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Maksimum Uzaklikta Ayrilabilen Yar involutif Matrisler i¢in Tasarim Teknikleri
T.U. Fen Bilimleri Enstitiisii

Hesaplamali Bilimler Anabilim Dal1

OZET

Dogrusal doniisiim katmanlari, modern blok sifreleme algoritmalarinda yayilma
ilkesini gergeklestiren temel yapi taglaridir. Maksimum Uzaklikta Ayrilabilen (MDS)
matrisler, maksimum dal sayisiyla gii¢lii yayilim 6zellikleri sunduklari i¢in bu katmanlarin
tasariminda tercih edilirler. Ote yandan, tersi kendisine esit (involutif) olan dogrusal
doniisiim katmanlari, sifreleme ve sifre cozme islemlerinin ayn1 maliyetle uygulanmasina
olanak taniyarak avantaj saglamaktadirlar. Bir involutif matrisin, ¢ € F,.\{0,1}
skaleri ile ¢arpimina esit olan yar1 involutif MDS matrisler ise ters alma islemlerinin
yalnizca basit matris ¢arpimlariyla gerceklestirilebilmesini saglayarak daha genis bir
tasarim alan1 sunmaktadir. Bu tez calismasinda, F,s ve F,4 sonlu cisimlerinde taniml
indirgenemez polinomlar kullanilarak involutif MDS matrislerden yari involutif MDS
matrislerin elde edilmesine olanak taniyan cebirsel bir yontem Onerilmektedir. Ayrica,
gelistirilen matrislerin donanimsal uygulanabilirligini artirmak amaciyla dort farkli XOR

optimizasyon algoritmasi ile karsilastirmali analizleri gerceklestirilmistir.

Yil : 2025
Sayfa Sayis1 ;103
Anahtar Kelimeler : Yart involutif matrisler, MDS matrisler, dogrusal doniislim

katmani, XOR sayisi, kiiresel optimizasyon teknikleri
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ABSTRACT

Linear transformation layers are the fundamental building blocks that implement
the diffusion principle in modern block cipher algorithms. Maximum Distance Separable
(MDS) matrices are preferred in the design of these layers since they offer strong diffusion
properties with the maximum branch number. On the other hand, linear transformation
layers that are involutory, equal to their inverses, provide an advantage by allowing
encryption and decryption operations to be implemented at the same cost. Semi-involutory
MDS matrices, which are equal to the multiplication of an involutory matrix by a scalar
¢ € F,m\{0, 1}, offer a broader design space by enabling the inversion process to be
carried out through simple matrix multiplications. In this thesis, an algebraic method is
proposed that enables the construction of semi-involutory MDS matrices from involutory
MDS matrices using irreducible polynomials defined over the finite fields Fo; and F,a.
Additionally, comparative analyses with four different XOR optimization algorithms were

conducted to enhance the hardware implementability of the developed matrices.
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BOLUM 1

GIRIS

Bilgi tarih boyunca insanligin gelismesinde Onemli bir deger olmustur. Her
deger gibi bilginin de saldirilara kargi korunmasi gerekliligi vardir. Bilgi giivenligi;
gizlilik, biitiinliik ve erisilebilirlik prensiplerine dayanir. Kisisel veriler, askeri mesajlar
veya bir sektorde operasyonun devamliliini saglayan sektorel sirlarin giivenli sekilde
saklanabilmesi, degistirilebilmesi ve aktarilabilmesi gereklidir. Teknolojinin gelisiminden
once fiziksel olarak saklanan bilgi, sadece yetkili kisiler tarafindan ulasilabilir,
diizenlenebilir ve aktarilabilir durumdaydi. Bilginin giivenli bir bicimde iletilebilmesi
icin fiziksel olarak tasinmasi gerekliligi mevcuttu. Ancak, bilgisayar ve internet gibi
teknolojilerin ilerlemesiyle birlikte, bilginin islenme siireglerinde onemli degisiklikler
olmustur. Internetin sagladig:1 kolayliklarla bilginin aktarimi daha basit hale gelmis,
fakat aym1 zamanda giivenilirliginin temin edilmesi icin yeni yontemlerin gelistirilmesi
zorunlulugu dogmustur. Giivenlik amaclarina uygun olarak, kriptoloji bilimi siirekli

ilerleme kaydetmis ve iletisimde giivenligin saglanmasinda 6nemli bir role sahip olmustur.
1.1. Kriptoloji

Kriptoloji, bilginin giivenli bir bicimde iletilmesi ve saklanmasi amaciyla
gelistirilen yontemleri ile bu yontemlerin analizini konu alan bir bilim alanidir ve temel

olarak kriptografi ve kriptoanaliz olmak iizere iki alt disipline ayrilmaktadir.
1.2. Kriptografiye Genel Bakis

Kriptografi, belirli bilgilerin korunmasini saglamak amaciyla matematiksel
yontemlerin kullanilmasiylailgilenir ve yetkisiz kisilerin bilgilere erisimini ya da bilgilerin

degistirilmesini engelleyici onlemler icerir.



Kriptografinin temel hedefleri asagidaki sekilde simiflandirilabilir (Forouzan,
2007):

* Gizlilik: Bilginin yalnizca yetkili bireylerce okunabilmesi gerekir.

* Biitiinliik: Veri, izinsiz olarak degistirilememeli; ekleme, silme ya da gilincelleme

gibi islemler yalnizca yetkililer tarafindan yapilabilmelidir.

e Kullamlabilirlik: Olusturulan ve saklanan bilgiler, yetkili kisi veya kuruluglar
tarafindan siirekli erisilebilir ve kullanilabilir olmalidir.

Bu hedeflere ulasabilmek adina yiiksek diizeyde kriptografik protokoller
gelistirilmekte ve bu protokoller, belirli kriptografik bilesenlere dayandirilmaktadir. Cesitli
matematiksel yapilardan olusan bu bilesenler; harflerden olusan acik metin kiimesi,
sifrelenmis sembollerden olusan sifreli metin kiimesi, sifreleme igleminde kullanilabilecek
olast anahtarlarin olusturdugu anahtar uzayi, sifre ¢6zme sirasinda kullanilacak olasi
anahtarlarin olusturdugu sifre ¢cozme anahtar uzayi ile etkili sifreleme ve sifre ¢cozme

algoritmalarindan olugsmaktadir (Mao, 2004).
1.3. Kriptoanalize Genel Bakis

Kriptoanaliz, kullanilan kriptografik sistemlerin zayifliklarim1 ortaya ¢ikarmayi
ve gilivenilirligini test etmeyi amaclayan bilim dalidir. Kriptografik yapilar ne kadar
giiclii olursa olsun, potansiyel saldirilara karsi test edilmeleri zorunludur. Bu baglamda
kriptoanalistler, farkli saldir1 senaryolar1 ¢cergevesinde sistemleri analiz ederek kriptografik
sistemlerin dayanikliligin1 6lcmeyi hedeflerler. Asagida listelenen saldir1 modelleri, hem

bagimsiz hem de kombinasyon halinde uygulanabilmektedir (Stinson, 2005).

* Yalnizca Sifreli Metin Saldirisi: Saldirgan sadece sifreli metinlere erisebilir; agik
metne dair herhangi bir bilgiye sahip degildir.

* Bilinen A¢ik Metin Saldirisi: Saldirgan, bazi acik metinlerle bunlara karsilik gelen

sifreli metin ¢iftlerine ulasabilir.

* Secilmis Acik Metin Saldirisi: Saldirgan, sectigi agik metinleri sifreleme cihazina

gondererek karsilik gelen sifreli metinleri elde edebilir.

* Secilmis Sifreli Metin Saldirisi: Saldirgan, sectigi sifreli metinleri sifre ¢c6zme
cihazina ileterek acik metin karsiliklarini alabilir.

* Secilmis Baslatma Vektorii Saldirisi: Eger sistem bir baslatma vektorii (IV)
kullaniyorsa, saldirgan IV’yi de kontrol ederek ac¢ik metin ve IV iizerinden sifreli

metinleri olusturabilir.



1.4. Modern Kriptografik Algoritmalar

Giintimiizde kriptografik algoritmalar; Simetrik Sifreleme Algoritmalari,
Asimetrik Sifreleme Algoritmalar1 ve Kriptografik Ozet (Hash) Fonksiyonlari olmak

tizere ui¢ kistma ayrilmaktadir.

Simetrik sifreleme algoritmalarinda, iletisime gecen taraflar hem sifreleme hem de
sifre ¢cozme islemlerinde ayni gizli anahtar1 kullanirken; asimetrik sifreleme sistemlerinde
taraflar, biri acik digeri gizli olmak lizere bir anahtar ¢iftine sahiptir. Bu mimaride, verilerin
sifrelenmesi acik anahtar araciligiyla gergeklestirilirken, sifrenin ¢oziilmesi i¢in yalnizca
alicrya ait olan gizli anahtar kullanilmaktadir. Sekil 1.1 ve 1.2°de, bu iki kriptografik

algoritmanin temel yapis1 sematik bicimde sunulmaktadir.

Gizli Anahtar

Acik Mesaj Sifreli Mesaj Acik Mesaj

Sekil 1.1. Bir Simetrik Sifreleme Algoritmasinin Sematik Gosterimi

Genel Anahtar Ozel Anahtar
Acik Mesaj @— Sifreli Mesaj @— Acik Mesaj

Sekil 1.2. Bir Asimetrik Sifreleme Algoritmasinin Sematik Gosterimi

Her iki yaklasimda da temel giivenlik varsayimi; sifreleme sistemine dair tiim
detaylar kamuya acik olsa bile, gizli anahtarin korunmasi kosuluyla sistemin giivenli
kalmas1 gerektigidir. Bu diisiince, Kerckhoffs’un ilkesi olarak literatiirde yer bulmustur
(Kerckhoffs, 1883).

Asimetrik kriptografi sistemleri genel olarak say1 teorisine dayali soyut
matematiksel yapilar iizerine kurulurken, simetrik yontemler daha cok Boole fonksiyonlari
gibi ayrik matematiksel yapilar temelinde gelistirilmistir. Performans agisindan
degerlendirildiginde, simetrik algoritmalar asimetrik olanlara gore ¢ok daha yiiksek hizda
calismakta ve Ozellikle biiyiik boyutlu veri kiimelerinin sifrelenmesi icin daha verimli

coziimler sunmaktadir. Bununla birlikte, asimetrik algoritmalarin en Onemli avantaji,

3



simetrik sistemlerin en biiyiik zaafi olan anahtar paylasim sorununa etkili bir ¢oziim

getirebilmeleridir.

Simetrik kriptografide kullanilan algoritmalar, sifreleme big¢imlerine gore iki
ana gruba ayrilmaktadir: blok sifreleme ve akis (stream) sifreleme. Blok sifreleme
tekniklerinde acik metin belirli uzunluktaki bloklara ayrilarak her bir blok iizerinde islem
yapilirken, akig sifreleme yontemleri veriyi bit ya da byte diizeyinde isler. Literatiirde
yaygin sekilde kullanilan blok sifreleme algoritmalarina AES (Advanced Encryption
Standard) (National Institute of Standards and Technology (NIST), 2001), PRESENT
(Bogdanov vd., 2007), ARIA (Kwon vd., 2003) ve Blowfish (Schneier, 1993) 6rnek

verilebilir.

Akis sifreleme algoritmalarinda 6zellikle kablosuz ag giivenliginde kullanilan RC4
(ARCFOUR) (Rivest, 1992a), HC-256 (Wu, 2004) ve Trivium (De Canniere & Preneel,

2008) en bilinen algoritmalar arasinda yer almaktadir.

Asimetrik sifreleme yontemleri arasinda Diffie-Hellman anahtar degisim
protokolii (Diffie & Hellman, 1976) ile RSA algoritmasi (Rivest, Shamir & Adleman,
1978), bu alandaki en temel ornekler olarak one ¢ikmaktadir.

Ozet (hash) fonksiyonlar1 ise herhangi bir uzunluktaki bir girdiden, o girdiye
Ozgli sabit uzunlukta ve benzersiz bir deger iiretmek amaciyla kullanilan kriptografik
yapilardir. Bu iiretilen deger, genellikle mesajin "parmak izi" olarak nitelendirilir. Mesaj
iceriginde yapilan yalnizca 1 bitlik bir degisiklik bile, ¢ikti degerinin tamamen farkli
olmasina yol acar. Bu fonksiyonlar tek yonliidiir; yani elde edilen 6zet degerinden
orijinal mesajin yeniden elde edilmesi miimkiin degildir. Genellikle mesajin biitiinliigiiniin
korunup korunmadigimi dogrulamak amaciyla kullanilirlar. Ozet fonksiyonlarinin en temel
giivenlik kriteri, her farkli girdi i¢in benzersiz bir ¢ikti liretme yetenegidir. Eger iki farkl
mesaj ayn1 0zet degerini iiretirse — bu duruma cakigsma (collision) denir — s6z konusu
ozet fonksiyonu giivenli kabul edilmez ve kullanim dist birakilir. En ¢ok bilinen 6zet
fonksiyonlar1 arasinda MDS5 (Rivest, 1992b), SHA-1 (Eastlake & Jones, 2001), SHA-2
(National Institute of Standards and Technology (NIST), 2015a) (6zellikle SHA-256
ve SHA-512), SHA-3 (National Institute of Standards and Technology (NIST), 2015b),
BLAKE?2 (Aumasson, Neves, Wilcox-O’Hearn & Winnerlein, 2015) bulunmaktadir.

Ozet

Fonksiyonu Ozet Bilgi

Mesaj

Sekil 1.3. Bir Ozet Fonksiyonunun Sematik Gosterimi



1.5. Blok Sifreler

Claude Shannon’in 1949 tarihli calismasinda ortaya koydufu karistirma
(confusion) ve yayilma (diffusion) ilkeleri, modern blok sifreleme algoritmalarinin
kriptografik giivenliginin temel dayanak noktalar1 olarak kabul edilmektedir (Shannon,
1949). Karistirma, sifreli metin ile kullanilan gizli anahtar arasinda dogrudan bir iligki
kurulmasim zorlagtirarak, anahtarin yapisal ozelliklerinin sifreli veriden tiiretilmesini
engellemeye calisir. Bu ilke genellikle dogrusal olmayan bilesenler olan yer degistirme
kutular1 (S-boxes) araciligiyla gergeklestirilir. Yer degistirme kutulari, cogunlukla vektorel
Boole fonksiyonlari olarak tanimlanir. Matematiksel olarak n—bit giris ve m—bit c¢ikisa

sahip bir S-kutusu S : F; — F7' bi¢iminde tanimlanir ve asagidaki gibi gosterilir.

S(x) = (fo(x), f1(x); -+ -, frna (%))

Burada f;(x), S-kutusunun koordinat fonksiyonlarini temsil eder. S-kutulari,
genellikle algoritmanin tek dogrusal olmayan bileseni oldugundan, genel giivenlik
diizeyini biiyiik 6lciide etkiler. Iyi tasarlanmis bir S-kutusu, yiiksek bit karigiklig1 saglar,

dogrusal ve diferansiyel kriptoanalize kars1 diren¢ olusturur.

Yayilma ise, acik metne ait istatistiksel Ozelliklerin sifreli metne yansimasini
onlemek amaciyla tasarlanmistir. Bu amagla dogrusal doniigsiimler—ornegin karistirma
matrisleri, permiitasyonlar veya modiiler aritmetik islemler—kullanilir. Yayilma
sayesinde, acik metindeki tek bir bit degisikligi, sifreli metinde ¢ok sayida bitten
olusan degisime neden olur. Etkin bir dogrusal doniisiimiin asagidaki kriterleri saglamasi
beklenmektedir (Daemen & Rijmen, 2002; Feistel, 1973; Kam & Davida, 1979; Webster
& Tavares, 1986).

Cig Etkisi: Giristeki tek bir bit degisikligi, ciktidaki bitlerin yaklasik yarisini

degistirmelidir.

» Kati1 C1g Etkisi: Giristeki tek bir bitlik degisiklik, her ¢ikt1 bitinin %50 olasilikla

degismesine yol agmalidir.
« Biitiinliik Ozelligi: Her bir cikt1 biti, girisin tiim bitlerine bagl olmalidir.

« Dal Sayis1 (Branch Number): ikili dogrusal doniisiimlerde O giris vektorii haric
girig vektorlerinin Hamming agirlig1 ile ¢ikis vektorlerinin Hamming agirliginin
toplaminin en diisiik degeridir (Daemen & Rijmen, 2002). Bu kriter, bir blok sifrede
azami yayilima ulagilmasinm saglayan en 6nemli kriptografik 6zelliktir. Dogrusal ve

diferansiyel dal say1s1 olmak iizere iki sekilde hesaplanir. Dogrusal dal sayis1 bir blok



sifrenin dogrusal kriptoanalize, diferansiyel dal say1s1 ise diferansiyel kriptoanalize

kars1 dayanikliliginin ol¢iisiidiir.

Cogu modern algoritma, yayilim katmaninda Maksimum Uzaklikta Ayrilabilen
(Maximum Distance Separable-MDS) ya da Maksimum Uzaklikta ikili Dogrusal
(Maximum Distance Binary Linear-MDBL) matrisler kullanir. Bu matrisler, sifreleme
algoritmasinin giivenligi, yayilim 6zelligi ve saldirilara karst dayaniklili1 agisindan kritik
oneme sahiptir. Bu baglamda, sifre tasarimcilar tarafindan cesitli 6zel matris yapilari
kullanilarak giivenli ve verimli doniisiimler olusturulmaktadir. Ornegin AES sifreleme
algoritmasinda kullanilan F,s cismi iizerinde tanimli 4x4 dairesel MDS matris sifrenin

dogrusal doniisiim katmanlarinin ¢ekirdegini olusturmaktadir.

Involutif 6zellik gosteren matrislerin tersi kendisine esit oldugundan, sifre
cozme isleminin matrisin kendisiyle yapilabilmesini saglayarak hem donanimda hem de
yazilimda simetrik sifreleme i¢in olduk¢a verimli ¢oziimler sunar. Bununla birlikte, bazi
uygulamalarda XOR sayis1 gibi performans kriterlerine gore alternatif matris tiirlerinin
degerlendirilmesi gerekebilir. Bu baglamda, yayilim katmani olarak kullanilabilecek diger
yapilardan biri de semi involutif (yar1 involutif) matrislerdir. Bir B matrisinin yar1 involutif
olarak nitelendirilebilmesi i¢in, involutif bir A matrisinin ¢ € F,.\{0,1} skaleri ile

carpimina esit olma, diger bir deyisle B = c - A kosulunu saglamas1 gerekmektedir.

Diger taraftan  donamimsal uygulamalarda  dogrusal  doniistimlerin
verimliligi yalnizca matematiksel yapilarina degil, ayn1 zamanda bu doniistimlerin
gerceklestirilmesinde ihtiya¢ duyulan XOR islemi sayisina da dogrudan baghdir. XOR
islemi, donanimda basit ve hizli bir mantiksal iglem olmasina ragmen, ¢ok sayida XOR
kapis1 kullanimi devre karmagsikligini, enerji tiiketimini ve gecikmeyi artirabilir. Bu
nedenle, sifreleme algoritmalarinda kullanilan matrislerin sahip oldugu XOR sayisinin
minimize edilmesi, 6zellikle gomiilii sistemler ve diisiik kaynakli donanimlar i¢in biiyiik
onem tasir. Yar1 involutif matrisler, uygun yapilandirmalarla hem gerekli XOR sayisini
diisiirebilmekte hem de ters doniisiim hesaplamalarinda avantaj saglayabilmektedir. Bu
yoniiyle, performans ve giivenlik arasinda denge kurmaya calisgan modern sifreleme
sistemleri icin dikkat cekici bir tasarim bileseni olarak one cikmaktadirlar (Boyar &
Peralta, 2000; Standaert & Quisquater, 2006).

Modern blok sifreleme algoritmalarinin cogu, iteratif sifreleme yapisi olarak
adlandirilan bir modeli temel alir. Bu yapi, sabit sayidaki sifreleme turunun (round) arka
arkaya uygulanmasi prensibine dayanir. Her bir tur, belirli matematiksel islemleri icerir ve
bu iglemler arasinda S-box uygulamalari, dogrusal doniisiimler, permiitasyonlar ve anahtar
ile XOR’lama yer alir. Bu tiir yapilarda, anahtar genisletme algoritmasi kullanilarak gizli

anahtardan her tur icin farkli bir alt anahtar tiiretilmesi saglanir. Bu yontem, her turun
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ayni islemleri uygulamasina ragmen simetrik yapilarin olusmasini engeller ve sifreleme
giivenligini artirir (Ferguson, Schneier & Kohno, 2010). Giivenlik agisindan giiglii bir
anahtar genigletme algoritmasi, alt anahtarlarin birbirinden bagimsiz ve yiiksek yayilima

sahip olmasini saglamalidir.

Blok sifreleme algoritmalarinda siklikla tercih edilen iki mimari yapi ise Yer
Degistirme-Permiitasyon Agi (Substitution-Permutation Network-SPN) ve Feistel Ag1
olarak bilinmektedir. SPN mimarisi, tiim veri blogu iizerinde dogrusal olmayan yer
degistirme islemleri (S-box), ardindan dogrusal yayilma islemleri uygulayarak her turda
tiim blogu isler. Bu yap1, AES gibi sifrelerde temel alinmistir (Daemen & Rijmen, 2002).
Buna karsilik, Feistel yapisinda, veri blogu iki alt parcaya ayrilir ve her turda yalnizca
bir parca islenirken diger parca degismeden kalir. Daha sonra parcalar yer degistirir ve
islem tekrarlanir. Bu yapi, DES (National Institute of Standards and Technology (NIST),
1999) gibi klasik algoritmalarda goriiliir ve 6zellikle algoritmanin tersinirligini (sifreleme
isleminin sifre ¢ozme islemi ile simetrik sekilde olmasi) garanti altina almasi acisindan

avantaj saglar (Menezes, van Oorschot & Vanstone, 1996).

Bu mimarilerin her biri, performans ve giivenlik gereksinimlerine gore secilmekte
ve uygulama alanina bagli olarak oOzellestirilebilmektedir. SPN yapilart genellikle
donanim uygulamalarinda yiiksek paralellestirilebilirlik avantaji sunarken, Feistel yapilari

tersinirlik 0zelligi nedeniyle yazilim uygulamalarinda daha esnek kullanilabilmektedir.
1.6. Tezin Kapsam, Dayanag ve Sagladig1 Katkilar

Bu tez calismasinda, yart involutif matrislerin cebirsel ve yapisal ozellikleri
matematiksel temelleriyle incelenmekte; bu yapilarin modern blok sifreleme
algoritmalarindaki rolii detayli bir sekilde degerlendirilmektedir. Calisma kapsaminda,
involutif matrisler kullanilarak yari involutif matrislerin olusturulabildigi bir teknik
onerilmis ve bu teknik sayesinde IF,; ile Fo4 cisimlerinde tanimli indirgenemez polinomlar
kullanilarak 3 x 3 ve 4 x 4 boyutlarindaki yar1 involutif matrisler sistematik olarak
elde edilebilmistir. Elde edilen bu matrisler iizerinde, gelistirilen 6zel amach yazilim
araciligiyla donanimsal verimliligi dogrudan etkileyen XOR sayis1 agisindan optimizasyon

caligsmalar1 da gerceklestirilmistir.

Tez yedi boliimden olusmaktadir. Ik boliimde, konunun anlagilabilirligi acisindan
kriptolojiye dair temel kavramlara yer verilmis; ikinci boliimde, kullanilan cebirsel
yapilarin ve gelistirilen teknigin matematiksel cercevesi tammlanmustir. Ugiincii boliimde,
dogrusal doniistimlerin donanimda verimli uygulanabilmesi icin kullanilan XOR
optimizasyon yontemleri sunulmustur. Dordiincii boliim, yar1 involutif matris tiretiminde

kullanilan teknigin algoritmik yapisim1 ve teorik dayanaklarini ayrintili bicimde ele



almaktadir. Besinci boliimde 3 x 3, altinc1 boliimde ise 4 X 4 boyutundaki matrislere iliskin
deneysel sonuclara, elde edilen matrislere ve bu matrislerin optimizasyon analizlerine yer
verilmigtir. Sonug ve tartigsma boliimiinde ise elde edilen bulgular genel bir degerlendirme
cercevesinde ele alinarak yari involutif matrislerin blok sifre tasariminda kullanimi

tartisitlmaktadr.

Bu baglamda ¢aligma, yar1 involutif matrislerin sistematik olarak iiretilebilmesine
olanak taniyan teknikleri hem kuramsal hem de uygulamali boyutlariyla ortaya
koymaktadir. Gelistirilen yontem, belirli cebirsel kosullar altinda 3 x 3 ve 4 x 4
boyutlu yar1 involutif matrislerin yapilandirilmasini miimkiin kilarken, bu matrislerin
donanimda uygulanabilirligini artirmak amaciyla dogrusal doniistimler iizerindeki XOR
optimizasyonlar1 da ayrintili bicimde ele alinmistir. Elde edilen sonuglar, yar1 involutif
yapilarin yalnizca teorik agidan degil, ayn1 zamanda donanim verimliligi ve kriptografik
ozellikler bakimindan da blok sifre tasarimina katki saglayabilecek nitelikte oldugunu

gostermektedir.



BOLUM 2

MATEMATIKSEL TEMELLER ve TANIMLAR

Bu boliimde, tez ¢calismasinda gelistirilen tekniklerin anlagilabilmesi icin gerekli
olan temel cebirsel yapilar ve kavramsal tanimlar sunulmaktadir. Ozellikle sonlu cisimler
tizerinde tanimli matris doniisiimleri, involutif ve yar1 involutif matrislerin 6zellikleri,
bu yapilarin kare alma ve skaler ¢arpim iligkileriyle karakterize edilmesi gibi konular ele
aliacaktir. Ayrica, kullanilan indirgenemez polinomlar, XOR say1s1 metrigi ve ¢esitli 6zel
matris tammmlarina dair onciil teoremler detayli bicimde agiklanacaktir. Burada sunulan
tanim, teorem ve onermelerin kanitlarina, ilgili literatiirdeki (Barreto, 2000; Biham, 1994;
Daemen & Rijmen, 2002; Davis, 1979; Forouzan, 2007; Khoo, Peyrin, Poschmann &
Yap, 2014; Kwon, Sung, Song & Park, 2005; Lidl & Niederreiter, 1997; Pehlivanoglu,
Sakalli, Akleylek, Duru & Rijmen, 2018; Stallings, 2013; Stinson & Paterson, 2019)

kaynaklarindan ulagilabilmektedir.

Tanim 2.1 (Cisim). Bir kiime F, iizerinde iki iglem (toplama + ve carpma -) taniml1 ve

asagidaki kosullar1 sagliyorsa, bu yapiya cisim adi verilmektedir.

1. (F,+) kiimesi, toplama islemi altinda agagidaki 6zellikleri saglamaktadir.

* Toplama islemi kapalidir: Va,b € F,a+b €F

Toplama islemi degismelidir: a +b=b +a

Toplama igleminin birlesme 6zelligi vardir: (a + b)+c=a+(b+c)

Toplama isleminin birim eleman1 vardir: 30 € F dyle ki, a + 0 =a

Her elemanin toplama islemine gore ters elemani vardir: Ya € F,3(—a) € F
oyle ki, a+ (—a)=0

2. (FF\ {0}, ) kiimesi, carpma iglemi altinda sagidaki 6zellikleri saglamaktadir.
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* Carpma islemi kapalidir: Va,b € F\ {0},a- b € F\ {0}

* Carpma islemi degismelidir: a-b=1>b-a

* Carpma isleminin birlesme 6zelligi vardir: (a-b)-c=a-(b-c)

* Carpma isleminin birim eleman1 vardir: 31 € F, 1 #0, 6yle ki, a-1=a

 Sifir hari¢ her elemanin ¢arpma iglemine gore ters elemani vardir: Va €
F\{0},da ' €Foyleki,a-a =1

3. Carpma, toplama isglemi lizerine dagilim 6zelligine sahiptir:

a-(b+c)=a-b+a-c ve (b+c)-a=b-a+c-a, Va,b,c€F.

Tamm 2.2 (Sonlu Cisim). Eleman sayis1 sonlu olan her cisim yapisina sonlu cisim denir.
Bu tiir yapilar genellikle p asal bir say1 ve n pozitif bir tam say1 olmak iizere F . ya da FF .
(Galois Cismi) bigiminde gosterilir. Bu yapidaki toplam eleman sayisi, cismin mertebesi

ya da derecesi olarak adlandirilir.

Ornek 2.1. Asagida bazi sonlu cisim 6rnekleri verilmistir:

F,: Eleman kiimesi {0, 1} olan, iki elemanl sonlu cisim.

- Fys: {0,1} elemanlarma ve 23 = 8 farkli birlesim bigimine sahip ii¢ bitlik

genisletilmis sonlu cisim.

- F,.: {0,1} elemanlarma ve 2* = 16 farkli birlesim bigimine sahip dort bitlik

genisletilmis sonlu cisim.

F,: Eleman kiimesi {0, 1, 2,3} olan, dort elemanlt sonlu cisim.

Tanim 2.3 (Polinom). n > 0 tam sayis1 olmak iizere, bir polinom asagidaki sekilde ifade
edilir: .
f(xX)=ax"+a, 1 x" "+ +a;x +aq =Zaixi (2.1)
i=0
Burada, q; katsayilar S kiimesine ait elemanlar olup, a, # 0 kosulunu saglamaktadir.
Derecesi sifir olan polinomlar sabit polinom olarak adlandirilir ve bu polinomlar, dogrudan
S kiimesinin bir elemanini temsil eder. Eger en yiiksek dereceli katsay1 a,, = 1 ise, bu
polinom monik polinom olarak isimlendirilir. Katsayilarin olusturdugu kiime bir halka
veya cisim oldugunda, sirasiyla polinom tabanli halka veya polinom tabanli cisim terimleri

kullanilir.
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Tammm 2.4 (indirgenebilir ve Indirgenemez Polinomlar). Bir f(x) polinomu, derecesi
deg(f) > 1 olmak iizere, eger iki polinom g(x) ve h(x) var ise ve deg(g) < deg(f),
deg(h) < deg(f) kosullarimi saglayarak f(x) = g(x) - h(x) bigiminde yazilabiliyorsa,
f (x) indirgenebilir; aksi takdirde indirgenemez polinom olarak tanimlanir.

Teorem 2.1. BirF cismi iizerinde tanimli ve derecesi birden biiyiik bir f (x) polinomu icin,
Flx]/(f (x)) kiimesi toplama ve ¢carpma iglemleriyle bir polinom tabanli halka olugturur.
Ayrica, eger f(x) indirgenemez bir polinom ise, F[x]/(f (x)) yapist polinom tabanli bir

cisimdir.

Bu teorem uyarinca F[x]/(f(x)), f(x) polinomuna gére modiiler indirgeme

islemi sonrasinda elde edilen yap1 olarak yorumlanabilir.

Tez ¢alismasinda, F,./p(x) bi¢iminde ifade edilen sonlu cismi tanimlamak
icin kullanilan indirgenemez polinom, gosterim kolaylig1 saglamak amaciyla onaltilik
(hexadecimal) bigimde sunulmustur. Bu yaklagimda, ilgili polinomun katsayilari ikili
(binary) vektor dizisine doniistiiriilerek gosterilir ve bu ikili gosterimin onaltilik karsilig:
kullanilir. Ornegin, F,; /(x3+x%+1) indirgenemez polinomu, (1101) ikili dizisi ile temsil

edilir ve bu ifade onaltilik sistemde Ox D olarak yazilir. Benzer sekilde:

Fo./(x*+ x +1) = (00010011) = 0x13,
Fo./(x*+ x*+1) = (00011001) = 0x19

seklinde doniisiimler yapilmaktadir.

Bu indirgenemez polinomlarin yani sira, a ile gosterilen bir ilkel eleman
kullanilarak olusturulan F,,. / p(x) sonlu cisminin elemanlari da ¢aligma siiresince onaltilik
bicimde gosterilmektedir. Ornek olarak, Cizelge 2.1, F,./(x* + x + 1) cismine ait

elemanlar1 ve bu elemanlarin a cinsinden gosterimlerini icermektedir.
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Cizelge 2.1. F,./(x* + x + 1) Cismindeki Elemanlarin Gosterimi

Onaltilik Gosterim Cisim Elemam (a cinsinden)

1h a0=1

2, al=a

3, at=a+1

4h a2

5, a®=a%+1

6, @’ =a*+a

7 a®=a*+a+1
A —

8h a3

9 = ad+1

A, a’=a’+a

B, a=a+a+1
Cy a®=a®+ a?

Dy, aP=a*+a*+1
E, a'=a*+a*+a
F, a?=a*+a’+a+1

F,n/p(x) sonlu cisminin elemanlar iizerinde toplama iglemi, mod 2 alinarak
(ikili toplama) gerceklestirilir. Carpma islemi ise, olusan polinomun p(x) polinomuna

gore indirgenmesiyle elde edilir.

Ornek 2.2. F,,/0x13 sonlu cisminin D, ve E, elemanlarinin toplami ve carpimi agagidaki
gibidir.
Oncelikle D, = a® + a? + 1 ve E, = a® + a® + a oldugundan toplama iglemi:
A+al+l1+@+al+a)=a+al+1+al+a’+a=a+1

yani D;, + E, = 3;, olarak bulunur.

Carpma islemi ise su sekilde hesaplanir:
(B+al+D)x(@P+a?+a)=a’+a’+a*+a’+a*+al+a® +a’+a
Burada a® = a® + a2 oldugundan,
A+t +at+a’+at+ral+al+ai+a=at+a

yani ¢arpim A; elemanina esittir.
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Tanmim 2.5 (Dogrusal Doniisiim). Elemanlari
A:({0,1}")" — ({0, 1}™)"

seklinde tanimlanan bir fonksiyon, (2.2) ifadesindeki gibi dogrusal doniisiim olarak

adlandirilir:

ap; Ay -t Qg X1
dy; dyy -+ Qgy Xy

Ax)=A-x=| 7 T |-|. (2.2)
an1 Qpp " Apy Xn

Burada (a;;) matrisi dogrusal doniisiimiin katsayilarim gosterir. Eger m = 1
alinir ve bu katsayilar I, cisminden secilirse, dontisiim ikili dogrusal doniigiim olarak

adlandirir.

Tammm 2.6 (Hamming Agirhigi). wt(C) ifadesiyle gosterilen Hamming agirhigi, bir
C kod kelimesinde bulunan 1 degerlerinin sayisi olarak tamimlamr. Ornegin, C =

{0,1,0,1,0,0, 1} kod kelimesi i¢in Hamming agirhig: 3’tiir.

Tamm 2.7 (Hamming Uzaklig1). F,. cismi elemanlarindan olusan iki n boyutlu kod
kelimesi arasindaki Hamming uzakligi, bu kelimelerde aym1 konumda yer alan fakat
farkl1 degerlere sahip bilesenlerin sayisidir. Ornegin, C; = {1,0,1,1,1,1,1} ve C, =
{1,0,1,1,1,0,0} kod kelimeleri arasindaki Hamming uzaklig1 2 olarak hesaplanir.

Tamim 2.8 (Yayilim Katmanindaki Dal Sayisi). Girdi farki vektorii x € F \{0}, girdi
farki vektoriiniin dogrusal doniisiim altindaki ¢iktist L(x) ve Hamming agirligi wt(x)
ile tammlandiginda; yayilim katmanindaki dal sayisi, diferansiyel ve dogrusal dal sayis1

olmak iizere iki sekilde hesaplanir.

Tamim 2.9 (Diferansiyel Dal Sayis1). Diferansiyel dal sayis1 (differential branch number),
B4 ile gosterilmekte olup diferansiyel kriptoanalize karg1 yayilim dlciisiidiir ve girdi farki

vektoriiniin ¢iktiya etkisini olger.

Ba(A) = min(w(x) + we(L(x))) 23)

Tanim 2.10 (Dogrusal Dal Sayis1). Dogrusal dal sayisi (linear branch number), f; ile
ifade edilmekte olup dogrusal kriptoanalize kars1 yayilim Ol¢iisiidiir ve girdi maskesinin
ciktiya etkisini dlger.

Ar(A) = min(we(x) + we(L” (x))) (2.4)
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Tanim 2.9 ve 2.10 dogrultusunda, bir ikili dogrusal doniistimiin dal sayis1 (branch
number), sifirdan farkli tiim giris vektorleri icin giris ve cikis vektorlerinin Hamming
agirliklari toplaminin alabilecegi en kiiciik degere karsilik gelmektedir. Bununla birlikte,
bir dogrusal doniistimiin dal sayisi, birbirini takip eden iki dongiide bulunan aktif

S-kutularinin en diistik siniridir.

Tanmmm 2.11 (Birim Matris). Ana kosegen lizerinde yer alan elemanlar1 1, diger tiim
konumlardaki elemanlar1 ise O olan n X n boyutundaki kare matrisler birim matris olarak

adlandirilir ve genellikle I,, veya I sembolleri ile ifade edilir.

Tanmim 2.12 (K6segen Matris). Bir matrisin tiim satir ve siitun indisleri i # j igin a;; =
0 olacak sekilde tanimlandig1 durumda, bu matris kosegen (diyagonal) matris olarak
adlandirilir. Bu tiir matrislerde yalnizca ana kdsegen tizerindeki elemanlar sifirdan farkl

olabilir.

Tamim 2.13 (Simetrik Matris). Gergek sayilar kiimesinde tanimli bir A matrisi icin A" = A

esitligi saglaniyorsa, bu matris simetrik matris olarak adlandirilir.

Tanimm 2.14 (Involutif Matris). Bir matris A € GL(n,F,), kendisinin ¢arpimsal tersi

olacak sekilde tanimlanabiliyorsa, yani
A =T, (2.5)

esitligi saglaniyorsa, A matrisine involutif (tersi kendisine esit) matris denir. Bu tiir
matrisler, dogrusal doniisiimlerin terslenebilirligini aynm1 maliyetle saglayabildikleri i¢in

blok sifreleme algoritmalarinda tercih edilmektedir.

Tanmm 2.15 (Semi-involutif Matris). A € GL(n,F,) matrisinin involutif olmamasi

durumunda, eger ¢ € F \ {0, 1} i¢in asagidaki kosul saglaniyorsa:

A =T (2.6)

n

bu durumda A matrisine semi-involutif (yar1 involutif) matris denir. Yar1 involutif matrisler,
involutif matrislerin genellestirilmis bir bi¢imidir ve terslenebilirlige benzer kolayliklar

sunarken, daha genis bir tasarim uzayina olanak tanir.

Tanim 2.16 (Ortogonal Matris). A € F"*" bir kare matris olmak iizere, eger A matrisinin

kendisiyle transpozunun ¢arpimi birim matris veriyorsa:

A-AT =1 2.7)

n

bu durumda A matrisine ortogonal matris adi verilir.
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Tanim 2.17 (Singiiler Olmayan Matris). A € F*" matrisinin carpimsal tersi olan bir

B € F™" matrisi mevcutsa, yani:
AB=BA=1, (2.8)

esitligi saglaniyorsa, A matrisine singiiler olmayan (ya da nonsingular) matris denir.

Tanmm 2.18 (Dairesel Matris). Bir dairesel matris (circulant matrix), ilk satirindaki
elemanlarin saga dogru dairesel olarak kaydirilmasiyla elde edilen satirlardan olusur.
a;; = Xg,Xq,...,X,—1 olmak lizere, bir dairesel matris C agagidaki bigimde tanimlanir
(Davis, 1979):

Xo X7 X 0 Xpg
. Xp—1 Xo X3 0 Xpo
C=circ(Xg, X1y, Xp_1) = ) A ) (2.9)
X1 Xp X3z - Xy

Tamim 2.19 (Hadamard Matris). A, ve A; olmak iizere, her biri 2"~! x 2"~! boyutlarinda
Hadamard matrisleri olsun. Bu durumda, 2" x 2" boyutunda olusturulan Hadamard matrisi
H, asagidaki sekilde tanimlanir ve bu yapiya Hadamard matris denir (Hedayat & Wallis,
1978):

(2.10)

Ay A
H=had(A0,A1)=[ 0 1]

A1 Ag

Tamm 2.20 (Genellestirilmis Hadamard Matris). F,. sonlu cismi {izerinde tanimli olmak
iizere, b; € F,n \ {0} bir katsay1 ve a,, a; € F,n olmak iizere, Tanim 2.19°deki H matrisinin
2 x 2 boyutundaki genellestirilmis versiyonu asagidaki gibi tanimlanir (Pehlivanoglu vd.,
2018):

2.11)

b
GH = Ghad(ay,a,; by) = |: fo 4 1i|

-1
a,b] a,

Benzer sekilde, genellestirilmis Hadamard matrisinin 4 x 4 boyutundaki formu
asagidaki gibidir (Pehlivanoglu vd., 2018):

ao a; by ayb, asbs
a,;b;? a a;b7'b, a,b’'b
GH = Ghad(ay, ay; by, ay; by, as; by) = | Y 0_1 . L 3
a,b, azb, a, a,; b, b,
asb;' a,b;'b; a;b;'b, a,
(2.12)
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Tamim 2.21 (Singleton Sinir1). F,. cismi iizerinde tanimli bir [n, k, d ] parametreli kod
i¢in;

k : (Fym)" vektor uzayinin boyutunu,

n : Bu uzaydan secilen her bir vektoriin bilesen sayisini,

d : Secilen herhangi iki kod vektorii arasindaki en kii¢iik Hamming uzakligini ifade

eder.

Bu baglamda, dogrusal [n, k, d ] kodlarinin saglamakla yiikiimlii oldugu d < n —
k+1 esitsizligi, Singleton sinir1 olarak adlandirilmaktadir (MacWilliams & Sloane, 1977).

Tamm 2.22 (MDS Kodlar). Bir dogrusal [n,k,d] kodu olan C, eger d = n—k + 1
kosulunu sagliyorsa, bu durumda C maksimum uzaklikta ayrilabilen (Maximum Distance
Separable - MDS) bir kod olarak tanimlanir.

Tamim 2.23 (Urete¢ Matrisi). [n, k, d] biciminde bir dogrusal kod i¢in, G matrisine iireteg
matrisi denir ve bu matris k x n boyutunda olup, satirlart kod uzayinin tabanini olusturan

vektorlerden meydana gelir.

Teorem 2.2. Eger bir dogrusal kodun iirete¢c matrisi G = [I,A] bicimindeyse ve bu kod

d = n—k+ 1 Singleton simirint sagliyorsa, bu durumda A matrisi bir MDS matristir.

Tanim 2.24 (MDS Matrisler). MDS matrisler, MDS kodlardan tiiretilir ve agagidaki temel
ozellikleri tasirlar (Pehlivanoglu vd., 2018):

i) n x n boyutundaki bir matrisin tiim kare alt matrislerinin determinantlari sifirdan

farkli ise, bu matris bir MDS matristir.
ii) MDS bir matrisin tiim elemanlar sifirdan farkli olmalidir.

iii) Eger bir n x n matris MDS 06zelligi tasiyorsa, bu matrisin diferansiyel dal sayis1 ile

dogrusal dal say1s1 aynidir ve dal sayis1 n + 1°dir.
iv) MDS bir matrisin transpozu da MDS 6zelligini korur.

v) MDS bir matrisin satir veya siitunlari, F,. cismindeki sifirdan farkli bir eleman ile

carpildiginda, ortaya ¢ikan yeni matris de yine MDS matristir.
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Tanmmm 2.25 (MDBL Kodlar). Elemanlar1 F, cismine ait olan matrisler ikili matrisler
olarak adlandirilir. n x n boyutundaki bir ikili matrisin maksimum dal sayist, ikili [2n, n]

dogrusal kodlarin elde edebilecegi en yiiksek uzakliga esittir.

Bu dogrultuda, ikili dogrusal kodlarin maksimum uzakliga sahip olabilmesi i¢in,
s0z konusu kodlara ait minimum ve maksimum uzaklik sinirlarinin birbirine esit olmasi
gerekmektedir. Bu tiir kodlara, maksimum uzakliga sahip ikili dogrusal kodlar (Maximum
Distance Binary Linear Codes - MDBL) adi verilir.

Cizelge 2.2. Ikili [2n, n] Kodlara Ait Maksimum Dal Sayilart

n  Erisilebilir Deger Teorik Simir || n  Erisilebilir Deger Teorik Sinir
1 2 2 17 8 8
2 2 2 18 8 8
3 3 3 19 8 9
4 4 4 20 9 10
5 4 4 21 10 10
6 4 4 22 10 10
7 4 4 23 11 11
8 5 5 24 12 12
9 6 6 25 10 12
10 6 6 26 10 12
11 7 7 27 11 13
12 8 8 28 12 14
13 7 7 29 12 14
14 8 8 30 12 14
15 8 8 31 12 15
16 8 8 32 12 16

Cizelge 2.2 incelendiginde, n > 18 i¢in n X n boyutlu MDBL matrislerin
maksimum dal sayisinin heniiz kesin olarak belirlenemedigi goriilmektedir. Bu nedenle, bu
boyutlardaki matrisler icin hem teorik sinir hem de erisilebilir deger birlikte ele alinmalidir.
Ornegin, [64,32] dogrusal kodlarinmn (n = 32) maksimum dal say1sinin erisilebilir degeri
12 iken, teorik tst sinir1 16’dir. Bagka bir deyisle, 32 x 32 boyutundaki bir ikili matrisin

ulagilabilen en yiiksek dal sayis1 12 olarak bilinmektedir.

Tanim 2.26 (Sabit Nokta Sayisi). A bir dogrusal doniisiim ve x bu doniisiimiin giris
vektorii olmak iizere, A-x = x esitligi saglaniyorsa, x vektorii bu doniisiimiin sabit noktasi
olarak adlandirilir. Yani, dogrusal doniisiim A eylemi sonucunda x vektorii kendisine es
bir vektore doniisiiyorsa, x sabit noktadir (Z’aba, 2010).
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A= 1. 1=1. (2.13)
app dpp o0 dpg Xn Xn

A matrisinin ve birim matris I’nin n x n boyutunda oldugu ve giris vektorlerinin

m-bitlik elemanlar icerdigi varsayilirsa, sabit noktalarin tamami asagidaki gibi elde edilir:

A+Dx"=0 (2.14)

Bu ifade matrisin rank bilgisiyle birlikte degerlendirilerek sabit nokta sayis1 su

sekilde hesaplanir:

SabitNok ta, = 2m(rank(A)—rank(A+I)) il 2m(n—rank(A+I)) (2 15)

Tamim 2.27 (XOR Kapis1). Ozel VEYA (eXclusive OR) olarak bilinen XOR kapis, iki
girig aym oldugunda O, farkli oldugunda ise 1 ¢iktisi iireten bir mantik kapisidir ve &

sembolii ile gosterilir.

Cizelge 2.3. XOR Kapis1 Dogruluk Tablosu

ab Y
0 0 O
0 1 1
1 0 1
1 1 0

Bu kapinin Boole cebri ifadesi Y = a’b + ab’ seklindedir.

Tanim 2.28 (XOR Sayis1). XOR(a), F,n cismi iizerinde tanimli bir p(x) polinomunun bir
elemant olan a ile ayni cisimde yer alan baska bir 3 elemaninin carpimini gerceklestirmek

icin gerekli XOR kapisi sayisini belirtir.

Tanim 2.29 (Matrislerde XOR Sayis1). F,» cismi lizerinde tanimli n X n boyutundaki bir
M matrisinin belirli bir satirindaki XOR sayisi, asagidaki sekilde tanimlanir (Khoo vd.,
2014):

M matrisinin bir satirinin XOR sayist = (y1,75, -, 1) +(n—1)-m (2.16)

Burada y;, satirdaki i. elemanin XOR sayisini; n, satirda sifirdan farkli eleman
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sayisini; m ise sonlu cismin mertebesini temsil eder. Tim satirlar i¢in bu islem

tekrarlanarak, matrisin toplam XOR sayisi elde edilir.

Tanim 2.30 (Devre Derinligi). Dogrusal bir katmanin fiziksel bir devre seklinde
uygulanmasi sirasinda, bir giris bitinden baslayip bir cikis bitine ulasan ve lizerinde
en fazla sayida ardisik XOR kapis1 bulunan yol, kritik yol olarak tanimlanir. Bu yol,
girigten ¢ikisa veri akisinin en uzun zaman aldig1 hesaplama dizisini temsil eder. Devre
derinligi, bu kritik yol iizerindeki XOR islemlerinin sayis1 ile Ol¢iiliir ve birim zamanda
gerceklestirilebilecek islem sayisini belirleyen saat frekansi {izerinde dogrudan etkilidir.
Bu nedenle, devre derinligi yalnizca alan verimliligi degil, ayn1 zamanda zamanlama
performansi acisindan da temel bir metrik olarak degerlendirilir (Li, Sun, Li, Wei & Hu,
2019).
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BOLUM 3

OPTIiMiZASYON YONTEMLERI

R herhangi bir halka olmak iizere, M, (R) kiimesi R halkasindan segilen girdilerle
olusturulan tiim n x n boyutlu matrisleri ifade etmektedir. Benzer sekilde, M, (M;(F,))
ifadesi, her bir eleman1 M;(F,) kiimesinden segilen tiim n x n matrislerin olusturdugu
kiimeyi tanimlar. Bu kiimede yer alan herhangi bir M matrisi, nl x nl boyutlarinda bir

ikili matris olarak temsil edilebilir.

M,(F,) icerisinde yer alan bir difiizyon matrisi, sonlu sayida XOR kapisi
kullanilarak gerceklestirilebilir. Diisiik X OR say1s1, donanim alaninin verimli kullanimiyla
dogrudan iligkilidir (Khoo vd., 2014). Maksimum dal sayist kriterine sahip olmalar
nedeniyle MDS matrisler ideal difiizyon tabakalar1 olustursa da, uygulama agisindan
yliksek maliyet dogurabilirler. Yazilim tarafinda, tablo tabanli optimizasyonlar ve bellek
kisiti olmamasi nedeniyle bu maliyet biiyiik ol¢lide goz ardi edilebilir. Ancak donanim
uygulamalarinda, sonlu cisim carpimlarinin gergeklestirilmesi énemli Ol¢iide donanim
kaynagi gerektirir. Bu nedenle, minimum X OR islemiyle gerceklestirilebilecek matrislerin
tercih edilmesi, modern kriptografik sistemlerde 6nemli bir tasarim ilkesi haline gelmistir.
Genel olarak diisiik Hamming agirligina sahip elemanlar, donanimda daha az kaynak
gerektirdiginden avantajlidir. Bu durum, bir difiizyon matrisinin se¢iminde kritik bir 6l¢iit
olarak degerlendirilir. Ornegin, AES blok sifresinin difiizyon matrisindeki katsayilar Ox1,
0x2 ve Ox3 gibi diisiik maliyetli elemanlardan sec¢ilmistir (Daemen & Rijmen, 2002).
Ancak, Khoo ve arkadaglar: tarafindan yapilan caligmada bu yaklagimin her zaman gegerli
olmadigi, secilen indirgenemez polinoma ve ¢carpma igleminin indirgenme bi¢imine bagl
olarak yiiksek Hamming agirligina sahip bazi katsayilarin oldukca diisiik X OR maliyetiyle

uygulanabildigi gosterilmistir.

Asagida verilen ti¢ ornek, Tanim 2.28 ve Tanim 2.29 kullanilarak, belirli bir
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sonlu cisim elemaninin farkli indirgenemez polinomlar altinda XOR maliyetini ve 4 x 4

boyutundaki bir matrisin toplam XOR islemi sayisini hesaplamay1 gostermektedir.

Ornek 3.1. (bs, b,, by, by), Fp/0x13 cismi iizerinde tanimh rastgele bir 3 elemaninin
ikili gosterimi olmak {iizere, ayni cisimde tanimli a = 8, elemani ile ¢carpimin XOR

maliyeti su sekilde hesaplanir:
(1,0, 0, 0)-(b3, bz: bl: bo) = (bo ® b3, bz ® ba, b1 ® bz, bl)

Bu igslem sonucunda, F,4/0x13 cisminde a = 8, elemaniyla yapilan ¢arpim i¢in gereken
XOR sayis1 3’tiir.

Ornek 3.2. (bs, b,, by, by), Fo./0x19 cismi iizerinde tanimli rastgele bir 8 elemaninin
ikili gosterimi olmak lizere, ayni cisimde tamimh a = 8, elemani ile ¢arpimin XOR

maliyeti su sekilde hesaplanir:
(1,0,0,0).(bs, by, by, by) = (b, ® b, ® b, ® by, by, b, ® by, b; & b, ® by)
Bu durumda, F,4/0x19 cisminde ayni eleman ile ¢arpim 6 adet XOR islemi gerektirir.

Bu orneklerden agikca anlasilacag iizere, bir elemanla ¢arpim isleminde ortaya
cikan XOR sayisi, tamimli olunan sonlu cismin indirgenemez polinomuna baglh olarak
onemli Olciide degiskenlik gostermektedir. Sim ve arkadaglarmin 2015 yilinda yaptigi
calismada, indirgenemez polinom se¢iminin bu varyasyon iizerindeki etkisi kapsamli
bir sekilde incelenmis ve elde edilen sonuglar dogrultusunda, XOR sayilarinin dagilim
ozelliklerinin polinomdan polinoma farklilik gosterdigi ortaya konmustur. Bu ¢alismada,
s0z konusu dagilimlar standart sapma ile nicel olarak degerlendirilmis ve yiiksek standart
sapma degerlerinin, daha fazla sayida diisiik X OR maliyetli eleman icerdigine, dolayisiyla
optimizasyon agisindan daha avantajli matrislerin olusturulabilecegine isaret ettigi
belirtilmistir. Cizelge 3.1, Fo. cismi lizerinde tanimli 0x13, 0x19 ve Ox1f indirgenemez
polinomlart icin, tiim elemanlarla gerceklestirilen carpim iglemlerine karsilik gelen XOR
sayilar1 ve bu degerlerin dagilimlarina ait standart sapma dl¢iimlerini 6zetlemektedir (Sim,
Khoo, Oggier & Peyrin, 2015).

Indirgenemez polinomun XOR sayisi lizerindeki etkisinin anlagilmasi, dzellikle
kriptografik uygulamalarda kullanilan matrislerin optimizasyonu agisindan kritik bir
oneme sahiptir. Cilinkii sonlu cisim elemanlarinin ¢arpimi, bu tiir uygulamalarda temel
islem adimlarindan biri olarak yogun hesaplama maliyetlerine yol acabilmektedir.
Bu nedenle, uygun indirgenemez polinom sec¢imi, yalmzca c¢arpma islemlerinin
karmasikligini azaltmakla kalmayip, ayn1 zamanda donanim ve yazilim tasariminda enerji

verimliligi ve hiz agisindan da 6nemli avantajlar saglamaktadir. Sim ve arkadaslarinin
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analizinde ortaya ¢ikan dagilim farkliliklari, optimize edilmis algoritmalarin gelistirilmesi
icin bir rehber niteligindedir ve bu sayede, diisiik XOR sayisina sahip elemanlarin
belirlenmesi ile daha performansli ve giivenli kriptografik yapilar olusturulabilmektedir.
Ayrica, farkli polinomlarin karsilagtirllmasi, uygulama gereksinimlerine gore ideal
indirgenemez polinomun se¢imini miimkiin kilmakta ve bu da esnek ve oOlceklenebilir

sonlu cisim aritmetigi ¢oziimlerinin gelistirilmesini desteklemektedir (Sim vd., 2015).

Cizelge 3.1. F,; Cisminde indirgenemez Polinoma Gore XOR Sayilart

. .. XOR Sayilan
Onaltiik Gosterim Cisim Elemani 0x13 Ox19 Ox1f
0 0 0 0 0
Ox1 1 0 0 0
0x2 o 1 1 3
0x3 a+1 5 3 5
0x4 a? 2 3 3
0x5 a’+1 6 5 5
0x6 a’+a 5 2 6
0x7 a?+a+1 9 6 6
0x8 a® 3 6 3
0x9 a®+1 1 8 5
Oxa ad+a 8 5 6
Oxb a+a+1 6 9 6
Oxc a’ + a? 5 1 6
Oxd ad+a’+1 3 5 6
Oxe ad+a’+a 8 6 5
Ox f a+a*+a+l 6 8 3
Standart Sapma 2,68 2,68 1,71

Ornek 3.3. F,./0x13 cismi iizerinde tammli H = had(Oxa, 0xb,0x9,0x f ) Hadamard

matrisinin toplam X OR maliyetini belirlemek i¢cin Tanim 2.29 uyarinca su adimlar izlenir:

- Cizelge 3.1°dan alinan degerlere gore, matrisin ilk satirindaki elemanlarin toplam
XOR sayis1 (84+6+1+6)=21dr.

- (Sifir olmayan eleman sayis1 — 1) x Cisim derecesi = 3 x 4 = 12 XOR olarak

hesaplanir.
- Ik satir igin toplam X OR maliyeti 21 + 12 = 33 olarak elde edilir.

- Bu hesaplama, tiim satirlar i¢in ayni sekilde yapilir. Hadamard matris 6zelligi geregi

satirlar egdeger oldugundan, toplam maliyet 33 x 4 = 132 olarak bulunur.
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XOR sayis1, hesaplama agisindan sade ve uygulanabilir bir metrik olsa da,
minimum XOR sayisina sahip bir gerceklestirme elde etmek oldukca karmagik bir
problemdir. Bunun temel nedeni, literatiirde XOR sayisiyla iligkili dl¢iitlerin yalnizca iist
sinirlar1 belirlemesi; buna karsilik alt sinirlar1 ifade eden genel gecer bir Olciitiin mevcut
olmamasidir. F,, cismi lizerinde tanimli n x n boyutundaki matrislerin XOR maliyetini
hesaplamaya yonelik genel bir yontem ilk kez Khoo ve arkadaslar1 tarafindan sunulmustur
(2014). Bu calismanin ardindan, literatiirde XOR islemlerinin sayisini minimize eden
difiizyon matrislerini bulmak amaciyla iki temel yaklagimin 6ne ¢iktig1 goriilmektedir. Tlk
yaklasim olan yerel (local) optimizasyon teknikleri, difiizyon matrisinin her bir bileseninin
XOR maliyetini ayr1 ayr1 degerlendirip iyilestirmeye calisirken; ikinci yaklagim olan
kiiresel (global) optimizasyon teknikleri, matrisi bir biitiin olarak ele almakta ve mn x mn

boyutunda ikili matrisler tizerinde dogrudan optimizasyon yapmaktadir.
3.1. Yerel Optimizasyon

Yerel optimizasyon yontemleri, XOR sayisint minimize etmeye yonelik iki farkli
Olciit sunmaktadir. Bunlardan ilki, Khoo vd. (2014) tarafindan Onerilen ve Jean vd.
(2017) tarafindan dogrudan X OR sayis1 olarak adlandirilan dlgiittiir. Bu dl¢iit, matrisin her
satirinin bagimsiz olarak islendigi, dogrudan (naive) bir donanim uygulamasina karsilik
gelmektedir. Literatiirde en yaygin kullanilan bu yontem, genellikle "ham XOR sayis1"

ifadesiyle esanlamlidir.

Ikinci olgiit ise Jean vd. (2017) tarafindan tamimlanan ve sirali XOR sayisi
olarak adlandirilan yaklagimdir. Bu 6l¢iit, ekstra bellek kullanilmadan, yerinde (in-place)
islemlerle gerceklestirilen sirali uygulamalarda ortaya ¢ikan minimum X OR islem sayisini
ifade eder.

3.1.1. Dogrudan XOR Sayis1

Dogrudan XOR sayist (Direct XOR Count), M matrisinin DXC(M) veya d —
XOR(M) seklinde gosterilen bir 6lciitiidiir. Ornek 3.3’de hesaplanan H matrisinin XOR
maliyeti aslinda bu 0Olciite karsilik gelmektedir. F,» gibi bir sonlu cisim elemani, F,
cisminde tanimli m boyutlu ikili vektdrlerle temsil edilebildiginden (bkz. Ornek 3.1 ve
3.2), bu temsil dogrultusunda, F,.’de sifirdan farkli bir a eleman: ile ¢arpma islemi,
F,’de taniml1 m x m boyutlu bir sol carpim matrisi ile ifade edilebilir. Genellikle M, ile
gosterilen bu matrisin XOR maliyeti, a elemaninin d — XOR degeri olarak adlandirilir
(Beierle, Kranz & Leander, 2016; Sarkar & Sim, 2016; Sim vd., 2015).

Bu baglamda, d — X OR 6lgiitiiniin bigimsel tanimi1 asagida verilmistir:

Tamim 3.1 (Dogrudan X OR Sayist). Fyn/p(x) cisminde tanimli bir a elemaninin d —XOR
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degeri, a : B — af} islemini gerceklestirmek i¢in gereken X OR iglem sayisini ifade eder.
Burada w, M, carpma matrisinin Hamming agirligi; r ise matrisin satir sayis1 olmak

tizere, dogrudan X OR sayis1 asagidaki gibi tanimlanir:

d—XOR(M,)=wM,—r (3.1

Bu olgiit, yalmzca XOR islemi gereksiniminin tst simirint ifade eder; gercek
uygulamalarda sirali optimizasyon teknikleri sayesinde daha diisiik maliyetler elde
edilebilir.

3.1.2. Sirali XOR Sayisi

Sirali XOR sayis1 (Sequential XOR Count), bir sonlu cisim elemaniyla yapilan
carpma isleminin optimize edilmis uygulamasinda ortaya ¢ikan en az XOR islem sayisini
temsil eder (Beierle vd., 2016). Bu 6l¢iit, genellikle SXC(M) veya s —XOR(M) seklinde
gosterilir ve dogrudan XOR sayisinin azaltilmasina yonelik onerilmistir (Jean, Peyrin,
Sim & Tourteaux, 2017). Yerinde algoritmalarla gerceklestirilen uygulamalarda, elde
edilen ¢iktilar dogrudan girigin iizerine yazilabilir veya giris bilesenlerinin konumlarini
degistirebilir. Bu tiir algoritmalarin ¢ogu ek bellek kullanimina ihtiya¢ duymaz. s —XOR
oOl¢iitli, bu tiir uygulamalarin ardigik bir XOR islem dizisiyle gerceklestirilmesini esas
alir. Uygulamadaki bazi sinirlamalara ragmen, s — XOR degeri bircok durumda d —XOR

degerinden onemli ol¢iide diisiik olabilir.

Asagida s — X OR olgiitliniin bi¢cimsel tanimi1 verilmigtir:

Tanmm 3.2 (Sirali XOR Sayisi). Fyn/p(x) cisminde tanimli bir a elemaninin s — XOR
degeri, carpma isleminin sol ¢arpim matrisi olan M, kullanilarak gerceklestirildiginde
ortaya cikan minimum XOR islem sayisimi belirtir. Bu minimum, tiim olasi islem
siralamalar1 g6z Oniinde bulundurularak elde edilir ve s — XOR(M,,) ile gosterilir (Jean
vd., 2017).

Ornek 3.4. F,;/0xb cisminde tammli @ = 6, elemannin, rastgele bir 3 elemam
(b,y, by, by) ile carpilmast durumunda d —XOR ve s —XOR degerleri asagidaki sekilde
elde edilmektedir:

(1’ 1) 0)(b2) bls bO) = (bO & b23 bl & b2s bl) ® (bla bO ® bZ) bZ)
= (bo ® by ® by, by ® by, b, D,)
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Bu igleme ait carpim matrisi:

111 b, bo® b, ® b,
Ma: 0 1 1 5 Ma' b] == bo@b]
110 b b, @ b,

M, nin Hamming agirhigt w = 7, satir sayis1 r = 3 oldugundan, denklem 3.1
kullanilarak d —XOR(M,) = 7 —3 = 4 XOR sonucu elde edilir.

s—XOR degeri i¢in ise, hesaplanan bilesenlerin bazilari birbirlerinin ara adimlarin
icerdiginden, optimizasyon yapilabilir. Ornegin, dnce b, ®b, elde edilip, ardindan bu deger
b, ile XOR’lanarak ilk bilesen elde edilebilir. Bu islem sirast ile toplamda yalnizca 2 XOR
islemi gereklidir. Boylece s —XOR(a) = 2 XOR sonucuna ulagilir.

3.2. Kiiresel Optimizasyon

Kiiresel optimizasyon teknikleri, difiizyon matrisinin bir biitiin olarak ele
alindig1 ve her elemanin tek tek incelenmesinden ziyade tiim matrisin ikili forma
dontistiiriilmesiyle analiz edildigi yontemleri kapsamaktadir. Bu yaklasimda, 0zel olarak
bu amac icin gelistirilmis cesitli yazilim aracglar1 kullanilmaktadir (Duval & Leurent,
2018; Kranz, Leander, Stoffelen & Wiemer, 2017). Kiiresel optimizasyonun temel hedefi,
literatiirde “En Kisa Dogrusal Diiz Cizgi Programi” (Shortest Linear Straight Line

Program—SLP) olarak adlandirilan optimizasyon problemine etkili ¢oziimler iiretmektir.
3.2.1. En Kisa Dogrusal Diiz Cizgi Programi (SLP)

Bir dizi dogrusal ifadenin hesaplanmasinda gereken islem sayisinin minimize

edilmesi problemi, En Kisa Dogrusal Program (SLP) olarak adlandirilir.

A, IF, lizerinde taniml1 m x n boyutundaki bir sabit matris ve x, F, izerinde taniml1
n degiskenli bir vektor olsun. Bu durumda SLP, belirli bir formatta olan her program satiri

icin A - x’1 hesaplayan minimum satir sayisina sahip programi bulmay1 amaclar.

V, {xg,x1,...,Xx,_1} giris degiskenlerini i¢eren I, iizerinde tanimli bir degisken

kiimesi olsun. v;, v; € V olmak iizere, her program satir1 su formattadir:

/-_
V=V 4,

Bu program satirinin ¢aligtirilmasiyla yeni degisken v’ kiimeye eklenir:

V:i=Vu{v}
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Yeni degisken v’ artik sonraki program satirlarinda kullanilabilir duruma gelir.

Program, 3(v4,...,Vv,,) € V™ kosulu saglandiginda A- x’i hesaplar ve su esitlik elde edilir:

A-x=0y,...,v,)"
En Kisa Dogrusal Program, kriptografi alaninda en zorlu ve kapsamli hesaplama
problemlerinden biri olarak kabul edilmektedir. Bu problem, I, cismi iizerinde yalnizca
XOR kapilarinin kullanildig1 bir devre tasariminda, belirli bir dogrusal fonksiyonun en

kisa hesaplama yolunu belirlemeye karsilik gelmektedir.

SLP problemine 6rnek olarak AES sifreleme algoritmasinin MixColumns ve
SubBytes asamalarindaki dogrusal doniisiim optimizasyonu verilebilir. Ancak bu teknik,
S-kutular1 gibi dogrusal olmayan islemlerde kullanilamaz, bu durumda SAT (Satisfiability

Solver) ¢oziiciiler kullanilir.

SLP probleminin temelinde, belirli bir ikili matrisin her bir ¢ikt1 bitini tiretmek i¢in
gereken minimum XOR islemi sayisin1 bulmak yatmaktadir. Bu dogrultuda gelistirilen
cesitli algoritmalar, dogrusal doniisiimlerin donanimsal maliyetini azaltmak amaciyla
kullanilmaktadir. Paar tarafindan gelistirilen yontem, ortak alt ifadeleri belirleyerek XOR
islemlerinin sayisini diistirmeyi hedeflemekte ve boylece daha verimli ¢izgi programlari
tiretmektedir (Paar, 1997). Bu yaklasim takip eden 6nemli ¢aligmalardan biri de Boyar
ve Peralta tarafindan Onerilen BP algoritmasidir. Bu algoritma, cikiglarin her birini
hesaplamak icin yeniden kullanilabilir ara ifadeleri sistematik olarak analiz etmekte
ve bu sayede toplam XOR sayisini minimize eden optimize edilmis ¢izgi programlari
olusturmaktadir (Boyar & Peralta, 2010). BP algoritmasi, 6zellikle biiyiik boyutlu dogrusal
doniistimlerde hem dogruluk hem de verimlilik acisindan basarili sonuclar vermekte olup,
kriptografik yapilarin donanimda diisiik kaynak tiiketimiyle gerceklestirilmesine olanak
tanimaktadir.

3.2.1.1. Paar Algoritmasi

Acgozlii algoritma sinifina dahil olan Paar Algoritmasi (Paar, 1997), diger acgozlii
algoritmalarda oldugu gibi ¢6ziime en yakin se¢imi yapar. Bu se¢im her zaman optimal
olmasa da, zaman faktoriiniin kritik oldugu ¢alismalarda BP algoritmasina kiyasla biiyiik

Olcekli matrisler iizerinde XOR sayisinin azaltilmasinda etkilidir.

XOR sayisinin minimize edilmesi istenen A matrisi icin Paar algoritmasi su

adimlan takip eder:

1. Hamming agirlig1 en yiiksek olan siitunlar AND islemi kullanilarak belirlenir.
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2. Bu iglemle XOR iglemleri sirasinda en ¢ok tekrarlanan x; ve x; elemanlari tespit

edilir.

3. Elde edilen carpim siitununa "newClmn" ad1 verilerek matrise eklenir ve A matrisi
genigletilir. Bu gekilde yeni girig degiskeni v = x; @ x; elde edilir.

4. Mevcut siitunlara "oldClmn" adi verilir ve su iglem uygulanir:

0ldClmn « oldClmn & newClmn

Bu son islemle gereksiz XOR iglemleri elimine edilir.
3.2.1.2. Boyar-Peralta (BP) Algoritmasi

Boyar-Peralta algoritmast (Boyar & Peralta, 2010), F, cismi iizerinde tanimh
m x n boyutlu bir A matrisi i¢in f (x) = A- x degerini hesaplar ve en kisa lineer diiz ¢izgi
programini bulmay1 hedefler.

Algoritma, baslangicta sadece (x;, X5, X3,...,X,) giris degiskenlerinden olusan
M tabam olusturur. Daha sonra, A matrisinin satirlarinin M kiimesine olan dogrusal

fonksiyonlarinin Hamming uzakliklarindan olusan bir uzaklik vektorii Uzk[-] tanimlanir.

Eger f;, A matrisinin i-inci satir1 tarafindan verilen dogrusal fonksiyon ise, Uzk[i],

M tabanindan f;’yi elde etmek i¢in gereken minimum fonksiyon sayisin1 verir.

Baglangicta Uzk[i], i-inci satirinin Hamming agirhigindan 1 eksiktir. Algoritma

su dongiiyii uygular:
1. M kiimesinden iki temel eleman secilir ve XOR islemine tabi tutularak elde edilen
yeni eleman M kiimesine eklenir.
2. Uzk[i] vektorii, M kiimesine eklenen yeni elemandan dolay1 giincellenir.

3. Tiim i degerleri i¢in Uzk[i] = O elde edilinceye kadar adimlar tekrarlanir.

Herhangi bir asamada M kiimesinin boyutu t ise, yeni temel eleman secimi icin

(;) secenek bulunur. Secim kriterleri ise asagidaki gibidir:

1. Giincellenmis Uzk[-] dizisinin elemanlarinin toplamini minimize eden elemanin

secimi

2. Esitlik durumunda, giincellenmis Uzk[-] dizisinin Oklid normunu maksimize eden

elemanin secimi
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Bu yaklagimin mantig1, [0,0,3,1] gibi bir uzaklik vektoriiniin [1,1,1,1]
vektdriine tercih edilmesi ilkesine dayamir. Ikinci durumda 4 XOR kapisi gerekirken,

birinci durumda 3 XOR kapisi ile Uzk[-] = 0 esitligine ulasilabilir.

Bu iki algoritma, bir difiizyon matrisinin uygulanmasinda ihtiya¢ duyulan XOR
kapilarinin sayisimi azaltarak devre alani lizerinde iyilestirme saglamay1 hedefleyen 6zel
araclara dayanmakta olsa da, bu uygulamalarin degerlendirilmesinde dikkate alinmasi
gereken bir diger onemli kriter de gecikmedir. Gecikme, bir devrenin c¢alisabilecegi
maksimum saat frekansin belirleyen temel bir sinirlayicidir ve Tanim 2.30’da aciklanmis

olan devre derinligi ile ifade edilir.

Li, Sun, Li, Wei ve Hu’nun ¢alismasinda (2019), Boyar-Peralta algoritmasi devre
derinligi gozetilerek yeniden yapilandirilmistir. Bu kapsamda, algoritma belirli bir derinlik

sinirint agmayan sinyallerin se¢imini Oncelikli hale getirecek bi¢imde uyarlanmaistir.
3.2.1.3. Superior Boyar-Peralta (SBP) Sezgisel Algoritmasi

Literatiirdeki en giincel yaklagimlardan biri olan Superior Boyar-Peralta (SBP)
algoritmasi (Pehlivanoglu & Demir, 2024), Boyar-Peralta (BP) sezgiselinin gelistirilmis
bir versiyonudur. Bu algoritmanin temel amaci, bir lineer katmanin devresini temsil eden
En Kisa Dogrusal Diiz Cizgi Programlari (SLP) i¢in hem iki girigli XOR kapilarinin
sayisint hem de devre derinligini minimize etmektir. Bu sayede 6zellikle diisiik gecikmeli

(low-latency) devreler elde etmede oldukca basarilidir.

SBP, Boyar-Peralta’nin temel yapisini kullanmakla birlikte, yeni taban elemanlarini
secerken farkli ve daha kontrollii bir yap1 sunar. Algoritmanin temel isleyisi ve getirdigi

yenilikler su sekilde 6zetlenebilir:

* Esik Degeri ve Aday Havuzu: SBP, her adimda degerlendirilecek potansiyel eleman
ciftlerinin sayisini sinirlamak i¢in bir esik degeri kullanir. Diger algoritmalarin
aksine tiim olasiliklar1 tiiketerek arama uzayini genigletmek yerine, SBP en iyi
adaylardan olusan bu havuzu dikkatlice yonetir. Bu, arama uzayini daraltarak daha

verimli bir sekilde optimum sonuca ulasmay1 saglar.

* Rastgelelestirme Adimi: Aday havuzundaki en iyi c¢iftler arasindan birini
secmek icin tekdiize tamsay1 dagilimi (uniform integer distribution) kullanan bir
rastgelelestirme adimi igerir. Bu yaklagim, algoritmanin yerel optimal noktalara
takilip kalmasini onlemeye yardimei olur.

+ Oklid Normu ve Derinlik Farkindahgi: Yeni bir taban elemam segilirken,

giincellenmis uzaklik vektériiniin Oklid normunu maksimize eden ve ayn1 zamanda
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belirlenen devre derinligi smirin1 agsmayan ciftlere Oncelik verir. Bu kriter,

optimizasyon siirecine gecikme metrigini dogrudan dahil eder.

Tez c¢alismasinda, Onerilen yOntemle tasarlanan yari-involutif matrislerin
donanimsal maliyet acisindan optimize edilmesi de amaclanmisti. Bu dogrultuda,
dogrusal doniisiimlerin mantiksal kapi1 seviyesinde en diisiik kaynak kullanimiyla
uygulanabilmesini saglayan Paar algoritmasi ile Boyar-Peralta (BP) ve onun
gecikme hassasiyeti gozetilerek gelistirilmis hali olan Superior Boyar-Peralta (SBP)
algoritmalarindan yararlamilmigtir. S6z konusu algoritmalar kullanilarak, yari-involiitif

matrislerin XOR say1sin1 minimize edecek sekilde yeniden yapilandirilmasi saglanmustir.
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BOLUM 4

YARI INVOLUTIF MDS MATRISLERIN CEBIRSEL TASARIMI

Bu boliimde, tez calismasinin temelini olusturan yari involutif MDS matrislerin
iiretilmesine yonelik gelistirilen metodoloji sunulmaktadir. Izlenen yontem, oncelikle
literatiirdeki mevcut involutif MDS matrislerinin Magma hesaplamali1 cebir sistemi
kullanilarak {iiretilmesini, ardindan bu matrislerden faydalanarak yar1 involutif yapilarin
tiiretilmesini kapsamaktadir. Son olarak, elde edilen yeni matrislerin donanim verimliligini

artirmak amaciyla uygulanan XOR optimizasyon teknikleri detaylandirilmaktadir.
4.1. Hesaplamal Cebir Sistemi: Magma

Tez kapsamindaki yogun cebirsel hesaplamalarin gerceklestirilmesi, dogrulanmasi

ve analizi icin Magma hesaplamali cebir sistemi tercih edilmistir.

Magma projesi, 1980’lerin sonunda Sydney Universitesi’nde Prof. John Cannon
liderliginde, Cayley sisteminin devami olarak baglatilmigtir. Sistemin temel tasarim
felsefesi, "kesin matematiksel nesneler iizerinde dogru ve verimli hesaplama yapmak"
olarak Ozetlenebilir. Bu dogrultuda Magma; sonlu/sonsuz gruplar, halkalar, cisimler,
eliptik egriler ve kriptografik yapilar gibi matematiksel nesneler i¢in Ozellesmis veri
tipleri ve 2000’den fazla yerlesik fonksiyon sunarak hem yiiksek performans hem de

matematiksel dogruluk saglar (“Magma Computational Algebra System”, 2025).

Bu calismada Magma, 6zellikle asagidaki alanlardaki giiclii yetenekleri nedeniyle

kritik bir rol oynamustir:

* F,. gibi sonlu cisimler iizerindeki polinom aritmetigi,

e MDS ve involutif/yar1 involutif matrislerin parametrik formiillere dayali olarak

sistematik uretimi,
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e Uretilen matrislerin 6zelliklerinin (tersinirlik, MDS kosulu vb.) dogrulanmasi.

Asagidaki cizelge, Magma’da sikca kullanilan bazi temel komutlan

ozetlemektedir.
Cizelge 4.1. Magma’da Temel Komut Ornekleri
Amacg Komut
Oturumu baslatma $ magma
Sonlu cisim tanimi F<a>:= GF(248);
Carpanlara ayirma Factorization(x*12 - 1);
Matris ve riitbe M:= Matrix([[1,0,1],[1,1,0],[0,1,1]1]1); Rank(@D;
Grup tanimi G:= SymmetricGroup(5);
AES alaninda tersleme | b:= F!0x57; bA(-1);

4.2. Involutif MDS Matrislerin Insasi

Bu tezde, oncelikle involutif MDS matrislerin iiretimi icin literatiirde yer alan
iki temel yontemden faydalanilmistir. Bunlardan ilki, 3 x 3 boyutundaki matrisler i¢in
(Giizel, Sakalli, Akleylek, Rijmen & Cengellenmis, 2019) tarafindan sunulan dogrudan
inga yontemi, ikincisi ise 4 x 4 boyutundaki matrisler i¢in (Tuncay vd., 2023) tarafindan

gelistirilen hibrit yontemdir.
4.2.1. 3 x 3 Boyutlarindaki MDS Matrisler icin Dogrudan insa Yontemi

Bu yontemde, matrisin involutif olma kosulu (A> = I) temel alinarak matris
elemanlar1 arasinda cebirsel iligkiler kurulur ve tiim 3 x 3 boyutlarindaki involutif MDS

matrislerini iiretebilen bir form sunulur.

Teorem 4.1. (3 x 3 Involutif Matris Formu) F.,. iizerinde 3 x 3 boyutlu bir A matrisinin
involutif olabilmesi icin, elemanlart a,,, a,, kosegen elemanlari ve sifirdan farkli by, b, €

Fom parametreleri cinsinden asagidaki gibi ifade edilebilir (Giizel vd., 2019):

arp = (ag; +1)bg

a3 = (a;; + 1)by

Ay = (ay + 1)b51

Ay = (ayy + 1)b51b1
az = (a;; + azz)bl_l
as, = (a;; + azz)bl_l b,

Q33 =dq; +dyy +1
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Kamt. A= [a;;]matrisinin involutif olmasi, A> = I kosulunu gerektirir. Bu durum, A*’ nin

elemanlari ¢;; = Zk:l a;ay; igin ¢; = 1 ve ¢;; = 0 (i # j) denklemlerini verir.

Kosegen Elemanlari (¢; = 1)

afl +a,0y +aq3a3; =1 4.1)
a21a12 + a§2 + a23a32 =1 (4.2)
a31a13 + a32a23 + a§3 =1 (4.3)

Bu ii¢ denklemin F,, cisminde taraf tarafa toplanmasiyla (a;; + d,, + as3)* = 1

elde edilir, bu da agagidaki temel iliskiyi ortaya cikarir:

a;;+agy +as; =1 4.4)

Kosegen Digi Elemanlar (c;; = 0)

a15(ay; + ag) = aj3as, 4.5)
aj3(as; +ass) = anas; (4.6)
ay1(asq +az) = axas; 4.7)

Denklem (4.4) kullanilarak bu sistem ¢oziildiigiinde, 9 bilinmeyenli denklem

sistemi 4 parametreye (a;;, dy9, by, b;) indirgenir ve teorem kanitlanmig olur. [ |

Bu formdaki bir matrisin MDS olmas: icin ise tiim kare alt matrislerinin
determinantlarinin sifirdan farkli olmasi gerekir. Bu kosul da asagidaki kisitlamalarla

saglanir:

ay1,d # 0,1

ap; 7 g

ajp +axp #1

by, by € Fyn — {0}

S6z konusu bu yontem ile F,; cisminde tanimli Oxb ve Oxd indirgenemez
polinomlarmmin her biri i¢in 1176’sar adet, F,, cisminde tanimli Ox13 ve Ox19
indirgenemez polinomlarinin her biri icin ise 37800 er adet, 3 x 3 boyularinda involutif
MDS matris elde edilebilmektedir (Giizel vd., 2019).
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4.2.2. 4 x 4 Boyutlarindaki MDS Matrisler icin Hibrit Yontem

4 x 4 boyutlarindaki iligkilerin karmasiklig1 nedeniyle, dogrudan formiil bulmak
yerine iki agsamal1 bir hibrit yontem gelistirilmistir. Birinci asamada, "Temsilci Matrisler"
(RIM) ad1 verilen 6zel Ozelliklere sahip matrisler kiimesi arama yOntemi ile tespit
edilmektedir. Ikinci asamada ise bulunan her RIM’den yeni parametreler kullanarak
involutif MDS matrislerin tiimii dogrudan tasarim yontemi ile elde edilmektedir (Tuncay
vd., 2023).

Tamm 4.1. 4 x 4 boyutlarindaki bir Temsilci Involutif Matris (RIM), asagidaki iki kosulu

sa8lar:

1. Matrisin ana kosegen elemanlarinin XOR toplami 0’dur.

2. Matrisin herhangi bir satirindaki (ve stitunundaki) elemanlarin XOR toplami 1°dir.

Bu kosullar, arama uzayini 6nemli 6l¢iide daraltarak verimli bir arama yapilmasini
miimkiin kilar. Bulunan her bir Temsilci Involutif MDS matrisi R = [r; j] kullanilarak ve
sifirdan farklt by, b,, b; € F,» parametreleri yardimiyla, involutif ve MDS o6zelliklerini

koruyan yeni bir A = [a;; ] matrisi iretilir.

' r12by r13by r14b3
-1 -1 -1
A_I:a ]_ ry1 b} I'22 ry3by by roubl by
N e -1 -1 -1
raby Trapb; by I'33 r34by b3

-1 -1 -1
rby” Tyby by Te3byT b, 44

Bu iiretim, satir/siitun carpmalarinin bir kombinasyonudur ve bir matrisin MDS
ozelliginin bu tiir islemler altinda korunmast ilkesine dayanir. ilgili yontem kullanilarak,
Fys sonlu cismi ilizerinde tanimlanmig olan OxB ve OxD polinomlarinin her biri i¢in
48 involutif ve MDS matris temsilcisi bulundugu, ardindan b; parametreleri involutif
MDS matris temsilcilerine uygulandiktan sonra toplamda 48 - (23 — 1)} = 16.464
adet 4 x 4 boyutunda involutif ve MDS matris elde edildigi, F,4 sonlu cismi lizerinde
tanimlanan Ox13 polinomu ig¢in ise 71.856 involutif ve MDS matris temsilcisi oldugu
ve b; parametreleri involutif MDS matris temsilcilerine uygulandiktan sonra toplamda
71.856-(2*—1)% = 242.514.000 =~ 227-%> adet 4 x 4 boyutunda involutif ve MDS matris
elde edildigi belirtilmistir (Tuncay vd., 2023).
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4.2.3. Parametrik Formiiller ve Magma ile Uretim

Yukarida 6zetlenen iki yaklasim, sirasiyla 3 x 3 ve 4 x 4 boyutundaki involutif
MDS matrislerin parametrik olarak elde edilmesini saglar. Bu parametreler, hem matrisin
tersinin kolayca hesaplanmasini hem de determinantlarin sifirdan farkliliginin dogrudan

kontroliini mimkiin kilar.

Bu matrislerin pratikte elde edilebilmesi amaciyla Magma sistemi kullanilmugtir.

Siire¢ su adimlart icerir:

1. Cisim ve Polinom Tammm: ikili cisim uzantisim (Fy,F,. vb.) olusturan
indirgenemez polinom yiiklenir. Ornegin: P<z>:= PolynomialRing(GF(2));
p:= z*+z+1; F<x>:= ext<GF(2) |p>;

2. Parametre Uzay1 ve Dongiiler: Involutif formiillerde yer alan parametreler

tizerinde i¢ ice for dongiileri olusturularak tiim olas1 kombinasyonlar taranir.

3. Matris Insas1 ve Kontrol: Her parametre kombinasyonu i¢in matris, Magma’nin
A := Matrix(...) komutuyla olusturulur ve A2 = T ile involutif olma,
(MinimumWeight([I|A])) ile ise dal sayis1 hesaplanip MDS olma kosullar1 kontrol

edilir.

4. Sonuclarin Kaydedilmesi: Tiim kosullar1 saglayan matrisler, PrintFile

komutuyla bir dosyaya kaydedilir.

Bu prosediir, parametlerle tanimlanmig tiim involutif MDS matrislerinin iiretilmesine

olanak saglar.
4.3. Yari-involutif Matrislere Gecis ve Uretim
Tekil olmayan (nonsingular) bir kare matris A icin A~! ifadesi, A matrisinin tersini

temsil etmek lizere, eger D; ve D, diyagonal (kOsegen) matrisler ise,

A™''=D,AD,

esitligini saglayan A matrisine yari involutif matris denilmektedir (Chatterjee & Laha,
2023; Cheon, Curtis & Kim, 2021).

Teorem 4.2. A= |:a

:| seklinde tamimlanan 2 x2 boyutlu tekil olmayan bir ikili matris
c

34



yart involutif ise ve

Kamt. 1 Yari involutif matris tanimina gore, A~ = D;AD, esitligi asagidaki gibi

diizenlenebilir:

i'd—b_elO'ab'flo_elflaelfzb 438
Al——c a| |0 eflc d|]0o f| |efic efod (+8)

Bu matris esitliginden asagidaki dort denklem elde edilir:

~d=e fia (4.9)
_Klb =e,fyb (4.10)
_ch =e,fC (4.11)
%a =e,f,d (4.12)

Denklem (4.10) ve (4.11) sadelestirildiginde ise asagidaki iki denklem elde edilir:

1

—<=ef (4.13)
1

—< =ef (4.14)

Denklem (4.13) ve (4.14) carpildiginda denklem (4.15),

1
erexf1fy = Az 4.15)

Denklem (4.13) ve (4.14) taraf tarafa boliindiigiinde ise denklem (4.16) elde edilir:

a_h (4.16)
e [
Denklem (4.8) ve denklem (4.9) yardimiyla
& _a fi 4.17)
a e fo .
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elde edilir ve denklem (4.16) ile (4.17) birlikte kullanilarak denklem (4.16) asagidaki

forma dontistiiriiliir:
d)* (e’
- ={— (4.18)
a e,

F, sonlu cismi iizerinde ¢alisildigr g6z Oniine alindiginda, denklem (4.18) asagidaki
sekilde gosterilebilir:

d
£=4a (4.19)
a e,
Bu durumda e, ve f, asagidaki sekilde yazilabilir:
a a
€y = Eel fa= Efl (4.20)

Denklem (4.15) ve (4.20) birlikte kullanildiginda f; elemant i¢in son esitlik agsagidaki gibi
elde edilebilir:

f 2~ (4.21)

Son durumda A matrisinin tersi asagidaki matrislerin ¢arpimi olarak yazilabilir ve bu

matrisler Teorem 4.2 kosullarin1 saglar.

d 1 1
A_1:|:el 0 j|-A-|:E'Z'Z 101:|
a
0 361 0 a‘z

1 T d T

~ 0 = 0
= . 1 a A ‘

0 % 7l 0 1_

Teorem 4.3. A, involutif MDS bir matris ve ¢ € Fyn — {0,1} olsun. Bu durumda A
matrisinin ¢ skaleri ile carpimina esit (yani B = ¢ - A) olan bir B matrisi, yart involutif bir
MDS matrisi olacaktir.

Kamit. B = c-Aesitligini diisiinelim. Esitligin her iki tarafinin karesi alinarak, B> = c?-A?
esitligi elde edilebilir. A matrisi bir involutif matris oldugundan, son denklemdeki A’nin
karesi birim matris ile degistirilebilir; diger bir deyisle B> = ¢ - I esitligi yazilabilir.
Boylece, B = ¢+ B~ veya B! = % - B = (3I) - B - (2I) esitlikleri elde edilebilir. Bu
da B matrisinin yar1 involutif oldugunu gostermektedir. Bununla birlikte ilgili tanimda

verilen kosegen matrisler i¢cin de D; = D, = %I esitligi yazilabilir. Ayrica, A matrisi
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MDS oldugundan bu matrisin tiim alt determinantlar1 sifirdan farklidir. Bu nedenle c - A
matrisinin alt determinant degerleri c,c?,c®- - c¢™in katlar1 oldugundan B = c - A matrisi

de yine MDS olacaktir. Dolayisiyla Teorem 4.3’{in sartlar1 saglanmaktadir. [

Sonuc 4.1. Yukaridaki teoremin bir sonucu olarak, ¢ € Fy. — {0, 1} oldugu goz Oniine
alindiginda calismada kullanilan yontem ile elde edilen yar1 involutif matrislerin sayisinin,

involutif matrislerin sayisinin 2™ — 2 katina esit oldugu ifade edilebilmektedir.

Yukarida belirtilen sonug uyarinca, bu tez ¢calismasinda 3 x 3 boyutlarinda F,; cismi
lizerinde 1.176 - (2% — 2) = 7.056 adet, F., cismi iizerinde 37.800 - (2* — 2) = 529.200
adet, 4 x 4 boyutlarinda ise F,; cismi iizerinde 16.464 - (2% —2) = 98.784 adet, F,: cismi
lizerinde 242.514.000- (2% —2) = 3.395.196.000 & 231:% adet yar1 involutif MDS matris
elde edilmigtir.

4.3.1. Yar: involutif Matrislerin Magma ile Uretimi ve XOR Optimizasyonu

Yar1 involutif MDS matrislerin iiretimi ve 6n elemesi Magma’da su adimlarla

gerceklestirilmistir:

1. Parametre Dongiileri ve Matris Uretimi: Onceki adimlarda iiretilen involutif
MDS matrisler ve olasi tiim skaler ¢ € F,., —{0, 1} degerleri i¢in B = ¢ - A matrisleri

olusturulur.

2. Yan1 Involutiflik ve MDS Kontrolii: Ilgili F,. cismi ic¢in B> = c? -
I.«m esitligi ile yart involutif olma kosulu kontrol edilir. Ayrica her bir B
matrisinin MDS kosulunu sagladig1 tekrar dogrulanir. 4 x 4 matrisler i¢in bu,

min(MinimumWeight([I,,,|B])) = 5 ifadesiyle gerceklestirilir.

3. ikili Matrise Déoniistiirme ve Ham XOR Sayis1 Hesabi: Donanim verimliligi icin
kritik olan XOR sayis1 hesaplanmasi amaciyla bu ¢calismada kullanilan algoritmalar
optimizasyon islemini ikili (binary) matrisler iizerinden gergeklestirdigi i¢in yari
involutif ve MDS kosullarin1 gercekleyen her B matrisi, Fon cismi lizerinde tanimli
indirgenemez polinomunun bir kokii olan a elemanini temsil eden bir lirete¢ matris
g kullanilarak GF2RepresentationMatrix(B, g) fonksiyonu ile ikili forma

doniistiiriiliir. Ardindan elde edilen her ikili matrisin ham XOR sayis1 hesaplanir.

4. On Eleme ve Kayit: Ozellikle Fy, cismi iizerinde tanimli 4 x 4 boyutlarindaki
matrisler i¢in gerek caligilan uzaymn biiyiikliigli, ve belirli ¢ skaleriyle olan
carpimlarinin XOR islem maliyetinin yliksek olmasi nedeniyle bu matrislere

hamXOR < 80 kisitlamasi eklenmistir. Bu kisitlamay1 ve diger tiim kogsullari
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B XOR Optimizasyon - Matris Yonetimi

EB Matrisler + Yeni Matris &, Toplu Yiikleme & Toplu Ters Alma @ Ters Matris Giftleri

Q  Baslkile ara... € Grupileara.. [ P Otomatik Toplu Hesaplama ‘ Y Filtreler
1-10 /1302158 matris gosteriliyor (Sayfa 1/130216) Sayfa boyutu: | 10 v « ' 2 3 .. 130216
x~2 ile carpilmis A715 matrisi (binary) ID: 11342 | @ Detay
Ham XOR: 28 En Kiigiik XOR: 16
[p1o0101001]
(101110100 Boyar: 16 (D:4) Paar: 19 SLP: 16
10001001 1]
moo1o1 0 0]
01011001 0] SBP: 16 (D:4)
Olusturulma: 27.05.2025 20:57:59 | Giincelleme: 05.06.2025 01:35:17
x"1ile carpilmis A1150 matrisi (binary) ID: 13951
Ham XOR: 31 En Kiigiik XOR: 17

10000101 0]
1010100101 Boyar: 17 (D:5) Paar: 19 SLP: 17
(001011100)

(010010100

10110101 0] SBP: 17 (D:5)

Olusturulma: 27.05.2025 20:58:06 | Giincelleme: 05.06.2025 01:36:30

Sekil 4.1. Web Uygulamas1 Ana Sayfa Goriintimii

saglayan matrisler, parametreleri ve ham XOR degerleriyle birlikte optimize edilmek

tizere kaydedilir.

Bu yaklasim, calismada kullanilan yontemle tutarli ve pratikte diisiik XOR
maliyeti gereksinimini karsilayan yar1 involutif MDS matrislerinin hem etkili bir bicimde

tiretilmesini hem de uygun kriterlere gore filtrelenmesini miimkiin kilmaktadir.
4.4. Matris Analizi ve Optimizasyonuna Yonelik Web Tabanh Bir Yazilim Sistemi

Uretilen matrislerin yonetimi, analizi ve optimizasyonu igin modern bir web
uygulamasi gelistirilmistir. Bu sistem, C++ tabanli mevcut komut satir1 araclarinin

sinirhiliklarini agmay1 hedefler.
4.4.1. Kullamilan Teknolojiler

* Go (Golang): Uygulamanin arka ug¢ servislerinin gelistirilmesinde, Google
tarafindan gelistirilen acik kaynakli bir programlama dili olan Go (Golang) tercih
edilmistir. Go dili, derlenmis bir dil olmasmin sagladig: yiiksek calisma zamani
performansi, yerlesik eszamanlilik yapilar1 sayesinde paralel islem yetenekleri
ve sade sOzdizimi ile sistem diizeyinde yazilim gelistirmeye elverisli bir ortam
sunmaktadir (Donovan & Kernighan, 2015). Bu 6zellikleri dolayisiyla, 6zellikle
yiiksek hacimli veri igsleme ve hizli API yanit siirelerinin kritik oldugu durumlarda
Go dili, giivenilir ve siirdiiriilebilir ¢ozlimler iiretmek adina uygun bir tercih olarak

degerlendirilmistir.

* PostgreSQL: Veri yonetimi katmaninda, iligkisel veritabani yonetim sistemleri
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arasinda acgik kaynakli ve gelismis Ozellikleriyle one ¢ikan PostgreSQL tercih
edilmistir. Sistem igerisinde milyonlarca matris verisinin giivenli, kalic1 ve
performansl bicimde saklanabilmesi amaciyla PostgreSQL’in gelismis indeksleme,
veri biitlinliigli ve sorgu optimizasyonu 6zelliklerinden faydalanilmistir (Momjian,
2001). Her bir matrisin benzersiz olarak tanimlanabilmesi i¢in 0zgilin anahtarlar
olusturulmus, ayrica sorgu performansini artirmak amaciyla uygun veri alanlarinda

indeksleme yapilmistir.

* Docker: Gelistirilen uygulamanin bagimliliklariyla birlikte izole ve tasinabilir bir
ortamda ¢aligtirilabilmesi amaciyla Docker teknolojisinden yararlanilmistir. Docker,
konteyner tabanli sanallastirma yaklagimi sayesinde yazilimin farkli ortamlarda
tutarl bir sekilde dagitilmasini ve ¢alistirilmasinit miimkiin kilar (Merkel vd., 2014).
Bu sayede gelistirilen sistemin kurulum siireci basitlestirilmis, liretim ortamina

geciste olusabilecek cevresel farkliliklarin etkisi en aza indirilmistir.

* JSON: Sistem bilesenleri arasinda veri aligverisi yapilirken, yaygin olarak kullanilan
ve insan tarafindan okunabilir bir veri serilestirme bicimi olan JavaScript Object
Notation (JSON) formati tercih edilmistir. JSON, 0Ozellikle web tabanli APT’ler
araciligiyla istemci-sunucu iletisiminde kolaylik ve esneklik saglayan bir standart
haline gelmistir (Bray, 2014). Bu calismada, matris verilerinin ve islem c¢iktilarinin
API iizerinden aktarimi JSON formatinda gerceklestirilmis, boylece hem istemci

hem de sunucu tarafinda veri igleme siirecleri sadelestirilmistir.

4.4.2. Sistem Mimarisi Bilesenleri

» Arka Ug Servisi (Backend API): Uygulamanin sunucu tarafi, yiiksek performansl
ve eszamanli iglem destegi saglayan Go programlama dili ile gelistirilmis RESTful

bir web servisi olarak yapilandirilmistir.

* Veri Tabam Katmani: Kalici, giivenli ve Olgeklenebilir veri saklama ihtiyaclari
dogrultusunda, iliskisel veritaban1 yonetim sistemi olarak PostgreSQL tercih

edilmistir.

+ On Yiiz (Frontend): Kullanic1 etkilesimini kolaylastirmak amaciyla, JavaScript

tabanli dinamik ve kullanic1 dostu bir web arayiizii gelistirilmistir.

+ Otomatik Veri Isleme ve ice Aktarma Modiilii: Uygulama baslatildiginda, belirli
bir dizindeki matris dosyalarin1 otomatik olarak algilar, bu verileri veritabanina
aktarir ve her bir matris lizerinde 6nceden tanimlanmis optimizasyon algoritmalarini

calistirir.
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» Ters Matris Hesaplama Bileseni: Ikili sonlu cisim GF(2) iizerinde tammh
matrisler i¢in Gaussian eliminasyon yontemi kullanilarak ters matris hesaplamasi

gerceklestiren 6zel bir modiil gelistirilmistir.

x”2 ile carpilmis A715 matrisi (binary) X

Matris Verisi Algoritma Sonuglan

Ham XOR Sayisi: 28
010101001
101110100
100010011
100101100

[ ]
[ I En Kiigiik XOR: 16
[ ]
[ ]
[010110010]
[ ]
[ ]
[ ]
[ ]

Grup: F273-x"3+x"2+1-(3x3)-mds-semi-involutif-binary

001010001

111100100 Boyar SLP:

011010010 XOR: 16

110001001 Derinlik: 4
» Program

Ters Matris Bilgisi )
Paar Algoritmasi:

Ters Matris ID: 11345 XOR: 19
» Program
© Ters Matrisi Goriintiile g
SLP Heuristic:
XOR: 16
» Program

SBP Algoritmasi:
XOR: 16

Derinlik: 4

» Program

Olusturulma: 27.05.2025 20:57:59
Son Giincelleme: 05.06.2025 01:35:17

m & Ters Matris Hesapla | | &GOl EaN R E)

Sekil 4.2. Web Uygulamasinda Matris Detay Goriiniimii

4.4.3. Uygulanan XOR Optimizasyon Algoritmalari

Sistem, verilen bir matris i¢in en diisiik XOR sayisiyla gerceklestirilebilecek
dogrusal devreyi elde etmeyi amaglayan dort farkli algoritmanin karsilastirmali analizini
gerceklestirmektedir. Bu algoritmalar, Boliim 3.2.’de detaylar: verilen XOR tabanli devre

optimizasyonu literatiiriinde 6ne ¢ikan farkli yaklagimlar1 temsil etmektedir.

1. Paar Algoritmasi: Hamming agirligina dayali acgozlii (greedy) bir algoritmadir.

2. SLP Heuristic: .Dogrusal devre sentezinde kullanilan bu yontem, hedef vektorlerin

minimum sayida XOR islemi ile elde edilmesini hedefleyen klasik bir yaklagimdir.

3. Boyar SLP: Matrislerdeki dogrusal devre sentezini daha pratik hale getirmek i¢in
tasarlanmis sezgisel bir algoritmadir. Geleneksel SLP Heuristic algoritmasindan
farkli olarak, optimizasyon siirecinde ayrica devre derinligini goz Oniinde

bulundurur.
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4. SBP (Superior Boyar-Peralta): Boyar-Peralta algoritmasinin gelismis bir varyanti
olan SBP algoritmasi, devre derinligini de dikkate almasinin yani sira dogrusal

devrelerde XOR sayisin1 azaltmaya yonelik iyilestirilmis stratejiler uygular.

Gelistirilen yazilimda calistirilan dort optimizasyon algoritmasinin sonugclarini
gosteren ekran goriintiisii ise asagidaki sekildedir. Ayrica her bir optimizasyon
algoritmasinda kullamilan adimlar1 gosteren detaylar da yazilim iizerinden

goriintiilenebilmektedir.

Algoritma Sonuglan

Ham XOR Sayisi: 72
En Kiciik XOR: 39

Grup: F274-x"4+x"3+1-(4x4)-mds-semi-involutif-binary

Boyar SLP:
XOR: 39
Derinlik: 6
» Program

Paar Algoritmasi:
XOR: 48
> Program

SLP Heuristic:
XOR: 39
» Program

SBP Algoritmasi:
XOR: 39

Derinlik: 6

» Program

Sekil 4.3. Optimizasyon Algoritmalar1 Sonuglari

Bu calismada gelistirilen teknigin uygulanmasiyla elde edilen 3 x 3 ve 4 x 4 yar1
involutif MDS matrislerine dair deneysel veriler sirasiyla besinci ve altinci boliimlerde

ele alinmaktadir.
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Boyar SLP:

XOR: 39

Derinlik: 6

¥ Program

[
"tl = x9 + x13 (1)",
"t2 = x0 + x5 (1)",
"t3 = x7 + x11 (1)",
"t4 = x8 + x12 (1)",
"t5 = x1 + x6 (1)",
"t6 = x2 + x4 (1)",
"t7 = x5 + t1 (2)",
"t8 = x3 + t7 * yl11l (3)",

"t9 = x10 + x14 (1)",

"t10 = x15 + t2 (2)",

"t1l = x8 + t10 *x y7 (3)",
"£12 = x1 + t3 (2)",

"t13 = x10 + t12 (3)",

"t14 = t1 + t13 *x y3 (4)",
"t15 = x6 + t9 (2)",

"t16 = x0 + t15 x y8 (3)",
"£17 = t13 + t15 % y12 (4)",
"t18 = x9 + t5 (2)",

"t19 = x12 + t18 x y4 (3)",
"t20 = t2 + t18 (3)",

"t21 = t14 + t20 * y15 (5)",
"t22 = t4 + t7 (3)",

"t23 = 120 + t22 *x y2 (4)",
"t24 = t6 + t22 x y10 (4)",
"t25 = x15 + t4 (2)",

"t26 = x4 + t25 (3)",

"£27 = t12 + t26 % y9 (4)",
"t28 = t8 + tl11 (4)",

"t29 = 126 + t28 x yl4 (5)",
"t30 = x7 + t6 (2)",

"t31 = t26 + t30 * y13 (4)",
"t32 = x11 + t22 (4)",
"t33 = t28 + t32 % y1 (5)",
"t34 = x10 + x13 (1)",
"t35 = 130 + t34 % y5 (3)",
"t36 = x11 + t6 (2)",

"t37 = t9 + t36 x y0 (3)",
"t38 = x14 + t26 (4)",
"t39 = t33 + t38 % y6 (6)"

Sekil 4.4. Ornek Bir Optimizasyon Isleminin Adimlar
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BOLUM 5

3 x 3 BOYUTLARINDAKI MATRISLERIN ANALIZi

Bu boliimde, F,s ve F,4 sonlu cisimleri iizerinde, farkli indirgenemez polinomlar
kullanilarak iiretilen 3 x 3 boyutlu yari-involutif MDS matrislerin analiz sonuglarina yer

verilmigtir. Elde edilen matris sayilar1 Cizelge 5.1°de 6zetlenmektedir.

Cizelge 5.1. 3 x 3 Boyutlarinda Uretilen Yar1 Involutif MDS Matris Sayilart

Sonlu Cisim | Indirgenemez Polinom | Matris Boyutu | Toplam Matris Sayisi
Fys 0xB 3x3 7.056
Fys 0xD 3x3 7.056
Fos 0x13 3x3 529.200
Fos 0x19 3x3 529.200

5.1. F,;/0xB Cismi Uzerinde Tanimh Matrisler

Bu alt boliimde, indirgenemez polinom olarak p(a) = 0xB kullanilarak elde edilen

ve en diisiik XOR sayisina sahip olan beg matris incelenmektedir.

Ornek 5.1. F,; cismi iizerinde tammli p(a) = OxB polinomunun bir kokii olan o

kullanilarak elde edilen involutif MDS matris:

a 3
2 2

1
A= |a? a?
at a o

R KR R

4

Ayni polinomun elemani olan a® ile carpilarak elde edilen yari-involutif MDS

matris:
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1 a® a?
Mi=|a a a
ai 1 of

M, yart-involutif MDS matrisinin ham XOR sayis1 32, optimizasyon yontemleri
ile elde edilen XOR sayisi Paar algoritmasina gore 18 olarak, BP Derinlik Onceliksiz
algoritmasina gore 17 olarak, BP Derinlik Oncelikli algoritmasina gére 5 derinlikte 17

olarak, SBP algoritmasina gore 5 derinlikte 17 olarak hesaplanmistir.

M, matrisinin tersi:

a? a ot
M= |d® o o
a® o> a

My ! matrisinin ham XOR sayis1 43, optimizasyon yontemleri ile elde edilen XOR
sayis1 Paar algoritmasina gore 22 olarak, BP Derinlik Onceliksiz algoritmasina gore 19
olarak, BP Derinlik Oncelikli algoritmasina gére 5 derinlikte 19 olarak, SBP algoritmasina

gore 5 derinlikte 19 olarak hesaplanmustir.

M, ve M ! matrislerinin XOR farki 2 olarak hesaplanmustir.

Ornek 5.2. F,; cismi iizerinde tammli p(a) = OxB polinomunun bir kokii olan o

kullanilarak elde edilen involutif MDS matris:

a2

a
A,=|a? o
a® a®> a®

Aymi polinomun elemani olan a® ile ¢arpilarak elde edilen yari-involutif MDS

matris:

1 a® a
My=]a a 1
at* a ot

M, yari-involutif MDS matrisinin ham XOR sayis1 31, optimizasyon yontemleri
ile elde edilen XOR sayis1 Paar algoritmasina gore 19 olarak, BP Derinlik Onceliksiz
algoritmasina gore 17 olarak, BP Derinlik Oncelikli algoritmasina gore 5 derinlikte 17

olarak, SBP algoritmasina gore S derinlikte 17 olarak hesaplanmustir.

44



M, matrisinin tersi:

a? a o
M= |d® o o
a® a® at

M ! matrisinin ham XOR sayis1 41, optimizasyon yontemleri ile elde edilen XOR
sayis1 Paar algoritmasina gore 22 olarak, BP Derinlik Onceliksiz algoritmasina gore 19
olarak, BP Derinlik Oncelikli algoritmasina gére 5 derinlikte 19 olarak, SBP algoritmasina

gore 5 derinlikte 19 olarak hesaplanmustir.

M, ve M ! matrislerinin XOR farki 2 olarak hesaplanmustur.

Ornek 5.3. F,; cismi iizerinde tammli p(a) = OxB polinomunun bir kokii olan o

kullanilarak elde edilen involutif MDS matris:

a

a a’®
As=|a a® a
at o o

Ayn1 polinomun elemani olan a® ile carpilarak elde edilen yari-involutif MDS

matris:

1 1 o
Mi=|1 a 1
a® a at

M, yari-involutif MDS matrisinin ham XOR sayis1 30, optimizasyon yontemleri
ile elde edilen XOR sayis1 Paar algoritmasina gore 18 olarak, BP Derinlik Onceliksiz
algoritmasina gore 17 olarak, BP Derinlik Oncelikli algoritmasina gére 4 derinlikte 17

olarak, SBP algoritmasina gore 4 derinlikte 17 olarak hesaplanmustir.

M, matrisinin tersi:

2 o o
M= |a® o o
a® a® a

M3 ! matrisinin ham XOR say1s1 42, optimizasyon yontemleri ile elde edilen XOR
say1s1 Paar algoritmasina gore 22 olarak, BP Derinlik Onceliksiz algoritmasina gore 19

olarak, BP Derinlik Oncelikli algoritmasina gore 4 derinlikte 19 olarak, SBP algoritmasina
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gore 4 derinlikte 19 olarak hesaplanmustir.
M ve My ! matrislerinin XOR farki 2 olarak hesaplanmustir.

Ornek 5.4. F,; cismi iizerinde tammli p(a) = 0xB polinomunun bir kokii olan a

kullanilarak elde edilen involutif MDS matris:

4

a a a
A,=|a a? a?
a® a a

Aymi polinomun elemani olan a® ile carpilarak elde edilen yari-involutif MDS

matris:

1 1 a
My=]1 a «a
a®> 1 at

M, yart-involutif MDS matrisinin ham XOR sayis1 30, optimizasyon yontemleri
ile elde edilen XOR sayisi Paar algoritmasina gore 18 olarak, BP Derinlik Onceliksiz
algoritmasina gore 17 olarak, BP Derinlik Oncelikli algoritmasina gére 4 derinlikte 17

olarak, SBP algoritmasina gore 4 derinlikte 17 olarak hesaplanmustir.

M, matrisinin tersi:

a2 o o
M4_1 =z o o3
at o o

M4_1 matrisinin ham XOR sayis1 42, optimizasyon yontemleri ile elde edilen XOR
sayis1 Paar algoritmasina gore 23 olarak, BP Derinlik Onceliksiz algoritmasina gore 19
olarak, BP Derinlik Oncelikli algoritmasina gére 4 derinlikte 19 olarak, SBP algoritmasina

gore 4 derinlikte 19 olarak hesaplanmustir.
M, ve M4_1 matrislerinin XOR farki 2 olarak hesaplanmustir.

Ornek 5.5. F,; cismi iizerinde tammli p(a) = OxB polinomunun bir kokii olan o

kullanilarak elde edilen involutif MDS matris:

a a
As=|a o &
1 & @
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Ayni polinomun elemani olan a* ile ¢arpilarak elde edilen yari-involutif MDS

matris:

a® o ot
M= |a® a® a?
o a2

M; yart-involutif MDS matrisinin ham XOR sayis1 42, optimizasyon yontemleri
ile elde edilen XOR sayis1 Paar algoritmasina gore 20 olarak, BP Derinlik Onceliksiz
algoritmasina gore 17 olarak, BP Derinlik Oncelikli algoritmasina gore 7 derinlikte 17

olarak, SBP algoritmasina gore 7 derinlikte 17 olarak hesaplanmustir.

M5 matrisinin tersi:

4 4 3

at at a
M;l =la* & «a
a2 a a

Mg ! matrisinin ham XOR say1s1 44, optimizasyon yontemleri ile elde edilen XOR
sayis1 Paar algoritmasina gére 19 olarak, BP Derinlik Onceliksiz algoritmasina gore 19
olarak, BP Derinlik Oncelikli algoritmasina gore 7 derinlikte 19 olarak, SBP algoritmasina

gore 7 derinlikte 19 olarak hesaplanmustir.

Ms ve M ! matrislerinin XOR farki 2 olarak hesaplanmustir.

Cizelge 5.2. F,; /0xB Cisminde Uretilen 3 x 3 Yar1 Involutif MDS Matrislerinin En
Diisiik XOR Degerlerine Gore Dagilimi

En Diisiik XOR | Toplam Matris Sayisi
17 160
18 1680
19 2980
20 1799
21 401
22 36

5.2. F,;/0xD Cismi Uzerinde Tamimh Matrisler

Bu alt boliimde, indirgenemez polinom olarak p(a) = OxD kullanilarak elde

edilen ve en diisiik XOR sayisina sahip olan beg matris incelenmektedir.

Ornek 5.6. F,: cismi iizerinde tanimhi p(a) = OxD polinomunun bir kokii olan a

kullanilarak elde edilen involutif MDS matris:
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o
— 5
A= | a
a

Aymi polinomun elemani olan a? ile garpilarak elde edilen yari-involutif MDS

matris:

a a a
M6 == ]. a5 1
a® 1 1

M, yart-involutif MDS matrisinin ham XOR sayis1 28, optimizasyon yontemleri
ile elde edilen XOR sayis1 Paar algoritmasma gore 19 olarak, BP Derinlik Onceliksiz
algoritmasina gore 16 olarak, BP Derinlik Oncelikli algoritmasina gére 4 derinlikte 16

olarak, SBP algoritmasina gore 4 derinlikte 16 olarak hesaplanmustir.
M, matrisinin tersi:
2 4 ot
a o

QR_KR R

6 3

a 3

Mg ! matrisinin ham XOR sayis1 44, optimizasyon yontemleri ile elde edilen XOR
sayis1 Paar algoritmasina gore 23 olarak, BP Derinlik Onceliksiz algoritmasina gore 19
olarak, BP Derinlik Oncelikli algoritmasina gére 4 derinlikte 19 olarak, SBP algoritmasina

gore 4 derinlikte 19 olarak hesaplanmustir.

Mg ve Mg ! matrislerinin XOR farki 3 olarak hesaplanmustur.

Ornek 5.7. Fy: cismi iizerinde tammli p(a) = OxD polinomunun bir kokii olan o

kullanilarak elde edilen involutif MDS matris:

a a® a
A,=|a® a? ot
a® o ot

Ayni polinomun eleman1 olan a' ile carpilarak elde edilen yari-involutif MDS

matris:
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M, yari-involutif MDS matrisinin ham XOR sayis1 36, optimizasyon yontemleri
ile elde edilen XOR sayis1 Paar algoritmasina gore 20 olarak, BP Derinlik Onceliksiz
algoritmasina gore 17 olarak, BP Derinlik Oncelikli algoritmasina gére 5 derinlikte 17

olarak, SBP algoritmasina gore 5 derinlikte 17 olarak hesaplanmistir.

M, matrisinin tersi:

1 a4 5
M7—1 — aZ a 3
a4 4

QRKR R

a )

M ! matrisinin ham XOR sayis1 44, optimizasyon yontemleri ile elde edilen XOR
sayis1 Paar algoritmasina gore 24 olarak, BP Derinlik Onceliksiz algoritmasina gore 19
olarak, BP Derinlik Oncelikli algoritmasina gére 5 derinlikte 19 olarak, SBP algoritmasina

gore 5 derinlikte 19 olarak hesaplanmustir.

M; ve M ! matrislerinin XOR farki 2 olarak hesaplanmustir.

Ornek 5.8. F,: cismi iizerinde tammli p(a) = OxD polinomunun bir kokii olan o

kullanilarak elde edilen involutif MDS matris:

a af 1
Ag=|a* a* at
o o8 o

Ayn1 polinomun eleman1 olan a! ile carpilarak elde edilen yari-involutif MDS

matris:

a? 1 «
Mg=|a® o o
& o o

Mg yari-involutif MDS matrisinin ham XOR sayis1 37, optimizasyon yontemleri
ile elde edilen XOR sayis1 Paar algoritmasina gore 20 olarak, BP Derinlik Onceliksiz
algoritmasina gore 17 olarak, BP Derinlik Oncelikli algoritmasina gore 6 derinlikte 17

olarak, SBP algoritmasina gore 6 derinlikte 17 olarak hesaplanmustir.
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Mg matrisinin tersi:

1 & a
Mg '=la a o
a® at ol

Mg ! matrisinin ham XOR sayis1 39, optimizasyon yontemleri ile elde edilen XOR
sayis1 Paar algoritmasina gore 21 olarak, BP Derinlik Onceliksiz algoritmasina gore 18
olarak, BP Derinlik Oncelikli algoritmasina gére 6 derinlikte 18 olarak, SBP algoritmasina

gore 6 derinlikte 18 olarak hesaplanmustir.

Mg ve Mg ! matrislerinin XOR fark1 1 olarak hesaplanmustur.

Ornek 5.9. F,: cismi iizerinde tammli p(a) = OxD polinomunun bir kokii olan o

kullanilarak elde edilen involutif MDS matris:

a a® a
Ag=|a? a* 1
a o> ot

Ayn1 polinomun elemani olan a® ile carpilarak elde edilen yari-involutif MDS

matris:

2

6

o
Mgy = a
a

—_ Q -
R KR R

3

M, yari-involutif MDS matrisinin ham XOR sayis1 31, optimizasyon yontemleri
ile elde edilen XOR sayis1 Paar algoritmasina gore 19 olarak, BP Derinlik Onceliksiz
algoritmasina gore 17 olarak, BP Derinlik Oncelikli algoritmasina gére 4 derinlikte 17

olarak, SBP algoritmasina gore 4 derinlikte 17 olarak hesaplanmustir.

M, matrisinin tersi:

a? at
Mi'=|a® o a
a? o o

Mg ! matrisinin ham XOR say1s1 43, optimizasyon yontemleri ile elde edilen XOR
say1s1 Paar algoritmasina gore 25 olarak, BP Derinlik Onceliksiz algoritmasina gore 19

olarak, BP Derinlik Oncelikli algoritmasina gore 4 derinlikte 19 olarak, SBP algoritmasina
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gore 4 derinlikte 19 olarak hesaplanmustir.

M,y ve My ! matrislerinin XOR farki 2 olarak hesaplanmustir.

Ornek 5.10. F,; cismi iizerinde tanimh p(a) = OxD polinomunun bir kokii olan a

kullanilarak elde edilen involutif MDS matris:

a a 1
Ap=1|1 o® a?
at* 1 ot

Aymi polinomun elemani olan a' ile garpilarak elde edilen yari-involutif MDS

matris:

2 o a
Mp=|a o &
a a

5 5

a
a

M, yari-involutif MDS matrisinin ham XOR sayis1 39, optimizasyon yontemleri
ile elde edilen XOR sayis1 Paar algoritmasma gore 23 olarak, BP Derinlik Onceliksiz
algoritmasina gore 17 olarak, BP Derinlik Oncelikli algoritmasina gére 7 derinlikte 17

olarak, SBP algoritmasina gore 7 derinlikte 17 olarak hesaplanmustir.

M, , matrisinin tersi:

1 1 o
M1_01 =|a® a a
a® a® ol

M 1_01 matrisinin ham XOR sayis1 31, optimizasyon yontemleri ile elde edilen XOR
sayis1 Paar algoritmasina gore 20 olarak, BP Derinlik Onceliksiz algoritmasina gore 18
olarak, BP Derinlik Oncelikli algoritmasina gére 7 derinlikte 18 olarak, SBP algoritmasina

gore 7 derinlikte 18 olarak hesaplanmustir.

M;, ve M1_01 matrislerinin XOR farki 1 olarak hesaplanmistir.

5.3. F,./0x13 Cismi Uzerinde Tammh Matrisler

Bu alt boliimde, indirgenemez polinom olarak p(a) = Ox13 kullanilarak elde

edilen ve en diisiik XOR sayisina sahip olan beg matris incelenmektedir.

Ornek 5.11. Fy cismi iizerinde tanimli p(a) = 0x13 polinomunun bir kokii olan a

51



Cizelge 5.3. F,;/0xD Cisminde Uretilen 3 x 3 Yar1 Involutif MDS Matrislerinin En
Diisiik XOR Degerlerine Gore Dagilimi

En Diisiik XOR | Toplam Matris Sayisi

16 1

17 152

18 1644

19 3060

20 1777

21 392

22 30

kullanilarak elde edilen involutif MDS matris:

a ot a2
Ay=a? o' o
ald g3 g3

Ayni polinomun elemam olan a' ile carpilarak elde edilen yari-involutif MDS

matris:

2 o8 ol
M, =|a® a2 qof
a* ol* gl

M, yari-involutif MDS matrisinin ham XOR sayis1 51, optimizasyon yontemleri
ile elde edilen XOR sayis1 Paar algoritmasina gére 26 olarak, BP Derinlik Onceliksiz
algoritmasina gore 22 olarak, BP Derinlik Oncelikli algoritmasina gére 6 derinlikte 22

olarak, SBP algoritmasina gore 6 derinlikte 22 olarak hesaplanmustir.

M;; matrisinin tersi:

1 a3 all
Ml_ll — all 10 a4
a12 12 12

M1_11 matrisinin ham XOR sayis1 75, optimizasyon yontemleri ile elde edilen
XOR sayis1 Paar algoritmasia gore 35 olarak, BP Derinlik Onceliksiz algoritmasina
gore 26 olarak, BP Derinlik Oncelikli algoritmasina gore 6 derinlikte 108 olarak, SBP

algoritmasina gore 6 derinlikte 108 olarak hesaplanmugtir.

M;, ve M 1_11 matrislerinin XOR farki 4 olarak hesaplanmustir.
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Ornek 5.12. F, cismi iizerinde tanimli p(a) = 0x13 polinomunun bir kokii olan a

kullanilarak elde edilen involutif MDS matris:

a a2 ot
Ap=|a® a® b
a2 b 11

Aymi polinomun eleman: olan a! ile ¢arpilarak elde edilen yari-involutif MDS
matris:

MlZ = |a

M,, yari-involutif MDS matrisinin ham XOR sayist 51, optimizasyon yontemleri
ile elde edilen XOR sayis1 Paar algoritmasina gore 26 olarak, BP Derinlik Onceliksiz
algoritmasina gore 22 olarak, BP Derinlik Oncelikli algoritmasina gore 6 derinlikte 22

olarak, SBP algoritmasina gore 6 derinlikte 22 olarak hesaplanmustir.

M, matrisinin tersi:

M1_21 matrisinin ham XOR sayis1 75, optimizasyon yontemleri ile elde edilen
XOR sayis1 Paar algoritmasina gore 34 olarak, BP Derinlik Onceliksiz algoritmasina
gore 26 olarak, BP Derinlik Oncelikli algoritmasina gore 6 derinlikte 120 olarak, SBP
algoritmasina gore 6 derinlikte 120 olarak hesaplanmugtir.

M, ve M 1_21 matrislerinin XOR farki 4 olarak hesaplanmustir.

Ornek 5.13. Fy, cismi iizerinde tanimlh p(a) = 0x13 polinomunun bir kokii olan a

kullanilarak elde edilen involutif MDS matris:

a a
Ap=|a® o« a"
1 a6 a13

Aymi polinomun elemani olan a' ile garpilarak elde edilen yari-involutif MDS

matris:
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ai 1 1
S|

7 14

My;=|a’ a
a a

a

M, yari-involutif MDS matrisinin ham XOR sayis1 48, optimizasyon yontemleri
ile elde edilen XOR sayis1 Paar algoritmasina gore 24 olarak, BP Derinlik Onceliksiz
algoritmasina gore 22 olarak, BP Derinlik Oncelikli algoritmasina gére 4 derinlikte 22

olarak, SBP algoritmasina gore 4 derinlikte 22 olarak hesaplanmistir.

M, 5 matrisinin tersi:

a a13 (X13

e 7 2 13
M13 a a

a14 aS alz

M1_31 matrisinin ham XOR sayis1 54, optimizasyon yontemleri ile elde edilen XOR
sayis1 Paar algoritmasina gore 28 olarak, BP Derinlik Onceliksiz algoritmasina gore 24
olarak, BP Derinlik Oncelikli algoritmasina gére 4 derinlikte 24 olarak, SBP algoritmasina
gore 4 derinlikte 24 olarak hesaplanmustir.

M5 ve M1_31 matrislerinin XOR farki 2 olarak hesaplanmistir.

Ornek 5.14. F. cismi iizerinde tanimli p(a) = 0x13 polinomunun bir kokii olan o

kullanilarak elde edilen involutif MDS matris:

a? a
Au=11 a® ab
@ o ol

Ayn1 polinomun eleman:1 olan a! ile carpilarak elde edilen yari-involutif MDS

matris:

51 1
a a* o

a
My, =
a® 1 ot

M,, yari-involutif MDS matrisinin ham XOR sayis1 48, optimizasyon yontemleri
ile elde edilen XOR sayis1 Paar algoritmasina gore 24 olarak, BP Derinlik Onceliksiz
algoritmasina gore 22 olarak, BP Derinlik Oncelikli algoritmasina gore 4 derinlikte 22

olarak, SBP algoritmasina gore 4 derinlikte 22 olarak hesaplanmustir.
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M, , matrisinin tersi:

a a13 (X13
M1_41 — c‘14 12 a5
C‘7 13 aZ

M 1_41 matrisinin ham XOR sayis1 54, optimizasyon yontemleri ile elde edilen XOR
sayis1 Paar algoritmasina gore 28 olarak, BP Derinlik Onceliksiz algoritmasina gore 24
olarak, BP Derinlik Oncelikli algoritmasina gére 4 derinlikte 24 olarak, SBP algoritmasina
gore 4 derinlikte 24 olarak hesaplanmustir.

M, ve M1_41 matrislerinin XOR farki 2 olarak hesaplanmigtir.

Ornek 5.15. F, cismi iizerinde tanimli p(a) = 0x13 polinomunun bir kokii olan o

kullanilarak elde edilen involutif MDS matris:

3 8 a14
A= |a"% a® a
6 1 a13

Ayn1 polinomun eleman1 olan a! ile carpilarak elde edilen yari-involutif MDS

matris:

at o® 1
Ms=|1 & 1
a’ a a*

M5 yari-involutif MDS matrisinin ham XOR sayis1 48, optimizasyon yontemleri
ile elde edilen XOR sayis1 Paar algoritmasina gore 24 olarak, BP Derinlik Onceliksiz
algoritmasina gore 22 olarak, BP Derinlik Oncelikli algoritmasina gére 4 derinlikte 22

olarak, SBP algoritmasina gore 4 derinlikte 22 olarak hesaplanmustir.

M, s matrisinin tersi:

o2 o o3
M1—51 = a3 oq g
o8 ql* gl2

M 1_51 matrisinin ham XOR sayis1 54, optimizasyon yontemleri ile elde edilen XOR
say1s1 Paar algoritmasina gore 28 olarak, BP Derinlik Onceliksiz algoritmasina gore 24

olarak, BP Derinlik Oncelikli algoritmasina gore 4 derinlikte 24 olarak, SBP algoritmasina
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gore 4 derinlikte 24 olarak hesaplanmustir.

M5 ve Ml_s1 matrislerinin XOR farki 2 olarak hesaplanmigtir.

Cizelge 5.4. F,,/0x13 Cisminde Uretilen 3 x 3 Yar1 involutif MDS Matrislerinin En
Diisiik XOR Degerlerine Gore Dagilimi

En Diisiik XOR | Toplam Matris Sayisi
22 12
23 105
24 499
25 2260
26 5358
27 13919
28 31768
29 63126
30 96642
31 117895
32 104821
33 63383
34 23815
35 4916
36 647
37 34

5.4. F,./0x19 Cismi Uzerinde Tanimh Matrisler

Bu alt boliimde, indirgenemez polinom olarak p(a) = 0x19 kullanilarak elde

edilen ve en diisiik XOR sayisina sahip olan beg matris incelenmektedir.

Ornek 5.16. F, cismi iizerinde tanimli p(a) = 0x19 polinomunun bir kokii olan a

kullanilarak elde edilen involutif MDS matris:

2 g2 g2
A= |a® ot ad
3 L1 gl

Ayni1 polinomun elemani olan a'# ile carpilarak elde edilen yari-involutif MDS

matris:

a
M= |a’ a® a?
aZ alO a13



M yari-involutif MDS matrisinin ham XOR sayis1 51, optimizasyon yontemleri
ile elde edilen XOR sayis1 Paar algoritmasina gore 28 olarak, BP Derinlik Onceliksiz
algoritmasina gore 22 olarak, BP Derinlik Oncelikli algoritmasina gére 6 derinlikte 22

olarak, SBP algoritmasina gore 6 derinlikte 22 olarak hesaplanmustir.

M, ¢ matrisinin tersi:

a® o o
M1=|d" o o
at a? 1

M 1_61 matrisinin ham XOR sayis1 75, optimizasyon yontemleri ile elde edilen XOR
say1s1 Paar algoritmasia gore 34 olarak, BP Derinlik Onceliksiz algoritmasina gore 26
olarak, BP Derinlik Oncelikli algoritmasina gére 6 derinlikte 27 olarak, SBP algoritmasina

gore 6 derinlikte 27 olarak hesaplanmustir.

M ve M 1_61 matrislerinin XOR farki 4 olarak hesaplanmustir.

Ornek 5.17. Fy cismi iizerinde tanimli p(a) = 0x19 polinomunun bir kokii olan o

kullanilarak elde edilen involutif MDS matris:

a? o 1
A,=|a a? o
a o ab®

Ayni polinomun eleman1 olan a'* ile ¢arpilarak elde edilen yari-involutif MDS

matris:

a a8 a14
My=11 a'' a°
1 1 12

M, yari-involutif MDS matrisinin ham XOR sayis1 48, optimizasyon yontemleri
ile elde edilen XOR sayis1 Paar algoritmasina gore 24 olarak, BP Derinlik Onceliksiz
algoritmasina gore 22 olarak, BP Derinlik Oncelikli algoritmasina gore 4 derinlikte 22

olarak, SBP algoritmasina gore 4 derinlikte 22 olarak hesaplanmustir.

M, matrisinin tersi:
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a’ a a
M1—71 — a2 o2 of
a2 o ol

M 1_71 matrisinin ham XOR say1s1 54, optimizasyon yontemleri ile elde edilen XOR
sayis1 Paar algoritmasina gore 26 olarak, BP Derinlik Onceliksiz algoritmasina gore 24
olarak, BP Derinlik Oncelikli algoritmasina gore 4 derinlikte 24 olarak, SBP algoritmasina

gore 4 derinlikte 24 olarak hesaplanmustir.

M,; ve M 1_71 matrislerinin XOR farki 2 olarak hesaplanmigtir.

Ornek 5.18. F. cismi iizerinde tanimli p(a) = 0x19 polinomunun bir kokii olan a

kullanilarak elde edilen involutif MDS matris:

a? 1 o
Ag=|a a® a
a a7 alZ

Ayn1 polinomun eleman olan a'* ile ¢arpilarak elde edilen yari-involutif MDS

matris:

a a14 a8
Mp=1|1 a2 1
1 a6 all

M, yari-involutif MDS matrisinin ham XOR sayis1 48, optimizasyon yontemleri
ile elde edilen XOR sayis1 Paar algoritmasina gore 24 olarak, BP Derinlik Onceliksiz
algoritmasina gore 22 olarak, BP Derinlik Oncelikli algoritmasina gére 4 derinlikte 22

olarak, SBP algoritmasina gore 4 derinlikte 22 olarak hesaplanmustir.

Mg matrisinin tersi:

a> a a'
M=o o o
2 o8 ol

M 1_81 matrisinin ham XOR sayis1 54, optimizasyon yontemleri ile elde edilen XOR
sayis1 Paar algoritmasina gore 26 olarak, BP Derinlik Onceliksiz algoritmasina gore 24
olarak, BP Derinlik Oncelikli algoritmasina gére 4 derinlikte 24 olarak, SBP algoritmasina
gore 4 derinlikte 24 olarak hesaplanmustir.
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Mg ve M1_81 matrislerinin XOR farki 2 olarak hesaplanmigtir.

Ornek 5.19. F,. cismi iizerinde tanimli p(a) = 0x19 polinomunun bir kokii olan a

kullanilarak elde edilen involutif MDS matris:

2 42 g2
Ap=|a® a* ol
10 3 4

Ayni1 polinomun elemani olan a'* ile carpilarak elde edilen yari-involutif MDS

matris:

a a a
Mp=|a® a® a
a® a®> o

M, yari-involutif MDS matrisinin ham XOR sayis1 51, optimizasyon yontemleri
ile elde edilen XOR sayis1 Paar algoritmasina gore 26 olarak, BP Derinlik Onceliksiz
algoritmasina gore 22 olarak, BP Derinlik Oncelikli algoritmasina gore 6 derinlikte 22

olarak, SBP algoritmasina gore 6 derinlikte 22 olarak hesaplanmustir.

M, matrisinin tersi:

a® a®
My=|a" 1 a'
all a4 a5

M 1_91 matrisinin ham XOR sayis1 75, optimizasyon yontemleri ile elde edilen XOR
say1s1 Paar algoritmasina gore 34 olarak, BP Derinlik Onceliksiz algoritmasina gore 26
olarak, BP Derinlik Oncelikli algoritmasina gére 6 derinlikte 27 olarak, SBP algoritmasina
gore 6 derinlikte 27 olarak hesaplanmustir.

M,y ve M 1_91 matrislerinin XOR farki 4 olarak hesaplanmigtir.

Ornek 5.20. F,. cismi iizerinde tanimli p(a) = 0x19 polinomunun bir kokii olan a

kullanilarak elde edilen involutif MDS matris:
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Ayni polinomun eleman1 olan a'* ile carpilarak elde edilen yari-involutif MDS
matris:

a® o’ a?
My=a o a
a0 o2 ol

M, yari-involutif MDS matrisinin ham XOR sayist 51, optimizasyon yontemleri
ile elde edilen XOR sayis1 Paar algoritmasina gore 28 olarak, BP Derinlik Onceliksiz
algoritmasina gore 22 olarak, BP Derinlik Oncelikli algoritmasina gore 6 derinlikte 22

olarak, SBP algoritmasina gore 6 derinlikte 22 olarak hesaplanmustir.

M, matrisinin tersi:

aS all a4
MZ_Ol — a3 3 a3
a12 4 1

M 2_01 matrisinin ham XOR sayis1 75, optimizasyon yontemleri ile elde edilen XOR
sayis1 Paar algoritmasina gore 33 olarak, BP Derinlik Onceliksiz algoritmasina gore 26
olarak, BP Derinlik Oncelikli algoritmasina gore 6 derinlikte 27 olarak, SBP algoritmasina

gore 6 derinlikte 27 olarak hesaplanmustir.

M,, ve MZ_O1 matrislerinin XOR farki 4 olarak hesaplanmustir.
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Cizelge 5.5. F,./0x19 Cisminde Uretilen 3 x 3 Yar1 involutif MDS Matrislerinin En
Diisiik XOR Degerlerine Gore Dagilimi

En Diisiik XOR | Toplam Matris Sayisi
22 12
23 108
24 503
25 2264
26 5385
27 13947
28 31880
29 63069
30 97122
31 117994
32 104463
33 62797
34 23847
35 5133
36 640
37 36
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BOLUM 6

4 x 4 BOYUTLARINDAKI MATRISLERIN ANALIZI

Bu boliimde, FF,; ve F,4 sonlu cisimleri iizerinde tanimli 4 x 4 boyutlu yari-involutif
MDS matrislerin analiz sonuglarma yer verilmistir. Elde edilen matris sayilar1 Cizelge

6.1’de Ozetlenmektedir.

Cizelge 6.1. 4 x 4 Boyutlarinda Uretilen Yar1 Involutif MDS Matris Sayilari

Sonlu Cisim | Indirgenemez Polinom | Matris Boyutu | Toplam Matris Sayisi
Fys OxB 4x4 08.784
Fos OxD 4 x4 98.784
Fos 0x13 4x4 393.792
Fos 0x19 4 x4 393.792

6.1. F,;/0xB Cismi Uzerinde Tamimh Matrisler

Bu alt boliimde, indirgenemez polinom olarak p(a) = 0xB kullanilarak elde edilen

ve en diisiik XOR sayisina sahip olan bes matris incelenmektedir.

Ornek 6.1. F,; cismi iizerinde tammli p(a) = OxB polinomunun bir kokii olan o

kullanilarak elde edilen involutif MDS matris:

1 o? a? o
A, = 1 1 a° 1
a® a® 1 1
@ a o 1

Aymi polinomun elemani olan a' ile garpilarak elde edilen yari-involutif MDS

matris:
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a a® a® 1

M a o 1 a
21 —

1 a® a «a

a® a®> & a

M, yari-involutif MDS matrisinin ham XOR sayis1 59, optimizasyon yontemleri
ile elde edilen XOR sayis1 Paar algoritmasma gore 35 olarak, BP Derinlik Onceliksiz
algoritmasina gore 29 olarak, BP Derinlik Oncelikli algoritmasina gére 5 derinlikte 29

olarak, SBP algoritmasina gore S derinlikte 29 olarak hesaplanmustir.

M,, matrisinin tersi:

w1

QR KR K R
3]
RN
o))

M 2_11 matrisinin ham XOR sayi1s1 63, optimizasyon yontemleri ile elde edilen XOR
sayis1 Paar algoritmasina gére 37 olarak, BP Derinlik Onceliksiz algoritmasina gore 32
olarak, BP Derinlik Oncelikli algoritmasina gore 5 derinlikte 32 olarak, SBP algoritmasina
gore S derinlikte 32 olarak hesaplanmustir.

M, ve Mz_11 matrislerinin XOR farki 3 olarak hesaplanmustir.

Ornek 6.2. F,; cismi iizerinde tammli p(a) = 0xB polinomunun bir kokii olan a

kullanilarak elde edilen involutif MDS matris:

1 a® a® «

A a® 1 o®> «a

27 a2 2 1 o
a® 1 a* 1

Ayni polinomun elemani olan a® ile carpilarak elde edilen yari-involutif MDS

matris:

a® a? a° 1

M a® a® a 1
?"la a a® o
a? a® a® af
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M,, yari-involutif MDS matrisinin ham XOR sayis1 62, optimizasyon yontemleri
ile elde edilen XOR sayis1 Paar algoritmasina gore 34 olarak, BP Derinlik Onceliksiz
algoritmasina gore 29 olarak, BP Derinlik Oncelikli algoritmasina gére 6 derinlikte 29

olarak, SBP algoritmasina gore 6 derinlikte 29 olarak hesaplanmustir.

M,, matrisinin tersi:

a ot 1 o

M- = 1 a o o
21 @ a af
at a a® «a

Mz_z1 matrisinin ham XOR sayi1s1 69, optimizasyon yontemleri ile elde edilen XOR
say1s1 Paar algoritmasina gore 38 olarak, BP Derinlik Onceliksiz algoritmasina gore 34
olarak, BP Derinlik Oncelikli algoritmasina gére 6 derinlikte 34 olarak, SBP algoritmasina
gore 6 derinlikte 34 olarak hesaplanmustir.

M,, ve Mz_z1 matrislerinin XOR farki 5 olarak hesaplanmigtir.

Ornek 6.3. F,; cismi iizerinde tammli p(a) = OxB polinomunun bir kokii olan o
kullanilarak elde edilen involutif MDS matris:

1 a* 1 a?

A a> 1 o? a
23 =

a a*> 1 &

Aymi polinomun eleman: olan a® ile carpilarak elde edilen yari-involutif MDS
matris:

a® o a® «a

o at a® a 1
2701 a af at

a a® o af

M, yari-involutif MDS matrisinin ham XOR sayist 62, optimizasyon yontemleri
ile elde edilen XOR sayis1 Paar algoritmasina gére 32 olarak, BP Derinlik Onceliksiz
algoritmasina gore 29 olarak, BP Derinlik Oncelikli algoritmasina gére 7 derinlikte 29
olarak, SBP algoritmasina gore 7 derinlikte 29 olarak hesaplanmustir.

M, matrisinin tersi:
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w
w

a a® a a

B a® a a® o
M, =

23 2 o a o

a® a a® a

M 2_31 matrisinin ham XOR sayis1 70, optimizasyon yontemleri ile elde edilen XOR
say1s1 Paar algoritmasina gore 37 olarak, BP Derinlik Onceliksiz algoritmasina gore 32

olarak, BP Derinlik Oncelikli algoritmasina gore 7 derinlikte 32 olarak, SBP algoritmasina

gore 7 derinlikte 32 olarak hesaplanmustir.

M5 ve M2_31 matrislerinin XOR farki 3 olarak hesaplanmustir.

Ornek 6.4. F,; cismi iizerinde tamimli p(a) = OxB polinomunun bir kokii olan a

kullanilarak elde edilen involutif MDS matris:

a

p at 1 o 1
11 a2 1 ot
a2 a o 1

Aym polinomun elemani olan a® ile carpilarak elde edilen yari-involutif MDS

matris:

a a1 a

v a® a® a af
* e a ab ol
a 1 a* af

M,, yari-involutif MDS matrisinin ham XOR sayis1 62, optimizasyon yontemleri
ile elde edilen XOR sayis1 Paar algoritmasina gore 32 olarak, BP Derinlik Onceliksiz
algoritmasina gore 29 olarak, BP Derinlik Oncelikli algoritmasina gore 7 derinlikte 29

olarak, SBP algoritmasina gore 7 derinlikte 29 olarak hesaplanmustir.

M., matrisinin tersi:

R
Q
R
R

Q
w
Q
Q
Q

_1 _
M24 -

Qw Q
R R
[\*) w
Qm Q
Q R,
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M 2_41 matrisinin ham XOR sayis1 70, optimizasyon yontemleri ile elde edilen XOR
say1s1 Paar algoritmasina gore 37 olarak, BP Derinlik Onceliksiz algoritmasina gore 32
olarak, BP Derinlik Oncelikli algoritmasina gore 7 derinlikte 32 olarak, SBP algoritmasina

gore 7 derinlikte 32 olarak hesaplanmustir.
M,, ve M2_41 matrislerinin XOR farki 3 olarak hesaplanmustir.

Ornek 6.5. F,; cismi iizerinde tammli p(a) = 0xB polinomunun bir kokii olan a

kullanilarak elde edilen involutif MDS matris:

1 1 1 a°

A= a? 15 a® a?
a a° 1 o

a®> a® 1 1

Aymi polinomun eleman: olan a' ile garpilarak elde edilen yari-involutif MDS

matris:

1
ad
o3

a

[\S]
~ R Q 8
R R ~ R

M, yari-involutif MDS matrisinin ham XOR sayist 59, optimizasyon yontemleri
ile elde edilen XOR sayis1 Paar algoritmasma gore 35 olarak, BP Derinlik Onceliksiz
algoritmasina gore 29 olarak, BP Derinlik Oncelikli algoritmasina gére 5 derinlikte 29

olarak, SBP algoritmasina gore S derinlikte 29 olarak hesaplanmustir.

M, matrisinin tersi:

a® a® a® o
vl | @ a® a® a
311 ot a® «a
a* a® a® aof

M 2_51 matrisinin ham XOR sayi1s1 63, optimizasyon yontemleri ile elde edilen XOR
sayis1 Paar algoritmasina gore 34 olarak, BP Derinlik Onceliksiz algoritmasina gore 32
olarak, BP Derinlik Oncelikli algoritmasina gore 5 derinlikte 32 olarak, SBP algoritmasina

gore S derinlikte 32 olarak hesaplanmustir.

M,s ve Mz_sl matrislerinin XOR farki 3 olarak hesaplanmigtir.
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Cizelge 6.2. F,; /0xB Cisminde Uretilen 4 x 4 Yar1 involutif MDS Matrislerinin En
Diisiik XOR Degerlerine Gore Dagilimi

En Diisiik XOR | Toplam Matris Sayisi

29 245

30 2648
31 13814
32 30419
33 31936
34 15616
35 3573
36 521

37 12

6.2. F,;/0xD Cismi Uzerinde Tamimh Matrisler

Bu alt boliimde, indirgenemez polinom olarak p(a) = OxD kullanilarak elde

edilen ve en diisiik XOR sayisina sahip olan beg matris incelenmektedir.

Ornek 6.6. F,: cismi iizerinde tammli p(a) = OxD polinomunun bir kokii olan o

kullanilarak elde edilen involutif MDS matris:

1 a0 o’ «a
A a1 a af
2 =
a at 1 a

Aymi polinomun eleman: olan a' ile garpilarak elde edilen yari-involutif MDS

matris:

a a® a® o
u a® a o 1
7 e o5 a1
at* a a® «

M, yari-involutif MDS matrisinin ham XOR sayis1 62, optimizasyon yontemleri
ile elde edilen XOR sayis1 Paar algoritmasma gore 34 olarak, BP Derinlik Onceliksiz
algoritmasina gore 29 olarak, BP Derinlik Oncelikli algoritmasina gére 6 derinlikte 29

olarak, SBP algoritmasina gore 6 derinlikte 29 olarak hesaplanmustir.

M, matrisinin tersi:
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a® a* ot «

V-l = at a® 1 &
%711 & o o
a? a® a® af

M 2_61 matrisinin ham XOR sayis1 69, optimizasyon yontemleri ile elde edilen XOR
say1s1 Paar algoritmasina gore 38 olarak, BP Derinlik Onceliksiz algoritmasina gore 33
olarak, BP Derinlik Oncelikli algoritmasina gore 6 derinlikte 33 olarak, SBP algoritmasina

gore 6 derinlikte 33 olarak hesaplanmustir.

M, ve M2_61 matrislerinin XOR farki 4 olarak hesaplanmigtir.

Ornek 6.7. Fy cismi iizerinde tammli p(a) = OxD polinomunun bir kokii olan a

kullanilarak elde edilen involutif MDS matris:

a
p a> 1 a®> &

7711 @ 1 ot
at a a® 1

Aymi polinomun eleman: olan a' ile ¢arpilarak elde edilen yari-involutif MDS

matris:

2

a a° 1 «a
Iy a® a a® af
7 la at a o
a® a®> 1 «

M, yari-involutif MDS matrisinin ham XOR sayis1 62, optimizasyon yontemleri
ile elde edilen XOR sayis1 Paar algoritmasina gore 34 olarak, BP Derinlik Onceliksiz
algoritmasina gore 29 olarak, BP Derinlik Oncelikli algoritmasina gore 6 derinlikte 29

olarak, SBP algoritmasina gore 6 derinlikte 29 olarak hesaplanmustir.

M, matrisinin tersi:

[e)}

N

[9;]
—

a® at a
) at a® a af

M =
27 @ @ o &
a1 a® ab
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M 2_71 matrisinin ham XOR sayis1 69, optimizasyon yontemleri ile elde edilen XOR
say1s1 Paar algoritmasina gore 38 olarak, BP Derinlik Onceliksiz algoritmasina gore 34
olarak, BP Derinlik Oncelikli algoritmasina gére 6 derinlikte 34 olarak, SBP algoritmasina
gore 6 derinlikte 34 olarak hesaplanmustir.

M, ve M2_71 matrislerinin XOR farki 5 olarak hesaplanmigtr.

Ornek 6.8. F,: cismi iizerinde tammli p(a) = OxD polinomunun bir kokii olan o

kullanilarak elde edilen involutif MDS matris:

1 a0 a° «a
A a> 1 a? ab
28 =
1 a®2 1

Ayni polinomun eleman: olan a' ile garpilarak elde edilen yari-involutif MDS

matris:

M, yari-involutif MDS matrisinin ham XOR sayis1 62, optimizasyon yontemleri
ile elde edilen XOR sayis1 Paar algoritmasina gore 32 olarak, BP Derinlik Onceliksiz
algoritmasina gore 29 olarak, BP Derinlik Oncelikli algoritmasina gore 7 derinlikte 29

olarak, SBP algoritmasina gore 7 derinlikte 29 olarak hesaplanmustir.

M,g matrisinin tersi:

6 4 5 a

4 5

a

-1 __
M28 - 6

6 4

2 4 6

a a
a a
a a’ a
a a’ «o

M2_81 matrisinin ham XOR sayis1 70, optimizasyon yontemleri ile elde edilen XOR
say1s1 Paar algoritmasia gore 35 olarak, BP Derinlik Onceliksiz algoritmasina gore 32
olarak, BP Derinlik Oncelikli algoritmasina gére 7 derinlikte 32 olarak, SBP algoritmasina

gore 7 derinlikte 32 olarak hesaplanmustir.

Mg ve Mz_sl matrislerinin XOR farki 3 olarak hesaplanmigtir.
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Ornek 6.9. F,: cismi iizerinde tammli p(a) = OxD polinomunun bir kokii olan o

kullanilarak elde edilen involutif MDS matris:

1 o 1 o
A = a® 1 a® 1
e a2 1 o
a? a® a® 1

Aymi polinomun eleman: olan a! ile carpilarak elde edilen yari-involutif MDS

matris:

M, yari-involutif MDS matrisinin ham XOR sayist 62, optimizasyon yontemleri
ile elde edilen XOR sayis1 Paar algoritmasina gére 34 olarak, BP Derinlik Onceliksiz
algoritmasina gore 29 olarak, BP Derinlik Oncelikli algoritmasina gére 7 derinlikte 29

olarak, SBP algoritmasina gore 7 derinlikte 29 olarak hesaplanmustir.

M, matrisinin tersi:

6 4 6 2

S)

6

R

-1 _
M29 -

R

a

a4

a5
a

5

)

M2_91 matrisinin ham XOR sayis1 70, optimizasyon yontemleri ile elde edilen XOR
say1s1 Paar algoritmasina gore 35 olarak, BP Derinlik Onceliksiz algoritmasina gore 31
olarak, BP Derinlik Oncelikli algoritmasina gére 7 derinlikte 31 olarak, SBP algoritmasina

gore 7 derinlikte 31 olarak hesaplanmustir.

Mg ve M2_91 matrislerinin XOR farki 2 olarak hesaplanmustir.

Ornek 6.10. F,; cismi iizerinde tanimli p(a) = OxD polinomunun bir kokii olan o

kullanilarak elde edilen involutif MDS matris:
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Ayni polinomun eleman1 olan a® ile carpilarak elde edilen yari-involutif MDS

matris:

a
v a a® ot o
V1 ab ab o«
a® a® 1 af

M, yari-involutif MDS matrisinin ham XOR sayist 59, optimizasyon yontemleri
ile elde edilen XOR sayis1 Paar algoritmasma gore 35 olarak, BP Derinlik Onceliksiz
algoritmasina gore 29 olarak, BP Derinlik Oncelikli algoritmasina gére 5 derinlikte 29

olarak, SBP algoritmasina gore S derinlikte 29 olarak hesaplanmustir.

M, matrisinin tersi:

a a®> a® o

V-l — > a a® 1
30 a2 a a a3

a o a’® «

M 3_01 matrisinin ham XOR sayi1s1 63, optimizasyon yontemleri ile elde edilen XOR
sayis1 Paar algoritmasina gore 36 olarak, BP Derinlik Onceliksiz algoritmasina gore 32
olarak, BP Derinlik Oncelikli algoritmasina gére 5 derinlikte 32 olarak, SBP algoritmasina

gore S derinlikte 32 olarak hesaplanmustir.

M, ve Ms_ol matrislerinin XOR farki 3 olarak hesaplanmigtir.

6.3. F,./0x13 Cismi Uzerinde Tammh Matrisler

Bu alt boliimde, indirgenemez polinom olarak p(a) = 0x13 kullanilarak elde

edilen ve en diisiik XOR sayisina sahip olan beg matris incelenmektedir.

Ornek 6.11. F, cismi iizerinde tanimli p(a) = 0x13 polinomunun bir kokii olan o

kullanilarak elde edilen involutif MDS matris:
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Cizelge 6.3. F,; /OxD Cisminde Uretilen 4 x 4 Yar1 Involutif MDS Matrislerinin En

Diisiik XOR Degerlerine Gore Dagilimi

En Diisiik XOR | Toplam Matris Sayisi
29 201
30 2770
31 13731
32 30618
33 31730
34 15547
35 3657
36 510
37 19
38 1

r PRUIIME
1 a 6112 (114
A =
25 a* a o«
a? 1 1 «a

Ayni polinomun elemam olan a? ile carpilarak elde edilen yari-involutif MDS

matris:

— KR KRR

a® a 1
a® a* a
a o o
a’? a® o

M3, yari-involutif MDS matrisinin ham XOR sayis1 78, optimizasyon yontemleri

ile elde edilen XOR sayis1 Paar algoritmasina gore 50 olarak, BP Derinlik Onceliksiz

algoritmasina gore 39 olarak, BP Derinlik Oncelikli algoritmasina gére 8 derinlikte 39

olarak, SBP algoritmasina gore 8 derinlikte 39 olarak hesaplanmustir.

M5, matrisinin tersi:

14 12 11

14 10 12

12 14 14

QR KR KR R
QR QR KR KR
QR R KR R

13 13 14

M;ll matrisinin ham XOR sayis1 109, optimizasyon yontemleri ile elde edilen
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XOR sayis1 Paar algoritmasina gore 54 olarak, BP Derinlik Onceliksiz algoritmasina
gore 45 olarak, BP Derinlik Oncelikli algoritmasma gore 8 derinlikte 45 olarak, SBP

algoritmasina gore 8 derinlikte 45 olarak hesaplanmustir.

Ms; ve M3T11 matrislerinin XOR farki 6 olarak hesaplanmigtir.

Ornek 6.12. F,, cismi iizerinde tanimli p(a) = 0x13 polinomunun bir kokii olan o

kullanilarak elde edilen involutif MDS matris:

a 1 12,14

\ a a* ol
27 01a* 1 o«
1 o 1

Ayni polinomun elemam olan a? ile carpilarak elde edilen yari-involutif MDS

matris:

a
1
a o> o o
o3

M, yari-involutif MDS matrisinin ham XOR sayis1 78, optimizasyon yontemleri
ile elde edilen XOR sayis1 Paar algoritmasina gore 53 olarak, BP Derinlik Onceliksiz
algoritmasina gore 39 olarak, BP Derinlik Oncelikli algoritmasina gore 8 derinlikte 39

olarak, SBP algoritmasina gore 8 derinlikte 39 olarak hesaplanmistir.

M5, matrisinin tersi:

14 13 10 12

14 12 11

_1 _
M32 - 13 14 14

11 13 14

QR R KR R
QR KRR KR R
QR QR KR KR

M3_21 matrisinin ham XOR sayis1 109, optimizasyon yontemleri ile elde edilen
XOR sayis1 Paar algoritmasina gore 53 olarak, BP Derinlik Onceliksiz algoritmasina
gore 43 olarak, BP Derinlik Oncelikli algoritmasma gore 8 derinlikte 43 olarak, SBP

algoritmasina gore 8 derinlikte 43 olarak hesaplanmstir.

Ms, ve M,J,_z1 matrislerinin XOR farki 4 olarak hesaplanmustir.

Ornek 6.13. Fy. cismi iizerinde tanimli p(a) = 0x13 polinomunun bir kokii olan a
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kullanilarak elde edilen involutif MDS matris:

a 1 1 a'
A a14 a a12 a
33 —
a a¥% a «a

Ayni polinomun elemam olan a! ile carpilarak elde edilen yari-involutif MDS

matris:

M55 yari-involutif MDS matrisinin ham XOR sayis1 72, optimizasyon yontemleri
ile elde edilen XOR sayis1 Paar algoritmasina gore 48 olarak, BP Derinlik Onceliksiz
algoritmasina gore 39 olarak, BP Derinlik Oncelikli algoritmasina gére 6 derinlikte 39

olarak, SBP algoritmasina gore 6 derinlikte 39 olarak hesaplanmistir.

M5 matrisinin tersi:

1 g ol o3

— a® 1 o' 1
3BT 1 B 1
all ol* g2 1

M 3_31 matrisinin ham XOR sayis1 82, optimizasyon yontemleri ile elde edilen XOR
sayis1 Paar algoritmasina gore 48 olarak, BP Derinlik Onceliksiz algoritmasina gore 45
olarak, BP Derinlik Oncelikli algoritmasina gére 6 derinlikte 45 olarak, SBP algoritmasina

gore 6 derinlikte 45 olarak hesaplanmustir.
Ms; ve M, matrislerinin XOR farki 6 olarak hesaplanmigtur.

Ornek 6.14. F,, cismi iizerinde tanimli p(a) = 0x13 polinomunun bir kokii olan o

kullanilarak elde edilen involutif MDS matris:

a o a® o

.\ 1 a* g2
34 =

a? 1 a 1

1 a¥% a «a



Ayni polinomun elemani olan a? ile garpilarak elde edilen yari-involutif MDS

matris:

ad a® 1 «

a> o a o'
My = 1 a®> o o

a> a a® o

M, yari-involutif MDS matrisinin ham XOR sayis1 78, optimizasyon yontemleri
ile elde edilen XOR sayis1 Paar algoritmasina gore 50 olarak, BP Derinlik Onceliksiz
algoritmasina gore 39 olarak, BP Derinlik Oncelikli algoritmasina gore 8 derinlikte 39

olarak, SBP algoritmasina gore 8 derinlikte 39 olarak hesaplanmustir.

M, matrisinin tersi:

14 14 11 12

14 12 10

13 14 13

12 14 14

R KR K R
R KR K KR
R KR K KR

M3_41 matrisinin ham XOR sayis1 109, optimizasyon yontemleri ile elde edilen
XOR sayis1 Paar algoritmasina gére 54 olarak, BP Derinlik Onceliksiz algoritmasina
gore 43 olarak, BP Derinlik Oncelikli algoritmasina gore 8 derinlikte 43 olarak, SBP
algoritmasina gore 8 derinlikte 43 olarak hesaplanmaistir.

M, ve M;‘l matrislerinin XOR farki 4 olarak hesaplanmustir.

Ornek 6.15. F, cismi iizerinde tanimli p(a) = 0x13 polinomunun bir kokii olan a

kullanilarak elde edilen involutif MDS matris:

a a* a a
A 1 1 o'
T la* a4 a o«

1 a12 a13 a

Aymi polinomun eleman: olan a' ile ¢arpilarak elde edilen yari-involutif MDS

matris:
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M5 yari-involutif MDS matrisinin ham XOR sayis1 72, optimizasyon yontemleri
ile elde edilen XOR sayis1 Paar algoritmasma gore 48 olarak, BP Derinlik Onceliksiz
algoritmasina gore 39 olarak, BP Derinlik Oncelikli algoritmasina gére 6 derinlikte 39

olarak, SBP algoritmasina gore 6 derinlikte 39 olarak hesaplanmustir.

M55 matrisinin tersi:

M= ¢
35 13 1 1 1
a14 all a12 1

M 3_51 matrisinin ham XOR say1s1 82, optimizasyon yontemleri ile elde edilen XOR
sayis1 Paar algoritmasina gore 48 olarak, BP Derinlik Onceliksiz algoritmasina gore 45
olarak, BP Derinlik Oncelikli algoritmasina gére 6 derinlikte 45 olarak, SBP algoritmasina
gore 6 derinlikte 45 olarak hesaplanmustir.

Mss ve MZ;! matrislerinin XOR farki 6 olarak hesaplanmigtur.

6.4. F,./0x19 Cismi Uzerinde Tanimh Matrisler

Bu alt boliimde, indirgenemez polinom olarak p(a) = 0x19 kullanilarak elde

edilen ve en diisiik XOR sayisina sahip olan beg matris incelenmektedir.

Ornek 6.16. F, cismi iizerinde tanimli p(a) = 0x19 polinomunun bir kokii olan a

kullanilarak elde edilen involutif MDS matris:

a a’ a a

al* g4 ol

Az = a2 o o3
1 1 a a*

Ayni polinomun eleman1 olan a'* ile ¢arpilarak elde edilen yari-involutif MDS

matris:
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Cizelge 6.4. F,./0x13 Cisminde Uretilen 4 x 4 Yar1 Involutif MDS Matrislerinin En
Diisiik XOR Degerlerine Gore Dagilimi

En Diisiik XOR | Toplam Matris Sayisi
39 8
40 45
41 266
42 452
43 1123
44 1587
45 2402
46 2440
47 2624
48 2055
49 1471
50 944
51 411
52 150
53 31
54 22
55 2

a13 a2 a13 1
1 13 13 13

My = 4 o g3 g2
14 a14 1 13

M, yari-involutif MDS matrisinin ham XOR sayis1 72, optimizasyon yontemleri
ile elde edilen XOR sayis1 Paar algoritmasma gore 49 olarak, BP Derinlik Onceliksiz
algoritmasina gore 39 olarak, BP Derinlik Oncelikli algoritmasina gére 6 derinlikte 39

olarak, SBP algoritmasina gore 6 derinlikte 39 olarak hesaplanmustir.

M matrisinin tersi:

1 a* 1 «a

T CRE T
36 al a® 1 ot

al ol a® 1

M 3_61 matrisinin ham XOR say1s1 82, optimizasyon yontemleri ile elde edilen XOR
sayis1 Paar algoritmasina gére 47 olarak, BP Derinlik Onceliksiz algoritmasina gore 45
olarak, BP Derinlik Oncelikli algoritmasina gore 6 derinlikte 45 olarak, SBP algoritmasina
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gore 6 derinlikte 45 olarak hesaplanmustir.

Ms¢ ve M3_61 matrislerinin XOR farki 6 olarak hesaplanmigtir.

Ornek 6.17. Fy. cismi iizerinde tanimli p(a) = 0x19 polinomunun bir kokii olan a

kullanilarak elde edilen involutif MDS matris:

14 14 2

R
R
R

a14 a 3

A a

37 =
a? 1 a* 1
14 14

1 a o a

Ayni polinomun eleman1 olan a'? ile ¢arpilarak elde edilen yari-involutif MDS
matris:

a a

13 gl2 ql4 o
M7 = 1 ol gl2 g3
a3 gt g2 g2

M, yari-involutif MDS matrisinin ham XOR sayis1 78, optimizasyon yontemleri
ile elde edilen XOR sayis1 Paar algoritmasina gore 50 olarak, BP Derinlik Onceliksiz
algoritmasina gore 39 olarak, BP Derinlik Oncelikli algoritmasina gore 8 derinlikte 39

olarak, SBP algoritmasina gore 8 derinlikte 39 olarak hesaplanmustir.

M, matrisinin tersi:

M:,;1 matrisinin ham XOR sayis1 109, optimizasyon yontemleri ile elde edilen
XOR sayis1 Paar algoritmasina gére 54 olarak, BP Derinlik Onceliksiz algoritmasina
gore 43 olarak, BP Derinlik Oncelikli algoritmasina gore 8 derinlikte 43 olarak, SBP
algoritmasina gore 8 derinlikte 43 olarak hesaplanmaistir.

M, ve M3_71 matrislerinin XOR farki 4 olarak hesaplanmustir.

Ornek 6.18. F. cismi iizerinde tanimli p(a) = 0x19 polinomunun bir kokii olan a

kullanilarak elde edilen involutif MDS matris:
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a a a a
14 1 a
Ao =
38
a14 a14 14
1 a3 a2 a14

Aymi polinomun eleman1 olan a'* ile carpilarak elde edilen yari-involutif MDS

matris:

a13 1 a2 alS
14 13 14 1
Miye =
38
1 13 a13 13

Mg yart-involutif MDS matrisinin ham XOR say1st 72, optimizasyon yontemleri
ile elde edilen XOR sayis1 Paar algoritmasina gore 48 olarak, BP Derinlik Onceliksiz
algoritmasina gore 39 olarak, BP Derinlik Oncelikli algoritmasina gore 6 derinlikte 39

olarak, SBP algoritmasina gore 6 derinlikte 39 olarak hesaplanmustir.

Mg matrisinin tersi:

1 o a* 1

M-l = al 1 a' o
%8 a2 1 1 1
al at o 1

M 3_81 matrisinin ham XOR sayis1 82, optimizasyon yontemleri ile elde edilen XOR
sayis1 Paar algoritmasina gore 48 olarak, BP Derinlik Onceliksiz algoritmasina gore 45
olarak, BP Derinlik Oncelikli algoritmasina gére 6 derinlikte 45 olarak, SBP algoritmasina

gore 6 derinlikte 45 olarak hesaplanmustir.

Mg ve M?;gl matrislerinin XOR farki 6 olarak hesaplanmigtir.

Ornek 6.19. F. cismi iizerinde tanimli p(a) = 0x19 polinomunun bir kokii olan a

kullanilarak elde edilen involutif MDS matris:

a4 o o o
| a4 gt g4
39 =
1 a* «a
1 az a3 a14
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Ayni polinomun eleman1 olan a'* ile carpilarak elde edilen yari-involutif MDS

matris:

a3 o2 1 o3

1 g3 g3 o3

M3o = L L |
4 4 g2 g3

M, yari-involutif MDS matrisinin ham XOR sayis1 72, optimizasyon yontemleri
ile elde edilen XOR sayis1 Paar algoritmasina gore 49 olarak, BP Derinlik Onceliksiz
algoritmasina gore 39 olarak, BP Derinlik Oncelikli algoritmasina gore 6 derinlikte 39

olarak, SBP algoritmasina gore 6 derinlikte 39 olarak hesaplanmustir.

M, matrisinin tersi:

1 a* o 1

M-l = > 1 1 1
39 al al 1 a2

al a® ot 1

M 3_91 matrisinin ham XOR sayis1 82, optimizasyon yontemleri ile elde edilen XOR
say1s1 Paar algoritmasina gore 47 olarak, BP Derinlik Onceliksiz algoritmasina gore 45
olarak, BP Derinlik Oncelikli algoritmasina gore 6 derinlikte 45 olarak, SBP algoritmasina

gore 6 derinlikte 45 olarak hesaplanmustir.

Mg ve M3_91 matrislerinin XOR farki 6 olarak hesaplanmustir.

Ornek 6.20. F, cismi iizerinde tanimli p(a) = 0x19 polinomunun bir kokii olan a

kullanilarak elde edilen involutif MDS matris:

a14 a14 a a2
1 Moo a
A, =
40
a o o

Ayni polinomun eleman1 olan a'? ile carpilarak elde edilen yari-involutif MDS

matris:
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12 12 14 1

a a a
13 412 4 gl
My = 13 14 12 412
1 g3 o3 2

M, yari-involutif MDS matrisinin ham XOR sayis1 78, optimizasyon yontemleri
ile elde edilen XOR sayis1 Paar algoritmasma gore 50 olarak, BP Derinlik Onceliksiz
algoritmasina gore 39 olarak, BP Derinlik Oncelikli algoritmasina gére 8 derinlikte 39

olarak, SBP algoritmasina gore 8 derinlikte 39 olarak hesaplanmustir.

M, matrisinin tersi:

N -
—
w
N

QR QR K R
[\S]

M‘E)l matrisinin ham XOR sayis1 109, optimizasyon yontemleri ile elde edilen
XOR sayis1 Paar algoritmasina gore 54 olarak, BP Derinlik Onceliksiz algoritmasina
gore 45 olarak, BP Derinlik Oncelikli algoritmasina gore 8 derinlikte 45 olarak, SBP

algoritmasina gore 8 derinlikte 45 olarak hesaplanmugtir.

My, ve M;; matrislerinin XOR farki 6 olarak hesaplanmustir.
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Cizelge 6.5. F,./0x19 Cisminde Uretilen 4 x 4 Yar1 Involutif MDS Matrislerinin En
Diisiik XOR Degerlerine Gore Dagilimi

En Diisiik XOR | Toplam Matris Sayisi
39 6
40 63
41 220
42 503
43 1077
44 1599
45 2459
46 2447
47 2591
48 2158
49 1381
50 893
51 398
52 158
53 58
54 19
55 4
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BOLUM 7

SONUC ve TARTISMA

Bu tez calismasinda, m € {3, 4} olmak iizere F,. sonlu cisimleri lizerinde taniml
maksimum uzaklikta ayrilabilen (MDS) yari involutif matrislerin iiretimine yonelik
cebirsel bir yontem sunulmustur. Literatiirde genellikle involutif MDS matrislerin tasarim
teknikleri arastirilirken, bu arastirma, yari involutif kavramini kapsamli bir iiretimle
entegre ederek Onemli bir metodolojik eksikligi gidermistir. Ayrica, bu matrislerin
donanimda daha etkin bir sekilde uygulanabilmesi i¢in, Paar, SLP, Boyar-Peralta ve
Superior Boyar-Peralta gibi ¢esitli XOR optimizasyon algoritmalariyla karsilastirmali

analizleri gerceklestirilmistir.

Caligsmada onerilen iiretim yontemi, mevcut involutif MDS matrislerinin Magma
hesaplamali cebir sistemi kullanilarak parametrik olarak tiiretilmesi ve bu matrislerin
belirli diyagonal doniisiimler yoluyla yar1 involutif forma doniistiiriilmesi seklinde iki
temel asamadan olugsmaktadir. Bu yaklagim, tiim olasi parametre kombinasyonlarini
sistematik olarak tarayan algoritmik yapilarla gerceklestirilmis ve sonuglar Magma

ortaminda dogrulanmugtir.

Donanimsal uygulamalar agisindan XOR sayisinin minimize edilmesi de
calismanin hedeflerinden biri olarak belirlenmistir. Bunun i¢in kullanilan dort
optimizasyon algoritmasi, dogrusal devre sentezi ve devre derinligi baglaminda pratik
fayda saglamaktadir. Ozellikle SBP algoritmasinin derinlik kisitlamasi altinda en diisiik

XOR sayilarini elde etmede One ¢ikti§1 gézlemlenmistir.

F,s ile Fy4 sonlu cisimleri altinda tanimli1 OxB, 0xD,0x13 ve 0x19 indirgenemez
polinomlar kullanilarak 3 x 3 ile 4 x 4 boyutlarinda sirasiyla 1.072.512 ve 6.790.589.568
yar1 involutif MDS matris iiretilmistir. Ozellikle 4 x 4 boyutundaki matrisler i¢in, XOR

sayis1 39 gibi oldukca diisiik degerlere inebildigi gozlemlenmistir ki bu, donanimsal
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etkinlik acisindan dikkate deger bir bagaridir. Ornegin, F,:/0x19 cismi iizerinde elde
edilen matrislerin XOR dagilimini inceledigimizde, 39 ile 55 araliinda bir yogunluk
gozlemlenmistir ve optimizasyon sonrasinda XOR sayisinin ortalamasinda énemli bir
diisiis kaydedilmistir. Bu sonuglarin, literatiirde (Li vd., 2019), (Pehlivanoglu vd., 2018)
ve (Tuncay, 2021) gibi ¢aligmalarda bildirilen degerlerle karsilastirildiginda, rekabetci
bir performans sergiledigi soylenebilmektedir. Bununla birlikte, yontemin teorik yapisi
incelendiginde, daha genis bit uzunluklarina sahip sonlu cisimlere—ozellikle AES
standardinda kullanilan F,s gibi—genellenebilir nitelikte oldugu goriilmektedir. Bu
baglamda, gelecekte yapilacak calismalarda, onerilen metodolojinin F,s cisminde ve bu
cisim lizerinde taniml indirgenemez polinomlara uygulanmasi, ¢ok daha fazla sayida
yar1 involutif MDS matrislerin tiretilmesini miimkiin kilacaktir. Boylece, yalnizca teorik
matris cesitliligi artirllmakla kalmayacak, aym1 zamanda gercek diinyada kullanilan
blok sifreleme algoritmalarina entegre edilebilecek yiiksek yayilim kapasiteli, ters alma

maliyeti diisiik ve donanima uygun matrislerin tasarimi da gerceklestirilebilecektir.

Gelecekteki calismalar kapsaminda, elde edilen yar1 involutif MDS matrislerin
kriptoanalitik giivenlik diizeylerinin kapsamli bir bicimde analiz edilmesi 6nemli bir
gereklilik olarak one cikmaktadir. Ayrica, gelistirilen matrislerin donanim diizeyindeki
uygulanabilirliginin test edilmesi amaciyla FPGA ve ASIC platformlarinda sentetik
devre tasarimi gerceklestirilerek, gecikme, alan kullanimi, gii¢ tiiketimi ve frekans
performansi gibi Olciitler lizerinden detayli karsilastirmalar yapilabilir. Bu tiir uygulamali
caligmalar, matrislerin yalmizca kuramsal diizeyde degil, gercek zamanl sistemlerde ne
denli verimli ve giivenli olduklarin1 da gosterecektir. Ote yandan, matris iiretim siirecine
dinamik parametre se¢imi, evrimsel algoritmalar veya 6grenmeye dayali sezgisel teknikler
entegre edilerek arama uzay1 daha etkili bicimde taranabilir ve optimizasyon bagarimi
artirilabilir. Onerilen yar1 involutif MDS matrislerin, AES gibi modern blok sifreleme
algoritmalarinin dogrusal doniisiim katmanina entegre edilerek, hem simiilasyon hem
de donanim tabanl giivenlik ve performans analizlerinin gerceklestirilmesinin, yontemin

kapsamli etkinliginin degerlendirmesi a¢isindan 6nemli bir adim oldugu diisiintilmektedir.

Sonug olarak bu ¢alismada kullanilan tasarim teknikleri, dogrusal doniisiimlerin
hem yapisal giivenlik gerekliliklerini hem de donanimsal verimlilik kosullarin1 eszamanli
olarak kargilayabilecek sekilde tasarlanmugtir. Onerilen yontem araciligiyla yari involutif
MDS matrislerin belirli sonlu cisimler iizerinde sistematik bicimde {iretilebilmesi ve
bu yapilarin XOR iglem sayisi acisindan optimize edilerek donamima uygun hale
getirilebilmesi, 0zellikle gomiilii sistemler ve kaynak kisitli platformlar icin potansiyel
uygulamalara zemin hazirlamaktadir. Elde edilen bulgular, mevcut literatiirde yer alan
yontemlerle karsilastirildiginda, hem matris iiretiminde kapsayicilik hem de donanimsal

Olciitler acisindan anlamli farklar ortaya koymaktadir. Bu yoniiyle tez, yari involutif
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matrislerin kriptografik sistemlerde kullanimina yonelik hem kuramsal bir ¢erceve

sunmakta hem de uygulamaya doniik degerlendirmelere katkida bulunmaktadir.
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