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ÖZET

Doğrusal dönüşüm katmanları, modern blok şifreleme algoritmalarında yayılma
ilkesini gerçekleştiren temel yapı taşlarıdır. Maksimum Uzaklıkta Ayrılabilen (MDS)
matrisler, maksimum dal sayısıyla güçlü yayılım özellikleri sundukları için bu katmanların
tasarımında tercih edilirler. Öte yandan, tersi kendisine eşit (involutif) olan doğrusal
dönüşüm katmanları, şifreleme ve şifre çözme işlemlerinin aynı maliyetle uygulanmasına
olanak tanıyarak avantaj sağlamaktadırlar. Bir involutif matrisin, c ∈ F2m\{0,1}
skaleri ile çarpımına eşit olan yarı involutif MDS matrisler ise ters alma işlemlerinin
yalnızca basit matris çarpımlarıyla gerçekleştirilebilmesini sağlayarak daha geniş bir
tasarım alanı sunmaktadır. Bu tez çalışmasında, F23 ve F24 sonlu cisimlerinde tanımlı
indirgenemez polinomlar kullanılarak involutif MDS matrislerden yarı involutif MDS
matrislerin elde edilmesine olanak tanıyan cebirsel bir yöntem önerilmektedir. Ayrıca,
geliştirilen matrislerin donanımsal uygulanabilirliğini artırmak amacıyla dört farklı XOR
optimizasyon algoritması ile karşılaştırmalı analizleri gerçekleştirilmiştir.
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ABSTRACT

Linear transformation layers are the fundamental building blocks that implement
the diffusion principle in modern block cipher algorithms. Maximum Distance Separable
(MDS) matrices are preferred in the design of these layers since they offer strong diffusion
properties with the maximum branch number. On the other hand, linear transformation
layers that are involutory, equal to their inverses, provide an advantage by allowing
encryption and decryption operations to be implemented at the same cost. Semi-involutory
MDS matrices, which are equal to the multiplication of an involutory matrix by a scalar
c ∈ F2m\{0, 1}, offer a broader design space by enabling the inversion process to be
carried out through simple matrix multiplications. In this thesis, an algebraic method is
proposed that enables the construction of semi-involutory MDS matrices from involutory
MDS matrices using irreducible polynomials defined over the finite fields F23 and F24 .
Additionally, comparative analyses with four different XOR optimization algorithms were
conducted to enhance the hardware implementability of the developed matrices.
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BÖLÜM 1

GİRİŞ

Bilgi tarih boyunca insanlığın gelişmesinde önemli bir değer olmuştur. Her
değer gibi bilginin de saldırılara karşı korunması gerekliliği vardır. Bilgi güvenliği;
gizlilik, bütünlük ve erişilebilirlik prensiplerine dayanır. Kişisel veriler, askeri mesajlar
veya bir sektörde operasyonun devamlılığını sağlayan sektörel sırların güvenli şekilde
saklanabilmesi, değiştirilebilmesi ve aktarılabilmesi gereklidir. Teknolojinin gelişiminden
önce fiziksel olarak saklanan bilgi, sadece yetkili kişiler tarafından ulaşılabilir,
düzenlenebilir ve aktarılabilir durumdaydı. Bilginin güvenli bir biçimde iletilebilmesi
için fiziksel olarak taşınması gerekliliği mevcuttu. Ancak, bilgisayar ve internet gibi
teknolojilerin ilerlemesiyle birlikte, bilginin işlenme süreçlerinde önemli değişiklikler
olmuştur. İnternetin sağladığı kolaylıklarla bilginin aktarımı daha basit hale gelmiş,
fakat aynı zamanda güvenilirliğinin temin edilmesi için yeni yöntemlerin geliştirilmesi
zorunluluğu doğmuştur. Güvenlik amaçlarına uygun olarak, kriptoloji bilimi sürekli
ilerleme kaydetmiş ve iletişimde güvenliğin sağlanmasında önemli bir role sahip olmuştur.

1.1. Kriptoloji

Kriptoloji, bilginin güvenli bir biçimde iletilmesi ve saklanması amacıyla
geliştirilen yöntemleri ile bu yöntemlerin analizini konu alan bir bilim alanıdır ve temel
olarak kriptografi ve kriptoanaliz olmak üzere iki alt disipline ayrılmaktadır.

1.2. Kriptografiye Genel Bakış

Kriptografi, belirli bilgilerin korunmasını sağlamak amacıyla matematiksel
yöntemlerin kullanılmasıyla ilgilenir ve yetkisiz kişilerin bilgilere erişimini ya da bilgilerin
değiştirilmesini engelleyici önlemler içerir.
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Kriptografinin temel hedefleri aşağıdaki şekilde sınıflandırılabilir (Forouzan,
2007):

• Gizlilik: Bilginin yalnızca yetkili bireylerce okunabilmesi gerekir.

• Bütünlük: Veri, izinsiz olarak değiştirilememeli; ekleme, silme ya da güncelleme
gibi işlemler yalnızca yetkililer tarafından yapılabilmelidir.

• Kullanılabilirlik: Oluşturulan ve saklanan bilgiler, yetkili kişi veya kuruluşlar
tarafından sürekli erişilebilir ve kullanılabilir olmalıdır.

Bu hedeflere ulaşabilmek adına yüksek düzeyde kriptografik protokoller
geliştirilmekte ve bu protokoller, belirli kriptografik bileşenlere dayandırılmaktadır. Çeşitli
matematiksel yapılardan oluşan bu bileşenler; harflerden oluşan açık metin kümesi,
şifrelenmiş sembollerden oluşan şifreli metin kümesi, şifreleme işleminde kullanılabilecek
olası anahtarların oluşturduğu anahtar uzayı, şifre çözme sırasında kullanılacak olası
anahtarların oluşturduğu şifre çözme anahtar uzayı ile etkili şifreleme ve şifre çözme
algoritmalarından oluşmaktadır (Mao, 2004).

1.3. Kriptoanalize Genel Bakış

Kriptoanaliz, kullanılan kriptografik sistemlerin zayıflıklarını ortaya çıkarmayı
ve güvenilirliğini test etmeyi amaçlayan bilim dalıdır. Kriptografik yapılar ne kadar
güçlü olursa olsun, potansiyel saldırılara karşı test edilmeleri zorunludur. Bu bağlamda
kriptoanalistler, farklı saldırı senaryoları çerçevesinde sistemleri analiz ederek kriptografik
sistemlerin dayanıklılığını ölçmeyi hedeflerler. Aşağıda listelenen saldırı modelleri, hem
bağımsız hem de kombinasyon halinde uygulanabilmektedir (Stinson, 2005).

• Yalnızca Şifreli Metin Saldırısı: Saldırgan sadece şifreli metinlere erişebilir; açık
metne dair herhangi bir bilgiye sahip değildir.

• Bilinen Açık Metin Saldırısı: Saldırgan, bazı açık metinlerle bunlara karşılık gelen
şifreli metin çiftlerine ulaşabilir.

• Seçilmiş Açık Metin Saldırısı: Saldırgan, seçtiği açık metinleri şifreleme cihazına
göndererek karşılık gelen şifreli metinleri elde edebilir.

• Seçilmiş Şifreli Metin Saldırısı: Saldırgan, seçtiği şifreli metinleri şifre çözme
cihazına ileterek açık metin karşılıklarını alabilir.

• Seçilmiş Başlatma Vektörü Saldırısı: Eğer sistem bir başlatma vektörü (IV)
kullanıyorsa, saldırgan IV’yi de kontrol ederek açık metin ve IV üzerinden şifreli
metinleri oluşturabilir.

2



1.4. Modern Kriptografik Algoritmalar

Günümüzde kriptografik algoritmalar; Simetrik Şifreleme Algoritmaları,
Asimetrik Şifreleme Algoritmaları ve Kriptografik Özet (Hash) Fonksiyonları olmak
üzere üç kısıma ayrılmaktadır.

Simetrik şifreleme algoritmalarında, iletişime geçen taraflar hem şifreleme hem de
şifre çözme işlemlerinde aynı gizli anahtarı kullanırken; asimetrik şifreleme sistemlerinde
taraflar, biri açık diğeri gizli olmak üzere bir anahtar çiftine sahiptir. Bu mimaride, verilerin
şifrelenmesi açık anahtar aracılığıyla gerçekleştirilirken, şifrenin çözülmesi için yalnızca
alıcıya ait olan gizli anahtar kullanılmaktadır. Şekil 1.1 ve 1.2’de, bu iki kriptografik
algoritmanın temel yapısı şematik biçimde sunulmaktadır.

Açık Mesaj Şifreleme Şifreli Mesaj Şifre Çözme Açık Mesaj

Gizli Anahtar

Şekil 1.1. Bir Simetrik Şifreleme Algoritmasının Şematik Gösterimi

Açık Mesaj Şifreleme Şifreli Mesaj Şifre Çözme Açık Mesaj

Genel Anahtar Özel Anahtar

Şekil 1.2. Bir Asimetrik Şifreleme Algoritmasının Şematik Gösterimi

Her iki yaklaşımda da temel güvenlik varsayımı; şifreleme sistemine dair tüm
detaylar kamuya açık olsa bile, gizli anahtarın korunması koşuluyla sistemin güvenli
kalması gerektiğidir. Bu düşünce, Kerckhoffs’un ilkesi olarak literatürde yer bulmuştur
(Kerckhoffs, 1883).

Asimetrik kriptografi sistemleri genel olarak sayı teorisine dayalı soyut
matematiksel yapılar üzerine kurulurken, simetrik yöntemler daha çok Boole fonksiyonları
gibi ayrık matematiksel yapılar temelinde geliştirilmiştir. Performans açısından
değerlendirildiğinde, simetrik algoritmalar asimetrik olanlara göre çok daha yüksek hızda
çalışmakta ve özellikle büyük boyutlu veri kümelerinin şifrelenmesi için daha verimli
çözümler sunmaktadır. Bununla birlikte, asimetrik algoritmaların en önemli avantajı,
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simetrik sistemlerin en büyük zaafı olan anahtar paylaşım sorununa etkili bir çözüm
getirebilmeleridir.

Simetrik kriptografide kullanılan algoritmalar, şifreleme biçimlerine göre iki
ana gruba ayrılmaktadır: blok şifreleme ve akış (stream) şifreleme. Blok şifreleme
tekniklerinde açık metin belirli uzunluktaki bloklara ayrılarak her bir blok üzerinde işlem
yapılırken, akış şifreleme yöntemleri veriyi bit ya da byte düzeyinde işler. Literatürde
yaygın şekilde kullanılan blok şifreleme algoritmalarına AES (Advanced Encryption
Standard) (National Institute of Standards and Technology (NIST), 2001), PRESENT
(Bogdanov vd., 2007), ARIA (Kwon vd., 2003) ve Blowfish (Schneier, 1993) örnek
verilebilir.

Akış şifreleme algoritmalarında özellikle kablosuz ağ güvenliğinde kullanılan RC4
(ARCFOUR) (Rivest, 1992a), HC-256 (Wu, 2004) ve Trivium (De Canniere & Preneel,
2008) en bilinen algoritmalar arasında yer almaktadır.

Asimetrik şifreleme yöntemleri arasında Diffie-Hellman anahtar değişim
protokolü (Diffie & Hellman, 1976) ile RSA algoritması (Rivest, Shamir & Adleman,
1978), bu alandaki en temel örnekler olarak öne çıkmaktadır.

Özet (hash) fonksiyonları ise herhangi bir uzunluktaki bir girdiden, o girdiye
özgü sabit uzunlukta ve benzersiz bir değer üretmek amacıyla kullanılan kriptografik
yapılardır. Bu üretilen değer, genellikle mesajın "parmak izi" olarak nitelendirilir. Mesaj
içeriğinde yapılan yalnızca 1 bitlik bir değişiklik bile, çıktı değerinin tamamen farklı
olmasına yol açar. Bu fonksiyonlar tek yönlüdür; yani elde edilen özet değerinden
orijinal mesajın yeniden elde edilmesi mümkün değildir. Genellikle mesajın bütünlüğünün
korunup korunmadığını doğrulamak amacıyla kullanılırlar. Özet fonksiyonlarının en temel
güvenlik kriteri, her farklı girdi için benzersiz bir çıktı üretme yeteneğidir. Eğer iki farklı
mesaj aynı özet değerini üretirse — bu duruma çakışma (collision) denir — söz konusu
özet fonksiyonu güvenli kabul edilmez ve kullanım dışı bırakılır. En çok bilinen özet
fonksiyonları arasında MD5 (Rivest, 1992b), SHA-1 (Eastlake & Jones, 2001), SHA-2
(National Institute of Standards and Technology (NIST), 2015a) (özellikle SHA-256
ve SHA-512), SHA-3 (National Institute of Standards and Technology (NIST), 2015b),
BLAKE2 (Aumasson, Neves, Wilcox-O’Hearn & Winnerlein, 2015) bulunmaktadır.

Mesaj Özet
Fonksiyonu Özet Bilgi

Şekil 1.3. Bir Özet Fonksiyonunun Şematik Gösterimi
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1.5. Blok Şifreler

Claude Shannon’ın 1949 tarihli çalışmasında ortaya koyduğu karıştırma
(confusion) ve yayılma (diffusion) ilkeleri, modern blok şifreleme algoritmalarının
kriptografik güvenliğinin temel dayanak noktaları olarak kabul edilmektedir (Shannon,
1949). Karıştırma, şifreli metin ile kullanılan gizli anahtar arasında doğrudan bir ilişki
kurulmasını zorlaştırarak, anahtarın yapısal özelliklerinin şifreli veriden türetilmesini
engellemeye çalışır. Bu ilke genellikle doğrusal olmayan bileşenler olan yer değiştirme
kutuları (S-boxes) aracılığıyla gerçekleştirilir. Yer değiştirme kutuları, çoğunlukla vektörel
Boole fonksiyonları olarak tanımlanır. Matematiksel olarak n− bi t giriş ve m− bi t çıkışa
sahip bir S-kutusu S : Fn

2→ F
m
2 biçiminde tanımlanır ve aşağıdaki gibi gösterilir.

S(x) = ( f0(x), f1(x), . . . , fm−1(x))

Burada fi(x), S-kutusunun koordinat fonksiyonlarını temsil eder. S-kutuları,
genellikle algoritmanın tek doğrusal olmayan bileşeni olduğundan, genel güvenlik
düzeyini büyük ölçüde etkiler. İyi tasarlanmış bir S-kutusu, yüksek bit karışıklığı sağlar,
doğrusal ve diferansiyel kriptoanalize karşı direnç oluşturur.

Yayılma ise, açık metne ait istatistiksel özelliklerin şifreli metne yansımasını
önlemek amacıyla tasarlanmıştır. Bu amaçla doğrusal dönüşümler—örneğin karıştırma
matrisleri, permütasyonlar veya modüler aritmetik işlemler—kullanılır. Yayılma
sayesinde, açık metindeki tek bir bit değişikliği, şifreli metinde çok sayıda bitten
oluşan değişime neden olur. Etkin bir doğrusal dönüşümün aşağıdaki kriterleri sağlaması
beklenmektedir (Daemen & Rijmen, 2002; Feistel, 1973; Kam & Davida, 1979; Webster
& Tavares, 1986).

• Çığ Etkisi: Girişteki tek bir bit değişikliği, çıktıdaki bitlerin yaklaşık yarısını
değiştirmelidir.

• Katı Çığ Etkisi: Girişteki tek bir bitlik değişiklik, her çıktı bitinin %50 olasılıkla
değişmesine yol açmalıdır.

• Bütünlük Özelliği: Her bir çıktı biti, girişin tüm bitlerine bağlı olmalıdır.

• Dal Sayısı (Branch Number): İkili doğrusal dönüşümlerde 0 giriş vektörü hariç
giriş vektörlerinin Hamming ağırlığı ile çıkış vektörlerinin Hamming ağırlığının
toplamının en düşük değeridir (Daemen & Rijmen, 2002). Bu kriter, bir blok şifrede
azami yayılıma ulaşılmasını sağlayan en önemli kriptografik özelliktir. Doğrusal ve
diferansiyel dal sayısı olmak üzere iki şekilde hesaplanır. Doğrusal dal sayısı bir blok
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şifrenin doğrusal kriptoanalize, diferansiyel dal sayısı ise diferansiyel kriptoanalize
karşı dayanıklılığının ölçüsüdür.

Çoğu modern algoritma, yayılım katmanında Maksimum Uzaklıkta Ayrılabilen
(Maximum Distance Separable-MDS) ya da Maksimum Uzaklıkta İkili Doğrusal
(Maximum Distance Binary Linear-MDBL) matrisler kullanır. Bu matrisler, şifreleme
algoritmasının güvenliği, yayılım özelliği ve saldırılara karşı dayanıklılığı açısından kritik
öneme sahiptir. Bu bağlamda, şifre tasarımcıları tarafından çeşitli özel matris yapıları
kullanılarak güvenli ve verimli dönüşümler oluşturulmaktadır. Örneğin AES şifreleme
algoritmasında kullanılan F28 cismi üzerinde tanımlı 4×4 dairesel MDS matris şifrenin
doğrusal dönüşüm katmanlarının çekirdeğini oluşturmaktadır.

İnvolutif özellik gösteren matrislerin tersi kendisine eşit olduğundan, şifre
çözme işleminin matrisin kendisiyle yapılabilmesini sağlayarak hem donanımda hem de
yazılımda simetrik şifreleme için oldukça verimli çözümler sunar. Bununla birlikte, bazı
uygulamalarda XOR sayısı gibi performans kriterlerine göre alternatif matris türlerinin
değerlendirilmesi gerekebilir. Bu bağlamda, yayılım katmanı olarak kullanılabilecek diğer
yapılardan biri de semi involutif (yarı involutif) matrislerdir. Bir B matrisinin yarı involutif
olarak nitelendirilebilmesi için, involutif bir A matrisinin c ∈ F2m\{0, 1} skaleri ile
çarpımına eşit olma, diğer bir deyişle B = c · A koşulunu sağlaması gerekmektedir.

Diğer taraftan donanımsal uygulamalarda doğrusal dönüşümlerin
verimliliği yalnızca matematiksel yapılarına değil, aynı zamanda bu dönüşümlerin
gerçekleştirilmesinde ihtiyaç duyulan XOR işlemi sayısına da doğrudan bağlıdır. XOR
işlemi, donanımda basit ve hızlı bir mantıksal işlem olmasına rağmen, çok sayıda XOR
kapısı kullanımı devre karmaşıklığını, enerji tüketimini ve gecikmeyi artırabilir. Bu
nedenle, şifreleme algoritmalarında kullanılan matrislerin sahip olduğu XOR sayısının
minimize edilmesi, özellikle gömülü sistemler ve düşük kaynaklı donanımlar için büyük
önem taşır. Yarı involutif matrisler, uygun yapılandırmalarla hem gerekli XOR sayısını
düşürebilmekte hem de ters dönüşüm hesaplamalarında avantaj sağlayabilmektedir. Bu
yönüyle, performans ve güvenlik arasında denge kurmaya çalışan modern şifreleme
sistemleri için dikkat çekici bir tasarım bileşeni olarak öne çıkmaktadırlar (Boyar &
Peralta, 2000; Standaert & Quisquater, 2006).

Modern blok şifreleme algoritmalarının çoğu, iteratif şifreleme yapısı olarak
adlandırılan bir modeli temel alır. Bu yapı, sabit sayıdaki şifreleme turunun (round) arka
arkaya uygulanması prensibine dayanır. Her bir tur, belirli matematiksel işlemleri içerir ve
bu işlemler arasında S-box uygulamaları, doğrusal dönüşümler, permütasyonlar ve anahtar
ile XOR’lama yer alır. Bu tür yapılarda, anahtar genişletme algoritması kullanılarak gizli
anahtardan her tur için farklı bir alt anahtar türetilmesi sağlanır. Bu yöntem, her turun
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aynı işlemleri uygulamasına rağmen simetrik yapıların oluşmasını engeller ve şifreleme
güvenliğini artırır (Ferguson, Schneier & Kohno, 2010). Güvenlik açısından güçlü bir
anahtar genişletme algoritması, alt anahtarların birbirinden bağımsız ve yüksek yayılıma
sahip olmasını sağlamalıdır.

Blok şifreleme algoritmalarında sıklıkla tercih edilen iki mimari yapı ise Yer
Değiştirme-Permütasyon Ağı (Substitution-Permutation Network-SPN) ve Feistel Ağı
olarak bilinmektedir. SPN mimarisi, tüm veri bloğu üzerinde doğrusal olmayan yer
değiştirme işlemleri (S-box), ardından doğrusal yayılma işlemleri uygulayarak her turda
tüm bloğu işler. Bu yapı, AES gibi şifrelerde temel alınmıştır (Daemen & Rijmen, 2002).
Buna karşılık, Feistel yapısında, veri bloğu iki alt parçaya ayrılır ve her turda yalnızca
bir parça işlenirken diğer parça değişmeden kalır. Daha sonra parçalar yer değiştirir ve
işlem tekrarlanır. Bu yapı, DES (National Institute of Standards and Technology (NIST),
1999) gibi klasik algoritmalarda görülür ve özellikle algoritmanın tersinirliğini (şifreleme
işleminin şifre çözme işlemi ile simetrik şekilde olması) garanti altına alması açısından
avantaj sağlar (Menezes, van Oorschot & Vanstone, 1996).

Bu mimarilerin her biri, performans ve güvenlik gereksinimlerine göre seçilmekte
ve uygulama alanına bağlı olarak özelleştirilebilmektedir. SPN yapıları genellikle
donanım uygulamalarında yüksek paralelleştirilebilirlik avantajı sunarken, Feistel yapıları
tersinirlik özelliği nedeniyle yazılım uygulamalarında daha esnek kullanılabilmektedir.

1.6. Tezin Kapsamı, Dayanağı ve Sağladığı Katkılar

Bu tez çalışmasında, yarı involutif matrislerin cebirsel ve yapısal özellikleri
matematiksel temelleriyle incelenmekte; bu yapıların modern blok şifreleme
algoritmalarındaki rolü detaylı bir şekilde değerlendirilmektedir. Çalışma kapsamında,
involutif matrisler kullanılarak yarı involutif matrislerin oluşturulabildiği bir teknik
önerilmiş ve bu teknik sayesinde F23 ile F24 cisimlerinde tanımlı indirgenemez polinomlar
kullanılarak 3 × 3 ve 4 × 4 boyutlarındaki yarı involutif matrisler sistematik olarak
elde edilebilmiştir. Elde edilen bu matrisler üzerinde, geliştirilen özel amaçlı yazılım
aracılığıyla donanımsal verimliliği doğrudan etkileyen XOR sayısı açısından optimizasyon
çalışmaları da gerçekleştirilmiştir.

Tez yedi bölümden oluşmaktadır. İlk bölümde, konunun anlaşılabilirliği açısından
kriptolojiye dair temel kavramlara yer verilmiş; ikinci bölümde, kullanılan cebirsel
yapıların ve geliştirilen tekniğin matematiksel çerçevesi tanımlanmıştır. Üçüncü bölümde,
doğrusal dönüşümlerin donanımda verimli uygulanabilmesi için kullanılan XOR
optimizasyon yöntemleri sunulmuştur. Dördüncü bölüm, yarı involutif matris üretiminde
kullanılan tekniğin algoritmik yapısını ve teorik dayanaklarını ayrıntılı biçimde ele
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almaktadır. Beşinci bölümde 3×3, altıncı bölümde ise 4×4 boyutundaki matrislere ilişkin
deneysel sonuçlara, elde edilen matrislere ve bu matrislerin optimizasyon analizlerine yer
verilmiştir. Sonuç ve tartışma bölümünde ise elde edilen bulgular genel bir değerlendirme
çerçevesinde ele alınarak yarı involutif matrislerin blok şifre tasarımında kullanımı
tartışılmaktadır.

Bu bağlamda çalışma, yarı involutif matrislerin sistematik olarak üretilebilmesine
olanak tanıyan teknikleri hem kuramsal hem de uygulamalı boyutlarıyla ortaya
koymaktadır. Geliştirilen yöntem, belirli cebirsel koşullar altında 3 × 3 ve 4 × 4

boyutlu yarı involutif matrislerin yapılandırılmasını mümkün kılarken, bu matrislerin
donanımda uygulanabilirliğini artırmak amacıyla doğrusal dönüşümler üzerindeki XOR
optimizasyonları da ayrıntılı biçimde ele alınmıştır. Elde edilen sonuçlar, yarı involutif
yapıların yalnızca teorik açıdan değil, aynı zamanda donanım verimliliği ve kriptografik
özellikler bakımından da blok şifre tasarımına katkı sağlayabilecek nitelikte olduğunu
göstermektedir.
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BÖLÜM 2

MATEMATİKSEL TEMELLER ve TANIMLAR

Bu bölümde, tez çalışmasında geliştirilen tekniklerin anlaşılabilmesi için gerekli
olan temel cebirsel yapılar ve kavramsal tanımlar sunulmaktadır. Özellikle sonlu cisimler
üzerinde tanımlı matris dönüşümleri, involutif ve yarı involutif matrislerin özellikleri,
bu yapıların kare alma ve skaler çarpım ilişkileriyle karakterize edilmesi gibi konular ele
alınacaktır. Ayrıca, kullanılan indirgenemez polinomlar, XOR sayısı metriği ve çeşitli özel
matris tanımlarına dair öncül teoremler detaylı biçimde açıklanacaktır. Burada sunulan
tanım, teorem ve önermelerin kanıtlarına, ilgili literatürdeki (Barreto, 2000; Biham, 1994;
Daemen & Rijmen, 2002; Davis, 1979; Forouzan, 2007; Khoo, Peyrin, Poschmann &
Yap, 2014; Kwon, Sung, Song & Park, 2005; Lidl & Niederreiter, 1997; Pehlivanoğlu,
Sakallı, Akleylek, Duru & Rijmen, 2018; Stallings, 2013; Stinson & Paterson, 2019)
kaynaklarından ulaşılabilmektedir.

Tanım 2.1 (Cisim). Bir küme F, üzerinde iki işlem (toplama + ve çarpma ·) tanımlı ve
aşağıdaki koşulları sağlıyorsa, bu yapıya cisim adı verilmektedir.

1. (F,+) kümesi, toplama işlemi altında aşağıdaki özellikleri sağlamaktadır.

• Toplama işlemi kapalıdır: ∀a, b ∈ F, a+ b ∈ F

• Toplama işlemi değişmelidir: a+ b = b+ a

• Toplama işleminin birleşme özelliği vardır: (a+ b) + c = a+ (b+ c)

• Toplama işleminin birim elemanı vardır: ∃0 ∈ F öyle ki, a+ 0= a

• Her elemanın toplama işlemine göre ters elemanı vardır: ∀a ∈ F,∃(−a) ∈ F
öyle ki, a+ (−a) = 0

2. (F \ {0}, ·) kümesi, çarpma işlemi altında şağıdaki özellikleri sağlamaktadır.

9



• Çarpma işlemi kapalıdır: ∀a, b ∈ F \ {0}, a · b ∈ F \ {0}

• Çarpma işlemi değişmelidir: a · b = b · a

• Çarpma işleminin birleşme özelliği vardır: (a · b) · c = a · (b · c)

• Çarpma işleminin birim elemanı vardır: ∃1 ∈ F, 1 ̸= 0, öyle ki, a · 1= a

• Sıfır hariç her elemanın çarpma işlemine göre ters elemanı vardır: ∀a ∈
F \ {0},∃a−1 ∈ F öyle ki, a · a−1 = 1

3. Çarpma, toplama işlemi üzerine dağılım özelliğine sahiptir:

a · (b+ c) = a · b+ a · c ve (b+ c) · a = b · a+ c · a, ∀a, b, c ∈ F.

Tanım 2.2 (Sonlu Cisim). Eleman sayısı sonlu olan her cisim yapısına sonlu cisim denir.
Bu tür yapılar genellikle p asal bir sayı ve n pozitif bir tam sayı olmak üzere Fpn ya da Fpn

(Galois Cismi) biçiminde gösterilir. Bu yapıdaki toplam eleman sayısı, cismin mertebesi
ya da derecesi olarak adlandırılır.

Örnek 2.1. Aşağıda bazı sonlu cisim örnekleri verilmiştir:

- F2: Eleman kümesi {0, 1} olan, iki elemanlı sonlu cisim.

- F23: {0,1} elemanlarına ve 23 = 8 farklı birleşim biçimine sahip üç bitlik
genişletilmiş sonlu cisim.

- F24: {0, 1} elemanlarına ve 24 = 16 farklı birleşim biçimine sahip dört bitlik
genişletilmiş sonlu cisim.

- F4: Eleman kümesi {0, 1,2, 3} olan, dört elemanlı sonlu cisim.

Tanım 2.3 (Polinom). n≥ 0 tam sayısı olmak üzere, bir polinom aşağıdaki şekilde ifade
edilir:

f (x) = an xn + an−1 xn−1 + · · ·+ a1 x + a0 =
n
∑

i=0

ai x
i (2.1)

Burada, ai katsayılar S kümesine ait elemanlar olup, an ̸= 0 koşulunu sağlamaktadır.
Derecesi sıfır olan polinomlar sabit polinom olarak adlandırılır ve bu polinomlar, doğrudan
S kümesinin bir elemanını temsil eder. Eğer en yüksek dereceli katsayı an = 1 ise, bu
polinom monik polinom olarak isimlendirilir. Katsayıların oluşturduğu küme bir halka
veya cisim olduğunda, sırasıyla polinom tabanlı halka veya polinom tabanlı cisim terimleri
kullanılır.
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Tanım 2.4 (İndirgenebilir ve İndirgenemez Polinomlar). Bir f (x) polinomu, derecesi
deg( f ) > 1 olmak üzere, eğer iki polinom g(x) ve h(x) var ise ve deg(g) < deg( f ),
deg(h) < deg( f ) koşullarını sağlayarak f (x) = g(x) · h(x) biçiminde yazılabiliyorsa,
f (x) indirgenebilir; aksi takdirde indirgenemez polinom olarak tanımlanır.

Teorem 2.1. BirF cismi üzerinde tanımlı ve derecesi birden büyük bir f (x) polinomu için,
F[x]/( f (x)) kümesi toplama ve çarpma işlemleriyle bir polinom tabanlı halka oluşturur.
Ayrıca, eğer f (x) indirgenemez bir polinom ise, F[x]/( f (x)) yapısı polinom tabanlı bir
cisimdir.

Bu teorem uyarınca F[x]/( f (x)), f (x) polinomuna göre modüler indirgeme
işlemi sonrasında elde edilen yapı olarak yorumlanabilir.

Tez çalışmasında, F2m/p(x) biçiminde ifade edilen sonlu cismi tanımlamak
için kullanılan indirgenemez polinom, gösterim kolaylığı sağlamak amacıyla onaltılık
(hexadecimal) biçimde sunulmuştur. Bu yaklaşımda, ilgili polinomun katsayıları ikili
(binary) vektör dizisine dönüştürülerek gösterilir ve bu ikili gösterimin onaltılık karşılığı
kullanılır. Örneğin, F23/(x3+x2+1) indirgenemez polinomu, (1101) ikili dizisi ile temsil
edilir ve bu ifade onaltılık sistemde 0x D olarak yazılır. Benzer şekilde:

F24/(x4 + x + 1)⇒ (00010011)⇒ 0x13,

F24/(x4 + x3 + 1)⇒ (00011001)⇒ 0x19

şeklinde dönüşümler yapılmaktadır.

Bu indirgenemez polinomların yanı sıra, α ile gösterilen bir ilkel eleman
kullanılarak oluşturulanF2m/p(x) sonlu cisminin elemanları da çalışma süresince onaltılık
biçimde gösterilmektedir. Örnek olarak, Çizelge 2.1, F24/(x4 + x + 1) cismine ait
elemanları ve bu elemanların α cinsinden gösterimlerini içermektedir.
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Çizelge 2.1. F24/(x4 + x + 1) Cismindeki Elemanların Gösterimi

Onaltılık Gösterim Cisim Elemanı (α cinsinden)
1h α0 = 1
2h α1 = α
3h α4 = α+ 1
4h α2

5h α8 = α2 + 1
6h α5 = α2 +α
7h α10 = α2 +α+ 1
8h α3

9h α14 = α3 + 1
Ah α9 = α3 +α
Bh α7 = α3 +α+ 1
Ch α6 = α3 +α2

Dh α13 = α3 +α2 + 1
Eh α11 = α3 +α2 +α
Fh α12 = α3 +α2 +α+ 1

F2m/p(x) sonlu cisminin elemanları üzerinde toplama işlemi, mod 2 alınarak
(ikili toplama) gerçekleştirilir. Çarpma işlemi ise, oluşan polinomun p(x) polinomuna
göre indirgenmesiyle elde edilir.

Örnek 2.2. F24/0x13 sonlu cisminin Dh ve Eh elemanlarının toplamı ve çarpımı aşağıdaki
gibidir.

Öncelikle Dh = α3 +α2 + 1 ve Eh = α3 +α2 +α olduğundan toplama işlemi:

α3 +α2 + 1+ (α3 +α2 +α) = α3 +α2 + 1+α3 +α2 +α= α+ 1

yani Dh + Eh = 3h olarak bulunur.

Çarpma işlemi ise şu şekilde hesaplanır:

(α3 +α2 + 1)× (α3 +α2 +α) = α6 +α5 +α4 +α5 +α4 +α3 +α3 +α2 +α

Burada α6 = α3 +α2 olduğundan,

α3 +α2 +α5 +α4 +α5 +α4 +α3 +α3 +α2 +α= α3 +α

yani çarpım Ah elemanına eşittir.
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Tanım 2.5 (Doğrusal Dönüşüm). Elemanları

A : ({0, 1}m)n→ ({0,1}m)n

şeklinde tanımlanan bir fonksiyon, (2.2) ifadesindeki gibi doğrusal dönüşüm olarak
adlandırılır:

A(x) = A · x =











a11 a12 · · · a1n

a21 a22 · · · a2n
... ... . . . ...

an1 an2 · · · ann











·











x1

x2
...

xn











(2.2)

Burada (ai j) matrisi doğrusal dönüşümün katsayılarını gösterir. Eğer m = 1

alınır ve bu katsayılar F2 cisminden seçilirse, dönüşüm ikili doğrusal dönüşüm olarak
adlandırılır.

Tanım 2.6 (Hamming Ağırlığı). wt(C) ifadesiyle gösterilen Hamming ağırlığı, bir
C kod kelimesinde bulunan 1 değerlerinin sayısı olarak tanımlanır. Örneğin, C =
{0,1, 0,1, 0,0, 1} kod kelimesi için Hamming ağırlığı 3’tür.

Tanım 2.7 (Hamming Uzaklığı). F2m cismi elemanlarından oluşan iki n boyutlu kod
kelimesi arasındaki Hamming uzaklığı, bu kelimelerde aynı konumda yer alan fakat
farklı değerlere sahip bileşenlerin sayısıdır. Örneğin, C1 = {1, 0,1, 1,1,1,1} ve C2 =
{1,0, 1,1, 1,0,0} kod kelimeleri arasındaki Hamming uzaklığı 2 olarak hesaplanır.

Tanım 2.8 (Yayılım Katmanındaki Dal Sayısı). Girdi farkı vektörü x ∈ Fn
2m\{0}, girdi

farkı vektörünün doğrusal dönüşüm altındaki çıktısı L(x) ve Hamming ağırlığı wt(x)
ile tanımlandığında; yayılım katmanındaki dal sayısı, diferansiyel ve doğrusal dal sayısı
olmak üzere iki şekilde hesaplanır.

Tanım 2.9 (Diferansiyel Dal Sayısı). Diferansiyel dal sayısı (differential branch number),
βd ile gösterilmekte olup diferansiyel kriptoanalize karşı yayılım ölçüsüdür ve girdi farkı
vektörünün çıktıya etkisini ölçer.

βd(A) =min
x ̸=0
(wt(x) +wt(L(x))) (2.3)

Tanım 2.10 (Doğrusal Dal Sayısı). Doğrusal dal sayısı (linear branch number), βl ile
ifade edilmekte olup doğrusal kriptoanalize karşı yayılım ölçüsüdür ve girdi maskesinin
çıktıya etkisini ölçer.

βl(A) =min
x ̸=0
(wt(x) +wt(LT (x))) (2.4)
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Tanım 2.9 ve 2.10 doğrultusunda, bir ikili doğrusal dönüşümün dal sayısı (branch
number), sıfırdan farklı tüm giriş vektörleri için giriş ve çıkış vektörlerinin Hamming
ağırlıkları toplamının alabileceği en küçük değere karşılık gelmektedir. Bununla birlikte,
bir doğrusal dönüşümün dal sayısı, birbirini takip eden iki döngüde bulunan aktif
S-kutularının en düşük sınırıdır.

Tanım 2.11 (Birim Matris). Ana köşegen üzerinde yer alan elemanları 1, diğer tüm
konumlardaki elemanları ise 0 olan n× n boyutundaki kare matrisler birim matris olarak
adlandırılır ve genellikle In veya I sembolleri ile ifade edilir.

Tanım 2.12 (Köşegen Matris). Bir matrisin tüm satır ve sütun indisleri i ̸= j için ai j =
0 olacak şekilde tanımlandığı durumda, bu matris köşegen (diyagonal) matris olarak
adlandırılır. Bu tür matrislerde yalnızca ana köşegen üzerindeki elemanlar sıfırdan farklı
olabilir.

Tanım 2.13 (Simetrik Matris). Gerçek sayılar kümesinde tanımlı bir A matrisi için AT = A

eşitliği sağlanıyorsa, bu matris simetrik matris olarak adlandırılır.

Tanım 2.14 (Involutif Matris). Bir matris A ∈ GL(n,F2k), kendisinin çarpımsal tersi
olacak şekilde tanımlanabiliyorsa, yani

A2 = In (2.5)

eşitliği sağlanıyorsa, A matrisine involutif (tersi kendisine eşit) matris denir. Bu tür
matrisler, doğrusal dönüşümlerin terslenebilirliğini aynı maliyetle sağlayabildikleri için
blok şifreleme algoritmalarında tercih edilmektedir.

Tanım 2.15 (Semi-involutif Matris). A ∈ GL(n,F2k) matrisinin involutif olmaması
durumunda, eğer c ∈ F2k \ {0, 1} için aşağıdaki koşul sağlanıyorsa:

A2 = c2 · In (2.6)

bu durumda Amatrisine semi-involutif (yarı involutif) matris denir. Yarı involutif matrisler,
involutif matrislerin genelleştirilmiş bir biçimidir ve terslenebilirliğe benzer kolaylıklar
sunarken, daha geniş bir tasarım uzayına olanak tanır.

Tanım 2.16 (Ortogonal Matris). A∈ Fn×n bir kare matris olmak üzere, eğer A matrisinin
kendisiyle transpozunun çarpımı birim matris veriyorsa:

A · AT = In (2.7)

bu durumda A matrisine ortogonal matris adı verilir.
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Tanım 2.17 (Singüler Olmayan Matris). A ∈ Fn×n matrisinin çarpımsal tersi olan bir
B ∈ Fn×n matrisi mevcutsa, yani:

AB = BA= In (2.8)

eşitliği sağlanıyorsa, A matrisine singüler olmayan (ya da nonsingular) matris denir.

Tanım 2.18 (Dairesel Matris). Bir dairesel matris (circulant matrix), ilk satırındaki
elemanların sağa doğru dairesel olarak kaydırılmasıyla elde edilen satırlardan oluşur.
ai j = x0, x1, . . . , xn−1 olmak üzere, bir dairesel matris C aşağıdaki biçimde tanımlanır
(Davis, 1979):

C = circ(x0, x1, . . . , xn−1) =











x0 x1 x2 · · · xn−1

xn−1 x0 x1 · · · xn−2
... ... ... . . . ...

x1 x2 x3 · · · x0











(2.9)

Tanım 2.19 (Hadamard Matris). A0 ve A1 olmak üzere, her biri 2n−1 × 2n−1 boyutlarında
Hadamard matrisleri olsun. Bu durumda, 2n×2n boyutunda oluşturulan Hadamard matrisi
H , aşağıdaki şekilde tanımlanır ve bu yapıya Hadamard matris denir (Hedayat & Wallis,
1978):

H = had(A0, A1) =

�

A0 A1

A1 A0

�

(2.10)

Tanım 2.20 (Genelleştirilmiş Hadamard Matris). F2m sonlu cismi üzerinde tanımlı olmak
üzere, b1 ∈ F2m\{0} bir katsayı ve a0, a1 ∈ F2m olmak üzere, Tanım 2.19’deki H matrisinin
2×2 boyutundaki genelleştirilmiş versiyonu aşağıdaki gibi tanımlanır (Pehlivanoğlu vd.,
2018):

GH = Ghad(a0, a1; b1) =

�

a0 a1 b1

a1 b−1
1 a0

�

(2.11)

Benzer şekilde, genelleştirilmiş Hadamard matrisinin 4 × 4 boyutundaki formu
aşağıdaki gibidir (Pehlivanoğlu vd., 2018):

GH = Ghad(a0, a1; b1, a2; b2, a3; b3) =











a0 a1 b1 a2 b2 a3 b3

a1 b−1
1 a0 a3 b−1

1 b2 a2 b−1
1 b3

a2 b−1
2 a3 b−1

2 a0 a1 b−1
2 b3

a3 b−1
3 a2 b−1

3 b1 a1 b−1
3 b2 a0











(2.12)
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Tanım 2.21 (Singleton Sınırı). F2m cismi üzerinde tanımlı bir [n, k, d] parametreli kod
için;

k : (F2m)n vektör uzayının boyutunu,

n : Bu uzaydan seçilen her bir vektörün bileşen sayısını,

d : Seçilen herhangi iki kod vektörü arasındaki en küçük Hamming uzaklığını ifade
eder.

Bu bağlamda, doğrusal [n, k, d] kodlarının sağlamakla yükümlü olduğu d ≤ n−
k+1 eşitsizliği, Singleton sınırı olarak adlandırılmaktadır (MacWilliams & Sloane, 1977).

Tanım 2.22 (MDS Kodlar). Bir doğrusal [n, k, d] kodu olan C , eğer d = n − k + 1

koşulunu sağlıyorsa, bu durumda C maksimum uzaklıkta ayrılabilen (Maximum Distance
Separable - MDS) bir kod olarak tanımlanır.

Tanım 2.23 (Üreteç Matrisi). [n, k, d] biçiminde bir doğrusal kod için, G matrisine üreteç
matrisi denir ve bu matris k× n boyutunda olup, satırları kod uzayının tabanını oluşturan
vektörlerden meydana gelir.

Teorem 2.2. Eğer bir doğrusal kodun üreteç matrisi G = [I , A] biçimindeyse ve bu kod
d = n− k+ 1 Singleton sınırını sağlıyorsa, bu durumda A matrisi bir MDS matristir.

Tanım 2.24 (MDS Matrisler). MDS matrisler, MDS kodlardan türetilir ve aşağıdaki temel
özellikleri taşırlar (Pehlivanoğlu vd., 2018):

i) n× n boyutundaki bir matrisin tüm kare alt matrislerinin determinantları sıfırdan
farklı ise, bu matris bir MDS matristir.

ii) MDS bir matrisin tüm elemanları sıfırdan farklı olmalıdır.

iii) Eğer bir n× n matris MDS özelliği taşıyorsa, bu matrisin diferansiyel dal sayısı ile
doğrusal dal sayısı aynıdır ve dal sayısı n+ 1’dir.

iv) MDS bir matrisin transpozu da MDS özelliğini korur.

v) MDS bir matrisin satır veya sütunları, F2m cismindeki sıfırdan farklı bir eleman ile
çarpıldığında, ortaya çıkan yeni matris de yine MDS matristir.
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Tanım 2.25 (MDBL Kodlar). Elemanları F2 cismine ait olan matrisler ikili matrisler
olarak adlandırılır. n× n boyutundaki bir ikili matrisin maksimum dal sayısı, ikili [2n, n]
doğrusal kodların elde edebileceği en yüksek uzaklığa eşittir.

Bu doğrultuda, ikili doğrusal kodların maksimum uzaklığa sahip olabilmesi için,
söz konusu kodlara ait minimum ve maksimum uzaklık sınırlarının birbirine eşit olması
gerekmektedir. Bu tür kodlara, maksimum uzaklığa sahip ikili doğrusal kodlar (Maximum
Distance Binary Linear Codes - MDBL) adı verilir.

Çizelge 2.2. İkili [2n, n] Kodlara Ait Maksimum Dal Sayıları

n Erişilebilir Değer Teorik Sınır n Erişilebilir Değer Teorik Sınır
1 2 2 17 8 8
2 2 2 18 8 8
3 3 3 19 8 9
4 4 4 20 9 10
5 4 4 21 10 10
6 4 4 22 10 10
7 4 4 23 11 11
8 5 5 24 12 12
9 6 6 25 10 12
10 6 6 26 10 12
11 7 7 27 11 13
12 8 8 28 12 14
13 7 7 29 12 14
14 8 8 30 12 14
15 8 8 31 12 15
16 8 8 32 12 16

Çizelge 2.2 incelendiğinde, n > 18 için n × n boyutlu MDBL matrislerin
maksimum dal sayısının henüz kesin olarak belirlenemediği görülmektedir. Bu nedenle, bu
boyutlardaki matrisler için hem teorik sınır hem de erişilebilir değer birlikte ele alınmalıdır.
Örneğin, [64, 32] doğrusal kodlarının (n= 32)maksimum dal sayısının erişilebilir değeri
12 iken, teorik üst sınırı 16’dır. Başka bir deyişle, 32× 32 boyutundaki bir ikili matrisin
ulaşılabilen en yüksek dal sayısı 12 olarak bilinmektedir.

Tanım 2.26 (Sabit Nokta Sayısı). A bir doğrusal dönüşüm ve x bu dönüşümün giriş
vektörü olmak üzere, A· x = x eşitliği sağlanıyorsa, x vektörü bu dönüşümün sabit noktası
olarak adlandırılır. Yani, doğrusal dönüşüm A eylemi sonucunda x vektörü kendisine eş
bir vektöre dönüşüyorsa, x sabit noktadır (Z’aba, 2010).
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A=











a11 a12 · · · a1n

a21 a22 · · · a2n
... ... ... ...

an1 an2 · · · ann











.











x1

x2
...

xn











=











x1

x2
...

xn











(2.13)

A matrisinin ve birim matris I’nin n× n boyutunda olduğu ve giriş vektörlerinin
m-bitlik elemanlar içerdiği varsayılırsa, sabit noktaların tamamı aşağıdaki gibi elde edilir:

(A+ I)x T = 0 (2.14)

Bu ifade matrisin rank bilgisiyle birlikte değerlendirilerek sabit nokta sayısı şu
şekilde hesaplanır:

SabitNoktaA = 2m(rank(A)−rank(A+I)) = 2m(n−rank(A+I)) (2.15)

Tanım 2.27 (XOR Kapısı). Özel VEYA (eXclusive OR) olarak bilinen XOR kapısı, iki
giriş aynı olduğunda 0, farklı olduğunda ise 1 çıktısı üreten bir mantık kapısıdır ve ⊕
sembolü ile gösterilir.

Çizelge 2.3. XOR Kapısı Doğruluk Tablosu

a b Y
0 0 0
0 1 1
1 0 1
1 1 0

Bu kapının Boole cebri ifadesi Y = a′b+ ab′ şeklindedir.

Tanım 2.28 (XOR Sayısı). XOR(α), F2m cismi üzerinde tanımlı bir p(x) polinomunun bir
elemanı olan α ile aynı cisimde yer alan başka bir β elemanının çarpımını gerçekleştirmek
için gerekli XOR kapısı sayısını belirtir.

Tanım 2.29 (Matrislerde XOR Sayısı). F2m cismi üzerinde tanımlı n× n boyutundaki bir
M matrisinin belirli bir satırındaki XOR sayısı, aşağıdaki şekilde tanımlanır (Khoo vd.,
2014):

M matrisinin bir satırının XOR sayısı = (γ1,γ2, · · · ,γk) + (n− 1) ·m (2.16)

Burada γi, satırdaki i. elemanın XOR sayısını; n, satırda sıfırdan farklı eleman
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sayısını; m ise sonlu cismin mertebesini temsil eder. Tüm satırlar için bu işlem
tekrarlanarak, matrisin toplam XOR sayısı elde edilir.

Tanım 2.30 (Devre Derinliği). Doğrusal bir katmanın fiziksel bir devre şeklinde
uygulanması sırasında, bir giriş bitinden başlayıp bir çıkış bitine ulaşan ve üzerinde
en fazla sayıda ardışık XOR kapısı bulunan yol, kritik yol olarak tanımlanır. Bu yol,
girişten çıkışa veri akışının en uzun zaman aldığı hesaplama dizisini temsil eder. Devre
derinliği, bu kritik yol üzerindeki XOR işlemlerinin sayısı ile ölçülür ve birim zamanda
gerçekleştirilebilecek işlem sayısını belirleyen saat frekansı üzerinde doğrudan etkilidir.
Bu nedenle, devre derinliği yalnızca alan verimliliği değil, aynı zamanda zamanlama
performansı açısından da temel bir metrik olarak değerlendirilir (Li, Sun, Li, Wei & Hu,
2019).
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BÖLÜM 3

OPTİMİZASYON YÖNTEMLERİ

R herhangi bir halka olmak üzere, Mn(R) kümesiR halkasından seçilen girdilerle
oluşturulan tüm n× n boyutlu matrisleri ifade etmektedir. Benzer şekilde, Mn(Ml(F2))
ifadesi, her bir elemanı Ml(F2) kümesinden seçilen tüm n × n matrislerin oluşturduğu
kümeyi tanımlar. Bu kümede yer alan herhangi bir M matrisi, nl × nl boyutlarında bir
ikili matris olarak temsil edilebilir.

Ml(F2) içerisinde yer alan bir difüzyon matrisi, sonlu sayıda XOR kapısı
kullanılarak gerçekleştirilebilir. Düşük XOR sayısı, donanım alanının verimli kullanımıyla
doğrudan ilişkilidir (Khoo vd., 2014). Maksimum dal sayısı kriterine sahip olmaları
nedeniyle MDS matrisler ideal difüzyon tabakaları oluştursa da, uygulama açısından
yüksek maliyet doğurabilirler. Yazılım tarafında, tablo tabanlı optimizasyonlar ve bellek
kısıtı olmaması nedeniyle bu maliyet büyük ölçüde göz ardı edilebilir. Ancak donanım
uygulamalarında, sonlu cisim çarpımlarının gerçekleştirilmesi önemli ölçüde donanım
kaynağı gerektirir. Bu nedenle, minimum XOR işlemiyle gerçekleştirilebilecek matrislerin
tercih edilmesi, modern kriptografik sistemlerde önemli bir tasarım ilkesi haline gelmiştir.
Genel olarak düşük Hamming ağırlığına sahip elemanlar, donanımda daha az kaynak
gerektirdiğinden avantajlıdır. Bu durum, bir difüzyon matrisinin seçiminde kritik bir ölçüt
olarak değerlendirilir. Örneğin, AES blok şifresinin difüzyon matrisindeki katsayılar 0x1,
0x2 ve 0x3 gibi düşük maliyetli elemanlardan seçilmiştir (Daemen & Rijmen, 2002).
Ancak, Khoo ve arkadaşları tarafından yapılan çalışmada bu yaklaşımın her zaman geçerli
olmadığı, seçilen indirgenemez polinoma ve çarpma işleminin indirgenme biçimine bağlı
olarak yüksek Hamming ağırlığına sahip bazı katsayıların oldukça düşük XOR maliyetiyle
uygulanabildiği gösterilmiştir.

Aşağıda verilen üç örnek, Tanım 2.28 ve Tanım 2.29 kullanılarak, belirli bir
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sonlu cisim elemanının farklı indirgenemez polinomlar altında XOR maliyetini ve 4× 4

boyutundaki bir matrisin toplam XOR işlemi sayısını hesaplamayı göstermektedir.

Örnek 3.1. (b3, b2, b1, b0), F24/0x13 cismi üzerinde tanımlı rastgele bir β elemanının
ikili gösterimi olmak üzere, aynı cisimde tanımlı α = 8h elemanı ile çarpımın XOR

maliyeti şu şekilde hesaplanır:

(1,0, 0,0).(b3, b2, b1, b0) = (b0 ⊕ b3, b2 ⊕ b3, b1 ⊕ b2, b1)

Bu işlem sonucunda, F24/0x13 cisminde α= 8h elemanıyla yapılan çarpım için gereken
XOR sayısı 3’tür.

Örnek 3.2. (b3, b2, b1, b0), F24/0x19 cismi üzerinde tanımlı rastgele bir β elemanının
ikili gösterimi olmak üzere, aynı cisimde tanımlı α = 8h elemanı ile çarpımın XOR

maliyeti şu şekilde hesaplanır:

(1, 0,0, 0).(b3, b2, b1, b0) = (b0 ⊕ b1 ⊕ b2 ⊕ b3, b3, b2 ⊕ b3, b1 ⊕ b2 ⊕ b3)

Bu durumda, F24/0x19 cisminde aynı eleman ile çarpım 6 adet XOR işlemi gerektirir.

Bu örneklerden açıkça anlaşılacağı üzere, bir elemanla çarpım işleminde ortaya
çıkan XOR sayısı, tanımlı olunan sonlu cismin indirgenemez polinomuna bağlı olarak
önemli ölçüde değişkenlik göstermektedir. Sim ve arkadaşlarının 2015 yılında yaptığı
çalışmada, indirgenemez polinom seçiminin bu varyasyon üzerindeki etkisi kapsamlı
bir şekilde incelenmiş ve elde edilen sonuçlar doğrultusunda, XOR sayılarının dağılım
özelliklerinin polinomdan polinoma farklılık gösterdiği ortaya konmuştur. Bu çalışmada,
söz konusu dağılımlar standart sapma ile nicel olarak değerlendirilmiş ve yüksek standart
sapma değerlerinin, daha fazla sayıda düşük XOR maliyetli eleman içerdiğine, dolayısıyla
optimizasyon açısından daha avantajlı matrislerin oluşturulabileceğine işaret ettiği
belirtilmiştir. Çizelge 3.1, F24 cismi üzerinde tanımlı 0x13, 0x19 ve 0x1 f indirgenemez
polinomları için, tüm elemanlarla gerçekleştirilen çarpım işlemlerine karşılık gelen XOR

sayıları ve bu değerlerin dağılımlarına ait standart sapma ölçümlerini özetlemektedir (Sim,
Khoo, Oggier & Peyrin, 2015).

İndirgenemez polinomun XOR sayısı üzerindeki etkisinin anlaşılması, özellikle
kriptografik uygulamalarda kullanılan matrislerin optimizasyonu açısından kritik bir
öneme sahiptir. Çünkü sonlu cisim elemanlarının çarpımı, bu tür uygulamalarda temel
işlem adımlarından biri olarak yoğun hesaplama maliyetlerine yol açabilmektedir.
Bu nedenle, uygun indirgenemez polinom seçimi, yalnızca çarpma işlemlerinin
karmaşıklığını azaltmakla kalmayıp, aynı zamanda donanım ve yazılım tasarımında enerji
verimliliği ve hız açısından da önemli avantajlar sağlamaktadır. Sim ve arkadaşlarının
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analizinde ortaya çıkan dağılım farklılıkları, optimize edilmiş algoritmaların geliştirilmesi
için bir rehber niteliğindedir ve bu sayede, düşük XOR sayısına sahip elemanların
belirlenmesi ile daha performanslı ve güvenli kriptografik yapılar oluşturulabilmektedir.
Ayrıca, farklı polinomların karşılaştırılması, uygulama gereksinimlerine göre ideal
indirgenemez polinomun seçimini mümkün kılmakta ve bu da esnek ve ölçeklenebilir
sonlu cisim aritmetiği çözümlerinin geliştirilmesini desteklemektedir (Sim vd., 2015).

Çizelge 3.1. F24 Cisminde İndirgenemez Polinoma Göre XOR Sayıları

Onaltılık Gösterim Cisim Elemanı XOR Sayıları
0x13 0x19 0x1 f

0 0 0 0 0
0x1 1 0 0 0
0x2 α 1 1 3
0x3 α+ 1 5 3 5
0x4 α2 2 3 3
0x5 α2 + 1 6 5 5
0x6 α2 +α 5 2 6
0x7 α2 +α+ 1 9 6 6
0x8 α3 3 6 3
0x9 α3 + 1 1 8 5
0xa α3 +α 8 5 6
0x b α3 +α+ 1 6 9 6
0xc α3 +α2 5 1 6
0xd α3 +α2 + 1 3 5 6
0xe α3 +α2 +α 8 6 5
0x f α3 +α2 +α+ 1 6 8 3

Standart Sapma 2,68 2,68 1,71

Örnek 3.3. F24/0x13 cismi üzerinde tanımlı H = had(0xa, 0x b, 0x9,0x f ) Hadamard
matrisinin toplam XOR maliyetini belirlemek için Tanım 2.29 uyarınca şu adımlar izlenir:

- Çizelge 3.1’dan alınan değerlere göre, matrisin ilk satırındaki elemanların toplam
XOR sayısı (8+ 6+ 1+ 6) = 21’dır.

- (Sıfır olmayan eleman sayısı − 1) × Cisim derecesi = 3 × 4 = 12 XOR olarak
hesaplanır.

- İlk satır için toplam XOR maliyeti 21+ 12= 33 olarak elde edilir.

- Bu hesaplama, tüm satırlar için aynı şekilde yapılır. Hadamard matris özelliği gereği
satırlar eşdeğer olduğundan, toplam maliyet 33× 4= 132 olarak bulunur.

22



XOR sayısı, hesaplama açısından sade ve uygulanabilir bir metrik olsa da,
minimum XOR sayısına sahip bir gerçekleştirme elde etmek oldukça karmaşık bir
problemdir. Bunun temel nedeni, literatürde XOR sayısıyla ilişkili ölçütlerin yalnızca üst
sınırları belirlemesi; buna karşılık alt sınırları ifade eden genel geçer bir ölçütün mevcut
olmamasıdır. F2m cismi üzerinde tanımlı n× n boyutundaki matrislerin XOR maliyetini
hesaplamaya yönelik genel bir yöntem ilk kez Khoo ve arkadaşları tarafından sunulmuştur
(2014). Bu çalışmanın ardından, literatürde XOR işlemlerinin sayısını minimize eden
difüzyon matrislerini bulmak amacıyla iki temel yaklaşımın öne çıktığı görülmektedir. İlk
yaklaşım olan yerel (local) optimizasyon teknikleri, difüzyon matrisinin her bir bileşeninin
XOR maliyetini ayrı ayrı değerlendirip iyileştirmeye çalışırken; ikinci yaklaşım olan
küresel (global) optimizasyon teknikleri, matrisi bir bütün olarak ele almakta ve mn×mn

boyutunda ikili matrisler üzerinde doğrudan optimizasyon yapmaktadır.

3.1. Yerel Optimizasyon

Yerel optimizasyon yöntemleri, XOR sayısını minimize etmeye yönelik iki farklı
ölçüt sunmaktadır. Bunlardan ilki, Khoo vd. (2014) tarafından önerilen ve Jean vd.
(2017) tarafından doğrudan XOR sayısı olarak adlandırılan ölçüttür. Bu ölçüt, matrisin her
satırının bağımsız olarak işlendiği, doğrudan (naive) bir donanım uygulamasına karşılık
gelmektedir. Literatürde en yaygın kullanılan bu yöntem, genellikle "ham XOR sayısı"
ifadesiyle eşanlamlıdır.

İkinci ölçüt ise Jean vd. (2017) tarafından tanımlanan ve sıralı XOR sayısı
olarak adlandırılan yaklaşımdır. Bu ölçüt, ekstra bellek kullanılmadan, yerinde (in-place)
işlemlerle gerçekleştirilen sıralı uygulamalarda ortaya çıkan minimum XOR işlem sayısını
ifade eder.

3.1.1. Doğrudan XOR Sayısı

Doğrudan XOR sayısı (Direct XOR Count), M matrisinin DX C(M) veya d −
XOR(M) şeklinde gösterilen bir ölçütüdür. Örnek 3.3’de hesaplanan H matrisinin XOR

maliyeti aslında bu ölçüte karşılık gelmektedir. F2m gibi bir sonlu cisim elemanı, F2

cisminde tanımlı m boyutlu ikili vektörlerle temsil edilebildiğinden (bkz. Örnek 3.1 ve
3.2), bu temsil doğrultusunda, F2m’de sıfırdan farklı bir α elemanı ile çarpma işlemi,
F2’de tanımlı m×m boyutlu bir sol çarpım matrisi ile ifade edilebilir. Genellikle Mα ile
gösterilen bu matrisin XOR maliyeti, α elemanının d − XOR değeri olarak adlandırılır
(Beierle, Kranz & Leander, 2016; Sarkar & Sim, 2016; Sim vd., 2015).

Bu bağlamda, d − XOR ölçütünün biçimsel tanımı aşağıda verilmiştir:

Tanım 3.1 (Doğrudan XOR Sayısı). F2m/p(x) cisminde tanımlı birα elemanının d−XOR
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değeri, α : β → αβ işlemini gerçekleştirmek için gereken XOR işlem sayısını ifade eder.
Burada w, Mα çarpma matrisinin Hamming ağırlığı; r ise matrisin satır sayısı olmak
üzere, doğrudan XOR sayısı aşağıdaki gibi tanımlanır:

d − XOR(Mα) = wMα − r (3.1)

Bu ölçüt, yalnızca XOR işlemi gereksiniminin üst sınırını ifade eder; gerçek
uygulamalarda sıralı optimizasyon teknikleri sayesinde daha düşük maliyetler elde
edilebilir.

3.1.2. Sıralı XOR Sayısı

Sıralı XOR sayısı (Sequential XOR Count), bir sonlu cisim elemanıyla yapılan
çarpma işleminin optimize edilmiş uygulamasında ortaya çıkan en az XOR işlem sayısını
temsil eder (Beierle vd., 2016). Bu ölçüt, genellikle SX C(M) veya s− XOR(M) şeklinde
gösterilir ve doğrudan XOR sayısının azaltılmasına yönelik önerilmiştir (Jean, Peyrin,
Sim & Tourteaux, 2017). Yerinde algoritmalarla gerçekleştirilen uygulamalarda, elde
edilen çıktılar doğrudan girişin üzerine yazılabilir veya giriş bileşenlerinin konumlarını
değiştirebilir. Bu tür algoritmaların çoğu ek bellek kullanımına ihtiyaç duymaz. s− XOR

ölçütü, bu tür uygulamaların ardışık bir XOR işlem dizisiyle gerçekleştirilmesini esas
alır. Uygulamadaki bazı sınırlamalara rağmen, s− XOR değeri birçok durumda d − XOR

değerinden önemli ölçüde düşük olabilir.

Aşağıda s− XOR ölçütünün biçimsel tanımı verilmiştir:

Tanım 3.2 (Sıralı XOR Sayısı). F2m/p(x) cisminde tanımlı bir α elemanının s − XOR

değeri, çarpma işleminin sol çarpım matrisi olan Mα kullanılarak gerçekleştirildiğinde
ortaya çıkan minimum XOR işlem sayısını belirtir. Bu minimum, tüm olası işlem
sıralamaları göz önünde bulundurularak elde edilir ve s − XOR(Mα) ile gösterilir (Jean
vd., 2017).

Örnek 3.4. F23/0x b cisminde tanımlı α = 6h elemanının, rastgele bir β elemanı
(b2, b1, b0) ile çarpılması durumunda d − XOR ve s − XOR değerleri aşağıdaki şekilde
elde edilmektedir:

(1, 1,0).(b2, b1, b0) = (b0 ⊕ b2, b1 ⊕ b2, b1)⊕ (b1, b0 ⊕ b2, b2)

= (b0 ⊕ b1 ⊕ b2, b0 ⊕ b1, b1 ⊕ b2)
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Bu işleme ait çarpım matrisi:

Mα =







1 1 1

0 1 1

1 1 0






, Mα ·







b2

b1

b0






=







b0 ⊕ b1 ⊕ b2

b0 ⊕ b1

b1 ⊕ b2







Mα’nın Hamming ağırlığı w = 7, satır sayısı r = 3 olduğundan, denklem 3.1
kullanılarak d − XOR(Mα) = 7− 3= 4 XOR sonucu elde edilir.

s−XOR değeri için ise, hesaplanan bileşenlerin bazıları birbirlerinin ara adımlarını
içerdiğinden, optimizasyon yapılabilir. Örneğin, önce b1⊕b2 elde edilip, ardından bu değer
b0 ile XOR’lanarak ilk bileşen elde edilebilir. Bu işlem sırası ile toplamda yalnızca 2 XOR

işlemi gereklidir. Böylece s− XOR(α) = 2 XOR sonucuna ulaşılır.

3.2. Küresel Optimizasyon

Küresel optimizasyon teknikleri, difüzyon matrisinin bir bütün olarak ele
alındığı ve her elemanın tek tek incelenmesinden ziyade tüm matrisin ikili forma
dönüştürülmesiyle analiz edildiği yöntemleri kapsamaktadır. Bu yaklaşımda, özel olarak
bu amaç için geliştirilmiş çeşitli yazılım araçları kullanılmaktadır (Duval & Leurent,
2018; Kranz, Leander, Stoffelen & Wiemer, 2017). Küresel optimizasyonun temel hedefi,
literatürde “En Kısa Doğrusal Düz Çizgi Programı” (Shortest Linear Straight Line
Program–SLP) olarak adlandırılan optimizasyon problemine etkili çözümler üretmektir.

3.2.1. En Kısa Doğrusal Düz Çizgi Programı (SLP)

Bir dizi doğrusal ifadenin hesaplanmasında gereken işlem sayısının minimize
edilmesi problemi, En Kısa Doğrusal Program (SLP) olarak adlandırılır.

A, F2 üzerinde tanımlı m×n boyutundaki bir sabit matris ve x , F2 üzerinde tanımlı
n değişkenli bir vektör olsun. Bu durumda SLP, belirli bir formatta olan her program satırı
için A · x’i hesaplayan minimum satır sayısına sahip programı bulmayı amaçlar.

V , {x0, x1, . . . , xn−1} giriş değişkenlerini içeren F2 üzerinde tanımlı bir değişken
kümesi olsun. vi, v j ∈ V olmak üzere, her program satırı şu formattadır:

v′ := vi + v j

Bu program satırının çalıştırılmasıyla yeni değişken v′ kümeye eklenir:

V := V ∪ {v′}
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Yeni değişken v′ artık sonraki program satırlarında kullanılabilir duruma gelir.
Program, ∃(v1, . . . , vm) ∈ V m koşulu sağlandığında A· x’i hesaplar ve şu eşitlik elde edilir:

A · x = (v1, . . . , vm)
T

En Kısa Doğrusal Program, kriptografi alanında en zorlu ve kapsamlı hesaplama
problemlerinden biri olarak kabul edilmektedir. Bu problem, F2 cismi üzerinde yalnızca
XOR kapılarının kullanıldığı bir devre tasarımında, belirli bir doğrusal fonksiyonun en
kısa hesaplama yolunu belirlemeye karşılık gelmektedir.

SLP problemine örnek olarak AES şifreleme algoritmasının MixColumns ve
SubBytes aşamalarındaki doğrusal dönüşüm optimizasyonu verilebilir. Ancak bu teknik,
S-kutuları gibi doğrusal olmayan işlemlerde kullanılamaz, bu durumda SAT (Satisfiability
Solver) çözücüler kullanılır.

SLP probleminin temelinde, belirli bir ikili matrisin her bir çıktı bitini üretmek için
gereken minimum XOR işlemi sayısını bulmak yatmaktadır. Bu doğrultuda geliştirilen
çeşitli algoritmalar, doğrusal dönüşümlerin donanımsal maliyetini azaltmak amacıyla
kullanılmaktadır. Paar tarafından geliştirilen yöntem, ortak alt ifadeleri belirleyerek XOR

işlemlerinin sayısını düşürmeyi hedeflemekte ve böylece daha verimli çizgi programları
üretmektedir (Paar, 1997). Bu yaklaşımı takip eden önemli çalışmalardan biri de Boyar
ve Peralta tarafından önerilen BP algoritmasıdır. Bu algoritma, çıkışların her birini
hesaplamak için yeniden kullanılabilir ara ifadeleri sistematik olarak analiz etmekte
ve bu sayede toplam XOR sayısını minimize eden optimize edilmiş çizgi programları
oluşturmaktadır (Boyar & Peralta, 2010). BP algoritması, özellikle büyük boyutlu doğrusal
dönüşümlerde hem doğruluk hem de verimlilik açısından başarılı sonuçlar vermekte olup,
kriptografik yapıların donanımda düşük kaynak tüketimiyle gerçekleştirilmesine olanak
tanımaktadır.

3.2.1.1. Paar Algoritması

Açgözlü algoritma sınıfına dahil olan Paar Algoritması (Paar, 1997), diğer açgözlü
algoritmalarda olduğu gibi çözüme en yakın seçimi yapar. Bu seçim her zaman optimal
olmasa da, zaman faktörünün kritik olduğu çalışmalarda BP algoritmasına kıyasla büyük
ölçekli matrisler üzerinde XOR sayısının azaltılmasında etkilidir.

XOR sayısının minimize edilmesi istenen A matrisi için Paar algoritması şu
adımları takip eder:

1. Hamming ağırlığı en yüksek olan sütunlar AND işlemi kullanılarak belirlenir.
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2. Bu işlemle XOR işlemleri sırasında en çok tekrarlanan x i ve x j elemanları tespit
edilir.

3. Elde edilen çarpım sütununa "newClmn" adı verilerek matrise eklenir ve A matrisi
genişletilir. Bu şekilde yeni giriş değişkeni v = x i ⊕ x j elde edilir.

4. Mevcut sütunlara "oldClmn" adı verilir ve şu işlem uygulanır:

oldClmn← oldClmn⊕ newClmn

Bu son işlemle gereksiz XOR işlemleri elimine edilir.

3.2.1.2. Boyar-Peralta (BP) Algoritması

Boyar-Peralta algoritması (Boyar & Peralta, 2010), F2 cismi üzerinde tanımlı
m× n boyutlu bir A matrisi için f (x) = A · x değerini hesaplar ve en kısa lineer düz çizgi
programını bulmayı hedefler.

Algoritma, başlangıçta sadece (x1, x2, x3, . . . , xn) giriş değişkenlerinden oluşan
M tabanı oluşturur. Daha sonra, A matrisinin satırlarının M kümesine olan doğrusal
fonksiyonlarının Hamming uzaklıklarından oluşan bir uzaklık vektörü Uzk[·] tanımlanır.

Eğer fi, A matrisinin i-inci satırı tarafından verilen doğrusal fonksiyon ise, Uzk[i],
M tabanından fi’yi elde etmek için gereken minimum fonksiyon sayısını verir.

Başlangıçta Uzk[i], i-inci satırının Hamming ağırlığından 1 eksiktir. Algoritma
şu döngüyü uygular:

1. M kümesinden iki temel eleman seçilir ve XOR işlemine tabi tutularak elde edilen
yeni eleman M kümesine eklenir.

2. Uzk[i] vektörü, M kümesine eklenen yeni elemandan dolayı güncellenir.

3. Tüm i değerleri için Uzk[i] = 0 elde edilinceye kadar adımlar tekrarlanır.

Herhangi bir aşamada M kümesinin boyutu t ise, yeni temel eleman seçimi için
� t

2

�

seçenek bulunur. Seçim kriterleri ise aşağıdaki gibidir:

1. Güncellenmiş Uzk[·] dizisinin elemanlarının toplamını minimize eden elemanın
seçimi

2. Eşitlik durumunda, güncellenmiş Uzk[·] dizisinin Öklid normunu maksimize eden
elemanın seçimi
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Bu yaklaşımın mantığı, [0,0, 3,1] gibi bir uzaklık vektörünün [1,1, 1,1]
vektörüne tercih edilmesi ilkesine dayanır. İkinci durumda 4 XOR kapısı gerekirken,
birinci durumda 3 XOR kapısı ile Uzk[·] = 0 eşitliğine ulaşılabilir.

Bu iki algoritma, bir difüzyon matrisinin uygulanmasında ihtiyaç duyulan XOR

kapılarının sayısını azaltarak devre alanı üzerinde iyileştirme sağlamayı hedefleyen özel
araçlara dayanmakta olsa da, bu uygulamaların değerlendirilmesinde dikkate alınması
gereken bir diğer önemli kriter de gecikmedir. Gecikme, bir devrenin çalışabileceği
maksimum saat frekansını belirleyen temel bir sınırlayıcıdır ve Tanım 2.30’da açıklanmış
olan devre derinliği ile ifade edilir.

Li, Sun, Li, Wei ve Hu’nun çalışmasında (2019), Boyar-Peralta algoritması devre
derinliği gözetilerek yeniden yapılandırılmıştır. Bu kapsamda, algoritma belirli bir derinlik
sınırını aşmayan sinyallerin seçimini öncelikli hale getirecek biçimde uyarlanmıştır.

3.2.1.3. Superior Boyar-Peralta (SBP) Sezgisel Algoritması

Literatürdeki en güncel yaklaşımlardan biri olan Superior Boyar-Peralta (SBP)
algoritması (Pehlivanoğlu & Demir, 2024), Boyar-Peralta (BP) sezgiselinin geliştirilmiş
bir versiyonudur. Bu algoritmanın temel amacı, bir lineer katmanın devresini temsil eden
En Kısa Doğrusal Düz Çizgi Programları (SLP) için hem iki girişli XOR kapılarının
sayısını hem de devre derinliğini minimize etmektir. Bu sayede özellikle düşük gecikmeli
(low-latency) devreler elde etmede oldukça başarılıdır.

SBP, Boyar-Peralta’nın temel yapısını kullanmakla birlikte, yeni taban elemanlarını
seçerken farklı ve daha kontrollü bir yapı sunar. Algoritmanın temel işleyişi ve getirdiği
yenilikler şu şekilde özetlenebilir:

• Eşik Değeri ve Aday Havuzu: SBP, her adımda değerlendirilecek potansiyel eleman
çiftlerinin sayısını sınırlamak için bir eşik değeri kullanır. Diğer algoritmaların
aksine tüm olasılıkları tüketerek arama uzayını genişletmek yerine, SBP en iyi
adaylardan oluşan bu havuzu dikkatlice yönetir. Bu, arama uzayını daraltarak daha
verimli bir şekilde optimum sonuca ulaşmayı sağlar.

• Rastgeleleştirme Adımı: Aday havuzundaki en iyi çiftler arasından birini
seçmek için tekdüze tamsayı dağılımı (uniform integer distribution) kullanan bir
rastgeleleştirme adımı içerir. Bu yaklaşım, algoritmanın yerel optimal noktalara
takılıp kalmasını önlemeye yardımcı olur.

• Öklid Normu ve Derinlik Farkındalığı: Yeni bir taban elemanı seçilirken,
güncellenmiş uzaklık vektörünün Öklid normunu maksimize eden ve aynı zamanda
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belirlenen devre derinliği sınırını aşmayan çiftlere öncelik verir. Bu kriter,
optimizasyon sürecine gecikme metriğini doğrudan dahil eder.

Tez çalışmasında, önerilen yöntemle tasarlanan yarı-involutif matrislerin
donanımsal maliyet açısından optimize edilmesi de amaçlanmıştır. Bu doğrultuda,
doğrusal dönüşümlerin mantıksal kapı seviyesinde en düşük kaynak kullanımıyla
uygulanabilmesini sağlayan Paar algoritması ile Boyar-Peralta (BP) ve onun
gecikme hassasiyeti gözetilerek geliştirilmiş hali olan Superior Boyar-Peralta (SBP)
algoritmalarından yararlanılmıştır. Söz konusu algoritmalar kullanılarak, yarı-involütif
matrislerin XOR sayısını minimize edecek şekilde yeniden yapılandırılması sağlanmıştır.
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BÖLÜM 4

YARI İNVOLUTİF MDS MATRİSLERİN CEBİRSEL TASARIMI

Bu bölümde, tez çalışmasının temelini oluşturan yarı involutif MDS matrislerin
üretilmesine yönelik geliştirilen metodoloji sunulmaktadır. İzlenen yöntem, öncelikle
literatürdeki mevcut involutif MDS matrislerinin Magma hesaplamalı cebir sistemi
kullanılarak üretilmesini, ardından bu matrislerden faydalanarak yarı involutif yapıların
türetilmesini kapsamaktadır. Son olarak, elde edilen yeni matrislerin donanım verimliliğini
artırmak amacıyla uygulanan XOR optimizasyon teknikleri detaylandırılmaktadır.

4.1. Hesaplamalı Cebir Sistemi: Magma

Tez kapsamındaki yoğun cebirsel hesaplamaların gerçekleştirilmesi, doğrulanması
ve analizi için Magma hesaplamalı cebir sistemi tercih edilmiştir.

Magma projesi, 1980’lerin sonunda Sydney Üniversitesi’nde Prof. John Cannon
liderliğinde, Cayley sisteminin devamı olarak başlatılmıştır. Sistemin temel tasarım
felsefesi, "kesin matematiksel nesneler üzerinde doğru ve verimli hesaplama yapmak"
olarak özetlenebilir. Bu doğrultuda Magma; sonlu/sonsuz gruplar, halkalar, cisimler,
eliptik eğriler ve kriptografik yapılar gibi matematiksel nesneler için özelleşmiş veri
tipleri ve 2000’den fazla yerleşik fonksiyon sunarak hem yüksek performans hem de
matematiksel doğruluk sağlar (“Magma Computational Algebra System”, 2025).

Bu çalışmada Magma, özellikle aşağıdaki alanlardaki güçlü yetenekleri nedeniyle
kritik bir rol oynamıştır:

• F2m gibi sonlu cisimler üzerindeki polinom aritmetiği,

• MDS ve involutif/yarı involutif matrislerin parametrik formüllere dayalı olarak
sistematik üretimi,
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• Üretilen matrislerin özelliklerinin (tersinirlik, MDS koşulu vb.) doğrulanması.

Aşağıdaki çizelge, Magma’da sıkça kullanılan bazı temel komutları
özetlemektedir.

Çizelge 4.1. Magma’da Temel Komut Örnekleri

Amaç Komut
Oturumu başlatma $ magma
Sonlu cisim tanımı F<a>:= GF(2^8);
Çarpanlara ayırma Factorization(x^12 - 1);
Matris ve rütbe M:= Matrix([[1,0,1],[1,1,0],[0,1,1]]); Rank(M);
Grup tanımı G:= SymmetricGroup(5);
AES alanında tersleme b:= F!0x57; b^(-1);

4.2. İnvolutif MDS Matrislerin İnşası

Bu tezde, öncelikle involutif MDS matrislerin üretimi için literatürde yer alan
iki temel yöntemden faydalanılmıştır. Bunlardan ilki, 3 × 3 boyutundaki matrisler için
(Güzel, Sakallı, Akleylek, Rijmen & Çengellenmiş, 2019) tarafından sunulan doğrudan
inşa yöntemi, ikincisi ise 4× 4 boyutundaki matrisler için (Tuncay vd., 2023) tarafından
geliştirilen hibrit yöntemdir.

4.2.1. 3× 3 Boyutlarındaki MDS Matrisler İçin Doğrudan İnşa Yöntemi

Bu yöntemde, matrisin involutif olma koşulu (A2 = I) temel alınarak matris
elemanları arasında cebirsel ilişkiler kurulur ve tüm 3× 3 boyutlarındaki involutif MDS
matrislerini üretebilen bir form sunulur.

Teorem 4.1. (3× 3 İnvolutif Matris Formu) F2m üzerinde 3× 3 boyutlu bir A matrisinin
involutif olabilmesi için, elemanları a11, a22 köşegen elemanları ve sıfırdan farklı b0, b1 ∈
F2m parametreleri cinsinden aşağıdaki gibi ifade edilebilir (Güzel vd., 2019):

a12 = (a11 + 1)b0

a13 = (a11 + 1)b1

a21 = (a22 + 1)b−1
0

a23 = (a22 + 1)b−1
0 b1

a31 = (a11 + a22)b
−1
1

a32 = (a11 + a22)b
−1
1 b0

a33 = a11 + a22 + 1
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Kanıt. A= [ai j]matrisinin involutif olması, A2 = I koşulunu gerektirir. Bu durum, A2’nin
elemanları ci j =

∑3
k=1 aikak j için cii = 1 ve ci j = 0 (i ̸= j) denklemlerini verir.

Köşegen Elemanları (cii = 1)

a2
11 + a12a21 + a13a31 = 1 (4.1)

a21a12 + a2
22 + a23a32 = 1 (4.2)

a31a13 + a32a23 + a2
33 = 1 (4.3)

Bu üç denklemin F2m cisminde taraf tarafa toplanmasıyla (a11 + a22 + a33)2 = 1

elde edilir, bu da aşağıdaki temel ilişkiyi ortaya çıkarır:

a11 + a22 + a33 = 1 (4.4)

Köşegen Dışı Elemanlar (ci j = 0)

a12(a11 + a22) = a13a32 (4.5)

a13(a11 + a33) = a12a23 (4.6)

a21(a11 + a22) = a23a31 (4.7)

Denklem (4.4) kullanılarak bu sistem çözüldüğünde, 9 bilinmeyenli denklem
sistemi 4 parametreye (a11, a22, b0, b1) indirgenir ve teorem kanıtlanmış olur. ■

Bu formdaki bir matrisin MDS olması için ise tüm kare alt matrislerinin
determinantlarının sıfırdan farklı olması gerekir. Bu koşul da aşağıdaki kısıtlamalarla
sağlanır:

a11, a22 ̸= 0,1

a11 ̸= a22

a11 + a22 ̸= 1

b0, b1 ∈ F2m − {0}

Söz konusu bu yöntem ile F23 cisminde tanımlı 0x b ve 0xd indirgenemez
polinomlarının her biri için 1176’şar adet, F24 cisminde tanımlı 0x13 ve 0x19

indirgenemez polinomlarının her biri için ise 37800’er adet, 3× 3 boyularında involutif
MDS matris elde edilebilmektedir (Güzel vd., 2019).
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4.2.2. 4× 4 Boyutlarındaki MDS Matrisler için Hibrit Yöntem

4× 4 boyutlarındaki ilişkilerin karmaşıklığı nedeniyle, doğrudan formül bulmak
yerine iki aşamalı bir hibrit yöntem geliştirilmiştir. Birinci aşamada, "Temsilci Matrisler"
(RIM) adı verilen özel özelliklere sahip matrisler kümesi arama yöntemi ile tespit
edilmektedir. İkinci aşamada ise bulunan her RIM’den yeni parametreler kullanarak
involutif MDS matrislerin tümü doğrudan tasarım yöntemi ile elde edilmektedir (Tuncay
vd., 2023).

Tanım 4.1. 4×4 boyutlarındaki bir Temsilci İnvolutif Matris (RIM), aşağıdaki iki koşulu
sağlar:

1. Matrisin ana köşegen elemanlarının XOR toplamı 0’dır.

2. Matrisin herhangi bir satırındaki (ve sütunundaki) elemanların XOR toplamı 1’dir.

Bu koşullar, arama uzayını önemli ölçüde daraltarak verimli bir arama yapılmasını
mümkün kılar. Bulunan her bir Temsilci İnvolutif MDS matrisi R = [ri j] kullanılarak ve
sıfırdan farklı b1, b2, b3 ∈ F2m parametreleri yardımıyla, involutif ve MDS özelliklerini
koruyan yeni bir A= [ai j] matrisi üretilir.

A=
�

ai j

�

=











r11 r12 b1 r13 b2 r14 b3

r21 b−1
1 r22 r23 b−1

1 b2 r24 b−1
1 b3

r31 b−1
2 r32 b−1

2 b1 r33 r34 b−1
2 b3

r41 b−1
3 r42 b−1

3 b1 r43 b−1
3 b2 r44











Bu üretim, satır/sütun çarpmalarının bir kombinasyonudur ve bir matrisin MDS
özelliğinin bu tür işlemler altında korunması ilkesine dayanır. İlgili yöntem kullanılarak,
F23 sonlu cismi üzerinde tanımlanmış olan 0xB ve 0x D polinomlarının her biri için
48 involutif ve MDS matris temsilcisi bulunduğu, ardından bi parametreleri involutif
MDS matris temsilcilerine uygulandıktan sonra toplamda 48 · (23 − 1)3 = 16.464

adet 4 × 4 boyutunda involutif ve MDS matris elde edildiği, F24 sonlu cismi üzerinde
tanımlanan 0x13 polinomu için ise 71.856 involutif ve MDS matris temsilcisi olduğu
ve bi parametreleri involutif MDS matris temsilcilerine uygulandıktan sonra toplamda
71.856 · (24−1)3 = 242.514.000≈ 227.85 adet 4×4 boyutunda involutif ve MDS matris
elde edildiği belirtilmiştir (Tuncay vd., 2023).
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4.2.3. Parametrik Formüller ve Magma ile Üretim

Yukarıda özetlenen iki yaklaşım, sırasıyla 3 × 3 ve 4 × 4 boyutundaki involutif
MDS matrislerin parametrik olarak elde edilmesini sağlar. Bu parametreler, hem matrisin
tersinin kolayca hesaplanmasını hem de determinantların sıfırdan farklılığının doğrudan
kontrolünü mümkün kılar.

Bu matrislerin pratikte elde edilebilmesi amacıyla Magma sistemi kullanılmıştır.
Süreç şu adımları içerir:

1. Cisim ve Polinom Tanımı: İkili cisim uzantısını (F23 ,F24 vb.) oluşturan
indirgenemez polinom yüklenir. Örneğin: P<z>:= PolynomialRing(GF(2));
p:= z^4+z+1; F<x>:= ext<GF(2)|p>;

2. Parametre Uzayı ve Döngüler: İnvolutif formüllerde yer alan parametreler
üzerinde iç içe for döngüleri oluşturularak tüm olası kombinasyonlar taranır.

3. Matris İnşası ve Kontrol: Her parametre kombinasyonu için matris, Magma’nın
A := Matrix(...) komutuyla oluşturulur ve A2 = I ile involutif olma,
(MinimumWeight([I |A])) ile ise dal sayısı hesaplanıp MDS olma koşulları kontrol
edilir.

4. Sonuçların Kaydedilmesi: Tüm koşulları sağlayan matrisler, PrintFile
komutuyla bir dosyaya kaydedilir.

Bu prosedür, parametlerle tanımlanmış tüm involutif MDS matrislerinin üretilmesine
olanak sağlar.

4.3. Yarı-İnvolutif Matrislere Geçiş ve Üretim

Tekil olmayan (nonsingular) bir kare matris A için A−1 ifadesi, A matrisinin tersini
temsil etmek üzere, eğer D1 ve D2 diyagonal (köşegen) matrisler ise,

A−1 = D1AD2

eşitliğini sağlayan A matrisine yarı involutif matris denilmektedir (Chatterjee & Laha,
2023; Cheon, Curtis & Kim, 2021).

Teorem 4.2. A=

�

a b

c d

�

şeklinde tanımlanan 2×2 boyutlu tekil olmayan bir ikili matris
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yarı involutif ise ve

D1 =

�

e1 0

0 e2

�

, D2 =

�

f1 0

0 f2

�

e1 =
1
∆

e2 =
1
∆
·

a
d

f1 =
d
a

f2 = 1

Kanıt. 1 Yarı involutif matris tanımına göre, A−1 = D1AD2 eşitliği aşağıdaki gibi
düzenlenebilir:

1
∆
·

�

d −b

−c a

�

=

�

e1 0

0 e2

�

·

�

a b

c d

�

·

�

f1 0

0 f2

�

=

�

e1 f1a e1 f2 b

e2 f1c e2 f2d

�

(4.8)

Bu matris eşitliğinden aşağıdaki dört denklem elde edilir:

1
∆

d = e1 f1a (4.9)

−1
∆

b = e1 f2 b (4.10)

−1
∆

c = e2 f1c (4.11)

1
∆

a = e2 f2d (4.12)

Denklem (4.10) ve (4.11) sadeleştirildiğinde ise aşağıdaki iki denklem elde edilir:

−
1
∆
= e1 f2 (4.13)

−
1
∆
= e2 f1 (4.14)

Denklem (4.13) ve (4.14) çarpıldığında denklem (4.15),

e1e2 f1 f2 =
1
∆2

(4.15)

Denklem (4.13) ve (4.14) taraf tarafa bölündüğünde ise denklem (4.16) elde edilir:

e1

e2
=

f1

f2
(4.16)

Denklem (4.8) ve denklem (4.9) yardımıyla

d2

a2
=

e1

e2
·

f1

f2
(4.17)
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elde edilir ve denklem (4.16) ile (4.17) birlikte kullanılarak denklem (4.16) aşağıdaki
forma dönüştürülür:

�

d
a

�2

=
�

e1

e2

�2

(4.18)

F2 sonlu cismi üzerinde çalışıldığı göz önüne alındığında, denklem (4.18) aşağıdaki
şekilde gösterilebilir:

d
a
=

e1

e2
(4.19)

Bu durumda e2 ve f2 aşağıdaki şekilde yazılabilir:

e2 =
a
d

e1 f2 =
a
d

f1 (4.20)

Denklem (4.15) ve (4.20) birlikte kullanıldığında f1 elemanı için son eşitlik aşağıdaki gibi
elde edilebilir:

f1 =
d
a
·

1
e1
·

1
∆

(4.21)

Son durumda A matrisinin tersi aşağıdaki matrislerin çarpımı olarak yazılabilir ve bu
matrisler Teorem 4.2 koşullarını sağlar.

A−1 =

�

e1 0

0 a
d e1

�

· A ·

�

d
a ·

1
e1
· 1
∆ 0

0 1
e1
· 1
∆

�

= e1 ·
1
e1
·

1
∆

�

1 0

0 a
d

�

· A ·

�

d
a 0

0 1

�

=

�

1
∆ 0

0 1
∆ ·

a
d

�

· A ·

�

d
a 0

0 1

�

■

Teorem 4.3. A, involutif MDS bir matris ve c ∈ F2m − {0,1} olsun. Bu durumda A

matrisinin c skaleri ile çarpımına eşit (yani B = c ·A) olan bir B matrisi, yarı involutif bir
MDS matrisi olacaktır.

Kanıt. B = c ·A eşitliğini düşünelim. Eşitliğin her iki tarafının karesi alınarak, B2 = c2 ·A2

eşitliği elde edilebilir. A matrisi bir involutif matris olduğundan, son denklemdeki A’nın
karesi birim matris ile değiştirilebilir; diğer bir deyişle B2 = c2 · I eşitliği yazılabilir.
Böylece, B = c2 · B−1 veya B−1 = 1

c2 · B = (1
c I) · B · (1

c I) eşitlikleri elde edilebilir. Bu
da B matrisinin yarı involutif olduğunu göstermektedir. Bununla birlikte ilgili tanımda
verilen köşegen matrisler için de D1 = D2 =

1
c I eşitliği yazılabilir. Ayrıca, A matrisi
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MDS olduğundan bu matrisin tüm alt determinantları sıfırdan farklıdır. Bu nedenle c · A
matrisinin alt determinant değerleri c, c2, c3 · · · cm’in katları olduğundan B = c · A matrisi
de yine MDS olacaktır. Dolayısıyla Teorem 4.3’ün şartları sağlanmaktadır. ■

Sonuç 4.1. Yukarıdaki teoremin bir sonucu olarak, c ∈ F2m − {0,1} olduğu göz önüne
alındığında çalışmada kullanılan yöntem ile elde edilen yarı involutif matrislerin sayısının,
involutif matrislerin sayısının 2m − 2 katına eşit olduğu ifade edilebilmektedir.

Yukarıda belirtilen sonuç uyarınca, bu tez çalışmasında 3×3 boyutlarındaF23 cismi
üzerinde 1.176 · (23 − 2) = 7.056 adet, F24 cismi üzerinde 37.800 · (24 − 2) = 529.200

adet, 4×4 boyutlarında ise F23 cismi üzerinde 16.464 · (23−2) = 98.784 adet, F24 cismi
üzerinde 242.514.000 ·(24−2) = 3.395.196.000≈ 231.66 adet yarı involutif MDS matris
elde edilmiştir.

4.3.1. Yarı İnvolutif Matrislerin Magma ile Üretimi ve XOR Optimizasyonu

Yarı involutif MDS matrislerin üretimi ve ön elemesi Magma’da şu adımlarla
gerçekleştirilmiştir:

1. Parametre Döngüleri ve Matris Üretimi: Önceki adımlarda üretilen involutif
MDS matrisler ve olası tüm skaler c ∈ F2m−{0,1} değerleri için B = c ·A matrisleri
oluşturulur.

2. Yarı İnvolutiflik ve MDS Kontrolü: İlgili F2m cismi için B2 = c2 ·
Im×m eşitliği ile yarı involutif olma koşulu kontrol edilir. Ayrıca her bir B

matrisinin MDS koşulunu sağladığı tekrar doğrulanır. 4 × 4 matrisler için bu,
min(MinimumWeight([I4×4|B])) = 5 ifadesiyle gerçekleştirilir.

3. İkili Matrise Dönüştürme ve Ham XOR Sayısı Hesabı: Donanım verimliliği için
kritik olan XOR sayısı hesaplanması amacıyla bu çalışmada kullanılan algoritmalar
optimizasyon işlemini ikili (binary) matrisler üzerinden gerçekleştirdiği için yarı
involutif ve MDS koşullarını gerçekleyen her B matrisi, F2m cismi üzerinde tanımlı
indirgenemez polinomunun bir kökü olan α elemanını temsil eden bir üreteç matris
g kullanılarak GF2RepresentationMatrix(B, g) fonksiyonu ile ikili forma
dönüştürülür. Ardından elde edilen her ikili matrisin ham XOR sayısı hesaplanır.

4. Ön Eleme ve Kayıt: Özellikle F24 cismi üzerinde tanımlı 4 × 4 boyutlarındaki
matrisler için gerek çalışılan uzayın büyüklüğü, ve belirli c skaleriyle olan
çarpımlarının XOR işlem maliyetinin yüksek olması nedeniyle bu matrislere
hamXOR ≤ 80 kısıtlaması eklenmiştir. Bu kısıtlamayı ve diğer tüm koşulları
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Şekil 4.1. Web Uygulaması Ana Sayfa Görünümü

sağlayan matrisler, parametreleri ve ham XOR değerleriyle birlikte optimize edilmek
üzere kaydedilir.

Bu yaklaşım, çalışmada kullanılan yöntemle tutarlı ve pratikte düşük XOR
maliyeti gereksinimini karşılayan yarı involutif MDS matrislerinin hem etkili bir biçimde
üretilmesini hem de uygun kriterlere göre filtrelenmesini mümkün kılmaktadır.

4.4. Matris Analizi ve Optimizasyonuna Yönelik Web Tabanlı Bir Yazılım Sistemi

Üretilen matrislerin yönetimi, analizi ve optimizasyonu için modern bir web
uygulaması geliştirilmiştir. Bu sistem, C++ tabanlı mevcut komut satırı araçlarının
sınırlılıklarını aşmayı hedefler.

4.4.1. Kullanılan Teknolojiler

• Go (Golang): Uygulamanın arka uç servislerinin geliştirilmesinde, Google
tarafından geliştirilen açık kaynaklı bir programlama dili olan Go (Golang) tercih
edilmiştir. Go dili, derlenmiş bir dil olmasının sağladığı yüksek çalışma zamanı
performansı, yerleşik eşzamanlılık yapıları sayesinde paralel işlem yetenekleri
ve sade sözdizimi ile sistem düzeyinde yazılım geliştirmeye elverişli bir ortam
sunmaktadır (Donovan & Kernighan, 2015). Bu özellikleri dolayısıyla, özellikle
yüksek hacimli veri işleme ve hızlı API yanıt sürelerinin kritik olduğu durumlarda
Go dili, güvenilir ve sürdürülebilir çözümler üretmek adına uygun bir tercih olarak
değerlendirilmiştir.

• PostgreSQL: Veri yönetimi katmanında, ilişkisel veritabanı yönetim sistemleri
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arasında açık kaynaklı ve gelişmiş özellikleriyle öne çıkan PostgreSQL tercih
edilmiştir. Sistem içerisinde milyonlarca matris verisinin güvenli, kalıcı ve
performanslı biçimde saklanabilmesi amacıyla PostgreSQL’in gelişmiş indeksleme,
veri bütünlüğü ve sorgu optimizasyonu özelliklerinden faydalanılmıştır (Momjian,
2001). Her bir matrisin benzersiz olarak tanımlanabilmesi için özgün anahtarlar
oluşturulmuş, ayrıca sorgu performansını artırmak amacıyla uygun veri alanlarında
indeksleme yapılmıştır.

• Docker: Geliştirilen uygulamanın bağımlılıklarıyla birlikte izole ve taşınabilir bir
ortamda çalıştırılabilmesi amacıyla Docker teknolojisinden yararlanılmıştır. Docker,
konteyner tabanlı sanallaştırma yaklaşımı sayesinde yazılımın farklı ortamlarda
tutarlı bir şekilde dağıtılmasını ve çalıştırılmasını mümkün kılar (Merkel vd., 2014).
Bu sayede geliştirilen sistemin kurulum süreci basitleştirilmiş, üretim ortamına
geçişte oluşabilecek çevresel farklılıkların etkisi en aza indirilmiştir.

• JSON: Sistem bileşenleri arasında veri alışverişi yapılırken, yaygın olarak kullanılan
ve insan tarafından okunabilir bir veri serileştirme biçimi olan JavaScript Object
Notation (JSON) formatı tercih edilmiştir. JSON, özellikle web tabanlı API’ler
aracılığıyla istemci-sunucu iletişiminde kolaylık ve esneklik sağlayan bir standart
haline gelmiştir (Bray, 2014). Bu çalışmada, matris verilerinin ve işlem çıktılarının
API üzerinden aktarımı JSON formatında gerçekleştirilmiş, böylece hem istemci
hem de sunucu tarafında veri işleme süreçleri sadeleştirilmiştir.

4.4.2. Sistem Mimarisi Bileşenleri

• Arka Uç Servisi (Backend API): Uygulamanın sunucu tarafı, yüksek performanslı
ve eşzamanlı işlem desteği sağlayan Go programlama dili ile geliştirilmiş RESTful
bir web servisi olarak yapılandırılmıştır.

• Veri Tabanı Katmanı: Kalıcı, güvenli ve ölçeklenebilir veri saklama ihtiyaçları
doğrultusunda, ilişkisel veritabanı yönetim sistemi olarak PostgreSQL tercih
edilmiştir.

• Ön Yüz (Frontend): Kullanıcı etkileşimini kolaylaştırmak amacıyla, JavaScript
tabanlı dinamik ve kullanıcı dostu bir web arayüzü geliştirilmiştir.

• Otomatik Veri İşleme ve İçe Aktarma Modülü: Uygulama başlatıldığında, belirli
bir dizindeki matris dosyalarını otomatik olarak algılar, bu verileri veritabanına
aktarır ve her bir matris üzerinde önceden tanımlanmış optimizasyon algoritmalarını
çalıştırır.
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• Ters Matris Hesaplama Bileşeni: İkili sonlu cisim GF(2) üzerinde tanımlı
matrisler için Gaussian eliminasyon yöntemi kullanılarak ters matris hesaplaması
gerçekleştiren özel bir modül geliştirilmiştir.

Şekil 4.2. Web Uygulamasında Matris Detay Görünümü

4.4.3. Uygulanan XOR Optimizasyon Algoritmaları

Sistem, verilen bir matris için en düşük XOR sayısıyla gerçekleştirilebilecek
doğrusal devreyi elde etmeyi amaçlayan dört farklı algoritmanın karşılaştırmalı analizini
gerçekleştirmektedir. Bu algoritmalar, Bölüm 3.2.’de detayları verilen XOR tabanlı devre
optimizasyonu literatüründe öne çıkan farklı yaklaşımları temsil etmektedir.

1. Paar Algoritması: Hamming ağırlığına dayalı açgözlü (greedy) bir algoritmadır.

2. SLP Heuristic: .Doğrusal devre sentezinde kullanılan bu yöntem, hedef vektörlerin
minimum sayıda XOR işlemi ile elde edilmesini hedefleyen klasik bir yaklaşımdır.

3. Boyar SLP: Matrislerdeki doğrusal devre sentezini daha pratik hale getirmek için
tasarlanmış sezgisel bir algoritmadır. Geleneksel SLP Heuristic algoritmasından
farklı olarak, optimizasyon sürecinde ayrıca devre derinliğini göz önünde
bulundurur.
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4. SBP (Superior Boyar-Peralta): Boyar-Peralta algoritmasının gelişmiş bir varyantı
olan SBP algoritması, devre derinliğini de dikkate almasının yanı sıra doğrusal
devrelerde XOR sayısını azaltmaya yönelik iyileştirilmiş stratejiler uygular.

Geliştirilen yazılımda çalıştırılan dört optimizasyon algoritmasının sonuçlarını
gösteren ekran görüntüsü ise aşağıdaki şekildedir. Ayrıca her bir optimizasyon
algoritmasında kullanılan adımları gösteren detaylar da yazılım üzerinden
görüntülenebilmektedir.

Şekil 4.3. Optimizasyon Algoritmaları Sonuçları

Bu çalışmada geliştirilen tekniğin uygulanmasıyla elde edilen 3× 3 ve 4× 4 yarı
involutif MDS matrislerine dair deneysel veriler sırasıyla beşinci ve altıncı bölümlerde
ele alınmaktadır.
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Şekil 4.4. Örnek Bir Optimizasyon İşleminin Adımları
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BÖLÜM 5

3× 3 BOYUTLARINDAKİ MATRİSLERİN ANALİZİ

Bu bölümde, F23 ve F24 sonlu cisimleri üzerinde, farklı indirgenemez polinomlar
kullanılarak üretilen 3× 3 boyutlu yarı-involutif MDS matrislerin analiz sonuçlarına yer
verilmiştir. Elde edilen matris sayıları Çizelge 5.1’de özetlenmektedir.

Çizelge 5.1. 3× 3 Boyutlarında Üretilen Yarı İnvolutif MDS Matris Sayıları

Sonlu Cisim İndirgenemez Polinom Matris Boyutu Toplam Matris Sayısı
F23 0xB 3× 3 7.056
F23 0x D 3× 3 7.056
F24 0x13 3× 3 529.200
F24 0x19 3× 3 529.200

5.1. F23/0xB Cismi Üzerinde Tanımlı Matrisler

Bu alt bölümde, indirgenemez polinom olarak p(α) = 0xB kullanılarak elde edilen
ve en düşük XOR sayısına sahip olan beş matris incelenmektedir.

Örnek 5.1. F23 cismi üzerinde tanımlı p(α) = 0xB polinomunun bir kökü olan α
kullanılarak elde edilen involutif MDS matris:

A1 =







α 1 α3

α2 α2 α2

α4 α α5







Aynı polinomun elemanı olan α6 ile çarpılarak elde edilen yarı-involutif MDS
matris:
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M1 =







1 α6 α2

α α α

α3 1 α4







M1 yarı-involutif MDS matrisinin ham XOR sayısı 32, optimizasyon yöntemleri
ile elde edilen XOR sayısı Paar algoritmasına göre 18 olarak, BP Derinlik Önceliksiz
algoritmasına göre 17 olarak, BP Derinlik Öncelikli algoritmasına göre 5 derinlikte 17
olarak, SBP algoritmasına göre 5 derinlikte 17 olarak hesaplanmıştır.

M1 matrisinin tersi:

M−1
1 =







α2 α α4

α3 α3 α3

α5 α2 α6







M−1
1 matrisinin ham XOR sayısı 43, optimizasyon yöntemleri ile elde edilen XOR

sayısı Paar algoritmasına göre 22 olarak, BP Derinlik Önceliksiz algoritmasına göre 19
olarak, BP Derinlik Öncelikli algoritmasına göre 5 derinlikte 19 olarak, SBP algoritmasına
göre 5 derinlikte 19 olarak hesaplanmıştır.

M1 ve M−1
1 matrislerinin XOR farkı 2 olarak hesaplanmıştır.

Örnek 5.2. F23 cismi üzerinde tanımlı p(α) = 0xB polinomunun bir kökü olan α
kullanılarak elde edilen involutif MDS matris:

A2 =







α 1 α2

α2 α2 α

α5 α2 α5







Aynı polinomun elemanı olan α6 ile çarpılarak elde edilen yarı-involutif MDS
matris:

M2 =







1 α6 α

α α 1

α4 α α4







M2 yarı-involutif MDS matrisinin ham XOR sayısı 31, optimizasyon yöntemleri
ile elde edilen XOR sayısı Paar algoritmasına göre 19 olarak, BP Derinlik Önceliksiz
algoritmasına göre 17 olarak, BP Derinlik Öncelikli algoritmasına göre 5 derinlikte 17
olarak, SBP algoritmasına göre 5 derinlikte 17 olarak hesaplanmıştır.
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M2 matrisinin tersi:

M−1
2 =







α2 α α3

α3 α3 α2

α6 α3 α6







M−1
2 matrisinin ham XOR sayısı 41, optimizasyon yöntemleri ile elde edilen XOR

sayısı Paar algoritmasına göre 22 olarak, BP Derinlik Önceliksiz algoritmasına göre 19
olarak, BP Derinlik Öncelikli algoritmasına göre 5 derinlikte 19 olarak, SBP algoritmasına
göre 5 derinlikte 19 olarak hesaplanmıştır.

M2 ve M−1
2 matrislerinin XOR farkı 2 olarak hesaplanmıştır.

Örnek 5.3. F23 cismi üzerinde tanımlı p(α) = 0xB polinomunun bir kökü olan α
kullanılarak elde edilen involutif MDS matris:

A3 =







α α α3

α α2 α

α4 α2 α5







Aynı polinomun elemanı olan α6 ile çarpılarak elde edilen yarı-involutif MDS
matris:

M3 =







1 1 α2

1 α 1

α3 α α4







M3 yarı-involutif MDS matrisinin ham XOR sayısı 30, optimizasyon yöntemleri
ile elde edilen XOR sayısı Paar algoritmasına göre 18 olarak, BP Derinlik Önceliksiz
algoritmasına göre 17 olarak, BP Derinlik Öncelikli algoritmasına göre 4 derinlikte 17
olarak, SBP algoritmasına göre 4 derinlikte 17 olarak hesaplanmıştır.

M3 matrisinin tersi:

M−1
3 =







α2 α2 α4

α2 α3 α2

α5 α3 α6







M−1
3 matrisinin ham XOR sayısı 42, optimizasyon yöntemleri ile elde edilen XOR

sayısı Paar algoritmasına göre 22 olarak, BP Derinlik Önceliksiz algoritmasına göre 19
olarak, BP Derinlik Öncelikli algoritmasına göre 4 derinlikte 19 olarak, SBP algoritmasına
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göre 4 derinlikte 19 olarak hesaplanmıştır.

M3 ve M−1
3 matrislerinin XOR farkı 2 olarak hesaplanmıştır.

Örnek 5.4. F23 cismi üzerinde tanımlı p(α) = 0xB polinomunun bir kökü olan α
kullanılarak elde edilen involutif MDS matris:

A4 =







α α α4

α α2 α2

α3 α α5







Aynı polinomun elemanı olan α6 ile çarpılarak elde edilen yarı-involutif MDS
matris:

M4 =







1 1 α3

1 α α

α2 1 α4







M4 yarı-involutif MDS matrisinin ham XOR sayısı 30, optimizasyon yöntemleri
ile elde edilen XOR sayısı Paar algoritmasına göre 18 olarak, BP Derinlik Önceliksiz
algoritmasına göre 17 olarak, BP Derinlik Öncelikli algoritmasına göre 4 derinlikte 17
olarak, SBP algoritmasına göre 4 derinlikte 17 olarak hesaplanmıştır.

M4 matrisinin tersi:

M−1
4 =







α2 α2 α5

α2 α3 α3

α4 α2 α6







M−1
4 matrisinin ham XOR sayısı 42, optimizasyon yöntemleri ile elde edilen XOR

sayısı Paar algoritmasına göre 23 olarak, BP Derinlik Önceliksiz algoritmasına göre 19
olarak, BP Derinlik Öncelikli algoritmasına göre 4 derinlikte 19 olarak, SBP algoritmasına
göre 4 derinlikte 19 olarak hesaplanmıştır.

M4 ve M−1
4 matrislerinin XOR farkı 2 olarak hesaplanmıştır.

Örnek 5.5. F23 cismi üzerinde tanımlı p(α) = 0xB polinomunun bir kökü olan α
kullanılarak elde edilen involutif MDS matris:

A5 =







α α 1

α α2 α5

1 α5 α5






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Aynı polinomun elemanı olan α4 ile çarpılarak elde edilen yarı-involutif MDS
matris:

M5 =







α5 α5 α4

α5 α6 α2

α4 α2 α2







M5 yarı-involutif MDS matrisinin ham XOR sayısı 42, optimizasyon yöntemleri
ile elde edilen XOR sayısı Paar algoritmasına göre 20 olarak, BP Derinlik Önceliksiz
algoritmasına göre 17 olarak, BP Derinlik Öncelikli algoritmasına göre 7 derinlikte 17
olarak, SBP algoritmasına göre 7 derinlikte 17 olarak hesaplanmıştır.

M5 matrisinin tersi:

M−1
5 =







α4 α4 α3

α4 α5 α

α3 α α







M−1
5 matrisinin ham XOR sayısı 44, optimizasyon yöntemleri ile elde edilen XOR

sayısı Paar algoritmasına göre 19 olarak, BP Derinlik Önceliksiz algoritmasına göre 19
olarak, BP Derinlik Öncelikli algoritmasına göre 7 derinlikte 19 olarak, SBP algoritmasına
göre 7 derinlikte 19 olarak hesaplanmıştır.

M5 ve M−1
5 matrislerinin XOR farkı 2 olarak hesaplanmıştır.

Çizelge 5.2. F23/0xB Cisminde Üretilen 3× 3 Yarı İnvolutif MDS Matrislerinin En
Düşük XOR Değerlerine Göre Dağılımı

En Düşük XOR Toplam Matris Sayısı
17 160
18 1680
19 2980
20 1799
21 401
22 36

5.2. F23/0x D Cismi Üzerinde Tanımlı Matrisler

Bu alt bölümde, indirgenemez polinom olarak p(α) = 0x D kullanılarak elde
edilen ve en düşük XOR sayısına sahip olan beş matris incelenmektedir.

Örnek 5.6. F23 cismi üzerinde tanımlı p(α) = 0x D polinomunun bir kökü olan α
kullanılarak elde edilen involutif MDS matris:
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A6 =







α4 α3 α6

α5 α3 α5

α α5 α5







Aynı polinomun elemanı olan α2 ile çarpılarak elde edilen yarı-involutif MDS
matris:

M6 =







α6 α5 α

1 α5 1

α3 1 1







M6 yarı-involutif MDS matrisinin ham XOR sayısı 28, optimizasyon yöntemleri
ile elde edilen XOR sayısı Paar algoritmasına göre 19 olarak, BP Derinlik Önceliksiz
algoritmasına göre 16 olarak, BP Derinlik Öncelikli algoritmasına göre 4 derinlikte 16
olarak, SBP algoritmasına göre 4 derinlikte 16 olarak hesaplanmıştır.

M6 matrisinin tersi:

M−1
6 =







α2 α α4

α3 α α3

α6 α3 α3







M−1
6 matrisinin ham XOR sayısı 44, optimizasyon yöntemleri ile elde edilen XOR

sayısı Paar algoritmasına göre 23 olarak, BP Derinlik Önceliksiz algoritmasına göre 19
olarak, BP Derinlik Öncelikli algoritmasına göre 4 derinlikte 19 olarak, SBP algoritmasına
göre 4 derinlikte 19 olarak hesaplanmıştır.

M6 ve M−1
6 matrislerinin XOR farkı 3 olarak hesaplanmıştır.

Örnek 5.7. F23 cismi üzerinde tanımlı p(α) = 0x D polinomunun bir kökü olan α
kullanılarak elde edilen involutif MDS matris:

A7 =







α α5 α6

α3 α2 α4

α5 α5 α4







Aynı polinomun elemanı olan α1 ile çarpılarak elde edilen yarı-involutif MDS
matris:
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M7 =







α2 α6 1

α4 α3 α5

α6 α6 α5







M7 yarı-involutif MDS matrisinin ham XOR sayısı 36, optimizasyon yöntemleri
ile elde edilen XOR sayısı Paar algoritmasına göre 20 olarak, BP Derinlik Önceliksiz
algoritmasına göre 17 olarak, BP Derinlik Öncelikli algoritmasına göre 5 derinlikte 17
olarak, SBP algoritmasına göre 5 derinlikte 17 olarak hesaplanmıştır.

M7 matrisinin tersi:

M−1
7 =







1 α4 α5

α2 α α3

α4 α4 α3







M−1
7 matrisinin ham XOR sayısı 44, optimizasyon yöntemleri ile elde edilen XOR

sayısı Paar algoritmasına göre 24 olarak, BP Derinlik Önceliksiz algoritmasına göre 19
olarak, BP Derinlik Öncelikli algoritmasına göre 5 derinlikte 19 olarak, SBP algoritmasına
göre 5 derinlikte 19 olarak hesaplanmıştır.

M7 ve M−1
7 matrislerinin XOR farkı 2 olarak hesaplanmıştır.

Örnek 5.8. F23 cismi üzerinde tanımlı p(α) = 0x D polinomunun bir kökü olan α
kullanılarak elde edilen involutif MDS matris:

A8 =







α α6 1

α2 α2 α4

α4 α5 α4







Aynı polinomun elemanı olan α1 ile çarpılarak elde edilen yarı-involutif MDS
matris:

M8 =







α2 1 α

α3 α3 α5

α5 α6 α5







M8 yarı-involutif MDS matrisinin ham XOR sayısı 37, optimizasyon yöntemleri
ile elde edilen XOR sayısı Paar algoritmasına göre 20 olarak, BP Derinlik Önceliksiz
algoritmasına göre 17 olarak, BP Derinlik Öncelikli algoritmasına göre 6 derinlikte 17
olarak, SBP algoritmasına göre 6 derinlikte 17 olarak hesaplanmıştır.
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M8 matrisinin tersi:

M−1
8 =







1 α5 α6

α α α3

α3 α4 α3







M−1
8 matrisinin ham XOR sayısı 39, optimizasyon yöntemleri ile elde edilen XOR

sayısı Paar algoritmasına göre 21 olarak, BP Derinlik Önceliksiz algoritmasına göre 18
olarak, BP Derinlik Öncelikli algoritmasına göre 6 derinlikte 18 olarak, SBP algoritmasına
göre 6 derinlikte 18 olarak hesaplanmıştır.

M8 ve M−1
8 matrislerinin XOR farkı 1 olarak hesaplanmıştır.

Örnek 5.9. F23 cismi üzerinde tanımlı p(α) = 0x D polinomunun bir kökü olan α
kullanılarak elde edilen involutif MDS matris:

A9 =







α α6 α3

α2 α2 1

α α2 α4







Aynı polinomun elemanı olan α6 ile çarpılarak elde edilen yarı-involutif MDS
matris:

M9 =







1 α5 α2

α α α6

1 α α3







M9 yarı-involutif MDS matrisinin ham XOR sayısı 31, optimizasyon yöntemleri
ile elde edilen XOR sayısı Paar algoritmasına göre 19 olarak, BP Derinlik Önceliksiz
algoritmasına göre 17 olarak, BP Derinlik Öncelikli algoritmasına göre 4 derinlikte 17
olarak, SBP algoritmasına göre 4 derinlikte 17 olarak hesaplanmıştır.

M9 matrisinin tersi:

M−1
9 =







α2 1 α4

α3 α3 α

α2 α3 α5







M−1
9 matrisinin ham XOR sayısı 43, optimizasyon yöntemleri ile elde edilen XOR

sayısı Paar algoritmasına göre 25 olarak, BP Derinlik Önceliksiz algoritmasına göre 19
olarak, BP Derinlik Öncelikli algoritmasına göre 4 derinlikte 19 olarak, SBP algoritmasına
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göre 4 derinlikte 19 olarak hesaplanmıştır.

M9 ve M−1
9 matrislerinin XOR farkı 2 olarak hesaplanmıştır.

Örnek 5.10. F23 cismi üzerinde tanımlı p(α) = 0x D polinomunun bir kökü olan α
kullanılarak elde edilen involutif MDS matris:

A10 =







α α 1

1 α2 α2

α4 1 α4







Aynı polinomun elemanı olan α1 ile çarpılarak elde edilen yarı-involutif MDS
matris:

M10 =







α2 α2 α

α α3 α3

α5 α α5







M10 yarı-involutif MDS matrisinin ham XOR sayısı 39, optimizasyon yöntemleri
ile elde edilen XOR sayısı Paar algoritmasına göre 23 olarak, BP Derinlik Önceliksiz
algoritmasına göre 17 olarak, BP Derinlik Öncelikli algoritmasına göre 7 derinlikte 17
olarak, SBP algoritmasına göre 7 derinlikte 17 olarak hesaplanmıştır.

M10 matrisinin tersi:

M−1
10 =







1 1 α6

α6 α α

α3 α6 α3







M−1
10 matrisinin ham XOR sayısı 31, optimizasyon yöntemleri ile elde edilen XOR

sayısı Paar algoritmasına göre 20 olarak, BP Derinlik Önceliksiz algoritmasına göre 18
olarak, BP Derinlik Öncelikli algoritmasına göre 7 derinlikte 18 olarak, SBP algoritmasına
göre 7 derinlikte 18 olarak hesaplanmıştır.

M10 ve M−1
10 matrislerinin XOR farkı 1 olarak hesaplanmıştır.

5.3. F24/0x13 Cismi Üzerinde Tanımlı Matrisler

Bu alt bölümde, indirgenemez polinom olarak p(α) = 0x13 kullanılarak elde
edilen ve en düşük XOR sayısına sahip olan beş matris incelenmektedir.

Örnek 5.11. F24 cismi üzerinde tanımlı p(α) = 0x13 polinomunun bir kökü olan α
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Çizelge 5.3. F23/0x D Cisminde Üretilen 3× 3 Yarı İnvolutif MDS Matrislerinin En
Düşük XOR Değerlerine Göre Dağılımı

En Düşük XOR Toplam Matris Sayısı
16 1
17 152
18 1644
19 3060
20 1777
21 392
22 30

kullanılarak elde edilen involutif MDS matris:

A11 =







α α4 α12

α12 α11 α5

α13 α13 α13







Aynı polinomun elemanı olan α1 ile çarpılarak elde edilen yarı-involutif MDS
matris:

M11 =







α2 α5 α13

α13 α12 α6

α14 α14 α14







M11 yarı-involutif MDS matrisinin ham XOR sayısı 51, optimizasyon yöntemleri
ile elde edilen XOR sayısı Paar algoritmasına göre 26 olarak, BP Derinlik Önceliksiz
algoritmasına göre 22 olarak, BP Derinlik Öncelikli algoritmasına göre 6 derinlikte 22
olarak, SBP algoritmasına göre 6 derinlikte 22 olarak hesaplanmıştır.

M11 matrisinin tersi:

M−1
11 =







1 α3 α11

α11 α10 α4

α12 α12 α12







M−1
11 matrisinin ham XOR sayısı 75, optimizasyon yöntemleri ile elde edilen

XOR sayısı Paar algoritmasına göre 35 olarak, BP Derinlik Önceliksiz algoritmasına
göre 26 olarak, BP Derinlik Öncelikli algoritmasına göre 6 derinlikte 108 olarak, SBP
algoritmasına göre 6 derinlikte 108 olarak hesaplanmıştır.

M11 ve M−1
11 matrislerinin XOR farkı 4 olarak hesaplanmıştır.
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Örnek 5.12. F24 cismi üzerinde tanımlı p(α) = 0x13 polinomunun bir kökü olan α
kullanılarak elde edilen involutif MDS matris:

A12 =







α α12 α4

α13 α13 α13

α12 α5 α11







Aynı polinomun elemanı olan α1 ile çarpılarak elde edilen yarı-involutif MDS
matris:

M12 =







α2 α13 α5

α14 α14 α14

α13 α6 α12







M12 yarı-involutif MDS matrisinin ham XOR sayısı 51, optimizasyon yöntemleri
ile elde edilen XOR sayısı Paar algoritmasına göre 26 olarak, BP Derinlik Önceliksiz
algoritmasına göre 22 olarak, BP Derinlik Öncelikli algoritmasına göre 6 derinlikte 22
olarak, SBP algoritmasına göre 6 derinlikte 22 olarak hesaplanmıştır.

M12 matrisinin tersi:

M−1
12 =







1 α11 α3

α12 α12 α12

α11 α4 α10







M−1
12 matrisinin ham XOR sayısı 75, optimizasyon yöntemleri ile elde edilen

XOR sayısı Paar algoritmasına göre 34 olarak, BP Derinlik Önceliksiz algoritmasına
göre 26 olarak, BP Derinlik Öncelikli algoritmasına göre 6 derinlikte 120 olarak, SBP
algoritmasına göre 6 derinlikte 120 olarak hesaplanmıştır.

M12 ve M−1
12 matrislerinin XOR farkı 4 olarak hesaplanmıştır.

Örnek 5.13. F24 cismi üzerinde tanımlı p(α) = 0x13 polinomunun bir kökü olan α
kullanılarak elde edilen involutif MDS matris:

A13 =







α2 α14 α14

α8 α3 α14

1 α6 α13







Aynı polinomun elemanı olan α1 ile çarpılarak elde edilen yarı-involutif MDS
matris:
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M13 =







α3 1 1

α9 α4 1

α α7 α14







M13 yarı-involutif MDS matrisinin ham XOR sayısı 48, optimizasyon yöntemleri
ile elde edilen XOR sayısı Paar algoritmasına göre 24 olarak, BP Derinlik Önceliksiz
algoritmasına göre 22 olarak, BP Derinlik Öncelikli algoritmasına göre 4 derinlikte 22
olarak, SBP algoritmasına göre 4 derinlikte 22 olarak hesaplanmıştır.

M13 matrisinin tersi:

M−1
13 =







α α13 α13

α7 α2 α13

α14 α5 α12







M−1
13 matrisinin ham XOR sayısı 54, optimizasyon yöntemleri ile elde edilen XOR

sayısı Paar algoritmasına göre 28 olarak, BP Derinlik Önceliksiz algoritmasına göre 24
olarak, BP Derinlik Öncelikli algoritmasına göre 4 derinlikte 24 olarak, SBP algoritmasına
göre 4 derinlikte 24 olarak hesaplanmıştır.

M13 ve M−1
13 matrislerinin XOR farkı 2 olarak hesaplanmıştır.

Örnek 5.14. F24 cismi üzerinde tanımlı p(α) = 0x13 polinomunun bir kökü olan α
kullanılarak elde edilen involutif MDS matris:

A14 =







α2 α14 α14

1 α13 α6

α8 α14 α3







Aynı polinomun elemanı olan α1 ile çarpılarak elde edilen yarı-involutif MDS
matris:

M14 =







α3 1 1

α α14 α7

α9 1 α4







M14 yarı-involutif MDS matrisinin ham XOR sayısı 48, optimizasyon yöntemleri
ile elde edilen XOR sayısı Paar algoritmasına göre 24 olarak, BP Derinlik Önceliksiz
algoritmasına göre 22 olarak, BP Derinlik Öncelikli algoritmasına göre 4 derinlikte 22
olarak, SBP algoritmasına göre 4 derinlikte 22 olarak hesaplanmıştır.
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M14 matrisinin tersi:

M−1
14 =







α α13 α13

α14 α12 α5

α7 α13 α2







M−1
14 matrisinin ham XOR sayısı 54, optimizasyon yöntemleri ile elde edilen XOR

sayısı Paar algoritmasına göre 28 olarak, BP Derinlik Önceliksiz algoritmasına göre 24
olarak, BP Derinlik Öncelikli algoritmasına göre 4 derinlikte 24 olarak, SBP algoritmasına
göre 4 derinlikte 24 olarak hesaplanmıştır.

M14 ve M−1
14 matrislerinin XOR farkı 2 olarak hesaplanmıştır.

Örnek 5.15. F24 cismi üzerinde tanımlı p(α) = 0x13 polinomunun bir kökü olan α
kullanılarak elde edilen involutif MDS matris:

A15 =







α3 α8 α14

α14 α2 α14

α6 1 α13







Aynı polinomun elemanı olan α1 ile çarpılarak elde edilen yarı-involutif MDS
matris:

M15 =







α4 α9 1

1 α3 1

α7 α α14







M15 yarı-involutif MDS matrisinin ham XOR sayısı 48, optimizasyon yöntemleri
ile elde edilen XOR sayısı Paar algoritmasına göre 24 olarak, BP Derinlik Önceliksiz
algoritmasına göre 22 olarak, BP Derinlik Öncelikli algoritmasına göre 4 derinlikte 22
olarak, SBP algoritmasına göre 4 derinlikte 22 olarak hesaplanmıştır.

M15 matrisinin tersi:

M−1
15 =







α2 α7 α13

α13 α α13

α5 α14 α12







M−1
15 matrisinin ham XOR sayısı 54, optimizasyon yöntemleri ile elde edilen XOR

sayısı Paar algoritmasına göre 28 olarak, BP Derinlik Önceliksiz algoritmasına göre 24
olarak, BP Derinlik Öncelikli algoritmasına göre 4 derinlikte 24 olarak, SBP algoritmasına
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göre 4 derinlikte 24 olarak hesaplanmıştır.

M15 ve M−1
15 matrislerinin XOR farkı 2 olarak hesaplanmıştır.

Çizelge 5.4. F24/0x13 Cisminde Üretilen 3× 3 Yarı İnvolutif MDS Matrislerinin En
Düşük XOR Değerlerine Göre Dağılımı

En Düşük XOR Toplam Matris Sayısı
22 12
23 105
24 499
25 2260
26 5358
27 13919
28 31768
29 63126
30 96642
31 117895
32 104821
33 63383
34 23815
35 4916
36 647
37 34

5.4. F24/0x19 Cismi Üzerinde Tanımlı Matrisler

Bu alt bölümde, indirgenemez polinom olarak p(α) = 0x19 kullanılarak elde
edilen ve en düşük XOR sayısına sahip olan beş matris incelenmektedir.

Örnek 5.16. F24 cismi üzerinde tanımlı p(α) = 0x19 polinomunun bir kökü olan α
kullanılarak elde edilen involutif MDS matris:

A16 =







α2 α2 α2

α10 α4 α3

α3 α11 α14







Aynı polinomun elemanı olan α14 ile çarpılarak elde edilen yarı-involutif MDS
matris:

M16 =







α α α

α9 α3 α2

α2 α10 α13







56



M16 yarı-involutif MDS matrisinin ham XOR sayısı 51, optimizasyon yöntemleri
ile elde edilen XOR sayısı Paar algoritmasına göre 28 olarak, BP Derinlik Önceliksiz
algoritmasına göre 22 olarak, BP Derinlik Öncelikli algoritmasına göre 6 derinlikte 22
olarak, SBP algoritmasına göre 6 derinlikte 22 olarak hesaplanmıştır.

M16 matrisinin tersi:

M−1
16 =







α3 α3 α3

α11 α5 α4

α4 α12 1







M−1
16 matrisinin ham XOR sayısı 75, optimizasyon yöntemleri ile elde edilen XOR

sayısı Paar algoritmasına göre 34 olarak, BP Derinlik Önceliksiz algoritmasına göre 26
olarak, BP Derinlik Öncelikli algoritmasına göre 6 derinlikte 27 olarak, SBP algoritmasına
göre 6 derinlikte 27 olarak hesaplanmıştır.

M16 ve M−1
16 matrislerinin XOR farkı 4 olarak hesaplanmıştır.

Örnek 5.17. F24 cismi üzerinde tanımlı p(α) = 0x19 polinomunun bir kökü olan α
kullanılarak elde edilen involutif MDS matris:

A17 =







α2 α9 1

α α12 α7

α α α13







Aynı polinomun elemanı olan α14 ile çarpılarak elde edilen yarı-involutif MDS
matris:

M17 =







α α8 α14

1 α11 α6

1 1 α12







M17 yarı-involutif MDS matrisinin ham XOR sayısı 48, optimizasyon yöntemleri
ile elde edilen XOR sayısı Paar algoritmasına göre 24 olarak, BP Derinlik Önceliksiz
algoritmasına göre 22 olarak, BP Derinlik Öncelikli algoritmasına göre 4 derinlikte 22
olarak, SBP algoritmasına göre 4 derinlikte 22 olarak hesaplanmıştır.

M17 matrisinin tersi:
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M−1
17 =







α3 α10 α

α2 α13 α8

α2 α2 α14







M−1
17 matrisinin ham XOR sayısı 54, optimizasyon yöntemleri ile elde edilen XOR

sayısı Paar algoritmasına göre 26 olarak, BP Derinlik Önceliksiz algoritmasına göre 24
olarak, BP Derinlik Öncelikli algoritmasına göre 4 derinlikte 24 olarak, SBP algoritmasına
göre 4 derinlikte 24 olarak hesaplanmıştır.

M17 ve M−1
17 matrislerinin XOR farkı 2 olarak hesaplanmıştır.

Örnek 5.18. F24 cismi üzerinde tanımlı p(α) = 0x19 polinomunun bir kökü olan α
kullanılarak elde edilen involutif MDS matris:

A18 =







α2 1 α9

α α13 α

α α7 α12







Aynı polinomun elemanı olan α14 ile çarpılarak elde edilen yarı-involutif MDS
matris:

M18 =







α α14 α8

1 α12 1

1 α6 α11







M18 yarı-involutif MDS matrisinin ham XOR sayısı 48, optimizasyon yöntemleri
ile elde edilen XOR sayısı Paar algoritmasına göre 24 olarak, BP Derinlik Önceliksiz
algoritmasına göre 22 olarak, BP Derinlik Öncelikli algoritmasına göre 4 derinlikte 22
olarak, SBP algoritmasına göre 4 derinlikte 22 olarak hesaplanmıştır.

M18 matrisinin tersi:

M−1
18 =







α3 α α10

α2 α14 α2

α2 α8 α13







M−1
18 matrisinin ham XOR sayısı 54, optimizasyon yöntemleri ile elde edilen XOR

sayısı Paar algoritmasına göre 26 olarak, BP Derinlik Önceliksiz algoritmasına göre 24
olarak, BP Derinlik Öncelikli algoritmasına göre 4 derinlikte 24 olarak, SBP algoritmasına
göre 4 derinlikte 24 olarak hesaplanmıştır.
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M18 ve M−1
18 matrislerinin XOR farkı 2 olarak hesaplanmıştır.

Örnek 5.19. F24 cismi üzerinde tanımlı p(α) = 0x19 polinomunun bir kökü olan α
kullanılarak elde edilen involutif MDS matris:

A19 =







α2 α2 α2

α3 α14 α11

α10 α3 α4







Aynı polinomun elemanı olan α14 ile çarpılarak elde edilen yarı-involutif MDS
matris:

M19 =







α α α

α2 α13 α10

α9 α2 α3







M19 yarı-involutif MDS matrisinin ham XOR sayısı 51, optimizasyon yöntemleri
ile elde edilen XOR sayısı Paar algoritmasına göre 26 olarak, BP Derinlik Önceliksiz
algoritmasına göre 22 olarak, BP Derinlik Öncelikli algoritmasına göre 6 derinlikte 22
olarak, SBP algoritmasına göre 6 derinlikte 22 olarak hesaplanmıştır.

M19 matrisinin tersi:

M−1
19 =







α3 α3 α3

α4 1 α12

α11 α4 α5







M−1
19 matrisinin ham XOR sayısı 75, optimizasyon yöntemleri ile elde edilen XOR

sayısı Paar algoritmasına göre 34 olarak, BP Derinlik Önceliksiz algoritmasına göre 26
olarak, BP Derinlik Öncelikli algoritmasına göre 6 derinlikte 27 olarak, SBP algoritmasına
göre 6 derinlikte 27 olarak hesaplanmıştır.

M19 ve M−1
19 matrislerinin XOR farkı 4 olarak hesaplanmıştır.

Örnek 5.20. F24 cismi üzerinde tanımlı p(α) = 0x19 polinomunun bir kökü olan α
kullanılarak elde edilen involutif MDS matris:

A20 =







α4 α10 α3

α2 α2 α2

α11 α3 α14






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Aynı polinomun elemanı olan α14 ile çarpılarak elde edilen yarı-involutif MDS
matris:

M20 =







α3 α9 α2

α α α

α10 α2 α13







M20 yarı-involutif MDS matrisinin ham XOR sayısı 51, optimizasyon yöntemleri
ile elde edilen XOR sayısı Paar algoritmasına göre 28 olarak, BP Derinlik Önceliksiz
algoritmasına göre 22 olarak, BP Derinlik Öncelikli algoritmasına göre 6 derinlikte 22
olarak, SBP algoritmasına göre 6 derinlikte 22 olarak hesaplanmıştır.

M20 matrisinin tersi:

M−1
20 =







α5 α11 α4

α3 α3 α3

α12 α4 1







M−1
20 matrisinin ham XOR sayısı 75, optimizasyon yöntemleri ile elde edilen XOR

sayısı Paar algoritmasına göre 33 olarak, BP Derinlik Önceliksiz algoritmasına göre 26
olarak, BP Derinlik Öncelikli algoritmasına göre 6 derinlikte 27 olarak, SBP algoritmasına
göre 6 derinlikte 27 olarak hesaplanmıştır.

M20 ve M−1
20 matrislerinin XOR farkı 4 olarak hesaplanmıştır.
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Çizelge 5.5. F24/0x19 Cisminde Üretilen 3× 3 Yarı İnvolutif MDS Matrislerinin En
Düşük XOR Değerlerine Göre Dağılımı

En Düşük XOR Toplam Matris Sayısı
22 12
23 108
24 503
25 2264
26 5385
27 13947
28 31880
29 63069
30 97122
31 117994
32 104463
33 62797
34 23847
35 5133
36 640
37 36
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BÖLÜM 6

4× 4 BOYUTLARINDAKİ MATRİSLERİN ANALİZİ

Bu bölümde,F23 veF24 sonlu cisimleri üzerinde tanımlı 4×4 boyutlu yarı-involutif
MDS matrislerin analiz sonuçlarına yer verilmiştir. Elde edilen matris sayıları Çizelge
6.1’de özetlenmektedir.

Çizelge 6.1. 4× 4 Boyutlarında Üretilen Yarı İnvolutif MDS Matris Sayıları

Sonlu Cisim İndirgenemez Polinom Matris Boyutu Toplam Matris Sayısı
F23 0xB 4× 4 98.784
F23 0x D 4× 4 98.784
F24 0x13 4× 4 393.792
F24 0x19 4× 4 393.792

6.1. F23/0xB Cismi Üzerinde Tanımlı Matrisler

Bu alt bölümde, indirgenemez polinom olarak p(α) = 0xB kullanılarak elde edilen
ve en düşük XOR sayısına sahip olan beş matris incelenmektedir.

Örnek 6.1. F23 cismi üzerinde tanımlı p(α) = 0xB polinomunun bir kökü olan α
kullanılarak elde edilen involutif MDS matris:

A21 =











1 α2 α2 α6

1 1 α6 1

α6 α5 1 1

α5 α α2 1











Aynı polinomun elemanı olan α1 ile çarpılarak elde edilen yarı-involutif MDS
matris:
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M21 =











α α3 α3 1

α α 1 α

1 α6 α α

α6 α2 α3 α











M21 yarı-involutif MDS matrisinin ham XOR sayısı 59, optimizasyon yöntemleri
ile elde edilen XOR sayısı Paar algoritmasına göre 35 olarak, BP Derinlik Önceliksiz
algoritmasına göre 29 olarak, BP Derinlik Öncelikli algoritmasına göre 5 derinlikte 29
olarak, SBP algoritmasına göre 5 derinlikte 29 olarak hesaplanmıştır.

M21 matrisinin tersi:

M−1
21 =











α6 α α α5

α6 α6 α5 α6

α5 α4 α6 α6

α4 1 α α6











M−1
21 matrisinin ham XOR sayısı 63, optimizasyon yöntemleri ile elde edilen XOR

sayısı Paar algoritmasına göre 37 olarak, BP Derinlik Önceliksiz algoritmasına göre 32
olarak, BP Derinlik Öncelikli algoritmasına göre 5 derinlikte 32 olarak, SBP algoritmasına
göre 5 derinlikte 32 olarak hesaplanmıştır.

M21 ve M−1
21 matrislerinin XOR farkı 3 olarak hesaplanmıştır.

Örnek 6.2. F23 cismi üzerinde tanımlı p(α) = 0xB polinomunun bir kökü olan α
kullanılarak elde edilen involutif MDS matris:

A22 =











1 α3 α6 α

α6 1 α2 α

α2 α2 1 α5

α3 1 α4 1











Aynı polinomun elemanı olan α6 ile çarpılarak elde edilen yarı-involutif MDS
matris:

M22 =











α6 α2 α5 1

α5 α6 α 1

α α α6 α4

α2 α6 α3 α6










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M22 yarı-involutif MDS matrisinin ham XOR sayısı 62, optimizasyon yöntemleri
ile elde edilen XOR sayısı Paar algoritmasına göre 34 olarak, BP Derinlik Önceliksiz
algoritmasına göre 29 olarak, BP Derinlik Öncelikli algoritmasına göre 6 derinlikte 29
olarak, SBP algoritmasına göre 6 derinlikte 29 olarak hesaplanmıştır.

M22 matrisinin tersi:

M−1
22 =











α α4 1 α2

1 α α3 α2

α3 α3 α α6

α4 α α5 α











M−1
22 matrisinin ham XOR sayısı 69, optimizasyon yöntemleri ile elde edilen XOR

sayısı Paar algoritmasına göre 38 olarak, BP Derinlik Önceliksiz algoritmasına göre 34
olarak, BP Derinlik Öncelikli algoritmasına göre 6 derinlikte 34 olarak, SBP algoritmasına
göre 6 derinlikte 34 olarak hesaplanmıştır.

M22 ve M−1
22 matrislerinin XOR farkı 5 olarak hesaplanmıştır.

Örnek 6.3. F23 cismi üzerinde tanımlı p(α) = 0xB polinomunun bir kökü olan α
kullanılarak elde edilen involutif MDS matris:

A23 =











1 α4 1 α2

α5 1 α2 α

α α2 1 α5

α2 1 α4 1











Aynı polinomun elemanı olan α6 ile çarpılarak elde edilen yarı-involutif MDS
matris:

M23 =











α6 α3 α6 α

α4 α6 α 1

1 α α6 α4

α α6 α3 α6











M23 yarı-involutif MDS matrisinin ham XOR sayısı 62, optimizasyon yöntemleri
ile elde edilen XOR sayısı Paar algoritmasına göre 32 olarak, BP Derinlik Önceliksiz
algoritmasına göre 29 olarak, BP Derinlik Öncelikli algoritmasına göre 7 derinlikte 29
olarak, SBP algoritmasına göre 7 derinlikte 29 olarak hesaplanmıştır.

M23 matrisinin tersi:
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M−1
23 =











α α5 α α3

α6 α α3 α2

α2 α3 α α6

α3 α α5 α











M−1
23 matrisinin ham XOR sayısı 70, optimizasyon yöntemleri ile elde edilen XOR

sayısı Paar algoritmasına göre 37 olarak, BP Derinlik Önceliksiz algoritmasına göre 32
olarak, BP Derinlik Öncelikli algoritmasına göre 7 derinlikte 32 olarak, SBP algoritmasına
göre 7 derinlikte 32 olarak hesaplanmıştır.

M23 ve M−1
23 matrislerinin XOR farkı 3 olarak hesaplanmıştır.

Örnek 6.4. F23 cismi üzerinde tanımlı p(α) = 0xB polinomunun bir kökü olan α
kullanılarak elde edilen involutif MDS matris:

A24 =











1 α5 α α2

α4 1 α2 1

1 α2 1 α4

α2 α α5 1











Aynı polinomun elemanı olan α6 ile çarpılarak elde edilen yarı-involutif MDS
matris:

M24 =











α6 α4 1 α

α3 α6 α α6

α6 α α6 α3

α 1 α4 α6











M24 yarı-involutif MDS matrisinin ham XOR sayısı 62, optimizasyon yöntemleri
ile elde edilen XOR sayısı Paar algoritmasına göre 32 olarak, BP Derinlik Önceliksiz
algoritmasına göre 29 olarak, BP Derinlik Öncelikli algoritmasına göre 7 derinlikte 29
olarak, SBP algoritmasına göre 7 derinlikte 29 olarak hesaplanmıştır.

M24 matrisinin tersi:

M−1
24 =











α α6 α2 α3

α5 α α3 α

α α3 α α5

α3 α2 α6 α










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M−1
24 matrisinin ham XOR sayısı 70, optimizasyon yöntemleri ile elde edilen XOR

sayısı Paar algoritmasına göre 37 olarak, BP Derinlik Önceliksiz algoritmasına göre 32
olarak, BP Derinlik Öncelikli algoritmasına göre 7 derinlikte 32 olarak, SBP algoritmasına
göre 7 derinlikte 32 olarak hesaplanmıştır.

M24 ve M−1
24 matrislerinin XOR farkı 3 olarak hesaplanmıştır.

Örnek 6.5. F23 cismi üzerinde tanımlı p(α) = 0xB polinomunun bir kökü olan α
kullanılarak elde edilen involutif MDS matris:

A25 =











1 1 1 α6

α2 1 α6 α2

α α5 1 α2

α5 α6 1 1











Aynı polinomun elemanı olan α1 ile çarpılarak elde edilen yarı-involutif MDS
matris:

M25 =











α α α 1

α3 α 1 α3

α2 α6 α α3

α6 1 α α











M25 yarı-involutif MDS matrisinin ham XOR sayısı 59, optimizasyon yöntemleri
ile elde edilen XOR sayısı Paar algoritmasına göre 35 olarak, BP Derinlik Önceliksiz
algoritmasına göre 29 olarak, BP Derinlik Öncelikli algoritmasına göre 5 derinlikte 29
olarak, SBP algoritmasına göre 5 derinlikte 29 olarak hesaplanmıştır.

M25 matrisinin tersi:

M−1
25 =











α6 α6 α6 α5

α α6 α5 α

1 α4 α6 α

α4 α5 α6 α6











M−1
25 matrisinin ham XOR sayısı 63, optimizasyon yöntemleri ile elde edilen XOR

sayısı Paar algoritmasına göre 34 olarak, BP Derinlik Önceliksiz algoritmasına göre 32
olarak, BP Derinlik Öncelikli algoritmasına göre 5 derinlikte 32 olarak, SBP algoritmasına
göre 5 derinlikte 32 olarak hesaplanmıştır.

M25 ve M−1
25 matrislerinin XOR farkı 3 olarak hesaplanmıştır.
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Çizelge 6.2. F23/0xB Cisminde Üretilen 4× 4 Yarı İnvolutif MDS Matrislerinin En
Düşük XOR Değerlerine Göre Dağılımı

En Düşük XOR Toplam Matris Sayısı
29 245
30 2648
31 13814
32 30419
33 31936
34 15616
35 3573
36 521
37 12

6.2. F23/0x D Cismi Üzerinde Tanımlı Matrisler

Bu alt bölümde, indirgenemez polinom olarak p(α) = 0x D kullanılarak elde
edilen ve en düşük XOR sayısına sahip olan beş matris incelenmektedir.

Örnek 6.6. F23 cismi üzerinde tanımlı p(α) = 0x D polinomunun bir kökü olan α
kullanılarak elde edilen involutif MDS matris:

A26 =











1 α5 α5 α2

α5 1 α α6

α α4 1 α6

α3 1 α4 1











Aynı polinomun elemanı olan α1 ile çarpılarak elde edilen yarı-involutif MDS
matris:

M26 =











α α6 α6 α3

α6 α α2 1

α2 α5 α 1

α4 α α5 α











M26 yarı-involutif MDS matrisinin ham XOR sayısı 62, optimizasyon yöntemleri
ile elde edilen XOR sayısı Paar algoritmasına göre 34 olarak, BP Derinlik Önceliksiz
algoritmasına göre 29 olarak, BP Derinlik Öncelikli algoritmasına göre 6 derinlikte 29
olarak, SBP algoritmasına göre 6 derinlikte 29 olarak hesaplanmıştır.

M26 matrisinin tersi:
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M−1
26 =











α6 α4 α4 α

α4 α6 1 α5

1 α3 α6 α5

α2 α6 α3 α6











M−1
26 matrisinin ham XOR sayısı 69, optimizasyon yöntemleri ile elde edilen XOR

sayısı Paar algoritmasına göre 38 olarak, BP Derinlik Önceliksiz algoritmasına göre 33
olarak, BP Derinlik Öncelikli algoritmasına göre 6 derinlikte 33 olarak, SBP algoritmasına
göre 6 derinlikte 33 olarak hesaplanmıştır.

M26 ve M−1
26 matrislerinin XOR farkı 4 olarak hesaplanmıştır.

Örnek 6.7. F23 cismi üzerinde tanımlı p(α) = 0x D polinomunun bir kökü olan α
kullanılarak elde edilen involutif MDS matris:

A27 =











1 α5 α6 α

α5 1 α2 α5

1 α3 1 α4

α4 α α6 1











Aynı polinomun elemanı olan α1 ile çarpılarak elde edilen yarı-involutif MDS
matris:

M27 =











α α6 1 α2

α6 α α3 α6

α α4 α α5

α5 α2 1 α











M27 yarı-involutif MDS matrisinin ham XOR sayısı 62, optimizasyon yöntemleri
ile elde edilen XOR sayısı Paar algoritmasına göre 34 olarak, BP Derinlik Önceliksiz
algoritmasına göre 29 olarak, BP Derinlik Öncelikli algoritmasına göre 6 derinlikte 29
olarak, SBP algoritmasına göre 6 derinlikte 29 olarak hesaplanmıştır.

M27 matrisinin tersi:

M−1
27 =











α6 α4 α5 1

α4 α6 α α4

α6 α2 α6 α3

α3 1 α5 α6










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M−1
27 matrisinin ham XOR sayısı 69, optimizasyon yöntemleri ile elde edilen XOR

sayısı Paar algoritmasına göre 38 olarak, BP Derinlik Önceliksiz algoritmasına göre 34
olarak, BP Derinlik Öncelikli algoritmasına göre 6 derinlikte 34 olarak, SBP algoritmasına
göre 6 derinlikte 34 olarak hesaplanmıştır.

M27 ve M−1
27 matrislerinin XOR farkı 5 olarak hesaplanmıştır.

Örnek 6.8. F23 cismi üzerinde tanımlı p(α) = 0x D polinomunun bir kökü olan α
kullanılarak elde edilen involutif MDS matris:

A28 =











1 α5 α6 α2

α5 1 α2 α6

1 α3 1 α5

α3 1 α5 1











Aynı polinomun elemanı olan α1 ile çarpılarak elde edilen yarı-involutif MDS
matris:

M28 =











α α6 1 α3

α6 α α3 1

α α4 α α6

α4 α α6 α











M28 yarı-involutif MDS matrisinin ham XOR sayısı 62, optimizasyon yöntemleri
ile elde edilen XOR sayısı Paar algoritmasına göre 32 olarak, BP Derinlik Önceliksiz
algoritmasına göre 29 olarak, BP Derinlik Öncelikli algoritmasına göre 7 derinlikte 29
olarak, SBP algoritmasına göre 7 derinlikte 29 olarak hesaplanmıştır.

M28 matrisinin tersi:

M−1
28 =











α6 α4 α5 α

α4 α6 α α5

α6 α2 α6 α4

α2 α6 α4 α6











M−1
28 matrisinin ham XOR sayısı 70, optimizasyon yöntemleri ile elde edilen XOR

sayısı Paar algoritmasına göre 35 olarak, BP Derinlik Önceliksiz algoritmasına göre 32
olarak, BP Derinlik Öncelikli algoritmasına göre 7 derinlikte 32 olarak, SBP algoritmasına
göre 7 derinlikte 32 olarak hesaplanmıştır.

M28 ve M−1
28 matrislerinin XOR farkı 3 olarak hesaplanmıştır.
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Örnek 6.9. F23 cismi üzerinde tanımlı p(α) = 0x D polinomunun bir kökü olan α
kullanılarak elde edilen involutif MDS matris:

A29 =











1 α5 1 α3

α5 1 α3 1

α6 α2 1 α5

α2 α6 α5 1











Aynı polinomun elemanı olan α1 ile çarpılarak elde edilen yarı-involutif MDS
matris:

M29 =











α α6 α α4

α6 α α4 α

1 α3 α α6

α3 1 α6 α











M29 yarı-involutif MDS matrisinin ham XOR sayısı 62, optimizasyon yöntemleri
ile elde edilen XOR sayısı Paar algoritmasına göre 34 olarak, BP Derinlik Önceliksiz
algoritmasına göre 29 olarak, BP Derinlik Öncelikli algoritmasına göre 7 derinlikte 29
olarak, SBP algoritmasına göre 7 derinlikte 29 olarak hesaplanmıştır.

M29 matrisinin tersi:

M−1
29 =











α6 α4 α6 α2

α4 α6 α2 α6

α5 α α6 α4

α α5 α4 α6











M−1
29 matrisinin ham XOR sayısı 70, optimizasyon yöntemleri ile elde edilen XOR

sayısı Paar algoritmasına göre 35 olarak, BP Derinlik Önceliksiz algoritmasına göre 31
olarak, BP Derinlik Öncelikli algoritmasına göre 7 derinlikte 31 olarak, SBP algoritmasına
göre 7 derinlikte 31 olarak hesaplanmıştır.

M29 ve M−1
29 matrislerinin XOR farkı 2 olarak hesaplanmıştır.

Örnek 6.10. F23 cismi üzerinde tanımlı p(α) = 0x D polinomunun bir kökü olan α
kullanılarak elde edilen involutif MDS matris:
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A30 =











1 α α5 α5

α2 1 α5 α6

α 1 1 α2

1 1 α 1











Aynı polinomun elemanı olan α6 ile çarpılarak elde edilen yarı-involutif MDS
matris:

M30 =











α6 1 α4 α4

α α6 α4 α5

1 α6 α6 α

α6 α6 1 α6











M30 yarı-involutif MDS matrisinin ham XOR sayısı 59, optimizasyon yöntemleri
ile elde edilen XOR sayısı Paar algoritmasına göre 35 olarak, BP Derinlik Önceliksiz
algoritmasına göre 29 olarak, BP Derinlik Öncelikli algoritmasına göre 5 derinlikte 29
olarak, SBP algoritmasına göre 5 derinlikte 29 olarak hesaplanmıştır.

M30 matrisinin tersi:

M−1
30 =











α α2 α6 α6

α3 α α6 1

α2 α α α3

α α α2 α











M−1
30 matrisinin ham XOR sayısı 63, optimizasyon yöntemleri ile elde edilen XOR

sayısı Paar algoritmasına göre 36 olarak, BP Derinlik Önceliksiz algoritmasına göre 32
olarak, BP Derinlik Öncelikli algoritmasına göre 5 derinlikte 32 olarak, SBP algoritmasına
göre 5 derinlikte 32 olarak hesaplanmıştır.

M30 ve M−1
30 matrislerinin XOR farkı 3 olarak hesaplanmıştır.

6.3. F24/0x13 Cismi Üzerinde Tanımlı Matrisler

Bu alt bölümde, indirgenemez polinom olarak p(α) = 0x13 kullanılarak elde
edilen ve en düşük XOR sayısına sahip olan beş matris incelenmektedir.

Örnek 6.11. F24 cismi üzerinde tanımlı p(α) = 0x13 polinomunun bir kökü olan α
kullanılarak elde edilen involutif MDS matris:
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Çizelge 6.3. F23/0x D Cisminde Üretilen 4× 4 Yarı İnvolutif MDS Matrislerinin En
Düşük XOR Değerlerine Göre Dağılımı

En Düşük XOR Toplam Matris Sayısı
29 201
30 2770
31 13731
32 30618
33 31730
34 15547
35 3657
36 510
37 19
38 1

A31 =











α α α14 α13

1 α α12 α14

1 α14 α α

α13 1 1 α











Aynı polinomun elemanı olan α2 ile çarpılarak elde edilen yarı-involutif MDS
matris:

M31 =











α3 α3 α 1

α2 α3 α14 α

α2 α α3 α3

1 α2 α2 α3











M31 yarı-involutif MDS matrisinin ham XOR sayısı 78, optimizasyon yöntemleri
ile elde edilen XOR sayısı Paar algoritmasına göre 50 olarak, BP Derinlik Önceliksiz
algoritmasına göre 39 olarak, BP Derinlik Öncelikli algoritmasına göre 8 derinlikte 39
olarak, SBP algoritmasına göre 8 derinlikte 39 olarak hesaplanmıştır.

M31 matrisinin tersi:

M−1
31 =











α14 α14 α12 α11

α13 α14 α10 α12

α13 α12 α14 α14

α11 α13 α13 α14











M−1
31 matrisinin ham XOR sayısı 109, optimizasyon yöntemleri ile elde edilen
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XOR sayısı Paar algoritmasına göre 54 olarak, BP Derinlik Önceliksiz algoritmasına
göre 45 olarak, BP Derinlik Öncelikli algoritmasına göre 8 derinlikte 45 olarak, SBP
algoritmasına göre 8 derinlikte 45 olarak hesaplanmıştır.

M31 ve M−1
31 matrislerinin XOR farkı 6 olarak hesaplanmıştır.

Örnek 6.12. F24 cismi üzerinde tanımlı p(α) = 0x13 polinomunun bir kökü olan α
kullanılarak elde edilen involutif MDS matris:

A32 =











α 1 α12 α14

α α α14 α13

α14 1 α α

1 α13 1 α











Aynı polinomun elemanı olan α2 ile çarpılarak elde edilen yarı-involutif MDS
matris:

M32 =











α3 α2 α14 α

α3 α3 α 1

α α2 α3 α3

α2 1 α2 α3











M32 yarı-involutif MDS matrisinin ham XOR sayısı 78, optimizasyon yöntemleri
ile elde edilen XOR sayısı Paar algoritmasına göre 53 olarak, BP Derinlik Önceliksiz
algoritmasına göre 39 olarak, BP Derinlik Öncelikli algoritmasına göre 8 derinlikte 39
olarak, SBP algoritmasına göre 8 derinlikte 39 olarak hesaplanmıştır.

M32 matrisinin tersi:

M−1
32 =











α14 α13 α10 α12

α14 α14 α12 α11

α12 α13 α14 α14

α13 α11 α13 α14











M−1
32 matrisinin ham XOR sayısı 109, optimizasyon yöntemleri ile elde edilen

XOR sayısı Paar algoritmasına göre 53 olarak, BP Derinlik Önceliksiz algoritmasına
göre 43 olarak, BP Derinlik Öncelikli algoritmasına göre 8 derinlikte 43 olarak, SBP
algoritmasına göre 8 derinlikte 43 olarak hesaplanmıştır.

M32 ve M−1
32 matrislerinin XOR farkı 4 olarak hesaplanmıştır.

Örnek 6.13. F24 cismi üzerinde tanımlı p(α) = 0x13 polinomunun bir kökü olan α
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kullanılarak elde edilen involutif MDS matris:

A33 =











α 1 1 α14

α14 α α12 α

α α14 α α

α12 1 α13 α











Aynı polinomun elemanı olan α1 ile çarpılarak elde edilen yarı-involutif MDS
matris:

M33 =











α2 α α 1

1 α2 α13 α2

α2 1 α2 α2

α13 α α14 α2











M33 yarı-involutif MDS matrisinin ham XOR sayısı 72, optimizasyon yöntemleri
ile elde edilen XOR sayısı Paar algoritmasına göre 48 olarak, BP Derinlik Önceliksiz
algoritmasına göre 39 olarak, BP Derinlik Öncelikli algoritmasına göre 6 derinlikte 39
olarak, SBP algoritmasına göre 6 derinlikte 39 olarak hesaplanmıştır.

M33 matrisinin tersi:

M−1
33 =











1 α14 α14 α13

α13 1 α11 1

1 α13 1 1

α11 α14 α12 1











M−1
33 matrisinin ham XOR sayısı 82, optimizasyon yöntemleri ile elde edilen XOR

sayısı Paar algoritmasına göre 48 olarak, BP Derinlik Önceliksiz algoritmasına göre 45
olarak, BP Derinlik Öncelikli algoritmasına göre 6 derinlikte 45 olarak, SBP algoritmasına
göre 6 derinlikte 45 olarak hesaplanmıştır.

M33 ve M−1
33 matrislerinin XOR farkı 6 olarak hesaplanmıştır.

Örnek 6.14. F24 cismi üzerinde tanımlı p(α) = 0x13 polinomunun bir kökü olan α
kullanılarak elde edilen involutif MDS matris:

A34 =











α α α13 α14

1 α α14 α12

α13 1 α 1

1 α14 α α










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Aynı polinomun elemanı olan α2 ile çarpılarak elde edilen yarı-involutif MDS
matris:

M34 =











α3 α3 1 α

α2 α3 α α14

1 α2 α3 α2

α2 α α3 α3











M34 yarı-involutif MDS matrisinin ham XOR sayısı 78, optimizasyon yöntemleri
ile elde edilen XOR sayısı Paar algoritmasına göre 50 olarak, BP Derinlik Önceliksiz
algoritmasına göre 39 olarak, BP Derinlik Öncelikli algoritmasına göre 8 derinlikte 39
olarak, SBP algoritmasına göre 8 derinlikte 39 olarak hesaplanmıştır.

M34 matrisinin tersi:

M−1
34 =











α14 α14 α11 α12

α13 α14 α12 α10

α11 α13 α14 α13

α13 α12 α14 α14











M−1
34 matrisinin ham XOR sayısı 109, optimizasyon yöntemleri ile elde edilen

XOR sayısı Paar algoritmasına göre 54 olarak, BP Derinlik Önceliksiz algoritmasına
göre 43 olarak, BP Derinlik Öncelikli algoritmasına göre 8 derinlikte 43 olarak, SBP
algoritmasına göre 8 derinlikte 43 olarak hesaplanmıştır.

M34 ve M−1
34 matrislerinin XOR farkı 4 olarak hesaplanmıştır.

Örnek 6.15. F24 cismi üzerinde tanımlı p(α) = 0x13 polinomunun bir kökü olan α
kullanılarak elde edilen involutif MDS matris:

A35 =











α α14 α12 α

1 α 1 α14

α14 α α α

1 α12 α13 α











Aynı polinomun elemanı olan α1 ile çarpılarak elde edilen yarı-involutif MDS
matris:
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M35 =











α2 1 α13 α2

α α2 α 1

1 α2 α2 α2

α α13 α14 α2











M35 yarı-involutif MDS matrisinin ham XOR sayısı 72, optimizasyon yöntemleri
ile elde edilen XOR sayısı Paar algoritmasına göre 48 olarak, BP Derinlik Önceliksiz
algoritmasına göre 39 olarak, BP Derinlik Öncelikli algoritmasına göre 6 derinlikte 39
olarak, SBP algoritmasına göre 6 derinlikte 39 olarak hesaplanmıştır.

M35 matrisinin tersi:

M−1
35 =











1 α13 α11 1

α14 1 α14 α13

α13 1 1 1

α14 α11 α12 1











M−1
35 matrisinin ham XOR sayısı 82, optimizasyon yöntemleri ile elde edilen XOR

sayısı Paar algoritmasına göre 48 olarak, BP Derinlik Önceliksiz algoritmasına göre 45
olarak, BP Derinlik Öncelikli algoritmasına göre 6 derinlikte 45 olarak, SBP algoritmasına
göre 6 derinlikte 45 olarak hesaplanmıştır.

M35 ve M−1
35 matrislerinin XOR farkı 6 olarak hesaplanmıştır.

6.4. F24/0x19 Cismi Üzerinde Tanımlı Matrisler

Bu alt bölümde, indirgenemez polinom olarak p(α) = 0x19 kullanılarak elde
edilen ve en düşük XOR sayısına sahip olan beş matris incelenmektedir.

Örnek 6.16. F24 cismi üzerinde tanımlı p(α) = 0x19 polinomunun bir kökü olan α
kullanılarak elde edilen involutif MDS matris:

A36 =











α14 α3 α14 α

α α14 α14 α14

1 α2 α14 α3

1 1 α α14











Aynı polinomun elemanı olan α14 ile çarpılarak elde edilen yarı-involutif MDS
matris:
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Çizelge 6.4. F24/0x13 Cisminde Üretilen 4× 4 Yarı İnvolutif MDS Matrislerinin En
Düşük XOR Değerlerine Göre Dağılımı

En Düşük XOR Toplam Matris Sayısı
39 8
40 45
41 266
42 452
43 1123
44 1587
45 2402
46 2440
47 2624
48 2055
49 1471
50 944
51 411
52 150
53 31
54 22
55 2

M36 =











α13 α2 α13 1

1 α13 α13 α13

α14 α α13 α2

α14 α14 1 α13











M36 yarı-involutif MDS matrisinin ham XOR sayısı 72, optimizasyon yöntemleri
ile elde edilen XOR sayısı Paar algoritmasına göre 49 olarak, BP Derinlik Önceliksiz
algoritmasına göre 39 olarak, BP Derinlik Öncelikli algoritmasına göre 6 derinlikte 39
olarak, SBP algoritmasına göre 6 derinlikte 39 olarak hesaplanmıştır.

M36 matrisinin tersi:

M−1
36 =











1 α4 1 α2

α2 1 1 1

α1 α3 1 α4

α1 α1 α2 1











M−1
36 matrisinin ham XOR sayısı 82, optimizasyon yöntemleri ile elde edilen XOR

sayısı Paar algoritmasına göre 47 olarak, BP Derinlik Önceliksiz algoritmasına göre 45
olarak, BP Derinlik Öncelikli algoritmasına göre 6 derinlikte 45 olarak, SBP algoritmasına
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göre 6 derinlikte 45 olarak hesaplanmıştır.

M36 ve M−1
36 matrislerinin XOR farkı 6 olarak hesaplanmıştır.

Örnek 6.17. F24 cismi üzerinde tanımlı p(α) = 0x19 polinomunun bir kökü olan α
kullanılarak elde edilen involutif MDS matris:

A37 =











α14 α14 α2 α

1 α14 α α3

α2 1 α14 1

1 α α14 α14











Aynı polinomun elemanı olan α13 ile çarpılarak elde edilen yarı-involutif MDS
matris:

M37 =











α12 α12 1 α14

α13 α12 α14 α

1 α13 α12 α13

α13 α14 α12 α12











M37 yarı-involutif MDS matrisinin ham XOR sayısı 78, optimizasyon yöntemleri
ile elde edilen XOR sayısı Paar algoritmasına göre 50 olarak, BP Derinlik Önceliksiz
algoritmasına göre 39 olarak, BP Derinlik Öncelikli algoritmasına göre 8 derinlikte 39
olarak, SBP algoritmasına göre 8 derinlikte 39 olarak hesaplanmıştır.

M37 matrisinin tersi:

M−1
37 =











α1 α1 α4 α3

α2 α1 α3 α5

α4 α2 α1 α2

α2 α3 α1 α1











M−1
37 matrisinin ham XOR sayısı 109, optimizasyon yöntemleri ile elde edilen

XOR sayısı Paar algoritmasına göre 54 olarak, BP Derinlik Önceliksiz algoritmasına
göre 43 olarak, BP Derinlik Öncelikli algoritmasına göre 8 derinlikte 43 olarak, SBP
algoritmasına göre 8 derinlikte 43 olarak hesaplanmıştır.

M37 ve M−1
37 matrislerinin XOR farkı 4 olarak hesaplanmıştır.

Örnek 6.18. F24 cismi üzerinde tanımlı p(α) = 0x19 polinomunun bir kökü olan α
kullanılarak elde edilen involutif MDS matris:
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A38 =











α14 α α3 α14

1 α14 1 α

α α14 α14 α14

1 α3 α2 α14











Aynı polinomun elemanı olan α14 ile çarpılarak elde edilen yarı-involutif MDS
matris:

M38 =











α13 1 α2 α13

α14 α13 α14 1

1 α13 α13 α13

α14 α2 α α13











M38 yarı-involutif MDS matrisinin ham XOR sayısı 72, optimizasyon yöntemleri
ile elde edilen XOR sayısı Paar algoritmasına göre 48 olarak, BP Derinlik Önceliksiz
algoritmasına göre 39 olarak, BP Derinlik Öncelikli algoritmasına göre 6 derinlikte 39
olarak, SBP algoritmasına göre 6 derinlikte 39 olarak hesaplanmıştır.

M38 matrisinin tersi:

M−1
38 =











1 α2 α4 1

α1 1 α1 α2

α2 1 1 1

α1 α4 α3 1











M−1
38 matrisinin ham XOR sayısı 82, optimizasyon yöntemleri ile elde edilen XOR

sayısı Paar algoritmasına göre 48 olarak, BP Derinlik Önceliksiz algoritmasına göre 45
olarak, BP Derinlik Öncelikli algoritmasına göre 6 derinlikte 45 olarak, SBP algoritmasına
göre 6 derinlikte 45 olarak hesaplanmıştır.

M38 ve M−1
38 matrislerinin XOR farkı 6 olarak hesaplanmıştır.

Örnek 6.19. F24 cismi üzerinde tanımlı p(α) = 0x19 polinomunun bir kökü olan α
kullanılarak elde edilen involutif MDS matris:

A39 =











α14 α3 α α14

α α14 α14 α14

1 1 α14 α

1 α2 α3 α14










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Aynı polinomun elemanı olan α14 ile çarpılarak elde edilen yarı-involutif MDS
matris:

M39 =











α13 α2 1 α13

1 α13 α13 α13

α14 α14 α13 1

α14 α α2 α13











M39 yarı-involutif MDS matrisinin ham XOR sayısı 72, optimizasyon yöntemleri
ile elde edilen XOR sayısı Paar algoritmasına göre 49 olarak, BP Derinlik Önceliksiz
algoritmasına göre 39 olarak, BP Derinlik Öncelikli algoritmasına göre 6 derinlikte 39
olarak, SBP algoritmasına göre 6 derinlikte 39 olarak hesaplanmıştır.

M39 matrisinin tersi:

M−1
39 =











1 α4 α2 1

α2 1 1 1

α1 α1 1 α2

α1 α3 α4 1











M−1
39 matrisinin ham XOR sayısı 82, optimizasyon yöntemleri ile elde edilen XOR

sayısı Paar algoritmasına göre 47 olarak, BP Derinlik Önceliksiz algoritmasına göre 45
olarak, BP Derinlik Öncelikli algoritmasına göre 6 derinlikte 45 olarak, SBP algoritmasına
göre 6 derinlikte 45 olarak hesaplanmıştır.

M39 ve M−1
39 matrislerinin XOR farkı 6 olarak hesaplanmıştır.

Örnek 6.20. F24 cismi üzerinde tanımlı p(α) = 0x19 polinomunun bir kökü olan α
kullanılarak elde edilen involutif MDS matris:

A40 =











α14 α14 α α2

1 α14 α3 α

1 α α14 α14

α2 1 1 α14











Aynı polinomun elemanı olan α13 ile çarpılarak elde edilen yarı-involutif MDS
matris:
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M40 =











α12 α12 α14 1

α13 α12 α α14

α13 α14 α12 α12

1 α13 α13 α12











M40 yarı-involutif MDS matrisinin ham XOR sayısı 78, optimizasyon yöntemleri
ile elde edilen XOR sayısı Paar algoritmasına göre 50 olarak, BP Derinlik Önceliksiz
algoritmasına göre 39 olarak, BP Derinlik Öncelikli algoritmasına göre 8 derinlikte 39
olarak, SBP algoritmasına göre 8 derinlikte 39 olarak hesaplanmıştır.

M40 matrisinin tersi:

M−1
40 =











α1 α1 α3 α4

α2 α1 α5 α3

α2 α3 α1 α1

α4 α2 α2 α1











M−1
40 matrisinin ham XOR sayısı 109, optimizasyon yöntemleri ile elde edilen

XOR sayısı Paar algoritmasına göre 54 olarak, BP Derinlik Önceliksiz algoritmasına
göre 45 olarak, BP Derinlik Öncelikli algoritmasına göre 8 derinlikte 45 olarak, SBP
algoritmasına göre 8 derinlikte 45 olarak hesaplanmıştır.

M40 ve M−1
40 matrislerinin XOR farkı 6 olarak hesaplanmıştır.
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Çizelge 6.5. F24/0x19 Cisminde Üretilen 4× 4 Yarı İnvolutif MDS Matrislerinin En
Düşük XOR Değerlerine Göre Dağılımı

En Düşük XOR Toplam Matris Sayısı
39 6
40 63
41 220
42 503
43 1077
44 1599
45 2459
46 2447
47 2591
48 2158
49 1381
50 893
51 398
52 158
53 58
54 19
55 4
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BÖLÜM 7

SONUÇ ve TARTIŞMA

Bu tez çalışmasında, m ∈ {3, 4} olmak üzere F2m sonlu cisimleri üzerinde tanımlı
maksimum uzaklıkta ayrılabilen (MDS) yarı involutif matrislerin üretimine yönelik
cebirsel bir yöntem sunulmuştur. Literatürde genellikle involutif MDS matrislerin tasarım
teknikleri araştırılırken, bu araştırma, yarı involutif kavramını kapsamlı bir üretimle
entegre ederek önemli bir metodolojik eksikliği gidermiştir. Ayrıca, bu matrislerin
donanımda daha etkin bir şekilde uygulanabilmesi için, Paar, SLP, Boyar-Peralta ve
Superior Boyar-Peralta gibi çeşitli XOR optimizasyon algoritmalarıyla karşılaştırmalı
analizleri gerçekleştirilmiştir.

Çalışmada önerilen üretim yöntemi, mevcut involutif MDS matrislerinin Magma
hesaplamalı cebir sistemi kullanılarak parametrik olarak türetilmesi ve bu matrislerin
belirli diyagonal dönüşümler yoluyla yarı involutif forma dönüştürülmesi şeklinde iki
temel aşamadan oluşmaktadır. Bu yaklaşım, tüm olası parametre kombinasyonlarını
sistematik olarak tarayan algoritmik yapılarla gerçekleştirilmiş ve sonuçlar Magma
ortamında doğrulanmıştır.

Donanımsal uygulamalar açısından XOR sayısının minimize edilmesi de
çalışmanın hedeflerinden biri olarak belirlenmiştir. Bunun için kullanılan dört
optimizasyon algoritması, doğrusal devre sentezi ve devre derinliği bağlamında pratik
fayda sağlamaktadır. Özellikle SBP algoritmasının derinlik kısıtlaması altında en düşük
XOR sayılarını elde etmede öne çıktığı gözlemlenmiştir.

F23 ile F24 sonlu cisimleri altında tanımlı 0xB, 0x D, 0x13 ve 0x19 indirgenemez
polinomları kullanılarak 3×3 ile 4×4 boyutlarında sırasıyla 1.072.512 ve 6.790.589.568

yarı involutif MDS matris üretilmiştir. Özellikle 4× 4 boyutundaki matrisler için, XOR
sayısı 39 gibi oldukça düşük değerlere inebildiği gözlemlenmiştir ki bu, donanımsal
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etkinlik açısından dikkate değer bir başarıdır. Örneğin, F24/0x19 cismi üzerinde elde
edilen matrislerin XOR dağılımını incelediğimizde, 39 ile 55 aralığında bir yoğunluk
gözlemlenmiştir ve optimizasyon sonrasında XOR sayısının ortalamasında önemli bir
düşüş kaydedilmiştir. Bu sonuçların, literatürde (Li vd., 2019), (Pehlivanoğlu vd., 2018)
ve (Tuncay, 2021) gibi çalışmalarda bildirilen değerlerle karşılaştırıldığında, rekabetçi
bir performans sergilediği söylenebilmektedir. Bununla birlikte, yöntemin teorik yapısı
incelendiğinde, daha geniş bit uzunluklarına sahip sonlu cisimlere—özellikle AES
standardında kullanılan F28 gibi—genellenebilir nitelikte olduğu görülmektedir. Bu
bağlamda, gelecekte yapılacak çalışmalarda, önerilen metodolojinin F28 cisminde ve bu
cisim üzerinde tanımlı indirgenemez polinomlara uygulanması, çok daha fazla sayıda
yarı involutif MDS matrislerin üretilmesini mümkün kılacaktır. Böylece, yalnızca teorik
matris çeşitliliği artırılmakla kalmayacak, aynı zamanda gerçek dünyada kullanılan
blok şifreleme algoritmalarına entegre edilebilecek yüksek yayılım kapasiteli, ters alma
maliyeti düşük ve donanıma uygun matrislerin tasarımı da gerçekleştirilebilecektir.

Gelecekteki çalışmalar kapsamında, elde edilen yarı involutif MDS matrislerin
kriptoanalitik güvenlik düzeylerinin kapsamlı bir biçimde analiz edilmesi önemli bir
gereklilik olarak öne çıkmaktadır. Ayrıca, geliştirilen matrislerin donanım düzeyindeki
uygulanabilirliğinin test edilmesi amacıyla FPGA ve ASIC platformlarında sentetik
devre tasarımı gerçekleştirilerek, gecikme, alan kullanımı, güç tüketimi ve frekans
performansı gibi ölçütler üzerinden detaylı karşılaştırmalar yapılabilir. Bu tür uygulamalı
çalışmalar, matrislerin yalnızca kuramsal düzeyde değil, gerçek zamanlı sistemlerde ne
denli verimli ve güvenli olduklarını da gösterecektir. Öte yandan, matris üretim sürecine
dinamik parametre seçimi, evrimsel algoritmalar veya öğrenmeye dayalı sezgisel teknikler
entegre edilerek arama uzayı daha etkili biçimde taranabilir ve optimizasyon başarımı
artırılabilir. Önerilen yarı involutif MDS matrislerin, AES gibi modern blok şifreleme
algoritmalarının doğrusal dönüşüm katmanına entegre edilerek, hem simülasyon hem
de donanım tabanlı güvenlik ve performans analizlerinin gerçekleştirilmesinin, yöntemin
kapsamlı etkinliğinin değerlendirmesi açısından önemli bir adım olduğu düşünülmektedir.

Sonuç olarak bu çalışmada kullanılan tasarım teknikleri, doğrusal dönüşümlerin
hem yapısal güvenlik gerekliliklerini hem de donanımsal verimlilik koşullarını eşzamanlı
olarak karşılayabilecek şekilde tasarlanmıştır. Önerilen yöntem aracılığıyla yarı involutif
MDS matrislerin belirli sonlu cisimler üzerinde sistematik biçimde üretilebilmesi ve
bu yapıların XOR işlem sayısı açısından optimize edilerek donanıma uygun hale
getirilebilmesi, özellikle gömülü sistemler ve kaynak kısıtlı platformlar için potansiyel
uygulamalara zemin hazırlamaktadır. Elde edilen bulgular, mevcut literatürde yer alan
yöntemlerle karşılaştırıldığında, hem matris üretiminde kapsayıcılık hem de donanımsal
ölçütler açısından anlamlı farklar ortaya koymaktadır. Bu yönüyle tez, yarı involutif
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matrislerin kriptografik sistemlerde kullanımına yönelik hem kuramsal bir çerçeve
sunmakta hem de uygulamaya dönük değerlendirmelere katkıda bulunmaktadır.
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ÖZGEÇMİŞ

Edirne Trakya Birlik İlköğretim okulunda ilk ve orta öğrenimimi tamamladıktan
sonra Edirne Anadolu Öğretmen Lisesi’nde lise öğrenimimi tamamladım. Ardından
Eskişehir Anadolu Üniversitesi Bilgisayar ve Öğretim Teknolojileri Eğitimi bölümünde
lisansımı tamamladım. Mezun olduktan sonra 2022 yılında Trakya Üniversitesi Fen
Bilimleri Enstitüsü Hesaplamalı Bilimler Anabilim Dalı Yüksek Lisans programında
halen öğrenimime devam etmekteyim. Aynı zamanda Trakya Üniversitesi Teknopark’ında
bulunan bir şirkette yazılım geliştirici olarak çalışıyorum.
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