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OZET

Giliniimiizde otonom siiriis teknolojilerinin yayginlagsmasi, bu alandaki arastirmalari
artirmigtir. Trafik giivenligi, akicilig1 ve siirlis konforu gibi hedeflere ulagsmak icin bu
teknolojiler stirekli gelistirilmektedir. Otonom siiriis sistemlerinin gelisiminde yapay zeka,
ozellikle pekistirmeli Ogrenme (Reinforcement Learning) algoritmalart onemli rol
oynamaktadir. Bu calismada, otonom araglar icin serit degistirme kararini1 verebilen bir
sistem gelistirilmistir. Karar verme, rota planlama ve rota takibi asamalar1 entegre bir sekilde
ele alinmustir. Karar verme siireci i¢in DQN (Deep Q Network) tabanli pekistirmeli 6grenme
algoritmasi kullanilmistir. Serit degistirme rotasi Sigmoid Fonksiyonu ile olusturulmus, rota
takibi i¢cin Stanley denetleyici tercih edilmistir. Modelleme, senaryo olusturma ve test
asamalart MATLAB/Simulink yaziliminda gerceklestirilmistir. Ara¢ modeli olarak {i¢
serbestlik dereceli bisiklet modeli kullanmilmistir. Senaryo, iki seritli bir yolda ilerleyen
otonom ara¢ ve sabit hizda hareket eden dort ¢evre aractan olusmaktadir. Gozlem kiimesi;
araglarin hiz ve konum bilgilerini, aksiyon kiimesi ise serit degistirme ve seritte kalma
eylemlerini igermektedir. Odiil fonksiyonu, ¢arpismasiz ve basarili serit degisimlerine gére
yapilandirilmistir. Farkli baslangi¢ kosullarinda ve 10-30 m/s hiz araliginda olusturulan
senaryolar ile DQN ajani1 egitilmis; ara¢, uygun kararlar vererek glivenli sekilde ilerlemistir.
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ABSTRACT

With the growing prevalence of autonomous driving technologies, research interest in this
field has significantly increased. These technologies are continuously improved to enhance
traffic safety, ensure smooth flow, and maximize driving comfort. Artificial intelligence
plays a crucial role in the development of autonomous systems, and among its methods,
reinforcement learning offers effective solutions. In this study, a decision-making system for
lane changes in autonomous vehicles is developed. The process integrates decision-making,
path planning, and path tracking in a unified structure. A Deep Q-Network (DQN)-based
reinforcement learning algorithm is used for decision-making. The lane change path is
generated using a Sigmoid Function, and the Stanley Controller is employed for path
tracking. The modeling, scenario creation, and testing phases are implemented in
MATLAB/Simulink. A three degrees-of-freedom bicycle model is used to represent the
vehicle. The scenario consists of an autonomous vehicle and four surrounding vehicles
moving at constant speeds on a two-lane road. The observation set includes the positions and
velocities of vehicles, while the action set consists of lane keeping and lane changing
maneuvers. The reward function is designed to encourage successful, collision-free lane
changes. The DQN agent is trained using scenarios with random initial positions and speeds
ranging from 10 to 30 m/s. The trained agent successfully enables the vehicle to make safe
and appropriate decisions under various conditions.
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SIMGELER VE KISALTMALAR

Bu c¢alismada kullanilmis simgeler ve kisaltmalar, aciklamalar1 ile birlikte asagida

sunulmustur.

Simgeler Agciklamalar

kg Kilogram

m Metre

rad Radyan

S Saniye

Kisaltmalar Aciklamalar

CAV Connected Automated Vehicles
CNN Convolutional Neural Network
DDPG Deep Deterministic Policy Gradient
DNN Deep Neural Network

DOF Degrees of Freedom

DQON Deep-Q Network

GPS Global Positioning System
IMU Inertial Measurement Unit
LIDAR Light Detection and Ranging
MDP Markov Decision Process

ML Machine Learning

MPC Model Predictive Control
RADAR Radio Detection And Ranging
RL Reinforcement Learning

SVM Support Vector Machine



1. GIRIS

Son yillarda otomotiv endiistrisi dijitallesme, yapay zeka ve sensor teknolojilerindeki hizli
gelismelerle birlikte 6nemli bir doniisiim ivmesi kazanmistir. Bu doniistimiin 6ne ¢ikan
alanlarindan biri de siiriiciisiiz yani otonom tasitlarin gelistirilmesidir. Otonom tasitlar insan
miidahalesi olmaksizin ¢evreyi algilayabilir, durum degerlendirmesi yapabilir ve giivenli
stiriis kararlar1 alabilir. Bu sayede siiriis giivenliginin artirilmasi, yakit tiiketiminin
azaltilmasi, cevresel etkilerin siirlis dinamiklerine etkisinin minimize edilmesi ve trafik
akisinin maksimum konfor ile saglanabilmesi gibi 6nemli kazanimlar elde edilmektedir. Bu
yonler gbz Oniine alindiginda otonom tasitlar gelecegin ulagim sistemlerinin temeli olarak

goriilmektedir.

Otonom tasit teknolojileri siiriiciisiiz araclarin ne kadar bagimsiz hareket edebilecegini ifade
eden, SAE (Society of Automotive Engineers) tarafindan tanimlanan 0’dan 5’e kadar olan
otomasyon seviyelerine gore siniflandirilmaktadir. Bu siniflandirma kapsaminda Seviye 0
gercek siirticliniin biitiin stirlis sorumluluguna sahip oldugu tamamen manuel siiriisii, Seviye
5 ise insan miidahalesi olmaksizin her kosulda tam otonom siiriisii ifade etmektedir.
Giliniimiizde yaygin olarak kullanilan araglar Seviye 2 ve Seviye 3 otomasyon dzelliklerini
tagimakta ve belirli kosullarda siiriiciiye destek olmaktadir. Daha ileri otomasyon seviyeleri
ve tam otonom sistemler arastirmalara ve c¢alismalara konu olarak gelistirilme

asamasindadir.

Otonom siirlis sistemlerinin en temel gereksinimlerinden biri, aracin g¢evresini ve trafik
durumunu yiiksek dogrulukta algilayabilmesidir. Bu amacla kullanilan kamera, LIDAR,
RADAR ve ultrasonik sensorler gibi komponentler bu ¢evre algilamasini saglamaktadir. Bu
sensorlerden elde edilen verilerin islenmesi ve yapay zeka algoritmalari kullanilarak
anlamlandirilmast ile ii¢ boyutlu ¢evre modellemesi yapilmaktadir. Boylece otonom arag yol
iizerindeki diger araclar, yayalar, trafik isaretleri ve yol yapis1 gibi ¢evresel unsurlar1 gercek
zamanl ve yiiksek hassasiyetle taniyabilmektedir. Algilamada kullanilan komponentlerin
kalitesi ve sistemlerin basarisi, otonom siirlisiin giivenligi agisindan kritik 6nem

tasimaktadir.

Algilama verilerinin yani sira aracin kesin konumunu belirlemek amaciyla konum belirleme

(localization) ve haritalandirma (mapping) sistemleri de kullanilmaktadir. GPS, atalet



Olcerler (IMU), kamera ve LIDAR verilerinin entegre bir sekilde islenmesi ile yiiksek
dogruluklu konum belirleme gerceklestirilmektedir. Bu sayede arag, harita tizerindeki
konumunu gercek zamanli olarak takip edebilmekte ve hedef noktaya ulagsmak icin gereken
navigasyon bilgilerini kullanabilmektedir. Ayrica dinamik haritalar kullanilarak ¢evresel

degisiklikler ve trafik kosullar1 siirekli olarak gilincellenmekte ve sisteme aktarilmaktadir.

Otonom siiriisiin en karmasik ve kritik agsamalarindan biri karar verme ve rota planlama
stiregleridir. Bu siirecler aracin igerisinde bulundugu mevcut trafik durumu, yol kosullari,
yerel kurallar ve giivenlik kriterleri goz oOniinde bulundurularak hiz kontrolii, serit
degistirme, kavsak gecisi gibi manevralar1 gergeklestirmesini saglar. Geleneksel kural
tabanli algoritmalar, belirli ve daha az degisken durumlar i¢in etkili ¢oziimler sunsa da
karmasik ve belirsiz ger¢ek diinya kosullarinda yetersiz kalabilmektedir. Bu nedenle son
yillarda yapay zekanin bir alt dali olan makine 6grenmesi ve 6zellikle pekistirmeli 6grenme
tabanli yontemler 6n plana ¢ikmistir. Pekistirmeli 6grenme aracin gevresel etkilesimlerinden
elde ettigi geri bildirimlerle davraniglarini optimize etmesini saglar. Bdylece otonom
sistemler, farkli trafik senaryolarinda daha esnek, adaptif ve giivenilir kararlar

alabilmektedir.

Otonom tasitlarin gergeklestirmesi gereken en 6nemli sorumluluklardan biri, dinamik ve
karmasik trafik ortamlarinda gilivenli stiriisii saglamaktir. Sehir i¢i trafik, kavsaklar, yogun
otoyol kosullari, yaya yogunlugu gibi faktorler aracin karar alma mekanizmalarini
zorlamaktadir. Bu karmasik ve dinamik yapi; sensor verilerindeki giiriiltii ve dalgalanmalar,
algilama hatalar1 ve gevresel belirsizliklerle birlestiginde sistemin giivenilirligini tehlikeye
atan durumlara neden olabilmektedir. Bu nedenle otonom siirlis algoritmalarinin gergekei
senaryolar ve simiilasyon ortamlarinda kapsamli test edilmesi gerekmektedir.
Simiilasyonlar, yliksek maliyet ve risk barindiran gergek arag testlerinin 6niinde 6nemli bir
adim olmakla beraber, algoritmalarin farkli kosullardaki performansini analiz etmekte ve

optimize etmekte kullanilmaktadir.

Otonom tasit teknolojilerinin gelistirilmesi yalnizca teknik ve miihendislik agilarindan degil,
hukuki, etik ve sosyal boyutlar a¢isindan da ele alinmalidir. Otonom araglarin yayginlasmasi
trafik diizenlemeleri, sorumluluk dagilimi, kisisel veri gilivenligi ve etik karar problemleri
gibi pek c¢ok yeni konuyu giindeme getirmistir. Ozellikle otonom sistemlerin

karsilasabilecegi etik belirsizlikler ve kaza senaryolarinda sorumlulugun nasil paylasilacag:



gibi hususlar, teknolojinin toplumsal kabulii ve giindelik yasantiya entegrasyonu i¢in kritik
Oonem tasimaktadir. Bu nedenle otonom tasit arastirmalari disiplinler arasi bir yaklasimla

mithendislik alanina ek olarak ekonomik, psikolojik ve sosyolojik olarak da incelenmektedir.

Otonom tasit teknolojileri, otomotiv miihendisligi basta olmak iizere yapay zeka, robotik,
bilgisayar miihendisligi, yazilim ve sosyal bilimlerin kesisiminde yer alan multidisipliner ve
dinamik bir arastirma konusudur. Bu alanda yapilan yenilikler ve gerceklestirilen ¢aligmalar
yalnizca teknolojik ilerlemeleri degil, ayn1 zamanda toplumsal fayday1 ve siirdiiriilebilir

ulasimi da desteklemektedir.

Bu c¢alisma otonom tagitlarin yalnizca karar verme degil, otonom serit degistirme
hareketinde kritik dneme sahip rota planlama ve planlanan rotanin takibi konularma da
yenilik¢i bir yaklasim gelistirmeyi amaclamaktadir. Calismada gelistirilen algoritmalar
MATLAB ve Simulink yazilimi ile modellenmis, ¢esitli trafik senaryolarinda test edilmistir.
Bu sayede onerilen yontemlerin giivenlik, konfor ve dinamik ortamlarda kullanilabilmesi
acilarindan etkinligi ve kullanilabilirligi degerlendirilmis ve mevcut ydntemlerle
karsilastirilmistir. Tezin amaci, otonom siirlis sistemlerinin farkli trafik kosullarinda
giivenilirligini artirmak, daha etkin karar alma yetenegi kazandirmak ve aracin serit

degistirme hareketini dogru bir sekilde tamamlamasini saglamaktir.

Bu tez ¢alismasinda oncelikle kullanilan yontemler detaylar ile agiklanmis ve tercih edilen
yontemlerin tercih edilme sebepleri aciklanmistir. Simiilasyonlarda kullanilan tasit modeli
aciklanarak belirlenen senaryo kosullar1 parametreleri belirtilmistir. Karar verme
algoritmasinda kullanilan DQN yo6ntemi igerisindeki gozlem kiimesi, aksiyon kiimesi, 6diil
fonksiyonu gibi parametreler detaylandirilmistir. Bir sonraki asama olan rota planlama
asamasinda kullanilan Sigmoid fonksiyonunun uygulamas: aciklanmis, rotaya ait egrilik
hesaplamalar1 yapilmigtir. Rota takibi i¢in kullanilan Stanley denetleyici parametreleri
aciklanarak DQN ajaninin egitimi ile ilgili detaylar tanimlanmistir. Egitim siireci sonucunda

tagitin davranislar ve sistemin dogrulugu test edilerek gratik ve gorsellerle ifade edilmistir.






2. OTONOM TASITLARDA SERIT DEGISTIRME MANEVRASI

Otonom tagitlar otomotiv ve ulasim teknolojisinde koklii bir doniisiimii temsil etmektedir.
Insan miidahalesi olmadan tasitin hareketini saglayan otonom sistemler birden fazla
teknolojinin ve disiplinin bir araya gelmesi ile kompleks sayilabilecek ancak tamamen
entegre bir sistemi ifade eder. Temel olarak arag tizerine yerlestirilen ¢esitli kamera, sensor
vb. ekipmanlarla gevre tespiti yapilir. Bu tespitler yol genisligi, serit ayrimlari, cevre tasitlar,
yayalar, tabelalar gibi otonom olmayan siiriis esnasinda bir siiriicliniin dikkat etmesi gereken
unsurlari kapsar. Otonom araglarin gelisiminin desteklenmesi farkli bakis agilarindan ¢esitli
avantajlara sahiptir. Siiriis esnasinda siiriicii hatalarindan kaynaklanabilecek kaza veya hatali
siiris durumlarimin azaltilarak sehir i¢ci ya da sehirler arasi trafigin daha giivenli hale
getirilmesi amaglanir. Siirlicti dikkatsizligi, zayif refleksler, olumsuz yol sartlar1 ve yavas
tepki verme gibi sebeplerden meydana gelen kazalarda tasit hizina bagl olarak maddi
hasarlar ve ciddi yaralanmalar meydana gelebilmektedir. Otonom siiriis sayesinde tasit
hareketi ve hiz1 yol sartlarina gére optimize edilerek kazalarin ve dolayisiyla yaralanmalarin
oniline gegilebilir. Cesitli fiziksel engellere sahip olmasi nedeniyle ara¢ kullanamayan
bireylerin giinliik yasantilarini kolaylastirmak ve baska kisilere bagimliligini azaltarak
topluma kazandirmak da otonom arag gelistirmelerinin amaglarindan bir tanesidir. Kararsiz
stiris dinamikleri ya da sikigik trafik durumlarinda tasitlarin harcadigi yakat, ortalama yakit
tilketimleri ve emisyon salinimlar1 artmaktadir. Otonom tagitlarda bu durum da goz oniine
aliarak tasit hareketi kolaylastirilir. Bununla beraber daha kararl bir siiriis karakteristiginin
bulundugu bir cevrede trafik olgusu da azalacagi icin verimlilik ve yakit ekonomisi
tyilestirilir, ¢evre kirliliginin azaltilmasina yardimei olunur. Otonom tasit tarafindan idealize
edilen siiriis karakteristigi sayesinde trafigin azalacagi, bu sayede trafikte gecirilen zamanin
azalmasi ile beraber zaman tasarrufu saglanabilecegi; bununla beraber dogru park
konumlandirmas1 sayesinde de park alanlarindan tasarruf edilebilecegi 6n goriilmektedir.
Otonom tagitlar teknolojik etkiler bakimindan ¢esitli entegrasyonlar ile giivenligin artis1 ve
konforun yiikseltilmesinde 6nemli bir adim olup farkli disiplinleri biinyesinde barindirarak

maksimum konforu ve glivenligi saglamay1 amaglamaktadir (Gherardini ve Cabri, 2024).

Otonom tasitlar siiriiciiye ve trafige konfor ve giivenlik bakimindan 6nemli katkilar saglasa
da cesitli dezavantajlar1 da bulunmaktadir. Bunlardan ilki veri giivenligi olarak sdylenebilir.
Otonom tasitlar hareketini saglamak i¢in biitlin verileri sensor ve kameralardan elde eder.

Bu komponentlerde meydana gelebilecek herhangi bir aksaklik ya da eksiklik tasit ve



icerisindeki kisiler i¢in tehlike yaratma ihtimalini ortaya ¢ikarmaktadir. Bu nedenle bu gibi
parcalarin saglamlik ve giivenilirliginin oldukc¢a hassas sekilde dogrulanmasi gerekir (Yeong

ve digerleri, 2021).

Otonom tasitlarin bir diger negatif yonli ise biinyesinde kullanilan komponentlerin
pahaliligidir. Tasit en dogru sonuca varabilmek ve tasiti en gilivenli sekilde dogru
yonlendirebilmek icin pek ¢ok parca (GPS, LIDAR, RADAR...) kullanir. Bu pargalarin
cogunlukla elektronik temelli ve pahali pargalar olmasi tasit maliyetinin de yilikselmesi
anlamina gelir. Diger yandan bu parcalarda meydana gelebilecek herhangi bir hasar ya da
ariza durumunda bakim ve onarim maliyetleri de ekonomik sayilabilecek seviyenin oldukg¢a
iizerinde olacag tespit edilebilmektedir. Gilintimiizde etkileri yogun bir sekilde goriilmese
de ilerleyen yillarda otonom tasit teknolojisinin de gelismesi ile beraber tasit kullanimina
bagh is sektorlerinde is¢i ihtiyacinin azalacagi 6n goriilmektedir. Bu durum issizlik adina
toplumsal olarak bir tehdit olarak goriilebilmektedir. Otonom tasitlarin giinliik kullaniminin
artist biiyiilk oranda siiriiclilerin bu teknolojiye uyum saglamasiyla dogru orantilidir.
Kullanicilarin otonom siiriisii tercih etmeleri, giiven kazanabilmeleri ve alisabilmeleri i¢in
belli bir siire gereksinimi mevcuttur. Teknolojinin ve calismalarin gelisimi ve sistem
giivenilirliginin artmasi bu siireyi kisaltabilecek faktorlerdendir denebilir (Yeong ve

digerleri, 2021).

2.1. Otonom Tasitlarin Siiflandirilmasi

Otonom tasitlar siiriiciiye bagimlilik orania gore 6 farkli seviyede simiflandirilmistir. Bu
seviyeler ve siniflandirmalar SAE (Society of Automobile Engineers) tarafindan

belirlenmistir. Bu siniflandirma asagidaki gibi agiklanabilir:

Seviye 0 — Otomasyon Yok: Bu seviyede tasit kontrolii tamamen siirliciiye baghdir. Sistem
stiriictiniin kontrolii disinda herhangi bir hareket ya da manevra girisiminde bulunmaz.
Bununla beraber bazi aktif giivenlik sistemleri siiriiciiyli uyarmak adina devreye girebilir.
Bu sistemler serit takip uyarisi, kor nokta uyarisi, ESC (Electronic Stability Control) gibi
sistemlerdir (Technologies, 2022).

Seviye 1 — Siiriis Asistani: Bu seviyede sistem direksiyon, gaz pedali, fren pedali gibi

kistmlara miidahale ederek tasit hizim ve hareket yoniinii degistirebilir. Ornegin ACC



(Adaptive Cruise Control) sistemi ondeki aragla mesafe ve hiz takibi yaparak tasit hizina
etki eder. Serit takip sistemi ile de aracin bulundugu seridin disina kontrolsiiz sekilde ¢iktig
tespit edilirse sistem aract mevcut seritte tutmak icin direksiyona miidahale eder. Siiriicli
daima aracin kontroliine sahip olmalidir. Her iki fonksiyonun da aktifligi siiriicii tarafindan

iptal edilebilir ya da devreye alinabilir (Zhao ve digerleri, 2024).

Seviye 2 — Kismi Otomasyon: Bu seviye bir 6nceki ile benzerlik gosterse de daha kapsamli
bir sistem oldugu sdylenebilir. Tasit bu seviyede gaz ya da fren pedali ile direksiyona ayni
anda miidahale edebilir. Bagka bir deyisle ACC (Adaptive Cruise Control) ve serit takip
sistemi es zamanli olarak kullanilabilmektedir. Bu seviyede de siiriicii aracin tam kontroliine

sahip olmalidir (Wienrich, 2022; Zhao ve digerleri, 2024).

Seviye 3 — Kosullu Otomasyon: Bu seviyede tasit siiriis gérevini siiriicliden tamamen alabilir.
Siirticti belirli bir seviyeye kadar aracin kontroliinii birakip farkli seylerle ilgilenebilir. Ancak
sistem kontrol limitlerine ulastiginda siiriicliyli sesle veya titresimle uyararak kontrolii ele
almasini talep eder. Bu noktada siiriiciiniin bir siire aracin kontroliinii saglamas1 ya da sadece
kontrolii ele alabilecegini bildirecek sekilde direksiyonu belli bir siire ve siddette tutmasi
sistem tarafindan beklenebilir (Inagaki ve Sheridan, 2019; Wienrich, 2022; Zhao ve
digerleri, 2024).

Seviye 4 — Yiiksek Otomasyon: Bu seviyede sistem araci kendi kendine kontrol edebilir.
Stiriictiden herhangi bir kontrol ya da miidahale beklemez. Buna ek olarak bu seviyede
araglarini piyasaya siiren lireticiler seyir esnasinda siiriiciilerin yemek yiyebileceklerini, film
izleyebileceklerini ve hatta uyuyabileceklerini sdylemislerdir. Bu seviyedeki tasitlar i¢in acil

durumlar disinda siiriiciiye ihtiyaci yoktur (Zhao ve digerleri, 2024).

Seviye 5 — Tam Otomasyon: Bu seviyede herhangi bir sliriicliye, dolayisiyla gaz ve fren
pedal1 ya da direksiyona ihtiya¢ duyulmaz. Biitiin kosullarda belirlenen istikamette sistem
tasit hareketini saglayabilir. Cesitli {ilkelerde sehir i¢i toplu ulasim ya da kargo/lojistik gibi
alanlarda bu tip araglar kullanilmaktadir (Inagaki ve Sheridan, 2019; Wienrich, 2022; Zhao
ve digerleri, 2024).

Tasitlar icin SAE J3016 ile belirlenen otomasyon seviyeleri Sekil 2.1.’de gdsterilmistir.
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Sekil 2.1. Tasit otomasyon seviyeleri (Giinay, 2021)

Otonom tasitlar; algilama, karar verme ve kontrol gibi temel islevleri insan miidahalesi
olmaksizin yerine getirebilen oldukca gelismis sistemlerdir. Bu sistemlerin siniflandirilmast,
avantajlar1 ve mevcut sinirliliklari ele alindiginda tam anlamiyla giivenli ve etkili bir otonom
siris deneyimi saglamak icin yalnizca gelismis donanimlarin yeterli olmadigi
goriilmektedir. Aragta kullanilan lidar, kamera, radar gibi sensorler ¢evreyi fiziksel olarak
algilayabilse de bu verilerin anlamli bilgilere doniistiiriilmesi, islenmesi, yorumlanmasi ve
dogru zamanda dogru kararlarin alinmasi i¢in daha ileri diizeyde ve dinamik gegislere uyum
saglayabilecek sistemlere ihtiyag duyulmaktadir. Ozellikle gercek diinyadaki trafik
ortaminin belirsiz ve ¢ogu zaman Ongoriilemez yapisi géz Oniine alindiginda sistemlerin
belirli senaryolara 6zel kural tabanli ¢oziimlerle yonetilmesi ¢ogu durumda yetersiz

kalmaktadir.

Bu noktada devreye giren yapay zeka teknolojileri, otonom tasitlarin ¢evresel verileri sadece
algilamasini degil, ayn1 zamanda bu verilerden 6grenmesini, yorum yapmasini ve karmagik
siirlis senaryolarina uyum saglayarak dogru kararlar alabilmesini miimkiin kilar. Yapay zeka
sayesinde araglar, yaya, ara¢ gibi trafik ve ¢evreye ait unsurlar1 tanimlamakla kalmaz, bu

unsurlarin hizin1 ve yoniinii analiz ederek olas1 hareketlerini 6ngorebilir. Boylece, dnceden



programlanmis senaryolara bagli kalmaksizin, anlik durumlara uygun otonom Xkararlar
iiretilebilir. Bu da hem siirlis giivenligi hem de konfor agisindan sistemlerin daha giiglii,

bagimsiz ve insan benzeri davraniglar sergileyebilmesini saglar.

2.2. Otonom Tasitlarda Kullanilan Yapay Zeka Yontemleri

Yapay zeka giinimiizde cok c¢esitli disiplinlerde devrim yaratacak nitelikte yenilikler
saglamis, yalnizca bilgi teknolojileriyle sinirli kalmayip otomotiv, saglik, finans ve tiretim
gibi alanlarda da etkili olmustur. Bu disiplinin temelini insan zekasini taklit eden sistemlerin
gelistirilmesi olusturur. Yapay zekanin temel dallarindan biri olan makine O6grenmesi
(Machine Learning- ML), veriden 6grenmeyi miimkiin kilar. Bu yaklagimda sistemler,
acikca programlanmaksizin deneyimlerden dgrenerek karar verebilirler. Makine 6grenmesi,
denetimli 6grenme (supervised learning), denetimsiz 6grenme (unsupervised learning) ve
pekistirmeli 6grenme (reinforcement learning) gibi alt basliklara ayrilir (Goodfellow ve

digerleri, 2016).

Denetimli 6grenme algoritmalarinda sistem giris ve ¢ikis verileriyle egitilir. Siiflandirma
(classification) ve regresyon (regression) bu kategoriye dahildir. Ornegin lojistik regresyon
(logistic regression) ve destek vektor makineleri (support vector machines- SVM)
siiflandirma problemlerinde yaygin kullanilirken, dogrusal regresyon (linear regression) ve
karar agaclar1 (decision trees) gibi yontemler sayisal tahminler i¢in uygundur. Bununla
beraber rastgele orman (random forest) gibi topluluk yontemleri, birden fazla modelin

ciktisini birlestirerek dogrulugu artirmay1 amaclar (Hastie ve digerleri, 2009).

Denetimsiz 0grenme ise veri lizerinde herhangi bir etiket olmaksizin yapisal iligkileri
kesfetmeyi hedefler. Kiimeleme (clustering) bu yaklasimin 6nde gelen tekniklerinden biridir
ve K-ortalama kiimeleme (K-means clustering) ya da hiyerarsik kiimeleme (hierarchical
clustering) gibi algoritmalarla gerceklestirilir. Boyut indirgeme (dimensionality reduction)
teknikleri ise verilerin daha diisiik boyutlu temsilini elde etmeyi amaglar. Bu amacla
kullanilan temel yontemler arasinda temel bilesen analizi (principal component analysis -
PCA) ve tekil deger ayristirmasi (singular value decomposition - SVD) yer alir (Bro ve

Smilde, 2014) .
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Derin 0grenme (deep learning), makine Ogrenmesinin bir alt kiimesidir. Makine
ogrenmesine kiyasla daha karmasik ve ¢ok katmanli yapay sinir aglarin1 kullanarak yiiksek
seviyeli sistemlerin ve ajanlarin 6grenimini saglar. Evrigimli sinir aglar1 (convolutional
neural networks- CNNs) ozellikle goriintii isleme alaninda basarili sonuglar verirken,
yinelemeli sinir aglar1 (recurrent neural networks- RNNs) zaman serisi verilerinde ya da dil
modellemede tercih edilir. Uzun- kisa donem hafiza (LSTM - long short-term memory)
aglar1 ise RNN’lerin uzun etkilesimlere sahip sistemlerde 6grenme konusundaki

sinirlamalarini agsmak i¢in gelistirilmistir (LeCun ve digerleri, 2015).

Son yillarda popiilerlesen transformer mimarisi, 6zellikle dogal dil isleme (natural language
processing - NLP) alaninda devrim niteliginde ilerlemeler saglamistir. Bu mimari sayesinde
metin liretimi, 6zetleme, ceviri gibi islemler daha verimli ve mevcut ortama duyarli bicimde
gerceklestirilebilmektedir. Dogal dil isleme modellerinin en yaygin 6rneklerinden biri olan
BERT (Bidirectional Encoder Representations from Transformers), ¢ok katmanl

mimarisiyle baglamsal anlami etkin bi¢imde modelleyebilir (Vaswani ve digerleri, 2017).

Cekismeli iiretici aglar (Generative Adversarial Networks GANs) gibi liretici yapilar da
Ozellikle goriintii sentezi, restorasyon ve veri genisletme konularinda yaygin olarak
kullanilir. GAN’ler bir liretici (generator) ve ayirt edici (discriminator) agdan olusur; bu iki
yap1 birbirine karst calisarak yiiksek kaliteli veriler tretir. GAN'lerin sanat, saglik
goriintiileme ve sahte veri tiretimi gibi alanlarda bir¢ok yenilik¢i uygulamasi bulunmaktadir

(Goodfellow ve digerleri, 2016).

Yapay zekanin alt dallarindan biri olan pekistirmeli 6grenme (reinforcement learning - RL),
ajanlarin ¢evreyle etkilesime girerek 6diil sinyali iizerinden strateji 6grenmesine dayanir. Bu
alanda model-tabanli ve modelden-bagimsiz yaklasimlar olmak {izere iki temel yontem 6ne
cikar. Model tabanli yontemler, ¢evrenin matematiksel veya istatistiksel bir modelini
olusturarak karar verme siire¢lerini yiiriitiir. Bu yontemlerde genellikle ortamin dinamikleri
yani eylem gergeklestirildiginde ortamin nasil degisecegi bilinir veya 6grenilir. Modelden
bagimsiz yontemler, ¢gevrenin nasil ¢alistigini bilmeden veya 6grenmeden yalnizca eylemler
ve Odiiller arasindaki iliskiye odaklanir. Ajan, deneme-yanilma yoluyla en iyi eylemleri
ogrenir. Ortamin dinamigini bilmeye gerek yoktur. Modelden bagimsiz yontemler deger
tabanli, politika tabanli olarak iki ayr1 grupta incelenir. Deger tabanli (value-based)

yontemlerde ajan, her durumda en ytiiksek toplam 6diilii saglayacak eylemleri 6grenirken;
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politika tabanli (policy-based) yaklasimlarda dogrudan bir politika fonksiyonu 6grenilir.
Derin pekistirmeli 6grenme (deep reinforcement learning - DRL), sinir aglarini kullanarak
bu siiregleri daha karmasik ortamlar i¢in uygular (Sutton ve Barto, 1998). Coklu ajanl
pekistirmeli 6grenme (multi-agent RL) ise birden fazla ajanin ayni ortamda eszamanl

ogrenmesini kapsar.

Dogal dil isleme (NLP), yapay zekanin dilsel veriyle ¢caligmasini saglar. Bu alanda 6n isleme
(text preprocessing), sozciik analizi (lexical analysis), s6zdizimsel ¢éziimleme (syntactic
analysis) ve anlamsal analiz (semantic analysis) gibi asamalar bulunur. S6zciiklerin koklerini
ayiklamak i¢in kok bulma ve lemmatizasyon teknikleri, anlamlandirma i¢inse anlamsal rol
etiketleme (semantic role labeling) ve ad-6bek tanima (named entity recognition - NER) gibi

yontemler kullanilir (Jurafsky ve Martin, 2020).

Goriintli isleme alanindaki bilgisayarli gorii (computer vision) uygulamalari, nesne algilama
(object detection), nesne takibi (object tracking), goriinti smiflandirma (image
classification), goriintii boliitleme (segmentation) ve restorasyon (restoration) gibi gorevleri
icerir. Bu gorevler genellikle derin sinir aglar1 ve CNN'ler aracilifiyla gerceklestirilir.
Ozellikle otonom tasitlarda, cevresel algilama gérevlerinde bilgisayarli gorii uygulamalari

kritik rol oynar (Szegedy ve digerleri, 2015).

Yapay zekanimn otonom sistemlerdeki etkisi, oOzellikle robotik sistemlerde agikca
goriilmektedir. Robotik alaninda hem denetimli hem de denetimsiz 6grenme yontemleri
kullanilmaktadir. Otonom tasitlar, siiriicii miidahalesi olmaksizin ¢evresel algi, karar verme
ve hareket kontrolii islevlerini yerine getirebilmek i¢in yapay zekanin bu alt alanlarindan
faydalanmaktadir. Bu sistemlerde, goriintii isleme yoluyla algilama, pekistirmeli 6grenme
yoluyla karar verme ve kontrol mekanizmalar1 birlikte ¢alisir. Ozellikle derin 6grenme
temelli yaklagimlar, otonom tasitlarda serit takip, engelden kaginma, hiz optimizasyonu gibi

gorevlerde yiiksek basar1 saglar (Bojarski ve digerleri, 2016).

Ayrica aciklanabilir yapay zeka (explainable Al- XAI), néro-sembolik yapay zeka
(neurosymbolic Al) ve liretken yapay zeka (generative Al) gibi yiikselen alanlar, yapay
zekanin daha anlasilir, etik ve yaratict bicimde kullanilmasini hedeflemektedir. XAl,

kararlarin seffafligin1 artirmay1; ndéro-sembolik yapay zeka, sembolik akil yiirlitmeyle sinir
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aglarinin birlesimini; {iretken yapay zeka ise Ozgiin icerik liretimini amacglamaktadir

(Gunning ve Aha, 2019).

Biitiin yonleri ile ele alindiginda yapay zeka giliniimiizde hem kuramsal hem de uygulamali
yonleriyle hizla gelismekte, bircok sektor ve teknolojiye yon vermektedir. Ozellikle otonom
tasit sistemlerinde, tiim bu yontemlerin bir araya gelerek olusturdugu sinerji sayesinde insan
miidahalesi olmaksizin giivenli ve etkili karar alma mekanizmalar1 tasarlanabilmektedir. Bu
dogrultuda yapay zekanin gelecekteki uygulama alanlariin daha da genislemesi kaginilmaz

goriinmektedir (Russell ve Norvig, 2021).

Yapay zeka teknolojilerinin kullanim alanlar1 ve alt dallarinin gorsellestirildigi sema Sekil

2.2.’de verilmistir.
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Sekil 2.2. Yapay zeka yontemlerinin siniflandirilmasi



13

2.2.1. Pekistirmeli 6grenme

Pekistirmeli 6grenme (Reinforcement Learning - RL) yapay zekanin makine 6grenmesi alt
dallarindan en 6zgiin ve karmasik yontemlerinden biridir (Sutton ve Barto, 1998). Bu makine
O0grenmesi algoritmasi, temelde bir ajanin ¢evreyle etkilesim kurarak deneyim kazanmasi ve
bu deneyimlerden yola ¢ikarak uzun vadeli 6diilii maksimize edecek optimal davranis
stratejilerini  gelistirmesi prensibine dayanmaktadir. Geleneksel denetimli 6grenme
yontemlerinin aksine, pekistirmeli 6grenmede acikg¢a tanimlanmig bir egitim veri seti
bulunmamakta ve sistem dogru davranisin ne oldugunu bilmemektedir. Bunun yerine ajan,
aldig1 6diil sinyallerine gore kademeli olarak davranislarini iyilestirmektedir (Kaelbling ve
digerleri, 1996). Bu O6grenme insan 6grenme mekanizmasina oldukca benzemekte ve
deneme-yanilma (trial-and-error) yaklasimi {izerine kuruludur. Pekistirmeli 6grenmenin bu
Ozglin yapist Ozellikle dinamik ve belirsiz ortamlarda olduk¢a etkili bir ¢oziim olarak
karsimiza ¢ikmaktadir. Ornegin, bir robotun yiiriimeyi dgrenmesi veya bir yapay zekanin
satrang oynamay1 6grenmesi gibi kompleks gorevlerde pekistirmeli 6grenme algoritmalari

siklikla kullanilmaktadir (Silver ve digerleri, 2016) .

Pekistirmeli 6grenmenin matematiksel temeli, Markov Karar Siirecleri (Markov Decision
Processes - MDP) olarak adlandirilan bir ¢er¢eve ile modellenmektedir (Puterman, 2014).
Bu siirecte ajan, i¢inde bulundugu durumdan (state) bir aksiyon (action) secgerek, ortamin
durumunu degistiren bir gecis (transition) olusturur ve bir 6diil (reward) alir. Zaman i¢inde
elde edilen toplam 6diilii maksimize edecek bir stratejiyi, yani politikay1 (policy) 6grenmeyi
amaglar. Matematiksel olarak MDP=(S,A,P,R,y) seklinde tanimlanir. Bu matematik modeli
durum kiimesi (S), eylem kiimesi (A), gegis olasiliklar (P), 6diil fonksiyonu (R) ve indirim

orani (y) olmak iizere bes temel bilesenden olusur (Sutton ve Barto, 1998).

Pekistirmeli 6grenmede ajanin amaci, bir politika (7) dogrultusunda gelecekte elde edecegi
odiillerin toplamint maksimize etmektir (Sutton ve Barto, 1998). Beklenen toplam odiil,
durum-eylem ¢iftlerine atanmig bir deger fonksiyonu olan Q-fonksiyonu ile ifade edilir. Bu
fonksiyon Bellman Denklemi ile tanimlanir (Bellman, 1966). Bellman denklemi 1 numarali

esitlikte verilmistir.

QT[(SJ a) = ET[ [Z?:Oth(stﬁ at)|50 :O' ag = 0] (21)
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Optimal politika, her adimda en yiiksek beklenen 6diilii saglayacak aksiyonu secer. Bu
durumda optimal Q-degerleri Bellman Optimalite Denklemi olarak bilinir ve 2 numaral

esitlik ile ifade edilir (Bellman, 1966):
Q*(s,a) =R(s,a) + y X5 P(s'|s,a) max Q*(s',a") 2.2)
ar

Bu esitlik, dinamik programlama yaklagimina dayali algoritmalarla iteratif olarak
coziilebilir. Ancak pek ¢ok gercek diinya problemi, gegis olasiliklar: bilinmeyen ya da sonlu

olmayan durum/eylem uzaylari i¢erdiginden dolay1 dogrudan ¢6ziim miimkiin degildir.

Pekistirmeli 6grenme algoritmalari, ortamin dinamiklerini bilip bilmemelerine gére model
tabanli (model-based) ve modelden bagimsiz (model-free) yontemler olarak ikiye ayrilir
(Sutton ve Barto, 1998). Model tabanli yontemlerde, ajan ¢evrenin dinamiklerini (gecis
olasiliklarin1 ve 6diil fonksiyonlarini) karar verme siirecinden 6nce bilir ya da 6grenir. Bu
bilgilerle simiilasyon yaparak ya da planlama yontemleri kullanarak en uygun eylemi seger.
Ornegin, Dyna-Q algoritmasi (Sutton ve Barto, 1998) hem deneyimden 6grenmeyi hem de
modelden simiilasyon {iretip o deneyimi kullanarak 6grenmeyi birlestiren entegre bir
algoritmadir. Bununla beraber Model Predictive Control (MPC) ve Monte Carlo Tree Search
(MCTS) gibi planlama algoritmalar1 da model tabanli pekistirmeli 6grenme yontemleri ile
yiiksek benzerlik gosteren ve genellikle pekistirmeli 6grenme algoritmalar ile entegre

calisabilen yontemlerdir.

Bir diger yontem olan modelden bagimsiz yontemlerde ajan, ¢evrenin dinamiklerine dair
herhangi bir bilgiye sahip degildir. Ogrenme tamamen deneyime dayanir. Modelden
bagimsiz pekistirmeli 6grenme algoritmalar1 genellikle ¢cevre modelinin bilinmedigi veya
ogrenilmedigi durumlarda kullanilmaktadir (Mnih ve digerleri, 2015). Modelden bagimsiz
yontemler deger tabanli (value-based), politika tabanli (policy-based) ve aktor-kritik (actor-
critic) yontemler olarak tice ayrilir. Q-learning gibi deger tabanli algoritmalar, her durum-

eylem ciftinin degerini tahmin ederek en iyi eylemi se¢meye ¢alisir.

Deger tabanli yontemler, optimal bir deger fonksiyonu (value function) veya Q-fonksiyonu
(action-value function) 6grenmeye odaklanmaktadir (Dayan ve Watkins, 1992). Q-6grenme
(Q-Learning), bu kategorinin en sik kullanilan algoritmasi olmakla beraber zaman farki

(temporal difference) yontemine dayanmaktadir. Algoritma, Q-degerlerini giincellemek i¢in
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mevcut Q-degeri ile hedef Q-degeri (bir sonraki durumda alinabilecek maksimum Q-degeri)

arasindaki hatay1 kullanmaktadir. Matematiksel olarak 3 numarali esitlikteki gibi ifade edilir.
Q(spar) < Q(sp,ar) + a[rp + R(s,a) + v m(?x Q(s’,a') — Q(sp ap)] (2.3)

Burada a 6grenme orani (0 < a <1), y indirim faktorii, s’ yeni durum re1 ise (t+1) zaman
adiminda alinan odiilii ifade etmektedir. Q-learning algoritmasi, ¢evreden gelen geri
bildirimlerle taban degerlerini iteratif olarak giinceller ve optimal politikay1 dolayl olarak
ogrenir. Bir diger deger tabanli algoritma olan SARSA algoritmas1 ise giincel politikaya
bagli olarak Q-degerlerini giinceller. Q-learnnig algoritmasinin derin 6grenme ile
birlestirildigi DQN (Deep Q-Network) metodu da siklikla kullanilmakta ve basarili sonuglar
elde edilmektedir. Bu algoritmalar genellikle giris seviyesinde pekistirmeli 6grenme
uygulamalart i¢in etkilidir (Dayan ve Watkins, 1992). Ancak ayrik eylem alanlarinda etkili

olan bu yontem, siirekli eylem alanlarinda yetersiz kalir.

Politika tabanli yontemlerde, ajan direkt politikay1 yani eylem se¢me stratejisini 6grenmekte
ve dogrudan bir politika fonksiyonu me(als) 6grenmeye odaklanmaktadir (Williams, 1992).
Bu yaklasim, 6zellikle siirekli eylem uzaylarinda (6rnegin robotik kontrol problemleri) ve
stokastik politikalar gerektiren durumlarda avantaj saglamaktadir. Politika Gradyan (Policy
Gradient) teoremi, bu tlir algoritmalarin matematiksel temelini olusturmaktadir. Bu
yontemler siirekli eylem uzaylarinda ve karmagsik problemler i¢in daha uygundur.
REINFORCE algoritmasi politikanin gradyana goére optimize edilmesine dayanir. Bu

algoritmanin matematiksel ifadesi 4 numarali esitlikte verilmistir.
0 <6+ aVylogn(als; 0) G; (2.4)

Esitlikte yer alan 0 ajanin 6grenmeye ¢alistig1 politika parametrelerini ifade eder. o ifadesi
ogrenme oranini belirler ve ajanin ilerleyecegi adimlarin biiyiikligiinti kontrol eder. Vg log
n(als; 0) ifadesi, ajanin belirli bir durumda (s) belirli bir eylemi (a) se¢me olasiliginin
logaritmasinin  gradyanidir ve ajanin  yaptigi eylemin ne kadar iyi oldugunu
degerlendirmesine yardimei olur. G ise ajanin gergeklestirdigi eylemden sonra gelecekte
bekledigi toplam 6diilii ifade eder. Bu yap1 sayesinde ajan, basarili eylemleri daha sik tercih
etmeyi, basarisiz olanlar1 ise azaltmay1 6grenir. Politika tabanli derin pekistirmeli 6grenme

yontemleri arasinda en sik kullanilan diger algoritmalar Proximal Policy Optimization (PPO)
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ve Trust Region Policy Optimization (TRPO) algoritmalaridir. PPO, politikanin her
giincellemede fazla degismesini engelleyerek 6grenme siirecini daha kararli hale getirir
(Schulman ve digerleri, 2015). Bununla beraber hem siirekli hem ayrik eylem uzaylarinda
yiliksek performans gostermektedir. Ancak politika tabanli yontemler yiiksek varyans

sorununa sahiptir ve bu durum 6grenmenin dengesiz olmasina yol agabilir.

Bu problemi azaltmak igin aktor-kritik yontemleri gelistirilmistir. Aktor-kritik yontemler
hem deger fonksiyonlarini hem de politikayr birlikte 6grenerek bu iki yaklagimin
avantajlarini birlestirmektedir (Konda ve Tsitsiklis, 1999). Bu yontemlerde aktér politika
gelistirirken, kritik (elestirmen) (critic) bu politikanin performansini degerlendirmektedir.
Aktor-kritik yontemlerinin literatiirde de sikc¢a karsilasilan ve kullanilan bir kolu DDPG
(Deep Deterministic Policy Gradient) yaklasimidir. DDPG, klasik Q-learning'in stirekli
eylem alanlarina uyarlanmis versiyonu olarak da diisiiniilebilir. Q-learning ayrik (discrete)
eylem alanlarinda uygulanirken, DDPG’de bu miimkiin olmadigindan, maksimum degeri
dogrudan ¢ikaran bir politika fonksiyonu (aktor) 6grenilir. Kritik ag1 ise bu politikanin
ciktig1 eylemin ne kadar iyi ve kullanilabilir oldugunu degerlendirir. DDPG bu yoniiyle
DOQN ile politika gradyan yontemlerinin bir sentezidir (Lillicrap ve digerleri, 2015; Sutton
ve Barto, 1998).

Pekistirmeli 6grenme, son yillarda cesitli alanlarda basarili sekilde uygulanmistir
(Arulkumaran ve digerleri, 2017). Oyunlar ve strateji gelistirme alaninda, DeepMind'in
gelistirdigi AlphaGo ve AlphaZero sistemleri gibi orneklerde pekistirmeli 6grenme
algoritmalarmin karmagik strateji oyunlarinda insan seviyesinin Otesine gegebilecegini
gostermistir (Silver ve digerleri, 2016). AlphaGo geleneksel yapay zeka yontemlerinin
aksine, hamle degerlendirmek icin derin sinir aglar1 kullanmis ve kendi kendine denemeler

yaparak yani oyun oynayarak milyonlarca oyun deneyimi kazanmistir.

Robotik ve otonom alanlarinda da pekistirmeli 6grenme algoritmalar sistemlerin karmasik
gorevleri 6grenmesinde ve dogru hareketin gelistirilmesinde yaygin olarak kullanilmaktadir
(Kober ve digerleri, 2013). Pekistirmeli 6grenme yaklagimi dort ayakli robotlarin zorlu
arazilerde yiiriimesi, robot kollarin nesnelerle etkilesimde bulunmasi veya drone gibi
cihazlarin engellerden kaginarak ugmasi gibi gorevlerde basariyla uygulanmistir. Boston
Dynamics gibi sirketler pekistirmeli 6grenme tabanli yontemler kullanarak robotlarin dogal

ve ¢evik hareketler kazanmasini saglamaktadir. Otonom araglar alaninda ise pekistirmeli
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o0grenme metodlari araglarin karmasik trafik senaryolarinda giivenli sekilde hareket etmesini
saglamak icin kullanilmaktadir (Kendall ve digerleri, 2019). Araclar, simiile edilmis
ortamlarda milyonlarca kilometre siiriis deneyimi kazanarak, ger¢ek diinya kosullarina uyum

saglayabilmektedir.

Finans ve ticaret gibi alanlarda da pekistirmeli 6grenme metodlari, portfdy yOnetimi ve
yiiksek Oneme sahip ticaret stratejilerinin optimizasyonunda kullanilmaktadir (Dixon ve
digerleri, 2017). Pekistirmeli 6§renme tabanli sistemler, piyasa kosullarina dinamik olarak
uyum saglayabilmekte ve geleneksel istatistiksel yontemlere gore daha esnek ¢oziimler
sunabilmektedir. Pekistirmeli 6grenme metodlar1 saglik sektdriinde de kullanicilarin
yaptiklari islerin otomatik hale getirilmesine katk1 saglamaktadir. Oregin kisisellestirilmis
tedavi planlarinin olusturulmasi ve tibbi teshis sistemlerinin gelistirilmesinde pekistirmeli
ogrenme algoritmalar1 kullanilmigtir (Shortreed ve digerleri, 2011). Bunlara ek olarak
pekistirmeli 6grenme metodlart enerji yonetimi sistemlerinde binalarin enerji tiiketimini
optimize etmek ve sebeke yonetimini iyilestirmek i¢in basariyla uygulanmistir (Vazquez-

Canteli ve Nagy, 2019).

Pekistirmeli Ogrenme yapist genel anlamiyla cevreden aldigi bilgileri birtakim
degerlendirmelerden gegirerek bir karar verir. Bu kararin dogrulugunu 6lger ve bir sonraki
adimda kullanilan metodun dinamiklerine bagli olarak yeni hareketine karar verir. S6z

konusu stirekli dongii Sekil 2.3.’te verilmistir.

durum
Pekistirmeli 0§renme aksiyon
5dii Ajani
odul
Cevre —
€ o

Sekil 2.3. Pekistirmeli 6grenme akisi
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2.2.2. Derin pekistirmeli 6grenme

Karmagik ve yiiksek boyutlu durum uzaylarinda klasik deger tablosu tabanli yaklagimlar
yetersiz kalmaktadir. Bu nedenle derin 6grenme ile pekistirmeli 6grenmenin birlestigi Derin
Pekistirmeli Ogrenme (Deep Reinforcement Learning) yontemleri gelistirilmistir. Son
yillarda 6zellikle derin 6grenme tekniklerinin pekistirmeli 6grenme yontemi ile entegre
edilmesi, daha yiiksek hacimli ve siirekli uzaylarda da 6grenmenin miimkiin hale gelmesini
saglamistir. Bu sayede otonom araglar, robot kontrol sistemleri, strateji oyunlar1 ve finansal
sistemler gibi bir¢ok karmasik uygulama alaninda pekistirmeli 6grenme algoritmalari
basarili sonuglar vermeye baslamistir (Kober ve digerleri, 2013; Mnih ve digerleri, 2015).
Ozellikle gorsel veri isleme gerektiren uygulamalarda, derin sinir aglarinin 6zellik ¢ikarimi
yetenegi sayesinde DRL sistemleri ham piksel verisinden dogrudan Ogrenme

yapabilmektedir (Mnih ve digerleri, 2015).

Derin pekistirmeli 6grenmenin matematiksel temeli, klasik Markov Karar Siiregleri (MDP)
cergevesine derin 6grenme bilesenlerinin eklenmesiyle genigletilmistir. Matematik modeli 5

numarali esitlikte verilmistir.

MDPpri=(S,A,P,R,y,00) (2.5)

Bu modelde kullanilan ¢g derin sinir ag1 tarafindan sembolize edilen 6zellik doniisiim

fonksiyonunu temsil etmektedir (Sutton ve Barto, 1998).

Bunlarin en 6nemlilerinden biri Derin Q-Aglar1 (Deep Q-Networks — DQN), algoritmasidir.
DQN, durumlar1 dogrudan sinir agina vererek Q-degerlerini tahmin eder. Ayrica deneyim
tekrar1 (experience replay) ve hedef aglar (target networks) gibi teknikler, 6grenmenin
istikrarli bir bi¢imde gerceklesmesini saglar (Mnih ve digerleri, 2015). Derin pekistirmeli
ogrenme, pekistirmeli 6grenme ile derin sinir aglariin birlesiminden olusan ve son yillarda
bliyiikk ilgi goéren bir makine Ogrenmesi alanidir. Geleneksel pekistirmeli 68renme
yontemleri, diisiik boyutlu durum uzaylarinda etkili sonuglar verebilirken, yiiksek boyutlu
ve yapilandirilmamis verilerle (0rnegin goriintiiler veya sensor verileri) basa ¢ikmakta
zorlanir. Derin pekistirmeli 6grenme, bu sorunu derin sinir aglarinin giiglii 6zellik ¢ikarim

yetenekleriyle ¢ozerek, karmasik ortamlarda dlgeklenebilir ve etkili ¢oziimler sunar.
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Derin pekistirmeli 6grenmenin en dnemli avantaji, saf veriden otomatik olarak anlamli
ozellikler cikarabilmesidir. Geleneksel yontemlerde, miihendislerin manuel olarak 6zellik
mihendisligi yapmasi1 gerekirken, derin 6grenme modelleri bu silireci otomatiklestirir.
Ornegin, bir otonom ara¢ kamerasindan gelen ham gériintiileri islerken, derin bir evrisimli
sinir ag1 (CNN), goriintiilerdeki serit ¢izgilerini, diger araclar1 ve yaya gecitlerini otomatik
olarak taniyabilir. Bu 6zellikler daha sonra pekistirmeli 6grenme algoritmasina girdi olarak

verilerek, aracin serit degistirme kararlarini optimize etmesi saglanir.

Derin pekistirmeli 6grenmenin en bilinen uygulamalarindan biri, DeepMind tarafindan
gelistirilen ve Atari oyunlarinda insan seviyesinde performans gdsteren Deep Q-Network
(DQN) algoritmasidir. Bu calisma, derin 6grenme ve pekistirmeli 6grenmenin birlikte
kullanilabilecegini gdstermis ve alanda bir doniim noktasi olmustur. DQN, deneyim hafizasi
(experience replay) ve hedef ag (target network) gibi tekniklerle 6grenme siirecini stabilize
ederek, derin pekistirmeli 6grenmenin pratikte basarili olmasmni saglamistir (Mnih ve

digerleri, 2015; Silver ve digerleri, 2016).

Ancak, derin pekistirmeli §grenmenin de bazi zorluklari vardir. Oncelikle, bu yéntemlerin
egitimi i¢in biiyiik miktarda veri ve hesaplama giicii gereklidir. Ayrica, hiperparametre
optimizasyonu ve dgrenme siirecinin kararlilig1 gibi teknik zorluklar da mevcuttur. Ornegin,
odiil fonksiyonunun yanlis tasarlanmasi, ajanin istenmeyen davranislar 6grenmesine yol
acabilir. Bu nedenle, derin pekistirmeli 6grenme sistemlerinin tasariminda dikkatli bir

miihendislik yaklagimi gereklidir.

Derin pekistirmeli 6grenme, otonom siiriis, robotik kontrol, dogal dil isleme ve finansal
algoritma ticareti gibi bircok alanda basariyla uygulanmaktadir. Ozellikle otonom tasitlarda
serit degistirme, trafikte uyum saglama ve park etme gibi karmasik gorevlerin ¢oziimiinde
etkili sonucglar vermektedir. Gelecekte, daha verimli ve kararli algoritmalarin
gelistirilmesiyle, derin pekistirmeli 6grenmenin uygulama alanlariin daha da geniglemesi

beklenmektedir.

2.2.3. Yapay sinir aglar

Yapay sinir aglari son yillarda otonom arag teknolojisinde kullanilan yontemlerin en 6nemli

bilesenlerinden biri haline gelmistir. Yapay sinir ag1 sistemleri insan beyninin yapisi ve
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isleyisinden esinlenerek gelistirilen ve verilerden karmasik davraniglar1 6grenebilen yapay
zeka modelleridir. Otonom araglarda kullanilan derin 6grenme sistemleri, geleneksel tabanl
O0grenme ve tahmin yaklagimlarinin aksine, biiylik miktarda veriden dogrudan 6grenme
yetenegine sahiptir. Bu 6zelligi ile trafigin karmasik ve ongoriillemeyen dogasinda etkili

kararlar alabilmek bakimindan kritik 6nem tasimaktadir (Bojarski ve digerleri, 2016).

Bir yapay sinir ag1 temel olarak {i¢ katmandan olusur. Bu katmanlar giris katmani, gizli
katmanlar ve ¢ikis katmanidir. Giris katmani, verinin en saf hali ile sisteme alindig1 ilk
katmandir. Bagka bir deyisle sistemin sahip oldugu ¢evrenin istenen parametrelerini direkt
olarak alir. Gizli katmanlar ise verinin islendigi ve 6zelliklerin ¢ikarildigi ara katmanlardir.
Derin 6grenme olarak adlandirilan yontemlerde, bu gizli katmanlarin sayist oldukca fazla
olabilir. Derin sinir ag1 adi ile bilinen yapilarda minimum iki gizli katman bulunurken bu
katman sayi1s1 yiizlerce katmana varabilir (Goodfellow ve digerleri, 2016). Cikis katmani ise
agin son tahminlerini veya eylemlerini iirettigi son katmandir. Her bir katmanda bulunan
ndronlar, bir 6nceki katmandaki néronlardan gelen bilgileri alir, belli bir agirliga sahip
carpan ile bir toplamini hesaplar ve bir aktivasyon fonksiyonundan gegirerek bir sonraki
katmana iletir (Goodfellow ve digerleri, 2016; Silver ve digerleri, 2016). Yapay sinir ag1
yapist Sekil 2.4.’te goriilmektedir.

Giris Katmani Gizli Katmanlar Cikis Katmani

Lol

4 ool ey
X/ &

Sekil 2.4. Yapay sinir ag1 yapisi (Bre ve digerleri, 2018)
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Aktivasyon fonksiyonlar1 yapay sinir aglarinin dogrusal olmayan parametreleri
modelleyebilmesini saglayan kritik bilesenlerdir. En yaygin kullanilan aktivasyon
fonksiyonlar1 arasinda ReLU (Rectified Linear Unit), sigmoid ve tanh fonksiyonlar1 6rnek
verilebilir. ReLU, 6zellikle derin sinir aglarinda yaygin olarak kullanilir ¢iinkii hesaplama
acisindan verimli olmasinin yani sira 6lii ndron problemini minimize eder. Bu baglamda en
yaygin dogrusal olmayan aktivasyon fonksiyonlarindan biri de tanh (tanjant hiperbolik)
fonksiyonudur. Bu fonksiyon, giris degerlerini -1 ile +1 arasinda 6l¢eklendirir ve bu 6zelligi
sayesinde simetrik c¢iktt dagilimina ihtiya¢ duyulan derin sinir aglarinda kullanimi

avantajlidir (LeCun ve digerleri, 2015).

Derin pekistirmeli O0grenmede, yapay sinir aglart hem politikanin hem de deger
fonksiyonlarinin opitimizasayonu igin kullanilir. Ornegin, bir otonom arac icin serit
degistirme karar1 verirken, ara¢ kamerasindan alinan goriintiiler bir evrisimli sinir ag1
(Convolutional Neural Network- CNN) ile islenerek anlamli veriler ortaya cikarilir. Bu
veriler daha sonra politika agmma girdi olarak verilerek aracin hangi eylemi
gerceklestirecegine karar vermesi saglanir. Buna benzer olarak deger ag1 da bu 6zellikleri
kullanarak belirli bir durumda secilen belirli bir eylem sonucunda alinabilecek beklenen

odili tahmin eder (Silver ve digerleri, 2016).

Yapay sinir aglarinin 6grenme kapasitesi, ¢cogu zaman mimarinin derinligiyle dogrudan
iliskilidir. Bu noktada, derin sinir aglar1 (Deep Neural Networks — DNN) kavrami ortaya
cikmaktadir. Derin sinir aglari, iki ya da daha fazla gizli katmandan olusan ¢ok katmanli
yapay sinir ag1 mimarileridir. Derin 6grenme (deep learning) adi verilen yaklagimin temelini
olusturan bu yapilar, 6zellikle biliyiik veri kiimeleri ile calisildiginda yiiksek diizeyde
modelleme yetenegi kazanmakta ve goriintii isleme, dogal dil isleme, otonom sistemler gibi
karmagik uygulama alanlarinda oldukca basarili performans gostermektedir (Goodfellow ve

digerleri, 2016).

Derin sinir aglari, klasik yapay sinir aglarina gore daha fazla parametre igerdigi ve 6grenme
stirecinde daha karmasik Oriintiileri kesfedebildigi icin pekistirmeli 6grenme yontemleriyle
entegre edildiginde Onemli avantajlar saglamaktadir. Bu birlesim, derin pekistirmeli
ogrenme olarak adlandirilmakta ve son yillarda otonom siiriisten robotik kontrol sistemlerine
kadar genis bir uygulama alan1 bulmaktadir. Derin pekistirmeli 6grenme algoritmalarinin

onemli bir 6rnegi olan Deep Q-Network (DQN), Q-deger fonksiyonunu iyilestirmek i¢in bir
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derin sinir ag1 kullanmakta ve klasik Q-learning algoritmasinin biiyiik durum ve eylem

uzaylarina uygulanabilirligini miimkiin kilmaktadir (Mnih ve digerleri, 2015).

2.2.4. DOQN algoritmasi

Pekistirmeli 6grenme, yapay zekanin karar alma gerektiren pek ¢ok alaninda basariyla
uygulanmaktadir. Otonom araglar en 6nde gelen uygulama alanlarindan biridir. Serit
degistirme, takip mesafesi ayarlama ve carpisma Onleme gibi gorevlerde pekistirmeli
O0grenme tabanli sistemler insan benzeri ve gergeke¢i kararlar verebilmektedir (Kiran ve

digerleri, 2021).

Derin Q-Aglar1 (DQN), pekistirmeli 6grenme ile derin 6grenmenin basarili bir sekilde
birlestirildigi ilk yontemlerden biridir ve derin pekistirmeli 6grenme alaninda énemli bir
doniim noktasi olarak kabul edilir. DQN, 2015 yilinda DeepMind arastirmacilari tarafindan
gelistirilmis ve Atari 2600 oyunlarinda insan seviyesinde performans gostermistir. Bu basar1
pekistirmeli 6grenmenin yalnizca diisiikk boyutlu durum uzaylarinda degil, yiiksek boyutlu
ve karmasik girdilerle de basarili olabilecegini gostermistir. DQN'in temel prensibi,
geleneksel Q-6grenme algoritmasini derin bir sinir ag1 ile birlestirerek Q-degerlerinin daha

etkili bir sekilde tahmin edilmesini saglamaktir (Mnih ve digerleri, 2015).

DQN'in geleneksel Q-6grenmeden en dnemli farki Q-degerlerinin tablo seklinde saklanmak
yerine bir sinir ag1 tarafindan saklanmasi ve islenmesidir. Geleneksel Q-6grenmede her
durum-eylem ¢ifti i¢in bir Q-degeri saklanir ve bu degerler deneyimler sonucunda
giincellenir. Ancak DQN yaklagimi, durum uzayinin biiylik oldugu problemlerde (otonom
araglar icin kamera goriintiileri gibi) uygulanabilir degildir. DQN ise durumu yani gézlem
kiimesini girdi olarak alan ve her bir eylem i¢in Q-degerlerini tahmin eden bir sinir ag1
kullanarak bu sorunu ¢6zer. Bu sayede ag daha dnce hig¢ karsilasmadigi durumlar icin bile
uygun Q-degerleri tahmin edebilir. Bu yaklasimin matematiksel temeli, Bellman optimalite
denklemine dayanmaktadir. DQN algoritmasini geleneksel Q-learning yaklasimindan farkli
kilan 6zelligi, bu temel denklemi derin sinir aglar1 araciligtyla uygularken getirdigi deneyim
tekrar1 (experience replay) ve hedef ag (target network) mekanizmalari olmak tizere iki kritik
yenilikte yatmaktadir. Deneyim tekrari mekanizmasi ajanin ge¢mis deneyimlerini
matematiksel olarak D = (s,a.1i,5¢+1) seklinde ifade edilen bir bellekte saklayarak 6grenme

stirecinde bu deneyimlerden rastgele drneklemeler yapmasini saglamaktadir. Bu yaklagim,
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ornekler arasindaki tutarsizligi azaltarak Ogrenmenin kararliligini Onemli Olgiide
artirmaktadir (Lin, 1992). Hedef ag mekanizmasi ise Q-degerlerinin hesaplanmasinda
periyodik olarak giincellenen ayr1 bir ag kullanarak 6grenme siirecindeki degisken yapiy1

minimize etmeyi amaglamaktadir (Mnih ve digerleri, 2015).

DQN algoritmasinin basarili sonuglar getirmesi ve yayginlasmasi ile beraber arastirmacilar
bu temel yaklasimin ¢esitli sinirlamalarini agmak i¢in 6nemli gelistirmeler yapmislardir.
2016 yilinda yapilan bir caligmada, arastirmacilar tarafindan 6nerilen Cift DQN (Double
DQN), Q-degerlerinin sistematik olarak fazla tahmin edilmesi (over estimation) problemini
cozmek amaciyla gelistirilmistir. Bu yontem, hedef degerlerin hesaplanmasinda farkli bir
strateji izleyerek daha kararli 6grenme saglamaktadir (Van Hasselt ve digerleri, 2016). Bir
diger 6nemli gelistirme olan Dueling DQN mimarisi ise Q-degerlerinin durum degeri (state
value) ve avantaj fonksiyonu (advantage function) olarak iki bilesene ayristirilmasi

prensibine dayanmaktadir (Wang ve digerleri, 2016).

DQN ve bagli metodlariin basarisi 6zellikle Atari 2600 oyunlart iizerinde yapilan kapsamli
testlerle kanitlanmistir. Space Invaders, Breakout ve Pong gibi klasik oyunlarda insan
seviyesinde performans sergileyen bu algoritmalar, yiiksek boyutlu goérsel girdileri
isleyebilme ve genelleme yapabilme yetenekleriyle 6n plana ¢ikmistir (Mnih ve digerleri,
2015). Ancak DQN algoritmasinin bazi 6nemli sinirlamalar1 bulunmaktadir. DQN yontemi
yalmizca ayrik eylem uzaylarinda kullanilabilmektedir. Bagka bir deyisle siirekli eylem
uzaylarini desteklememektedir. Ayrica, 6rnek verimliligi agisindan olduk¢a maliyeti yiiksek
bir algoritma olup, yliksek sayida deneme gerektirmektedir. Q-degerlerinin fazla tahmin
edilmesi (overestimation bias) de diger bir dnemli sorun olarak karsimiza ¢ikmaktadir (Van
Hasselt ve digerleri, 2016). Bu siirlamalar1 agmak i¢in gelistirilen yontemler arasinda
Dagitimsal DQN (C51), Noisy Nets ve Rainbow DQN gibi yaklasimlar sayilabilir (Hessel
ve digerleri, 2018). Bu gelismeler, DQN'nin giiniimiizde hala pekistirmeli 6grenme
aragtirmalarinda temel bir referans noktasi olarak kabul edilmesini saglamaktadir.
Pekistirmeli 6grenme dongiisiiniin derin 6grenme ile birlesimi olan DQN algoritmasi i¢in

olusturulmus hali Sekil 2.5.’te goriilmektedir.
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Sekil 2.5. DON algoritmasi semasi (Alam, 2023)

DQN'in otonom siiriis sistemlerine uygulanmasi, 6zellikle serit degistirme ve trafikte seyir
gibi karmasik karar verme siireclerinde etkili sonuclar vermistir. Ornegin, bir otonom arag
kamerasindan gelen goriintiileri islemek icin evrisimli sinir aglarini kullanabilir ve bu
goriintiilerden ¢ikarilan d6zellikleri DQN algoritmasina girdi olarak verebilir. Arag, farkli
durumlarda (6rnegin, yogun trafik, yagmurlu hava) hangi eylemleri gergeklestirecegini (sola
gecis yap, hizini artir, fren yap) bu yontemle dgrenebilir. Ancak DQN'in bazi sinirlamalari
da bulunmaktadir. En 6nemli sinirlama, ayrik eylem uzaylariyla ¢alismasidir. Yani, eylemler
sonlu ve ayrik bir kiime i¢ermelidir (6rnegin, sola don, saga don, diiz devam et). Siirekli
eylem uzaylarinda (6rnegin, direksiyon agisinin -30 derece ile +30 derece arasinda herhangi
bir deger alabilmesi) ise DQN dogrudan uygulanamaz. Bu tiir problemler i¢in DDPG gibi

alternatif yontemler gelistirilmistir.

Otonom serit degistirme manevrasi icin siire¢ karar verme, rota planlama ve rota takibi
olmak iizere lic adimda gerceklesir. Bu adimlardan karar verme yapisi, caligmalarda
cogunlukla yapay zeka tabanli algoritmalarla tasarlanarak karar verme davranisinin insan
benzerliginin maksimize edilmesi amaglanmaktadir. Bununla beraber rota planlama ve rota
takibi adimlart i¢cin de yapay zekd tabanli sistemler kullanilsa da deterministik ve

optimizasyon tabanli algoritmalar da siklikla goriilmektedir.
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2.3. Otonom Serit Degistirme Rota Planlama Yo6ntemleri

Serit degistirme rotasinin planlanmasi, otonom aracin belirli bir zaman araliginda izleyecegi
yolun belirlenmesini kapsar. Bununla beraber rota planlama ydntemleri genellikle
parametrik egriler, optimizasyon tabanli fonksiyonlar ve 6grenme temelli modeller olarak
ii¢ ana grupta incelenebilir. En yaygin kullanilan deterministik yontemlerden biri polinom
tabanli rota planlamasidir. Bu yontemde serit degistirme rotasi genellikle {igiincii veya
besinci dereceden polinomlar ile temsil edilir. Polinom fonksiyonlar baslangi¢ ve bitis
kosullarina uygun sekilde belirlenerek aracin yumusak bir gecis yapmasini saglar (Werling
ve digerleri, 2010). Rota planlamada en sik kullanilan polinom tabanli yontemlerden biri de
Quintic polinomlardir. Quintic polinomlar 6zellikle robotik ve otonom siiriis sistemlerinde,
baslangic¢ ve bitis noktalar1 arasindaki siireklilik 6zelligine sahip rotalar olugturmak amaciyla
kullanilan etkili bir yontemdir. Besinci dereceden bir polinom yapisi, baslangi¢c ve bitis
noktalarinda pozisyon, hiz ve ivme degerlerinin istenen sekilde tanimlanmasina imkan
saglar. Bu yontem, alti bilinmeyenli denklem sisteminin ¢oziilmesiyle polinom
katsayilarinin belirlenmesine dayanir (Zhao ve digerleri, 2017). Quintic polinomlarin

matematiksel ifadesi asagidaki esitlikte verilmistir.

O(t) =ay + ait + apt? + ast3 + a,t* + ast® (2.6)

Bu esitlikteki t degiskeni zamani ifade eder. a;_,, ifadesi ise polinom katsayilaridir. Bu
katsayilar, rota planlama sirasinda belirlenen baslangi¢ ve bitis pozisyonu, hiz1 ve ivmesi
gibi sinir kosullar1 kullanilarak hesaplanir. Yani bu katsayilar rotanin sekline karar verir.
Farkl1 sinir kosullar1 i¢in bu katsayilar degisir (Zhao ve digerleri, 2017). Ancak polinomlar,
yol egriligi ve dinamik engel durumu gibi faktorleri dogrudan degerlendirmediginden, daha

esnek yontemler gelistirilmistir.

Alternatif olarak, Bézier egrileri ve B-spline fonksiyonlari, rota planlamada daha fazla
kontrol noktasi1 sunarak esnek gecisler saglamaktadir. Bu yontemler, 6zellikle karmasik
cevresel kosullarda daha uyarlanabilir yoriinge profilleri olusturmada avantaj saglar (Ziegler
ve digerleri, 2014). Bununla birlikte bu geometrik yontemler, ara¢ dinamiklerini agikca
modele dahil etmedikleri icin gercek zamanli giivenlik degerlendirmeleriyle birlikte

calistirilmalar gerekmektedir.
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Giincel ¢aligmalarda siklikla tercih edilen bir diger yontem ise optimizasyon tabanli
planlama yaklagimlaridir. Bu yontemlerde serit degisim rotasi, bir maliyet fonksiyonu (cost
function) igerisinde optimize edilerek belirlenir. Maliyet fonksiyonu genellikle konfor
(ivme, jerk), giivenlik (engel mesafesi) ve yol uygunlugu gibi parametreleri igerir. Bu
baglamda, kuadratik programlama (Quadratic Programming- QP), dogrusal programlama
(Linear Programming- LP) ve model 6ngoriilii kontrol (Model Predictive Control- MPC)

gibi optimizasyon teknikleri tercih edilmektedir (Falcone ve digerleri, 2007).

Son yillarda ise makine 6grenmesi ve pekistirmeli 6grenme tabanli rota planlayicilari,
ozellikle bilinmeyen ¢evresel kosullara adaptasyon yetenekleri sayesinde dikkat
cekmektedir. Bu yontemlerde ajan, 6diil fonksiyonuna dayali olarak bircok deneme yaparak
optimal rotay1 zaman i¢inde 6grenir. Bununla birlikte, bu yontemlerin egitim siireci oldukca

karmasik ve zaman alicidir (Sallab ve digerleri, 2017).

Her yoOntemin avantajlar1 ve smirliliklart bulunsa da serit degistirme gibi karmasik
manevralarda basar1 saglamak i¢in aracin dinamigine uygun, ¢evresel faktorleri hesaba katan
ve kontrol sistemleriyle entegre calisabilecek bir rota planlama algoritmasina ihtiyag vardir.
Bu baglamda sigmoid tabanli yaklasim hem pratik uygulama kolayligi hem de yiiksek konfor

faktorleri sebebiyle bu ¢alismada tercih edilmistir.

Sigmoid tabanli rota planlama yontemi hem matematiksel sadeligi hem de yumusak gecisler
iiretme kapasitesi nedeniyle farkli odaklarda ilerleyen bir¢ok probleme ve ¢alismaya ¢6ziim
sunabilecek niteliktedir. Sigmoid fonksiyonu 6 numarali esitlik ile ifade edilir.

1
0 = Treat=0) 2.7)
Serit degisiminde sigmoid kullanimi, aracin yumusak bir yoriingeyle hedef seride gegmesini
saglarken, ani yonelme degisimlerinden kaynaklanabilecek konfor kayiplarini da minimize

eder (Han ve Moraga, 1995).
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Sekil 2.6. Sigmoid fonksiyon grafigi (Chen ve digerleri, 2024)

Sigmoid fonksiyonu, "S" seklindeki karakteristik egrisiyle matematikte ve miihendislikte
yaygin olarak kullanilan temel bir aktivasyon fonksiyonudur (Bkz. Sekil 2.6.). Girdi
degerlerini 0 ile 1 arasinda Olcekleyerek yumusak gecisler saglar. Yapisi geregi
tiirevlenebilir olmas1 Sigmoid fonksiyonunu 6zellikle kontrol sistemleri ve yapay sinir aglari

gibi alanlarda kullanigh kilmaktadir (Han ve Moraga, 1995).

Sigmoid fonksiyonunun otonom ara¢ uygulamalarinda kullanimi, temel olarak {i¢ énemli
avantaja dayanmaktadir. Bu avantajlardan ilki siireklilik saglayarak yumusak ve dogal
gecislere olanak tanimasidir. Ikincisi, parametrik yapisi sayesinde manevra karakteristiginin
kolayca ayarlanabilmesidir. Ugiincii ve en &nemli faktdr ise insan siiriis davranisina
matematiksel ve fiziksel olarak ¢ok benzer bir profil olusturabilmesidir. Aragtirmalar, insan
striiciilerin serit degistirirken dogal hareketleri ile sigmoide benzer bir yol izledigini
gostermektedir (Salvucci ve Liu, 2002). Otonom serit degistirme probleminde sigmoid
fonksiyonunun kullanimi, geleneksel polinom (quintic ve quadratic) tabanli yaklagimlara
gore bir¢ok tstiinliikk sunar. Fonksiyonun egim parametresi (k), manevranin agresifligini
dogrudan kontrol edebilir. Ornegin yiiksek hizlarda daha diisiik k degerleri kullanilarak uzun
ve yumusak gecisler saglanirken, diisiik hizlarda daha yiiksek k degerleriyle daha keskin
manevralar miimkiin olmaktadir (Huang ve digerleri, 2019). Bu parametrik esneklik, farkl

yol ve trafik kosullarina adaptasyonu kolaylastirmaktadir.
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2.4. Otonom Serit Degistirme Rota Takibi Yontemleri

Otonom tasitlarin giivenli ve basarili bir sekilde manevralarini gergeklestirebilmesi, yalnizca
izlenecek yolun dogru sekilde planlanmasiyla sinirli degildir. Arag, dnceden olusturulan
referans rotay1 gercek zamanli olarak ne kadar hassas bir bi¢imde takip edebiliyorsa,
manevranin giivenilirligi ve yolcu konforu da o denli artar. Bu noktada devreye giren rota
takip sistemleri, aracin belirli bir yoriingeye olan konum ve yonelim farklarini dikkate alarak
uygun direksiyon ve hiz komutlarini iiretir. Ozellikle serit degistirme gibi hassas
manevralarda, takip dogrulugu yalnizca konfor acgisindan degil, ayn1 zamanda ¢arpigsma
risklerini azaltmak adina da kritik 6nem tasimaktadir. Bu baglamda rota takip algoritmalari,
referans yoriingeye olan hata biiyiikliiklerini en aza indirmeyi amacglayan ¢esitli kontrol

stratejilerine dayanir.

Rota takibi icin gelistirilen yontemler, genellikle geometrik tabanli kontrol, model tabanl
kontrol ve dgrenmeye dayali yaklagimlar olarak siniflandirilabilir. Bu yontemlerin ortak
hedefi, aracin referans rotaya gore pozisyon hatasini ve yonelim farkini minimize ederek

stirtis dogrulugunu artirmaktir.

En yaygin kullanilan geometrik yontemlerden biri Pure Pursuit (saf takip) algoritmasidir. Bu
yontemde arag, belirli bir 6n goriis mesafesi kadar ilerdeki bir hedef noktaya yonelerek
yoriingeyi takip etmeye calisir. Basitli§i ve gercek zamanli uygulanabilirligi sayesinde
bircok otonom sistemde kullanilmis olsa da, diisiik hizlarda agresif direksiyon agilari

iiretmesi veya yliksek hizda sapma egilimi gibi dezavantajlar1 vardir (Coulter, 1992).

Rota takibinde 6ne ¢ikan bir diger yontem ise Stanley kontrol algoritmasidir. Bu yontem,
aracin yonelim hatasi ve referans yola olan ¢apraz iz hatasini dikkate alarak direksiyon
acisin1 hesaplar. Stanford’un otonom araci Stanley ile iinlenen bu algoritma, 6zellikle diisiik
hizlarda kararli sonuglar iiretmesiyle bilinir. Yonelim acis1 ile ¢apraz iz hatasi arasinda bir
dengeleme saglayan bu yapi, sade bir matematiksel formiilasyonla ger¢ek zamanli sistemlere
kolayca entegre edilebilir (Thrun ve digerleri, 2006). Tez kapsaminda da kullanilan bu
yontem, sigmoid tabanli rota planlama ile birlikte calisarak yumusak ve kararli serit

degistirme manevralar1 sunmay1 hedeflemektedir.
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Geometrik yoOntemlerin sinirli durumlara uygunlugu nedeniyle, daha gelismis kontrol
gereksinimleri i¢in model tabanli kontrol (model-based control) yaklagimlart tercih
edilmektedir. Bu baglamda one c¢ikan yontemlerden biri Model Predictive Control
(MPC)’dir. MPC hem tasitin dinamiklerini hem de referans yoriingeyi dikkate alarak belirli
bir zaman ufku i¢inde kontrol girdilerini optimize eder. Bu yapi1 sayesinde sistem, ileriyi
ongorebilir, sinirlamalar1 hesaba katabilir ve kontrol sinyallerini yumusak bi¢cimde iiretir
(Falcone ve digerleri, 2007). Ozellikle yiiksek hizda siiriislerde ya da karmasik trafik
senaryolarinda MPC, ara¢ davranisini kararli ve giivenli kilmak agisindan 6nemli avantajlar

sunar.

Son yillarda rota takibi i¢in makine 6grenmesi ve pekistirmeli 6grenme (RL) gibi veri temelli
yaklagimlar da kullanilmaya baslanmistir. Bu sistemler, ¢evreyle etkilesim {izerinden hata
geri bildirimleri alarak zaman i¢inde en uygun kontrol stratejisini 6grenir. Ornegin, bir derin
pekistirmeli 6grenme (DRL) ajani, aracin yanal ve boylamsal sapmalarin1 minimize edecek
sekilde kendini egiterek dinamik ortamlarda yiiksek basari oranlarina ulasabilir (Kendall ve
digerleri, 2019). Ancak bu yontemlerin egitim siireci hesaplama a¢isindan maliyetlidir ve
simiilasyon ortaminda iyi sonuglar vermesine ragmen ger¢ek diinya senaryolarinda giivenlik

garantisi saglamak i¢in daha fazla ¢aligmaya ihtiya¢ duyulmaktadir.

Rota takip yontemleri ile ilgili ¢caligmalar incelendiginde otonom algoritmalarin basarisi,
yalnizca hata biiyiikliiklerinin azaltilmasiyla degil, aym1 zamanda siiriis konforu, tepki hiz1
ve sistem kararliligiyla da olciilmektedir. Bu ¢alismada tercih edilen Stanley kontrol
algoritmasi, sigmoid tabanli rota planlama yontemiyle uyum i¢inde ¢alisarak hem algoritmik

sadelik hem de uygulama verimliligi saglamaktadir.

Otonom tasitlarin gelisimiyle birlikte giivenli, konforlu ve verimli bir siiriis elde etmek
amaciyla ¢ok sayida kontrol algoritmasi gelistirilmistir. Bu algoritmalardan biri olan Stanley
kontrol yontemi, 6zellikle yanal kontrol (lateral control) gorevlerinde 6ne ¢ikan basitligi,
kararlilig1 ve gercek zamanl uygulanabilirligi ile olduk¢a uygulanabilir bir yontemdir.
Stanford Universitesi tarafindan gelistirilen ve 2005 DARPA Grand Challenge’1 kazanan
otonom aracin kontrol algoritmasi olarak taninan Stanley kontroldrii, 6zellikle diisiik hizli
uygulamalarda ve hafif ara¢ kosullarinda etkili sonuc¢lar vermektedir (Thrun ve digerleri,

2006).
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Stanley kontrol algoritmasinin temel amaci, aracin mevcut pozisyonunu hedef rota
(reference trajectory) ile hizalayarak sapmay1 minimize etmektir. Bu dogrultuda kontrol
stratejisi, yonelim hatasi (heading error) ve ¢apraz yol hatasi (cross-track error) olmak iizere
iki temel hata bileseni {izerinden tanimlanir. Y6nelim hatasi, aracin boylamasina ekseni ile
referans yol iizerindeki teget dogrultu arasindaki a¢i1 farkini tanimlar. Capraz iz hatasi ise
aracin referans yoluna olan dik mesafesidir. Bu iki hata bileseni Stanley algoritmasinin
kontrol girdisi olan direksiyon a¢isini belirlemede kullanilir. Stanley denetleyicisi tarafindan

belirlenen yonlendirme ag¢is1 7 numarali esitlik ile hesaplanir:
6=0,+ arctan% (2.8)

Bu denklemde 6, yonelim hatasini, e.; capraz yol hatasini (cross-track error), pozitif bir
kazang¢ parametresini, ise aracin anlik hizim1 temsil etmektedir. Bu formiil, aracin referans
yoluna hizalanmasini saglayacak sekilde iki hata tiiriinii birlestirir. {1k terim, aracin yonelimi
ile yolun yonii arasindaki farki diizeltirken, ikinci terim ise capraz mesafeyi azaltmayi
hedefler. Arctanjant fonksiyonunun kullanimi, kontrol girisinin siirekliligini ve kontrol
hassasiyetini arttirir. Hizin payda olarak yer almasi ise 6zellikle diisiik hizlarda sistemin daha
agresif, yiiksek hizlarda ise daha yumusak tepkiler vermesini saglar. Bu hiz duyarlilig
Stanley kontrol algoritmasini dinamik ara¢ uygulamalari i¢in uygun hale getirir (Paden ve

digerleri, 2016).

Yanal (Lateral) Stanley kontrolorii, temel Stanley algoritmasina benzer prensiplere
dayanmakla birlikte 6zellikle yanal konumlandirma gorevlerine odaklanir. Bu baglamda,
longitudinal (boylamsal) kontrol ile entegre ¢alisarak aracin belirli bir yoriingede sadece hiz
degil ayn1 zamanda dogru konumda ilerlemesini saglar. Yanal Stanley kontroli, serit takip,
kavsak dontisleri ve engelden kag¢inma gibi gorevlerde kullanilarak tasitin seritteki
pozisyonunu korumasina yardimci olur. Bu tiir uygulamalarda sistem, yalnizca merkez
cizgiye olan mesafeyi degil, ayn1 zamanda y0riinge egrisinin yerel egriligini ve aracin anlik

yonelimini de géz Oniine alir (Ziegler ve digerleri, 2014).

Yanal Stanley kontrol algoritmasinin performans: genellikle takip edilen yolun egriligine,
tasit dinamiklerine ve sensor dogruluguna baghdir. Ozellikle egimli veya bozuk zeminlerde,
yanlis capraz yol hatasi tahmini sistemin kararliligin1 olumsuz etkileyebilir. Bu nedenle lidar,

GPS, IMU gibi ¢oklu sensor verileriyle zenginlestirilmis bir algi sistemi Stanley kontrol
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algoritmasinin dogrulugunu artirabilir. Bunun yan1 sira, Stanley kontrolorii genellikle PID
veya MPC (Model Predictive Control) gibi boylamsal kontrol yontemleriyle birlikte
kullanilir ve bu kontrolciilerin koordinasyonu aracin genel siiriis kalitesini belirleyici hale

getirir (Falcone ve digerleri, 2007).

Stanley kontrol algoritmasi, sahip oldugu yapisal basitlige ragmen otonom tasitlarda yanal
kontrol gorevlerinde oldukca etkili ve kararli bir ¢oziimdiir. Arag-yol hizalanmasini
saglamak i¢in yonelim ve capraz iz hatalari temel alan bu algoritma, ger¢ek zamanl

uygulamalar i¢in uygundur ve ¢esitli kontrol yontemleriyle kolaylikla entegre edilebilir.

2.5. Literatiir Taramasi

Otonom siiriis teknolojileri, son yillarda hizla gelisen yapay zeka ve kontrol sistemleriyle
birlikte, 6zellikle serit degistirme gibi karmagik siirlis manevralarinda yeni yaklasimlarin
gelistirilmesini zorunlu kilmistir. Bu baglamda, otonom tasitlarin giivenli, konforlu ve etkin
bir sekilde serit degistirebilmesi icin literatiirde ¢cok sayida yontem Onerilmis; bu yontemler
karar verme, hareket planlama ve kontrol katmanlari olmak tizere farkli asamalarda
siiflandirilmigtir. Yapilan ¢alismalarin 6nemli bir kismi, klasik kural tabanli modellere
dayansa da degisken trafik kosullarinda esnek kararlar alabilme ihtiyact bu yaklagimlarin
yetersiz kaldigim1 ortaya koymustur. Bu dogrultuda son yillarda makine Ogrenmesi,
pekistirmeli 6grenme, bulanik mantik, SVM (Support Vector Machine) ve MPC (Model
Predictive Control) gibi yontemlerin otonom serit degistirme problemlerine uygulanmasi ile
daha uyarlanabilir, gercekei ve glivenli sistemler gelistirilmeye baslanmistir. Literatiirde yer
alan bu ¢alismalar, algoritmalarin performansini degerlendirmek amaciyla hem simiilasyon
hem de gercek siiriis verileri kullanilarak test edilmis ve yeni modellerin klasik yaklagimlara
gore daha yiiksek basar1 oranlarina sahip oldugu raporlanmistir. Bu bdliimde, otonom
tasitlarda serit degistirme manevrasina yonelik gelistirilen giincel algoritmalar detayl
sekilde incelenmekte ve bu c¢alismalarin temel motivasyonlari, yontemsel yaklasimlar1 ve

elde edilen sonuglar1 karsilastirmali olarak sunulmaktadir.

Li ve digerleri, tarafindan gergeklestirilen calismada, baglantili otonom araglar (CAV) icin
coklu arag trafiginde is birligine dayali serit degistirme manevralarinin planlanmasi i¢in yeni
bir model 6nerilmistir. Model, zorunlu serit degisim hareketlerinin bulundugu yogun trafik

sartlarinda hem giivenligi hem de verimliligi optimize etmeyi hedeflemektedir. Onerilen
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sistem araclarin gruplara ayrilmasi ve grup bazli hareket planlamasi olarak iki temel adima
dayanmaktadir. Araglarin konum ve hiz gibi parametreler gz onlinde bulundurularak
gruplandirilma yapilmaktadir. Her grup icerisindeki araglar igin serit degistirme talepleri
dikkate alinarak ¢ok degiskenli ve yiiksek dereceli polinomlar yardimiyla yumusak ve
stirekli hizlanma-egrileri tiretilmektedir. Model, giivenlik ve konforu artirmak amaciyla
hizlanma, yavaslama ve "jerk" (ivmenin degisim hiz1) gibi dinamik sinirlamalar1 g6z 6niinde
bulundurarak bir optimizasyon problemi seklinde formiile edilmistir. Model, cesitli
simiilasyon testleriyle degerlendirilmis ve sonuglar, gelistirilen is birlik¢i planlama
yonteminin hem giivenligi sagladigini hem de serit degistirme basarisini artirdigini

gostermistir (Li ve digerleri, 2020).

Wu ve Yang tarafindan yapilan ¢alismada serit degistirme davranisinin daha gercekei bir
sekilde modellenmesine odaklanilmistir. Mevcut daraltilmis trafik  simiilasyonu
modellerinde, 6zellikle de serit degistirme esnasinda, hedef seritteki takip eden araglarin
sabit hizda ilerledigi varsayimi yapilmaktadir. Ancak Onerilen ¢alismada bu varsayimin
gercek trafik durumunu yansitmadigi ifade edilmistir. Gergek siiriis sartlarinda bir arag
online baska bir aracin gecgecegini fark ettiginde genellikle hizin1 diisiirerek tepki verir. Bu
bakis agisindan hareketle calismada arag¢ takip davranisini da dikkate alan yeni bir serit
degistirme modeli gelistirilmistir. Modelde, serit degistirmek isteyen aracin hizlanarak gecis
yaptifi ve hedef seritteki araglarin bu duruma cesitli tepkiler verdigi bir senaryo
tanimlanmistir. Modelin kurulumu ii¢ adimdan olusmaktadir: Serit degistiren aracin mevcut
seridindeki takip eden aragla glivenli mesafeyi korumasi, hedef seritte ondeki aracla giivenli
mesafeye ulasmasi ve hedef seritteki arkadaki aracgla giivenli mesafenin korunmasi. Her bir
adim icin ayrintili kinematik denklemlerle giivenli serit degistirme kosullar1 tiiretilmistir.
Araglarin hiz, pozisyon ve ivme gibi parametreleri dikkate alinarak gelistirilen model,
MATLAB simiilasyonlariyla test edilmistir. Sonuglar, modelin ger¢ek trafik durumlaria

uygun ve uygulanabilir oldugunu gdstermistir (Xiaorui ve Hongxu, 2013).

Liu ve digerleri, gergeklestirdikleri ¢calismada otonom araglarin serit degistirme kararlarini
kendi basina alabilmesine yonelik Support Vector Machine (SVM) tabanli bir karar verme
modeli gelistirmistir. Bu ¢aligmanin 6zgiin tarafi serit degisim kararinin nasil ve ne zaman
alinmasi gerektigine dair sistematik bir yaklasim sunmasidir. Calismada karar siireci fayda,
giivenlik ve tolerans olmak iizere ii¢ temel faktor {izerinden analiz edilmistir. Modelin karar

verme algoritmasi tamimlanan parametrelerin lineer olmayan kombinasyonuna
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dayanmaktadir. Bu nedenle klasik kural tabanli yaklasimlarin yetersiz kalacagi belirtilerek
SVM algoritmasinin Gaussian fonksiyonu kullanilarak uygulanmasi tercih edilmistir.
Ayrica, modelin parametrelerinin en iyi hale getirilmesi i¢in Bayes optimizasyon yontemi
kullanilmigtir. Egitim verisi olarak ABD Ulastirma Bakanlig1 tarafindan yayimlanan
NGSIM adli gergek siiriis verisi kullanilmistir. Araglarin serit degistirme egilimleri bu veri
setinden yararlanilarak tanimlanmistir. SVM modeli, kurallara dayali geleneksel bir modelle
karsilagtirmali olarak test edilmistir. Sonuglar SVM tabanli modelin dogruluk agisindan daha
basarili oldugunu ve 6zellikle siirlicii aliskanliklarin1 dikkate alabilme kabiliyetiyle daha
gercekei kararlar verdigini gostermistir. Ayrica modelin gercek arac¢ testlerinde de

uygulanabilirligi denenmis ve basarili sonuglar elde edilmistir (Liu ve digerleri, 2019).

Huang, Naghdy ve Du o6nerdikleri modelde otonom araglarin giivenli serit degistirme
manevralarini gergeklestirmesi i¢cin Model Predictive Control (MPC) tabanl bir algoritma
gelistirilmistir. Sistem c¢arpisma riski tastyan durumlarda aracin dnceden planlanmis bir
giizergahi takip ederek manevra yapmasini saglamak tizerine kurulmustur. Rota planlamasi,
konveks optimizasyon kullanilarak gergeklestirilmis, tasit dinamigi sekiz serbestlik dereceli
model ve Dugoff lastik modeli ile ifade edilmistir. Onerilen modelde MPC, aracin direksiyon
acilarint ve tekerlek torklarin1 kontrol ederek belirlenen yolu takip etmesini saglar.
Calismada 6zellikle karmasik trafik kosullarinda giivenli serit degistirme i¢in uygulanabilir
bir ¢6ziim gelistirilmesine odaklanilmasi ile beraber simiilasyonlar, sistemin ¢arpismalardan

kacinmada ve stabil siiriis saglamada etkili oldugu goriilmiistiir (Huang ve digerleri, 2016).

Naranjo ve digerleri tarafindan yapilan ¢alismada otonom araglarin sollama manevrasini
giivenli ve gercek siiriiciilii harekete yakin bir sekilde gerceklestirmesi amaciyla bulanik
mantik (fuzzy logic) tabanl bir kontrol sistemi gelistirilmistir. Ozellikle ¢ift yonlii yollarda
yapilan sollamalarin karmagikligina odaklanilmis, serit degistirme, yol takibi ve geri doniis
manevralari ele alinmistir. Sistem iki seviyeli bir mimariye sahiptir. Alt diizeyde, biri serit
takibi digeri serit degistirme icin olmak {lizere iki ayr1 bulanik mantik direksiyon
denetleyicisi yer almaktadir. Ust diizeydeki copilot modiilii, sollama kararin1 verir, rotayi
belirler ve uygun alt diizey denetleyicileri devreye sokar. Hiz kontrolil ise otonom olarak ya
sabit hizla devam edilmekte ya da on aragla gilivenli mesafe korunmaktadir. Olusturulan
algoritmaya gore sollama yapilabilmesi i¢in yolun yeterince diiz, sol seridin bos ve aracin
sollamay1 tamamlayabilecek hizda olmasi gibi kosullarin saglanmasi gerekmektedir.

Gergeklestirilen saha testlerinde, gelistirilen mimarinin basarili sonuglar verdigi ve insan
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stirticiilere benzer tepkiler lirettigi gosterilmistir. Sonug olarak, bulanik mantik temelli bu
yaklasim, otonom sistemlerin karmasik sollama manevralarin1 daha dogal ve giivenli

bigimde yapmasina olanak tanimaktadir (Naranjo ve digerleri, 2008).

Li ve digerleri 2022 yilinda yaptiklar1 ¢calismada otonom araglar i¢in insan benzeri hareket
planlamas1  gelistirmistir. Bu planlama ¢evredeki araglarin siirlis dinamiklerini
gozlemleyerek ve hareketlerini 6ngdrerek glivenligi ve siiriis konforunu bir arada saglamay1
amaclamaktadir. Calismada temel olarak c¢evre araglarinin hareket tahmini, maliyet
fonksiyonuna dayali karar alma ve siiriiciiniin hedef hizina gore hiz planlamasi olarak ii¢
bilesene odaklanilmigtir. Gilizergdh planlamasi besinci dereceden polinomlarla
gerceklestirilmis ve maliyet fonksiyonunda giivenlik, stireklilik, yumusak hareket gegisleri
gibi kriterler yer almistir. Arac ve ¢evresindeki nesneler icin ¢arpigma olasiligi Monte Carlo
yontemiyle hesaplanmistir. Siirlicli karakterine gore (temkinli/agresif) farklr risk esikleri
belirlenerek, kararlar bu esiklere gore alinmistir. Cevre araglarinin gelecekteki konumlarini
tahmin edebilmek i¢in yapisal LSTM tabanli bir derin 6grenme ag1 gelistirilmistir. Bu
tahminler, gergek siiriis verileri (NGSIM) kullanilarak egitilmis ve araclar arasi etkilesim
dikkate alinmistir. Ayrica, araclarin hiz planlamas1 da LSTM ile gerceklestirilerek, siiriicii
aliskanliklarini taklit eden insana 6zgii bir hiz profili elde edilmistir. Yapilan analizler
algoritmanin farkl siiriis tercihlerine adapte olabilecegini gostermistir ve onerilen yontemin
klasik deterministik planlamalara kiyasla daha esnek ve insan benzeri bir otonom siirlis

davranis1 sundugu goriilmistiir (Li ve digerleri, 2022).

Yavas, Kumbasar ve Ure yaptiklar1 ¢aligmada bir derin pekistirmeli 6grenme yontemi olan
Rainbow DQN’i kullanarak, giivenlik odakli bir odiillendirme algoritmasi ile egitimin
etkinligini artirmay1 amaglamiglardir. Double DQN’e kiyasla daha iistiin performans
gosteren Rainbow DQN kullanilarak, glivenli olmayan manevralarda ajani cezalandiran bir
giivenlik geri bildirimli 6diillendirme sistemi gelistirilmis ve egitim siireci hizlandirilmistir.
Simiilasyon ortaminda temkinli, normal, agresif olarak ti¢ farkl stirticii profiliyle, 20 araca
kadar degisen yogunlukta senaryolar olusturulmus, otonom ara¢ ve ¢evresindeki araclarin
hiz ve konum bilgilerini kullanarak kararlar almistir. Egitim siirecinde, hiz tesviki, carpigsma
cezas1 ve giivenlik ihlallerine dayal1 bir 6diil fonksiyonu uygulanarak kazalar 6nemli dlciide
azaltilmistir. Sonuglar, Rainbow DQN’nin hem kural tabanlt MOBIL algoritmasina hem de
Double DQN’ye kiyasla daha iyi performans gosterdigini ve giivenlik katmaniyla

desteklendiginde egitim siirecinin hizlandigim1 ortaya koymustur. Calisma, giivenli ve
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verimli bir otomatik serit degistirme karar verme sistemi sunarak derin pekistirmeli

ogrenmenin pratik uygulamalarin1 gostermektedir (Yavas ve digerleri, 2020).

Peng ve digerleri, derin pekistirmeli 6grenmeye dayali ¢ift katmanli bir karar verme
algoritmas1 gelistirerek otonom hiz kontrolii ve serit degistirme kararlarini ayr1 yonetim
sistemleri kullanarak entegre etmeyi amaglamistir. Ust katmanda D3QN algoritmasi serit
degistirme manevrasini yonetirken, alt katmandaki DDPG algoritmas1 hiz kontroliinii
yonetmektedir. Makalede ifade edildigi lizere geleneksel calismalarda serit degistirme, hiz
ve takip mesafesi kontrolii genellikle ayr1 ayr ele alinirken, bu c¢alisma bu iki hareketi
entegre ederek daha senkron bir siirlis sistemi gelistirmistir. Model SUMO simiilasyon
ortaminda NGSIM verileri kullanilarak egitilmis ve test edilmistir. Sonuglar, sunulan
sistemin ara¢ hizint %23,99 artirarak diger yontemlere kiyasla daha verimli kararlar
verdigini gostermistir. Cift katmanli model, geleneksel sistemlere kiyasla daha az serit
degistirmis ve daha yiiksek hiz kazanci saglamistir. Bununla beraber giivenlik agisindan

daha iyi sonuglar elde etmistir (Peng ve digerleri, 2022).

Mirchevska ve digerleri, yaptiklar1 ¢alismada otonom araglarin giivenli ve mantikli serit
degistirme kararlar1 alabilmesi i¢in Derin Pekistirmeli Ogrenme (DRL) tabanli bir yontem
sunmustur. Geleneksel kural tabanli sistemlerin karmasik olmasi ve genelleme
yeteneklerinin kisith oldugunu belirterek ytiksek seviyeli karar verme siirecini olusturmak
icin Derin Q-Aglar1 (Deep Q-Networks - DQN) kullanmislardir. Sunulan algoritmada
minimum bilgiyle en hizli 6grenmeyi saglamak i¢in 13 siirekli 6zellik igeren bir durum
kullanilmis ve diisiik seviyeli rota takibi siireglerinden bagimsiz olarak yiiksek seviyeli
kararlar optimize edilmistir. Aym1 zamanda, giivenlik dogrulama mekanizmas: ile
pekistirmeli 6grenme ajaninin yalnizca gilivenli eylemleri se¢mesini saglamis, bdylece
gercek trafikte bile ¢arpisma olmadan 6grenme gerceklestirilebildigi sonucuna ulagilmistir.
Simiilasyon sonuglari, ¢alismada sunulan pekistirmeli 6grenme ajaninin geleneksel kural
tabanli bir sisteme kiyasla daha yiiksek ortalama hizlara ulastigini ve daha etkili serit
degistirme kararlar1 aldigimi gostermistir. Giivenlik dogrulama katmaninin kapatildigi
testlerde, pekistirmeli 6grenme ajaninin ¢ogu senaryoda kaza yaptigi goriilerek giivenlik

mekanizmasinin kritik oldugu kanitlanmistir (Mirchevska ve digerleri, 2018).

Nagarajan ve Yi yaptiklart ¢calismada ¢ok ajanli Derin Q-Aglar1 (Multi-Agent Deep Q-

Network) kullanarak otonom araclarin serit degistirme kararlarini optimize etmeyi
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amaglamistir. Gegmis ¢aligmalarda one siirlilen yontemlerin ¢cogunda tek ajanl bir yaklagim
benimsendigi ve yalnizca otonom aracinin serit degistirdiginin varsayildigi belirtilmis, bu
caligmada tiim araglarin serit degistirebildigi daha gercekei bir ¢oklu ajan ortami modeli
ortaya koyulmustur. Modelde her aracin hedef seridine belirli bir mesafe i¢inde glivenli ve
uygun bir manevra ile ulagmasi amaclanmis ve tiim ajanlarin deneyimleri tek bir ortak
politika 6grenmek i¢in kullanilmistir. Carla {izerinde yapilan testlerde, modelin basarili bir
sekilde siirlis davranmiglarimi 6grendigi gozlemlenmistir. Deneyler, biiyiik bir tekrar
buffer’inin kazalar azaltip politika 6grenme stirecini iyilestirdigini ve tek ajanli yontemlere

kiyasla daha giivenli ve verimli sonuglar tirettigini gdstermistir (Nagarajan ve Yi, 2021).

Lee ve Won Choi tarafindan yapilan ¢aligmada otonom araglarin dinamik serit degistirme
davranislarin1 6grenmesi icin derin pekistirmeli 6grenme (DRL) ve derin Q ag1 (DQN)
tabanli bir politika ag1 Onerilmektedir. Sunulan sistemde, algilama modiilii ¢evredeki
araclarin konum ve hiz bilgilerini toplayarak bunlar1 2D bir gorlintiiye doniistiirmekte,
ardindan CNN (Convolutional Neural Network) tabanli politika ag1 bu goriintiiden etkilesim
Ozelliklerini ¢ikararak gilivenli bir serit degistirme karar1 almaktadir. Kararin uygulanmasi,
aracin uygun manevralari  gergeklestirmesini  saglayan kontrol modiili ile
tamamlanmaktadir. Q-6grenme yontemi kullanilarak, aracin gevresiyle etkilesimi sonucu
aldig1 odiillerle en 1yi karar mekanizmasi gelistirilmektedir. Model, Pygame tabanli bir
simiilasyon ortaminda egitilmis, trafik kurallar1 ve farkl: siiriicii davranislar1 dikkate alinarak
test edilmistir. Sonuglar, Onerilen sistemin giivenli ve tutarli serit degistirme kararlari
alabildigini, carpigma yasanmadan operasyonlar1 tamamlayabildigini ve is birlik¢i olmayan

stiriiciilere kars1 bile basarili sekilde adapte olabildigini gostermektedir (Lee ve Choi, 2019).

He ve digerleri, otonom aracglarin serit degistirme kararlarin1 daha giivenli bir hale getirmek
icin gézlem karsit1 pekistirmeli 6grenme (Observation Adversarial Reinforcement Learning
- OARL) yaklasimini 6neren bir ¢aligma sunmustur. Otonom araglarin sensor hatalar1 veya
gozlem belirsizlikleri nedeniyle yanlis kararlar almasimin Oniine ge¢mek amaciyla
gergeklestirilen calismada politika kisitlamalar1 ve gézlem bozulmalarini inceleyen kisith
gozlem-robust Markov karar silireci (COR-MDP) modeli gelistirilmistir. Bayes
optimizasyonuna dayali bir Black-Box Attack teknigi kullanilarak, en olumsuz gozlem
bozulmalar1 etkin sekilde tahmin edilmistir. SUMO tabanli simiilasyonlarla farkli trafik

yogunluklarinda test edilen yontem, yalnizca otonom aracin performansini artirmakla
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kalmayip, ayn1 zamanda serit degistirme politikalarinin goézlem bozulmalarina kars

dayanikliligini da gelistirmistir (He ve digerleri, 2022).

Wang ve digerleri, Gelistirdikleri modelde otonom araglarin yol takip performansini
gelistirmek amaciyla Derin Pekistirmeli Ogrenme tabanli bir kontrol yontemi gelistirmistir.
Geleneksel rota takibi yontemlerinin degisken cevresel kosullar ve karmasik senaryolar
karsisinda yetersiz kaldigin1 vurgulayarak bu eksiklikleri gidermek i¢in derin 6grenme ve
pekistirmeli 6§renmeyi birlestiren bir kontrol yapis1 dnermistir. Bu kapsamda, Aktor-Kritik
(Actor-Critic) mimarisine dayali bir derin pekistirmeli 6grenme algoritmasi uygulanmis ve
ara¢ kontrolii hem c¢evresel geri bildirimlere hem de kendi hareket dinamiklerine gore
optimize edilmistir. Modelin egitiminde siirekli bir 6grenme yaklasimi benimsenmis bu
sayede farkl1 senaryolarda esneklik ve uyum yetenegi kazandirilmistir. Onerilen yéntem hem
diiz hem de virajli yollarda test edilmistir. Simiilasyon sonuclar1 6nerilen derin pekistirmeli
O0grenme tabanli kontrol yapisinin yumusak direksiyon kontrolii sagladigini, hedef rotanin
etkili ve uygun bigcimde takibini gerceklestirdigini ve geleneksel (PID gibi) yontemlere

kiyasla daha kararli bir rota takibi sundugunu gostermistir (Jiang ve digerleri, 2019).

Sun ve digerleri, gergeklestirdikleri calismada insansiz otonom araclar i¢in kinematik
modele dayali bir rota takibi denetleyicisi tasarimi gelistirmis ve deneysel olarak
degerlendirmistir. Caligmada aracin yanal yonlendirilmesini saglayan kontrol yapilarinin
otonom siiriis giivenligi agisindan kritik oldugu vurgulanmistir. Aracin yanal konum hatasini
minimize etmeye yonelik bir kontrol stratejisi tasarlanmig ve bu strateji ara¢ kinematik
modeline entegre edilmistir. Denetleyici tasariminda temel alinan yontem, Ongorilil
(deterministic) kontrol ve klasik PID yapilarini1 harmanlayan bir yapiya sahiptir. Yanal hata,
yoOnelim hatasi ve ilerleme hiz1 gibi faktorler dikkate alinarak kontrol girdileri belirlenmistir.
Bununla beraber sistemin dogrulugu ve saglamligi birden fazla test ortaminda (hem
simiilasyon hem de gergek arag testleriyle) degerlendirilmistir. Deneysel sonuglar gelistirilen
kontrol algoritmasinin yiiksek hassasiyetli yanal kontrol saglayarak rota takibi sagladigini
ve gercek zamanli uygulamalar i¢in uygun oldugunu ortaya koymustur (Zhang ve digerleri,

2024).

Tariq, Jayaraman ve Abdel-Aty, yaptiklar calismada sehir dis1 yol kosullarinda bagl
otonom elektrikli araglar (Connected Autonomous Electric Vehicles) i¢in siirdiiriilebilir bir

rota takibi sistemi gelistirilmistir. Gelistirilen sistem DDPG (Deep Deterministic Policy



38

Gradient) algoritmasi tizerine kuruludur. Calismanin amaci enerji verimliligini artirirken
ayni zamanda yol giivenligini ve takip dogrulugunu da optimize etmektir. Arag, cevresinden
gelen verileri (hiz, sapma, yol egimi vb.) kullanarak bir 6grenme politikas1 gelistirilmistir.
Elektrikli araglar i¢in kritik ve onemli noktalardan biri olan enerji tiiketiminin minimize
edilebilmesi ve bunun siirdiiriilebilirliginin saglanmasina da odaklanilarak 6grenme
politikasinin yonelimi belirlenmistir. Yapilan simiilasyonlarda dnerilen sistemin hem yiiksek
takip dogrulugu sagladigi hem de enerji kullanimini azalttigi gosterilmistir (Basile ve
digerleri, 2024).

Literatiirde sunulan ¢aligmalar, otonom araglarin serit degistirme kabiliyetlerini artirmak i¢in
cok cesitli yontemlerin uygulandigini ortaya koymaktadir. Kural tabanli modellerden
bulanik mantik denetleyicilerine, makine 6grenmesinden pekistirmeli 6grenmeye kadar
uzanan bu yontemlerin her biri farkli avantajlar ve simirlamalar barindirmaktadir. Ornegin,
bulanik mantik sistemleri insan benzeri kararlar iiretme konusunda basarili olurken, trafik
yogunlugu gibi dinamik kosullara adaptasyonlar1 smirli kalabilmektedir. Ote yandan,
pekistirmeli 6grenme tabanli modeller 6zellikle karmasik cevresel kosullarda yiiksek
esneklik ve karar cesitliligi sunarak on plana ¢ikmaktadir. Ancak bu sistemlerin basarisi
biiyiik 6l¢iide kullanilan egitim verisinin kalitesi, simiilasyon ortamlarinin gergekgiligi ve
odiil fonksiyonlarinin etkinligine baghdir. Mevcut literatiir hem akademik hem de
uygulamali agidan zengin bir g¢erceve sunmakta olup, bu calismalarin analiz edilmesi

sayesinde tez kapsaminda gelistirilen yeni yaklasimin bilimsel zemini olusturulmustur.
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3. GELISTIRILEN OTONOM SERIT DEGISTIRME ALGORITMASI

Gergek siiriiciilii bir tasitta serit degistirme davranisi incelendiginde temel olarak 3 adimda
stirecin gerceklestirildigi gorilmiistiir. Bu adimlar karar verme, rota planlama ve rota takibi
olarak belirlenmistir. Bu ¢alismada belirlenen adimlarin her biri ele alinarak hareketin

tamamu biitlinsel olarak ele alinmistir. Kurulan otonom serit degistirme yapis1 Sekil 3.1°de

verilmistir.
Ortam
i Pekistirmeli Stanle
Parametreleri > : . —» Rota Planlayici » y . <
(Gevre araglanin konum ve Ogrenme Ajani serit Referans Denetleyici Gergek
hiz bilgileri) degistir konum konum
komutu ve yaw ve yaw
rate rate
Direksiyon
aglisi
v
3 Serbestlik
Dereceli Tasit
Modeli

Sekil 3.1. Gelistirilen otonom serit degistirme algoritmasi

Oncelikle tasita ve senaryoya ait konum ve hiz gibi bilgiler tanimlanmir. Konum bilgileri
tagitlarin merkezindeki x ve y koordinatlari, hiz ise x yoniindeki hiz olarak tanimlanmustir.
Bu bilgiler Matlab igerisinde fonksiyon olarak tanimlanmis ve her simiilasyon baglangicinda
rastgele atanacak sekilde planlanmigtir. Buradan elde edilen bilgiler ile otonom ara¢ ve
cevresindeki 4 arag i¢in kose noktalarinin hesaplamasi yapilir. Bu daha sonra kurulacak kaza
kontrol yapisi i¢in gereklidir. Bununla beraber ¢evre araglarin merkez konum bilgileri ile
otonom araca ait konum bilgilerinin farki alinmis ve hiz bilgisi ile beraber pekistirmeli
O0grenme ajaninin goézlem girisine aktarilmistir. Araclara ait kose noktalar1 koordinatlar
bilgileri ise ¢arpisma kontroliinii saglayan fonksiyon bloguna aktarilmistir. Carpigma
kontrolii saglayan bloktan ¢arpigsma kosulu ¢iktis1 alinmis ve bu ¢ikt1 pekistirmeli 6grenme
ajaninin 6diil (reward) girisine girdi olarak verilmistir. Pekistirmeli 6§renme ajaninin

simiilasyonu durduran isdone girisi de 6diil fonksiyonunun ¢iktilarindan saglanmistir.

Pekistirmeli 6grenme ajani serit degistirme komutunu verdigi kosulda, rota planlama ve rota
takibi sistemi devreye girecektir. Bu sistemler Simulink igerisinde bir Enabled Subsystem

(Aktiflestirilmis Altsistem) olarak tanimlanmistir. Aksiyon c¢ikisi 1 geldiginde rota
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olusturma sistemi devreye girer ve referans koordinatlari olusturur. Bununla beraber
beklenen yaw orani (desired yaw rate) ve egrilik (curvature) gibi degerler hesaplanir. Bu
bilgiler Stanley denetleyici sistemine aktarilarak direskiyon agisi belirlenir. Belirlenen
direksiyon agis1 otonom aracin modellendigi 3-DOF Single Track tasit modeline aktarilir ve
simiilasyon tamamlanir. Tasitin hareketine ait veriler (konum, direksiyon acist vb.) X-Y
grafikleri ile izlenebilir. Buna ek olarak otonom ara¢ ve g¢evre araclara ait hiz ve konum
bilgileri 3 boyutlu bir simiilasyon gorsellestirme modiiliine aktarilir. Bu sayede trafik akisi
ve otonom aracin serit degisimi gibi hareketler 3 boyutlu olarak gozlemlenebilmektedir.

Gelistirilen modele ait akis semas1 asagidaki Sekil 3.2 ile verilmistir.



Cevre araglarnn
konum ve hiz
bilgileri

v

Pekistirmeli
6grenme ajani

Sigmoid rota
olusturma
fonksiyonu

v

Serit degisimi
?

Puan=0 Stanley denetleyici

v

3 serbestlik dereceli
tasit modeli

v

Cevre tagsitlar ile
garpisma ve seritten
sapma kontroll

Puan =-10
Hedef seritten Puan = -5
¢tkma
?
Puan =10
g <
F I -
Y

Gorev tamamlandi
(isDone = 1)

Sekil 3.2. Pekistirmeli 6grenme ajani egitim akis1
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3.1. Tasit Modeli

Otonom serit degistirme davranist i¢in karar verme asamasi pekistirmeli 6grenme
yaklagimlar1 ile kurgulanmistir. Pekistirmeli 6grenme yaklasiminda ajanin igerisinde
bulundugu ¢evre ile etkilesimli olarak deneme-yanilma anlayis1 ile hareket etmesi nedeniyle
algoritma tasarlanirken ¢evre tanimlamasinin dogru ve yeterli yapilmast biiyliik 6nem
tagimaktadir. Serit degistirme kararinin ve hareketinin yonetildigi otonom arag i¢in Simulink
igerisinde bulunan {i¢ serbestlik dereceli tek izli tasit modeli blogu kullanilmistir. Modelde
kullanilan tasit modeli {i¢ serbestlik dereceli kinematik bisiklet modeli prensibi ile
caligmaktadir. 3 serbestlik dereceli (3-DOF) tek izli model (single track model), tagitin yanal
ve boylamsal dinamiklerini sadelestirilmis ancak etkili bir big¢imde ifade edebilen bir
yaklagimdir. Ozellikle kontrol sistemlerinin tasariminda, manevra simiilasyonlarinda ve
algoritma testlerinde yaygin bi¢cimde kullanilmaktadir. Calismada odaklanilan problem
farklh trafik senaryolarinda aracin dogru hareketi yapip yapmadigi oldugundan blok ile
birlikte verilen parametreler iizerinden uygulama ve simiilasyonlar gergeklestirilmistir.
Tasita ait agirlik, eylemsizlik momenti, teker doniis sertlikleri gibi degerler literatiirde rota
takibi icin gelistirilen bir ¢alismada kullanilan degerler olarak belirlenmistir (Byrne ve
Abdallah, 1995). Tasitlara ait uzunluk ve genislik bilgileri hem otonom ara¢ hem de gevre
araclar i¢in ayni boyutta olacak sekilde tanimlanmistir. Simiilasyonlarda kullanilan tasita ait

parametrelerin degerleri 3.1. numaral ¢izelgede verilmistir.

Cizelge 3.1. Tasit parametreleri

Agirhik (m) 1727 kg

On Aksin Agirlik Merkezi Mesafesi (1r) 1.17m

Arka Aksin Agirlik Merkezi Mesafesi (Ir) 142 m
Geniglik (W) 18m

z Ekseni Eylemsizlik Momenti (1,) 2 787 kg x m?
On Tekerlerin Doniis Sertligi (Cy) 47 000 N/rad
Arka Tekerlerin Doniig Sertligi (Cx) 47 000 N/rad

Bu modelde tasit, bir bisiklet benzetimiyle temsil edilir; 6n ve arka tekerlek ciftleri sirasiyla
tek bir tekerlek seklinde sadelestirilir. Bu sayede, tasitin boylamasina hareketi (x yonii),
yanal hareketi (y yonil) ve donme hareketi (yaw, z yonlinde donme) olmak iizere ii¢ temel

hareketi dikkate alinir. Bu ii¢ serbestlik derecesi, aracin yatay diizlemdeki hareketini
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tanimlamak icin yeterli kabul edilir. Tagit modeline direksiyon agisi, baglangic konumlari

ve tasit hiz1 giris olarak verilmistir. Kullanilan tasit modeli Sekil 3.3 te verilmistir.

Y Info B

A WhiAngF - xdot [
| ydot

| psi [

| rp

Hxdotin FzF [»
l | FzR [»

Sekil 3.3. Simulink 3 serbestlik dereceli tagit modelli blogu

Blok igerisinde tanimlanan kati cisim diizlemsel dinamikleri asagida verilen denklemler
kullanilarak hesaplanmistir. Denklemlerde kullanilan ‘y’ y eksenindeki konumu, ‘x’ x
eksenindeki konumu, ‘r’ sapma oranini (yaw rate), ‘a’ ve ‘b’ tasit agirlik merkezi ile 6n ve
arka aks merkezleri arasindaki mesafeyi, ‘M, ara¢ agirlik merkezindeki dis momenti, ‘I,
‘ara¢ govdesinin sabit z ekseni etrafindaki atalet momentini ve F degerleri arag tekerlerine

uygulanan yanal ve dogrusal kuvvetleri ifade etmektedir (Gillespie, 1992).

j = i 4 DL e G.1)

_ a.Fyf—b.IFyr+Mzext (32)
r=1 (3.3)
i=0 (3.4)

Tasita herhangi bir dis kuvvet uygulanmamaktadir. Blok girisi olarak dogrusal hiz
belirtildiginden asagidaki denklemler dikkate alinmaktadir. Bu sebeple on ve arka
tekerleklere yanal ve dogrusal olarak uygulanan kuvvetler asagidaki gibidir. Verilen
denklemlerde Fxs ve Fxix On ve arka tekerleklere etkiyen yanal kuvvetleri, Fyr ve Fy 6n ve
arka tekerleklere etkiyen dogrusal kuvveti Cyr ve Cyr On ve arka tekerlekler i¢cin doniis
sertligini (cornering stiffness), o 6n ve arka tekerlekler i¢in kayma agisini, p 6n ve arka
tekerlekler icin siirtiinme katsayisini, Fznom 1se On ve arka akslara uygulanan nominal kuvveti

temsil eder (Gillespie, 1992).



44

Fepe =0 (3.5)
Fype = =Cyr.ar . pig. F::fm (3.6)
Foe =0 (3.7)
Fyre = —Cyp-ty.. ”r'pj,:m (3.8)

Blok igerisinde kullanilan tasit modelinde agirlik ve yiik transferi sirasinda etkin siirtiinme
parametrelerini degistirmek i¢in normal kuvvetleri nominal normal yiike boler. Pitch ve roll

dengesinin korunmasi i¢in 16 ve 17 numarali esitlikler kullanilir.

b.m.g—(% — y.r).m.h+h.Fxext+b.Frext—Myext
Fy = (3.9)

a+b

_amg+(& —yr)mh—hFyrexttb FrexttMyext

sz a a+b

(3.10)

Kayma acilarinin belirlenmesi icin bolgesel, dogrusal ve yanal hizlarin orani kullanilir.

Lastik kuvvetlerinin belirlenmesi i¢in kayma agilar1 kullanilir.

y+a.r

ay = a.tan( . ) — O (3.11)
a, = a.tan(wxb'r) — 6y (3.12)
Fyf = Fxfe.c0s 8 — Fyp . sin & (3.13)
Fyr = —Fype.sinéy + Fy 5y . cOs ¢ (3.14)
E4 = Fyp¢.c08 8, — Fypp.siné, (3.15)
Fy, = —Fyp¢.siné, + Fy,¢ . cos 8, (3.16)

Tasit blogundan alinan konum bilgileri tagitlarin agirlik merkezi olarak belirlenmis ancak
caligsmada ulasilmak istenen kapsama uygunluk bakimindan gerekli hesaplamalar yapilarak
kose noktalar1 hesaba katilmistir. Bu sayede dinamik bir trafik ortaminin degiskenliginin
modellenmesi saglanarak aracin farkli kosullarda dogru hareketi yapabilmeyi 6grenmesi
amaclanmistir. Cevre araclar i¢in herhangi bir yanal hareket olmamasi kosulu belirlenmistir.
Bu kosula bagli olarak ¢evre araclar icin kdse noktalar1 koordinatlart asagidaki gibidir (Ding
ve digerleri, 2019). Esitliklerde kullanilan x ve y agirlik merkezi konumlarini, L arag

uzunlugunu ve W ara¢ genisligini ifade eder.
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(3.17)
(3.18)
(3.19)

(3.20)

Bu formiiller Simulink igerisinde araglarin merkez konumlarinin ve boyutlarinin giris olarak

alindig1 farkli fonksiyon bloklari ile hesaplanarak kose noktalarin koordinatlari ¢ikis olarak

verilmistir. Bu Simulink yapist Sekil 3.4’°te goriildiigii gibidir.

)

I

)

A

J—>
w T Buf—<_ILF_sco] |
.—’v
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l—> '
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- | 4
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l_» CF_comers
- | | T B < 1LR oo
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| 4
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Ll N
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¥
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Length >
-

Width

Sekil 3.4. Cevre arag kose noktalar1 hesaplama blok yapisi

Cevre araclardan farkli olarak otonom arag serit degistirme hareketi yapabileceginden tasitin

kose noktalarmin belirlenmesinde tasitin - yonelim agilarinin da hesaba katilmasi

gerekmektedir. Otonom araca ait yonelim acilar1 Sekil 3.5.’te verilmistir.



46

Sekil 3.5. Otonom ara¢ yonelim agilar1 (Ding ve digerleri, 2019)

otonom aracin yOnelim acilar1 ile hesaplanan kdse noktalari koordinatlari asagidaki

denklemler ile ifade edilmistir (Ding ve digerleri, 2019). Denklemlerde kullanilan x ve y

agirlik merkezi konumlarini, o yonelim agisini, B sekil parametresi agisini, L arag

uzunlugunu, W arag genisligini ifade eder.

2

L 2+W2 * cos(a — f)

Al,x = xe +

N 2
Ay = Ye + L ;W * sin(a — )

LZ+W?

Apy = Xe ————* cos(a + B)
Ay = Yo — \/LZJT * sin(a + )
A3y = Xo — \/LZJT * cos(a — B)
Ay = yo = s sin(a - B)
Ayy = Xe + VIZw? cos(a + f3)
Ayy = Ye t+ Viziwe * sin(a + )

(3.21)
(3.22)
(3.23)
(3.24)
(3.25)
(3.26)
(3.27)

(3.28)

Tasit blogundan alinan konum bilgileri tagitlarin agirlik merkezi olarak belirlenmis ancak

caligmada ulagilmak istenen kapsama uygunluk bakimindan gerekli hesaplamalar yapilarak

kose noktalar1 hesaba katilmistir. Bu sayede dinamik bir trafik ortaminin degiskenliginin

modellenmesi saglanarak aracin farkli kosullarda dogru hareketi yapabilmeyi 6grenmesi

amaclanmustir.
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Sekil 3.6’da goriildiigii lizere tasita ait uzunluk ve genislik bilgileri ile beraber mevcut x ve
y konumlar1 girdi olarak kullanilmis ve bir fonksiyon blogu ile kdse noktalarin koordinat

hesaplamalar1 yapilmistir.

10]
> = [cur_st]
<\hlAngFL
.
£

<=

1.8 ' * e

EgoWidth ‘ *

47 | Le

EgolLangth
2 ofee e

Sekil 3.6. Otonom arag¢ kdse noktalar1 hesaplamasi

3.2. Senaryo Parametreleri

Tasitin icerisinde bulundugu senaryo tanimlanirken otonom arag ile ¢evre araglarin boyut
degerleri ayn1 olarak belirlenmistir. Tasitlarin iki seritli ve herhangi bir viraj ya da kavsak
unsurlar1 olmayan bir yolda ilerledikleri kabul edilmistir. Araglarin ilerledigi yolda bir serit
genisligi literatiirdeki benzer ¢alismalar ve gergek yol sartlar1 gz Oniline alinarak 3.65m
olarak belirlenmistir. Modelin daha yalin bir yapida olabilmesi i¢in ¢evre araglarin serit
degisimi, hizlanma ya da yavaslama gibi herhangi bir hareket yapmadig1, bulundugu seritte
sabit hizda ilerledigi kabulii yapilmistir. Bununla beraber gercek trafik kosullarinin
uygulanan modele yansitilabilmesi i¢in her simiilasyon baslangicinda otonom arag ve ¢evre
araglar i¢in rastgele konumlar belirlenmistir. Buna ek olarak her simiilasyon baslangicinda
otonom ara¢ ve c¢evre araglara ait hiz degeri de her bir ara¢ i¢in ayn1 ve 10 m/s ile 30 m/s
arasinda degisen degerler olarak rastgele olacak sekilde belirlenmistir. Bu sayede ajanin

egitimi sirasinda her bir adimda farkli kosullarla karsilasilmas1 ve etkin bir 6grenme
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stirecinin saglanmasi amaglanmigtir. Simiilasyon senaryolari olusturulurken kullanilan

parametreler Cizelge 3.2.’de goriilmektedir.

Cizelge 3.2. Senaryo parametreleri

Serit Sayisi 2

Serit Genigligi 3,65 m

Cevre Arag Sayisi 4

Maksimum ve Minimum Hiz 10 m/s — 30m/s

b a

) ) HA (Hedef Serit Arkadaki Arag)
. HO (Hedef Serit Ondeki Arag)

. . IMA (Hedef Serit Arkadaki Arag)
. MO (Mevcut Serit Ondeki Arag)

. OA (Otonom Arag)

Sekil 3.7. Tanimlanan senaryo ve parametreleri

Sekil 3.7.°de verilen semada olusturulan trafik senaryosunun gorsellestirilmis hali
goriilmektedir. Otonom aracin bulundugu seritte dndeki arag MO, arkadaki arag¢ MA; hedef
seritte dndeki ara¢ HO, arkadaki aragc HA olarak tanimlanmustir. Araglarin her simiilasyon
baslangicindaki rastgele konum belirlemeleri yapilirken araglarin merkez noktalarinin
birbirine olan uzakliklar1 temel alinarak hesaplama fonksiyonu olusturulmustur. Bu

uzakliklar a, b, c, d ile belirlenmistir.

Belirlenen kosullarin simiilasyona aktarilabilmesi i¢in ¢alisma alani lizerinde bir fonksiyon
olusturularak tasitlarin baslangi¢c konumlarinin ve hizlarinin rastgele olarak belirlenmesi
saglanmistir. Simiilasyonda kullanilmak iizere bu degerler Simulink icerisine aktarilmis ve

diger bloklara iletilebilecek sekilde diizenlenmistir.
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3.3. Karar Verme Asamasi

Otonom serit degistirme siirecinin ilk adimi karar verme asamasidir. Aracin mevcut
durumuna ve ¢evresindeki sartlara gore “seritte kal” ya da “serit degistir”, “hizlan” ya da
“yavagla” gibi temel aksiyonlari segmesini i¢erir. Bu calismada karar verme asamasi segilen
aksiyonlardan elde edilen ddiiller dogrultusunda ajanin egitilmesi ile en uygun aksiyonun
secildigi bir pekistirmeli 6grenme algoritmasi kullanilarak yapilandirilmistir. Ajan ¢evresel
gozlemleri (araglar arasi mesafeler, hiz farklari, mevcut serit bilgisi vb.) kullanarak her
zaman adiminda aksiyon sec¢imi yapar. Kullanilan pekistirmeli 6grenme algoritmasi, ayrik
aksiyon uzayina sahiptir ve “seritte kal (0)” ve “serit degistir (1)” olmak iizere yalnizca iki
aksiyon segcenegi bulunmaktadir. Bu sayede, eylem se¢imi basit ancak etkili bir yapida
gerceklestirilmistir. Karar verme siirecinde 6zellikle ¢carpismadan kaginma ve konforlu siiriis
gibi faktorler 6diil fonksiyonu igerisinde tanimlanmistir. Bu yaklasima literatiirde yaygin
sekilde kullanilan DQN karar verme algoritmalarinda da rastlanmistir (Mnih ve digerleri,

2015).

3.3.1. DQN ajani

Tasitin dogru sekilde karar verebilmesi igin pekistirmeli 6grenme ajani DQN metodu ile
olusturulmus ve egitilmistir. DQN metodunda deger bazli bir pekistirmeli 6grenme yontemi
olan Q-Learning yontemi, bir deger tablosu olusturmak yerine yapay bir sinir ag1 kullanarak
ajanin siire¢ icerisinde aldig1 ddiiller ile egitilmesini saglar. Daha basit ve yalin sistemler i¢in
daha diisiik gizli katman sayilar1 yeterli olurken sistemin karmasiklig1 ya da kapsamai arttik¢a
ve sensOr kullanimi gibi ek siirecler dahil edildik¢e kullanilmasi gereken katman sayist ve
katmanlarda kullanilmasi gereken ndron sayisi da artacaktir. Mevcut calismada iki gizli
katmanda 15 noron ile olusturulmus ve dogrultucu olarak ReLU kullanilmistir. Ajan i¢in
kullanilacak yapay sinir ag1 Matlab igerisindeki Deep Network Designer eklentisi ile

olusturulmustur. DQN ajani i¢in ag yapisi Sekil 3.8.’de verilmistir.
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Sekil 3.8. Dgn ag yapisi

Karar verme eylemini sececek olan DQN ajaninin siireci yiiriitebilmesi ig¢in 3 farkl
parametrenin ajana tanitilmasi gerekir. Bu parametreler gozlem kiimesi (observation), 6diil
fonksiyonu (reward) ve simiilasyonu bitirme komutu sartlar1 (isdone) olarak belirlenmistir.

DQN ajaninin Simulink konfigiirasyonu Sekil 3.9°da verilmistir.

m= obsenvation
collision reward
ego_% ‘ isdons
rewardFunction | reward action 4!'

ego_yeo] ego_y complated P

Sekil 3.9. Pekistirmeli 6grenme ajani simulink yapist
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3.3.2. Gozlem kiimesi

Bu calismada kullanilan derin pekistirmeli 6grenme tabanli serit degistirme sisteminde,
aracin ¢evresel farkindaligini saglayan temel yap1 gézlem kiimesidir. DQN algoritmasi, her
karar aninda ¢evre hakkinda aldigi bu gézlemleri kullanarak hangi aksiyonu segecegine karar
verir. Bu nedenle, gézlem kiimesinin dogru se¢ilmesi, 6grenmenin basarisi agisindan kritik

onem tasir.

Serit degistirme senaryosunda, aracin yalnizca kendi i¢ durumu degil, etrafindaki araglarin
konumu ve hareketleri de olduk¢a Onemlidir. Calismada, aracin hizi, bulundugu serit,
yonelimi ve ivmelenmesi gibi veriler gdzlem kiimesinin temelini olusturur. Bunun yaninda,
aracin Oniinde ve arkasinda hem ayni hem de hedef seritte bulunan araglarin konumlari,
hizlar1 ve uzakliklar1 da dikkate alinmistir. Bu sayede, ajan yalnizca anlik pozisyon bilgisiyle
degil, goreli hareketleri de gbz onilinde bulundurarak daha bilingli kararlar alabilmektedir.
Gozlem kiimesinde kullanilan parametreler Cizelge 3.3.’te verilmistir. Bu parametrelerin

Simulink modelindeki isimlendirmeleri ve blok baglantilar1 Sekil 3.10°da gosterilmektedir.

:

»{ [obs]

[ego_wvx] 2

*r—————

[ego_x0] /

Sekil 3.10. Simulink modeli gézlem kiimesi girigleri
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Gozlem kiimesinde kullanilan tiim bilgiler, sabit boyutlu bir vektor haline getirilmistir. Bu
yaklagim sayesinde sistem, hem ger¢ek zamanli ¢aligmaya uygun hale getirilmis hem de
O0grenme slirecinde tutarlilik saglanmistir. Gorsel veya islenmemis sensor verisi yerine,
islenmis ve 6zetlenmis sayisal veriler kullanilmistir. Bu tercih, hesaplama ytikiinii azaltirken
aynt zamanda egitim siiresini kisaltmistir. Sonug olarak sistem, cevresindeki araglarin
pozisyonlart ve hizlarina duyarl sekilde tepki verebilen, ¢evreyi anlamlandirabilen bir

yapida gelistirilmistir.

Cizelge 3.3. Pekistirmeli 6grenme ajan1 gdzlem kiimesi

Otonom arag ile MO arasindaki mesafe (m) (ego Xo - Cf_Xo)
Otonom ara¢ ile MA arasindaki mesafe (m) (ego Xo - CI_Xo)
Otonom arag ile HO arasindaki mesafe (m) (ego Xo - tf Xo)
Otonom ara¢ ile HA arasindaki mesafe (m) (ego Xo -tr Xo)
Otonom ve ¢evre araglarin x eksenindeki hizlar1 (m/s) (ego vy)

< |0 |o|o

3.3.3. Odiil fonksiyonu

Pekistirmeli 6grenme algoritmalarinda ajanin davranislarini yonlendiren en énemli yap1 6diil
fonksiyonudur. Bu calismada, serit degistirme gorevini iistlenen aracin dogru ve giivenli
kararlar alabilmesi i¢in amaca yonelik, sade ancak etkili bir 6diil yapis1 tasarlanmistir. Ajan,
her yaptig1 eylem sonucunda ortamdan bir 6diil alir ve bu ddiiller zaman iginde bir stratejiye

doniisiir.

Odiil fonksiyonu olusturulurken sistemin giivenli, konforlu ve verimli hareket etmesi
onceliklendirilmistir.  Ozellikle carpismalar durumunda sistemin yiiksek oranda
cezalandirilmasi saglanarak giivenlik kritik bir hedef haline getirilmistir. Bunun yaninda,
serit degistirmenin basariyla tamamlandigi durumlarda ise pozitif bir 6diil verilmistir. Ancak
burada Onemli olan, her serit degisikligini odiillendirmek degil; yalnizca ihtiyag
duyuldugunda ve uygun kosullar altinda yapilan degisikliklerin desteklenmesidir. Yolculuk
boyunca istikrarli bir hizda ilerlemek, ani fren veya sert direksiyon hareketlerinden
kaginmak gibi siirlis konforunu etkileyen unsurlar da 6diil fonksiyonuna yansitilmigtir.
Boylece sistem, yalnizca hedef seride gegmek i¢in degil, bunu miimkiin oldugunca yumusak
ve dengeli bir sekilde yapmak igin de tesvik edilmistir. Odiil yapisinda sade formiiller tercih
edilmis, karmasik fiziksel modeller yerine davramigsal hedeflere odaklanilmistir. Bu

durumda sistem, cevresel kosullart degerlendirip uygun zamanda serit degistirmeyi
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Ogrenirken ayni zamanda ¢arpismalardan kaginmayz, siirlis konforunu korumay1 ve gereksiz
hareketlerden uzak durmay1 da hedeflemistir. Bu yapinin, aracin kendi basina giivenli ve
mantikli kararlar verebilmesini sagladigi gozlemlenmistir. Carpisma kosulu kontrol

fonksiyonu asagida verilmistir.

Carpisma kosulu kontrol fonksiyonu

collisionCheck(MO, MA, HO, HA, OA)
Carpisma =0
Cakisma_sayis1 =0
Eger OA, HO ile cakisiyor ise cakisma_sayis1 = 1
Eger OA, MO ile gakistyor ise ¢akisma_sayis1 = 1
Eger OA, MA ile ¢akistyor ise ¢akigma sayist = 1
Eger OA, HA ile ¢akisiyor ise ¢akisma sayisi = 1

Eger cakisma sayis1 > 1 ise ¢arpisma = 1
Odiil fonksiyonu puan degerleri 37 numarali esitlikte verilmistir.

—10, ¢arpisma = 1 (Herhangi bir cevre arag ile carpisma varsa)
10, seritdegisimi =1 c¢arpisma=20

0, seritdegisimi =0 carpisma=0

=5, yol stirlart disina ¢tkma = 1

R= (3.29)

3.3.4. Aksiyon kiimesi

Bu calismada karar verme asamasi i¢in kullanilan DQN algoritmasi, ayrik bir aksiyon
kiimesi ile ¢alismaktadir. Dolayisiyla aracin alabilecegi kararlar 6nceden belirlenmis sinirh
sayida segenekten olusur. Bu yapi, 6grenme siirecini daha kararli ve takip edilebilir hale
getirmistir. Serit degistirme gibi kararlarin zamanlamas1 ve uygulanma kosullari, bu aksiyon
kiimesinin sinirlar1 i¢ginde ele alinmistir. Mevcut ¢alismada DQN ajani igin belirlenen

aksiyon kiimesi asagidaki gibidir:

action= (0, 1)

Uygulamada ajan her karar aninda yalnizca iki temel segenege sahiptir: bulundugu seritte

kalmak, ya da sola gegmek. Bu sade yapi, sistemin daha hizli 6grenmesini saglamistir. Ek
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olarak, bu iki kararin uygulanabilirligi ¢evre kosullarina baghdir. Yani sistem, hedef serit
doluysa ya da hedef seritteki araglarin konumlar1 uygun degilse hedef seride ge¢gme kararini
alamaz. Bu tiir durumlar, ortam tarafindan kisitlanarak sistemin sadece gegerli aksiyonlar

iizerinden karar almasi saglanmistir.

Bu sadelestirilmis aksiyon yapisi sayesinde sistem, yalnizca temel ydnlendirmelerle
karmagik senaryolarda etkili kararlar almay1 6grenmistir. Aksiyonlarin etkileri zamana
yayilmistir. Ornegin bir serit degistirme karar1 sadece o an1 degil, birkag saniyelik bir gecis
stirecini de kapsar. Dolayisiyla sistem, bu tip kararlarin zamanlamasini da 6grenmis ve

aceleci ya da geg¢ kalan hamlelerden kaginmustir.

Tanimlanan dinamik senaryo yapisi ve sadelestirilmis aksiyon yapisi sayesinde sistem,
aksiyon sayist smirli olsa da cevresel bilgiyi dogru yorumlayarak karmasik siiriis
senaryolarinda anlamli kararlar verebilecek esneklige sahip hale gelmistir. Hem egitim hem
de test agamalarinda, bu simirli ama etkili aksiyon kiimesinin 6grenme basarisina olumlu

katki sagladig1 gozlemlenmistir.

3.4. Rota Planlama Algoritmasi

Otonom siiriis sistemlerinde rota planlama, bir aracin hedef konuma ulasmak i¢in izlemesi
gereken giizergdhi belirleme siirecidir. Bu ¢aligma kapsaminda gelistirilen sistemde, rota
planlama daha onceden tanimli, diiz ve iki seritli bir yol {lizerinde gerceklestirilmistir.
Uygulama senaryosunda yol geometrisi sabittir ve viraj, kavsak ya da doniis noktas1 gibi
karmasik yapilar yer almamaktadir. Bu durum, rota planlamanin sade ancak etkili bir sekilde

uygulanmasini miimkiin kilmstir.

Gelistirilen rota planlama yapisinda, aracin izleyecegi giizergah, hedeflenen seride gecise
yonelik olarak olusturulmustur. Aracin baslangic konumu ile hedef serit {izerindeki hedef
pozisyonu arasinda yumusak bir gecis saglamak amaciyla sigmoid fonksiyonu tercih
edilmistir. Sigmoid fonksiyonun karakteristik egrisi, ani yonelme degisikliklerini 6nleyerek
serit degisimlerinin daha dengeli ve kontrollii olmasini saglamistir. Bu yaklasim, 6zellikle
iki seritli diiz yollarda, aracin mevcut konumundan hedef seride gecisini diizgiin bir egri

iizerinden tanimlamak i¢in oldukca uygundur.
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Rota planlama islemi, ¢evresel kosullarin sabit oldugu bir ortamda gergeklestirilmistir.
Simiilasyon ortaminda dort ¢evre arag bulunmaktadir ve bu araclarin hizlart sabit olup,
otonom aracla aynidir. Bu araglar serit degistirme davranisi sergilememekte, bulunduklari
seridi koruyarak hareketlerini devam ettirmektedir. Bu nedenle rota planlama sirasinda
dinamik ¢arpigma tahmini (¢evre araglarin da yanal hareketlerinin ve yonelimlerinin hesaba
katildig1) gibi karmasik hesaplamalara ihtiyag duyulmamistir. Ancak, serit degisimi
sirasinda bu araglarla ¢carpisma riski olup olmadigi kontrol edilerek gecis i¢in uygun zaman

aralig1 belirlenmistir.

Her planlama adiminda, sistem aracin bulundugu seritten hedeflenen seride gecisini
saglayacak sigmoid tabanli bir egri liretmistir. Bu egri yalnizca yatay diizlemde bir sapmay1
degil, ayn1 zamanda aracin siiriis dinamikleriyle uyumlu sekilde gerg¢eklesen yumusak bir
yon degisimini temsil etmektedir. Bu yon degisiminin hesaplanabilmesi i¢in egrilik
(curvature) degerinin hesaplanmasi gerekmektedir. Rota planlamasinin gergeklestirildigi

Simulink modelinin blok yapis1 Sekil 3.11.’de gosterilmistir.

v delta
o delta
Yyt — Pyt des yaw rate 4@
5 ol trajectory . g des_yaw_rate -
C des_vaw
tm xpos
Xpos
ypos 4@
1 Vx
1) ypos
Vx curvature > f 3

curvature

Sekil 3.11. Rota planlama simulink modeli

3.4.1. Egrilik (Curvature)

Rota takibi, otonom araclarin ¢evresel unsurlarla uyumlu bicimde belirlenen rotayi izleyerek
giivenli ve konforlu bir siirlis gergeklestirmesini saglayan temel fonksiyonlardan biridir. Bu
slirecin basarili bir sekilde yiiriitiilmesi yol iizerindeki referans noktalarinin izlenmesiyle

beraber bu noktalar arasindaki geometrik iliskilerin dogru sekilde degerlendirilmesiyle
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miimkiindiir. Buna bagh olarak egrilik (curvature) kavrami yol geometrisinin temel bir

ozelligi olarak 6ne ¢ikmakta ve rota takibinin hassasiyetini dogrudan etkilemektedir.

Egrilik, bir yol ya da egri iizerindeki herhangi bir noktanin ne kadar kivrildigini ifade eden
bir biiytlikliiktiir. Matematiksel olarak egrilik, bir nokta etrafindaki yon degisiminin o
noktaya olan mesafeye orani seklinde tanimlanabilir. Otonom tagitlarda bu biiyiikliik, yon
kontrol sistemlerinin en kritik girdilerinden biridir. Ozellikle direksiyon agis1 belirleme
stireglerinde, aracin izledigi yolun egriligi dogrudan yonlendirme komutlarinin temelini
olusturur. Bu baglamda birgok rota takip algoritmasi (6rnegin Stanley, Pure Pursuit ya da
Model Predictive Control (MPC) ) kararlarint dogrudan egrilik bilgisine dayandirarak
iiretmektedir (Ziegler ve digerleri, 2014).

Egrilik, yalnizca anlik direksiyon komutlarini belirlemekle kalmaz, ayn1 zamanda tasitin
gelecekteki hareketlerini planlamasinda da 6nemli bir rol {istlenir. Aracin karsilasacagi yol
sartlarinin ne 6l¢iide kivrimli oldugunu 6nceden bilmesi, hiz profili olusturma, direksiyon
acisinin dogru belirlenmesi ve siiriis glivenligini saglama agisindan kritik 6neme sahiptir.
Ozellikle yiiksek hizda yapilan manevralarda, aracin yol tutus smirlar1 yolun egriligiyle
dogrudan iliskilidir. Keskin virajlarda daha diisiik hizlarla ilerlenmesi gerektigi, yol egriligi

dikkate alinarak belirlenebilir.

Ayrica egrilik, rota lizerindeki yanal hata (lateral error) ve yonelme acisi hatasi (heading
error) gibi kontrol girdilerinin daha anlamli sekilde hesaplanabilmesine de katki sunar.
Referans yolun egriligi ile aracin anlik konumu arasindaki farklar, denetleyicinin verecegi
tepkilerin biiytikliigiinii belirler. Bu sayede, tasitin yonelmesi gereken dogrultunun ne kadar
degismesi gerektigi daha dogru sekilde belirlenebilir. Bunun yani sira, sadece aracin hedef
noktaya ne kadar uzak oldugu degil, bu hedefe hangi egrilik altinda yaklasacagi da kontrol

stratejisinin Oonemli bir bileseni haline gelir.

Olusturulan rotaya bagl olarak direksiyon agis1 belirleneceginden, bu belirlemeyi yapacak

rota takibi algoritmasinin kullanacagi girdilerden biri de rotamin egrilik (curvature)
ozelligidir. Bu 0zellik matematiksel olarak k = % ile ifade edilir. Olusturulan rotanin

devaminda rotanin egriliginin hesaplanmas: i¢in asagidaki esitlikler kullanilmigtir

(Kreyszig, 1991).
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(3.30)
(3.31)

(3.32)
(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

Bu yaklagimla, karmagik yol geometrilerine ihtiya¢ duymadan, sabit yapil1 ve iki seritli diiz

bir yol {izerinde etkili bir rota planlama gerceklestirilmistir. Sistem, bu sade ortamda bile

gergekei bir serit degistirme davranigini destekleyecek bicimde yapilandirilmistir. Boylece,

otonom siiriis sistemlerinin temel taglarindan biri olan rota planlama, sade ve giivenli bir

ortamda bagariyla uygulanmis ve rota takip algoritmasina uygun bir altyap: sunmustur.

Modelde kullanilan rota olusturma sistemi sonucunda otonom tasitin takip etmesi ic¢in

olusturulan rota Sekil 3.12°de goriildiigi gibidir.



Sekil 3.12. Sigmoid fonksiyonu ile olusturulan referans rota

3.5. Rota Takibi Algoritmasi

Rota takibi asamasi i¢in kullanilan sistem Stanley denetleyici temel alinarak gelistirilmistir.
Stanley blogu kullanilmistir. Blok icerisinde kinematik ve dinamik bisiklet modeli olarak
secilebilecek tasit modellerinden dinamik bisiklet modeli tercih edilmistir. Bu tercihin sebebi
parametreler iizerinde daha hassas ayarlamalar yaparak tasitin referans rotay1 olabilecek en
yakin sekilde takip edebilmesini saglamaktir. Bu yapida referans konum, mevcut konum,
mevcut hiz, hareket yonii, egrilik, mevcut yaw rate ve mevcut direksiyon agis1 bilgileri girdi

olarak istenmektedir. Yanal Stanley denetleyicisine ait blok Sekil 3.13.’te goriliigi gibidir.

RefPose

CurrPose

4
;%E
2
@

CurrPose

CurrVelocity

[¢]
Ea
:

Lateral 0]
Direction Controller SteerCmd » D2R
Stanley .
Steering Command
)
2 > Curvature
(&, —
Curvature
D y ]
5 » T CurrYawRate
CurYawRate
&> |
3 P | CurrSteer
CurrSteer ateral Controller Stanley

Sekil 3.13. Simulink stanley denetleyici blogu

Referans konum [x, y, 6] vektorii olarak tanimlanmastir. x ve y konumlar1 metre cinsindendir

ve 0 agis1 derece cinsindendir. x ve y noktalar1 aracin yonlendirilecegi referans noktalar
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belirtir. 0 ise bu referans noktasindaki yolun yonelim agisin1 belirtir ve saat yoniiniin tersine
pozitiftir (Thrun ve digerleri, 2006). Stanley denetleyicinin belirleyici parametrelerinin gema

iizerindeki gosterimi Sekil 3.14 ve 3.15.te verilmistir.

L

X Yo — World coordinate system
[x, ¥1 — Reference point

Sekil 3.14. Stanley denetleyici blogu referans konum

Mevcut konumda referans konumda oldugu gibi [x, y, 0] vektorii olarak tanimlanmustir. x ve
y konumlar1 metre cinsindendir ve 0 agis1 derece cinsindendir. x ve y noktalar1 aracin
yonlendirilecegi referans noktalar1 belirtir. 0 ise bu referans noktasindaki yolun yoénelim

acisini belirtir ve saat yoniiniin tersine pozitiftir (Thrun ve digerleri, 2006).

W

X . ¥— World coordinate system
[x, ¥, @] — Vehicle pose

Y —

Sekil 3.15. Stanley denetleyici blogu yonelim agis1
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Aracin mevcut hiz1 x yoniindeki skaler degeri olarak giris yapilmaktadir. Hiz birimi saniye
basina metre (m/s) cinsindendir. Arag ileri hareket ediyorsa hiz degeri 0'dan biiyilik olmalidir.
Arag geri yonde hareket halindeyse bu deger 0'dan kiigiik olmalidir. Bu deger 0 oldugunda
hareket halinde olmayan bir araci temsil etmektedir. Aracin mevcut yonii ileri hareket igin 1
ve geri hareket icin -1 olarak tanimlanmaktadir. Siirlis yonii, direksiyon agis1 degerini

hesaplamak i¢in kullanilan konum hatasini ve ag1 hatasini belirler (Thrun ve digerleri, 2006).

Aracm ileri hareket halindeyken pozitif olarak belirtilen konum kazanci blok igerisinden
ayarlanabilmektedir. Bu deger konum hatasinin direksiyon agisin1 ne kadar etkiledigini
belirleyen parametredir. Bununla beraber yine blok igerisinde maksimum direksiyon agisi
degeri de belirlenmelidir. 0 — 180 derece araliginda bir atama yapilmalidir. Mevcut
caligmada literatiirdeki benzer 6rneklerden yola ¢ikilarak 35 derecelik ac1 degeri sinir olarak

belirlenmistir.

Stanley denetleyicinin ¢ikist olan direksiyon agisi komutu kinematik tasit modelinin
direksiyon agis1 girisine aktarilarak otonom aracin serit degistirme hareketini yapmasi
saglanmistir. Stanley denetleyici ¢ikisindan alinan direksiyon degeri derece oldugundan tagit
bloguna aktarilmadan 6nce bir dontistiiriicii blok ile radyan cinsine ¢evrilerek tasit blogunun
okuyabilecegi formatta diizenlenmistir. 3 serbestlik dereceli tasit modelinin Simulink

bloguna ait giris ve ¢ikis parametreleri Sekil 3.16’da verilmistir.

[ Info [infa]
[st_em] & » * WhlAngF

xdlot [xdat]

[ego_wx] a—————® xdotin ‘ | ydot lydat]

psi [ps1]

|
—
lega_x0] X o r [yaw_r
ego_yl] 3>—— #va

a0 G

FzR

‘iehicle Body 3DOF Single Track

Sekil 3.16. Mevcut calismada kullanilan tasit modeli blogu
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Stanley denetleyiciden elde edilen direksiyon acist degerleri tagit modeli bloguna
aktarildiktan sonra tasitin izledigi gercek rotanin referans rota ile uyumu kontrol edilmistir.
Blok igerisindeki varsayilan degerler ile kontrol edildiginde Sekil 3.17°de oldugu gibi
yalnizca baslangi¢ ve bitis noktalarinin es oldugu, egrilik ve direksiyon agis1 degerlerinin

referansa uygun olmadig1 gorilmistiir.

x-Axis - (Run 18 Ic_only) | ,
y-Axis - (Run 18 Ic_only)

10 15 20 25 30 35 a0 45 50 55 60 65 70 75 80

Sekil 3.17. Optimizasyon Oncesi izlenen rota ile referans rota grafikleri

Bunun ardindan dinamik bisiklet modeli olarak secilen Stanley denetleyici parametreleri
incelenmis; denetleyici kazanci, yaw rate kazanci ve direksiyon agis1 kazanci olmak iizere 3
farkli parametrenin rotalarin uygunlugunu belirledigi goriilmiistiir. Mevcut sisteme uygun
olan yontem olarak manuel optimizasyon islemi gergeklestirilmistir. Optimize edilmis
degerler Sekil 3.18 ile verilen blok parametreleri ekraninda gosterilmektedir. Varsayilan
olarak her biri 2,5 olarak verilen kazan¢ degerleri manuel olarak degistirilerek ¢alismanin
hiz aralig1 olan 10 m/s ve 30 m/s araliginda test edilerek birbirleri ile senkronize olacak
sekilde kazang degerleri belirlenmistir. Yapilan optimizasyon sonucunda denetleyici kazanci
50, yaw rate kazanci 0,02 ve direksiyon agis1 kazanci 0,037 oldugunda optimum uygunluk

elde edildigi goriilmiistiir.
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Block Parameters: Lateral Controller Stanley X
Lateral Controller Stanley

Compute the steering angle command in degrees that controls the current pose of the
vehicle with respect to the desired reference pose, using the Stanley method.

The RefPose port accepts a 1-by-3 vector [x, y, theta] as the position of the reference
point on the path and the orientation of the path at the point in degrees. In forward
motion, the reference point is the nearest point on the path to the center of the front
axle of the vehicle. In reverse motion, the reference point is the nearest point on the
path to the center of the rear axle. The CurrPose port accepts a 1-by-3 vector [x, y,
theta] as the position of the center of the rear axle and the heading angle of the
vehicle in degrees. The CurrVelocity port accepts a scalar as the current longitudinal
velocity of the vehicle in meters/second. The Direction port accepts a scalar
representing the driving direction: 1 for forward motion and -1 for reverse motion.

Setting the Vehicle model parameter to Dynamic bicycle model enables additional
input ports. The Curvature port accepts a scalar representing the curvature of the pat
at the reference point. The CurrYawRate port accepts a scalar as the current yaw rate
in degrees/second. The CurrSteer port accepts a scalar representing the current
steering angle in degrees.

Controller Settings

Vehicle model: Dynamic bicycle model ~

Position gain of forward motion: 50

Position gain of reverse motion: 50

Yaw rate feedback gain: 0.025

Steering angle feedback gain: 0.0037

Cancel Help Apply

Sekil 3.18. Dinamik bisiklet modeli stanley denetleyici parametreleri

Optimizasyon esnasinda uygunluk degerlendirmesi yapilirken gercek yaw rate ile referans
yaw rate degerleri bir grafikte, gercek rota ile referans rota bir grafikte incelenerek referans

degerlere yakinsama saglanmaya ¢alisilmistir.

- \

Sekil 3.19. 10 m/s i¢in gergek yaw rate ile referans yaw rate grafikleri
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Sekil 3.20. 10 m/s i¢in gergek rota ile referans rota grafikleri

Sekil 3.19 ve Sekil 3.20°de verilen grafiklerde yaw rate ve rota c¢iktilart icin gercek ve
referans degerler 10 m/s hiz degeri kosulunda karsilastirilmistir. Referans ve gergek deger
grafikleri incelendiginde rotanin biiylik oranda referansa uygun olarak takip edildigi
goriilmistiir. Yaw rate degerleri i¢in serit degistirme baslangicinda degerlerde minimal bir
dalgalanma goriilse de hareketin devaminda referans yaw rate degerlerine biiylik oranda

yaklasildig tespit edilmistir.

Sekil 3.21. 20 m/s i¢in gergek yaw rate ile referans yaw rate grafikleri
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Sekil 3.22. 20 m/s i¢in gergek rota ile referans rota grafikleri

Sekil 3.21 ve Sekil 3.22°de verilen grafiklerde yaw rate ve rota ¢iktilart icin gercek ve
referans degerler 20 m/s hiz degeri kosulunda karsilastirilmistir. Gergek rotanin bu hiz
degerinde de daha diisiik h1z degerlerinde oldugu gibi referans rotaya yaklastigi goriilmiistiir.
Yaw rate degeri icin serit degisimi Oncesi dalgalanma ile beraber hareketin ilerleyen

safhalarinda da bir miktar sapma gergeklestigi gdzlemlenmistir.

.
.
.
~
ail / .
— \/ T~
z
.

Sekil 3.23. 30 m/s i¢in gergek yaw rate ile referans yaw rate grafikleri
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Sekil 3.24. 30 m/s i¢in gergek rota ile referans rota grafikleri

Sekil 3.23 ve Sekil 3.24’te verilen grafiklerde yaw rate ve rota c¢iktilar1 i¢in gergek ve
referans degerler 30 m/s hiz degeri kosulunda karsilastirilmistir. Hiz degeri Onceki
gozlemlere gore daha yliksek olsa da gergek rotanin referans rotaya uygunlugu agisindan
herhangi bir sapma ya da iraksama problemi gézlemlenmemistir. Diger bir deyisle izlenen
rota referans rotaya oldukca yakin konum ve ag1 degerlerine sahiptir. Yaw rate degeri bu hiz
sartinda diigiik hizlardan daha fazla sapma egilimi gostermistir. Sapma ve dalgalanma
egilimlerinin bu hiz degeri i¢in daha fazla oldugu goriilmiistiir. Yaw rate degerindeki
sapmalar ve dalgalanmalar i¢in tasit modelinin daha yiiksek serbestlik derecelerinde

modellenmesi bir ¢6ziim olarak sunulabilir.
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4. GELISTIRILEN OTONOM SERIT DEGISTIRME ALGORITMASI
EGITIMI VE TEST EDILMESI

Pekistirmeli 6grenme ajani i¢in gerekli gdzlem kiimesi, aksiyon kiimesi ve 6diil fonksiyonu
parametreleri tanimlandiktan sonra ajanin beklenen davranisi 6grenebilmesi i¢in bir egitim
stireci gerekir. Ajanin egitimi baslangi¢ durumunun ¢evreden alinarak okunmasi, mevcut
duruma gore bir aksiyon secilmesi, secilen aksiyonun ¢evreye uygulanmasi, yeni durum ve
odiiliin alinmasi, Q-degerleri veya politika parametrelerinin giincellenmesi ve yeni durumla
bir sonraki adimin gergeklestirilmesi gibi adimlardan meydana gelir. Bu siire¢ birgok epizot
(episode) boyunca tekrar edilir ve ajan deneyimlerini pekistirerek en dogru politikay1

ogrenmeye calisir.
4.1. Egitim Ortami ve Parametreleri

Calismada otonom arag i¢in karar verme algoritmasi DQN yontemi ile olusturulmustur.
Ajan i¢in gerekli gozlem, aksiyon, 6diil gibi bilgiler saglanarak aksiyon elde edilmistir.
Egitim siireci i¢in Matlab igerisindeki Reinforcement Learning Designer modiilii
kullanilmisgtir. DQN ajan1 i¢in 1 000 boliim olacak sekilde egitim siireci tanimlanmustir.
Egitim grafigi olusturulurken Reinforcement Learning Designer icerisindeki egitim ekrani

kullanilmustir.
4.1.1. DQN ajam egitimi

Karar verme mekanizmast i¢in olusturulan DQN ajaninin egitilmesi i¢in Matlab
modiillerinden biri olan Reinforcement Learning Designer uygulamasi kullanilmistir.
Mevcut ¢aligmada DQN ajani i¢in iki gizli katmanli ve her katmanda 15 noéron bulunan ag
yapist tercih edilmistir. Bu agdaki katman sayis1 belirlenirken derin sinir aglarina uygun ve
sistemin olabildigince hizli egitilebilmesi faktorleri géz oniine alinmistir. Bu kapsamda ag,
bir derin sinir aginin sahip olabilecegi en diisiik gizli katman sayis1 olan 2 gizli katman ile
olusturulmugtur. Aglarda kullanilan noron sayilari ise farkli ndron sayilarinin aglara

islenerek egitilmesi ile optimum say1 belirlenerek son haline getirilmistir.

Sekil 4.1 ve 4.2°de goriildigii lizere egitim grafikleri benzerlik gostermekle beraber egitim

stireleri arasinda 6nemli farkliliklar bulunmaktadir. Her bir egitim i¢in gizli katman sayis1
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sabit tutulup ndron sayist giincellenmistir. Her bir ag yapisi i¢in egitim siiresi 15-25 saat
araliginda gergeklestigi goriilmiistiir. Buna ek olarak, grafiklerde sar1 renkte goriilen ajanin
sectigi eyleme gore QO tahminini gosteren deger 11 ve 17 ndronlu yapilarda ani yiikselisler

ve slirecin normalinin iizerinde beklenti degerleri iretmistir. Bu durum Ogrenme

davraniginin dengeli olmadigini gostermektedir.
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Training Results
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Sekil 4.2. 17 néronlu ag egitimi

Modelde kullanilan DQN ajaninin dogru ve optimal 6grenmeyi saglayabilmesi i¢in uygun

parametre secimleri yapilarak egitim gerceklestirilmistir. Egitim siirecinin en 6nemli

noktalarindan olan egitim parametreleri Cizelge 4.1 ile verilmistir.

Cizelge 4.1. Pekistirmeli 6grenme DQN ajani egitim parametreleri

Maksimum Boéliim Sayisi 1000
Her Boliimdeki Adim Sayisi 100
Learning Rate 0,01
Discount Factor 0,99
Exploration Rate 1
Epsilon Decay 0,005
Epsilon Min 0,01
Batch Size 64

Cizelgede verilen parametrelerden learning rate (6grenme orani) ajan tarafindan elde edilen

yeni bilgilerin mevcut bilgiye etkisinin derecesini belirleyen temel bir hiperparametredir.

Diger bir deyisle ajanin yeni deneyimlerden ne 6l¢iide etkilenecegini belirler. Q-learning ve

alt dallarinda Q-degeri giincelleme denkleminin kritik bir bilesenidir. Ogrenme orani ne

kadar yiiksek olursa, ajan yeni deneyimlerden o kadar fazla etkilenir. Diisiik 6grenme orani
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ise daha istikrarli, ancak daha yavas bir 6grenme siirecine neden olur. Uygun 6grenme orant
degeri hem o6grenme hizim1 hem de O6grenme kararliligini etkileyerek egitim siirecinin
basarisin1 dogrudan belirler. Mevcut modelde segilen 0,01 degeri egitim sirasinda istikrarl
bir Ogrenme saglayacak sekilde belirlenmistir. Daha diisiik degerler 0grenmeyi
yavaglatabilirken, daha yiiksek oranlar agin kararsiz davranmasina sebep olabilmektedir

(Sutton ve Barto, 1998).

Iskonto faktorii ajan tarafindan gelecekte elde edilecek ddiillerin bugiinkii degerini ifade
eder. Bu faktor O ile 1 araliginda bir degerdir ve bu parametrenin biiyiikliigli ajanin uzun
vadeli hedeflere ne dl¢iide 6nem verdigini gosterir. Buna bagli olarak iskonto faktorii 0'a
yaklastik¢a algoritma kisa vadeli 6diillere odaklanirken, 1'e yaklastik¢a daha uzun vadeli
odiillere odaklanir. Bu parametrenin yiliksek olmasi genellikle daha iyi genel performans
saglar ancak 0grenme siirecini yavaslatabilir. Egitim i¢in belirlenen 0,99 gibi yiiksek bir
deger ajanin uzun vadeli ddiillere nem vermesini saglar. Segilen bu deger bu calismada
odaklanilan otonom siiriis gibi sistemlerde giivenlik odakli davranilarak ajanin daha sabirli

ve siirdiiriilebilir politikalar 6grenmesine yardimci olur (Kaelbling ve digerleri, 1996).

Ajanin 6grenme siirecinde ka¢ adet gegmis deneyimi tek seferde kullanacagini belirleyen
parametre batch size degeridir. Ozellikle deneyim tekrar1 (experience replay) kullanilan
derin pekistirmeli 6grenme algoritmalarinda, batch size parametresi egitim silirecinin istikrari
ve verimliligi agisindan belirleyici bir roldedir. Kiiclik batch size degerleri daha sik
giincellemeler saglasa da dalgalanmalarin ve giiriiltiilerin oldugu bir 6grenme siirecine neden
olabilir. Biiyiik batch size degerleri ise daha kararlidir ancak hesaplama maliyeti artar ve
genelleme yetenegi diisebilir. Mevcut ¢alismada kullanilan 64°liikk batch size boyutu
literatlirde hem istikrarli tahminler hem de yeterli hesaplama verimliligi agisindan optimum

degerlerden biridir (Mnih ve digerleri, 2015; Schulman ve digerleri, 2015).

Exploration rate (kesif oran1) ajanin bir karar verirken hangi yogunlukta rastgele ya da kesif
odakl1 aksiyon sececegini belirler. Epsilon (¢) ile ifade edilir. Kesif oran1 baglangigta
genellikle yiiksek tutulur ve zamanla azaltilir. Bu yaklasim, ajanin 6grenme siirecinde yeterli
cesitlilikte deneyim edinmesini saglar. Pekistirmeli Ogrenme problemlerinde kesif
(exploration) ve somiirii (exploitation) arasinda denge kurulmasi gerekmektedir. Epsilon-
greedy stratejisi bu dengeyi saglamak amaciyla siklikla kullanilan bir yontemdir. Bu

yontemle ajanin rastgele bir eylem se¢gme olasilig1 € olarak belirlenir ve bu 6l¢giide kesif
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yapar. En yiiksek degerli eylemi segcme olsailig1 ise (1 - €) olarak belirlenir ve bu dlgiide
mevcut bilgileri somiiriir. Baslangicta kesif oran1 degerinin 1 olarak belirlenmesi ajanin ilk

adimlarda ¢evreyi tamamen kesfetmeye odaklanmasini saglar (Sutton ve Barto, 1998).

Epsilon decay parametresi ile kesif oraninin zamanla diigiiriilmesi saglanir. Zamanla kesif
oraninin azalarak ajanin daha kararli ve bilgiye dayali se¢imler yapmasi beklenir. Bu siire¢
egitim siirecinin baglangicinda yogunlukla kesif yapilmasi, ilerleyen asamalarda ise
sOmiiriiye agirlik verilmesi prensibi ile calisir. Kesif oraninin her adimda 0,005 oraninda
azalmasi kesif-somiirii dengesinin zamanla daha istikrarli bir sekilde saglanmasina yardimci
olmakla beraber literatiirde yaygin olarak tercih edilen deger araliginda yer almaktadir

(Frangois-Lavet ve digerleri, 2018).

Kesif oran1 degerinin zamanla sifira yaklagmasi, ajanin tamamen sémiiriiye odaklanip kesif
yapmamasina neden olabilir. Ancak bu durum ajanin yer yer ani ylikselmelere maruz
kalmasi riskine neden olur. Bu nedenle kesif oraninin belirli bir alt sinirda tutulmasi sistemin
saglikli isleyisi bakimindan gereklidir. Minimum kesif oran1 degeri (€min), ajan egitim
siirecinin sonlarma gelinmis olsa bile zaman zaman rastgele eylemler segerek kesif
yapmasini saglar. Bu strateji egitim siirecinin sonunda da ortamin dinamiklerine karsi
duyarliligr korumak agisindan dnemlidir. Bu ¢alismada kullanilan kesif orani degerinin
zamanla 0,01’e diisiirlilmesi ajanin egitim siirecinin sonlarinda hala az da olsa kesif

yapabilmesini saglar (Mnih ve digerleri, 2015; Sutton ve Barto, 1998).
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Training Results
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Sekil 4.3. Dgn ajan1 egitim siireci

Egitim sonucunda Sekil 4.3.’te goriilen grafik elde edilmistir. Deneme egitimleri yapilan 11
ve 17 noronlu aglardan farkli olarak beklenmeyen QO cikislar1 ve diisiisleri olmadigi
goriilmiistiir. Bu durum ajanin etkin ve stabil bir 6grenme siireci gerceklestirdigini, egitim
siirecinin sistemden beklenen basariy1 saglayacagini gosteren parametrelerdendir. Secilen
aksiyona bagli olarak ajan -10,-5, 0 ve +10 6diil degerlerini almistir. Mevcut durumlara gore
sectigi eylemler sonucunda dogru konum ve hizda, dogru direksiyon agisi ile, yol sinirlar

disina ¢ikmadan serit degisimi yapabilecek noktaya ulagmistir.

4.2. Egitilen Ajamin Test Edilmesi

Pekistirmeli 6grenme ile karar veren ve uygulayan sistemin hangi senaryo durumlarinda
hangi karar1 verdigi ve nasil bir sonug¢ aldigmmin goézlenebilmesi i¢in Simulink modeli
icerisine 3 boyutlu bir simiilasyon gorsellestirme yapilandirmasi entegre edilmistir. Bu
yapilandirmada simiilasyon calistirlldiginda tasitin hareketi gozlemlenerek dogrulugu

incelenmistir.

DQN ajaninin Reinforcement Learning Designer ortaminda egitilmesinin ardindan aymn

ortamda bulunan simiilasyon eklentisi ile stirekli simiilasyon tekrarlar1 gerceklestirilmistir.
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Simulink modeline entegre edilen {i¢ boyutlu goriintiileme modiilii olusturularak egitimin
amacina ulasip ulasmadigi kontrol edilmistir. Gerekli konum ve hiz bilgileri bu modiile
aktarilarak tasitin simiilasyon i¢erisindeki hareketleri gorsellestirilmistir. Gorsellestirme i¢in

kullanilan modiil yapis1 Sekil 4.4 ile verilmistir.
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Sekil 4.4. Simulink simiilasyon gorsellestirme modiili

Karsilastirma yapilabilmesi i¢in oncelikle egitilmemis ajana ait bilgiler ile simiilasyon
baglatilarak tasit hareketleri gézlenmistir. Egitilmemis ajan simiilasyon esnasinda rastgele
dogru kararlar verebilmis olsa da serit degistirme davranisin1 dogru anlarda, konumlarda ve

acilarda gercgeklestiremedigi gorilmiistiir.
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Egitilmemis ajan ile {i¢ boyutlu simiilasyon goriintiileri de Sekil 4.5’te goriilen grafikle
paralel c¢iktilar sunmustur. Tasitin uygun ve gerekli kosullarda serit degistirmedigi ya da
Sekil 4.6 ve Sekil 4.7.’de goriildiigii tizere uygun olmayan kosullarda serit degisimi yaparak

kaza gergeklestigi goriilmiistiir.

Sekil 4.7. Egitilmemis ajan kaza durumu
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Egitilmis ajanin, egitimin yapildigi Reinforcement Learning Designer ortaminda
gergeklestirilen stirekli simiilasyon tekrarina ait grafik Sekil 4.8.’de goriilmektedir. Egitilmis
ajanin serit degistirme kararini dogru konum ve hizlarda verdigi, buna bagl olarak pozitif

odiiller alarak hareketi dogru ve beklenen bicimde gerceklestirdigi saptanmaistir.
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Sekil 4.8. Egitilen dqn ajan1 simiilasyon grafigi

Ajan egitildikten sonra gerekli tanimlamalar yapilarak yeniden ii¢ boyutlu goriintiileme
modiilii ile tagit hareketleri gozlemlenmistir. Farkli senaryolarda manuel olarak simiilasyon

baglatilarak mevcut senaryodaki aksiyon se¢imine bagli hareketler gozlemlenmistir.

Sekil 4.9. Egitilen ajan seritte kalma davranisi
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Sekil 4.9°da gorildiigii lizere egitilmis ajan rastgele olarak belirlenen degerler iizerine
iiretilen senaryoda, uygun olmayan konum sartlarinda serit degistirme karari vermeyerek
bulundugu seridi korumus, kaza ve yoldan ¢ikma gibi istenmeyen durumlarin Oniine

gecmistir.

Rastgele belirlenen konum ve hiz sartlar1 ile olusan senaryo serit degisimine uygun
oldugunda egitilmis DQN ajani serit degistirme aksiyonunu se¢gmis ve uygun rota ile serit
degisimi saglanmistir. Serit degisimi esnasinda herhangi bir yonelim hatasi, kaza durumu ya
da yol smirlar1 disina ¢ikma davranisi gozlemlenmemistir. Egitilmis ajanin gergeklestirdigi

serit degisimi siireci Sekil 4.10 ile gdsterilmistir.

(a) (b) (©)

Sekil 4.10. Egitilen ajan serit degistirme siireci

Sekil 4.10 (a) asamasinda sistem gozlem olarak kullandigi cevre araclarla mesafe
degerlerinin uygun olduguna karar vererek serit degistirme hareketini baslatir. Serit
degistirme kararinin verilmesinin ardindan rota olusturulur ve Stanley denetleyici ile tasitin
rotay1 takip etmesi saglanir. Sekil 4.10 (b)’de goriildiigli iizere rota olusturulmus ve tasit
referans rotay1 takip etme siirecine baslamistir. Sekil 4.10 (c)’de ise serit degistirme
hareketinin sonlandirildig1 goriilmektedir. Tasit verilen rastgele senaryo sartlarinda serit
degistirme karar1 vermis, rota olusturulmus ve tasit rotay1 basarili bir sekilde takip etmistir.
Serit degisimi esnasinda c¢evre araglarla herhangi bir kaza durumu ya da seritten ¢ikma gibi
bir durum gozlenmemistir. Bu simiilasyon secilen parametrelerin ve gergeklestirilen DQN

ajan1 egitiminin basarili bir sekilde sonuglandigini gostermektedir.
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5. SONUC VE DEGERLENDIRME

Bu tez calismasinda, otonom tasitlar icin giivenli serit degistirme kararlarinin alinmasina
yonelik bir kontrol yaklagimi gelistirilmistir. Tasitin ¢evresindeki dort farkli araci goz
onilinde bulundurarak gerektiginde uygun manevralarla serit degistirebilmesi hedeflenmistir.
Bu amagla, pekistirmeli 6grenme tabanli bir karar verme sistemi Simulink ortaminda
modellenmis, tagit dinamikleri 3 serbestlik dereceli bir tek izli tasit modeli (3-DOF single
track model) ile temsil edilmistir. Karar verme asamasi igin pekistirmeli O6grenme
yontemlerinden DQN algoritmasi, rota olusturma asamasi i¢in Sigmoid fonksiyonu ve rota

takibi i¢in Stanley denetleyici kullanilmistir.

Gelistirilen sistemde, aracin ¢evresindeki ondeki ve arkadaki araglar (MO, MA, HO, HA)
ayr1 ayr1 analiz edilmis ve her biri i¢in dinamik olarak degisen mesafeler hesaplanmistir. Her
bir simiilasyonda degisen bu mesafeler sayesinde gercek trafik kosullarinin dinamikligi ve
degiskenligi sisteme entegre edilmeye ¢alisilmistir. Sistem, Simulink {izerinde modellenmis,
gerekli modiiller ve bloklar kullanilarak olusturulan ¢ok seritli bir yol ortaminda test edilmis
ve gercek siiriis senaryolarina yakin bir yapt kurulmugtur. Simiilasyon ortaminda arag
oncelikle ayrik bir aksiyon uzayi kullanarak serit degisimi aksiyonunu belirlemis, serit
degistirme kararmin verildigi durumda aktiflesen rota planlama sisteminin ardindan
direksiyon acismnin belirlenebilmesi i¢in Stanley denetleyici ile rota takibini

gerceklestirmistir.

Egitim siirecinde DQN algoritmast i¢in uygun ag yapisi Deep Network Designer kullanilarak
yapilandirilmistir. DQN ajani i¢in gézlem kiimesi, otonom tasita ait hiz ile otonom aracin
cevre araclarla merkez mesafeleri farki olmak iizere bes girdiden olusmaktadir. Aksiyon

kiimesi ise 0 (seritte kal) ve 1 (serit degistir) olmak iizere iki elemandan olusmustur.

Simiilasyonlar sonucunda gelistirilen modelin, ©onceden belirlenen dinamik trafik
senaryolarina karst etkili sekilde tepki verebildigi gozlemlenmistir. Otonom aracin sol
seridin konum ve hiza bagl olarak daha avantajli oldugu durumlarda uygun direksiyon agis1
ile giivenli ve konforlu serit degisimi hareketi yaptig1 goriilmiistiir. Ayn1 zamanda
gergeklestirilen simiilasyonlar sistemin gereksiz serit degisimlerinden kaginarak kaza riskini
minimize ettigini; giivenli ve konforlu siiriis profilini devam ettirdigini ortaya koymustur.

Egitim siireci boyunca kullanilan 6diil fonksiyonu, kaza durumlarinin énlenmesi, gereksiz
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manevralardan kaginilmasi ve ilerleme odakli 6diilleri analiz ederek ¢ok boyutlu bir davranis

gelistirilmesini saglamistir.

Bununla beraber, ¢alismanin bazi siirliliklar1 da bulunmaktadir. Oncelikle, egitim ortami
yalnizca simiilasyon temelli oldugu icin, gercek yol verileriyle test edilmemistir. Gergek
diinyadaki algilayici hatalari, yol ylizeyi degisimleri, insan faktorii gibi parametreler
sistemin davranigini etkileyebilecek faktorler arasinda yer almaktadir. Ayrica, egitim siireci
boyunca yalnizca sinirli sayida senaryo iizerinden degerlendirme yapilmis; farkli yol
topolojileri, trafik yogunluklari ve hava kosullar1 gibi degiskenler sisteme dahil
edilmemistir. Bununla birlikte, kullanilan tasit dinamigi modeli her ne kadar bir¢ok
uygulama igin yeterli olsa da daha karmasik dinamiklerin (6rnegin lastik-siirtiinme
modelleri, egim degisimleri) dikkate alinmasi durumunda kontrol performansinda bazi

farkliliklar gozlemlenebilir.

Gelecek ¢alismalar icin cesitli gelistirme nerileri sunulabilir. Oncelikle sistemin, gercek
sensor verileriyle (6rnegin LIDAR, RADAR, kamera) beslenecek bir yapay algilama
modiililyle entegre edilmesi planlanabilir. Bu sayede sistem, gercek zamanli olarak hem
cevre algist hem de karar iiretimi acisindan daha gercekei senaryolarda test edilebilir hale
gelir. Ayrica sistemin yalnizca serit degistirme degil, kavsak ge¢isi, sollama, dar yolda gegis
gibi daha karmasik siiriis senaryolarina uyarlanmas1 da miimkiindiir. Egitim siirecinde daha
gelismis pekistirmeli 6grenme algoritmalart (Soft Actor-Critic (SAC), Proximal Policy
Optimization (PPO) gibi) ile karsilastirmali analizler yapilmasi, performansin daha da

iyilestirilmesine olanak tantyabilir.

Sonug olarak bu ¢alisma, otonom tasitlarda giivenli, ¢evresel farkindaliga sahip, karar alma
ve hareketin uygulanmasi siireglerinde 6grenmeye dayali bir kontrol mimarisinin basariyla
uygulanabilecegini gostermistir. Derin pekistirmeli 6grenme yoOntemlerinin, klasik kural
tabanli sistemlerin Otesine gecerek dinamik trafik ortamlarinda efektif kararlar verebilen
stiriis sistemlerinin gelistirilmesinde gii¢lii bir alternatif oldugu goriilmiistiir. Gerek sistem
mimarisi gerekse kullanilan algoritmalar acisindan modiiler bir yap1 sunan bu modelin,
otonom siirlis alaninda yapilan diger ¢aligmalara hem metodolojik hem de deneysel anlamda

katki saglamas1 hedeflenmektedir.
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