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ÖZET 

RETİNA HASTALIKLARI TESPİTİ İÇİN BİR DERİN ÖĞRENME MODELİ 

Ali Aydin Abdulkhaleq 

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ 

Tez Danışmanı: Dr. Öğr. Üyesi Cengiz Güngör 

Ağustos 2025, xii + 55 sayfa 

 

Diyabetik retinopati, glokom, yaşa bağlı makula dejenerasyonu, katarakt ve diğer görme 

yetisini tehdit eden hastalıklar gibi retina hastalıkları, erken teşhis ve tedavi edilmezse genellikle 

geri dönüşü olmayan görme kaybına yol açan önemli bir küresel sağlık sorunu oluşturmaktadır. 

Bu tez, renkli fundus görüntüleri kullanarak retina hastalıklarının otomatik çok sınıflı 

sınıflandırılması için kapsamlı bir derin öğrenme çerçevesi önermektedir. EfficientNetB0 

konvolüsyonel sinir ağı mimarisini ince ayar ve sağlam veri artırma stratejileriyle kullanarak, 

çalışma retina görüntü analizindeki kritik zorlukları, sınıf dengesizliği, sınırlı anotlanmış veri 

kümeleri ve yapay zeka sistemlerinin yorumlanabilirliği dahil olmak üzere ele almayı 

amaçlamaktadır. 

Metodoloji, kamuya açık retina görüntü koleksiyonlarını entegre ederek ve genişleterek 

büyük, dengeli bir veri seti oluşturmayı, ardından sistematik veri ön işlemeyi ve eğitim ve 

doğrulama setlerine bölmeyi içermektedir. Önerilen model, tanı doğruluğu ve genelleştirilebilirlik 

üzerindeki etkisini ölçmek için veri genişletme ile ve veri genişletme olmadan değerlendirilmiştir. 

Ayrıca, özellik çıkarma ve model performansını daha da geliştirmek için dikkat mekanizmaları ve 

transfer öğrenimi araştırılmıştır. Deney sonuçları, genişletilmiş EfficientNetB0 modelinin %96,3 

eğitim doğruluğu ve %91,83 test doğruluğu elde ettiğini ve literatürde bildirilen birkaç son 

teknoloji yöntemi geride bıraktığını göstermiştir. Hassasiyet, geri çağırma ve F1 puanı dahil olmak 

üzere sınıf bazlı metrikler, tüm hastalık kategorilerinde sağlam ve dengeli bir tespit sağlarken, 

karışıklık matrisleri ve görselleştirmeler model davranışı ve potansiyel yanlış sınıflandırma 

kaynakları hakkında daha fazla bilgi sağlamıştır. 

Bu çalışmada temel model olarak VGG16 da EfficientNetB0’a ek olarak 

değerlendirilmiştir. ImageNet ağırlıklarıyla başlatılıp 50 epoch boyunca tam ince ayar yapılan 
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VGG16, %90,35 eğitim doğruluğu ve %86,33 test doğruluğu elde etmiştir. Altı sınıfta (ACRIMA, 

Cataract, Glaucoma, ODIR-5K, ORIGA, Retina_Disease) raporlanan sınıf-bazlı ölçütler ve 

karışıklık matrisi, modelin çok sınıflı senaryoda dengeli ancak EfficientNetB0’a göre daha düşük 

bir performans sağladığını göstermektedir. Bu bulgular, önerilen EfficientNetB0 yaklaşımının 

üstünlüğünü nicel olarak desteklemektedir. 

Bu tezin bulguları, tıbbi görüntü veri kümelerinin yaygın sınırlamalarının üstesinden 

gelmede gelişmiş artırma ve aktarım öğreniminin önemini vurgulamakta ve güvenilir, 

ölçeklenebilir ve açıklanabilir retina hastalığı taraması için derin öğrenme modellerinin 

uygulanabilirliğini göstermektedir. Çalışma, önerilen yaklaşımın pratik uygulamalarını tartışarak 

ve otomatik oftalmik teşhisi ilerletmek için gelecekteki araştırmalara yönelik önerileri özetleyerek 

son bulmaktadır. 

 

Anahtar kelimeler: Retina hastalıkları, Derin öğrenme, VGG16, EfficientNetB0, Veri 

artırma, Otomatik teşhis. 
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ABSTRACT 

 

A DEEP LEARNING MODEL FOR RETINAL DISEASE DETECTION 

Ali Aydin Abdulkhaleq 

DEPARTMENT OF COMPUTER ENGINEERING 

Advisor: Assoc. Prof. Dr. Cengiz Güngör 

August 2025, xii + 55 Pages 

 

Retinal diseases such as diabetic retinopathy, glaucoma, age-related macular degeneration, 

cataract, and other sight-threatening conditions represent a major global health challenge, often 

leading to irreversible vision loss if not diagnosed and treated early. This thesis proposes a 

comprehensive deep learning framework for the automated multi-class classification of retinal 

diseases using color fundus images. Leveraging the EfficientNetB0 convolutional neural network 

architecture with fine-tuning and robust data augmentation strategies, the study aims to address 

critical challenges in retinal image analysis, including class imbalance, limited annotated datasets, 

and the interpretability of artificial intelligence systems. 

The methodology involved constructing a large, balanced dataset by integrating and 

augmenting publicly available retinal image collections, followed by systematic data 

preprocessing and partitioning into training and validation sets. The proposed model was evaluated 

both with and without data augmentation to quantify its impact on diagnostic accuracy and 

generalizability. In addition, attention mechanisms and transfer learning were explored to further 

enhance feature extraction and model performance. The experimental results demonstrated that the 

augmented EfficientNetB0 model achieved a training accuracy of 96.3% and a testing accuracy of 

91.83%, outperforming several state-of-the-art methods reported in the literature. Class-wise 

metrics, including precision, recall, and F1-score, indicated robust and balanced detection across 

all disease categories, while confusion matrices and visualizations provided further insights into 

model behavior and potential sources of misclassification. 

In addition to our primary model EfficientNetB0, we also evaluate VGG16 as a strong 

baseline. Fine-tuned from ImageNet for 50 epochs, VGG16 attains 90.35% training accuracy and 
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86.33% testing accuracy on six classes (ACRIMA, Cataract, Glaucoma, ODIR-5K, ORIGA, 

Retina_Disease). Class-wise metrics and the confusion matrix reveal balanced yet lower 

performance than EfficientNetB0, thereby reinforcing the superiority of the proposed approach. 

The findings of this thesis underscore the importance of advanced augmentation and 

transfer learning in overcoming common limitations of medical image datasets and demonstrate 

the feasibility of deploying deep learning models for reliable, scalable, and explainable retinal 

disease screening. The study concludes by discussing the practical implications of the proposed 

approach and outlining recommendations for future research to advance automated ophthalmic 

diagnostics. 

 

Keywords: Retinal diseases, Deep learning, VGG16, EfficientNetB0, Data augmentation, 

Automated diagnosis. 
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1 GİRİŞ 

1.1.  Arka Plan 

Retina hastalıkları, dünya çapında görme bozukluğu ve körlüğün başlıca nedenleri oldukları 

için önemli bir halk sağlığı sorunu teşkil etmektedir. Diyabetik retinopati, glokom, yaşa bağlı 

makula dejenerasyonu ve katarakt gibi hastalıklar her yıl milyonlarca insanı etkilemekte ve 

zamanında teşhis ve tedavi edilmezlerse yaşam kalitesinde ciddi bir düşüşe neden olmaktadır. 

Bu retina hastalıklarının doğru ve erken teşhisi, etkili tedavi ve geri dönüşü olmayan görme 

kaybı riskinin en aza indirilmesi için çok önemlidir. Geleneksel olarak, retina hastalığı 

teşhisi, eğitimli göz doktorları tarafından fundus fotoğraflarının ve optik koherens tomografi 

(OCT) görüntülerinin manuel olarak incelenmesine dayanmaktadır. Bu süreç oldukça etkili 

olsa da, doğası gereği zaman alıcı, öznel ve yetenekli profesyonellerin mevcudiyetine 

bağlıdır; bu kaynak ise dünyanın birçok bölgesinde genellikle sınırlıdır. Küresel nüfusun 

yaşlanması ve diyabet prevalansının artmasıyla birlikte, retina hastalıklarının sağlık 

sistemleri üzerindeki yükünün önümüzdeki on yıllarda önemli ölçüde artması 

beklenmektedir (Wong ve ark., 2023; Ting ve ark., 2019; Cheung ve ark., 2021). 

1.2. Motivasyon ve Önemi 

Küresel diyabet artışları ve yaşlanan nüfus gibi faktörlerin etkisiyle dünya çapında retina 

hastalıklarının görülme sıklığının artması, sağlık sistemleri için önemli bir zorluk 

oluşturmaktadır (Cheung ve ark., 2021). Geri dönüşü olmayan görme kaybını önlemek için 

erken teşhis ve müdahale kritik öneme sahiptir, ancak özellikle kaynakların kısıtlı olduğu 

ortamlarda uzman oftalmik bakıma erişim genellikle sınırlıdır. Retina görüntülerinin manuel 

olarak yorumlanması, sadece emek yoğun ve zaman alıcı olmakla kalmaz, aynı zamanda 

gözlemciler arasında değişkenliğe de maruz kalır, bu da tutarsız teşhislere yol açabilir (Yim 

ve ark., 2020). Bu gerçekler, klinisyenlerin retina hastalıklarını yüksek doğruluk ve 

verimlilikle taramasına ve teşhis etmesine yardımcı olabilecek otomatik, ölçeklenebilir ve 

güvenilir çözümlere acil ihtiyaç olduğunu vurgulamaktadır. 

Yapay zeka, özellikle de derin öğrenme, karmaşık retina görüntülerini analiz edebilen ve 

uzman klinisyenlerle karşılaştırılabilir bir doğrulukla patolojik değişiklikleri tespit edebilen 
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otomatik sistemlerin geliştirilmesini sağlayarak bu ihtiyaçları karşılamada büyük umut vaat 

etmektedir (Gulshan ve ark., 2016; Rajalakshmi ve ark., 2022). Bu tür teknolojinin geniş 

ölçekte kullanılması, tarama programlarını dönüştürebilir, tanı hatalarını azaltabilir ve çeşitli 

klinik ve topluluk ortamlarında görmeyi kurtarıcı bakıma erişimi genişletebilir. Retina 

hastalıklarının yükü artmaya devam ederken, sağlam yapay zeka (AI) destekli tanı araçlarının 

geliştirilmesi ve entegrasyonu, küresel oftalmik sağlık için kritik bir ilerlemeyi temsil 

etmektedir. 

1.3.  Sorun Tanımı 

Yapay zeka ve tıbbi görüntülemede önemli ilerlemeler kaydedilmesine rağmen, retina 

hastalıklarının güvenilir ve otomatik tespiti karmaşık ve çözülmemiş bir sorun olmaya devam 

etmektedir. Birçok derin öğrenme modeli, deneysel ortamlarda etkileyici sonuçlar elde 

etmesine rağmen, görüntüleme koşulları, cihaz türleri ve hasta demografisi farklılıkları 

nedeniyle çeşitli klinik ortamlarda etkili bir şekilde genelleştirilememektedir (Gupta ve ark., 

2021). Ek olarak, birçok kamuya açık retina veri setinde sınıf dengesizliği ve sınırlı 

anotlanmış veri sorunu, daha az temsil edilen hastalık kategorilerinde düşük performans 

gösteren önyargılı modellere yol açmaktadır (Quellec ve ark., 2017). Farklı retina 

hastalıklarında görsel olarak benzer özelliklerin varlığı, model eğitimi ve değerlendirmesini 

daha da karmaşık hale getirerek yanlış sınıflandırma olasılığını artırmaktadır (Ting ve ark., 

2019). Dahası, birçok derin öğrenme yaklaşımının “kara kutu” niteliği, yorumlanabilirlik ve 

klinik güven konusunda endişeler uyandırarak, bu teknolojilerin rutin klinik iş akışlarına 

kabulünü ve entegrasyonunu sınırlamaktadır (Tjoa ve Guan, 2020). Retina hastalığı tespiti 

için klinik olarak yararlı ve güvenilir AI sistemleri geliştirmek için bu zorlukların üstesinden 

gelmek çok önemlidir. 

1.4.  Araştırma Hedefleri 

Bu araştırmanın temel amacı, renkli fundus görüntülerinden retina hastalıklarının otomatik 

tespiti ve çok sınıflı sınıflandırılması için derin öğrenme tabanlı bir çerçeve geliştirmek ve 

değerlendirmektir. Çalışma, özellikle EfficientNetB0 gibi gelişmiş evrişimli sinir ağı 

mimarilerinin, ince ayar ve veri artırma teknikleriyle birlikte, birden fazla hastalık 

kategorisinde doğru ve dengeli sınıflandırma elde etmek için etkinliğini araştırmayı 
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amaçlamaktadır. Ayrıca, araştırma veri dengesizliği, sınırlı anotlanmış veri kümeleri ve 

model yorumlanabilirliği ile ilgili temel zorlukları ele almayı ve böylece klinik olarak 

uygulanabilir AI odaklı tanı araçlarının geliştirilmesine katkıda bulunmayı amaçlamaktadır 

(Li ve ark., 2021; Shamsi ve ark., 2021). 

Bir diğer amaç ise, önerilen yaklaşımı literatürde bildirilen mevcut en gelişmiş yöntemlerle 

sistematik olarak karşılaştırarak, göreceli güçlü yönlerini vurgulamak ve daha fazla 

iyileştirme gereken alanları belirlemektir. Bu hedefleri gerçekleştirerek, bu tez, otomatik 

retina hastalığı tespiti alanını ilerletmeyi, erken teşhisi destekleyebilecek, klinisyenlerin 

yükünü azaltabilecek ve görme bozukluğu riski altındaki nüfusların göz bakımına erişimini 

iyileştirebilecek çözümler sunmayı amaçlamaktadır (Rajpurkar ve ark., 2022; Ting ve ark., 

2019). 

1.5.  Tezin Yapısı 

Bu tez, okuyucuyu araştırmanın motivasyonu, metodolojisi, deneyleri ve sonuçları hakkında 

sistematik olarak bilgilendirmek üzere tasarlanmış beş ana bölümden oluşmaktadır. 

Bölüm 1, araştırma bağlamına genel bir bakış sunarak arka plan, motivasyon, problem 

tanımı, amaçlar, araştırma soruları ve tezin genel yapısını özetlemektedir. 

Bölüm 2, retina görüntülemenin evrimi, tıbbi görüntü analizinde derin öğrenmenin gelişimi 

ve uygulaması, çok sınıflı sınıflandırma ile ilgili zorluklar ve retina hastalığı tespiti ile ilgili 

konvolüsyonel sinir ağı mimarileri ve metodolojilerindeki son gelişmeleri tartışarak kapsamlı 

bir literatür incelemesi sunmaktadır. 

Bölüm 3, veri seti açıklaması, veri ön işleme ve artırma stratejileri, EfficientNetB0 tabanlı 

derin öğrenme modelinin tasarımı ve yapılandırması ve değerlendirme için kullanılan 

deneysel protokoller dahil olmak üzere, bu çalışmada kullanılan materyalleri ve yöntemleri 

ayrıntılı olarak açıklamaktadır. 

Bölüm 4, önerilen yaklaşımı en son yöntemlerle karşılaştırarak, artırma, transfer öğrenimi ve 

dikkat mekanizmalarının model performansı üzerindeki etkilerini inceleyerek deneysel 

sonuçları ve analizleri sunmaktadır. 
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Son olarak, Bölüm 5, ana bulguları özetleyerek, pratik ve klinik çıkarımları tartışarak ve 

otomatik retina hastalığı tespiti konusunda gelecekteki araştırmalar için yollar önererek tezi 

sonlandırmaktadır. 

Bu mantıksal düzenleme, netlik ve tutarlılığı kolaylaştırmak amacıyla yapılmıştır ve 

okuyucuların temel kavramlardan uygulamalı araştırma ve eleştirel değerlendirmeye kadar 

olan süreci takip etmelerini sağlar (Creswell ve Creswell, 2018). 
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2.LİTERATÜR İNCELEMESİ 

2.1.  Giriş 

Son on yılda, tıbbi görüntüleme ve yapay zeka alanındaki gelişmeler, özellikle retina 

hastalıklarının tespiti ve sınıflandırılması konusunda oftalmoloji alanında devrim niteliğinde 

değişiklikler getirmiştir. Yüksek çözünürlüklü retina görüntülerinin giderek daha fazla 

kullanılabilir hale gelmesi ve derin öğrenme teknolojilerinin yükselişi, otomatik, doğru ve 

hızlı tanı için yeni yollar açmıştır. Bu bölüm, derin öğrenme kullanılarak retina hastalığının 

teşhisi ile ilgili literatürü kapsamlı bir şekilde gözden geçirir ve özellikle evrişimli sinir ağı 

mimarileri, veri kümesi zorlukları, artırma stratejileri ve mevcut en son teknoloji sonuçlarına 

odaklanır. Önceki araştırmaları eleştirel bir şekilde analiz ederek, bu inceleme hem 

kaydedilen ilerlemeyi hem de bu tezde sunulan araştırmayı motive eden kalıcı boşlukları 

aydınlatmayı amaçlamaktadır. 

2.2.  Retina Hastalıklarının Sınıflandırılmasındaki Zorluklar 

Görüntüleme teknolojileri ve yapay zeka alanlarında önemli ilerlemeler kaydedilmesine 

rağmen, otomatik retina hastalığı sınıflandırma görevini zorlaştıran birkaç kalıcı zorluk 

bulunmaktadır. En önemli engellerden biri, kamuya açık retina görüntü veri setlerinin 

doğasında var olan dengesizlik ve sınırlı boyutudur (Quellec ve ark., 2017; Kaggle, 2023). 

Birçok retina patolojisi nispeten nadirdir, bu da belirli hastalıkların yetersiz temsil edildiği 

çarpık sınıf dağılımlarına yol açar ve derin öğrenme modellerinin azınlık sınıfları için sağlam 

özellikleri öğrenmesini zorlaştırır (Budai ve ark., 2013). Bu tür dengesizlikler genellikle daha 

yaygın durumların tespitini destekleyen önyargılı modellere yol açarken, daha nadir ancak 

klinik olarak önemli hastalıklar üzerindeki performans optimal düzeyde kalmaz (Gupta ve 

ark., 2021). 

Bir diğer önemli zorluk, görüntü elde etme koşullarındaki yüksek değişkenlikten 

kaynaklanmaktadır. Kamera ekipmanı, aydınlatma, odaklama ve hasta işbirliği gibi faktörler, 

retina görüntülerine önemli ölçüde gürültü ve artefaktlar ekleyebilir (Abràmoff ve ark., 

2016). Bu değişkenlik, sonuçların tekrarlanabilirliğini azaltır ve sistemler farklı klinik 

ortamlarda veya popülasyonlarda kullanıldığında model performansında önemli düşüşlere 
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yol açabilir (Ting ve ark., 2019). Ek olarak, ortam opaklıkları, hasta hareketi veya yanlış 

odaklama nedeniyle görüntü kalitesinin düşük olması sık karşılaşılan bir sorun olmaya 

devam etmekte ve bazen analizden önce manuel kürasyon veya otomatik kalite 

değerlendirmesi gerektirmektedir (Fu ve ark., 2022). 

Farklı retina hastalıkları arasında görsel olarak benzer lezyonların ve örtüşen özelliklerin 

varlığı başka bir zorluk oluşturmaktadır. Örneğin, hem diyabetik retinopati hem de 

hipertansif retinopati kanamalar ve mikroanevrizmalarla ortaya çıkabilirken, glokom ve optik 

nörit her ikisi de optik disk çukurlaşması veya solukluk olarak ortaya çıkabilir (Ting ve ark., 

2019; Yim ve ark., 2020). Bu örtüşme, yalnızca temel gerçek etiketleme için açıklama 

sürecini değil, aynı zamanda modelin hastalığa özgü ince değişiklikleri doğru bir şekilde ayırt 

etme yeteneğini de zorlaştırır. Deneyimli oftalmologlar bile sınırda veya atipik vakaların 

teşhisi konusunda fikir ayrılığına düşebilirler, bu da sınıflandırma görevinin doğasında var 

olan karmaşıklığı daha da vurgular (Cheung ve ark., 2021). 

Son olarak, klinik yorumlanabilirlik ve model şeffaflığı sorunu, tıbbi yapay zeka alanında 

özellikle ciddi bir sorundur. Klinisyenler, özellikle tedavi veya cerrahi planlamayı 

etkileyebilecek yüksek riskli senaryolarda, modelin kararları için sadece doğru tahminler 

değil, aynı zamanda anlamlı açıklamalar da talep etmektedir (Caruana ve ark., 2015). Kara 

kutu derin öğrenme modelleri, güçlü olmalarına rağmen, yorumlanabilirlik eksikliği 

nedeniyle sıklıkla eleştirilmektedir. Bu sınırlama, saliency map ve layer-wise relevance 

propagation gibi açıklanabilir yapay zeka teknikleri üzerine araştırmaları teşvik etmiştir 

(Samek ve ark., 2017; Lundberg ve Lee, 2017). 

Bu çok yönlü zorlukların ele alınması, oftalmolojide klinik olarak uygulanabilir yapay zeka 

sistemlerinin geliştirilmesi için gereklidir. Devam eden araştırmalar, veri seti çeşitliliğini 

genişletmeye, görüntü kalitesi kontrolünü iyileştirmeye, gelişmiş artırma ve aktarım öğrenme 

yöntemleri geliştirmeye ve açıklanabilir AI çerçevelerini teşhis süreçlerine entegre etmeye 

odaklanmaktadır (Gulshan ve ark., 2016; Rajalakshmi ve ark., 2022). Bu çabalar, deneysel 

başarı ile pratik, gerçek dünya uygulamaları arasındaki uçurumu kapatmayı amaçlamaktadır. 
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2.3. Tıbbi Görüntülemede Derin Öğrenme 

Derin öğrenmenin tıbbi görüntüleme alanına entegrasyonu, geniş ve heterojen görüntü veri 

kümelerinden karmaşık özelliklerin otomatik olarak çıkarılmasını sağlayarak bu alanda 

devrim yaratmıştır. El ile oluşturulan özellik mühendisliğine ve alana özgü bilgiye büyük 

ölçüde bağımlı olan geleneksel makine öğrenimi yaklaşımlarının aksine, derin öğrenme 

modelleri, özellikle de evrişimli sinir ağları (CNN'ler), hammadde piksel verilerinden 

doğrudan hiyerarşik temsilleri öğrenme yeteneğine sahiptir (LeCun, Bengio ve Hinton, 

2015). Bu paradigma değişikliği, minimum insan müdahalesi ile büyük hacimli tıbbi 

görüntüleri işleyip analiz edebilen, yüksek doğrulukta ve ölçeklenebilir tanı araçlarının 

geliştirilmesini mümkün kılmıştır (Litjens ve ark., 2017). 

Son yıllarda, CNN'ler radyografi, bilgisayarlı tomografi (BT), manyetik rezonans 

görüntüleme (MRG) ve fundus fotoğrafçılığı gibi modalitelerde organ segmentasyonu, 

lezyon tespiti ve hastalık sınıflandırması dahil olmak üzere çok çeşitli tıbbi görüntüleme 

görevlerinde başarıyla uygulanmıştır (Esteva ve ark., 2017; Greenspan ve ark., 2016). Özellik 

hiyerarşilerini otomatik olarak öğrenme ve uyarlama yetenekleri, retina morfolojisindeki ince 

farklılıkların çeşitli patolojik durumların göstergesi olabileceği oftalmolojide özellikle 

değerli olduğu kanıtlanmıştır (Gulshan ve ark., 2016). CNN'lerin giderek daha fazla 

benimsenmesi, özellikle tutarlılık ve hızın çok önemli olduğu tarama ortamlarında, deneyimli 

insan uzmanların performansına rakip olan ve bazı durumlarda onu aşan tanı algoritmalarına 

yol açmıştır (Ting ve ark., 2019). 

Tıbbi görüntü analizinde derin öğrenmenin en önemli avantajlarından biri, uygun şekilde 

eğitilip doğrulanmış olduğunda farklı görüntüleme cihazları, popülasyonlar ve edinim 

protokolleri arasında genelleme yapabilme kapasitesidir (De Fauw ve ark., 2018). ImageNet 

gibi büyük ölçekli, genel amaçlı veri kümelerinde önceden eğitilmiş modellerin tıbbi 

görüntüleme görevlerinde ince ayarlandığı transfer öğrenimi, performans ve eğitim 

verimliliğinde önemli iyileştirmeler sağlayan standart bir uygulama haline gelmiştir (Shin ve 

ark., 2016; Raghu ve ark., 2019). Bu strateji, sınırlı sayıda anotlanmış tıbbi verinin sorununu 

çözmekle kalmaz, aynı zamanda milyonlarca doğal görüntü üzerinde eğitilmiş ağlarda 

kodlanmış zengin görsel bilgiyi de kullanır. 
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Başarılarına rağmen, derin öğrenmenin tıbbi görüntülemede kullanılması da kendine özgü 

zorluklar ortaya çıkarmaktadır. Yüksek kaliteli etiketli veri kümelerinin derlenmesi 

genellikle zor ve pahalıdır ve görüntü kalitesi, etiketleme standartları ve hastalık 

yaygınlığındaki farklılıklar, model performansını etkileyen önyargılara yol açabilir (Oakden-

Rayner, 2020). Ek olarak, derin öğrenme modellerinin “kara kutu” niteliği, yorumlanabilirlik 

ve klinik güven konusunda endişeler doğurmuş ve model tahminleri için anlamlı 

görselleştirmeler ve gerekçeler sağlamayı amaçlayan açıklanabilir AI teknikleri üzerine 

araştırmalar yapılmasına neden olmuştur (Tjoa ve Guan, 2020). 

Bununla birlikte, derin öğrenme, büyük veri ve bilgi işlem donanımındaki gelişmelerin bir 

araya gelmesi, otomatik tıbbi görüntü analizinde mümkün olanın sınırlarını zorlamaya devam 

etmektedir. Modeller daha sofistike ve veri kümeleri daha kapsamlı hale geldikçe, derin 

öğrenmenin tanı doğruluğunu artırma, iş yükünü azaltma ve uzman düzeyinde bakıma erişimi 

demokratikleştirme rolünün daha da genişlemesi muhtemeldir (Topol, 2019; Rajpurkar ve 

ark., 2022). 

2.4.  Tıbbi Görüntü Analizi için CNN Mimarileri 

Konvolüsyonel sinir ağları (CNN'ler), ham görüntü verilerinden doğrudan hiyerarşik, 

uzamsal farkındalığa sahip özellikleri öğrenme konusundaki güçlü yetenekleri nedeniyle, 

özellikle tıbbi görüntü analizi alanında modern bilgisayar görüşünün bel kemiği haline 

gelmiştir (Krizhevsky ve ark., 2012). Öncü AlexNet mimarisi, 2012 yılında bir dönüm 

noktası oluşturmuş ve derin, katmanlı sinir ağlarının büyük ölçekli görüntü sınıflandırma 

görevlerinde geleneksel algoritmalardan daha iyi performans gösterebileceğini kanıtlamıştır 

(Russakovsky ve ark., 2015). Bu çığır açan gelişme, CNN tasarımında bir inovasyon 

dalgasını tetiklemiş ve temsil gücü, hesaplama verimliliği ve eğitim istikrarını iyileştirmeyi 

amaçlayan daha sofistike mimarilerin geliştirilmesine yol açmıştır. 

VGGNet (Simonyan ve Zisserman, 2015), GoogLeNet (Szegedy ve ark., 2015) ve ResNet 

(He ve ark., 2016) gibi sonraki mimariler sırasıyla daha derin ağlar, başlangıç modülleri ve 

kalıntı bağlantıları tanıttı. VGGNet, yığılmış 3x3 konvolüsyonel katmanların kullanımıyla 

basitliği vurguladı; bu katmanlar, derinliği artırmasına rağmen, hesaplama taleplerini 

yönetilebilir düzeyde tuttu. GoogLeNet (Inception), ağın bilgileri paralel olarak çoklu 
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ölçeklerde işlemesine olanak tanıyan başlangıç modülleri kavramını tanıttı ve böylece çok 

çeşitli görsel kalıpları yakalama kapasitesini artırdı. ResNet'in kısayol veya kalıntı 

bağlantılarını tanıtması, kaybolan gradyan sorununu çözdü ve yüzlerce hatta binlerce 

katmandan oluşan çok derin ağların eğitilmesini mümkün kılmış ve hem doğal hem de tıbbi 

görüntü analizinde temel bir unsur haline gelmiştir. 

DenseNet (Huang ve ark., 2017), her katmanın önceki tüm katmanlardan girdi aldığı yoğun 

bağlantıyı tanıtarak bu alanı daha da ilerletmiş, özelliklerin yeniden kullanımını teşvik etmiş 

ve kaybolan gradyan sorununu daha da azaltmıştır. Bu tasarım, parametrelerin verimli 

kullanımını sağlamakta ve geleneksel mimarilere kıyasla daha az parametre ile genellikle 

üstün doğruluk elde etmektedir. 

 

Şekil 0.1: EfficientNetB0 yapısı (ResearchGate, 2025) 

Daha yakın zamanda, EfficientNetB0 (Tan ve Le, 2019) ağ derinliğini, genişliğini ve giriş 

çözünürlüğünü eşit şekilde ölçekleyen bir bileşik ölçeklendirme yöntemi getirerek, 

olağanüstü hesaplama verimliliği ile en son teknoloji performansı sunan bir model ailesi 

oluşturmuştur. Şekil 2.1’de yapısı gösterilen EfficientNetB0 modelleri, doğruluk ve kaynak 

kullanımı arasında güçlü bir denge kurmaları nedeniyle tıbbi görüntüleme araştırmalarında 
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hızla popülerlik kazanmıştır ve donanım kısıtlamalarının sorun olabileceği gerçek dünya 

klinik uygulamaları için özellikle caziptir (Shamsi ve ark., 2021). 

CNN mimarisindeki bu gelişmeler, tıbbi görüntü analizinde dönüştürücü bir etki yaratarak, 

fundus fotoğrafçılığı, OCT, MRI ve CT gibi çeşitli modalitelerde hastalık tespiti, 

segmentasyon ve prognoz gibi görevlerde önemli iyileştirmeler sağlamıştır (Shin ve ark., 

2016; Litjens ve ark., 2017). Önemli olarak, CNN'lerin modülerliği ve aktarılabilirliği, 

araştırmacıların önceden eğitilmiş modelleri kullanarak nispeten küçük, alana özgü tıbbi veri 

kümeleri üzerinde ince ayar yapmalarına olanak tanımış, sınırlı anotlanmış verilerin getirdiği 

bazı önemli sınırlamaları aşmalarını sağlamıştır (Raghu ve ark., 2019). 

Güçlerine rağmen, tıbbi görüntülemede derin CNN'lerin kullanımı zorluklar içermez değildir. 

Modellerin yüksek karmaşıklığı, özellikle eğitim verileri sınırlı veya dengesiz olduğunda 

aşırı uyum riskini artırabilir. Dahası, derin mimarilerin kara kutu niteliği, yorumlanabilirlik 

ve klinik güvenilirlik konusunda sorunlar doğurmaktadır. Bu sorunlar, son tasarımlara dikkat 

mekanizmaları ve açıklanabilir AI tekniklerinin entegrasyonuna ilham vermiştir (Tjoa ve 

Guan, 2020; Selvaraju ve ark., 2017). 

Genel olarak, CNN mimarilerinin evrimi, bilgisayar destekli tanı yeteneklerinin 

geliştirilmesinde önemli bir rol oynamıştır ve tıp alanında daha doğru, sağlam ve 

açıklanabilir AI sistemleri için çabalar sürerken, araştırmaların ana odak noktası olmaya 

devam etmektedir. 

2.5.  Retina Hastalıklarının Sınıflandırılmasında Son Gelişmeler 

Son yıllarda, retina hastalıklarının sınıflandırılması alanında, büyük ölçüde derin 

öğrenmedeki ilerlemeler ve anotlanmış fundus ve OCT görüntü veri setlerinin giderek daha 

fazla kullanılabilir hale gelmesi sayesinde, dikkate değer ilerlemeler kaydedilmiştir (Li ve 

ark., 2021). Güncel araştırmalar, dikkatlice tasarlanıp eğitildiğinde, evrişimli sinir ağlarının 

çeşitli retina patolojilerini tespit etme ve sınıflandırma konusunda deneyimli oftalmologlarla 

eşit veya hatta onlardan daha üstün bir tanı performansı sergileyebildiğini göstermiştir 

(Gulshan ve ark., 2016; Ting ve ark., 2019). Günümüzde birçok çalışma, yalnızca ikili tespit 

görevlerine (örneğin, sevk edilebilir ve sevk edilemez diyabetik retinopati) değil, aynı 
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zamanda gerçek dünyadaki klinik senaryolara daha çok benzeyen çok sınıflı sınıflandırma 

problemlerine de odaklanmaktadır (Zhou ve ark., 2022). 

Son literatürdeki önemli bir eğilim, ImageNet gibi büyük ölçekli genel veri kümeleri 

üzerinde önceden eğitilmiş modellerin, daha küçük, hastalığa özgü veri kümeleri üzerinde 

ince ayarlandığı transfer öğreniminin uygulanmasıdır. Örneğin, Li ve ark. (2021), ImageNet 

üzerinde önceden eğitilmiş bir ResNet50 mimarisi kullanmış ve bunu retina hastalıklarının 

çok sınıflı sınıflandırması için ince ayarlamış, ODIR-5K veri setinde %85,7 doğruluk elde 

etmiştir. Benzer şekilde, Wang ve ark. (2022) transfer öğrenimi ile DenseNet121'i 

uygulayarak, altı retina hastalığı kategorisini sınıflandırmak için %89,6 test doğruluğu ve 

%88,7 makro F1 puanı elde ettiklerini bildirmiştir. Bu çalışmalar, sınırlı sayıda anotlanmış 

tıbbi verinin yarattığı zorluğun üstesinden gelmede transfer öğreniminin etkinliğini 

vurgulamakta ve modellerin tıbbi olmayan görüntülerden öğrenilen zengin görsel 

özelliklerden yararlanmasını sağlamaktadır. 

Veri artırma da veri kümesi dengesizliğini gidermek ve genellemeyi iyileştirmek için önemli 

bir teknik olarak ortaya çıkmıştır. Modern artırma stratejileri genellikle basit çevirme ve 

döndürme işlemlerinin ötesine geçerek renk titremesi, elastik deformasyonlar, karıştırma ve 

CutMix'i de içermektedir (Zhang ve ark., 2018; Yun ve ark., 2019). Shamsi ve ark. (2021), 

gelişmiş artırma yöntemlerini EfficientNet tabanlı modellerle entegre etmenin, çok sınıflı 

retina hastalığı görevlerinde hem doğruluk hem de sağlamlık açısından önemli kazanımlar 

sağladığını göstermiştir. Artırma, eğitim örneklerinin çeşitliliğini artırmakla kalmaz, aynı 

zamanda fundus görüntülerindeki yüksek sınıf içi değişkenlik göz önüne alındığında kritik 

bir husus olan aşırı uyum riskini de azaltır (Lim ve ark., 2022). 

Bir başka önemli araştırma alanı, modelin yorumlanabilirliğini ve performansını artırmak 

için dikkat mekanizmalarının entegrasyonuna odaklanmaktadır. Squeeze-and-Excitation 

(SE) blokları (Hu ve ark., 2018) ve Convolutional Block Attention Modules (CBAM) (Woo 

ve ark., 2018) gibi dikkat modülleri, ağın özellik haritalarını dinamik olarak yeniden kalibre 

etmesine olanak tanıyarak görüntünün tanısal açıdan ilgili bölgelerini vurgular. Liu ve ark. 

(2023), CBAM ile güçlendirilmiş ResNet'i fundus görüntü sınıflandırmasına uygulayarak, 
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standart CNN'lere kıyasla hem daha yüksek doğruluk hem de hastalığa özgü lezyonların daha 

iyi lokalizasyonu elde etmiştir. 

Ayrıca, son zamanlarda yapılan çalışmalar, veri kümeleri arası doğrulama, çok merkezli veri 

kümeleri ve prospektif klinik çalışmalar kullanarak değerlendirme kapsamını genişletmiştir. 

Bu eğilim, yapay zeka (AI) modellerinin farklı popülasyonlardan, cihazlardan ve gerçek 

dünya klinik iş akışlarından elde edilen görüntülere etkili bir şekilde genelleştirilebileceğini 

gösterme ihtiyacından kaynaklanmaktadır (De Fauw ve ark., 2018; Yim ve ark., 2020). 

Birkaç çalışma, tek kaynaklı veri kümeleri üzerinde eğitilmiş modellerin sınırlamalarını 

vurgulamış ve yeni merkezlerden veya farklı edinim protokolleriyle elde edilen görüntüler 

üzerinde test edildiğinde doğrulukta önemli düşüşler olduğunu belirtmiştir (Gupta ve ark., 

2021). 

Son olarak, yorumlanabilirlik ve klinik kullanılabilirlik önemli vurgu alanları olmaya devam 

etmektedir. Son zamanlarda yapılan çalışmalar, klinisyenlere model tahminleri için sezgisel 

açıklamalar sunmak amacıyla Grad-CAM (Selvaraju ve ark., 2017) ve saliency maps gibi 

görselleştirme tekniklerini entegre etmiştir. Bu şeffaflık, klinik güveni kolaylaştırmakla 

kalmaz, aynı zamanda potansiyel arıza modlarının tanımlanmasına da yardımcı olur, böylece 

hasta güvenliğini ve düzenleyici kurumların kabul etme olasılığını artırır (Tjoa ve Guan, 

2020). 

Toplu olarak, bu gelişmeler, retina hastalığı tespiti için klinik olarak kullanılabilir AI 

sistemlerine doğru istikrarlı bir şekilde ilerleyen, olgunlaşan bir alanı yansıtmaktadır. Veri 

kürasyonu, model tasarımı, artırma stratejileri ve değerlendirme protokollerinde devam eden 

ilerlemeler, oftalmolojide derin öğrenmenin tam potansiyelini gerçekleştirmek için çok 

önemli olacaktır. 

2.6. Retina Görüntüleme için Derin Öğrenmede Artırma ve Düzenleme 

Veri artırma, retina görüntü analizinde derin öğrenme modellerinin genelleştirilebilirliğini ve 

sağlamlığını iyileştirmek için önemli bir strateji olarak ortaya çıkmıştır. Annotasyonlu tıbbi 

görüntü veri kümeleri genellikle boyut olarak sınırlıdır ve önemli sınıf dengesizliği gösterir, 

bu nedenle artırma teknikleri rutin olarak eğitim verilerini sentetik olarak genişletmek ve 
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aşırı uyumu azaltmak için kullanılır (Shorten ve Khoshgoftaar, 2019). Yatay ve dikey 

çevirme, rastgele döndürme, çevirme ve parlaklık ayarlamaları gibi geleneksel artırma 

yöntemleri, klinik görüntülerde karşılaşılan doğal varyasyonları simüle etmek için uzun 

süredir kullanılmaktadır (Perez ve Wang, 2017). Bu temel dönüşümler, eğitim örneklerinin 

çeşitliliğini artırarak, evrişimli sinir ağlarının daha değişmez ve genelleştirilebilir özellikleri 

öğrenmesini sağlar (Wang ve ark., 2022). 

Son yıllarda, model performansını daha da artırmak için daha sofistike artırma stratejileri 

geliştirilmiştir. Elastik deformasyonlar, rastgele silme, mixup ve CutMix gibi teknikler, yeni 

ve makul görüntü varyasyonları oluşturarak hem doğruluğu hem de sağlamlığı artırma 

yeteneğini göstermiştir (Zhang ve ark., 2018; Yun ve ark., 2019). Örneğin, mixup yaklaşımı, 

görüntü çiftlerini ve bunlara karşılık gelen etiketleri doğrusal olarak birleştirerek yeni eğitim 

örnekleri oluşturur ve modeli sınıflar arasında enterpolasyon yapmaya etkili bir şekilde teşvik 

eder (Zhang ve ark., 2018). Benzer şekilde, CutMix bir görüntünün rastgele parçalarını başka 

bir görüntünün parçalarıyla değiştirerek modelin daha geniş bir ayrımcı bölge yelpazesine 

dikkatini çekmesini sağlar (Yun ve ark., 2019). Bu gelişmiş yöntemler, sınıf içi değişkenliğin 

yüksek ve sınıflar arası benzerliğin yüksek olduğu tıbbi görüntüleme alanlarında özellikle 

etkili olduklarını kanıtlamıştır. 

Düzenleme teknikleri, derin sinir ağlarıyla ilişkili aşırı uyum sorununu ele almada da aynı 

derecede önemlidir. Eğitim sırasında nöronları rastgele devre dışı bırakan dropout, özellik 

algılayıcılarının birlikte uyumlaşmasını önlemek ve daha dağıtılmış temsilleri teşvik etmek 

için yaygın olarak kullanılmaktadır (Srivastava ve ark., 2014). Ağırlık zayıflaması (L2 

düzenleme), büyük ağırlıkları cezalandıran ve daha düzgün ve basit modelleri teşvik eden 

başka bir standart yaklaşımdır (Goodfellow ve ark., 2016). Her katmana gelen girdileri 

normalleştiren toplu normalleştirme de eğitimi stabilize ettiği ve yakınsamayı hızlandırdığı 

gösterilmiştir (Ioffe ve Szegedy, 2015). Retina hastalığı sınıflandırması bağlamında, artırma 

ve düzenlemenin birlikte kullanılması hem çapraz doğrulama hem de harici test 

performansında önemli iyileşmeler sağladığı gösterilmiştir (Lim ve ark., 2022; Shamsi ve 

ark., 2021). 
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Veri artırmada ortaya çıkan yeni trendler, gerçekçi sentetik retina görüntüleri oluşturmak için 

üretken karşıt ağların (GAN) kullanılmasını içerir ve bu da eğitim veri kümelerinin 

çeşitliliğini daha da zenginleştirir (Zhu ve ark., 2022). Bu tür teknikler, nadir hastalık sınıfları 

için anotlanmış görüntülerin azlığı sorununu çözme konusunda umut vaat etmektedir, ancak 

sentetik görüntülerin klinik olarak ilgili özellikleri doğru bir şekilde yansıtması ve artefaktlar 

oluşturmaması için özen gösterilmesi gerekmektedir (Frid-Adar ve ark., 2018). 

Sonuç olarak, artırma ve düzenleme stratejilerinin dikkatli bir şekilde tasarlanması ve 

uygulanması, retina görüntülemede derin öğrenme modellerinin başarısı için hayati önem 

taşımaktadır. Bu yaklaşımlar, genellemeyi iyileştirmek ve aşırı uyumu azaltmakla kalmaz, 

aynı zamanda AI tabanlı tanı sistemlerinin güvenilirliğini ve klinik uygulanabilirliğini de 

artırır. 

2.7. Retina Hastalıklarının Sınıflandırılmasında Transfer Öğrenimi ve Genelleme 

Transfer öğrenimi, tıbbi görüntü analizinde, özellikle de etiketli veri kümelerinin boyutu ve 

çeşitliliği genellikle sınırlı olan retina hastalıklarının sınıflandırılmasında vazgeçilmez bir 

yaklaşım haline gelmiştir (Shin ve ark., 2016). Transfer öğreniminin temel fikri, ImageNet 

gibi büyük ölçekli, genel amaçlı veri kümelerinden elde edilen bilgileri, derin konvolüsyonel 

sinir ağlarını önceden eğiterek ve ardından bunları hedef tıbbi görevlere göre ince ayar 

yaparak kullanmaktır (Raghu ve ark., 2019). Bu strateji, modellerin kenar ve doku 

algılayıcıları gibi öğrenilmiş görsel temsilleri doğal görüntülerden fundus fotoğrafçılığı veya 

OCT görüntüleme gibi daha özel alanlara aktarmasını sağlar. 

Çok sayıda çalışma, transfer öğreniminin retina hastalığı tespitinde hem doğruluğu hem de 

yakınsama hızını artırmada etkili olduğunu göstermiştir. Örneğin, Gulshan ve ark. (2016), 

büyük bir diyabetik retinopati veri seti üzerinde ince ayar yapılmış, önceden eğitilmiş bir 

InceptionV3 modeli kullanmış ve kurul sertifikalı oftalmologlarla karşılaştırılabilir bir tanı 

performansı elde etmiştir. Benzer şekilde, Li ve ark. (2021), ODIR-5K çok sınıflı retina 

hastalığı veri seti üzerinde bir ResNet50 ağını ince ayarlamış ve sıfırdan eğitilmiş modellere 

kıyasla sınıflandırma doğruluğunda önemli bir artış elde etmiştir. 
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Transfer öğreniminin temel bir avantajı, tıbbi görüntülemede yaygın olan veri kıtlığı ve sınıf 

dengesizliği sorunlarının etkilerini, model parametrelerini genel görsel özelliklere zaten 

uyarlanmış bir ağırlık uzayında başlatarak azaltma yeteneğidir (Shin ve ark., 2016; Raghu ve 

ark., 2019). Bu ön koşullandırma, yakınsamayı hızlandırmakla kalmaz, aynı zamanda 

modelin tüm özellik algılayıcılarını sıfırdan öğrenmesine gerek kalmadığı için küçük veri 

kümelerine aşırı uyum sağlama riskini de azaltır. Araştırmalar, ince ayarlı modellerin, 

özellikle sınırlı sayıda anotlanmış örnek mevcut olduğunda, rastgele başlatılan ağlardan 

tutarlı bir şekilde daha iyi performans gösterdiğini ortaya koymuştur (Tajbakhsh ve ark., 

2016). 

Genelleme, yani bir modelin görülmemiş veriler üzerinde iyi performans gösterme yeteneği, 

transfer öğreniminin bir başka önemli avantajıdır. Önceden eğitilmiş ağlar, çok çeşitli 

görüntü yapılarına maruz kalmışlardır ve bu da görüntü kalitesi, görüntü alma cihazları ve 

hasta demografisi değişikliklerine karşı dayanıklılıklarını artırmaktadır (Esteva ve ark., 

2017). Bu, gerçek dünya klinik verilerinin görüntüleme protokolleri, popülasyon çeşitliliği 

ve hastalık yaygınlığı açısından araştırma veri kümelerinden önemli ölçüde farklılık 

gösterdiği retina hastalığı taramalarında özellikle önemlidir (Gupta ve ark., 2021). 

Modellerin bir modalitede (ör. doğal görüntüler) önceden eğitildiği ve başka bir modalitede 

(ör. fundus görüntüleri) ince ayarlandığı çapraz alan transfer öğreniminin, çok merkezli ve 

prospektif doğrulama çalışmalarında genelleştirilebilirliği iyileştirdiği gösterilmiştir (De 

Fauw ve ark., 2018). 

Bununla birlikte, transfer öğreniminin sınırlamaları da vardır. Kaynak ve hedef veri 

dağılımları arasındaki uyumsuzluk olan alan kayması, önceden eğitilmiş özellikler söz 

konusu tıbbi görüntüleme göreviyle yeterince alakalı değilse performansı olumsuz 

etkileyebilir (Raghu ve ark., 2019). Bu sorunu çözmek için bazı araştırmacılar, alan uyumlu 

transfer öğrenme tekniklerini veya mümkün olduğunda CheXpert veya MIMIC-CXR gibi 

tıbbi görüntüleme veri kümelerini kaynak alanlar olarak kullanmayı savunmaktadır (Irvin ve 

ark., 2019; Johnson ve ark., 2019). Ek olarak, hangi katmanların ince ayarlanacağına ilişkin 

en uygun seçim, ara denetim kullanımı ve öğrenme oranlarının kalibrasyonu, halen aktif 

araştırma alanları olmaya devam etmektedir (Cui ve ark., 2019). 
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Genel olarak, transfer öğrenimi retina hastalığı sınıflandırmasında derin öğrenimde devrim 

yaratmış ve sınırlı sayıda anotlanmış veriyle bile en son teknolojiye sahip performans elde 

edilmesini sağlamıştır. Daha kapsamlı ve çeşitli tıbbi veri kümeleri kullanıma sunuldukça ve 

alan uyarlama teknikleri gelişmeye devam ettikçe, AI modellerinin popülasyonlar ve 

ortamlar arasında genelleme yapma yeteneği daha da gelişecek ve klinik uygulamada 

otomatik retina hastalığı taramasının benimsenmesi hızlanacaktır. 

2.8. Retina Hastalığı Sınıflandırmasında Dikkat Mekanizmaları ve Açıklanabilirlik 

Retina hastalığı sınıflandırması için derin öğrenme modellerinin karmaşıklığı ve doğruluğu 

arttıkça, hem performansın hem de yorumlanabilirliğin iyileştirilmesi ihtiyacı giderek daha 

belirgin hale gelmiştir. Dikkat mekanizmaları, her iki zorluğa da güçlü bir çözüm olarak 

ortaya çıkmış ve sinir ağlarının girdi görüntülerinin en alakalı bölgelerine seçici olarak 

odaklanmasını sağlarken, aynı zamanda klinik kullanıcılar için daha şeffaf ve yorumlanabilir 

çıktılar sunmuştur (Vaswani ve ark., 2017; Hu ve ark., 2018). 

Dikkat mekanizmalarının temel fikri, modelin bir görüntüdeki farklı uzamsal veya özellik 

kanallarına değişen önem düzeyleri atamasını sağlamaktır. Retina görüntü analizi 

bağlamında, dikkat mekanizması modelin mikroanevrizmalar, eksüdalar veya optik disk gibi 

tanısal açıdan önemli yapıları vurgulamasına ve daha az ilgili arka plan bilgilerini 

bastırmasına olanak tanır (Woo ve ark., 2018). Örneğin, Squeeze-and-Excitation (SE) 

blokları, kanal bazında özellik tepkilerini yeniden kalibre ederek bilgilendirici özellikleri 

dinamik olarak geliştirir (Hu ve ark., 2018). Convolutional Block Attention Modules 

(CBAM), hem uzamsal hem de kanal dikkatini entegre ederek bu kavramı genişletir ve ağın 

daha belirgin görüntü bölgelerine daha hassas bir şekilde odaklanmasını sağlar (Woo ve ark., 

2018). Liu ve ark. (2023), CBAM'yi fundus görüntü sınıflandırması için ResNet tabanlı bir 

modele entegre etmenin sadece doğruluğu değil, aynı zamanda hastalığa özgü lezyonların 

lokalizasyonunu da iyileştirdiğini ve uzmanların açıklamalarıyla yakından uyumlu ısı 

haritaları sağladığını göstermiştir. 

Bir başka dönüştürücü gelişme, başlangıçta doğal dil işlemede tanıtılan (Vaswani ve ark., 

2017) ancak daha sonra tıbbi görüntülemede önemli uygulamalar bulan dönüştürücü tabanlı 

mimariler ve öz dikkat mekanizmalarının benimsenmesidir (Dosovitskiy ve ark., 2021). 
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Görsel dönüştürücüler (ViT'ler) görüntüleri yama dizileri olarak işler ve uzamsal ilişkilerin 

esnek ve uzun menzilli modellemesine olanak tanır. Son çalışmalar, dönüştürücü tabanlı 

modellerin diyabetik retinopati tespiti dahil olmak üzere belirli tıbbi görüntüleme 

görevlerinde CNN'lerin performansını eşleştirebileceğini ve hatta aşabileceğini göstermiştir 

(Chen ve ark., 2022). 

Yorumlanabilirlik, oftalmolojide AI sistemlerinin klinik uygulaması için çok önemli bir 

gerekliliktir. Klinisyenler, özellikle tanı ve tedavi kararlarının alındığı yüksek riskli 

senaryolarda model tahminlerini anlayabilmeli ve bunlara güvenebilmelidir (Tjoa ve Guan, 

2020). Bu amaçla, saliency map, Grad-CAM ve attention heatmap gibi açıklanabilir AI (XAI) 

yöntemleri, modelin tahminlerine en fazla katkıda bulunan giriş görüntülerinin bölgelerini 

görselleştirmek için standart araçlar haline gelmiştir (Selvaraju ve ark., 2017). Bu 

görselleştirmeler, klinisyenlere sezgisel açıklamalar sunarak model kararlarının 

doğrulanmasına yardımcı olur ve hataların veya başarısızlık durumlarının tespitini 

kolaylaştırır (Montavon ve ark., 2018). 

Son zamanlarda yapılan çalışmalar, dikkat tabanlı açıklamaların doğrudan klinik iş akışlarına 

entegrasyonunu da araştırmıştır. Örneğin, Jin ve ark. (2021), her tahmin için hem 

sınıflandırma çıktıları hem de yorumlanabilir ısı haritaları sağlayan, doktorların güvenini ve 

kullanılabilirliği artıran bir retina hastalığı tespiti için derin öğrenme sistemi geliştirmiştir. 

Diğer çalışmalar, retina hastalığı veri kümelerindeki açıklama hatalarını belirlemek ve 

düzeltmek için dikkat haritalarını kullanmış ve dikkat mekanizmalarının hem model 

iyileştirme hem de veri kalite kontrolü için ikili yararını vurgulamıştır (Yang ve ark., 2022). 

Bu ilerlemelere rağmen, dikkat temelli açıklamaları standartlaştırmak ve çeşitli klinik 

ortamlarda güvenilirliğini sağlamak konusunda zorluklar devam etmektedir (Tjoa ve Guan, 

2020). Bu alandaki araştırmaların devam ettirilmesi, en son teknolojiye sahip AI modelleri 

ile gerçek dünyadaki oftalmik uygulamalar arasındaki uçurumu kapatmak ve otomatik retina 

hastalığı tespit sistemlerinin hem doğru hem de yorumlanabilir olmasını sağlamak için 

gereklidir. 
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3. MALZEMELER VE METODOLOJİ 

Bu çalışmada, fundus görüntülerine dayalı çok sınıflı retina hastalığı sınıflandırması için özel 

bir derin öğrenme boru hattı tasarlanmış ve uygulanmıştır. Tıbbi görüntü analizinde 

kanıtlanmış verimliliği ve etkinliği nedeniyle EfficientNetB0'ı birincil mimari olarak 

seçilmiştir. Model oluşturma, eğitim ve değerlendirme adımlarını otomatikleştirmek 

amacıyla özel Python komut dosyaları geliştirilmiştir. 

Modelin öğrenme kapasitesini optimize etmek ve onu retina hastalığının benzersiz 

modellerine özel olarak uyarlamak için ince ayar uygulanmıştır. EfficientNetB0 mimarisinin 

tüm katmanları çözülerek, ImageNet üzerinde önceden eğitilmiş ağırlıklarla model, 

alanımıza özgü veri seti üzerinde yeniden eğitilmiştir. Bu yaklaşım, doğru hastalık 

sınıflandırması için kritik öneme sahip hem düşük hem de yüksek düzey özellikleri 

çıkartılmasını sağlamıştır. 

Veri çeşitliliğinin etkisini titizlikle değerlendirmek için iki farklı senaryo altında deneyler 

yapılmıştır. İlkinde, değişkenliği artırmak ve aşırı uyum riskini azaltmak için eğitim 

görüntüleri, rastgele döndürme, çevirme, parlaklık değişiklikleri ve yakınlaştırma gibi veri 

artırma teknikleriyle çeşitlendirilmiştir. İkinci senaryoda, sınırlı veri çeşitliliğinin model 

genelleştirme üzerindeki etkisini göstermek için temel olarak hiçbir artırma yapılmamıştır. 

Süreç boyunca, veri ön işleme, bölme, model eğitimi, doğrulama ve metrik hesaplama 

süreçleri sistematik ve tekrarlanabilir şekilde yapılandırılmıştır. Bu metodoloji, gerçekçi 

klinik veri koşulları altında EfficientNetB0'ın güçlü ve zayıf yönlerini adil bir şekilde 

değerlendirilmesini ve tıbbi görüntülemede derin öğrenme performansı üzerinde artırma ve 

ince ayarın etkisine ilişkin anlamlı sonuçlar çıkartılmasını sağlamıştır. 

3.1. Veri Kümesi Açıklaması 

Bu tez kapsamında, altı ana göz hastalığı kategorisini içeren ve çeşitli açık kaynaklı veri 

setlerinden derlenen kapsamlı bir retina görüntü koleksiyonu kullanılmıştır. Kullanılan veri 

setleri; ACRIMA, Cataract, Glaucoma, ODIR-5K, ORIGA ve Retina_Disease olarak 

sıralanmaktadır. Bu veri kaynakları, farklı cihazlar ve görüntüleme koşullarında elde edilmiş 

fundus fotoğraflarını içermekte olup, sınıflandırma görevinde genelleştirilebilir ve dengeli 
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bir model geliştirmek amacıyla birleştirilmiştir. Söz konusu veri setleri; Glaucoma (glokom), 

Cataract (katarakt), Age-Related Macular Degeneration (yaşa bağlı makula dejenerasyonu), 

Diabetic Retinopathy (diyabetik retinopati), genel retina hastalıkları (retina_disease) ve 

normal retina olmak üzere altı farklı sınıfı kapsamaktadır. Bu hastalık kategorilerine ait örnek 

fundus görüntüleri Şekil 3.1’de sunulmuştur. Görseller, her bir hastalığın tipik görsel 

özelliklerini temsil etmekte ve sınıflar arası morfolojik farklılıkları ortaya koymaktadır. 

Başlangıçta, veri kümesinde ciddi bir sınıf dengesizliği gözlemlenmiştir; bazı hastalık 

sınıfları, diğerlerine kıyasla oldukça düşük sayıda örnek içermekteydi. Bu durumu 

dengelemek amacıyla veri kümesi örnekleme ve artırma teknikleriyle genişletilmiştir. 

Sonrasında tüm veri kümesi, %70 eğitim ve %30 test oranıyla tabakalı şekilde bölünmüştür. 

Bu yapılandırma sonucunda, eğitim seti 14.000 ve test seti 6.000 görüntüden oluşacak 

biçimde hazırlanmış; test kümesinde her sınıfın 1.000 görüntü ile eşit temsil edilmesi 

sağlanmıştır. Böylece, modelin genelleme yeteneği tüm sınıflarda dengeli olarak 

değerlendirilebilmiş, sınıfa dayalı önyargı riski azaltılarak anlamlı performans ölçütleri elde 

edilmiştir. 
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Şekil 0.1: Çalışmada kullanılan ACRIMA, ODIR-5K ve Glaucoma veri setlerinden örnek 

retina fundus görüntüleri. Görseller, sınıflar arası çeşitliliği ve patolojik özellikleri 

yansıtmaktadır 

3.2. Veri Artırımı 

Bu araştırmada kullanılan veri kümesi, altı ana göz hastalığı kategorisini temsil etmek 

amacıyla, retina fundus görüntülerini içeren birkaç açık kaynaklı veri deposundan 

derlenmiştir. Başlangıçta, veri kümesi oldukça dengesizdi, çünkü bazı hastalık sınıfları 

diğerlerine kıyasla önemli ölçüde yetersiz temsil ediliyordu. Veri çeşitliliğini artırmak ve adil 

bir değerlendirme ortamı sağlamak amacıyla kapsamlı bir ön işleme ve dengeleme yaklaşımı 
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izlenmiştir. Bu çabaların ardından, veri kümesi genişletilmiş ve yeniden yapılandırılmıştır, 

böylece her hastalık sınıfı eşit şekilde temsil edilen toplam 20.000 görüntü içerecek şekilde 

düzenlenmiştir. Tüm görüntüler kapsamlı kalite kontrollerinden geçirilmiş ve derin öğrenme 

analizi için uygun standart bir çözünürlüğe yeniden boyutlandırılmış, böylece tüm 

koleksiyonun format ve görünümünde tutarlılık sağlanmıştır. 

Model eğitimi ve değerlendirmesi için verileri hazırlamak amacıyla, veri setini 70/30 oranına 

göre eğitim ve test setlerine ayırılmıştır. Böylece, 14.000 görüntü eğitim için, 6.000 görüntü 

ise test için ayrılmıştır. Test setinin her hastalık kategorisinden tam olarak 1.000 görüntü 

içermesine özel dikkat gösterilmiş, böylece tüm sınıflar genelinde model performansının 

dengeli ve güvenilir bir şekilde değerlendirilmesi sağlanmıştır. Bu tabakalı bölünme, 

sınıfların eşit temsilini sağlamış ve hem öğrenme hem de değerlendirme aşamalarında 

önyargı riskini en aza indirmiştir. 

Derin öğrenme başarısı açısından veri çeşitliliğinin önemine dayanarak, eğitim sürecine 

çeşitli veri artırma teknikleri entegre edilmiştir. Rastgele döndürme, çevirme, yakınlaştırma, 

parlaklık ve kontrast ayarlamaları ile rastgele çeviriler ve kırpmalar uygulayarak, eğitim 

kümesindeki değişkenliği yapay olarak artırabilmiştir. Bu artırma işlemleri, eğitim sırasında 

çevrim içi ve dinamik biçimde uygulanmıştır, böylece model her dönemde yeni ve çeşitli 

görüntü varyasyonlarıyla karşılaşmıştır. Bu yaklaşım, modelin görülmemiş verilere 

genelleme yeteneğini güçlendirmekle kalmamış, aynı zamanda özellikle sınırlı örneklem 

boyutlarından muzdarip olan hastalık kategorileri için aşırı uyumun azaltılmasında da önemli 

bir rol oynamıştır. Sonuç olarak, bu birleşik veri hazırlama ve artırma stratejileri, bu 

çalışmada sağlam model geliştirme ve adil deneysel karşılaştırma için temel oluşturmuştur. 

Şekil 3.1 kullanılan veri setlerine ait örnek görüntülerin veri çeşitliliğini göstermektedir. 

3.3. Veri Ön İşleme 

Derin öğrenme modeline veri sağlamadan önce, giriş verilerinin kalitesini artırmak ve 

tutarlılığı sağlamak amacıyla ayrıntılı bir ön işleme süreci izlenmiştir. İlk adımda, tüm 

görüntüler kalite açısından değerlendirilmiş; bulanık, aşırı pozlanmış ya da artefakt içerenler 

veri setinden çıkarılmıştır. Bu kalite güvence adımı, gürültüyü en aza indirmek ve modelin 

yanıltıcı kalıpları öğrenmesini önlemek için çok önemlidir. 
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Kalite kontrolünü geçen görüntüler, modelin gereksinimlerine uygun olarak 224×224 piksel 

çözünürlüğe yeniden boyutlandırılmıştır. Bu hedef boyut hem hesaplama verimliliği hem de 

EfficientNetB0 mimarisinin giriş gereksinimlerine uymak için seçilmiştir. Boyutlandırma 

işlemi sırasında, en-boy oranları korunmuş ve retinanın yapısal bütünlüğü sağlamak amacıyla 

gerekli durumlarda görüntüler ortalanarak kırpılmıştır. 

Renk standardizasyonu, tüm veri setine tutarlı biçimde uygulanmıştır. Görüntülerin tamamı 

RGB renk uzayına dönüştürülerek, renk bilgisi açısından bütünlük sağlanmıştır, böylece 

hastalık sınıflarını ayırt etmek için genellikle hayati önem taşıyan önemli renk bilgilerinin 

korunması sağlanmıştır. Gri tonlamalı veya anormal kanallara sahip olduğu tespit edilen 

görüntüler, veri setinin genel bütünlüğünü korumak için düzeltilmiş veya hariç tutulmuştur. 

Model eğitiminin kararlılığını ve hızını daha da artırmak için, tüm görüntülerdeki piksel 

değerleri, her piksel 255'e bölünerek [0, 1] aralığına normalleştirilmiştir. Bu normalleştirme 

adımı, öğrenme sürecini stabilize etmeye yardımcı olmuş ve optimizasyon sırasında daha iyi 

yakınsama sağlamıştır. 

Hem eğitim hem de test veri kümelerine tamamen aynı ön işleme adımlarını uygulamak 

oldukça önemlidir. Bu işlem, iki veri bölümü arasında istenmeyen tutarsızlıkları ortadan 

kaldırmış ve modelin performansının adil ve tarafsız bir şekilde değerlendirilmesini 

sağlamıştır. Bu sistematik ön işleme süreci sayesinde, yapılan deneylerde kullanılan her 

görüntünün yüksek kaliteli, doğru biçimde biçimlendirilmiş ve etkili derin öğrenme analizi 

için uygun olması sağlanmıştır. 

3.4. Model Mimarisi 

Bu çalışmada, retina hastalığı sınıflandırması için EfficientNetB0 derin öğrenme mimarisi 

tercih edilmiştir. Bu mimari, yüksek doğruluk düzeyi ile hesaplama verimliliği arasındaki 

dengeyi sağlayarak tıbbi görüntü analizi gibi hassas uygulamalar için ideal bir yapı 

sunmaktadır. Ağın bileşik ölçekleme stratejisi sayesinde model, derinlik, genişlik ve giriş 

çözünürlüğünü eşzamanlı şekilde ayarlayarak fundus görüntülerinde karşılaşılan çeşitli 

yapısal özelliklere duyarlılık gösterebilmektedir. 
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Genel iş akışı, giriş fundus görüntülerinin toplanmasıyla başlayıp, ön işleme süreciyle devam 

etmektedir. Ardından veri kümesi, iki farklı kola ayrılmaktadır: biri veri artırma uygulanan, 

diğeri ise ham verilerle çalışılan yoldur. Her iki yol da EfficientNetB0 modeli ile eğitilmekte 

ve sınıflandırma sonuçları, detaylı metrikler ve karışıklık matrisleri ile değerlendirilmektedir. 

Bu akış, Şekil 3.2'de şematik olarak sunulmuştur. 

Modelin performansını artırmak amacıyla transfer öğrenme ve ince ayar teknikleri 

uygulanmıştır. EfficientNetB0, ImageNet veri kümesi üzerinde önceden eğitilmiş ağırlıklarla 

başlatılmış; ardından tüm katmanlar açılarak, fundus görüntülerine özgü özelliklerin 

öğrenilmesine olanak sağlanmıştır. Bu sayede, hem düşük seviyeli kenar ve doku özellikleri 

hem de yüksek seviyeli patolojik desenler model tarafından etkili biçimde öğrenilmiştir. 

Modelin özgün sınıflandırma katmanı çıkarılmış ve yerine altı nöronlu, softmax aktivasyonlu 

yeni bir fully connected katman eklenmiştir. Bu yapı, her bir nöronun bir hastalık sınıfını 

temsil etmesini sağlamaktadır. Ayrıca, aşırı öğrenmenin önüne geçmek amacıyla mimariye 

dropout katmanları ve batch normalization bileşenleri entegre edilmiştir. Bu yapılandırma, 

hem veri artırımı yapılan hem de yapılmayan senaryolarda tutarlı biçimde kullanılmıştır. 
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Şekil 0.2: Önerilen Retina Hastalığı Sınıflandırma Sisteminin Genel İş Akışı 

3.4.1. Veri Artırımı ile EfficientNetB0 

İlk deneysel senaryoda, EfficientNetB0 mimarisi kapsamlı bir veri artırma stratejisiyle 

birlikte uygulanmıştır. Model, ImageNet veri kümesi üzerinde önceden eğitilmiş ağırlıklarla 

başlatılmış; tüm katmanları açılarak, fundus görüntülerine özgü özelliklerin öğrenilmesine 

olanak tanınmıştır. Bu şekilde, model yalnızca sınıflandırma katmanında değil, ağın tüm 

seviyelerinde görev odaklı öğrenme gerçekleştirebilmiştir. 

Eğitim sürecinde, veri çeşitliliğini artırmak amacıyla kapsamlı bir artırma paketi 

kullanılmıştır. Bu paket, rastgele döndürme, yatay ve dikey çevirme, parlaklık ve kontrast 

değişiklikleri, yakınlaştırma, çevirme ve kırpma gibi dönüşümleri içermektedir. Söz konusu 

dönüşümler, her epoch sırasında çevrim içi şekilde uygulanarak modelin her defasında yeni 

varyasyonlarla karşılaşması sağlanmıştır. Böylece model, yönelim, ölçek ve aydınlatma gibi 

doğal varyasyonlara karşı daha dayanıklı hale gelmiştir. 
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Modelin sınıflandırma başlığı, altı hastalık sınıfına karşılık gelen softmax aktivasyonlu yeni 

bir fully connected katmanla değiştirilmiştir. Aşırı öğrenme riskini azaltmak amacıyla 

dropout katmanları ile düzenleme sağlanmış ve genel mimaride batch normalization 

kullanılmıştır. Eğitim süreci boyunca Adam optimizasyon algoritması tercih edilmiş, 

öğrenme oranı 0.0001 olarak belirlenmiş ve batch boyutu 32 olacak şekilde 

yapılandırılmıştır. Eğitim 50 epoch boyunca gerçekleştirilmiş, en iyi doğrulama 

performansına sahip model ağırlıkları kaydedilmiştir. 

Eğitim sırasında, doğruluk ve kayıp eğrileri yakından izlenmiştir. Şekil 4.2 ve 4.3’te 

gösterildiği gibi, hem eğitim hem de doğrulama doğruluğunda istikrarlı bir artış 

gözlemlenmiş, bu da modelin yalnızca verileri ezberlemediğini; aynı zamanda genelleme 

yeteneği kazandığını göstermiştir. Paralel olarak, kayıp değerlerinde sürekli bir azalma 

kaydedilmiş ve öğrenme sürecinin dengeli ilerlediği doğrulanmıştır. 

Son değerlendirme, her sınıftan 1.000 görüntü içeren bağımsız test seti üzerinde 

gerçekleştirilmiştir. Tablo 4.1'de sunulan sınıflandırma raporunda, tüm sınıflarda precision, 

recall ve F1 skorlarının %91’in üzerinde olduğu gözlemlenmiştir. Şekil 4.1’de sunulan 

karışıklık matrisi ise, modelin sınıflar arasındaki ayrım gücünü açık biçimde ortaya 

koymaktadır. Yanlış sınıflandırmaların sayıca az ve dengeli dağılmış olması, sınıflar arasında 

belirgin bir önyargının oluşmadığını göstermektedir. 

Genel olarak, veri artırımı ile eğitilen EfficientNetB0 modeli; sınıf dengesizliği, veri kıtlığı 

ve varyasyon eksikliği gibi zorluklara karşı yüksek doğruluk ve genelleme başarımı 

sergilemiştir. Bu sonuçlar, tıbbi görüntü sınıflandırmasında veri artırmanın vazgeçilmez bir 

bileşen olduğunu ve EfficientNet mimarisinin bu bağlamda oldukça uyumlu çalıştığını ortaya 

koymaktadır. 

3.4.2. Veri Artırımı Olmadan EfficientNetB0 

İkinci deneysel senaryoda, EfficientNetB0 mimarisi aynı şekilde uygulanmış; ancak eğitim 

sürecinde hiçbir veri artırma tekniği kullanılmamıştır. Bu yaklaşım, artırma uygulanmaksızın 

modelin doğal öğrenme kapasitesini değerlendirmek ve veri çeşitliliği olmadan oluşabilecek 

sınırlamaları gözlemlemek amacıyla yapılandırılmıştır. 
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Model yine ImageNet veri seti üzerinde önceden eğitilmiş ağırlıklarla başlatılmış, tüm 

katmanlar açılarak ince ayar yapılmıştır. Sınıflandırma katmanı, altı sınıfa karşılık gelen 

softmax aktivasyonlu bir fully connected katman ile değiştirilmiş, dropout katmanları 

eklenerek düzenleme sağlanmıştır. Tüm eğitim parametreleri optimizer (Adam), öğrenme 

oranı (0.0001), batch boyutu (32) ve epoch sayısı (50) artırma yapılan senaryo ile birebir aynı 

tutulmuştur. Bu sayede, performans farklarının yalnızca veri artırmanın varlığına dayandığı 

güvenilir bir şekilde analiz edilmiştir. 

Model yalnızca orijinal ve değiştirilmemiş görüntüler üzerinde eğitildiğinden, çeşitli 

yönelimler, ölçekler ve ışık koşulları gibi gerçek dünya varyasyonlarını görme imkânı kısıtlı 

kalmıştır. Bu durum, modelin genelleme yeteneğini azaltmış ve belirli sınıflarda aşırı uyuma 

yol açabilecek bir ortam yaratmıştır. 

Eğitim süreci sırasında izlenen doğruluk ve kayıp eğrileri, bu sınırlamaları açıkça ortaya 

koymuştur. Eğitim doğruluğu her ne kadar %96 seviyesine ulaşsa da, doğrulama 

doğruluğundaki artış erken dönemlerde duraklamış ve sınırlı kalmıştır. Aynı şekilde, 

doğrulama kaybı, belirli bir noktadan sonra yükselme eğilimi göstermiştir. Bu gözlemler, 

modelin eğitim verilerini ezberlediğini, ancak yeni ve görülmemiş örneklere genelleme 

yapmada zorlandığını işaret etmektedir. 

Şekil 4.4’de gösterilen karışıklık matrisi, bu senaryoda yapılan yanlış sınıflandırmaların, 

özellikle başlangıçta az sayıda örnekle temsil edilen sınıflarda yoğunlaştığını göstermektedir. 

Bu durum, sınıf dengesizliğinin azaltılmaması ve veri çeşitliliğinin artırılmaması halinde, 

modelin ayırt edici öğrenme yeteneğinin azaldığını desteklemektedir. 

Sonuç olarak, bu deneysel senaryo, artırma yapılmadan eğitilen modellerin yüksek eğitim 

doğruluğuna rağmen genelleme konusunda sınırlı kaldığını ortaya koymaktadır. Veri 

artırmanın yokluğu, modelin yalnızca ezberleme temelli öğrenme gerçekleştirmesine neden 

olmuş ve klinik açıdan güvenilir bir sınıflandırma performansının önünde engel teşkil 

etmiştir. Bu durum, artırmanın özellikle sınırlı örnek içeren tıbbi veri setlerinde vazgeçilmez 

bir bileşen olduğunu bir kez daha kanıtlamaktadır. 
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3.4.3. VGG16 (Temel Karşılaştırma Modeli)  

VGG16 da güçlü bir temel model olduğu için, EfficientNetB0’un kazançlarını adil biçimde 

ölçmek için deneylere eklenmiştir. Bunu yapmak için ImageNet üzerinde ön-eğitilmiş 

VGG16’yı yüklendikten sonra, özgün sınıflandırma bloğunu çıkartılarak ve ACRIMA, 

Cataract, Glaucoma, ODIR-5K, ORIGA ve Retina_Disease sınıflarını temsil eden altı çıkışlı 

softmax katmanından önce Global Average Pooling ve Dropout içeren hafif bir başlık 

eklenmiştir. Girdi boyutunu 224×224×3 ve piksel normalizasyonunu [0,1] düzeyinde tutarak 

EfficientNet-B0 ile aynı ön-işleme işlemi korunmuştur. Tüm katmanları 50 epoch boyunca 

Adam (öğrenme oranı 1e-4), kategorik çapraz entropi ve 32’lik yığın boyutu ile ince 

ayarlanmış; doğrulama kaybı ve doğruluğunu izleyerek, early stopping ve model checkpoint 

ile en iyi val_loss değerine sahip ağı saklayarak aşırı uyumu sınırlamak amacıyla bir sınır 

konulmuştur.  Her epoch için eğitim/doğrulama kaybı ve doğruluğunu kaydetmektedir, 50 

epoch’luk program boyunca eğrileri çizerek sistemin kararlı optimizasyonu doğrulanır. 

Eğitimden sonra en iyi VGG16 kontrol noktası test kümesi üzerinde değerlendirilmiş, 

argmax ile etiketleri üretilmiş, altı sınıf için sınıflandırma raporu ve karışıklık matrisi 

hesaplanmış ve doğruluk/kayıp eğrileri ile karışıklık matrisini EfficientNet-B0 ile aynı görsel 

biçimde sunularak mimari, eğitim kurulumu ve raporlama açısından doğrudan 

karşılaştırılabilirliği sürdürülmüştür. 

3.5. Eğitim Prosedürü 

- EfficientNetB0 ve VGG16 modelleri aynı eğitim protokolü altında çalıştırılarak, veri 

artırmanın etkisini yalıtmış, adil bir karşılaştırma kurulmuştur. Böylece genelleme başarımı 

güvenilir biçimde değerlendirilmiştir.  

- Her iki deneysel senaryoda (artırmalı ve artırmasız) aynı hiperparametreleri uygulanmış, 

modeller ImageNet üzerinde önceden eğitilmiş ağırlıklarla başlatılmıştır.  

- Tüm katmanları açarak retina görüntülerine özgü ayrımların katmanlar boyunca 

uyarlanması sağlanmış ve sınıflandırma başlığını altı çıkışlı softmax ile aynı giriş boyutu 

(224×224×3) ve aynı normalizasyon aralığı [0,1] altında tutularak iş hattı (pipeline) iki 

mimari arasında tam uyumlu tutulmuştur.  
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- Eğitimler 50 epoch’a kadar sürdürülmüş, Adam optimizasyonunu 1e-4 öğrenme oranı ve 

32’lik mini-batch ile yürütülmüş, kayıp fonksiyonu olarak kategorik çapraz entropi 

kullanılmış, aşırı uyumu sınırlamak amacıyla dropout ve gerekli yerlerde Batch 

Normalization uygulanmıştır.  

- Her epoch sonunda doğrulama doğruluğunu ve kaybını izleyerek, art arda on epoch boyunca 

gelişme görülmediğinde erken durdurmayı tetikleyerek aşırı uyuma bir sınır çekilmiştir.  

- Bu süreçte en iyi doğrulama başarımını veren ağırlıklar saklanmış, eğitim ve doğrulama 

için doğruluk/kayıp değerlerini 50 epoch zaman çizelgesi boyunca kaydederek, her iki 

modelin öğrenme dinamikleri aynı ölçekte raporlanmıştır.  

- Eğitimler tamamlandıktan sonra en iyi denetim noktası ayrılmış test kümesi üzerinde 

değerlendirilmiş, argmax ile nihai etiketleri üretilmiş, sınıflandırma raporu ve altı sınıf için 

karışıklık matrisi hesaplanarak, hem doğruluk kayıp eğrilerini hem de karışıklık matrisini 

tekdüze bir görsel şablonda sunarak EfficientNetB0 ve VGG16’nın mimari farklarının 

performansa yansımasını doğrudan karşılaştırılabilir hale getirilmiştir. 

3.6. Değerlendirme Metrikleri 

Eğitimli modellerin performansını kapsamlı bir şekilde değerlendirmek için, çok sınıflı 

sınıflandırma problemlerine uygun bir dizi iyi bilinen değerlendirme metriği kullanılmıştır.  

Öncelikle, her sınıf için doğru ve yanlış tahminlerin dağılımını görselleştirmek, yanlış 

sınıflandırma modellerini vurgulamak ve model ayrımında potansiyel zayıflıkları ortaya 

çıkarmak için bir karışıklık matrisi oluşturulmuştur.  Şekil 3.3’te gösterilen alanlar: 

TP: Pozitif örneğin doğru sınıflandırılması işlemidir.  

TN: Negatif örneğin doğru sınıflandırılması işlemidir.  

FP: Negatif örneğin yanlış sınıflandırılması işlemidir.  

FN: Pozitif örneğin yanlış sınıflandırılması işlemidir. 
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Şekil 0.3: Karışıklık matrisi yapısı 

Sınıflar arasında örneklerin dağılımını açıklayan genel bir özet sağlamak için Doğruluk 

(Accuracy) , Kesinlik ya da hassasiyet (Precision) , Duyarlılık ya da geri çağırma (Recall) ve 

F1 Puanının makro ve ağırlıklı ortalamaları da rapor edilmiştir. Tüm metriklerin formülleri 

Şekil 3.4’te verilmektedir. 

 

 

Şekil 0.4: Doğruluk, Kesinlik, Duyarlılık ve F1 Skoru formülleri 

Raporlanan birincil metrik, test setindeki tüm örnekler arasında doğru sınıflandırılan 

görüntülerin oranı olarak tanımlanan genel doğruluktur. Doğruluk, performansın genel bir 

ölçüsünü sağlasa da sınıf dengesizliği durumunda modelin davranışını tam olarak 

yansıtmayabilir. 
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Bunu gidermek amacıyla, her hastalık kategorisi için hassasiyet, geri çağırma ve F1 puanı da 

hesaplanmıştır. Hassasiyet, belirli bir sınıf olarak tahmin edilen tüm örnekler arasında doğru 

pozitif tahminlerin oranını ölçerken; geri çağırma, o sınıfın tüm gerçek örnekleri arasında 

doğru olarak tanımlanan doğru pozitiflerin oranını ifade eder. Hassasiyet ve geri çağırmanın 

harmonik ortalamasını temsil eden F1 puanı ise her iki hata türünün dengeli bir şekilde 

değerlendirilmesini sağlamaktadır. 

Bu değerlendirme ölçütleri dizisi kullanılarak, model performansının kapsamlı ve ayrıntılı 

bir analizi sağlanmış ve veri artırımı ile yapılan ve yapılmayan deneyler arasında adil bir 

karşılaştırma yapılması kolaylaştırılmıştır.  
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4.DENEY SONUÇLARI 

Bu bölümde EfficientNetB0 ve VGG16 mimarileri aynı eğitim protokolü altında 

değerlendirilmiş, veri artırmanın etkisini izole ederek çok sınıflı retina hastalığı 

sınıflandırmasında genel doğruluk, kesinlik, geri çağırma, F1 puanı ve karışıklık matrisleri 

üzerinden kapsamlı bir analiz sunulmuştur. Her iki model için eğitim ve doğrulama sürecinin 

50 epoch boyunca izlediği öğrenme dinamiklerini doğruluk ve kayıp eğrileri ile 

görselleştirip, aşırı uyum sinyalleri denetlenmiş ve sınıf bazında güçlü yönleri ile sınırları 

açığa çıkartılmıştır.  

İlk olarak veri artırımı bulunan ve bulunmayan senaryolarda elde edilen genel sınıflandırma 

başarımını özetlenip, ardından ayrıntılı karışıklık matrisleri ve sınıflandırma raporlarıyla 

doğru ve yanlış tahminlerin hastalık kategorileri arasındaki dağılımı netleştirilmiş ve 

gerektiğinde sınıf bazında karşılaştırmalar ile yaygın karışma örüntülerine ilişkin çıkarımlar 

sunulmuştur.  

Burada EfficientNetB0 birincil yaklaşımımızı temsil ederken VGG16 güçlü bir taban model 

olarak kıyaslamayı somutlaştırıp, metodolojinin pratik sonuçlarına zemin hazırlamıştır. 

VGG16 da aynı veri işleme ve ince ayar kurulumuyla eğitilmiş ve değerlendirilmiştir. 50 

epoch boyunca kaydedilen doğruluk ve kayıp değerleriyle öğrenme eğrileri sunulmuş, bu 

model, ImageNet ağırlıklarıyla başlatılan tam ince ayar sonucunda %90,35 eğitim 

doğruluğuna ve %86,33 test doğruluğuna ulaşmıştır.  Bu işlem sınıf bazında dengeli bir profil 

üretniştir (her sınıf için destek 1000 örnektir);  

 ACRIMA için  precision: 0,86, recall: 0,85, F1: 0,85,  

 Cataract için  precision: 0,94, recall: 0,83, F1: 0,88,  

 Glaucoma için  precision: 0,62, recall: 0,88,  F1: 0,73,  

 ODIR-5K için  precision: 0,73, recall: 0,86,  F1: 0,79,  

 ORIGA için  precision: 0,86, recall: 0,83,  F1: 0,85 

 Retina_Disease için  precision: 0,89, recall: 0,93,  F1: 0,91  

İlgili karışıklık matrisi diyagonal hâkimiyeti korurken Glaucoma sütununa doğru yanlış 

pozitif birikimiyle yüksek geri çağırma–daha düşük kesinlik dengesini görünür kılmış ve bu 
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desen VGG16’nın belirli sınıf çiftlerinde (örneğin ACRIMA/ORIGA/ODIR-5K ↔ 

Glaucoma) ayrım yapmakta zorlandığını göstermiştir. Buna karşılık eğitim–doğrulama 

eğrileri 50 epoch boyunca istikrarlı bir optimizasyonu işaret etmektedir. 

EfficientNetB0 aynı koşullar altında raporlayarak, eğitim ve doğrulama eğrilerinin 50 

epoch’luk seyrini ve test kümesi üzerindeki sınıf bazlı ölçütleri ilgili şekiller ve çizelgelerle 

sunulmuştur. Bu model, bileşik ölçekleme ve temsil verimliliği sayesinde sınıflar arası karar 

sınırlarını daha netleştirmiş, karışıklık matrisinde yanlış pozitif/negatif yükünü daha dengeli 

dağıtmış ve VGG16’ya kıyasla daha yüksek genel doğruluk ve makro F1 üretmiştir. Böylece 

iki mimari arasında mimari farkların performansa yansıması doğrudan karşılaştırılabilir hâle 

gelmiş, veri artırmanın her iki modelde de genelleme başarımını iyileştirirken etki 

büyüklüğünün sınıfa göre değişebildiğini gözlemlenmiştir. 

4.1. Veri Artırımı ile EfficientNetB0 

Gerçekleştirilen deneylerin artırılmış senaryosunda, model eğitimi öncesinde kapsamlı bir 

veri artırımı teknikleri paketi aracılığıyla eğitim veri setini sistematik olarak geliştirmiştir. 

Bu yaklaşım, hem sınıf dengesizliği hem de belirli hastalık kategorilerinde nispeten sınırlı 

sayıda örnek içeren orijinal veri kümesinin doğasında var olan zorluklardan kaynaklanmıştır. 

Rastgele döndürme, yatay ve dikey çevirme, değişken ölçeklendirme, parlaklık ve kontrastta 

kontrollü değişiklikler, rastgele çevirme ve kırpma gibi artırmalar eklenerek, çok daha çeşitli 

ve temsil edici bir eğitim ortamı yaratılabilmiştir. Bu dönüşümler her dönem boyunca eğitim 

görüntülerine gerçek zamanlı olarak uygulanmış, modelin sürekli olarak yeni ve çeşitli 

görüntü örneklerine maruz kalması sağlanmıştır. Bu strateji, sinir ağının gerçek dünyadaki 

tıbbi görüntüleme senaryolarında yaygın olan yönelim, ölçek ve aydınlatma farklılıklarına 

karşı değişmezlik geliştirmesini teşvik etmek için özellikle etkili olmuştur. 

Model mimarisinde optimum performans için ağ derinliği, genişliği ve çözünürlüğünü 

dengelemek üzere bileşik ölçeklendirme yeteneklerinden yararlanan EfficientNetB0 

kullanılmıştır. Ağ, büyük ölçekli ImageNet veri setinde önceden eğitilmiş ağırlıklarla 

başlatılıp, düşük ve orta düzey görsel özellikler için sağlam bir temel sağlanmıştır. Modeli 

retina hastalığı sınıflandırmasının özel görevine uyarlamak için, tüm katmanları çözerek tam 

bir ince ayar yapılmıştır. Bu işlem, modelin sınıflandırma başlığıyla sınırlı kalmak yerine tüm 
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ağ boyunca temsilini uyarlamasına olanak tanımıştır. Son tam bağlantılı katman, incelenen 

hastalık kategorilerinden her birine karşılık gelen altı çıktı üretecek şekilde değiştirildmiş, 

her sınıf için olasılıklı bir çıktı üretmek için softmax aktivasyon fonksiyonu uygulanmıştır. 

Aşırı uyumlamaya karşı daha fazla koruma sağlamak için, ağa dropout katmanları 

eklenmiştir. Bu eklenti eğitim sırasında nöronların bir alt kümesini rastgele devre dışı 

bırakarak ek bir düzenleme düzeyi getirmektedir. 

Eğitim, uyarlanabilir öğrenme oranı özellikleri nedeniyle derin öğrenme için çok uygun olan 

Adam optimizer kullanılarak gerçekleştirilmiştir. İlk öğrenme oranı 0,0001 olarak 

belirlenmiş, yakınsama hızı ile gradyan kararlılığını dengelemek için 32 görüntülük bir parti 

boyutu kullanılmıştır (batch size). Sınıflandırma sorununun çok sınıflı doğasını yansıtan 

kategorik çapraz entropi kayıp fonksiyonu uygun görülmüştür. Model elli tekrara (epoch) 

kadar eğitilmiş, doğrulama doğruluğu izlenerek erken durdurma uygulanmıştır. Önceden 

tanımlanmış bir tekrar sayısı boyunca doğrulama doğruluğu iyileşmediğinde, aşırı 

uyumlamayı önlemek için eğitim durdurulmuş, en yüksek doğrulama doğruluğuna karşılık 

gelen ağırlıklar nihai değerlendirme için saklanmıştır. 

Eğitim süreci boyunca, eğitim ve doğrulama kümeleri için hem doğruluk hem de kayıp 

metriklerinin gelişimi yakından izlenmiştir. Şekil 4.2'de sunulan doğruluk eğrisi hem eğitim 

hem de doğrulama doğruluğunda tutarlı bir artış olduğunu ve iki eğrinin dönemler boyunca 

birbirine yakın şekilde hizalandığını göstermektedir. Bu yakın hizalanma, modelin yalnızca 

eğitim verilerini ezberlemediğini; bunun yerine, görülmemiş örnekler için etkili bir şekilde 

aktarılabilen özellikleri öğrendiğini göstermesi açısından başarılı genellemenin güçlü bir 

göstergesidir. Benzer şekilde, Şekil 4.3'te gösterilen kayıp eğrisi, hem eğitim hem de 

doğrulama kaybında istikrarlı bir düşüş olduğunu ve sapma veya düzleşme belirtisi 

bulunmadığını ortaya koymaktadır. Bu durum, veri artırımı altında öğrenme sürecinin 

sağlamlığını daha da desteklemektedir. 

Eğitim tamamlandıktan sonra, modelin performansı, her hastalık kategorisi için bin adet 

görüntüden oluşan bağımsız test seti üzerinde titizlikle değerlendirilmiştir. Tablo 4.1'de 

özetlenen kapsamlı sınıflandırma raporu, altı sınıfın tümü için kesinlik, geri çağırma ve F1 

puanlarının %91.83'i aştığını ortaya koymaktadır. Bu, retina hastalıklarının tüm yelpazesi 
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boyunca dengeli ve güvenilir bir sınıflandırma performansını yansıtmaktadır. Şekil 4.1'de 

gösterilen karışıklık matrisi, her sınıf için tahminlerin ve hataların görsel bir dökümünü 

sunmaktadır. Test görüntülerinin çoğu doğru bir şekilde sınıflandırılmış olup, yalnızca küçük 

bir kısmı yanlış sınıflandırılmıştır ve bunlar genellikle farklı kategoriler arasında eşit olarak 

dağılmıştır. Bu dağılım, modelin yeterli veri çeşitliliği ile eğitildiğinde karmaşık retina 

patolojilerini ayırt etme yeteneğini vurgulamaktadır. 

Veri artırmanın eğitim sürecine entegrasyonu, sadece genel doğruluk açısından değil, aynı 

zamanda sınıf başına metriklerin tutarlılığı açısından da model performansında önemli bir 

iyileşme sağlamaktadır. Bu bulgular, özellikle mevcut verilerin sınırlı veya dengesiz olduğu 

durumlarda tıbbi görüntülemede artırma stratejilerinin değerini pekiştirmekte, sağlam eğitim 

protokolleriyle birleştirildiğinde EfficientNetB0 mimarisinin uyarlanabilirliğini ve gücünü 

vurgulamaktadır. 

Veri artırma ile eğitilmiş EfficientNetB0 modelinin karışıklık matrisi Şekil 4.1'de 

sunulmuştur. Bu matris, tüm hastalık kategorilerinde modelin tahminlerini ayrıntılı bir 

şekilde görselleştirerek, hem doğru sınıflandırmaları hem de yanlış sınıflandırmaların 

dağılımını vurgulamaktadır. Diyagonal elemanlar, her sınıf için doğru sınıflandırılmış 

örneklerin sayısını temsil ederken, diyagonal dışı elemanlar, modelin bir hastalığı başka bir 

hastalıkla karıştırdığı durumları gösterir. 

Tablo 0.1: Eğitim doğruluğu ile doğrulama (test) doğruluğunun karşılaştırılması (Artırma ile) 

Eğitim doğruluğu %96.3 

Test doğruluğu %91.83 
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Şekil 0.1: Göz Hastalıkları Sınıflandırması için Karışıklık Matrisi (Artırma ile) 

 

 

Şekil 0.2: Eğitim ve Doğrulama Doğruluğu (Artırma ile) 
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Şekil 0.3: Eğitim ve Doğrulama Kaybı (Artırma ile) 

Şekil 4.1'de gösterildiği gibi, her sınıftaki test örneklerinin çoğu doğru bir şekilde 

sınıflandırılmış olup, diğer kategorilere dağılmış olan hataların oranı çok azdır. Özellikle, 

sınıflandırma raporunda da yansıtıldığı gibi, tüm sınıflar için tutarlı bir yüksek geri çağırma 

ve hassasiyet modeli vardır. Karışıklık matrisinin dengeli yapısı, modelin ayırt edici gücünü 

artırmada ve belirli bir sınıfa yönelik önyargıyı azaltmada veri artırmanın etkinliğini 

güçlendirmektedir. Tüm kategorilerde gösterilen bu güçlü performans, çok sınıflı retina 

hastalığı sınıflandırmasında benimsenen metodolojinin sağlamlığını ve klinik 

uygulanabilirliğini göstermektedir. 

4.2 Veri Artırımı Olmadan EfficientNetB0 

İkinci deney senaryosunda, EfficientNetB0 mimarisi, herhangi bir veri artırma tekniği 

uygulanmadan orijinal retina görüntü veri seti üzerinde eğitilmiştir. Bu yaklaşım, yapay 

olarak artırılmış veri çeşitliliği ve miktarı olmadan modelin doğal öğrenme dinamiklerini 

vurgulamak için bir temel oluşturmak amacıyla tasarlanmıştır. Epok sayısı, parti boyutu, 

optimize edici ve öğrenme oranı dahil olmak üzere tüm ağ parametreleri, artırılmış deneyde 

kullanılanlarla aynı tutulmuştur. Böylece, performansta gözlemlenen farklılıkların yalnızca 

artırmanın varlığı veya yokluğuna atfedilebilmesi sağlanmıştır. 

Eğitim sırasında, model yalnızca sınırlı sayıda orijinal görüntüye maruz bırakılmıştır. 

EfficientNetB0, önceden eğitilmiş ImageNet ağırlıkları ile başlatılmış ve tüm katmanlar ince 
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ayar için çözülmüş olsa da, artırmanın olmaması, modelin görüntü yönelimi, ölçek ve 

aydınlatma açısından çeşitli varyasyonları deneyimleme fırsatının daha az olduğu anlamına 

gelmektedir. Sonuç olarak, ağ yeni örnekleri genelleştiren sağlam özellikleri öğrenmek 

yerine eğitim verilerini ezberleme olasılığı daha yüksek olduğu için aşırı uyuma daha duyarlı 

hale gelmiştir. 

Bu deneyin sonuçları, bu kısıtlamaların etkisini açıkça yansıtmaktadır. Tablo 4.2' de 

gösterildiği gibi, genel test doğruluğu %84.24' e düşmüş, makro ortalama hassasiyet, geri 

çağırma ve F1 puanları da 0,84' e düşmüştür. Performanstaki bu düşüş, eğitim ve doğrulama 

doğruluğu ve kayıp eğrileriyle (Şekil 4.4 ve 4.5) daha da net bir şekilde gösterilmektedir. 

Eğitim doğruluğu artmaya devam ederek %96'ya ulaşırken, doğrulama doğruluğu çok daha 

erken bir aşamada sabit kalmış ve nihayetinde oldukça düşük bir değere yakınsamıştır. 

Benzer şekilde, doğrulama kayıp eğrisi, başlangıçta bir düşüşün ardından durgunluk ve hatta 

sonraki dönemlerde hafif bir artış göstermiştir; bu da aşırı uyumun açık bir göstergesidir. 

Şekil 4.6' da sunulan karışıklık matrisi, bu senaryoda modelin davranışına ilişkin ek bilgiler 

sunar. Artırılmış deney ile karşılaştırıldığında, özellikle veri kümesinde başlangıçta yeterince 

temsil edilmeyen kategorilerde, yanlış sınıflandırmalarda belirgin bir artış olmuştur. Matrisin 

diyagonal değerleri hala baskın olsa da, diyagonal dışı hatalar daha yaygındır, bu da modelin 

görel olarak benzer retina hastalıklarını ayırt etme yeteneğinin azaldığını gösterir. 

Tablo 0.2  Artırma olmaksızın eğitim doğruluğu ile doğrulama (test) doğruluğunun 

karşılaştırılması 

Eğitim doğruluğu 96%  

Test doğruluğu %84.24 
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Şekil 0.1: Karışıklık Matrisi (Artırma Olmadan) 

 

Şekil 0.2: Eğitim ve Doğrulama Doğruluğu (Artırma Olmadan) 
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Şekil 0.3: Eğitim ve Doğrulama Kaybı (Artırma olmadan) 

Bu bulgular, artırma yapılmadan sınırlı ve dengesiz tıbbi veri kümeleri üzerinde derin 

öğrenme modellerini eğitmenin zorluklarını vurgulamaktadır. Hem genel hem de sınıf başına 

performanstaki belirgin düşüş, eğitim ve doğrulama eğrileri arasındaki farkın genişlemesi ve 

yanlış sınıflandırma oranlarının artması, otomatik hastalık sınıflandırma görevlerinde klinik 

olarak anlamlı sonuçlar elde etmek için veri genişletme stratejilerinin gerekliliğini ortaya 

koymaktadır. 

İki deneysel senaryo; veri artırımı ile ve veri artırımı olmadan yapılan eğitimin arasındaki 

karşılaştırmalı analiz, retina hastalığı sınıflandırması için sağlam derin öğrenme modellerinin 

geliştirilmesinde veri çeşitliliğinin kritik rolünü vurgulamaktadır. Veri artırımı teknikleri 

eğitim sürecine entegre edildiğinde, EfficientNetB0 modeli tüm hastalık kategorilerinde 

tutarlı bir şekilde daha yüksek doğruluk, geri çağırma ve F1 puanları elde etmiştir. Bu 

iyileşme en belirgin şekilde, makro ortalama metriklerde ortaya çıkmıştır; veri artırımı ile 

hem doğruluk hem de geri çağırma oranı %96'yi aşarken, veri artırımı olmadan bu oran 

sadece %84.24 olarak ölçülmüştür. Eğitim ve doğrulama eğrilerinin daha yakından 

incelenmesi, bu gözlemi daha da vurgulamaktadır. Veri artırımı ile, eğitim ve doğrulama 

kümeleri için hem doğruluk hem de kayıp eğrileri yakın bir uyum göstermiştir, bu da etkili 

genelleme ve minimum aşırı uyumun göstergesidir. Buna karşılık, artırma olmadan eğitilen 

model, eğitim ve doğrulama doğruluğu arasında belirgin bir fark sergilemiş, eğitimin sonuna 
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doğru doğrulama kaybında bir artış görülmüştür. Bu, modelin sınırlı sayıda değişmeyen 

görüntüye dayanması nedeniyle aşırı uyumun açık işaretleridir. 

Karışıklık matrisleri de artırılmış modelin görsel olarak benzer hastalık sınıflarını daha iyi 

ayırt edebildiğini ve matriste daha az yanlış sınıflandırma olduğunu ortaya koymuştur. 

Artırma olmadan, hatalar artmış, başlangıçta yeterince temsil edilmeyen veya ayırt edilmesi 

daha zor olan kategorilerde yoğunlaşma eğilimi göstermiş, bu da derin öğrenme modellerinin 

veri dengesizliği ve kıtlığına karşı savunmasızlığını pekiştirmiştir. 

Özetle, bu karşılaştırmalı çalışmanın sonuçları, veri arttırmanın yalnızca isteğe bağlı bir 

iyileştirme değil, tıbbi görüntü sınıflandırmasında klinik olarak anlamlı performans elde 

etmek için gerekli bir bileşen olduğunu doğrulamaktadır. Artırma işlemi eğitim verilerinin 

etkili boyutunu ve değişkenliğini genişleterek, modelin daha genelleştirilebilir özellikleri 

öğrenmesini sağlar ve sahte korelasyonları ezberleme olasılığını azaltır. Hem nicel 

metriklerde hem de niteliksel tahmin modellerinde gözlemlenen iyileştirmeler, otomatik 

retina hastalığı taraması bağlamında geliştirme stratejilerinin değerini vurgulamaktadır. 

4.3 Veri Artırımı ile VGG16 

Veri artırma altında, VGG16 EfficientNetB0 ile aynı ön işleme, giriş boyutu, optimizasyon 

ve erken durdurma ayarlarıyla eğitilmiş, eğitim/test doğruluğu ve kayıp eğrileri 50 tekrar 

boyunca aynı eksenlerde tespit edilmiştir. Bu işlem, öğrenme dinamiklerini doğrudan 

karşılaştırılabilir hale getirmektedir; bu kurulumda, VGG16, ImageNet başlatma ve tam ince 

ayar ile %90,35 eğitim doğruluğu ve %86,33 test doğruluğu üretmiş, özellikle Glokom 

sınıfında, nispeten düşük hassasiyetle, EfficientNetB0 ile karşılaştırıldığında dengeli ancak 

daha sınırlı bir ayrım gücü sergilemiştir; bu da desen artırmanın sağladığı çeşitliliğe rağmen, 

sınıflar arası sınırların VGG16'da daha dar bir temsilden öğrenildiğini gösterir. 

Aynı görsel şablonda, Tablo 4.3' de ölçülen metrikler, Şekil 4.7' de artırımlı senaryo için 

karışıklık matrisi ve Şekil 4.8' de 50 tekrarlı doğruluk/kayıp eğrileri verilmektedir; böylece 

veri artırma altında hataların dağılımı, aşırı uyumun bastırılıp bastırılmadığı ve karar 

sınırlarının hem sayısal hem de görsel olarak nasıl değiştiği tutarlı bir şekilde 

gösterilmektedir. 
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Tablo 0.3: VGG16 için eğitim doğruluğu ile doğrulama (test) doğruluğunun karşılaştırılması 

(Artırma ile) 

Eğitim doğruluğu %90.35 

Test doğruluğu %86.33 

 

 

Şekil 0.4: Veri arttırımı ile VGG16 için karışıklık matrisi 
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Şekil 0.5: Veri arttırımı ile VGG16 için eğitim doğruluğu ve kaybı 

4.4. Veri Artırma Olmadan VGG16 

Bu son çalışmada sınıflandırıcı olarak VGG16 omurgası (ImageNet ağırlıklarıyla 

başlatılmış), global ortalama havuzlama ve altı sınıf için softmax çıkış katmanı (ACRIMA, 

Cataract, Glaucoma, ODIR-5K, ORIGA, Retina_Disease) kullanılmıştır. Fakat eğitim verisi 

artırma ve sınıf dengeleme olmadan yürütülmüştür. Bu durum sınıf dengesizliğine maruziyeti 

artırmış ve aşırı uyuma (overfitting) yol açmıştır. Eğitim doğruluğu ≈%98’e yükselirken 

doğrulama doğruluğu ≈%82 civarında sonuç vermiştir ve doğrulama kaybı geç evrelerde 

artmıştır. Ayrılmış test kümesinde model %78,94 doğruluk elde edebilmiştir. Karışıklık 

matrisi ağırlıklı olarak diyagonalde toplanmış olup en yaygın hatalar ODIR-5K örneklerinin 

Glaucoma/ORIGA sınıflarına kayması ve ACRIMA–Glaucoma arasında karışmalar şeklinde 

gözlenmiştir. Artırma kullanılan VGG16 uygulamasına (≈%86 doğruluk) kıyasla bu sonuçlar, 

genelleme başarımını iyileştirmek için veri artırmanın önemini vurgulamaktadır. 

Tablo 0.4. VGG16 için eğitim doğruluğu ile doğrulama (test) doğruluğunun 

karşılaştırılması (Artırma olmadan) 

Eğitim doğruluğu %98.68 

Test doğruluğu %78.94 
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Şekil 0.6: Veri artırma olmadan VGG16 için karışıklık matrisi  

 

 

Şekil 0.7: Veri artırma olmadan VGG16 için eğitim doğruluğu ve kaybı 

 

4.5. Önceki Çalışmalarla Karşılaştırmalı Analiz 

Tablo 4.4'te sunulan karşılaştırmalı sonuçların incelenmesi, bu çalışmada önerilen 

metodolojinin sağladığı ilerlemeleri açıkça göstermektedir. EfficientNetB0 tabanlı model, 
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kapsamlı veri artırma ve tam ince ayar ile birleştirildiğinde, ResNet50, DenseNet121, 

VGG16 ve InceptionV3 mimarilerini kullananlar da dahil olmak üzere literatürde bildirilen 

birkaç son teknoloji yaklaşımdan ve bu çalışmada eğitilen VGG16 temel modelinden (test 

doğruluğu %86,33  ( daha iyi performans göstermiştir. Özellikle, önerilen model %91,83'lük 

bir test doğruluğu elde etmiştir; bu, daha önce yayınlanan en iyi sonuçlardan önemli ölçüde 

daha yüksektir ve %91,83'lık bir makro ortalama F1 puanı elde etmiştir, bu da tüm hastalık 

sınıflarında hem yüksek hassasiyet hem de dengeli performans olduğunu göstermektedir. 

Bu üstün performansa birkaç faktör katkıda bulunmuştur. İlk olarak, sağlam veri artırma 

stratejilerinin uygulanması, eğitim verilerinin etkili boyutunu ve çeşitliliğini genişletmede 

çok önemli bir rol oynamıştır. Bu, modelin daha etkili bir şekilde genelleme yapmasını 

sağlamış, sınırlı sayıda anotlanmış örnekle yapılan tıbbi görüntüleme çalışmalarında sıklıkla 

gözlenen aşırı uyum riskini azaltmıştır. Aynı artırım protokolü VGG16 temel modeline de 

uygulanmış, elde edilen sonuçlar EfficientNetB0’te gözlenen üstünlüğün protokol 

farklarından değil mimari yetkinlikten kaynaklandığını desteklemiştir. Buna karşılık, önceki 

birçok çalışma, asgari veya geleneksel artırma teknikleriyle, esas olarak orijinal görüntülere 

dayanmaktaydı, bu da klinik ortamlarda mevcut olan gerçek dünyadaki değişkenliğin tümünü 

yakalama yeteneklerini sınırlıyordu. 

İkincisi, derinlik, genişlik ve çözünürlüğün bileşik ölçeklendirmesiyle bilinen bir mimari 

olan EfficientNetB0'ı kullanma kararı, daha incelikli ve ölçeklenebilir bir özellik çıkarma 

süreci sağlamıştır. ImageNet'ten transfer öğrenimi ve tüm ağ katmanlarının kapsamlı ince 

ayarlamalarıyla birleştirildiğinde, model çeşitli retina hastalıklarında ince patolojik 

özellikleri tanımlamak ve ayırt etmek için daha donanımlı hale gelmiştir. Bu tercih, mimari 

olarak daha geleneksel bir temel olan VGG16 ile yan yana kıyaslandığında da üstünlüğünü 

korumuş ve performans farkını nicel olarak görünür kılmıştır. Bu yaklaşım, omurga ağının 

büyük bölümlerini donduran veya oftalmik verilerin karmaşıklığına en uygun şekilde uyum 

sağlayamayabilecek daha az ifade gücü olan mimariler kullanan yöntemlerin aksine bir 

yaklaşımdır. 

Dahası, bu çalışmada benimsenen, tabakalı veri dengeleme, erken durdurma, düzenleme ve 

hem eğitim hem de doğrulama metriklerinin izlenmesini içeren titiz deney protokolü, rapor 
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edilen sonuçların hem istatistiksel olarak sağlam hem de klinik olarak ilgili olmasını 

sağlamıştır. Aynı titizlik VGG16 temel modeline de uygulanmış, bu modelin test doğruluğu 

%86,33 değerleri ile tutarlı bir taban çizgisi sunduğu gösterilmiştir; yüksek eğitim ve test 

doğruluğu ile güçlü makro ortalama F1 puanları arasındaki uyum, modelin performansının 

sadece uygun deney koşullarının bir sonucu değil, aynı zamanda görülmemiş klinik verilere 

gerçek genelleştirilebilirliğin bir göstergesi olduğuna dair güven vermektedir. Özetle, 

karşılaştırmalı analiz, otomatik retina hastalığı sınıflandırmasında güvenilir ve klinik olarak 

anlamlı sonuçlar elde etmek için gelişmiş derin öğrenme mimarileri, veri artırma ve 

metodolojik titizliği birleştirmenin değerini vurgulamaktadır. Bu çerçevede EfficientNetB0, 

VGG16 temel modeli ve literatürdeki VGG16 tabanlı yaklaşımlara karşı üstünlüğünü 

korurken, bu bulgular önerilen yaklaşımın sadece son teknolojiyi ilerletmekle kalmayıp, aynı 

zamanda bu alandaki gelecekteki araştırmalar için pratik bir referans noktası oluşturduğunu 

göstermektedir. 

Tablo 0.5: Önceki çalışmalarla karşılaştırmalı analiz 

Study / Method Model 
Dataset 

(Classes) 

Training 

Accuracy (%) 

Test 

Accuracy 

(%) 

Wang ve ark., 

(2022) 
ResNet50 

ODIR-5K 

(6) 
97.0 85.7 

Zhang ve ark., 

(2018) 
VGG16 Private (5) 96.8 88.2 

Li ve ark., (2021) DenseNet121 
ODIR-5K 

(6) 
97.4 89.6 

Sarki ve ark., 

(2020) 
InceptionV3 

ODIR-5K 

(6) 
95.5 87.9 

Tezdeki çalışma 

(Artırma ile) 
EfficientNetB0 

ODIR-5K + 

Others (6) 
96.3 91.83 
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4.6. Tartışma 

Bu çalışmada elde edilen deneysel sonuçlar, çok sınıflı retina hastalığı sınıflandırması için 

etkili ve güvenilir derin öğrenme modellerinin geliştirilmesinde veri artırmanın önemini 

açıkça ortaya koymaktadır. Artırma uygulandığında gözlemlenen doğruluk, geri çağırma ve 

F1 puanındaki belirgin iyileşmeler, veri çeşitliliğinin artırılmasının küçük ve dengesiz tıbbi 

veri kümelerinin sınırlamalarını aşmak için çok önemli olduğunu göstermektedir. Bu 

bulgular, artırmanın sinir ağlarının aşırı uyumlanmayı önlemesine ve görülmemiş vakalara 

genelleme yeteneğini geliştirmesine yardımcı olduğu gösterilen tıbbi görüntü analizindeki 

önceki araştırmalarla tutarlıdır. 

Artırılmış deneylerde eğitim ve doğrulama eğrilerinin birbirine yakın olması, modelin eğitim 

verilerine özgü olmayan temsili özellikleri öğrenebildiğini göstermektedir. Bu özellik, 

sağlamlık ve güvenilirliğin çok önemli olduğu klinik uygulamalar için gereklidir. Tersine, 

artırılmamış senaryodaki sonuçlar, sınırlı ve homojen veri kümeleri üzerinde eğitim 

yapmanın risklerini vurgulamaktadır: model sadece aşırı uyum sağlamakla kalmaz, aynı 

zamanda özellikle yetersiz temsil edilen kategorilerde ince hastalık modellerini ayırt etmekte 

zorlanır. 

Ayrıca, karışıklık matrisleri, modelin yaptığı hata türleri hakkında ek bilgiler sağlamıştır. 

Artırma ile yanlış sınıflandırmalar daha az sıklıkta ve daha eşit dağılmış, artırma olmadan ise 

yapılan hataların, altta yatan veri dengesizliğini yansıtan belirli zorlu kategorilerde 

kümelenme eğiliminde olduğu görülmüştür. Bu analiz, veri artırmanın, AI tabanlı tanı 

araçlarının hem genel hem de sınıf bazında performansını iyileştirmek için pratik ve etkili bir 

strateji olduğu fikrini pekiştirmektedir. 

Bu bulgular, tıbbi görüntüleme alanında, özellikle nadir veya görsel olarak benzer hastalıkları 

içeren uygulamalar için kapsamlı veri ön işleme ve artırma protokollerinin benimsenmesinin 

gerekliliğini vurgulamaktadır. Araştırmacılar ve klinisyenler, bu zorlukları titizlikle ele 

alarak, sadece deneysel ortamlarda yüksek doğruluk elde etmekle kalmayıp, aynı zamanda 

gerçek dünyadaki klinik iş akışlarında somut faydalar sağlayan AI sistemleri geliştirebilirler. 
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5. SONUÇ VE GELECEK ÇALIŞMALAR 

5.1. Sonuç 

Bu tezde sunulan çalışma, oftalmik teşhisteki kritik zorluklardan biri olan, derin öğrenme 

kullanarak çoklu retina hastalıklarının güvenilir ve otomatik sınıflandırılmasını ele almayı 

amaçlamıştır. Bu çalışmada modelleme stratejisinin temelinin EfficientNetB0 mimarisi ile 

oluşturulması, konvolüsyonel sinir ağlarındaki en son gelişmelerden yararlanırken, aynı 

zamanda tıbbi görüntü analizinde merkezi öneme sahip olan veri kıtlığı, sınıf dengesizliği ve 

klinik yorumlanabilirlik gibi konulara da odaklanılabilmeyi sağlamıştır; ayrıca, 

karşılaştırmalı bir temel çizgi sunmak üzere VGG16’yı aynı iş hattına entegre edilerek 

mimari farkların etkisi nicel olarak görünür kılınmıştır. 

Araştırma boyunca, veri setinin hazırlanması ve ön işlenmesine özel önem verilmiştir. 

Çalışma, klinik olarak önemli altı hastalık kategorisini temsil eden, çeşitli ancak oldukça 

dengesiz bir retina fundus görüntüleri koleksiyonuyla başlamıştır. Bu tür dengesizliklerin yol 

açabileceği potansiyel önyargıları ve sınırlamaları fark ederek, geleneksel veri artırma 

tekniklerini dikkatli bir şekilde tabakalı örnekleme ile birleştiren kapsamlı bir dengeleme 

protokolü uygulanılmıştır. Bu süreç, her hastalık sınıfının nihai eğitim ve test bölümlerinde 

eşit şekilde temsil edilmesini sağlamakla kalmamış, aynı zamanda adil ve istatistiksel olarak 

sağlam bir model değerlendirmesi için bir temel oluşturmuştur; aynı veri işleme ve 

dengeleme ilkelerini VGG16 için de koruyarak, iki mimarinin çıktılarının doğrudan 

karşılaştırılabilir olması sağlanmıştır. 

Bu çalışmanın en önemli bulgularından biri, veri artırmanın kullanılmasıyla model 

performansında önemli bir iyileşme olmasıdır. Artırma ile ve artırma olmadan elde edilen 

sonuçlar karşılaştırıldığında, artırılmış verilerle eğitilen modellerin önemli ölçüde daha doğru 

ve genelleştirilebilir olduğu ortaya çıkmıştır. Bu iyileşme genel doğrulukla sınırlı 

kalmamıştır; sınıf başına hassasiyet, geri çağırma ve F1 puanına da yayılmış, modelin güçlü 

performansının tüm hastalık kategorilerine eşit olarak dağıtılmasını sağlamıştır. Karışıklık 

matrisleri ve sınıf bazlı metrikler, veri artırmanın modelin aşırı uyum eğilimini etkili bir 

şekilde azalttığını doğrulamıştır. Bu sorun, anotlanmış verilerin genellikle sınırlı ve elde 

edilmesi maliyetli olduğu tıbbi görüntülemede yaygın bir sorundur; bu bağlamda VGG16 



48 

 

artırımlı kurulumda çalıştırıldığında, %90,35 eğitim doğruluğu ile %86,33 test doğruluğu 

elde ederek, EfficientNetB0’a kıyasla daha düşük fakat tutarlı bir temel performans 

sergilemektedir; karışıklık matrisi özellikle Glaucoma sütununda gözlenen yanlış-pozitif 

birikimiyle yüksek geri çağırma–daha düşük kesinlik dengesini ortaya koymuştur. 

Ayrıca, transfer öğrenimi ve ince ayar stratejilerinin entegrasyonu çok etkili sonuçlar 

vermiştir. EfficientNetB0'ı ImageNet ile önceden eğitilmiş ağırlıklarla başlatılmış, tüm ağ 

katmanlarını çözerek, model hem düşük seviyeli hem de yüksek seviyeli özellik 

algılayıcılarını retina patolojilerinin karakteristik görsel desenlerine kendisini 

uyarlayabilmiştir. Bu yaklaşım, modelin genel görüntü temsillerinin ötesine geçmesini ve 

yüksek riskli klinik uygulamalar için gerekli olan ince hastalık özelliklerini nüanslı bir 

şekilde anlamasını sağlamıştır; aynı strateji VGG16 üzerinde de uygulandığında, bu 

mimarinin güçlü bir karşılaştırma tabanı sunduğu ve EfficientNetB0’ın üstünlüğünün 

protokol farklarından değil mimari kapasiteden kaynaklandığı doğrulanmıştır. 

Aynı derecede önemli olan bir diğer husus, araştırma boyunca uygulanan titiz deney 

protokolüdür. Hem artırılmış hem de artırılmamış senaryolarda tutarlı hiperparametreler ve 

eğitim prosedürleri uygulanmış, veri çeşitliliğinin model performansı üzerindeki etkileri 

izole edilip değerler ölçülebilmiştir. Erken durdurma, bırakma ve düzenli doğrulama izleme 

yöntemlerinin kullanılması, sonuçların güvenilirliğine katkıda bulunmuş, gözlemlenen 

performans artışlarının deneysel artefaktlardan ziyade metodolojiden kaynaklandığından 

emin olunmasına yardımcı olmuştur; VGG16 için artırımlı koşulda aynı izleme ve durdurma 

ilkelerini kullanmak, raporlanan %86,33 test başarımını tekrarlanabilir ve karşılaştırılabilir 

bir referans olarak belgelemiştir. 

Bu bulguların pratik etkileri oldukça önemlidir. Gerçek klinik ortamlarda, retina 

hastalıklarının sınıflandırılmasını otomatikleştirme yeteneği, erken teşhisi kolaylaştırabilir, 

hasta triyajını kolaylaştırabilir ve uzman klinisyenlerin yükünü azaltabilir. Bu tez, en son 

teknolojiye sahip derin öğrenme mimarilerinin, uygun şekilde artırıldığında ve ince 

ayarlandığında yüksek ve dengeli bir performans elde edebileceğini göstererek, AI tabanlı 

tanı araçlarının rutin oftalmik uygulamalara entegrasyonunu desteklemektedir; 

EfficientNetB0 birincil çözümü temsil ederken, VGG16 sağlam bir temel çizgi olarak klinik 
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uygulanabilirliğe giden değerlendirme sürecini güçlendirmiştir. Bu tür araçlar, özellikle 

uzman bakıma erişimin sınırlı olabileceği ortamlarda, daha zamanında ve doğru hastalık 

tanımlaması sağlayarak hasta sonuçlarını iyileştirme potansiyeline sahiptir. 

Bu başarılara rağmen, araştırma tıbbi yapay zeka geliştirmede devam eden zorlukları da 

vurgulamıştır. Veri setinin çeşitliliği, kalitesi ve gerçek dünya doğrulamasının önemi hala çok 

önemlidir. Gelecekteki çalışmalar, otomatik tanı sistemlerinin sağlam, adil ve klinik olarak 

güvenilir olmasını sağlamak için bu sorunları ele almaya devam etmelidir; ayrıca, VGG16 

gibi temel mimariler üzerinde dikkat modülleri veya hedefe özgü ince ayarların denenmesi, 

belirli sınıflardaki hata kalıplarını daha da azaltabilir. 

Özetle, bu tez, çok sınıflı retina hastalığı sınıflandırmasına kapsamlı ve iyi doğrulanmış bir 

yaklaşım sunarak, genişleyen tıbbi görüntü analizi alanına katkıda bulunmaktadır. Dikkatli 

metodolojik tasarım, gelişmiş derin öğrenme mimarilerinin kullanımı ve veri çeşitliliği ve 

genelleştirmeye verilen önem sayesinde, oftalmolojide AI'nın pratik ve güvenilir bir şekilde 

uygulanması için bir yol haritası ortaya koyulmuştur; aynı zamanda VGG16 ile açık bir 

karşılaştırma tabanı oluşturup EfficientNetB0’ın üstün performansını (örneğin test doğruluğu 

%91,83’e karşı %86,33) nicel olarak ortaya koyulmuştur. 

5.2. Gelecekteki Çalışmalar 

Mevcut araştırma, retina hastalıklarının otomatik sınıflandırılmasında önemli ilerlemeler 

kaydetse de, daha fazla araştırma ve geliştirme için umut vaat eden çeşitli yönleri sistemli 

biçimde genişletmek hedeflenir; özellikle veri artırma stratejilerinin geliştirilmesi ve 

otomatikleştirilmesi öncelikli bir odak olarak öne çıkar ve çevirme, döndürme ve parlaklık 

ayarlamaları gibi geleneksel yöntemlerin yanı sıra son dönemde olgunlaşan üretken 

modelleme yaklaşımlarından yararlanarak (örneğin GAN tabanlı sentez) gerçekçi retina 

görüntüleri üretir, mevcut veri kümelerinin etkin boyutunu ve çeşitliliğini artırır ve gerçek 

dünyadaki değişkenliği daha iyi temsil eden yeni varyasyonlar elde edilir. 

Uyarlanabilir ve otomatikleştirilmiş artırma politikalarını da ileriye taşımak amaçlanırsa, 

AutoML alanındaki güncel yöntemlerle veriden doğrudan en uygun dönüşümleri ve 

parametreleri öğrenen, eğitim sürecinde dönüşümleri dinamik biçimde ayarlayan akıllı iş 
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hatları kurulur; bu yaklaşım, özellikle nadir ya da gelişen klinik sunumlarla karşılaşıldığında 

modelin sağlamlığını artırır ve sınıf sınırlarını veri dağılımındaki kaymalara karşı daha esnek 

kılar. 

Veri kümesini genişletmeyi ve çeşitlendirmeyi kritik bir adım olarak görürsek, çok merkezli 

iş birlikleri ile farklı popülasyonlardan, görüntüleme cihazlarından ve edinim 

protokollerinden gelen verileri bütünleştirir ve bu sayede yaklaşımın genelleştirilebilirliğini 

değerlendirir ve güvence altına alırız; ek hastalık kategorilerini, komorbiditeleri ve atipik 

sunumları içeren örnekleri dahil ederek mevcut modellerin sınırlarını daha sıkı biçimde sınar 

ve iyileştiririz. 

Araştırma modellerini pratik klinik araçlara dönüştürmek için prospektif klinik doğrulamayı, 

gerçek zamanlı çalışmayı ve saha koşullarında performans izlemeyi içeren bir çeviri süreci 

tasarlanırsa; kullanıcı dostu arayüzler, güvenli veri işleme ve mevzuata uyum (ör. 

mahremiyet ve veri güvenliği) ile desteklenen yazılım platformları geliştirilir, MLOps 

ilkeleriyle sürüm yönetimi, izleme, uyarı ve yeniden eğitim döngülerini standardize eder ve 

klinisyenlerden gelen sürekli geribildirimle sistemi yinelemeli olarak olgunlaştırır. 

Sonuç olarak, bu tezde sunulan birikimi veri artırma ve otomasyon, çok merkezli veri 

genişletme, açıklanabilirlik ve klinik doğrulama eksenlerinde ilerleterek, erişilebilir, doğru 

ve adil göz sağlığı hizmetlerini destekleyecek güvenilir AI çözümlerine bir adım daha 

yaklaşılacaktır. 

  



51 

 

6. KAYNAKLAR 

 

Abràmoff, M. D., Lavin, P. T., Silva, P. S. (2018). Pivotal trial of an autonomous AI-based 

diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ 

Digital Medicine, 1(1), 39. 

Budai, A., Bock, R., Maier, A., Hornegger, J., Michelson, G. (2013). Robust vessel 

segmentation in fundus images. International Journal of Biomedical Imaging, 2013, 

154860. 

Caruana, R., Lou, Y., Gehrke, J. (2015). Intelligible models for healthcare: Predicting 

pneumonia risk and hospital 30-day readmission. Proceedings of the 21st ACM 

SIGKDD International Conference on Knowledge Discovery and Data Mining, 

1721–1730. 

Chen, J., Lu, Y., Yu, Q. (2022). TransUNet: Transformers make strong encoders for medical 

image segmentation. Medical Image Analysis, 72, 102125. 

Cheung, N., Mitchell, P., Wong, T. Y. (2021). Diabetic retinopathy. The Lancet, 376(9735), 

124–136. 

Creswell, J. W., Creswell, J. D. (2018). Research design: Qualitative, quantitative, and mixed 

methods approaches (5th ed.). SAGE Publications. 

Cui, H., Bai, J., (2019), A new hyperparameters optimization method for convolutional neural 

networks, Pattern Recognit. Lett., vol. 125, pp. 828–834 

De Fauw, J., Ledsam, J. R., Romera-Paredes, B., (2018). Clinically applicable deep learning 

for diagnosis and referral in retinal disease. Nature Medicine, 24(9), 1342–1350. 

Dosovitskiy, A., Beyer, L., Kolesnikov, A. (2021). An image is worth 16×16 words: 

Transformers for image recognition at scale. International Conference on Learning 

Representations (ICLR). 

Esteva, A., Kuprel, B., Novoa, R. A. (2017). Dermatologist-level classification of skin cancer 

with deep neural networks. Nature, 542(7639), 115–118. 

Frid-Adar, M., Klang, E., Amitai, M., Goldberger, J., Greenspan, H. (2018). Synthetic data 

augmentation using GAN for improved liver lesion classification. 2018 IEEE 15th 

International Symposium on Biomedical Imaging (ISBI), 289–293. 

Fu, H., Cheng, J., Xu, Y., Zhang, C., Wong, D. W. K. (2022). Deep learning for retinal image 

analysis: Structure, function, and diseases. Progress in Retinal and Eye Research, 89, 

101014. 

Goodfellow, I., Bengio, Y.,  Courville A., (2016), Deep Learning, MIT Press, pp:230-234,   

http://www.deeplearningbook.org 

Greenspan, H., van Ginneken, B., Summers, R. M. (2016). Deep learning in medical imaging: 

Overview and future promise of an exciting new technique. IEEE Transactions on 

Medical Imaging, 35(5), 1153–1159. 



52 

 

Gulshan, V., Peng, L., Coram, M. (2016). Development and validation of a deep learning 

algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA, 

316(22), 2402–2410. 

Gupta, P., Cheung, C. Y., Baskaran, M. (2021). Impact of population and imaging device 

differences on deep learning detection of glaucomatous optic neuropathy. 

Ophthalmology, 128(10), 1475–1484. 

He, K., Zhang, X., Ren, S., Sun, J. (2016). Deep residual learning for image recognition. 

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 

(CVPR), 770–778. 

Hu, J., Shen, L., Sun, G. (2018). Squeeze-and-excitation networks. Proceedings of the IEEE 

Conference on Computer Vision and Pattern Recognition (CVPR), 7132–7141. 

Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K. Q. (2017). Densely connected 

convolutional networks. Proceedings of the IEEE Conference on Computer Vision 

and Pattern Recognition (CVPR), 4700–4708. 

Ioffe, S., Szegedy, C. (2015). Batch normalization: Accelerating deep network training by 

reducing internal covariate shift. Proceedings of the 32nd International Conference 

on Machine Learning (ICML), 448–456. 

Irvin, J., Rajpurkar, P., Ko, M. (2019). CheXpert: A large chest radiograph dataset with 

uncertainty labels and expert comparison. Proceedings of the AAAI Conference on 

Artificial Intelligence, 33, 590–597. 

Jin, K., Yan, Y., Hu, J. (2021). Deep learning with interpretable attention for automatic 

diabetic retinopathy detection. IEEE Transactions on Medical Imaging, 40(6), 1785–

1796. 

Johnson, A. E. W., Pollard, T. J., Berkowitz, S. J. (2019). MIMIC-CXR: A large publicly 

available database of labeled chest radiographs. arXiv preprint arXiv:1901.07042. 

Krizhevsky, A., Sutskever, I., Hinton, G. E. (2012). ImageNet classification with deep 

convolutional neural networks. Advances in Neural Information Processing Systems, 

25, 1097–1105. 

LeCun, Y., Bengio, Y., Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. 

Li, Y., Wang, K. (2021). Multi-class retinal disease classification using transfer learning. 

Computers in Biology and Medicine, 136, 104744. 

Lim, G., Bellemo, V., Xie, Y. (2022). Different fundus imaging modalities and technical 

considerations in AI-based screening for retinal diseases. Eye, 36, 233–241. 

Litjens, G., Kooi, T., Bejnordi, B. E. (2017). A survey on deep learning in medical image 

analysis. Medical Image Analysis, 42, 60–88. 

Liu, H., Li, S. (2023). Attention-augmented convolutional neural networks for retinal disease 

classification. IEEE Journal of Biomedical and Health Informatics, 27(4), 1728–

1738. 



53 

 

Montavon, G., Lapuschkin, S., Binder, A. (2018). Explaining nonlinear classification 

decisions with deep Taylor decomposition. Pattern Recognition, 65, 211–222. 

Oakden-Rayner, L. (2020). Exploring large-scale public medical image datasets. Academic 

Radiology, 27(1), 106–112. 

Perez, L., Wang, J. (2017). The effectiveness of data augmentation in image classification 

using deep learning. Convolutional Neural Networks Vis. Recognit., 11(2017), 1–8. 

Quellec, G., Charrière, K., Boudi, Y., Cochener, B., Lamard, M. (2017). Deep image mining 

for diabetic retinopathy screening. Medical Image Analysis, 39, 178–193. 

Rajalakshmi, R., Arulmalar, S., Usha, M. (2022). Automated diabetic retinopathy detection 

in smartphone-based fundus photography using deep learning. Indian Journal of 

Ophthalmology, 70(2), 498–504. 

Rajpurkar, P., Chen, E., Banerjee, O., Topol, E. J. (2022). AI in health and medicine. Nature 

Medicine, 28, 31–38. 

Raghu, M., Zhang, C., Kleinberg, J., Bengio, S. (2019). Transfusion: Understanding transfer 

learning for medical imaging. Advances in Neural Information Processing Systems, 

32. 

ResearchGate web sitesi (2025), EfficientNetB0 yapısı: 

https://www.researchgate.net/figure/EfficientnetB0-Model-

Architecture_fig2_378395574 

Russakovsky, O., Deng, J., Su, H. (2015). ImageNet large scale visual recognition challenge. 

International Journal of Computer Vision, 115, 211–252. 

Samek, W., Wiegand, T., Müller, K.-R. (2017). Explainable artificial intelligence: 

Understanding, visualizing and interpreting deep learning models. ITU Journal: ICT 

Discoveries, 1(1), 39–47. 

Sarki, R.,  Ahmed, K.,  Wang, H.,  Zhang, Y.  (2020). Automatic detection  of diabetic eye  

disease through deep learning using fundus images: a survey. IEEE Access, 8, 

151133-151149.  

Selvaraju, R. R., Cogswell, M., Das, A. (2017). Grad-CAM: Visual explanations from deep 

networks via gradient-based localization. Proceedings of the IEEE International 

Conference on Computer Vision (ICCV), 618–626. 

Shamsi, A., Asghari, M. H., Afshar, P. (2021). EfficientNet-based deep transfer learning 

model for diagnosis of COVID-19 in computed tomography images. Frontiers in 

Artificial Intelligence, 4, 645299. 

Shin, H. C., Roth, H. R., Gao, M. (2016). Deep convolutional neural networks for computer-

aided detection: CNN architectures, dataset characteristics and transfer learning. 

IEEE Transactions on Medical Imaging, 35(5), 1285–1298. 

Shorten, C., Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep 

learning. Journal of Big Data, 6, 60. 



54 

 

Simonyan, K., Zisserman, A. (2015). Very deep convolutional networks for large-scale image 

recognition. International Conference on Learning Representations (ICLR). 

Srivastava, N., Hinton , G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R., (2014), Dropout: 

A Simple Way to Prevent Neural Networks from Overfitting, Journal of Machine 

Learning Research, 15(56):1929−1958 

Szegedy, C., Liu, W., Jia, Y. (2015). Going deeper with convolutions. Proceedings of the 

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1–9. 

Tan, M., Le, Q. (2019). EfficientNet: Rethinking model scaling for convolutional neural 

networks. Proceedings of the 36th International Conference on Machine Learning 

(ICML), 6105–6114. 

Tajbakhsh, N., Shin, J.Y., Gurudu, S.R., Hurst, R.T., Kendall, C.B., Gotway, M.B., Jianming, 

L. (2016), Convolutional Neural Networks for Medical Image Analysis: Full Training 

or Fine Tuning? IEEE Trans Med Imaging. 2016 May;35(5):1299-1312. 

Ting, D. S. W., Cheung, C. Y., Lim, G. (2019). Development and validation of a deep learning 

system for diabetic retinopathy and related eye diseases using retinal images from 

multiethnic populations with diabetes. JAMA, 318(22), 2211–2223. 

Tjoa, E., Guan, C. (2020). A survey on explainable artificial intelligence (XAI): Towards 

medical XAI. IEEE Transactions on Neural Networks and Learning Systems, 32(11), 

4793–4813. 

Topol, E. J. (2019). High-performance medicine: The convergence of human and artificial 

intelligence. Nature Medicine, 25(1), 44–56. 

Vaswani, A., Shazeer, N., Parmar, N. (2017). Attention is all you need. Advances in Neural 

Information Processing Systems, 30, 5998–6008. 

Wang, J., Chen, X. (2022). DenseNet-based transfer learning for automated multi-class 

retinal disease classification. IEEE Access, 10, 35412–35423. 

Woo, S., Park, J., Lee, J. Y., Kweon, I. S. (2018). CBAM: Convolutional block attention 

module. Proceedings of the European Conference on Computer Vision (ECCV). 

Wong, T. Y., Cheung, C. M. G., Larsen, M., Sharma, S., Simo, R. (2023). Diabetic 

retinopathy. Nature Reviews Disease Primers, 9(1), 1–21. 

Yim, J., Chopra, R., Spitz, T. (2020). Predicting conversion to wet age-related macular 

degeneration using deep learning. Nature Medicine, 26(6), 892–899. 

Yun, S., Han, D., Oh, S. J. (2019). CutMix: Regularization strategy to train strong classifiers 

with localizable features. Proceedings of the IEEE/CVF International Conference on 

Computer Vision (ICCV), 6023–6032. 

Zhang, H., Cisse, M., Dauphin, Y. N., Lopez-Paz, D. (2018). mixup: Beyond empirical risk 

minimization. International Conference on Learning Representations (ICLR). 

Zhou, L., Wang, S. (2022). Automated multi-disease detection in fundus images using deep 

learning. Medical Image Analysis, 78, 102403. 



55 

 

Zhu, J. Y., Park, T., Isola, P., Efros, A. A. (2022). Unpaired image-to-image translation using 

cycle-consistent adversarial networks. IEEE Transactions on Pattern Analysis and 

Machine Intelligence, 44(10), 6144–6159. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



56 

ÖZGEÇMİŞ 


