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OZET
RETINA HASTALIKLARI TESPITi iCIN BIR DERIN OGRENME MODELI

Ali Aydin Abdulkhaleq
BILGISAYAR MUHENDISLIGI BOLUMU
Tez Danismant: Dr. Ogr. Uyesi Cengiz Giingdr
Agustos 2025, xii + 55 sayfa

Diyabetik retinopati, glokom, yasa bagli makula dejenerasyonu, katarakt ve diger gérme
yetisini tehdit eden hastaliklar gibi retina hastaliklari, erken teshis ve tedavi edilmezse genellikle
geri doniisii olmayan gorme kaybina yol acan dnemli bir kiiresel saglik sorunu olusturmaktadir.
Bu tez, renkli fundus goriintiileri kullanarak retina hastaliklarinin otomatik ¢ok simifh
siiflandirilmast i¢in kapsamli bir derin 6grenme c¢ergevesi Onermektedir. EfficientNetBO
konvoliisyonel sinir ag1 mimarisini ince ayar ve saglam veri artirma stratejileriyle kullanarak,
caligma retina goriintii analizindeki kritik zorluklari, sinif dengesizligi, smirli anotlanmig veri
kiimeleri ve yapay zeka sistemlerinin yorumlanabilirli§i dahil olmak {izere ele almay1

amaclamaktadir.

Metodoloji, kamuya agik retina goriintli koleksiyonlarin1 entegre ederek ve genisleterek
biiyiik, dengeli bir veri seti olusturmayi, ardindan sistematik veri On islemeyi ve egitim ve
dogrulama setlerine bélmeyi icermektedir. Onerilen model, tan1 dogrulugu ve genellestirilebilirlik
iizerindeki etkisini 6l¢mek i¢in veri genisletme ile ve veri genisletme olmadan degerlendirilmistir.
Ayrica, 6zellik ¢ikarma ve model performansini daha da gelistirmek icin dikkat mekanizmalari ve
transfer 0grenimi arastirilmistir. Deney sonuglari, genisletilmis EfficientNetBO modelinin %96,3
egitim dogrulugu ve %91,83 test dogrulugu elde ettigini ve literatiirde bildirilen birka¢ son
teknoloji yontemi geride biraktigini gostermistir. Hassasiyet, geri cagirma ve F1 puani dahil olmak
tizere siif bazli metrikler, tiim hastalik kategorilerinde saglam ve dengeli bir tespit saglarken,
karisiklik matrisleri ve gorsellestirmeler model davranisi ve potansiyel yanlis siniflandirma

kaynaklar1 hakkinda daha fazla bilgi saglamistir.

Bu c¢alismada temel model olarak VGG16 da EfficientNetB0’a ek olarak
degerlendirilmistir. ImageNet agirliklariyla baglatilip 50 epoch boyunca tam ince ayar yapilan
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VGG16, %90,35 egitim dogrulugu ve %86,33 test dogrulugu elde etmistir. Alt1 sinifta (ACRIMA,
Cataract, Glaucoma, ODIR-5K, ORIGA, Retina Disease) raporlanan smif-bazli olgiitler ve
karisiklik matrisi, modelin ¢ok sinifli senaryoda dengeli ancak EfficientNetB0’a gore daha diisiik
bir performans sagladigini gostermektedir. Bu bulgular, 6nerilen EfficientNetBO yaklagiminin

istiinliigiinii nicel olarak desteklemektedir.

Bu tezin bulgulari, tibbi goriintii veri kiimelerinin yaygin sinirlamalarinin iistesinden
gelmede gelismis artirma ve aktarim Ogreniminin Onemini vurgulamakta ve giivenilir,
Olceklenebilir ve aciklanabilir retina hastaligi taramasi i¢in derin Ogrenme modellerinin
uygulanabilirligini gostermektedir. Calisma, onerilen yaklasimin pratik uygulamalarini tartisarak
ve otomatik oftalmik teshisi ilerletmek i¢in gelecekteki aragtirmalara yonelik onerileri 6zetleyerek

son bulmaktadir.

Anahtar Kelimeler: Retina hastaliklari, Derin 6grenme, VGG16, EfficientNetB0, Veri

artirma, Otomatik teshis.



ABSTRACT

A DEEP LEARNING MODEL FOR RETINAL DISEASE DETECTION

Ali Aydin Abdulkhaleq
DEPARTMENT OF COMPUTER ENGINEERING
Advisor: Assoc. Prof. Dr. Cengiz Giingor
August 2025, xii + 55 Pages

Retinal diseases such as diabetic retinopathy, glaucoma, age-related macular degeneration,
cataract, and other sight-threatening conditions represent a major global health challenge, often
leading to irreversible vision loss if not diagnosed and treated early. This thesis proposes a
comprehensive deep learning framework for the automated multi-class classification of retinal
diseases using color fundus images. Leveraging the EfficientNetBO convolutional neural network
architecture with fine-tuning and robust data augmentation strategies, the study aims to address
critical challenges in retinal image analysis, including class imbalance, limited annotated datasets,

and the interpretability of artificial intelligence systems.

The methodology involved constructing a large, balanced dataset by integrating and
augmenting publicly available retinal image collections, followed by systematic data
preprocessing and partitioning into training and validation sets. The proposed model was evaluated
both with and without data augmentation to quantify its impact on diagnostic accuracy and
generalizability. In addition, attention mechanisms and transfer learning were explored to further
enhance feature extraction and model performance. The experimental results demonstrated that the
augmented EfficientNetB0 model achieved a training accuracy of 96.3% and a testing accuracy of
91.83%, outperforming several state-of-the-art methods reported in the literature. Class-wise
metrics, including precision, recall, and F1-score, indicated robust and balanced detection across
all disease categories, while confusion matrices and visualizations provided further insights into

model behavior and potential sources of misclassification.

In addition to our primary model EfficientNetB0, we also evaluate VGG16 as a strong

baseline. Fine-tuned from ImageNet for 50 epochs, VGG16 attains 90.35% training accuracy and
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86.33% testing accuracy on six classes (ACRIMA, Cataract, Glaucoma, ODIR-5K, ORIGA,
Retina Disease). Class-wise metrics and the confusion matrix reveal balanced yet lower

performance than EfficientNetBO0, thereby reinforcing the superiority of the proposed approach.

The findings of this thesis underscore the importance of advanced augmentation and
transfer learning in overcoming common limitations of medical image datasets and demonstrate
the feasibility of deploying deep learning models for reliable, scalable, and explainable retinal
disease screening. The study concludes by discussing the practical implications of the proposed
approach and outlining recommendations for future research to advance automated ophthalmic

diagnostics.

Keywords: Retinal diseases, Deep learning, VGG16, EfficientNetB0, Data augmentation,

Automated diagnosis.
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1 GIRIS
1.1. Arka Plan

Retina hastaliklari, diinya ¢apinda goérme bozuklugu ve korliigiin baglica nedenleri olduklari
i¢in 6nemli bir halk saglig1 sorunu teskil etmektedir. Diyabetik retinopati, glokom, yasa bagli
makula dejenerasyonu ve katarakt gibi hastaliklar her yil milyonlarca insani etkilemekte ve
zamaninda teshis ve tedavi edilmezlerse yagam kalitesinde ciddi bir diislise neden olmaktadir.
Bu retina hastaliklarinin dogru ve erken teshisi, etkili tedavi ve geri doniisli olmayan goérme
kaybr riskinin en aza indirilmesi i¢in ¢ok Onemlidir. Geleneksel olarak, retina hastalig
teshisi, egitimli goz doktorlar1 tarafindan fundus fotograflarinin ve optik koherens tomografi
(OCT) goriintiilerinin manuel olarak incelenmesine dayanmaktadir. Bu siire¢ oldukea etkili
olsa da, dogasi geregi zaman alici, 6znel ve yetenekli profesyonellerin mevcudiyetine
baglidir; bu kaynak ise diinyanin bir¢cok bolgesinde genellikle sinirlidir. Kiiresel niifusun
yaglanmas1 ve diyabet prevalansinin artmasiyla birlikte, retina hastaliklarinin saglik
sistemleri lizerindeki yikiiniin Oniimiizdeki on yillarda Onemli Olgiide artmasi

beklenmektedir (Wong ve ark., 2023; Ting ve ark., 2019; Cheung ve ark., 2021).

1.2. Motivasyon ve Onemi

Kiiresel diyabet artislar1 ve yaslanan niifus gibi faktorlerin etkisiyle diinya ¢apinda retina
hastaliklarinin  goriilme sikliginin artmasi, saglik sistemleri i¢in 6nemli bir zorluk
olusturmaktadir (Cheung ve ark., 2021). Geri doniisii olmayan gorme kaybini1 6nlemek i¢in
erken teshis ve miidahale kritik 6neme sahiptir, ancak 6zellikle kaynaklarin kisitli oldugu
ortamlarda uzman oftalmik bakima erigim genellikle sinirlidir. Retina goriintiilerinin manuel
olarak yorumlanmasi, sadece emek yogun ve zaman alict olmakla kalmaz, ayn1 zamanda
gozlemciler arasinda degiskenlige de maruz kalir, bu da tutarsiz teshislere yol acabilir (Yim
ve ark., 2020). Bu gercekler, klinisyenlerin retina hastaliklarini yiiksek dogruluk ve
verimlilikle taramasina ve teshis etmesine yardimci olabilecek otomatik, 6l¢eklenebilir ve

giivenilir ¢oziimlere acil ihtiya¢ oldugunu vurgulamaktadir.

Yapay zeka, ozellikle de derin 6grenme, karmagik retina goriintiilerini analiz edebilen ve

uzman klinisyenlerle karsilastirilabilir bir dogrulukla patolojik degisiklikleri tespit edebilen
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otomatik sistemlerin gelistirilmesini saglayarak bu ihtiyaglar1 karsilamada biiyliik umut vaat
etmektedir (Gulshan ve ark., 2016; Rajalakshmi ve ark., 2022). Bu tiir teknolojinin genis
Olcekte kullanilmasi, tarama programlarini doniistiirebilir, tan1 hatalarini azaltabilir ve ¢esitli
klinik ve topluluk ortamlarinda gormeyi kurtarici bakima erigimi genisletebilir. Retina
hastaliklarinin yiikii artmaya devam ederken, saglam yapay zeka (AI) destekli tan1 araglarinin
gelistirilmesi ve entegrasyonu, kiiresel oftalmik saglik icin kritik bir ilerlemeyi temsil

etmektedir.

1.3. Sorun Tanim

Yapay zeka ve tibbi goriintilemede 6nemli ilerlemeler kaydedilmesine ragmen, retina
hastaliklarinin giivenilir ve otomatik tespiti karmasik ve ¢dziilmemis bir sorun olmaya devam
etmektedir. Birgok derin 6grenme modeli, deneysel ortamlarda etkileyici sonuglar elde
etmesine ragmen, goriintilleme kosullari, cihaz tiirleri ve hasta demografisi farkliliklar
nedeniyle ¢esitli klinik ortamlarda etkili bir sekilde genellestirilememektedir (Gupta ve ark.,
2021). Ek olarak, bircok kamuya acik retina veri setinde sinif dengesizligi ve sinirh
anotlanmig veri sorunu, daha az temsil edilen hastalik kategorilerinde diisiik performans
gosteren Onyargili modellere yol a¢maktadir (Quellec ve ark., 2017). Farkli retina
hastaliklarinda gorsel olarak benzer 6zelliklerin varligi, model egitimi ve degerlendirmesini
daha da karmagsik hale getirerek yanls siniflandirma olasiligini artirmaktadir (Ting ve ark.,
2019). Dahasi, bir¢ok derin 6grenme yaklasiminin “kara kutu” niteligi, yorumlanabilirlik ve
klinik giiven konusunda endiseler uyandirarak, bu teknolojilerin rutin klinik is akislarina
kabuliinii ve entegrasyonunu siirlamaktadir (Tjoa ve Guan, 2020). Retina hastalig1 tespiti
icin klinik olarak yararli ve giivenilir Al sistemleri gelistirmek i¢in bu zorluklarin listesinden

gelmek ¢ok onemlidir.

1.4. Arastirma Hedefleri

Bu arastirmanin temel amaci, renkli fundus goriintiilerinden retina hastaliklarinin otomatik
tespiti ve ¢ok simifli siiflandirilmasi i¢in derin 6grenme tabanl bir ¢ergeve gelistirmek ve
degerlendirmektir. Calisma, ozellikle EfficientNetBO gibi gelismis evrisimli sinir agi
mimarilerinin, ince ayar ve veri artirma teknikleriyle birlikte, birden fazla hastalik

kategorisinde dogru ve dengeli siniflandirma elde etmek ig¢in etkinligini arastirmayi
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amaglamaktadir. Ayrica, arastirma veri dengesizligi, sinirli anotlanmis veri kiimeleri ve
model yorumlanabilirligi ile ilgili temel zorluklar1 ele almay1 ve boylece klinik olarak
uygulanabilir Al odakli tan1 araglarinin gelistirilmesine katkida bulunmay1 amaglamaktadir

(Li ve ark., 2021; Shamsi ve ark., 2021).

Bir diger amag ise, dnerilen yaklagimi literatiirde bildirilen mevcut en gelismis yontemlerle
sistematik olarak karsilastirarak, goreceli gliclii yonlerini vurgulamak ve daha fazla
iyilestirme gereken alanlar1 belirlemektir. Bu hedefleri gergeklestirerek, bu tez, otomatik
retina hastaligi tespiti alanini ilerletmeyi, erken teshisi destekleyebilecek, klinisyenlerin
yiikiinii azaltabilecek ve gorme bozuklugu riski altindaki niifuslarin g6z bakimina erisimini
tyilestirebilecek ¢oziimler sunmay1 amaglamaktadir (Rajpurkar ve ark., 2022; Ting ve ark.,

2019).

1.5. Tezin Yapisi

Bu tez, okuyucuyu arastirmanin motivasyonu, metodolojisi, deneyleri ve sonuglari hakkinda

sistematik olarak bilgilendirmek iizere tasarlanmis bes ana boliimden olusmaktadir.

Bolim 1, arastirma baglamina genel bir bakis sunarak arka plan, motivasyon, problem

tanimi1, amagclar, aragtirma sorular1 ve tezin genel yapisini 6zetlemektedir.

Boliim 2, retina gorilintiilemenin evrimi, tibbi goriintii analizinde derin 6grenmenin gelisimi
ve uygulamasi, ¢ok sinifli sitniflandirma ile ilgili zorluklar ve retina hastalig: tespiti ile ilgili
konvoliisyonel sinir ag1 mimarileri ve metodolojilerindeki son gelismeleri tartigarak kapsamli

bir literatir incelemesi sunmaktadir.

Bolim 3, veri seti agiklamasi, veri On isleme ve artirma stratejileri, EfficientNetB0 tabanli
derin 0grenme modelinin tasarimi ve yapilandirmasi ve degerlendirme igin kullanilan
deneysel protokoller dahil olmak iizere, bu ¢aligmada kullanilan materyalleri ve yontemleri

ayritili olarak agiklamaktadir.

Boliim 4, onerilen yaklagimi en son yontemlerle karsilastirarak, artirma, transfer 6grenimi ve
dikkat mekanizmalarinin model performansi iizerindeki etkilerini inceleyerek deneysel

sonuglar1 ve analizleri sunmaktadir.



Son olarak, Boliim 5, ana bulgular1 6zetleyerek, pratik ve klinik ¢ikarimlar tartigarak ve
otomatik retina hastalig tespiti konusunda gelecekteki arastirmalar i¢in yollar 6nererek tezi

sonlandirmaktadir.

Bu mantiksal diizenleme, netlik ve tutarlilifi kolaylagtirmak amaciyla yapilmistir ve
okuyucularin temel kavramlardan uygulamali arastirma ve elestirel degerlendirmeye kadar

olan siireci takip etmelerini saglar (Creswell ve Creswell, 2018).



2.LITERATUR iNCELEMESI

2.1. Giris

Son on yilda, tibbi goriintileme ve yapay zeka alanindaki gelismeler, 6zellikle retina
hastaliklarinin tespiti ve siniflandirilmasi konusunda oftalmoloji alaninda devrim niteliginde
degisiklikler getirmistir. Yiiksek ¢Oziintirliiklii retina goriintiilerinin giderek daha fazla
kullanilabilir hale gelmesi ve derin 6grenme teknolojilerinin yiikselisi, otomatik, dogru ve
hizli tan1 i¢in yeni yollar agmistir. Bu boliim, derin 6grenme kullanilarak retina hastaliginin
teshisi ile ilgili literatiirii kapsamli bir sekilde gézden gegirir ve 6zellikle evrigimli sinir ag1
mimarileri, veri kiimesi zorluklari, artirma stratejileri ve mevcut en son teknoloji sonuglarina
odaklanir. Onceki arastirmalari elestirel bir sekilde analiz ederek, bu inceleme hem
kaydedilen ilerlemeyi hem de bu tezde sunulan arastirmayir motive eden kalic1 bosluklari

aydinlatmay1 amaglamaktadir.

2.2. Retina Hastaliklarinin Siniflandirilmasindaki Zorluklar

Gortintiileme teknolojileri ve yapay zeka alanlarinda 6nemli ilerlemeler kaydedilmesine
ragmen, otomatik retina hastaligr siniflandirma gorevini zorlagtiran birka¢ kalici zorluk
bulunmaktadir. En 6nemli engellerden biri, kamuya agik retina goriintii veri setlerinin
dogasinda var olan dengesizlik ve smirli boyutudur (Quellec ve ark., 2017; Kaggle, 2023).
Birgok retina patolojisi nispeten nadirdir, bu da belirli hastaliklarin yetersiz temsil edildigi
carpik sinif dagilimlarina yol agar ve derin 6grenme modellerinin azinlik siniflari i¢in saglam
ozellikleri 6grenmesini zorlastirir (Budai ve ark., 2013). Bu tiir dengesizlikler genellikle daha
yaygin durumlarin tespitini destekleyen onyargili modellere yol agarken, daha nadir ancak
klinik olarak 6nemli hastaliklar iizerindeki performans optimal diizeyde kalmaz (Gupta ve

ark., 2021).

Bir diger onemli zorluk, goriintii elde etme kosullarindaki yiliksek degiskenlikten
kaynaklanmaktadir. Kamera ekipmani, aydinlatma, odaklama ve hasta isbirligi gibi faktorler,
retina goriintiilerine dnemli olglide giiriiltii ve artefaktlar ekleyebilir (Abramoff ve ark.,
2016). Bu degiskenlik, sonuglarin tekrarlanabilirligini azaltir ve sistemler farkli klinik

ortamlarda veya popiilasyonlarda kullanildiginda model performansinda 6nemli diisiislere



yol agabilir (Ting ve ark., 2019). Ek olarak, ortam opakliklari, hasta hareketi veya yanlis
odaklama nedeniyle goriintii kalitesinin diisiik olmasi sik karsilasilan bir sorun olmaya
devam etmekte ve bazen analizden Once manuel kiirasyon veya otomatik Kkalite

degerlendirmesi gerektirmektedir (Fu ve ark., 2022).

Farkli retina hastaliklar1 arasinda gorsel olarak benzer lezyonlarin ve Ortiisen 6zelliklerin
varligi baska bir zorluk olusturmaktadir. Ornegin, hem diyabetik retinopati hem de
hipertansif retinopati kanamalar ve mikroanevrizmalarla ortaya ¢ikabilirken, glokom ve optik
norit her ikisi de optik disk ¢ukurlagsmasi veya solukluk olarak ortaya ¢ikabilir (Ting ve ark.,
2019; Yim ve ark., 2020). Bu ortiisme, yalnizca temel gercek etiketleme i¢in aciklama
stirecini degil, ayn1 zamanda modelin hastaliga 6zgii ince degisiklikleri dogru bir sekilde ayirt
etme yetenegini de zorlastirir. Deneyimli oftalmologlar bile sinirda veya atipik vakalarin
teshisi konusunda fikir ayriligina diisebilirler, bu da siniflandirma goérevinin dogasinda var

olan karmagiklig1 daha da vurgular (Cheung ve ark., 2021).

Son olarak, klinik yorumlanabilirlik ve model seffafligi sorunu, tibbi yapay zeka alaninda
ozellikle ciddi bir sorundur. Klinisyenler, Ozellikle tedavi veya cerrahi planlamay1
etkileyebilecek yiiksek riskli senaryolarda, modelin kararlari i¢in sadece dogru tahminler
degil, ayn1 zamanda anlamli agiklamalar da talep etmektedir (Caruana ve ark., 2015). Kara
kutu derin 6grenme modelleri, giiclii olmalarina ragmen, yorumlanabilirlik eksikligi
nedeniyle siklikla elestirilmektedir. Bu sinirlama, saliency map ve layer-wise relevance
propagation gibi agiklanabilir yapay zeka teknikleri {izerine aragtirmalar1 tesvik etmistir

(Samek ve ark., 2017; Lundberg ve Lee, 2017).

Bu ¢ok yonlii zorluklarin ele alinmasi, oftalmolojide klinik olarak uygulanabilir yapay zeka
sistemlerinin gelistirilmesi i¢in gereklidir. Devam eden arastirmalar, veri seti cesitliligini
genisletmeye, goriintii kalitesi kontroliinii iyilestirmeye, gelismis artirma ve aktarim 6grenme
yontemleri gelistirmeye ve agiklanabilir Al ¢ercevelerini teshis siireclerine entegre etmeye
odaklanmaktadir (Gulshan ve ark., 2016; Rajalakshmi ve ark., 2022). Bu c¢abalar, deneysel

basart ile pratik, gercek diinya uygulamalar arasindaki ugurumu kapatmayi amaglamaktadir.



2.3. Tibbi Gériintiillemede Derin Ogrenme

Derin 6grenmenin tibbi goriintiileme alanina entegrasyonu, genis ve heterojen goriintii veri
kiimelerinden karmasik Ozelliklerin otomatik olarak ¢ikarilmasini saglayarak bu alanda
devrim yaratmustir. El ile olusturulan 6zellik miihendisligine ve alana 6zgii bilgiye bliyiik
Olclide bagimli olan geleneksel makine 6grenimi yaklasimlarinin aksine, derin 6grenme
modelleri, 6zellikle de evrisimli sinir aglar1 (CNN'ler), hammadde piksel verilerinden
dogrudan hiyerarsik temsilleri 6grenme yetenegine sahiptir (LeCun, Bengio ve Hinton,
2015). Bu paradigma degisikligi, minimum insan miidahalesi ile biiylik hacimli tibbi
goriintlileri isleyip analiz edebilen, yiiksek dogrulukta ve Olceklenebilir tani araglarinin

gelistirilmesini miimkiin kilmistir (Litjens ve ark., 2017).

Son yillarda, CNN'ler radyografi, bilgisayarli tomografi (BT), manyetik rezonans
goriintileme (MRG) ve fundus fotografciligi gibi modalitelerde organ segmentasyonu,
lezyon tespiti ve hastalik siniflandirmasi dahil olmak tizere ¢ok ¢esitli tibbi goriintiileme
gorevlerinde basartyla uygulanmstir (Esteva ve ark., 2017; Greenspan ve ark., 2016). Ozellik
hiyerarsilerini otomatik olarak 6grenme ve uyarlama yetenekleri, retina morfolojisindeki ince
farkliliklarin ¢esitli patolojik durumlarin gostergesi olabilecegi oftalmolojide ozellikle
degerli oldugu kanitlanmistir (Gulshan ve ark., 2016). CNN'lerin giderek daha fazla
benimsenmesi, 6zellikle tutarlilik ve hizin cok 6nemli oldugu tarama ortamlarinda, deneyimli
insan uzmanlarin performansina rakip olan ve bazi durumlarda onu asan tan1 algoritmalarina

yol agmustir (Ting ve ark., 2019).

T1ibbi goriintii analizinde derin 6grenmenin en 6nemli avantajlarindan biri, uygun sekilde
egitilip dogrulanmis oldugunda farkli goriintiileme cihazlari, popiilasyonlar ve edinim
protokolleri arasinda genelleme yapabilme kapasitesidir (De Fauw ve ark., 2018). ImageNet
gibi biiylik 6lcekli, genel amacli veri kiimelerinde 6nceden egitilmis modellerin tibbi
gorlintiilleme gorevlerinde ince ayarlandigi transfer Ogrenimi, performans ve egitim
verimliliginde 6nemli iyilestirmeler saglayan standart bir uygulama haline gelmistir (Shin ve
ark., 2016; Raghu ve ark., 2019). Bu strateji, sinirl1 sayida anotlanmis tibbi verinin sorununu
¢ozmekle kalmaz, ayn1 zamanda milyonlarca dogal goriintii lizerinde egitilmis aglarda

kodlanmis zengin gorsel bilgiyi de kullanir.



Basarilarina ragmen, derin 6grenmenin tibbi goriintiilemede kullanilmasi da kendine 6zgii
zorluklar ortaya c¢ikarmaktadir. Yiiksek kaliteli etiketli veri kiimelerinin derlenmesi
genellikle zor ve pahalidir ve goriintii kalitesi, etiketleme standartlar1 ve hastalik
yaygimlhigindaki farkliliklar, model performansini etkileyen dnyargilara yol agabilir (Oakden-
Rayner, 2020). Ek olarak, derin 6grenme modellerinin “kara kutu” niteligi, yorumlanabilirlik
ve klinik gliven konusunda endiseler dogurmus ve model tahminleri i¢in anlaml
gorsellestirmeler ve gerekgeler saglamayr amaclayan acgiklanabilir Al teknikleri iizerine

arastirmalar yapilmasina neden olmustur (Tjoa ve Guan, 2020).

Bununla birlikte, derin 6grenme, biiyiik veri ve bilgi islem donanimindaki gelismelerin bir
araya gelmesi, otomatik tibbi goriintii analizinde miimkiin olanin sinirlarini zorlamaya devam
etmektedir. Modeller daha sofistike ve veri kiimeleri daha kapsamli hale geldikce, derin
O6grenmenin tan1 dogrulugunu artirma, is yiikiinii azaltma ve uzman diizeyinde bakima erisimi
demokratiklestirme roliiniin daha da genislemesi muhtemeldir (Topol, 2019; Rajpurkar ve

ark., 2022).

2.4. Tibbi Goriintii Analizi icin CNN Mimarileri

Konvoliisyonel sinir aglar1 (CNN'ler), ham goriintii verilerinden dogrudan hiyerarsik,
uzamsal farkindaliga sahip 6zellikleri 6grenme konusundaki giiglii yetenekleri nedeniyle,
ozellikle tibbi goriintii analizi alaninda modern bilgisayar goriisiiniin bel kemigi haline
gelmistir (Krizhevsky ve ark., 2012). Oncii AlexNet mimarisi, 2012 yilinda bir doniim
noktasi olusturmus ve derin, katmanli sinir aglarinin biiyiik 6lgekli goriintii siniflandirma
gorevlerinde geleneksel algoritmalardan daha 1yi performans gdsterebilecegini kanitlamistir
(Russakovsky ve ark., 2015). Bu ¢igir acan gelisme, CNN tasariminda bir inovasyon
dalgasini tetiklemis ve temsil giicii, hesaplama verimliligi ve egitim istikrarini iyilestirmeyi

amaclayan daha sofistike mimarilerin gelistirilmesine yol agmustir.

VGGNet (Simonyan ve Zisserman, 2015), GoogLeNet (Szegedy ve ark., 2015) ve ResNet

(He ve ark., 2016) gibi sonraki mimariler sirasiyla daha derin aglar, baglangi¢c modiilleri ve

kalint1 baglantilar1 tanitti. VGGNet, y18ilmis 3x3 konvoliisyonel katmanlarin kullanimiyla

basitligi vurguladi; bu katmanlar, derinligi artirmasina ragmen, hesaplama taleplerini

yonetilebilir diizeyde tuttu. GoogLeNet (Inception), agin bilgileri paralel olarak g¢oklu
8



Ol¢eklerde islemesine olanak taniyan baslangic modiilleri kavramini tanitt1 ve bdylece ¢ok
cesitli gorsel kaliplar1 yakalama kapasitesini artirdi. ResNet'in kisayol veya kalinti
baglantilarin1 tanitmasi, kaybolan gradyan sorununu ¢ozdii ve ylizlerce hatta binlerce

katmandan olusan ¢ok derin aglarin egitilmesini miimkiin kilmis ve hem dogal hem de tibbi

gOriintli analizinde temel bir unsur haline gelmistir.

DenseNet (Huang ve ark., 2017), her katmanin 6nceki tiim katmanlardan girdi aldig1 yogun
baglantiy1 tanitarak bu alani daha da ilerletmis, 6zelliklerin yeniden kullanimini tegvik etmis
ve kaybolan gradyan sorununu daha da azaltmistir. Bu tasarim, parametrelerin verimli

kullaniminm1 saglamakta ve geleneksel mimarilere kiyasla daha az parametre ile genellikle

istiin dogruluk elde etmektedir.
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Sekil 0.1: EfficientNetBO0 yapis1 (ResearchGate, 2025)

Daha yakin zamanda, EfficientNetBO (Tan ve Le, 2019) ag derinligini, genisligini ve giris
¢cOziiniirliglinii esit sekilde Olcekleyen bir bilesik oOlgeklendirme yontemi getirerek,
olaganiistii hesaplama verimliligi ile en son teknoloji performansi sunan bir model ailesi
olusturmustur. Sekil 2.1°de yapis1 gosterilen EfficientNetBO modelleri, dogruluk ve kaynak

kullanim1 arasinda giiclii bir denge kurmalar1 nedeniyle tibbi goriintiileme arastirmalarinda



hizla popiilerlik kazanmistir ve donanim kisitlamalarinin sorun olabilecegi gercek diinya

klinik uygulamalar1 i¢in 6zellikle caziptir (Shamsi ve ark., 2021).

CNN mimarisindeki bu gelismeler, tibbi goriintii analizinde doniistiiriicii bir etki yaratarak,
fundus fotografciligi, OCT, MRI ve CT gibi g¢esitli modalitelerde hastalik tespiti,
segmentasyon ve prognoz gibi gorevlerde onemli iyilestirmeler saglamistir (Shin ve ark.,
2016; Litjens ve ark., 2017). Onemli olarak, CNN'lerin modiilerligi ve aktarilabilirligi,
aragtirmacilarin dnceden egitilmis modelleri kullanarak nispeten kiigiik, alana 6zgii tibbi veri
kiimeleri lizerinde ince ayar yapmalarina olanak tanimais, sinirlt anotlanmais verilerin getirdigi

bazi 6nemli sinirlamalar1 agmalarini saglamistir (Raghu ve ark., 2019).

Glglerine ragmen, tibbi goriintiillemede derin CNN'lerin kullanimi zorluklar igcermez degildir.
Modellerin yiiksek karmagikligi, 6zellikle egitim verileri sinirli veya dengesiz oldugunda
asirt uyum riskini artirabilir. Dahasi, derin mimarilerin kara kutu niteligi, yorumlanabilirlik
ve klinik gilivenilirlik konusunda sorunlar dogurmaktadir. Bu sorunlar, son tasarimlara dikkat
mekanizmalart ve agiklanabilir Al tekniklerinin entegrasyonuna ilham vermistir (Tjoa ve

Guan, 2020; Selvaraju ve ark., 2017).

Genel olarak, CNN mimarilerinin evrimi, bilgisayar destekli tani1 yeteneklerinin
gelistirilmesinde oOnemli bir rol oynamistir ve tip alaninda daha dogru, saglam ve
aciklanabilir Al sistemleri i¢in ¢abalar siirerken, arastirmalarin ana odak noktasi olmaya

devam etmektedir.

2.5. Retina Hastaliklarinin Simiflandirilmasinda Son Gelismeler

Son yillarda, retina hastaliklarinin sinmiflandirilmas: alaninda, biiylik 06l¢iide derin
ogrenmedeki ilerlemeler ve anotlanmis fundus ve OCT gortintii veri setlerinin giderek daha
fazla kullanilabilir hale gelmesi sayesinde, dikkate deger ilerlemeler kaydedilmistir (Li ve
ark., 2021). Giincel arastirmalar, dikkatlice tasarlanip egitildiginde, evrisimli sinir aglarinin
cesitli retina patolojilerini tespit etme ve siniflandirma konusunda deneyimli oftalmologlarla
esit veya hatta onlardan daha iistiin bir tam1 performans: sergileyebildigini gdstermistir
(Gulshan ve ark., 2016; Ting ve ark., 2019). Giiniimiizde bir¢ok ¢aligma, yalnizca ikili tespit

gorevlerine (6rnegin, sevk edilebilir ve sevk edilemez diyabetik retinopati) degil, aym
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zamanda ger¢ek diinyadaki klinik senaryolara daha ¢ok benzeyen ¢ok sinifli siniflandirma

problemlerine de odaklanmaktadir (Zhou ve ark., 2022).

Son literatiirdeki 6nemli bir egilim, ImageNet gibi biiyiikk 6l¢ekli genel veri kiimeleri
tizerinde onceden egitilmis modellerin, daha kiiciik, hastaliga 6zgii veri kiimeleri {izerinde
ince ayarlandig1 transfer 6greniminin uygulanmasidir. Ornegin, Li ve ark. (2021), ImageNet
tizerinde onceden egitilmis bir ResNet50 mimarisi kullanmis ve bunu retina hastaliklarinin
¢ok smifli siniflandirmasi igin ince ayarlamis, ODIR-5K veri setinde %85,7 dogruluk elde
etmistir. Benzer sekilde, Wang ve ark. (2022) transfer O0grenimi ile DenseNetl21'i
uygulayarak, alt1 retina hastalig1 kategorisini siniflandirmak i¢in %89,6 test dogrulugu ve
%88,7 makro F1 puamn elde ettiklerini bildirmistir. Bu ¢aligmalar, siirli sayida anotlanmis
tibbi verinin yarattifi zorlugun iistesinden gelmede transfer &greniminin etkinligini
vurgulamakta ve modellerin tibbi olmayan goriintiilerden 6grenilen zengin gorsel

ozelliklerden yararlanmasini saglamaktadir.

Veri artirma da veri kiimesi dengesizligini gidermek ve genellemeyi iyilestirmek i¢in dnemli
bir teknik olarak ortaya ¢ikmistir. Modern artirma stratejileri genellikle basit ¢cevirme ve
dondiirme islemlerinin 6tesine gecerek renk titremesi, elastik deformasyonlar, karistirma ve
CutMix'i de icermektedir (Zhang ve ark., 2018; Yun ve ark., 2019). Shamsi ve ark. (2021),
gelismis artirma yontemlerini EfficientNet tabanli modellerle entegre etmenin, ¢cok simifli
retina hastalig1 gorevlerinde hem dogruluk hem de saglamlik agisindan 6nemli kazanimlar
sagladigin1 gostermistir. Artirma, egitim Orneklerinin ¢esitliligini artirmakla kalmaz, ayni
zamanda fundus goriintiilerindeki yiiksek sinif i¢i degiskenlik goz oniine alindiginda kritik

bir husus olan asir1 uyum riskini de azaltir (Lim ve ark., 2022).

Bir bagka 6nemli aragtirma alani, modelin yorumlanabilirligini ve performansini artirmak
icin dikkat mekanizmalarinin entegrasyonuna odaklanmaktadir. Squeeze-and-Excitation
(SE) bloklar1 (Hu ve ark., 2018) ve Convolutional Block Attention Modules (CBAM) (Woo
ve ark., 2018) gibi dikkat modiilleri, agin 6zellik haritalarin1 dinamik olarak yeniden kalibre
etmesine olanak taniyarak goriintlinlin tanisal acidan ilgili bdlgelerini vurgular. Liu ve ark.

(2023), CBAM le giiclendirilmis ResNet'i fundus goriintii siniflandirmasina uygulayarak,
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standart CNN'lere kiyasla hem daha yiiksek dogruluk hem de hastaliga 6zgii lezyonlarin daha

1yi lokalizasyonu elde etmistir.

Ayrica, son zamanlarda yapilan ¢aligmalar, veri kiimeleri aras1 dogrulama, ¢ok merkezli veri
kiimeleri ve prospektif klinik ¢alismalar kullanarak degerlendirme kapsamini genisletmistir.
Bu egilim, yapay zeka (AI) modellerinin farkli popiilasyonlardan, cihazlardan ve gergek
diinya klinik is akislarindan elde edilen goriintiilere etkili bir sekilde genellestirilebilecegini
gosterme ihtiyacindan kaynaklanmaktadir (De Fauw ve ark., 2018; Yim ve ark., 2020).
Birkag calisma, tek kaynakli veri kiimeleri iizerinde egitilmis modellerin sinirlamalarini
vurgulamis ve yeni merkezlerden veya farkli edinim protokolleriyle elde edilen goriintiiler
tizerinde test edildiginde dogrulukta 6nemli diisiisler oldugunu belirtmistir (Gupta ve ark.,

2021).

Son olarak, yorumlanabilirlik ve klinik kullanilabilirlik nemli vurgu alanlar1 olmaya devam
etmektedir. Son zamanlarda yapilan ¢aligmalar, klinisyenlere model tahminleri i¢in sezgisel
aciklamalar sunmak amaciyla Grad-CAM (Selvaraju ve ark., 2017) ve saliency maps gibi
gorsellestirme tekniklerini entegre etmistir. Bu seffaflik, klinik giliveni kolaylastirmakla
kalmaz, ayn1 zamanda potansiyel ariza modlarinin tanimlanmasina da yardimei olur, bdylece
hasta giivenligini ve diizenleyici kurumlarin kabul etme olasiligin1 artirir (Tjoa ve Guan,

2020).

Toplu olarak, bu gelismeler, retina hastalig1 tespiti i¢in klinik olarak kullanilabilir Al
sistemlerine dogru istikrarli bir sekilde ilerleyen, olgunlasan bir alan1 yansitmaktadir. Veri
kiirasyonu, model tasarimi, artirma stratejileri ve degerlendirme protokollerinde devam eden
ilerlemeler, oftalmolojide derin 6grenmenin tam potansiyelini gergeklestirmek icin ¢ok

onemli olacaktir.

2.6. Retina Gériintiileme icin Derin Ogrenmede Artirma ve Diizenleme

Veri artirma, retina goriintii analizinde derin 6grenme modellerinin genellestirilebilirligini ve
saglamligini 1yilestirmek i¢in 6nemli bir strateji olarak ortaya ¢ikmistir. Annotasyonlu tibbi
goriintii veri kiimeleri genellikle boyut olarak sinirlidir ve 6nemli sinif dengesizligi gosterir,

bu nedenle artirma teknikleri rutin olarak egitim verilerini sentetik olarak genisletmek ve
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asirt uyumu azaltmak icin kullanilir (Shorten ve Khoshgoftaar, 2019). Yatay ve dikey
cevirme, rastgele dondiirme, ¢evirme ve parlaklik ayarlamalar1 gibi geleneksel artirma
yontemleri, klinik goriintiilerde karsilasilan dogal varyasyonlar1 simiile etmek i¢in uzun
stiredir kullanilmaktadir (Perez ve Wang, 2017). Bu temel doniisiimler, egitim 6rneklerinin
cesitliligini artirarak, evrigimli sinir aglarinin daha degismez ve genellestirilebilir 6zellikleri

O0grenmesini saglar (Wang ve ark., 2022).

Son yillarda, model performansin1 daha da artirmak i¢in daha sofistike artirma stratejileri
gelistirilmistir. Elastik deformasyonlar, rastgele silme, mixup ve CutMix gibi teknikler, yeni
ve makul goriintii varyasyonlar1 olusturarak hem dogrulugu hem de saglamligi artirma
yetenegini gostermistir (Zhang ve ark., 2018; Yun ve ark., 2019). Ornegin, mixup yaklasimu,
goriintii ¢iftlerini ve bunlara karsilik gelen etiketleri dogrusal olarak birlestirerek yeni egitim
ornekleri olusturur ve modeli siniflar arasinda enterpolasyon yapmaya etkili bir sekilde tesvik
eder (Zhang ve ark., 2018). Benzer sekilde, CutMix bir goriintiiniin rastgele parcalarin1 bagka
bir goriintiiniin pargalariyla degistirerek modelin daha genis bir ayrime1 bolge yelpazesine
dikkatini ¢cekmesini saglar (Yun ve ark., 2019). Bu gelismis yontemler, sinif i¢i degiskenligin
yiiksek ve smiflar aras1 benzerligin yiiksek oldugu tibbi goriintiileme alanlarinda 6zellikle

etkili olduklarimi kanitlamistir.

Diizenleme teknikleri, derin sinir aglartyla iligkili agir1 uyum sorununu ele almada da ayni
derecede onemlidir. Egitim sirasinda noronlar: rastgele devre dis1 birakan dropout, 6zellik
algilayicilarinin birlikte uyumlagmasini 6nlemek ve daha dagitilmis temsilleri tesvik etmek
icin yaygin olarak kullanilmaktadir (Srivastava ve ark., 2014). Agirhik zayiflamasi (L2
diizenleme), biiyiik agirliklar1 cezalandiran ve daha diizgiin ve basit modelleri tesvik eden
baska bir standart yaklasimdir (Goodfellow ve ark., 2016). Her katmana gelen girdileri
normallestiren toplu normallestirme de egitimi stabilize ettigi ve yakinsamay1 hizlandirdigi
gosterilmistir (Ioffe ve Szegedy, 2015). Retina hastalig1 siniflandirmasi baglaminda, artirma
ve diizenlemenin birlikte kullanilmast hem capraz dogrulama hem de harici test
performansinda 6nemli iyilesmeler sagladigi gosterilmistir (Lim ve ark., 2022; Shamsi ve

ark., 2021).
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Veri artirmada ortaya ¢ikan yeni trendler, gercekei sentetik retina goriintiileri olusturmak icin
iretken karsit aglarin (GAN) kullanilmasimi igerir ve bu da egitim veri kiimelerinin
cesitliligini daha da zenginlestirir (Zhu ve ark., 2022). Bu tiir teknikler, nadir hastalik siiflar
icin anotlanmig goriintiilerin azlig1 sorununu ¢6zme konusunda umut vaat etmektedir, ancak
sentetik goriintiilerin klinik olarak ilgili 6zellikleri dogru bir sekilde yansitmasi ve artefaktlar

olusturmamasi i¢in 6zen gosterilmesi gerekmektedir (Frid-Adar ve ark., 2018).

Sonug olarak, artirma ve diizenleme stratejilerinin dikkatli bir sekilde tasarlanmasi ve
uygulanmasi, retina goriintiilemede derin 6grenme modellerinin basarisi i¢in hayati 6nem
tagimaktadir. Bu yaklasimlar, genellemeyi iyilestirmek ve asir1t uyumu azaltmakla kalmaz,
ayn1 zamanda Al tabanli tani sistemlerinin giivenilirligini ve klinik uygulanabilirligini de

artirir.

2.7. Retina Hastaliklarinin Siniflandirilmasinda Transfer Ogrenimi ve Genelleme

Transfer 6grenimi, tibbi goriintii analizinde, 6zellikle de etiketli veri kiimelerinin boyutu ve
cesitliligi genellikle sinirli olan retina hastaliklarinin siniflandirilmasinda vazgecilmez bir
yaklasim haline gelmistir (Shin ve ark., 2016). Transfer 6greniminin temel fikri, ImageNet
gibi biiylik 6lcekli, genel amagli veri kiimelerinden elde edilen bilgileri, derin konvoliisyonel
sinir aglarin1 6nceden egiterek ve ardindan bunlar1 hedef tibbi gorevlere gore ince ayar
yaparak kullanmaktir (Raghu ve ark., 2019). Bu strateji, modellerin kenar ve doku
algilayicilar gibi 6grenilmis gorsel temsilleri dogal goriintiilerden fundus fotografcilig: veya

OCT goriintiileme gibi daha 6zel alanlara aktarmasini saglar.

Cok sayida ¢aligma, transfer 6greniminin retina hastaligi tespitinde hem dogrulugu hem de
yakinsama hizin1 artirmada etkili oldugunu gostermistir. Ornegin, Gulshan ve ark. (2016),
bliylik bir diyabetik retinopati veri seti lizerinde ince ayar yapilmis, 6nceden egitilmis bir
InceptionV3 modeli kullanmis ve kurul sertifikali oftalmologlarla karsilastirilabilir bir tani
performansi elde etmistir. Benzer sekilde, Li ve ark. (2021), ODIR-5K ¢ok smifli retina
hastalig1 veri seti iizerinde bir ResNet50 agini1 ince ayarlamis ve sifirdan egitilmis modellere

kiyasla siniflandirma dogrulugunda 6nemli bir artis elde etmistir.
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Transfer 6greniminin temel bir avantaji, tibbi goriintiilemede yaygin olan veri kitlig1 ve simif
dengesizligi sorunlarmin etkilerini, model parametrelerini genel gorsel 6zelliklere zaten
uyarlanmis bir agirlik uzayinda baglatarak azaltma yetenegidir (Shin ve ark., 2016; Raghu ve
ark., 2019). Bu 6n kosullandirma, yakinsamayi hizlandirmakla kalmaz, ayni zamanda
modelin tim 6zellik algilayicilarini sifirdan 6grenmesine gerek kalmadigi i¢in kiigiik veri
kiimelerine asir1 uyum saglama riskini de azaltir. Aragtirmalar, ince ayarli modellerin,
Ozellikle sinirli sayida anotlanmis 6rnek mevcut oldugunda, rastgele baslatilan aglardan
tutarli bir sekilde daha iyi performans gosterdigini ortaya koymustur (Tajbakhsh ve ark.,
2016).

Genelleme, yani bir modelin goriilmemis veriler lizerinde 1yi performans gosterme yetenegi,
transfer ogreniminin bir baska 6nemli avantajidir. Onceden egitilmis aglar, cok gesitli
goriintli yapilarina maruz kalmislardir ve bu da goriintii kalitesi, goriintii alma cihazlar1 ve
hasta demografisi degisikliklerine kars1 dayamikliliklarimi artirmaktadir (Esteva ve ark.,
2017). Bu, gercek diinya klinik verilerinin goriintiileme protokolleri, popiilasyon cesitliligi
ve hastalik yayginligi agisindan arastirma veri kiimelerinden onemli Ol¢iide farklilik
gosterdigi retina hastaligi taramalarinda ozellikle Onemlidir (Gupta ve ark., 2021).
Modellerin bir modalitede (6r. dogal goriintiiler) 6nceden egitildigi ve baska bir modalitede
(or. fundus goriintiileri) ince ayarlandig1 ¢apraz alan transfer 6greniminin, ¢ok merkezli ve
prospektif dogrulama calismalarinda genellestirilebilirligi iyilestirdigi gosterilmistir (De
Fauw ve ark., 2018).

Bununla birlikte, transfer 6greniminin smirlamalar1 da vardir. Kaynak ve hedef veri
dagilimlar1 arasindaki uyumsuzluk olan alan kaymasi, 6nceden egitilmis Ozellikler s6z
konusu tibbi goriintiileme goreviyle yeterince alakali degilse performansi olumsuz
etkileyebilir (Raghu ve ark., 2019). Bu sorunu ¢6zmek i¢in bazi arastirmacilar, alan uyumlu
transfer 6grenme tekniklerini veya miimkiin oldugunda CheXpert veya MIMIC-CXR gibi
tibbi goriintiileme veri kiimelerini kaynak alanlar olarak kullanmay1 savunmaktadir (Irvin ve
ark., 2019; Johnson ve ark., 2019). Ek olarak, hangi katmanlarin ince ayarlanacagina iliskin
en uygun secim, ara denetim kullanimi ve 6grenme oranlarimin kalibrasyonu, halen aktif

arastirma alanlar1 olmaya devam etmektedir (Cui ve ark., 2019).
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Genel olarak, transfer 6grenimi retina hastalig1 siniflandirmasinda derin 6grenimde devrim
yaratmis ve sinirlt sayida anotlanmig veriyle bile en son teknolojiye sahip performans elde
edilmesini saglamistir. Daha kapsamli ve ¢esitli tibbi veri kiimeleri kullanima sunulduk¢a ve
alan uyarlama teknikleri gelismeye devam ettikge, Al modellerinin popiilasyonlar ve
ortamlar arasinda genelleme yapma yetenegi daha da gelisecek ve klinik uygulamada

otomatik retina hastalig1 taramasinin benimsenmesi hizlanacaktir.

2.8. Retina Hastalig1 Siniflandirmasinda Dikkat Mekanizmalar: ve A¢iklanabilirlik

Retina hastalig1 siniflandirmasi i¢in derin 6grenme modellerinin karmasiklig1 ve dogrulugu
arttikca, hem performansin hem de yorumlanabilirligin iyilestirilmesi ihtiyaci giderek daha
belirgin hale gelmistir. Dikkat mekanizmalari, her iki zorluga da gii¢lii bir ¢6ziim olarak
ortaya ¢ikmis ve sinir aglarinin girdi goriintiilerinin en alakali bolgelerine segici olarak
odaklanmasini saglarken, ayni zamanda klinik kullanicilar i¢in daha seffaf ve yorumlanabilir

¢iktilar sunmustur (Vaswani ve ark., 2017; Hu ve ark., 2018).

Dikkat mekanizmalarinin temel fikri, modelin bir goriintiideki farkli uzamsal veya 6zellik
kanallarina degisen Onem diizeyleri atamasini saglamaktir. Retina goriintii analizi
baglaminda, dikkat mekanizmasi modelin mikroanevrizmalar, eksiidalar veya optik disk gibi
tanisal agidan Onemli yapilart vurgulamasina ve daha az ilgili arka plan bilgilerini
bastirmasina olanak tanir (Woo ve ark., 2018). Ornegin, Squeeze-and-Excitation (SE)
bloklari, kanal bazinda 6zellik tepkilerini yeniden kalibre ederek bilgilendirici 6zellikleri
dinamik olarak gelistirir (Hu ve ark., 2018). Convolutional Block Attention Modules
(CBAM), hem uzamsal hem de kanal dikkatini entegre ederek bu kavrami genisletir ve agin
daha belirgin goriintii bolgelerine daha hassas bir sekilde odaklanmasini saglar (Woo ve ark.,
2018). Liu ve ark. (2023), CBAM'yi fundus goriintli siniflandirmasi i¢in ResNet tabanli bir
modele entegre etmenin sadece dogrulugu degil, ayn1 zamanda hastaliga 6zgii lezyonlarin
lokalizasyonunu da iyilestirdigini ve uzmanlarin agiklamalariyla yakindan uyumlu 1s1

haritalar1 sagladigin1 gostermistir.

Bir bagka doniistiirticii gelisme, baslangicta dogal dil islemede tanitilan (Vaswani ve ark.,
2017) ancak daha sonra tibbi goriintiilemede dnemli uygulamalar bulan doniistiirticii tabanl
mimariler ve 6z dikkat mekanizmalarinin benimsenmesidir (Dosovitskiy ve ark., 2021).
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Gorsel doniistiiriiciiler (ViT'ler) goriintiileri yama dizileri olarak isler ve uzamsal iliskilerin
esnek ve uzun menzilli modellemesine olanak tanir. Son c¢alismalar, doniistiiriicli tabanh
modellerin diyabetik retinopati tespiti dahil olmak {izere belirli tibbi goriintiilleme
gorevlerinde CNN'lerin performansini eslestirebilecegini ve hatta asabilecegini gostermistir

(Chen ve ark., 2022).

Yorumlanabilirlik, oftalmolojide Al sistemlerinin klinik uygulamasi i¢in ¢ok Snemli bir
gerekliliktir. Klinisyenler, ozellikle tan1 ve tedavi kararlarinin alindigr yiiksek riskli
senaryolarda model tahminlerini anlayabilmeli ve bunlara giivenebilmelidir (Tjoa ve Guan,
2020). Bu amagla, saliency map, Grad-CAM ve attention heatmap gibi aciklanabilir AT (XAI)
yontemleri, modelin tahminlerine en fazla katkida bulunan giris goriintiilerinin bolgelerini
gorsellestirmek igin standart araglar haline gelmistir (Selvaraju ve ark., 2017). Bu
gorsellestirmeler, klinisyenlere sezgisel agiklamalar sunarak model kararlarinin
dogrulanmasina yardimci olur ve hatalarin veya basarisizlik durumlarinin tespitini

kolaylastirir (Montavon ve ark., 2018).

Son zamanlarda yapilan ¢alismalar, dikkat tabanli agiklamalarin dogrudan klinik is akiglarina
entegrasyonunu da arastirmistir. Ornegin, Jin ve ark. (2021), her tahmin igin hem
siniflandirma ¢iktilar1 hem de yorumlanabilir 1s1 haritalar1 saglayan, doktorlarin giivenini ve
kullanilabilirligi artiran bir retina hastalig1 tespiti icin derin 6grenme sistemi gelistirmistir.
Diger caligmalar, retina hastaligi veri kiimelerindeki agiklama hatalarin1 belirlemek ve
diizeltmek i¢in dikkat haritalarim1 kullanmis ve dikkat mekanizmalarimin hem model

tyilestirme hem de veri kalite kontrolii i¢in ikili yararin1 vurgulamistir (Yang ve ark., 2022).

Bu ilerlemelere ragmen, dikkat temelli agiklamalar1 standartlagtirmak ve c¢esitli klinik
ortamlarda giivenilirligini saglamak konusunda zorluklar devam etmektedir (Tjoa ve Guan,
2020). Bu alandaki aragtirmalarin devam ettirilmesi, en son teknolojiye sahip AI modelleri
ile gercek diinyadaki oftalmik uygulamalar arasindaki ugurumu kapatmak ve otomatik retina
hastalig1 tespit sistemlerinin hem dogru hem de yorumlanabilir olmasini saglamak ig¢in

gereklidir.
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3. MALZEMELER VE METODOLOJI

Bu ¢alismada, fundus goriintiilerine dayali cok sinifl1 retina hastaligi siniflandirmasi i¢in 6zel
bir derin 6grenme boru hatt1 tasarlanmis ve uygulanmistir. Tibbi goriintii analizinde
kanitlanmis verimliligi ve etkinligi nedeniyle EfficientNetB0'1 birincil mimari olarak
secilmistir. Model olusturma, egitim ve degerlendirme adimlarini otomatiklestirmek

amactyla 6zel Python komut dosyalar1 gelistirilmistir.

Modelin 6grenme kapasitesini optimize etmek ve onu retina hastalifinin benzersiz
modellerine 6zel olarak uyarlamak i¢in ince ayar uygulanmistir. EfficientNetB0O mimarisinin
tim katmanlar1 ¢oziilerek, ImageNet iizerinde Onceden egitilmis agirliklarla model,
alanimiza 0zgii veri seti lizerinde yeniden egitilmistir. Bu yaklasim, dogru hastalik
simiflandirmas: i¢in kritik 6dneme sahip hem diisiik hem de yiiksek diizey o6zellikleri

cikartilmasini saglamstir.

Veri cesitliliginin etkisini titizlikle degerlendirmek icin iki farkli senaryo altinda deneyler
yapimustir. ilkinde, degiskenligi artirmak ve asirt uyum riskini azaltmak igin egitim
goriintiileri, rastgele dondiirme, ¢evirme, parlaklik degisiklikleri ve yakinlagtirma gibi veri
artirma teknikleriyle cesitlendirilmistir. ikinci senaryoda, sinirli veri gesitliliginin model

genellestirme tizerindeki etkisini gdstermek i¢in temel olarak higbir artirma yapilmamustir.

Stireg boyunca, veri 6n isleme, bolme, model egitimi, dogrulama ve metrik hesaplama
stiregleri sistematik ve tekrarlanabilir sekilde yapilandirilmistir. Bu metodoloji, gergekei
klinik veri kosullar1 altinda EfficientNetB0'n gii¢lii ve zayif yonlerini adil bir sekilde
degerlendirilmesini ve tibbi goriintiilemede derin 6grenme performansi lizerinde artirma ve

ince ayarin etkisine iliskin anlamli sonuglar ¢ikartilmasini saglamistir.

3.1. Veri Kiimesi A¢iklamasi

Bu tez kapsaminda, alt1 ana g6z hastalig1 kategorisini igceren ve ¢esitli acik kaynakli veri
setlerinden derlenen kapsamli bir retina goriintli koleksiyonu kullanilmistir. Kullanilan veri
setleri; ACRIMA, Cataract, Glaucoma, ODIR-5K, ORIGA ve Retina Disease olarak
siralanmaktadir. Bu veri kaynaklari, farkli cihazlar ve goriintiileme kosullarinda elde edilmis

fundus fotograflarin1 icermekte olup, siniflandirma goérevinde genellestirilebilir ve dengeli

18



bir model gelistirmek amaciyla birlestirilmistir. S6z konusu veri setleri; Glaucoma (glokom),
Cataract (katarakt), Age-Related Macular Degeneration (yasa bagli makula dejenerasyonu),
Diabetic Retinopathy (diyabetik retinopati), genel retina hastaliklar1 (retina disease) ve
normal retina olmak tizere alt1 farkli sinifi kapsamaktadir. Bu hastalik kategorilerine ait 6rnek
fundus goriintiileri Sekil 3.1°de sunulmustur. Gorseller, her bir hastaligin tipik gorsel
Ozelliklerini temsil etmekte ve smiflar arast morfolojik farkliliklar1 ortaya koymaktadir.
Baslangigta, veri kiimesinde ciddi bir smif dengesizligi gozlemlenmistir; bazi hastalik
smiflari, digerlerine kiyasla oldukca diisiik sayida Ornek icermekteydi. Bu durumu
dengelemek amaciyla veri kiimesi ornekleme ve artirma teknikleriyle genisletilmistir.
Sonrasinda tiim veri kiimesi, %70 egitim ve %30 test oraniyla tabakali sekilde bolinmiistiir.
Bu yapilandirma sonucunda, egitim seti 14.000 ve test seti 6.000 goriintiiden olusacak
bicimde hazirlanmis; test kiimesinde her sinifin 1.000 goriintii ile esit temsil edilmesi
saglanmistir. Boylece, modelin genelleme yetenegi tiim simiflarda dengeli olarak
degerlendirilebilmis, sinifa dayali 6nyarg riski azaltilarak anlamli performans olgiitleri elde

edilmistir.
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ODIR-5K Gaucoma ODIR-5K ODIR-5K ODIR-5K

ODIR-5K ODIR-5K ACRIMA ACRIMA ODIR-5K

ODIR-5K ODIR-5K ACRIMA ODIR-5K ODIR-5K

ODIR-5K

Sekil 0.1: Calismada kullanilan ACRIMA, ODIR-5K ve Glaucoma veri setlerinden 6rnek
retina fundus goriintileri. Gorseller, siniflar arasi cesitliligi ve patolojik 6zellikleri
yansitmaktadir

3.2. Veri Artirnmi

Bu aragtirmada kullanilan veri kiimesi, alti ana g6z hastalif1 kategorisini temsil etmek
amaciyla, retina fundus goriintiilerini igeren birka¢ agik kaynakli veri deposundan
derlenmistir. Baslangigta, veri kiimesi oldukca dengesizdi, ¢linkii bazi hastalik simiflari
digerlerine kiyasla 6nemli 6l¢iide yetersiz temsil ediliyordu. Veri cesitliligini artirmak ve adil

bir degerlendirme ortami saglamak amaciyla kapsamli bir 6n isleme ve dengeleme yaklagimi
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izlenmistir. Bu ¢abalarin ardindan, veri kiimesi genisletilmis ve yeniden yapilandirilmistir,
boylece her hastalik sinifi esit sekilde temsil edilen toplam 20.000 goriintii igerecek sekilde
diizenlenmistir. Tlim goriintiiler kapsamli kalite kontrollerinden gegirilmis ve derin 6§renme
analizi i¢in uygun standart bir c¢oziiniirliige yeniden boyutlandirilmis, bdylece tiim

koleksiyonun format ve goriiniimiinde tutarlilik saglanmistir.

Model egitimi ve degerlendirmesi i¢in verileri hazirlamak amaciyla, veri setini 70/30 oranina
gore egitim ve test setlerine ayirilmistir. Boylece, 14.000 goriintii egitim i¢in, 6.000 goriintii
ise test i¢in ayrilmistir. Test setinin her hastalik kategorisinden tam olarak 1.000 goriintii
icermesine 6zel dikkat gosterilmis, boylece tiim siniflar genelinde model performansinin
dengeli ve giivenilir bir sekilde degerlendirilmesi saglanmistir. Bu tabakali boliinme,
smiflarin esit temsilini saglamis ve hem 6grenme hem de degerlendirme asamalarinda

Onyargi riskini en aza indirmistir.

Derin 6grenme basarisi acisindan veri cgesitliliginin dnemine dayanarak, egitim siirecine
cesitli veri artirma teknikleri entegre edilmistir. Rastgele dondlirme, ¢evirme, yakinlagtirma,
parlaklik ve kontrast ayarlamalar ile rastgele ¢eviriler ve kirpmalar uygulayarak, egitim
kiimesindeki degiskenligi yapay olarak artirabilmistir. Bu artirma islemleri, egitim sirasinda
cevrim i¢i ve dinamik bi¢imde uygulanmistir, boylece model her donemde yeni ve ¢esitli
gorlintii  varyasyonlariyla karsilagsmistir. Bu yaklasim, modelin goériilmemis verilere
genelleme yetenegini giiclendirmekle kalmamis, ayn1 zamanda o6zellikle sinirli 6rneklem
boyutlarindan muzdarip olan hastalik kategorileri i¢in agir1 uyumun azaltilmasinda da 6nemli
bir rol oynamistir. Sonu¢ olarak, bu birlesik veri hazirlama ve artirma stratejileri, bu
calismada saglam model gelistirme ve adil deneysel karsilastirma i¢in temel olusturmustur.

Sekil 3.1 kullanilan veri setlerine ait 6rnek goriintiilerin veri ¢esitliligini gostermektedir.

3.3. Veri On Isleme

Derin 6grenme modeline veri saglamadan Once, giris verilerinin kalitesini artirmak ve
tutarlilig saglamak amaciyla ayrintili bir on isleme siireci izlenmistir. ilk adimda, tiim
gorintiiler kalite agisindan degerlendirilmis; bulanik, agir1 pozlanmis ya da artefakt igerenler
veri setinden ¢ikarilmistir. Bu kalite glivence adimi, giiriiltiiyli en aza indirmek ve modelin
yaniltici kaliplar1 6grenmesini 6nlemek i¢in ¢ok 6nemlidir.
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Kalite kontroliinii gegen goriintiiler, modelin gereksinimlerine uygun olarak 224x224 piksel
¢Oziiniirliige yeniden boyutlandirilmistir. Bu hedef boyut hem hesaplama verimliligi hem de
EfficientNetBO mimarisinin girig gereksinimlerine uymak i¢in se¢ilmistir. Boyutlandirma
islemi sirasinda, en-boy oranlar1 korunmus ve retinanin yapisal biitiinliigli saglamak amaciyla

gerekli durumlarda goriintiiler ortalanarak kirpilmistir.

Renk standardizasyonu, tiim veri setine tutarli bigcimde uygulanmistir. Goriintiilerin tamami
RGB renk uzayma donistiiriilerek, renk bilgisi agisindan biitiinliikk saglanmistir, boylece
hastalik siniflarini ayirt etmek i¢in genellikle hayati 6nem tasiyan 6nemli renk bilgilerinin
korunmasi saglanmistir. Gri tonlamali veya anormal kanallara sahip oldugu tespit edilen

goriintliler, veri setinin genel biitlinliigiinii korumak icin diizeltilmis veya hari¢ tutulmustur.

Model egitiminin kararliligin1 ve hizin1 daha da artirmak ig¢in, tiim goriintiilerdeki piksel
degerleri, her piksel 255'e boliinerek [0, 1] araligina normallestirilmistir. Bu normallestirme
adimi, 6grenme siirecini stabilize etmeye yardimci olmus ve optimizasyon sirasinda daha iyi

yakinsama saglamistir.

Hem egitim hem de test veri kiimelerine tamamen ayni 6n isleme adimlarin1 uygulamak
olduk¢a onemlidir. Bu islem, iki veri boliimii arasinda istenmeyen tutarsizliklar1 ortadan
kaldirmis ve modelin performansinin adil ve tarafsiz bir sekilde degerlendirilmesini
saglamistir. Bu sistematik on isleme siireci sayesinde, yapilan deneylerde kullanilan her
goriintliniin yliksek kaliteli, dogru bicimde bi¢imlendirilmis ve etkili derin 6grenme analizi

i¢in uygun olmasi saglanmistir.

3.4. Model Mimarisi

Bu c¢alismada, retina hastalig1 siniflandirmasi i¢in EfficientNetB0O derin 6grenme mimarisi
tercih edilmistir. Bu mimari, yiiksek dogruluk diizeyi ile hesaplama verimliligi arasindaki
dengeyi saglayarak tibbi goriintii analizi gibi hassas uygulamalar i¢in ideal bir yap:
sunmaktadir. Agin bilesik dlgekleme stratejisi sayesinde model, derinlik, genislik ve giris
¢cOziinlirliiglinii eszamanli sekilde ayarlayarak fundus goriintiilerinde karsilasilan cesitli

yapisal 6zelliklere duyarlilik gosterebilmektedir.
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Genel is akisi, giris fundus goriintiilerinin toplanmasiyla baglayip, 6n isleme siireciyle devam
etmektedir. Ardindan veri kiimesi, iki farkli kola ayrilmaktadir: biri veri artirma uygulanan,
digeri ise ham verilerle ¢alisilan yoldur. Her iki yol da EfficientNetB0O modeli ile egitilmekte
ve siniflandirma sonuglari, detayli metrikler ve karisiklik matrisleri ile degerlendirilmektedir.

Bu akis, Sekil 3.2'de sematik olarak sunulmustur.

Modelin performansin1 artirmak amaciyla transfer O0grenme ve ince ayar teknikleri
uygulanmistir. EfficientNetB0, ImageNet veri kiimesi iizerinde 6nceden egitilmis agirliklarla
baslatilmisg; ardindan tiim katmanlar agilarak, fundus goriintiilerine 6zgii Ozelliklerin
Ogrenilmesine olanak saglanmistir. Bu sayede, hem diisiik seviyeli kenar ve doku 6zellikleri

hem de yliksek seviyeli patolojik desenler model tarafindan etkili bicimde 6grenilmistir.

Modelin 6zgiin siniflandirma katmani ¢ikarilmis ve yerine alti ndronlu, softmax aktivasyonlu
yeni bir fully connected katman eklenmistir. Bu yapi1, her bir ndronun bir hastalik sinifini
temsil etmesini saglamaktadir. Ayrica, asir1 6grenmenin Oniine gegmek amaciyla mimariye
dropout katmanlar1 ve batch normalization bilesenleri entegre edilmistir. Bu yapilandirma,

hem veri artirimi yapilan hem de yapilmayan senaryolarda tutarli bigimde kullanilmistir.
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3.4.1. Veri Artirnmi ile EfficientNetB0

seviyelerinde gorev odakli 6grenme gerceklestirebilmistir.

dogal varyasyonlara kars1 daha dayanikli hale gelmistir.
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Sekil 0.2: Onerilen Retina Hastaligi Smiflandirma Sisteminin Genel Is Akist

Ilk deneysel senaryoda, EfficientNetBO mimarisi kapsamli bir veri artirma stratejisiyle
birlikte uygulanmistir. Model, ImageNet veri kiimesi iizerinde 6nceden egitilmis agirliklarla
baslatilmis; tiim katmanlar1 agilarak, fundus goriintiilerine 6zgii 6zelliklerin 6grenilmesine

olanak taninmistir. Bu sekilde, model yalnizca siiflandirma katmaninda degil, agin tiim

Egitim siirecinde, veri g¢esitliligini artirmak amaciyla kapsamli bir artirma paketi
kullanilmistir. Bu paket, rastgele dondiirme, yatay ve dikey c¢evirme, parlaklik ve kontrast
degisiklikleri, yakinlastirma, ¢evirme ve kirpma gibi doniisiimleri icermektedir. S6z konusu
dontistimler, her epoch sirasinda ¢evrim i¢i sekilde uygulanarak modelin her defasinda yeni

varyasyonlarla karsilagmasi saglanmistir. Boylece model, yonelim, 6l¢ek ve aydinlatma gibi




Modelin siniflandirma bagligi, alt1 hastalik sinifina karsilik gelen softmax aktivasyonlu yeni
bir fully connected katmanla degistirilmistir. Asir1 6grenme riskini azaltmak amaciyla
dropout katmanlar1 ile diizenleme saglanmis ve genel mimaride batch normalization
kullanilmistir. Egitim siireci boyunca Adam optimizasyon algoritmasi tercih edilmis,
O0grenme orani (0.0001 olarak belirlenmis ve batch boyutu 32 olacak sekilde
yapilandirilmigtir.  Egitim 50 epoch boyunca gergeklestirilmis, en iyi dogrulama

performansina sahip model agirliklar1 kaydedilmistir.

Egitim sirasinda, dogruluk ve kayip egrileri yakindan izlenmistir. Sekil 4.2 ve 4.3’te
gosterildigi gibi, hem egitim hem de dogrulama dogrulugunda istikrarli bir artis
gbzlemlenmis, bu da modelin yalnizca verileri ezberlemedigini; ayn1 zamanda genelleme
yetenegi kazandigmi gostermistir. Paralel olarak, kayip degerlerinde siirekli bir azalma

kaydedilmis ve 6grenme siirecinin dengeli ilerledigi dogrulanmistir.

Son degerlendirme, her smiftan 1.000 goriintii igeren bagimsiz test seti iizerinde
gerceklestirilmistir. Tablo 4.1'de sunulan siniflandirma raporunda, tiim siniflarda precision,
recall ve F1 skorlarinin %91’in iizerinde oldugu goézlemlenmistir. Sekil 4.1°de sunulan
karisiklik matrisi ise, modelin siiflar arasindaki ayrim giiclinii acik bigimde ortaya
koymaktadir. Yanlis siniflandirmalarin sayica az ve dengeli dagilmis olmasi, siniflar arasinda

belirgin bir dnyarginin olusmadigin1 géstermektedir.

Genel olarak, veri artirimu ile egitilen EfficientNetB0 modeli; sinif dengesizligi, veri kitlig
ve varyasyon eksikligi gibi zorluklara karsi yiiksek dogruluk ve genelleme basarimi
sergilemistir. Bu sonugclar, tibbi goriintii siniflandirmasinda veri artirmanin vazgegilmez bir
bilesen oldugunu ve EfficientNet mimarisinin bu baglamda olduk¢a uyumlu ¢alistigini ortaya

koymaktadir.

3.4.2. Veri Artiromi Olmadan EfficientNetB0

Ikinci deneysel senaryoda, EfficientNetBO mimarisi aymi sekilde uygulanmis; ancak egitim
stirecinde higbir veri artirma teknigi kullanilmamistir. Bu yaklasim, artirma uygulanmaksizin
modelin dogal 6grenme kapasitesini degerlendirmek ve veri ¢esitliligi olmadan olugabilecek

siirlamalar1 gozlemlemek amaciyla yapilandirilmistir.
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Model yine ImageNet veri seti iizerinde Onceden egitilmis agirliklarla baslatilmis, tiim
katmanlar agilarak ince ayar yapilmistir. Siniflandirma katmani, alt1 sinifa karsilik gelen
softmax aktivasyonlu bir fully connected katman ile degistirilmis, dropout katmanlari
eklenerek diizenleme saglanmigtir. Tiim egitim parametreleri optimizer (Adam), 6grenme
orani (0.0001), batch boyutu (32) ve epoch sayisi (50) artirma yapilan senaryo ile birebir ayn1
tutulmustur. Bu sayede, performans farklarinin yalnizca veri artirmanin varligina dayandigi

giivenilir bir sekilde analiz edilmistir.

Model yalnizca orijinal ve degistirilmemis goriintiiler lizerinde egitildiginden, cesitli
yonelimler, olcekler ve 151k kosullari gibi gergek diinya varyasyonlarin1 gorme imkani kisitl
kalmistir. Bu durum, modelin genelleme yetenegini azaltmis ve belirli siniflarda asir1 uyuma

yol agabilecek bir ortam yaratmustir.

Egitim siireci sirasinda izlenen dogruluk ve kayip egrileri, bu sinirlamalar1 agikca ortaya
koymustur. Egitim dogrulugu her ne kadar %96 seviyesine ulagsa da, dogrulama
dogrulugundaki artis erken donemlerde duraklamis ve smirli kalmistir. Ayni sekilde,
dogrulama kaybi, belirli bir noktadan sonra yilikselme egilimi gostermistir. Bu gozlemler,
modelin egitim verilerini ezberledigini, ancak yeni ve gorlilmemis Orneklere genelleme

yapmada zorlandigini isaret etmektedir.

Sekil 4.4°de gosterilen karigiklik matrisi, bu senaryoda yapilan yanlis siniflandirmalarin,
ozellikle baslangicta az sayida 6rnekle temsil edilen siniflarda yogunlagtigini gostermektedir.
Bu durum, smif dengesizliginin azaltilmamasi ve veri ¢esitliliginin artirilmamasi halinde,

modelin ayirt edici 6grenme yeteneginin azaldigini desteklemektedir.

Sonug olarak, bu deneysel senaryo, artirma yapilmadan egitilen modellerin yiiksek egitim
dogruluguna ragmen genelleme konusunda sinirli kaldigmmi ortaya koymaktadir. Veri
artirmanin yoklugu, modelin yalnizca ezberleme temelli 6grenme gergeklestirmesine neden
olmus ve klinik agidan giivenilir bir smiflandirma performansinin 6niinde engel teskil
etmistir. Bu durum, artirmanin 6zellikle sinirli 6rnek iceren tibbi veri setlerinde vazgegilmez

bir bilesen oldugunu bir kez daha kanitlamaktadir.
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3.4.3. VGG16 (Temel Karsilastirma Modeli)

VGG16 da giiglii bir temel model oldugu i¢in, EfficientNetB0 un kazanglarini adil bigimde
Olemek icin deneylere eklenmistir. Bunu yapmak icin ImageNet iizerinde On-egitilmis
VGG16’y1 yiiklendikten sonra, 6zgiin smiflandirma blogunu ¢ikartilarak ve ACRIMA,
Cataract, Glaucoma, ODIR-5K, ORIGA ve Retina Disease siiflarini temsil eden alt1 ¢ikish
softmax katmanindan once Global Average Pooling ve Dropout iceren hafif bir baslik
eklenmistir. Girdi boyutunu 224x224x3 ve piksel normalizasyonunu [0,1] diizeyinde tutarak
EfficientNet-BO0 ile ayni1 6n-isleme islemi korunmustur. Tiim katmanlar1 50 epoch boyunca
Adam (6grenme orani le-4), kategorik capraz entropi ve 32’lik yigin boyutu ile ince
ayarlanmig; dogrulama kayb1 ve dogrulugunu izleyerek, early stopping ve model checkpoint
ile en iyi val loss degerine sahip ag1 saklayarak asiri uyumu sinirlamak amaciyla bir sinir
konulmustur. Her epoch icin egitim/dogrulama kaybi ve dogrulugunu kaydetmektedir, 50
epoch’luk program boyunca egrileri ¢izerek sistemin kararli optimizasyonu dogrulanir.
Egitimden sonra en iyi VGG16 kontrol noktas: test kiimesi iizerinde degerlendirilmis,
argmax ile etiketleri iiretilmis, alti sinif i¢in smiflandirma raporu ve karisiklik matrisi
hesaplanmis ve dogruluk/kayip egrileri ile karisiklik matrisini EfficientNet-BO0 ile ayn1 gorsel
bicimde sunularak mimari, egitim kurulumu ve raporlama acisindan dogrudan

karsilastirilabilirligi siirdiirtilmistiir.

3.5. Egitim Prosediirii

- EfficientNetBO ve VGG16 modelleri ayni egitim protokolii altinda calistirilarak, veri
artirmanin etkisini yalitmis, adil bir karsilastirma kurulmustur. Boylece genelleme basarimi

giivenilir bigimde degerlendirilmistir.

- Her iki deneysel senaryoda (artirmali ve artirmasiz) ayni hiperparametreleri uygulanmus,

modeller ImageNet lizerinde 6nceden egitilmis agirliklarla baslatilmistir.

- Tim katmanlar1 acarak retina gorilintiilerine 0zgii ayrimlarin katmanlar boyunca
uyarlanmasi saglanmis ve siniflandirma baghigini alt1 ¢ikish softmax ile ayni giris boyutu
(224x224x3) ve ayn1 normalizasyon araligi [0,1] altinda tutularak is hatti (pipeline) iki

mimari arasinda tam uyumlu tutulmustur.
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- Egitimler 50 epoch’a kadar siirdiiriilmiis, Adam optimizasyonunu le-4 6grenme orani ve
32’lik mini-batch ile ylriitiilmiis, kayip fonksiyonu olarak kategorik capraz entropi
kullanilmis, asir1 uyumu smirlamak amaciyla dropout ve gerekli yerlerde Batch

Normalization uygulanmistir.

- Her epoch sonunda dogrulama dogrulugunu ve kaybini izleyerek, art arda on epoch boyunca

gelisme goriilmediginde erken durdurmayi tetikleyerek asirt uyuma bir sinir ¢ekilmistir.

- Bu siiregte en iyi dogrulama basarimini veren agirliklar saklanmis, egitim ve dogrulama
icin dogruluk/kayip degerlerini 50 epoch zaman ¢izelgesi boyunca kaydederek, her iki

modelin 6grenme dinamikleri ayn1 6l¢ekte raporlanmaistir.

- Egitimler tamamlandiktan sonra en iyi denetim noktasi ayrilmig test kiimesi {izerinde
degerlendirilmis, argmax ile nihai etiketleri iiretilmis, siniflandirma raporu ve alt1 sinif igin
karigiklik matrisi hesaplanarak, hem dogruluk kayip egrilerini hem de karisiklik matrisini
tekdiize bir gorsel sablonda sunarak EfficientNetBO ve VGG16’nin mimari farklarinin

performansa yansimasini dogrudan karsilastirilabilir hale getirilmistir.

3.6. Degerlendirme Metrikleri

Egitimli modellerin performansin1 kapsamli bir sekilde degerlendirmek icin, ¢ok smnifli

siniflandirma problemlerine uygun bir dizi iyi bilinen degerlendirme metrigi kullanilmistir.

Oncelikle, her smif igin dogru ve yanls tahminlerin dagilimm gorsellestirmek, yanlis
siniflandirma modellerini vurgulamak ve model ayriminda potansiyel zayifliklar1 ortaya

¢ikarmak i¢in bir karigiklik matrisi olusturulmustur. Sekil 3.3°te gdsterilen alanlar:

TP: Pozitif 6rnegin dogru siniflandirilmasi islemidir.
TN: Negatif 6rnegin dogru simiflandirilmasi iglemidir.
FP: Negatif 6rnegin yanlis siniflandirilmasi islemidir.

FN: Pozitif 6rnegin yanlis siniflandirilmasi iglemidir.
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Sekil 0.3: Karisiklik matrisi yapist

Siniflar arasinda orneklerin dagilimini agiklayan genel bir 6zet saglamak i¢in Dogruluk
(Accuracy) , Kesinlik ya da hassasiyet (Precision) , Duyarlilik ya da geri ¢cagirma (Recall) ve

F1 Puaninin makro ve agirlikli ortalamalar1 da rapor edilmistir. Tim metriklerin formiilleri

Sekil 3.4’te verilmektedir.

Dogru Pozitit + Dogru Negatif’

Dogruluk = -
Toplam Ornek Sayist

Dogru Pozitif
Dogru Pozitif + Yanlhs Pozitif

Kesinlik =

Dogru Pozitif
Dogru Pozitif + Yanls Negatif

Duyarlilik =

2 x Kesinlik x Duyarlilik
Kesinlik + Duyarhlik

F1-Skoru =

Sekil 0.4: Dogruluk, Kesinlik, Duyarlilik ve F1 Skoru formiilleri

Raporlanan birincil metrik, test setindeki tiim Ornekler arasinda dogru simiflandirilan

goriintlilerin oranmi olarak tanimlanan genel dogruluktur. Dogruluk, performansin genel bir

Ol¢iisiinii saglasa da smif dengesizligi durumunda modelin

yansitmayabilir.
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Bunu gidermek amaciyla, her hastalik kategorisi i¢in hassasiyet, geri ¢agirma ve F1 puani da
hesaplanmistir. Hassasiyet, belirli bir sinif olarak tahmin edilen tiim 6rnekler arasinda dogru
pozitif tahminlerin oranini 6lgerken; geri ¢agirma, o sinifin tiim gercek 6rnekleri arasinda
dogru olarak tanimlanan dogru pozitiflerin oranini ifade eder. Hassasiyet ve geri ¢cagirmanin
harmonik ortalamasini temsil eden F1 puani ise her iki hata tiiriiniin dengeli bir sekilde

degerlendirilmesini saglamaktadir.

Bu degerlendirme 6lg¢iitleri dizisi kullanilarak, model performansinin kapsamli ve ayrintili
bir analizi saglanmis ve veri artirimui ile yapilan ve yapilmayan deneyler arasinda adil bir

karsilastirma yapilmasi kolaylastirilmistir.
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4.DENEY SONUCLARI

Bu boliimde EfficientNetBO ve VGG16 mimarileri ayni egitim protokolii altinda
degerlendirilmis, veri artirmanin etkisini izole ederek c¢ok smnifli retina hastaligi
siniflandirmasinda genel dogruluk, kesinlik, geri cagirma, F1 puani ve karisiklik matrisleri
tizerinden kapsamli bir analiz sunulmustur. Her iki model i¢in egitim ve dogrulama siirecinin
50 epoch boyunca izledigi o6grenme dinamiklerini dogruluk ve kayip egrileri ile
gorsellestirip, asir1 uyum sinyalleri denetlenmis ve sinif bazinda giiclii yonleri ile sinirlari

aci8a cikartilmistir.

[lk olarak veri artirim bulunan ve bulunmayan senaryolarda elde edilen genel siniflandirma
basarimini 6zetlenip, ardindan ayritili karigiklik matrisleri ve smiflandirma raporlariyla
dogru ve yanlis tahminlerin hastalik kategorileri arasindaki dagilimi netlestirilmis ve
gerektiginde sinif bazinda karsilastirmalar ile yaygin karisma Oriintiilerine iliskin ¢ikarimlar

sunulmustur.

Burada EfficientNetBO0 birincil yaklagimimizi temsil ederken VGG16 giiclii bir taban model

olarak kiyaslamay1 somutlastirip, metodolojinin pratik sonuglarina zemin hazirlamistr.

VGG16 da aynmi veri isleme ve ince ayar kurulumuyla egitilmis ve degerlendirilmistir. 50
epoch boyunca kaydedilen dogruluk ve kayip degerleriyle 6grenme egrileri sunulmus, bu
model, ImageNet agirliklariyla baglatilan tam ince ayar sonucunda 990,35 egitim
dogruluguna ve %86,33 test dogruluguna ulagsmistir. Bu islem sinif bazinda dengeli bir profil

tiretnistir (her siif i¢in destek 1000 6rnektir);

e ACRIMA i¢in precision: 0,86, recall: 0,85, F1: 0,85,
e (Cataract i¢in precision: 0,94, recall: 0,83, F1: 0,88,
e Glaucoma i¢in precision: 0,62, recall: 0,88, F1: 0,73,
e ODIR-5K i¢in precision: 0,73, recall: 0,86, F1: 0,79,
e ORIGA igin precision: 0,86, recall: 0,83, F1: 0,85

e Retina Disease i¢in precision: 0,89, recall: 0,93, F1: 0,91

Igili karigiklik matrisi diyagonal hakimiyeti korurken Glaucoma siitununa dogru yanlis
pozitif birikimiyle yliksek geri cagirma—daha diisiik kesinlik dengesini goriiniir kilmis ve bu
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desen VGG16’nin belirli sinif ¢iftlerinde (6rnegin  ACRIMA/ORIGA/ODIR-5K <
Glaucoma) ayrim yapmakta zorlandigini gostermistir. Buna karsilik egitim—dogrulama

egrileri 50 epoch boyunca istikrarli bir optimizasyonu isaret etmektedir.

EfficientNetBO ayni kosullar altinda raporlayarak, egitim ve dogrulama egrilerinin 50
epoch’luk seyrini ve test kiimesi iizerindeki sinif bazli dlgiitleri ilgili sekiller ve ¢izelgelerle
sunulmustur. Bu model, bilesik 6l¢ekleme ve temsil verimliligi sayesinde siniflar aras1 karar
siirlarini daha netlestirmis, karisiklik matrisinde yanlis pozitif/negatif yilikiinii daha dengeli
dagitmis ve VGG16’ya kiyasla daha yiiksek genel dogruluk ve makro F1 tiretmistir. Boylece
iki mimari arasinda mimari farklarin performansa yansimasi dogrudan karsilastirilabilir hale
gelmis, veri artirmanin her iki modelde de genelleme basarimini iyilestirirken etki

biiyiikliigiiniin sinifa gore degisebildigini gozlemlenmistir.

4.1. Veri Artirimi ile EfficientNetB0

Gergeklestirilen deneylerin artirilmis senaryosunda, model egitimi 6ncesinde kapsamli bir
veri artirimi teknikleri paketi aracilifiyla egitim veri setini sistematik olarak gelistirmistir.
Bu yaklasim, hem sinif dengesizligi hem de belirli hastalik kategorilerinde nispeten sinirlt
sayida 0rnek i¢eren orijinal veri kiimesinin dogasinda var olan zorluklardan kaynaklanmaistir.
Rastgele dondiirme, yatay ve dikey ¢evirme, degisken dlceklendirme, parlaklik ve kontrastta
kontrollii degisiklikler, rastgele cevirme ve kirpma gibi artirmalar eklenerek, cok daha cesitli
ve temsil edici bir egitim ortami yaratilabilmistir. Bu doniisiimler her donem boyunca egitim
gorlntiilerine gercek zamanl olarak uygulanmis, modelin siirekli olarak yeni ve cesitli
goriintli 6rneklerine maruz kalmasi saglanmistir. Bu strateji, sinir aginin gercek diinyadaki
tibbi goriintiileme senaryolarinda yaygin olan yonelim, dl¢ek ve aydinlatma farkliliklarina

kars1 degismezlik gelistirmesini tesvik etmek i¢in 6zellikle etkili olmustur.

Model mimarisinde optimum performans i¢in ag derinligi, genisligi ve ¢oziiniirligiini
dengelemek tizere bilesik Olceklendirme yeteneklerinden yararlanan EfficientNetBO
kullanilmistir. Ag, biiylik 6lgekli ImageNet veri setinde Onceden egitilmis agirliklarla
bagslatilip, diislik ve orta diizey gorsel 6zellikler i¢in saglam bir temel saglanmistir. Modeli
retina hastalig1 siniflandirmasinin 6zel gorevine uyarlamak i¢in, tiim katmanlar1 ¢dzerek tam
bir ince ayar yapilmistir. Bu islem, modelin siniflandirma basligiyla sinirlt kalmak yerine tiim
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ag boyunca temsilini uyarlamasina olanak tanimistir. Son tam baglantili katman, incelenen
hastalik kategorilerinden her birine karsilik gelen alt1 ¢ikt1 liretecek sekilde degistirildmis,
her sinif i¢in olasilikli bir ¢ikt1 iiretmek icin softmax aktivasyon fonksiyonu uygulanmistir.
Asirt uyumlamaya karsi daha fazla koruma saglamak i¢in, aga dropout katmanlari
eklenmistir. Bu eklenti egitim sirasinda ndronlarin bir alt kiimesini rastgele devre dis1

birakarak ek bir diizenleme diizeyi getirmektedir.

Egitim, uyarlanabilir 6grenme orani 6zellikleri nedeniyle derin 6grenme i¢in ¢ok uygun olan
Adam optimizer kullanilarak gergeklestirilmistir. ilk 6grenme oram1 0,0001 olarak
belirlenmis, yakinsama hizi ile gradyan kararliligini dengelemek i¢in 32 goriintiiliik bir parti
boyutu kullanilmistir (batch size). Siniflandirma sorununun ¢ok simifli dogasini yansitan
kategorik ¢apraz entropi kayip fonksiyonu uygun goriilmiistiir. Model elli tekrara (epoch)
kadar egitilmis, dogrulama dogrulugu izlenerek erken durdurma uygulanmstir. Onceden
tanimlanmis bir tekrar sayisi boyunca dogrulama dogrulugu iyilesmediginde, asiri
uyumlamay1 6nlemek i¢in egitim durdurulmus, en yliksek dogrulama dogruluguna karsilik

gelen agirliklar nihai degerlendirme igin saklanmaistir.

Egitim siireci boyunca, egitim ve dogrulama kiimeleri i¢in hem dogruluk hem de kayip
metriklerinin gelisimi yakindan izlenmistir. Sekil 4.2'de sunulan dogruluk egrisi hem egitim
hem de dogrulama dogrulugunda tutarl bir artis oldugunu ve iki egrinin donemler boyunca
birbirine yakin sekilde hizalandigin1 gostermektedir. Bu yakin hizalanma, modelin yalnizca
egitim verilerini ezberlemedigini; bunun yerine, goriilmemis o6rnekler i¢in etkili bir sekilde
aktarilabilen o6zellikleri 6grendigini gostermesi agisindan basarili genellemenin giiglii bir
gostergesidir. Benzer sekilde, Sekil 4.3'te gosterilen kayip egrisi, hem egitim hem de
dogrulama kaybinda istikrarli bir diisiis oldugunu ve sapma veya diizlesme belirtisi
bulunmadigini ortaya koymaktadir. Bu durum, veri artirimi altinda 6grenme siirecinin

saglamligini daha da desteklemektedir.

Egitim tamamlandiktan sonra, modelin performansi, her hastalik kategorisi i¢in bin adet
goriintiiden olusan bagimsiz test seti iizerinde titizlikle degerlendirilmistir. Tablo 4.1'de
Ozetlenen kapsamli siniflandirma raporu, alt1 sinifin tiimii i¢in kesinlik, geri ¢agirma ve F1

puanlarmin %91.83" astigin1 ortaya koymaktadir. Bu, retina hastaliklarinin tiim yelpazesi

33



boyunca dengeli ve giivenilir bir siniflandirma performansini yansitmaktadir. Sekil 4.1'de
gosterilen karisiklik matrisi, her sinif i¢in tahminlerin ve hatalarin gorsel bir dokiimiinii
sunmaktadir. Test goriintiilerinin ¢ogu dogru bir sekilde siiflandirilmis olup, yalnizca kiigiik
bir kismi1 yanlig siniflandirilmistir ve bunlar genellikle farkli kategoriler arasinda esit olarak
dagilmistir. Bu dagilim, modelin yeterli veri gesitliligi ile egitildiginde karmasik retina

patolojilerini ayirt etme yetenegini vurgulamaktadir.

Veri artirmanin egitim siirecine entegrasyonu, sadece genel dogruluk acisindan degil, ayni
zamanda sinif basina metriklerin tutarlilig1 agisindan da model performansinda énemli bir
iyilesme saglamaktadir. Bu bulgular, 6zellikle mevcut verilerin sinirli veya dengesiz oldugu
durumlarda tibbi goriintiilemede artirma stratejilerinin degerini pekistirmekte, saglam egitim
protokolleriyle birlestirildiginde EfficientNetBO mimarisinin uyarlanabilirligini ve giiclinii

vurgulamaktadir.

Veri artirma ile egitilmis EfficientNetBO modelinin karisiklik matrisi Sekil 4.1'de
sunulmustur. Bu matris, tiim hastalik kategorilerinde modelin tahminlerini ayrintili bir
sekilde gorsellestirerek, hem dogru siniflandirmalart hem de yanlis siniflandirmalarin
dagilimmi vurgulamaktadir. Diyagonal elemanlar, her smif i¢in dogru smiflandirilmis
orneklerin sayisini temsil ederken, diyagonal dis1 elemanlar, modelin bir hastalig1 baska bir

hastalikla karistirdigr durumlar1 gosterir.

Tablo 0.1: Egitim dogrulugu ile dogrulama (test) dogrulugunun karsilastiriimasi (Artirma ile)

Egitim dogrulugu %96.3

Test dogrulugu %91.83
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Sekil 0.2: Egitim ve Dogrulama Dogrulugu (Artirma ile)
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15 Training and Validation Loss (With Augmentation)
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Sekil 0.3: Egitim ve Dogrulama Kaybi (Artirma ile)

Sekil 4.1'de gosterildigi gibi, her siftaki test Orneklerinin ¢ogu dogru bir sekilde
smiflandirilmis olup, diger kategorilere dagilmis olan hatalarm orani ¢ok azdir. Ozellikle,
siiflandirma raporunda da yansitildig gibi, tiim siniflar i¢in tutarl bir yliksek geri cagirma
ve hassasiyet modeli vardir. Karigiklik matrisinin dengeli yapisi, modelin ayirt edici giiciinii
artirmada ve belirli bir sinifa yonelik onyargiyr azaltmada veri artirmanin etkinligini
giiclendirmektedir. Tiim kategorilerde gosterilen bu gii¢lii performans, ¢ok smifli retina
hastaligt  smiflandirmasinda  benimsenen metodolojinin ~ saglamligini  ve  klinik

uygulanabilirligini gdstermektedir.

4.2 Veri Artirim1 Olmadan EfficientNetB0

Ikinci deney senaryosunda, EfficientNetBO mimarisi, herhangi bir veri artirma teknigi
uygulanmadan orijinal retina goriintii veri seti lizerinde egitilmistir. Bu yaklasim, yapay
olarak artirillmis veri gesitliligi ve miktar1 olmadan modelin dogal 6grenme dinamiklerini
vurgulamak icin bir temel olusturmak amaciyla tasarlanmistir. Epok sayisi, parti boyutu,
optimize edici ve 0grenme orani dahil olmak iizere tiim ag parametreleri, artirilmis deneyde
kullanilanlarla ayni tutulmustur. Boylece, performansta gozlemlenen farkliliklarin yalnizca

artirmanin varligi veya yokluguna atfedilebilmesi saglanmistir.

Egitim sirasinda, model yalnizca sinirli sayida orijinal goriintliye maruz birakilmistir.

EfficientNetB0, dnceden egitilmis ImageNet agirliklari ile baslatilmig ve tlim katmanlar ince
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ayar i¢in ¢Ozllmiis olsa da, artirmanin olmamasi, modelin goriintii yonelimi, olcek ve
aydinlatma agisindan ¢esitli varyasyonlar1 deneyimleme firsatinin daha az oldugu anlamina
gelmektedir. Sonug olarak, ag yeni Ornekleri genellestiren saglam Ozellikleri 6grenmek
yerine egitim verilerini ezberleme olasilig1 daha yiiksek oldugu i¢in asir1 uyuma daha duyarl

hale gelmistir.

Bu deneyin sonuglari, bu kisitlamalarin etkisini acik¢a yansitmaktadir. Tablo 4.2' de
gosterildigi gibi, genel test dogrulugu %84.24' e diismiis, makro ortalama hassasiyet, geri
cagirma ve F1 puanlari da 0,84' e diismiistiir. Performanstaki bu diisiis, egitim ve dogrulama
dogrulugu ve kayip egrileriyle (Sekil 4.4 ve 4.5) daha da net bir sekilde gosterilmektedir.
Egitim dogrulugu artmaya devam ederek %96'ya ulasirken, dogrulama dogrulugu ¢ok daha
erken bir asamada sabit kalmis ve nihayetinde olduk¢a diisiik bir degere yakinsamustir.
Benzer sekilde, dogrulama kayip egrisi, baslangigta bir diisiisiin ardindan durgunluk ve hatta

sonraki donemlerde hafif bir artis gdstermistir; bu da asirt uyumun agik bir gostergesidir.

Sekil 4.6' da sunulan karigiklik matrisi, bu senaryoda modelin davranisina iligkin ek bilgiler
sunar. Artiritlmig deney ile karsilastirildiginda, 6zellikle veri kiimesinde baslangigta yeterince
temsil edilmeyen kategorilerde, yanlis siniflandirmalarda belirgin bir artis olmustur. Matrisin
diyagonal degerleri hala baskin olsa da, diyagonal dis1 hatalar daha yaygindir, bu da modelin

gorel olarak benzer retina hastaliklarini ayirt etme yeteneginin azaldigini gosterir.

Tablo 0.2 Artirma olmaksizin egitim dogrulugu ile dogrulama (test) dogrulugunun

karsilastirilmasi

Egitim dogrulugu 796

Test dogrulugu %84.24
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12 Training and Validation Loss (Without Augmentation)
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Sekil 0.3: Egitim ve Dogrulama Kaybi1 (Artirma olmadan)

Bu bulgular, artirma yapilmadan sinirli ve dengesiz tibbi veri kiimeleri {izerinde derin
o6grenme modellerini egitmenin zorluklarini vurgulamaktadir. Hem genel hem de sinif bagina
performanstaki belirgin diisiis, egitim ve dogrulama egrileri arasindaki farkin genislemesi ve
yanlig siniflandirma oranlarinin artmasi, otomatik hastalik siniflandirma gorevlerinde klinik
olarak anlamli sonuglar elde etmek igin veri genigletme stratejilerinin gerekliligini ortaya

koymaktadir.

Iki deneysel senaryo; veri artirimu ile ve veri artirimi olmadan yapilan egitimin arasindaki
karsilastirmali analiz, retina hastalig1 siniflandirmasi i¢in saglam derin 6grenme modellerinin
gelistirilmesinde veri cesitliliginin kritik roliinii vurgulamaktadir. Veri artirmmi teknikleri
egitim siirecine entegre edildiginde, EfficientNetBO modeli tiim hastalik kategorilerinde
tutarli bir sekilde daha yiiksek dogruluk, geri ¢agirma ve F1 puanlan elde etmistir. Bu
tyilesme en belirgin sekilde, makro ortalama metriklerde ortaya ¢ikmistir; veri artirimi ile
hem dogruluk hem de geri ¢agirma orant %96'yi asarken, veri artirrmi olmadan bu oran
sadece %84.24 olarak Olciilmiistiir. Egitim ve dogrulama egrilerinin daha yakindan
incelenmesi, bu gézlemi daha da vurgulamaktadir. Veri artirnmi ile, egitim ve dogrulama
kiimeleri i¢in hem dogruluk hem de kayip egrileri yakin bir uyum gostermistir, bu da etkili
genelleme ve minimum agir1 uyumun gostergesidir. Buna karsilik, artirma olmadan egitilen

model, egitim ve dogrulama dogrulugu arasinda belirgin bir fark sergilemis, egitimin sonuna
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dogru dogrulama kaybinda bir artig goriilmiistiir. Bu, modelin sinirli sayida degismeyen

goriintiiye dayanmasi nedeniyle asir1 uyumun agik isaretleridir.

Karigiklik matrisleri de artirilmis modelin gorsel olarak benzer hastalik siniflarin1 daha iyi
ayirt edebildigini ve matriste daha az yanlis siniflandirma oldugunu ortaya koymustur.
Artirma olmadan, hatalar artmis, baglangigta yeterince temsil edilmeyen veya ayirt edilmesi
daha zor olan kategorilerde yogunlasma egilimi gostermis, bu da derin 6§renme modellerinin

veri dengesizligi ve kitligina karst savunmasizligini pekistirmistir.

Ozetle, bu karsilastirmali ¢alismanin sonuglari, veri artirmanin yalmizca istege bagh bir
tyilestirme degil, tibbi goriintii siniflandirmasinda klinik olarak anlamli performans elde
etmek icin gerekli bir bilesen oldugunu dogrulamaktadir. Artirma islemi egitim verilerinin
etkili boyutunu ve degiskenligini genigleterek, modelin daha genellestirilebilir 6zellikleri
O0grenmesini saglar ve sahte korelasyonlar1 ezberleme olasilifini azaltir. Hem nicel
metriklerde hem de niteliksel tahmin modellerinde gozlemlenen iyilestirmeler, otomatik

retina hastalig1 taramasi baglaminda gelistirme stratejilerinin degerini vurgulamaktadir.

4.3 Veri Artirimi ile VGG16

Veri artirma altinda, VGG16 EfficientNetBO ile ayn1 6n isleme, giris boyutu, optimizasyon
ve erken durdurma ayarlariyla egitilmis, egitim/test dogrulugu ve kayip egrileri 50 tekrar
boyunca ayni eksenlerde tespit edilmistir. Bu islem, 68renme dinamiklerini dogrudan
karsilastirilabilir hale getirmektedir; bu kurulumda, VGG16, ImageNet baglatma ve tam ince
ayar ile %90,35 egitim dogrulugu ve %86,33 test dogrulugu iiretmis, 6zellikle Glokom
siifinda, nispeten diislik hassasiyetle, EfficientNetBO ile karsilastirildiginda dengeli ancak
daha sinirli bir ayrim giicii sergilemistir; bu da desen artirmanin sagladig ¢esitlilige ragmen,

siiflar aras1 sinirlarin VGG16'da daha dar bir temsilden 6grenildigini gosterir.

Ayni gorsel sablonda, Tablo 4.3' de Olciilen metrikler, Sekil 4.7' de artirimli senaryo igin
karigiklik matrisi ve Sekil 4.8' de 50 tekrarli dogruluk/kayip egrileri verilmektedir; boylece
veri artirma altinda hatalarin dagilimi, asir1 uyumun bastirilip bastirilmadigi ve karar

simirlarinin  hem sayisal hem de gorsel olarak nasil degistigi tutarli bir sekilde

gosterilmektedir.
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Tablo 0.3: VGG16 igin egitim dogrulugu ile dogrulama (test) dogrulugunun karsilastirilmast
(Artirma ile)

Egitim dogrulugu | %90.35

Test dogrulugu %86.33
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Sekil 0.4: Veri arttirimi ile VGG16 i¢in karigiklik matrisi
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Sekil 0.5: Veri arttirimi ile VGG16 i¢in egitim dogrulugu ve kayb1

4.4. Veri Artirma Olmadan VGG16

Bu son c¢alismada simiflandirict olarak VGG16 omurgast (ImageNet agirliklariyla
baslatilmis), global ortalama havuzlama ve alt1 sinif i¢in softmax ¢ikis katmani1 (ACRIMA,
Cataract, Glaucoma, ODIR-5K, ORIGA, Retina Disease) kullanilmistir. Fakat egitim verisi
artirma ve sinif dengeleme olmadan yiiriitiilmustiir. Bu durum sinif dengesizligine maruziyeti
artirmig ve asirt uyuma (overfitting) yol agmistir. Egitim dogrulugu =%98’e yiikselirken
dogrulama dogrulugu =%82 civarinda sonug¢ vermistir ve dogrulama kayb1 gec evrelerde
artmistir. Ayrilmig test kiimesinde model %78,94 dogruluk elde edebilmistir. Karisiklik
matrisi agirlikli olarak diyagonalde toplanmis olup en yaygin hatalar ODIR-5K 6rneklerinin
Glaucoma/ORIGA simiflarina kaymasi ve ACRIMA—-Glaucoma arasinda karigmalar seklinde
gozlenmistir. Artirma kullanilan VGG16 uygulamasina (=%86 dogruluk) kiyasla bu sonuglar,
genelleme basarimini iyilestirmek i¢in veri artirmanin 6nemini vurgulamaktadir.

Tablo 0.4. VGG16 i¢in egitim dogrulugu ile dogrulama (test) dogrulugunun
karsilastirilmasi (Artirma olmadan)

Egitim dogrulugu | %98.68

Test dogrulugu %78.94
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Sekil 0.7: Veri artirma olmadan VGG16 icin egitim dogrulugu ve kaybi

4.5. Onceki Calismalarla Karsilastirmah Analiz

Tablo 4.4'te sunulan karsilastirmali sonucglarin incelenmesi, bu calismada Onerilen
metodolojinin sagladig ilerlemeleri agik¢a gostermektedir. EfficientNetBO tabanli model,
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kapsamli veri artirma ve tam ince ayar ile birlestirildiginde, ResNet50, DenseNetl121,
VGG16 ve InceptionV3 mimarilerini kullananlar da dahil olmak {izere literatiirde bildirilen
birka¢ son teknoloji yaklasimdan ve bu c¢alismada egitilen VGG16 temel modelinden (test
dogrulugu %86,33) daha iyi performans gostermistir. Ozellikle, dnerilen model %91,83'liik
bir test dogrulugu elde etmistir; bu, daha 6nce yayimnlanan en iyi sonucglardan énemli dlgiide
daha yiiksektir ve %91,83'lik bir makro ortalama F1 puani elde etmistir, bu da tiim hastalik

siniflarinda hem yiiksek hassasiyet hem de dengeli performans oldugunu gostermektedir.

Bu iistiin performansa birkag faktor katkida bulunmustur. ilk olarak, saglam veri artirma
stratejilerinin uygulanmasi, egitim verilerinin etkili boyutunu ve cesitliligini genisletmede
cok onemli bir rol oynamistir. Bu, modelin daha etkili bir sekilde genelleme yapmasini
saglamis, sinirl sayida anotlanmig 6rnekle yapilan tibbi goriintiilleme ¢alismalarinda siklikla
gozlenen asir1 uyum riskini azaltmistir. Ayni artirim protokoli VGG16 temel modeline de
uygulanmis, elde edilen sonuglar EfficientNetBO’te gozlenen {istlinliigiin protokol
farklarindan degil mimari yetkinlikten kaynaklandigin1 desteklemistir. Buna karsilik, 6nceki
bir¢ok calisma, asgari veya geleneksel artirma teknikleriyle, esas olarak orijinal goriintiilere
dayanmaktaydi, bu da klinik ortamlarda mevcut olan ger¢ek diinyadaki degiskenligin tiimiinii

yakalama yeteneklerini sinirliyordu.

Ikincisi, derinlik, genislik ve ¢dziiniirliigiin bilesik dlceklendirmesiyle bilinen bir mimari
olan EfficientNetB0"1 kullanma karar1, daha incelikli ve 6lgeklenebilir bir 6zellik ¢ikarma
stireci saglamigtir. ImageNet'ten transfer 6grenimi ve tiim ag katmanlarinin kapsamli ince
ayarlamalariyla birlestirildiginde, model ¢esitli retina hastaliklarinda ince patolojik
Ozellikleri tanimlamak ve ayirt etmek i¢in daha donanimli hale gelmistir. Bu tercih, mimari
olarak daha geleneksel bir temel olan VGG16 ile yan yana kiyaslandiginda da istiinliigiinii
korumus ve performans farkini nicel olarak goriiniir kilmistir. Bu yaklagim, omurga aginin
biiyiik boliimlerini donduran veya oftalmik verilerin karmagikligina en uygun sekilde uyum
saglayamayabilecek daha az ifade giicii olan mimariler kullanan yontemlerin aksine bir

yaklagimdr.

Dahasi, bu ¢aligmada benimsenen, tabakali veri dengeleme, erken durdurma, diizenleme ve

hem egitim hem de dogrulama metriklerinin izlenmesini igeren titiz deney protokolii, rapor
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edilen sonuclarin hem istatistiksel olarak saglam hem de klinik olarak ilgili olmasim
saglamistir. Ayni titizlik VGG16 temel modeline de uygulanmis, bu modelin test dogrulugu
%86,33 degerleri ile tutarli bir taban ¢izgisi sundugu gosterilmistir; yliksek egitim ve test
dogrulugu ile giicli makro ortalama F1 puanlar1 arasindaki uyum, modelin performansinin
sadece uygun deney kosullariin bir sonucu degil, ayn1 zamanda goriilmemis klinik verilere
gercek genellestirilebilirligin bir gostergesi olduguna dair giiven vermektedir. Ozetle,
karsilastirmali analiz, otomatik retina hastalig1 siniflandirmasinda giivenilir ve klinik olarak
anlamli sonuglar elde etmek igin gelismis derin 0grenme mimarileri, veri artirma ve
metodolojik titizligi birlestirmenin degerini vurgulamaktadir. Bu ¢ergevede EfficientNetBO,
VGG16 temel modeli ve literatirdeki VGG16 tabanli yaklagimlara karsi stiinliigiinii
korurken, bu bulgular 6nerilen yaklasimin sadece son teknolojiyi ilerletmekle kalmayip, ayni
zamanda bu alandaki gelecekteki aragtirmalar icin pratik bir referans noktasi olusturdugunu

gostermektedir.

Tablo 0.5: Onceki calismalarla karsilastirmali analiz

Dataset Training Test

Study / Method Model (Classes) Accuracy (%) Acg;;r)acy
Wang ve ark., ODIR-5K
(2022) ResNet50 6) 97.0 85.7
Zhang ve ark., .
(2018) VGG16 Private (5) 96.8 88.2
Live ark,, (2021) | DenseNet121 %MR'SK 97.4 89.6
Sarki ve ark., . ODIR-5K
(2020) InceptionV3 ©6) 95.5 87.9
Tezdeki ¢alisma . ODIR-5K +
(Artirma ile) EfficientNetB0 Others (6) 96.3 91.83
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4.6. Tartisma

Bu calismada elde edilen deneysel sonuglar, ¢ok smifli retina hastaligi siniflandirmasi igin
etkili ve giivenilir derin 6grenme modellerinin gelistirilmesinde veri artirmanin énemini
acikca ortaya koymaktadir. Artirma uygulandiginda gézlemlenen dogruluk, geri ¢agirma ve
F1 puanindaki belirgin iyilesmeler, veri ¢esitliliginin artirilmasinin kiigiik ve dengesiz tibbi
veri kiimelerinin sinirlamalarini agmak i¢in ¢ok Onemli oldugunu gdstermektedir. Bu
bulgular, artirmanin sinir aglarinin asirt uyumlanmay1 6nlemesine ve goriilmemis vakalara
genelleme yetenegini gelistirmesine yardimeir oldugu gdsterilen tibbi goriintii analizindeki

onceki arastirmalarla tutarlidir.

Artirillmis deneylerde egitim ve dogrulama egrilerinin birbirine yakin olmasi, modelin egitim
verilerine 6zgli olmayan temsili Ozellikleri 6grenebildigini gostermektedir. Bu 6zellik,
saglamlik ve giivenilirligin ¢ok 6nemli oldugu klinik uygulamalar i¢in gereklidir. Tersine,
artirtlmamis senaryodaki sonuglar, sinirli ve homojen veri kiimeleri iizerinde egitim
yapmanin risklerini vurgulamaktadir: model sadece asir1 uyum saglamakla kalmaz, ayni
zamanda 6zellikle yetersiz temsil edilen kategorilerde ince hastalik modellerini ayirt etmekte

zorlanir.

Ayrica, karigiklik matrisleri, modelin yaptig1 hata tiirleri hakkinda ek bilgiler saglamistir.
Artirma ile yanlis siniflandirmalar daha az siklikta ve daha esit dagilmis, artirma olmadan ise
yapilan hatalarin, altta yatan veri dengesizliini yansitan belirli zorlu kategorilerde
kiimelenme egiliminde oldugu goriilmiistiir. Bu analiz, veri artirmanin, Al tabanli tani
araglarinin hem genel hem de sinif bazinda performansini iyilestirmek i¢in pratik ve etkili bir

strateji oldugu fikrini pekistirmektedir.

Bu bulgular, tibbi gortintiileme alaninda, 6zellikle nadir veya gorsel olarak benzer hastaliklari
iceren uygulamalar i¢in kapsamli veri 6n isleme ve artirma protokollerinin benimsenmesinin
gerekliligini vurgulamaktadir. Aragtirmacilar ve klinisyenler, bu zorluklar titizlikle ele
alarak, sadece deneysel ortamlarda yiiksek dogruluk elde etmekle kalmayip, ayn1 zamanda

gercek diinyadaki klinik is akislarinda somut faydalar saglayan Al sistemleri gelistirebilirler.
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5. SONUC VE GELECEK CALISMALAR

5.1. Sonug¢

Bu tezde sunulan calisma, oftalmik teshisteki kritik zorluklardan biri olan, derin 6grenme
kullanarak c¢oklu retina hastaliklarinin giivenilir ve otomatik siniflandirilmasini ele almay1
amaglamistir. Bu ¢alismada modelleme stratejisinin temelinin EfficientNetB0O mimarisi ile
olusturulmasi, konvoliisyonel sinir aglarindaki en son gelismelerden yararlanirken, aym
zamanda tibbi goriintii analizinde merkezi 6neme sahip olan veri kithigi, sinif dengesizligi ve
klinik yorumlanabilirlik gibi konulara da odaklanilabilmeyi saglamistir; ayrica,
kargilastirmali bir temel ¢izgi sunmak iizere VGG16’y1 ayni is hattina entegre edilerek

mimari farklarin etkisi nicel olarak goriiniir kilinmistir.

Arastirma boyunca, veri setinin hazirlanmasi ve 0n islenmesine 6zel dnem verilmistir.
Calisma, klinik olarak onemli alt1 hastalik kategorisini temsil eden, ¢esitli ancak oldukga
dengesiz bir retina fundus goriintiileri koleksiyonuyla baslamistir. Bu tiir dengesizliklerin yol
acabilecegi potansiyel Onyargilar1 ve smirlamalar1 fark ederek, geleneksel veri artirma
tekniklerini dikkatli bir sekilde tabakali 6rnekleme ile birlestiren kapsamli bir dengeleme
protokolii uygulanilmistir. Bu siire¢, her hastalik sinifinin nihai egitim ve test boliimlerinde
esit sekilde temsil edilmesini saglamakla kalmamis, ayn1 zamanda adil ve istatistiksel olarak
saglam bir model degerlendirmesi ic¢in bir temel olusturmustur; aymi veri isleme ve
dengeleme ilkelerini VGG16 i¢in de koruyarak, iki mimarinin ¢iktilarinin dogrudan

karsilastirilabilir olmasi saglanmastir.

Bu calismanin en Onemli bulgularindan biri, veri artirmanin kullanilmasiyla model
performansinda onemli bir iyilesme olmasidir. Artirma ile ve artirma olmadan elde edilen
sonuglar karsilastirildiginda, artirilmis verilerle egitilen modellerin 6nemli 6l¢iide daha dogru
ve genellestirilebilir oldugu ortaya c¢ikmistir. Bu iyilesme genel dogrulukla sinirh
kalmamustir; sinif bagina hassasiyet, geri ¢agirma ve F1 puanina da yayilmis, modelin gii¢lii
performansinin tiim hastalik kategorilerine esit olarak dagitilmasini saglamistir. Karisiklik
matrisleri ve siif bazli metrikler, veri artirmanin modelin asir1 uyum egilimini etkili bir
sekilde azalttigin1 dogrulamistir. Bu sorun, anotlanmis verilerin genellikle smirli ve elde
edilmesi maliyetli oldugu tibbi goriintillemede yaygin bir sorundur; bu baglamda VGG16
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artirrmli kurulumda calistirildiginda, %90,35 egitim dogrulugu ile %86,33 test dogrulugu
elde ederek, EfficientNetB0’a kiyasla daha diisiik fakat tutarli bir temel performans
sergilemektedir; karisiklik matrisi 6zellikle Glaucoma siitununda gozlenen yanlis-pozitif

birikimiyle yiiksek geri ¢agirma—daha diisiik kesinlik dengesini ortaya koymustur.

Ayrica, transfer 6grenimi ve ince ayar stratejilerinin entegrasyonu cok etkili sonuglar
vermistir. EfficientNetB0'1 ImageNet ile 6nceden egitilmis agirliklarla baglatilmis, tim ag
katmanlarin1 ¢ozerek, model hem diisiikk seviyeli hem de yiiksek seviyeli o6zellik
algilayicilarin1  retina  patolojilerinin  karakteristik  gorsel desenlerine  kendisini
uyarlayabilmistir. Bu yaklasim, modelin genel goriintii temsillerinin 6tesine ge¢cmesini ve
yiiksek riskli klinik uygulamalar i¢in gerekli olan ince hastalik 6zelliklerini niiansh bir
sekilde anlamasini saglamistir; ayni strateji VGG16 tlizerinde de uygulandiginda, bu
mimarinin giiclii bir karsilastirma tabani sundugu ve EfficientNetB0’in istiinliigiiniin

protokol farklarindan degil mimari kapasiteden kaynaklandigi dogrulanmaistir.

Ayni derecede onemli olan bir diger husus, arastirma boyunca uygulanan titiz deney
protokoliidiir. Hem artirilmis hem de artirllmamis senaryolarda tutarli hiperparametreler ve
egitim prosediirleri uygulanmis, veri ¢esitliliginin model performansi tizerindeki etkileri
izole edilip degerler 6lciilebilmistir. Erken durdurma, birakma ve diizenli dogrulama izleme
yontemlerinin kullanilmasi, sonuglarin giivenilirligine katkida bulunmus, goézlemlenen
performans artiglarinin deneysel artefaktlardan ziyade metodolojiden kaynaklandigindan
emin olunmasina yardimci olmustur; VGG16 i¢in artirnmli kosulda ayni1 izleme ve durdurma
ilkelerini kullanmak, raporlanan %86,33 test basarimini tekrarlanabilir ve karsilagtirilabilir

bir referans olarak belgelemistir.

Bu bulgularin pratik etkileri olduk¢a Onemlidir. Gergek klinik ortamlarda, retina
hastaliklarinin siniflandirilmasini otomatiklestirme yetenegi, erken teshisi kolaylastirabilir,
hasta triyajint kolaylastirabilir ve uzman klinisyenlerin yiikiinii azaltabilir. Bu tez, en son
teknolojiye sahip derin 6grenme mimarilerinin, uygun sekilde artirlldiginda ve ince
ayarlandiginda yiiksek ve dengeli bir performans elde edebilecegini gostererek, Al tabanh
tan1  araglarimin  rutin  oftalmik uygulamalara entegrasyonunu desteklemektedir;

EfficientNetBO birincil ¢6ziimii temsil ederken, VGG16 saglam bir temel ¢izgi olarak klinik
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uygulanabilirlige giden degerlendirme siirecini gili¢lendirmistir. Bu tiir araglar, 6zellikle
uzman bakima erisimin smirl olabilecegi ortamlarda, daha zamaninda ve dogru hastalik

tanimlamasi saglayarak hasta sonuglarini iyilestirme potansiyeline sahiptir.

Bu basarilara ragmen, aragtirma tibbi yapay zeka gelistirmede devam eden zorluklar1 da
vurgulamstir. Veri setinin ¢esitliligi, kalitesi ve ger¢ek diinya dogrulamasinin 6nemi hala ¢ok
onemlidir. Gelecekteki ¢alismalar, otomatik tani sistemlerinin saglam, adil ve klinik olarak
giivenilir olmasini saglamak ic¢in bu sorunlari ele almaya devam etmelidir; ayrica, VGG16
gibi temel mimariler tizerinde dikkat modiilleri veya hedefe 6zgii ince ayarlarin denenmesi,

belirli simiflardaki hata kaliplarin1 daha da azaltabilir.

Ozetle, bu tez, cok sinifl retina hastalig1 sniflandirmasina kapsamli ve iyi dogrulanmis bir
yaklagim sunarak, genisleyen tibbi goriintii analizi alanina katkida bulunmaktadir. Dikkatli
metodolojik tasarim, gelismis derin 6grenme mimarilerinin kullanim1 ve veri ¢esitliligi ve
genellestirmeye verilen 6nem sayesinde, oftalmolojide Al'nin pratik ve giivenilir bir sekilde
uygulanmasi i¢in bir yol haritasi ortaya koyulmustur; ayn1 zamanda VGG16 ile agik bir
karsilastirma tabani olusturup EfficientNetB0’1n iistiin performansini (6rnegin test dogrulugu

%91,83 e kars1 %86,33) nicel olarak ortaya koyulmustur.

5.2. Gelecekteki Calismalar

Mevcut arastirma, retina hastaliklarinin otomatik siniflandirilmasinda 6nemli ilerlemeler
kaydetse de, daha fazla arastirma ve gelistirme i¢in umut vaat eden c¢esitli yonleri sistemli
bicimde genisletmek hedeflenir; ozellikle veri artirma stratejilerinin gelistirilmesi ve
otomatiklestirilmesi dncelikli bir odak olarak 6ne ¢ikar ve ¢evirme, dondiirme ve parlaklik
ayarlamalar1 gibi geleneksel yontemlerin yami sira son donemde olgunlasan {iiretken
modelleme yaklasimlarindan yararlanarak (6rnegin GAN tabanli sentez) gercek¢i retina
goriintiileri {iretir, mevcut veri kiimelerinin etkin boyutunu ve ¢esitliligini artirir ve gergek

diinyadaki degiskenligi daha iyi temsil eden yeni varyasyonlar elde edilir.

Uyarlanabilir ve otomatiklestirilmis artirma politikalarin1 da ileriye tagimak amaglanirsa,
AutoML alanindaki giincel yontemlerle veriden dogrudan en uygun doniisiimleri ve

parametreleri 68renen, egitim siirecinde doniisiimleri dinamik bi¢gimde ayarlayan akilli is
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hatlar1 kurulur; bu yaklagim, 6zellikle nadir ya da gelisen klinik sunumlarla karsilagildiginda
modelin saglamligini artirir ve sinif sinirlarii veri dagilimindaki kaymalara kars1 daha esnek

kilar.

Veri kiimesini genigletmeyi ve ¢esitlendirmeyi kritik bir adim olarak goriirsek, cok merkezli
is Dbirlikleri ile farkli popiilasyonlardan, goriintiilleme cihazlarindan ve edinim
protokollerinden gelen verileri biitiinlestirir ve bu sayede yaklasimin genellestirilebilirligini
degerlendirir ve gilivence altina aliriz; ek hastalik kategorilerini, komorbiditeleri ve atipik
sunumlart i¢eren ornekleri dahil ederek mevcut modellerin sinirlarin1 daha siki bigimde sinar

ve iyilestiririz.

Arastirma modellerini pratik klinik araclara doniistiirmek i¢in prospektif klinik dogrulamay,
gercek zamanl ¢aligmay1 ve saha kosullarinda performans izlemeyi igeren bir ¢eviri siireci
tasarlanirsa; kullanict dostu arayiizler, giivenli veri isleme ve mevzuata uyum (Or.
mahremiyet ve veri giivenligi) ile desteklenen yazilim platformlart gelistirilir, MLOps
ilkeleriyle siiriim yonetimi, izleme, uyar1 ve yeniden egitim dongiilerini standardize eder ve

klinisyenlerden gelen siirekli geribildirimle sistemi yinelemeli olarak olgunlastirir.

Sonug olarak, bu tezde sunulan birikimi veri artirma ve otomasyon, ¢ok merkezli veri
genisletme, aciklanabilirlik ve klinik dogrulama eksenlerinde ilerleterek, erisilebilir, dogru
ve adil goz saghigi hizmetlerini destekleyecek gilivenilir Al ¢6ziimlerine bir adim daha

yaklasilacaktir.
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