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OZET

NTRU BENZERI BAZI KRiPT660SISTEMLER VE KARSILASTIRILMASI

CAL, Giilbahar
Yiksek Lisans Tezi, Matematik Anabilim Dal1i
Danisman: Dr. Ogr. Uyesi Omer KUSMUS
Eyliil 2025, 67 sayfa

Bu tez bes boliimden olusmaktadir. Birinci boliimde, ac¢ik anahtarli
kriptosistemlerin ardinda yatan matematiksel zor problemlere ve kuantum bilgisayarlara
karst mevcut kriptosistemlerin durumuna deginilen giris niteliginde bilgilere yer
verilmigtir.

Ikinci béliimde, kuantum kriptografide énemli bir yeri olan NTRU kriptosistemi
ve NTRU benzeri olusturulan bazi kriptosistemlerle ilgili literatiirde mevcut olan
calismalara iliskin kaynak bildirisleri sunulmustur.

Uciincii  boliimde, polinom halkalar1, kafes teorisi, NTRU ve benzeri
kriptosistemlerin giivenliginin dayandig:1 en kisa vektor problemi (SVP) ve en yakin
vektor problemi (CVP) gibi kafes teorisinde yer alan matematiksel zor problemlere dair
bazi bilgiler aktarilmistir.

Dordiincili boliimde, teorik temelleri ve uygun parametre secimi yapilarak elde
edilen bir anahtar ornegiyle somut bir mesaj sifrelenip desifrelenerek NTRU
kriptosisteminde anahtar iiretimi, sifreleme ve desifreleme islemlerinin nasil yapildigi
aktarilmis ve MaTRU, CTRU, DTRU, ETRU ve QTRU gibi NTRU benzeri bazi
kriptosistemler ¢aligilmustir.

Besinci boliimde, kuantum saldirilarina karst NTRU kriptosisteminin sagladigi
giivenlik ve etkililigin, ele alinan NTRU benzeri diger kriptosistemlerle kiyaslandig bir
tartismaya yer verilmistir.

Anahtar kelimeler: Acik anahtarli kriptosistem, CTRU, DTRU, ETRU, Kafes,
Kriptografi, Kuantum, MaTRU, NTRU, Saldir;, QTRU






ABSTRACT

SOME NTRU-LIKE CRYPTOSYSTEMS AND THEIR COMPARISONS

CAL, Giilbahar
M.Sc. Thesis, Department of Mathematics
Supervisor: Assist. Prof. Dr. Omer KUSMUS
September 2025, 67 pages

This thesis consists of five chapters. The first chapter presents introductory
information concerning the mathematically hard problems underlying public-key
cryptosystems and the current status of existing cryptographic systems in the face of
quantum computing.

The second chapter provides references to the existing literature on the NTRU
cryptosystem—uwhich holds a prominent place in quantum cryptography—as well as to
several NTRU-like cryptosystems that have been developed subsequently.

In the third chapter, some fundamental notions related to polynomial rings, lattice
theory, and the mathematically hard problems within this theory—such as the Shortest
Vector Problem (SVP) and the Closest Vector Problem (CVP), which underpin the
security of NTRU and related cryptosystems—are explained.

In the fourth chapter, the processes of key generation, encryption, and decryption
in the NTRU cryptosystem are demonstrated by encrypting and decrypting a concrete
message using a key generated through appropriate parameter selection based on
theoretical foundations. Additionally, several NTRU-like cryptosystems such as MaTRU,
CTRU, DTRU, ETRU and QTRU are examined in detail.

The fifth chapter offers a comparative discussion evaluating the security and
efficiency of the NTRU cryptosystem against quantum attacks, in comparison with other
NTRU-like cryptosystems addressed in the study.

Keywords: Attack, Cryptography, CTRU, DTRU, ETRU, Lattice, MaTRU,
NTRU, Public key cryptosystem, QTRU, Quantum
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1. GIRIS

Acik anahtarli kriptografi kavrami ilk kez 1976 yilinda W. Diffie ve M. Hellman
tarafindan ortaya atilmistir (Diffie ve Hellman, 1976). Bu yaklasim, klasik simetrik
sifreleme yontemlerinin giivenlik agisindan yetersiz kalmasindan dogan bir ihtiyag
sonucu gelistirilmistir. O zamandan bu yana bir¢ok acik anahtarli sifreleme sistemi (PKC)
tasarlanmis ve aragtirmacilar tarafindan analiz edilerek gilivenlik agiklar1 tespit edilmistir.
Acik anahtarli kriptografi, dijital imzalar, anahtar dagitimi ve anahtar degisim
protokolleri gibi bircok temel kavrami igerir. Bu kavramlardan anahtar degisim
protokolleri ve dijital imzalarla ilgili literatiire bakildiginda, Nathani ve Tripathi’nin
(2017) kuaterniyonlar iizerinde anahtar degisim protokolleri konusundaki ¢aligmasi ve
Satoh ve Araki’nin (1997), degismeli olmayan bazi cebirsel yapilar {izerinde imza semast
tasarimi ile ilgili calismasi géze ¢arpmaktadir.

Hem simetrik hem de asimetrik kriptografik sistemlerin bazi1 matematiksel olarak
zor problemlere dayanmasi gerektigi iyi bilinmektedir. Ornegin, RSA sifreleme sistemi,
biiyiik bir bilesik say1 N igin mod N islemindeki kalan siniflarinin toplamsal abelyen
grubu Z,'deki carpimsal tersinir elemanlara (birimsellere) dayanir (Rivest vd., 1978). Bu
nedenle RSA’nin giivenligi, biiylik bilesik sayilarin ¢arpanlara ayrilmasi probleminin
zorluguna baghdir. Diger bir bilinen agik anahtarli sistem olan ElGamal sifreleme
algoritmast ise, Zy'deki c¢arpimsal tersinir elemanlarmn grubu olan Zp’daki ayrik
logaritma probleminin zorluguna dayanir (EIGamal, 1985).

Kuantum bilgisayarlarin gelismesi ve 0Ozellikle Shor algoritmasinin ortaya
konmasi, hem carpanlara ayirma hem de ayrik logaritma problemlerini etkin bir sekilde
¢ozebilme yetisiyle bu sistemleri tehdit etmektedir (Shor, 1997). Bu sistemlerin
giivenligini saglamak adina arastirmacilar, cebirsel ve sayr kuramsal yapilarin bu
sistemlere entegre edilmesi gerektigini fark etmislerdir. Ornegin, Hurley ve Hurley
(2011), Klasik sistemler olan RSA ve EIGamal yerine grup halkalari temelli yapilarla daha
giiclii ve verimli kriptografik sistemler gelistirilebilecegini One siirmiis ve ayrica, eslenik
arama probleminin zorlugu nedeniyle, cebirsel temelli kriptosistemlerin, sayilar teorisi
temelli sistemlere kiyasla daha giiclii olabilecegini belirtmistir.

Giincel arastirmalarda, cebirsel olarak zor problemler baglaminda halkalar ve bu

halkalarin 6zel elemanlarina dayali yeni sifreleme yaklasimlaria yonelim artmistir.



(Banin ve Tsaban, 2012) calismasinda ayrik logaritma problemi Bergman’in temsil
edilemeyen halkas1 iizerinde ele alinmistir. Mumtaz ve Ping (2019), RSA sistemine
yonelik mevcut saldirilart ele alan kapsamli bir derleme sunmustur. Liu ve Ye (2018),
hafif anahtar iiretimi saglayan kimlige dayali yeniden sifreleme yontemi 6nermistir. Inam
ve Ali (2018), grup halkalarinda tanimli dongiisel matris gruplari lizerinde insa edilen
yeni bir agik anahtarli sifreleme sistemi tasarlamis ve giivenligini analiz etmislerdir.
(Hanoymak ve Kiismiis, 2015)’te, sonlu devirli gruplarin integral grup halkalarmin
birimsel gruplarina dayali simetrik ve asimetrik sifreleme sistemleri Onerilmistir. Bu
protokolde, yalnizca tek tarafli konvoliisyon yoOntemiyle mesajin sifrelenmesi
saglanmistir, fakat bu yaklasim se¢ilmis agik metin saldirilarina karst zayif olabilir.

Myasnikov vd. (2011) grup kuramsal olarak kriptografide kullanilabilecek zor
problemlere deginmistir. Halkalarda da kriptografik ag¢idan kullanisli olan matematiksel
zor problemlere rastlamanin miimkiin oldugu sdylenebilir. Ornegin, grup halkalarindaki
birimsellerin terslerinin bulunmasinin oldukga zor bir islem oldugu dikkate alindiginda,
bu birimsellerin uygulamali kriptografi i¢in 6nemli bilesenler oldugu sdylenebilir.
Dolayisiyla bu yapilar, yeni ve giivenli sifreleme sistemlerinin insasinda etkin bigimde
kullanilabilir. Hanoymak ve Kiismiis (2015) bu zorlugu, kriptografik uygulamalarda
birimsel problemi olarak adlandirmstir.

Miller (1985), elliptik egrilerin kriptografideki kullanimi iizerine calismistir.
NTRU ise, kuantum saldirilarina karsi giivenli olusu ve RSA (Rivest vd., 1978), ECC
(Koblitz, 1987), ElGamal (ElGamal, 1985) gibi klasik agik anahtarli sifreleme
sistemlerine kiyasla ¢cok daha hizli calismasi sayesinde dikkat ¢eken bir agik anahtarl
sifreleme algoritmasidir ve Hoffstein, Pipher ve Silverman tarafindan Onerilmistir
(Hoffstein vd., 1998). Ayrica, Goldreich vd. (1996) GGH kriptosistemini tanitmislardir
(Silverman vd., 2008). Kuantum bilgisayarlarin biiyiik tamsayilarin ¢arpanlara ayrilmasi
ve ayrik logaritmalarin hesaplanmasi gibi islemleri etkin bigimde gergeklestirebildigi
gosterildikten sonra, yukarida adi gecen geleneksel sistemlerin kuantum hesaplamaya
kars1 giivenlikleri zayiflamistir (Shor, 1997). NTRU’nun en 6nemli 6zelligi, kuantum
saldirilarina kars1 dayanikli olmasidir. Bunun yani sira, hem sifreleme hem de sifre ¢6zme
islemlerinin olduk¢a hizli gergceklesmesi, bu algoritmaya olan akademik ilgiyi artirmis ve
kriptografi camiasinda NTRU benzeri bir¢cok yeni kriptosistemin gelistirilmesine bir

motivasyon kaynagi olusturmustur. NTRU nun giivenligi, kafes teorisine dayanan bazi



zor problemlere, 6zellikle En Kisa Vektor Problemi (SVP) ve En Yakin Vektor Problemi
(CVP) gibi problemler tizerine kuruludur (Tekin, 2011). Bu problemler i¢in su an bilinen
higbir polinomsal zamanli algoritma bulunmamaktadir. LLL algoritmasi (Lenstra vd.,
1982) gibi bazi yontemler, bu problemler i¢in en kisa vektoriin bir iistel katini vererek
yaklagik ¢oziimler sunabilmektedir. En kisa vektoriin uzunlugu ile ilgili olarak, Hoffstein
vd. (2003) tarafindan bir kafesin en kisa vektor uzunlugunun yaklasik degerinin formiilize

edilmesi tizerine yapilan ¢alisma 6rnek gosterilebilir.






2. KAYNAK BILDIRISLERI

NTRU ile ilgili literatiir incelendiginde, asagida 6zetlenen ¢alismalarin one ¢iktigi
goriilmektedir. Bu kapsamda, Hoffstein ve Silverman (2003), NTRU kriptosisteminde
tersinir olmasi gereken polinomun se¢imi iizerine bir ¢alisma sunmustur. Silverman
(1998), bir polinomun hangi sartlarda tersinin mevcut oldugu iizerine olasiliksal bir sonug
vermistir. Silverman (1999a, 2001), etkili bir NTRU kriptosisteminde parametrelerin
secimi konusunda ¢alismalar yapmistir. Ayrica, bir polinomun tersinin hizli bir sekilde
hesaplanmasini amaglayan bir algoritma sunulmustur (Silverman, 1999b). Silverman ve
Whyte (2003), olasiliksal olarak desifreleme basarisizligin1 tahmin etme iizerine ¢alisma
yapmistir.

Ajtai, (1996; 1998) kafes tabanini indirgeme algoritmalarinin Kkriptografi
acisindan kullanilabilirligi lizerine ¢alismistir. Bir bagka calismada, Dwork (1998),
kriptografide kafeslerin uygulama alanlarma deginmistir. Schnorr (1987), polinom
zamanl kafes tabani indirgeme algoritmalari lizerine bir siniflama yapmistir. Cai (2000),
calismasinda SVP ve CVP’nin zorluklarina iliskin bazi sonuglar elde etmistir. Goldreich
vd. (1999) galismalarinda SVP ile CVP’nin zorluklarimi1 kiyas ettikleri bir ¢alisma
sunmuslardir. Bu ¢alisma sonucunda, SVP’nin CVP’den daha zor olmadigini
gostermislerdir.

Mgili literatiire bakildiginda, NTRU kriptosisteminin kriptanalizi ve bazi saldir1
denemelerine de rastlamanin miimkiin oldugu sdylenebilir. Bu baglamda, May (1999),
kafes indirgeyerek NTRU kriptosisteminin kriptanalizi ile ilgili bir calisma yapmistir.

Ayrica, Howgrave-Graham vd. (2003) tarafindan, bir NTRU gizli anahtarina
yapilan ortada bulusma saldirisi ile ilgili calisma gerceklestirilmistir.

Hoffstein ve Silverman (2000) ve Howgrave-Graham vd. (2005) ¢alismalarinda
temel ilkeler1 ayn1 kalmak suretiyle NTRU’ nun gelistirilmesini amaglamistir. Bu amag
dogrultusunda bugiine kadar birgok NTRU benzeri sifreleme sistemi Onerilmistir.
Ornegin, MaTRU kriptosistemi, R = Z[X]/(X™ — 1) halkasi iizerinde tammh k X k
boyutlu matrislerden olusan M halkasinda ¢alismaktadir (Coglianese ve Goi, 2005).
Kolayca farkedilebilecegi tizere R, katsayilar1 tamsay1 ve derecesi en fazla n — 1 olan

kesilmis polinomlardan olusur. Bu sistemde desifrelemenin degismeli yapilarla miimkiin



oldugu ve dolayisiyla giivenlik anlaminda bunun NTRU ile kiyaslandiginda daha fazla
bir giivenlik saglamadig belirtilmistir (Vats, 2009).

Benzer mentaliteyle olusturulan diger sistemlerden CTRU kriptosistemi, kesilmis
polinomlardaki katsayilari tamsayilar halkasindan almak yerine sonlu bir cisim (F,)
tizerinde taniml1 tek degiskenli polinomlar1 katsayilar olarak ele alip polinom katsayili
polinomlar kullanmay1 6neren bir sistemdir ki bu yaklagimin, LLL algoritmasi ya da Cin
Kalan Teoremi temelli saldirilara kars1 daha giiglii bir yapt sundugu belirtilmektedir
(Gaborit vd., 2002).

Vats (2009) tarafindan sunulan NNRU kriptosistemi, Coppersmith ve Shamir
(1997)’in gergeklestirdigi tiirden kafes saldirilarin1 6nlemek amaciyla gelistirilmistir ki

bu sistem; I}, k X k tipinde birim matrisi gostermek {izere,

M = M Z[X]/(X" - 1))

seklinde tanimlanan ve girdileri R = Z[X]/(X™ — 1) halkasindan gelen elemanlar olan
bir matris halkasi i¢inde islem yapar.
Jarvis ve Nevins (2015) tarafindan gelistirilen ETRU kriptosistemi, Eisenstein

tamsayilar kiimesi Z[w] iizerinde tanimlanmistir. Diger bir deyisle, ETRU

Llw][X]/(X™ = 1)

halkasindaki kesilmis polinomlarla islem yapar. Burada, w birimin kompleks ilkel kiip
kokiidiir.

Malekian vd. (2011) tarafindan 6nerilen QTRU kriptosistemi, degismeli olmayan
bir yap1 olan kuaterniyonlar cebiri lizerinde tanimli kesilmis polinomlarin ele alinmasiyla
olusturulmus olan bir kriptosistemdir ki ¢alismada 41 boyutlu anahtar yardimiyla, NTRU-
167 ile es bir giivenlik saglanmstir.

Camara vd. (2018), dual tamsayilar kullanarak DTRU adiyla NTRU benzeri bir
baska sistem sunmuslardir. DTRU kriptosisteminde, €2 = 0 olmak iizere D = Z + £Z
halkasinda tanimli kesilmis polinomlar ele alinmistir. Ancak, DTRU kriptosisteminin

NTRU ile kiyaslandiginda etkili olmadig1 belirtilmistir (Camara vd., 2018).



Internet-of-Things (10T) uygulamalari igin tasarlanmis grup teorisi temelli bir
varyant olan bir diger kriptosistem GTRU ismiyle sunulmustur ki bu sistemin, kafes
tabanli saldirilara kars1t NTRU’ya gore daha yiiksek bir giivenlik seviyesi sunmaktadir
(Shuai vd., 2019).

Parvathi ve Srinivasan (2020), matris Lie gruplarimi kullanarak yeni bir NTRU
benzeri agik anahtarli sifreleme sistemi gelistirmistir.

Hanoymak ve Kiismiis (2019), grup halkalarinin birimsel elemanlar1 tizerine
kurulu kriptografik sistemlere iliskin olarak dihedral gruplarin degismeli olmayan grup
halkalarina dayanan ¢ok tarafli anahtar degisim protokolii ve simetrik sifreleme sistemi
tasarlamiglardir.

Bir baska calismada, kesilmis polinomlara entegre edildiginde NTRU benzeri bir
sistemle bagdastirilabilme potansiyeline sahip integral grup halkalarindaki Bass devirli
birimsel elemanlara dayali bir agik anahtarli sifreleme sistemi sunulmustur (Kiismiis ve
Hanoymak, 2022).

Kriptografik acidan son derece 6nemli kavramlar hususunda gerekli olan sayilar
teorisi ve cebirsel alt yap1 igin Cohen (1995), Milies ve Sehgal (2002) ve Passman
(1977)’in ¢alismalarina bagvurulabilir. Ayrica, modern kriptografi iizerine Cao

(2012)’nun ¢alismasindan da yararlanilabilir.






3. MATERYAL VE YONTEM
3.1 Polinom Halkalari ve Kesilmis Polinomlar
Tamm 3.1.1 R bir halka olmak iizere, sonlu sayida terimi sifir olmayan bir
(ag,as,...) ERXR X ...
dizisi yardimiyla olusturulan
R[x] ={ap+ ayx + -+ a,x™: Vi,aq; € R,n € N}

kiimesi lizerinde taniml

( n m
Z(ai + b)xt + Z bixt, n<m
i=0

i=n+1

n m n
Zaixi+zbixi = 4 Z(ai+bi)xi, n=m
' ' i=0

m n
Z(ai + b)x' + z axt, n>m
\i=0

i=m+1

ve

i=0 i=0

oyle ki Vk € {0,1, ...,m + n} igin ¢, = Z?:o ajby_; islemleriyle (R[x],+,.) cebirsel
yapisina polinom halkasi ve her bir elemanina bir polinom denir. Bir p(x) = Y1, a;x!
polinomunda, n sayisina p(x) polinomunun derecesi denir ve n =deg(p(x)) ile
gosterilir. Ayrica, p(x) = ¥ ,a;x* polinomundaki a, € R, p(x) polinomunun bas

katsayist olarak adlandirilir (Hungerford, 1974).



Ornek 3.1.1 1 < n,n € N olmak iizere, Z,[x] polinom halkasinda, (1 + x)"* = 1 + x"
ve n defatoplam (1 + x) + (1 + x) + -+ (1 + x) = 0 oldugu kolayca goriilebilir.
Tamim 3.1.2 R[x] bir R halkasi tizerinde tanimli polinom halkasi olmak tizere 1 < N, N €

N olmak iizere, (x¥ — 1) temel ideali ile olusturulabilen,

R|[x]

=1 = U@+ " -1 f() € Rixl)

boliim halkasinin elemanlarina kesilmis polinom denir. Aslinda, bu tanim matematiksel

olarak,

N—-

_1) Z ix‘ia; € RxN =1}

i=0

ile es degerdir ki g:ahsma boyunca son yazilan form kullanilacaktir.

Ornek 3.1.2 —=— ( ——r 1) kesﬂm1§ polinomlar halkasi,

Zs[x]

(x* — 1) ={k_0+k_1x+k_2x2+k_3x3:la EZ3,X4 = 1}

olup, séz konusu halkada, (1 + 2x + 2x2)(—1 + 2x — 2x3) = 1 + 2x + 2x% + 2x3
esitligi kolayca gortilebilir.

3.2 Kafes Teorisi

Tamm 3.2.1 by, by, ...,b,, € R™, n tane lineer bagimsiz vektdér olsun. Bu vektorlerin

tamsay1 katsayili lineer kombinasyonlarinin olusturdugu kiimeye kafes adi verilir ve
L = L(by,by, ..., by) = {Xi=1 x;b; |xi €7}

seklinde gosterilir. Burada {b4, b,, ..., b, } vektorlerine kafesin taban1 (veya bazi) denir. B =

[by, by, ..., by] € R™™ taban vektorlerini siitun kabul eden m X n tipinde matris olmak
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lizere, B tarafindan tretilen kafes £L = L(B) = L(bq, by, ..., b,) = {Bxl x € Z™} seklinde
ifade edilebilir (Tekin, 2011). Kafes, Sekil 3.1°de gosterildigi gibi periyodik yapili n-
boyutlu uzayda bir noktalar kiimesi olarak goriilebilir (Tekin, 2011).

X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X

Sekil 3.1 R? iizerinde bir kafes (Tekin, 2011)

n tamsayisina rank denir ve rank(B) ile gosterilir. m tamsayisina ise kafesin
boyutu denir ve dim(L(B)) ile gosterilir. Ranki ve boyutu birbirine esit olan kafese tam-
rank kafes adi verilir (Tekin, 2011).

(0,1) (1,1) (2.1)

X X X X || X X X X X
(0,0) (1,0) (0,0)

X X X X X X || X X X X X X

(@) Z? 'nin bir taban1  (b) Z? 'nin diger bir tabam

X X X X

(1,1) (2,1)
X

b3
(0,0) (2,0) (0,0)

X X X X

(C) Z? 'nin bir tabam degildir. (d) Tam rank olmayan bir kafes

Sekil 3.2 Baz1 kafes tabanlar1 (Tekin, 2011)
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Sekil 3.2.(a)’da gériilebilecegi iizere, (1,0)" ve (0,1)" vektérlerinin iirettigi kafes
Z* dir (Tekin, 2011). Iyi bilinen bir gercektir ki bir kafesin tabani tek tiirlii degildir (Tekin,
2011). Ornegin, Sekil 3.2.(b)’deki (1,1)" ve (2,1)" vektdrleri de Z2 igin iireteglerdir
(Tekin, 2011). Z* ayni zamanda (2005,1)T ve (2006,1)T elemanlariyla da olusturulabilir
(Tekin, 2011). Sekil 3.2 (a) ve Sekil 3.2 (b)’den farkli olarak (1,1)" ve (2,0)" vektorleri
Z%’nin bir tabam olamaz (Sekil 3.2.(c)’deki gibi) (Tekin, 2011). (1,1)" ve (2,0)"
vektorleri, koordinatlar toplamu ¢ift say1 olan ikililerin olusturdugu kafesi tiretir (Tekin,
2011). Sekil 3.2 (a), Sekil 3.2 (b) ve Sekil 3.2 (c¢)’deki Ornekler tam-rank olanlardir
(Tekin, 2011). Ancak, Sekil 3.2.(d)’deki £L((2,1)T) kafesi tam-rank olmayan bir kafestir
(Tekin, 2011). £((2,1)T) kafesinin boyutu 2 ve ranki 1 dir. 1 boyutlu tam-rank kafese bir
ornek Z = L£((1)) kafesidir (Tekin, 2011).

(vl, Vy,...,V,) ER™ lineer bagimsiz vektorlerin  kiimesi olmak iizere,

V1, V5, ..., Uy) ‘nin Z‘deki katsayilar ile olusan lineer kombinasyonlarinin kiimesi yani
n y § y y
L ={av; +a,v, + -+ a,v,:aq,ay, ..., ay € 7L}

kafesi goz oniine almsm. {v,, vy, ..., v,} bir taban ve {wy,w,, ...,w,} € L bir koleksiyon

olmak iizere,

W1 = a1V + aq12Vy + -+ A1n,Vn

Wy = a1V + (0 YA%) + .t ar,v,
W, = au1V1 + An2V2 + -+ ApnUn

formundadir (Silverman vd., 2008). Burada tiim a;; formundaki katsayilarmn tamsay1

olmas1 gerektiginden,
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a1 Q12 - Qip
A= : :
An1 Qnz  *° Qnpn

matrisinin determinantinin det(A) = 1 olmas1 gerektigi dogal olarak farkedilebilir
(Silverman vd., 2008).

Kafes teorisinde matematiksel olarak ¢oziilmesi zor olan bazi problemler
mevcuttur. Ilgili literatiirde en kisa vektdr problemi (SVP) olarak bilinen problem, ele
alinan bir kafeste uzunlugu en kisa olan vektoriin bulunmasi problemidir. Bununla ilgili
algoritmik olarak degisik zorluklarin {istesinden gelebilmek i¢in, SVP degisik
boyutlartyla ele alinmistir ki 6rnegin en kisa vektorii bulup, uzunlugunu verilen bir
saytyla kiyaslamak bunlardan bir tanesidir (Tekin, 2011). Bir £(f) kafesi ele alindiginda,
beklenen en kisa vektor uzunlugu, T(L(f)) ile gosterilmek {izere, kisaca SVP ||v|| =
T(L(B)) olacak sekildeki v € L(B) vektoriiniin tespit edilmesine yonelik problemdir. Bu
problemin Arama SVP, Optimizasyon SVP ve Karar SVP isimlendirmeleriyle alternatif
tanimlar1 Tekin (2011) tarafindan ele alinmistir. Kafes teorisinde SVP benzeri diger bir
problem de en yakin vektor problemi (CVP) olup, f bir kafes tabani olmak iizere L(f)
kafesi igin, se¢ilen herhangi bir v vektoriine bir d metrigine gore L() i¢indeki en yakin

vektorii bulma seklinde tanimlanabilir.
3.3 LLL Taban Indirgeme Algoritmasi

(Tekin, 2011) ¢aligmasinda bahsedildigi gibi bir kafesin ¢ok sayida farkli tabani
olabilir, ancak bu tabanlar i¢inde kisa ve birbirine dik vektorlerden olusanlar daha biiyiik
oneme sahiptir. Kafes indirgeme algoritmalari, amag olarak kafesin miimkiin oldugunca
kisa vektorlerden meydana gelen bir tabanin1 ve ayni zamanda en kisa vektorii elde
etmeye caligir. Eger kafesin boyutu diisiikse, en kisa vektor siralama tabanli detayli arama
yontemleri ile tespit edilebilir ancak yiiksek boyutlu kafesler s6z konusu oldugunda,
ayrintili arama yontemleri tistel zaman karmasikligina sahip olur (Schnorr ve Euchner,
1994, Tekin, 2011).

Lenstra vd. (1982) tarafindan LLL adi verilen bir kafes indirgeme yontemi

Onerilmistir. Tekin (2011)’in de belirttigi gibi LLL algoritmasi, polinom zamanda ¢alisan
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ve yaklasik olarak kisa vektorleri elde edebilen bilinen tek yontemdir. Bu yaklasimda
amag, ortogonal bir taban elde etmektir.

Onerme 3.3.1 £ bir kafes ve = {uy, u,, ..., u,} bu kafesin ortogonal bir taban1
olsun. Bu durumda en kisa vektor, ortogonal tabandaki vektorlerden biridir.

Ispat. U € Lolsun. B = {uy,u,, ..., u,} bir ortogonal taban ise, a; € Z icin,

j=1
ve [ ortogonal bir taban oldugundan,
n
V117 = ) a2
j=1

ve dolayisiyla, Vj € {1,2,...,n} i¢in ||u;||? < ||U||? esitsizligi gecerlidir. Boylece,

i < Nl <
min [l 11 < lhyll < 11U]]

olup, iddia edildigi gibi en kisa vektor  ortogonal tabaninin elemanidir. m

Gram-Schmidt ortogonallestirme islemi yardimiyla

* *
U =u; _Z- MUy
i>]

oyle ki

ol = s w)

olup,
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m;: R™ — Ru;
i j
i<j

iz diistimii ile

7.(x) = ((x, ujf‘)

j=1

*

u.
u}‘,u}‘) J

esitligine dayanarak m; (u;) = u;* ortogonal vektorleri elde edilir. i < § < 1 esitsizligini
saglayan bir § parametresiyle asagidaki tanim verilebilir (Micciancio, 1999).
Tammm 3.3.1 § = {u,y, u,, ..., u, } kiimesi bir £ kafesinin tabani olsun. Eger, asagidakiler
saglanirsa, 8 tabanina § parametresiyle LLL indirgenmistir denir (Tekin, 2011):

(1) Vi>j, |u| < 1/2

(2) Herhangi iki ardisik u; ve u;,, vektorleri icin, &||m;(u)||? < |7 (uir1)]]?

LLL algoritmasinin temelde tek bir sarta bagli olarak verilebildigi soylenebilir.

Nitekim, algoritma su sekilde verilir:

(1) B tabaninin boyutunu indirgemek.

(2) Eger bazi i degerleri igin,

S| ) > || (w1112

ise u; ve u; 44 vektorlerinin yerlerini degistirmek ve tekrar (1) adimina donmek, aksi halde

islemleri durdurmak.

15






4. KAFES TABANLI BAZI KRiPTOSISTEMLER

Bu bolimde, SVP ve/veya CVP problemine dayanan kafes tabanh
kriptosistemlerden olan NTRU kriptosistemine ve degisik cebirsel yapilar iizerinde

tiiretilerek NTRU benzeri yapilan bazi kriptosistemlere yer verilmistir.
41 NTRU

NTRU kriptosistemi, literatiirde siklikla ¢aligilan kafes tabanli kriptosistemlerden
biri olup, Hoffstein vd. (1998) tarafindan ortaya atilan ve dongiisel modiiler kafeslere
iliskin bir kriptosistemdir. NTRU, temelde Z[x]/{xN — 1) halkas: iizerindeki
polinomlarin konvoliisyon ¢arpimlarina dayanan bir Kriptosistem olup, sistemin
parametreler dortliisii (N, p, q,d)’dir. Burada, sistemin etkin c¢aligabilmesi i¢in bu
parametrelerin bazi 6zelliklere sahip olmasi gerekmektedir. Daha agik olarak ifade etmek
gerekirse, ilerleyen kisimlarda deginilecek olan sifreleme ve desifreleme algoritmasinin
etkililigi i¢in N parametresinin asal olarak se¢ilmesi gerektiginin ve ayrica, q/p degerinin
de oldukga biiyiik ve ebob(p,q) = 1 olmasinin sistemin etkililigi i¢in biiyiik 6nem arz
ettigi belirtilmistir (Silverman vd., 2008). Sistemin dayandig: cebirsel yapilar;

R = Z[x]/(x” -1), R, = Zp[x]/(x’v —1)veR, = Zq[x]/(xN - 1)
olmak tizere, bir
h(X) = ho + hlx + -+ hN_lxN_l S Rq

polinomu ile NTRU kriptosisteminin kafesi olusturulabilir ki bu kafes



10 0 hy Ry hy—1
0 1 0 hy_y hy hy—s
MNTRU = 00 1 h h ho
0 0 0 g 0 0
0 0 0 0 gq 0
; 0 0 0 0
0 0 0 0 0 q

matrisinin satirlari tarafindan tiretilen 2N boyutlu LI,\{TRU kafesidir (Silverman vd., 2008;

Tekin, 2011).

MY™RY matrisinin n xn seklinde dort bloktan olustuguna dikkat edilmelidir.

Nitekim;

Sol iist blok; Birim matris I,

Sol alt blok; Sifir matrisi 0,

Sag alt blok; ql,

Sag st blok; h(x) polinomunun katsayilarinin dongiisel matrisi (Silverman vd.,
2008)

Boylece, NTRU kriptosisteminin matrisini asagidaki gibi kisaltmak genellikle uygundur.

ntrRu _ (I h
My _(0 q1>

NTRU sisteminde sifreleme ve desifreleme islemleri sirasinda énemli bir nokta,
mod alma isleminin tanimi yani aslinda katsayilar1 indirgemektir. Bu islemler sirasinda
olusabilecek basarisizliklardan kaginmak icin, polinomlarin (katsayilarinin) ortalanmasi

gerekmektedir (Silverman vd., 2008; Tekin, 2011). Yani, f (modm) isleminde, f
polinomunun katsayilar1 [0,m) araliginda ele alinmaktansa (l— %J, lgj] araligina

indirgenmelidir (Tekin, 2011). Herhangi pozitif d; ve d, tamsayilari igin

a(x) icinde d, adet katsay1 1,
L(d,,d;) =<{a(x) € R: d, tane katsayis1 — 1,
geri kalan katsayilar 0

Tekin (2011), f polinomunda 1 ve —1 olan katsayilarin sayisinin ayni olmadigi ¢iinkii

f(1) = 0 esitligini saglayan bir polinomun (Hoffstein vd., 1998) caligmasi geregince
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tersinir olamayacagini belirtmistir. Anahtar tiretimi, sifreleme ve desifreleme islemleri igin
gerekli olan; f, g polinomlari, r rastgele polinomu ve bir m mesajinin alindig1 uzaylar
sirastyla Lg, Ly, L, ve Ly, ile gosterilsin. Ly, L, ve L. uzaylarnmn parametrik yapisi
asagidaki gibi tanimlanmustir.

o Lr=L(df,df—1)

o L,=L(dgdy)

L, =L(dd;)

NTRU Anahtar Uretimi:

Bir R = Z[x] / (xN — 1) halkasindan; yukarida belirtilen parametrik sartlara

uyacak ve hem R, = Z,[x] / (x¥ —1) hem de R, = Z,[x] / (xV¥ — 1) halkasinda
tersinir olacak sekilde bir f polinomu segilir. Secilen f polinomunun R,, halkasindaki tersi
fy ! ve R, halkasindaki tersi f; ! olmak iizere, f. f,* = 1 (mod p) ve f.f; ' = 1 (mod q)
denklikleri saglanir.  Benzer sekilde, L; uzayindan, yukaridaki parametrik sartlar

dogrultusunda bir g polinomu segilerek,

h=p.f; '+ g (mod q)
polinomu hesaplanir ki f gizli anahtar1 ve h agik anahtari tiretilir.
NTRU Sifreleme:
L,, mesaj uzaymdan bir m mesaji (polinom olarak) segilsin. Ayrica, mesajin
gizliligini saglamak adina £, uzaymndan £, = £L( d,,d, ) olacak sekilde rastgele bir r

polinomu da gz Oniine alinarak, m mesaji

e=r+h+m(modq)
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seklinde sifrelenir (Tekin, 2011). Burada, rastgeleligin farkli polinomlarla sisteme dahil
edilmesinden kaynakli olarak segilen bir mesajin, birden farkli sekilde sifrelenmesi

miimkiindiir.
NTRU Desifreleme:

e sifreli mesajini ¢ozmek i¢in ilk olarak gizli anahtar olan f polinomunun mod p

altindaki tersinin kullanilarak,
a=fx*e(modq)
ara isleminin yapilmasi gerekir. Daha sonra,

a' = a (mod p)

islemiyle birlikte katsayilarin (— EJ ; EJ) araligina indirgenmesi yani diger bir deyisle

katsayilarin ortalanmasi isleminin gergeklestirilmesi ¢ok biiyilk 6neme sahiptir. Son

olarak,
¢ = f, ' *a’ (mod p)

islemiyle sifreli metni ¢dzme isi tamamlanir. Burada dikkat edilmesi gereken bir husus
sudur ki uygun parametreler ve katsayilarin ortalanmasiyla birlikte, secilen bir m
mesajinin sifrelenmis metni tekrar desifreleme islemine tabi tutuldugunda yiiksek
ihtimalle yine m mesajinin elde edilecegi fakat uygun bir sekilde ele alinmayan ve
ortalanmayan parametrelerle desifreleme isleminin basarisizlikla sonuglanabilecegi
belirtilmistir (Tekin, 2011).

NTRU kriptosisteminde sifreleme ve desifreleme islemlerinde basariya ulasmanin
yani bir m mesajinin sifrelenmesiyle elde edilen e mesajinin desifreleme islemine tabi
tutulmasiyla yine m mesajina ulasabilmek i¢in secilmesi gereken parametre degerlerine

iliskin asagidaki teorem, uygulamada ¢ok biiyiik bir dneme sahiptir.
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Teorem 4.1.1 Eger NTRU parametreler dortliisii (N, p, q,d),
(6d+1)p <q
esitsizligini saglayacak sekilde segilirse, ¢ = m olur (Silverman vd., 2008).

Bu baglamda, asagidaki ornekte parametreler yukaridaki teoreme uygun olarak
secilmistir.

Ornek 4.1.1 NTRU kriptosistemi i¢in parametreleri N =7 ,q =97 ,p =5, df = 3, dg =
2 olan bir anahtar ¢ifti iiretilerek ve bu anahtarla m = 1 + x + x? mesaj1 sifrelenip daha
sonra desifre edilsin.

Burada, f(x) polinomunun en fazla 6. dereceden ve li¢ tane katsayisi 1, iki tane
katsayisi -1 ve diger katsayilarinin 0 olmasi gerektigi agiktir. Benzer sekilde g (x) polinomu
en fazla 6. Dereceden ve iki tane katsayisi 1, iki tane katsayisi -1 ve diger katsayilar1 0 olan
bir polinom olmalidir. S6z konusu polinomlar,

flx)= =14+ x? —x3+x5+x°
ve

gx)= —1—x+x3+x°

olsun. f(x) polinomunun (mod5) ve (mod32) de tersleri asagidaki gibidir.
fy 1(x) = f(x) = 24 2x + 2x? + 2x3 — x* — 2x° + x° (mod5)
fi1(x) = f(x) = =9 + 5x — 2x% — 47x% — 25x* — 36x° + 18x® (mM0d97)
fy () = (24 2x + 2x% + 223 — x* — 2x° + x©)
fi1(x) = (=9 4 5x — 2x? — 47x3 — 25x* — 36x° + 18x°)

Boylece, verilen parametreler dogrultusunda h(x) agik anahtar
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h(x) = p. f77 (%) * g(x) (modq)
kuraliyla, asagidaki gibi hesaplanir.

h(x) =
5(—9 + 5x — 2x? — 47x3 — 25x* — 36x° + 18x° )(—1 + x3 + x> — x8) (M0d97)

Yani,

h(x) = (—180 — 395x — 50x2 + 20x3 + 475x* + 250x° — 120x°) (mod97)

h(x) = (14 + 90x + 47x? + 20x3 + 87x* + 56x° + 74x®) (mod97)
sonug olarak gizli anahtar f(x) = (=1 + x? — x3 + x> + x%)
ve acik anahtar

h(x) = (14 + 90x + 47x2 + 20x3 + 87x* + 56x° + 74x°)
olmak {izere, herhangi bir mesaj sifrelenebilip desifrelenirken (f, h) anahtar ¢ifti kullanilir.
Simdi, bir m(x) = 1 + x + x* mesaji (f, h) anahtar ¢ifti yardimiyla sifrelenip desifre
edilsin. Bunun i¢in ihtiyag duyulan rastgele bir r(x) € £(d, d) polinomu

r(x) =—-1—x—x%+x3+x*+ x5

olsun. Bu durumda,

e(x) = r(x) * h(x) + m(x) (mod97)

kurali dogrultusunda,

22



e(x) = (—1—x—x2+x3+x*+x5) (14 + 90x + 47x% + 20x3 + 87x* +
56x° + 74x°) + (1 + x + x?)  (mod97)

ve dolayisiyla

e(x) = (11 — 14x + 67x? — 13x3 + 24x* — 12x°> — 60x°)

sifreli metni elde edilir. NTRU sistemine gore bu elde edilen sifreli mesajin desifreleme
islemi bir ara islem olan

a(x) = f(x) *e(x) (mod97)

isleminin yapilmasiyla baslar ki bu kuralla, a(x)(mod97)

(=14 x% —x3+ x5+ x%)(11 — 14x + 67x% — 13x3 + 24x* — 12x°> — 60x°)

yani,

a(x) = (6 + 20x + 15x% — 15x* — 117x% + 94x°) (mod97)

elde edilir. Daha sonra, desifreleme islemi i¢in bulunan bu a(x) polinomunun (modp)
degeri hesaplanarak

a'(x) = (6 + 20x + 15x% + 82x* + 77x> + 94x°) = (1 + 2x°) (mod 5)
elde edilir. Son olarak
c(x) = f, 1 (x) * a’(x) (modp)

hesaplamasiyla,

c(x) = (2 + 2x + 2x% + 2x3 — x* — 2x5 + x®) « (1 + 2x%) (mod5)
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yani, c(x) = (6 + 6x + 6x% — 5x* + 5x°) = (1 + x + x?) (mod5) elde edilir ki
goriilebilecedi iizere ¢ = m’dir.

42 MaTRU

Coglianese ve Goi (2005) tarafindan onerilen MaTRU kriptosistemi temelde
NTRU kriptosisteminde de kullanilan cebirsel yapiya yani R = Z[X]/(X™ — 1) kesilmis
polinomlar halkasina dayanmaktadir. Sunulan bu sistemde, R  halkasindaki
elemanlardan olusan k X k tipindeki matrislerin M, (R) halkasinda ¢aligilir. MaTRU
sisteminde p, g € N kullanilir. Verilen p, q asal olabilir veya olmayabilir fakat (p, q) =
1 olmalidir. Burada da tipki NTRU kriptosisteminde oldugu gibi p << g yani q’nun
p’den cok biiyiik olmasi gerekir. MaTRU kriptosisteminde de bir matris ¢arpimini

mod p ve mod q indirgeme islemi yapilir. Bir matrisin kisa olabilmesi igin,
maks = maksMrdekipolinomlarpolinom katsayilart
ve
Min = MiNy geki polinomiarPOlinOM katsayilart
olmak tizere,
|[M| = maks — min
seklinde tanimlanan uzunluk dogrultusunda, |M|, < p ise M € M, (R) matrisi kisadir
denir. Kisa matrislerin ¢arpilmasiyla daha biiyiik matrisler elde edilecegi agiktir fakat yine
de bu genislik g *dan daha kii¢iik kalacaktir (Coglianese ve Goi, 2005). Kisalik ve genislik
seklinde kullanilan bu tanimlar, R halkasi i¢in de s6z konusudur. Nitekim, bir r € R

elemani igin,

maks(r) = r'deki katsayilarin maksimumu
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ve

min(r) = r'deki katsayilarin minimumu

olmak iizere,

7|0 = maks(r) — min(r)

ve ayrica bir M matrisinin boyutu ile kastedilen deger de

M| = 2 E(polinom katsayilart)?
M'deki polinomlar

seklinde tanimlidir (Coglianese ve Goi, 2005). Coglianese ve Goi (2005), ilgili kafesi

. r—11 -1 . , , .
i = [— oo Rl ] # 0 icin M'deki her bir polinomun

£(d) = | M € My(R): i degerine esit ortalama d tane katsayist vardir,

geri kalan katsayilar 0'dur.

seklinde tanimlamuglardir. Burada, i’nin alabilecegi degerlerin iiste yuvarlama
fonksiyonu ile elde edilebilecegini gérmek zor degildir. Ornegin; p =3 ve n=7
parametreleri i¢in L£(3) kafesindeki polinomlarin {i¢ tane katsayisinin 1, ii¢ tane
katsayisinin —1 ve geri kalan bir katsayisinin sifir oldugu farkedilebilir. Bilindigi tizere,

MaTRU parametreleri; (n, k,p, q) ve
(L, Ly Las Ly, L) EM

matrislerinin sirali beslisini igermektedir. Burada, Ly gizli anahtarlarm geldigi uzaydur.
Ly de tipki NTRU sisteminde oldugu gibi gerekli duyulan rastgele elemanlarin (¢, )
alindig1 uzaydir. £, uzayi, f, g, ¢, elemanlar i¢in kullanilir. Ayrica, £, agik anahtar

uzay1 ve L,, mesaj uzayidir.
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MaTRU Anahtar Uretimi:

Acik ve gizli anahtarlarini iiretmek i¢in £, uzaymda Bob k X k tipinde A ve B
matrislerini  secer. Ayrica rastgele kisa polinomlar g, @4,...,ax_1 ER Ve

Bo, B1, -+ Pr—1 € R ele alir. Boylece f,g € Ly igin

k-1
f = Z aiAi
i=0

ve

k-1
g= Z BiB'
i=0

matrislerini olusturur. Burada f ve g matrislerinin (mod p) ve (mod q)’da tersinir olmasi
gerekmektedir. Uygun parametre se¢imi ile (mod p) ve (mod q)’da matrislerin tersleri

srastyla f, %, f71, g5, gt seklinde gosterilirse,

o [, *f=I(modp)
* fg *f=I(modq)

o gp1 * g = I(modp)

o g,'*g =I(modq)
olur.
Bob’ un gizli anahtar1 f, g anahtarlaridir. Bob ayrica rastgele bir w € £, matrisi
secerek h € M acgik anahtarini su sekilde olusturur.

h=f1*w=xgg! (modq)

Dolayisiyla, Bob’ un agik anahtarlar1 h, A ve B’ dir (Coglianese ve Goi, 2005).
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MaTRU Sifreleme:

Bob’ a gonderilecek bir mesaj1 sifrelemek i¢in Alice, rastgele su sekilde kisa

polinomlar tiretir:

d)O' d)l' L] d)k—ll Do, P1s - Pi—-1 ER

Daha sonra asagidaki hesaplamalari yapar:

k-1
b= gl
i=0

ve

k-1
@ = Z @B’
i=0

Hesaplamalar yapildiktan sonra m € £,,, mesajini asagidaki yolla sifreler:
e =p(¢ * h* ) + m (modq)
ve olusturdugu sifreli mesaji Bob’ a gonderir (Coglianese ve Goi, 2005).
MaTRU Desifreleme:
Bob kendine gelen e sifreli mesajin1 asagidaki yolla ¢ozer:
a=f*rxexg (modq)

Islemleri yaparken polinomlarin katsayilarini, tipkit NTRU sisteminde oldugu gibi

H_?qJ ) E” araligina indirger ve devaminda
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a=fx*xexg (modq)

ve

d=fy'*(fxexg)*gy' (modp)

seklinde diiz metine ulasir. (f, g) ve (¢, @) cifti secimi yaparken oncelikle dy ve dg

tanimlanir dyle ki
f=L(d), L = £dy)

A ve B matrisleri acik olmak iizere, f, g, ¢ ve ¢ matrislerinin giivenligi kisa
polinomlar «;, B;, ¢;, ;" lerin bulunmasimin zorluguna dayanir. Bu nedenden dolay1
polinomlarin sayisinin maksimize edilmesi ¢ok 6nemlidir. Burada yaklasik olarak segim

ds ~ gve dy ~ g seklinde yapilir (Coglianese ve Goi, 2005).

A ve B matrislerinin se¢imi, f ve ¢ matrisleri {iretilirken matrislerin sadece
degismeli degil ayn1 zamanda kisa olmasina dikkat edilerek yapilir. Daha kisa matrisler,

mod q’ ya indirgenebilir ve sifreli metinin ¢6ziilebilir olmasini saglayacak sekilde,

[p(p*wx@)+femegla

degerinin g’dan daha kii¢iik oldugu matrislerdir. Burada, islemlerin basariyla
sonuglanmasi ig¢in A ve B matrisleri permiitasyon matrisleri olarak segilebilir (Coglianese
ve Goi, 2005). Permiitasyon matrisleri bilindigi {izere sadece 0 ve 1’i igeren matrislerdir
Oyle ki her satir ve siitunda sadece bir tane eleman 1 ve geri kalan elemanlar 0’dir.
Secilecek olan A ve B matrislerine ilave olarak, {4°, A%, ..., A*"1} ve {B°,B1, ..., Bk}

kiimelerinin her ikisinin de lineer bagimsiz olma 6zelligini de saglamasi gerekir ki

k-1 -1 1 -« 1
ZAf=ZBj=<E )
j=0 j=0 1 -1
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olmalidir. Buradan da goriiliir ki f matrisi’ nin her bir satir ve siitunu g, @4, ..., @x_1 ’lerin
bazi permiitasyonlarini igerir. Yani, her bir a; elemani; f matrisi icinde sadece k kez

goriinecektir. Ornegin;

01 0 O

_10 0 1 0

A= 0 0 0 1

1 0 0 O

seklinde secildiginde,

1 1 1 1
2 3 111 1 1
A+ A+ A+ 1, = 11 1 1
1 1 1 1

ve dolayisiyla,
3
pAl = a; a; a; Q
i a, a3 a;
i=0

elde edilir. Benzer durum, g, ¢ ve ¢ matrisleri i¢in de gegerlidir. Yani,

d-~d, ~
Ry~

oldugundan,

(p — Dnk?
If| = VK?|a;|? = T ~|g| = |¢| = |o]

gegerlidir (Coglianese ve Goi, 2005). f ve g matrislerine benzer olarak w matrisi de
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|p(@*ws@)+frm=g|e

kiigiik olacak sekilde kisa secilmelidir. Giivenlik nedenlerinden dolay1, w matrisinin gizli

tutulmasi dnemlidir. Bdylece w matrisinin se¢ilecegi uzay: bulmak igin,
n
£w =)

ele alinmalidir. Buradan da w matrisinin boyutu

(p — Dnk?
lw| = ’—
P

olur (Coglianese ve Goi, 2005).
43 CTRU

Bilindigi tizere, NTRU sisteminin giivenligi SVP’ye dayanir ve anahtar boyutu
kisa, sifreleme, desifreleme hizlidir. Simdiye kadar verilen kafes tabanli sistemler i¢inde
en hizli agik anahtarli kriptosistem olan NTRU sisteminin dezavantaji kafes indirgeme
saldirilar1 ve Cin Kalan Teoremi (CRT) saldirilarina karsi olan eksikliktir. Bu alt
bolimde, NTRU kriptosistemindeki kesilmis polinomlarin katsayilarinda kullanilan Z
yerine [, lizerinde tanimhi tek degiskenli polinomlar halkasinin kullanildigt CTRU
kriptosistemi tanitilacaktir.

Gaborit vd. (2002) tarafindan Onerilen CTRU kriptosisteminde LLL
algoritmasiin roliinii lineer sistemler teorisinde 6nemli bir yeri olan Popov formu
listlenmektedir. Sonlu bir cisim {izerinde tamimli XV — 1’in koklerinin basit
olmamasindan dolay1 CTRU kriptosisteminin CRT saldirilarina kars1 daha gilivenli
oldugu degerlendirilmektedir (Gaborit vd., 2002). CTRU kriptosisteminde bir N pozitif
tamsayisi ve A = [F,[T] polinomlar halkasindan P ve Q gibi iki polinom kullanilmaktadir.

Burada P,Q polinomlar1 indirgenemezdir. P polinomunun derecesi der(P) = s ve Q

30



polinomun derecesi der(Q) =t oyle ki 2 < s <t ve (t,s) = 1 dir. Sistemde ¢alisilan
halka:

AT
o

dir. Kolayca gozlemlenebilir ki P ve Q indirgenemez polinomlar olmak iizere,

Ao ="/ p)

ve

40="/g)

boliim halkalari aslinda sirasiyla F,s ve [F,e sonlu cisimleridir. Benzer sekilde

Ro =5/ ep)

ve

Ro="/(g

boliim halkalar1 da polinomlari indirgemek igin kullanilan boliim halkalaridir. Gaborit vd.
(2002) de bahsetmistir ki, ebob(s,t) =1 olmasiyla Fys N F,e = F, olur ve istelik
NTRU kriptosisteminde oldugu gibi mod (P)’de ve mod (Q)’da yapilan indirgeme
islemlerinde aralarindaki bagimsizlik basit saldirilarin 6niine gegmede ¢ok biiyiik bir

oneme sahiptir. R = A[x]/(x" — 1) olmak iizere, keyfi d < t i¢in tanimlanan

L(d) = {f € R:der(f) < d)
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uzaymin boyutu 2M5 olup, mesaj uzayt M = L(N,s) ve CTRU anahtarlarinin
tamimlandig1 uzaylarla birlikte, tasimasi gereken parametrik 6zellikler su sekildedir
(Gaborit vd., 2002):

Gizli anahtar ¢ifti (f,g) ve rastgele polinom olan Q polinomunun iretildigi

uzaylar

Ly = L(dg+ 1),
Ly =L(dp+1)

formundadir 6yle ki df, dg, dg < t.
CTRU Anahtar Uretimi:

Ly ve Ly uzaylarindan sirastyla Rp Ve R, da tersinir olan bir f polinomu ve ayrica

g polinomu segilir. (f, g) ¢ifti sistemin gizli anahtaridir.
(f,9) € Fap X Flu,
ki en fazla (df + dg)N bit uzunlugundadir. Agik anahtar

h= %[mod(x"’ ~1,0)]

dur. Bdylece h € F,, dyle ki h, tN uzunlugundadir (Gaborit vd., 2002).

CTRU Sifreleme:

Tipki NTRU kriptosisteminde oldugu gibi, CTRU kriptosisteminde de bir
rastgelelik faktorli oldugundan dolayi sistem deterministik degildir (Gaborit vd., 2002).
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Segilen bir M' € M mesaj1, segilen bir ¢ rastgele polinomu ile birlikte, h agik anahtari
yardimuyla,
e = P¢ph + M (modQ)

seklinde sifrelenir. Dolayisiyla, ef = P¢pg + M f(modQ) olur. Bununla es
zamanh olarak, s +dg +dy <t ve s+ dy <t saglanirsa, ef polinomunun R’den

oldugu diistiniiliir ve desifreleme islemine gegilebilir (Gaborit vd., 2002).

CTRU Degsifreleme:

e = Pph + M (modQ)

sifreli mesajina f polinomunun uygulanmasiyla,

ef (mod P)

Pophf + Mf(mod Q)(mod P)
Mf (mod Q)(mod P)

elde edilir ki boylece, f polinomunun (mod P) tersinin uygulanmasiyla, M € M

mesajina ulasilir (Gaborit vd., 2002).
44 DTRU
Bu alt boliimde, Camara vd., (2018) tarafindan 6nerilen ve dual tamsayilar halkasi
lizerinde tanimlanan kesilmis polinomlar yardimiyla olusturulan, NTRU benzeri bir
Kriptosistem galigiimaktadir.
Tanim 4.4.1 €2 = 0 olmak iizere,
D=Z+¢Z={z=a+c¢eb:ab€Z¢e*>=0}

kiimesi Uizerinde tanimlanan

(a+eb)+(c+ed)=(a+c)+eb+d)
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ve

(a + eb)(c + ed) = ac + cad + sbc + £2bd = ac + £(ad + bc)

islemleriyle (D, +,.) bir halka olup bu halkaya dual tamsayilar halkas: denir ve Kisaca,
D = Z[¢] ile gosterilir (Camara vd., 2018). Burada, a € Z tamsayisina reel kisim ve b €
Z tamsayisina da imajiner (sanal) kisim denir ve sirasiyla a = Re(z) ve b = Im(z) ile
gosterilir.
Tamm 4.4.2 ¢: D — N asagidaki 6zellikleri saglayan bir fonksiyon olsun.

(1) vVzeD,p(z) =0

(2) vz € D, Vt € D\Jp (Jp sifir bolen elemanlarin kiimesi) igin,

¢(2) < @(zt)

3) Vz € D, Vt € D\Jp icin, 3(q,7) € D%,z = tq + r dyle ki
Yy

p(r) < o(t)

Bu durumda, ¢ fonksiyonuna sézde-norm denir (Camara vd., 2018).
Teorem 4.4.1 ¢ bir sdzde-norm olmak iizere, (D, @) bir s6zde-Oklit halkasi olsun. Eger,

z,t € D ve Jp sifir bolen elemanlarin kiimesi ve t € D\Jp iSe, 0 zaman

3(q,r) ED%z=tq+r

oylekir = 0 veya ¢(r) < ¢(t)/4 (Camara vd., 2018). Burada s6zde-bolme algoritmasi
asagidaki gibidir (Camara vd., 2018):
Girdi:ze Dvet € D\Jp.
Cikti: (q,7) € D oylekiz =qt +r, p(r) < p(t)/4.
(1) a; < Re(zt), a, « Im(zt) ven = tt
(2)i=12ic¢ina; =nq; +1;
B)g=q+qer=z-1tq

34



Ornek 4.4.1 z =121 — 26e ve t = 3 — 51¢ olmak iizere, ¢ = 40 + 677¢ ve
r=z—tq=1-17¢

elde edilir.

oL . D
Simdi, z € D olmak iizere, -~

[x] polinom halkasi ve f, g € % [x] ele alinsin.
Tamm 4.4.3 Eger f', g' € —[x] dyle ki ff' + gg' = 1(modz) ise bu durumda, f ve g
polinomlarina es-asal denir ve f A g = 1 ile gosterilir (Camara vd., 2018).

p bir asal say1 olmak iizere f;, g; € %[x] icin, f = f; +¢f, ve g =g, + €9,

polinomlar1 ele alindiginda, f ve g polinomlarinin terslerinin nasil hesaplanacagi ile ilgili

asagidaki algoritma gbz Oniine alinabilir.

Sozde-Genisletilmis Oklit Algoritmast:

- D D , . Z
Girdi: f=fi +¢f; € p—D[x] ve g=g,+¢€g, € p—D[x] oyleki f;, g; € ﬁ[x].
Cikti: ebob(fy, f,) # 1 ise f polinomu p% [x]/(g(x)) halkasinda tersinir degildir. Eger,

ebob(fy,f,) = 1ise
(1) (w1, v1) € [x] Syleki frug + givr = 1 (€ - [x]).

(2) h « —fouy + g1v1, Uy < uh ve v, « v1h

(3) u «uy +euy « uy + ey hvev « vy + ev, <« vy + ev h olmak lizere

fut+gv=1

Bir z € D\Z igin %[x] /{g(x)) halkasinda bir polinomun tersinin varligini

incelemek literatiirde acik bir problem olarak degerlendirilmektedir (Camara vd., 2018).
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Simdi, D bir sézde-Oklit halkas1 ve (p,q) € D? olmak iizere, p% [x]/¢xN — 1) ve

E[x] /{xN¥ — 1) polinom halkalar1 iizerinde NTRU benzeri bir sistemin nasil
qD p

kurulabilecegi tizerine tartisilabilir. R = D[x],

D N
Ry = p—D[x]/(x - 1)

ve

D
Rq = q_D [x]/<xN - 1)

olsun. £,, € Ry, Ly, < Ryve Lg, L¢ C R olmak tizere; anahtar iiretimi, sifreleme ve

desifreleme asagidaki gibidir.
DTRU Anahtar iiretimi:

q/p degerinin oldukea biiyiik oldugu bir (p, q) € Z X Z segilsin. Bu durumda,
hem R, hem de R,’da tersinir olacak sekilde rastgele ama kiigiik katsayili bir f € Lf

polinomu ele alinsin 6yle ki p% [x]/(xN — 1) ve q% [x]/{x" — 1) halkalarindaki tersleri

sirastyla f,, ve f, olsun. Bu durumda, yine rastgele ama kiigtiik katsayili olacak sekilde bir

g € L ile birlikte agik anahtar,

h=pfs*g €ERy
seklinde tiretilebilir (Camara vd., 2018).

DTRU Sifreleme:

1 1
abeL, = {—T, ..,—1,0,1, T} (p tekse)
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veya

p

_ p .
abeL, = {_E' ..,—1,0,1, E} (p ciftse)

olmak iizere, bir m = a + &b mesajim sifrelemek icin, bir ¢, € Ly alarak,
e=¢x*h+1y=*h?+m(modq)

sifreli metni elde edilebilir (Camara vd., 2018).

DTRU Degifreleme:

Sifreli metin e € R, geldiginde ilk olarak a = f2 * e (modq) hesaplanir ve a’nin

katsayilarinin degeri [[— %J ; EJ] araligia diistiriiliir. Daha sonra,
m = f * a (modp)
diiz metnine ulasilir (Camara vd., 2018).

45 ETRU

Bu alt boliimde, Jarvis ve Nevins (2015) tarafindan ETRU adiyla ¢alisilan ve
Eisenstein tamsayilar halkasi tizerinde kurulan bir diger NTRU benzeri kriptosistem ele
alinmigtir. Alt boliimde yer alan bilgilerde Nevins vd. (2010), Jarvis ve Nevins (2015)
ve Jarvis (2011)’den yararlanilmistir.

Simdi; w, birimin bir kompleks kiip kokii olsun. Yani, w3 = 1. Bu durumda
1
w=>(-1+ iv3)

olacagi aciktir ki Eisentein tamsayilar halkasi
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Zlw] = {a + bw | a,b € 7,03 = 1}
seklinde tanimlidir. Uzunluk,
g=a+bw = |q|2=a®+b%—ab

formiilii ile belirlenebilir. C ’de birimin n. kdklerinden olusan devirli alt grup igin p,
yazilirsa

us = {1, w,0? = -1 — w}
ve

ornekleri elde edilir ki bunlar Z[w]’da kapsanir. Z[w] dan R?’ye bir ggmme (embedding)

vardir ki bu,

fZ[w] - 72
f(a+ bw) = (a,b)

toplamsal grup izomorfizmasidir ve bu durumda a = a + bw ile sagdan ¢arpim

(a)=[ —Z a—bb ]

matrisi ile yapilir (Jarvis ve Nevins, 2015). Burada,

f@+b@+bo))=@n| & ° ]

38



olduguna dikkat edilmelidir. Bu g: Z[w] - C ~ R?

g(a+bw) = (a - b/z) + i <\/§b/2>

izometrik halka monomorfizmasindan farklidir ve kullanimi hesaplama agisindan daha
verimlidir (Jarvis ve Nevins, 2015). Ayrica, cebirsel tamsayilar halkalar1 arasinda
kullanilan ve Q’nun reel olmayan kuadratik genislemelerine 6zgii olan sey, bu izometrik
gdmmenin goriintiisiiniin R?’de bir kafes olmasidir (Aslinda, iki boyutlu bir kiire-
paketleme kafesi) ki bu 6zellik Z[w]'nin elemanlarinin daha yogun olmasi anlamina gelir
(Jarvis ve Nevins, 2015).

NTRU’ yu Z[w] ‘ya tagimak i¢in ilk adim aralarinda asal olacak sekilde p,q €
Z|w] elemanlarim se¢mektir. Pratikte, mod p ve mod q tersini alma algoritmasinin
etkinligi i¢in bu sayilar asal ya da asal kuvveti seklinde secilebilir (Jarvis ve Nevins,
2015).
Teorem 4.5.1 pe kiimesi, Z[w] ‘nin tiim tersinir elemanlarini igerir. Yani, U(Z[w]) tim

tersinir elemanlarin kiimesi olmak tizere,
e = U(Z[w])
ve Z[w] ‘nin tiim asallar1, 1 — w;
p = 2(mod3)

olan p rasyonel asallar1 ve | q | 2=p, p=1(mod3) olan q € Z[w] elemanlaridir ki

boylece, (bir birimselle ¢arpma farkiyla) en kii¢iik Eisenstein asallart:
p=1-w ([p|2=3), p=2(p|?=4 ve p=2+30 (|p|2=7)

dir (Jarvis ve Nevins, 2015).
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ETRU Anahtar Uretimi:

ETRU sistemini tanimlamak i¢in 6ncelikli olarak tercihen asal olacak sekilde bir

N tamsayisi segilir.

e Llw
qe = Z[ ][X]/<xN—1)

halkasindaki polinomlarin katsayilarinin Z[w]'dan gelen kesilmis polinomlar olduguna

dikkat edilmelidir. Benzer sekilde, Z[w] halkasindan aralarinda asal olacak sekilde

lq| >> |p|

yani q’nun, p’den ¢ok fazla biiyiik oldugu elemanlar segilerek, herhangi bir a € Z[w]

icin R indirgenmis polinomlar halkasi olusturulur 6yle ki,
RE = {p(x) € R¥ | p(x) (moda) 'ya indirgenmis}

Bu durumda not edilmelidir ki
fFER® =f=fo+fix+ -+ fyax""

Ve f; = a; + bjw.
Tamim 4.5.1 Voronoi hiicresi, bir diizlem veya daha yliksek boyutlu bir uzayda secilmis
bir noktalar kiimesi i¢in tanimlanan 6zel bir geometrik yapidir. Daha basit haliyle secilen
o noktalar kiimesindeki her bir noktaya en yakin olan tiim noktalar1 iceren bdlgedir
(Voronoi, 1908a; 1908b).

Teknik olarak, p = {p1,p2, ..., P} noktalar kiimesi i¢in

V(p) = {x € R? | d(x,p;) < d(x,pj) JVj # i}
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bir Voronoi hiicresidir. Yani, bir x noktasi, sadece p; noktasina diger noktalardan daha
yakinsa p; ‘nin Voronoi hiicresinde yer alir. Ayrica a € Z[w] i¢in, {(a) = {(a, aw) bir
kafes olup, D, (modq)’da indirgenmis elemanlar kiimesi, (@)’ nin orijininde yer alan

Voronoi hiicresinde bulunan elemanlar kiimesi olarak tanimlanabilir 6yle ki
fERE, © VfieD,
olur (Jarvis ve Nevins, 2015).

Aslinda Voronoi hiicresi ile SVP arasindaki iliski su sekilde agiklanabilir. Bir

kafeste aranan en kisa vektorler kiimesi orijinin Voronoi hiicresidir. f € R olmak iizere,
f=Uo frx, o, fu—1x" ™13
i¢in Vf; = a; + bjw olup
(ag, by, aq, by, ..., ay-1, by_1) € Z?N
vektorii elde edilir. ETRU sisteminde basitlik olmasi agisindan p parametresi p = 2
olarak ele alinir. (p = 2 + 3w durumu (Jarvis, 2011)’da galisilmis olup fazladan bazi

indirgeme algoritmalar1 gerektirmektedir. 0 <7 <1 olarak alinan say1 ve Lg, L, L

uzaylar1 da pg’ dan secilen yaklasik N sifirdan farkl katsayili olsun. Buradan,
Le, Ly, Ly € RE

kiime secimleri asagidaki sekilde yapilir:

Lgve Ly’ dekipolinomlar x — 1 (modq) ile boliinebilir sekilde ele alinir. Yani,
Ly={g()[x—1]g(x) (nodq)}

Ly ={a() |x—1[¢@) (modg))
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kafesleri incelenir. Boylece, s parametresi 3’tin N’ ye en yakin kat1 olsun ve rastgele
§/3 tane katsayilar dgliisii segilsin ({1, w,w?} veya {~1,-w,~w?}). Ly deki
polinomlarin her biri ayrica (1) = 0 esitligini saglasin. t parametresi N ‘ye en yakin
tamsay1 olmak lzere Ly, t sayida sifirdan farkli ve ue ‘dan gelen katsayili polinomlar
igerir. Bilinir ki f € Ly tersinirdir. Tipkit NTRUdaki gibi £ nin rastgele secilmis bir
eleman1 yiiksek olasilikla tersinirdir. Her bir ETRU katsayis1 tamsayilarin bir gifti
oldugundan dolayi, N dereceli bir ETRU o6rnegi, 2N = N' dereceli bir NTRU ile
kiyaslanabilir.

ETRU’ daki f, g ve ¢ polinomlarinin her biri Eisenstein tamsay1 katsayisi, a +
bw’ y1temsil eden bir (a, b) tamsay ¢ifti olarak ele alinir ve pg’ daki katsayilar i¢in a ve
b tigliit NTRU” daki polinomlarmn tiim N’ katsayilar1 gibi {—1, 0, 1} kiimesinden degerler
alir. Bahsedilen ii¢cli NTRU katsayilarinin {—1,0,1} oldugu NTRU kriptosistemidir.
NTRU’da oldugu gibi, f, polinomu, f’nin mod q’daki tersi olmak iizere,

h = fg * g (mod q)
acik anahtari elde edilir (Jarvis ve Nevins, 2015).
ETRU Sifreleme:
h = p.h (modq)
olmak iizere
e =¢.h+m (modq)

(Jarvis ve Nevins, 2015)
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ETRU Desifreleme:

a=f.e(modq)

olmak iizere m = f,.a (modp) olacagindan, ETRU’nun sifreleme ve desifreleme
karmasikligin1 hesaplamak icin tamsayilardaki toplamanin maliyetinin hesaplanmasi
gerekir. N' = 2N oldugunda ETRU ve NTRU’ nun polinomlardaki bu maliyetini
hesapladigimizda ayni oldugu kolayca goriilebilir (Jarvis ve Nevins, 2015).

(n — 1). dereceden iki polinomun konvoliisyon ¢arpiminin normalde n? halka

carpim igerdigi bilinen bir gergektir. Bdylece R da bu maliyet 3N2°dir. NTRU’da ise

(N')? = 4N?

olur ki burada neden ETRU’da maliyetin 3N? oldugu su yaklasimla bulunabilir; iki

polinom

p(X) = (ao + bo(l)) + (a1 + bl(l))x + -+ (aN_1 + bN_l(,())xN_l

ve

q(x) = (CO + do(l)) + (Cl + dl(l.))x + -+ (CN—l + dN_la))xN_l

seklinde olursa her bir katsayida aslinda bir de (a + bw)(c + dw) ¢arpma islemi yapmak
gerekir. Her ne kadar bu islemde ac, ad, bc, ve bd olmak lizere dort islem gerekli gibi
goriinse de bd terimi ac, ad ve bc yardimiyla otomotik olarak elde edilebilir (Jarvis ve
Nevins, 2015). O yiizden aslinda 4 degil 3 islem yeterlidir. Her katsayida 3 islem olmak
lizere N2 tane katsayili polinomda 3N? iglem yeterli olur. Yani sonug olarak, Eisenstein
polinomlarinda ¢arpma islemi, tamsay1 katsayili polinomlardaki ¢arpma isleminden daha

hizlidir.
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Teorem 4.5.2 q € Z[w] ve Dy, (modq) indirgenmis elemanlarin kiimesi olsun.
Bs; = [—s,s] X [-s,s] € R?
olmak iizere

{(c,d) | c+dw € Dy} < Baq

3

(Jarvis ve Nevins, 2015).
Ispat. Voronoi hiicresi Vq 2 Dy ‘nun koseleri igin iddiay1 dogrulamak yeterlidir. g = 1
icin V; ‘in kdseleri

i§(1+zw),i§(1—w) ve +§(2+w)

seklinde elde edilebilir. ¢ = a + bw olsun. V;’ in kdselerini g ile ¢arpma ile V; elde

edilir. Her kdseyi ¢ + dw bi¢iminde yazmak c¢,d € S dyle ki
+1 +1 +1
S =5 @a-b),5(@+b),=5(2b - a))

sonucunu verir. Direkt olarak, |q|? = a? + b? — 2ab esitligi kullanilarak, bu terimlerin

her birinin mutlak degerce en fazla 2|ql/ 3 oldugu ve S ‘nin bir elemaninin bu sinira

esit olmasinin; a =0, b =0 ya da a = b oldugunda miimkiin oldugu goriilir. Eger

2
S ‘deki her bir elemanin karesi en fazla 4l / 3 olsaydi, 0 zaman
(a+b)(2a—b)=0,(a+b)(a—2b) <0 ve(a—2b)(2a—b) =0

elde edilirdi.
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Bu durum, sadece bir ¢arpanin ( ve dolayisiyla S ‘nin bir elemaninin) sifir olmasi
durumunda gegerlidir. Bunun iizerine de S’nin diger iki elemani lq |/ V3 olur (Jarvis ve

Nevins, 2015). =

Bir h agik anahtari, (modq) da indirgenmis N katsayili bir polinom olup, her
katsay1, (Jarvis ve Nevins, 2015)’e gore [log,(4|q|/3)] uzunlugunda ikili dizi olarak
saklanabilen iki tamsayidan olusur. Bu yiizden ETRU agik anahtar boyutu

oo (2

olur (Jarvis ve Nevins, 2015).
46 QTRU

Bu alt boliimde ¢alisilan bilgiler, kuaterniyon cebirleri {izerine kurulan kesilmis
polinom halkalariyla QTRU ismiyle sunulmus (Malekian ve Zakerolhosseini, 2010;

Malekian vd., 2011) calismalarindan faydalanilmistir.
Tanim 4.6.1

Qg = (i,j: 12 =j2,i* = 1,iji = —j)
grubuna kuaterniyon grubu denir.
Kuaterniyon grubu iizerinde tanimli R-lineer genisleme, kuaterniyonlar cebiri
kavramini dogurmaktadir.
Tanim 4.6.2

H={a+pi+yj+dbk:ap,y,d € Rk =1}

kiimesi iizerinde tanimli,
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(ay + Byi+v1j + 61k) + (ay + i + yaj + 62k)
= (a1 +az) + (B + B2)i+ (v1 +v2)j + (81 + 8,)k

toplama islemi ve

(a1 + Bri+ve + 01k)(ay + Bai +v2j + 62k) =
(ar(az = B1B2 — V1V2 — 6162) + (a1 P2 + Praz + V162 — 8172)i
+(a1y2 +v1az + 6182 — B162)j + (@16, + 610, + Bry2 — v1B2)k

carpma islemlerinin halka aksiyomlarini sagladig: ve listelik

RxH—->H
A a+Bi+yj+ k) — da+ ABi + Ayj + Adk

etkisiyle, H kuaterniyonlar cebiri olarak adlandirilir. H kiimesinin ayn1 zamanda bir R-
modiil oldugunu farketmek zor degildir. ¢ = a + Bi + yj + 6k € H kuaterniyonunun

eslenigi,

=a—Pi—yj— o6k

Q|

seklinde ve normu da,
N(@) =N@) =a’+p*+y* +6°
esitligi ile tanimlidir. Agiktir ki
Vg € H\{0},q~" = g/N(q)
Aslinda, kuaterniyon cebirleri, reel sayilar cismi yerine daha genel bir yap1

tizerinde de tanimlanabilir: ab # 0 olmak iizere, degismeli ve birimli bir R halkas1

uzerinde
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(a,b)
R

={a+pPi+yj+6k:ap,y,6 €ERk=1ij,i*=a,j’=bk?=—ab,iji = —j}

yapisi tanimlanabilir Ki R birimli degismeli ve karakteristigi ikiden farkli bir halka olmak

lizere,
(a,b)
A=
R
yapist olusturuldugunda, a = b = —1 ve R reel sayilar cismi ile,
(_ 1, _1)
H=——
R

Iyi bilinen Hamilton kuaterniyon cebiri elde edilir (Malekian vd., 2011).
Tamim 4.6.3 Eger R = [F karakteristigi 0 olan bir cisim ve q € % icin N(q) = 0 olmasi

(a

q = 0 olmasmi gerektirirse, bu durumda A = R+b) cebirsel yapisi, bir Oklit boliim

halkasidir denir (Malekian vd., 2011).

Tanim 4.6.4 Tiim integral kuaterniyonlarin
L={a+pi+yj+dbk:apB,y,6 €Lk =Iij}
kiimesine Lipschitz kuaterniyonlar kiimesi denir ki R* iginde bir kafes teskil eder
(Malekian vd., 2011).
Simdi, QTRU kriptosistemi i¢in gerekli olan kuaterniyon cebirleri tanimlari

verilebilir. Oncelikle, GFE, ve GF ile sirasiyla p ve q asal sayilarina karsilik gelen sonlu

cisimler gosterilsin. QTRU sistemi temelde,
L, ={a+pBi+yj+dbk:a,p,y,b €GE,}

ve
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Ly ={a+pi+yj+bk:a,p,y,é € GF;}

sonlu split cebirlerine dayamr (Malekian vd., 2011). Yani, L,, ve LL, yapilar sirasiyla
girdileri GE, ve GF,; gelen 2 X 2 matrisler halkasina izomorf yapilardir. Ayrica, L

Lipschitz kuaterniyonlarinin normlu boliim cebirleri oldugu bilinmektedir (Malekian vd.,

2011).

0p: L = Ly, 0,(x) = x (mod p)
ve

0q: L - Lg,04(x) = x (mod q)

halka homomorfizmalar1 ele alnsm. Bu durumda, 9,:L —L,ve 9,;:L - L,

doniistimleri sirastyla,

Vp(a + Bi+yj + k) = op(a) + 0,(B)i + 0,(¥)j + 0,(8)k

ve

19q(a + pi+vyj+ k) = oq(@) + aq(B)i + 0,(¥)j + 04(6)k

seklinde elde edilir (Malekian vd., 2011).

Onerme 4.6.1 H = (hy, hy, hy, h3) € L, ve FH = G kuaterniyon denkleminin en az bir
¢Oziimiiniin oldugu kabul edilsin. Bu durumda, tiim ¢dziimler, Z8’de 8 boyutlu bir
tamsay1 kafesi teskil eder (Malekian vd., 2011).

Ispat. F =Afy, fi. f2. f3) V& G = (g0, 91, 92, g3) icin, FH = G esitligi asagidaki sistemi
Verir:

foho — fih1 — fohy — f3hs = go + kop
fohi + fiho + fohs — f3h, = g1 + k1p
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fohz — fihs + foho + f3hy = g2 + kap
fohs + fihy — fohy + f3hg = g5 + k3p

Ki

1 0 0 0 hy hy hy,  hy

01 0 0 —hy hy =—hy h

0 01 0 —h, hy hy —-h

yoerru _ |00 0 1 —hy —h; hy  h

h 000 0 p 0 0 0

000 0 O p 0 0

000 0 0 0 p 0

0 0 0 0 0 0 0 p

QTRU

satirlar1 tarafindan tretilen L?ITRU kafesi, My, matrisinin satirlarinin lineer bagimsiz

olmasiyla bir full-rank kafestir ve yukaridaki sistemden agikga gortilebilir ki,

(fo f1, f2, f3, —ko, —k1, k3, —k3)MhQTRU = (fo. f1, f2 f3, 90, 91, 92, 93)

oldugundan,

(fO'f11f21f3' 9o, 91, 92, 93) € L?lTRU

olur. Tersine, M,°"RY

matrisinin satirlarinin bir lineer kombinasyonu alindiginda
yukaridaki sistemi saglayan bir (fy, f1, f2, f3, 90, 91, 92, g3) formu elde edilir. Boylece,
ispat tamamlanir (Malekian vd., 2011). m
Simdi,
-1,-1
A= Fe =

(-L-D
Zp[x]/(xN - 1)

Ay =

ve
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A = (_11_1)
T Zglx] /(xV = 1)

halkalar1 ele alinsin. QTRU kriptosistemi i¢in temel kabullerden biri basitlik olmasi
acisindan, p, q ve N sayilariin asal olarak seg¢ilmesidir (Malekian vd., 2011).
Tanim 4.6.5

N-1
) =D fipxd = [fio fias s finoa]
j=0

J

olmak iizere bir
F=folx)+ fi(x)i+ fo(x)j + f3(x)k € A
kuaterniyonu i¢in

F = maks = min
HE ] 0<i<3 OsjsN—lfl’J 0<i<3 0<jsN—-1

fij

ve

(Malekian vd., 2011). L, Lg, Ly, Ly € A olmak lizere, QTRU kriptosistemi (N, p, q)
parametrelerine bagli olarak insa edilir ve anahtar iiretimi, sifreleme ve desifreleme

asagidaki gibi yapilir.

OTRU Anahtar Uretimi:

[]- ||o normuna gore kiigiik iki F ve G kuaterniyonu rastgele iiretilir. Burada,
dikkat edilmelidir ki,
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F=fo+fit+ fo) + f3k
ve
G=go+ g1l + g2j + g3k

oyle ki fo, f1, f2, f3 € Lf V€ g0, 91, 92, g3 € Lgy. Ayrica F kuaterniyonu, hem A, hem de
Ag iginde tersinir olmalidir. Bunun ise segilen fy, f1, f2, f3 elemanlarma bagli oldugu
hemen farkedilebilir. Fp_1 ve F, ~1, F kuaterniyonunun sirasiyla Ap ve A, igindeki tersleri

olsun. Bu durumda,

Fp_l = (f02 +f12 +f22 + f32)- (Go + G1i + {3j + G5k)
ve

Fq_l = (fo2 +AZ+H L+ f32)- (Mo + Ml +n2j + n3k)
olmak tizere, acik anahtar

H=F".GeA,
kuaterniyonudur (Malekian vd., 2011).
QOTRU Sifreleme:
Sifreleme prosediiriinde sistem ilk olarak ¢, ¢4, P,, 3 € L 0Olan bir

b= o+ b1l + dyj + P3k

kuaterniyonunu iiretir. Ayni1 zamanda, my, my, m,, mz € L,, olmak {izere bir
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m=mgy+ myi +myj + mzk
mesaji,
E=pH.¢+meA,
seklinde sifrelenir (Malekian vd., 2011).
QOTRU Desifreleme:

Gelen bir E sifreli mesajini ¢6zmek i¢in QTRU sisteminde izlenmesi gereken yol

asagidaki gibidir: F gizli anahtar1 yardimiyla,

B:=F.E =F.(pH.¢p + m) (mod q)
=F.(pH.¢p) + F.m (mmod q)
=pF.F;1.G.¢ + F.m (mod q)
=pG.¢p+F.meA,

seklinde elde edilen B kuaterniyonunun dort polinomundaki katsayilarin hepsi mod q
indirgenmis olmalidir ve NTRU benzeri olusturulan diger sistemlerdeki gibi tiim

katsayilar pozitif araliktan olacak sekilde degil de katsayilarin ortalanmasi olarak da

degerlendirilebilen (—%,%] aralifinda olacak sekilde dizayn etme islemine tabi

tutulmahidir (Malekian vd., 2011). Diger bir deyisle, {—%+ 1, ...,%} ayrik temsilciler

Zq [x]
(xN—-1)

kiimesinin elemanlariyla katsayilar yeniden yazilmalidir. Burada, B € elemani tam

olarak B (mod p) indirgenmis oldugunda,

B=pG.p+F.meA

olacaktir. Sonra, (mod p) islemiyle pG. ¢ teriminin ortadan kalkmasiyla birlikte,

F.m (mod p)
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kalir ki en son bu terime; katsayilarin ortalanmasi yani [l— SJ , EJ] araliginda terimlerin

yeniden dizayn edilerek F, ! ters elemani uygulandiginda F;'. F.m = m sifrelenen diiz

metin mesajina ulasilir (Malekian vd., 2011).
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5. TARTISMA VE SONUC

Bu tezde, kuantum sonrasi déonemde 6nem kazanan kriptografik yaklagimlar
cercevesinde, halka tabanli bir yap1 iizerine insa edilen NTRU kriptosistemi ve buna
benzer sekilde tasarlanan MaTRU, CTRU, DTRU, ETRU ve QTRU gibi sistemler
kapsaml1 bir sekilde ele alimmustir. Oncelikle NTRU kriptosisteminin temel matematiksel
yapist ayrintili olarak incelenmis; sistemin halka yapisi, kafes teorisiyle olan iligkisi ve
sifreleme—desifreleme siirecleri agiklanarak, sistemin hem teorik hem de uygulamali
yonleri ortaya konmustur. Silverman vd. (2008)’in belirttigi esitsizlik dogrultusunda
uygun parametreler secilerek olusturulan bir anahtar 6rnegiyle, secilen bir mesajin
sifrelenip desifrelenmesi islemleri altinda gercekten de olasiliksal NTRU sisteminde
desifreleme isleminin diiz metin mesajinin tamamen kendisini verdigi somut olarak
goriilmiistiir. NTRU’nun gilivenliginin temel dayanaklarindan biri olan SVP (En Kisa
Vektor Problemi) ve CVP (En Yakin Vektor Problemi) gibi ¢6ziimii zor problemler ile
olan baglantis1 vurgulanmistir. Klasik RSA ya da ElGamal gibi carpanlara ayirma
problemi ya da ayrik logaritma problemi temelli sistemlere kiyasla NTRU'nun kuantum
bilgisayarlar karsisinda sundugu direncin 6nemi tartigilmistir.

NTRU’nun performans agisindan olduk¢a avantajli oldugu; anahtar boyutlarinin
gorece diisiik olmasi, sifreleme ve desifreleme islemlerinin hizli gergeklesmesini
etkilediginden gilinlimiizde hala gilivenlik anlaminda gegerliligini koruyan bir sistem
oldugu ve diisiik enerji tiiketimi gerektiren uygulamalarda tercih edilebilecegi
distintilmektedir. Ancak, avantajlarinin yaninda, sistemin parametre se¢imi konusundaki
hassasiyetleri ve belirli saldir tiirlerine (6zellikle secilen mesaj saldirilart ve ¢in kalan
teoremi (CRT) saldirilart) karsi sistemin gelistirilmesi gerektigi farkedilmistir (Gaborit
vd., 2002). Bu yoniiyle, NTRU’nun sadece teorik degil, ayn1 zamanda uygulamada da
barindirdig1 giivenlik agiklarinin olabilecegi ve bu agidan sistemsel olarak gelisime agik
bir sistem oldugu diisiiniilmektedir. Bu tezde, NTRU temel alinarak gelistirilen MaTRU,
CTRU, DTRU, ETRU ve QTRU gibi bazi kriptosistemlerin ortaya ¢ikis motivasyonlari
matematiksel agidan tartisilmig, dayandigi cebirsel yapilar tanim ve On bilgileri ile
verilmis ve bu sistemlerin, NTRU’daki bazi zayifliklar1 gidermeyi amagladiklari

gorilmiistir.



Tezde ele alinan sistemlerden bir tanesi olan MaTRU kriptosisteminde
anahtarlarin matris ¢iftleri ve matrislerin degismeli olmayan yapilar olmasi, kaba kuvvet
saldirilart konusunda cok biiyiilk bir 6neme sahiptir. Degismeli olmayan yapilarda
anahtarlarin denenme hizinin genelde degismeli yapilara gore daha yavas olmasi
diistiniilebilir. Nitekim, kaba kuvvet saldirilarinda saldirganin olas1 tim (f, g) anahtar
ciftini, f * h * g olacak sekilde denemesi gerekmektedir. A ve B matrisleri acik ve f ve
g matrisleri de 2k tane polinomdan olustugu i¢in, her birinin n — 1. dereceden olmasi da

diisiiniildiiginde denenebilecek olasi tiim anahtar ¢iftlerinin sayisi

n!

( : )Zk

dir (Coglianese ve Goi, 2005). Bu da gostermektedir ki MaTRU kriptosistemi igin
kullanilan matrislerin boyutlar1 ile anahtar giivenligi arasinda bir dogru orant1 mevcuttur.
Ayrica, (N,p,q,d) NTRU kriptosistemin parametreleri ve (n,k,p,q) MaTRU
kriptosisteminin parametreleri olmak iizere, diiz metin mesajlarinin boyutlarinin
karsilastirilmast N = nk? iliskisi ile miimkiin olup, islem hizt NTRU i¢in O(N?) iken
MaTRU kriptosisteminde O(n®k3®) oldugundan, MaTRU kriptosisteminin degismeli
olmayan yapilar icermesine ragmen, sifreleme-desifreleme hizinnn  NTRU
kriptosistemine nazaran daha yiiksek olmasi bir hayli ilgingtir (Coglianese ve Goi, 2005).

CTRU kriptosistemine yapilacak olas1 bir kaba kuvvet saldirisinda,

e — ¢h (mod q)

degerlerinin hesaplanmasi i¢in denenebilecek tiim durumlar dogrudan ¢ ve g
parametrelerine bagli oldugundan, anahtar giivenligi ile Ly, ve Lj kafeslerinin
biiyiikliikleri arasinda bir dogru orantidan bahsedilebilir ve ayrica NTRU sistemiyle ayni
N parametresinin CTRU igin yaklasik olarak ayni zaman karmasikligi sunmasindan
dolay giivenlik analizi yaparken N parametrelerinin karsilastirilmasinin énemli olmadigi
belirtilmistir. (Gaborit vd., 2002).

Dual tamsayilara dayali olarak iiretilen DTRU kriptosisteminde de anahtar

giivenliginin,
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=) (")) (d!)‘*(x o

esitligine bagl oldugu belirtilmistir (Camara vd., 2018).

Eisenstein tamsayuilari iizerinde kurulan ETRU kriptosisteminde Jarvis ve Nevins
(2015), NTRU kriptosistemine yapilabilecek en gii¢lii saldirilarin kafes saldirilari
oldugunu ve ETRU parametrelerinin NTRU’daki (N, q) parametreleri ile

karsilastirildiginda, eger N' =~ 2N ve q' = gq seklinde se¢im yapilirsa ETRU’nun

NTRU’ya esit ya da ondan daha fazla glivenlik sagladigini belirtmistir. Bu da parametrik
ayarlamalarla miimkiin oldugu i¢in uygulanabilirlik agisindan ETRU’nun da etkili bir
sistem oldugu diisliniilmektedir.

Kuaterniyonlar cebirine dayali olarak NTRU benzeri olusturulan QTRU
kriptosisteminde Malekian vd. (2011), 6nerdikleri sistemin 41 boyutlu olmas1 durumunda
NTRU-167 ile es deger bir glivenlik saglamaktadir. Ayrica tiim kriptosistemlerde oldugu
gibi QTRU kriptosisteminde de agik anahtarlari bilen bir saldirgan, desifreleme isleminin
basariya ulagmasi adina kisa anahtar bulabilmek i¢in olast tim durumlar1 denemek

zorundadir. QTRU sisteminde

ILOI= 1£(9)D

olup

AW N—alf>4 (ND*
L = =
Ll (df> < dy ()’ (N = 2d,)1*

ve

1£( )|—(N)4<N—dg)"_ (N)*
P17 \a,) \ 4 (dy)° (N — 2d,)1*
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olarak elde edilmistir ki uygun parametreli bir QTRU kriptosistemine kars1 yapilan kaba
kuvvet saldirilarinin bagartya ulasmasinin pratikte imkansiz oldugu degerlendirilmektedir
(Malekian vd., 2011).

Malekian vd. (2011), QTRU kriptosisteminin gerek degismeli olmayan yapilarda
calismasi ve gerekse NTRU kriptosistemine gore dort kat fazla islem igermesi nedeniyle
NTRU’dan daha diisiik bir sifreleme-desifreleme hizina sahip olsa da, kafes ataklarina
karst NTRU’dan daha direngli oldugunu belirtmistir.

NTRU benzeri yapilan kriptosistemler c¢alisildiginda farkedilmis olmalidir ki
kuantum saldirilara kars1 deterministik olarak iiretilen kriptosistemler glivenlik agisindan
etkili degildir. Bu dogrultuda, Vats (2008), iki elemanli bir cisim {izerinde tanimli tek
degiskenli polinomlarla olusturulan kesilmis polinomlar {izerindeki CTRU
kriptosisteminin polinom zamanli bir algoritmayla kirildigin1 gdstermistir. Bdylece,
uygulamada CTRU kriptosisteminin etkili olmadigi sdylenebilir.

Camara vd. (2018) DTRU kriptosisteminin NTRU kadar giivenli olabilecegini
fakat katsayilar1 dual tamsayilarla olusturulan kesilmis polinomlarin terslerini almak igin
etkili ve kalan1 tek tiirlii verecek sekilde bir bolme algoritmasinin zorlugunu ve sistemin
daha fazla etkili olmadigini belirtmistir ki bu da literatiirdeki DTRU’ya olan ilgiyi
olumsuz etkileyecektir denebilir.

Sirasiyla Coglianese ve Goi (2005), Gaborit vd. (2002), Camara vd. (2018), Jarvis
ve Nevins (2015) ve Malekian vd. (2011) tarafindan yapilan ¢alismalardan yararlanilarak
incelenen MaTRU, CTRU, DTRU, ETRU ve QTRU kriptosistemlerinin NTRU ile

karsilastirilmasi asagida sunulan Cizelge 5.1 ve Cizelge 5.2 ile kisaca 6zetlenmistir.
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Cizelge 5.1 NTRU benzeri bazi kriptosistemlerin karsilastirilmasi-I

Kriptosistem

Cebirsel Yap1

Sistemin
Avantajlari

Sistemin
Dezavantajlari

NTRU

MaTRU

CTRU

ZIX]/(X™ — 1)

M (Z[X]/(X™ — 1))

F[TI[X]/(X™ — 1)

Standardize

olmasi

Sifreleme-
desifreleme
hizinin uygun
parametrelerle
NTRU’dan 2.5 kat

hizl1 olabilmesi

Kafes tabani indirgeme
algoritmalarinin
gelismesiyle ortaya

¢ikan glivenlik tehdidi

Desifrelemedeki
degismeli anahtarlarin
giivenlik agigia

sebebiyet verebilmesi

Kirilmistir. (Vats, 2008)
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Cizelge 5.2 NTRU benzeri bazi kriptosistemlerin karsilastirilmasi-11

L . Sistemin Sistemin
Kriptosistem Cebirsel Yap: Avantajlari Dezavantajlari
Kafes tabani
indirgeme
Standardize algoritmalarinin
NTRU ZIX]/(X™ — 1) ) _
olmasi gelismesiyle  ortaya
¢ikan giivenlik
tehdidi
NTRU Bolme  algoritmasi
D[X]/(X™ — 1)
‘ giivenligine olusturma zorlugu ve
DTRU oyle ki D=7+ €Z ) ) N
(yaklagik olarak) sistemin daha etkili
vee? =0 ]
sahip olma olmayisi
potansiyeli
Daha kiigtik
Zlw][X]/(X™ — 1 anahtar Standardize
ETRU [w][X]/( )
oyle ki w3 =1 boyutlartyla daha olmamasi
hizl1 hesaplamalar
ve giivenlik
Degismeli
AX]/X™ = 1) olmayan NTRU’dan dort kat
QTRU 11 ‘
oyleki A = ( i ) islemlerle = daha daha yavas calismasi
fazla giivenlik
potansiyeli
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Sonug olarak, bu tezde etkili ya da gilivenli olup olmamasindan bagimsiz olarak
caligilan s6z konusu NTRU benzeri kriptosistemlerin altinda yatan cebirsel yapilarin
kriptografik uygulamalarda nasil kullanilabilecegi ele alinmistir. Kuantum bilgisayarlarin
gelecekte daha giiclii ve daha yaygin olacag: fikrine dayanarak, 6zellikle kafes tabanli
saldirilara kars1 daha giiclii sistemler olusturmak adina arastirmacilarin bu yonde ilgisinin

artarak devam edecegi diisiiniilmektedir.

61






KAYNAKLAR

Ajtai, M. (1996). Generating hard instances of lattice problems. Electronic Colloquium
on Computational Complexity (ECCC), TR96-007.
https://eccc.weizmann.ac.il/eccc-reports/1996/TR96-
007/index.html?utm_source=chatgpt.com

Ajtai, M. (1998). The shortest vector problem in L2 is NP-hard for randomized
reductions. In Proceedings of the 30th Annual ACM Symposium on Theory of
Computing (pp. 10-19). ACM.

Banin, M., Tsaban, B. (2012). The discrete logarithm problem in Bergman’s non-
representable ring. Journal of Mathematical Cryptology, 6, 171-182.

Cai, JY. (2000). The Complexity of Some Lattice Problems. In: Bosma, W. (eds)
Algorithmic Number Theory. ANTS 2000. Lecture Notes in Computer Science,
vol 1838. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10722028 1

Camara, M. G., Sow, D., Sow, D. (2018). DTRUL1.: First generalization of NTRU using
dual integers. International Journal of Algebra, 12(7), 257-271.

Cao, Z. (2012). New directions of modern cryptography (1st ed.). CRC Press.
https://doi.org/10.1201/b14302

Cohen, H. (1995). A course in computational algebraic number theory. Springer-
Verlag.

Coglianese, M., Goi, B. M. (2005). MaTRU: A new NTRU-based cryptosystem. In S.
Maitra, C. E. Veni Madhavan, & R. Venkatesan (Eds.), Progress in Cryptology —
INDOCRYPT 2005 (Vol. 3797). Springer.

Coppersmith, A., Shamir, A. (1997). Lattice attacks on NTRU. In Proceedings of
EUROCRYPT *97 (Vol. 1233, pp. 52-61). Springer.

Diffie, W., Hellman, M. E. (1976). New directions in cryptography. IEEE Transactions
on Information Theory, 22, 644-654.

Dwork, C. (1998). Lattices and their application to cryptography. Lecture Notes,
Stanford University, Spring 1998.

ElGamal, T. (1985). A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory, 31, 469-472.

Gaborit, P., Ohler, J., & Sol¢, P. (2002). CTRU: A polynomial analogue of NTRU
(Research Report No. 4621). INRIA. https://hal.inria.fr/inria-00071964/

Goldreich, O., Goldwasser, S., Halevi, S. (1996). Public key cryptosystems from lattice
reduction problems. Electronic Colloquium on Computational Complexity
(ECCC), TR96-056. https://eccc.weizmann.ac.il/report/1996/056/

Goldreich, O., Micciancio, D., Safra, S., Seifert, J. P. (1999). Approximating shortest
lattice vectors is not harder than approximating closest lattice vectors. Information
Processing Letters, 71(2), 55-61.

Hanoymak, T., Kiismiis, O. (2015). On construction of cryptographic systems over units
of group rings. International Electronic Journal of Pure and Applied Mathematics,
9(1), 37-43.

Hanoymak, T., Kiismiis, O. (2019). A new multi-party key exchange protocol and
symmetric key encryption scheme over non-commutative group rings.
International Journal of Information Security Science, 8(1), 11-16.

Hoffstein, J., Pipher, J., Silverman, J. H. (1998). NTRU: A ring-based public key
cryptosystem. In Algorithmic Number Theory (Vol. 1423, pp. 267-288). Lecture
Notes in Computer Science. Springer.



https://eccc.weizmann.ac.il/eccc-reports/1996/TR96-007/index.html?utm_source=chatgpt.com
https://eccc.weizmann.ac.il/eccc-reports/1996/TR96-007/index.html?utm_source=chatgpt.com
https://doi.org/10.1201/b14302
https://hal.inria.fr/inria-00071964/
https://eccc.weizmann.ac.il/report/1996/056/

Hoffstein, J., Silverman, J. H. (2003). Random small Hamming weight products with
applications to cryptography. Discrete Applied Mathematics, 130, 37—49.

Hoffstein, J., Silverman, J. H. (2000). Optimizations for NTRU. In Public Key
Cryptography and Computational Number Theory. Warsaw.

Hoffstein, J., Silverman, J. H., Whyte, W. (2003). Estimated breaking times for NTRU
lattices. NTRU Cryptosystems Technical Report 12 — Version 2. Erigim tarihi:1
Eyliil 2025. Erisim adresi: https://ntru.org/f/tr/tr012v2.pdf

Howgrave-Graham N., Silverman, J. H., Whyte W. (2003). A meet-in-the-middle attack
on an NTRU private key. NTRU Cryptosystems Technical Report 4 — Version 2.
Erigim tarihi: 31 Agustos 2025. Erisim adresi: https://ntru.org/f/tr/tr004v2.pdf

Howgrave-Graham, N., Silverman, J. H., Whyte, W. (2005). Choosing parameter sets for
NTRUEnNcrypt with NAEP and SVES-3. In Topics in Cryptology — CT-RSA (Vol.
3376, pp. 118-135). Lecture Notes in Computer Science.

Hungerford, T.W. (1974). Algebra. Springer.

Hurley, B., Hurley, T. (2011). Group ring cryptography. International Journal of Pure
and Applied Mathematics, 69, 67—86.

Inam, S, Ali, R. (2018). A new ElGamal-like cryptosystem based on matrices over group
ring. Neural Computing and Applications, 29, 1279-1283.

Jarvis, K., Nevins, M. (2015). ETRU: NTRU over the Eisenstein integers. Designs, Codes
and Cryptography, 74, 219-242.

Jarvis, K. (2011). NTRU over the Eisenstein integers. M.Sc. Thesis, University of Ottawa,
Canada.

Koblitz, N. (1987). Elliptic curve cryptosystems. Mathematics of Computation, 48(177),
203-2009.

Kiismiis, O., Hanoymak, T. (2022). A novel public key encryption scheme based on Bass
cyclic units in integral group rings. Journal of Discrete Mathematical Sciences and
Cryptography, 25(2), 579-589. https://doi.org/10.1080/09720529.2020.1756042

Lenstra, A. K., Lenstra, H. W_, Jr., Lovasz, L. (1982). Factoring polynomials with rational
coefficients. Mathematische Annalen, 261(4), 515-534.

Liu, L., Ye, J. (2018) Identity-based re-encryption scheme with lightweight re-encryption
key generation. Journal of Discrete Mathematical Sciences and Cryptography,
21(1), 41-57.

Malekian, E., Zakerolhosseini, A. (2010). QTRU: A non-associative and high speed
public key cryptosystem. In Proceedings of IEEE Computer Society, 83-90.

Malekian, E., Zakerolhosseini, A., Mashatan, A. (2011). QTRU: Quaternionic version of
the NTRU public-key. The ISC International Journal of Information Security, 3(1),
29-42.

May, A. (1999). Cryptanalysis of NTRU. preprint. Erigim tarihi: 31 Agustos 2025. Erisim
adresi:
https://citeseerx.ist.psu.edu/document?repid=repl1&type=pdf&doi=d9afae316fc92
954f2¢c23bf85bc15b3c328ed2c8

Micciancio, D. (1999). Lattices in cryptography and cryptanalysis. Erisim tarihi: 31
Agustos 2025. Erisim adresi: http://cseweb.ucsd.edu/~daniele/CSE207C/

Milies, C. P., Sehgal, S. K. (2002). An introduction to group rings. Kluwer Academic
Publishers.

Miller, V. (1985). Use of elliptic curves in cryptography. In Advances in Cryptology —
CRYPTO '85 (Vol. 218, pp. 417-426). Lecture Notes in Computer Science.
Springer.

64


https://ntru.org/f/tr/tr012v2.pdf
https://ntru.org/f/tr/tr004v2.pdf
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d9afae316fc92954f2c23bf85bc15b3c328ed2c8
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d9afae316fc92954f2c23bf85bc15b3c328ed2c8
http://cseweb.ucsd.edu/~daniele/CSE207C/

Mumtaz, M., Ping, L. (2019). Forty years of attacks on the RSA cryptosystem: A brief
survey. Journal of Discrete Mathematical Sciences and Cryptography, 22(1), 9-29,
https://doi.org/10.1080/09720529.2018.1564201

Myasnikov, A., Shpilrain, V., Ushakov, A. (2011). Non-commutative cryptography and
complexity of group-theoretic problems. American Mathematical Society, 177.
https://doi.org/10.1090/surv/177

Nathani, S., Tripathi, B. P. (2017). Key exchange protocol based on quaternions.
Advances in Computational Sciences and Technology, 10(8), 2333-2343.

Nevins, M., Karimianpour, C., Miri, A. (2010). NTRU over rings beyond Z. Designs,
Codes and Cryptography, 56, 65—78.

Parvathi, P.M.S., Srinivasan, C. (2020). Matrix Lie group as an algebraic structure for
NTRU-like cryptosystem. Journal of Discrete Mathematical Sciences and
Cryptography, 23(7), 1455-1464, https://doi.org/10.1080/09720529.2020.1753302

Passman, D. S. (1977). The algebraic structure of group rings. Wiley.

Rivest, R. L., Shamir, A., Adleman, L. (1978). A method for obtaining digital signature
and public key cryptosystems. Communications of the ACM, 21, 120-126.

Satoh, T., Araki, K. (1997). On construction of signature scheme over a certain
noncommutative ring. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, E80-A(1), 40-45.

Schnorr, C. P. (1987). A hierarchy of polynomial time lattice basis reduction algorithms.
Theoretical Computer Science, 53, 201-224.

Schnorr, C. P., Euchner, M. (1994). Lattice basis reduction: Improved practical
algorithms and solving subset sum problems. Mathematical Programming, 66,
181-199.

Shor, P. W. (1997). Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM Journal on Computing, 26(5), 1484—

15009.
Shuai, L., Xu, H., Miao, L., Zhou, X. (2019). A group-based NTRU-like public-key
cryptosystem for loT. IEEE Access, 7, 75732-75740.

https://doi.org/10.1109/ACCESS.2019.2920860

Silverman, J. H. (1998). Invertibility in truncated polynomial rings. NTRU
Cryptosystems Technical Report 9. Erisim tarihi: 31 Agustos 2025. Erisim adresi:
https://ntru.org/f/tr/tr009v1.pdf

Silverman, J. H. (1999a). Almost inverses and fast NTRU key creation. NTRU
Cryptosystems Technical Report 14. Erisim tarihi: 31 Agustos 2025. Erisim adresi:
https://ntru.org/f/tr/tr014v1.pdf

Silverman, J. H. (1999b). High-speed multiplication of (truncated) polynomials. NTRU
Cryptosystems Technical Report 10. Erisim tarihi: 31 Agustos 2025. Erisim adresi:
https://ntru.org/f/tr/tr010v1.pdf

Silverman, J. H., Pipher, J., Hoffstein, J. (2008). An introduction to mathematical
cryptography, Springer, New York, NY.

Silverman, J. H. (2001). Wraps, gaps and lattice constants. NTRU Cryptosystems
Technical Report 11 — Version 2. Erigim tarihi: 31 Agustos 2025. Erisim adresi:
https://ntru.org/f/tr/tr011v2.pdf

Silverman, J. H., Whyte, W. (2003). Estimating decryption failure probabilities for
NTRUEncrypt. NTRU Cryptosystems Technical Report 18. Erisim tarihi: 31
Agustos 2025. Erisim adresi: https://www.ntru.org/f/tr/tr018v1.pdf

65


https://doi.org/10.1080/09720529.2018.1564201
https://doi.org/10.1080/09720529.2020.1753302
https://doi.org/10.1109/ACCESS.2019.2920860
https://ntru.org/f/tr/tr009v1.pdf
https://ntru.org/f/tr/tr014v1.pdf
https://ntru.org/f/tr/tr010v1.pdf
https://ntru.org/f/tr/tr011v2.pdf
https://www.ntru.org/f/tr/tr018v1.pdf

Tekin, S. (2011). NTRU Kriptosistemi, Yiiksek lisans tezi. Y1ldiz Teknik Universitesi Fen
Bilimleri Enstitiisii, Istanbul, Tiirkiye.

Vats, N. (2008). Algebraic cryptanalysis of CTRU cryptosystem. In X. Hu & J. Wang
(Eds.), Computing and combinatorics: COCOON 2008 (Lecture Notes in Computer
Science, Vol. 5092, pp. 235-244). Springer. https://doi.org/10.1007/978-3-540-
69733-6_24

Vats, N. (2009). NNRU: A non-commutative analogue of NTRU. arXiv preprint,
arXiv:0902.1891v1.

Voronoi, G. (1908a) Nouvelles applications des paramétres continus a la théorie des
formes quadratiques. Deuxieme mémoire. Recherches sur les parallélloedres
primitifs. Journal fiir die Reine und Angewandte Mathematik (Crelles Journal),
1908(134), 198-287. https://doi.org/10.1515/crll.1908.134.198

Voronoi, G. (1908b) Nouvelles applications des paramétres continus a la théorie des
formes quadratiques. Premier mémoire. Sur quelques propriétés des formes
quadratiques positives parfaites. Journal fiir die Reine und Angewandte Mathematik
(Crelles Journal), 1908(133), 97-102. https://doi.org/10.1515/crl11.1908.133.97

66


https://doi.org/10.1007/978-3-540-69733-6_24
https://doi.org/10.1007/978-3-540-69733-6_24
https://doi.org/10.1515/crll.1908.134.198
https://doi.org/10.1515/crll.1908.133.97

Kisisel Bilgiler
Adi1 Soyadi

Egitim Bilgileri
Lisans
Universite
Fakiilte

Boliim
Mezuniyet Y1ili

0Z GECMIS

Gtilbahar CAL

Van Yiiziincii Y1l Universitesi
Fen Fakiiltesi

Matematik Bolimi

2023






VAN YUZUNCU YIL UNIiVERSITESI
FEN BIiLIMLERI ENSTITUSU
LISANSUSTU TEZ ORIiJINALLIK RAPORU

Tarih 09/09/2025
Tez Basligi: NTRU Benzeri Bazi Kriptosistemler ve Karsilastirilmasi

Yukarida baslig1 belirtilen tez calismamin, kapak sayfasi, giris, ana boliimler ve sonug
boliimlerinden olusan toplam 53 (elliii¢) sayfalik kismina iligskin, 09/09/2025 tarihinde
sahsim tarafindan Turnitin adli intihal tespit programindan asagida belirtilen

filtrelemeler uygulanarak alinmis olan orijinallik raporuna gore tezimin benzerlik orani
%8 (sekiz)’dir.

Uygulanan filtreler agsagida verilmistir:

- Kabul ve onay sayfasi haric,

- Tesekkiir harig,

- Icindekiler haric,

- Simge ve kisaltmalar harig,

- Gereg ve yontemler harig,

- Kaynakga harig,

- Alintilar haricg,

- Tezden ¢ikan yaymlar harig,

- 7 kelimeden daha az ortiisme igeren metin kisimlar1 hari¢ (Limit match size to 7 words)

Van Yiiziincii Y1l Universitesi Lisansiistii Tez Orijinallik Raporu Alinmasi ve
Kullanilmasina Iliskin Yénergeyi inceledim ve bu yonergede belirtilen azami benzerlik
oranlarina gore tez ¢aligmamin herhangi bir intihal icermedigini; aksinin tespit
edilecegi muhtemel durumda dogabilecek her tiirlii hukuki sorumlulugu kabul ettigimi
ve yukarida vermis oldugum bilgilerin dogru oldugunu beyan ederim.

Geregini bilgilerinize arz ederim.
09.09.2025

Ad1 Soyadt: Giilbahar CAL

Ogrenci No: 23910024003

Anabilim Dali: Matematik

Programi: Matematik

Statiisii: (X) Yiiksek Lisans ( ) Doktora

DANISMAN ENSTITU ONAYI
UYGUNDUR UYGUNDUR




