
 

 

 

   

      

      

     

  
  

 

  

 

 

  

 

 
  

  
   

 
  

 

OPTİK ÖRGÜLERDE ULTRA-SOĞUK
ATOMLARLA OLUŞTURULAN KUANTUM 

SİMÜLASYONLARI
Yüksek Lisans Tezi 

 
Rüveyde ERGÜN 

 
Eskişehir 2025



 

 

BAŞLIK SAYFASI 

 

OPTİK ÖRGÜLERDE ULTRA-SOĞUK ATOMLARLA OLUŞTURULAN 

KUANTUM SİMÜLASYONLARI 

 

 

Rüveyde ERGÜN 

 

 

 

  

   

   

    

 

 

Eskişehir 

Eskişehir Teknik Üniversitesi 

Lisansüstü Eğitim Enstitüsü 

Haziran 2025 

 

 

 

Bu tez çalışması BAP Komisyonu tarafından kabul edilen 24LÖT206 no.lu proje kapsamında 

desteklenmiştir. 

YÜKSEK LİSANS TEZİ

Fizik Anabilim Dalı

Yüksek Enerji ve Plazma Fiziği Bilim Dalı 

Danışman: Doç. Dr. Züleyha ÖZTAŞ



JÜRİ VE ENSTİTÜ ONAYI 

     

     

   

      

      

Jüri Üyeleri  Unvan Adı Soyadı İmza 

Üye : Doç. Dr.  Züleyha ÖZTAŞ 

Üye : Prof. Dr. M. Zafer BALBAĞ 

Üye : Doç. Dr. Neslihan ŞAHİN  

Prof. Dr. Harun BÖCÜK 

Lisansüstü Eğitim Enstitüsü Müdürü 

Rüveyde ERGÜN’nün OPTİK ÖRGÜLERDE ULTRA-SOĞUK ATOMLARLA
OLUŞTURULAN KUANTUM SİMÜLASYONLARI başlıklı çalışması 23/06/2025
tarihinde aşağıdaki jüri tarafından değerlendirilerek “Eskişehir Teknik Üniversitesi
Lisansüstü Eğitim-Öğretim ve Sınav Yönetmeliği”nin ilgili maddeleri uyarınca, Fizik
Anabilim dalında Yüksek Lisans Tezi olarak kabul edilmiştir.



 

III 

 

 23/06/2025 

DANIŞMAN ONAYI 

 

      

     

      

          

  

 

Tez Danışmanı 

Doç. Dr. Züleyha ÖZTAŞ 

  

 Danışmanlığını yürüttüğüm Yüksek Lisans öğrencisi Rüveyde ERGÜN, 
OPTİK ÖRGÜLERDE ULTRA-SOĞUK ATOMLARLA OLUŞTURULAN 
KUANTUM SİMÜLASYONLARI başlıklı tez çalışmasını tamamlamıştır. Hazırlamış 
olduğu tez tarafımca incelenmiş ve öğrencinin tez savunma sınavına alınması bilimsel ve 
etik açıdan uygun görülmüştür.



 

IV 

 

ÖZET 

OPTİK ÖRGÜLERDE ULTRA-SOĞUK ATOMLARLA OLUŞTURULAN 

KUANTUM SİMÜLASYONLARI 

 

Rüveyde ERGÜN 

Fizik Anabilim Dalı 

Yüksek Enerji ve Plazma Fiziği Bilim Dalı 

Eskişehir Teknik Üniversitesi, Lisansüstü Eğitim Enstitüsü, Haziran 2025 

Danışman: Doç. Dr. Züleyha ÖZTAŞ 

Optik örgü potansiyellerinde tuzaklanan ultra-soğuk bozonik atomların kuantum 

simülasyon çalışmalarında önemli bir yeri bulunmaktadır. Optik örgü parametrelerinin ve 

bozonlar arası etkileşimlerin ayarlanabilir olması, bu tür sistemlerde faz geçişlerinin 

kontrol edilebilmesini sağlar. Fazlar arası geçiş kuantum bilişiminde yaygın olarak 

kullanılmaktadır. Özellikle örgü noktaları arasında tünellemenin baskılandığı Mott 

yalıtkan fazı kübitler ile eşleştirilmektedir. 

Bozonların optik örgü potansiyellerindeki davranışını incelemek için Bose-

Hubbard modeli kullanılmaktadır. Bu tez çalışmasında özellikle çok sayıda uygulama 

alanı bulunan üç kuyulu Bose-Hubbard modeli teorik olarak ele alınmıştır. Atomlar arası 

dipolar etkileşimlerin ve zamana bağlı tünelleme genliklerinin faz geçişleri üzerine 

etkileri incelenmiştir. Süperakışkan ve Mott yalıtkan fazlarına ilişkin, literatür ile uyumlu 

nümerik sonuçlar elde edilmiştir. 
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Ultra-cold bosonic atoms trapped in optical lattice potentials have an important role 

in quantum simulation studies. The adjustable optical lattice parameters and interactions 

between bosons allow phase transitions to be controlled in such systems. Interphase 

transitions are widely used in quantum computing. In particular, the Mott insulator phase, 

where tunneling between lattice sites is suppressed, is matched with qubits.  

The Bose-Hubbard model is used to analyze the behavior of bosons in the optical 

lattice potentials. In this thesis, the three-well Bose-Hubbard model, which has many 

application areas, was theoretically considered. The effects of interatomic dipolar 

interactions and time-dependent tunneling amplitudes on phase transitions were 

investigated. Numerical results for the superfluid and Mott insulator phases, which are 

compatible with the literature, have been obtained. 

Keywords: Optical lattice, Ultra-cold atoms, Bose-Hubbard model, Quantum 

simulations.  
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1. GİRİŞ

Ultra soğuk atomlardan oluşan sistemler, kuantum fiziğinin temel ilkelerinin 

gözlemlenmesini mümkün kılar. Atomların çok düşük sıcaklıklara, yani mutlak sıfıra 

yakın değerlere kadar soğutulması, onların klasik fizik yerine tamamen kuantum 

mekaniksel davranışlar sergilemesine neden olur. Bu sıcaklık aralığında atomların hem 

parçacık hem de dalga özellikleri belirgin bir şekilde ortaya çıkar. Bunun sonucunda, 

Bose-Einstein yoğunlaşması (BEY) veya Fermi gazları gibi egzotik fazlar oluşur [1]. Bu 

tür kuantum gazları, kuantum mekaniğinin temel ilkelerini incelemek ve anlamak için 

elverişli bir platform sunmaktadır [2].  

  Ultra soğuk atomlar, kuantum ölçümleri ve hassas ölçümler yapmayı; dolayısıyla 

fiziksel sistemlerin derinlemesine incelenmesini sağlar. Lazer ile soğutma ve manyetik 

tuzaklama teknikleriyle neredeyse tamamen hareketsiz hale getirilen bu atomlar, 

kontrollü bir şekilde manipüle edilebilir ve ideal kuantum sistemlerini oluşturmak için 

kullanılabilir. Ultra soğuk atom sistemleri aynı zamanda yüksek hassasiyetli ölçümlerde 

ve zaman standartlarının oluşturulmasında kullanılır. Örneğin, atomik saat 

uygulamalarında, ultra soğuk atomların sahip olduğu düşük hızlar ve kuantum 

durumlarının uzun ömürlü olması ölçüm hassasiyetini büyük ölçüde artırır [1]. Ayrıca, 

ultra soğuk atomlar, kuantum mekaniğinin temellerini araştırmak ve geleceğin kuantum 

teknolojilerinin altyapısını oluşturmak için güçlü bir araç sunar. Bu nedenle, ultra soğuk 

atom sistemleri, modern kuantum teknolojileri ve temel bilim araştırmaları için 

vazgeçilmezdir. Özellikle optik örgülerde tuzaklanan ultra soğuk atomlar, katı hâl 

fiziğinde görülen özelliklerin modellenmesi için önemli bir araçtır [1]. Optik örgüler, 

atomlar için periyodik potansiyel alanlar oluşturur ve bunun sonucunda atomlar 

elektronların kristallerdeki hareketine benzer davranışlar sergiler. Ultra-soğuk atomların 

potansiyelde tutulması ile bir tür “yapay kristal” elde edilir. Özellikle Bose-Hubbard 

modeli gibi teorik yaklaşımlar, bu yapay kristaldeki faz geçişlerini anlamada önemli rol 

oynamaktadır [3, 4].  

  Kuantum simülasyonları, karmaşık kuantum sistemlerinin davranışlarını anlamak 

ve modellemek için güçlü bir araçtır. Bu simülasyonlar, kimya, fizik, malzeme bilimi ve 

bilgisayar bilimleri gibi birçok alanda kullanılır. Özellikle, nano ölçekteki sistemlerin ve 

atomik düzeydeki etkileşimlerin anlaşılması için önemlidir. Kuantum simülasyonlarının 

tarihçesi, 20. yüzyılın ortalarına dayanır. Richard Feynman'ın 1981'deki ünlü konuşması, 

kuantum sistemlerini klasik bilgisayarlarla simüle etmenin zorluğunu vurgulayarak, 
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kuantum bilgisayarlarının potansiyelini ortaya çıkardı [5]. Feynman'ın bu konuşması, 

kuantum simülasyonlarına olan ilgiyi arttırdı. Kuantum simülasyonu, kuantum 

bilgisayarlarını kullanarak karmaşık kuantum sistemlerinin davranışını modelleme ve 

inceleme sürecidir. Bu tür simülasyonlar, klasik bilgisayarlarla çözülmesi zor veya 

imkânsız olan kuantum mekaniksel problemleri çözmek için tasarlanmıştır. Kuantum 

simülasyonunun temel avantajlarından biri, kuantum mekaniksel fenomenleri doğrudan 

kuantum düzeyinde taklit edebilmesidir. Örneğin, moleküler yapının ve ilaçların 

etkileşimlerinin daha iyi anlaşılması, yeni malzemelerin tasarımı veya kuantum fiziğinin 

temel yasalarının daha derinlemesine incelenmesi gibi alanlarda kullanılabilir [6].

 Optik örgüler ve kübitler konusu, kuantum bilgi işleme ve kuantum simülasyonu 

alanlarının kesişiminde yer alır. Bu iki kavramın birleşimi hem temel kuantum fiziğini 

anlamada hem de kuantum bilgisayarlar inşa etmede kritik rol oynar. Optik örgüde her 

kuyuya bir atom yerleştirilebilir. Yerleştirilen atomların her biri bir kübit gibi 

düşünülebilir. Kuantum simülasyonları, kuantum bitleri (kübitler) üzerinde karmaşık 

kuantum süreçlerini yürüterek çalışır. Bu süreçler, kuantum mekaniksel sistemlerin 

doğasını yansıtan süperpozisyon ve dolanıklık gibi kuantum özelliklerini kullanır. Bu 

yöntemlerle, kuantum simülatörleri, klasik bilgisayarların ulaşamayacağı düzeyde detay 

ve hassasiyette simülasyonlar yapılabilmektedir [6, 21]. 
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2. OPTİK ÖRGÜLER 

2.1. Optik Örgü Nedir?  

Ultra soğuk atomlarla ilgili çalışmalar, kuantum fiziğinin deneysel olarak test 

edilebildiği en güçlü alanlardan birini oluşturmaktadır. “Ultra soğuk” kavramı, bilim 

dünyasında anlamlı bir ifade olarak ilk kez 20. yüzyılın ikinci yarısından itibaren   

kullanılmaya başlanmıştır [2]. Bu kavram, atomların ve moleküllerin mikro veya nano-

Kelvin mertebelerine kadar soğutulabildiği durumları tanımlar. Bu seviyedeki sıcaklıklar, 

atomların klasik rejimden çıkarak belirgin kuantum davranışları sergilediği koşulları 

oluşturur. Termodinamiğe ait temel kavramlar özellikle Ludwig Boltzmann ve J. Willard 

Gibbs’in istatistiksel mekanik çalışmalarıyla geliştirilmiştir. Atom hareketlerinin 

sıcaklıkla ilişkilendirilmesi, 1920’lerde geliştirilen kuantum mekaniği çerçevesinde daha 

anlaşılır hâle gelmiştir. Albert Einstein ve Satyendra Nath Bose’un 1924–1925 yıllarında 

teorik olarak ortaya koyduğu Bose-Einstein Yoğunlaşması (BEY) kavramı, ultra soğuk 

rejimlerde madde dalgalarının davranışlarına ilişkin ilk temel öngörüleri sunmaktadır. 

1950’li yıllardan itibaren ultra soğuk atomlara yönelik ilgi hızla arttı. Sıvı helyum 

gibi örneklerle ultra soğuk faz geçişleri araştırılırken, aynı dönemde atom-atom 

çarpışmalarına ilişkin kuantum çarpışma teorileri geliştirilmeye başlanmıştır. Bu teoriler, 

düşük enerjili atomların birbirleriyle nasıl etkileşime girdiğini anlamak için önemli bir 

temel oluşturmaktadır. Ayrıca Raman geçişleri üzerine yapılan deneysel çalışmalar ve 

enerji seviyeleri arası geçişlerin kontrolü, daha nitelikli soğutma tekniklerinin 

geliştirilmesine katkı sundu. Bu dönemde yaşanan teknolojik gelişmeler, soğutma ve 

ölçüm süreçlerine doğrudan etki etti. 1954’te Charles Townes ve ekibi, mikrodalga 

spektrumunda çalışan ilk maseri geliştirirken, 1960’ta Theodore Maiman ilk lazeri 

üreterek bu sürecin temelini atmıştır [8]. 1967 yılında sezyum atomunun salınım frekansı 

uluslararası zaman standardı olarak kabul edildi ve atom saatlerinin geliştirilmesinde 

termal hareketlerin azaltılmasının önemi daha iyi anlaşıldı. 1975 yılında Theodor W. 

Hänsch ve Arthur Schawlow, lazerle soğutmanın teorik temelini açıklarken aynı yıl D. 

Wineland ve H. Dehmelt, iyonların lazer ışığı ile soğutulabileceğini ortaya koydular [9, 

12]. Bu çalışmaları izleyen 1983 yılında Steven Chu ve ekibi, lazer ışığını kullanarak 

atomları optik tuzaklara hapsetmeyi başardı [9]. Bu gelişme, ultra soğuk atom fiziğinde 

bir dönüm noktası olmuştur. 1976’da önerilen buharlaşma ile soğutma yöntemi, atomların 

yüksek enerjili olanlarının sistem dışına çıkarılmasıyla sıcaklığın düşürülmesine olanak 

tanıdı [10, 14]. 1985 yılına gelindiğinde, lazerle soğutulan atomların Doppler sınırına 
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kadar indirilebildiği deneysel olarak gösterildi. Bu süreçte süper Doppler ve polarizasyon 

gradyan soğutma gibi daha ileri teknikler de geliştirildi. 1995 yılında Eric Cornell ve Carl 

Wieman, rubidyum atomlarını yaklaşık 20 nano-Kelvin sıcaklığa kadar soğutarak ilk kez 

Bose-Einstein Yoğunlaşmasını deneysel olarak gerçekleştirdiler [17]. Aynı yıl Wolfgang 

Ketterle de sodyum atomlarıyla benzer bir başarı elde etti. Bu önemli çalışmalar, 

atomların makroskopik kuantum durumlarını gözlemlemeyi mümkün kılmıştır. 2001 

yılında Feshbach rezonanslarının kullanımı ile ultra soğuk atomlar arasındaki 

etkileşimler, dışsal manyetik alanlar yardımıyla hassas biçimde kontrol edilebilir hâle 

getirildi. Bu durum, kuantum faz geçişlerinin sistematik incelenmesine olanak 

sağlamaktadır [1].  

2003’ten itibaren optik örgüler kullanılarak kuantum simülasyonları yapılmaya 

başlandı. Bu sayede ultra soğuk atomlar, düzenli bir potansiyel yapı içinde kuantum 

durumlarını koruyarak hareket edebilirler ve kristallerdeki elektronların davranışları 

deneysel olarak modellenebilir. Bu gelişme, katı hâl fiziğinden kuantum bilgi işlemeye 

uzanan geniş bir alanın önünü açmıştır. 2010–2015 yılları arasında optik örgü sistemleri, 

kuantum bilgi işlem mimarileri için kullanılabilir hâle getirildi. Spin-tabanlı kuantum 

hesaplama deneyleri ile, atomların spin durumlarının dolanıklık ve süperpozisyon 

özellikleri, yüksek hassasiyetli ölçümler için başarıyla kullanıldı [7, 11]. 2015–2020 

döneminde ultra soğuk atomlar, egzotik kuantum faz geçişlerinin simülasyonunda ve 

topolojik malzemelerin modellenmesinde yaygın biçimde kullanıldı [16]. 2020 sonrası 

dönemde ise ultra soğuk atomlar, kuantum sensör teknolojileri, manyetik rezonans 

görüntüleme ve kuantum termodinamiği gibi alanlarda yoğun biçimde araştırılmaktadır. 

Bu gelişmeler, ultra soğuk atom fiziği ve optik örgü sistemleri alanında köklü ilerlemelere 

olanak sağlamıştır [16]. 

 

2.2. Soğutma Teknikleri 

Fizik yasaları gereği mutlak sıfır sıcaklığına ulaşmak teorik olarak imkânsızdır. 

Ancak laboratuvar koşullarında son derece hassas araçlar ve yöntemler kullanılarak bu 

sıcaklığa oldukça yakın değerlere ulaşılabilmektedir. Şimdiye kadar kaydedilen en düşük 

sıcaklık yaklaşık 100 pikoKelvin olup, bu değer 1 Kelvin’in 10 milyarda birine karşılık 

gelmektedir [2, 14]. Bu bölümde, laboratuvar ortamında nanoKelvin mertebesinde 

sıcaklıklara ulaşmak için geliştirilen iki temel yöntem ele alınacaktır. 
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2.2.1. Doppler soğutma  

Doppler soğutma, lazer ışığı ile atomların hareketini yavaşlatarak soğutmayı 

mümkün kılan ve lazer soğutma teknikleri arasında en yaygın kullanılan yöntemlerden 

biridir. Genellikle magneto-optik tuzaklarla birlikte uygulanır. Özellikle düşük 

yoğunluktaki gazların, Doppler limitine kadar soğutulmasında etkili olan bu teknik, 

yalnızca belirli enerji seviyelerine sahip atom türlerinde uygulanabilir. Örneğin, 

Rubidyum-85 izotopu için Doppler limiti yaklaşık 150 mikrokelvin civarındadır [8, 15].  

 Lazer ışını, yüksek yoğunluklu elektromanyetik radyasyon taşır. Belirli koşullar 

altında, bu yüksek enerjili ışık demetleriyle atomların kinetik enerjisi azaltılabilir. Bu 

süreçte, atomlar lazer ışığından bir foton soğurur ve ardından bir foton yayar. Bu süreç 

öyle tasarlanır ki yayılan fotonun ortalama enerjisi, soğurulan fotondan biraz daha büyük 

olur. Böylece atomlar tekrar tekrar bu döngüyü yaşadıkça, sistemden enerji çekilmiş olur 

ve atomların kinetik enerjisi azalır. Sonuçta sistemin sıcaklığı düşer [8, 9, 12, 15]. Bir 

atomdaki elektron, sadece belirli enerji seviyeleri arasında geçiş yapabilir ve bu geçiş, 

yalnızca aradaki enerji farkına eşdeğer enerjide bir fotonun soğurulması veya 

yayılmasıyla gerçekleşir. Bu nedenle lazerle soğutma, foton enerjilerinin atomik 

geçişlerle rezonansa girecek şekilde ayarlanmasına dayanır. Bu yöntem, lazer frekansının 

atomik geçiş frekansından biraz daha düşük (red detuned) olacak biçimde ayarlanması 

esasına dayanır. Bir atom ışık kaynağına doğru hareket ettiğinde, Doppler kayması 

nedeniyle lazer ışığını daha yüksek frekansta algılar ve bu nedenle foton absorpsiyonu 

mümkün olur. İki karşıt yönden gelen lazer ışınları sayesinde, atomlar hangi yönde 

hareket ederlerse etsinler, hareket yönlerinin tersindeki ışını daha fazla soğurur. Bu 

etkileşimler sırasında her foton absorpsiyonunda, atom bir foton momentumu kadar geri 

tepme kuvveti kazanır. Emisyon süreci ise rastgele yönlerde gerçekleştiğinden, net 

momentum değişimi absorpsiyon yönünde kalır. Bu süreç çok sayıda tekrarlandığında 

atomun ortalama hızı azalır. Sıcaklık, bir atom grubunun ortalama rastlantısal kinetik 

enerjisinin ölçüsüdür; dolayısıyla bu hız azalışı, sistemin soğuması anlamına gelir [2]. 

Lazerle soğutma süreci, enerji ve momentum korunumu yasaları çerçevesinde 

gerçekleşir. Lazer ışınına doğru hareket eden bir atom, bir foton soğurduğunda 

momentumu fotonunkine eşdeğer miktarda azalır. Bu ilişki Eş. (2.1) ile verilir: 

    
∆𝑃

𝑃
=
𝑃𝑓𝑜𝑡𝑜𝑛

𝑚𝑣
=
∆𝑣

𝑣
         (2.1)  
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Eşitlik (2.1)’den türetilen atomun hızındaki değişim ile fotonun momentumu arasındaki 

ilişki 

    ∆𝑣 =
𝑃𝑓𝑜𝑡𝑜𝑛

𝑚
                     (2.2)  

ifadesiyle bulunur. Fotonun momentumu ise enerjisine ve dalga boyuna bağlı olarak Eş. 

(2.3) ile bulunur: 

    𝑃 =
𝐸

𝑐
=
ℎ

𝜆
          (2.3)   

Lazerle soğutma yönteminde erişilebilecek en düşük sıcaklık sınırı Doppler 

sıcaklığıdır.  Doppler sıcaklığı sınırı yalnızca iki seviyeli atomik sistemlerde ve Doppler 

soğutma rejimlerinde geçerlidir. Daha karmaşık seviyelere sahip atomlar için bu alt 

limitin altına inmek, ancak Sub-Doppler teknikleriyle mümkün olabilmektedir [8,15]. 

Ancak bu tekniklerin de belirli sınırlamaları vardır ve özellikle nano Kelvin mertebesine 

ulaşmak, daha ileri düzeyde soğutma tekniklerinin geliştirilmesini gerekli kılmıştır. 

 

2.2.2. Buharlaştırmalı soğutma 

Doppler soğutma yöntemiyle ulaşılan mikroKelvin düzeyi, çoğu uygulama için 

yeterli olsa da BEY gibi kuantum faz geçişlerinin gözlemlenebilmesi için daha düşük, 

nanoKelvin düzeyinde sıcaklıklara ulaşılması gerekmektedir. Bu tür düşük sıcaklıklara 

ulaşmak için Doppler sınırının ötesinde çalışan bir yöntem olan buharlaştırmalı soğutma, 

ultra-soğuk atom fiziğinde temel ve tamamlayıcı bir teknik hâline gelmiştir [4]. 

Buharlaştırmalı soğutma, klasik anlamda bir sıvının buharlaşması sırasında yüksek 

enerjili moleküllerin sistemden uzaklaşmasıyla sıcaklığın düşmesi prensibine dayanır. 

Deneysel olarak, atomlar manyetik bir tuzak içinde tutulur ve sistemdeki en yüksek 

kinetik enerjiye sahip olanlar, radyo dalgaları ya da mikrodalga ışınımı ile rezonansa 

sokularak sistemden uzaklaştırılır. Bu işlem, potansiyel kuyusunun enerji eşiğinin 

kademeli olarak düşürülmesiyle sağlanır. [2,14]. Dolayısıyla sistemden yüksek enerjili 

atomlar uzaklaştırıldıkça geriye kalan atomların ortalama enerjisi ve dolayısıyla sistemin 

sıcaklığı düşer. Bu süreç, sıcak bir bardak çaydan yüksek enerjili su molekülleri 

buharlaşıp uzaklaştıkça bardaktaki çayın soğumasına benzetilebilir. Bu sürecin etkinliği, 

sistemdeki atomların birbirleriyle elastik çarpışmalar yaparak enerji dağılımını yeniden 

düzenleyebilmesine bağlıdır. Yeterli çarpışma oranı sağlandığında, buharlaştırmalı 

soğutma termal dengede sıcaklığın düşmesini mümkün kılar. Aksi hâlde, sistem 

soğuyamaz ve atom kaybı artar [15]. Buharlaştırmalı soğutma yöntemi, sıcaklığın nano 
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Kelvin düzeyine kadar düşmesini sağlayarak, faz uzayı yoğunluğunun BEY için gerekli 

eşik değerine ulaşmasına imkân tanır. Kritik sıcaklık altına inildiğinde, atomların önemli 

bir kısmı temel enerji seviyesine yoğunlaşır ve makroskobik ölçekte kuantum istatistik 

etkileri ortaya çıkar. Bu yöntem, 1995 yılında Cornell ve çalışma arkadaşları tarafından 

rubidyum-87 atomları kullanılarak ilk kez başarıyla uygulanmış ve seyreltilmiş atomik 

bir gazda BEY gözlemlenmiştir [17]. Bu önemli deneyde, lazerle soğutulmuş atomlar 

manyetik tuzak içinde tutulmuş, ardından buharlaştırmalı soğutma ile yaklaşık 170 nano 

Kelvin sıcaklığa kadar soğutulmuştur. Günümüzde buharlaştırmalı soğutma, sadece BEY 

elde etmek amacıyla değil, aynı zamanda kuantum simülasyonlar ve hassas ölçümler için 

ultra-soğuk sistemlerin hazırlanmasında da yaygın biçimde kullanılmaktadır.  

 

2.3. AC Stark Etkisi 

AC Stark etkisi, bir sistemin zamanla değişen bir elektromanyetik alanla, özellikle 

lazer ışığıyla etkileşimi sonucu atomik enerji seviyelerinde meydana gelen kaymaları 

ifade eder. Bu etki, atomun elektrik dipol momenti ile dış elektrik alan arasındaki 

etkileşimden kaynaklanır ve kuantum optiğin temel olaylarından biridir [14]. AC Stark 

etkisinin temelinde durağan bir elektromanyetik dalga yer alır. İlgili elektrik alan kalıcı 

bir dipol momente sahip olmayan nötr atomda bir dipol moment indükler; bu da durağan 

dalganın maksimum veya minimumuna doğru itme veya çekmeye neden olur. Sonuç 

olarak atomlar AC Stark etkisi ile periyodik potansiyelde belirli konumlarda lokalize olur. 

Atomların optik örgüde lokalize olması, atomun enerji seviyelerinin lazer ışığına bağlı 

olarak kayması ile gerçekleşir. AC Stark etkisinin büyüklüğü, lazerin elektrik alan genliği 

ile atomun geçiş dipol momentinin çarpımının karesine ve lazer frekansı ile atomun 

rezonans frekansı arasındaki sapmaya bağlıdır [15]. Bu sapmaya detuning denir. 

Detuning terimi, lazer frekansının sistemin doğal rezonansı arasındaki farkı ifade eder. 

Detuning büyüklüğüne bağlı olarak, AC Stark etkisi altında atomların enerji seviyelerinde 

gözlemlenen kaymaların pozitif ya da negatif olması mümkündür (Şekil 2.1). Bu 

mekanizma, optik örgülerin fiziksel parametrelerinin hassas kontrolünün sağlanmasına 

olanak tanır. Potansiyelin periyodik yapısı, AC Stark kayması ile doğrudan ilişkilidir ve 

optik örgülerin temel fiziksel yapısını açıklar.  

Atomla elektromanyetik alan arasındaki etkileşim sonucu Hamiltonyen 

     𝐻 = −𝜇 𝑒. 𝐸⃗          (2.4) 
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ile ifade edilir. Eşitlik (2.4)’de yer alan 𝜇 𝑒 dipol momentidir. Dipol moment, elektron 

yüküne ve her bir elektronun atoma olan uzaklığına bağlıdır: 

         𝜇 𝑒 = −𝑒∑ 𝑟 𝑗𝑗          (2.5) 

Genel olarak sadece son yörüngedeki elektronlar önem taşır. Lazerin zamana bağlı 

elektrik alanı [13] 

     𝐸(𝑥, 𝑡) = 𝐸(𝑥)𝑒𝑖𝜔𝑡 + 𝑐. 𝑐.        (2.6) 

olsun. Atomun enerji seviyelerinde AC Stark etkisi nedeniyle kayma gerçekleşir. Atomda 

meydana gelen polarizasyon dış elektrik alanla aynı frekansta salınım yapar. Böylece, 

enerji kayması atomu tuzaklayan etkin bir potansiyel gibi davranır. Enerji seviyelerindeki 

kaymanın bulunması için pertürbasyon teorisi kullanılır. Denklemlerin basitleştirilmesi 

için, statik radyasyon alanı kabul edilebilir, yani 𝐸(𝑥) = ℰ0𝐸 olsun. Standart 

pertürbasyon teorisi kullanılarak enerji kaymasına ikinci dereceden yaklaşım ile  

    ∆𝐸 = −∑
|<𝑒|𝜇⃗⃗ 𝑒.𝐸⃗ |𝑔>|

2

𝐸𝑒−𝐸𝑔
ℰ0
2        (2.7) 

bulunur [13]. Eşitlik (2.7)’de 𝐸𝑔 taban durumu enerjisini, 𝐸𝑒 uyarılmış durumun 

enerjisini, |𝑔 > ve |𝑒 > sırasıyla taban ve uyarılmış durumları göstermektedir. İki 

seviyeli atom için Eş. (2.7), Eş. (2.8)’a indirgenir: 

∆𝐸 = ±
|<𝑒|𝜇⃗⃗ 𝑒.𝐸⃗ |𝑔>|

2

𝐸𝑒−𝐸𝑔
ℰ0
2        (2.8) 

  

 

 

 

 

 

 

Şekil 2.1: İki seviyeli atomun enerji diyagramı. (a) pozitif detuning 

                 (b) negatif detuning. 

(a)  (b)  
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Eşitlik (2.8) ile verilen enerji kayması ∆𝐸, atom ve lazer arasındaki eşleşmeye 

karşılık gelir. Şekil 2.1’de ∆𝐸 gösterilmektedir. Lazer frekansı 𝜔 ile atomun enerji 

seviyeleri arasındaki farka karşılık gelen 𝜔0 arasındaki farka detuning denir: 

 𝛿 = 𝜔 −
𝐸𝑒−𝐸𝑔

ℏ
= 𝜔 −𝜔0        (2.9) 

Detuning küçükse (𝛿 → 0, 𝜔 ≈ 𝜔0), enerji kayması büyür. Kırmızıya ayarlı lazer (red 

detuned laser) kullanımı ile 𝛿 < 0 (𝜔 < 𝜔0) olur ve bu durumda potansiyel çekici olur. 

Atomlar daha yüksek yoğunluklu bölgede toplanır. Maviye ayarlı lazer (blue detuned 

laser) ile 𝛿 > 0 (𝜔 > 𝜔0) olur ve itici potansiyel oluşur. Lazer şiddetinin maksimumları 

potansiyelin maksimumlarına karşılık gelir. Atomlar düşük yoğunluklu bölgede toplanır. 

Her iki durum Şekil 2.2.’de gösterilmiştir.  

 

 

 

 

 

AC Stark etkisi ile oluşan enerji seviyelerindeki kaymalar, lazer ışığının şiddeti ve 

dalga boyuyla belirlenen bir potansiyel fonksiyonu üretir. Bu potansiyel şu formdadır: 

    𝑉(𝑥) = 𝑉0 𝑠𝑖𝑛
2(𝑘𝑥)       (2.10) 

Eşitlik (2.10) ile tanımlanan potansiyelde 𝑉0 potansiyelin derinliği, 𝑘 =
2𝜋

𝜆
 dalga sayısı, 

𝜆 lazerin dalga boyudur. 𝑉0 parametresi, kullanılan lazerin şiddetine, atomun dipol 

momentine bağlıdır. Bu bağlılık, optik örgülerin istenildiği gibi tasarlanmasını sağlar. 

Böylece lazer ışığının dalga boyu ve şiddeti, atomların konumlandığı yerleri doğrudan 

kontrol etmektedir. Optik örgülerde enerji skalası olarak Eş. (2.11) geri tepme enerjisi 

kullanılır. Geri tepme enerjisi 𝑚 atomun kütlesi olmak üzere 

      𝐸𝑅 =
ℏ2𝑘2

2𝑚
        (2.11) 

Şekil 2.2: Optik örgülerde tuzaklanan atomların konumları. 

                (a) Maviye ayarlı lazer (b) Kırmızıya ayarlı lazer 

(a)                                                      (b)  
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eşitliği ile bulunur. Bu enerji, fotonu absorplayan atomun son kinetik enerjisine karşılık 

gelir. 

  

2.4. Optik Örgü Oluşumu 

Optik örgü (veya optik kafes), zıt yönlü lazer ışınlarının oluşturduğu periyodik bir 

potansiyel alandır. Bu düzenli potansiyel yapı, atomların belirli konumlarda 

hapsolmasına neden olur ve bu yönüyle atomlar için bir tuzak görevi görür. 

Optik örgüler, aynı dalga boyuna sahip iki lazer ışınının karşılıklı yönlerde 

gönderilerek birbirleriyle girişim yapması sonucunda oluşan durağan dalgalar aracılığıyla 

oluşturulur. Girişim sonucu meydana gelen bu dalga yapısı, uzayda periyodik olarak 

değişen potansiyel alanlar üretir. Atomlar, bu potansiyelin minimum noktalarında 

lokalize olur; çünkü bu konumlar enerji açısından en kararlı durumlardır. Bu durağan 

dalga deseninde oluşan karanlık ve aydınlık bölgeler, atomlar için sırasıyla potansiyel 

minimumlarını ve maksimumlarını tanımlar. Dolayısıyla, atomlar tipik olarak bu 

periyodik yapının potansiyel minimumlarına hapsolur ve bu sayede kontrollü biçimde 

düzenli örgü noktalarına yerleşirler. Optik örgünün fiziksel özellikleri; lazer ışınlarının 

dalga boyu, yönü, polarizasyonu ve bağıl fazı gibi parametreler aracılığıyla hassas bir 

şekilde ayarlanabilir. Elde edilen örgünün bir, iki veya üç boyutlu olması, örgü sabiti ve 

potansiyel derinliği bu parametrelerle doğrudan ilişkilidir. Bu yapıların temel özelliği, 

deneysel olarak kolayca biçimlendirilebilmeleridir.  Tipik bir tek boyutlu optik örgüde, 

potansiyel kuyuları lazer ışığının dalga boyunun yarısı kadar bir aralıkla yerleşir. Bu 

aralık, atomların örgü boyunca periyodik olarak dizilmesini sağlar. Ortaya çıkan bu 

düzenli yapı, kristal örgülerin optik bir analogu olarak değerlendirilebilir. Böylelikle 

optik örgüler, katı hâl fiziğindeki periyodik atom dizilimlerini taklit ederek, kristal  

(a)                                           (b)      (c) 

   Şekil 2.3: Lazer ışığı ile oluşturulan periyodik potansiyel yapılarının temsili gösterimi. (a) Tek boyutlu   

optik örgüde atomların yer aldığı potansiyel kuyuları, (b) İki boyutlu optik örgü geometrisi,  

(c) Üç boyutlu optik örgü yapısında hapsedilmiş atomlar.  
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sistemlerin davranışlarını simüle etmek amacıyla kullanılan deneysel platformlar hâline 

gelir [2, 3, 10].  

İki boyutlu optik örgüler, aynı düzlemde belirli bir açıyla kesişen koherent lazer 

ışınlarının girişimiyle oluşturulur. Bu durumda atomlar, düzlemsel bir potansiyel içinde 

hapsolur ve kristalimsi yapılar meydana getirirler. Üç boyutlu optik örgülerde ise, lazer 

ışınlarının üç boyutlu uzaydaki konfigürasyonuna bağlı olarak kübik ya da hekzagonal 

simetriye sahip karmaşık yapılar elde edilir; böylece atomlar üç boyutlu potansiyel 

kuyuları içine düzenli biçimde yerleştirilebilir [4]. 

 

 

 

 

 

 

    Şekil 2.4: Lazer ışığı kullanılarak soğutulan atomların, bir optik örgü içerisine yerleştirilme sürecinin   

şematik gösterimi. Lazer ışınları ile oluşturulan durağan dalga yapısı, periyodik bir potansiyel 

oluşturarak atomların düzenli bir örgü yapısında hapsedilmesini sağlar. 

 

Üç boyutlu düşünüldüğünde optik örgü potansiyeli  

          𝑉(𝑥, 𝑦, 𝑧) = 𝑉0(𝑠𝑖𝑛
2(𝑘𝑥) + 𝑠𝑖𝑛2(𝑘𝑦) + 𝑠𝑖𝑛2(𝑘𝑧))    (2.12) 

olur. Atomlar bu potansiyelin etkisi altında Bloch bantları olarak bilinen enerji 

seviyelerine hapsolur [4].  
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3. BOSE-HUBBARD MODELİ 

3.1. Bloch Teoremi 

Kristal yapıdaki maddelerde elektronlar, periyodik bir potansiyel içinde hareket 

eder. Bu durumda Schrödinger denkleminin çözümleri Felix Bloch tarafından geliştirilen 

Bloch teoremi ile tanımlanır [18]. Bloch teoremine göre, periyodik bir potansiyel altında 

dalga fonksiyonları: 

𝜓𝑘(𝑟 ) = 𝑢𝑘(𝑟 )𝑒
𝑖𝑘⃗ .𝑟          (3.1) 

Eşitlik (3.1) ile verilen dalga fonksiyonunda 𝑘⃗  dalga vektörü, 𝑢𝑘(𝑟 )  kristal örgünün 

periyoduna sahip bir fonksiyondur ve şöyle tanımlanır: 

𝑢𝑘(𝑟 ) = 𝑢𝑘(𝑟 + 𝑇⃗ )        (3.2) 

 Dalga fonksiyonu kristal potansiyeli altında bulunan tek bir elektronun davranışını 

tanımlar. Bloch fonksiyonları iyonik merkezler tarafından oluşturulan potansiyel 

alanlarda yerleşmiş dalga paketleri olarak da yorumlanabilir. Elektronlar bu fonksiyonlar 

sayesinde kristal içinde serbestmiş gibi davranabilir. Eşitlik (3.1), Bloch teoremi olarak 

şöyle ifade edilir: Periyodik bir potansiyelde dalga denkleminin öz fonksiyonları, 𝑒𝑖𝑘⃗
 .𝑟 ⃗⃗⃗    

düzlem dalgası ile kristal örgüsünün periyoduna sahip bir 𝑈𝑘(𝑟 ) fonksiyonunun çarpımı 

şeklinde yazılır; bu fonksiyon karakteristik olarak ilerleyen dalgaların toplamı biçiminde 

yazılabilir. Bloch fonksiyonları, iyon merkezlerinin oluşturduğu potansiyel alanda 

serbestçe dolaşan elektronları temsil etmek üzere, yerelleşmiş dalga paketleri şeklinde 

ifade edilebilirler. Burada 𝜓𝑘(𝑟 ) dalga fonksiyonu katlı olmadığı, yani aynı enerji ve 

dalga sayısına sahip dalga fonksiyonu sayısı bir tane olduğu durum için, Bloch teoreminin 

kısmi bir ispatı verilecektir. Çevresi Ma olan ve M adet özdeş örgü noktasına sahip bir 

halka üzerinde bulunan bir elektron sistemi olsun. Potansiyel enerji periyodik bir yapıya 

sahip olduğundan bir tam sayı s için Eş. (3.3) denklemini sağlanır [18]:  

     𝑈(𝑥) = 𝑈(𝑥 + 𝑠𝑎), s∈ ℤ        (3.3) 

Halkanın simetri özelliği göz önüne alındığında Eş. (3.4) yazılabilir: 

𝜓(𝑥 + 𝑎) = 𝐶𝜓(𝑥)        (3.4) 

Eşitlik (3.4)’te  𝐶 kompleks bir sabittir. Her bir nokta üzerinden geçerek halka etrafında 

bir kere dönüldüğünde 
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𝜓(𝑥 +𝑀𝑎)  =  𝜓(𝑥) = 𝐶𝑀𝜓(𝑥)       (3.5) 

elde edilir. Bunun nedeni, dalga fonksiyonu 𝜓(𝑥)’in tek değerli olmasıdır. Eşitlik 

(3.5)’ten  

𝐶 = 𝑒
𝑖2𝜋𝑠

𝑀  ;  𝑠 = 0,1,2,… ,𝑀 − 1       (3.6) 

olduğu görülmektedir. Sonuç olarak 

𝜓(𝑥) = 𝑒
𝑖2𝜋𝑠𝑥

𝑀𝑎 𝑢𝑘(𝑥)        (3.7) 

fonksiyonu, eğer  

𝑢𝑘(𝑥) = 𝑢𝑘(𝑥 + 𝑎)        (3.8) 

özelliğine sahipse,  

𝜓(𝑥 + 𝑎) = 𝐶𝜓(𝑥)        (3.9) 

denklemini sağlar. 𝑘 = 2𝜋𝑠/𝑀𝑎  alınırsa 

𝜓𝑘(𝑟 ) = 𝑢𝑘(𝑟 )𝑒
𝑖𝑘⃗ .𝑟        (3.10) 

elde edilir ve Bloch teoremi ispatlanır [2, 4, 18, 19]. 

   

3.2. Wannier Fonksiyonları 

Wannier fonksiyonları, kristal yapılarda kuantum mekaniği ile tanımlanan elektron 

dalga fonksiyonlarının bir temsilidir. Wannier fonksiyonları, Bloch fonksiyonlarının 

Fourier dönüşümüyle elde edilen, örgü noktaları etrafında lokalize olmuş dalga 

fonksiyonlarıdır. Bu fonksiyonlar özellikle yoğun madde fiziğinde ve katı hal fiziğinde 

önemli bir role sahiptir; çünkü Bloch fonksiyonlarına alternatif bir baz oluştururlar ve 

uzaysal olarak daha lokalize bir yapı sergilerler [18]. Bir banttaki Wannier fonksiyonları, 

aynı banda ait Bloch fonksiyonları üzerinden Eş. (3.11) ile tanımlanır: 

   𝜔(𝑟 − 𝑟 𝑖) = 𝑁
−
1

2∑ 𝑒𝑥𝑝(−𝑖𝑘⃗ . 𝑟 𝑖)𝑘⃗ 𝜓𝑘⃗ (𝑟 )     (3.11) 

Bu denklemde 𝑟 𝑖 bir örgü noktasını temsil eder. Wannier fonksiyonu, örgü noktası 𝑟 𝑖 

civarında lokalize olmuştur. 𝑀 ise kristaldeki örgü noktalarının sayısıdır. Bloch 

fonksiyonu 𝜓𝑘(𝑟 ) dalga vektörü 𝑘⃗  ile tanımlanır. exp(−𝑖𝑘⃗ . 𝑟 𝑖) faz faktörü olup Bloch 

dalga fonksiyonlarını farklı örgü noktalarına kaydırır. 
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Wannier fonksiyonları örgü noktalarında diklik koşulunu sağlar. Bu diklik koşulu 

Eş. (3.12) ile ifade edilir [18, 19]: 

∫𝑑𝑉𝜔∗(𝑟 − 𝑟 𝑖)𝜔(𝑟 − 𝑟 𝑗) = 0,   (𝑖 ≠ 𝑗)      (3.12) 

𝑖 ve 𝑗 iki farklı örgü noktasını temsil eder. Diklik özelliği Wannier fonksiyonlarını farklı 

örgü noktalarında daha kullanışlı hale getirir. Tek boyutlu bir durumda, örgü sabiti 𝑎 olan 

ve 𝑁 atomlu bir örgüde Bloch fonksiyonu Eş. (3.13) ile verilir: 

                                             𝜓𝑘(𝑥) = 𝑁
−
1

2𝑒𝑖𝑘𝑥𝑢0(𝑥)       (3.13) 

Burada 𝑢0(𝑥) örgü periyodikliği taşıyan bir fonksiyondur. Wannier fonksiyonu bu 

durumda Eş. (3.14) ifade edilir [18]: 

𝜔(𝑥 − 𝑥𝑖) = 𝑢0(𝑥)
sin𝜋(𝑥−𝑥𝑖)

𝑎
𝜋(𝑥−𝑥𝑖)

𝑎

        (3.14) 

  Bu ifade, Wannier fonksiyonlarının örgü noktaları etrafında pik yaptığını gösterir. 

Wannier fonksiyonları, kristallerin kuantum mekaniği açısından anlaşılmasında önemli 

bir matematiksel araçtır; kuantum simülasyonlarında karmaşık sistemleri daha basit 

modellere indirgerler ve Bloch fonksiyonlarına göre uzaysal olarak daha net ve lokalize 

bir fiziksel anlam taşırlar. Genel bir potansiyel altında ve herhangi bir 𝑘⃗  dalga vektörü 

için Schrödinger dalga denklemi göz önüne alınarak, örgü sabiti a olan bir boyutlu 

periyodik sistemde potansiyel enerji fonksiyonu U(x) ile ifade edilir. Bu potansiyel örgü 

simetrisine sahip olup, örgü ötelemesi işlemi altında Eş. (3.15)’deki gibi değişmez kalır. 

𝑈(𝑥) = 𝑈(𝑥 + 𝑎)      (3.15) 

 

3.3. Sıkı Bağlanma Modeli 

Sıkı bağlanma modeli kristal yapıdaki elektronların davranışını incelemek için 

kullanılan bir modeldir. Atomlara sıkı bir şekilde bağlı olan ve atomlar arası geçişleri 

sınırlı olan elektronların enerji seviyelerini anlamak için kullanılan basitleştirilmiş 

modellerden biridir. Yarı iletkenlerde ve metallerdeki elektronlar, genellikle atom 

çekirdeklerinin yakınında hapsolma eğilimindedir. Ancak komşu atomlara tünelleme 
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yoluyla hareket edebilirler. Bu hareket, tünellemelerin ardışık bir bileşimi şeklinde 

gerçekleşir (Şekil 3.1). Bu duruma sıçrama (hopping) adı verilir [3, 11]. 

Şekil 3.1: Kristal yapıdaki elektronların davranışını incelemek için kullanılan sıkı bağlanma modeli.  

Sıkı bağlanım modeline göre parçacıklar tek parçacık durumlarına sahiptir: ∣n⟩, 

burada n=1,2,...,M. Örgü noktaları arasındaki aralık 𝑎 ise (örgü aralığı) o zaman her n 

noktası şu konumla ilişkilendirilebilir: 

𝑥𝑛 = 𝑎𝑛                  (3.16) 

Böyle bir örgünün Hamiltonyeni: 

𝐻 = −𝐽∑ {|𝑛⟩𝑀
𝑖=1 ⟨𝑛 + 1| + |𝑛 + 1⟩⟨𝑛⌋}     (3.17) 

Burada 𝐽 bir sabittir. Periyodik sınır koşulları gereği 𝑛 = 𝑀 olduğundan |𝑀⟩⟨𝑀 + 1| 

terimi |𝑀⟩⟨1| terimine eştir. |𝑛 + 1⟩⟨𝑛| terimi |𝑛⟩durumuna etki ettiğinde, yeni durum 

|𝑛 + 1⟩ olur. Yani, bu terim 𝑛 konumundan 𝑛 + 1 konumuna bir sıçramayı sağlar. Benzer 

şeklide, aynı olasılıkla 𝑛 + 1 konumundan 𝑛 konumuna da sıçrama mümkündür [11, 20]. 

Sıkı bağlanma modelinde Hilbert uzayı sonlu boyutludur ve boyutu 𝑀 olarak 

tanımlanır. Bu durumda, Eş. (3.17)’e ait matrisin elemanları: 

𝐻𝑛𝑚 = ⟨𝑛|𝐻|𝑚⟩       (3.18) 

Örneğin, 𝑀 = 5 için Hamiltonyen aşağıdaki şekilde yazılabilir:     

𝐻 = −𝐽

(

 
 

0 1 0
1 0 1
0 1 0

0 1
0 0
1 0

0 0 1
1 0 0

0 1
1 0)

 
 

                 (3.19) 

Bu matriste, köşelerde yer alan elemanlar periyodik sınır koşullarından gelmektedir. 

Hamiltonyenin özdeğerlerini ve özvektörlerini bulmak için gerekli özdeğer denklemi: 

      𝐻|𝜙⟩ = 𝐸|𝜙⟩        (3.20)  
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Özvektörler |𝜙⟩, |𝑛⟩  bazında  |𝜙⟩ = ∑ 𝜙𝑛𝑛 |𝑛⟩  şeklinde yazılır. Bu açılımın, Eş. 

(3.20)’te yerleştirilmesi ile aşağıdaki matris gösterimi elde edilir: 

𝐻|𝜙⟩ = −𝐽 

(

 
 

𝜙2  + 𝜙5
𝜙1 + 𝜙3
𝜙2 + 𝜙4
𝜙3 + 𝜙5
𝜙4 + 𝜙1)

 
 
=  𝐸

(

 
 

𝜙1
𝜙2
𝜙3
𝜙4
𝜙5)

 
 
= 𝐸|𝜙⟩             (3.21) 

Eşitlik (3.21)’ün matris gösterimindeki her satır  𝜙𝑛 katsayıları için cebirsel bir ilişki 

sağlar. Bu eşitliğin genel formu 

  −𝐽(𝜙𝑛−1 + 𝜙𝑛+1) = 𝐸𝜙𝑛        (3.22) 

olur ve periyodik sınır koşulu kullanıldığında 𝜙𝑀+1 = 𝜙1 eşitliği sağlanır. Böylece 

problem bir yineleme problemine dönüşür. Buradaki değişkenler hem özvektörler 𝜙𝑛,  

hem de enerji E’dir. Eşitlik (3.22) düzlem dalgalar kullanılarak çözülebilir. Düzlem dalga 

fonksiyonu: 

     𝜙𝑛
𝑘 =

𝑒𝑖𝑘𝑥𝑛

√𝑀
       (3.23) 

Örgü aralığı 𝑎 = 1 alındığında k boyutsuz hale gelir; ancak 𝑎 sabit alındığında k’nın 

boyutu (1/uzunluk) yani dalga sayısı olacaktır. Eşitlik (3.23) için normalizasyon koşulu 

aşağıdaki gibi sağlanmalıdır: 

     ∑ |𝜙𝑛
𝑘|2 = 1𝑁

𝑛=1       (3.24)  

Eşitlik (3.23), Eş. (3.22)’de yerleştirildiğinde Eş. (3.25) elde edilir. 

−𝑔
𝑒𝑖𝑘𝑛

√𝑀
(𝑒𝑖𝑘 + 𝑒−𝑖𝑘) = 𝐸

𝑒𝑖𝑘𝑛

√𝑀
     (3.25)  

Düzlem dalgaya ilişkin dispersiyon bağıntısı  

𝐸𝑘 = −2𝑔 cos 𝑘𝑎              (3.26) 

bulunur. Dispersiyon bağıntısının daha ayrıntılı olarak incelenebilmesi için öncelikle 𝑘 

dalga sayısının alabileceği izinli değerlerin belirlenmesi gereklidir.  Bu değerler Eş. 

(3.23)’de periyodik sınır koşullarının 

 𝜙𝑀+1 = 𝜙1         (3.27) 
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 uygulanması ile elde edilir. İşlem sonucunda 𝑒𝑖𝑘𝑀𝑎 = 1 bulunur; bu da dalga sayısının 

alabileceği değerlerin 𝑘 =
2𝜋ℓ

𝑀𝑎
  olduğunu gösterir. Bu kısıtlamada ℓ = 0,±1,±2, … gibi 

değerler alır. Dalga sayısı sonsuz sayıda değer alamaz. Sıkı bağlanma modelinde, Hilbert 

uzayının boyutu 𝑀 olduğundan 𝑀 sayıda özvektörden oluşan bir küme gereklidir. 

Ortogonal bir baz oluşturabilmek için özvektörlerin birbirinden farklı olması gerekir. 

Eşitlik (3.23)’deki n değerleri tamsayı olduğundan  

 𝑘 → 𝑘 +
2𝜋

𝑎
       (3.28) 

değişimi ile 𝜙𝑛
𝑘 değişmeden kalır [20]. Bu nedenle yalnızca   

2𝜋

𝑎
  uzunluğunda bir aralık 

içinde 𝑘 seçimi yapmak mantıklıdır. Genellikle Eş. (3.29)’deki gibi simetrik bir aralık 

almak uygundur: 

𝑘 ∈ [−
𝜋

𝑎
,
𝜋

𝑎
]       (3.29)  

Bu aralık birinci Brillouin bölgesi olarak bilinir. Bu nedenle, 𝑘 değerlerinin seçimi şu 

şekilde ifade edilir: 

𝑘 =
2𝜋ℓ

𝑀𝑎
,  − 

𝑀

2
 < ℓ ≤

𝑀

2
           (3.30) 

Bu ifade, Brillouin bölgesinde yer alan izinli dalga vektörlerini tanımlar. Sıkı bağlanma 

ve serbest parçacık dispersiyon ilişkileri arasındaki fark, serbest parçacık durumunda 𝑘’ 

nın ±∞ aralığında olmasıdır. Sıkı bağlanma modelinde ise k birinci Brillouin bölgesi ile 

sınırlıdır. 

 

3.4. Bose-Hubbard Modeli 

Bose-Hubbard modeli, bozonların optik örgü potansiyelindeki davranışını ve 

kuantum faz geçişlerini incelemek için kullanılan temel bir modeldir. Sıkı bağlanma 

modelinin bozonlara uygulanmış hâli olarak da düşünülebilen Bose-Hubbard modeli, 

yoğun madde fiziğinde mikroskobik düzeyde süperakışkanlık ve Bose-Einstein 

yoğunlaşması gibi kolektif olayları anlamak için kullanılır [1,11]. 

Bose-Hubbard modelinin optik örgülerde hapsedilen ultra-soğuk atomlara 

uygulanabilirliği Jaksch ve arkadaşlarının 1998’de yaptığı çalışmalarla gösterilmiştir 

[11]. İlerleyen yıllarda ultra-soğuk atomların optik örgülerde deneysel olarak 

tuzaklanmasıyla Bose-Hubbard modeli büyük önem kazanmıştır. Kuantum 
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simülasyonları ve kuantum hesaplamaları gibi alanlarda bu model önemli bir rol 

oynamaktadır.  

Atomların örgü boyunca hareketini ve örgü noktalarındaki etkileşimlerini açıklayan 

matematiksel bir ifadeden oluşan Bose-Hubbard modelinde Hamiltonyen:  

𝐻̂ = −𝐽 ∑ (𝑎̂𝑖
†𝑎̂𝑗) +

𝑈

2
∑ 𝑎̂𝑖

†𝑎̂𝑖
†𝑎̂𝑖𝑎̂𝑖 + ∑ 𝜀𝑖𝑎̂𝑖

†𝑎̂𝑖𝑖𝑖〈𝑖,𝑗〉     (3.31) 

Eşitlik (3.31)’de J komşu örgüler arasındaki tünelleme genliğidir. Bu ilk terim kinetik 

enerjiyi ifade eder. İkinci terim ise bozonlar arası etkileşme terimidir. 𝑈 parametresi aynı 

örgü noktasındaki bozonlar arasındaki etkileşmenin büyüklüğünü belirler. 𝜀𝑖 ise örgü 

noktasına uygulanan dış tuzak potansiyelini temsil etmektedir. Uygulanan lazer şiddeti 

arttırıldıkça potansiyelin derinliği artar, bu da tünellemeyi yani 𝐽’yi azaltırken, 𝑈 

etkileşimini arttırır. 

Etkileşim terimini daha detaylı anlamak için, aşağıdaki bozonik cebir ifadeleri 

kullanılır [20]:  

𝑎̂𝑖
†𝑎̂𝑖 = 𝑎̂𝑖𝑎̂𝑖

† − 1       (3.32) 

𝑎̂𝑖
†𝑎̂𝑖
†𝑎̂𝑖𝑎̂𝑖 = 𝑎̂𝑖

†(𝑎̂𝑖𝑎̂𝑖
† − 1)𝑎̂𝑖 − 𝑎̂𝑖

†𝑎̂𝑖𝑎̂𝑖
†𝑎̂𝑖 − 𝑎̂𝑖

†𝑎̂𝑖      (3.33)  

Eşitlik (3.33) sayı operatörü 𝑛̂𝑖 = 𝑎̂𝑖
†𝑎̂𝑖 kullanılarak 

𝑎̂𝑖
†𝑎̂𝑖
†𝑎̂𝑖𝑎̂𝑖 = 𝑛̂𝑖(𝑛̂𝑖 − 1)      (3.34)  

Şekil 3.2: Bir boyutlu optik örgüde Bose-Hubbard modelinin temel fiziksel süreçlerinin şematik gösterimi. 

Kuyular arası tünelleme (sıçrama) genliği J ve aynı kuyuda bulunan bozonlar arasındaki 

etkileşim enerjisi U ile tanımlanır. Atomlar, potansiyel derinliği V0   ile belirlenen kuyular 

arasında kuantum tünelleme yoluyla hareket eder. 

 

şeklinde yazılır. 𝑛̂𝑖 sayı operatörü, 𝑖. örgü noktasında bulunan toplam parçacık sayısını 

verir. Etkileşim terimi her bir örgüdeki parçacık sayısına bağlıdır. Tablo 3.1’de farklı 𝑛𝑖 

değerleri için etkileşim enerjisi 
𝑈

2
𝑛𝑖(𝑛𝑖 − 1) değerlerini içeren durumlara yer verilmiştir.  
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Tablodan anlaşılacağı üzere, örgü noktasında 0 veya 1 parçacık olduğunda etkileşim 

terimi sıfırdır. Bu durum, etkileşimin olmadığını gösterir. Dolayısıyla Hamiltonyendeki 

ikinci terim, ancak iki veya daha fazla sayıda parçacık mevcut olduğunda katkı sağlar. 

Tablo 3.1: Etkileşme enerjilerinin parçacık sayısına bağlılığı 

               𝑛𝑖 0 1 2 3 4 5 

𝑈

2
𝑛𝑖(𝑛𝑖 − 1) 

0 0 U 3U 6U 10U 

 

Eşitlik (3.35)’de yer alan kombinasyon, 𝑛𝑖 parçacığın çiftler halinde etkileşime 

girebileceği yolların sayısını verir [20]:   

                                            (𝑛𝑖
2
) =

𝑛𝑖!

2!(𝑛𝑖−2)!
=
𝑛𝑖(𝑛𝑖−1)

2
        (3.35)  

 

3.4.1. Bose-Hubbard modelinin türetilmesi 

Belirli koşullar altında, Bose-Hubbard Hamiltonyeni doğrudan ultra-soğuk atomik 

gazların mikroskobik tanımından türetilebilir. İlk olarak Jaksch ve arkadaşları tarafından 

geliştirilen bu türetme, düşük enerjili sınırda, atomlar arası etkileşimlere önemli katkının 

yalnızca s-dalga saçılmasından geldiğini ortaya koymuştur [11]. Bu durumda atomlar 

arası potansiyel 𝑈(𝑥), noktasal etkileşimli etkin potansiyel ile değiştirilebilir [1,7,11,15]: 

𝑈(𝑥) =
4𝜋ℏ2𝑎𝑠

𝑚
𝛿(𝑥) = 𝑔𝛿(𝑥)     (3.36) 

Eşitlik (3.36)’da yer alan 𝑎𝑠, s-dalga saçılma uzunluğu, 𝑚 atomların kütlesi, 𝛿(𝑥)  

Dirac-Delta fonksiyonu, g bozonlar arası etkileşim parametresini olarak tanımlanır. 

Bozonlar arası etkin etkileşim deneysel olarak değiştirilebilen saçılma uzunluğu 𝑎𝑠 ile 

karakterize edilir. Bu bağlamda, iki parçacık arasındaki potansiyel yerine geçecek 

biçimde etkin potansiyel yaklaşımı kullanılmaktadır.  

İkinci kuantizasyon formalizmindeki operatörlerin genel formu, yaratma ve yok 

etme operatörleri cinsinden ifade edilir.  Çok parçacıklı Hamiltonyeni oluşturmak için, 

özellikle konum gösterimi kullanmak faydalıdır. Konum gösterimindeki kuantum alan 

operatörleri 𝛹̂(x)  ve 𝛹̂†(x) sisteme sırası ile, 𝑥 konumunda bozon ekler veya çıkarır. Bir 
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dış potansiyelin varlığında ve ikinci kuantizasyonda Hamiltonyen bozonik alan 

operatörleri cinsinden 

  𝐻̂ =  ∫ 𝑑 𝑥𝛹̂†(x) (−
ℏ2

2𝑚
𝛻2 + 𝑉(x)) 𝛹̂(x)  + 

𝑔

2
∫𝑑 𝑥 𝛹̂†(x)𝛹̂†(x)𝛹̂(x)𝛹̂(x)   (3.37) 

ile ifade edilir [37]. Alan operatörlerinin Wannier fonksiyonları cinsinden seriye açılımı 

𝛹̂(x) =  ∑ 𝑎̂𝑖,𝑛𝑖,𝑛 𝜔𝑛(x-x𝑖)      (3.38)  

𝛹̂†(𝑥) = ∑ 𝑎̂𝑖,𝑛
†

𝑖,𝑛 𝜔𝑛
∗(x-x𝑖)      (3.39) 

Düşük enerjilerde ve yeterince derin optik kafeslerde atomların en alt Bloch 

bandında bulunduğu varsayılır. J, U ve 𝜀𝑖 parametreleri Eş. (3.40)-(3.42) ile verildiği 

taktirde Eş. (3.37), Eş. (3.33)’e dönüşür [37]: 

𝐽 =  −∫𝑑 𝑥 𝜔0(x) (−
ℏ2

2𝑚
∇2 + 𝑉0𝑠𝑖𝑛

2(𝑘𝑙𝑥))𝜔0(x-𝑎)   (3.40) 

𝑈 = ∫ 𝑑 𝑥 𝑔 |𝜔0(𝑥)|
4      (3.41) 

𝜀𝑖 = ∫ 𝑑 𝑥 |𝜔0(x-x𝑖)|
2𝑉(x-x𝑖)     (3.42)  

Wannier fonksiyonlarının bir noktada lokalize olduğu derin optik örgülerde en yakın 

komşular dışındaki etkileşmeler ihmal edilir. Eşitlik (3.40), yalnızca i ve j kafes 

noktalarının birinci dereceden komşu olması durumunda sıfırdan farklıdır. Diğer 

durumlarda sıfırdır. Üçüncü terimde yer alan 𝜀𝑖 her örgü noktasında bulunan yerel 

potansiyel enerjiyi ifade eder ve bu enerji örgünün tuzak potansiyeli tarafından belirlenir. 

Bu yerel enerji kaymaları rastgele hale gelirse, yani örgü noktalarındaki yerel enerji 

seviyelerinde düzensizlikler olursa, bu durum sistemde düzensizlik etkilerinin 

incelenmesi de olanak tanır [13, 18, 35]. 

 

3.4.2. Süperakışkan-Mott yalıtkan fazı 

Bose-Hubbard modelinde tanımlanan kuantum faz geçişlerinden biri, süper akışkan 

faz ile Mott yalıtkanı fazı arasındaki geçiştir. Potansiyelin derinliği arttıkça süper akışkan 

fazından Mott yalıtkan fazına geçiş olur. Potansiyelin derinliği az iken kinetik enerji 

baskın, yani J≫U olur. Komşu örgü noktaları arası tünelleme, parçacıklar arasındaki 

etkileşim enerjisini bastırarak süper akışkan özelliklerin ortaya çıkmasına neden olur. Bu 

durumda, atomlar tüm örgü boyunca delokalizedir ve sistem zayıf etkileşimli bir Bose 
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gazı gibi davranır. Etkileşim enerjisinin baskın olduğu durumda (J≪U), parçacıklar 

lokalize olur ve sistem, Mott yalıtkan fazına geçiş yapar. Mott yalıtkan fazında her örgü 

noktasında sabit bir parçacık sayısı bulunur. Bu iki rejim arasındaki geçiş kinetik enerji 

ile etkileşim enerjisi arasındaki rekabetin sonucudur. Kinetik enerji parçacıkları 

delokalize etmeye çalışırken, etkileşim enerjisi, atomları belirli noktalarda lokalize edip 

sayı dalgalanmalarını minimalize etmeye çalışır [1, 2, 11, 14-16, 38]. 

Süperakışkan faz, optik örgü derinliği az olduğunda gerçekleşir. Neredeyse tüm 

atomlar aynı tek parçacık durumunda bulunur. Bu fazda sistemin Hamiltonyeni diğer 

terimlerin ihmali ile 

𝐻̂ =  −𝐽 ∑ (𝑎̂𝑖
†

〈𝑖𝑗〉 𝑎̂𝑗)      (3.43) 

bulunur. Sistemin durumu makroskopik dalga fonksiyonu ile ifade edilebilir. Bu fazda 

sistemin taban durumu [11, 20, 21]: 

|𝛹𝑆𝐹⟩ =
1

√𝑁!
(𝑏̂0
†)
𝑁
|0⟩                 (3.44) 

N toplam parçacık sayısı, |0 > boşluğun kuantum durumu, 𝑏̂𝑞
† =

1

√𝑀
∑ 𝑎̂i

†𝑒𝑖𝑞𝑥𝑖𝑖  operatörü 

q kuazi-momentumuna sahip bir atomu yaratma operatörü, M ise toplam örgü nokta 

sayısıdır. Çok parçacıklı taban durumu büyük ölçüde özdeş tek parçacıklı dalga 

fonksiyonlarının çarpımı gibi olduğu için sistem, iyi tanımlanmış bir faz açısına sahiptir. 

Korelasyon fonksiyonu  

                                                     𝜌𝑖,𝑗 = 〈𝑎̂j
†𝑎̂i〉        (3.45) 

ile ifade edilir. Süper akışkan fazında bu korelasyon fonksiyonu 𝑖 ve 𝑗 durumları 

arasındaki mesafeden bağımsız olup mutlak değeri |𝜌𝑖,𝑗| = 𝑁/𝑀 ile bulunur. Parçacık 

sayısındaki dalgalanmalar ise (Δ𝑛)2 = 𝑁/𝑀 ifadesi ile toplam parçacık sayısı 𝑁 ve örgü 

sayısı 𝑀’ye bağlıdır. 

Bozonlar arası etkileşim arttıkça bir atomun bir örgü noktasından diğerine 

tünelleme yapabilmesi için gereken ortalama kinetik enerji etkileşme enerjisini aşmakta 

yetersiz kalır. Sonuç olarak atomlar bireysel örgü noktalarında lokalize olur ve parçacık 

sayısındaki dalgalanmalar baskılanır. Sistemin Hamiltonyeni diğer terimlerin ihmali ile 

𝐻̂ =  
𝑈

2
 ∑ 𝑎̂𝑖

†𝑎̂𝑖
†𝑎̂𝑖𝑎̂𝑖𝑖     (3.46) 
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Şekil 3.3: Süperakışkan ve Mott yalıtkan fazları. (a) Süperakışkan fazda, tünelleme baskın olduğu için 

atomlar optik örgü içerisinde lokalize olmayıp kolektif biçimde hareket ederler. (b) Mott yalıtkan 

fazında, etkileşim enerjisi baskın hale gelir; her örgü noktasında sabit sayıda atom bulunur ve 

parçacıklar lokalizedir.  

bulunur. Mott yalıtkan fazı olarak adlandırılan bu fazda parçacıkların birbirinden uzak 

durması ile enerji minimum olur. 𝑁 = 𝑀 durumunda ve her bir parçacığın kendi örgü 

noktasında bulunması ile en düşük etkileşme enerjisi elde edilir. Dalga fonksiyonu, her 

örgü noktasında tek sayıda atom içeren lokalize atomik dalga fonksiyonlarından oluşur. 

Taban durumu dalga fonksiyonu 

|𝛹MI⟩ = ∏
1

√𝑁!𝑖 (𝑎̂𝑖
†)
𝑁
|0⟩     (3.47) 

olur. 𝑛̅ = 𝑁/𝑀 örgü noktası başına ortalama parçacık sayısıdır. Mott yalıtkan fazındaki 

en düşük enerjili uyarılmalar, her sistemin toplam parçacık sayısını koruyan parçacık-

delik uyarılmalıdır. Bu tür bir uyarılmada: bir parçacık bir kafes noktasından çıkarılır 

(delik yaratılır), başka bir kafes noktasına eklenir (fazdan parçacık yaratılır). 

Süperakışkan fazında enerji spektrumunda bir aralık (gap) bulunmamakla birlikte, Mott 

yalıtkan fazında spektrumda aralık bulunur. Bu süreç Mott fazını karakterize eden bir 

enerji aralığı ile ifade edilir. Bu enerji aralığı parçacık delik çifti yaratmak için gereken 

minimum enerjiye karşılık gelir [3, 36]. Bu fazda 𝑖 ≠ 𝑗 için  𝜌𝑖,𝑗 = 0 ve parçacık sayısı 

dalgalanmaları (Δ𝑛)2 = 0 bulunur. 
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4. ÜÇ KUYULU OPTİK ÖRGÜLERDE FAZ GEÇİŞLERİ 

Üç kuyulu optik örgü potansiyelleri optik örgü çalışmalarında ayrı bir yere sahiptir. 

Bu potansiyeller ile ilgili literatürde çok sayıda çalışma bulunmaktadır [22-32]. Özellikle 

farklı derinliklere sahip kuyulardan oluşan potansiyeller kuantum sensörlerinin ve 

atomtronik cihazların gelişiminde önemli bir yere sahiptir [26, 27]. Üç kuyulu bir 

potansiyelin Hamiltonyeninin hangi koşullar altında integre edilebilir olduğu ve sistemin 

dinamiği bu alanda çalışılan önemli problemlerdendir [26]. Krom ve disprosiyum gibi 

gazlar bu tür optik örgüde tuzaklandığında, dipolar etkileşimlerin göz önünde 

bulundurulması gerekir [28, 29]. Bu gazlarda dipolar etkileşimlerin izotropik olmama 

özelliğinin sistemin faz diyagramını önemli ölçüde etkilediği bulunmuştur [29].  Kuyular 

arası  tünelleme genliklerinin özdeş olmadığı durumlarda tünellemenin baskılandığı 

ortalama alan yaklaşımı kullanılarak gösterilmiştir [30]. Tünelleme genliğinin zamanla 

sinüsoidal olarak değiştiği üç kuyulu optik örgü potansiyelleri incelenen diğer 

problemlerdendir [30, 31].  

Bu bölümde lineer konfigürasyona sahip üç potansiyel kuyulu Bose-Hubbard 

modeli ele alındı. Böyle bir sistemde başlangıçta tüm atomlar uçtaki kuyulardan birinde, 

son halde ise diğer uçtaki kuyuda bulunur. Ortadaki kuyuda atom popülasyonu ihmal 

edilebilir. Optik örgü şiddeti yeterince büyük olduğunda, atomlar en düşük Bloch 

bandında bulunur ve tek bant yaklaşımı uygulanabilir.  Sadece en yakın komşular arası 

tünelleme olduğu varsayılırsa sistemin Hamiltonyeni: 

𝐻̂ = −𝐽12(𝑎̂1
†𝑎̂2 + 𝑎̂2

†𝑎̂1) − 𝐽23(𝑎̂2
†𝑎̂3 + 𝑎̂3

†𝑎̂2) +
𝑈

2
∑ 𝑎̂𝑖

†𝑎̂𝑖
†𝑎̂𝑖𝑎̂𝑖

3
𝑖=1 + ∑ 𝜀𝑖𝑎̂𝑖

†𝑎̂𝑖
3
𝑖=1      (4.1) 

 

 

 

 

 

𝐽12, 1 ve 2 numaralı kuyular arasında,  𝐽23 ise 2 ve 3 numaralı kuyular arasındaki 

geçiş genliği gösterir. Sistemde toplam parçacık sayısı korunumlu bir niceliktir ve her bir 

kuyuya karşılık gelen sayı operatörü 𝑛̂𝑖 = 𝑎̂𝑖
†𝑎̂𝑖 olur. 𝜀𝑖 terimi üç kuyunun da farklı 

derinliğe sahip olduğunu gösterir. Böyle bir sistem Şekil 4.1’de gösterilmiştir.   

Şekil 4.1: Üç kuyulu Bose-Hubbard modeli. 
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4.1. Dönen Üç Kuyulu Optik Örgüde Bose-Hubbard Modeli 

Bu bölümde süperakışkan ve Mott yalıtkan fazlarına örnek olarak dönen bir Bose- 

Hubbard modeli incelendi. Dönen bir Bose-Hubbard modelinde, dönme sistemde bir 

manyetik akı tanımını gerekli kılar. Tünelleme terimindeki faz çarpanı uygulanan bu 

manyetik akı Φ’nin veya akı ile orantılı Ω frekansının dönen sistem üzerine etkisini 

gösterir. Birinci ve üçüncü kuyular arasında da tünelleme olduğu ve her üç kuyunun da 

derinliklerinin farklı olduğu kabul edilirse, öyle bir sistemde Hamiltonyen [32] 

𝐻̂ = ∑ [−𝐽(𝑒𝑖Φ 3⁄ 𝑎̂𝑖+1
† 𝑎̂𝑖 + 𝑒

−𝑖Φ 3⁄ 𝑎̂𝑖
†𝑎̂𝑖+1) +

𝑈

2
𝑎̂𝑖
†𝑎̂𝑖
†𝑎̂𝑖𝑎̂𝑖]

3
𝑖=1 + 𝜀(𝑎̂3

†𝑎̂3 − 𝑎̂1
†𝑎̂1)       (4.2) 

olur. Bu Bose-Hubbard modeli Şekil 4.2’de gösterilmektedir.  Kuyular arası tünelleme 

genliği sabit olsun ( 𝐽12 = 𝐽23 = 𝐽13 = 𝐽). Bu durumda Hamiltonyen 

 𝐻̂ = −𝐽𝑒𝑖Φ 3⁄ 𝑎̂2
†𝑎̂1 − 𝐽𝑒

𝑖Φ 3⁄ 𝑎̂3
†𝑎̂2 − 𝐽𝑒

𝑖Φ 3⁄ 𝑎̂1
†𝑎̂3 − 𝐽𝑒

−𝑖Φ 3⁄ 𝑎̂1
†𝑎̂2 −

                     𝐽𝑒−𝑖Φ 3⁄ 𝑎̂3
†𝑎̂1 −   𝐽𝑒

−𝑖Φ 3⁄ 𝑎̂2
†𝑎̂3 +

𝑈

2
(𝑎̂1
†𝑎̂1
†𝑎̂1𝑎̂1 + 𝑎̂2

†𝑎̂2
†𝑎̂2𝑎̂2 + 𝑎̂3

†𝑎̂3
†𝑎̂3𝑎̂3) +

                   𝜀(𝑎̂3
†𝑎̂3 − 𝑎̂1

†𝑎̂1)                    (4.3) 

 

 

 

 

  

 

olmaktadır. Akımın beklenen değeri Hamiltonyen operatörünün akı ile değişimine 

bağlıdır: 

〈𝐼〉 = ⟨𝑛|
𝜕𝐻̂

𝜕𝛷
|𝑛⟩           (4.4) 

 

 

 

 

Şekil 4.2: Üç kuyulu Bose-Hubbard modeli. Her üç kuyu arasında tünelleme 

olup, kuyular farklı derinliktedir.  
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Akımın özdeğerler ile değişimi Şekil 4.3’deki grafiklerde verilmiştir. Akımın 

beklenen değeri MATLAB programı ile nümerik olarak hesaplandı. Grafiklerin çiziminde 

𝑁 = 30, Φ = 0,8𝜋, 𝜀 = 1, 𝐽 = 0,5 değerleri sabit olmakla birlikte, bozonlar arası 

etkileşim 𝑢 =  𝑈𝑁/𝐽 = 0,2; 2; 20 ve 20000 olacak şekilde değiştirildi. Parçacıklar arası 

etkileşimlerin sıfır olduğu durumda (𝑢 = 𝑈𝑁/𝐽 = 0), akım Hamiltonyen ile komüte 

eder. Bu durumda her özdurum sıfırdan farklı bir akım değerine sahip olur ve sistem 

süperakışkan fazdadır. Parçacıklar arası etkileşimler arttıkça özdurumlar akımın sıfır 

olduğu bir çizgi etrafında toplanır. 𝑢 = 20000 değeri parçacıklar arası etkileşimlerin 

oldukça yüksek olduğu bir durumdur. Bu durumu temsil eden grafik Şekil 4.3-d’de 

görülmektedir. Şekilden tüm özdurumlar için akımın sıfıra gittiği anlaşılmaktadır. 

Dolayısıyla atomlar arası etkileşimlerin yüksek olduğunda akım sıfırdır. Akımın sıfır 

olduğu an, sistemin süperakışkan fazdan Mott yalıtkan fazına geçiş yaptığı andır.  

Şekil 4.3: Akımın özdeğerler ile değişimi.  𝑁 = 30, 𝛷 = 0,8𝜋, 𝜀 = 1 , 𝐽 = 0,5 ve (a) 𝑢 = 0,2 

(b) u=2 (c) u=20  (d) u=20000. Parçacıklar arası etkileşim arttıkça akım sıfıra 

gitmektedir. 
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4.2. Dipolar Atomlarla Bose-Hubbard Modeli 

Bu bölümde optik örgüde dipolar atomların tuzaklandığı üç kuyulu bir Bose-

Hubbard modeli ele alındı. Eşitlik (4.5) ile verilen Hamiltonyen, bozonlar arası dipol-

dipol etkileşimlerini ve komşu örgü noktaları arasındaki tünellemeyi içermektedir. Böyle 

bir sistem için, büyük dipol momente sahip krom veya disprosyum gibi atomlar 

kullanılabilir. Sistemin Hamiltonyeni [28, 29]:  

𝐻̂ =  −𝐽12(𝑎̂1
†𝑎̂2 + 𝑎̂1𝑎̂2

†) − 𝐽23(𝑎̂2
†𝑎̂3 + 𝑎̂2𝑎̂3

†) +
𝑈0

2
∑ 𝑎̂𝑖

†𝑎̂𝑖
†𝑎̂𝑖𝑎̂𝑖 +

3
𝑖=1

                     +∑ ∑
𝑈𝑖𝑗

2

3
𝑗=1;𝑗≠𝑖

3
𝑖=1 𝑎̂𝑖

†𝑎̂𝑗
†𝑎̂𝑖𝑎̂𝑗                          (4.5) 

𝑈0 terimi bozonlar arası temas etkileşimlerini ve dipol-dipol etkileşimleri içerir. Her iki 

tür etkileşim de itici veya çekici olabilir (Şekil 4.4).  Bu etkileşim aşağıdaki ifade ile 

verilir [28, 29]: 

𝑈0 = 𝑔∫𝑑
3 𝑟 |𝛹𝑖(𝑟 )|

4 + ∫𝑑3𝑟  𝑑3𝑟 ′ |𝛹𝑖(𝑟 )|
2𝑉𝐷(|𝑟 − 𝑟 ′, 𝜃|)|𝛹𝑖(𝑟 ′)|

2     (4.6) 

𝑉𝐷(|𝑟 − 𝑟 ′, 𝜃|) = 𝑑
2 (1 − 3 𝑐𝑜𝑠2 𝜃) |𝑟 − 𝑟 ′|3⁄  bozonlar arası dipolar etkileşmedir.    

𝑑2 = 𝜇0𝜇𝑚
2 4𝜋⁄  (veya 𝑑2 = 𝜇𝑒

2 4𝜋𝜀0⁄ ) olup 𝜇𝑚(𝜇𝑒) manyetik (elektrik) dipol moment, 𝜃 

polarizasyon yönü ile dipoller arası bağıl uzaklığın arasındaki açıdır. 𝑈𝑖𝑗 terimi ise farklı 

örgü noktaları arası dipolar etkileşimleri ifade eder: 

𝑈𝑖𝑗 = ∫𝑑
3𝑟  𝑑3𝑟 ′ |𝛹𝑖(𝑟 )|

2𝑑2
(1−3𝑐𝑜𝑠2 𝜃)

|𝑟 −𝑟 ′|3
|𝛹𝑗(𝑟 ′)|

2
       (4.7) 

 

 

 

 

 

𝑁2 = (𝑛̂1
2 + 𝑛̂2

2 + 𝑛̂3
2) + 2𝑛̂1𝑛̂2 + 2𝑛̂1𝑛̂3 + 2𝑛̂2𝑛̂3 eşitliği kullanılarak Eş. (4.5) tekrar 

yazılabilir [28, 29]: 

        𝐻̂ =  
𝑈0

2
(𝑁2 −𝑁) + (𝑈12 − 𝑈0)𝑛̂1𝑛̂2 + (𝑈13 − 𝑈0)𝑛̂1𝑛̂3 + (𝑈23 − 𝑈0)𝑛̂2𝑛̂3 −

                  𝐽12(𝑎̂1
†𝑎̂2 + 𝑎̂1𝑎̂2

†) − 𝐽23(𝑎̂2
†𝑎̂3 + 𝑎̂2𝑎̂3

†)               (4.8) 

Şekil 4.4: Dipollerin yönelimi (a) İki dipolün yönelimi (b) İki dipolün yan yana 

dizilimi (itici etkileşim) (c) İki dipolün uç uça dizilimi (çekici etkileşim) 
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4 ≤ 𝛼 ≤ 8 aralığında, 𝑈12 = 𝑈23 = 𝛼𝑈13 ve 𝑈13 = 𝑈0 kabulü ile Eş. (4.8) analitik olarak 

çözülebilir [28, 29]. Bu koşullar altında Hamiltonyen Eş. (4.9)’a dönüşür: 

𝐻̂ =  
𝑈0

2
(𝑁2 −𝑁) + (𝛼 − 1)𝑈0𝑛̂2(𝑛̂1 + 𝑛̂3) − 𝐽12(𝑎̂1

†𝑎̂2 + 𝑎̂1𝑎̂2
†) − 𝐽23(𝑎̂2

†𝑎̂3 + 𝑎̂2𝑎̂3
†)   

                                    (4.9) 

Eşitlik (4.9) ile verilen Hamiltonyenin indirgenmiş formu: 

𝐻̂0 = −𝐻̂ + (1 + 𝛼)𝑈0𝑁
2/4 − 𝑈0𝑁/2     (4.10) 

           𝐻̂0 = 𝑈(𝑛̂1 − 𝑛̂2 + 𝑛̂3)
2 + 𝐽12(𝑎̂1

†𝑎̂2 + 𝑎̂1𝑎̂2
†) + 𝐽23(𝑎̂2

†𝑎̂3 + 𝑎̂2𝑎̂3
†)   (4.11) 

olduğu görülmektedir. Eşitlik (4.11)’de  𝑈 = (𝛼 − 1)𝑈0 4⁄  eşitliği kullanıldı.  

Birinci ve üçüncü kuyulara eşit dış alan uygulandığında, oluşan üç kuyulu sistem 

Şekil 4.5’te gösterilmektedir. Bu durumda 𝜀(𝑛̂3 − 𝑛̂1) terimi, Eş. (4.11) ile verilen 

Hamiltonyene eklenir: 

        𝐻̂0 = 𝑈(𝑛̂1 − 𝑛̂2 + 𝑛̂3)
2 + 𝐽12(𝑎̂1

†𝑎̂2 + 𝑎̂1𝑎̂2
†) + 𝐽23(𝑎̂2

†𝑎̂3 + 𝑎̂2𝑎̂3
†) + 𝜀(𝑛̂3 − 𝑛̂1)      

                                                                                                                                    (4.12) 

 

 

 

 

 

 

Eşitlik (4.12) ile verilen Hamiltonyen aşağıdaki durumlarda integre edilebilirdir 

[26]: 

i) 𝑈 = 0, 𝜀 ≠ 0, 𝐽12 = 𝐽23 ≠ 0   

ii) 𝐽12 = 𝐽23 = 0, 𝑈 ≠ 0, 𝜀 ≠ 0   

iii) 𝜀 = 0, 𝑈 ≠ 0, 𝐽12 = 𝐽23 ≠ 0   

İkinci dereceden kuantum faz geçişlerini gösteren iki integrallenebilir sınır vardır. 

Tünelleme genliği sıfır alınarak, bozonlar arasındaki etkileşim kuvveti 𝑈, 𝜀’a göre 

değiştirilir. İkinci durumda, 𝜀 = 0 iken 𝑈, 𝐽12 (𝐽23)’ye göre değiştirilir. Farklı fazlar, 

Şekil 4.5: Üç kuyulu Bose-Hubbard modeli. Bozonların en yakın kuyular arası 

tünelleme yaptığı ve kuyu derinliklerinin farklı olduğu kabul 

edilmiştir. 
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kuyuları işgal eden bozon sayıları ile karakterizedir. Üç parametrenin de sıfırdan farklı 

olduğu (𝑈 ≠ 0, 𝐽12 = 𝐽23 ≠ 0, 𝜀 ≠ 0) integre edilemeyen durumlarda sistem çapraz 

geçişler sergiler. Bu durumunda Hamiltonyenin nümerik çözümleri yapılabilir.  

İki ve üç kuyulu potansiyellerde ortalama alan yaklaşımı uygulanabilen bir 

yaklaşım olduğu bilinmektedir [22]. Sistemdeki 𝑁 bozon sayısı yeterince büyük 

olduğunda Eş. (4.13) ile ortalama alan yaklaşımı kullanmak uygundur [30]:  

𝛹𝑛 = 〈𝑎̂𝑛〉 √𝑁⁄   (n=1,2,3)   (4.13)  

Ortalama alan yaklaşımında verilen Hamiltonyen 𝐻𝑚𝑓 = 〈𝐻〉 𝑁⁄  denklemiyle 

 𝐻𝑚𝑓 = 𝐽12(𝛹1
∗𝛹2 +𝛹1𝛹2

∗) + 𝐽23(𝛹2
∗𝛹3 +𝛹3𝛹2

∗) +  𝛤(𝛹1𝛹1
∗ −𝛹2𝛹2

∗ +

                           𝛹3𝛹3
∗)2 + 𝜀(𝛹3𝛹3

∗ −𝛹1𝛹1
∗)        (4.14) 

bulunur. Eşitlik (4.14)’de Γ = 𝑁𝑈 ‘dur. Ortalama alan yaklaşımı, 𝑁 → ∞ ve 𝑈 → 0 ancak 

Γ = 𝑁𝑈 ifadesinin sabit olduğu anlamına gelir. Ortalama alan yaklaşımında 

     𝑖
𝜕𝛹𝑛

𝜕𝑡
=
𝜕𝐻𝑚𝑓

𝜕𝛹𝑛
∗        (4.15) 

eşitliği ile birbirine ve zamana bağlı üç ifade elde edilir: 

𝑖
𝑑𝛹1

𝑑𝑡
= 2Γ(𝛹1𝛹1

∗ −𝛹2𝛹2
∗ +𝛹3𝛹3

∗)𝛹1 + 𝐽12𝛹2 − 𝜀𝛹1  

𝑖
𝑑𝛹2

𝑑𝑡
= −2Γ(𝛹1𝛹1

∗ − 𝛹2𝛹2
∗ +𝛹3𝛹3

∗)𝛹2 + 𝐽12𝛹1 + 𝐽23𝛹3                (4.16) 

  𝑖
𝑑𝛹3

𝑑𝑡
= 2Γ(𝛹1𝛹1

∗ −𝛹2𝛹2
∗ +𝛹3𝛹3

∗)𝛹3 + 𝐽23𝛹2 + 𝜀𝛹3  

𝐽12 𝐽 =⁄ 𝐽23 𝐽⁄ = 1 √2⁄  ve 𝐽𝑡 → 𝑡 dönüşümü ile Eş. (4.16) 

 
𝑑𝛹1

𝑑𝑡
= −2𝑖

Γ

𝐽
(|𝛹1|

2 − |𝛹2|
2 + |𝛹3|

2)𝛹1 −
𝑖

√2
𝛹2 + 𝑖

𝜀

𝐽
𝛹1  

 
𝑑𝛹2

𝑑𝑡
= 2𝑖

Γ

𝐽
(|𝛹1|

2 − |𝛹2|
2 + |𝛹3|

2)𝛹2 −
𝑖

√2
𝛹1 −

𝑖

√2
𝛹3               (4.17) 

               
𝑑𝛹3

𝑑𝑡
= −2𝑖

Γ

𝐽
(|𝛹1|

2 − |𝛹2|
2 + |𝛹3|

2)𝛹3 −
𝑖

√2
𝛹2 − 𝑖

𝜀

𝐽
𝛹3  

halini alır. Eşitlik (4.17)’nin çözümü nümerik olarak yapılır. 𝑛1(𝑡) = |𝛹1(𝑡)|
2, 

𝑛2(𝑡) = |𝛹2(𝑡)|
2, 𝑛3(𝑡) = |𝛹3(𝑡)|

2 sırasıyla birinci, ikinci ve üçüncü kuyulardaki 

parçacık sayılarını ifade eder. Başlangıç koşulları 𝛹1(0) = 200, 𝛹2(0) = 0,𝛹3(0) = 0 
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alınarak elde edilen 𝑛(𝑡) ∝ 𝑡 grafikleri Şekil 4.6-4.8’de verilmiştir. Nümerik çözümler 

için Runge-Kutta metodu ve MATLAB programı kullanıldı.  

Şekil 4.6’da Γ 𝐽⁄ = 0 ve ε 𝐽⁄ = 0,1 için her üç kuyuya ait bağıl parçacık sayılarının 

zamanla değişimi çizilmiştir. Parçacıklar arası etkileşimlerin sıfır olduğu bu durumda 

sistem süperakışkan fazdadır. Her üç kuyudaki parçacık sayıları periyodik olarak 

değişmektedir. Şekil 4.7’de bozonlar arası etkileşme arttırılarak  Γ 𝐽⁄ = 0,001ve ε 𝐽⁄ =

0,1 değerleri için parçacık sayılarının zamanla değişimi çizilmiştir. Bu parametre 

değerlerinde her üç kuyuda da parçacık sayılarının yaklaşık periyodik salınımlar yaptığı 

görülmektedir. Şekil 4.8 ise atomlar arası etkileşimlerin daha da arttırıldığı durumu 

göstermektedir. Γ 𝐽⁄ = 0,05 ve ε 𝐽⁄ = 0,1 için çizilen bu grafiğe göre, kuyular arası bozon 

geçişi olmamakta, kuyulardaki bozon sayıları başlangıç koşullarındaki değerleri 

korumaktadır. Artan bozonlar arası etkileşimlerin tünellemeyi baskıladığı bu faz Mott 

yalıtkan fazına karşılık gelmektedir. 
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Şekil 4.6: 𝛤 𝐽⁄ = 0; 𝜀 𝐽⁄ = 0,1. Parçacık sayılarının zamanla değişimi. Parçacıklar 

                 kuyular arası sürekli tünelleme yapmaktadır. Bu durum süper akışkan faza  

                 karşılık gelir. 
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Şekil 4.7: 𝛤 𝐽⁄ = 0.001, 𝜀 𝐽⁄ = 0,1. Parçacık sayılarının zamanla değişimi. Kuyulardaki parçacık        

sayıları periyodik olarak değişmektedir. 
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Şekil 4.8: Γ 𝐽⁄ = 0,05; 𝜀 𝐽⁄ = 0,1. Parçacık sayılarının zamanla değişimi.  Parçacıklar 

arası etkileşme arttığından dolayı kuyular arası tünelleme azalır. Bu durum 

Mott yalıtkan fazına karşılık gelir. 
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4.3. Zamana Bağlı Tünelleme Genlikleri 

Dipolar atomlardan oluşan üç kuyulu Bose-Hubbard modelinde tünelleme 

genlikleri aşağıdaki gibi zamana bağlı olsun [23, 31]:  

𝐽12(𝑡) = Ω𝑠𝑖𝑛
2(𝜋𝑡 2𝑡𝑝⁄ )                 (4.18) 

𝐽23(𝑡) = Ω𝑐𝑜𝑠
2(𝜋𝑡 2𝑡𝑝⁄ )  

𝑡 zamanı 0 < 𝑡 < 𝑡𝑝 aralığında olup, 𝑡𝑝 = 400 Ω⁄ . Bu durumda üç kuyulu sistemin 

Hamiltonyeni 

𝐻̂0 = 𝑈(𝑛̂1 − 𝑛̂2 + 𝑛̂3)
2 + 𝐽12(𝑡)(𝑎̂1

†𝑎̂2 + 𝑎̂1𝑎̂2
†) + 𝐽23(𝑡)(𝑎̂2

†𝑎̂3 + 𝑎̂2𝑎̂3
†) + 𝜀(𝑛̂3 − 𝑛̂1) 

              (4.19) 

olur. Ortalama alan yaklaşımında ise 

 𝐻𝑚𝑓 = 𝐽12(𝑡)(𝛹1
∗𝛹2 +𝛹1𝛹2

∗) + 𝐽23(𝑡)(𝛹2
∗𝛹3 +𝛹3𝛹2

∗) + Γ(𝛹1𝛹1
∗ −𝛹2𝛹2

∗ +

                         𝛹3𝛹3
∗)2 + 𝜀(𝛹3𝛹3

∗ −𝛹1𝛹1
∗)        (4.20) 

Ortalama alan yaklaşımı ve Eş. (4.15) ile aşağıdaki eşitlikler elde edilir: 

  𝑖
𝑑𝛹1

𝑑𝑡
= 2Γ(𝛹1𝛹1

∗ −𝛹2𝛹2
∗ + 𝛹3𝛹3

∗)𝛹1 + 𝐽12(𝑡)𝛹2 − 𝜀𝛹1  

  𝑖
𝑑𝛹2

𝑑𝑡
= −2Γ(𝛹1𝛹1

∗ −𝛹2𝛹2
∗ +𝛹3𝛹3

∗)𝛹2 + 𝐽12(𝑡)𝛹1 + 𝐽23(𝑡)𝛹3      (4.21) 

            𝑖
𝑑𝛹3

𝑑𝑡
= 2Γ(𝛹1𝛹1

∗ −𝛹2𝛹2
∗ +𝛹3𝛹3

∗)𝛹3 + 𝐽23(𝑡)𝛹2 + 𝜀𝛹3  

Ω𝑡 → 𝑡 dönüşümü sonucu  

 
𝑑𝛹1

𝑑𝑡
= −2𝑖

Γ

𝛺
(|𝛹1|

2 − |𝛹2|
2 + |𝛹3|

2)𝛹1 − 𝑖 𝑠𝑖𝑛
2 (

𝜋𝑡

2𝑡𝑝
)𝛹2 + 𝑖

𝜀

𝛺
𝛹1  

 
𝑑𝛹2

𝑑𝑡
= 2𝑖

Γ

𝛺
(|𝛹1|

2 − |𝛹2|
2 + |𝛹3|

2)𝛹2 − 𝑖 𝑠𝑖𝑛
2 (

𝜋𝑡

2𝑡𝑝
)𝛹1 − 𝑖 𝑐𝑜𝑠

2 (
𝜋𝑡

2𝑡𝑝
)𝛹3  (4.22) 

 
𝑑𝛹3

𝑑𝑡
= −2𝑖

Γ

𝛺
(|𝛹1|

2 − |𝛹2|
2 + |𝛹3|

2)𝛹3 − 𝑖 𝑐𝑜𝑠
2 (

𝜋𝑡

2𝑡𝑝
)𝛹2 − 𝑖

𝜀

𝛺
𝛹3  

bulunur. Eşitlik (4.22)’nin nümerik çözümleri, 𝛹1(0) = 200, 𝛹2(0) = 0,𝛹3(0) = 0 

başlangıç koşulları ile Runge Kutta metodu kullanılarak elde edilmiştir. Şekil 4.9’da 

bozonlar arası etkileşimlerin sıfır olduğu  Γ 𝐽⁄ = 0, ε 𝐽⁄ = 0,1 durumda kuyulardaki bağıl 

parçacık sayılarının zamanla değişimi çizilmiştir. Bu durumda sadece birinci ve üçüncü 
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kuyularda parçacık alışverişi olmakta ve kuyulardaki parçacık sayıları periyodik olarak 

değişmektedir. İkinci kuyuda parçacık sayısının yaklaşık sıfır olduğu görülmektedir. 

Şekil 4.10, bozonlar arası etkileşimlerin arttırıldığı Γ 𝐽⁄ = 0,001 ve  ε 𝐽⁄ = 0,1 

değerlerinde parçacık sayısı değişimlerini göstermektedir. Sonuçlar etkileşimin sıfır 

olduğu duruma benzemektedir. Etkileşimler arttırıldığında Mott yalıtkan fazı oluşur. Bu 

faza geçiş Şekil 4.11’de görülmektedir. Bu şekilde yer alan grafikler Γ 𝐽⁄ = 0,05 ve ε 𝐽⁄ = 

0,1 için çizilmiştir. Kuyular arası tünelleme olmamakta ve parçacık sayıları başlangıçtaki 

değerlerini korumaktadır. 
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Şekil 4.9: 𝛤 𝐽⁄ = 0; 𝜀 𝐽⁄ = 0,1. Parçacık sayılarının zamanla değişimi. Tünelleme 

sıfıra gittiği için süperakışkan fazı oluşur. 
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Şekil 4.10: 𝛤 𝐽⁄ = 0,001;, 𝜀 𝐽⁄ = 0,1. Parçacık sayılarının zamanla değişimi.  

Birinci ve ikinci kuyularda parçacık sayıları periyodik olarak 

değişirken, ikinci kuyuda parçacık bulunmamaktadır. 
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Şekil 4.11: Γ 𝐽⁄ = 0,05;, 𝜀 𝐽⁄ = 0,1. Parçacık sayılarının zamanla değişimi. Tünelleme azaldığından 

kuyulardaki parçacık sayısı değişmez. Mott yalıtkan fazı oluşur. 
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5. KÜBİTLER 

Optik örgülerin kuantum bilgisayarları için yeni bir platform olduğu ve hem 

kuantum simülasyonları hem de genel amaçlı kuantum bilgi işleme için oldukça umut 

vadettiği düşünülmektedir. Optik örgülerde tuzaklanan ultra-soğuk atomların kuantum 

teknolojileri için uygun olmasının nedenleri şöyle sıralanabilir: 

• Optik örgüde tutulan her bir atom bir kübit olarak tanımlanabilir. 

• Örgü geometrisi değiştirilebilen bir yapıya sahiptir. 

• Tünelleme ve atomlar arası etkileşimler hassas biçimde kontrol edilebilir. 

Bu tür kuantum simülasyonları, Hubbard modeli, spin zincirleri ve kuantum faz geçişleri 

gibi sistemlerin doğrudan modellenmesi için etkin bir deneysel platform sağlar [6, 7, 33]. 

Süperakışkan fazı ve Mott yalıtkan fazı arasındaki geçişler üzerine yapılan deneyler, optik 

örgülerdeki dolanıklığın gerçekleştirilmesi için önemli adımlar sunmaktadır [11, 34, 40, 

43].   

 

5.1. Kübit Nedir? 

Klasik bilgi işlem sistemlerinde temel bilgi birimi, yalnızca iki ayrık duruma (0 

veya 1) sahip olan bit ile tanımlanırken; kuantum bilgi işlemde bu rolü kuantum biti yani 

kübit üstlenmektedir. Kübit, bir kuantum sisteminin temel hali olan |0⟩ ve |1⟩ 

durumlarının lineer süperpozisyonu şeklinde ifade edilebilir: 

    |𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩                   (5.1) 

    |𝛼|2 + |𝛽|2 = 1        (5.2) 

Eşitlik (5.1) ve Eş. (5.2) de tanımlanan α ve β kompleks sayılardır. Buradaki tanım, 

kübitin aynı anda hem 0 hem 1 durumlarında bulunmasına olanak tanır ve kuantum 

paralel hesaplamanın temelini oluşturur [6]. Kübitlerin bir diğer ayırt edici özelliği 

dolanıklık olarak adlandırılan kuantum korelasyonlarıdır. İki veya daha fazla kübit 

dolanık hale geldiğinde, bir kübitin durumu diğerinden bağımsız olarak tanımlanamaz. 

Bu özellik kuantum hesaplamada paralellik ve kuantum iletişimde güvenlik açısından 

kritik bir rol oynar [34, 41, 43]. 

Kübitlerin fiziksel olarak gerçekleştirilmesi, çeşitli kuantum sistemlerinin kuantum 

durumlarını bilgi birimi olarak kullanmaya dayanır. En yaygın kübit türleri şöyledir (http-

1): 
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Süperiletken Kübitler: Josephson kavşakları kullanılarak oluşturulan bu yapılar, 

düşük sıcaklıklarda süperiletkenlik özelliklerinden yararlanır. Hızlı işlem ve bütünleşmiş 

devre mimarilerine uyumluluğu ile öne çıkar. 

Fotonik Kübitler: Fotonların polarizasyon veya faz durumları kullanılarak 

gerçekleştirilir. Gürültüye karşı dayanıklıdırlar ve uzun mesafeli kuantum iletişim için 

uygundurlar. Ancak fotonlar arası etkileşimlerin zayıf olması, kapı işlemlerini zorlaştırır. 

Spin Kübitleri: Elektron ya da çekirdek spinleri kullanılır. Katı hal sistemlerinde 

mikro ölçekli kontrol sağlarlar. Ancak çevresel manyetik gürültüye duyarlılık önemli bir 

zorluktur. 

Topolojik Kübitler: Majorana fermiyonları gibi topolojik kuazi-parçacıklar 

aracılığıyla hata toleranslı bilgi kodlama hedeflenir. Henüz deneysel olarak sınırlı 

doğrulamalar yapılmış olsa da teorik olarak büyük vaat taşır. 

Atomik Kübitler (Optik Kafeslerde): Ultra-soğuk atomlar, lazerle oluşturulan 

periyodik potansiyel kuyularında (optik kafes) tutulur. Atomların ince-yapı durumları 

kübit olarak kullanılır. Uzun koherens süreleri ve yüksek kontrol hassasiyeti ile öne çıkar. 

Quantum Nokta Kübitleri: Yarıiletken yapılar içinde sıkıştırılmış elektronlar 

kullanılır. Spin veya yük durumları bilgi taşır. Elektronik entegrasyon açısından önemli 

bir adaydır. 

Kübitlerin ölçülmesi, sistemin süperpozisyon halinden klasik bir duruma 

çökmesine neden olur. Ölçüm işlemi sonucu, sistem ya |0⟩ ya da |1⟩ durumuna indirgenir. 

Bu süreç, kuantum bilgiyi klasik bilgiye dönüştürürken beraberinde ölçüm sonrası 

bilginin geri alınamaz biçimde kaybolmasını da getirir [33, http-1]. 

Kübit kavramı, yalnızca kuantum bilgi birimi olarak değil; aynı zamanda kuantum 

mekaniğinin temel ilkelerinin teknolojik yansımalarının bir özeti olarak 

değerlendirilmelidir. Her fiziksel platform, belirli avantaj ve kısıtlamalarıyla birlikte 

kuantum hesaplamanın farklı yönlerini temsil etmektedir. Optik örgü sistemleri hem tekil 

atom kontrolü hem de faz geçişlerinin gözlemlenebilirliği sayesinde bu teknolojiler 

arasında öne çıkmaktadır [33, http-1]. 

 

5.2. Kuantum Hesaplama 

Klasik hesaplama metotları klasik yasalara dayanırken, kuantum hesaplama 

kuantum yasalarına ve özelliklede süperpozisyon ilkesine dayanır. Optik örgülerdeki ultra 

soğuk atomlar kuantum bilgi işlemi için iyi bir platform sunan birçok özelliğe sahiptir. 
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Bu özellikler arasında uzun koherans süreleri, ölçeklenebilirlik ve kuantum bitlerinin 

güvenilir kontrolü ve okunması yer almaktadır. Koherans süresi bir kuantum sisteminin 

süperpozisyon durumunu koruyabildiği süreyi ifade eder. Bu süre, kuantum bilgisayarlar, 

kuantum sensörler ve kuantum simülatörler için en önemli performans ölçütlerinden 

biridir. Her bir örgüde tuzaklanan atom bir kübiti temsil eder. Optik örgülerde kuantum 

hesaplamayı uygulamak için birçok teknik geliştirilmiştir. Bu bölümde optik kafeslerdeki 

tek ve çift kübit işlemlerinin nasıl gerçekleştirileceğine dair örneklere yer verilecektir 

[39]. 

 

5.2.1. Tek kübit işlemleri 

Optik örgülerde kuantum hesaplama için her bir örgü noktasında tek atomun 

bulunabildiği Mott yalıtkan fazı kullanımı uygundur. Bu fazda her bir örgüde tek atom 

bulunduğundan parçacık sayısındaki dalgalanmalar çok küçüktür. Mott yalıtkan fazındaki 

atomların kübit olarak kullanılabildiği ve çok sayıda parçacığın dolanık hale 

getirilebildiği deneysel olarak gösterilmiştir [42]. Kübitin, mantıksal durumları olan |0⟩ 

ve |1⟩, 𝑚𝐹=1 ve 𝑚𝐹 = −1 gibi iki aşırı ince yapı durumuna karşılık gelir. Bu iki durum 

arasındaki enerji kayması ℏ𝜔0 olsun. Bu enerji farkına karşılık gelen elektromanyetik 

atma uygulanarak, rastgele bir süperpozisyon 𝛼|0⟩ + 𝛽|1⟩ durumu oluşturulabilir. 𝛼 ve 

𝛽, uygulanan atmanın süresi ile kontrol edilen katsayılardır. Çevredeki kübitleri 

etkilemeden tek bir kübiti manipüle etmek için, bu kübitin kafesteki diğer kübitlere göre 

geçiş frekansını değiştirmek için teknikler kullanılabilir. Bu tür tek kübit işlemleri, optik 

örgülerdeki kuantum hesaplama teorisinin temelini oluşturur [39]. 

 

5.2.2. Çift kübit işlemleri 

İki atomik kübiti optik kafeste dolanık hale getirmenin yöntemlerinden biri 

çarpışmalı etkileşimdir. Mott yalıtkan fazında bulunan ve komşu örgü noktalarına 

hapsedilmiş iki atom, bu etkileşimlerin kontrolü ile dolanıklığa sokulabilir. Dolanık 

kübitler kuantum bilgisayarları için oldukça önemlidir. Ancak bu kübitlerin çevreden iyi 

şekilde yalıtılması gerekir. Maksimum süperpozisyon durumunda olan, komşu örgü 

noktalarında bulunan (j ve j+1) iki atom ele alınırsa, atomların durumu [39] 

|𝛹⟩ =
(|0⟩𝑗+|1⟩𝑗)(|0⟩𝑗+1+|1⟩𝑗+1)

2
        (5.3) 
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Farklı manyetik durumlar dairesel polarize bir alanla farklı şekilde etkileşime girer. 

Dolayısıyla optik örgü lazerinin polarizasyonu yavaş yavaş değiştirilirse, atomların iki 

halinin uzaysal olarak farklı iki potansiyel minimumu olacaktır. Örneğin, |0⟩ durumu sola 

|1⟩ durumu ise sağa hareket ederek yeni potansiyel minimumlarına yerleşir. Bu durumda 

yeni toplam şu hale gelir [39]: 

|𝛹⟩ =
(|0⟩𝑙|0⟩𝑙+1+|0⟩𝑙|1⟩𝑙+2+|1⟩𝑙+1|0⟩𝑙+1+|1⟩𝑙+1+|1⟩𝑙+2)

2
      (5.4) 

Burada l, j−1 ve j konumları arasındadır. Bu ifadenin üçüncü teriminden, birinci atomun 

|1⟩  durumu ile ikinci atomun |0⟩ durumu aynı örgü içinde bulunur ve aralarında 𝑈01 

etkileşimi oluşur. 𝑡𝑒𝑡𝑘 kadar bir süre geçtikten sonra, faz kayması oluşur: 

𝜙 =
𝑡𝑒𝑡𝑘𝑈01

ℏ
         (5.5) 

Faz kayması sonucu toplam durum şu hale dönüşür: 

|𝛹⟩ =
(|0⟩𝑙|0⟩𝑙+1+|0⟩𝑙|1⟩𝑙+2+𝑒

−𝑖𝜙|1⟩𝑙+1|0⟩𝑙+1+|1⟩𝑙+1+|1⟩𝑙+2)

2
      (5.6) 

Daha sonra lazerler doğrusal polarizasyon durumuna getirilir ve kübitlere rezonans bir 

elektromanyetik bir atma uygulanır. Bu işlem sonucunda sistemin son durumu şu hale 

gelir: 

|𝛹⟩ =
[(1+𝑒−𝑖𝜙)|1⟩𝑗|1⟩𝑗+1+(1−𝑒

−𝑖𝜙)|𝐵⟩]

2
        (5.7) 

Burada |𝐵⟩, maksimum dolanık durum olarak şu şekilde tanımlanır: 

|𝐵⟩ = |0⟩𝑗|−⟩𝑗+1 + |1⟩𝑗|+⟩𝑗+1        (5.8) 

Tam dolanıklık, faz kayması 𝜙 =  𝜋 olacak şekilde 𝑡𝑒𝑡𝑘 süresinin ayarlanması ile elde 

edilir [39]. 

 

5.2.3. Evrensel kuantum simülasyonu 

Bir kuantum hesaplama sistemi, tek ve çift kübit işlemleriyle, Hamiltonyeni bir ve 

iki parçacıklı terimler içeren herhangi çok parçacıklı bir sistemin simülasyonunu 

yapabilir. Buradaki fikir, herhangi bir Hamiltonyeni her biri küçük ve sabit bir alt uzay 
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üzerinde etkili olan küçük Hamiltonyenlere ayırmaktır. Bu ayrıştırma işlemi sonucu 

Hamiltonyen [39]: 

     𝐻 = ∑ 𝐻𝑗 𝑗
         (5.9) 

Sistemin zamanla evrimi için 𝑒−𝑖𝐻𝑡 operatörü, küçük evrimler 𝑒−𝑖𝐻𝑗𝑡 serisine açılabilir: 

𝑒−𝑖𝐻𝑡 = lim
𝑚→∞

(𝑒
−𝑖𝐻1𝑡

𝑚 𝑒
−𝑖𝐻2𝑡

𝑚 𝑒
−𝑖𝐻3𝑡

𝑚 …)𝑚    (5.10) 

Eşitlik (5.10)’da kullanılan ayrıştırma Trotter-Suzuki yaklaşımı olarak bilinir ve kuantum 

bilgisayarlar için temel simülasyon tekniğini oluşturur. Bu teknik, çok karmaşık bir 

kuantum sistemin evrimini, daha küçük ve kontrol edilebilir parçalara bölerek yüksek 

doğrulukla gerçekleştirmeyi mümkün kılar. 

 

5.3. Richard Feynman ve Kuantum Simülasyonun Doğuşu 

Kuantum fiziğinin modern çağdaki en üretken ve yaratıcı isimlerinden biri olan 

Richard P. Feynman, yalnızca teorik öngörüleriyle değil, düşünsel cesaretiyle de kuantum 

bilgi biliminin temellerini atmıştır. 1981 yılında MIT’de düzenlenen bir konferansta 

yaptığı sunumda Feynman, klasik bilgisayarların kuantum sistemleri modellemedeki 

sınırlılıklarını vurgulamış ve devrim niteliğinde bir öneride bulunmuştur: “Doğayı, 

doğanın kendisine benzer bir sistemle taklit etmek gerekir” [5]. Bu önerme, daha sonra 

kuantum simülasyon olarak anılacak bir alanın ilk tohumlarını atmıştır. 

Feynman’ın temel gözlemi şuydu: Bir kuantum sistemin davranışını klasik 

hesaplama araçlarıyla doğru biçimde öngörmek için, hesaplama karmaşıklığı üstel 

biçimde artmaktadır. Bu nedenle, kuantum sistemleri anlamanın en etkin yolu yine 

kuantum mekaniksel ilkelere tabi sistemleri kullanarak simülasyon gerçekleştirmektir. Bu 

fikir, günümüzde ultra-soğuk atomların optik kafeslerde tuzaklandığı deneysel 

platformlarda gerçeğe dönüşmektedir. Bu bağlamda, Feynman’ın vizyonu, bu tezde yer 

alan optik örgülerde bozonik atomların düzenlenmesi, Bose-Hubbard modelinin 

uygulanması, faz geçişlerinin analizi ve kuantum fazlarının gözlenebilirliği gibi 

başlıklarla birebir örtüşmektedir. 

Bu tezde, lazerle oluşturulan periyodik potansiyeller altında hapsedilen ultra-soğuk 

atomlar kullanılarak bir kuantum simülasyon platformunun nasıl oluşturulabileceği 

ayrıntılı biçimde ele alınmıştır. Özellikle Bose-Hubbard Hamiltonyeni, atomların yer 

değiştirme eğilimlerini temsil eden tünelleme terimi ile aynı kafes noktasında bulunan 
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atomlar arasındaki etkileşimi temsil eden yerel etkileşim terimi üzerinden, kuantum faz 

geçişlerini doğrudan modellemeye imkân tanımaktadır [11]. Bu yönüyle sistem, 

Feynman’ın tarif ettiği kuantum simülatörün tam anlamıyla bir deneysel karşılığına 

dönüşmektedir. 

Feynman’ın önerdiği gibi, doğadaki fiziksel süreçleri taklit edebilmek için 

kullanılan sistemin de kuantum kurallarına uygun çalışması gerekmektedir. Bu tez 

kapsamında ifade edilen modellerde, tek ve çift kübit işlemlerinin optik kafes ortamında 

nasıl uygulanabileceği, Trotter ayrıştırması ile çok-cisimli Hamiltonyen evriminin nasıl 

ifade edilebileceği gösterilmiştir. Bu uygulamalar, Feynman’ın “kuantum sistemleri 

klasik bilgisayarlarla simüle etmek yerine, kuantum bilgisayarlarla doğrudan simüle 

edelim” düşüncesinin günümüz deneysel fiziğindeki yansımalarıdır [6]. 

Bugün, Feynman’ın 1980’li yıllarda öngördüğü bu kavramsal çerçeve, yalnızca 

teorik fizikte değil, deneysel kuantum teknolojilerinde de kendine güçlü bir yer 

bulmuştur. Optik örgülerde oluşturulan sistemler, yüksek sıcaklık süperiletkenlikten 

manyetik faz geçişlerine, kuantum kimyadan topolojik madde simülasyonlarına kadar pek 

çok karmaşık yapının doğrudan incelenmesini mümkün kılmaktadır. Bu da kuantum 

simülasyonun artık yalnızca soyut bir düşünce değil, pratik bir araç olduğunu 

göstermektedir. 
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6. SONUÇ VE TARTIŞMA 

Bu çalışmada öncelikle optik örgülerde tuzaklanan bozonik atomların davranışı 

incelenmiştir. Optik örgüler üç boyutta durağan lazer dalgaları oluşturan lazer ışınlarının 

girişimiyle oluşturulan periyodik ve korunumlu tuzaklama potansiyelleridir. Lazer ışığı 

atomlarda AC Stark kayması ve dolayısıyla periyodik bir potansiyel etkisi yaratır.   Bu 

potansiyellerde tuzaklanan ultra soğuk bozonlar birinci Bloch bandındaki Wannier 

fonksiyonlarını baz alan Bose-Hubbard modeli ile tanımlanır. Bu modelde, bozonlar arası 

etkileşme enerjisi, komşu örgü noktaları arasında bozonların tünelleme yaparken 

kazandıkları kinetik enerji ile rekabet halindedir. Lazer şiddetinin arttırılması ile komşu 

örgüler arası bariyer arttığı için kinetik enerji azalırken etkileşme enerjisi artar.  Bu 

durumda süperakışkan fazdan Mott yalıtkan fazına geçiş olur. Süperakışkan fazda 

atomlar örgü noktaları arasında kolayca tünelleme yaparken, Mott yalıtkan fazda atomlar 

sabit pozisyonlarında kalır ve tünelleme minimum düzeyde gerçekleşir. 

Kuantum bilişim çalışmalarında optik örgüler kuantum simülatörü olarak 

düşünülmektedir. Bu düşünce, örgüde tuzaklanan her bir atomun bir kübit olarak 

tanımlanabilmesine dayanır. Optik örgü geometrisi, kullanılan lazer parametreleri 

aracılığıyla hassas biçimde programlanabilirken, sistemdeki tünelleme ve etkileşim 

katsayıları da doğrudan ayarlanabilir. Bu sayede, kübitlerin konumları, durumları ve 

aralarındaki etkileşimler yüksek hassasiyetle kontrol edilebilir. Özellikle çok sayıda 

kübitin bu periyodik yapıda yerleştirilebilmesi ve bu yapıların paralel olarak kontrol 

edilebilmesi, bu sistemleri kuantum hesaplama açısından avantajlı kılmaktadır.  

Bu çalışmada özellikle üç kuyulu optik örgüleri modelleyen Bose-Hubbard modeli 

ele alınmıştır. Bu tür optik örgüler kuantum sensörleri ve atomtronik cihazlar gibi farklı 

kullanım alanlarına sahip olduğundan dolayı önemli bir yere sahiptir. Tezde faz 

geçişlerine yönelik nümerik hesaplama örneklerine yer verilmiştir. Ele alınan örneklerden 

ilki dipolar atomlar, ikincisi ise zamana bağlı tünelleme genlikleridir. Her iki durumda 

da, kuyulardaki parçacık sayıları Runge-Kutta metodu ile nümerik olarak hesaplanmıştır. 

Atomlar arası etkileşme sıfır iken, parçacıkların kuyular arası serbestçe hareket ettiği 

gösterilmiştir. Atomlar arası etkileşme arttığında ise kuyular arası tünelleme baskılanır. 

Elde edilen bu sonuçlar literatür ile uyumludur.  

Sonuç olarak, Richard Feynman’ın kırk yılı aşkın süre öncesinde kuantum bilgi 

kuramına kazandırdığı vizyon, bu tez kapsamında ele alınmıştır. Optik örgülerdeki ultra-

soğuk atomların mikroskobik düzeyde kontrolü, Feynman’ın ortaya koyduğu kuantum 
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simülasyon ideali ile birebir örtüşmektedir. Bu nedenle optik örgü çalışmaları kuantum 

teknolojileri alanında giderek önem kazanmaktadır. 
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