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OZET
OPTIK ORGULERDE ULTRA-SOGUK ATOMLARLA OLUSTURULAN
KUANTUM SIMULASYONLARI

Riiveyde ERGUN

Fizik Anabilim Dal1
Yiiksek Enerji ve Plazma Fizigi Bilim Dali

Eskisehir Teknik Universitesi, Lisansiistii Egitim Enstitiisii, Haziran 2025
Danisman: Dog. Dr. Ziileyha OZTAS

Optik orgii potansiyellerinde tuzaklanan ultra-soguk bozonik atomlarin kuantum
simiilasyon ¢alismalarinda énemli bir yeri bulunmaktadir. Optik 6rgili parametrelerinin ve
bozonlar arasi etkilesimlerin ayarlanabilir olmasi, bu tiir sistemlerde faz gecislerinin
kontrol edilebilmesini saglar. Fazlar arasi geg¢is kuantum bilisiminde yaygin olarak
kullanilmaktadir. Ozellikle 6rgii noktalar: arasinda tiinellemenin baskilandign Mott
yalitkan fazi kiibitler ile eslestirilmektedir.

Bozonlarin optik orgii potansiyellerindeki davranisini incelemek i¢in Bose-
Hubbard modeli kullanilmaktadir. Bu tez ¢alismasinda 6zellikle ¢cok sayida uygulama
alan1 bulunan ti¢ kuyulu Bose-Hubbard modeli teorik olarak ele alinmistir. Atomlar arasi
dipolar etkilesimlerin ve zamana bagl tiinelleme genliklerinin faz gegisleri iizerine
etkileri incelenmistir. Siiperakiskan ve Mott yalitkan fazlarina iliskin, literatiir ile uyumlu

nlimerik sonuglar elde edilmistir.

Anahtar Sézciikler: Optik o6rgii, Ultra-soguk atomlar, Bose-Hubbard modeli, Kuantum
simiilasyonlari.



ABSTRACT

QUANTUM SIMULATIONS GENERATED BY ULTRA-COLD ATOMS IN
OPTICAL LATTICES

Riiveyde ERGUN

Department of Physics
Programme in High Energy and Plasmas Physics
Eskisehir Technical University, Institute of Graduate Programs, June 2025
Supervisor: Assoc. Prof. Dr. Ziileyha OZTAS

Ultra-cold bosonic atoms trapped in optical lattice potentials have an important role
in quantum simulation studies. The adjustable optical lattice parameters and interactions
between bosons allow phase transitions to be controlled in such systems. Interphase
transitions are widely used in quantum computing. In particular, the Mott insulator phase,
where tunneling between lattice sites is suppressed, is matched with qubits.

The Bose-Hubbard model is used to analyze the behavior of bosons in the optical
lattice potentials. In this thesis, the three-well Bose-Hubbard model, which has many
application areas, was theoretically considered. The effects of interatomic dipolar
interactions and time-dependent tunneling amplitudes on phase transitions were
investigated. Numerical results for the superfluid and Mott insulator phases, which are

compatible with the literature, have been obtained.

Keywords: Optical lattice, Ultra-cold atoms, Bose-Hubbard model, Quantum
simulations.
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1. GIRIS

Ultra soguk atomlardan olusan sistemler, kuantum fiziginin temel ilkelerinin
gozlemlenmesini miimkiin kilar. Atomlarin ¢ok diisiik sicakliklara, yani mutlak sifira
yakin degerlere kadar sogutulmasi, onlarin klasik fizik yerine tamamen kuantum
mekaniksel davraniglar sergilemesine neden olur. Bu sicaklik araliginda atomlarin hem
pargacik hem de dalga 6zellikleri belirgin bir sekilde ortaya ¢ikar. Bunun sonucunda,
Bose-Einstein yogunlagsmasi (BEY) veya Fermi gazlar1 gibi egzotik fazlar olusur [1]. Bu
tiir kuantum gazlari, kuantum mekaniginin temel ilkelerini incelemek ve anlamak i¢in
elverisli bir platform sunmaktadir [2].

Ultra soguk atomlar, kuantum dl¢limleri ve hassas ol¢iimler yapmayi; dolayisiyla
fiziksel sistemlerin derinlemesine incelenmesini saglar. Lazer ile sogutma ve manyetik
tuzaklama teknikleriyle neredeyse tamamen hareketsiz hale getirilen bu atomlar,
kontrollii bir sekilde manipiile edilebilir ve ideal kuantum sistemlerini olusturmak i¢in
kullanilabilir. Ultra soguk atom sistemleri ayn1 zamanda yiiksek hassasiyetli 6l¢iimlerde
ve zaman standartlarinin  olusturulmasinda kullanilir.  Ornegin, atomik saat
uygulamalarinda, ultra soguk atomlarin sahip oldugu diisik hizlar ve kuantum
durumlarimin uzun 6miirlii olmasi 6l¢iim hassasiyetini biiyiik 6l¢iide artirir [1]. Ayrica,
ultra soguk atomlar, kuantum mekaniginin temellerini aragtirmak ve gelecegin kuantum
teknolojilerinin altyapisini olusturmak i¢in gii¢lii bir ara¢ sunar. Bu nedenle, ultra soguk
atom sistemleri, modern kuantum teknolojileri ve temel bilim arastirmalar igin
vazgecilmezdir. Ozellikle optik oOrgiilerde tuzaklanan ultra soguk atomlar, kat1 hal
fiziginde goriilen ozelliklerin modellenmesi i¢in 6nemli bir aragtir [1]. Optik orgiiler,
atomlar i¢in periyodik potansiyel alanlar olusturur ve bunun sonucunda atomlar
elektronlarin kristallerdeki hareketine benzer davranislar sergiler. Ultra-soguk atomlarin
potansiyelde tutulmas ile bir tiir “yapay kristal” elde edilir. Ozellikle Bose-Hubbard
modeli gibi teorik yaklasimlar, bu yapay kristaldeki faz gegislerini anlamada 6nemli rol
oynamaktadir [3, 4].

Kuantum simiilasyonlari, karmasik kuantum sistemlerinin davraniglarini anlamak
ve modellemek i¢in gii¢lii bir aragtir. Bu simiilasyonlar, kimya, fizik, malzeme bilimi ve
bilgisayar bilimleri gibi bir¢ok alanda kullanilir. Ozellikle, nano 6lgekteki sistemlerin ve
atomik diizeydeki etkilesimlerin anlagilmasi i¢in 6nemlidir. Kuantum simiilasyonlarinin
tarihgesi, 20. yiizyilin ortalarina dayanir. Richard Feynman'in 1981'deki {inlii konusmasi,

kuantum sistemlerini klasik bilgisayarlarla simiile etmenin zorlugunu vurgulayarak,



kuantum bilgisayarlarinin potansiyelini ortaya ¢ikardi [5]. Feynman'im bu konusmasi,
kuantum simiilasyonlarina olan ilgiyi arttirdi. Kuantum simiilasyonu, kuantum
bilgisayarlarin1 kullanarak karmasik kuantum sistemlerinin davranisint modelleme ve
inceleme siirecidir. Bu tiir simiilasyonlar, klasik bilgisayarlarla ¢6ziilmesi zor veya
imkansiz olan kuantum mekaniksel problemleri ¢6zmek icin tasarlanmigtir. Kuantum
simiilasyonunun temel avantajlarindan biri, kuantum mekaniksel fenomenleri dogrudan
kuantum diizeyinde taklit edebilmesidir. Ornegin, molekiiler yapinin ve ilaglarin
etkilesimlerinin daha iyi anlasilmasi, yeni malzemelerin tasarimi veya kuantum fiziginin
temel yasalarinin daha derinlemesine incelenmesi gibi alanlarda kullanilabilir [6].
Optik orgiiler ve kiibitler konusu, kuantum bilgi isleme ve kuantum simiilasyonu
alanlarinin kesisiminde yer alir. Bu iki kavramin birlesimi hem temel kuantum fizigini
anlamada hem de kuantum bilgisayarlar insa etmede kritik rol oynar. Optik 6rgiide her
kKuyuya bir atom yerlestirilebilir. Yerlestirilen atomlarin her biri bir kiibit gibi
diisiiniilebilir. Kuantum simiilasyonlari, kuantum bitleri (kiibitler) iizerinde karmasik
kuantum siireglerini yiiriiterek calisir. Bu siirecler, kuantum mekaniksel sistemlerin
dogasini yansitan siiperpozisyon ve dolaniklik gibi kuantum o6zelliklerini kullanir. Bu
yontemlerle, kuantum simiilatorleri, klasik bilgisayarlarin ulasamayacagi diizeyde detay

ve hassasiyette simiilasyonlar yapilabilmektedir [6, 21].



2. OPTIK ORGULER
2.1. Optik Orgii Nedir?

Ultra soguk atomlarla ilgili ¢alismalar, kuantum fiziginin deneysel olarak test
edilebildigi en gii¢lii alanlardan birini olusturmaktadir. “Ultra soguk” kavrami, bilim
diinyasinda anlamli bir ifade olarak ilk kez 20. ylizyilin ikinci yarisindan itibaren
kullanilmaya baslanmistir [2]. Bu kavram, atomlarin ve molekiillerin mikro veya nano-
Kelvin mertebelerine kadar sogutulabildigi durumlari tanimlar. Bu seviyedeki sicakliklar,
atomlarin klasik rejimden c¢ikarak belirgin kuantum davraniglar1 sergiledigi kosullar
olusturur. Termodinamige ait temel kavramlar 6zellikle Ludwig Boltzmann ve J. Willard
Gibbs’in istatistiksel mekanik c¢alismalariyla gelistirilmistir. Atom hareketlerinin
sicaklikla iligkilendirilmesi, 1920’lerde gelistirilen kuantum mekanigi ¢ergevesinde daha
anlasilir hale gelmistir. Albert Einstein ve Satyendra Nath Bose’un 1924—1925 yillarinda
teorik olarak ortaya koydugu Bose-Einstein Yogunlasmasi (BEY) kavrami, ultra soguk
rejimlerde madde dalgalarinin davranislarina iliskin ilk temel 6ngoriileri sunmaktadir.

1950’11 yillardan itibaren ultra soguk atomlara yonelik ilgi hizla artti. Sivi helyum
gibi oOrneklerle ultra soguk faz gegisleri arastirilirken, aynt dénemde atom-atom
carpigsmalarina iligkin kuantum ¢arpisma teorileri gelistirilmeye baslanmistir. Bu teoriler,
diisiik enerjili atomlarin birbirleriyle nasil etkilesime girdigini anlamak i¢in 6nemli bir
temel olugturmaktadir. Ayrica Raman gegisleri iizerine yapilan deneysel ¢alismalar ve
enerji seviyeleri arast gecislerin kontrolli, daha nitelikli sogutma tekniklerinin
gelistirilmesine katki sundu. Bu donemde yasanan teknolojik gelismeler, sogutma ve
Ol¢iim siireglerine dogrudan etki etti. 1954’te Charles Townes ve ekibi, mikrodalga
spektrumunda ¢alisan ilk maseri gelistirirken, 1960°ta Theodore Maiman ilk lazeri
tireterek bu siirecin temelini atmistir [8]. 1967 yilinda sezyum atomunun salinim frekansi
uluslararasi zaman standardi olarak kabul edildi ve atom saatlerinin gelistirilmesinde
termal hareketlerin azaltilmasinin 6nemi daha iyi anlasildi. 1975 yilinda Theodor W.
Héansch ve Arthur Schawlow, lazerle sogutmanin teorik temelini agiklarken ayni yil D.
Wineland ve H. Dehmelt, iyonlarin lazer 15181 ile sogutulabilecegini ortaya koydular [9,
12]. Bu galigsmalari izleyen 1983 yilinda Steven Chu ve ekibi, lazer 1s1gin1 kullanarak
atomlar1 optik tuzaklara hapsetmeyi basardi [9]. Bu gelisme, ultra soguk atom fiziginde
bir doniim noktasi olmustur. 1976’da 6nerilen buharlasma ile sogutma yontemi, atomlarin
yiiksek enerjili olanlarinin sistem disina ¢ikarilmasiyla sicakligin diisiiriilmesine olanak

tanidi [10, 14]. 1985 yilina gelindiginde, lazerle sogutulan atomlarin Doppler sinirina



kadar indirilebildigi deneysel olarak gosterildi. Bu siirecte siiper Doppler ve polarizasyon
gradyan sogutma gibi daha ileri teknikler de gelistirildi. 1995 yilinda Eric Cornell ve Carl
Wieman, rubidyum atomlarini yaklasik 20 nano-Kelvin sicakliga kadar sogutarak ilk kez
Bose-Einstein Yogunlagsmasini deneysel olarak gerceklestirdiler [17]. Ayn1 y1l Wolfgang
Ketterle de sodyum atomlariyla benzer bir basari elde etti. Bu Onemli galigmalar,
atomlarin makroskopik kuantum durumlarim1 gézlemlemeyi miimkiin kilmistir. 2001
yilinda Feshbach rezonanslarinin kullanimi ile ultra soguk atomlar arasindaki
etkilesimler, digsal manyetik alanlar yardimiyla hassas bi¢imde kontrol edilebilir hale
getirildi. Bu durum, kuantum faz gecislerinin sistematik incelenmesine olanak
saglamaktadir [1].

2003’ten itibaren optik Orgiiler kullanilarak kuantum simiilasyonlar1 yapilmaya
baslandi. Bu sayede ultra soguk atomlar, diizenli bir potansiyel yap: i¢inde kuantum
durumlarmi koruyarak hareket edebilirler ve kristallerdeki elektronlarin davraniglart
deneysel olarak modellenebilir. Bu gelisme, kat1 hal fiziginden kuantum bilgi islemeye
uzanan genis bir alanin oniinii agmistir. 2010-2015 yillar1 arasinda optik 6rgii sistemleri,
kuantum bilgi islem mimarileri ig¢in kullanilabilir hale getirildi. Spin-tabanli kuantum
hesaplama deneyleri ile, atomlarin spin durumlarinin dolaniklik ve siiperpozisyon
ozellikleri, yliksek hassasiyetli dl¢iimler i¢in basariyla kullanildi [7, 11]. 2015-2020
déneminde ultra soguk atomlar, egzotik kuantum faz gegislerinin simiilasyonunda ve
topolojik malzemelerin modellenmesinde yaygin bi¢imde kullanildi [16]. 2020 sonrasi
donemde ise ultra soguk atomlar, kuantum sensor teknolojileri, manyetik rezonans
goriintiileme ve kuantum termodinamigi gibi alanlarda yogun bi¢imde arastirilmaktadir.
Bu gelismeler, ultra soguk atom fizigi ve optik 6rgii sistemleri alaninda koklii ilerlemelere

olanak saglamistir [16].

2.2. Sogutma Teknikleri

Fizik yasalar1 geregi mutlak sifir sicakligina ulasmak teorik olarak imkansizdir.
Ancak laboratuvar kosullarinda son derece hassas araglar ve yontemler kullanilarak bu
sicakliga oldukga yakin degerlere ulasilabilmektedir. Simdiye kadar kaydedilen en diisiik
sicaklik yaklagik 100 pikoKelvin olup, bu deger 1 Kelvin’in 10 milyarda birine karsilik
gelmektedir [2, 14]. Bu boliimde, laboratuvar ortaminda nanoKelvin mertebesinde

sicakliklara ulagsmak i¢in gelistirilen iki temel yontem ele alinacaktir.



2.2.1. Doppler sogutma

Doppler sogutma, lazer 15181 ile atomlarin hareketini yavaslatarak sogutmayi
miimkiin kilan ve lazer sogutma teknikleri arasinda en yaygin kullanilan yontemlerden
biridir. Genellikle magneto-optik tuzaklarla birlikte uygulanir. Ozellikle diisiik
yogunluktaki gazlarin, Doppler limitine kadar sogutulmasinda etkili olan bu teknik,
yalnizca belirli enerji seviyelerine sahip atom tiirlerinde uygulanabilir. Ornegin,
Rubidyum-85 izotopu igin Doppler limiti yaklasik 150 mikrokelvin civarindadir [8, 15].

Lazer 151n1, yiiksek yogunluklu elektromanyetik radyasyon tasir. Belirli kosullar
altinda, bu yiiksek enerjili 151k demetleriyle atomlarin kinetik enerjisi azaltilabilir. Bu
siirecte, atomlar lazer 1s1gindan bir foton sogurur ve ardindan bir foton yayar. Bu siireg
Oyle tasarlanir ki yayilan fotonun ortalama enerjisi, sogurulan fotondan biraz daha biiyiik
olur. Boylece atomlar tekrar tekrar bu dongiiyii yasadikca, sistemden enerji ¢ekilmis olur
ve atomlarin kinetik enerjisi azalir. Sonugta sistemin sicakligr diiser [8, 9, 12, 15]. Bir
atomdaki elektron, sadece belirli enerji seviyeleri arasinda gecis yapabilir ve bu gecis,
yalnizca aradaki enerji farkina esdeger enerjide bir fotonun sogurulmasi veya
yayllmasiyla gerceklesir. Bu nedenle lazerle sogutma, foton enerjilerinin atomik
gecislerle rezonansa girecek sekilde ayarlanmasina dayanir. Bu yontem, lazer frekansinin
atomik geg¢is frekansindan biraz daha disiik (red detuned) olacak bigimde ayarlanmasi
esasina dayanir. Bir atom 151k kaynagima dogru hareket ettiginde, Doppler kaymasi
nedeniyle lazer 151811 daha yiiksek frekansta algilar ve bu nedenle foton absorpsiyonu
miimkiin olur. iki karsit yonden gelen lazer 1sinlari sayesinde, atomlar hangi yonde
hareket ederlerse etsinler, hareket yonlerinin tersindeki 1s1m1 daha fazla sogurur. Bu
etkilesimler sirasinda her foton absorpsiyonunda, atom bir foton momentumu kadar geri
tepme kuvveti kazanir. Emisyon siireci ise rastgele yonlerde gerceklestiginden, net
momentum degisimi absorpsiyon yoniinde kalir. Bu siire¢ ¢ok sayida tekrarlandiginda
atomun ortalama hiz1 azalir. Sicaklik, bir atom grubunun ortalama rastlantisal kinetik
enerjisinin ol¢iisiidiir; dolayisiyla bu hiz azalisi, sistemin sogumasi anlamina gelir [2].

Lazerle sogutma siireci, enerji ve momentum korunumu yasalar1 ¢ergevesinde
gerceklesir. Lazer 1sinma dogru hareket eden bir atom, bir foton sogurdugunda
momentumu fotonunkine esdeger miktarda azalir. Bu iliski Es. (2.1) ile verilir:

AP _ Proton _ Av
P mv (2.1)



Esitlik (2.1)’den tiiretilen atomun hizindaki degisim ile fotonun momentumu arasindaki
iligki

_ Pfoton
Av = o (2.2)

ifadesiyle bulunur. Fotonun momentumu ise enerjisine ve dalga boyuna baglh olarak Es.
(2.3) ile bulunur:

p==_
c

Z (2.3)

Lazerle sogutma yonteminde erisilebilecek en diisiik sicaklik sinir1 Doppler
sicakligidir. Doppler sicakligi sinirt yalnizea iki seviyeli atomik sistemlerde ve Doppler
sogutma rejimlerinde gecerlidir. Daha karmagik seviyelere sahip atomlar i¢in bu alt
limitin altina inmek, ancak Sub-Doppler teknikleriyle miimkiin olabilmektedir [8,15].
Ancak bu tekniklerin de belirli sinirlamalar1 vardir ve 6zellikle nano Kelvin mertebesine

ulagmak, daha ileri diizeyde sogutma tekniklerinin gelistirilmesini gerekli kilmistir.

2.2.2. Buharlastirmalh sogutma

Doppler sogutma yontemiyle ulasilan mikroKelvin diizeyi, ¢ogu uygulama igin
yeterli olsa da BEY gibi kuantum faz gecislerinin gézlemlenebilmesi igin daha diisiik,
nanoKelvin diizeyinde sicakliklara ulasilmasi gerekmektedir. Bu tiir diisiik sicakliklara
ulagmak i¢in Doppler sinirinin 6tesinde ¢alisan bir yontem olan buharlastirmali sogutma,
ultra-soguk atom fiziginde temel ve tamamlayici bir teknik haline gelmistir [4].

Buharlagtirmali sogutma, klasik anlamda bir sivinin buharlagmasi sirasinda yiiksek
enerjili molekiillerin sistemden uzaklagsmasiyla sicakligin diismesi prensibine dayanir.
Deneysel olarak, atomlar manyetik bir tuzak i¢inde tutulur ve sistemdeki en yiiksek
kinetik enerjiye sahip olanlar, radyo dalgalar1 ya da mikrodalga 1s1nim1 ile rezonansa
sokularak sistemden uzaklastirilir. Bu islem, potansiyel kuyusunun enerji esiginin
kademeli olarak diisiiriilmesiyle saglanir. [2,14]. Dolayisiyla sistemden yiiksek enerjili
atomlar uzaklastirildik¢a geriye kalan atomlarin ortalama enerjisi ve dolayisiyla sistemin
sicakligr diiser. Bu siireg, sicak bir bardak caydan yiiksek enerjili su molekiilleri
buharlasip uzaklastik¢a bardaktaki cayin sogumasina benzetilebilir. Bu siirecin etkinligi,
sistemdeki atomlarin birbirleriyle elastik ¢arpigmalar yaparak enerji dagilimini yeniden
diizenleyebilmesine baghdir. Yeterli carpisma orani saglandiginda, buharlagtirmali
sogutma termal dengede sicakligin diismesini miimkiin kilar. Aksi halde, sistem

soguyamaz ve atom kaybi artar [15]. Buharlastirmali sogutma yontemi, sicakligin nano
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Kelvin diizeyine kadar diismesini saglayarak, faz uzayr yogunlugunun BEY i¢in gerekli
esik degerine ulasmasina imkan tanir. Kritik sicaklik altina inildiginde, atomlarin énemli
bir kismi1 temel enerji seviyesine yogunlasir ve makroskobik Slgekte kuantum istatistik
etkileri ortaya ¢ikar. Bu yontem, 1995 yilinda Cornell ve ¢alisma arkadaslari tarafindan
rubidyum-87 atomlar1 kullanilarak ilk kez basariyla uygulanmis ve seyreltilmis atomik
bir gazda BEY go6zlemlenmistir [17]. Bu 6nemli deneyde, lazerle sogutulmus atomlar
manyetik tuzak i¢inde tutulmus, ardindan buharlastirmali sogutma ile yaklasik 170 nano
Kelvin sicakliga kadar sogutulmustur. Giiniimiizde buharlastirmali sogutma, sadece BEY
elde etmek amaciyla degil, ayn1 zamanda kuantum simiilasyonlar ve hassas dl¢iimler i¢in

ultra-soguk sistemlerin hazirlanmasinda da yaygin bigimde kullanilmaktadir.

2.3. AC Stark EtKkisi

AC Stark etkisi, bir sistemin zamanla degisen bir elektromanyetik alanla, 6zellikle
lazer 15181yla etkilesimi sonucu atomik enerji seviyelerinde meydana gelen kaymalari
ifade eder. Bu etki, atomun elektrik dipol momenti ile dis elektrik alan arasindaki
etkilesimden kaynaklanir ve kuantum optigin temel olaylarindan biridir [14]. AC Stark
etkisinin temelinde duragan bir elektromanyetik dalga yer alir. Ilgili elektrik alan kalici
bir dipol momente sahip olmayan ndtr atomda bir dipol moment indiikler; bu da duragan
dalganin maksimum veya minimumuna dogru itme veya ¢ekmeye neden olur. Sonug
olarak atomlar AC Stark etkisi ile periyodik potansiyelde belirli konumlarda lokalize olur.
Atomlarin optik orgiide lokalize olmasi, atomun enerji seviyelerinin lazer 1s181na bagh
olarak kaymasi ile gerceklesir. AC Stark etkisinin biiylikliigii, lazerin elektrik alan genligi
ile atomun gegis dipol momentinin ¢arpiminin karesine ve lazer frekansi ile atomun
rezonans frekansi arasindaki sapmaya baghdir [15]. Bu sapmaya detuning denir.
Detuning terimi, lazer frekansinin sistemin dogal rezonansi arasindaki fark: ifade eder.
Detuning biiytikliigline bagli olarak, AC Stark etkisi altinda atomlarin enerji seviyelerinde
gbzlemlenen kaymalarin pozitif ya da negatif olmasi miimkiindiir (Sekil 2.1). Bu
mekanizma, optik orgiilerin fiziksel parametrelerinin hassas kontroliiniin saglanmasina
olanak tanir. Potansiyelin periyodik yapisi, AC Stark kaymasi ile dogrudan iliskilidir ve
optik orgiilerin temel fiziksel yapisini agiklar.

Atomla elektromanyetik alan arasindaki etkilesim sonucu Hamiltonyen

H=—f,E (2.4)



ile ifade edilir. Esitlik (2.4)’de yer alan ji, dipol momentidir. Dipol moment, elektron

yiikiine ve her bir elektronun atoma olan uzakligina baglhidir:
ﬁe = —e Z]F) (2.5)

Genel olarak sadece son yoriingedeki elektronlar 6nem tasir. Lazerin zamana bagli
elektrik alani [13]

E(x,t) = E(x)e'®t + c.c. (2.6)

olsun. Atomun enerji seviyelerinde AC Stark etkisi nedeniyle kayma gerceklesir. Atomda
meydana gelen polarizasyon dig elektrik alanla ayni frekansta salinim yapar. Boylece,
enerji kaymasi atomu tuzaklayan etkin bir potansiyel gibi davranir. Enerji seviyelerindeki
kaymanin bulunmasi i¢in pertiirbasyon teorisi kullanilir. Denklemlerin basitlestirilmesi
icin, statik radyasyon alani kabul edilebilir, yani E(x) = E,E olsun. Standart

pertiirbasyon teorisi kullanilarak enerji kaymasina ikinci dereceden yaklagim ile
s 2
AE = -y [=elieflo>] ¢ 2 2.7)
E.—E,
bulunur [13]. Esitlik (2.7)’de E; taban durumu enerjisini, E, uyarilmis durumun

enerjisini, |g > ve |e > sirasiyla taban ve uyarilmis durumlari gdstermektedir. iki

seviyeli atom i¢in Es. (2.7), Es. (2.8)’a indirgenir:

[<elfie Elg>’

— 2
AF = = =8 (2.8)
(@) (b)
0>0 0<0
g) — . |e)
o AE -0
\ X AE
B~ g e e—

Sekil 2.1: Jki seviyeli atomun enerji diyagramu. (a) pozitif detuning
(b) negatif detuning.



Esitlik (2.8) ile verilen enerji kaymasi AE, atom ve lazer arasindaki eslesmeye
karsilik gelir. Sekil 2.1’de AE gosterilmektedir. Lazer frekansi w ile atomun enerji

seviyeleri arasindaki farka karsilik gelen w, arasindaki farka detuning denir:

Eo—Eg

d=w— — =W =W (2.9)

Detuning kii¢likse (6 = 0, w = wy), enerji kaymasi biiylir. Kirmiziya ayarli lazer (red
detuned laser) kullanimi ile § < 0 (w < wg) olur ve bu durumda potansiyel ¢ekici olur.
Atomlar daha yiiksek yogunluklu bolgede toplanir. Maviye ayarh lazer (blue detuned
laser) ile § > 0 (w > wy) olur ve itici potansiyel olusur. Lazer siddetinin maksimumlari
potansiyelin maksimumlarina karsilik gelir. Atomlar diisiik yogunluklu bdlgede toplanir.

Her iki durum Sekil 2.2.’de gosterilmistir.

(@) (b)

Sekil 2.2: Optik orgiilerde tuzaklanan atomlarin konumlari.
(a) Maviye ayarii lazer (b) Kirmiziya ayarly lazer

AC Stark etkisi ile olusan enerji seviyelerindeki kaymalar, lazer 1s18inin siddeti ve
dalga boyuyla belirlenen bir potansiyel fonksiyonu iiretir. Bu potansiyel su formdadir:

V(x) =V, sin?(kx) (2.10)

Esitlik (2.10) ile tanimlanan potansiyelde V,, potansiyelin derinligi, k = 2771 dalga sayusi,

A lazerin dalga boyudur. V, parametresi, kullanilan lazerin siddetine, atomun dipol
momentine baglidir. Bu baglilik, optik orgiilerin istenildigi gibi tasarlanmasini saglar.
Boylece lazer 1s18inin dalga boyu ve siddeti, atomlarin konumlandig: yerleri dogrudan
kontrol etmektedir. Optik orgiilerde enerji skalasi olarak Es. (2.11) geri tepme enerjisi

kullanilir. Geri tepme enerjisi m atomun kiitlesi olmak tizere
21,2
Ep =X (2.11)

2m




esitligi ile bulunur. Bu enerji, fotonu absorplayan atomun son kinetik enerjisine karsilik

gelir.

2.4. Optik Orgii Olusumu

Optik orgii (veya optik kafes), zit yonlii lazer 1ginlarinin olusturdugu periyodik bir
potansiyel alandir. Bu diizenli potansiyel yapi, atomlarin belirli konumlarda
hapsolmasina neden olur ve bu yoniiyle atomlar i¢in bir tuzak gorevi goriir.

Optik orgiiler, ayn1 dalga boyuna sahip iki lazer 1sinimin karsilikli yonlerde
gonderilerek birbirleriyle girisim yapmasi sonucunda olusan duragan dalgalar araciligiyla
olusturulur. Girisim sonucu meydana gelen bu dalga yapisi, uzayda periyodik olarak
degisen potansiyel alanlar iiretir. Atomlar, bu potansiyelin minimum noktalarinda
lokalize olur; ¢iinkli bu konumlar enerji agisindan en kararli durumlardir. Bu duragan
dalga deseninde olusan karanlik ve aydinlik bolgeler, atomlar icin sirasiyla potansiyel
minimumlarim1 ve maksimumlarin1 tanimlar. Dolayisiyla, atomlar tipik olarak bu
periyodik yapinin potansiyel minimumlarina hapsolur ve bu sayede kontrollii bigimde
diizenli 6rgii noktalarina yerlesirler. Optik orgiiniin fiziksel 6zellikleri; lazer 1sinlarmin
dalga boyu, yonii, polarizasyonu ve bagil faz1 gibi parametreler araciligiyla hassas bir
sekilde ayarlanabilir. Elde edilen 6rgiiniin bir, iki veya ii¢ boyutlu olmasi, 6rgii sabiti ve
potansiyel derinligi bu parametrelerle dogrudan iliskilidir. Bu yapilarin temel 6zelligi,
deneysel olarak kolayca bigimlendirilebilmeleridir. Tipik bir tek boyutlu optik 6rgiide,
potansiyel kuyular1 lazer 15181nin dalga boyunun yaris1 kadar bir aralikla yerlesir. Bu
aralik, atomlarin orgli boyunca periyodik olarak dizilmesini saglar. Ortaya ¢ikan bu
diizenli yapi, kristal orgiilerin optik bir analogu olarak degerlendirilebilir. Boylelikle
optik orgiiler, kat1 hal fizigindeki periyodik atom dizilimlerini taklit ederek, kristal

Sekil 2.3: Lazer isig1 ile olusturulan periyodik potansiyel yapilarinin temsili gosterimi. (a) Tek boyutlu
optik érgiide atomlarin yer aldig potansiyel kuyulari, (D) ki boyutlu optik érgii geometrisi,
(€) U¢ boyutlu optik orgii yapisinda hapsedilmis atomlar.
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sistemlerin davraniglarini simiile etmek amaciyla kullanilan deneysel platformlar haline
gelir [2, 3, 10].

Iki boyutlu optik orgiiler, ayn1 diizlemde belirli bir ag1yla kesisen koherent lazer
sinlarinin girisimiyle olusturulur. Bu durumda atomlar, diizlemsel bir potansiyel i¢inde
hapsolur ve kristalimsi yapilar meydana getirirler. U¢ boyutlu optik érgiilerde ise, lazer
isinlarinin i¢ boyutlu uzaydaki konfiglirasyonuna bagli olarak kiibik ya da hekzagonal
simetriye sahip karmasik yapilar elde edilir; boylece atomlar ii¢ boyutlu potansiyel

kuyular1 igine diizenli bigimde yerlestirilebilir [4].

OPTIK

/ '\ oo '&G

Sekil 2.4: Lazer w181 kullamilarak sogutulan atomlarin, bir optik orgii icerisine yerlestirilme siirecinin
sematik gosterimi. Lazer iginlart ile olusturulan duragan dalga yapisi, periyodik bir potansiyel
olusturarak atomlarin diizenli bir drgii yapisinda hapsedilmesini saglar.

Ug boyutlu diisiiniildiigiinde optik 6rgii potansiyeli
V(x,y,2) = Vy(sin?(kx) + sin?(ky) + sin?(kz)) (2.12)

olur. Atomlar bu potansiyelin etkisi altinda Bloch bantlar1 olarak bilinen enerji

seviyelerine hapsolur [4].
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3. BOSE-HUBBARD MODELI
3.1. Bloch Teoremi

Kristal yapidaki maddelerde elektronlar, periyodik bir potansiyel i¢cinde hareket
eder. Bu durumda Schrédinger denkleminin ¢oziimleri Felix Bloch tarafindan gelistirilen
Bloch teoremi ile tanimlanir [18]. Bloch teoremine gore, periyodik bir potansiyel altinda

dalga fonksiyonlart:

(@) = w (Pet*” (3.1)

Esitlik (3.1) ile verilen dalga fonksiyonunda k dalga vektorii, u, () kristal 6rgiiniin

periyoduna sahip bir fonksiyondur ve séyle tanimlanir:
w (?) = we (7 + T) (3.2)

Dalga fonksiyonu kristal potansiyeli altinda bulunan tek bir elektronun davranigini
tanimlar. Bloch fonksiyonlar1 iyonik merkezler tarafindan olusturulan potansiyel
alanlarda yerlesmis dalga paketleri olarak da yorumlanabilir. Elektronlar bu fonksiyonlar
sayesinde kristal iginde serbestmis gibi davranabilir. Esitlik (3.1), Bloch teoremi olarak

sOyle ifade edilir: Periyodik bir potansiyelde dalga denkleminin 6z fonksiyonlari, ek
diizlem dalgast ile kristal orgiisiiniin periyoduna sahip bir Uy (7) fonksiyonunun ¢arpimi
seklinde yazilir; bu fonksiyon karakteristik olarak ilerleyen dalgalarin toplam1 bigiminde
yazilabilir. Bloch fonksiyonlari, iyon merkezlerinin olusturdugu potansiyel alanda
serbestce dolasan elektronlar1 temsil etmek iizere, yerellesmis dalga paketleri seklinde
ifade edilebilirler. Burada y, (#) dalga fonksiyonu katli olmadigi, yani ayn1 enerji ve
dalga sayisina sahip dalga fonksiyonu sayis1 bir tane oldugu durum igin, Bloch teoreminin
kismi bir ispat1 verilecektir. Cevresi Ma olan ve M adet 6zdes orgii noktasina sahip bir
halka {izerinde bulunan bir elektron sistemi olsun. Potansiyel enerji periyodik bir yapiya

sahip oldugundan bir tam say1 S i¢in Es. (3.3) denklemini saglanir [18]:
Ux)=U(x+sa),sEZ (3.3)
Halkanin simetri 6zelligi goz oniline alindiginda Es. (3.4) yazilabilir:
Y(x +a) = CY(x) (3.4)

Esitlik (3.4)’te C kompleks bir sabittir. Her bir nokta tizerinden gegerek halka etrafinda
bir kere doniildiiglinde
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Y +Ma) = Pp(x) = CMp(x) (3.5)

elde edilir. Bunun nedeni, dalga fonksiyonu (x)’in tek degerli olmasidir. Esitlik
(3.5)’ten

C=em ;s=012,..,.M—-1 (3.6)

oldugu goriilmektedir. Sonug olarak

i2msx

P(x) = e Ma uy(x) (3.7)
fonksiyonu, eger

u(x) = w(x + a) (3.8)
ozelligine sahipse,

Y(x +a) = CyY(x) (3.9)

denklemini saglar. k = 2ms/Ma alinirsa

() = we (e (3.10)

elde edilir ve Bloch teoremi ispatlanir [2, 4, 18, 19].

3.2. Wannier Fonksiyonlari

Wannier fonksiyonlari, kristal yapilarda kuantum mekanigi ile tanimlanan elektron
dalga fonksiyonlarinin bir temsilidir. Wannier fonksiyonlari, Bloch fonksiyonlarinin
Fourier dontigiimiiyle elde edilen, Orgii noktalar1 etrafinda lokalize olmus dalga
fonksiyonlaridir. Bu fonksiyonlar 6zellikle yogun madde fiziginde ve kati hal fiziginde
onemli bir role sahiptir; ¢iinkii Bloch fonksiyonlarina alternatif bir baz olustururlar ve
uzaysal olarak daha lokalize bir yapi sergilerler [18]. Bir banttaki Wannier fonksiyonlart,

ayni banda ait Bloch fonksiyonlari iizerinden Es. (3.11) ile tanimlanir:

w(F = 7) = N2 3 exp(—ik.7,) . (7) (3.11)

Bu denklemde 7#; bir 6rgii noktasini temsil eder. Wannier fonksiyonu, orgii noktasi 7
civarinda lokalize olmustur. M ise Kkristaldeki o6rgli noktalarinin sayisidir. Bloch
fonksiyonu . (7) dalga vektérii k ile tanimlanr. exp(—iﬁ. 7;) faz faktorii olup Bloch
dalga fonksiyonlarini farkli 6rgii noktalarma kaydirir.
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Wannier fonksiyonlar1 6rgii noktalarinda diklik kosulunu saglar. Bu diklik kosulu
Es. (3.12) ile ifade edilir [18, 19]:

JaV o' #-7)w(F-7) =0, (i #)) (3.12)

i ve j iki farkli 6rgii noktasini temsil eder. Diklik 6zelligi Wannier fonksiyonlarini farkli
orgii noktalarinda daha kullanigh hale getirir. Tek boyutlu bir durumda, 6rgii sabiti a olan
ve N atomlu bir 6rgiide Bloch fonksiyonu Es. (3.13) ile verilir:

() = Nz (x) (3.13)

Burada uy(x) orgii periyodikligi tasiyan bir fonksiyondur. Wannier fonksiyonu bu
durumda Es. (3.14) ifade edilir [18]:

sinm(x—x;)

w(x = x;) = up (%) — iy (3.14)

a

Bu ifade, Wannier fonksiyonlarnin o6rgii noktalar1 etrafinda pik yaptigini gosterir.
Wannier fonksiyonlari, kristallerin kuantum mekanigi agisindan anlagilmasinda nemli
bir matematiksel aragtir; kuantum simiilasyonlarinda karmasik sistemleri daha basit

modellere indirgerler ve Bloch fonksiyonlarina goére uzaysal olarak daha net ve lokalize

bir fiziksel anlam tagirlar. Genel bir potansiyel altinda ve herhangi bir K dalga vektorii
icin Schrodinger dalga denklemi g6z Oniine alinarak, orgii sabiti a olan bir boyutlu
periyodik sistemde potansiyel enerji fonksiyonu U(x) ile ifade edilir. Bu potansiyel 6rgii

simetrisine sahip olup, 6rgii 6telemesi islemi altinda Es. (3.15)’deki gibi degismez kalir.

Ulx)=U(x+a) (3.15)

3.3. Siki Baglanma Modeli

Siki baglanma modeli kristal yapidaki elektronlarin davranisini incelemek igin
kullanilan bir modeldir. Atomlara siki bir sekilde bagl olan ve atomlar arasi gegisleri
sinirlt olan elektronlarin enerji seviyelerini anlamak icin kullanilan basitlestirilmis
modellerden biridir. Yari iletkenlerde ve metallerdeki elektronlar, genellikle atom

cekirdeklerinin yakininda hapsolma egilimindedir. Ancak komsu atomlara tiinelleme
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yoluyla hareket edebilirler. Bu hareket, tiinellemelerin ardisik bir bilesimi seklinde

gerceklesir (Sekil 3.1). Bu duruma sigrama (hopping) adi verilir [3, 11].

Sekil 3.1: Kristal yapidaki elektronlarin davranisini incelemek igin kullanilan Siki baglanma modeli.

Sik1 baglanim modeline gore pargaciklar tek pargacik durumlarina sahiptir: /),
burada n=1,2,...,M. Orgii noktalar1 arasindaki aralik a ise (6rgii aralig1) 0 zaman her n

noktasi su konumla iliskilendirilebilir:
X, = an (3.16)

Boyle bir 6rgiiniin Hamiltonyeni:
H=—J L {In)(n+ 1] + [n + 1)¢n]} (3.17)

Burada J bir sabittir. Periyodik sinir kosullar1 geregi n = M oldugundan |M){M + 1|
terimi |M)(1| terimine estir. |n + 1){n| terimi |n)durumuna etki ettiginde, yeni durum
|n + 1) olur. Yani, bu terim n konumundan n + 1 konumuna bir sigramay1 saglar. Benzer
seklide, ayni olasilikla n + 1 konumundan n konumuna da sigrama miimkiindiir [11, 20].

Sik1 baglanma modelinde Hilbert uzayr sonlu boyutludur ve boyutu M olarak
tanimlanir. Bu durumda, Es. (3.17)’¢ ait matrisin elemanlart:

Hym = (n|H[m) (3.18)

Ornegin, M = 5 i¢in Hamiltonyen asagidaki sekilde yazilabilir:

0100 1
1010 0

H=-Jl0 1 0 1 0 (3.19)
001 0 1
100 1 0

Bu matriste, koselerde yer alan elemanlar periyodik sinir kosullarindan gelmektedir.

Hamiltonyenin 6zdegerlerini ve 6zvektorlerini bulmak igin gerekli 6zdeger denklemi:

H|p) = E|¢p) (3.20)
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Ozvektorler |@), |n) bazinda |¢p) = Y, ¢, In) seklinde yazilir. Bu acilimin, Es.

(3.20)’te yerlestirilmesi ile asagidaki matris gosterimi elde edilir:

b2 + Ps $1
$1+ d3 (0P
Hlp)=—] | 2+ ¢4 | = E| ¢3 | = ElP) (3.21)
3 + Ps N
by + P1 ¢s

Esitlik (3.21)’lin matris gosterimindeki her satir ¢, katsayilar1 i¢in cebirsel bir iliski

saglar. Bu esitligin genel formu

_](¢n—1 + ¢n+1) = E¢, (3.22)

olur ve periyodik sinir kosulu kullanildiginda ¢y, = ¢, esitligi saglanir. Boylece
problem bir yineleme problemine doniisiir. Buradaki degiskenler hem 6zvektorler ¢,
hem de enerji £dir. Esitlik (3.22) diizlem dalgalar kullanilarak ¢oziilebilir. Diizlem dalga
fonksiyonu:

eikxn

gl ==

(3.23)

Orgii aralig1 a = 1 alindiginda k boyutsuz hale gelir; ancak a sabit alindiginda k’nin
boyutu (1/uzunluk) yani dalga sayis1 olacaktir. Esitlik (3.23) igin normalizasyon kosulu
asagidaki gibi saglanmalidir:

n=1lpil? =1 (3.24)
Esitlik (3.23), Es. (3.22)’de yerlestirildiginde Es. (3.25) elde edilir.

elkn elkn

—gﬁ(eik + e‘ik) = EW (3.25)
Diizlem dalgaya iliskin dispersiyon bagintisi
Ey = —2gcoska (3.26)

bulunur. Dispersiyon bagitisinin daha ayrintili olarak incelenebilmesi i¢in oncelikle k
dalga sayisinin alabilecegi izinli degerlerin belirlenmesi gereklidir. Bu degerler Es.

(3.23)’de periyodik sinir kosullarinin

bms1 = 1 (3.27)
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uygulanmasi ile elde edilir. Islem sonucunda e**M¢ = 1 bulunur; bu da dalga sayisinin
alabilecegi degerlerin k = ;—73} oldugunu gosterir. Bu kisitlamada £ = 0,1, +2, ... gibi

degerler alir. Dalga sayis1 sonsuz sayida deger alamaz. Sik1 baglanma modelinde, Hilbert
uzayinin boyutu M oldugundan M sayida 6zvektdrden olusan bir kiime gereklidir.
Ortogonal bir baz olusturabilmek i¢in 6zvektorlerin birbirinden farkli olmasi gerekir.

Esitlik (3.23)’deki n degerleri tamsay1 oldugundan

k- k+= (3.28)

degisimi ile ¢X degismeden kalir [20]. Bu nedenle yalnizca %ﬂ uzunlugunda bir aralik

icinde k se¢imi yapmak mantiklidir. Genellikle Es. (3.29)’deki gibi simetrik bir aralik
almak uygundur:

m T
ke[—?z] (3.29)
Bu aralik birinci Brillouin bolgesi olarak bilinir. Bu nedenle, k degerlerinin se¢imi su

sekilde ifade edilir:

21l M
=2 - <<
Ma 2

SRS

(3.30)

Bu ifade, Brillouin bolgesinde yer alan izinli dalga vektorlerini tanimlar. Siki baglanma
ve serbest parcacik dispersiyon iligkileri arasindaki fark, serbest par¢acik durumunda k’
nin too araliginda olmasidir. Siki baglanma modelinde ise K birinci Brillouin bdlgesi ile

sinirlidir.

3.4. Bose-Hubbard Modeli

Bose-Hubbard modeli, bozonlarin optik o6rgii potansiyelindeki davranigini ve
kuantum faz gegislerini incelemek icin kullanilan temel bir modeldir. Siki baglanma
modelinin bozonlara uygulanmis hali olarak da disiiniilebilen Bose-Hubbard modeli,
yogun madde fiziginde mikroskobik diizeyde siiperakiskanlik ve Bose-Einstein
yogunlagmasi gibi kolektif olaylar1 anlamak igin kullanilir [1,11].

Bose-Hubbard modelinin optik orgiilerde hapsedilen ultra-soguk atomlara
uygulanabilirligi Jaksch ve arkadaslarinin 1998°de yaptigi calismalarla gosterilmistir
[11]. 1lerleyen yillarda ultra-soguk atomlarin optik orgiilerde deneysel olarak

tuzaklanmasiyla Bose-Hubbard modeli biiyiikk ©6nem kazanmistir.  Kuantum
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simiilasyonlar1 ve kuantum hesaplamalar1 gibi alanlarda bu model &nemli bir rol
oynamaktadir.
Atomlarin 6rgii boyunca hareketini ve 6rgii noktalarindaki etkilesimlerini agiklayan

matematiksel bir ifadeden olusan Bose-Hubbard modelinde Hamiltonyen:
—~ ~t A~ U At At A A At A~
H= —] Zu'])(a:ra]) + ;Zl a:razral-ai + Zi eiazrai (331)

Esitlik (3.31)’de / komsu orgiiler arasindaki tiinelleme genligidir. Bu ilk terim kinetik
enerjiyi ifade eder. Ikinci terim ise bozonlar aras1 etkilesme terimidir. U parametresi ayni
orgii noktasindaki bozonlar arasindaki etkilesmenin biiyiikliigiinii belirler. ¢; ise orgii
noktasina uygulanan dis tuzak potansiyelini temsil etmektedir. Uygulanan lazer siddeti
arttirildikga potansiyelin derinligi artar, bu da tiinellemeyi yani J’yi azaltirken, U
etkilesimini arttirir.

Etkilesim terimini daha detayli anlamak igin, asagidaki bozonik cebir ifadeleri
kullanilir [20]:

ata; = a;af —1 (3.32)
atala,a; = al (a;al —1)a; — ala;ala; — ala; (3.33)

Esitlik (3.33) say1 operatorii i; = d;rdi kullanilarak
alalaa; = a;(A; — 1) (3.34)

v /\J

Sekil 3.2: Bir boyutlu optik drgiide Bose-Hubbard modelinin temel fiziksel siireglerinin sematik gosterimi.
Kuyular arast tiinelleme (sicrama) genligi J ve aymi kuyuda bulunan bozonlar arasindaki
etkilesim enerjisi U ile tammlanir. Atomlar, potansiyel derinligi Vo ile belirlenen kuyular
arasinda kuantum tiinelleme yoluyla hareket eder.

seklinde yazilir. f1; say1 operatori, i. orgii noktasinda bulunan toplam pargacik sayisini

verir. Etkilesim terimi her bir 6rgiideki pargacik sayisina baglidir. Tablo 3.1°de farkli n;

g o . . .U - o o
degerleri i¢in etkilesim enerjisi ;ni(ni — 1) degerlerini igeren durumlara yer verilmistir.
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Tablodan anlasilacag: iizere, orgli noktasinda 0 veya 1 parcacik oldugunda etkilesim
terimi sifirdir. Bu durum, etkilesimin olmadigini gosterir. Dolayisiyla Hamiltonyendeki

ikinci terim, ancak iki veya daha fazla sayida pargacik mevcut oldugunda katki saglar.

Tablo 3.1: Etkilesme enerjilerinin par¢acik sayisina baghlig

n; 0 1 2 3 4 5

V-1 0 0 U 3U 6U 10U

Esitlik (3.35)’de yer alan kombinasyon, n; pargacigin ciftler halinde etkilesime

girebilecegi yollarin sayisini verir [20]:

N n;! il n;(n;—1)
(r;) T 22! 2 (3.35)

3.4.1. Bose-Hubbard modelinin tiiretilmesi

Belirli kosullar altinda, Bose-Hubbard Hamiltonyeni dogrudan ultra-soguk atomik
gazlarin mikroskobik tanimindan tiiretilebilir. Ilk olarak Jaksch ve arkadaslar tarafindan
gelistirilen bu tiiretme, diisiik enerjili sinirda, atomlar arasi etkilesimlere 6nemli katkinin
yalnizca s-dalga sa¢ilmasindan geldigini ortaya koymustur [11]. Bu durumda atomlar

arasi potansiyel U(x), noktasal etkilesimli etkin potansiyel ile degistirilebilir [1,7,11,15]:
UG = % 5(x) = g6 (x) (3.36)

Esitlik (3.36)’da yer alan ag, s-dalga sa¢ilma uzunlugu, m atomlarin kiitlesi, § (x)
Dirac-Delta fonksiyonu, g bozonlar arasi etkilesim parametresini olarak tanimlanir.
Bozonlar arasi etkin etkilesim deneysel olarak degistirilebilen sagilma uzunlugu ay ile
karakterize edilir. Bu baglamda, iki pargacik arasindaki potansiyel yerine gececek
bi¢imde etkin potansiyel yaklasimi kullanilmaktadir.

Ikinci kuantizasyon formalizmindeki operatdrlerin genel formu, yaratma ve yok
etme operatorleri cinsinden ifade edilir. Cok parcacikli Hamiltonyeni olusturmak igin,
ozellikle konum gosterimi kullanmak faydalidir. Konum gosterimindeki kuantum alan

operatorleri @ (x) ve P (x) sisteme sirast ile, x konumunda bozon ekler veya gikarir. Bir
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dis potansiyelin varhiginda ve ikinci kuantizasyonda Hamiltonyen bozonik alan

operatorleri cinsinden

H= [dxPt(x) (—%\72 + V(x)> P(x) + gf dxPTO)PT )PP ()  (3.37)

ile ifade edilir [37]. Alan operatorlerinin Wannier fonksiyonlari cinsinden seriye agilimi
¢,(x) = Zi,n di,n wWn (X-x;) (3.38)
P00 = Zin @l 0n" () (3.39)

Diisiik enerjilerde ve yeterince derin optik kafeslerde atomlarin en alt Bloch
bandinda bulundugu varsayilir. J, U ve g; parametreleri Es. (3.40)-(3.42) ile verildigi
taktirde Es. (3.37), Es. (3.33)’e doniistir [37]:

J= = Jdx wo() (— V2 + Vosin? (k,x) ) woa-a)  (3.40)
U= [dxglwy(x)|* (3.41)
g = [dx|weCex)|?V (x-x;) (3.42)

Wannier fonksiyonlarinin bir noktada lokalize oldugu derin optik orgiilerde en yakin
komsular disindaki etkilesmeler ihmal edilir. Esitlik (3.40), yalnmizca i ve j kafes
noktalarinin birinci dereceden komsu olmasi durumunda sifirdan farkhidir. Diger
durumlarda sifirdir. Ugiincii terimde yer alang; her orgii noktasinda bulunan yerel
potansiyel enerjiyi ifade eder ve bu enerji 6rgiiniin tuzak potansiyeli tarafindan belirlenir.
Bu yerel enerji kaymalar rastgele hale gelirse, yani orgii noktalarindaki yerel enerji
seviyelerinde diizensizlikler olursa, bu durum sistemde diizensizlik etkilerinin

incelenmesi de olanak tanir [13, 18, 35].

3.4.2. Siiperakiskan-Mott yalitkan fazi

Bose-Hubbard modelinde tanimlanan kuantum faz gegislerinden biri, siiper akigkan
faz ile Mott yalitkan1 fazi1 arasindaki gegistir. Potansiyelin derinligi arttikga siiper akiskan
fazindan Mott yalitkan fazina gegis olur. Potansiyelin derinligi az iken kinetik enerji
baskin, yani J>U olur. Komsu 6rgii noktalar1 arasi tiinelleme, pargaciklar arasindaki
etkilesim enerjisini bastirarak siliper akiskan 6zelliklerin ortaya ¢ikmasina neden olur. Bu

durumda, atomlar tim o6rgii boyunca delokalizedir ve sistem zayif etkilesimli bir Bose
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gazi gibi davranir. Etkilesim enerjisinin baskin oldugu durumda (J<«<U), parcaciklar
lokalize olur ve sistem, Mott yalitkan fazina gegis yapar. Mott yalitkan fazinda her 6rgii
noktasinda sabit bir parg¢acik sayisi bulunur. Bu ikKi rejim arasindaki gegis kinetik enerji
ile etkilesim enerjisi arasindaki rekabetin sonucudur. Kinetik enerji pargaciklar
delokalize etmeye calisirken, etkilesim enerjisi, atomlar belirli noktalarda lokalize edip
say1 dalgalanmalarin1 minimalize etmeye ¢alisir [1, 2, 11, 14-16, 38].

Stiperakigkan faz, optik 6rgii derinligi az oldugunda gerceklesir. Neredeyse tiim
atomlar ayn1 tek parcacik durumunda bulunur. Bu fazda sistemin Hamiltonyeni diger

terimlerin ihmali ile

H= —] Y@l a)) (3.43)

bulunur. Sistemin durumu makroskopik dalga fonksiyonu ile ifade edilebilir. Bu fazda

sistemin taban durumu [11, 20, 21]:
~3\N
W) = 7= (B5) " 10) (3.44)

N toplam pargacik sayist, |0 > boslugun kuantum durumu, B; = \/LMZ" d;reiqxi operatori
g kuazi-momentumuna sahip bir atomu yaratma operatorii, M ise toplam 6rgli nokta
sayisidir. Cok pargacikli taban durumu biiyiik Olglide 6zdes tek parcacikli dalga

fonksiyonlariin ¢arpimi gibi oldugu i¢in sistem, iyi tanimlanmis bir faz agisina sahiptir.

Korelasyon fonksiyonu
pij =(ala) (3.45)

ile ifade edilir. Siiper akigkan fazinda bu korelasyon fonksiyonu i ve j durumlari
arasindaki mesafeden bagimsiz olup mutlak degeri | pi j| = N/M ile bulunur. Parg¢acik
sayisindaki dalgalanmalar ise (An)? = N /M ifadesi ile toplam pargacik sayis1 N ve orgii
sayist M’ye baglhdir.

Bozonlar aras1 etkilesim arttikca bir atomun bir Orgli noktasindan digerine
tiinelleme yapabilmesi i¢in gereken ortalama kinetik enerji etkilesme enerjisini agmakta
yetersiz kalir. Sonug olarak atomlar bireysel 6rgii noktalarinda lokalize olur ve pargacik

sayisindaki dalgalanmalar baskilanir. Sistemin Hamiltonyeni diger terimlerin ihmali ile

A= "Yyatalaa (3.46)
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a) Stiper akiskan durumu b) Mott yalitkan durumu

ﬁ

Atomlar, atomlararasi
etkilesimler nedeniyle kafes
noktalarina yerlesirler

Atomlar optik kafes iginde
serbestge hareket ederler

Sekil 3.3: Siiperakiskan ve Mott yalitkan fazlari. (a) Siiperakiskan fazda, tiinelleme baskin oldugu igin
atomlar optik orgii igerisinde lokalize olmayip kolektif bicimde hareket ederler. (0) Mott yalitkan
fazinda, etkilesim enerjisi baskin hale gelir, her 6rgii noktasinda sabit sayida atom bulunur ve

pargaciklar lokalizedir.

bulunur. Mott yalitkan fazi olarak adlandirilan bu fazda pargaciklarin birbirinden uzak
durmasi ile enerji minimum olur. N = M durumunda ve her bir parcacigin kendi orgii
noktasinda bulunmasi ile en diisiik etkilesme enerjisi elde edilir. Dalga fonksiyonu, her
orgli noktasinda tek sayida atom igeren lokalize atomik dalga fonksiyonlarindan olusur.

Taban durumu dalga fonksiyonu
N
s = i 75 (af) " 10) (347)

olur. n = N/M o6rgii noktas1 basina ortalama pargacik sayisidir. Mott yalitkan fazindaki
en diisiik enerjili uyarilmalar, her sistemin toplam parcacik sayisin1 koruyan pargacik-
delik uyarilmalidir. Bu tiir bir uyarilmada: bir parcacik bir kafes noktasindan ¢ikarilir
(delik yaratilir), baska bir kafes noktasina eklenir (fazdan pargacik yaratilir).
Stiperakigskan fazinda enerji spektrumunda bir aralik (gap) bulunmamakla birlikte, Mott
yalitkan fazinda spektrumda aralik bulunur. Bu siire¢ Mott fazini karakterize eden bir
enerji araligi ile ifade edilir. Bu enerji araligi pargacik delik ¢ifti yaratmak i¢in gereken
minimum enerjiye karsilik gelir [3, 36]. Bu fazda i # j icin p; ; = 0 ve pargacik saysi

dalgalanmalar1 (An)? = 0 bulunur.

22



4, UC KUYULU OPTIK ORGULERDE FAZ GECISLERI

Ug kuyulu optik 6rgii potansiyelleri optik orgii calismalarinda ayr1 bir yere sahiptir.
Bu potansiyeller ile ilgili literatiirde ¢ok sayida ¢alisma bulunmaktadir [22-32]. Ozellikle
farkli derinliklere sahip kuyulardan olusan potansiyeller kuantum sensorlerinin ve
atomtronik cihazlarin gelisiminde énemli bir yere sahiptir [26, 27]. Ug kuyulu bir
potansiyelin Hamiltonyeninin hangi kosullar altinda integre edilebilir oldugu ve sistemin
dinamigi bu alanda ¢alisilan 6nemli problemlerdendir [26]. Krom ve disprosiyum gibi
gazlar bu tiir optik Orgide tuzaklandiginda, dipolar etkilesimlerin géz Oniinde
bulundurulmasi gerekir [28, 29]. Bu gazlarda dipolar etkilesimlerin izotropik olmama
Ozelliginin sistemin faz diyagramini 6nemli 6lgtide etkiledigi bulunmustur [29]. Kuyular
arast tiinelleme genliklerinin 6zdes olmadigi durumlarda tiinellemenin baskilandigi
ortalama alan yaklasimi kullanilarak gosterilmistir [30]. Tiinelleme genliginin zamanla
siniisoidal olarak degistigi li¢ kuyulu optik Orgii potansiyelleri incelenen diger
problemlerdendir [30, 31].

Bu boliimde lineer konfigiirasyona sahip ii¢ potansiyel kuyulu Bose-Hubbard
modeli ele alindi. Boyle bir sistemde baslangigta tiim atomlar ugtaki kuyulardan birinde,
son halde ise diger uctaki kuyuda bulunur. Ortadaki kuyuda atom popiilasyonu ihmal
edilebilir. Optik orgli siddeti yeterince biiylik oldugunda, atomlar en diisiik Bloch
bandinda bulunur ve tek bant yaklasimi uygulanabilir. Sadece en yakin komsular arasi

tiinelleme oldugu varsayilirsa sistemin Hamiltonyeni:

— ~t A~ At A At A~ At A U At At A A At ~
H= —]12(a1ra2 + a;ra1) —]23(a;ra3 + a;raz) + ;Z?:l aja;raiai +X Siag-ai (4.1)

]12 ]23
L/\) (/_\A

&€ €2 &3

Sekil 4.1: U¢ kuyulu Bose-Hubbard modeli.

J12, 1 ve 2 numarali kuyular arasinda, J,3 ise 2 ve 3 numarali kuyular arasindaki

gecis genligi gosterir. Sistemde toplam pargacik sayist korunumlu bir niceliktir ve her bir
.I.

kuyuya karsilik gelen say1 operatérii A; = @; @; olur. &; terimi tic kuyunun da farkli

derinlige sahip oldugunu gosterir. Boyle bir sistem Sekil 4.1°de gosterilmistir.
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4.1. Dénen U¢ Kuyulu Optik Orgiide Bose-Hubbard Modeli

Bu boliimde siiperakiskan ve Mott yalitkan fazlarina 6rnek olarak donen bir Bose-
Hubbard modeli incelendi. Donen bir Bose-Hubbard modelinde, donme sistemde bir
manyetik aki tanimini gerekli kilar. Tiinelleme terimindeki faz ¢arpani uygulanan bu
manyetik aki ®’nin veya aki ile orantili Q frekansinin donen sistem ftizerine etkisini
gosterir. Birinci ve {igiincii kuyular arasinda da tlinelleme oldugu ve her ii¢ kuyunun da
derinliklerinin farkli oldugu kabul edilirse, dyle bir sistemde Hamiltonyen [32]

—~ . ~ ~ i ~F ~ U
A=Y3, [—](elq’/?’a:rﬂai +e i 3q%q, ) + 2

afalaa;| + e(ala; —ala) (42)

olur. Bu Bose-Hubbard modeli Sekil 4.2°’de gosterilmektedir. Kuyular arasi tiinelleme
genligi sabit olsun ( /;, = J,3 = J13 = J). Bu durumda Hamiltonyen
H=—Jei*3ala, — Jei®3ala, — Je!®/3ata, — Je~i*/3aTa, —
Je~®Bala, — Je~'®lala, + 7 (alala,a, + alala,a, + alalasa;) +

e(ata; —ata,) (4.3)

Sekil 4.2: Ug kuyulu Bose-Hubbard modeli. Her ii¢ kuyu arasinda tiinelleme
olup, kuyular farkly derinliktedir.

olmaktadir. Akimin beklenen degeri Hamiltonyen operatoriiniin aki ile degisimine

baghdir:

0H

(I) = <n| o |n> (4.4)
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Sekil 4.3: Akimin 6zdegerler ile degisimi. N =30, ® =08m,e=1,]=05ve (@u=0,2
(b) u=2 (c) u=20 (d) u=20000. Pargaciklar arasi etkilesim arttik¢a akim sifira
gitmektedir.

Akimin 6zdegerler ile degisimi Sekil 4.3’deki grafiklerde verilmistir. Akimin
beklenen degeri MATLAB programi ile niimerik olarak hesaplandi. Grafiklerin ¢iziminde
N =30, ®=0,8m, €¢=1, ] =0,5 degerleri sabit olmakla birlikte, bozonlar arasi
etkilesim u = UN /] = 0,2; 2; 20 ve 20000 olacak sekilde degistirildi. Parcaciklar arasi
etkilesimlerin sifir oldugu durumda (u = UN/J = 0), akim Hamiltonyen ile komiite
eder. Bu durumda her 6zdurum sifirdan farkli bir akim degerine sahip olur ve sistem
stiperakiskan fazdadir. Parcaciklar arasi etkilesimler arttikga 6zdurumlar akimin sifir
oldugu bir ¢izgi etrafinda toplanir. u = 20000 degeri parcaciklar arasi etkilesimlerin
oldukga yiiksek oldugu bir durumdur. Bu durumu temsil eden grafik Sekil 4.3-d’de
goriilmektedir. Sekilden tim 6zdurumlar i¢in akimin sifira gittigi anlasilmaktadir.
Dolayisiyla atomlar arasi etkilesimlerin yiiksek oldugunda akim sifirdir. Akimin sifir

oldugu an, sistemin siiperakiskan fazdan Mott yalitkan fazina gecis yaptig1 andir.
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4.2. Dipolar Atomlarla Bose-Hubbard Modeli

Bu boliimde optik orgiide dipolar atomlarin tuzaklandigr ti¢ kuyulu bir Bose-
Hubbard modeli ele alindi. Esitlik (4.5) ile verilen Hamiltonyen, bozonlar arast dipol-
dipol etkilesimlerini ve komsu 6rgii noktalar1 arasindaki tiinellemeyi icermektedir. Boyle
bir sistem icin, biiylikk dipol momente sahip krom veya disprosyum gibi atomlar

kullanilabilir. Sistemin Hamiltonyeni [28, 29]:
H = —ji,(ala, + a,al) - J,s(ala; + aal) Ly - ?_,alala,a; +
+Xi Z?:uj:eijdzra}aiaj (4.5)

U, terimi bozonlar arasi1 temas etkilesimlerini ve dipol-dipol etkilesimleri icerir. Her ikKi
tir etkilesim de itici veya ¢ekici olabilir (Sekil 4.4). Bu etkilesim asagidaki ifade ile
verilir [28, 29]:

Up = g [ d®FI¥:@I* + [ d°F &*F W@ 1PVp (IF — 7, 0DIP: (7)) (4.6)

V(|17 —7,08]) = d? (1 —3cos?0)/|F —7'|®> bozonlar aras1 dipolar etkilesmedir.
d? = pou?,/4m (veya d? = u2/4me,) olup w,, (1) manyetik (elektrik) dipol moment, 8

polarizasyon yonii ile dipoller arasi bagil uzakligin arasindaki agidir. U;; terimi ise farkl

oOrgii noktalar1 aras1 dipolar etkilesimleri ifade eder:

= [ 437 437 |W,(7)|2d? (1 —3 cos? 9)|W(*')| 4.7)

n' o

Sekil 4.4: Dipollerin yonelimi () Iki dipoliin yonelimi (b) Iki dipoliin yan yana
dizilimi (itici etkilegim) () Iki dipoliin u¢ uca dizilimi (¢ekici etkilesim)

= (A% + A5 + A3) + 2A; A, + 2A; A5 + 2A,A; esitligi kullanilarak Es. (4.5) tekrar
yazilabilir [28, 29]:

— U —~ —~ ~ A~ ~ A~ ~ A~
H = 70(1\/2 — N) + (Uyp = Uiy fiy + (Uyz — Ug)Ay iz + (Upg — Up)pfis —
Jiz(ala, + a,al) — J5(alas + a,al) (4.8)
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4 < a < 8araliginda, U;, = U,3 = alU;3 ve U;3 = U, kabuliiile Es. (4.8) analitik olarak
¢oziilebilir [28, 29]. Bu kosullar altinda Hamiltonyen Es. (4.9)’a doniisiir:

H= %(IVZ - IV) + (a — DUp, (A + 713) —]12(511&2 + ala;r) _]23(61;&3 + dzd;r)
(4.9)
Esitlik (4.9) ile verilen Hamiltonyenin indirgenmis formu:
Hy=-H+ 1+ a)UyN?/4 — Uy,N /2 (4.10)
Hy = U, — i, + 13)% + Jip(ata, + a,ad) + Jos(alas + a,al)  (4.11)

oldugu goriilmektedir. Esitlik (4.11)’de U = (a — 1) Uy /4 esitligi kullanmldi.
Birinci ve ligiincii kuyulara esit dis alan uygulandiginda, olusan ii¢ kuyulu sistem
Sekil 4.5’te gosterilmektedir. Bu durumda e(fi; — 7,) terimi, Es. (4.11) ile verilen

Hamiltonyene eklenir:
Hy = Uy — i, + 13)2 + Jip(aTa, + a,ad) + o3 (alas + a,al) + e — Ay)

(4.12)

Jiz J23
¥~ N AN

ul

NSE& -

Sekil 4.5: Ug kuyulu Bose-Hubbard modeli. Bozonlarin en yakin kuyular aras
tiinelleme yaptigi ve kuyu derinliklerinin farkli oldugu kabul
edilmistir.

Esitlik (4.12) ile verilen Hamiltonyen asagidaki durumlarda integre edilebilirdir
[26]:

) U=0,e#0, J1,=],3#0

) J12=J3=0, U#0, e#0

) e=0,U+#0, Ji12=/,3#0
Ikinci dereceden kuantum faz gegislerini gosteren iki integrallenebilir simir vardir.
Tiinelleme genligi sifir alinarak, bozonlar arasindaki etkilesim kuvveti U, €’a gore

degistirilir. Ikinci durumda, € = 0 iken U, J;, (Jo3)’ye gore degistirilir. Farkli fazlar,
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kuyular1 isgal eden bozon sayilari ile karakterizedir. Ug parametrenin de sifirdan farkls
oldugu (U # 0, J;, = J,3 # 0, # 0) integre edilemeyen durumlarda sistem c¢apraz
gegcisler sergiler. Bu durumunda Hamiltonyenin niimerik ¢6ziimleri yapilabilir.

Iki ve ii¢ kuyulu potansiyellerde ortalama alan yaklasimi uygulanabilen bir
yaklasim oldugu bilinmektedir [22]. Sistemdeki N bozon sayisi yeterince biiyiik
oldugunda Es. (4.13) ile ortalama alan yaklasimi kullanmak uygundur [30]:

Y, =(a,)/VN (n=1,2,3) (4.13)
Ortalama alan yaklagiminda verilen Hamiltonyen H,,,, = (H)/N denklemiyle

Hyp = J12(W1W, + W1¥3) + Jo3 (W3 W5 + WsW5) + T'(P P — ¥,¥; +
‘1U311U§)2 + e(W3W; — W W) (4.14)

bulunur. Esitlik (4.14)’de T = NU ‘dur. Ortalama alan yaklasimi, N — oo ve U — 0 ancak

[' = NU ifadesinin sabit oldugu anlamina gelir. Ortalama alan yaklagiminda

2 = ?Tmf (4.15)
esitligi ile birbirine ve zamana bagl ti¢ ifade elde edilir:
iT = 2T (Py W — VoW + VWY + 1 — e
'd_q;z = =2 (W 1¥] — Vo5 + P3PV, + J12¥1 + )23 W3 (4.16)
iS22 = 2TV, W) — o5 + VW)W + sy + ¥y
J12/] =J23/] = 1/\/2 ve Jt - t doniisiimii ile Es. (4.16)
T = 2L (WP = W2+ W — ¥ + 15
D2 = 20 (|17 — W, 1% + WD, — = — =W (4.17)
dt J NN

dy. T j .
d_: = —217(|lp1|2 — |W,]% + |¥5]5) W, —%q’z - l?lus

halini alir. Esitlik (4.17)’nin ¢6ziimii niimerik olarak yapilir. n,(t) = [¥;1(0)]?,
n,(t) = |¥,(t)|%,n3(t) = |W5(t)|? swrasiyla birinci, ikinci ve iigiincii kuyulardaki
parcacik sayilarini ifade eder. Baglangi¢ kosullart ¥, (0) = 200, ¥,(0) = 0,¥5(0) =0
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alinarak elde edilen n(t) « t grafikleri Sekil 4.6-4.8’de verilmistir. Niimerik ¢oziimler
i¢cin Runge-Kutta metodu ve MATLAB programi kullanildi.

Sekil 4.6°daT /] = 0 ve €/] = 0,1 igin her li¢ kuyuya ait bagil par¢acik sayilarinin
zamanla degisimi ¢izilmistir. Pargaciklar arasi etkilesimlerin sifir oldugu bu durumda
sistem siiperakiskan fazdadir. Her {i¢ kuyudaki pargacik sayilari periyodik olarak
degismektedir. Sekil 4.7°de bozonlar arasi etkilesme arttirilarak T'/] = 0,001ve e/] =
0,1 degerleri i¢in parcacik sayilarimin zamanla degisimi ¢izilmistir. Bu parametre
degerlerinde her ii¢ kuyuda da pargacik sayilarinin yaklasik periyodik salinimlar yaptigi
goriilmektedir. Sekil 4.8 ise atomlar arasi etkilesimlerin daha da arttirildigi durumu
gostermektedir. T'/J = 0,05 ve €/] = 0,1 i¢in ¢izilen bu grafige gore, kuyular arasi bozon
gecisi olmamakta, kuyulardaki bozon sayilari baslangic kosullarindaki degerleri
korumaktadir. Artan bozonlar arasi etkilesimlerin tiinellemeyi baskiladigi bu faz Mott

yalitkan fazina karsilik gelmektedir.
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0,1. Parcacik sayilarimin zamanla degisimi. Parcaciklar
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kuyular arast siirekli tiinelleme yapmaktadir. Bu durum siiper akiskan faza

karsulik gelir.

Sekil 4.6: I'/]
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Sekil 4.7: ' /] = 0.001, /] = 0,1. Par¢acik sayilarinmin zamanla degisimi. Kuyulardaki par¢acik
sayilart periyodik olarak degismektedir.
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Sekil 4.8: T/] = 0,05; ¢/] = 0,1. Parcacitk sayilarimn zamanla degisimi. Par¢aciklar

arast etkilesme arttigindan dolayr kuyular arasi tiinelleme azalir. Bu durum
Mott yalitkan fazina karsilik gelir.
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4.3. Zamana Bagh Tiinelleme Genlikleri
Dipolar atomlardan olusan ii¢ kuyulu Bose-Hubbard modelinde tiinelleme

genlikleri asagidaki gibi zamana bagli olsun [23, 31]:
J12(t) = Qsin?(nt/2t,) (4.18)

Jo3(t) = Qcos? (nt/th)

t zaman 0 < t < t, araliginda olup, t, = 400/Q. Bu durumda ii¢ kuyulu sistemin

Hamiltonyeni
Hy = Uy — iy + 3)2 + Jip () (aTa, + a,a)) + o3 (t)(alas + a,al) + e(dg — Ay)
(4.19)

olur. Ortalama alan yaklasiminda ise

Hpp = J12(©O)(P1¥; + P1¥3) + o3 (O W3 W5 + WsW5) + T(W, P — WL, ¥; +
le3'1U§)2 + e(W3W3 — W, W) (4.20)

Ortalama alan yaklasimi ve Es. (4.15) ile asagidaki esitlikler elde edilir:

P2 = 2T (P, W — W + YoV + 1o (O, — &%,

. dy. " . .

i—2=—20(P1¥] — ¥o; + WP, + /1201 + J23(0) s (4.21)
P2 = 2T(W, W) — VoW + VW)W + o (DY + £,

Qt — t donlistimii sonucu

a¥s _ _ 5T 2 _ 2 2yp. _jein2 (L ;£

Yo 2 L1 - 1) + 151 — isin <2tp>w2+10w1

¥z _ 5 L 2 _ 2 2 —iein2 (Tt —icoc2 L

” —219(|'{’1| |52 + [W5]|%)W, —isin <2tp) ¥, —icos (th> Y, (4.22)
dy.

¥ _ _ ;L 2 _ 2 YW, —icos? (L _ £
s - 21D (112 — 19,12 + 19,5 — i cos (th)% Ly,

bulunur. Esitlik (4.22)’nin niimerik ¢oziimleri, ¥;(0) = 200, ¥,(0) =0,¥5(0) =0
baslangi¢ kosullar1 ile Runge Kutta metodu kullanilarak elde edilmistir. Sekil 4.9’da
bozonlar arasi etkilesimlerin sifir oldugu I'/J = 0, €/J = 0,1 durumda kuyulardaki bagil

parcacik sayilarinin zamanla degisimi ¢izilmistir. Bu durumda sadece birinci ve tiglincii
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kuyularda pargacik aligverisi olmakta ve kuyulardaki parcacik sayilar1 periyodik olarak
degismektedir. Ikinci kuyuda parcacik sayisinin yaklasik sifir oldugu goriilmektedir.
Sekil 4.10, bozonlar arasi etkilesimlerin arttinldigt T'/J = 0,001 ve ¢/] =0,1
degerlerinde parcacik sayisi degisimlerini gostermektedir. Sonuglar etkilesimin sifir
oldugu duruma benzemektedir. Etkilesimler arttirildiginda Mott yalitkan fazi olusur. Bu
faza gegis Sekil 4.11°de goriilmektedir. Bu sekilde yer alan grafikler /] = 0,05 ve g/] =

0,1 i¢in ¢izilmistir. Kuyular arasi tiinelleme olmamakta ve parcacik sayilari baslangictaki

degerlerini korumaktadir.
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Sekil 4.9: T'/] =0;¢/] =0,1. Parcacik sayilarimin zamanla degisimi. Tiinelleme
sifira gittigi i¢in siiperakiskan fazi olusur.
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Sekil 4.10: I'/] =0,001;, /] = 0,1. Par¢acik sayilarimin zamanla degigimi.
Birinci ve ikinci kuyularda parcacik sayilart periyodik olarak

desisirken. ikinci kuvuda narcactk bulunmamaktadir.

36

T
— 0 5 -
c
0 ! | |
0 50 100 150 200 250 300
t
0.05 T T T T 1
4
™
c
0 l | ]
0 50 100 150 200 250 300
t
1 T T T
c 05k
0 l ! l
0 50 100 150 200 250 300



z
-— 1 —
0.99 | | | | |
0 50 100 150 200 250 300
{
%10
| | | |
5 - -
FA
(o]
=
0 | | |
0 50 100 150 200 250 300

0 50 100 150 200 250 300
t
T T T T T _n1/N
1 - -n,/Nj
- -n3/N
pd
K=
0.5F .
O L. Ny L L — L=
0 50 100 150 200 250 300
t

Sekil 4.11: T'/] = 0,05;, ¢/] = 0,1. Parcacik sayilarimin zamanla degisimi. Tiinelleme azaldigindan
kuyulardaki parcacik sayisi degismez. Mott yalitkan fazi olusur.
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5. KUBITLER
Optik orgiilerin kuantum bilgisayarlart i¢in yeni bir platform oldugu ve hem

kuantum simiilasyonlart hem de genel amagli kuantum bilgi isleme i¢in olduk¢a umut
vadettigi disiiniilmektedir. Optik orgiilerde tuzaklanan ultra-soguk atomlarin kuantum
teknolojileri i¢in uygun olmasinin nedenleri soyle siralanabilir:

e Optik 6rgiide tutulan her bir atom bir kiibit olarak tanimlanabilir.

 Orgii geometrisi degistirilebilen bir yapiya sahiptir.

e Tiinelleme ve atomlar arasi etkilesimler hassas bigimde kontrol edilebilir.
Bu tiir kuantum simiilasyonlar1, Hubbard modeli, spin zincirleri ve kuantum faz gecisleri
gibi sistemlerin dogrudan modellenmesi igin etkin bir deneysel platform saglar [6, 7, 33].
Stiperakiskan faz1 ve Mott yalitkan fazi arasindaki gecisler iizerine yapilan deneyler, optik
orgiilerdeki dolanikligin gergeklestirilmesi i¢in 6nemli adimlar sunmaktadir [11, 34, 40,

43].

5.1. Kiibit Nedir?

Klasik bilgi islem sistemlerinde temel bilgi birimi, yalnizca iki ayrik duruma (0
veya 1) sahip olan bit ile tanimlanirken; kuantum bilgi islemde bu rolii kuantum biti yani
kiibit tstlenmektedir. Kiibit, bir kuantum sisteminin temel hali olan |0) ve |[1)

durumlarinin lineer siiperpozisyonu seklinde ifade edilebilir:

[¥) = al0) + BI1) (5.1)
lal? + 1817 =1 (5.2)

Esitlik (5.1) ve Es. (5.2) de tamimlanan o ve p kompleks sayilardir. Buradaki tanim,
kiibitin ayn1 anda hem 0 hem 1 durumlarinda bulunmasina olanak tanir ve kuantum
paralel hesaplamanin temelini olusturur [6]. Kiibitlerin bir diger ayirt edici 6zelligi
dolaniklik olarak adlandirilan kuantum korelasyonlaridir. iki veya daha fazla kiibit
dolanik hale geldiginde, bir kiibitin durumu digerinden bagimsiz olarak tanimlanamaz.
Bu 6zellik kuantum hesaplamada paralellik ve kuantum iletisimde giivenlik agisindan
kritik bir rol oynar [34, 41, 43].

Kiibitlerin fiziksel olarak gerceklestirilmesi, ¢esitli kuantum sistemlerinin kuantum
durumlarim bilgi birimi olarak kullanmaya dayanir. En yaygin kiibit tiirleri soyledir (http-

1):
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Siiperiletken Kiibitler: Josephson kavsaklar: kullanilarak olusturulan bu yapilar,
diisiik sicakliklarda siiperiletkenlik 6zelliklerinden yararlanir. Hizli islem ve biitiinlesmis
devre mimarilerine uyumlulugu ile 6ne ¢ikar.

Fotonik Kiibitler: Fotonlarin polarizasyon veya faz durumlar1 kullanilarak
gerceklestirilir. Giiriiltiiye kars1 dayaniklidirlar ve uzun mesafeli kuantum iletisim i¢in
uygundurlar. Ancak fotonlar arasi etkilesimlerin zayif olmasi, kap1 islemlerini zorlastirir.

Spin Kiibitleri: Elektron ya da ¢ekirdek spinleri kullanilir. Kati hal sistemlerinde
mikro 6l¢ekli kontrol saglarlar. Ancak ¢evresel manyetik giiriiltiiye duyarlilik 6nemli bir
zorluktur.

Topolojik Kiibitler: Majorana fermiyonlari gibi topolojik kuazi-pargaciklar
araciligiyla hata toleransli bilgi kodlama hedeflenir. Heniliz deneysel olarak simirl
dogrulamalar yapilmis olsa da teorik olarak biiyiik vaat tasir.

Atomik Kiibitler (Optik Kafeslerde): Ultra-soguk atomlar, lazerle olusturulan
periyodik potansiyel kuyularinda (optik kafes) tutulur. Atomlarin ince-yapt durumlari
kiibit olarak kullanilir. Uzun koherens siireleri ve yliksek kontrol hassasiyeti ile 6ne ¢ikar.

Quantum Nokta Kiibitleri: Yariiletken yapilar icinde sikistirilmis elektronlar
kullanilir. Spin veya yiik durumlar bilgi tagir. Elektronik entegrasyon agisindan énemli
bir adaydir.

Kiibitlerin 06l¢iilmesi, sistemin siiperpozisyon halinden klasik bir duruma
¢dkmesine neden olur. Ol¢iim islemi sonucu, sistem ya [0) ya da |1) durumuna indirgenir.
Bu siire¢, kuantum bilgiyi klasik bilgiye doniistiiriirken beraberinde Ol¢lim sonrasi
bilginin geri alimamaz Dbigimde kaybolmasim1i da getirir [33, http-1].
Kiibit kavrami, yalnizca kuantum bilgi birimi olarak degil; ayn1 zamanda kuantum
mekaniginin  temel ilkelerinin teknolojik yansimalarimin bir Ozeti olarak
degerlendirilmelidir. Her fiziksel platform, belirli avantaj ve kisitlamalariyla birlikte
kuantum hesaplamanin farkli yonlerini temsil etmektedir. Optik 6rgii sistemleri hem tekil
atom kontrolii hem de faz gecislerinin gozlemlenebilirligi sayesinde bu teknolojiler

arasinda one ¢ikmaktadir [33, http-1].

5.2. Kuantum Hesaplama
Klasik hesaplama metotlar1 klasik yasalara dayanirken, kuantum hesaplama
kuantum yasalarina ve dzelliklede stiperpozisyon ilkesine dayanir. Optik 6rgiilerdeki ultra

soguk atomlar kuantum bilgi islemi i¢in iyi bir platform sunan birgok 6zellige sahiptir.
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Bu o6zellikler arasinda uzun koherans siireleri, 6lgeklenebilirlik ve kuantum bitlerinin
giivenilir Kontrolii ve okunmasi yer almaktadir. Koherans siiresi bir kuantum sisteminin
stiperpozisyon durumunu koruyabildigi siireyi ifade eder. Bu siire, kuantum bilgisayarlar,
kuantum sensorler ve kuantum simiilatorler i¢in en 6nemli performans Olglitlerinden
biridir. Her bir 6rgiide tuzaklanan atom bir kiibiti temsil eder. Optik rgiilerde kuantum
hesaplamay1 uygulamak icin bir¢ok teknik gelistirilmistir. Bu boliimde optik kafeslerdeki
tek ve ¢ift kiibit islemlerinin nasil gergeklestirilecegine dair 6rneklere yer verilecektir
[39].

5.2.1. Tek kiibit islemleri

Optik orgiilerde kuantum hesaplama igin her bir 6rgii noktasinda tek atomun
bulunabildigi Mott yalitkan fazi kullanimi uygundur. Bu fazda her bir 6rgiide tek atom
bulundugundan parcacik sayisindaki dalgalanmalar ¢ok kiiciiktiir. Mott yalitkan fazindaki
atomlarin kiibit olarak kullanilabildigi ve ¢ok sayida parcacigin dolanik hale
getirilebildigi deneysel olarak gosterilmistir [42]. Kiibitin, mantiksal durumlari olan |0)
ve 1), mp=1 ve my = —1 gibi iki asir1 ince yap1 durumuna karsilik gelir. Bu iki durum
arasindaki enerji kaymasi hwg olsun. Bu enerji farkina karsilik gelen elektromanyetik
atma uygulanarak, rastgele bir siiperpozisyon a|0) + £|1) durumu olusturulabilir. @ ve
B, uygulanan atmanin siiresi ile kontrol edilen katsayilardir. Cevredeki kiibitleri
etkilemeden tek bir kiibiti manipiile etmek i¢in, bu kiibitin kafesteki diger kiibitlere gore
gecis frekansini degistirmek igin teknikler kullanilabilir. Bu tiir tek kiibit islemleri, optik

orgiilerdeki kuantum hesaplama teorisinin temelini olusturur [39].

5.2.2. Cift kiibit islemleri

Iki atomik kiibiti optik kafeste dolanik hale getirmenin ydntemlerinden biri
carpismali etkilesimdir. Mott yalitkan fazinda bulunan ve komsu o6rgii noktalarina
hapsedilmis iki atom, bu etkilesimlerin kontrolii ile dolanikliga sokulabilir. Dolanik
kiibitler kuantum bilgisayarlar1 i¢in olduk¢a 6nemlidir. Ancak bu kiibitlerin ¢cevreden iyi
sekilde yalitilmasi gerekir. Maksimum siiperpozisyon durumunda olan, komsu orgii

noktalarinda bulunan (j ve j+1) iki atom ele alinirsa, atomlarin durumu [39]

(100, 411,)(10) 41 +11)14)
2

|¥) = (5.3)
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Farklt manyetik durumlar dairesel polarize bir alanla farkli sekilde etkilesime girer.
Dolayisiyla optik 6rgii lazerinin polarizasyonu yavas yavas degistirilirse, atomlarin iki
halinin uzaysal olarak farkl: iki potansiyel minimumu olacaktir. Ornegin, |0) durumu sola
|1) durumu ise saga hareket ederek yeni potansiyel minimumlarina yerlesir. Bu durumda

yeni toplam su hale gelir [39]:

_ (1031004 1 +10)11) 45 +11)y4 41001+ 1)y +H 1)1y 5)

) .

(5.4)

Burada I, j—1 ve j konumlar1 arasindadir. Bu ifadenin tigiincii teriminden, birinci atomun
[1) durumu ile ikinci atomun |0) durumu ayni 6rgii i¢inde bulunur ve aralarinda Uy,

etkilesimi olusur. .., kadar bir siire gectikten sonra, faz kaymasi olusur:

(p — tetl;lU01 (55)

Faz kaymas1 sonucu toplam durum su hale doniisiir:

(10041001 +10)1 1)1 5+ 1)1 1 100y g +1 1141 1)

|¥) = :

(5.6)

Daha sonra lazerler dogrusal polarizasyon durumuna getirilir ve kiibitlere rezonans bir

elektromanyetik bir atma uygulanir. Bu islem sonucunda sistemin son durumu su hale

gelir:

) = [(1+e“'¢’)|1>,-|1>;+1+(1—e‘i"’)|8>] 5.7)
Burada |B), maksimum dolanik durum olarak su sekilde tanimlanur:

1B) = 10),1=) 11 + 110, 14) 1 (5.8)

Tam dolaniklik, faz kaymas1 ¢p = m olacak sekilde t, siiresinin ayarlanmasi ile elde
edilir [39].

5.2.3. Evrensel kuantum simiilasyonu
Bir kuantum hesaplama sistemi, tek ve ¢ift kiibit islemleriyle, Hamiltonyeni bir ve
iki pargacikli terimler iceren herhangi ¢ok pargacikli bir sistemin simiilasyonunu

yapabilir. Buradaki fikir, herhangi bir Hamiltonyeni her biri kii¢iik ve sabit bir alt uzay
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tizerinde etkili olan kiiciik Hamiltonyenlere ayirmaktir. Bu ayristirma islemi sonucu

Hamiltonyen [39]:

Sistemin zamanla evrimi i¢in e ~#¢ operatorii, kii¢iik evrimler e ~it serisine agilabilir:

—iH1t —iHpt —iH3t

=lim(ememem ..)M (5.10)

m—oo

o —iHt
Esitlik (5.10)’da kullanilan ayrigtirma Trotter-Suzuki yaklasimi olarak bilinir ve kuantum
bilgisayarlar icin temel simiilasyon teknigini olusturur. Bu teknik, ¢ok karmasik bir
kuantum sistemin evrimini, daha kii¢lik ve kontrol edilebilir parcalara bolerek yiiksek

dogrulukla gergeklestirmeyi miimkiin kilar.

5.3. Richard Feynman ve Kuantum Simiilasyonun Dogusu

Kuantum fiziginin modern ¢agdaki en iiretken ve yaratici isimlerinden biri olan
Richard P. Feynman, yalnizca teorik dngoriileriyle degil, diisiinsel cesaretiyle de kuantum
bilgi biliminin temellerini atmistir. 1981 yilinda MIT’de diizenlenen bir konferansta
yaptig1 sunumda Feynman, klasik bilgisayarlarin kuantum sistemleri modellemedeki
sinirliliklarint vurgulamis ve devrim niteliginde bir 6neride bulunmustur: “Dogayi,
doganin kendisine benzer bir sistemle taklit etmek gerekir” [5]. Bu 6nerme, daha sonra
kuantum simiilasyon olarak anilacak bir alanin ilk tohumlarini atmustir.

Feynman’in temel gozlemi suydu: Bir kuantum sistemin davramisimi klasik
hesaplama araclartyla dogru bigimde Ongdrmek icin, hesaplama karmasikligi iistel
bicimde artmaktadir. Bu nedenle, kuantum sistemleri anlamanin en etkin yolu yine
kuantum mekaniksel ilkelere tabi sistemleri kullanarak simiilasyon ger¢eklestirmektir. Bu
fikir, giinlimiizde ultra-soguk atomlarin optik kafeslerde tuzaklandigi deneysel
platformlarda ger¢ege doniismektedir. Bu baglamda, Feynman’in vizyonu, bu tezde yer
alan optik orgiilerde bozonik atomlarin diizenlenmesi, Bose-Hubbard modelinin
uygulanmasi, faz geg¢islerinin analizi ve kuantum fazlarimin gozlenebilirligi gibi
basliklarla birebir ortiismektedir.

Bu tezde, lazerle olusturulan periyodik potansiyeller altinda hapsedilen ultra-soguk
atomlar kullanilarak bir kuantum simiilasyon platformunun nasil olusturulabilecegi
ayrintili bigimde ele alinmistir. Ozellikle Bose-Hubbard Hamiltonyeni, atomlarin yer

degistirme egilimlerini temsil eden tiinelleme terimi ile ayn1 kafes noktasinda bulunan
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atomlar arasindaki etkilesimi temsil eden yerel etkilesim terimi tizerinden, kuantum faz
gecislerini dogrudan modellemeye imkan tanimaktadir [11]. Bu yoniiyle sistem,
Feynman’in tarif ettigi kuantum simiilatériin tam anlamiyla bir deneysel karsiligina
doniismektedir.

Feynman’in oOnerdigi gibi, dogadaki fiziksel siirecleri taklit edebilmek igin
kullanilan sistemin de kuantum kurallarina uygun calismasi gerekmektedir. Bu tez
kapsaminda ifade edilen modellerde, tek ve ¢ift kiibit islemlerinin optik kafes ortaminda
nasil uygulanabilecegi, Trotter ayristirmasi ile ¢gok-cisimli Hamiltonyen evriminin nasil
ifade edilebilecegi gosterilmistir. Bu uygulamalar, Feynman’in “kuantum sistemleri
klasik bilgisayarlarla simiile etmek yerine, kuantum bilgisayarlarla dogrudan simiile
edelim” diistincesinin giiniimiiz deneysel fizigindeki yansimalaridir [6].

Bugiin, Feynman’in 1980’li yillarda 6ngordiigli bu kavramsal cerceve, yalnizca
teorik fizikte degil, deneysel kuantum teknolojilerinde de kendine gliglii bir yer
bulmustur. Optik Orgiilerde olusturulan sistemler, yiiksek sicaklik siiperiletkenlikten
manyetik faz gecislerine, kuantum kimyadan topolojik madde simiilasyonlarina kadar pek
cok karmasik yapinin dogrudan incelenmesini miimkiin kilmaktadir. Bu da kuantum
simiilasyonun artik yalnizca soyut bir digiince degil, pratik bir ara¢ oldugunu

gostermektedir.
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6. SONUC VE TARTISMA

Bu calismada oncelikle optik orgililerde tuzaklanan bozonik atomlarin davranigi
incelenmistir. Optik rgiiler ii¢ boyutta duragan lazer dalgalari olusturan lazer 1sinlarinin
girisimiyle olusturulan periyodik ve korunumlu tuzaklama potansiyelleridir. Lazer 15181
atomlarda AC Stark kaymasi ve dolayisiyla periyodik bir potansiyel etkisi yaratir. Bu
potansiyellerde tuzaklanan ultra soguk bozonlar birinci Bloch bandindaki Wannier
fonksiyonlarini baz alan Bose-Hubbard modeli ile tanimlanir. Bu modelde, bozonlar arasi
etkilesme enerjisi, komsu Orgii noktalar1 arasinda bozonlarin tiinelleme yaparken
kazandiklar1 kinetik enerji ile rekabet halindedir. Lazer siddetinin arttirilmasi ile komsu
orgliler arasi bariyer arttig1 i¢in kinetik enerji azalirken etkilesme enerjisi artar. Bu
durumda siiperakigkan fazdan Mott yalitkan fazina gecis olur. Siiperakiskan fazda
atomlar 6rgii noktalar1 arasinda kolayca tiinelleme yaparken, Mott yalitkan fazda atomlar
sabit pozisyonlarinda kalir ve tiinelleme minimum diizeyde gerceklesir.

Kuantum bilisim ¢alismalarinda optik orgiiler kuantum simiilatorii olarak
distiniilmektedir. Bu diisiince, Orgiide tuzaklanan her bir atomun bir kiibit olarak
tanimlanabilmesine dayanir. Optik oOrgli geometrisi, kullanilan lazer parametreleri
araciligiyla hassas bigimde programlanabilirken, sistemdeki tlinelleme ve etkilesim
katsayilar1 da dogrudan ayarlanabilir. Bu sayede, kiibitlerin konumlari, durumlar1 ve
aralarindaki etkilesimler yiiksek hassasiyetle kontrol edilebilir. Ozellikle ¢ok sayida
kiibitin bu periyodik yapida yerlestirilebilmesi ve bu yapilarin paralel olarak kontrol
edilebilmesi, bu sistemleri kuantum hesaplama agisindan avantajli kilmaktadir.

Bu ¢alismada 6zellikle ti¢ kuyulu optik orgiileri modelleyen Bose-Hubbard modeli
ele alinmistir. Bu tiir optik orgiiler kuantum sensorleri ve atomtronik cihazlar gibi farkl
kullanim alanlarina sahip oldugundan dolayr 6nemli bir yere sahiptir. Tezde faz
gecislerine yonelik niimerik hesaplama 6rneklerine yer verilmistir. Ele alinan 6rneklerden
ilki dipolar atomlar, ikincisi ise zamana bagl tiinelleme genlikleridir. Her iki durumda
da, kuyulardaki pargacik sayilar1 Runge-Kutta metodu ile niimerik olarak hesaplanmustir.
Atomlar arasi etkilesme sifir iken, parcaciklarin kuyular arasi serbest¢e hareket ettigi
gosterilmistir. Atomlar arasi etkilesme arttiginda ise kuyular arasi tiinelleme baskilanir.
Elde edilen bu sonuglar literatiir ile uyumludur.

Sonug olarak, Richard Feynman’in kirk yili askin siire dncesinde kuantum bilgi
kuramina kazandirdigi vizyon, bu tez kapsaminda ele alinmistir. Optik orgiilerdeki ultra-

soguk atomlarin mikroskobik diizeyde kontrolii, Feynman’in ortaya koydugu kuantum
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simiilasyon ideali ile birebir ortiismektedir. Bu nedenle optik orgii calismalari kuantum

teknolojileri alaninda giderek 6nem kazanmaktadir.
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