ISTANBUL TECHNICAL UNIVERSITY * GRADUATE SCHOOL

LEARNING GENERAL TYPE-2 FUZZY LOGIC SYSTEMS
FOR UNCERTAINTY QUANTIFICATION

M.Sc. THESIS

Yusuf GUVEN

Department of Control and Automation Engineering

Control and Automation Engineering Programme

JULY 2025






ISTANBUL TECHNICAL UNIVERSITY * GRADUATE SCHOOL

LEARNING GENERAL TYPE-2 FUZZY LOGIC SYSTEMS
FOR UNCERTAINTY QUANTIFICATION

M.Sc. THESIS

Yusuf GUVEN
(504231132)

Department of Control and Automation Engineering

Control and Automation Engineering Programme

Thesis Advisor : Prof. Dr. Tufan KUMBASAR

JULY 2025






ISTANBUL TEKNIK UNIVERSITESI * LISANSUSTU EGITIM ENSTITUSU

BELIRSIZLIiK NICELLESTIRILMESI iICIN GENEL TiP-2
BULANIK MANTIK SISTEMLERININ OGRENILMESI

YUKSEK LIiSANS TEZi

Yusuf GUVEN
(504231132)

Kontrol ve Otomasyon Miihendisligi Anabilim Dali

Kontrol ve Otomasyon Miihendisligi Programi

Tez Damisman : Prof. Dr. Tufan KUMBASAR

TEMMUZ 2025






Yusuf GUVEN, a M.Sc. student of ITU Graduate School student ID 504231132,
successfully defended the thesis entitled “LEARNING GENERAL TYPE-2 FUZZY
LOGIC SYSTEMS FOR UNCERTAINTY QUANTIFICATION”, which he prepared
after fulfilling the requirements specified in the associated legislations, before the jury
whose signatures are below.

Thesis Advisor : Prof. Dr. Tufan KUMBASAR ...
Istanbul Technical University

Jury Members : Assoc. Dr. ilker USTOGLU ...,
Istanbul Technical University

Dr. Alec STOTHERT = e,
MathWorks, Inc.

Date of Submission : 05 June 2025
Date of Defense : 16 July 2025






vii

To my mom,






FOREWORD

I would like to express my deepest gratitude to my family, who have always provided
me with an environment full of comfort and encouragement throughout the challenges
I faced during my thesis journey. Their unwavering support lightened my burdens and
gave me the courage to move forward. Without their presence, this thesis, which is
dedicated to them, would not have been possible.

I am sincerely grateful to my thesis advisor, Prof. Dr. Tufan KUMBASAR, for his
continuous guidance, insightful advice, and immense knowledge. His mentorship and
support allowed me to work on advanced topics in uncertainty quantification and fuzzy
sets and systems within his dedicated research group.

I would also like to express my heartfelt thanks to MathWorks for their generous
support through the MathWorks Research Scholarship. I extend my sincere gratitude
specifically to Dr. Alec Stothert and Dr. Rajibul Huq from MathWorks for their
valuable guidance, insightful discussions, and support throughout the project. The
collective contributions from MathWorks greatly facilitated the progress and depth of
my research.

July 2025 Yusuf GUVEN

iX






TABLE OF CONTENTS

Page
FOREWORD......uuiiiiiiininniinninsicssnssssisssisssnssssssssisssssssssssssssssssssessssssssssssessssssssssss ix
TABLE OF CONTENTS....uuuiitiitinninntinnensnnssnsssnsssessssssssssssessssssssssssssssssssasssses xi
ABBREVIATIONS xiii
SYMBOLS c.ceetiitiniiininensninnnnssnesssesssnssssssssesssesssassssssssesssassssssssssssssssasssssssassssasssss XV
LIST OF TABLES xvii
LIST OF FIGURES Xix
SUMMARY xxi
OZET XXV
1. INTRODUCTION...... 1
2. BACKGROUND: MATHEMATICAL PRELIMINARIES ... 5

2.1 TYPE-2 FUZZY SELS.....eeeeiiieeiiieeiie ettt ettt ebee e et e e e sanee s 5
2.1.1 Interval type-2 fUZZY SELS......ceevvureeiieeriieeiiteeeiteeceeeeree e eree e eree e 6
2.1.2 General type-2 fUZZY SELS......ceeriiiriiiiiniieiiieeite ettt 6

2.2 T2-FLSs: A BIief OVEIVIEW......coiiuiiiiiiiiiiiieiiieeiie ettt ettt 6
2.2.1 Interval type-2 fuzzy 10ZiC SYSIEMS ........covuerviieniiniiiieeiieniceeeeeeceee e 7
2.2.2 General type-2 fuzzy 10ZIiC SYStEIMS ....cc.eeriiriiieniieniiiieeiieneeeeeee e 9
2.2.3 The implementation of karnik-mendel algorithm .............c..ccocceoniinne. 11

3.Z-GT2-FLS FOR ENHANCED LEARNING ....ccceceeurrecsuessenssessecsancacssecsasssecsane 13

3.1 MJ-GT2-FLS: Representation And Potential ISSUES .........cccoveeriiirriieniiennnen. 13
3.1.1 PMF 1€PIeSentaton ..cccuuvveeiiiiiieeeiiieeeeiitee et ee et e et e e et ee s e e e e inaee s 14
3.1.2 SMF 1€PTeSENLALION ......vveeeeiiiieeeiiieeeeiieee et e e eeire e e et eeeeae e e enareeeesnnneeees 14
3.1.3 POtential 1SSUES .....eeivuiiieiiieeiieeitee ettt 15

3.2 Z-GT2-FLS: Representation And SOIULIONS ........cooveerieniiniieenienieeieereeieeeen 15
3.2.1 PMF 1ePreSentation ..........eeeiueeeriieeriiieenieeeiieesieeeieeeseeesieeesiieesieeesanee e 16
3.2.2 SMF 1ePIeSeNtation ......cc.veeeuieeriieeeiieenieeeiieeesieeeireesreeenaeeesseesneeesnseesnnne 16
3.2.3 Curse of dimensionality problem.........cccceccveeriiieeiieenciiecieeeee e 17

3.3 Learning T2-FLSs Within DL Frameworks ...........ccccccooviiiniiiniiinniienieeen, 18
3.3.1 Learnable parameter sets for IT2-FLSS .......cccccooieiiiniiiniinieeeceeee, 18
3.3.2 Learnable parameter sets for GT2-FLSs.........ccccooviiniiiniiiniiiiceeee 18
3.3.3 Parameterization tricks for T2-FLSs for DL optimizers .............cccceuuee..... 19

4. LEARNING T2-FLSs WITH A DUAL-FOCUS......ccccevcinsinsurcscrissnnssnncsancsnnens 21

4.1 The Learning Framework For Accuracy & HQ-PI..........cccccceviniiiiiininnenn 21
4.1.1 Composite loss definition for IT2-FLSS........cccooiiviiiiiiiiiniiiniieeieeeee 21
4.1.2 Composite loss function for GT2-FLSS ........ccooviviiiiiiiiiiniieniieeieeiee 22

4.2 Comparative Performance Analysis .........cccceeeviiieiiniiieeiiiiieeeiiee e 23
4.2.1 Design Of EXPEIIMENLS ......ceevureiriiieriieeiiieeriee ettt et siee e 23
4.2.2 Performance evaluation...........coocuueeriieiiiieeiiieeiieeniee et 24

4.2.2.1 Performance analysis for P =5 .......ccocoiiiiiiiiiineee 25
4.2.2.2 Performance analysis for P = 10 ........ccccoociiiiiiiniiiiieee e 29

Xi



4.2.2.3 Computational load analysis..........ccceceeerieeriiiriniieniieeieeeee e

5. LEARNING GT2-FLSs FOR DISTRIBUTION ESTIMATION.........ccccceeueeee.
S.TSQR FOr GT2-FLS ...ttt
5.2 ASQR FOU GT2-FLSS ...cottiiiiieiieiieee ettt ettt et
5.3 Comparative Performance ANalysis .........cccoeecueeriiieriieinieeniieeiee e
5.3.1 Design of EXPErimMENtS .......cccuieriieeeriieeiiieeiieeeiieesieeeireesreesneeeesneeennneeens
5.3.2 Performance evaluation.............c.cocueeuieniiinieiieeiienie et

5.3.3 ASQR implementation - viSUAlIZation ..........ccoceeevieeriieenieeinieenieeeieee

6. CONCLUSIONS AND RECOMMENDATIONS
REFERENCES
CURRICULUM VITAE

Xii



ABBREVIATIONS

DL
FLS

FOU

GT2

IT2

PI

HQ-PI

FS
MJ-GT2-FS
Z-GT2-FS
MJ-GT2-FLS
Z-GT2-FLS
PMF

SMF

T1

T2

UQ

TRS
a-IT2-FLS
QR

SQR
ASQR

AD

LP

LMF

IQR

UMF

: Deep Learning

: Fuzzy Logic System

: Footprint of Uncertainty

: General Type-2

: Interval Type-2

: Prediction Interval

: High Quality Prediction Interval

: Fuzzy Set

: Mendel and John’s General Type-2 Fuzzy Set
: Zadeh’s General Type-2 Fuzzy Set

: Mendel and John’s General Type-2 Fuzzy Logic System
: Zadeh’s General Type-2 Fuzzy Logic System
: Primary Membership Function

: Secondary Membership Function

: Type-1

: Type-2

: Uncertainty Quantification

: Type-Reduced Set

: a-plane associated IT2-FLS

: Quantile Regression

: Simultaneous Quantile Regression

: Adaptive Simultaneous Quantile Regression
: Automatic Differentiation

: Learnable Parameter

: Lower Membership Function

: Inter Quartile Range

: Upper Membership Function

Xiii






SYMBOLS

Apm : General Type-2 Fuzzy Set.

Ag"m : a-plane of A p,m associated with a.

y : The output of the General Type-2 Fuzzy Logic System.

yak : The output of the ai- Interval Type-2 Fuzzy Logic System.

o : The lower output of the a-Interval Type-2 Fuzzy Logic System.
yk : The upper output of the a-Interval Type-2 Fuzzy Logic System.
S Zk : The ay-plane associated lower rule firing of the p'” rule.

?zk : The a-plane associated upper rule firing of the p'” rule.

H o : The a-plane associated lower membership grade.

H fag : The a-plane associated upper membership grade.

Jx : Primary Membership Function of x.

c : Center of Primary Membership Function.

a : Lower Standard Deviation of Primary Membership Function.

o : Upper Standard Deviation of Primary Membership Function.
00.1 : Parameters defining Secondary Membership Function.

Yy : Center of Secondary Membership Function.

o! : Left Standard Deviation of Secondary Membership Function.
o’ : Right Standard Deviation of Secondary Membership Function.

: Lower Quantile Level.

: Upper Quantile Level.

XV






LIST OF TABLES

Table 4.1
Table 4.2
Table 4.3

Table 4.4

Table 4.5
Table 4.6
Table 5.1
Table 5.2
Table 5.3
Table 5.4

Table 5.5

Page
: DL-based Dual-Focused GT2-FLS Training Algorithm. ................... 22
: Testing RMSE: Z-GT2-FLS vs. Various Models. ........c.c.ccceerureneen. 26
: Testing Performance Comparison of Dual-Focused FLSs over 20
Experiments for P =5 rules. ......ccccooieriiiiiienieniiciieeeceeeeeeeeeen 27
: Testing Performance Comparison of Dual-Focused FLSs over 20
Experiments for P = 10 1ules. .......ccoceerierieiniiniiiieeieceeeeeeee 33

: Computational Load Analysis over 20 Experiments for P =5 Rules. 38
: Computational Load Analysis over 20 Experiments for P = 10 Rules.39

: ASQR to learn Z-GT2-FLS Algorithm..........ccoceeciiiiinieniiniieeene. 43
: Miscalibration Space Algorithm. .........cccccoovviiiniiiiiiiiiniiiiieeeee, 44
: Quantile Generation AlgOrithm. ..........cccceeviieeriiiiiniierie e, 44

: ECE Comparison over 5 Experiments: Z-GT2-SQR and Z-GT2-

ASQR vs. Various Models. .........ccouveeeeiiieieiiiieeeciiee e 47

: ECE Comparison over 5 Experiments: Z-GT2-SQR vs. Z-GT2-

ASQR. .o 48

Xvil



Xviii



LIST OF FIGURES

Figure 2.1
Figure 2.2
Figure 2.3
Figure 3.1

Figure 3.2
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9

Figure 4.10 :

Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8

Page

s Structure of @ T2-FLS. ..o 7
S HAIT2-FS . et 9
S HSAIT2-FS. ..ot 9
P MI-GT2-FSfor 0, | = T pmeseeeeencicieeeis 13
D Z-GT2-FS. e 17
: Notched box-and-whisker plots for PM (19 x 5875) for P =5............ 29
: Notched box-and-whisker plots for WW (11 x4898) for P =5.......... 29
: Notched box-and-whisker plots for AIDS (23 x2139) for P =5........ 30
: Notched box-and-whisker plots for ABA (8 x4177) for P =5............ 30
: Notched box-and-whisker plots for PP (4 X 9568) for P =5............... 31
: Notched box-and-whisker plots for PM (19 x 5875) for P = 10.......... 35
: Notched box-and-whisker plots for WW (11 x4898) for P = 10........ 35
: Notched box-and-whisker plots for AIDS (23 x2139) for P = 10......36
: Notched box-and-whisker plots for ABA (8 x4177) for P = 10......... 36
Notched box-and-whisker plots for PP (4 X 9568) for P = 10............. 37

: Q-Q plot for Kin8nm (8 X 8198). ...cccuveeeiiiiiiiiiiiieieeeeeeeeeee e, 48
: Q-Q plot for Naval (17 X 11937). c.ceeviieeiieiieeeieeeieeeee e 49
: Q-Q plot for Power (4 X 9568). ....ooeviieeiieiieeeieeeee e 49
: Q-Q plot for RW (11X 1599). ..cocuiiiiiieiieeeeeee et 50
: Q-Q plot for BH with Z-GT2-SQR method for 1 seed. ...................... 50
: Miscalibration Areas for € = 0.005. ..........cooveiiiiieiiiieiiiiieeee e, 51
: Selected @ = T IVEIS. c.uuvviiieiiieeee e 52
: Q-Q plot for BH with Z-GT2-ASQR method for 1 seed. ................... 52

Xix






LEARNING GENERAL TYPE-2 FUZZY LOGIC SYSTEMS
FOR UNCERTAINTY QUANTIFICATION

SUMMARY

Deep learning has been widely used in various domains such as computer vision,
natural language processing, large language models, autonomous driving, and robotics
because it provides us with the flexibility to design complex architectures and achieve
high performance. Consequently, we no longer hesitate to apply these models in
high-risk areas like medical treatment and finance. However, these ambitions will fall
short if our models yield unreliable outcomes under diverse conditions. In this context,
uncertainty estimation becomes crucial: it tells us when to trust our predictions and
helps us handle anomalies, outliers, and out-of-distribution examples.

In recent studies, different deep learning models such as bayesian neural networks,
deep ensembles, monte carlo dropout, gaussian processes, and quantile regression have
been used for uncertainty estimation. For example, bayesian neural networks model
the weights of a neural network as probability distributions, providing uncertainty by
capturing posterior distributions over weights. However, this approach comes with a
high computational cost and stability issues on large-scale datasets. On the other hand,
quantile regression is easy to implement with a single model and simple loss functions,
and it also scales well with large datasets.

Type-2 fuzzy logic systems can be great candidates for estimating uncertainty. It
has been shown that type-2 fuzzy logic systems are capable of handling uncertainties
through their inherent structural model, which provides a degree of freedom, referred
to as the footprint of uncertainty, for modeling these uncertainties. In recent studies,
interval type-2 fuzzy logic systems, which are simplified versions of general type-2
fuzzy logic systems, have been used for modeling uncertainty while simultaneously
generating highly accurate predictions. To achieve this, the type-reduced set of interval
type-2 fuzzy logic systems is employed to estimate uncertainty through a pinball loss.
On the other hand, the output of interval type-2 fuzzy logic systems is used for point-wise
estimation with an appropriate empirical loss definition, resulting in a composite loss
function. Furthermore, general type-2 fuzzy logic systems are also utilized to generate
reliable prediction intervals and estimate highly accurate predictions by exploiting the
shape and size of the secondary membership functions. It has been shown that using
the secondary membership functions for point-wise predictions offers an efficient way
to handle both uncertainty and accuracy. In most studies, general type-2 fuzzy sets,
based on Mendel and John’s definition, are widely used, although Zadeh first defined
the concept of general type-2 fuzzy sets. This is due to the a-plane representation
of general type-2 fuzzy sets, which facilitates the parameterization of the secondary
membership function and demonstrates the equivalence between a general type-2 fuzzy
logic system and a set of a-plane associated interval type-2 fuzzy logic systems.
However, we identify some drawbacks in this definition, particularly regarding the
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direct dependency of the secondary membership functions on the primary membership
functions. To define the secondary membership functions, the primary membership
functions must first be defined. We believe this dependency could potentially reduce
the learning performance of general type-2 fuzzy logic systems and also affect the
design flexibility of general type-2 fuzzy sets negatively.

In this master’s thesis, we revisit the definition of general type-2 fuzzy sets as originally
defined by Zadeh. We first present Zadeh’s definition of general type-2 fuzzy sets.
This structure offers the flexibility to design the secondary membership functions of
general type-2 fuzzy sets without depending on the primary membership functions.
In this context, we propose the mathematical foundations of both the secondary and
primary membership functions, each of which is a type-1 fuzzy set. Afterwards,
to define the output of Zadeh’s general type-2 fuzzy logic systems, we integrate the
a-plane representation into Zadeh’s general type-2 fuzzy sets. Subsequently, we define
the a-cuts of the secondary membership function and extract the equivalent lower
and upper membership functions corresponding to the a-planes of Zadeh’s general
type-2 fuzzy set. These membership grades are then directly used to calculate the
output of the general type-2 fuzzy logic system, which is formulated based on the
a-plane approach. This approach enhances modeling flexibility and learning efficiency.
Furthermore, we develop a method to address the curse of dimensionality problem that
arises in fuzzy logic systems due to the rule firing strengths. This method adjusts the
primary membership grades based on the input dimensions, effectively overcoming
the challenges associated with high-dimensional datasets. Additionally, we propose
parameterization tricks to ensure that the definitions of general type-2 fuzzy sets
are not violated. These tricks allow us to formulate an unconstrained optimization
problem, which can be efficiently handled using deep learning optimizers and automatic
differentiation methods.

We propose a deep learning framework to learn dual-focused Zadeh’s general type-2
fuzzy logic systems. In this context, we first assign distinct roles to the interval type-2
fuzzy logic systems associated with each aj-plane within a composite loss function.
This loss function consists of two components, simultaneously focusing on uncertainty
and accuracy. To address both aspects, we present two loss definitions, leveraging
the shape and size of the secondary membership function. For both loss definitions,
we use only the type-reduced set of the ap-interval type-2 fuzzy logic system to learn
the prediction interval by estimating the upper and lower quantile levels for a given
confidence level in the uncertainty component of the composite loss function. On the
other hand, for the accuracy component, we define two loss functions. For the first, we
utilize the output of the general type-2 fuzzy logic system, and for the second, we use
the output of the ax-plane interval type-2 fuzzy logic system as a point-wise estimator.
Then, we present the comparative performance analysis of Zadeh’s general type-2
fuzzy logic systems on high-dimensional datasets by comparing them to their Mendel
and John’s general type-2 fuzzy logic systems and interval type-2 fuzzy logic systems
counterparts. The statistical results show that Zadeh’s general type-2 fuzzy logic
systems can serve as an effective approach for achieving highly accurate point-wise
estimations and generating high-quality prediction intervals, meaning narrow bands
that capture uncertainty at a given coverage level.

We also present a deep learning framework based on Zadeh’s general type-2 fuzzy
logic systems to learn the inverse cumulative distribution function by estimating all
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quantile levels. This approach helps prevent the need for multiple training sessions for
different desired coverage levels with given quantile pairs. Instead, any quantile pair
can be selected to generate a prediction interval that provides the desired confidence
level after one training section. In this context, we reformulate the output of the general
type-2 fuzzy logic system by enforcing it to learn a specific quantile level, 7, through
the assignment @ = 7. In this way, each output of the a-plane associated interval
type-2 fuzzy logic system is set to learn a quantile level function. To learn the inverse
cumulative distribution with a general type-2 fuzzy logic system, we reformulate the
simultaneous quantile regression by sampling random quantile levels. To enhance
learning, we develop an approach called adaptive simultaneous quantile regression,
which incorporates a miscalibration measure during training. This approach allows
us to generate additional quantile levels from miscalibration areas, ensuring they are
trained effectively using the general type-2 fuzzy logic system. Afterwards, we compare
our method with state-of-the-art deep learning methods to show the superiority of our
method.
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BELIRSIZLiK NICELLESTIRILMESI ICIN GENEL TiP-2
BULANIK MANTIK SiSTEMLERININ OGRENILMESI

OZET

Derin 68renme, karmasik mimariler tasarlama ve bu mimariler aracilifiyla yiiksek
performans seviyelerine ulagsma konusunda sundugu olaganiistii esneklik sayesinde,
giinlimiizde bilgisayarli gorii, dogal dil isleme, biiyiik dil modellerinin gelistirilmesi,
otonom siiriig sistemleri ve ileri robotik uygulamalar1 gibi son derece cesitli ve etki alam
genis disiplinlerde yaygin bir sekilde kendine yer bulmustur. Bu teknolojinin sagladigi
ilerlemeler, daha Once ¢oziilmesi gii¢ olarak kabul edilen bircok probleme yenilikci
cOziimler getirmis ve bu alanlarda adeta bir paradigma degisimine yol acmistir. Bu
bagarinin dogal bir sonucu olarak, derin 6grenme modellerini, karar verme siire¢lerinin
kritik oldugu ve hatalarin ciddi sonuglar dogurabilecegi tibbi tedavi protokollerinin
belirlenmesi veya finansal piyasalardaki risk analizleri gibi yiiksek risk tasiyan hassas
alanlarda dahi uygulamaktan giderek daha az cekinir hale geldik. Ancak, bu iddiali ve
umut verici hedeflere ulasma cabalarimiz, gelistirdigimiz modellerin karsilastiklar
farkli ve beklenmedik kosullar altinda tutarli ve giivenilir sonuglar iiretememesi
durumunda ne yazik ki basarisizlikla sonu¢lanma riski tasimaktadir. Tam da bu kritik
noktada, belirsizlik tahmini kavrami1 hayati bir 6neme sahip olmaktadir. Zira belirsizlik
tahmini, modellerimizin iirettigi tahminlere ne Olciide ve hangi kosullar altinda
giivenebilecegimiz konusunda bize degerli bilgiler sunmakla kalmaz, ayn1 zamanda
sistemin normal ¢alisma kosullarinin digina ¢ikan anomalileri, veri kiimesindeki genel
dagilima uymayan aykir1 degerleri ve modelin daha 6nce karsilasmadigi, egitim veri
setinin dagilimindan farkli olan dagilim dig1 6rnekleri etkin bir sekilde tantmlamamiza
ve yonetmemize olanak tanir. Bu sayede, modellerin giivenilirligi artirilir ve potansiyel
riskler en aza indirilir.

Son yillarda gerceklestirilen akademik caligmalarda, belirsizlik tahmininin 6nemi
giderek daha fazla anlagilmis ve bu alanda cesitli derin 6grenme modelleri basariyla
kullanilmigtir. Bu modeller arasinda Bayesci sinir aglari, derin topluluklar, Monte Carlo
seyreltme teknigi, Gauss siirecleri ve kantil regresyonu gibi farkli yaklagimlar one
cikmaktadir. Ornegin, Bayesci sinir aglari, geleneksel sinir aglarindaki deterministik
agirhiklarin aksine, agin agirliklarimi olasilik dagilimlari olarak modelleyerek bir
belirsizlik Olciisii sunar. Bu yaklasim, agirliklar tizerindeki sonsal dagilimlari
yakalayarak modelin tahminlerindeki giiven araligini belirlemesine olanak tanir. Ancak,
Bayesci sinir aglarinin bu sofistike yapisi, 6zellikle biiyiik 6l¢ekli ve yiiksek boyutlu veri
kiimeleriyle ¢alisildiginda, onemli bir hesaplama maliyeti ve egitim siirecinde kararlilik
sorunlar1 gibi pratik zorluklar1 da beraberinde getirmektedir. Diger bir popiiler yaklagim
olan kantil regresyonu ise, tek bir model kullanilarak ve gorece basit kay1p fonksiyonlari
tanimlanarak kolayca uygulanabilir olmasiyla dikkat ceker. Ayrica, kantil regresyonu
biiyiik veri kiimeleriyle ¢alisirken Olceklenebilirlik agisindan da avantajlidir ve farkl
kantil degerleri icin tahminler iireterek belirsizlik araliklari olusturulmasina imkan tanir.
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Bu cesitli yontemlerin yani sira, tip-2 bulanik mantik sistemleri, belirsizlik tahmini
konusunda dikkate deger ve giiclii adaylar olarak On plana ¢ikmaktadir. Yapilan
arastirmalar, tip-2 bulanik mantik sistemlerinin, "belirsizlik ayak izi" olarak adlandirilan
ve modelin dogasinda bulunan yapisal bir serbestlik derecesi sayesinde, karsilasilan
cesitli belirsizlik tiirlerini etkili bir sekilde ele alma ve modelleme kapasitesine sahip
oldugunu acikca ortaya koymustur. Ozellikle son dénemdeki caligsmalarda, genel
tip-2 bulanik mantik sistemlerinin daha basitlestirilmis ve hesaplama agisindan daha
verimli versiyonlar1 olan aralik tip-2 bulanik mantik sistemleri, bir yandan yiiksek
dogrulukta noktasal tahminler iiretirken, diger yandan da modelin tahminlerindeki
belirsizligi basarili bir sekilde modellemek amaciyla siklikla kullanilmigtir. Bu ikili
amaca ulagsmak icin, aralik tip-2 bulanik mantik sistemlerinin tip-indirgenmis kiimesi,
genellikle bir pinball kayip fonksiyonu araciligiyla belirsizlik araliklarini 6grenmek
ve tahmin etmek i¢in kullanilir. Eg zamanl olarak, aralik tip-2 bulamik mantik
sistemlerinin iirettigi net ¢ikti degeri, uygun bir ampirik kayip fonksiyonu tanimiyla
birlestirilerek noktasal tahminlerin dogrulugunu artirmak i¢in kullanilir. Bu iki farkl
amag¢ icin tanimlanan kayip fonksiyonlarinin bir araya getirilmesiyle de bilesik bir
kayip fonksiyonu olusturulur. Daha da 6tesi, genel tip-2 bulanik mantik sistemleri,
ikincil tyelik fonksiyonlarinin sahip oldugu esnek sekil ve boyut o6zelliklerinden
faydalanarak hem giivenilir tahmin araliklar1 iiretme hem de son derece dogru noktasal
tahminler elde etme potansiyelini tastmaktadar. Ikincil iiyelik fonksiyonlarinin noktasal
tahminler i¢in kullanilmasinin, sistemin hem belirsizligi etkin bir sekilde yonetmesine
hem de yiiksek dogruluk seviyelerine ulagsmasina olanak taniyan verimli bir strateji
oldugu cesitli caligmalarla kanmitlanmistir. Literatiirdeki cogu caligmada, genel tip-2
bulanik kiimeler kavramini ilk olarak Lotfi A. Zadeh tanimlamis olmasina ragmen,
Mendel ve John tarafindan Onerilen tanima dayanan genel tip-2 bulanik kiimelerin
daha yaygin olarak kullanildig1 goriilmektedir. Bu durumun temel nedeni, genel
tip-2 bulanik kiimelerin a-diizlem gosteriminin sundugu kolayliklardir. Bu gosterim,
ikincil iiyelik fonksiyonunun parametrelendirilmesini 6nemli Olciide basitlestirmekte
ve bir genel tip-2 bulanik mantik sisteminin, bir dizi a-diizlem iligkili aralik tip-2
bulanik mantik sistemine denk oldugunu gostermektedir. Ancak, Mendel ve John’un
taniminda, ozellikle ikincil iiyelik fonksiyonlarinin birincil iiyelik fonksiyonlarina
dogrudan ve kacinilmaz bir sekilde bagimli olmasi gibi baz1 6nemli dezavantajlar tespit
ettik. Bu tanima gore, ikincil iliyelik fonksiyonlarimi tamimlayabilmek i¢in Oncelikle
birincil iiyelik fonksiyonlarinin belirlenmis olmasi gerekmektedir. Bu sik1 bagimliligin,
genel tip-2 bulamik mantik sistemlerinin 6grenme performansini potansiyel olarak
kisitlayabilecegine ve ayni zamanda genel tip-2 bulanik kiimelerin tasarim esnekligini
olumsuz yonde etkileyebilecegine inanmaktayiz.

Bu yiiksek lisans tez caligmasinda, genel tip-2 bulanik kiimelerin tanimini, kavramin
onclisii olan Zadeh tarafindan orijinal olarak ortaya kondugu sekliyle yeniden ele aliyor
ve bu tanimin potansiyel avantajlarini arastirmayi hedefliyoruz. Bu dogrultuda, ilk
olarak Zadeh’in genel tip-2 bulanik kiimeler i¢in onerdigi orijinal tanimi detayli bir
sekilde sunuyoruz. Bu tanimin getirdigi en Onemli avantajlardan biri, genel tip-2
bulanik kiimelerin ikincil tyelik fonksiyonlarnin, birincil iyelik fonksiyonlarina
herhangi bir zorunlu bagimlilik olmaksizin, daha serbest ve esnek bir sekilde
tasarlanabilmesine olanak tamimasidir. Bu baglamda, her biri kendi bagina birer
tip-1 bulanik kiime olan hem ikincil iiyelik fonksiyonlar1 hem de birincil iiyelik
fonksiyonlar1 i¢in gerekli matematiksel temelleri ve formiilasyonlar1 Oneriyoruz.
Ardindan, Zadeh’in tanimmna dayanan genel tip-2 bulanik mantik sistemlerinin
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ciktisint anlamli bir gekilde tanimlayabilmek amaciyla, literatiirde yaygin olarak
kabul goren a-diizlem gosterimini Zadeh’in genel tip-2 bulanik kiimelerine entegre
ediyoruz. Bu entegrasyonun devaminda, ikincil {iyelik fonksiyonunun a-kesitlerini
tanimliyor ve bu kesitlerden hareketle, Zadeh’in genel tip-2 bulanik kiimesinin farkl
a-diizlemlerine karsilik gelen esdeger alt ve st iliyelik fonksiyonlarin1 matematiksel
olarak tiiretiyoruz. Elde edilen bu iiyelik dereceleri, a-diizlem yaklagimina dayanilarak
formiile edilen genel tip-2 bulanik mantik sisteminin nihai ¢iktisini hesaplamak i¢in
dogrudan ve etkin bir sekilde kullanilmaktadir. Bu yaklagimin, modelleme esnekligini
artirdigina ve 6grenme verimliligini olumlu yonde etkiledigine inaniyoruz. Ayrica,
bulanik mantik sistemlerinde, 6zellikle kural tabaninin biiylimesiyle birlikte ortaya
cikan ve "boyutsallik laneti" olarak bilinen onemli bir problemi ele almak iizere
ozgiin bir yontem gelistiriyoruz. Onerdigimiz bu yontem, girdi uzayinmn boyutlarina
bagli olarak birincil iiyelik derecelerini dinamik bir sekilde ayarlamakta ve bdylece
yliksek boyutlu veri kiimeleriyle ¢alisirken karsilasilan zorluklarin etkili bir sekilde
tistesinden gelinmesine yardimci olmaktadir. Ek olarak, genel tip-2 bulanik kiimelerin
matematiksel tanimlarinin ve varsayimlarinin ihlal edilmemesini garanti altina
almak amaciyla cesitli parametrelendirme hileleri 6neriyoruz. Bu hileler, karmasik
kisitlamalara sahip olabilecek optimizasyon problemini, kisitsiz bir optimizasyon
problemine doniistiirmemize olanak tanimakta ve bu sayede derin 6grenme alaninda
yaygin olarak kullanilan optimize edicilerin ve otomatik farklilastirma yontemlerinin
verimli bir sekilde uygulanabilmesini miimkiin kilmaktadir.

Bu tez kapsaminda, Zadeh’in tanimina dayanan ve ayni anda hem dogruluk hem de
belirsizlik lizerine odaklanan, yani "¢ift odakli" genel tip-2 bulanik mantik sistemlerini
ogrenebilmek icin kapsamli bir derin 6grenme cergevesi Oneriyoruz. Bu cerceve
icerisinde, Oncelikle bilesik bir kayip fonksiyonu tanimliyor ve bu fonksiyon dahilinde,
her bir aj-diizlemi ile iligkilendirilmis olan aralik tip-2 bulamik mantik sistemlerine
farkli ve belirgin roller atiyoruz. Tanimladigimiz bu bilesik kayip fonksiyonu, temel
olarak iki ana bilesenden olugmaktadir: bunlardan ilki modelin tahminlerindeki
belirsizligi, ikincisi ise tahminlerin dogrulugunu hedeflemektedir. Her iki 6nemli yonii
de etkin bir sekilde ele alabilmek amaciyla, ikincil iiyelik fonksiyonunun esnek sekil
ve boyut 6zelliklerinden yararlanarak iki farkli kayip tanimi sunuyoruz. Onerdigimiz
her iki kay1p tanimi i¢in de, bilesik kayip fonksiyonunun belirsizlik bileseninde, belirli
bir giiven seviyesi (@) icin iist ve alt kantil seviyelerini tahmin ederek giivenilir bir
tahmin aralig1 6grenmek amaciyla, yalnizca ap-diizlemiyle iligkili aralik tip-2 bulanik
mantik sisteminin tip-indirgenmis kiimesini kullaniyoruz. Diger yandan, bilesik kayip
fonksiyonunun dogruluk bilegeni i¢in ise iki alternatif kayip fonksiyonu tanimliyoruz.
Bu alternatiflerden ilkinde, genel tip-2 bulanik mantik sisteminin dogrudan c¢iktisini
bir noktasal tahminleyici olarak kullanirken; ikincisinde ise, belirli bir a-diizlemiyle
iligkili aralik tip-2 bulanik mantik sisteminin ¢iktisin1 noktasal tahminler i¢in temel
aliyoruz. Bu teorik altyapiy1 olusturduktan sonra, Zadeh’in tanimina dayanan genel
tip-2 bulanik mantik sistemlerinin, 6zellikle yiiksek boyutlu ve karmagik veri kiimeleri
tizerindeki karsilastirmali performans analizini sunuyoruz. Bu analizde, 6nerdigimiz
sistemleri, literatiirde yaygin olarak kullanilan Mendel ve John’un tanimina dayanan
genel tip-2 bulanik mantik sistemleri ve daha basit yapidaki aralik tip-2 bulanik
mantik sistemleri gibi benzerleriyle kiyaslhiyoruz. Elde edilen istatistiksel sonuglar,
Zadeh’in tanimina dayanan genel tip-2 bulanik mantik sistemlerinin, hem son derece
yiiksek dogrulukta noktasal tahminler elde etme hem de belirli bir kapsama diizeyinde
belirsizligi etkin bir sekilde yakalayan dar ve dolayisiyla yiiksek kaliteli tahmin araliklari
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tiretme konusunda etkili ve giiclii bir yaklagim olarak hizmet edebilecegini acikca
gostermektedir.

Bu tez calismasinda ayrica, Zadeh’in genel tip-2 bulanik mantik sistemlerine dayanan
ve veri dagiliminin tiim kantil seviyelerini aym1 anda tahmin ederek ters birikimli
dagilim fonksiyonunu 6grenmeyi amaclayan yenilik¢i bir derin 6grenme cercevesi daha
sunuyoruz. Onerdigimiz bu yaklasimin en énemli avantajlarindan biri, aragtirmacilarin
veya uygulayicilarin farkli giiven araliklar1 veya kapsama diizeyleri i¢in, her biri
belirli bir kantil ¢iftine karsilik gelen cok sayida ayr1 egitim siireci yiirlitme ihtiyacim
ortadan kaldirmasidir. Bunun yerine, model tek bir kapsamli egitim siirecinden
gectikten sonra, elde edilen ters birikimli dagilim fonksiyonu iizerinden istenilen
herhangi bir kantil ¢ifti secilerek, arzu edilen giiven diizeyini saglayan bir tahmin
aralig1 kolaylikla ve hizla olusturulabilir. Bu esnekligi saglamak amaciyla, genel tip-2
bulanik mantik sisteminin ¢ikti formiilasyonunu, @ = 7 seklinde bir atama yaparak,
sistemin belirli bir kantil seviyesi olan 7’yu 0grenmeye zorlayacak sekilde yeniden
diizenliyoruz. Bu sayede, a-diizlemi ile iligkilendirilmis her bir aralik tip-2 bulanik
mantik sisteminin ¢iktisi, farkli bir kantil seviyesine karsilik gelen bir fonksiyonu
o0grenmek iizere ayarlanmis olur. Genel bir tip-2 bulanik mantik sistemi kullanarak ters
birikimli dagilim fonksiyonunu etkin bir sekilde 6grenebilmek i¢in, egitim verilerinden
rastgele kantil seviyeleri 6rnekleyerek es zamanl kantil regresyonu yaklagimini yeniden
formiile ediyor ve modelimize uyarliyoruz. Ogrenme siirecini daha da iyilestirmek ve
modelin 6zellikle zorlandig1 bolgelerde daha iyi performans gostermesini saglamak
amactyla, "uyarlanabilir e zamanli kantil regresyonu" adini verdigimiz 0zgilin bir
yaklagim gelistiriyoruz. Bu yaklasim, egitim siireci sirasinda bir yanlig kalibrasyon
Ol¢iisiinii dinamik olarak dahil etmekte ve bu 6l¢iiye dayanarak, modelin tahminlerinin
gercek degerlerden saptigi, yani yanhs kalibrasyonun yiiksek oldugu bolgelerden ek
kantil seviyeleri liretmemize olanak tanmimaktadir. Bu sayede, iiretilen bu ek kantil
seviyelerinin genel tip-2 bulanik mantik sistemi tarafindan daha etkili bir sekilde
0grenilmesi ve modelin genel performansinin artirilmasi hedeflenmektedir. Son olarak,
onerdigimiz bu kapsamli yontemin istiinliigiinii ve etkinligini kanitlamak amaciyla,
elde ettigimiz sonuglari, literatiirdeki en giincel ve en basarili derin 6grenme tabanl
belirsizlik ve kantil tahmin yontemleriyle kapsamli bir sekilde karsilagtiriyor ve
onerimizin avantajlarini ortaya koyuyoruz.
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1. INTRODUCTION

Deep Learning (DL) has achieved remarkable breakthroughs across a wide range of
applications, including computer vision, natural language processing, and robotics
[1-6]. Despite these successes, a predominant focus on accuracy often overlooks
a critical aspect of modern predictive modeling: Uncertainty Quantification (UQ)
[7-10]. In settings where decisions carry significant consequences, understanding and
quantifying the uncertainty in predictions is as crucial as achieving high accurate results

[11-13].

Fuzzy Logic Systems (FLSs) provide a powerful and flexible framework for handling
uncertainty, making them well-suited for applications where uncertainty is significant.
In the context of Uncertainty Quantification (UQ), Type-2 (T2) FLSs are particularly
advantageous because they incorporate uncertainty directly into their Membership
Functions (MFs). These MFs can be represented using either General Type-2 (GT2)
Fuzzy Sets (FSs), which provide the most comprehensive modeling of uncertainty,
or their simplified variant, Interval Type-2 (IT2) FSs [14]. GT2-FSs were originally
introduced by Zadeh (Z) [15, 16] and have since been widely studied and utilized,
particularly through the formalization provided by Mendel and John (MJ) [17]. The
MJ-GT2-FSs framework is implemented via the zSlices/a-plane representation, which
offers a structured approach to handling the complexities of GT2-FSs [14, 18]. This

representation is built upon two fundamental principles:

1. Parameterized Secondary MFs (SMFs): The Secondary MF (SMF) of a GT2-FS is
parameterized based on its Primary MF (PMF), allowing for a more structured and

interpretable representation of uncertainty.

2. Equivalence with IT2-FLSs: The a-plane representation establishes a direct
connection between GT2-FLSs and a set of associated I'T2-FLSs, effectively enabling
the decomposition of complex GT2 FLSs into a set of IT2-FLSs.

The learning procedures of IT2 and GT2 FLSs have traditionally focused on improving

accuracy across various applications [1, 19-26]. Most studies have concentrated on



refining MF structures, optimizing parameter learning algorithms, and enhancing rule-
based inference techniques to achieve better predictive performance [1, 19-26]. While
these advancements have led to significant improvements in accuracy, they have largely
overlooked the potential of IT2 and GT2-FSs for UQ. Given the inherent ability of
IT2 and GT2-FSs to model uncertainty within their structure, their application in UQ

remains an underexplored yet promising area of research.

Recently, there has been a growing interest in using T2 FSs for UQ[27-30]. In [29],
a DL framework is introduced using a composite loss function commonly applied in
Quantile Regression (QR). Their approach explicitly incorporates the Type-Reduced
Set (TRS) and the output of IT2-FLSs to train models that can generate Prediction
Intervals (PIs). Similarly, for MJ-GT2-FLS [30], a different composite loss function is
designed to utilize the support of SMFs (i.e., PMFs) for learning PIs while shaping the
model for point-wise estimation. Both methods aim to learn PIs by ensuring a specific
quantile range is covered, rather than capturing the entire predictive distribution—an

objective that is considered the most comprehensive approach to UQ [12, 31].

In this thesis, we explore GT2 FSs based on Zadeh’s definition to achieve
high performance in both accuracy and uncertainty modeling through GT2-FLSs.
Specifically, we adopt Z-GT2-FS instead of MJ-GT2-FS to eliminate the dependency
of the secondary membership grade on the primary membership grade. This provides
greater design flexibility, making the system more adaptable. We begin by establishing
the mathematical foundations of SMF and PMF, both of which are defined using Type-1
(T1) FSs. Next, we incorporate the a-plane representation into Z-GT2-FSs to formally
define the output of Z-GT2-FLSs. This involves defining the a-cut representation of
SMF and extracting the Lower MF (LMF) and Upper MF (UMF) for each corresponding
a-plane of Z-GT2-FSs. These extracted MFs directly contribute to computing the final
output of Z-GT2-FLSs using the a-plane representation. To address the curse of
dimensionality during the learning process of Z-GT2-FLSs, we introduce an approach
that dynamically adjusts the PMF based on the input dimension. Additionally, we
propose parameterization tricks that ensure the integrity of Z-GT2-FS definitions. This
allows us to train Z-GT2-FLSs effectively using standard unconstrained DL optimizers
and Automatic Differentiation (AD), making the learning process more efficient and

scalable.



After formulating Z-GT2-FLSs as a structure trainable via DL optimizers, we introduce
a DL framework that employs distinct a-planes (a-1T2-FLSs) within a composite
loss function. This framework is designed to generate both high-quality Prediction
Intervals (HQ-PIs) [9] and accurate point-wise predictions simultaneously. To achieve
this, we propose two distinct loss functions that leverage the shape and size of the
SMF in Z-GT2-FSs. The composite loss function consists of two main components:
an uncertainty term and an accuracy term. The uncertainty term utilizes the TR set
of the ap-plane (ap-IT2-FLSs) to generate PIs by estimating lower and upper quantile
levels (7,7) for a given confidence level. Meanwhile, the accuracy term introduces
two approaches: (1) using the aggregated output of Z-GT2-FLSs and (2) employing
the output of the akx-plane (ax-IT2-FLSs) for point-wise estimation. To evaluate the
effectiveness of Z-GT2-FLSs, we conduct extensive experiments on high-dimensional
datasets, comparing their learning performance with MJ-GT2-FLSs and I'T2-FLSs [29,
30], both of which involve a higher number of learnable parameters (LPs). Statistical
analyses demonstrate that Z-GT2-FLSs provide a promising solution for achieving both

high prediction accuracy and reliable HQ-PIs for a given confidence level.

Additionally, we propose a DL framework based on Z-GT2-FLSs to learn the inverse
cumulative distribution function by estimating all quantile levels simultaneously. This
approach enables us to capture the entire conditional distribution of the target variable,
allowing for the selection of appropriate quantile levels for any given confidence level
after one training section. To achieve this, we reformulate the GT2-FLS output as
y(x,ay), ensuring that it learns a specific quantile level 7 by setting @ =7. As a
result, each a-IT2-FLS is designed to approximate a quantile function, offering the
flexibility to generate any desired 7 € [0, 1] by adjusting @ within the same range. To
model the predictive distribution using GT2-FLS, we adapt the Simultaneous Quantile
Regression (SQR) approach [12], which involves sampling random quantile levels. To
further enhance the learning process, we introduce an Adaptive SQR (ASQR) method
that incorporates a miscalibration measure for improved accuracy. Finally, we evaluate
the estimation performance of GT2-FLS in comparison with DL-based methods to

demonstrate its advantages.

The organization of this thesis consist of 6 chapters. In Chapter 2, we review some
mathematical foundations on that are utilized throughout the thesis. The topics we

review include fundamental definitions from the theory of IT2/GT2-FLSs. In Chapter



3, we motivate and present the Z-GT2-FLSs and explain its key differences from
MIJ-GT2-FLSs; we additionally propose the solutions Z-GT2-FLSs produce to the
problems of IT2-FLSs. Chapter 4 describes the learning method for dual-focused
Z-GT2-FLSs and shows the statistical analysis of Z-GT2-FLSs compared to MJ-GT2,
and IT2-counterparts. In Chapter 5, we explore how Z-GT2-FLSs can be leveraged
for predictive distribution estimation by assigning a-planes to quantile levels (7). In
Chapter 6, we conclude with an overview of Z-GT2-FLSs’ applications and future

work.



2. BACKGROUND: MATHEMATICAL PRELIMINARIES

In this chapter, we will first review the mathematical fundamentals of Type-2 Fuzzy
Sets, providing a foundation for understanding their theoretical framework. After
establishing these fundamental concepts, we will then explain the structure and working

principles of IT2 and GT2-FLSs.

2.1 Type-2 Fuzzy Sets
A Type-2 Fuzzy Set can be defined as follows [32]:
A:{(x,u),yA(x,u)|x€X,u€U} (2.1)

Here, x represents the input variable, also referred to as the primary variable of A,
while X denotes its corresponding universe[32]. The variable u serves as the secondary
variable of A, with U = [0, 1] representing its universe. Lastly, u i(x,u) defines the
T2-MF of the T2-FS A. A can also be expressed in the continuous and the discrete

universe as follows:

A=/X/ng<x,u>/<x,u) (2.2)
A=) ) i) /(ew) (2.3)
xeXuel

After defining a T2-FS denoted by A, we can define the 2-D support of u i (x,u) (which
is called Footprint of Uncertainty (FOU) of A) as follows [32]:

FOU(A) = {(x,u) € Xx [0,1], pz(x,u) > 0} (2.4)

FOU is bounded by Lower MF (LMF) and Upper MF (UMF), which are denoted by

K (x,u) and 1 5 (x,u) respectively and described as follows [32]:
LMF(A) = EA(x,u) = inf{u |ue[0,1], puz(x,u) > 0} (2.5)

UMF(A) = Hi(x,u) =sup {u |ue[0,1], puz(x,u) > O} (2.6)



The primary membership at x € X of the given T2-FS (A) is described as J, and defined
by the interval of [EA (x), 1 z(x)] as[32]:

Jy={ue[0,1], uz0x,u) > 0} = [p (x), Hz (x)] 2.7)

The secondary membership at x € X of the given T2-FS (A) is described as u A (1)
OF U7 (y) and defined as follows[32]:

Mo () = Hz0 = M4 = / w o) u 2.8)
uel0,1]

2.1.1 Interval type-2 fuzzy sets

An Interval Type-2 fuzzy set is defined as
A={(x,u), uz(x,u)=1|xe X, ucU}, (2.9)

where the secondary membership function u ; (x,u) maps each primary element x € X
and secondary variable u € U to 1. An IT2-FS is a special case of a GT2-FS all of
whose secondary grades are equal to 1[32]. An IT2-MF is deployed in the 2D domain
instead of 3D, differing from GT2-MF. In this context, an I'T2-FS is fully defined by its
LMF and UMEF, with the FOU representing the region between them.

2.1.2 General type-2 fuzzy sets

A General Type-2 fuzzy set is defined as
A:{(x,u),uA(x,u)leX,uEU}, (2.10)

The SMF, denoted by u A(x)> is the key element of GT2-FSs differing from the I'T2-FSs.
The next chapter will deeply investigate how the SMF shape can be represented in

different settings [15, 17].

2.2 T2-FLSs: A Brief Overview

After defining T2-FSs (i.e., IT2-FS and GT2-FS), we will briefly introduce I'T2-FLSs
and GT2-FLSs. A T2-FLS consists of a fuzzification layer, a fuzzy rule base, an

inference engine, a type reducer, and a defuzzification layer, as shown in Figure 2.1.

T2-FLSs are constructed based on if-then rule structures. T2-FSs are used to define

the antecedent and consequent parts of T2-FLSs. First, the fuzzification layer is used
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Figure 2.1 : Structure of a T2-FLS.

to transform crisp inputs into the T2 fuzzy sets [33], as shown in Figure 2.1. This
process provides us with fuzzified inputs, subsequently, these fuzzy inputs are fed to
the inference engine, which is responsible for applying the fuzzy rules in the rule base
to derive the corresponding T2 fuzzy output sets [33]. These T2-FSs are reduced
to T1-FSs via a type-reducer, and then the output of a T2-FLS is calculated by a
defuzzification layer, as depicted in Figure 2.1 [33]. In this thesis study, we have
used the Takagi-Sugeno-Kang type FLS as the T2-FLS. The antecedent membership
functions of T2-FLSs are defined with T2-FSs, while the consequent membership
functions of T2-FLSs are defined through affine (linear) functions. In the following

subsections, we will introduce IT2-FLSs and GT2-FLSs, respectively.

2.2.1 Interval type-2 fuzzy logic systems

In this study, IT2-FLSs are constructed with gaussian antecedent functions and affine
(linear) consequent membership functions. In this context, for a given input vector
X = (x1,Xx2,... ,xM)T with M dimension and single input y, the rule structure of an

IT2-FLS with P rules (p =1,2,..., P) is defined as follows:

R, :Ifx;is A, and...xy is A,y Thenyisy, (2.11)

where A p.1,--.,Ap y are antecedent membership functions of the given input vector
X =(x1,x2,... ,xM)T respectively, y is the output of the IT2-FLS. Here, R, is the rule
number, p represents the rule index. y, is the consequent membership function, which
is defined via an affine (linear) function as follows:

M
Yo =D @pm¥n+ap 2.12)

m=1



The antecedent MFs A p.m are defined with IT2-FSs that are represented via an Upper
MF and a Lower MF as follows:

AZ,,, (Xm)=exp (— (ot — c,,,m)2 /Zﬁi,m) (2.13)

2
iy Gon) = hpmexp (= (vn = cpm)’ 202,) (2.14)
where cp,, is the center, &pm = [0, ,,Tpm] is the standard deviation while hj

defines the height of the LMF Vp,m. The output of the IT2-FLS (y) is defined with
the Type-Reduced Set ¥ = [X’ y] of the IT2-FLS and can be calculated as follows[17]:

y(x) = (y(x) +y(x))/2 (2.15)

where y, and y represent the left and right boundary points of the type-reduced set, and
these boundary points are obtained via a Center of Sets Calculation Method (CSCM)
method. In this thesis study, we have used the Karnik-Mendel (KM) algorithm to

calculate the type-reduced set as follows[14]:
L 7 P
szl fp (X)yp + Zp=L+1 ip (X)yp

F — (2.16)
szl fp (x) + Z;:LH zp (x)

y(x) =

Z§=1 ip (X)yp + Z§=R+1 7p (X)yp
SR L 0+ ZE e T, ()
where L and R represent the switching points of KM algorithm [14]. In (2.16) and

y(x) = (2.17)

_ ‘ N
(2.17), ip (x) and f,(x) represent the lower and upper firing strengths of the p™ rule

and calculated as follows:
ip (x) = EAp,l (x1) ﬂﬁ,&p,z (x2)N... HEAP’M (xm) (2.18)
fr® =0z, ()NEz , ()N .NHg () (2.19)
The membership grades of the LMFs are given by:

[T o Mg forX:(xl,xz,...,xM)T (2.20)

, -
—Ap1 —Ap> —Ap.M

while the membership grades of the UMFs are:

ﬁAp,l’ ﬁAp,Z’ . ﬁAp,M’ forx = (xl,x2,...,xM)T (2.21)

Here, N is the t-norm operator, which can be defined using various mathematical
functions. Among the most commonly used t-norms are the minimum and product

operators [14, 28, 34].



In this study, we used the product operator as the t-norm operator. During the statistical
analysis of IT2-FLSs on various datasets, we used two different antecedent membership

functions to define the IT2-FSs to construct parametric I'T2-FLSs as [29]:

e H type IT2-FSs: As shown in Figure 2.2, the FOU is only generated by the

hpm Yp,m, since Tpm =T pm-

e HS type IT2-FSs: As shown in Figure 2.3, the FOU is dependent on the

hp,ma (%

o and o), Vp,m.
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Figure 2.2 : H-IT2-FS.
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Figure 2.3 : HS-1T2-FS.

2.2.2 General type-2 fuzzy logic systems

GT2-FLSs are constructed based on GT2-FSs, which were first introduced by Zadeh
[15, 16] and have since been widely studied, particularly following the definition
provided by Mendel and John [17]. In this study, we differentiate between two types
of GT2-FLSs based on their underlying GT2-FS definitions. Specifically, we refer to
GT2-FLSs that utilize Zadeh’s definition [15, 16] as Z-GT2-FLS, while those based on



the definition by Mendel and John [17] are termed MJ-GT2-FLS. In this section we
will give brief introduction on GT2-FLSs, then deep dive into Z/MJ-GT2-FLSs in the

following chapter.

The GT2-FLS is formulated for an input vector X = (x1,x2,...,x M)T and a single output

y. The rule base is composed of P rules (p =1,2,..., P) that is defined as:

R, :Ifx;is A, and...xp is A,y Then yisy, (2.22)

where A p.1s--.,Ap y are antecedent membership functions of the given input vector
X = (x1,x2,... ,xM)T respectively, y is the output of the GT2-FLS. Here, R), is the rule
number, p represents the rule index. y, is the consequent membership function, which
is defined via an affine (linear) function as follows:

M
Yo =D @pm¥n+ap (2.23)

m=1

The antecedent MFs are defined with GT2-FSs A, , that are defined as a collection of

a-planes (ay) as follows:

Apm = U Az, (2.24)
akG[O,l]
where Agfm is the a-plane of A p.m associated with @y € [0,1]. When «a is distributed

uniformly, we express it as ay = k/K for k ranging from O to K. Thus, there are a total

of K + 1 a-planes [14]. This representation allows defining the output of the GT2-FLSs

as follows: X
2o Y (X) i
y(x) = kOK— (2.25)
Zk:O (073
Here, y**(x) is the a.-IT2-FLS output and defined as:
Y (x) = (5 (1) + 5% (%)) /2 (2.26)

Here, y®*, and y** represent the left and right boundary points of the type-reduced set
for the given a-IT2-FLS, and these boundary points are obtained via KM algorithm

as follows[14]:
—o
pet L@+ Ep £ (03

PRUACIEDYEREE)
bt L@+ E g £ (0

Syt @)+ E) g [ ()

Y (x) = (2.27)

Yy (x) = (2.28)
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where L, R are the switching points of the KM algorithm [14]. izk (x) and 7?{ (x) are

the lower and upper rule firing of the p'" rule and are defined as:
k(X)) =l o NU o N...NU q 2.2
C)) Ko, (x1) Hio (x2) Him, (xm) (2.29)

Fo () =Hze (x) NHzon (x2) 0. NHgen (xa1) (2.30)
p,l p.2 p.-M

The membership grades of the LMFs for a given a-IT2-FLS are given by:

Hoapseo s Moo s fOI‘X=(X1,X2,...,xM)T (2.31)
Aok,

p,l

while the membership grades of UMFs for a given a-IT2-FLS are:

Hgon,. ..,z for x = (x1,x2,....x0m) " (2.32)
p,l p.-M

Here, N is the t-norm operator, which can be defined using various mathematical
functions. Among the most commonly used t-norms are the minimum and product
operators [14, 28, 34]. In this study, we used the product operator as the t-norm

operator.

2.2.3 The implementation of karnik-mendel algorithm

There are multiple type-reduction methods. In this thesis study, we implement the
KM Algorithm [14]. This algorithm includes an iterative method to determine the left
endpoint (y,y**) and the right endpoint (y, y*). L and R are found iteratively by
checking which combination of upper and lower firing strengths (e.g., ?Zk, A ;k) yields
a consistent centroid calculation. This iterative process increases the inference time and
complexity of IT2 / GT2-FLSs. To handle this issue, the KM algorithm can be thought
of as a linear functional programming problem [35]. It can be observed that (2.16)
and (2.17) (i.e., (2.27) and (2.28)) can be reformulated via u,, € 0,1 which defines an
equivalent f), = 71,14 pt+ ip(l —u,). However, this approach still requires an iterative

process.

In our paper [36], we propose an efficient method to handle this problem by eliminating

the needed optimization problems in (2.16) and (2.17) by evaluating
Y(u)=X(u)oZ(u) (2.33)
where,

X =coreu: ao=p. vpf (0icp=p(FpX)=f (), p=1,..P 234

11



where y, represents the consequent part of the p" rule, and fp (x), and ?p(x) are the

lower and upper firing strengths of the p'" rule.

Zwy=po+pu: o=y, [ ihp=(F,(0-f (0).p=LouP (239

with u € RP2" that defines all binary combinations u,, as follows:

P
u= ]_[{o, 1}. (2.36)
p=1

Here, [] represents the cartesian product. For instance, u for P =2 is as follows:

2
11
u:]—[{o,l}:[g (1) 0 1] (2.37)
p=1

As Y (u) includes all possible solutions, we can obtain yandy:
y= min(Y (u)) , y =max(Y(u)) (2.38)

This approach is introduced for IT2-FLSs and can be directly extended to GT2-FLSs

via a-plane representation as follows:

Y (1) = X (u) @ Z° (u) (2.39)
where,
a @ ay P % @ 7%k 0%
X (u) = ¢ 4c®u: W= ZP ¥pf () s ept = yp(F, () = () . p = .. P
(2.40)

where y, represents the consequent part of the p" rule, and f;’k (x), and ?Zk (x) are

the lower and upper firing strengths of the p™ rule for the given ay-plane.

Z%(u) = B +B%u ng:ZZiZk; p= () (0= X)) p=1... P (241)

with u € RP%2" that defines all binary combinations u, as follows:

P
u= ]_[{0, 1}. (2.42)
p=1

Here, [] represents the cartesian product. For instance, u for P =2 is as follows:

2
11
u:n{O,l}:[g (1) 0 1] (2.43)
p=1

As Y% (u) includes all possible solutions for a-IT2-FLS, we can obtain y* and Yk

y* =min(Y** (u)) , y* = max(Y** (u)) (2.44)

These implementations provide a superior baseline for the inference and the training
of the T2-FLSs through batches/mini-batches using DL optimizers by eliminating the

iterative process in the original KM algorithm[14].
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3. Z-GT2-FLS FOR ENHANCED LEARNING

In this chapter, we will present the details of how to represent and learn high-performing
GT2-FLSs. We begin by introducing MJ-GT2-FLSs [17] and discussing their potential
limitations. Then, we propose Z-GT2-FLSs [15, 16] as a solution, highlighting how
they effectively address the issues associated with MJ-GT2-FLSs.

3.1 MJ-GT2-FLS: Representation And Potential Issues

To define Ap,m, the most widely used GT2-FS representation is the one of Mendel
& John [17] as shown in Figure 3.1. A GT2-FS A is characterized by a type-2 MF

(x, 15 (x,u)), where x € X and u € J, C [0,1], i.e.,
A:{(x,,ug(x,u))|x€X,u€JXQ[0,1]} (3.1
in which 0 < pz(x,u) <1[17].

A u(x,u)
/1- aK= 1

2
~~ .hd‘- @y 6;1,1}1 51
Y- pm

—&o
ﬂAp'm

Jx
Figure 3.1 : MJ-GT2-FS for Tpm =T pm-

13



3.1.1 PMF representaton

According to the definition of MJ-GT2-FSs, we first parameterize a PMF, i.e. Ag?m, by
defining the following UMF ﬁzo (x,,) and LMF ,uzo (xm):
p.m

—Ap,m

43 o) =y exp (= (o =) 207, 62)

AL (i) =exp (= (om = cpm) 1252, (3.3)
where ¢ is the center, Gpm = [T, -0 pm] is the standard deviation while k),
defines the height of the LMF Vp,m. As depicted in Figure 3.1, the Footprint of
Uncertainty (FOU) (Jy) or the support of the Secondary MF (SMF) is defined with
Opmand hy .

3.1.2 SMF representation

In this study, we use the Trapezoid SMF, which employs a T1-FS which can be defined

as follows: I
g‘[_‘;l, ol <u<é?
1, §2<u<é’
oa(u) = r 3.4
ﬂA(x)( ) (;344__6“3’ 63 <u< 54 ( )
0, otherwise

Here, 6',62,6> and 6 represent the left support, left core, right core, and right support
points of the trapezoidal SMF, respectively. For a given a;-1T2-FLS, LMF and UMF

can be calculated as[37]:

— — a 1 2 1
T T | PP CAP ) (3-5)
_~"k :_(10 _ (ﬁQO _ % ) (1 —64 +a (64 —53 )) (3 6)
/JAp,m Ap,m Ap,m Eﬁp,m p.m k\9p,m p.m .

Note that 0 < 6! <62 <83 <6* < 1.

In this study, we simplify the original parameter space by setting §' = I (x) and
Bi,m
=7 Apom (x). Furthermore, for consistency and simplicity, we redefine the right core

of the trapezoid as ¢! and the left core as 62. With this reformulation, (3.4) is rewritten

as follows:
“H ™) 2
W, EAp,m (x)<u<sd
2 1
Mi@ =15 o, =0 (3.7)
W, 0 Su<u/;p’m(x)
0, otherwise

14



Based on the PMF, the following parameterized SMF is used that is defined via the
UMF and LMF of A}%, (k #0) [37]:

~ap — (ZO +a (—Gi() — (ZO )61 3.8
Hio, =Hz,, T \Hg,, "Hs,,)Opm (3.3)
ar = I . —a —({0 _ ({0 ) (1 _62 ) 39
/JA k /’t p m k (/’lAp’m EAp,m p.m ( )
Here, {517 m p m> 05 m} [0,1],Vp,m are parameters that define the shape of

the SMFs as shown in Figure 3.1. By a-plane representation, we can find the lower and

upper membership grades (i.e., H o and y zex ) for the corresponding ay-IT2-FLS.
—Apm p.m

3.1.3 Potential issues

In a recent study [30], a DL-based learning method for MJ-GT2-FLS, which is based
on IT2-FLS one in [29], is presented. We identified the following two problems:

1. Flexibility: The drawback of the method lies in its insistence on the explicit
parameterization of SMFs with respect to the PMFs prior to training, i.e. the
implementation of the MJ-GT2-FLS definition via (3.8) and (3.9). While providing
structure, this might hinder the GT2-FLS’s learning capacity as the learning
performance depends on how the shapes of the UMF and LMF in (3.2) and (3.3)
(i.e. the FOU size) are defined.

2. Curse of dimensionality: This problem is a well-known problem for FLSs because
lower and upper firing strengths approach zero [ f ;k (x), ?Zk (x)] — 0 when handling
high-dimensional datasets (i.e., rule firing problem). In [30], they handled this
problem by setting the t-norm operator N in (2.29) and (2.30) w.r.t the data size (V)
and dimension (M). They suggested using the product operator for low dimensional
input vector spaces while the min one for high dimensional ones based on their

exhaustive comparative results.

3.2 Z-GT2-FLS: Representation And Solutions

We conceptually travel back to the original formulation of GT2-FSs introduced by Zadeh
[15, 16], adopting his definition to enhance flexibility during the learning process. This
approach offers a practical solution to the curse of dimensionality problem, which often

arises in FLSs.
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Let us start to define GT2-FSs with the definition of Zadeh [15, 16] i.e., a GT2-FS A
on X is a mapping [15]:
A:X —>FS([0,1]) (3.10)

Alternatively, we can state that A p,m 18 mapping A pm - X —[0,1] [0.1] " The equivalence
of (3.1) and (3.10) is given in [38]. In this study, we adopted (3.10) and integrated it
with a-plane representation to define the output of Z-GT2-FLS via (2.25).

3.2.1 PMF representation

As shown in Figure 3.2, we represent the PMF with a T1-FS A, ,, that is defined as

follows:
2
g i) = XD = (= ) /2(p ) (3.11)
where o, , is the standard deviation and ¢, ,, is the center of the Gaussian MF, which
defines the membership grade of a TI-FS A, ;.

3.2.2 SMF representation

In this thesis study, we define the SMF with a two-sided Gaussian MF as follows:

2(0pm)?
e, (1) = s (3.12)
exp|— P JAfu > ypm
2(0pm)?
Here,o]f,’m and o, , are the left and right standard deviations, and ), is the center,

which defines the shape and support of the SMF. As shown in Figure 3.2, we set
Yp.m = HAp ().

Now, to extract the a-planes of the Z-GT2-FS (A‘p’f‘m), we define the a-cuts of py, , (u).

We first rewrite (3.12) as follows:
—v=2In (@), = (=Ypm) if tu < ypom (3.13)
V=2In(ap) oy, = (u=Ypm) if u>y,m (3.14)

Then, by inserting H o into (3.13) and (3.14) while u ;e into (3.13) and (3.14) as u,
—p.m ~ p.m
we can extract the LMF and UMF of A%, (k # 0) as follows:

Mo (Xm) = pa,  (Xm) =y=21n (@) (3.15)
p.m
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Figure 3.2 : Z-GT2-FS.

ﬁ/i,‘f,"m (Xm) = pa,,, (Xm) +V=21In(ax)0), (3.16)
Now, by using (3.15) and (3.16), we can define the output of Z-GT2-FLS via a-plane
representation as given in (2.25). The only problem with this implementation is due to
the domain space of In(-), which spans (0, oo], and thus @ = 0 is not included. Thus,

we associate the ag-plane with ag = 0.01. Our motivation for this setting is grounded

in the consideration that 4/-2In (ap) =~ 3. Thus, Eg‘; . and ﬁ;‘;’m are defined explicitly
as follows:
Y Gon) 2 i, (6n) =307, (3.17)
ﬁz‘; N (Xm) = ua,,, (Xm) +307,,, (3.18)

Thus, we can ensure that ,uzo

—p.m

and ﬁz‘) remain within a range of three standard
p.m

deviations from y,, ,.

3.2.3 Curse of dimensionality problem

Unlike [30], our study adopts a consistent approach by using the product operator as
N in (2.30) regardless of the data size and dimension. To avoid the general problem
of | izk (x),?gk (x)] — 0 in high-dimensional datasets (i.e. rule firing problem), we

propose a method like the HTSK [39] that scales u Apm WILM as follows:

#a = (a, )™ (3.19)

We can reformulate (3.19) in the following explicit standard form of a Gaussian MF to

represent the PMF:

15, Cm) = exp (= (5 = cpm)” 1 (VM ) (3.20)
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which is mathematically equivalent to HTSK [39] as shown in [40]. When compared
to (3.11), we observe that o, of the PMF is scaled with VM. Thus, the learning of

GT2-FLS is not substantially affected by the increase in feature dimensionality.

3.3 Learning T2-FLSs Within DL Frameworks

We first define the Learnable Parameters (LPs) of the T2-FLSs and then provide
parameterization tricks to allow learning them via DL optimizers and AD methods

provided within DL frameworks such as Matlab and PyTorch.

3.3.1 Learnable parameter sets for I'T2-FLSs

The LP sets of the IT2-FLSs (8772) consist of the LPs of antecedent MF (6;77_4) and
those of the consequent MFs (8;72-¢) [29]. The LP set of IT2 antecedent MF is:

e Htype IT2-FS: the setis (8;72-ax) = {¢,0, h}, where ¢ = (c1 1,...,cp ) € RPXM,

o=(11,...opm) €ERPM b= (hyy,....hp )T €RPM (5, =0, = pm)-

e HS type IT2-FS: the set is (8;72-ans) = {c,0,0,h}, where ¢ = (cy1,... ,cP,M)T €
RPM o= (0 s 0p ) €eRPM T = (T 1,....0p M) eRPM,

h= (hl,la A ,hP,M)T S RPXM.

The learnable parameter set of consequent MF is identical, Oit,-c = {a,ap}, with
a=(aiy,...,apy)" €RPM ag=(ayy,...,apo)" € RP*!. Overall, H-IT2-FLS has

a total of 3PM + P(M + 1), while the HS-IT2-FLS includes 4PM + P(M +1) LPs.

3.3.2 Learnable parameter sets for GT2-FLSs

The LP sets of the GT2-FLSs (8g72) consist of the LPs of antecedent MF (872-4) and
those of the consequent MFs (8G72-¢). For both the MJ-GT2-FLS and Z-GT2-FLS, we
define the identical 8Gr2_c as Ogro_c = {a,ao}, with a = (a1 1,...,apy)’ € RPM,
ap = (aip,...,apo)’ € RP*!. The only difference between them lies in Ogro-a =

{8p,0as}), ic., (3.1) vs. (3.10).

e For MJ-GT2-FLS: 0p = {c,0, h} and x5 = {6V, 6P} withc = (c1.1,...,cpm)" €
RPM g = (o11,...,0em)T € RPM b = (hy4,...,hpp)T € RPM 6D =
6,6 )T e RUM and 6@ = (617,...,60)7 e R, In [30], they set
Shm =0y and 65, =6;.Yp.

o For Z-GT2-FLS, 6p = {¢,0} and 05 = {a},07} with 0 = (¢",..., 0T €
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RIXM

_ (")
,and 0" = (0'1 .

o o'é/;))T € R™M _ For the sake of simplicity, we set o'lé,m =

l S
oy and o7, =0, Yp.

To sum up, MJ-GT2-FLS has a total of (3P +2)M + P(M + 1), while the Z-GT2-FLS
involves (2P +2)M + P(M + 1) LPs. Despite the added complexity of using a Gaussian
SMEF, the Z-GT2-FLS has PM fewer LPs compared to MJ-GT2-FLS.

3.3.3 Parameterization tricks for T2-FLSs for DL optimizers

The learning problem of GT2-FLSs is defined with constraints 8 € C that arise from the
definitions of FSs [29]. Given that DL optimizers are unconstrained ones, we introduce
parametrization tricks to transform 6 to an unbounded search space. In this context, we
will present the parameterization tricks for both IT2-FLSs and MJ-GT2-FLSs [29, 30].

Afterwards, we will introduce the parameterization tricks for Z-GT2-FLSs.

e Parameterization Tricks for IT2-FLSs: For the antecedent part, we must satisfy the

condition u Apm (Xm) = ﬁAp,m (x,) [29]. Thus, we have the constraints:
O<hpm<l,a,,<0pm (3.21)
To solve this issue, we implement the following parameterization tricks :
hym = sig(h,. ) (3.22)
Tpm=0pu+lAl, o =0, —Al (3.23)

p,m

where sig(-) is the sigmoid function and {4’ ,,0 ,.,A} are the new unbounded

r.m>“ p,m>

learnable parameters [29].

e Parameterization Tricks for MJ-GT2-FLSs: For the antecedent part, (3.22) is

implemented. For the SMF part, we have the following constraint [30]:
0<62 <6 <1. (3.24)
Thus, to satisfy the condition, we utilize the following parameterization tricks[30]:
Sy =5ig(6),) 03 =0,,5i8(5%, ) (3.25)

where sig(-) is the sigmoid function and {6 ,ln', 6,%1,} are the new unbounded learnable

parameters [30].
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e Parameterization Tricks for Z-GT2-FLSs: For o}, 0" € 67>— 4, we must ensure that
the learned Agf‘m adhere to the conditions of GT2-FSs, specifically 0 < ,L_lAka (xm) <
[z (x,) < 1,Yp,m. Itisimportant to highlight that, as per the definitions in (3.15)

p.m

and (3.16), we inherently ensure H (xm) <Mz (X),Vp,m.
—Apm p.m

For o, we address the constraint 0 < o/, < Yp.m/N—=21n(0.01) via:

ol =y, m/V-2In(0.01)sig(7,) (3.26)

For o, where the constraint is 0 < o7, < (1-=y, ) /v-2In(0.01), we do the

following trick:
ol = (1=ypm) /A/~2In(0.01)sig(7,) (3.27)

where sig(-) is the sigmoid function that provides the generation of unbounded

optimization variables {7,,0"}. Here, the utilization of 1/4/-2In(0.01) is

motivated by the objective to ensure [,quk (xXm), fzox (xm)] € [0,1],Vp,m.
p.m p.m
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4. LEARNING T2-FLSs WITH A DUAL-FOCUS

In this chapter, we introduce the proposed framework for learning dual-focused Type-2
Fuzzy T2-FLSs and provide a comprehensive analysis of our Z-GT2-FLSs model. We
demonstrate in detail how it outperforms existing models in terms of both point-wise

estimation and generating HQ-PIs[9].

4.1 The Learning Framework For Accuracy & HQ-PI

Here, we introduce a DL framework designed to enable the learning of T2-FLSs that
not only yield accurate point-wise predictions but also excel in generating HQ-PI

characterized by high uncertainty coverage with tight PI bands. The Table 4.1 provides

N
n=1°

the algorithm for training steps of dual-focused GT2-FLS for a dataset {x,,y,}
where x,, = (x,,, 1. ..,xn,M)T. As we aim to learn a dual-focused IT2/GT2-FLS, we

defined the following loss to be minimized by a DL optimizer [29]:

. 1
minlL =

N
fcC NZ(LR (xn’yn)'l'f(x"’y”’z’?)) -1

n=1
Here, the constraints C are eliminated as described in Section 3.3.3. The loss function

has an accuracy-focused part Lg(-) and an uncertainty-focused part £(-).

We first review the composite loss function definition for IT2-FLSs[29] then, we will
describe how this loss definition can be extended to GT2-FLSs in two different ways

[30, 41].

4.1.1 Composite loss definition for IT2-FLSs

Here, the LP set (8r2) is used in (4.1). Lg(-) represents the empirical risk function

for the accuracy part and is defined as follows [29]:
Lr(€,) =log(cosh(e,)) (4.2)
Here ¢, is the point-wise accuracy error and is defined as:
€n = Yn—Y1r2 (Xn) (4.3)
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Table 4.1 : DL-based Dual-Focused GT2-FLS Training Algorithm.

Step Description

p—

Input: N training samples (x,,,y,)" ., ¢ = [1,T]

2 Set K+ 1: number of a-planes "

3 Set P: number of rules

4 Set mbs: mini-batch size

5 Set T: number of epochs

6 Output: Learned parameter set 672

7 Initialize 0672 = [0 510 1 Ocra_c ]

8 Fort=1toT do

9 For each mbs in N do

10 Perform parametrization tricks for &  (see Section 3.3.3)
11 u* «— PMF(x;604p) (3.11)
12 [, 1d®] « SMF(u*;04s) (3.15) and (3.16)
13 [y?, 7%, y] « Inference(u®, " ;60¢) (see Section 2.2)
14 Compute L; or L, B (4.9) or (4.10)
15 Compute dL /00 via automatic differentiation (AD)

16 Update 6 via a DL optimizer, e.g., Adam

17 End for

18 End for

19 6% « argminL
20 Return: 6*

where y 72 (x,) represents the defuzzified output of the IT2-FLS as in (2.15). For the
uncertainty-focused part, £(-) is constructed via a pinball loss p(-) that is defined as:

P (Xn, Yu, ¥, 7) =max(7(y, —y(xp)), (t = 1) (yn = y(x1))) 4.4)

Here 7 defines the desired quantile level to be covered. For learning an envelope that
captures the expected amount of uncertainty, we define a lower (7) and upper (7T)
quantile level. We utilize TR set of the IT2-FLS, [ y (x5),¥(xy,)] as our lower and upper

bound predictions and define the following loss:
f (xn,ynazay717?) = p(-xn’ ))naz,z) +,0 (xn’ yi’by’?) (4'5)

4.1.2 Composite loss function for GT2-FLSs

Here, we utilize the LP set (6gr2) in (4.1). Thanks to the structure of GT2-FSs via
a- plane representation, we can define two loss definitions. First, we utilize TR set of
ap-plane, [y (x,),y*(x,)] as our lower and upper bound predictions and define the

following loss:

g (xn’ynaz7yaz,F) = p (xn,Yn,XaOa ,I) +p (xn,Ynayao,F) (4'6)
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For the accuracy part Lg(-), the error term (¢,) can be defined via two different ways
(30, 41]:
€1 =Yn _yGTZ(xn) 4.7)

where ygra(x,) is the aggregated output of the GT2-FLS as in (2.25). On the other hand,
instead of using the aggregated output of the GT2-FLSs, we can use the defuzzified
output of the ag-IT2-FLS (y*¥ (x,), where ax = 1) [30, 41]. So the new error term,
€, % is as:

6;61”( ZYn_yaK(xn) (4.8)

To summarize, we define the following two loss functions (L; and L,) for learning

dual-focused GT2-FLS:
| &
L= N nZ::‘ [LR (€n)+ € (xn,yn,X,i,z,?)] 4.9)

where €, is given in (4.7) and

I h %
L= = ; [LR (e,‘l’K) + ¢ (xn,yn,z,y,z,‘r)] (4.10)

where ;% is given in (4.8). Through the loss functions, an (partially) independent

learning of Ogr; is possible for UQ while achieving high accuracy.

4.2 Comparative Performance Analysis

We evaluate the performance of our Z-GT2-FLS against MJ-GT2-FLS [30] and
two interval Type-2 FLSs [29] on five regression benchmarks: White Wine (WW),
Powerplant (PP), Abalone (ABA), Parkinson Motor UPDRS (PM), and AIDS.

4.2.1 Design of experiments

All input features are standardized via Z-score normalization:

~ Xi — Mx
Xi =
Ox

4.11)

where u, and o, are the sample mean and standard deviation of feature x over the full

dataset. The target variable y is similarly normalized on the training set:

Y —Hy
Oy

5= 4.12)
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where uy and oy, denote the sample mean and standard deviation of y. After inference,

predictions are mapped back via

y=yoy,+uy (4.13)

Each dataset is randomly split into a training set (70%) and a test set (30%) by
following [29, 30]. As a note, prior studies [29, 30] normalize using the entire
dataset (both training and test sets). Therefore, for the purpose of consistent and
meaningful benchmarking, we also apply Z-score normalization using the full dataset
when comparing our models to others. All models (Z-GT2-FLS, MJ-GT2-FLS, and

the two IT2-FLSs) are trained with identical hyperparameters:
e Mini-batch size: 64

e Learning rate: 1x 1073

e Number of epochs: 100 (except PM dataset: 1000 epochs)

The target PI coverage level is set to 99%, i.e.,
¢ =1[0.005, 0.995]. (4.14)

The experiments were conducted within MATLAB ® and repeated with 20 different
initial seeds for statistical analysis. We configured the GT2-FLSs with 3 a-planes
(@ =[0.01,0.5,1]) and trained them by utilizing L; defined in (4.9) (GT2-FLS-1)
and L, defined in (4.10) (GT2-FLS-2). The two IT2-FLSs, namely IT2-FLS-H and
IT2-FLS-HS, are defined with IT2-FSs, which we define in (2.9) and are learned via
the DL-based approach presented in [29].In the experiments, we set P =5 and P =10
for all FLSs to analyze how the number of P affects the model performance. Note
that, P is a hyperparameter of FLSs, and can be thought of as the number of neurons
in the neural network architectures. The number of LP (#LP) of FLSs for the handled
datasets is tabulated in Tables 4.3 and 4.4. It can be observed that the IT2-FLS-HS has

the largest number of LPs.

4.2.2 Performance evaluation

We evaluated the performances via Root Mean Square Error (RMSE), PI Coverage
Probability (PICP), and PI Normalized Averaged Width (PINAW) [10]. We anticipate
training an FLS that yields a low RMSE, i.e., high accuracy and attains a PICP of 99%
with a low PINAW, thereby indicating an HQ-PI as defined in [9].
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Tables 4.3 and 4.4 provide the mean RMSE, PICP, and PINAW alongside their +1
standard error values over 20 experiments for P =5 and P = 10, respectively to
understand how the rule size P affects the performance of dual-focused IT2 and GT2
FLSs. We also provided the rankings over the 5 datasets handled for an easy comparison.
Furthermore, we include a comprehensive computational load analysis to comment on

the training complexity in relation to P.

4.2.2.1 Performance analysis for P =5

In this subsection, we evaluate the performance of T2-FLSs for P = 5. In Figures 4.1,
4.2, 4.3, 4.4 and 4.5, for statistical analysis, we present the notched box and whisker
plots showing median (central mark), 25%/75" percentiles (left and right edges of box)
which defines the Inter Quartile Range (IQR), whiskers (line), and outliers (circles).
Observe that:

e For WW, the Z-GT2-FLS-1 resulted in the best RMSE performance with a
statistically significant difference, due to the absence of notches overlapping, as
shown in Figure 4.2. Z-GT2-FLS-1 excels slightly in accuracy, while Z-GT2-FLS-2
shows a marginally higher PICP value. IT2-FLS-HS stands out with the lowest
PINAW value.

e For PP, all FLSs show competitive results in terms of accuracy, reliability, and
precision. On the other hand, IT2-FLS-HS has slightly better RMSE and PICP
values while IT2-FLS-H stands out lowest PINAW. As shown in Figure 4.5, there is

no significant difference between FLSs.

e For ABA, MJ-GT2-FLS-2 stands out as the best one in terms of RMSE, closely
followed by other models. Z-GT2-FLS-2 demonstrates the highest reliability in
capturing true values within PI and has a low PINAW value (i.e. HQ-PI). Generally,
as shown in Figure 4.4, all GT2-FLSs have similar results in performance metrics,

yet are significantly better than their IT2 counterparts.

e For PM, The Z-GT2-FLS-2 demonstrates superior performance with the lowest
RMSE which is statistically significant when compared to MJ-GT2 and IT2
counterparts. Z-GT2-FLS models have similar performances in terms of RMSE
and PICP as shown in Figure 4.1. Z-GT2-FLS-2 has the lowest mean PINAW,
indicating the generation HQ-PIs. IT2-FLS-HS also offers good coverage, but at the
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cost of wider PlIs.

e For AIDS, the point-wise predictions of all FLSs are similar, yet the Z-GT2-FLS-1
has a better mean RMSE value. On the other hand, as shown in Figure 4.3, the
IT2-FLS-HS has the best PICP, yet its PINAW is significantly larger than other FLS
counterparts, indicating a poor PI. While Z-GT2-FLS-1 has a similar PI performance
with a much narrower PI band (i.e. low PINAW) and thus an HQ-PI, Z-GT2-FLS-2
exhibits the lowest mean PINAW.

To sum up, Z-GT2-FLSs, with minimal #LPs, consistently demonstrate competitive
performance across various datasets. Their capacity to precisely predict different target
variables with HQ-PI establishes them as consistently robust performers. Yet, the
Z-GT2-FLS-1 stands out as it has the best overall ranking. In Table 4.2, we compared
the RMSE performance of the Z-GT2-FLS-1 with various other models [42—45] whose
primary objective is to enhance accuracy performance. The comparison includes HTSK
(i.e. a TI-FLS with more rules) [42], a Bayesian DL model [44], as well as other ML
models. We can conclude that Z-GT2-FLS-1 achieves comparable RMSE measures
(except for PP) while also being capable of generating HQ-PIs as presented in Table
4.2.

Table 4.2 : Testing RMSE: Z-GT2-FLS vs. Various Models.

Dataset | Z-GT2-FLS-1 | HTSK[42] | XGBoost[42] | MLP[42]
PP 2459(x0.73) | 2230(x0.19) | 18.93(x0.62) | 23.15(x0.15)
ABA 66.28(+1.83) | 66.46(+0.85) | 67.18(x0.85) | 63.59(+0.83)
PM 60.42(x4.13) 82.89(£0.81) | 85.61(x0.61) | 78.56(x1.83)
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Table 4.3 : Testing Performance Comparison of Dual-Focused FLSs over 20 Experiments for P = 5 rules.

Dataset ~ Metric ~ Z-GT2-FLS-1  MJ-GT2-FLS-1[30] Z-GT2-FLS-2 MJ-GT2-FLS-2[30] IT2-FLS-H[29] IT2-FLS-HS[29]
#LP 192 247 192 247 225 280
WW RMSE  79.79(+1.45) 81.44(+2.05) 80.48(+1.97) 82.02(2.05) 82.39(+2.91) 82.62(+2.46)
(11x4898) PICP 97.72(+0.62) 97.32(x1.14) 97.82(+0.43) 97.03(x1.49) 97.08(x1.52) 97.54(+1.58)
PINAW  76.38(x8.07) 75.53(x10.7) 76.72(+7.60) 74.84(x11.09) 74.39(£11.40) 74.35(£9.12)
#LP 73 93 73 93 85 105
PP RMSE  24.59(0.73) 24.56(0.73) 24.62(+0.74) 24.57(+0.74) 24.58(+0.69) 24.37(£0.70)
(4x9568)  PICP 98.74(£0.27) 98.73(+0.23) 98.74(£0.30) 98.72(+0.25) 98.71(0.23) 98.75(£0.20)
PINAW  30.88(x1.39) 30.50(1.69) 30.92(+1.49) 30.46(x1.54) 30.25(+1.33) 30.80(x1.07)
4LP 141 181 141 181 165 205
ABA RMSE  66.28(+1.83) 67.01(+4.89) 67.07(x3.11) 65.75(+1.61) 67.89(+4.97) 66.40(£2.44)
(8x4177)  PICP 98.52(0.71) 98.41(£0.44) 98.58(:0.67) 98.29(£0.43) 98.32(£0.39) 98.49(£0.38)
PINAW  46.57(4.18) 46.03(+4.27) 46.65(+4.29) 45.99(+4.34) 52.61(+4.30) 53.83(+4.40)
#LP 328 423 328 423 385 480
PM RMSE  60.42(+4.13) 75.23(+9.98) 59.58(+5.01) 75.45(x10.21) 88.14(+9.80) 74.17(x10.06)
(19x5875)  PICP 98.95(:0.66) 96.82(+3.81) 98.02(+0.71) 96.79(£3.28) 91.59(x4.30) 98.20(£2.88)
PINAW  142.53(£29.25) 163.51(+34.05) 103.92(+10.94) 150.46(=28.05) 165.01(£36.49)  171.68(+39.58)
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Table 4.3 (continued) : Testing Performance Comparison of Dual-Focused FLSs over 20 Experiments for P = 5 rules.

Dataset Metric Z-GT2-FLS-1 MJ-GT2-FLS-1[30] Z-GT2-FLS-2 MJ-GT2-FLS-2[30] IT2-FLS-H[29] IT2-FLS-HS[29]
#LP 396 511 396 511 465 580
AIDS RMSE 69.73(+2.56) 70.24(£2.91) 70.11(£2.34) 72.29(+3.26) 72.29(%2.75) 71.93(%£3.52)
(23x2139) PICP 97.52(+0.84) 94.85(+2.88) 96.84(+0.94) 95.29(+2.97) 97.00(£1.23) 98.64(+0.69)
PINAW  160.35(+18.49) 160.69(+21.43) 156.01(+20.60) 164.77(x13.52) 185.57(x14.15) 210.75(x19.73)
RMSE 60.16 63.70 60.37 64.02 67.16 63.90
Average PICP 98.29 97.23 98.00 97.22 96.54 98.32
PINAW 91.34 95.25 82.84 93.30 101.57 108.28
RMSE 2.2 3.2 3.2 3.6 5.2 34
Average Rank  PICP 1.8 4.4 2.4 5.4 5.0 2.0
PINAW 34 3.2 3.6 2.6 3.6 4.6
Overall Rank 2.5 3.6 3.1 3.9 4.6 33
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Figure 4.1 : Notched box-and-whisker plots for PM (19 x 5875) for P =5.
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Figure 4.2 : Notched box-and-whisker plots for WW (11 x4898) for P = 5.

4.2.2.2 Performance analysis for P = 10

In this subsection, we evaluate the performance of T2-FLSs for P = 10. In Figures 4.6,

4.7, 4.8, 4.9 and 4.10, for statistical analysis, we present the notched box and whisker
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Figure 4.3 : Notched box-and-whisker plots for AIDS (23 x2139) for P = 5.
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Figure 4.4 : Notched box-and-whisker plots for ABA (8 x4177) for P =5.

plots showing median (central mark), 25%/75" percentiles (left and right edges of box)

which defines the IQR, whiskers (line), and outliers (circles). Observe that:

e For WW, the Z-GT2-FLS-1 outperforms the others in terms of both RMSE and PICP
in Table 4.4. IT2-FLS-H stands out with the lowest PINAW value. We can conclude
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that increasing P helps Z-GT2-FLS-1 to have the best results for both RMSE and
PICP comparing Table 4.3. Also, while PICP increases, PINAW decreases, meaning
HQ-PI[3].

For PP, IT2-FLS-HS resulted in the best RMSE performance with a significant
difference due to the absence of notches overlapping as shown in Figure 4.10.
IT2-FLS-HS excels slightly in PICP, while MJ-GT2-FLS-1 has the lowest PINAW
value in Table 4.4. Overall, Increasing P results in lower RMSE and higher PICP
values compared to Table 4.3, and IT2-FLS-HS shows the best performance in terms

of RMSE and PICP.

For ABA, IT2-FLS-HS stands out as the best one in terms of RMSE and PICP,
closely followed by other models in Table 4.4, while MJ-GT2-FLS-1 has the lowest
PINAW. Generally, as shown in Figure 4.9, all models show similar performance for
RMSE and PICP. GT2-FLSs have lower PINAW than IT2-FLSs and similar PICP
values (i.e. HQ-PI). Overall, IT2-FLS-HS with P = 10 rules decreases RMSE and
slightly increases PICP compared to IT2-FLS-HS with P =5 rules in Table 4.3.

For PM, Z-GT2-FLS-2 demonstrates superior performance with the lowest RMSE
which is statistically significant when compared to MJ-GT?2 and I'T2 counterparts. Z-

GT2-FLS models have similar performances in terms of RMSE and PICP as shown in
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Figure 4.6. IT2-FLS-HS has the best coverage, yet its PINAW is significantly larger
than other FLSs, indicating a poor PI. Z-GT2-FLS-2 with P = 10 rules decreases
RMSE and PINAW compared to Z-GT2-FLS-2 with P =5 rules in Table 4.3.

e For AIDS, IT2-FLS-HS has the best RMSE and PICP with the largest PI bands
in Table 4.4. This results in a poor PI. Z-GT2-FLS-2 has the lowest PINAW.
Furthermore, Z-GT2-FLS-1 with P =5 rules, is the best performer in terms of
RMSE across all FLSs in Table 4.3.

To sum up, Z-GT2-FLS-2, with minimal #LPs, is the best performer in average RMSE
and PINAW, while Z-GT2-FLS-1 excels slightly in PICP, closely followed by IT2-
FLS-HS. IT2-FLS-HS is the best performer in terms of average RMSE and PICP
rank, yet its average PINAW rank is the worst, meaning poor PI. Z-GT2-FLS-2 and
MJ-GT2-FLS-2 are the best performers for the average PINAW rank. Overall, Z-
GT2-FLSs demonstrate competitive performance across various datasets by yielding

accurate point-wise prediction while generating HQ-PI.
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Table 4.4 : Testing Performance Comparison of Dual-Focused FLSs over 20 Experiments for P = 10 rules.

Dataset ~ Metric ~ Z-GT2-FLS-1  MJ-GT2-FLS-1[30] Z-GT2-FLS-2 MJ-GT2-FLS-2[30] IT2-FLS-H[29] IT2-FLS-HS[29]
#LP 362 472 362 472 450 560
WW RMSE  79.52(+1.48) 80.67(+1.78) 80.09(1.88) 80.79(2.02) 82.72(+3.69) 82.05(+1.78)
(11x4898) PICP 98.18(+0.44) 97.81(x0.67) 97.88(+0.47) 97.82(+0.56) 96.91(£0.93) 97.51(£0.86)
PINAW  72.38(x6.32) 72.44(+8.20) 71.88(6.84) 72.00(7.46) 66.07(:4.59) 68.44(+4.93)
#LP 138 178 138 178 170 210
PP RMSE  24.16(+0.72) 24.54(0.69) 24.19(+0.67) 24.53(+0.70) 23.66(£0.57) 23.48(:0.57)
(4x9568)  PICP 98.75(+0.27) 98.68(£0.24) 98.75(£0.29) 98.69(£0.28) 98.81(x0.31) 98.84(£0.23)
PINAW  30.22(x1.45) 29.89(+1.26) 30.29(x1.51) 30.05(x1.23) 30.56(+1.39) 31.69(x1.24)
#LP 266 346 266 346 330 410
ABA RMSE  67.60(x4.58) 67.78(+8.25) 66.59(x1.91) 67.20(+4.03) 65.72(x1.39) 65.31(+1.68)
(8x4177)  PICP 98.57(£0.45) 98.27(+0.53) 98.59(£0.55) 98.42(£0.34) 98.52(x0.51) 98.63(£0.40)
PINAW  46.35(+3.91) 44.14(+3.41) 45.41(3.75) 44.39(+3.40) 51.57(+4.92) 52.72(+5.40)
#LP 618 808 618 808 770 960
PM RMSE  53.07(x5.25) 65.93(+5.28) 50.02(+4.61) 65.05(+4.74) 69.40(+14.65) 65.28(+4.52)
(19x5875)  PICP 99.41(£0.60) 98.80(1.02) 98.30(0.67) 98.73(£0.64) 97.06(2.76) 99.43(£0.67)
PINAW  128.20(35.51) 144.51(22.56) 94.46(+11.65) 123.01(=12.86) 145.57(+33.38)  173.39(+29.11)
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Table 4.4 (continued) : Testing Performance Comparison of Dual-Focused FLSs over 20 Experiments for P = 10 rules.

Dataset Metric 7Z-GT2-FLS-1 MJ-GT2-FLS-1[30] Z-GT2-FLS-2 MJ-GT2-FLS-2[30] IT2-FLS-H[29] IT2-FLS-HS[29]
#LP 746 976 746 976 930 1160
AIDS RMSE 71.38(+2.71) 74.44(+3.16) 74.33(+3.14) 74.55(+3.39) 72.58(£3.25) 69.82(+3.36)
(23x2139) PICP 98.01(x0.65) 96.42(x1.10) 97.41(x1.10) 96.71(x1.05) 97.15(x1.09) 98.41(+0.83)
PINAW  163.36(+10.71) 163.59(+23.00) 135.65(+10.64) 161.35(£20.38) 199.12(£15.63) 234.99(x£21.71)
RMSE 59.15 62.67 59.04 62.42 62.82 61.19
Average PICP 98.58 98.00 98.19 98.07 97.69 98.56
PINAW 88.10 90.91 75.54 86.16 98.58 112.25
RMSE 2.6 5.0 2.8 44 3.8 24
Average Rank  PICP 2.2 5.0 3.2 4.4 4.4 1.8
PINAW 3.6 3.2 24 24 4.2 5.2
Overall Rank 2.8 4.4 2.8 3.7 4.3 3.1
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Figure 4.6 : Notched box-and-whisker plots for PM (19 x 5875) for P = 10.
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Figure 4.7 : Notched box-and-whisker plots for WW (11 x4898) for P = 10.
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4.2.2.3 Computational load analysis

Here, we analyze the computational load of training the models with P =5 rules and

P =10 rules, respectively. To analyze the training complexity, the computational load
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Figure 4.8 : Notched box-and-whisker plots for AIDS (23 x2139) for P =

Z-GT2-FLS-1 Z-GT2-FLS-2 MJ-GT2-FLS-1 MJ-GT2-FLS-2 IT2-FLS-H IT2-FLS-HS

(o]
8
= = L = = =

Z-GT2-FLS-1 Z-GT2-FLS-2 MJ-GT2-FLS-1 MJ-GT2-FLS-2 IT2-FLS-H IT2-FLS-HS

1 L 1 L 1
Z-GT2-FLS-1 Z-GT2-FLS-2 MJ-GT2-FLS-1 MJ-GT2-FLS-2 IT2-FLS-H IT2-FLS-HS

04

T T T T T T

= = &= ¢ T

Z-GT2-FLS-1 Z-GT2-FLS-2 MJ-GT2-FLS-1 MJ-GT2-FLS-2 IT2-FLS-H IT2-FLS-HS

Figure 4.9 : Notched box-and-whisker plots for ABA (8 x4177) for P = 10.

during training is examined by recording the Memory Usage (MU) and total Training
Time (TT). Table 4.5 provides the MU and Training Time TT associated with each
model composed with P =5 and P = 10 rules. We also provided the rankings over

the handled 5 datasets for an easy comparison. These results were obtained using a
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Figure 4.10 : Notched box-and-whisker plots for PP (4 x9568) for P = 10.

computer equipped with a NVIDIA GTX 1080 TI GPU.

We can observe from Tables 4.5 and 4.6 that as expected increasing the rule size from 5
to 10 has significantly increased the MU and TT values for both the I'T2 and GT2 FLSs.
Especially, the computational loading (MU) and TT of the GT2-FLSs have increased
since they are constructed by a collection of a-planes (@), and the output of GT2-FLSs
is defined with a weighted average of outputs of each a-IT2-FLS via (2.25). Increasing
the rule number to P = 10 significantly raises MU across all datasets, but less so for TT.
Z-GT2-FLSs have similar MU with MJ-GT2-FLSs, yet their TTs are generally less than
MIJ-GT2 counterparts due to the fewer #LPs for both P =5 and P = 10. Additionally,
the memory usage of IT2-FLS-H is similar to that of IT2-FLS-HS, yet IT2-FLS-H

consistently requires less training time than I'T2-FLS-HS across all datasets.
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Table 4.5 : Computational Load Analysis over 20 Experiments for P =5 Rules.

Dataset Metric  Z-GT2-FLS-1 MJ-GT2-FLS-1 Z-GT2-FLS-2 MJ-GT2-FLS-2 IT2-FLS-H IT2-FLS-HS
W MU (MB) 197 197 198 196 182 182
TT (s) 47 48 46 48 39 42
op MU (MB) 209 208 210 208 186 186
TT (s) 25 26 25 25 19 23
ol MU (MB) 188 189 190 188 180 180
TT (s) 78 81 78 81 63 71
- MU (MB) 222 220 222 220 192 193
TT (s) 161 167 160 166 131 148
AIDS MU (MB) 190 188 190 190 180 180
TT (s) 39 41 38 40 30 34
Averaee MU (MB) 201.2 200.4 202 200.4 184 184.2
8 TT (s) 70 72.6 69.4 ) 56.4 63.6
MU (MB) 3 26 38 24 1 12
Average Rank .. ) 3.6 5.0 3 4.4 1 2
Overall Rank 3.3 3.8 3.4 3.4 1 1.6
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Table 4.6 : Computational Load Analysis over 20 Experiments for P = 10 Rules.

Dataset Metric  Z-GT2-FLS-1 MJ-GT2-FLS-1 Z-GT2-FLS-2 MJ-GT2-FLS-2 IT2-FLS-H IT2-FLS-HS
wal MU (MB) 402 400 402 400 254 254
TT (s) 54 55 53 56 40 43
op MU (MB) 611 610 612 610 328 328
TT (s) 30 3] 30 30 20 25
ABA MU (MB) 353 352 352 352 234 234
TT (s) 90 94 91 92 65 7
o MU (MB) 538 534 538 534 302 306
TT (s) 197 205 194 198 136 151
AIDS MU (MB) 289 288 288 288 222 222
TT (s) 46 47 45 46 32 36
Averase MU (MB) 438.6 436.8 438.4 436.8 268 268.8
8 TT (s) 83.4 86.4 82.6 84.4 58.6 65.4
MU (MB) 32 22 3 22 1 12
Average Rank .. ) 36 52 32 4.6 1 2
Overall Rank 3.4 3.7 3.1 3.4 1 1.6
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S. LEARNING GT2-FLSs FOR DISTRIBUTION ESTIMATION

While the dual-focused Z-GT2-FLS learning method offers improved predictive
performance for a specific confidence level, it requires retraining for each target quantile
pair [7,7] for a given desired confidence level.

In this chapter, we introduce a DL framework to train GT2-FLSs to learn the conditioned
N

inverse cumulative function of a given dataset {xn,yn}nzl,

by estimating all quantile
levels T € [0, 1]. To achieve this, we utilize the SQR approach [12] that aims to estimate

all quantile levels simultaneously with:

N
minl=x ), B 100Gyl (5.1)

The predictive distribution is learned by randomly sampling quantile levels 7 from a
uniform distribution 7 ~ U[0, 1] for each data point and mini-batch during training
[12]. Within this framework, we first introduce the integration of the SQR method
into GT2-FLSs. We then present Adaptive SQR (ASQR), an enhanced version of SQR
that targets miscalibrated regions by focusing sampling in those areas during training,
thereby improving the generalization of the inverse cumulative distribution of a given

dataset.

5.1 SQR For GT2-FLS

Here, rather than only using a@(-IT2-FLS for UQ, we designate an a-IT2-FLS to
represent a quantile level 7. We start by eliminating the output calculation of GT2-FLS
defined in (2.25) and define the output as y*(x),a € [0, 1]. Then, we transform y®(x)
as:

y¥(x) = y(x,a),Va € [0,1] (5.2)

Thus, @ € [0, 1] has been transformed from a structural parameter to an input argument

of GT2-FLS that defines which a-IT2-FLS is used as the output of the GT2-FLS.

To enforce that a-IT2-FLS learns a quantile level 7, we match a-planes with the quantile

levels selected randomly from the uniform distribution 7 ~ U [0, 1] of SQR, i.e. @ =7.
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The defined learning problem for GT2-FLS is then as follows:

N
1
minlL = — E ) 5.3
minL = - ;:1: ~0l01] [p(y (X, T) s ynsT)] (5.3)

Thus, after training, @-1T2-FLS represents a quantile level function, providing flexibility
to generate any desired quantile level 7 € [0, 1] by setting @ € [0, 1] as @ = 7 during

inference.

While training, as 7 ~ U[0, 1], we also deploy a validation phase defined with the
Expected Calibration Error (ECE) [11]:

N
1
ECE(r,T)=— ) E; 5.4
(1.6) =+ Z‘ l (5.4)
where E; is the calibration error defined as:
E;=|t -1} (5.5)

Here, 7 defines the estimated quantile levels resulting from the GT2-FLS while 7 are
discretized from 0.01 to 0.99 with a 0.01 increment. Training is stopped early if the
ECE does not decrease for more than 7T epochs, until a maximum of 7' epochs. If
training is stopped early, the final GT2-FLS is backtracked to the one with the lowest
ECE value [11].

5.2 ASQR For GT2-FLSs

The efficacy of the SQR-based learning method for GT2-FLS is intricately tied to the
stochastic selection of 7 for individual samples and mini-batches during training. While
achieving satisfactory distribution estimation is possible by increasing the mini-batch
size, this comes at the cost of increased computational burden. In this context, we
present an Adaptive SQR (ASQR) with a focus on mitigating miscalibration. The
algorithm in Table 5.1 provides the ASQR training steps for GT2-FLSs.

The proposed adaptation enhancement for SQR runs in the validation phase and orients
the randomly generated 7’s to spaces, resulting in large calibration errors E (defined
in (5.5)). As given in the algorithm in Table 5.2, we first calculate E for each quantile
level and define a deficient quantile estimation as C : E > €, where € is a threshold.
We then obtain the miscalibration areas A = (Ay,...,Ay), and [7,,T4] to be used for

producing quantile samples. These miscalibration areas are based on the As presented
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Table 5.1 : ASQR to learn Z-GT2-FLS Algorithm.

Step Description

1 Input: N training samples (x,,y,)Y |, ¢ = [7,7]

2 Set P: number of rules

3 Set mbs: mini-batch size

4 Set T: number of epochs

5 Set € : threshold value

6 Output: Learned parameter set 6572

7  Initialize 0672 = [0 5154 Ocra-c ]

8 ap~U [0, 1]

9 Fort=1toT do

10 For each mbs in N do

11 Perform parametrization tricks for 8 (see Sec. 3.3.3)
12 ' — PMF(x;64p) (3.11)

13 [u®, 1™ ] < SMF(u*;04s) (3.15) and (3.16)
14 yEk « Inference (u®, 1 ;0¢) (see Sec. 2.2)
15 Compute L p (5.3)

15 Compute dL /00 via automatic differentiation (AD)
16 Update 6 via a DL optimizer, e.g., Adam

17 End for

18  Compute 7 and ECE on Validation Dataset
19 [A,7,,7a] < MiscalibrationSpace(r, T;¢€)
20 @y < QuantileGeneration(7,%,7,,74,A)
21 End for

22 0" < argminL

23  Return: 0*

in the Algorithm in Table 5.3, for each A;, the normalized error €4, is computed, and

subsequently, quantile samples are curated based on the magnitude of miscalibration.

In conclusion, the ASQR produces more samples from the regions where the
miscalibration area is more substantial. This process is integral to enhancing the
learning performance of GT2-FLS for predictive distribution estimation, as more focus

is provided to estimation errors during training.

5.3 Comparative Performance Analysis

We show the learning performance of the Z-GT2-FLS compared to state-of-the-art
DL methods for UQ. To facilitate a direct comparison with the results of [11],
we considered the PP, Red Wine (RW), Concrete Strength (CS), Boston Housing
(BH), Naval Propulsion Plant (NP), Kin8nm, Yacht Hydrodynamics (YH), and Energy
Efficiency (EE) datasets. For the completeness of the study, we also handled ABA,
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Table 5.2 : Miscalibration Space Algorithm.

Step Description

1 Input: Pairs (7;, %)Y, threshold e

2 Initialize empty sets A < @, Ay «— @

3 Initialize empty interval lists 7, < @, T4 < @

4  Compute errors E ={e; = |1, —1%|:i=1,...,N}

5 For each ¢; € E do

6 Mask small errors: e; «— e;-I{e; > €}

7 If e; # 0 then

8 Add to current miscalibration group: Ay «— Ay U{(e;,7;)}

9 Else

10 Close group Ax: A «— AU{A;}

11 Record interval: 7, «— 7, U{min(74,)},
Ty T4 U{max(ta,)}

12 Reset group: Ay <« @

13 End If

14 End For

15 Return: A, 7,,7T4

Table 5.3 : Quantile Generation Algorithm.

Step Description

1 Input: 7, 7, intervals 7 ,, T4, groups A

2 Initialize empty set @g «— @
3 For each miscalibration group A; € A do
4 Compute normalized weight: €4, < %
2o e
5 Determine sample count: ns < | €4, X mbs|
6 Sample quantile(s): @y, ~U [1 A ?Ai] (draw ns samples)
7 Aggregate: as < asU{ay,}
8  End For
9 Return: a4

PM, and AIDS, which were utilized in Section 4.2.

5.3.1 Design of experiments

All input features are standardized via Z-score normalization:

Xi—
f=o i (5.6)
Ox
where u, and o, are the sample mean and standard deviation of feature x over the full
dataset. The target variable y is similarly normalized on the training set:
Y —Hy
Oy

y= (5.7)
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where uy and oy, denote the sample mean and standard deviation of y. After inference,

predictions are mapped back via

y=yo,+uy (5.8)

Each dataset is randomly split into a training set (90%) and a test set (10%), Within
the training set, 20 % was used for validation as in [11]. All models (Z-GT2-FLS,
MIJ-GT2-FLS, and the two IT2-FLSs) are trained with identical hyperparameters:

e Mini-batch size: 64

e Learning rate: 1 x 1072

e Number of epochs: 10000
o Ty, =200

For each dataset, we trained a Z-GT2-FLS via SQR (Z-GT2-SQR) and one via ASQR
(Z-GT2-ASQR) with P = 10rules. If the validation ECE loss did not show improvement
of more than T = 200 epochs, we terminated the training section early and used
the model with the lowest ECE loss as stated in [5]. For the Z-GT2-ASQR, € is
selected by performing cross-validation with € € {0.005,0.01,0.02,0.03,0.04,0.05}.
The experiments were conducted within MATLAB ® and repeated with 5 different

initial seeds for statistical analysis.

5.3.2 Performance evaluation

To assess the estimations, we calculated the ECE measure defined in (5.4). The
comparative outcomes on the test datasets, generated through 5 experiments, are
presented in Tables 5.4 and 5.5. Note that all compared models are neural networks
consisting of 2 layers with 64 hidden units each, utilizing ReLLU activation function
[11]. We have included rankings across the datasets for ease of comparison. We also
presented the Quantile-Quantile (Q-Q) plots of Z-GT2 SQR and ASQR in Figures 5.1,
5.2, 5.3, and 5.4 which serve as a means of comparing expected quantile levels against

observed ones.

Z-GT2-FLS, particularly Z-GT2-ASQR, exhibit competitive performance compared
to state-of-the-art DL UQ methods. As shown in Table 5.4, their ability to
calibrate predictions is evident across multiple datasets. Despite MAQR [11]

being acknowledged as the top-performing DL method, Z-GT2-ASQR consistently
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outperforms MAQR across various datasets, as indicated by its average rank. This
showcases the robustness of our novel approach. Thus, Z-GT2-ASQR is capable of
achieving superior calibration irrespective of the data characteristics. It is noteworthy
that the performance of Z-GT2-SQR is also commendable, as it surpasses four out of
five DL methods. Also, Z-GT2-ASQR offers a more robust and consistent performance
based on Table 5.5.

To examine the impact of the adaptation mechanism on distribution estimation, we
presented the Q-Q plots from a single experiment obtained across datasets with diverse
sizes and dimensions in Figures 5.1, 5.2, 5.3, and 5.4. The visual results underscore the
notable performance improvement introduced by ASQR, with Z-GT2-ASQR exhibiting
enhanced adherence to the diagonal in the Q-Q plots compared to its SQR counterpart.
This improvement is a result of the quantile sampling strategy of Z-GT2-ASQR, which
enforces training more inadequately learned quantile levels through a targeted sampling
process. It is also worth underlining that the most striking improvement is observed in
Figure 5.4, where ASQR significantly outperforms SQR, especially in small quantile

level prediction.

46



Table 5.4 : ECE Comparison over 5 Experiments: Z-GT2-SQR and Z-GT2-ASQR vs. Various Models.

Dataset (M X N) SQR [12] mPAIC[13] Interval [11] Cali[11] MAQR[11] Z-GT2-SQR Z-GT2-ASQR

PP (4x9568) 2.6(x0.4) 5.2(x0.4) 2.2(+0.4) 2.0(x0.1) 1.6(x0.3) 1.9(+0.6) 1.6(x0.5)
RW (11 x 1599) 4.2(x0.2) 10.3(+0.3) 5.0(x0.8) 4.2(x0.4) 2.7(x0.3) 4.0(x1.5) 2.3(x0.4)
CS (8x1030) 9.3(x1.5) 6.2(x0.5) 3.7(x0.6) 5.6(x0.8) 5.3(x0.4) 4.3(x1.7) 4.2(x1.1)
BH (13 x506) 9.0(x0.8) 8.7(x1.3) 6.9(x1.1) 8.5(x1.5) 6.2(+1.8) 5.4(+0.9) 4.8(+0.9)
NP (17 x11937) 9.7(x1.6) 3.1(x0.5) 4.7(x1.4) 5.9(x0.7) 2.3(x0.2) 2.1(x0.4) 1.9(+0.9)
Kin8nm (8§ x8198)  4.4(x0.1) 6.6(x0.4) 2.9(+0.4) 3.5(20.3) 1.8(x0.4) 2.1(x0.4) 1.6(=0.4)
YH (6 x308) 9.4(x0.9) 10.8(+2.3) 7.5(x0.9) 8.3(x0.6) 6.8(x2.1) 6.3(£2.5) 8.6(+1.8)
EE (8 x768) 9.8(x0.8) 10.4(x0.5) 4.3(x0.6) 5.8(x0.4) 3.5(x1.0) 6.2(+2.8) 4.2(x0.7)
Average 7.3 7.7 4.7 5.5 3.8 4.1 3.7

Average Rank 6.1 6.4 3.9 4.7 2.3 2.8 1.9

47



Table 5.5 : ECE Comparison over 5 Experiments: Z-GT2-SQR vs. Z-GT2-ASQR.

Dataset (M X N) Z-GT2-SQR Z-GT2-ASQR

WW (11 x4898) 1.7(x0.4) 1.7(+0.3)
ABA (8 x4177) 1.7(x1.3) 1.6(+0.4)
PM (19 x 5875) 1.7(x0.7) 1.7(+0.4)
AIDS (23x2139) 4.3(+0.8) 4.8(%1.3)
Average 2.3 2.4
Average Rank 1.8 1.3
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Figure 5.1 : Q-Q plot for Kin8nm (8 x 8198).

5.3.3 ASQR implementation - visualization

Here, we dive deep into how the ASQR algorithm works properly by showing an

example on the BH dataset.

First, we implement the SQR algorithm [12], which selects quantile levels randomly
in each epoch. We show the Q-Q plots of Z-GT2-SQR in Figure 5.5, which serve as a

means of comparing expected quantile levels against observed ones.

As illustrated in Figure 5.5, the model struggles to accurately estimate the desired
quantile levels. Specifically, the mean ECE for the BH dataset across 5 experiments

is 5.4. This value will serve as a reference point for comparison with the proposed

48



e R O
L LS Ln =3} | [es] o
T T T T T T T

Observed Quantile Levels

=
M
T

Z-GT2-5QR |
Z-GT2-ASQR

G A i} 1 1 1 I
0 0.2 0.4 0.6 0.8 1

Expected Quantile Levels

Figure 5.2 : Q-Q plot for Naval (17 x 11937).
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Figure 5.3 : Q-Q plot for Power (4 x 9568).

Z-GT2-ASQR method. To handle this problem, we propose the ASQR method as
in Section 5.2. Now, we present the ASQR algorithm with visualizations on the BH

dataset.
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Figure 5.5 : Q-Q plot for BH with Z-GT2-SQR method for 1 seed.
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e We calculate the absolute error (E) for all quantile levels 7 = [0.01,...,0.99] during

the validation step as:

E=|t-1|
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We define a Condition (C) as:
C.E>c¢ (5.10)

where € is a threshold.

According to C, we define areas, which are the above of the threshold value €, and

call them miscalibration areas, represented as Ay,..., A, as shown in Figure 5.6.

For each A;, we find minimum and maximum quantile levels (7 A TA .), then,
4

T4, = (T4, —zAi)U[O,l] +T, (5.11)
TA = UTy, (5.12)

e With this selection of 7:
T~ (Ta—-7)U[0,1]+7, (5.13)

Lastly we assign @ = 7.

The density of selected 7 levels depend on the miscalibration areas Aj,...A, as
represented in Table 5.3. Figure 5.7 shows the selected quantile levels (7 = @) from the

miscalibration areas, as depicted in Figure 5.6.
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Figure 5.6 : Miscalibration Areas for € = 0.005.

Afterwards, we show the Z-GT2 ASQR Q-Q plot in Figure 5.8. The ASQR method

achieves a mean ECE of 4.8 on the BH dataset across five experiments, representing
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an improvement of 0.6 compared to the SQR method. We can conclude that using the
ASQR method helps us to select quantile levels, which are not well-calibrated during
the validation step. This provides us with better generalization for estimating the inverse

cumulative distribution.
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Figure 5.7 : Selected a = 7 levels.
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Figure 5.8 : Q-Q plot for BH with Z-GT2-ASQR method for 1 seed.
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6. CONCLUSIONS AND RECOMMENDATIONS

In this master’s thesis, we present a DL framework for Z-GT2-FLS, a novel approach
grounded in Zadeh’s original definition of GT2-FSs. This framework is designed
to excel in delivering both highly accurate point-wise predictions and robust UQ.
We introduce an approach to combine Z-GT2-FSs with a-plane representation to
design Z-GT2-FLSs.  Additionally, we propose a dual-focused DL framework
that leverages Z-GT2-FLSs to simultaneously optimize for prediction accuracy and
uncertainty modeling. Furthermore, we propose novel methods/algorithms for learning
inverse cumulative distribution via Z-GT2-FLSs by estimating all quantile levels

simultaneously.

In the initial chapter of this thesis, we provide the mathematical foundations of T2-FSs
and T2-FLSs. We outline the core components of IT2/GT2-FLSs, which are rule
structure, antecedent and consequent MFs, type reduction, and defuzzification, to

elucidate the distinctions between IT2-FLSs and GT2-FLSs.

Next, we provide the mathematical background on MJ-GT2-FLSs, how they are
implemented through the a-plane representation, and we discuss the potential issue
that we encounter with the MJ-GT2-FLSs: (1) Direct dependency of the SMF
shape on the PMF. Inherently, we believe that this dependency affects the learning
performance of GT2-FLSs. (2) Curse of dimensionality problem (i.e., rule firing
strength). In high-dimensional datasets, rule-firing strengths approach zero, causing
learning performance to decrease. Afterward, we introduce Z-GT2-FLSs based on
Z-GT2-FSs, their mathematical foundations, i.e., PMF and SMF definitions with
T1-FSs. Additionally, we propose solutions for problems in MJ-GT2-FLSs: (1)
the SMF shape does not depend on the PMF shape. The mathematical structure of
Z-GT2-FSs allows us to eliminate the dependency of the SMF on the PMF. This design
choice offers greater flexibility compared to MJ-GT2-FLSs, enabling more adaptable
uncertainty modeling. (2) To address the curse of dimensionality problem, we introduce
dynamic adjustments to the PMF based on input dimensions. Lastly, for learning of

T2-FLSs with unconstrained DL optimizers, we give details of the parameterization
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tricks we implement for each FLS.

We introduce a dual-focused deep learning (DL) framework for Z-GT2-FLSs, designed
to improve both prediction accuracy and uncertainty quantification (UQ). To achieve
this, we define a composite loss function that balances these objectives. Using the
a-plane representation of GT2-FSs, we construct two separate loss functions tailored
for this dual goal. We demonstrate that Z-GT2-FLSs outperform MJ-GT2-FLSs and IT2
counterparts on high-dimensional datasets. To provide a detailed statistical comparison,
we include notch and whisker plots for each FLS across all datasets. Furthermore, we
study the effect of the number of fuzzy rules P by retraining models for P =5 and
P =10. We also assess each model’s computational cost in terms of memory usage and

training time.

In the last chapter of this thesis, we present a DL framework with Z-GT2-FLSs for
learning inverse cumulative distribution by estimating all quantile levels simultaneously.
The dual-focused Z-GT2-FLS learning approach is designated for a given confidence
level, requiring to undergo retraining for any desired confidence level. In this chapter, we
assign a-planes of GT2-FSs with quantile levels, 7 € [0, 1], (i.e., =7). Thus a € [0, 1]
is an input argument to GT2-FLSs instead of being a structural parameter. This structure
helps us to design a DL framework for GT2-FLSs to learn predictive distribution.
In this context, each a-IT2-FLS learns a quantile level, 7, selected randomly from
the uniform distribution 7 ~ U[0,1] of SQR, (i.e., @ = 7), and the model is called
Z-GT2-SQR. Building on this, we propose a novel approach called ASQR, which
targets the miscalibrated regions identified during validation and selects quantile levels
specifically from those regions during training, and the model is called Z-GT2-ASQR.
This strategy allows us to capture the full spectrum of quantile levels when compared to
the SQR method. Furthermore, we showcase the learning performance of Z-GT2-SQR
and Z-GT2-ASQR compared to state-of-the-art DL. models for UQ over benchmark
datasets. We conclude that Z-GT2-ASQR shows excibit performance compared to
state-of-the-art DL UQ methods. We also present Q-Q plots, serving as a means
of comparing expected quantile levels against observed ones. These plots help us to
understand that ASQR is a versatile approach for capturing the full spectrum of quantile

levels.

We believe that the results of this thesis study demonstrate that Z-GT2-FLSs can be a
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significant tool for fields requiring both accurate predictions and reliable uncertainty
estimates, such as healthcare (e.g., diagnostic systems), finance (e.g., risk assessment),
and autonomous technologies (e.g., decision-making under uncertainty). The key
limitation is the significant computational cost associated with the Z-GT2-FLS
framework, particularly impacting training duration for both learning frameworks
(dual-focused and distribution estimation). However, a key distinction is that the
inference or application time is significantly shorter once the model is trained. This
trade-off which is long training period for rapid and reliable inference is justifiable
in high-stakes applications such as real-time diagnostics, algorithmic trading, and
autonomous systems. In our future work, we will explore the application of

Z-GT2-FLSs in time series prediction and real-world scenarios.
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