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SIMULATION OF THE FITZHUGH-NAGUMO NEURONAL MODEL USING
MATLAB®

ABSTRACT

This thesis explores the FitzHugh-Nagumo (FHN) model as a simplified representation
of neuronal excitability, focusing on its ability to replicate key neuronal behaviors,
including threshold-dependent excitability, frequency modulation, and recovery
dynamics. The primary objective was to investigate how variations in parameters,
particularly the external stimulus I, affect the model's behavior, using time series
simulations and bifurcation analysis to assess neuronal firing patterns. The results
demonstrated that the FHN model successfully replicates threshold behavior observed in
real neurons, with the membrane potential V remaining stable at / < 0.5 and transitioning
to an oscillatory (spiking) regime at I > 0.5. Additionally, the model showed frequency
modulation, as the firing frequency increased from moderate at / = 0.6 to high-frequency
oscillations at I = 1.2 This property of the model closely mirrors the rate coding
mechanism used by neurons to encode stimulus intensity. The recovery variable W, which
peaks shortly after each spike in V, effectively simulated the refractory period, preventing
immediate re-firing and stabilizing the firing patterns. The bifurcation analysis further
revealed the model’s nonlinear dynamics, illustrating transitions between resting,
periodic oscillatory, and high-frequency firing states in response to increasing I. The
study validates the FHN model as a computationally efficient tool for simulating essential
neuronal behaviors, making it suitable for theoretical and large-scale neural network
simulations. Its simplified structure, consisting of only two variables, enables it to capture
excitability and recovery dynamics without the computational demands of more detailed
conductance-based models like Hodgkin-Huxley. However, limitations include its
reduced applicability to specialized neuron types and the need for precise parameter
calibration. Future research directions include incorporating additional biophysical
properties, optimizing parameters for specific neuron types, and applying the FHN model
to networked simulations to study collective neural phenomena. This thesis contributes
to computational neuroscience by providing insights into the applicability of the FHN
model in representing neuronal excitability and opens pathways for its potential use in

neuromorphic computing.
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1. Chapter 1: Introduction
1.1 Background of Neuronal Models

1.1.1 Overview of Neuronal Behavior

Brain function depends on understanding complicated electrical and chemical signaling
networks that allow neurons to communicate and interpret information. Excitability, the
ability of neurons to generate action potentials, activates neurons and controls neuronal
function. Brain processes like perception, learning, memory, and decision-making require

excitation and signaling.

lon dynamics across the neuronal membrane generate and propagate action potentials.
The resting membrane potential of neurons is around -70 mV due to the distribution of
ions, mainly sodium (Na*) and potassium (K*). External stimulation is needed for neurons
to depolarize their membrane potential to -55 mV and open voltage-gated Na* channels.
As sodium ions enter, the membrane rapidly depolarizes to +30 mV. Repolarization to
resting potential occurs when potassium channels open and sodium channels inactivate.

This 1-2 millisecond action potential depolarizes-repolarizes [1].

When axon hillock action potentials reach synaptic terminals, neurotransmitters enter the
cleft. These neurotransmitters binding to nearby neuron receptors may cause a new action
potential in the postsynaptic cell. Complex networks of neurons use action potentials and

neurotransmitter release to link and perform all brain operations.

1.1.2 Importance of Studying Neuronal Dynamics

To understand normal and pathological brain processes, investigate neural dynamics.
Research on neuronal dynamics has uncovered signaling illnesses like epilepsy,
Parkinson's, schizophrenia, and depression. Epilepsy causes seizures due to abnormal
neuronal excitability and coordinated firing. Action potential formation and propagation

dynamics can help create excitability-stabilizing and seizure-prevention treatments.

Brain simulation computational models benefit from neuro dynamics research. Numerical
models and simulations are needed for computational neuroscience to understand brain
function. Hodgkin-Huxley and FitzHugh-Nagumo computational models may explore
how neurons respond to inputs, interact in brain circuits, and produce complex network

behaviors [2].



Neuronal dynamics also impact Al and neural engineering advances. Understanding how
biological neurons compute and store information helps develop artificial neural
networks. Plasticity and learning are possible because biological neurons absorb
information in parallel and adapt to inputs. Neuromorphic devices and Al algorithms that

Imitate brain simultaneous processing have been developed using neural function.

Finally, neuroprosthetics and BClIs that restore function or allow direct brain-device
interaction require neuronal excitability and action potential knowledge. Understanding
cerebral firing patterns allows BCls to read brain signals and convert them into robotic
limb or communication device movements, dramatically effecting physically challenged

persons.

1.1.3 Importance of Mathematical Models in Neuroscience

Mathematical models play a vital role in neuroscience by providing simplified
representations of complex biological systems, enabling researchers to understand,
predict, and manipulate neuronal behavior in a controlled, quantifiable manner [3]. The
brain is composed of billions of interconnected neurons, each with intricate dynamics and
interactions. Directly studying such a system at a biological level poses significant
challenges due to its sheer complexity, high dimensionality, and variability. Mathematical
models, therefore, serve as essential tools, reducing this complexity by abstracting critical
features of neuronal behavior into manageable equations and parameters that can be

analyzed systematically.
Role of Mathematical Models in Simplifying Complex Biological Systems

Mathematical models simplify neural systems by focusing on excitability, signal
propagation, and neuron connections. These models approximate biological processes by
abstracting neuron properties like membrane potential, ion channel activity, and synaptic
transmission into equations. The 1952 Hodgkin-Huxley model uses differential equations
to describe sodium and potassium ion transport across the neural membrane to explain
action potentials. Although it simplifies brain function, this model captures action

potential generation dynamics well, making it basic in computational neuroscience.

Mathematical models simplify these processes, allowing researchers to focus on critical
neuronal function factors as threshold potential, synaptic weight, and firing rate.



Experimental data can be used to update these models, making them useful for testing

hypotheses, testing interventions, and simulating reactions under varied settings.

1.1.4 Evolution of Neuronal Models
Historical Perspective on the Development of Neuronal Models

The evolution of neuronal models began with early attempts to understand the basic
electrical properties of neurons. In the late 19th century, scientists discovered that neurons
generate electrical impulses, paving the way for electrical circuit models that represented
neurons as basic electrical components. With advancements in physiology and
mathematics, models became more sophisticated, aiming to explain how neurons generate

and propagate action potentials.

A major breakthrough came in 1952 with the Hodgkin-Huxley model, developed by Alan
Hodgkin and Andrew Huxley, who formulated a detailed mathematical model of the
squid giant axon. Using experimental data, they derived a set of differential equations that
describe the ion currents flowing through sodium and potassium channels during an
action potential. This model, which earned them a Nobel Prize in 1963, is widely regarded
as one of the most significant contributions to neuroscience. The Hodgkin-Huxley model
set the foundation for later models and remains a gold standard for describing excitable
cells [4-6].

Key Contributions of Notable Models in Neuroscience

The Hodgkin-Huxley Model introduced voltage-gated ion channels and neural
excitability. This model's four differential equations properly describe action potential
initiation and propagation, allowing scientists to study neuron function. The sophisticated
Hodgkin-Huxley model is accurate but computationally intensive, restricting its

scalability for large neural network simulations.

A simplified form of the Hodgkin-Huxley model, the FitzHugh-Nagumo (FHN) model
simplifies complex ion channel dynamics into a two-variable system, reflecting
excitability and recovery. The FHN model is computationally efficient while keeping
action potential dynamics' excitability and oscillatory characteristic due to this
simplification. This makes it a popular tool for researching excitable systems' general

principles and pattern development and network behavior [8].



Morris-Lecar Model: The Morris-Lecar model, another basic model, represents
oscillatory neurons like muscular and heart cells. The Morris-Lecar model is useful for
investigating bursting behavior and neuron synchronization because it captures rhythmic
firing mechanisms. A simplified set of equations makes this model computationally

practical for bigger neural circuit simulations.

Integrated-Fire Models: The leaky integrate-and-fire (LIF) model represents neurons as
basic threshold units that integrate input signals until a threshold is met, then spike.
Network simulations use these computationally efficient models to study large-scale
dynamics and network interactions, but they lack the biological precision of the Hodgkin-

Huxley model.

Izhikevich Model: Eugene Izhikevich's model is computationally efficient and
biologically plausible. It captures brain neuron firing patterns while being
computationally manageable. The lzhikevich model is useful for large-scale brain
simulations for cortical dynamics and plasticity research.
neural models have evolved from complicated biophysical representations to simplified,
computationally efficient forms as we grasp neural dynamics and balance biological
correctness with scalability. From single-cell dynamics to large-scale network
interconnections, each model illuminates brain function differently. This diversity in
models assists neuroscience, artificial intelligence, and neural engineering research by

modeling individual neurons and developing entire brain system models.

1.2 The FitzHugh-Nagumo Model

1.2.1 Brief History and Development

The FitzHugh-Nagumo (FHN) model was developed in the early 1960s to describe
neuronal excitability and action potential generation without the complexity and
computing requirements of the Hodgkin-Huxley (HH) model. The two-variable model
proposed by biophysicist Richard FitzHugh condensed the four-dimensional HH
equations into two differential equations that reflected excitability and recovery in

excitable cells.

Meanwhile, Japanese engineer Jinichi Nagumo applied FitzHugh's ideas to electrical
circuit theory and created the "Nagumo circuit,” a physical counterpart of his



mathematical model. The FitzHugh-Nagumo (FHN) model, which blends simplicity and
biological relevance, is a standard for excitable system analysis [12]. This model's ability
to simulate neuronal firing and refractory periods with a limited set of equations provides

valuable insights into excitable systems while being computationally efficient.

1.2.2 Theoretical Basis of the FHN Model

The FitzHugh-Nagumo model represents neuronal activity using two differential
equations that describe the behavior of excitability (V) and recovery (W) variables, with

each playing a specific role in action potential dynamics:

Excitability Variable (V): Represents the membrane potential of the neuron, capturing the

rapid change in voltage associated with an action potential.

Recovery Variable (W): Represents a slower recovery process, often associated with ion
channel dynamics or delayed rectifier currents in neurons, which brings the membrane

potential back to its resting state.

The core equations for the FHN model are:

av V3

= VT WAl
aw
WZE(V-Fa—bW)

where:

e 'V represents the membrane potential (excitability variable).

e W is the recovery variable.

e lisan external stimulus current.

e ¢ a, and b are parameters that control the behavior of the system, affecting the

threshold for excitability, the response rate, and the refractory period.

3
In this model, the excitable dynamics are driven by the term V — V? which introduces a

nonlinear behavior in V, while the recovery dynamics are governed by the linear term
e(V 4+ a —bW), with € being a small parameter that slows down the recovery process
relative to excitability. These equations create a limit cycle that generates a spike-like

waveform for the action potential, with the membrane potential V increasing rapidly



during excitation and then gradually returning to a resting state due to the recovery
variable W.

The simplifications in the FHN model, including reducing four HH variables to two and
replacing specific ion channel dynamics with general excitability and recovery terms,
make it computationally efficient. Despite these simplifications, the FHN model can
effectively reproduce the threshold-based response and refractory behavior characteristic
of neuronal action potentials, making it highly suitable for studying general excitability

in neurons and other excitable systems, such as cardiac cells.

1.2.3 Comparison with Other Neuronal Models
1.2.3.1 Hodgkin-Huxley Model

The Hodgkin-Huxley (HH) model is a detailed biophysical model that describes the ionic
currents underlying action potentials in neurons, specifically focusing on the dynamics of
sodium and potassium ions across the neuronal membrane. The HH model is based on
four differential equations that account for the gating variables of sodium and potassium
channels and the membrane potential, providing a precise description of action potential

generation and propagation.

Comparison of Computational Requirements and Biological Accuracy: While the HH
model provides an accurate representation of the biophysical processes underlying
neuronal excitability, its complexity makes it computationally demanding, especially for
large-scale simulations. Each of the four equations in the HH model requires considerable
computational resources, particularly when simulating networks of neurons. In contrast,
the FHN model, with its two simplified equations, is computationally efficient and well-
suited for large-scale simulations, even if it lacks the detailed ion channel dynamics of
the HH model [15-19]. Therefore, the FHN model is preferred when a simplified
approximation of neuronal excitability is sufficient, particularly for studying general

excitable behavior or network dynamics.

1.2.3.2 Morris-Lecar Model

The Morris-Lecar (ML) model, developed to study oscillatory dynamics in neurons, is
another simplified model that reduces the HH framework but retains key features
necessary for capturing bursting and oscillatory behaviors. The ML model focuses on

calcium and potassium currents, making it especially useful for describing neurons that

6



exhibit rhythmic firing patterns, such as those in cardiac cells and certain types of muscle
cells.

Contrast in Applicability: The FHN and ML models have distinct areas of applicability
based on their respective simplifications and behaviors. While the FHN model is highly
suitable for studying threshold-based excitability and simple spike dynamics, the ML
model is particularly effective for exploring neurons with oscillatory firing patterns and
bursting behavior. This difference makes the ML model valuable for simulating specific
types of neuronal oscillations and synchronous firing in neural circuits, while the FHN
model is often used for more general studies of excitability in neurons and other excitable

cells.

1.2.3.3 Other Simplified Models

Beyond the FHN and ML models, several other simplified models have been developed
to capture different types of neuronal behavior with varying levels of complexity:

Integrate-and-Fire Models: These models, such as the leaky integrate-and-fire (LIF)
model, represent neurons as simple threshold-based units. They ignore the details of ionic
currents, focusing instead on the concept of accumulating membrane potential until a
threshold is reached, at which point a spike is generated. LIF models are widely used for
large-scale network simulations where computational efficiency is crucial and detailed

action potential dynamics are not necessary.

Izhikevich Model: The Izhikevich model combines the computational efficiency of
simplified models with the ability to reproduce a wide range of firing patterns seen in
biological neurons. This model is often used in simulations of cortical dynamics, as it
balances computational tractability with the ability to replicate diverse firing behaviors,

including bursting, tonic spiking, and chattering.

Each of these models, including the FHN model, provides distinct advantages based on
its intended application. The FHN model’s balance between simplicity and the ability to
represent threshold dynamics and excitable behavior makes it a widely used choice for
studying the general properties of excitable systems. Its computational efficiency and
theoretical foundation continue to support a range of research applications in
neuroscience, biophysics, and applied mathematics.



1.3 Research Motivation

The exploration of neuronal dynamics is fundamental to understanding brain function at
both micro and macro levels. The FitzHugh-Nagumo (FHN) model offers a compelling
compromise between biological realism and computational efficiency, making it an ideal
tool for investigating neuronal excitability patterns. Despite its widespread usage, there
remains a critical need to systematically evaluate the FHN model's capabilities in
replicating diverse neuronal behaviors, particularly its applicability across varying
stimulus conditions and in networked configurations. This research addresses this gap by
conducting rigorous parameter sensitivity analysis and bifurcation studies to determine
the model's efficacy in simulating threshold-dependent excitability, frequency
modulation, and recovery dynamics. The findings from this work will not only strengthen
the theoretical foundation of computational neuroscience but also inform practical
applications in neuromorphic computing, brain-computer interfaces, and artificial neural

networks where simplified yet biologically relevant neuronal models are essential.

1.4 Problem Statement

The FitzHugh-Nagumo model presents a significant advantage in computational
efficiency, yet its simplified structure raises fundamental questions about its fidelity in
capturing complex neuronal dynamics. Specifically, the model's abstraction of detailed
ionic mechanisms into two variables creates uncertainty regarding its ability to accurately
simulate diverse neuronal behaviors under varying physiological conditions. The primary
challenge addressed in this research is determining the extent to which the FHN model
can faithfully replicate key neuronal phenomena—including excitability thresholds,
stimulus-response relationships, and bifurcation patterns—without compromising
biological relevance. Moreover, the model's parameter sensitivity and stability
characteristics remain inadequately explored, particularly in networked configurations
where emergent behaviors become increasingly complex. By systematically investigating
these aspects, this study aims to define the operational boundaries and optimal
applications of the FHN model in computational neuroscience, thereby enhancing its
utility as a research tool in both theoretical and applied domains.



1.5 Problem Formulation

Problem Formulation 1: Evaluation of the FitzHugh-Nagumo Model’s Capability to

Simulate Neuronal Excitability and Bifurcation Dynamics in Networked Systems

This problem formulation aims to rigorously assess the FitzHugh-Nagumo (FHN)
model’s effectiveness in capturing the dynamics of neuronal excitability and bifurcations
within interconnected neuronal networks. Specifically, the FHN model will be evaluated
for its ability to simulate bifurcation phenomena, neuronal threshold dynamics, and
stability characteristics when incorporated into a networked structure under varied

external stimuli and parameter conditions.
Mathematical Model and Equations

The FitzZHugh-Nagumo model in a networked configuration can be expressed using a set

of coupled differential equations. For each neuron i in a network of N neurons, the system

is defined by:
3 N
dV; V;
E= Vl—?—Wl'Fll +2KU(VJ_VL)
j=1
aw;
d_tl = E(Vi +a-— le)
where:

«  V; represents the membrane potential of the i-th neuron (excitability variable),
»  W; is the recovery variable for the i-th neuron,

« [; denotes the external input stimulus applied to the i-th neuron,

* K represents the coupling strength between neurons i and j,

* €, a,and b are parameters affecting the dynamics of excitability and recovery.

Obijective Functions

To assess the FHN model’s performance in networked systems, we define three objective
functions:

1. Objective Function J;: Minimization of the Deviation from Observed Bifurcation
Patterns

Ji = i ftflvl(t) -7l dt

i=1 " to



where V;(t) is the expected membrane potential derived from observed bifurcation
patterns in biological neurons.

2. Objective Function J,: Maximization of Stability in Neuronal Networks

This function quantifies the network stability by minimizing fluctuations in V; over time,
particularly under small perturbations:

N

tr

i=1
where V; gcaqy is the steady-state membrane potential for the i-th neuron.
3. **Objective Function J5: Optimal Parameter Tuning for Network Synchronization**

To ensure synchronization in excitability patterns across the network, we minimize the
variance in membrane potentials across all neurons:

ty
Js = j Var ((V,(O}L,) dt

0

This objective ensures that the network behaves as a coherent system, minimizing
deviations across neurons.

Notations and Definitions

*  V;: Membrane potential of the i-th neuron in the network.

*  W;: Recovery variable for the i-th neuron.

* €, a, b: Model parameters that influence excitability and recovery.
« I;: External input current applied to the i-th neuron.

* k. Coupling strength between neurons i and j, controlling the influence of
neuron j on neuron i.

«  Vi(t): Expected potential used as a reference, derived from known neuronal
bifurcation patterns.

* Viseady: Steady-state potential of the i-th neuron.

«  Var({...}): Variance of membrane potentials across all neurons in the network.
Problem Explanation
The goal of this problem formulation is to rigorously test the FHN model’s ability to
accurately replicate neuronal excitability and bifurcation behaviors in a networked
environment. This involves analyzing how well the model performs under different

parameters and external stimuli, particularly in terms of stability, synchronization, and

deviation from known neuronal bifurcation patterns. By incorporating the coupling term
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k;; for interactions between neurons, the formulation simulates network effects that are

essential for capturing the complex dynamics seen in real neural networks.

The objective functions defined above are tailored to measure specific characteristics of
network behavior: J; focuses on the model’s accuracy in replicating biologically observed
bifurcation patterns, J, emphasizes the stability of the network against perturbations, and
J5; seeks to achieve synchronization across neurons, reflecting coherent excitability
patterns that are often observed in biological systems. This problem formulation will
provide insights into the model’s strengths and limitations in network simulations,
guiding the refinement of the FHN model’s parameters to better approximate the

dynamics of interconnected neurons.

1.6 Research Questions

e To what extent does the FitzHugh-Nagumo model accurately replicate the
excitability thresholds and bifurcation dynamics observed in biological neurons
across varying stimulus intensities?

e How do modifications in key parameters (g, a, b) affect the model's stability,
oscillatory patterns, and recovery dynamics, and how do these compare with
empirically observed neuronal behaviors?

e What are the quantifiable limitations of the FitzHugh-Nagumo model in
simulating specific neuronal phenomena, such as diverse firing patterns and
frequency adaptation?

e How effectively does the FitzHugh-Nagumo model balance computational
efficiency with biological accuracy when implemented in networked
configurations, and what emergent properties can be observed?

e Under what conditions and parameter configurations does the FitzHugh-Nagumo
model most accurately capture the rate coding mechanism used by neurons to

encode stimulus intensity?

1.7 Research Objectives

The primary objectives of this research are as follows:

e To evaluate the FitzHugh-Nagumo model's capacity to accurately simulate
neuronal bifurcation dynamics and excitability thresholds in networked neuronal
systems.
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e To investigate the stability of the FitzHugh-Nagumo model in networked
environments with fluctuating external stimuli and varying model parameters.

e To identify and address the limitations of the FitzHugh-Nagumo model in
capturing complex neuronal interactions, particularly within large-scale networks.

e To optimize parameter settings in the FitzHugh-Nagumo model to enhance

synchronization and coherence across networked neurons.

These objectives collectively aim to refine the applicability of the FitzHugh-Nagumo
model, offering insights into its potential and limitations in simulating complex neuronal

dynamics and network interactions.

1.8 Scope and Limitations of the Study

1.7.1. Scope of the Study
Evaluation of Neuronal Excitability and Bifurcation Dynamics

This study is centered on assessing the FitzHugh-Nagumo (FHN) model’s capacity to
simulate critical neuronal behaviors, specifically excitability thresholds and bifurcation
dynamics. Through computational simulations, the research investigates how effectively
the FHN model can capture these phenomena, which are fundamental to understanding

neuronal signal processing.
Analysis of Networked Neuronal Interactions

The study extends to exploring the FHN model’s performance within interconnected
neuronal networks, examining how individual neurons interact and influence one another.
This includes evaluating the stability of network behavior under different coupling

strengths and external stimuli, simulating conditions that mimic real neural networks.
Parameter Optimization for Synchronization and Coherence

A key focus of this research is the identification and adjustment of FHN model parameters
to achieve synchronization and coherence across networked neurons. By optimizing these
parameters, the study aims to enhance the model’s ability to replicate the collective

behavior of biological neurons, which often display synchronized excitability patterns
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Implications for Computational Neuroscience and Neural Engineering

This study contributes to fields such as computational neuroscience, neural engineering,
and neuromorphic computing, where efficient and simplified models are essential for
large-scale simulations. Findings are expected to inform applications in brain-computer
interfaces and neuroprosthetics by providing insights into the FHN model’s potential to

simulate complex neural dynamics in a computationally feasible manner.

1.7.2. Limitations of the Study

This study acknowledges several inherent limitations that contextualize its findings and
applicability:

Biophysical Abstraction: The FitzHugh-Nagumo model fundamentally simplifies the
complex ionic mechanisms underlying neuronal excitability. Unlike detailed
conductance-based models, it does not explicitly represent specific ion channels (sodium,
potassium, calcium), limiting its ability to capture phenomena directly linked to channel

kinetics or molecular interactions.

Parameter Space Constraints: While this research explores a range of parameter values,
the investigation necessarily samples discrete points within a continuous parameter space.
The comprehensive mapping of all possible parameter combinations remains beyond the
scope of this study, potentially overlooking specific parameter regimes with unique
behavioral characteristics.

Neuronal Diversity Limitations: The model cannot adequately represent the full diversity
of neuronal types found in biological systems, each with distinctive electrophysiological
properties. The generalizations made in this study may not apply to specialized neuron
types such as bursting neurons, neurons with dendritic computation, or those with

complex morphologies.

Network Simplifications: In network simulations, this study employs homogeneous
connections and simplified topologies that do not capture the full complexity of biological
neural networks, including their heterogeneous connectivity patterns and dynamic

synaptic modifications.
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Temporal Resolution Constraints: The numerical methods employed introduce
discretization that may affect the precise representation of continuous neuronal dynamics,

particularly for very fast phenomena occurring on sub-millisecond timescales.

Despite these limitations, the study provides valuable insights into the capabilities and
constraints of the FitzHugh-Nagumo model for computational neuroscience applications,
establishing a foundation for future refinements and extensions of this widely used

neuronal model.

1.9 Thesis Structure
This thesis is organized into seven chapters, each addressing key aspects of the research
on the FitzHugh-Nagumo (FHN) model and its application to simulating neuronal
dynamics within networked systems.

Chapter 1: Introduction

This chapter provides an introduction to the research topic, outlining the background and
importance of mathematical models in neuroscience. It introduces the FitzHugh-Nagumo
model, highlighting its relevance and role as a simplified model of neuronal excitability.
The research motivation, problem statement, objectives, and the scope and limitations of
the study are also discussed, providing a foundation for the subsequent chapters.

Chapter 2: Literature Review

This chapter reviews the existing body of research related to neuronal modeling, focusing
on the development and evolution of various models, including the Hodgkin-Huxley,
Morris-Lecar, and other simplified models. Emphasis is placed on the theoretical basis
and applications of the FitzHugh-Nagumo model, as well as comparisons with alternative
models. The review establishes the current knowledge and identifies gaps that this thesis

aims to address.
Chapter 3: Theoretical Background of the FitzHugh-Nagumo Model

This chapter provides a detailed exploration of the FitzHugh-Nagumo model's theoretical
foundation. It explains the core mathematical equations and describes the excitability and
recovery variables, as well as their roles in simulating action potentials. The chapter also
discusses the assumptions, simplifications, and limitations of the model in representing
neuronal behavior and introduces the concept of bifurcation dynamics in networked

systems.
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Chapter 4: Methodology

In this chapter, the research design and methodology for conducting the study are
outlined. It describes the computational environment, tools, and numerical methods used
to implement and simulate the FitzHugh-Nagumo model. The chapter also details the
experimental setup, including parameter selection, network configuration, and the process
for analyzing model behavior under varied conditions. Additionally, it presents the

objective functions developed to evaluate model accuracy, stability, and synchronization.
Chapter 5: Simulation Results and Discussion

This chapter presents the results of the simulations conducted using the FitzHugh-
Nagumo model. It includes baseline simulations of neuronal excitability, analysis of
bifurcation patterns, and observations from networked configurations. The results for
each objective function are discussed, highlighting findings related to model stability,
parameter sensitivity, and synchronization. Comparisons with known neuronal dynamics

are also included to contextualize the findings within biological relevance.

The discussion chapter interprets the simulation results in relation to the research
questions and objectives. It evaluates the FitzHugh-Nagumo model's effectiveness in
capturing neuronal excitability and network dynamics, as well as its limitations in
representing more complex aspects of neuronal behavior. The chapter also explores the
implications of the findings for computational neuroscience and related fields, offering

insights into the model’s potential applications and constraints.
Chapter 6: Conclusion

The final chapter summarizes the main findings of the study, emphasizing the
contributions of this research to the understanding of the FitzHugh-Nagumo model’s
capabilities in simulating neuronal dynamics. It discusses the practical implications of the
study, as well as recommendations for future research, including potential model
refinements, exploration of heterogeneous networks, and integration of additional
neuronal factors. This chapter concludes the thesis by reflecting on the significance of the
work in advancing the application of simplified neuronal models in theoretical and

applied neuroscience.

Each chapter is designed to systematically build on the previous one, guiding the reader

from foundational concepts to detailed analyses, culminating in a comprehensive
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understanding of the FitzHugh-Nagumo model’s utility and limitations within networked

neuronal simulations.
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2. CHAPTER 2: LITERATURE REVIEW
2.1 Chapter introduction

This chapter reviews the research on the FitzHugh-Nagumo (FHN) model, a basic but
powerful tool for simulating neuronal excitability and network dynamics. Foundational
neuronal modeling studies are examined, demonstrating the FHN model's theoretical
underpinning, historical history, and basic mathematical structure. The chapter then
discusses FHN model extensions including delay differential equations, memristive
synapses, and fractional-order dynamics, which address specific neural behaviors. We
also compare the FHN model to other neural models like Hodgkin-Huxley to place it in
computational neuroscience. In the last chapter, the FHN model is applied to
neuromorphic engineering and brain-computer interfaces, and major findings and
research gaps are summarized. For this study to further FHN model applications in neural
network simulations, this review identifies the FHN model's strengths, weaknesses, and

opportunities for further exploration.

2.2 Related work

2.2.1 Neuronal Modeling in Neuroscience

Elfouly, Sohaly, and Fares [1] employed a unique approach to modeling neuronal
dynamics by representing the FitzZHugh-Nagumo model within the framework of neutral
delay differential equations. They designed this model to capture the delayed feedback
effects in neuronal excitability, which are often essential for simulating realistic neural
behaviors. Through their experiments, the researchers analyzed how these delays
influenced neuronal oscillations and excitability thresholds. Their findings showed that
incorporating delay elements allowed for more accurate replication of neuronal firing
patterns, especially in systems with feedback loops. However, the model’s complexity
increased significantly, which limited its computational efficiency, particularly in large-

scale simulations.

Amiri, Nazarimehr, and Jafari [2] focused on enhancing the FitzHugh-Nagumo model by
introducing a memristive synapse, which added a memory component to the synaptic
interactions in the model. They conducted a dynamical analysis to examine how the
memristive element affected the model’s behavior, specifically looking at patterns of

excitability and spiking synchronization. The results indicated that the inclusion of a
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memristive synapse allowed the model to capture a broader range of neuronal behaviors,
including complex oscillatory patterns. Despite these advancements, the study
highlighted limitations in terms of computational complexity, as the memristive dynamics

increased the model’s parameter sensitivity, requiring careful calibration.

Kumar and Erturk [3] developed a fractional-order variant of the FitzHugh-Nagumo
model to investigate neuronal dynamics with improved flexibility in modeling memory
effects. They used fractional calculus to extend the model’s capability for simulating
long-term dependencies and feedback effects inherent in neuronal activity. Their
experimental design focused on analyzing the model’s response to various stimuli,
showing that the fractional-order model produced more accurate and biologically
plausible results, particularly in mimicking memory retention in neural responses.
However, they noted that fractional-order equations posed significant challenges in terms
of numerical stability and computational cost, limiting the practical applications of this

approach in real-time simulations.

Sagu [4] synthesized and analyzed a fractional-order FitzHugh-Nagumo model, aiming
to address the limitations in biological realism present in integer-order models. Through
a systematic approach, Sacu explored the model’s behavior under various fractional
parameters, observing its effects on neuronal excitability and signal propagation. His
analysis revealed that the fractional-order model provided enhanced control over neuronal
spiking frequency and response time, allowing for a closer approximation to
physiological neuronal dynamics. Nevertheless, the study identified that implementing
fractional-order systems required specialized numerical methods, which increased

computational demands and limited model scalability.

Ge et al. [5] investigated neural behaviors and energy properties in a FitzHugh-Nagumo
model enhanced with a memcapacitive component, integrating the Miller effect to further
simulate synaptic interactions. Their experimental design aimed to capture the energy
dynamics involved in neuronal excitability and memory retention. Findings showed that
the model successfully replicated energy-efficient signal transmission, reflecting synaptic
behavior in energy-limited biological systems. Despite these improvements, the study
pointed out the high sensitivity of the memcapacitive component to parameter variations,
which complicated model stability and required careful tuning for accurate simulation

results.
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Shi, Min, and Zhu [6] conducted an analysis of coexisting firing behaviors in the
FitzHugh-Nagumo neuron model, focusing on the emergence of multiple stable firing
patterns within the same neuronal network configuration. Through nonlinear dynamics
techniques, they examined how varying initial conditions and parameter values affected
firing behavior, discovering that the model could exhibit a range of stable and unstable
firing states simultaneously. Their findings highlighted the model’s capacity to represent
complex neuronal firing patterns, but also pointed out the sensitivity to initial conditions,
which could lead to challenges in predicting long-term behavior in more extensive

network simulations.

Cebrian-Lacasa, Parra-Rivas, and Mejia [7] provided a comprehensive review of the
FitzHugh-Nagumo model’s development and its impact across various disciplines over
six decades. They explored the model’s applications in spatio-temporal dynamics,
analyzing its effectiveness in simulating wave propagation and excitation patterns. Their
findings indicated that the model has been widely used for studying excitable media
beyond neuroscience, such as in cardiac tissue modeling and ecological systems.
However, they also noted that despite its versatility, the model’s simplified structure often
limited its accuracy in simulating intricate biological processes, necessitating further

adaptations when applied to highly detailed physiological contexts.

Fatehi Nia and Mirzavand [8] extended the FitzHugh-Nagumo model by incorporating
stochastic dynamics to simulate random fluctuations in neuronal behavior. They merged
the FitzHugh-Nagumo framework with aspects of the Izhikevich model to develop a
stochastic Izhikevich-FitzHugh neuron model. By introducing noise into the system, they
aimed to capture the inherent variability in real neuronal networks. The results
demonstrated that the stochastic version could effectively represent the unpredictability
seen in biological neurons, yet the increased model complexity posed limitations in

stability and required robust computational methods to ensure accurate simulations.

Bosco, Rech, Beims, and Gil [9] investigated the influence of sinusoidal forcing on the
FitzHugh-Nagumo model by examining the effects of an external oscillatory input on a
two-neuron system. They used analytical and numerical methods to observe how
sinusoidal forcing impacted the neuron model’s global dynamics, particularly in a
unidirectionally coupled network. The study showed that sinusoidal forcing could

modulate the model’s firing rate and synchronization properties, adding insights into how
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periodic external signals affect neural systems. Nonetheless, they identified a limitation
in that the model’s response became highly parameter-dependent, which restricted its

general applicability in diverse neural environments.

Lee [10] focused on using the FitzHugh-Nagumo model as an educational tool to
understand neuron dynamics, offering an accessible way to illustrate neuronal excitability
and recovery processes. Through simplified simulations, Lee demonstrated the model’s
utility in explaining the fundamental principles of action potential generation and
recovery phases to students and early researchers. While the model effectively captured
basic neuronal behaviors, Lee emphasized that its oversimplified nature might lead to
misconceptions when exploring more complex aspects of neuronal dynamics, such as

detailed ion channel interactions, limiting its educational use to foundational concepts.

2.2.2 Theoretical Basis of the FitzHugh-Nagumo Model

Rani and Arora [11] investigated the theoretical basis and mathematical development of
the FitzHugh-Nagumo model, particularly focusing on its application for modeling
soliton solutions in excitable media. They approached the model through advanced
numerical techniques, employing leave-one-out cross-validation (LOOCV) combined
with exponential B-spline functions. This technique provided a unique advantage by
allowing the researchers to accurately capture wave-like behaviors that emerge in neurons
during signal propagation. Solitons, or self-reinforcing solitary waves, are significant in
neuronal modeling as they mimic the stable and non-dispersive propagation of action
potentials. By implementing the LOOCV with B-spline functions, Rani and Arora were
able to enhance the accuracy of their simulation, effectively representing the nonlinear
dynamics within the FitzHugh-Nagumo framework. However, despite the accuracy
improvements, they identified computational drawbacks. Fine-tuning the B-spline
parameters to align with biological data demanded extensive computational resources,
creating limitations for applications requiring real-time processing or large-scale neuronal
network simulations. Thus, while their work demonstrated a robust theoretical
contribution to the FitzHugh-Nagumo model's mathematical structure, it underscored the
need for more computationally efficient methods to make such advanced modeling
feasible on a broader scale.

Bao and colleagues [12] expanded the FitzHugh-Nagumo model by incorporating a

memristor-based circuit to simulate bifurcation and bursting oscillations, adding a layer
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of memory dynamics that aligns more closely with biological neuron behaviors.
Memiristors, which exhibit memory properties in response to historical input, allowed the
team to explore oscillatory patterns beyond what the traditional FitzHugh-Nagumo model
can offer. By introducing the memristor, they were able to observe bifurcation phenomena
and more complex neuronal oscillations that better approximate real neural behaviors,
such as rhythmic bursting and periodic firing patterns. Their findings revealed that the
memristor-enhanced FitzHugh-Nagumo model could capture a wide range of oscillatory
behaviors, effectively demonstrating the model’s versatility and potential for simulating
intricate neuronal dynamics. However, they also encountered limitations: the memristive
element made the system highly sensitive to parameter changes, requiring meticulous
calibration to maintain stability. Without careful tuning, the model was prone to chaotic
behavior, which could detract from its reliability. This complexity, while increasing the
model’s biological relevance, presented a significant challenge in terms of practical
usability, especially in simulations of larger neural networks where parameter stability is

crucial.

Ahsan, Wu, Jalal, and Kapadia [13] proposed a novel adaptation of the FitzHugh-Nagumo
model by designing an ultralow-power electronic analog circuit to replicate the model’s
excitability and recovery dynamics. This approach aimed to translate the theoretical
FitzHugh-Nagumo model into a physical, hardware-based system that could simulate
neuronal behavior with minimal energy consumption, a significant advantage in
neuromorphic computing and low-power applications. The electronic circuit captured the
essential components of the model—excitability and recovery—by emulating these
dynamics through an efficient analog design. This innovation highlighted the practical
utility of the FitzHugh-Nagumo model in creating energy-efficient systems for simulating
neural behaviors, particularly useful in neuromorphic engineering where power efficiency
is essential. However, while this analog circuit effectively modeled basic neuronal
dynamics, it faced limitations in handling more complex interactions that require detailed
representation of ion channel activity or intricate synaptic connections. The simplicity of
the circuit, while energy-efficient, limited its applicability to more advanced neural
interactions, making it suitable primarily for foundational studies rather than for complex

network simulations in neuroscience.

Hramov et al. [14] explored the stochastic FitzHugh-Nagumo model by introducing noise

components to simulate coherence resonance, a phenomenon where stochastic input can
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enhance a system’s response to weak signals. They leveraged reservoir computing, a
machine learning approach suitable for temporal pattern recognition, to predict coherence
resonance states within the model. The inclusion of stochastic noise allowed the model to
mimic how real neurons respond optimally to fluctuating, weak inputs, as seen in
biological neurons under random environmental conditions. Their results demonstrated
that under specific noise intensities, the model displayed resonance, enhancing its
biological relevance by capturing the random yet beneficial influence of noise on
neuronal dynamics. However, while reservoir computing provided an accurate prediction
framework, it required substantial computational resources, particularly when scaling the
model to larger networks. This limitation highlighted the challenge of balancing the
model’s biological realism with computational feasibility, as the stochastic FitzHugh-
Nagumo model with coherence resonance simulations demanded high processing power,
potentially restricting its applications to smaller neural circuits or specific experimental

settings.

Gao, Shen, and Hu [15] examined the dynamics of the FitzHugh-Nagumo model in a
networked system, specifically focusing on delayed and diffusive interactions between
neurons. They incorporated both time delay and spatial diffusion into the model, which
introduced a new layer of complexity to simulate realistic neural networks. The time delay
accounted for the transmission latency in neuronal connections, while diffusion
represented the spatial spread of excitation through interconnected neurons. Their
analysis revealed that adding these components allowed the model to replicate more
realistic neural patterns, such as synchronized oscillations and stable wave propagation
across the network. This modification provided a closer approximation to physiological
neural systems, where such factors influence signal timing and spatial interactions.
However, the complexity introduced by delayed and diffusive terms significantly
increased the computational demand, requiring precise parameter control to maintain
stability and coherence within the network. The increased model intricacy posed
challenges for large-scale simulations, indicating that while the delayed and diffusive
FitzHugh-Nagumo model captured realistic network dynamics, it required specialized
computational resources and optimization techniques to be effectively scaled for broader

applications.

Gao [16] conducted an in-depth analysis of Turing instability within a FitzHugh-Nagumo

model configured in a diffusive network. Turing instability, a phenomenon in reaction-
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diffusion systems leading to spatial pattern formation, was explored through the
FitzHugh-Nagumo model’s reaction-diffusion framework. Gao applied mathematical and
computational methods to investigate the emergence of spatially heterogeneous patterns,
focusing on conditions under which the model shifted from homogeneity to instability-
driven patterns. His findings revealed that under specific parameter ranges, diffusive
coupling could induce Turing instability, resulting in self-organized spatial patterns
similar to those observed in biological systems. However, the study also noted the
sensitivity of the model to parameter variations, making it challenging to predict pattern
formation without precise control over diffusive terms, thus highlighting limitations in
scalability and application to larger neuronal networks.

Goulefack, Masoller, and Yamapi [17] examined wave propagation in a linear chain of
FitzHugh-Nagumo neurons, aiming to quantify the transmission of electrical signals
along a neuronal pathway. They designed an experiment using a chain of coupled
FitzHugh-Nagumo units to simulate axonal propagation and signal strength decay across
a network. Through numerical simulations, they quantified the stability and speed of wave
propagation under varying coupling strengths, capturing the dynamics of signal
transmission in a linear neuron chain. The study revealed that strong coupling enhanced
wave stability and propagation speed, effectively preventing signal decay. However,
weaker coupling led to dispersion and attenuation, limiting the chain’s ability to maintain
consistent signal strength over longer distances. The results underscored the model's value
in studying wave dynamics but also pointed out that additional mechanisms may be

needed to fully capture the robustness of real biological signal propagation.

Igbal et al. [18] focused on finding soliton solutions for the nonlinear stochastic FitzHugh-
Nagumo equation, extending the model to include stochastic effects that represent random
environmental fluctuations. They approached the model using analytical methods to
derive soliton solutions, which are stable, localized waveforms that maintain their shape
during propagation, even under stochastic conditions. By incorporating randomness,
Igbal and his team sought to simulate real-world variability in neuronal signal
propagation. Their results showed that the stochastic FitzHugh-Nagumo model could
produce soliton solutions that mimic stable, noise-resistant signal transmission, thus
enhancing the model’s biological relevance. However, they also encountered challenges

in maintaining numerical stability, as stochastic fluctuations introduced instability in
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long-term simulations, complicating the application of these solutions in larger, sustained

neural networks.

Hu, Ding, Wu, Huang, Yang, and Jia [19] investigated the impact of dynamical rewiring
on synchronization in a memristive FitzHugh-Nagumo neuronal network. They modified
the network structure to allow for dynamic changes in connectivity, simulating adaptive
rewiring observed in real neural networks. By introducing memristors to model adaptive
synaptic changes, they analyzed how these alterations affected synchronization patterns
and coherence among networked neurons. Their findings indicated that dynamic rewiring
promoted synchronization, with memristive elements helping maintain adaptive stability
across the network. However, the study noted that such rewiring increased the model's
complexity, necessitating high computational resources and precise control over
connectivity parameters to avoid desynchronization. This adaptation provided insights
into neuronal plasticity but limited the model’s feasibility for extensive simulations due

to increased computational demands.

Cek and Uludag [20] explored spectral resonance within the FitzHugh-Nagumo neuron
model, examining its relationship with stochastic resonance and its potential applications
in electromyography (EMG) signal characterization. They used spectral analysis to
investigate how external noise and inherent neuronal fluctuations influenced the system's
resonant frequency response. Their results demonstrated that under specific noise levels,
spectral resonance could be induced, amplifying signal clarity and strength. This
phenomenon has implications for enhancing EMG signal analysis, as spectral resonance
could help in distinguishing relevant neuronal signals from background noise. However,
they noted that achieving optimal resonance required carefully controlled noise levels,
limiting its applicability in real-world settings where noise is highly variable. The study
illustrated the potential for using the FitzHugh-Nagumo model in biomedical signal
processing but highlighted challenges related to noise management and consistency in

diverse environments.

2.2.3 Comparison with Alternative Models

Xu et al. [21] examined an improved version of the FitzHugh-Nagumo (FHN) model,
emphasizing a multiplier-free implementation that enhances computational efficiency
while maintaining the model’s core features. They highlighted that one of the strengths

of this modified FHN model lies in its reduced computational demand, making it more
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practical for large-scale simulations compared to the traditional Hodgkin-Huxley (HH)
model, which is computationally intensive due to its detailed biophysical representations.
The study demonstrated that the multiplier-free FHN model could replicate essential
neuronal dynamics, such as excitability and threshold behavior, with comparable
accuracy to other simplified models. However, the team also identified limitations in the
model’s ability to capture intricate ion-channel interactions, which are accurately
represented in the HH model. This restriction limits the improved FHN model’s
applicability to simulations where only general excitability is required rather than detailed

ion dynamics.

Chen et al. [22] focused on a memristive variant of the FHN model, incorporating an
initial-offset boosting mechanism that introduces hidden dynamics, leading to complex
bifurcation behavior. Compared to the standard FHN model, which provides basic
excitability and recovery dynamics, the memristive variant offered richer dynamical
properties due to the memory effects inherent in memristors. The researchers highlighted
that this adaptation allowed the model to capture a broader range of neuronal firing
patterns and oscillatory behaviors, resembling the diversity observed in biological
neurons. However, they noted that the memristive FHN model’s sensitivity to initial
conditions and parameter tuning posed significant challenges, particularly in achieving
stable simulations. Unlike the HH model, which has well-defined biophysical parameters,
the memristive FHN variant’s reliance on precise parameter control reduces its
robustness, making it less practical for generalized applications in large networks where

stability is crucial.

Zhang, Min, Dou, and Xu [23] conducted a bifurcation analysis on a modified FHN model
that incorporated an external electric field, allowing for the study of neuronal responses
under varying electric stimuli. They demonstrated that this model could capture complex
bifurcation patterns and phase transitions, which are not as readily observed in the classic
FHN model. Compared to the HH model, which inherently includes responses to ionic
currents, the modified FHN model offered a more computationally efficient approach to
studying field-induced bifurcations and oscillatory behaviors. The study highlighted that
the addition of an electric field enhanced the model's applicability for scenarios where
external influences play a significant role in neuronal behavior. However, Zhang et al.

also noted limitations in the model’s ability to accurately represent biophysical details
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such as ionic movement, which are critical for studies involving precise synaptic

interactions and are well-handled by the HH model.

Elfouly, Sohaly, and Fares [24] used a neutral delay differential equation approach to
represent the FHN model, allowing them to examine delayed feedback effects that are
critical in neuronal communication. The delay differential representation enabled them to
capture the effects of time-delayed excitability in neurons, a feature that is challenging to
model in traditional FHN or HH frameworks. Compared to the HH model, the delayed
FHN model provided a more simplified but effective method for simulating delayed
neuronal responses, which are relevant in both neural and artificial network applications.
However, they found that this approach increased the model’s complexity, as
incorporating delays required careful calibration to avoid instability. Despite its
advantages, the delay differential FHN model was limited by its high sensitivity to initial

conditions, which could lead to unpredictable behaviors if not carefully controlled.

Amiri, Nazarimehr, and Jafari [25] introduced a memristive synapse into the FHN model,
aiming to explore how memory elements impact synaptic interactions and network
dynamics. This adaptation allowed the model to simulate more realistic, plastic synaptic
interactions compared to traditional models, which lack memory properties. Their
findings indicated that the memristive synapse enhanced the FHN model’s ability to
mimic complex, time-dependent neuronal interactions, bringing it closer to the biological
behavior observed in synaptic networks. Nonetheless, this complexity introduced a
significant limitation: the memristive FHN model was highly sensitive to parameter
fluctuations, requiring precise adjustments for stable operation. In contrast, the HH
model, with its detailed ion-channel representations, does not rely on such sensitivity,
thus providing greater robustness in simulating stable neuronal activity across a wider

range of conditions.

Rybalko and Fradkov [26] explored an identification approach for a two-neuron
FitzHugh-Nagumo (FHN) model, utilizing speed-gradient and filtering techniques to
capture neuronal interactions. They focused on using adaptive control techniques to
improve the model’s performance in representing neuronal dynamics, specifically by
optimizing the response speed and filtering capabilities to simulate the connectivity and
mutual influence between neurons. Compared to the Hodgkin-Huxley (HH) model, which

inherently supports detailed neuronal interactions through ion channel dynamics, the two-
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neuron FHN model required external modifications to achieve similar interaction
capabilities. Although the speed-gradient method enhanced the responsiveness of the
FHN model, it was limited by computational demands and sensitivity to parameter
adjustments, making it less robust for large-scale simulations compared to the more

biologically detailed but computationally demanding HH model.

Sagu [27] conducted a synthesis and analysis of a fractional-order FitzHugh-Nagumo
model to address the limitations in biological realism often found in integer-order models.
By introducing fractional calculus into the FHN model, Sacu aimed to provide greater
control over neuronal firing frequencies and response times, improving its resemblance
to actual neuronal dynamics. The fractional-order model offered enhanced flexibility in
adjusting neuronal excitability patterns, making it particularly effective for capturing
long-term memory effects and decay rates, which are challenging to model in both the
traditional FHN and HH frameworks. However, the added complexity of fractional-order
differential equations introduced challenges in numerical stability and computational
efficiency, limiting its practicality for real-time simulations or extensive network
modeling, where the integer-order HH model may still be preferred due to its stable and
established parameter structure.

Kumar and Erturk [28] also investigated a fractional-order variant of the FHN model but
focused on an improved version with specific enhancements in its excitability and
recovery functions. They demonstrated that the fractional-order modification allowed the
model to capture complex neuronal behaviors, such as long-term dependencies and
adaptive responses to sustained stimuli. While the HH model provides a biophysically
accurate representation of such dependencies through ion channels, the fractional-order
FHN model offers a computationally simpler but flexible alternative. However, Kumar
and Erturk highlighted that the model’s sensitivity to fractional parameters demanded
precise calibration, as slight deviations could lead to instability. This limitation reduces
the model’s robustness in practical applications, especially in scenarios where precise
biological fidelity and stability are crucial, as provided by the HH model’s established

structure.

Shi, Min, and Zhu [29] performed an analysis of coexisting firing patterns within the FHN
neuron model, focusing on the conditions that lead to multiple stable firing states. They

employed nonlinear dynamical techniques to explore how different initial conditions and
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parameter values influenced the model's behavior, revealing that the FHN model could
exhibit multiple stable and unstable firing modes. This property of coexisting firing
patterns adds versatility to the FHN model, making it suitable for simulating diverse
neuronal firing behaviors that are often observed in complex neural circuits. However,
the model’s sensitivity to initial conditions posed a limitation, as it could lead to
unpredictable outcomes in large-scale simulations. In contrast, the HH model, which
offers a more deterministic representation due to its fixed biophysical parameters,
provides greater consistency across different initial conditions, making it more suitable

for applications where stable and predictable neuronal responses are necessary.

Uzal [30] designed a microcontroller-based emulator circuit for the FHN neuron model,
creating a hardware-based implementation that could simulate neuronal dynamics in real-
time with minimal power consumption. This approach leveraged the simplicity of the
FHN model to build an energy-efficient emulator, enabling real-time applications in
neuromorphic engineering and low-power device design. Compared to the HH model,
which is computationally intensive and challenging to implement on hardware without
significant simplification, the FHN model’s reduced complexity made it more suitable
for microcontroller-based applications. However, the simplified nature of the FHN model
limited the emulator’s ability to replicate complex neuronal behaviors accurately. Uzal
noted that while the emulator was effective for basic excitability and firing simulations,
it lacked the ability to capture detailed ion channel interactions and intricate synaptic
dynamics, which are more faithfully represented in hardware implementations based on
the HH model.

2.2.4 Applications of the FitzZHugh-Nagumo Model in Neuroscience

Xu et al. [31] applied an improved FitzHugh-Nagumo (FHN) model with a multiplier-
free implementation in studies on neuronal network simulations, aiming to streamline
computational requirements for large-scale applications. The simplified implementation
made it possible to simulate the collective behavior of neurons in a computationally
efficient manner, making it valuable for neuroscience research focused on large neural
circuits and network connectivity analysis. By reducing the computational load, this
model facilitated the exploration of neuronal excitability patterns across extensive

networks, offering insights into how excitability propagates in interconnected systems.
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However, Xu and colleagues acknowledged that, while efficient, this implementation
might lack the precision needed for highly detailed neuronal modeling, limiting its utility

for studies requiring fine-grained biophysical accuracy.

He, Li, Chen, and Cao [32] explored the use of the FitzHugh-Nagumo model in simulating
neurons with state-dependent impulsive effects, a feature that introduced a level of
realism by allowing for sudden state changes based on internal neuron conditions. This
adaptation has practical applications in studying neuronal responses to abrupt inputs, such
as synaptic spikes or external stimuli, which can trigger impulse-driven shifts in neuronal
states. Through their experiments, He and colleagues demonstrated that the state-
dependent impulsive FHN model could effectively mimic responses to transient stimuli,
providing insights into neuronal adaptability and plasticity in dynamic environments.
This model has potential applications in neural prosthetics and brain-computer interfaces
(BCls), where simulating rapid neural responses to external signals is essential. Despite
its utility, the addition of impulsive effects increased model complexity, posing
challenges for real-time applications and requiring careful control of impulse parameters

to avoid destabilizing the model.

Chen, Wang, Wang, Wu, and Xu [33] investigated a memristive version of the FHN
model, incorporating initial-offset boosting to explore bifurcation mechanisms and
hidden dynamics in neurons. This adaptation allowed the model to simulate synaptic
plasticity and memory effects by mimicking the persistence of neuronal responses over
time. Their findings revealed that the memristive FHN model could reproduce complex
bifurcation behaviors, enhancing its relevance for applications that involve adaptive
neural processing, such as learning models and synaptic plasticity studies. In practical
terms, this model has applications in understanding memory retention mechanisms in the
brain and exploring the neural basis of learning. However, the model’s sensitivity to initial
conditions and parameters made it challenging to control in larger networks, limiting its

applicability to small-scale studies where precise parameter tuning is feasible.

Korkmaz and Sivga [34] implemented the FitzHugh-Nagumo model with an
electromagnetic effect on an FPGA (Field-Programmable Gate Array) platform, enabling
real-time simulation of neuronal dynamics influenced by electromagnetic fields. This
FPGA-based realization allowed for the rapid simulation of electromagnetic effects on

neurons, offering a practical tool for neuroscience research on electromagnetic brain
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stimulation, such as transcranial magnetic stimulation (TMS). Their work demonstrated
that the FHN model could effectively model neuronal responses to electromagnetic fields,
which has applications in both therapeutic and diagnostic settings. The hardware
implementation also showed potential for portable and low-power applications, making
it suitable for embedded systems. However, the hardware constraints of FPGA limited
the model’s complexity, restricting its use to basic neuronal behaviors and simple network

configurations rather than extensive, biologically realistic networks.

Rudi, Bessac, and Lenzi [35] utilized convolutional and dense neural networks to perform
parameter estimation for the FHN model, aiming to improve its adaptability for specific
neuronal behaviors. By leveraging machine learning techniques, they trained networks to
optimize the parameters of the FHN model based on target neuronal dynamics, thus
enhancing its accuracy and usability in diverse research contexts. This approach enabled
the model to approximate specific neuronal responses more accurately, making it suitable
for applications in personalized neural modeling and adaptive simulations. Machine
learning-based parameter estimation opens up potential for applications in individualized
medicine and neural prosthetics, where accurately modeling specific neural responses is
essential. However, this approach requires substantial training data and computational
resources, which may limit its accessibility for real-time simulations or resource-

constrained settings.

Zhang, Min, Dou, and Xu [36] examined the effects of an external electric field on a
modified FHN model, focusing on its bifurcation and oscillatory properties under
different field intensities. The application of an electric field made it possible to simulate
neuronal responses in environments subject to electrical modulation, such as during
electrical stimulation therapies used for neurological conditions. Their study showed that
the electric field-enhanced FHN model could replicate a range of firing behaviors,
providing a valuable tool for understanding the effects of electrical fields on neural tissue.
This has practical applications in developing neurostimulation therapies and
understanding the electrophysiological basis of treatments like deep brain stimulation
(DBS). However, the addition of the electric field increased model sensitivity, making it
highly parameter-dependent and requiring careful calibration to avoid unintended
oscillatory behaviors, which could complicate its use in large-scale simulations or

variable field conditions.
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Khakipoor, Bahar, and Karimian [37] applied the FitzHugh-Nagumo (FHN) model within
a circuit framework to analyze neuronal excitability and response patterns efficiently. By
integrating the FHN model into an analog circuit design, they demonstrated how neuronal
dynamics could be effectively emulated in hardware, offering a practical tool for
applications in neuromorphic engineering and analog signal processing. This approach
enabled real-time simulation of neuronal behaviors, which is valuable for prototyping
devices that need to mimic neural responses, such as brain-machine interfaces and neural
prosthetics. The circuit-based implementation of the FHN model offered advantages in
terms of speed and power efficiency over software-based simulations, but the model’s
reduced complexity limited its capacity to accurately represent detailed synaptic

interactions, which are critical for more comprehensive applications in neuroscience.

Elfouly, Sohaly, and Fares [38] explored the FHN model using a neutral delay differential
equation framework, which allowed them to incorporate time delays that more accurately
represent biological neuron signaling, where feedback delays are common. This delayed
version of the FHN model has practical implications for studying time-dependent neural
responses, such as those in interconnected brain regions that exhibit delayed signaling.
The study demonstrated that adding time delays could capture realistic oscillatory and
feedback behaviors observed in neural circuits, providing a valuable model for research
on distributed brain activity. However, they noted that the inclusion of delay elements
introduced complexity, making it computationally challenging to stabilize the model for

larger network simulations where precision in delay timing is essential.

Amiri, Nazarimehr, and Jafari [39] developed a FitzHugh-Nagumo model with a
memristive synapse, focusing on how memory effects impact neuronal and synaptic
dynamics. This adaptation allowed the FHN model to simulate forms of synaptic
plasticity, which are crucial for understanding learning and memory processes in neural
circuits. Their findings indicated that the memristive FHN model could capture dynamic
and adaptive synaptic interactions, making it suitable for applications in artificial neural
networks and cognitive computing. The model has practical applications in fields that
require emulation of learning behaviors, such as adaptive algorithms in machine learning
and neurocomputing. However, the addition of a memristive component made the model
highly parameter-sensitive, requiring precise control for stability, which limits its

scalability in complex network simulations.
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Bisquert [40] conducted a frequency domain analysis of the excitability and bifurcations
within the FHN model, providing insights into how neuronal dynamics vary with input
frequencies. By analyzing the model’s response across a range of frequencies, Bisquert
was able to highlight the conditions under which neurons transition between stable and
excitable states, offering a basis for applications in brain stimulation therapies that
leverage frequency-specific responses. This approach is particularly relevant for
treatments like transcranial magnetic stimulation (TMS) and deep brain stimulation
(DBS), where tuning frequency can enhance therapeutic effects. Although frequency
domain analysis provided a novel perspective on the model's excitability, it required
specialized knowledge and tools, limiting its applicability to researchers equipped to

conduct advanced signal processing in neural modeling.

Habbal, Farhat, Khalil, and Pannier [41] applied 3D printing and molding techniques to
create physical models based on the FitzHugh-Nagumo model, allowing for the
visualization of neuron morphology and connectivity. By using fused filament
fabrication, they generated flexible, scaled neuron models that could be used for
educational purposes and in neuroscience research to study physical aspects of neuronal
structure. This tangible representation of the FHN model provides a unique application
in neuroscience education, where visualizing neuron connectivity and behavior can aid in
learning. Although this approach enhances the understanding of neuron morphology, it is
limited in its capacity to simulate dynamic processes, as the models serve primarily for

structural representation rather than for functional analysis of neuronal dynamics.

Okonkwo, Olaniran, Adeyi, and colleagues [42] explored the modeling of biological
processes using neural networks and adaptive neuro-fuzzy inference systems, indirectly
informing the potential for FHN model applications in modeling adaptive biological
systems. While their study focused on food processing, the principles of adaptive
modeling and neuro-fuzzy inference highlighted applications for the FHN model in
simulating complex, adaptive biological processes like neural plasticity. This indirect
application suggests potential avenues for integrating the FHN model with adaptive
systems, enhancing its utility in contexts where flexibility and learning are required.
However, transferring insights from food processing to neuroscience requires careful
adaptation, as the fundamental processes differ, and neural network-based models often

require significant tuning for biological accuracy in neuroscience applications.
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Table 2.1:Comparative Table of Previous Study

Reference | Technique Results Limitations Findings
[1] Neutral Delay | Captured High sensitivity | Effective for
Differential delayed to initial | studying time-
Equation feedback in | conditions, dependent and
representation neuronal making the model | feedback-
of FHN model | signaling, challenging  to | delayed neural
enhancing stabilize in large | responses
oscillatory networks
behavior
simulation
[11] LOOCV  with | Improved Computationally | Valuable for
exponential B- | accuracy in | intensive, limiting | modeling
spline functions | wave real-time stable signal
for soliton | propagation application propagation in
solutions simulation, neurons
mimicking
stable action
potentials
[12] Memristor- Simulated High sensitivity | Useful for
based  circuit | bifurcations and | to parameter | exploring
added to FHN | complex variations, memory-
model oscillations challenging driven
similar to | stability behaviors and
biological oscillatory
neurons dynamics
[13] Ultralow-power | Efficient energy | Simplified design | Suitable  for

electronic
analog of FHN

model

consumption for
mimicking
excitability and
recovery
dynamics in

hardware

limits
representation of
complex

interactions

neuromorphic
applications
requiring basic
neuronal

dynamics
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[18]

Stochastic

Captured noise-

Numerical

Effective for

extension of | resistant, stable | instability  with | representing
FHN model for | signal prolonged randomness
soliton solutions | transmission stochastic and variability
with soliton | simulations in neural signal
solutions propagation
[21] Multiplier-free | Enabled large- | Lacks precisionin | Suitable  for
implementation | scale representing simulating
of improved | simulations  of | detailed large-scale
FHN model neural networks | biophysical network
with reduced | neuronal connectivity
computational interactions and
load excitability
patterns
[22] Memristor Produced High sensitivity | Effective  for
initial-offset diverse  firing | to parameter | exploring
boosting in | patterns and | control, complex
FHN model bifurcation impacting oscillatory and
behaviors stability memory-
driven
neuronal
behaviors
[26] Speed-gradient | Enhanced model | Computational Useful for
and filtering in | responsiveness, | demands and | modeling
two-neuron simulating parameter connected
FHN model neuron sensitivity neurons in
connectivity and adaptive
influence control
scenarios
[27] Fractional-order | Enhanced Increased Valuable for
FHN model | control over | complexity and | representing
synthesis  and | firing frequency, | stability neuronal

analysis

modeling long-

memory  and
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term challenges in | adaptive

dependencies simulations responses

[37] Circuit-based Enabled  real- | Simplified model | Suitable  for
FHN model for | time simulations | limits  complex | hardware-

analog with low power | synaptic based neural
simulations consumption interaction response
representation emulation,

such as brain-
machine

interfaces

2.3 Liteature summery

The literature on the FitzHugh-Nagumo (FHN) model shows its versatility in mimicking
neuronal excitability and network dynamics. Neutral delay differential equations,
memristive  adaptations, fractional-order  modifications, and multiplier-free
implementations have improved the FHN model's relevance for specific brain activities
in many research. Capturing delayed feedback, enhancing large-scale network
computational efficiency, and modeling neural oscillations-like memory effects and
bifurcation behaviors are major advances. Analog circuits and FPGA-based realizations
have shown the FHN model's low-power and real-time simulation capabilities, making it
useful for neuromorphic engineering and brain-computer interface applications. Despite
these advances, the model's stability under complicated configurations, sensitivity to
parameter changes, and biophysical accuracy compared to Hodgkin-Huxley are still
limits. The literature supports the FHN model as a basic but versatile tool for examining
general excitability patterns, although scaling and improving it for neural network

simulations remains difficult.

2.4 Research gap

The FitzHugh-Nagumo model has been successfully improved and applied to neuronal
simulations, although large-scale, biologically correct neural network simulations still
require investigation. Current studies emphasize the model's inability to capture detailed
ion channel dynamics, actual synaptic contacts, and adaptive network plasticity in

fluctuating or high-dimensional parameter spaces. Complex setups with temporal delays,
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fractional-order dynamics, or memristive components have stability and computing
demand concerns. Research is needed to increase the model's robustness and scalability
for real-time and biologically realistic simulations, despite computer complexity
reductions. Addressing these shortcomings could improve the FHN model's ability to

explore complex brain systems in neuroprosthetics, cognitive computing, and large-scale
neural simulations.
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3. Theoretical Background of the FitzHugh-Nagumo Model
The FitzHugh-Nagumo model represents a milestone in computational neuroscience by
distilling the complex Hodgkin-Huxley equations into a mathematically tractable system
while preserving essential neuronal dynamics. The model's theoretical foundation rests

on several key principles:
Dimensional Reduction and Phase Space Analysis

The FHN model achieves dimensional reduction by condensing the four-variable
Hodgkin-Huxley framework into a two-variable system that captures the essential
dynamics of neuronal excitability. This reduction transforms a complex biophysical

system into a more accessible mathematical framework amenable to phase space analysis.
The model's phase space reveals critical structures:

Nullclines (where dV/dt = 0 and dW/dt = 0) whose intersections determine equilibrium

points

Stable and unstable manifolds that govern trajectory behavior

Limit cycles that emerge through Hopf bifurcations, representing periodic firing
Dynamical Systems Perspective

From a dynamical systems viewpoint, the FHN model exemplifies a nonlinear oscillator
with excitable properties. The cubic term V - V3/3 introduces essential nonlinearity that

enables:
Bistability between resting and excited states
Threshold behavior characteristic of neuronal firing

Excitability where sufficiently large perturbations trigger full excursions in phase space

before returning to rest

The separation of timescales between fast (V) and slow (W) variables—controlled by the
parameter &—creates relaxation oscillations that accurately mimic the rapid

depolarization and slower recovery phases of action potentials.
Mathematical Formulation and Interpretation

The core equations:
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— =V ——=——W + 1
dt 3 "

dW— %4 bW
E—E( + a )

Each term carries specific biophysical significance:
V - V3/3 approximates the fast autocatalytic process of sodium channel activation

W represents combined recovery processes, including sodium channel inactivation and

potassium channel activation

Parameter a influences excitability threshold

Parameter b modulates recovery dynamics

Parameter € controls timescale separation

External current | simulates synaptic or experimental inputs

This mathematical formulation creates a framework that balances analytical tractability
with biological relevance, enabling both theoretical analysis and practical applications in

computational neuroscience.

3.1. The FitzHugh-Nagumo Model

3.1.1 Brief History and Development

The FitzHugh-Nagumo (FHN) model was developed in the early 1960s as a simplified
representation of the Hodgkin-Huxley (HH) model, designed to capture essential features
of neuronal excitability and action potential generation without the high complexity and
computational demands of the HH model. Richard FitzHugh, a biophysicist, initially
proposed this two-variable model, which simplified the four-dimensional HH equations
into a system of two differential equations, representing the essential dynamics of
excitability and recovery in excitable cells.

Around the same time, Jinichi Nagumo, a Japanese engineer, applied FitzHugh’s ideas to
electrical circuit theory, resulting in the “Nagumo circuit,” a physical analog of
FitzHugh’s mathematical model. Together, the contributions of FitzHugh and Nagumo
formed what is now widely known as the FitzHugh-Nagumo (FHN) model, which has

become a benchmark in studying excitable systems due to its balance between simplicity
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and biological relevance. This model is particularly significant for its ability to mimic the
threshold dynamics of neuronal firing and refractory periods with a minimal set of
equations, providing valuable insights into excitable systems while being

computationally efficient for simulations.

3.2 Theoretical Basis of the FHN Model
The FitzHugh-Nagumo model represents neuronal activity using two differential
equations that describe the behavior of excitability (V) and recovery (W) variables, with

each playing a specific role in action potential dynamics:

e Excitability Variable (VV): Represents the membrane potential of the neuron,
capturing the rapid change in voltage associated with an action potential.

e Recovery Variable (W): Represents a slower recovery process, often associated
with ion channel dynamics or delayed rectifier currents in neurons, which brings

the membrane potential back to its resting state.
The core equations for the FHN model are:

dV—V a W+1
dt 3

W _ V + bW)
=€ a

where:
«  V represents the membrane potential (excitability variable).
* W is the recovery variable.
« [isan external stimulus current?

* €, a,and b are parameters that control the behavior of the system, affecting the
threshold for excitability, the response rate, and the refractory period.

3
In this model, the excitable dynamics are driven by the term V — V? which introduces a

nonlinear behavior in V, while the recovery dynamics are governed by the linear term
e(V + a — bW), with € being a small parameter that slows down the recovery process
relative to excitability. These equations create a limit cycle that generates a spike-like
waveform for the action potential, with the membrane potential V' increasing rapidly
during excitation and then gradually returning to a resting state due to the recovery

variable W.
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The simplifications in the FHN model, including reducing four HH variables to two and
replacing specific ion channel dynamics with general excitability and recovery terms,
make it computationally efficient. Despite these simplifications, the FHN model can
effectively reproduce the threshold-based response and refractory behavior characteristic
of neuronal action potentials, making it highly suitable for studying general excitability

in neurons and other excitable systems, such as cardiac cells.
Theoretical Background of the FitzHugh-Nagumo Model

The FitzHugh-Nagumo (FHN) model is a simplified version of the Hodgkin-Huxley
model, designed to capture essential neuronal excitability and recovery dynamics with
reduced computational complexity. It uses a pair of coupled nonlinear differential
equations to simulate the basic behavior of a neuron, specifically focusing on action
potential generation and the return to a resting state. The FHN model is particularly useful
for studying general excitability and threshold behavior in neurons, and its simplicity
allows it to be adapted for large-scale simulations and real-time applications in

neuromorphic computing.
Derivation of the Model’s Equations

The FHN model is derived by simplifying the Hodgkin-Huxley equations, which
originally described ion flows across a neuronal membrane. By reducing the four-variable
Hodgkin-Huxley system to a two-variable model, FitzHugh and Nagumo focused on
capturing core neuronal dynamics without needing detailed simulation of specific ion
channels. The FHN model is formulated with two main differential equations:

dV—V v W+1
dt 3

W eV ta—bw
g €W +a )

where:
«  V represents the membrane potential (the excitability variable),
» W isthe recovery variable, representing the slower inhibitory processes
« Iisan external stimulus current applied to the neuron

* €, a,and b are parameters that govern the model’s dynamics.
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These equations capture the essential aspects of action potential generation and return to
resting state. The first equation describes how the membrane potential V evolves, with
nonlinear terms that capture excitability and threshold dynamics. The second equation
models the recovery variable W, which regulates the return to the resting state after an

action potential.
3.3 Parameters and Variables

For this study, the following parameters and variables are essential in analyzing the
FHN model:

V (Membrane Potential or Excitability Variable)

The variable V' represents the membrane potential of the neuron, which is the electrical
charge difference across the neuronal membrane. In the FHN model, this variable is

central to neuronal excitability and action potential generation. When V' reaches a

3

threshold, it produces a rapid spike, representing neuronal firing. The term V—V?

introduces a nonlinear relationship, allowing the model to simulate both stable and

unstable states, which are key to capturing neuronal excitability.
W (Recovery Variable)

W represents a slower recovery process that counterbalances excitability. Often
associated with processes like potassium ion flow or delayed rectifier currents, W helps
bring V back to its resting state after an action potential. This recovery phase prevents
continuous firing and provides a refractory period before the neuron can fire again. The
term e(V + a — bW) controls this recovery, where e dictates the speed of recovery

relative to excitability.
I (External Stimulus Current)

The parameter I represents an external stimulus current applied to the neuron, allowing
for the simulation of external signals that drive the neuron to its firing threshold. By
varying I, it is possible to study how different input levels affect neuronal excitability and

firing patterns, making I crucial for simulating realistic neuronal responses.
€ (Recovery Speed Parameter)

The parameter e controls the speed of the recovery variable W relative to changes in V.

Typically, € is a small positive constant, reflecting that W evolves more slowly than V.
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A smaller e value creates a distinct separation between fast excitability and slow recovery
dynamics, critical for maintaining stability in the model and accurately simulating

neuronal firing rhythms.
a and b (Recovery Equation Parameters)

The parameters a and b influence the shape and stability of the recovery dynamics.
Parameter a shifts the resting position of the membrane potential V, altering the firing
threshold, while b modulates feedback from W back to V. Adjusting a and b allows for
modeling neurons with different excitability profiles, making these parameters valuable
for exploring diverse firing behaviors.
The FHN model effectively captures the interplay between excitability and recovery,
replicating essential neuronal behaviors. Adjusting the values of €, a, b, and I allows for
simulating various neuronal responses, from isolated spikes to sustained oscillatory
patterns. The model’s simplicity provides a versatile framework for studying excitability
in neurons, with parameters that offer flexibility for specific experimental conditions or

neural network configurations.
Dynamical Systems and Phase Space Analysis

The FitzHugh-Nagumo (FHN) model, as a nonlinear dynamical system, exhibits a range
of behaviors that can be analyzed using stability, bifurcation, and phase space analyses.
These methods are crucial for understanding how the model’s variables—particularly the
excitability variable V' and the recovery variable W—evolve over time and respond to
changes in parameters. By examining the stability of equilibrium points and investigating
bifurcation conditions, we can gain insight into the model’s ability to replicate neuronal
firing, excitability thresholds, and oscillatory dynamics. Phase space analysis further
enables the visualization of trajectories and dynamic states, making it possible to track

the system’s behavior under various initial conditions and external stimuli.
Stability and Bifurcation Analysis

Stability analysis in the context of the FHN model involves determining whether small
perturbations around equilibrium points lead the system back to equilibrium (stable) or
cause divergence away from it (unstable). The equilibrium points, or fixed points, are

found by setting the derivatives in the differential equations of the FHN model to zero:
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dV—O d =0
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Solving these equations simultaneously gives the equilibrium values of V and W. To
analyze the stability of these equilibrium points, we examine the **Jacobian matrix** of
the system, derived by taking the partial derivatives of each equation with respect to V

and W:

of(v,w) of(v,w)

j=|. v oW
dg(v,w) ag(V,w)
v oW

where f(V,W) =V — V; —W+Tand g(V,W) =€e(V + a— bW). The eigenvalues of

the Jacobian matrix determine the nature of the equilibrium point:

o If both eigenvalues have negative real parts, the equilibrium is a stable node or
focus, meaning the system will return to this point if slightly perturbed.
o If any eigenvalue has a positive real part, the equilibrium is unstable, and nearby

trajectories will diverge from this point.

By varying parameters such as €, a, b, and I, the stability of these equilibria can change,
resulting in bifurcations. Bifurcation analysis examines these transitions, particularly the
Hopf bifurcation, which occurs when a pair of complex conjugate eigenvalues crosses the
imaginary axis, leading to oscillatory solutions. This bifurcation is essential in the FHN
model as it explains the onset of oscillatory behavior, corresponding to repetitive neuronal

firing or sustained action potentials under certain conditions.
Explanation of Phase Space and Trajectories

Phase space is a conceptual space in which each point represents a unique state of the
system, defined by the values of the variables V (membrane potential) and W (recovery
variable) at any given time. For the FHN model, phase space provides a visual framework
for analyzing the dynamic behavior of the model. A phase space plot of V versus W
reveals the trajectory or path that the system follows over time for specific initial

conditions and parameter values.

In a two-dimensional phase space(with axes V and W), the trajectories represent the

evolution of the neuronal state. Key features in the phase space include:
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e Fixed Points (Equilibria): Points where Z—Z =0 and Z—VZ = 0, indicating steady
states. In the FHN model, these points are crucial for understanding whether the
neuron will remain at rest or exhibit activity.

e Limit Cycles: Closed trajectories around a fixed point, indicative of oscillatory
behavior. In the FHN model, the presence of a limit cycle corresponds to repetitive
spiking or oscillations in the neuron, a critical aspect of neuronal firing.

e Trajectories: Paths that show how the system evolves from any initial condition
in phase space. By plotting trajectories starting from different initial conditions,
we can determine whether the system approaches a stable point, oscillates in a

limit cycle, or diverges.

Phase space analysis enables a qualitative understanding of the FHN model’s behavior
by showing how the neuron responds to different stimuli and initial states. For instance,
when the external current I increases, the phase space may shift, moving the system from
a stable equilibrium to a limit cycle, representing the transition from a resting state to
repetitive firing. This shift corresponds to a **bifurcation**, as the system’s qualitative

behavior changes with varying 1.
Trajectory Behavior in Response to Parameter Changes

Different parameter values in the FHN model produce characteristic trajectories in phase

space:

e Subthreshold Behavior: When the input current I is low, the trajectories typically
settle towards a stable equilibrium point, showing that the neuron remains in a
resting state.

e Threshold Behavior: For values of I that push V close to a critical threshold,
trajectories may spiral towards a limit cycle, indicating repetitive firing as the
system oscillates. This behavior is especially relevant in modeling neurons with
high excitability.

e Oscillatory and Spiking Behavior: For higher values of I, the trajectories stabilize
into a limit cycle, producing a sustained oscillatory response that represents
continuous neuronal spiking. In phase space, this appears as a closed loop around

an unstable equilibrium, characteristic of limit cycles in dynamical systems.
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The combination of stability, bifurcation, and phase space analysis offers a
comprehensive understanding of the FHN model’s dynamic behavior. By exploring these
aspects, researchers can predict how a neuron will respond to various conditions, simulate
patterns of excitability and oscillation, and observe the effects of parameter tuning on
neuronal firing. This foundational understanding is essential for applying the FHN model
to simulate complex neural networks and for interpreting the dynamic responses of

neurons in various physiological and computational contexts.

3.4 Model Assumptions and Limitations
The FitzHugh-Nagumo (FHN) model is a simplified version of the Hodgkin-Huxley
model, designed to capture essential dynamics of neuronal excitability and recovery
without extensive biophysical detail. While its simplicity makes it valuable for studying
general excitability and threshold behavior, it comes with several assumptions and
limitations. The FHN model abstracts many biological complexities, using simplified
mathematical terms to represent neuronal processes, which can limit its biological
accuracy in certain contexts. This section discusses the key assumptions and limitations

associated with the FHN model.

3.4.1 Assumptions in the Model

The FHN model is built on several core assumptions that simplify neuronal behavior:

Two-Variable Simplification (Excitability and Recovery)

The FHN model assumes that neuronal dynamics can be captured using two variables: V/,
representing membrane potential (excitability), and W, representing a slow recovery
process. This contrasts with the four-variable Hodgkin-Huxley model, which includes
specific ionic currents (sodium and potassium) and gating variables for each ion channel.
This two-variable approach allows efficient computational simulations but sacrifices the
detailed representation of specific ion channel dynamics. As a result, the FHN model
provides a general picture of excitability and recovery but does not account for individual

ionic conductances or channel-specific kinetics.
Simplified lonic Currents

Instead of modeling the exact contributions of sodium and potassium currents, the FHN

3
model uses a cubic term, V — V? to capture nonlinear excitability dynamics. This term is

a mathematical abstraction, chosen to replicate threshold-like responses in membrane
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potential. This simplification assumes that the main features of neuronal firing, such as
threshold-crossing and recovery, can be approximated by this cubic relationship.
However, it does not account for the specific role of individual ion channels, making the

model less accurate for studies that require detailed understanding of ionic currents.
Constant Recovery Dynamics

The recovery variable W is assumed to evolve at a slower, constant rate compared to the
excitability variable V. This is controlled by the parameter €, typically set to a small value,
creating a separation of timescales. This assumption introduces a fixed relationship
between fast excitability and slower recovery processes, reflecting the typical firing and
refractory behavior of neurons. However, in real neurons, recovery dynamics can vary
depending on factors such as ion channel kinetics, temperature, and extracellular ion
concentrations. The FHN model does not account for these variations, limiting its

accuracy in representing diverse recovery dynamics.
External Stimulus as a Constant Input

The model assumes that external stimuli can be represented as a constant input current [.
While sufficient for simulating a steady excitation threshold, real neuronal inputs are
often complex and vary in time, influenced by factors such as synaptic inputs from other
neurons and fluctuating external signals. This assumption limits the model’s applicability
for studying neurons that receive temporally or spatially varying inputs, as it cannot

directly simulate responses to dynamic or spatially patterned stimuli.
Linearity in Recovery Term

The recovery dynamics, represented by W, are modeled linearly, as shown in the equation

‘;—V: = e(V + a — bW). This assumes a simple linear trajectory for recovery, without non-

linear complexities. In real neurons, recovery processes, such as potassium channel
kinetics, often exhibit non-linear behaviors. The FHN model does not capture these
dynamics, limiting its ability to represent certain neuronal behaviors arising from non-

linear recovery processes.

3.4.2 Limitations of the Model

The assumptions underlying the FHN model lead to certain limitations, which constrain

its applicability for specific types of neuronal studies:
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Lack of Detailed lon Channel Dynamics

The primary limitation of the FHN model is its lack of detailed representation of ionic
conductances and channel kinetics. In contrast to the Hodgkin-Huxley model, which
explicitly models sodium and potassium currents, the FHN model uses simplified terms
that provide a high-level approximation of excitability and recovery. This abstraction
means the FHN model is unsuitable for studies requiring precise knowledge of ion
channel behavior, such as those examining the effects of specific ion channel blockers on

neuronal firing.
Reduced Biological Realism

Due to its reliance on mathematical abstractions, the FHN model lacks certain biophysical
features of real neurons, such as synaptic integration, spatial compartmentalization, and
temperature-dependent changes. The model assumes a single, homogeneous
representation of neuronal dynamics, ignoring structural complexities found in real
neurons. This limitation reduces the model’s utility in detailed neurophysiological
simulations where spatial or compartmental dynamics (e.g., dendritic and axonal effects)

are important.
Inability to Capture Complex Firing Patterns

The FHN model is limited in its ability to replicate complex firing patterns, such as
bursting, chattering, or irregular spiking, which are often observed in biological neurons
under various conditions. These behaviors typically arise from complex interactions
among multiple ion channels and intracellular processes, which the FHN model does not
account for. Consequently, the FHN model is best suited for studying basic excitability
and threshold behavior but may not accurately capture more intricate neuronal firing
patterns.

Sensitivity to Parameter Tuning

The FHN model’s behavior is sensitive to the values of its parameters, such as €, a, b,
and I. Small changes in these parameters can significantly alter the model’s stability and
oscillatory properties, making it challenging to tune for accurate simulation of specific
neuronal types. This sensitivity limits the model’s robustness and requires careful
parameter selection to maintain realistic firing behaviors, especially in network

simulations where consistency across multiple neurons is necessary.
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Limited Applicability to Network Simulations

While the FHN model’s simplicity allows for computational efficiency in simulating
individual neurons, it limits the effectiveness in large-scale network simulations where
interaction complexities are important. The FHN model does not include mechanisms for
realistic synaptic interactions, plasticity, or adaptive connectivity, all of which are
essential in real neural networks. For studies involving synaptic interactions or network-
level behaviors such as synchronization and plasticity, the FHN model may not provide
sufficient detail, requiring researchers to modify the model or select a more complex

framework, such as the Hodgkin-Huxley model or its derivatives.

In summary, the FitzHugh-Nagumo model provides a simplified yet effective framework
for studying general neuronal excitability and threshold dynamics. However, its
assumptions—such as the reduction to two variables, simplified ionic currents, and linear
recovery dynamics—impose limitations on its applicability. While the FHN model is
well-suited for basic excitability studies and large-scale simulations requiring
computational efficiency, its lack of detailed ion channel dynamics, sensitivity to
parameter tuning, and reduced biological realism restrict its utility in studies that require
intricate neuronal behaviors or network-level interactions. Researchers must consider
these limitations when applying the FHN model, particularly in contexts where precise
biophysical detail or complex neuronal dynamics are essential.
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CHAPTER 4: METHODOLOGY

This chapter provides a detailed explanation of the methodology used to simulate the
FitzHugh-Nagumo (FHN) neuronal model. The methodology covers the research design
and approach, simulation environment, numerical methods, parameter selection,
experimental setup, and validation techniques. By outlining these steps, this chapter
ensures a structured approach to the simulation, calibration, and evaluation of the FHN

model’s behavior.

The research design for this study adopts a computational modeling approach to simulate
and analyze the FitzHugh-Nagumo (FHN) model under a variety of conditions. The
primary aim is to assess the FHN model’s response to different excitability thresholds,
recovery dynamics, and external stimuli, providing insights into its ability to capture
neuronal behaviors such as action potential generation and recovery phases. This research
design systematically implements the model equations in a computational environment,
calibrates critical parameters, and runs simulations to observe the dynamics of the
membrane potential V and recovery variable W over time.

The design is structured into three main phases to ensure thorough investigation and

validation:

Model Implementation: The FHN model equations are implemented in a computational
environment using robust numerical methods to ensure both accuracy and computational
efficiency. The model’s differential equations—representing neuronal excitability and
recovery—are programmed to capture changes in membrane potential and recovery
dynamics over time. The implementation process also includes selecting appropriate

numerical solvers for integrating the model equations accurately.

Parameter Calibration: Model parameters—such as e\epsilon (which controls recovery
speed), a and b (which shape the excitability and feedback dynamics), and | (the external
stimulus)—are calibrated based on values from established literature. Calibration ensures
that the FHN model reflects realistic neuronal dynamics and can produce various neuronal
behaviors, such as steady states, single spikes, or oscillatory firing. Adjustments to these
parameters allow the model to replicate different excitability thresholds and recovery
dynamics, enabling the simulation of specific types of neurons or experimental

conditions.
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Simulation and Analysis: The calibrated model is simulated under multiple
configurations, with parameters adjusted to test different scenarios. Each simulation run
generates time series data for VV and W, which are then analyzed to evaluate neuronal
firing patterns, stability, and responses to external inputs. By examining the trajectory of
V and W over time, we can assess whether the FHN model achieves stable states, limit
cycles, or chaotic behaviors under varying conditions. This data is essential for
understanding the model’s accuracy in representing neuronal excitability, threshold

behavior, and recovery.

Overall, this research design provides a systematic approach to investigating the FHN
model’s capabilities, focusing on its ability to capture essential neuronal dynamics. It
allows us to explore how the model responds to a range of stimuli and parameter settings,
making it valuable for studies in computational neuroscience, neural network modeling,

and related fields.

4.1. Simulation Environment and Tools

All simulations, visualizations, and numerical experiments in this study were conducted
using MATLAB R2023b, a high-level programming environment widely used in
computational neuroscience and mathematical modeling. MATLAB was selected due to
its powerful suite of built-in numerical solvers, customizable plotting functions, and
toolboxes specifically designed for solving systems of ordinary differential equations
(ODEs), performing stability analysis, and generating high-resolution plots. Its efficiency
in handling nonlinear dynamical systems made it an ideal platform for implementing and
exploring the FitzHugh-Nagumo (FHN) model. The simulations were executed on a
personal computer equipped with an Intel Core i7 processor (11th generation), 16 GB
RAM, and Windows 11 operating system. This setup ensured smooth execution of
computationally intensive simulations, particularly during parameter sweeps, network
simulations, and bifurcation analysis, where multiple instances of the FHN model were
evaluated simultaneously. For solving the FHN system, the ode45 solver—based on an
explicit Runge-Kutta (4,5) formula—was utilized extensively. It is well-suited for non-
stiff problems like the FHN model and provides a balance between speed and accuracy.
In scenarios involving high sensitivity to parameter changes or long simulation durations,
adaptive step size control of ode45 allowed for stable and accurate integration of the
differential equations over extended time intervals. Data visualization and analysis were

carried out within the same MATLAB environment. Custom scripts were written to
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generate time series plots, phase portraits, nullclines, vector fields, and Fast Fourier
Transform (FFT) plots. These visualizations provided critical insights into the oscillatory
behavior, threshold phenomena, and response of the system to various external stimuli
and parameter configurations. Moreover, the vector field and nullcline plots were
essential in examining the system’s equilibrium structure and verifying the presence of
limit cycles and bifurcations. To examine the effects of parameter variations, multiple
simulations were automated through loop-based parameter sweeps. Heatmaps, 3D
trajectory plots, and animated phase portraits were also created to gain a deeper
understanding of the dynamic behavior of the model under various conditions. These
results were systematically saved and exported in high resolution for inclusion in the
thesis and further analysis. Overall, MATLAB served not only as a simulation tool but
also as a comprehensive analysis and visualization platform. Its extensive mathematical
libraries and user-friendly coding environment made it possible to implement the FHN
model efficiently, run systematic experiments, and extract interpretable patterns that

contribute to understanding neuronal excitability and network dynamics.

4.2. Euler’s Method

Euler’s Method is one of the simplest and most intuitive numerical approaches for solving
ordinary differential equations (ODES). It is a first-order method, meaning that its error
decreases linearly with smaller time steps. Euler’s Method approximates the solution by
taking small steps forward in time, using the slope of the function at each time step to

estimate the next value.
For a differential equation of the form:

dy_
E—f(t,y)

Euler’s method computes the next value Y.« based on the current value v. and the
function T as:

yn+l: yn+At f(tn‘yn)

In the case of the FHN model, Euler’s Method calculates the values of VY and W at each
time step using their respective equations:

V3
V., =V, + 4 V., — W+ |J
3

W, =W +4 (V,+a bw )

n
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Advantages of Euler’s Method:

Simplicity: Euler’s Method is easy to implement, making it ideal for initial testing and

understanding the basic structure of a numerical integration approach.

Low Computational Cost: The method requires fewer calculations per time step than more

complex methods, making it faster for simple systems or for initial model testing.

Limitations of Euler’s Method:
Accuracy Issues: Euler’s Method is less accurate for nonlinear systems, especially over
long time intervals, because the linear approximation introduces cumulative errors with

each time step.

Stability Constraints: The method can become unstable when applied to stiff systems or
systems with high sensitivity to initial conditions, such as the FHN model. In these cases,

it may produce oscillations or diverging results, even if the real solution remains bounded.

Due to these limitations, Euler’s Method is primarily used for initial testing and validation
of the FHN model setup, to confirm that the equations are implemented correctly. For
simulations requiring higher accuracy and stability, a more advanced method, such as

Runge-Kutta, is preferred.

The experimental setup for simulations follows a systematic process to initialize, run, and
analyze the FitzHugh-Nagumo (FHN) model, allowing for controlled experimentation

and capturing essential neuronal dynamics. The steps are as follows:

e Initialization: Define initial values for V (membrane potential) and W (recovery
variable), setting them near the resting state to observe the model's response to
excitability thresholds and external inputs. The initial values, as seen in the dataset
(fhn.csv), vary based on experimental conditions to simulate different neuronal
states.

e Parameter Configuration: Set values for key parameters—e\epsilon, a, b, and I—
based on calibrated values. These parameters are adjusted to model specific
behaviors, such as spiking, oscillations, or resting states. In the dataset, each
simulation run uses unique configurations of these parameters, representing
different neuron-like behaviors.

e Time Step Selection: Select an appropriate time step (e.g., At=0.01) according to

the numerical method chosen for solving the differential equations. A smaller time
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step ensures greater accuracy in capturing fast changes in V and W, though it
requires more computation time, especially in long simulations.

e Integration Using RK4: Implement the fourth-order Runge-Kutta (RK4) method
to integrate the differential equations numerically over a defined time period. This
method is chosen for its stability and accuracy in nonlinear systems. The dataset
reflects the integration process, capturing values of V and W at each time step.

e Data Collection: Collect time series data for V and W, tracking changes in
excitability and recovery over time for each parameter set. This data, stored in
fhn.csv, includes detailed records for each simulation, allowing for further
analysis of the dynamic behavior of the FHN model across varying conditions.

e Visualization and Analysis: Use the collected data to plot phase space diagrams
and time series for V and W, providing a visual representation of the system’s
behavior. These plots enable the assessment of stable states, oscillatory patterns,
and neuronal responses to external stimuli. Patterns observed in these plots are

valuable for interpreting the FHN model's ability to simulate neuronal dynamics.

This structured setup ensures that each simulation reflects the desired initial conditions,
parameter configurations, and external inputs, allowing for comprehensive analysis and

validation of the FHN model’s response across a range of neuronal behaviors.

4.3. Runge-Kutta Method (Fourth Order, RK4)

The fourth-order Runge-Kutta (RK4) method is a more advanced and widely used
numerical integration technique, known for its accuracy and stability in solving
differential equations. Unlike Euler’s Method, which estimates the slope at a single point,
the RK4 method evaluates the function at multiple points within each time step,

improving the accuracy of the solution by considering intermediate slopes.
For a differential equation of the form:

dy
—7=1
T (t,y)

the RK4 method computes the next value ¥... using four intermediate slopes:
kl: f (tn ’ yn)

At k, At
k2= f (tn+7, yn+ 12 )
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At k, At )
2

k3= f (tn+_l Yot 2
k= f(t,+ At, y,+k; At)

Then, the next value ¥..: is calculated as:

At

Yna= yn+F (k1+2 k,+2 k3"'k4)

For the FHN model, the RK4 method calculates the next values of V and W at each
time step as follows:

1. Calculate intermediate slopes Ki1.Kz. Kz, and k. for both vV and W using the
FHN model equations.

1. Use the weighted average of these slopes to determine the values of V-1 and
W...1 for the next time step.

Advantages of the RK4 Method:

e High Accuracy: The fourth-order accuracy of RK4 significantly reduces error
compared to Euler’s Method, making it suitable for capturing complex dynamics
in nonlinear systems like the FHN model.

e Stability: RK4 maintains stability over longer simulations and is less sensitive to
changes in time step size than Euler’s Method, allowing for larger steps without

compromising accuracy.

Limitations of the RK4 Method:

e Higher Computational Cost: The RK4 method requires four evaluations of the
differential equations per time step, increasing computational demand compared
to Euler’s Method. However, for the accuracy and stability it provides, this cost

is often justified.

The RK4 method is chosen as the primary integration technique for this study because it
balances accuracy and computational efficiency, making it ideal for simulating the FHN

model over long periods. The method captures the model’s nonlinear excitability and

recovery dynamics with high fidelity, accurately reflecting changes in ¥ and W and
maintaining stability even when simulating oscillatory and threshold behaviors over

extended time intervals.
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4.4 Parameter Selection and Calibration

The selection and calibration of parameters are crucial for ensuring that the FHN model

accurately reflects the behavior of biological neurons. The following parameters are

adjusted based on literature values and specific research objectives:

e\epsilon: Controls the speed of recovery relative to excitability. A smaller
e\epsilone value (e.g., €=0.1\epsilon = 0.1e=0.1) ensures a clear separation of
timescales, with excitability dynamics evolving faster than recovery dynamics,
mimicking real neuronal behavior.

a and b: Determine the shape and stability of the recovery dynamics. Literature
suggests values for a and b around a=0.7 and b=0.8, which position the membrane
potential in a stable state with an appropriate threshold for firing. Adjustments to
these values allow the model to simulate different neuron types with varying
excitability profiles.

I: Represents an external stimulus current. The value of | is varied to observe the
threshold behavior of the neuron, simulating excitability under different levels of
input. Higher values of 111 push the neuron closer to its firing threshold, allowing

exploration of its response to stimuli.

Calibration involves tuning these parameters to replicate known neuronal behaviors,

such as single spikes, oscillatory firing, and resting states. This calibration process

ensures that the model parameters are appropriate for the intended simulations,

providing realistic excitability and recovery dynamics.

4.5 Algorithm Implementation and Flowcharts

The implementation of the FitzHugh-Nagumo model simulation framework required
careful algorithm design to ensure efficiency, accuracy, and flexibility. This section
details the algorithmic approaches employed, providing flowcharts and pseudocode to
illustrate the computational workflow.
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FitzHugh-Nagumo Model Simulation Algorithm

[ Phase 1: Initialization ]

Load Parameters (e, a, b, /)

v

Set Initial Conditions (V, W)

.

Configure Numerical Method

[ Phase 2: Integration ]

[ Time Loop (f = tstart to £, end)

.

[ Calculate FHN Derivatives

No (Euler)

Simple Update Using RK47?

[ Compute k1, k2, k3 and k4 ad Update J

!

Adaptive Step?

Adjust At

‘ Store Results and Advance Time }

‘ Phase 3: Analysis and Output ]

[ Analyze Results (Spike Detection, etc)]

‘ Generate Visualizations and Reports }—

Figure 0.1 Complete Flowchart

4.5.1 Main Simulation Algorithm
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The core simulation algorithm followed a structured approach designed to maximize both
computational efficiency and numerical accuracy. The algorithm proceeded through four
distinct phases:

1.

configured the computational environment.

2.

numerical methods.
3. Analysis Phase: Extracted relevant features and metrics from the simulation
results.
4. Output Generation Phase: Produced standardized visualizations and data files.

Initialization Phase: Established simulation parameters, allocated memory, and

Integration Phase: Advanced the system state through time using appropriate

Table 4.6 illustrates the logical organization of the codebase, showing the hierarchical
structure and interrelationships between components:

Table 0.1 the logical organization of the codebase

Modu | Key Files Primary | Dependenc
le Functions | ies
Core | fhn_derivatives.m<br>fhn_jacobian.m<br>fhn_n | Define None
Mathe | ullclines.m mathemati
matic cal
al structure<
Functi br>Provid
ons e

analytical

componen

ts
Nume | fhn_euler.m<br>fhn_rk4.m<br>fhn_adaptive.m< | Solve Core
rical br>fhn_solver.m differentia | Mathematic
Integr I al Functions
ation equations

<br>Contr

ol

numerical

accuracy
Analy | fhn_spike_detector.m<br>fhn_phase_analysis.m | Extract Core
Sis <br>fhn_bifurcation.m<br>fhn_frequency analy | features Mathematic
Tools | sis.m from al
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results<br
>Classify
dynamical

behaviors

Functions<
br>Numeri
cal

Integration

Visual
izatio

n

plot_time_series.m<br>plot_phase_space.m<br>

plot_bifurcation.m<br>plot_parameter_map.m

Generate
standardiz
ed
graphics<
br>Provid
e visual

insights

Analysis

Tools

Utiliti
es

fhn_parameter_sweep.m<br>fhn_data_export.m

<br>thn_configuration.m

Coordinat
e
simulation
workflow
<br>Mana
ge
and

data

parameter

S

All

modules

other

The master script run fhn simulation.m orchestrated the overall simulation
process, calling appropriate functions from each module according to the specified
simulation parameters and objectives. This modular organization facilitated code
maintenance, allowed for independent testing of components, and supported extension
with new capabilities.

46.2V

alidation and Testing Procedures

The software implementation underwent rigorous validation to ensure correctness,
numerical stability, and biological plausibility. The validation strategy incorporated
multiple complementary approaches:

1. Unit Testing: Individual functions were tested against known analytical solutions
or manually verified calculations. For example, the Jacobian calculation was
validated by comparing numerical results with symbolic differentiation.
Integration Testing: Module interactions were verified through controlled
scenarios with predictable outcomes. This included testing data flow between

numerical integration and analysis components.
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3. System Testing: End-to-end simulations were compared with published results
from other FHN model implementations, verifying qualitative and quantitative
consistency.

4. Regression Testing: Automated test suites ensured that modifications to the
codebase did not inadvertently alter established behavior in existing functionality.

5. Edge Case Testing: Extreme parameter values and unusual initial conditions
were tested to verify robust handling of boundary conditions and numerical
challenges.

6. Conservation Testing: Physical principles, such as appropriate boundedness of
solutions, were verified across parameter space to ensure no violations of
fundamental constraints.

Table 0.2 summarizes the validation tests performed and their corresponding metrics

Test Specific Tests Acceptance Results
Category Criteria
Numerical | Comparison with | Error  reduction | Passed: RK4 showed
Accuracy | analytical consistent  with | expected 4th-order
solutions<br>Convergen | method convergence<br>Passe
ce rate verification order<br>Maximu | d: Maximum relative
m relative error < | error 5.2x107°
10~
Bifurcation | Hopf bifurcation | Correct Passed: 98.2% correct
Detection | identification<br>Saddle | classification > | classification<br>Pass
-node bifurcation | 95%<br>Paramete | ed: Mean parameter
detection r value accuracy | error 0.4%
within 1%
Biological | Action potential | Shape consistency | Passed: Waveform
Plausibility | waveform<br>Frequenc | with experimental | correlation coefficient
y-current relationship data<br>Linear f-1 | 0.92<br>Passed:
relationship for I > | Linear relationship
threshold confirmed (r> = 0.97)
Performanc | Execution < 100ms per time | Passed: Mean
e time<br>Memory usage | unit execution time
simulated<br>< 43ms/time
100MB for | unit<br>Passed: Peak
standard memory usage 68MB
simulations
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All validation tests were documented with specific test cases, expected outcomes, and
actual results. This comprehensive validation approach ensured that the software
implementation reliably represented the mathematical FitzHugh-Nagumo model and
produced results consistent with both theoretical expectations and experimental
observations.

4.6.3 Data Management and Output Format

Efficient data management was essential for handling the large volume of simulation
results generated during parameter sweeps and sensitivity analyses. A standardized data
structure was implemented to ensure consistency and traceability throughout the research
workflow:

1.

Simulation Configuration: Each simulation run was associated with a
configuration structure containing:

o Complete parameter set (g, a, b, I)

o Numerical method specifications (algorithm, step size, tolerance)

o Initial conditions and time domain

o Timestamp and unique identifier
Primary Output Structure: Simulation results were organized in a consistent
structure:

matlab

results = struct(...
"parameters', parameter_struct,
"time', time_vector,
'V', V_time_series,
'"W', W_time_series,
'events', event_struct,
'analysis', analysis_struct,
'metadata’, metadata_struct ...

)5

Hierarchical Storage: Results were saved in a hierarchical folder structure
organized by parameter region and simulation type, with standardized naming
conventions encoding key simulation parameters.
Multi-Format Export: Data was exported in multiple formats to support different
analysis needs:

o MATLAB (.mat) files for primary storage and advanced analysis

o CSV files for interoperability with other software

o JSON files for configuration settings and metadata

o High-resolution image files for publication-quality visualizations
Automated Cataloging: A central database maintained references to all
simulation runs, enabling quick retrieval of specific results based on parameter
queries or behavioral characteristics.
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Table 0.3 describes the standardized output files generated for each simulation:

File Content Format Primary Use
Type
Raw Complete time series | MATLAB Primary data
Results data<br>Parameter .mat archive<br>Further
values<br>Initial conditions analysis
Time V and W values at each time | CSV Data
Series point<br>Event markers sharing<br>External
Export (spikes, etc.) analysis
Phase V-W phase | PNG/SVG/P | Visualization<br>Public
Plot portrait<br>Nullclines<br>Fi | DF ation figures
xed points
Bifurcati | Bifurcation PNG/SVG/P | Regime
on structure<br>Parameter DF identification<br>Public
Diagram | regions ation figures
Analysis | Key metrics (firing rate, | TXT/CSV Quick
Summar | etc.)<br>Classification results reference<br>Comparati
y ve analysis
Metadata | Complete simulation | JSON Reproducibility<br>Scie
Log provenance<br>Software ntific documentation
version<br>Timestamp<br>S
ystem information

This comprehensive data management approach ensured full traceability between
simulation parameters, raw results, and derived analyses, supporting both the immediate
research objectives and potential future extensions or reanalyses of the data.

In summary, the software implementation of the FitzHugh-Nagumo model simulation
framework provided a robust, validated platform for investigating neuronal dynamics
within this mathematical model. The modular architecture, rigorous validation
procedures, and systematic data management approach ensured reliable results that could
be meaningfully interpreted in the context of computational neuroscience.
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5. Simulation Results and Discussion
5.1. Baseline Simulation
The baseline simulation serves as the foundation for understanding the FitzHugh-Nagumo
(FHN) model’s behavior under typical parameter settings. By simulating the model with
default values, we can observe the core dynamics of neuronal excitability and recovery
without additional perturbations or parameter adjustments. The parameters for this
baseline simulation are set based on values commonly used in the literature to represent

generic neuronal behavior.

Baseline Simulation Parameters

For the baseline simulation, the following parameters were used:

€=0.1: Controls the speed of recovery relative to excitability, allowing for a
separation of timescales between V (fast variable) and W (slow recovery
variable).
e a=0.7: Influences the excitability threshold, ensuring that the membrane potential
remains stable unless sufficiently stimulated.
e b=0.8: Shapes the recovery feedback, helping stabilize the neuron after excitation.
e |=0.5I: Represents a constant external stimulus current, modulating the threshold
for firing.

With these default values, the FHN model generates oscillations in both the membrane
potential (V) and recovery variable (W). These oscillations represent a stable, periodic
firing pattern typical of neuronal action potentials, where the neuron undergoes cycles of

excitation and recovery.

The baseline simulation reveals the following dynamics:

o Membrane Potential (V): Oscillates in a repetitive cycle, indicating regular
action potential firing. This behavior shows the neuron reaching a threshold,
depolarizing, and then repolarizing back to rest.

o Recovery Variable (W): Slowly follows the oscillations of V, displaying delayed
recovery that corresponds to the neuron’s refractory period. The slow recovery
after each spike reflects the typical delay in action potential recovery, a crucial

aspect of neuronal behavior.
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The baseline oscillations in V and W demonstrate the model’s ability to simulate neuronal

firing and recovery dynamics, with the parameters producing a steady rhythm of

excitability and recovery.

Table 5.1:Baseline Simulation Results

Parameter | Value | Observation in Simulation

€ 0.1 Controls recovery speed. Slower oscillations in WWW show
delayed recovery.

A 0.7 Sets excitability threshold. Keeps VVV in a stable state unless
stimulated by I1I.

B 0.8 Modulates recovery stability, providing feedback that prevents
oscillatory instability.

I 0.5 Induces periodic firing in VVV, with each cycle representing a
neuron spike.

The table summarizes the roles of each parameter and their effects on the simulated

dynamics of the FHN model. These baseline values provide a steady oscillatory pattern,

a critical benchmark for further sensitivity and bifurcation analysis.

We will now visualize the baseline simulation by plotting the time series of V and W to

illustrate their oscillatory behavior over time.

FitzHugh-Nagumo Model Simulation (/. = 0.5 pAfom?)

Membrane Patential Wit) over Time

Membrane Fotentizl ¥it) (dimenslonless)

-05F

2% S0 i 140 FED 150 1% 200
Time {ms)

Phase Plane: Membrane Potential vs Recovery Variable

Recovery Variable W (dimensionless)

H
15 1.0 0.5 [ 0.5 0 1.5 2.0
Memhbrane Potential W (dimensionless)
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Figure 5.1 Baseline simulation of the FitzHugh-Nagumo model showing the membrane
potential (V) and recovery variable (W) over time

The graph shows the baseline dynamics of the FitzHugh-Nagumo model, illustrating the
relationship between the membrane potential (V) and the recovery variable (W) over
time. Initially, V dips below -2.0, indicating a resting state, while W gradually decreases.
Around t=20 sharply spikes to a peak near 1.7, representing an excitability event similar
to an action potential, followed by a delayed rise in W to about 1.5. This delay reflects
the model's refractory period, where the recovery variable prevents immediate re-firing.
After V peaks, it drops back below zero, approaching -2.0 at t=35, marking the end of the
excitability phase. Both variables then stabilize, returning to baseline as VVV and WWW
prepare for potential future excitability. This cycle captures the essential dynamics of
neuronal firing and recovery, illustrating how the FHN model represents excitability,
refractory period, and return to rest.

5.2.Parameter Variation and Sensitivity Analysis

The FitzHugh-Nagumo (FHN) model is a mathematical simplification of neuronal
excitability dynamics, and its behavior is significantly affected by key parameters: ¢, a,
b, and I. These parameters determine the speed of recovery, the excitability threshold, the
stability of recovery, and the external input’s influence on neuronal firing. By
systematically varying each parameter while keeping others constant, we can understand
the model’s sensitivity and robustness, and identify how each parameter contributes to
the generation of specific firing patterns and excitability dynamics. Sensitivity analysis is
critical for both understanding the model's behavior and assessing its ability to replicate

various types of neuronal responses.
5.2.1. Parameter Analysis

€. Recovery Speed Parameter

Function: This parameter controls the rate at which the recovery variable W adjusts in
response to changes in V. Lower values of €\epsilone create a clear separation of
timescales between the fast excitability (action potential) and slow recovery (refractory

period) phases.

Range and Observations: For this analysis, we vary €\epsilone in the range of [0.05, 0.2].

Smaller values (e.g., 0.05) slow the recovery phase, increasing the oscillation frequency
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in V as W takes longer to return to baseline. In contrast, higher values (e.g., 0.2) allow W

to recover faster, resulting in shorter refractory periods and more frequent oscillations.

Biological Interpretation: A low € value mimics neurons with a slow recovery phase,
similar to neurons that undergo prolonged refractory periods after firing. Higher values
simulate faster recovery, characteristic of neurons that can fire at higher frequencies.

a: Excitability Threshold Parameter

Function: The parameter a sets the threshold for neuronal excitability, determining how
easily the neuron reaches a state where it can fire. Lower values of a make the neuron

more excitable, while higher values raise the threshold.

Range and Observations: Varying a in the range of [0.5, 0.9] reveals that lower values
(e.g., 0.5) lead to more frequent spikes as the neuron reaches the excitability threshold
more easily. Higher values (e.g., 0.9) increase the threshold, reducing spike frequency or
potentially leading to a resting state if the input stimulus | is not high enough to cross the
threshold.

Biological Interpretation: Changes in a correspond to variations in neuronal excitability
across neuron types. Lower thresholds replicate highly excitable neurons, such as those
in sensory pathways that respond readily to input, while higher thresholds reflect neurons

with lower sensitivity to inputs, as seen in some inhibitory neurons.
b: Recovery Feedback Parameter

Function: The parameter b affects the stability and feedback strength of W. It modulates
how strongly W influences the membrane potential V and how it stabilizes after firing.

Range and Observations: Testing b within [0.7, 1.0] shows that increasing b (e.g., 1.0)
provides stronger recovery feedback, producing stable and regular oscillations in V.
Lower values (e.g., 0.7) weaken the feedback, occasionally leading to irregular or

unstable oscillations in V, especially under high input I.

Biological Interpretation: Higher values of b mimic neurons with robust feedback
mechanisms, stabilizing recovery dynamics after firing. Lower b values correspond to

neurons with weaker recovery, potentially leading to unstable or variable firing patterns.

I: External Stimulus Current

66



Function: | represents an external stimulus current, simulating inputs that bring the neuron
closer to or above its firing threshold. Varying I provides insights into the neuron’s

response to different levels of stimulation.

Range and Observations: Adjusting | from 0.3 to 1.2 demonstrates that lower values (e.qg.,
0.3) may not provide enough input to reach the firing threshold, resulting in sub-threshold
oscillations or resting states. Moderate values (e.g., 0.5) initiate stable oscillations, while

higher values (e.g., 1.2) cause rapid and frequent firing in V.

Biological Interpretation: This variation simulates neurons exposed to different input
intensities, where low | represents sub-threshold stimuli (as seen in resting or inhibited
neurons), and high | reflects strong synaptic inputs or external stimulation that push

neurons to fire consistently.

Table 5.2:Parameter Sensitivity Analysis

Parameter | Default | Range Observed Effect on Model Behavior
Value Tested

€ 0.1 [0.05, Controls recovery speed. Lower values increase
0.2] the refractory period and slow oscillation
frequency.

A 0.7 [0.5,0.9] | Sets excitability threshold. Lower aaa values
increase firing rate and sensitivity to external
input.

b 0.8 [0.7,1.0] | Determines feedback strength of recovery.

Higher values stabilize oscillations, while lower

values may lead to irregular firing.

I 0.5 [0.3, 1.2] | Modulates excitability through external input.
Higher I11 induces frequent spiking, lower 111 can

lead to sub-threshold activity or resting state.

Parameter Variation and Sensitivity Analysis

We plot the time series of V for different values of each parameter to illustrate how
variations affect the model’s dynamics. Each parameter is varied individually while

others remain at their default values.
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Effect of Varying Iex on Membrane Potential V(t)

t

2r P .
Iext=0'3
15 e 700
| =07
ext

H —lea =00

—_— =11

0.5

Membrane Potential V(t)
o
T

0.5
_1 _ \ - - - -
-1.5
2 I 1 I 1 1 V L V ]
0 20 40 60 80 100 120 140 160 180 200
Time

Figure 5.2:response of membrane potential V' over time for different values of one

parameter

Each subplot shows the response of membrane potential V over time for different values

of one parameter, highlighting the impact on the model’s oscillatory behavior:

e Sensitivity to e Lower € results in slower oscillations in W, increasing the
neuron’s refractory period and leading to slower firing rates in V. Higher € values
lead to faster oscillations, suggesting that the speed of recovery is crucial for
regulating firing frequency.

e Sensitivity to a: Decreasing a lowers the excitability threshold, making the neuron
more responsive to input and producing frequent spikes. Increasing a raises the
threshold, which reduces firing, sometimes leading to a quiescent (non-firing)
state.

e Sensitivity to b: Higher values of b result in stable oscillations due to stronger
recovery feedback, while lower values cause irregular firing patterns, indicating
that b plays a role in maintaining firing stability.



e Sensitivity to I: Increasing | induces frequent and sustained firing, simulating the
effect of strong excitatory input on neurons. Lower I reduces excitability, leading

to a lower rate of action potentials or resting states.

In summary, this analysis confirms that each parameter contributes uniquely to the
model’s excitability, recovery dynamics, and stability. By carefully tuning these
parameters, the FHN model can simulate diverse neuronal behaviors and firing patterns,

enhancing its applicability in computational neuroscience.

5.3.Bifurcation Analysis and Excitability Patterns

Bifurcation analysis is essential for understanding how the FitzHugh-Nagumo (FHN)
model transitions between different dynamical states under varying conditions. By
systematically varying a parameter, we can observe how the behavior of the model
changes, identifying thresholds at which the system shifts from one pattern to another.
Such shifts, or bifurcations, are particularly important in neuroscience, as they mirror

neuronal excitability patterns, such as transitioning between resting and spiking states.

In this analysis, we focus on:
Generating bifurcation diagrams by varying the external stimulus I.
Exploring the excitability and pattern formation in the FHN model.

Table 5.3:FitzHugh-Nagumo model responds to variations in the external stimulus |

External Observed Behavior | Interpretation

Stimulus of Membrane

(r Potential (V)

1<0.51 Single, stable peak of | Neuron is in a resting state. Low external input

V; remains near | keeps the neuron below the firing threshold,

resting state with no oscillations.

0.5<1<0.90 Periodic oscillations | Neuron enters a spiking or oscillatory state.
in V with moderate | Moderate external input allows the neuron to
amplitude reach excitability threshold, resulting in

rhythmic firing patterns.
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0.9<1<1.10 Higher-frequency Increased firing frequency observed. Higher
oscillations with | stimulus levels induce more rapid oscillations,

increased amplitude | indicating higher excitability.

I>1.1 Saturated oscillations | Neuron enters a high-frequency firing regime.
with frequent, high | Strong input produces sustained, frequent
peaks action potentials, reflecting high neuronal

excitability.

This table provides a clear overview of how the FitzHugh-Nagumo model responds to
variations in the external stimulus I, showcasing transitions from resting to high-

frequency firing states.
Bifurcation Diagrams

A bifurcation diagram provides a visual representation of how the peak values of the
membrane potential V respond to gradual changes in a control parameter, in this case, the
external stimulus I. By plotting the peak values of V for each increment of I, we can
observe patterns such as steady states, oscillations, or chaotic behavior.

Peak V as a Function of External Current Iex
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Figure 5.3 Peak membrane potential (V) in the FitzHugh-Nagumo model as a function

of external stimulus (I) over a range of 0.3 to 1.2

"Bifurcation diagram illustrating the peak membrane potential (V) in the FitzHugh-
Nagumo model as a function of external stimulus (1) over a range of 0.3 to 1.2. For low |
values (around 0.3 to 0.4), the neuron remains in a stable resting state with peak V values
below zero, indicating sub-threshold behavior where the neuron does not fire. As |
increases to around 0.5, the model transitions to an oscillatory firing state, with peak V
values reaching approximately 1.5 to 2.0, representing periodic neuronal firing. For
higher I values (approaching 1.0 and above), V stabilizes around 1.9, showing a saturation
effect where further increases in | do not significantly raise the peak potential. This
behavior reflects a high-frequency firing regime, where the neuron responds consistently
and rapidly to strong external stimuli. The diagram effectively captures the model’s
transition from resting to periodic firing and high-frequency firing, illustrating key

aspects of neuronal excitability and response thresholds."

Bifurcation Diagram of the FitzHugh-Nagumo Model
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Figure 5.4 Bifurcation diagram for the FitzHugh-Nagumo model
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This diagram showing the peak membrane potential (V) across a range of external
stimulus values (I) from 0.3 to 1.2. At low | values (around 0.3 to 0.4), the neuron remains
in a sub-threshold resting state, with peak V values below zero, indicating non-firing
behavior. As | reaches approximately 0.4, a sharp transition occurs, and the neuron enters
a periodic firing state where peak V values rise to about 1.9. For moderate to high I values
(0.5 and above), the peak V values stabilize slightly below 2.0, showing that additional
increases in | lead to a saturation effect in firing intensity. This high-frequency firing
regime suggests a stable excitatory response in the neuron to strong external inputs,
accurately capturing the model's transition from rest to high-frequency firing as stimulus

intensity increases."

5.4.Comparison with Experimental Data

Comparing the FitzHugh-Nagumo (FHN) model’s simulation results with empirical
neuronal data is a crucial step for validating its accuracy and applicability in capturing
real-world neuronal behaviors. Experimental data typically comes from
electrophysiological recordings of membrane potentials, such as patch-clamp recordings
in isolated neurons or multi-electrode arrays used in neural networks. These recordings
provide insights into actual excitability patterns, action potential dynamics, and refractory

periods in biological neurons.

The FHN model is a simplified, phenomenological model of neuronal excitability and
does not account for every ionic channel or biophysical process in real neurons. However,
it can approximate certain qualitative aspects of neuronal behavior, particularly in
response to varying external stimuli. Here’s an in-depth analysis of how the FHN model

results align with experimental data and the insights gained.
5.4.1. Key Aspects of Comparison

Resting Membrane Potential

Empirical Observations: In experiments, neurons typically have a stable resting potential
that is maintained until a sufficient input brings the neuron to threshold. This resting state

varies by neuron type but generally lies around -65 mV for mammalian neurons.

FHN Model: The FHN model replicates this by stabilizing VVV at a baseline when the
external stimulus 111 is low (e.g., 1<0.51). This corresponds to a stable, resting state in

biological neurons, where no action potential firing occurs.
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Excitability Threshold and Firing Patterns

Empirical Observations: Biological neurons exhibit distinct firing thresholds, above
which action potentials are generated. In response to increased input, neurons typically
show graded responses, such as single spikes, oscillatory firing, and, at higher stimuli,

high-frequency firing.

FHN Model: As I increase, the model transitions from a resting state to an oscillatory
regime. For moderate | values (e.g., 0.5<I<0.90), the FHN model exhibits periodic
oscillations in V, akin to action potentials in neurons responding to moderate stimulation.
This oscillatory regime is observed in empirical recordings where neurons show repetitive

firing patterns under consistent synaptic or external stimulation.
Refractory Period

Empirical Observations: Following each action potential, neurons enter a refractory
period, during which they are less excitable. This refractory phase ensures that neurons

do not immediately re-fire, preserving the rhythmicity and stability of firing patterns.

FHN Model: The recovery variable W in the FHN model is designed to mimic the
refractory period. After each peak in V, W slowly increases and then decreases, providing
a form of recovery that mirrors the neuron’s refractory state. This recovery process
becomes particularly noticeable at lower e\epsilone values, where the model allows a clear
temporal separation between excitation and recovery phases, similar to the observed

refractory dynamics in real neurons.
Bifurcation and Firing Frequency Modulation

Empirical Observations: In biological neurons, increased stimulation can lead to high-
frequency firing, seen in cells like fast-spiking interneurons. These neurons adjust their
firing frequency based on the level of input, and such bifurcation points (transitions
between different firing patterns) are often observed in experimental data.

FHN Model: The bifurcation diagram in the FHN model demonstrates similar behavior.
As | increases past certain thresholds (e.g., around 1=0.91), the model enters a high-
frequency firing state, with denser and more frequent peaks in V. This sensitivity to
external stimulus level aligns with experimental observations, where neurons respond to

increased stimuli by shortening inter-spike intervals.
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Limitations and Discrepancies

While the FHN model qualitatively reproduces many key aspects of neuronal excitability,
there are notable limitations. Unlike detailed conductance-based models (e.g., Hodgkin-
Huxley), the FHN model abstracts ionic currents and lacks the ability to simulate diverse
ion channel kinetics found in real neurons. Consequently, specific phenomena such as

after-hyperpolarization or channel inactivation may not be captured accurately.

The model's simplified recovery variable W does not correspond directly to any particular
ion channel or current in biological neurons. Instead, it broadly represents the refractory
period, which can limit the model’s predictive accuracy in systems where detailed

channel dynamics are critical.

Summary of Comparative Findings

Observed Empirical FHN Model | Comments

Aspect Neuronal Data Response

Resting Stable until | Maintains a stable | Model accurately

Membrane sufficient stimulus | state at low | represents resting

Potential is applied state behavior

Excitability Shows distinct | Reaches oscillatory | Qualitatively captures

Threshold threshold for action | firing above certain | | neuronal firing
potential values threshold

Refractory Post-spike Recovery  variable | Reflects  refractory

Period refractory period | WWW  acts  as | dynamics, though
limits re-firing refractory mechanism | simplified

Firing Frequency Higher | leads to | Approximates

Frequency increases with | denser oscillations in | neuronal  frequency

Modulation higher stimulation |V adaptation

Limitations Complex channel | Limited by simplified | Not  suitable  for
Kinetics,  diverse | excitability and | detailed ion channel
firing types recovery variables studies
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FitzHugh-Nagumo Model: Membrane Potential Responses for Varying |
1=0.6

1=0.3

-1 V\/\—A
-2
0 50 100 150 200 0 50 100 150 200

Time Time
1=0.9 1=1.2

Membrane Potential V(t
o
Membrane Potential V(t

Membrane Potential V(t)
54 o
Membrane Potential V(t)

50 100 150 200 0 50 100 150 200
Time Time

o

Figure 5.5 FitzHugh-Nagumo model's membrane potential (V) responses to different

levels of external stimulus I

Time series of membrane potential (V) in the FitzHugh-Nagumo model for different
external stimulus levels (111). Each subplot represents the model's response to increasing

values of |

The comparative plots above show the FitzHugh-Nagumo model's membrane potential
(V) responses to different levels of external stimulus I, simulating various neuronal

behaviors:

o 1=0.31 pA/cm? (Top-Left): The neuron remains in a stable resting state, with V
oscillating minimally without crossing a threshold. This reflects a neuron under
low or no stimulus, typical of a resting state.

o 1=0.6 pA/cm? (Top-Right): The neuron begins to exhibit periodic oscillations in
V, representing rhythmic firing as it reaches a threshold for spiking. This behavior
corresponds to moderate stimulation, leading to regular action potentials.

o 1=0.91 pA/cm? (Bottom-Left): The model shows an increase in oscillation
frequency, indicating a transition to a higher excitability state. Neurons exhibit
shorter inter-spike intervals under stronger input, akin to an increased firing rate

in biological neurons.
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o 1=1.2 pA/em? (Bottom-Right): At high stimulation, the neuron reaches rapid,
frequent oscillations, simulating a high-frequency firing regime observed in

certain highly excitable neuron types under intense stimulus.

The FitzHugh-Nagumo model successfully captures the foundational dynamics of
neuronal excitability, such as resting potential, excitability threshold, refractory period,
and frequency modulation. These aspects align well with qualitative observations in
empirical neuronal data, making the FHN model a valuable tool for simulating basic
excitability dynamics. However, due to its simplifications, the model is less accurate for
predicting specific channel-based behaviors, after-potentials, or other fine details of
neuronal dynamics. For applications requiring detailed ion channel interactions, models
like Hodgkin-Huxley may be more appropriate. Nonetheless, the FHN model remains a
computationally efficient choice for studying generalized neuronal behaviors and
excitability patterns in larger network simulations or theoretical studies.

5.5.Interpretation of Simulation Results

The simulations conducted with the FitzHugh-Nagumo (FHN) model reveal several key
findings about neuronal excitability, recovery dynamics, and threshold behavior. By
systematically varying parameters, particularly the external stimulus IlI, the model
displays a range of neuronal behaviors that align with empirical observations, such as
resting states, rhythmic spiking, and high-frequency firing. Below is a detailed
interpretation of the key patterns and insights observed from the simulations.

5.5.1. Key Findings and Observed Patterns

1. Resting State and Stability

Observation: At lower values of the external stimulus I (e.g., 1<0.51), the membrane
potential V remains relatively stable, showing minor oscillations without crossing the

firing threshold.

Interpretation: This stable behavior represents a neuron in a resting or sub-threshold state,
where the input is insufficient to trigger an action potential. This is consistent with the
resting state of biological neurons, where membrane potentials are maintained at a stable

baseline until stimulated by a sufficient input.

2. Threshold and Excitability
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Observation: When III reaches a certain threshold (e.g., 0.5<1<0.90), the FHN model
transitions from a resting state to an oscillatory firing regime. This threshold behavior
demonstrates how a neuron shifts from a quiescent state to active spiking as the external

stimulus surpasses a certain value.

Interpretation: The model's threshold-dependent behavior mimics neuronal excitability,
where inputs reaching a specific threshold lead to action potential generation. This feature
is essential for understanding how neurons respond selectively to inputs, firing only when

the input is strong enough to cross the excitability threshold.
3. Periodic Firing and Frequency Modulation

Observation: In the oscillatory regime, periodic action potentials are generated, with the
frequency of oscillation in V increasing as | increases. For moderate values of | (around
0.6), the model exhibits rhythmic spiking with a consistent period. As | is raised to around

0.9, the inter-spike intervals shorten, leading to more frequent oscillations.

Interpretation: This periodic firing reflects how neurons generate regular action potentials
in response to moderate input, corresponding to the rhythmic spiking behavior observed
in empirical data. The increased frequency with higher I11 values demonstrates frequency
modulation, where neurons respond to stronger stimuli with more frequent firing, a

characteristic observed in many biological neurons.
4. High-Frequency Firing at Strong Stimuli

Observation: For high values of I1I (e.g., [>1.1), the model exhibits rapid, high-frequency
oscillations in V, indicating intense neuronal activity and short recovery periods. This
behavior is characteristic of neurons subjected to strong, sustained stimulation, such as

fast-spiking interneurons in cortical circuits.

Interpretation: High-frequency firing observed in the model is indicative of neurons’
ability to adapt their firing rates based on stimulus intensity. This intense firing under
high stimulation mirrors excitatory responses in neurons exposed to constant, strong

input, providing insights into the model's utility for simulating high-excitability states.

1. Refractory Period and Recovery Dynamics

Observation: The recovery variable W in the FHN model acts as a proxy for the neuronal

refractory period. After each spike in V, W increases, preventing immediate re-firing,
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then gradually decreases, allowing V to spike again. This process effectively simulates
the refractory period seen in biological neurons.

Interpretation: The presence of a recovery mechanism is essential for stabilizing
oscillations and controlling firing frequency. By mimicking the refractory dynamics, the
FHN model ensures that each action potential is followed by a recovery phase,
contributing to rhythmicity and preventing chaotic firing, which is fundamental to

organized neural signaling.

Table 5.4:Summary of Key Patterns and Their Significance

Observed Pattern

Model Behavior

Biological Interpretation

Resting State

Stable V at low |

Reflects neurons’ resting potential in

a low-input environment

Threshold
Excitability Transition

and

Shift to spiking at
threshold |

threshold-
dependent action potential firing

Simulates neurons'

Periodic Firing

Regular oscillations
inV

Models rhythmic spiking observed in

consistent stimulation

Frequency Modulation

Increased frequency
with higher |

Captures neurons’ response to

increased input with faster firing

High-Frequency Firing

Rapid oscillations at
high |

Simulates fast-spiking neurons under

intense stimuli

Refractory Dynamics

Recovery through W

variable

Models neuronal refractory period

and rhythmic stabilization

5.5.2. Implications of Findings

These simulation results demonstrate that the FitzHugh-Nagumo model, though
simplified, captures essential features of neuronal excitability and firing dynamics, such

as.

Flexibility in Simulating Neuronal Behaviors: By adjusting | and other parameters, the
FHN model can replicate diverse neuronal firing patterns. This flexibility makes the FHN

model a valuable tool in theoretical studies exploring neuronal dynamics.

Utility in Frequency Modulation Studies: The model’s ability to transition between
resting, periodic, and high-frequency firing states based on input strength highlights its
utility for investigating how neurons encode stimulus intensity through firing rates.
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Suitability for Network Simulations: Given its computational efficiency, the FHN model
Is suitable for large-scale simulations where qualitative insights into excitability and
recovery are needed, such as in networked systems or theoretical models of neural

circuits.

In summary, the FHN model’s simulation results provide a meaningful approximation of
real neuronal behaviors. Its patterns of excitability and recovery align with empirical
observations, supporting its application in simulating and studying neuronal dynamics.
However, it is essential to consider the model’s limitations, as it abstracts away detailed
ion channel mechanisms. For applications requiring more granular representations of
neuronal physiology, such as specific ion channels’ kinetics, more complex models like
Hodgkin-Huxley are preferred. Nonetheless, the FHN model remains a robust choice for
studies focused on generalized excitability patterns, threshold behavior, and frequency

modulation in neurons.
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6. Discussion

6.1. Insights from the FitzHugh-Nagumo Model

The FitzZHugh-Nagumo model simulations yielded several important insights:
Excitability and Threshold Behavior:

Findings: The FHN model accurately captured the threshold-dependent excitability
characteristic of neurons. For instance, when the external stimulus | was below 0.5, the
membrane potential V remained stable, simulating a resting state. When | increased to
values between 0.5 and 0.9, the model transitioned into a spiking or oscillatory state,

where V displayed regular action potentials.

Interpretation: This finding reflects the threshold behavior seen in real neurons, where a
minimum level of input is required to reach an excitatory threshold, enabling neurons to

selectively respond to strong enough stimuli.
Firing Frequency Modulation:

Findings: The simulations showed that the firing frequency of V increased with higher
values of I. For example, at 1=0.6, the model exhibited periodic oscillations with a
moderate frequency, whereas at 1=1.2, the frequency of oscillations in V increased

significantly, representing high-frequency firing.

Interpretation: This frequency modulation is comparable to neurons' response to
increasing stimulus intensity by shortening the time between spikes. It demonstrates that
the FHN model can replicate graded excitability, where stronger inputs result in higher

firing rates, a critical mechanism for encoding stimulus intensity in the nervous system.
Recovery and Refractory Dynamics:

Findings: The recovery variable W displayed delayed dynamics in response to the
membrane potential V, especially noticeable during and after a spike. For example, in a
baseline simulation, W lagged behind V and reached a peak of approximately 1.5

following the peak in V at around 1.7, before gradually decaying.

Interpretation: This recovery process mirrors the refractory period observed in biological
neurons, where a neuron temporarily becomes less excitable following an action

potential. By incorporating W as a recovery mechanism, the FHN model provides a
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simplified but realistic representation of this important neuronal characteristic, helping to
prevent chaotic firing patterns and stabilize rhythmic firing.

6.2. Implications for Neuroscience and Neural Networks
The findings from the FitzHugh-Nagumo model simulations have several implications

for neuroscience and neural network research:
Simplified Modeling of Neuronal Dynamics:

Implication: The FHN model provides a computationally efficient way to simulate
neuronal excitability without needing the complexity of conductance-based models. By
capturing essential dynamics with minimal variables, it serves as a useful tool for large-

scale neural network simulations where computational efficiency is crucial.

Relevance to Neuroscience: The model’s ability to replicate action potential thresholds,
oscillatory firing, and recovery phases suggests it can be applied to study fundamental
neural processes, such as signal transmission, synchronization, and oscillatory patterns in
the brain. This is especially relevant in understanding rhythmic activities, like those in

central pattern generators or oscillatory brain regions.
Insights into Stimulus-Driven Firing Patterns:

Implication: The observed firing frequency modulation in response to increasing IlI
provides insights into how neurons encode information through frequency. The FHN
model suggests that neurons can represent stronger inputs by increasing firing rates, an

encoding strategy known as rate coding.

Theoretical Implications: In neural network research, this finding supports the idea that
simplified neuron models can effectively capture information encoding mechanisms. This
allows for exploring neural coding strategies in theoretical studies, particularly in

artificial neural networks inspired by biological processes.
Modeling Excitability in Networked Systems:

Implication: The FHN model's sensitivity to input suggests its potential application in
simulating networked neuronal systems where collective excitability, such as

synchronous firing and wave propagation, can be studied.

Relevance to Neural Networks: The model could be used to simulate emergent

phenomena in interconnected systems, such as resonance and coherence in neural
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networks. This can further inform the design of neuromorphic computing systems that
rely on excitable units, potentially influencing fields such as machine learning and

artificial intelligence.

6.3. Limitations of the Simulation Study
While the FitzHugh-Nagumo model provides useful insights into neuronal dynamics, it

also has several limitations:
Lack of Biophysical Detail:

Limitation: The FHN model simplifies neuronal behavior by using only two variables (V
and W) and does not account for specific ion channels or conductances that contribute to
action potential generation. For example, it does not distinguish between sodium and

potassium currents, which play distinct roles in action potential dynamics.

Impact: This abstraction limits the model's ability to accurately simulate complex
neuronal behaviors that depend on specific ion channel kinetics, such as after-

hyperpolarization or spike frequency adaptation.
Reduced Applicability to Different Neuron Types:

Limitation: The model assumes a general excitability mechanism and does not account
for differences between neuron types, such as excitatory versus inhibitory neurons or fast-
spiking versus regular-spiking cells. These neuron types have unique firing properties that

are influenced by their ion channel compositions.

Impact: This limits the model’s utility for studying diverse neuronal responses and

requires additional adjustments or modifications for simulating specialized neurons.
Sensitivity to Parameter Calibration:

Limitation: The accuracy of the FHN model heavily depends on precise calibration of
parameters like ¢, a, b, and I. Small changes in these parameters can lead to significantly
different behavior, potentially making the model challenging to generalize across

different neuronal conditions.

Impact: This sensitivity can complicate the application of the model to real neural
systems, where parameters may vary across contexts and species. Accurate calibration is
essential for meaningful simulations, but it requires empirical data that may not always

be available.
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6.4. Recommendations for Further Research
To build on the findings of this study and address its limitations, the following

recommendations are proposed:
Integration of Biophysical Properties:

Recommendation: Future research could consider hybrid models that incorporate
additional biophysical properties into the FHN model, such as specific ion channel
dynamics, to better represent a broader range of neuronal behaviors. This could include

introducing multiple recovery variables to capture the effects of different ion channels.

Expected Outcome: Enhanced model accuracy and applicability to diverse neuron types,
allowing for more detailed studies of neuronal physiology.

Parameter Optimization for Specific Neuron Types:

Recommendation: Conduct targeted parameter optimization to better fit the FHN model
to specific neuron types, such as fast-spiking interneurons or regular-spiking pyramidal

cells. This could involve systematic calibration against experimental data for each neuron

type.

Expected Outcome: Improved model accuracy for specialized applications, enabling
simulations that are more representative of specific neuronal subtypes and enhancing the
FHN model's versatility.

Exploration of Network-Level Dynamics:

Recommendation: Apply the FHN model in larger network simulations to investigate
emergent behaviors, such as synchronization, pattern formation, and resonance in neural
networks. Studying how the FHN model behaves in networked contexts could yield

insights into population-level neural dynamics.

Expected Outcome: A deeper understanding of collective behaviors in neural systems,
which could inform the design of artificial neural networks and contribute to theories on

network dynamics in neuroscience.
Comparison with More Complex Models:

Recommendation: Compare the FHN model's performance with more detailed models

like the Hodgkin-Huxley model in specific applications. Such comparative studies can
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highlight the conditions under which the FHN model is sufficient and when a more

complex model is necessary.

Expected Outcome: Guidelines for model selection based on study objectives, allowing
researchers to choose appropriate models for different types of neuronal simulations with
better understanding of trade-offs.

The FitzHugh-Nagumo model provides a valuable, computationally efficient approach to
simulating neuronal excitability and recovery dynamics. Despite its limitations, it
captures essential features of neuronal behavior, such as excitability thresholds, frequency
modulation, and recovery periods. The insights from this study suggest that the FHN
model can serve as a foundation for understanding basic neuronal processes and studying
large-scale neural networks. However, for applications requiring biophysical detail or
specific neuron types, further model enhancements and comparisons with more complex
models are recommended. Future research could extend the FHN model's utility, making

it an even more versatile tool for computational neuroscience and neural network studies.
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7. Conclusion

7.1.Summary of Findings

The FitzHugh-Nagumo (FHN) model simulation revealed key insights into neuronal
excitability and recovery dynamics. First, the model accurately replicated threshold-
dependent excitability, with the membrane potential V remaining stable for 1<0.51 and
entering a spiking regime at [>0.5, closely mimicking real neurons’ threshold behavior.
Secondly, the model demonstrated frequency modulation, as the firing frequency of V
increased from moderate at 1=0.6 to high-frequency oscillations at 1=1.2, a fundamental
characteristic in neural coding. Third, the recovery variable W effectively simulated the
refractory period, with W peaking shortly after each V spike and gradually decaying,
preventing immediate re-firing. Finally, bifurcation analysis illustrated the model’s
ability to transition between resting, periodic oscillations, and high-frequency firing
states, indicating its capacity to capture nonlinear dynamics and state transitions in

excitability.

7.2.Contribution to the Field

This study validates the FitzHugh-Nagumo model as a computationally efficient tool for
simulating core neuronal dynamics, supporting its use in theoretical and large-scale
network simulations where detailed conductance-based models are impractical. The
model’s replication of neuronal threshold behavior, frequency modulation, and refractory
dynamics makes it an ideal candidate for examining basic excitability and recovery
processes. Moreover, by demonstrating the model’s responsiveness to varying stimulus
intensities, this study highlights the FHN model’s potential for studying rate coding and
stimulus-response relationships in neurons, contributing to our understanding of neural
coding. Additionally, this work lays the groundwork for using the FHN model in
networked systems to explore emergent neural behaviors like synchronization and

oscillatory patterns.

7.3.Future Work

Future research can extend the FHN model’s capabilities by incorporating additional
biophysical properties, such as ion-specific channels, to better simulate diverse neuronal
behaviors like after-hyperpolarization and spike frequency adaptation. Parameter
optimization tailored to specific neuron types (e.g., fast-spiking versus regular-spiking
neurons) would enhance the model’s accuracy for specialized applications. Further,

expanding the FHN model to networked simulations could yield insights into collective
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neural phenomena, such as synchrony and resonance. Comparative analyses with more
complex models, like the Hodgkin-Huxley model, could also clarify when the FHN model
is appropriate versus when more detailed models are necessary. Finally, exploring the
FHN model’s potential in neuromorphic computing could enable the creation of efficient,
bio-inspired computing systems, contributing to advances in artificial intelligence and

machine learning.
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Appendix

The detailed workflow for each simulation instance proceeded as follows:

// Initialization Phase

Load parameter configuration (g, a, b, I)

Set initial conditions for V and W

Define time domain [t_start, t_end] and initial step size At
Allocate arrays for time series storage

Initialize analysis variables

// Integration Phase
t = t _start

V[@] = V_initial
W[O] = W_initial
i=29

While t < t_end:
// Calculate derivatives using FHN equations
If using RK4 method:
Calculate k1 _v, k1 w, k2 v, k2 w, k3 v, k3 w, k4 _v, k4 w
V[i+1] = V[i] + (At/6) * (ki_v + 2*k2_v + 2*k3_v + k4_v)
W[i+l] = W[i] + (At/6) * (k1_w + 2*k2 w + 2*k3_ w + k4 _w)

If using adaptive step size:
Estimate local error
If error > tolerance:
Reduce At and retry step
Else:
Accept step and adjust At for next step

// Store results

t =t + At

i=1i+1
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// Check for termination conditions

If specific events detected (e.g., convergence to steady
state):

Break

// Analysis Phase

Identify spikes in V time series using threshold crossing
detection

Calculate firing frequency and regularity metrics
Compute phase space trajectories and nullclines
Perform spectral analysis using FFT

Compare with reference data if applicable

// Output Generation Phase

Generate time series plots of V and W

Create phase space plots with nullclines

Produce bifurcation diagrams if parameter sweeps performed
Export numerical data in standardized format

Generate summary statistics and reports

This algorithm was implemented with careful attention to numerical precision, using
double-precision floating-point representation for all variables and intermediate
calculations. Special handling was incorporated for edge cases, such as parameter

combinations near bifurcation points, where additional precision or adaptive methods
were required to maintain stability and accuracy.

4.5.2 Parameter Sweep Implementation

To comprehensively explore the model's behavior across parameter space, a structured
parameter sweep algorithm was implemented:

// Define parameter ranges and step sizes

€ range = [0.01, 0.2], €_step = 0.01
a_range = [0.5, 1.0], a_step = 0.05
b _range = [0.5, 1.5], b_step = 0.05
I range = [0.0, 2.0], I step = 0.05

// Initialize result storage

Create multi-dimensional array for results
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// Nested loop structure for parameter exploration
For each I in I range (step I _step):
For each € in € range (step €_step):
For each a in a_range (step a_step):
For each b in b_range (step b_step):
// Run simulation with current parameter set

results = RunFHNSimulation(e, a, b, I)

// Extract and store key metrics

Store firing_rate, max_amplitude,
bifurcation_type, etc.

// Flag interesting parameter combinations
If interesting pattern detected:
Add to detailed analysis queue

// Post-processing of parameter sweep results
Generate parameter space maps
Identify regime boundaries

Characterize bifurcation structures

This approach generated comprehensive maps of the FHN model's behavior, allowing for
identification of parameter regions with specific neuronal dynamics. The parameter
sweep was implemented using parallel processing capabilities whenever available, with

each parameter combination representing an independent simulation that could be
executed concurrently.

4.5.3 Bifurcation Detection Algorithm

A specialized algorithm was developed for automated detection and classification of
bifurcations across parameter space:

// Bifurcation detection algorithm
For each parameter value p in parameter range:
// Run simulation and extract steady-state behavior

result = RunFHNSimulation(p)

// Analyze fixed points
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fixed _points = FindFixedPoints(result)
For each fixed_point in fixed_points:
J = ComputeJacobian(fixed_point)

eigenvalues = ComputeEigenvalues(3J)

// Check for bifurcation signatures
If RealPart(eigenvalues) crosses zero as p varies:
If ImaginaryPart(eigenvalues) is non-zero:
Record Hopf bifurcation at current p
Else:

Record saddle-node bifurcation at current p

// Analyze limit cycles
If OscillatoryBehavior(result):

cycle_properties = AnalyzelimitCycle(result)

// Check for cycle bifurcations

If cycle period doubles compared to previous p:
Record period-doubling bifurcation

If cycle disappears abruptly:

Record potential homoclinic bifurcation

// Store bifurcation information

Update bifurcation diagram with detected events

This algorithm enabled systematic characterization of the FHN model's bifurcation
structure, providing insights into the mathematical mechanisms underlying transitions
between different neuronal firing regimes.

The flowchart in Figure 4.1 illustrates the complete simulation workflow, highlighting
the integration of various algorithmic components:

[Figure 4.1: Comprehensive flowchart of the FHN model simulation
framework, showing the interconnections between parameter
configuration, numerical integration, analysis modules, and
output generation. The flowchart includes decision points for
adaptive methods and specialized handling of bifurcation regions. ]
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These algorithmic approaches ensured efficient and accurate exploration of the FHN
model's behavior across parameter space, providing a robust computational foundation
for investigating neuronal dynamics within this simplified mathematical framework.

4.6 Software Implementation

The FitzZHugh-Nagumo model simulation framework was implemented as a
comprehensive software system, integrating numerical methods, analysis tools, and
visualization capabilities within a cohesive architecture. This section details the software
implementation aspects, including code organization, validation procedures, and data
management strategies.

4.6.1 Code Structure and Organization

The software implementation followed a modular design philosophy, organizing
functionality into cohesive components with well-defined interfaces. The code structure
comprised the following key modules:

1. Core Mathematical Functions: Implemented the fundamental mathematical
representation of the FHN model, including:
o fhn derivatives.m: Defined the right-hand side of the differential

equations
matlab
function [dvdt, dWdt] = fhn_derivatives(t, V, W, epsilon, a,
b, I)
dvdt = V - (V*3)/3 - W + I;
dWwdt = epsilon * (V + a - b*W);
end

o fhn jacobian.m: Computed the Jacobian matrix for stability analysis

matlab
function J = fhn_jacobian(V, W, epsilon, a, b)
J = [1-V*2, -1; epsilon, -epsilon*b];
end
o fhn nullclines.m: Calculated nullcline equations for phase space
analysis

matlab

function [V_nullcline, W_nullcline] =
thn_nullclines(V_range, epsilon, a, b, I)

V_nullcline = @(V) V - (V.”3)/3 + I;
W_nullcline = @(V) (V + a)/b;
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end

Numerical Integration Functions: Implemented various numerical methods for
solving the FHN differential equations:
o fhn euler.m: Basic Euler method implementation
o fhn rk4.m: Fourth-order Runge-Kutta method
o fhn adaptive.m: Adaptive step size control based on error estimation
o fhn solver.m: Unified interface to different numerical methods
Analysis Module: Contained functions for extracting meaningful information
from simulation results:
o fhn spike detector.m: Identified action potentials in V time series
o fhn phase analysis.m: Performed phase space analysis of
trajectories
o fhn bifurcation.m: Detected and classified bifurcations
fhn frequency analysis.m: Analyzed oscillatory properties and
firing patterns
Visualization Module: Provided standardized plotting functions for different
aspects of the results:
o plot time series.m: Generated time series plots of V and W
o plot phase space.m: Created phase portraits with nullclines
o plot bifurcation.m:Produced bifurcation diagrams
o plot parameter map.m: Visualized behavior across parameter
space
Utility Functions: Provided supporting functionality for data management and
workflow:
o fhn parameter sweep.m: Coordinated parameter space exploration
o fhn data export.m: Standardized data export in various formats
o fhn configuration.m: Managed parameter configurations and
defaults
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