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ÖZET 

Günümüzde otonom sürüş teknolojilerinin yaygınlaşması, bu alandaki araştırmaları 

artırmıştır. Trafik güvenliği, akıcılığı ve sürüş konforu gibi hedeflere ulaşmak için bu 

teknolojiler sürekli geliştirilmektedir. Otonom sürüş sistemlerinin gelişiminde yapay zekâ, 

özellikle pekiştirmeli öğrenme (Reinforcement Learning) algoritmaları önemli rol 

oynamaktadır. Bu çalışmada, otonom araçlar için şerit değiştirme kararını verebilen bir 

sistem geliştirilmiştir. Karar verme, rota planlama ve rota takibi aşamaları entegre bir şekilde 

ele alınmıştır. Karar verme süreci için DQN (Deep Q Network) tabanlı pekiştirmeli öğrenme 

algoritması kullanılmıştır. Şerit değiştirme rotası Sigmoid Fonksiyonu ile oluşturulmuş, rota 

takibi için Stanley denetleyici tercih edilmiştir. Modelleme, senaryo oluşturma ve test 

aşamaları MATLAB/Simulink yazılımında gerçekleştirilmiştir. Araç modeli olarak üç 

serbestlik dereceli bisiklet modeli kullanılmıştır. Senaryo, iki şeritli bir yolda ilerleyen 

otonom araç ve sabit hızda hareket eden dört çevre araçtan oluşmaktadır. Gözlem kümesi; 

araçların hız ve konum bilgilerini, aksiyon kümesi ise şerit değiştirme ve şeritte kalma 

eylemlerini içermektedir. Ödül fonksiyonu, çarpışmasız ve başarılı şerit değişimlerine göre 

yapılandırılmıştır. Farklı başlangıç koşullarında ve 10–30 m/s hız aralığında oluşturulan 

senaryolar ile DQN ajanı eğitilmiş; araç, uygun kararlar vererek güvenli şekilde ilerlemiştir. 
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ABSTRACT 

With the growing prevalence of autonomous driving technologies, research interest in this 

field has significantly increased. These technologies are continuously improved to enhance 

traffic safety, ensure smooth flow, and maximize driving comfort. Artificial intelligence 

plays a crucial role in the development of autonomous systems, and among its methods, 

reinforcement learning offers effective solutions. In this study, a decision-making system for 

lane changes in autonomous vehicles is developed. The process integrates decision-making, 

path planning, and path tracking in a unified structure. A Deep Q-Network (DQN)-based 

reinforcement learning algorithm is used for decision-making. The lane change path is 

generated using a Sigmoid Function, and the Stanley Controller is employed for path 

tracking. The modeling, scenario creation, and testing phases are implemented in 

MATLAB/Simulink. A three degrees-of-freedom bicycle model is used to represent the 

vehicle. The scenario consists of an autonomous vehicle and four surrounding vehicles 

moving at constant speeds on a two-lane road. The observation set includes the positions and 

velocities of vehicles, while the action set consists of lane keeping and lane changing 

maneuvers. The reward function is designed to encourage successful, collision-free lane 

changes. The DQN agent is trained using scenarios with random initial positions and speeds 

ranging from 10 to 30 m/s. The trained agent successfully enables the vehicle to make safe 

and appropriate decisions under various conditions. 
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SİMGELER VE KISALTMALAR 

Bu çalışmada kullanılmış simgeler ve kısaltmalar, açıklamaları ile birlikte aşağıda 

sunulmuştur.  

 

Simgeler    Açıklamalar  

 

kg    Kilogram 

m    Metre  

rad    Radyan 

s    Saniye 

 

Kısaltmalar   Açıklamalar 

 

CAV     Connected Automated Vehicles 

CNN     Convolutional Neural Network 

DDPG    Deep Deterministic Policy Gradient  

DNN    Deep Neural Network 

DOF    Degrees of Freedom 

DQN    Deep-Q Network 

GPS    Global Positioning System 

IMU    Inertial Measurement Unit 

LIDAR   Light Detection and Ranging 

MDP     Markov Decision Process 

ML     Machine Learning 

MPC    Model Predictive Control 

RADAR   Radio Detection And Ranging 

RL    Reinforcement Learning 

SVM    Support Vector Machine 
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1. GİRİŞ 

Son yıllarda otomotiv endüstrisi dijitalleşme, yapay zekâ ve sensör teknolojilerindeki hızlı 

gelişmelerle birlikte önemli bir dönüşüm ivmesi kazanmıştır. Bu dönüşümün öne çıkan 

alanlarından biri de sürücüsüz yani otonom taşıtların geliştirilmesidir. Otonom taşıtlar insan 

müdahalesi olmaksızın çevreyi algılayabilir, durum değerlendirmesi yapabilir ve güvenli 

sürüş kararları alabilir. Bu sayede sürüş güvenliğinin artırılması, yakıt tüketiminin 

azaltılması, çevresel etkilerin sürüş dinamiklerine etkisinin minimize edilmesi ve trafik 

akışının maksimum konfor ile sağlanabilmesi gibi önemli kazanımlar elde edilmektedir. Bu 

yönler göz önüne alındığında otonom taşıtlar geleceğin ulaşım sistemlerinin temeli olarak 

görülmektedir. 

Otonom taşıt teknolojileri sürücüsüz araçların ne kadar bağımsız hareket edebileceğini ifade 

eden, SAE (Society of Automotive Engineers) tarafından tanımlanan 0’dan 5’e kadar olan 

otomasyon seviyelerine göre sınıflandırılmaktadır. Bu sınıflandırma kapsamında Seviye 0 

gerçek sürücünün bütün sürüş sorumluluğuna sahip olduğu tamamen manuel sürüşü, Seviye 

5 ise insan müdahalesi olmaksızın her koşulda tam otonom sürüşü ifade etmektedir. 

Günümüzde yaygın olarak kullanılan araçlar Seviye 2 ve Seviye 3 otomasyon özelliklerini 

taşımakta ve belirli koşullarda sürücüye destek olmaktadır. Daha ileri otomasyon seviyeleri 

ve tam otonom sistemler araştırmalara ve çalışmalara konu olarak geliştirilme 

aşamasındadır.  

Otonom sürüş sistemlerinin en temel gereksinimlerinden biri, aracın çevresini ve trafik 

durumunu yüksek doğrulukta algılayabilmesidir. Bu amaçla kullanılan kamera, LIDAR, 

RADAR ve ultrasonik sensörler gibi komponentler bu çevre algılamasını sağlamaktadır. Bu 

sensörlerden elde edilen verilerin işlenmesi ve yapay zekâ algoritmaları kullanılarak 

anlamlandırılması ile üç boyutlu çevre modellemesi yapılmaktadır. Böylece otonom araç yol 

üzerindeki diğer araçlar, yayalar, trafik işaretleri ve yol yapısı gibi çevresel unsurları gerçek 

zamanlı ve yüksek hassasiyetle tanıyabilmektedir. Algılamada kullanılan komponentlerin 

kalitesi ve sistemlerin başarısı, otonom sürüşün güvenliği açısından kritik önem 

taşımaktadır. 

Algılama verilerinin yanı sıra aracın kesin konumunu belirlemek amacıyla konum belirleme 

(localization) ve haritalandırma (mapping) sistemleri de kullanılmaktadır. GPS, atalet 
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ölçerler (IMU), kamera ve LIDAR verilerinin entegre bir şekilde işlenmesi ile yüksek 

doğruluklu konum belirleme gerçekleştirilmektedir. Bu sayede araç, harita üzerindeki 

konumunu gerçek zamanlı olarak takip edebilmekte ve hedef noktaya ulaşmak için gereken 

navigasyon bilgilerini kullanabilmektedir. Ayrıca dinamik haritalar kullanılarak çevresel 

değişiklikler ve trafik koşulları sürekli olarak güncellenmekte ve sisteme aktarılmaktadır. 

Otonom sürüşün en karmaşık ve kritik aşamalarından biri karar verme ve rota planlama 

süreçleridir. Bu süreçler aracın içerisinde bulunduğu mevcut trafik durumu, yol koşulları, 

yerel kurallar ve güvenlik kriterleri göz önünde bulundurularak hız kontrolü, şerit 

değiştirme, kavşak geçişi gibi manevraları gerçekleştirmesini sağlar. Geleneksel kural 

tabanlı algoritmalar, belirli ve daha az değişken durumlar için etkili çözümler sunsa da 

karmaşık ve belirsiz gerçek dünya koşullarında yetersiz kalabilmektedir. Bu nedenle son 

yıllarda yapay zekanın bir alt dalı olan makine öğrenmesi ve özellikle pekiştirmeli öğrenme 

tabanlı yöntemler ön plana çıkmıştır. Pekiştirmeli öğrenme aracın çevresel etkileşimlerinden 

elde ettiği geri bildirimlerle davranışlarını optimize etmesini sağlar. Böylece otonom 

sistemler, farklı trafik senaryolarında daha esnek, adaptif ve güvenilir kararlar 

alabilmektedir. 

Otonom taşıtların gerçekleştirmesi gereken en önemli sorumluluklardan biri, dinamik ve 

karmaşık trafik ortamlarında güvenli sürüşü sağlamaktır. Şehir içi trafik, kavşaklar, yoğun 

otoyol koşulları, yaya yoğunluğu gibi faktörler aracın karar alma mekanizmalarını 

zorlamaktadır. Bu karmaşık ve dinamik yapı; sensör verilerindeki gürültü ve dalgalanmalar, 

algılama hataları ve çevresel belirsizliklerle birleştiğinde sistemin güvenilirliğini tehlikeye 

atan durumlara neden olabilmektedir. Bu nedenle otonom sürüş algoritmalarının gerçekçi 

senaryolar ve simülasyon ortamlarında kapsamlı test edilmesi gerekmektedir. 

Simülasyonlar, yüksek maliyet ve risk barındıran gerçek araç testlerinin önünde önemli bir 

adım olmakla beraber, algoritmaların farklı koşullardaki performansını analiz etmekte ve 

optimize etmekte kullanılmaktadır. 

Otonom taşıt teknolojilerinin geliştirilmesi yalnızca teknik ve mühendislik açılarından değil, 

hukuki, etik ve sosyal boyutlar açısından da ele alınmalıdır. Otonom araçların yaygınlaşması 

trafik düzenlemeleri, sorumluluk dağılımı, kişisel veri güvenliği ve etik karar problemleri 

gibi pek çok yeni konuyu gündeme getirmiştir. Özellikle otonom sistemlerin 

karşılaşabileceği etik belirsizlikler ve kaza senaryolarında sorumluluğun nasıl paylaşılacağı 



3 

 

gibi hususlar, teknolojinin toplumsal kabulü ve gündelik yaşantıya entegrasyonu için kritik 

önem taşımaktadır. Bu nedenle otonom taşıt araştırmaları disiplinler arası bir yaklaşımla 

mühendislik alanına ek olarak ekonomik, psikolojik ve sosyolojik olarak da incelenmektedir. 

Otonom taşıt teknolojileri, otomotiv mühendisliği başta olmak üzere yapay zekâ, robotik, 

bilgisayar mühendisliği, yazılım ve sosyal bilimlerin kesişiminde yer alan multidisipliner ve 

dinamik bir araştırma konusudur. Bu alanda yapılan yenilikler ve gerçekleştirilen çalışmalar 

yalnızca teknolojik ilerlemeleri değil, aynı zamanda toplumsal faydayı ve sürdürülebilir 

ulaşımı da desteklemektedir.  

Bu çalışma otonom taşıtların yalnızca karar verme değil, otonom şerit değiştirme 

hareketinde kritik öneme sahip rota planlama ve planlanan rotanın takibi konularına da   

yenilikçi bir yaklaşım geliştirmeyi amaçlamaktadır. Çalışmada geliştirilen algoritmalar 

MATLAB ve Simulink yazılımı ile modellenmiş, çeşitli trafik senaryolarında test edilmiştir. 

Bu sayede önerilen yöntemlerin güvenlik, konfor ve dinamik ortamlarda kullanılabilmesi 

açılarından etkinliği ve kullanılabilirliği değerlendirilmiş ve mevcut yöntemlerle 

karşılaştırılmıştır. Tezin amacı, otonom sürüş sistemlerinin farklı trafik koşullarında 

güvenilirliğini artırmak, daha etkin karar alma yeteneği kazandırmak ve aracın şerit 

değiştirme hareketini doğru bir şekilde tamamlamasını sağlamaktır. 

Bu tez çalışmasında öncelikle kullanılan yöntemler detayları ile açıklanmış ve tercih edilen 

yöntemlerin tercih edilme sebepleri açıklanmıştır. Simülasyonlarda kullanılan taşıt modeli 

açıklanarak belirlenen senaryo koşulları parametreleri belirtilmiştir. Karar verme 

algoritmasında kullanılan DQN yöntemi içerisindeki gözlem kümesi, aksiyon kümesi, ödül 

fonksiyonu gibi parametreler detaylandırılmıştır. Bir sonraki aşama olan rota planlama 

aşamasında kullanılan Sigmoid fonksiyonunun uygulaması açıklanmış, rotaya ait eğrilik 

hesaplamaları yapılmıştır. Rota takibi için kullanılan Stanley denetleyici parametreleri 

açıklanarak DQN ajanının eğitimi ile ilgili detaylar tanımlanmıştır. Eğitim süreci sonucunda 

taşıtın davranışları ve sistemin doğruluğu test edilerek grafik ve görsellerle ifade edilmiştir. 
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2. OTONOM TAŞITLARDA ŞERİT DEĞİŞTİRME MANEVRASI 

Otonom taşıtlar otomotiv ve ulaşım teknolojisinde köklü bir dönüşümü temsil etmektedir. 

İnsan müdahalesi olmadan taşıtın hareketini sağlayan otonom sistemler birden fazla 

teknolojinin ve disiplinin bir araya gelmesi ile kompleks sayılabilecek ancak tamamen 

entegre bir sistemi ifade eder. Temel olarak araç üzerine yerleştirilen çeşitli kamera, sensör 

vb. ekipmanlarla çevre tespiti yapılır. Bu tespitler yol genişliği, şerit ayrımları, çevre taşıtlar, 

yayalar, tabelalar gibi otonom olmayan sürüş esnasında bir sürücünün dikkat etmesi gereken 

unsurları kapsar. Otonom araçların gelişiminin desteklenmesi farklı bakış açılarından çeşitli 

avantajlara sahiptir. Sürüş esnasında sürücü hatalarından kaynaklanabilecek kaza veya hatalı 

sürüş durumlarının azaltılarak şehir içi ya da şehirler arası trafiğin daha güvenli hale 

getirilmesi amaçlanır. Sürücü dikkatsizliği, zayıf refleksler, olumsuz yol şartları ve yavaş 

tepki verme gibi sebeplerden meydana gelen kazalarda taşıt hızına bağlı olarak maddi 

hasarlar ve ciddi yaralanmalar meydana gelebilmektedir. Otonom sürüş sayesinde taşıt 

hareketi ve hızı yol şartlarına göre optimize edilerek kazaların ve dolayısıyla yaralanmaların 

önüne geçilebilir. Çeşitli fiziksel engellere sahip olması nedeniyle araç kullanamayan 

bireylerin günlük yaşantılarını kolaylaştırmak ve başka kişilere bağımlılığını azaltarak 

topluma kazandırmak da otonom araç geliştirmelerinin amaçlarından bir tanesidir. Kararsız 

sürüş dinamikleri ya da sıkışık trafik durumlarında taşıtların harcadığı yakıt, ortalama yakıt 

tüketimleri ve emisyon salınımları artmaktadır. Otonom taşıtlarda bu durum da göz önüne 

alınarak taşıt hareketi kolaylaştırılır. Bununla beraber daha kararlı bir sürüş karakteristiğinin 

bulunduğu bir çevrede trafik olgusu da azalacağı için verimlilik ve yakıt ekonomisi 

iyileştirilir, çevre kirliliğinin azaltılmasına yardımcı olunur. Otonom taşıt tarafından idealize 

edilen sürüş karakteristiği sayesinde trafiğin azalacağı, bu sayede trafikte geçirilen zamanın 

azalması ile beraber zaman tasarrufu sağlanabileceği; bununla beraber doğru park 

konumlandırması sayesinde de park alanlarından tasarruf edilebileceği ön görülmektedir. 

Otonom taşıtlar teknolojik etkiler bakımından çeşitli entegrasyonlar ile güvenliğin artışı ve 

konforun yükseltilmesinde önemli bir adım olup farklı disiplinleri bünyesinde barındırarak 

maksimum konforu ve güvenliği sağlamayı amaçlamaktadır (Gherardini ve Cabri, 2024). 

Otonom taşıtlar sürücüye ve trafiğe konfor ve güvenlik bakımından önemli katkılar sağlasa 

da çeşitli dezavantajları da bulunmaktadır. Bunlardan ilki veri güvenliği olarak söylenebilir. 

Otonom taşıtlar hareketini sağlamak için bütün verileri sensör ve kameralardan elde eder. 

Bu komponentlerde meydana gelebilecek herhangi bir aksaklık ya da eksiklik taşıt ve 
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içerisindeki kişiler için tehlike yaratma ihtimalini ortaya çıkarmaktadır. Bu nedenle bu gibi 

parçaların sağlamlık ve güvenilirliğinin oldukça hassas şekilde doğrulanması gerekir (Yeong 

ve diğerleri, 2021). 

Otonom taşıtların bir diğer negatif yönü ise bünyesinde kullanılan komponentlerin 

pahalılığıdır. Taşıt en doğru sonuca varabilmek ve taşıtı en güvenli şekilde doğru 

yönlendirebilmek için pek çok parça (GPS, LIDAR, RADAR…) kullanır. Bu parçaların 

çoğunlukla elektronik temelli ve pahalı parçalar olması taşıt maliyetinin de yükselmesi 

anlamına gelir. Diğer yandan bu parçalarda meydana gelebilecek herhangi bir hasar ya da 

arıza durumunda bakım ve onarım maliyetleri de ekonomik sayılabilecek seviyenin oldukça 

üzerinde olacağı tespit edilebilmektedir. Günümüzde etkileri yoğun bir şekilde görülmese 

de ilerleyen yıllarda otonom taşıt teknolojisinin de gelişmesi ile beraber taşıt kullanımına 

bağlı iş sektörlerinde işçi ihtiyacının azalacağı ön görülmektedir. Bu durum işsizlik adına 

toplumsal olarak bir tehdit olarak görülebilmektedir. Otonom taşıtların günlük kullanımının 

artışı büyük oranda sürücülerin bu teknolojiye uyum sağlamasıyla doğru orantılıdır. 

Kullanıcıların otonom sürüşü tercih etmeleri, güven kazanabilmeleri ve alışabilmeleri için 

belli bir süre gereksinimi mevcuttur. Teknolojinin ve çalışmaların gelişimi ve sistem 

güvenilirliğinin artması bu süreyi kısaltabilecek faktörlerdendir denebilir (Yeong ve 

diğerleri, 2021). 

2.1. Otonom Taşıtların Sınıflandırılması 

Otonom taşıtlar sürücüye bağımlılık oranına göre 6 farklı seviyede sınıflandırılmıştır. Bu 

seviyeler ve sınıflandırmalar SAE (Society of Automobile Engineers) tarafından 

belirlenmiştir. Bu sınıflandırma aşağıdaki gibi açıklanabilir: 

Seviye 0 – Otomasyon Yok: Bu seviyede taşıt kontrolü tamamen sürücüye bağlıdır. Sistem 

sürücünün kontrolü dışında herhangi bir hareket ya da manevra girişiminde bulunmaz. 

Bununla beraber bazı aktif güvenlik sistemleri sürücüyü uyarmak adına devreye girebilir. 

Bu sistemler şerit takip uyarısı, kör nokta uyarısı, ESC (Electronic Stability Control) gibi 

sistemlerdir  (Technologies, 2022). 

Seviye 1 – Sürüş Asistanı: Bu seviyede sistem direksiyon, gaz pedalı, fren pedalı gibi 

kısımlara müdahale ederek taşıt hızını ve hareket yönünü değiştirebilir. Örneğin ACC 
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(Adaptive Cruise Control) sistemi öndeki araçla mesafe ve hız takibi yaparak taşıt hızına 

etki eder. Şerit takip sistemi ile de aracın bulunduğu şeridin dışına kontrolsüz şekilde çıktığı 

tespit edilirse sistem aracı mevcut şeritte tutmak için direksiyona müdahale eder. Sürücü 

daima aracın kontrolüne sahip olmalıdır. Her iki fonksiyonun da aktifliği sürücü tarafından 

iptal edilebilir ya da devreye alınabilir (Zhao ve diğerleri, 2024). 

Seviye 2 – Kısmi Otomasyon: Bu seviye bir önceki ile benzerlik gösterse de daha kapsamlı 

bir sistem olduğu söylenebilir. Taşıt bu seviyede gaz ya da fren pedalı ile direksiyona aynı 

anda müdahale edebilir. Başka bir deyişle ACC (Adaptive Cruise Control) ve şerit takip 

sistemi eş zamanlı olarak kullanılabilmektedir. Bu seviyede de sürücü aracın tam kontrolüne 

sahip olmalıdır (Wienrich, 2022; Zhao ve diğerleri, 2024). 

Seviye 3 – Koşullu Otomasyon: Bu seviyede taşıt sürüş görevini sürücüden tamamen alabilir. 

Sürücü belirli bir seviyeye kadar aracın kontrolünü bırakıp farklı şeylerle ilgilenebilir. Ancak 

sistem kontrol limitlerine ulaştığında sürücüyü sesle veya titreşimle uyararak kontrolü ele 

almasını talep eder. Bu noktada sürücünün bir süre aracın kontrolünü sağlaması ya da sadece 

kontrolü ele alabileceğini bildirecek şekilde direksiyonu belli bir süre ve şiddette tutması 

sistem tarafından beklenebilir (Inagaki ve Sheridan, 2019; Wienrich, 2022; Zhao ve 

diğerleri, 2024). 

Seviye 4 – Yüksek Otomasyon: Bu seviyede sistem aracı kendi kendine kontrol edebilir. 

Sürücüden herhangi bir kontrol ya da müdahale beklemez. Buna ek olarak bu seviyede 

araçlarını piyasaya süren üreticiler seyir esnasında sürücülerin yemek yiyebileceklerini, film 

izleyebileceklerini ve hatta uyuyabileceklerini söylemişlerdir. Bu seviyedeki taşıtlar için acil 

durumlar dışında sürücüye ihtiyacı yoktur (Zhao ve diğerleri, 2024). 

Seviye 5 – Tam Otomasyon: Bu seviyede herhangi bir sürücüye, dolayısıyla gaz ve fren 

pedalı ya da direksiyona ihtiyaç duyulmaz. Bütün koşullarda belirlenen istikamette sistem 

taşıt hareketini sağlayabilir. Çeşitli ülkelerde şehir içi toplu ulaşım ya da kargo/lojistik gibi 

alanlarda bu tip araçlar kullanılmaktadır (Inagaki ve Sheridan, 2019; Wienrich, 2022; Zhao 

ve diğerleri, 2024). 

Taşıtlar için SAE J3016 ile belirlenen otomasyon seviyeleri Şekil 2.1.’de gösterilmiştir. 
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Şekil 2.1. Taşıt otomasyon seviyeleri (Günay, 2021) 

Otonom taşıtlar; algılama, karar verme ve kontrol gibi temel işlevleri insan müdahalesi 

olmaksızın yerine getirebilen oldukça gelişmiş sistemlerdir. Bu sistemlerin sınıflandırılması, 

avantajları ve mevcut sınırlılıkları ele alındığında tam anlamıyla güvenli ve etkili bir otonom 

sürüş deneyimi sağlamak için yalnızca gelişmiş donanımların yeterli olmadığı 

görülmektedir. Araçta kullanılan lidar, kamera, radar gibi sensörler çevreyi fiziksel olarak 

algılayabilse de bu verilerin anlamlı bilgilere dönüştürülmesi, işlenmesi, yorumlanması ve 

doğru zamanda doğru kararların alınması için daha ileri düzeyde ve dinamik geçişlere uyum 

sağlayabilecek sistemlere ihtiyaç duyulmaktadır. Özellikle gerçek dünyadaki trafik 

ortamının belirsiz ve çoğu zaman öngörülemez yapısı göz önüne alındığında sistemlerin 

belirli senaryolara özel kural tabanlı çözümlerle yönetilmesi çoğu durumda yetersiz 

kalmaktadır. 

Bu noktada devreye giren yapay zekâ teknolojileri, otonom taşıtların çevresel verileri sadece 

algılamasını değil, aynı zamanda bu verilerden öğrenmesini, yorum yapmasını ve karmaşık 

sürüş senaryolarına uyum sağlayarak doğru kararlar alabilmesini mümkün kılar. Yapay zekâ 

sayesinde araçlar, yaya, araç gibi trafik ve çevreye ait unsurları tanımlamakla kalmaz, bu 

unsurların hızını ve yönünü analiz ederek olası hareketlerini öngörebilir. Böylece, önceden 
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programlanmış senaryolara bağlı kalmaksızın, anlık durumlara uygun otonom kararlar 

üretilebilir. Bu da hem sürüş güvenliği hem de konfor açısından sistemlerin daha güçlü, 

bağımsız ve insan benzeri davranışlar sergileyebilmesini sağlar. 

2.2. Otonom Taşıtlarda Kullanılan Yapay Zekâ Yöntemleri 

Yapay zekâ günümüzde çok çeşitli disiplinlerde devrim yaratacak nitelikte yenilikler 

sağlamış, yalnızca bilgi teknolojileriyle sınırlı kalmayıp otomotiv, sağlık, finans ve üretim 

gibi alanlarda da etkili olmuştur. Bu disiplinin temelini insan zekâsını taklit eden sistemlerin 

geliştirilmesi oluşturur. Yapay zekanın temel dallarından biri olan makine öğrenmesi 

(Machine Learning- ML), veriden öğrenmeyi mümkün kılar. Bu yaklaşımda sistemler, 

açıkça programlanmaksızın deneyimlerden öğrenerek karar verebilirler. Makine öğrenmesi, 

denetimli öğrenme (supervised learning), denetimsiz öğrenme (unsupervised learning) ve 

pekiştirmeli öğrenme (reinforcement learning) gibi alt başlıklara ayrılır (Goodfellow ve 

diğerleri, 2016). 

Denetimli öğrenme algoritmalarında sistem giriş ve çıkış verileriyle eğitilir. Sınıflandırma 

(classification) ve regresyon (regression) bu kategoriye dâhildir. Örneğin lojistik regresyon 

(logistic regression) ve destek vektör makineleri (support vector machines- SVM) 

sınıflandırma problemlerinde yaygın kullanılırken, doğrusal regresyon (linear regression) ve 

karar ağaçları (decision trees) gibi yöntemler sayısal tahminler için uygundur. Bununla 

beraber rastgele orman (random forest) gibi topluluk yöntemleri, birden fazla modelin 

çıktısını birleştirerek doğruluğu artırmayı amaçlar (Hastie ve diğerleri, 2009). 

Denetimsiz öğrenme ise veri üzerinde herhangi bir etiket olmaksızın yapısal ilişkileri 

keşfetmeyi hedefler. Kümeleme (clustering) bu yaklaşımın önde gelen tekniklerinden biridir 

ve K-ortalama kümeleme (K-means clustering) ya da hiyerarşik kümeleme (hierarchical 

clustering) gibi algoritmalarla gerçekleştirilir. Boyut indirgeme (dimensionality reduction) 

teknikleri ise verilerin daha düşük boyutlu temsilini elde etmeyi amaçlar. Bu amaçla 

kullanılan temel yöntemler arasında temel bileşen analizi (principal component analysis - 

PCA) ve tekil değer ayrıştırması (singular value decomposition - SVD) yer alır (Bro ve 

Smilde, 2014) . 



10 

 

Derin öğrenme (deep learning), makine öğrenmesinin bir alt kümesidir. Makine 

öğrenmesine kıyasla daha karmaşık ve çok katmanlı yapay sinir ağlarını kullanarak yüksek 

seviyeli sistemlerin ve ajanların öğrenimini sağlar. Evrişimli sinir ağları (convolutional 

neural networks- CNNs) özellikle görüntü işleme alanında başarılı sonuçlar verirken, 

yinelemeli sinir ağları (recurrent neural networks- RNNs) zaman serisi verilerinde ya da dil 

modellemede tercih edilir. Uzun- kısa dönem hafıza (LSTM - long short-term memory) 

ağları ise RNN’lerin uzun etkileşimlere sahip sistemlerde öğrenme konusundaki 

sınırlamalarını aşmak için geliştirilmiştir (LeCun ve diğerleri, 2015). 

Son yıllarda popülerleşen transformer mimarisi, özellikle doğal dil işleme (natural language 

processing - NLP) alanında devrim niteliğinde ilerlemeler sağlamıştır. Bu mimari sayesinde 

metin üretimi, özetleme, çeviri gibi işlemler daha verimli ve mevcut ortama duyarlı biçimde 

gerçekleştirilebilmektedir. Doğal dil işleme modellerinin en yaygın örneklerinden biri olan 

BERT (Bidirectional Encoder Representations from Transformers), çok katmanlı 

mimarisiyle bağlamsal anlamı etkin biçimde modelleyebilir (Vaswani ve diğerleri, 2017). 

Çekişmeli üretici ağlar (Generative Adversarial Networks GANs) gibi üretici yapılar da 

özellikle görüntü sentezi, restorasyon ve veri genişletme konularında yaygın olarak 

kullanılır. GAN’ler bir üretici (generator) ve ayırt edici (discriminator) ağdan oluşur; bu iki 

yapı birbirine karşı çalışarak yüksek kaliteli veriler üretir. GAN'lerin sanat, sağlık 

görüntüleme ve sahte veri üretimi gibi alanlarda birçok yenilikçi uygulaması bulunmaktadır 

(Goodfellow ve diğerleri, 2016). 

Yapay zekanın alt dallarından biri olan pekiştirmeli öğrenme (reinforcement learning - RL), 

ajanların çevreyle etkileşime girerek ödül sinyali üzerinden strateji öğrenmesine dayanır. Bu 

alanda model-tabanlı ve modelden-bağımsız yaklaşımlar olmak üzere iki temel yöntem öne 

çıkar. Model tabanlı yöntemler, çevrenin matematiksel veya istatistiksel bir modelini 

oluşturarak karar verme süreçlerini yürütür. Bu yöntemlerde genellikle ortamın dinamikleri 

yani eylem gerçekleştirildiğinde ortamın nasıl değişeceği bilinir veya öğrenilir. Modelden 

bağımsız yöntemler, çevrenin nasıl çalıştığını bilmeden veya öğrenmeden yalnızca eylemler 

ve ödüller arasındaki ilişkiye odaklanır. Ajan, deneme-yanılma yoluyla en iyi eylemleri 

öğrenir. Ortamın dinamiğini bilmeye gerek yoktur. Modelden bağımsız yöntemler değer 

tabanlı, politika tabanlı olarak iki ayrı grupta incelenir. Değer tabanlı (value-based) 

yöntemlerde ajan, her durumda en yüksek toplam ödülü sağlayacak eylemleri öğrenirken; 
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politika tabanlı (policy-based) yaklaşımlarda doğrudan bir politika fonksiyonu öğrenilir. 

Derin pekiştirmeli öğrenme (deep reinforcement learning - DRL), sinir ağlarını kullanarak 

bu süreçleri daha karmaşık ortamlar için uygular (Sutton ve Barto, 1998). Çoklu ajanlı 

pekiştirmeli öğrenme (multi-agent RL) ise birden fazla ajanın aynı ortamda eşzamanlı 

öğrenmesini kapsar. 

Doğal dil işleme (NLP), yapay zekanın dilsel veriyle çalışmasını sağlar. Bu alanda ön işleme 

(text preprocessing), sözcük analizi (lexical analysis), sözdizimsel çözümleme (syntactic 

analysis) ve anlamsal analiz (semantic analysis) gibi aşamalar bulunur. Sözcüklerin köklerini 

ayıklamak için kök bulma ve lemmatizasyon teknikleri, anlamlandırma içinse anlamsal rol 

etiketleme (semantic role labeling) ve ad-öbek tanıma (named entity recognition - NER) gibi 

yöntemler kullanılır (Jurafsky ve Martin, 2020).  

Görüntü işleme alanındaki bilgisayarlı görü (computer vision) uygulamaları, nesne algılama 

(object detection), nesne takibi (object tracking), görüntü sınıflandırma (image 

classification), görüntü bölütleme (segmentation) ve restorasyon (restoration) gibi görevleri 

içerir. Bu görevler genellikle derin sinir ağları ve CNN'ler aracılığıyla gerçekleştirilir. 

Özellikle otonom taşıtlarda, çevresel algılama görevlerinde bilgisayarlı görü uygulamaları 

kritik rol oynar (Szegedy ve diğerleri, 2015). 

Yapay zekanın otonom sistemlerdeki etkisi, özellikle robotik sistemlerde açıkça 

görülmektedir. Robotik alanında hem denetimli hem de denetimsiz öğrenme yöntemleri 

kullanılmaktadır. Otonom taşıtlar, sürücü müdahalesi olmaksızın çevresel algı, karar verme 

ve hareket kontrolü işlevlerini yerine getirebilmek için yapay zekanın bu alt alanlarından 

faydalanmaktadır. Bu sistemlerde, görüntü işleme yoluyla algılama, pekiştirmeli öğrenme 

yoluyla karar verme ve kontrol mekanizmaları birlikte çalışır. Özellikle derin öğrenme 

temelli yaklaşımlar, otonom taşıtlarda şerit takip, engelden kaçınma, hız optimizasyonu gibi 

görevlerde yüksek başarı sağlar (Bojarski ve diğerleri, 2016). 

Ayrıca açıklanabilir yapay zekâ (explainable AI- XAI), nöro-sembolik yapay zekâ 

(neurosymbolic AI) ve üretken yapay zekâ (generative AI) gibi yükselen alanlar, yapay 

zekanın daha anlaşılır, etik ve yaratıcı biçimde kullanılmasını hedeflemektedir. XAI, 

kararların şeffaflığını artırmayı; nöro-sembolik yapay zeka, sembolik akıl yürütmeyle sinir 
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ağlarının birleşimini; üretken yapay zeka ise özgün içerik üretimini amaçlamaktadır 

(Gunning ve Aha, 2019). 

Bütün yönleri ile ele alındığında yapay zekâ günümüzde hem kuramsal hem de uygulamalı 

yönleriyle hızla gelişmekte, birçok sektör ve teknolojiye yön vermektedir. Özellikle otonom 

taşıt sistemlerinde, tüm bu yöntemlerin bir araya gelerek oluşturduğu sinerji sayesinde insan 

müdahalesi olmaksızın güvenli ve etkili karar alma mekanizmaları tasarlanabilmektedir. Bu 

doğrultuda yapay zekanın gelecekteki uygulama alanlarının daha da genişlemesi kaçınılmaz 

görünmektedir (Russell ve Norvig, 2021). 

Yapay zekâ teknolojilerinin kullanım alanları ve alt dallarının görselleştirildiği şema Şekil 

2.2.’de verilmiştir. 

 

Şekil 2.2. Yapay zekâ yöntemlerinin sınıflandırılması 
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2.2.1. Pekiştirmeli öğrenme 

Pekiştirmeli öğrenme (Reinforcement Learning - RL) yapay zekânın makine öğrenmesi alt 

dallarından en özgün ve karmaşık yöntemlerinden biridir (Sutton ve Barto, 1998). Bu makine 

öğrenmesi algoritması, temelde bir ajanın çevreyle etkileşim kurarak deneyim kazanması ve 

bu deneyimlerden yola çıkarak uzun vadeli ödülü maksimize edecek optimal davranış 

stratejilerini geliştirmesi prensibine dayanmaktadır. Geleneksel denetimli öğrenme 

yöntemlerinin aksine, pekiştirmeli öğrenmede açıkça tanımlanmış bir eğitim veri seti 

bulunmamakta ve sistem doğru davranışın ne olduğunu bilmemektedir. Bunun yerine ajan, 

aldığı ödül sinyallerine göre kademeli olarak davranışlarını iyileştirmektedir (Kaelbling ve 

diğerleri, 1996). Bu öğrenme insan öğrenme mekanizmasına oldukça benzemekte ve 

deneme-yanılma (trial-and-error) yaklaşımı üzerine kuruludur. Pekiştirmeli öğrenmenin bu 

özgün yapısı özellikle dinamik ve belirsiz ortamlarda oldukça etkili bir çözüm olarak 

karşımıza çıkmaktadır. Örneğin, bir robotun yürümeyi öğrenmesi veya bir yapay zekanın 

satranç oynamayı öğrenmesi gibi kompleks görevlerde pekiştirmeli öğrenme algoritmaları 

sıklıkla kullanılmaktadır (Silver ve diğerleri, 2016) . 

Pekiştirmeli öğrenmenin matematiksel temeli, Markov Karar Süreçleri (Markov Decision 

Processes - MDP) olarak adlandırılan bir çerçeve ile modellenmektedir (Puterman, 2014). 

Bu süreçte ajan, içinde bulunduğu durumdan (state) bir aksiyon (action) seçerek, ortamın 

durumunu değiştiren bir geçiş (transition) oluşturur ve bir ödül (reward) alır. Zaman içinde 

elde edilen toplam ödülü maksimize edecek bir stratejiyi, yani politikayı (policy) öğrenmeyi 

amaçlar. Matematiksel olarak MDP=(S,A,P,R,γ) şeklinde tanımlanır. Bu matematik modeli 

durum kümesi (S), eylem kümesi (A), geçiş olasılıkları (P), ödül fonksiyonu (R) ve indirim 

oranı (γ) olmak üzere beş temel bileşenden oluşur (Sutton ve Barto, 1998). 

Pekiştirmeli öğrenmede ajanın amacı, bir politika (π) doğrultusunda gelecekte elde edeceği 

ödüllerin toplamını maksimize etmektir (Sutton ve Barto, 1998). Beklenen toplam ödül, 

durum-eylem çiftlerine atanmış bir değer fonksiyonu olan Q-fonksiyonu ile ifade edilir. Bu 

fonksiyon Bellman Denklemi ile tanımlanır (Bellman, 1966). Bellman denklemi 1 numaralı 

eşitlikte verilmiştir. 

𝑄𝜋(𝑠, 𝑎) = E𝜋 [∑ 𝛾𝑡∞
𝑡=0 𝑅(𝑠𝑡, 𝑎𝑡)|𝑠0 =0, 𝑎0 = 0]                                                               (2.1) 
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Optimal politika, her adımda en yüksek beklenen ödülü sağlayacak aksiyonu seçer. Bu 

durumda optimal Q-değerleri Bellman Optimalite Denklemi olarak bilinir ve 2 numaralı 

eşitlik ile ifade edilir (Bellman, 1966): 

𝑄∗(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) +  𝛾 ∑ 𝑃(𝑠′ |𝑠, 𝑎) max
𝑎′

𝑄∗(𝑠′, 𝑎′)𝑠′                                                        (2.2) 

Bu eşitlik, dinamik programlama yaklaşımına dayalı algoritmalarla iteratif olarak 

çözülebilir. Ancak pek çok gerçek dünya problemi, geçiş olasılıkları bilinmeyen ya da sonlu 

olmayan durum/eylem uzayları içerdiğinden dolayı doğrudan çözüm mümkün değildir. 

Pekiştirmeli öğrenme algoritmaları, ortamın dinamiklerini bilip bilmemelerine göre model 

tabanlı (model-based) ve modelden bağımsız (model-free) yöntemler olarak ikiye ayrılır 

(Sutton ve Barto, 1998). Model tabanlı yöntemlerde, ajan çevrenin dinamiklerini (geçiş 

olasılıklarını ve ödül fonksiyonlarını) karar verme sürecinden önce bilir ya da öğrenir. Bu 

bilgilerle simülasyon yaparak ya da planlama yöntemleri kullanarak en uygun eylemi seçer. 

Örneğin, Dyna-Q algoritması (Sutton ve Barto, 1998) hem deneyimden öğrenmeyi hem de 

modelden simülasyon üretip o deneyimi kullanarak öğrenmeyi birleştiren entegre bir 

algoritmadır. Bununla beraber Model Predictive Control (MPC) ve Monte Carlo Tree Search 

(MCTS) gibi planlama algoritmaları da model tabanlı pekiştirmeli öğrenme yöntemleri ile 

yüksek benzerlik gösteren ve genellikle pekiştirmeli öğrenme algoritmaları ile entegre 

çalışabilen yöntemlerdir.  

Bir diğer yöntem olan modelden bağımsız yöntemlerde ajan, çevrenin dinamiklerine dair 

herhangi bir bilgiye sahip değildir. Öğrenme tamamen deneyime dayanır. Modelden 

bağımsız pekiştirmeli öğrenme algoritmaları genellikle çevre modelinin bilinmediği veya 

öğrenilmediği durumlarda kullanılmaktadır (Mnih ve diğerleri, 2015). Modelden bağımsız 

yöntemler değer tabanlı (value-based), politika tabanlı (policy-based) ve aktör-kritik (actor-

critic) yöntemler olarak üçe ayrılır. Q-learning gibi değer tabanlı algoritmalar, her durum-

eylem çiftinin değerini tahmin ederek en iyi eylemi seçmeye çalışır.  

Değer tabanlı yöntemler, optimal bir değer fonksiyonu (value function) veya Q-fonksiyonu 

(action-value function) öğrenmeye odaklanmaktadır (Dayan ve Watkins, 1992). Q-öğrenme 

(Q-Learning), bu kategorinin en sık kullanılan algoritması olmakla beraber zaman farkı 

(temporal difference) yöntemine dayanmaktadır. Algoritma, Q-değerlerini güncellemek için 
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mevcut Q-değeri ile hedef Q-değeri (bir sonraki durumda alınabilecek maksimum Q-değeri) 

arasındaki hatayı kullanmaktadır. Matematiksel olarak 3 numaralı eşitlikteki gibi ifade edilir. 

𝑄(𝑠𝑡, 𝑎𝑡) ←  𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼[𝑟𝑡+1 +   𝑅(𝑠, 𝑎) +  𝛾 max
𝑎

𝑄(𝑠′, 𝑎′) − 𝑄(𝑠𝑡, 𝑎𝑡)]                       (2.3) 

Burada α öğrenme oranı (0 < α ≤1), γ indirim faktörü, s′ yeni durum  rt+1 ise (t+1) zaman 

adımında alınan ödülü ifade etmektedir. Q-learning algoritması, çevreden gelen geri 

bildirimlerle taban değerlerini iteratif olarak günceller ve optimal politikayı dolaylı olarak 

öğrenir. Bir diğer değer tabanlı algoritma olan SARSA algoritması ise güncel politikaya 

bağlı olarak Q-değerlerini günceller. Q-learnnig algoritmasının derin öğrenme ile 

birleştirildiği DQN (Deep Q-Network) metodu da sıklıkla kullanılmakta ve başarılı sonuçlar 

elde edilmektedir. Bu algoritmalar genellikle giriş seviyesinde pekiştirmeli öğrenme 

uygulamaları için etkilidir (Dayan ve Watkins, 1992). Ancak ayrık eylem alanlarında etkili 

olan bu yöntem, sürekli eylem alanlarında yetersiz kalır. 

Politika tabanlı yöntemlerde, ajan direkt politikayı yani eylem seçme stratejisini  öğrenmekte 

ve doğrudan bir politika fonksiyonu πθ(a∣s) öğrenmeye odaklanmaktadır (Williams, 1992). 

Bu yaklaşım, özellikle sürekli eylem uzaylarında (örneğin robotik kontrol problemleri) ve 

stokastik politikalar gerektiren durumlarda avantaj sağlamaktadır. Politika Gradyan (Policy 

Gradient) teoremi, bu tür algoritmaların matematiksel temelini oluşturmaktadır. Bu 

yöntemler sürekli eylem uzaylarında ve karmaşık problemler için daha uygundur. 

REINFORCE algoritması politikanın gradyana göre optimize edilmesine dayanır. Bu 

algoritmanın matematiksel ifadesi 4 numaralı eşitlikte verilmiştir. 

 𝜃 ← 𝜃 + 𝛼∇𝜃 log 𝜋(𝑎|𝑠 ;  𝜃) 𝐺𝑡                                                                                                    (2.4) 

Eşitlikte yer alan θ ajanın öğrenmeye çalıştığı politika parametrelerini ifade eder.  α ifadesi 

öğrenme oranını belirler ve ajanın ilerleyeceği adımların büyüklüğünü kontrol eder. ∇θ log 

π(a|s; θ) ifadesi, ajanın belirli bir durumda (s) belirli bir eylemi (a) seçme olasılığının 

logaritmasının gradyanıdır ve ajanın yaptığı eylemin ne kadar iyi olduğunu 

değerlendirmesine yardımcı olur. Gt ise ajanın gerçekleştirdiği eylemden sonra gelecekte 

beklediği toplam ödülü ifade eder. Bu yapı sayesinde ajan, başarılı eylemleri daha sık tercih 

etmeyi, başarısız olanları ise azaltmayı öğrenir. Politika tabanlı derin pekiştirmeli öğrenme 

yöntemleri arasında en sık kullanılan diğer algoritmalar Proximal Policy Optimization (PPO) 
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ve Trust Region Policy Optimization (TRPO) algoritmalarıdır. PPO, politikanın her 

güncellemede fazla değişmesini engelleyerek öğrenme sürecini daha kararlı hale getirir 

(Schulman ve diğerleri, 2015). Bununla beraber hem sürekli hem ayrık eylem uzaylarında 

yüksek performans göstermektedir. Ancak politika tabanlı yöntemler yüksek varyans 

sorununa sahiptir ve bu durum öğrenmenin dengesiz olmasına yol açabilir. 

Bu problemi azaltmak için aktör-kritik yöntemleri geliştirilmiştir. Aktör-kritik yöntemler 

hem değer fonksiyonlarını hem de politikayı birlikte öğrenerek bu iki yaklaşımın 

avantajlarını birleştirmektedir (Konda ve Tsitsiklis, 1999). Bu yöntemlerde aktör  politika 

geliştirirken, kritik (eleştirmen) (critic) bu politikanın performansını değerlendirmektedir. 

Aktör-kritik yöntemlerinin literatürde de sıkça karşılaşılan ve kullanılan bir kolu DDPG 

(Deep Deterministic Policy Gradient) yaklaşımıdır. DDPG, klasik Q-learning'in sürekli 

eylem alanlarına uyarlanmış versiyonu olarak da düşünülebilir. Q-learning ayrık (discrete) 

eylem alanlarında uygulanırken, DDPG’de bu mümkün olmadığından, maksimum değeri 

doğrudan çıkaran bir politika fonksiyonu (aktör) öğrenilir. Kritik ağı ise bu politikanın 

çıktığı eylemin ne kadar iyi ve kullanılabilir olduğunu değerlendirir. DDPG bu yönüyle 

DQN ile politika gradyan yöntemlerinin bir sentezidir (Lillicrap ve diğerleri, 2015; Sutton 

ve Barto, 1998). 

Pekiştirmeli öğrenme, son yıllarda çeşitli alanlarda başarılı şekilde uygulanmıştır 

(Arulkumaran ve diğerleri, 2017). Oyunlar ve strateji geliştirme alanında, DeepMind'ın 

geliştirdiği AlphaGo ve AlphaZero sistemleri gibi örneklerde pekiştirmeli öğrenme 

algoritmalarının karmaşık strateji oyunlarında insan seviyesinin ötesine geçebileceğini 

göstermiştir (Silver ve diğerleri, 2016). AlphaGo geleneksel yapay zeka yöntemlerinin 

aksine, hamle değerlendirmek için derin sinir ağları kullanmış ve kendi kendine denemeler 

yaparak yani oyun oynayarak milyonlarca oyun deneyimi kazanmıştır. 

Robotik ve otonom alanlarında da pekiştirmeli öğrenme algoritmaları sistemlerin karmaşık 

görevleri öğrenmesinde ve doğru hareketin geliştirilmesinde yaygın olarak kullanılmaktadır  

(Kober ve diğerleri, 2013). Pekiştirmeli öğrenme yaklaşımı dört ayaklı robotların zorlu 

arazilerde yürümesi, robot kolların nesnelerle etkileşimde bulunması veya drone gibi 

cihazların engellerden kaçınarak uçması gibi görevlerde başarıyla uygulanmıştır. Boston 

Dynamics gibi şirketler pekiştirmeli öğrenme tabanlı yöntemler kullanarak robotların doğal 

ve çevik hareketler kazanmasını sağlamaktadır. Otonom araçlar alanında ise pekiştirmeli 
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öğrenme metodları araçların karmaşık trafik senaryolarında güvenli şekilde hareket etmesini 

sağlamak için kullanılmaktadır (Kendall ve diğerleri, 2019). Araçlar, simüle edilmiş 

ortamlarda milyonlarca kilometre sürüş deneyimi kazanarak, gerçek dünya koşullarına uyum 

sağlayabilmektedir. 

Finans ve ticaret gibi alanlarda da pekiştirmeli öğrenme metodları, portföy yönetimi ve 

yüksek öneme sahip ticaret stratejilerinin optimizasyonunda kullanılmaktadır (Dixon ve 

diğerleri, 2017). Pekiştirmeli öğrenme tabanlı sistemler, piyasa koşullarına dinamik olarak 

uyum sağlayabilmekte ve geleneksel istatistiksel yöntemlere göre daha esnek çözümler 

sunabilmektedir. Pekiştirmeli öğrenme metodları sağlık sektöründe de kullanıcıların 

yaptıkları işlerin otomatik hale getirilmesine katkı sağlamaktadır. Örneğin kişiselleştirilmiş 

tedavi planlarının oluşturulması ve tıbbi teşhis sistemlerinin geliştirilmesinde pekiştirmeli 

öğrenme algoritmaları kullanılmıştır (Shortreed ve diğerleri, 2011). Bunlara ek olarak 

pekiştirmeli öğrenme metodları enerji yönetimi sistemlerinde binaların enerji tüketimini 

optimize etmek ve şebeke yönetimini iyileştirmek için başarıyla uygulanmıştır (Vázquez-

Canteli ve Nagy, 2019). 

Pekiştirmeli öğrenme yapısı genel anlamıyla çevreden aldığı bilgileri birtakım 

değerlendirmelerden geçirerek bir karar verir. Bu kararın doğruluğunu ölçer ve bir sonraki 

adımda kullanılan metodun dinamiklerine bağlı olarak yeni hareketine karar verir. Söz 

konusu sürekli döngü Şekil 2.3.’te verilmiştir. 

 

Şekil 2.3. Pekiştirmeli öğrenme akışı 
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2.2.2. Derin pekiştirmeli öğrenme 

Karmaşık ve yüksek boyutlu durum uzaylarında klasik değer tablosu tabanlı yaklaşımlar 

yetersiz kalmaktadır. Bu nedenle derin öğrenme ile pekiştirmeli öğrenmenin birleştiği Derin 

Pekiştirmeli Öğrenme (Deep Reinforcement Learning) yöntemleri geliştirilmiştir. Son 

yıllarda özellikle derin öğrenme tekniklerinin pekiştirmeli öğrenme yöntemi ile entegre 

edilmesi, daha yüksek hacimli ve sürekli uzaylarda da öğrenmenin mümkün hale gelmesini 

sağlamıştır. Bu sayede otonom araçlar, robot kontrol sistemleri, strateji oyunları ve finansal 

sistemler gibi birçok karmaşık uygulama alanında pekiştirmeli öğrenme algoritmaları 

başarılı sonuçlar vermeye başlamıştır (Kober ve diğerleri, 2013; Mnih ve diğerleri, 2015). 

Özellikle görsel veri işleme gerektiren uygulamalarda, derin sinir ağlarının özellik çıkarımı 

yeteneği sayesinde DRL sistemleri ham piksel verisinden doğrudan öğrenme 

yapabilmektedir (Mnih ve diğerleri, 2015). 

Derin pekiştirmeli öğrenmenin matematiksel temeli, klasik Markov Karar Süreçleri (MDP) 

çerçevesine derin öğrenme bileşenlerinin eklenmesiyle genişletilmiştir. Matematik modeli 5 

numaralı eşitlikte verilmiştir. 

 MDPDRL=(S,A,P,R,γ,ϕθ)                                                                                                        (2.5) 

Bu modelde kullanılan ϕθ derin sinir ağı tarafından sembolize edilen özellik dönüşüm 

fonksiyonunu temsil etmektedir (Sutton ve Barto, 1998). 

Bunların en önemlilerinden biri Derin Q-Ağları (Deep Q-Networks – DQN), algoritmasıdır. 

DQN, durumları doğrudan sinir ağına vererek Q-değerlerini tahmin eder. Ayrıca deneyim 

tekrarı (experience replay) ve hedef ağlar (target networks) gibi teknikler, öğrenmenin 

istikrarlı bir biçimde gerçekleşmesini sağlar (Mnih ve diğerleri, 2015). Derin pekiştirmeli 

öğrenme, pekiştirmeli öğrenme ile derin sinir ağlarının birleşiminden oluşan ve son yıllarda 

büyük ilgi gören bir makine öğrenmesi alanıdır. Geleneksel pekiştirmeli öğrenme 

yöntemleri, düşük boyutlu durum uzaylarında etkili sonuçlar verebilirken, yüksek boyutlu 

ve yapılandırılmamış verilerle (örneğin görüntüler veya sensör verileri) başa çıkmakta 

zorlanır. Derin pekiştirmeli öğrenme, bu sorunu derin sinir ağlarının güçlü özellik çıkarım 

yetenekleriyle çözerek, karmaşık ortamlarda ölçeklenebilir ve etkili çözümler sunar. 
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Derin pekiştirmeli öğrenmenin en önemli avantajı, saf veriden otomatik olarak anlamlı 

özellikler çıkarabilmesidir. Geleneksel yöntemlerde, mühendislerin manuel olarak özellik 

mühendisliği yapması gerekirken, derin öğrenme modelleri bu süreci otomatikleştirir. 

Örneğin, bir otonom araç kamerasından gelen ham görüntüleri işlerken, derin bir evrişimli 

sinir ağı (CNN), görüntülerdeki şerit çizgilerini, diğer araçları ve yaya geçitlerini otomatik 

olarak tanıyabilir. Bu özellikler daha sonra pekiştirmeli öğrenme algoritmasına girdi olarak 

verilerek, aracın şerit değiştirme kararlarını optimize etmesi sağlanır. 

Derin pekiştirmeli öğrenmenin en bilinen uygulamalarından biri, DeepMind tarafından 

geliştirilen ve Atari oyunlarında insan seviyesinde performans gösteren Deep Q-Network 

(DQN) algoritmasıdır. Bu çalışma, derin öğrenme ve pekiştirmeli öğrenmenin birlikte 

kullanılabileceğini göstermiş ve alanda bir dönüm noktası olmuştur. DQN, deneyim hafızası 

(experience replay) ve hedef ağ (target network) gibi tekniklerle öğrenme sürecini stabilize 

ederek, derin pekiştirmeli öğrenmenin pratikte başarılı olmasını sağlamıştır (Mnih ve 

diğerleri, 2015; Silver ve diğerleri, 2016). 

Ancak, derin pekiştirmeli öğrenmenin de bazı zorlukları vardır. Öncelikle, bu yöntemlerin 

eğitimi için büyük miktarda veri ve hesaplama gücü gereklidir. Ayrıca, hiperparametre 

optimizasyonu ve öğrenme sürecinin kararlılığı gibi teknik zorluklar da mevcuttur. Örneğin, 

ödül fonksiyonunun yanlış tasarlanması, ajanın istenmeyen davranışlar öğrenmesine yol 

açabilir. Bu nedenle, derin pekiştirmeli öğrenme sistemlerinin tasarımında dikkatli bir 

mühendislik yaklaşımı gereklidir. 

Derin pekiştirmeli öğrenme, otonom sürüş, robotik kontrol, doğal dil işleme ve finansal 

algoritma ticareti gibi birçok alanda başarıyla uygulanmaktadır. Özellikle otonom taşıtlarda 

şerit değiştirme, trafikte uyum sağlama ve park etme gibi karmaşık görevlerin çözümünde 

etkili sonuçlar vermektedir. Gelecekte, daha verimli ve kararlı algoritmaların 

geliştirilmesiyle, derin pekiştirmeli öğrenmenin uygulama alanlarının daha da genişlemesi 

beklenmektedir. 

2.2.3. Yapay sinir ağları 

Yapay sinir ağları son yıllarda otonom araç teknolojisinde kullanılan yöntemlerin en önemli 

bileşenlerinden biri haline gelmiştir. Yapay sinir ağı sistemleri insan beyninin yapısı ve 
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işleyişinden esinlenerek geliştirilen ve verilerden karmaşık davranışları öğrenebilen yapay 

zekâ modelleridir. Otonom araçlarda kullanılan derin öğrenme sistemleri, geleneksel tabanlı 

öğrenme ve tahmin yaklaşımlarının aksine, büyük miktarda veriden doğrudan öğrenme 

yeteneğine sahiptir. Bu özelliği ile trafiğin karmaşık ve öngörülemeyen doğasında etkili 

kararlar alabilmek bakımından kritik önem taşımaktadır (Bojarski ve diğerleri, 2016).  

Bir yapay sinir ağı temel olarak üç katmandan oluşur. Bu katmanlar giriş katmanı, gizli 

katmanlar ve çıkış katmanıdır. Giriş katmanı, verinin en saf hali ile sisteme alındığı ilk 

katmandır. Başka bir deyişle sistemin sahip olduğu çevrenin istenen parametrelerini direkt 

olarak alır. Gizli katmanlar ise verinin işlendiği ve özelliklerin çıkarıldığı ara katmanlardır. 

Derin öğrenme olarak adlandırılan yöntemlerde, bu gizli katmanların sayısı oldukça fazla 

olabilir. Derin sinir ağı adı ile bilinen yapılarda minimum iki gizli katman bulunurken bu 

katman sayısı yüzlerce katmana varabilir (Goodfellow ve diğerleri, 2016). Çıkış katmanı ise 

ağın son tahminlerini veya eylemlerini ürettiği son katmandır. Her bir katmanda bulunan 

nöronlar, bir önceki katmandaki nöronlardan gelen bilgileri alır, belli bir ağırlığa sahip 

çarpan ile bir toplamını hesaplar ve bir aktivasyon fonksiyonundan geçirerek bir sonraki 

katmana iletir (Goodfellow ve diğerleri, 2016; Silver ve diğerleri, 2016). Yapay sinir ağı 

yapısı Şekil 2.4.’te görülmektedir. 

 

Şekil 2.4. Yapay sinir ağı yapısı (Bre ve diğerleri, 2018) 



21 

 

Aktivasyon fonksiyonları yapay sinir ağlarının doğrusal olmayan parametreleri 

modelleyebilmesini sağlayan kritik bileşenlerdir. En yaygın kullanılan aktivasyon 

fonksiyonları arasında ReLU (Rectified Linear Unit), sigmoid ve tanh fonksiyonları örnek 

verilebilir. ReLU, özellikle derin sinir ağlarında yaygın olarak kullanılır çünkü hesaplama 

açısından verimli olmasının yanı sıra ölü nöron problemini minimize eder. Bu bağlamda en 

yaygın doğrusal olmayan aktivasyon fonksiyonlarından biri de tanh (tanjant hiperbolik) 

fonksiyonudur. Bu fonksiyon, giriş değerlerini -1 ile +1 arasında ölçeklendirir ve bu özelliği 

sayesinde simetrik çıktı dağılımına ihtiyaç duyulan derin sinir ağlarında kullanımı 

avantajlıdır (LeCun ve diğerleri, 2015). 

Derin pekiştirmeli öğrenmede, yapay sinir ağları hem politikanın hem de değer 

fonksiyonlarının opitimizasayonu için kullanılır. Örneğin, bir otonom araç için şerit 

değiştirme kararı verirken, araç kamerasından alınan görüntüler bir evrişimli sinir ağı 

(Convolutional Neural Network- CNN) ile işlenerek anlamlı veriler ortaya çıkarılır. Bu 

veriler daha sonra politika ağına girdi olarak verilerek aracın hangi eylemi 

gerçekleştireceğine karar vermesi sağlanır. Buna benzer olarak değer ağı da bu özellikleri 

kullanarak belirli bir durumda seçilen belirli bir eylem sonucunda alınabilecek beklenen 

ödülü tahmin eder (Silver ve diğerleri, 2016). 

Yapay sinir ağlarının öğrenme kapasitesi, çoğu zaman mimarinin derinliğiyle doğrudan 

ilişkilidir. Bu noktada, derin sinir ağları (Deep Neural Networks – DNN) kavramı ortaya 

çıkmaktadır. Derin sinir ağları, iki ya da daha fazla gizli katmandan oluşan çok katmanlı 

yapay sinir ağı mimarileridir. Derin öğrenme (deep learning) adı verilen yaklaşımın temelini 

oluşturan bu yapılar, özellikle büyük veri kümeleri ile çalışıldığında yüksek düzeyde 

modelleme  yeteneği kazanmakta ve görüntü işleme, doğal dil işleme, otonom sistemler gibi 

karmaşık uygulama alanlarında oldukça başarılı performans göstermektedir (Goodfellow ve 

diğerleri, 2016). 

Derin sinir ağları, klasik yapay sinir ağlarına göre daha fazla parametre içerdiği ve öğrenme 

sürecinde daha karmaşık örüntüleri keşfedebildiği için pekiştirmeli öğrenme yöntemleriyle 

entegre edildiğinde önemli avantajlar sağlamaktadır. Bu birleşim, derin pekiştirmeli 

öğrenme olarak adlandırılmakta ve son yıllarda otonom sürüşten robotik kontrol sistemlerine 

kadar geniş bir uygulama alanı bulmaktadır. Derin pekiştirmeli öğrenme algoritmalarının 

önemli bir örneği olan Deep Q-Network (DQN), Q-değer fonksiyonunu iyileştirmek için bir 
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derin sinir ağı kullanmakta ve klasik Q-learning algoritmasının büyük durum ve eylem 

uzaylarına uygulanabilirliğini mümkün kılmaktadır (Mnih ve diğerleri, 2015).  

2.2.4. DQN algoritması 

Pekiştirmeli öğrenme, yapay zekânın karar alma gerektiren pek çok alanında başarıyla 

uygulanmaktadır. Otonom araçlar en önde gelen uygulama alanlarından biridir. Şerit 

değiştirme, takip mesafesi ayarlama ve çarpışma önleme gibi görevlerde pekiştirmeli 

öğrenme tabanlı sistemler insan benzeri ve gerçekçi kararlar verebilmektedir (Kiran ve 

diğerleri, 2021). 

Derin Q-Ağları (DQN), pekiştirmeli öğrenme ile derin öğrenmenin başarılı bir şekilde 

birleştirildiği ilk yöntemlerden biridir ve derin pekiştirmeli öğrenme alanında önemli bir 

dönüm noktası olarak kabul edilir. DQN, 2015 yılında DeepMind araştırmacıları tarafından 

geliştirilmiş ve Atari 2600 oyunlarında insan seviyesinde performans göstermiştir. Bu başarı 

pekiştirmeli öğrenmenin yalnızca düşük boyutlu durum uzaylarında değil, yüksek boyutlu 

ve karmaşık girdilerle de başarılı olabileceğini göstermiştir. DQN'ın temel prensibi, 

geleneksel Q-öğrenme algoritmasını derin bir sinir ağı ile birleştirerek Q-değerlerinin daha 

etkili bir şekilde tahmin edilmesini sağlamaktır (Mnih ve diğerleri, 2015). 

DQN'ın geleneksel Q-öğrenmeden en önemli farkı Q-değerlerinin tablo şeklinde saklanmak 

yerine bir sinir ağı tarafından saklanması ve işlenmesidir. Geleneksel Q-öğrenmede her 

durum-eylem çifti için bir Q-değeri saklanır ve bu değerler deneyimler sonucunda 

güncellenir. Ancak DQN yaklaşımı, durum uzayının büyük olduğu problemlerde (otonom 

araçlar için kamera görüntüleri gibi) uygulanabilir değildir. DQN ise durumu yani gözlem 

kümesini girdi olarak alan ve her bir eylem için Q-değerlerini tahmin eden bir sinir ağı 

kullanarak bu sorunu çözer. Bu sayede ağ daha önce hiç karşılaşmadığı durumlar için bile 

uygun Q-değerleri tahmin edebilir. Bu yaklaşımın matematiksel temeli, Bellman optimalite 

denklemine dayanmaktadır. DQN algoritmasını geleneksel Q-learning yaklaşımından farklı 

kılan özelliği, bu temel denklemi derin sinir ağları aracılığıyla uygularken getirdiği deneyim 

tekrarı (experience replay) ve hedef ağ (target network) mekanizmaları olmak üzere iki kritik 

yenilikte yatmaktadır. Deneyim tekrarı mekanizması ajanın geçmiş deneyimlerini 

matematiksel olarak D = (sₜ,aₜ,rₜ,sₜ₊₁) şeklinde ifade edilen bir bellekte saklayarak öğrenme 

sürecinde bu deneyimlerden rastgele örneklemeler yapmasını sağlamaktadır. Bu yaklaşım, 
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örnekler arasındaki tutarsızlığı azaltarak öğrenmenin kararlılığını önemli ölçüde 

artırmaktadır (Lin, 1992). Hedef ağ mekanizması ise Q-değerlerinin hesaplanmasında 

periyodik olarak güncellenen ayrı bir ağ kullanarak öğrenme sürecindeki değişken yapıyı 

minimize etmeyi amaçlamaktadır (Mnih ve diğerleri, 2015).  

DQN algoritmasının başarılı sonuçlar getirmesi ve yaygınlaşması ile beraber araştırmacılar 

bu temel yaklaşımın çeşitli sınırlamalarını aşmak için önemli geliştirmeler yapmışlardır. 

2016 yılında yapılan bir çalışmada, araştırmacılar tarafından önerilen Çift DQN (Double 

DQN), Q-değerlerinin sistematik olarak fazla tahmin edilmesi (over estimation) problemini 

çözmek amacıyla geliştirilmiştir. Bu yöntem, hedef değerlerin hesaplanmasında farklı bir 

strateji izleyerek daha kararlı öğrenme sağlamaktadır (Van Hasselt ve diğerleri, 2016). Bir 

diğer önemli geliştirme olan Dueling DQN mimarisi ise Q-değerlerinin durum değeri (state 

value) ve avantaj fonksiyonu (advantage function) olarak iki bileşene ayrıştırılması 

prensibine dayanmaktadır (Wang ve diğerleri, 2016).  

DQN ve bağlı metodlarının başarısı özellikle Atari 2600 oyunları üzerinde yapılan kapsamlı 

testlerle kanıtlanmıştır. Space Invaders, Breakout ve Pong gibi klasik oyunlarda insan 

seviyesinde performans sergileyen bu algoritmalar, yüksek boyutlu görsel girdileri 

işleyebilme ve genelleme yapabilme yetenekleriyle ön plana çıkmıştır (Mnih ve diğerleri, 

2015). Ancak DQN algoritmasının bazı önemli sınırlamaları bulunmaktadır. DQN yöntemi 

yalnızca ayrık eylem uzaylarında kullanılabilmektedir. Başka bir deyişle sürekli eylem 

uzaylarını desteklememektedir. Ayrıca, örnek verimliliği açısından oldukça maliyeti yüksek 

bir algoritma olup, yüksek sayıda deneme gerektirmektedir. Q-değerlerinin fazla tahmin 

edilmesi (overestimation bias) de diğer bir önemli sorun olarak karşımıza çıkmaktadır (Van 

Hasselt ve diğerleri, 2016). Bu sınırlamaları aşmak için geliştirilen yöntemler arasında 

Dağıtımsal DQN (C51), Noisy Nets ve Rainbow DQN gibi yaklaşımlar sayılabilir (Hessel 

ve diğerleri, 2018). Bu gelişmeler, DQN'nin günümüzde hala pekiştirmeli öğrenme 

araştırmalarında temel bir referans noktası olarak kabul edilmesini sağlamaktadır. 

Pekiştirmeli öğrenme döngüsünün derin öğrenme ile birleşimi olan DQN algoritması için 

oluşturulmuş hali Şekil 2.5.’te görülmektedir. 
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Şekil 2.5. DQN algoritması şeması (Alam, 2023) 

DQN'ın otonom sürüş sistemlerine uygulanması, özellikle şerit değiştirme ve trafikte seyir 

gibi karmaşık karar verme süreçlerinde etkili sonuçlar vermiştir. Örneğin, bir otonom araç 

kamerasından gelen görüntüleri işlemek için evrişimli sinir ağlarını kullanabilir ve bu 

görüntülerden çıkarılan özellikleri DQN algoritmasına girdi olarak verebilir. Araç, farklı 

durumlarda (örneğin, yoğun trafik, yağmurlu hava) hangi eylemleri gerçekleştireceğini (sola 

geçiş yap, hızını artır, fren yap) bu yöntemle öğrenebilir. Ancak DQN'ın bazı sınırlamaları 

da bulunmaktadır. En önemli sınırlama, ayrık eylem uzaylarıyla çalışmasıdır. Yani, eylemler 

sonlu ve ayrık bir küme içermelidir (örneğin, sola dön, sağa dön, düz devam et). Sürekli 

eylem uzaylarında (örneğin, direksiyon açısının -30 derece ile +30 derece arasında herhangi 

bir değer alabilmesi) ise DQN doğrudan uygulanamaz. Bu tür problemler için DDPG gibi 

alternatif yöntemler geliştirilmiştir. 

Otonom şerit değiştirme manevrası için süreç karar verme, rota planlama ve rota takibi 

olmak üzere üç adımda gerçekleşir. Bu adımlardan karar verme yapısı, çalışmalarda 

çoğunlukla yapay zekâ tabanlı algoritmalarla tasarlanarak karar verme davranışının insan 

benzerliğinin maksimize edilmesi amaçlanmaktadır. Bununla beraber rota planlama ve rota 

takibi adımları için de yapay zekâ tabanlı sistemler kullanılsa da deterministik ve 

optimizasyon tabanlı algoritmalar da sıklıkla görülmektedir. 
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2.3. Otonom Şerit Değiştirme Rota Planlama Yöntemleri 

Şerit değiştirme rotasının planlanması, otonom aracın belirli bir zaman aralığında izleyeceği 

yolun belirlenmesini kapsar. Bununla beraber rota planlama yöntemleri genellikle 

parametrik eğriler, optimizasyon tabanlı fonksiyonlar ve öğrenme temelli modeller olarak 

üç ana grupta incelenebilir. En yaygın kullanılan deterministik yöntemlerden biri polinom 

tabanlı rota planlamasıdır. Bu yöntemde şerit değiştirme rotası genellikle üçüncü veya 

beşinci dereceden polinomlar ile temsil edilir. Polinom fonksiyonlar başlangıç ve bitiş 

koşullarına uygun şekilde belirlenerek aracın yumuşak bir geçiş yapmasını sağlar (Werling 

ve diğerleri, 2010). Rota planlamada en sık kullanılan polinom tabanlı yöntemlerden biri de 

Quintic polinomlardır. Quintic polinomlar özellikle robotik ve otonom sürüş sistemlerinde, 

başlangıç ve bitiş noktaları arasındaki süreklilik özelliğine sahip rotalar oluşturmak amacıyla 

kullanılan etkili bir yöntemdir. Beşinci dereceden bir polinom yapısı, başlangıç ve bitiş 

noktalarında pozisyon, hız ve ivme değerlerinin istenen şekilde tanımlanmasına imkân 

sağlar. Bu yöntem, altı bilinmeyenli denklem sisteminin çözülmesiyle polinom 

katsayılarının belirlenmesine dayanır (Zhao ve diğerleri, 2017). Quintic polinomların 

matematiksel ifadesi aşağıdaki eşitlikte verilmiştir. 

𝜃(𝑡) = 𝑎0 +  𝑎1𝑡 + 𝑎2𝑡2 +  𝑎3𝑡3 +  𝑎4𝑡4 +  𝑎5𝑡5                                                               (2.6) 

Bu eşitlikteki t değişkeni zamanı ifade eder. 𝑎1→𝑛 ifadesi ise polinom katsayılarıdır. Bu 

katsayılar, rota planlama sırasında belirlenen başlangıç ve bitiş pozisyonu, hızı ve ivmesi 

gibi sınır koşulları kullanılarak hesaplanır. Yani bu katsayılar rotanın şekline karar verir. 

Farklı sınır koşulları için bu katsayılar değişir (Zhao ve diğerleri, 2017). Ancak polinomlar, 

yol eğriliği ve dinamik engel durumu gibi faktörleri doğrudan değerlendirmediğinden, daha 

esnek yöntemler geliştirilmiştir. 

Alternatif olarak, Bézier eğrileri ve B-spline fonksiyonları, rota planlamada daha fazla 

kontrol noktası sunarak esnek geçişler sağlamaktadır. Bu yöntemler, özellikle karmaşık 

çevresel koşullarda daha uyarlanabilir yörünge profilleri oluşturmada avantaj sağlar (Ziegler 

ve diğerleri, 2014). Bununla birlikte bu geometrik yöntemler, araç dinamiklerini açıkça 

modele dahil etmedikleri için gerçek zamanlı güvenlik değerlendirmeleriyle birlikte 

çalıştırılmaları gerekmektedir. 
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Güncel çalışmalarda sıklıkla tercih edilen bir diğer yöntem ise optimizasyon tabanlı 

planlama yaklaşımlarıdır. Bu yöntemlerde şerit değişim rotası, bir maliyet fonksiyonu (cost 

function) içerisinde optimize edilerek belirlenir. Maliyet fonksiyonu genellikle konfor 

(ivme, jerk), güvenlik (engel mesafesi) ve yol uygunluğu gibi parametreleri içerir. Bu 

bağlamda, kuadratik programlama (Quadratic Programming- QP), doğrusal programlama 

(Linear Programming- LP) ve model öngörülü kontrol (Model Predictive Control- MPC) 

gibi optimizasyon teknikleri tercih edilmektedir (Falcone ve diğerleri, 2007). 

Son yıllarda ise makine öğrenmesi ve pekiştirmeli öğrenme tabanlı rota planlayıcıları, 

özellikle bilinmeyen çevresel koşullara adaptasyon yetenekleri sayesinde dikkat 

çekmektedir. Bu yöntemlerde ajan, ödül fonksiyonuna dayalı olarak birçok deneme yaparak 

optimal rotayı zaman içinde öğrenir. Bununla birlikte, bu yöntemlerin eğitim süreci oldukça 

karmaşık ve zaman alıcıdır (Sallab ve diğerleri, 2017). 

Her yöntemin avantajları ve sınırlılıkları bulunsa da şerit değiştirme gibi karmaşık 

manevralarda başarı sağlamak için aracın dinamiğine uygun, çevresel faktörleri hesaba katan 

ve kontrol sistemleriyle entegre çalışabilecek bir rota planlama algoritmasına ihtiyaç vardır. 

Bu bağlamda sigmoid tabanlı yaklaşım hem pratik uygulama kolaylığı hem de yüksek konfor 

faktörleri sebebiyle bu çalışmada tercih edilmiştir. 

Sigmoid tabanlı rota planlama yöntemi hem matematiksel sadeliği hem de yumuşak geçişler 

üretme kapasitesi nedeniyle farklı odaklarda ilerleyen birçok probleme ve çalışmaya çözüm 

sunabilecek niteliktedir. Sigmoid fonksiyonu 6 numaralı eşitlik ile ifade edilir. 

σ =
1

1+e−a(x−𝑥0)                                                                                                                        (2.7) 

Şerit değişiminde sigmoid kullanımı, aracın yumuşak bir yörüngeyle hedef şeride geçmesini 

sağlarken, ani yönelme değişimlerinden kaynaklanabilecek konfor kayıplarını da minimize 

eder (Han ve Moraga, 1995).  
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Şekil 2.6. Sigmoid fonksiyon grafiği (Chen ve diğerleri, 2024) 

Sigmoid fonksiyonu, "S" şeklindeki karakteristik eğrisiyle matematikte ve mühendislikte 

yaygın olarak kullanılan temel bir aktivasyon fonksiyonudur (Bkz. Şekil 2.6.). Girdi 

değerlerini 0 ile 1 arasında ölçekleyerek yumuşak geçişler sağlar. Yapısı gereği 

türevlenebilir olması Sigmoid fonksiyonunu özellikle kontrol sistemleri ve yapay sinir ağları 

gibi alanlarda kullanışlı kılmaktadır (Han ve Moraga, 1995). 

Sigmoid fonksiyonunun otonom araç uygulamalarında kullanımı, temel olarak üç önemli 

avantaja dayanmaktadır. Bu avantajlardan ilki süreklilik sağlayarak yumuşak ve doğal 

geçişlere olanak tanımasıdır. İkincisi, parametrik yapısı sayesinde manevra karakteristiğinin 

kolayca ayarlanabilmesidir. Üçüncü ve en önemli faktör ise insan sürüş davranışına 

matematiksel ve fiziksel olarak çok benzer bir profil oluşturabilmesidir. Araştırmalar, insan 

sürücülerin şerit değiştirirken doğal hareketleri ile sigmoide benzer bir yol izlediğini 

göstermektedir (Salvucci ve Liu, 2002). Otonom şerit değiştirme probleminde sigmoid 

fonksiyonunun kullanımı, geleneksel polinom (quintic ve quadratic) tabanlı yaklaşımlara 

göre birçok üstünlük sunar. Fonksiyonun eğim parametresi (k), manevranın agresifliğini 

doğrudan kontrol edebilir. Örneğin yüksek hızlarda daha düşük k değerleri kullanılarak uzun 

ve yumuşak geçişler sağlanırken, düşük hızlarda daha yüksek k değerleriyle daha keskin 

manevralar mümkün olmaktadır (Huang ve diğerleri, 2019). Bu parametrik esneklik, farklı 

yol ve trafik koşullarına adaptasyonu kolaylaştırmaktadır. 
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2.4. Otonom Şerit Değiştirme Rota Takibi Yöntemleri 

Otonom taşıtların güvenli ve başarılı bir şekilde manevralarını gerçekleştirebilmesi, yalnızca 

izlenecek yolun doğru şekilde planlanmasıyla sınırlı değildir. Araç, önceden oluşturulan 

referans rotayı gerçek zamanlı olarak ne kadar hassas bir biçimde takip edebiliyorsa, 

manevranın güvenilirliği ve yolcu konforu da o denli artar. Bu noktada devreye giren rota 

takip sistemleri, aracın belirli bir yörüngeye olan konum ve yönelim farklarını dikkate alarak 

uygun direksiyon ve hız komutlarını üretir. Özellikle şerit değiştirme gibi hassas 

manevralarda, takip doğruluğu yalnızca konfor açısından değil, aynı zamanda çarpışma 

risklerini azaltmak adına da kritik önem taşımaktadır. Bu bağlamda rota takip algoritmaları, 

referans yörüngeye olan hata büyüklüklerini en aza indirmeyi amaçlayan çeşitli kontrol 

stratejilerine dayanır. 

Rota takibi için geliştirilen yöntemler, genellikle geometrik tabanlı kontrol, model tabanlı 

kontrol ve öğrenmeye dayalı yaklaşımlar olarak sınıflandırılabilir. Bu yöntemlerin ortak 

hedefi, aracın referans rotaya göre pozisyon hatasını ve yönelim farkını minimize ederek 

sürüş doğruluğunu artırmaktır. 

En yaygın kullanılan geometrik yöntemlerden biri Pure Pursuit (saf takip) algoritmasıdır. Bu 

yöntemde araç, belirli bir ön görüş mesafesi kadar ilerdeki bir hedef noktaya yönelerek 

yörüngeyi takip etmeye çalışır. Basitliği ve gerçek zamanlı uygulanabilirliği sayesinde 

birçok otonom sistemde kullanılmış olsa da, düşük hızlarda agresif direksiyon açıları 

üretmesi veya yüksek hızda sapma eğilimi gibi dezavantajları vardır (Coulter, 1992). 

Rota takibinde öne çıkan bir diğer yöntem ise Stanley kontrol algoritmasıdır. Bu yöntem, 

aracın yönelim hatası ve referans yola olan çapraz iz hatasını dikkate alarak direksiyon 

açısını hesaplar. Stanford’un otonom aracı Stanley ile ünlenen bu algoritma, özellikle düşük 

hızlarda kararlı sonuçlar üretmesiyle bilinir. Yönelim açısı ile çapraz iz hatası arasında bir 

dengeleme sağlayan bu yapı, sade bir matematiksel formülasyonla gerçek zamanlı sistemlere 

kolayca entegre edilebilir (Thrun ve diğerleri, 2006). Tez kapsamında da kullanılan bu 

yöntem, sigmoid tabanlı rota planlama ile birlikte çalışarak yumuşak ve kararlı şerit 

değiştirme manevraları sunmayı hedeflemektedir. 
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Geometrik yöntemlerin sınırlı durumlara uygunluğu nedeniyle, daha gelişmiş kontrol 

gereksinimleri için model tabanlı kontrol (model-based control) yaklaşımları tercih 

edilmektedir. Bu bağlamda öne çıkan yöntemlerden biri Model Predictive Control 

(MPC)’dir. MPC hem taşıtın dinamiklerini hem de referans yörüngeyi dikkate alarak belirli 

bir zaman ufku içinde kontrol girdilerini optimize eder. Bu yapı sayesinde sistem, ileriyi 

öngörebilir, sınırlamaları hesaba katabilir ve kontrol sinyallerini yumuşak biçimde üretir 

(Falcone ve diğerleri, 2007). Özellikle yüksek hızda sürüşlerde ya da karmaşık trafik 

senaryolarında MPC, araç davranışını kararlı ve güvenli kılmak açısından önemli avantajlar 

sunar. 

Son yıllarda rota takibi için makine öğrenmesi ve pekiştirmeli öğrenme (RL) gibi veri temelli 

yaklaşımlar da kullanılmaya başlanmıştır. Bu sistemler, çevreyle etkileşim üzerinden hata 

geri bildirimleri alarak zaman içinde en uygun kontrol stratejisini öğrenir. Örneğin, bir derin 

pekiştirmeli öğrenme (DRL) ajanı, aracın yanal ve boylamsal sapmalarını minimize edecek 

şekilde kendini eğiterek dinamik ortamlarda yüksek başarı oranlarına ulaşabilir (Kendall ve 

diğerleri, 2019). Ancak bu yöntemlerin eğitim süreci hesaplama açısından maliyetlidir ve 

simülasyon ortamında iyi sonuçlar vermesine rağmen gerçek dünya senaryolarında güvenlik 

garantisi sağlamak için daha fazla çalışmaya ihtiyaç duyulmaktadır. 

Rota takip yöntemleri ile ilgili çalışmalar incelendiğinde otonom algoritmaların başarısı, 

yalnızca hata büyüklüklerinin azaltılmasıyla değil, aynı zamanda sürüş konforu, tepki hızı 

ve sistem kararlılığıyla da ölçülmektedir. Bu çalışmada tercih edilen Stanley kontrol 

algoritması, sigmoid tabanlı rota planlama yöntemiyle uyum içinde çalışarak hem algoritmik 

sadelik hem de uygulama verimliliği sağlamaktadır.  

Otonom taşıtların gelişimiyle birlikte güvenli, konforlu ve verimli bir sürüş elde etmek 

amacıyla çok sayıda kontrol algoritması geliştirilmiştir. Bu algoritmalardan biri olan Stanley 

kontrol yöntemi, özellikle yanal kontrol (lateral control) görevlerinde öne çıkan basitliği, 

kararlılığı ve gerçek zamanlı uygulanabilirliği ile oldukça uygulanabilir bir yöntemdir. 

Stanford Üniversitesi tarafından geliştirilen ve 2005 DARPA Grand Challenge’ı kazanan 

otonom aracın kontrol algoritması olarak tanınan Stanley kontrolörü, özellikle düşük hızlı 

uygulamalarda ve hafif araç koşullarında etkili sonuçlar vermektedir (Thrun ve diğerleri, 

2006). 
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Stanley kontrol algoritmasının temel amacı, aracın mevcut pozisyonunu hedef rota 

(reference trajectory) ile hizalayarak sapmayı minimize etmektir. Bu doğrultuda kontrol 

stratejisi, yönelim hatası (heading error) ve çapraz yol hatası (cross-track error) olmak üzere 

iki temel hata bileşeni üzerinden tanımlanır. Yönelim hatası, aracın boylamasına ekseni ile 

referans yol üzerindeki teğet doğrultu arasındaki açı farkını tanımlar. Çapraz iz hatası ise 

aracın referans yoluna olan dik mesafesidir. Bu iki hata bileşeni Stanley algoritmasının 

kontrol girdisi olan direksiyon açısını belirlemede kullanılır. Stanley denetleyicisi tarafından 

belirlenen yönlendirme açısı 7 numaralı eşitlik ile hesaplanır: 

𝛿 = 𝜃𝑒 + arctan
𝑘.𝑒𝑐𝑡

𝑣
                                                                                                            (2.8) 

Bu denklemde 𝜃𝑒  yönelim hatasını, 𝑒𝑐𝑡 çapraz yol  hatasını (cross-track error), pozitif bir 

kazanç parametresini, ise aracın anlık hızını temsil etmektedir. Bu formül, aracın referans 

yoluna hizalanmasını sağlayacak şekilde iki hata türünü birleştirir. İlk terim, aracın yönelimi 

ile yolun yönü arasındaki farkı düzeltirken, ikinci terim ise çapraz mesafeyi azaltmayı 

hedefler. Arctanjant fonksiyonunun kullanımı, kontrol girişinin sürekliliğini ve kontrol 

hassasiyetini arttırır. Hızın payda olarak yer alması ise özellikle düşük hızlarda sistemin daha 

agresif, yüksek hızlarda ise daha yumuşak tepkiler vermesini sağlar. Bu hız duyarlılığı 

Stanley kontrol algoritmasını dinamik araç uygulamaları için uygun hale getirir (Paden ve 

diğerleri, 2016). 

Yanal (Lateral) Stanley kontrolörü, temel Stanley algoritmasına benzer prensiplere 

dayanmakla birlikte özellikle yanal konumlandırma görevlerine odaklanır. Bu bağlamda, 

longitudinal (boylamsal) kontrol ile entegre çalışarak aracın belirli bir yörüngede sadece hız 

değil aynı zamanda doğru konumda ilerlemesini sağlar. Yanal Stanley kontrolü, şerit takip, 

kavşak dönüşleri ve engelden kaçınma gibi görevlerde kullanılarak taşıtın şeritteki 

pozisyonunu korumasına yardımcı olur. Bu tür uygulamalarda sistem, yalnızca merkez 

çizgiye olan mesafeyi değil, aynı zamanda yörünge eğrisinin yerel eğriliğini ve aracın anlık 

yönelimini de göz önüne alır (Ziegler ve diğerleri, 2014). 

Yanal Stanley kontrol algoritmasının performansı genellikle takip edilen yolun eğriliğine, 

taşıt dinamiklerine ve sensör doğruluğuna bağlıdır. Özellikle eğimli veya bozuk zeminlerde, 

yanlış çapraz yol hatası tahmini sistemin kararlılığını olumsuz etkileyebilir. Bu nedenle lidar, 

GPS, IMU gibi çoklu sensör verileriyle zenginleştirilmiş bir algı sistemi Stanley kontrol 
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algoritmasının doğruluğunu artırabilir. Bunun yanı sıra, Stanley kontrolörü genellikle PID 

veya MPC (Model Predictive Control) gibi boylamsal kontrol yöntemleriyle birlikte 

kullanılır ve bu kontrolcülerin koordinasyonu aracın genel sürüş kalitesini belirleyici hâle 

getirir (Falcone ve diğerleri, 2007). 

Stanley kontrol algoritması, sahip olduğu yapısal basitliğe rağmen otonom taşıtlarda yanal 

kontrol görevlerinde oldukça etkili ve kararlı bir çözümdür. Araç-yol hizalanmasını 

sağlamak için yönelim ve çapraz iz hatalarını temel alan bu algoritma, gerçek zamanlı 

uygulamalar için uygundur ve çeşitli kontrol yöntemleriyle kolaylıkla entegre edilebilir.  

2.5. Literatür Taraması 

Otonom sürüş teknolojileri, son yıllarda hızla gelişen yapay zekâ ve kontrol sistemleriyle 

birlikte, özellikle şerit değiştirme gibi karmaşık sürüş manevralarında yeni yaklaşımların 

geliştirilmesini zorunlu kılmıştır. Bu bağlamda, otonom taşıtların güvenli, konforlu ve etkin 

bir şekilde şerit değiştirebilmesi için literatürde çok sayıda yöntem önerilmiş; bu yöntemler 

karar verme, hareket planlama ve kontrol katmanları olmak üzere farklı aşamalarda 

sınıflandırılmıştır. Yapılan çalışmaların önemli bir kısmı, klasik kural tabanlı modellere 

dayansa da değişken trafik koşullarında esnek kararlar alabilme ihtiyacı bu yaklaşımların 

yetersiz kaldığını ortaya koymuştur. Bu doğrultuda son yıllarda makine öğrenmesi, 

pekiştirmeli öğrenme, bulanık mantık, SVM (Support Vector Machine) ve MPC (Model 

Predictive Control) gibi yöntemlerin otonom şerit değiştirme problemlerine uygulanması ile 

daha uyarlanabilir, gerçekçi ve güvenli sistemler geliştirilmeye başlanmıştır. Literatürde yer 

alan bu çalışmalar, algoritmaların performansını değerlendirmek amacıyla hem simülasyon 

hem de gerçek sürüş verileri kullanılarak test edilmiş ve yeni modellerin klasik yaklaşımlara 

göre daha yüksek başarı oranlarına sahip olduğu raporlanmıştır. Bu bölümde, otonom 

taşıtlarda şerit değiştirme manevrasına yönelik geliştirilen güncel algoritmalar detaylı 

şekilde incelenmekte ve bu çalışmaların temel motivasyonları, yöntemsel yaklaşımları ve 

elde edilen sonuçları karşılaştırmalı olarak sunulmaktadır. 

Li ve diğerleri, tarafından gerçekleştirilen çalışmada, bağlantılı otonom araçlar (CAV) için 

çoklu araç trafiğinde iş birliğine dayalı şerit değiştirme manevralarının planlanması için yeni 

bir model önerilmiştir. Model, zorunlu şerit değişim hareketlerinin bulunduğu yoğun trafik 

şartlarında hem güvenliği hem de verimliliği optimize etmeyi hedeflemektedir. Önerilen 
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sistem araçların gruplara ayrılması ve grup bazlı hareket planlaması olarak iki temel adıma 

dayanmaktadır. Araçların konum ve hız gibi parametreler göz önünde bulundurularak 

gruplandırılma yapılmaktadır. Her grup içerisindeki araçlar için şerit değiştirme talepleri 

dikkate alınarak çok değişkenli ve yüksek dereceli polinomlar yardımıyla yumuşak ve 

sürekli hızlanma-eğrileri üretilmektedir. Model, güvenlik ve konforu artırmak amacıyla 

hızlanma, yavaşlama ve "jerk" (ivmenin değişim hızı) gibi dinamik sınırlamaları göz önünde 

bulundurarak bir optimizasyon problemi şeklinde formüle edilmiştir. Model, çeşitli 

simülasyon testleriyle değerlendirilmiş ve sonuçlar, geliştirilen iş birlikçi planlama 

yönteminin hem güvenliği sağladığını hem de şerit değiştirme başarısını artırdığını 

göstermiştir (Li ve diğerleri, 2020).  

Wu ve Yang tarafından yapılan çalışmada şerit değiştirme davranışının daha gerçekçi bir 

şekilde modellenmesine odaklanılmıştır. Mevcut daraltılmış trafik simülasyonu 

modellerinde, özellikle de şerit değiştirme esnasında, hedef şeritteki takip eden araçların 

sabit hızda ilerlediği varsayımı yapılmaktadır. Ancak önerilen çalışmada bu varsayımın 

gerçek trafik durumunu yansıtmadığı ifade edilmiştir. Gerçek sürüş şartlarında bir araç 

önüne başka bir aracın geçeceğini fark ettiğinde genellikle hızını düşürerek tepki verir. Bu 

bakış açısından hareketle çalışmada araç takip davranışını da dikkate alan yeni bir şerit 

değiştirme modeli geliştirilmiştir. Modelde, şerit değiştirmek isteyen aracın hızlanarak geçiş 

yaptığı ve hedef şeritteki araçların bu duruma çeşitli tepkiler verdiği bir senaryo 

tanımlanmıştır. Modelin kurulumu üç adımdan oluşmaktadır: Şerit değiştiren aracın mevcut 

şeridindeki takip eden araçla güvenli mesafeyi koruması, hedef şeritte öndeki araçla güvenli 

mesafeye ulaşması ve hedef şeritteki arkadaki araçla güvenli mesafenin korunması. Her bir 

adım için ayrıntılı kinematik denklemlerle güvenli şerit değiştirme koşulları türetilmiştir. 

Araçların hız, pozisyon ve ivme gibi parametreleri dikkate alınarak geliştirilen model, 

MATLAB simülasyonlarıyla test edilmiştir. Sonuçlar, modelin gerçek trafik durumlarına 

uygun ve uygulanabilir olduğunu göstermiştir (Xiaorui ve Hongxu, 2013).  

Liu ve diğerleri, gerçekleştirdikleri çalışmada otonom araçların şerit değiştirme kararlarını 

kendi başına alabilmesine yönelik Support Vector Machine (SVM) tabanlı bir karar verme 

modeli geliştirmiştir. Bu çalışmanın özgün tarafı şerit değişim kararının nasıl ve ne zaman 

alınması gerektiğine dair sistematik bir yaklaşım sunmasıdır. Çalışmada karar süreci fayda, 

güvenlik ve tolerans olmak üzere üç temel faktör üzerinden analiz edilmiştir. Modelin karar 

verme algoritması tanımlanan parametrelerin lineer olmayan kombinasyonuna 
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dayanmaktadır. Bu nedenle klasik kural tabanlı yaklaşımların yetersiz kalacağı belirtilerek 

SVM algoritmasının Gaussian fonksiyonu kullanılarak uygulanması tercih edilmiştir. 

Ayrıca, modelin parametrelerinin en iyi hale getirilmesi için Bayes optimizasyon yöntemi 

kullanılmıştır. Eğitim verisi olarak ABD Ulaştırma Bakanlığı tarafından yayımlanan 

NGSIM adlı gerçek sürüş verisi kullanılmıştır. Araçların şerit değiştirme eğilimleri bu veri 

setinden yararlanılarak tanımlanmıştır. SVM modeli, kurallara dayalı geleneksel bir modelle 

karşılaştırmalı olarak test edilmiştir. Sonuçlar SVM tabanlı modelin doğruluk açısından daha 

başarılı olduğunu ve özellikle sürücü alışkanlıklarını dikkate alabilme kabiliyetiyle daha 

gerçekçi kararlar verdiğini göstermiştir. Ayrıca modelin gerçek araç testlerinde de 

uygulanabilirliği denenmiş ve başarılı sonuçlar elde edilmiştir (Liu ve diğerleri, 2019).  

Huang, Naghdy ve Du önerdikleri modelde otonom araçların güvenli şerit değiştirme 

manevralarını gerçekleştirmesi için Model Predictive Control (MPC) tabanlı bir algoritma 

geliştirilmiştir. Sistem çarpışma riski taşıyan durumlarda aracın önceden planlanmış bir 

güzergâhı takip ederek manevra yapmasını sağlamak üzerine kurulmuştur. Rota planlaması, 

konveks optimizasyon kullanılarak gerçekleştirilmiş, taşıt dinamiği sekiz serbestlik dereceli 

model ve Dugoff lastik modeli ile ifade edilmiştir. Önerilen modelde MPC, aracın direksiyon 

açılarını ve tekerlek torklarını kontrol ederek belirlenen yolu takip etmesini sağlar. 

Çalışmada özellikle karmaşık trafik koşullarında güvenli şerit değiştirme için uygulanabilir 

bir çözüm geliştirilmesine odaklanılması ile beraber simülasyonlar, sistemin çarpışmalardan 

kaçınmada ve stabil sürüş sağlamada etkili olduğu görülmüştür (Huang ve diğerleri, 2016). 

Naranjo ve diğerleri tarafından yapılan çalışmada otonom araçların sollama manevrasını 

güvenli ve gerçek sürücülü harekete yakın bir şekilde gerçekleştirmesi amacıyla bulanık 

mantık (fuzzy logic) tabanlı bir kontrol sistemi geliştirilmiştir. Özellikle çift yönlü yollarda 

yapılan sollamaların karmaşıklığına odaklanılmış, şerit değiştirme, yol takibi ve geri dönüş 

manevraları ele alınmıştır. Sistem iki seviyeli bir mimariye sahiptir. Alt düzeyde, biri şerit 

takibi diğeri şerit değiştirme için olmak üzere iki ayrı bulanık mantık direksiyon 

denetleyicisi yer almaktadır. Üst düzeydeki copilot modülü, sollama kararını verir, rotayı 

belirler ve uygun alt düzey denetleyicileri devreye sokar. Hız kontrolü ise otonom olarak ya 

sabit hızla devam edilmekte ya da ön araçla güvenli mesafe korunmaktadır. Oluşturulan 

algoritmaya göre sollama yapılabilmesi için yolun yeterince düz, sol şeridin boş ve aracın 

sollamayı tamamlayabilecek hızda olması gibi koşulların sağlanması gerekmektedir. 

Gerçekleştirilen saha testlerinde, geliştirilen mimarinin başarılı sonuçlar verdiği ve insan 
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sürücülere benzer tepkiler ürettiği gösterilmiştir. Sonuç olarak, bulanık mantık temelli bu 

yaklaşım, otonom sistemlerin karmaşık sollama manevralarını daha doğal ve güvenli 

biçimde yapmasına olanak tanımaktadır (Naranjo ve diğerleri, 2008). 

Li ve diğerleri 2022 yılında yaptıkları çalışmada otonom araçlar için insan benzeri hareket 

planlaması geliştirmiştir. Bu planlama çevredeki araçların sürüş dinamiklerini 

gözlemleyerek ve hareketlerini öngörerek güvenliği ve sürüş konforunu bir arada sağlamayı 

amaçlamaktadır. Çalışmada temel olarak çevre araçlarının hareket tahmini, maliyet 

fonksiyonuna dayalı karar alma ve sürücünün hedef hızına göre hız planlaması olarak üç 

bileşene odaklanılmıştır. Güzergâh planlaması beşinci dereceden polinomlarla 

gerçekleştirilmiş ve maliyet fonksiyonunda güvenlik, süreklilik, yumuşak hareket geçişleri 

gibi kriterler yer almıştır. Araç ve çevresindeki nesneler için çarpışma olasılığı Monte Carlo 

yöntemiyle hesaplanmıştır. Sürücü karakterine göre (temkinli/agresif) farklı risk eşikleri 

belirlenerek, kararlar bu eşiklere göre alınmıştır. Çevre araçlarının gelecekteki konumlarını 

tahmin edebilmek için yapısal LSTM tabanlı bir derin öğrenme ağı geliştirilmiştir. Bu 

tahminler, gerçek sürüş verileri (NGSIM) kullanılarak eğitilmiş ve araçlar arası etkileşim 

dikkate alınmıştır. Ayrıca, araçların hız planlaması da LSTM ile gerçekleştirilerek, sürücü 

alışkanlıklarını taklit eden insana özgü bir hız profili elde edilmiştir. Yapılan analizler 

algoritmanın farklı sürüş tercihlerine adapte olabileceğini göstermiştir ve önerilen yöntemin 

klasik deterministik planlamalara kıyasla daha esnek ve insan benzeri bir otonom sürüş 

davranışı sunduğu görülmüştür (Li ve diğerleri, 2022). 

Yavas, Kumbasar ve Ure yaptıkları çalışmada bir derin pekiştirmeli öğrenme yöntemi olan 

Rainbow DQN’i kullanarak, güvenlik odaklı bir ödüllendirme algoritması ile eğitimin 

etkinliğini artırmayı amaçlamışlardır. Double DQN’e kıyasla daha üstün performans 

gösteren Rainbow DQN kullanılarak, güvenli olmayan manevralarda ajanı cezalandıran bir 

güvenlik geri bildirimli ödüllendirme sistemi geliştirilmiş ve eğitim süreci hızlandırılmıştır. 

Simülasyon ortamında temkinli, normal, agresif olarak üç farklı sürücü profiliyle, 20 araca 

kadar değişen yoğunlukta senaryolar oluşturulmuş, otonom araç ve çevresindeki araçların 

hız ve konum bilgilerini kullanarak kararlar almıştır. Eğitim sürecinde, hız teşviki, çarpışma 

cezası ve güvenlik ihlallerine dayalı bir ödül fonksiyonu uygulanarak kazalar önemli ölçüde 

azaltılmıştır. Sonuçlar, Rainbow DQN’nin hem kural tabanlı MOBIL algoritmasına hem de 

Double DQN’ye kıyasla daha iyi performans gösterdiğini ve güvenlik katmanıyla 

desteklendiğinde eğitim sürecinin hızlandığını ortaya koymuştur. Çalışma, güvenli ve 
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verimli bir otomatik şerit değiştirme karar verme sistemi sunarak derin pekiştirmeli 

öğrenmenin pratik uygulamalarını göstermektedir  (Yavas ve diğerleri, 2020). 

Peng ve diğerleri, derin pekiştirmeli öğrenmeye dayalı çift katmanlı bir karar verme 

algoritması geliştirerek otonom hız kontrolü ve şerit değiştirme kararlarını ayrı yönetim 

sistemleri kullanarak entegre etmeyi amaçlamıştır. Üst katmanda D3QN algoritması şerit 

değiştirme manevrasını yönetirken, alt katmandaki DDPG algoritması hız kontrolünü 

yönetmektedir. Makalede ifade edildiği üzere geleneksel çalışmalarda şerit değiştirme, hız 

ve takip mesafesi kontrolü genellikle ayrı ayrı ele alınırken, bu çalışma bu iki hareketi 

entegre ederek daha senkron bir sürüş sistemi geliştirmiştir. Model SUMO simülasyon 

ortamında NGSIM verileri kullanılarak eğitilmiş ve test edilmiştir. Sonuçlar, sunulan 

sistemin araç hızını %23,99 artırarak diğer yöntemlere kıyasla daha verimli kararlar 

verdiğini göstermiştir. Çift katmanlı model, geleneksel sistemlere kıyasla daha az şerit 

değiştirmiş ve daha yüksek hız kazancı sağlamıştır. Bununla beraber güvenlik açısından 

daha iyi sonuçlar elde etmiştir (Peng ve diğerleri, 2022). 

Mirchevska ve diğerleri, yaptıkları çalışmada otonom araçların güvenli ve mantıklı şerit 

değiştirme kararları alabilmesi için Derin Pekiştirmeli Öğrenme (DRL) tabanlı bir yöntem 

sunmuştur. Geleneksel kural tabanlı sistemlerin karmaşık olması ve genelleme 

yeteneklerinin kısıtlı olduğunu belirterek yüksek seviyeli karar verme sürecini oluşturmak 

için Derin Q-Ağları (Deep Q-Networks - DQN) kullanmışlardır. Sunulan algoritmada 

minimum bilgiyle en hızlı öğrenmeyi sağlamak için 13 sürekli özellik içeren bir durum 

kullanılmış ve düşük seviyeli rota takibi süreçlerinden bağımsız olarak yüksek seviyeli 

kararlar optimize edilmiştir. Aynı zamanda, güvenlik doğrulama mekanizması ile 

pekiştirmeli öğrenme ajanının yalnızca güvenli eylemleri seçmesini sağlamış, böylece 

gerçek trafikte bile çarpışma olmadan öğrenme gerçekleştirilebildiği sonucuna ulaşılmıştır. 

Simülasyon sonuçları, çalışmada sunulan pekiştirmeli öğrenme ajanının geleneksel kural 

tabanlı bir sisteme kıyasla daha yüksek ortalama hızlara ulaştığını ve daha etkili şerit 

değiştirme kararları aldığını göstermiştir. Güvenlik doğrulama katmanının kapatıldığı 

testlerde, pekiştirmeli öğrenme ajanının çoğu senaryoda kaza yaptığı görülerek güvenlik 

mekanizmasının kritik olduğu kanıtlanmıştır (Mirchevska ve diğerleri, 2018).  

Nagarajan ve Yi yaptıkları çalışmada çok ajanlı Derin Q-Ağları (Multi-Agent Deep Q-

Network) kullanarak otonom araçların şerit değiştirme kararlarını optimize etmeyi 
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amaçlamıştır. Geçmiş çalışmalarda öne sürülen yöntemlerin çoğunda tek ajanlı bir yaklaşım 

benimsendiği ve yalnızca otonom aracının şerit değiştirdiğinin varsayıldığı belirtilmiş, bu 

çalışmada tüm araçların şerit değiştirebildiği daha gerçekçi bir çoklu ajan ortamı modeli 

ortaya koyulmuştur. Modelde her aracın hedef şeridine belirli bir mesafe içinde güvenli ve 

uygun bir manevra ile ulaşması amaçlanmış ve tüm ajanların deneyimleri tek bir ortak 

politika öğrenmek için kullanılmıştır. Carla üzerinde yapılan testlerde, modelin başarılı bir 

şekilde sürüş davranışlarını öğrendiği gözlemlenmiştir. Deneyler, büyük bir tekrar 

buffer’ının kazaları azaltıp politika öğrenme sürecini iyileştirdiğini ve tek ajanlı yöntemlere 

kıyasla daha güvenli ve verimli sonuçlar ürettiğini göstermiştir (Nagarajan ve Yi, 2021). 

Lee ve Won Choi tarafından yapılan çalışmada otonom araçların dinamik şerit değiştirme 

davranışlarını öğrenmesi için derin pekiştirmeli öğrenme (DRL) ve derin Q ağı (DQN) 

tabanlı bir politika ağı önerilmektedir. Sunulan sistemde, algılama modülü çevredeki 

araçların konum ve hız bilgilerini toplayarak bunları 2D bir görüntüye dönüştürmekte, 

ardından CNN (Convolutional Neural Network) tabanlı politika ağı bu görüntüden etkileşim 

özelliklerini çıkararak güvenli bir şerit değiştirme kararı almaktadır. Kararın uygulanması, 

aracın uygun manevraları gerçekleştirmesini sağlayan kontrol modülü ile 

tamamlanmaktadır. Q-öğrenme yöntemi kullanılarak, aracın çevresiyle etkileşimi sonucu 

aldığı ödüllerle en iyi karar mekanizması geliştirilmektedir. Model, Pygame tabanlı bir 

simülasyon ortamında eğitilmiş, trafik kuralları ve farklı sürücü davranışları dikkate alınarak 

test edilmiştir. Sonuçlar, önerilen sistemin güvenli ve tutarlı şerit değiştirme kararları 

alabildiğini, çarpışma yaşanmadan operasyonları tamamlayabildiğini ve iş birlikçi olmayan 

sürücülere karşı bile başarılı şekilde adapte olabildiğini göstermektedir (Lee ve Choi, 2019). 

He ve diğerleri, otonom araçların şerit değiştirme kararlarını daha güvenli bir hale getirmek 

için gözlem karşıtı pekiştirmeli öğrenme (Observation Adversarial Reinforcement Learning 

- OARL) yaklaşımını öneren bir çalışma sunmuştur. Otonom araçların sensör hataları veya 

gözlem belirsizlikleri nedeniyle yanlış kararlar almasının önüne geçmek amacıyla 

gerçekleştirilen çalışmada politika kısıtlamaları ve gözlem bozulmalarını inceleyen kısıtlı 

gözlem-robust Markov karar süreci (COR-MDP) modeli geliştirilmiştir. Bayes 

optimizasyonuna dayalı bir Black-Box Attack tekniği kullanılarak, en olumsuz gözlem 

bozulmaları etkin şekilde tahmin edilmiştir. SUMO tabanlı simülasyonlarla farklı trafik 

yoğunluklarında test edilen yöntem, yalnızca otonom aracın performansını artırmakla 
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kalmayıp, aynı zamanda şerit değiştirme politikalarının gözlem bozulmalarına karşı 

dayanıklılığını da geliştirmiştir (He ve diğerleri, 2022). 

Wang ve diğerleri, Geliştirdikleri modelde otonom araçların yol takip performansını 

geliştirmek amacıyla Derin Pekiştirmeli Öğrenme tabanlı bir kontrol yöntemi geliştirmiştir. 

Geleneksel rota takibi yöntemlerinin değişken çevresel koşullar ve karmaşık senaryolar 

karşısında yetersiz kaldığını vurgulayarak bu eksiklikleri gidermek için derin öğrenme ve 

pekiştirmeli öğrenmeyi birleştiren bir kontrol yapısı önermiştir. Bu kapsamda, Aktör-Kritik 

(Actor-Critic) mimarisine dayalı bir derin pekiştirmeli öğrenme algoritması uygulanmış ve 

araç kontrolü hem çevresel geri bildirimlere hem de kendi hareket dinamiklerine göre 

optimize edilmiştir. Modelin eğitiminde sürekli bir öğrenme yaklaşımı benimsenmiş bu 

sayede farklı senaryolarda esneklik ve uyum yeteneği kazandırılmıştır. Önerilen yöntem hem 

düz hem de virajlı yollarda test edilmiştir. Simülasyon sonuçları önerilen derin pekiştirmeli 

öğrenme tabanlı kontrol yapısının yumuşak direksiyon kontrolü sağladığını, hedef rotanın 

etkili ve uygun biçimde takibini gerçekleştirdiğini ve geleneksel (PID gibi) yöntemlere 

kıyasla daha kararlı bir rota takibi sunduğunu göstermiştir (Jiang ve diğerleri, 2019). 

Sun ve diğerleri, gerçekleştirdikleri çalışmada insansız otonom araçlar için kinematik 

modele dayalı bir rota takibi denetleyicisi tasarımı geliştirmiş ve deneysel olarak 

değerlendirmiştir. Çalışmada aracın yanal yönlendirilmesini sağlayan kontrol yapılarının 

otonom sürüş güvenliği açısından kritik olduğu vurgulanmıştır. Aracın yanal konum hatasını 

minimize etmeye yönelik bir kontrol stratejisi tasarlanmış ve bu strateji araç kinematik 

modeline entegre edilmiştir. Denetleyici tasarımında temel alınan yöntem, öngörülü 

(deterministic) kontrol ve klasik PID yapılarını harmanlayan bir yapıya sahiptir. Yanal hata, 

yönelim hatası ve ilerleme hızı gibi faktörler dikkate alınarak kontrol girdileri belirlenmiştir. 

Bununla beraber sistemin doğruluğu ve sağlamlığı birden fazla test ortamında (hem 

simülasyon hem de gerçek araç testleriyle) değerlendirilmiştir. Deneysel sonuçlar geliştirilen 

kontrol algoritmasının yüksek hassasiyetli yanal kontrol sağlayarak rota takibi sağladığını 

ve gerçek zamanlı uygulamalar için uygun olduğunu ortaya koymuştur (Zhang ve diğerleri, 

2024). 

Tariq, Jayaraman ve Abdel-Aty, yaptıkları çalışmada şehir dışı yol koşullarında bağlı 

otonom elektrikli araçlar (Connected Autonomous Electric Vehicles) için sürdürülebilir bir 

rota takibi sistemi geliştirilmiştir. Geliştirilen sistem DDPG (Deep Deterministic Policy 



38 

 

Gradient) algoritması üzerine kuruludur. Çalışmanın amacı enerji verimliliğini artırırken 

aynı zamanda yol güvenliğini ve takip doğruluğunu da optimize etmektir. Araç, çevresinden 

gelen verileri (hız, sapma, yol eğimi vb.) kullanarak bir öğrenme politikası geliştirilmiştir. 

Elektrikli araçlar için kritik ve önemli noktalardan biri olan enerji tüketiminin minimize 

edilebilmesi ve bunun sürdürülebilirliğinin sağlanmasına da odaklanılarak öğrenme 

politikasının yönelimi belirlenmiştir. Yapılan simülasyonlarda önerilen sistemin hem yüksek 

takip doğruluğu sağladığı hem de enerji kullanımını azalttığı gösterilmiştir (Basile ve 

diğerleri, 2024). 

Literatürde sunulan çalışmalar, otonom araçların şerit değiştirme kabiliyetlerini artırmak için 

çok çeşitli yöntemlerin uygulandığını ortaya koymaktadır. Kural tabanlı modellerden 

bulanık mantık denetleyicilerine, makine öğrenmesinden pekiştirmeli öğrenmeye kadar 

uzanan bu yöntemlerin her biri farklı avantajlar ve sınırlamalar barındırmaktadır. Örneğin, 

bulanık mantık sistemleri insan benzeri kararlar üretme konusunda başarılı olurken, trafik 

yoğunluğu gibi dinamik koşullara adaptasyonları sınırlı kalabilmektedir. Öte yandan, 

pekiştirmeli öğrenme tabanlı modeller özellikle karmaşık çevresel koşullarda yüksek 

esneklik ve karar çeşitliliği sunarak ön plana çıkmaktadır. Ancak bu sistemlerin başarısı 

büyük ölçüde kullanılan eğitim verisinin kalitesi, simülasyon ortamlarının gerçekçiliği ve 

ödül fonksiyonlarının etkinliğine bağlıdır. Mevcut literatür hem akademik hem de 

uygulamalı açıdan zengin bir çerçeve sunmakta olup, bu çalışmaların analiz edilmesi 

sayesinde tez kapsamında geliştirilen yeni yaklaşımın bilimsel zemini oluşturulmuştur. 
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3. GELİŞTİRİLEN OTONOM ŞERİT DEĞİŞTİRME ALGORİTMASI 

Gerçek sürücülü bir taşıtta şerit değiştirme davranışı incelendiğinde temel olarak 3 adımda 

sürecin gerçekleştirildiği görülmüştür. Bu adımlar karar verme, rota planlama ve rota takibi 

olarak belirlenmiştir. Bu çalışmada belirlenen adımların her biri ele alınarak hareketin 

tamamı bütünsel olarak ele alınmıştır. Kurulan otonom şerit değiştirme yapısı Şekil 3.1’de 

verilmiştir. 

Stanley 
Denetleyici

Rota Planlayıcı

3 Serbestlik 
Dereceli Taşıt 

Modeli

Pekiştirmeli 
Öğrenme Ajanı

Ortam 
Parametreleri 

(Çevre araçların konum ve 

hız bilgileri)

Direksiyon 
açısı

Referans 
konum 
ve yaw 

rate

Gerçek 
konum 
ve yaw 

rate

Şerit 
değiştir 
komutu

 

Şekil 3.1. Geliştirilen otonom şerit değiştirme algoritması 

Öncelikle taşıta ve senaryoya ait konum ve hız gibi bilgiler tanımlanır. Konum bilgileri 

taşıtların merkezindeki x ve y koordinatları, hız ise x yönündeki hız olarak tanımlanmıştır. 

Bu bilgiler Matlab içerisinde fonksiyon olarak tanımlanmış ve her simülasyon başlangıcında 

rastgele atanacak şekilde planlanmıştır. Buradan elde edilen bilgiler ile otonom araç ve 

çevresindeki 4 araç için köşe noktalarının hesaplaması yapılır. Bu daha sonra kurulacak kaza 

kontrol yapısı için gereklidir. Bununla beraber çevre araçların merkez konum bilgileri ile 

otonom araca ait konum bilgilerinin farkı alınmış ve hız bilgisi ile beraber pekiştirmeli 

öğrenme ajanının gözlem girişine aktarılmıştır. Araçlara ait köşe noktaları koordinatları 

bilgileri ise çarpışma kontrolünü sağlayan fonksiyon bloğuna aktarılmıştır. Çarpışma 

kontrolü sağlayan bloktan çarpışma koşulu çıktısı alınmış ve bu çıktı pekiştirmeli öğrenme 

ajanının ödül (reward) girişine girdi olarak verilmiştir. Pekiştirmeli öğrenme ajanının 

simülasyonu durduran isdone girişi de ödül fonksiyonunun çıktılarından sağlanmıştır. 

Pekiştirmeli öğrenme ajanı şerit değiştirme komutunu verdiği koşulda, rota planlama ve rota 

takibi sistemi devreye girecektir. Bu sistemler Simulink içerisinde bir Enabled Subsystem 

(Aktifleştirilmiş Altsistem) olarak tanımlanmıştır. Aksiyon çıkışı 1 geldiğinde rota 
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oluşturma sistemi devreye girer ve referans koordinatları oluşturur. Bununla beraber 

beklenen yaw oranı (desired yaw rate) ve eğrilik (curvature) gibi değerler hesaplanır. Bu 

bilgiler Stanley denetleyici sistemine aktarılarak direskiyon açısı belirlenir. Belirlenen 

direksiyon açısı otonom aracın modellendiği 3-DOF Single Track taşıt modeline aktarılır ve 

simülasyon tamamlanır. Taşıtın hareketine ait veriler (konum, direksiyon açısı vb.) X-Y 

grafikleri ile izlenebilir. Buna ek olarak otonom araç ve çevre araçlara ait hız ve konum 

bilgileri 3 boyutlu bir simülasyon görselleştirme modülüne aktarılır. Bu sayede trafik akışı 

ve otonom aracın şerit değişimi gibi hareketler 3 boyutlu olarak gözlemlenebilmektedir. 

Geliştirilen modele ait akış şeması aşağıdaki Şekil 3.2 ile verilmiştir. 
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Şekil 3.2. Pekiştirmeli öğrenme ajanı eğitim akışı 
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3.1. Taşıt Modeli 

Otonom şerit değiştirme davranışı için karar verme aşaması pekiştirmeli öğrenme 

yaklaşımları ile kurgulanmıştır. Pekiştirmeli öğrenme yaklaşımında ajanın içerisinde 

bulunduğu çevre ile etkileşimli olarak deneme-yanılma anlayışı ile hareket etmesi nedeniyle 

algoritma tasarlanırken çevre tanımlamasının doğru ve yeterli yapılması büyük önem 

taşımaktadır. Şerit değiştirme kararının ve hareketinin yönetildiği otonom araç için Simulink 

içerisinde bulunan üç serbestlik dereceli tek izli taşıt modeli bloğu kullanılmıştır. Modelde 

kullanılan taşıt modeli üç serbestlik dereceli kinematik bisiklet modeli prensibi ile 

çalışmaktadır. 3 serbestlik dereceli (3-DOF) tek izli model (single track model), taşıtın yanal 

ve boylamsal dinamiklerini sadeleştirilmiş ancak etkili bir biçimde ifade edebilen bir 

yaklaşımdır. Özellikle kontrol sistemlerinin tasarımında, manevra simülasyonlarında ve 

algoritma testlerinde yaygın biçimde kullanılmaktadır. Çalışmada odaklanılan problem 

farklı trafik senaryolarında aracın doğru hareketi yapıp yapmadığı olduğundan blok ile 

birlikte verilen parametreler üzerinden uygulama ve simülasyonlar gerçekleştirilmiştir. 

Taşıta ait ağırlık, eylemsizlik momenti, teker dönüş sertlikleri gibi değerler literatürde rota 

takibi için geliştirilen bir çalışmada kullanılan değerler olarak belirlenmiştir (Byrne ve 

Abdallah, 1995). Taşıtlara ait uzunluk ve genişlik bilgileri hem otonom araç hem de çevre 

araçlar için aynı boyutta olacak şekilde tanımlanmıştır. Simülasyonlarda kullanılan taşıta ait 

parametrelerin değerleri 3.1. numaralı çizelgede verilmiştir.  

Çizelge 3.1. Taşıt parametreleri 

Ağırlık (m) 1 727 kg 

Ön Aksın Ağırlık Merkezi Mesafesi (lf) 1.17 m 

Arka Aksın Ağırlık Merkezi Mesafesi (lr) 1.42 m 

Genişlik (W) 1.8 m 

z Ekseni Eylemsizlik Momenti (Iz) 2 787 kg x m2 

Ön Tekerlerin Dönüş Sertliği (Cf) 47 000 N/rad 

Arka Tekerlerin Dönüş Sertliği (Cf) 47 000 N/rad 

Bu modelde taşıt, bir bisiklet benzetimiyle temsil edilir; ön ve arka tekerlek çiftleri sırasıyla 

tek bir tekerlek şeklinde sadeleştirilir. Bu sayede, taşıtın boylamasına hareketi (x yönü), 

yanal hareketi (y yönü) ve dönme hareketi (yaw, z yönünde dönme) olmak üzere üç temel 

hareketi dikkate alınır. Bu üç serbestlik derecesi, aracın yatay düzlemdeki hareketini 
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tanımlamak için yeterli kabul edilir.  Taşıt modeline direksiyon açısı, başlangıç konumları 

ve taşıt hızı giriş olarak verilmiştir. Kullanılan taşıt modeli Şekil 3.3’te verilmiştir. 

 

Şekil 3.3. Simulink 3 serbestlik dereceli taşıt modelli bloğu 

Blok içerisinde tanımlanan katı cisim düzlemsel dinamikleri aşağıda verilen denklemler 

kullanılarak hesaplanmıştır. Denklemlerde kullanılan ‘y’ y eksenindeki konumu, ‘x’ x 

eksenindeki konumu, ‘r’ sapma oranını (yaw rate), ‘a’ ve ‘b’ taşıt ağırlık merkezi ile ön ve 

arka aks merkezleri arasındaki mesafeyi, ′𝑀𝑧𝑒𝑥𝑡′ araç ağırlık merkezindeki dış momenti, ‘Izz 

‘araç gövdesinin sabit z ekseni etrafındaki atalet momentini ve F değerleri araç tekerlerine 

uygulanan yanal ve doğrusal kuvvetleri ifade etmektedir (Gillespie, 1992). 

𝑦̈ = −𝑥̇. 𝑟 +  
𝐹𝑦𝑓+𝐹𝑦𝑟+𝐹𝑦𝑒𝑥𝑡

𝑚
                                                                                                   (3.1) 

𝑟̇ =  
𝑎.𝐹𝑦𝑓−𝑏.𝐹𝑦𝑟+𝑀𝑧𝑒𝑥𝑡

𝐼𝑧𝑧
                                                                                                         (3.2) 

𝑟 = 𝜓̇                                                                                                                                  (3.3) 

𝑥̈ = 0                                                                                                                                  (3.4) 

Taşıta herhangi bir dış kuvvet uygulanmamaktadır. Blok girişi olarak doğrusal hız 

belirtildiğinden aşağıdaki denklemler dikkate alınmaktadır. Bu sebeple ön ve arka 

tekerleklere yanal ve doğrusal olarak uygulanan kuvvetler aşağıdaki gibidir.  Verilen 

denklemlerde Fxft ve Fxrt ön ve arka tekerleklere etkiyen yanal kuvvetleri, Fyft ve Fyrt ön ve 

arka tekerleklere etkiyen doğrusal kuvveti Cyf ve Cyr ön ve arka tekerlekler için dönüş 

sertliğini (cornering stiffness), α ön ve arka tekerlekler için kayma açısını, μ ön ve arka 

tekerlekler için sürtünme katsayısını, Fznom ise ön ve arka akslara uygulanan nominal kuvveti 

temsil eder (Gillespie, 1992). 
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𝐹𝑥𝑓𝑡 = 0                                                                                                                            (3.5)                                                  

𝐹𝑦𝑓𝑡 =  −𝐶𝑦𝑓. 𝛼𝑓 . 𝜇𝑓 .
𝐹𝑧𝑓

𝐹𝑧𝑛𝑜𝑚
                                                                                               (3.6) 

𝐹𝑥𝑟𝑡 = 0                                                                                                                             (3.7)                                                             

𝐹𝑦𝑟𝑡 =  −𝐶𝑦𝑟. 𝛼𝑟 . 𝜇𝑟 .
𝐹𝑧𝑟

𝐹𝑧𝑛𝑜𝑚
                                                                                                (3.8) 

Blok içerisinde kullanılan taşıt modelinde ağırlık ve yük transferi sırasında etkin sürtünme 

parametrelerini değiştirmek için normal kuvvetleri nominal normal yüke böler. Pitch ve roll 

dengesinin korunması için 16 ve 17 numaralı eşitlikler kullanılır. 

𝐹𝑧𝑓 =
𝑏.𝑚.𝑔−(𝑥 ̈ − 𝑦̇.𝑟).𝑚.ℎ+ℎ.𝐹𝑥𝑒𝑥𝑡+𝑏.𝐹𝑧𝑒𝑥𝑡−𝑀𝑦𝑒𝑥𝑡

𝑎+𝑏
                                                                      (3.9) 

𝐹𝑧𝑓 =
𝑎.𝑚.𝑔+(𝑥 ̈ − 𝑦̇.𝑟).𝑚.ℎ−ℎ.𝐹𝑥𝑒𝑥𝑡+𝑏.𝐹𝑧𝑒𝑥𝑡+𝑀𝑦𝑒𝑥𝑡

𝑎+𝑏
                                                                     (3.10) 

Kayma açılarının belirlenmesi için bölgesel, doğrusal ve yanal hızların oranı kullanılır. 

Lastik kuvvetlerinin belirlenmesi için kayma açıları kullanılır. 

𝛼𝑓 = 𝑎. tan(
𝑦̇+𝑎.𝑟

𝑥̇
) − 𝛿𝑓                                                                                                    (3.11)      

𝛼𝑟 = 𝑎. tan(
𝑦̇+𝑏.𝑟

𝑥̇
) −  𝛿𝑟                                                                                                   (3.12) 

𝐹𝑥𝑓 = 𝐹𝑥𝑓𝑡 . cos 𝛿𝑓 − 𝐹𝑦𝑓𝑡 . sin 𝛿𝑓                                                                                      (3.13)                        

 𝐹𝑦𝑓 = −𝐹𝑥𝑓𝑡 . sin 𝛿𝑓 + 𝐹𝑦𝑓𝑡 . cos 𝛿𝑓                                                                                  (3.14) 

𝐹𝑥𝑟 = 𝐹𝑥𝑟𝑡 . cos 𝛿𝑟 − 𝐹𝑦𝑟𝑡 . sin 𝛿𝑟                                                                                      (3.15)                    

𝐹𝑦𝑟 = −𝐹𝑥𝑟𝑡 . sin 𝛿𝑟 + 𝐹𝑦𝑟𝑡 . cos 𝛿𝑟                                                                                   (3.16) 

Taşıt bloğundan alınan konum bilgileri taşıtların ağırlık merkezi olarak belirlenmiş ancak 

çalışmada ulaşılmak istenen kapsama uygunluk bakımından gerekli hesaplamalar yapılarak 

köşe noktaları hesaba katılmıştır. Bu sayede dinamik bir trafik ortamının değişkenliğinin 

modellenmesi sağlanarak aracın farklı koşullarda doğru hareketi yapabilmeyi öğrenmesi 

amaçlanmıştır. Çevre araçlar için herhangi bir yanal hareket olmaması koşulu belirlenmiştir. 

Bu koşula bağlı olarak çevre araçlar için köşe noktaları koordinatları aşağıdaki gibidir (Ding 

ve diğerleri, 2019). Eşitliklerde kullanılan x ve y ağırlık merkezi konumlarını, L araç 

uzunluğunu ve W araç genişliğini ifade eder.           
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𝐵1,𝑖 = ( 𝑥𝑖 +
𝐿

2
) , ( 𝑦𝑖 +

𝑊

2
)                                                                                              (3.17) 

𝐵2,𝑖 = ( 𝑥𝑖 −
𝐿

2
) , ( 𝑦𝑖 +

𝑊

2
)                                                                                              (3.18) 

𝐵2,𝑖 = ( 𝑥𝑖 −
𝐿

2
) , ( 𝑦𝑖 −

𝑊

2
)                                                                                              (3.19)                        

𝐵4,𝑖 = ( 𝑥𝑖 +
𝐿

2
) , ( 𝑦𝑖 −

𝑊

2
)                                                                                              (3.20) 

Bu formüller Simulink içerisinde araçların merkez konumlarının ve boyutlarının giriş olarak 

alındığı farklı fonksiyon blokları ile hesaplanarak köşe noktaların koordinatları çıkış olarak 

verilmiştir. Bu Simulink yapısı Şekil 3.4’te görüldüğü gibidir. 

 

Şekil 3.4. Çevre araç köşe noktaları hesaplama blok yapısı 

Çevre araçlardan farklı olarak otonom araç şerit değiştirme hareketi yapabileceğinden taşıtın 

köşe noktalarının belirlenmesinde taşıtın yönelim açılarının da hesaba katılması 

gerekmektedir. Otonom araca ait yönelim açıları Şekil 3.5.’te verilmiştir.  
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Şekil 3.5. Otonom araç yönelim açıları (Ding ve diğerleri, 2019) 

otonom aracın  yönelim açıları ile hesaplanan köşe noktaları koordinatları aşağıdaki 

denklemler ile ifade edilmiştir (Ding ve diğerleri, 2019). Denklemlerde kullanılan x ve y 

ağırlık merkezi konumlarını, α yönelim açısını, β şekil parametresi açısını, L araç 

uzunluğunu, W araç genişliğini ifade eder.                

𝐴1,𝑥 =  𝑥𝑒 +
 √𝐿2+𝑊2

2
∗ cos(𝛼 − 𝛽)                                                                                   (3.21) 

𝐴1,𝑦 =  𝑦𝑒 +
 √𝐿2+𝑊2

2
∗ sin(𝛼 − 𝛽)                                                                                    (3.22) 

𝐴2,𝑥 =  𝑥𝑒 −
 √𝐿2+𝑊2

2
∗ cos(𝛼 + 𝛽)                                                                                   (3.23) 

𝐴2,𝑦 =  𝑦𝑒 −
 √𝐿2+𝑊2

2
∗ sin(𝛼 + 𝛽)                                                                                    (3.24) 

𝐴3,𝑥 =  𝑥𝑒 −
 √𝐿2+𝑊2

2
∗ cos(𝛼 − 𝛽)                                                                                   (3.25)   

𝐴3,𝑦 =  𝑦𝑒 −
 √𝐿2+𝑊2

2
∗ sin(𝛼 − 𝛽)                                                                                    (3.26) 

𝐴4,𝑥 =  𝑥𝑒 +
 √𝐿2+𝑊2

2
∗ cos(𝛼 + 𝛽)                                                                                   (3.27)    

𝐴4,𝑦 =  𝑦𝑒 +
 √𝐿2+𝑊2

2
∗ sin(𝛼 + 𝛽)                                                                                    (3.28) 

Taşıt bloğundan alınan konum bilgileri taşıtların ağırlık merkezi olarak belirlenmiş ancak 

çalışmada ulaşılmak istenen kapsama uygunluk bakımından gerekli hesaplamalar yapılarak 

köşe noktaları hesaba katılmıştır. Bu sayede dinamik bir trafik ortamının değişkenliğinin 

modellenmesi sağlanarak aracın farklı koşullarda doğru hareketi yapabilmeyi öğrenmesi 

amaçlanmıştır. 
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Şekil 3.6’da görüldüğü üzere taşıta ait uzunluk ve genişlik bilgileri ile beraber mevcut x ve 

y konumları girdi olarak kullanılmış ve bir fonksiyon bloğu ile köşe noktaların koordinat 

hesaplamaları yapılmıştır. 

 

Şekil 3.6. Otonom araç köşe noktaları hesaplaması  

3.2. Senaryo Parametreleri 

Taşıtın içerisinde bulunduğu senaryo tanımlanırken otonom araç ile çevre araçların boyut 

değerleri aynı olarak belirlenmiştir. Taşıtların iki şeritli ve herhangi bir viraj ya da kavşak 

unsurları olmayan bir yolda ilerledikleri kabul edilmiştir. Araçların ilerlediği yolda bir şerit 

genişliği literatürdeki benzer çalışmalar ve gerçek yol şartları göz önüne alınarak 3.65m 

olarak belirlenmiştir. Modelin daha yalın bir yapıda olabilmesi için çevre araçların şerit 

değişimi, hızlanma ya da yavaşlama gibi herhangi bir hareket yapmadığı, bulunduğu şeritte 

sabit hızda ilerlediği kabulü yapılmıştır. Bununla beraber gerçek trafik koşullarının 

uygulanan modele yansıtılabilmesi için her simülasyon başlangıcında otonom araç ve çevre 

araçlar için rastgele konumlar belirlenmiştir. Buna ek olarak her simülasyon başlangıcında 

otonom araç ve çevre araçlara ait hız değeri de her bir araç için aynı ve 10 m/s ile 30 m/s 

arasında değişen değerler olarak rastgele olacak şekilde belirlenmiştir. Bu sayede ajanın 

eğitimi sırasında her bir adımda farklı koşullarla karşılaşılması ve etkin bir öğrenme 
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sürecinin sağlanması amaçlanmıştır. Simülasyon senaryoları oluşturulurken kullanılan 

parametreler Çizelge 3.2.’de görülmektedir. 

Çizelge 3.2. Senaryo parametreleri  

Şerit Sayısı 2 

Şerit Genişliği 3,65 m 

Çevre Araç Sayısı 4 

Maksimum ve Minimum Hız 10 m/s – 30m/s 

 

Şekil 3.7. Tanımlanan senaryo ve parametreleri 

Şekil 3.7.’de verilen şemada oluşturulan trafik senaryosunun görselleştirilmiş hali 

görülmektedir. Otonom aracın bulunduğu şeritte öndeki araç MÖ, arkadaki araç MA; hedef 

şeritte öndeki araç HÖ, arkadaki araç HA  olarak tanımlanmıştır. Araçların her simülasyon 

başlangıcındaki rastgele konum belirlemeleri yapılırken araçların merkez noktalarının 

birbirine olan uzaklıkları temel alınarak hesaplama fonksiyonu oluşturulmuştur. Bu 

uzaklıklar a, b, c, d ile belirlenmiştir.  

Belirlenen koşulların simülasyona aktarılabilmesi için çalışma alanı üzerinde bir fonksiyon 

oluşturularak taşıtların başlangıç konumlarının ve hızlarının rastgele olarak belirlenmesi 

sağlanmıştır. Simülasyonda kullanılmak üzere bu değerler Simulink içerisine aktarılmış ve 

diğer bloklara iletilebilecek şekilde düzenlenmiştir. 
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3.3. Karar Verme Aşaması 

Otonom şerit değiştirme sürecinin ilk adımı karar verme aşamasıdır. Aracın mevcut 

durumuna ve çevresindeki şartlara göre “şeritte kal” ya da “şerit değiştir”, “hızlan” ya da 

“yavaşla” gibi temel aksiyonları seçmesini içerir. Bu çalışmada karar verme aşaması seçilen 

aksiyonlardan elde edilen ödüller doğrultusunda ajanın eğitilmesi ile en uygun aksiyonun 

seçildiği bir pekiştirmeli öğrenme algoritması kullanılarak yapılandırılmıştır. Ajan çevresel 

gözlemleri (araçlar arası mesafeler, hız farkları, mevcut şerit bilgisi vb.) kullanarak her 

zaman adımında aksiyon seçimi yapar. Kullanılan pekiştirmeli öğrenme algoritması, ayrık 

aksiyon uzayına sahiptir ve “şeritte kal (0)” ve “şerit değiştir (1)” olmak üzere yalnızca iki 

aksiyon seçeneği bulunmaktadır. Bu sayede, eylem seçimi basit ancak etkili bir yapıda 

gerçekleştirilmiştir. Karar verme sürecinde özellikle çarpışmadan kaçınma ve konforlu sürüş 

gibi faktörler ödül fonksiyonu içerisinde tanımlanmıştır. Bu yaklaşıma literatürde yaygın 

şekilde kullanılan DQN karar verme algoritmalarında da rastlanmıştır (Mnih ve diğerleri, 

2015).  

3.3.1. DQN ajanı 

Taşıtın doğru şekilde karar verebilmesi için pekiştirmeli öğrenme ajanı DQN metodu ile 

oluşturulmuş ve eğitilmiştir. DQN metodunda değer bazlı bir pekiştirmeli öğrenme yöntemi 

olan Q-Learning yöntemi, bir değer tablosu oluşturmak yerine yapay bir sinir ağı kullanarak 

ajanın süreç içerisinde aldığı ödüller ile eğitilmesini sağlar. Daha basit ve yalın sistemler için 

daha düşük gizli katman sayıları yeterli olurken sistemin karmaşıklığı ya da kapsamı arttıkça 

ve sensör kullanımı gibi ek süreçler dahil edildikçe kullanılması gereken katman sayısı ve 

katmanlarda kullanılması gereken nöron sayısı da artacaktır. Mevcut çalışmada iki gizli 

katmanda 15 nöron ile oluşturulmuş ve doğrultucu olarak ReLU kullanılmıştır. Ajan için 

kullanılacak yapay sinir ağı Matlab içerisindeki Deep Network Designer eklentisi ile 

oluşturulmuştur. DQN ajanı için ağ yapısı Şekil 3.8.’de verilmiştir. 
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Şekil 3.8. Dqn ağ yapısı 

Karar verme eylemini seçecek olan DQN ajanının süreci yürütebilmesi için 3 farklı 

parametrenin ajana tanıtılması gerekir. Bu parametreler gözlem kümesi (observation), ödül 

fonksiyonu (reward) ve simülasyonu bitirme komutu şartları (isdone) olarak belirlenmiştir. 

DQN ajanının Simulink konfigürasyonu Şekil 3.9’da verilmiştir. 

 

Şekil 3.9. Pekiştirmeli öğrenme ajanı simulink yapısı 
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3.3.2. Gözlem kümesi 

Bu çalışmada kullanılan derin pekiştirmeli öğrenme tabanlı şerit değiştirme sisteminde, 

aracın çevresel farkındalığını sağlayan temel yapı gözlem kümesidir. DQN algoritması, her 

karar anında çevre hakkında aldığı bu gözlemleri kullanarak hangi aksiyonu seçeceğine karar 

verir. Bu nedenle, gözlem kümesinin doğru seçilmesi, öğrenmenin başarısı açısından kritik 

önem taşır. 

Şerit değiştirme senaryosunda, aracın yalnızca kendi iç durumu değil, etrafındaki araçların 

konumu ve hareketleri de oldukça önemlidir. Çalışmada, aracın hızı, bulunduğu şerit, 

yönelimi ve ivmelenmesi gibi veriler gözlem kümesinin temelini oluşturur. Bunun yanında, 

aracın önünde ve arkasında hem aynı hem de hedef şeritte bulunan araçların konumları, 

hızları ve uzaklıkları da dikkate alınmıştır. Bu sayede, ajan yalnızca anlık pozisyon bilgisiyle 

değil, göreli hareketleri de göz önünde bulundurarak daha bilinçli kararlar alabilmektedir. 

Gözlem kümesinde kullanılan parametreler Çizelge 3.3.’te verilmiştir. Bu parametrelerin 

Simulink modelindeki isimlendirmeleri ve blok bağlantıları Şekil 3.10’da gösterilmektedir. 

 

Şekil 3.10. Simulink modeli gözlem kümesi girişleri 
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Gözlem kümesinde kullanılan tüm bilgiler, sabit boyutlu bir vektör haline getirilmiştir. Bu 

yaklaşım sayesinde sistem, hem gerçek zamanlı çalışmaya uygun hale getirilmiş hem de 

öğrenme sürecinde tutarlılık sağlanmıştır. Görsel veya işlenmemiş sensör verisi yerine, 

işlenmiş ve özetlenmiş sayısal veriler kullanılmıştır. Bu tercih, hesaplama yükünü azaltırken 

aynı zamanda eğitim süresini kısaltmıştır. Sonuç olarak sistem, çevresindeki araçların 

pozisyonları ve hızlarına duyarlı şekilde tepki verebilen, çevreyi anlamlandırabilen bir 

yapıda geliştirilmiştir. 

Çizelge 3.3. Pekiştirmeli öğrenme ajanı gözlem kümesi 

a Otonom araç ile MÖ arasındaki mesafe (m) (ego_x0 - cf_x0) 

b Otonom araç ile MA arasındaki mesafe (m) (ego_x0 - cr_x0) 

c Otonom araç ile HÖ arasındaki mesafe (m) (ego_x0 - tf_x0) 

d Otonom araç ile HA arasındaki mesafe (m) (ego_x0 -tr_x0) 

v Otonom ve çevre araçların x eksenindeki hızları (m/s) (ego_vx) 

3.3.3. Ödül fonksiyonu 

Pekiştirmeli öğrenme algoritmalarında ajanın davranışlarını yönlendiren en önemli yapı ödül 

fonksiyonudur. Bu çalışmada, şerit değiştirme görevini üstlenen aracın doğru ve güvenli 

kararlar alabilmesi için amaca yönelik, sade ancak etkili bir ödül yapısı tasarlanmıştır. Ajan, 

her yaptığı eylem sonucunda ortamdan bir ödül alır ve bu ödüller zaman içinde bir stratejiye 

dönüşür. 

Ödül fonksiyonu oluşturulurken sistemin güvenli, konforlu ve verimli hareket etmesi 

önceliklendirilmiştir. Özellikle çarpışmalar durumunda sistemin yüksek oranda 

cezalandırılması sağlanarak güvenlik kritik bir hedef haline getirilmiştir. Bunun yanında, 

şerit değiştirmenin başarıyla tamamlandığı durumlarda ise pozitif bir ödül verilmiştir. Ancak 

burada önemli olan, her şerit değişikliğini ödüllendirmek değil; yalnızca ihtiyaç 

duyulduğunda ve uygun koşullar altında yapılan değişikliklerin desteklenmesidir. Yolculuk 

boyunca istikrarlı bir hızda ilerlemek, ani fren veya sert direksiyon hareketlerinden 

kaçınmak gibi sürüş konforunu etkileyen unsurlar da ödül fonksiyonuna yansıtılmıştır. 

Böylece sistem, yalnızca hedef şeride geçmek için değil, bunu mümkün olduğunca yumuşak 

ve dengeli bir şekilde yapmak için de teşvik edilmiştir. Ödül yapısında sade formüller tercih 

edilmiş, karmaşık fiziksel modeller yerine davranışsal hedeflere odaklanılmıştır. Bu 

durumda sistem, çevresel koşulları değerlendirip uygun zamanda şerit değiştirmeyi 
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öğrenirken aynı zamanda çarpışmalardan kaçınmayı, sürüş konforunu korumayı ve gereksiz 

hareketlerden uzak durmayı da hedeflemiştir. Bu yapının, aracın kendi başına güvenli ve 

mantıklı kararlar verebilmesini sağladığı gözlemlenmiştir. Çarpışma koşulu kontrol 

fonksiyonu aşağıda verilmiştir. 

Çarpışma koşulu kontrol fonksiyonu 

collisionCheck(MÖ, MA, HÖ, HA, OA) 

    Çarpışma = 0  

    Çakışma_sayısı = 0 

    Eğer OA, HÖ ile çakışıyor ise çakışma_sayısı = 1 

    Eğer OA, MÖ ile çakışıyor ise çakışma_sayısı = 1 

    Eğer OA, MA ile çakışıyor ise çakışma_sayısı = 1 

    Eğer OA, HA ile çakışıyor ise çakışma_sayısı = 1 

    Eğer çakışma_sayısı ≥ 1 ise çarpışma = 1 

Ödül fonksiyonu puan değerleri 37 numaralı eşitlikte verilmiştir.  

𝑅 = {

−10, çarpışma = 1 (𝐻𝑒𝑟ℎ𝑎𝑛𝑔𝑖 𝑏𝑖𝑟 ç𝑒𝑣𝑟𝑒 𝑎𝑟𝑎ç 𝑖𝑙𝑒 ç𝑎𝑟𝑝𝚤ş𝑚𝑎 𝑣𝑎𝑟𝑠𝑎)  
10, şerit değişimi = 1     ç𝑎𝑟𝑝𝚤ş𝑚𝑎 = 0                                                            
0, şerit değişimi = 0    ç𝑎𝑟𝑝𝚤ş𝑚𝑎 = 0                                                             
−5, 𝑦𝑜𝑙 𝑠𝚤𝑛𝚤𝑟𝑙𝑎𝑟𝚤 𝑑𝚤ş𝚤𝑛𝑎 ç𝚤𝑘𝑚𝑎 = 1                                                                

                            (3.29) 

3.3.4. Aksiyon kümesi 

Bu çalışmada karar verme aşaması için kullanılan DQN algoritması, ayrık bir aksiyon 

kümesi ile çalışmaktadır. Dolayısıyla aracın alabileceği kararlar önceden belirlenmiş sınırlı 

sayıda seçenekten oluşur. Bu yapı, öğrenme sürecini daha kararlı ve takip edilebilir hale 

getirmiştir. Şerit değiştirme gibi kararların zamanlaması ve uygulanma koşulları, bu aksiyon 

kümesinin sınırları içinde ele alınmıştır. Mevcut çalışmada DQN ajanı için belirlenen 

aksiyon kümesi aşağıdaki gibidir: 

action= (0, 1) 

Uygulamada ajan her karar anında yalnızca iki temel seçeneğe sahiptir: bulunduğu şeritte 

kalmak, ya da sola geçmek. Bu sade yapı, sistemin daha hızlı öğrenmesini sağlamıştır. Ek 
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olarak, bu iki kararın uygulanabilirliği çevre koşullarına bağlıdır. Yani sistem, hedef şerit 

doluysa ya da hedef şeritteki araçların konumları uygun değilse hedef şeride geçme kararını 

alamaz. Bu tür durumlar, ortam tarafından kısıtlanarak sistemin sadece geçerli aksiyonlar 

üzerinden karar alması sağlanmıştır. 

Bu sadeleştirilmiş aksiyon yapısı sayesinde sistem, yalnızca temel yönlendirmelerle 

karmaşık senaryolarda etkili kararlar almayı öğrenmiştir. Aksiyonların etkileri zamana 

yayılmıştır. Örneğin bir şerit değiştirme kararı sadece o anı değil, birkaç saniyelik bir geçiş 

sürecini de kapsar. Dolayısıyla sistem, bu tip kararların zamanlamasını da öğrenmiş ve 

aceleci ya da geç kalan hamlelerden kaçınmıştır. 

Tanımlanan dinamik senaryo yapısı ve sadeleştirilmiş aksiyon yapısı sayesinde sistem, 

aksiyon sayısı sınırlı olsa da çevresel bilgiyi doğru yorumlayarak karmaşık sürüş 

senaryolarında anlamlı kararlar verebilecek esnekliğe sahip hale gelmiştir. Hem eğitim hem 

de test aşamalarında, bu sınırlı ama etkili aksiyon kümesinin öğrenme başarısına olumlu 

katkı sağladığı gözlemlenmiştir. 

3.4. Rota Planlama Algoritması 

Otonom sürüş sistemlerinde rota planlama, bir aracın hedef konuma ulaşmak için izlemesi 

gereken güzergâhı belirleme sürecidir. Bu çalışma kapsamında geliştirilen sistemde, rota 

planlama daha önceden tanımlı, düz ve iki şeritli bir yol üzerinde gerçekleştirilmiştir. 

Uygulama senaryosunda yol geometrisi sabittir ve viraj, kavşak ya da dönüş noktası gibi 

karmaşık yapılar yer almamaktadır. Bu durum, rota planlamanın sade ancak etkili bir şekilde 

uygulanmasını mümkün kılmıştır. 

Geliştirilen rota planlama yapısında, aracın izleyeceği güzergâh, hedeflenen şeride geçişe 

yönelik olarak oluşturulmuştur. Aracın başlangıç konumu ile hedef şerit üzerindeki hedef 

pozisyonu arasında yumuşak bir geçiş sağlamak amacıyla sigmoid fonksiyonu tercih 

edilmiştir. Sigmoid fonksiyonun karakteristik eğrisi, ani yönelme değişikliklerini önleyerek 

şerit değişimlerinin daha dengeli ve kontrollü olmasını sağlamıştır. Bu yaklaşım, özellikle 

iki şeritli düz yollarda, aracın mevcut konumundan hedef şeride geçişini düzgün bir eğri 

üzerinden tanımlamak için oldukça uygundur.  
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Rota planlama işlemi, çevresel koşulların sabit olduğu bir ortamda gerçekleştirilmiştir. 

Simülasyon ortamında dört çevre araç bulunmaktadır ve bu araçların hızları sabit olup, 

otonom araçla aynıdır. Bu araçlar şerit değiştirme davranışı sergilememekte, bulundukları 

şeridi koruyarak hareketlerini devam ettirmektedir. Bu nedenle rota planlama sırasında 

dinamik çarpışma tahmini (çevre araçların da yanal hareketlerinin ve yönelimlerinin hesaba 

katıldığı) gibi karmaşık hesaplamalara ihtiyaç duyulmamıştır. Ancak, şerit değişimi 

sırasında bu araçlarla çarpışma riski olup olmadığı kontrol edilerek geçiş için uygun zaman 

aralığı belirlenmiştir. 

Her planlama adımında, sistem aracın bulunduğu şeritten hedeflenen şeride geçişini 

sağlayacak sigmoid tabanlı bir eğri üretmiştir. Bu eğri yalnızca yatay düzlemde bir sapmayı 

değil, aynı zamanda aracın sürüş dinamikleriyle uyumlu şekilde gerçekleşen yumuşak bir 

yön değişimini temsil etmektedir. Bu yön değişiminin hesaplanabilmesi için eğrilik 

(curvature) değerinin hesaplanması gerekmektedir. Rota planlamasının gerçekleştirildiği 

Simulink modelinin blok yapısı Şekil 3.11.’de gösterilmiştir. 

 

Şekil 3.11. Rota planlama simulink modeli 

3.4.1. Eğrilik (Curvature) 

Rota takibi, otonom araçların çevresel unsurlarla uyumlu biçimde belirlenen rotayı izleyerek 

güvenli ve konforlu bir sürüş gerçekleştirmesini sağlayan temel fonksiyonlardan biridir. Bu 

sürecin başarılı bir şekilde yürütülmesi yol üzerindeki referans noktalarının izlenmesiyle 

beraber bu noktalar arasındaki geometrik ilişkilerin doğru şekilde değerlendirilmesiyle 
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mümkündür. Buna bağlı olarak eğrilik (curvature) kavramı yol geometrisinin temel bir 

özelliği olarak öne çıkmakta ve rota takibinin hassasiyetini doğrudan etkilemektedir. 

Eğrilik, bir yol ya da eğri üzerindeki herhangi bir noktanın ne kadar kıvrıldığını ifade eden 

bir büyüklüktür. Matematiksel olarak eğrilik, bir nokta etrafındaki yön değişiminin o 

noktaya olan mesafeye oranı şeklinde tanımlanabilir. Otonom taşıtlarda bu büyüklük, yön 

kontrol sistemlerinin en kritik girdilerinden biridir. Özellikle direksiyon açısı belirleme 

süreçlerinde, aracın izlediği yolun eğriliği doğrudan yönlendirme komutlarının temelini 

oluşturur. Bu bağlamda birçok rota takip algoritması (örneğin Stanley, Pure Pursuit ya da 

Model Predictive Control (MPC) ) kararlarını doğrudan eğrilik bilgisine dayandırarak 

üretmektedir (Ziegler ve diğerleri, 2014). 

Eğrilik, yalnızca anlık direksiyon komutlarını belirlemekle kalmaz, aynı zamanda taşıtın 

gelecekteki hareketlerini planlamasında da önemli bir rol üstlenir. Aracın karşılaşacağı yol 

şartlarının ne ölçüde kıvrımlı olduğunu önceden bilmesi, hız profili oluşturma, direksiyon 

açısının doğru belirlenmesi ve sürüş güvenliğini sağlama açısından kritik öneme sahiptir. 

Özellikle yüksek hızda yapılan manevralarda, aracın yol tutuş sınırları yolun eğriliğiyle 

doğrudan ilişkilidir. Keskin virajlarda daha düşük hızlarla ilerlenmesi gerektiği, yol eğriliği 

dikkate alınarak belirlenebilir. 

Ayrıca eğrilik, rota üzerindeki yanal hata (lateral error) ve yönelme açısı hatası (heading 

error) gibi kontrol girdilerinin daha anlamlı şekilde hesaplanabilmesine de katkı sunar. 

Referans yolun eğriliği ile aracın anlık konumu arasındaki farklar, denetleyicinin vereceği 

tepkilerin büyüklüğünü belirler. Bu sayede, taşıtın yönelmesi gereken doğrultunun ne kadar 

değişmesi gerektiği daha doğru şekilde belirlenebilir. Bunun yanı sıra, sadece aracın hedef 

noktaya ne kadar uzak olduğu değil, bu hedefe hangi eğrilik altında yaklaşacağı da kontrol 

stratejisinin önemli bir bileşeni haline gelir. 

Oluşturulan rotaya bağlı olarak direksiyon açısı belirleneceğinden, bu belirlemeyi yapacak 

rota takibi algoritmasının kullanacağı girdilerden biri de rotanın eğrilik (curvature) 

özelliğidir. Bu özellik matematiksel olarak 𝑘 =
𝑑𝜃

𝑑𝑠
 ile ifade edilir. Oluşturulan rotanın 

devamında rotanın eğriliğinin hesaplanması için aşağıdaki eşitlikler kullanılmıştır 

(Kreyszig, 1991). 
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𝑑𝑠 =  √𝑑𝑥2 +  𝑑𝑦2                                                                                                           (3.30) 

tan 𝜃 =  
𝑑𝑦

𝑑𝑥
                                                                                                                         (3.31) 

𝑑

𝑑𝑥
 (𝑡𝑎𝑛𝜃) =

𝑑

𝑑𝑥
(

𝑑𝑦

𝑑𝑥
)                                                                                                         (3.32)                                    

𝑑

𝑑𝑥
 (𝑡𝑎𝑛𝜃)

𝑑𝜃

𝑑𝑥
=

𝑑2𝑦

𝑑𝑥2                                                                                                            (3.33) 

(1 + 𝑡𝑎𝑛𝜃)
𝑑𝜃

𝑑𝑥
=  

𝑑2𝑦

𝑑𝑥2                                                                                                         (3.34)                                

(1 + (
𝑑𝑦

𝑑𝑥
)

2
)

𝑑𝜃

𝑑𝑥
=  

𝑑2𝑦

𝑑𝑥2                                                                                                       (3.35) 

 
𝑑𝜃

𝑑𝑥
=  

𝑑2𝑦

𝑑𝑥2

1+(
𝑑𝑦

𝑑𝑥
)

2                                                                                                                      (3.36)                                

𝑑𝜃

𝑑𝑠
 

𝑑𝑠

𝑑𝑥
=  

𝑑2𝑦

𝑑𝑥2

1+(
𝑑𝑦

𝑑𝑥
)

2                                                                                                                 (3.37) 

𝑑𝑠

𝑑𝑥
=  √

𝑑𝑥2+ 𝑑𝑦2

𝑑𝑥2  = 1 + (
𝑑𝑦

𝑑𝑥
)

2

                                                                                           (3.38)                  

 
𝑑𝜃

𝑑𝑠
=

𝑑2𝑦

𝑑𝑥2 

(1+(
𝑑𝑦

𝑑𝑥
)

2
). (1+(

𝑑𝑦

𝑑𝑥
)

2
)

1/2                                                                                                (3.39) 

𝑑𝜃

𝑑𝑠
=

𝑑2𝑦

𝑑𝑥2 

 (1+(
𝑑𝑦

𝑑𝑥
)

2
)

3
2

= 𝑘                                                                                                           (3.40) 

Bu yaklaşımla, karmaşık yol geometrilerine ihtiyaç duymadan, sabit yapılı ve iki şeritli düz 

bir yol üzerinde etkili bir rota planlama gerçekleştirilmiştir. Sistem, bu sade ortamda bile 

gerçekçi bir şerit değiştirme davranışını destekleyecek biçimde yapılandırılmıştır. Böylece, 

otonom sürüş sistemlerinin temel taşlarından biri olan rota planlama, sade ve güvenli bir 

ortamda başarıyla uygulanmış ve rota takip algoritmasına uygun bir altyapı sunmuştur. 

Modelde kullanılan rota oluşturma sistemi sonucunda otonom taşıtın takip etmesi için 

oluşturulan rota Şekil 3.12’de görüldüğü gibidir. 
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Şekil 3.12. Sigmoid fonksiyonu ile oluşturulan referans rota 

3.5. Rota Takibi Algoritması 

Rota takibi aşaması için kullanılan sistem Stanley denetleyici temel alınarak geliştirilmiştir. 

Yanal (Lateral) Stanley denetleyicisi için simulink içerisinde bulunan Lateral Controller 

Stanley bloğu kullanılmıştır. Blok içerisinde kinematik ve dinamik bisiklet modeli olarak 

seçilebilecek taşıt modellerinden dinamik bisiklet modeli tercih edilmiştir. Bu tercihin sebebi 

parametreler üzerinde daha hassas ayarlamalar yaparak taşıtın referans rotayı olabilecek en 

yakın şekilde takip edebilmesini sağlamaktır. Bu yapıda referans konum, mevcut konum, 

mevcut hız, hareket yönü, eğrilik, mevcut yaw rate ve mevcut direksiyon açısı bilgileri girdi 

olarak istenmektedir. Yanal Stanley denetleyicisine ait blok Şekil 3.13.’te görülüğü gibidir. 

 

Şekil 3.13. Simulink stanley denetleyici bloğu 

Referans konum [x, y, θ] vektörü olarak tanımlanmıştır. x ve y konumları metre cinsindendir 

ve θ açısı derece cinsindendir. x ve y noktaları aracın yönlendirileceği referans noktaları 
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belirtir. θ ise bu referans noktasındaki yolun yönelim açısını belirtir ve saat yönünün tersine 

pozitiftir (Thrun ve diğerleri, 2006). Stanley denetleyicinin belirleyici parametrelerinin şema 

üzerindeki gösterimi Şekil 3.14 ve 3.15.’te verilmiştir. 

 

Şekil 3.14. Stanley denetleyici bloğu referans konum 

Mevcut konumda referans konumda olduğu gibi [x, y, θ] vektörü olarak tanımlanmıştır. x ve 

y konumları metre cinsindendir ve θ açısı derece cinsindendir. x ve y noktaları aracın 

yönlendirileceği referans noktaları belirtir. θ ise bu referans noktasındaki yolun yönelim 

açısını belirtir ve saat yönünün tersine pozitiftir (Thrun ve diğerleri, 2006). 

 

Şekil 3.15. Stanley denetleyici bloğu yönelim açısı 
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Aracın mevcut hızı x yönündeki skaler değeri olarak giriş yapılmaktadır. Hız birimi saniye 

başına metre (m/s) cinsindendir. Araç ileri hareket ediyorsa hız değeri 0'dan büyük olmalıdır. 

Araç geri yönde hareket halindeyse bu değer 0'dan küçük olmalıdır. Bu değer 0 olduğunda 

hareket halinde olmayan bir aracı temsil etmektedir. Aracın mevcut yönü ileri hareket için 1 

ve geri hareket için -1 olarak tanımlanmaktadır. Sürüş yönü, direksiyon açısı değerini 

hesaplamak için kullanılan konum hatasını ve açı hatasını belirler (Thrun ve diğerleri, 2006). 

Aracın ileri hareket halindeyken pozitif olarak belirtilen konum kazancı blok içerisinden 

ayarlanabilmektedir. Bu değer konum hatasının direksiyon açısını ne kadar etkilediğini 

belirleyen parametredir. Bununla beraber yine blok içerisinde maksimum direksiyon açısı 

değeri de belirlenmelidir. 0 – 180 derece aralığında bir atama yapılmalıdır. Mevcut 

çalışmada literatürdeki benzer örneklerden yola çıkılarak 35 derecelik açı değeri sınır olarak 

belirlenmiştir.  

Stanley denetleyicinin çıkışı olan direksiyon açısı komutu kinematik taşıt modelinin 

direksiyon açısı girişine aktarılarak otonom aracın şerit değiştirme hareketini yapması 

sağlanmıştır. Stanley denetleyici çıkışından alınan direksiyon değeri derece olduğundan taşıt 

bloğuna aktarılmadan önce bir dönüştürücü blok ile radyan cinsine çevrilerek taşıt bloğunun 

okuyabileceği formatta düzenlenmiştir. 3 serbestlik dereceli taşıt modelinin Simulink 

bloğuna ait giriş ve çıkış parametreleri Şekil 3.16’da verilmiştir. 

 

Şekil 3.16. Mevcut çalışmada kullanılan taşıt modeli bloğu  
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Stanley denetleyiciden elde edilen direksiyon açısı değerleri taşıt modeli bloğuna 

aktarıldıktan sonra taşıtın izlediği gerçek rotanın referans rota ile uyumu kontrol edilmiştir. 

Blok içerisindeki varsayılan değerler ile kontrol edildiğinde Şekil 3.17’de olduğu gibi 

yalnızca başlangıç ve bitiş noktalarının eş olduğu, eğrilik ve direksiyon açısı değerlerinin 

referansa uygun olmadığı görülmüştür.  

 

Şekil 3.17. Optimizasyon öncesi izlenen rota ile referans rota grafikleri 

Bunun ardından dinamik bisiklet modeli olarak seçilen Stanley denetleyici parametreleri 

incelenmiş; denetleyici kazancı, yaw rate kazancı ve direksiyon açısı kazancı olmak üzere 3 

farklı parametrenin rotaların uygunluğunu belirlediği görülmüştür. Mevcut sisteme uygun 

olan yöntem olarak manuel optimizasyon işlemi gerçekleştirilmiştir. Optimize edilmiş 

değerler Şekil 3.18 ile verilen blok parametreleri ekranında gösterilmektedir. Varsayılan 

olarak her biri 2,5 olarak verilen kazanç değerleri manuel olarak değiştirilerek çalışmanın 

hız aralığı olan 10 m/s ve 30 m/s aralığında test edilerek birbirleri ile senkronize olacak 

şekilde kazanç değerleri belirlenmiştir. Yapılan optimizasyon sonucunda denetleyici kazancı 

50, yaw rate kazancı 0,02 ve direksiyon açısı kazancı 0,037 olduğunda optimum uygunluk 

elde edildiği görülmüştür.  
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Şekil 3.18. Dinamik bisiklet modeli stanley denetleyici parametreleri 

Optimizasyon esnasında uygunluk değerlendirmesi yapılırken gerçek yaw rate ile referans 

yaw rate değerleri bir grafikte, gerçek rota ile referans rota bir grafikte incelenerek referans 

değerlere yakınsama sağlanmaya çalışılmıştır.   

 

Şekil 3.19. 10 m/s için gerçek yaw rate ile referans yaw rate grafikleri 
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Şekil 3.20. 10 m/s için gerçek rota ile referans rota grafikleri 

Şekil 3.19 ve Şekil 3.20’de verilen grafiklerde yaw rate ve rota çıktıları için gerçek ve 

referans değerler 10 m/s hız değeri koşulunda karşılaştırılmıştır. Referans ve gerçek değer 

grafikleri incelendiğinde rotanın büyük oranda referansa uygun olarak takip edildiği 

görülmüştür. Yaw rate değerleri için şerit değiştirme başlangıcında değerlerde minimal bir 

dalgalanma görülse de hareketin devamında referans yaw rate değerlerine büyük oranda 

yaklaşıldığı tespit edilmiştir.  

 

Şekil 3.21. 20 m/s için gerçek yaw rate ile referans yaw rate grafikleri 
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Şekil 3.22. 20 m/s için gerçek rota ile referans rota grafikleri 

Şekil 3.21 ve Şekil 3.22’de verilen grafiklerde yaw rate ve rota çıktıları için gerçek ve 

referans değerler 20 m/s hız değeri koşulunda karşılaştırılmıştır. Gerçek rotanın bu hız 

değerinde de daha düşük hız değerlerinde olduğu gibi referans rotaya yaklaştığı görülmüştür. 

Yaw rate değeri için şerit değişimi öncesi dalgalanma ile beraber hareketin ilerleyen 

safhalarında da bir miktar sapma gerçekleştiği gözlemlenmiştir.  

 

Şekil 3.23. 30 m/s için gerçek yaw rate ile referans yaw rate grafikleri 
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Şekil 3.24. 30 m/s için gerçek rota ile referans rota grafikleri 

Şekil 3.23 ve Şekil 3.24’te verilen grafiklerde yaw rate ve rota çıktıları için gerçek ve 

referans değerler 30 m/s hız değeri koşulunda karşılaştırılmıştır. Hız değeri önceki 

gözlemlere göre daha yüksek olsa da gerçek rotanın referans rotaya uygunluğu açısından 

herhangi bir sapma ya da ıraksama problemi gözlemlenmemiştir. Diğer bir deyişle izlenen 

rota referans rotaya oldukça yakın konum ve açı değerlerine sahiptir. Yaw rate değeri bu hız 

şartında düşük hızlardan daha fazla sapma eğilimi göstermiştir. Sapma ve dalgalanma 

eğilimlerinin bu hız değeri için daha fazla olduğu görülmüştür. Yaw rate değerindeki 

sapmalar ve dalgalanmalar için taşıt modelinin daha yüksek serbestlik derecelerinde 

modellenmesi bir çözüm olarak sunulabilir.  
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4. GELİŞTİRİLEN OTONOM ŞERİT DEĞİŞTİRME ALGORİTMASI 

EĞİTİMİ VE TEST EDİLMESİ 

Pekiştirmeli öğrenme ajanı için gerekli gözlem kümesi, aksiyon kümesi ve ödül fonksiyonu 

parametreleri tanımlandıktan sonra ajanın beklenen davranışı öğrenebilmesi için bir eğitim 

süreci gerekir. Ajanın eğitimi başlangıç durumunun çevreden alınarak okunması, mevcut 

duruma göre bir aksiyon seçilmesi, seçilen aksiyonun çevreye uygulanması, yeni durum ve 

ödülün alınması, Q-değerleri veya politika parametrelerinin güncellenmesi ve yeni durumla 

bir sonraki adımın gerçekleştirilmesi gibi adımlardan meydana gelir. Bu süreç birçok epizot 

(episode) boyunca tekrar edilir ve ajan deneyimlerini pekiştirerek en doğru politikayı 

öğrenmeye çalışır. 

4.1. Eğitim Ortamı ve Parametreleri 

Çalışmada otonom araç için karar verme algoritması DQN yöntemi ile oluşturulmuştur.  

Ajan için gerekli gözlem, aksiyon, ödül gibi bilgiler sağlanarak aksiyon elde edilmiştir. 

Eğitim süreci için Matlab içerisindeki Reinforcement Learning Designer modülü 

kullanılmıştır. DQN ajanı için 1 000 bölüm olacak şekilde eğitim süreci tanımlanmıştır. 

Eğitim grafiği oluşturulurken Reinforcement Learning Designer içerisindeki eğitim ekranı 

kullanılmıştır. 

4.1.1. DQN ajanı eğitimi 

Karar verme mekanizması için oluşturulan DQN ajanının eğitilmesi için Matlab 

modüllerinden biri olan Reinforcement Learning Designer uygulaması kullanılmıştır. 

Mevcut çalışmada DQN ajanı için iki gizli katmanlı ve her katmanda 15 nöron bulunan ağ 

yapısı tercih edilmiştir. Bu ağdaki katman sayısı belirlenirken derin sinir ağlarına uygun ve 

sistemin olabildiğince hızlı eğitilebilmesi faktörleri göz önüne alınmıştır. Bu kapsamda ağ, 

bir derin sinir ağının sahip olabileceği en düşük gizli katman sayısı olan 2 gizli katman ile 

oluşturulmuştur. Ağlarda kullanılan nöron sayıları ise farklı nöron sayılarının ağlara 

işlenerek eğitilmesi ile optimum sayı belirlenerek son haline getirilmiştir. 

Şekil 4.1 ve 4.2’de görüldüğü üzere eğitim grafikleri benzerlik göstermekle beraber eğitim 

süreleri arasında önemli farklılıklar bulunmaktadır. Her bir eğitim için gizli katman sayısı 
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sabit tutulup nöron sayısı güncellenmiştir. Her bir ağ yapısı için eğitim süresi 15-25 saat 

aralığında gerçekleştiği görülmüştür. Buna ek olarak, grafiklerde sarı renkte görülen ajanın 

seçtiği eyleme göre Q0 tahminini gösteren değer 11 ve 17 nöronlu yapılarda ani yükselişler 

ve sürecin normalinin üzerinde beklenti değerleri üretmiştir. Bu durum öğrenme 

davranışının dengeli olmadığını göstermektedir.  

  

Şekil 4.1. 11 nöronlu ağ eğitimi 
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Şekil 4.2. 17 nöronlu ağ eğitimi 

Modelde kullanılan DQN ajanının doğru ve optimal öğrenmeyi sağlayabilmesi için uygun 

parametre seçimleri yapılarak eğitim gerçekleştirilmiştir. Eğitim sürecinin en önemli 

noktalarından olan eğitim parametreleri Çizelge 4.1 ile verilmiştir.  

Çizelge 4.1. Pekiştirmeli öğrenme DQN ajanı eğitim parametreleri 

Maksimum Bölüm Sayısı 1 000 

Her Bölümdeki Adım Sayısı 100 

Learning Rate 0,01 

Discount Factor 0,99 

Exploration Rate 1 

Epsilon Decay 0,005 

Epsilon Min 0,01 

Batch Size 64 

Çizelgede verilen parametrelerden learning rate (öğrenme oranı) ajan tarafından elde edilen 

yeni bilgilerin mevcut bilgiye etkisinin derecesini belirleyen temel bir hiperparametredir. 

Diğer bir deyişle ajanın yeni deneyimlerden ne ölçüde etkileneceğini belirler. Q-learning ve 

alt dallarında Q-değeri güncelleme denkleminin kritik bir bileşenidir. Öğrenme oranı ne 

kadar yüksek olursa, ajan yeni deneyimlerden o kadar fazla etkilenir. Düşük öğrenme oranı 
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ise daha istikrarlı, ancak daha yavaş bir öğrenme sürecine neden olur. Uygun öğrenme oranı 

değeri hem öğrenme hızını hem de öğrenme kararlılığını etkileyerek eğitim sürecinin 

başarısını doğrudan belirler. Mevcut modelde seçilen 0,01 değeri eğitim sırasında istikrarlı 

bir öğrenme sağlayacak şekilde belirlenmiştir. Daha düşük değerler öğrenmeyi 

yavaşlatabilirken, daha yüksek oranlar ağın kararsız davranmasına sebep olabilmektedir 

(Sutton ve Barto, 1998). 

İskonto faktörü ajan tarafından gelecekte elde edilecek ödüllerin bugünkü değerini ifade 

eder. Bu faktör 0 ile 1 aralığında bir değerdir ve bu parametrenin büyüklüğü ajanın uzun 

vadeli hedeflere ne ölçüde önem verdiğini gösterir. Buna bağlı olarak iskonto faktörü 0'a 

yaklaştıkça algoritma kısa vadeli ödüllere odaklanırken, 1'e yaklaştıkça daha uzun vadeli 

ödüllere odaklanır. Bu parametrenin yüksek olması genellikle daha iyi genel performans 

sağlar ancak öğrenme sürecini yavaşlatabilir. Eğitim için belirlenen 0,99 gibi yüksek bir 

değer ajanın uzun vadeli ödüllere önem vermesini sağlar. Seçilen bu değer bu çalışmada 

odaklanılan otonom sürüş gibi sistemlerde güvenlik odaklı davranılarak ajanın daha sabırlı 

ve sürdürülebilir politikalar öğrenmesine yardımcı olur (Kaelbling ve diğerleri, 1996).  

Ajanın öğrenme sürecinde kaç adet geçmiş deneyimi tek seferde kullanacağını belirleyen 

parametre batch size değeridir. Özellikle deneyim tekrarı (experience replay) kullanılan 

derin pekiştirmeli öğrenme algoritmalarında, batch size parametresi eğitim sürecinin istikrarı 

ve verimliliği açısından belirleyici bir roldedir. Küçük batch size değerleri daha sık 

güncellemeler sağlasa da dalgalanmaların ve gürültülerin olduğu bir öğrenme sürecine neden 

olabilir. Büyük batch size değerleri ise daha kararlıdır ancak hesaplama maliyeti artar ve 

genelleme yeteneği düşebilir. Mevcut çalışmada kullanılan 64’lük batch size boyutu 

literatürde hem istikrarlı tahminler hem de yeterli hesaplama verimliliği açısından optimum 

değerlerden biridir (Mnih ve diğerleri, 2015; Schulman ve diğerleri, 2015). 

Exploration rate (keşif oranı) ajanın bir karar verirken hangi yoğunlukta rastgele ya da keşif 

odaklı aksiyon seçeceğini belirler. Epsilon (ε) ile ifade edilir. Keşif oranı başlangıçta 

genellikle yüksek tutulur ve zamanla azaltılır. Bu yaklaşım, ajanın öğrenme sürecinde yeterli 

çeşitlilikte deneyim edinmesini sağlar. Pekiştirmeli öğrenme problemlerinde keşif 

(exploration) ve sömürü (exploitation) arasında denge kurulması gerekmektedir. Epsilon-

greedy stratejisi bu dengeyi sağlamak amacıyla sıklıkla kullanılan bir yöntemdir. Bu 

yöntemle ajanın rastgele bir eylem seçme olasılığı ε olarak belirlenir ve bu ölçüde keşif 
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yapar. En yüksek değerli eylemi seçme olsaılığı ise (1 - ε) olarak belirlenir ve bu ölçüde 

mevcut bilgileri sömürür. Başlangıçta keşif oranı değerinin 1 olarak belirlenmesi ajanın ilk 

adımlarda çevreyi tamamen keşfetmeye odaklanmasını sağlar (Sutton ve Barto, 1998). 

Epsilon decay parametresi ile keşif oranının zamanla düşürülmesi sağlanır. Zamanla keşif 

oranının azalarak ajanın daha kararlı ve bilgiye dayalı seçimler yapması beklenir. Bu süreç 

eğitim sürecinin başlangıcında yoğunlukla keşif yapılması, ilerleyen aşamalarda ise 

sömürüye ağırlık verilmesi prensibi ile çalışır. Keşif oranının her adımda 0,005 oranında 

azalması keşif-sömürü dengesinin zamanla daha istikrarlı bir şekilde sağlanmasına yardımcı 

olmakla beraber literatürde yaygın olarak tercih edilen değer aralığında yer almaktadır 

(François-Lavet ve diğerleri, 2018).  

Keşif oranı değerinin zamanla sıfıra yaklaşması, ajanın tamamen sömürüye odaklanıp keşif 

yapmamasına neden olabilir. Ancak bu durum ajanın yer yer ani yükselmelere maruz 

kalması riskine neden olur. Bu nedenle keşif oranının belirli bir alt sınırda tutulması sistemin 

sağlıklı işleyişi bakımından gereklidir. Minimum keşif oranı değeri (εmin), ajan eğitim 

sürecinin sonlarına gelinmiş olsa bile zaman zaman rastgele eylemler seçerek keşif 

yapmasını sağlar. Bu strateji eğitim sürecinin sonunda da ortamın dinamiklerine karşı 

duyarlılığı korumak açısından önemlidir. Bu çalışmada kullanılan keşif oranı değerinin 

zamanla 0,01’e düşürülmesi ajanın eğitim sürecinin sonlarında hâlâ az da olsa keşif 

yapabilmesini sağlar  (Mnih ve diğerleri, 2015; Sutton ve Barto, 1998). 
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Şekil 4.3. Dqn ajanı eğitim süreci 

Eğitim sonucunda Şekil 4.3.’te görülen grafik elde edilmiştir. Deneme eğitimleri yapılan 11 

ve 17 nöronlu ağlardan farklı olarak beklenmeyen Q0 çıkışları ve düşüşleri olmadığı 

görülmüştür. Bu durum ajanın etkin ve stabil bir öğrenme süreci gerçekleştirdiğini, eğitim 

sürecinin sistemden beklenen başarıyı sağlayacağını gösteren parametrelerdendir. Seçilen 

aksiyona bağlı olarak ajan -10,-5, 0 ve +10 ödül değerlerini almıştır. Mevcut durumlara göre 

seçtiği eylemler sonucunda doğru konum ve hızda, doğru direksiyon açısı ile, yol sınırları 

dışına çıkmadan şerit değişimi yapabilecek noktaya ulaşmıştır. 

4.2. Eğitilen Ajanın Test Edilmesi 

Pekiştirmeli öğrenme ile karar veren ve uygulayan sistemin hangi senaryo durumlarında 

hangi kararı verdiği ve nasıl bir sonuç aldığının gözlenebilmesi için Simulink modeli 

içerisine 3 boyutlu bir simülasyon görselleştirme yapılandırması entegre edilmiştir. Bu 

yapılandırmada simülasyon çalıştırıldığında taşıtın hareketi gözlemlenerek doğruluğu 

incelenmiştir.  

DQN ajanının Reinforcement Learning Designer ortamında eğitilmesinin ardından aynı 

ortamda bulunan simülasyon eklentisi ile sürekli simülasyon tekrarları gerçekleştirilmiştir. 
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Simulink modeline entegre edilen üç boyutlu görüntüleme modülü oluşturularak eğitimin 

amacına ulaşıp ulaşmadığı kontrol edilmiştir. Gerekli konum ve hız bilgileri bu modüle 

aktarılarak taşıtın simülasyon içerisindeki hareketleri görselleştirilmiştir. Görselleştirme için 

kullanılan modül yapısı Şekil 4.4 ile verilmiştir. 

 

Şekil 4.4. Simulink simülasyon görselleştirme modülü 

Karşılaştırma yapılabilmesi için öncelikle eğitilmemiş ajana ait bilgiler ile simülasyon 

başlatılarak taşıt hareketleri gözlenmiştir. Eğitilmemiş ajan simülasyon esnasında rastgele 

doğru kararlar verebilmiş olsa da şerit değiştirme davranışını doğru anlarda, konumlarda ve 

açılarda gerçekleştiremediği görülmüştür. 

 

Şekil 4.5. Eğitilmemiş ajan simülasyon grafiği 
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Eğitilmemiş ajan ile üç boyutlu simülasyon görüntüleri de Şekil 4.5’te görülen grafikle 

paralel çıktılar sunmuştur. Taşıtın uygun ve gerekli koşullarda şerit değiştirmediği ya da 

Şekil 4.6 ve Şekil 4.7.’de görüldüğü üzere uygun olmayan koşullarda şerit değişimi yaparak 

kaza gerçekleştiği görülmüştür.  

          

Şekil 4.6. Eğitilmemiş ajan kaza durumu   

 

Şekil 4.7. Eğitilmemiş ajan kaza durumu  
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Eğitilmiş ajanın, eğitimin yapıldığı Reinforcement Learning Designer ortamında 

gerçekleştirilen sürekli simülasyon tekrarına ait grafik Şekil 4.8.’de görülmektedir. Eğitilmiş 

ajanın şerit değiştirme kararını doğru konum ve hızlarda verdiği, buna bağlı olarak pozitif 

ödüller alarak hareketi doğru ve beklenen biçimde gerçekleştirdiği saptanmıştır. 

 

Şekil 4.8. Eğitilen dqn ajanı simülasyon grafiği 

Ajan eğitildikten sonra gerekli tanımlamalar yapılarak yeniden üç boyutlu görüntüleme 

modülü ile taşıt hareketleri gözlemlenmiştir. Farklı senaryolarda manuel olarak simülasyon 

başlatılarak mevcut senaryodaki aksiyon seçimine bağlı hareketler gözlemlenmiştir.   

 

Şekil 4.9. Eğitilen ajan şeritte kalma davranışı 
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Şekil 4.9’da görüldüğü üzere eğitilmiş ajan rastgele olarak belirlenen değerler üzerine 

üretilen senaryoda, uygun olmayan konum şartlarında şerit değiştirme kararı vermeyerek 

bulunduğu şeridi korumuş, kaza ve yoldan çıkma gibi istenmeyen durumların önüne 

geçmiştir. 

Rastgele belirlenen konum ve hız şartları ile oluşan senaryo şerit değişimine uygun 

olduğunda eğitilmiş DQN ajanı şerit değiştirme aksiyonunu seçmiş ve uygun rota ile şerit 

değişimi sağlanmıştır. Şerit değişimi esnasında herhangi bir yönelim hatası, kaza durumu ya 

da yol sınırları dışına çıkma davranışı gözlemlenmemiştir. Eğitilmiş ajanın gerçekleştirdiği 

şerit değişimi süreci Şekil 4.10 ile gösterilmiştir. 

   

(a) (b) (c) 

Şekil 4.10. Eğitilen ajan şerit değiştirme süreci  

Şekil 4.10 (a) aşamasında sistem gözlem olarak kullandığı çevre araçlarla mesafe 

değerlerinin uygun olduğuna karar vererek şerit değiştirme hareketini başlatır. Şerit 

değiştirme kararının verilmesinin ardından rota oluşturulur ve Stanley denetleyici ile taşıtın 

rotayı takip etmesi sağlanır. Şekil 4.10 (b)’de görüldüğü üzere rota oluşturulmuş ve taşıt 

referans rotayı takip etme sürecine başlamıştır. Şekil 4.10 (c)’de ise şerit değiştirme 

hareketinin sonlandırıldığı görülmektedir. Taşıt verilen rastgele senaryo şartlarında şerit 

değiştirme kararı vermiş, rota oluşturulmuş ve taşıt rotayı başarılı bir şekilde takip etmiştir. 

Şerit değişimi esnasında çevre araçlarla herhangi bir kaza durumu ya da şeritten çıkma gibi 

bir durum gözlenmemiştir. Bu simülasyon seçilen parametrelerin ve gerçekleştirilen DQN 

ajanı eğitiminin başarılı bir şekilde sonuçlandığını göstermektedir. 
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5. SONUÇ VE DEĞERLENDİRME 

Bu tez çalışmasında, otonom taşıtlar için güvenli şerit değiştirme kararlarının alınmasına 

yönelik bir kontrol yaklaşımı geliştirilmiştir. Taşıtın çevresindeki dört farklı aracı göz 

önünde bulundurarak gerektiğinde uygun manevralarla şerit değiştirebilmesi hedeflenmiştir. 

Bu amaçla, pekiştirmeli öğrenme tabanlı bir karar verme sistemi Simulink ortamında 

modellenmiş, taşıt dinamikleri 3 serbestlik dereceli bir tek izli taşıt modeli (3-DOF single 

track model) ile temsil edilmiştir. Karar verme aşaması için pekiştirmeli öğrenme 

yöntemlerinden DQN algoritması, rota oluşturma aşaması için Sigmoid fonksiyonu ve rota 

takibi için Stanley denetleyici kullanılmıştır. 

Geliştirilen sistemde, aracın çevresindeki öndeki ve arkadaki araçlar (MÖ, MA, HÖ, HA) 

ayrı ayrı analiz edilmiş ve her biri için dinamik olarak değişen mesafeler hesaplanmıştır. Her 

bir simülasyonda değişen bu mesafeler sayesinde gerçek trafik koşullarının dinamikliği ve 

değişkenliği sisteme entegre edilmeye çalışılmıştır. Sistem, Simulink üzerinde modellenmiş, 

gerekli modüller ve bloklar kullanılarak oluşturulan çok şeritli bir yol ortamında test edilmiş 

ve gerçek sürüş senaryolarına yakın bir yapı kurulmuştur. Simülasyon ortamında araç 

öncelikle ayrık bir aksiyon uzayı kullanarak şerit değişimi aksiyonunu belirlemiş, şerit 

değiştirme kararının verildiği durumda aktifleşen rota planlama sisteminin ardından 

direksiyon açısının belirlenebilmesi için Stanley denetleyici ile rota takibini 

gerçekleştirmiştir.  

Eğitim sürecinde DQN algoritması için uygun ağ yapısı Deep Network Designer kullanılarak 

yapılandırılmıştır. DQN ajanı için gözlem kümesi, otonom taşıta ait hız ile otonom aracın 

çevre araçlarla merkez mesafeleri farkı olmak üzere beş girdiden oluşmaktadır. Aksiyon 

kümesi ise 0 (şeritte kal) ve 1 (şerit değiştir) olmak üzere iki elemandan oluşmuştur.  

Simülasyonlar sonucunda geliştirilen modelin, önceden belirlenen dinamik trafik 

senaryolarına karşı etkili şekilde tepki verebildiği gözlemlenmiştir. Otonom aracın sol 

şeridin konum ve hıza bağlı olarak daha avantajlı olduğu durumlarda uygun direksiyon açısı 

ile güvenli ve konforlu şerit değişimi hareketi yaptığı görülmüştür. Aynı zamanda 

gerçekleştirilen simülasyonlar sistemin gereksiz şerit değişimlerinden kaçınarak kaza riskini 

minimize ettiğini; güvenli ve konforlu sürüş profilini devam ettirdiğini ortaya koymuştur. 

Eğitim süreci boyunca kullanılan ödül fonksiyonu, kaza durumlarının önlenmesi, gereksiz 
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manevralardan kaçınılması ve ilerleme odaklı ödülleri analiz ederek çok boyutlu bir davranış 

geliştirilmesini sağlamıştır. 

Bununla beraber, çalışmanın bazı sınırlılıkları da bulunmaktadır. Öncelikle, eğitim ortamı 

yalnızca simülasyon temelli olduğu için, gerçek yol verileriyle test edilmemiştir. Gerçek 

dünyadaki algılayıcı hataları, yol yüzeyi değişimleri, insan faktörü gibi parametreler 

sistemin davranışını etkileyebilecek faktörler arasında yer almaktadır. Ayrıca, eğitim süreci 

boyunca yalnızca sınırlı sayıda senaryo üzerinden değerlendirme yapılmış; farklı yol 

topolojileri, trafik yoğunlukları ve hava koşulları gibi değişkenler sisteme dahil 

edilmemiştir. Bununla birlikte, kullanılan taşıt dinamiği modeli her ne kadar birçok 

uygulama için yeterli olsa da daha karmaşık dinamiklerin (örneğin lastik-sürtünme 

modelleri, eğim değişimleri) dikkate alınması durumunda kontrol performansında bazı 

farklılıklar gözlemlenebilir. 

Gelecek çalışmalar için çeşitli geliştirme önerileri sunulabilir. Öncelikle sistemin, gerçek 

sensör verileriyle (örneğin LIDAR, RADAR, kamera) beslenecek bir yapay algılama 

modülüyle entegre edilmesi planlanabilir. Bu sayede sistem, gerçek zamanlı olarak hem 

çevre algısı hem de karar üretimi açısından daha gerçekçi senaryolarda test edilebilir hale 

gelir. Ayrıca sistemin yalnızca şerit değiştirme değil, kavşak geçişi, sollama, dar yolda geçiş 

gibi daha karmaşık sürüş senaryolarına uyarlanması da mümkündür. Eğitim sürecinde daha 

gelişmiş pekiştirmeli öğrenme algoritmaları (Soft Actor-Critic (SAC), Proximal Policy 

Optimization (PPO) gibi) ile karşılaştırmalı analizler yapılması, performansın daha da 

iyileştirilmesine olanak tanıyabilir. 

Sonuç olarak bu çalışma, otonom taşıtlarda güvenli, çevresel farkındalığa sahip, karar alma 

ve hareketin uygulanması süreçlerinde öğrenmeye dayalı bir kontrol mimarisinin başarıyla 

uygulanabileceğini göstermiştir. Derin pekiştirmeli öğrenme yöntemlerinin, klasik kural 

tabanlı sistemlerin ötesine geçerek dinamik trafik ortamlarında efektif kararlar verebilen 

sürüş sistemlerinin geliştirilmesinde güçlü bir alternatif olduğu görülmüştür. Gerek sistem 

mimarisi gerekse kullanılan algoritmalar açısından modüler bir yapı sunan bu modelin, 

otonom sürüş alanında yapılan diğer çalışmalara hem metodolojik hem de deneysel anlamda 

katkı sağlaması hedeflenmektedir. 
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