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SIMULATION OF THE FITZHUGH-NAGUMO NEURONAL MODEL USING 

MATLAB® 

ABSTRACT 

This thesis explores the FitzHugh-Nagumo (FHN) model as a simplified representation 

of neuronal excitability, focusing on its ability to replicate key neuronal behaviors, 

including threshold-dependent excitability, frequency modulation, and recovery 

dynamics. The primary objective was to investigate how variations in parameters, 

particularly the external stimulus 𝐼, affect the model's behavior, using time series 

simulations and bifurcation analysis to assess neuronal firing patterns. The results 

demonstrated that the FHN model successfully replicates threshold behavior observed in 

real neurons, with the membrane potential 𝑉 remaining stable at 𝐼 < 0.5 and transitioning 

to an oscillatory (spiking) regime at 𝐼 ≥ 0.5. Additionally, the model showed frequency 

modulation, as the firing frequency increased from moderate at 𝐼 = 0.6 to high-frequency 

oscillations at 𝐼 = 1.2 This property of the model closely mirrors the rate coding 

mechanism used by neurons to encode stimulus intensity. The recovery variable W, which 

peaks shortly after each spike in 𝑉, effectively simulated the refractory period, preventing 

immediate re-firing and stabilizing the firing patterns. The bifurcation analysis further 

revealed the model’s nonlinear dynamics, illustrating transitions between resting, 

periodic oscillatory, and high-frequency firing states in response to increasing 𝐼. The 

study validates the FHN model as a computationally efficient tool for simulating essential 

neuronal behaviors, making it suitable for theoretical and large-scale neural network 

simulations. Its simplified structure, consisting of only two variables, enables it to capture 

excitability and recovery dynamics without the computational demands of more detailed 

conductance-based models like Hodgkin-Huxley. However, limitations include its 

reduced applicability to specialized neuron types and the need for precise parameter 

calibration. Future research directions include incorporating additional biophysical 

properties, optimizing parameters for specific neuron types, and applying the FHN model 

to networked simulations to study collective neural phenomena. This thesis contributes 

to computational neuroscience by providing insights into the applicability of the FHN 

model in representing neuronal excitability and opens pathways for its potential use in 

neuromorphic computing. 
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1. Chapter 1: Introduction 

1.1 Background of Neuronal Models 

1.1.1 Overview of Neuronal Behavior 

Brain function depends on understanding complicated electrical and chemical signaling 

networks that allow neurons to communicate and interpret information. Excitability, the 

ability of neurons to generate action potentials, activates neurons and controls neuronal 

function. Brain processes like perception, learning, memory, and decision-making require 

excitation and signaling. 

 Ion dynamics across the neuronal membrane generate and propagate action potentials. 

The resting membrane potential of neurons is around -70 mV due to the distribution of 

ions, mainly sodium (Na⁺) and potassium (K⁺). External stimulation is needed for neurons 

to depolarize their membrane potential to -55 mV and open voltage-gated Na⁺ channels. 

As sodium ions enter, the membrane rapidly depolarizes to +30 mV. Repolarization to 

resting potential occurs when potassium channels open and sodium channels inactivate. 

This 1–2 millisecond action potential depolarizes-repolarizes [1]. 

 When axon hillock action potentials reach synaptic terminals, neurotransmitters enter the 

cleft. These neurotransmitters binding to nearby neuron receptors may cause a new action 

potential in the postsynaptic cell. Complex networks of neurons use action potentials and 

neurotransmitter release to link and perform all brain operations. 

1.1.2 Importance of Studying Neuronal Dynamics 

To understand normal and pathological brain processes, investigate neural dynamics. 

Research on neuronal dynamics has uncovered signaling illnesses like epilepsy, 

Parkinson's, schizophrenia, and depression. Epilepsy causes seizures due to abnormal 

neuronal excitability and coordinated firing. Action potential formation and propagation 

dynamics can help create excitability-stabilizing and seizure-prevention treatments. 

Brain simulation computational models benefit from neuro dynamics research. Numerical 

models and simulations are needed for computational neuroscience to understand brain 

function. Hodgkin-Huxley and FitzHugh-Nagumo computational models may explore 

how neurons respond to inputs, interact in brain circuits, and produce complex network 

behaviors [2]. 
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 Neuronal dynamics also impact AI and neural engineering advances. Understanding how 

biological neurons compute and store information helps develop artificial neural 

networks. Plasticity and learning are possible because biological neurons absorb 

information in parallel and adapt to inputs. Neuromorphic devices and AI algorithms that 

imitate brain simultaneous processing have been developed using neural function. 

 Finally, neuroprosthetics and BCIs that restore function or allow direct brain-device 

interaction require neuronal excitability and action potential knowledge. Understanding 

cerebral firing patterns allows BCIs to read brain signals and convert them into robotic 

limb or communication device movements, dramatically effecting physically challenged 

persons. 

1.1.3 Importance of Mathematical Models in Neuroscience 

Mathematical models play a vital role in neuroscience by providing simplified 

representations of complex biological systems, enabling researchers to understand, 

predict, and manipulate neuronal behavior in a controlled, quantifiable manner [3]. The 

brain is composed of billions of interconnected neurons, each with intricate dynamics and 

interactions. Directly studying such a system at a biological level poses significant 

challenges due to its sheer complexity, high dimensionality, and variability. Mathematical 

models, therefore, serve as essential tools, reducing this complexity by abstracting critical 

features of neuronal behavior into manageable equations and parameters that can be 

analyzed systematically. 

Role of Mathematical Models in Simplifying Complex Biological Systems 

Mathematical models simplify neural systems by focusing on excitability, signal 

propagation, and neuron connections. These models approximate biological processes by 

abstracting neuron properties like membrane potential, ion channel activity, and synaptic 

transmission into equations. The 1952 Hodgkin-Huxley model uses differential equations 

to describe sodium and potassium ion transport across the neural membrane to explain 

action potentials. Although it simplifies brain function, this model captures action 

potential generation dynamics well, making it basic in computational neuroscience. 

 Mathematical models simplify these processes, allowing researchers to focus on critical 

neuronal function factors as threshold potential, synaptic weight, and firing rate. 
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Experimental data can be used to update these models, making them useful for testing 

hypotheses, testing interventions, and simulating reactions under varied settings. 

1.1.4 Evolution of Neuronal Models 

Historical Perspective on the Development of Neuronal Models 

The evolution of neuronal models began with early attempts to understand the basic 

electrical properties of neurons. In the late 19th century, scientists discovered that neurons 

generate electrical impulses, paving the way for electrical circuit models that represented 

neurons as basic electrical components. With advancements in physiology and 

mathematics, models became more sophisticated, aiming to explain how neurons generate 

and propagate action potentials. 

A major breakthrough came in 1952 with the Hodgkin-Huxley model, developed by Alan 

Hodgkin and Andrew Huxley, who formulated a detailed mathematical model of the 

squid giant axon. Using experimental data, they derived a set of differential equations that 

describe the ion currents flowing through sodium and potassium channels during an 

action potential. This model, which earned them a Nobel Prize in 1963, is widely regarded 

as one of the most significant contributions to neuroscience. The Hodgkin-Huxley model 

set the foundation for later models and remains a gold standard for describing excitable 

cells [4-6]. 

Key Contributions of Notable Models in Neuroscience 

The Hodgkin-Huxley Model introduced voltage-gated ion channels and neural 

excitability. This model's four differential equations properly describe action potential 

initiation and propagation, allowing scientists to study neuron function. The sophisticated 

Hodgkin-Huxley model is accurate but computationally intensive, restricting its 

scalability for large neural network simulations. 

 A simplified form of the Hodgkin-Huxley model, the FitzHugh-Nagumo (FHN) model 

simplifies complex ion channel dynamics into a two-variable system, reflecting 

excitability and recovery. The FHN model is computationally efficient while keeping 

action potential dynamics' excitability and oscillatory characteristic due to this 

simplification. This makes it a popular tool for researching excitable systems' general 

principles and pattern development and network behavior [8]. 
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Morris-Lecar Model: The Morris-Lecar model, another basic model, represents 

oscillatory neurons like muscular and heart cells. The Morris-Lecar model is useful for 

investigating bursting behavior and neuron synchronization because it captures rhythmic 

firing mechanisms. A simplified set of equations makes this model computationally 

practical for bigger neural circuit simulations. 

Integrated-Fire Models: The leaky integrate-and-fire (LIF) model represents neurons as 

basic threshold units that integrate input signals until a threshold is met, then spike. 

Network simulations use these computationally efficient models to study large-scale 

dynamics and network interactions, but they lack the biological precision of the Hodgkin-

Huxley model. 

 Izhikevich Model: Eugene Izhikevich's model is computationally efficient and 

biologically plausible. It captures brain neuron firing patterns while being 

computationally manageable. The Izhikevich model is useful for large-scale brain 

simulations for cortical dynamics and plasticity research.  

neural models have evolved from complicated biophysical representations to simplified, 

computationally efficient forms as we grasp neural dynamics and balance biological 

correctness with scalability. From single-cell dynamics to large-scale network 

interconnections, each model illuminates brain function differently. This diversity in 

models assists neuroscience, artificial intelligence, and neural engineering research by 

modeling individual neurons and developing entire brain system models. 

 

1.2 The FitzHugh-Nagumo Model 

1.2.1 Brief History and Development 

The FitzHugh-Nagumo (FHN) model was developed in the early 1960s to describe 

neuronal excitability and action potential generation without the complexity and 

computing requirements of the Hodgkin-Huxley (HH) model. The two-variable model 

proposed by biophysicist Richard FitzHugh condensed the four-dimensional HH 

equations into two differential equations that reflected excitability and recovery in 

excitable cells. 

 Meanwhile, Japanese engineer Jinichi Nagumo applied FitzHugh's ideas to electrical 

circuit theory and created the "Nagumo circuit," a physical counterpart of his 
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mathematical model. The FitzHugh-Nagumo (FHN) model, which blends simplicity and 

biological relevance, is a standard for excitable system analysis [12]. This model's ability 

to simulate neuronal firing and refractory periods with a limited set of equations provides 

valuable insights into excitable systems while being computationally efficient. 

1.2.2 Theoretical Basis of the FHN Model 

The FitzHugh-Nagumo model represents neuronal activity using two differential 

equations that describe the behavior of excitability (V) and recovery (W) variables, with 

each playing a specific role in action potential dynamics: 

Excitability Variable (V): Represents the membrane potential of the neuron, capturing the 

rapid change in voltage associated with an action potential. 

Recovery Variable (W): Represents a slower recovery process, often associated with ion 

channel dynamics or delayed rectifier currents in neurons, which brings the membrane 

potential back to its resting state. 

The core equations for the FHN model are: 

𝑑V

𝑑𝑡
= V −

𝑉3

3
− W + I 

𝑑W

𝑑𝑡
= ϵ(V + a − bW) 

where: 

• V represents the membrane potential (excitability variable). 

• W is the recovery variable. 

• I is an external stimulus current. 

• ϵ, a, and b are parameters that control the behavior of the system, affecting the 

threshold for excitability, the response rate, and the refractory period. 

In this model, the excitable dynamics are driven by the term V −
𝑉3

3
, which introduces a 

nonlinear behavior in V, while the recovery dynamics are governed by the linear term 

ϵ(V + a − bW), with ϵ being a small parameter that slows down the recovery process 

relative to excitability. These equations create a limit cycle that generates a spike-like 

waveform for the action potential, with the membrane potential V increasing rapidly 
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during excitation and then gradually returning to a resting state due to the recovery 

variable W. 

The simplifications in the FHN model, including reducing four HH variables to two and 

replacing specific ion channel dynamics with general excitability and recovery terms, 

make it computationally efficient. Despite these simplifications, the FHN model can 

effectively reproduce the threshold-based response and refractory behavior characteristic 

of neuronal action potentials, making it highly suitable for studying general excitability 

in neurons and other excitable systems, such as cardiac cells. 

1.2.3 Comparison with Other Neuronal Models 

1.2.3.1 Hodgkin-Huxley Model 

The Hodgkin-Huxley (HH) model is a detailed biophysical model that describes the ionic 

currents underlying action potentials in neurons, specifically focusing on the dynamics of 

sodium and potassium ions across the neuronal membrane. The HH model is based on 

four differential equations that account for the gating variables of sodium and potassium 

channels and the membrane potential, providing a precise description of action potential 

generation and propagation. 

Comparison of Computational Requirements and Biological Accuracy: While the HH 

model provides an accurate representation of the biophysical processes underlying 

neuronal excitability, its complexity makes it computationally demanding, especially for 

large-scale simulations. Each of the four equations in the HH model requires considerable 

computational resources, particularly when simulating networks of neurons. In contrast, 

the FHN model, with its two simplified equations, is computationally efficient and well-

suited for large-scale simulations, even if it lacks the detailed ion channel dynamics of 

the HH model [15-19]. Therefore, the FHN model is preferred when a simplified 

approximation of neuronal excitability is sufficient, particularly for studying general 

excitable behavior or network dynamics. 

1.2.3.2 Morris-Lecar Model 

The Morris-Lecar (ML) model, developed to study oscillatory dynamics in neurons, is 

another simplified model that reduces the HH framework but retains key features 

necessary for capturing bursting and oscillatory behaviors. The ML model focuses on 

calcium and potassium currents, making it especially useful for describing neurons that 
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exhibit rhythmic firing patterns, such as those in cardiac cells and certain types of muscle 

cells. 

Contrast in Applicability: The FHN and ML models have distinct areas of applicability 

based on their respective simplifications and behaviors. While the FHN model is highly 

suitable for studying threshold-based excitability and simple spike dynamics, the ML 

model is particularly effective for exploring neurons with oscillatory firing patterns and 

bursting behavior. This difference makes the ML model valuable for simulating specific 

types of neuronal oscillations and synchronous firing in neural circuits, while the FHN 

model is often used for more general studies of excitability in neurons and other excitable 

cells. 

1.2.3.3 Other Simplified Models 

Beyond the FHN and ML models, several other simplified models have been developed 

to capture different types of neuronal behavior with varying levels of complexity: 

Integrate-and-Fire Models: These models, such as the leaky integrate-and-fire (LIF) 

model, represent neurons as simple threshold-based units. They ignore the details of ionic 

currents, focusing instead on the concept of accumulating membrane potential until a 

threshold is reached, at which point a spike is generated. LIF models are widely used for 

large-scale network simulations where computational efficiency is crucial and detailed 

action potential dynamics are not necessary. 

Izhikevich Model: The Izhikevich model combines the computational efficiency of 

simplified models with the ability to reproduce a wide range of firing patterns seen in 

biological neurons. This model is often used in simulations of cortical dynamics, as it 

balances computational tractability with the ability to replicate diverse firing behaviors, 

including bursting, tonic spiking, and chattering. 

Each of these models, including the FHN model, provides distinct advantages based on 

its intended application. The FHN model’s balance between simplicity and the ability to 

represent threshold dynamics and excitable behavior makes it a widely used choice for 

studying the general properties of excitable systems. Its computational efficiency and 

theoretical foundation continue to support a range of research applications in 

neuroscience, biophysics, and applied mathematics. 
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1.3 Research Motivation 

The exploration of neuronal dynamics is fundamental to understanding brain function at 

both micro and macro levels. The FitzHugh-Nagumo (FHN) model offers a compelling 

compromise between biological realism and computational efficiency, making it an ideal 

tool for investigating neuronal excitability patterns. Despite its widespread usage, there 

remains a critical need to systematically evaluate the FHN model's capabilities in 

replicating diverse neuronal behaviors, particularly its applicability across varying 

stimulus conditions and in networked configurations. This research addresses this gap by 

conducting rigorous parameter sensitivity analysis and bifurcation studies to determine 

the model's efficacy in simulating threshold-dependent excitability, frequency 

modulation, and recovery dynamics. The findings from this work will not only strengthen 

the theoretical foundation of computational neuroscience but also inform practical 

applications in neuromorphic computing, brain-computer interfaces, and artificial neural 

networks where simplified yet biologically relevant neuronal models are essential. 

1.4 Problem Statement 

The FitzHugh-Nagumo model presents a significant advantage in computational 

efficiency, yet its simplified structure raises fundamental questions about its fidelity in 

capturing complex neuronal dynamics. Specifically, the model's abstraction of detailed 

ionic mechanisms into two variables creates uncertainty regarding its ability to accurately 

simulate diverse neuronal behaviors under varying physiological conditions. The primary 

challenge addressed in this research is determining the extent to which the FHN model 

can faithfully replicate key neuronal phenomena—including excitability thresholds, 

stimulus-response relationships, and bifurcation patterns—without compromising 

biological relevance. Moreover, the model's parameter sensitivity and stability 

characteristics remain inadequately explored, particularly in networked configurations 

where emergent behaviors become increasingly complex. By systematically investigating 

these aspects, this study aims to define the operational boundaries and optimal 

applications of the FHN model in computational neuroscience, thereby enhancing its 

utility as a research tool in both theoretical and applied domains. 
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1.5 Problem Formulation 

Problem Formulation 1: Evaluation of the FitzHugh-Nagumo Model’s Capability to 

Simulate Neuronal Excitability and Bifurcation Dynamics in Networked Systems 

This problem formulation aims to rigorously assess the FitzHugh-Nagumo (FHN) 

model’s effectiveness in capturing the dynamics of neuronal excitability and bifurcations 

within interconnected neuronal networks. Specifically, the FHN model will be evaluated 

for its ability to simulate bifurcation phenomena, neuronal threshold dynamics, and 

stability characteristics when incorporated into a networked structure under varied 

external stimuli and parameter conditions. 

Mathematical Model and Equations 

The FitzHugh-Nagumo model in a networked configuration can be expressed using a set 

of coupled differential equations. For each neuron 𝑖 in a network of 𝑁 neurons, the system 

is defined by: 

𝑑𝑉𝑖

𝑑𝑡
= 𝑉𝑖 −

𝑉𝑖
3

3
− 𝑊𝑖 + 𝐼𝑖 + ∑ 𝜅𝑖𝑗

𝑁

𝑗=1

(𝑉𝑗 − 𝑉𝑖) 

𝑑𝑊𝑖

𝑑𝑡
= 𝜖(𝑉𝑖 + 𝑎 − 𝑏𝑊𝑖) 

where: 

• 𝑉𝑖 represents the membrane potential of the 𝑖-th neuron (excitability variable), 

• 𝑊𝑖 is the recovery variable for the 𝑖-th neuron, 

• 𝐼𝑖 denotes the external input stimulus applied to the 𝑖-th neuron, 

• 𝜅𝑖𝑗 represents the coupling strength between neurons 𝑖 and 𝑗, 

• 𝜖, 𝑎, and 𝑏 are parameters affecting the dynamics of excitability and recovery. 

Objective Functions 

To assess the FHN model’s performance in networked systems, we define three objective 

functions: 

1. Objective Function 𝐽1: Minimization of the Deviation from Observed Bifurcation 

Patterns 

𝐽1 = ∑ ∫ |𝑉𝑖(𝑡) − 𝑉̃𝑖(𝑡)|
2

𝑡𝑓

𝑡0

𝑁

𝑖=1

 𝑑𝑡 
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where 𝑉̃𝑖(𝑡) is the expected membrane potential derived from observed bifurcation 

patterns in biological neurons. 

2. Objective Function 𝐽2: Maximization of Stability in Neuronal Networks 

This function quantifies the network stability by minimizing fluctuations in 𝑉𝑖 over time, 

particularly under small perturbations: 

𝐽2 = ∑ (∫ |𝑉𝑖(𝑡) − 𝑉𝑖,steady|
2

𝑡𝑓

𝑡0

 𝑑𝑡)

𝑁

𝑖=1

 

where 𝑉𝑖,steady is the steady-state membrane potential for the 𝑖-th neuron. 

3. **Objective Function 𝐽3: Optimal Parameter Tuning for Network Synchronization** 

To ensure synchronization in excitability patterns across the network, we minimize the 

variance in membrane potentials across all neurons: 

𝐽3 = ∫ Var

𝑡𝑓

𝑡0

({𝑉𝑖(𝑡)}𝑖=1
𝑁 ) 𝑑𝑡 

This objective ensures that the network behaves as a coherent system, minimizing 

deviations across neurons. 

Notations and Definitions 

• 𝑉𝑖: Membrane potential of the 𝑖-th neuron in the network. 

• 𝑊𝑖: Recovery variable for the 𝑖-th neuron. 

• 𝜖, 𝑎, 𝑏: Model parameters that influence excitability and recovery. 

• 𝐼𝑖: External input current applied to the 𝑖-th neuron. 

• 𝜅𝑖𝑗: Coupling strength between neurons 𝑖 and 𝑗, controlling the influence of 

neuron 𝑗 on neuron 𝑖. 

• 𝑉̃𝑖(𝑡): Expected potential used as a reference, derived from known neuronal 

bifurcation patterns. 

• 𝑉𝑖,steady: Steady-state potential of the 𝑖-th neuron. 

• Var({...}): Variance of membrane potentials across all neurons in the network. 

Problem Explanation 

The goal of this problem formulation is to rigorously test the FHN model’s ability to 

accurately replicate neuronal excitability and bifurcation behaviors in a networked 

environment. This involves analyzing how well the model performs under different 

parameters and external stimuli, particularly in terms of stability, synchronization, and 

deviation from known neuronal bifurcation patterns. By incorporating the coupling term 
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𝜅𝑖𝑗 for interactions between neurons, the formulation simulates network effects that are 

essential for capturing the complex dynamics seen in real neural networks. 

The objective functions defined above are tailored to measure specific characteristics of 

network behavior: 𝐽1 focuses on the model’s accuracy in replicating biologically observed 

bifurcation patterns, 𝐽2 emphasizes the stability of the network against perturbations, and 

𝐽3 seeks to achieve synchronization across neurons, reflecting coherent excitability 

patterns that are often observed in biological systems. This problem formulation will 

provide insights into the model’s strengths and limitations in network simulations, 

guiding the refinement of the FHN model’s parameters to better approximate the 

dynamics of interconnected neurons. 

1.6 Research Questions 

• To what extent does the FitzHugh-Nagumo model accurately replicate the 

excitability thresholds and bifurcation dynamics observed in biological neurons 

across varying stimulus intensities?  

• How do modifications in key parameters (ε, a, b) affect the model's stability, 

oscillatory patterns, and recovery dynamics, and how do these compare with 

empirically observed neuronal behaviors?  

• What are the quantifiable limitations of the FitzHugh-Nagumo model in 

simulating specific neuronal phenomena, such as diverse firing patterns and 

frequency adaptation?  

• How effectively does the FitzHugh-Nagumo model balance computational 

efficiency with biological accuracy when implemented in networked 

configurations, and what emergent properties can be observed?  

• Under what conditions and parameter configurations does the FitzHugh-Nagumo 

model most accurately capture the rate coding mechanism used by neurons to 

encode stimulus intensity? 

1.7 Research Objectives 

The primary objectives of this research are as follows: 

• To evaluate the FitzHugh-Nagumo model's capacity to accurately simulate 

neuronal bifurcation dynamics and excitability thresholds in networked neuronal 

systems. 
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• To investigate the stability of the FitzHugh-Nagumo model in networked 

environments with fluctuating external stimuli and varying model parameters. 

• To identify and address the limitations of the FitzHugh-Nagumo model in 

capturing complex neuronal interactions, particularly within large-scale networks. 

• To optimize parameter settings in the FitzHugh-Nagumo model to enhance 

synchronization and coherence across networked neurons. 

These objectives collectively aim to refine the applicability of the FitzHugh-Nagumo 

model, offering insights into its potential and limitations in simulating complex neuronal 

dynamics and network interactions. 

1.8 Scope and Limitations of the Study 

1.7.1. Scope of the Study 

Evaluation of Neuronal Excitability and Bifurcation Dynamics 

This study is centered on assessing the FitzHugh-Nagumo (FHN) model’s capacity to 

simulate critical neuronal behaviors, specifically excitability thresholds and bifurcation 

dynamics. Through computational simulations, the research investigates how effectively 

the FHN model can capture these phenomena, which are fundamental to understanding 

neuronal signal processing. 

Analysis of Networked Neuronal Interactions 

The study extends to exploring the FHN model’s performance within interconnected 

neuronal networks, examining how individual neurons interact and influence one another. 

This includes evaluating the stability of network behavior under different coupling 

strengths and external stimuli, simulating conditions that mimic real neural networks. 

Parameter Optimization for Synchronization and Coherence 

A key focus of this research is the identification and adjustment of FHN model parameters 

to achieve synchronization and coherence across networked neurons. By optimizing these 

parameters, the study aims to enhance the model’s ability to replicate the collective 

behavior of biological neurons, which often display synchronized excitability patterns 

 

. 
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Implications for Computational Neuroscience and Neural Engineering 

This study contributes to fields such as computational neuroscience, neural engineering, 

and neuromorphic computing, where efficient and simplified models are essential for 

large-scale simulations. Findings are expected to inform applications in brain-computer 

interfaces and neuroprosthetics by providing insights into the FHN model’s potential to 

simulate complex neural dynamics in a computationally feasible manner. 

1.7.2. Limitations of the Study 

This study acknowledges several inherent limitations that contextualize its findings and 

applicability: 

Biophysical Abstraction: The FitzHugh-Nagumo model fundamentally simplifies the 

complex ionic mechanisms underlying neuronal excitability. Unlike detailed 

conductance-based models, it does not explicitly represent specific ion channels (sodium, 

potassium, calcium), limiting its ability to capture phenomena directly linked to channel 

kinetics or molecular interactions. 

Parameter Space Constraints: While this research explores a range of parameter values, 

the investigation necessarily samples discrete points within a continuous parameter space. 

The comprehensive mapping of all possible parameter combinations remains beyond the 

scope of this study, potentially overlooking specific parameter regimes with unique 

behavioral characteristics. 

Neuronal Diversity Limitations: The model cannot adequately represent the full diversity 

of neuronal types found in biological systems, each with distinctive electrophysiological 

properties. The generalizations made in this study may not apply to specialized neuron 

types such as bursting neurons, neurons with dendritic computation, or those with 

complex morphologies. 

Network Simplifications: In network simulations, this study employs homogeneous 

connections and simplified topologies that do not capture the full complexity of biological 

neural networks, including their heterogeneous connectivity patterns and dynamic 

synaptic modifications. 
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Temporal Resolution Constraints: The numerical methods employed introduce 

discretization that may affect the precise representation of continuous neuronal dynamics, 

particularly for very fast phenomena occurring on sub-millisecond timescales. 

Despite these limitations, the study provides valuable insights into the capabilities and 

constraints of the FitzHugh-Nagumo model for computational neuroscience applications, 

establishing a foundation for future refinements and extensions of this widely used 

neuronal model. 

1.9 Thesis Structure 

This thesis is organized into seven chapters, each addressing key aspects of the research 

on the FitzHugh-Nagumo (FHN) model and its application to simulating neuronal 

dynamics within networked systems. 

Chapter 1: Introduction 

This chapter provides an introduction to the research topic, outlining the background and 

importance of mathematical models in neuroscience. It introduces the FitzHugh-Nagumo 

model, highlighting its relevance and role as a simplified model of neuronal excitability. 

The research motivation, problem statement, objectives, and the scope and limitations of 

the study are also discussed, providing a foundation for the subsequent chapters. 

Chapter 2: Literature Review 

This chapter reviews the existing body of research related to neuronal modeling, focusing 

on the development and evolution of various models, including the Hodgkin-Huxley, 

Morris-Lecar, and other simplified models. Emphasis is placed on the theoretical basis 

and applications of the FitzHugh-Nagumo model, as well as comparisons with alternative 

models. The review establishes the current knowledge and identifies gaps that this thesis 

aims to address. 

Chapter 3: Theoretical Background of the FitzHugh-Nagumo Model 

This chapter provides a detailed exploration of the FitzHugh-Nagumo model's theoretical 

foundation. It explains the core mathematical equations and describes the excitability and 

recovery variables, as well as their roles in simulating action potentials. The chapter also 

discusses the assumptions, simplifications, and limitations of the model in representing 

neuronal behavior and introduces the concept of bifurcation dynamics in networked 

systems. 
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Chapter 4: Methodology 

In this chapter, the research design and methodology for conducting the study are 

outlined. It describes the computational environment, tools, and numerical methods used 

to implement and simulate the FitzHugh-Nagumo model. The chapter also details the 

experimental setup, including parameter selection, network configuration, and the process 

for analyzing model behavior under varied conditions. Additionally, it presents the 

objective functions developed to evaluate model accuracy, stability, and synchronization. 

Chapter 5: Simulation Results and Discussion 

This chapter presents the results of the simulations conducted using the FitzHugh-

Nagumo model. It includes baseline simulations of neuronal excitability, analysis of 

bifurcation patterns, and observations from networked configurations. The results for 

each objective function are discussed, highlighting findings related to model stability, 

parameter sensitivity, and synchronization. Comparisons with known neuronal dynamics 

are also included to contextualize the findings within biological relevance. 

The discussion chapter interprets the simulation results in relation to the research 

questions and objectives. It evaluates the FitzHugh-Nagumo model's effectiveness in 

capturing neuronal excitability and network dynamics, as well as its limitations in 

representing more complex aspects of neuronal behavior. The chapter also explores the 

implications of the findings for computational neuroscience and related fields, offering 

insights into the model’s potential applications and constraints. 

Chapter 6: Conclusion 

The final chapter summarizes the main findings of the study, emphasizing the 

contributions of this research to the understanding of the FitzHugh-Nagumo model’s 

capabilities in simulating neuronal dynamics. It discusses the practical implications of the 

study, as well as recommendations for future research, including potential model 

refinements, exploration of heterogeneous networks, and integration of additional 

neuronal factors. This chapter concludes the thesis by reflecting on the significance of the 

work in advancing the application of simplified neuronal models in theoretical and 

applied neuroscience. 

Each chapter is designed to systematically build on the previous one, guiding the reader 

from foundational concepts to detailed analyses, culminating in a comprehensive 
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understanding of the FitzHugh-Nagumo model’s utility and limitations within networked 

neuronal simulations. 
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2. CHAPTER 2: LITERATURE REVIEW 

2.1 Chapter introduction  

This chapter reviews the research on the FitzHugh-Nagumo (FHN) model, a basic but 

powerful tool for simulating neuronal excitability and network dynamics. Foundational 

neuronal modeling studies are examined, demonstrating the FHN model's theoretical 

underpinning, historical history, and basic mathematical structure. The chapter then 

discusses FHN model extensions including delay differential equations, memristive 

synapses, and fractional-order dynamics, which address specific neural behaviors. We 

also compare the FHN model to other neural models like Hodgkin-Huxley to place it in 

computational neuroscience. In the last chapter, the FHN model is applied to 

neuromorphic engineering and brain-computer interfaces, and major findings and 

research gaps are summarized. For this study to further FHN model applications in neural 

network simulations, this review identifies the FHN model's strengths, weaknesses, and 

opportunities for further exploration. 

2.2 Related work  

2.2.1 Neuronal Modeling in Neuroscience 

Elfouly, Sohaly, and Fares [1] employed a unique approach to modeling neuronal 

dynamics by representing the FitzHugh-Nagumo model within the framework of neutral 

delay differential equations. They designed this model to capture the delayed feedback 

effects in neuronal excitability, which are often essential for simulating realistic neural 

behaviors. Through their experiments, the researchers analyzed how these delays 

influenced neuronal oscillations and excitability thresholds. Their findings showed that 

incorporating delay elements allowed for more accurate replication of neuronal firing 

patterns, especially in systems with feedback loops. However, the model’s complexity 

increased significantly, which limited its computational efficiency, particularly in large-

scale simulations. 

Amiri, Nazarimehr, and Jafari [2] focused on enhancing the FitzHugh-Nagumo model by 

introducing a memristive synapse, which added a memory component to the synaptic 

interactions in the model. They conducted a dynamical analysis to examine how the 

memristive element affected the model’s behavior, specifically looking at patterns of 

excitability and spiking synchronization. The results indicated that the inclusion of a 
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memristive synapse allowed the model to capture a broader range of neuronal behaviors, 

including complex oscillatory patterns. Despite these advancements, the study 

highlighted limitations in terms of computational complexity, as the memristive dynamics 

increased the model’s parameter sensitivity, requiring careful calibration. 

Kumar and Erturk [3] developed a fractional-order variant of the FitzHugh-Nagumo 

model to investigate neuronal dynamics with improved flexibility in modeling memory 

effects. They used fractional calculus to extend the model’s capability for simulating 

long-term dependencies and feedback effects inherent in neuronal activity. Their 

experimental design focused on analyzing the model’s response to various stimuli, 

showing that the fractional-order model produced more accurate and biologically 

plausible results, particularly in mimicking memory retention in neural responses. 

However, they noted that fractional-order equations posed significant challenges in terms 

of numerical stability and computational cost, limiting the practical applications of this 

approach in real-time simulations. 

Saçu [4] synthesized and analyzed a fractional-order FitzHugh-Nagumo model, aiming 

to address the limitations in biological realism present in integer-order models. Through 

a systematic approach, Saçu explored the model’s behavior under various fractional 

parameters, observing its effects on neuronal excitability and signal propagation. His 

analysis revealed that the fractional-order model provided enhanced control over neuronal 

spiking frequency and response time, allowing for a closer approximation to 

physiological neuronal dynamics. Nevertheless, the study identified that implementing 

fractional-order systems required specialized numerical methods, which increased 

computational demands and limited model scalability. 

Ge et al. [5] investigated neural behaviors and energy properties in a FitzHugh-Nagumo 

model enhanced with a memcapacitive component, integrating the Miller effect to further 

simulate synaptic interactions. Their experimental design aimed to capture the energy 

dynamics involved in neuronal excitability and memory retention. Findings showed that 

the model successfully replicated energy-efficient signal transmission, reflecting synaptic 

behavior in energy-limited biological systems. Despite these improvements, the study 

pointed out the high sensitivity of the memcapacitive component to parameter variations, 

which complicated model stability and required careful tuning for accurate simulation 

results. 
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Shi, Min, and Zhu [6] conducted an analysis of coexisting firing behaviors in the 

FitzHugh-Nagumo neuron model, focusing on the emergence of multiple stable firing 

patterns within the same neuronal network configuration. Through nonlinear dynamics 

techniques, they examined how varying initial conditions and parameter values affected 

firing behavior, discovering that the model could exhibit a range of stable and unstable 

firing states simultaneously. Their findings highlighted the model’s capacity to represent 

complex neuronal firing patterns, but also pointed out the sensitivity to initial conditions, 

which could lead to challenges in predicting long-term behavior in more extensive 

network simulations. 

Cebrían-Lacasa, Parra-Rivas, and Mejía [7] provided a comprehensive review of the 

FitzHugh-Nagumo model’s development and its impact across various disciplines over 

six decades. They explored the model’s applications in spatio-temporal dynamics, 

analyzing its effectiveness in simulating wave propagation and excitation patterns. Their 

findings indicated that the model has been widely used for studying excitable media 

beyond neuroscience, such as in cardiac tissue modeling and ecological systems. 

However, they also noted that despite its versatility, the model’s simplified structure often 

limited its accuracy in simulating intricate biological processes, necessitating further 

adaptations when applied to highly detailed physiological contexts. 

Fatehi Nia and Mirzavand [8] extended the FitzHugh-Nagumo model by incorporating 

stochastic dynamics to simulate random fluctuations in neuronal behavior. They merged 

the FitzHugh-Nagumo framework with aspects of the Izhikevich model to develop a 

stochastic Izhikevich-FitzHugh neuron model. By introducing noise into the system, they 

aimed to capture the inherent variability in real neuronal networks. The results 

demonstrated that the stochastic version could effectively represent the unpredictability 

seen in biological neurons, yet the increased model complexity posed limitations in 

stability and required robust computational methods to ensure accurate simulations. 

Bosco, Rech, Beims, and Gil [9] investigated the influence of sinusoidal forcing on the 

FitzHugh-Nagumo model by examining the effects of an external oscillatory input on a 

two-neuron system. They used analytical and numerical methods to observe how 

sinusoidal forcing impacted the neuron model’s global dynamics, particularly in a 

unidirectionally coupled network. The study showed that sinusoidal forcing could 

modulate the model’s firing rate and synchronization properties, adding insights into how 
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periodic external signals affect neural systems. Nonetheless, they identified a limitation 

in that the model’s response became highly parameter-dependent, which restricted its 

general applicability in diverse neural environments. 

Lee [10] focused on using the FitzHugh-Nagumo model as an educational tool to 

understand neuron dynamics, offering an accessible way to illustrate neuronal excitability 

and recovery processes. Through simplified simulations, Lee demonstrated the model’s 

utility in explaining the fundamental principles of action potential generation and 

recovery phases to students and early researchers. While the model effectively captured 

basic neuronal behaviors, Lee emphasized that its oversimplified nature might lead to 

misconceptions when exploring more complex aspects of neuronal dynamics, such as 

detailed ion channel interactions, limiting its educational use to foundational concepts. 

2.2.2 Theoretical Basis of the FitzHugh-Nagumo Model 

Rani and Arora [11] investigated the theoretical basis and mathematical development of 

the FitzHugh-Nagumo model, particularly focusing on its application for modeling 

soliton solutions in excitable media. They approached the model through advanced 

numerical techniques, employing leave-one-out cross-validation (LOOCV) combined 

with exponential B-spline functions. This technique provided a unique advantage by 

allowing the researchers to accurately capture wave-like behaviors that emerge in neurons 

during signal propagation. Solitons, or self-reinforcing solitary waves, are significant in 

neuronal modeling as they mimic the stable and non-dispersive propagation of action 

potentials. By implementing the LOOCV with B-spline functions, Rani and Arora were 

able to enhance the accuracy of their simulation, effectively representing the nonlinear 

dynamics within the FitzHugh-Nagumo framework. However, despite the accuracy 

improvements, they identified computational drawbacks. Fine-tuning the B-spline 

parameters to align with biological data demanded extensive computational resources, 

creating limitations for applications requiring real-time processing or large-scale neuronal 

network simulations. Thus, while their work demonstrated a robust theoretical 

contribution to the FitzHugh-Nagumo model's mathematical structure, it underscored the 

need for more computationally efficient methods to make such advanced modeling 

feasible on a broader scale. 

Bao and colleagues [12] expanded the FitzHugh-Nagumo model by incorporating a 

memristor-based circuit to simulate bifurcation and bursting oscillations, adding a layer 
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of memory dynamics that aligns more closely with biological neuron behaviors. 

Memristors, which exhibit memory properties in response to historical input, allowed the 

team to explore oscillatory patterns beyond what the traditional FitzHugh-Nagumo model 

can offer. By introducing the memristor, they were able to observe bifurcation phenomena 

and more complex neuronal oscillations that better approximate real neural behaviors, 

such as rhythmic bursting and periodic firing patterns. Their findings revealed that the 

memristor-enhanced FitzHugh-Nagumo model could capture a wide range of oscillatory 

behaviors, effectively demonstrating the model’s versatility and potential for simulating 

intricate neuronal dynamics. However, they also encountered limitations: the memristive 

element made the system highly sensitive to parameter changes, requiring meticulous 

calibration to maintain stability. Without careful tuning, the model was prone to chaotic 

behavior, which could detract from its reliability. This complexity, while increasing the 

model’s biological relevance, presented a significant challenge in terms of practical 

usability, especially in simulations of larger neural networks where parameter stability is 

crucial. 

Ahsan, Wu, Jalal, and Kapadia [13] proposed a novel adaptation of the FitzHugh-Nagumo 

model by designing an ultralow-power electronic analog circuit to replicate the model’s 

excitability and recovery dynamics. This approach aimed to translate the theoretical 

FitzHugh-Nagumo model into a physical, hardware-based system that could simulate 

neuronal behavior with minimal energy consumption, a significant advantage in 

neuromorphic computing and low-power applications. The electronic circuit captured the 

essential components of the model—excitability and recovery—by emulating these 

dynamics through an efficient analog design. This innovation highlighted the practical 

utility of the FitzHugh-Nagumo model in creating energy-efficient systems for simulating 

neural behaviors, particularly useful in neuromorphic engineering where power efficiency 

is essential. However, while this analog circuit effectively modeled basic neuronal 

dynamics, it faced limitations in handling more complex interactions that require detailed 

representation of ion channel activity or intricate synaptic connections. The simplicity of 

the circuit, while energy-efficient, limited its applicability to more advanced neural 

interactions, making it suitable primarily for foundational studies rather than for complex 

network simulations in neuroscience. 

Hramov et al. [14] explored the stochastic FitzHugh-Nagumo model by introducing noise 

components to simulate coherence resonance, a phenomenon where stochastic input can 
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enhance a system’s response to weak signals. They leveraged reservoir computing, a 

machine learning approach suitable for temporal pattern recognition, to predict coherence 

resonance states within the model. The inclusion of stochastic noise allowed the model to 

mimic how real neurons respond optimally to fluctuating, weak inputs, as seen in 

biological neurons under random environmental conditions. Their results demonstrated 

that under specific noise intensities, the model displayed resonance, enhancing its 

biological relevance by capturing the random yet beneficial influence of noise on 

neuronal dynamics. However, while reservoir computing provided an accurate prediction 

framework, it required substantial computational resources, particularly when scaling the 

model to larger networks. This limitation highlighted the challenge of balancing the 

model’s biological realism with computational feasibility, as the stochastic FitzHugh-

Nagumo model with coherence resonance simulations demanded high processing power, 

potentially restricting its applications to smaller neural circuits or specific experimental 

settings. 

Gao, Shen, and Hu [15] examined the dynamics of the FitzHugh-Nagumo model in a 

networked system, specifically focusing on delayed and diffusive interactions between 

neurons. They incorporated both time delay and spatial diffusion into the model, which 

introduced a new layer of complexity to simulate realistic neural networks. The time delay 

accounted for the transmission latency in neuronal connections, while diffusion 

represented the spatial spread of excitation through interconnected neurons. Their 

analysis revealed that adding these components allowed the model to replicate more 

realistic neural patterns, such as synchronized oscillations and stable wave propagation 

across the network. This modification provided a closer approximation to physiological 

neural systems, where such factors influence signal timing and spatial interactions. 

However, the complexity introduced by delayed and diffusive terms significantly 

increased the computational demand, requiring precise parameter control to maintain 

stability and coherence within the network. The increased model intricacy posed 

challenges for large-scale simulations, indicating that while the delayed and diffusive 

FitzHugh-Nagumo model captured realistic network dynamics, it required specialized 

computational resources and optimization techniques to be effectively scaled for broader 

applications. 

Gao [16] conducted an in-depth analysis of Turing instability within a FitzHugh-Nagumo 

model configured in a diffusive network. Turing instability, a phenomenon in reaction-
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diffusion systems leading to spatial pattern formation, was explored through the 

FitzHugh-Nagumo model’s reaction-diffusion framework. Gao applied mathematical and 

computational methods to investigate the emergence of spatially heterogeneous patterns, 

focusing on conditions under which the model shifted from homogeneity to instability-

driven patterns. His findings revealed that under specific parameter ranges, diffusive 

coupling could induce Turing instability, resulting in self-organized spatial patterns 

similar to those observed in biological systems. However, the study also noted the 

sensitivity of the model to parameter variations, making it challenging to predict pattern 

formation without precise control over diffusive terms, thus highlighting limitations in 

scalability and application to larger neuronal networks. 

Goulefack, Masoller, and Yamapi [17] examined wave propagation in a linear chain of 

FitzHugh-Nagumo neurons, aiming to quantify the transmission of electrical signals 

along a neuronal pathway. They designed an experiment using a chain of coupled 

FitzHugh-Nagumo units to simulate axonal propagation and signal strength decay across 

a network. Through numerical simulations, they quantified the stability and speed of wave 

propagation under varying coupling strengths, capturing the dynamics of signal 

transmission in a linear neuron chain. The study revealed that strong coupling enhanced 

wave stability and propagation speed, effectively preventing signal decay. However, 

weaker coupling led to dispersion and attenuation, limiting the chain’s ability to maintain 

consistent signal strength over longer distances. The results underscored the model's value 

in studying wave dynamics but also pointed out that additional mechanisms may be 

needed to fully capture the robustness of real biological signal propagation. 

Iqbal et al. [18] focused on finding soliton solutions for the nonlinear stochastic FitzHugh-

Nagumo equation, extending the model to include stochastic effects that represent random 

environmental fluctuations. They approached the model using analytical methods to 

derive soliton solutions, which are stable, localized waveforms that maintain their shape 

during propagation, even under stochastic conditions. By incorporating randomness, 

Iqbal and his team sought to simulate real-world variability in neuronal signal 

propagation. Their results showed that the stochastic FitzHugh-Nagumo model could 

produce soliton solutions that mimic stable, noise-resistant signal transmission, thus 

enhancing the model’s biological relevance. However, they also encountered challenges 

in maintaining numerical stability, as stochastic fluctuations introduced instability in 
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long-term simulations, complicating the application of these solutions in larger, sustained 

neural networks. 

Hu, Ding, Wu, Huang, Yang, and Jia [19] investigated the impact of dynamical rewiring 

on synchronization in a memristive FitzHugh-Nagumo neuronal network. They modified 

the network structure to allow for dynamic changes in connectivity, simulating adaptive 

rewiring observed in real neural networks. By introducing memristors to model adaptive 

synaptic changes, they analyzed how these alterations affected synchronization patterns 

and coherence among networked neurons. Their findings indicated that dynamic rewiring 

promoted synchronization, with memristive elements helping maintain adaptive stability 

across the network. However, the study noted that such rewiring increased the model's 

complexity, necessitating high computational resources and precise control over 

connectivity parameters to avoid desynchronization. This adaptation provided insights 

into neuronal plasticity but limited the model’s feasibility for extensive simulations due 

to increased computational demands. 

Cek and Uludag [20] explored spectral resonance within the FitzHugh-Nagumo neuron 

model, examining its relationship with stochastic resonance and its potential applications 

in electromyography (EMG) signal characterization. They used spectral analysis to 

investigate how external noise and inherent neuronal fluctuations influenced the system's 

resonant frequency response. Their results demonstrated that under specific noise levels, 

spectral resonance could be induced, amplifying signal clarity and strength. This 

phenomenon has implications for enhancing EMG signal analysis, as spectral resonance 

could help in distinguishing relevant neuronal signals from background noise. However, 

they noted that achieving optimal resonance required carefully controlled noise levels, 

limiting its applicability in real-world settings where noise is highly variable. The study 

illustrated the potential for using the FitzHugh-Nagumo model in biomedical signal 

processing but highlighted challenges related to noise management and consistency in 

diverse environments. 

2.2.3 Comparison with Alternative Models 

Xu et al. [21] examined an improved version of the FitzHugh-Nagumo (FHN) model, 

emphasizing a multiplier-free implementation that enhances computational efficiency 

while maintaining the model’s core features. They highlighted that one of the strengths 

of this modified FHN model lies in its reduced computational demand, making it more 
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practical for large-scale simulations compared to the traditional Hodgkin-Huxley (HH) 

model, which is computationally intensive due to its detailed biophysical representations. 

The study demonstrated that the multiplier-free FHN model could replicate essential 

neuronal dynamics, such as excitability and threshold behavior, with comparable 

accuracy to other simplified models. However, the team also identified limitations in the 

model’s ability to capture intricate ion-channel interactions, which are accurately 

represented in the HH model. This restriction limits the improved FHN model’s 

applicability to simulations where only general excitability is required rather than detailed 

ion dynamics. 

Chen et al. [22] focused on a memristive variant of the FHN model, incorporating an 

initial-offset boosting mechanism that introduces hidden dynamics, leading to complex 

bifurcation behavior. Compared to the standard FHN model, which provides basic 

excitability and recovery dynamics, the memristive variant offered richer dynamical 

properties due to the memory effects inherent in memristors. The researchers highlighted 

that this adaptation allowed the model to capture a broader range of neuronal firing 

patterns and oscillatory behaviors, resembling the diversity observed in biological 

neurons. However, they noted that the memristive FHN model’s sensitivity to initial 

conditions and parameter tuning posed significant challenges, particularly in achieving 

stable simulations. Unlike the HH model, which has well-defined biophysical parameters, 

the memristive FHN variant’s reliance on precise parameter control reduces its 

robustness, making it less practical for generalized applications in large networks where 

stability is crucial. 

Zhang, Min, Dou, and Xu [23] conducted a bifurcation analysis on a modified FHN model 

that incorporated an external electric field, allowing for the study of neuronal responses 

under varying electric stimuli. They demonstrated that this model could capture complex 

bifurcation patterns and phase transitions, which are not as readily observed in the classic 

FHN model. Compared to the HH model, which inherently includes responses to ionic 

currents, the modified FHN model offered a more computationally efficient approach to 

studying field-induced bifurcations and oscillatory behaviors. The study highlighted that 

the addition of an electric field enhanced the model's applicability for scenarios where 

external influences play a significant role in neuronal behavior. However, Zhang et al. 

also noted limitations in the model’s ability to accurately represent biophysical details 
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such as ionic movement, which are critical for studies involving precise synaptic 

interactions and are well-handled by the HH model. 

Elfouly, Sohaly, and Fares [24] used a neutral delay differential equation approach to 

represent the FHN model, allowing them to examine delayed feedback effects that are 

critical in neuronal communication. The delay differential representation enabled them to 

capture the effects of time-delayed excitability in neurons, a feature that is challenging to 

model in traditional FHN or HH frameworks. Compared to the HH model, the delayed 

FHN model provided a more simplified but effective method for simulating delayed 

neuronal responses, which are relevant in both neural and artificial network applications. 

However, they found that this approach increased the model’s complexity, as 

incorporating delays required careful calibration to avoid instability. Despite its 

advantages, the delay differential FHN model was limited by its high sensitivity to initial 

conditions, which could lead to unpredictable behaviors if not carefully controlled. 

Amiri, Nazarimehr, and Jafari [25] introduced a memristive synapse into the FHN model, 

aiming to explore how memory elements impact synaptic interactions and network 

dynamics. This adaptation allowed the model to simulate more realistic, plastic synaptic 

interactions compared to traditional models, which lack memory properties. Their 

findings indicated that the memristive synapse enhanced the FHN model’s ability to 

mimic complex, time-dependent neuronal interactions, bringing it closer to the biological 

behavior observed in synaptic networks. Nonetheless, this complexity introduced a 

significant limitation: the memristive FHN model was highly sensitive to parameter 

fluctuations, requiring precise adjustments for stable operation. In contrast, the HH 

model, with its detailed ion-channel representations, does not rely on such sensitivity, 

thus providing greater robustness in simulating stable neuronal activity across a wider 

range of conditions. 

Rybalko and Fradkov [26] explored an identification approach for a two-neuron 

FitzHugh-Nagumo (FHN) model, utilizing speed-gradient and filtering techniques to 

capture neuronal interactions. They focused on using adaptive control techniques to 

improve the model’s performance in representing neuronal dynamics, specifically by 

optimizing the response speed and filtering capabilities to simulate the connectivity and 

mutual influence between neurons. Compared to the Hodgkin-Huxley (HH) model, which 

inherently supports detailed neuronal interactions through ion channel dynamics, the two-
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neuron FHN model required external modifications to achieve similar interaction 

capabilities. Although the speed-gradient method enhanced the responsiveness of the 

FHN model, it was limited by computational demands and sensitivity to parameter 

adjustments, making it less robust for large-scale simulations compared to the more 

biologically detailed but computationally demanding HH model. 

Saçu [27] conducted a synthesis and analysis of a fractional-order FitzHugh-Nagumo 

model to address the limitations in biological realism often found in integer-order models. 

By introducing fractional calculus into the FHN model, Saçu aimed to provide greater 

control over neuronal firing frequencies and response times, improving its resemblance 

to actual neuronal dynamics. The fractional-order model offered enhanced flexibility in 

adjusting neuronal excitability patterns, making it particularly effective for capturing 

long-term memory effects and decay rates, which are challenging to model in both the 

traditional FHN and HH frameworks. However, the added complexity of fractional-order 

differential equations introduced challenges in numerical stability and computational 

efficiency, limiting its practicality for real-time simulations or extensive network 

modeling, where the integer-order HH model may still be preferred due to its stable and 

established parameter structure. 

Kumar and Erturk [28] also investigated a fractional-order variant of the FHN model but 

focused on an improved version with specific enhancements in its excitability and 

recovery functions. They demonstrated that the fractional-order modification allowed the 

model to capture complex neuronal behaviors, such as long-term dependencies and 

adaptive responses to sustained stimuli. While the HH model provides a biophysically 

accurate representation of such dependencies through ion channels, the fractional-order 

FHN model offers a computationally simpler but flexible alternative. However, Kumar 

and Erturk highlighted that the model’s sensitivity to fractional parameters demanded 

precise calibration, as slight deviations could lead to instability. This limitation reduces 

the model’s robustness in practical applications, especially in scenarios where precise 

biological fidelity and stability are crucial, as provided by the HH model’s established 

structure. 

Shi, Min, and Zhu [29] performed an analysis of coexisting firing patterns within the FHN 

neuron model, focusing on the conditions that lead to multiple stable firing states. They 

employed nonlinear dynamical techniques to explore how different initial conditions and 
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parameter values influenced the model's behavior, revealing that the FHN model could 

exhibit multiple stable and unstable firing modes. This property of coexisting firing 

patterns adds versatility to the FHN model, making it suitable for simulating diverse 

neuronal firing behaviors that are often observed in complex neural circuits. However, 

the model’s sensitivity to initial conditions posed a limitation, as it could lead to 

unpredictable outcomes in large-scale simulations. In contrast, the HH model, which 

offers a more deterministic representation due to its fixed biophysical parameters, 

provides greater consistency across different initial conditions, making it more suitable 

for applications where stable and predictable neuronal responses are necessary. 

Uzal [30] designed a microcontroller-based emulator circuit for the FHN neuron model, 

creating a hardware-based implementation that could simulate neuronal dynamics in real-

time with minimal power consumption. This approach leveraged the simplicity of the 

FHN model to build an energy-efficient emulator, enabling real-time applications in 

neuromorphic engineering and low-power device design. Compared to the HH model, 

which is computationally intensive and challenging to implement on hardware without 

significant simplification, the FHN model’s reduced complexity made it more suitable 

for microcontroller-based applications. However, the simplified nature of the FHN model 

limited the emulator’s ability to replicate complex neuronal behaviors accurately. Uzal 

noted that while the emulator was effective for basic excitability and firing simulations, 

it lacked the ability to capture detailed ion channel interactions and intricate synaptic 

dynamics, which are more faithfully represented in hardware implementations based on 

the HH model. 

. 

2.2.4 Applications of the FitzHugh-Nagumo Model in Neuroscience 

Xu et al. [31] applied an improved FitzHugh-Nagumo (FHN) model with a multiplier-

free implementation in studies on neuronal network simulations, aiming to streamline 

computational requirements for large-scale applications. The simplified implementation 

made it possible to simulate the collective behavior of neurons in a computationally 

efficient manner, making it valuable for neuroscience research focused on large neural 

circuits and network connectivity analysis. By reducing the computational load, this 

model facilitated the exploration of neuronal excitability patterns across extensive 

networks, offering insights into how excitability propagates in interconnected systems. 
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However, Xu and colleagues acknowledged that, while efficient, this implementation 

might lack the precision needed for highly detailed neuronal modeling, limiting its utility 

for studies requiring fine-grained biophysical accuracy. 

He, Li, Chen, and Cao [32] explored the use of the FitzHugh-Nagumo model in simulating 

neurons with state-dependent impulsive effects, a feature that introduced a level of 

realism by allowing for sudden state changes based on internal neuron conditions. This 

adaptation has practical applications in studying neuronal responses to abrupt inputs, such 

as synaptic spikes or external stimuli, which can trigger impulse-driven shifts in neuronal 

states. Through their experiments, He and colleagues demonstrated that the state-

dependent impulsive FHN model could effectively mimic responses to transient stimuli, 

providing insights into neuronal adaptability and plasticity in dynamic environments. 

This model has potential applications in neural prosthetics and brain-computer interfaces 

(BCIs), where simulating rapid neural responses to external signals is essential. Despite 

its utility, the addition of impulsive effects increased model complexity, posing 

challenges for real-time applications and requiring careful control of impulse parameters 

to avoid destabilizing the model. 

Chen, Wang, Wang, Wu, and Xu [33] investigated a memristive version of the FHN 

model, incorporating initial-offset boosting to explore bifurcation mechanisms and 

hidden dynamics in neurons. This adaptation allowed the model to simulate synaptic 

plasticity and memory effects by mimicking the persistence of neuronal responses over 

time. Their findings revealed that the memristive FHN model could reproduce complex 

bifurcation behaviors, enhancing its relevance for applications that involve adaptive 

neural processing, such as learning models and synaptic plasticity studies. In practical 

terms, this model has applications in understanding memory retention mechanisms in the 

brain and exploring the neural basis of learning. However, the model’s sensitivity to initial 

conditions and parameters made it challenging to control in larger networks, limiting its 

applicability to small-scale studies where precise parameter tuning is feasible. 

Korkmaz and Şıvga [34] implemented the FitzHugh-Nagumo model with an 

electromagnetic effect on an FPGA (Field-Programmable Gate Array) platform, enabling 

real-time simulation of neuronal dynamics influenced by electromagnetic fields. This 

FPGA-based realization allowed for the rapid simulation of electromagnetic effects on 

neurons, offering a practical tool for neuroscience research on electromagnetic brain 
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stimulation, such as transcranial magnetic stimulation (TMS). Their work demonstrated 

that the FHN model could effectively model neuronal responses to electromagnetic fields, 

which has applications in both therapeutic and diagnostic settings. The hardware 

implementation also showed potential for portable and low-power applications, making 

it suitable for embedded systems. However, the hardware constraints of FPGA limited 

the model’s complexity, restricting its use to basic neuronal behaviors and simple network 

configurations rather than extensive, biologically realistic networks. 

Rudi, Bessac, and Lenzi [35] utilized convolutional and dense neural networks to perform 

parameter estimation for the FHN model, aiming to improve its adaptability for specific 

neuronal behaviors. By leveraging machine learning techniques, they trained networks to 

optimize the parameters of the FHN model based on target neuronal dynamics, thus 

enhancing its accuracy and usability in diverse research contexts. This approach enabled 

the model to approximate specific neuronal responses more accurately, making it suitable 

for applications in personalized neural modeling and adaptive simulations. Machine 

learning-based parameter estimation opens up potential for applications in individualized 

medicine and neural prosthetics, where accurately modeling specific neural responses is 

essential. However, this approach requires substantial training data and computational 

resources, which may limit its accessibility for real-time simulations or resource-

constrained settings. 

Zhang, Min, Dou, and Xu [36] examined the effects of an external electric field on a 

modified FHN model, focusing on its bifurcation and oscillatory properties under 

different field intensities. The application of an electric field made it possible to simulate 

neuronal responses in environments subject to electrical modulation, such as during 

electrical stimulation therapies used for neurological conditions. Their study showed that 

the electric field-enhanced FHN model could replicate a range of firing behaviors, 

providing a valuable tool for understanding the effects of electrical fields on neural tissue. 

This has practical applications in developing neurostimulation therapies and 

understanding the electrophysiological basis of treatments like deep brain stimulation 

(DBS). However, the addition of the electric field increased model sensitivity, making it 

highly parameter-dependent and requiring careful calibration to avoid unintended 

oscillatory behaviors, which could complicate its use in large-scale simulations or 

variable field conditions. 
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Khakipoor, Bahar, and Karimian [37] applied the FitzHugh-Nagumo (FHN) model within 

a circuit framework to analyze neuronal excitability and response patterns efficiently. By 

integrating the FHN model into an analog circuit design, they demonstrated how neuronal 

dynamics could be effectively emulated in hardware, offering a practical tool for 

applications in neuromorphic engineering and analog signal processing. This approach 

enabled real-time simulation of neuronal behaviors, which is valuable for prototyping 

devices that need to mimic neural responses, such as brain-machine interfaces and neural 

prosthetics. The circuit-based implementation of the FHN model offered advantages in 

terms of speed and power efficiency over software-based simulations, but the model’s 

reduced complexity limited its capacity to accurately represent detailed synaptic 

interactions, which are critical for more comprehensive applications in neuroscience. 

Elfouly, Sohaly, and Fares [38] explored the FHN model using a neutral delay differential 

equation framework, which allowed them to incorporate time delays that more accurately 

represent biological neuron signaling, where feedback delays are common. This delayed 

version of the FHN model has practical implications for studying time-dependent neural 

responses, such as those in interconnected brain regions that exhibit delayed signaling. 

The study demonstrated that adding time delays could capture realistic oscillatory and 

feedback behaviors observed in neural circuits, providing a valuable model for research 

on distributed brain activity. However, they noted that the inclusion of delay elements 

introduced complexity, making it computationally challenging to stabilize the model for 

larger network simulations where precision in delay timing is essential. 

Amiri, Nazarimehr, and Jafari [39] developed a FitzHugh-Nagumo model with a 

memristive synapse, focusing on how memory effects impact neuronal and synaptic 

dynamics. This adaptation allowed the FHN model to simulate forms of synaptic 

plasticity, which are crucial for understanding learning and memory processes in neural 

circuits. Their findings indicated that the memristive FHN model could capture dynamic 

and adaptive synaptic interactions, making it suitable for applications in artificial neural 

networks and cognitive computing. The model has practical applications in fields that 

require emulation of learning behaviors, such as adaptive algorithms in machine learning 

and neurocomputing. However, the addition of a memristive component made the model 

highly parameter-sensitive, requiring precise control for stability, which limits its 

scalability in complex network simulations. 
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Bisquert [40] conducted a frequency domain analysis of the excitability and bifurcations 

within the FHN model, providing insights into how neuronal dynamics vary with input 

frequencies. By analyzing the model’s response across a range of frequencies, Bisquert 

was able to highlight the conditions under which neurons transition between stable and 

excitable states, offering a basis for applications in brain stimulation therapies that 

leverage frequency-specific responses. This approach is particularly relevant for 

treatments like transcranial magnetic stimulation (TMS) and deep brain stimulation 

(DBS), where tuning frequency can enhance therapeutic effects. Although frequency 

domain analysis provided a novel perspective on the model's excitability, it required 

specialized knowledge and tools, limiting its applicability to researchers equipped to 

conduct advanced signal processing in neural modeling. 

Habbal, Farhat, Khalil, and Pannier [41] applied 3D printing and molding techniques to 

create physical models based on the FitzHugh-Nagumo model, allowing for the 

visualization of neuron morphology and connectivity. By using fused filament 

fabrication, they generated flexible, scaled neuron models that could be used for 

educational purposes and in neuroscience research to study physical aspects of neuronal 

structure. This tangible representation of the FHN model provides a unique application 

in neuroscience education, where visualizing neuron connectivity and behavior can aid in 

learning. Although this approach enhances the understanding of neuron morphology, it is 

limited in its capacity to simulate dynamic processes, as the models serve primarily for 

structural representation rather than for functional analysis of neuronal dynamics. 

Okonkwo, Olaniran, Adeyi, and colleagues [42] explored the modeling of biological 

processes using neural networks and adaptive neuro-fuzzy inference systems, indirectly 

informing the potential for FHN model applications in modeling adaptive biological 

systems. While their study focused on food processing, the principles of adaptive 

modeling and neuro-fuzzy inference highlighted applications for the FHN model in 

simulating complex, adaptive biological processes like neural plasticity. This indirect 

application suggests potential avenues for integrating the FHN model with adaptive 

systems, enhancing its utility in contexts where flexibility and learning are required. 

However, transferring insights from food processing to neuroscience requires careful 

adaptation, as the fundamental processes differ, and neural network-based models often 

require significant tuning for biological accuracy in neuroscience applications. 
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Table 2.1:Comparative Table of Previous Study 

Reference Technique Results Limitations Findings 

[1]  Neutral Delay 

Differential 

Equation 

representation 

of FHN model 

Captured 

delayed 

feedback in 

neuronal 

signaling, 

enhancing 

oscillatory 

behavior 

simulation 

High sensitivity 

to initial 

conditions, 

making the model 

challenging to 

stabilize in large 

networks 

Effective for 

studying time-

dependent and 

feedback-

delayed neural 

responses 

[11]  LOOCV with 

exponential B-

spline functions 

for soliton 

solutions 

Improved 

accuracy in 

wave 

propagation 

simulation, 

mimicking 

stable action 

potentials 

Computationally 

intensive, limiting 

real-time 

application 

Valuable for 

modeling 

stable signal 

propagation in 

neurons 

[12]  Memristor-

based circuit 

added to FHN 

model 

Simulated 

bifurcations and 

complex 

oscillations 

similar to 

biological 

neurons 

High sensitivity 

to parameter 

variations, 

challenging 

stability 

Useful for 

exploring 

memory-

driven 

behaviors and 

oscillatory 

dynamics 

[13]  Ultralow-power 

electronic 

analog of FHN 

model 

Efficient energy 

consumption for 

mimicking 

excitability and 

recovery 

dynamics in 

hardware 

Simplified design 

limits 

representation of 

complex 

interactions 

Suitable for 

neuromorphic 

applications 

requiring basic 

neuronal 

dynamics 
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[18]  Stochastic 

extension of 

FHN model for 

soliton solutions 

Captured noise-

resistant, stable 

signal 

transmission 

with soliton 

solutions 

Numerical 

instability with 

prolonged 

stochastic 

simulations 

Effective for 

representing 

randomness 

and variability 

in neural signal 

propagation 

[21]  Multiplier-free 

implementation 

of improved 

FHN model 

Enabled large-

scale 

simulations of 

neural networks 

with reduced 

computational 

load 

Lacks precision in 

representing 

detailed 

biophysical 

neuronal 

interactions 

Suitable for 

simulating 

large-scale 

network 

connectivity 

and 

excitability 

patterns 

[22]  Memristor 

initial-offset 

boosting in 

FHN model 

Produced 

diverse firing 

patterns and 

bifurcation 

behaviors 

High sensitivity 

to parameter 

control, 

impacting 

stability 

Effective for 

exploring 

complex 

oscillatory and 

memory-

driven 

neuronal 

behaviors 

[26]  Speed-gradient 

and filtering in 

two-neuron 

FHN model 

Enhanced model 

responsiveness, 

simulating 

neuron 

connectivity and 

influence 

Computational 

demands and 

parameter 

sensitivity 

Useful for 

modeling 

connected 

neurons in 

adaptive 

control 

scenarios 

[27]  Fractional-order 

FHN model 

synthesis and 

analysis 

Enhanced 

control over 

firing frequency, 

modeling long-

Increased 

complexity and 

stability 

Valuable for 

representing 

neuronal 

memory and 
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term 

dependencies 

challenges in 

simulations 

adaptive 

responses 

[37]  Circuit-based 

FHN model for 

analog 

simulations 

Enabled real-

time simulations 

with low power 

consumption 

Simplified model 

limits complex 

synaptic 

interaction 

representation 

Suitable for 

hardware-

based neural 

response 

emulation, 

such as brain-

machine 

interfaces 

2.3 Liteature summery  

The literature on the FitzHugh-Nagumo (FHN) model shows its versatility in mimicking 

neuronal excitability and network dynamics. Neutral delay differential equations, 

memristive adaptations, fractional-order modifications, and multiplier-free 

implementations have improved the FHN model's relevance for specific brain activities 

in many research. Capturing delayed feedback, enhancing large-scale network 

computational efficiency, and modeling neural oscillations-like memory effects and 

bifurcation behaviors are major advances. Analog circuits and FPGA-based realizations 

have shown the FHN model's low-power and real-time simulation capabilities, making it 

useful for neuromorphic engineering and brain-computer interface applications. Despite 

these advances, the model's stability under complicated configurations, sensitivity to 

parameter changes, and biophysical accuracy compared to Hodgkin-Huxley are still 

limits. The literature supports the FHN model as a basic but versatile tool for examining 

general excitability patterns, although scaling and improving it for neural network 

simulations remains difficult. 

 

2.4 Research gap  

The FitzHugh-Nagumo model has been successfully improved and applied to neuronal 

simulations, although large-scale, biologically correct neural network simulations still 

require investigation. Current studies emphasize the model's inability to capture detailed 

ion channel dynamics, actual synaptic contacts, and adaptive network plasticity in 

fluctuating or high-dimensional parameter spaces. Complex setups with temporal delays, 
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fractional-order dynamics, or memristive components have stability and computing 

demand concerns. Research is needed to increase the model's robustness and scalability 

for real-time and biologically realistic simulations, despite computer complexity 

reductions. Addressing these shortcomings could improve the FHN model's ability to 

explore complex brain systems in neuroprosthetics, cognitive computing, and large-scale 

neural simulations. 
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3. Theoretical Background of the FitzHugh-Nagumo Model 

The FitzHugh-Nagumo model represents a milestone in computational neuroscience by 

distilling the complex Hodgkin-Huxley equations into a mathematically tractable system 

while preserving essential neuronal dynamics. The model's theoretical foundation rests 

on several key principles: 

Dimensional Reduction and Phase Space Analysis 

The FHN model achieves dimensional reduction by condensing the four-variable 

Hodgkin-Huxley framework into a two-variable system that captures the essential 

dynamics of neuronal excitability. This reduction transforms a complex biophysical 

system into a more accessible mathematical framework amenable to phase space analysis. 

The model's phase space reveals critical structures: 

Nullclines (where dV/dt = 0 and dW/dt = 0) whose intersections determine equilibrium 

points 

Stable and unstable manifolds that govern trajectory behavior 

Limit cycles that emerge through Hopf bifurcations, representing periodic firing 

Dynamical Systems Perspective 

From a dynamical systems viewpoint, the FHN model exemplifies a nonlinear oscillator 

with excitable properties. The cubic term V - V³/3 introduces essential nonlinearity that 

enables: 

Bistability between resting and excited states 

Threshold behavior characteristic of neuronal firing 

Excitability where sufficiently large perturbations trigger full excursions in phase space 

before returning to rest 

The separation of timescales between fast (V) and slow (W) variables—controlled by the 

parameter ε—creates relaxation oscillations that accurately mimic the rapid 

depolarization and slower recovery phases of action potentials. 

Mathematical Formulation and Interpretation 

The core equations: 
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𝑑𝑉

𝑑𝑡
=  𝑉 −

𝑉3

3
−  𝑊 +  𝐼  

𝑑𝑊

𝑑𝑡
=  𝜀(𝑉 +  𝑎 −  𝑏𝑊) 

Each term carries specific biophysical significance: 

V - V³/3 approximates the fast autocatalytic process of sodium channel activation 

W represents combined recovery processes, including sodium channel inactivation and 

potassium channel activation 

Parameter a influences excitability threshold 

Parameter b modulates recovery dynamics 

Parameter ε controls timescale separation 

External current I simulates synaptic or experimental inputs 

This mathematical formulation creates a framework that balances analytical tractability 

with biological relevance, enabling both theoretical analysis and practical applications in 

computational neuroscience. 

3.1. The FitzHugh-Nagumo Model 

3.1.1 Brief History and Development 

The FitzHugh-Nagumo (FHN) model was developed in the early 1960s as a simplified 

representation of the Hodgkin-Huxley (HH) model, designed to capture essential features 

of neuronal excitability and action potential generation without the high complexity and 

computational demands of the HH model. Richard FitzHugh, a biophysicist, initially 

proposed this two-variable model, which simplified the four-dimensional HH equations 

into a system of two differential equations, representing the essential dynamics of 

excitability and recovery in excitable cells. 

Around the same time, Jinichi Nagumo, a Japanese engineer, applied FitzHugh’s ideas to 

electrical circuit theory, resulting in the “Nagumo circuit,” a physical analog of 

FitzHugh’s mathematical model. Together, the contributions of FitzHugh and Nagumo 

formed what is now widely known as the FitzHugh-Nagumo (FHN) model, which has 

become a benchmark in studying excitable systems due to its balance between simplicity 
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and biological relevance. This model is particularly significant for its ability to mimic the 

threshold dynamics of neuronal firing and refractory periods with a minimal set of 

equations, providing valuable insights into excitable systems while being 

computationally efficient for simulations. 

3.2 Theoretical Basis of the FHN Model 

The FitzHugh-Nagumo model represents neuronal activity using two differential 

equations that describe the behavior of excitability (𝑉) and recovery (𝑊) variables, with 

each playing a specific role in action potential dynamics: 

• Excitability Variable (𝑉): Represents the membrane potential of the neuron, 

capturing the rapid change in voltage associated with an action potential. 

• Recovery Variable (𝑊): Represents a slower recovery process, often associated 

with ion channel dynamics or delayed rectifier currents in neurons, which brings 

the membrane potential back to its resting state. 

The core equations for the FHN model are: 

𝑑𝑉

𝑑𝑡
= 𝑉 −

𝑉3

3
− 𝑊 + 𝐼 

𝑑𝑊

𝑑𝑡
= 𝜖(𝑉 + 𝑎 − 𝑏𝑊) 

where: 

• 𝑉 represents the membrane potential (excitability variable). 

• 𝑊 is the recovery variable. 

• 𝐼 is an external stimulus current? 

• 𝜖, 𝑎, and 𝑏 are parameters that control the behavior of the system, affecting the 

threshold for excitability, the response rate, and the refractory period. 

In this model, the excitable dynamics are driven by the term 𝑉 −
𝑉3

3
, which introduces a 

nonlinear behavior in 𝑉, while the recovery dynamics are governed by the linear term 

𝜖(𝑉 + 𝑎 − 𝑏𝑊), with 𝜖 being a small parameter that slows down the recovery process 

relative to excitability. These equations create a limit cycle that generates a spike-like 

waveform for the action potential, with the membrane potential 𝑉 increasing rapidly 

during excitation and then gradually returning to a resting state due to the recovery 

variable 𝑊. 
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The simplifications in the FHN model, including reducing four HH variables to two and 

replacing specific ion channel dynamics with general excitability and recovery terms, 

make it computationally efficient. Despite these simplifications, the FHN model can 

effectively reproduce the threshold-based response and refractory behavior characteristic 

of neuronal action potentials, making it highly suitable for studying general excitability 

in neurons and other excitable systems, such as cardiac cells. 

Theoretical Background of the FitzHugh-Nagumo Model 

The FitzHugh-Nagumo (FHN) model is a simplified version of the Hodgkin-Huxley 

model, designed to capture essential neuronal excitability and recovery dynamics with 

reduced computational complexity. It uses a pair of coupled nonlinear differential 

equations to simulate the basic behavior of a neuron, specifically focusing on action 

potential generation and the return to a resting state. The FHN model is particularly useful 

for studying general excitability and threshold behavior in neurons, and its simplicity 

allows it to be adapted for large-scale simulations and real-time applications in 

neuromorphic computing. 

Derivation of the Model’s Equations 

The FHN model is derived by simplifying the Hodgkin-Huxley equations, which 

originally described ion flows across a neuronal membrane. By reducing the four-variable 

Hodgkin-Huxley system to a two-variable model, FitzHugh and Nagumo focused on 

capturing core neuronal dynamics without needing detailed simulation of specific ion 

channels. The FHN model is formulated with two main differential equations: 

𝑑𝑉

𝑑𝑡
= 𝑉 −

𝑉3

3
− 𝑊 + 𝐼 

𝑑𝑊

𝑑𝑡
= 𝜖(𝑉 + 𝑎 − 𝑏𝑊) 

where: 

• 𝑉 represents the membrane potential (the excitability variable), 

• 𝑊 is the recovery variable, representing the slower inhibitory processes 

• 𝐼 is an external stimulus current applied to the neuron 

• 𝜖, 𝑎, and 𝑏 are parameters that govern the model’s dynamics. 
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These equations capture the essential aspects of action potential generation and return to 

resting state. The first equation describes how the membrane potential 𝑉 evolves, with 

nonlinear terms that capture excitability and threshold dynamics. The second equation 

models the recovery variable 𝑊, which regulates the return to the resting state after an 

action potential. 

3.3 Parameters and Variables 

For this study, the following parameters and variables are essential in analyzing the 

FHN model: 

𝑽 (Membrane Potential or Excitability Variable) 

The variable 𝑉 represents the membrane potential of the neuron, which is the electrical 

charge difference across the neuronal membrane. In the FHN model, this variable is 

central to neuronal excitability and action potential generation. When 𝑉 reaches a 

threshold, it produces a rapid spike, representing neuronal firing. The term 𝑉 −
𝑉3

3
 

introduces a nonlinear relationship, allowing the model to simulate both stable and 

unstable states, which are key to capturing neuronal excitability. 

𝑾 (Recovery Variable) 

𝑊 represents a slower recovery process that counterbalances excitability. Often 

associated with processes like potassium ion flow or delayed rectifier currents, 𝑊 helps 

bring 𝑉 back to its resting state after an action potential. This recovery phase prevents 

continuous firing and provides a refractory period before the neuron can fire again. The 

term 𝜖(𝑉 + 𝑎 − 𝑏𝑊) controls this recovery, where 𝜖 dictates the speed of recovery 

relative to excitability. 

𝑰 (External Stimulus Current) 

The parameter 𝐼 represents an external stimulus current applied to the neuron, allowing 

for the simulation of external signals that drive the neuron to its firing threshold. By 

varying 𝐼, it is possible to study how different input levels affect neuronal excitability and 

firing patterns, making 𝐼 crucial for simulating realistic neuronal responses. 

𝝐 (Recovery Speed Parameter) 

The parameter 𝜖 controls the speed of the recovery variable 𝑊 relative to changes in 𝑉. 

Typically, 𝜖 is a small positive constant, reflecting that 𝑊 evolves more slowly than 𝑉. 
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A smaller 𝜖 value creates a distinct separation between fast excitability and slow recovery 

dynamics, critical for maintaining stability in the model and accurately simulating 

neuronal firing rhythms. 

𝒂 and 𝒃 (Recovery Equation Parameters) 

The parameters 𝑎 and 𝑏 influence the shape and stability of the recovery dynamics. 

Parameter 𝑎 shifts the resting position of the membrane potential 𝑉, altering the firing 

threshold, while 𝑏 modulates feedback from 𝑊 back to 𝑉. Adjusting 𝑎 and 𝑏 allows for 

modeling neurons with different excitability profiles, making these parameters valuable 

for exploring diverse firing behaviors. 

The FHN model effectively captures the interplay between excitability and recovery, 

replicating essential neuronal behaviors. Adjusting the values of 𝜖, 𝑎, 𝑏, and 𝐼 allows for 

simulating various neuronal responses, from isolated spikes to sustained oscillatory 

patterns. The model’s simplicity provides a versatile framework for studying excitability 

in neurons, with parameters that offer flexibility for specific experimental conditions or 

neural network configurations. 

Dynamical Systems and Phase Space Analysis 

The FitzHugh-Nagumo (FHN) model, as a nonlinear dynamical system, exhibits a range 

of behaviors that can be analyzed using stability, bifurcation, and phase space analyses. 

These methods are crucial for understanding how the model’s variables—particularly the 

excitability variable 𝑉 and the recovery variable 𝑊—evolve over time and respond to 

changes in parameters. By examining the stability of equilibrium points and investigating 

bifurcation conditions, we can gain insight into the model’s ability to replicate neuronal 

firing, excitability thresholds, and oscillatory dynamics. Phase space analysis further 

enables the visualization of trajectories and dynamic states, making it possible to track 

the system’s behavior under various initial conditions and external stimuli. 

Stability and Bifurcation Analysis 

Stability analysis in the context of the FHN model involves determining whether small 

perturbations around equilibrium points lead the system back to equilibrium (stable) or 

cause divergence away from it (unstable). The equilibrium points, or fixed points, are 

found by setting the derivatives in the differential equations of the FHN model to zero: 
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𝑑𝑉

𝑑𝑡
= 0 and 

𝑑𝑊

𝑑𝑡
= 0 

Solving these equations simultaneously gives the equilibrium values of 𝑉 and 𝑊. To 

analyze the stability of these equilibrium points, we examine the **Jacobian matrix** of 

the system, derived by taking the partial derivatives of each equation with respect to 𝑉 

and 𝑊: 

𝐽 = [

∂𝑓(𝑉, 𝑊)

∂𝑉

∂𝑓(𝑉, 𝑊)

∂𝑊
∂𝑔(𝑉, 𝑊)

∂𝑉

∂𝑔(𝑉, 𝑊)

∂𝑊

] 

where 𝑓(𝑉, 𝑊) = 𝑉 −
𝑉3

3
− 𝑊 + 𝐼 and 𝑔(𝑉, 𝑊) = 𝜖(𝑉 + 𝑎 − 𝑏𝑊). The eigenvalues of 

the Jacobian matrix determine the nature of the equilibrium point: 

• If both eigenvalues have negative real parts, the equilibrium is a stable node or 

focus, meaning the system will return to this point if slightly perturbed. 

• If any eigenvalue has a positive real part, the equilibrium is unstable, and nearby 

trajectories will diverge from this point. 

By varying parameters such as 𝜖, 𝑎, 𝑏, and 𝐼, the stability of these equilibria can change, 

resulting in bifurcations. Bifurcation analysis examines these transitions, particularly the 

Hopf bifurcation, which occurs when a pair of complex conjugate eigenvalues crosses the 

imaginary axis, leading to oscillatory solutions. This bifurcation is essential in the FHN 

model as it explains the onset of oscillatory behavior, corresponding to repetitive neuronal 

firing or sustained action potentials under certain conditions. 

Explanation of Phase Space and Trajectories 

Phase space is a conceptual space in which each point represents a unique state of the 

system, defined by the values of the variables 𝑉 (membrane potential) and 𝑊 (recovery 

variable) at any given time. For the FHN model, phase space provides a visual framework 

for analyzing the dynamic behavior of the model. A phase space plot of 𝑉 versus 𝑊 

reveals the trajectory or path that the system follows over time for specific initial 

conditions and parameter values. 

In a two-dimensional phase space(with axes 𝑉 and 𝑊), the trajectories represent the 

evolution of the neuronal state. Key features in the phase space include: 
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• Fixed Points (Equilibria): Points where 
𝑑𝑉

𝑑𝑡
= 0 and 

𝑑𝑊

𝑑𝑡
= 0, indicating steady 

states. In the FHN model, these points are crucial for understanding whether the 

neuron will remain at rest or exhibit activity. 

• Limit Cycles: Closed trajectories around a fixed point, indicative of oscillatory 

behavior. In the FHN model, the presence of a limit cycle corresponds to repetitive 

spiking or oscillations in the neuron, a critical aspect of neuronal firing. 

• Trajectories: Paths that show how the system evolves from any initial condition 

in phase space. By plotting trajectories starting from different initial conditions, 

we can determine whether the system approaches a stable point, oscillates in a 

limit cycle, or diverges. 

Phase space analysis enables a qualitative understanding of the FHN model’s behavior 

by showing how the neuron responds to different stimuli and initial states. For instance, 

when the external current 𝐼 increases, the phase space may shift, moving the system from 

a stable equilibrium to a limit cycle, representing the transition from a resting state to 

repetitive firing. This shift corresponds to a **bifurcation**, as the system’s qualitative 

behavior changes with varying 𝐼. 

Trajectory Behavior in Response to Parameter Changes 

Different parameter values in the FHN model produce characteristic trajectories in phase 

space: 

• Subthreshold Behavior: When the input current 𝐼 is low, the trajectories typically 

settle towards a stable equilibrium point, showing that the neuron remains in a 

resting state. 

• Threshold Behavior: For values of 𝐼 that push 𝑉 close to a critical threshold, 

trajectories may spiral towards a limit cycle, indicating repetitive firing as the 

system oscillates. This behavior is especially relevant in modeling neurons with 

high excitability. 

• Oscillatory and Spiking Behavior: For higher values of 𝐼, the trajectories stabilize 

into a limit cycle, producing a sustained oscillatory response that represents 

continuous neuronal spiking. In phase space, this appears as a closed loop around 

an unstable equilibrium, characteristic of limit cycles in dynamical systems. 
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The combination of stability, bifurcation, and phase space analysis offers a 

comprehensive understanding of the FHN model’s dynamic behavior. By exploring these 

aspects, researchers can predict how a neuron will respond to various conditions, simulate 

patterns of excitability and oscillation, and observe the effects of parameter tuning on 

neuronal firing. This foundational understanding is essential for applying the FHN model 

to simulate complex neural networks and for interpreting the dynamic responses of 

neurons in various physiological and computational contexts. 

3.4 Model Assumptions and Limitations 

The FitzHugh-Nagumo (FHN) model is a simplified version of the Hodgkin-Huxley 

model, designed to capture essential dynamics of neuronal excitability and recovery 

without extensive biophysical detail. While its simplicity makes it valuable for studying 

general excitability and threshold behavior, it comes with several assumptions and 

limitations. The FHN model abstracts many biological complexities, using simplified 

mathematical terms to represent neuronal processes, which can limit its biological 

accuracy in certain contexts. This section discusses the key assumptions and limitations 

associated with the FHN model. 

3.4.1 Assumptions in the Model 

The FHN model is built on several core assumptions that simplify neuronal behavior: 

Two-Variable Simplification (Excitability and Recovery) 

The FHN model assumes that neuronal dynamics can be captured using two variables: 𝑉, 

representing membrane potential (excitability), and 𝑊, representing a slow recovery 

process. This contrasts with the four-variable Hodgkin-Huxley model, which includes 

specific ionic currents (sodium and potassium) and gating variables for each ion channel. 

This two-variable approach allows efficient computational simulations but sacrifices the 

detailed representation of specific ion channel dynamics. As a result, the FHN model 

provides a general picture of excitability and recovery but does not account for individual 

ionic conductances or channel-specific kinetics. 

Simplified Ionic Currents 

Instead of modeling the exact contributions of sodium and potassium currents, the FHN 

model uses a cubic term, 𝑉 −
𝑉3

3
, to capture nonlinear excitability dynamics. This term is 

a mathematical abstraction, chosen to replicate threshold-like responses in membrane 
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potential. This simplification assumes that the main features of neuronal firing, such as 

threshold-crossing and recovery, can be approximated by this cubic relationship. 

However, it does not account for the specific role of individual ion channels, making the 

model less accurate for studies that require detailed understanding of ionic currents. 

Constant Recovery Dynamics 

The recovery variable 𝑊 is assumed to evolve at a slower, constant rate compared to the 

excitability variable 𝑉. This is controlled by the parameter 𝜖, typically set to a small value, 

creating a separation of timescales. This assumption introduces a fixed relationship 

between fast excitability and slower recovery processes, reflecting the typical firing and 

refractory behavior of neurons. However, in real neurons, recovery dynamics can vary 

depending on factors such as ion channel kinetics, temperature, and extracellular ion 

concentrations. The FHN model does not account for these variations, limiting its 

accuracy in representing diverse recovery dynamics. 

External Stimulus as a Constant Input 

The model assumes that external stimuli can be represented as a constant input current 𝐼. 

While sufficient for simulating a steady excitation threshold, real neuronal inputs are 

often complex and vary in time, influenced by factors such as synaptic inputs from other 

neurons and fluctuating external signals. This assumption limits the model’s applicability 

for studying neurons that receive temporally or spatially varying inputs, as it cannot 

directly simulate responses to dynamic or spatially patterned stimuli. 

Linearity in Recovery Term 

The recovery dynamics, represented by 𝑊, are modeled linearly, as shown in the equation 

𝑑𝑊

𝑑𝑡
= 𝜖(𝑉 + 𝑎 − 𝑏𝑊). This assumes a simple linear trajectory for recovery, without non-

linear complexities. In real neurons, recovery processes, such as potassium channel 

kinetics, often exhibit non-linear behaviors. The FHN model does not capture these 

dynamics, limiting its ability to represent certain neuronal behaviors arising from non-

linear recovery processes. 

3.4.2 Limitations of the Model 

The assumptions underlying the FHN model lead to certain limitations, which constrain 

its applicability for specific types of neuronal studies: 
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Lack of Detailed Ion Channel Dynamics 

The primary limitation of the FHN model is its lack of detailed representation of ionic 

conductances and channel kinetics. In contrast to the Hodgkin-Huxley model, which 

explicitly models sodium and potassium currents, the FHN model uses simplified terms 

that provide a high-level approximation of excitability and recovery. This abstraction 

means the FHN model is unsuitable for studies requiring precise knowledge of ion 

channel behavior, such as those examining the effects of specific ion channel blockers on 

neuronal firing. 

Reduced Biological Realism 

Due to its reliance on mathematical abstractions, the FHN model lacks certain biophysical 

features of real neurons, such as synaptic integration, spatial compartmentalization, and 

temperature-dependent changes. The model assumes a single, homogeneous 

representation of neuronal dynamics, ignoring structural complexities found in real 

neurons. This limitation reduces the model’s utility in detailed neurophysiological 

simulations where spatial or compartmental dynamics (e.g., dendritic and axonal effects) 

are important. 

Inability to Capture Complex Firing Patterns 

The FHN model is limited in its ability to replicate complex firing patterns, such as 

bursting, chattering, or irregular spiking, which are often observed in biological neurons 

under various conditions. These behaviors typically arise from complex interactions 

among multiple ion channels and intracellular processes, which the FHN model does not 

account for. Consequently, the FHN model is best suited for studying basic excitability 

and threshold behavior but may not accurately capture more intricate neuronal firing 

patterns. 

Sensitivity to Parameter Tuning 

The FHN model’s behavior is sensitive to the values of its parameters, such as 𝜖, 𝑎, 𝑏, 

and 𝐼. Small changes in these parameters can significantly alter the model’s stability and 

oscillatory properties, making it challenging to tune for accurate simulation of specific 

neuronal types. This sensitivity limits the model’s robustness and requires careful 

parameter selection to maintain realistic firing behaviors, especially in network 

simulations where consistency across multiple neurons is necessary. 
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Limited Applicability to Network Simulations 

While the FHN model’s simplicity allows for computational efficiency in simulating 

individual neurons, it limits the effectiveness in large-scale network simulations where 

interaction complexities are important. The FHN model does not include mechanisms for 

realistic synaptic interactions, plasticity, or adaptive connectivity, all of which are 

essential in real neural networks. For studies involving synaptic interactions or network-

level behaviors such as synchronization and plasticity, the FHN model may not provide 

sufficient detail, requiring researchers to modify the model or select a more complex 

framework, such as the Hodgkin-Huxley model or its derivatives. 

In summary, the FitzHugh-Nagumo model provides a simplified yet effective framework 

for studying general neuronal excitability and threshold dynamics. However, its 

assumptions—such as the reduction to two variables, simplified ionic currents, and linear 

recovery dynamics—impose limitations on its applicability. While the FHN model is 

well-suited for basic excitability studies and large-scale simulations requiring 

computational efficiency, its lack of detailed ion channel dynamics, sensitivity to 

parameter tuning, and reduced biological realism restrict its utility in studies that require 

intricate neuronal behaviors or network-level interactions. Researchers must consider 

these limitations when applying the FHN model, particularly in contexts where precise 

biophysical detail or complex neuronal dynamics are essential. 
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CHAPTER 4: METHODOLOGY 

 

This chapter provides a detailed explanation of the methodology used to simulate the 

FitzHugh-Nagumo (FHN) neuronal model. The methodology covers the research design 

and approach, simulation environment, numerical methods, parameter selection, 

experimental setup, and validation techniques. By outlining these steps, this chapter 

ensures a structured approach to the simulation, calibration, and evaluation of the FHN 

model’s behavior. 

The research design for this study adopts a computational modeling approach to simulate 

and analyze the FitzHugh-Nagumo (FHN) model under a variety of conditions. The 

primary aim is to assess the FHN model’s response to different excitability thresholds, 

recovery dynamics, and external stimuli, providing insights into its ability to capture 

neuronal behaviors such as action potential generation and recovery phases. This research 

design systematically implements the model equations in a computational environment, 

calibrates critical parameters, and runs simulations to observe the dynamics of the 

membrane potential V and recovery variable W over time. 

The design is structured into three main phases to ensure thorough investigation and 

validation: 

Model Implementation: The FHN model equations are implemented in a computational 

environment using robust numerical methods to ensure both accuracy and computational 

efficiency. The model’s differential equations—representing neuronal excitability and 

recovery—are programmed to capture changes in membrane potential and recovery 

dynamics over time. The implementation process also includes selecting appropriate 

numerical solvers for integrating the model equations accurately. 

Parameter Calibration: Model parameters—such as ϵ\epsilon (which controls recovery 

speed), a and b (which shape the excitability and feedback dynamics), and I (the external 

stimulus)—are calibrated based on values from established literature. Calibration ensures 

that the FHN model reflects realistic neuronal dynamics and can produce various neuronal 

behaviors, such as steady states, single spikes, or oscillatory firing. Adjustments to these 

parameters allow the model to replicate different excitability thresholds and recovery 

dynamics, enabling the simulation of specific types of neurons or experimental 

conditions. 
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Simulation and Analysis: The calibrated model is simulated under multiple 

configurations, with parameters adjusted to test different scenarios. Each simulation run 

generates time series data for V and W, which are then analyzed to evaluate neuronal 

firing patterns, stability, and responses to external inputs. By examining the trajectory of 

V and W over time, we can assess whether the FHN model achieves stable states, limit 

cycles, or chaotic behaviors under varying conditions. This data is essential for 

understanding the model’s accuracy in representing neuronal excitability, threshold 

behavior, and recovery. 

Overall, this research design provides a systematic approach to investigating the FHN 

model’s capabilities, focusing on its ability to capture essential neuronal dynamics. It 

allows us to explore how the model responds to a range of stimuli and parameter settings, 

making it valuable for studies in computational neuroscience, neural network modeling, 

and related fields. 

4.1. Simulation Environment and Tools 

All simulations, visualizations, and numerical experiments in this study were conducted 

using MATLAB R2023b, a high-level programming environment widely used in 

computational neuroscience and mathematical modeling. MATLAB was selected due to 

its powerful suite of built-in numerical solvers, customizable plotting functions, and 

toolboxes specifically designed for solving systems of ordinary differential equations 

(ODEs), performing stability analysis, and generating high-resolution plots. Its efficiency 

in handling nonlinear dynamical systems made it an ideal platform for implementing and 

exploring the FitzHugh-Nagumo (FHN) model. The simulations were executed on a 

personal computer equipped with an Intel Core i7 processor (11th generation), 16 GB 

RAM, and Windows 11 operating system. This setup ensured smooth execution of 

computationally intensive simulations, particularly during parameter sweeps, network 

simulations, and bifurcation analysis, where multiple instances of the FHN model were 

evaluated simultaneously. For solving the FHN system, the ode45 solver—based on an 

explicit Runge-Kutta (4,5) formula—was utilized extensively. It is well-suited for non-

stiff problems like the FHN model and provides a balance between speed and accuracy. 

In scenarios involving high sensitivity to parameter changes or long simulation durations, 

adaptive step size control of ode45 allowed for stable and accurate integration of the 

differential equations over extended time intervals. Data visualization and analysis were 

carried out within the same MATLAB environment. Custom scripts were written to 
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generate time series plots, phase portraits, nullclines, vector fields, and Fast Fourier 

Transform (FFT) plots. These visualizations provided critical insights into the oscillatory 

behavior, threshold phenomena, and response of the system to various external stimuli 

and parameter configurations. Moreover, the vector field and nullcline plots were 

essential in examining the system’s equilibrium structure and verifying the presence of 

limit cycles and bifurcations. To examine the effects of parameter variations, multiple 

simulations were automated through loop-based parameter sweeps. Heatmaps, 3D 

trajectory plots, and animated phase portraits were also created to gain a deeper 

understanding of the dynamic behavior of the model under various conditions. These 

results were systematically saved and exported in high resolution for inclusion in the 

thesis and further analysis. Overall, MATLAB served not only as a simulation tool but 

also as a comprehensive analysis and visualization platform. Its extensive mathematical 

libraries and user-friendly coding environment made it possible to implement the FHN 

model efficiently, run systematic experiments, and extract interpretable patterns that 

contribute to understanding neuronal excitability and network dynamics. 

4.2. Euler’s Method 

Euler’s Method is one of the simplest and most intuitive numerical approaches for solving 

ordinary differential equations (ODEs). It is a first-order method, meaning that its error 

decreases linearly with smaller time steps. Euler’s Method approximates the solution by 

taking small steps forward in time, using the slope of the function at each time step to 

estimate the next value. 

For a differential equation of the form: 

d y

dt
= f (t , y)  

Euler’s method computes the next value yn+1  based on the current value y
n  and the 

function f  as: 

( )
nnn+n

y,tfΔt+y=y
1

 

In the case of the FHN model, Euler’s Method calculates the values of V  and W at each 

time step using their respective equations: 
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Advantages of Euler’s Method: 

Simplicity: Euler’s Method is easy to implement, making it ideal for initial testing and 

understanding the basic structure of a numerical integration approach. 

Low Computational Cost: The method requires fewer calculations per time step than more 

complex methods, making it faster for simple systems or for initial model testing. 

Limitations of Euler’s Method: 

Accuracy Issues: Euler’s Method is less accurate for nonlinear systems, especially over 

long time intervals, because the linear approximation introduces cumulative errors with 

each time step. 

Stability Constraints: The method can become unstable when applied to stiff systems or 

systems with high sensitivity to initial conditions, such as the FHN model. In these cases, 

it may produce oscillations or diverging results, even if the real solution remains bounded. 

Due to these limitations, Euler’s Method is primarily used for initial testing and validation 

of the FHN model setup, to confirm that the equations are implemented correctly. For 

simulations requiring higher accuracy and stability, a more advanced method, such as 

Runge-Kutta, is preferred. 

The experimental setup for simulations follows a systematic process to initialize, run, and 

analyze the FitzHugh-Nagumo (FHN) model, allowing for controlled experimentation 

and capturing essential neuronal dynamics. The steps are as follows: 

• Initialization: Define initial values for V (membrane potential) and W (recovery 

variable), setting them near the resting state to observe the model's response to 

excitability thresholds and external inputs. The initial values, as seen in the dataset 

(fhn.csv), vary based on experimental conditions to simulate different neuronal 

states. 

• Parameter Configuration: Set values for key parameters—ϵ\epsilon, a, b, and I—

based on calibrated values. These parameters are adjusted to model specific 

behaviors, such as spiking, oscillations, or resting states. In the dataset, each 

simulation run uses unique configurations of these parameters, representing 

different neuron-like behaviors. 

• Time Step Selection: Select an appropriate time step (e.g., Δt=0.01) according to 

the numerical method chosen for solving the differential equations. A smaller time 
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step ensures greater accuracy in capturing fast changes in V and W, though it 

requires more computation time, especially in long simulations. 

• Integration Using RK4: Implement the fourth-order Runge-Kutta (RK4) method 

to integrate the differential equations numerically over a defined time period. This 

method is chosen for its stability and accuracy in nonlinear systems. The dataset 

reflects the integration process, capturing values of V and W at each time step. 

• Data Collection: Collect time series data for V and W, tracking changes in 

excitability and recovery over time for each parameter set. This data, stored in 

fhn.csv, includes detailed records for each simulation, allowing for further 

analysis of the dynamic behavior of the FHN model across varying conditions. 

• Visualization and Analysis: Use the collected data to plot phase space diagrams 

and time series for V and W, providing a visual representation of the system’s 

behavior. These plots enable the assessment of stable states, oscillatory patterns, 

and neuronal responses to external stimuli. Patterns observed in these plots are 

valuable for interpreting the FHN model's ability to simulate neuronal dynamics. 

This structured setup ensures that each simulation reflects the desired initial conditions, 

parameter configurations, and external inputs, allowing for comprehensive analysis and 

validation of the FHN model’s response across a range of neuronal behaviors. 

4.3. Runge-Kutta Method (Fourth Order, RK4) 

The fourth-order Runge-Kutta (RK4) method is a more advanced and widely used 

numerical integration technique, known for its accuracy and stability in solving 

differential equations. Unlike Euler’s Method, which estimates the slope at a single point, 

the RK4 method evaluates the function at multiple points within each time step, 

improving the accuracy of the solution by considering intermediate slopes. 

For a differential equation of the form: 

d y

dt
= f (t , y)  

the RK4 method computes the next value yn+1  using four intermediate slopes: 

k1= f (tn , yn) 

k2= f (tn+
Δt

2
, yn+

k1Δt

2 ) 
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k3= f (tn+
Δt

2
, yn+

k2Δt

2 ) 
k4= f (tn+Δt , yn+k3Δt )  

Then, the next value yn+1  is calculated as: 

yn+1= yn+
Δt

6
(k1+2k2+2k3+k4)  

For the FHN model, the RK4 method calculates the next values of V  and W at each 

time step as follows: 

1. Calculate intermediate slopes k1,k2 ,k3 , and k4  for both V  and W using the 

FHN model equations. 

1. Use the weighted average of these slopes to determine the values of Vn+1 and 
Wn+1 for the next time step. 

Advantages of the RK4 Method: 

• High Accuracy: The fourth-order accuracy of RK4 significantly reduces error 

compared to Euler’s Method, making it suitable for capturing complex dynamics 

in nonlinear systems like the FHN model. 

• Stability: RK4 maintains stability over longer simulations and is less sensitive to 

changes in time step size than Euler’s Method, allowing for larger steps without 

compromising accuracy. 

Limitations of the RK4 Method: 

• Higher Computational Cost: The RK4 method requires four evaluations of the 

differential equations per time step, increasing computational demand compared 

to Euler’s Method. However, for the accuracy and stability it provides, this cost 

is often justified. 

The RK4 method is chosen as the primary integration technique for this study because it 

balances accuracy and computational efficiency, making it ideal for simulating the FHN 

model over long periods. The method captures the model’s nonlinear excitability and 

recovery dynamics with high fidelity, accurately reflecting changes in V  and W  and 

maintaining stability even when simulating oscillatory and threshold behaviors over 

extended time intervals. 
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4.4.Parameter Selection and Calibration 

The selection and calibration of parameters are crucial for ensuring that the FHN model 

accurately reflects the behavior of biological neurons. The following parameters are 

adjusted based on literature values and specific research objectives: 

• ϵ\epsilon: Controls the speed of recovery relative to excitability. A smaller 

ϵ\epsilonϵ value (e.g., ϵ=0.1\epsilon = 0.1ϵ=0.1) ensures a clear separation of 

timescales, with excitability dynamics evolving faster than recovery dynamics, 

mimicking real neuronal behavior. 

• a and b: Determine the shape and stability of the recovery dynamics. Literature 

suggests values for a and b around a=0.7 and b=0.8, which position the membrane 

potential in a stable state with an appropriate threshold for firing. Adjustments to 

these values allow the model to simulate different neuron types with varying 

excitability profiles. 

• I: Represents an external stimulus current. The value of I is varied to observe the 

threshold behavior of the neuron, simulating excitability under different levels of 

input. Higher values of III push the neuron closer to its firing threshold, allowing 

exploration of its response to stimuli. 

Calibration involves tuning these parameters to replicate known neuronal behaviors, 

such as single spikes, oscillatory firing, and resting states. This calibration process 

ensures that the model parameters are appropriate for the intended simulations, 

providing realistic excitability and recovery dynamics. 

4.5 Algorithm Implementation and Flowcharts 

The implementation of the FitzHugh-Nagumo model simulation framework required 

careful algorithm design to ensure efficiency, accuracy, and flexibility. This section 

details the algorithmic approaches employed, providing flowcharts and pseudocode to 

illustrate the computational workflow. 
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Figure 0.1 Complete Flowchart 

4.5.1 Main Simulation Algorithm 
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The core simulation algorithm followed a structured approach designed to maximize both 

computational efficiency and numerical accuracy. The algorithm proceeded through four 

distinct phases: 

1. Initialization Phase: Established simulation parameters, allocated memory, and 

configured the computational environment. 

2. Integration Phase: Advanced the system state through time using appropriate 

numerical methods. 

3. Analysis Phase: Extracted relevant features and metrics from the simulation 

results. 

4. Output Generation Phase: Produced standardized visualizations and data files. 

Table 4.6 illustrates the logical organization of the codebase, showing the hierarchical 

structure and interrelationships between components: 

Table 0.1 the logical organization of the codebase 

Modu

le 

Key Files Primary 

Functions 

Dependenc

ies 

Core 

Mathe

matic

al 

Functi

ons 

fhn_derivatives.m<br>fhn_jacobian.m<br>fhn_n

ullclines.m 

Define 

mathemati

cal 

structure<

br>Provid

e 

analytical 

componen

ts 

None 

Nume

rical 

Integr

ation 

fhn_euler.m<br>fhn_rk4.m<br>fhn_adaptive.m<

br>fhn_solver.m 

Solve 

differentia

l 

equations

<br>Contr

ol 

numerical 

accuracy 

Core 

Mathematic

al Functions 

Analy

sis 

Tools 

fhn_spike_detector.m<br>fhn_phase_analysis.m

<br>fhn_bifurcation.m<br>fhn_frequency_analy

sis.m 

Extract 

features 

from 

Core 

Mathematic

al 
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results<br

>Classify 

dynamical 

behaviors 

Functions<

br>Numeri

cal 

Integration 

Visual

izatio

n 

plot_time_series.m<br>plot_phase_space.m<br>

plot_bifurcation.m<br>plot_parameter_map.m 

Generate 

standardiz

ed 

graphics<

br>Provid

e visual 

insights 

Analysis 

Tools 

Utiliti

es 

fhn_parameter_sweep.m<br>fhn_data_export.m

<br>fhn_configuration.m 

Coordinat

e 

simulation 

workflow

<br>Mana

ge data 

and 

parameter

s 

All other 

modules 

The master script run_fhn_simulation.m orchestrated the overall simulation 

process, calling appropriate functions from each module according to the specified 

simulation parameters and objectives. This modular organization facilitated code 

maintenance, allowed for independent testing of components, and supported extension 

with new capabilities. 

4.6.2 Validation and Testing Procedures 

The software implementation underwent rigorous validation to ensure correctness, 

numerical stability, and biological plausibility. The validation strategy incorporated 

multiple complementary approaches: 

1. Unit Testing: Individual functions were tested against known analytical solutions 

or manually verified calculations. For example, the Jacobian calculation was 

validated by comparing numerical results with symbolic differentiation. 

2. Integration Testing: Module interactions were verified through controlled 

scenarios with predictable outcomes. This included testing data flow between 

numerical integration and analysis components. 
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3. System Testing: End-to-end simulations were compared with published results 

from other FHN model implementations, verifying qualitative and quantitative 

consistency. 

4. Regression Testing: Automated test suites ensured that modifications to the 

codebase did not inadvertently alter established behavior in existing functionality. 

5. Edge Case Testing: Extreme parameter values and unusual initial conditions 

were tested to verify robust handling of boundary conditions and numerical 

challenges. 

6. Conservation Testing: Physical principles, such as appropriate boundedness of 

solutions, were verified across parameter space to ensure no violations of 

fundamental constraints. 

Table 0.2 summarizes the validation tests performed and their corresponding metrics 

Test 

Category 

Specific Tests Acceptance 

Criteria 

Results 

Numerical 

Accuracy 

Comparison with 

analytical 

solutions<br>Convergen

ce rate verification 

Error reduction 

consistent with 

method 

order<br>Maximu

m relative error < 

10⁻⁴ 

Passed: RK4 showed 

expected 4th-order 

convergence<br>Passe

d: Maximum relative 

error 5.2×10⁻⁵ 

Bifurcation 

Detection 

Hopf bifurcation 

identification<br>Saddle

-node bifurcation 

detection 

Correct 

classification > 

95%<br>Paramete

r value accuracy 

within 1% 

Passed: 98.2% correct 

classification<br>Pass

ed: Mean parameter 

error 0.4% 

Biological 

Plausibility 

Action potential 

waveform<br>Frequenc

y-current relationship 

Shape consistency 

with experimental 

data<br>Linear f-I 

relationship for I > 

threshold 

Passed: Waveform 

correlation coefficient 

0.92<br>Passed: 

Linear relationship 

confirmed (r² = 0.97) 

Performanc

e 

Execution 

time<br>Memory usage 

< 100ms per time 

unit 

simulated<br>< 

100MB for 

standard 

simulations 

Passed: Mean 

execution time 

43ms/time 

unit<br>Passed: Peak 

memory usage 68MB 
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All validation tests were documented with specific test cases, expected outcomes, and 

actual results. This comprehensive validation approach ensured that the software 

implementation reliably represented the mathematical FitzHugh-Nagumo model and 

produced results consistent with both theoretical expectations and experimental 

observations. 

4.6.3 Data Management and Output Format 

Efficient data management was essential for handling the large volume of simulation 

results generated during parameter sweeps and sensitivity analyses. A standardized data 

structure was implemented to ensure consistency and traceability throughout the research 

workflow: 

1. Simulation Configuration: Each simulation run was associated with a 

configuration structure containing:  

o Complete parameter set (ε, a, b, I) 

o Numerical method specifications (algorithm, step size, tolerance) 

o Initial conditions and time domain 

o Timestamp and unique identifier 

2. Primary Output Structure: Simulation results were organized in a consistent 

structure:  

matlab 

results = struct(... 

    'parameters', parameter_struct, ... 

    'time', time_vector, ... 

    'V', V_time_series, ... 

    'W', W_time_series, ... 

    'events', event_struct, ... 

    'analysis', analysis_struct, ... 

    'metadata', metadata_struct ... 

); 

3. Hierarchical Storage: Results were saved in a hierarchical folder structure 

organized by parameter region and simulation type, with standardized naming 

conventions encoding key simulation parameters. 

4. Multi-Format Export: Data was exported in multiple formats to support different 

analysis needs:  

o MATLAB (.mat) files for primary storage and advanced analysis 

o CSV files for interoperability with other software 

o JSON files for configuration settings and metadata 

o High-resolution image files for publication-quality visualizations 

5. Automated Cataloging: A central database maintained references to all 

simulation runs, enabling quick retrieval of specific results based on parameter 

queries or behavioral characteristics. 
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Table 0.3 describes the standardized output files generated for each simulation: 

File 

Type 

Content Format Primary Use 

Raw 

Results 

Complete time series 

data<br>Parameter 

values<br>Initial conditions 

MATLAB 

.mat 

Primary data 

archive<br>Further 

analysis 

Time 

Series 

Export 

V and W values at each time 

point<br>Event markers 

(spikes, etc.) 

CSV Data 

sharing<br>External 

analysis 

Phase 

Plot 

V-W phase 

portrait<br>Nullclines<br>Fi

xed points 

PNG/SVG/P

DF 

Visualization<br>Public

ation figures 

Bifurcati

on 

Diagram 

Bifurcation 

structure<br>Parameter 

regions 

PNG/SVG/P

DF 

Regime 

identification<br>Public

ation figures 

Analysis 

Summar

y 

Key metrics (firing rate, 

etc.)<br>Classification results 

TXT/CSV Quick 

reference<br>Comparati

ve analysis 

Metadata 

Log 

Complete simulation 

provenance<br>Software 

version<br>Timestamp<br>S

ystem information 

JSON Reproducibility<br>Scie

ntific documentation 

This comprehensive data management approach ensured full traceability between 

simulation parameters, raw results, and derived analyses, supporting both the immediate 

research objectives and potential future extensions or reanalyses of the data. 

In summary, the software implementation of the FitzHugh-Nagumo model simulation 

framework provided a robust, validated platform for investigating neuronal dynamics 

within this mathematical model. The modular architecture, rigorous validation 

procedures, and systematic data management approach ensured reliable results that could 

be meaningfully interpreted in the context of computational neuroscience. 
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5. Simulation Results and Discussion 

5.1. Baseline Simulation 

The baseline simulation serves as the foundation for understanding the FitzHugh-Nagumo 

(FHN) model’s behavior under typical parameter settings. By simulating the model with 

default values, we can observe the core dynamics of neuronal excitability and recovery 

without additional perturbations or parameter adjustments. The parameters for this 

baseline simulation are set based on values commonly used in the literature to represent 

generic neuronal behavior. 

Baseline Simulation Parameters 

For the baseline simulation, the following parameters were used: 

• ϵ=0.1: Controls the speed of recovery relative to excitability, allowing for a 

separation of timescales between V (fast variable) and W (slow recovery 

variable). 

• a=0.7: Influences the excitability threshold, ensuring that the membrane potential 

remains stable unless sufficiently stimulated. 

• b=0.8: Shapes the recovery feedback, helping stabilize the neuron after excitation. 

• I=0.5I: Represents a constant external stimulus current, modulating the threshold 

for firing. 

With these default values, the FHN model generates oscillations in both the membrane 

potential (V) and recovery variable (W). These oscillations represent a stable, periodic 

firing pattern typical of neuronal action potentials, where the neuron undergoes cycles of 

excitation and recovery. 

The baseline simulation reveals the following dynamics: 

o Membrane Potential (V): Oscillates in a repetitive cycle, indicating regular 

action potential firing. This behavior shows the neuron reaching a threshold, 

depolarizing, and then repolarizing back to rest. 

o Recovery Variable (W): Slowly follows the oscillations of V, displaying delayed 

recovery that corresponds to the neuron’s refractory period. The slow recovery 

after each spike reflects the typical delay in action potential recovery, a crucial 

aspect of neuronal behavior. 
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The baseline oscillations in V and W demonstrate the model’s ability to simulate neuronal 

firing and recovery dynamics, with the parameters producing a steady rhythm of 

excitability and recovery. 

Table 5.1:Baseline Simulation Results 

Parameter Value Observation in Simulation 

ϵ 0.1 Controls recovery speed. Slower oscillations in WWW show 

delayed recovery. 

A 0.7 Sets excitability threshold. Keeps VVV in a stable state unless 

stimulated by III. 

B 0.8 Modulates recovery stability, providing feedback that prevents 

oscillatory instability. 

I 0.5 Induces periodic firing in VVV, with each cycle representing a 

neuron spike. 

The table summarizes the roles of each parameter and their effects on the simulated 

dynamics of the FHN model. These baseline values provide a steady oscillatory pattern, 

a critical benchmark for further sensitivity and bifurcation analysis. 

We will now visualize the baseline simulation by plotting the time series of V and W to 

illustrate their oscillatory behavior over time. 
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Figure 5.1 Baseline simulation of the FitzHugh-Nagumo model showing the membrane 

potential (V) and recovery variable (W) over time 

The graph shows the baseline dynamics of the FitzHugh-Nagumo model, illustrating the 

relationship between the membrane potential (V) and the recovery variable (W) over 

time. Initially, V dips below -2.0, indicating a resting state, while W gradually decreases. 

Around t=20 sharply spikes to a peak near 1.7, representing an excitability event similar 

to an action potential, followed by a delayed rise in W to about 1.5. This delay reflects 

the model's refractory period, where the recovery variable prevents immediate re-firing. 

After V peaks, it drops back below zero, approaching -2.0 at t=35, marking the end of the 

excitability phase. Both variables then stabilize, returning to baseline as VVV and WWW 

prepare for potential future excitability. This cycle captures the essential dynamics of 

neuronal firing and recovery, illustrating how the FHN model represents excitability, 

refractory period, and return to rest. 

5.2.Parameter Variation and Sensitivity Analysis 

The FitzHugh-Nagumo (FHN) model is a mathematical simplification of neuronal 

excitability dynamics, and its behavior is significantly affected by key parameters: ϵ, a, 

b, and I. These parameters determine the speed of recovery, the excitability threshold, the 

stability of recovery, and the external input’s influence on neuronal firing. By 

systematically varying each parameter while keeping others constant, we can understand 

the model’s sensitivity and robustness, and identify how each parameter contributes to 

the generation of specific firing patterns and excitability dynamics. Sensitivity analysis is 

critical for both understanding the model's behavior and assessing its ability to replicate 

various types of neuronal responses. 

5.2.1. Parameter Analysis 

ϵ: Recovery Speed Parameter 

Function: This parameter controls the rate at which the recovery variable W adjusts in 

response to changes in V. Lower values of ϵ\epsilonϵ create a clear separation of 

timescales between the fast excitability (action potential) and slow recovery (refractory 

period) phases. 

Range and Observations: For this analysis, we vary ϵ\epsilonϵ in the range of [0.05, 0.2]. 

Smaller values (e.g., 0.05) slow the recovery phase, increasing the oscillation frequency 
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in V as W takes longer to return to baseline. In contrast, higher values (e.g., 0.2) allow W 

to recover faster, resulting in shorter refractory periods and more frequent oscillations. 

Biological Interpretation: A low ϵ value mimics neurons with a slow recovery phase, 

similar to neurons that undergo prolonged refractory periods after firing. Higher values 

simulate faster recovery, characteristic of neurons that can fire at higher frequencies. 

a: Excitability Threshold Parameter 

Function: The parameter a sets the threshold for neuronal excitability, determining how 

easily the neuron reaches a state where it can fire. Lower values of a make the neuron 

more excitable, while higher values raise the threshold. 

Range and Observations: Varying a in the range of [0.5, 0.9] reveals that lower values 

(e.g., 0.5) lead to more frequent spikes as the neuron reaches the excitability threshold 

more easily. Higher values (e.g., 0.9) increase the threshold, reducing spike frequency or 

potentially leading to a resting state if the input stimulus I is not high enough to cross the 

threshold. 

Biological Interpretation: Changes in a correspond to variations in neuronal excitability 

across neuron types. Lower thresholds replicate highly excitable neurons, such as those 

in sensory pathways that respond readily to input, while higher thresholds reflect neurons 

with lower sensitivity to inputs, as seen in some inhibitory neurons. 

b: Recovery Feedback Parameter 

Function: The parameter b affects the stability and feedback strength of W. It modulates 

how strongly W influences the membrane potential V and how it stabilizes after firing. 

Range and Observations: Testing b within [0.7, 1.0] shows that increasing b (e.g., 1.0) 

provides stronger recovery feedback, producing stable and regular oscillations in V. 

Lower values (e.g., 0.7) weaken the feedback, occasionally leading to irregular or 

unstable oscillations in V, especially under high input I. 

Biological Interpretation: Higher values of b mimic neurons with robust feedback 

mechanisms, stabilizing recovery dynamics after firing. Lower b values correspond to 

neurons with weaker recovery, potentially leading to unstable or variable firing patterns. 

I: External Stimulus Current 
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Function: I represents an external stimulus current, simulating inputs that bring the neuron 

closer to or above its firing threshold. Varying I provides insights into the neuron’s 

response to different levels of stimulation. 

Range and Observations: Adjusting I from 0.3 to 1.2 demonstrates that lower values (e.g., 

0.3) may not provide enough input to reach the firing threshold, resulting in sub-threshold 

oscillations or resting states. Moderate values (e.g., 0.5) initiate stable oscillations, while 

higher values (e.g., 1.2) cause rapid and frequent firing in V. 

Biological Interpretation: This variation simulates neurons exposed to different input 

intensities, where low I represents sub-threshold stimuli (as seen in resting or inhibited 

neurons), and high I reflects strong synaptic inputs or external stimulation that push 

neurons to fire consistently. 

Table 5.2:Parameter Sensitivity Analysis 

Parameter Default 

Value 

Range 

Tested 

Observed Effect on Model Behavior 

ϵ 0.1 [0.05, 

0.2] 

Controls recovery speed. Lower values increase 

the refractory period and slow oscillation 

frequency. 

A 0.7 [0.5, 0.9] Sets excitability threshold. Lower aaa values 

increase firing rate and sensitivity to external 

input. 

b 0.8 [0.7, 1.0] Determines feedback strength of recovery. 

Higher values stabilize oscillations, while lower 

values may lead to irregular firing. 

I 0.5 [0.3, 1.2] Modulates excitability through external input. 

Higher III induces frequent spiking, lower III can 

lead to sub-threshold activity or resting state. 

Parameter Variation and Sensitivity Analysis 

We plot the time series of V for different values of each parameter to illustrate how 

variations affect the model’s dynamics. Each parameter is varied individually while 

others remain at their default values. 
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Figure 5.2:response of membrane potential V over time for different values of one 

parameter 

Each subplot shows the response of membrane potential V over time for different values 

of one parameter, highlighting the impact on the model’s oscillatory behavior: 

• Sensitivity to ϵ: Lower ϵ results in slower oscillations in W, increasing the 

neuron’s refractory period and leading to slower firing rates in V. Higher ϵ values 

lead to faster oscillations, suggesting that the speed of recovery is crucial for 

regulating firing frequency. 

• Sensitivity to a: Decreasing a lowers the excitability threshold, making the neuron 

more responsive to input and producing frequent spikes. Increasing a raises the 

threshold, which reduces firing, sometimes leading to a quiescent (non-firing) 

state. 

• Sensitivity to b: Higher values of b result in stable oscillations due to stronger 

recovery feedback, while lower values cause irregular firing patterns, indicating 

that b plays a role in maintaining firing stability. 
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• Sensitivity to I: Increasing I induces frequent and sustained firing, simulating the 

effect of strong excitatory input on neurons. Lower I reduces excitability, leading 

to a lower rate of action potentials or resting states. 

In summary, this analysis confirms that each parameter contributes uniquely to the 

model’s excitability, recovery dynamics, and stability. By carefully tuning these 

parameters, the FHN model can simulate diverse neuronal behaviors and firing patterns, 

enhancing its applicability in computational neuroscience. 

5.3.Bifurcation Analysis and Excitability Patterns 

Bifurcation analysis is essential for understanding how the FitzHugh-Nagumo (FHN) 

model transitions between different dynamical states under varying conditions. By 

systematically varying a parameter, we can observe how the behavior of the model 

changes, identifying thresholds at which the system shifts from one pattern to another. 

Such shifts, or bifurcations, are particularly important in neuroscience, as they mirror 

neuronal excitability patterns, such as transitioning between resting and spiking states. 

In this analysis, we focus on: 

Generating bifurcation diagrams by varying the external stimulus I. 

Exploring the excitability and pattern formation in the FHN model. 

Table 5.3:FitzHugh-Nagumo model responds to variations in the external stimulus I 

External 

Stimulus 

(III) 

Observed Behavior 

of Membrane 

Potential (V) 

Interpretation 

I<0.5I  Single, stable peak of 

V; remains near 

resting state 

Neuron is in a resting state. Low external input 

keeps the neuron below the firing threshold, 

with no oscillations. 

0.5≤I<0.90  Periodic oscillations 

in V with moderate 

amplitude 

Neuron enters a spiking or oscillatory state. 

Moderate external input allows the neuron to 

reach excitability threshold, resulting in 

rhythmic firing patterns. 
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0.9≤I<1.10 Higher-frequency 

oscillations with 

increased amplitude 

Increased firing frequency observed. Higher 

stimulus levels induce more rapid oscillations, 

indicating higher excitability. 

I≥1.1 Saturated oscillations 

with frequent, high 

peaks 

Neuron enters a high-frequency firing regime. 

Strong input produces sustained, frequent 

action potentials, reflecting high neuronal 

excitability. 

This table provides a clear overview of how the FitzHugh-Nagumo model responds to 

variations in the external stimulus I, showcasing transitions from resting to high-

frequency firing states. 

Bifurcation Diagrams 

A bifurcation diagram provides a visual representation of how the peak values of the 

membrane potential V respond to gradual changes in a control parameter, in this case, the 

external stimulus I. By plotting the peak values of V for each increment of I, we can 

observe patterns such as steady states, oscillations, or chaotic behavior. 
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Figure 5.3 Peak membrane potential (V) in the FitzHugh-Nagumo model as a function 

of external stimulus (I) over a range of 0.3 to 1.2 

"Bifurcation diagram illustrating the peak membrane potential (V) in the FitzHugh-

Nagumo model as a function of external stimulus (I) over a range of 0.3 to 1.2. For low I 

values (around 0.3 to 0.4), the neuron remains in a stable resting state with peak V values 

below zero, indicating sub-threshold behavior where the neuron does not fire. As I 

increases to around 0.5, the model transitions to an oscillatory firing state, with peak V 

values reaching approximately 1.5 to 2.0, representing periodic neuronal firing. For 

higher I values (approaching 1.0 and above), V stabilizes around 1.9, showing a saturation 

effect where further increases in I do not significantly raise the peak potential. This 

behavior reflects a high-frequency firing regime, where the neuron responds consistently 

and rapidly to strong external stimuli. The diagram effectively captures the model’s 

transition from resting to periodic firing and high-frequency firing, illustrating key 

aspects of neuronal excitability and response thresholds." 

 

Figure 5.4 Bifurcation diagram for the FitzHugh-Nagumo model 
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This diagram showing the peak membrane potential (V) across a range of external 

stimulus values (I) from 0.3 to 1.2. At low I values (around 0.3 to 0.4), the neuron remains 

in a sub-threshold resting state, with peak V values below zero, indicating non-firing 

behavior. As I reaches approximately 0.4, a sharp transition occurs, and the neuron enters 

a periodic firing state where peak V values rise to about 1.9. For moderate to high I values 

(0.5 and above), the peak V values stabilize slightly below 2.0, showing that additional 

increases in I lead to a saturation effect in firing intensity. This high-frequency firing 

regime suggests a stable excitatory response in the neuron to strong external inputs, 

accurately capturing the model's transition from rest to high-frequency firing as stimulus 

intensity increases." 

5.4.Comparison with Experimental Data 

Comparing the FitzHugh-Nagumo (FHN) model’s simulation results with empirical 

neuronal data is a crucial step for validating its accuracy and applicability in capturing 

real-world neuronal behaviors. Experimental data typically comes from 

electrophysiological recordings of membrane potentials, such as patch-clamp recordings 

in isolated neurons or multi-electrode arrays used in neural networks. These recordings 

provide insights into actual excitability patterns, action potential dynamics, and refractory 

periods in biological neurons. 

The FHN model is a simplified, phenomenological model of neuronal excitability and 

does not account for every ionic channel or biophysical process in real neurons. However, 

it can approximate certain qualitative aspects of neuronal behavior, particularly in 

response to varying external stimuli. Here’s an in-depth analysis of how the FHN model 

results align with experimental data and the insights gained. 

5.4.1. Key Aspects of Comparison 

Resting Membrane Potential 

Empirical Observations: In experiments, neurons typically have a stable resting potential 

that is maintained until a sufficient input brings the neuron to threshold. This resting state 

varies by neuron type but generally lies around -65 mV for mammalian neurons. 

FHN Model: The FHN model replicates this by stabilizing VVV at a baseline when the 

external stimulus III is low (e.g., I<0.5I). This corresponds to a stable, resting state in 

biological neurons, where no action potential firing occurs. 
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Excitability Threshold and Firing Patterns 

Empirical Observations: Biological neurons exhibit distinct firing thresholds, above 

which action potentials are generated. In response to increased input, neurons typically 

show graded responses, such as single spikes, oscillatory firing, and, at higher stimuli, 

high-frequency firing. 

FHN Model: As I increase, the model transitions from a resting state to an oscillatory 

regime. For moderate I values (e.g., 0.5≤I<0.90), the FHN model exhibits periodic 

oscillations in V, akin to action potentials in neurons responding to moderate stimulation. 

This oscillatory regime is observed in empirical recordings where neurons show repetitive 

firing patterns under consistent synaptic or external stimulation. 

Refractory Period 

Empirical Observations: Following each action potential, neurons enter a refractory 

period, during which they are less excitable. This refractory phase ensures that neurons 

do not immediately re-fire, preserving the rhythmicity and stability of firing patterns. 

FHN Model: The recovery variable W in the FHN model is designed to mimic the 

refractory period. After each peak in V, W slowly increases and then decreases, providing 

a form of recovery that mirrors the neuron’s refractory state. This recovery process 

becomes particularly noticeable at lower ϵ\epsilonϵ values, where the model allows a clear 

temporal separation between excitation and recovery phases, similar to the observed 

refractory dynamics in real neurons. 

Bifurcation and Firing Frequency Modulation 

Empirical Observations: In biological neurons, increased stimulation can lead to high-

frequency firing, seen in cells like fast-spiking interneurons. These neurons adjust their 

firing frequency based on the level of input, and such bifurcation points (transitions 

between different firing patterns) are often observed in experimental data. 

FHN Model: The bifurcation diagram in the FHN model demonstrates similar behavior. 

As I increases past certain thresholds (e.g., around I=0.9I), the model enters a high-

frequency firing state, with denser and more frequent peaks in V. This sensitivity to 

external stimulus level aligns with experimental observations, where neurons respond to 

increased stimuli by shortening inter-spike intervals. 
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Limitations and Discrepancies 

While the FHN model qualitatively reproduces many key aspects of neuronal excitability, 

there are notable limitations. Unlike detailed conductance-based models (e.g., Hodgkin-

Huxley), the FHN model abstracts ionic currents and lacks the ability to simulate diverse 

ion channel kinetics found in real neurons. Consequently, specific phenomena such as 

after-hyperpolarization or channel inactivation may not be captured accurately. 

The model's simplified recovery variable W does not correspond directly to any particular 

ion channel or current in biological neurons. Instead, it broadly represents the refractory 

period, which can limit the model’s predictive accuracy in systems where detailed 

channel dynamics are critical. 

Summary of Comparative Findings 

Observed 

Aspect 

Empirical 

Neuronal Data 

FHN Model 

Response 

Comments 

Resting 

Membrane 

Potential 

Stable until 

sufficient stimulus 

is applied 

Maintains a stable 

state at low I 

Model accurately 

represents resting 

state behavior 

Excitability 

Threshold 

Shows distinct 

threshold for action 

potential 

Reaches oscillatory 

firing above certain I 

values 

Qualitatively captures 

neuronal firing 

threshold 

Refractory 

Period 

Post-spike 

refractory period 

limits re-firing 

Recovery variable 

WWW acts as 

refractory mechanism 

Reflects refractory 

dynamics, though 

simplified 

Firing 

Frequency 

Modulation 

Frequency 

increases with 

higher stimulation 

Higher I leads to 

denser oscillations in 

V 

Approximates 

neuronal frequency 

adaptation 

Limitations Complex channel 

kinetics, diverse 

firing types 

Limited by simplified 

excitability and 

recovery variables 

Not suitable for 

detailed ion channel 

studies 
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Figure 5.5 FitzHugh-Nagumo model's membrane potential (V) responses to different 

levels of external stimulus I 

Time series of membrane potential (V) in the FitzHugh-Nagumo model for different 

external stimulus levels (III). Each subplot represents the model's response to increasing 

values of I 

The comparative plots above show the FitzHugh-Nagumo model's membrane potential 

(V) responses to different levels of external stimulus I, simulating various neuronal 

behaviors: 

o I=0.3I μA/cm2 (Top-Left): The neuron remains in a stable resting state, with V 

oscillating minimally without crossing a threshold. This reflects a neuron under 

low or no stimulus, typical of a resting state. 

o I=0.6 μA/cm2 (Top-Right): The neuron begins to exhibit periodic oscillations in 

V, representing rhythmic firing as it reaches a threshold for spiking. This behavior 

corresponds to moderate stimulation, leading to regular action potentials. 

o I=0.9I μA/cm2  (Bottom-Left): The model shows an increase in oscillation 

frequency, indicating a transition to a higher excitability state. Neurons exhibit 

shorter inter-spike intervals under stronger input, akin to an increased firing rate 

in biological neurons. 
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o I=1.2 μA/cm2 (Bottom-Right): At high stimulation, the neuron reaches rapid, 

frequent oscillations, simulating a high-frequency firing regime observed in 

certain highly excitable neuron types under intense stimulus. 

The FitzHugh-Nagumo model successfully captures the foundational dynamics of 

neuronal excitability, such as resting potential, excitability threshold, refractory period, 

and frequency modulation. These aspects align well with qualitative observations in 

empirical neuronal data, making the FHN model a valuable tool for simulating basic 

excitability dynamics. However, due to its simplifications, the model is less accurate for 

predicting specific channel-based behaviors, after-potentials, or other fine details of 

neuronal dynamics. For applications requiring detailed ion channel interactions, models 

like Hodgkin-Huxley may be more appropriate. Nonetheless, the FHN model remains a 

computationally efficient choice for studying generalized neuronal behaviors and 

excitability patterns in larger network simulations or theoretical studies. 

5.5.Interpretation of Simulation Results 

The simulations conducted with the FitzHugh-Nagumo (FHN) model reveal several key 

findings about neuronal excitability, recovery dynamics, and threshold behavior. By 

systematically varying parameters, particularly the external stimulus III, the model 

displays a range of neuronal behaviors that align with empirical observations, such as 

resting states, rhythmic spiking, and high-frequency firing. Below is a detailed 

interpretation of the key patterns and insights observed from the simulations. 

5.5.1. Key Findings and Observed Patterns 

1. Resting State and Stability 

Observation: At lower values of the external stimulus I (e.g., I<0.5I), the membrane 

potential V remains relatively stable, showing minor oscillations without crossing the 

firing threshold. 

Interpretation: This stable behavior represents a neuron in a resting or sub-threshold state, 

where the input is insufficient to trigger an action potential. This is consistent with the 

resting state of biological neurons, where membrane potentials are maintained at a stable 

baseline until stimulated by a sufficient input. 

2. Threshold and Excitability 
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Observation: When III reaches a certain threshold (e.g., 0.5≤I<0.90), the FHN model 

transitions from a resting state to an oscillatory firing regime. This threshold behavior 

demonstrates how a neuron shifts from a quiescent state to active spiking as the external 

stimulus surpasses a certain value. 

Interpretation: The model's threshold-dependent behavior mimics neuronal excitability, 

where inputs reaching a specific threshold lead to action potential generation. This feature 

is essential for understanding how neurons respond selectively to inputs, firing only when 

the input is strong enough to cross the excitability threshold. 

3. Periodic Firing and Frequency Modulation 

Observation: In the oscillatory regime, periodic action potentials are generated, with the 

frequency of oscillation in V increasing as I increases. For moderate values of I (around 

0.6), the model exhibits rhythmic spiking with a consistent period. As I is raised to around 

0.9, the inter-spike intervals shorten, leading to more frequent oscillations. 

Interpretation: This periodic firing reflects how neurons generate regular action potentials 

in response to moderate input, corresponding to the rhythmic spiking behavior observed 

in empirical data. The increased frequency with higher III values demonstrates frequency 

modulation, where neurons respond to stronger stimuli with more frequent firing, a 

characteristic observed in many biological neurons. 

4. High-Frequency Firing at Strong Stimuli 

Observation: For high values of III (e.g., I≥1.1), the model exhibits rapid, high-frequency 

oscillations in V, indicating intense neuronal activity and short recovery periods. This 

behavior is characteristic of neurons subjected to strong, sustained stimulation, such as 

fast-spiking interneurons in cortical circuits. 

Interpretation: High-frequency firing observed in the model is indicative of neurons’ 

ability to adapt their firing rates based on stimulus intensity. This intense firing under 

high stimulation mirrors excitatory responses in neurons exposed to constant, strong 

input, providing insights into the model's utility for simulating high-excitability states. 

1. Refractory Period and Recovery Dynamics 

Observation: The recovery variable W in the FHN model acts as a proxy for the neuronal 

refractory period. After each spike in V, W increases, preventing immediate re-firing, 
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then gradually decreases, allowing V to spike again. This process effectively simulates 

the refractory period seen in biological neurons. 

Interpretation: The presence of a recovery mechanism is essential for stabilizing 

oscillations and controlling firing frequency. By mimicking the refractory dynamics, the 

FHN model ensures that each action potential is followed by a recovery phase, 

contributing to rhythmicity and preventing chaotic firing, which is fundamental to 

organized neural signaling. 

Table 5.4:Summary of Key Patterns and Their Significance 

Observed Pattern Model Behavior Biological Interpretation 

Resting State Stable V at low I Reflects neurons’ resting potential in 

a low-input environment 

Threshold and 

Excitability Transition 

Shift to spiking at 

threshold I 

Simulates neurons' threshold-

dependent action potential firing 

Periodic Firing Regular oscillations 

in V 

Models rhythmic spiking observed in 

consistent stimulation 

Frequency Modulation Increased frequency 

with higher I 

Captures neurons’ response to 

increased input with faster firing 

High-Frequency Firing Rapid oscillations at 

high I 

Simulates fast-spiking neurons under 

intense stimuli 

Refractory Dynamics Recovery through W 

variable 

Models neuronal refractory period 

and rhythmic stabilization 

5.5.2. Implications of Findings 

These simulation results demonstrate that the FitzHugh-Nagumo model, though 

simplified, captures essential features of neuronal excitability and firing dynamics, such 

as: 

Flexibility in Simulating Neuronal Behaviors: By adjusting I and other parameters, the 

FHN model can replicate diverse neuronal firing patterns. This flexibility makes the FHN 

model a valuable tool in theoretical studies exploring neuronal dynamics. 

Utility in Frequency Modulation Studies: The model’s ability to transition between 

resting, periodic, and high-frequency firing states based on input strength highlights its 

utility for investigating how neurons encode stimulus intensity through firing rates. 



 

79 

 

Suitability for Network Simulations: Given its computational efficiency, the FHN model 

is suitable for large-scale simulations where qualitative insights into excitability and 

recovery are needed, such as in networked systems or theoretical models of neural 

circuits. 

In summary, the FHN model’s simulation results provide a meaningful approximation of 

real neuronal behaviors. Its patterns of excitability and recovery align with empirical 

observations, supporting its application in simulating and studying neuronal dynamics. 

However, it is essential to consider the model’s limitations, as it abstracts away detailed 

ion channel mechanisms. For applications requiring more granular representations of 

neuronal physiology, such as specific ion channels’ kinetics, more complex models like 

Hodgkin-Huxley are preferred. Nonetheless, the FHN model remains a robust choice for 

studies focused on generalized excitability patterns, threshold behavior, and frequency 

modulation in neurons. 
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6. Discussion 

6.1. Insights from the FitzHugh-Nagumo Model 

The FitzHugh-Nagumo model simulations yielded several important insights: 

Excitability and Threshold Behavior: 

Findings: The FHN model accurately captured the threshold-dependent excitability 

characteristic of neurons. For instance, when the external stimulus I was below 0.5, the 

membrane potential V remained stable, simulating a resting state. When I increased to 

values between 0.5 and 0.9, the model transitioned into a spiking or oscillatory state, 

where V displayed regular action potentials. 

Interpretation: This finding reflects the threshold behavior seen in real neurons, where a 

minimum level of input is required to reach an excitatory threshold, enabling neurons to 

selectively respond to strong enough stimuli. 

Firing Frequency Modulation: 

Findings: The simulations showed that the firing frequency of V increased with higher 

values of I. For example, at I=0.6, the model exhibited periodic oscillations with a 

moderate frequency, whereas at I=1.2, the frequency of oscillations in V increased 

significantly, representing high-frequency firing. 

Interpretation: This frequency modulation is comparable to neurons' response to 

increasing stimulus intensity by shortening the time between spikes. It demonstrates that 

the FHN model can replicate graded excitability, where stronger inputs result in higher 

firing rates, a critical mechanism for encoding stimulus intensity in the nervous system. 

Recovery and Refractory Dynamics: 

Findings: The recovery variable W displayed delayed dynamics in response to the 

membrane potential V, especially noticeable during and after a spike. For example, in a 

baseline simulation, W lagged behind V and reached a peak of approximately 1.5 

following the peak in V at around 1.7, before gradually decaying. 

Interpretation: This recovery process mirrors the refractory period observed in biological 

neurons, where a neuron temporarily becomes less excitable following an action 

potential. By incorporating W as a recovery mechanism, the FHN model provides a 
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simplified but realistic representation of this important neuronal characteristic, helping to 

prevent chaotic firing patterns and stabilize rhythmic firing. 

6.2. Implications for Neuroscience and Neural Networks 

The findings from the FitzHugh-Nagumo model simulations have several implications 

for neuroscience and neural network research: 

Simplified Modeling of Neuronal Dynamics: 

Implication: The FHN model provides a computationally efficient way to simulate 

neuronal excitability without needing the complexity of conductance-based models. By 

capturing essential dynamics with minimal variables, it serves as a useful tool for large-

scale neural network simulations where computational efficiency is crucial. 

Relevance to Neuroscience: The model’s ability to replicate action potential thresholds, 

oscillatory firing, and recovery phases suggests it can be applied to study fundamental 

neural processes, such as signal transmission, synchronization, and oscillatory patterns in 

the brain. This is especially relevant in understanding rhythmic activities, like those in 

central pattern generators or oscillatory brain regions. 

Insights into Stimulus-Driven Firing Patterns: 

Implication: The observed firing frequency modulation in response to increasing III 

provides insights into how neurons encode information through frequency. The FHN 

model suggests that neurons can represent stronger inputs by increasing firing rates, an 

encoding strategy known as rate coding. 

Theoretical Implications: In neural network research, this finding supports the idea that 

simplified neuron models can effectively capture information encoding mechanisms. This 

allows for exploring neural coding strategies in theoretical studies, particularly in 

artificial neural networks inspired by biological processes. 

Modeling Excitability in Networked Systems: 

Implication: The FHN model's sensitivity to input suggests its potential application in 

simulating networked neuronal systems where collective excitability, such as 

synchronous firing and wave propagation, can be studied. 

Relevance to Neural Networks: The model could be used to simulate emergent 

phenomena in interconnected systems, such as resonance and coherence in neural 
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networks. This can further inform the design of neuromorphic computing systems that 

rely on excitable units, potentially influencing fields such as machine learning and 

artificial intelligence. 

6.3. Limitations of the Simulation Study 

While the FitzHugh-Nagumo model provides useful insights into neuronal dynamics, it 

also has several limitations: 

Lack of Biophysical Detail: 

Limitation: The FHN model simplifies neuronal behavior by using only two variables (V 

and W) and does not account for specific ion channels or conductances that contribute to 

action potential generation. For example, it does not distinguish between sodium and 

potassium currents, which play distinct roles in action potential dynamics. 

Impact: This abstraction limits the model's ability to accurately simulate complex 

neuronal behaviors that depend on specific ion channel kinetics, such as after-

hyperpolarization or spike frequency adaptation. 

Reduced Applicability to Different Neuron Types: 

Limitation: The model assumes a general excitability mechanism and does not account 

for differences between neuron types, such as excitatory versus inhibitory neurons or fast-

spiking versus regular-spiking cells. These neuron types have unique firing properties that 

are influenced by their ion channel compositions. 

Impact: This limits the model’s utility for studying diverse neuronal responses and 

requires additional adjustments or modifications for simulating specialized neurons. 

Sensitivity to Parameter Calibration: 

Limitation: The accuracy of the FHN model heavily depends on precise calibration of 

parameters like ϵ, a, b, and I. Small changes in these parameters can lead to significantly 

different behavior, potentially making the model challenging to generalize across 

different neuronal conditions. 

Impact: This sensitivity can complicate the application of the model to real neural 

systems, where parameters may vary across contexts and species. Accurate calibration is 

essential for meaningful simulations, but it requires empirical data that may not always 

be available. 
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6.4. Recommendations for Further Research 

To build on the findings of this study and address its limitations, the following 

recommendations are proposed: 

Integration of Biophysical Properties: 

Recommendation: Future research could consider hybrid models that incorporate 

additional biophysical properties into the FHN model, such as specific ion channel 

dynamics, to better represent a broader range of neuronal behaviors. This could include 

introducing multiple recovery variables to capture the effects of different ion channels. 

Expected Outcome: Enhanced model accuracy and applicability to diverse neuron types, 

allowing for more detailed studies of neuronal physiology. 

Parameter Optimization for Specific Neuron Types: 

Recommendation: Conduct targeted parameter optimization to better fit the FHN model 

to specific neuron types, such as fast-spiking interneurons or regular-spiking pyramidal 

cells. This could involve systematic calibration against experimental data for each neuron 

type. 

Expected Outcome: Improved model accuracy for specialized applications, enabling 

simulations that are more representative of specific neuronal subtypes and enhancing the 

FHN model's versatility. 

Exploration of Network-Level Dynamics: 

Recommendation: Apply the FHN model in larger network simulations to investigate 

emergent behaviors, such as synchronization, pattern formation, and resonance in neural 

networks. Studying how the FHN model behaves in networked contexts could yield 

insights into population-level neural dynamics. 

Expected Outcome: A deeper understanding of collective behaviors in neural systems, 

which could inform the design of artificial neural networks and contribute to theories on 

network dynamics in neuroscience. 

Comparison with More Complex Models: 

Recommendation: Compare the FHN model's performance with more detailed models 

like the Hodgkin-Huxley model in specific applications. Such comparative studies can 
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highlight the conditions under which the FHN model is sufficient and when a more 

complex model is necessary. 

Expected Outcome: Guidelines for model selection based on study objectives, allowing 

researchers to choose appropriate models for different types of neuronal simulations with 

better understanding of trade-offs. 

The FitzHugh-Nagumo model provides a valuable, computationally efficient approach to 

simulating neuronal excitability and recovery dynamics. Despite its limitations, it 

captures essential features of neuronal behavior, such as excitability thresholds, frequency 

modulation, and recovery periods. The insights from this study suggest that the FHN 

model can serve as a foundation for understanding basic neuronal processes and studying 

large-scale neural networks. However, for applications requiring biophysical detail or 

specific neuron types, further model enhancements and comparisons with more complex 

models are recommended. Future research could extend the FHN model's utility, making 

it an even more versatile tool for computational neuroscience and neural network studies. 



 

85 

 

7. Conclusion 

7.1.Summary of Findings 

The FitzHugh-Nagumo (FHN) model simulation revealed key insights into neuronal 

excitability and recovery dynamics. First, the model accurately replicated threshold-

dependent excitability, with the membrane potential V remaining stable for I<0.5I and 

entering a spiking regime at I≥0.5, closely mimicking real neurons’ threshold behavior. 

Secondly, the model demonstrated frequency modulation, as the firing frequency of V 

increased from moderate at I=0.6 to high-frequency oscillations at I=1.2, a fundamental 

characteristic in neural coding. Third, the recovery variable W effectively simulated the 

refractory period, with W peaking shortly after each V spike and gradually decaying, 

preventing immediate re-firing. Finally, bifurcation analysis illustrated the model’s 

ability to transition between resting, periodic oscillations, and high-frequency firing 

states, indicating its capacity to capture nonlinear dynamics and state transitions in 

excitability. 

7.2.Contribution to the Field 

This study validates the FitzHugh-Nagumo model as a computationally efficient tool for 

simulating core neuronal dynamics, supporting its use in theoretical and large-scale 

network simulations where detailed conductance-based models are impractical. The 

model’s replication of neuronal threshold behavior, frequency modulation, and refractory 

dynamics makes it an ideal candidate for examining basic excitability and recovery 

processes. Moreover, by demonstrating the model’s responsiveness to varying stimulus 

intensities, this study highlights the FHN model’s potential for studying rate coding and 

stimulus-response relationships in neurons, contributing to our understanding of neural 

coding. Additionally, this work lays the groundwork for using the FHN model in 

networked systems to explore emergent neural behaviors like synchronization and 

oscillatory patterns. 

7.3.Future Work 

Future research can extend the FHN model’s capabilities by incorporating additional 

biophysical properties, such as ion-specific channels, to better simulate diverse neuronal 

behaviors like after-hyperpolarization and spike frequency adaptation. Parameter 

optimization tailored to specific neuron types (e.g., fast-spiking versus regular-spiking 

neurons) would enhance the model’s accuracy for specialized applications. Further, 

expanding the FHN model to networked simulations could yield insights into collective 
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neural phenomena, such as synchrony and resonance. Comparative analyses with more 

complex models, like the Hodgkin-Huxley model, could also clarify when the FHN model 

is appropriate versus when more detailed models are necessary. Finally, exploring the 

FHN model’s potential in neuromorphic computing could enable the creation of efficient, 

bio-inspired computing systems, contributing to advances in artificial intelligence and 

machine learning. 
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Appendix 

The detailed workflow for each simulation instance proceeded as follows: 

// Initialization Phase 

Load parameter configuration (ε, a, b, I) 

Set initial conditions for V and W 

Define time domain [t_start, t_end] and initial step size Δt 

Allocate arrays for time series storage 

Initialize analysis variables 

 

// Integration Phase 

t = t_start 

V[0] = V_initial 

W[0] = W_initial 

i = 0 

 

While t < t_end: 

    // Calculate derivatives using FHN equations 

    If using RK4 method: 

        Calculate k1_v, k1_w, k2_v, k2_w, k3_v, k3_w, k4_v, k4_w 

        V[i+1] = V[i] + (Δt/6) * (k1_v + 2*k2_v + 2*k3_v + k4_v) 

        W[i+1] = W[i] + (Δt/6) * (k1_w + 2*k2_w + 2*k3_w + k4_w) 

     

    If using adaptive step size: 

        Estimate local error 

        If error > tolerance: 

            Reduce Δt and retry step 

        Else: 

            Accept step and adjust Δt for next step 

     

    // Store results 

    t = t + Δt 

    i = i + 1 
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    // Check for termination conditions 

    If specific events detected (e.g., convergence to steady 
state): 

        Break 

 

// Analysis Phase 

Identify spikes in V time series using threshold crossing 
detection 

Calculate firing frequency and regularity metrics 

Compute phase space trajectories and nullclines 

Perform spectral analysis using FFT 

Compare with reference data if applicable 

 

// Output Generation Phase 

Generate time series plots of V and W 

Create phase space plots with nullclines 

Produce bifurcation diagrams if parameter sweeps performed 

Export numerical data in standardized format 

Generate summary statistics and reports 

This algorithm was implemented with careful attention to numerical precision, using 

double-precision floating-point representation for all variables and intermediate 

calculations. Special handling was incorporated for edge cases, such as parameter 

combinations near bifurcation points, where additional precision or adaptive methods 

were required to maintain stability and accuracy. 

4.5.2 Parameter Sweep Implementation 

To comprehensively explore the model's behavior across parameter space, a structured 

parameter sweep algorithm was implemented: 

// Define parameter ranges and step sizes 

ε_range = [0.01, 0.2], ε_step = 0.01 

a_range = [0.5, 1.0], a_step = 0.05 

b_range = [0.5, 1.5], b_step = 0.05 

I_range = [0.0, 2.0], I_step = 0.05 

 

// Initialize result storage 

Create multi-dimensional array for results 



 

93 

 

 

// Nested loop structure for parameter exploration 

For each I in I_range (step I_step): 

    For each ε in ε_range (step ε_step): 

        For each a in a_range (step a_step): 

            For each b in b_range (step b_step): 

                // Run simulation with current parameter set 

                results = RunFHNSimulation(ε, a, b, I) 

                 

                // Extract and store key metrics 

                Store firing_rate, max_amplitude, 
bifurcation_type, etc. 

                 

                // Flag interesting parameter combinations 

                If interesting pattern detected: 

                    Add to detailed analysis queue 

 

// Post-processing of parameter sweep results 

Generate parameter space maps 

Identify regime boundaries 

Characterize bifurcation structures 

This approach generated comprehensive maps of the FHN model's behavior, allowing for 

identification of parameter regions with specific neuronal dynamics. The parameter 

sweep was implemented using parallel processing capabilities whenever available, with 

each parameter combination representing an independent simulation that could be 

executed concurrently. 

4.5.3 Bifurcation Detection Algorithm 

A specialized algorithm was developed for automated detection and classification of 

bifurcations across parameter space: 

// Bifurcation detection algorithm 

For each parameter value p in parameter range: 

    // Run simulation and extract steady-state behavior 

    result = RunFHNSimulation(p) 

     

    // Analyze fixed points 
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    fixed_points = FindFixedPoints(result) 

    For each fixed_point in fixed_points: 

        J = ComputeJacobian(fixed_point) 

        eigenvalues = ComputeEigenvalues(J) 

         

        // Check for bifurcation signatures 

        If RealPart(eigenvalues) crosses zero as p varies: 

            If ImaginaryPart(eigenvalues) is non-zero: 

                Record Hopf bifurcation at current p 

            Else: 

                Record saddle-node bifurcation at current p 

     

    // Analyze limit cycles 

    If OscillatoryBehavior(result): 

        cycle_properties = AnalyzeLimitCycle(result) 

         

        // Check for cycle bifurcations 

        If cycle_period doubles compared to previous p: 

            Record period-doubling bifurcation 

        If cycle disappears abruptly: 

            Record potential homoclinic bifurcation 

         

    // Store bifurcation information 

    Update bifurcation diagram with detected events 

This algorithm enabled systematic characterization of the FHN model's bifurcation 

structure, providing insights into the mathematical mechanisms underlying transitions 

between different neuronal firing regimes. 

The flowchart in Figure 4.1 illustrates the complete simulation workflow, highlighting 

the integration of various algorithmic components: 

[Figure 4.1: Comprehensive flowchart of the FHN model simulation 
framework, showing the interconnections between parameter 
configuration, numerical integration, analysis modules, and 
output generation. The flowchart includes decision points for 
adaptive methods and specialized handling of bifurcation regions.] 
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These algorithmic approaches ensured efficient and accurate exploration of the FHN 

model's behavior across parameter space, providing a robust computational foundation 

for investigating neuronal dynamics within this simplified mathematical framework. 

4.6 Software Implementation 

The FitzHugh-Nagumo model simulation framework was implemented as a 

comprehensive software system, integrating numerical methods, analysis tools, and 

visualization capabilities within a cohesive architecture. This section details the software 

implementation aspects, including code organization, validation procedures, and data 

management strategies. 

4.6.1 Code Structure and Organization 

The software implementation followed a modular design philosophy, organizing 

functionality into cohesive components with well-defined interfaces. The code structure 

comprised the following key modules: 

1. Core Mathematical Functions: Implemented the fundamental mathematical 

representation of the FHN model, including:  

o fhn_derivatives.m: Defined the right-hand side of the differential 

equations 

matlab 

function [dVdt, dWdt] = fhn_derivatives(t, V, W, epsilon, a, 
b, I) 

    dVdt = V - (V^3)/3 - W + I; 

    dWdt = epsilon * (V + a - b*W); 

end 

o fhn_jacobian.m: Computed the Jacobian matrix for stability analysis 

matlab 

function J = fhn_jacobian(V, W, epsilon, a, b) 

    J = [1-V^2, -1; epsilon, -epsilon*b]; 

end 

o fhn_nullclines.m: Calculated nullcline equations for phase space 

analysis 

matlab 

function [V_nullcline, W_nullcline] = 
fhn_nullclines(V_range, epsilon, a, b, I) 

    V_nullcline = @(V) V - (V.^3)/3 + I; 

    W_nullcline = @(V) (V + a)/b; 
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end 

2. Numerical Integration Functions: Implemented various numerical methods for 

solving the FHN differential equations:  

o fhn_euler.m: Basic Euler method implementation 

o fhn_rk4.m: Fourth-order Runge-Kutta method 

o fhn_adaptive.m: Adaptive step size control based on error estimation 

o fhn_solver.m: Unified interface to different numerical methods 

3. Analysis Module: Contained functions for extracting meaningful information 

from simulation results:  

o fhn_spike_detector.m: Identified action potentials in V time series 

o fhn_phase_analysis.m: Performed phase space analysis of 

trajectories 

o fhn_bifurcation.m: Detected and classified bifurcations 

o fhn_frequency_analysis.m: Analyzed oscillatory properties and 

firing patterns 

4. Visualization Module: Provided standardized plotting functions for different 

aspects of the results:  

o plot_time_series.m: Generated time series plots of V and W 

o plot_phase_space.m: Created phase portraits with nullclines 

o plot_bifurcation.m: Produced bifurcation diagrams 

o plot_parameter_map.m: Visualized behavior across parameter 

space 

5. Utility Functions: Provided supporting functionality for data management and 

workflow:  

o fhn_parameter_sweep.m: Coordinated parameter space exploration 

o fhn_data_export.m: Standardized data export in various formats 

o fhn_configuration.m: Managed parameter configurations and 

defaults 

  


