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ABSTRACT

ASSESSING THE MID-TERM WEATHER FORECASTS IN HYDROLOGICAL
MODELLING

Abdishakur Dahir ABDULLAHI
Department of Civil Engineering
Programme in Hydraulic Engineering
Eskigehir Technical University, Institute of Graduate Programs, July 2025
Supervisor: Assoc. Prof. Dr. Ali Arda SORMAN

Accurate hydrological forecasting is critical for water resource management, flood
prediction, hydropower generation, and risk assessment and mitigation but is
fundamentally challenged by uncertainties arising from meteorological forcing, model
structure, and initial conditions. This study provides an evaluation of medium range
weather forecasting in hydrological modelling from European Centre for Medium-Range
Weather Forecasts (ECMWF) to reduce these uncertainties for two mountainous basins.
Using twenty hydrological models within the HydrOIOgical Prediction LAboratory
(HOOPLA) framework, this research systematically compares four forecasting
configurations: Open-Loop (OL) and Data Assimilated (DA) for both deterministic and
ensemble forecasts. The Ensemble Kalman Filter (EnKF) was used for data assimilation,
and multi-model (MM) combinations were generated using a Simple Averaging Method
(SAM). Performance, assessed by the Kling-Gupta Efficiency (KGE), revealed a clear
hierarchy. Ensemble forecasts consistently outperformed deterministic ones, and DA
significantly enhanced forecast skill over OL simulations by correcting initial model
states. The study demonstrates that an integrated approach combining all techniques
yields the most reliable results. The DA multi-model ensemble proved superior,
effectively mitigating multiple uncertainty sources and maintaining high accuracy across
the 10-day forecast horizon. These findings offer a robust, evidence-based framework for

improving operational hydrological forecasting systems.

Keywords: Medium range, Uncertainty, Ensemble forecasting, Data assimilation,
Multi-model.



OZET

HIDROLOJIK MODELLEMEDE ORTA VADELI HAVA TAHMINLERININ
DEGERLENDIRILMESI

Abdishakur Dahir ABDULLAHI
Insaat Miihendisligi Anabilim Dali
Hidrolik Miihendisligi Bilim Dali
Eskisehir Teknik Universitesi, Lisansistii Egitim Enstitiisti, Temmuz 2025
Danigsman: Dog. Dr. Ali Arda SORMAN

Dogru hidrolojik tahminleme, su kaynaklarinin yonetimi, tagkin erken uyari
sistemleri ve hidroelektrik enerji iiretimi agisindan kritik bir 6neme sahiptir. Ancak,
meteorolojik girdileri, model yapisi ve baslangi¢ kosullarinin belirsizlikleri nedeniyle bu
tahminlerin giivenilirligi ¢cogu zaman smirli kalmaktadir. Bu calismada, daghk iki
havzada, belirsizlikleri azaltmay1 hedefleyen bir yaklasim sunulmustur. Avrupa Orta
Vadeli Hava Tahminleri Merkezi (ECMWEF) tarafindan saglanan orta vadeli meteorolojik
tahminlerin, hidrolojik modelleme siireglerindeki etkisi degerlendirilmistir. HydrOlOgic
Prediction LAboratory (HOOPLA) araylzi kullanilarak yirmi farkli hidrolojik model ile
dort farkli tahmin yapilandirmasi sistematik bicimde karsilastirilmistir: Open-Loop (OL)
ve Veri Asimilasyonu (DA) yaklasimlar1 altinda olusturulan deterministik ve ensemble
tahminler. Veri asimilasyonu icin Ensemble Kalman Filtresi (EnKF) kullanilirken, ¢oklu
model (multi-model) kombinasyonlar Basit Ortalama Y dntemi (Simple Average Method,
SAM) ile olusturulmustur. Kling-Gupta Efficiency (KGE) ile yapilan performans
degerlendirmesi, yontemler arasinda belirgin bir basar1 hiyerarsisi ortaya koymustur.
Ensemble tahminler, deterministik tahminlere kiyasla tutarli bir sekilde daha yiiksek
performans sergilemis; veri asimilasyonu ise baslangi¢ kosullarini iyilestirerek OL
tahminlerine goére o6nemli Gl¢iide daha basarili sonuglar vermistir. Calisma, veri
asimilasyonu ile cok modelli ensemble yaklasiminin bir arada kullanildig: biitiinlesik bir
yontemin, 10 giinliik tahmin ufku boyunca en yiiksek dogrulugu sagladigini ve c¢oklu
belirsizlik kaynaklarmi etkili bi¢imde azaltabildigini gostermektedir. Bu bulgular,
operasyonel hidrolojik tahmin sistemlerinin dogrulugunu ve giivenilirligini artirmak i¢in

saglam bir ¢er¢eve sunmaktadir.

Anahtar Sozcukler: Orta vadeli tahminleri, Ensemble tahminleri, Belirsizlik, Veri
asimilasyonu, Coklu model.
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1. INTRODUCTION
1.1. Background

Hydrological forecasting is a vital tool for effective management of water
resources, flood prediction, hydropower generation, and risk assessment and mitigation
(Dion et al., 2021). Accurate and reliable forecasts are essential for informed decision
making in these areas, impacting everything from daily operations to long-term planning.
However, hydrological modelling and forecasting are inherently uncertain. This
uncertainty stems from various sources including uncertainties in input data,
meteorological forcing, model parameters and structure, initial conditions and forecasting
(A. Gupta and Govindaraju, 2023; Liu and Gupta, 2007; Montanari, 2007; Panchanathan
et al., 2024; Thiboult et al., 2016).

These uncertainties pose significant challenges, potentially leading to flawed
decision making in water allocation, risk assessment, emergency planning, and climate
change adaptation strategies. Inaccurate forecasts can result in infrastructure deficiencies,
ecosystem disruptions, and substantial economic losses across various sectors
(Panchanathan et al., 2024). Therefore, understanding, quantifying, and mitigating
uncertainty is paramount in hydrological modeling to ensure the reliability and practical
value of forecasts.

Traditionally, discharge forecasts have often relied on deterministic methods, which
provide a single, most likely prediction without accounting for inherent uncertainties.
However, probabilistic forecasts offer a range of possible outcomes with associated
probabilities, explicitly acknowledging and quantifying uncertainty. This capability has
led to a shift in focus over the last decade toward probabilistic approaches as they are
better equipped to capture the full spectrum of potential outcomes (Krzysztofowicz, 2001;
Velazquez et al., 2011).

Several strategies have been employed to address these uncertainties and improve
forecast accuracy. Ensemble Prediction Systems (EPS) play a crucial role in reducing
uncertainties associated with meteorological input data. EPS generates multiple forecasts
using slightly perturbed initial conditions in Numerical Weather Prediction (NWP)
models, thus providing a probabilistic representation of potential future weather
scenarios. This is particularly valuable in hydrology, as precipitation and temperature are
critical drivers of discharge (Anctil and Ramos, 2019; Cloke and Pappenberger, 2009;
Leutbecher and Palmer, 2008; Shu et al.,, 2023). Another approach to minimize



uncertainties arising from the model structure is the use of multi-model (MM)
hydrological ensembles. Instead of relying on a single model, this approach combines
predictions from multiple hydrological models, each with its own structure and
parametrization, to provide a more robust and reliable forecast (Thiboult et al., 2016;
Veldzquez et al., 2011; Wang et al., 2021). Furthermore, data assimilation (DA)
techniques are employed to address uncertainties in the initial conditions of the input
data. By incorporating observational data, such as streamflow measurements,
precipitation, and temperature, into the model, these techniques refine the initial state of
the model and reduce the uncertainty associated with the starting conditions.

Despite these advancements, the application of these uncertainty reduction
techniques, particularly the combination of EPS, MM ensembles, and DA, has been
limited in the Turkish basins. This study aims to address this challenge by developing an
integrated framework that combines probabilistic forecasting, MM, and DA techniques
to improve the reliability and skill of discharge forecasts in two mountainous basins. By
improving the accuracy and reliability of forecasts in these basins, this study seeks to
contribute to more effective water resource management and hydropower generation in
Turkiye. Specifically, this research will investigate the following research questions: (1)
How does the use of MM ensemble approach, compare to a single-model approach,
impact the accuracy and reliability of discharge forecasts? (2) What is the added value of
incorporating DA techniques to improve the representation of the initial conditions and
reduce forecast uncertainty? (3) How does the combined use of EPS, MM ensembles,
and DA contribute to a more comprehensive understanding of the forecast uncertainty in

the study basins?

1.2. Problem Statement

Accurate weather forecasting is crucial for effective hydrological modeling,
particularly in regions or basins prone to extreme weather events. The reliability and skill
of these forecasts are significantly affected by uncertainties arising from various sources,
including model structure, initial conditions, and the forecasts themselves. Addressing
these uncertainties requires the integration of EPS input data, MM approach for model
structures, and DA techniques for initial conditions. The use of MM, DA, and EPS have
shown good performance in recent studies, but are not commonly studied in Turkish

Basins.



Hydrological forecasting in Turkish basins face significant challenges owing to
their topography, climate variability, and limited application of advanced uncertainty
reduction techniques. Although EPS, MM ensembles, and DA have shown promise in
improving forecast accuracy elsewhere, their combined application has not been
thoroughly investigated in the Turkish context. Specifically, studies that systematically
evaluate the performance of multiple hydrological models driven by EPS data and further
refined through DA in these basins are lacking. This study addresses this critical need by
developing and evaluating an integrated framework that leverages the strengths of EPS,
MM ensembles, and DA to improve the accuracy and reliability of discharge forecasts.

1.3. Objectives

The primary objective of this study was to evaluate the efficacy of mid-term
weather forecasts in hydrological modelling using EPS, multi-hydrological models, and
DA techniques. The aim of integrating these methods is to enhance the accuracy and

reliability of hydrological predictions and to reduce uncertainty.

The specific aims of this study were as follows:

1. To evaluate the performance of medium-range European Center for Medium-
Range Weather Forecasts (ECMWF) EPS forecasts in 20 lumped hydrological
models in the two mountainous basins.

2. To assess the impact of ensemble forecast on the forecast performance comparing
with deterministic forecasts of the basins.

3. To implement and evaluate the impact of the Ensemble Kalman Filter (EnKF) DA
technique on the accuracy of discharge forecasts by comparing open-loop and DA
forecasts.

4. To quantify the reduction in uncertainty achieved using a MM ensemble
compared with a single-model approach for discharge forecasts in the study

basins.

1.4. Thesis Organization
This thesis is structured into five chapters to present the assessing of mid-term
weather forecasting in hydrological modelling on reducing uncertainty. Chapter

1 introduces the study, providing the essential background and context for the research



problem. Chapter 2 presents a literature review on uncertainty in hydrological
forecasting. This chapter examines studies and practical applications of key uncertainty
reduction techniques, including EPS, DA, and MM approaches, establishing s foundation
for this work. Chapter 3 details the methodology and materials employed. It describes
Cukurkisla and Kayabasi study areas, the meteorological and hydrological data used, and
ECMWF mid-term deterministic and ensemble data. The chapter explains the use of the
HOOPLA toolbox for calibrating twenty hydrological models using the Shuffled
Complex Evolution algorithm, and it also shows open-loop and DA forecast and MM
approach. Chapter 4 presents the calibration, validation and forecast results. In addition,
it clearly details the open-loop and data assimilated forecast in deterministic, ensemble,
MM. Chapter 5 concludes this study’s findings. It also addresses the limitations of the

research and provides recommendations for future work in this field.



2. LITERATURE REVIEW
2.1. Sources of Uncertainty in Hydrological Modelling

Hydrological modelling and forecasting uncertainty refer to the lack of precision or
confidence in the prediction of hydrological processes such as discharge, snow, and soil
moisture. Uncertainty rises from multiple sources, such as the model's structure,
parameter estimation, input data quality, initial condition, and the intrinsic variability of
natural systems (Montanari, 2007; Panchanathan et al., 2024). Uncertainties in
hydrological modelling and forecasting can be summarized as measurement, input,
structural, parameter, and forecast uncertainties (A. Gupta and Govindaraju, 2023;
Panchanathan et al., 2024). Measurement uncertainty relates to errors in precipitation,
temperature, evapotranspiration, or streamflow from the measurement process (McMillan
et al., 2018). Input uncertainty relates to errors in data manipulation, such as interpolation
and scaling. Structural uncertainty relates to errors that emerge from the formation and
processing of hydrological models. The uncertainty rates differ for each hydrological
model. Parameter uncertainties arise from the inadequacy of the model's parameterization
to fully represent the hydrological process, often leading to equifinality (Panchanathan et
al., 2024).

Accurate and timely flood forecasting is crucial for mitigating flood risks and
facilitating effective disaster management (Panchanathan et al., 2024; Verkade and
Werner, 2011). Traditional flood forecasting systems often rely on a single NWP model
and hydrological model. However, both NWPs and hydrological models are subject to
various sources of uncertainty (Ajami et al., 2006; Cloke and Pappenberger, 2009). Such
uncertainties can affect the accuracy and reliability of flood forecasts. To address these
limitations, researchers have explored ensemble forecasting approaches, MM approaches,
and DA.

Thiboult et al. (2016) investigated three sources of uncertainty in hydrological
forecasting: hydrological model error, initial conditions, and meteorological forcing
uncertainties. Their study evaluated the effectiveness of using tools such as the EnKF,
MM approaches, and the Meteorological Ensemble Prediction System (MEPS) to
improve forecast accuracy and reliability. They observed that it enhances hydrological
forecast reliability and accuracy by addressing various aspects of uncertainty.

Expanding on the theme of enhancing forecast reliability, Llauca et al. (2023)

explored how DA techniques to evaluate the performance and usage of discharge less
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than daily time steps using EnKF and Particle Filter (PF) algorithms. They used the
GR4H model with 100 ensemble members. They observed that the use of DA provides

more accurate and reliable streamflow predictions.

2.2. Ensemble Prediction Systems (EPS)

Ensemble Prediction Systems (EPS) have emerged as a powerful tool for
quantifying uncertainty in weather forecasts and improving flood predictions (Cloke and
Pappenberger, 2009; Wu et al., 2020). The EPS generates multiple forecasts by perturbing
the initial conditions of an NWP model, providing a range of possible future weather
scenarios.

NWP employs mathematical methods to forecast weather by numerically solving
the fundamental equations governing atmospheric dynamics. At its core, NWP is built
upon physical laws, such as the conservation of mass, momentum, and energy, to simulate
atmospheric processes. Since its first operational implementation in the mid-20th century,
NWP has become a cornerstone of modern meteorology (Bauer et al., 2015; Pu and
Kalnay, 2018). The conceptual origins of NWP can be traced back to Vilhelm Bjerknes
in 1904, who postulated that weather forecasting could be grounded in physics, provided
that the initial conditions and physical laws were known. However, these ideas could only
be practically implemented after the advent of digital computers. In 1950, the first
successful NWP forecast was produced using the Electronic Numerical Integrator and
Computer (ENIAC) by Jule Charney and his colleagues. Since then, NWP models have
progressed from simplistic two-dimensional barotropic models to complex three-
dimensional models that can simulate a wide range of atmospheric processes (Lynch,
2008). The accuracy of NWP has improved notably over the past decades for different
hydrological variables, such as precipitation (Bélair et al., 2009), temperature (Mathiesen
and Kleissl, 2011), and soil moisture (Dillon et al., 2016).

Velazquez et al. (2011) demonstrated that combining multiple hydrological model
structures with meteorological ensembles yields more accurate and reliable predictions.
Their findings indicate this approach outperforms predictions from a single hydrological
model with meteorological ensemble predictions or multiple hydrological models with a
deterministic meteorological forecast. These findings are supported by Brochero et al.
(2011) who demonstrated that ensemble predictions derived from a combination of

various hydrological model structures and meteorological ensembles outperform those



generated by a single model or deterministic forecasts. The integration of diverse models
allows for a wide representation of hydrological processes.

In addition, the use of probabilistic weather forecasts is another critical aspect of
the EPS. Matus et al. (2020) noted that EPS can extend lead times and better quantify
predictability, making them particularly appealing for flood forecasting. This is further
supported by Gelfan et al. (2015), who discussed the shift from deterministic
methodologies to ensemble-based approaches, aimed to improve the reliability and
accuracy of forecasts.

ECMWEF EPS is a critical tool in meteorological forecasting, particularly in
hydrology. One of the primary strengths of the ECMWF EPS is its ability to provide
probabilistic forecasts that account for uncertainties in weather predictions. Palmer
(2019) emphasized that the ECMWF EPS has evolved over more than 25 years,
significantly enhancing its probabilistic forecasting capabilities from single deterministic
forecasting through improved model physics and parameterizations. This evolution has
been crucial for hydrological applications, where understanding the range of possible
outcomes is essential for effective water resource management and flood forecasting.
(Roulin and Vannitsem (2015) investigated the impact of errors in forcing, initial
conditions, and model structure on hydrological forecasts and demonstrated that
integrating ECMWEF precipitation forecasts into hydrological models significantly
improved forecast reliability. Moreover, the ECMWEF has made progress in integrating
high-resolution data into forecasting systems. The introduction of the Integrated
Forecasting System (IFS) has allowed for improved vertical and horizontal resolutions,
which are crucial for accurately capturing the dynamics of weather systems. The
operational ensemble forecasts now utilize a horizontal grid spacing of approximately 18
km and 137 vertical levels with 50 perturbed members of 15 days range lead time, which

is a significant improvement over the previous configurations (Lang et al., 2021).

2.3. Multi-model Approach in Hydrological Modelling

Multi-model (MM) approach involves the integration of more than one model,
either in parallel or sequentially, to improve the performance of the streamflow. Although
there are many hydrological models, no model outperforms the others (Shamseldin et al.,
1997) and each has its own structural and parameter uncertainty (Panchanathan et al.,

2024). By combining the outputs of hydrological models with different structural, it is



possible to increase their strengths and mitigate their individual weaknesses, which is
leading to an improved overall forecast accuracy and reduced uncertainty (Thiboult and
Anctil, 2015).

Different models employ varied structures, including lumped and distributed
representations, and diverging parameterizations for critical hydrological processes like
evapotranspiration and infiltration. This structural diversity allows MM approaches to
encompass the complexity and uncertainty inherent in hydrological systems, thereby
mitigating overconfidence that may arise from reliance on outcomes from a single model.
According to Yu et al. (2018), MM ensembles help mitigate the impact of outliers or
underperforming models by combining diverse approaches, which leads to more stable
and reliable hydrological forecasts.

MM combination methods (MMCMs) are utilized to improve the accuracy of
hydrological outputs in simulation or forecasting (Todorovi¢ et al., 2024). Different
methods such as SAM, WAM, MM SuperEnsemble (MSE), Modified MM
SuperEnsemble (MMSE), Bayesian Model Averaging (BMA), Artificial Neural Network
(ANN), Best Model selection, and Cascading are utilized for a multiple hydrological
models’ combination (Ajami et al., 2006; Andraos, 2024; Chevuturi et al., 2023;
Todorovic et al., 2024).

Shamseldin et al. (1997)  first investigated MM approach on hydrological
modelling using Simple Average Method (SAM), Weighted Average Method (WAM),
and Neutral Network Methods (NNM) of MM combinations over 11 catchments and they
have seen that MM outperformed any of the single-model simulations. Perrin et al. (2001)
conducted a comparative assessment of 19 lumped hydrological models across 429
catchments in various climates, including France, the U.S., Australia, Brazil, and the
Ivory Coast. Their study examined the relationship between model complexity, defined
by the number of optimized parameters, and predictive performance. They found that the
complex models performed well in calibration but lacked stability in verification,
indicating over parameterization. They also found that combining different model
structures could lead to better overall performance compared to using individual models.

Ajami et al. (2006) observed that MM simulations obtained from uncalibrated

single-model simulations generally outperformed even the best-calibrated individual

model simulations, and more sophisticated MM combination techniques incorporating



bias correction worked better than simple MM averages or combinations without bias
correction.

Besides that, Velazquez et al. (2011) investigated if the MM approach reduces the
uncertainty in the hydrological ensemble forecasting. They integrated 16 lumped
hydrological models with deterministic and probabilistic forecasting meteorological input
data. They observed that the combined ensemble prediction from different hydrological
models and meteorological ensembles outperformed single hydrological models.

Thiboult and Anctil (2015) investigated on comparing the performance of a MM
approach, containing 20 lumped hydrological models, on a deterministic and probabilistic
forecasting in Quebec. They showed that the MM ensembles with probabilistic
forecasting outperforms the single models with deterministic and probabilistic
forecasting.

Dion et al. (2021) investigated the use of a MM framework for hydrological
ensemble forecasting to improve streamflow predictions. Their study incorporated eight
lumped hydrological models, with initial states updated through EnKF DA, and forecasts
driven by ECMWF NWP over five snowmelt-dominated catchments in Quebec, Canada.
The study highlighted that a MM strategy provides a better representation of uncertainty
than a single model approach and enhances forecast reliability by reducing biases and
addressing under-dispersion issues.

Nikhil Teja et al. (2023) examined improving the flood forecasts using multiple
numerical weather Predictions ensemble; ECMWEF and National Centers for
Environmental Prediction with 51 and 31 ensemble members, and multiple hydrological
models; GR4J, HBV, SIMHYD, and HEC-HMS. They observed that addressing
uncertainties is more crucial than the input data uncertainty and using multiple
hydrological models produces more reliable forecasts than using a single model.
Supporting this, Chevuturi et al. (2023) found that weighted blending of MM hydrological
simulations, especially when combined with bias-correction, improved performance over
individual models for evapotranspiration, soil moisture, and streamflow variables.

Todorovi¢ et al. (2024) investigated the effect of 10 different MM combination
methods using 29 lumped hydrological models from Modular Assessment of Rainfall-
Runoff Models Toolbox (MARRMOoT) for hydrological modeling. They found that MM
combination methods generally improved model efficiency, especially for runoff

dynamics and high flows, with the Granger-Ramanathan (Diks and Vrugt, 2010)



performed best. However, MMCMs struggled to reproduce hydrological signature
distributions accurately, often underestimating peak flows and overestimating low flows,
highlighting a persistent challenge in hydrological modeling. Similarly, (Wan et al., 2021)
found that Granger-Ramanathan method outperformed the other methods and the MM
combination is less efficient in terms of low-flow simulations. In contrast, Andraos (2024)
found that MM approaches, especially those using artificial neural networks, can
substantially improve low flow forecasting accuracy. These fusion techniques outperform
individual models by leveraging the strengths of each, which is especially beneficial
during hydrologically challenging periods like droughts.

Thébault et al. (2024) employed a MM approach within a variable spatial
framework to simulate streamflow, using 13 hydrological model structures, three
objective functions, and two spatial frameworks (lumped and semi-distributed) across
121 catchments in France. Their findings show that the mixed MM approach outperforms
single models and provides higher performance scores. MM approach reduced the spread

in performance, indicating lower uncertainty compared to individual model.

2.4. Data Assimilation in Hydrological Modelling

Data assimilation (DA) involves improving the accuracy of hydrological models by
combining model predictions with real-time observations such as precipitation,
temperature, and streamflow, with different initial states. It provides a framework for
integrating various sources of data, such as streamflow measurements, satellite data, and
meteorological observations, into the model to reduce uncertainties and improve forecast
accuracy. DA in MM approach helps to reduce uncertainties by reducing the errors in the
initial states (DeChant and Moradkhani, 2014; Panchanathan et al., 2024). In the context
of streamflow forecasting, DA seeks to enhance predictions by integrating errors between
forecasting models and discharge measurements through the updating of model states
(Llauca et al., 2023). Proper use of DA may help in handling uncertainties from model
inputs, initialization and propagation of states, model structures, and even model
parameters (Sun et al., 2016). DA reduces uncertainty by incorporating real-time
observations, updates model states for better initial conditions, and corrects for input,
structural, and parameter -related errors. Together, these improvements lead to more
reliable streamflow predictions, particularly in short-term forecasting (Avellaneda et al.,
2020).

10



The application of streamflow DA typically involves three main steps: designing
the DA experiment by selecting variables to be perturbed and assimilated, such as rainfall
and real-time streamflow measurements; and quantifying model errors, as uncertainties
in rainfall, model states, and discharge can significantly impact results. Finally, the
chosen DA algorithm is applied to an Open Loop hydrological model, with methods like
the EnKF and PF commonly used for probabilistic hydrologic predictions and operational
flood forecasting (Avellaneda et al., 2020; Llauca et al., 2023). Many different DA
methods are used in hydrological models such as Kalman Filter, EnKF, PF, Four-
Dimensional Variational Assimilation (DeChant and Moradkhani, 2014; Llauca et al.,
2023; Pu and Kalnay, 2018; Sun et al., 2016).

Thiboult et al. (2016) investigated three probabilistic tools for reducing uncertainty
in hydrometeorological forecasting: an MM approach, EnKF, and meteorological
ensemble forcing. Each tool addressed a specific aspect of uncertainty: the MM approach
quantifies and reduces hydrological model error, the EnKF deciphers initial condition
uncertainty, and the meteorological ensemble accounts for forcing uncertainty. They also
showed that EnKF performed better for the first lead days to reduce uncertainty.

Dion et al. (2021) found that DA using EnKF improved the ensemble streamflow
predictions by reducing bias, enhancing spread, and increasing forecast accuracy
compared to open-loop simulations, particularly in the short term (up to 2-3 days).
However, it was not fully effective in correcting systematic biases for all seasons and
under-dispersion remained an issue, especially during the spring freshet period.

Llauca et al. (2023) evaluated the application of streamflow DA techniques,
specifically the EnKF and PF, in a lumped hydrological model for flood forecasting in
the data-sparse Vilcanota River Basin in Peru. It's worth noting that both EnKF and PF
improved streamflow predictions compared to the Open Loop (OL) simulations, with
EnKF showing a slight edge in performance.

Supporting that, Sabzipour et al. (2023) examined the application of the EnKF DA
technique to improve short-term streamflow forecasting on the Lac-Saint-Jean catchment
in Canada. They conducted a sensitivity analysis to evaluate the effects of EnKF
hyperparameters (temperature, precipitation, and inflow uncertainties) and the updating
of three state variables (vadose zone, saturated zone, and snowpack) on short-term
forecast skill. They found that forecast performance is sensitive to individual

hyperparameters, particularly temperature uncertainty, which varies between seasons.
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Additionally, the choice of state variables to update also impacts forecast skill depending
on the season. The vadose zone state variable was found to be the most important and

sensitive.

2.5. Hydrological Forecasting in Turkiye

There are studies that focus on hydrological forecasting on short-term, mid-term
and seasonal forecasting. But the studies focusing on quantifying and reducing the
uncertainties of hydrological forecasting in Turkiye are limited. Sorman et al. (2009)
investigated how incorporating satellite-derived snow-covered area (SCA) data from
Moderate Resolution Imaging Spectroradiometer (MODIS) into a hydrological model
calibration improves snowmelt runoff simulation in a headwater basin of the Euphrates
River in eastern Turkey. They applied the HBV model and integrated NWP data from the
Mesoscale Model 5 (MM5) with a 1-day lead time to forecast short-term runoff, which
provided promising results for operational flood mitigation and reservoir management.

Yucel et al. (2015) investigated the use of the Weather Research and Forecasting
(WRF) hydrometeorological modeling system to simulate major flood events in the
western Black Sea Region of Turkiye, using precipitation inputs from the WRF model
with and without DA, as well as satellite rainfall estimates. The WRF-Hydro model was
calibrated using a stepwise approach in one sub-basin and the calibrated parameters were
then transferred to neighboring ungauged basins to assess transferability. The results
showed that the WRF-Hydro system, when properly configured and calibrated, was able
to reasonably simulate major flood events, with assimilated precipitation input and model
calibration providing the best performance in terms of error reduction and improved
hydrograph characteristics. Their study had limited calibration data with one sub-basin
only using two events and two stream gauge stations due to limited streamflow data
availability across events.

Ertas et al. (2016) employed the HBV hydrological model to simulate daily
discharge in the Karasu Basin, a sub-region of the Upper Euphrates Basin in Turkiye.
Their results indicated good model performance, with Nash-Sutcliffe efficiency values of
0.85 for calibration (2001-2008) and 0.71 for validation (2009-2014). However, their
analysis also revealed a significant increase in forecast uncertainty over time, as seen in

the root mean square error (RMSE) values, which ranged from 12 md/s on the first forecast
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day to 43 m¥/s by the ninth day. While HBV performed well for short-term forecasts, its
accuracy declined at longer lead times due to rising meteorological uncertainty.

Uysal et al. (2021) studied short-term (1-2 day) hydrological forecast system in
snow-dominated mountainous basins, specifically the headwaters of the Euphrates and
Seyhan Basins in Turkiye. They employed the HBV model for simulating the
precipitation-runoff relationship, utilizing NWP data from MM5 and WRF models. The
study showed that WRF-based forecasts generally performed better than MM5-based
forecasts, with the 2015 water year predictions showing particularly high performance in
both study basins, suggesting potential for improved water resource management and
economic benefits.

Dogan et al. (2023) investigated how incorporating snow cover data from satellite
products, MODIS and Interactive Multi-sensor Snow and Ice Mapping System (IMS),
into hydrological models reduces parameter uncertainty and improves runoff forecasting,
especially in snow-dominated basins like the Upper Coruh River Basin in Turkiye. They
applied HBV model, calibrated through multi-criteria approaches using runoff and snow
cover data, significantly enhancing the reliability of the predictions. Their study also
integrated NWP data from the WRF model with a 2-days lead time to forecast short-term

runoff, providing critical insights for reservoir management during snowmelt periods.
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3. MATERIALS AND METHODS
3.1. Study Area

This study investigated two distinct basins, Upper Seyhan and Upper Aras,
selected to represent regional diversity. The specific study sites correspond to the outlets
monitored by Cukurkisla (Upper Seyhan) and Kayabasi1 (Upper Aras) discharge stations
and are henceforth referred to by these station names. Detailed descriptions of these
basins are provided in the following sections. Notably, these basins have also been studied
in recent such as studies by Eylen (2024) and Traore (2024).

3.1.1. Upper Seyhan (Cukurkisla)

The Seyhan River Basin locates in southern Turkiye, in the provinces of Adana,
Nigde, and Kayseri. The Seyhan Basin, one of the twenty five basins in Turkiye, is located
between 36° 30" and 39° 15°” 0 N and 34° 45° — 37° 00”’E. The basin encompasses the
catchment areas of the Seyhan River and its tributaries, the Goksu and Zamanti Rivers.
Covering an area of 22,042 kmz?, which constitutes 2.82% of Turkiye's total surface area,
the Seyhan Basin is bordered by Ceyhan to the east, Konya and Berdan to the west, the
Develi Basin and Kulmac Mountains to the north, and the Mediterranean Sea to the south.

The location and topographic elevation of the basin are illustrated in Figure 3.1.
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Cukurkigla sub-basin is situated in the upper region of the Goksu River, with
drainage area of 1522.4 km?, which constitutes approximately 6.90% of the total basin
area. The catchment’s outlet station (E18A024) is operated by State Hydraulic Works
(DSI). The elevation within Cukurkisla Basin ranges from 1313 to 2954 meters above sea

level.
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The basin elevation was divided into five zones with equal areas, as shown in Figure
3.2. This shows that more than half of the basin elevation is between 1313 and 1650 m.
In addition, 90% of the basin elevation is below 2000 m. Less than 20% of the basin
elevation was in zone 5. Figure 3.3 shows the hypsometric curve distribution of the basin
elevation, illustrating the relationship between relative elevation and cumulative area. The
curve is steep in upper elevation, with less than 10% is above 2000 meters elevation. The
elevation decreases gradually at higher area percentages, showing uniform mid-lower
terrain distribution. Most of the basin elevations are flat. The median elevation of the
basin is 1650 m, which is higher than around 300 meters from the lowest elevation. The
basin relief, the difference between the maximum and minimum elevations, is 1641

meters.
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Figure 3.4. Slope map of Cukurkisla Basin

The slope of the basin was categorized as gentle, moderate, steep, very steep, or
extreme as shown in Figure 3.4. Approximately 50% of the basin slope is less than 20%

slope, in gentle and moderate slope. The mean slope of the basin is 22%.
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3.1.2. Upper Aras (Kayabasi)

The Aras Basin, one of Turkiye’s 25 hydrological basins, is in northeastern Turkiye.
From its source in the Bingdl Mountains, the Aras River flows through northeastern
Turkiye, delineates part of the Turkish Armenian border, and continues into Iran and
Azerbaijan to meet the Kura River before reaching the Caspian Sea. This basin
encompasses portions of the provinces of Agri, Ardahan, Erzurum, Igdir, and Kars, with
a 27,548 km? drainage area inside Turkiye.

Kayabasi is a sub-basin within the Aras Basin, situated in the upper part and
spanning the provinces of Erzurum and Kars. The sub-basin is located between 39° 52" -
39° 18' north latitude and 41° 10' - 41° 55' east longitude. The State Hydraulic Works
(DSI) operates Kayabasi Streamflow Station (D24A096) to monitor hydrological
parameters. Figure 3.5 shows the location and the topographical elevation of the basin.
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Figure 3.5. Kayabas: Basin Map

Kayabag1 sub-basin covers a drainage area of approximately 2727 km?, with
elevations ranging between 1679 and 3155 m and an average elevation of 2220 m. Figure
3.6 shows Kayabas1 Basin elevation categorized into five zones to effectively illustrate

the elevation diversity within the area. The spatial distribution of elevation was visualized
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using a conventional hypsometric. Lower elevations (1679-2000 m) are concentrated in
the central valley. Progressively higher intermediate zones, (2000-2150 m) and (2150-
2250 m), are primarily located on the basin slopes. The highest elevation bands, (2250-
2400 m) and red (>2400 m), correspond predominantly to the northern and southern
watershed divides. This shows that 50% of the basin elevation is greater than 2220 m

above sea level.
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Figure 3.6. Kayabas: elevation zone map.

Figure 3.7 shows the hypsometric curve distribution of the basin elevation,
illustrating the relationship between relative elevation and cumulative area. The curve is
steep in upper elevation, with less than 10% is above 2500 meters elevation. The elevation
decreases gradually at higher area percentages, showing uniform mid-lower terrain
distribution. The elevation of this basin is not low as Cukurkisla Basin. The median
elevation of the basin is 2200 m, which is higher than around 521 meters from the lowest

elevation. Basin relief is 1476 meters, which is lower than that of Cukurkisla Basin.
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Figure 3.8. Slope map of Kayabas: Basin

The average slope percentage is 19% which is a moderate slope. The basin slope
was categorized as gentle slope (0-10%), moderate slope (10-20%), steep slope (20-30%),
very steep slope (30-50%), and extremely steep (>50%). Figure 3.8 shows the areas of

each category. Most of the basin’s drainage area is under a gentle slope of 1000 km?.
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3.2. Flow Chart

The framework used in this study is illustrated in Figure 3.9. After preparation of
the input data, the calibration and validation is conducted using the HOOPLA Toolbox.
Following this setup, two parallel forecast simulations are executed: Open Loop (OL) and
Data Assimilation (DA). The OL, which is a direct forecast without any real-time
correction, produces both deterministic and ensemble runs, while the DA scheme
employs an Ensemble Kalman Filter (EnKF) with 50 initial states to generate its own set
of deterministic and larger ensemble simulations. Finally, the outputs from the various

models are combined into a MM result using a simple averaging method.
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Figure 3.9. Methodology overview
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3.3. Goodness of Fit
3.3.1. Coefficient of determination

The coefficient of determination, r?, is defined as the squared value of the
coefficient of correlation (Krause et al., 2005) and represents the amount of variance in
observed data that is explained by the model (Althoff et al., 2021). It is proposed as a
measure of how close the observed-predicted regression line approaches the ideal fit (E.

Coffey et al., 2004). It calculates as:

2" (0i—0)+ (Pi—P)

R2 = [ i=1
VYL, (0i—0)? VX7, (Pi — P)?

Where O; = observed discharge, P; = simulated discharge, O = mean of observed

]2, 0< R <1 (3.1)

discharge, P= mean of simulated discharge.

The coefficient of determination, r?, can take values ranging from 0 to 1, and it
indicates how well the predicted values account for the dispersion in the observed data.
A value of 0 indicates no correlation, while a value of 1 indicates perfect correlation, i.e.,
the dispersion of the predicted values is equivalent to that of the observed values. r? has
some drawbacks, such as oversensitivity to extreme values and insensitivity to systematic

under- or overprediction.

3.3.2. Nash-Sutcliffe efficiency
The Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970) is a widely used
goodness-of-fit criterion in hydrological modeling. It is an improvement over r? as it is
more sensitive to systematic under- or over-prediction. It is defined as one minus the
mean squared error (MSE) normalized by the variance of the observed values (c2 ). It
calculates as:
X" 10— Pif?
Yie110i—Bil? ’

where Biis the benchmark series at the time-step i. In its original form Bi= O.

NSE =1 - —w <NSE<1 (3.2)

The NSE ranges from -co to 1, with 1 indicating a perfect fit. It penalizes the model
when the slope and interception of the fitted regression line depart from 1 and O,
respectively. However, the NSE has some limitations, such as underestimating peak flows
and underestimating observed flow variability, which can result in inflated NSE value
(Althoff et al., 2021). Therefore, it is recommended to use a proper benchmark series

instead of threshold values to assess model performance. The Kling-Gupta efficiency
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index is suggested as a more reliable criterion for hydrological modeling (H. V Gupta et
al., 2009).

3.3.3. Square root of Nash—Sutcliffe efficiency

The square root variant of the Nash—Sutcliffe Efficiency, denoted as NSEsqrt, is a
modified form of the traditional NSE, developed to address its sensitivity to high
discharge values and improve the assessment of low-flow simulations (Pushpalatha et al.,
2012). The NSEsqrt applies a square root transformation to observed and simulated
values, reducing extreme value influence and improving low-flow period evaluation,
while traditional NSE emphasizes peak flows due to squared errors. The NSEsqrt is

calculated using the following equation:
X" (Vestmr — V@ors)?
p— \—‘fl I a s}
NSEsqrt =1 — 2" (W&%psr— V&ops)” (33)
1

i=

Where Qsim, i IS the simulated discharge at time step i, Qonsi IS the observed
discharge at time step i, Qobs is the mean of the square root of observed discharge, n is the
total number of observations. The transformation preserves the NSE structure while
ensuring that both low and medium flow values are better represented in the efficiency

computation.

3.3.4. Kling-Gupta efficiency

The Kling-Gupta efficiency (KGE), proposed by (H. V Gupta et al., 2009), is
another goodness-of-fit criterion used to evaluate the performance of hydrological
models. It was proposed to overcome the limitations of other criteria, such as the Nash-
Sutcliffe efficiency index (NSE), which can lead to underestimation of flow variability.
The KGE is formulated by calculating the Euclidean distance of three components:
correlation, bias, and measure of variability.

KGE=1-ED, —0o<KGE<1

ED = V[Sr.(r = 1)2 + [Sa. (a — 1)% + [Sp. (B — 1)? (3.4)

where “ED is the Euclidian distance, r is the linear correlation coefficient between
Oi and Pj, a is the variability ratio or ratio between the standard deviation of simulated
values and standard deviation of observed values (6r/c0), P is the ratio between mean of

the simulated and observed values (ur/poor P/O). s, Sq, and sp are scaling factors that can
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re-scale the criteria space before computing the ED, that is, emphasizing different
components. Conventionally, the scaling factors have equal weight, i.e., Sy=S,=Sg=1”
(Althoff et al., 2021). The index ranges from — oo to 1, with 1 indicating a perfect fit.

3.4. Data
3.4.1. Hydro-meteorological data
The Turkish Meteorological Services (MGM) and State Hydraulics Works (DSI)

collect and provide precipitation, temperature, humidity, wind, evapotranspiration, and
discharge data for all Turkish Basins. We obtained precipitation and temperature data
from the MGM and stream data from the DSI.
3.4.1.1. Cukurkisla

Daily precipitation and temperature data from four stations — two inside and two
outside the basin — were obtained from the MGM. Pmarbasi and Goksun stations occur
outside of the basin while Sariz and Tufanbeyli stations are inside the basin. To confirm
the effect of each station on the basin, Thiessen Polygons were used for the distribution.
Sariz and Tufanbeyli stations cover all the areas of the basin, 40% and 60% respectively.
Streamflow data from the Gdksu station (E18A024) were obtained from the DSI. Table
3.1 lists the meteorological stations within and around Cukurkisla Basin and their

altitudes.

Table 3.1. Meteorological stations for Cukurkisla Basin

Station No  City Station Name Latitude Longitude Altitude (m)
18053 Adana Tufanbeyli 38.26 36.2195 1400
17866 Kahramanmaras Goksun 38.024 36.4823 1344
17802 Kayseri Pmarbasi 38.7251  36.3904 1542
17840 Kayseri Sariz 38.4781  36.5035 1599

The span of the obtained data for these stations was from 2000 to 2019 water years.
The average annual total precipitation of the basin is 500.8 mm, whereas the discharge is
165.40 mm. The average annual temperature is 9.44 °C. The years 2002, 2009, and 2019
had the highest annual precipitation and discharges. The lowest precipitation was
recorded in 2017 (324 mm), whereas the lowest discharge was recorded in 2014 (60.35
mm). According to the temperature records, the lowest average annual temperature was

recorded in 2012 at 8.14 °C, with an average precipitation of 514 mm and high discharge
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of 204.72 mm. The highest average annual temperature was 11.38 °C in 2010. Figure
3.10 shows the annual total precipitation, discharge, evaporation, and average

temperature of Cukurkigla basin.
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Figure 3.10. Hydro-meteorological data for Cukurkisla Basin during the 2000-2019 water years.

Figure 3.11 shows the monthly average temperature, precipitation, PET, and
discharge from 2000 to 2019 water years. The lowest temperatures were observed in
January, below freezing degrees. The temperature goes up in mid of February, which the
snow melting starts. according to the discharge, more than 65% of the average basin
discharge was observed between February and May. March and April had the highest

average total monthly discharge, exceeding 30 mm/day.
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Figure 3.11. Monthly temperature, precipitation, PET, and discharge average of Cukurkisia Basin

Based on the data in Figure 3.12, the annual precipitation and temperature values
for each year were categorized into four groups: Dry/Cold, Wet/Cold, Dry/Hot, and
Wet/Hot years. These categories were determined by comparing the yearly values of
precipitation and temperature with the respective medians for each variable. The data
revealed interesting patterns, showing how these two climatic variables influenced each
other over time. For instance, in 2010, the combination of high precipitation and high
temperature placed it in the wet/hot category. However, 2017 was noted as the driest year,
yet its temperature remained close to the median, indicating that while precipitation was
notably low, the temperature did not exhibit extreme variations. Furthermore, 2019 stands
out as the wettest year recorded in the dataset, yet its temperature surpasses the median
for the Wet/Hot category. This suggests that although precipitation was abundant, the
climate was still relatively warm compared to other years within the same category. In
contrast, many of the years fall into the Wet/Cold and Dry/Hot categories, which appear
to dominate the dataset. This could imply a recurring trend in the regional climate, where
either wet condition with lower temperatures or dry conditions with higher temperatures
are more common. As shown in Figure 3.12, years such as 2006, 2009, 2011, and 2015
consistently appear in the wet/cold category, whereas years such as 2001, 2007, 2013,
and 2014 frequently fall into the dry/hot category.
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Figure 3.12. Categorization of precipitation and temperature of Cukurkisla Basin.

Furthermore, the potential evapotranspiration (PET) was calculated using the
method described by Oudin et al. (2005). The average annual potential evapotranspiration
was 690.4 mm. The highest PET was observed at 748.39 mm in 2010, while the lowest
PET was observed at 640.5 mm.

3.4.1.2. Kayabas:

Daily precipitation and temperature data from 15 meteorological stations (five
inside and eight outside the basin) were obtained from the MGM, covering the 2008 to
2019 water years. Table 3.2 lists the meteorological stations of Kayabasi Basin. Basin-
wide precipitation and temperature were calculated for all stations using the Thiessen
Polygon method. Additionally, streamflow data from Kayabasi streamflow station
(D24A096) were acquired from the DSI, covering the water years from 2008 to 2019.
The average annual precipitation for the basin is 519.20 mm, whereas the average annual

temperature is 6.14 °C. The average annual discharge for the basin is 241.70 mm.
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Table 3.2. Meteorological Stations for Kayabas: Basin.

Station No.  City Station Name Latitude  Longitude  Altitude (m)
17096 Erzurum Havalimani 39.9529 41.1897 1758
17672 Erzurum Palanddken Dagi 39.8088 41.2947 2973
17687 Erzurum Ilica havzasi 39.8877 41.0766 2094
17690 Erzurum Horasan 40.0383 42.1705 1540
17740 Erzurum Hinis 39.3688 41.6957 1715
17778 Bingol Varto 39.1763 41.4455 1650
18177 Agn Karliova 39.2936 41.0106 1828
18203 Erzurum Cat 39.6058 40.975 1907
18204 Erzurum Karayazi 39.6964 42.1256 2246
18366 Erzurum Koprikoy 39.9908 41.8522 1685
18370 Erzurum Tekman 39.6478 41.5125 1980
19072 Erzurum Haci6mer Koyl 39.5992 41.7542 1832
19254 Erzurum Yilanl Koy 39.8057 41.7623 1919

As shown in Figure 3.13, 2010 experienced the highest precipitation, whereas 2014
recorded the lowest. Precipitation and discharge exhibited a strong positive correlation,
with peaks in 2010 (692 mm and 393 mm, respectively) and troughs in 2014 (327 mm
and 124 mm, respectively). This suggests a strong relationship between precipitation and
discharge, as years with higher precipitation generally corresponded to increased runoff.

The highest temperature was recorded in 2010 at 9.68 °C.
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Figure 3.13. Hydro-meteorological data for Kayabas: Basin during the 2008-2019 water years.
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Figure 3.14 shows the average monthly temperature and monthly percentages of
precipitation, potential evapotranspiration, and discharge from 2008 to 2019 water years.
The monthly average temperature shows lower temperatures in the first months of the
water year. The average lowest temperature was observed in December, January, and
February, at less than 0°C. The temperature increase starts mid of March, which affects
the snow melting. According to discharge, more than 60% of the basin discharge is
observed between March to June. April and May had the highest average total monthly
discharge, exceeding 60 mm/day. This shows snow melting effect on this basin which is
higher than Cukurkisla Basin. As shown in Figure 3.15, the precipitation and temperature
in each year were categorized. It shows that 2016,2018 and 2019 are wet and cold. Some
other years, 2008, 2013 and 2018, were observed to be hot and dry. It is clear the diversity
of precipitation and temperature throughout each year.
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Figure 3.14. Monthly temperature, precipitation, PET, and discharge average of Kayabag: Basin
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Figure 3.15. Categorization of precipitation and temperature of Kayabags: Basin

3.4.2. Forecast data

Medium-ensemble weather forecasts from ECMWF serve as essential inputs for
hydrological forecasting. The ECMWEF produces high-resolution numerical weather
predictions that are widely used for probabilistic hydrological applications, allowing for
improved flood forecasting, water resource management, and climate impact
assessments.

These forecast data were obtained from The International Grand Global Ensemble
(TIGGE) archive (www.apps.ecmwf.int), a comprehensive resource that provides
ensemble forecast data from leading global weather prediction centers. TIGGE is a key
initiative under the World Weather Research Programme (WWRP), aimed at fostering
advancements in ensemble forecasting through open data-sharing and MM comparison.
By leveraging ensemble forecasts, uncertainties in meteorological predictions can be
quantified, improving decision-making for extreme weather events and water-related

applications.
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For this study, we utilized the ECMWF Ensemble Forecast (ENS) product, which
consists of 51 ensemble members: one control forecast and 50 perturbed members. These
ensemble members are designed to account for initial condition and model uncertainties,
providing a probabilistic range of possible weather scenarios. The forecast data were
retrieved in GRIdded Binary version 2 (GRIB2) format, a standard format for storing and
transmitting gridded meteorological data. Additionally, ECMWEF offers its weather
datasets in Network Common Data Form (NETCDF) format, a widely used format for
climate and weather data storage due to its self-descriptive structure and efficient
compression capabilities.

Precipitation and temperature data (mean, maximum, and minimum) for the period
of January to June in 2018 and 2019 for both study basins were downloaded. This period
was selected as the most annual discharges for these basins, which were observed between
these months as shown in Figures 3.11 and 3.14. The dataset includes six-hourly time
steps with a forecast lead time of 10 days, which enables us to analyze medium range
hydrological forecasts.

To process and manage the GRIB2 files, we utilized ecCodes, an open-source
software package developed by ECMWF for handling GRIB, BUFR, and GTS messages.
EcCodes is capable of decoding, encoding, and manipulating weather data in multiple
formats, including:

e WMO FM-92 GRIB (editions 1 and 2) — the standard format for numerical
weather prediction models.

e WMO FM-94 BUFR (editions 3 and 4) — used for observational data such as
satellite and surface measurements.

e WMO GTS abbreviated headers (decoding only) — supporting data exchange
within the Global Telecommunication System (GTS).

More details about ecCodes and its functionalities can be found at
confluence.ecmwf.int/display/ECC/ecCodes+Home. After decoding the GRIB2 files, the
data were systematically organized, aggregated, and converted into time-series format
using the R programming language. R provides robust tools for handling large
spatiotemporal datasets and performing statistical analyses, making it well-suited for
hydrological applications. These processes involved:

1. Extracting relevant meteorological variables (precipitation and temperature) for
Cukurkisla and Kayabagsi Basins through the study period.
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2. Converting six-hourly data into daily aggregated values, ensuring consistency in
temporal resolution for further hydrological modelling.

3. Quality controlling for the forecast data regarding the observed precipitation and
temperature data.

3.4.2.1. Cukurkisla

The temperature and precipitation forecasts for Cukurkisla Basin were
downloaded at a spatial resolution of 0.25° x 0.25° grids, as shown in Figure 3.16. To
ensure data reliability, the forecasted meteorological variables were subjected to a quality
control process, where they were compared against observed historical data from ground-
based meteorological stations. This step is crucial for identifying any systematic biases,
inconsistencies, or outliers in the dataset. Common quality control measures included:
Screening for missing or erroneous values, assessing temporal consistency, evaluating
forecast bias.

After quality control, the gridded forecast data were aggregated into basin-wide
forecast time-series to provide spatially representative meteorological inputs for
hydrological modeling. To evaluate the accuracy of precipitation forecasts for Cukurkisla
in 2018, the monthly accumulated precipitation was analyzed by comparing observed and
forecasted values. This comparison helps assess the reliability of the forecast data and
identify any systematic biases across different lead times. The forecasted precipitation
data were generated with a 10-day lead time, allowing for an assessment of forecast
accuracy over this period. January exhibited the highest accumulated precipitation for
both observed and forecasted datasets across all lead times. While the forecasted
precipitation generally followed the observed trend across all months, there were
noticeable biases, particularly at longer lead times, where precipitation was slightly
overestimated. Figure 3.17 shows the monthly accumulated precipitation for observed
and forecasted data in 2018, highlighting variations and forecast performance throughout

the year.
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Figure 3.17. Monthly observed and forecast precipitation accumulation for Cukurkisla Basin in 2018.

To evaluate the relation between the observed and forecasted precipitation,
correlation is calculated across all lead times. As lead time increases, the correlation
between observed and forecasted precipitation declines, starting at 0.64 on the first lead
day and dropping to 0.079 by the last lead day, as illustrated in Figure 3.18. This trend
indicates that forecast accuracy diminishes over longer lead times, highlighting the

challenge of predicting precipitation with extended forecasts.

Cukurkisla Basin Correlation between Forecasted and Observed Precipitation in 2018
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Figure 3.18. The correlation between observed and forecast precipitation of Cukurkisia Basin through
different lead-times in early half of 2018
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Figure 3.19 compares precipitation forecasts with observed precipitation (black
line) for Cukurkisla Basin in early 2018. It displays an ensemble prediction system (EPS),
showing the 50-member range (blue shaded area) and ensemble mean (blue line),
alongside a deterministic forecast (red line). The comparison is presented for forecast lead
times of Day 1 (top), Day 5 (middle), and Day 10 (bottom).

Ensemble and deterministic precipitation forecasts are compared with observed
basin precipitation data. The ensemble spread for the first lead days is narrow, particularly
during periods of little or no precipitation. At first lead time, both the ensemble mean,
and deterministic forecast generally capture the observed precipitation well in timing
major precipitation events.

At day five, forecast skill decreases. While forecasts attempt to capture major wet
periods seen in observations, alignment in timing and magnitude is less precise. The
ensemble mean and deterministic forecasts often appear smoother and fail to capture
observed peaks. The ensemble spread is significantly wider than at lead day one,
representing increased forecast uncertainty at this longer lead time.

At lead day ten, forecasts (ensemble and deterministic) show a weak relationship
with observed precipitation. Both struggle to predict timing and magnitude, often
showing low-amplitude variations or missing events. The ensemble spread is wide,
ranging from zero to significant precipitation, indicating low predictability and high

uncertainty for precipitation ten days ahead.
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Figure 3.19. Ensemble and deterministic precipitation comparison plots in Cukurkigla in 2018 with the
observed in lead times 1, 5, and 10

Figure 3.20 compares temperature forecasts with observed temperatures (black
line) for Cukurkisla basin in early 2018. Like the previous precipitation, it shows EPS
performance through the 50-member range (blue shaded area) and the ensemble mean
(blue line), alongside the deterministic forecast (red line). The comparison covers three
forecast lead times: Day 1 (top), Day 5 (middle), and Day 10 (bottom).

At day one lead time, temperature forecasts show good accuracy, with ensemble
mean and deterministic forecast aligning with observed temperatures, capturing trends
and daily fluctuations, but there is underestimation bias. The narrow ensemble spread
indicates strong agreement among members and high forecast confidence. The observed
temperature consistently falls within this range, reinforcing the reliability of early
forecasts.

By day five, the forecast skill decreases. The ensemble mean and deterministic
forecast follow temperature trends, smoothing early forecasts fluctuations. Minor
deviations from observed temperatures become noticeable. The ensemble spread widens,

reflecting increased uncertainty in longer-range forecasting, especially during dynamic
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temperature changes. Observed temperatures generally remain within the ensemble
spread, capturing probable outcomes despite a slight decline in accuracy.

At a 10-day lead time, forecast skill declines further, though forecasts still capture
the seasonal warming trend. The ensemble mean and deterministic forecasts smooth
observed variability, often lagging or missing short-term fluctuations. The ensemble
spread widens, reflecting increased uncertainty in long-range predictions. While accuracy
diminishes, observed temperature consistently falls within the ensemble range,
highlighting its value in providing realistic outcomes.
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Figure 3.20. Ensemble and deterministic temperature comparison plots in Cukurkisla in 2018 with the
observed in lead times 1, 5, and 10

Similarly, to evaluate the accuracy of precipitation forecasts for Cukurkisla in
2019, January received the highest precipitation for both observed and forecast. The
overall forecast precipitation trend for each month through all the lead days agreed with
the trend of the observed precipitation although some months forecast precipitation is
overestimated or underestimated for different lead days. Figure 3.21 highlighted the

monthly accumulated precipitation for both observed and forecasted data in 2019.
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Figure 3.21. Monthly observed and forecast precipitation accumulation for Cukurkigia Basin in 2019
Similar to 2018, the correlation between observed and forecasted precipitation in
2019 declines as lead time increases. In 2019, the correlation starts at 0.739 on the first

lead day and decreases to 0.376 on the last lead day, as illustrated in Figure 3.22.

Compared to 2018, the correlation in 2019 is higher across all lead times.
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Figure 3.22. The correlation between observed and forecast precipitation of Cukurkisia Basin through

different lead-times in early half of 2019

Figure 3.23 compares precipitation forecasts with observed precipitation (black

line) for Cukurkigla Basin in early 2019. It displays ensemble, showing the 50-member
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range (blue shaded area) and ensemble mean (blue line), alongside a deterministic
forecast (red line). The comparison is presented for forecast lead times of Day 1 (top),
Day 5 (middle), and Day 10 (bottom).
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Figure 3.23. Ensemble and deterministic precipitation comparison plots in Cukurkisla in 2019 with the
observed in lead times 1, 5, and 10

Ensemble and deterministic precipitation forecasts are compared with observed
basin precipitation data. The ensemble spread for the first lead day is narrow, particularly
during periods of little or no precipitation, indicating higher confidence. At this first lead
time, both the ensemble mean, and deterministic forecast capture the timing of observed
major precipitation events well, though discrepancies in peak magnitude can occur.

At day five, forecast skill decreases noticeably. While forecasts attempt to identify
major wet periods seen in observations, the alignment in timing and magnitude is less
precise. The ensemble mean and deterministic forecasts often appear smoother and can
fail to capture the full intensity of observed peaks. The ensemble spread is significantly
wider than at lead day one, visually representing the increased forecast uncertainty at this

longer lead time.
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At day ten, forecasts (ensemble mean and deterministic) show a weak relationship
with the observed precipitation. Both struggle significantly to predict the specific timing
and magnitude of rainfall events, often showing low-amplitude variations or missing
observed events entirely. The ensemble spread is very wide, frequently ranging from zero
to potentially significant precipitation amounts, indicating low predictability and high
uncertainty for specific rainfall details ten days ahead.

Figure 3.24 compares temperature forecasts with observed temperature (black line)
for Cukurkigla Basin in early 2019. It displays an ensemble prediction system (EPS),
showing the 50-member range (blue shaded area) and ensemble mean (blue line),
alongside a deterministic forecast (red line). The comparison is presented for forecast lead
times of Day 1 (top), Day 5 (middle), and Day 10 (bottom).

Ensemble and deterministic temperature forecasts are compared with observed
basin temperature data. The ensemble spread for the first lead day is very narrow,
indicating high confidence among ensemble members. At this first lead time, both the
ensemble mean, and deterministic forecast track the observed temperature extremely
closely, capturing daily fluctuations and trends with high accuracy, but the temperature
is underestimated in some months.

At day five, forecast skill remains high, though slightly reduced compared to day
one. While forecasts (ensemble mean and deterministic) continue to capture the overall
observed temperature trend effectively, they begin to smooth out some finer daily
variations. The ensemble spread is wider than at lead day one, representing a moderate
increase in forecast uncertainty, but the observed temperature generally remains well
within this range.

At lead day ten, forecasts (ensemble mean and deterministic) show a further
decrease in skill regarding specific daily values but still successfully capture the main
temperature trends over the period. Deviations from observed short-term fluctuations are
more apparent. The ensemble spread is wider, reflecting significant uncertainty ten days
ahead, yet it consistently encompasses the observed temperature, demonstrating its utility

in defining the range of outcomes.
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Figure 3.24. Ensemble and deterministic temperature comparison plots in Cukurkisla in 2019 with the
observed in lead times 1, 5, and 10

Comparing the precipitation (Figures 3.19 and 3.23) and temperature (Figures 3.20
and 3.24) forecasts for Cukurkisla across 2018 and 2019 reveals consistent patterns in
forecast behavior and variable predictability. Temperature forecasts consistently
demonstrated higher skill and lower uncertainty compared to precipitation forecasts at all
lead times (Day 1, 5, and 10) in both years. While both variables showed the expected
decrease in forecast accuracy and increase in ensemble spread with longer lead times, the

degradation was much more pronounced for precipitation.

3.4.2.2. Kayabast

The temperature and precipitation forecasts for Kayabasi1 Basin were downloaded
at a spatial resolution of 0.25° x 0.25° grids, as shown in Figure 3.25. To ensure data
reliability, the forecasted meteorological variables were subjected to a quality control
process, where they were compared against observed historical data from ground-based

meteorological stations.
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Figure 3.25. The 0.25° x 0.25° Grids for Kayabas: Basin in 15/03/2019 a) Temperature (K) b)
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To evaluate the accuracy of precipitation forecasts for Kayabasi Basin in 2018,
May has received the highest precipitation for both observed and forecast. The overall
forecast precipitation trend for each month through all the lead days agreed with the trend
of the observed precipitation. But there is an overestimation in forecast precipitation for
all months. Figure 3.26 highlighted the monthly accumulated precipitation for both
observed and forecasted data in 2018.
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Figure 3.26. Monthly observed and forecast precipitation accumulation for Kayabas: Basin in 2018

Kayabasi Basin Correlation between Forecasted and Observed Precipitation in 2018
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Figure 3.27. The correlation between observed and forecast precipitation of Kayabas: Basin through
different lead-times in early half of 2018
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The correlation between observed and forecasted precipitation in Kayabasi Basin
in 2018 also declines as lead-time increases, starting at 0.556 on the first lead day and
dropping to 0.213 by the last lead day, as illustrated in Figure 3.27.

Figure 3.28 compares precipitation forecasts with observed precipitation (black
line) for Kayabasi Basin in early 2018. It displays an ensemble prediction system (EPS),
showing the 50-member range (blue shaded area) and ensemble mean (blue line),
alongside a deterministic forecast (red line). The comparison is presented for forecast lead
times of Day 1 (top), Day 5 (middle), and Day 10 (bottom).

The ensemble spread for the first lead day is narrow during dry periods but widens
during potential precipitation events. At this first lead time, both the ensemble mean, and
deterministic forecast capture the timing of observed major precipitation events (e.g., late
Jan, mid-April, May-June), although there can be notable differences in forecast versus
observed peak.

At day five, forecast skill shows a decrease. While forecasts still attempt to indicate
periods of enhanced precipitation probability corresponding to observed wet spells, the
specific timing and magnitude alignment is significantly reduced. The ensemble mean
and deterministic forecasts often appear much smoother and fail to capture the sharpness
and intensity of observed peaks. The ensemble spread is wider than at lead day one,
reflecting the substantial increase in forecast uncertainty.

At day ten, forecasts (ensemble mean and deterministic) exhibit a very weak
relationship with the observed precipitation. Both forecasts struggle profoundly to predict
the specific timing and magnitude of rainfall events, often showing minimal variation or
completely missing significant observed rainfall. The ensemble spread is extremely wide,
spanning a broad range from zero to potentially high precipitation amounts, indicative of

very low predictability and high uncertainty for specific rainfall details ten days ahead.
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Figure 3.28. Ensemble and deterministic precipitation comparison plots in Kayabags: in 2018 with the
observed precipitation in lead times 1, 5, and 10

Figure 3.29 illustrates the comparison of temperature forecasts (ensemble
mean/range and deterministic) against observed temperatures for Kayabasi Basin in early
2019 across lead times of 1, 5, and 10 days. At Day 1, forecasts exhibit high accuracy
with a narrow ensemble spread, closely tracking observed daily variations. By Day 5,
skill remains strong for overall trends, though some daily fluctuations are smoothed, and
the ensemble spread widens moderately, still containing the observed temperatures. At
Day 10, while specific daily accuracy decreases and variations are significantly
smoothed, the forecasts capture the broader temperature evolution, and the considerably
wider ensemble spread reliably encompasses the observed values, reflecting increased

uncertainty but providing a useful probabilistic range.

44



Ensemble Range — Deterministic - Ensemble Mean — Observed
Lead Time: 1

20-

10-

-10-

-20-
Lead Time: 5

20-

10-

Temperature (°C)
o

Lead Time: 10

-10-

-20- | : 1 1 1 } t
Jan Feb Mar Apr May Jun Jul

Figure 3.29. Ensemble and deterministic temperature comparison plots in Kayabas: in 2018 with the
observed temperature in lead times 1, 5, and 10
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Figure 3.30. Monthly observed and forecast precipitation accumulation for Kayabas: Basin in 2019.
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To evaluate the accuracy of precipitation forecasts for Kayabagi1 Basin in 2019, we
analyzed observed and forecasted precipitation. The highest observed precipitation
occurred in May, whereas the forecast predicted January as the wettest month. The overall
forecast precipitation trend for each month through all the lead days agreed with the trend
of the observed precipitation. But there is an overestimation in forecast precipitation for
all months except April. Figure 3.30 highlighted the monthly accumulated precipitation
for both observed and forecasted data in 2018. The correlation between the observed and
forecasted precipitation in 2019 is shown in Figure 3.31. The relation decreases as the
lead time increases, from 0.454 to 0.058.
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Figure 3.31. The correlation between observed and forecast precipitation of Kayabas: Basin through
different lead-times in early half of 2019

Figure 3.32 compares ensemble (mean and range) and deterministic precipitation
forecasts against observations for Kayabas1 Basin during early 2019, evaluated across
lead times of 1, 5, and 10 days. At the 1-day lead time, forecasts demonstrate moderate
skill in capturing the timing of precipitation events, albeit with inaccuracies in peak
magnitude, and exhibit relatively narrow ensemble spread except during potential rainfall.
Forecast skill markedly diminishes by Day 5, characterized by reduced precision in
timing and magnitude, failing to capture observed peaks, and a significantly wider
ensemble spread reflecting increased uncertainty. By Day 10, predictability is very low,

with both ensemble mean, and deterministic forecasts showing a weak correlation to

46



observed precipitation, struggling to predict event timing or intensity, and accompanied
by an extremely wide ensemble spread indicative of high forecast uncertainty.
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Figure 3.32. Ensemble and deterministic precipitation comparison plots in Kayabags: in 2019 with the
observed precipitation in lead times 1, 5, and 10

Figure 3.33 shows the comparison of ensemble and deterministic temperature
forecasts against observations for Kayabasi Basin in early 2019, across lead times of 1,
5, and 10 days. At the 1-day lead time, forecasts demonstrate exceptional accuracy with
a very narrow ensemble spread, closely matching both trends and daily variations in
observed temperature. While forecast skill remains high at Day 5, capturing major trends
accurately, a slight decrease in fidelity for sharp daily fluctuations is noted alongside a
moderate widening of the ensemble spread, which consistently encompasses observed
values. By Day 10, Although accuracy decreased, it shows the overall trend, making it

useful despite the uncertainty.
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Figure 3.33. Ensemble and deterministic temperature comparison plots in Kayabas: in 2019 with the
observed temperature in lead times 1, 5, and 10

3.5. HOOPLA Toolbox

To facilitate the exploration of ensemble rainfall-runoff modelling, uncertainty
analysis, and prediction within this study, the HydrOIlOgical Prediction LAboratory
(HOOPLA) toolbox was employed. Developed at Université Laval, Canada, HOOPLA is
a modular framework coded entirely in MATLAB, designed for ensemble lumped
hydrological modelling (Thiboult, 2019). HOOPLA includes a collection of 20 lumped
conceptual hydrological models. These models simulate rainfall-runoff transformation
using interconnected reservoirs (buckets) and assume spatial homogeneity within the
catchment. The selection, originating from the work of Perrin (2000) and later refined by
Seiller et al. (2012), focused on models with low to moderate complexity (relatively few
free parameters and reservoirs) while ensuring structural diversity, as they were
developed by different teams for various purposes (Thiboult, 2019).

It is crucial to emphasize that the models implemented in HOOPLA are

generally not the original versions. They were intentionally modified, primarily by Perrin
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(2000) and within the HOOPLA development, to fit a common lumped framework.

Modifications may include:

o Conversion of distributed models to lumped representations.

« Reduction in the number of free parameters.

o Removal of integrated PET or snow accounting routines (handled externally

within HOOPLA).

o Standardization of inputs (precipitation + snowmelt, PET) and outputs

(streamflow).

Table 3.3 summarizes the main characteristics of the hydrological models available

in HOOPLA, based on information provided in the technical report. The 'Modification’

column gives a qualitative indication of the extent of modification from the original

reference.

Table 3.3. Main characteristics of the 20 lumped hydrological models in HOOPLA (Thiboult, 2019).

Model Name No of No Modification ~ Derived From
Parameters Reservoirs
HydroModl 6 3 Slightly BUCKET (Thornthwaite and Mather,
1955)
HydroMod2 9 2 Slightly CEQUEAU (Girard etal., 1972)
HydroMod3 6 3 Slightly CREC (Cormary and Guilbot, 1973)
HydroMod4 6 2 Slightly GARDENIA (Thiery, 1982)
HydroMod5 4 2 Similar GR4H (Mathevet, 2005)
HydroMod6 8 4 Substantial HBV (Bergstrém and Forsman, 1973))
HydroMod7 6 3 Slightly HYMOD (Wagener et al., 2001)
HydroMod8 9 4 Slightly IHACRES (Jakeman et al., 1990)
HydroMod9 6 2 Slightly MARTINE (Mazenc et al., 1984)
HydroMod10 7 4 Similar MOHYSE (Fortin and Turcotte, 2007)
HydroMod1l 6 4 Similar MORDOR (Gargon, 1999)
HydroMod12 10 5 Substantial NAM (Nielsen and Hansen, 1973)
HydroMod13 8 4 Slightly PDM (Moore and Clarke, 1981)
HydroMod14 9 5 Slightly SACRAMENTO (Burnash et al., 1973)
HydroMod15 8 3 Substantial SIMHYD (Chiew et al., 2002)
HydroMod16 8 4 Substantial SMAR (O’Connell et al., 1970)
HydroMod17 7 3 Substantial TANK (Sugawara, 1979)
HydroMod18 7 3 Substantial TOPMODEL (Beven et al., 1984)
HydroMod19 8 3 Substantial WAGENINGEN (Warmerdam et al.,
1997)
HydroMod20 8 4 Substantial XINANJIANG (Zhao et al., 1980)

3.5.1. Potential evapotranspiration

Potential evapotranspiration quantifies the atmospheric demand for water vapor and

serves as a key input to the hydrological models. HOOPLA includes three PET formulas,
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selected primarily because hydrological models often show limited sensitivity to PET
inputs and allow computation even with limited data availability (Seiller and and Anctil,
2016; Thiboult, 2019). These formulas can be computed internally by HOOPLA or
provided externally. Table 3.4 details the included formulas and their data requirements.
In this study, the methodology proposed by Oudin et al. (2005) was employed to calculate

PET for the study areas, utilizing the mean temperature and the latitude of these regions.

Table 3.4. Potential Evapotranspiration (PET) formulas in HOOPLA (Thiboult, 2019).

Name Required input data Basis Reference
Oudin Mean Temperature (T), Latitude (Lat) Energy Balance Oudin et al.
(2005)
Kharrufa Mean Temperature (T), Latitude (Lat) Energy Balance Kharrufa
(2985)
Penman Mean T, Lat, Solar Rad. (Rad), Relative Humidity Combination Penman
(Relhum), Max Temp (Tmax), Min Temp (Tmin), Wind Method (1948)

Speed (Wndspd), Elevation (z)

3.5.2. Snow accounting routine
HOOPLA incorporates the CemaNeige snow accounting routine (SAR) (Valéry et
al., 2014). Currently, this is the only SAR included in this toolbox. CemaNeige operates
based on:
e Spatial discretization into five altitudinal bands of equal area.
o Temperature and precipitation extrapolation to these bands.
o Partitioning of precipitation into liquid/solid fractions based on a transition
temperature range.
o Estimation of snow water equivalent (SWE) using:
o Athermal inertia factor for the snowpack (Ctg).
o A degree-day melt factor (Kf).

Table 3.5. Snow Accounting Routine (SAR) in HOOPLA.

Name Description Free Reference
Parameters
CemaNeige Simulates snow accumulation and melt using Ctg, Kf (Valéry et al.,
altitudinal bands, thermal state, and degree-day 2014)
factor.
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3.5.3. Calibration algorithms
HOOPLA provides two global, iterative calibration algorithms:

1. Shuffled Complex Evolution (SCE): Developed by (Duan et al., 1993), SCE
uses multiple sets of points (complexes) that evolve through reflection,
contraction, and mutation, and are periodically shuffled to explore the parameter
space. It is often considered state-of-the-art but can be computationally expensive.

2. Dynamically Dimensioned Search (DDS): Proposed by Tolson and Shoemaker
(2007), DDS is inspired by manual calibration. It samples the parameter space via
random perturbations and reflections, progressively fixing parameter values to
reduce the search dimension. It is designed to find good solutions within a
specified maximum number of iterations, making it computationally efficient,
especially for models with many parameters.

In this study, SCE is used to calibrate the hydrological parameters to identify

optimal hydrological model parameter sets.

3.5.4. Data assimilation schemes

DA techniques are included to improve forecast accuracy by integrating
information from observations to update model states and provide better initial
conditions. HOOPLA includes two probabilistic, sequential DA schemes:

1. Sequential Importance Resampling (SIR) Filter: A type of PF, also known as
a Bootstrap filter (Arulampalam et al., 2002). It approximates the probability
distribution of model states using weighted samples (particles), which are updated
and resampled based on observations.

2. Ensemble Kalman Filter (EnKF): Described by Evensen (2003), the EnKF uses
an ensemble of model states to estimate the error covariances needed for the
Kalman update step. It avoids the linearity assumption of the traditional Kalman
Filter but performs optimally under Gaussian assumptions.

Based on recommendations on (Liu et al., 2012; Thiboult and Anctil, 2015), the
HOOPLA model utilizes default parameters to define the standard deviation of the normal
distribution representing uncertainty around key model inputs. These parameters quantify
the assumed errors associated with observed or forcing data used in the model. These

default input perturbation standard deviations are summarized in Table 3.6.
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Table 3.6. Default model input perturbation standard deviations for HOOPLA

Variable Perturbation Standard Deviation
Discharge 10%
Precipitation 50%
Air Temperature 2°C
Potential Evapotranspiration 10 %

As shown in Table 3.6, the perturbations were defined as the standard deviation of
a normal distribution applied to each input variable. Specifically, standard deviations of
10% were applied to Discharge and Potential Evapotranspiration, 50% to Precipitation,
and 2 °C to Air Temperature. These defined uncertainties were used to generate perturbed
ensembles of model inputs for the DA procedure. EnKF was then employed for DA,

utilizing an ensemble size of 50 members to estimate the state and parameter uncertainty.

3.6. Multi-model Combination

As we discussed in the literature, different methods of hydrological models’
results combinations are presented in different studies (Ajami et al., 2006; Georgakakos
et al., 2004; Shamseldin et al., 1997; Todorovi¢ et al., 2024). Simple Averaging method

(SAM) which involves the averaging of the discharges of the models is used in this study.
Zn Qsim

Qsay = n (3.5)

Where Qsawm is the averaged discharge, Qsim is the simulated discharges, n is the number

of the models.
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4. RESULTS AND DISCUSSION
4.1. Calibration and Validation of Hydrological Models
4.1.1. Cukurkisla basin
Calibration

The meteorological and discharge data were split into two parts for training and
validation. The 2000-2008 water years were used for calibration and 2009-2017 years for
validation. Using the HOOPLA toolbox in MATLAB, the twenty hydrological models
were run and calibrated using the SCE-AU and KGE to maximize their performance
according to the observed discharge. The CemaNeige module was employed as the SAR
in all twenty hydrological models to simulate snow processes. The hydrograph in Figure
4.1 shows that all the hydrological model simulations followed the pattern of the observed
flow. In addition, the simulation flows captured the high and low flows of the basin

throughout the calibrated period.

Observed vs Simulated Hydrograph
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Figure 4.1. Hydrographs of observed and simulated discharges from 20 hydrological models during the
calibration period (water years 2000-2008) in Cukurkisla Basin

Figure 4.2 shows the result of model 3 which is one of the best performed models
in Cukurkisla basin for this calibration period. The top panel shows the observed
temperature, illustrating clear seasonal variation with a freezing period in winter. The
middle panel displays observed precipitation, observed discharge, and simulated

discharge. The lower panel represents the accumulated snowpack. The hydrograph shows
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that the simulation followed the observed, capturing the lower and peak flows in multiple
years. In addition, the simulated snowpack also exhibited a good relation between
temperature, precipitation, and simulated discharges. During winter, low temperatures
result in substantial snow accumulation and freezing of liquid precipitation. Besides that,
when the temperature rises, around early March, snow melt commences, highly
contributing to the discharge. Overall, the simulation indicates that Model 3 provides a
reasonable representation of the basin's hydrological behavior, particularly concerning

snowmelt processes.
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Figure 4.2. Model 3 Results over Cukurkisia Basin for 2000-2008 calibration period: observed and
simulated temperature, discharge hydrographs, precipitation, and snowpack

Four different goodness of fit metrics are used to show the hydrological models'
performance: NSE, NSEsqrt, KGE, and r?, as shown in Figure 4.3. KGE exhibited a high

median and a narrow interquartile range, suggesting that the models achieved a good
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balance between correlation, bias, and variability. The NSE and r2 metrics also indicated
strong model performance, though with slightly greater variability between the models
compared to KGE. In contrast, NSEsqrt yielded the lowest overall scores and the widest
spread in the boxplot. NSEsqrt metric shows models struggle most with accurately

simulating low-flow dynamics.
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Figure 4.3. Boxplots of calibration performance metrics for the hydrological models in Cukurkisla Basin
using four goodness-of-fit (GOF) metrices: NSE, NSEsqrt, KGE, and r?

Table 4.1 provides the summary statistics (minimum, first quartile [Q1], median,
third quartile [Q3], and maximum) for each metric, offering further insight into the central

tendency and spread of the performance scores across models.

Table 4.1. Summary of calibration performance metrics for NSE, NSEsqrt, KGE, and r2 across all models
over Cukurkisla Basin

Quartiles Calibration

NSE NSEsqgrt KGE r?
Max 0.814 0.823 0.907 0.822
Q3(0.75) 0.797 0.798 0.899 0.808
Median (0.5) 0.783 0.749 0.892 0.797
Q1 (0.25) 0.770 0.682 0.883 0.784
Min 0.624 0.459 0.818 0.677
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All the hydrological models have shown strong performance. The median KGE
value obtained is 0.89, demonstrating high consistency between simulated and observed
streamflow. As Figure 4.4 shows, Model 3 exhibited the highest performance with a KGE
exceeding 0.906, followed closely by several models. Models 4 and 19 showed
comparatively lower performance, with KGE values falling between 0.80 and 0.85,
suggesting some limitations in accurately reproducing observed dynamics during the
calibration period. Despite these few outliers, the overall results highlight the robustness
of most of the models and suggest their suitability for further hydrological analysis.
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Figure 4.4. KGE performance during the 2000-2008 calibration period over Cukurkisla Basin

Validation

The models were validated over the 2009-2017 period using their calibrated
parameters. The performance was assessed using the previously used metric; NSE,
NSEsqrt, KGE, and r? to evaluate the models’ ability to reproduce observed streamflow
during the validation period. The hydrograph in Figure 4.5 shows that the simulated
streamflow successfully captures the general patterns of observed streamflow, including
most major flood peaks and recession limbs, though with considerable spread,
particularly during high flow events. The simulated streamflow for the 2013 and 2014
water years exhibited underestimation, due to the models' inability to accurately capture

peak flow events.
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Observed vs Simulated Hydrograph (Validation)
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Figure 4.5. Hydrographs of observed and simulated discharges over Cukurkisla Basin from 20
hydrological models during the validation period (2009-2017)
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Figure 4.6. Model 3 Results over Cukurkigia Basin for 2009-2017 validation period: observed and
simulated temperature, discharge hydrographs, precipitation, and snowpack.
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Figure 4.6 shows model 3 results, one of the best performing models in Cukurkisla
Basin for calibration and validation periods. Observed temperature, discharge, simulated
discharge and snowpack are shown. The simulated discharge performed well for most
years except 2013 and 2014. This model captured low and high streamflow effectively.
The snowpack for the validation period is lower than 100 mm except 2012 water year,
which experienced the highest observed snowpack due to very low temperatures. The
lowest snowpack and discharge were simulated in 2014. The simulated snowpack showed
a good relation between temperature, precipitation and simulated discharges. During
winter, low temperatures result in snow accumulation and freezing precipitation. When
the temperature rises, around early March, snowmelt begins, contributing significantly
to discharge. Overall, Model 3 provides a credible representation of the basin's
hydrological behavior, particularly regarding snowmelt processes.

Figure 4.7 shows the comparison of the four different metrics: NSE, NSEsqrt, KGE,
and r?. Like the calibration, KGE outperformed the other metrics in higher performance
and reduced dispersion. NSE and r? have also shown better performance, though with
slightly greater variability compared to KGE. In contrast, NSEsqrt yielded the lowest
performance, characterized by higher dispersion. Table 4.2 gives the summary of the

performance metrics.
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Figure 4.7. Boxplots of validation performance metrics for the hydrological models in Cukurkisia Basin
using four goodness-of-fit (GOF) metrices: NSE, NSEsqrt, KGE, and r?
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Table 4.2. Summary of validation performance metrics for NSE, NSEsqrt, KGE, and r2 across all models

over Cukurkisla Basin

Quartiles Validation

NSE NSEsqrt KGE rl
Max 0.848 0.851 0.901 0.854
Q3 (0.75) 0.821 0.816 0.885 0.833
Median (0.5) 0.801 0.783 0.865 0.811
Q1(0.25) 0.767 0.716 0.852 0.788
Min 0.694 0.498 0.773 0.742

Figure 4.8 shows the performance of each model in KGE metric. The median
performance for the twenty models is 0.865, showing a good performance. Model 3
outperformed the other models with 0.907 KGE performance. The lowest performance
were observed on Model 12, with 0.773 KGE performance.

Overall, the simulated streamflow demonstrated satisfactory performance, closely
aligning with observed data across most years within the validation period. The models
effectively reproduced the general flow patterns, including seasonal variations and

baseflow conditions, indicating their robustness for hydrological applications.

Validation Performance (KGE)

09 &

0.88 e L
0.86 -
0.84 |-

0.82 —

KGE

0.8

0.78

0.76 —

0.74

072 —

0.7 | | | | | | 1 | | | | | | | | |
N Q3 0 b e} 0 4 Sl 9 ) N T ] b ] o A 2 2 D
O RSy I & & & N N N N N N N N D N )
T £
P ITITLTETETEL T FSS

& &
3 By 3 B ‘?:\ By B ‘?:\ Q\\b & Q:\b & &
Hydrological Models

28

Figure 4.8. KGE performance over Cukurkisla Basin during the 2009-2017 validation period.
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Physical parameters

The twenty hydrological models each contained between four to 10 core
parameters, in addition to two parameters from the CemaNeige snow module. To
illustrate how the models represent physical processes, the field capacity (FC) or soil
capacity parameter from each model and the degree-day factor (Kf) from CemaNeige
were selected for closer examination. These two parameters were chosen because they
are directly linked to observable hydrological and snowmelt behavior, making them
meaningful for interpreting the models’ physical behavior.

The FC parameters for the models show diversity, 50% are in between 100 mm and
450 mm as shown in Figure 4.9. The median FC is 140 mm. While some models, such as
models 16, show very high FC values around 900 mm, others like models 3, 9, 12, and
19 calibrate to much lower values, below 100 mm. Several models fall within a moderate
range, with a noticeable cluster between 100 and 600 mm. This widespread indicates that
the calibrated FC values are strongly influenced by each model’s structure and conceptual

design, reflecting differing requirements to match observed data effectively.
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Figure 4.9. Soil capacity for the twenty models for 20002008 calibration period over Cukurkisla

Based on Figure 4.10, the calibrated Kf values show substantial variability across
the twenty hydrological models. Kf ranges from a minimum of approximately 4.5
mm/°C/day (Model 9) to a maximum of 13.23 mm/°C/day (Model 17). Such high value
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likely reflects the calibration process compensating for the specific structural
representation of snowmelt processes within Model 17. The median value for the basin is
7.57 mm/°C/day. Although only six models exhibit Kf values below 6 mm/°C/day, the
interquartile range spans from 5.5 to 11.7 mm/°C/day. These results highlight notable

differences in snowmelt sensitivity among the models.
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Figure 4.10. The change of degree day factor parameter of CemaNeige SAR model for the twenty models
for 2000-2008 calibration period for Cukurkisia Basin.

4.1.2. Kayabasi basin
Calibration

The available meteorological and discharge are split into two parts for training and
validation. 2013-2017 water years are used for calibration and 2008-2012 for validation.
Using the HOOPLA toolbox in MATLAB, the twenty hydrological models were run and
calibrated using the SCE algorithm to maximize their performance according to the
observed discharge. The CemaNeige module was employed as the SAR in all twenty
hydrological models to simulate snow processes. The hydrograph in Figure 4.11 shows
that all the hydrological models’ simulations follow the pattern of the observed flow. In
addition, the simulation flows capture the low flows of the basin throughout the calibrated
period and struggle the peak flows. 2013 and 2014 water years simulated streamflow did
not capture the peak flows while the low flow simulation of the most models performed
better.
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Observed vs Simulated Hydrograph
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Figure 4.11. Hydrographs of observed and simulated discharges from 20 hydrological models during the
calibration period (water years 2013-2017) in Kayabas: Basin.

Figure 4.12 shows the result of Model 8, which is one of the best performed models
in Kayabas1 basin for this training period, 2013-2017. While the top panels show the
observed temperature of the basin, the middle panel shows the observed and simulated
discharges. In addition, the lower panel shows the simulated snowpack of the basin. As
we illustrated before, the simulated discharge performed very good for most years except
2013 and 2014 water years. Although the simulated streamflow captured very well in the
low flows, it could not capture the high flows of these years. The snowpack for the
calibration period is between 50 mm and 200 mm. The lowest snowpack was seen in
2013 and 2014 similar to the streamflow. In addition, the simulated snowpack also
exhibited very good relation between temperature, precipitation and simulated
discharges. During winter, low temperatures result in substantial snow accumulation and
freezing of liquid precipitation. Besides that, when the temperature rises, early March,
snow melt commences, highly contributing to the discharge. Overall, the simulation
indicates that Model 8 provides a credible representation of the basin's hydrological

behavior, particularly concerning snowmelt processes.
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Figure 4.12. Model 8 Results over Kayabas: Basin for 2003-2017 calibration period: observed and
simulated temperature, discharge hydrographs, precipitation, and snowpack.
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Figure 4.13. Boxplots of calibration performance metrics for the hydrological models in Kayabas: Basin
using four goodness-of-fit (GOF) metrices: NSE, NSEsqrt, KGE, and r?
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As shown in Figure 4.13, four performance metrics: NSE, NSEsqrt, KGE, and r?,
were used to evaluate and compare the performance of the models. Among these, KGE
demonstrated the highest overall performance, with IQR of the twenty models is between
0.70 and 0.80, indicating both accuracy and consistency. Although two models were
identified as outliers in terms of KGE performance, this metric still performs good. r? also
exhibited good linear relation, despite a wider spread due to high-value outliers. In
contrast, the lower scores for both NSE and NSEsqrt reveal specific model weaknesses:
the lower NSE shows difficulties in capturing high-flow events, while the poor NSEsqrt
scores indicate a more significant challenge in simulating low-flow periods accurately. A

detailed summary of these performance statistics is provided in Table 4.3.

Table 4.3. Summary of calibration performance metrics for NSE, NSEsqrt, KGE, and r2 across all models.

Quartiles Calibration

NSE NSEsqrt KGE r?
Max 0.750 0.785 0.830 0.751
Q3(0.75) 0.687 0.727 0.796 0.707
Median (0.5) 0.653 0.647 0.765 0.677
Q1 (0.25) 0.626 0.556 0.718 0.643
Min 0.565 0.357 0.520 0.579

Figure 4.14 presents the performance of individual models during the calibration
period (2013-2017 water years), evaluated using KGE metric. Among the twenty models
assessed, Models 8 and 20 exhibited the highest performance, clearly outperforming the
rest. The median KGE value across all models was 0.765, indicating a strong overall
performance.

A total of 15 models (75%) achieved KGE values greater than 0.70, indicating a
satisfactory level of hydrological performance. This suggests that most models reliably
captured the observed streamflow dynamics during the calibration period. However,
Model 11 recorded the lowest performance, with a KGE of 0.52, highlighting a significant
deviation from observed streamflow.
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Figure 4.14. KGE performance metric over Kayabas: during the 2013-2017 calibration period.

Validation

The models were validated over the 2008-2012 period using their calibrated
parameters. The performance was assessed using the previously used metric; NSE,
NSEsqrt, KGE, and r? to evaluate the models’ ability to reproduce observed streamflow
during the validation period. The simulated streamflow captured the overall flow pattern,
including most peak flows and baseflow conditions. However, a noticeable spread is
observed around high-flow events, indicating increased uncertainty during peak discharge
periods as shown in Figure 4.15. The uncertainty is higher in 2009 and 2010 water years
regarding the high and low flows. Despite these discrepancies, the ensemble simulation
demonstrates satisfactory agreement with observed data, supporting the reliability of the

models during the validation period.
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Observed vs Simulated Hydrograph (Validation)
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Figure 4.15. Hydrographs of observed and simulated discharges from 20 hydrological models during the
validation period (water years 2008-2012) in Kayabast Basin

Figure 4.16 shows Model 8 results, one of the best performing models in Kayabas1
basin for calibration and validation periods. Observed temperature, discharge, simulated
discharge and snowpack are shown. The simulated discharge performed well for most
years except 2009 and 2010. While the model captured low flows effectively, it could not
capture the high flows of these years. The snowpack for the validation period is between
50 mm and 150 mm. Although the lowest snowpack was observed in 2010, the highest
discharge occurred this year. The simulated snowpack showed a good relation between
temperature, precipitation and simulated discharges. During winter, low temperatures
result in snow accumulation and freezing precipitation. When the temperature rises-
around early April- the snowmelt begins, contributing significantly to discharge. Overall,
Model 8 provides a credible representation of the basin's hydrological behavior,

particularly regarding snowmelt processes.
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Figure 4.16. Model 8 Results over Kayabas: Basin for 2008-2012 validation period: observed and
simulated temperature, discharge hydrographs, precipitation, and snowpack

As shown in Figure 4.17, four performance metrics: NSE, NSEsqrt, KGE, and r?,
were used to evaluate and compare the performance of the models over Kayabasi. Among
these, KGE demonstrated satisfactory overall performance, with IQR of the twenty
models is between 0.64 and 0.71, indicating both intermediate accuracy and consistency.
Although one model was identified as an outlier in terms of KGE performance, the metric
performed well. r2 also exhibited good results, despite a wider spread due to high-value
outliers. In contrast, NSE and NSEsqrt yielded the lowest performance scores among the

evaluated metrics. Table 4.4 shows the detailed spread of the performance metrics.
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Figure 4.17. Boxplots of validation performance metrics for the hydrological models in Kayabas: Basin
using four goodness-of-fit (GOF) metrices: NSE, NSEsqrt, KGE, and r?

Table 4.4. Summary of validation performance metrics for NSE, NSEsqrt, KGE, and rz across all models.

Quartiles Validation

NSE NSEsqrt KGE r2
Max 0.625 0.708 0.700 0.653
Q3(0.75) 0.594 0.664 0.652 0.626
Median (0.5) 0.570 0.632 0.635 0.598
Q1 (0.25) 0.542 0.603 0.595 0.562
Min 0.485 0.503 0.551 0.502

Figure 4.18 presents the performance of individual models during the validation
period (20082012 water years) over Kayabasi Basin, evaluated using KGE metric.
Among the twenty models assessed, Models 2, 8 and 16 exhibited the highest
performance, outperforming the remaining models. The median KGE value of 0.67
showed a good performance, with good validation results despite being lower than
calibration. A total of 15 models (75%) achieved KGE values greater than 0.60, indicating
a satisfactory hydrological model performance. This shows that most models captured the
observed streamflow dynamics during the validation period. Model 4 was observed the
lowest performance, with a KGE value of 0.55, highlighting a significant deviation from

observed data.
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Figure 4.18. KGE performance over Kayabag: Basin during the 2008-2012 validation period

Physical parameters

The FC parameter shows diversity, with 50% between 50 mm and 200 mm as
shown in Figure 4.19. The median FC is 101 mm. While some models, like model 16
have shown high FC values around 600 mm, others like models 3, 5, 9, 12, 18, and 19
were found to be below 50 mm. Several models fall within a moderate range between 50
and 200 mm. This spread indicates that calibrated FC values are influenced by each
model's structure and design, reflecting requirements to match observed data.

Based on Figure 4.20, the calibrated Kf values show substantial variability across
the twenty hydrological models. Kf ranges from a minimum of approximately 3.6
mm/°C/day (Model 9) to a maximum of 11.10 mm/°C/day (Model 12). The median value
for the basin is 6.44 mm/°C/day. Around 9 models’ Kf are lower than 6.44 mm/°C/day
and IQR from 4.36 to 8.47 mm/°C/day. These results highlight notable differences in

snowmelt sensitivity among the models.
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Figure 4.19. Field Capacity parameter for the twenty models for 2012 — 2013 calibration period
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Figure 4.20. The change of degree day factor parameter of CemaNeige SAR for the twenty models for
2012-2013 calibration period.

4.2. Open-Loop (OL) Deterministic and Ensemble Forecasting

The hydrological forecasting for the two basins was performed using the calibrated
parameters and simulation. This section will exhibit the results of the OL deterministic
and ensemble forecasting of the basins throughout the first half of 2018 and 2019 years;

January to June.
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4.2.1. Deterministic forecasting
Cukurkisla

The deterministic forecast for Cukurkisla Basin was performed from 1% January to
30" June of 2018 and 2019 in 10 lead days in twenty hydrological models. The
deterministic forecast performance using KGE across 20 models for Cukurkigla Basin
shows decreasing skill with increasing lead time in 2018 and 2019. In 2018, early lead-
time forecasts (1-3 days) showed good performance with a median KGE above 0.6 and a
narrow 1QR. The median KGE declined to 0.4 for Lead Time 10, while the spread of
KGE values increased at longer lead times. Models 4 and 16 showed negative KGE
values. In 2019, the median KGE for the initial lead day was found at 0.72, representing
a slight improvement over 2018. In addition, the decline in performance in 2019 was more
pronounced, as the median KGE for the final lead time decreased to 0.22, lower than the
0.43 observed in 2018 for the same lead time. This comparison between the two years
revealed inter-annual variability in forecast skill. Figure 4.21 shows the comparison
between the performance of the deterministic forecast in 2018 and 2019, while Table 4.5
shows the 75th, 50th and 25th quartiles of the results.
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Figure 4.21. Deterministic forecast performance for Cukurkisia Basin in 2018 and 2019, measured by
KGE across 20 models as a function of lead time.
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Table 4.5. Deterministic forecast performance results in 2018 and 2019 comparison for Cukurkisla Basin
Quartiles T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
Q3(0.75) 0.815 0.710 0.653 0.645 0.655 0.597 0.578 0.566 0.555 0.544

% Q2 (0.5) 0.718 0.637 0.603 0.571 0549 0.513 0483 0461 0444 0.433
Q1(0.25) 0482 0.363 0332 0.334 0366 0.361 0.348 0.319 0.303 0.315
Mean 0.609 0475 0452 0444 0465 0443 0412 0392 0386 0.377
Q3(0.75) 0.756 0.646 0542 0.469 0.492 0465 0430 0400 0.375 0.343
% Q2 (0.5) 0.725 0574 0468 0.407 0.389 0.342 0.304 0.264 0.244 0.227
Q1(0.25) 0.659 0541 0424 0.324 0303 0.278 0.257 0.206 0.162 0.133
Mean 0.704 0.587 0468 0.399 0400 0.365 0.334 0.295 0.264 0.236
Kayabast

The deterministic forecast modelling for Kayabas1 Basin was performed over the
period from January 1 to June 30 for 2018 and 2019, using 20 hydrological models and a
10-day lead time. As shown in Figure 4.22, forecast skill, represented by the KGE
consistently decreased with increasing lead time in both years. In 2018, the median KGE
at lead time one was approximately 0.68 and gradually declined to 0.56 by lead time ten.
In contrast, the 2019 forecasts began with a notably higher median KGE of around 0.80
at lead time one, but showed a sharper decline in performance, with the median dropping
to 0.22 by lead time ten, lower than the corresponding 2018 value of 0.43. Early forecasts
(1-3 days) in both years achieved a good performance, with median KGEs exceeding
0.60. This pattern highlights the higher reliability of early forecasts and the deterioration
of forecast skill as lead time increases. Summary statistics, including the 75th, 50th, and

25th percentiles of KGE values across all models, are presented in Table 4.6.

Table 4.6. Deterministic forecast performance results in 2018 and 2019 comparison for Kayabags: Basin.
Quartiles T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
Q3(0.75) 0.720 0.713 0.694 0.688 0.686 0.669 0.666 0.650 0.635 0.609

g Q2 (0.5 0.683 0.678 0.650 0.647 0.643 0.628 0.620 0.607 0.590 0.566
Q1(0.25) 0.585 0.593 0.588 0.600 0.604 0592 0586 0.578 0.564 0.541
Mean 0.660 0.658 0.643 0.642 0.639 0.625 0.616 0.607 0.591 0.567
Q3(0.75) 0.839 0.778 0.712 0.683 0.659 0.630 0.609 0.593 0.589 0.588
% Q2 (0.5 0.805 0.747 0.688 0.651 0.629 0.612 0585 0.562 0.550 0.543

Q1(0.25 0.741 0.707 0.656 0.614 0.592 0.566 0.542 0.525 0.515 0.509
Mean 0.792 0.737 0.681 0.647 0.622 0599 0.577 0561 0.552 0.546
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Deterministic Forecast Performance for Kayabasi Basin
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Figure 4.22. Deterministic forecast performance for Kayabags: Basin in 2018 and 2019, measured by
KGE across 20 models as a function of lead time.

4.2.2. Ensemble forecasting
Cukurkisla

Ensemble Forecasting with 50 ensemble members were performed using the twenty
hydrological models and with 10 days lead time for Cukurkisla Basin. The mean
ensemble performance of each model was evaluated using KGE performance index. A
good performance was found for the basin across each lead-time. In 2018, the median
KGE for the first lead time was observed 0.72, which gradually decreased as the lead time
increased. Although some models underperformed — lower than 0.30 KGE, the median
performance across all the lead times exceeded 0.60 KGE.

In contrast, the median performance for the first lead time in 2019 was 0.736 KGE,
slightly surpassing that of 2018. Additionally, the IQR for each lead time is narrower
compared to 2018. Performance gradually declines until the 4™ lead time, reaching a
median of 0.54 KGE, followed by a slight increase at 5™ lead time, and then it continues
to decrease gradually until the last, from 0.583 to 0.574 KGE. Although the lowest
performance was observed in 4" lead time with 0.40 KGE, it is higher than the lowest
performance of 2018. This showed inter-annual variability of this basin in forecast skill.
Figure 4.23 shows the box-plot performance of each lead time, while Table 4.7 shows the

statistical summary of the forecast performance.
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Figure 4.23. Ensemble forecast performance for Cukurkisia Basin in 2018 and 2019, measured by KGE
across ensemble mean of 20 models as a function of lead time

Table 4.7. Ensemble forecast performance results in 2018 and 2019 comparison for Cukurkisla Basin

Quartiles T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
Q3(0.75) 0.824 0.720 0.673 0.680 0.676 0.683 0.690 0.691 0.673 0.676
% Q2(0.5) 0721 0.648 0645 0.643 0.626 0.622 0.626 0.640 0.637 0.637
Q1(0.25) 0.504 0429 0460 0531 0549 0.522 0475 0468 0472 0.481
Mean 0.616 0.503 0.508 0.536 0.544 0.541 0.543 0.557 0.553 0.550
Q3(0.75) 0.769 0.697 0.642 0.610 0.647 0.650 0.647 0.638 0.635 0.637
% Q2(0.5) 0736 0.653 0576 0540 0.583 0.588 0.585 0.577 0570 0.574
Q1(0.25) 0.686 0591 0518 0.499 0544 0.552 0544 0539 0.543 0.548
Mean 0.717 0.644 0.574 0548 0.593 0.600 0.597 0.592 0.590 0.589
Kayabas1

The ensemble forecasting modelling for Kayabas1 Basin was also performed from

1% January to 30" June 2018 and 2019. Mean ensemble forecast performance was

evaluated using KGE performance index. A good performance was found for this basin

across each lead-time. In 2018, the median KGE for the first lead time was observed 0.67,

which gradually decreased as the lead time increased. Although some models

underperformed in the early (1-2 days) forecast, lower than 0.50 KGE, the median

performance across all the lead times exceeded 0.60 KGE, indicating reliable

performance from most of the models. In 2019, although the performance of the forecasts

began with a notably higher median KGE of around 0.81 at lead time 1, but showed a

sharper decline in performance, with the median dropping to 0.55 by lead time 10,
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considerably lower than the corresponding 2018 KGE of 0.612. The performance of the

early forecast (1-3 days) exceeded 0.70, which is higher than the performance of the first

lead day in 2018. This comparison has shown inter-annual variability of this basin. This

variability is also shown in both basins in deterministic and ensemble forecasting.
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Figure 4.24. Ensemble forecast performance for Kayabas: Basin in 2018 and 2019, measured by KGE
across ensemble mean of 20 models as a function of lead time.

Table 4.8. Ensemble forecast performance results in 2018 and 2019 comparison for Kayabas: Basin.

Quartiles T1 T2 T3 T4

T5

T6 T7 T8 T9 T10

2018

Q3 (0.75)
Q2 (0.5)
Q1 (0.25)

Mean

0.719
0.678
0.579
0.656

0.713
0.667
0.581
0.651

0.695
0.646
0.586
0.636

0.688
0.640
0.601
0.637

0.682
0.639
0.597
0.636

0.674
0.633
0.589
0.631

0.677
0.631
0.583
0.629

0.671
0.628
0.578
0.624

0.664
0.623
0.573
0.617

0.653
0.612
0.561
0.608

2019

Q3 (0.75)
Q2 (0.5)
Q1 (0.25)

Mean

0.849
0.812
0.745
0.799

0.791
0.767
0.715
0.752

0.733
0.707
0.671
0.698

0.704
0.670
0.631
0.664

0.679
0.644
0.609
0.640

0.649
0.625
0.585
0.616

0.624
0.601
0.558
0.592

0.604
0.576
0.536
0.571

0.595
0.559
0.523
0.559

0.595
0.554
0.519
0.556

4.2.3. Comparison of deterministic and ensemble forecast performance
Cukurkisla
The hydrographs of deterministic and ensemble forecasts were compared alongside
with the observed hydrograph for model 20 in 2018 and 2019. For 2018, the hydrographs

of both forecasts have shown high accuracy with very narrow ensemble spread, closely

capturing the high and low peaks of the observed discharges in the first lead days. As the
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lead time increases, the accuracy decreases, and the ensemble spread widens as shown
both lead times 5 and 10 in Figure 4.25. In addition, peak discharge of the forecasts
decline below the observed at the longer lead days. The pattern of both forecasts are
quietly similar for this year and model.

For 2019, although the hydrographs of the first lead time did not capture the peak
discharges in mid-March and early of April and overestimated the peak discharge in mid-
January, the accuracy of both forecast predicted good and follow the observed discharge
pattern. As the forecast of 2018, the accuracy of both forecasts decline as the lead time
increases, and the forecasts could not capture the peak discharges. The ensemble forecast
outperformed at the longer lead times as shown in Figure 4.26. The below figures show
the comparison between observed discharge against deterministic, ensemble mean and

ensemble range forecast for Cukurkisla Basin in 2018 and 2019 for Model 20.

Forecast Hydrographs: Cukurkisla Basin for 2018 (HydroMod20)
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Figure 4.25. Cukurkisla deterministic and ensemble forecast hydrographs for model 20 in 2018 against
observed hydrograph: Lead time 1, 5, and 10.
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Forecast Hydrographs: Cukurkisla Basin for 2019 (HydroMod20)
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Figure 4.26. Cukurkisla deterministic and ensemble forecast hydrographs for model 20 in 2019 against
observed hydrograph: Lead time 1, 5, and 10
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Figure 4.27. Comparison of deterministic and ensemble forecast performance across 10 lead days on
Cukurkisla Basin
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Figure 4.27 compares deterministic and ensemble forecasting performance using
KGE over ten lead days for Cukurkisla Basin in 2018 and 2019. The ensemble forecast
outperformed the deterministic forecast, especially at longer lead times. For 2018, both
forecasts perform well in the early days, with KGE above 0.60. After athird lead day, the
deterministic performance declines, showing lower KGE values and a wider spread. The
ensemble forecast maintains higher KGE values, ranging from 0.40 to 0.80, with a
narrower spread. In 2019, performance decline was more pronounced for both scenarios,
indicating a more challenging forecasting year. While both scenarios have shown
reasonable KGEs at 1-3 days, the ensemble forecast outperforms the deterministic in the
later lead days. Beyond the third lead tie, deterministic forecast performance degrades
significantly, with median KGE values below 0.4 and wide spreads. The ensemble
forecast maintains a median KGE above 0.5 with narrower spread, demonstrating reduced
uncertainty and high reliability at longer lead times and during challenging periods.

Kayabas1

The hydrographs of deterministic and ensemble forecasts are compared alongside
with the observed hydrograph for model 20 in 2018 and 2019. For 2018, the forecasts
showed good accuracy at early lead times, reflected by a very narrow ensemble spread.
However, they overestimated the peak discharges in late March, May, and early June. As
shown for lead times of 5 and 10 days in Figure 4.28, forecast accuracy decreases and the
ensemble spread widens as the lead time increases. At these longer lead times, the
forecasts also tended to underestimate the high flows in March while overestimating them
in May. Overall, the forecast patterns for this year were quite similar.

For 2019, while the early lead time forecasts failed to capture the peak discharge in
May, they otherwise followed the observed discharge pattern well. Similar to 2018,
forecast accuracy declined as the lead time increased, and the models were unable to
capture the peak discharges. As shown in Figure 4.29, the overall performance for this
year was quite similar. The figures below compare the observed discharge in Kayabasi
Basin for Model 20 against its deterministic forecast, ensemble mean, and ensemble range
for 2018 and 2019.
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Forecast Hydrographs: Kayabasi Basin for 2018 (HydroMod20)
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Figure 4.28. Kayabag: deterministic and ensemble forecast hydrographs for model 20 in 2018 against
observed hydrograph: Lead time 1, 5, and 10

Forecast Hydrographs: Kayabasi Basin for 2019 (HydroMod20)
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Figure 4.29. Kayabag: deterministic and ensemble forecast hydrographs for model 20 in 2019 against
observed hydrograph: Lead time 1, 5, and 10

Figure 4.30 compares deterministic and ensemble forecasting performance using
KGE over ten lead days for Kayabasi Basin in 2018 and 2019. The ensemble forecast
slightly outperformed the deterministic forecast at longer lead times. For 2018, both

forecasts perform well in all lead days, with KGE above 0.60. At early lead time (1-3
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days) the performance of both forecasts are quite similar. As the lead time increases, the
deterministic forecast a slightly underperformed that of ensemble forecast. For 2019, both
ensemble and deterministic forecasts performed good throughout all the lead time, higher
than 0.50 KGE. The median performance of the early lead times (1-3 days) exceeded 0.70
KGE, indicating higher reliability at the early days. The ensemble forecast slightly
outperformed the deterministic forecast across all the lead times, demonstrating reduced
uncertainty and higher reliability of the forecast. Ensemble forecast outperformed the
deterministic forecast for both years and basins at longer lead days.

1 T T \ T T \

B 2018 W DET| |
0.9 H ENS

08 B

DG EsEaais

0.5

KGE

04 .

03 n

0.2 - i

01 N

09k — — 2019 i

) &5 | ‘

- T RPRessag

KGE

0.5

0.4

03 a

0.2 B

0.1 a

0 ! l \ I ! L 1 ! ! !
1 2 3 4 5 6 7 8 9 10

Figure 4.30. Comparison of deterministic and ensemble forecast performance across 10 lead days on
Kayabagsi Basin

4.3. EnKF Data Assimilation Forecast
4.3.1. Data assimilated deterministic forecasting
Cukurkisla
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EnKF data assimilation (DA) was performed with 50 perturbed members using
observations of discharge, precipitation, temperature, and potential evapotranspiration.
Following assimilation, forecasts were generated. The performance of the DA
forecast showed significant improvement, evidenced by higher performance scores and a
narrower interquartile range (IQR) at each lead time as shown in Figure 4.31. Table 4.9
also shows the performance of each lead time. In 2018, the median KGE performance of
twenty models for the first lead time was 0.774, and this median performance gradually
declined as the lead time increased, reaching 0.507 KGE. In 2019, although a higher
performance of 0.892 KGE was observed in the first lead time, the decline in performance

was more pronounced than in 2018, dropping to 0.423 KGE in the last lead time.
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Figure 4.31. Data assimilated deterministic forecast performance (KGE) for Cukurkisia Basin in 2018
and 2019, across 20 models as a function of lead time

Table 4.9. Data assimilated deterministic forecast performance results in 2018 and 2019 comparison for
Cukurkigla Basin

Quartiles

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

Q3 (0.75)
Q2 (0.5)
Q1 (0.25)

Mean

2018

0.861
0.774
0.685
0.739

0.735
0.634
0.507
0.578

0.697
0.604
0.461
0.557

0.694
0.607
0.476
0.565

0.684
0.620
0.512
0.582

0.654
0.578
0.502
0.559

0.608
0.550
0.467
0.525

0.588
0.532
0.436
0.504

0.583
0.515
0.435
0.496

0.593
0.507
0.426
0.488

Q3 (0.75)
Q2 (0.5)
Q1 (0.25)

Mean

2019

0.921
0.892
0.825
0.871

0.811
0.787
0.765
0.788

0.710
0.649
0.611
0.654

0.638
0.568
0.520
0.575

0.654
0.577
0.507
0.582

0.633
0.544
0.450
0.549

0.611
0.522
0.400
0.520

0.574
0.493
0.362
0.481

0.546
0.458
0.340
0.449

0.524
0.423
0.328
0.421
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Kayabast

The input data for Kayabasi1 Basin underwent EnKF DA, from which deterministic

forecasts were generated. The performance of the data-assimilated deterministic forecast

showed improvement, with higher performance and narrower IQ ranges at each lead time

as shown in Figure 4.32 and Table 4.10. In 2018, the median KGE performance of twenty

models for the first lead time was 0.784, and this median performance gradually declined

as the lead time increased, reaching 0.65 KGE. In 2019, although a higher performance

of 0.894 KGE was observed in the first lead time, the decline in performance was more

pronounced than in 2018, dropping to 0.536 KGE in the last lead time.
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Figure 4.32. Data assimilated deterministic forecast performance (KGE) for the Cukurkisla Basin in

2018 and 2019, across 20 models as a function of lead time

Table 4.10. Data assimilated deterministic forecast performance in 2018 and 2019 for Cukurkisla Basin

Quartiles

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

Q3 (0.75)
Q2 (0.5)
Q1 (0.25)

Mean

2018

0.832
0.780
0.712
0.775

0.818
0.788
0.762
0.785

0.793
0.777
0.749
0.764

0.785
0.758
0.734
0.753

0.783
0.749
0.714
0.743

0.767
0.726
0.683
0.722

0.749
0.703
0.668
0.706

0.732
0.693
0.647
0.691

0.715
0.676
0.621
0.673

0.694
0.650
0.588
0.645

Q3 (0.75)
Q2 (0.5)
Q1 (0.25)

Mean

2019

0.920
0.894
0.854
0.880

0.866
0.837
0.801
0.826

0.789
0.756
0.732
0.752

0.736
0.711
0.679
0.704

0.706
0.679
0.631
0.670

0.671
0.647
0.593
0.636

0.637
0.615
0.566
0.602

0.610
0.583
0.543
0.573

0.590
0.555
0.518
0.552

0.576
0.536
0.501
0.539
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4.3.2. Data assimilated ensemble forecasting
Cukurkisla

The input data for Cukurkisla Basin underwent EnKF DA, from which ensemble
forecasts were generated. The performance of the data-assimilated ensemble forecast
showed improvement, with higher performance and narrower 1Q ranges at each lead time.
Figure 4.33 and table 4.11 illustrate the performance comparison between 2018 and 2019
in Cukurkisla Basin. In 2018, the median KGE performance of twenty models for the first
lead time was 0.809, and this median performance gradually declined as the lead time
increased, reaching 0.644 KGE. In 2019, although a higher performance of 0.887 KGE
was observed in the first lead time, the decline in performance was more pronounced than
in 2018, dropping to 0.671 KGE in the last lead time.
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Figure 4.33. Data assimilated ensemble forecast performance (KGE) for Cukurkigia Basin in 2018 and
2019, across 20 models as a function of lead time

Table 4.11. Data assimilated ensemble forecast performance in 2018 and 2019 for Cukurkisla Basin
Quartiles T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
Q3(0.75) 0.863 0.753 0.731 0.710 0.704 0.683 0.674 0.691 0.696 0.699
Q2(05 0809 0.652 0631 0671 0.674 0.657 0.645 0.647 0.642 0.644

@
§ Q1(0.25 0.704 0526 0576 0.625 0.636 0.640 0.627 0.632 0.622 0.607
Mean 0.757 0.608 0.605 0.641 0.648 0.639 0.629 0.636 0.627 0.622
Q3(0.75) 0.930 0.833 0746 0.713 0.759 0.767 0.757 0.743 0.730 0.718
o Q2(0.5 0.887 0.816 0718 0684 0.719 0.717 0.707 0.690 0.679 0.671
§ Q1(0.25 0.827 0.771 0687 0651 0.690 0.685 0.676 0.657 0.625 0.586

Mean 0.872 0.804 0.709 0.671 0.716 0.716 0.705 0.690 0.675 0.663
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Kayabast

Finally, the input data for Kayabasi Basin underwent EnKF DA, from which
ensemble forecasts were generated. The performance of the data-assimilated ensemble
forecast showed improvement, with higher performance and narrower 1Q ranges at each
lead time. Figure 4.34 and Table 4.12 illustrate the performance comparison between
2018 and 2019 in Kayabasi Basin. In 2018, the median KGE performance of twenty
models for the first lead time was 0.782, and this median performance gradually declined
as the lead time increased, reaching 0.698 KGE. In 2019, although a higher performance
of 0.899 KGE was observed in the first lead time, the decline in performance was more
pronounced in 2019, dropping to 0.54 KGE in the last lead time.
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Figure 4.34. Data assimilated ensemble forecast performance (KGE) for Kayabas: Basin in 2018 and
2019, across 20 models as a function of lead time

Table 4.12. Data assimilated ensemble forecast performance results in 2018 and 2019 comparison for
Kayabagsi Basin

Quartiles T1 T2 T3 T4 TS T6 T7 T8 T9 T10
Q3(0.75) 0.833 0.833 0.794 0.776 0.775 0.765 0.753 0.742 0.736 0.723

g Q2 (0.5 0.782 0.788 0.766 0.757 0.751 0.743 0.731 0.718 0.706 0.698
Q1(0.25) 0.712 0.750 0.739 0.725 0.711 0.698 0.686 0.671 0.660 0.648
Mean 0.777 0.785 0.762 0.753 0.746 0.735 0.725 0.713 0.702 0.689
Q3(0.75) 0.926 0.879 0.802 0.755 0.720 0.687 0.648 0.616 0.595 0.584
% Q2 (0.5 0.899 0.853 0.776 0.728 0.694 0.661 0.629 0.594 0.565 0.548

Q1(0.25 0.858 0.820 0.750 0.699 0.653 0.612 0.581 0.556 0.533 0.518
Mean 0.885 0.841 0.769 0.720 0.685 0.650 0.614 0.582 0.560 0.549
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4.3.3. Impact of data Assimilation on forecast skill
Cukurkisla

Open-loop (OL) and data assimilated (DA) deterministic and ensemble forecast
performances for Cukurkisla Basin in 2018 are compared as shown in Figure 4.35. Table
4.13 presents the median KGE performances of OL and DA deterministic and ensemble
forecasts across all lead times in 2018. While the OL deterministic forecast showed the
lowest performance across all lead times, the DA ensemble forecast performed the
highest, according to the highest observed KGE values and smallest 1Q ranges. Although
the DA deterministic forecast performed better than the OL deterministic forecast, it
could not outperform the OL ensemble forecast, except at the first lead time. The impact
of DA is clearly visible across all lead times, demonstrating that DA reduced the

uncertainty and increased the reliability of the forecast.
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Figure 4.35. Performance of Open Loop (OL) and Data Assimilation (DA) deterministic and ensemble
forecasts across lead times of 1, 5, and 10 days for Cukurkisla Basin in 2018

Table 4.13. Median KGE performance of OL and DA deterministic and ensemble forecasts across all lead
times for Cukurkisla Basin in 2018

Forecast type T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

OL Deterministic  0.718 0.637 0.603 0.571 0549 0.513 0483 0461 0444 0433

OL Ensemble 0.721 0.648 0.645 0.643 0.626 0.622 0.626 0.640 0.637 0.637
DA Deterministic  0.774 0.634 0.604 0.607 0.620 0.578 0.550 0.532 0.515 0.507
DA Ensemble 0.809 0.652 0.631 0.671 0.674 0.657 0.645 0.647 0.642 0.644
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Similarly, OL and DA deterministic and ensemble forecasts for Cukurkigla Basin
in 2019 are compared as shown in Figure 4.36. Table 4.13 presents the median KGE
performances of OL and DA deterministic and ensemble forecasts across all lead times
in 2019. All the scenarios showed strong performances with the DA forecasts, both
deterministic and ensemble, outperforming the OL forecasts. Although the OL
deterministic forecast exhibited the lowest performance across all lead times, the DA
ensemble forecast achieved the highest performance, as indicated by the highest observed
KGE values and the smallest 1Q ranges. The DA deterministic forecast outperformed its
OL counterpart, but it underperformed the OL ensemble forecast across all lead times
except the first. The highest performances were observed in the first lead days, then they
declined gradually. The decline is more pronounced in the deterministic forecasts for both
OL and DA forecasts. This consistent improvement from OL to DA and from
deterministic to ensemble methods emphasizes the importance of both DA and ensemble

strategies in improving forecast skill, especially for medium-range predictions.
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Figure 4.36. Performance of Open Loop (OL) and Data Assimilation (DA) deterministic and ensemble
forecasts across lead times of 1, 5, and 10 days for Cukurkisla Basin in 2019

Table 4.14. Median KGE of OL and DA deterministic and ensemble forecasts for Cukurkisia Basin in 2018

Forecast Type T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

OL Deterministic  0.725 0.574 0.468 0.407 0.389 0.342 0.304 0.264 0.244 0.227

OL Ensemble 0.736 0.653 0576 0539 0583 0.588 0585 0577 0.570 0574
DA Deterministic  0.892 0.787 0.649 0.568 0.577 0.544 0.522 0.493 0.458 0.423
DA Ensemble 0.887 0.816 0.718 0.684 0.719 0.717 0.707 0.690 0.679 0.671
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Kayabast

OL and DA deterministic and ensemble forecasts for Kayabasi Basin in 2018 are
compared in Figure 4.37 across lead times of 1, 5, and 10 days. Table 4.15 summarizes
the median performances of all lead times in 2018. All forecasts showed strong
performances, with DA forecasts outperforming OL forecasts across all lead times. The
OL deterministic forecast showed the lowest performance, due to lowest KGE
performance. The DA ensemble forecast achieved the highest performance across all lead
times. While DA ensemble resulted the highest KGE, DA deterministic forecast also
showed slightly tighter 1Q ranges at early lead times. The DA deterministic forecast
outperformed its OL counterpart across all lead times. Within DA, ensemble forecasts
showed advantage over deterministic at longer lead times. In OL, ensemble forecasts
outperformed deterministic at longer lead times. Performance was highest on the first lead
day and declined with increasing lead time, with OL forecasts showing steeper decline
than DA forecasts.
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Figure 4.37. Performance of OL and DA deterministic and ensemble forecasts across lead times of 1, 5,
and 10 days for Kayabagsi Basin in 2018

Table 4.15. Median KGE of OL and DA deterministic and ensemble forecasts for Kayabas: Basin in 2018

Forecast type T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

OL Deterministic  0.683 0.678 0.650 0.647 0.643 0.628 0.620 0.607 0.590 0.566
OL Ensemble 0.678 0.667 0.646 0.640 0.639 0.633 0.631 0.628 0.623 0.612
DA Deterministic  0.780 0.788 0.777 0.758 0.749 0.726 0.703 0.693 0.676 0.650
DA Ensemble 0.782 0.788 0.766 0.757 0.751 0.743 0.731 0.718 0.706 0.698

87



Similarly, OL and DA deterministic and ensemble forecasts for Kayabasi Basin in
2019 are compared as shown in Figure 4.38 across lead times of 1, 5, and 10 days. All the
forecasts showed strong performances, with the DA forecasts, both deterministic and
ensemble, outperforming the OL forecasts across all lead times. The OL deterministic
and ensemble forecasts exhibited the lowest performances across all lead times when
compared to their DA counterparts. In contrast, the DA ensemble and deterministic
forecasts achieved the highest performances, especially at Lead Time 1 (medians of
0.899, and 0.894 KGE, respectively). The DA ensemble forecast maintained a slight edge
over the DA deterministic across lead times, often showing slightly higher median KGE
values and similar or tighter 1Q ranges compared to OL as shown in Table 4.16. The DA
Deterministic forecast outperformed its OL counterpart, both deterministic and ensemble,
across all lead times except the last lead days which OL ensemble forecast outperforms.
The highest performances were observed in the first lead day, then they declined

gradually across all forecast types as the lead time increased.
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Figure 4.38. Performance of OL and DA deterministic and ensemble forecasts across lead times of 1, 5,
and 10 days for Kayabasi Basin in 2019.

Table 4.16. Median KGE of OL and DA deterministic and ensemble forecasts for Kayabags: Basin in 2019.

Forecast type T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

OL Deterministic ~ 0.805 0.747 0.688 0.651 0.629 0.612 0.585 0.562 0.550 0.543
OL Ensemble 0.812 0.767 0.707 0.670 0.644 0.625 0.601 0.576 0559 0.554
DA Deterministic  0.894 0.837 0.756 0.711 0.679 0.647 0.615 0583 0.555 0.536
DA Ensemble 0.899 0.853 0.776 0.728 0.694 0.661 0.629 0.594 0.565 0.548
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4.4. Multi-model Combination
4.4.1. Hydrological MM

Figure 4.39 shows the performance of twenty hydrological models and their MM
during calibration and validation periods for both basins. The calibrated and validated
streamflow discharges from the models is averaged, and their KGE performance
calculated. Results highlight significant differences in model performance between the
two catchments. For Cukurkisla Basin, MM approach showed high performance
compared to individual models. In calibration and validation periods, the MM (KGE =
0.917 and 0.899, respectively) outperformed all 20 individual models, positioning it
above the upper whisker of the distribution. This indicates high performance and
consistency, as performance decline from calibration to validation was minimal. For
Kayabasg1 Basin, results are more modest and show a significant decline during validation.
In the calibration period, MM performance (KGE = 0.756) was at the 75th percentile of
individual models. In validation, MM performance declined significantly (KGE = 0.635),

aligning with the median performance of individual models.
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Figure 4.39. Performance of the individual models and their MM for Cukurkisia and Kayabagsi basins
during calibration and validation periods
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4.4.2. Open-Loop multi-model forecasts
Cukurkisla

Using SAM, the OL deterministic and ensemble forecast discharges from twenty
hydrological models were combined using a MM approach. For each lead time and basin,
the deterministic forecasts (20 members) and ensemble forecasts (1000 members) were
averaged to produce the MM forecasts. Figure 4.40 demonstrates the comparison
between OL individual deterministic,c, MM deterministic and ensemble forecast
performance in Cukurkigsla Basin. In Cukurkigla Basin, MM forecasts consistently
outperformed individual models’ median performance in both deterministic and
ensemble. The MM forecast performance exceeded approximately 75% of individual
models across most lead days for ensemble MM forecasts. In 2019, MM ensemble
forecasts demonstrated better performance compared to all other forecasts across lead
times. MM ensemble forecast performance was higher in 2019 than 2018. The ensemble

forecast impact is clearly observable in later lead days.
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Figure 4.40. OL multi-model forecasts for Cukurkigla Basinin 2018 and 2019
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Kayabast

The multi-model (MM) performance of both deterministic and ensemble forecasts
was strong, exceeding 75% of the individual models in 2018. Unlike in Cukurkisla Basin,
the difference between deterministic and ensemble MM forecast performance is minimal
in both years. The MM ensemble forecast performed better during the later lead times in
both years but showed weaker performance in the first five lead days of 2018. Figure 4.41
shows the comparison between individual deterministic, MM deterministic and ensemble

forecasts for Kayabasi1 Basin in 2018 and 2019.
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Figure 4.41. OL multi-model forecasts for Kayabas: Basin in 2018 and 2019.

4.4.3. Data assimilated multi-model forecasts

The DA deterministic (20x50 members) and ensemble (20x50x50 members)
forecasts were also combined using the SAM. The performance of the resulting
discharges relative to the observed discharge was calculated and is presented in Figures
4.42 and 4.43.
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Cukurkisla

The MM performance for both DA deterministic and ensemble forecasts for
Cukurkisla Basin exceeded the median performance of the individual models across all
lead times. Specifically, in 2018, the MM forecasts outperformed approximately 75% of
the individual models beyond the third lead day. In 2019, the ensemble MM forecast
outperformed all individual deterministic and ensemble forecast, while the deterministic

MM forecast still achieved performance above the median of the individual models.
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Figure 4.42. DA multi-model forecasts for Cukurkisla Basin in 2018 and 2019

Kayabast

Similar to the OL forecasts, the difference between the DA deterministic and
ensemble MM forecast performance in Kayabasi Basin is minimal for both 2018 and
2019. In 2018, both DA deterministic and ensemble MM forecasts outperformed
approximately 75% of the individual models across nearly all lead times. In 2019,
although the overall skill declined with increasing lead time, the MM forecasts still
maintained performance above the median of the individual models throughout the 10-
day forecast horizon. Notably, the DA ensemble forecasts consistently outperformed the

deterministic forecasts across all lead times in both years, except during the first five lead
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days of 2018, where the performance of both forecast types was nearly identical. This
similarity suggests that in the early lead times of 2018, DA contributed equally to both
forecasting approaches.
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Figure 4.43. DA multi-model forecasts for Kayabas: Basin in 2018 and 2019

4.4.4, Comparison of OL and DA multi-model forecasts
Cukurkisla

The comparison of OL and DA MM forecasts for Cukurkisla Basin reveals a
significant enhancement in forecast performance when using DA, particularly in 2019 as
shown in Figure 4.44. In general, all MM forecasts matched or exceeded the median
performance of the individual deterministic models (represented by the boxplots). In
2018, DA models consistently exhibited higher KGE values than their OL counterparts
across most lead times. The DA Ensemble MM demonstrated the highest overall
performance. However, a notable exception occurred in the initial forecast period: for
lead days 2 and 3, the DA Ensemble MM slightly underperformed the OL Ensemble MM
before surpassing it for all subsequent lead times. The superiority of the DA approach
was more pronounced in 2019. While the OL forecasts showed a sharp degradation in
skill after the third lead day, the DA forecasts remained highly reliable. The DA Ensemble
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MM was exceptionally higher, maintaining a KGE above 0.70 throughout the entire 10-
day forecast horizon. This demonstrates that DA not only improves initial skill but also

flattens the performance decay curve, leading to more dependable forecasts at longer lead

times.
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Figure 4.44. Comparison between OL and DA forecast over Cukurkisla Basin
Kayabas:

The forecast performance over Kayabasi Basin have shown higher performances of
DA integration compared to OL simulation across both the 2018 and 2019 forecast years
as shown in Figure 4.45. In all cases, MM forecasts outperformed the median of the
individual deterministic forecast. In 2018, a significant performance gap was observed
between the DA and OL forecasts from the very first lead day. The DA Ensemble MM
began with a KGE above 0.80 and maintained its skill above 0.70 for the entire 10-day
horizon. In contrast, both OL forecasts started with lower KGE (around 0.70) and

demonstrated a steady decline. The ensemble approach provided a consistent benefit
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within both frameworks, with the DA Ensemble MM outperforming the DA
Deterministic MM, and the OL Ensemble MM outperforming the OL Deterministic MM.
The advantage of DA was even more pronounced in 2019. The DA Ensemble MM
delivered very good performance, starting with a KGE greater than 0.9 on day 1. While
all forecasts showed a natural degradation over the forecast period, the decline in the OL
forecasts was particularly sharp. The skill of the OL Deterministic MM, for instance, fell
below 0.6 by the sixth lead day. The DA forecasts, however, provided better performance
except the last 2 lead days.

Unlike Cukurkisla Basin, the performance hierarchy in Kayabasi was unambiguous
across all lead times and both years: the DA Ensemble MM consistently provided the
most reliable forecast, followed by the DA Deterministic MM, the OL Ensemble MM,
and finally the OL Deterministic MM. This demonstrates a robust and substantial

improvement in forecast reliability resulting from the integration of DA.
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Figure 4.45. Comparison between OL and DA forecast over Kayabasi Basin
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4.5. Discussion
The calibration and validation performance for both basins indicated that most
models achieved very good performance based on the threshold criteria defined by
Knoben et al. (2019) and Moriasi et al. (2007). Among the evaluated metrics, the NSE,
which is sensitive to errors in peak flow magnitude, has shown lower performance among
others. In contrast, KGE demonstrated the highest performance across the models. KGE
offers a more balanced assessment by incorporating correlation, bias, and variability, and
is more interpretable and less sensitive to extreme flows in this context (Knoben et al.,
2019). For Cukurkisla Basin, the KGE performance across 20 models ranged from 0.80
to 0.90 during the calibration period and 0.75 to 0.90 during validation, indicating both
high performance and good model transferability. In comparison, Kayabasi
Basin has shown a wider range of performance, with KGE scores from twenty
models spanning from 0.52 to 0.83 for calibration and 0.55 to 0.70 for validation.
Although both basins are influenced by snow processes, Kayabasi is more strongly snow
dominated. It shows greater snow accumulation and a lower FC, indicating slower
snowmelt rates across all models.
The OL deterministic and ensemble forecasts demonstrated very good performance
during the early forecast (1-3 days) across both basins and years. However, as the lead
time increased, the forecast skill gradually declined, which is showing growing
uncertainty over time. Notably, the OL ensemble forecasts outperformed the deterministic
forecasts at longer lead times, aligning with findings from previous studies (Dion et al.,
2021; Thiboult et al., 2016; Velazquez et al., 2011). This outperformance is clearly
observed in Cukurkisla Basin and there are small marginal differences in Kayabas1 Basin.
The results of MM confirmed the findings of the studies in the literature review
(Ajami et al., 2007; Thébault et al., 2024; Thiboult and Anctil, 2015; Velazquez et al.,
2011). MM simulation forecasts generally performed better than most individual models,
indicating a clear advantage of better accuracy and reliability.
In Cukurkisla Basin, the MM approach had shown a superior performance during
both the calibration and validation periods, achieving KGE of 0.917 and 0.899
respectively surpassing even the best individual models. It agrees with the findings of
Georgakakos et al. (2004), who reported that MM simulations typically exceed the upper
quartile performance of individual models, especially in catchments where model

uncertainty is high. The diversity of the models’ performance is high in this basin where
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outlier models are present. The improvement of the MM approach in this basin is further
supported by its stable performance across lead times in both OL and DA configurations.
The DA-based MM forecasts demonstrated particularly strong results, with KGE values
remaining above 0.70 throughout the entire 10-day forecast horizon. These findings are
supporting the findings from Thiboult et al. (2016) and Dotto et al. (2012), who
emphasized that MM approach performances are better than the median of the individual
models.

In addition, Kayabas1 Basin presented a more modest MM benefit, especially during
the validation period, where the MM performance dropped significantly (KGE = 0.562).
This variation suggests basin-specific sensitivities, possibly related to hydrological
regime complexity, model calibration constraints, or data availability. However, even in
Kayabasi, the DA Ensemble MM forecasts outperformed all other configurations,
demonstrating the value of integrating DA with ensemble modelling. Similar to
observations by Velazquez et al. (2010), the ensemble-based MMs proved particularly
effective in capturing uncertainty and improving forecast skill, especially at longer lead

times.
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5. CONCLUSION AND RECOMMENDATIONS

In this study, we aimed to assess the medium range weather forecasting from
ECMWEF on hydrological forecasting with uncertainty reduction in two basins:
Cukurkisla and Kayabasi basins. The primary objective was to systematically evaluate
and compare the efficacy of several uncertainty reduction techniques, EPS, DA, and MM
approach combination. We used HOOPLA toolbox to run twenty hydrological models to
provide an assessment of how these methods, both individually and in combination,
improve the accuracy and reliability of discharge forecasts. From calibration of the
hydrological models to different types of forecasting, we found that:

» Calibration and validation (section 4.1) of the twenty hydrological models
showed very good performance for both basins. In Cukurkisla Basin, the twenty
models’ performance is higher than 0.80 KGE for both calibration and validation,
which showed better prediction for the hydrological models for this basin. In
Kayabas1 Basin, although the performance of some models exceeded 0.70 in the
calibration period, while the median performance was found to be 0.635 in the
validation period. Due to higher snow dominance, this basin’s simulation is more
complex than Cukurkisla Basin.

> In the Open-Loop forecast approach (Section 4.2), although both deterministic
and ensemble forecasts performed better for both basins, their performance
declines as the lead time increases. The decline in performance is higher or more
pronounced in 2019 for both basins and forecast types. In addition, OL ensemble
forecast outperformed its deterministic counterpart especially as the lead-time
increases. The EPS enhances performance and reliability while reducing forecast
uncertainty, especially at longer lead times.

> In addition, the utilization of EnKF for DA (Section 4.3) added a substantial
improvement in forecast performance and reliability. By assimilating observed
variables to update model states, the DA framework significantly enhanced
forecast accuracy over the OL framework. This improvement was evident in
higher median KGE, and narrower performance spread across all lead times and
in both basins. The impact of DA was most pronounced in reducing initial
condition uncertainty, leading to more accurate early forecasts and a slower decay

in skill over the 10-day forecast horizon.

98



>

Finally, MM combination using Simple Averaging Method (Section 4.4) proved
to be a powerful technique for mitigating model structural uncertainty. The MM
forecasts consistently performed better than the median of the individual models.
The ultimate and most effective was DA Ensemble MM. This integrated
approach, which addresses all three primary sources of uncertainty (forcing, initial
conditions, and model structure), consistently yielded the highest KGE values and

the most reliable performance across both basins and forecast years.

5.2. Limitations of the Study

The findings are specific to Cukurkisla and Kayabasi basins. While these
represent important snow-influenced regions in Turkiye, their characteristics may
not be directly generalizable to other basins with different climatic or
physiographic properties.

This study employed a Simple Averaging Method (SAM) for MM combination
due to its simplicity and robustness.

The study was based on 20 lumped conceptual models from the HOOPLA
toolbox.

The forecasting experiments were limited to the first half of 2018 and 20109.

5.3. Suggestions for Future Research

Due to limitation of this study, the following suggestions could be recommended:

>
>

To assess different topographical, regions, scale and climate study areas.

To investigate the performance of more sophisticated MM combination
techniques, such as Bayesian Model Averaging (BMA) or weighted ensembles,
and compare the EnKF with other DA algorithms.

To utilize the established framework to assess the potential impacts of future

climate change scenarios on hydrological regimes and forecast uncertainty.
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