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Yrd.Dog. Dr. Hasan KARA danigmanliginda, Bilal BASTOSUN tarafindan

hazirlanan “Bazi Dizi Uzaylari Arasinda Lineer Operatorlerin Kompakt Olmama
Derecesi” isimli bu calisma ..../..../2005 tarihinde asagidaki jiiri tarafindan
Matematik Anabilim Dali’nda Yiiksek Lisans Tezi olarak kabul edilmistir.
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1. GIRIiS ve KAYNAK BILDIRISLERI

Bu calismada bazi dizi uzaylari arasinda var olan lineer operatorlerin
kompakt olmamasi derecelendirilecektir.
1< p <o olmak iizere kuvvetli C; toplanabilir ve sinirl dizilerin kiimeleri

wép ,@, olup ®? , Maddox (1968) tarafindan tanimlanmustir ve bu kiimelerin her

2v+l 1 %7
el =sup LS l? | (< p<n) 4.1)
k=2"

biri

ile ilgili bir BK uzayidir ve a)ép , AK ’ya sahiptir (Wilansky, 1964).
Malkowsky ve ark. (2000)’da "X =/ ve Y =wl,0f ,0f (1<p<x) "

n n

yada "X =@p,0,0, ve Y={, (1<p<w) veya X =wy,0,0, Ve

Y=o ,0f ,0) (1<p<ow) " iken bir X dizi uzaym bir Y dizi uzay: igine
doniistiirmede sonsuz matrisler icin gerekli ve yeterli sartlar verilmistir.Ayrica;
kompakt olmak {izere bu uzaylar arasinda bir lineer operatdr altinda kompakt
olmama Hausdorff derecesine iligkin gerekli ve yeterli sartlarda verilmistir.
Malkowsky ve ark.’da (2001) ise, (]V ,q) toplanabilir veya sinirli olan
dizilerin keyfi BK, X wuzaylari ve Y uzaylann arasindaki lineer operatorleri
incelenerek, X ’i Y ’ye doniistiiren A sonsuz matrisleri i¢in gerekli ve yeterli
kosullar1 verilmistir. Ayrica, bir kompakt operatér olan A4 igin gerekli ve yeterli
kosullar1 vermek suretiyle kompakt olmama derecesine iliskin uygulama yapilmigtr.

Onerme 5.1.1.

(N,q)y » (N.q) , (N,q), kiimelerinin her biri, |x|~ v, —sup

Z%xk

ile tanimli || ||5; normuna bagli bir BK uzayidir (Aljarrah ve ark., 1998).
q
Onerme 5.2.2.

X ve Y, BKuzaylart olsun. O zaman, (X,Y)c B(X,Y) yani her
Ae(X,Y) ve Ly(x)=A(x) (xe X) iken bir L4 € B(X,Y) eleman1 tanimlayabilir.

Ayrica;  Ae(X,0,) < | A =sup|d,| =|Ly|<o olur. Nihayetinde; eger
n

(b(k))fzo , X ’in bir taban1 ve ¥} , Y 'nin kapal1 bir alt uzay1 iken Y ile ¥} , FK

uzaylari ise, 0 zaman



Ae(X.Y) & Yk =0l igin Ae (X.Y) ve dp®)e v,
olur (Malkowsky ve ark., 1998).
X ve Y iki Banach uzay1 olsun. B(X,Y) uzayiile N ’nin operatdr normu
i¢in |[L]| =sup{|L(x)|:||x| =1} yazilabilir. Eger X bir BK uzay1 ve ac® ise, 0

zaman |l :{

o0

2 i

k=0

:||x||:l} ‘nin sag tarafi var ve sonlu olacak sekilde

saglatilir. ae X B oldugunda da bu gegerlidir (Wilansky, 1984).
Bilindigi tizere; Tanim 2.17.°deki verilenlerle birlikte, eger @Q bir
X metrik uzaymin sinirli bir altkiimesi, o zaman @ ’‘nun kompakt olmama
Hausdorff derecesi, y(Q) ile gosterilir ve
2(Q)=inf{e >0:Q , X'de sonlu bir £ — aga sahip}
yazilip y fonksiyonu, kompakt olmama Hausdorff derecesi diye adlandirilir (Banas

ve Goebl, 1980; Akhmerov ve ark., 1992; Rakocevic, 1994).
Simdi de Banas ve Goebl (1980) ile Akhmerov ve ark.’de (1992) bahsi
gegen bir sonuca bakalim:

Onerme 5.3.1.

X, bir {e},e;,...; Schauder tabanli bir Banach uzayr; Q, X ’in smirli bir
alt kiimesi ve P,: X — X, {e},e,,...,e,} 'nin lineer gereni iizerine bir projektdr

olsun. O zaman; a = limsup|/ — B, | iken,
n—>0

1. .
Ehm sup( sup|(/ - P, )x||] < 7(Q)<inf supl|( - B, )|
n xeQ

n—o \xeQ

< limsup( sup|(/ - P, )x||j (5.21)

n—o \xeQ
olur.
Onerme 5.3.1.’deki a saysi ile ilgili bilindigi iizere; X =c¢ ise, o zaman
a =1 ve fakat, eger X =c ise, o zaman a =2 ’dir (Banas ve Goebl, 1980).

Sonug 5.2.1.’¢ bagl olarak kompakt olmama derecelerine gore, sunu elde
ederiz:

Teorem 5.3.1.

A, Sonug 5.2.1.’deki gibi olsun ve herhangi n,7 (n > r)tamsays1 igin,

m—1
4 - supsup[z@

n>rom \ g—0

Ak _ Ap f+1
9k i+

+1Q @ /qmlj (5.22)

olusturalim.



X’ya (]V,q)o yada (N,q) ile 4€(X,c;) olsun. O zaman,

ILal, = tim 4 (523)
4 row
yazilabilir.
X ya (N,q), yada (N,q) ile 4 (X,c) olsun. O zaman,

% tim [ 4] <L, < tim |14 (5.24)
r—>0 r—w

X’ya (]V,q)o, (N.q) yada (N,q),, ile 4e(X,7,) olsun. O zaman,

0<|Lyl, < lim 4" (5.25)
r—>0
olur.

Bu ¢aligmanin son agamasinda bu teorem kullanilarak ortaya koydugumuz
problemle ilgili olarak daha genel teoremler ispatlandi ve sonuglar elde edildi.



2. TEMEL TANIM ve TEOREMLER

Bu bolimde daha sonraki bolimlerde kullanilacak olan temel tamim ve
teoremler verilecektir.

Tamm 2.1. (Lineer Uzay)

X bos olmayan bir ciimle ve K reel veya kompleks sayilarin bir cismi
olsun.
+:XxX > X
o:KxX > X
fonksiyonlar1 asagidaki ozellikleri sagliyorsa X ciimlesine K cismi iizerinde bir
lineer uzay denir. Her 4,z €K ve x,y,ze€ X igin,

Ll) x+y=y+x

L2) (x+y)+z=x+(y+2)

(L4) x+ 0 =x olacak sekilde bir & € X vardir.

(L3) Her xe X igin x+(—x)=0 olacak sekilde bir (-x)e X vardir.
(LS) 1x=x

L6) Alx+y)=Ax+ Ay

L7 A+p)x=Ax+uy

(L8)  A(ux)=(Au)x

Tanim 2.2. (Lineer Alt Uzay)

X, K cismi iizerinde bir lineer uzay ve M, X in bos olmayan bir alt
ctimlesi olsun. Eger her 4, €K ve x,yeM ic¢in Ax+ uy € M oluyorsa M ’ye

X ’in bir lineer alt uzay: denir.
Tamm 2.3. (Normlu Lineer Uzay)

X, K cismi iizerinde bir lineer uzay olsun.
[H:X - R
doniistimii Vx,y € X ve VA €K i¢in
N |y=0=x=6
(N2) |l = Al
N3)  |x+ ¥ <[+ [y (iggen esitsizligi)

ozelliklerini sagliyorsa X iizerinde norm adini alir ve bu durumda (X,||{|) ikilisine
normlu lineer uzay veya kisaca normlu uzay denir.



Tamm 2.4. (Dizi Uzaylar)

o=1{x=(x)|x :N' 5K k- x; = x(k)}
kiimesi
(k) (i) = (xp + ) ve (A,(xg)) = (Axg)

ile tanimli toplama ve skalerle ¢arpma islemleri ile birlikte K iizerinde bir lineer
uzaydir. @ lineer uzayr ve @ ’nin her bir lineer alt uzay1 dizi uzayr olarak

adlandirilir. ¢y, ¢ ve ¢, , sirasiyla, sifir dizileri dizi uzayi, yakinsak dizilerin dizi
uzay1 ve smirh dizilerin dizi uzayi olarak adlandirilirlar. ¢y, ¢ ve ¢, dizi uzaylar

||| = sup|x; | normu ile birlikte birer normlu uzay olustururlar.
k
Caligmamizda kullanacagimiz diger bazi dizi uzaylar1 ve normlari asagida
verilmistir:
0
y=<1x=(x) € a):Zxk <oo} R
k=0

yakimsak seri teskil eden biitiin dizilerin dizi uzayidir ve ||x||y = sup) normu ile

n

2%

n
k=0

birlikte bir normlu uzaydir.

(=1 ::{x:(xk)ea):2|xk|<oo} ,

k=0

mutlak yakinsak seri teskil eden biitiin dizilerin dizi uzayidir ve [jx|, = Z|xk|
k=0
normu ile birlikte bir normlu uzaydir.

fzzz{x:(xk)ea):2|xk|2 <oo},

12
dizi uzay1 |x|, = (Z| Xk |2j normu ile birlikte bir normlu uzaydir.

0, = {xz(xk)ea): Z|xk|p <oo} ,

k=0
. - o VP o .
dizi uzayr 1< p <o igin ||x||p = Z|xk| normu ile birlikte bir normlu uzay,
0< p<1igin |]x]= Z|xk |” normu ile birlikte bir p -normlu uzaydir.
Bu dizi uzaylar1 arasinda,
licycceyceccly,co

kapsam bagmtilart vardir. Ayrica, sinirli kismi toplamlara sahip biitiin dizilerin
kiimesini bs , biitiin toplanabilir dizilerin kiimesini de c¢s, biitiin sonlu sifirdan farkl



dizilerin kiimesini ¢ ile gosterecegiz.
e ve e (n=0,1,...) ile ;k=0,l,...i¢in e; =1 ve k=n igin e =1 ve

e](cn) =0 olacak sekildeki dizileri gosterecegiz.

Ornek 2.1.

Eger her n=0,1,.. i¢in E, e,; =1(0<k<n) ve ey =0 (k>n)
bigiminde tanimli bir matris ise, bu durumda cs=cp ve bs=(/,) yakinsak ve
sinirlt serilerinin kiimeleridir.

Tamm 2.5. (Lineer Operator)

X ve Y lineer uzaylar ve T7:X — Y bir fonksiyon olmak iizere her
X1,X, € X veher 4,u €K icin
T(Axy + poey) = AT (x1) + uT (x3)
sart1 saglanirsa 7 ’ye bir lineer operatér veya lineer doniistim denir. ¥ =R veya
Y =C olmasi durumunda ise 7 ’ye bir lineer fonksiyonel denir.

Tamm 2.6.

X, K cismi iizerinde bir lineer uzay olsun. Eger g: X —» R fonksiyonu
asagidaki ozellikleri sagliyorsa g reel fonksiyonuna bir paranorm ve (X,g)
ikilisine de bir paranormlu uzay denir. Her 0 € K ve x,y € X i¢in,

@) g(@)=0
(i) g(x)=g(-x)
(i) g(x+y)<g(x)+g(y)

(iv) Eger (0,), 0, - o olacak sekilde skalerlerin bir dizisi ve (x,) de
g(x, —x)—> 0 olacak bigimde vektorlerin bir dizisi ise, o zaman garpimin

siirekliligi geregince g(o,x, —ox)— 0 dir.

Eger Wilansky (1964) geregince g(x)=0=x=0 oluyorsa bir g
paranormuna tamdir denir. Yani, asagidaki tanimin 6zelliklerini saglayan bir tam
paranorm ve onun uzayi s6z konusudur.

Tamm 2.7. (Banach uzay1)

Bir Banach uzayr tam normlu bir lineer uzaydir. Buradaki tamlik
x, € Xigin |x,, —x,|—>0 (m,n—> ) oldugundabir x € X mevcuttur dyle ki,



[%n = x4 >0 (m,n— )

olur.

Tanmim 2.8. (Banach Limiti)

l, lzerinde tanimhi bir L:/, — R lineer fonksiyoneli asagidaki
ozellikleri sagliyorsa L ’ye bir Banach limiti denir. « , biitiin Banach limitlerinin
kiimesini gostersin. Bu durumda;

B.1 Her n=0,l,...i¢in x,, >0 olmak iizere L(x)>0
B.2 L(x)=LD(x) ,burada Dx=D({x,})={x,.1}
B3 Lie)=1, e=(11..)

olur.
Tamim 2.9. (Hemen Hemen Yakinsak Dizi)

Bir x € ¢, dizisinin biitiin Banach limitleri ¢akisiyorsa, x ’e¢ hemen hemen
yakinsak dizi denir. f, hemen hemen yakinsak dizilerin kiimesini gdstersin.Bu
durumda, f={xel,:p(x)=-p(-x)} olur. Hemen hemen yakinsak dizilerin
uzayr f ile, sifira yakinsayan hemen hemen yakinsak dizilerin uzay1 f;, ile

gosterilecektir.

Tanim 2.10. (Smirh Lineer Operator)

T:X — Y bir lineer operator olmak iizere Vx € X i¢in

[Ty <Ml x

olacak sekilde bir M sabiti varsa T ’ye sinirli lineer operator denir. Bir sinirh lineer
operatOrin normu

(A&
T| = sup < ®
=3 W

olarak tanimlanir.
f X - C smurh lineer fonksiyonelinin normu

A1l = sup{1f Gol/ I | x = 6}
olarak verilir.
l,’den £, yabir A=(ay) (n,k=0L2,.) matris donistiminiin normu

ise



g \Va

lax, =| D

n

zankxk

k

olmak lizere
Il =supllax], I, <1}

seklinde tanimlanir.
Tamm 2.11.

X normlu uzaymi Y normlu uzayina doniistiren tim smirli lineer
operatorlerin kiimesi B(X,Y) ile gosterilir. B(X,Y) bir normlu lineer uzaydir.

X =Y olmast durumunda sadece B(X) notasyonu kullanilir. Yani B(X), X bir

normlu uzay olmak iizere X ’den X ’e tanimli tim smirl lineer operatorlerin
normlu lineer uzayidir. Ozel olarak; Y =C kompleks sayilar oldugunda

X tizerindeki biitiin lineer siirekli fonksiyonellerin kiimesi igin X * = B(X,C) ve
S siirekli lineer fonksiyonelinin normu igin |/ =sup{f(x):[x]=1} (f eX *)
yazilabilir.

Tanim 2.12.

X, Y metrik uzaylari ile bir f : X — Y doniisiimii verilsin.

(i) Q c X olmak iizere, eger f(Q)’nun kapamsi Y ’nin bir kompakt alt
kiimesi ise, f(Q)’ya Y ’nin bagil kompakt alt kiimesi denir.

(ii) Sayet f(Q), X ’in her smurh Q altkiimesi i¢in Y ’nin bir kompakt alt
kiimesi olursa, f bir kompakt doniisiim veya kompakt operatordiir diye ifade edilir.

Tanim 2.13. (Matris Doniisiimii)

X#0, Y#0O, o uzaymn herhangi iki alt kiimesi ve A=(a,;);
(n,k=0,1,2,...) kompleks sayilardan olusan bir sonsuz matris olsun. Bir

x=(x;) e X dizisinin Ax doniisiim dizisi her n e N igin
o0

Ay (x) = Zankxk

k=0

yakisak serisi ile verilen (4,(x))eY dizisidir. 4’ya X ’den Y igine bir matris
donilistimii ve Ax’e de x’in A -doniigiim dizisi denir. (X,Y) ile X ’den Y igine

olan biitiin matrislerin smifi, (X,Y,P) ile de X ’den Y igine limiti koruyan, yani



lim4, (x)=limx,, olan bitin A matrislerinin smift gosterilir. Burada
(X,Y.P)c (X,Y) dir.

Tanim 2.14.

0
a,, sonsuz bir seri ve bu serinin kismi toplamlar dizisi (s,) olsun.
n=o
Ayrica A= (ay )y k=0 sonsuz matrisi verilsin. (s, ) dizisinin 4 -d6niisiim dizisini
0
(¢,) ile gosterelim. Yani, 7, = Zanksk olsun. Bu durumda 4, diziden-diziye bir
k=0
doniigiim tammlar. Eger (¢,), bir s limitine yaklasiyorsa o zaman (s,,) dizisi veya

0
Zan serisi s’ye A toplanabilirdir denir. Bu ¢alisma boyunca aksi belirtilmedikge
n=0

o0

Zan ile Za” sonsuz serisi ve (s,) ile de bu serinin kismi toplamlar dizisi
n=0
gosterilecektir.

Tanmim 2.15. (Cesaro Toplanabilme Metodu)

1
<
an:: n+1 ’ k<n
0 , k>n

elemanlari ile taniml1 alt iggensel sonsuz matrise Cesaro matrisi denir ve (C,l) yada
C, ile gosterilir. Zan, (s,) kismi toplamlar dizisi ile verilen sonsuz bir seri

olsun.

l i
o, = S
| v
v=0

ile tanimlanan diziden diziye déniisiimiine, (Sn )dizisinin Cesaro ortalamas: denir.
Eger lim o, =5 ise, Zan serisi s degerine (C,1) yada C; toplanabilirdir denir.
n—

C, , bir basamakl bir Cesaro matrisi olup;

I/n ,1<k<n

@~y

bi¢iminde de ifade edilebilir.

=12,...
,k>n (n )
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Teorem 2.1. (Holder Esitsizligi)

p>1, %+é:1, ay,ay,...,a, =20 ve by,b,,...,b, 20 olsun. Bu taktirde,

n n 1/p n 1/q
Zakbk S[Zaf] [Zij
k=1 k=1 k=1

olur.

Teorem 2.2. (Minkowski Esitsizligi)

p=l ap,ay,..,a, 20 ve b,b,,...,b, >0 olsun. Bu taktirde,

n p n Vp s, p
[Z(akwk)ﬁ} S[Za}f] J{ bf}
k=1 k=1

k=1 =
olur.
Tanmim 2.16.
(i) 0< p<owo olmak iizere kuvvetli C; toplanabilir ve smirlh dizilerin
kiimeleri
1 n
P _ — 14 p|_
a)o = (Co)[cl]p ={XE®: nh_l)l;[;];lxkl ]— 0 .
w?f = {x € w :bazi kompleks / sayisti¢in x — le € wg }
olup

ol :(foo)[cl]p ={xe a):sup(%Z|xk|PJ<oo}

n A\ k=1
Maddox (1968) tarafindan tanimlanmistir ve ispatlanabilir ki; bu kiimelerin her biri
p—normlu (0 < p <1) bir FK — uzayidir ve

2v+1_1
1 p
sup| — X , O0<p«l
veo| 27 kzzzvl kl
Il = . | @.1)
| 27 , p
sup| — X , 1S p<oo
v>0 2% kzzvl kl

normu ile ilgili bir BK uzayidir ve a)(f)” , AK ’ya sahiptir.

(i) Vx=(x;);_, ew? dizisi; 1 eC , x—lee o} olacak sekilde
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x=le+ Y (xp —t)elt) (2.2)
k=1

bigiminde bir tek temsile sahiptir. p =1 i¢in @y = a)(l) yazilir (Wilansky, 1964).
Aslinda; a)(‘)U , o’ ve wf kiimelerinin tanimlamasina denk bir yol,

(2.1)’deki bloklarin orijinal tanimindaki kisimlara yer vermekten gecer. (2.1)’deki
norm ile

1
p

1 n
e = S“P(;Z|xk|pJ (2.3)
N

ile tamml1 || |, dogal normu denktirler (Malkowsky ve Rakocevic, 2000).

Tanim 2.17. (Schauder Tabani)

0
Eger her xe X igin x:Zlnbn olacak sekilde skalerlerin bir tek
n=0

(4,);_ dizisi varsa, lineer bir X metrik uzaymnda herhangi bir (b,)”_, dizisine

bir Schauder tabani denir.

Tamm 2.18.

A=(ay), r—o kompleks sayilarin sonsuz bir matrisi ve xew ve

0< p <oo olsun.O zaman

0
A,(x)= Zankxk (n=0.1,..),
k=0

A=A » A7) S abiel? (=011,
k=0
Al? )=, (2 )i
yazabiliriz.

o ’nun herhangi X alt kiimesi i¢in; X, ={xew:A(x)e X}, X deki
A’nin matris bolgesi olarak adlandirilir. Ayrica; X, (4] = {x € a):AQx|p )e X }
kiimesini de tanimlayabiliriz.

p=1 icin, p indislisini benzer yollarla tarif edebilir ve kisaca,
Xp =X 5] ile yazabiliriz.
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Tanim 2.19.

(i) Sonsuza giden pozitif reel sayilarinin azalmayan bir = (u, );010 dizisi
olsun. Ayrica; 0=n(0) < n(1)<n(2)<... olacak sekilde verilen bir (n(v)),_, dizisi
i¢in, n(v)<k <n(v+1)—1 kosulunu saglayan biitin & tamsayilarmin kiimesini

kW ile gosterecegiz. Sirasiyla, K () ’deki biitiin £ ’lar1 iizerine alan toplam ve

maksimum sembolii i¢in dez ile max kullanacagiz.
14

v

(i) 5 /2, ., 0<k<n
11 =
w10, k<n

veE

by = Ve kek
k 0 ,keK<V>

ile B=(by)",_o ve B= (Evk )CVD 4~ Matrislerini tanimlayacagiz. Ayrica; g_j =0

olmak tizere

_,unfl ) =n- 1
A () =1ty ) k=n (n=0,,..)
0 , aksi halde

ile bir A(x) matrisini tamimlayalim. Yine;

o) =(lco)z)) ,, - @) =0 (5)

Ap)’
c(u)={xew:x—rleecy(u), c(u)={rew:x—Llecly(u) ,
Co ()= ((Ew)[g])A(ﬂ) ; Eoo(/l)=((foo)[§])A(#)
kiimelerini tarif edelim.

Malkowsky’e (1995) gore; c(u), c(u) ve c,,(u) uzaylarimn her biri,

Il = A BN, = SUI{% Dl = x|

n>0\ ~n k=0

ile birlikte bir BK uzayidir, co(u) AK Gzelligine sahiptir ve her x = (x; ) _j €,

dizisi x — le e cy(u) olacak bigimde ¢ € C elemani igin x = le+ Z(xk —E)e(k) ile
k=1
bir tek gosterime haiz bir deger vardir.
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Tanim 2.20.

Pozitif reel sayilarin bir A =(4,, )Z):O dizisi; eger herhangi v tamsayisi i¢in

[mv,mVH) araliginda en az bir A, var olacak bigimde bir m >2 tamsayisi1 varsa,
issel smirlidir diye tarif edilir. Malkowsky’den (1995) bilinmektedir ki; pozitif

reellerin azalmayan bir A=(4,)"_, dizisi iissel smirhdir < Asagidaki kosul
saglanir: " bazi (ﬂn(v 1) )zo: , dizisi igin,

A
s< ) <4 (vv=0,1,..)
n(v+1)

olacak sekilde ag¢ik birim aralikta

s<t
reelleri vardir " 2.4)

Burada (2.4) sartimi saglayan iissel smrli bir A=(4,),_, dizisinin bir
(ln(v+1))zo: o alt dizisi, ortak (birlesik) alt dizi diye adlandirilir.
O zaman, co(A)=2cy(A) , c(A)=C(A) ve c,(A)=C,(A)’ dir. Ayrica;

>0\ Mn(v+1

I ite [ :"A(A)(E (|x|)]|w = Sup[ g 1 : Zkak = -1 1|
v v

normlari, ¢o(A) , c(A) ve cy,(A) uzaylan iizerinde denktirler. Bdylece; co(A) ,

c(A) ve c,(A) uzaylarmin her biri, Malkowsky (1995) ve Wilansky (1984)
geregince | || ile birlikte bir BK uzayidir.

Tanim 2.21.

(i) X co ve 7, =t olacak sekilde yerel bir (X,7) konveks uzayina bir
K —uzayi denir ve burada 7, X iizerinde bir K — topolojisidir.

(ii) Bir tam metriklenebilir yerel konveks uzaya [ (Frechet) uzay: denir.
Ayrica; bir F' (Frechet) uzayi bir tam lineer metrik uzaydir.

(iii) Hem bir K —uzay1 hem de bir F' (Frechet) uzay: olan yerel konveks
bir (X,r) uzayma bir FK —uzay1 denir ve burada 7, X iizerinde bir
FK — topolojisidir.  Yani, eger bir X c @ F (Frechet) uzayinda yakinsaklik
koordinatsal yakinsaklig1 gerekli kiliyorsa bir FK — uzay1 adini alir.

(iv) Normlu bir FK —uzaymna bir BK —uzayt denir ve burada onun
topolojisi de aynt zamanda bir BK — topolojisidir. BK — uzayi, siirekli koordinatlara
sahip bir Banach dizi uzayidir. Yani, bir BK —uzay1 Banach uzay1 6zelliklerini
tastyan bir FK — uzayidir.
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(v) Bir (X,r) K -uzayi, ¢ X, keyfi bir x=(x;)e X verilsin. Bu
n
durumda, = Zxkek =(Xg,-rX,,0,...) '€ x’in n.bolgesi denir. Eger PN
k=0
ise, x AK (bdlgesel yakinsak)’ya sahiptir denir. Sy ={x e X : x AK'yasahip}
olmak iizere, eger Sy =X olursa, (X,7)’yabir 4K — uzay1 denir.

Bir Xo5¢ BK wuzay, efer her x=(x;);_,eX dizisi bir tek

o0
x= ane(”) gosterimine sahipse, 4K ’ya da sahiptir diye ifade edilir.
n=0

o0
Bir X ¢ FK —uzayi; eger her x=(x;),_,€X , bir tek x= ane(")
n=1

gosterimine sahip ise, 4K oOzelligine sahiptir diye adlandirilir.
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3. BELIRLENMIS BAZI DiZi UZAYLARI ARASINDA
LINEER OPERATORLERIN KOMPAKT OLMAMA DERECESI

Bu boéliimde; belirlenmis bazi X ve Y dizi uzaylann arasinda lineer
operatorleri inceleyecegiz. Diger durumlarin yani sira, eger X herhangi bir

p—normlu uzayi ve Y =), 0", co(u),c(u), yada c(u) ise, 4 igin X’i Y’ye
doniistiirecek bicimde gerekli ve yeterli kosullar bulunabilir. O zaman; kompakt

olmama Hausdorff derecesi, bir kompakt operatdr olacak bicimde A igin gerekli ve
yeterli kosullarin verilmesi suretiyle tatbik edilebilir.

3.1. Dual Uzaylar ve Matris Doniisiimleri

X ve Y, iki Frechet uzay1 olsun. Daha 6nceden verilen tanimlar ile birlikte
B(X,Y) ve X =B(X,C) uzaylari var olsun. Eger X, p-normlu ve Y,

p* —normlu, L € B(X,Y) ise; o zaman L ’nin norm operatorii igin,
Il = sup{ £ (o) :[lxl =1}
3.1
yazilir. Ayrica; (3.1)’deki norm ile || f]| = sup{ /(x)|: x| =1} (f € X*) normu X~
uzay1 i¢indir.
0
x# :{a €ew:Vx e X igin Zakxk yakmsar} ; ®’nin herhangi X alt
k=0
kiimesi i¢in, X ’in S —duali diye adlandirilir.

Eger X bir lineer metrik uzay ise, o zaman onun metrigi bir tam g
paranormu ile verilir ve Sg[xp]={xe X : g(x—x)< 5} (>0 ; xg € X) ile ifade
edilir.

(X,g) bir FK uzay1 ve a € @ olsun. Bu durumda; sagindaki terimi var ve

sonlu olarak saglanan
o, = Sup{

degeri elde edilir. Oyle ki; Wilansky (1984) geregince a € X B oldugu her durumda
bu s6z konusudur. Eger X bir p —normlu FK uzayi ise, 0 zaman

lall” = Sup{ |l = 1}

Simdi ise Maddox (1968) geregince daha sonra kullanilacak olan asagidaki
bazi sonuglar1 yazabiliriz:

0

P

k=0

:xeSl/D[O]} (D>0)

0

2 ok

k=0

olur.
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0<p<ow ve kW = [2",2erl - 1] (v=0,1,...) verilsin. Bu durumda;

0
{aew:ZZv/pmax|ak|<oo} , 0<p<l
v

M7 v=0

1
- Ja
aew;zzv/p[zwj <ot L d<p<ns = pl(p-D)
v=0 %

ve her a € M7 igin,

0
sz/p max|ay,| , 0<p<l
v
ldlpr =4 "7 7
0 q
ZZV/‘D[ZWH(]J , l<p<ow
v=0 v

elde edilir.
O zaman, (a)é’)ﬂ = (a)p)ﬁ = (a)gg)ﬁ =M? ve M? de ||a||* =|la|\» seklinde

yazabiliriz.

Pozitif reel sayilarin azalmayan iissel siurl bir A=(4, )fzo dizisi ve
(/1”(‘, +1))i°= , birlesik bir alt dizisi olsun. Bu durumda;

0 0 a
C(A)= : A <
( ) {a cEw z n(v+1) m:lX Z A OO}

v=0 k=n
ve her a € C(A) igin,

o ©
"a"C(A) = zln(vﬂ) m‘le z_k
v=0

yazilir. O halde;
(co(A)Y = (e(A)” = (e (M) =C(A)
ve C(A)’da

%
||a - ”a”C(A)
olur.

Eger A sonsuz bir matris ise, o zaman A 'nin n. satirindaki diziler i¢in 4,
yazilir. @ ’nmn herhangi iki X ve Y alt kiimeleri i¢in; (X,Y) , X’i Y’ye
doniistiiren tiim sonsuz matrislerin sinifin1 gostermek iizere,

Ade(X,Y)olur & 4, eX?

her n igin var ve Vx € X igin A(x)e Y *dir.
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Simdi agagidaki iki sonuca ihtiyacimiz vardir:
Teorem 3.1.1. X ve Y birer FK uzay1 olsun. O zaman;

(i) (X,Y)c B(X,Y) dir yani; her 4€(X,Y) i¢in L, (x)=A(x) (xe X)
olacak bigimde bir L, € B(X,Y) elemani tanimlanabilir.
(i) Ae(X,l,,) < baza D>0 igin
* *
1AL, = supl A,y <o
n
(3.2)
olur. Ayrica; eger X p—normlu uzay ve A< (X,/,,) ise, o zaman
* *
A" =supla | =l ] <=
n

(3.3)
olur.

(iii) Eger (b(k))zzo , X ’in bir baz1 ve Y] , Y ’nin bir kapali alt uzay1
olacak sekilde Y ile ¥, birer FK wuzay1 ise, o zaman 4e(X,Y)’dir <
Ae(X.Y) ve Vk =0..... igin A(p®)ey,"dir

Ispat : (i) Bu, Wilansky (1984) geregince goriilebilir.
(i) ilk olarak; varsayalim ki, (3.2) saglanir. Bu durumda, 4, (x)
serisi her n ve her xeSyp[0] icin yakmnsar ve A(x)el, dur. Sy/p[0] kiimesi

Wilansky (1964) geregince emiliyor oldugundan, her n igin 4, € X P ve vxe X
icin A(x)e /., sonucuna ulasilir. Buradan; 4 € (X,/,,) elde edilir.

Tersine; A4 e(X,l,) verilsin. O zaman; (i) kismi ile L4 € B(X,Y)
bulunur. Béylece; Sy p[0]c N ve VxeN igin ||L(x)|<1 olacak bigimde X

iizerinde 0’m bir N komsulugu ile reel bir D >0 vardir. Buda (3.2) kosulunu
ifade eder.
Eger X p—normlu bir uzay ise, o zaman L, € B(X,Y) gerektirir ki; her

[x|=1 igin, |A(x)|,, =sup|4,(x)=[L4(x), <|L4| olur. Béylece; her n ve her
n
x| =1 igin |4, (x)| < || 4] *dir ve || |* normunun tanimi geregince,

supl4, | <|IL.| (3.4)

n

elde edilir. Dahasi; verilen & >0 igin ||4(x)|,, >||L4]—¢/2 olacak bigimde |x|=1

ile x € X vardir ve
|An(x)(x)| 2 "A(x)"oo - ‘9/2

olacak sekilde bir n(x) tamsayisivardir. Sonug olarak, "An(x)(x)" >|Ly|-¢ olur.
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Bu sebeple,
* *
I4]" = supl|4,]" 2|4~
n

olur. & >0 keyfi oldugundan, 4| >||L || ve (3.4)ile de 4| =||L 4| elde edilir.

(iii) 4 € (X,Y;) igin kosullarin gerekliligi agik olarak goriilebilir. Tersine;
eger Ae(X,Y) ise, 0 zaman (i) kismiile L, € B(X,Y) olur. ¥; , Y ’nin bir kapal
alt uzay1 oldugundan, ¥; ve Y ’nin FK topolojileri Wilansky (1984) geregince

aymdir. Sonug olarak; L, € B(X,Y;) dir. Neticede; (b(k)):’:() , X ’in bir baz1 ile

X = span{zk }

ve
£6®)ey, k=01..)

ile L, ’nin siirekliligi gerektirir ki;

Ly(x)e LA(span{b(k)}) cLy (span{b(k)})c Y, =Y

olur.

®’nin bir X alt kiimesi; eger y € X, bazt x€ X igin her ne zaman

|vk| <|xx| sartini sagliyorsa, normal diye adlandurilir.

Teorem 3.1.2.

(i) T bir iiggen matris olsun. Bu durumda ; @ ’nm keyfi X ve Yalt
kiimeleri igin,

Ae(X,Yr) © TAe(X,Y)
yazilir.
(ii) B bir pozitif liggen matris ve Y dizilerin bir normal kiimesi olsun. Her

m=0,1,.. igin N,, <{0,l,...m}, N=(N,)"_, vebiitin N dizilerinin kiimesi N

olsun. Her N e N igin,

Sr]r\t/ = ZtmnAn

neN,,

yani
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N
Sk = Ztmnank (m,k=0,1,...)

neN,,

olacak bigimde SN matrisini tanimlayabiliriz. O zaman; o ’'nin keyfi X alt
kiimeleri ve dizilerin herhangi ¥ normal kiimesi igin,

Ae(X,Yp)) & N iizerindeki bitin N dizileri igin §" € (X,Y) yazilr.

ispat. (i) Bu, Malkowsky (1996) geregince goriilebilir.
(i) Ik once, Ae (X,Y[B]) alalm. O zaman; 4, € xP

(n=0,....) gerektirir ki, her m=0,,.. ve her NeN icin S,]nv e x? olur.
y = B(|4(x)) alahm. Bu durumda, A(x)e ¥jz) yani ye¥ ve Y ’nin normalligi ile

her NeN igin SV (x)eY gerektirmesi ile birlikte yine her N e N igin,

o0
N
zsmkxk
k=0

yazilabilir. Bdylece, her N e N igin, S e (X,Y) olur.

s ()] =

- z bmnzankxk <[yl (m=0.1,..)
k=0

nen,,

Tersine; her Ne N icin SV e (X,Y) olsun. O zaman, her m ve her Ne N
igin SY € X7 olur. Aslinda; N =({m})”_, icin
S ,1,\,/ =b,md, €X B
vardir. Boylece; b,,,, #0 oldugu i¢in 4,, € X P elde edilir. Yine, x€ X alalim.
Her m =0,1,... degerleri i¢in,

Z bmn Al’l (x)

neN,,

menAn (x))= max
N, {0

neN©® {0 m}

olacak bi¢imde bir N }io) kiimesi se¢ebiliriz. O zaman, Peyerimoff (1957) tarafindan

verilen ve iyi bilinen bir esitsizlik geregince

~N©)
Ym 4 menAn<x) :4‘S (x>{
neN,(no)

. (0) . . . o
olur. Hipoteze gdre SV (x)eY’dir. Bu durumda ise, Y ’nin normalligi
v =B(A(x)) Y *yi gerektirir yani A(x)e ¥[p] yazilir. Buradan
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Ae(x,Yi5)

goriilebilir.

Teorem 3.1.1 ve 3.1.2’nin bir iist sonucu olarak sunu elde ederiz:

Sonug 3.1.1.

X bir keyfi FK uzay: olsun. Aynca, g=(u,),_, sonsuza giden pozitif

reellerin azalmayan bir dizisi olsun. Kisaca; o, = a)(l) gibi yazacagiz ve buna gore

*

1
M(X,w,,)=su max |— A
(o=, o i 2

neN, |lp
ve
*
1
M(X,cp(p)) = sup max  j—— Z(/unAn — M1 4y
m>0) m< >~~~sm} /um eN b
yazilabilir.
(i) O zaman, 4e(X,w,,) < bazt D>0 igin
M(X,0,)<®
(3.5)

olur. Eger (b(k)):zo , X’in bir bazi ise, 0 zaman Ae(X,w,) < (3.5) kosulu
saglanir ve her £ =0,1,... icin
4 (bm)} o

m—>0

I
lim {Ez

n=1
(3.6)
olur. Ayrica da; 4 €(X,w) < (3.5) kosulu saglanir ve her k = 0,1,... degeri igin
yine
LS4 (p®)
tim | (4, (60~ e] | =0
m_)w[m Z n( k€ }
n=1
3.7)

olacak bigimde kompleks 7, (k =0,L,...) sayilar1 vardir.
Eger X bir p—normlu uzayi ve Y =@, o yada @, igin 4e(X,Y) ise,
0 zaman
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*

mee nen,
i¢in
141, <[zl <44l
(3.8)
olur.
(i) 4e(X,co(u)) <0 < bazt D>0 igin
M (X, coo(p)) <0

(3.9)

biciminde bir son durum da elde edilir. Eger (b(k ));0 , X ’in bir baz1 ise, 0 zaman

Ae(X,co(u)) < (3.9) kosulu saglanir ve bu durumda da her k = 0,1,... degeri igin

lim [ji 1, A, (b(k))_ ﬂnlAnl(b(k)]] -0

m—»0
n=0

(3.10)
olur. Diger taraftan; 4 € (X,c(u)) < (3.10) kosulu saglanir ve her k = 0,1,... degeri

i¢in

lim [Li 104, (090) =2 ) 11,14, () —Ek]]:O G.11)

m—oo| My e

olur. Neticede; eger X bir p —normlu uzayi ve ¥ =cy(u), c(u) yada c,(u) igin
Ae(X,Y) ise, 0 zaman

*

1
"A”ZOC = sup N max T Z(;unAn _:un—lAn—l)

m=0| N ALl Him nen,
i¢in
1%, (o <MLl <441 (3.12)
elde edilir.
ispat : Biitin gostermemiz gereken (3.8)-(3.12) esitsizlikleridir. Bu
dogrultuda; Y =wy, @, @, iken 4e(X,Y) olsun. O zaman her m =1,2,... i¢in

NcN,, ve |x|=1 oldugu her durumda

D WRE BRSNS BT

neN,, n=1
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yazilir. Bu durum ise gerektirir ki,
*
4, <lZal
(3.13)
olur. Verilen ¢ >0 i¢in

||A(x>||:sup[givln(xﬂzuLAn—e/z

m>1 n=1
olacak sekilde ||| =1 sartl x € X vardir ve

m(x)
5 D)2 o) -2
n=1

olacak bigimde bir m(x) tamsayis1 da mevcuttur.

Sonug olarak,
1 m(x)
— 2 A () 2[A(x) - e

m(x)

yazilabilir. Buna ilave olarak, Peyerimoff (1957) tarafindan verilen ve iyi bilinen bir
esitsizlik geregince

n=1

m(x)
1 1
4 4 >2——= > |4 >SIL =
Nm(x)gi.).{.,m(x)} m(x) neNZ )”(x) m(x) ;| L) =Lyl -€

m(x

olur ve bdylece buradan 4||A||Z) >|Ly||-¢ elde edilir. &€>0 keyfi oldugundan

4||A||Z) >|Ly| yazilir. (3.13) ile verilen esitsizlik dikkate alinarak, (3.8) saglanir.
(3.12)’deki esitsizlikler benzer yollarla ispatlanir.

Uyar 3.1.1.

Eger X bir p—normlu FK uzayive Y’de @y ,0 , @, , co(u), c(u)
yada c,,(u) uzaylarindan herhangi biri ise; 0 zaman 4 € (X,Y) igin kosullar, X ’in
B —dualleri iizerindeki dogal normlar tarafindan (3.5) ve (3.9) kosullarinda || ||*D

normlart yer degistirilerek Sonu¢ 3.1.1.°deki uygun durumlarindaki gibi istenen
goriilebilir. Ayrica burada bazi yerlerde,

max R Y =0y,0,0, ise
N,, <{0,...m}
max L Y =co(uhe(hen (k) ise

N, <{l,....m}
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esitligiile max  icin max ve Z

2V<k<2" 1]

2" <<

(i) X =/, (0<p<w) icin,

~Hn-19-1k

icin Z kullanacagiz.Buna gore;

-1 v

sup| max supi Zank , 0<p<l
m Nm ml’lENm
M(Ep’a) )_ <, q
sup| max Z— Zank , 0<p<oo
m | N k=1mneNm
ve
sup) max sup ZA (pan ) , 0<p<l1
m Him neN,,
M(¢ e ()=
sup| max Z ZA (0 nk) , 0<p<oo
m m\ k=1 Him neN,,
yazilir.
(i) X =w, (0< p<]1) igin,
. 1
sup| max z2v/p max|— Zank , O0<p<l
m N 120 v mneNm
M(a)£,a)w) q %
sup max sz/p ZZ Zank , l<p<wo
No v=0 v nen,,
ve
sup| max| 22 /pmax ZA 7 , 0<p<l
m { N {320 " neN,,
M., ())= . VA
sup| max ZZV/I’ z ZA (etpant ) , l<p<wo
m | Nul 320 "™ neN,,

olur.
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(iii) A=(4);_o » pozitif reellerin iissel smrh bir dizisi ve (ﬂk(v))zozo
birlesik bir alt dizi olsun. Burada, k(v)<k <k(v+1)—1 olacak bigimde biitiin &

tamsayilar1 iizerine alan maksimum ve toplam sembolii i¢in max ile Z
v
v

kullanacagiz. Bu durumda; X =c,,(A) igin,

© 0
1
M(cy,(A), 0y, ) =sup I%ax Zﬂk v+1)ma 2/1_ — z
" " \v=0 j=k neN,,
ve
o0 o0 1
M(C (A) Coo(/u))_sup max Z/lk(vﬂ)ma ZT ZA (yn nk)
Mo v=0 j=k Hom nen,,
yazilir.

3.2. Kompakt Olmama Derecesi ve Doniisiimler

Bu bolimde, bir L, operatoriinin kompakt olusunu inceleyecegiz.
Calisgmamiz daha ¢ok kompakt olmama derecesi kullanma tizerine olacaktir.
Bilindigi lizere; Tanim 2.12°deki verilenlerle birlikte, eger @Q bir X metrik
uzayinin sinirl bir altkiimesi, o zaman Q ’nun kompakt olmama Hausdorff derecesi,
7(Q) ile gosterilir ve
7(Q)=inf{e >0:Q , X'desonlu bir ¢ — aga sahip}

yazilir.
y fonksiyonu, kompakt olmama Hausdorff derecesi diye adlandirilir

(Banas ve Goebl, 1980; Akhmerov ve ark., 1992; Rakocevic, 1994).
Simdi bazi tanimlar1 burada ifade edelim:Oncelikle, Q *nun kapanis Q ile
gosterilsin. Eger Q, Q;, ve Q, bir (X,d) metrik uzaymin sinirh alt kiimeleri ise,

0 zaman,
2(Q)=0< Q bir tam sinirh kiime,
2(@)=#(Q) ,
Q) c Q= 2(Q)) < x(Q,),
2@ U Qy)=max{x(Q), x(Q,)},
2(Q N Qy) <min{x(Q;), x(Q,)}
olur.

Eger X uzayi bir p —normlu uzay ise; o zaman burada y(Q) fonksiyonu

lineer yapiyla baglantili olan baz1 ilave oOzelliklere sahiptir. Mesela;
2(Q +Q2)= 2(Q))+ x(Qy), her A€ C igin #(AQ)=|2|x(Q) vardur.
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Eger X (swrasiyla, Y ) bir p—normlu (swrasiyla, g —normlu) uzay ve

Ae(X,Y) ise; o zaman |A| , ile gosterilen A ’nin kompakt olmama Hausdorff
derecesi; K ={x e X :|]x| <1}, X ’de bir birim kiire olmak iizere |4|| 4= 7(4K) ile
tanimlanmaktadir. Ayrica; 4 kompakttir < |4 , =0 ve 4| P <| 4| dur.

Banas ve Goebl (1980) yada Akhmerov ve ark.’da (1992) goriilebilecegi
lizere asagidaki iyi bilinen sonucu hatirlayalim:

X, bir {e],ey,...; Schauder tabanli bir Banach uzayi; Q, X ’in smirli bir
alt kiimesi ve P,: X — X, {e|,e),...,e,} nin lineer gereni iizerine bir projektdr

olsun. O zaman; a = limsup|/ — F,| iken,
n—»0

1.. .
—hmsup[ sup|(/ - P, )x||] < z(Q)<inf supl|( - B, )|
a n xeQ

n—o \xeQ

< limsup[ sup||(/ - P, )x||] (3.14)

n—o \xeQ
elde edilir.
Bu bdliimiin esas sonucu asagidaki teoremdir:

Teorem 3.2.1.
A, X ve Y ;Sonug 3.1.1°deki gibi taniml1 olsun.

(i) Eger X bir p—normlu uzay yada Y = @) ,0 , @, i¢in Ae(X,Y)

ise, bu taktirde;
%

1 Z: {

. _ 3.15

"A"cooO :Llp Nm‘kC{ri)iL---,k} k,'eN l ( |
m m,k

icin eger Y = @, ise,

li A(m)ﬁ L <4l A(m) 3.16
minoo" "”’w " A”Z minw" ”a)OO ( )
ve eger ¥ = w ise,

Ly o L)

3 lim A5 <Ly, <4 lim 4] (3.17)
ile Y = w,, ise,

0<|Ly], <4 lim 4] (3.18)

m—>0 ©

elde edilir.
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(ii) Eger X bir p—normlu uzay yada Y = cy(u), c(u) yada cy(u) igin
Ae(X,Y) ise, 0 zaman

*

1
A = — Ay — 1 Ay 3.19
VI =20 S afr, 2ttt | O
igin eger ¥ = cq(u) ise,
tim (4] <|L], <4 tim |4 (3.20)
m—>o0 © m—>0 ®
ve Y = c(u) ise,
L. (m) i (m)
7 Jim A7 <Ly, <4 lim 4] (3.21)
ile Y = ¢, (1) ise,
0<|Ly], <4 lim 4] (3.22)
m-—»o *®

olur.

Ispat : (3.16) ve (3.20)’deki limitler var olsun. Ayrica da;
K ={xe X :|x| <1} alahm. (3.14) esitsizligi ile ¥ = @y durumunda; P, : @y — @
, m=12,.. Dbiciminde ik m  koordinatli  bir projektdr  yani
P, (x)=(x1,X,.,%,,0,0,...) , x=(x;) € @ bigiminde

ILAll, = #(4K)= lim {Supll(l P, )Axﬂ
m—> 0| xeK

(3.23)
yazabiliriz. Verilen &€ > 0 igin;

(7 = By )l > (7 = By ) 4] - &/2 (3.24)

olacak sekilde x € K vardir. Ayrica;

k(x)
1
miZ%IIAi (x)>|(1 - B, )Ax| - /2 (3.25)

olacak bigimde (k(x)>m)ile belirli bir k(x) tamsayisi mevcuttur. Peyerimoff
(1957) tarafindan verilen ve iyi bilinen bir esitsizlik geregince,

1 1 k(x)
4 D 4;(x) 210 D 14;(x) (3.26)
)

max m
X
Nn1,k(x)c{m+1""’k(x)} iENm,k(x i=m+1

olur. Yine (3.24) ve (3.25) geregince,



27

4 max k(x) D 4i(x) |2 (1= By Al -2 (3.27)

Ny () St k() N o)

elde edilir. £ >0 keyfi ve x € K oldugundan her m i¢in (3.27)’den dolayz,

1
I-P, )A|<4 — A; 3.28
[~ )4] <4 sup R k}k,z ; (3.28)

yazilir. Boylece (3.23) ve (3.28) geregince (3.16)’da ki ikinci esitsizligi buluruz.
(3.16)’da ki birinci esitsizligi ispatlamak i¢in, varsayalim ki; m bir tamsay1, k > m ,
Ny ©{m+1,...k} ve x € K *dir. O zaman,

k
ZAx <_ >4, x|< D x| <|(1 - By, ) Ax]
lENmk leNmk i=m+l

olur. Buradan; her m ve k>m igin, % ZAi <|(Z-P,)Ly| degerine sahip

ieNm‘k
oluruz ve (3.23) yada (3.14) geregince; (3.16)’da ki ilk esitsizligi elde ederiz.
(3.17)yi ispatlamak icin; dikkat cekildigi tizere, her x=(x;);_,€w dizisi

x —le € @ olacak bicimde / € C elemant i¢in
o0
x= €e+2(xk —E)e(k)
k=1

ile bir tek gosterime haiz bir deger vardir. Ote yandan; P,:0—>w ,
m
P,(x)=rle+ Z(xk 0™ =12, bigiminde bir tamm  yapalm.

[1-B,|=2 , m=12,. oldugu kolayca ispatlanabilir. Ayrica; (3.17)’nin ispati
(3.16)’nin ispatina benzer oldugundan istenen kolayca elde edilebilir.

(3.18)’yi ispatlayalim. Buna gore;
P,y — 0y 5 Py(x)=(x],%7,.,%,,,0,...) , x=(x;) €@, , m=12,...
bi¢iminde tanimlama yapalim. Agiktir ki;
AK < P, (AK)+(I - P, )(AK)
olur. Ayrica, y fonksiyonunun elementer 6zellikleri ile,

2(4K) < (P, (4K))+ 2((I = P, X 4K))
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= 2((I = P, )(4K))

< sup|(Z - P, ) A (3.29)
xeK

elde edilir. (3.18)’deki limit agikg¢a var oldugundan, (3.29) ile (3.16)’da ki ikinci
esitsizligin ispatindan dolayi (3.18) bulunur. Dikkat edilecegi lizere; (3.20), (3.21) ve
(3.22) esitsizlikleri (3.16), (3.17) ve (3.18) esitsizlikleri ile benzer bir bigimde
ispatlanabilir.

Sonugc 3.2.1.

A, X ve Y; Teorem 3.2.1°deki gibi tamml olsun. O zaman; A< (X,Y)

igin, 4 kompakttir & [ 4], <o veeger Y=y ve o ise
lim 4™ =0 (3.30)
m-—»© ©

olur. 4 kompakt = [|4], <o veeger ¥ = o, ise

lim 4™ =0 (3.31)
m-—»© ©

olur. Ayrica; A4 kompakttir < ||4|| <o veeger Y = cy(u) ile c(u) olursa

o (1)
im 4" =0 (3.32)
oot ey (1)

ve A kompakt = ||A||C (u) <® Ve eger Y = c,,(u) ise

; (m) _
”}1rnoo||A||coO (0) = 0 (3.33)
elde edilir.

Simdi Uyari 3.1.1 ile baglantili olarak birkac sonug verelim:

Sonug 3.2.2.
A, X ve Y; Teorem 3.2.1 ve Uyart 3.1.1(i)’deki gibi tanimli olsun. Bu
durumda; max igin max ve Ae(X,Y)ile X=/, (0<p<ow) ve her
N, cim+l,...k} Nk

m igin,
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1
sup| max sup% Zaii , O0<p<l
k>m| Nkl j iENmk.
- 1
M(fp’a)oo)(m)_ o q A
1
sup| max| ZE Zai/ , 0<p<o
k>m| Nk =1 ieN,,

ve
sup| max supL ZA,-(,u,-a,-j , 0<p<l
k>m Nm,k ] ‘le iENmk
M(E e ()™ = ) )V
sup| max ZL ZA,-(,uiaij , 0<p<oo
k>m Nm,k le ’uk ieN
m,k

olur. O zaman; A4 kompakttir < M(ép,a)oo)<oo ve eger ¥ = @y ve @ ise bu

durumda
lim M(£ 0, ™ =0 (3.34)

m—>0
olur. 4 kompakt = M(fp,a)oo)<oo ve Y = a,, ise

lim M(¢ @, )™ =0 (3.33)

m—>0

olur. 4 kompakttir < M(fp,cw(,u))<oo ve eger Y = ¢y(u) ile c(u) olursa bu
halde
tim M( e ()™ =0 (3.36)
m-—>©

olur ve 4 kompakt = M(Zp,cw(y))<oo ve eger Y =c,(u) olacak sekilde
verilmis ise
tim M(¢ e, ()™ =0 (3.37)

m-—>

elde edilir.
Sonugc 3.2.3.

A, X ve Y; Teorem 3.2.1 ve Uyar 3.1.1(ii)’deki gibi taniml1 olsun. Bu

durumda; max i¢in max ve Ae(X,Y) ile X=wf (0< p<o) ve her

N, cim+l,...k} ik

m igin,
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0
sup | max Z2v/p max % Zaij s 0<p<l

v . v+l
ke>m| Nk $20 V<2 -t Y

(m) mk /
M(wo‘g , wooj = " q A
sup | max ZZV/p z llc Za[j , l<p<ow

N
k>m| Nk V=0 v s]’szv“ 1 iENm,k
veE
- 1
sup | max 2V/P max m zAi(ﬂiaij , O<p<l
N Ve iVl
k>m| Nk v=1 25js2 1 €N, &
» (m) 1
M(woo,ffoo(/‘)j = q A
< 1
sup | max E 2v/p E — ZAi(ﬂiaij , l<p<o
k>m) Nm,k _ Ve conV+Hl Hk i .
v=l ARG EVAREE | I 157\

olur. O zaman; A4 kompakttir < M (a)£ ,a)oo)<oo ve eger ¥ = @, ve o ise bu
durumda

tim Mw2.0, )" =0 (3.38)

m-—>0
olur. 4 kompakt = M (60£ ,a)oo)< © ve Y = @, ise

lim M(wgg,a)w)(m) -0 (3.39)
m—>0
olur. A kompakttir <> M(w£,cw(y))<oo ve eger ¥ = co(u) ile c(u) olursa bu
halde

tim M{w2.c., ()" =0 (3.40)
m-—>0
olur ve 4 kompakt = M (a)£ ,coo(,u))<oo ve eger Y = ¢, (u) olacak bigimde

verilmis ise

tim M{w2, e, ()" =0 (3.41)

m—>0

elde edilir.

Sonug 3.2.4.
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A, X ve Y ; Teorem 3.2.1 ve Uyari 3.1.1(iii)’deki gibi tanimli olsun. Bu
durumda; max icin max ve Ae(X,Y) ile X =cy(A) , c(A) ve cy(A)

Ny Sim+l,.. k) Nk

bigimi ile her m i¢in,

m 1
M(cy,(A), a)oo)( ) — sup| max Z/lr(vﬂ) o) <r<r v+1) Zﬁ_ - Z

k>m Nmk v=0 lENmk

Ve

M(cor (M), cop (ﬂ))( = Sup| max Zﬂ“r v+1) max Z 2 /u ZA ﬂlalj

k>m| Nk o (v)r<r(v+l)-1 N,
m,

yazilir. O zaman; 4 kompakttir < M (cw(A),a)w)<oo ve eger ¥ = wy ve @ ise
bu durumda

lim M(c.,(A),w,,)"™ =0 (3.42)
m-—»o0

olur. 4 kompakt = M(c,(A), )< ve eger ¥ = w,, olacak sekilde verilmis
ise
lim M(c,,(A), o, )™ =0 (3.43)
m-—>0

olur. 4 kompakttir < M (c,,(A),c(u)) <0 ve eger Y = cq(u) ile c(u) olacak
bigimde ise
lim M (co,(A),co ()™ =0 (3.44)
m—>0

olur ve A kompakt = M(c,(A),c(p2))<o0 ve eger Y = ¢y, (1) olacak bigimde
verilmis ise
lim M(c,,(A),co ()™ =0 (3.45)
m—>o0

elde edilir.
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4. KUVVETLI C, TOPLANABILIR ve SINIRLI DiZILERIN UZAYLARI
ARASINDA LINEER OPERATORLERIN KOMPAKT OLMAMA
DERECESI

Bu boliimde bazi X ve Y dizi uzaylart arasinda bir X dizi uzaymni bir
Y dizi uzay1 igine doniistiirmede sonsuz matrisler icin gerekli ve yeterli sartlar
verilecektir. Ayrica; kompakt olmak iizere bu uzaylar arasinda bir lineer operatdr
altinda kompakt olmama Hausdorff derecesine iliskin gerekli ve yeterli sartlar da

verilecektir.
4.1. Matris Doniisiimleri

wé’ , ®” ve f kimelerinin S —duallerini yazmak igin
2V <k <2"*' -1 ile tiimii & indisli almmak suretiyle toplam ve maksimum igin de

z ile max yazilarak asagidaki ifadeleri yazabiliriz:

v
0
iy 2 < , =1
{aew z mvax|ak| oo} P

v

v=0

MP = pA
aew:i2%’(2|ak|q] q<oo , 1<p<oo;q=%
v=0 v
o0
ZZVmax , p=1
v
lalygr =4 " (Va e M7 igin )

1
002%7 akq A , l<p<o
> lax|
v=0 v

Hxlly = 1}

Il =1}

0

o] = sup{Zakxk
k=1

o™ = Sup{

Simdi bu dogrultuda bir yardime1 teoremi verelim:

o0

Zakxk

k=1

Lemma 4.1.1.

1< p <o olmak iizere;



33

@) (a)é’)ﬁ = (a)p)ﬂ = (wol;)ﬂ =M? ve M? iizerinde ||a||* =|la|lpg» olur
(Maddox, 1968; Malkowsky, 1996).
Ayrica; M? kiimeleri | |\,» normlart ile BK uzaylaridir (Malkowsky,

1988) ve M? uzaylarmin 4K ’ya sahip oldugunu gérmek kolaydur.

(i) O zaman; w2, p-tamdr yani (wjé )Hﬁ =l
(a)én )ﬂﬁ = (a)p )ﬂﬂ =wf dur (Malkowsky, 1988) ve (MP )ﬂ =wf lizerinde
||a||** =|d or ‘dur  (Malkowsky, 1987). A sonsuz bir matris ise, 4 ’nm

n. satirindaki dizi i¢in A4, ve onun transpozu i¢in AT yazilir. @ 'nin herhangi iki

Xve Y alt kiimesi i¢in; (X,Y), X ’den Y ’ye doniisen tim sonsuz matrislerin

sinifi olarak gosterilir. Boylece, 4 € (X,Y) dir < Vn igin 4, € X B ve vxe X

i¢in

A(x):(An(x)>;°=l=[Zankxk] ey

k=1 n=1

yazilir. Ae(X,Y) ise, Ly(x)=A4(x) (xe X) bir L, € B(X,Y) elemanini tanimlar
(Malkowsky ve Rakocevic, 1998).

Teorem 4.1.1.

1< p <o olsun. O zaman;

m
) Ae(él,wo’é)@M(fl,w£)=§ngg[%;|anklpj<oo @.1)
olur.
(ii) 4 e (El,wé]) < (4.1) saglanir ve Vk igin
i | L <l
mg@(;}zlankl J—O (4.2)
olur.

(iii) 4 (El,a)p) < (4.1)olur ve Vk igin

1
lim [;Z‘;pnk —zk|P] =0 (4.3)
n=

m—>0

olacak sekilde bir (4 ),_, dizisi mevcuttur.



34

ispat : (i)’deki (4.1) kosulu, Y = @2 ile Wilansky’den (1964) goriilebilir.
(i) ve (iii) kisimlart ise, (i) kismi ile Malkowsky ve Rakocevic’den (1998)
goriilebilir.

T ile; her v igin 2" <z, <2""! —1°den bir ve yalmz bir #, var olacak
bigimdeki tamsayilarin tamamu artan biitiin (¢, )?;Ozo dizilerinin kiimesini gosterelim.

Bu durumda asagidaki ifade yazilabilir:

0
sup {z2vmax Za”kJ , p=1
NeN\,=0 Y lneN
0 p
M(wy. 0 ,))=1 sup supz ZZVan,,y , I<p<o
NCNO tETnzl veN !

2V . p=
;sgo[fz% J p=
Teorem 4.1.2.
1< p <o olsun. O zaman;

(@00 ,)=(@.0 )= (@, ) (4.4)
ve

Ac(wg.t ) e Mo, )< (4.5)
olur.

ispat : p=1 durumu, X =amy,0,0, ile Malkowsky (1987) ve Lemma
4.1.1(i)’den goriilebilir. 1< p <oo haline; 1< p <o igin g=p/(p—1) ve p=oo
icin g=1 iken Z=/ » ile X =a, ifadelerini Wilansky’deki (1964) sekilde
uygulayalim. X ve Z, AK i BK uzaylaridirlar. Buradan

(@ ’gp): (“’({}ﬂ’fp):(a’ooaép)
elde edilir. ikinci denklik Lemma 4.1.1(ii)’den dolay1 saglanir. @y c @ C @,
oldugundan (4.4)’deki Ozdeslikleri olusturabiliriz. Dahasi, Wilansky’den (1964)
Ae (a)o,ép)’dir < Lemma 4.1.1(i)’den AT e (fp,a)é})z (fq,Ml)’dir.
Sonug olarak; Malkowsky’den (1988)
T 1
AT e (0, MY) s M.l )< o0

yazilir.
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Uyan 4.1.1.

Malkowsky ve Rakocevic (1998) ve Lemma 4.1.1(i)’nin bir uygulamasi
Ae(wy,!y)’y1 verir <& p=oo i¢in Teorem 4.1.2°deki (4.5) kosuluna denk bir

kosul olarak
o0
supZZ" max|a,; | < oo (4.6)
noy=0 v

olur. 2% <n<2“*! bigimindeki tiim tamsayilar kiimesini N (1) jle gosterip sunu
yazabiliriz:

o0
1
sup | max Z2V max|— Zank , p=1
HeNg N#CN(”) v=0 vo|2# neN,
M(w05w£):
1< 1 !
sup | sup| — — ,1<p<w
NcNy| teT m ; 1;\/2# !
Teorem 4.1.3.
1< p <o olsun.
(i) O zaman,
(00.02 )= (0.02)= (0,.02) (4.7)
elde edilir;
Ae(wo,w£)c>M(w0,w£)<oo (4.8)

olur.
(ii) 4 (a)o,a)é’ )<:> (4.8) ve (4.2) kosullar1 saglanir; 4 < (a)o,a)p )<:> (4.8)

ve (4.3) kosullar1 saglanir; 4 € (a)o,a)(‘)U )<:> (4.8) ve (4.2) kosullar1 saglanir ve

ER
lim %Z

m—>®0

=0 (4.9)

I
lim ;z

m—>o0)

=0 (4.10)

olur.
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Ispat : (i) p =1 icin, (i) kismi Malkowsky (1987) ve Lemma 4.1.1(i)’nin
direkt bir sonucudur. 1< p <o halinde; (4.7)’deki 6zdeslikler, Teorem 4.1.2°nin
ispatindakine benzer bir yontemle goriilebilir.

Burada " Ae (wo,w£)© AT € (Mp,a)é’): (MP,MI) " sonucunu elde
etmek igcin X =, ve Z=MP? ile Wilansky’yi (1964) uygulayabiliriz. Sonug

olarak; Malkowsky’den (1988) Al e (M P Ml)© M(wo,w£)< 0 olur.
(ii) Bu, Malkowsky ve Rakocevic’den (1998) goriilebilir ve gergek
olan su ki; @y , AK ’ya ve (2.1)’de verilen o ’daki diziler lizerine gdsterime de

sahiptir. Simdi, |L 4| operatér normu i¢in hesaplamalar bazi verelim. Dahasi burada,

1

s, ~p I o7

MA(El,a)OO)=sup E2|a”k| (1< p<o)
m,k n=1

ve X herhangi BK uzay1 olmak iizere;

2.4

neN

*

MZ(X,(I): sup

L M (X, 0) =supl4,]
N solNlu n

*

M (X, 0, )=sup max, )Lﬂ ZA”
p| NyeNH)2 neN,

ve
sk
Mi(x.MmY)= sup D 2" 4y,
NCNO /IEN
yazilabilir.
Teorem 4.1.4.

(i) 1<p<o , (2.3) iizerinde tanimli @2 ’nin || "E)j; ve Ae(ﬁl,a){é)

verilsin. Bu durumda;

ILal=35(e1.32) @11)
yazilir.
(i) X keyfi bir BK uzayiolsun. 4 e (X,/;) ise,
My(X,0) < |L(A) < 4M (X 1)) (4.12)
olur. 4e(X,l,) ise,
ILall=M4(X 1) (4.13)

yazilir. (2.1)’de tanimh @,,’dakinorm | |, ve 4de(X,,) ise,
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M 5(X,0,) < |L(4)| < 4M (X, 0,,) (4.14)
olur.
(iii) X keyfi bir BK uzayive A€ (X , Ml) olsun. Bu durumda,
MM <L) < 4ny (x.m?) (4.15)
olur.

ispat :

0
(@) ||x||1:Z|xk|:1 ile Ae(fl,w£) , xel; ve meN verilsin. Bu
k=1
durumda, Minkowski esitsizligini kullanarak,

|
pﬁw

m m %
[ Z|A (x)l”] - 52 s;hu[ggmm] " enifna2)

o0
Z AnkXk
1 =1

elde edilir.
Boylece, m keyfi secilmek tizere ||4(x)| ar <M ) (E 1,(7)£) ve dolayistyla,

LAl = sup{ AN <1l =1)< 14012 (4.16)

olur.

Simdi, x= ) (k=1,2,...) verilsin. Bu durumda; xe /¢y , |x|=1 ve

Lo Ve
l4GN 2 = sup(;Z;Iankl" j <[zl
ile birlikte ’
M(en.32)< )Ly (*.17)
olmay1 gerektirir. Buradan; (4.16) ve(4.17)’den, (4.11) sonucuna ulasilir.

(i) Ilk once, (4.12)’yi goriiriiz. x| =1 ile 4e(X,¢;), xe X ve meN
verilsin. Bu durumda, Peyerimoff’daki (1957) iyi bilinen bir esitsizlik altinda ,

k=1\neN

<4M (X, 01)

m
ZlA” (x) < 4Ncr?lax

n=1

yazilabilir. m keyfi oldugundan, |A(x)|, <4M "(X,0,) sonucunu gikaririz ve

|Zall<4M (X, 01) (4.18)
elde edilir.
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Aksine, N ¢ N keyfi sonlu bir kiime olsun. Bu durumda verilen & >0 igin

2

neN

[x|=1 ve

< ZA" (x){ +¢ olacak sekilde bir x=x(N,s)e X dizisi
neN

*

< Z|An (x)+e<|Ax)|, +e <|L4|+¢& yazihr.
neN

vardir. Bu sebeple, ZA”
neN
N c N ve ¢>0 keyfi oldugu i¢in,

My(X,00) <Lyl (4.19)

yazilir.
(4.18) ve(4.19)’dan, (4.12) sonucuna ulasilir. (4.13) esitsizligi, Malkowsky

ve Rakocevic’den (1998) goriilebilir. (4.14)’deki esitsizlikler; N, ¢ N () ve Lﬂ ,
2

u ile yer degistiren % ve N,, c{l,..m} , m’li Malkowsky ve Rakocevic’de
(1998) oldugu gibi benzer bir yolla tam olarak goriilebilir.

(i) [x|=1 ile Ae (X,Ml) , xeX ve ugeNy verilsin
A

My

‘: ma<x>|An (x) olacak sekilde 1, e N (#=12,..) segebiliriz. Bu
neN¥

durumda; Peyerimoff’daki (1957) iyi bilinen esitsizlik ile,

Ho
2414, |<4 max 2% 4
;;) o NC{O,...,yo}l;V Py
o0
=4 max Z ZZ”anwk X
NC{O""”UO}k:l ueN

<4 sup | sup| D 2# 4, =4MZ(X,M1)
NeN,| teT #

ueN

yazilabilir. Bu her 1 € Ny igin saglandigindan |A(x)|,,1 <4M ) (X , Ml) sonucu
bulunur ve
L <40’y (x. M) (4.20)
elde edilir.
Aksine; N e N , teT ve & >0 verilsin. Bu durumda; ||x| =1 ve

*

Zzut# < ZZ”At# (x)+¢

HeEN neN

olacak sekilde bir x = x(N,t,£) e X dizisi vardir. Bu sebeple,
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*
0

ZZ”A,ﬂ Z max |A (x)+e& =] A gy +e<|Lal+e
neN u=0
elde edilir.
NeNgy, teT ve € >0 keyfi oldugundan

M. M) <Ly @21)

yazabiliriz. Sonug olarak, (4.20) ve (4.21)’den (4.15) sonucu elde edilir. Simdi de
Teorem 4.1.1, 4.1.2 ve 4.1.3’deki karakterize edilmis olan matris doniigiimlerinin
operatdr normlarini hesaplamak i¢in 6nceki sonuglara basvurabiliriz. X ; @y, o,

|

@, uzaylarinin herhangi biri olsun. Bu durumda;

Z Ak

neN

0
My(X,0))= sup ZZ"max
N soll v

Wy=0

o0
My(X,0,)= sup[ZZv max|a,,; |J ,
v

n

V=0
o 1
%
M 4(X,@,)=sup max Z2vmax7 Zank
u | NyeN v=0 v neN

ve I< p<owo ile q:%_l icin,

o0
MAT(Eq,Ml)z sup | sup z

an,tv ’
NcNy| teT| ,-1|ve

1

P A
*

MAt(Mp,Ml): sup | sup sup sz Ay,
NcNy| teT| u neN< veN
olur.

Sonugc 4.1.1.

X ; @y, o, o, uzaylarmm herhangi biri ve (2.1)’de tammli | ||
normu verilsin. Bu durumda; 4 e (X,¢,) ise,
* *
M 4(X,00)<|Lg||<4M 4(X,00)
olur. 4e(X,l,) ise,

ILal=M5(X. 1)
olur.
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e(X,0,) (< p<owo,g=p/(p-1) ise,

M (e MY < am s (M)

olur. 4e(X,w,) ise,

M (X, 0,) <L < 4M 4 (X, 00,)
olur.
Ae(X,w£) (1< p <o) ise,

M (M2 MY <L <am "y (M2, M1

yazilir.

4.2. Kompakt olmama Derecesi ve Doniisiimler

Bu boéliimde diger durumlari yani sira ayni zamanda bazi 6zel durumlar
icinde gerekli olan L, operatoriiniin kompakthigin1 inceleyecegiz ve

caligmalarimizda kompakt olmama derecesinden yararlanacagiz.
Bilindigi tizere; Tanim 2.12°deki verilenlerle birlikte, eger Q@ bir X metrik

uzaymin sinirlt bir altkiimesi, o zaman Q ’nun kompakt olmama Hausdorff derecesi,
7(Q) ile gosterilir ve
7(@Q)=inf{e >0:Q , X'desonlu bir &£ — aga sahip}

yazilir.
y fonksiyonu, kompakt olmama Hausdorff derecesi diye adlandirilir

(Banas ve Goebl, 1980; Akhmerov ve ark., 1992; Rakocevic, 1994).
Simdi bazi tanimlar1 burada ifade edelim:Oncelikle, Q *nun kapanis1 Q ile
gosterilsin. Eger Q, Q;, ve Q, bir (X,d) metrik uzaymin sinirh alt kiimeleri ise,

0 zaman,
2(@)=0< Q bir tam siurl kiime,
2@)=7@).
Q < Q= #(Q)) < 2(Q2),
2(Q U Qy)=max{x(Q,), x(Q,)},
2(Q1 NQy)<min{x(Qy), #(Q,)}
olur.

Eger X uzay1 bir normlu uzay ise, o zaman y(Q) fonksiyonu lineer

yapiyla baglantili bazi ilave ozelliklere sahiptir. Mesela;
2@ +Q3) < 2(Q1)+ 2(Q,), her A€ C igin x(AQ)=|2|x(Q) vardir.
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Eger X ve Y normlu uzaylar ise,0 zaman AeB(X,Y) i¢in |A| , ile

gosterilen 4 'nin kompakt olmama Hausdorff derecesi; K ={x e X :|]x]|=1}, X de

birim kiire olmak iizere "A"Z = y(AK) ile tammlanmaktadir. Ayrica; 4 kompakttir
N ||A||Z =0 ve ||A||Z <| 4|’ dir. Mesela, Banas ve Goebl (1980) veya Akhmerov ve

ark.’da (1992) iyi bilinen sonuglar ile diger baz1 ifadeleri hatirlarsak sunlar yazilir:
X, bir {e],ey,...; Schauder tabanli bir Banach uzay;; Q, X ’in smirli bir
alt kiimesi ve P,: X = X, {e},e,,...,e,} 'nin lineer gereni iizerine bir projektdr

olsun. Bu taktirde; a =limsup|[/ — P,|| iken,
n—®

1.. .
—lim sup[ sup||(/ - P, )x||] < z(Q)<inf supl|( - B, )|
a n xeQ

n—o \xeQ

<lim sup( sup||(/ - P, )x||J (4.22)

n—o \xeQ

yazilir.
Simdi de asagidaki yardime1 lemmayi ifade edelim:

Lemma 4.2.1.

(@) B0 >0 ,1<p<wo, m=12,. bigiminde ilk m koordinatl: bir

projektdr verilsin, yani P, (x)=(x,x3,...,%,,,0,0,...) , x=(x;)e®} olsun. Bu

durumda, I -P,|=1,m=1,.2,... dir.

m
(i) xew?f igin P,(x)=le+ Z(xk —0e™ m=12,.. tarafindan
k=1

P, :of — @? yi tanimlayip (2.2)’deki gosterimle birlikte ele alalim. Bu durumda

ise,
[1-P,ll=2,m=12,..
yazilir.

ispat :
@) |/ -P,|<loldugu agiktir. /—P, #0O, smirh lineer bir operatdr ve
projektor oldugundan ||/ — P,,||>1 yazilir ve bdylece (i) ispatlanir.

(i) x=(x;);_, € verilsin. Bu durumda, x (2.2)’deki gosterime

sahiptir ve

IZ =P, ) = 100500,0, 5y 01 = £ X o — Lo )| S [l ] < 2]
elde edilir. Buradan ||/ —P,,[|<2 , m=1,2,... bulunur.
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|[£ P, =2 olusu ispatlamak i¢in & >0 alalim. Bu halde,
1
()7 52 ke
m+k
oldugu i¢in
Yo,
m+ ko

olacak sekilde kyeN vardir.Simdi de ug € @? yi, ug=(,..,1,-1..,—-1LL1..)

olarak tanimlayalim. Burada [Jug||=1 ve ¢ =1"dir. Dahas,
L Vo
O e ) M o

>2-¢

)A

m+k0

olur.Boylece, || - B, |>2—¢& yani |/ -P,|>2 bulunur.
Teorem 4.2.1.

1< p<oo verilsin. Ayrica, (2.3)’de tanimli olan ve wé” , o vewl

tizerindeki norm || || o» Olsun. Bu durumda,
o0

(El,a)w )(m) = sup[ Z|ank|p] (4.23)
n=m+1
yazilabilir.
(@) Ae(fl,a)é’) ise,
ILal, = tim M6y @2), (4.24)
olur.
(ii) 4 (El,a)p) ise,
2 tim My (0,82} <Ll < tim 2 (01,82 (4.25)
2 m—owo AL @0 Jm) =174 m—»o AL %0 Jim) ’
yazilir.
(i) A<ty 08) ise,
0<|L < tim a’y(e).@2 )(m) (4.26)
m-—o0
elde edilir.

Ispat : Dikkat edilirse; (4.24), (4.25) ve (4.26)’daki limitler mevcuttur.
Ayrica,
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K ={xe ||| <1} yazlabilir. (i) durumunda, (4.22) esitsizligi ile P, : o} — of

m =1,2,... bigiminde ilk m koordinatl bir projektor yani
By (x)=(x1,%2,..,%,,,0,0,...), x=(x;) e &f

olmak tizere, (4.26)’y1
IL4ll, = 2(4K) = lim {Sup"(l ~P, )Ax||} (4.26)
m—o0| xeK

bi¢iminde de ifade edebiliriz. Lemma 4.2.1(i)’den |/ —P,|=1,m=12,... oldugunu
hatirlayalim. Ayrica, A, =(@u) , " du =0 ise 1<n<m ve dy =ay, ise
m < n " bigiminde tanimli sonsuz bir matris olsun. Yine (4.12)’den

* ~ * ~
sup (7~ B, )| =L, | =0, (12 ) = M08,y @27)
xek
yazilabilir.A¢ikgasi, (4.26) ve (4.27) ile (i) elde edilebilir.

(i) x=(x;);_, €w} verilsin. Bu durumda; x, (2.2) gosterimine

sahiptir ve

m
P, 0" > &P , P,(x)= fe+2(xk 0 m=12,..
k=1
olarak tanimlayabiliriz. Lemma 4.2.1(ii)’den bilinmektedir ki, [[/-P,[|=2 |,
m=12,..°dir. Ayrica, (ii)’nin ispati (i)’deki durumla benzer oldugundan denk
yollar izlenerek bulunabilir. Simdi de (4.25)’i ispatlayalim. Yine P, :wZ — of ,
P (x)=(x],%050,%,0,...)  x=(x;)e@f , m=12,.. yi tammlayalim. Agiktir ki,
AK < P,(AK)+(I - P, )(AK) dir.Ayrica, y fonksiyonunun elementer dzellikleri
ile,
2(AK) < 7(B, (AK))+ 2((1 = B, X 4K))
= (1= P YAK)) < sup(1 = P )Ax] =Ly, | 429)
xeK

yazilabilir. (4.25)’deki limit acik bir bicimde var oldugundan (4.28) ve (4.12) ile
(4.25) elde edilebilir.

Simdi ise, yukaridaki teoremin bir sonucu olarak sunu verelim:
Sonugc 4.2.1.
Ae(lﬁl,wé”) yada Ae(l@l,wén) ise,
L, kompakttir < lim M (Zl,a~)£ )(m) =0 (4.29)

m—>0

olur. 4 (fl,a)f)) ise,



44

L, kompaktise lim M 4 (El,ww )(m) =0 (4.30)

m—>0

elde edilir.
Asagidaki 6rnek gostermektedir ki,

tim M5(¢.32 ),y >0
m—»o0

halinde kompakt olma durumu (4.30)’daki L, i¢in miimkiindiir ve bdylece genel
olarak (4.20)’daki durum tam olarak " = (ise) " haline sahiptir.

Ornek 4.2.1.

A=|a, ] matrisi, " a,; =1 iken n=1 ve a,; =0 iken n#1 " bigiminde
taniml1 olsun. Bu durumda,
M(e.@0)=1
ve
Ae (E 1 5£)
olur.

Mi(er.a2),, —sup( ZIanklpr _sup(”;m)%’zl

>m n=m+1 b>m

elde edilir. Oyle ki,
tim % (¢,.@2)

m—>x0

m

):1>O

yazilur. Her x e/ i¢in A(x)=x; oldugu i¢in, L, kompakt bir operatordiir.
Simdi de Sonug 4.1.1°¢ bagh olarak; final uzaylar, ¢, ve of oldugu

zaman operatorlerin kompakt olmama derecelerini ¢alismayi siirdiirebiliriz. X ; @,

]\

, @ Ve @, uzaylarindan herhangi biri olsun. m € N i¢in,

Zank

neN

o0
M;(X,él)(m) = sup Z2V max
NcN\{1,2,...,m} sonlu | ;=)

M;(X,fw)( —sup(ZZ max|ank|]

n>m\ y,_(

1
My(X, 6000)( =sup| max Z2V max|— Zank ,
psm| N,cNW| =5 v 2K =
U

ve I< p<owo ile q=%_1) icin,
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y
0 p P

v
E 2 A,

* 1
M (Eq,M )(m): sup | sup
veN

NcNy| teT| - m+1

b
p\/p
v
2.2 n,

veN

* 1 !
Mo (MPMy= s sup s~ Y
NENo\{1,2,..,m} teT| p (2% “=)
yazilabilir.

Teorem 4.2.2.

X; wy , ® ve m, uzaylarindan herhangi biri ve (2.1)’de tanimli olan

| ||w£ normu verilsin. 4 (X,/;) ise,

lim My (X, 00) ) <ILall, <4 lim M (X,01), (4.31)
m—>o0 m—>©
yazilir. Ae(X,0,,) ise,
m-—>0
e(X,ép) (I<p<owo, g=p/(p-1)) ise,
. * 1 . * 1
lim M (g™, <ILal, <4 lim M RV 433)

Ae(X,my) ise,
. *
IZall, <4 Tim M4 (X, 0.),) (4.34)
m—>0

Ae(X,a)olg) (1< p<oo) ise,
. *
ILdl, s4ml£1wMAT(MP,M1)(m) (4.35)

olur.

Ispat : (4.31)-(4.35)’deki limitlerin var oldugu bize ifade edilmis olsun.
P,: P > 0P [ 1<p<ow , m=1.2,. bigiminde ilk m koordinatli bir projektor

verilsin, yani P, (x)=(x,X2,...,X,;,,0,0,...) x=(x;)e¢? olsun. Kolayca kontrol
edilebilir ki, ||/ - P, || =1, m=12,..7dir. (4.31) ve (4.33)’nin ispatin1 (final uzaylar1
bir tabana sahip oldugunda ) Teorem 4.2.1(i)’nin ispatindaki metot ile verilebilir.
(4.32), (4.34) ve (4.35)’in ispatindaysa (final uzaylar1 bir tabana sahip olmadiginda )
Teorem 4.2.1(iii) lin ispatindaki metot kullanilabilir.

Yukaridaki teoremin bir sonucu olarak sunu yazabiliriz:
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Sonugc 4.2.2.

X; @y, @ ve o, uzaylarindan herhangi biri olsun. (2.1)’de tanimli norm

| |l,» verilsin. Ae(X,¢;) ise,

L, kompakttir < lim MZ(X,El)(m) =0

m—>0

olur. 4e(X,l) ise,
L4 kompakt ise lim MZ(X,KOO)(m) =0
m-—»0

E(X,Zp)(l<p<00 ) qu/(p—l)) iSG,

. * 1
L, kompakttir < lim M r (Zq, M )(m) =0

m—>0 4

Ae(X,w,) ise,
L, kompaktise lim MZ(X,EOO)(m) =0
m—>0

Ae(X,w£) (1< p<w) ise,
L 4 kompakt ise lim MZT (MP’MI)(m) =0
m—>o0

yazilir."

m—>0
Ve
. * 1
tim M7 (M? M), >0

m—>

im My (X, 0 )y >0, lim My (X, ),y >0
m—>0

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

hallerinde kompakt olmak (4.37),(4.39 ve (4.40)’da L, i¢in miimkiindiir " diye bir
ifade bize sdylenmis olsun. Bu durumda; Ornek 4.2.1 ile bunun ispat1 yapilabilir.
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5. (N,q) TOPLANABILIR veya SINIRLI DiZILERIN UZAYLARI

ARASINDA LINEER OPERATORLERIN KOMPAKT OLMAMA
DERECESI

Bu boliimde (]V ,q) toplanabilir veya sinirli olan dizilerin keyfi BK, X

uzaylar1 ve Y uzaylar1 arasindaki lineer operatdrleri inceleyecegiz. X ’i Y ’ye
doniistiiren A4 sonsuz matrisleri i¢in gerekli ve yeterli kosullar1 verecegiz.Ayrica, bir
kompakt operatdr olan 4 igin gerekli ve yeterli kosullar1 vermek suretiyle kompakt
olmama derecesi iizerine uygulama yapacagiz.

5.1. (]V ,q) Toplanabilir veya Sinirh Dizilerin Kiimeleri ile Onlarin £ —Dualleri

n
(qx - pozitif bir dizi ve Q, = qu (n=0,1..)’li Q dizisi verilsin.
k=0
Ayrica,
(Noq)y = (n=0,1,.)

ile tanimli N q matrisi olsun.

9% /On s 0<k<n
0 ) k>n

O zaman, sirastyla, sifira (]V ,q)—toplanabilir ,-toplanabilir ve —sinirli olan
diziletin ~ (N,q)y =(co)y » (N.q)=()y , (N.q),=({)y  kiimelerini
q q q
tanimlayabiliriz.

Onerme 5.1.1.

(]V ,q)o , (]V,q) , (]V ,q)oo kiimelerinin her biri,

x| N, =sup

>
AL
&
ile taniml1 || ||5; normuna bagli bir BK uzayidir (Aljarrah ve Malkowsky, 1998).
q
Ayrica; eger Q, > (n—> o) ise, (ZV ,q)o AK’ya sahiptir ve her
x=(xp)p_g € (N.q) dizisi, feC iken x—fee (]V,q)o olacak sekilde bir tek

o0
x=/le+ Z(xk - Z)e(k) gosterimine sahiptir.
k=0

Herhangi iki x ve y dizisi igin, xy =(x;y;);_, verilsin. Eger X ve Y,

o’nun keyfi alt kiimeleri ise ve z herhangi bir dizi ise, o zaman
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X —lxewixzeX) ve M(X,Y)= nx_l *Y  yazlabilir.Ozet olarak;
xeX
o0
Y=cs oldugunda, X7 =M(X,cs)= {a ew: Vxe X igin Zakxk yakmsak}
k=0
kiimesi, X ’in S —duali adimi alir. U ile, u; #0 (k=0,,..) olacak sekilde biitiin
o0
u dizilerinin kiimesini gosterecegiz. u € U igin, y :(y ) verilsin.Ayrica;
u Uk k=0

00
A" : @ — o operatorii, ATx = ((A+x)k )k:o =(xy —Xg41)5— ile tanimli olsun.

Onerme 5.1.2.
No=(y ] o)y lo e
{aea) > o[k o ZZ: <m0 ve Q%efw},
N = T 070y nlo*c)) ve

= (/y L Zl e (Qfl *co )) alabiliriz. O zaman,

(NaQ)g =Ny . N,(])ﬂ =N ve (]V,q)ﬁ =N, dur (Aljarrah ve
Malkowsky, 1998).

5.2. Matris Doniisiimleri

X ve Y iki Banach uzay1 olsun. B(X,Y) uzayiile N ’nin operatdr normu
i¢cin
12l = sup{ZCe): [l =13

yazilabilir. Eger X bir BK uzay1 ve a € @ ise, 0 zaman

Zakxk = 1}

" o0

lal” = {
k=0

esitliginin sag tarafi var ve sonlu olacak sekilde saglatilir. a € X s oldugunda da bu

gegerlidir (Wilansky, 1984).

Onerme 5.2.1.

(IV ,q)oﬂ , (]V ,q)’g ve (]\_/ ,q)o’i uzaylarmnin herhangi biri iizerinde,
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anQn
dn

A Ak+1
dk  dk+1

n—1
" = Sul{ZQk +

m \k=0

olur.

Ispat : Verilen herhangi x dizisi igin,

|

k
] = Zxke(k) ve T]En] =74 (x["]):QLquxB”] (k,n=0,1,...)
k=0 k=0

yazilabilir.a € N, ve n negatif olmayan bir tamsay1 olsun.

QkA+(a/Q)k ,0<k<n
bl[cn]: anQn/qn , k=n

0 , k>n
o0
ile bl dizisini tammlayabilir ve |af|y, =sup‘b["] 1 :sup[z b][cn]j alabiliriz. O
n n \k=0
zaman,
o0 " n-1 a,0
zakxl[cn] = z_kA(QT[n])k = Z‘Qkfz[(n]f(a/q)k‘JF o]
k=0 i=o 1k k=0 n
n—1 a,0
gsup\f,gn]\[z\gky<a/q>k\+u]
k k=0 n
— [ [ = (7]
=[x Nq‘b  =lal )
olur. Bu durumda,
lall” <lalln (5.1)

bulunur.

Esitsizligin  tersini ispatlamak i¢in, #» keyfi bir tamsayr olsun.

T (x(n))z sign(b][cn]) (k=0,,..) ile x") dizisini tammayalim. O zaman, k >n igin

rk(x(”)):o yani x") e(N,q), » ‘x(") 5 :”z’(x(”)] <1 ve
0 o0 n
> x| =X )= D ek <
k=0 k=0 k=0
olur. n keyfi oldugu igin,
el <llal (52)

yazilir.Simdi (5.1) ve (5.2) esitsizliklerinin sonucunu verebiliriz.
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Eger A kompleks sayilarin sonsuz bir matrisi ise, o zaman A ’nin
n. satirindaki dizi i¢in 4,, yazabiliriz.Ayrica;

Ae(X,Y) e Vn igin 4, € XP ve Vxe X igin A(x)eY

yazilir.
Onerme 5.2.2.

X ve Y, BKuzaylart olsun. O zaman, (X,Y)c B(X,Y) yani her
Ae(X,Y) ve
Ly(x)=A(x) (xe X)
iken bir L4 € B(X,Y) elemani tanimlayabilir. Ayrica;
Ae(X,l) = || =supld,[ =L 4] <o
n

olur. Nihayet; eger (b(k))fzo , X ’in bir taban1 ve ¥} , Y 'nin kapali bir alt uzay1
iken Y ile Y] , FK uzaylan ise, o zaman

Ae(X.Y) o k=01, igin A (X.Y) ve dp®)e v,
olur (Malkowsky ve Rakocevic, 1998).

Onerme 5.2.3.

T bir liggen matris olsun.
(i) Bu durumda, @ 'nin herhangi X ve Y alt kiimeleri i¢in,
Ae(X,Yp)< B=T4de(X,Y)
olur.
(ii) Ayrica; X ve Y, BK uzaylariile A€ (X,Yr) ise, 0 zaman

124l =125l (5.3)
olur (Malkowsky ve Rakocevic, 1999).

Onerme 5.2.1 ve 5.2.2’nin bir sonucu olarak sunu elde ederiz:
Sonug 5.2.1.

n
q=(qy )5, pozitif bir dizi ve 0, = qu —> 0 (n—> ) olsun.
k=0

W) 4c(N,q)p.t0)

M<<zv,q>m,ew>:sup["§gk

ank _ an,k+l
m,n k=0 qk

di+1

+|Qmanm/qm|]<oo (5.4)

ile her n=0,1,... igin
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4,0
4 € ¢ (5.5)

olur.
(ii) 4 ((]V,q),foo)e (5.4) kosulu saglanir ve her n =0,1,... igin,
A"% €c (5.6)
yazilir.
(iii) 4e((N.q)y,00) = (5.4) kosulu saglanir.
(iv) A ((ZV ,q)o,co) < (5.4) kosulu saglanir ve Vk =0,1,...i¢in
lim a,, =0 5.7
n—>®
bulunur.
(v) Ae ((]V,q)o,c) &< (5.4) kosulu saglanir ve Vk =0,1,...i¢in
lim a,;, =/ (5.8)
n—»o
elde edilir.
(vi) 4 ((]V,q), CO) < (5.4), (5.6), (5.7) kosullar1 saglanir ve
o0
lim > a,; =0 (5.9)
n—»o
k=0
olur.
(vii) 4 € ((]V,q),c) & (5.4), (5.5), (5.8) kosullar1 saglanir ve
lim > a,; = (5.10)
n—>0
k=0
elde edilir.
Onerme 5.1.1 ve5.2.3iin bir sonucu olarak sunu elde ederiz:
Sonug 5.2.2.

X bir BK uzayi, (py);_, bir pozitif dizi ve

n
P, = Zpk (n=0,1,...)
k=0

olur. Bu durumda,

Ae(X,(lV,p)w)Q M(X,(]\_/,p)w)=sup <o (5.11)

m

1 m
P_anAn
M =0

olur.
00

Ayrica; eger (b(k))kzo , X ’in bir tabani ise, o zaman 4 e (X,(]V,p)o)<:>
(5.11) kosulu saglanir ve Vi =0,1,... igin
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im | LS )|
r}gnw[azpnAn(b ) =0 (5.12)
n=0
olur ve
Ae (X,(Iv,p)) <> (5.12) kosulu saglanir ve Vk = 0,1,...i¢in
. 1 « (k)
1 — A = 1
minoo[Pm an n(b ) Ly (5.13)
n=0
olur.
Uyan 5.2.1.

() Eger X =/, (1<r<w)ve Y; (N,p), , (N,p) ve (N,p), bigiminde
uzaylarin herhangi biri ise, 0 zaman 4 € (X,Y) igin kosullar; =1 i¢in s=00 ve

1<r<oo igin

S:r/(r—l)
yani,
1 m
supP—anank N r=1
B mk|"m o, _q
M o)=L
sup Z%anank , l<r<o
m A k=01" " n=0

iken ¢ deki dogal norm ile (5.11) kosulundaki || ||* normu yer degistirerek ve a,

terimleri ile (5.12) ve (5.13) kosullarindaki 4, (b(k)) terimleri yer degistirerek
Sonug 5.2.2°deki kendileri ile ilgili kisimlardan bunlar goriilebilir.

(ii) Asagidaki kosullar diigiinebiliriz:

M((N.q),..(N.p),)

—1
—su HZ:Q Li (x" 4, /q) |+ |2 3 - 5.14
=sup k[p 2Pt eqk+qupwn< (5.14)
m,n\ f=(0 ™ =0 M =0
o0
(M) ecy (1=0,1,..) (5.15)
9k k=0
o0
(Mj cc (n=0,,..) (5.16)
9k k=0



m
lim [sznankao (k=0,1,.) (5.17)
m—>o0! Pm —
n=0
1 m
lim [P—ananszﬂk (k=0,1,.) (5.18)
m—>o0! m =0
1 m 0
lim | —— ay ||=0 (k=01,.. 5.19
m—)oo[Pm ngopn(kgo nk]} ( ) ( )
1 m 0
im | — > pal Y ay [|=0p (k=0,,. (5.20)
s oo B v ot

O zaman;

)
Ae((N,q)(N,p)y) e (5.14),(5.16), (5.17) ve (5.19) ;
Ae((N.9)(N.p) o (5.14), (5.16), (5.18) ve (5.20)

olur.

5.3. Kompakt Olmama Derecesi ve Doniisiimler

Bu béliimde, bir L, operatériiniin kompakt olusunu inceleyecegiz.Bunu

yaparken kompakt olmama derecesini kullanacagiz.
Bilindigi lizere; Tanim 2.12°deki verilenlerle birlikte, eger Q bir X metrik

uzayinin sinirl bir altkiimesi, o zaman Q ’nun kompakt olmama Hausdorff derecesi,
2(Q) ile gosterilir ve
7(@Q)=inf{e >0:Q , X'desonlu bir & —aga sahip}

yazilir.
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x fonksiyonu, kompakt olmama Hausdorff derecesi diye adlandirilir
(Banas ve Goebl, 1980; Akhmerov ve ark., 1992; Rakocevic, 1994).

Simdi baz1 tanimlar1 burada ifade edelim:Oncelikle, Q *nun kapanisi Q ile
gosterilsin. Eger Q, Q;, ve Q, bir (X,d) metrik uzaymin simirh alt kiimeleri ise,

0 zaman,
7(Q)=0< Q bir tam smirlt kiime,
1@=4@),
Q cQy = 2(Q)) < 2(Qy),
2(QuQy)=max{x(Q), 7(Qy)},
2(Q; nQy) <min{x(Q), (Q,)}
olur.

Eger X uzay1 bir normlu uzay ise, o zaman »(Q) fonksiyonu lineer
yapiyla baglantili bazi ilave 6zelliklere sahiptir. Mesela;

2(@Q+Q2) < 2(Q1)+#(Q2)
her 1€ C i¢in ¥(A1Q)=[1|x(Q) vardir.

Eger X ve Y normlu uzaylar ise,0 zaman AeB(X,Y) i¢in || , il

gosterilen 4 'nin kompakt olmama Hausdorff derecesi; K ={x e X :|]x]|=1}, X de

birim kiire olmak iizere | 4| 4= 2(4K) ile tamimlanmaktadir. Ayrica; A
kompakttir < |4 P 0’dir.

Simdi de mesela Banas ve Goebl (1980) ile Akhmerov ve ark.’da (1992)
bahsi gegen bir sonuca bakalim:

Onerme 5.3.1.

X, bir {e],ey,...; Schauder tabanli bir Banach uzay;; Q, X ’in smirli bir
alt kiimesi ve P,: X = X, {e},e,,....,e,} 'nin lineer gereni iizerine bir projektdr

olsun. O zaman; a = limsup|/ — B,| iken,
n—>0

1. .
—lim sup[ supl|( - B, )x||j < 7(Q) <inf supl|(Z - B, x|
a n xeQ

n—o \xeQ

<lim sup( sup|(/ - P, )x||J (5.21)

n—o \xeQ
olur.
Onerme 5.3.1°deki a sayisi ile ilgili bilindigi iizere; X =c, ise, 0 zaman
a =1 ve fakat, eger X =c ise, o zaman a =2 ’dir (Banas ve ark., 1980).
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Sonug 5.2.1°e bagh olarak kompakt olmama derecelerine gore, sunu elde

ederiz:
Teorem 5.3.1.
A , Sonug 5.2.1°deki gibi olsun ve herhangi n,r (n > r)tamsayisi igin,
m—1
a
4 =supsup| >tk 2K g a,,, /g, | (5:22)
n>r om \ j—q q dr+1
olusturalim.
X ’ya (]V,q)o yada (N,g) ile 4e(X,cq) olsun. O zaman,
IL 4|1, = tim 4] (5.23)
7 5w
yazilabilir.
X ya (N,q), yada (N,q) ile 4 (X,c) olsun. O zaman,
Lim 4] <JL,], < tim 4| (5.24)
2y Z row
X ’ya (]V,q)o, (N.q) yada (N,q),, ile 4€(X,7,) olsun. O zaman,
0< Ly, < tim |4 (5.25)
r—>0
olur.

Ispat : Dikkat edilirse; (5.23), (5.24), (5.25)’deki limitler
meveuttur. K = {x € X :|x <1} alalim. Ae(X,cy) halinde X =(N,q), yada

X =(N,q) igin Onerme 5.3.1. ile,
ILAll, = 2(4K)= lim | sup|(Z - B, )Ax] (5.26)
X r—>0| xeK
ifadesi; P.:cy —>co (r=1,2,..),ilk r+1 koordinatl yani
P(x)=(x0,X], X7 5000X,,0,0,...) , x=(x; )€y
seklindeki bir projektor (dikkat edilirse; |/ —FB.|=1 , r=0,12,... ) olmak iizere
yazilabilir.

Ayrica; Onerme 5.2.2 ve Sonug 5.2.1 ile

4] = sup|[(7 - P.)Ax] (5.27)
xeK
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elde edilir ve (5.26) ile de (5.23)’de elde edilebilir. (5.24)’1i ispatlamak i¢in, dikkat

edilirse; her x=(xk)f=0 dizisi, " ¢eC, x-leec olacak sekilde " bir tek

o0
x=/le+ Z(xk - f)e(k) gosterimine sahiptir.
k=0

p
P.:c—>c, P(x)=rle+ Z(xk —f)e(k) ,r=01.2,.  tammlayalim.
k=0

Kolayca ispatlanabilir ki; |/ —P.|=2 , r=0,2,.. dir. Ayrica; (5.24)’iin ispati,
(5.23) haline benzer oldugundan kolayca goriilebilir. Simdi (5.25)’1 ispatlayalim.
Pl =Ly, Px)=(x0,X],X0,50%,,0,0,...) , x=(x;)ely , ¥ =0,1,2,... olarak
tanimlayalim. Ag¢iktir ki;

AK = P.(4AK)+(I - P, Y(4K)
yazilir.

Yine y fonksiyonunun elementer 6zellikleri ile,

AAK) < AP(AK)+ 7= P AK)) = 2(I - P YAK) < sup|(I - P, )]
xekK
yazilabilir. Neticeyle; Onerme 5.2.2 ve Sonug 5.2.1 ile (5.25)’i elde ederiz.

Yukaridaki teoremin bir sonucu olarak sunu yazabiliriz:
Sonug 5.3.1.

A, Teorem 5.3.1’deki gibi olsun. O zaman; eger X :(]V,q)o yada
X:(]V,q) icin Ae(X,cy) ise veya eger X:(]V,q)o yada X:(]V,q) i¢in
Ae(X,c) ise, bu durumda biitiin bu hallerde

L, kompakttr < lim [4]") =0 (5.28)
r—>0
yazilabilir. Ayrica; eger X = (ﬁ ,q)o , X :(ZV ,q) veya X :(ﬁ ,q)oo icin
Ae(X,1,,) ise, o taktirde
L, kompakttir = lim ||A||(r) =0 (5.29)
r—o0
elde edilir.

Asagidaki ornek gosterir ki;  lim ||A||(r) >0 halinde kompakt olma

r—>o0

(5.29)’daki L, i¢in miimkiindiir ve burada genel olarak (5.29)’daki durum " = "

durumudur.
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Ornek 5.3.1.

A matrisi, 4, =0 (n=01,..) ile ve ¢,=2, n=012,. ile
tanimlansin. Bu durumda, M ((]\_] ,q)oo,f o ) = sup[l + (2 =27 )] <3’diir ve Sonug

n

5.2.1 ile birlikte, bilinmektedir ki A< ((V,q),./, ) dur. Aynca; lim |4|") =3>0
r—>o

seklinde olmak iizere iken V7 igin ||A||(r) = sup[l+(2—iﬂ =3- ! o dir.
n>r 2}’[ 2r+

vxe(N,q),, igin A(x)=xgey oldugu icin L, bir kompakt operatordiir.

Simdi asagidaki yardimci sonug ile devam edelim:

Lemma 5.3.1.

n
gk >0 (k=0]..) ve Q=) g > (1) olsun. Vx € o icin
k=0
n

1
Tn (x): Q Xk
" k=0

alinabilir. »>0 olsun ve B(V’O):(N,q)o —(N.q), ile B :(N.,q)—> (N.q)

operatorleri;

B"O)(x)= Zxke(k) (xe(N,q)y) (5.30)
k=r+1
ve /= lim 7, (x) iken
n—w
BI()= Y (-0 (xe(N.q)) (531)
k=r+1
alalim. O taktirde
0 _ Q,
B =1+ 5.32
0l=1+q, 632
ve
“B(’) ) (5.33)
olur.

Ispat : Tlk 6nce (5.32) 6zdesligini gosterelim. x e (]V ,q)o olsun. 0<n<r

i¢in 7, (B(V’O)(x)): 0 ve n=r+1 igin
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2 (x) 7,(x) <

Q
T, (B(r’o)(x)] ( - )||x|| (N.q),
I"
oldugu i¢in goriiliir ki,

I )uxu,vq

Q, kZ‘]kxk

r+1

ve neticesinde

B0 <1+ 2 (534)
r+l
olur.

-1 ,0<k<r
Q +Qry k=r+1

qr+1

Xp =

_% s k:}”+2

9r+2
0 , k>r+3

ile x dizisini tanimlayalim.
T,(x)=-1(0<n<r), 7, 4(x)=- Q, Qr

+1=1
Qr+l Qr+1

veE

n(x)_ ( +Qr +Qr+1 (Qr +Qr+1))_

sonucuna ulaslhr.
Q, > © (n—> ») oldugundan x e (]V,q)o ve || (V.q), =1dir.Ayrica;

L (nz2r+2)
n

B 5 (@ + Q)= 1+ g
ve n#r+1 igin 7, (B(r’o)(x)): 0°dir. Bu sebeple,
e O
ve
30921 9 (5.35)
r+l

olur. (5.34) ve (5.35) ile birlikte, simdi (5.32) 6zdesligini verebiliriz. Yine (5.33)
0zdesligini ispatlariz.
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xe(N,g) olsun. 0<n <r igin 7, (B(r)(x)): 0’dirve n>r+1 igin

( (r) |1 N _ Q, Q,
7, B (x)f = ) D qi g = O =|rn (x) - =7, (x) = £+ =24
" k=r+l 2y 2y
Q Q
<+ =Hlxllw y +1—=E¢

oM.+ -

olur. Burada
= lim [z, (e <[l ),
oldugundan n > r +1 igin
2 (B @) <2 ).
elde edilir ve sonug olarak,
HB(’) <2 (5.36)
olur.
-1 ,0<k<r
X = 2Ot ,k=r+l1
qr+1
-1 L k>2r+2
ile x dizisini tamimlarsak,
1
z'n(x) =-1 (0 <ns r) > Tr+1(x): Q (_Qr +2Q, _qr+1):1
r+

veE

1 < 1 Qr 1
rn(x)=—[—@,+2@r+1— qu} (-Q, +2Q,41) =142 <1 (n>7+2)
(@n k=r+l (@n (gn

sonucunu elde ederiz. Burada, ||x||(]v g), =1 ve limz, (x)=-1 yani x € (N,q) dur.
o n—>0

Netice olarak;

7, (B(r)(x)): 0(0<n<r), T,+1(B(r)(x)): é”l (x40 +1)=2
r+l

ile birlikte 7, (B")(x))= 2% <2 (n>r+2)°dir. Bu gerektirir ki,
n
“lg(r)

olur. Yine (5.36) ve (5.37) ile (5.33)’ii verebiliriz.

>2 (5.37)
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Sonug 5.2.2 ve kompakt olmama dereceleri ile baglantili olarak sunu elde
ederiz:

Teorem 5.3.2.

X bir BK uzayi, A Sonug 5.2.2°deki gibi ve P,, — o (m — o) verilsin.
O zaman; herhangi m,r (m > r) tamsayisi igin,

*
m

—>
— ) 4,
Pm n=0
alalim. Ayrica; eger X bir Schauder tabanina sahip ve A e(X ,(]V , p)O) ise, o
taktirde

||A||f]%), p), = Sup (5.38)

b=limsup(2—-p,/P,)
n—>®
iken
Dhim 42 | <L), < tim |42 (539)
br e (va)w Z 15w (N’p)oo

yazilabilir. Eger X bir Schauder tabanina sahip ve 4 € (X ,(]V , p) ise, 0 zaman

1. (r) ; (r)
S A sl < im0
olur.
Netice olarak; eger 4 € (X ,(]V s p)) ise, 0 zaman
: (r)
< r)
0<[Lal, < lim 4l (541)
yazilir.

ispat : Dikkat edilecegi iizere; (5.39), (5.40), (5.41)’deki limitler
meveuttur. K = {x € X :|x]| <1} alahm. Varsayalm ki; 4 e (X,(N, p), ) dir.

B0 :(]V, p)o —)(]V , p)o , Lemma 5.3.1°deki iizere tanimli olsun. Bu
taktirde (5.32) ile , sahip oluruz ki, “B(”O)“:Z— p,/P. *dir. Yine (5.39)

ispatlanmak iizere Onerme 5.1.1 ve 5.3.1 ile, b= lim sup“B(”O) olmak tizere

r—»o

r—>0 r—0

% lim sup( supHB(r’O)Ax“J < y(4K)< lim sup( supHB(r’O)Ax“J (5.42)
xekK xekK

yazilabilir.

Boylece; SupHB(’ 0) Ax“:"Ax"E;V) ) oldugundan (5.39) ispatlanmis olur.
xeK P oo

(5.40)’1 ispatlamak icin Onerme 5.1.1’¢ dikkat edilirse; (]V, p), Schauder
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e,e(k),k =0,1,... tabanina sahip ve her (x; )fzo € (]V,q) ,"teC, x—tee (]V,p)o

olmak tizere " bir tek x = e+ Z(xk 4 )e(k ) gosterimine sahiptir.
k=0

B(r):(]v,p)o —(N.p)y > B (x)= Z(xk—f)e(k) ile Lemma 5.3.1%¢
k=r+1

=2 olarak elde edilir.

gore tanimlt bir projektdr olsun. O zaman; (5.33) ile, “B(r )

Yine (5.40)’1n ispat1 (5.39) durumuna benzer olup ayni teknikle sonuca ulasilabilir.
Simdi (5.41)’i ispatlayalim. Bunun i¢in 6ncelikli olarak yukarida ifade edildigi bir
bicimde
P:(N,p), > (N.p), » Pr(x)=(x0:X1ssX,-,0,0,...)
ve
x=(x.)e(N,p), r=12,.

ile tammlayalim. Agiktir ki; AK < P(4K)+ (I - P, )4K) dir. Uyar1 5.2.1(b)
ifadesi ile goriiliir ki; P, bir sinirli operatérdiir ve agik bir bigimde bu sonlu ranka
sahip oldugundan kompakt olanidir. Ayrica; y fonksiyonunun elementer 6zellikleri
ile,

2(AK)< x(P,(4K))+ 2((I - P, (4K))

= 7((I - P, )4K))
_ — [l 1)
< jlellp;"(l P, )Ax| = "A"(N,p)m (5.43)

elde edilir.
Yukaridaki teoremin bir sonucu olarak sunu elde ederiz:
Sonug 5.3.2.

X bir BK uzay1ve 4 ile ||A||8V) o) Teorem 5.3.2°deki gibi verilsin. Eger

X bir Schauder tabanina sahip iken ya 4 e (X ,(]V , p)o) yada 4 e (X ,(IV , p)) ise,
bu halde,

L, kompakttr < lim|[4](2 | =0 5.4

4 kompakttir < rgrolo” ”(N,p) (5.44)

olur. Ayrica; eger Ae (X ,(ZV , p)w) ise, 0 zaman
L, kompakt = lim |42} =0 5.45
a kompakt =i MK, ) (549
olur.

Yine, Uyar1 5.2.1’e bagl olarak, birkag¢ sonug elde edebiliriz.
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Sonug 5.3.3.

Eger ya Ae(é”,(ﬁ,p)o)(l<u<oo) yada Ae(é”,(ﬁ,p)) (1<u <o) ise,

bu taktirde, v = %M 1) olmak iizere
v
=0 (5.46)
)

Ayrica; egerya A e (ﬁl,(lv,p)o) yada 4 € (El,(]\_],p ise, 0 zaman

L
P_anank

m =0

e}

m
L, kompakt < lim | sup Z%anank
m

R mer ol "™ 420

olur.

L4 kompakt < lim{ sup

r—=% p>r k

] =0 (5.47)

olur. Eger 4 € (é”,(lv,p)) (I<u <o) ise, 0 zaman v = %u 1) olmak tizere

Wi

o0 m
L, kompakt = lim | sup| »" LZ Pl =0 (5.48)
r=> mor| o) m 1
olur.
Sonug olarak, eger A4 e (el,(ﬁ R p)) ise, o taktirde
m
. 1
L, kompakt = lim| sup —anank =0 (5.49)
F=>% n>rk By =0
olur.
Sonug 5.3.2, Onerme 5.2.3 ve Uyar1 5.1.1(b)’den su elde edilir:
Sonug 5.3.4.

Eger X:(ﬁ,q)o yada X:(]V,q) i¢in Ae(X,(]V,p)O) ise veya eger
X=(N ,q)o yada X = (]V ,q) icin A€ (X ,(]V , p)) ise, 0 zaman biitiin bu durumlarda
elde ederiz ki, L, kompakt <

n—1 1 m Q m
lim| sup ZQkP—Zp[(A+ A,g/q)k = > prag|||=0 (5.50)
roeLmera\g=o |7 M 4=o Intm 420

olur.
Ayrica; eger X = (]V,q)oo , X= (]V,q)o yada X = (]\_/,q) i¢in
Ae (X , (]\_] , p)w) ise, 0 zaman yazabiliriz ki; L, kompakt =
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%im(ﬁ Az/‘l)k

m y—0

Q m
+l— peay
n P ; !

n—1
lim [ sup (z Qy

=% m>r,n\ —

H:o (5.51)

olur.
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