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ÖZET 

 

NTRU BENZERİ BAZI KRİPT66OSİSTEMLER VE KARŞILAŞTIRILMASI 

 

ÇAL, Gülbahar 

Yüksek Lisans Tezi, Matematik Anabilim Dalı 

Danışman: Dr. Öğr. Üyesi Ömer KÜSMÜŞ 

Eylül 2025, 67 sayfa 

 

Bu tez beş bölümden oluşmaktadır. Birinci bölümde, açık anahtarlı 

kriptosistemlerin ardında yatan matematiksel zor problemlere ve kuantum bilgisayarlara 

karşı mevcut kriptosistemlerin durumuna değinilen giriş niteliğinde bilgilere yer 

verilmiştir.  

İkinci bölümde, kuantum kriptografide önemli bir yeri olan NTRU kriptosistemi 

ve NTRU benzeri oluşturulan bazı kriptosistemlerle ilgili literatürde mevcut olan 

çalışmalara ilişkin kaynak bildirişleri sunulmuştur. 

Üçüncü bölümde, polinom halkaları, kafes teorisi, NTRU ve benzeri 

kriptosistemlerin güvenliğinin dayandığı en kısa vektör problemi (SVP) ve en yakın 

vektör problemi (CVP) gibi kafes teorisinde yer alan matematiksel zor problemlere dair 

bazı bilgiler aktarılmıştır.    

Dördüncü bölümde, teorik temelleri ve uygun parametre seçimi yapılarak elde 

edilen bir anahtar örneğiyle somut bir mesaj şifrelenip deşifrelenerek NTRU 

kriptosisteminde anahtar üretimi, şifreleme ve deşifreleme işlemlerinin nasıl yapıldığı 

aktarılmış ve MaTRU, CTRU, DTRU, ETRU ve QTRU gibi NTRU benzeri bazı 

kriptosistemler çalışılmıştır.  

Beşinci bölümde, kuantum saldırılarına karşı NTRU kriptosisteminin sağladığı 

güvenlik ve etkililiğin, ele alınan NTRU benzeri diğer kriptosistemlerle kıyaslandığı bir 

tartışmaya yer verilmiştir. 

 

Anahtar kelimeler: Açık anahtarlı kriptosistem, CTRU, DTRU, ETRU, Kafes, 

Kriptografi, Kuantum, MaTRU, NTRU, Saldırı, QTRU 
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ABSTRACT 

 

SOME NTRU-LIKE CRYPTOSYSTEMS AND THEIR COMPARISONS 

 

ÇAL, Gülbahar 

M.Sc. Thesis, Department of Mathematics 

Supervisor: Assist. Prof. Dr. Ömer KÜSMÜŞ 

September 2025, 67 pages 

 

This thesis consists of five chapters. The first chapter presents introductory 

information concerning the mathematically hard problems underlying public-key 

cryptosystems and the current status of existing cryptographic systems in the face of 

quantum computing. 

The second chapter provides references to the existing literature on the NTRU 

cryptosystem—which holds a prominent place in quantum cryptography—as well as to 

several NTRU-like cryptosystems that have been developed subsequently. 

In the third chapter, some fundamental notions related to polynomial rings, lattice 

theory, and the mathematically hard problems within this theory—such as the Shortest 

Vector Problem (SVP) and the Closest Vector Problem (CVP), which underpin the 

security of NTRU and related cryptosystems—are explained. 

In the fourth chapter, the processes of key generation, encryption, and decryption 

in the NTRU cryptosystem are demonstrated by encrypting and decrypting a concrete 

message using a key generated through appropriate parameter selection based on 

theoretical foundations. Additionally, several NTRU-like cryptosystems such as MaTRU, 

CTRU, DTRU, ETRU and QTRU are examined in detail. 

The fifth chapter offers a comparative discussion evaluating the security and 

efficiency of the NTRU cryptosystem against quantum attacks, in comparison with other 

NTRU-like cryptosystems addressed in the study. 

 

Keywords: Attack, Cryptography, CTRU, DTRU, ETRU, Lattice, MaTRU, 

NTRU, Public key cryptosystem, QTRU, Quantum
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1. GİRİŞ 

 

Açık anahtarlı kriptografi kavramı ilk kez 1976 yılında W. Diffie ve M. Hellman 

tarafından ortaya atılmıştır (Diffie ve Hellman, 1976). Bu yaklaşım, klasik simetrik 

şifreleme yöntemlerinin güvenlik açısından yetersiz kalmasından doğan bir ihtiyaç 

sonucu geliştirilmiştir. O zamandan bu yana birçok açık anahtarlı şifreleme sistemi (PKC) 

tasarlanmış ve araştırmacılar tarafından analiz edilerek güvenlik açıkları tespit edilmiştir. 

Açık anahtarlı kriptografi, dijital imzalar, anahtar dağıtımı ve anahtar değişim 

protokolleri gibi birçok temel kavramı içerir. Bu kavramlardan anahtar değişim 

protokolleri ve dijital imzalarla ilgili literatüre bakıldığında, Nathani ve Tripathi’nin 

(2017) kuaterniyonlar üzerinde anahtar değişim protokolleri konusundaki çalışması ve 

Satoh ve Araki’nin (1997), değişmeli olmayan bazı cebirsel yapılar üzerinde imza şeması 

tasarımı ile ilgili çalışması göze çarpmaktadır. 

Hem simetrik hem de asimetrik kriptografik sistemlerin bazı matematiksel olarak 

zor problemlere dayanması gerektiği iyi bilinmektedir. Örneğin, RSA şifreleme sistemi, 

büyük bir bileşik sayı 𝑁 için mod 𝑁 işlemindeki kalan sınıflarının toplamsal abelyen 

grubu ℤ𝑁 'deki çarpımsal tersinir elemanlara (birimsellere) dayanır (Rivest vd., 1978). Bu 

nedenle RSA’nın güvenliği, büyük bileşik sayıların çarpanlara ayrılması probleminin 

zorluğuna bağlıdır. Diğer bir bilinen açık anahtarlı sistem olan ElGamal şifreleme 

algoritması ise, ℤ𝑁 'deki çarpımsal tersinir elemanların grubu olan ℤ𝑁
∗ ’daki ayrık 

logaritma probleminin zorluğuna dayanır (ElGamal, 1985). 

Kuantum bilgisayarların gelişmesi ve özellikle Shor algoritmasının ortaya 

konması, hem çarpanlara ayırma hem de ayrık logaritma problemlerini etkin bir şekilde 

çözebilme yetisiyle bu sistemleri tehdit etmektedir (Shor, 1997). Bu sistemlerin 

güvenliğini sağlamak adına araştırmacılar, cebirsel ve sayı kuramsal yapıların bu 

sistemlere entegre edilmesi gerektiğini fark etmişlerdir. Örneğin, Hurley ve Hurley 

(2011), klasik sistemler olan RSA ve ElGamal yerine grup halkaları temelli yapılarla daha 

güçlü ve verimli kriptografik sistemler geliştirilebileceğini öne sürmüş ve ayrıca, eşlenik 

arama probleminin zorluğu nedeniyle, cebirsel temelli kriptosistemlerin, sayılar teorisi 

temelli sistemlere kıyasla daha güçlü olabileceğini belirtmiştir. 

Güncel araştırmalarda, cebirsel olarak zor problemler bağlamında halkalar ve bu 

halkaların özel elemanlarına dayalı yeni şifreleme yaklaşımlarına yönelim artmıştır. 
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(Banin ve Tsaban, 2012) çalışmasında ayrık logaritma problemi Bergman’ın temsil 

edilemeyen halkası üzerinde ele alınmıştır. Mumtaz ve Ping (2019), RSA sistemine 

yönelik mevcut saldırıları ele alan kapsamlı bir derleme sunmuştur. Liu ve Ye (2018), 

hafif anahtar üretimi sağlayan kimliğe dayalı yeniden şifreleme yöntemi önermiştir. Inam 

ve Ali (2018), grup halkalarında tanımlı döngüsel matris grupları üzerinde inşa edilen 

yeni bir açık anahtarlı şifreleme sistemi tasarlamış ve güvenliğini analiz etmişlerdir. 

(Hanoymak ve Küsmüş, 2015)’te, sonlu devirli grupların integral grup halkalarının 

birimsel gruplarına dayalı simetrik ve asimetrik şifreleme sistemleri önerilmiştir. Bu 

protokolde, yalnızca tek taraflı konvolüsyon yöntemiyle mesajın şifrelenmesi 

sağlanmıştır, fakat bu yaklaşım seçilmiş açık metin saldırılarına karşı zayıf olabilir. 

Myasnikov vd. (2011) grup kuramsal olarak kriptografide kullanılabilecek zor 

problemlere değinmiştir. Halkalarda da kriptografik açıdan kullanışlı olan matematiksel 

zor problemlere rastlamanın mümkün olduğu söylenebilir. Örneğin, grup halkalarındaki 

birimsellerin terslerinin bulunmasının oldukça zor bir işlem olduğu dikkate alındığında, 

bu birimsellerin uygulamalı kriptografi için önemli bileşenler olduğu söylenebilir. 

Dolayısıyla bu yapılar, yeni ve güvenli şifreleme sistemlerinin inşasında etkin biçimde 

kullanılabilir. Hanoymak ve Küsmüş (2015) bu zorluğu, kriptografik uygulamalarda 

birimsel problemi olarak adlandırmıştır. 

Miller (1985), elliptik eğrilerin kriptografideki kullanımı üzerine çalışmıştır. 

NTRU ise, kuantum saldırılarına karşı güvenli oluşu ve RSA (Rivest vd., 1978), ECC 

(Koblitz, 1987), ElGamal (ElGamal, 1985) gibi klasik açık anahtarlı şifreleme 

sistemlerine kıyasla çok daha hızlı çalışması sayesinde dikkat çeken bir açık anahtarlı 

şifreleme algoritmasıdır ve Hoffstein, Pipher ve Silverman tarafından önerilmiştir 

(Hoffstein vd., 1998). Ayrıca, Goldreich vd. (1996) GGH kriptosistemini tanıtmışlardır 

(Silverman vd., 2008). Kuantum bilgisayarların büyük tamsayıların çarpanlara ayrılması 

ve ayrık logaritmaların hesaplanması gibi işlemleri etkin biçimde gerçekleştirebildiği 

gösterildikten sonra, yukarıda adı geçen geleneksel sistemlerin kuantum hesaplamaya 

karşı güvenlikleri zayıflamıştır (Shor, 1997). NTRU’nun en önemli özelliği, kuantum 

saldırılarına karşı dayanıklı olmasıdır. Bunun yanı sıra, hem şifreleme hem de şifre çözme 

işlemlerinin oldukça hızlı gerçekleşmesi, bu algoritmaya olan akademik ilgiyi artırmış ve 

kriptografi camiasında NTRU benzeri birçok yeni kriptosistemin geliştirilmesine bir 

motivasyon kaynağı oluşturmuştur. NTRU’nun güvenliği, kafes teorisine dayanan bazı 
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zor problemlere, özellikle En Kısa Vektör Problemi (SVP) ve En Yakın Vektör Problemi 

(CVP) gibi problemler üzerine kuruludur (Tekin, 2011). Bu problemler için şu an bilinen 

hiçbir polinomsal zamanlı algoritma bulunmamaktadır. LLL algoritması (Lenstra vd., 

1982) gibi bazı yöntemler, bu problemler için en kısa vektörün bir üstel katını vererek 

yaklaşık çözümler sunabilmektedir. En kısa vektörün uzunluğu ile ilgili olarak, Hoffstein 

vd. (2003) tarafından bir kafesin en kısa vektör uzunluğunun yaklaşık değerinin formülize 

edilmesi üzerine yapılan çalışma örnek gösterilebilir. 
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2. KAYNAK BİLDİRİŞLERİ  

 

NTRU ile ilgili literatür incelendiğinde, aşağıda özetlenen çalışmaların öne çıktığı 

görülmektedir. Bu kapsamda, Hoffstein ve Silverman (2003), NTRU kriptosisteminde 

tersinir olması gereken polinomun seçimi üzerine bir çalışma sunmuştur. Silverman 

(1998), bir polinomun hangi şartlarda tersinin mevcut olduğu üzerine olasılıksal bir sonuç 

vermiştir. Silverman (1999a, 2001), etkili bir NTRU kriptosisteminde parametrelerin 

seçimi konusunda çalışmalar yapmıştır. Ayrıca, bir polinomun tersinin hızlı bir şekilde 

hesaplanmasını amaçlayan bir algoritma sunulmuştur (Silverman, 1999b). Silverman ve 

Whyte (2003), olasılıksal olarak deşifreleme başarısızlığını tahmin etme üzerine çalışma 

yapmıştır.  

Ajtai, (1996; 1998) kafes tabanını indirgeme algoritmalarının kriptografi 

açısından kullanılabilirliği üzerine çalışmıştır. Bir başka çalışmada, Dwork (1998), 

kriptografide kafeslerin uygulama alanlarına değinmiştir. Schnorr (1987), polinom 

zamanlı kafes tabanı indirgeme algoritmaları üzerine bir sınıflama yapmıştır. Cai (2000), 

çalışmasında SVP ve CVP’nin zorluklarına ilişkin bazı sonuçlar elde etmiştir. Goldreich 

vd. (1999) çalışmalarında SVP ile CVP’nin zorluklarını kıyas ettikleri bir çalışma 

sunmuşlardır. Bu çalışma sonucunda, SVP’nin CVP’den daha zor olmadığını 

göstermişlerdir. 

İlgili literatüre bakıldığında, NTRU kriptosisteminin kriptanalizi ve bazı saldırı 

denemelerine de rastlamanın mümkün olduğu söylenebilir. Bu bağlamda, May (1999), 

kafes indirgeyerek NTRU kriptosisteminin kriptanalizi ile ilgili bir çalışma yapmıştır.  

Ayrıca, Howgrave-Graham vd. (2003) tarafından, bir NTRU gizli anahtarına 

yapılan ortada buluşma saldırısı ile ilgili çalışma gerçekleştirilmiştir.   

Hoffstein ve Silverman (2000) ve Howgrave-Graham vd. (2005) çalışmalarında 

temel ilkeleri aynı kalmak suretiyle NTRU’nun geliştirilmesini amaçlamıştır. Bu amaç 

doğrultusunda bugüne kadar birçok NTRU benzeri şifreleme sistemi önerilmiştir. 

Örneğin, MaTRU kriptosistemi, 𝑅 =  ℤ[𝑋]/〈𝑋𝑛  −  1〉 halkası üzerinde tanımlı 𝑘 × 𝑘 

boyutlu matrislerden oluşan 𝑀 halkasında çalışmaktadır (Coglianese ve Goi, 2005). 

Kolayca farkedilebileceği üzere 𝑅, katsayıları tamsayı ve derecesi en fazla 𝑛 − 1 olan 

kesilmiş polinomlardan oluşur. Bu sistemde deşifrelemenin değişmeli yapılarla mümkün 
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olduğu ve dolayısıyla güvenlik anlamında bunun NTRU ile kıyaslandığında daha fazla 

bir güvenlik sağlamadığı belirtilmiştir (Vats, 2009). 

Benzer mentaliteyle oluşturulan diğer sistemlerden CTRU kriptosistemi, kesilmiş 

polinomlardaki katsayıları tamsayılar halkasından almak yerine sonlu bir cisim (𝐹2) 

üzerinde tanımlı tek değişkenli polinomları katsayılar olarak ele alıp polinom katsayılı 

polinomlar kullanmayı öneren bir sistemdir ki bu yaklaşımın, LLL algoritması ya da Çin 

Kalan Teoremi temelli saldırılara karşı daha güçlü bir yapı sunduğu belirtilmektedir 

(Gaborit vd., 2002). 

Vats (2009) tarafından sunulan NNRU kriptosistemi, Coppersmith ve Shamir 

(1997)’in gerçekleştirdiği türden kafes saldırılarını önlemek amacıyla geliştirilmiştir ki 

bu sistem; 𝐼𝑘 𝑘 × 𝑘 tipinde birim matrisi göstermek üzere, 

 

𝑀 =  𝑀𝑘(ℤ[𝑋]/〈𝑋
𝑛  −  1〉) 

 

şeklinde tanımlanan ve girdileri 𝑅 =  ℤ[𝑋]/〈𝑋𝑛  −  1〉 halkasından gelen elemanlar olan 

bir matris halkası içinde işlem yapar. 

Jarvis ve Nevins (2015) tarafından geliştirilen ETRU kriptosistemi, Eisenstein 

tamsayılar kümesi ℤ[𝜔] üzerinde tanımlanmıştır. Diğer bir deyişle, ETRU  

 

ℤ[𝜔][𝑋]/〈𝑋𝑛  −  1〉 

 

halkasındaki kesilmiş polinomlarla işlem yapar. Burada, 𝜔 birimin kompleks ilkel küp 

köküdür. 

Malekian vd. (2011) tarafından önerilen QTRU kriptosistemi, değişmeli olmayan 

bir yapı olan kuaterniyonlar cebiri üzerinde tanımlı kesilmiş polinomların ele alınmasıyla 

oluşturulmuş olan bir kriptosistemdir ki çalışmada 41 boyutlu anahtar yardımıyla, NTRU-

167 ile eş bir güvenlik sağlanmıştır.  

Camara vd. (2018), dual tamsayılar kullanarak DTRU adıyla NTRU benzeri bir 

başka sistem sunmuşlardır. DTRU kriptosisteminde, 𝜀2 = 0 olmak üzere 𝐷 = ℤ + 𝜀ℤ 

halkasında tanımlı kesilmiş polinomlar ele alınmıştır. Ancak, DTRU kriptosisteminin 

NTRU ile kıyaslandığında etkili olmadığı belirtilmiştir (Camara vd., 2018).  
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İnternet-of-Things (IoT) uygulamaları için tasarlanmış grup teorisi temelli bir 

varyant olan bir diğer kriptosistem GTRU ismiyle sunulmuştur ki bu sistemin, kafes 

tabanlı saldırılara karşı NTRU’ya göre daha yüksek bir güvenlik seviyesi sunmaktadır 

(Shuai vd., 2019). 

Parvathi ve Srinivasan (2020), matris Lie gruplarını kullanarak yeni bir NTRU 

benzeri açık anahtarlı şifreleme sistemi geliştirmiştir. 

Hanoymak ve Küsmüş (2019), grup halkalarının birimsel elemanları üzerine 

kurulu kriptografik sistemlere ilişkin olarak dihedral grupların değişmeli olmayan grup 

halkalarına dayanan çok taraflı anahtar değişim protokolü ve simetrik şifreleme sistemi 

tasarlamışlardır.  

Bir başka çalışmada, kesilmiş polinomlara entegre edildiğinde NTRU benzeri bir 

sistemle bağdaştırılabilme potansiyeline sahip integral grup halkalarındaki Bass devirli 

birimsel elemanlara dayalı bir açık anahtarlı şifreleme sistemi sunulmuştur (Küsmüş ve 

Hanoymak, 2022).  

Kriptografik açıdan son derece önemli kavramlar hususunda gerekli olan sayılar 

teorisi ve cebirsel alt yapı için Cohen (1995), Milies ve Sehgal (2002) ve Passman 

(1977)’ın çalışmalarına başvurulabilir. Ayrıca, modern kriptografi üzerine Cao 

(2012)’nun çalışmasından da yararlanılabilir. 
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3. MATERYAL VE YÖNTEM  

 

3.1 Polinom Halkaları ve Kesilmiş Polinomlar  

 

Tanım 3.1.1 𝑅 bir halka olmak üzere, sonlu sayıda terimi sıfır olmayan bir 

 

(𝑎0, 𝑎1, … ) ∈ 𝑅 × 𝑅 × … 

 

dizisi yardımıyla oluşturulan 

 

𝑅[𝑥] = {𝑎0 + 𝑎1𝑥 +⋯+ 𝑎𝑛𝑥
𝑛: ∀𝑖, 𝑎𝑖 ∈ 𝑅, 𝑛 ∈ ℕ} 

 

kümesi üzerinde tanımlı 

 

∑𝑎𝑖𝑥
𝑖

𝑛

𝑖=0

+∑𝑏𝑖𝑥
𝑖

𝑚

𝑖=0

=

{
 
 
 
 

 
 
 
 ∑(𝑎𝑖 + 𝑏𝑖)𝑥

𝑖

𝑛

𝑖=0

+ ∑ 𝑏𝑖𝑥
𝑖

𝑚

𝑖=𝑛+1

, 𝑛 < 𝑚

∑(𝑎𝑖 + 𝑏𝑖)𝑥
𝑖

𝑛

𝑖=0

,                               𝑛 = 𝑚

∑(𝑎𝑖 + 𝑏𝑖)𝑥
𝑖

𝑚

𝑖=0

+ ∑ 𝑎𝑖𝑥
𝑖

𝑛

𝑖=𝑚+1

, 𝑛 > 𝑚

 

 

ve 

 

(∑𝑎𝑖𝑥
𝑖

𝑛

𝑖=0

)(∑𝑏𝑖𝑥
𝑖

𝑚

𝑖=0

) = ∑ 𝑐𝑗

𝑚+𝑛

𝑗=0

𝑥𝑗  

 

öyle ki ∀𝑘 ∈ {0,1, … ,𝑚 + 𝑛} için 𝑐𝑘 = ∑ 𝑎𝑗𝑏𝑘−𝑗
𝑘
𝑗=0  işlemleriyle (𝑅[𝑥], +, . ) cebirsel 

yapısına polinom halkası ve her bir elemanına bir polinom denir. Bir 𝑝(𝑥) = ∑ 𝑎𝑖𝑥
𝑖𝑛

𝑖=0  

polinomunda, 𝑛 sayısına 𝑝(𝑥) polinomunun derecesi denir ve 𝑛 = 𝑑𝑒𝑔(𝑝(𝑥)) ile 

gösterilir. Ayrıca, 𝑝(𝑥) = ∑ 𝑎𝑖𝑥
𝑖𝑛

𝑖=0  polinomundaki 𝑎𝑛 ∈ 𝑅, 𝑝(𝑥) polinomunun baş 

katsayısı olarak adlandırılır (Hungerford, 1974).  
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Örnek 3.1.1  1 < 𝑛, 𝑛 ∈ ℕ olmak üzere, ℤ𝑛[𝑥] polinom halkasında, (1 + 𝑥)𝑛 = 1 + 𝑥𝑛 

ve 𝑛 defa toplam (1 + 𝑥) + (1 + 𝑥) + ⋯+ (1 + 𝑥) = 0 olduğu kolayca görülebilir.  

Tanım 3.1.2 𝑅[𝑥] bir 𝑅 halkası üzerinde tanımlı polinom halkası olmak üzere 1 < 𝑁,𝑁 ∈

ℕ olmak üzere, 〈𝑥𝑁 − 1〉 temel ideali ile oluşturulabilen, 

 

𝑅[𝑥]

〈𝑥𝑁 − 1〉
= {𝑓(𝑥) + 〈𝑥𝑁 − 1〉: 𝑓(𝑥) ∈ 𝑅[𝑥]} 

 

bölüm halkasının elemanlarına kesilmiş polinom denir. Aslında, bu tanım matematiksel 

olarak, 

 

𝑅[𝑥]

〈𝑥𝑁 − 1〉
= {∑ 𝛼𝑖𝑥

𝑖

𝑁−1

𝑖=0

: 𝛼𝑖 ∈ 𝑅, 𝑥
𝑁 = 1} 

 

ile eş değerdir ki çalışma boyunca son yazılan form kullanılacaktır. 

Örnek 3.1.2  
ℤ3[𝑥]

〈𝑥4−1〉
 kesilmiş polinomlar halkası, 

 

ℤ3[𝑥]

〈𝑥4 − 1〉
= {𝑘0̅̅ ̅ + 𝑘1̅̅ ̅𝑥 + 𝑘2̅̅ ̅𝑥

2 + 𝑘3̅̅ ̅𝑥
3: 𝑘𝑖̅ ∈ ℤ3, 𝑥

4 = 1} 

 

olup, söz konusu halkada, (1̅ + 2̅𝑥 + 2̅𝑥2)(−1̅̅ ̅̅ + 2̅𝑥 − 2̅𝑥3) = 1̅ + 2̅𝑥 + 2̅𝑥2 + 2̅𝑥3 

eşitliği kolayca görülebilir. 

 

3.2 Kafes Teorisi  

 

Tanım 3.2.1 𝑏1, 𝑏2, … , 𝑏𝑛 ∈ ℝ
𝑚

, 𝑛 tane lineer bağımsız vektör olsun. Bu vektörlerin 

tamsayı katsayılı lineer kombinasyonlarının oluşturduğu kümeye kafes adı verilir ve 

 

                                      ℒ = ℒ(𝑏1, 𝑏2, … , 𝑏𝑛) = {∑ 𝑥𝑖𝑏𝑖
𝑛
𝑖=1 │𝑥𝑖 ∈ ℤ} 

 

şeklinde gösterilir. Burada {𝑏1, 𝑏2, … , 𝑏𝑛} vektörlerine kafesin tabanı (veya bazı) denir. 𝐵 =

[𝑏1, 𝑏2, … , 𝑏𝑛] ∈ ℝ
𝑚.𝑛 taban vektörlerini sütun kabul eden 𝑚 × 𝑛 tipinde matris olmak 
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üzere, 𝐵 tarafından üretilen kafes ℒ = ℒ(𝐵) = ℒ(𝑏1, 𝑏2, … , 𝑏𝑛) = {𝐵𝑥│𝑥 ∈ ℤ𝑛} şeklinde 

ifade edilebilir (Tekin, 2011). Kafes, Şekil 3.1’de gösterildiği gibi periyodik yapılı 𝑛-

boyutlu uzayda bir noktalar kümesi olarak görülebilir (Tekin, 2011). 

 

 

Şekil 3.1 ℝ2 üzerinde bir kafes (Tekin, 2011) 

 

𝑛 tamsayısına rank denir ve 𝑟𝑎𝑛𝑘(𝐵) ile gösterilir. 𝑚  tamsayısına ise kafesin 

boyutu denir ve 𝑑𝑖𝑚 (ℒ(𝐵)) ile gösterilir. Rankı ve boyutu birbirine eşit olan kafese tam-

rank kafes adı verilir (Tekin, 2011).  

 

 

(a) ℤ2 ′nin bir tabanı    (b) ℤ2 ′nin diğer bir tabanı  

 

 

                              (c) ℤ2 ′nin bir tabanı değildir.   (d) Tam rank olmayan bir kafes 

Şekil 3.2 Bazı kafes tabanları (Tekin, 2011) 
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Şekil 3.2.(a)’da görülebileceği üzere, (1,0)𝑇 ve (0,1)𝑇 vektörlerinin ürettiği kafes 

ℤ2 dir (Tekin, 2011). İyi bilinen bir gerçektir ki bir kafesin tabanı tek türlü değildir (Tekin, 

2011). Örneğin, Şekil 3.2.(b)’deki (1,1)𝑇 ve (2,1)𝑇 vektörleri de ℤ2 için üreteçlerdir 

(Tekin, 2011). ℤ2 aynı zamanda (2005,1)𝑇 ve (2006,1)𝑇 elemanlarıyla da oluşturulabilir 

(Tekin, 2011). Şekil 3.2 (a) ve Şekil 3.2 (b)’den farklı olarak (1,1)𝑇 ve (2,0)𝑇 vektörleri 

ℤ2’nin bir tabanı olamaz (Şekil 3.2.(c)’deki gibi) (Tekin, 2011). (1,1)𝑇 ve (2,0)𝑇 

vektörleri, koordinatları toplamı çift sayı olan ikililerin oluşturduğu kafesi üretir (Tekin, 

2011). Şekil 3.2 (a), Şekil 3.2 (b) ve Şekil 3.2 (c)’deki örnekler tam-rank olanlardır 

(Tekin, 2011). Ancak, Şekil 3.2.(d)’deki ℒ((2,1)𝑇) kafesi tam-rank olmayan bir kafestir 

(Tekin, 2011). ℒ((2,1)𝑇) kafesinin boyutu 2 ve rankı 1 dir. 1 boyutlu tam-rank kafese bir 

örnek ℤ = ℒ((1)) kafesidir (Tekin, 2011).  

(𝑣
1
, 𝑣2, … , 𝑣𝑛) ∈ ℝ

𝑚
 lineer bağımsız vektörlerin kümesi olmak üzere, 

(𝑣1, 𝑣2, … , 𝑣𝑛)‘nin ℤ‘deki katsayılar ile oluşan lineer kombinasyonlarının kümesi yani 

 

ℒ = {𝑎1𝑣1 + 𝑎2𝑣2 +⋯+ 𝑎𝑛𝑣𝑛: 𝑎1, 𝑎2, … , 𝑎𝑛 ∈ ℤ} 

 

kafesi göz önüne alınsın. {𝑣
1
, 𝑣2, … , 𝑣𝑛} bir taban ve {𝑤1, 𝑤2, … , 𝑤𝑛} ∈ ℒ bir koleksiyon 

olmak üzere,  

 

 

 

 

𝑤1 = 𝑎11𝑣1 + 𝑎12𝑣2 +⋯+ 𝑎1𝑛𝑣𝑛 

𝑤2 = 𝑎21𝑣1 + 𝑎22𝑣2 +⋯+ 𝑎2𝑛𝑣𝑛 

⋮ 

𝑤𝑛 = 𝑎𝑛1𝑣1 + 𝑎𝑛2𝑣2 +⋯+ 𝑎𝑛𝑛𝑣𝑛 

 

formundadır (Silverman vd., 2008). Burada tüm 𝑎𝑖𝑗 formundaki katsayıların tamsayı 

olması gerektiğinden, 
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𝐴 = (  

𝑎11   𝑎12 ⋯ 𝑎1𝑛
⋮ ⋱ ⋮

𝑎𝑛1    𝑎𝑛2 ⋯ 𝑎𝑛𝑛
) 

 

matrisinin determinantının 𝑑𝑒𝑡 (𝐴) = ±1 olması gerektiği doğal olarak farkedilebilir 

(Silverman vd., 2008). 

Kafes teorisinde matematiksel olarak çözülmesi zor olan bazı problemler 

mevcuttur. İlgili literatürde en kısa vektör problemi (SVP) olarak bilinen problem, ele 

alınan bir kafeste uzunluğu en kısa olan vektörün bulunması problemidir. Bununla ilgili 

algoritmik olarak değişik zorlukların üstesinden gelebilmek için, SVP değişik 

boyutlarıyla ele alınmıştır ki örneğin en kısa vektörü bulup, uzunluğunu verilen bir 

sayıyla kıyaslamak bunlardan bir tanesidir (Tekin, 2011). Bir ℒ(𝛽) kafesi ele alındığında, 

beklenen en kısa vektör uzunluğu, 𝜏(ℒ(𝛽)) ile gösterilmek üzere, kısaca SVP ||𝑣|| =

𝜏(ℒ(𝛽)) olacak şekildeki 𝑣 ∈ ℒ(𝛽) vektörünün tespit edilmesine yönelik problemdir. Bu 

problemin Arama SVP, Optimizasyon SVP ve Karar SVP isimlendirmeleriyle alternatif 

tanımları Tekin (2011) tarafından ele alınmıştır. Kafes teorisinde SVP benzeri diğer bir 

problem de en yakın vektör problemi (CVP) olup, 𝛽 bir kafes tabanı olmak üzere ℒ(𝛽) 

kafesi için, seçilen herhangi bir 𝑣 vektörüne bir 𝑑 metriğine göre ℒ(𝛽) içindeki en yakın 

vektörü bulma şeklinde tanımlanabilir.  

 

3.3 LLL Taban İndirgeme Algoritması 

 

(Tekin, 2011) çalışmasında bahsedildiği gibi bir kafesin çok sayıda farklı tabanı 

olabilir, ancak bu tabanlar içinde kısa ve birbirine dik vektörlerden oluşanlar daha büyük 

öneme sahiptir. Kafes indirgeme algoritmaları, amaç olarak kafesin mümkün olduğunca 

kısa vektörlerden meydana gelen bir tabanını ve aynı zamanda en kısa vektörü elde 

etmeye çalışır. Eğer kafesin boyutu düşükse, en kısa vektör sıralama tabanlı detaylı arama 

yöntemleri ile tespit edilebilir ancak yüksek boyutlu kafesler söz konusu olduğunda, 

ayrıntılı arama yöntemleri üstel zaman karmaşıklığına sahip olur (Schnorr ve Euchner, 

1994; Tekin, 2011). 

Lenstra vd. (1982) tarafından LLL adı verilen bir kafes indirgeme yöntemi 

önerilmiştir. Tekin (2011)’in de belirttiği gibi LLL algoritması, polinom zamanda çalışan 
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ve yaklaşık olarak kısa vektörleri elde edebilen bilinen tek yöntemdir. Bu yaklaşımda 

amaç, ortogonal bir taban elde etmektir. 

Önerme 3.3.1 ℒ bir kafes ve 𝛽 = {𝑢1, 𝑢2, … , 𝑢𝑛} bu kafesin ortogonal bir tabanı 

olsun. Bu durumda en kısa vektör, ortogonal tabandaki vektörlerden biridir.  

İspat. 𝑈 ∈ ℒ olsun. 𝛽 = {𝑢1, 𝑢2, … , 𝑢𝑛} bir ortogonal taban ise, 𝛼𝑖 ∈ ℤ için,  

 

𝑈 =∑𝛼𝑗𝑢𝑗

𝑛

𝑗=1

 

 

ve 𝛽 ortogonal bir taban olduğundan, 

 

||𝑈||2 =∑𝛼𝑗
2||𝑢𝑗||

2

𝑛

𝑗=1

 

 

ve dolayısıyla, ∀𝑗 ∈ {1,2, … , 𝑛} için ||𝑢𝑗||
2 ≤ ||𝑈||2 eşitsizliği geçerlidir. Böylece,  

 

min
1≤𝑗≤𝑛

||𝑢𝑗 || ≤ ||𝑢𝑗|| ≤ ||𝑈|| 

 

olup, iddia edildiği gibi en kısa vektör 𝛽 ortogonal tabanının elemanıdır. ∎ 

Gram-Schmidt ortogonalleştirme işlemi yardımıyla 

 

𝑢𝑖
∗ = 𝑢𝑖 −∑ 𝜇𝑖,𝑗

𝑖>𝑗
𝑢𝑗
∗ 

 

öyle ki  

 

𝜇𝑖,𝑗 =
〈𝑢𝑖 , 𝑢𝑗

∗〉

〈𝑢𝑗
∗, 𝑢𝑗

∗〉
 

 

olup, 

 



 

15 
 

𝜋𝑖: ℝ
𝑚 ⟶∑ ℝ

𝑖≤𝑗
𝑢𝑗
∗ 

 

iz düşümü ile  

 

𝜋𝑖(𝑥) =∑
〈𝑥, 𝑢𝑗

∗〉

〈𝑢𝑗
∗, 𝑢𝑗

∗〉

𝑛

𝑗=1

𝑢𝑗
∗ 

 

eşitliğine dayanarak 𝜋𝑖(𝑢𝑖) = 𝑢𝑖
∗ ortogonal vektörleri elde edilir. 

1

4
< 𝛿 < 1 eşitsizliğini 

sağlayan bir 𝛿 parametresiyle aşağıdaki tanım verilebilir (Micciancio, 1999).  

Tanım 3.3.1 𝛽 = {𝑢1, 𝑢2, … , 𝑢𝑛} kümesi bir ℒ kafesinin tabanı olsun. Eğer, aşağıdakiler 

sağlanırsa, 𝛽 tabanına 𝛿 parametresiyle LLL indirgenmiştir denir (Tekin, 2011): 

(1) ∀𝑖 > 𝑗, |𝜇𝑖,𝑗| ≤ 1/2 

(2) Herhangi iki ardışık 𝑢𝑖 ve 𝑢𝑖+1 vektörleri için, 𝛿||𝜋𝑖(𝑢𝑖)||
2 ≤ ||𝜋𝑖(𝑢𝑖+1)||

2 

 LLL algoritmasının temelde tek bir şarta bağlı olarak verilebildiği söylenebilir. 

Nitekim, algoritma şu şekilde verilir: 

(1) 𝛽 tabanının boyutunu indirgemek. 

(2) Eğer bazı 𝑖 değerleri için, 

 

𝛿||𝜋𝑖(𝑢𝑖)||
2 > ||𝜋𝑖(𝑢𝑖+1)||

2 

 

ise 𝑢𝑖 ve 𝑢𝑖+1 vektörlerinin yerlerini değiştirmek ve tekrar (1) adımına dönmek, aksi halde 

işlemleri durdurmak.  

 

 

 

 

 

 

 

 

 



 

16 
 

 

 

 



 

 

 

 

4. KAFES TABANLI BAZI KRİPTOSİSTEMLER  

 

Bu bölümde, SVP ve/veya CVP problemine dayanan kafes tabanlı 

kriptosistemlerden olan NTRU kriptosistemine ve değişik cebirsel yapılar üzerinde 

türetilerek NTRU benzeri yapılan bazı kriptosistemlere yer verilmiştir.  

 

4.1 NTRU  

 

NTRU kriptosistemi, literatürde sıklıkla çalışılan kafes tabanlı kriptosistemlerden 

biri olup, Hoffstein vd. (1998) tarafından ortaya atılan ve döngüsel modüler kafeslere 

ilişkin bir kriptosistemdir. NTRU, temelde ℤ[𝑥]/〈𝑥𝑁 − 1〉 halkası üzerindeki 

polinomların konvolüsyon çarpımlarına dayanan bir kriptosistem olup, sistemin 

parametreler dörtlüsü (𝑁, 𝑝, 𝑞, 𝑑)’dir. Burada, sistemin etkin çalışabilmesi için bu 

parametrelerin bazı özelliklere sahip olması gerekmektedir. Daha açık olarak ifade etmek 

gerekirse, ilerleyen kısımlarda değinilecek olan şifreleme ve deşifreleme algoritmasının 

etkililiği için 𝑁 parametresinin asal olarak seçilmesi gerektiğinin ve ayrıca, 𝑞/𝑝 değerinin 

de oldukça büyük ve 𝑒𝑏𝑜𝑏(𝑝, 𝑞) = 1 olmasının sistemin etkililiği için büyük önem arz 

ettiği belirtilmiştir (Silverman vd., 2008). Sistemin dayandığı cebirsel yapılar; 

 

ℛ =  ℤ[𝑥]⧸〈 𝑥𝑁 − 1〉, ℛ𝑝 = ℤ𝑝[𝑥]⧸〈 𝑥
𝑁 − 1〉 ve ℛ𝑞 = ℤ𝑞[𝑥]⧸〈 𝑥

𝑁 − 1〉  

 

olmak üzere, bir 

 

ℎ(𝑥) = ℎ0 + ℎ1𝑥 +⋯+ ℎ𝑁−1𝑥
𝑁−1 ∈ ℛ𝑞 

 

polinomu ile NTRU kriptosisteminin kafesi oluşturulabilir ki bu kafes 
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𝑀ℎ
𝑁𝑇𝑅𝑈 =

[
 
 
 
 
 
 
 
1 0 … 0 ℎ0 ℎ1 … ℎ𝑁−1
0 1 … 0 ℎ𝑁−1 ℎ0 … ℎ𝑁−2
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 … 1 ℎ1 ℎ2 … ℎ0
0 0 … 0 𝑞 0 … 0
0 0 … 0 0 𝑞 … 0
⋮ ⋮ ⋱ 0 0 0 ⋱ 0
0 0 … 0 0 0 … 𝑞 ]

 
 
 
 
 
 
 

 

 

matrisinin satırları tarafından üretilen 2𝑁 boyutlu 𝐿ℎ
𝑁𝑇𝑅𝑈 kafesidir (Silverman vd., 2008; 

Tekin, 2011). 

𝑀ℎ
𝑁𝑇𝑅𝑈

 matrisinin 𝑛 × 𝑛 şeklinde dört bloktan oluştuğuna dikkat edilmelidir. 

Nitekim; 

 Sol üst blok; Birim matris 𝐼𝑛  

 Sol alt blok; Sıfır matrisi 0𝑛 

 Sağ alt blok; 𝑞𝐼𝑛 

 Sağ üst blok; ℎ(𝑥) polinomunun katsayılarının döngüsel matrisi (Silverman vd., 

2008)   

Böylece, NTRU kriptosisteminin matrisini aşagıdaki gibi kısaltmak genellikle uygundur. 

 

𝑀ℎ
𝑁𝑇𝑅𝑈 = (

𝐼 ℎ
0 𝑞𝐼

) 

 

NTRU sisteminde şifreleme ve deşifreleme işlemleri sırasında önemli bir nokta, 

mod alma işleminin tanımı yani aslında katsayıları indirgemektir. Bu işlemler sırasında 

oluşabilecek başarısızlıklardan kaçınmak için, polinomların (katsayılarının) ortalanması 

gerekmektedir (Silverman vd., 2008; Tekin, 2011). Yani, 𝑓 (𝑚𝑜𝑑𝑚) işleminde, 𝑓 

polinomunun katsayıları [0,𝑚) aralığında ele alınmaktansa (⌊−
𝑚

2
⌋ , ⌊

𝑚

2
⌋] aralığına 

indirgenmelidir (Tekin, 2011). Herhangi pozitif 𝑑1 ve 𝑑2 tamsayıları için  

 

ℒ(𝑑1 , 𝑑2) = {𝑎(𝑥) ∈ ℛ:

𝑎(𝑥) içinde 𝑑1 adet katsayı 1,
𝑑2 tane katsayısı − 1,
geri kalan katsayılar 0

} 

 

Tekin (2011), 𝑓 polinomunda 1 ve −1 olan katsayıların sayısının aynı olmadığı çünkü 

𝑓(1) = 0 eşitliğini sağlayan bir polinomun (Hoffstein vd., 1998) çalışması gereğince 
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tersinir olamayacağını belirtmiştir. Anahtar üretimi, şifreleme ve deşifreleme işlemleri için 

gerekli olan; 𝑓, 𝑔 polinomları, 𝑟 rastgele polinomu ve bir 𝑚 mesajının alındığı uzaylar 

sırasıyla ℒ𝑓, ℒ𝑔, ℒ𝑟 ve ℒ𝑚 ile gösterilsin.  ℒ𝑓, ℒ𝑔 ve ℒ𝑟 uzaylarının parametrik yapısı 

aşağıdaki gibi tanımlanmıştır. 

 ℒ𝑓 = ℒ(𝑑𝑓 , 𝑑𝑓 − 1) 

 ℒ𝑔 = ℒ( 𝑑𝑔, 𝑑𝑔 ) 

 ℒ𝑟 = ℒ( 𝑑𝑟 , 𝑑𝑟 ) 

 

NTRU Anahtar Üretimi: 

 

Bir ℛ =  ℤ[𝑥]⧸〈 𝑥𝑁 − 1〉 halkasından; yukarıda belirtilen parametrik şartlara 

uyacak ve hem ℛ𝑝 =  ℤ𝑝[𝑥]⧸〈 𝑥
𝑁 − 1〉 hem de ℛ𝑞 = ℤ𝑞[𝑥]⧸〈 𝑥

𝑁 − 1〉 halkasında 

tersinir olacak şekilde bir 𝑓 polinomu seçilir. Seçilen 𝑓 polinomunun ℛ𝑝 halkasındaki tersi 

𝑓𝑝
−1 ve ℛ𝑞 halkasındaki tersi 𝑓𝑞

−1 olmak üzere, 𝑓. 𝑓𝑝
−1 ≡ 1 (𝑚𝑜𝑑 𝑝) ve 𝑓. 𝑓𝑞

−1 ≡ 1 (𝑚𝑜𝑑 𝑞) 

denklikleri sağlanır.  Benzer şekilde, ℒ𝑔 uzayından, yukarıdaki parametrik şartlar 

doğrultusunda bir 𝑔 polinomu seçilerek,  

 

ℎ ≡ 𝑝. 𝑓𝑞
−1 ∗ 𝑔 (𝑚𝑜𝑑 𝑞) 

 

polinomu hesaplanır ki 𝑓 gizli anahtarı ve ℎ açık anahtarı üretilir.  

 

NTRU Şifreleme: 

 

ℒ𝑚 mesaj uzayından bir 𝑚 mesajı (polinom olarak) seçilsin. Ayrıca, mesajın 

gizliliğini sağlamak adına ℒ𝑟 uzayından ℒ𝑟 = ℒ( 𝑑𝑟 , 𝑑𝑟 ) olacak şekilde rastgele bir 𝑟 

polinomu da göz önüne alınarak, 𝑚 mesajı 

 

𝑒 ≡ 𝑟 ∗ ℎ + 𝑚 (𝑚𝑜𝑑 𝑞) 
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şeklinde şifrelenir (Tekin, 2011). Burada, rastgeleliğin farklı polinomlarla sisteme dahil 

edilmesinden kaynaklı olarak seçilen bir mesajın, birden farklı şekilde şifrelenmesi 

mümkündür.  

 

NTRU Deşifreleme: 

 

𝑒 şifreli mesajını çözmek için ilk olarak gizli anahtar olan 𝑓 polinomunun 𝑚𝑜𝑑 𝑝 

altındaki tersinin kullanılarak, 

 

𝑎 ≡ 𝑓 ∗ 𝑒 (𝑚𝑜𝑑 𝑞) 

 

ara işleminin yapılması gerekir. Daha sonra, 

 

𝑎′ ≡ 𝑎 (𝑚𝑜𝑑 𝑝) 

 

işlemiyle birlikte katsayıların (− ⌊
𝑞

2
⌋ , ⌊

𝑞

2
⌋) aralığına indirgenmesi yani diğer bir deyişle 

katsayıların ortalanması işleminin gerçekleştirilmesi çok büyük öneme sahiptir. Son 

olarak, 

 

𝑐 ≡ 𝑓𝑝
−1 ∗ 𝑎′ (𝑚𝑜𝑑 𝑝) 

 

işlemiyle şifreli metni çözme işi tamamlanır. Burada dikkat edilmesi gereken bir husus 

şudur ki uygun parametreler ve katsayıların ortalanmasıyla birlikte, seçilen bir 𝑚 

mesajının şifrelenmiş metni tekrar deşifreleme işlemine tabi tutulduğunda yüksek 

ihtimalle yine 𝑚 mesajının elde edileceği fakat uygun bir şekilde ele alınmayan ve 

ortalanmayan parametrelerle deşifreleme işleminin başarısızlıkla sonuçlanabileceği 

belirtilmiştir (Tekin, 2011).  

 NTRU kriptosisteminde şifreleme ve deşifreleme işlemlerinde başarıya ulaşmanın 

yani bir 𝑚 mesajının şifrelenmesiyle elde edilen 𝑒 mesajının deşifreleme işlemine tabi 

tutulmasıyla yine 𝑚 mesajına ulaşabilmek için seçilmesi gereken parametre değerlerine 

ilişkin aşağıdaki teorem, uygulamada çok büyük bir öneme sahiptir.  
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Teorem 4.1.1 Eğer NTRU parametreler dörtlüsü (𝑁, 𝑝, 𝑞, 𝑑),  

 

(6𝑑 + 1)𝑝 < 𝑞 

 

eşitsizliğini sağlayacak şekilde seçilirse, 𝑐 = 𝑚 olur (Silverman vd., 2008). 

Bu bağlamda, aşağıdaki örnekte parametreler yukarıdaki teoreme uygun olarak 

seçilmiştir.  

Örnek 4.1.1 NTRU kriptosistemi için parametreleri 𝑁 = 7 , 𝑞 = 97 , 𝑝 = 5 , 𝑑𝑓 = 3, 𝑑𝑔 =

2 olan bir anahtar çifti üretilerek ve bu anahtarla 𝑚 = 1 + 𝑥 + 𝑥2 mesajı şifrelenip daha 

sonra deşifre edilsin.  

Burada, 𝑓(𝑥) polinomunun en fazla 6. dereceden ve üç tane katsayısı 1, iki tane 

katsayısı  -1 ve diğer katsayılarının 0 olması gerektiği açıktır. Benzer şekilde 𝑔(𝑥) polinomu 

en fazla 6. Dereceden ve iki tane katsayısı 1, iki tane katsayısı -1 ve diğer katsayıları 0 olan 

bir polinom olmalıdır. Söz konusu polinomlar, 

 

𝑓(𝑥) =  −1 + 𝑥2 − 𝑥3 + 𝑥5 + 𝑥6 

 

ve  

 

𝑔(𝑥) =  −1 − 𝑥 + 𝑥3 + 𝑥5 

 

olsun. 𝑓(𝑥) polinomunun (mod5) ve (mod32) de tersleri aşağıdaki gibidir.  

 

𝑓𝑝
−1(𝑥) = 𝑓(𝑥) = 2 + 2𝑥 + 2𝑥2 + 2𝑥3 − 𝑥4 − 2𝑥5 + 𝑥6  (𝑚𝑜𝑑5) 

 

𝑓𝑞
−1(𝑥) = 𝑓(𝑥) = −9 + 5𝑥 − 2𝑥2 − 47𝑥3 − 25𝑥4 − 36𝑥5 + 18𝑥6  (𝑚𝑜𝑑97) 

 

𝑓𝑝
−1(𝑥) = (2 + 2𝑥 + 2𝑥2 + 2𝑥3 − 𝑥4 − 2𝑥5 + 𝑥6) 

 

𝑓𝑞
−1(𝑥) = (−9 + 5𝑥 − 2𝑥2 − 47𝑥3 − 25𝑥4 − 36𝑥5 + 18𝑥6 ) 

 

Böylece, verilen parametreler doğrultusunda ℎ(𝑥) açık anahtarı 
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ℎ(𝑥) ≡ 𝑝. 𝑓𝑞
−1(𝑥) ∗ 𝑔(𝑥) (𝑚𝑜𝑑𝑞) 

 

kuralıyla, aşağıdaki gibi hesaplanır. 

 

ℎ(𝑥) ≡ 

5(−9 + 5𝑥 − 2𝑥2 − 47𝑥3 − 25𝑥4 − 36𝑥5 + 18𝑥6 )(−1 + 𝑥3 + 𝑥5 − 𝑥8)(𝑚𝑜𝑑97) 

 

Yani, 

 

ℎ(𝑥) ≡ (−180 − 395𝑥 − 50𝑥2 + 20𝑥3 + 475𝑥4 + 250𝑥5 − 120𝑥6)  (𝑚𝑜𝑑97) 

 

ℎ(𝑥) ≡ (14 + 90𝑥 + 47𝑥2 + 20𝑥3 + 87𝑥4 + 56𝑥5 + 74𝑥6)   (𝑚𝑜𝑑97) 

 

sonuç olarak gizli anahtar 𝑓(𝑥) = (−1 + 𝑥2 − 𝑥3 + 𝑥5 + 𝑥6)   

ve açık anahtar 

 

ℎ(𝑥) = (14 + 90𝑥 + 47𝑥2 + 20𝑥3 + 87𝑥4 + 56𝑥5 + 74𝑥6) 

 

olmak üzere, herhangi bir mesaj şifrelenebilip deşifrelenirken (𝑓, ℎ) anahtar çifti kullanılır. 

Şimdi, bir 𝑚(𝑥) = 1 + 𝑥 + 𝑥2 mesajı (𝑓, ℎ) anahtar çifti yardımıyla şifrelenip deşifre 

edilsin. Bunun için ihtiyaç duyulan rastgele bir 𝑟(𝑥) ∈ ℒ(𝑑, 𝑑) polinomu 

 

𝑟(𝑥) = −1 − 𝑥 − 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 

 

olsun. Bu durumda, 

 

𝑒(𝑥) ≡ 𝑟(𝑥) ∗ ℎ(𝑥) + 𝑚(𝑥) (𝑚𝑜𝑑97) 

 

kuralı doğrultusunda,  
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𝑒(𝑥) = (−1 − 𝑥 − 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5) ∗ (14 + 90𝑥 + 47𝑥2 + 20𝑥3 + 87𝑥4 +

56𝑥5 + 74𝑥6) + (1 + 𝑥 + 𝑥2)     (𝑚𝑜𝑑97)  

 

ve dolayısıyla 

 

𝑒(𝑥) = (11 − 14𝑥 + 67𝑥2 − 13𝑥3 + 24𝑥4 − 12𝑥5 − 60𝑥6) 

 

şifreli metni elde edilir. NTRU sistemine göre bu elde edilen şifreli mesajın deşifreleme 

işlemi bir ara işlem olan 

 

𝑎(𝑥) ≡ 𝑓(𝑥) ∗ 𝑒(𝑥)  (𝑚𝑜𝑑97) 

 

işleminin yapılmasıyla başlar ki bu kuralla, 𝑎(𝑥)(𝑚𝑜𝑑97) 

 

(−1 + 𝑥2 − 𝑥3 + 𝑥5 + 𝑥6)(11 − 14𝑥 + 67𝑥2 − 13𝑥3 + 24𝑥4 − 12𝑥5 − 60𝑥6) 

 

yani,  

 

𝑎(𝑥) ≡ (6 + 20𝑥 + 15𝑥2 − 15𝑥4 − 117𝑥5 + 94𝑥6) (𝑚𝑜𝑑97) 

 

elde edilir. Daha sonra, deşifreleme işlemi için bulunan bu 𝑎(𝑥) polinomunun (𝑚𝑜𝑑𝑝) 
değeri hesaplanarak 

 

𝑎′(𝑥) = (6 + 20𝑥 + 15𝑥2 + 82𝑥4 + 77𝑥5 + 94𝑥6) ≡ (1 + 2𝑥6) (𝑚𝑜𝑑 5) 

elde edilir. Son olarak 

𝑐(𝑥) ≡ 𝑓𝑝
−1(𝑥) ∗ 𝑎′(𝑥) (𝑚𝑜𝑑𝑝) 

hesaplamasıyla, 

 

𝑐(𝑥) ≡ (2 + 2𝑥 + 2𝑥2 + 2𝑥3 − 𝑥4 − 2𝑥5 + 𝑥6) ∗ (1 + 2𝑥6)   (𝑚𝑜𝑑5) 
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yani, 𝑐(𝑥) ≡ (6 + 6𝑥 + 6𝑥2 − 5𝑥4 + 5𝑥6) ≡ (1 + 𝑥 + 𝑥2) (𝑚𝑜𝑑5) elde edilir ki 

görülebileceği üzere 𝑐 = 𝑚’dir.  

 

4.2 MaTRU 

 

Coglianese ve Goi (2005) tarafından önerilen MaTRU kriptosistemi temelde 

NTRU kriptosisteminde de kullanılan cebirsel yapıya yani ℛ = ℤ[𝑋]/〈𝑋𝑛  −  1〉 kesilmiş 

polinomlar halkasına dayanmaktadır. Sunulan bu sistemde, ℛ  halkasındaki  

elemanlardan oluşan 𝑘 × 𝑘 tipindeki matrislerin 𝑀𝑘(ℛ) halkasında çalışılır. MaTRU 

sisteminde 𝑝, 𝑞 ∈ 𝑁 kullanılır. Verilen 𝑝, 𝑞 asal olabilir veya olmayabilir fakat (𝑝, 𝑞) =

1 olmalıdır. Burada da tıpkı NTRU kriptosisteminde olduğu gibi 𝑝 << 𝑞 yani 𝑞’nun 

𝑝’den çok büyük olması gerekir. MaTRU kriptosisteminde de bir matris çarpımını 

𝑚𝑜𝑑 𝑝 ve 𝑚𝑜𝑑 𝑞 indirgeme işlemi yapılır. Bir matrisin kısa olabilmesi için, 

 

𝑚𝑎𝑘𝑠 = 𝑚𝑎𝑘𝑠𝑀′𝑑𝑒𝑘𝑖 𝑝𝑜𝑙𝑖𝑛𝑜𝑚𝑙𝑎𝑟𝑝𝑜𝑙𝑖𝑛𝑜𝑚 𝑘𝑎𝑡𝑠𝑎𝑦𝚤𝑙𝑎𝑟𝚤 

 

ve  

 

𝑚𝑖𝑛 = 𝑚𝑖𝑛𝑀′𝑑𝑒𝑘𝑖 𝑝𝑜𝑙𝑖𝑛𝑜𝑚𝑙𝑎𝑟𝑝𝑜𝑙𝑖𝑛𝑜𝑚 𝑘𝑎𝑡𝑠𝑎𝑦𝚤𝑙𝑎𝑟𝚤 

 

olmak üzere,  

 

|𝑀|∞ = 𝑚𝑎𝑘𝑠 − 𝑚𝑖𝑛 

 

şeklinde tanımlanan uzunluk doğrultusunda, |𝑀|∞ ≤ 𝑝 ise 𝑀 ∈ 𝑀𝑘(ℛ) matrisi kısadır 

denir. Kısa matrislerin çarpılmasıyla daha büyük matrisler elde edileceği açıktır fakat yine 

de bu genişlik 𝑞 ’dan daha küçük kalacaktır (Coglianese ve Goi, 2005). Kısalık ve genişlik 

şeklinde kullanılan bu tanımlar, ℛ halkası için de söz konusudur. Nitekim, bir 𝑟 ∈ ℛ 

elemanı için,  

 

𝑚𝑎𝑘𝑠(𝑟) = 𝑟′𝑑𝑒𝑘𝑖 𝑘𝑎𝑡𝑠𝑎𝑦𝚤𝑙𝑎𝑟𝚤𝑛 𝑚𝑎𝑘𝑠𝑖𝑚𝑢𝑚𝑢 
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ve  

 

𝑚𝑖𝑛(𝑟) = 𝑟′𝑑𝑒𝑘𝑖 𝑘𝑎𝑡𝑠𝑎𝑦𝚤𝑙𝑎𝑟𝚤𝑛 𝑚𝑖𝑛𝑖𝑚𝑢𝑚𝑢 

 

olmak üzere,  

 

|𝑟|∞ = 𝑚𝑎𝑘𝑠(𝑟) − 𝑚𝑖𝑛(𝑟) 

 

ve ayrıca bir 𝑀 matrisinin boyutu ile kastedilen değer de 

 

|𝑀| = √ ∑ ∑(𝑝𝑜𝑙𝑖𝑛𝑜𝑚 𝑘𝑎𝑡𝑠𝑎𝑦𝚤𝑙𝑎𝑟𝚤)2

𝑀′𝑑𝑒𝑘𝑖 𝑝𝑜𝑙𝑖𝑛𝑜𝑚𝑙𝑎𝑟

 

 

şeklinde tanımlıdır (Coglianese ve Goi, 2005). Coglianese ve Goi (2005), ilgili kafesi 

 

ℒ(𝑑) = {𝑀 ∈ 𝑀𝑘(ℛ):
𝑖 = ⌈−

𝑝 − 1

2
⌉… ⌈

𝑝 − 1

2
⌉ ≠ 0 𝑖ç𝑖𝑛𝑀′𝑑𝑒𝑘𝑖 ℎ𝑒𝑟 𝑏𝑖𝑟 𝑝𝑜𝑙𝑖𝑛𝑜𝑚𝑢𝑛 

𝑖 𝑑𝑒ğ𝑒𝑟𝑖𝑛𝑒 𝑒ş𝑖𝑡 𝑜𝑟𝑡𝑎𝑙𝑎𝑚𝑎 𝑑 𝑡𝑎𝑛𝑒 𝑘𝑎𝑡𝑠𝑎𝑦𝚤𝑠𝚤 𝑣𝑎𝑟𝑑𝚤𝑟,

  𝑔𝑒𝑟𝑖 𝑘𝑎𝑙𝑎𝑛 𝑘𝑎𝑡𝑠𝑎𝑦𝚤𝑙𝑎𝑟 0′𝑑𝚤𝑟.

} 

 

şeklinde tanımlamışlardır. Burada, 𝑖’nin alabileceği değerlerin üste yuvarlama 

fonksiyonu ile elde edilebileceğini görmek zor değildir. Örneğin; 𝑝 = 3 ve 𝑛 = 7 

parametreleri için ℒ(3) kafesindeki polinomların üç tane katsayısının 1, üç tane 

katsayısının −1 ve geri kalan bir katsayısının sıfır olduğu farkedilebilir. Bilindiği üzere, 

MaTRU parametreleri; (𝑛, 𝑘, 𝑝, 𝑞) ve  

 

(ℒ𝑓 , ℒ𝜙, ℒ𝐴, ℒ𝑤 , ℒ𝑚) ⊆ 𝑀 

 

matrislerinin sıralı beşlisini içermektedir. Burada, ℒ𝑓 gizli anahtarların geldiği uzaydır. 

ℒ𝜙 de tıpkı NTRU sisteminde olduğu gibi gerekli duyulan rastgele elemanların (𝜙,𝜓) 

alındığı uzaydır. ℒ𝐴 uzayı, 𝑓, 𝑔, 𝜙, 𝜓 elemanları için kullanılır. Ayrıca, ℒ𝑤 açık anahtar 

uzayı ve ℒ𝑚 mesaj uzayıdır.  
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MaTRU Anahtar Üretimi: 

 

Açık ve gizli anahtarlarını üretmek için ℒ𝐴 uzayında Bob 𝑘 × 𝑘 tipinde 𝐴 ve 𝐵 

matrislerini seçer. Ayrıca rastgele kısa polinomlar 𝛼0, 𝛼1, … , 𝛼𝑘−1 ∈ ℛ ve 

𝛽0, 𝛽1, … , 𝛽𝑘−1 ∈ ℛ ele alır. Böylece 𝑓, 𝑔 ∈ ℒ𝑓  için 

 

𝑓 =∑𝛼𝑖𝐴
𝑖

𝑘−1

𝑖=0

 

  

ve 

 

𝑔 = ∑𝛽𝑖𝐵
𝑖

𝑘−1

𝑖=0

 

 

matrislerini oluşturur. Burada 𝑓 ve 𝑔 matrislerinin (mod p) ve (mod q)’da tersinir olması 

gerekmektedir. Uygun parametre seçimi ile (mod p) ve (mod q)’da matrislerin tersleri 

sırasıyla 𝑓𝑝
−1, 𝑓𝑞

−1, 𝑔𝑝
−1, 𝑔𝑞

−1 şeklinde gösterilirse,  

 𝑓
𝑝
−1 ∗ 𝑓 ≡ 𝐼(𝑚𝑜𝑑𝑝) 

 𝑓
𝑞
−1 ∗ 𝑓 ≡ 𝐼(𝑚𝑜𝑑𝑞) 

 𝑔
𝑝
−1 ∗ 𝑔 ≡ 𝐼(𝑚𝑜𝑑𝑝) 

 𝑔
𝑞
−1 ∗ 𝑔 ≡ 𝐼(𝑚𝑜𝑑𝑞) 

olur. 

Bob’ un gizli anahtarı 𝑓, 𝑔 anahtarlarıdır. Bob ayrıca rastgele bir 𝑤 ∈ ℒ𝑤 matrisi 

seçerek ℎ ∈ 𝑀 açık anahtarını şu şekilde oluşturur.  

 

ℎ ≡ 𝑓𝑞
−1 ∗ 𝑤 ∗ 𝑔𝑞

−1 (𝑚𝑜𝑑𝑞) 

 

Dolayısıyla, Bob’ un açık anahtarları ℎ, 𝐴 ve 𝐵’ dir (Coglianese ve Goi, 2005). 
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MaTRU Şifreleme: 

 

Bob’ a gönderilecek bir mesajı şifrelemek için Alice, rastgele şu şekilde kısa 

polinomlar üretir: 

 

𝜙0, 𝜙1, … , 𝜙𝑘−1, 𝜑0, 𝜑1, … , 𝜑𝑘−1 ∈ ℛ 

 

Daha sonra aşağıdaki hesaplamaları yapar: 

 

𝜙 =∑𝜙𝑖𝐴
𝑖

𝑘−1

𝑖=0

 

 

ve 

 

𝜑 =∑𝜑𝑖𝐵
𝑖

𝑘−1

𝑖=0

 

 

Hesaplamalar yapıldıktan sonra 𝑚 ∈ ℒ𝑚 mesajını aşağıdaki yolla şifreler: 

 

𝑒 ≡ 𝑝(𝜙 ∗ ℎ ∗ 𝜑) +𝑚 (𝑚𝑜𝑑𝑞) 

 

ve oluşturduğu şifreli mesajı Bob’ a gönderir (Coglianese ve Goi, 2005). 

 

MaTRU Deşifreleme: 

 

Bob kendine gelen 𝑒 şifreli mesajını aşağıdaki yolla çözer: 

 

𝑎 ≡ 𝑓 ∗ 𝑒 ∗ 𝑔   (𝑚𝑜𝑑𝑞) 

 

İşlemleri yaparken polinomların katsayılarını, tıpkı NTRU sisteminde olduğu gibi 

[⌊
−𝑞

2
⌋ , ⌊

𝑞

2
⌋] aralığına indirger ve devamında  
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𝑎 ≡ 𝑓 ∗ 𝑒 ∗ 𝑔   (𝑚𝑜𝑑𝑞) 

 

ve 

 

𝑑 ≡ 𝑓𝑝
−1 ∗ (𝑓 ∗ 𝑒 ∗ 𝑔 ) ∗ 𝑔𝑝

−1  (𝑚𝑜𝑑𝑝) 

 

şeklinde düz metine ulaşır. (𝑓, 𝑔) ve (𝜙, 𝜑) çifti seçimi yaparken öncelikle 𝑑𝑓 ve 𝑑𝜙 

tanımlanır öyle ki 

 

ℒ𝑓 = ℒ(𝑑𝑓), ℒ𝜙 = ℒ(𝑑𝜙) 

 

𝐴 ve 𝐵 matrisleri açık olmak üzere, 𝑓, 𝑔, 𝜙 ve 𝜑 matrislerinin güvenliği kısa 

polinomlar 𝛼𝑖, 𝛽𝑖, 𝜙𝑖 , 𝜑𝑖’ lerin bulunmasının zorluğuna dayanır. Bu nedenden dolayı 

polinomların sayısının maksimize edilmesi çok önemlidir. Burada yaklaşık olarak seçim  

𝑑𝑓 ≈
𝑛

𝑝
 ve 𝑑𝜙 ≈

𝑛

𝑞
 şeklinde yapılır (Coglianese ve Goi, 2005).  

𝐴 ve 𝐵 matrislerinin seçimi, 𝑓 ve 𝜙 matrisleri üretilirken matrislerin sadece 

değişmeli değil aynı zamanda kısa olmasına dikkat edilerek yapılır. Daha kısa matrisler, 

mod  𝑞’ ya indirgenebilir ve şifreli metinin çözülebilir olmasını sağlayacak şekilde,  

 

│𝑝(𝜙 ∗ 𝑤 ∗ 𝜑) + 𝑓 ∗ 𝑚 ∗ 𝑔│∞ 

 

değerinin 𝑞’dan daha küçük olduğu matrislerdir. Burada, işlemlerin başarıyla 

sonuçlanması için 𝐴 ve 𝐵 matrisleri permütasyon matrisleri olarak seçilebilir (Coglianese 

ve Goi, 2005). Permütasyon matrisleri bilindiği üzere sadece 0 ve 1’i içeren matrislerdir 

öyle ki her satır ve sütunda sadece bir tane eleman 1 ve geri kalan elemanlar 0’dır. 

Seçilecek olan A ve B matrislerine ilave olarak, {𝐴0, 𝐴1, … , 𝐴𝑘−1} ve {𝐵0, 𝐵1, … , 𝐵𝑘−1} 

kümelerinin her ikisinin de lineer bağımsız olma özelliğini de sağlaması gerekir ki 

 

∑𝐴𝑗
𝑘−1

𝑗=0

=∑𝐵𝑗
𝑘−1

𝑗=0

= (
1 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 1

) 
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olmalıdır. Buradan da görülür ki 𝑓 matrisi’ nin her bir satır ve sütunu 𝛼0, 𝛼1, … , 𝛼𝑘−1’lerin 

bazı permütasyonlarını içerir. Yani, her bir 𝛼𝑖 elemanı; 𝑓 matrisi içinde sadece k kez 

görünecektir. Örneğin; 

 

𝐴 = [

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

] 

 

şeklinde seçildiğinde, 

 

𝐴 + 𝐴2 + 𝐴3 + 𝐼4 = [

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

] 

 

ve dolayısıyla,  

 

∑𝛼𝑖𝐴
𝑖

3

𝑖=0

= [

𝛼0 𝛼1 𝛼2 𝛼3
𝛼3 𝛼0 𝛼1 𝛼2
𝛼2 𝛼3 𝛼0 𝛼1
𝛼1 𝛼2 𝛼3 𝛼0

] 

 

elde edilir. Benzer durum, 𝑔, 𝜙 ve 𝜑 matrisleri için de geçerlidir. Yani, 

 

𝑑𝑓 ≈ 𝑑 𝜙 ≈
𝑛

𝑝
 

 

olduğundan, 

 

|𝑓| ≈ √𝑘2|𝛼𝑖|2 ≈ √
(𝑝 − 1)𝑛𝑘2

𝑝
≈ |𝑔| ≈ |𝜙| ≈ |𝜑| 

geçerlidir (Coglianese ve Goi, 2005). 𝑓 ve 𝑔 matrislerine benzer olarak 𝑤 matrisi de 
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│𝑝(𝜙 ∗ 𝑤 ∗ 𝜑) + 𝑓 ∗ 𝑚 ∗ 𝑔│∞ 

 

küçük olacak şekilde kısa seçilmelidir. Güvenlik nedenlerinden dolayı, 𝑤 matrisinin gizli 

tutulması önemlidir. Böylece 𝑤 matrisinin seçileceği uzayı bulmak için,  

 

ℒ𝑤 = ℒ(⌊
𝑛

𝑝
⌋) 

 

ele alınmalıdır. Buradan da 𝑤 matrisinin boyutu 

 

|𝑤| = √
(𝑝 − 1)𝑛𝑘2

𝑝
 

 

olur (Coglianese ve Goi, 2005). 

 

4.3 CTRU  

 

Bilindiği üzere, NTRU sisteminin güvenliği SVP’ye dayanır ve anahtar boyutu 

kısa, şifreleme, deşifreleme hızlıdır. Şimdiye kadar verilen kafes tabanlı sistemler içinde 

en hızlı açık anahtarlı kriptosistem olan NTRU sisteminin dezavantajı kafes indirgeme 

saldırıları ve Çin Kalan Teoremi (CRT) saldırılarına karşı olan eksikliktir. Bu alt 

bölümde, NTRU kriptosistemindeki kesilmiş polinomların katsayılarında kullanılan ℤ 

yerine 𝔽2 üzerinde tanımlı tek değişkenli polinomlar halkasının kullanıldığı CTRU 

kriptosistemi tanıtılacaktır. 

Gaborit vd. (2002) tarafından önerilen CTRU kriptosisteminde LLL 

algoritmasının rolünü lineer sistemler teorisinde önemli bir yeri olan Popov formu 

üstlenmektedir. Sonlu bir cisim üzerinde tanımlı 𝑋𝑁 − 1’in köklerinin basit 

olmamasından dolayı CTRU kriptosisteminin CRT saldırılarına karşı daha güvenli 

olduğu değerlendirilmektedir (Gaborit vd., 2002). CTRU kriptosisteminde bir 𝑁 pozitif 

tamsayısı ve 𝐴 = 𝔽2[𝑇] polinomlar halkasından 𝑃 ve 𝑄 gibi iki polinom kullanılmaktadır. 

Burada 𝑃, 𝑄 polinomları indirgenemezdir. 𝑃 polinomunun derecesi 𝑑𝑒𝑟(𝑃) = 𝑠 ve 𝑄 
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polinomun derecesi 𝑑𝑒𝑟(𝑄) = 𝑡 öyle ki 2 ≤ 𝑠 ≤ 𝑡 ve (𝑡, 𝑠) = 1 dir. Sistemde çalışılan 

halka: 

 

𝔽2[𝑇][𝑋]
〈𝑥𝑁 − 1〉⁄  

 

dir. Kolayca gözlemlenebilir ki 𝑃 ve 𝑄 indirgenemez polinomlar olmak üzere, 

 

𝐴𝑃 =
𝐴
(𝑃)⁄  

 

ve 

 

𝐴𝑄 =
𝐴
(𝑄)⁄  

 

bölüm halkaları aslında sırasıyla 𝔽2𝑠 ve 𝔽2𝑡 sonlu cisimleridir. Benzer şekilde  

 

𝑅𝑃 =
𝑅
(𝑃)⁄  

 

ve 

 

𝑅𝑄 =
𝑅
(𝑄)⁄  

 

bölüm halkaları da polinomları indirgemek için kullanılan bölüm halkalarıdır. Gaborit vd. 

(2002) de bahsetmiştir ki, 𝑒𝑏𝑜𝑏(𝑠, 𝑡) = 1 olmasıyla 𝔽2𝑠 ∩ 𝔽2𝑡 = 𝔽2 olur ve üstelik 

NTRU kriptosisteminde olduğu gibi 𝑚𝑜𝑑 (𝑃)’de ve 𝑚𝑜𝑑 (𝑄)’da yapılan indirgeme 

işlemlerinde aralarındaki bağımsızlık basit saldırıların önüne geçmede çok büyük bir 

öneme sahiptir. ℛ = 𝐴[𝑥]/〈𝑥𝑁 − 1〉 olmak üzere, keyfi 𝑑 ≤ 𝑡 için tanımlanan  

 

ℒ(𝑑) = {𝑓 ∈ ℛ: 𝑑𝑒𝑟(𝑓) < 𝑑} 
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uzayının boyutu 2𝑁𝑠 olup, mesaj uzayı 𝑀 = ℒ(𝑁, 𝑠) ve CTRU anahtarlarının 

tanımlandığı uzaylarla birlikte, taşıması gereken parametrik özellikler şu şekildedir 

(Gaborit vd., 2002): 

Gizli anahtar çifti (𝑓, 𝑔) ve rastgele polinom olan 𝑄 polinomunun üretildiği 

uzaylar 

 

ℒ𝑓 ≔ ℒ(𝑑𝑓 + 1), 

 ℒ𝑔 ≔ ℒ(𝑑𝑔 + 1),  

ℒ𝜙 ≔ ℒ(𝑑𝜙+1) 

 

formundadır öyle ki 𝑑𝑓 , 𝑑𝑔, 𝑑𝜙 ≤ 𝑡. 

 

CTRU Anahtar Üretimi:  

 

𝐿𝑓 ve 𝐿𝑔 uzaylarından sırasıyla 𝑅𝑃 ve 𝑅𝑄 da tersinir olan bir 𝑓 polinomu ve ayrıca 

𝑔 polinomu seçilir. (𝑓, 𝑔) çifti sistemin gizli anahtarıdır. 

 

(𝑓, 𝑔) ∈ 𝔽
2
𝑑𝑓

𝑁 × 𝔽
2𝑑𝑔
𝑁  

 

ki en fazla (𝑑𝑓 + 𝑑𝑔)𝑁 bit uzunluğundadır. Açık anahtar  

 

ℎ =
𝑔

𝑓
[𝑚𝑜𝑑(𝑥𝑁 − 1,𝑄)] 

 

dur. Böylece ℎ ∈ 𝔽
2𝑑𝑡
𝑁  öyle ki ℎ, 𝑡𝑁 uzunluğundadır (Gaborit vd., 2002). 

 

CTRU Şifreleme: 

 

Tıpkı NTRU kriptosisteminde olduğu gibi, CTRU kriptosisteminde de bir 

rastgelelik faktörü olduğundan dolayı sistem deterministik değildir (Gaborit vd., 2002). 
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Seçilen bir ℳ ∈ 𝑀 mesajı, seçilen bir 𝜙 rastgele polinomu ile birlikte, ℎ açık anahtarı 

yardımıyla, 

𝑒 ≡ 𝑃𝜙ℎ +ℳ(𝑚𝑜𝑑𝑄) 

 

şeklinde şifrelenir. Dolayısıyla, 𝑒𝑓 ≡ 𝑃𝜙𝑔 +ℳ𝑓(𝑚𝑜𝑑𝑄) olur. Bununla eş 

zamanlı olarak, 𝑠 + 𝑑𝜙 + 𝑑𝑔 < 𝑡 ve 𝑠 + 𝑑𝑓 < 𝑡 sağlanırsa, 𝑒𝑓 polinomunun ℛ’den 

olduğu düşünülür ve deşifreleme işlemine geçilebilir (Gaborit vd., 2002). 

 

CTRU Deşifreleme:  

 

𝑒 ≡ 𝑃𝜙ℎ +ℳ(𝑚𝑜𝑑𝑄) 

 

şifreli mesajına 𝑓 polinomunun uygulanmasıyla, 

 

𝑒𝑓 (𝑚𝑜𝑑 𝑃) ≡ 𝑃𝜙ℎ𝑓 +ℳ𝑓(𝑚𝑜𝑑 𝑄)(𝑚𝑜𝑑 𝑃) 

          ≡  ℳ𝑓 (𝑚𝑜𝑑 𝑄)(𝑚𝑜𝑑 𝑃) 

 

elde edilir ki böylece, 𝑓 polinomunun (𝑚𝑜𝑑 𝑃) tersinin uygulanmasıyla, ℳ ∈ 𝑀 

mesajına ulaşılır (Gaborit vd., 2002).  

 

4.4 DTRU  

 

Bu alt bölümde, Camara vd., (2018) tarafından önerilen ve dual tamsayılar halkası 

üzerinde tanımlanan kesilmiş polinomlar yardımıyla oluşturulan, NTRU benzeri bir 

kriptosistem çalışılmaktadır.   

Tanım 4.4.1 𝜀2 = 0 olmak üzere, 

 

𝐷 = ℤ + 𝜀ℤ = {𝑧 = 𝑎 + 𝜀𝑏: 𝑎, 𝑏 ∈ ℤ, 𝜀2 = 0} 

 

kümesi üzerinde tanımlanan  

 

(𝑎 + 𝜀𝑏) + (𝑐 + 𝜀𝑑) = (𝑎 + 𝑐) + 𝜀(𝑏 + 𝑑) 
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ve  

(𝑎 + 𝜀𝑏)(𝑐 + 𝜀𝑑) = 𝑎𝑐 + 𝜀𝑎𝑑 + 𝜀𝑏𝑐 + 𝜀2𝑏𝑑 = 𝑎𝑐 + 𝜀(𝑎𝑑 + 𝑏𝑐) 

 

işlemleriyle (𝐷,+, . ) bir halka olup bu halkaya dual tamsayılar halkası denir ve kısaca, 

𝐷 = ℤ[𝜀] ile gösterilir (Camara vd., 2018). Burada, 𝑎 ∈ ℤ tamsayısına reel kısım ve 𝑏 ∈

ℤ tamsayısına da imajiner (sanal) kısım denir ve sırasıyla 𝑎 = 𝑅𝑒(𝑧) ve 𝑏 = 𝐼𝑚(𝑧) ile 

gösterilir.  

Tanım 4.4.2 𝜑:𝐷 → ℕ aşağıdaki özellikleri sağlayan bir fonksiyon olsun.  

(1) ∀𝑧 ∈ 𝐷, 𝜑(𝑧) ≥ 0 

(2) ∀𝑧 ∈ 𝐷, ∀𝑡 ∈ 𝐷\𝐽𝐷 (𝐽𝐷 sıfır bölen elemanların kümesi) için, 

 

𝜑(𝑧) ≤ 𝜑(𝑧𝑡) 

 

(3) ∀𝑧 ∈ 𝐷, ∀𝑡 ∈ 𝐷\𝐽𝐷 için, ∃(𝑞, 𝑟) ∈ 𝐷2, 𝑧 = 𝑡𝑞 + 𝑟 öyle ki 

 

𝜑(𝑟) < 𝜑(𝑡) 

 

Bu durumda, 𝜑 fonksiyonuna sözde-norm denir (Camara vd., 2018).  

Teorem 4.4.1 𝜑 bir sözde-norm olmak üzere, (𝐷, 𝜑) bir sözde-Öklit halkası olsun. Eğer, 

𝑧, 𝑡 ∈ 𝐷 ve 𝐽𝐷 sıfır bölen elemanların kümesi ve 𝑡 ∈ 𝐷\𝐽𝐷 ise, o zaman  

 

∃(𝑞, 𝑟) ∈ 𝐷2, 𝑧 = 𝑡𝑞 + 𝑟 

 

öyle ki 𝑟 = 0 veya 𝜑(𝑟) < 𝜑(𝑡)/4 (Camara vd., 2018). Burada sözde-bölme algoritması 

aşağıdaki gibidir (Camara vd., 2018): 

Girdi: 𝑧 ∈ 𝐷 ve 𝑡 ∈ 𝐷\𝐽𝐷. 

Çıktı: (𝑞, 𝑟) ∈ 𝐷 öyle ki 𝑧 = 𝑞𝑡 + 𝑟, 𝜑(𝑟) < 𝜑(𝑡)/4. 

(1) 𝑎1 ← 𝑅𝑒(𝑧𝑡̅), 𝑎2 ← 𝐼𝑚(𝑧𝑡)̅ ve 𝑛 = 𝑡𝑡 ̅

(2) 𝑖 = 1,2 için 𝑎𝑖 = 𝑛𝑞𝑖 + 𝑟𝑖 

(3) 𝑞 = 𝑞1 + 𝑞2𝜀, 𝑟 = 𝑧 − 𝑡𝑞 



 

35 
 

Örnek 4.4.1 𝑧 = 121 − 26𝜀 ve 𝑡 = 3 − 51𝜀 olmak üzere, 𝑞 = 40 + 677𝜀 ve 

 

𝑟 = 𝑧 − 𝑡𝑞 = 1 − 17𝜀 

 

elde edilir.  

Şimdi, 𝑧 ∈ 𝐷 olmak üzere, 
𝐷

𝑧𝐷
[𝑥] polinom halkası ve 𝑓, 𝑔 ∈

𝐷

𝑧𝐷
[𝑥] ele alınsın.  

Tanım 4.4.3 Eğer 𝑓′, 𝑔′ ∈
𝐷

𝑧𝐷
[𝑥] öyle ki 𝑓𝑓′ + 𝑔𝑔′ ≡ 1(𝑚𝑜𝑑𝑧) ise bu durumda, 𝑓 ve 𝑔 

polinomlarına eş-asal denir ve 𝑓 ∧ 𝑔 = 1 ile gösterilir (Camara vd., 2018).  

𝑝 bir asal sayı olmak üzere 𝑓𝑖 , 𝑔𝑖 ∈
ℤ

𝑝ℤ
[𝑥] için, 𝑓 = 𝑓1 + 𝜀𝑓2 ve 𝑔 = 𝑔1 + 𝜀𝑔2 

polinomları ele alındığında, 𝑓 ve 𝑔 polinomlarının terslerinin nasıl hesaplanacağı ile ilgili 

aşağıdaki algoritma göz önüne alınabilir.  

 

Sözde-Genişletilmiş Öklit Algoritması: 

 

Girdi: 𝑓 = 𝑓1 + 𝜀𝑓2 ∈
𝐷

𝑝𝐷
[𝑥] ve  𝑔 = 𝑔1 + 𝜀𝑔2 ∈

𝐷

𝑝𝐷
[𝑥] öyle ki 𝑓𝑖 , 𝑔𝑖 ∈

ℤ

𝑝ℤ
[𝑥]. 

Çıktı: 𝑒𝑏𝑜𝑏(𝑓1, 𝑓2) ≠ 1 ise 𝑓 polinomu 
𝐷

𝑝𝐷
[𝑥]/〈𝑔(𝑥)〉 halkasında tersinir değildir. Eğer, 

𝑒𝑏𝑜𝑏(𝑓1, 𝑓2) = 1 ise 

 

(1) (𝑢1, 𝑣1) ∈
ℤ

𝑝ℤ
[𝑥]  öyle ki 𝑓1𝑢1 + 𝑔1𝑣1 = 1 (∈

ℤ

𝑝ℤ
[𝑥]). 

(2) ℎ ← −𝑓2𝑢1 + 𝑔1𝑣1, 𝑢2 ← 𝑢1ℎ ve 𝑣2 ← 𝑣1ℎ 

(3) 𝑢 ← 𝑢1 + 𝜀𝑢2 ← 𝑢1 + 𝜀𝑢1ℎ ve 𝑣 ← 𝑣1 + 𝜀𝑣2 ← 𝑣1 + 𝜀𝑣1ℎ olmak üzere 

 

𝑓𝑢 + 𝑔𝑣 = 1 

 

Bir 𝑧 ∈ 𝐷\ℤ için 
𝐷

𝑧𝐷
[𝑥]/〈𝑔(𝑥)〉 halkasında bir polinomun tersinin varlığını 

incelemek literatürde açık bir problem olarak değerlendirilmektedir (Camara vd., 2018). 
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Şimdi, 𝐷 bir sözde-Öklit halkası ve (𝑝, 𝑞) ∈ 𝐷2 olmak üzere, 
𝐷

𝑝𝐷
[𝑥]/〈𝑥𝑁 − 1〉 ve 

𝐷

𝑞𝐷
[𝑥]/〈𝑥𝑁 − 1〉 polinom halkaları üzerinde NTRU benzeri bir sistemin nasıl 

kurulabileceği üzerine tartışılabilir. 𝑅 = 𝐷[𝑥], 

 

𝑅𝑝 =
𝐷

𝑝𝐷
[𝑥]/〈𝑥𝑁 − 1〉 

 

ve  

 

𝑅𝑞 =
𝐷

𝑞𝐷
[𝑥]/〈𝑥𝑁 − 1〉 

 

olsun. ℒ𝑚 ⊆ 𝑅𝑝, ℒ𝑔 ⊆ 𝑅𝑞ve  ℒ𝑓 , ℒ𝜙 ⊆ 𝑅 olmak üzere; anahtar üretimi, şifreleme ve 

deşifreleme aşağıdaki gibidir. 

 

DTRU Anahtar üretimi: 

 

𝑞/𝑝 değerinin oldukça büyük olduğu bir (𝑝, 𝑞) ∈ ℤ × ℤ seçilsin. Bu durumda, 

hem 𝑅𝑝 hem de 𝑅𝑞’da tersinir olacak şekilde rastgele ama küçük katsayılı bir 𝑓 ∈ ℒ𝑓 

polinomu ele alınsın öyle ki 
𝐷

𝑝𝐷
[𝑥]/〈𝑥𝑁 − 1〉 ve 

𝐷

𝑞𝐷
[𝑥]/〈𝑥𝑁 − 1〉 halkalarındaki tersleri 

sırasıyla 𝑓𝑝 ve 𝑓𝑞 olsun. Bu durumda, yine rastgele ama küçük katsayılı olacak şekilde bir 

𝑔 ∈ ℒ𝑔 ile birlikte açık anahtar, 

 

ℎ = 𝑝𝑓𝑞 ∗ 𝑔 ∈ 𝑅𝑞 

 

şeklinde üretilebilir (Camara vd., 2018).   

 

DTRU Şifreleme:  

 

𝑎, 𝑏 ∈ ℒ𝑚 = {−
𝑝 − 1

2
,… ,−1,0,1, …

𝑝 − 1

2
} (𝑝 tekse) 
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veya 

 

𝑎, 𝑏 ∈ ℒ𝑚 = {−
𝑝

2
,… ,−1,0,1, …

𝑝

2
} (𝑝 çiftse) 

 

olmak üzere, bir 𝑚 = 𝑎 + 𝜀𝑏 mesajını şifrelemek için, bir 𝜙,𝜓 ∈ ℒ𝜙 alarak,  

 

𝑒 = 𝜙 ∗ ℎ + 𝜓 ∗ ℎ2 +𝑚 (𝑚𝑜𝑑𝑞) 

 

şifreli metni elde edilebilir (Camara vd., 2018).  

 

DTRU Deşifreleme:  

 

Şifreli metin 𝑒 ∈ 𝑅𝑞 geldiğinde ilk olarak 𝑎 = 𝑓2 ∗ 𝑒 (𝑚𝑜𝑑𝑞) hesaplanır ve 𝑎’nın 

katsayılarının değeri [⌊−
𝑞

2
⌋ , ⌊

𝑞

2
⌋] aralığına düşürülür. Daha sonra, 

 

𝑚 = 𝑓𝑝
2 ∗ 𝑎 (𝑚𝑜𝑑𝑝) 

 

düz metnine ulaşılır (Camara vd., 2018).  

 

4.5 ETRU  

 

Bu alt bölümde, Jarvis ve Nevins (2015) tarafından ETRU adıyla çalışılan ve 

Eisenstein tamsayılar halkası üzerinde kurulan bir diğer NTRU benzeri kriptosistem ele 

alınmıştır. Alt bölümde yer alan bilgilerde Nevins vd. (2010), Jarvis ve Nevins (2015) 

ve Jarvis (2011)’den yararlanılmıştır. 

Şimdi; 𝜔, birimin bir kompleks küp kökü olsun. Yani, 𝜔3 = 1. Bu durumda 

 

𝜔 =
1 

2
(−1 + 𝑖√3 ) 

 

olacağı açıktır ki Eisentein tamsayılar halkası  
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ℤ[𝜔] = {𝑎 + 𝑏𝜔│𝑎, 𝑏 ∈ ℤ,𝜔3 = 1} 

 

şeklinde tanımlıdır. Uzunluk, 

 

𝑞 = 𝑎 + 𝑏𝜔  ⇒  │𝑞│2 = 𝑎2 + 𝑏2 − 𝑎𝑏 

 

formülü ile belirlenebilir. ℂ ’de birimin 𝑛. köklerinden oluşan devirli alt grup için 𝜇𝑛 

yazılırsa 

 

𝜇3 = {1,𝜔,𝜔2 = −1 − 𝜔} 

 

ve 

 

                                         𝜇6 = {±1,±𝜔, ±𝜔
2} 

 

örnekleri elde edilir ki bunlar ℤ[𝜔]’da kapsanır. ℤ[𝜔]’dan ℝ2’ye bir gömme (embedding) 

vardır ki bu,  

 

𝑓: ℤ[𝜔]  →  ℤ2  

  𝑓(𝑎 + 𝑏𝜔) = (𝑎, 𝑏) 

 

toplamsal grup izomorfizmasıdır ve bu durumda 𝛼 = 𝑎 + 𝑏𝜔 ile sağdan çarpım  

 

〈𝛼〉 = [
𝑎                   𝑏

    −𝑏             𝑎 − 𝑏     
] 

 

matrisi ile yapılır (Jarvis ve Nevins, 2015). Burada,  

 

𝑓((𝑎 + 𝑏𝜔)(𝑎 + 𝑏𝜔)) = (𝑎, 𝑏) [
𝑎                   𝑏

    −𝑏             𝑎 − 𝑏     
] 
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olduğuna dikkat edilmelidir. Bu 𝑔: ℤ[𝜔] → ℂ ≃ ℝ2 

 

𝑔(𝑎 + 𝑏𝜔) = (𝑎 − 𝑏 2⁄ ) + 𝑖 (√3𝑏 2
⁄ ) 

 

izometrik halka monomorfizmasından farklıdır ve kullanımı hesaplama açısından daha 

verimlidir (Jarvis ve Nevins, 2015). Ayrıca, cebirsel tamsayılar halkaları arasında 

kullanılan ve ℚ’nun reel olmayan kuadratik genişlemelerine özgü olan şey, bu izometrik 

gömmenin görüntüsünün ℝ2’de bir kafes olmasıdır (Aslında, iki boyutlu bir küre-

paketleme kafesi) ki bu özellik ℤ[𝜔]′nin elemanlarının daha yoğun olması anlamına gelir 

(Jarvis ve Nevins, 2015). 

NTRU’ yu ℤ[𝜔] ‘ya taşımak için ilk adım aralarında asal olacak şekilde 𝑝, 𝑞 ∈

ℤ[𝜔] elemanlarını seçmektir. Pratikte, 𝑚𝑜𝑑 𝑝 ve 𝑚𝑜𝑑 𝑞  tersini alma algoritmasının 

etkinliği için bu sayılar asal ya da asal kuvveti şeklinde seçilebilir (Jarvis ve Nevins, 

2015). 

Teorem 4.5.1 𝜇6  kümesi, ℤ[𝜔] ‘nin tüm tersinir elemanlarını içerir. Yani, 𝑈(ℤ[𝜔]) tüm 

tersinir elemanların kümesi olmak üzere, 

 

  𝜇6 = 𝑈(ℤ[𝜔]) 

 

ve ℤ[𝜔] ‘nin tüm asalları, 1 − 𝜔;  

 

𝑝 ≡ 2(𝑚𝑜𝑑3) 

 

olan 𝑝 rasyonel asalları ve│𝑞│2 = 𝑝  , 𝑝 ≡ 1(𝑚𝑜𝑑3) olan 𝑞 ∈ ℤ[𝜔]  elemanlarıdır ki 

böylece, (bir birimselle çarpma farkıyla) en küçük Eisenstein asalları:  

 

𝑝 = 1 − 𝑤  (│𝑝│2 = 3) ,  𝑝 = 2  (│𝑝│2 = 4)   ve   𝑝 = 2 + 3𝜔   (│𝑝│2 = 7) 

 

dir (Jarvis ve Nevins, 2015). 
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ETRU Anahtar Üretimi: 

 

ETRU sistemini tanımlamak için öncelikli olarak tercihen asal olacak şekilde bir 

𝑁 tamsayısı seçilir. 

 

ℛ𝜀 =
ℤ[𝜔][𝑥]

〈𝑥𝑁 − 1〉
⁄  

 

halkasındaki polinomların katsayılarının ℤ[𝜔]′dan gelen kesilmiş polinomlar olduğuna 

dikkat edilmelidir. Benzer şekilde, ℤ[𝜔] halkasından aralarında asal olacak şekilde 

 

|𝑞| >> |𝑝| 

 

yani 𝑞’nun, 𝑝’den çok fazla büyük olduğu elemanlar seçilerek, herhangi bir 𝛼 ∈ ℤ[𝜔] 

için ℛ𝛼
𝜀  indirgenmiş polinomlar halkası oluşturulur öyle ki, 

 

ℛ𝛼
𝜀 = {𝑝(𝑥) ∈ ℛ𝜀│𝑝(𝑥)  (𝑚𝑜𝑑𝛼) ′𝑦𝑎 𝑖𝑛𝑑𝑖𝑟𝑔𝑒𝑛𝑚𝑖ş} 

 

Bu durumda not edilmelidir ki  

 

𝑓 ∈ ℛ𝜀  ⇒ 𝑓 = 𝑓0 + 𝑓1𝑥 + ⋯+ 𝑓𝑁−1𝑥
𝑁−1 

 

ve 𝑓𝑖 = 𝑎𝑖 + 𝑏𝑖𝜔. 

Tanım 4.5.1 Voronoi hücresi, bir düzlem veya daha yüksek boyutlu bir uzayda seçilmiş 

bir noktalar kümesi için tanımlanan özel bir geometrik yapıdır. Daha basit haliyle seçilen 

o noktalar kümesindeki her bir noktaya en yakın olan tüm noktaları içeren bölgedir 

(Voronoi, 1908a; 1908b).  

Teknik olarak, 𝑝 = {𝑝1, 𝑝2, … , 𝑝𝑛}  noktalar kümesi için  

 

𝑉(𝑝𝑖) =  {𝑥 ∈ ℝ
2│𝑑(𝑥, 𝑝𝑖) ≤ 𝑑(𝑥, 𝑝𝑗) , ∀𝑗 ≠ 𝑖} 
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bir Voronoi hücresidir. Yani, bir 𝑥 noktası, sadece 𝑝𝑖 noktasına diğer noktalardan daha 

yakınsa 𝑝𝑖 ‘nin Voronoi hücresinde yer alır. Ayrıca 𝛼 ∈ ℤ[𝜔] için, 〈𝛼〉 = 〈𝛼, 𝛼𝜔〉 bir 

kafes olup, 𝐷𝛼 (𝑚𝑜𝑑𝑞)’da indirgenmiş elemanlar kümesi, 〈𝛼〉’ nın orijininde yer alan 

Voronoi hücresinde bulunan elemanlar kümesi olarak tanımlanabilir öyle ki 

 

𝑓 ∈ ℛ𝛼
𝜀 ⇔ ∀𝑓𝑖 ∈ 𝐷𝛼 

 

olur (Jarvis ve Nevins, 2015). 

Aslında Voronoi hücresi ile SVP arasındaki ilişki şu şekilde açıklanabilir. Bir 

kafeste aranan en kısa vektörler kümesi orijinin Voronoi hücresidir. 𝑓 ∈ ℛ𝜀 olmak üzere, 

 

𝑓 = {𝑓0, 𝑓1𝑥,… , 𝑓𝑁−1𝑥
𝑁−1} 

 

için ∀𝑓𝑖 = 𝑎𝑖 + 𝑏𝑗𝜔 olup 

 

(𝑎0, 𝑏0, 𝑎1, 𝑏1, … , 𝑎𝑁−1, 𝑏𝑁−1) ∈ ℤ
2𝑁 

 

vektörü elde edilir. ETRU sisteminde basitlik olması açısından 𝑝 parametresi 𝑝 = 2 

olarak ele alınır. (𝑝 = 2 + 3𝜔 durumu (Jarvis, 2011)’da çalışılmış olup fazladan bazı 

indirgeme algoritmaları gerektirmektedir. 0 < 𝑟 < 1 olarak alınan sayı ve ℒ𝑓 , ℒ𝑔, ℒ𝜙 

uzayları da 𝜇6’ dan seçilen yaklaşık 𝑟𝑁  sıfırdan farklı katsayılı olsun. Buradan, 

 

ℒ𝑓 , ℒ𝑔, ℒ𝜙 ⊆ ℛ𝜀 

 

küme seçimleri aşağıdaki şekilde yapılır: 

ℒ𝑔 ve  ℒ𝜙’ deki polinomlar  𝑥 − 1  (𝑚𝑜𝑑𝑞)  ile bölünebilir şekilde ele alınır. Yani, 

 

ℒ𝑔 = {𝑔(𝑥)│𝑥 − 1│𝑔(𝑥)   (𝑚𝑜𝑑𝑞)} 

 

ℒ𝜙 = {𝑞(𝑥)│𝑥 − 1│𝜙(𝑥)   (𝑚𝑜𝑑𝑞)} 
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kafesleri incelenir. Böylece, s parametresi 3’ün  𝑟𝑁’ ye en yakın katı olsun ve rastgele 

𝑠
3⁄   tane katsayılar üçlüsü seçilsin ({1 , 𝜔, 𝜔2}  veya {−1 , −𝜔, −𝜔2}). ℒ𝜙’ deki 

polinomların her biri ayrıca 𝜓(1) = 0 eşitliğini sağlasın. 𝑡 parametresi 𝑟𝑁 ‘ye en yakın 

tamsayı olmak üzere ℒ𝑓, 𝑡 sayıda sıfırdan farklı ve 𝜇6 ‘dan gelen katsayılı polinomlar 

içerir. Bilinir ki 𝑓 ∈ ℒ𝑓  tersinirdir. Tıpkı NTRU’daki gibi ℒ𝑓’nin rastgele seçilmiş bir 

elemanı yüksek olasılıkla tersinirdir. Her bir ETRU katsayısı tamsayıların bir çifti 

olduğundan dolayı, 𝑁 dereceli bir ETRU örneği, 2𝑁 = 𝑁′ dereceli bir NTRU ile 

kıyaslanabilir. 

ETRU’ daki 𝑓, 𝑔 ve 𝜙  polinomlarının her biri Eisenstein tamsayı katsayısı, 𝑎 +

𝑏𝜔’ yı temsil eden bir (𝑎, 𝑏) tamsayı çifti olarak ele alınır ve 𝜇6’ daki katsayılar için 𝑎 ve 

𝑏 üçlü NTRU’ daki polinomların tüm 𝑁′ katsayıları gibi {−1 , 0, 1} kümesinden değerler 

alır. Bahsedilen üçlü NTRU katsayılarının {−1 ,0, 1}  olduğu NTRU kriptosistemidir. 

NTRU’da olduğu gibi, 𝑓𝑞 polinomu, 𝑓’nin mod q’daki tersi olmak üzere, 

 

ℎ = 𝑓𝑞 ∗ 𝑔 (𝑚𝑜𝑑 𝑞) 

 

açık anahtarı elde edilir (Jarvis ve Nevins, 2015).  

 

ETRU Şifreleme: 

 

ℎ̃ ≡ 𝑝. ℎ (𝑚𝑜𝑑𝑞) 

 

olmak üzere  

 

𝑒 ≡ 𝜙. ℎ̃ + 𝑚  (𝑚𝑜𝑑𝑞) 

 

(Jarvis ve Nevins, 2015) 
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ETRU Deşifreleme: 

 

𝑎 ≡ 𝑓. 𝑒 (𝑚𝑜𝑑 𝑞) 

 

olmak üzere  𝑚 = 𝑓𝑝. 𝑎  (𝑚𝑜𝑑𝑝)  olacağından, ETRU’nun şifreleme ve deşifreleme 

karmaşıklığını hesaplamak için tamsayılardaki toplamanın maliyetinin hesaplanması 

gerekir. 𝑁′ = 2𝑁 olduğunda ETRU ve NTRU’ nun polinomlardaki bu maliyetini 

hesapladığımızda aynı olduğu kolayca görülebilir (Jarvis ve Nevins, 2015). 

(𝑛 − 1). dereceden iki polinomun konvolüsyon çarpımının normalde 𝑛2 halka 

çarpımı içerdiği bilinen bir gerçektir. Böylece ℛ𝜀’da bu maliyet 3𝑁2’dir. NTRU’da ise  

 

(𝑁′)2 ≈ 4𝑁2 

 

olur ki burada neden ETRU’da maliyetin 3𝑁2 olduğu şu yaklaşımla bulunabilir; iki 

polinom 

 

𝑝(𝑥) = (𝑎0 + 𝑏0𝜔) + (𝑎1 + 𝑏1𝜔)𝑥 + ⋯+ (𝑎𝑁−1 + 𝑏𝑁−1𝜔)𝑥
𝑁−1 

 

ve 

 

𝑞(𝑥) = (𝑐0 + 𝑑0𝜔) + (𝑐1 + 𝑑1𝜔)𝑥 +⋯+ (𝑐𝑁−1 + 𝑑𝑁−1𝜔)𝑥
𝑁−1 

 

şeklinde olursa her bir katsayıda aslında bir de (𝑎 + 𝑏𝜔)(𝑐 + 𝑑𝜔) çarpma işlemi yapmak 

gerekir. Her ne kadar bu işlemde 𝑎𝑐, 𝑎𝑑, 𝑏𝑐, ve 𝑏𝑑 olmak üzere dört işlem gerekli gibi 

görünse de 𝑏𝑑 terimi 𝑎𝑐, 𝑎𝑑 ve 𝑏𝑐 yardımıyla otomotik olarak elde edilebilir (Jarvis ve 

Nevins, 2015). O yüzden aslında 4 değil 3 işlem yeterlidir. Her katsayıda 3 işlem olmak 

üzere 𝑁2 tane katsayılı polinomda 3𝑁2 işlem yeterli olur. Yani sonuç olarak, Eisenstein 

polinomlarında çarpma işlemi, tamsayı katsayılı polinomlardaki çarpma işleminden daha 

hızlıdır.  
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Teorem 4.5.2 𝑞 ∈ ℤ[𝜔] ve 𝐷𝑞, (𝑚𝑜𝑑𝑞) indirgenmiş elemanların kümesi olsun.  

 

𝐵𝒔 = [−𝑠, 𝑠] × [−𝑠, 𝑠] ⊂ ℝ2 

 

olmak üzere  

 

{(𝑐, 𝑑)│𝑐 + 𝑑𝜔 ∈  𝐷𝑞} ⊂ 𝐵2|𝑞|
3

 

 

(Jarvis ve Nevins, 2015). 

İspat. Voronoi hücresi 𝑉𝑞 ⊃ 𝐷𝑞 ‘nun köşeleri için iddiayı doğrulamak yeterlidir. 𝑞 = 1 

için 𝑉1 ‘in köşeleri 

 

                                      ±
1

3
(1 + 2𝜔) , ±

1

3
(1 − 𝜔)  ve  ±

1

3
(2 + 𝜔)   

 

şeklinde elde edilebilir. 𝑞 = 𝑎 + 𝑏𝜔  olsun. 𝑉1’ in köşelerini 𝑞 ile çarpma ile 𝑉𝑞 elde 

edilir. Her köşeyi 𝑐 + 𝑑𝜔  biçiminde yazmak 𝑐, 𝑑 ∈ 𝑆 öyle ki  

 

𝑆 = {
±1

3
(2𝑎 − 𝑏),

±1

3
(𝑎 + 𝑏),

±1

3
(2𝑏 − 𝑎)} 

 

sonucunu verir. Direkt olarak, |𝑞|2 = 𝑎2 + 𝑏2 − 2𝑎𝑏 eşitliği kullanılarak, bu terimlerin 

her birinin mutlak değerce en fazla 
2|𝑞|

3⁄     olduğu ve 𝑆 ‘nin bir elemanının bu sınıra 

eşit olmasının; 𝑎 = 0, 𝑏 = 0 ya da 𝑎 = 𝑏  olduğunda mümkün olduğu görülür. Eğer 

𝑆 ‘deki her bir elemanın karesi en fazla 
|𝑞|2

3
⁄   olsaydı, o zaman 

 

(𝑎 + 𝑏)(2𝑎 − 𝑏) ≥ 0, (𝑎 + 𝑏)(𝑎 − 2𝑏) ≤ 0  ve (𝑎 − 2𝑏)(2𝑎 − 𝑏) ≥ 0 

 

elde edilirdi.  
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Bu durum, sadece bir çarpanın ( ve dolayısıyla 𝑆 ‘nin bir elemanının) sıfır olması 

durumunda geçerlidir. Bunun üzerine de 𝑆’nin diğer iki elemanı 
|𝑞|

√3
⁄   olur  (Jarvis ve 

Nevins, 2015). ∎ 

Bir ℎ açık anahtarı, (𝑚𝑜𝑑𝑞) da indirgenmiş 𝑁 katsayılı bir polinom olup, her 

katsayı, (Jarvis ve Nevins, 2015)’e göre ⌈𝑙𝑜𝑔2(4|𝑞|/3)⌉ uzunluğunda ikili dizi olarak 

saklanabilen iki tamsayıdan oluşur. Bu yüzden ETRU açık anahtar boyutu  

 

𝐾𝜀 = 2𝑁 ⌈𝑙𝑜𝑔2 (
4|𝑞|

3
)⌉ 

 

olur (Jarvis ve Nevins, 2015). 

 

4.6 QTRU  

 

Bu alt bölümde çalışılan bilgiler, kuaterniyon cebirleri üzerine kurulan kesilmiş 

polinom halkalarıyla QTRU ismiyle sunulmuş (Malekian ve Zakerolhosseini, 2010; 

Malekian vd., 2011) çalışmalarından faydalanılmıştır.  

Tanım 4.6.1 

 

𝑄8 = 〈𝑖, 𝑗: 𝑖
2 = 𝑗2, 𝑖4 = 1, 𝑖𝑗𝑖 = −𝑗〉 

 

grubuna kuaterniyon grubu denir.  

Kuaterniyon grubu üzerinde tanımlı ℝ-lineer genişleme, kuaterniyonlar cebiri 

kavramını doğurmaktadır.  

Tanım 4.6.2 

 

𝐻 = {𝛼 + 𝛽𝑖 + 𝛾𝑗 + 𝛿𝑘: 𝛼, 𝛽, 𝛾, 𝛿 ∈ ℝ, 𝑘 = 𝑖𝑗} 

 

kümesi üzerinde tanımlı, 
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(𝛼1 + 𝛽1𝑖 + 𝛾1𝑗 + 𝛿1𝑘) + (𝛼2 + 𝛽2𝑖 + 𝛾2𝑗 + 𝛿2𝑘)

= (𝛼1 + 𝛼2) + (𝛽1 + 𝛽2)𝑖 + (𝛾1 + 𝛾2)𝑗 + (𝛿1 + 𝛿2)𝑘 

 

toplama işlemi ve 

 

(𝛼1 + 𝛽1𝑖 + 𝛾1𝑗 + 𝛿1𝑘)(𝛼2 + 𝛽2𝑖 + 𝛾2𝑗 + 𝛿2𝑘) = 

(𝛼1(𝛼2 − 𝛽1𝛽2 − 𝛾1𝛾2 − 𝛿1𝛿2) + (𝛼1𝛽2 + 𝛽1𝛼2 + 𝛾1𝛿2 − 𝛿1𝛾2)𝑖 

+(𝛼1𝛾2 + 𝛾1𝛼2 + 𝛿1𝛽2 − 𝛽1𝛿2)𝑗 + (𝛼1𝛿2 + 𝛿1𝛼2 + 𝛽1𝛾2 − 𝛾1𝛽2)𝑘 

 

çarpma işlemlerinin halka aksiyomlarını sağladığı ve üstelik  

 

ℝ ×𝐻 → 𝐻 

(𝜆, 𝛼 + 𝛽𝑖 + 𝛾𝑗 + 𝛿𝑘) ⟼ 𝜆𝛼 + 𝜆𝛽𝑖 + 𝜆𝛾𝑗 + 𝜆𝛿𝑘 

 

etkisiyle, 𝐻 kuaterniyonlar cebiri olarak adlandırılır. 𝐻 kümesinin aynı zamanda bir ℝ-

modül olduğunu farketmek zor değildir. 𝑞 = 𝛼 + 𝛽𝑖 + 𝛾𝑗 + 𝛿𝑘 ∈ 𝐻 kuaterniyonunun 

eşleniği, 

 

𝑞̅ = 𝛼 − 𝛽𝑖 − 𝛾𝑗 − 𝛿𝑘 

 

şeklinde ve normu da, 

 

𝑁(𝑞) = 𝑁(𝑞̅) = 𝛼2 + 𝛽2 + 𝛾2 + 𝛿2 

 

eşitliği ile tanımlıdır. Açıktır ki  

 

∀𝑞 ∈ 𝐻\{0}, 𝑞−1 = 𝑞̅/𝑁(𝑞) 

 

Aslında, kuaterniyon cebirleri, reel sayılar cismi yerine daha genel bir yapı 

üzerinde de tanımlanabilir: 𝑎𝑏 ≠ 0 olmak üzere, değişmeli ve birimli bir 𝑅 halkası 

üzerinde  
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(𝑎, 𝑏)

𝑅
= {𝛼 + 𝛽𝑖 + 𝛾𝑗 + 𝛿𝑘: 𝛼, 𝛽, 𝛾, 𝛿 ∈ 𝑅, 𝑘 = 𝑖𝑗, 𝑖2 = 𝑎, 𝑗2 = 𝑏, 𝑘2 = −𝑎𝑏, 𝑖𝑗𝑖 = −𝑗} 

 

yapısı tanımlanabilir ki 𝑅 birimli değişmeli ve karakteristiği ikiden farklı bir halka olmak 

üzere,  

 

𝐴 =
(𝑎, 𝑏)

𝑅
 

 

yapısı oluşturulduğunda, 𝑎 = 𝑏 = −1 ve ℝ reel sayılar cismi ile, 

 

𝐻 =
(−1,−1)

ℝ
 

 

iyi bilinen Hamilton kuaterniyon cebiri elde edilir (Malekian vd., 2011). 

Tanım 4.6.3 Eğer 𝑅 = 𝔽 karakteristiği 0 olan bir cisim ve 𝑞 ∈
(𝑎,𝑏)

𝔽
  için 𝑁(𝑞) = 0 olması 

𝑞 = 0 olmasını gerektirirse, bu durumda 𝐴 =
(𝑎,𝑏)

𝑅
 cebirsel yapısı, bir Öklit bölüm 

halkasıdır denir (Malekian vd., 2011). 

Tanım 4.6.4 Tüm integral kuaterniyonların 

 

𝕃 = {𝛼 + 𝛽𝑖 + 𝛾𝑗 + 𝛿𝑘: 𝛼, 𝛽, 𝛾, 𝛿 ∈ ℤ, 𝑘 = 𝑖𝑗} 

 

kümesine Lipschitz kuaterniyonlar kümesi denir ki ℝ4 içinde bir kafes teşkil eder 

(Malekian vd., 2011).  

Şimdi, QTRU kriptosistemi için gerekli olan kuaterniyon cebirleri tanımları 

verilebilir. Öncelikle, 𝐺𝐹𝑝 ve 𝐺𝐹𝑞 ile sırasıyla 𝑝 ve 𝑞 asal sayılarına karşılık gelen sonlu 

cisimler gösterilsin.  QTRU sistemi temelde, 

 

𝕃𝑝 = {𝛼 + 𝛽𝑖 + 𝛾𝑗 + 𝛿𝑘: 𝛼, 𝛽, 𝛾, 𝛿 ∈ 𝐺𝐹𝑝} 

 

ve  
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𝕃𝑞 = {𝛼 + 𝛽𝑖 + 𝛾𝑗 + 𝛿𝑘: 𝛼, 𝛽, 𝛾, 𝛿 ∈ 𝐺𝐹𝑞} 

 

sonlu split cebirlerine dayanır (Malekian vd., 2011). Yani, 𝕃𝑝 ve 𝕃𝑞 yapıları sırasıyla 

girdileri 𝐺𝐹𝑝 ve 𝐺𝐹𝑞 gelen 2 × 2 matrisler halkasına izomorf yapılardır. Ayrıca, 𝕃 

Lipschitz kuaterniyonlarının normlu bölüm cebirleri olduğu bilinmektedir (Malekian vd., 

2011). 

 

𝜎𝑝: ℤ →  ℤ𝑝, 𝜎𝑝(𝑥) = 𝑥 (𝑚𝑜𝑑 𝑝)  

 

ve 

 

𝜎𝑞: ℤ →  ℤ𝑞 , 𝜎𝑞(𝑥) = 𝑥 (𝑚𝑜𝑑 𝑞)  

 

halka homomorfizmaları ele alınsın. Bu durumda, 𝜗𝑝: 𝕃 → 𝕃𝑝 ve 𝜗𝑞: 𝕃 → 𝕃𝑞  

dönüşümleri sırasıyla, 

 

𝜗𝑝(𝛼 + 𝛽𝑖 + 𝛾𝑗 + 𝛿𝑘) = 𝜎𝑝(𝛼) + 𝜎𝑝(𝛽)𝑖 + 𝜎𝑝(𝛾)𝑗 + 𝜎𝑝(𝛿)𝑘 

 

ve 

 

𝜗𝑞(𝛼 + 𝛽𝑖 + 𝛾𝑗 + 𝛿𝑘) = 𝜎𝑞(𝛼) + 𝜎𝑞(𝛽)𝑖 + 𝜎𝑞(𝛾)𝑗 + 𝜎𝑞(𝛿)𝑘 

 

şeklinde elde edilir (Malekian vd., 2011).  

Önerme 4.6.1 ℋ ≔ 〈ℎ0, ℎ1, ℎ2, ℎ3〉 ∈ 𝕃𝑝 ve ℱℋ = 𝒢 kuaterniyon denkleminin en az bir 

çözümünün olduğu kabul edilsin. Bu durumda, tüm çözümler, ℤ8’de 8 boyutlu bir 

tamsayı kafesi teşkil eder (Malekian vd., 2011). 

İspat. ℱ = 〈𝑓0, 𝑓1, 𝑓2, 𝑓3〉 ve 𝒢 = 〈𝑔0, 𝑔1, 𝑔2, 𝑔3〉 için, ℱℋ = 𝒢 eşitliği aşağıdaki sistemi 

verir: 

 

𝑓0ℎ0 − 𝑓1ℎ1 − 𝑓2ℎ2 − 𝑓3ℎ3 = 𝑔0 + 𝑘0𝑝 

𝑓0ℎ1 + 𝑓1ℎ0 + 𝑓2ℎ3 − 𝑓3ℎ2 = 𝑔1 + 𝑘1𝑝 
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𝑓0ℎ2 − 𝑓1ℎ3 + 𝑓2ℎ0 + 𝑓3ℎ1 = 𝑔2 + 𝑘2𝑝 

𝑓0ℎ3 + 𝑓1ℎ2 − 𝑓2ℎ1 + 𝑓3ℎ0 = 𝑔3 + 𝑘3𝑝 

 

ki  

 

𝑀ℎ
𝑄𝑇𝑅𝑈 =

[
 
 
 
 
 
 
 
1 0 0 0 ℎ0 ℎ1 ℎ2 ℎ3
0 1 0 0 −ℎ1 ℎ0 −ℎ3 ℎ2
0 0 1 0 −ℎ2 ℎ3 ℎ0 −ℎ1
0 0 0 1 −ℎ3 −ℎ2 ℎ1 ℎ0
0 0 0 0 𝑝 0 0 0
0 0 0 0 0 𝑝 0 0
0 0 0 0 0 0 𝑝 0
0 0 0 0 0 0 0 𝑝 ]

 
 
 
 
 
 
 

 

 

satırları tarafından üretilen 𝐿ℎ
𝑄𝑇𝑅𝑈

 kafesi, 𝑀ℎ
𝑄𝑇𝑅𝑈 matrisinin satırlarının lineer bağımsız 

olmasıyla bir full-rank kafestir ve yukarıdaki sistemden açıkça görülebilir ki, 

 

〈𝑓0, 𝑓1, 𝑓2, 𝑓3, −𝑘0, −𝑘1, −𝑘2, −𝑘3〉𝑀ℎ
𝑄𝑇𝑅𝑈 = 〈𝑓0, 𝑓1, 𝑓2, 𝑓3, 𝑔0, 𝑔1, 𝑔2, 𝑔3〉 

 

olduğundan, 

 

〈𝑓0, 𝑓1, 𝑓2, 𝑓3, 𝑔0, 𝑔1, 𝑔2, 𝑔3〉 ∈ 𝐿ℎ
𝑄𝑇𝑅𝑈

 

 

olur. Tersine, 𝑀ℎ
𝑄𝑇𝑅𝑈 matrisinin satırlarının bir lineer kombinasyonu alındığında 

yukarıdaki sistemi sağlayan bir  〈𝑓0, 𝑓1, 𝑓2, 𝑓3, 𝑔0, 𝑔1, 𝑔2, 𝑔3〉 formu elde edilir. Böylece, 

ispat tamamlanır (Malekian vd., 2011). ∎ 

Şimdi,  

𝐴 =
(−1,−1)

ℤ[𝑥]/〈𝑥𝑁 − 1〉
 

 

𝐴𝑝 =
(−1,−1)

ℤ𝑝[𝑥]/〈𝑥𝑁 − 1〉
 

ve 

   



 

50 
 

𝐴𝑞 =
(−1,−1)

ℤ𝑞[𝑥]/〈𝑥𝑁 − 1〉
 

 

halkaları ele alınsın. QTRU kriptosistemi için temel kabullerden biri basitlik olması 

açısından, 𝑝, 𝑞 ve 𝑁 sayılarının asal olarak seçilmesidir (Malekian vd., 2011). 

Tanım 4.6.5 

 

𝑓𝑖(𝑥) = ∑ 𝑓𝑖,𝑗𝑥
𝑗

𝑁−1

𝑗=0

= [𝑓𝑖,0, 𝑓𝑖,1, … , 𝑓𝑖,𝑁−1] 

 

olmak üzere bir  

 

𝐹 = 𝑓0(𝑥) + 𝑓1(𝑥)𝑖 + 𝑓2(𝑥)𝑗 + 𝑓3(𝑥)𝑘 ∈ 𝐴 

 

kuaterniyonu için 

 

||𝐹||∞ = maks
0≤𝑖≤3  0≤𝑗≤𝑁−1

𝑓𝑖,𝑗 − min
0≤𝑖≤3  0≤𝑗≤𝑁−1

𝑓𝑖,𝑗 

 

ve 

 

||𝐹||2 = √∑∑𝑓𝑖,𝑗
2

𝑁−1

𝑗=0

3

𝑖=0

 

 

(Malekian vd., 2011). ℒ𝑓 , ℒ𝑔, ℒ𝑚, ℒ𝜙 ⊂ 𝐴 olmak üzere, QTRU kriptosistemi (𝑁, 𝑝, 𝑞) 

parametrelerine bağlı olarak inşa edilir ve anahtar üretimi, şifreleme ve deşifreleme 

aşağıdaki gibi yapılır.  

 

QTRU Anahtar Üretimi: 

 

||. ||∞ normuna göre küçük iki 𝐹 ve 𝐺 kuaterniyonu rastgele üretilir. Burada, 

dikkat edilmelidir ki,  
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𝐹 = 𝑓0 + 𝑓1𝑖 + 𝑓2𝑗 + 𝑓3𝑘 

 

ve  

 

𝐺 = 𝑔0 + 𝑔1𝑖 + 𝑔2𝑗 + 𝑔3𝑘 

 

 öyle ki 𝑓0, 𝑓1, 𝑓2, 𝑓3 ∈ ℒ𝑓 ve 𝑔0, 𝑔1, 𝑔2, 𝑔3 ∈ ℒ𝑔. Ayrıca 𝐹 kuaterniyonu, hem 𝐴𝑝 hem de 

𝐴𝑞 içinde tersinir olmalıdır. Bunun ise seçilen 𝑓0, 𝑓1, 𝑓2, 𝑓3 elemanlarına bağlı olduğu 

hemen farkedilebilir. 𝐹𝑝
−1 ve 𝐹𝑞

−1, 𝐹 kuaterniyonunun sırasıyla 𝐴𝑝 ve 𝐴𝑞 içindeki tersleri 

olsun. Bu durumda,  

 

𝐹𝑝
−1 = (𝑓0

2 + 𝑓1
2 + 𝑓2

2 + 𝑓3
2). (𝜁0 + 𝜁1𝑖 + 𝜁2𝑗 + 𝜁3𝑘) 

 

ve 

  

𝐹𝑞
−1 = (𝑓0

2 + 𝑓1
2 + 𝑓2

2 + 𝑓3
2). (𝜂0 + 𝜂1𝑖 + 𝜂2𝑗 + 𝜂3𝑘) 

 

olmak üzere, açık anahtar  

 

𝐻 = 𝐹𝑞
−1. 𝐺 ∈ 𝐴𝑞 

 

kuaterniyonudur (Malekian vd., 2011). 

 

QTRU Şifreleme: 

 

Şifreleme prosedüründe sistem ilk olarak 𝜙0, 𝜙1, 𝜙2, 𝜙3 ∈ ℒ𝜙 olan bir 

 

𝜙 = 𝜙0 + 𝜙1𝑖 + 𝜙2𝑗 + 𝜙3𝑘 

 

kuaterniyonunu üretir. Aynı zamanda, 𝑚0, 𝑚1, 𝑚2, 𝑚3 ∈ ℒ𝑚 olmak üzere bir  
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𝑚 = 𝑚0 +𝑚1𝑖 + 𝑚2𝑗 + 𝑚3𝑘 

 

mesajı, 

 

𝐸 = 𝑝𝐻.𝜙 +𝑚 ∈ 𝐴𝑞 

 

şeklinde şifrelenir (Malekian vd., 2011). 

 

QTRU Deşifreleme:   

 

Gelen bir 𝐸 şifreli mesajını çözmek için QTRU sisteminde izlenmesi gereken yol 

aşağıdaki gibidir: 𝐹 gizli anahtarı yardımıyla, 

 

𝐵 ≔ 𝐹. 𝐸 = 𝐹. (𝑝𝐻. 𝜙 + 𝑚) (𝑚𝑜𝑑 𝑞) 

                                                         = 𝐹. (𝑝𝐻. 𝜙) + 𝐹.𝑚 (𝑚𝑜𝑑 𝑞) 

                             = 𝑝𝐹. 𝐹𝑞
−1. 𝐺. 𝜙 + 𝐹.𝑚 (𝑚𝑜𝑑 𝑞) 

                                                                 = 𝑝𝐺. 𝜙 + 𝐹.𝑚 ∈ 𝐴𝑞  

 

şeklinde elde edilen 𝐵 kuaterniyonunun dört polinomundaki katsayıların hepsi 𝑚𝑜𝑑 𝑞 

indirgenmiş olmalıdır ve NTRU benzeri oluşturulan diğer sistemlerdeki gibi tüm 

katsayılar pozitif aralıktan olacak şekilde değil de katsayıların ortalanması olarak da 

değerlendirilebilen (−
𝑞

2
,
𝑞

2
] aralığında olacak şekilde dizayn etme işlemine tabi 

tutulmalıdır (Malekian vd., 2011). Diğer bir deyişle, {−
𝑞

2
+ 1,… ,

𝑞

2
} ayrık temsilciler 

kümesinin elemanlarıyla katsayılar yeniden yazılmalıdır. Burada, 𝐵 ∈
ℤ𝑞[𝑥]

〈𝑥𝑁−1〉
 elemanı tam 

olarak 𝐵 (𝑚𝑜𝑑 𝑝) indirgenmiş olduğunda, 

 

𝐵 = 𝑝𝐺.𝜙 + 𝐹.𝑚 ∈ 𝐴 

 

olacaktır. Sonra, (𝑚𝑜𝑑 𝑝) işlemiyle 𝑝𝐺. 𝜙 teriminin ortadan kalkmasıyla birlikte,  

 

𝐹.𝑚 (𝑚𝑜𝑑 𝑝) 
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kalır ki en son bu terime; katsayıların ortalanması yani [⌊−
𝑝

2
⌋ , ⌊

𝑝

2
⌋] aralığında terimlerin 

yeniden dizayn edilerek 𝐹𝑝
−1 ters elemanı uygulandığında 𝐹𝑝

−1. 𝐹.𝑚 = 𝑚 şifrelenen düz 

metin mesajına ulaşılır (Malekian vd., 2011). 
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5. TARTIŞMA VE SONUÇ  

 

Bu tezde, kuantum sonrası dönemde önem kazanan kriptografik yaklaşımlar 

çerçevesinde, halka tabanlı bir yapı üzerine inşa edilen NTRU kriptosistemi ve buna 

benzer şekilde tasarlanan MaTRU, CTRU, DTRU, ETRU ve QTRU gibi sistemler 

kapsamlı bir şekilde ele alınmıştır. Öncelikle NTRU kriptosisteminin temel matematiksel 

yapısı ayrıntılı olarak incelenmiş; sistemin halka yapısı, kafes teorisiyle olan ilişkisi ve 

şifreleme–deşifreleme süreçleri açıklanarak, sistemin hem teorik hem de uygulamalı 

yönleri ortaya konmuştur. Silverman vd. (2008)’ın belirttiği eşitsizlik doğrultusunda 

uygun parametreler seçilerek oluşturulan bir anahtar örneğiyle, seçilen bir mesajın 

şifrelenip deşifrelenmesi işlemleri altında gerçekten de olasılıksal NTRU sisteminde 

deşifreleme işleminin düz metin mesajının tamamen kendisini verdiği somut olarak 

görülmüştür.  NTRU’nun güvenliğinin temel dayanaklarından biri olan SVP (En Kısa 

Vektör Problemi) ve CVP (En Yakın Vektör Problemi) gibi çözümü zor problemler ile 

olan bağlantısı vurgulanmıştır. Klasik RSA ya da ElGamal gibi çarpanlara ayırma 

problemi ya da ayrık logaritma problemi temelli sistemlere kıyasla NTRU'nun kuantum 

bilgisayarlar karşısında sunduğu direncin önemi tartışılmıştır.  

NTRU’nun performans açısından oldukça avantajlı olduğu; anahtar boyutlarının 

görece düşük olması, şifreleme ve deşifreleme işlemlerinin hızlı gerçekleşmesini 

etkilediğinden günümüzde hala güvenlik anlamında geçerliliğini koruyan bir sistem 

olduğu ve düşük enerji tüketimi gerektiren uygulamalarda tercih edilebileceği 

düşünülmektedir. Ancak, avantajlarının yanında, sistemin parametre seçimi konusundaki 

hassasiyetleri ve belirli saldırı türlerine (özellikle seçilen mesaj saldırıları ve çin kalan 

teoremi (CRT) saldırıları) karşı sistemin geliştirilmesi gerektiği farkedilmiştir (Gaborit 

vd., 2002). Bu yönüyle, NTRU’nun sadece teorik değil, aynı zamanda uygulamada da 

barındırdığı güvenlik açıklarının olabileceği ve bu açıdan sistemsel olarak gelişime açık 

bir sistem olduğu düşünülmektedir. Bu tezde, NTRU temel alınarak geliştirilen MaTRU, 

CTRU, DTRU, ETRU ve QTRU gibi bazı kriptosistemlerin ortaya çıkış motivasyonları 

matematiksel açıdan tartışılmış, dayandığı cebirsel yapılar tanım ve ön bilgileri ile 

verilmiş ve bu sistemlerin, NTRU’daki bazı zayıflıkları gidermeyi amaçladıkları 

görülmüştür. 
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Tezde ele alınan sistemlerden bir tanesi olan MaTRU kriptosisteminde 

anahtarların matris çiftleri ve matrislerin değişmeli olmayan yapılar olması, kaba kuvvet 

saldırıları konusunda çok büyük bir öneme sahiptir. Değişmeli olmayan yapılarda 

anahtarların denenme hızının genelde değişmeli yapılara göre daha yavaş olması 

düşünülebilir. Nitekim, kaba kuvvet saldırılarında saldırganın olası tüm (𝑓, 𝑔) anahtar 

çiftini, 𝑓 ∗ ℎ ∗ 𝑔 olacak şekilde denemesi gerekmektedir. 𝐴 ve 𝐵 matrisleri açık ve 𝑓 ve 

𝑔 matrisleri de 2𝑘 tane polinomdan oluştuğu için, her birinin 𝑛 − 1. dereceden olması da 

düşünüldüğünde denenebilecek olası tüm anahtar çiftlerinin sayısı  

 

(
𝑛!

(𝑛 − (𝑝 − 1)𝑑𝑓)! 𝑑𝑓!(𝑝−1)
)2𝑘 

 

dır (Coglianese ve Goi, 2005). Bu da göstermektedir ki MaTRU kriptosistemi için 

kullanılan matrislerin boyutları ile anahtar güvenliği arasında bir doğru orantı mevcuttur. 

Ayrıca, (𝑁, 𝑝, 𝑞, 𝑑) NTRU kriptosistemin parametreleri ve (𝑛, 𝑘, 𝑝, 𝑞) MaTRU 

kriptosisteminin parametreleri olmak üzere, düz metin mesajlarının boyutlarının 

karşılaştırılması 𝑁 = 𝑛𝑘2 ilişkisi ile mümkün olup, işlem hızı NTRU için 𝒪(𝑁2) iken 

MaTRU kriptosisteminde 𝒪(𝑛2𝑘3) olduğundan, MaTRU kriptosisteminin değişmeli 

olmayan yapılar içermesine rağmen, şifreleme-deşifreleme hızının NTRU 

kriptosistemine nazaran daha yüksek olması bir hayli ilginçtir (Coglianese ve Goi, 2005). 

CTRU kriptosistemine yapılacak olası bir kaba kuvvet saldırısında,  

 

𝑒 − 𝜙ℎ (𝑚𝑜𝑑 𝑞) 

 

değerlerinin hesaplanması için denenebilecek tüm durumlar doğrudan 𝜙 ve 𝑔 

parametrelerine bağlı olduğundan, anahtar güvenliği ile  ℒ𝜙 ve ℒ𝑔 kafeslerinin 

büyüklükleri arasında bir doğru orantıdan bahsedilebilir ve ayrıca NTRU sistemiyle aynı 

𝑁 parametresinin CTRU için yaklaşık olarak aynı zaman karmaşıklığı sunmasından 

dolayı güvenlik analizi yaparken 𝑁 parametrelerinin karşılaştırılmasının önemli olmadığı 

belirtilmiştir. (Gaborit vd., 2002). 

 Dual tamsayılara dayalı olarak üretilen DTRU kriptosisteminde de anahtar 

güvenliğinin, 
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|ℒ(𝑑)| = (
𝑁

𝑑
) (
𝑁 − 𝑑

𝑑
) (
𝑁 − 2𝑑

𝑑
) (
𝑁 − 3𝑑

𝑑
) =

𝑁!

(𝑑!)4(𝑁 − 4𝑑)!
 

 

eşitliğine bağlı olduğu belirtilmiştir (Camara vd., 2018). 

Eisenstein tamsayıları üzerinde kurulan ETRU kriptosisteminde Jarvis ve Nevins 

(2015), NTRU kriptosistemine yapılabilecek en güçlü saldırıların kafes saldırıları 

olduğunu ve ETRU parametrelerinin NTRU’daki (𝑁, 𝑞) parametreleri ile 

karşılaştırıldığında, eğer 𝑁′ ≈ 2𝑁 ve 𝑞′ ≈
8

3
𝑞 şeklinde seçim yapılırsa ETRU’nun 

NTRU’ya eşit ya da ondan daha fazla güvenlik sağladığını belirtmiştir. Bu da parametrik 

ayarlamalarla mümkün olduğu için uygulanabilirlik açısından ETRU’nun da etkili bir 

sistem olduğu düşünülmektedir.  

 Kuaterniyonlar cebirine dayalı olarak NTRU benzeri oluşturulan QTRU 

kriptosisteminde Malekian vd. (2011), önerdikleri sistemin 41 boyutlu olması durumunda 

NTRU-167 ile eş değer bir güvenlik sağlamaktadır. Ayrıca tüm kriptosistemlerde olduğu 

gibi QTRU kriptosisteminde de açık anahtarları bilen bir saldırgan, deşifreleme işleminin 

başarıya ulaşması adına kısa anahtar bulabilmek için olası tüm durumları denemek 

zorundadır. QTRU sisteminde 

 

|ℒ(𝑓)|(≈ |ℒ(𝑔)|) 

 

olup 

 

|ℒ(𝑓)| = (
𝑁

𝑑𝑓
)

4

(
𝑁 − 𝑑𝑓
𝑑𝑓

)

4

=
(𝑁!)4

(𝑑𝑓!)
8
(𝑁 − 2𝑑𝑓)!4

 

 

ve 

 

|ℒ(𝑔)| = (
𝑁

𝑑𝑔
)

4

(
𝑁 − 𝑑𝑔
𝑑𝑔

)

4

=
(𝑁!)4

(𝑑𝑔!)
8
(𝑁 − 2𝑑𝑔)!4
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olarak elde edilmiştir ki uygun parametreli bir QTRU kriptosistemine karşı yapılan kaba 

kuvvet saldırılarının başarıya ulaşmasının pratikte imkansız olduğu değerlendirilmektedir 

(Malekian vd., 2011).   

Malekian vd. (2011), QTRU kriptosisteminin gerek değişmeli olmayan yapılarda 

çalışması ve gerekse NTRU kriptosistemine göre dört kat fazla işlem içermesi nedeniyle 

NTRU’dan daha düşük bir şifreleme-deşifreleme hızına sahip olsa da, kafes ataklarına 

karşı NTRU’dan daha dirençli olduğunu belirtmiştir.  

NTRU benzeri yapılan kriptosistemler çalışıldığında farkedilmiş olmalıdır ki 

kuantum saldırılara karşı deterministik olarak üretilen kriptosistemler güvenlik açısından 

etkili değildir. Bu doğrultuda, Vats (2008), iki elemanlı bir cisim üzerinde tanımlı tek 

değişkenli polinomlarla oluşturulan kesilmiş polinomlar üzerindeki CTRU 

kriptosisteminin polinom zamanlı bir algoritmayla kırıldığını göstermiştir. Böylece, 

uygulamada CTRU kriptosisteminin etkili olmadığı söylenebilir.  

Camara vd. (2018) DTRU kriptosisteminin NTRU kadar güvenli olabileceğini 

fakat katsayıları dual tamsayılarla oluşturulan kesilmiş  polinomların terslerini almak için 

etkili ve kalanı tek türlü verecek şekilde bir bölme algoritmasının zorluğunu ve sistemin 

daha fazla etkili olmadığını belirtmiştir ki bu da literatürdeki DTRU’ya olan ilgiyi 

olumsuz etkileyecektir denebilir.  

Sırasıyla Coglianese ve Goi (2005), Gaborit vd. (2002), Camara vd. (2018), Jarvis 

ve Nevins (2015) ve Malekian vd. (2011) tarafından yapılan çalışmalardan yararlanılarak 

incelenen MaTRU, CTRU, DTRU, ETRU ve QTRU kriptosistemlerinin NTRU ile 

karşılaştırılması aşağıda sunulan Çizelge 5.1 ve Çizelge 5.2 ile kısaca özetlenmiştir. 

 

 

 

 

 

 

 

 

 

 



 

59 
 

 

Çizelge 5.1 NTRU benzeri bazı kriptosistemlerin karşılaştırılması-I 

Kriptosistem Cebirsel Yapı 
Sistemin 

Avantajları 

Sistemin 

Dezavantajları 

NTRU ℤ[𝑋]/〈𝑋𝑛  −  1〉 
Standardize 

olması 

Kafes tabanı indirgeme 

algoritmalarının 

gelişmesiyle ortaya 

çıkan güvenlik tehdidi 

MaTRU 𝑀𝑘(ℤ[𝑋]/〈𝑋
𝑛  −  1〉) 

 

Şifreleme- 

deşifreleme 

hızının uygun 

parametrelerle 

NTRU’dan 2.5 kat 

hızlı olabilmesi 

Deşifrelemedeki 

değişmeli anahtarların 

güvenlik açığına 

sebebiyet verebilmesi 

CTRU 𝔽2[𝑇][𝑋]/〈𝑋
𝑛  −  1〉 - Kırılmıştır. (Vats, 2008) 
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Çizelge 5.2 NTRU benzeri bazı kriptosistemlerin karşılaştırılması-II 

Kriptosistem Cebirsel Yapı 
Sistemin 

Avantajları 

Sistemin 

Dezavantajları 

NTRU ℤ[𝑋]/〈𝑋𝑛  −  1〉 
Standardize 

olması 

Kafes tabanı 

indirgeme 

algoritmalarının 

gelişmesiyle ortaya 

çıkan güvenlik 

tehdidi 

DTRU 

𝐷[𝑋]/〈𝑋𝑛  −  1〉 

öyle ki 𝐷 = ℤ + 𝜀ℤ 

ve 𝜀2 = 0 

 

NTRU 

güvenliğine 

(yaklaşık olarak) 

sahip olma 

potansiyeli 

Bölme algoritması 

oluşturma zorluğu ve 

sistemin daha etkili 

olmayışı 

ETRU 
ℤ[𝜔][𝑋]/〈𝑋𝑛  −  1〉 

öyle ki 𝜔3 = 1  

 

Daha küçük 

anahtar 

boyutlarıyla daha 

hızlı hesaplamalar 

ve güvenlik 

Standardize 

olmaması 

QTRU 

𝐴[𝑋]/〈𝑋𝑛  −  1〉 

öyle ki 𝐴 = (
−1,−1

ℤ
) 

 

Değişmeli 

olmayan 

işlemlerle daha 

fazla güvenlik 

potansiyeli 

NTRU’dan dört kat 

daha yavaş çalışması 
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Sonuç olarak, bu tezde etkili ya da güvenli olup olmamasından bağımsız olarak 

çalışılan söz konusu NTRU benzeri kriptosistemlerin altında yatan cebirsel yapıların 

kriptografik uygulamalarda nasıl kullanılabileceği ele alınmıştır. Kuantum bilgisayarların 

gelecekte daha güçlü ve daha yaygın olacağı fikrine dayanarak, özellikle kafes tabanlı 

saldırılara karşı daha güçlü sistemler oluşturmak adına araştırmacıların bu yönde ilgisinin 

artarak devam edeceği düşünülmektedir.  
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