
ISTANBUL TECHNICAL UNIVERSITY ⋆ GRADUATE SCHOOL

LEARNING GENERAL TYPE-2 FUZZY LOGIC SYSTEMS
FOR UNCERTAINTY QUANTIFICATION

M.Sc. THESIS

Yusuf GÜVEN

Department of Control and Automation Engineering

Control and Automation Engineering Programme

JULY 2025





ISTANBUL TECHNICAL UNIVERSITY ⋆ GRADUATE SCHOOL

LEARNING GENERAL TYPE-2 FUZZY LOGIC SYSTEMS
FOR UNCERTAINTY QUANTIFICATION

M.Sc. THESIS

Yusuf GÜVEN
(504231132)

Department of Control and Automation Engineering

Control and Automation Engineering Programme

Thesis Advisor : Prof. Dr. Tufan KUMBASAR

JULY 2025





İSTANBUL TEKNİK ÜNİVERSİTESİ ⋆ LİSANSÜSTÜ EĞİTİM ENSTİTÜSÜ

BELİRSİZLİK NİCELLEŞTİRİLMESİ İÇİN GENEL TİP-2
BULANIK MANTIK SİSTEMLERİNİN ÖĞRENİLMESİ

YÜKSEK LİSANS TEZİ

Yusuf GÜVEN
(504231132)

Kontrol ve Otomasyon Mühendisliği Anabilim Dalı

Kontrol ve Otomasyon Mühendisliği Programı

Tez Danışmanı : Prof. Dr. Tufan KUMBASAR

TEMMUZ 2025





Yusuf GÜVEN, a M.Sc. student of ITU Graduate School student ID 504231132,
successfully defended the thesis entitled “LEARNING GENERAL TYPE-2 FUZZY
LOGIC SYSTEMS FOR UNCERTAINTY QUANTIFICATION”, which he prepared
after fulfilling the requirements specified in the associated legislations, before the jury
whose signatures are below.

Thesis Advisor : Prof. Dr. Tufan KUMBASAR ........................
Istanbul Technical University

Jury Members : Assoc. Dr. İlker ÜSTOĞLU ........................
Istanbul Technical University

Dr. Alec STOTHERT ........................
MathWorks, Inc.

Date of Submission : 05 June 2025
Date of Defense : 16 July 2025

v



vi



To my mom,

vii



viii



FOREWORD

I would like to express my deepest gratitude to my family, who have always provided
me with an environment full of comfort and encouragement throughout the challenges
I faced during my thesis journey. Their unwavering support lightened my burdens and
gave me the courage to move forward. Without their presence, this thesis, which is
dedicated to them, would not have been possible.

I am sincerely grateful to my thesis advisor, Prof. Dr. Tufan KUMBASAR, for his
continuous guidance, insightful advice, and immense knowledge. His mentorship and
support allowed me to work on advanced topics in uncertainty quantification and fuzzy
sets and systems within his dedicated research group.

I would also like to express my heartfelt thanks to MathWorks for their generous
support through the MathWorks Research Scholarship. I extend my sincere gratitude
specifically to Dr. Alec Stothert and Dr. Rajibul Huq from MathWorks for their
valuable guidance, insightful discussions, and support throughout the project. The
collective contributions from MathWorks greatly facilitated the progress and depth of
my research.

July 2025 Yusuf GÜVEN

ix



x



TABLE OF CONTENTS
Page

FOREWORD.............................................................................................................. ix
TABLE OF CONTENTS...........................................................................................xi
ABBREVIATIONS ..................................................................................................xiii
SYMBOLS................................................................................................................. xv
LIST OF TABLES ..................................................................................................xvii
LIST OF FIGURES .................................................................................................xix
SUMMARY ..............................................................................................................xxi
ÖZET ....................................................................................................................... xxv
1. INTRODUCTION................................................................................................... 1
2. BACKGROUND: MATHEMATICAL PRELIMINARIES ................................ 5

2.1 Type-2 Fuzzy Sets............................................................................................... 5
2.1.1 Interval type-2 fuzzy sets ............................................................................ 6
2.1.2 General type-2 fuzzy sets............................................................................ 6

2.2 T2-FLSs: A Brief Overview............................................................................... 6
2.2.1 Interval type-2 fuzzy logic systems ............................................................ 7
2.2.2 General type-2 fuzzy logic systems ............................................................ 9
2.2.3 The implementation of karnik-mendel algorithm ..................................... 11

3. Z-GT2-FLS FOR ENHANCED LEARNING .................................................... 13
3.1 MJ-GT2-FLS: Representation And Potential Issues ........................................ 13

3.1.1 PMF representaton .................................................................................... 14
3.1.2 SMF representation................................................................................... 14
3.1.3 Potential issues.......................................................................................... 15

3.2 Z-GT2-FLS: Representation And Solutions..................................................... 15
3.2.1 PMF representation................................................................................... 16
3.2.2 SMF representation................................................................................... 16
3.2.3 Curse of dimensionality problem.............................................................. 17

3.3 Learning T2-FLSs Within DL Frameworks ..................................................... 18
3.3.1 Learnable parameter sets for IT2-FLSs .................................................... 18
3.3.2 Learnable parameter sets for GT2-FLSs................................................... 18
3.3.3 Parameterization tricks for T2-FLSs for DL optimizers ........................... 19

4. LEARNING T2-FLSs WITH A DUAL-FOCUS................................................ 21
4.1 The Learning Framework For Accuracy & HQ-PI........................................... 21

4.1.1 Composite loss definition for IT2-FLSs.................................................... 21
4.1.2 Composite loss function for GT2-FLSs .................................................... 22

4.2 Comparative Performance Analysis ................................................................. 23
4.2.1 Design of experiments .............................................................................. 23
4.2.2 Performance evaluation............................................................................. 24

4.2.2.1 Performance analysis for P = 5 .......................................................... 25
4.2.2.2 Performance analysis for P = 10 ........................................................ 29

xi



4.2.2.3 Computational load analysis .............................................................. 35
5. LEARNING GT2-FLSs FOR DISTRIBUTION ESTIMATION...................... 41

5.1 SQR For GT2-FLS ........................................................................................... 41
5.2 ASQR For GT2-FLSs....................................................................................... 42
5.3 Comparative Performance Analysis ................................................................. 43

5.3.1 Design of experiments .............................................................................. 44
5.3.2 Performance evaluation............................................................................. 45
5.3.3 ASQR implementation - visualization ...................................................... 48

6. CONCLUSIONS AND RECOMMENDATIONS ............................................. 53
REFERENCES.......................................................................................................... 57
CURRICULUM VITAE........................................................................................... 61

xii



ABBREVIATIONS

DL : Deep Learning

FLS : Fuzzy Logic System

FOU : Footprint of Uncertainty

GT2 : General Type-2

IT2 : Interval Type-2

PI : Prediction Interval

HQ-PI : High Quality Prediction Interval

FS : Fuzzy Set

MJ-GT2-FS : Mendel and John’s General Type-2 Fuzzy Set

Z-GT2-FS : Zadeh’s General Type-2 Fuzzy Set

MJ-GT2-FLS : Mendel and John’s General Type-2 Fuzzy Logic System

Z-GT2-FLS : Zadeh’s General Type-2 Fuzzy Logic System

PMF : Primary Membership Function

SMF : Secondary Membership Function

T1 : Type-1

T2 : Type-2

UQ : Uncertainty Quantification

TRS : Type-Reduced Set

𝛼-IT2-FLS : 𝛼-plane associated IT2-FLS

QR : Quantile Regression

SQR : Simultaneous Quantile Regression

ASQR : Adaptive Simultaneous Quantile Regression

AD : Automatic Differentiation

LP : Learnable Parameter

LMF : Lower Membership Function

IQR : Inter Quartile Range

UMF : Upper Membership Function

xiii



xiv



SYMBOLS

𝐴̃𝑝,𝑚 : General Type-2 Fuzzy Set.

𝐴̃
𝛼𝑘
𝑝,𝑚 : 𝛼-plane of 𝐴̃𝑝,𝑚 associated with 𝛼𝑘 .

𝑦 : The output of the General Type-2 Fuzzy Logic System.

𝑦𝛼𝑘 : The output of the 𝛼𝑘 - Interval Type-2 Fuzzy Logic System.

𝑦𝛼𝑘 : The lower output of the 𝛼𝑘 -Interval Type-2 Fuzzy Logic System.

𝑦𝛼𝑘 : The upper output of the 𝛼𝑘 -Interval Type-2 Fuzzy Logic System.

𝑓 𝛼𝑘
𝑝

: The 𝛼𝑘 -plane associated lower rule firing of the 𝑝𝑡ℎ rule.

𝑓
𝛼𝑘

𝑝 : The 𝛼𝑘 -plane associated upper rule firing of the 𝑝𝑡ℎ rule.

𝜇
𝐴̃𝛼𝑘

: The 𝛼𝑘 -plane associated lower membership grade.

𝜇 𝐴̃𝛼𝑘 : The 𝛼𝑘 -plane associated upper membership grade.

𝐽𝑥 : Primary Membership Function of 𝑥.

𝑐 : Center of Primary Membership Function.

𝜎 : Lower Standard Deviation of Primary Membership Function.

𝜎 : Upper Standard Deviation of Primary Membership Function.

𝛿0,1 : Parameters defining Secondary Membership Function.

𝛾 : Center of Secondary Membership Function.

𝜎𝑙 : Left Standard Deviation of Secondary Membership Function.

𝜎𝑟 : Right Standard Deviation of Secondary Membership Function.

𝜏 : Lower Quantile Level.

𝜏 : Upper Quantile Level.

xv



xvi



LIST OF TABLES
Page

Table 4.1 : DL-based Dual-Focused GT2-FLS Training Algorithm. ...................22
Table 4.2 : Testing RMSE: Z-GT2-FLS vs. Various Models. ..............................26
Table 4.3 : Testing Performance Comparison of Dual-Focused FLSs over 20

Experiments for 𝑃 = 5 rules. ...............................................................27
Table 4.4 : Testing Performance Comparison of Dual-Focused FLSs over 20

Experiments for 𝑃 = 10 rules. .............................................................33
Table 4.5 : Computational Load Analysis over 20 Experiments for 𝑃 = 5 Rules. 38
Table 4.6 : Computational Load Analysis over 20 Experiments for 𝑃 = 10 Rules.39
Table 5.1 : ASQR to learn Z-GT2-FLS Algorithm...............................................43
Table 5.2 : Miscalibration Space Algorithm.........................................................44
Table 5.3 : Quantile Generation Algorithm. .........................................................44
Table 5.4 : ECE Comparison over 5 Experiments: Z-GT2-SQR and Z-GT2-

ASQR vs. Various Models..................................................................47
Table 5.5 : ECE Comparison over 5 Experiments: Z-GT2-SQR vs. Z-GT2-

ASQR. .................................................................................................48

xvii



xviii



LIST OF FIGURES
Page

Figure 2.1 : Structure of a T2-FLS. ..........................................................................7
Figure 2.2 : H-IT2-FS...............................................................................................9
Figure 2.3 : HS-IT2-FS.............................................................................................9
Figure 3.1 : MJ-GT2-FS for 𝜎

𝑝,𝑚
= 𝜎𝑝,𝑚...............................................................13

Figure 3.2 : Z-GT2-FS............................................................................................17
Figure 4.1 : Notched box-and-whisker plots for PM (19×5875) for 𝑃 = 5............29
Figure 4.2 : Notched box-and-whisker plots for WW (11×4898) for 𝑃 = 5..........29
Figure 4.3 : Notched box-and-whisker plots for AIDS (23×2139) for 𝑃 = 5. .......30
Figure 4.4 : Notched box-and-whisker plots for ABA (8×4177) for 𝑃 = 5. ..........30
Figure 4.5 : Notched box-and-whisker plots for PP (4×9568) for 𝑃 = 5...............31
Figure 4.6 : Notched box-and-whisker plots for PM (19×5875) for 𝑃 = 10..........35
Figure 4.7 : Notched box-and-whisker plots for WW (11×4898) for 𝑃 = 10........35
Figure 4.8 : Notched box-and-whisker plots for AIDS (23×2139) for 𝑃 = 10. .....36
Figure 4.9 : Notched box-and-whisker plots for ABA (8×4177) for 𝑃 = 10. ........36
Figure 4.10 : Notched box-and-whisker plots for PP (4×9568) for 𝑃 = 10.............37
Figure 5.1 : Q-Q plot for Kin8nm (8×8198). ........................................................48
Figure 5.2 : Q-Q plot for Naval (17×11937). ........................................................49
Figure 5.3 : Q-Q plot for Power (4×9568). ...........................................................49
Figure 5.4 : Q-Q plot for RW (11×1599). .............................................................50
Figure 5.5 : Q-Q plot for BH with Z-GT2-SQR method for 1 seed. ......................50
Figure 5.6 : Miscalibration Areas for 𝜖 = 0.005. ....................................................51
Figure 5.7 : Selected 𝛼 = 𝜏 levels. ..........................................................................52
Figure 5.8 : Q-Q plot for BH with Z-GT2-ASQR method for 1 seed. ...................52

xix



xx



LEARNING GENERAL TYPE-2 FUZZY LOGIC SYSTEMS
FOR UNCERTAINTY QUANTIFICATION

SUMMARY

Deep learning has been widely used in various domains such as computer vision,
natural language processing, large language models, autonomous driving, and robotics
because it provides us with the flexibility to design complex architectures and achieve
high performance. Consequently, we no longer hesitate to apply these models in
high-risk areas like medical treatment and finance. However, these ambitions will fall
short if our models yield unreliable outcomes under diverse conditions. In this context,
uncertainty estimation becomes crucial: it tells us when to trust our predictions and
helps us handle anomalies, outliers, and out-of-distribution examples.

In recent studies, different deep learning models such as bayesian neural networks,
deep ensembles, monte carlo dropout, gaussian processes, and quantile regression have
been used for uncertainty estimation. For example, bayesian neural networks model
the weights of a neural network as probability distributions, providing uncertainty by
capturing posterior distributions over weights. However, this approach comes with a
high computational cost and stability issues on large-scale datasets. On the other hand,
quantile regression is easy to implement with a single model and simple loss functions,
and it also scales well with large datasets.

Type-2 fuzzy logic systems can be great candidates for estimating uncertainty. It
has been shown that type-2 fuzzy logic systems are capable of handling uncertainties
through their inherent structural model, which provides a degree of freedom, referred
to as the footprint of uncertainty, for modeling these uncertainties. In recent studies,
interval type-2 fuzzy logic systems, which are simplified versions of general type-2
fuzzy logic systems, have been used for modeling uncertainty while simultaneously
generating highly accurate predictions. To achieve this, the type-reduced set of interval
type-2 fuzzy logic systems is employed to estimate uncertainty through a pinball loss.
On the other hand, the output of interval type-2 fuzzy logic systems is used for point-wise
estimation with an appropriate empirical loss definition, resulting in a composite loss
function. Furthermore, general type-2 fuzzy logic systems are also utilized to generate
reliable prediction intervals and estimate highly accurate predictions by exploiting the
shape and size of the secondary membership functions. It has been shown that using
the secondary membership functions for point-wise predictions offers an efficient way
to handle both uncertainty and accuracy. In most studies, general type-2 fuzzy sets,
based on Mendel and John’s definition, are widely used, although Zadeh first defined
the concept of general type-2 fuzzy sets. This is due to the 𝛼-plane representation
of general type-2 fuzzy sets, which facilitates the parameterization of the secondary
membership function and demonstrates the equivalence between a general type-2 fuzzy
logic system and a set of 𝛼-plane associated interval type-2 fuzzy logic systems.
However, we identify some drawbacks in this definition, particularly regarding the
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direct dependency of the secondary membership functions on the primary membership
functions. To define the secondary membership functions, the primary membership
functions must first be defined. We believe this dependency could potentially reduce
the learning performance of general type-2 fuzzy logic systems and also affect the
design flexibility of general type-2 fuzzy sets negatively.

In this master’s thesis, we revisit the definition of general type-2 fuzzy sets as originally
defined by Zadeh. We first present Zadeh’s definition of general type-2 fuzzy sets.
This structure offers the flexibility to design the secondary membership functions of
general type-2 fuzzy sets without depending on the primary membership functions.
In this context, we propose the mathematical foundations of both the secondary and
primary membership functions, each of which is a type-1 fuzzy set. Afterwards,
to define the output of Zadeh’s general type-2 fuzzy logic systems, we integrate the
𝛼-plane representation into Zadeh’s general type-2 fuzzy sets. Subsequently, we define
the 𝛼-cuts of the secondary membership function and extract the equivalent lower
and upper membership functions corresponding to the 𝛼-planes of Zadeh’s general
type-2 fuzzy set. These membership grades are then directly used to calculate the
output of the general type-2 fuzzy logic system, which is formulated based on the
𝛼-plane approach. This approach enhances modeling flexibility and learning efficiency.
Furthermore, we develop a method to address the curse of dimensionality problem that
arises in fuzzy logic systems due to the rule firing strengths. This method adjusts the
primary membership grades based on the input dimensions, effectively overcoming
the challenges associated with high-dimensional datasets. Additionally, we propose
parameterization tricks to ensure that the definitions of general type-2 fuzzy sets
are not violated. These tricks allow us to formulate an unconstrained optimization
problem, which can be efficiently handled using deep learning optimizers and automatic
differentiation methods.

We propose a deep learning framework to learn dual-focused Zadeh’s general type-2
fuzzy logic systems. In this context, we first assign distinct roles to the interval type-2
fuzzy logic systems associated with each 𝛼𝑘 -plane within a composite loss function.
This loss function consists of two components, simultaneously focusing on uncertainty
and accuracy. To address both aspects, we present two loss definitions, leveraging
the shape and size of the secondary membership function. For both loss definitions,
we use only the type-reduced set of the 𝛼0-interval type-2 fuzzy logic system to learn
the prediction interval by estimating the upper and lower quantile levels for a given
confidence level in the uncertainty component of the composite loss function. On the
other hand, for the accuracy component, we define two loss functions. For the first, we
utilize the output of the general type-2 fuzzy logic system, and for the second, we use
the output of the 𝛼𝑘 -plane interval type-2 fuzzy logic system as a point-wise estimator.
Then, we present the comparative performance analysis of Zadeh’s general type-2
fuzzy logic systems on high-dimensional datasets by comparing them to their Mendel
and John’s general type-2 fuzzy logic systems and interval type-2 fuzzy logic systems
counterparts. The statistical results show that Zadeh’s general type-2 fuzzy logic
systems can serve as an effective approach for achieving highly accurate point-wise
estimations and generating high-quality prediction intervals, meaning narrow bands
that capture uncertainty at a given coverage level.

We also present a deep learning framework based on Zadeh’s general type-2 fuzzy
logic systems to learn the inverse cumulative distribution function by estimating all
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quantile levels. This approach helps prevent the need for multiple training sessions for
different desired coverage levels with given quantile pairs. Instead, any quantile pair
can be selected to generate a prediction interval that provides the desired confidence
level after one training section. In this context, we reformulate the output of the general
type-2 fuzzy logic system by enforcing it to learn a specific quantile level, 𝜏, through
the assignment 𝛼 = 𝜏. In this way, each output of the 𝛼-plane associated interval
type-2 fuzzy logic system is set to learn a quantile level function. To learn the inverse
cumulative distribution with a general type-2 fuzzy logic system, we reformulate the
simultaneous quantile regression by sampling random quantile levels. To enhance
learning, we develop an approach called adaptive simultaneous quantile regression,
which incorporates a miscalibration measure during training. This approach allows
us to generate additional quantile levels from miscalibration areas, ensuring they are
trained effectively using the general type-2 fuzzy logic system. Afterwards, we compare
our method with state-of-the-art deep learning methods to show the superiority of our
method.
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BELİRSİZLİK NİCELLEŞTİRİLMESİ İÇİN GENEL TİP-2
BULANIK MANTIK SİSTEMLERİNİN ÖĞRENİLMESİ

ÖZET

Derin öğrenme, karmaşık mimariler tasarlama ve bu mimariler aracılığıyla yüksek
performans seviyelerine ulaşma konusunda sunduğu olağanüstü esneklik sayesinde,
günümüzde bilgisayarlı görü, doğal dil işleme, büyük dil modellerinin geliştirilmesi,
otonom sürüş sistemleri ve ileri robotik uygulamaları gibi son derece çeşitli ve etki alanı
geniş disiplinlerde yaygın bir şekilde kendine yer bulmuştur. Bu teknolojinin sağladığı
ilerlemeler, daha önce çözülmesi güç olarak kabul edilen birçok probleme yenilikçi
çözümler getirmiş ve bu alanlarda adeta bir paradigma değişimine yol açmıştır. Bu
başarının doğal bir sonucu olarak, derin öğrenme modellerini, karar verme süreçlerinin
kritik olduğu ve hataların ciddi sonuçlar doğurabileceği tıbbi tedavi protokollerinin
belirlenmesi veya finansal piyasalardaki risk analizleri gibi yüksek risk taşıyan hassas
alanlarda dahi uygulamaktan giderek daha az çekinir hale geldik. Ancak, bu iddialı ve
umut verici hedeflere ulaşma çabalarımız, geliştirdiğimiz modellerin karşılaştıkları
farklı ve beklenmedik koşullar altında tutarlı ve güvenilir sonuçlar üretememesi
durumunda ne yazık ki başarısızlıkla sonuçlanma riski taşımaktadır. Tam da bu kritik
noktada, belirsizlik tahmini kavramı hayati bir öneme sahip olmaktadır. Zira belirsizlik
tahmini, modellerimizin ürettiği tahminlere ne ölçüde ve hangi koşullar altında
güvenebileceğimiz konusunda bize değerli bilgiler sunmakla kalmaz, aynı zamanda
sistemin normal çalışma koşullarının dışına çıkan anomalileri, veri kümesindeki genel
dağılıma uymayan aykırı değerleri ve modelin daha önce karşılaşmadığı, eğitim veri
setinin dağılımından farklı olan dağılım dışı örnekleri etkin bir şekilde tanımlamamıza
ve yönetmemize olanak tanır. Bu sayede, modellerin güvenilirliği artırılır ve potansiyel
riskler en aza indirilir.

Son yıllarda gerçekleştirilen akademik çalışmalarda, belirsizlik tahmininin önemi
giderek daha fazla anlaşılmış ve bu alanda çeşitli derin öğrenme modelleri başarıyla
kullanılmıştır. Bu modeller arasında Bayesci sinir ağları, derin topluluklar, Monte Carlo
seyreltme tekniği, Gauss süreçleri ve kantil regresyonu gibi farklı yaklaşımlar öne
çıkmaktadır. Örneğin, Bayesci sinir ağları, geleneksel sinir ağlarındaki deterministik
ağırlıkların aksine, ağın ağırlıklarını olasılık dağılımları olarak modelleyerek bir
belirsizlik ölçüsü sunar. Bu yaklaşım, ağırlıklar üzerindeki sonsal dağılımları
yakalayarak modelin tahminlerindeki güven aralığını belirlemesine olanak tanır. Ancak,
Bayesci sinir ağlarının bu sofistike yapısı, özellikle büyük ölçekli ve yüksek boyutlu veri
kümeleriyle çalışıldığında, önemli bir hesaplama maliyeti ve eğitim sürecinde kararlılık
sorunları gibi pratik zorlukları da beraberinde getirmektedir. Diğer bir popüler yaklaşım
olan kantil regresyonu ise, tek bir model kullanılarak ve görece basit kayıp fonksiyonları
tanımlanarak kolayca uygulanabilir olmasıyla dikkat çeker. Ayrıca, kantil regresyonu
büyük veri kümeleriyle çalışırken ölçeklenebilirlik açısından da avantajlıdır ve farklı
kantil değerleri için tahminler üreterek belirsizlik aralıkları oluşturulmasına imkan tanır.
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Bu çeşitli yöntemlerin yanı sıra, tip-2 bulanık mantık sistemleri, belirsizlik tahmini
konusunda dikkate değer ve güçlü adaylar olarak ön plana çıkmaktadır. Yapılan
araştırmalar, tip-2 bulanık mantık sistemlerinin, "belirsizlik ayak izi" olarak adlandırılan
ve modelin doğasında bulunan yapısal bir serbestlik derecesi sayesinde, karşılaşılan
çeşitli belirsizlik türlerini etkili bir şekilde ele alma ve modelleme kapasitesine sahip
olduğunu açıkça ortaya koymuştur. Özellikle son dönemdeki çalışmalarda, genel
tip-2 bulanık mantık sistemlerinin daha basitleştirilmiş ve hesaplama açısından daha
verimli versiyonları olan aralık tip-2 bulanık mantık sistemleri, bir yandan yüksek
doğrulukta noktasal tahminler üretirken, diğer yandan da modelin tahminlerindeki
belirsizliği başarılı bir şekilde modellemek amacıyla sıklıkla kullanılmıştır. Bu ikili
amaca ulaşmak için, aralık tip-2 bulanık mantık sistemlerinin tip-indirgenmiş kümesi,
genellikle bir pinball kayıp fonksiyonu aracılığıyla belirsizlik aralıklarını öğrenmek
ve tahmin etmek için kullanılır. Eş zamanlı olarak, aralık tip-2 bulanık mantık
sistemlerinin ürettiği net çıktı değeri, uygun bir ampirik kayıp fonksiyonu tanımıyla
birleştirilerek noktasal tahminlerin doğruluğunu artırmak için kullanılır. Bu iki farklı
amaç için tanımlanan kayıp fonksiyonlarının bir araya getirilmesiyle de bileşik bir
kayıp fonksiyonu oluşturulur. Daha da ötesi, genel tip-2 bulanık mantık sistemleri,
ikincil üyelik fonksiyonlarının sahip olduğu esnek şekil ve boyut özelliklerinden
faydalanarak hem güvenilir tahmin aralıkları üretme hem de son derece doğru noktasal
tahminler elde etme potansiyelini taşımaktadır. İkincil üyelik fonksiyonlarının noktasal
tahminler için kullanılmasının, sistemin hem belirsizliği etkin bir şekilde yönetmesine
hem de yüksek doğruluk seviyelerine ulaşmasına olanak tanıyan verimli bir strateji
olduğu çeşitli çalışmalarla kanıtlanmıştır. Literatürdeki çoğu çalışmada, genel tip-2
bulanık kümeler kavramını ilk olarak Lotfi A. Zadeh tanımlamış olmasına rağmen,
Mendel ve John tarafından önerilen tanıma dayanan genel tip-2 bulanık kümelerin
daha yaygın olarak kullanıldığı görülmektedir. Bu durumun temel nedeni, genel
tip-2 bulanık kümelerin 𝛼-düzlem gösteriminin sunduğu kolaylıklardır. Bu gösterim,
ikincil üyelik fonksiyonunun parametrelendirilmesini önemli ölçüde basitleştirmekte
ve bir genel tip-2 bulanık mantık sisteminin, bir dizi 𝛼-düzlem ilişkili aralık tip-2
bulanık mantık sistemine denk olduğunu göstermektedir. Ancak, Mendel ve John’un
tanımında, özellikle ikincil üyelik fonksiyonlarının birincil üyelik fonksiyonlarına
doğrudan ve kaçınılmaz bir şekilde bağımlı olması gibi bazı önemli dezavantajlar tespit
ettik. Bu tanıma göre, ikincil üyelik fonksiyonlarını tanımlayabilmek için öncelikle
birincil üyelik fonksiyonlarının belirlenmiş olması gerekmektedir. Bu sıkı bağımlılığın,
genel tip-2 bulanık mantık sistemlerinin öğrenme performansını potansiyel olarak
kısıtlayabileceğine ve aynı zamanda genel tip-2 bulanık kümelerin tasarım esnekliğini
olumsuz yönde etkileyebileceğine inanmaktayız.

Bu yüksek lisans tez çalışmasında, genel tip-2 bulanık kümelerin tanımını, kavramın
öncüsü olan Zadeh tarafından orijinal olarak ortaya konduğu şekliyle yeniden ele alıyor
ve bu tanımın potansiyel avantajlarını araştırmayı hedefliyoruz. Bu doğrultuda, ilk
olarak Zadeh’in genel tip-2 bulanık kümeler için önerdiği orijinal tanımı detaylı bir
şekilde sunuyoruz. Bu tanımın getirdiği en önemli avantajlardan biri, genel tip-2
bulanık kümelerin ikincil üyelik fonksiyonlarının, birincil üyelik fonksiyonlarına
herhangi bir zorunlu bağımlılık olmaksızın, daha serbest ve esnek bir şekilde
tasarlanabilmesine olanak tanımasıdır. Bu bağlamda, her biri kendi başına birer
tip-1 bulanık küme olan hem ikincil üyelik fonksiyonları hem de birincil üyelik
fonksiyonları için gerekli matematiksel temelleri ve formülasyonları öneriyoruz.
Ardından, Zadeh’in tanımına dayanan genel tip-2 bulanık mantık sistemlerinin
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çıktısını anlamlı bir şekilde tanımlayabilmek amacıyla, literatürde yaygın olarak
kabul gören 𝛼-düzlem gösterimini Zadeh’in genel tip-2 bulanık kümelerine entegre
ediyoruz. Bu entegrasyonun devamında, ikincil üyelik fonksiyonunun 𝛼-kesitlerini
tanımlıyor ve bu kesitlerden hareketle, Zadeh’in genel tip-2 bulanık kümesinin farklı
𝛼-düzlemlerine karşılık gelen eşdeğer alt ve üst üyelik fonksiyonlarını matematiksel
olarak türetiyoruz. Elde edilen bu üyelik dereceleri, 𝛼-düzlem yaklaşımına dayanılarak
formüle edilen genel tip-2 bulanık mantık sisteminin nihai çıktısını hesaplamak için
doğrudan ve etkin bir şekilde kullanılmaktadır. Bu yaklaşımın, modelleme esnekliğini
artırdığına ve öğrenme verimliliğini olumlu yönde etkilediğine inanıyoruz. Ayrıca,
bulanık mantık sistemlerinde, özellikle kural tabanının büyümesiyle birlikte ortaya
çıkan ve "boyutsallık laneti" olarak bilinen önemli bir problemi ele almak üzere
özgün bir yöntem geliştiriyoruz. Önerdiğimiz bu yöntem, girdi uzayının boyutlarına
bağlı olarak birincil üyelik derecelerini dinamik bir şekilde ayarlamakta ve böylece
yüksek boyutlu veri kümeleriyle çalışırken karşılaşılan zorlukların etkili bir şekilde
üstesinden gelinmesine yardımcı olmaktadır. Ek olarak, genel tip-2 bulanık kümelerin
matematiksel tanımlarının ve varsayımlarının ihlal edilmemesini garanti altına
almak amacıyla çeşitli parametrelendirme hileleri öneriyoruz. Bu hileler, karmaşık
kısıtlamalara sahip olabilecek optimizasyon problemini, kısıtsız bir optimizasyon
problemine dönüştürmemize olanak tanımakta ve bu sayede derin öğrenme alanında
yaygın olarak kullanılan optimize edicilerin ve otomatik farklılaştırma yöntemlerinin
verimli bir şekilde uygulanabilmesini mümkün kılmaktadır.

Bu tez kapsamında, Zadeh’in tanımına dayanan ve aynı anda hem doğruluk hem de
belirsizlik üzerine odaklanan, yani "çift odaklı" genel tip-2 bulanık mantık sistemlerini
öğrenebilmek için kapsamlı bir derin öğrenme çerçevesi öneriyoruz. Bu çerçeve
içerisinde, öncelikle bileşik bir kayıp fonksiyonu tanımlıyor ve bu fonksiyon dahilinde,
her bir 𝛼𝑘 -düzlemi ile ilişkilendirilmiş olan aralık tip-2 bulanık mantık sistemlerine
farklı ve belirgin roller atıyoruz. Tanımladığımız bu bileşik kayıp fonksiyonu, temel
olarak iki ana bileşenden oluşmaktadır: bunlardan ilki modelin tahminlerindeki
belirsizliği, ikincisi ise tahminlerin doğruluğunu hedeflemektedir. Her iki önemli yönü
de etkin bir şekilde ele alabilmek amacıyla, ikincil üyelik fonksiyonunun esnek şekil
ve boyut özelliklerinden yararlanarak iki farklı kayıp tanımı sunuyoruz. Önerdiğimiz
her iki kayıp tanımı için de, bileşik kayıp fonksiyonunun belirsizlik bileşeninde, belirli
bir güven seviyesi (𝛼0) için üst ve alt kantil seviyelerini tahmin ederek güvenilir bir
tahmin aralığı öğrenmek amacıyla, yalnızca 𝛼0-düzlemiyle ilişkili aralık tip-2 bulanık
mantık sisteminin tip-indirgenmiş kümesini kullanıyoruz. Diğer yandan, bileşik kayıp
fonksiyonunun doğruluk bileşeni için ise iki alternatif kayıp fonksiyonu tanımlıyoruz.
Bu alternatiflerden ilkinde, genel tip-2 bulanık mantık sisteminin doğrudan çıktısını
bir noktasal tahminleyici olarak kullanırken; ikincisinde ise, belirli bir 𝛼𝑘 -düzlemiyle
ilişkili aralık tip-2 bulanık mantık sisteminin çıktısını noktasal tahminler için temel
alıyoruz. Bu teorik altyapıyı oluşturduktan sonra, Zadeh’in tanımına dayanan genel
tip-2 bulanık mantık sistemlerinin, özellikle yüksek boyutlu ve karmaşık veri kümeleri
üzerindeki karşılaştırmalı performans analizini sunuyoruz. Bu analizde, önerdiğimiz
sistemleri, literatürde yaygın olarak kullanılan Mendel ve John’un tanımına dayanan
genel tip-2 bulanık mantık sistemleri ve daha basit yapıdaki aralık tip-2 bulanık
mantık sistemleri gibi benzerleriyle kıyaslıyoruz. Elde edilen istatistiksel sonuçlar,
Zadeh’in tanımına dayanan genel tip-2 bulanık mantık sistemlerinin, hem son derece
yüksek doğrulukta noktasal tahminler elde etme hem de belirli bir kapsama düzeyinde
belirsizliği etkin bir şekilde yakalayan dar ve dolayısıyla yüksek kaliteli tahmin aralıkları
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üretme konusunda etkili ve güçlü bir yaklaşım olarak hizmet edebileceğini açıkça
göstermektedir.

Bu tez çalışmasında ayrıca, Zadeh’in genel tip-2 bulanık mantık sistemlerine dayanan
ve veri dağılımının tüm kantil seviyelerini aynı anda tahmin ederek ters birikimli
dağılım fonksiyonunu öğrenmeyi amaçlayan yenilikçi bir derin öğrenme çerçevesi daha
sunuyoruz. Önerdiğimiz bu yaklaşımın en önemli avantajlarından biri, araştırmacıların
veya uygulayıcıların farklı güven aralıkları veya kapsama düzeyleri için, her biri
belirli bir kantil çiftine karşılık gelen çok sayıda ayrı eğitim süreci yürütme ihtiyacını
ortadan kaldırmasıdır. Bunun yerine, model tek bir kapsamlı eğitim sürecinden
geçtikten sonra, elde edilen ters birikimli dağılım fonksiyonu üzerinden istenilen
herhangi bir kantil çifti seçilerek, arzu edilen güven düzeyini sağlayan bir tahmin
aralığı kolaylıkla ve hızla oluşturulabilir. Bu esnekliği sağlamak amacıyla, genel tip-2
bulanık mantık sisteminin çıktı formülasyonunu, 𝛼 = 𝜏 şeklinde bir atama yaparak,
sistemin belirli bir kantil seviyesi olan 𝜏’yu öğrenmeye zorlayacak şekilde yeniden
düzenliyoruz. Bu sayede, 𝛼-düzlemi ile ilişkilendirilmiş her bir aralık tip-2 bulanık
mantık sisteminin çıktısı, farklı bir kantil seviyesine karşılık gelen bir fonksiyonu
öğrenmek üzere ayarlanmış olur. Genel bir tip-2 bulanık mantık sistemi kullanarak ters
birikimli dağılım fonksiyonunu etkin bir şekilde öğrenebilmek için, eğitim verilerinden
rastgele kantil seviyeleri örnekleyerek eş zamanlı kantil regresyonu yaklaşımını yeniden
formüle ediyor ve modelimize uyarlıyoruz. Öğrenme sürecini daha da iyileştirmek ve
modelin özellikle zorlandığı bölgelerde daha iyi performans göstermesini sağlamak
amacıyla, "uyarlanabilir eş zamanlı kantil regresyonu" adını verdiğimiz özgün bir
yaklaşım geliştiriyoruz. Bu yaklaşım, eğitim süreci sırasında bir yanlış kalibrasyon
ölçüsünü dinamik olarak dahil etmekte ve bu ölçüye dayanarak, modelin tahminlerinin
gerçek değerlerden saptığı, yani yanlış kalibrasyonun yüksek olduğu bölgelerden ek
kantil seviyeleri üretmemize olanak tanımaktadır. Bu sayede, üretilen bu ek kantil
seviyelerinin genel tip-2 bulanık mantık sistemi tarafından daha etkili bir şekilde
öğrenilmesi ve modelin genel performansının artırılması hedeflenmektedir. Son olarak,
önerdiğimiz bu kapsamlı yöntemin üstünlüğünü ve etkinliğini kanıtlamak amacıyla,
elde ettiğimiz sonuçları, literatürdeki en güncel ve en başarılı derin öğrenme tabanlı
belirsizlik ve kantil tahmin yöntemleriyle kapsamlı bir şekilde karşılaştırıyor ve
önerimizin avantajlarını ortaya koyuyoruz.
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1. INTRODUCTION

Deep Learning (DL) has achieved remarkable breakthroughs across a wide range of

applications, including computer vision, natural language processing, and robotics

[1–6]. Despite these successes, a predominant focus on accuracy often overlooks

a critical aspect of modern predictive modeling: Uncertainty Quantification (UQ)

[7–10]. In settings where decisions carry significant consequences, understanding and

quantifying the uncertainty in predictions is as crucial as achieving high accurate results

[11–13].

Fuzzy Logic Systems (FLSs) provide a powerful and flexible framework for handling

uncertainty, making them well-suited for applications where uncertainty is significant.

In the context of Uncertainty Quantification (UQ), Type-2 (T2) FLSs are particularly

advantageous because they incorporate uncertainty directly into their Membership

Functions (MFs). These MFs can be represented using either General Type-2 (GT2)

Fuzzy Sets (FSs), which provide the most comprehensive modeling of uncertainty,

or their simplified variant, Interval Type-2 (IT2) FSs [14]. GT2-FSs were originally

introduced by Zadeh (Z) [15, 16] and have since been widely studied and utilized,

particularly through the formalization provided by Mendel and John (MJ) [17]. The

MJ-GT2-FSs framework is implemented via the zSlices/𝛼-plane representation, which

offers a structured approach to handling the complexities of GT2-FSs [14, 18]. This

representation is built upon two fundamental principles:

1. Parameterized Secondary MFs (SMFs): The Secondary MF (SMF) of a GT2-FS is

parameterized based on its Primary MF (PMF), allowing for a more structured and

interpretable representation of uncertainty.

2. Equivalence with IT2-FLSs: The 𝛼-plane representation establishes a direct

connection between GT2-FLSs and a set of associated IT2-FLSs, effectively enabling

the decomposition of complex GT2 FLSs into a set of IT2-FLSs.

The learning procedures of IT2 and GT2 FLSs have traditionally focused on improving

accuracy across various applications [1, 19–26]. Most studies have concentrated on
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refining MF structures, optimizing parameter learning algorithms, and enhancing rule-

based inference techniques to achieve better predictive performance [1, 19–26]. While

these advancements have led to significant improvements in accuracy, they have largely

overlooked the potential of IT2 and GT2-FSs for UQ. Given the inherent ability of

IT2 and GT2-FSs to model uncertainty within their structure, their application in UQ

remains an underexplored yet promising area of research.

Recently, there has been a growing interest in using T2 FSs for UQ[27–30]. In [29],

a DL framework is introduced using a composite loss function commonly applied in

Quantile Regression (QR). Their approach explicitly incorporates the Type-Reduced

Set (TRS) and the output of IT2-FLSs to train models that can generate Prediction

Intervals (PIs). Similarly, for MJ-GT2-FLS [30], a different composite loss function is

designed to utilize the support of SMFs (i.e., PMFs) for learning PIs while shaping the

model for point-wise estimation. Both methods aim to learn PIs by ensuring a specific

quantile range is covered, rather than capturing the entire predictive distribution—an

objective that is considered the most comprehensive approach to UQ [12, 31].

In this thesis, we explore GT2 FSs based on Zadeh’s definition to achieve

high performance in both accuracy and uncertainty modeling through GT2-FLSs.

Specifically, we adopt Z-GT2-FS instead of MJ-GT2-FS to eliminate the dependency

of the secondary membership grade on the primary membership grade. This provides

greater design flexibility, making the system more adaptable. We begin by establishing

the mathematical foundations of SMF and PMF, both of which are defined using Type-1

(T1) FSs. Next, we incorporate the 𝛼-plane representation into Z-GT2-FSs to formally

define the output of Z-GT2-FLSs. This involves defining the 𝛼-cut representation of

SMF and extracting the Lower MF (LMF) and Upper MF (UMF) for each corresponding

𝛼-plane of Z-GT2-FSs. These extracted MFs directly contribute to computing the final

output of Z-GT2-FLSs using the 𝛼-plane representation. To address the curse of

dimensionality during the learning process of Z-GT2-FLSs, we introduce an approach

that dynamically adjusts the PMF based on the input dimension. Additionally, we

propose parameterization tricks that ensure the integrity of Z-GT2-FS definitions. This

allows us to train Z-GT2-FLSs effectively using standard unconstrained DL optimizers

and Automatic Differentiation (AD), making the learning process more efficient and

scalable.
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After formulating Z-GT2-FLSs as a structure trainable via DL optimizers, we introduce

a DL framework that employs distinct 𝛼𝑘 -planes (𝛼𝑘 -IT2-FLSs) within a composite

loss function. This framework is designed to generate both high-quality Prediction

Intervals (HQ-PIs) [9] and accurate point-wise predictions simultaneously. To achieve

this, we propose two distinct loss functions that leverage the shape and size of the

SMF in Z-GT2-FSs. The composite loss function consists of two main components:

an uncertainty term and an accuracy term. The uncertainty term utilizes the TR set

of the 𝛼0-plane (𝛼0-IT2-FLSs) to generate PIs by estimating lower and upper quantile

levels (𝜏, 𝜏) for a given confidence level. Meanwhile, the accuracy term introduces

two approaches: (1) using the aggregated output of Z-GT2-FLSs and (2) employing

the output of the 𝛼𝐾-plane (𝛼𝐾-IT2-FLSs) for point-wise estimation. To evaluate the

effectiveness of Z-GT2-FLSs, we conduct extensive experiments on high-dimensional

datasets, comparing their learning performance with MJ-GT2-FLSs and IT2-FLSs [29,

30], both of which involve a higher number of learnable parameters (LPs). Statistical

analyses demonstrate that Z-GT2-FLSs provide a promising solution for achieving both

high prediction accuracy and reliable HQ-PIs for a given confidence level.

Additionally, we propose a DL framework based on Z-GT2-FLSs to learn the inverse

cumulative distribution function by estimating all quantile levels simultaneously. This

approach enables us to capture the entire conditional distribution of the target variable,

allowing for the selection of appropriate quantile levels for any given confidence level

after one training section. To achieve this, we reformulate the GT2-FLS output as

𝑦(𝑥𝑥𝑥,𝛼𝑘 ), ensuring that it learns a specific quantile level 𝜏 by setting 𝛼 = 𝜏. As a

result, each 𝛼-IT2-FLS is designed to approximate a quantile function, offering the

flexibility to generate any desired 𝜏 ∈ [0,1] by adjusting 𝛼 within the same range. To

model the predictive distribution using GT2-FLS, we adapt the Simultaneous Quantile

Regression (SQR) approach [12], which involves sampling random quantile levels. To

further enhance the learning process, we introduce an Adaptive SQR (ASQR) method

that incorporates a miscalibration measure for improved accuracy. Finally, we evaluate

the estimation performance of GT2-FLS in comparison with DL-based methods to

demonstrate its advantages.

The organization of this thesis consist of 6 chapters. In Chapter 2, we review some

mathematical foundations on that are utilized throughout the thesis. The topics we

review include fundamental definitions from the theory of IT2/GT2-FLSs. In Chapter
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3, we motivate and present the Z-GT2-FLSs and explain its key differences from

MJ-GT2-FLSs; we additionally propose the solutions Z-GT2-FLSs produce to the

problems of IT2-FLSs. Chapter 4 describes the learning method for dual-focused

Z-GT2-FLSs and shows the statistical analysis of Z-GT2-FLSs compared to MJ-GT2,

and IT2-counterparts. In Chapter 5, we explore how Z-GT2-FLSs can be leveraged

for predictive distribution estimation by assigning 𝛼-planes to quantile levels (𝜏). In

Chapter 6, we conclude with an overview of Z-GT2-FLSs’ applications and future

work.

4



2. BACKGROUND: MATHEMATICAL PRELIMINARIES

In this chapter, we will first review the mathematical fundamentals of Type-2 Fuzzy

Sets, providing a foundation for understanding their theoretical framework. After

establishing these fundamental concepts, we will then explain the structure and working

principles of IT2 and GT2-FLSs.

2.1 Type-2 Fuzzy Sets

A Type-2 Fuzzy Set can be defined as follows [32]:

𝐴̃ =
{
(𝑥,𝑢), 𝜇 𝐴̃ (𝑥,𝑢) | 𝑥 ∈ 𝑋,𝑢 ∈𝑈

}
(2.1)

Here, 𝑥 represents the input variable, also referred to as the primary variable of 𝐴̃,

while 𝑋 denotes its corresponding universe[32]. The variable 𝑢 serves as the secondary

variable of 𝐴̃, with 𝑈 ≡ [0,1] representing its universe. Lastly, 𝜇 𝐴̃ (𝑥,𝑢) defines the

T2-MF of the T2-FS 𝐴̃. 𝐴̃ can also be expressed in the continuous and the discrete

universe as follows:

𝐴̃ =

∫
𝑥∈𝑋

∫
𝑢∈𝑈

𝜇 𝐴̃ (𝑥,𝑢) /(𝑥,𝑢) (2.2)

𝐴̃ =
∑︁
𝑥∈𝑋

∑︁
𝑢∈𝑈

𝜇 𝐴̃ (𝑥,𝑢) /(𝑥,𝑢) (2.3)

After defining a T2-FS denoted by 𝐴̃, we can define the 2-D support of 𝜇 𝐴̃ (𝑥,𝑢) (which

is called Footprint of Uncertainty (FOU) of 𝐴̃) as follows [32]:

FOU( 𝐴̃) = {(𝑥,𝑢) ∈ 𝑋 × [0,1], 𝜇 𝐴̃ (𝑥,𝑢) > 0} (2.4)

FOU is bounded by Lower MF (LMF) and Upper MF (UMF), which are denoted by

𝜇
𝐴̃
(𝑥,𝑢) and 𝜇 𝐴̃ (𝑥,𝑢) respectively and described as follows [32]:

LMF( 𝐴̃) = 𝜇
𝐴̃
(𝑥,𝑢) = inf

{
𝑢 | 𝑢 ∈ [0,1], 𝜇 𝐴̃ (𝑥,𝑢) > 0

}
(2.5)

UMF( 𝐴̃) = 𝜇 𝐴̃ (𝑥,𝑢) = sup
{
𝑢 | 𝑢 ∈ [0,1], 𝜇 𝐴̃ (𝑥,𝑢) > 0

}
(2.6)
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The primary membership at 𝑥 ∈ 𝑋 of the given T2-FS ( 𝐴̃) is described as 𝐽𝑥 and defined

by the interval of [𝜇
𝐴̃
(𝑥), 𝜇 𝐴̃ (𝑥)] as[32]:

𝐽𝑥 =
{
𝑢 ∈ [0,1], 𝜇 𝐴̃ (𝑥,𝑢) > 0

}
= [𝜇

𝐴̃
(𝑥), 𝜇 𝐴̃ (𝑥)] (2.7)

The secondary membership at 𝑥 ∈ 𝑋 of the given T2-FS ( 𝐴̃) is described as 𝜇 𝐴̃(𝑥) (𝑢)
or 𝜇 𝐴̃(𝑥) and defined as follows[32]:

𝜇 𝐴̃(𝑥) (𝑢) = 𝜇 𝐴̃(𝑥) = 𝜇 𝐴̃𝑥 =
∫

𝑢∈[0,1]

𝜇 𝐴̃ (𝑥,𝑢) /𝑢 (2.8)

2.1.1 Interval type-2 fuzzy sets

An Interval Type-2 fuzzy set is defined as

𝐴̃ =
{
(𝑥,𝑢), 𝜇 𝐴̃ (𝑥,𝑢) = 1 | 𝑥 ∈ 𝑋, 𝑢 ∈𝑈

}
, (2.9)

where the secondary membership function 𝜇 𝐴̃ (𝑥,𝑢) maps each primary element 𝑥 ∈ 𝑋
and secondary variable 𝑢 ∈ 𝑈 to 1. An IT2-FS is a special case of a GT2-FS all of

whose secondary grades are equal to 1[32]. An IT2-MF is deployed in the 2D domain

instead of 3D, differing from GT2-MF. In this context, an IT2-FS is fully defined by its

LMF and UMF, with the FOU representing the region between them.

2.1.2 General type-2 fuzzy sets

A General Type-2 fuzzy set is defined as

𝐴̃ =
{
(𝑥,𝑢), 𝜇 𝐴̃ (𝑥,𝑢) | 𝑥 ∈ 𝑋, 𝑢 ∈𝑈

}
, (2.10)

The SMF, denoted by 𝜇 𝐴̃(𝑥) , is the key element of GT2-FSs differing from the IT2-FSs.

The next chapter will deeply investigate how the SMF shape can be represented in

different settings [15, 17].

2.2 T2-FLSs: A Brief Overview

After defining T2-FSs (i.e., IT2-FS and GT2-FS), we will briefly introduce IT2-FLSs

and GT2-FLSs. A T2-FLS consists of a fuzzification layer, a fuzzy rule base, an

inference engine, a type reducer, and a defuzzification layer, as shown in Figure 2.1.

T2-FLSs are constructed based on if-then rule structures. T2-FSs are used to define

the antecedent and consequent parts of T2-FLSs. First, the fuzzification layer is used
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Figure 2.1 : Structure of a T2-FLS.

to transform crisp inputs into the T2 fuzzy sets [33], as shown in Figure 2.1. This

process provides us with fuzzified inputs, subsequently, these fuzzy inputs are fed to

the inference engine, which is responsible for applying the fuzzy rules in the rule base

to derive the corresponding T2 fuzzy output sets [33]. These T2-FSs are reduced

to T1-FSs via a type-reducer, and then the output of a T2-FLS is calculated by a

defuzzification layer, as depicted in Figure 2.1 [33]. In this thesis study, we have

used the Takagi-Sugeno-Kang type FLS as the T2-FLS. The antecedent membership

functions of T2-FLSs are defined with T2-FSs, while the consequent membership

functions of T2-FLSs are defined through affine (linear) functions. In the following

subsections, we will introduce IT2-FLSs and GT2-FLSs, respectively.

2.2.1 Interval type-2 fuzzy logic systems

In this study, IT2-FLSs are constructed with gaussian antecedent functions and affine

(linear) consequent membership functions. In this context, for a given input vector

x = (𝑥1, 𝑥2, . . . , 𝑥𝑀)T with 𝑀 dimension and single input 𝑦, the rule structure of an

IT2-FLS with 𝑃 rules (𝑝 = 1,2, . . . , 𝑃) is defined as follows:

𝑅𝑝 : If 𝑥1 is 𝐴̃𝑝,1 and . . . 𝑥𝑀 is 𝐴̃𝑝,𝑀 Then 𝑦 is 𝑦𝑝 (2.11)

where 𝐴̃𝑝,1, . . . , 𝐴̃𝑝,𝑀 are antecedent membership functions of the given input vector

x = (𝑥1, 𝑥2, . . . , 𝑥𝑀)T respectively, 𝑦 is the output of the IT2-FLS. Here, 𝑅𝑝 is the rule

number, 𝑝 represents the rule index. 𝑦𝑝 is the consequent membership function, which

is defined via an affine (linear) function as follows:

𝑦𝑝 =

𝑀∑︁
𝑚=1

𝑎𝑝,𝑚𝑥𝑚 + 𝑎𝑝,0 (2.12)
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The antecedent MFs 𝐴̃𝑝,𝑚 are defined with IT2-FSs that are represented via an Upper

MF and a Lower MF as follows:

𝜇 𝐴̃𝑝,𝑚 (𝑥𝑚) = exp
(
−

(
𝑥𝑚 − 𝑐𝑝,𝑚

)2 /2𝜎2
𝑝,𝑚

)
(2.13)

𝜇
𝐴̃𝑝,𝑚
(𝑥𝑚) = ℎ𝑝,𝑚 exp

(
−

(
𝑥𝑚 − 𝑐𝑝,𝑚

)2 /2𝜎2
𝑝,𝑚

)
(2.14)

where 𝑐𝑝,𝑚 is the center, 𝜎̃𝑝,𝑚 = [𝜎
𝑝,𝑚
,𝜎𝑝,𝑚] is the standard deviation while ℎ𝑝,𝑚

defines the height of the LMF ∀𝑝,𝑚. The output of the IT2-FLS (𝑦) is defined with

the Type-Reduced Set 𝑌 = [𝑦, 𝑦] of the IT2-FLS and can be calculated as follows[17]:

𝑦(x) = (𝑦(x) + 𝑦(x))/2 (2.15)

where 𝑦, and 𝑦 represent the left and right boundary points of the type-reduced set, and

these boundary points are obtained via a Center of Sets Calculation Method (CSCM)

method. In this thesis study, we have used the Karnik-Mendel (KM) algorithm to

calculate the type-reduced set as follows[14]:

𝑦(x) =

∑𝐿
𝑝=1 𝑓 𝑝 (x)𝑦𝑝 +

∑𝑃
𝑝=𝐿+1 𝑓 𝑝

(x)𝑦𝑝∑𝐿
𝑝=1 𝑓 𝑝 (x) +

∑𝑥
𝑝=𝐿+1 𝑓 𝑝

(x)
(2.16)

𝑦(x) =

∑𝑅
𝑝=1 𝑓 𝑝

(x)𝑦𝑝 +
∑𝑃
𝑝=𝑅+1 𝑓 𝑝 (x)𝑦𝑝∑𝑅

𝑝=1 𝑓 𝑝
(x) +∑𝑃

𝑝=𝑅+1 𝑓 𝑝 (x)
(2.17)

where 𝐿 and 𝑅 represent the switching points of KM algorithm [14]. In (2.16) and

(2.17), 𝑓
𝑝
(x) and 𝑓 𝑝 (x) represent the lower and upper firing strengths of the 𝑝th rule

and calculated as follows:

𝑓
𝑝
(x) = 𝜇

𝐴̃𝑝,1
(𝑥1) ∩ 𝜇

𝐴̃𝑝,2
(𝑥2) ∩ . . .∩ 𝜇

𝐴̃𝑝,𝑀
(𝑥𝑀) (2.18)

𝑓 𝑝 (x) = 𝜇 𝐴̃𝑝,1 (𝑥1) ∩ 𝜇 𝐴̃𝑝,2 (𝑥2) ∩ . . .∩ 𝜇 𝐴̃𝑝,𝑀 (𝑥𝑀) (2.19)

The membership grades of the LMFs are given by:

𝜇
𝐴̃𝑝,1

, 𝜇
𝐴̃𝑝,2

, . . . , 𝜇
𝐴̃𝑝,𝑀

, for x = (𝑥1, 𝑥2, . . . , 𝑥𝑀)T (2.20)

while the membership grades of the UMFs are:

𝜇 𝐴̃𝑝,1 , 𝜇 𝐴̃𝑝,2 , . . . , 𝜇 𝐴̃𝑝,𝑀 , for x = (𝑥1, 𝑥2, . . . , 𝑥𝑀)T (2.21)

Here, ∩ is the t-norm operator, which can be defined using various mathematical

functions. Among the most commonly used t-norms are the minimum and product

operators [14, 28, 34].
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In this study, we used the product operator as the t-norm operator. During the statistical

analysis of IT2-FLSs on various datasets, we used two different antecedent membership

functions to define the IT2-FSs to construct parametric IT2-FLSs as [29]:

• H type IT2-FSs: As shown in Figure 2.2, the FOU is only generated by the

ℎ𝑝,𝑚 ∀𝑝,𝑚, since 𝜎
𝑝,𝑚

= 𝜎𝑝,𝑚.

• HS type IT2-FSs: As shown in Figure 2.3, the FOU is dependent on the

ℎ𝑝,𝑚, 𝜎𝑝,𝑚, and 𝜎𝑝,𝑚,∀𝑝,𝑚.

Figure 2.2 : H-IT2-FS.

Figure 2.3 : HS-IT2-FS.

2.2.2 General type-2 fuzzy logic systems

GT2-FLSs are constructed based on GT2-FSs, which were first introduced by Zadeh

[15, 16] and have since been widely studied, particularly following the definition

provided by Mendel and John [17]. In this study, we differentiate between two types

of GT2-FLSs based on their underlying GT2-FS definitions. Specifically, we refer to

GT2-FLSs that utilize Zadeh’s definition [15, 16] as Z-GT2-FLS, while those based on
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the definition by Mendel and John [17] are termed MJ-GT2-FLS. In this section we

will give brief introduction on GT2-FLSs, then deep dive into Z/MJ-GT2-FLSs in the

following chapter.

The GT2-FLS is formulated for an input vector x = (𝑥1, 𝑥2, . . . , 𝑥𝑀)T and a single output

𝑦. The rule base is composed of 𝑃 rules (𝑝 = 1,2, . . . , 𝑃) that is defined as:

𝑅𝑝 : If 𝑥1 is 𝐴̃𝑝,1 and . . . 𝑥𝑀 is 𝐴̃𝑝,𝑀 Then 𝑦 is 𝑦𝑝 (2.22)

where 𝐴̃𝑝,1, . . . , 𝐴̃𝑝,𝑀 are antecedent membership functions of the given input vector

x = (𝑥1, 𝑥2, . . . , 𝑥𝑀)T respectively, 𝑦 is the output of the GT2-FLS. Here, 𝑅𝑝 is the rule

number, 𝑝 represents the rule index. 𝑦𝑝 is the consequent membership function, which

is defined via an affine (linear) function as follows:

𝑦𝑝 =

𝑀∑︁
𝑚=1

𝑎𝑝,𝑚𝑥𝑚 + 𝑎𝑝,0 (2.23)

The antecedent MFs are defined with GT2-FSs 𝐴̃𝑝,𝑚 that are defined as a collection of

𝛼-planes (𝛼𝑘 ) as follows:

𝐴̃𝑝,𝑚 =
⋃

𝛼𝑘∈[0,1]
𝐴̃𝛼𝑘𝑝,𝑚 (2.24)

where 𝐴̃𝛼𝑘𝑝,𝑚 is the 𝛼-plane of 𝐴̃𝑝,𝑚 associated with 𝛼𝑘 ∈ [0,1]. When 𝛼𝑘 is distributed

uniformly, we express it as 𝛼𝑘 = 𝑘/𝐾 for 𝑘 ranging from 0 to 𝐾 . Thus, there are a total

of 𝐾 + 1 𝛼-planes [14]. This representation allows defining the output of the GT2-FLSs

as follows:

𝑦(𝑥𝑥𝑥) =
∑𝐾
𝑘=0 𝑦

𝛼𝑘 (𝑥𝑥𝑥)𝛼𝑘∑𝐾
𝑘=0𝛼𝑘

(2.25)

Here, y𝛼𝑘 (𝑥𝑥𝑥) is the 𝛼𝑘 .-IT2-FLS output and defined as:

𝑦𝛼𝑘 (𝑥𝑥𝑥) = (𝑦𝛼𝑘 (𝑥𝑥𝑥) + 𝑦𝛼𝑘 (𝑥𝑥𝑥))/2 (2.26)

Here, 𝑦𝛼𝑘 , and 𝑦𝛼𝑘 represent the left and right boundary points of the type-reduced set

for the given 𝛼𝑘 -IT2-FLS, and these boundary points are obtained via KM algorithm

as follows[14]:

𝑦𝛼𝑘 (𝑥𝑥𝑥) =

∑𝐿
𝑝=1 𝑓

𝛼𝑘

𝑝
(𝑥𝑥𝑥)𝑦𝑝 +

∑𝑃
𝑝=𝐿+1 𝑓

𝛼𝑘

𝑝 (𝑥𝑥𝑥)𝑦𝑝∑𝐿
𝑝=1 𝑓

𝛼𝑘

𝑝
(𝑥𝑥𝑥) +∑𝑃

𝑝=𝐿+1 𝑓
𝛼𝑘

𝑝 (𝑥𝑥𝑥)
(2.27)

𝑦𝛼𝑘 (𝑥𝑥𝑥) =

∑𝑅
𝑝=1 𝑓

𝛼𝑘

𝑝
(𝑥𝑥𝑥)𝑦𝑝 +

∑𝑃
𝑝=𝑅+1 𝑓

𝛼𝑘

𝑝 (𝑥𝑥𝑥)𝑦𝑝∑𝑅
𝑝=1 𝑓

𝛼𝑘

𝑝
(𝑥𝑥𝑥) +∑𝑃

𝑝=𝑅+1 𝑓
𝛼𝑘

𝑝 (𝑥𝑥𝑥)
(2.28)
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where 𝐿, 𝑅 are the switching points of the KM algorithm [14]. 𝑓 𝛼𝑘
𝑝
(𝑥𝑥𝑥) and 𝑓

𝛼𝑘

𝑝 (𝑥𝑥𝑥) are

the lower and upper rule firing of the 𝑝𝑡ℎ rule and are defined as:

𝑓 𝛼𝑘
𝑝
(𝑥𝑥𝑥) = 𝜇

𝐴̃
𝛼𝑘
𝑝,1
(𝑥1) ∩ 𝜇

𝐴̃
𝛼𝑘
𝑝,2
(𝑥2) ∩ . . .∩ 𝜇

𝐴̃
𝛼𝑘
𝑝,𝑀

(𝑥𝑀) (2.29)

𝑓
𝛼𝑘

𝑝 (𝑥𝑥𝑥) = 𝜇 𝐴̃𝛼𝑘
𝑝,1
(𝑥1) ∩ 𝜇 𝐴̃𝛼𝑘

𝑝,2
(𝑥2) ∩ . . .∩ 𝜇 𝐴̃𝛼𝑘

𝑝,𝑀
(𝑥𝑀) (2.30)

The membership grades of the LMFs for a given 𝛼𝑘 -IT2-FLS are given by:

𝜇
𝐴̃
𝛼𝑘
𝑝,1
, . . . , 𝜇

𝐴̃
𝛼𝑘
𝑝,𝑀

, for x = (𝑥1, 𝑥2, . . . , 𝑥𝑀)T (2.31)

while the membership grades of UMFs for a given 𝛼𝑘 -IT2-FLS are:

𝜇
𝐴̃
𝛼𝑘
𝑝,1
, . . . , 𝜇

𝐴̃
𝛼𝑘
𝑝,𝑀
, for x = (𝑥1, 𝑥2, . . . , 𝑥𝑀)T (2.32)

Here, ∩ is the t-norm operator, which can be defined using various mathematical

functions. Among the most commonly used t-norms are the minimum and product

operators [14, 28, 34]. In this study, we used the product operator as the t-norm

operator.

2.2.3 The implementation of karnik-mendel algorithm

There are multiple type-reduction methods. In this thesis study, we implement the

KM Algorithm [14]. This algorithm includes an iterative method to determine the left

endpoint (𝑦, 𝑦𝛼𝑘 ) and the right endpoint (𝑦, 𝑦𝛼𝑘 ). 𝐿 and 𝑅 are found iteratively by

checking which combination of upper and lower firing strengths (e.g., 𝑓
𝛼𝑘

𝑝 , 𝑓
𝛼𝑘

𝑝
) yields

a consistent centroid calculation. This iterative process increases the inference time and

complexity of IT2 / GT2-FLSs. To handle this issue, the KM algorithm can be thought

of as a linear functional programming problem [35]. It can be observed that (2.16)

and (2.17) (i.e., (2.27) and (2.28)) can be reformulated via 𝑢𝑝 ∈ 0,1 which defines an

equivalent 𝑓𝑝 = 𝑓 𝑝𝑢𝑝 + 𝑓 𝑝 (1− 𝑢𝑝). However, this approach still requires an iterative

process.

In our paper [36], we propose an efficient method to handle this problem by eliminating

the needed optimization problems in (2.16) and (2.17) by evaluating

𝑌 (𝑢𝑢𝑢) = 𝑋 (𝑢𝑢𝑢) ⊘ 𝑍 (𝑢𝑢𝑢) (2.33)

where,

𝑋 (𝑢𝑢𝑢) = 𝑐0 + 𝑐𝑢𝑢𝑢 : 𝛼0 =
∑︁𝑃

𝑝
𝑦𝑝 𝑓

𝑝
(x) ; 𝑐𝑝 = 𝑦𝑝 ( 𝑓 𝑝 (x) − 𝑓 𝑝 (x)) , 𝑝 = 1, ..., 𝑃 (2.34)
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where 𝑦𝑝 represents the consequent part of the 𝑝th rule, and 𝑓
𝑝
(x), and 𝑓 𝑝 (x) are the

lower and upper firing strengths of the 𝑝th rule.

𝑍 (𝑢𝑢𝑢) = 𝛽0 + 𝛽𝑢𝑢𝑢 : 𝛽0 =
∑︁𝑃

𝑝
𝑓
𝑝

; 𝛽𝑝 = ( 𝑓 𝑝 (x) − 𝑓 𝑝 (x)) , 𝑝 = 1, ..., 𝑃 (2.35)

with 𝑢𝑢𝑢 ∈ R𝑃×2𝑃 that defines all binary combinations 𝑢𝑝 as follows:

𝑢𝑢𝑢 =

𝑃∏
𝑝=1
{0,1}. (2.36)

Here,
∏

represents the cartesian product. For instance, 𝑢𝑢𝑢 for 𝑃 = 2 is as follows:

𝑢𝑢𝑢 =

2∏
𝑝=1
{0,1} =

[
0 0 1 1
0 1 0 1

]
(2.37)

As 𝑌 (𝑢𝑢𝑢) includes all possible solutions, we can obtain 𝑦 and 𝑦:

𝑦 = min(𝑌 (𝑢𝑢𝑢)) , 𝑦 = max(𝑌 (𝑢𝑢𝑢)) (2.38)

This approach is introduced for IT2-FLSs and can be directly extended to GT2-FLSs

via 𝛼-plane representation as follows:

𝑌𝛼𝑘 (𝑢𝑢𝑢) = 𝑋𝛼𝑘 (𝑢𝑢𝑢) ⊘ 𝑍𝛼𝑘 (𝑢𝑢𝑢) (2.39)

where,

𝑋𝛼𝑘 (𝑢𝑢𝑢) = 𝑐𝛼𝑘0 + 𝑐
𝛼𝑘𝑢𝑢𝑢 : 𝑐

𝛼𝑘
0 =

∑︁𝑃

𝑝
𝑦𝑝 𝑓

𝛼𝑘

𝑝
(x) ; 𝑐𝛼𝑘𝑝 = 𝑦𝑝 ( 𝑓

𝛼𝑘

𝑝 (x) − 𝑓 𝛼𝑘𝑝 (x)) , 𝑝 = 1, ..., 𝑃

(2.40)

where 𝑦𝑝 represents the consequent part of the 𝑝th rule, and 𝑓 𝛼𝑘
𝑝
(x), and 𝑓

𝛼𝑘

𝑝 (x) are

the lower and upper firing strengths of the 𝑝th rule for the given 𝛼𝑘 -plane.

𝑍𝛼𝑘 (𝑢𝑢𝑢) = 𝛽𝛼𝑘0 +𝛽
𝛼𝑘𝑢𝑢𝑢 : 𝛽

𝛼𝑘
0 =

∑︁𝑃

𝑝
𝑓 𝛼𝑘
𝑝

; 𝛽𝛼𝑘𝑝 = ( 𝑓 𝛼𝑘𝑝 (x) − 𝑓 𝛼𝑘𝑝 (x)) , 𝑝 = 1, ..., 𝑃 (2.41)

with 𝑢𝑢𝑢 ∈ R𝑃×2𝑃 that defines all binary combinations 𝑢𝑝 as follows:

𝑢𝑢𝑢 =

𝑃∏
𝑝=1
{0,1}. (2.42)

Here,
∏

represents the cartesian product. For instance, 𝑢𝑢𝑢 for 𝑃 = 2 is as follows:

𝑢𝑢𝑢 =

2∏
𝑝=1
{0,1} =

[
0 0 1 1
0 1 0 1

]
(2.43)

As 𝑌𝛼𝑘 (𝑢𝑢𝑢) includes all possible solutions for 𝛼𝑘 -IT2-FLS, we can obtain 𝑦𝛼𝑘 and 𝑦𝛼𝑘 :

𝑦𝛼𝑘 = min(𝑌𝛼𝑘 (𝑢𝑢𝑢)) , 𝑦𝛼𝑘 = max(𝑌𝛼𝑘 (𝑢𝑢𝑢)) (2.44)

These implementations provide a superior baseline for the inference and the training

of the T2-FLSs through batches/mini-batches using DL optimizers by eliminating the

iterative process in the original KM algorithm[14].
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3. Z-GT2-FLS FOR ENHANCED LEARNING

In this chapter, we will present the details of how to represent and learn high-performing

GT2-FLSs. We begin by introducing MJ-GT2-FLSs [17] and discussing their potential

limitations. Then, we propose Z-GT2-FLSs [15, 16] as a solution, highlighting how

they effectively address the issues associated with MJ-GT2-FLSs.

3.1 MJ-GT2-FLS: Representation And Potential Issues

To define 𝐴̃𝑝,𝑚, the most widely used GT2-FS representation is the one of Mendel

& John [17] as shown in Figure 3.1. A GT2-FS 𝐴̃ is characterized by a type-2 MF(
𝑥, 𝜇 𝐴̃ (𝑥,𝑢)

)
, where 𝑥 ∈ 𝑋 and 𝑢 ∈ 𝐽𝑥 ⊆ [0,1], i.e.,

𝐴̃ =
{(
𝑥, 𝜇 𝐴̃ (𝑥,𝑢)

)
| 𝑥 ∈ 𝑋,𝑢 ∈ 𝐽𝑥 ⊆ [0,1]

}
(3.1)

in which 0 ≤ 𝜇 𝐴̃ (𝑥,𝑢) ≤ 1 [17].

Figure 3.1 : MJ-GT2-FS for 𝜎
𝑝,𝑚

= 𝜎𝑝,𝑚.
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3.1.1 PMF representaton

According to the definition of MJ-GT2-FSs, we first parameterize a PMF, i.e. 𝐴̃𝛼0
𝑝,𝑚, by

defining the following UMF 𝜇𝛼0
𝐴̃𝑝,𝑚
(𝑥𝑚) and LMF 𝜇𝛼0

𝐴̃𝑝,𝑚
(𝑥𝑚):

𝜇
𝛼0
𝐴̃𝑝,𝑚
(𝑥𝑚) = ℎ𝑝,𝑚 exp

(
−

(
𝑥𝑚 − 𝑐𝑝,𝑚

)2 /2𝜎2
𝑝,𝑚

)
(3.2)

𝜇
𝛼0
𝐴̃𝑝,𝑚
(𝑥𝑚) = exp

(
−

(
𝑥𝑚 − 𝑐𝑝,𝑚

)2 /2𝜎2
𝑝,𝑚

)
(3.3)

where 𝑐𝑝,𝑚 is the center, 𝜎̃𝑝,𝑚 = [𝜎
𝑝,𝑚
,𝜎𝑝,𝑚] is the standard deviation while ℎ𝑝,𝑚

defines the height of the LMF ∀𝑝,𝑚. As depicted in Figure 3.1, the Footprint of

Uncertainty (FOU) (𝐽𝑥) or the support of the Secondary MF (SMF) is defined with

𝜎̃𝑝,𝑚 and ℎ𝑝,𝑚.

3.1.2 SMF representation

In this study, we use the Trapezoid SMF, which employs a T1-FS which can be defined

as follows:

𝜇 𝐴̃(𝑥) (𝑢) =


𝑢−𝛿1

𝛿2−𝛿1 , 𝛿1 ≤ 𝑢 < 𝛿2

1, 𝛿2 ≤ 𝑢 < 𝛿3

𝛿4−𝑢
𝛿4−𝛿3 , 𝛿3 ≤ 𝑢 < 𝛿4

0, otherwise

(3.4)

Here, 𝛿1, 𝛿2, 𝛿3 and 𝛿4 represent the left support, left core, right core, and right support

points of the trapezoidal SMF, respectively. For a given 𝛼𝑘 -IT2-FLS, LMF and UMF

can be calculated as[37]:

𝜇
𝐴̃
𝛼𝑘
𝑝,𝑚

= 𝜇
𝛼0
𝐴̃𝑝,𝑚
+

(
𝜇
𝛼0
𝐴̃𝑝,𝑚
− 𝜇𝛼0

𝐴̃𝑝,𝑚

) (
𝛿1
𝑝,𝑚 +𝛼𝑘

(
𝛿2
𝑝,𝑚 − 𝛿1

𝑝,𝑚

))
(3.5)

𝜇
𝐴̃
𝛼𝑘
𝑝,𝑚

= 𝜇
𝛼0
𝐴̃𝑝,𝑚
−

(
𝜇
𝛼0
𝐴̃𝑝,𝑚
− 𝜇𝛼0

𝐴̃𝑝,𝑚

) (
1− 𝛿4

𝑝,𝑚 +𝛼𝑘
(
𝛿4
𝑝,𝑚 − 𝛿3

𝑝,𝑚

))
(3.6)

Note that 0 ≤ 𝛿1 ≤ 𝛿2 ≤ 𝛿3 ≤ 𝛿4 ≤ 1.

In this study, we simplify the original parameter space by setting 𝛿1 = 𝜇
𝐴̃𝑝,𝑚
(𝑥) and

𝛿4 = 𝜇 𝐴̃𝑝,𝑚 (𝑥). Furthermore, for consistency and simplicity, we redefine the right core

of the trapezoid as 𝛿1 and the left core as 𝛿2. With this reformulation, (3.4) is rewritten

as follows:

𝜇 𝐴̃(𝑥) (𝑢) =



𝑢−𝜇
𝐴̃𝑝,𝑚

(𝑥)

𝛿2−𝜇
𝐴̃𝑝,𝑚

(𝑥) , 𝜇
𝐴̃𝑝,𝑚
(𝑥) ≤ 𝑢 < 𝛿2

1, 𝛿2 ≤ 𝑢 < 𝛿1

𝜇 𝐴̃𝑝,𝑚 (𝑥)−𝑢
𝜇 𝐴̃𝑝,𝑚 (𝑥)−𝛿1 , 𝛿1 ≤ 𝑢 < 𝜇 𝐴̃𝑝,𝑚 (𝑥)

0, otherwise

(3.7)
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Based on the PMF, the following parameterized SMF is used that is defined via the

UMF and LMF of 𝐴̃𝛼𝑘𝑝,𝑚 (𝑘 ≠ 0) [37]:

𝜇
𝐴̃
𝛼𝑘
𝑝,𝑚

= 𝜇
𝛼0
𝐴̃𝑝,𝑚
+𝛼𝑘

(
𝜇
𝛼0
𝐴̃𝑝,𝑚
− 𝜇𝛼0

𝐴̃𝑝,𝑚

)
𝛿1
𝑝,𝑚 (3.8)

𝜇
𝐴̃
𝛼𝑘
𝑝,𝑚

= 𝜇
𝛼0
𝐴̃𝑝,𝑚
−𝛼𝑘

(
𝜇
𝛼0
𝐴̃𝑝,𝑚
− 𝜇𝛼0

𝐴̃𝑝,𝑚

) (
1− 𝛿2

𝑝,𝑚

)
(3.9)

Here,
{
𝛿1
𝑝,𝑚, 𝛿

2
𝑝,𝑚 : 𝛿1

𝑝,𝑚 ≥ 𝛿2
𝑝,𝑚

}
∈ [0,1],∀𝑝,𝑚 are parameters that define the shape of

the SMFs as shown in Figure 3.1. By 𝛼-plane representation, we can find the lower and

upper membership grades (i.e., 𝜇
𝐴̃
𝛼𝑘
𝑝,𝑚

and 𝜇
𝐴̃
𝛼𝑘
𝑝,𝑚

) for the corresponding 𝛼𝑘 -IT2-FLS.

3.1.3 Potential issues

In a recent study [30], a DL-based learning method for MJ-GT2-FLS, which is based

on IT2-FLS one in [29], is presented. We identified the following two problems:

1. Flexibility: The drawback of the method lies in its insistence on the explicit

parameterization of SMFs with respect to the PMFs prior to training, i.e. the

implementation of the MJ-GT2-FLS definition via (3.8) and (3.9). While providing

structure, this might hinder the GT2-FLS’s learning capacity as the learning

performance depends on how the shapes of the UMF and LMF in (3.2) and (3.3)

(i.e. the FOU size) are defined.

2. Curse of dimensionality: This problem is a well-known problem for FLSs because

lower and upper firing strengths approach zero [ 𝑓 𝛼𝑘
𝑝
(𝑥𝑥𝑥), 𝑓 𝛼𝑘𝑝 (𝑥𝑥𝑥)] → 0 when handling

high-dimensional datasets (i.e., rule firing problem). In [30], they handled this

problem by setting the t-norm operator ∩ in (2.29) and (2.30) w.r.t the data size (𝑁)

and dimension (𝑀). They suggested using the product operator for low dimensional

input vector spaces while the min one for high dimensional ones based on their

exhaustive comparative results.

3.2 Z-GT2-FLS: Representation And Solutions

We conceptually travel back to the original formulation of GT2-FSs introduced by Zadeh

[15, 16], adopting his definition to enhance flexibility during the learning process. This

approach offers a practical solution to the curse of dimensionality problem, which often

arises in FLSs.
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Let us start to define GT2-FSs with the definition of Zadeh [15, 16] i.e., a GT2-FS 𝐴̃

on 𝑋 is a mapping [15]:

𝐴̃ : 𝑋→ FS ( [0,1]) (3.10)

Alternatively, we can state that 𝐴̃𝑝,𝑚 is mapping 𝐴̃𝑝,𝑚 : 𝑋→ [0,1] [0,1] . The equivalence

of (3.1) and (3.10) is given in [38]. In this study, we adopted (3.10) and integrated it

with 𝛼-plane representation to define the output of Z-GT2-FLS via (2.25).

3.2.1 PMF representation

As shown in Figure 3.2, we represent the PMF with a T1-FS 𝐴𝑝,𝑚 that is defined as

follows:

𝜇𝐴𝑝,𝑚 (𝑥𝑚) = exp
(
−

(
𝑥𝑚 − 𝑐𝑝,𝑚

)2 /2(𝜎𝑝,𝑚)2
)

(3.11)

where 𝜎𝑝,𝑚 is the standard deviation and 𝑐𝑝,𝑚 is the center of the Gaussian MF, which

defines the membership grade of a T1-FS 𝐴𝑝,𝑚.

3.2.2 SMF representation

In this thesis study, we define the SMF with a two-sided Gaussian MF as follows:

𝜇𝑥𝑝,𝑚 (𝑢) =


exp

(
−
(𝑢−𝛾𝑝,𝑚)2

2(𝜎𝑙𝑝,𝑚)2

)
, if 𝑢 ≤ 𝛾𝑝,𝑚

exp

(
−
(𝑢−𝛾𝑝,𝑚)2

2(𝜎𝑟𝑝,𝑚)2

)
, if 𝑢 ≥ 𝛾𝑝,𝑚

(3.12)

Here,𝜎𝑙𝑝,𝑚 and 𝜎𝑟𝑝,𝑚 are the left and right standard deviations, and 𝛾𝑝,𝑚 is the center,

which defines the shape and support of the SMF. As shown in Figure 3.2, we set

𝛾𝑝,𝑚 = 𝜇𝐴𝑝,𝑚 (𝑥𝑚).

Now, to extract the 𝛼-planes of the Z-GT2-FS (𝐴̃𝛼𝑘𝑝,𝑚), we define the 𝛼-cuts of 𝜇𝑥𝑝,𝑚 (𝑢).
We first rewrite (3.12) as follows:

−
√︁
−2ln (𝛼𝑘 )𝜎𝑙𝑝,𝑚 =

(
𝑢−𝛾𝑝,𝑚

)
, if 𝑢 ≤ 𝛾𝑝,𝑚 (3.13)√︁

−2ln (𝛼𝑘 )𝜎𝑟𝑝,𝑚 =
(
𝑢−𝛾𝑝,𝑚

)
, if 𝑢 ≥ 𝛾𝑝,𝑚 (3.14)

Then, by inserting 𝜇
𝐴̃
𝛼𝑘
𝑝,𝑚

into (3.13) and (3.14) while 𝜇
𝐴̃
𝛼𝑘
𝑝,𝑚

into (3.13) and (3.14) as 𝑢,

we can extract the LMF and UMF of 𝐴̃𝛼𝑘𝑝,𝑚 (𝑘 ≠ 0) as follows:

𝜇
𝐴̃
𝛼𝑘
𝑝,𝑚

(𝑥𝑚) = 𝜇𝐴𝑝,𝑚 (𝑥𝑚) −
√︁
−2ln (𝛼𝑘 )𝜎𝑙𝑝,𝑚 (3.15)
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Figure 3.2 : Z-GT2-FS.

𝜇
𝐴̃
𝛼𝑘
𝑝,𝑚
(𝑥𝑚) = 𝜇𝐴𝑝,𝑚 (𝑥𝑚) +

√︁
−2ln (𝛼𝑘 )𝜎𝑟𝑝,𝑚 (3.16)

Now, by using (3.15) and (3.16), we can define the output of Z-GT2-FLS via 𝛼-plane

representation as given in (2.25). The only problem with this implementation is due to

the domain space of ln(·), which spans (0,∞], and thus 𝛼0 = 0 is not included. Thus,

we associate the 𝛼0-plane with 𝛼0 ≜ 0.01. Our motivation for this setting is grounded

in the consideration that
√︁
−2ln (𝛼0) ≈ 3. Thus, 𝜇𝛼0

𝐴̃𝑝,𝑚
and 𝜇𝛼0

𝐴̃𝑝,𝑚
are defined explicitly

as follows:

𝜇
𝛼0
𝐴̃𝑝,𝑚
(𝑥𝑚) ≜ 𝜇𝐴𝑝,𝑚 (𝑥𝑚) −3𝜎𝑙𝑝,𝑚 (3.17)

𝜇
𝛼0
𝐴̃𝑝,𝑚
(𝑥𝑚) ≜ 𝜇𝐴𝑝,𝑚 (𝑥𝑚) +3𝜎𝑟𝑝,𝑚 (3.18)

Thus, we can ensure that 𝜇𝛼0
𝐴̃𝑝,𝑚

and 𝜇
𝛼0
𝐴̃𝑝,𝑚

remain within a range of three standard

deviations from 𝛾𝑝,𝑚.

3.2.3 Curse of dimensionality problem

Unlike [30], our study adopts a consistent approach by using the product operator as

∩ in (2.30) regardless of the data size and dimension. To avoid the general problem

of [ 𝑓 𝛼𝑘
𝑝
(𝑥𝑥𝑥), 𝑓 𝛼𝑘𝑝 (𝑥𝑥𝑥)] → 0 in high-dimensional datasets (i.e. rule firing problem), we

propose a method like the HTSK [39] that scales 𝜇𝐴𝑝,𝑚 w.r.t 𝑀 as follows:

𝜇∗𝐴𝑝,𝑚 = (𝜇𝐴𝑝,𝑚)1/𝑀 (3.19)

We can reformulate (3.19) in the following explicit standard form of a Gaussian MF to

represent the PMF:

𝜇∗𝐴𝑝,𝑚 (𝑥𝑚) = exp
(
−

(
𝑥𝑚 − 𝑐𝑝,𝑚

)2 /(2(
√
𝑀𝜎𝑝,𝑚)2)

)
(3.20)
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which is mathematically equivalent to HTSK [39] as shown in [40]. When compared

to (3.11), we observe that 𝜎𝑝,𝑚 of the PMF is scaled with
√
𝑀 . Thus, the learning of

GT2-FLS is not substantially affected by the increase in feature dimensionality.

3.3 Learning T2-FLSs Within DL Frameworks

We first define the Learnable Parameters (LPs) of the T2-FLSs and then provide

parameterization tricks to allow learning them via DL optimizers and AD methods

provided within DL frameworks such as Matlab and PyTorch.

3.3.1 Learnable parameter sets for IT2-FLSs

The LP sets of the IT2-FLSs (𝜃𝜃𝜃 𝑰𝑻2) consist of the LPs of antecedent MF (𝜃𝜃𝜃 𝐼𝑇2−𝐴) and

those of the consequent MFs (𝜃𝜃𝜃 𝐼𝑇2−𝐶) [29]. The LP set of IT2 antecedent MF is:

• H type IT2-FS: the set is (𝜃𝜃𝜃 𝐼𝑇2−𝐴𝐻) = {𝑐𝑐𝑐,𝜎𝜎𝜎, ℎℎℎ}, where 𝑐𝑐𝑐 = (𝑐1,1, . . . , 𝑐𝑃,𝑀)𝑇 ∈ R𝑃×𝑀 ,

𝜎𝜎𝜎 = (𝜎1,1, . . . ,𝜎𝑃,𝑀)𝑇 ∈ R𝑃×𝑀 , ℎℎℎ = (ℎ1,1, . . . , ℎ𝑃,𝑀)𝑇 ∈ R𝑃×𝑀 , (𝜎𝑝,𝑚 =𝜎
𝑝,𝑚

=𝜎𝑝,𝑚).

• HS type IT2-FS: the set is (𝜃𝜃𝜃 𝐼𝑇2−𝐴𝐻𝑆) = {𝑐𝑐𝑐,𝝈,𝝈, ℎℎℎ}, where 𝑐𝑐𝑐 = (𝑐1,1, . . . , 𝑐𝑃,𝑀)𝑇 ∈
R𝑃×𝑀 , 𝝈 = (𝜎1,1, . . . ,𝜎𝑃,𝑀)𝑇 ∈ R𝑃×𝑀 , 𝝈 = (𝜎1,1, . . . ,𝜎𝑃,𝑀)𝑇 ∈ R𝑃×𝑀 ,

ℎℎℎ = (ℎ1,1, . . . , ℎ𝑃,𝑀)𝑇 ∈ R𝑃×𝑀 .

The learnable parameter set of consequent MF is identical, 𝜃𝜃𝜃IT2−C = {𝑎𝑎𝑎, 𝑎𝑎𝑎0}, with

𝑎𝑎𝑎 = (𝑎𝑎𝑎1,1, . . . , 𝑎𝑎𝑎𝑃,𝑀)𝑇 ∈ R𝑃×𝑀 , 𝑎𝑎𝑎0 = (𝑎1,0, . . . , 𝑎𝑃,0)𝑇 ∈ R𝑃×1. Overall, H-IT2-FLS has

a total of 3𝑃𝑀 +𝑃(𝑀 +1), while the HS-IT2-FLS includes 4𝑃𝑀 +𝑃(𝑀 +1) LPs.

3.3.2 Learnable parameter sets for GT2-FLSs

The LP sets of the GT2-FLSs (𝜃𝜃𝜃𝑮𝑻2) consist of the LPs of antecedent MF (𝜃𝜃𝜃𝐺𝑇2−𝐴) and

those of the consequent MFs (𝜃𝜃𝜃𝐺𝑇2−𝐶). For both the MJ-GT2-FLS and Z-GT2-FLS, we

define the identical 𝜃𝜃𝜃𝐺𝑇2−𝐶 as 𝜃𝜃𝜃GT2−C = {𝑎𝑎𝑎, 𝑎𝑎𝑎0}, with 𝑎𝑎𝑎 = (𝑎𝑎𝑎1,1, . . . , 𝑎𝑎𝑎𝑃,𝑀)𝑇 ∈ R𝑃×𝑀 ,

𝑎𝑎𝑎0 = (𝑎1,0, . . . , 𝑎𝑃,0)𝑇 ∈ R𝑃×1. The only difference between them lies in 𝜃𝜃𝜃GT2−A =

{𝜃𝜃𝜃AP, 𝜃𝜃𝜃AS}, i.e., (3.1) vs. (3.10).

• For MJ-GT2-FLS: 𝜃𝜃𝜃AP = {𝑐𝑐𝑐,𝜎𝜎𝜎, ℎℎℎ} and 𝜃𝜃𝜃AS = {𝛿𝛿𝛿(1) , 𝛿𝛿𝛿(2)}with 𝑐𝑐𝑐 = (𝑐1,1, . . . , 𝑐𝑃,𝑀)𝑇 ∈
R𝑃×𝑀 , 𝜎𝜎𝜎 = (𝜎1,1, . . . ,𝜎𝑃,𝑀)𝑇 ∈ R𝑃×𝑀 , ℎℎℎ = (ℎ1,1, . . . , ℎ𝑃,𝑀)𝑇 ∈ R𝑃×𝑀 , 𝛿𝛿𝛿(1) =

(𝛿(1)1 , . . . , 𝛿
(1)
𝑀
)𝑇 ∈ R1×𝑀 , and 𝛿𝛿𝛿(2) = (𝛿(2)1 , . . . , 𝛿

(2)
𝑀
)𝑇 ∈ R1×𝑀 . In [30], they set

𝛿1
𝑝,𝑚 = 𝛿1

𝑚 and 𝛿2
𝑝,𝑚 = 𝛿2

𝑚,∀𝑝.

• For Z-GT2-FLS, 𝜃𝜃𝜃AP = {𝑐𝑐𝑐,𝜎𝜎𝜎} and 𝜃𝜃𝜃AS = {𝜎𝜎𝜎𝑙𝑙𝑙 ,𝜎𝜎𝜎𝑟𝑟𝑟} with 𝜎𝜎𝜎 (𝑙) = (𝜎 (𝑙)1 , . . . ,𝜎
(𝑙)
𝑀
)𝑇 ∈
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R1×𝑀 , and 𝜎𝜎𝜎𝑟 = (𝜎 (𝑟)1 , . . . ,𝜎
(𝑟)
𝑀
)𝑇 ∈ R1×𝑀 . For the sake of simplicity, we set 𝜎𝑙𝑝,𝑚 =

𝜎𝑙𝑚 and 𝜎𝑟𝑝,𝑚 = 𝜎𝑟𝑚,∀𝑝.

To sum up, MJ-GT2-FLS has a total of (3𝑃 +2)𝑀 +𝑃(𝑀 +1), while the Z-GT2-FLS

involves (2𝑃+2)𝑀 +𝑃(𝑀 +1) LPs. Despite the added complexity of using a Gaussian

SMF, the Z-GT2-FLS has 𝑃𝑀 fewer LPs compared to MJ-GT2-FLS.

3.3.3 Parameterization tricks for T2-FLSs for DL optimizers

The learning problem of GT2-FLSs is defined with constraints 𝜃𝜃𝜃 ∈𝐶𝐶𝐶 that arise from the

definitions of FSs [29]. Given that DL optimizers are unconstrained ones, we introduce

parametrization tricks to transform 𝜃𝜃𝜃 to an unbounded search space. In this context, we

will present the parameterization tricks for both IT2-FLSs and MJ-GT2-FLSs [29, 30].

Afterwards, we will introduce the parameterization tricks for Z-GT2-FLSs.

• Parameterization Tricks for IT2-FLSs: For the antecedent part, we must satisfy the

condition 𝜇𝐴𝑝,𝑚 (𝑥𝑚) ≥ 𝜇𝐴𝑝,𝑚 (𝑥𝑚) [29]. Thus, we have the constraints:

0 ≤ ℎ𝑝,𝑚 ≤ 1, 𝜎
𝑝,𝑚
≤ 𝜎𝑝,𝑚 (3.21)

To solve this issue, we implement the following parameterization tricks :

ℎ𝑟,𝑚 = sig(ℎ′𝑟,𝑚) (3.22)

𝜎𝑝,𝑚 = 𝜎′𝑝,𝑚 + |Δ|, 𝜎
𝑝,𝑚

= 𝜎′𝑝,𝑚 − |Δ| (3.23)

where 𝑠𝑖𝑔(·) is the sigmoid function and {ℎ′𝑟,𝑚,𝜎′𝑝,𝑚,Δ} are the new unbounded

learnable parameters [29].

• Parameterization Tricks for MJ-GT2-FLSs: For the antecedent part, (3.22) is

implemented. For the SMF part, we have the following constraint [30]:

0 ≤ 𝛿2
𝑚 ≤ 𝛿1

𝑚 ≤ 1. (3.24)

Thus, to satisfy the condition, we utilize the following parameterization tricks[30]:

𝛿1
𝑚 = 𝑠𝑖𝑔(𝛿1

𝑚

′) 𝛿2
𝑚 = 𝛿1

𝑚𝑠𝑖𝑔(𝛿2
𝑚

′) (3.25)

where 𝑠𝑖𝑔(·) is the sigmoid function and {𝛿1
𝑚

′
, 𝛿2
𝑚

′} are the new unbounded learnable

parameters [30].
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• Parameterization Tricks for Z-GT2-FLSs: For 𝜎𝜎𝜎𝑙𝑙𝑙 ,𝜎𝜎𝜎𝑟𝑟𝑟 ∈ 𝜃𝜃𝜃𝐺𝑇2−𝐴, we must ensure that

the learned 𝐴̃𝛼𝑘𝑝,𝑚 adhere to the conditions of GT2-FSs, specifically 0 ≤ 𝜇
𝐴̃
𝛼𝑘
𝑝,𝑚

(𝑥𝑚) ≤
𝜇̄
𝐴̃
𝛼𝑘
𝑝,𝑚
(𝑥𝑚) ≤ 1,∀𝑝,𝑚. It is important to highlight that, as per the definitions in (3.15)

and (3.16), we inherently ensure 𝜇
𝐴̃
𝛼𝑘
𝑝,𝑚

(𝑥𝑚) ≤ 𝜇 𝐴̃𝛼𝑘𝑝,𝑚 (𝑥𝑚),∀𝑝,𝑚.

For 𝜎𝜎𝜎𝑙𝑙𝑙 , we address the constraint 0 ≤ 𝜎𝑙𝑚 ≤ 𝛾𝑝,𝑚/
√︁
−2ln(0.01) via:

𝜎𝑙𝑚 = 𝛾𝑝,𝑚/
√︁
−2ln(0.01) sig(𝜎̂𝑙𝑚) (3.26)

For 𝜎𝜎𝜎𝑟𝑟𝑟 , where the constraint is 0 ≤ 𝜎𝑟𝑚 ≤
(
1−𝛾𝑝,𝑚

)
/
√︁
−2ln(0.01), we do the

following trick:

𝜎𝑟𝑚 =
(
1−𝛾𝑝,𝑚

)
/
√︁
−2ln(0.01) sig(𝜎̂𝑟𝑚) (3.27)

where sig(·) is the sigmoid function that provides the generation of unbounded

optimization variables {𝜎̂𝑙𝑚, 𝜎̂𝑟𝑚}. Here, the utilization of 1/
√︁
−2ln(0.01) is

motivated by the objective to ensure [𝜇
𝐴̃
𝛼𝑘
𝑝,𝑚

(𝑥𝑚), 𝜇 𝐴̃𝛼𝑘𝑝,𝑚 (𝑥𝑚)] ∈ [0,1],∀𝑝,𝑚.
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4. LEARNING T2-FLSs WITH A DUAL-FOCUS

In this chapter, we introduce the proposed framework for learning dual-focused Type-2

Fuzzy T2-FLSs and provide a comprehensive analysis of our Z-GT2-FLSs model. We

demonstrate in detail how it outperforms existing models in terms of both point-wise

estimation and generating HQ-PIs[9].

4.1 The Learning Framework For Accuracy & HQ-PI

Here, we introduce a DL framework designed to enable the learning of T2-FLSs that

not only yield accurate point-wise predictions but also excel in generating HQ-PI

characterized by high uncertainty coverage with tight PI bands. The Table 4.1 provides

the algorithm for training steps of dual-focused GT2-FLS for a dataset {𝑥𝑥𝑥𝑛, 𝑦𝑛}𝑁𝑛=1,

where 𝑥𝑥𝑥𝑛 =
(
𝑥𝑛,1, . . . , 𝑥𝑛,𝑀

)𝑇 . As we aim to learn a dual-focused IT2/GT2-FLS, we

defined the following loss to be minimized by a DL optimizer [29]:

min
𝜃𝜃𝜃∈C

𝐿 =
1
𝑁

𝑁∑︁
𝑛=1

(
𝐿𝑅 (𝑥𝑛, 𝑦𝑛) + ℓ

(
𝑥𝑛, 𝑦𝑛, 𝜏, 𝜏

) )
(4.1)

Here, the constraints 𝐶𝐶𝐶 are eliminated as described in Section 3.3.3. The loss function

has an accuracy-focused part 𝐿𝑅 (·) and an uncertainty-focused part ℓ(·).

We first review the composite loss function definition for IT2-FLSs[29] then, we will

describe how this loss definition can be extended to GT2-FLSs in two different ways

[30, 41].

4.1.1 Composite loss definition for IT2-FLSs

Here, the LP set (𝜃𝜃𝜃 𝑰𝑻2) is used in (4.1). 𝐿𝑅 (·) represents the empirical risk function

for the accuracy part and is defined as follows [29]:

𝐿𝑅 (𝜖𝑛) = log(cosh(𝜖𝑛)) (4.2)

Here 𝜖𝑛 is the point-wise accuracy error and is defined as:

𝜖𝑛 = 𝑦𝑛− 𝑦𝐼𝑇2 (𝑥𝑛) (4.3)
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Table 4.1 : DL-based Dual-Focused GT2-FLS Training Algorithm.

Step Description

1 Input: 𝑁 training samples (𝑥𝑛, 𝑦𝑛)𝑁𝑛=1, 𝜙 = [𝜏, 𝜏]
2 Set 𝐾 +1: number of 𝛼-planes
3 Set 𝑃: number of rules
4 Set 𝑚𝑏𝑠: mini-batch size
5 Set 𝑇 : number of epochs
6 Output: Learned parameter set 𝜃𝐺𝑇2
7 Initialize 𝜃𝐺𝑇2 = [𝜃𝐺𝑇2−𝐴, 𝜃𝐺𝑇2−𝐶 ]
8 For 𝑡 = 1 to 𝑇 do
9 For each 𝑚𝑏𝑠 in 𝑁 do
10 Perform parametrization tricks for 𝜃 (see Section 3.3.3)
11 𝜇∗← PMF(𝑥;𝜃𝐴𝑃) (3.11)
12 [𝜇𝛼𝑘 , 𝜇𝛼𝑘 ] ← SMF(𝜇∗;𝜃𝐴𝑆) (3.15) and (3.16)
13 [𝑦𝛼0 , 𝑦𝛼0 , 𝑦] ← Inference(𝜇𝛼𝑘 , 𝜇𝛼𝑘 ;𝜃𝐶) (see Section 2.2)
14 Compute 𝐿1 or 𝐿2 (4.9) or (4.10)
15 Compute 𝜕𝐿/𝜕𝜃 via automatic differentiation (AD)
16 Update 𝜃 via a DL optimizer, e.g., Adam
17 End for
18 End for
19 𝜃∗← argmin𝐿
20 Return: 𝜃∗

where 𝑦𝐼𝑇2(𝑥𝑛) represents the defuzzified output of the IT2-FLS as in (2.15). For the

uncertainty-focused part, ℓ(·) is constructed via a pinball loss 𝜌(·) that is defined as:

𝜌(𝑥𝑛, 𝑦𝑛, 𝑦, 𝜏) = max(𝜏(𝑦𝑛− 𝑦(𝑥𝑛)), (𝜏−1) (𝑦𝑛− 𝑦(𝑥𝑛))) (4.4)

Here 𝜏 defines the desired quantile level to be covered. For learning an envelope that

captures the expected amount of uncertainty, we define a lower (𝜏) and upper (𝜏)
quantile level. We utilize TR set of the IT2-FLS, [𝑦(𝑥𝑛), 𝑦(𝑥𝑛)] as our lower and upper

bound predictions and define the following loss:

ℓ

(
𝑥𝑛, 𝑦𝑛, 𝑦, 𝑦, 𝜏, 𝜏

)
= 𝜌(𝑥𝑛, 𝑦𝑛, 𝑦, 𝜏) + 𝜌 (𝑥𝑛, 𝑦𝑛, 𝑦, 𝜏) (4.5)

4.1.2 Composite loss function for GT2-FLSs

Here, we utilize the LP set (𝜃𝜃𝜃𝑮𝑻2) in (4.1). Thanks to the structure of GT2-FSs via

𝛼- plane representation, we can define two loss definitions. First, we utilize TR set of

𝛼0-plane, [𝑦𝛼0 (𝑥𝑛), 𝑦𝛼0 (𝑥𝑛)] as our lower and upper bound predictions and define the

following loss:

ℓ

(
𝑥𝑛, 𝑦𝑛, 𝑦, 𝑦, 𝜏, 𝜏

)
= 𝜌

(
𝑥𝑛, 𝑦𝑛, 𝑦

𝛼0 , , 𝜏

)
+ 𝜌 (𝑥𝑛, 𝑦𝑛, 𝑦𝛼0 , 𝜏) (4.6)
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For the accuracy part 𝐿𝑅 (·), the error term (𝜖𝑛) can be defined via two different ways

[30, 41]:

𝜖𝑛 = 𝑦𝑛− 𝑦𝐺𝑇2(𝑥𝑛) (4.7)

where 𝑦𝐺𝑇2(𝑥𝑛) is the aggregated output of the GT2-FLS as in (2.25). On the other hand,

instead of using the aggregated output of the GT2-FLSs, we can use the defuzzified

output of the 𝛼𝐾-IT2-FLS (𝑦𝛼𝐾 (𝑥𝑛), where 𝛼𝐾 = 1) [30, 41]. So the new error term,

𝜖
𝛼𝐾
𝑛 is as:

𝜖𝛼𝐾𝑛 = 𝑦𝑛− 𝑦𝛼𝐾 (𝑥𝑛) (4.8)

To summarize, we define the following two loss functions (𝐿1 and 𝐿2) for learning

dual-focused GT2-FLS:

𝐿1 =
1
𝑁

𝑁∑︁
𝑛=1

[
𝐿𝑅 (𝜖𝑛) + ℓ

(
𝑥𝑛, 𝑦𝑛, 𝑦, 𝑦, 𝜏, 𝜏

)]
(4.9)

where 𝜖𝑛 is given in (4.7) and

𝐿2 =
1
𝑁

𝑁∑︁
𝑛=1

[
𝐿𝑅

(
𝜖𝛼𝐾𝑛

)
+ ℓ

(
𝑥𝑛, 𝑦𝑛, 𝑦, 𝑦, 𝜏, 𝜏

)]
(4.10)

where 𝜖𝛼𝐾𝑛 is given in (4.8). Through the loss functions, an (partially) independent

learning of 𝜃𝜃𝜃𝑮𝑻2 is possible for UQ while achieving high accuracy.

4.2 Comparative Performance Analysis

We evaluate the performance of our Z-GT2-FLS against MJ-GT2-FLS [30] and

two interval Type-2 FLSs [29] on five regression benchmarks: White Wine (WW),

Powerplant (PP), Abalone (ABA), Parkinson Motor UPDRS (PM), and AIDS.

4.2.1 Design of experiments

All input features are standardized via Z-score normalization:

𝑥𝑖 =
𝑥𝑖 − 𝜇𝑥
𝜎𝑥

(4.11)

where 𝜇𝑥 and 𝜎𝑥 are the sample mean and standard deviation of feature 𝑥 over the full

dataset. The target variable 𝑦 is similarly normalized on the training set:

𝑦̃ =
𝑦− 𝜇𝑦
𝜎𝑦

(4.12)
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where 𝜇𝑦 and 𝜎𝑦 denote the sample mean and standard deviation of 𝑦. After inference,

predictions are mapped back via

𝑦 = 𝑦̃ 𝜎𝑦 + 𝜇𝑦 (4.13)

Each dataset is randomly split into a training set (70%) and a test set (30%) by

following [29, 30]. As a note, prior studies [29, 30] normalize using the entire

dataset (both training and test sets). Therefore, for the purpose of consistent and

meaningful benchmarking, we also apply Z-score normalization using the full dataset

when comparing our models to others. All models (Z-GT2-FLS, MJ-GT2-FLS, and

the two IT2-FLSs) are trained with identical hyperparameters:

• Mini-batch size: 64

• Learning rate: 1×10−3

• Number of epochs: 100 (except PM dataset: 1000 epochs)

The target PI coverage level is set to 99%, i.e.,

𝜑 = [0.005, 0.995] . (4.14)

The experiments were conducted within MATLAB ® and repeated with 20 different

initial seeds for statistical analysis. We configured the GT2-FLSs with 3 𝛼-planes

(𝛼 = [0.01,0.5,1]) and trained them by utilizing 𝐿1 defined in (4.9) (GT2-FLS-1)

and 𝐿2 defined in (4.10) (GT2-FLS-2). The two IT2-FLSs, namely IT2-FLS-H and

IT2-FLS-HS, are defined with IT2-FSs, which we define in (2.9) and are learned via

the DL-based approach presented in [29].In the experiments, we set 𝑃 = 5 and 𝑃 = 10

for all FLSs to analyze how the number of 𝑃 affects the model performance. Note

that, 𝑃 is a hyperparameter of FLSs, and can be thought of as the number of neurons

in the neural network architectures. The number of LP (#LP) of FLSs for the handled

datasets is tabulated in Tables 4.3 and 4.4. It can be observed that the IT2-FLS-HS has

the largest number of LPs.

4.2.2 Performance evaluation

We evaluated the performances via Root Mean Square Error (RMSE), PI Coverage

Probability (PICP), and PI Normalized Averaged Width (PINAW) [10]. We anticipate

training an FLS that yields a low RMSE, i.e., high accuracy and attains a PICP of 99%

with a low PINAW, thereby indicating an HQ-PI as defined in [9].
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Tables 4.3 and 4.4 provide the mean RMSE, PICP, and PINAW alongside their ±1

standard error values over 20 experiments for 𝑃 = 5 and 𝑃 = 10, respectively to

understand how the rule size 𝑃 affects the performance of dual-focused IT2 and GT2

FLSs. We also provided the rankings over the 5 datasets handled for an easy comparison.

Furthermore, we include a comprehensive computational load analysis to comment on

the training complexity in relation to 𝑃.

4.2.2.1 Performance analysis for 𝑃 = 5

In this subsection, we evaluate the performance of T2-FLSs for 𝑃 = 5. In Figures 4.1,

4.2, 4.3, 4.4 and 4.5, for statistical analysis, we present the notched box and whisker

plots showing median (central mark), 25th/75th percentiles (left and right edges of box)

which defines the Inter Quartile Range (IQR), whiskers (line), and outliers (circles).

Observe that:

• For WW, the Z-GT2-FLS-1 resulted in the best RMSE performance with a

statistically significant difference, due to the absence of notches overlapping, as

shown in Figure 4.2. Z-GT2-FLS-1 excels slightly in accuracy, while Z-GT2-FLS-2

shows a marginally higher PICP value. IT2-FLS-HS stands out with the lowest

PINAW value.

• For PP, all FLSs show competitive results in terms of accuracy, reliability, and

precision. On the other hand, IT2-FLS-HS has slightly better RMSE and PICP

values while IT2-FLS-H stands out lowest PINAW. As shown in Figure 4.5, there is

no significant difference between FLSs.

• For ABA, MJ-GT2-FLS-2 stands out as the best one in terms of RMSE, closely

followed by other models. Z-GT2-FLS-2 demonstrates the highest reliability in

capturing true values within PI and has a low PINAW value (i.e. HQ-PI). Generally,

as shown in Figure 4.4, all GT2-FLSs have similar results in performance metrics,

yet are significantly better than their IT2 counterparts.

• For PM, The Z-GT2-FLS-2 demonstrates superior performance with the lowest

RMSE which is statistically significant when compared to MJ-GT2 and IT2

counterparts. Z-GT2-FLS models have similar performances in terms of RMSE

and PICP as shown in Figure 4.1. Z-GT2-FLS-2 has the lowest mean PINAW,

indicating the generation HQ-PIs. IT2-FLS-HS also offers good coverage, but at the
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cost of wider PIs.

• For AIDS, the point-wise predictions of all FLSs are similar, yet the Z-GT2-FLS-1

has a better mean RMSE value. On the other hand, as shown in Figure 4.3, the

IT2-FLS-HS has the best PICP, yet its PINAW is significantly larger than other FLS

counterparts, indicating a poor PI. While Z-GT2-FLS-1 has a similar PI performance

with a much narrower PI band (i.e. low PINAW) and thus an HQ-PI, Z-GT2-FLS-2

exhibits the lowest mean PINAW.

To sum up, Z-GT2-FLSs, with minimal #LPs, consistently demonstrate competitive

performance across various datasets. Their capacity to precisely predict different target

variables with HQ-PI establishes them as consistently robust performers. Yet, the

Z-GT2-FLS-1 stands out as it has the best overall ranking. In Table 4.2, we compared

the RMSE performance of the Z-GT2-FLS-1 with various other models [42–45] whose

primary objective is to enhance accuracy performance. The comparison includes HTSK

(i.e. a T1-FLS with more rules) [42], a Bayesian DL model [44], as well as other ML

models. We can conclude that Z-GT2-FLS-1 achieves comparable RMSE measures

(except for PP) while also being capable of generating HQ-PIs as presented in Table

4.2.

Table 4.2 : Testing RMSE: Z-GT2-FLS vs. Various Models.

Dataset Z-GT2-FLS-1 HTSK[42] XGBoost[42] MLP[42]

PP 24.59(±0.73) 22.30(±0.19) 18.93(±0.62) 23.15(±0.15)
ABA 66.28(±1.83) 66.46(±0.85) 67.18(±0.85) 63.59(±0.83)
PM 60.42(±4.13) 82.89(±0.81) 85.61(±0.61) 78.56(±1.83)
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Table 4.3 : Testing Performance Comparison of Dual-Focused FLSs over 20 Experiments for 𝑃 = 5 rules.

Dataset Metric Z-GT2-FLS-1 MJ-GT2-FLS-1 [30] Z-GT2-FLS-2 MJ-GT2-FLS-2[30] IT2-FLS-H[29] IT2-FLS-HS[29]

#LP 192 247 192 247 225 280
WW RMSE 79.79(±1.45) 81.44(±2.05) 80.48(±1.97) 82.02(±2.05) 82.39(±2.91) 82.62(±2.46)

(11×4898) PICP 97.72(±0.62) 97.32(±1.14) 97.82(±0.43) 97.03(±1.49) 97.08(±1.52) 97.54(±1.58)
PINAW 76.38(±8.07) 75.53(±10.7) 76.72(±7.60) 74.84(±11.09) 74.39(±11.40) 74.35(±9.12)

#LP 73 93 73 93 85 105
PP RMSE 24.59(±0.73) 24.56(0.73) 24.62(±0.74) 24.57(±0.74) 24.58(±0.69) 24.37(±0.70)

(4×9568) PICP 98.74(±0.27) 98.73(±0.23) 98.74(±0.30) 98.72(±0.25) 98.71(±0.23) 98.75(±0.20)
PINAW 30.88(±1.39) 30.50(±1.69) 30.92(±1.49) 30.46(±1.54) 30.25(±1.33) 30.80(±1.07)

#LP 141 181 141 181 165 205
ABA RMSE 66.28(±1.83) 67.01(±4.89) 67.07(±3.11) 65.75(±1.61) 67.89(±4.97) 66.40(±2.44)

(8×4177) PICP 98.52(±0.71) 98.41(±0.44) 98.58(±0.67) 98.29(±0.43) 98.32(±0.39) 98.49(±0.38)
PINAW 46.57(±4.18) 46.03(±4.27) 46.65(±4.29) 45.99(±4.34) 52.61(±4.30) 53.83(±4.40)

#LP 328 423 328 423 385 480
PM RMSE 60.42(±4.13) 75.23(±9.98) 59.58(±5.01) 75.45(±10.21) 88.14(±9.80) 74.17(±10.06)

(19×5875) PICP 98.95(±0.66) 96.82(±3.81) 98.02(±0.71) 96.79(±3.28) 91.59(±4.30) 98.20(±2.88)
PINAW 142.53(±29.25) 163.51(±34.05) 103.92(±10.94) 150.46(±28.05) 165.01(±36.49) 171.68(±39.58)
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Table 4.3 (continued) : Testing Performance Comparison of Dual-Focused FLSs over 20 Experiments for 𝑃 = 5 rules.

Dataset Metric Z-GT2-FLS-1 MJ-GT2-FLS-1 [30] Z-GT2-FLS-2 MJ-GT2-FLS-2[30] IT2-FLS-H[29] IT2-FLS-HS[29]

#LP 396 511 396 511 465 580
AIDS RMSE 69.73(±2.56) 70.24(±2.91) 70.11(±2.34) 72.29(±3.26) 72.29(±2.75) 71.93(±3.52)

(23×2139) PICP 97.52(±0.84) 94.85(±2.88) 96.84(±0.94) 95.29(±2.97) 97.00(±1.23) 98.64(±0.69)
PINAW 160.35(±18.49) 160.69(±21.43) 156.01(±20.60) 164.77(±13.52) 185.57(±14.15) 210.75(±19.73)

RMSE 60.16 63.70 60.37 64.02 67.16 63.90
Average PICP 98.29 97.23 98.00 97.22 96.54 98.32

PINAW 91.34 95.25 82.84 93.30 101.57 108.28

RMSE 2.2 3.2 3.2 3.6 5.2 3.4
Average Rank PICP 1.8 4.4 2.4 5.4 5.0 2.0

PINAW 3.4 3.2 3.6 2.6 3.6 4.6

Overall Rank 2.5 3.6 3.1 3.9 4.6 3.3



Figure 4.1 : Notched box-and-whisker plots for PM (19×5875) for 𝑃 = 5.

Figure 4.2 : Notched box-and-whisker plots for WW (11×4898) for 𝑃 = 5.

4.2.2.2 Performance analysis for 𝑃 = 10

In this subsection, we evaluate the performance of T2-FLSs for 𝑃 = 10. In Figures 4.6,

4.7, 4.8, 4.9 and 4.10, for statistical analysis, we present the notched box and whisker
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Figure 4.3 : Notched box-and-whisker plots for AIDS (23×2139) for 𝑃 = 5.

Figure 4.4 : Notched box-and-whisker plots for ABA (8×4177) for 𝑃 = 5.

plots showing median (central mark), 25th/75th percentiles (left and right edges of box)

which defines the IQR, whiskers (line), and outliers (circles). Observe that:

• For WW, the Z-GT2-FLS-1 outperforms the others in terms of both RMSE and PICP

in Table 4.4. IT2-FLS-H stands out with the lowest PINAW value. We can conclude
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Figure 4.5 : Notched box-and-whisker plots for PP (4×9568) for 𝑃 = 5.

that increasing 𝑃 helps Z-GT2-FLS-1 to have the best results for both RMSE and

PICP comparing Table 4.3. Also, while PICP increases, PINAW decreases, meaning

HQ-PI[3].

• For PP, IT2-FLS-HS resulted in the best RMSE performance with a significant

difference due to the absence of notches overlapping as shown in Figure 4.10.

IT2-FLS-HS excels slightly in PICP, while MJ-GT2-FLS-1 has the lowest PINAW

value in Table 4.4. Overall, Increasing 𝑃 results in lower RMSE and higher PICP

values compared to Table 4.3, and IT2-FLS-HS shows the best performance in terms

of RMSE and PICP.

• For ABA, IT2-FLS-HS stands out as the best one in terms of RMSE and PICP,

closely followed by other models in Table 4.4, while MJ-GT2-FLS-1 has the lowest

PINAW. Generally, as shown in Figure 4.9, all models show similar performance for

RMSE and PICP. GT2-FLSs have lower PINAW than IT2-FLSs and similar PICP

values (i.e. HQ-PI). Overall, IT2-FLS-HS with 𝑃 = 10 rules decreases RMSE and

slightly increases PICP compared to IT2-FLS-HS with 𝑃 = 5 rules in Table 4.3.

• For PM, Z-GT2-FLS-2 demonstrates superior performance with the lowest RMSE

which is statistically significant when compared to MJ-GT2 and IT2 counterparts. Z-

GT2-FLS models have similar performances in terms of RMSE and PICP as shown in
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Figure 4.6. IT2-FLS-HS has the best coverage, yet its PINAW is significantly larger

than other FLSs, indicating a poor PI. Z-GT2-FLS-2 with 𝑃 = 10 rules decreases

RMSE and PINAW compared to Z-GT2-FLS-2 with 𝑃 = 5 rules in Table 4.3.

• For AIDS, IT2-FLS-HS has the best RMSE and PICP with the largest PI bands

in Table 4.4. This results in a poor PI. Z-GT2-FLS-2 has the lowest PINAW.

Furthermore, Z-GT2-FLS-1 with 𝑃 = 5 rules, is the best performer in terms of

RMSE across all FLSs in Table 4.3.

To sum up, Z-GT2-FLS-2, with minimal #LPs, is the best performer in average RMSE

and PINAW, while Z-GT2-FLS-1 excels slightly in PICP, closely followed by IT2-

FLS-HS. IT2-FLS-HS is the best performer in terms of average RMSE and PICP

rank, yet its average PINAW rank is the worst, meaning poor PI. Z-GT2-FLS-2 and

MJ-GT2-FLS-2 are the best performers for the average PINAW rank. Overall, Z-

GT2-FLSs demonstrate competitive performance across various datasets by yielding

accurate point-wise prediction while generating HQ-PI.
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Table 4.4 : Testing Performance Comparison of Dual-Focused FLSs over 20 Experiments for 𝑃 = 10 rules.

Dataset Metric Z-GT2-FLS-1 MJ-GT2-FLS-1 [30] Z-GT2-FLS-2 MJ-GT2-FLS-2[30] IT2-FLS-H[29] IT2-FLS-HS[29]

#LP 362 472 362 472 450 560
WW RMSE 79.52(±1.48) 80.67(±1.78) 80.09(±1.88) 80.79(±2.02) 82.72(±3.69) 82.05(±1.78)

(11×4898) PICP 98.18(±0.44) 97.81(±0.67) 97.88(±0.47) 97.82(±0.56) 96.91(±0.93) 97.51(±0.86)
PINAW 72.38(±6.32) 72.44(±8.20) 71.88(±6.84) 72.00(±7.46) 66.07(±4.59) 68.44(±4.93)

#LP 138 178 138 178 170 210
PP RMSE 24.16(±0.72) 24.54(0.69) 24.19(±0.67) 24.53(±0.70) 23.66(±0.57) 23.48(±0.57)

(4×9568) PICP 98.75(±0.27) 98.68(±0.24) 98.75(±0.29) 98.69(±0.28) 98.81(±0.31) 98.84(±0.23)
PINAW 30.22(±1.45) 29.89(±1.26) 30.29(±1.51) 30.05(±1.23) 30.56(±1.39) 31.69(±1.24)

#LP 266 346 266 346 330 410
ABA RMSE 67.60(±4.58) 67.78(±8.25) 66.59(±1.91) 67.20(±4.03) 65.72(±1.39) 65.31(±1.68)

(8×4177) PICP 98.57(±0.45) 98.27(±0.53) 98.59(±0.55) 98.42(±0.34) 98.52(±0.51) 98.63(±0.40)
PINAW 46.35(±3.91) 44.14(±3.41) 45.41(±3.75) 44.39(±3.40) 51.57(±4.92) 52.72(±5.40)

#LP 618 808 618 808 770 960
PM RMSE 53.07(±5.25) 65.93(±5.28) 50.02(±4.61) 65.05(±4.74) 69.40(±14.65) 65.28(±4.52)

(19×5875) PICP 99.41(±0.60) 98.80(±1.02) 98.30(±0.67) 98.73(±0.64) 97.06(±2.76) 99.43(±0.67)
PINAW 128.20(±35.51) 144.51(±22.56) 94.46(±11.65) 123.01(±12.86) 145.57(±33.38) 173.39(±29.11)
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Table 4.4 (continued) : Testing Performance Comparison of Dual-Focused FLSs over 20 Experiments for 𝑃 = 10 rules.

Dataset Metric Z-GT2-FLS-1 MJ-GT2-FLS-1 [30] Z-GT2-FLS-2 MJ-GT2-FLS-2[30] IT2-FLS-H[29] IT2-FLS-HS[29]

#LP 746 976 746 976 930 1160
AIDS RMSE 71.38(±2.71) 74.44(±3.16) 74.33(±3.14) 74.55(±3.39) 72.58(±3.25) 69.82(±3.36)

(23×2139) PICP 98.01(±0.65) 96.42(±1.10) 97.41(±1.10) 96.71(±1.05) 97.15(±1.09) 98.41(±0.83)
PINAW 163.36(±10.71) 163.59(±23.00) 135.65(±10.64) 161.35(±20.38) 199.12(±15.63) 234.99(±21.71)

RMSE 59.15 62.67 59.04 62.42 62.82 61.19
Average PICP 98.58 98.00 98.19 98.07 97.69 98.56

PINAW 88.10 90.91 75.54 86.16 98.58 112.25

RMSE 2.6 5.0 2.8 4.4 3.8 2.4
Average Rank PICP 2.2 5.0 3.2 4.4 4.4 1.8

PINAW 3.6 3.2 2.4 2.4 4.2 5.2

Overall Rank 2.8 4.4 2.8 3.7 4.3 3.1



Figure 4.6 : Notched box-and-whisker plots for PM (19×5875) for 𝑃 = 10.

Figure 4.7 : Notched box-and-whisker plots for WW (11×4898) for 𝑃 = 10.

4.2.2.3 Computational load analysis

Here, we analyze the computational load of training the models with 𝑃 = 5 rules and

𝑃 = 10 rules, respectively. To analyze the training complexity, the computational load
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Figure 4.8 : Notched box-and-whisker plots for AIDS (23×2139) for 𝑃 = 10.

Figure 4.9 : Notched box-and-whisker plots for ABA (8×4177) for 𝑃 = 10.

during training is examined by recording the Memory Usage (MU) and total Training

Time (TT). Table 4.5 provides the MU and Training Time TT associated with each

model composed with 𝑃 = 5 and 𝑃 = 10 rules. We also provided the rankings over

the handled 5 datasets for an easy comparison. These results were obtained using a
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Figure 4.10 : Notched box-and-whisker plots for PP (4×9568) for 𝑃 = 10.

computer equipped with a NVIDIA GTX 1080 TI GPU.

We can observe from Tables 4.5 and 4.6 that as expected increasing the rule size from 5

to 10 has significantly increased the MU and TT values for both the IT2 and GT2 FLSs.

Especially, the computational loading (MU) and TT of the GT2-FLSs have increased

since they are constructed by a collection of 𝛼-planes (𝛼𝑘 ), and the output of GT2-FLSs

is defined with a weighted average of outputs of each 𝛼𝑘 -IT2-FLS via (2.25). Increasing

the rule number to 𝑃 = 10 significantly raises MU across all datasets, but less so for TT.

Z-GT2-FLSs have similar MU with MJ-GT2-FLSs, yet their TTs are generally less than

MJ-GT2 counterparts due to the fewer #LPs for both 𝑃 = 5 and 𝑃 = 10. Additionally,

the memory usage of IT2-FLS-H is similar to that of IT2-FLS-HS, yet IT2-FLS-H

consistently requires less training time than IT2-FLS-HS across all datasets.
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Table 4.5 : Computational Load Analysis over 20 Experiments for 𝑃 = 5 Rules.

Dataset Metric Z-GT2-FLS-1 MJ-GT2-FLS-1 Z-GT2-FLS-2 MJ-GT2-FLS-2 IT2-FLS-H IT2-FLS-HS

WW MU (MB) 197 197 198 196 182 182
TT (s) 47 48 46 48 39 42

PP MU (MB) 209 208 210 208 186 186
TT (s) 25 26 25 25 19 23

ABA MU (MB) 188 189 190 188 180 180
TT (s) 78 81 78 81 63 71

PM MU (MB) 222 220 222 220 192 193
TT (s) 161 167 160 166 131 148

AIDS MU (MB) 190 188 190 190 180 180
TT (s) 39 41 38 40 30 34

Average MU (MB) 201.2 200.4 202 200.4 184 184.2
TT (s) 70 72.6 69.4 72 56.4 63.6

Average Rank MU (MB) 3 2.6 3.8 2.4 1 1.2
TT (s) 3.6 5.0 3 4.4 1 2

Overall Rank 3.3 3.8 3.4 3.4 1 1.6
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Table 4.6 : Computational Load Analysis over 20 Experiments for 𝑃 = 10 Rules.

Dataset Metric Z-GT2-FLS-1 MJ-GT2-FLS-1 Z-GT2-FLS-2 MJ-GT2-FLS-2 IT2-FLS-H IT2-FLS-HS

WW MU (MB) 402 400 402 400 254 254
TT (s) 54 55 53 56 40 43

PP MU (MB) 611 610 612 610 328 328
TT (s) 30 31 30 30 20 25

ABA MU (MB) 353 352 352 352 234 234
TT (s) 90 94 91 92 65 72

PM MU (MB) 538 534 538 534 302 306
TT (s) 197 205 194 198 136 151

AIDS MU (MB) 289 288 288 288 222 222
TT (s) 46 47 45 46 32 36

Average MU (MB) 438.6 436.8 438.4 436.8 268 268.8
TT (s) 83.4 86.4 82.6 84.4 58.6 65.4

Average Rank MU (MB) 3.2 2.2 3 2.2 1 1.2
TT (s) 3.6 5.2 3.2 4.6 1 2

Overall Rank 3.4 3.7 3.1 3.4 1 1.6
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5. LEARNING GT2-FLSs FOR DISTRIBUTION ESTIMATION

While the dual-focused Z-GT2-FLS learning method offers improved predictive

performance for a specific confidence level, it requires retraining for each target quantile

pair [𝜏, 𝜏] for a given desired confidence level.

In this chapter, we introduce a DL framework to train GT2-FLSs to learn the conditioned

inverse cumulative function of a given dataset {𝑥𝑥𝑥𝑛, 𝑦𝑛}𝑁𝑛=1, by estimating all quantile

levels 𝜏 ∈ [0,1]. To achieve this, we utilize the SQR approach [12] that aims to estimate

all quantile levels simultaneously with:

min
𝜃𝜃𝜃∈C

𝐿 =
1
𝑁

𝑁∑︁
𝑛=1

E
𝜏∼𝑈 [0,1]

[𝜌 (𝑦 (𝑥𝑥𝑥𝑛), 𝑦𝑛, 𝜏)] (5.1)

The predictive distribution is learned by randomly sampling quantile levels 𝜏 from a

uniform distribution 𝜏 ∼ 𝑈 [0,1] for each data point and mini-batch during training

[12]. Within this framework, we first introduce the integration of the SQR method

into GT2-FLSs. We then present Adaptive SQR (ASQR), an enhanced version of SQR

that targets miscalibrated regions by focusing sampling in those areas during training,

thereby improving the generalization of the inverse cumulative distribution of a given

dataset.

5.1 SQR For GT2-FLS

Here, rather than only using 𝛼0-IT2-FLS for UQ, we designate an 𝛼-IT2-FLS to

represent a quantile level 𝜏. We start by eliminating the output calculation of GT2-FLS

defined in (2.25) and define the output as 𝑦𝛼 (𝑥𝑥𝑥), 𝛼 ∈ [0,1]. Then, we transform 𝑦𝛼 (𝑥𝑥𝑥)
as:

𝑦𝛼 (𝑥𝑥𝑥) → 𝑦(𝑥𝑥𝑥,𝛼),∀𝛼 ∈ [0,1] (5.2)

Thus, 𝛼 ∈ [0,1] has been transformed from a structural parameter to an input argument

of GT2-FLS that defines which 𝛼-IT2-FLS is used as the output of the GT2-FLS.

To enforce that 𝛼-IT2-FLS learns a quantile level 𝜏, we match 𝛼-planes with the quantile

levels selected randomly from the uniform distribution 𝜏 ∼𝑈 [0,1] of SQR, i.e. 𝛼 = 𝜏.
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The defined learning problem for GT2-FLS is then as follows:

min
𝜃𝜃𝜃∈C

𝐿 =
1
𝑁

𝑁∑︁
𝑛=1

E
𝜏∼𝑈 [0,1]

[𝜌 (𝑦 (𝑥𝑛, 𝜏) , 𝑦𝑛, 𝜏)] (5.3)

Thus, after training, 𝛼-IT2-FLS represents a quantile level function, providing flexibility

to generate any desired quantile level 𝜏 ∈ [0,1] by setting 𝛼 ∈ [0,1] as 𝛼 = 𝜏 during

inference.

While training, as 𝜏 ∼ 𝑈 [0,1], we also deploy a validation phase defined with the

Expected Calibration Error (ECE) [11]:

𝐸𝐶𝐸 (𝜏, 𝜏) = 1
𝑁

𝑁∑︁
𝑖=1
𝐸𝑖 (5.4)

where 𝐸𝑖 is the calibration error defined as:

𝐸𝑖 = |𝜏𝑖 − 𝜏𝑖 | (5.5)

Here, 𝜏 defines the estimated quantile levels resulting from the GT2-FLS while 𝜏 are

discretized from 0.01 to 0.99 with a 0.01 increment. Training is stopped early if the

ECE does not decrease for more than 𝑇𝑠𝑡 epochs, until a maximum of 𝑇 epochs. If

training is stopped early, the final GT2-FLS is backtracked to the one with the lowest

ECE value [11].

5.2 ASQR For GT2-FLSs

The efficacy of the SQR-based learning method for GT2-FLS is intricately tied to the

stochastic selection of 𝜏 for individual samples and mini-batches during training. While

achieving satisfactory distribution estimation is possible by increasing the mini-batch

size, this comes at the cost of increased computational burden. In this context, we

present an Adaptive SQR (ASQR) with a focus on mitigating miscalibration. The

algorithm in Table 5.1 provides the ASQR training steps for GT2-FLSs.

The proposed adaptation enhancement for SQR runs in the validation phase and orients

the randomly generated 𝜏’s to spaces, resulting in large calibration errors 𝐸 (defined

in (5.5)). As given in the algorithm in Table 5.2, we first calculate 𝐸 for each quantile

level and define a deficient quantile estimation as 𝐶 : 𝐸 ≥ 𝜖 , where 𝜖 is a threshold.

We then obtain the miscalibration areas 𝐴 = (𝐴1, . . . , 𝐴𝑁 ), and [𝜏
𝐴
, 𝜏𝐴] to be used for

producing quantile samples. These miscalibration areas are based on the As presented
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Table 5.1 : ASQR to learn Z-GT2-FLS Algorithm.

Step Description

1 Input: 𝑁 training samples (𝑥𝑛, 𝑦𝑛)𝑁𝑛=1, 𝜙 = [𝜏, 𝜏]
2 Set 𝑃: number of rules
3 Set 𝑚𝑏𝑠: mini-batch size
4 Set 𝑇 : number of epochs
5 Set 𝜖 : threshold value
6 Output: Learned parameter set 𝜃𝐺𝑇2
7 Initialize 𝜃𝐺𝑇2 = [𝜃𝐺𝑇2−𝐴, 𝜃𝐺𝑇2−𝐶 ]
8 𝛼𝑘 ∼𝑈 [0,1]
9 For 𝑡 = 1 to 𝑇 do
10 For each 𝑚𝑏𝑠 in 𝑁 do
11 Perform parametrization tricks for 𝜃 (see Sec. 3.3.3)
12 𝜇∗← PMF(𝑥;𝜃𝐴𝑃) (3.11)
13 [𝜇𝛼𝑘 , 𝜇𝛼𝑘 ] ← SMF(𝜇∗;𝜃𝐴𝑆) (3.15) and (3.16)
14 𝑦𝛼𝑘 ← Inference(𝜇𝛼𝑘 , 𝜇𝛼𝑘 ;𝜃𝐶) (see Sec. 2.2 )
15 Compute 𝐿 (5.3)
15 Compute 𝜕𝐿/𝜕𝜃 via automatic differentiation (AD)
16 Update 𝜃 via a DL optimizer, e.g., Adam
17 End for
18 Compute 𝜏 and 𝐸𝐶𝐸 on Validation Dataset
19 [𝐴,𝜏

𝐴
, 𝜏𝐴] ←MiscalibrationSpace(𝜏, 𝜏;𝜖)

20 𝛼𝑘 ← QuantileGeneration(𝜏, 𝜏, 𝜏
𝐴
, 𝜏𝐴, 𝐴)

21 End for
22 𝜃∗← argmin𝐿
23 Return: 𝜃∗

in the Algorithm in Table 5.3, for each 𝐴𝑖, the normalized error 𝑒𝐴𝑖 is computed, and

subsequently, quantile samples are curated based on the magnitude of miscalibration.

In conclusion, the ASQR produces more samples from the regions where the

miscalibration area is more substantial. This process is integral to enhancing the

learning performance of GT2-FLS for predictive distribution estimation, as more focus

is provided to estimation errors during training.

5.3 Comparative Performance Analysis

We show the learning performance of the Z-GT2-FLS compared to state-of-the-art

DL methods for UQ. To facilitate a direct comparison with the results of [11],

we considered the PP, Red Wine (RW), Concrete Strength (CS), Boston Housing

(BH), Naval Propulsion Plant (NP), Kin8nm, Yacht Hydrodynamics (YH), and Energy

Efficiency (EE) datasets. For the completeness of the study, we also handled ABA,
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Table 5.2 : Miscalibration Space Algorithm.

Step Description

1 Input: Pairs (𝜏𝑖, 𝜏𝑖)𝑁𝑖=1, threshold 𝜖
2 Initialize empty sets 𝐴←∅, 𝐴𝑘 ←∅
3 Initialize empty interval lists 𝜏

𝐴
←∅, 𝜏𝐴←∅

4 Compute errors 𝐸 = { 𝑒𝑖 = |𝜏𝑖 − 𝜏𝑖 | : 𝑖 = 1, . . . , 𝑁}
5 For each 𝑒𝑖 ∈ 𝐸 do
6 Mask small errors: 𝑒𝑖← 𝑒𝑖 · I{𝑒𝑖 ≥ 𝜖}
7 If 𝑒𝑖 ≠ 0 then
8 Add to current miscalibration group: 𝐴𝑘 ← 𝐴𝑘 ∪ {(𝑒𝑖, 𝜏𝑖)}
9 Else
10 Close group 𝐴𝑘 : 𝐴← 𝐴∪ {𝐴𝑘 }
11 Record interval: 𝜏

𝐴
← 𝜏

𝐴
∪ {min(𝜏𝐴𝑘 )},

𝜏𝐴← 𝜏𝐴∪ {max(𝜏𝐴𝑘 )}
12 Reset group: 𝐴𝑘 ←∅
13 End If
14 End For
15 Return: 𝐴, 𝜏

𝐴
, 𝜏𝐴

Table 5.3 : Quantile Generation Algorithm.

Step Description

1 Input: 𝜏, 𝜏, intervals 𝜏
𝐴
, 𝜏𝐴, groups 𝐴

2 Initialize empty set 𝛼𝐴←∅
3 For each miscalibration group 𝐴𝑖 ∈ 𝐴 do
4 Compute normalized weight: 𝑒𝐴𝑖 ←

𝑒𝐴𝑖∑|𝐴|
𝑗=1 𝑒𝐴 𝑗

5 Determine sample count: 𝑛𝑠← ⌊𝑒𝐴𝑖 ×𝑚𝑏𝑠⌋
6 Sample quantile(s): 𝛼𝐴𝑖 ∼𝑈

[
𝜏
𝐴𝑖
, 𝜏𝐴𝑖

]
(draw 𝑛𝑠 samples)

7 Aggregate: 𝛼𝐴← 𝛼𝐴∪ {𝛼𝐴𝑖 }
8 End For
9 Return: 𝛼𝐴

PM, and AIDS, which were utilized in Section 4.2.

5.3.1 Design of experiments

All input features are standardized via Z-score normalization:

𝑥𝑖 =
𝑥𝑖 − 𝜇𝑥
𝜎𝑥

(5.6)

where 𝜇𝑥 and 𝜎𝑥 are the sample mean and standard deviation of feature 𝑥 over the full

dataset. The target variable 𝑦 is similarly normalized on the training set:

𝑦̃ =
𝑦− 𝜇𝑦
𝜎𝑦

(5.7)
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where 𝜇𝑦 and 𝜎𝑦 denote the sample mean and standard deviation of 𝑦. After inference,

predictions are mapped back via

𝑦 = 𝑦̃ 𝜎𝑦 + 𝜇𝑦 (5.8)

Each dataset is randomly split into a training set (90%) and a test set (10%), Within

the training set, 20 % was used for validation as in [11]. All models (Z-GT2-FLS,

MJ-GT2-FLS, and the two IT2-FLSs) are trained with identical hyperparameters:

• Mini-batch size: 64

• Learning rate: 1×10−2

• Number of epochs: 10000

• 𝑇𝑠𝑡 = 200

For each dataset, we trained a Z-GT2-FLS via SQR (Z-GT2-SQR) and one via ASQR

(Z-GT2-ASQR) with 𝑃 = 10 rules. If the validation ECE loss did not show improvement

of more than 𝑇𝑠𝑡 = 200 epochs, we terminated the training section early and used

the model with the lowest ECE loss as stated in [5]. For the Z-GT2-ASQR, 𝜖 is

selected by performing cross-validation with 𝜖 ∈ {0.005,0.01,0.02,0.03,0.04,0.05}.
The experiments were conducted within MATLAB ® and repeated with 5 different

initial seeds for statistical analysis.

5.3.2 Performance evaluation

To assess the estimations, we calculated the ECE measure defined in (5.4). The

comparative outcomes on the test datasets, generated through 5 experiments, are

presented in Tables 5.4 and 5.5. Note that all compared models are neural networks

consisting of 2 layers with 64 hidden units each, utilizing ReLU activation function

[11]. We have included rankings across the datasets for ease of comparison. We also

presented the Quantile-Quantile (Q-Q) plots of Z-GT2 SQR and ASQR in Figures 5.1,

5.2, 5.3, and 5.4 which serve as a means of comparing expected quantile levels against

observed ones.

Z-GT2-FLS, particularly Z-GT2-ASQR, exhibit competitive performance compared

to state-of-the-art DL UQ methods. As shown in Table 5.4, their ability to

calibrate predictions is evident across multiple datasets. Despite MAQR [11]

being acknowledged as the top-performing DL method, Z-GT2-ASQR consistently
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outperforms MAQR across various datasets, as indicated by its average rank. This

showcases the robustness of our novel approach. Thus, Z-GT2-ASQR is capable of

achieving superior calibration irrespective of the data characteristics. It is noteworthy

that the performance of Z-GT2-SQR is also commendable, as it surpasses four out of

five DL methods. Also, Z-GT2-ASQR offers a more robust and consistent performance

based on Table 5.5.

To examine the impact of the adaptation mechanism on distribution estimation, we

presented the Q-Q plots from a single experiment obtained across datasets with diverse

sizes and dimensions in Figures 5.1, 5.2, 5.3, and 5.4. The visual results underscore the

notable performance improvement introduced by ASQR, with Z-GT2-ASQR exhibiting

enhanced adherence to the diagonal in the Q-Q plots compared to its SQR counterpart.

This improvement is a result of the quantile sampling strategy of Z-GT2-ASQR, which

enforces training more inadequately learned quantile levels through a targeted sampling

process. It is also worth underlining that the most striking improvement is observed in

Figure 5.4, where ASQR significantly outperforms SQR, especially in small quantile

level prediction.
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Table 5.4 : ECE Comparison over 5 Experiments: Z-GT2-SQR and Z-GT2-ASQR vs. Various Models.

Dataset (𝑀 ×𝑁) SQR [12] mPAIC [13] Interval [11] Cali [11] MAQR [11] Z-GT2-SQR Z-GT2-ASQR

PP (4×9568) 2.6(±0.4) 5.2(±0.4) 2.2(±0.4) 2.0(±0.1) 1.6(±0.3) 1.9(±0.6) 1.6(±0.5)
RW (11×1599) 4.2(±0.2) 10.3(±0.3) 5.0(±0.8) 4.2(±0.4) 2.7(±0.3) 4.0(±1.5) 2.3(±0.4)
CS (8×1030) 9.3(±1.5) 6.2(±0.5) 3.7(±0.6) 5.6(±0.8) 5.3(±0.4) 4.3(±1.7) 4.2(±1.1)
BH (13×506) 9.0(±0.8) 8.7(±1.3) 6.9(±1.1) 8.5(±1.5) 6.2(±1.8) 5.4(±0.9) 4.8(±0.9)
NP (17×11937) 9.7(±1.6) 3.1(±0.5) 4.7(±1.4) 5.9(±0.7) 2.3(±0.2) 2.1(±0.4) 1.9(±0.9)
Kin8nm (8×8198) 4.4(±0.1) 6.6(±0.4) 2.9(±0.4) 3.5(±0.3) 1.8(±0.4) 2.1(±0.4) 1.6(±0.4)
YH (6×308) 9.4(±0.9) 10.8(±2.3) 7.5(±0.9) 8.3(±0.6) 6.8(±2.1) 6.3(±2.5) 8.6(±1.8)
EE (8×768) 9.8(±0.8) 10.4(±0.5) 4.3(±0.6) 5.8(±0.4) 3.5(±1.0) 6.2(±2.8) 4.2(±0.7)

Average 7.3 7.7 4.7 5.5 3.8 4.1 3.7

Average Rank 6.1 6.4 3.9 4.7 2.3 2.8 1.9



Table 5.5 : ECE Comparison over 5 Experiments: Z-GT2-SQR vs. Z-GT2-ASQR.

Dataset (𝑀 ×𝑁) Z-GT2-SQR Z-GT2-ASQR

WW (11×4898) 1.7(±0.4) 1.7(±0.3)
ABA (8×4177) 1.7(±1.3) 1.6(±0.4)
PM (19×5875) 1.7(±0.7) 1.7(±0.4)

AIDS (23×2139) 4.3(±0.8) 4.8(±1.3)

Average 2.3 2.4

Average Rank 1.8 1.3

Figure 5.1 : Q-Q plot for Kin8nm (8×8198).

5.3.3 ASQR implementation - visualization

Here, we dive deep into how the ASQR algorithm works properly by showing an

example on the BH dataset.

First, we implement the SQR algorithm [12], which selects quantile levels randomly

in each epoch. We show the Q-Q plots of Z-GT2-SQR in Figure 5.5, which serve as a

means of comparing expected quantile levels against observed ones.

As illustrated in Figure 5.5, the model struggles to accurately estimate the desired

quantile levels. Specifically, the mean ECE for the BH dataset across 5 experiments

is 5.4. This value will serve as a reference point for comparison with the proposed
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Figure 5.2 : Q-Q plot for Naval (17×11937).

Figure 5.3 : Q-Q plot for Power (4×9568).

Z-GT2-ASQR method. To handle this problem, we propose the ASQR method as

in Section 5.2. Now, we present the ASQR algorithm with visualizations on the BH

dataset.
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Figure 5.4 : Q-Q plot for RW (11×1599).

Figure 5.5 : Q-Q plot for BH with Z-GT2-SQR method for 1 seed.

• We calculate the absolute error (𝐸) for all quantile levels 𝜏 = [0.01, . . . ,0.99] during

the validation step as:

𝐸 = |𝜏− 𝜏 | (5.9)
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• We define a Condition (𝐶) as:

𝐶 : 𝐸 > 𝜖 (5.10)

where 𝜖 is a threshold.

• According to 𝐶, we define areas, which are the above of the threshold value 𝜖 , and

call them miscalibration areas, represented as 𝐴1, . . . , 𝐴𝑛 as shown in Figure 5.6.

• For each 𝐴𝑖, we find minimum and maximum quantile levels (𝜏
𝐴𝑖
, 𝜏𝐴𝑖 ), then,

𝜏𝐴𝑖 = (𝜏𝐴𝑖 − 𝜏𝐴𝑖 )𝑈 [0,1] + 𝜏𝐴𝑖 (5.11)

𝜏𝐴 = ∪𝜏𝐴𝑖 (5.12)

• With this selection of 𝜏:

𝜏 ∼ (𝜏𝐴− 𝜏𝐴)𝑈 [0,1] + 𝜏𝐴 (5.13)

Lastly we assign 𝛼 = 𝜏.

The density of selected 𝜏 levels depend on the miscalibration areas 𝐴1, . . . 𝐴𝑛 as

represented in Table 5.3. Figure 5.7 shows the selected quantile levels (𝜏 = 𝛼) from the

miscalibration areas, as depicted in Figure 5.6.

Figure 5.6 : Miscalibration Areas for 𝜖 = 0.005.

Afterwards, we show the Z-GT2 ASQR Q-Q plot in Figure 5.8. The ASQR method

achieves a mean ECE of 4.8 on the BH dataset across five experiments, representing
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an improvement of 0.6 compared to the SQR method. We can conclude that using the

ASQR method helps us to select quantile levels, which are not well-calibrated during

the validation step. This provides us with better generalization for estimating the inverse

cumulative distribution.

Figure 5.7 : Selected 𝛼 = 𝜏 levels.

Figure 5.8 : Q-Q plot for BH with Z-GT2-ASQR method for 1 seed.
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6. CONCLUSIONS AND RECOMMENDATIONS

In this master’s thesis, we present a DL framework for Z-GT2-FLS, a novel approach

grounded in Zadeh’s original definition of GT2-FSs. This framework is designed

to excel in delivering both highly accurate point-wise predictions and robust UQ.

We introduce an approach to combine Z-GT2-FSs with 𝛼-plane representation to

design Z-GT2-FLSs. Additionally, we propose a dual-focused DL framework

that leverages Z-GT2-FLSs to simultaneously optimize for prediction accuracy and

uncertainty modeling. Furthermore, we propose novel methods/algorithms for learning

inverse cumulative distribution via Z-GT2-FLSs by estimating all quantile levels

simultaneously.

In the initial chapter of this thesis, we provide the mathematical foundations of T2-FSs

and T2-FLSs. We outline the core components of IT2/GT2-FLSs, which are rule

structure, antecedent and consequent MFs, type reduction, and defuzzification, to

elucidate the distinctions between IT2-FLSs and GT2-FLSs.

Next, we provide the mathematical background on MJ-GT2-FLSs, how they are

implemented through the 𝛼-plane representation, and we discuss the potential issue

that we encounter with the MJ-GT2-FLSs: (1) Direct dependency of the SMF

shape on the PMF. Inherently, we believe that this dependency affects the learning

performance of GT2-FLSs. (2) Curse of dimensionality problem (i.e., rule firing

strength). In high-dimensional datasets, rule-firing strengths approach zero, causing

learning performance to decrease. Afterward, we introduce Z-GT2-FLSs based on

Z-GT2-FSs, their mathematical foundations, i.e., PMF and SMF definitions with

T1-FSs. Additionally, we propose solutions for problems in MJ-GT2-FLSs: (1)

the SMF shape does not depend on the PMF shape. The mathematical structure of

Z-GT2-FSs allows us to eliminate the dependency of the SMF on the PMF. This design

choice offers greater flexibility compared to MJ-GT2-FLSs, enabling more adaptable

uncertainty modeling. (2) To address the curse of dimensionality problem, we introduce

dynamic adjustments to the PMF based on input dimensions. Lastly, for learning of

T2-FLSs with unconstrained DL optimizers, we give details of the parameterization
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tricks we implement for each FLS.

We introduce a dual-focused deep learning (DL) framework for Z-GT2-FLSs, designed

to improve both prediction accuracy and uncertainty quantification (UQ). To achieve

this, we define a composite loss function that balances these objectives. Using the

𝛼-plane representation of GT2-FSs, we construct two separate loss functions tailored

for this dual goal. We demonstrate that Z-GT2-FLSs outperform MJ-GT2-FLSs and IT2

counterparts on high-dimensional datasets. To provide a detailed statistical comparison,

we include notch and whisker plots for each FLS across all datasets. Furthermore, we

study the effect of the number of fuzzy rules 𝑃 by retraining models for 𝑃 = 5 and

𝑃 = 10. We also assess each model’s computational cost in terms of memory usage and

training time.

In the last chapter of this thesis, we present a DL framework with Z-GT2-FLSs for

learning inverse cumulative distribution by estimating all quantile levels simultaneously.

The dual-focused Z-GT2-FLS learning approach is designated for a given confidence

level, requiring to undergo retraining for any desired confidence level. In this chapter, we

assign 𝛼-planes of GT2-FSs with quantile levels, 𝜏 ∈ [0,1], (i.e., 𝛼 = 𝜏). Thus 𝛼 ∈ [0,1]
is an input argument to GT2-FLSs instead of being a structural parameter. This structure

helps us to design a DL framework for GT2-FLSs to learn predictive distribution.

In this context, each 𝛼-IT2-FLS learns a quantile level, 𝜏, selected randomly from

the uniform distribution 𝜏 ∼ 𝑈 [0,1] of SQR, (i.e., 𝛼 = 𝜏), and the model is called

Z-GT2-SQR. Building on this, we propose a novel approach called ASQR, which

targets the miscalibrated regions identified during validation and selects quantile levels

specifically from those regions during training, and the model is called Z-GT2-ASQR.

This strategy allows us to capture the full spectrum of quantile levels when compared to

the SQR method. Furthermore, we showcase the learning performance of Z-GT2-SQR

and Z-GT2-ASQR compared to state-of-the-art DL models for UQ over benchmark

datasets. We conclude that Z-GT2-ASQR shows excibit performance compared to

state-of-the-art DL UQ methods. We also present Q-Q plots, serving as a means

of comparing expected quantile levels against observed ones. These plots help us to

understand that ASQR is a versatile approach for capturing the full spectrum of quantile

levels.

We believe that the results of this thesis study demonstrate that Z-GT2-FLSs can be a
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significant tool for fields requiring both accurate predictions and reliable uncertainty

estimates, such as healthcare (e.g., diagnostic systems), finance (e.g., risk assessment),

and autonomous technologies (e.g., decision-making under uncertainty). The key

limitation is the significant computational cost associated with the Z-GT2-FLS

framework, particularly impacting training duration for both learning frameworks

(dual-focused and distribution estimation). However, a key distinction is that the

inference or application time is significantly shorter once the model is trained. This

trade-off which is long training period for rapid and reliable inference is justifiable

in high-stakes applications such as real-time diagnostics, algorithmic trading, and

autonomous systems. In our future work, we will explore the application of

Z-GT2-FLSs in time series prediction and real-world scenarios.
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