.  
 

A , X  ve Y ; Teorem 3.2.1’deki gibi tanımlı olsun. O zaman;  
için, 

( )YX ,∈A
A  kompakttır ⇔  ∞A  ve eğer =Y  ve ω  ise  0ω<

∞ω

lim
∞→m

                                           (3.30) ( ) 0=
∞

mA ω

olur. A  kompakt ⇒  ∞<
∞ωA  ve eğer  ise  =Y ∞ω

lim
∞→m

                                              (3.31) ( ) 0=
∞

mA ω

olur. Ayrıca; A  kompakttır  ⇔ ( ) ∞cA  ve eğer =Y ( )µ0c  ile c  olursa  ( )µ<
∞ µ

( )
( ) 0=

∞

m
µlim

∞→ cm
A                                         (3.32) 

ve A  kompakt ⇒  ( ) ∞<
∞ µcA  ve eğer =Y  ise  ( )µ∞c

( )
( ) 0=

∞

m
µlim

∞→ cm
A                                         (3.33) 

elde edilir.  
 
 Şimdi Uyarı 3.1.1 ile bağlantılı olarak birkaç sonuç verelim:  
 
Sonuç 3.2.2.  
 
 A , X  ve Y ; Teorem 3.2.1 ve Uyarı 3.1.1(i)’deki gibi tanımlı olsun. Bu 
durumda;  için  ve 

{ }k,...,m 1
max

+Nm k, ⊂ kmN ,

max ( )YX ,A ∈  ile pX l=  (0  ve her 

 için,  m

)∞<< p
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       ( )( )














































































=

∑ ∑

∑

∞

= ∈>

∈>

∞

a
k

ak

M qq

j Ni
ij

Nmk

Ni
ij

jNmk
m

p

km
km

km
km

0   ,  1maxsup

     ,  1supmaxsup

, 1

1 ,
,

,
,

ωl

∞<<

≤<

p

p 10

  

ve  

( )( )( )

( )

( )
















































∆




























∆

=

∑ ∑

∑

∞

= ∈>

∈>

∞

a

a

cM qq

j Ni
ijii

kNmk

Ni
ijii

kjNmk
m

p

km
km

km
km

0   ,  1maxsup

     ,  1supmaxsup

, 1

1 ,
,

,
,

µ
µ

µ
µ

µl

∞<<

≤<

p

p 10

  

olur. O zaman; A  kompakttır ⇔  ( ,pM l  ve eğer =  ve ω  ise bu 

durumda  

) ∞<∞ω Y 0ω

( ,lim
∞→

p
m

M ωl                                (3.34) )( ) 0=∞
m

olur. A  kompakt ⇒  ( ) ∞<∞ω,pM l  ve =Y  ise  ∞ω

( ,lim
∞→

p
m

M ωl                                (3.35) )( ) 0=∞
m

olur. A  kompakttır  ⇔ ( ∞cM p ,l  ve eğer =Y ( )µ0c  ile  olursa bu 

halde  

( )) ∞<µ ( )µc

( )     ( ,lim ∞
∞→

p
m

cM µl                                 (3.36) 

( )
)( ) 0=m

olur ve A  kompakt ⇒  ∞ µcM p ,l  ve eğer =Y  olacak şekilde 

verilmiş ise  

( ) ( )µ∞c

( )

∞<

( ,lim ∞
∞→

p
m

cM µl                           (3.37) )( ) 0=m

elde edilir.  
 
Sonuç 3.2.3.  
 
 A , X  ve Y ; Teorem 3.2.1 ve Uyarı 3.1.1(ii)’deki gibi tanımlı olsun. Bu 
durumda;  için  ve 

{ }k,...,m 1
max

+Nm k, ⊂ kmN ,

max ( )YX ,A ∈  ile  pX ∞= ω (0  ve her 

 için,  m

)∞<< p
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( )











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










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









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




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




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
























−≤≤ ∈

∞

=>

































∈−≤≤

∞

=>

=






∞∞

∑ ∑∑

∑∑

+

+

qq

j Ni
ija

k
v

pv
Nmk

Ni
ija

kjv

pv
Nmk

mpM

vv
km

km

km
vv

km

      ,  

1

122

1

0

2maxsup

,  1

122
max

0

2maxsup

,

1
,

,

,
1

,

ωω

∞<<

≤<

p

p

1

10        

 

ve  

( )
( )

( )

( )
















































































−≤≤ ∈

∆
∞

=>

































∈

∆
−≤≤

∞

=>

=






∞∞

∑ ∑∑

∑∑

+

+

qq

j Ni
ijaiik

v

pv
Nmk

Ni
ijaiikjv

pv
Nmk

m
cpM

km
km

km
km

      ,  

1

122

1

1

2maxsup

        ,  1

122
max

1

2maxsup

,

1vv
,

,

,

1vv
,

µµ

µµ

µω

∞<<

≤<

p

p

1

10

olur. O zaman; A  kompakttır ⇔  ( ) ∞<∞∞ ωω ,pM  ve eğer =Y 0ω  ve ω  ise bu 
durumda  

( ,lim ∞
∞→

p
m

M ωω                               (3.38) )( )
0=∞

m

olur. A  kompakt ⇒   ve ( ∞ω ,pM ) ∞<∞ Y  ise  ω = ∞ω

( ,lim ∞
∞→

p
m

M ωω                               (3.39) )( )
0=∞

m

olur. A  kompakttır   ve eğer ⇔ ( ∞∞ω cM p , ( ) ∞<µ ) =Y ( )µ0c  ile  olursa bu 
halde  

( )µc

( )( ,lim ∞∞
∞→

p
m

cM µω                          (3.40) )( )
0=

m

olur ve A  kompakt  ⇒ ( )( ) ∞<µ∞∞ω cM p ,  ve eğer =Y  olacak biçimde 
verilmiş ise  

( )µ∞c

( )( ,lim ∞∞
∞→

p
m

cM µω                          (3.41) )( )
0=

m

elde edilir.  
 
Sonuç 3.2.4.  
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 A , X  ve Y ; Teorem 3.2.1 ve Uyarı 3.1.1(iii)’deki gibi tanımlı olsun. Bu 
durumda;  için  ve 

{ }k,...,m 1
max

+Nm k, ⊂ kmN ,

max ( )YX ,A ∈  ile ( )Λ= 0cX  , ( )Λc  ve  

biçimi ile her m  için,  

( )Λ∞c

    ( )( )( )
( ) ( ) ( )




















=Λ ∑∑

∞

= ∈−+≤≤

∞

=
+

>
∞∞

rj Nijvrrvrv
vr

Nmk

m

km k
cM

,

11maxmaxsup,
110

1 λ
λω  





















∑ ij

km

a
,

ve  

( ) ( )( )( )
( )

( ) ( )






















∆=Λ ∑ ∑∑

∞

= ∈
−+≤≤

∞

=
+

>
∞∞

rj Ni
i

kjvrrvrv
vr

Nmk

m

km
km

ccM

,
,

11maxmaxsup,
110

1 µλ
λµ

yazılır. O zaman; A  kompakttır ⇔  ( )( ) ∞<Λ ∞∞ ω,cM  ve eğer =Y 0ω  ve ω  ise 
bu durumda  

( )
























iji aµ

( )( ,lim Λ∞
∞→m

cM ω                                     (3.42) )( ) 0=∞
m

olur. A  kompakt ⇒  ( )( )Λ ∞∞ ω,cM  ve eğer  olacak şekilde verilmiş 
ise  

=Y ∞ω∞<

( )( ,lim Λ∞
∞→m

cM ω                                     (3.43) )( ) 0=∞
m

olur. A  kompakttır  ⇔ ( )( )Λ ∞∞ µccM ,  ve eğer =Y ( )µ0c  ile  olacak 
biçimde ise  

( ) ( )µc

))

∞<

( ) (( ,lim Λ ∞∞
∞→m

ccM µ                                (3.44) ( ) 0=m

olur ve A  kompakt  ⇒ ( )( )Λ ∞∞ µccM ,  ve eğer =Y  olacak biçimde 
verilmiş ise  

( ) ( )µ∞c

))

∞<

( ) (( ,lim Λ ∞∞
∞→m

ccM µ                                (3.45) ( ) 0=m

elde edilir.  
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4. KUVVETLİ C TOPLANABİLİR ve SINIRLI DİZİLERİN UZAYLARI   
ARASINDA LİNEER OPERATÖRLERİN KOMPAKT OLMAMA 
DERECESİ  

1

 
 

Bu bölümde bazı X  ve Y dizi uzayları arasında bir X dizi uzayını bir 
dizi uzayı içine dönüştürmede sonsuz matrisler için gerekli ve yeterli şartlar 

verilecektir. Ayrıca; kompakt olmak üzere bu uzaylar arasında bir lineer operatör 
altında kompakt olmama Hausdorff derecesine ilişkin gerekli ve yeterli şartlar da 
verilecektir.  

Y

ω p
∞ω

 
 
4.1. Matris Dönüşümleri  
 
  ,  ve  kümelerinin p

0ω p duallerini yazmak için 

 ile tümü  indisli alınmak suretiyle toplam ve maksimum için de 
ile  yazılarak aşağıdaki ifadeleri yazabiliriz:  

1− k2 1+v

v
max

2v

∑
v

≤≤ k

−β















∞<<















∞<














∈













∞<∈

=

∑ ∑

∑
∞

=

∞

=

 ; 1     ,  2:

                    ,  max2:

0

1
0

paa

aa

v

q

v

q
k

p
v

v
k

v
v

ω

ω

pM

−
=

=

1

1        

p
pq

p

 
























=

∑ ∑

∑
∞

=

∞

=

a

a

v

q

v

q
k

p
v

v v
v

p

   ,  2

  max2

0

1
0

M

∞<

=

p

1

<

p

1

  ,

 ( )için  pMa ∈∀  







=
∞

1pω





= ∑
∞

=

:sup
1

* xxaa
k

kk  







=1pM

∞<≤ p







= ∑
∞

=

:sup
1

** xxaa
k

kk  

Şimdi bu doğrultuda bir yardımcı teoremi verelim:  
 
Lemma 4.1.1.  
 

1  olmak üzere;  
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 (i) ( ) ( ) ( ) =
β pMpMppp == ∞

ββ
ωωω0  ve  üzerinde pa M=

pM

a *  olur 

(Maddox, 1968; Malkowsky, 1996).  
 Ayrıca;  kümeleri  normları ile K uzaylarıdır (Malkowsky, 

1988) ve M  uzaylarının p AK ’ya sahip olduğunu görmek kolaydır.  

pM B

 (ii) O zaman; , p
∞ω tamdır yani ( ) p

∞= ω
ββ

∞= ω
ββ

p
∞ω  , 

’dur (Malkowsky, 1988) ve ( ) ( )pp = ωω
ββ

0
p ( )p =

β
M p

∞ω  üzerinde 

paa
∞

= ω
** ’dur (Malkowsky, 1987). A  sonsuz bir matris ise, A ’nın 

satırındaki dizi için  ve onun transpozu için .n nA TA  yazılır. ω ’nın herhangi iki 
X ve Y  alt kümesi için; ( ) , YX , X ’den Y ’ye dönüşen tüm sonsuz matrislerin 

sınıfı olarak gösterilir. Böylece, ( )YX ,A ∈ ’dir ⇔  n∀  için  ve  
için  

βXAn ∈

−β

Xx ∈∀

Y
n

∈




∞

=1

( ) ( )( ) xaxAxA
k

knknn 




==

∞

=

∞
= ∑

1
1  

yazılır. ( )YX , ( )A ∈  ise, ( )XxxAxLA ∈=    bir LA ∈  elemanını tanımlar 
(Malkowsky ve Rakocevic, 1998).  

) ( ( )YXB ,

 
Teorem 4.1.1.  
 

∞<≤ p1  olsun. O zaman;  

 (i) ( ) ( ) ∞<



p

( )p
0ω ⇔ k






=⇔∈ ∑

=
∞∞

m

n
nk

km

pp amMA
1,

11
1sup,, ωω ll                            (4.1) 

olur.  
 (ii)   (4.1) sağlanır ve A ∈ 1,l ∀  için  

0=



p
nk

( )pω ⇔ k

1lim
1






∑
∞

=
∞→ nm

a
m

                                (4.2) 

olur.  
 (iii)   (4.1) olur ve A∈ ,1l ∀  için  

0=



p
kλ

∞
=1kkλ

1lim
1






−∑

=
∞→

m

n
nk

m
am                          (4.3) 

olacak şekilde bir ( )  dizisi mevcuttur.  
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İspat : (i)’deki (4.1) koşulu,  ile Wilansky’den (1964) görülebilir. 
(ii) ve (iii) kısımları ise, (i) kısmı ile Malkowsky ve Rakocevic’den (1998) 
görülebilir.  

pY ∞= ω

 T  ile; her  için ’den bir ve yalnız bir  var olacak 

biçimdeki tamsayıların tamamı artan bütün ( )  dizilerinin kümesini gösterelim. 
Bu durumda aşağıdaki ifade yazılabilir: 

v 2 ≤≤ v
v t 12 1 −+v

vt
∞

=0vvt

( )
























































=

∑

∑ ∑

∑ ∑

∈∈⊂

∞

= ∈∈⊂

∞

= ∈⊂

a

a

a

M

Nv
tn

v

TtN

n

p

Nv
tn

v

TtN

v Nn
nk

v
v

N

p

v

v

,  2supsup

   ,  2supsup

,  max2sup

,

,

1
,

0

0

0

0

N

N

N

lω

∞=

∞<<

=

p

p

p

     

1

1         

∞≤≤ p

 

 
Teorem 4.1.2.  
 
  olsun. O zaman;  1

( ) ( )pp ll ,,0 == ωω                                       (4.4) ( )pl,∞ω

ve  
( ) (⇔∈ p MA l, 00 pl,ωω                                   (4.5) ) ∞<

olur.  
 
 İspat :  durumu, 1=p ∞=X  ile Malkowsky (1987) ve Lemma 
4.1.1(i)’den görülebilir. ∞≤< p1  haline; ∞<1  için ( )1−= pp ∞=p

q
q  ve  

için  iken  ile 1= pl 0Z = ω=X  ifadelerini Wilansky’deki (1964) şekilde 

uygulayalım. X  ve Z , AK ’lı BK  uzaylarıdırlar. Buradan  

ωωω ,,0
< p

( ) ( )pp ll ,, 00 == ωω ββ  ( )pl,∞ω

∞⊂elde edilir. İkinci denklik Lemma 4.1.1(ii)’den dolayı sağlanır. ⊂ω0  
olduğundan (4.4)’deki özdeşlikleri oluşturabiliriz. Dahası, Wilansky’den (1964) 

pl,0A ω∈ ’dir  Lemma 4.1.1(i)’den ⇔ ( ) ( )1, Mql0,p
TA l =∈ βω ’dir.  

ωω

( )
Sonuç olarak; Malkowsky’den (1988)  

( ) (⇔∈ q
T MA l , 0

1 ωM  ) ∞<pl,

yazılır.  
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Uyarı 4.1.1.  
 

Malkowsky ve Rakocevic (1998) ve Lemma 4.1.1(i)’nin bir uygulaması 
( ∞l,0 )∈ ωA ’yı verir  ⇔  için Teorem 4.1.2’deki (4.5) koşuluna denk bir 

koşul olarak  
∞=p

∑
∞

=0
max2sup

v v
v

n
∞<nka

12 +≤ µn

                                 (4.6) 

olur.  biçimindeki tüm tamsayılar kümesini 2 ≤µ  ile gösterip şunu 
yazabiliriz:  

( )µN

 

( )
( )












































































=

∑ ∑

∑ ∑

= ∈∈⊂

∞

= ∈⊂∈

∞

am

a

M
m

n

p

Nv
tn

TtN

v Nn
nk

v
v

NN
p

v
  ,  

2
11supsup

,  
2
1max2maxsup

,

1
,

0

0

0

0

µ

µµ
µ

µ
µ

ωω

N

N

∞<<

=

p

p

1

1        

∞≤≤ p

 

 
Teorem 4.1.3.  
 

1  olsun.  
 
 (i) O zaman,  

( ) ( )pp
∞∞ == ωωωω ,,0                                      (4.7) ( )p

∞∞ ωω ,
elde edilir;  

( ) ( ) ∞<∞
pω⇔∈ ∞

p MA ωωω ,, 00                                  (4.8) 
olur.  
 (ii) (∈A 0ω  (4.8) ve (4.2) koşulları sağlanır; ( ) ⇔pω,∈A ω0  (4.8) 

ve (4.3) koşulları sağlanır; (∈A 0ω  (4.8) ve (4.2) koşulları sağlanır ve  

)⇔p
0,ω

)⇔p
0,ω

0=





p

nk

( ) ⇔pω,

1lim
1 1







∑ ∑
=

∞

=
∞→

m

n km
a

m
                                         (4.9) 

olur;  (4.8) ve (4.3) koşulları sağlanır ve bazı kompleks ∈A ω λ  sayısı için  

0=





p

λ1lim
1 1






−∑ ∑

=

∞

=
∞→

m

n k
nk

m
a

m
                                 (4.10) 

olur.  
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 İspat : (i)  için, (i) kısmı Malkowsky (1987) ve Lemma 4.1.1(i)’nin 
direkt bir sonucudur. 1  halinde; (4.7)’deki özdeşlikler, Teorem 4.1.2’nin 
ispatındakine benzer bir yöntemle görülebilir.  

1=p
∞<< p

Burada " ( ) ( ) ( ) " sonucunu elde 

etmek için 

1,MM p
00 ,, M ppTp AA =∈⇔∈ ∞ ωωω

0ω=X pZ M= ve  ile Wilansky’yi (1964) uygulayabiliriz. Sonuç 

olarak; Malkowsky’den (1988) ( ) ( ) 0, <∞
pω

0

, 1 ⇔∈ pT MA ωMM 0  olur.  
  (ii) Bu, Malkowsky ve Rakocevic’den (1998) görülebilir ve gerçek 
olan şu ki; ω  , AK ’ya ve (2.1)’de verilen ω ’daki diziler üzerine gösterime de 
sahiptir. Şimdi,  operatör normu için hesaplamalar bazı verelim. Dahası burada,  

( ) ( )∞<≤ p









= ∑

=
∞ a

m
M

pm

n

p
nk

km

p
A 1 1sup~,

1

1,
1

* ωl  

AL

ve X  herhangi  uzayı olmak üzere;  BK

( )
*

∑
∈Nn

nA ( )
sonlu 

1
* sup,

⊂
=

NN
A XM

N
l  , * ,A XM =∞l  ,  *sup n

n
A

( )
( ) 








∑
∈

*

µN
nA








=

⊂
∞

*

2
1maxsup,

µ
µ

µµ
ω

nNN
A XM  

ve  

( )






*

tA µ
µ

∞<≤ p








= ∑

∈⊂

1* 2sup,
0 NNN

A XM
µ

M  

yazılabilir.  
 
Teorem 4.1.4.  
 
 (i)  , (2.3) üzerinde tanımlı ’nın 1 p

∞ω p
∞ω~ A ∈ ve  

verilsin. Bu durumda;  

( )p
∞ω,1l

A ML = *                                      (4.11) ( )p
A ∞ω~,1l

yazılır. 
 (ii) X  keyfi bir  uzayı olsun. A ∈  ise,  ( )1,lXBK

( ) ( ) ( )1
* ,lXA

( )∞∈ l,X
1

* 4,l MALXM A ≤≤                            (4.12) 
olur.  ise,  A

( )∞l,
* XA

∞

= MLA                                       (4.13) 

yazılır. (2.1)’de tanımlı ω ’daki norm 
∞ω  ve ∈A  ise,  ( )∞ω,X
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( ) ( ) ( )∞ω,XA∞ ≤≤ω 4, ** MALXM A                         (4.14) 
olur.  
 (iii) X  keyfi bir  uzayı ve A ∈  olsun. Bu durumda,  ( )1, MXBK

( ) *1* 4, M MLXM AAA ≤≤                           (4.15) ( )1, MX
olur.  
 
 İspat :  
 

(i) 1=
1

∑
∞

=
kx1 =

k
x  ile ( )p

∞ω,1A ∈ l  , 1l∈x N ve ∈m  verilsin. Bu 

durumda, Minkowski eşitsizliğini kullanarak,  
 

( ) ( )p
A ∞ω~,1
* l

k

pm

n

p
nkk

pm

n

p

k
knk

pm

n

p
n Ma

m
xxa

m
xA

m

∞

= ==

∞

==

≤












≤
















=













∑ ∑∑ ∑∑ 111

1

1

1

1

1 1

1

1

 
elde edilir.  
 Böylece, m  keyfi seçilmek üzere ( ) AMxA p ≤

∞ω
*~  ve dolayısıyla,  ( )p

∞ω~,1l

( ){ }A MxxAL p ≤==
∞ω 1:sup 1~             (4.16) ( )p

A ∞ω~,1l

( ),...2,1=
olur.  
 Şimdi,  verilsin. Bu durumda; ( ) = kex k

1l∈x  ,  ve  1=x

( )  A

pm

n

p
nk La

m
xA p ≤










= ∑

=
∞

1

1

1supω

 ile birlikte  
(AM ω~,1

* l                                       (4.17) ) A
p L≤∞

olmayı gerektirir. Buradan; (4.16) ve(4.17)’den, (4.11) sonucuna ulaşılır.  

 (ii) İlk önce, (4.12)’yi görürüz. 1=x  ile ( )1,lXA ∈  , Xx ∈  ve  
verilsin. Bu durumda, Peyerimoff’daki (1957) iyi bilinen bir eşitsizlik altında , 

N∈m

( )
{ }

( )1
* ,lXA

m

11 ,...,1
4max4 MxaxA

k
k

Nn
nk

m

n mN
n ≤










≤ ∑ ∑∑

∞

= ∈= ⊂
 

yazılabilir.  keyfi olduğundan, ( ) ( )1
* ,lXA1 4MxA ≤  sonucunu çıkarırız ve  

( )1
* ,lXA4MLA ≤                                      (4.18) 

elde edilir.  
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 Aksine, N⊂N  keyfi sonlu bir küme olsun. Bu durumda verilen  için 

1=x  ve ≤ ∑
∈NnN

n AA
*

∑
∈n

 olacak şekilde bir ( ) X∈Nxx = ε,  dizisi 

vardır. Bu sebeple, ( ) ( ) εε ++≤ ∑∑
∈∈ Nn

n
Nn

n xAA
*

0

ε+≤ xA 1 ≤ AL  yazılır. 

 ve N⊂N >ε  keyfi olduğu için,  

0>ε

( ) ε+n x

( ) AL≤1A XM * ,l                                        (4.19) 
yazılır.  
 (4.18) ve(4.19)’dan, (4.12) sonucuna ulaşılır. (4.13) eşitsizliği, Malkowsky 

ve Rakocevic’den (1998) görülebilir. (4.14)’deki eşitsizlikler; µNµ ⊂N  ve  , 

µ  ile yer değiştiren m
1  ve Nm ⊂ ,...,1  , ’li Malkowsky ve Rakocevic’de 

(1998) olduğu gibi benzer bir yolla tam olarak görülebilir.  

µ2
1

{ }m m

 (iii) 1=x  ile ( )1M,X xA ∈  , X∈  ve  verilsin. 

( )xAA n
Nn

n µµ
∈

= max  olacak şekilde ( ,...2,1=µ ) ∈ µNµn  seçebiliriz. Bu 

durumda; Peyerimoff’daki (1957) iyi bilinen eşitsizlik ile,  

00 N∈µ

{ } ∑∑
∈⊂=

≤
N

nA
µµ

µ

µ

µ
µ

max42
0

0

,...,00 N
nAµ

µ
2  

{ }∑ ∑
∞

= ∈⊂ 





=

1,...,0
2max4

0 k NN
a

µ

µ
µ 






, kkn x

µ
 

( )1, MX

00 N∈

*
*

42supsup4
0

MA A
N

t
TtN

=















≤ ∑

∈∈∈ µ

µ
µ

N
 

yazılabilir. Bu her µ  için sağlandığından ( ) *41M MxA ≤  sonucu 
bulunur ve  

( )1, MXA

*4MLA ≤                                    (4.20) ( )1, MXA

0 0>
elde edilir.  
 Aksine; N∈N  ,  ve Tt ∈ ε  verilsin. Bu durumda;  ve  1=x

µ

µ

µ

µ
µ

≤ ∑∑
∈∈ NN

t AA 22

*

  ( ) ε
µ

+t x

) Xtolacak şekilde bir (Nxx ∈= ,  dizisi vardır. Bu sebeple,  ε,
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( ) ( ) ε+AL

0 0>

εε
µ

µ

µ

µ
µµ

≤+=+≤ ∑∑
∞

= ∈∈
n

NnN
t xAxAA 1

0

*

max22 M   

elde edilir.  
  , t  ve N∈N T∈ ε  keyfi olduğundan  

(A XM * , M                                      (4.21) ) AL≤1

yazabiliriz. Sonuç olarak, (4.20) ve (4.21)’den (4.15) sonucu elde edilir. Şimdi de 
Teorem 4.1.1, 4.1.2 ve 4.1.3’deki karakterize edilmiş olan matris dönüşümlerinin 
operatör normlarını hesaplamak için önceki sonuçlara başvurabiliriz. X  ; , ω , 

 uzaylarının herhangi biri olsun. Bu durumda;  
0ω

∞ω

( )





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∞

⊂ o v
v

NN
A XM max2sup,
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= ∈v Nn
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*
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v

NN
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ve 1  ile ∞<p q  için, 1−= p
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
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
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
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
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∞
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1
,

1* 2supsup,
0N
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

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







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v

1
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





















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1supsupsup,

0 µ
µµN
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






















 pp 1

olur.  
 
Sonuç 4.1.1.  
 

X  ; 0ω , ω ,  uzaylarının herhangi biri ve (2.1)’de tanımlı  

normu verilsin. Bu durumda; A ∈  ise,  
∞ω p

∞ω

( )1,lX

( ) ( )1
* ,lXA

( )∞∈ l,X
1

* 4,l MLXM AA ≤≤   
olur.  ise,  A

( )∞l,
* XA= MLA   

olur.  
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( )  ,1  , −=∞<<∈ pqpXA pl p  ise,  ( )( )1

( ) *1* 4, M AAqA TT MLM l ≤≤   ( )1, Mql

( )∞olur. ∈A  ise,  ω,X

( ) ( )∞ω,X∞ ≤≤ω 4, ** MLXM AAA   
olur. 
 ( )∈ ∞XA p 1  ,ω ( )∞<< p  ise,  

( ) ( )1, MM p

AL

Q

*1* 4, MM AA
p

A TT MLM ≤≤   

yazılır.  
 
 
4.2. Kompakt olmama Derecesi ve Dönüşümler  
 
 Bu bölümde diğer durumların yanı sıra aynı zamanda bazı özel durumlar 
içinde gerekli olan  operatörünün kompaktlığını inceleyeceğiz ve 
çalışmalarımızda kompakt olmama derecesinden yararlanacağız.  

Bilindiği üzere; Tanım 2.12’deki verilenlerle birlikte, eğer  bir X metrik 
uzayının sınırlı bir altkümesi, o zaman Q ’nun kompakt olmama Hausdorff derecesi, 

 ile gösterilir ve  ( )Qχ
( ) { abir sonlu  de' , :0inf }sahip ağ−>= εεχ X QQ  

yazılır.  
χ  fonksiyonu, kompakt olmama Hausdorff derecesi diye adlandırılır 

(Banas ve Goebl, 1980; Akhmerov ve ark., 1992; Rakocevic, 1994).  
Şimdi bazı tanımları burada ifade edelim:Öncelikle, Q ’nun kapanışı  ile 

gösterilsin. Eğer , , ve Q  bir 1Q 2 ( )dX ,

Q

 metrik uzayının sınırlı alt kümeleri ise, 
o zaman,  

Q
Q

( )Qχ  bir tam sınırlı küme, ⇔= 0

( ) ( )Qχ=Qχ  , 

( )121 QQQ χχ ≤⇒⊂ , ( )2Q

( ) ({ }2, Q121 max QQQ χχχ =∪ , ) ( )

( ) ({ }2, Q121 min QQQ χχχ ≤∩  ) ( )

olur.  

Eğer X  uzayı bir normlu uzay ise, o zaman  fonksiyonu lineer 
yapıyla bağlantılı bazı ilave özelliklere sahiptir. Mesela; 

( ) 12 QQQ ( )) ( 2Q1 χχχ +≤+ , her C∈λ  için ( )Qλχ =  vardır.  

( )Qχ

( )Qχλ
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Eğer X  ve Y normlu uzaylar ise,o zaman ( )Y,XBA∈  için  ile 

gösterilen A ’nın kompakt olmama Hausdorff derecesi; { }1=:∈= xXxK , X ’de 
birim küre olmak üzere A χχ =  ile tanımlanmaktadır. Ayrıca; A  kompakttır 

 ⇔ 0=χA  ve AA ≤χ ’dır. Mesela, Banas ve Goebl (1980) veya Akhmerov ve 

ark.’da (1992) iyi bilinen sonuçlar ile diğer bazı ifadeleri hatırlarsak şunlar yazılır:  

χA

( )AK

X , bir  Schauder tabanlı bir Banach uzayı; , ’in sınırlı bir 
alt kümesi ve , XX →Pn : { }nee ,...,2e ,1 ’nin lineer gereni üzerine bir projektör 
olsun. Bu taktirde; nP

n
Ia −=

∞→
suplim  iken,  

{ },..., 21 ee Q X

( ) ( ) ( )xPI n−

( )

xPIa xn
n

xn
≤≤








−

∈∈∞→ QQ
Q supinfsupsuplim1 χ  

         



− xPn

0





≤

∈∞→
I

xn Q
supsuplim                   (4.22) 

yazılır.  
 

Şimdi de aşağıdaki yardımcı lemmayı ifade edelim:  
 
Lemma 4.2.1.  
 
 (i)  , pp

0ω→mP :ω ∞<≤ p1  ,  biçiminde ilk m  koordinatlı bir 

projektör verilsin, yani ( ) ( ),...0,0,m,...,, 21 xxmP xx =  ,  olsun. Bu 
durumda, 

( ) p
ix 0ω∈x =

,...2,1 , 1 ==− mPI m ’dir.  

,...2,1=m

 (ii)  için  tarafından 

’yi tanımlayıp (2.2)’deki gösterimle birlikte ele  alalım. Bu durumda 
ise,  

px ∞∈ω =m ,...2,1

p

( ) ( ) ( )∑
=

−+=
m

k

k
km exexP

1
 , ll

p ωω →mP :

,...2,1 , 2 ==− mPI m  
yazılır.  
 
 İspat :  
 

(i) 1≤− mP OPmI olduğu açıktır. I , sınırlı lineer bir operatör ve 
projektör olduğundan 1≥− mP

p
k ω∈∞

=1

I  yazılır ve böylece (i) ispatlanır.  
≠−

 (ii)  verilsin. Bu durumda, ( )kxx = x  (2.2)’deki gösterime 
sahiptir ve  

( )( ) ( ) x2xxxxPI mmm ,...,,0,...,0 21 ≤+≤−−=− ++ ll l   
elde edilir. Buradan ,...2,1  ,  2 =≤− PI m m  bulunur.  
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 2≥− mP 0>I  oluşu ispatlamak için ε  alalım. Bu halde,  

∞→k  ,  →







+ km
k p

22
1

  

olduğu için  

ε−> 2
p

N∈0k u ∈0









+
2

1

0
0
km

k   

olacak şekilde  vardır.Şimdi de  ’yi , pω ( ),...1,1,1−,...,1,1,...,10 −=u  
olarak tanımlayalım. Burada 10 =u  ve l ’dir. Dahası,  1=

( )( ) ε−> 2
p









+
=








+
≥− 221

1

0
0

1

0
0

0
pp

m km
k

kkmuPI   

olur.Böylece, ε−2>m− PI  yani I  bulunur.  2≥− mP

∞<≤ p p
0ω

 
Teorem 4.2.1.  
 

1  verilsin. Ayrıca, (2.3)’de tanımlı olan ve  , ω  ve  
üzerindeki norm  olsun. Bu durumda,  

p
∞ω

p
∞ω

( )( )                                (4.23) 
pu

mn

p
nk

muk
m

p
A a

u
M

1

1
1

* 1sup~, 









= ∑

+=>
∞ωl

yazılabilir.  
 (i) A∈  ise,  ( )p

01,ωl

( )( )m
p

∞ωA
m

A ML
∞→

=χ lim * l                                    (4.24) ~,1

( )pω,1l

olur.  
 (ii)  ise,  A∈

( )( ) ( )( )m
p

∞ω~,1

( )p
∞ω,1l

A
m

Am
p

A
m

MLM
∞→

∞
∞→

≤≤ω χ lim~,lim
2
1 *

1
* ll         (4.25) 

yazılır.  
 (iii)  ise,  A∈

( )( )m
p

∞ωA
m

A ML
∞→

≤≤ lim0 * l                                 (4.26) ~,1

elde edilir.  
 

 İspat : Dikkat edilirse; (4.24), (4.25) ve (4.26)’daki limitler mevcuttur. 
Ayrıca,  
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 biçiminde ilk  koordinatlı bir projektör yani  
{ }1: ≤x pp

00 ω→

,...2,1=m m

( ) p
ix 0ω∈

1∈= xK l  yazılabilir. (i) durumunda, (4.22) eşitsizliği ile   mP :ω

( ) ( ,...,, 21m xxxxP = ),...0,0,m x =,  

olmak üzere, (4.26)’yı  

( ) ( ) 


AxPm



−==

∈∞→
IAKL

Kxm
A suplimχχ               (4.26) 

biçiminde de ifade edebiliriz. Lemma 4.2.1(i)’den ,...2,1 , 1 ==− m

( )

PI m  olduğunu 
hatırlayalım. Ayrıca, ( )nkamA ~=  , " 0~ =nk mna  ise ≤≤1  ve nknk a=a~  ise 

 " biçiminde tanımlı sonsuz bir matris olsun. Yine (4.12)’den  nm <

( )
( ) ( )

( )( ) ( )( )m
p

∞ωAm
p

AAm
Kx

MMLAxPI
mm ∞

∈
===− ω~,sup *

1
* ll 1

p
k 01 ω∈∞

=

       (4.27) ~,

yazılabilir.Açıkçası, (4.26) ve (4.27) ile (i) elde edilebilir.  
  (ii)  verilsin. Bu durumda; ( )kxx = x , (2.2) gösterimine 
sahiptir ve  

pp ω→ ( ) (∑
=

+=
m

k
km xexP

1
lmP ω:  ,  , ) ( )− kel  ,...2,1=m

olarak tanımlayabiliriz. Lemma 4.2.1(ii)’den bilinmektedir ki, I

mP :

 , 
’dir. Ayrıca, (ii)’nin ispatı (i)’deki durumla benzer olduğundan denk 

yollar izlenerek bulunabilir. Şimdi de (4.25)’i ispatlayalım. Yine  , 

   , 

ω

( ) ( ,...,, 21m xxxP = ),...0,mx x = ( ) p
i ∞∈ω ’yi tanımlayalım. Açıktır ki, 

’dır.Ayrıca, ( )AKPAK m +⊂ ( )( )AKPI m− χ  fonksiyonunun elementer özellikleri 
ile,  

2=− mP
,...2,1=m

pp
∞∞ → ω

x ,...2,1=m

( ) ( )( ) (( )AKmPIAKPAK m −+≤ χχχ  )( )

( )( )( ) ( )m
Kx

m AxPIAKPI −≤−=
∈

supχ        (4.28) 
( )mAL=

yazılabilir. (4.25)’deki limit açık bir biçimde var olduğundan (4.28) ve (4.12) ile 
(4.25) elde edilebilir.  
 
 Şimdi ise, yukarıdaki teoremin bir sonucu olarak şunu verelim:  
 
Sonuç 4.2.1.  
 
 ( )p

0ωA∈ 1,l  yada A  ise,  ( )p
01,ωl∈

AL  kompakttır ⇔  ( )( ) 0~,lim 1
*

∞
∞→

A
m

M ωl =m
p

( )p
∞ω,1l

          (4.29) 

olur.  ise,  A∈
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 kompakt ise ( )( ) 0~,lim 1
*

∞
∞→

A
m

M ωl =m
p                (4.30) AL

elde edilir.  
 Aşağıdaki örnek göstermektedir ki,  

( )( ) 0~,lim 1
*

∞
∞→

A
m

M ωl >m
p

AL

 

halinde kompakt olma durumu (4.30)’daki  için mümkündür ve böylece genel 
olarak (4.20)’daki durum tam olarak " ⇒  " haline sahiptir.  ( )ise
 
Örnek 4.2.1.  
 

[ ]nkaA =  matrisi, " 1=nka  iken 1=n  ve 0=nka 1 iken  " biçiminde 
tanımlı olsun. Bu durumda,  

≠n

( 1
*
AM l  ) 1~, =∞

pω
ve  

( )p
∞∈ ωA  ~,1l

olur.  

( )( ) sup1sup~,

1

1
1

* 

 −

=









=

>+=>
∞ ∑

muk

pu

mn

p
nk

muk
m

p
A u

mua
u

M ωl   1
1

=

 p

elde edilir. Öyle ki,  
( )( ) 01~,lim 1

*
∞

∞→

p
A

m
M ωl >=m

x ( ) 1xxA

  

yazılıır. Her  için 1l∈ =  olduğu için,  kompakt bir operatördür.  AL
p
∞ωŞimdi de Sonuç 4.1.1’e bağlı olarak; final uzayları,  ve  olduğu 

zaman operatörlerin kompakt olmama derecelerini çalışmayı sürdürebiliriz. 
pl

X  ;  
, ω  ve  uzaylarından herhangi biri olsun.  için,  

0ω
N∈m∞ω

( )( )
{ } 





= ∑

∞

⊂ 0sonlu   1,2,...,\
1

* max2sup,
v

v

mN
mA XM

N
l  ,  





∑

= ∈v Nn
nka

( )( ) 




= ∑

∞

=>
∞

0

* 2sup,
v

v

mn
mA XM l  ,  





max nk

v
a

( )( ) 













v N
nka

µ

< ( )














= ∑ ∑

∞

= ∈⊂>
∞

0

*

2
1max2maxsup,

nv
v

NNm
mA XM

µ
µ

µµ
ω  ,  

ve 1  ile ∞<p =q  için,  1−p
p
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( )( )















= ∑ ∑

∞

+= ∈∈⊂ mn Nv
tn

v

TtNmqAT aM
1

,
1* 2supsup,

0N
Ml  , 















 pp

v

1
























 pp 1

( )( )
{ }
























= ∑ ∑

∈ ∈∈⊂ Nn Nv
tn

v

TtmN
m

p
A vT aM ,

,...,2,1\

1* 2
2
1supsupsup,

0 µ
µµN

MM

 
yazılabilir.  
 
Teorem 4.2.2.  
 

X ;  , ω  ve  uzaylarından herhangi biri ve (2.1)’de tanımlı olan 
p
∞ω  normu verilsin.  ise,  ( )1,lX∈A

0ω ∞ω

( )( ) ( )( )mX 1,lA
m

AmA
m

MLXM *
1

* lim4,lim l
∞→∞→

≤≤ χ             (4.31) 

yazılır. A  ise,  ( )∞∈ l,X

( )( )m∞l,A
m

A XML
∞→

≤ lim *
χ                                    (4.32) 

( ) ( )1−p  ,  1  , =∞<<∈ pqpXA pl  ise,  ( )

( )( ) ( )( )m
1, M

( )∞

qAm
AmqAm

TT MLM *1* lim4,lim M ll
∞→∞→

≤≤ χ                   4.33) 

∈A  ise,  ω,X

( )( )m∞ω,

( )∞<< p

A
m

A XML
∞→

≤χ lim4 *                                 (4.34) 

( )∈ ∞XA p 1  ,ω  ise,  

( )( )m
1, M

l ≤ ,...2,1

p
Am

A TML *lim4 M
∞→

≤χ                           (4.35) 

olur.  
 

 İspat : (4.31)-(4.35)’deki limitlerin var olduğu bize ifade edilmiş olsun. 
 ,  , pp l→ 1mP : ∞<p  biçiminde ilk m  koordinatlı bir projektör 

verilsin, yani   olsun. Kolayca kontrol 
edilebilir ki, 

( ) ( , 21 xxx = ),...0,0,m,..., xmP x =
1=−I mP 2,1 , ,...=m ’dir. (4.31) ve (4.33)’nin ispatını (final uzayları 

bir tabana sahip olduğunda ) Teorem 4.2.1(i)’nin ispatındaki metot ile verilebilir. 
(4.32), (4.34) ve (4.35)’in ispatındaysa (final uzayları bir tabana sahip olmadığında ) 
Teorem 4.2.1(iii)’ün ispatındaki metot kullanılabilir.  

=m

( ) p
ix l∈

 
Yukarıdaki teoremin bir sonucu olarak şunu yazabiliriz:  
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Sonuç 4.2.2.  
 
 X ; 0ω , ω  ve  uzaylarından herhangi biri olsun. (2.1)’de tanımlı norm 

p
∞ω  verilsin.  ise,  ( )1,lX

AL

A∈
∞ω

 kompakttır ⇔                            (4.36) ( )( ) 01 =m

( )∞∈ l,X

AL ( )( ) 0=m

,lim *
∞→

A
m

XM l

olur.  ise,  A

 kompakt ise                              (4.37) ,lim *
∞

∞→
A

m
XM l

( ) ( )1  ,  1  , −=∞<<∈ pqpXA pl p

AL

 ise,  ( )

 kompakttır ⇔  ( )( ) 01 =m

( )∞

,lim *
∞→

qAm
TM Ml                      (4.38) 

∈A  ise,  ω,X

AL ( )( ) 0=m

( )∞<< p

AL

 kompakt ise                              (4.39) ,lim *
∞

∞→
A

m
XM l

( )∈ ∞XA p 1  ,ω  ise,  

 kompakt ise ( )( ) 01 =m

( )( ) 0>m

,lim *
∞→

p
Am

TM MM                        (4.40) 

yazılır."  
( )( ) 0>m ,lim *

∞
∞→

A
m

XM ω,lim *
∞

∞→
A

m
XM l ,  

ve  
( )( ) 01 >m

AL

,lim *
∞→

p
Am

TM MM  

hallerinde kompakt olmak (4.37),(4.39 ve (4.40)’da  için mümkündür " diye bir 
ifade bize söylenmiş olsun. Bu durumda; Örnek 4.2.1 ile bunun ispatı yapılabilir.  
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5. (  TOPLANABİLİR veya SINIRLI DİZİLERİN UZAYLARI 
ARASINDA LİNEER OPERATÖRLERİN KOMPAKT OLMAMA 
DERECESİ  

)qN ,

 
 

Bu bölümde (  toplanabilir veya sınırlı olan dizilerin keyfi BK, X 
uzayları ve Y uzayları arasındaki lineer operatörleri inceleyeceğiz. ’i Y ’ye 
dönüştüren A  sonsuz matrisleri için gerekli ve yeterli koşulları vereceğiz.Ayrıca, bir 
kompakt operatör olan A  için gerekli ve yeterli koşulları vermek suretiyle kompakt 
olmama derecesi üzerine uygulama yapacağız.  

)qN ,
X

 
 
5.1.  Toplanabilir veya Sınırlı Dizilerin Kümeleri ile Onların β Dualleri ( )qN , −
 

( )∞
=0kkq ),...= Q pozitif bir dizi ve ’li  dizisi verilsin. 

Ayrıca,  

( 1,0  
0

= ∑
=

nqQ
n

k
kn

( )


=

Qq
qN nk

nk         ,0
       ,      

,
>

≤≤
n

nk
k
0

   (n  ),...1,0=

ile tanımlı  matrisi olsun.  qN

O zaman, sırasıyla, sıfıra toplanabilir ,-toplanabilir ve –sınırlı olan 
dizilerin ( ) ( )

qNc0qN 0, = , ( ) ( )
qNcqN =, , ( )qN ∞ =,  kümelerini 

tanımlayabiliriz.  

( )−qN ,
( )

qN∞l

 
 
Önerme 5.1.1.  
 

( 0,qN )  , ( )  , qN ,  kümelerinin her biri, ∑
=

n

k
kk xq

0
=

nn
N Qx

q

1sup  

ile tanımlı normuna bağlı bir BK uzayıdır (Aljarrah ve Malkowsky, 1998).  

( )∞qN ,

qN

Ayrıca; eğer ( )∞→∞→Qn    n  ise, ( )0,qN  AK’ya sahiptir ve her 

( ) ( )qN ,xx kk 0= ∞
= ∈  dizisi, C∈l    iken ex − l  olacak şekilde bir tek 

 gösterimine sahiptir.  ( ) ( )− k
k el∑

∞

=

+=
k

ex l

0
x

( )0,qN∈

Herhangi iki x  ve  dizisi için,  verilsin. Eğer y ( )∞
=0kkk y= xxy X  ve Y , 

ω ’nun keyfi alt kümeleri ise ve z  herhangi bir dizi ise, o zaman 



 48

{ }X ( )
x

YXM
∈

=,

( )






∈== , acsXMX β

xz ∈: I
X

Yx− *1







nsakyakı

xXz ∈=− *1 ω

csY =

 ve  yazılabilir.Özet olarak; 

 olduğunda,  

kümesi, 

∈∀ ∑
∞

=

 için      :
0k

kk xaXxω

X ’in −β duali adını alır.  ile, U ( ),...1,0  0 =≠ ku  olacak şekilde bütün 

 dizilerinin kümesini göstereceğiz. 

k

Uu ∈u  için, 
∞

=





=

0
11

kkuu  verilsin.Ayrıca; 

 operatörü, ωω →∆+ : ( )( )∞=
++ =∆= 0 kkk xxx ( )∞

=+− 01 kkx∆  ile tanımlı olsun.  

( ) ( ) ( )( )∞
−

*1 1
q

−
∆

− ∩+ ll ** 1
1

1 QQ=0N







∈∈ ∞       ve: q
Qaa lω







= ∞<−∑
∞

= +

+

0 1
1

k k
k

k
k

k q
a

q
aQ

( ) ( ) ( )( )q *1 1−
cQQ ** 1

1
1 −

∆
− ∩+l=N

( ) ( ) ( )( )0
1

*1
q

− 1
1

1 ** cQQ −
∆

− ∩+l∞ =N

0N=0, βqN ( ) N=βqN , ( )∞ =βq ∞NN ,

X ( )YXB ,

( ){ }1:sup == xxLL

X BK ω∈a







=1

βXa ∈






∑
∞

=

:
0

xxa
k

kk=*a

)β ( )β∞qN ,

 
Önerme 5.1.2.  
 

  

        , 

     ve  

  alabiliriz. O zaman,  

 ( )  ,  ve ’dur (Aljarrah ve 
Malkowsky, 1998).  
 
 
5.2. Matris Dönüşümleri  
 

 ve Y  iki Banach uzayı olsun.  uzayı ile ’nin operatör normu 
için  

N

 

yazılabilir. Eğer bir uzayı ve  ise, o zaman  

  

eşitliğinin sağ tarafı var ve sonlu olacak şekilde sağlatılır.  olduğunda da bu 
geçerlidir (Wilansky, 1984).  
 
Önerme 5.2.1.  
 
 ( )β0,qN  , (  ve qN ,  uzaylarının herhangi biri üzerinde,  
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





n
nn

q
Qa






+−= ∑

−

= +

+
1

0 1
1* sup

n

k k
k

k
k

k
n q

a
q
aQa   

olur.  
 

İspat : Verilen herhangi x  dizisi için,  

[ ] =
k

nx ( )k
k ex [ ] [ ]( )∑

=

n

0
 ve [ ] ,  1

0
== ∑

=

kxqQx
k

j

n
jj

k

n
k

n
k ττ ( ),...1,0=n

0N

 

yazılabilir. ∈a n ve  negatif olmayan bir tamsayı olsun.  

[ ]
( )







 ∆
=

+

qQa
qaQ

b nnn

kk
n

k
,0
,
  , 

>
=
≤≤

nk
nk
nk

     
      
0

[ ]nb

  

ile  dizisini tanımlayabilir ve [ ]





==

1
supsup

kn

n

n
ba N  alabiliriz. O 

zaman,  

[ ]





∑
∞

=0

n
kb

      [ ] [ ]( ) [ ] ( ) n
n

k
k

n
kk

n

k
k

n

k
k

k

n
kk

aqaQQ
q
axa ττ +∆≤∆= ∑∑∑

−

=

+

=

∞

=

1

000
 [ ]n

n
n

n
q
Q

τ

       

[ ] ( ) 





n

nn
q
Qa






+∆≤ ∑

−

=

+
n

k
kk

n
k

k
qaQ

1

0
supτ  

[ ] [ ]
q

n
N

n abx N==
1

 [ ]
qN

nx

olur. Bu durumda,  

Na≤*

n
=

a                                                     (5.1) 
bulunur.  
 

Eşitsizliğin tersini ispatlamak için,  keyfi bir tamsayı olsun. 
 ile ( )( ) [ ]( )   = kbsignx n

k
n

kτ ( ),...1,0  dizisini tanımayalım. O zaman,  için 

 yani ( )( ) 0=n
k xτ ( ) ( )0,qNx n ∈  , ( ) ( ) 1≤

∞
n=n xx τ

N n
 ve  

( )nx nk >
( )

( ) [ ] ( ) [ ]∑∑∑
=

∞

=

∞

=

==
n

k
k

k

n
k

n
k

k

n
kk bxbxa

000
≤n a *

n

 

olur.  keyfi olduğu için, 

    *a≤Na                                                     (5.2) 

yazılır.Şimdi (5.1) ve (5.2) eşitsizliklerinin sonucunu verebiliriz.  
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Eğer A  kompleks sayıların sonsuz bir matrisi ise, o zaman A ’nın 
satırındaki dizi için  yazabiliriz.Ayrıca;  .n nA

( ) Y∈xA( ) XxXAnYXA n ∈∀∈∀⇔∈ için        veiçin    , β   
yazılır.  
 
Önerme 5.2.2.  
 
 X  ve Y , uzayları olsun. O zaman, ( )YX , ⊂  yani her 

 ve  ( Y, )A
BK ( )YXB ,

X∈
( ) (xAxLA ∈=   

( )YXB ,

 ) ( )Xx

iken bir LA ∈  elemanı tanımlayabilir. Ayrıca;  

( ) ∞<AL

∞
=0kb

==⇔∈ ∞ n
n

AAXA ** sup,l  

olur. Nihayet; eğer   ,( )( )k X ’in bir tabanı ve Y  , Y ’nin kapalı bir alt uzayı 
iken 

1

Y  ile  , 1Y FK  uzayları ise, o zaman  

( ) ( ) ( ) 1Yb k ∈1    ve,için   ,...1,0, AYXAkYXA ∈=∀⇔∈  ( )

olur (Malkowsky ve Rakocevic, 1998).  
 
Önerme 5.2.3.  
 

 bir üçgen matris olsun.  T
(i) Bu durumda, ω ’nın herhangi X  ve Y alt kümeleri için, 

( ) TABYXA T, ∈=⇔∈  ( )YX ,
olur.  

(ii) Ayrıca; X  ve Y , uzayları ile A∈  ise, o zaman  ( )TYX ,BK

BA LL =                                                (5.3) 
olur (Malkowsky ve Rakocevic, 1999).  
 

Önerme 5.2.1 ve 5.2.2’nin bir sonucu olarak şunu elde ederiz:  
 
Sonuç 5.2.1.  

( )∞
=0kkq ( )∞→n  =q  pozitif bir dizi ve  olsun.  ∞→= ∑

=

qQ
n

k
kn

0

 (i) ( )∈ ∞,qNA ( ) ⇔∞l,   

( )( ) ∞<




mq

,...1,0=






+−= ∑

−

= +

+
∞∞

1

0 1

1,

,
sup,,

m

k
nmm

k

kn

k
nk

k
nm

aQ
q

a
q
aQqNM l            (5.4) 

ile her n  için  
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0cq
Q ∈An                                                    (5.5) 

olur.  
(ii) ( ) ) ⇔∞l, ,...1,0(∈ ,qNA  (5.4) koşulu sağlanır ve her =n  için,  

cq
Qn ∈A                                                      (5.6) 

yazılır.  
 (iii) ( )(∈ ,qNA ) ⇔∞l,0  (5.4) koşulu sağlanır.  

 (iv) ( )(∈ ,qNA ) ⇔00 ,c ,...1,0 (5.4) koşulu sağlanır ve =∀k
0

için  
    lim

→n
                                                  (5.7) =

∞
nka

bulunur.  
 (v) ( ) ) ⇔cq ,0 ,...1,0(∈ NA ,  (5.4) koşulu sağlanır ve =∀k

knka l

için  

n
=

∞→
lim                                                 (5.8) 

elde edilir.  
 (vi) ( )( ) ⇔0,cq

0
0

=nka

∈ ,NA  (5.4), (5.6), (5.7) koşulları sağlanır ve 

lim ∑
∞

=
∞→ kn

                                            (5.9) 

olur. 
 (vii) ( )( ) ⇔cq ,,

l=
0

nka

∈ NA  (5.4), (5.5), (5.8) koşulları sağlanır ve  

∑
∞

=
∞→

lim
kn

                                          (5.10) 

elde edilir.  
 

Önerme 5.1.1 ve5.2.3’ün bir sonucu olarak şunu elde ederiz:  
 
Sonuç 5.2.2.  
 
 X  bir BK uzayı,  bir pozitif dizi ve  ( )∞

=0kkp

( ),...1,0=n  
0

= ∑
=

pP
n

k
kn  

olur. Bu durumda,  

( )( ) ⇔∞p,∈ NXA , ( )( ) ∞<
*

nA

∞
=0kb

= ∑
=

∞
0

1sup,,
m

n
n

mm
pPpNXM             (5.11) 

olur.  

 Ayrıca; eğer  , ( )( )k X ’in bir tabanı ise, o zaman ( )( ) ⇔0, p
,...1,0=k

∈ , NXA  
(5.11) koşulu sağlanır ve ∀  için  
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( )( ) 0=



k1lim
0






∑

=
∞→

m

n
nn

mm
bAp

P
                                  (5.12) 

olur ve  
( )( ) ⇔pN , ,...1,0∈ XA ,  (5.12) koşulu sağlanır ve =∀k için  

( )( ) k
k l=




m

n
nn

mm
bApP





∑

=
∞→ 0

1lim                                 (5.13) 

olur.  
 
Uyarı 5.2.1.  
 

(i) Eğer ( )∞<≤=X r 1  l r  ve Y ; ( )∞pN ,  , ( )pN ,  ve  biçiminde  ( )0, pN
uzayların herhangi biri ise, o zaman A ∈  için koşullar; 1=r  için  ve 

 için  
( )YX , ∞=s

∞<< r1
( )1−= rrs  

yani,  
 

( )( )




























=

∑ ∑

∑
∞

= =

=

∞

ap
P

ap
P

pNM s

k

sm

n
nkn

mm

m

n
nkn

mkm

r

     ,1sup

,1sup

,, 1

0 0

0,
l

∞<<

=

r

r

1

1          

sl

 

iken ’deki doğal norm ile (5.11) koşulundaki  normu yer değiştirerek ve  

terimleri ile (5.12) ve (5.13) koşullarındaki  terimleri yer değiştirerek 
Sonuç 5.2.2’deki kendileri ile ilgili kısımlardan bunlar görülebilir.  

*
nka

( )( )k
n bA

(ii) Aşağıdaki koşulları düşünebiliriz: 

( )∞qNM ,,  ( )( )∞pN ,

( ) ∞<




nal





+∆= ∑ ∑∑

−

= ==

+
1

0 00,

1sup
n

k

m

mn
n

m

k
m

k
nm

p
Pq

QqAp
P

Q
l

l

l

ll                 (5.14) 

( ),...1,0=  0
0

∈







∞

=
nc

q
Qa

kk
knk                                    (5.15) 

( ),...1,0=n   
0

∈







∞

=
c

q
Qa

kk
knk                                     (5.16) 
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( ),...1,0=   01lim
0

=









∑

=
∞→

kap
P

m

n
nkn

mm
                      (5.17) 

 

( ),...1,0=  1lim
0

=









∑

=
∞→

kap
P k

m

n
nkn

mm
l                     (5.18) 

 

( ),...1,0=   01lim
0 0

=



















∑ ∑

=

∞

=
∞→

kapP

m

n k
nkn

mm
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( ),...1,0=   1lim
0 0

=



















∑ ∑

=

∞

=
∞→

kap
P k

m

n k
nkn

mm
l           (5.20) 

 
O zaman;  
 

( ) ( )( ) ⇔∞p,∈ ∞ NqNA ,,  (5.14) ve (5.15) ;  

( ) ( )( ) ⇔∞p,∈ NqNA ,,  (5.14) ve (5.16) ;  

( ) ( )( ) ⇔∞q,∈ NqNA ,, 0  (5.14) ;  

( ) ( )( ) ⇔0, p∈ 0 ,, NqNA  (5.14) ve (5.17) ;  

( ) ( )( ) ⇔pN ,∈ qNA ,, 0  (5.14) ve (5.18) ;  

( ) ( )( ) ⇔0, p∈ ,, NqNA  (5.14), (5.16), (5.17) ve (5.19) ;  

( ) ( )( ) ⇔pN ,

AL

Q

∈ qNA ,,  (5.14), (5.16), (5.18) ve (5.20)   

olur.  
 
 
5.3. Kompakt Olmama Derecesi ve Dönüşümler  
 

Bu bölümde, bir  operatörünün kompakt oluşunu inceleyeceğiz.Bunu 
yaparken kompakt olmama derecesini kullanacağız.  

Bilindiği üzere; Tanım 2.12’deki verilenlerle birlikte, eğer  bir X metrik 
uzayının sınırlı bir altkümesi, o zaman Q ’nun kompakt olmama Hausdorff derecesi, 

 ile gösterilir ve  ( )Qχ
( ) { abir sonlu  de' , :0inf }sahip ağ−>= εεχ X QQ  

yazılır.  
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χ  fonksiyonu, kompakt olmama Hausdorff derecesi diye adlandırılır 
(Banas ve Goebl, 1980; Akhmerov ve ark., 1992; Rakocevic, 1994).  

Şimdi bazı tanımları burada ifade edelim:Öncelikle, Q ’nun kapanışı  ile 
gösterilsin. Eğer , , ve Q  bir 1Q 2 ( )dX ,  metrik uzayının sınırlı alt kümeleri ise, 
o zaman,  

Q
Q

     ( )Qχ  bir tam sınırlı küme, Q⇔= 0

( ) ( )Qχ=Qχ  ,  

    ( )121 QQQ χχ ≤⇒⊂
( )

, 
({ }2, Q1Q21 maxQQ χχχ =∪

( )
, 

( ){ }2Q1 ,Q21 minQQ χχχ ≤∩  

( )2Q
) ( )

( )

olur.  
Eğer X  uzayı bir normlu uzay ise, o zaman  fonksiyonu lineer 

yapıyla bağlantılı bazı ilave özelliklere sahiptir. Mesela;  
( )Qχ

( ) ( )121 QQQ χχχ +≤+  ,  ( )2Q

her C∈λ  için ( )Qλχ =  vardır.  ( )Qχλ
Eğer X  ve Y normlu uzaylar ise,o zaman ( )Y,XBA∈  için  ile 

gösterilen A ’nın kompakt olmama Hausdorff derecesi; { }1=:∈= xXxK , X ’de 
birim küre olmak üzere A χχ =  ile tanımlanmaktadır. Ayrıca; A  

kompakttır ⇔ 0=χA ’dır.  

χA

( )AK

Şimdi de mesela Banas ve Goebl (1980) ile Akhmerov ve ark.’da (1992) 
bahsi geçen bir sonuca bakalım:  
 
Önerme 5.3.1.  
 

X , bir  Schauder tabanlı bir Banach uzayı; , ’in sınırlı bir 
alt kümesi ve , XX →Pn : { }nee ,...,2e ,1 ’nin lineer gereni üzerine bir projektör 
olsun. O zaman; n

n
PIa −=

∞→
suplim  iken,  

{ },..., 21 ee Q X

( ) ( ) ( )xPI n−

( )

xPIa xn
n

xn
≤≤








−

∈∈∞→ QQ
Q supinfsupsuplim1 χ  





− xPn

0cX





≤

∈∞→
I

xn Q
supsuplim              (5.21) 

olur.  

Önerme 5.3.1’deki a  sayısı ile ilgili bilindiği üzere; =  ise, o zaman 
 ve fakat, eğer  ise, o zaman ’dir (Banas ve ark., 1980).  1=a cX = 2=a
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Sonuç 5.2.1’e bağlı olarak kompakt olmama derecelerine göre, şunu elde 
ederiz:  
 
Teorem 5.3.1.  
 

A , Sonuç 5.2.1’deki gibi olsun ve herhangi n, tamsayısı için,  ( )rnr >  

( )





mnm q





+−=

+

+
−

=>
∑ m

k

kn

k
nk

m

kmrn

r a
q

a
q
aA QQ

1

1,
1

0
supsup             (5.22) 

 
oluşturalım.  

X ’ya )0,q  yada ( )qN ,  ile A∈  olsun. O zaman,  (N ( )0,cX

r
AL =χ                                      (5.23) ( )rA

∞→
lim

yazılabilir. 
X ’ya )0,q  yada ( )qN ,  ile A ∈  olsun. O zaman, (N ( )cX ,

( ) ( )rA
∞→

lim
r

A
r

r
LA

∞→
≤≤lim

2
1

χ                             (5.24) 

X ’ya ( ),qN 0 , ( )q,N  yada ( )∞qN ,  ile A  olsun. O zaman,  ( )∞∈ l,X

r
AL ≤≤0 χ                                 (5.25) ( )rA

∞→
lim

olur.  
 

İspat : Dikkat edilirse; (5.23), (5.24), (5.25)’deki limitler 

mevcuttur. ∈= xXxK  alalım. A∈  halinde X  yada 

( )qNX ,=  için Önerme 5.3.1. ile,  

( )0,qN={ }1: ≤ ( )0,cX

( ) ( ) 


AxPr

: 1= 1





−==

∈∞→
IAKL

Kxr
A suplimχχ                 (5.26) 

ifadesi;   ( ) , ilk 00 cc → rPr ,...2,  koordinatlı yani  +r

( ) ( ),...0,0,r,...,,, 210r xxxxP x=  , x ∈=   ( ) 0cxk

şeklindeki bir projektör (dikkat edilirse; 1=− rPI  , r  ) olmak üzere 

yazılabilir.  

,...2,1,0=

Ayrıca; Önerme 5.2.2 ve Sonuç 5.2.1 ile  
( ) ( )AxPr−IA

Kx

r =
∈

sup                              (5.27) 



 56

elde edilir ve (5.26) ile de (5.23)’de elde edilebilir. (5.24)’ü ispatlamak için, dikkat 

edilirse; her  dizisi, " ( )∞
=0kkx=x C∈l , cex  olacak şekilde " bir tek 

 gösterimine sahiptir.  (∑
∞

=

−+
0k

kxel=x

∈− l

) ( )kel

r : − ,...2,1,0cc → ( ) (∑
=

+=
r

k
kr xexP

0
lP ,  ,) ( )kel =r  tanımlayalım. 

Kolayca ispatlanabilir ki; 2=− rPI  , ,...2,1,0=r

0,

’dir. Ayrıca; (5.24)’ün ispatı, 

(5.23) haline benzer olduğundan kolayca görülebilir. Şimdi (5.25)’i ispatlayalım. 

 ,  , ∞l∞ →l:rP ( ) ( 0,,...,,, 210 rr xxxxxP = ),... ( ) ∞∈= lkxx  , r  olarak 

tanımlayalım. Açıktır ki;  

,...2,1,0=

( ) (IAKPAK r −+⊂  )( )AKPr

yazılır.  

Yine χ  fonksiyonunun elementer özellikleri ile,  

( ) ( )( ) ( )( )( ) ( )( ) ( )AxPrIAKPIAKPIAKPAK
Kx

rrr −≤−=−+≤
∈

supχχχχ   

yazılabilir. Neticeyle; Önerme 5.2.2 ve Sonuç 5.2.1 ile (5.25)’i elde ederiz.  
 

Yukarıdaki teoremin bir sonucu olarak şunu yazabiliriz:  
 
Sonuç 5.3.1.  
 

A , Teorem 5.3.1’deki gibi olsun. O zaman; eğer X  yada 

(N= ( )0,cX∈)q, AX  için  ise veya eğer ( )0,qN=X  yada X  için 
 ise, bu durumda bütün bu hallerde  A

( )0,qN=

( )qN ,=

( )cX ,∈

AL  kompakttır ⇔  lim
∞→r

                           (5.28) ( ) 0=rA

yazılabilir. Ayrıca; eğer )0,qN=X  , )qN ,=X  veya X  için 
 ise, o taktirde  A

(( ( )∞= qN ,
( )∞∈ l,X

AL  kompakttır  ⇒ lim
∞→r

                           (5.29) ( ) 0=rA

elde edilir.  
 Aşağıdaki örnek gösterir ki; lim

∞→r
 halinde kompakt olma 

(5.29)’daki  için mümkündür ve burada genel olarak (5.29)’daki durum " ⇒  " 
durumudur.  

( ) 0>rA

AL
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Örnek 5.3.1.  
 

 A  matrisi, ( )  0= neAn ( ,...1,0= )  ile ve 2=nq , n  ile 

tanımlansın. Bu durumda, ( )( ) ( )[ ] 32 <− −n2,, =∞∞q l 1sup +
n

NM ’dür ve Sonuç 

5.2.1 ile birlikte, bilinmektedir ki ( )( )∞l∞∈ ,,qNA ’dur. Ayrıca; ( ) 03 >=rlim
∞→r

A  

şeklinde olmak üzere iken r∀  için ( )
12

13
+

−+ r
rA

2
12 =








 − n1sup

>

=

rn
’dir. 

( )∞q,∈ N AL

= →n(

∀x  için  olduğu için  bir kompakt operatördür. ( ) 00exxA =

,...2,1,0=

 
 Şimdi aşağıdaki yardımcı sonuç ile devam edelim:  
 
Lemma 5.3.1.  
 

  ve Q  olsun. ,...)1,0 ∑
=

∞→=
n

k
kq

0
   (  0> kqk ∞) ∀x  için  ω∈

( ) ∑
=

n

k
kk xq

0

0≥r

=
n

n x 1
Qτ  

alınabilir.  olsun ve ( ) ( ) )0q0
0, ,: qNB r ,N→  ile ( ) ( )qNB r ,:  

operatörleri;  
( ( )qN ,→

( )( ) ( )

1

0,   xexxB
rk

k
k

r ∈= ∑
∞

+=

                         (5.30) ( )( )0,qN

( )xnve 
n

=l  iken  τ
∞→

lim

( )( ) ( ) ( ) xexxB k

rk
k

r   
1

−= ∑
∞

+=

l                       (5.31) ( )( )qN ,∈

alalım. O taktirde  
( )

1
1

+
+

r
r

Q
Q

( )

0, =rB                                                     (5.32) 

ve  
2=rB                                                                    (5.33) 

olur.  
 
 İspat : İlk önce (5.32) özdeşliğini gösterelim. )0,qN∈ rn ≤≤0

( )0 1

x  olsun.  

için  ve ( )( ) 0=x,B r
nτ n  için  

(
+≥ r
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( )( )( ) ( ) ( ) 





 +≤−==

++=
∑

r
r

r
n
r

n

n

rk
kk

n

r
n xxxqxB

11

0, 11
Q
Q

Q
Q

Q τττ  ( )∞qNx ,

olduğu için görülür ki,  
( )( ) ( )∞







 +≤

+r

r
qN

r xB
1,

0, 1 Q
Q   ( )∞qNx ,

ve neticesinde  
( )

1
1

+
+

r

r
Q
Q0, ≤rB                                                     (5.34) 

 
olur.  
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ile x  dizisini tanımlayalım.  
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  1
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n
r

rrrrr
n

n Q
QQQQQQQτ   

sonucuna ulaşılır.  
  olduğundan )∞→n   Q ( )0,qNx ∈  ve x ’dir.Ayrıca;  ( ) 1, =

∞qN

( )( )( ) ( )1
1

0,
1

1
+

+
+ =+= rr

r

r
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olur. (5.34) ve (5.35) ile birlikte, şimdi (5.32) özdeşliğini verebiliriz. Yine (5.33) 
özdeşliğini ispatlarız.  
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 )qN ,∈x  olsun. rn ≤≤0  için ( )( )( )=x 10B r
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n

n
xlim qNx ,τl   ( )∞

olduğundan n  için  1+≥ r
( ) ( )( ) ≤r

n xB 2τ   ( )∞qNx ,

elde edilir ve sonuç olarak,  
( ) 2≤rB                                       (5.36) 

olur.  
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sonucunu elde ederiz. Burada, ( ) 1, =
∞qNx  ve 1lim −=

∞→n
xnτ  yani x ’dur.  ( )qN ,∈( )

 Netice olarak;  
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+
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ile birlikte ( )( )( ) ( )2+≥ rn  22 1 ≤= +xB
n
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n Q

Qτ ’dir. Bu gerektirir ki,  

( ) 2≥rB                                       (5.37) 

olur. Yine (5.36) ve (5.37) ile (5.33)’ü verebiliriz.  
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Sonuç 5.2.2 ve kompakt olmama dereceleri ile bağlantılı olarak şunu elde 
ederiz:  
 
Teorem 5.3.2.  
 
 X  bir BK  uzayı; A  Sonuç 5.2.2’deki gibi ve ∞→Pm   m

( )rm >  
 verilsin. 
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∑
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1sup
>

=
∞ mrm
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alalım. Ayrıca; eğer X  bir Schauder tabanına sahip ve ( )0,, pNXA ∈  ise, o 
taktirde  
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r
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olur.  
 Netice olarak; eğer ( )pN ,,XA ∈  ise, o zaman  ( )

r
AL

∞→
≤≤ lim0 χ                          (5.41) ( )

( )r
pNA

∞,

yazılır.  
 
 İspat : Dikkat edileceği üzere; (5.39), (5.40), (5.41)’deki limitler 
mevcuttur. ∈= xXxK  alalım. Varsayalım ki; ( )0,, pNXA ∈ ’dir.  ( ){ }1: ≤

 ( ) ( )00, ,: pNB r →  , Lemma 5.3.1’deki üzere tanımlı olsun. Bu 

taktirde (5.32) ile , sahip oluruz ki, ( )
rr Pp−rB = 20, ’dir. Yine (5.39) 

ispatlanmak üzere Önerme 5.1.1 ve 5.3.1 ile, suplim
r

b
∞→

=  olmak üzere  

( )0, pN

( )0,rB

( ) ( ) ( ) 


Axr 0,



≤≤









∈∞→∈∞→
BAKAxB

b Kxr
r

Kxr
0, supsuplimsupsuplim1 χ          (5.42) 

yazılabilir. 
 Böylece; ( )r

Kx
Ax =

∈

0,Bsup  olduğundan (5.39) ispatlanmış olur. 

(5.40)’ı ispatlamak için Önerme 5.1.1’e dikkat edilirse; , Schauder 

( )
( )r

pNAx
∞,

( )pN ,
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( ) ,, ee k ,...1,0=k tabanına sahip ve her ( ) ( )qN ,x kk 0
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olmak üzere " bir tek  gösterimine sahiptir.  ( ) ( )∑
∞

=

−
0k

k
k ex l+= ex l

( ) ( ) (0,: NpNr → )0, p ( )( )r xB = ) ( )kelk −

( ) 2=r

( )∞pN , ( )r xP

( ) ( )   ,∈= ∞pNxr

( )AKAK P⊂

χ

)( ) ( )( )( )AKIAK rP−+ χ

( )( )( )AKI rP−= χ

( )r
Kx

I −≤
∈

sup P

A (
( )r

pNA ,

X (A ∈

A ⇔

( )0, pN∈

 B  ,  ile Lemma 5.3.1’e 

göre tanımlı bir projektör olsun. O zaman; (5.33) ile, 

(
rk

x∑
∞

+= 1

 olarak elde edilir. 

Yine (5.40)’ın ispatı (5.39) durumuna benzer olup aynı teknikle sonuca ulaşılabilir. 
Şimdi (5.41)’i ispatlayalım. Bunun için öncelikli olarak yukarıda ifade edildiği bir 
biçimde  

B

( )  , ( ),...0,0,rx,...,, 10 xx=   ∞ →pN ,:P

ve  
,...2,1=rx  

ile tanımlayalım. Açıktır ki; (I −+ ’dir. Uyarı 5.2.1(b) 
ifadesi ile görülür ki;  bir sınırlı operatördür ve açık bir biçimde bu sonlu ranka 
sahip olduğundan kompakt olanıdır. Ayrıca; 

rP
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        Ax =                         (5.43) ( )
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pNA
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elde edilir.  
 
 Yukarıdaki teoremin bir sonucu olarak şunu elde ederiz:  
 
Sonuç 5.3.2.  
 
 X  bir  uzayı ve  ile )  , Teorem 5.3.2’deki gibi verilsin. Eğer 

 bir Schauder tabanına sahip iken ya ) )0,, pNX  yada ( )pN ,,
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olur.  
 

Yine, Uyarı 5.2.1’e bağlı olarak, birkaç sonuç elde edebiliriz.  
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Sonuç 5.3.3.  
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olur.  
 
 Sonuç 5.3.2, Önerme 5.2.3 ve Uyarı 5.1.1(b)’den şu elde edilir:  
 
Sonuç 5.3.4.  
 
 Eğer )0qX =  yada ( )q,N=X  için ( )0,, pNXA ∈  ise veya eğer 
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olur.  
 Ayrıca; eğer )∞q= N ,X  , X  yada X  için 

) )∈ XA ,  ise, o zaman yazabiliriz ki;  kompakt   AL ⇒

( )qN ,=( ( )0,qN=

(( ∞pN ,
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