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ELEKTRİKLİ ARAÇLARIN KULLANICI TERCİHLERİNE GÖRE 

SINIFLANDIRILMASI: HİBRİT BİR YAKLAŞIM  

ÖZET 

Son yıllarda artan çevresel kaygılar, enerji verimliliği arayışları ve fosil yakıt 

bağımlılığının azaltılmasına yönelik politikalar, elektrikli araçlara olan ilgiyi küresel 

ölçekte ciddi biçimde artırmıştır. Bu teknolojik dönüşüm, yalnızca otomotiv 

sektörünün mühendislik boyutlarını değil, aynı zamanda tüketici davranışlarını, 

pazarlama stratejilerini ve karar destek sistemlerini de doğrudan etkilemektedir. 

Elektrikli araç pazarının hızlı genişlemesiyle birlikte kullanıcılar için ürün çeşitliliği 

önemli ölçüde artarken, üreticiler ve pazarlamacılar açısından da hangi araçların hangi 

kullanıcı segmentlerine hitap ettiğini belirlemek daha karmaşık hale gelmiştir. 

Özellikle, pazar araştırmacıları ve sektör analistleri, bu çok boyutlu karar verme 

ortamında geleneksel analiz yöntemlerinin yetersiz kaldığını ve daha sofistike 

yaklaşımlara ihtiyaç duyulduğunu belirtmektedir. Bu bağlamda, çok sayıda teknik 

özelliğe sahip araçların anlamlı şekilde tercih edilebilirlik düzeylerine göre sıralı 

sınıflandırılması önemli bir problem alanı olarak ortaya çıkmaktadır. 

Bu tez çalışmasında, bu ihtiyaca yanıt verebilecek hibrit bir yöntemsel çerçeve 

geliştirilmiştir. Çok kriterli karar verme yöntemlerinden biri olan TOPSIS-Sort-B 

algoritması kullanılarak, piyasadaki 439 elektrikli aracın çeşitli performans, boyut, 

konfor ve fiyat vb. kriterlerine göre tercih edilebilirlik düzeyleri analiz edilmiştir. 

TOPSIS-Sort-B algoritmasının seçilmesindeki temel gerekçe, bu yöntemin geleneksel 

TOPSIS yaklaşımından farklı olarak alternatifleri önceden belirlenmiş sıralı sınıflara 

atayabilme kapasitesine sahip olması ve böylelikle sıralama yerine kategorilendirme 

yapmasıdır. Bu özellik, elektrikli araç pazarında segmentasyon çalışmaları için kritik 

önem taşımaktadır çünkü tüketiciler ve üreticiler için mutlak performans 

karşılaştırması yerine sınıf esaslı tercih seviyeleri daha anlamlı sonuçlar vermektedir. 

Çalışmada kullanılan veri seti, elektrikli araçlar konusunda en geniş kamuya açık veri 

kaynağı olan EVdatabase platformundan veri kazıma yöntemiyle elde edilmiştir. Veri 

toplama sürecinde Python programlama dili ve web scraping kütüphaneleri 

kullanılmış, araçların teknik özelliklerini (menzil, maksimum hız, batarya kapasitesi, 

şarj süresi, bagaj hacmi, fiyat, hızlanma performansı, enerji tüketimi vb.) kapsayacak 

şekilde kapsamlı biçimde veri çekilmiştir. Toplanan veri seti, halihazırda piyasaya 

sürülmüş olan elektrikli araç modellerini içermekte olup, çeşitli araç segmentlerinden 

(sedan, SUV, hatchback, lüks araçlar) dengeli bir dağılım sağlanmıştır. Ancak verinin 

doğası gereği belirli düzeyde güncellik sınırlaması olduğu ve sürekli güncellenen 

piyasa koşullarının tam olarak yansıtılamayabileceği de kabul edilmiştir. 

Sıralı sınıflandırma algoritmasının kaç sınıf üzerinden çalıştırılacağının hesaplanması 

bağlamında veriye öncelikle bölünmeli ve hiyerarşik kümeleme analizleri 

uygulanmıştır ve bu analizlerin sonucunda üç kümenin (sınıfın) veriyi en ideal şekilde 

yansıtacağı ortaya konmuştur. TOPSIS-Sort-B yöntemi ile elde edilen üçlü tercih 

sınıfları (yüksek, orta ve düşük tercih edilebilirlik), daha sonra çeşitli makine öğrenimi 
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sınıflandırma algoritmalarına etiketli veri olarak sunulmuş ve bu sınıfların farklı 

modeller tarafından ne ölçüde doğru tahmin edilebildiği karşılaştırılmıştır. Bu hibrit 

yaklaşımın arkasındaki temel mantık, ÇKKV yöntemlerinin uzman bilgisini ve çok 

kriterli değerlendirme kapasitesini makine öğrenmesi modellerinin örüntü tanıma ve 

genelleme kabiliyetleriyle birleştirmektir. Böylece hem karar destek sistemlerinin 

daha kararlı hale getirilmesi hem de ÇKKV yöntemlerinden elde edilen sınıfların 

öngörülebilirliği ve geçerliliği test edilmiştir. 

Çalışma, sınıflandırma problemlerine ÇKKV yaklaşımını temel olarak entegre eden 

bu hibrit yöntemle, literatürde sınırlı olarak ele alınan bir yönteme katkı sağlamaktadır. 

Özellikle, geleneksel olarak birbirinden bağımsız uygulanan bu iki yaklaşımın 

entegrasyonu, hem metodolojik hem de pratik açıdan önemli avantajlar sunmaktadır. 

Ayrıca, bu yaklaşım sayesinde, yeni elektrikli araç verileri üzerinden otomatik tercih 

sınıfı tahmini yapılabilmesi mümkün hale gelmiştir. Tüketicilerin karar süreçlerini 

kolaylaştırmak ve üreticilere stratejik öngörüler sunmak açısından, geliştirilen 

sistemin hem akademik hem de pratik değeri bulunmaktadır. 

Veri ön işleme sürecinde, eksik ya da anlamlılığı düşük sütunlar sistematik olarak 

elenmiş; sürekli ve kategorik değişkenler uygun biçimde dönüştürülmüştür. Bu 

aşamada özellikle eksik veri problemlerinin çözümü için çeşitli yerine koyma 

teknikleri uygulanmış ve veri tutarlılığını sağlamak amacıyla ileri düzey kontroller 

yapılmıştır. Ardından, öz niteliklerin (kriterlerin) ağırlıklandırılması amacıyla Analitik 

Hiyerarşi Süreci (AHP) uygulanmıştır. Bu süreçte, elektrikli araçlar alanında uzman 

kişilerden alınan değerlendirmeler çerçevesinde, kriterlerin göreli önemleri 

hesaplanmış ve bu ağırlıklar TOPSIS-Sort-B algoritmasına entegre edilmiştir. 

Uzmanların seçiminde, elektrikli araç teknolojileri konusunda akademik ya da sektörel 

uzmanlığa sahip bulunmaları kriterleri gözetilmiştir. 

Ayrıca, sınıfların sınırlarının belirlenebilmesi amacıyla, tercih edilebilirlik skorları 

için üst ve alt eşik değerleri yine uzman görüşü ile belirlenmiştir. Bu eşik değerlerin 

belirlenmesinde veri setinin dağılım özellikleri dikkate alınmış ve her segmentin 

(sınıfın) anlamlı sayıda araç içermesi sağlanmıştır. Tercih edilebilirlik bağlamındaki 

sınıflandırma sonucunda elde edilen dağılım, dengeli bir yapı (130 düşük, 164 orta ve 

145 yüksek tercih edilebilirlik) göstermiş ve üç sınıfın da yeterli temsil gücüne sahip 

olduğu görülmüştür. 

Sıralı sınıflandırma algoritması ile elde edilen bu tercih edilebilirlik etiketleri, ikinci 

aşamada denetimli makine öğrenmesi modellerinin eğitilmesi için kullanılmıştır. Bu 

kapsamda karar ağaçları, lojistik regresyon, Naive Bayes, destek vektör makineleri, k-

en yakın komşu ve yapay sinir ağları gibi farklı yaklaşımları temsil eden modeller 

uygulanmıştır. Veri seti eğitim (%80) ve test (%20) olarak katmanlı örnekleme 

yöntemiyle bölünmüş, böylelikle her sınıfın hem eğitim hem de test setinde dengeli 

şekilde temsil edilmesi sağlanmıştır. Modellerin performansları doğruluk, duyarlılık, 

kesinlik, F1-skoru gibi metriklerle kapsamlı biçimde değerlendirilmiştir.  

Elde edilen bulgular, özellikle yapay sinir ağı modelinin %96,6 ile sınıflandırma 

doğruluğu açısından en başarılı performansı sergilediğini göstermiştir. Bunu %95,5 ile 

lojistik regresyon, %93,2 ile destek vektör makineleri ve karar ağacı modelleri takip 

etmiştir. Karışıklık matrisleri, modellerin özellikle yüksek ve düşük tercih edilebilirlik 

sınıflarını ayırt etmede oldukça başarılı olduğunu, orta sınıfta ise diğer iki tercih 

edilebilirlik düzeyine göre kısmen problem yaşayabildiklerini ortaya koymuştur. 

Ayrıca genel anlamda, test verisindeki araçların büyük bir bölümü tüm modeller 
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tarafından tutarlı şekilde doğru tahmin edilmiş, bu durum TOPSIS-Sort-B ile 

oluşturulan etiketlerin makine öğrenmesi açısından yüksek tutarlılığa sahip olduğunu 

kanıtlamıştır. 

Bu tez, hem elektrikli araçlara ilişkin veri odaklı sınıflandırma yaklaşımlarına 

literatürde yeni bir katkı sunmakta hem de TOPSIS-Sort-B algoritmasının makine 

öğrenmesi modelleriyle entegrasyonunu sağlayarak hibrit bir analiz çerçevesi ortaya 

koymaktadır. Çalışmanın yöntemsel katkısı, geleneksel ÇKKV yöntemlerinin modern 

makine öğrenmesi teknikleriyle nasıl birleştirilebileceğini göstermesi ve bu 

entegrasyonun her iki yaklaşımın avantajlarını bir araya getirmesidir. Özellikle, 

ÇKKV yöntemlerinin uzman bilgisini yapılandırma kapasitesi ile makine öğrenmesi 

algoritmalarının büyük veri setlerini işleme ve örüntü tanıma yeteneklerinin bir araya 

getirilmesi, karar destek sistemleri literatürüne önemli bir katkı sunmaktadır. 

Çalışmanın bulguları, üretici ve pazarlamacıların stratejik planlamalarına yön 

verebilecek nitelikte olup, özellikle tüketici tercihleri, ürün konumlandırması ve 

rekabet analizi açısından değerli bilgiler sunmaktadır. Ayrıca kullanıcı deneyimi 

açısından, geliştirilen sistem kişiselleştirilmiş öneri sistemlerine, akıllı ürün filtreleme 

araçlarına, fiyatlandırma stratejilerine ve otomatik değerlendirme platformlarına temel 

oluşturabilecek şekilde pratik faydalar da sunmaktadır.  

Gelecek çalışmalar için bu hibrit yaklaşımın diğer sektörlere (beyaz eşya, elektronik, 

gayrimenkul vb.) uyarlanması, daha büyük ve çeşitli veri setleriyle test edilmesi, 

gerçek zamanlı veri akışlarıyla entegrasyonu ve kullanıcı geri bildirimlerinin sisteme 

dahil edilmesi önerilmektedir. Ayrıca, daha büyük veri setleri için derin öğrenme 

yöntemlerinin de hibrit modele entegre edilerek performans artışının sağlanabileceği 

düşünülmektedir.
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CLASSIFICATION OF ELECTRIC VEHICLES BASED ON USER 

PREFERENCE: A HYBRID APPROACH 

SUMMARY 

In recent years, increasing environmental concerns, energy efficiency pursuits, and 

policies aimed at reducing fossil fuel dependency have significantly heightened global 

interest in electric vehicles. This technological transformation has directly affected not 

only the engineering aspects of the automotive sector but also consumer behaviours, 

marketing strategies, and decision support systems. While the rapid expansion of the 

electric vehicle market has significantly increased product diversity for users, 

determining which vehicles appeal to which user segments has become more complex 

for manufacturers and marketers. In particular, market researchers and industry 

analysts indicate that traditional analysis methods are insufficient in this multi-

dimensional decision-making environment and that more sophisticated approaches are 

needed. In this context, the meaningful classification of vehicles with numerous 

technical features and their segmentation according to preference levels emerges as an 

important problem area. 

In this thesis, a hybrid methodological framework has been developed to address this 

need. Using the TOPSIS-Sort-B algorithm, one of the multi-criteria sorting methods, 

the preference levels of 439 electric vehicles in the market were analysed according to 

various criteria such as performance, size, comfort, and price criteria. The fundamental 

rationale for selecting the TOPSIS-Sort-B algorithm is that this method, unlike the 

traditional TOPSIS approach, has the capacity to assign alternatives to predetermined 

classes, thus performing sorting rather than ranking. This feature is of critical 

importance for segmentation studies in the electric vehicle market because preference 

classes provide more meaningful results than absolute performance comparisons for 

consumers and manufacturers. 

The dataset used in the study was obtained through web scraping from the EVdatabase 

platform, which is the most comprehensive publicly available data source on electric 

vehicles. Python programming language and web scraping libraries were used in the 

data collection process, and data was comprehensively extracted to cover the technical 

specifications of vehicles (range, maximum speed, battery capacity, charging time, 

trunk volume, price, acceleration performance, energy consumption, etc.). The 

collected dataset includes electric vehicle models that have already been launched in 

the market, with a balanced distribution from various vehicle segments (sedan, SUV, 

hatchback, luxury vehicles). However, it is acknowledged that due to the nature of the 

data, there are certain limitations in terms of currency and that continuously updated 

market conditions may not be fully reflected. 

In the context of calculating how many classes the sorting algorithm would operate on, 

partitioning and hierarchical clustering methods were first applied to the data, and as 

a result of these analyses, it was established that three clusters (classes) would reflect 

the data most ideally. The triple preference classes (high, medium, and low preference) 

obtained through the TOPSIS-Sort-B method were then presented as labelled data to 
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various machine learning classification algorithms, and the extent to which these 

classes could be accurately predicted by different models was compared. The 

fundamental logic behind this hybrid approach is to combine the expert knowledge 

and multi-criteria evaluation capacity of MCDM methods with the pattern recognition 

and generalization capabilities of machine learning models. Thus, both strengthening 

decision support systems and testing the predictability and validity of classes obtained 

from MCDM methods were achieved. 

This study presents a hybrid method that integrates the MCDM approach into 

classification problems—an area that has received limited attention in the literature. In 

particular, the integration of these two approaches, which are traditionally applied 

independently, offers significant advantages both methodologically and practically. 

Moreover, through this approach, it has become possible to make automatic preference 

class predictions on new electric vehicle data. The developed system has both 

academic and practical value in terms of facilitating consumers' decision-making 

processes and providing strategic insights to manufacturers. 

In the data pre-processing phase, missing or low-significance columns were 

systematically eliminated, and continuous and categorical variables were appropriately 

transformed. At this stage, various imputation techniques were applied to solve 

missing data problems, and advanced controls were performed. Subsequently, the 

Analytic Hierarchy Process (AHP) was applied to weight the features (criteria). In this 

process, the relative importance of criteria was calculated based on evaluations 

obtained from experts in the field of electric vehicles, and these weights were 

integrated into the TOPSIS-Sort-B algorithm. The selection of experts was based on 

their academic or industrial experience in electric vehicle technologies. 

Additionally, to determine the boundaries of classes, upper and lower threshold values 

for preference scores were determined with the opinions of the same experts. In 

determining these threshold values, the distribution characteristics of the dataset were 

taken into account, and it was ensured that each segment contained a meaningful 

number of vehicles. The distribution obtained as a result of sorting in the context of 

preference showed a balanced structure (130 low, 164 medium, and 145 high 

preference), and it was observed that all three classes had sufficient representational 

power. 

These preference labels obtained through the sorting algorithm were used for training 

supervised machine learning models in the second phase. In this context, models 

representing different approaches such as decision trees, logistic regression, Naive 

Bayes, support vector machines, k-nearest neighbours, and artificial neural networks 

were applied. The dataset was divided into training (80%) and test (20%) using 

stratified sampling method, thus ensuring balanced representation of each class in both 

training and test sets. The performance of models was comprehensively evaluated with 

metrics such as accuracy, sensitivity, precision, and F1-score. 

The findings obtained showed that the artificial neural network model exhibited the 

most successful performance in terms of classification accuracy with 96.6%. This was 

followed by logistic regression with 95.5%, support vector machines and decision tree 

models with 93.2%. Confusion matrices revealed that the models were quite successful 

in distinguishing high and low preference classes, while they could experience some 

problems in the medium class compared to the other two preference levels. Moreover, 

a large portion of the vehicles in the test data were consistently and correctly predicted 
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by all models, proving that the labels created with TOPSIS-Sort-B have high 

consistency in terms of machine learning. 

This thesis contributes to data-driven classification approaches related to electric 

vehicles in the literature and presents a hybrid analysis framework by enabling the 

integration of the TOPSIS-Sort-B algorithm with machine learning models. The 

methodological contribution of the study is to show how traditional MCDM methods 

can be combined with modern machine learning techniques and that this integration 

brings together the advantages of both approaches. In particular, bringing together the 

capacity of MCDM methods to structure expert knowledge with the ability of machine 

learning algorithms to process large datasets and recognize patterns provides an 

important contribution to the decision support systems literature. 

The findings of the study are of a nature that can guide the strategic planning of 

manufacturers and marketers, providing valuable information particularly in terms of 

consumer preferences, product positioning, and competitive analysis. Additionally, 

from a user experience perspective, the developed system offers practical benefits that 

can form the basis for personalized recommendation systems, intelligent product 

filtering tools, pricing strategies, and automatic evaluation platforms.  

For future studies, it is recommended to adapt this hybrid approach to other sectors 

(white goods, electronics, real estate, etc.), test it with larger and more diverse datasets, 

integrate it with real-time data streams, and include user feedback in the system. 

Additionally, it is considered that performance improvement can be achieved by 

integrating deep learning methods into the hybrid model for larger datasets.
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1. GİRİŞ 

Günümüzde ulaşım sektörünün çevreye olan olumsuz etkileri giderek daha fazla 

gündeme gelmektedir. Fosil yakıtla çalışan içten yanmalı motorlu araçlar, dünya 

genelinde sera gazı emisyonlarının yaklaşık %15’ini oluşturmakta ve bu da araç 

sektörünü karbon ayak izinin en büyük nedenlerinden biri haline getirmektedir 

(Ritchie, 2024). Bu bağlamda elektrikli araçlar hem karbon emisyonlarının azaltılması 

hem de sürdürülebilir ulaşımın sağlanması açısından kritik bir rol oynamaktadır. 

Nitekim, bu bağlamda elektrikli araçlar, fosil yakıtlı araçlara kıyasla düşük karbon 

emisyonu, daha düşük işletme maliyeti ve enerji verimliliği gibi avantajları nedeniyle 

ulaşım sektöründe giderek daha fazla tercih edilmektedir (Hawkins vd., 2013). 

Özellikle şehir içi hava kirliliğinin azaltılması ve gürültü kirliliğinin önlenmesi 

açısından elektrikli araçlar, kentsel yaşam kalitesini artıran önemli bir faktör olarak 

görülmektedir (Hardman vd., 2018). Elektrikli araçlar sayesinde karbon ayak izinin 

daha da azaltılması mümkün olmaktadır. Ayrıca, günümüzde benimsenme oranları 

hızla tırmanan elektrikli araçlara yönelik yapılan çalışmalar çerçevesinde menzil, 

batarya verimliliği ve performans açısından da önemli ilerlemeler kaydedilmektedir 

(Ecer, 2021; Sonar ve Kulkarni, 2021; Higueras-Castillo vd., 2021). 

Elektrikli araçların tarihi aslında sanıldığından çok daha eskilere dayanmaktadır. 19. 

yüzyılın sonlarında, içten yanmalı motorlu araçlardan da önce elektrikli araçlar 

oldukça popüler olduğu bilinmektedir. Örneğin; Chen (2007) 1900’lü yılların başında 

Amerika’da satılan otomobillerin yaklaşık üçte biri elektrikli araçlardan oluştuğunu 

ifade etmiştir. Ancak petrolün ucuzlaması ve içten yanmalı motor teknolojisinin hızla 

gelişmesiyle birlikte elektrikli araçlar uzunca bir süre piyasadan silinmiş, ancak 

çevresel sorunların büyümesi ve teknolojik gelişmeler sayesinde 21. yüzyılın 

başlarından itibaren tekrardan gündeme gelmiştir. 1970'lerin petrol krizleri sırasında 

kısa bir canlanma yaşansa da, gerçek anlamda tekrardan elektrikli araçlara yönelim 

ancak batarya teknolojilerindeki önemli atılımlarla mümkün olabilmiştir. Tarihsel 

süreçte elektrikli araçların gelişimi, enerji depolama kapasitesi ve maliyetler gibi 
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teknik kısıtlamalara bağlı olarak şekillenmiş, bugün gelinen noktada ise bu engellerin 

kayda değer kısmı aşılmıştır (Guarnieri, 2012). 

2000’li yıllarda lityum-iyon batarya teknolojisindeki ilerlemeler, Tesla gibi firmaların 

öncülüğü, devlet teşvikleri, karbon emisyonu azaltma hedefleri ve tüketicilerin çevre 

duyarlılığının artmasıyla birlikte elektrikli araçlar istikrarlı biçimde pazarda yer 

bulmaya başlamıştır. Batarya maliyetlerinin düşüşü ve şarj altyapısının 

yaygınlaşmasıyla birlikte tüketicilerin menzil kaygısı azalmış, dolayısıyla elektrikli 

araç satışları 2010’lu yıllardan itibaren üstel bir büyüme göstermiştir. Günümüzde pek 

çok üretici (örneğin, Tesla, Toyota, Renault, Volkswagen, BYD, MG vb.) elektrikli 

veya hibrit modeller geliştirerek pazarda rekabet etmektedir. Bu rekabet sadece 

çevresel bir gereklilik değil, aynı zamanda ekonomik ve teknolojik gelişmelerin de bir 

sonucu olarak şekillenmektedir. 

Elektrikli araçların benimsenmesi son yıllarda ivme kazanmıştır. Uluslararası Enerji 

Ajansı'nın 2024 raporuna göre, 2023 yılında dünya genelinde satılan her beş araçtan 

biri elektrikli araçtır ve bu oran Norveç'te %90'ı, Çin’de ise %40'ı aşmıştır. Küresel 

ölçekte trafikteki elektrikli araç sayısı ise 2022'de 26 milyon iken, 2024 itibarıyla 40 

milyonun üzerine çıkmıştır. Bu artış, yalnızca çevresel kaygılarla değil, aynı zamanda 

hükümetlerin sağladığı sübvansiyonlar, altyapı yatırımları ve değişen tüketici 

davranışları ile de doğrudan ilişkilidir (Ritchie, 2024; Morgan, 2025). Ek olarak, 

otomotiv devlerinin fosil yakıtlı araç üretimini belirli tarihlerden sonra 

sonlandıracaklarını açıklamaları ve pek çok ülkenin 2030 - 2040 yılları arasında yeni 

içten yanmalı motorlu araç satışlarını yasaklama planları, sektörün elektrikli araçlara 

doğru hızla evrildiğinin en önemli göstergeleridir (Ziemann vd., 2018; Xu vd., 2020). 

Elektrikli araçların gelecekteki yaygınlığına ilişkin öngörüler de dikkat çekicidir. 

Statista'nın 2024 öngörülerine göre, küresel elektrikli araç pazarının 2030 yılına kadar 

yıllık %17’lik bir bileşik büyüme oranı ile genişlemesi beklenmektedir (Statista, 

2024). Diğer yandan MarketWatch verileri, ABD’deki elektrikli araç penetrasyonunun 

2025 yılı itibarıyla toplam araç stoğunun %15’ine ulaşacağını öngörmektedir 

(Morgan, 2025). BloombergNEF'in (2023) raporunda ise 2040 yılına kadar dünya 

genelindeki tüm yeni araç satışlarının %60’ından fazlasının elektrikli olacağı ifade 

edilmektedir. Bu projeksiyonlar, ulaşım sektörünün elektrifikasyonunun yalnızca 

geçici bir eğilim olmadığını, otomotiv sektöründeki kalıcı bir dönüşümün başlangıcı 

olduğunu göstermektedir. 



3 

Bununla birlikte, elektrikli araçların yaygınlaşmasında kullanıcı tercihlerinden 

teknolojik engellere, şarj altyapısından enerji yönetimi stratejilerine kadar birçok 

parametre rol oynamaktadır. Elektrikli araçların pazardaki yaygınlaşmasında teknik 

özellikler kadar kullanıcıların bu araçları nasıl değerlendirdiği ve tercih ettiği de büyük 

önem taşımaktadır. Tüketicilerin bir elektrikli aracı satın alma kararında rol oynayan 

birçok faktör bulunmaktadır. Bunlar arasında menzil, şarj süresi, fiyat, marka itibarı, 

bakım maliyetleri ve teknolojik donanım gibi kriterler yer alır (Rezvani vd., 2015). Ek 

olarak, elektrikli araçların kullanıcılar tarafından benimsenmesinde sadece teknolojik 

yeterlilikler değil, aynı zamanda sosyal etmenler de önemli rol oynamaktadır. Tüketici 

kararları yalnızca teknik özelliklerle sınırlı kalmamakta, çevresel kaygılar ve 

yenilikçilik düzeyi da karar sürecini etkilemektedir (Rezvani vd., 2015; Castillo vd., 

2021). Dahası, ekonomik teşviklerin ve çevreci tutumların benimsenmede önemli 

ancak sınırlı etkileri olduğu; asıl belirleyici unsurun yakıt tasarrufu, araç boyutlarına 

bağlı olarak ortaya çıkan konfor vb. faktörler ve teknolojik yeterliliğe duyulan güven 

olduğu saptanmıştır. Bu nedenle elektrikli araç tercihinde kullanıcı deneyimi ve araç 

içi dijital donanımlar da ön plana çıkmaktadır (Lieven vd., 2011; Li vd., 2020; Castillo 

vd., 2021). 

Elektrikli araçların değerlendirilmesinde olduğu gibi, çok sayıda kriterin birlikte 

değerlendirildiği karar süreçlerinde, çok kriterli karar verme (ÇKKV) yöntemleri 

oldukça yaygın olarak kullanılmaktadır. ÇKKV yöntemleri, karar vericilerin farklı 

kriterler arasındaki dengeyi değerlendirerek optimal veya sıralı seçimler yapmasına 

olanak sağlar (Corrente vd., 2021). ÇKKV yöntemleri genellikle seçim, sıralama ve 

sınıflandırma gibi karar problemlerinde kullanılır. Seçim problemleri, alternatiflerin 

en iyiden en kötüye doğru sıralanmasını hedeflerken, sınıflandırma problemleri ise 

alternatiflerin önceden tanımlı sıralı sınıflara atanmasını amaçlar (Doumpos ve 

Zopounidis, 2006). 

Elektrikli araçların kullanıcı açısından tercih edilebilirliği genellikle çok boyutlu bir 

kavramdır. Sadece araç performansı değil, aynı zamanda enerji altyapısı, çevresel 

kaygılar ve hatta hükümet teşvikleri gibi dışsal faktörler de kullanıcı tercihlerini 

şekillendirebilir (Egbue ve Long, 2012). Bu nedenle, bu tür çok boyutlu karar 

ortamlarında klasik analiz yöntemlerinin ötesine geçilerek daha karmaşık ve veri 

odaklı yöntemlerin kullanılması gerekliliği ortaya çıkmaktadır. İşte bu noktada, 

ÇKKV yaklaşımlarının sunduğu sistematik çerçeve ile makine öğrenmesi 
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yöntemlerinin tahmin gücü bir araya getirilerek yeni nesil karar destek sistemleri 

geliştirilebilir. 

Son yıllarda veri madenciliği ve makine öğrenmesi tekniklerinin ÇKKV yöntemleriyle 

birlikte kullanıldığı hibrit modellemelere yönelik ilgi artmıştır (Köksal vd., 2011). 

Özellikle karar ağacı, yapay sinir ağları (YSA), lojistik regresyon, naive Bayes ve 

destek vektör makineleri (DVM) gibi sınıflandırma algoritmaları; veri setlerinden 

öğrenerek, önceden belirlenmiş sınıflara (örneğin tercih seviyeleri veya segmentler) 

araçları atayabilmektedir (Kotsiantis vd., 2007). Böylelikle, hem karar vericiye 

öngörüsel bir model sunulmakta hem de geçmiş veriler ışığında yeni yorumlamalar 

yapılabilmektedir. 

Elektrikli araçların değerlendirilmesi ve kullanıcıya uygun alternatiflerin belirlenmesi 

gibi çok boyutlu karar problemlerinde hem Çok Kriterli Karar Verme (ÇKKV) 

yöntemleri hem de makine öğrenimi (ML) teknikleri kullanılabilmektedir. Ancak bu 

iki yaklaşımın da tek başına belirli sınırlılıkları bulunmaktadır. ÇKKV yöntemleri, 

karar verici tercihlerine dayalı olarak sistematik çözümler sunmakla birlikte, kriter 

ağırlıklarının belirlenmesi sürecinde öznellik içerebilir ve büyük veri setlerinde 

uygulaması zahmetli olabilir. Ayrıca, bu yöntemler genellikle geçmiş verilerden 

öğrenme yetisine sahip değildir. Öte yandan, makine öğrenmesi algoritmaları veriden 

öğrenme kapasitesine sahip olup büyük veri setlerinde güçlü tahmin performansı 

sergileyebilir; ancak yeterli sayıda etiketli veri olmadığında doğrulukları düşmekte ve 

karar verme sürecine dair açıklanabilirlikleri sınırlı kalmaktadır. Bu bağlamda, iki 

yöntemin birlikte kullanımı hem ÇKKV’nin yapısal avantajlarından hem de ML’nin 

tahmin gücünden faydalanarak daha güvenilir ve bütüncül bir karar destek süreci 

sunma potansiyeli taşımaktadır. 

Bu tez çalışmasında, elektrikli araçlara ait teknik ve kullanıcıya yönelik içeriğe sahip 

olan verilerin analizi yapılarak, her bir aracın tercih edilebilirlik düzeyinin 

belirlenmesi amaçlanmıştır. Bu kapsamda öncelikle Çok Kriterli Karar Verme 

(ÇKKV) sınıflandırma yöntemlerinden biri olan TOPSIS-Sort-B uygulanarak araçlar 

üç farklı tercih sınıfına ayrılmıştır. Elde edilen bu sınıflar daha sonra makine öğrenimi 

sınıflandırma algoritmalarına veri etiketlemesi olarak sunulmuş ve farklı sınıflandırma 

yöntemlerinin doğrulukları karşılaştırılmıştır. Bu hibrit metodolojik yaklaşım 

sayesinde, elektrikli araç seçiminde kullanılabilecek güvenilir ve sistematik bir karar 

destek mekanizması ortaya konmaktadır. Çalışma, elektrikli araçların çeşitli teknik 
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özellikleri (batarya kapasitesi, menzil, şarj süresi vb.), fiyatı ve kullanıcı deneyimi 

parametrelerini (konfor vb.) bütüncül bir değerlendirme çerçevesinde ele almaktadır. 

Böylece iki temel soruya yanıt aranmaktadır: 

1. ÇKKV yöntemiyle oluşturulan tercih sınıfları, makine öğrenimi modelleri 

tarafından hangi doğruluk seviyesinde öngörülebilmektedir? 

2. Farklı makine öğrenimi algoritmaları arasında, ÇKKV temelli 

sınıflandırmaları yeniden üretme ve genelleme açısından en başarılı 

performansı hangi model göstermektedir? 

Bu yaklaşım sayesinde hem karar destek sistemlerinin daha güçlü hale getirilmesi hem 

de ÇKKV yöntemlerinden elde edilen sınıfların geçerliliğinin test edilmesi mümkün 

olmuştur. Ayrıca, makine öğrenmesi modelleri yardımıyla bu sınıfların daha önce 

görülmemiş yeni araç verileri üzerinde öngörülebilirliği de sağlanmıştır. Tezin en 

önemli katkılarından biri, tüketicilerin karmaşık seçim süreçlerinde daha nesnel ve veri 

temelli kararlar alabilmelerine olanak tanımasıdır. Elektrikli araç pazarında giderek 

artan model çeşitliliği, tüketicilerin optimal seçim yapabilmesini zorlaştırmakta, bu 

çalışma ise sistematik bir metodoloji sunarak bu zorluğu aşmaya yardımcı olmaktadır. 

Araştırmanın özgünlüğü, ÇKKV’nin sıralı sınıflandırma yaklaşımını sınıflandırma 

problemlerine temel oluşturacak şekilde kullanması ve bu sınıfların makine öğrenimi 

algoritmaları ile tahmin edilmesini içeren çift yönlü bir analitik çerçeve sunmasından 

kaynaklanmaktadır. Bu durum literatürde oldukça sınırlı olarak ele alınan hibrit 

yöntem arayışlarına katkı sağlayacaktır (Zavadskas vd., 2014). Dahası, Uluslararası 

Enerji Ajansı’nın (UEA) 2023 yılı raporuna göre, dünya genelinde elektrikli araç 

satışları 2022 yılında 10 milyonu aşmış ve 2030 yılına kadar toplam araç satışlarının 

%60'ını oluşturacağı öngörülmektedir (UEA, 2023). Böylelikle yakın gelecekte bu 

denli yüksek benimsenme oranına sahip olacak bu araçlar için güçlü öngörüler 

oluşturulmuştur. Çalışma, elektrikli araç sektöründeki bu hızlı büyüme trendini göz 

önünde bulundurarak, hem akademik literatüre metodolojik bir katkı sunmakta hem 

de pratik uygulamada karar vericilere yol gösterici bir araç sağlamaktadır. 

Tez çalışmasının akışı şu şekilde organize edilmiştir: İkinci bölümde, elektrikli 

araçlara ilişkin güncel literatür, kullanıcı tercihleri ve çok kriterli karar verme 

yaklaşımları pratikteki uygulamalarıyla beraber detaylı olarak ele alınmaktadır. Ayrıca 

literatürdeki makine öğrenmesi yöntemleriyle sınıflandırma bazlı çok kriterli karar 
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verme yöntemlerinin kombinlendiği çalışmalar da sunulmuştur. Üçüncü bölümde ise 

ÇKKV sınıflandırma ve makine öğrenmesi yöntemlerine ilişkin metodolojik altyapı 

sunulmakta ve araştırmanın yöntemleri anlatılmaktadır. Dördüncü bölümde veri 

setinin elde edilmesi, ön işleme süreçleri, öznitelik mühendisliği ve model 

uygulamaları ayrıntılarıyla anlatılmakta ve sonuçlar verilmektedir. Son olarak beşinci 

bölümde bulgular özetlenmekte, teorik katkılar açıklanmakta, çalışma sınırlılıkları 

belirtilmekte ve geleceğe yönelik öneriler sunulmaktadır. Bu bölümde çalışmanın 

akademik literatüre ve endüstriyel uygulamalara katkıları ayrıntılı şekilde 

tartışılmakta, bulgulardan hareketle elektrikli araç pazarı dinamikleri ve tüketici 

davranışları bağlamında içgörüler sunulmaktadır.
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2. LİTERATÜR ARAŞTIRMASI 

Günümüzde karmaşık karar verme süreçlerinin analizinde, çok kriterli karar verme 

(ÇKKV) yöntemleri giderek daha yaygın bir biçimde kullanılmaktadır. Özellikle 

birçok alternatifi ve ölçütü barındıran problemler karşısında, karar vericilere 

sistematik ve nesnel destek sunma kapasitesi sayesinde bu yöntemler, akademik ve 

pratik alanda büyük ilgi görmektedir (Triantaphyllou ve Triantaphyllou, 2000). 

TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) gibi sıralama 

temelli ÇKKV yaklaşımları, alternatiflerin ideal ve negatif-ideal çözüme göre 

uzaklıklarına dayalı değerlendirme yapmalarıyla öne çıkmaktadır. Son yıllarda bu 

yaklaşımların gelişmiş versiyonları olan TOPSIS-Sort-B gibi modeller de 

alternatiflerin sıralı sınıflara atanmasını mümkün kılarak çok daha stratejik karar 

süreçlerine olanak tanımaktadır (Zavadskas vd., 2014). 

Öte yandan, makine öğrenmesi algoritmaları da sınıflandırma ve öngörü 

problemlerinde sağladığı yüksek doğruluk oranları sayesinde birçok disiplinde yaygın 

biçimde kullanılmaktadır. Özellikle denetimli öğrenme algoritmaları, etiketlenmiş 

verilerle çalışarak daha önce karşılaşılmamış yeni örneklerin başarılı biçimde tahmin 

edilmesini sağlamaktadır (Kotsiantis vd., 2007). Bu bağlamda, ÇKKV yöntemlerinden 

elde edilen sınıfların makine öğrenmesi algoritmalarına veri olarak sunulması, hem 

karar destek sistemlerinin öngörü kabiliyetini artırmakta hem de sınıfların 

doğrulanabilirliğini test etmeye olanak tanımaktadır. 

Bu tez kapsamında önerilen hibrit yaklaşım, literatürde sınırlı sayıda çalışmada ele 

alınmış olan ÇKKV ve makine öğrenmesi entegrasyonuna katkı sağlamaktadır 

(Kumar, 2025). Bu tür metodolojik birleşimler, yalnızca teknik analiz açısından değil, 

aynı zamanda tüketici davranışlarının modellenmesi, pazar tahminleri ve 

sürdürülebilir teknoloji seçimi gibi çok boyutlu problemlerin çözümünde de etkili 

çözümler sunmaktadır.



8 

2.1 Çok Kriterli Karar Verme (ÇKKV) Yaklaşımları 

Modern karar verme süreçleri, çoğu zaman birden fazla alternatifin çok sayıda ve çoğu 

zaman çelişen kriterler temelinde değerlendirilmesini gerektirir. Bu tür durumlarda 

karar vericilerin sezgisel yaklaşımları yetersiz kalmakta, objektif ve yapılandırılmış 

yöntemlere olan ihtiyaç artmaktadır. Bu bağlamda, ÇKKV, özellikle karmaşık 

problemler karşısında rasyonel ve tutarlı kararlar almayı sağlayan güçlü analitik 

yaklaşımlar bütünü olarak tanımlanmaktadır (Belton ve Stewart, 2012). ÇKKV, karar 

vericilere hem nicel hem de nitel kriterler doğrultusunda alternatifleri karşılaştırma, 

önceliklendirme, sıralama veya sınıflandırma olanağı sunar (Toloie-Eshlaghy ve 

Homayonfar, 2011; Zavadskas vd., 2013; Mardani vd., 2015; Alvarez vd., 2021; Lopez 

vd., 2023; Taherdoost ve Madanchian, 2023; Kumar, 2025). 

Son yıllarda bu yöntemlerin popülaritesi, hem karar süreçlerinin şeffaflığını artırması 

hem de nesnel temellere dayanan analizler sunması nedeniyle daha da artmıştır. Ayrıca 

gelişen bilgi teknolojileri sayesinde ÇKKV modelleri, büyük veri kümeleriyle entegre 

çalışabilmekte ve çok daha dinamik sistemler içerisinde uygulanabilir hâle gelmiştir 

(Zavadskas vd., 2014). 

ÇKKV yöntemlerinin temel işleyişi, bir karar matrisinin oluşturulması ve bu matristeki 

her alternatifin her bir kritere göre değerlendirilmesi esasına dayanır. Öncelikle 

kriterlerin göreli önemleri, yani ağırlıkları belirlenmekte ve alternatifler bu ağırlıklar 

doğrultusunda analiz edilmektedir. Değerlendirme sonucunda, alternatiflerin 

sıralanması, en uygun seçeneğin belirlenmesi veya belirli sınıflara atanması gibi 

çıktılar elde edilmektedir. Bu çerçevede, sıralama (ranking) ve sıralı sınıflandırma 

(sorting), ÇKKV en temel iki uygulama biçimidir. Sıralama işlemleri alternatifleri bir 

performans düzeyine göre en iyi–en kötü ekseninde yerleştirirken, sıralı sınıflandırma 

işlemleri ise bu alternatifleri önceden tanımlanmış tercihler düzeyine göre sınıflara 

ayırır. 

Literatürde sıralama tabanlı yöntemlerin daha sık kullanıldığı gözlemlense de, son 

yıllarda ÇKKV’nin sınıflandırma temelli uzantılarına olan ilgi artmaktadır. Zira birçok 

uygulama alanında, karar vericiler yalnızca en iyi alternatifi değil, belirli bir kategoriye 

ait olanları (örneğin “yüksek tercih edilen”, “orta”, “düşük” gibi sınıflar) belirlemeye 

ihtiyaç duymaktadır. Bu doğrultuda geliştirilen sınıflandırma odaklı ÇKKV 

yöntemleri, karar destek sistemlerinin sınıflandırıcı yapılarla entegrasyonuna olanak 



9 

sağlamış ve bu yöntemlerin makine öğrenmesi gibi alanlarla kesişmesini 

kolaylaştırmıştır (Doumpos ve Zopounidis, 2006). 

Sonuç olarak, ÇKKV yalnızca teknik bir çözüm aracı değil; aynı zamanda karar alma 

süreçlerini daha anlaşılır, sistematik ve izlenebilir hâle getiren stratejik bir metodoloji 

sunmaktadır. Bu bağlamda bir sonraki bölümde, ÇKKV’nin özellikle sınıflandırma 

odaklı yaklaşımlarına daha yakından bakılacaktır. 

2.1.1 Sınıflandırma tabanlı ÇKKV yöntemleri 

Çok Kriterli Karar Verme (ÇKKV) yöntemleri, özellikle sınıflandırma odaklı 

modeller, karar alternatiflerini önceden tanımlanmış sıralı sınıflara ayırmak için güçlü 

araçlardır. Bu yaklaşımlar; bireysel karar vericilerden kurumsal sistemlere kadar pek 

çok düzeyde, karmaşık karar problemlerinin çözümünde uygulanmaktadır. 

Sınıflandırma tabanlı ÇKKV tekniklerinin temel amacı, alternatifleri sadece sıralamak 

değil, aynı zamanda belirli karar sınıflarına uygun biçimde atamaktır. Bu bağlamda 

geliştirilen yöntemler, çeşitli alanlarda çözüm sağlamış ve literatürde ulaşımdan 

eğitime, tedarik zinciri yönetiminden sağlık hizmetlerine, finansal yönetimden risk 

yönetimine kadar geniş uygulama alanları bulmuştur. AHPSort, DEASort, ELECTRE 

Tri, UTADIS, FlowSort, VIKORSORT, ANP-Sort bu alanda en sık karşılaşılan 

yöntemlerdendir ve bu yöntemler kullanılarak yapılan çalışmalar hem model yapılarını 

hem de karar verme sürecindeki etkililiklerini ortaya koymaktadır (Alvarez vd., 2021; 

Lopez vd., 2023). Aşağıda, literatürde yer alan güncel sıralı sınıflandırma çalışmaları 

özetlenmiştir. 

Dias ve Mousseau (2003), ulaşım sektörü bağlamında geliştirdikleri çalışmada, çok 

kriterli karar verme problemleri için Iris adlı yenilikçi bir sınıflandırma yöntemi 

önermiştir. ELECTRE Tri’ye dayanan bu yaklaşım, karar vericiden tüm parametreleri 

kesin biçimde belirtmesini beklemek yerine, sınıflama örnekleri ve bazı mantıksal 

kısıtlar üzerinden karar sürecini desteklemektedir. Yazarlar, bu yöntem ile tutarlı 

durumlarda karar vericinin verdiği örnekleri tamamen açıklayan çözümler üretmeyi; 

tutarsızlık durumlarında ise en az sapmayla alternatif öneriler sunmayı 

amaçlamışlardır. Bu yaklaşımın bir uygulaması da veri merkezi yeri seçiminde 

gerçekleştirilmiştir (Covas vd., 2013). Covas vd. (2013), teknik, sosyal, ekonomik ve 

çevresel boyutları içeren sürdürülebilirlik kriterleri doğrultusunda en uygun yerleşim 

bölgelerini, çok kriterli sınıflandırma problemi olarak ele almışlardır ve IRIS yazılımı 



10 

aracılığıyla ELECTRE Tri yöntemiyle analiz etmişlerdir. Kriter ağırlıklarına ilişkin 

belirsizliklerin de dikkate alındığı bu çalışmada, kararlar tek bir değere indirgenmeden 

grafiksel olarak sunulmuştur. Bu sayede IRIS’in farklı karar alanlarında belirsizlik 

altında da etkili ve esnek çözümler sunabildiği gösterilmiştir. 

ELECTRE Tri yönteminin kullanıldığı bir başka çalışma ise insan kaynakları 

alanındaki iş birliği davranışlarını sürekli iş birliği düzeylerine çeviren ve bu düzeyleri 

önceden tanımlanmış kategorilere (düşük, orta, yüksek) sınıflayan bulanık çok kriterli 

bir karar yöntemi sunmaktadır (Silva vd., 2014). Bu yöntem, klasik ayrık oyun teorisini 

sürekli iş birliği düzeylerine dönüştürmek yerine, gerçek hayattaki iş birliği 

davranışlarını çok kriterli bir yapı içinde değerlendirerek sınıflamayı hedeflemektedir. 

Benzer şekilde ELECTRE Tri ile, Silva ve Sobral (2017) ise Brezilya’nın kurak bir 

bölgesinde süt tedarikçilerinin çok kriterli değerlendirmesini yaparak, sekiz tedarikçiyi 

üretim kapasitesi, ürün kalitesi, maliyet, ulaşım ve tesis uzaklığı gibi ölçütlere göre üç 

kategoriye ayırmıştır. Yazarlar bu yaklaşımlarıyla, karar vericilere çoklu ölçütleri aynı 

anda dikkate alarak daha bütüncül bir değerlendirme yapma olanağı sunmayı 

hedeflemiştir. Bu çalışmalara paralel olarak, Silva ve Costa (2014) da bilgi 

teknolojileri projelerinin değerlendirilmesine yönelik çok kriterli bir yaklaşım 

geliştirmiştir. Çalışmada, IT yatırımlarının sınıflandırılması ve önceliklendirilmesi 

için karar öncesi aşamada uygulanabilecek sistematik bir çerçeve sunulmuş; hem 

somut hem de soyut faydaların dikkate alındığı, sübjektifliğin azaltılmasını amaçlayan 

bir model önerilmiştir. Model, farklı IT projelerinin çeşitli özelliklerini göz önünde 

bulundurarak karar vericilere daha yapılandırılmış ve dengeli bir değerlendirme süreci 

sağlamayı amaçlamaktadır. Ayrıca, Madhooshiarzanagh ve Abi-Zeid (2021) 

tarafından gerçekleştirilen çalışmada, ELECTRE Tri ailesinin bir uzantısı olan 

ELECTRE Tri-nC yöntemi kullanılarak çevresel koşullara göre turistik bölgelerin dört 

kategoriye ayrılması hedeflenmiştir. Bu çalışmada, karar vericiden sınırlı bilgi alınarak 

tercihlerin dolaylı şekilde öğrenilmesini sağlayan bir ayrıştırma yaklaşımı 

oluşturulmuştur. Sonucunda 62.482 lokasyonun iklim temelli bir sınıflandırmaya tabi 

tutulduğu geniş ölçekli bir uygulama gerçekleştirilmiştir. 

Ishizaka vd. (2012) özellikle çok sayıda alternatifin önceden tanımlanmış kategorilere 

yerleştirilmesi gereken durumlarda, karar vericilere sistematik ve esnek araçlar 

sunulmasının önemli bir husus olduğunu vurgulamıştır. Yazarlar, geleneksel AHP’nin 

sınıflandırma problemleri için uygun olmadığını belirterek bu eksikliği gidermek 
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amacıyla AHPSort yöntemini geliştirmiştir. Bu yöntem, tedarikçi seçiminde kullanılan 

bir vaka çalışmasında test edilerek, alternatiflerin "kabul" ve "ret" sınıflarına 

ayrılmasını sağlamış ve ardından nihai seçim klasik AHP ile yapılmıştır. Benzer 

şekilde, Miccoli ve Ishizaka (2017) çevresel bağlamda AHPSort II yöntemini 

geliştirerek, İtalya’nın Umbria bölgesindeki koyun çiftliklerinde kurt saldırısı 

risklerini sınıflandırmışlardır. Bu yöntemin özellikle büyük alternatif kümeleri için 

uygunluğu vurgulanmış ve geleneksel AHPSort’a göre çok daha az karşılaştırma 

gerektirdiği gösterilmiştir. Yazarlar, sınıflandırmanın hassasiyetini artırmak için 

kümeleme tekniklerini de entegre ederek yalnızca %0.54 oranında karşılaştırma ile 

güvenilir sonuçlar elde etmişlerdir. Öte yandan, Ishizaka vd. (2020), klasik 

AHPSort’un keskin sınırlarla sınıf ataması yapmasının, özellikle sınır durumlarındaki 

alternatiflerde yanıltıcı olabileceğini belirtmiş ve bu nedenle bulanık kümeler kuramını 

entegre ederek daha esnek bir sınıflama modeli önermiştir. Bu modelin, Londra 

ilçelerinin güvenlik düzeylerine göre sınıflandırılmasında kullanılması, yönteminin 

pratik geçerliliğini ortaya koymuştur. Dahası, Ishizaka ve Pereira (2020), gerçek 

dünyadaki ölçütlerin çoğu zaman birbiriyle bağımlı olduğu gerçeğinden hareketle 

ANPSort yöntemini tanıtmışlardır. Yükseköğretim alanındaki bir araştırmacı 

sınıflandırma vakasıyla sunulan bu yaklaşım, ölçütler arası bağımlılıkları dikkate 

alarak daha bütüncül ve yapısal bir karar süreci sağlamış; aynı zamanda çok sayıda 

alternatifin değerlendirildiği durumlarda karşılaştırma yükünü önemli ölçüde 

azaltmıştır. 

FlowSort, PROMETHEE sıralama metodolojisine dayalı olarak geliştirilen yenilikçi 

bir sınıflandırma yaklaşımıdır. Nemery ve Lamboray (2008), bu yöntemi hem 

sınırlayıcı hem de merkezi profillerle tamamen sıralı kategorilere atama yapmak 

amacıyla önermiştir. Alternatiflerin, referans profillere göre gelen, giden ve net akış 

değerleri bağlamında göreli konumları dikkate alınarak yapılan atamalara yönelik 

güçlü tercih koşulu tanımlanmış ve ELECTRE Tri ile karşılaştırmalı analizler 

gerçekleştirilmiştir. Bu temel üzerine inşa edilen bir diğer çalışmada, FlowSort 

yöntemine görselleştirme teknikleri entegre ederek yöntemin yorumlanabilirliğinin 

artırılması amaçlanmıştır (Nemery vd., 2012). 

FlowSort’un sektörel uygulamalarda da etkili biçimde kullanıldığı örneklerden biri 

Sepulveda ve Derpich (2015) tarafından gerçekleştirilmiştir. Bu çalışmada, Şili'deki 

bir gazlı içecek üretim tesisinde tedarikçilerin sınıflandırılması amacıyla Electre ve 
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FlowSort yöntemleri karşılaştırılmış; özellikle bulanık çok kriterli yapıya sahip 

durumlarda FlowSort’un kural tabanlı sistemler kurmaya daha uygun olduğu 

belirtilmiştir. Sepulveda vd. (2010) ise yenilik kapasitesini değerlendirmek amacıyla 

merkezi profillerle çalışan bir FlowSort varyantı kullanarak KOBİ’lerin 

sınıflandırılmasını ve ardından kişiselleştirilmiş önerilerin geliştirilmesini mümkün 

kılmıştır. Benzer şekilde, tedarikçi sınıflandırması konusunda Sagura vd. (2020), taze 

meyve tedarik zincirinde sürdürülebilirlik odaklı kriterlerle geliştirdikleri iki aşamalı 

modelde MAUT ve PROMETHEE yöntemlerini harmanlayarak FlowSort benzeri bir 

sınıflandırma yapısını benimsemiştir. Bu model, stratejik kriterler doğrultusunda 

tedarikçilerin hem sıralanmasını hem de kategorilere ayrılmasını sağlamış ve karar 

destek sistemlerine temel teşkil edecek şekilde tasarlanmıştır. Öte yandan, Campos vd. 

(2015) ise FlowSort yöntemini bulanık mantıkla bütünleştirerek Fuzzy FlowSort 

yöntemini önermiştir. Bu çalışma, kesin olmayan verilerle başa çıkmak için geliştirilen 

yaklaşımın, hem klasik FlowSort hem de Fuzzy-PROMETHEE yöntemleriyle olan 

ilişkisinin analiz edilmesiyle, bulanık ortamda sınıflandırma problemlerine güçlü bir 

çözüm sunduğunu ortaya koymuştur. 

Zopounidis ve Doumpos (2000), PREFDIS adlı çok kriterli karar destek sistemini 

tanıtarak, özellikle sınıflama problemlerinde karar vericilerin tercihlerini ayrıştırmaya 

dayalı yaklaşımlarla modelleyebilmelerine olanak tanımıştır. Sistem, UTADIS ve üç 

varyantı (I, II, III) ile alternatiflerin belirli kategorilere atanmasını sağlayan güçlü 

eklemeli fayda modelleri sunmakta ve karar vericinin tercihlerini modelleme 

konusunda esneklik sağlamaktadır. Aynı yazarlar daha sonraki çalışmalarında 

(Doumpos ve Zopounidis, 2004), UTADIS yöntemi üzerine gerçekleştirdikleri Monte 

Carlo simülasyonlarıyla, modelleme sürecinde kullanılan parametrelerin sınıflandırma 

performansı ve model istikrarı üzerindeki etkilerini detaylı biçimde analiz etmişlerdir. 

Bu analiz, tercih ayrıştırma tekniklerinin güvenilirliği açısından önemli bulgular 

sunmaktadır. 

Öte yandan Ulucan ve Atıcı (2013), UTADIS yöntemine çoklu sınıflama kriterleri 

ekleyerek MCC-UTADIS yaklaşımını geliştirmiştir. Özellikle ülke risk 

değerlendirmesi örneğiyle, farklı kredi derecelendirme kuruluşlarının sınıflama 

kriterlerini eş zamanlı kullanarak yöntemin performansını test etmişlerdir. Sonuçlar, 

MCC-UTADIS özellikle sınıflama kriterlerinin çeşitliliği durumunda daha tutarlı 

sonuçlar verdiğini ortaya koymuştur. Köksalan vd. (2013) ise, sınıflara atanacak 
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alternatif sayısında kısıtların bulunduğu karar problemlerine odaklanarak, UTADIS 

yöntemini bu tür kısıtlamaları göz önünde bulunduracak şekilde yeniden formüle 

etmiştir. Geliştirilen model, ikili değişkenlerin sayısını azaltarak işlem yükünü 

hafifletmiş, ayrıca her alternatifin atanabileceği kategori aralığını daraltarak 

hesaplama verimliliğini artırmıştır. Ayrıca, Greco vd. (2011), UTADIS-GMS 

yöntemine dayanarak kararlı sınıflandırma anlayışını güçlendiren temsili değer 

fonksiyonu kavramını ortaya koymuşlardır. Bu fonksiyon, karar vericinin örnek 

atamalarıyla tutarlı olan tüm değer fonksiyonları arasında seçilmekte ve özellikle 

kararlı sınıflama bölgelerini vurgulamaktadır. Böylece karar destek sistemlerinde hem 

karar vericiye sonuçları daha şeffaf sunmakta hem de özerk sınıflama süreçleri için 

kullanılabilmektedir. 

Ishizaka vd. (2018), envanter yönetiminde benzer ürünlerin sınıflandırılması için 

geliştirdikleri DEASort yöntemini tanıtmaktadır. Geleneksel DEA modellerinin 

yalnızca sıralama yapması ve sınıfların yüzdeliklerle rassal tanımlanması gibi 

sınırlılıklarını aşmayı hedefleyen bu yöntem, karar vericilerin uzmanlığını da sürece 

entegre etmektedir. Karar vericiler öncelikle her sınıfa ait tipik örnekleri belirleyip 

AHP yöntemiyle kriter ağırlıklarını sunmuştur. Bu sayede, bu bilgiler modelde ağırlık 

kısıtı olarak yer almakta ve daha gerçekçi sınıflandırmalar elde edilmektedir. Yöntem, 

yedek parça stoklayan bir depo yönetim sürecinde uygulanarak somutlaştırılmıştır. 

Karasakal ve Aker (2017) ise Ar-Ge projelerinin değerlendirilmesi için veri zarflama 

analizi tabanlı çok kriterli sınıflandırma modelleri geliştirmiştir. Kriterlerin ağırlık 

aralıkları, aralıklı AHP yöntemiyle belirlenmiş ve modellerde güven bölgesi kısıtı 

olarak kullanılmıştır. İki eşik tahmin modeli ve beş atama modelinden oluşan 

yaklaşım, yalnızca sıralama değil aynı zamanda sınıflandırma da sağlamaktadır. 

UTADIS ile yapılan karşılaştırmalı analizde, önerilen modellerin daha kararlı sonuçlar 

verdiği görülmüştür.  

Öte yandan Demir vd. (2018), çevresel performansa dayalı tedarikçi değerlendirme 

sürecine yenilikçi bir katkı sunarak, VIKOR tabanlı bir sınıflandırma yöntemi olan 

VIKORSORT’u geliştirmiştir. Yöntem, tedarikçileri çevresel kriterlere göre önceden 

tanımlı sıralı sınıflara ayırmakta ve her sınıfa uygun yeşil tedarikçi geliştirme programı 

önerilebilecek şekilde uzman sistemlerle bütünleştirilebilmektedir. Bu doğrultuda, 

sınıflandırma esnekliğini artırmak ve karar verme etkinliğini geliştirmek amacıyla, 

VIKORSORT yöntemine bulanık küme teorisini entegre eden yeni bir yaklaşım 
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geliştirilmiştir (Khan vd., 2025). Bu çalışmada, VIKORSORT yönteminde kullanılan 

keskin sınıf sınırlarının karar kalitesini olumsuz etkileyebileceği belirtilmiş ve bu 

sınırlılığın giderilmesi amacıyla bulanık küme teorisi yönteme entegre edilmiştir. 

Geliştirilen yaklaşımda, her alternatifin belirli sınıflara ait olma derecesi trapezoidal 

üyelik fonksiyonlarıyla ifade edilmektedir ve böylelikle sınıflar arasında daha 

yumuşak geçişler sağlanmaktadır. Ayrıca, alternatiflerin özellikleri daha nüanslı 

biçimde temsil edilebilmektedir. Tekstil sektöründeki yedek parça envanter 

yönetimine yönelik yapılan uygulamada, klasik ve bulanık modeller karşılaştırılmış; 

bulanık yaklaşımın hem maliyet hem de hizmet düzeyi açısından daha başarılı sonuçlar 

ürettiği gösterilmiştir. 

2.1.2 TOPSIS-Sort 

TOPSIS-Sort’un sıralı sınıflandırma modelleri arasında öne çıkmasının temel nedeni 

hem ideal hem de anti-ideal çözümlere göre yönelimi ve uzaklığı aynı anda dikkate 

alarak karar alternatiflerini sınıflandırmasıdır. Bu özellik, onu yalnızca sıralama değil, 

aynı zamanda sınıflandırma temelli karar problemlerinde de güçlü kılmaktadır 

(Behzadian vd., 2012).Ayrıca, TOPSIS'in farklı yöntemlerle birlikte kullanılması ya 

da karşılaştırılması, bu yöntemin hem bağımsız hem de hibrit yaklaşımlara uygun 

olduğunu ortaya koymaktadır. Bu çeşitlilik, özellikle gerçek hayat karar problemlerine 

yönelik geliştirilen sınıflandırma temelli modellerin, örneğin TOPSIS-Sort ve onun 

daha hassas versiyonu olan TOPSIS-Sort-B’nin, neden ortaya çıktığının ve hangi 

metodolojik boşluklara yanıt verdiğinin daha iyi anlaşılmasına olanak sağlamaktadır. 

Faraji Sabokbar vd. (2016), klasik TOPSIS yöntemini esas alarak geliştirdikleri 

TOPSIS-Sort yaklaşımıyla çevresel sürdürülebilirliğe odaklanan sınıflandırma temelli 

bir karar modelini ortaya koymuşlardır. Bu modelde, sınıf tanımları için karakteristik 

profiller kullanılırken, tercihler üstünlük sağlamaya yönelik ilişkiler bağlamında 

modellenmiştir. Araştırmada, Tahran’ın 22 bölgesi çevresel kalite düzeylerine göre 

beş sınıfa ayrılmış; ancak dördüncü ve beşinci sınıflarda hiçbir bölge yer almamıştır. 

Bu durum, Tahran’daki çevresel durumun genel olarak düşük seviyede olduğunu 

ortaya koymuştur. Elde edilen sonuçların hem araştırmacıların hem de uzmanların 

değerlendirmeleriyle tutarlılık göstermesi, TOPSIS-Sort’un sıralı sınıflandırma 

problemlerinde ne denli geçerli ve güvenilir bir yöntem olduğunu göstermektedir. 

Yazarlar, bu modelin yalnızca TOPSIS’e özgü kalmayıp ELECTRE ve PROMETHEE 
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gibi diğer üstünlük esaslı (outranking) yöntemlere de entegre edilebileceğini 

vurgulamaktadır. Daha güncel bir çalışmada, de Lima Silva ve de Almeida Filho 

(2020) TOPSIS yönteminin sıralama bazlı sınıflandırmalarda karşılaştığı sıra 

değiştirme (rank reversal) problemini ele alarak TOPSIS-Sort-B ve TOPSIS-Sort-C 

adını verdikleri iki yeni versiyonu önermişlerdir. Bu yeni modellerden TOPSIS-Sort-

B sınır profillerine dayalı sorunlara yönelik geliştirilmişken, TOPSIS-Sort-C 

karakteristik profillerin daha uygun olduğu durumlar için tasarlanmıştır. Her iki 

yöntem de ekonomik özgürlük düzeylerine göre 180 ülkenin beş önceden tanımlanmış 

sınıfa atanmasında kullanılmıştır. Sınıflandırma sonuçlarının, literatürdeki 

derecelendirmelerle ve ilgili uzman kuruluşun verileriyle tutarlılık göstermesi, 

önerilen yöntemlerin geçerliliğini ve pratikteki uygulanabilirliğini ortaya koymuştur. 

de Lima Silva vd. (2020), TOPSIS-Sort yöntemine yönelik önemli bir iyileştirme 

sunarak PDTOPSIS-Sort adlı yeni bir yaklaşım geliştirmiştir. Bu yöntem, karar 

vericinin sınıf sınırları ve kriter ağırlıkları gibi birçok parametreyi doğrudan 

belirtmesini zorunlu kılan klasik TOPSIS-Sort'un aksine, yalnızca bütüncül karar 

örneklerine dayanarak çalışmaktadır. Yazarlar, doğrusal olmayan programlama 

aracılığıyla parametreleri çıkaran bu yöntemin, özellikle karar vericiler üzerindeki 

bilişsel yükü azaltmak açısından literatüre anlamlı bir katkı sunduğunu belirtmiştir. 

Finansal alanda yapılan uygulamada, Brezilya’da ihraç edilen 50 kurumsal tahvil 

analiz edilerek sınıflandırılmış; sonuçlar, yatırım bankacılığı uzmanının önceden 

tanımlı tercihleriyle yüksek düzeyde örtüşmüştür. Bu da yöntemin pratikte güvenilir 

biçimde çalıştığını ortaya koymaktadır. Aynı araştırma grubu tarafından sürdürülen bir 

başka çalışmada ise (de Lima Silva vd., 2023), bu kez PDTOPSIS-Sort-C adlı yeni bir 

yöntem önerilmiştir. Bu yöntem, karar örnekleri üzerinden öğrenilen tercihlerle 

karakteristik profillerin ve kriter ağırlıklarının matematiksel programlama aracılığıyla 

türetildiği bir süreci benimsemektedir. Böylece, daha önce önerilen TOPSIS-Sort-C 

yönteminde karar vericiden beklenen yüksek bilişsel çaba azaltılmıştır. Ayrıca, 

PDTOPSIS-Sort’un sınır profiline dayalı yapısını TOPSIS-Sort-B ile bütünleştirerek 

daha esnek bir sınıflama altyapısı sunulmuştur. Yöntem, dört yıl boyunca 180 ülkenin 

ekonomik özgürlük düzeyine göre sınıflandırıldığı bir uygulamada test edilmiş ve 

simüle edilmiş karar örnekleriyle anlamlı ve tutarlı sonuçlar üretmiştir. 

Zhang ve Li (2023), çok uzmanlı karar ortamlarında ortaya çıkan sıralama problemleri 

için, fikir birliğine dayalı iki farklı TOPSIS-Sort-B algoritması geliştirmiştir. Tek bir 
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uzmanın sınırlı bilgi ve deneyimiyle karar vermenin yeterli olmadığı durumlarda, grup 

temelli çok kriterli sıralama problemleri öne çıkmaktadır. Bu bağlamda, yazarlar her 

bir uzmanın belirlediği sınır profillerini dikkate alarak fikir birliğine dayalı profillerin 

elde edilmesini sağlayan en küçük düzeltme temelli bir optimizasyon modeli 

önermiştir. Bu model aracılığıyla hem bireysel hem de toplu karar matrisleri 

oluşturulmuş ve sıralama sonuçları elde edilmiştir. Ayrıca, uzmanların 

değerlendirmelerini yeniden gözden geçirmesine olanak tanıyan farklı geri bildirim 

stratejileri tasarlanmış ve önerilen algoritmalar, yeşil bina derecelendirme örneğiyle 

birlikte çeşitli simülasyon senaryolarında test edilmiştir. Diğer yandan Hajek vd. 

(2024), kredi notu tahminine yönelik belirsizliklerle başa çıkabilen, veri odaklı bir 

ÇKKV sınıflandırma yaklaşımı geliştirmiştir. Yöntem, kriterler arası etkileşimleri 

modellemek için bulanık bilişsel haritalardan yararlanmakta ve bulanık TOPSIS-Sort-

C ile bulanık en-önemli ve en-önemsiz yöntemlerini birleştirmektedir. Kredi riskine 

etki eden kriterlerin seçimi için korelasyon tabanlı özellik seçimi ve bulanık c-means 

algoritmaları kullanılmıştır. ABD’de faaliyet gösteren 1138 şirket üzerinde 

gerçekleştirilen ampirik analiz, modelin hem finansal hem de finansal olmayan 

göstergeleri başarıyla işleyebildiğini ve mevcut modellere kıyasla yüksek bir tahmin 

doğruluğuna sahip olduğunu ortaya koymuştur. Bu çalışma, özellikle belirsizliklerin 

yoğun olduğu kredi derecelendirme gibi finansal uygulamalarda, ÇKKV tabanlı 

sınıflandırma modellerinin güçlü bir alternatif sunabileceğini göstermektedir. 

2.2 Elektrikli Araçlara İlişkin Karar Verme Uygulamaları 

Elektrikli araçlara yönelik karar verme süreçlerini inceleyen çeşitli çalışmalar 

literatürde yer almaktadır. Ancak bu çalışmaların büyük çoğunluğu, çok kriterli karar 

verme yöntemlerini sıralama veya seçim problemlerinde kullanmış; doğrudan 

sınıflandırma veya kategorik sıralama temelli yaklaşımlara yer vermemiştir. Buna 

rağmen, ÇKKV tekniklerinin uygulandığı bu çalışmalar, mevcut araştırmaya 

yöntemsel açıdan önemli bir zemin sunmaktadır. 

Elektrikli araçlarla ilgili teknolojik gelişmeler yalnızca mühendislik alanında değil, 

karar destek sistemleri kapsamında da önemli uygulamalara yol açmaktadır. Aghabali 

vd. (2020), geleneksel 400-V bataryaların şarj akımı taşıma kapasitesi nedeniyle ultra 

hızlı şarjın sınırlı kaldığını belirtmiş ve 800-V mimariye sahip bataryalı elektrikli 

araçların (BEV) bu sorunu çözebilecek potansiyele sahip olduğunu ortaya koymuştur. 
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Bu sayede yazarlar elektirikli araçların benimsenmesi ve tercihi noktasındaki en 

önemli problemlerden birisi olan batarya problemine parmak basmışlardır. Benzer 

biçimde, İnci vd. (2021), yakıt hücreli elektrikli araçlar üzerine odaklanarak bu 

teknolojilerin sessiz çalışma, yüksek verimlilik ve modüler yapı gibi avantajlarına 

dikkat çekmiş; bu araçların konfigürasyonları, güç dönüştürücüleri, kontrol sistemleri 

ve pazarlama perspektifinden incelenmesini sağlamıştır. Özellikle, dönüştürücü 

sistemler ve kontrol mekanizmalarına yönelik teknik zorluklar detaylandırılmış ve 

pazardaki gelişim beklentileri kapsamlı bir şekilde analiz edilmiştir. Çalışma, 

mühendislik ve yönetimsel karar alma süreçlerini bütünsel bir çerçevede ele alan nadir 

örneklerdendir. 

Öte yandan, Higueras-Castillo vd. (2021) daha çok kullanıcı davranışına odaklanarak, 

İspanya’daki 404 potansiyel tüketiciyle gerçekleştirdikleri çalışmada menzil, teşvikler 

ve güvenilirlik gibi değişkenlerin elektrikli araç satın alma niyetinin güçlü göstergeleri 

olduğunu saptamışlardır. Bu bulgular hem kamu kurumları hem de özel sektör için 

stratejik kararların alınmasında yol gösterici niteliktedir. Ayrıca uzman panelleri ile 

yapılan karşılaştırmalar, belirli değişkenlerin sınırlı sayıdaki güçlü göstergelerle satın 

alma niyetini anlamada yeterli olabileceğini desteklemiştir. 

Elektrikli araçların yaygınlaştırılması sürecinde karar verme mekanizmalarının 

etkinliği hem tüketici tercihlerini hem de kamu politikalarını doğrudan etkilemektedir. 

Bu kapsamda Sonar ve Kulkarni (2021), çok kriterli karar verme bağlamında AHP-

MABAC bütünleşik yöntemini kullanarak, farklı elektrikli araç alternatifleri arasından 

en uygun olanın seçimine yönelik bir model geliştirmiştir. AHP kriter ağırlıklarını 

belirlerken, MABAC yöntemi bu ağırlıklarla alternatiflerin sıralanmasını sağlamıştır. 

Çalışma hem metodolojik açıdan yenilik sunmakta hem de pratikte kullanıcı 

tercihlerini dikkate alan sağlam bir değerlendirme çerçevesi önermektedir. Öte 

yandan, Li vd. (2020) ise Çin'de gerçekleştirdikleri tercih deneyimi temelli bir saha 

araştırmasıyla, tüketicilerin elektrikli araç tercihlerini şekillendiren hem ürün 

özelliklerine hem de politika teşviklerine odaklanmıştır. Araştırmada, menzil ve 

maliyet gibi bilinen kriterlere ek olarak, batarya garantisi gibi daha az incelenmiş 

unsurların da önemli rol oynadığı ortaya konmuştur. Ayrıca, geleneksel 

sübvansiyonların yerini alabilecek kişisel karbon ticareti ve sürüş kredisi gibi piyasa 

temelli teşviklerin, özellikle genç kullanıcılar üzerinde olumlu etkiler yaratabileceği 

vurgulanmıştır. Bu bulgular, teşvik politikalarının yeniden tasarımı açısından 
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önemlidir. Ziemba (2020) ise, Polonya’daki kamu kurumları için sürdürülebilirlik 

temelli bir elektrikli araç seçim süreci geliştirmiştir. PROSA-C yöntemiyle teknik, 

ekonomik ve çevresel kriterleri dikkate alarak alternatifleri değerlendiren çalışmada, 

Monte Carlo simülasyonu da belirsizliklerin modellenmesi için kullanılmıştır. Bu 

sayede karar vericilere hem sağlam hem de sürdürülebilir çözümler sunulmuştur. 

Ecer (2021), elektrikli araçların çevresel sürdürülebilirlik açısından taşıdığı önemi 

vurgulayarak, bataryalı elektrikli araç alternatiflerinin teknik özelliklerine göre 

müşteri bakış açısıyla değerlendirilmesi gerektiğini savunur. Çalışmasında, hızlanma, 

menzil, batarya kapasitesi ve fiyat gibi birçok kriter doğrultusunda on farklı BEV’i 

SECA, MARCOS, MAIRCA, COCOSO, ARAS ve COPRAS gibi çok kriterli karar 

verme teknikleriyle sıralamış, ardından elde edilen sonuçları Borda count ve Copeland 

yöntemleriyle birleştirerek nihai bir tercih sıralaması sunmuştur. Bu yaklaşım, 

özellikle fiyat, izin verilen yük miktarı ve enerji tüketiminin karar vericiler için 

öncelikli kriterler olduğunu göstermiştir. Tesla Model S’in en uygun seçenek olarak 

öne çıkması, bu tekniklerin karar sürecine nasıl sistematik katkı sağladığını da gözler 

önüne sermiştir. Pamucar vd. (2021) de alternatif yakıtlı araçların çevresel etkilerini 

değerlendirerek daha sürdürülebilir ulaşım sistemlerine katkı sunmayı 

amaçlamışlardır. ABD'nin New Jersey eyaletinde gerçekleştirilen çalışmada, 

belirsizliğin yoğun olduğu karar ortamlarını modellemek amacıyla bulanık FUCOM 

ve neutrosophic MARCOS yöntemlerini bir arada kullanmışlardır. Bu entegre 

yöntemle yapılan analiz sonucunda, satın alma maliyeti, enerji maliyeti ve toplumsal 

faydanın en belirleyici kriterler olduğu tespit edilmiştir. Elektrikli araçlar, bu 

değerlendirme çerçevesinde en çevreci alternatif olarak öne çıkarken, geliştirilen 

metodolojinin klasik yöntemlere kıyasla daha üstün sonuçlar sunduğu da 

karşılaştırmalı analizle ortaya konmuştur. Her iki çalışma da teknik, ekonomik ve 

sosyal faktörleri bütüncül biçimde ele alan ÇKKV tabanlı değerlendirmelerin, 

ulaşımda daha bilinçli ve sürdürülebilir tercihlere kapı aralayabileceğini 

göstermektedir. 

Bütün bu çalışmalar değerlendirildiğinde, elektrikli araçlara yönelik karar verme 

süreçlerinde ÇKKV yöntemlerinin sıklıkla kullanıldığı; ancak bu uygulamaların 

büyük ölçüde sıralama veya seçim problemleriyle sınırlı kaldığı görülmektedir. ÇKKV 

ile ML tekniklerinin entegre biçimde kullanıldığı, yani ÇKKV yöntemleriyle 

oluşturulan karar sınıflarının ML algoritmalarıyla tahmin edildiği çalışmalara 
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literatürde rastlanmamaktadır. Dolayısıyla bu tez çalışması, hem ÇKKV temelli 

sınıflandırma yaklaşımını hem de bu sınıfların makine öğrenmesiyle tahmin edilmesini 

bir araya getirerek alanyazındaki önemli bir boşluğu doldurmayı hedeflemektedir. 

2.3 Makina Öğrenmesi ile Sınıflandırma 

Makine öğrenmesi, günümüzde birçok sektörde karar destek sistemlerinin temelini 

oluşturmakta ve karmaşık veri kümeleri üzerinde yüksek doğrulukla tahminler 

yapılmasına olanak tanımaktadır. Özellikle sınıflandırma algoritmaları, veri analizi 

süreçlerinin vazgeçilmez bir parçası hâline gelmiştir. Bu bölümde, başta otomotiv -ve 

özellikle elektrikli araçlar- olmak üzere çeşitli uygulama alanlarında naive bayes, 

lojistik regresyon, yapay sinir ağları (YSA), destek vektör makineleri (DVM), karar 

ağaçları ve k-en yakın komşu gibi yaygın sınıflandırma algoritmalarının kullanıldığı 

öne çıkan çalışmalara yer verilmiştir. 

Makine öğrenmesi tekniklerinin otomobil endüstrisine yönelik üretim süreçlerinde 

kalite kontrol ve süreç optimizasyonunu iyileştirme potansiyeli son yıllarda dikkat 

çekici biçimde artmıştır (Wuest vd., 2016). Bu bağlamda, özellikle yüksek boyutlu ve 

çok değişkenli verileri işleyebilme yetenekleri ile gizli ilişkileri keşfedebilme 

kabiliyetleri, makina öğrenmesi algoritmalarını ön plana çıkarmaktadır (Köksal vd., 

2011). Otomobil üretim alanında süreç optimizasyonu (Kwak ve Kim, 2012), arıza 

tespiti (Kim vd., 2012) ve kestirimci bakım (Susto vd., 2014) gibi pek çok problem 

için MÖ tabanlı yaklaşımlar başarıyla kullanılmıştır. Lojistik regresyon gibi doğrusal 

yöntemler temel ilişkileri ortaya çıkarmada etkili olsa da, daha karmaşık ikinci veya 

üçüncü dereceden etkileşimleri saptamada yetersiz kalabilmektedir (Hebert, 2016). Bu 

nedenle, karar ağaçları gibi doğrusal olmayan yöntemler daha güçlü alternatifler olarak 

öne çıkar. 

Yapay sinir ağları, destek vektör makineleri, karar ağaçları, naive bayes ve k-en yakın 

komşu gibi makine öğrenimi teknikleri, elektrikli araçlar özelinde yapılan çok sayıda 

çalışmada yaygın biçimde kullanılmıştır. Örneğin Zahid vd. (2018), batarya sağlığı ve 

şarj durumu tahmininde YSA modellerini kullanarak yüksek doğruluk oranları 

ulaşırken; Sheng ve Xiao (2015) aynı problem için DVM kullanarak oldukça yüksek 

doğruluk seviyelerine ulaşmıştır. Benzer şekilde Yavasoglu vd. (2019), aracın menzil 

tahmini için 60 nöronlu gizli katmana sahip bir YSA ile karar ağacı modelini birlikte 

kullanarak, araçların kullandığı ancak tipi bilinmeyen yolları tahmin etmiştir. YSA 
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ayrıca, sürüş tarzı sınıflandırmasında da Wang vd. (2018) tarafından test edilmiş ve 

oldukça umut verici sonuçlar elde edilmiştir. Öte yandan, Goebel ve Plötz (2019), 

hibrit araçların elektrikli sürüş oranını tahmin etmek amacıyla YSA, DVM, regresyon 

ağacı ve rassal orman modellerini karşılaştırmış; en yüksek tahmin doğruluğunun 

ANN ve SVM ile elde edildiğini belirtmiştir. 

Liu vd. (2019) ve Yi vd. (2019) gibi çalışmalar, sırasıyla trafik akışı tahmini ve sürüş 

davranışı tanıma gibi ulaşım odaklı uygulamalarda karar ağaçlarının ve DVM’nin 

performansını incelemişlerdir. Ayrıca, Hernandez vd. (2016), araçlara yönelik tercih 

verilerini kullanarak ulaşım tercihlerine etki eden algısal faktörleri açıklamak için 

karar ağacı modellerini tercih etmiştir. Bu yöntemler, kullanıcı davranışlarını 

açıklamada şeffaflık sağladığı için özellikle tercih edilmektedir. Zhao vd. (2020) ise 

SP verilerini temel alan bir çalışmada logit modelleri ile çeşitli makine öğrenimi 

algoritmalarını karşılaştırmış; YSA, DVM, karar ağacı ve doğrusal ayrıştırıcı analiz 

gibi yöntemlerin performansını detaylı biçimde incelemiştir. Bu çalışma, araçlara 

yönelik tercih verisi kullanarak sınıflandırma yapan nadir örneklerden biri olarak öne 

çıkmaktadır. 

Ayrıca, Kotsiantis (2007) ve Singh vd. (2016), bu algoritmaların güçlü ve zayıf 

yönlerini karşılaştırmalı olarak ele almıştır. Bu incelemelerde DVM yüksek doğruluğu 

ve ilgisiz özelliklere toleransı ile öne çıkarken, YSA aşırı öğrenmeye yatkınlığına 

rağmen genel olarak dengeli bir performans sergilemektedir. Naive Bayes ve doğrusal 

ayrıştırıcı analiz gibi daha basit yöntemler ise hız ve sadelik avantajlarına sahip 

olmakla birlikte, karmaşık veri ilişkilerini modellemede sınırlı kalmaktadır. Tüm bu 

bulgular, elektrikli araçların benimsenmesi gibi sosyal ve teknik yönleri bir arada 

içeren karar süreçlerinde çeşitli algoritmaların birlikte değerlendirilmesini gerekli 

kılmaktadır (Bas vd., 2021). 

Bas vd. (2021) yaptıkları çalışmada, elektrikli araçların benimsenmesinin, yakıt 

tasarrufu sağlama konusunda en büyük etkiye sahip yaklaşımlardan biri olarak 

gördüklerini ifade etmişlerdir. Ancak yazarlara göre, elektrikli araçların 

benimsenmesini öngören mevcut çalışmalar birbirinden oldukça farklı sonuçlar 

sunmakta, bu da stratejik kararlar için belirsizlik yaratmaktadır. Bu çalışma, potansiyel 

elektrikli araç alıcılarını sınıflandırmak için DVM, YSA, derin sinir ağları ve çeşitli 

ağaç tabanlı modelleri karşılaştırarak denetimli makine öğrenimi yöntemleriyle analiz 

yapmaktadır. Bulgular, tüm modellerin benzer başarı düzeyleri gösterdiğini ve çoklu 
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değişken kullanımının doğruluğu artırdığını ortaya koymaktadır. Şarj altyapısının 

dikkate alındığı bir başka çalışmada ise yük tahmini ve enerji yönetimi gibi çeşitli 

sorunların ortaya çıktığı vurgulanmıştır. Yazarlar çalışmalarında, elektrikli araç şarj 

yönetimi için Kısa-Uzun Dönem Hafıza (KUDH), Derin Sinir Ağlar (DSA), K-En 

Yakın Komşu (KEYK), Rassal Orman (RO), DVM ve karar ağaçları gibi makine 

öğrenimi yöntemleri karşılaştırılmış, KUDH’nin yük eğrisini dengeleyerek voltaj 

kararlılığı ve enerji kaybı açısından en iyi performansı gösterdiği bulunmuştur 

(Mazhar vd., 2023). 

2.4 ÇKKV ve Makine Öğrenmesinin Birlikte Kullanımı 

Bu bölümde, ÇKKV yöntemleri ile makine öğrenmesi tekniklerinin birlikte 

kullanımına yönelik literatür incelenmekte ve bu iki yaklaşımın entegrasyonuna dair 

güncel eğilimler değerlendirilmektedir. Liao vd. (2023), günümüzün veri odaklı bilgi 

çağında çok kriterli karar verme yöntemlerinin pratik uygulamalara aktarılmasında 

karşılaşılan zorluklara odaklanmıştır. Özellikle büyük veri hacmi ve zayıf veri 

korelasyonları gibi problemler, klasik ÇKKV tekniklerinin sınırlarını ortaya 

koymaktadır. Bu bağlamda, araştırmacılar makine öğrenmesi teknolojilerinin ÇKKV 

süreçlerine nasıl entegre edilebileceğini kapsamlı şekilde ele almıştır. Yapılan 

bibliyometrik analiz aracılığıyla, hem makine öğrenmesi hem de ÇKKV alanlarındaki 

araştırma eğilimleri, öne çıkan konular ve gelişim potansiyeli değerlendirilmiştir. 

Yazarlar, kriter çıkarımı, kriterler arası etkileşim analizi, parametre belirleme ve 

entegre çözüm üretimi gibi temel başlıklarda makine öğrenmesinin katkılarını 

derinlemesine incelemiştir. Ayrıca iş yönetimi, sanayi mühendisliği, enerji yönetimi, 

sürdürülebilir kalkınma ve afet yönetimi gibi çeşitli uygulama alanlarında bu 

teknolojilerin nasıl kullanıldığı örneklenmiştir. Liao vd. (2023), bu bulgular 

doğrultusunda makine öğrenmesinin ÇKKV süreçlerinde sadece destekleyici değil, 

aynı zamanda karar analizinin merkezine yerleşebilecek bir rol üstlenebileceğini ileri 

sürmektedir. 

Makine öğrenmesi ve çok kriterli karar verme yöntemlerinin entegrasyonu, son 

yıllarda farklı sektörlerde sınıflandırma problemlerine yönelik etkili çözümler 

geliştirmek amacıyla yoğun şekilde incelenmektedir. Kartal vd. (2016), basit 

ağırlıklandırma, analitik hiyerarşi süreci ve VIKOR yöntemleriyle yapılan ABC 

analizlerini, destek vektör makineleri, yapay sinir ağları ve Bayes temelli 
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algoritmalarla birleştirerek, çok ölçütlü envanter sınıflandırması için bütüncül bir 

metodoloji geliştirmiştir. Büyük ölçekli bir otomotiv firmasında yapılan uygulama 

çalışmasında, özellikle DVM algoritmasının sınıflandırma doğruluğunda üstünlük 

sağladığı ve tüm algoritmaların dengesiz dağılım gösteren envanter verisinde başarılı 

sonuçlar verdiği görülmüştür. Bu çalışma, ÇKKV ve makine öğrenmesini entegre eden 

öncü uygulamalardan biri olarak öne çıkmaktadır. 

Benzer biçimde Albayrak Ünal ve Erkayman (2023), üretim sektöründe stok 

kontrolüne yönelik olarak AHP destekli bir ABC sınıflandırma sürecini, karar ağacı, 

Naive Bayes, rassal orman ve SVM gibi makine öğrenimi algoritmalarıyla birleştirerek 

envanter yönetimi için etkili bir sistem önermiştir. Elde edilen sonuçlar, özellikle 

rassal orman algoritmasının stok sınıflandırmasında daha yüksek performans 

sunduğunu göstermektedir. Roy vd. (2023) ise, envanter yönetiminde yeni ürünlerin 

sınıflandırılması gibi zaman alıcı işlemlerin daha hızlı yapılabilmesi adına, mevcut 

stokları TOPSIS yöntemiyle sınıflandırdıktan sonra, yeni ürünleri tahmin etmek için 

k-en yakın komşu ve DVM algoritmalarını kullanmıştır. Yapılan karşılaştırmalı 

deneylerde, k-en yakın komşu algoritması hem eğitim hem test verilerinde daha 

yüksek doğruluk sergileyerek, yeni ürün sınıflandırmalarında daha isabetli tahminler 

sunduğunu göstermiştir. 

Çalışma alanı envanter yönetiminin ötesine geçerek, insan kaynakları gibi farklı 

bağlamlara da uzanmaktadır. Chowdhury vd. (2023), çalışan devir oranlarını analiz 

etmek amacıyla, AHP yöntemiyle belirlenen kriter ağırlıkları doğrultusunda TOPSIS 

ile çalışanları işten ayrılma eğilimlerine göre sıralamış; ardından yedi farklı makine 

öğrenmesi algoritmasını karşılaştırarak, personel sirkülasyonunun tahmininde en 

yüksek doğruluğa sahip olan algoritmanın rassal orman olduğunu rapor etmiştir. Bu 

yaklaşım, yalnızca çalışan sınıflandırmasında değil, aynı zamanda karar verme 

sürecinde hangi kriterlerin daha belirleyici olduğunu da göstermektedir. Bunlara ek 

olarak, Khodabakhshi vd. (2024), özellikle ilaç taşımacılığı gibi hassas bir lojistik 

alanında, gönderim modunun (kara, hava, deniz) belirlenmesine yönelik bir model 

geliştirmiştir. SAW, MARCOS, TOPSIS, MULTIMOORA ve VIKOR gibi çeşitli 

ÇKKV yöntemleriyle belirlenen kriter skorları, ardından XGBoost, rassal orman ve 

lojistik regresyon gibi algoritmalarla entegre edilerek tahminleme yapılmıştır. Yapılan 

değerlendirmelerde en yüksek doğruluk XGBoost algoritmasında elde edilmiştir. Bu 

araştırma, taşımacılık alanında doğru mod seçiminin karmaşıklığını dikkate alarak, 
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hem karar verme hem tahminleme bileşenlerini bütüncül şekilde ele alan başarılı bir 

hibrit yaklaşım sunmaktadır. 

Bu çalışmalar, farklı sektörlerdeki (otomotiv, üretim, insan kaynakları, lojistik) 

sınıflandırma problemlerine odaklanarak, makine öğrenmesi ile ÇKKV yöntemlerinin 

birlikte nasıl verimli şekilde kullanılabileceğini göstermekte ve bu iki yaklaşımın 

entegrasyonunun karar destek sistemlerine olan katkısını açıkça ortaya koymaktadır. 

Bununla birlikte, literatürde çok kriterli karar verme yöntemleri ile makine öğrenmesi 

algoritmalarının birlikte kullanıldığı çalışmalar bulunsa da, bu entegrasyon genellikle 

genel sınıflandırma problemleriyle sınırlı kalmaktadır. Özellikle sıralı sınıflandırmaya 

dayalı ÇKKV yaklaşımlarının, makine öğrenmesine dayanan sınıflandırma 

algoritmalarıyla bütünleştiği örnekler oldukça sınırlıdır. Bu durum, alanda hem 

yöntemsel hem de uygulama düzeyinde önemli bir araştırma boşluğu olduğunu ortaya 

koymaktadır.
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3. METODOLOJİ 

Bu bölümde, çalışmanın temelini oluşturan yöntemsel çerçeve detaylı biçimde 

sunulmaktadır. Bu çalışmada, elektrikli araçlara yönelik olarak veri temelli karar 

verme süreçlerini desteklemek amacıyla çok kriterli karar verme yöntemleri ve 

denetimli makine öğrenmesi algoritmaları bir arada kullanılmıştır. İlk aşamada, 

çalışmanın uygulama alanına ilişkin veriler Python tabanlı veri kazıma teknikleri ile 

toplanmış; bu ham veriler, analiz sürecine uygun hale getirilmek üzere ön işleme 

adımlarına tabi tutulmuştur. Veri setinin yapısal özellikleri belirlendikten sonra, 

gözlemlerin sınıflandırılmasında kullanılacak kategori sayısını belirlemek amacıyla 

kümeleme analizi gerçekleştirilmiştir. Bu noktada, k-ortalamalar ve hiyerarşik 

kümeleme gibi yöntemler değerlendirilmiş ve optimum küme sayısı, iç tutarlılığı en 

yüksek olacak şekilde seçilmiştir. Elde edilen küme yapısı, TOPSIS-Sort-B 

algoritması kullanılarak karar alternatiflerinin tercih edilebilirlik düzeylerine göre 

sınıflandırılmasını sağlamıştır. Son aşamada, bu etiketler temel alınarak çeşitli 

sınıflandırma algoritmaları ile tahminleme modelleri oluşturulmuş ve bu modellerin 

performansı doğruluk, kesinlik, duyarlılık ve F1 skoru gibi metrikler aracılığıyla 

değerlendirilmiştir. Bu bütüncül yaklaşım hem nicel hem de nitel özelliklere sahip 

verilerin çok boyutlu analizine olanak tanımaktadır. 

Bu çalışma, modern veri bilimi ve karar destek sistemlerinin kesişiminde yer alan 

sofistike bir metodoloji ile gerçekleştirilmiştir. Çok kriterli karar verme yöntemleri ile 

makine öğrenmesi tekniklerini entegre eden bu nicel yaklaşım, karmaşık veri 

kümelerinin derinlemesine analizine olanak sağlamaktadır. Temel araştırma 

motivasyonu, çok sayıda özniteliğe sahip gözlemleri anlamlı ve yorumlanabilir sıralı 

sınıflara ayırmak ve bu sınıfların gelecekteki gözlemler için tahmin modellerini 

oluşturmaktır. 

Çalışmanın metodolojik altyapısı, birbirini mantıksal olarak takip eden sistematik 

adımlarla örülmüştür. Veri toplama süreci, 2025 yılında güncel elektrikli araç 

verilerinin kapsamlı bir web kazıma işlemi ile EVDatabase (EVDatabase, 2025) 

platformundan elde edilmesiyle başlamıştır. Bu veri toplama yaklaşımı, anlık ve 
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güncel bilgilerin analizine imkân sağlarken, aynı zamanda geniş ölçekli bir veri setinin 

oluşturulmasına katkıda bulunmuştur. Toplanan veriler üzerinde ilk analitik adım 

olarak kümeleme analizi uygulanmış, bu sayede ham veriler içerisindeki örtük 

örüntüler ve istatistiksel benzerlikler ortaya çıkarılmaya çalışılmıştır. Ardından 

kümeleme analizi ile bu verilerden kaç farklı grup olduğu kestirilmeye çalışılmıştır. 

Bu gruplar, yalnızca istatistiksel benzerlik üzerinden değil, aynı zamanda karar verme 

bağlamında “tercih edilebilirlik düzeyleri”ne göre de yeniden anlamlandırılmıştır. 

Kümeleme sonrası aşamada, her bir gözlem bir tercih sınıfına atanmış ve bu işlemde 

TOPSIS-Sort-B yöntemi kullanılmıştır. Böylece gözlemler, çok kriterli değerlendirme 

sonucu elde edilen puanlara göre yüksek, orta veya düşük tercih edilebilirlik 

düzeylerine göre etiketlenmiştir. Bu etiketler, çalışmanın sınıflandırma evresine veri 

hazırlığı niteliği taşımaktadır. 

Çalışmanın sınıflandırma evresinde, farklı makine öğrenmesi algoritmaları stratejik 

olarak kullanılmıştır. Yapay sinir ağları, karar ağaçları, lojistik regresyon, destek 

vektör makineleri, k-en yakın komşu ve Naive Bayes gibi denetimli öğrenme 

teknikleri, önceki aşamada oluşturulan kategorilerin tahmin performansını optimize 

etmek amacıyla devreye sokulmuştur. Bu yaklaşım, yalnızca mevcut veri setinin 

analizini değil, aynı zamanda gelecekteki benzer veri kümelerinin de 

yorumlanabilirliğini artırmayı hedeflemektedir. Şekil 3.1’de çalışmanın metodolojik 

alt yapısı özetlenmiştir. 

Metodolojinin bilimsel ve pratik açıdan önemi, büyük ölçekli veri kümelerinin çok 

boyutlu analizine sağladığı sistematik yaklaşımdan gelmektedir. Çalışma, karar destek 

sistemlerinin geliştirilmesine metodolojik bir katkı sunmanın yanı sıra, elektrikli araç 

ekosistemi gibi hızla değişen teknolojik alanlarda veri temelli içgörüler elde 

edilmesine de olanak tanımaktadır. Araştırmanın en dikkat çekici yönlerinden biri, 

farklı disiplinlerden analitik tekniklerin (veri madenciliği, çok kriterli karar verme, 

makine öğrenmesi) entegre bir şekilde kullanılmasıdır. Bu disiplinlerarası yaklaşım, 

salt istatistiksel analizin ötesine geçerek, verilerdeki anlamsal örüntülerin 

keşfedilmesini ve yorumlanmasını sağladığı gibi, yeni gözlemlerin tahminine de 

imkân tanımaktadır. 
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Şekil 3.1: Önerilen Metodolojinin Adımları 

3.1 Veri Seti ve Özellikleri 

Bu çalışmada kullanılan veri seti, ev-database.org adresinden (EVDatabase, 2025) 

web kazıma yöntemiyle elde edilmiştir. Söz konusu veri tabanı, dünya genelinde 

piyasaya sunulan 400'ün üzerindeki elektrikli araca ilişkin kapsamlı bilgiler 

sunmaktadır. Araçlara dair veriler arasında satış fiyatı, batarya kapasitesi, menzil, 

hızlanma süresi, maksimum hız, kargo hacmi ve araç segmenti gibi hem teknik hem 

de ticari özellikler yer almaktadır. Bu sayede, elektrikli araç pazarına dair çok boyutlu 

bir analiz yapılabilmesi mümkün hale gelmektedir. Elde edilen bu veri, çalışmanın 

temel analiz aşamalarına girdi olarak kullanılmıştır. 
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3.1.1 Kullanılan değişkenler 

İlgili veri seti oluşturulurken, ev-database.org adresinde (EVDatabase, 2025) 

listelenen tüm araçlar detaylı bir biçimde incelenmiş ve analiz açısından en tutarlı ve 

yaygın şekilde bulunan değişkenler seçilmiştir. Örneğin bazı araçlara ait sayfalarda 

güvenlik puanı ya da sürücü destek sistemlerine dair bilgiler yer alırken, bu tür veriler 

çok sınırlı sayıda modele özgü olduğu için analiz dışında bırakılmıştır. Aynı şekilde, 

yalnızca bazı ticari araçlarda bulunan çekici gibi spesifik teknik donanımlara dair 

bilgiler de evrensel olarak karşılaştırılabilir bir nitelik taşımadığından elenmiştir. Bu 

filtreleme sürecinde temel ilke, mümkün olduğunca her araçta bulunan ve anlamlı bir 

karşılaştırma yapılmasını mümkün kılacak ortak öz niteliklerin toplanması olmuştur. 

Bu seçici yaklaşımla birlikte, araçlara ilişkin toplam 100 adet değişken elde edilmiştir. 

Bu değişkenlerin önemli bir kısmı sayısal olup; örneğin aracın menzili (km), 

maksimum hızı (km/s), 0–100 km/s hızlanma süresi (saniye), dönüş çapı (metre), satış 

fiyatı (Euro, USD ve Sterlin), koltuk sayısı, boyutlar (uzunluk, genişlik, yükseklik), 

batarya kapasitesi, enerji tüketimi (kWh/100km), bu tüketimin eşdeğer benzin karşılığı 

(litre/100km), batarya garantisinin süresi (yıl) ve garanti kapsamında verilen toplam 

menzil (km) gibi değişkenleri kapsamaktadır. Buna ek olarak, bazı özellikler kategorik 

yapıdadır: aracın aktarma tipi (önden çekişli, arkadan itişli, dört çeker), ısı pompası 

desteği olup olmadığı, oto şarj desteği (plug & charge) mevcudiyeti ve aracın özel bir 

elektrikli araç platformunda tasarlanıp tasarlanmadığı gibi bilgiler bu gruba 

girmektedir. Kategorik veriler başlangıçta ilgili web sitesinde gözüktüğü şekilde elde 

edilmiştir. Bu çeşitlilik sayesinde, hem teknik hem de yapısal boyutta çok boyutlu 

analizler yapılabilmesi mümkün hale gelmiştir. 

3.1.2 Veri ön işleme 

Veri ön işleme, makine öğrenmesi uygulamalarında modelleme sürecinin temel 

adımlarından biridir. Gerçek dünya verileri çoğunlukla eksik, tutarsız ya da gürültülü 

yapıda olduğundan, doğrudan analize uygun değildir. Bu nedenle, verinin 

temizlenmesi, dönüştürülmesi ve analiz için elverişli hale getirilmesi gerekmektedir. 

Ön işleme süreci; eksik değerlerin yönetimi, aykırı gözlemlerin belirlenmesi, 

normalizasyon veya standardizasyon gibi dönüşümler, kategorik değişkenlerin 

kodlanması ve gerektiğinde boyut indirgeme gibi adımları içerir. Tüm bu işlemler, veri 

setinin kalitesini artırarak hem algoritmaların doğruluğunu yükseltmekte hem de 
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modelin daha hızlı ve stabil çalışmasına olanak tanımaktadır. Bu bağlamda, özellikle 

öz niteliklerin dikkatle seçilmesi ve homojenleştirilmesi, sınıflandırma ya da 

regresyon gibi görevlerde model performansını doğrudan etkileyen kritik bir adımdır 

(Garcia vd., 2015; Endel ve Piringer, 2015; Alasadi ve Bahaya, 2017; Hameed ve 

Naumann, 2020). 

Makine öğrenmesi ve ÇKKV modellerinde çok sayıda değişkenin kullanılması, bazı 

bağımsız değişkenler arasında yüksek düzeyde korelasyon bulunmasına yol açabilir. 

Bu durum, çoklu doğrusallık olarak tanımlanmakta olup, modelin tahmin 

performansını olumsuz etkileyebilir çünkü değişkenlerin hedef değişken üzerindeki 

bireysel etkileri ayırt edilemez hale gelir. Çoklu doğrusallık genellikle varyans 

enflasyon faktörü (VEF) ile tespit edilir ve VEF değerinin 5’in üzerinde olması bu 

sorunun varlığına işaret eder. Bu durumda, yüksek korelasyon gösteren değişkenlerden 

birinin modelden çıkarılması, modelin doğruluğu ve kararlılığı açısından önerilen bir 

yöntemdir. Özellikle yüksek boyutlu veri setlerinde, bu tür değişkenlerin ayıklanması 

modelin yorumlanabilirliğini de artırır (Peeri et al., 2020). 

Öte yandan, makine öğrenmesi algoritmalarında kategorik değişkenlerin 

modellenebilmesi için bu değişkenlerin uygun bir şekilde sayısal formatlara 

dönüştürülmesi gerekmektedir. Bu dönüşüm işlemi, kategorik kodlama olarak 

adlandırılır ve yaygın olarak kullanılan yöntemlerden biri de tekil kodlamadır (one-hot 

encoding). Tekil kodlama, her kategori için ayrı bir ikili (binary) sütun oluşturarak, 

kategorik verilerin algoritmalar tarafından işlenebilir hale getirilmesini sağlar. Bu 

yöntem, özellikle kategoriler arasında doğal bir sıralama olmadığında tercih edilmekte 

ve modelin öğrenme sürecine anlamlı katkı sunmaktadır. Ancak tekil kodlama, çok 

fazla kategorisi olan değişkenlerde veri setinin boyutunu önemli ölçüde 

artırabileceğinden, dikkatli kullanılmalıdır. Yine de, bu yöntem sınıflar arası ilişkiyi 

bozmadığı ve doğrusal modellerle uyumlu olduğu için çalışmalarda sıklıkla tercih 

edilmektedir (Seger, 2018; Cerda vd., 2018). 

Makine öğrenmesi uygulamalarında özellikle sayısal verilerle çalışılırken 

standardizasyon ve normalizasyon işlemleri, modelin doğruluğu ve kararlılığı 

açısından kritik öneme sahiptir. Bu işlemler, farklı ölçeklerdeki değişkenlerin aynı 

düzleme taşınmasını sağlayarak modelin herhangi bir değişkene orantısız şekilde 

ağırlık vermesinin önüne geçer. Standardizasyon, verilerin ortalamasının sıfır, standart 

sapmasının ise bir olacak şekilde yeniden ölçeklendirilmesidir ve genellikle dağılımın 
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normal kabul edildiği durumlarda tercih edilir. Buna karşın normalizasyon, verileri 

genellikle [0, 1] aralığına sıkıştırarak özellikle mesafeye dayalı algoritmalarda 

(örneğin k-en yakın komşu ve k-ortalamalar) daha sağlıklı sonuçlar alınmasını sağlar. 

Özellikle boyutları ve birimleri farklı olan değişkenlerin birlikte kullanıldığı 

modellerde bu dönüşümler yapılmadığında, büyük ölçekli değişkenler küçük ölçekli 

olanları baskılayabilir ve model performansını olumsuz yönde etkileyebilir. Bu 

nedenle ön işleme sürecinde sayısal değişkenlerin uygun yöntemlerle dönüştürülmesi, 

öğrenme algoritmalarının daha doğru ve dengeli çalışması açısından elzemdir (Ali vd., 

2014; Gal ve Rubinfeld, 2019). 

Gerçek dünya verileri çoğu zaman eksik veya tamamlanmamış olabilir. Bu durum, 

analizlerin doğruluğunu ve makine öğrenmesi modellerinin performansını olumsuz 

etkileyebileceğinden, eksik verilerin yönetimi veri ön işleme sürecinin en önemli 

adımlarından biri olarak kabul edilmektedir. Eksik değerlerin yerine koyulması, eksik 

gözlemleri veri setinden tamamen çıkarmak yerine, uygun istatistiksel ya da 

öğrenmeye dayalı yöntemlerle doldurmayı amaçlar. Bu işlem, hem veri kaybını azaltır 

hem de analizdeki yanlılığı minimize eder. Literatürde en sık kullanılan yöntemler 

arasında ortalama, medyan veya mod gibi tek değişkene dayalı yerleştirmeler yer 

alırken; daha gelişmiş teknikler arasında k-en yakın komşu imputasyonu, regresyona 

dayalı tahminleme ve çoklu imputasyon yöntemleri bulunmaktadır. Eksik veri 

oranının düşük olduğu durumlarda basit istatistiksel yöntemler yeterli olabilse de, 

eksiklik sistematik bir yapıya sahipse daha sofistike yöntemlerin kullanılması 

önerilmektedir. Bu bağlamda, eksik verilerin etkili biçimde ele alınması, hem modelin 

genel doğruluğu hem de çıktının güvenilirliği açısından kritik bir ön koşuldur (Lin ve 

Tsai, 2020; Emmanuel vd., 2021; Adhikari vd., 2022). 

3.2 Kümeleme ile Sınıf Sayısının Belirlenmesi 

Veri setinde kaç farklı sınıf ya da grup bulunduğunu önceden bilmediğimiz 

durumlarda, kümeleme yöntemleri sınıf sayısını belirlemek için etkili bir araç sunar. 

Bu süreçte amaç, benzer özelliklere sahip gözlemleri gruplayarak yapısal örüntüleri 

ortaya çıkarmaktır. Elde edilen kümeler, daha sonra yapılacak sınıflandırma veya 

etiketleme işlemleri için temel bir referans oluşturabilir. Bu bölümde, sınıf sayısının 

belirlenmesi amacıyla uygulanan kümeleme yaklaşımlarına yer verilecektir. 



31 

3.2.1 Kümeleme yöntemleri 

Veri biliminin temel analiz araçlarından biri olan kümeleme algoritmaları, karmaşık 

veri kümelerindeki gizli örüntülerin ve grupların keşfedilmesine olanak sağlayan 

önemli bir metodolojik yaklaşımdır (Estivill-Castro, 2000). Bu algoritmaların 

temelinde, heterojen veri setlerini anlamlı ve homojen alt gruplara ayırma amacı yatar. 

Kümeleme sürecinin özgünlüğü, "küme" kavramının net bir tanımının olmamasından 

kaynaklanmakta ve bu durum araştırmacılara farklı yaklaşımlar geliştirme imkânı 

sunmaktadır (Rokach ve Maimon, 2005). 

Kümeleme algoritmaları, veri bilimi literatüründe çeşitli sınıflandırma yaklaşımlarıyla 

karşımıza çıkmaktadır. Fraley ve Raftery (1998), bu algoritmaları temel olarak 

hiyerarşik ve bölünmeli yöntemler olarak ikiye ayırırken, Han (2009) daha kapsamlı 

bir sınıflandırma yaparak algoritmaları bölünmeli algoritmalar, yoğunluk esaslı 

yaklaşımlar, olasılıksal model tabanlı kümeleme ve ızgara esaslı yöntemler gibi alt 

kategorilere ayırmıştır. 

Hiyerarşik kümeleme algoritmaları, veri nesnelerini iç içe geçmiş bir yapıda 

gruplandıran iki temel stratejiye sahiptir. Birleştirici (agglomerative) yaklaşımda, her 

bir veri noktası başlangıçta kendi kümesini oluşturur ve ardından benzerlik düzeylerine 

göre daha büyük kümeler oluşturulur. Bölücü (divisive) yaklaşımda ise tüm veriler tek 

bir kümede başlar ve ardından giderek daha küçük alt kümelere ayrılır (Jain vd., 1999). 

Kümeleme sürecinin görsel temsili olan dendrogram, bu algoritmaların en önemli 

çıktılarından biridir. Dendrogram, veri nesnelerinin birbirleriyle olan ilişkilerini ve 

benzerlik düzeylerini hiyerarşik bir şema üzerinde gösterir. Araştırmacılar, 

dendrogramdan istenen benzerlik seviyesinde kesit alarak farklı kümeleme yapıları 

elde edebilmektedir (Rokach ve Maimon, 2005; Madhulatha, 2012). 

Hiyerarşik kümeleme sürecinde kümeler arası mesafelerin hesaplanmasında kullanılan 

bağlantı (linkage) yöntemleri belirleyicidir. Örneğin, tek bağlantı (single linkage) 

yöntemi, iki küme arasındaki en yakın nokta çiftinin mesafesini esas alır: 

𝐷single(𝐴, 𝐵) = min
𝑥∈𝐴, 𝑦∈𝐵

 𝑑(𝑥, 𝑦)           (3.1) 

Buna karşılık, tam bağlantı (complete linkage) en uzak nokta çiftine odaklanır: 

𝐷complete(𝐴, 𝐵) = max
𝑥∈𝐴, 𝑦∈𝐵

 𝑑(𝑥, 𝑦)           (3.2) 
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Ortalama bağlantı (average linkage) yönteminde ise tüm nokta çiftleri arasındaki 

ortalama mesafe hesaplanır: 

𝐷average(𝐴, 𝐵) =
1

|𝐴||𝐵|
∑ ∑ 𝑑(𝑥, 𝑦)𝑦∈𝐵𝑥∈𝐴                     (3.3) 

Daha gelişmiş bir yöntem olan Ward yöntemi, kümelerin birleşmesiyle oluşan toplam 

iç varyans artışını minimize etmeye çalışır. Bu yöntemde mesafe şu şekilde hesaplanır: 

𝐷Ward(𝐴, 𝐵) =
|𝐴||𝐵|

|𝐴|+|𝐵|
⋅ |𝜇𝐴 − 𝜇𝐵|2                       (3.4) 

Burada μA ve μB, sırasıyla küme A ve B’nin merkezleridir. Hiyerarşik kümeleme 

algoritmalarının en önemli avantajı farklı küme yapılarını keşfetmeye olanak tanıyan 

esnekliğidir. Ancak büyük veri setlerinde yüksek hesaplama maliyeti ve geri izleme 

yeteneğinin sınırlılığı gibi dezavantajları da bulunmaktadır (Rokach ve Maimon, 

2005). 

Bölümleme algoritmaları, veri biliminde kümeleme analizinin bir diğer önemli alt 

dalını oluşturmaktadır. Bu algoritmaların temel yaklaşımı, başlangıç 

konumlandırmasından hareketle veri örneklerini farklı kümeler arasında yeniden 

konumlandırmaktır (Selim ve Ismail, 1984). Küme sayısının önceden kullanıcı 

tarafından belirlenmesi gereken bu yöntemler, kümeleme analizinde yaygın olarak 

kullanılan yaklaşımlardan biridir. 

K-ortalamalar algoritması, bölümleme algoritmalarının en popüler ve yaygın 

kullanılan örneğidir. Algoritma, veri kümesini önceden belirlenen kkk sayıda kümeye 

ayırarak, her bir kümenin merkezini hesaplar ve veri noktalarını bu merkezlere olan 

uzaklıklarına göre gruplandırır (Dhillon ve Modha, 2001). Her iterasyonda, önce tüm 

gözlemler en yakın küme merkezine atanır: 

𝑐𝑖 = arg min
𝑗

| 𝑥𝑖 − 𝜇𝑗|2            (3.5) 

Burada xi, i. gözlemi, μj ise j. kümenin merkezini temsil etmektedir. Atama işleminden 

sonra, her küme için merkez noktası (centroid) yeniden hesaplanır: 

𝜇𝑗 =
1

|𝐶𝑗|
∑ 𝑥𝑖𝑥𝑖∈𝐶𝑗

             (3.6) 

Bu iki adım, belirli bir durdurma kriteri sağlanana kadar iteratif olarak tekrarlanır. 

Genellikle algoritma, küme merkezleri artık değişmediğinde sonlandırılır: 

dur  𝜇𝑗
(𝑡+1)

= 𝜇𝑗
(𝑡)

 ∀𝑗 ∈ {1, … , 𝑘}           (3.7) 
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K-ortalamalar algoritmasının temel hedefi, kümeler içindeki veri noktalarının küme 

merkezlerine olan toplam kare uzaklığını minimize etmektir. Bu optimizasyon hedefi 

şu şekilde ifade edilir: 

arg min
𝐶

∑ ∑ |𝑥𝑖𝑥𝑖∈𝐶𝑗

𝑘
𝑗=1 − 𝜇𝑗|2           (3.8) 

Yani amaç, küme içi homojenliği maksimize etmektir. K-ortalamalar algoritmasının 

hesaplama karmaşıklığının doğrusal olması, büyük veri setlerinde bile etkin ve hızlı 

biçimde çalışmasını sağlamaktadır (Rokach ve Maimon, 2005; Saputra vd., 2020). 

Bununla birlikte, algoritmanın bazı önemli sınırlamaları bulunmaktadır. Başlangıç 

küme merkezlerinin seçimi sonuçları ciddi şekilde etkileyebilmekte, gürültülü veriler 

ve aykırı değerler algoritmanın performansını düşürebilmektedir. Ayrıca, algoritma 

yalnızca sayısal verilerle çalışabilmekte ve küme sayısının önceden bilinmesini 

gerektirmektedir (Rokach ve Maimon, 2005). 

3.2.2 Optimum küme sayısının belirlenmesi 

Kümeleme algoritmalarının en kritik aşamalarından biri, analiz edilecek veri setinin 

optimal küme sayısının belirlenmesidir. Birçok kümeleme algoritması, çalıştırılmadan 

önce küme sayısının önceden tanımlanmasını gerektirir. Bu zorluk, araştırmacılar için 

önemli bir analitik problem oluşturmaktadır. 

Kümeleme algoritmalarında iç değerlendirme ölçütleri, küme kalitesini belirlemede 

kritik bir rol oynar. Bu yaklaşımlar, küme içi yakınlık ve kümeler arası farklılık olmak 

üzere iki temel parametreyi inceler. Küme içi yakınlık, aynı kümede yer alan veri 

noktalarının birbirine benzerliğini; kümeler arası ayrım ise farklı kümeler arasındaki 

mesafeyi ölçer (Saputra vd., 2020). 

Küme sayısını belirlemeye yönelik temel yaklaşımlardan biri dirsek yöntemi olarak 

bilinir. Bu yöntemde, küme sayısına karşılık gelen varyans açıklama yüzdesi grafiğe 

dökülür. Grafikteki kırılma noktası (dirsek), optimal küme sayısını işaret eder. İlk 

kümeler çok bilgi eklerken, belirli bir noktadan sonra ek kümelerin marjinal katkısı 

belirgin şekilde azalır ve bu katkının azalma hızının azaldığı nokta, optimal küme 

sayısı olarak değerlendirilir. Alternatif olarak, bilgi kriterleri de küme sayısının 

belirlenmesinde kullanılır. Akaike Bilgi Kriteri (AIC), Bayezyen Bilgi Kriteri (BIC) 

ve Sapma Bilgi Kriteri (DIC) gibi istatistiksel yöntemler, kümeleme modellerinin 
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karmaşıklığını ve uyumunu değerlendirerek optimal küme sayısını tahmin etmeye 

çalışır (Madhulatha, 2012; Humaira ve Rasyidah, 2020). 

Siluet Yöntemi (Silhouette Method) ise hem küme içi yakınlığı hem de kümeler arası 

ayrımı birlikte dikkate alır. Siluet katsayısı, her bir veri noktasının kendi kümesi 

içindeki ortalama mesafesi ile en yakın farklı kümeye olan ortalama mesafesi 

arasındaki ilişkiyi ölçer. iii indeksli bir veri noktası için siluet katsayısı aşağıdaki 

şekilde hesaplanır: 

𝑠(𝑖) =
𝑏(𝑖)−𝑎(𝑖)

max{𝑎(𝑖),𝑏(𝑖)}
                       (3.9) 

Burada: 

a(i), i noktası ile aynı kümedeki diğer noktalar arasındaki ortalama mesafeyi, b(i) ise i 

noktasının en yakın farklı kümedeki noktalarla olan ortalama mesafesini 

göstermektedir. 

Siluet katsayısı -1 ile +1 arasında bir değer alır. Bu değerin yüksek olması, veri 

noktasının bulunduğu kümeye iyi oturduğunu ve diğer kümelerden uzak olduğunu 

gösterir. Grafik üzerinde küme sayısına karşılık siluet katsayıları çizilerek en yüksek 

değere sahip olan küme sayısı optimal küme sayısı olarak seçilir (Saputra vd., 2020). 

Hiyerarşik kümeleme algoritmalarında ise dendrogramdaki eşik değerleri ve 

kümelerin yaşam süreleri dikkate alınır. Genel bir kural olarak, maksimum yaşam 

süresine sahip dendrogramdan kesit alınarak küme sayısı belirlenir (Madhulatha, 

2012). 

3.3 TOPSIS-Sort-B ile Etiketleme 

TOPSIS-Sort-B, çok kriterli karar verme yaklaşımlarından biri olan klasik TOPSIS 

yönteminin, sıralı sınıflandırma problemlerine uyarlanmış yeniden yapılandırılmış bir 

versiyonudur. Bu yöntem, her alternatifin ideal ve anti-ideal çözümlere olan göreli 

yakınlık değerini esas alarak, alternatifleri önceden tanımlanmış sınıflardan birine 

atamayı mümkün kılar. Böylece karar verici yalnızca alternatifler arasında göreli 

üstünlük belirlemekle kalmaz, aynı zamanda her bir alternatifi belirli sıralı sınıflar 

(örneğin; yüksek, orta ve düşük gibi) altında gruplandırabilir (Lopez vd., 2023; Zhang 

ve Li, 2023). 
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Yöntemin uygulanabilmesi için öncelikle alternatifleri temsil eden çok kriterli karar 

matrisinin oluşturulması gereklidir. Bu matris, her alternatifin her kritere ilişkin nicel 

değerlendirmelerini içerir: 

𝑋 = [𝑥𝑖𝑗] (i = 1, …, m; j = 1, …, n)          (3.10) 

Farklı ölçeklerdeki kriter değerlerini karşılaştırılabilir hale getirmek için 

normalizasyon işlemi uygulanır. Normalizasyon genellikle min-maks yöntemi ya da 

vektörel norm esaslı yöntemlerle gerçekleştirilir. Min-maks normalizasyon formülleri 

şu şekildedir: 

Fayda kriterleri için: 

𝑟𝑖𝑗 =
𝑥𝑖𝑗−mi n(𝑥𝑗)

ma x(𝑥𝑗)−mi n(𝑥𝑗)
           (3.11) 

Maliyet kriterleri için: 

𝑟𝑖𝑗 =
ma x(𝑥𝑗)−𝑥𝑖𝑗

ma x(𝑥𝑗)−mi n(𝑥𝑗)
            (3.12) 

Ardından, her bir kriterin fayda (maksimizasyon) ya da maliyet (minimizasyon) 

türünde olup olmadığına göre ideal ve anti-ideal çözümler belirlenir. Fayda kriterleri 

için ideal değer maksimum, maliyet kriterleri için ise minimum değerdir; anti-ideal 

değerler bu durumun tersidir: 

İdeal çözüm (a⁺): 

𝑎+ = { ma x(𝑣𝑖𝑗) ∣∣ 𝑗 ∈ 𝐽fayda; mi n(𝑣𝑖𝑗) ∣∣ 𝑗 ∈ 𝐽maliyet }         (3.13) 

Anti-ideal çözüm (a⁻): 

𝑎− = { mi n(𝑣𝑖𝑗) ∣∣ 𝑗 ∈ 𝐽fayda; ma x(𝑣𝑖𝑗) ∣∣ 𝑗 ∈ 𝐽maliyet }         (3.14) 

Alternatiflerin ideal ve anti-ideal çözümlere olan uzaklıkları hesaplandıktan sonra, her 

bir alternatifin göreli yakınlık skoru elde edilir: 

İdeal uzaklık: 

𝐷𝑖
+ = √∑ (𝑣𝑖𝑗 − 𝑣𝑗

+)
2𝑛

𝑗=1            (3.15) 
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Anti-ideal uzaklık: 

𝐷𝑖
− = √∑ (𝑣𝑖𝑗 − 𝑣𝑗

−)
2𝑛

𝑗=1           (3.16) 

Göreli yakınlık skoru: 

𝐶𝑖 =
𝐷𝑖

−

𝐷𝑖
++𝐷𝑖

−            (3.17) 

Bu skor, alternatifin ideal çözüme ne kadar yakın olduğunu ifade eder ve genellikle 0 

ile 1 arasında bir değer alır. Klasik TOPSIS yönteminde bu değerler sıralama amacıyla 

kullanılırken, TOPSIS-Sort-B yaklaşımında bu değerler sınıflandırma amacıyla 

yorumlanır. 

Alternatiflerin sınıflandırılabilmesi için göreli yakınlık değerlerinin belirli sınıf 

aralıkları ile eşleştirilmesi gerekir. Bu noktada sınıf eşiklerinin nasıl belirleneceği 

önemli bir metodolojik karardır. Öznel sınıflandırmalar yerine veriye dayalı bir 

yaklaşım tercih edildiğinde, yakınlık değerlerinin dağılımına göre istatistiksel eşikler 

kullanılabilir. Örneğin, birinci ve üçüncü çeyrek değerler (Q1 ve Q3) sınıf sınırları 

olarak belirlendiğinde, alternatifler aşağıdaki gibi kategorilere ayrılabilir: 

Ci < Q1          (3.18) 

𝑄1 ≤ 𝐶𝑖 < 𝑄3          (3.19) 

𝐶𝑖 ≥ 𝑄3          (3.20) 

Bu tür çeyrek temelli eşikleme, verinin yapısına duyarlı ve nesnel bir sınıflandırma 

sağlar (Lopez vd., 2023; Zhang ve Li, 2023; Zhang vd., 2024). 

TOPSIS-Sort-B, özellikle çok sayıda alternatifin değerlendirildiği durumlarda karar 

vericinin bilişsel yükünü azaltan, daha özet ve yorumlanabilir bir çıktı üretme olanağı 

sunar. Sıralama temelli yöntemlerin sunduğu detaylı ayrımlar yerine, belirli etiketlere 

dayalı gruplamalar sağlayarak, karar süreçlerini daha sistematik hale getirir. Bu 

yönüyle, karar verme sürecinde hem nicel hem de nitel değerlendirme imkânı sunan 

esnek bir metodolojik araç olarak değerlendirilmektedir. 

3.4 Sınıflandırma Algoritmaları ile Modelleme 

Bu bölümde, veri kümesinde yer alan alternatiflerin önceden tanımlanmış kategorilere 

atanabilmesi amacıyla kullanılan sınıflandırma algoritmalarına odaklanılmıştır. Çok 
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kriterli karar verme sürecinde sayısal çıktıların anlamlı etiketlerle ifade edilmesi, 

yorumlanabilirlik açısından önemli bir avantaj sağlamaktadır. Bu doğrultuda, 

TOPSIS-Sort-B gibi yöntemlerle elde edilen etiketler, denetimli makine öğrenmesi 

modelleri için zemin oluşturmaktadır. Aşağıda, bu dönüşümün yöntemsel altyapısı ve 

sınıflandırma algoritmaları ile kurulan modellerin genel çerçevesi sunulmaktadır. 

3.4.1 Eğitim-Test verisi ayrımı 

Sınıflandırma modellerinin güvenilirliğini değerlendirmek amacıyla, veri kümesi 

genellikle eğitim ve test olmak üzere iki ayrı alt kümeye ayrılır. Bu ayrım, modelin 

yalnızca öğrenilen verilere değil, daha önce hiç görmediği örneklere karşı da genel 

performansını ortaya koymayı amaçlar. En yaygın yaklaşım olan rastgele bölme, veri 

kümesinden belirli bir oranda örneklemin test setine, geri kalanının ise eğitim setine 

atanmasını içerir. Uygulamada sıklıkla %80 eğitim ve %20 test oranı tercih edilmekle 

birlikte, %70-%30, %60-%40 ya da %50-50 gibi oranlar da kullanılmaktadır. Hatta, 

çok büyük veri setleri için olabildiğince büyük (yani %99 ve üzeri oranda) eğitim 

verisinin kullanılması önerilmektedir. Bu oranların seçimi genellikle deneyime ya da 

problem bağlamına dayanır; literatürde oranların optimal değerine dair net bir görüş 

birliği bulunmamaktadır (Joseph, 2022). 

3.4.2 Kullanılan sınıflandırma yöntemleri 

Sınıflandırma, denetimli öğrenme kapsamında yer alan temel bir yaklaşımdır ve 

gözlemlerin önceden tanımlanmış kategorilere (etiketlere) atanmasını amaçlar. Bu 

yöntemler, verideki özniteliklere dayalı olarak gözlemlerin hangi sınıfa ait olduğunu 

tahmin etmeye çalışır. Gerekli olan model, genellikle etiketli veri seti üzerinden 

öğrenilerek eğitilir ve daha sonra etiketlenmemiş yeni veriler üzerinde tahmin işlemi 

gerçekleştirilir. Bu doğrultuda kullanılan sınıflandırma algoritmaları, problemin 

doğasına, veri yapısına ve hedeflenen doğruluk düzeyine bağlı olarak çeşitlilik 

gösterebilir (Alnuaimi ve Albaldawi, 2024). 

Bu çalışmada kullanılan yöntemlerden biri olan Naive Bayes algoritması, Bayes 

Teoremi’ne dayalı olasılıksal bir sınıflandırma tekniğidir. Algoritmanın temelinde, her 

sınıf için koşullu olasılıkların hesaplanması ve bir gözlemin en yüksek olasılıkla ait 

olduğu sınıfın belirlenmesi yatar. Naive Bayes’in “naive” olarak adlandırılmasının 

nedeni, tüm özniteliklerin birbirinden bağımsız olduğu varsayımıdır. Gerçekte bu 

varsayım çoğu zaman sağlanmasa da, algoritma özellikle metin sınıflandırma, spam 
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filtreleme ve duygu analizi gibi pek çok uygulamada yüksek performans 

göstermektedir. Modelin temel formülü Bayes teoremiyle ifade edilir: 

𝑃( 𝐶𝑘 ∣∣ 𝑥 ) =
𝑃(𝐶𝑘) ∏ 𝑃( 𝑥𝑖 ∣∣𝐶𝑘 )𝑛

𝑖=1

𝑃(𝑥)
                (3.21) 

Burada Ck sınıflardan birini, x=(x1,x2,...,xn) ise gözlem vektörünü temsil eder. Naive 

Bayes, hem sürekli hem de kategorik verilerle çalışabilme, hızlı modelleme süreci ve 

düşük hesaplama maliyeti gibi önemli avantajlara sahiptir. Ancak, öznitelikler 

arasında yüksek korelasyon bulunması durumunda performansının azalabileceği, 

ayrıca sıfır koşullu olasılık problemlerinde Laplace düzeltmesi gibi yöntemlerin 

kullanılması gerektiği vurgulanmaktadır. Tüm bu özellikleriyle Naive Bayes, özellikle 

yüksek boyutlu ve gürültülü veri setlerinde sade ama etkili bir sınıflandırma yaklaşımı 

olarak tercih edilmektedir (Jadhav ve Channe, 2016; Ray, 2019; Alnuaimi ve 

Albaldawi, 2024). 

Karar ağacı algoritmaları, sınıflandırma problemlerine yönelik en erken ve etkili 

gözetimli öğrenme yöntemlerinden biridir. İstatistik, veri madenciliği ve makine 

öğrenmesi gibi alanlarda yaygın olarak kullanılan karar ağaçları, verileri 

sınıflandırmak için görsel olarak anlaşılır, dallanmış bir yapı sunar ve böylelikle 

yorumlanabilirlik açısından avantajlı modellerdir. Her bir iç düğüm, belirli bir özelliğe 

dayalı karar fonksiyonunu değerlendirerek hangi alt düğüme gidileceğini belirlerken; 

yaprak düğümler, veri noktalarının ait olduğu sınıfları temsil eder. Kök düğüm, veri 

setindeki en iyi ayırt edici özelliği ifade eder ve veri, bu kökten başlayarak yukarıdan 

aşağıya doğru bir rota izleyerek sınıflandırılır. Ağaçlar, gereksiz dallanmaları önlemek 

ve aşırı öğrenmeyi azaltmak için budanabilir. Karar ağacı algoritmaları hem kategorik 

hem de sayısal verilerle çalışabilir; gürültülü verilere karşı dayanıklı olup eksik 

verilerle de başa çıkabilir. Modelde bölme noktaları, bilgi kazancı ölçütü gibi kriterlere 

göre seçilir. Bilgi kazancı, entropi farkı olarak hesaplanır: 

𝐼𝐺(𝐷, 𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑖(𝐷) − ∑
|𝐷𝑣|

|𝐷|𝑣∈𝑉𝑎𝑙𝑢𝑒𝑠(𝐴) 𝐸𝑛𝑡𝑟𝑜𝑝𝑖(𝐷𝑣)              (3.22) 

Burada entropi, veri setindeki belirsizliği ölçer ve şu şekilde tanımlanır: 

𝐸𝑛𝑡𝑟𝑜𝑝𝑖(𝐷) = − ∑ 𝑝𝑖
𝑐
𝑖=1 ln 𝑝𝑖           (3.23) 

Bu denklemler sayesinde, karar ağacı algoritmaları veri setindeki en uygun bölünme 

noktalarını belirleyerek sınıflandırma performansını artırır. Ancak aşırı dallanma ve 

karmaşıklık modelin genellenebilirliğini olumsuz etkileyebilir. Karar ağaçları finansal 
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fiyatlandırma, sağlık tehditlerinin tanımlanması ve desen tanıma gibi birçok alanda 

etkin biçimde kullanılmaktadır (Jadhav ve Channe, 2016; Ray, 2019; Kalcheva vd., 

2020; Alnuaimi ve Albaldawi, 2024). 

Lojistik regresyon, sınıflandırma problemlerini çözmek için yaygın olarak kullanılan, 

doğrusal regresyonun genelleştirilmiş bir versiyonudur ve özellikle gözetimli öğrenme 

yöntemlerinde tercih edilir. Sürekli çıktı üretmek yerine, bir olayın gerçekleşip 

gerçekleşmediğini belirten ikili sonuçlar üretir. Lojistik regresyon modeli, bir 

gözlemin belirli bir sınıfa ait olma olasılığını tahmin etmek için sigmoid (lojistik) 

fonksiyonu kullanır: 

𝑃( 𝑦 = 1 ∣∣ 𝑥 ) =
1

1+𝑒−(β0+β1𝑥1+β2𝑥2+⋯+β𝑝𝑥𝑝)
           (3.24) 

Burada, x = (x1, x2,...., xp) bağımsız değişkenler vektörü, β0 sabit terim ve β1, β2,....., 

βp regresyon katsayılarıdır. Sigmoid fonksiyonun çıktısı 0 ile 1 arasında bir olasılık 

değeri verir ve bu değer belirlenen eşik (genellikle 0.5) kullanılarak sınıf etiketine 

dönüştürülür. 

Model, logit dönüşümü kullanarak doğrusal regresyon modeline dönüştürülür: 

log (
𝑃( 𝑦 = 1∣∣𝑥 )

1−𝑃( 𝑦 = 1∣∣𝑥 )
) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑝𝑥𝑝                    (3.25) 

Burada, sol taraftaki ifade log-odds ya da logit fonksiyonu olarak adlandırılır. 

Lojistik regresyon hem kategorik hem de sayısal verilerle çalışabilir ve özellikle hedef 

değişken ile açıklayıcı değişkenler arasındaki ilişkiyi modellemek için uygundur. Basit 

uygulanabilirliği, düşük hesaplama maliyeti, yorumlanabilirliği ve kolay 

güncellenebilir yapısı önemli avantajlarındandır. Ancak, yalnızca doğrusal sınırlarla 

ayrılabilen verilerde etkili olması, eksik veri veya değişkenler arası bağımlılık gibi 

durumlarda performansının düşmesi önemli sınırlamalarındandır. Lojistik regresyon; 

hastalık riski tahmini, hava durumu öngörüsü, oy verme davranışı ve mühendislikte 

arıza olasılığı hesaplamalarında yaygın şekilde uygulanmaktadır. Ayrıca, ikili, çoklu 

(multinomial) ve sıralı lojistik regresyon olmak üzere üç farklı türü vardır (Ray, 2019; 

Alnuaimi ve Albaldawi, 2024). 

K-En Yakın Komşu (KEYK) algoritması, yeni bir veri noktasını sınıflandırmak için 

mevcut veri noktalarına olan benzerliğini -genellikle Öklid uzaklığı gibi metriklerle- 

hesaplayan, gözetimli öğrenmede yaygın olarak kullanılan basit ve etkili bir 
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yöntemdir. KEYK algoritmasında, test verisi xxx için eğitim veri setindeki tüm 

noktalarla olan uzaklıklar hesaplanır ve bu uzaklıklara göre en yakın kkk komşu 

seçilir. Bu komşuların sınıf etiketlerine göre çoğunluk oylaması yapılarak yeni veri 

noktasının hangi sınıfa ait olduğu belirlenir. 

KEYK algoritmasında yaygın olarak kullanılan Öklid mesafesi şu şekilde hesaplanır: 

𝑑(𝑥, 𝑥𝑖) = √∑ (𝑥𝑗 − 𝑥𝑖𝑗)
2𝑛

𝑗=1            (3.26) 

Burada x sınıflandırılmak istenen veri noktası, xi ise eğitim veri setindeki veri 

noktalarından biridir. n ise öznitelik sayısını ifade eder. 

Sınıf ataması şu şekilde yapılır: 

𝑦̂ = arg max
𝑐

∑ 1(𝑦𝑖 = 𝑐)𝑖∈𝑁𝑘(𝑥)            (3.27) 

Burada Nk(x), x’in en yakın k komşularının indeks kümesini, yi bu komşuların sınıf 

etiketini, 1 ise gösterge fonksiyonunu ifade eder. En çok tekrar eden sınıf, 

sınıflandırma sonucu olarak atanır. 

KEYK algoritması, parametrik olmayan bir yaklaşım olması sayesinde herhangi bir 

dağılım varsayımı yapmadan çalışabilir ve hem sınıflandırma hem de regresyon 

problemlerinde kullanılabilir. Gürültüye karşı dayanıklı yapısı ve sadeliği en büyük 

avantajlarındandır. Ancak, özellikle yüksek boyutlu veri kümelerinde en uygun kkk 

değerinin seçimi kritik önemdedir. KEYK algoritması; örüntü tanıma, el yazısı tanıma, 

görüntü ve video sınıflandırma, öneri sistemleri, kredi skorlama ve tıbbi teşhis gibi pek 

çok alanda başarıyla uygulanmaktadır. Buna karşılık, tahmin sırasında tüm veri setiyle 

kıyaslama yapması nedeniyle hesaplama maliyeti yüksek olabilir ve belleğe yoğun 

şekilde ihtiyaç duyar (Ray, 2019; Ram, 2022; Alnuaimi ve Albaldawi, 2024). 

Destek Vektör Makineleri (DVM), istatistiksel öğrenme teorisine dayanan güçlü bir 

gözetimli makine öğrenme yöntemidir. DVM, sınıflandırma, öğrenme ve tahmin 

problemlerinde yaygın olarak kullanılır ve modern sınıflandırma problemlerinde 

oldukça etkili bir tekniktir. Bu yöntem, veri noktalarını sınıflandırmak için bağımlı ve 

bağımsız değişkenler arasındaki ilişkiyi açıklayan ve iki sınıf arasındaki en geniş 

marjini sağlayan bir hiperdüzlem belirler. Amaç, verisetini iki sınıfa ayıran bir karar 

sınırı (hiperdüzlem) bulmak ve bu düzlemle sınıflar arasındaki mesafeyi (marjin) 

maksimize etmektir. 
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Doğrusal olarak ayrılabilir durumlar için temel optimizasyon problemi şu şekilde 

tanımlanır: 

min
𝒘,𝑏

 
1

2
|𝒘|2 şartıyla: 𝑦𝑖(𝒘⊤𝒙𝒊 + 𝑏) ≥ 1,  𝑖 = 1, … , 𝑛         (3.28) 

Burada: 

w: hiperdüzlemin normal vektörü 

b: sapma terimi (bias) 

yi ∈{−1,1}: sınıf etiketleri, 

xi: gözlem verileri 

Elde edilen karar sınırına en yakın veri noktalarına destek vektörleri adı verilir. Bu 

noktalar karar yüzeyinin belirlenmesinde doğrudan rol oynar. Sınıflandırma kararı, 

aşağıdaki karar fonksiyonu kullanılarak verilir: 

𝑓(𝒙) = sign(𝒘⊤𝒙 + 𝑏)           (3.29) 

Eğer veriler doğrusal olarak ayrılamıyorsa, DVM çekirdek fonksiyonları (kernel trick) 

kullanarak veriyi daha yüksek boyutlu bir uzaya dönüştürür ve bu uzayda doğrusal 

ayrım yapar. Yaygın çekirdek fonksiyonları arasında polinom çekirdeği, radyal tabanlı 

fonksiyon (RBF) ve sigmoid çekirdeği bulunur. 

DVM başlangıçta ikili sınıflandırma için geliştirilmiş olsa da, çok sınıflı problemler 

için “birine karşı hepsi” (OvR) ve “birine karşı biri” (OvO) gibi stratejilerle yaygın 

şekilde uygulanmaktadır. Avantajları arasında yüksek boyutlu verilerle iyi çalışması, 

aşırı öğrenmeye karşı dayanıklı olması ve bellek verimliliği yer alırken; büyük veri 

kümelerinde eğitim süresinin uzun olması, uygun çekirdek fonksiyonunun seçiminin 

zorluğu ve gürültülü verilerde performans düşüklüğü gibi dezavantajları da 

bulunmaktadır. DVM; metin sınıflandırma, yüz tanıma, el yazısı tanıma, dolandırıcılık 

tespiti ve hastalık teşhisi gibi pek çok alanda başarıyla kullanılmaktadır (Soofi ve 

Awan, 2017; Ray, 2019; Fadel ve Behadili, 2022; Alnuaimi ve Albaldawi, 2024). 

Yapay Sinir Ağları (YSA), insan beyninin bilgi işleme biçiminden esinlenerek 

geliştirilen, çok katmanlı ve paralel çalışan öğrenme algoritmalarıdır. Bu algoritmalar, 

biyolojik nöronların çalışma mantığını taklit ederek, örüntü tanıma, karar verme ve 

tahminleme gibi görevlerde kullanılır. Tipik bir YSA; giriş katmanı, bir veya daha 



42 

fazla gizli katman ve çıkış katmanından oluşur. Giriş katmanı veriyi alır, gizli 

katmanlar bu veriyi dönüştürerek örüntüleri öğrenir, çıkış katmanı ise öğrenilen 

örüntüye göre karar üretir. 

YSA'nın temel birimi olan yapay nöron, giriş değerlerini ağırlıklarla çarpar, toplar ve 

aktivasyon fonksiyonu ile bir çıktı üretir. Basit bir yapay nöronun matematiksel ifadesi 

şöyledir: 

𝑧 = ∑ 𝑤𝑖𝑥𝑖
𝑛
𝑖=1 + 𝑏          (3.30) 

𝑦 = ϕ(𝑧)           (3.31) 

Burada: 

xi: giriş değerleri, 

wi: her girişe ait ağırlıklar, 

b: bias (sapma) terimi, 

ϕ(z): aktivasyon fonksiyonu (örneğin sigmoid, ReLU, tanh). 

Eğitim sürecinde modelin çıktısı ile gerçek değer arasındaki fark bir kayıp fonksiyonu 

ile ölçülür. Örneğin, sınıflandırma problemlerinde genellikle çapraz entropi kullanılır: 

ℒ = − ∑ 𝑦𝑖
𝑛
𝑖=1 log(𝑦𝑖̂)            (3.32) 

Ağırlıklar, geri yayılım (backpropagation) ve gradyan inişi (gradient descent) 

yöntemleriyle güncellenerek hata minimize edilmeye çalışılır. 

YSA modelleri, yüksek boyutlu ve gürültülü verilerde bile öğrenme kapasitesine 

sahiptir. Bu nedenle hem sınıflandırma hem de regresyon problemlerinde başarıyla 

kullanılmaktadır. Bununla birlikte, YSA modelleri genellikle “kara kutu” niteliği 

taşıdığından, karar mekanizmasını yorumlamak zor olabilir. Ayrıca, büyük veri setleri 

üzerinde çalışırken eğitim süreleri uzun olabilir. Tüm bu avantaj ve sınırlılıklarına 

rağmen YSA’lar; el yazısı tanıma, yüz ifadelerinden duygu çıkarımı, siyah-beyaz 

görüntüleri renklendirme, tıbbi teşhis, doğal dil işleme ve bilgisayarla görme gibi pek 

çok alanda yaygın olarak kullanılmaktadır (Preeti ve Dhankar, 2017; Pineda-Jaramillo, 

2019; Alnuaimi ve Albaldawi, 2024). 



43 

3.4.3 Model performans metriği 

Makine öğrenmesi algoritmalarının başarısı, yalnızca modelin eğitilmesiyle değil, aynı 

zamanda bu modelin çeşitli performans metrikleriyle sistematik olarak 

değerlendirilmesiyle anlaşılabilir. Modelin performansını doğru şekilde 

değerlendirebilmek hem geliştirilen modelin etkinliğini belirlemek hem de farklı 

algoritmalar arasında objektif karşılaştırmalar yapabilmek açısından kritik öneme 

sahiptir. Bu nedenle, hangi metriğin kullanılacağı problemin tanımına ve uygulama 

alanına göre özenle seçilmelidir (Grandini vd., 2020). 

Sınıflandırma problemlerinde yaygın olarak kullanılan başlıca metrikler aşağıda 

tanımlanmıştır (Hossin ve Sulaiman, 2015; Grandini vd., 2020): 

 Karışıklık Matrisi (Confusion Matrix): Gerçek sınıf etiketleri ile modelin 

tahmin ettiği sınıfların karşılaştırılmasıyla oluşturulan bir matristir. Doğru 

pozitif (TP), doğru negatif (TN), yanlış pozitif (FP) ve yanlış negatif (FN) 

olmak üzere dört temel bileşenden oluşur. Bu matris üzerinden diğer metrikler 

türetilir ve modelin tahmin performansı bütüncül şekilde analiz edilebilir. 

 Doğruluk (Accuracy): Modelin tüm veri seti üzerindeki doğru tahmin 

sayısının, toplam tahmin sayısına oranıdır. Her ne kadar yaygın olarak 

kullanılsa da dengesiz sınıf dağılımı olan veri kümelerinde yanıltıcı olabilir. 

 Hassasiyet (Precision): Pozitif olarak tahmin edilen örneklerin ne kadarının 

gerçekten pozitif olduğunu gösterir. TP / (TP + FP) formülüyle hesaplanır. 

Yanlış pozitiflerin önemli olduğu uygulamalarda kritik rol oynar. 

 Duyarlılık (Recall) / Geri Çağırma: Gerçek pozitif örneklerin ne kadarının 

doğru şekilde pozitif olarak tahmin edildiğini gösterir. TP / (TP + FN) 

formülüyle hesaplanır. Yanlış negatiflerin minimize edilmesi gereken 

durumlarda tercih edilir. 

 F1 Skoru (F1-Score): Hassasiyet ve duyarlılık metriklerinin harmonik 

ortalamasıdır. Bu iki metriğin dengelenmesi gereken durumlarda kullanılır. 

Özellikle dengesiz sınıfların bulunduğu veri kümelerinde daha anlamlı 

sonuçlar sunar. 
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Çok sınıflı sınıflandırma problemlerinde F1 skoru farklı şekillerde hesaplanabilir: 

 Makro F1: Tüm sınıfların F1 skorlarının aritmetik ortalamasını alır ve sınıf 

dengesinden bağımsızdır. 

 Ağırlıklı (Weighted) F1: Her bir sınıfın F1 skorunu, o sınıfa ait örnek sayısı ile 

ağırlıklandırarak genel bir skor üretir. 

 Mikro F1: Tüm sınıflar için TP, FP ve FN değerlerini topladıktan sonra bu 

toplamlar üzerinden tek bir F1 skoru hesaplar. Bu yöntem sınıf 

dengesizliklerinde daha güvenilir olabilir. 

Bu metriklerin birlikte kullanılması, modelin yalnızca genel doğruluğunu değil, aynı 

zamanda hangi sınıflarda hangi tür hatalar yaptığını da görmeyi sağlar. Böylece 

modelin gerçek dünya uygulamaları için uygunluğu daha kapsamlı şekilde 

değerlendirilebilir.
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4. ANALİZ VE BULGULAR 

Bu bölümde, elektrikli araçların sınıflandırılmasına yönelik gerçekleştirilen analiz 

süreci ve elde edilen bulgular sistematik bir yaklaşımla sunulmaktadır. Çalışma 

metodolojisi dört temel aşamada ilerlemektedir. 

İlk aşamada, araştırmanın veri tabanını oluşturan elektrikli araç özelliklerinin 

toplanma, ve hazırlanma süreçleri detaylandırılmıştır. İkinci aşamada, optimal sınıf 

sayısının belirlenmesine yönelik kümeleme analizleri gerçekleştirilmiş ve bulgular 

görselleştirmelerle desteklenmiştir. Bu sınıf yapısı, sonraki aşamalarda uygulanacak 

TOPSIS-Sort-B yönteminin temelini oluşturmaktadır. 

Üçüncü aşamada, çok kriterli karar verme yöntemlerinden TOPSIS-Sort-B 

kullanılarak her bir elektrikli aracın ilgili performans sınıfına atanma süreci ve 

sonuçları sunulmuştur. Son aşamada ise, TOPSIS-Sort-B ile elde edilen sınıflandırma 

sonuçlarının, çeşitli makine öğrenmesi algoritmaları ile ne ölçüde tahmin edilebileceği 

araştırılmıştır. Tüm analizler Python 3.9 programlama dili ile gerçekleştirilmiştir. 

Bölümün sonunda, bu iki farklı yaklaşımın -ÇKKV ve makine öğrenmesi- sonuçları 

karşılaştırmalı olarak değerlendirilmiş, benzerlik ve farklılıklar analiz edilerek her iki 

metodolojinin avantaj ve sınırlılıkları tartışılmıştır. Bu karşılaştırmalı analiz, elektrikli 

araç sınıflandırmasında alternatif yaklaşımların etkinliğine ışık tutmaktadır. 

4.1 Veri Toplama ve Hazırlık Süreci  

Bu çalışmada, elektrikli araçlara ilişkin veri seti, https://ev-database.org adresinden 

(EVDatabase, 2025) web kazıma yöntemiyle elde edilmiştir. Verinin toplanma 

sürecinde Python programlama dili ve Selenium kütüphanesi kullanılmıştır. Dinamik 

içerikler HTML yapısı üzerinden okunarak sistematik bir şekilde çekilmiştir. Web 

kazıma işlemleri, ilgili web sitesinin yapısına özel olarak geliştirilen bir tarayıcı 

otomasyonu aracılığıyla gerçekleştirilmiştir. 

Veri çekimi sırasında bazı teknik işlemler de uygulanmıştır. Özellikle menzil, tahmini 

tüketim, araç tüketimi, karbondioksit salımı, tahmini yakıt eşdeğeri ve araç yakıt 

https://ev-database.org/
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eşdeğeri gibi bazı performans değişkenleri, ilgili internet sitesinde en düşük (TEL – 

Tip I Emisyon Alt Limit) ve en yüksek (TEH – Tip I Emisyon Üst Limit) değerler 

şeklinde sunulmaktadır. Bu tür özellikler için her iki sınır değerin aritmetik ortalaması 

alınarak tek bir temsil değeri oluşturulmuş ve bu sayede veri seti daha tutarlı ve anlamlı 

hale getirilmiştir. 

Toplanan veri, elektrikli araçlara ait oldukça geniş bir özellik kümesini içermektedir. 

Bunlar arasında fiyat bilgisi, gerçek menzil tahmini, uzun yol uygunluğu, batarya 

kapasitesi, şarj süresi, performans ölçütleri, çift yönlü şarj (araçtan şebekeye / araçtan 

binaya), enerji tüketimi, tahmini gerçek enerji tüketimi, boyut ve ağırlık bilgileri ile 

koltuk sayısı, dönüş çapı, ısı pompası, tavan rayı gibi çeşitli donanım bilgileri yer 

almaktadır. Araç modeliyle birlikte toplamda 100 farklı özelliğin bulunduğu veri seti, 

veri çekiminin yapıldığı tarih itibarıyla 439 farklı elektrikli araca dair tüm temel teknik 

ve fiziksel bilgileri içerecek şekilde oluşturulmuştur. 

Veri çekimi sonrasında ilk olarak, sayısal niteliklerin analizlerde doğrudan 

kullanılabilmesi amacıyla birimlerinden arındırılması işlemi gerçekleştirilmiştir. 

Örneğin, batarya kapasitesi 76.6 kWh şeklinde ifade edilen bir araçta yalnızca sayısal 

değer olan 76.6 dikkate alınmış; benzer biçimde, “0’dan 100 km/sa hıza ulaşma süresi” 

gibi performans ölçütlerinde yer alan "6.1 saniye" ifadesinden yalnızca 6.1 değeri 

çekilmiştir. Bu işlem, tüm sayısal öznitelikler için tutarlı biçimde uygulanmıştır. 

Araçlara ait fiyat bilgileri, veri kaynağında Birleşik Krallık, Hollanda ve Almanya için 

ayrı ayrı sunulmuştur. Ancak bazı araçlarda belli ülkelere ait fiyatlar mevcut değildir. 

Bu durumun nedeni, kimi zaman eksik veri olması, kimi zamansa ilgili aracın henüz o 

ülkede satışa sunulmamış olması olabilir. Çalışmada, fiyatların tek ve karşılaştırılabilir 

bir gösterimle kullanılabilmesi adına, tüm para birimleri Amerikan Doları’na 

çevrilmiştir. Bu dönüşüm için analiz döneminde geçerli olan döviz kurları esas 

alınmış; Birleşik Krallık Poundu, 1.3285 oranıyla USD’ye çevrilirken, Euro için 

1.1197 dönüşüm oranı kullanılmıştır. Her bir ülkenin fiyatı bu şekilde USD’ye 

dönüştürüldükten sonra, araç başına ortalama fiyat değeri hesaplanarak tek bir fiyat 

niteliği oluşturulmuştur. 

Veri setine türetilmiş bazı öznitelikler de dahil edilmiştir. Bu bağlamda, aracın 

uzunluk, genişlik ve yükseklik değerleri kullanılarak araç hacmi hesaplanmış; benzer 

şekilde, ön ve arka bagaj hacimleri toplanarak toplam bagaj hacmi özniteliği elde 
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edilmiştir. Bu şekilde, mevcut özniteliklerin daha anlamlı ve analizde daha açıklayıcı 

biçimlere dönüştürülmesi amaçlanmıştır. 

Veri setinde toplamda 100 öznitelik yer almakla birlikte, bazı nitelikler birbiriyle 

yüksek oranda ilişkili ya da mükerrer bilgi içerebilmektedir. Bu nedenle, elektrikli 

araçlar konusunda uzman kişilerle – 3 kişi - gerçekleştirilen çok aşamalı istişareler 

sonucunda, analizlerde kullanılacak en açıklayıcı ve anlamlı öznitelikler belirlenmiş; 

kalanlar elenmiştir. Nihai olarak kullanılan öznitelikler, Çizelge 4.1’de listelenmiş 

olup, her birinin orijinal (İngilizce) adları ile Türkçe açıklamaları da çizelgeye dahil 

edilmiştir. Bu işlem, çok boyutluluğun yol açabileceği karmaşayı yani boyutluluğun 

laneti sorununu azaltmak amacıyla yapılmıştır. 

Çizelge 4.1: Öznitelikler ve açıklamaları. 

Öznitelik Açıklama 

Acceleration İvmelenme 

Top Speed Maksimum sürat 

Range Menzil 

Battery Architecture Batarya mimarisi 

Battery Warranty Period Batarya garanti periyodu (Yıl) 

Battery Warranty Mileage Batarya garanti mesafesi (Km) 

Charge Speed Şarj hızı 

Fast Charge Speed Hızlı şarj hızı 

Fuel Equivalent Yakıt emsali (Benzin) 

Car Weight Araç ağırlığı 

No Seats Koltuk sayısı 

Turning Circle Kendi ekseni etrafında dönüş mesafesi (M) 

Average USD USD cinsinden ortalama fiyatı 

Car Volume Araç hacmi 

Total Cargo Volume Aracın toplam bagaj hacmi 

Drive Type Önden çekişli, arkadan itişli veya 4x4 değerlerini alan 

kategorik değişken 

Autocharge support Şarj işleminin otomatik olarak gerçekleşip 

gerçekleşmediğine dair ikili değişken 

Preconditioning Bataryaya ilişkin ön koşullandırma olup olmadığına 

dair ikili değişken 

V2L Support Araçtan araca batarya aktarımının olup olmadığına dair 

ikili değişken  

Tow Hitch Araçta çekme kancası olup olmadığına ilişkin ikili 

değişken 

Dedicated Platform Elektrikli araca özgü platformun olup olmadığına dair 

ikili değişken 

Heat Pump Isı pompasının olup olmadığına dair ikili değişken 
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Veri setinde bazı kategorik öznitelikler için eksik veri gözlemlenmiştir. Bu tür 

özniteliklerde genellikle “evet” ya da “hayır” şeklinde ikili cevaplar bulunmaktadır. 

Örneğin, ısı pompası ya da elektrikli araçlara özel platform kullanımı gibi öznitelikler, 

var/yok şeklinde değerlendirilmiştir. Eksik veya “bilgi yok” şeklindeki değerler, 

uzman görüşleri doğrultusunda “yok” (hayır) olarak kodlanmıştır. Bu şekilde, 

kategorik değişkenlerin eksikliği sistematik olarak giderilmiştir. 

Sayısal özniteliklerdeki eksik değerler ise, doğrudan ortalama ile doldurulmamıştır. 

Bunun yerine, her aracın ait olduğu segment dikkate alınarak işlem yapılmıştır. Veride 

halihazırda bulunan araç segmenti bilgileri örneğin F (lüks), D (geniş), C (orta) gibi 

sınıflandırmalarla ayrılmıştır. Eksik değerin bulunduğu araç hangi segmentte yer 

alıyorsa, o segmente ait araçların ortalama değeri kullanılarak ilgili boşluk 

doldurulmuştur. Bu yöntem, eksik verinin daha gerçekçi ve bağlama uygun biçimde 

tamamlanmasını sağlamıştır. 

Veri hazırlık sürecinin önemli aşamalarından biri de kategorik özniteliklerin 

sayısallaştırılmasıdır. Bu amaçla, çoklu doğrusal ilişki (multicollinearity) sorununu 

minimize etmek adına ikili kodlama (one-hot encoding) yöntemi uygulanmıştır. İkili 

değer alan değişkenler tek bir sütunda 0 ve 1 değerleriyle temsil edilmiş, böylelikle 

hem makine öğrenmesi algoritmaları açısından uygunluk sağlanmış hem de veri yapısı 

sadeleştirilmiştir. 

Sayısal özniteliklerin ölçeklendirilmesi de analiz sürecinin kritik bir adımıdır. 

Özellikle Öklid ya da Mahalanobis mesafesi gibi uzaklık hesaplamalarının temel 

alındığı algoritmalarda, ölçekleme yapılmaması durumunda büyük değer aralıklarına 

sahip öznitelikler diğerlerine göre daha fazla ağırlık taşır. Örneğin, 0-10000 arasında 

değişen bir öznitelik, 0-10 aralığında değişen başka bir niteliği gölgede bırakabilir. Bu 

nedenle, tüm özniteliklerin aynı ölçeğe getirilmesi amaçlanmıştır. Ölçekleme için 

farklı yöntemler mevcuttur: standart sapma ve ortalama ile yapılan z-skoru 

normalizasyonu, çeyreklik değerler dikkate alınarak yapılan gürbüz (robust) 

ölçekleme veya min-maks normalizasyonu gibi. Çalışmada hem sayısal hem de 

kategorik özniteliklerin 0 ile 1 aralığında olması hedeflendiğinden, sayısal 

değişkenlerde min-maks normalizasyonu tercih edilmiştir. Böylece tüm değişkenler 

aynı ölçekle ifade edilerek analiz sürecine dahil edilmiştir (Trebuna vd., 2014). 

Bu kapsamlı veri toplama ve hazırlık süreci, çalışmanın analiz aşamalarında güvenilir, 

tutarlı ve karşılaştırılabilir sonuçlar elde edilebilmesi için kritik bir temel 
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oluşturmuştur. Elde edilen temiz ve zenginleştirilmiş veri seti, elektrikli araçların çok 

boyutlu yapısını detaylı biçimde yansıtmakta ve sonraki analizlerin hem doğruluğunu 

hem de açıklayıcılığını artırmaktadır. 

4.2 Sınıf Sayısının Belirlenmesi: Kümeleme Analizi 

Bu bölümde, çalışmanın temel amaçlarından biri olan elektrikli araçların 

benzerliklerine göre gruplandırılması süreci ele alınmaktadır. Bu doğrultuda, sınıf 

(küme) sayısının belirlenmesi kritik bir adımdır. Kümeleme analizi, gözetimsiz 

öğrenme yöntemlerinden biri olarak, veri içindeki doğal yapıları ortaya çıkarmayı 

hedefler. Aşağıdaki alt başlıkta, analizde kullanılacak ideal küme sayısının 

belirlenmesine yönelik yöntemler ve bu süreçte izlenen adımlar ayrıntılı biçimde 

açıklanmaktadır. 

4.2.1 Kümeleme yöntemleri ve değerlendirme kriterleri 

Bu çalışmada, veri setinde yer alan elektrikli araçların benzer özelliklerine göre 

gruplandırılabilmesi amacıyla iki temel kümeleme yöntemi kullanılmıştır: K-

ortalamalar algoritması ve hiyerarşik kümeleme. Her iki yöntem de farklı avantajlar 

sunmaları nedeniyle birlikte değerlendirilmiştir. 

K-ortalamalar algoritması, yüksek boyutlu verilerde hızlı ve etkili bir kümeleme 

yapılmasına olanak tanıyan, sıkça başvurulan bir yöntemdir. Bu yöntem, gözlemleri 

önceden belirlenen k sayıda kümeye atar ve her bir gözlemin kendi küme merkezine 

olan uzaklığını minimize etmeye çalışır. Bu çalışmada k-ortalamalar algoritması hem 

Öklid uzaklığı hem de Mahalanobis uzaklığı ile uygulanmıştır. Mahalanobis uzaklığı, 

gözlemler arasındaki ilişkiyi yalnızca mutlak farklar üzerinden değil, aynı zamanda 

değişkenler arası kovaryans yapısını da dikkate alarak ölçmektedir. Bu yönüyle, 

özellikle değişkenler arası korelasyonların önemli olduğu durumlarda daha sağlıklı 

sonuçlar sunmaktadır (McLachlan, 1999). Her iki uzaklık metriğiyle, k değerleri 2 ile 

10 arasında değiştirilerek çeşitli kümeleme senaryoları denenmiş ve her durumda 

Silhouette skoru hesaplanmıştır. Mahalanobis uzaklık ölçütü kullanılarak elde edilen 

sonuçlar Çizelge 4.2'de sunulmaktadır. Silhouette skoru, her gözlemin ait olduğu küme 

ile diğer kümelerle olan benzerliğini karşılaştıran bir ölçüttür ve kümeleme kalitesini 

değerlendirmede sıklıkla kullanılmaktadır (Shahapure ve Nicholas, 2020). 
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Çizelge 4.2: K-ortalamalar algoritmasında küme sayısına göre silhouette skoru. 

Küme sayısı (k) Silhouette Skoru 

2 0.0650 

3 0.0551 

4 0.0596 

5 0.0593 

6 0.0613 

7 0.0665 

8 0.0712 

9 0.0697 

10 0.0735 

K-ortalamalar yöntemine ek olarak, verinin içsel yapısını daha bütüncül bir şekilde 

analiz edebilmek amacıyla hiyerarşik kümeleme analizi de gerçekleştirilmiştir. Bu 

analizde, çeşitli bağlantı metotları ile farklı uzaklık metrikleri bir arada denenmiştir. 

Spesifik olarak, Ward, ortalama bağlantı (average linkage), tam bağlantı (complete 

linkage) ve tek bağlantı (single linkage) yöntemleri hem Öklid hem de Mahalanobis 

uzaklıklarıyla birlikte değerlendirilmiştir (Jarman, 2020). Hiyerarşik kümeleme 

sonucunda elde edilen dendrogramlar, veri içerisindeki kümelenme yapısının görsel 

olarak incelenmesine olanak tanımaktadır. Şekil 4.1'de, tek bağlantı metodu ve Öklid 

uzaklığı ile elde edilen dendrogram yer almakta, Şekil 4.2'de ortalama bağlantı metodu 

ve Mahalanobis uzaklığı kullanılarak oluşturulan dendrogram, Şekil 4.3’te tam 

bağlantı metodu ve Mahalanobis uzaklığı bağlamında oluşturulan dendrogram ve son 

olarak Şekil 4.4’te ise Ward metodu ve Öklid uzaklığı ile oluşturulmuş dendrogram 

sunulmaktadır. 

 

Şekil 4.1: Tek bağlantı metodu ve Mahalanobis uzaklığı ile oluşturulan dendrogram. 
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Dendogram (Metot: Tek bağlantı, Metrik: Mahalanobis) 
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Şekil 4.2: Ortalama bağlantı metodu ve Mahalanobis uzaklığı ile oluşturulan 

dendrogram. 

 

Şekil 4.3: Tam bağlantı metodu ve Mahalanobis uzaklığı ile oluşturulan dendrogram. 
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Dendogram (Metot: Tam bağlantı, Metrik: Mahalanobis) 
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Şekil 4.4: Ward metodu ve Öklid uzaklığı ile oluşturulan dendrogram. 

Mahalanobis uzaklığının bu bağlamda tercih edilme nedeni, klasik uzaklık 

ölçütlerinden farklı olarak değişkenler arası korelasyonları da dikkate almasıdır. 

Ortalama bağlantı yöntemi her bir küme çifti arasındaki tüm olası çiftli mesafelerin 

ortalamasını alarak daha dengeli bir birleşim mantığı sunar. Bu özellikleri nedeniyle, 

ortalama bağlantı ve Mahalanobis uzaklığının birlikte kullanımı hem istatistiksel hem 

de yapısal olarak tutarlı bir kümeleme profili ortaya koymaktadır. Öte yandan, Ward 

metodu ile Mahalanobis uzaklığı birlikte kullanılamamaktadır. Bunun nedeni, Ward 

yönteminin, kümeler arası varyansın toplamını minimize etmeye çalışırken yalnızca 

Öklid uzaklığına göre tanımlı olmasıdır. Mahalanobis uzaklığı, varyans-kovaryans 

yapısını hesaba kattığı için bu matematiksel öncül ile uyumlu değildir; bu nedenle 

birlikte kullanımları istatistiksel olarak anlamlı sonuçlar üretmez (McLachlan, 1999). 

4.2.2 Sınıf sayısının belirlenmesi 

Çizelge 4.2'de görüleceği üzere, k-ortalamalar algoritmasıyla yapılan analiz 

sonucunda en yüksek Silhouette skoru, küme sayısının 10 olduğu durumda elde 

edilmiştir. Ancak bu durum, her ne kadar nicel açıdan yüksek bir skor sunsa da, 

yorumlanabilirlik ve uygulama bağlamında anlamlı bir küme yapısı sunmamaktadır. 

Nitekim kümelerin aşırı parçalanması, gerçek hayat uygulamalarında karşılık 
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bulamayan yapay ayrımlara neden olabilmektedir. Bu nedenle sadece silhouette 

skoruna dayanarak nihai küme sayısının belirlenmesi uygun görülmemiştir. 

Bu noktada, çalışmada kullanılan hiyerarşik kümeleme yöntemlerinden elde edilen 

dendrogramlar, daha niteliksel bir değerlendirme imkânı sunmuştur. Özellikle farklı 

uzaklık metrikleri ve bağlantı yöntemleriyle elde edilen dört farklı dendrogram 

incelendiğinde, veri setinde doğal olarak oluşan yapının üç kümelik bir ayrım önerdiği 

gözlemlenmiştir. Bu dendrogramlar, sadece küme sayısı hakkında değil, aynı zamanda 

kümeler arası yapısal benzerlikler ve ayrışmalar hakkında da sezgisel bir fikir 

vermektedir. 

Sonuç olarak, hem nicel analiz sonuçları (silhouette skorları), hem de nitel 

değerlendirme çıktıları (dendrogram yapıları) birlikte ele alınarak, veri setinin üç 

kümeye ayrılmasının daha anlamlı ve uygulanabilir olduğu kanaatine varılmıştır. Bu 

bağlamda Şekil 4.1–4.4 arasında sunulan dendrogram yapıları, bu değerlendirmeye 

dayanak teşkil etmektedir. 

Kümelerin sadece sayısal olarak değil, aynı zamanda içeriksel olarak da anlamlı ve 

yorumlanabilir olup olmadığını değerlendirmek amacıyla çizelge 4.3’te, her bir 

kümeye ait gözlemlerin metrik olan öznitelik bazında ortalama değerler gösterilmiştir. 

Bu çizelge, kümelerde yer alan araçların teknik ve donanımsal profillerine ilişkin genel 

bir görünüm sunmakta; kümeler arası farklılıkların daha net bir şekilde anlaşılmasına 

olanak tanımaktadır. Çizelgede satırlarda kümeler, sütunlarda ise öznitelikler yer 

almakta; hücrelerde ise ilgili özniteliklerin küme içerisindeki ortalama değerleri 

gösterilmektedir. Bu sayede her bir kümenin belirli özellikler bakımından öne çıkan 

yönleri analiz edilebilmekte ve kümelerin sadece istatistiksel değil, anlamlı yapısal 

ayrımlara dayandığı görülmektedir.
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Çizelge 4.3: Hiyerarşik kümelemeye göre kümelerin metrik öznitelikler bakımından ortalama değerleri. 

Küme İvme Maksimum 

Sürat 

Menzil Batarya 

Mimarisi 

Batarya 

Garanti 

Periyodu 

(Yıl) 

Batarya 

Garanti 

Periyodu 

(Mil) 

Şarj 

Hızı 

Hızlı 

Şarj 

Hızı 

Yakıt 

Eşleniği 

Ağırlık 

(Kg) 

Koltuk 

Sayısı 

Dönüş 

Ekseni 

(Metre) 

Fiyat 

(USD) 

Hacim (mm3) Toplam 

Kargo 

Hacmi 

(Litre) 

Yüksek 

Tercih 

Edilebilirlik 

5.77 193.86 433.73 413.73 8.26 177655 53.066 615.69 2.12 2276 5.13 11.44 86289 14459748152 511.81 

Orta Tercih 

Edilebilirlik 

9.75 153.59 291.96 403.87 8.01 175917 47.52 367.27 2.14 1817 5.56 11.07 49055 13611870622 520.82 

Düşük 

Tercih 

Edilebilirlik 

5.23 212 445.50 691.52 7.95 175037 56.79 874.32 2.12 2243 5.11 11.71 94637 14332383869 499.48 
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4.3 ÇKKV Yöntemi ile Sınıflandırma 

Kümeleme analizinden elde edilen yapının ötesine geçerek alternatiflerin çok sayıda 

kritere göre daha sistematik biçimde değerlendirilmesi amacıyla çok kriterli karar 

verme yaklaşımı kullanılmıştır. Bu çerçevede, her bir alternatif belirlenen kriterler 

doğrultusunda puanlanarak anlamlı bir öncelik sırasına yerleştirilmiştir. Böylece 

yalnızca yapısal benzerliklere değil, karar verme sürecine dâhil edilen ağırlıklı 

değerlendirme ölçütlerine dayalı bir sınıflandırma yapılması sağlanmıştır. 

4.3.1 TOPSIS-Sort-B yönteminin uygulanması 

Bu çalışmada, elektrikli araç alternatiflerinin çok kriterli bir yaklaşımla tercih 

edilebilirlik düzeylerine göre sıralanması amacıyla TOPSIS-Sort-B algoritması 

kullanılmıştır. Bu yöntemin uygulanabilmesi için öncelikle metrik olan her bir 

özniteliğe (kriter) ilişkin birtakım temel tanımlamaların yapılması gerekmektedir. 

Bunlar sırasıyla; her öznitelik için ideal değer (a⁺) ve anti-ideal değer (a⁻) sınırlarının 

belirlenmesi, kriterlerin türlerinin (yarar/zarar; yani yüksek değer iyidir veya düşük 

değer iyidir) tanımlanması ve ağırlıklandırma sürecidir. Bu kapsamda, elektrikli 

araçlar alanında uzman iki kişi ile çalışılmıştır. 

Öncelikle bu uzmanlardan, Analitik Hiyerarşi Süreci (AHP) yöntemi aracılığıyla her 

bir kriterin önem düzeyini karşılaştırmalı olarak değerlendirmeleri istenmiştir. AHP, 

karar vericilerin çok sayıda kriteri ikili karşılaştırmalar yoluyla tutarlı bir biçimde 

kıyaslamalarını sağlayan güçlü bir karar verme yöntemidir. Uzmanların verdiği 

yanıtlar doğrultusunda (tutarlılık değerleri 0.0871 ve 0.0389) kriter ağırlıkları 

hesaplanmış ve özniteliklerin göreli önemi elde edilmiştir. Bunun yanında, her bir 

kriterin "yarar" (yüksek değer tercih edilir) veya "zarar" (düşük değer tercih edilir) tipi 

de uzman görüşleri doğrultusunda belirlenmiştir. 

Aynı uzmanlar, güncel piyasa verilerine dayalı bir araştırma yaparak her öznitelik için 

a⁺ (ideal değer) ve a⁻ (anti-ideal değer) sınırlarını tanımlamıştır. Özniteliklerin ismi 

orijinal halinde tutularak tüm bu özniteliklere (kriterlere) ilişkin ağırlık, kriter tipi, 

ideal ve anti-ideal değerler, Çizelge 4.3’te sistematik biçimde sunulmuştur. 
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Çizelge 4.4: Kriterlere ilişkin özellikler. 

Kriter Tipi Ağırlığı İdeal Değeri Anti-İdeal Değeri 

acceleration Zarar 0.049 20 2.1 

top_speed Fayda 0.071 120 350 

range Fayda 0.105 120 1000 

battery_architecture Fayda 0.032 400 800 

battery_warranty_period Fayda 0.073 7 15 

battery_warranty_mileage Fayda 0.058 120000 1000000 

charge_speed Fayda 0.055 18 120 

fast_charge_speed Fayda 0.078 170 1400 

fuel_equivalent Zarar 0.037 4 1 

car_weight Zarar 0.011 3300 100 

no_seats Fayda 0.026 2 9 

turning_circle Zarar 0.011 15 9 

average_usd Zarar 0.142 450000 17000 

car_volume Fayda 0.020 9000000000 21000000000 

total_cargo_volume Fayda 0.019 140 1500 

drive_type_Front Zarar 0.013   

drive_type_Rear Zarar 0.013   

autocharge_support_Yes Fayda 0.015   

preconditioning_Yes Fayda 0.016   

v2l_support_Yes Fayda 0.016   

tow_hitch_Yes Fayda 0.007   

dedicated_platform_Yes Fayda 0.060   

heat_pump_Yes Fayda 0.071   

Tüm bu ön bilgiler doğrultusunda, TOPSIS-Sort-B algoritması Python programlama 

dili ile geliştirilmiştir. Verilerin normalize edilmesinde min–maks normalizasyon 

yöntemi tercih edilmiştir. Önceki kümeleme analizlerinden elde edilen sonuçlar, 

verinin üç ana segmente (yüksek, orta ve düşük tercih edilebilirlik düzeyi) ayrılmasının 

uygun bir yaklaşım olduğunu ortaya koymuştur. Bu bağlamda, TOPSIS-Sort-B 

algoritması da üçlü bir sınıflandırma yapacak şekilde uygulanmıştır. 

Yöntemin sınıflandırma yapabilmesi için üst ve alt profil değerlerinin belirlenmesi 

gerekmektedir. Bu doğrultuda, yarar tipindeki her bir kriter için üst profil değeri olarak 

3. çeyrek değer (Q3), alt profil değeri olarak ise 1. çeyrek değer (Q1) kullanılmıştır. 

Zarar tipine sahip kriterler için ise tam tersine üst profil değeri 1. çeyrek, alt profil 

değeri ise 3. çeyrek seçilmiştir. Uzmanların da tavsiyesi sonucunda böyle bir 

yaklaşımın hem istatistiksel anlamlılık taşıdığını hem de gerçekçi sınıflandırmalar 

yapılmasına olanak sunabileceği düşünülmüştür. Böylece sınıflandırma süreci hem 

alan uzmanlarının görüşleriyle hem de veri odaklı istatistiksel analizlerle 

desteklenerek daha sağlam bir temele oturtulmuştur. 
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4.3.2 Sınıf dağılımı ve TOPSIS-Sort-B sonuçlarının özeti 

TOPSIS-Sort-B algoritması ile yapılan analiz sonucunda, toplam 439 elektrikli araç 

üç farklı tercih edilebilirlik düzeyine ayrılmıştır. Bu sınıflandırmaya göre; 130 araç 

düşük tercih edilebilirlik, 164 araç orta derecede tercih edilebilirlik ve 145 araç ise 

yüksek tercih edilebilirlik sınıfında yer almıştır. Bu dağılım, araçların çok sayıda 

özniteliğe göre bütüncül bir değerlendirmeye tabi tutulduğunu ve sadece tek bir kritere 

dayalı olarak sınıflandırılmadığını göstermektedir. 

Sıralı sınıflandırmada belirleyici olan kriter ağırlıkları incelendiğinde, araç fiyatı başta 

olmak üzere, menzil, maksimum sürat, batarya garanti süresi ve ısı pompasının varlığı 

gibi özelliklerin yüksek etkiye sahip olduğu görülmektedir. Bu durum, genel eğilimde 

fiyat-performans dengesinin güçlü olduğu modellerin daha yüksek bir tercih 

edilebilirlik düzeyine yerleştirilmesini beraberinde getirmiştir. 

Bununla birlikte, analiz sonuçları bazı istisnai örneklere de işaret etmektedir. Örneğin; 

Mercedes Benz Eqs 450Plus, Porsche Taycan Plus, Lotus Emeya R, Tesla Model X 

Plaid, Kia Ev9 99.8 KWh RWD ve Maserati Grancabrio Folgore gibi modeller, 

100.000 USD üzerindeki yüksek fiyatlarına rağmen yüksek tercih edilebilirlik 

sınıfında yer almıştır. Bu durum, söz konusu araçların performans, teknoloji ve 

donanım özelliklerinin fiyatlarına oranla oldukça tatmin edici düzeyde olmasıyla 

açıklanabilir. Yani fiyat yüksek olsa dahi, diğer kriterlerde sağlanan üst düzey 

performans bu maliyeti rasyonel kılmakta ve genel değerlendirmede aracı üst tercih 

edilebilirlik segmentine taşımaktadır. 

Öte yandan, Fiat 500E 3+1 24 KWh, Dongfeng Box 31.4 KWh, Dacia Spring Electric 

45, Opel Frontera 44 KWh, MG4 Electric 51 KWh, Skoda Elroq 50 ve Lynkco 02 gibi 

bazı araçlar, düşük fiyatlı olmalarına rağmen düşük tercih edilebilirlik sınıfında 

kalmıştır. Bu araçların tamamı 40.000 USD altında fiyatlandırılmıştır. Ancak analiz 

sonucunda, fiyat avantajına rağmen diğer kriterlerde (örneğin menzil, sürat, batarya 

kapasitesi, boyutsal özellikleri gibi) sağlanan performansın yetersiz olduğu 

görülmektedir. Bu bağlamda, düşük maliyetin tek başına yeterli olmadığı, tüketicinin 

bütüncül beklentilerini karşılayamayan modellerin tercih edilebilirlik açısından alt 

sıralarda kaldığı söylenebilir. 

Sonuç olarak, TOPSIS-Sort-B algoritmasıyla yapılan bu çok kriterli değerlendirme; 

fiyatın önemli bir kriter olduğunu, ancak tek başına belirleyici olmadığını, dolayısıyla 
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araçların toplam özellik profili üzerinden yapılan kapsamlı bir analizle daha tutarlı 

sonuçlar elde edilebileceğini ortaya koymuştur. 

4.4 Makine Öğrenmesi ile Sınıf Tahmini 

TOPSIS-Sort-B algoritması ile elde edilen tercih edilebilirlik sınıfları, çalışmanın bu 

bölümünde birer hedef değişken olarak kullanılmış ve çeşitli makine öğrenmesi 

algoritmaları aracılığıyla bu sınıfların tahmin edilebilirliği test edilmiştir. Bu süreçte 

amaç, elektrikli araçlara ait teknik ve yapısal özelliklerden yola çıkarak, bir modelin 

aracı doğru tercih sınıfına atayıp atayamayacağını belirlemektir. Böylelikle hem 

geliştirilen çok kriterli karar modelinin doğruluğu dolaylı olarak sınanmakta hem de 

karar vericilere gelecekteki ürün analizlerinde yardımcı olabilecek öngörücü bir 

modelleme yaklaşımı sunulmaktadır. Bu bağlamda sınıflandırma problemlerine özgü 

çeşitli denetimli öğrenme algoritmaları uygulanmış ve modellerin başarımı farklı 

performans ölçütleri ile karşılaştırılmıştır. 

4.4.1 Kullanılan algoritmalar ve modelleme süreci 

Modelleme süreci kapsamında ilk olarak veri kümesi eğitim ve test olmak üzere ikiye 

ayrılmıştır. Bu ayrım, literatürde en yaygın kullanılan oranlardan biri olan %80 eğitim 

ve %20 test bölüşümüne göre gerçekleştirilmiştir. Bu oran, modelin yeterli miktarda 

veriden öğrenmesini sağlarken, test verisi üzerinde de anlamlı bir değerlendirme 

yapılabilmesine olanak tanımaktadır. Ancak salt rastgele bir bölme yerine, sınıflar 

arası dengenin korunması amacıyla tabakalı (stratified) bölme yöntemi tercih 

edilmiştir. Böylece düşük, orta ve yüksek tercih edilebilirliğe sahip araçlar test 

kümesinde de veri setindeki oransal yapıyı koruyacak şekilde temsil edilmiş, bu sayede 

model değerlendirme sürecinde oluşabilecek sınıfsal yanlılıkların önüne geçilmiştir. 

Modelleme süreci kapsamında, TOPSIS-Sort-B tabanlı etiket sütunu hedef değişken 

(label) olarak seçilmiş, açıklayıcı değişkenler olarak ise bu etiketlerin dışında kalan 

sayısal öznitelikler kullanılmıştır. Veri ön işleme sürecinde, algoritmaların girdilerden 

etkili biçimde öğrenebilmesini sağlamak amacıyla standartlaştırma (standardizasyon) 

işlemi uygulanmıştır. Özellikle Öklid uzaklığı temelli algoritmalarda (örneğin; K-En 

Yakın Komşu, Lojistik Regresyon, SVM, Yapay Sinir Ağları) değişkenlerin benzer 

ölçeklerde olması gerektiğinden, StandardScaler yöntemiyle tüm değişkenler sıfır 
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ortalamalı ve birim standart sapmalı hale getirilmiştir. Karar Ağaçları algoritması bu 

tür ön işlemeye duyarlı olmadığından, bu modelde ham değerler kullanılmıştır. 

Modelleme aşamasında altı farklı denetimli öğrenme algoritması uygulanmıştır. Bu 

algoritmalarda kullanılan hiperparametreler şöyledir: 

 Karar Ağaçları:  

o Ayırma ölçütü: gini 

o Maksimum derinlik: Otomatik belirlenir 

o Bir dalın ikiye ayrılması için gereken minimum örnek sayısı: 2 

o Bir yaprak düğümde bulunması gereken minimum örnek sayısı: 1 

 Lojistik Regresyon:  

o Çok sınıflı durumlar için sınıflandırma stratejisi: 'multinomial' 

o Optimizasyon algoritması (çözücü): lbfgs 

o Düzenleme parametresi (C): 1.0 

o Maksimum iterasyon sayısı: 100 

 Naive Bayes: 

o Varyans düzeltme katsayısı (sayısal kararlılık için): 1e-9 

 K-En Yakın Komşu:  

o Komşu sayısı: 5 

o Ağırlıklandırma yöntemi: uniform (her komşu eşit ağırlıkta) 

o Mesafe metriği: minkowski 

o p=2 (Öklid uzaklığı) 

 Destek Vektör Makineleri:  

o Çekirdek (kernel) fonksiyonu: rbf (radial basis function) 

o C parametresi (hata toleransı/düzenleme katsayısı): 1.0 

o Gamma (çekirdek fonksiyonu parametresi): scale (veriye göre otomatik 

hesaplanır) 
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 Yapay Sinir Ağları: Katmanlar üzerinden öğrenme sağlayan, doğrusal olmayan 

ilişkileri modelleyebilen esnek bir algoritmadır. 

o Gizli katman yapısı: (100,) (tek gizli katman, 100 nöron) 

o Aktivasyon fonksiyonu: relu 

o Optimizasyon algoritması (çözücü): adam 

o L2 düzenleme katsayısı (alpha): 0.0001 

o Maksimum iterasyon sayısı: 200 

Tüm modeller Python programlama dili ile, ağırlıklı olarak scikit-learn kütüphanesi 

kullanılarak uygulanmıştır. Eğitim süreci tamamlandıktan sonra, test kümesi üzerinde 

tahminlemeler yapılmış ve model performansları değerlendirilmiştir. 

4.4.2 Performans değerlendirme ve sonuçlar 

Model karşılaştırmalarında yalnızca doğruluk oranı değil, aynı zamanda sınıf 

dengesini gözeten doğruluk (accuracy), kesinlik (precision), duyarlılık (recall) ve F1-

skoru gibi metrikler de hesaplanmıştır. Bu metrikler, sınıflar arasındaki 

dengesizliklerin etkisini minimize etmek amacıyla ağırlıklı ortalama yöntemiyle 

değerlendirilmiştir. Ayrıca her bir model için karışıklık matrisi (confusion matrix) 

oluşturulmuş ve bu matrisler görselleştirilerek sınıflandırma başarısının hangi 

sınıflarda yoğunlaştığı analiz edilmiştir. Tüm bu modellere ait metriklerin tamamı 

Çizelge 4.5’te özetlenmiştir. Ek olarak, her modelin test veri kümesine yaptığı 

tahminler ayrı sütunlar halinde test kümesine eklenmiştir. Bu sayede modellerin 

çıktıları sonraki analiz veya görselleştirme adımları için tekrar kullanılabilir hale 

getirilmiştir. 

Çizelge 4.5: Performans metrikleri. 

Model Doğruluk Kesinlik Duyarlılık F1-Skoru 

Karar Ağacı 0.932 0.935 0.932 0.932 

Lojistik Regresyon 0.955 0.959 0.955 0.955 

Naive Bayes 0.852 0.853 0.852 0.851 

K-En Yakın Komşu 0.898 0.898 0.898 0.898 

DVM 0.932 0.933 0.932 0.931 

YSA 0.966 0.966 0.966 0.966 

Toplamda 439 elektrikli araç verisiyle çalışılmış olup, bu veri kümesi %80–%20 

oranında eğitim ve test verileri olmak üzere ikiye ayrılmıştır. Bu kapsamda, 351 araçlık 
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eğitim verisi ile modeller eğitilmiş, 88 araçlık test verisi ile ise değerlendirme 

yapılmıştır. Verinin görece küçük olması bazı algoritmalar için sınırlayıcı olmuş 

olabileceği düşünülmektedir. Özellikle yapay sinir ağı gibi daha yüksek veri hacmiyle 

daha iyi performans sergileyebilen modellerin, buna rağmen diğer yöntemlerin 

tamamından daha yüksek performans göstermesi dikkat çekicidir. YSA modeli, 

yalnızca F1-skoru değil, aynı zamanda doğruluk, kesinlik ve duyarlılık metriklerinde 

de en yüksek değere ulaşmıştır. Bu sonuç, YSA modelinin bu veri setinde en güçlü 

sınıflandırma başarısına sahip olduğunu göstermektedir. 

Öte yandan, Naive Bayes algoritması, tüm metrikler açısından en düşük performansı 

sergilemiş ve bu bağlamda en zayıf model olarak değerlendirilmiştir. Bu durum, Naive 

Bayes’in temel varsayımlarının (özelliklerin birbirinden bağımsız olması gibi) bu veri 

kümesi üzerinde yeterince sağlanamamasından kaynaklanıyor olabilir. Örnek olması 

açısından, en başarılı model olan YSA ve en zayıf kalan Naive Bayes algoritmalarına 

ait karışıklık matrisleri sırasıyla Şekil 4.5 ve Şekil 4.6'da sunulmuştur. 

 

Şekil 4.5: Yapay sinir ağı modelinin karışıklık matrisi. 

Karışıklık Matrisi - YSA 

 Tahmin Edilen 
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Şekil 4.6: Naive Bayes modelinin karışıklık matrisi. 

Tüm modellerin %85’in üzerinde bir başarı sergilemiş olması, yalnızca kullanılan 

makine öğrenmesi algoritmalarının değil, aynı zamanda sıralı sınıflandırma sürecinde 

uygulanan etiketleme stratejisinin de etkili olduğunu göstermektedir. Özellikle 

TOPSIS-Sort-B yöntemiyle yapılan sınıf etiketlemesinin, gözlemler arasındaki yapısal 

örüntüleri anlamlı bir şekilde yansıttığı ve bu nedenle sınıflandırma algoritmalarına 

uygun bir öğrenme zemini sunduğu söylenebilir. Etiketleme süreci hatalı veya 

anlamsız olsaydı, bu durum doğrudan sınıflandırma performansına da yansıyacak ve 

genel başarı oranları daha düşük seviyelerde kalacaktı. Dolayısıyla, elde edilen yüksek 

performans değerleri, etiketleme yaklaşımının da doğruluğunu desteklemektedir. 

Sonuç olarak, her bir modelin farklı özelliklerinden kaynaklanan avantaj ve 

dezavantajları göz önüne alındığında, YSA modelinin bu bağlamda en uygun yöntem 

olduğu söylenebilir. Ancak veri hacminin daha büyük olduğu durumlarda modeller 

arası performans farklarının daha belirgin ve güvenilir olacağı da unutulmamalıdır. 

4.5 ÇKKV ve Makina Öğrenmesi Sonuçlarının Karşılaştırması 

Bu bölümde, ÇKKV yöntemi olarak kullanılan TOPSIS-Sort-B algoritması ile 

denetimli makine öğrenmesi modellerinden elde edilen sınıflandırma sonuçları 

karşılaştırılmıştır. Amaç, makine öğrenmesi modellerinin ÇKKV temelli tercih 

edilebilirlik sınıflarını ne ölçüde doğru şekilde yeniden üretebildiğini 

değerlendirmektir. Bu bağlamda, her bir sınıflandırma modelinin hangi araçları doğru 
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Karışıklık Matrisi – Naive Bayes 
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ya da yanlış sınıflandırdığı detaylı olarak incelenmiş ve özellikle yüksek, orta ve düşük 

tercih edilebilirlik düzeylerinde gözlemlenen yanlış sınıflamalar analiz edilmiştir. Elde 

edilen bulgular, modellerin karar verme tutarlılığına dair derinlemesine bir perspektif 

sunmakta ve veri temelli otomatik sınıflandırma yaklaşımlarının ÇKKV tabanlı 

yöntemlerle olan uyumunu tartışmaya açmaktadır. 

TOPSIS-Sort-B algoritması sonuçlarına göre yüksek tercih edilebilirlik düzeyinde 

sınıflandırılan araçlar arasında, bazı denetimli öğrenme modellerinin hatalı 

tahminlerde bulunduğu gözlemlenmiştir. Bu grupta yer alan Lucid Air Grand Touring, 

Nio Et7 Long Range, Tesla Model 3 Performance, BMW iX M60, Volkswagen ID.7 

GTX, Zeekr 001 Performance AWD ve Volkswagen ID.7 Pro modelleri, en az bir 

makine öğrenmesi modeli tarafından yanlış sınıflandırılmıştır. Bu durum, modellerin 

yüksek tercih edilen araçların özelliklerini her zaman doğru şekilde öğrenemediğine 

işaret etmektedir. 

Denetimli öğrenme modelleri bazında değerlendirildiğinde, yapay sinir ağları modeli 

yüksek tercih edilebilirlik sınıfındaki araçların tamamını doğru bir şekilde tahmin 

etmeyi başarmıştır. Karar ağacı modeli, Nio Et7 Long Range, Tesla Model 3 

Performance ve Volkswagen ID.7 Pro araçlarını hatalı şekilde orta tercih edilebilirlik 

düzeyine yerleştirmiştir. Lojistik regresyon yalnızca Volkswagen ID.7 Pro modelini 

orta seviyede tahminleyerek hata yapmıştır. Diğer yandan, Naive Bayes ve DVM, hem 

Lucid Air Grand Touring hem de Volkswagen ID.7 Pro araçlarını yanlış 

tahminlemiştir. K-En Yakın Komşu modeli ise BMW iX M60, Volkswagen ID.7 GTX 

ve Zeekr 001 Performance AWD araçlarını hatalı şekilde sınıflandırmıştır. 

Bu analizde özellikle Volkswagen ID.7 Pro modeli dikkat çekmektedir; çünkü altı 

modelden dördü bu aracı yanlış sınıflandırmıştır. Modelin maksimum sürat, batarya 

mimarisi, V2L desteği eksikliği, toplam bagaj hacmi ve koltuk sayısı gibi kriterlerde 

bazı üst düzey modellere kıyasla nispeten zayıf kalması, modellerin bu aracı orta tercih 

edilebilirlik düzeyine kaydırmasına sebep olmuş olabilir. Bu durum, makine 

öğrenmesi modellerinin bazı teknik ya da donanımsal farklılıklara karşı duyarlılığını 

göstermesi açısından anlamlıdır. 

Orta tercih edilebilirlik düzeyinde sınıflandırılan araçlar incelendiğinde, BMW i7 

eDrive50, BMW i5 M60 xDrive Sedan, Nio ET5 Standard Range, KGM Torres EVX, 

Kia EV6 Standard Range 2WD, BYD Dolphin 44.9 kWh Active, Opel Zafira-e Life 

L2 75 kWh, Toyota Proace Verso M 75 kWh ve Renault Kangoo Grand E-Tech 
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Electric modellerinin en az bir denetimli öğrenme modeli tarafından yanlış 

sınıflandırıldığı görülmektedir. Bu durum, orta sınıf araçların sınıflandırılmasının 

diğer gruplara kıyasla daha fazla model tarafından zorlandığını göstermektedir. 

Bu gruptaki araçların tamamını doğru şekilde tahmin edebilen tek model lojistik 

regresyon olmuştur. Karar ağacı modeli, KGM Torres EVX ve Renault Kangoo Grand 

E-Tech Electric modellerini yanlış şekilde düşük tercih edilebilirlik düzeyine 

yerleştirmiştir. En fazla hata yapan model ise Naive Bayes olmuş; BMW i7 eDrive50, 

BMW i5 M60 xDrive Sedan, Nio ET5 Standard Range, KGM Torres EVX araçlarını 

yüksek, BYD Dolphin 44.9 kWh Active, Opel Zafira-e Life L2 75 kWh, Toyota Proace 

Verso M 75 kWh ve Renault Kangoo Grand E-Tech Electric araçlarını ise düşük tercih 

edilebilirlik seviyesine yerleştirerek oldukça fazla hata yapmıştır. K-En Yakın Komşu 

algoritması da benzer şekilde, KGM Torres EVX ve Kia EV6 Standard Range 2WD 

modellerini yüksek seviyede, BYD Dolphin 44.9 kWh Active ve Renault Kangoo 

Grand E-Tech Electric modellerini düşük seviyede tahminlemiştir. Destek vektör 

makineleri, BMW i7 eDrive50 modelini yüksek seviyede, KGM Torres EVX, BYD 

Dolphin 44.9 kWh Active ve Renault Kangoo Grand E-Tech Electric modellerini 

düşük seviyede tahminlemiştir. Son olarak, Yapay sinir ağı ise BMW i7 eDrive50’yi 

yüksek, Renault Kangoo Grand E-Tech Electric modelini ise düşük tercih 

edilebilirlikte sınıflandırarak hata yapmıştır. 

Bu araçlar arasında Renault Kangoo Grand E-Tech Electric modeli özellikle dikkat 

çekmektedir; zira lojistik regresyon dışında tüm modeller bu aracı düşük tercih 

edilebilir sınıfa yerleştirmiştir. Aracın maksimum sürat değerinin düşük olması ve 

elektrikli araçlara özel bir platform yerine geleneksel içten yanmalı platform üzerinden 

geliştirilmiş olması, bu tür bir sınıflandırma eğilimini tetiklemiş olabilir. Bu durum, 

orta sınıftaki bazı araçların teknik özellikleri nedeniyle düşük sınıfa kaydırıldığını ve 

modellerin bu nüanslara karşı oldukça duyarlı olduğunu göstermektedir. 

Düşük tercih edilebilirlik sınıfına TOPSIS-Sort-B yöntemine göre dahil edilen araçlar 

incelendiğinde, GWM Ora 07 GT, Lynkco 02, Lexus UX 300e ve Skoda Elroq 50 

modellerinin en az bir denetimli öğrenme modeli tarafından hatalı şekilde farklı bir 

sınıfa atandığı görülmektedir. Bu durum, her ne kadar düşük tercih edilebilirlik 

seviyesi teknik açıdan daha ayırt edici gibi görünse de, bazı modellerin bu gruptaki 

araçları farklı sınıflara yönlendirme eğilimi gösterdiğini ortaya koymaktadır. 
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Bu gruptaki tüm araçları doğru tahmin eden tek yöntem destek vektör makineleri 

olmuştur. Diğer yandan karar ağacı yalnızca GWM Ora 07 GT aracını hatalı 

sınıflandırarak orta seviyeye taşımıştır. Lojistik regresyon, GWM Ora 07 GT, Lynkco 

02 ve Lexus UX 300e modellerini orta tercih edilebilirlik düzeyine koyarak üç araçta 

hata yapmıştır. Naive Bayes, Lynkco 02 ve Škoda Elroq 50 modellerini orta seviyeye, 

Lexus UX 300e’yi ise yüksek seviyeye yerleştirmiştir. KNN algoritması da benzer 

şekilde Lexus UX 300e’yi yüksek seviyede, Skoda Elroq 50’yi ise orta seviyede 

tahminlemiştir. Yapay sinir ağı ise yalnızca Lexus UX 300e aracını orta tercih 

edilebilir olarak etiketlemiştir. 

Bu araçlar arasında özellikle Lexus UX 300e modeli öne çıkmaktadır. Çünkü bu araç 

iki model tarafından düşük, iki model tarafından orta ve iki model tarafından da yüksek 

tercih edilebilirlikte olarak tahmin edilmiştir. Bu kadar geniş bir yelpazede 

tahminlenen nadir araçlardan biri olması, modelin sınıflandırma açısından ne denli 

sınırda bir profil çizdiğini göstermektedir. Aracın elektrikli araçlara özgü platforma 

sahip olmaması, ısı pompası, çekici özelliği ve V2L desteği gibi unsurların eksikliği, 

düşük tercih edilebilirliğe işaret eden unsurlar arasındayken; buna karşın batarya 

garanti süresi ve garanti mesafesinin uzun olması, ayrıca tatmin edici şarj hızı, bazı 

modellerin bu aracı yüksek tercih edilebilirlik sınıfına almasına neden olmuş olabilir. 

Bu durum, çok boyutlu özelliklerin sınıflandırma modelleri üzerindeki etkisini açıkça 

ortaya koymaktadır. 

Tüm araçların sıralı sınıflandırmaya ilişkin etiket verileri ve test verisinde yer alan 

araçların makine öğrenmesi metotları çerçevesinde tahmin edilen sınıf değerleri ekte 

verilmiştir. 

Tüm bu bulgular, TOPSIS-Sort-B gibi çok kriterli karar verme yöntemleri ile makine 

öğrenmesi tabanlı sınıflandırma modelleri arasında karar mekanizması bakımından 

temel farklar olabileceğini göstermektedir. ÇKKV yöntemleri, önceden belirlenmiş 

kriter ağırlıkları ve yapısal tercih kuralları çerçevesinde tutarlı sonuçlar üretirken; 

makine öğrenmesi modelleri verideki örüntülere dayanarak öğrenme yapar ve bu 

nedenle özellikle sınırda yer alan örneklerde farklı sınıflandırma eğilimleri 

sergileyebilir. Bu durum, her iki yaklaşımın birbirini tamamlayıcı şekilde 

değerlendirilmesi gerektiğini ortaya koymaktadır. Ayrıca, kullanılan veri setindeki 

gözlem sayısının görece sınırlı olması da, özellikle sınırda yer alan araçların 

tahmininde model hatalarının artmasına neden olmuş olabilir.
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5. TARTIŞMA VE SONUÇ 

Son yıllarda sürdürülebilirlik hedeflerinin küresel ölçekte öncelik kazanması, ulaşım 

sektörünü de ciddi biçimde dönüştürmeye başlamıştır. Bu dönüşümün en somut 

yansımalarından biri ise içten yanmalı motorlu araçlardan elektrikli araçlara geçiş 

sürecidir. Karbon emisyonlarını azaltma, enerji verimliliğini artırma ve uzun vadede 

ekonomik sürdürülebilirlik sağlama gibi nedenlerle, elektrikli araçların bireysel ve 

kamusal ulaşımda giderek daha fazla tercih edildiği gözlemlenmektedir. Bu 

gelişmelere paralel olarak, pazarda yer alan çok sayıda elektrikli araç alternatifi 

arasından seçim yapmak da giderek daha karmaşık bir hâl almıştır. Bu karmaşıklığın 

temelinde ise, her bir aracın farklı teknik, ekonomik ve donanımsal özelliklere sahip 

olması ve kullanıcıların bu kriterler doğrultusunda farklı tercih önceliklerine sahip 

olması yatmaktadır (Hawkins vd., 2013; Sonar ve Kulkarni, 2021; Higueras-Castillo 

vd., 2021). Bir kullanıcı için menzil kritik önemdeyken, diğeri için hızlanma 

performansı veya şarj altyapısıyla uyumluluk daha belirleyici olabilmektedir. Bunun 

yanı sıra, elektrikli araçların satış fiyatları, işletim maliyetleri, bakım-onarım 

gereksinimleri ve yeniden satış değerleri gibi ekonomik faktörler de karar verme 

süreçlerini doğrudan etkilemektedir. Bu çok boyutlu değerlendirme ihtiyacı, 

tüketicilerin optimal seçim yapabilmeleri için sistematik yaklaşımlara duyulan talebi 

artırmıştır. 

Bu tez çalışması, söz konusu karmaşıklığı anlamlandırmak ve elektrikli araçların tercih 

edilebilirlik açısından nasıl sınıflandırılabileceğini ortaya koymak amacıyla 

gerçekleştirilmiştir. Bu doğrultuda, çok kriterli karar verme yöntemlerinden biri olan 

TOPSIS-Sort-B algoritması kullanılarak araçlar üç ayrı tercih düzeyine göre 

sınıflandırılmıştır. TOPSIS-Sort-B'nin seçimindeki temel neden, sınıflandırma temelli 

karar problemlerine uygunluğu ve belirli eşik değerler aracılığıyla alternatiflerin 

kategorilere atanmasına olanak sağlamasıdır. Geleneksel TOPSIS yönteminden farklı 

olarak, TOPSIS-Sort-B alternatifleri önceden tanımlanmış sıralı sınıflara atar ve 

böylelikle karşılaştırmalı sıralama yerine değerlendirme yapılmasına imkan tanır. 

Ayrıca, sıralı sınıflandırma yöntemleri uzman görüşlerinden faydalanarak çok sayıda 
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alternatif için dahi kabul edilebilir bir çabayla sınıfların (etiketlerin) elde edilmesini 

mümkün kılmakta, bu sınıflar da tercih edilebilirlik açısından kendi aralarında 

sıralanarak makine öğrenmesine dayalı sınıflandırma algoritmalarına göre ek bilgi 

sunmaktadır. 

Elde edilen sınıflandırma etiketleri, çalışmanın ikinci aşamasında birer denetimli 

öğrenme verisi olarak kullanılmış ve böylelikle çeşitli makine öğrenmesi algoritmaları 

ile sınıflandırma yapılması mümkün hâle gelmiştir. Bu yönüyle çalışma, bir yandan 

ÇKKV ve makine öğrenmesi yaklaşımlarını birleştiren hibrit bir yapı önermekte; diğer 

yandan da her iki yaklaşımın sınıflama çıktılarındaki örtüşme düzeyini irdelemektedir. 

Bu bağlamda, ÇKKV temelli sıralı sınıflandırma yöntemleri, makine öğrenmesi 

algoritmalarının ihtiyaç duyduğu etiketli veriyi sağlayarak etiketleme sürecinin daha 

etkin ve verimli yürütülmesine katkı sunmaktadır. 

Makine öğrenmesi aşamasında veriler, eğitim ve test olmak üzere ikiye ayrılmış; 

etiketli eğitim verisiyle modeller eğitilmiş ve test verisi üzerinden doğruluk ile F1-

skoru bazlı performans değerlendirmesi yapılmıştır. Bu bağlamda Yapay Sinir Ağı 

modeli, hem doğruluk oranı hem de F1-skoru açısından en yüksek başarıyı 

göstermiştir. Karar ağacı, destek vektör makinesi ve lojistik regresyon gibi diğer 

sınıflandırıcı modellerin de genel anlamda yüksek performans sergilediği ve test veri 

setindeki araçların büyük bir kısmının tüm modeller tarafından doğru şekilde 

tahminlendiği görülmüştür. Bu sonuç, TOPSIS-Sort-B algoritması ile oluşturulan 

etiketlerin makine öğrenmesi açısından tutarlı ve genellenebilir olduğunu 

göstermektedir. Ayrıca sorting tabanlı geleneksel ÇKKV yöntemlerinin, uygun bir 

etiketleme aracı olarak denetimli öğrenme modelleriyle başarılı biçimde 

bütünleşebileceğini ortaya koymaktadır. Öte yandan, makine öğrenmesi algoritmaları 

ile yeni gözlemlerin sınıflandırılması kolaylaşmakta; öngörülen sınıflar yalnızca 

teknik bir çıktı olmanın ötesine geçerek tercih edilebilirlik açısından da anlam 

taşımaktadır. 

Normal şartlarda sıralı sınıflandırma için makine öğrenmesi kapsamında daha 

karmaşık model ve algoritmaların kullanılması gerekirken, bu hibrit yaklaşım hem 

etiketleme hem de öngörü süreçlerinin etkinliğini ve verimliliğini artırmakta; daha 

basit yöntemlerle de yüksek doğruluk oranları elde edilebileceğini göstermektedir. 

Genel olarak bu çalışma, elektrikli araçların tercih edilebilirliğine ilişkin sınıflama 

sorununu hem karar verme kuramı hem de veri bilimi perspektifiyle ele almış; bu iki 
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yaklaşımın bir arada nasıl çalışabileceğine dair ampirik bir örnek sunmuştur. Bulgular, 

yalnızca akademik anlamda değil; aynı zamanda tüketici odaklı karar destek 

sistemlerinin geliştirilmesi, otomotiv endüstrisinin pazar segmentasyonu stratejileri ve 

politika yapıcıların elektrikli araç teşvik programlarının tasarlanması açısından da 

potansiyel uygulama alanları taşımaktadır. Bu hibrit yaklaşım, gelecekte diğer 

sektörlerdeki karmaşık sınıflandırma problemlerine de uyarlanabilir ve böylelikle 

interdisipliner araştırma alanları için metodolojik katkı sağlayabilir. 

5.1 Çıkarımlar ve Teorik Katkılar  

Bu tez kapsamında elde edilen bulgular, hem akademik literatüre katkı sağlamakta, 

hem de sektörel anlamda üreticiler, pazarlamacılar ve nihai kullanıcılar açısından da 

çeşitli pratik çıkarımlar sunmaktadır. Öncelikle, elektrikli araç pazarının giderek 

genişlemesi ve teknik özelliklerin çeşitlenmesi, ürünlerin karşılaştırılmasını ve uygun 

hedef kitleye sunulmasını zorlaştırmaktadır. Farklı menzil, batarya kapasitesi, şarj 

süresi, azami hız, güvenlik donanımı gibi çok sayıda özelliğin aynı anda 

değerlendirilmesi gerektiğinde, hangi aracın hangi kullanıcı profiline uygun olduğu 

sorusu daha karmaşık bir hâl almaktadır. Bu noktada tezde önerilen yaklaşım, araçları 

çok kriterli karar verme mantığıyla anlamlı gruplara (yüksek, orta, düşük tercih 

edilebilirlik) ayırarak hem analiz kolaylığı sağlamakta hem de bu ayrımı makine 

öğrenmesi modelleriyle genişletilebilir hâle getirmektedir. 

Üreticiler ve pazarlamacılar açısından, bu sınıflama sistematiği belirli araç 

modellerinin hangi tercih sınıfında konumlandığını görmelerine imkân tanımaktadır. 

Örneğin, düşük tercih edilebilirlik sınıfına düşen araçların hangi kriterlerde zayıf 

kaldığı analiz edilerek ürün geliştirme stratejileri yeniden şekillendirilebilir. Aynı 

şekilde, tüketicilerin farklı ihtiyaç ve beklentilerine göre tasarlanmış filtreleme 

sistemleri, bu tür sınıflamalardan beslenerek daha kullanıcı dostu hâle getirilebilir. 

Böylelikle, ürün ile kullanıcı arasındaki eşleşme süreci daha rasyonel bir zemine 

oturtulabilir. Ek olarak, bu sınıflama sistematiği üzerinden fiyatlandırma 

politikalarının da optimize edilmesi mümkündür. Özellikle benzer segmentte yer alan 

araçlar arasında rekabet avantajı sağlanması adına, fiyat-performans ilişkisi çok daha 

sağlıklı biçimde değerlendirilebilir. 

Teorik bağlamda bu çalışma, elektrikli araçların çok sayıda teknik ve performans 

özelliği doğrultusunda sıralı sınıflandırma esaslı bir segmentasyona tabi tutulmasına 
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yönelik literatürdeki sınırlı örneklerden biri olma niteliğindedir. Özellikle TOPSIS-

Sort-B algoritmasının bu bağlamda kullanılması, mevcut sınıflandırma temelli karar 

verme yöntemlerinin elektrikli araçlar pazarına uygulanabilirliğine dair önemli bir 

katkı sunmaktadır. Literatürde genellikle bireysel alternatiflerin sıralanması veya ikili 

karşılaştırmalar yapılırken, bu çalışmada belirli eşik değerler çerçevesinde 

gruplandırma yapılması, elektrikli araçlar segmentasyonu açısından özgün bir 

yaklaşım ortaya koymaktadır. Dahası, sıralı sınıflandırma yönteminin çıktılarının 

makine öğrenmesi ile ilişkilendirilmesi, ÇKKV yöntemlerinin denetimli öğrenme 

çerçevesinde nasıl yeniden işlevselleştirilebileceğine dair önemli bir metodolojik 

tartışma zemini sunmaktadır. 

Bu yönüyle tez, yalnızca elektrikli araç pazarıyla sınırlı kalmamakta, aynı zamanda 

çok kriterli karar verme ile yapay zekâ temelli yaklaşımlar arasında köprü kuran hibrit 

bir metodolojinin uygulanabilirliğini göstermektedir. Bu metodoloji, farklı 

sektörlerdeki ürün segmentasyonu, müşteri sınıflaması veya öneri sistemleri gibi 

bağlamlara da uyarlanabilir olup, gelecekte çok yönlü akademik ve sektörel 

uygulamalara ilham verebilecek potansiyele sahiptir.  

5.2 Kısıtlar ve Sonraki Çalışmalara Öneriler 

Bu çalışma, elektrikli araçların tercih edilebilirlik açısından sınıflandırılmasına 

yönelik olarak kapsamlı ve sistematik bir yaklaşım sunmakla birlikte, bazı sınırlılıkları 

da beraberinde taşımaktadır. İlk olarak, analizde kullanılan veriler, hâlihazırda 

internetteki en kapsamlı elektrikli araç veritabanlarından biri olan EVDatabase 

platformundan temin edilmiştir (EVDatabase, 2025). Ancak elektrikli araç sektörünün 

oldukça hızlı geliştiği ve üretici firmaların sürekli olarak yeni modeller piyasaya 

sürdüğü göz önüne alındığında, kullanılan veri setinin tam anlamıyla güncel tüm 

araçları kapsadığını söylemek mümkün değildir. Üstelik bu veriler çalışmanın 

başlangıcında, yaklaşık dört ay önce derlenmiş olup, bu süreçte EVDatabase 

veritabanına yeni modellerin eklenmiş olabileceği ihtimali de dikkate alınmalıdır. Bu 

nedenle, analiz kapsamındaki 439 araç üzerinden elde edilen bulgular, veri kümesinin 

temsili gücüne bağlı olarak değerlendirilmelidir. 

Bir diğer sınırlılık, tercih edilebilirlik segmentlerinin belirlenmesinde kullanılan 

TOPSIS-Sort-B algoritmasının belirli varsayımlar altında çalışıyor olmasıdır. 

Özellikle eşik değerlerin belirlenmesi istatistiksel olarak anlamlı olsa da, bu değerlerin 
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farklı yöntemlerle türetilmesi durumunda segmentasyon çıktıları değişebilir. Ayrıca, 

makine öğrenmesi modelleri için kullanılan train-test ayrımı, veri kümesinin 

homojenliği varsayımına dayanmaktadır. Gerçek dünyada ise kullanıcı tercihlerinin 

bölgesel, kültürel veya sosyoekonomik faktörlere göre değişiklik gösterebileceği göz 

önünde bulundurulmalıdır. 

Bu çalışmada dikkate alınan özellikler daha çok teknik, donanımsal ve performans 

odaklıdır. Ancak gelecek çalışmalarda, fren mesafesi, çarpışma testlerinden elde 

edilen güvenlik puanları, yol tutuş, servis ağı genişliği, garanti kapsamı gibi başka 

özniteliklerin de dahil edilmesi, tercih edilebilirlik analizlerini daha bütüncül bir 

perspektife taşıyabilir. Ayrıca, çalışmada ağırlıklı olarak sayısal nitelikler ele alınmış 

olsa da, kategorik verilerle daha esnek çalışabilecek yaklaşımların kullanılması, 

modellerin farklı veri türleri karşısındaki başarısını artırabilir. 

Gelecek çalışmalarda, daha dinamik ve güncel veri kaynaklarının kullanılması, 

analizlerin doğruluğunu ve genellenebilirliğini artıracaktır. Ayrıca kullanıcı temelli 

verilerin (örneğin kullanıcı puanları, yorumlar, satış rakamları gibi) entegre edilmesi, 

tercih edilebilirlik sınıflandırmasının daha zengin bir bağlamda yapılmasına olanak 

tanıyabilir. Diğer yandan, bu çalışmada kullanılan hibrit yaklaşım farklı ÇKKV ve 

denetimli öğrenme yöntemleriyle karşılaştırmalı olarak yeniden denenebilir. Farklı 

segmentasyon teknikleriyle sonuçların ne ölçüde tutarlı olduğu incelenebilir. Son 

olarak, önerilen modelin gerçek dünyada bir öneri sistemine entegre edilmesi, hem 

akademik hem de endüstriyel anlamda önemli katkılar sağlayacaktır.
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EK A: Araçların etiket verileri. 

Çizelge A.1: Elektrikli araçların sıralı sınıflandırma etiketleri ve makine öğrenmesi 

metotlarının tahmin ettiği test verileri. 

ID Araç Modeli 

TOPSIS-

Sort-B 

Karar 

Ağacı 

Lojistik 

Regresyon 

Naive 

Bayes KEYK DVM YSA 

0 Lucid Air Grand Touring 0 0 0 1 0 1 0 

1 Mercedes Benz Eqs 500 4Matic 0 0 0 0 0 0 0 

2 

Audi A6 Avant E Tron 

Performance 0 0 0 0 0 0 0 

3 Porsche Taycan Turbo 0 0 0 0 0 0 0 

4 

Mercedes Benz Eqs Suv 580 

4Matic 0 0 0 0 0 0 0 

5 

Tesla Model 3 Long Range Dual 

Motor 0 0 0 0 0 0 0 

6 Bmw I7 Edrive50 1 1 1 0 1 0 0 

7 Mercedes Benz Eqe 350 4Matic 0 0 0 0 0 0 0 

8 

Audi Q6 E Tron Sportback 

Performance 0 0 0 0 0 0 0 

9 Nio Et7 Long Range 0 1 0 0 0 0 0 

10 

Audi Q6 E Tron Sportback 

Quattro 0 0 0 0 0 0 0 

11 Porsche Taycan 0 0 0 0 0 0 0 

12 Audi Sq6 E Tron Sportback 0 0 0 0 0 0 0 

13 Tesla Model 3 Performance 0 1 0 0 0 0 0 

14 Bmw Ix M60 0 0 0 0 1 0 0 

15 Volkswagen Id7 Gtx 0 0 0 0 1 0 0 

16 Audi A6 Sportback E Tron 0 0 0 0 0 0 0 

17 Zeekr 001 Performance Awd 0 0 0 0 1 0 0 

18 Volkswagen Id7 Pro 0 1 1 1 0 1 0 

19 Skoda Enyaq Coupe 85X 1 1 1 1 1 1 1 

20 Mercedes Benz Eqe Suv 350Plus 0 0 0 0 0 0 0 

21 Hyundai Ioniq 9 Performance 

Awd 

0 0 0 0 0 0 0 

22 Porsche Taycan Sport Turismo 0 0 0 0 0 0 0 

23 Cupra Born 170 Kw   77 Kwh 1 1 1 1 1 1 1 

24 Xpeng P7 Wing Edition 0 0 0 0 0 0 0 
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Çizelge A.1 (devam): Elektrikli araçların sıralı sınıflandırma etiketleri ve makine 

öğrenmesi metotlarının tahmin ettiği test verileri. 

ID Araç Modeli 

TOPSIS-

Sort-B 

Karar 

Ağacı 

Lojistik 

Regresyon 

Naive 

Bayes KEYK DVM YSA 

25 Volkswagen Id5 Pro 1 1 1 1 1 1 1 

26 

Mercedes Benz Eqe Amg 53 

4Maticplus 0 0 0 0 0 0 0 

27 Skoda Elroq 85 1 1 1 1 1 1 1 

28 Mercedes Benz Eqe Suv 300 0 0 0 0 0 0 0 

29 Hyundai Ioniq 5 84 Kwh Awd 0 0 0 0 0 0 0 

30 Skoda Enyaq 85X 1 1 1 1 1 1 1 

31 Volkswagen Id4 Pro 4Motion 1 1 1 1 1 1 1 

32 

Mercedes Benz Eqe Suv 350 

4Matic 0 0 0 0 0 0 0 

33 Bmw I4 Edrive35 1 1 1 1 1 1 1 

34 Gwm Ora 07 Gt 2 1 1 2 2 2 2 

35 

Mercedes Benz Eqe Suv Amg 43 

4Matic 0 0 0 0 0 0 0 

36 Bmw I5 M60 Xdrive Sedan 1 1 1 0 1 1 1 

37 Mercedes Benz Eqb 250Plus 1 1 1 1 1 1 1 

38 Nio Et5 Standard Range 1 1 1 0 1 1 1 

39 Volvo Ec40 Twin Motor 1 1 1 1 1 1 1 

40 Audi Q4 E Tron 55 Quattro 1 1 1 1 1 1 1 

41 Audi Q6 E Tron 0 0 0 0 0 0 0 

42 

Nissan Ariya E 4Orce 87Kwh   

320 Kw Nismo 1 1 1 1 1 1 1 

43 

Volvo Ex40 Twin Motor 

Performance 1 1 1 1 1 1 1 

44 

Renault Megane E Tech Ev60 

220Hp 1 1 1 1 1 1 1 

45 Lynkco 02 2 2 1 1 2 2 2 

46 Kgm Torres Evx 1 2 1 0 0 2 1 

47 Opel Grandland 73 Kwh 1 1 1 1 1 1 1 

48 

Peugeot E 5008 73 Kwh Dual 

Motor 1 1 1 1 1 1 1 

49 Mg Mg4 Electric 64 Kwh 1 1 1 1 1 1 1 

50 Smart 3 Premium 1 1 1 1 1 1 1 
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Çizelge A.1 (devam): Elektrikli araçların sıralı sınıflandırma etiketleri ve makine 

öğrenmesi metotlarının tahmin ettiği test verileri. 

ID Araç Modeli 

TOPSIS-

Sort-B 

Karar 

Ağacı 

Lojistik 

Regresyon 

Naive 

Bayes KEYK DVM YSA 

51 Kia Ev6 Standard Range 2Wd 1 1 1 1 0 1 1 

52 Lexus Rz 450E 2 2 2 2 2 2 2 

53 Mercedes Benz Eqa 300 4Matic 1 1 1 1 1 1 1 

54 Volvo Ex40 Single Motor 1 1 1 1 1 1 1 

55 Hyundai Ioniq 5 63 Kwh Rwd 0 0 0 0 0 0 0 

56 Mercedes Benz Eqb 350 4Matic 1 1 1 1 1 1 1 

57 Omoda E5 2 2 2 2 2 2 2 

58 Lexus Ux 300E 2 2 1 0 0 2 1 

59 

Volvo Ex30 Twin Motor 

Performance 1 1 1 1 1 1 1 

60 Skywell Be11 Standard Range 2 2 2 2 2 2 2 

61 Smart 1 Brabus 1 1 1 1 1 1 1 

62 

Mercedes Benz Evito Tourer 

Long 90 Kwh 2 2 2 2 2 2 2 

63 Mg Mg4 Electric Xpower 1 1 1 1 1 1 1 

64 Mercedes Benz Eqv 300 Long 2 2 2 2 2 2 2 

65 Skoda Elroq 50 2 2 2 1 1 2 2 

66 Fiat 600E 2 2 2 2 2 2 2 

67 Peugeot E 2008 54 Kwh 2 2 2 2 2 2 2 

68 Audi Q4 Sportback E Tron 35 1 1 1 1 1 1 1 

69 Hyundai Inster Long Range 2 2 2 2 2 2 2 

70 Mini Aceman Se 2 2 2 2 2 2 2 

71 Abarth 600E Turismo 2 2 2 2 2 2 2 

72 Mg Zs Ev Standard Range 2 2 2 2 2 2 2 

73 

Mg Mg5 Electric Standard 

Range 2 2 2 2 2 2 2 

74 Byd Dolphin 449 Kwh Active 1 1 1 2 2 2 1 

75 Opel Zafira E Life L2 75 Kwh 1 1 1 2 1 1 1 

76 Toyota Proace Verso M 75 Kwh 1 1 1 2 1 1 1 

77 Dongfeng Box 423 Kwh 2 2 2 2 2 2 2 

78 Citroen E C3 Aircross 2 2 2 2 2 2 2 

79 Fiat 500E 3Plus1 42 Kwh 2 2 2 2 2 2 2 

80 Nissan Leaf 2 2 2 2 2 2 2 
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Çizelge A.1 (devam): Elektrikli araçların sıralı sınıflandırma etiketleri ve makine 

öğrenmesi metotlarının tahmin ettiği test verileri. 

ID Araç Modeli 

TOPSIS-

Sort-B 

Karar 

Ağacı 

Lojistik 

Regresyon 

Naive 

Bayes KEYK DVM YSA 

81 Renault Kangoo E Tech Electric 2 2 2 2 2 2 2 

82 Mercedes Benz Eqt 200 Standard 2 2 2 2 2 2 2 

83 Mercedes Benz Eqt 200 Long 2 2 2 2 2 2 2 

84 

Renault Kangoo Grand E Tech 

Electric 1 2 1 2 2 2 2 

85 Citroen E Spacetourer M 50 Kwh 2 2 2 2 2 2 2 

86 Toyota Proace Verso M 50 Kwh 2 2 2 2 2 2 2 

87 Fiat 500E 3Plus1 24 Kwh 2 2 2 2 2 2 2 

88 Mercedes Benz Eqs 450Plus 0 - - - - - - 

89 Mercedes Benz Eqs 450 4Matic 0 - - - - - - 

90 Mercedes Benz Eqs 580 4Matic 0 - - - - - - 

91 

Audi A6 Sportback E Tron 

Performance 0 - - - - - - 

92 

Mercedes Benz Eqs Amg 53 

4Maticplus 0 - - - - - - 

93 

Audi A6 Sportback E Tron 

Quattro 0 - - - - - - 

94 Lucid Air Touring 1 - - - - - - 

95 Porsche Taycan Plus 0 - - - - - - 

96 Tesla Model S Dual Motor 0 - - - - - - 

97 Porsche Taycan 4S Plus 0 - - - - - - 

98 Lucid Air Pure Rwd 1 - - - - - - 

99 Porsche Taycan 4 Plus 0 - - - - - - 

100 Tesla Model S Plaid 0 - - - - - - 

101 Ds N8 Fwd Long Range 1 - - - - - - 

102 Mercedes Benz Eqe 350Plus 0 - - - - - - 

103 Audi S6 Sportback E Tron 0 - - - - - - 

104 Tesla Model 3 Long Range Rwd 0 - - - - - - 

105 Mercedes Benz Eqs Suv 450Plus 0 - - - - - - 

106 Audi E Tron Gt S 0 - - - - - - 

107 Ds N8 Awd Long Range 1 - - - - - - 

108 Audi A6 Avant E Tron Quattro 0 - - - - - - 

109 Porsche Taycan Gts 0 - - - - - - 
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Çizelge A.1 (devam): Elektrikli araçların sıralı sınıflandırma etiketleri ve makine 

öğrenmesi metotlarının tahmin ettiği test verileri. 

ID Araç Modeli 

TOPSIS-

Sort-B 

Karar 

Ağacı 

Lojistik 

Regresyon 

Naive 

Bayes KEYK DVM YSA 

110 

Mercedes Benz Eqs Suv 450 

4Matic 0 - - - - - - 

111 

Mercedes Benz Eqs Suv 500 

4Matic 0 - - - - - - 

112 

Porsche Taycan Plus Sport 

Turismo 0 - - - - - - 

113 Volkswagen Id7 Pro S 0 - - - - - - 

114 Porsche Taycan Turbo S 0 - - - - - - 

115 Mercedes Benz Eqe 300 0 - - - - - - 

116 Audi E Tron Gt Rs 0 - - - - - - 

117 Audi E Tron Gt Rs Performance 0 - - - - - - 

118 Audi S6 Avant E Tron 0 - - - - - - 

119 Volkswagen Id7 Tourer Pro S 0 - - - - - - 

120 Lotus Emeya 0 - - - - - - 

121 Lotus Emeya S 0 - - - - - - 

122 Vinfast Vf 9 Extended Range 2 - - - - - - 

123 Bmw I4 Edrive40 1 - - - - - - 

124 Porsche Macan Electric 0 - - - - - - 

125 

Porsche Taycan 4S Plus Sport 

Turismo 0 - - - - - - 

126 Porsche Taycan 4 Cross Turismo 0 - - - - - - 

127 

Porsche Taycan 4S Cross 

Turismo 0 - - - - - - 

128 Bmw I7 Xdrive60 0 - - - - - - 

129 

Porsche Taycan Turbo Sport 

Turismo 0 - - - - - - 

130 

Porsche Taycan Turbo S Sport 

Turismo 0 - - - - - - 

131 Zeekr 001 Long Range Rwd 0 - - - - - - 

132 Mercedes Benz Eqe 500 4Matic 0 - - - - - - 

133 Bmw Ix Xdrive50 1 - - - - - - 

134 

Porsche Taycan Gts Sport 

Turismo 0 - - - - - - 
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Çizelge A.1 (devam): Elektrikli araçların sıralı sınıflandırma etiketleri ve makine 

öğrenmesi metotlarının tahmin ettiği test verileri. 

ID Araç Modeli 

TOPSIS-

Sort-B 

Karar 

Ağacı 

Lojistik 

Regresyon 

Naive 

Bayes KEYK DVM YSA 

135 

Polestar 3 Long Range Single 

Motor 0 - - - - - - 

136 

Peugeot E 3008 97 Kwh Long 

Range 0 - - - - - - 

137 Nio Et5 Long Range 0 - - - - - - 

138 Xpeng P7 Rwd Long Range 0 - - - - - - 

139 

Polestar 4 Long Range Single 

Motor 0 - - - - - - 

140 

Porsche Taycan Turbo Cross 

Turismo 0 - - - - - - 

141 

Hyundai Ioniq 6 Long Range 

2Wd 0 - - - - - - 

142 Lotus Eletre 0 - - - - - - 

143 

Hyundai Ioniq 9 Long Range 

Rwd 0 - - - - - - 

144 

Mercedes Benz Eqs Suv 

Maybach 680 0 - - - - - - 

145 Bmw I7 M70 Xdrive 0 - - - - - - 

146 Porsche Taycan 4S 0 - - - - - - 

147 Bmw I4 Xdrive40 1 - - - - - - 

148 Audi Q6 E Tron Performance 0 - - - - - - 

149 Porsche Taycan 4 0 - - - - - - 

150 Porsche Macan 4 Electric 0 - - - - - - 

151 

Polestar 4 Long Range Dual 

Motor 0 - - - - - - 

152 

Porsche Taycan Turbo S Cross 

Turismo 0 - - - - - - 

153 

Peugeot E 5008 97 Kwh Long 

Range 0 - - - - - - 

154 Nio Et5 Touring Long Range 0 - - - - - - 

155 Tesla Model X Dual Motor 0 - - - - - - 

156 Porsche Macan 4S Electric 0 - - - - - - 

157 

Polestar 3 Long Range Dual 

Motor 0 - - - - - - 
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Çizelge A.1 (devam): Elektrikli araçların sıralı sınıflandırma etiketleri ve makine 

öğrenmesi metotlarının tahmin ettiği test verileri. 

ID Araç Modeli 

TOPSIS-

Sort-B 

Karar 

Ağacı 

Lojistik 

Regresyon 

Naive 

Bayes KEYK DVM YSA 

158 Voyah Free 106 Kwh 2 - - - - - - 

159 Lotus Eletre S 0 - - - - - - 

160 

Renault Scenic E Tech Ev87 

220Hp 0 - - - - - - 

161 Xpeng G9 Rwd Long Range 0 - - - - - - 

162 Audi Q6 E Tron Quattro 0 - - - - - - 

163 Volkswagen Id7 Tourer Gtx 0 - - - - - - 

164 Xpeng G6 Rwd Long Range 0 - - - - - - 

165 Zeekr 001 Privilege Awd 0 - - - - - - 

166 Byd Seal 825 Kwh Rwd Design 0 - - - - - - 

167 Ford Mustang Mach E Er Rwd 2 - - - - - - 

168 Skoda Enyaq Coupe 85 1 - - - - - - 

169 

Hyundai Ioniq 9 Long Range 

Awd 0 - - - - - - 

170 Porsche Taycan Turbo Gt 0 - - - - - - 

171 

Porsche Taycan Turbo Gt 

Weissach 0 - - - - - - 

172 Xpeng G6 Awd Performance 0 - - - - - - 

173 

Polestar 2 Long Range Single 

Motor 1 - - - - - - 

174 Audi A6 Avant E Tron 0 - - - - - - 

175 Byd Han 1 - - - - - - 

176 Porsche Macan Turbo Electric 0 - - - - - - 

177 Volkswagen Id7 Tourer Pro 0 - - - - - - 

178 Audi Sq6 E Tron 0 - - - - - - 

179 Bmw I5 Edrive40 Sedan 1 - - - - - - 

180 

Polestar 3 Long Range 

Performance 0 - - - - - - 

181 Xpeng G9 Awd Performance 0 - - - - - - 

182 Cupra Born Vz 1 - - - - - - 

183 Lotus Emeya R 0 - - - - - - 

184 Tesla Model X Plaid 0 - - - - - - 

185 Rolls Royce Spectre 0 - - - - - - 



89 

Çizelge A.1 (devam): Elektrikli araçların sıralı sınıflandırma etiketleri ve makine 

öğrenmesi metotlarının tahmin ettiği test verileri. 

ID Araç Modeli 

TOPSIS-

Sort-B 

Karar 

Ağacı 

Lojistik 

Regresyon 

Naive 

Bayes KEYK DVM YSA 

186 Volvo Ex90 Twin Motor 0 - - - - - - 

187 Hongqi E Hs9 120 Kwh 2 - - - - - - 

188 Xpeng P7 Awd Performance 0 - - - - - - 

189 Byd Tang Flagship 1 - - - - - - 

190 Volkswagen Id3 Gtx 1 - - - - - - 

191 

Volkswagen Id3 Gtx 

Performance 1 - - - - - - 

192 Volvo Ex90 Single Motor 0 - - - - - - 

193 Cadillac Lyriq 600 E4 0 - - - - - - 

194 Kia Ev6 Long Range 2Wd 0 - - - - - - 

195 Skoda Enyaq Coupe Rs 1 - - - - - - 

196 

Mercedes Benz Eqe Suv 500 

4Matic 0 - - - - - - 

197 Bmw I5 Xdrive40 Sedan 1 - - - - - - 

198 Bmw I5 Edrive40 Touring 1 - - - - - - 

199 Tesla Model Y Long Range Rwd 0 - - - - - - 

200 Kia Ev3 Long Range 2 - - - - - - 

201 

Polestar 2 Long Range Dual 

Motor 1 - - - - - - 

202 Lotus Eletre R 0 - - - - - - 

203 Nissan Ariya 87Kwh 1 - - - - - - 

204 Kia Ev9 998 Kwh Rwd 0 - - - - - - 

205 Bmw I4 M50 1 - - - - - - 

206 

Mercedes Benz Eqe Amg 43 

4Matic 0 - - - - - - 

207 Volkswagen Id3 Pro S 1 - - - - - - 

208 

Polestar 2 Long Range 

Performance 1 - - - - - - 

209 Hyundai Ioniq 5 84 Kwh Rwd 0 - - - - - - 

210 Ford Capri Extended Range Rwd 1 - - - - - - 

211 Kia Ev6 Long Range Awd 0 - - - - - - 

212 Skoda Enyaq 85 1 - - - - - - 

213 

Volvo Ex90 Twin Motor 

Performance 0 - - - - - - 
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Çizelge A.1 (devam): Elektrikli araçların sıralı sınıflandırma etiketleri ve makine 

öğrenmesi metotlarının tahmin ettiği test verileri. 

ID Araç Modeli 

TOPSIS-

Sort-B 

Karar 

Ağacı 

Lojistik 

Regresyon 

Naive 

Bayes KEYK DVM YSA 

214 

Tesla Model Y Long Range Dual 

Motor 0 - - - - - - 

215 Cupra Tavascan Endurance 1 - - - - - - 

216 Ford Capri Extended Range Awd 1 - - - - - - 

217 

Byd Seal 825 Kwh Awd 

Excellence 1 - - - - - - 

218 Volkswagen Id4 Pro 1 - - - - - - 

219 

Porsche Taycan 4S Sport 

Turismo 0 - - - - - - 

220 Genesis G80 Electrified Luxury 1 - - - - - - 

221 Nio El8 Long Range 0 - - - - - - 

222 

Hyundai Ioniq 6 Long Range 

Awd 0 - - - - - - 

223 Ford Mustang Mach E Er Awd 2 - - - - - - 

224 

Byd Sealion 7 913 Kwh Awd 

Excellence 0 - - - - - - 

225 Kia Ev9 998 Kwh Awd 0 - - - - - - 

226 Nio El6 Long Range 1 - - - - - - 

227 Audi Q4 Sportback E Tron 45 1 - - - - - - 

228 Skoda Enyaq Rs 1 - - - - - - 

229 

Ford Explorer Extended Range 

Rwd 1 - - - - - - 

230 

Ford Explorer Extended Range 

Awd 1 - - - - - - 

231 Mg Cyberster Trophy 2 - - - - - - 

232 Tesla Model Y Performance 0 - - - - - - 

233 Volkswagen Id5 Gtx 1 - - - - - - 

234 Nio El7 Long Range 0 - - - - - - 

235 Ds N8 Fwd 1 - - - - - - 

236 Byd Seal U 87 Kwh Design 1 - - - - - - 

237 Cupra Tavascan Vz 1 - - - - - - 

238 Mg Mg4 Electric 77 Kwh 1 - - - - - - 

239 Kia Ev9 998 Kwh Awd Gt Line 0 - - - - - - 

240 Ford Mustang Mach E Gt 2 - - - - - - 
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Çizelge A.1 (devam): Elektrikli araçların sıralı sınıflandırma etiketleri ve makine 

öğrenmesi metotlarının tahmin ettiği test verileri. 

ID Araç Modeli 

TOPSIS-

Sort-B 

Karar 

Ağacı 

Lojistik 

Regresyon 

Naive 

Bayes KEYK DVM YSA 

241 

Byd Sealion 7 825 Kwh Rwd 

Comfort 0 - - - - - - 

242 Maserati Granturismo Folgore 0 - - - - - - 

243 Volvo Ec40 Single Motor Er 1 - - - - - - 

244 Mercedes Benz Eqa 250Plus 1 - - - - - - 

245 Tesla Model 3 1 - - - - - - 

246 Audi Q4 E Tron 45 1 - - - - - - 

247 

Mercedes Benz Eqe Suv Amg 53 

4Maticplus 0 - - - - - - 

248 Volkswagen Id4 Gtx 1 - - - - - - 

249 Bmw I5 M60 Xdrive Touring 1 - - - - - - 

250 

Polestar 2 Standard Range Single 

Motor 1 - - - - - - 

251 Nio Et7 Standard Range 1 - - - - - - 

252 

Audi Q4 Sportback E Tron 55 

Quattro 1 - - - - - - 

253 Opel Grandland 82 Kwh 1 - - - - - - 

254 

Audi Q4 Sportback E Tron 45 

Quattro 1 - - - - - - 

255 Audi Q6 E Tron Sportback 0 - - - - - - 

256 Ford Mustang Mach E Rally 2 - - - - - - 

257 

Vinfast Vf 8 Eco Extended 

Range 2 - - - - - - 

258 

Nissan Ariya E 4Orce 87Kwh   

225 Kw 1 - - - - - - 

259 

Byd Sealion 7 825 Kwh Awd 

Design 1 - - - - - - 

260 

Vinfast Vf 8 Plus Extended 

Range 2 - - - - - - 

261 Maserati Grecale Folgore 2 - - - - - - 

262 Volvo Ex40 Single Motor Er 1 - - - - - - 

263 

Volvo Ec40 Twin Motor 

Performance 1 - - - - - - 

264 Nio Et5 Touring Standard Range 1 - - - - - - 
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Çizelge A.1 (devam): Elektrikli araçların sıralı sınıflandırma etiketleri ve makine 

öğrenmesi metotlarının tahmin ettiği test verileri. 

ID Araç Modeli 

TOPSIS-

Sort-B 

Karar 

Ağacı 

Lojistik 

Regresyon 

Naive 

Bayes KEYK DVM YSA 

265 Mg Cyberster Gt 2 - - - - - - 

266 Xpeng G9 Rwd Standard Range 0 - - - - - - 

267 Bmw Ix2 Edrive20 1 - - - - - - 

268 Maserati Grancabrio Folgore 0 - - - - - - 

269 Mercedes Benz Eqa 250 1 - - - - - - 

270 Audi Q4 E Tron 45 Quattro 1 - - - - - - 

271 Kia Ev6 Gt 0 - - - - - - 

272 Hyundai Kona Electric 65 Kwh 1 - - - - - - 

273 Genesis Gv60 Premium 1 - - - - - - 

274 Elaris Beo 86 Kwh 2 - - - - - - 

275 Bmw Ix1 Edrive20 1 - - - - - - 

276 Skywell Be11 Long Range 2 - - - - - - 

277 Hyundai Ioniq 5 N 0 - - - - - - 

278 Volvo Ex40 Twin Motor 1 - - - - - - 

279 Kia Niro Ev 1 - - - - - - 

280 Ford Mustang Mach E Sr Rwd 2 - - - - - - 

281 Bmw Ix2 Xdrive30 1 - - - - - - 

282 Jaguar I Pace Ev400 1 - - - - - - 

283 

Renault Megane E Tech Ev60 

130Hp 1 - - - - - - 

284 Genesis Gv60 Sport 1 - - - - - - 

285 Bmw Ix1 Xdrive30 1 - - - - - - 

286 Mini Countryman E 1 - - - - - - 

287 Peugeot E 3008 73 Kwh 1 - - - - - - 

288 

Peugeot E 3008 73 Kwh Dual 

Motor 1 - - - - - - 

289 Peugeot E 408 58 Kwh 2 - - - - - - 

290 Mg Zs Ev Long Range 2 - - - - - - 

291 Peugeot E 5008 73 Kwh 1 - - - - - - 

292 Volkswagen Id Buzz Lwb Pro 1 - - - - - - 

293 Xpeng G6 Rwd Standard Range 0 - - - - - - 

294 Hongqi E Hs9 99 Kwh 2 - - - - - - 

295 Kia E Soul 64 Kwh 2 - - - - - - 
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Çizelge A.1 (devam): Elektrikli araçların sıralı sınıflandırma etiketleri ve makine 

öğrenmesi metotlarının tahmin ettiği test verileri. 

ID Araç Modeli 

TOPSIS-

Sort-B 

Karar 

Ağacı 

Lojistik 

Regresyon 

Naive 

Bayes KEYK DVM YSA 

296 Maxus Mifa 9 1 - - - - - - 

297 Genesis Gv60 Sport Plus 1 - - - - - - 

298 Nio El6 Standard Range 1 - - - - - - 

299 Nio El8 Standard Range 1 - - - - - - 

300 Mini Countryman Se All4 1 - - - - - - 

301 Lexus Rz 300E 2 - - - - - - 

302 Mg Marvel R 1 - - - - - - 

303 Byd Seal U 718 Kwh Comfort 1 - - - - - - 

304 Volvo Ec40 Single Motor 1 - - - - - - 

305 Volvo Ex30 Single Motor Er 1 - - - - - - 

306 Mercedes Benz G 580 1 - - - - - - 

307 Volkswagen Id3 Pro 1 - - - - - - 

308 Volkswagen Id Buzz Nwb Pro 1 - - - - - - 

309 Cupra Born 170 Kw   59 Kwh 1 - - - - - - 

310 Bmw Ix Xdrive40 1 - - - - - - 

311 Kia Ev9 761 Kwh Rwd 0 - - - - - - 

312 Volkswagen Id Buzz Lwb Gtx  1 - - - - - - 

313 Zeekr X Long Range Rwd 1 - - - - - - 

314 Smart 3 Proplus 1 - - - - - - 

315 Leapmotor C10 1 - - - - - - 

316 Nio El7 Standard Range 1 - - - - - - 

317 Toyota Bz4X Fwd 1 - - - - - - 

318 Byd Dolphin 604 Kwh 1 - - - - - - 

319 Tesla Model Y 1 - - - - - - 

320 Genesis Gv70 Electrified Sport 2 - - - - - - 

321 Mg Marvel R Performance 1 - - - - - - 

322 Mercedes Benz Eqa 350 4Matic 1 - - - - - - 

323 Gwm Ora 07 Pure 2 - - - - - - 

324 Gwm Ora 07 Pro 2 - - - - - - 

325 Ford Mustang Mach E Sr Awd 2 - - - - - - 

326 Aiways U6 2 - - - - - - 

327 Toyota Bz4X Awd 1 - - - - - - 

328 Zeekr X Privilege Awd 1 - - - - - - 

329 Mercedes Benz Eqb 300 4Matic 1 - - - - - - 
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Çizelge A.1 (devam): Elektrikli araçların sıralı sınıflandırma etiketleri ve makine 

öğrenmesi metotlarının tahmin ettiği test verileri. 

ID Araç Modeli 

TOPSIS-

Sort-B 

Karar 

Ağacı 

Lojistik 

Regresyon 

Naive 

Bayes KEYK DVM YSA 

330 Skoda Elroq 60 1 - - - - - - 

331 

Renault Scenic E Tech Ev60 

170Hp 1 - - - - - - 

332 Gwm Ora 03 63 Kwh 2 - - - - - - 

333 Nissan Leaf Eplus 2 - - - - - - 

334 Citroen E C4 X 54 Kwh 2 - - - - - - 

335 Smart 1 Premium 1 - - - - - - 

336 Nissan Ariya 63Kwh 1 - - - - - - 

337 Volkswagen Id Buzz Nwb Gtx 1 - - - - - - 

338 Smart 1 Proplus 1 - - - - - - 

339 Honda Eny1 2 - - - - - - 

340 Smart 1 Pureplus 1 - - - - - - 

341 

Hyundai Ioniq 6 Standard Range 

2Wd 0 - - - - - - 

342 Mg Mg5 Electric Long Range 2 - - - - - - 

343 Smart 3 Brabus 1 - - - - - - 

344 Citroen E C4 54 Kwh 2 - - - - - - 

345 Mini Cooper Se 2 - - - - - - 

346 Byd Atto 3 1 - - - - - - 

347 Gwm Ora 03 Gt 2 - - - - - - 

348 Smart 1 Pulse 1 - - - - - - 

349 Kia Ev3 Standard Range 2 - - - - - - 

350 Opel Astra Electric 2 - - - - - - 

351 Volkswagen Id5 Pure 1 - - - - - - 

352 Subaru Solterra Awd 1 - - - - - - 

353 Renault 5 E Tech 52Kwh 150Hp 1 - - - - - - 

354 

Alfa Romeo Junior Elettrica 54 

Kwh 2 - - - - - - 

355 Volkswagen Id3 Pure 1 - - - - - - 

356 Hongqi E Hs9 84 Kwh 2 - - - - - - 

357 Aiways U5 2 - - - - - - 

358 Opel Corsa Electric 51 Kwh 2 - - - - - - 

359 

Mercedes Benz Eqv 300 Extra 

Long 2 - - - - - - 
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Çizelge A.1 (devam): Elektrikli araçların sıralı sınıflandırma etiketleri ve makine 

öğrenmesi metotlarının tahmin ettiği test verileri. 

ID Araç Modeli 

TOPSIS-

Sort-B 

Karar 

Ağacı 

Lojistik 

Regresyon 

Naive 

Bayes KEYK DVM YSA 

360 

Opel Astra Sports Tourer 

Electric 2 - - - - - - 

361 Jeep Avenger Electric 2 - - - - - - 

362 Lancia Ypsilon 2 - - - - - - 

363 

Alfa Romeo Junior Elettrica 54 

Kwh Veloce 2 - - - - - - 

364 Peugeot E 208 51 Kwh 2 - - - - - - 

365 Ford Capri Standard Range Rwd 1 - - - - - - 

366 Skoda Enyaq 50 2 - - - - - - 

367 Alpine A290 Electric 180 Hp 1 - - - - - - 

368 Alpine A290 Electric 220 Hp 1 - - - - - - 

369 

Ford Explorer Standard Range 

Rwd 1 - - - - - - 

370 Mg Mg4 Electric 51 Kwh 2 - - - - - - 

371 Peugeot E 308 2 - - - - - - 

372 Peugeot E 308 Sw 2 - - - - - - 

373 Ds 3 E Tense 2 - - - - - - 

374 Hyundai Kona Electric 48 Kwh 2 - - - - - - 

375 Opel Corsa Electric 50 Kwh 2 - - - - - - 

376 Citroen E C4 X 2 - - - - - - 

377 Citroen E C4 2 - - - - - - 

378 Ssangyong Korando E Motion 2 - - - - - - 

379 Peugeot E 208 50 Kwh 2 - - - - - - 

380 Mini Cooper Jcw 2 - - - - - - 

381 Audi Q4 E Tron 35 1 - - - - - - 

382 Volkswagen Id4 Pure 1 - - - - - - 

383 Opel Mokka Electric 2 - - - - - - 

384 Abarth 600E Scorpionissima 2 - - - - - - 

385 Mini Aceman Jcw 2 - - - - - - 

386 Ford Puma Gen E 2 - - - - - - 

387 Volvo Ex30 Single Motor 2 - - - - - - 

388 Peugeot E 2008 50 Kwh 2 - - - - - - 

389 Smart 3 Pro 2 - - - - - - 
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Çizelge A.1 (devam): Elektrikli araçların sıralı sınıflandırma etiketleri ve makine 

öğrenmesi metotlarının tahmin ettiği test verileri. 

ID Araç Modeli 

TOPSIS-

Sort-B 

Karar 

Ağacı 

Lojistik 

Regresyon 

Naive 

Bayes KEYK DVM YSA 

390 

Renault Megane E Tech Ev40 

130Hp 1 - - - - - - 

391 Gwm Ora 03 48 Kwh 2 - - - - - - 

392 Byd Dolphin 449 Kwh Boost 1 - - - - - - 

393 Fiat Grande Panda 2 - - - - - - 

394 Citroen E Spacetourer M 75 Kwh 1 - - - - - - 

395 

Citroen E Spacetourer Xl 75 

Kwh 1 - - - - - - 

396 Peugeot E Traveller L2 75 Kwh 1 - - - - - - 

397 Peugeot E Traveller L3 75 Kwh 1 - - - - - - 

398 Opel Zafira E Life L3 75 Kwh 1 - - - - - - 

399 Toyota Proace Verso L 75 Kwh 1 - - - - - - 

400 Citroen E C3 2 - - - - - - 

401 Renault 5 E Tech 40Kwh 95Hp 1 - - - - - - 

402 Renault 5 E Tech 40Kwh 120Hp 1 - - - - - - 

403 Smart 1 Pure 2 - - - - - - 

404 Hyundai Inster Standard Range 2 - - - - - - 

405 Opel Frontera 44 Kwh 2 - - - - - - 

406 Mini Cooper E 2 - - - - - - 

407 Smart 1 Pro 2 - - - - - - 

408 Fiat 500E Hatchback 42 Kwh 2 - - - - - - 

409 Citroen E Berlingo M 50 Kwh 2 - - - - - - 

410 Opel Combo E Life 50 Kwh 2 - - - - - - 

411 Peugeot E Rifter M 50 Kwh 2 - - - - - - 

412 

Toyota Proace City Verso 

Electric L1 50 Kwh 2 - - - - - - 

413 Citroen E Berlingo Xl 50 Kwh 2 - - - - - - 

414 Opel Combo E Life Xl 50 Kwh 2 - - - - - - 

415 Peugeot E Rifter Xl 50 Kwh 2 - - - - - - 

416 

Toyota Proace City Verso 

Electric L2 50 Kwh 2 - - - - - - 

417 Mini Aceman E 2 - - - - - - 

418 Leapmotor T03 2 - - - - - - 

419 Fiat 500E Cabrio 42 Kwh 2 - - - - - - 
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Çizelge A.1 (devam): Elektrikli araçların sıralı sınıflandırma etiketleri ve makine 

öğrenmesi metotlarının tahmin ettiği test verileri. 

ID Araç Modeli 

TOPSIS-

Sort-B 

Karar 

Ağacı 

Lojistik 

Regresyon 

Naive 

Bayes KEYK DVM YSA 

420 Abarth 500E Hatchback 2 - - - - - - 

421 Abarth 500E Convertible 2 - - - - - - 

422 Nissan Townstar Ev Passenger 2 - - - - - - 

423 

Nissan Townstar Ev Passenger 

L2 2 - - - - - - 

424 

Mercedes Benz Evito Tourer 

Long 60 Kwh 2 - - - - - - 

425 Mercedes Benz Eqv 250 Long 2 - - - - - - 

426 

Mercedes Benz Evito Tourer 

Extra Long 60 Kwh 2 - - - - - - 

427 

Mercedes Benz Eqv 250 Extra 

Long 2 - - - - - - 

428 Dongfeng Box 314 Kwh 2 - - - - - - 

429 

Citroen E Spacetourer Xl 50 

Kwh 2 - - - - - - 

430 Peugeot E Traveller L2 50 Kwh 2 - - - - - - 

431 Peugeot E Traveller L3 50 Kwh 2 - - - - - - 

432 Opel Zafira E Life L2 50 Kwh 2 - - - - - - 

433 Opel Zafira E Life L3 50 Kwh 2 - - - - - - 

434 Mazda Mx 30 2 - - - - - - 

435 Dacia Spring Electric 45 2 - - - - - - 

436 Dacia Spring Electric 65 2 - - - - - - 

437 Fiat 500E Hatchback 24 Kwh 2 - - - - - - 

438 Fiat 500E Cabrio 24 Kwh 2 - - - - - - 
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