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ABSTRACT 

ASSESSING THE MID-TERM WEATHER FORECASTS IN HYDROLOGICAL 

MODELLING 

 

Abdishakur Dahir ABDULLAHI 

Department of Civil Engineering 

Programme in Hydraulic Engineering 

Eskişehir Technical University, Institute of Graduate Programs, July 2025 

Supervisor: Assoc. Prof. Dr. Ali Arda ŞORMAN 

Accurate hydrological forecasting is critical for water resource management, flood 

prediction, hydropower generation, and risk assessment and mitigation but is 

fundamentally challenged by uncertainties arising from meteorological forcing, model 

structure, and initial conditions. This study provides an evaluation of medium range 

weather forecasting in hydrological modelling from European Centre for Medium-Range 

Weather Forecasts (ECMWF) to reduce these uncertainties for two mountainous basins. 

Using twenty hydrological models within the HydrOlOgical Prediction LAboratory 

(HOOPLA) framework, this research systematically compares four forecasting 

configurations: Open-Loop (OL) and Data Assimilated (DA) for both deterministic and 

ensemble forecasts. The Ensemble Kalman Filter (EnKF) was used for data assimilation, 

and multi-model (MM) combinations were generated using a Simple Averaging Method 

(SAM). Performance, assessed by the Kling-Gupta Efficiency (KGE), revealed a clear 

hierarchy. Ensemble forecasts consistently outperformed deterministic ones, and DA 

significantly enhanced forecast skill over OL simulations by correcting initial model 

states. The study demonstrates that an integrated approach combining all techniques 

yields the most reliable results. The DA multi-model ensemble proved superior, 

effectively mitigating multiple uncertainty sources and maintaining high accuracy across 

the 10-day forecast horizon. These findings offer a robust, evidence-based framework for 

improving operational hydrological forecasting systems. 

Keywords: Medium range, Uncertainty, Ensemble forecasting, Data assimilation, 

Multi-model. 
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ÖZET 

HİDROLOJİK MODELLEMEDE ORTA VADELİ HAVA TAHMİNLERİNİN 

DEĞERLENDİRİLMESİ 

 

Abdishakur Dahir ABDULLAHI 

İnşaat Mühendisliği Anabilim Dalı 

Hidrolik Mühendisliği Bilim Dalı 

Eskişehir Teknik Üniversitesi, Lisansüstü Eğitim Enstitüsü, Temmuz 2025 

Danışman: Doç. Dr. Ali Arda ŞORMAN 

Doğru hidrolojik tahminleme, su kaynaklarının yönetimi, taşkın erken uyarı 

sistemleri ve hidroelektrik enerji üretimi açısından kritik bir öneme sahiptir. Ancak, 

meteorolojik girdileri, model yapısı ve başlangıç koşullarının belirsizlikleri nedeniyle bu 

tahminlerin güvenilirliği çoğu zaman sınırlı kalmaktadır. Bu çalışmada, dağlık iki 

havzada, belirsizlikleri azaltmayı hedefleyen bir yaklaşım sunulmuştur. Avrupa Orta 

Vadeli Hava Tahminleri Merkezi (ECMWF) tarafından sağlanan orta vadeli meteorolojik 

tahminlerin, hidrolojik modelleme süreçlerindeki etkisi değerlendirilmiştir. HydrOlOgic 

Prediction LAboratory (HOOPLA) arayüzü kullanılarak yirmi farklı hidrolojik model ile 

dört farklı tahmin yapılandırması sistematik biçimde karşılaştırılmıştır: Open-Loop (OL) 

ve Veri Asimilasyonu (DA) yaklaşımları altında oluşturulan deterministik ve ensemble 

tahminler. Veri asimilasyonu için Ensemble Kalman Filtresi (EnKF) kullanılırken, çoklu 

model (multi-model) kombinasyonlar Basit Ortalama Yöntemi (Simple Average Method, 

SAM) ile oluşturulmuştur. Kling-Gupta Efficiency (KGE) ile yapılan performans 

değerlendirmesi, yöntemler arasında belirgin bir başarı hiyerarşisi ortaya koymuştur. 

Ensemble tahminler, deterministik tahminlere kıyasla tutarlı bir şekilde daha yüksek 

performans sergilemiş; veri asimilasyonu ise başlangıç koşullarını iyileştirerek OL 

tahminlerine göre önemli ölçüde daha başarılı sonuçlar vermiştir. Çalışma, veri 

asimilasyonu ile çok modelli ensemble yaklaşımının bir arada kullanıldığı bütünleşik bir 

yöntemin, 10 günlük tahmin ufku boyunca en yüksek doğruluğu sağladığını ve çoklu 

belirsizlik kaynaklarını etkili biçimde azaltabildiğini göstermektedir. Bu bulgular, 

operasyonel hidrolojik tahmin sistemlerinin doğruluğunu ve güvenilirliğini artırmak için 

sağlam bir çerçeve sunmaktadır. 

Anahtar Sözcükler: Orta vadeli tahminleri, Ensemble tahminleri, Belirsizlik, Veri 

asimilasyonu, Çoklu model. 
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1. INTRODUCTION 

1.1. Background 

Hydrological forecasting is a vital tool for effective management of water 

resources, flood prediction, hydropower generation, and risk assessment and mitigation 

(Dion et al., 2021). Accurate and reliable forecasts are essential for informed decision 

making in these areas, impacting everything from daily operations to long-term planning. 

However, hydrological modelling and forecasting are inherently uncertain. This 

uncertainty stems from various sources including uncertainties in input data, 

meteorological forcing, model parameters and structure, initial conditions and forecasting 

(A. Gupta and Govindaraju, 2023; Liu and Gupta, 2007; Montanari, 2007; Panchanathan 

et al., 2024; Thiboult et al., 2016). 

These uncertainties pose significant challenges, potentially leading to flawed 

decision making in water allocation, risk assessment, emergency planning, and climate 

change adaptation strategies. Inaccurate forecasts can result in infrastructure deficiencies, 

ecosystem disruptions, and substantial economic losses across various sectors 

(Panchanathan et al., 2024). Therefore, understanding, quantifying, and mitigating 

uncertainty is paramount in hydrological modeling to ensure the reliability and practical 

value of forecasts. 

Traditionally, discharge forecasts have often relied on deterministic methods, which 

provide a single, most likely prediction without accounting for inherent uncertainties. 

However, probabilistic forecasts offer a range of possible outcomes with associated 

probabilities, explicitly acknowledging and quantifying uncertainty. This capability has 

led to a shift in focus over the last decade toward probabilistic approaches as they are 

better equipped to capture the full spectrum of potential outcomes (Krzysztofowicz, 2001; 

Velázquez et al., 2011). 

Several strategies have been employed to address these uncertainties and improve 

forecast accuracy. Ensemble Prediction Systems (EPS) play a crucial role in reducing 

uncertainties associated with meteorological input data. EPS generates multiple forecasts 

using slightly perturbed initial conditions in Numerical Weather Prediction (NWP) 

models, thus providing a probabilistic representation of potential future weather 

scenarios. This is particularly valuable in hydrology, as precipitation and temperature are 

critical drivers of discharge (Anctil and Ramos, 2019; Cloke and Pappenberger, 2009; 

Leutbecher and Palmer, 2008; Shu et al., 2023). Another approach to minimize 
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uncertainties arising from the model structure is the use of multi-model (MM) 

hydrological ensembles. Instead of relying on a single model, this approach combines 

predictions from multiple hydrological models, each with its own structure and 

parametrization, to provide a more robust and reliable forecast (Thiboult et al., 2016; 

Velázquez et al., 2011; Wang et al., 2021). Furthermore, data assimilation (DA) 

techniques are employed to address uncertainties in the initial conditions of the input 

data. By incorporating observational data, such as streamflow measurements, 

precipitation, and temperature, into the model, these techniques refine the initial state of 

the model and reduce the uncertainty associated with the starting conditions. 

Despite these advancements, the application of these uncertainty reduction 

techniques, particularly the combination of EPS, MM ensembles, and DA, has been 

limited in the Turkish basins. This study aims to address this challenge by developing an 

integrated framework that combines probabilistic forecasting, MM, and DA techniques 

to improve the reliability and skill of discharge forecasts in two mountainous basins. By 

improving the accuracy and reliability of forecasts in these basins, this study seeks to 

contribute to more effective water resource management and hydropower generation in 

Turkiye. Specifically, this research will investigate the following research questions: (1) 

How does the use of MM ensemble approach, compare to a single-model approach, 

impact the accuracy and reliability of discharge forecasts? (2) What is the added value of 

incorporating DA techniques to improve the representation of the initial conditions and 

reduce forecast uncertainty? (3) How does the combined use of EPS, MM ensembles, 

and DA contribute to a more comprehensive understanding of the forecast uncertainty in 

the study basins? 

 

1.2. Problem Statement 

Accurate weather forecasting is crucial for effective hydrological modeling, 

particularly in regions or basins prone to extreme weather events. The reliability and skill 

of these forecasts are significantly affected by uncertainties arising from various sources, 

including model structure, initial conditions, and the forecasts themselves. Addressing 

these uncertainties requires the integration of EPS input data, MM approach for model 

structures, and DA techniques for initial conditions. The use of MM, DA, and EPS have 

shown good performance in recent studies, but are not commonly studied in Turkish 

Basins. 
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Hydrological forecasting in Turkish basins face significant challenges owing to 

their topography, climate variability, and limited application of advanced uncertainty 

reduction techniques. Although EPS, MM ensembles, and DA have shown promise in 

improving forecast accuracy elsewhere, their combined application has not been 

thoroughly investigated in the Turkish context. Specifically, studies that systematically 

evaluate the performance of multiple hydrological models driven by EPS data and further 

refined through DA in these basins are lacking. This study addresses this critical need by 

developing and evaluating an integrated framework that leverages the strengths of EPS, 

MM ensembles, and DA to improve the accuracy and reliability of discharge forecasts. 

 

1.3. Objectives 

The primary objective of this study was to evaluate the efficacy of mid-term 

weather forecasts in hydrological modelling using EPS, multi-hydrological models, and 

DA techniques. The aim of integrating these methods is to enhance the accuracy and 

reliability of hydrological predictions and to reduce uncertainty. 

 

The specific aims of this study were as follows: 

1. To evaluate the performance of medium-range European Center for Medium- 

Range Weather Forecasts (ECMWF) EPS forecasts in 20 lumped hydrological 

models in the two mountainous basins. 

2. To assess the impact of ensemble forecast on the forecast performance comparing 

with deterministic forecasts of the basins. 

3. To implement and evaluate the impact of the Ensemble Kalman Filter (EnKF) DA 

technique on the accuracy of discharge forecasts by comparing open-loop and DA 

forecasts. 

4. To quantify the reduction in uncertainty achieved using a MM ensemble 

compared with a single-model approach for discharge forecasts in the study 

basins. 

 

1.4. Thesis Organization 

This thesis is structured into five chapters to present the assessing of mid-term 

weather forecasting in hydrological modelling on reducing uncertainty. Chapter 

1 introduces the study, providing the essential background and context for the research 
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problem. Chapter 2 presents a literature review on uncertainty in hydrological 

forecasting. This chapter examines studies and practical applications of key uncertainty 

reduction techniques, including EPS, DA, and MM approaches, establishing s foundation 

for this work. Chapter 3 details the methodology and materials employed. It describes 

Çukurkışla and Kayabaşı study areas, the meteorological and hydrological data used, and 

ECMWF mid-term deterministic and ensemble data. The chapter explains the use of the 

HOOPLA toolbox for calibrating twenty hydrological models using the Shuffled 

Complex Evolution algorithm, and it also shows open-loop and DA forecast and MM 

approach. Chapter 4 presents the calibration, validation and forecast results. In addition, 

it clearly details the open-loop and data assimilated forecast in deterministic, ensemble, 

MM. Chapter 5 concludes this study’s findings. It also addresses the limitations of the 

research and provides recommendations for future work in this field. 
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2. LITERATURE REVIEW 

2.1. Sources of Uncertainty in Hydrological Modelling 

Hydrological modelling and forecasting uncertainty refer to the lack of precision or 

confidence in the prediction of hydrological processes such as discharge, snow, and soil 

moisture. Uncertainty rises from multiple sources, such as the model's structure, 

parameter estimation, input data quality, initial condition, and the intrinsic variability of 

natural systems (Montanari, 2007; Panchanathan et al., 2024). Uncertainties in 

hydrological modelling and forecasting can be summarized as measurement, input, 

structural, parameter, and forecast uncertainties (A. Gupta and Govindaraju, 2023; 

Panchanathan et al., 2024). Measurement uncertainty relates to errors in precipitation, 

temperature, evapotranspiration, or streamflow from the measurement process (McMillan 

et al., 2018). Input uncertainty relates to errors in data manipulation, such as interpolation 

and scaling. Structural uncertainty relates to errors that emerge from the formation and 

processing of hydrological models. The uncertainty rates differ for each hydrological 

model. Parameter uncertainties arise from the inadequacy of the model's parameterization 

to fully represent the hydrological process, often leading to equifinality (Panchanathan et 

al., 2024). 

Accurate and timely flood forecasting is crucial for mitigating flood risks and 

facilitating effective disaster management (Panchanathan et al., 2024; Verkade and 

Werner, 2011). Traditional flood forecasting systems often rely on a single NWP model 

and hydrological model. However, both NWPs and hydrological models are subject to 

various sources of uncertainty (Ajami et al., 2006; Cloke and Pappenberger, 2009). Such 

uncertainties can affect the accuracy and reliability of flood forecasts. To address these 

limitations, researchers have explored ensemble forecasting approaches, MM approaches, 

and DA. 

Thiboult et al. (2016) investigated three sources of uncertainty in hydrological 

forecasting: hydrological model error, initial conditions, and meteorological forcing 

uncertainties. Their study evaluated the effectiveness of using tools such as the EnKF, 

MM approaches, and the Meteorological Ensemble Prediction System (MEPS) to 

improve forecast accuracy and reliability. They observed that it enhances hydrological 

forecast reliability and accuracy by addressing various aspects of uncertainty. 

Expanding on the theme of enhancing forecast reliability, Llauca et al. (2023) 

explored how DA techniques to evaluate the performance and usage of discharge less 

https://en.wikipedia.org/?curid=63778
https://en.wikipedia.org/?curid=17673401
https://en.wikipedia.org/?curid=17673401
https://en.wikipedia.org/?curid=63778
https://en.wikipedia.org/?curid=9553738
https://en.wikipedia.org/?curid=41651
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than daily time steps using EnKF and Particle Filter (PF) algorithms. They used the 

GR4H model with 100 ensemble members. They observed that the use of DA provides 

more accurate and reliable streamflow predictions. 

 

2.2. Ensemble Prediction Systems (EPS) 

Ensemble Prediction Systems (EPS) have emerged as a powerful tool for 

quantifying uncertainty in weather forecasts and improving flood predictions (Cloke and 

Pappenberger, 2009; Wu et al., 2020). The EPS generates multiple forecasts by perturbing 

the initial conditions of an NWP model, providing a range of possible future weather 

scenarios. 

NWP employs mathematical methods to forecast weather by numerically solving 

the fundamental equations governing atmospheric dynamics. At its core, NWP is built 

upon physical laws, such as the conservation of mass, momentum, and energy, to simulate 

atmospheric processes. Since its first operational implementation in the mid-20th century, 

NWP has become a cornerstone of modern meteorology (Bauer et al., 2015; Pu and 

Kalnay, 2018). The conceptual origins of NWP can be traced back to Vilhelm Bjerknes 

in 1904, who postulated that weather forecasting could be grounded in physics, provided 

that the initial conditions and physical laws were known. However, these ideas could only 

be practically implemented after the advent of digital computers. In 1950, the first 

successful NWP forecast was produced using the Electronic Numerical Integrator and 

Computer (ENIAC) by Jule Charney and his colleagues. Since then, NWP models have 

progressed from simplistic two-dimensional barotropic models to complex three- 

dimensional models that can simulate a wide range of atmospheric processes (Lynch, 

2008). The accuracy of NWP has improved notably over the past decades for different 

hydrological variables, such as precipitation (Bélair et al., 2009), temperature (Mathiesen 

and Kleissl, 2011), and soil moisture (Dillon et al., 2016). 

Velázquez et al. (2011) demonstrated that combining multiple hydrological model 

structures with meteorological ensembles yields more accurate and reliable predictions. 

Their findings indicate this approach outperforms predictions from a single hydrological 

model with meteorological ensemble predictions or multiple hydrological models with a 

deterministic meteorological forecast. These findings are supported by Brochero et al. 

(2011) who demonstrated that ensemble predictions derived from a combination of 

various hydrological model structures and meteorological ensembles outperform those 
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generated by a single model or deterministic forecasts. The integration of diverse models 

allows for a wide representation of hydrological processes. 

In addition, the use of probabilistic weather forecasts is another critical aspect of 

the EPS. Matus et al. (2020) noted that EPS can extend lead times and better quantify 

predictability, making them particularly appealing for flood forecasting. This is further 

supported by Gelfan et al. (2015), who discussed the shift from deterministic 

methodologies to ensemble-based approaches, aimed to improve the reliability and 

accuracy of forecasts. 

ECMWF EPS is a critical tool in meteorological forecasting, particularly in 

hydrology. One of the primary strengths of the ECMWF EPS is its ability to provide 

probabilistic forecasts that account for uncertainties in weather predictions. Palmer 

(2019) emphasized that the ECMWF EPS has evolved over more than 25 years, 

significantly enhancing its probabilistic forecasting capabilities from single deterministic 

forecasting through improved model physics and parameterizations. This evolution has 

been crucial for hydrological applications, where understanding the range of possible 

outcomes is essential for effective water resource management and flood forecasting. 

(Roulin and Vannitsem (2015) investigated the impact of errors in forcing, initial 

conditions, and model structure on hydrological forecasts and demonstrated that 

integrating ECMWF precipitation forecasts into hydrological models significantly 

improved forecast reliability. Moreover, the ECMWF has made progress in integrating 

high-resolution data into forecasting systems. The introduction of the Integrated 

Forecasting System (IFS) has allowed for improved vertical and horizontal resolutions, 

which are crucial for accurately capturing the dynamics of weather systems. The 

operational ensemble forecasts now utilize a horizontal grid spacing of approximately 18 

km and 137 vertical levels with 50 perturbed members of 15 days range lead time, which 

is a significant improvement over the previous configurations (Lang et al., 2021). 

 

2.3. Multi-model Approach in Hydrological Modelling 

Multi-model (MM) approach involves the integration of more than one model, 

either in parallel or sequentially, to improve the performance of the streamflow. Although 

there are many hydrological models, no model outperforms the others (Shamseldin et al., 

1997) and each has its own structural and parameter uncertainty (Panchanathan et al., 

2024). By combining the outputs of hydrological models with different structural, it is 
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possible to increase their strengths and mitigate their individual weaknesses, which is 

leading to an improved overall forecast accuracy and reduced uncertainty (Thiboult and 

Anctil, 2015). 

Different models employ varied structures, including lumped and distributed 

representations, and diverging parameterizations for critical hydrological processes like 

evapotranspiration and infiltration. This structural diversity allows MM approaches to 

encompass the complexity and uncertainty inherent in hydrological systems, thereby 

mitigating overconfidence that may arise from reliance on outcomes from a single model. 

According to Yu et al. (2018), MM ensembles help mitigate the impact of outliers or 

underperforming models by combining diverse approaches, which leads to more stable 

and reliable hydrological forecasts. 

MM combination methods (MMCMs) are utilized to improve the accuracy of 

hydrological outputs in simulation or forecasting (Todorović et al., 2024). Different 

methods such as SAM, WAM, MM SuperEnsemble (MSE), Modified MM 

SuperEnsemble (MMSE), Bayesian Model Averaging (BMA), Artificial Neural Network 

(ANN), Best Model selection, and Cascading are utilized for a multiple hydrological 

models’ combination (Ajami et al., 2006; Andraos, 2024; Chevuturi et al., 2023; 

Todorović et al., 2024). 

Shamseldin et al. (1997) first investigated MM approach on hydrological 

modelling using Simple Average Method (SAM), Weighted Average Method (WAM), 

and Neutral Network Methods (NNM) of MM combinations over 11 catchments and they 

have seen that MM outperformed any of the single-model simulations. Perrin et al. (2001) 

conducted a comparative assessment of 19 lumped hydrological models across 429 

catchments in various climates, including France, the U.S., Australia, Brazil, and the 

Ivory Coast. Their study examined the relationship between model complexity, defined 

by the number of optimized parameters, and predictive performance. They found that the 

complex models performed well in calibration but lacked stability in verification, 

indicating over parameterization. They also found that combining different model 

structures could lead to better overall performance compared to using individual models. 

Ajami et al. (2006) observed that MM simulations obtained from uncalibrated 

single-model simulations generally outperformed even the best-calibrated individual 

model simulations, and more sophisticated MM combination techniques incorporating 
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bias correction worked better than simple MM averages or combinations without bias 

correction. 

Besides that, Velázquez et al. (2011) investigated if the MM approach reduces the 

uncertainty in the hydrological ensemble forecasting. They integrated 16 lumped 

hydrological models with deterministic and probabilistic forecasting meteorological input 

data. They observed that the combined ensemble prediction from different hydrological 

models and meteorological ensembles outperformed single hydrological models. 

Thiboult and Anctil (2015) investigated on comparing the performance of a MM 

approach, containing 20 lumped hydrological models, on a deterministic and probabilistic 

forecasting in Quebec. They showed that the MM ensembles with probabilistic 

forecasting outperforms the single models with deterministic and probabilistic 

forecasting. 

Dion et al. (2021) investigated the use of a MM framework for hydrological 

ensemble forecasting to improve streamflow predictions. Their study incorporated eight 

lumped hydrological models, with initial states updated through EnKF DA, and forecasts 

driven by ECMWF NWP over five snowmelt-dominated catchments in Quebec, Canada. 

The study highlighted that a MM strategy provides a better representation of uncertainty 

than a single model approach and enhances forecast reliability by reducing biases and 

addressing under-dispersion issues. 

Nikhil Teja et al. (2023) examined improving the flood forecasts using multiple 

numerical weather Predictions ensemble; ECMWF and National Centers for 

Environmental Prediction with 51 and 31 ensemble members, and multiple hydrological 

models; GR4J, HBV, SIMHYD, and HEC-HMS. They observed that addressing 

uncertainties is more crucial than the input data uncertainty and using multiple 

hydrological models produces more reliable forecasts than using a single model. 

Supporting this, Chevuturi et al. (2023) found that weighted blending of MM hydrological 

simulations, especially when combined with bias-correction, improved performance over 

individual models for evapotranspiration, soil moisture, and streamflow variables. 

Todorović et al. (2024) investigated the effect of 10 different MM combination 

methods using 29 lumped hydrological models from Modular Assessment of Rainfall- 

Runoff Models Toolbox (MARRMoT) for hydrological modeling. They found that MM 

combination methods generally improved model efficiency, especially for runoff 

dynamics and high flows, with the Granger-Ramanathan (Diks and Vrugt, 2010) 
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performed best. However, MMCMs struggled to reproduce hydrological signature 

distributions accurately, often underestimating peak flows and overestimating low flows, 

highlighting a persistent challenge in hydrological modeling. Similarly, (Wan et al., 2021) 

found that Granger-Ramanathan method outperformed the other methods and the MM 

combination is less efficient in terms of low-flow simulations. In contrast, Andraos (2024) 

found that MM approaches, especially those using artificial neural networks, can 

substantially improve low flow forecasting accuracy. These fusion techniques outperform 

individual models by leveraging the strengths of each, which is especially beneficial 

during hydrologically challenging periods like droughts. 

Thébault et al. (2024) employed a MM approach within a variable spatial 

framework to simulate streamflow, using 13 hydrological model structures, three 

objective functions, and two spatial frameworks (lumped and semi-distributed) across 

121 catchments in France. Their findings show that the mixed MM approach outperforms 

single models and provides higher performance scores. MM approach reduced the spread 

in performance, indicating lower uncertainty compared to individual model. 

 

2.4. Data Assimilation in Hydrological Modelling 

Data assimilation (DA) involves improving the accuracy of hydrological models by 

combining model predictions with real-time observations such as precipitation, 

temperature, and streamflow, with different initial states. It provides a framework for 

integrating various sources of data, such as streamflow measurements, satellite data, and 

meteorological observations, into the model to reduce uncertainties and improve forecast 

accuracy. DA in MM approach helps to reduce uncertainties by reducing the errors in the 

initial states (DeChant and Moradkhani, 2014; Panchanathan et al., 2024). In the context 

of streamflow forecasting, DA seeks to enhance predictions by integrating errors between 

forecasting models and discharge measurements through the updating of model states 

(Llauca et al., 2023). Proper use of DA may help in handling uncertainties from model 

inputs, initialization and propagation of states, model structures, and even model 

parameters (Sun et al., 2016). DA reduces uncertainty by incorporating real-time 

observations, updates model states for better initial conditions, and corrects for input, 

structural, and parameter -related errors. Together, these improvements lead to more 

reliable streamflow predictions, particularly in short-term forecasting (Avellaneda et al., 

2020). 



11  

The application of streamflow DA typically involves three main steps: designing 

the DA experiment by selecting variables to be perturbed and assimilated, such as rainfall 

and real-time streamflow measurements; and quantifying model errors, as uncertainties 

in rainfall, model states, and discharge can significantly impact results. Finally, the 

chosen DA algorithm is applied to an Open Loop hydrological model, with methods like 

the EnKF and PF commonly used for probabilistic hydrologic predictions and operational 

flood forecasting (Avellaneda et al., 2020; Llauca et al., 2023). Many different DA 

methods are used in hydrological models such as Kalman Filter, EnKF, PF, Four- 

Dimensional Variational Assimilation (DeChant and Moradkhani, 2014; Llauca et al., 

2023; Pu and Kalnay, 2018; Sun et al., 2016). 

Thiboult et al. (2016) investigated three probabilistic tools for reducing uncertainty 

in hydrometeorological forecasting: an MM approach, EnKF, and meteorological 

ensemble forcing. Each tool addressed a specific aspect of uncertainty: the MM approach 

quantifies and reduces hydrological model error, the EnKF deciphers initial condition 

uncertainty, and the meteorological ensemble accounts for forcing uncertainty. They also 

showed that EnKF performed better for the first lead days to reduce uncertainty. 

Dion et al. (2021) found that DA using EnKF improved the ensemble streamflow 

predictions by reducing bias, enhancing spread, and increasing forecast accuracy 

compared to open-loop simulations, particularly in the short term (up to 2-3 days). 

However, it was not fully effective in correcting systematic biases for all seasons and 

under-dispersion remained an issue, especially during the spring freshet period. 

Llauca et al. (2023) evaluated the application of streamflow DA techniques, 

specifically the EnKF and PF, in a lumped hydrological model for flood forecasting in 

the data-sparse Vilcanota River Basin in Peru. It's worth noting that both EnKF and PF 

improved streamflow predictions compared to the Open Loop (OL) simulations, with 

EnKF showing a slight edge in performance. 

Supporting that, Sabzipour et al. (2023) examined the application of the EnKF DA 

technique to improve short-term streamflow forecasting on the Lac-Saint-Jean catchment 

in Canada. They conducted a sensitivity analysis to evaluate the effects of EnKF 

hyperparameters (temperature, precipitation, and inflow uncertainties) and the updating 

of three state variables (vadose zone, saturated zone, and snowpack) on short-term 

forecast skill. They found that forecast performance is sensitive to individual 

hyperparameters, particularly temperature uncertainty, which varies between seasons. 
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Additionally, the choice of state variables to update also impacts forecast skill depending 

on the season. The vadose zone state variable was found to be the most important and 

sensitive. 

 

2.5. Hydrological Forecasting in Turkiye 

There are studies that focus on hydrological forecasting on short-term, mid-term 

and seasonal forecasting. But the studies focusing on quantifying and reducing the 

uncertainties of hydrological forecasting in Turkiye are limited. Şorman et al. (2009) 

investigated how incorporating satellite-derived snow-covered area (SCA) data from 

Moderate Resolution Imaging Spectroradiometer (MODIS) into a hydrological model 

calibration improves snowmelt runoff simulation in a headwater basin of the Euphrates 

River in eastern Turkey. They applied the HBV model and integrated NWP data from the 

Mesoscale Model 5 (MM5) with a 1-day lead time to forecast short-term runoff, which 

provided promising results for operational flood mitigation and reservoir management. 

Yucel et al. (2015) investigated the use of the Weather Research and Forecasting 

(WRF) hydrometeorological modeling system to simulate major flood events in the 

western Black Sea Region of Turkiye, using precipitation inputs from the WRF model 

with and without DA, as well as satellite rainfall estimates. The WRF-Hydro model was 

calibrated using a stepwise approach in one sub-basin and the calibrated parameters were 

then transferred to neighboring ungauged basins to assess transferability. The results 

showed that the WRF-Hydro system, when properly configured and calibrated, was able 

to reasonably simulate major flood events, with assimilated precipitation input and model 

calibration providing the best performance in terms of error reduction and improved 

hydrograph characteristics. Their study had limited calibration data with one sub-basin 

only using two events and two stream gauge stations due to limited streamflow data 

availability across events. 

Ertas et al. (2016) employed the HBV hydrological model to simulate daily 

discharge in the Karasu Basin, a sub-region of the Upper Euphrates Basin in Turkiye. 

Their results indicated good model performance, with Nash-Sutcliffe efficiency values of 

0.85 for calibration (2001-2008) and 0.71 for validation (2009-2014). However, their 

analysis also revealed a significant increase in forecast uncertainty over time, as seen in 

the root mean square error (RMSE) values, which ranged from 12 m³/s on the first forecast 
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day to 43 m³/s by the ninth day. While HBV performed well for short-term forecasts, its 

accuracy declined at longer lead times due to rising meteorological uncertainty. 

Uysal et al. (2021) studied short-term (1-2 day) hydrological forecast system in 

snow-dominated mountainous basins, specifically the headwaters of the Euphrates and 

Seyhan Basins in Turkiye. They employed the HBV model for simulating the 

precipitation-runoff relationship, utilizing NWP data from MM5 and WRF models. The 

study showed that WRF-based forecasts generally performed better than MM5-based 

forecasts, with the 2015 water year predictions showing particularly high performance in 

both study basins, suggesting potential for improved water resource management and 

economic benefits. 

Doǧan et al. (2023) investigated how incorporating snow cover data from satellite 

products, MODIS and Interactive Multi-sensor Snow and Ice Mapping System (IMS), 

into hydrological models reduces parameter uncertainty and improves runoff forecasting, 

especially in snow-dominated basins like the Upper Coruh River Basin in Turkiye. They 

applied HBV model, calibrated through multi-criteria approaches using runoff and snow 

cover data, significantly enhancing the reliability of the predictions. Their study also 

integrated NWP data from the WRF model with a 2-days lead time to forecast short-term 

runoff, providing critical insights for reservoir management during snowmelt periods. 



14  

3. MATERIALS AND METHODS 

3.1. Study Area 

This study investigated two distinct basins, Upper Seyhan and Upper Aras, 

selected to represent regional diversity. The specific study sites correspond to the outlets 

monitored by Çukurkışla (Upper Seyhan) and Kayabaşı (Upper Aras) discharge stations 

and are henceforth referred to by these station names. Detailed descriptions of these 

basins are provided in the following sections. Notably, these basins have also been studied 

in recent such as studies by Eylen (2024) and Traore (2024). 

 

3.1.1. Upper Seyhan (Çukurkışla) 

The Seyhan River Basin locates in southern Turkiye, in the provinces of Adana, 

Nigde, and Kayseri. The Seyhan Basin, one of the twenty five basins in Turkiye, is located 

between 36º 30’’ and 39º 15’’ 0 N and 34º 45’’ – 37º 00’’E. The basin encompasses the 

catchment areas of the Seyhan River and its tributaries, the Göksu and Zamantı Rivers. 

Covering an area of 22,042 km², which constitutes 2.82% of Turkiye's total surface area, 

the Seyhan Basin is bordered by Ceyhan to the east, Konya and Berdan to the west, the 

Develi Basin and Kulmac Mountains to the north, and the Mediterranean Sea to the south. 

The location and topographic elevation of the basin are illustrated in Figure 3.1. 

 

Figure 3.1. Çukurkışla study area map 
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Çukurkışla sub-basin is situated in the upper region of the Göksu River, with 

drainage area of 1522.4 km2, which constitutes approximately 6.90% of the total basin 

area. The catchment’s outlet station (E18A024) is operated by State Hydraulic Works 

(DSİ). The elevation within Çukurkışla Basin ranges from 1313 to 2954 meters above sea 

level. 

 

Figure 3.2. Çukurkışla zone map 

 

The basin elevation was divided into five zones with equal areas, as shown in Figure 

3.2. This shows that more than half of the basin elevation is between 1313 and 1650 m. 

In addition, 90% of the basin elevation is below 2000 m. Less than 20% of the basin 

elevation was in zone 5. Figure 3.3 shows the hypsometric curve distribution of the basin 

elevation, illustrating the relationship between relative elevation and cumulative area. The 

curve is steep in upper elevation, with less than 10% is above 2000 meters elevation. The 

elevation decreases gradually at higher area percentages, showing uniform mid-lower 

terrain distribution. Most of the basin elevations are flat. The median elevation of the 

basin is 1650 m, which is higher than around 300 meters from the lowest elevation. The 

basin relief, the difference between the maximum and minimum elevations, is 1641 

meters. 
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Figure 3.3. Hypsometric curve of Çukurkışla Basin 

 

Figure 3.4. Slope map of Çukurkışla Basin 

 

The slope of the basin was categorized as gentle, moderate, steep, very steep, or 

extreme as shown in Figure 3.4. Approximately 50% of the basin slope is less than 20% 

slope, in gentle and moderate slope. The mean slope of the basin is 22%. 
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3.1.2. Upper Aras (Kayabaşı) 

The Aras Basin, one of Turkiye’s 25 hydrological basins, is in northeastern Turkiye. 

From its source in the Bingöl Mountains, the Aras River flows through northeastern 

Turkiye, delineates part of the Turkish Armenian border, and continues into Iran and 

Azerbaijan to meet the Kura River before reaching the Caspian Sea. This basin 

encompasses portions of the provinces of Ağrı, Ardahan, Erzurum, Iğdır, and Kars, with 

a 27,548 km2 drainage area inside Turkiye. 

Kayabaşı is a sub-basin within the Aras Basin, situated in the upper part and 

spanning the provinces of Erzurum and Kars. The sub-basin is located between 39° 52' - 

39° 18' north latitude and 41° 10' - 41° 55' east longitude. The State Hydraulic Works 

(DSİ) operates Kayabaşı Streamflow Station (D24A096) to monitor hydrological 

parameters. Figure 3.5 shows the location and the topographical elevation of the basin. 

 

Figure 3.5. Kayabaşı Basin Map 

 

Kayabaşı sub-basin covers a drainage area of approximately 2727 km², with 

elevations ranging between 1679 and 3155 m and an average elevation of 2220 m. Figure 

3.6 shows Kayabaşı Basin elevation categorized into five zones to effectively illustrate 

the elevation diversity within the area. The spatial distribution of elevation was visualized 
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using a conventional hypsometric. Lower elevations (1679-2000 m) are concentrated in 

the central valley. Progressively higher intermediate zones, (2000-2150 m) and (2150- 

2250 m), are primarily located on the basin slopes. The highest elevation bands, (2250- 

2400 m) and red (>2400 m), correspond predominantly to the northern and southern 

watershed divides. This shows that 50% of the basin elevation is greater than 2220 m 

above sea level. 

 

 
Figure 3.6. Kayabaşı elevation zone map. 

 

Figure 3.7 shows the hypsometric curve distribution of the basin elevation, 

illustrating the relationship between relative elevation and cumulative area. The curve is 

steep in upper elevation, with less than 10% is above 2500 meters elevation. The elevation 

decreases gradually at higher area percentages, showing uniform mid-lower terrain 

distribution. The elevation of this basin is not low as Çukurkışla Basin. The median 

elevation of the basin is 2200 m, which is higher than around 521 meters from the lowest 

elevation. Basin relief is 1476 meters, which is lower than that of Çukurkışla Basin. 
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Figure 3.7. Hypsometric curve for Kayabası Basin 

 

Figure 3.8. Slope map of Kayabaşı Basin 

 

The average slope percentage is 19% which is a moderate slope. The basin slope 

was categorized as gentle slope (0-10%), moderate slope (10-20%), steep slope (20-30%), 

very steep slope (30-50%), and extremely steep (>50%). Figure 3.8 shows the areas of 

each category. Most of the basin’s drainage area is under a gentle slope of 1000 km2. 
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3.2. Flow Chart 

The framework used in this study is illustrated in Figure 3.9. After preparation of 

the input data, the calibration and validation is conducted using the HOOPLA Toolbox. 

Following this setup, two parallel forecast simulations are executed: Open Loop (OL) and 

Data Assimilation (DA). The OL, which is a direct forecast without any real-time 

correction, produces both deterministic and ensemble runs, while the DA scheme 

employs an Ensemble Kalman Filter (EnKF) with 50 initial states to generate its own set 

of deterministic and larger ensemble simulations. Finally, the outputs from the various 

models are combined into a MM result using a simple averaging method. 

 

Figure 3.9. Methodology overview 
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𝑖=1 

3.3. Goodness of Fit 

3.3.1. Coefficient of determination 

The coefficient of determination, r2, is defined as the squared value of the 

coefficient of correlation (Krause et al., 2005) and represents the amount of variance in 

observed data that is explained by the model (Althoff et al., 2021). It is proposed as a 

measure of how close the observed-predicted regression line approaches the ideal fit (E. 

Coffey et al., 2004). It calculates as: 

∑𝑛 (𝑂𝑖 − 𝑂) + (𝑃𝑖 − 𝑃) 
𝑅2 = [ 𝑖=1  ]2 , 0 ≤  𝑅2  ≤  1 (3.1) 

𝑛 
𝑖=1 

(𝑂𝑖 − 𝑂)2 √∑𝑛 (𝑃𝑖 − 𝑃)2 

Where Oi = observed discharge, Pi = simulated discharge, O = mean of observed 

discharge, P= mean of simulated discharge. 

The coefficient of determination, r2, can take values ranging from 0 to 1, and it 

indicates how well the predicted values account for the dispersion in the observed data. 

A value of 0 indicates no correlation, while a value of 1 indicates perfect correlation, i.e., 

the dispersion of the predicted values is equivalent to that of the observed values. r2 has 

some drawbacks, such as oversensitivity to extreme values and insensitivity to systematic 

under- or overprediction. 

 

3.3.2. Nash-Sutcliffe efficiency 

The Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970) is a widely used 

goodness-of-fit criterion in hydrological modeling. It is an improvement over r2 as it is 

more sensitive to systematic under- or over-prediction. It is defined as one minus the 

mean squared error (MSE) normalized by the variance of the observed values (σ2 ). It 

calculates as: 

∑𝑛  |𝑂𝑖 − 𝑃𝑖|2 
𝑁𝑆𝐸 = 1 −   𝑖=1  , − ∞ < 𝑁𝑆𝐸 ≤ 1 (3.2) 

𝑛 
𝑖=1 |𝑂𝑖 − 𝐵𝑖|2 

where Bi is the benchmark series at the time-step i. In its original form Bi = O. 

The NSE ranges from -∞ to 1, with 1 indicating a perfect fit. It penalizes the model 

when the slope and interception of the fitted regression line depart from 1 and 0, 

respectively. However, the NSE has some limitations, such as underestimating peak flows 

and underestimating observed flow variability, which can result in inflated NSE value 

(Althoff et al., 2021). Therefore, it is recommended to use a proper benchmark series 

instead of threshold values to assess model performance. The Kling-Gupta efficiency 

√∑ 

∑ 
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index is suggested as a more reliable criterion for hydrological modeling (H. V Gupta et 

al., 2009). 

 

3.3.3. Square root of Nash–Sutcliffe efficiency 

The square root variant of the Nash–Sutcliffe Efficiency, denoted as NSEsqrt, is a 

modified form of the traditional NSE, developed to address its sensitivity to high 

discharge values and improve the assessment of low-flow simulations (Pushpalatha et al., 

2012). The NSEsqrt applies a square root transformation to observed and simulated 

values, reducing extreme value influence and improving low-flow period evaluation, 

while traditional NSE emphasizes peak flows due to squared errors. The NSEsqrt is 

calculated using the following equation: 

∑𝑛  (√𝑄𝑠𝑖𝑚,𝑖 − √𝑄𝑜𝑏𝑠,𝑖)
2 

𝑁𝑆𝐸𝑠𝑞𝑟𝑡 = 1 − 
𝑖=1 
∑𝑛  (√𝑄𝑜𝑏𝑠,𝑖 − √𝑄𝑜𝑏𝑠)2 (3.3) 
𝑖=1 

 
Where Qsim, i is the simulated discharge at time step i, Qobs,i is the observed 

discharge at time step i, Qobs is the mean of the square root of observed discharge, n is the 

total number of observations. The transformation preserves the NSE structure while 

ensuring that both low and medium flow values are better represented in the efficiency 

computation. 

 

3.3.4. Kling-Gupta efficiency 

The Kling-Gupta efficiency (KGE), proposed by (H. V Gupta et al., 2009), is 

another goodness-of-fit criterion used to evaluate the performance of hydrological 

models. It was proposed to overcome the limitations of other criteria, such as the Nash- 

Sutcliffe efficiency index (NSE), which can lead to underestimation of flow variability. 

The KGE is formulated by calculating the Euclidean distance of three components: 

correlation, bias, and measure of variability. 

KGE = 1 − ED, − ∞ < KGE ≤ 1 
 

𝐸𝐷 = √[𝑆𝑟. (𝑟 − 1)2 + [𝑆𝑎. (𝑎 − 1)2 + [𝑆𝛽. (𝛽 − 1)2 (3.4) 

 

where “ED is the Euclidian distance, r is the linear correlation coefficient between 

Oi and Pi, α is the variability ratio or ratio between the standard deviation of simulated 

values and standard deviation of observed values (σP/σO), β is the ratio between mean of 

the simulated and observed values (μP/μO or P/O). sr, sα, and sβ are scaling factors that can 
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re-scale the criteria space before computing the ED, that is, emphasizing different 

components. Conventionally, the scaling factors have equal weight, i.e., Sr = Sα = Sβ = 1” 

(Althoff et al., 2021). The index ranges from − ∞ to 1, with 1 indicating a perfect fit. 

 

3.4. Data 

3.4.1. Hydro-meteorological data 

The Turkish Meteorological Services (MGM) and State Hydraulics Works (DSI) 

collect and provide precipitation, temperature, humidity, wind, evapotranspiration, and 

discharge data for all Turkish Basins. We obtained precipitation and temperature data 

from the MGM and stream data from the DSI. 

3.4.1.1. Çukurkışla 

Daily precipitation and temperature data from four stations – two inside and two 

outside the basin – were obtained from the MGM. Pınarbaşı and Göksun stations occur 

outside of the basin while Sarız and Tufanbeyli stations are inside the basin. To confirm 

the effect of each station on the basin, Thiessen Polygons were used for the distribution. 

Sarız and Tufanbeyli stations cover all the areas of the basin, 40% and 60% respectively. 

Streamflow data from the Göksu station (E18A024) were obtained from the DSI. Table 

3.1 lists the meteorological stations within and around Çukurkışla Basin and their 

altitudes. 

 
Table 3.1. Meteorological stations for Çukurkışla Basin 

 

Station No City Station Name Latitude Longitude Altitude (m) 

18053 Adana Tufanbeyli 38.26 36.2195 1400 

17866 Kahramanmaraş Göksun 38.024 36.4823 1344 

17802 Kayseri Pınarbaşı 38.7251 36.3904 1542 

17840 Kayseri Sarız 38.4781 36.5035 1599 

 

The span of the obtained data for these stations was from 2000 to 2019 water years. 

The average annual total precipitation of the basin is 500.8 mm, whereas the discharge is 

165.40 mm. The average annual temperature is 9.44 °C. The years 2002, 2009, and 2019 

had the highest annual precipitation and discharges. The lowest precipitation was 

recorded in 2017 (324 mm), whereas the lowest discharge was recorded in 2014 (60.35 

mm). According to the temperature records, the lowest average annual temperature was 

recorded in 2012 at 8.14 °C, with an average precipitation of 514 mm and high discharge 
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of 204.72 mm. The highest average annual temperature was 11.38 °C in 2010. Figure 

3.10 shows the annual total precipitation, discharge, evaporation, and average 

temperature of Çukurkışla basin. 

 

 

 
Figure 3.10. Hydro-meteorological data for Çukurkışla Basin during the 2000-2019 water years. 

 

Figure 3.11 shows the monthly average temperature, precipitation, PET, and 

discharge from 2000 to 2019 water years. The lowest temperatures were observed in 

January, below freezing degrees. The temperature goes up in mid of February, which the 

snow melting starts. according to the discharge, more than 65% of the average basin 

discharge was observed between February and May. March and April had the highest 

average total monthly discharge, exceeding 30 mm/day. 
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Figure 3.11. Monthly temperature, precipitation, PET, and discharge average of Çukurkışla Basin 

 

Based on the data in Figure 3.12, the annual precipitation and temperature values 

for each year were categorized into four groups: Dry/Cold, Wet/Cold, Dry/Hot, and 

Wet/Hot years. These categories were determined by comparing the yearly values of 

precipitation and temperature with the respective medians for each variable. The data 

revealed interesting patterns, showing how these two climatic variables influenced each 

other over time. For instance, in 2010, the combination of high precipitation and high 

temperature placed it in the wet/hot category. However, 2017 was noted as the driest year, 

yet its temperature remained close to the median, indicating that while precipitation was 

notably low, the temperature did not exhibit extreme variations. Furthermore, 2019 stands 

out as the wettest year recorded in the dataset, yet its temperature surpasses the median 

for the Wet/Hot category. This suggests that although precipitation was abundant, the 

climate was still relatively warm compared to other years within the same category. In 

contrast, many of the years fall into the Wet/Cold and Dry/Hot categories, which appear 

to dominate the dataset. This could imply a recurring trend in the regional climate, where 

either wet condition with lower temperatures or dry conditions with higher temperatures 

are more common. As shown in Figure 3.12, years such as 2006, 2009, 2011, and 2015 

consistently appear in the wet/cold category, whereas years such as 2001, 2007, 2013, 

and 2014 frequently fall into the dry/hot category. 
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Figure 3.12. Categorization of precipitation and temperature of Çukurkışla Basin. 

 

Furthermore, the potential evapotranspiration (PET) was calculated using the 

method described by Oudin et al. (2005). The average annual potential evapotranspiration 

was 690.4 mm. The highest PET was observed at 748.39 mm in 2010, while the lowest 

PET was observed at 640.5 mm. 

 

3.4.1.2. Kayabaşı 

Daily precipitation and temperature data from 15 meteorological stations (five 

inside and eight outside the basin) were obtained from the MGM, covering the 2008 to 

2019 water years. Table 3.2 lists the meteorological stations of Kayabaşı Basin. Basin- 

wide precipitation and temperature were calculated for all stations using the Thiessen 

Polygon method. Additionally, streamflow data from Kayabaşı streamflow station 

(D24A096) were acquired from the DSI, covering the water years from 2008 to 2019. 

The average annual precipitation for the basin is 519.20 mm, whereas the average annual 

temperature is 6.14 ºC. The average annual discharge for the basin is 241.70 mm. 
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Table 3.2. Meteorological Stations for Kayabaşı Basin. 
 

Station No. City Station Name Latitude Longitude Altitude (m) 

17096 Erzurum Havalimanı 39.9529 41.1897 1758 

17672 Erzurum Palandöken Dağı 39.8088 41.2947 2973 

17687 Erzurum Ilıca havzası 39.8877 41.0766 2094 

17690 Erzurum Horasan 40.0383 42.1705 1540 

17740 Erzurum Hınıs 39.3688 41.6957 1715 

17778 Bingöl Varto 39.1763 41.4455 1650 

18177 Ağrı Karlıova 39.2936 41.0106 1828 

18203 Erzurum Çat 39.6058 40.975 1907 

18204 Erzurum Karayazı 39.6964 42.1256 2246 

18366 Erzurum Köprüköy 39.9908 41.8522 1685 

18370 Erzurum Tekman 39.6478 41.5125 1980 

19072 Erzurum Hacıömer Köyü 39.5992 41.7542 1832 

19254 Erzurum Yılanlı Köyü 39.8057 41.7623 1919 

 

As shown in Figure 3.13, 2010 experienced the highest precipitation, whereas 2014 

recorded the lowest. Precipitation and discharge exhibited a strong positive correlation, 

with peaks in 2010 (692 mm and 393 mm, respectively) and troughs in 2014 (327 mm 

and 124 mm, respectively). This suggests a strong relationship between precipitation and 

discharge, as years with higher precipitation generally corresponded to increased runoff. 

The highest temperature was recorded in 2010 at 9.68 °C. 

 

 

 
Figure 3.13. Hydro-meteorological data for Kayabaşı Basin during the 2008-2019 water years. 
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Figure 3.14 shows the average monthly temperature and monthly percentages of 

precipitation, potential evapotranspiration, and discharge from 2008 to 2019 water years. 

The monthly average temperature shows lower temperatures in the first months of the 

water year. The average lowest temperature was observed in December, January, and 

February, at less than 0oC. The temperature increase starts mid of March, which affects 

the snow melting. According to discharge, more than 60% of the basin discharge is 

observed between March to June. April and May had the highest average total monthly 

discharge, exceeding 60 mm/day. This shows snow melting effect on this basin which is 

higher than Çukurkışla Basin. As shown in Figure 3.15, the precipitation and temperature 

in each year were categorized. It shows that 2016,2018 and 2019 are wet and cold. Some 

other years, 2008, 2013 and 2018, were observed to be hot and dry. It is clear the diversity 

of precipitation and temperature throughout each year. 

 

 

 
Figure 3.14. Monthly temperature, precipitation, PET, and discharge average of Kayabaşı Basin 
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Figure 3.15. Categorization of precipitation and temperature of Kayabaşı Basin 

 

3.4.2. Forecast data 

Medium-ensemble weather forecasts from ECMWF serve as essential inputs for 

hydrological forecasting. The ECMWF produces high-resolution numerical weather 

predictions that are widely used for probabilistic hydrological applications, allowing for 

improved flood forecasting, water resource management, and climate impact 

assessments. 

These forecast data were obtained from The International Grand Global Ensemble 

(TIGGE) archive (www.apps.ecmwf.int), a comprehensive resource that provides 

ensemble forecast data from leading global weather prediction centers. TIGGE is a key 

initiative under the World Weather Research Programme (WWRP), aimed at fostering 

advancements in ensemble forecasting through open data-sharing and MM comparison. 

By leveraging ensemble forecasts, uncertainties in meteorological predictions can be 

quantified, improving decision-making for extreme weather events and water-related 

applications. 

https://www.apps.ecmwf.int/
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For this study, we utilized the ECMWF Ensemble Forecast (ENS) product, which 

consists of 51 ensemble members: one control forecast and 50 perturbed members. These 

ensemble members are designed to account for initial condition and model uncertainties, 

providing a probabilistic range of possible weather scenarios. The forecast data were 

retrieved in GRIdded Binary version 2 (GRIB2) format, a standard format for storing and 

transmitting gridded meteorological data. Additionally, ECMWF offers its weather 

datasets in Network Common Data Form (NETCDF) format, a widely used format for 

climate and weather data storage due to its self-descriptive structure and efficient 

compression capabilities. 

Precipitation and temperature data (mean, maximum, and minimum) for the period 

of January to June in 2018 and 2019 for both study basins were downloaded. This period 

was selected as the most annual discharges for these basins, which were observed between 

these months as shown in Figures 3.11 and 3.14. The dataset includes six-hourly time 

steps with a forecast lead time of 10 days, which enables us to analyze medium range 

hydrological forecasts. 

To process and manage the GRIB2 files, we utilized ecCodes, an open-source 

software package developed by ECMWF for handling GRIB, BUFR, and GTS messages. 

EcCodes is capable of decoding, encoding, and manipulating weather data in multiple 

formats, including: 

 WMO FM-92 GRIB (editions 1 and 2) – the standard format for numerical 

weather prediction models. 

 WMO FM-94 BUFR (editions 3 and 4) – used for observational data such as 

satellite and surface measurements. 

 WMO GTS abbreviated headers (decoding only) – supporting data exchange 

within the Global Telecommunication System (GTS). 

More details about ecCodes and its functionalities can be found at 

confluence.ecmwf.int/display/ECC/ecCodes+Home. After decoding the GRIB2 files, the 

data were systematically organized, aggregated, and converted into time-series format 

using the R programming language. R provides robust tools for handling large 

spatiotemporal datasets and performing statistical analyses, making it well-suited for 

hydrological applications. These processes involved: 

1. Extracting relevant meteorological variables (precipitation and temperature) for 

Çukurkışla and Kayabaşı Basins through the study period. 
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2. Converting six-hourly data into daily aggregated values, ensuring consistency in 

temporal resolution for further hydrological modelling. 

3. Quality controlling for the forecast data regarding the observed precipitation and 

temperature data. 

 

3.4.2.1. Çukurkışla 

The temperature and precipitation forecasts for Çukurkışla Basin were 

downloaded at a spatial resolution of 0.25º × 0.25º grids, as shown in Figure 3.16. To 

ensure data reliability, the forecasted meteorological variables were subjected to a quality 

control process, where they were compared against observed historical data from ground- 

based meteorological stations. This step is crucial for identifying any systematic biases, 

inconsistencies, or outliers in the dataset. Common quality control measures included: 

Screening for missing or erroneous values, assessing temporal consistency, evaluating 

forecast bias. 

After quality control, the gridded forecast data were aggregated into basin-wide 

forecast time-series to provide spatially representative meteorological inputs for 

hydrological modeling. To evaluate the accuracy of precipitation forecasts for Çukurkışla 

in 2018, the monthly accumulated precipitation was analyzed by comparing observed and 

forecasted values. This comparison helps assess the reliability of the forecast data and 

identify any systematic biases across different lead times. The forecasted precipitation 

data were generated with a 10-day lead time, allowing for an assessment of forecast 

accuracy over this period. January exhibited the highest accumulated precipitation for 

both observed and forecasted datasets across all lead times. While the forecasted 

precipitation generally followed the observed trend across all months, there were 

noticeable biases, particularly at longer lead times, where precipitation was slightly 

overestimated. Figure 3.17 shows the monthly accumulated precipitation for observed 

and forecasted data in 2018, highlighting variations and forecast performance throughout 

the year. 
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Figure 3.16. The 0.25º × 0.25º Grids for Çukurkışla Basin in 15/03/2019 a) Temperature in Kelvin b) 

Precipitation in mm 
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Figure 3.17. Monthly observed and forecast precipitation accumulation for Çukurkışla Basin in 2018. 

 

To evaluate the relation between the observed and forecasted precipitation, 

correlation is calculated across all lead times. As lead time increases, the correlation 

between observed and forecasted precipitation declines, starting at 0.64 on the first lead 

day and dropping to 0.079 by the last lead day, as illustrated in Figure 3.18. This trend 

indicates that forecast accuracy diminishes over longer lead times, highlighting the 

challenge of predicting precipitation with extended forecasts. 

 

 
Figure 3.18. The correlation between observed and forecast precipitation of Çukurkışla Basin through 

different lead-times in early half of 2018 
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Figure 3.19 compares precipitation forecasts with observed precipitation (black 

line) for Çukurkışla Basin in early 2018. It displays an ensemble prediction system (EPS), 

showing the 50-member range (blue shaded area) and ensemble mean (blue line), 

alongside a deterministic forecast (red line). The comparison is presented for forecast lead 

times of Day 1 (top), Day 5 (middle), and Day 10 (bottom). 

Ensemble and deterministic precipitation forecasts are compared with observed 

basin precipitation data. The ensemble spread for the first lead days is narrow, particularly 

during periods of little or no precipitation. At first lead time, both the ensemble mean, 

and deterministic forecast generally capture the observed precipitation well in timing 

major precipitation events. 

At day five, forecast skill decreases. While forecasts attempt to capture major wet 

periods seen in observations, alignment in timing and magnitude is less precise. The 

ensemble mean and deterministic forecasts often appear smoother and fail to capture 

observed peaks. The ensemble spread is significantly wider than at lead day one, 

representing increased forecast uncertainty at this longer lead time. 

At lead day ten, forecasts (ensemble and deterministic) show a weak relationship 

with observed precipitation. Both struggle to predict timing and magnitude, often 

showing low-amplitude variations or missing events. The ensemble spread is wide, 

ranging from zero to significant precipitation, indicating low predictability and high 

uncertainty for precipitation ten days ahead. 



35  

 
 

Figure 3.19. Ensemble and deterministic precipitation comparison plots in Çukurkışla in 2018 with the 

observed in lead times 1, 5, and 10 

 

Figure 3.20 compares temperature forecasts with observed temperatures (black 

line) for Çukurkışla basin in early 2018. Like the previous precipitation, it shows EPS 

performance through the 50-member range (blue shaded area) and the ensemble mean 

(blue line), alongside the deterministic forecast (red line). The comparison covers three 

forecast lead times: Day 1 (top), Day 5 (middle), and Day 10 (bottom). 

At day one lead time, temperature forecasts show good accuracy, with ensemble 

mean and deterministic forecast aligning with observed temperatures, capturing trends 

and daily fluctuations, but there is underestimation bias. The narrow ensemble spread 

indicates strong agreement among members and high forecast confidence. The observed 

temperature consistently falls within this range, reinforcing the reliability of early 

forecasts. 

By day five, the forecast skill decreases. The ensemble mean and deterministic 

forecast follow temperature trends, smoothing early forecasts fluctuations. Minor 

deviations from observed temperatures become noticeable. The ensemble spread widens, 

reflecting increased uncertainty in longer-range forecasting, especially during dynamic 
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temperature changes. Observed temperatures generally remain within the ensemble 

spread, capturing probable outcomes despite a slight decline in accuracy. 

At a 10-day lead time, forecast skill declines further, though forecasts still capture 

the seasonal warming trend. The ensemble mean and deterministic forecasts smooth 

observed variability, often lagging or missing short-term fluctuations. The ensemble 

spread widens, reflecting increased uncertainty in long-range predictions. While accuracy 

diminishes, observed temperature consistently falls within the ensemble range, 

highlighting its value in providing realistic outcomes. 

 

Figure 3.20. Ensemble and deterministic temperature comparison plots in Çukurkışla in 2018 with the 

observed in lead times 1, 5, and 10 

 

Similarly, to evaluate the accuracy of precipitation forecasts for Çukurkışla in 

2019, January received the highest precipitation for both observed and forecast. The 

overall forecast precipitation trend for each month through all the lead days agreed with 

the trend of the observed precipitation although some months forecast precipitation is 

overestimated or underestimated for different lead days. Figure 3.21 highlighted the 

monthly accumulated precipitation for both observed and forecasted data in 2019. 
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Figure 3.21. Monthly observed and forecast precipitation accumulation for Çukurkışla Basin in 2019 

 

Similar to 2018, the correlation between observed and forecasted precipitation in 

2019 declines as lead time increases. In 2019, the correlation starts at 0.739 on the first 

lead day and decreases to 0.376 on the last lead day, as illustrated in Figure 3.22. 

Compared to 2018, the correlation in 2019 is higher across all lead times. 

 

 
Figure 3.22. The correlation between observed and forecast precipitation of Çukurkışla Basin through 

different lead-times in early half of 2019 

 

Figure 3.23 compares precipitation forecasts with observed precipitation (black 

line) for Çukurkışla Basin in early 2019. It displays ensemble, showing the 50-member 
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range (blue shaded area) and ensemble mean (blue line), alongside a deterministic 

forecast (red line). The comparison is presented for forecast lead times of Day 1 (top), 

Day 5 (middle), and Day 10 (bottom). 

 

Figure 3.23. Ensemble and deterministic precipitation comparison plots in Çukurkışla in 2019 with the 

observed in lead times 1, 5, and 10 

 

Ensemble and deterministic precipitation forecasts are compared with observed 

basin precipitation data. The ensemble spread for the first lead day is narrow, particularly 

during periods of little or no precipitation, indicating higher confidence. At this first lead 

time, both the ensemble mean, and deterministic forecast capture the timing of observed 

major precipitation events well, though discrepancies in peak magnitude can occur. 

At day five, forecast skill decreases noticeably. While forecasts attempt to identify 

major wet periods seen in observations, the alignment in timing and magnitude is less 

precise. The ensemble mean and deterministic forecasts often appear smoother and can 

fail to capture the full intensity of observed peaks. The ensemble spread is significantly 

wider than at lead day one, visually representing the increased forecast uncertainty at this 

longer lead time. 
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At day ten, forecasts (ensemble mean and deterministic) show a weak relationship 

with the observed precipitation. Both struggle significantly to predict the specific timing 

and magnitude of rainfall events, often showing low-amplitude variations or missing 

observed events entirely. The ensemble spread is very wide, frequently ranging from zero 

to potentially significant precipitation amounts, indicating low predictability and high 

uncertainty for specific rainfall details ten days ahead. 

Figure 3.24 compares temperature forecasts with observed temperature (black line) 

for Çukurkışla Basin in early 2019. It displays an ensemble prediction system (EPS), 

showing the 50-member range (blue shaded area) and ensemble mean (blue line), 

alongside a deterministic forecast (red line). The comparison is presented for forecast lead 

times of Day 1 (top), Day 5 (middle), and Day 10 (bottom). 

Ensemble and deterministic temperature forecasts are compared with observed 

basin temperature data. The ensemble spread for the first lead day is very narrow, 

indicating high confidence among ensemble members. At this first lead time, both the 

ensemble mean, and deterministic forecast track the observed temperature extremely 

closely, capturing daily fluctuations and trends with high accuracy, but the temperature 

is underestimated in some months. 

At day five, forecast skill remains high, though slightly reduced compared to day 

one. While forecasts (ensemble mean and deterministic) continue to capture the overall 

observed temperature trend effectively, they begin to smooth out some finer daily 

variations. The ensemble spread is wider than at lead day one, representing a moderate 

increase in forecast uncertainty, but the observed temperature generally remains well 

within this range. 

At lead day ten, forecasts (ensemble mean and deterministic) show a further 

decrease in skill regarding specific daily values but still successfully capture the main 

temperature trends over the period. Deviations from observed short-term fluctuations are 

more apparent. The ensemble spread is wider, reflecting significant uncertainty ten days 

ahead, yet it consistently encompasses the observed temperature, demonstrating its utility 

in defining the range of outcomes. 
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Figure 3.24. Ensemble and deterministic temperature comparison plots in Çukurkışla in 2019 with the 

observed in lead times 1, 5, and 10 

 

Comparing the precipitation (Figures 3.19 and 3.23) and temperature (Figures 3.20 

and 3.24) forecasts for Çukurkışla across 2018 and 2019 reveals consistent patterns in 

forecast behavior and variable predictability. Temperature forecasts consistently 

demonstrated higher skill and lower uncertainty compared to precipitation forecasts at all 

lead times (Day 1, 5, and 10) in both years. While both variables showed the expected 

decrease in forecast accuracy and increase in ensemble spread with longer lead times, the 

degradation was much more pronounced for precipitation. 

 

3.4.2.2. Kayabaşı 

The temperature and precipitation forecasts for Kayabaşı Basin were downloaded 

at a spatial resolution of 0.25º × 0.25º grids, as shown in Figure 3.25. To ensure data 

reliability, the forecasted meteorological variables were subjected to a quality control 

process, where they were compared against observed historical data from ground-based 

meteorological stations. 
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Figure 3.25. The 0.25º × 0.25º Grids for Kayabaşı Basin in 15/03/2019 a) Temperature (K) b) 

Precipitation (mm) 
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To evaluate the accuracy of precipitation forecasts for Kayabaşı Basin in 2018, 

May has received the highest precipitation for both observed and forecast. The overall 

forecast precipitation trend for each month through all the lead days agreed with the trend 

of the observed precipitation. But there is an overestimation in forecast precipitation for 

all months. Figure 3.26 highlighted the monthly accumulated precipitation for both 

observed and forecasted data in 2018. 

 

 
Figure 3.26. Monthly observed and forecast precipitation accumulation for Kayabaşı Basin in 2018 

 

 

 

Figure 3.27. The correlation between observed and forecast precipitation of Kayabaşı Basin through 
different lead-times in early half of 2018 
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The correlation between observed and forecasted precipitation in Kayabaşı Basin 

in 2018 also declines as lead-time increases, starting at 0.556 on the first lead day and 

dropping to 0.213 by the last lead day, as illustrated in Figure 3.27. 

Figure 3.28 compares precipitation forecasts with observed precipitation (black 

line) for Kayabaşı Basin in early 2018. It displays an ensemble prediction system (EPS), 

showing the 50-member range (blue shaded area) and ensemble mean (blue line), 

alongside a deterministic forecast (red line). The comparison is presented for forecast lead 

times of Day 1 (top), Day 5 (middle), and Day 10 (bottom). 

The ensemble spread for the first lead day is narrow during dry periods but widens 

during potential precipitation events. At this first lead time, both the ensemble mean, and 

deterministic forecast capture the timing of observed major precipitation events (e.g., late 

Jan, mid-April, May-June), although there can be notable differences in forecast versus 

observed peak. 

At day five, forecast skill shows a decrease. While forecasts still attempt to indicate 

periods of enhanced precipitation probability corresponding to observed wet spells, the 

specific timing and magnitude alignment is significantly reduced. The ensemble mean 

and deterministic forecasts often appear much smoother and fail to capture the sharpness 

and intensity of observed peaks. The ensemble spread is wider than at lead day one, 

reflecting the substantial increase in forecast uncertainty. 

At day ten, forecasts (ensemble mean and deterministic) exhibit a very weak 

relationship with the observed precipitation. Both forecasts struggle profoundly to predict 

the specific timing and magnitude of rainfall events, often showing minimal variation or 

completely missing significant observed rainfall. The ensemble spread is extremely wide, 

spanning a broad range from zero to potentially high precipitation amounts, indicative of 

very low predictability and high uncertainty for specific rainfall details ten days ahead. 
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Figure 3.28. Ensemble and deterministic precipitation comparison plots in Kayabaşı in 2018 with the 

observed precipitation in lead times 1, 5, and 10 

 

Figure 3.29 illustrates the comparison of temperature forecasts (ensemble 

mean/range and deterministic) against observed temperatures for Kayabaşı Basin in early 

2019 across lead times of 1, 5, and 10 days. At Day 1, forecasts exhibit high accuracy 

with a narrow ensemble spread, closely tracking observed daily variations. By Day 5, 

skill remains strong for overall trends, though some daily fluctuations are smoothed, and 

the ensemble spread widens moderately, still containing the observed temperatures. At 

Day 10, while specific daily accuracy decreases and variations are significantly 

smoothed, the forecasts capture the broader temperature evolution, and the considerably 

wider ensemble spread reliably encompasses the observed values, reflecting increased 

uncertainty but providing a useful probabilistic range. 
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Figure 3.29. Ensemble and deterministic temperature comparison plots in Kayabaşı in 2018 with the 

observed temperature in lead times 1, 5, and 10 

 

 

Figure 3.30. Monthly observed and forecast precipitation accumulation for Kayabaşı Basin in 2019. 
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To evaluate the accuracy of precipitation forecasts for Kayabaşı Basin in 2019, we 

analyzed observed and forecasted precipitation. The highest observed precipitation 

occurred in May, whereas the forecast predicted January as the wettest month. The overall 

forecast precipitation trend for each month through all the lead days agreed with the trend 

of the observed precipitation. But there is an overestimation in forecast precipitation for 

all months except April. Figure 3.30 highlighted the monthly accumulated precipitation 

for both observed and forecasted data in 2018. The correlation between the observed and 

forecasted precipitation in 2019 is shown in Figure 3.31. The relation decreases as the 

lead time increases, from 0.454 to 0.058. 

 

 

 
Figure 3.31. The correlation between observed and forecast precipitation of Kayabaşı Basin through 

different lead-times in early half of 2019 

 

Figure 3.32 compares ensemble (mean and range) and deterministic precipitation 

forecasts against observations for Kayabaşı Basin during early 2019, evaluated across 

lead times of 1, 5, and 10 days. At the 1-day lead time, forecasts demonstrate moderate 

skill in capturing the timing of precipitation events, albeit with inaccuracies in peak 

magnitude, and exhibit relatively narrow ensemble spread except during potential rainfall. 

Forecast skill markedly diminishes by Day 5, characterized by reduced precision in 

timing and magnitude, failing to capture observed peaks, and a significantly wider 

ensemble spread reflecting increased uncertainty. By Day 10, predictability is very low, 

with both ensemble mean, and deterministic forecasts showing a weak correlation to 
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observed precipitation, struggling to predict event timing or intensity, and accompanied 

by an extremely wide ensemble spread indicative of high forecast uncertainty. 

 

Figure 3.32. Ensemble and deterministic precipitation comparison plots in Kayabaşı in 2019 with the 

observed precipitation in lead times 1, 5, and 10 

 

Figure 3.33 shows the comparison of ensemble and deterministic temperature 

forecasts against observations for Kayabaşı Basin in early 2019, across lead times of 1, 

5, and 10 days. At the 1-day lead time, forecasts demonstrate exceptional accuracy with 

a very narrow ensemble spread, closely matching both trends and daily variations in 

observed temperature. While forecast skill remains high at Day 5, capturing major trends 

accurately, a slight decrease in fidelity for sharp daily fluctuations is noted alongside a 

moderate widening of the ensemble spread, which consistently encompasses observed 

values. By Day 10, Although accuracy decreased, it shows the overall trend, making it 

useful despite the uncertainty. 
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Figure 3.33. Ensemble and deterministic temperature comparison plots in Kayabaşı in 2019 with the 

observed temperature in lead times 1, 5, and 10 

 

3.5. HOOPLA Toolbox 

To facilitate the exploration of ensemble rainfall-runoff modelling, uncertainty 

analysis, and prediction within this study, the HydrOlOgical Prediction LAboratory 

(HOOPLA) toolbox was employed. Developed at Université Laval, Canada, HOOPLA is 

a modular framework coded entirely in MATLAB, designed for ensemble lumped 

hydrological modelling (Thiboult, 2019). HOOPLA includes a collection of 20 lumped 

conceptual hydrological models. These models simulate rainfall-runoff transformation 

using interconnected reservoirs (buckets) and assume spatial homogeneity within the 

catchment. The selection, originating from the work of Perrin (2000) and later refined by 

Seiller et al. (2012), focused on models with low to moderate complexity (relatively few 

free parameters and reservoirs) while ensuring structural diversity, as they were 

developed by different teams for various purposes (Thiboult, 2019). 

It is crucial to emphasize that the models implemented in HOOPLA are 

generally not the original versions. They were intentionally modified, primarily by Perrin 
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(2000) and within the HOOPLA development, to fit a common lumped framework. 

Modifications may include: 

 Conversion of distributed models to lumped representations. 

 Reduction in the number of free parameters. 

 Removal of integrated PET or snow accounting routines (handled externally 

within HOOPLA). 

 Standardization of inputs (precipitation + snowmelt, PET) and outputs 

(streamflow). 

Table 3.3 summarizes the main characteristics of the hydrological models available 

in HOOPLA, based on information provided in the technical report. The 'Modification' 

column gives a qualitative indication of the extent of modification from the original 

reference. 

 
Table 3.3. Main characteristics of the 20 lumped hydrological models in HOOPLA (Thiboult, 2019). 

Model Name No of No of Modification Derived From 
 

 Parameters Reservoirs  

HydroMod1 6 3 Slightly BUCKET (Thornthwaite and Mather, 

 

HydroMod2 
 

9 
 

2 
 

Slightly 

1955) 

CEQUEAU (Girard et al., 1972) 

HydroMod3 6 3 Slightly CREC (Cormary and Guilbot, 1973) 

HydroMod4 6 2 Slightly GARDENIA (Thiery, 1982) 

HydroMod5 4 2 Similar GR4H (Mathevet, 2005) 

HydroMod6 8 4 Substantial HBV (Bergström and Forsman, 1973)) 

HydroMod7 6 3 Slightly HYMOD (Wagener et al., 2001) 

HydroMod8 9 4 Slightly IHACRES (Jakeman et al., 1990) 

HydroMod9 6 2 Slightly MARTINE (Mazenc et al., 1984) 

HydroMod10 7 4 Similar MOHYSE (Fortin and Turcotte, 2007) 

HydroMod11 6 4 Similar MORDOR (Garçon, 1999) 

HydroMod12 10 5 Substantial NAM (Nielsen and Hansen, 1973) 

HydroMod13 8 4 Slightly PDM (Moore and Clarke, 1981) 

HydroMod14 9 5 Slightly SACRAMENTO (Burnash et al., 1973) 

HydroMod15 8 3 Substantial SIMHYD (Chiew et al., 2002) 

HydroMod16 8 4 Substantial SMAR (O’Connell et al., 1970) 

HydroMod17 7 3 Substantial TANK (Sugawara, 1979) 

HydroMod18 7 3 Substantial TOPMODEL (Beven et al., 1984) 

HydroMod19 8 3 Substantial WAGENINGEN (Warmerdam et al., 

 

HydroMod20 
 

8 
 

4 
 

Substantial 

1997) 

XINANJIANG (Zhao et al., 1980) 

 

3.5.1. Potential evapotranspiration 

Potential evapotranspiration quantifies the atmospheric demand for water vapor and 

serves as a key input to the hydrological models. HOOPLA includes three PET formulas, 
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selected primarily because hydrological models often show limited sensitivity to PET 

inputs and allow computation even with limited data availability (Seiller and and Anctil, 

2016; Thiboult, 2019). These formulas can be computed internally by HOOPLA or 

provided externally. Table 3.4 details the included formulas and their data requirements. 

In this study, the methodology proposed by Oudin et al. (2005) was employed to calculate 

PET for the study areas, utilizing the mean temperature and the latitude of these regions. 

 
Table 3.4. Potential Evapotranspiration (PET) formulas in HOOPLA (Thiboult, 2019). 

 

Name Required input data Basis Reference 

Oudin Mean Temperature (T), Latitude (Lat) Energy Balance Oudin et al. 

(2005) 

Kharrufa Mean Temperature (T), Latitude (Lat) Energy Balance Kharrufa 

(1985) 

Penman Mean T, Lat, Solar Rad. (Rad), Relative Humidity 

(Relhum), Max Temp (Tmax), Min Temp (Tmin), Wind 

Speed (Wndspd), Elevation (z) 

Combination 

Method 

Penman 

(1948) 

 

 

3.5.2. Snow accounting routine 

HOOPLA incorporates the CemaNeige snow accounting routine (SAR) (Valéry et 

al., 2014). Currently, this is the only SAR included in this toolbox. CemaNeige operates 

based on: 

 Spatial discretization into five altitudinal bands of equal area. 

 Temperature and precipitation extrapolation to these bands. 

 Partitioning of precipitation into liquid/solid fractions based on a transition 

temperature range. 

 Estimation of snow water equivalent (SWE) using: 

o A thermal inertia factor for the snowpack (Ctg). 

o A degree-day melt factor (Kf). 

 

Table 3.5. Snow Accounting Routine (SAR) in HOOPLA. 

Name Description Free 

Parameters 

 

 

Reference 

CemaNeige Simulates snow accumulation and melt using 

altitudinal bands, thermal state, and degree-day 

factor. 

Ctg, Kf  (Valéry et al., 

2014) 
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3.5.3. Calibration algorithms 

HOOPLA provides two global, iterative calibration algorithms: 

1. Shuffled Complex Evolution (SCE): Developed by (Duan et al., 1993), SCE 

uses multiple sets of points (complexes) that evolve through reflection, 

contraction, and mutation, and are periodically shuffled to explore the parameter 

space. It is often considered state-of-the-art but can be computationally expensive. 

2. Dynamically Dimensioned Search (DDS): Proposed by Tolson and Shoemaker 

(2007), DDS is inspired by manual calibration. It samples the parameter space via 

random perturbations and reflections, progressively fixing parameter values to 

reduce the search dimension. It is designed to find good solutions within a 

specified maximum number of iterations, making it computationally efficient, 

especially for models with many parameters. 

In this study, SCE is used to calibrate the hydrological parameters to identify 

optimal hydrological model parameter sets. 

 

3.5.4. Data assimilation schemes 

DA techniques are included to improve forecast accuracy by integrating 

information from observations to update model states and provide better initial 

conditions. HOOPLA includes two probabilistic, sequential DA schemes: 

1. Sequential Importance Resampling (SIR) Filter: A type of PF, also known as 

a Bootstrap filter (Arulampalam et al., 2002). It approximates the probability 

distribution of model states using weighted samples (particles), which are updated 

and resampled based on observations. 

2. Ensemble Kalman Filter (EnKF): Described by Evensen (2003), the EnKF uses 

an ensemble of model states to estimate the error covariances needed for the 

Kalman update step. It avoids the linearity assumption of the traditional Kalman 

Filter but performs optimally under Gaussian assumptions. 

Based on recommendations on (Liu et al., 2012; Thiboult and Anctil, 2015), the 

HOOPLA model utilizes default parameters to define the standard deviation of the normal 

distribution representing uncertainty around key model inputs. These parameters quantify 

the assumed errors associated with observed or forcing data used in the model. These 

default input perturbation standard deviations are summarized in Table 3.6. 
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Table 3.6. Default model input perturbation standard deviations for HOOPLA 
 

Variable Perturbation Standard Deviation 
 

Discharge 10% 

Precipitation 50% 

Air Temperature 2 °C 

Potential Evapotranspiration 10 % 
 

 

As shown in Table 3.6, the perturbations were defined as the standard deviation of 

a normal distribution applied to each input variable. Specifically, standard deviations of 

10% were applied to Discharge and Potential Evapotranspiration, 50% to Precipitation, 

and 2 °C to Air Temperature. These defined uncertainties were used to generate perturbed 

ensembles of model inputs for the DA procedure. EnKF was then employed for DA, 

utilizing an ensemble size of 50 members to estimate the state and parameter uncertainty. 

 

3.6. Multi-model Combination 

As we discussed in the literature, different methods of hydrological models’ 

results combinations are presented in different studies (Ajami et al., 2006; Georgakakos 

et al., 2004; Shamseldin et al., 1997; Todorović et al., 2024). Simple Averaging method 

(SAM) which involves the averaging of the discharges of the models is used in this study. 
∑𝑛 𝑄𝑠𝑖𝑚 

𝑄𝑆𝐴𝑀 =   𝑖  

𝑛 
(3.5) 

Where QSAM is the averaged discharge, Qsim is the simulated discharges, n is the number 

of the models. 
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4. RESULTS AND DISCUSSION 

4.1. Calibration and Validation of Hydrological Models 

4.1.1. Çukurkışla basin 

Calibration 

The meteorological and discharge data were split into two parts for training and 

validation. The 2000-2008 water years were used for calibration and 2009-2017 years for 

validation. Using the HOOPLA toolbox in MATLAB, the twenty hydrological models 

were run and calibrated using the SCE-AU and KGE to maximize their performance 

according to the observed discharge. The CemaNeige module was employed as the SAR 

in all twenty hydrological models to simulate snow processes. The hydrograph in Figure 

4.1 shows that all the hydrological model simulations followed the pattern of the observed 

flow. In addition, the simulation flows captured the high and low flows of the basin 

throughout the calibrated period. 

 

 

Figure 4.1. Hydrographs of observed and simulated discharges from 20 hydrological models during the 

calibration period (water years 2000-2008) in Çukurkışla Basin 

 

Figure 4.2 shows the result of model 3 which is one of the best performed models 

in Çukurkışla basin for this calibration period. The top panel shows the observed 

temperature, illustrating clear seasonal variation with a freezing period in winter. The 

middle panel displays observed precipitation, observed discharge, and simulated 

discharge. The lower panel represents the accumulated snowpack. The hydrograph shows 
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that the simulation followed the observed, capturing the lower and peak flows in multiple 

years. In addition, the simulated snowpack also exhibited a good relation between 

temperature, precipitation, and simulated discharges. During winter, low temperatures 

result in substantial snow accumulation and freezing of liquid precipitation. Besides that, 

when the temperature rises, around early March, snow melt commences, highly 

contributing to the discharge. Overall, the simulation indicates that Model 3 provides a 

reasonable representation of the basin's hydrological behavior, particularly concerning 

snowmelt processes. 

 

Figure 4.2. Model 3 Results over Çukurkışla Basin for 2000-2008 calibration period: observed and 

simulated temperature, discharge hydrographs, precipitation, and snowpack 

 

Four different goodness of fit metrics are used to show the hydrological models' 

performance: NSE, NSEsqrt, KGE, and r², as shown in Figure 4.3. KGE exhibited a high 

median and a narrow interquartile range, suggesting that the models achieved a good 
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balance between correlation, bias, and variability. The NSE and r² metrics also indicated 

strong model performance, though with slightly greater variability between the models 

compared to KGE. In contrast, NSEsqrt yielded the lowest overall scores and the widest 

spread in the boxplot. NSEsqrt metric shows models struggle most with accurately 

simulating low-flow dynamics. 

 
 

 
Figure 4.3. Boxplots of calibration performance metrics for the hydrological models in Çukurkışla Basin 

using four goodness-of-fit (GOF) metrices: NSE, NSEsqrt, KGE, and r2 

 

Table 4.1 provides the summary statistics (minimum, first quartile [Q1], median, 

third quartile [Q3], and maximum) for each metric, offering further insight into the central 

tendency and spread of the performance scores across models. 

 
Table 4.1. Summary of calibration performance metrics for NSE, NSEsqrt, KGE, and r² across all models 

over Çukurkışla Basin 
 

Quartiles Calibration 
 

NSE NSEsqrt KGE r2 
 

Max 0.814 0.823 0.907 0.822 

Q3 (0.75) 0.797 0.798 0.899 0.808 

Median (0.5) 0.783 0.749 0.892 0.797 

Q1 (0.25) 0.770 0.682 0.883 0.784 

Min 0.624 0.459 0.818 0.677 
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All the hydrological models have shown strong performance. The median KGE 

value obtained is 0.89, demonstrating high consistency between simulated and observed 

streamflow. As Figure 4.4 shows, Model 3 exhibited the highest performance with a KGE 

exceeding 0.906, followed closely by several models. Models 4 and 19 showed 

comparatively lower performance, with KGE values falling between 0.80 and 0.85, 

suggesting some limitations in accurately reproducing observed dynamics during the 

calibration period. Despite these few outliers, the overall results highlight the robustness 

of most of the models and suggest their suitability for further hydrological analysis. 

 

 

Figure 4.4. KGE performance during the 2000-2008 calibration period over Çukurkışla Basin 

 

Validation 

The models were validated over the 2009-2017 period using their calibrated 

parameters. The performance was assessed using the previously used metric; NSE, 

NSEsqrt, KGE, and r2
, to evaluate the models’ ability to reproduce observed streamflow 

during the validation period. The hydrograph in Figure 4.5 shows that the simulated 

streamflow successfully captures the general patterns of observed streamflow, including 

most major flood peaks and recession limbs, though with considerable spread, 

particularly during high flow events. The simulated streamflow for the 2013 and 2014 

water years exhibited underestimation, due to the models' inability to accurately capture 

peak flow events. 
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Figure 4.5. Hydrographs of observed and simulated discharges over Çukurkışla Basin from 20 

hydrological models during the validation period (2009-2017) 

 

Figure 4.6. Model 3 Results over Çukurkışla Basin for 2009-2017 validation period: observed and 

simulated temperature, discharge hydrographs, precipitation, and snowpack. 
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Figure 4.6 shows model 3 results, one of the best performing models in Çukurkışla 

Basin for calibration and validation periods. Observed temperature, discharge, simulated 

discharge and snowpack are shown. The simulated discharge performed well for most 

years except 2013 and 2014. This model captured low and high streamflow effectively. 

The snowpack for the validation period is lower than 100 mm except 2012 water year, 

which experienced the highest observed snowpack due to very low temperatures. The 

lowest snowpack and discharge were simulated in 2014. The simulated snowpack showed 

a good relation between temperature, precipitation and simulated discharges. During 

winter, low temperatures result in snow accumulation and freezing precipitation. When 

the temperature rises, around early March, snowmelt begins, contributing significantly 

to discharge. Overall, Model 3 provides a credible representation of the basin's 

hydrological behavior, particularly regarding snowmelt processes. 

Figure 4.7 shows the comparison of the four different metrics: NSE, NSEsqrt, KGE, 

and r2. Like the calibration, KGE outperformed the other metrics in higher performance 

and reduced dispersion. NSE and r2 have also shown better performance, though with 

slightly greater variability compared to KGE. In contrast, NSEsqrt yielded the lowest 

performance, characterized by higher dispersion. Table 4.2 gives the summary of the 

performance metrics. 

 

 
Figure 4.7. Boxplots of validation performance metrics for the hydrological models in Çukurkışla Basin 

using four goodness-of-fit (GOF) metrices: NSE, NSEsqrt, KGE, and r2 
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Table 4.2. Summary of validation performance metrics for NSE, NSEsqrt, KGE, and r² across all models 

over Çukurkışla Basin 
 

Quartiles Validation 
 

NSE NSEsqrt KGE r2 
 

Max 0.848 0.851 0.901 0.854 

Q3 (0.75) 0.821 0.816 0.885 0.833 

Median (0.5) 0.801 0.783 0.865 0.811 

Q1 (0.25) 0.767 0.716 0.852 0.788 

Min 0.694 0.498 0.773 0.742 

 

Figure 4.8 shows the performance of each model in KGE metric. The median 

performance for the twenty models is 0.865, showing a good performance. Model 3 

outperformed the other models with 0.907 KGE performance. The lowest performance 

were observed on Model 12, with 0.773 KGE performance. 

Overall, the simulated streamflow demonstrated satisfactory performance, closely 

aligning with observed data across most years within the validation period. The models 

effectively reproduced the general flow patterns, including seasonal variations and 

baseflow conditions, indicating their robustness for hydrological applications. 

 

 

 

Figure 4.8. KGE performance over Çukurkışla Basin during the 2009-2017 validation period. 
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Physical parameters 

The twenty hydrological models each contained between four to 10 core 

parameters, in addition to two parameters from the CemaNeige snow module. To 

illustrate how the models represent physical processes, the field capacity (FC) or soil 

capacity parameter from each model and the degree-day factor (Kf) from CemaNeige 

were selected for closer examination. These two parameters were chosen because they 

are directly linked to observable hydrological and snowmelt behavior, making them 

meaningful for interpreting the models’ physical behavior. 

The FC parameters for the models show diversity, 50% are in between 100 mm and 

450 mm as shown in Figure 4.9. The median FC is 140 mm. While some models, such as 

models 16, show very high FC values around 900 mm, others like models 3, 9, 12, and 

19 calibrate to much lower values, below 100 mm. Several models fall within a moderate 

range, with a noticeable cluster between 100 and 600 mm. This widespread indicates that 

the calibrated FC values are strongly influenced by each model’s structure and conceptual 

design, reflecting differing requirements to match observed data effectively. 

 

 

Figure 4.9. Soil capacity for the twenty models for 2000–2008 calibration period over Çukurkışla 

 

Based on Figure 4.10, the calibrated Kf values show substantial variability across 

the twenty hydrological models. Kf ranges from a minimum of approximately 4.5 

mm/°C/day (Model 9) to a maximum of 13.23 mm/°C/day (Model 17). Such high value 
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likely reflects the calibration process compensating for the specific structural 

representation of snowmelt processes within Model 17. The median value for the basin is 

7.57 mm/°C/day. Although only six models exhibit Kf values below 6 mm/°C/day, the 

interquartile range spans from 5.5 to 11.7 mm/°C/day. These results highlight notable 

differences in snowmelt sensitivity among the models. 

 

 

Figure 4.10. The change of degree day factor parameter of CemaNeige SAR model for the twenty models 

for 2000-2008 calibration period for Çukurkışla Basin. 

 

4.1.2. Kayabaşı basin 

Calibration 

The available meteorological and discharge are split into two parts for training and 

validation. 2013-2017 water years are used for calibration and 2008-2012 for validation. 

Using the HOOPLA toolbox in MATLAB, the twenty hydrological models were run and 

calibrated using the SCE algorithm to maximize their performance according to the 

observed discharge. The CemaNeige module was employed as the SAR in all twenty 

hydrological models to simulate snow processes. The hydrograph in Figure 4.11 shows 

that all the hydrological models’ simulations follow the pattern of the observed flow. In 

addition, the simulation flows capture the low flows of the basin throughout the calibrated 

period and struggle the peak flows. 2013 and 2014 water years simulated streamflow did 

not capture the peak flows while the low flow simulation of the most models performed 

better. 
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Figure 4.11. Hydrographs of observed and simulated discharges from 20 hydrological models during the 

calibration period (water years 2013-2017) in Kayabaşı Basin. 

 

Figure 4.12 shows the result of Model 8, which is one of the best performed models 

in Kayabaşı basin for this training period, 2013-2017. While the top panels show the 

observed temperature of the basin, the middle panel shows the observed and simulated 

discharges. In addition, the lower panel shows the simulated snowpack of the basin. As 

we illustrated before, the simulated discharge performed very good for most years except 

2013 and 2014 water years. Although the simulated streamflow captured very well in the 

low flows, it could not capture the high flows of these years. The snowpack for the 

calibration period is between 50 mm and 200 mm. The lowest snowpack was seen in 

2013 and 2014 similar to the streamflow. In addition, the simulated snowpack also 

exhibited very good relation between temperature, precipitation and simulated 

discharges. During winter, low temperatures result in substantial snow accumulation and 

freezing of liquid precipitation. Besides that, when the temperature rises, early March, 

snow melt commences, highly contributing to the discharge. Overall, the simulation 

indicates that Model 8 provides a credible representation of the basin's hydrological 

behavior, particularly concerning snowmelt processes. 
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Figure 4.12. Model 8 Results over Kayabaşı Basin for 2003-2017 calibration period: observed and 

simulated temperature, discharge hydrographs, precipitation, and snowpack. 

 

 

Figure 4.13. Boxplots of calibration performance metrics for the hydrological models in Kayabaşı Basin 

using four goodness-of-fit (GOF) metrices: NSE, NSEsqrt, KGE, and r2 
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As shown in Figure 4.13, four performance metrics: NSE, NSEsqrt, KGE, and r², 

were used to evaluate and compare the performance of the models. Among these, KGE 

demonstrated the highest overall performance, with IQR of the twenty models is between 

0.70 and 0.80, indicating both accuracy and consistency. Although two models were 

identified as outliers in terms of KGE performance, this metric still performs good. r² also 

exhibited good linear relation, despite a wider spread due to high-value outliers. In 

contrast, the lower scores for both NSE and NSEsqrt reveal specific model weaknesses: 

the lower NSE shows difficulties in capturing high-flow events, while the poor NSEsqrt 

scores indicate a more significant challenge in simulating low-flow periods accurately. A 

detailed summary of these performance statistics is provided in Table 4.3. 

 
Table 4.3. Summary of calibration performance metrics for NSE, NSEsqrt, KGE, and r² across all models. 

 

Quartiles Calibration 
 

NSE NSEsqrt KGE r2 
 

Max 0.750 0.785 0.830 0.751 

Q3 (0.75) 0.687 0.727 0.796 0.707 

Median (0.5) 0.653 0.647 0.765 0.677 

Q1 (0.25) 0.626 0.556 0.718 0.643 

Min 0.565 0.357 0.520 0.579 

 

Figure 4.14 presents the performance of individual models during the calibration 

period (2013–2017 water years), evaluated using KGE metric. Among the twenty models 

assessed, Models 8 and 20 exhibited the highest performance, clearly outperforming the 

rest. The median KGE value across all models was 0.765, indicating a strong overall 

performance. 

A total of 15 models (75%) achieved KGE values greater than 0.70, indicating a 

satisfactory level of hydrological performance. This suggests that most models reliably 

captured the observed streamflow dynamics during the calibration period. However, 

Model 11 recorded the lowest performance, with a KGE of 0.52, highlighting a significant 

deviation from observed streamflow. 
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Figure 4.14. KGE performance metric over Kayabaşı during the 2013-2017 calibration period. 

 

Validation 

The models were validated over the 2008-2012 period using their calibrated 

parameters. The performance was assessed using the previously used metric; NSE, 

NSEsqrt, KGE, and r2
, to evaluate the models’ ability to reproduce observed streamflow 

during the validation period. The simulated streamflow captured the overall flow pattern, 

including most peak flows and baseflow conditions. However, a noticeable spread is 

observed around high-flow events, indicating increased uncertainty during peak discharge 

periods as shown in Figure 4.15. The uncertainty is higher in 2009 and 2010 water years 

regarding the high and low flows. Despite these discrepancies, the ensemble simulation 

demonstrates satisfactory agreement with observed data, supporting the reliability of the 

models during the validation period. 
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Figure 4.15. Hydrographs of observed and simulated discharges from 20 hydrological models during the 

validation period (water years 2008-2012) in Kayabaşı Basin 

 

Figure 4.16 shows Model 8 results, one of the best performing models in Kayabaşı 

basin for calibration and validation periods. Observed temperature, discharge, simulated 

discharge and snowpack are shown. The simulated discharge performed well for most 

years except 2009 and 2010. While the model captured low flows effectively, it could not 

capture the high flows of these years. The snowpack for the validation period is between 

50 mm and 150 mm. Although the lowest snowpack was observed in 2010, the highest 

discharge occurred this year. The simulated snowpack showed a good relation between 

temperature, precipitation and simulated discharges. During winter, low temperatures 

result in snow accumulation and freezing precipitation. When the temperature rises- 

around early April- the snowmelt begins, contributing significantly to discharge. Overall, 

Model 8 provides a credible representation of the basin's hydrological behavior, 

particularly regarding snowmelt processes. 
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Figure 4.16. Model 8 Results over Kayabaşı Basin for 2008-2012 validation period: observed and 
simulated temperature, discharge hydrographs, precipitation, and snowpack 

 

As shown in Figure 4.17, four performance metrics: NSE, NSEsqrt, KGE, and r², 

were used to evaluate and compare the performance of the models over Kayabaşı. Among 

these, KGE demonstrated satisfactory overall performance, with IQR of the twenty 

models is between 0.64 and 0.71, indicating both intermediate accuracy and consistency. 

Although one model was identified as an outlier in terms of KGE performance, the metric 

performed well. r² also exhibited good results, despite a wider spread due to high-value 

outliers. In contrast, NSE and NSEsqrt yielded the lowest performance scores among the 

evaluated metrics. Table 4.4 shows the detailed spread of the performance metrics. 
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Figure 4.17. Boxplots of validation performance metrics for the hydrological models in Kayabaşı Basin 
using four goodness-of-fit (GOF) metrices: NSE, NSEsqrt, KGE, and r2 

 

Table 4.4. Summary of validation performance metrics for NSE, NSEsqrt, KGE, and r² across all models. 
 

Quartiles Validation 
 

NSE NSEsqrt KGE r2 
 

Max 0.625 0.708 0.700 0.653 

Q3 (0.75) 0.594 0.664 0.652 0.626 

Median (0.5) 0.570 0.632 0.635 0.598 

Q1 (0.25) 0.542 0.603 0.595 0.562 

Min 0.485 0.503 0.551 0.502 

 

Figure 4.18 presents the performance of individual models during the validation 

period (2008–2012 water years) over Kayabaşı Basin, evaluated using KGE metric. 

Among the twenty models assessed, Models 2, 8 and 16 exhibited the highest 

performance, outperforming the remaining models. The median KGE value of 0.67 

showed a good performance, with good validation results despite being lower than 

calibration. A total of 15 models (75%) achieved KGE values greater than 0.60, indicating 

a satisfactory hydrological model performance. This shows that most models captured the 

observed streamflow dynamics during the validation period. Model 4 was observed the 

lowest performance, with a KGE value of 0.55, highlighting a significant deviation from 

observed data. 
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Figure 4.18. KGE performance over Kayabaşı Basin during the 2008-2012 validation period 

 

Physical parameters 

The FC parameter shows diversity, with 50% between 50 mm and 200 mm as 

shown in Figure 4.19. The median FC is 101 mm. While some models, like model 16 

have shown high FC values around 600 mm, others like models 3, 5, 9, 12, 18, and 19 

were found to be below 50 mm. Several models fall within a moderate range between 50 

and 200 mm. This spread indicates that calibrated FC values are influenced by each 

model's structure and design, reflecting requirements to match observed data. 

Based on Figure 4.20, the calibrated Kf values show substantial variability across 

the twenty hydrological models. Kf ranges from a minimum of approximately 3.6 

mm/°C/day (Model 9) to a maximum of 11.10 mm/°C/day (Model 12). The median value 

for the basin is 6.44 mm/°C/day. Around 9 models’ Kf are lower than 6.44 mm/°C/day 

and IQR from 4.36 to 8.47 mm/°C/day. These results highlight notable differences in 

snowmelt sensitivity among the models. 
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Figure 4.19. Field Capacity parameter for the twenty models for 2012 – 2013 calibration period 

 

 

Figure 4.20. The change of degree day factor parameter of CemaNeige SAR for the twenty models for 

2012-2013 calibration period. 

 

4.2. Open-Loop (OL) Deterministic and Ensemble Forecasting 

The hydrological forecasting for the two basins was performed using the calibrated 

parameters and simulation. This section will exhibit the results of the OL deterministic 

and ensemble forecasting of the basins throughout the first half of 2018 and 2019 years; 

January to June. 
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4.2.1. Deterministic forecasting 

Çukurkışla 

The deterministic forecast for Çukurkışla Basin was performed from 1st January to 

30th June of 2018 and 2019 in 10 lead days in twenty hydrological models. The 

deterministic forecast performance using KGE across 20 models for Çukurkışla Basin 

shows decreasing skill with increasing lead time in 2018 and 2019. In 2018, early lead- 

time forecasts (1-3 days) showed good performance with a median KGE above 0.6 and a 

narrow IQR. The median KGE declined to 0.4 for Lead Time 10, while the spread of 

KGE values increased at longer lead times. Models 4 and 16 showed negative KGE 

values. In 2019, the median KGE for the initial lead day was found at 0.72, representing 

a slight improvement over 2018. In addition, the decline in performance in 2019 was more 

pronounced, as the median KGE for the final lead time decreased to 0.22, lower than the 

0.43 observed in 2018 for the same lead time. This comparison between the two years 

revealed inter-annual variability in forecast skill. Figure 4.21 shows the comparison 

between the performance of the deterministic forecast in 2018 and 2019, while Table 4.5 

shows the 75th, 50th and 25th quartiles of the results. 

 

 

 
Figure 4.21. Deterministic forecast performance for Çukurkışla Basin in 2018 and 2019, measured by 

KGE across 20 models as a function of lead time. 
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Table 4.5. Deterministic forecast performance results in 2018 and 2019 comparison for Çukurkışla Basin 

Quartiles T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 

Q3 (0.75) 0.815 0.710 0.653 0.645 0.655 0.597 0.578 0.566 0.555 0.544 

Q2 (0.5) 0.718 0.637 0.603 0.571 0.549 0.513 0.483 0.461 0.444 0.433 

Q1 (0.25) 0.482 0.363 0.332 0.334 0.366 0.361 0.348 0.319 0.303 0.315 

Mean 0.609 0.475 0.452 0.444 0.465 0.443 0.412 0.392 0.386 0.377 
 

Q3 (0.75) 0.756 0.646 0.542 0.469 0.492 0.465 0.430 0.400 0.375 0.343 

Q2 (0.5) 0.725 0.574 0.468 0.407 0.389 0.342 0.304 0.264 0.244 0.227 

Q1 (0.25) 0.659 0.541 0.424 0.324 0.303 0.278 0.257 0.206 0.162 0.133 

Mean 0.704 0.587 0.468 0.399 0.400 0.365 0.334 0.295 0.264 0.236 
 

 

Kayabaşı 

The deterministic forecast modelling for Kayabaşı Basin was performed over the 

period from January 1 to June 30 for 2018 and 2019, using 20 hydrological models and a 

10-day lead time. As shown in Figure 4.22, forecast skill, represented by the KGE 

consistently decreased with increasing lead time in both years. In 2018, the median KGE 

at lead time one was approximately 0.68 and gradually declined to 0.56 by lead time ten. 

In contrast, the 2019 forecasts began with a notably higher median KGE of around 0.80 

at lead time one, but showed a sharper decline in performance, with the median dropping 

to 0.22 by lead time ten, lower than the corresponding 2018 value of 0.43. Early forecasts 

(1–3 days) in both years achieved a good performance, with median KGEs exceeding 

0.60. This pattern highlights the higher reliability of early forecasts and the deterioration 

of forecast skill as lead time increases. Summary statistics, including the 75th, 50th, and 

25th percentiles of KGE values across all models, are presented in Table 4.6. 

 
Table 4.6. Deterministic forecast performance results in 2018 and 2019 comparison for Kayabaşı Basin. 

 

Quartiles T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 
 

Q3 (0.75) 0.720 0.713 0.694 0.688 0.686 0.669 0.666 0.650 0.635 0.609 

Q2 (0.5) 0.683 0.678 0.650 0.647 0.643 0.628 0.620 0.607 0.590 0.566 

Q1 (0.25) 0.585 0.593 0.588 0.600 0.604 0.592 0.586 0.578 0.564 0.541 

Mean 0.660 0.658 0.643 0.642 0.639 0.625 0.616 0.607 0.591 0.567 
 

Q3 (0.75) 0.839 0.778 0.712 0.683 0.659 0.630 0.609 0.593 0.589 0.588 

Q2 (0.5) 0.805 0.747 0.688 0.651 0.629 0.612 0.585 0.562 0.550 0.543 

Q1 (0.25) 0.741 0.707 0.656 0.614 0.592 0.566 0.542 0.525 0.515 0.509 

Mean 0.792 0.737 0.681 0.647 0.622 0.599 0.577 0.561 0.552 0.546 
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Figure 4.22. Deterministic forecast performance for Kayabaşı Basin in 2018 and 2019, measured by 
KGE across 20 models as a function of lead time. 

 

4.2.2. Ensemble forecasting 

Çukurkışla 

Ensemble Forecasting with 50 ensemble members were performed using the twenty 

hydrological models and with 10 days lead time for Çukurkışla Basin. The mean 

ensemble performance of each model was evaluated using KGE performance index. A 

good performance was found for the basin across each lead-time. In 2018, the median 

KGE for the first lead time was observed 0.72, which gradually decreased as the lead time 

increased. Although some models underperformed – lower than 0.30 KGE, the median 

performance across all the lead times exceeded 0.60 KGE. 

In contrast, the median performance for the first lead time in 2019 was 0.736 KGE, 

slightly surpassing that of 2018. Additionally, the IQR for each lead time is narrower 

compared to 2018. Performance gradually declines until the 4th lead time, reaching a 

median of 0.54 KGE, followed by a slight increase at 5th lead time, and then it continues 

to decrease gradually until the last, from 0.583 to 0.574 KGE. Although the lowest 

performance was observed in 4th lead time with 0.40 KGE, it is higher than the lowest 

performance of 2018. This showed inter-annual variability of this basin in forecast skill. 

Figure 4.23 shows the box-plot performance of each lead time, while Table 4.7 shows the 

statistical summary of the forecast performance. 
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Figure 4.23. Ensemble forecast performance for Çukurkışla Basin in 2018 and 2019, measured by KGE 

across ensemble mean of 20 models as a function of lead time 

 

Table 4.7. Ensemble forecast performance results in 2018 and 2019 comparison for Çukurkışla Basin 

Quartiles T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 

Q3 (0.75) 0.824 0.720 0.673 0.680 0.676 0.683 0.690 0.691 0.673 0.676 

Q2 (0.5) 0.721 0.648 0.645 0.643 0.626 0.622 0.626 0.640 0.637 0.637 

Q1 (0.25) 0.504 0.429 0.460 0.531 0.549 0.522 0.475 0.468 0.472 0.481 

Mean 0.616 0.503 0.508 0.536 0.544 0.541 0.543 0.557 0.553 0.550 
 

Q3 (0.75) 0.769 0.697 0.642 0.610 0.647 0.650 0.647 0.638 0.635 0.637 

Q2 (0.5) 0.736 0.653 0.576 0.540 0.583 0.588 0.585 0.577 0.570 0.574 

Q1 (0.25) 0.686 0.591 0.518 0.499 0.544 0.552 0.544 0.539 0.543 0.548 

Mean 0.717 0.644 0.574 0.548 0.593 0.600 0.597 0.592 0.590 0.589 
 

 

Kayabaşı 

The ensemble forecasting modelling for Kayabaşı Basin was also performed from 

1st January to 30th June 2018 and 2019. Mean ensemble forecast performance was 

evaluated using KGE performance index. A good performance was found for this basin 

across each lead-time. In 2018, the median KGE for the first lead time was observed 0.67, 

which gradually decreased as the lead time increased. Although some models 

underperformed in the early (1-2 days) forecast, lower than 0.50 KGE, the median 

performance across all the lead times exceeded 0.60 KGE, indicating reliable 

performance from most of the models. In 2019, although the performance of the forecasts 

began with a notably higher median KGE of around 0.81 at lead time 1, but showed a 

sharper decline in performance, with the median dropping to 0.55 by lead time 10, 
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considerably lower than the corresponding 2018 KGE of 0.612. The performance of the 

early forecast (1-3 days) exceeded 0.70, which is higher than the performance of the first 

lead day in 2018. This comparison has shown inter-annual variability of this basin. This 

variability is also shown in both basins in deterministic and ensemble forecasting. 

 

Figure 4.24. Ensemble forecast performance for Kayabaşı Basin in 2018 and 2019, measured by KGE 

across ensemble mean of 20 models as a function of lead time. 

 

Table 4.8. Ensemble forecast performance results in 2018 and 2019 comparison for Kayabaşı Basin. 

Quartiles T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 

Q3 (0.75) 0.719 0.713 0.695 0.688 0.682 0.674 0.677 0.671 0.664 0.653 

Q2 (0.5) 0.678 0.667 0.646 0.640 0.639 0.633 0.631 0.628 0.623 0.612 

Q1 (0.25) 0.579 0.581 0.586 0.601 0.597 0.589 0.583 0.578 0.573 0.561 

Mean 0.656 0.651 0.636 0.637 0.636 0.631 0.629 0.624 0.617 0.608 
 

Q3 (0.75) 0.849 0.791 0.733 0.704 0.679 0.649 0.624 0.604 0.595 0.595 

Q2 (0.5) 0.812 0.767 0.707 0.670 0.644 0.625 0.601 0.576 0.559 0.554 

Q1 (0.25) 0.745 0.715 0.671 0.631 0.609 0.585 0.558 0.536 0.523 0.519 

Mean 0.799 0.752 0.698 0.664 0.640 0.616 0.592 0.571 0.559 0.556 
 

 

4.2.3. Comparison of deterministic and ensemble forecast performance 

Çukurkışla 

The hydrographs of deterministic and ensemble forecasts were compared alongside 

with the observed hydrograph for model 20 in 2018 and 2019. For 2018, the hydrographs 

of both forecasts have shown high accuracy with very narrow ensemble spread, closely 

capturing the high and low peaks of the observed discharges in the first lead days. As the 
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lead time increases, the accuracy decreases, and the ensemble spread widens as shown 

both lead times 5 and 10 in Figure 4.25. In addition, peak discharge of the forecasts 

decline below the observed at the longer lead days. The pattern of both forecasts are 

quietly similar for this year and model. 

For 2019, although the hydrographs of the first lead time did not capture the peak 

discharges in mid-March and early of April and overestimated the peak discharge in mid- 

January, the accuracy of both forecast predicted good and follow the observed discharge 

pattern. As the forecast of 2018, the accuracy of both forecasts decline as the lead time 

increases, and the forecasts could not capture the peak discharges. The ensemble forecast 

outperformed at the longer lead times as shown in Figure 4.26. The below figures show 

the comparison between observed discharge against deterministic, ensemble mean and 

ensemble range forecast for Çukurkışla Basin in 2018 and 2019 for Model 20. 

 

 

Figure 4.25. Çukurkışla deterministic and ensemble forecast hydrographs for model 20 in 2018 against 
observed hydrograph: Lead time 1, 5, and 10. 
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Figure 4.26. Çukurkışla deterministic and ensemble forecast hydrographs for model 20 in 2019 against 

observed hydrograph: Lead time 1, 5, and 10 

 

 
Figure 4.27. Comparison of deterministic and ensemble forecast performance across 10 lead days on 

Çukurkışla Basin 
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Figure 4.27 compares deterministic and ensemble forecasting performance using 

KGE over ten lead days for Çukurkışla Basin in 2018 and 2019. The ensemble forecast 

outperformed the deterministic forecast, especially at longer lead times. For 2018, both 

forecasts perform well in the early days, with KGE above 0.60. After a third lead day, the 

deterministic performance declines, showing lower KGE values and a wider spread. The 

ensemble forecast maintains higher KGE values, ranging from 0.40 to 0.80, with a 

narrower spread. In 2019, performance decline was more pronounced for both scenarios, 

indicating a more challenging forecasting year. While both scenarios have shown 

reasonable KGEs at 1-3 days, the ensemble forecast outperforms the deterministic in the 

later lead days. Beyond the third lead tie, deterministic forecast performance degrades 

significantly, with median KGE values below 0.4 and wide spreads. The ensemble 

forecast maintains a median KGE above 0.5 with narrower spread, demonstrating reduced 

uncertainty and high reliability at longer lead times and during challenging periods. 

 

Kayabaşı 

The hydrographs of deterministic and ensemble forecasts are compared alongside 

with the observed hydrograph for model 20 in 2018 and 2019. For 2018, the forecasts 

showed good accuracy at early lead times, reflected by a very narrow ensemble spread. 

However, they overestimated the peak discharges in late March, May, and early June. As 

shown for lead times of 5 and 10 days in Figure 4.28, forecast accuracy decreases and the 

ensemble spread widens as the lead time increases. At these longer lead times, the 

forecasts also tended to underestimate the high flows in March while overestimating them 

in May. Overall, the forecast patterns for this year were quite similar. 

For 2019, while the early lead time forecasts failed to capture the peak discharge in 

May, they otherwise followed the observed discharge pattern well. Similar to 2018, 

forecast accuracy declined as the lead time increased, and the models were unable to 

capture the peak discharges. As shown in Figure 4.29, the overall performance for this 

year was quite similar. The figures below compare the observed discharge in Kayabaşı 

Basin for Model 20 against its deterministic forecast, ensemble mean, and ensemble range 

for 2018 and 2019. 
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Figure 4.28. Kayabaşı deterministic and ensemble forecast hydrographs for model 20 in 2018 against 

observed hydrograph: Lead time 1, 5, and 10 

 

 

Figure 4.29. Kayabaşı deterministic and ensemble forecast hydrographs for model 20 in 2019 against 

observed hydrograph: Lead time 1, 5, and 10 

 

Figure 4.30 compares deterministic and ensemble forecasting performance using 

KGE over ten lead days for Kayabaşı Basin in 2018 and 2019. The ensemble forecast 

slightly outperformed the deterministic forecast at longer lead times. For 2018, both 

forecasts perform well in all lead days, with KGE above 0.60. At early lead time (1-3 
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days) the performance of both forecasts are quite similar. As the lead time increases, the 

deterministic forecast a slightly underperformed that of ensemble forecast. For 2019, both 

ensemble and deterministic forecasts performed good throughout all the lead time, higher 

than 0.50 KGE. The median performance of the early lead times (1-3 days) exceeded 0.70 

KGE, indicating higher reliability at the early days. The ensemble forecast slightly 

outperformed the deterministic forecast across all the lead times, demonstrating reduced 

uncertainty and higher reliability of the forecast. Ensemble forecast outperformed the 

deterministic forecast for both years and basins at longer lead days. 

 

 

Figure 4.30. Comparison of deterministic and ensemble forecast performance across 10 lead days on 

Kayabaşı Basin 

 

4.3. EnKF Data Assimilation Forecast 

4.3.1. Data assimilated deterministic forecasting 

Çukurkışla 
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EnKF data assimilation (DA) was performed with 50 perturbed members using 

observations of discharge, precipitation, temperature, and potential evapotranspiration. 

Following assimilation, forecasts were generated. The performance of the DA 

forecast showed significant improvement, evidenced by higher performance scores and a 

narrower interquartile range (IQR) at each lead time as shown in Figure 4.31. Table 4.9 

also shows the performance of each lead time. In 2018, the median KGE performance of 

twenty models for the first lead time was 0.774, and this median performance gradually 

declined as the lead time increased, reaching 0.507 KGE. In 2019, although a higher 

performance of 0.892 KGE was observed in the first lead time, the decline in performance 

was more pronounced than in 2018, dropping to 0.423 KGE in the last lead time. 

 

Figure 4.31. Data assimilated deterministic forecast performance (KGE) for Çukurkışla Basin in 2018 
and 2019, across 20 models as a function of lead time 

 

Table 4.9. Data assimilated deterministic forecast performance results in 2018 and 2019 comparison for 

Çukurkışla Basin 
 

Quartiles T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 
 

Q3 (0.75) 0.861 0.735 0.697 0.694 0.684 0.654 0.608 0.588 0.583 0.593 

Q2 (0.5) 0.774 0.634 0.604 0.607 0.620 0.578 0.550 0.532 0.515 0.507 

Q1 (0.25) 0.685 0.507 0.461 0.476 0.512 0.502 0.467 0.436 0.435 0.426 

Mean 0.739 0.578 0.557 0.565 0.582 0.559 0.525 0.504 0.496 0.488 
 

Q3 (0.75) 0.921 0.811 0.710 0.638 0.654 0.633 0.611 0.574 0.546 0.524 

Q2 (0.5) 0.892 0.787 0.649 0.568 0.577 0.544 0.522 0.493 0.458 0.423 

Q1 (0.25) 0.825 0.765 0.611 0.520 0.507 0.450 0.400 0.362 0.340 0.328 

Mean 0.871 0.788 0.654 0.575 0.582 0.549 0.520 0.481 0.449 0.421 
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Kayabaşı 

The input data for Kayabaşı Basin underwent EnKF DA, from which deterministic 

forecasts were generated. The performance of the data-assimilated deterministic forecast 

showed improvement, with higher performance and narrower IQ ranges at each lead time 

as shown in Figure 4.32 and Table 4.10. In 2018, the median KGE performance of twenty 

models for the first lead time was 0.784, and this median performance gradually declined 

as the lead time increased, reaching 0.65 KGE. In 2019, although a higher performance 

of 0.894 KGE was observed in the first lead time, the decline in performance was more 

pronounced than in 2018, dropping to 0.536 KGE in the last lead time. 

 

Figure 4.32. Data assimilated deterministic forecast performance (KGE) for the Çukurkışla Basin in 

2018 and 2019, across 20 models as a function of lead time 

 

Table 4.10. Data assimilated deterministic forecast performance in 2018 and 2019 for Çukurkışla Basin 
 

Quartiles T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 
 

Q3 (0.75) 0.832 0.818 0.793 0.785 0.783 0.767 0.749 0.732 0.715 0.694 

Q2 (0.5) 0.780 0.788 0.777 0.758 0.749 0.726 0.703 0.693 0.676 0.650 

Q1 (0.25) 0.712 0.762 0.749 0.734 0.714 0.683 0.668 0.647 0.621 0.588 

Mean 0.775 0.785 0.764 0.753 0.743 0.722 0.706 0.691 0.673 0.645 
 

Q3 (0.75) 0.920 0.866 0.789 0.736 0.706 0.671 0.637 0.610 0.590 0.576 

Q2 (0.5) 0.894 0.837 0.756 0.711 0.679 0.647 0.615 0.583 0.555 0.536 

Q1 (0.25) 0.854 0.801 0.732 0.679 0.631 0.593 0.566 0.543 0.518 0.501 

Mean 0.880 0.826 0.752 0.704 0.670 0.636 0.602 0.573 0.552 0.539 
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4.3.2. Data assimilated ensemble forecasting 

Çukurkışla 

The input data for Çukurkışla Basin underwent EnKF DA, from which ensemble 

forecasts were generated. The performance of the data-assimilated ensemble forecast 

showed improvement, with higher performance and narrower IQ ranges at each lead time. 

Figure 4.33 and table 4.11 illustrate the performance comparison between 2018 and 2019 

in Çukurkışla Basin. In 2018, the median KGE performance of twenty models for the first 

lead time was 0.809, and this median performance gradually declined as the lead time 

increased, reaching 0.644 KGE. In 2019, although a higher performance of 0.887 KGE 

was observed in the first lead time, the decline in performance was more pronounced than 

in 2018, dropping to 0.671 KGE in the last lead time. 

 

Figure 4.33. Data assimilated ensemble forecast performance (KGE) for Çukurkışla Basin in 2018 and 

2019, across 20 models as a function of lead time 

 

Table 4.11. Data assimilated ensemble forecast performance in 2018 and 2019 for Çukurkışla Basin 

Quartiles T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 

Q3 (0.75) 0.863 0.753 0.731 0.710 0.704 0.683 0.674 0.691 0.696 0.699 

Q2 (0.5) 0.809 0.652 0.631 0.671 0.674 0.657 0.645 0.647 0.642 0.644 

Q1 (0.25) 0.704 0.526 0.576 0.625 0.636 0.640 0.627 0.632 0.622 0.607 

Mean 0.757 0.608 0.605 0.641 0.648 0.639 0.629 0.636 0.627 0.622 
 

Q3 (0.75) 0.930 0.833 0.746 0.713 0.759 0.767 0.757 0.743 0.730 0.718 

Q2 (0.5) 0.887 0.816 0.718 0.684 0.719 0.717 0.707 0.690 0.679 0.671 

Q1 (0.25) 0.827 0.771 0.687 0.651 0.690 0.685 0.676 0.657 0.625 0.586 

Mean 0.872 0.804 0.709 0.671 0.716 0.716 0.705 0.690 0.675 0.663 
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Kayabaşı 

Finally, the input data for Kayabaşı Basin underwent EnKF DA, from which 

ensemble forecasts were generated. The performance of the data-assimilated ensemble 

forecast showed improvement, with higher performance and narrower IQ ranges at each 

lead time. Figure 4.34 and Table 4.12 illustrate the performance comparison between 

2018 and 2019 in Kayabaşı Basin. In 2018, the median KGE performance of twenty 

models for the first lead time was 0.782, and this median performance gradually declined 

as the lead time increased, reaching 0.698 KGE. In 2019, although a higher performance 

of 0.899 KGE was observed in the first lead time, the decline in performance was more 

pronounced in 2019, dropping to 0.54 KGE in the last lead time. 

 

Figure 4.34. Data assimilated ensemble forecast performance (KGE) for Kayabaşı Basin in 2018 and 

2019, across 20 models as a function of lead time 

 

Table 4.12. Data assimilated ensemble forecast performance results in 2018 and 2019 comparison for 

Kayabaşı Basin 
 

Quartiles T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 
 

Q3 (0.75) 0.833 0.833 0.794 0.776 0.775 0.765 0.753 0.742 0.736 0.723 

Q2 (0.5) 0.782 0.788 0.766 0.757 0.751 0.743 0.731 0.718 0.706 0.698 

Q1 (0.25) 0.712 0.750 0.739 0.725 0.711 0.698 0.686 0.671 0.660 0.648 

Mean 0.777 0.785 0.762 0.753 0.746 0.735 0.725 0.713 0.702 0.689 
 

Q3 (0.75) 0.926 0.879 0.802 0.755 0.720 0.687 0.648 0.616 0.595 0.584 

Q2 (0.5) 0.899 0.853 0.776 0.728 0.694 0.661 0.629 0.594 0.565 0.548 

Q1 (0.25) 0.858 0.820 0.750 0.699 0.653 0.612 0.581 0.556 0.533 0.518 

Mean 0.885 0.841 0.769 0.720 0.685 0.650 0.614 0.582 0.560 0.549 
 

2
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8
 



85  

4.3.3. Impact of data Assimilation on forecast skill 

Çukurkışla 

Open-loop (OL) and data assimilated (DA) deterministic and ensemble forecast 

performances for Çukurkışla Basin in 2018 are compared as shown in Figure 4.35. Table 

4.13 presents the median KGE performances of OL and DA deterministic and ensemble 

forecasts across all lead times in 2018. While the OL deterministic forecast showed the 

lowest performance across all lead times, the DA ensemble forecast performed the 

highest, according to the highest observed KGE values and smallest IQ ranges. Although 

the DA deterministic forecast performed better than the OL deterministic forecast, it 

could not outperform the OL ensemble forecast, except at the first lead time. The impact 

of DA is clearly visible across all lead times, demonstrating that DA reduced the 

uncertainty and increased the reliability of the forecast. 

 

 

Figure 4.35. Performance of Open Loop (OL) and Data Assimilation (DA) deterministic and ensemble 

forecasts across lead times of 1, 5, and 10 days for Çukurkışla Basin in 2018 

 

Table 4.13. Median KGE performance of OL and DA deterministic and ensemble forecasts across all lead 

times for Çukurkışla Basin in 2018 
 

Forecast type T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 

OL Deterministic 0.718 0.637 0.603 0.571 0.549 0.513 0.483 0.461 0.444 0.433 

OL Ensemble 0.721 0.648 0.645 0.643 0.626 0.622 0.626 0.640 0.637 0.637 

DA Deterministic 0.774 0.634 0.604 0.607 0.620 0.578 0.550 0.532 0.515 0.507 

DA Ensemble 0.809 0.652 0.631 0.671 0.674 0.657 0.645 0.647 0.642 0.644 
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Similarly, OL and DA deterministic and ensemble forecasts for Çukurkışla Basin 

in 2019 are compared as shown in Figure 4.36. Table 4.13 presents the median KGE 

performances of OL and DA deterministic and ensemble forecasts across all lead times 

in 2019. All the scenarios showed strong performances with the DA forecasts, both 

deterministic and ensemble, outperforming the OL forecasts. Although the OL 

deterministic forecast exhibited the lowest performance across all lead times, the DA 

ensemble forecast achieved the highest performance, as indicated by the highest observed 

KGE values and the smallest IQ ranges. The DA deterministic forecast outperformed its 

OL counterpart, but it underperformed the OL ensemble forecast across all lead times 

except the first. The highest performances were observed in the first lead days, then they 

declined gradually. The decline is more pronounced in the deterministic forecasts for both 

OL and DA forecasts. This consistent improvement from OL to DA and from 

deterministic to ensemble methods emphasizes the importance of both DA and ensemble 

strategies in improving forecast skill, especially for medium-range predictions. 

 

 

Figure 4.36. Performance of Open Loop (OL) and Data Assimilation (DA) deterministic and ensemble 

forecasts across lead times of 1, 5, and 10 days for Çukurkışla Basin in 2019 

 

Table 4.14. Median KGE of OL and DA deterministic and ensemble forecasts for Çukurkışla Basin in 2018 
 

Forecast Type T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 

OL Deterministic 0.725 0.574 0.468 0.407 0.389 0.342 0.304 0.264 0.244 0.227 

OL Ensemble 0.736 0.653 0.576 0.539 0.583 0.588 0.585 0.577 0.570 0.574 

DA Deterministic 0.892 0.787 0.649 0.568 0.577 0.544 0.522 0.493 0.458 0.423 

DA Ensemble 0.887 0.816 0.718 0.684 0.719 0.717 0.707 0.690 0.679 0.671 
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Kayabaşı 

OL and DA deterministic and ensemble forecasts for Kayabaşı Basin in 2018 are 

compared in Figure 4.37 across lead times of 1, 5, and 10 days. Table 4.15 summarizes 

the median performances of all lead times in 2018. All forecasts showed strong 

performances, with DA forecasts outperforming OL forecasts across all lead times. The 

OL deterministic forecast showed the lowest performance, due to lowest KGE 

performance. The DA ensemble forecast achieved the highest performance across all lead 

times. While DA ensemble resulted the highest KGE, DA deterministic forecast also 

showed slightly tighter IQ ranges at early lead times. The DA deterministic forecast 

outperformed its OL counterpart across all lead times. Within DA, ensemble forecasts 

showed advantage over deterministic at longer lead times. In OL, ensemble forecasts 

outperformed deterministic at longer lead times. Performance was highest on the first lead 

day and declined with increasing lead time, with OL forecasts showing steeper decline 

than DA forecasts. 

 

Figure 4.37. Performance of OL and DA deterministic and ensemble forecasts across lead times of 1, 5, 

and 10 days for Kayabaşı Basin in 2018 

 

Table 4.15. Median KGE of OL and DA deterministic and ensemble forecasts for Kayabaşı Basin in 2018 
 

Forecast type T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 

OL Deterministic 0.683 0.678 0.650 0.647 0.643 0.628 0.620 0.607 0.590 0.566 

OL Ensemble 0.678 0.667 0.646 0.640 0.639 0.633 0.631 0.628 0.623 0.612 

DA Deterministic 0.780 0.788 0.777 0.758 0.749 0.726 0.703 0.693 0.676 0.650 

DA Ensemble 0.782 0.788 0.766 0.757 0.751 0.743 0.731 0.718 0.706 0.698 
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Similarly, OL and DA deterministic and ensemble forecasts for Kayabaşı Basin in 

2019 are compared as shown in Figure 4.38 across lead times of 1, 5, and 10 days. All the 

forecasts showed strong performances, with the DA forecasts, both deterministic and 

ensemble, outperforming the OL forecasts across all lead times. The OL deterministic 

and ensemble forecasts exhibited the lowest performances across all lead times when 

compared to their DA counterparts. In contrast, the DA ensemble and deterministic 

forecasts achieved the highest performances, especially at Lead Time 1 (medians of 

0.899, and 0.894 KGE, respectively). The DA ensemble forecast maintained a slight edge 

over the DA deterministic across lead times, often showing slightly higher median KGE 

values and similar or tighter IQ ranges compared to OL as shown in Table 4.16. The DA 

Deterministic forecast outperformed its OL counterpart, both deterministic and ensemble, 

across all lead times except the last lead days which OL ensemble forecast outperforms. 

The highest performances were observed in the first lead day, then they declined 

gradually across all forecast types as the lead time increased. 

 

Figure 4.38. Performance of OL and DA deterministic and ensemble forecasts across lead times of 1, 5, 

and 10 days for Kayabaşı Basin in 2019. 

 

Table 4.16. Median KGE of OL and DA deterministic and ensemble forecasts for Kayabaşı Basin in 2019. 
 

Forecast type T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 

OL Deterministic 0.805 0.747 0.688 0.651 0.629 0.612 0.585 0.562 0.550 0.543 

OL Ensemble 0.812 0.767 0.707 0.670 0.644 0.625 0.601 0.576 0.559 0.554 

DA Deterministic 0.894 0.837 0.756 0.711 0.679 0.647 0.615 0.583 0.555 0.536 

DA Ensemble 0.899 0.853 0.776 0.728 0.694 0.661 0.629 0.594 0.565 0.548 
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4.4. Multi-model Combination 

4.4.1. Hydrological MM 

Figure 4.39 shows the performance of twenty hydrological models and their MM 

during calibration and validation periods for both basins. The calibrated and validated 

streamflow discharges from the models is averaged, and their KGE performance 

calculated. Results highlight significant differences in model performance between the 

two catchments. For Çukurkışla Basin, MM approach showed high performance 

compared to individual models. In calibration and validation periods, the MM (KGE = 

0.917 and 0.899, respectively) outperformed all 20 individual models, positioning it 

above the upper whisker of the distribution. This indicates high performance and 

consistency, as performance decline from calibration to validation was minimal. For 

Kayabaşı Basin, results are more modest and show a significant decline during validation. 

In the calibration period, MM performance (KGE = 0.756) was at the 75th percentile of 

individual models. In validation, MM performance declined significantly (KGE = 0.635), 

aligning with the median performance of individual models. 

 

 

Figure 4.39. Performance of the individual models and their MM for Çukurkışla and Kayabaşı basins 

during calibration and validation periods 
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4.4.2. Open-Loop multi-model forecasts 

Çukurkışla 

Using SAM, the OL deterministic and ensemble forecast discharges from twenty 

hydrological models were combined using a MM approach. For each lead time and basin, 

the deterministic forecasts (20 members) and ensemble forecasts (1000 members) were 

averaged to produce the MM forecasts. Figure 4.40 demonstrates the comparison 

between OL individual deterministic, MM deterministic and ensemble forecast 

performance in Çukurkışla Basin. In Çukurkışla Basin, MM forecasts consistently 

outperformed individual models' median performance in both deterministic and 

ensemble. The MM forecast performance exceeded approximately 75% of individual 

models across most lead days for ensemble MM forecasts. In 2019, MM ensemble 

forecasts demonstrated better performance compared to all other forecasts across lead 

times. MM ensemble forecast performance was higher in 2019 than 2018. The ensemble 

forecast impact is clearly observable in later lead days. 

 

Figure 4.40. OL multi-model forecasts for Çukurkışla Basin in 2018 and 2019 
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Kayabaşı 

The multi-model (MM) performance of both deterministic and ensemble forecasts 

was strong, exceeding 75% of the individual models in 2018. Unlike in Çukurkışla Basin, 

the difference between deterministic and ensemble MM forecast performance is minimal 

in both years. The MM ensemble forecast performed better during the later lead times in 

both years but showed weaker performance in the first five lead days of 2018. Figure 4.41 

shows the comparison between individual deterministic, MM deterministic and ensemble 

forecasts for Kayabaşı Basin in 2018 and 2019. 

 

Figure 4.41. OL multi-model forecasts for Kayabaşı Basin in 2018 and 2019. 

 

4.4.3. Data assimilated multi-model forecasts 

The DA deterministic (20x50 members) and ensemble (20x50x50 members) 

forecasts were also combined using the SAM. The performance of the resulting 

discharges relative to the observed discharge was calculated and is presented in Figures 

4.42 and 4.43. 
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Çukurkışla 

The MM performance for both DA deterministic and ensemble forecasts for 

Çukurkışla Basin exceeded the median performance of the individual models across all 

lead times. Specifically, in 2018, the MM forecasts outperformed approximately 75% of 

the individual models beyond the third lead day. In 2019, the ensemble MM forecast 

outperformed all individual deterministic and ensemble forecast, while the deterministic 

MM forecast still achieved performance above the median of the individual models. 

 

Figure 4.42. DA multi-model forecasts for Çukurkışla Basin in 2018 and 2019 

 

Kayabaşı 

Similar to the OL forecasts, the difference between the DA deterministic and 

ensemble MM forecast performance in Kayabaşı Basin is minimal for both 2018 and 

2019. In 2018, both DA deterministic and ensemble MM forecasts outperformed 

approximately 75% of the individual models across nearly all lead times. In 2019, 

although the overall skill declined with increasing lead time, the MM forecasts still 

maintained performance above the median of the individual models throughout the 10- 

day forecast horizon. Notably, the DA ensemble forecasts consistently outperformed the 

deterministic forecasts across all lead times in both years, except during the first five lead 
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days of 2018, where the performance of both forecast types was nearly identical. This 

similarity suggests that in the early lead times of 2018, DA contributed equally to both 

forecasting approaches. 

 

Figure 4.43. DA multi-model forecasts for Kayabaşı Basin in 2018 and 2019 

 

 

4.4.4. Comparison of OL and DA multi-model forecasts 

Çukurkışla 

The comparison of OL and DA MM forecasts for Çukurkışla Basin reveals a 

significant enhancement in forecast performance when using DA, particularly in 2019 as 

shown in Figure 4.44. In general, all MM forecasts matched or exceeded the median 

performance of the individual deterministic models (represented by the boxplots). In 

2018, DA models consistently exhibited higher KGE values than their OL counterparts 

across most lead times. The DA Ensemble MM demonstrated the highest overall 

performance. However, a notable exception occurred in the initial forecast period: for 

lead days 2 and 3, the DA Ensemble MM slightly underperformed the OL Ensemble MM 

before surpassing it for all subsequent lead times. The superiority of the DA approach 

was more pronounced in 2019. While the OL forecasts showed a sharp degradation in 

skill after the third lead day, the DA forecasts remained highly reliable. The DA Ensemble 
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MM was exceptionally higher, maintaining a KGE above 0.70 throughout the entire 10- 

day forecast horizon. This demonstrates that DA not only improves initial skill but also 

flattens the performance decay curve, leading to more dependable forecasts at longer lead 

times. 

 

Figure 4.44. Comparison between OL and DA forecast over Çukurkışla Basin 

 

Kayabaşı 

The forecast performance over Kayabaşı Basin have shown higher performances of 

DA integration compared to OL simulation across both the 2018 and 2019 forecast years 

as shown in Figure 4.45. In all cases, MM forecasts outperformed the median of the 

individual deterministic forecast. In 2018, a significant performance gap was observed 

between the DA and OL forecasts from the very first lead day. The DA Ensemble MM 

began with a KGE above 0.80 and maintained its skill above 0.70 for the entire 10-day 

horizon. In contrast, both OL forecasts started with lower KGE (around 0.70) and 

demonstrated a steady decline. The ensemble approach provided a consistent benefit 
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within both frameworks, with the DA Ensemble MM outperforming the DA 

Deterministic MM, and the OL Ensemble MM outperforming the OL Deterministic MM. 

The advantage of DA was even more pronounced in 2019. The DA Ensemble MM 

delivered very good performance, starting with a KGE greater than 0.9 on day 1. While 

all forecasts showed a natural degradation over the forecast period, the decline in the OL 

forecasts was particularly sharp. The skill of the OL Deterministic MM, for instance, fell 

below 0.6 by the sixth lead day. The DA forecasts, however, provided better performance 

except the last 2 lead days. 

Unlike Çukurkışla Basin, the performance hierarchy in Kayabaşı was unambiguous 

across all lead times and both years: the DA Ensemble MM consistently provided the 

most reliable forecast, followed by the DA Deterministic MM, the OL Ensemble MM, 

and finally the OL Deterministic MM. This demonstrates a robust and substantial 

improvement in forecast reliability resulting from the integration of DA. 

 

Figure 4.45. Comparison between OL and DA forecast over Kayabaşı Basin 
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4.5. Discussion 

The calibration and validation performance for both basins indicated that most 

models achieved very good performance based on the threshold criteria defined by 

Knoben et al. (2019) and Moriasi et al. (2007). Among the evaluated metrics, the NSE, 

which is sensitive to errors in peak flow magnitude, has shown lower performance among 

others. In contrast, KGE demonstrated the highest performance across the models. KGE 

offers a more balanced assessment by incorporating correlation, bias, and variability, and 

is more interpretable and less sensitive to extreme flows in this context (Knoben et al., 

2019). For Çukurkışla Basin, the KGE performance across 20 models ranged from 0.80 

to 0.90 during the calibration period and 0.75 to 0.90 during validation, indicating both 

high performance and good model transferability. In comparison, Kayabaşı 

Basin has shown a wider range of performance, with KGE scores from twenty 

models spanning from 0.52 to 0.83 for calibration and 0.55 to 0.70 for validation. 

Although both basins are influenced by snow processes, Kayabaşı is more strongly snow 

dominated. It shows greater snow accumulation and a lower FC, indicating slower 

snowmelt rates across all models. 

The OL deterministic and ensemble forecasts demonstrated very good performance 

during the early forecast (1–3 days) across both basins and years. However, as the lead 

time increased, the forecast skill gradually declined, which is showing growing 

uncertainty over time. Notably, the OL ensemble forecasts outperformed the deterministic 

forecasts at longer lead times, aligning with findings from previous studies (Dion et al., 

2021; Thiboult et al., 2016; Velázquez et al., 2011). This outperformance is clearly 

observed in Çukurkışla Basin and there are small marginal differences in Kayabaşı Basin. 

The results of MM confirmed the findings of the studies in the literature review 

(Ajami et al., 2007; Thébault et al., 2024; Thiboult and Anctil, 2015; Velázquez et al., 

2011). MM simulation forecasts generally performed better than most individual models, 

indicating a clear advantage of better accuracy and reliability. 

In Çukurkışla Basin, the MM approach had shown a superior performance during 

both the calibration and validation periods, achieving KGE of 0.917 and 0.899 

respectively surpassing even the best individual models. It agrees with the findings of 

Georgakakos et al. (2004), who reported that MM simulations typically exceed the upper 

quartile performance of individual models, especially in catchments where model 

uncertainty is high. The diversity of the models’ performance is high in this basin where 
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outlier models are present. The improvement of the MM approach in this basin is further 

supported by its stable performance across lead times in both OL and DA configurations. 

The DA-based MM forecasts demonstrated particularly strong results, with KGE values 

remaining above 0.70 throughout the entire 10-day forecast horizon. These findings are 

supporting the findings from Thiboult et al. (2016) and Dotto et al. (2012), who 

emphasized that MM approach performances are better than the median of the individual 

models. 

In addition, Kayabaşı Basin presented a more modest MM benefit, especially during 

the validation period, where the MM performance dropped significantly (KGE = 0.562). 

This variation suggests basin-specific sensitivities, possibly related to hydrological 

regime complexity, model calibration constraints, or data availability. However, even in 

Kayabaşı, the DA Ensemble MM forecasts outperformed all other configurations, 

demonstrating the value of integrating DA with ensemble modelling. Similar to 

observations by Velázquez et al. (2010), the ensemble-based MMs proved particularly 

effective in capturing uncertainty and improving forecast skill, especially at longer lead 

times. 
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5. CONCLUSION AND RECOMMENDATIONS 

In this study, we aimed to assess the medium range weather forecasting from 

ECMWF on hydrological forecasting with uncertainty reduction in two basins: 

Çukurkışla and Kayabaşı basins. The primary objective was to systematically evaluate 

and compare the efficacy of several uncertainty reduction techniques, EPS, DA, and MM 

approach combination. We used HOOPLA toolbox to run twenty hydrological models to 

provide an assessment of how these methods, both individually and in combination, 

improve the accuracy and reliability of discharge forecasts. From calibration of the 

hydrological models to different types of forecasting, we found that: 

 Calibration and validation (section 4.1) of the twenty hydrological models 

showed very good performance for both basins. In Çukurkışla Basin, the twenty 

models’ performance is higher than 0.80 KGE for both calibration and validation, 

which showed better prediction for the hydrological models for this basin. In 

Kayabaşı Basin, although the performance of some models exceeded 0.70 in the 

calibration period, while the median performance was found to be 0.635 in the 

validation period. Due to higher snow dominance, this basin’s simulation is more 

complex than Çukurkışla Basin. 

 In the Open-Loop forecast approach (Section 4.2), although both deterministic 

and ensemble forecasts performed better for both basins, their performance 

declines as the lead time increases. The decline in performance is higher or more 

pronounced in 2019 for both basins and forecast types. In addition, OL ensemble 

forecast outperformed its deterministic counterpart especially as the lead-time 

increases. The EPS enhances performance and reliability while reducing forecast 

uncertainty, especially at longer lead times. 

 In addition, the utilization of EnKF for DA (Section 4.3) added a substantial 

improvement in forecast performance and reliability. By assimilating observed 

variables to update model states, the DA framework significantly enhanced 

forecast accuracy over the OL framework. This improvement was evident in 

higher median KGE, and narrower performance spread across all lead times and 

in both basins. The impact of DA was most pronounced in reducing initial 

condition uncertainty, leading to more accurate early forecasts and a slower decay 

in skill over the 10-day forecast horizon. 
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 Finally, MM combination using Simple Averaging Method (Section 4.4) proved 

to be a powerful technique for mitigating model structural uncertainty. The MM 

forecasts consistently performed better than the median of the individual models. 

The ultimate and most effective was DA Ensemble MM. This integrated 

approach, which addresses all three primary sources of uncertainty (forcing, initial 

conditions, and model structure), consistently yielded the highest KGE values and 

the most reliable performance across both basins and forecast years. 

5.2. Limitations of the Study 

 The findings are specific to Çukurkışla and Kayabaşı basins. While these 

represent important snow-influenced regions in Turkiye, their characteristics may 

not be directly generalizable to other basins with different climatic or 

physiographic properties. 

 This study employed a Simple Averaging Method (SAM) for MM combination 

due to its simplicity and robustness. 

 The study was based on 20 lumped conceptual models from the HOOPLA 

toolbox. 

 The forecasting experiments were limited to the first half of 2018 and 2019. 

5.3. Suggestions for Future Research 

Due to limitation of this study, the following suggestions could be recommended: 

 To assess different topographical, regions, scale and climate study areas. 

 To investigate the performance of more sophisticated MM combination 

techniques, such as Bayesian Model Averaging (BMA) or weighted ensembles, 

and compare the EnKF with other DA algorithms. 

 To utilize the established framework to assess the potential impacts of future 

climate change scenarios on hydrological regimes and forecast uncertainty. 
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