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Dort boliimden olusan bu tezde, Sasakian manifoldlarin D-homotetik doniisiimleri ele
alinarak, bu dontisiimlerin Frenet egrileri tizerindeki etkileri incelenmistir. Kiire yilizeyinin
Sasakian yapis1 detayli olarak ele almmis, bulunan sonuglar 3-boyutlu birim kiire
tizerindeki Legendre ve slant geodezik egrilere uygulanmigtir. Ayrica, kiire disinda bir
Sasakian manifold tizerinde de drnekler verilmistir.

Birinci boliim giris bolimiidiir.

Ikinci boliimde, daha sonraki boliimlerde kullanilacak olan temel kavramlar ve tanimlar
verilmistir.

Uciincii boliim, tezin esas kismini olusturmaktadir. Bu béliimde, Sasakian manifoldlarin D-
homotetik doniisiimleri tanimlanarak egriler tizerindeki etkilerine odaklanilmistir. Bulunan

sonugclar ¢esitli Sasakian manifoldlar iizerinde uygulanmistir.

Son boliim olan dordiincii boliimde ise genel bir degerlendirme yapilarak, bulunan
sonuclarin gelecek ¢alismalara nasil 151k tutacagina deginilmistir.
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ABSTRACT

ANALYSIS OF CURVES BY MEANS OF D-HOMOTHETIC
TRANSFORMATIONS AND CONTACT STRUCTURES OF
(2n + 1)-DIMENSIONAL SPHERE
MSC THESIS
TUGBA KUSCU
BALIKESIR UNIVERSITY INSTITUTE OF SCIENCE

MATHEMATICS
(SUPERVISOR: ASSOC. PROF. DR. SABAN GUVENC )
BALIKESIR, JULY - 2025
This thesis, consisting of four chapters, explores the D-homothetic transformations of
Sasakian manifolds and examines their effects on Frenet curves. The Sasakian structure of
the sphere is studied in detail, and the obtained results are applied to Legendre and slant
geodesic curves on the 3-dimensional unit sphere. Additionally, examples are provided on
a Sasakian manifold other than the sphere.

The first chapter is the introduction.

In the second chapter, the fundamental concepts and definitions that will be used in the
following chapters are presented.

The third chapter is the main part of the thesis. In this chapter, D-homothetic
transformations of Sasakian manifolds are defined, and their effects on curves are
examined. The obtained results are applied to various Sasakian manifolds.

In the final chapter, a general evaluation is made and it is discussed how the results of this
thesis can guide future studies.
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SEMBOL LIiSTESI

(M, q9)

: Riemann manifoldu

. (1,1)-tipinden tensor alani

: Reeb (Karakteristik) vektor alant

: Kontakt form

: Metrik tensor alani (Riemann metrigi)
. Vektor alanlar1 uzayi

> (2n+1)-boyutlu birim (hiper)kire

: (2n+2)-boyutlu Oklid uzay1

: E*™ nin Levi-Civita koneksiyonu

: S$?(1) in Levi-Civita koneksiyonu

: D-homotetik doniisiimden sonraki Levi-Civita koneksiyonu
. I. Frenet egriligi

: Kontakt distribiisyon (degme dagilimi)
. Vektor alaninin uzunlugu

: Kontakt agis1
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1. GIRIS

Diferansiyel geometri, ¢cok boyutlu uzaylarda tanimli geometrik yapilarin lokal ve global
ozelliklerini inceleyen matematiksel bir alandir [1,2]. Bu alanin 6nemli bir alt disiplini olan
kontakt geometri ise, (2n+1)-boyutlu manifoldlar iizerinde tanimlanan kontakt yapilar
araciligiyla, simplektik geometrinin tekil durumlarina karsilik gelen geometrik sistemleri
ele alir [3,4]. Kontakt yapilar, fiziksel sistemlerde (6zellikle Hamiltonyen mekanik,
termodinamik ve optik gibi alanlarda) 6nemli rol oynayan yapilar olup, matematiksel
olarak bir (2n+1)-boyutlu diferansiyellenebilir manifold Uzerindeki bir 1-formla
karakterize edilir.

Sasakian manifoldlar, kontakt metrik manifoldlarin 6zel bir smifin1 olusturur [4]. Bu
manifoldlar, Kaehler manifoldlarin tek boyutlu benzerleri olarak degerlendirilebilir ve
kompleks geometri ile olan yakin iliskileri nedeniyle 6nemli bir arastirma konusudur [3].
Sasakian yapilarin diferansiyel geometri i¢indeki rolii, yalnizca teorik acidan degil, ayni

zamanda cesitli fiziksel modellere uygulanabilirligi a¢isindan da dikkat ¢ekicidir.

Bu tezde, (2n+1)-boyutlu kiiresel manifoldlar {izerinde tanimli kontakt yapilar incelenecek
ve bu yapilarla D-homotetik doniistimler arasindaki iliskiler ele alinacaktir. D-homotetik
doniistimler, kontakt yapiy1 ve ona eslik eden Riemann metrigini belirli oranlarda yeniden
6l¢eklendiren doniistimlerdir [5,6]. Bu doniisiimler altinda manifold tizerindeki geometrik

yapilarin nasil degistigi, Ozellikle de egrilerin geometrik karakteristiklerinin korunup

korunmadig arastirilacaktir.

Tez kapsaminda ele alinacak temel yapilardan biri de Frenet egrileridir. Diferansiyel
geometride bir egrinin lokal 6zelliklerini incelemek i¢in kullanilan Frenet catisi, egrinin
tanjant, asli normal, binormal vektorleriyle birlikte egrilik ve burulma gibi biiytikliikleri
tamimlar [7]. Yiksek boyutlu uzaylarda ise, Frenet ¢atis1 ve Frenet egrilik fonksiyonlari
Gram-Schmidt metodu yardimiyla elde edilmektedir. D-homotetik doniisiimin ardindan
egrilerin bu Ozelliklerinin nasil degistigi, egrinin geodezik olup olmadigi, slant veya

Legendre egri olup olmadigi gibi 6zelliklerin korunup korunmadigi analiz edilecektir.

Metrik tensor, bu incelemelerin merkezinde yer alir. Manifold iizerindeki uzunluk, ac1 ve

egrilik Ol¢limlerini tanimlayan metrik tensoriin D-homotetik doniisiim altindaki degisimi,



yalnizca egriler degil, ayn1 zamanda manifoldun genel geometrik yapisi iizerinde de etkili
olmaktadir. Bu baglamda, tezde yalnizca teorik analiz yapilmayacak, ayn1 zamanda gesitli
ornekler iizerinden elde edilen sonuglar uygulamali olarak gosterilecektir. Ornegin Hopf
fibrasyonu yardimi ile hesaplanan Hopf helisi [8,9] gibi klasik yapilar da bu baglamda
degerlendirilerek, farkli tiirde Sasakian manifoldlar iizerinde tanimli Legendre ve slant

egrilerin davranigi incelenecektir.

Bu tez calismasiin temel amaci, kontakt geometri ve diferansiyel geometri alanlarindaki
yapilart D-homotetik doniistimler baglaminda analiz ederek, Ozellikle egrilerin
davraniglarin1 sistematik bi¢imde ortaya koymaktir. Elde edilen sonuglarin, kontakt ve
Sasakian geometriye iliskin daha derin bir anlayisa katki saglamasi ve ileride yapilacak

calismalara zemin olusturmasi beklenmektedir.



2. TEMEL KAVRAMLAR

Bu bolimde daha sonra kullanilacak olan temel kavramlar, tanimlar ve Ornekler

verilecektir.

2.1 Riemann Manifoldlari ve Metrik Tensor Alam

Oncelikle metrik tensor alan1 ve Riemann manifoldu tanimin1 verecegiz.

Tamim 2.1.1 (Metrik Tensor Alam): Bir M diferensiyellenebilir manifoldu Gzerinde

pozitif tanimli, iki-lineer ve simetrik bir (0,2)-tipinden tensor alanina metrik tensér alan

veya Riemann metrigi denir. Yani,
g:x(M)xx(M)—C”(M,R)

bir metrik tensor alani ise, ¥X,Y,Z € y(M) ve vf,heC”(M,R) igin

) g(X,X)=0, g(X,X)=0 < X =0, (pozitif taniml)

i) g(X,Y)=g(Y,X), (simetrik)

iii) g(fX+hY,Z)=fg(X,Z)+hg(Y,Z), (birinci bilesene gore lineer)
g(X, fY +hz)=fg(X,Y)+hg(X,Z), (ikinci bilesene gore lineer)

ozelliklerini saglar [1].

Tammm 2.1.2 (Riemann Manifoldu): M bir C® (diferensiyellenebilir) manifold ve

lizerinde tanimli bir metrik tens6r alam g olmak Uzere, (M,g) ciftine bir Riemann

manifoldu denir [1].

Bu yapi, manifold tizerinde uzunluk ve a¢i gibi temel geometrik kavramlari tanimlamay1
saglar. Dogal olarak uzunluk ve agidan tiiretilen alan, hacim vb. geometrik kavramlar da

metrik tensore bagl olarak tanimlanabilir. Hatirlatmak gerekirse, bir manifold iizerindeki

X € x (M) vektor alanmin uzunlugu,

[X]I=a(x,x)

seklinde tanimlanir. Sifirdan farkli XY € ;((M ) vektor alanlari arasindaki agi ise

g(Xx,Y)

JaOX)a(v.Y)

cosd =




ile verilir [3].

Ornek 2.1.3. M =E" Oklid uzayi, iizerindeki g =ds® = dx” +dx? +...+dx? Oklid metrigi
ile birlikte bir Riemann manifoldu olur. Burada {xl,xz,...,xn} koordinat fonksiyonlaridir

2]

Ornek 2.1.4. M =8%(1)={(%, %, %) e B* :x +x; +x; =1} kiiresi, tizerine E° Oklid
uzayindan indirgenen ve kiiresel koordinatlarda g =ds* =d#” +sin*@dg¢* ile verilen g

metrigiyle birlikte bir Riemann manifoldu olur. Burada {6,¢} kiiresel koordinat

fonksiyonlaridir [4].

2.2 Levi-Civita Koneksiyonu

Tamm 2.2.1 (Afin koneksiyon): Bir M manifoldu iizerinde tanjant vektor alanlarinin
tiirevlenebilmesini (diferensiyellenebilmesini) saglayan

Viz(M)xz(M) > 2(M), (X,Y) V,Y

operatoriine afin _koneksiyon veya kisaca koneksiyon denir. Yani, M (zerindeki bir afin

koneksiyon, vX,Y,Z € (M) ve vf,heC”(M,R) igin
) Ve (Y+Z)=V,Y+V,Z,
i) V. Z=fV,Z+hV,Z,
i) v, fY =X[f]Y + fVv,Y

ozelliklerini saglar [2].

Tamm 2.2.2 (Levi-Civita Koneksiyonu): Bir (M,g) Riemann manifoldu dzerinde

asagidaki iki kosulu saglayan V afin koneksiyonuna Levi-Civita Koneksiyonu (veya

Riemann Koneksiyonu) denir [2]:

e Metrikle uyumluluk:
Vg=0 < Xg(Y,Z)=9(V,Y.Z)+g(X,V,Z), ¥X,Y,Z e x(M).
e Torsiyonsuzluk:

VY =V, X =[X,Y], ¥X,Y € z(M).



Teorem 2.2.3 (Riemann Geometrisinin Temel Teoremi): Her (M,g) Riemann

manifoldu Uzerinde, metrikle uyumlu ve torsiyonsuz bir tek V Levi-Civita koneksiyonu
vardir [3].

Temel teoremin ispat1, VX,Y,Z € y(M) igin

29(V,Y.Z)=X(g(Y.Z))+Y(9(Z.X))-Z(g(X.Y))
+g([X.¥).2)-g([¥.2].X)+g([2.X].Y)

esitligi ile bilinen Koszul formili yardimi ile yapilir [3]. Bu formiiliin sag tarafi, g nin

simetrisi ve pozitif tanimlilig1 nedeniyle iyi tanimlidir. Bu, varlik ispatini saglar. Metrik ile

uyumluluk ve torsiyonsuzluk kosullari, koneksiyonu tek olarak belirler.

Ornek 2.2.4. M =E" Oklid uzayi, g=ds®=dx’ +dx; +...+dx’> Oklid metrigi olmak
lizere; (M,g) Riemann manifoldunun Levi-Civita koneksiyonu, y(M) vektér alanlar

o 0 0 N
uzaymin {—,—,...,,— » bazina gore,
OX, OX,  OX,

\% =0

9
K axj

B
BN

olarak Koszul formiiliinden hesaplanir. Buna gore, bir X e ;((M) vektor alan1 yoniinde

Y = Zl f, ix ey ( M ) vektor alaninin kovaryant tiirevi

olur [2].
Ornek 2.25. M =S%(1), g=ds*=d6&”+sin*0dg” olmak Uzere, (M,g) Riemann

manifoldunun Levi-Civita koneksiyonu, y (M) vektor alanlari uzaymn {%'8%} bazina

olarak Koszul formiiliinden hesaplanir [4].



2.3 Kontakt Manifoldlar ve Sasakian Yapilar
Bu kisimda kontakt manifold tanimi ve Sasakian manifoldlarin temel Ozellikleri

incelenecektir.

Tamm 2.3.1 (Kontakt Manifold): M, (2n+1)—boyutlu bir C* —manifold olmak tizere,
M Uzerinde asagidaki kosulu saglayan n 1—formuna M Uzerinde bir kontakt form denir:
nA(dn)" #0.

Bu kosul 7 nin maksimal derecede non-dejenere oldugunu gosterir. (M,7) ikilisine de

kontakt manifold denir [4].

Tamm 2.3.2 (Reeb vektor alami): (M,7) kontakt manifoldu Uzerinde

n(&)=1, dnp(X,&)=0, ¥X € (M)

kosulunu saglayan & vektor alanina Reeb vektor alani veya karakteristik vektor alani denir

[4]. Reeb vektor alani kontakt yapinin dikey yoniinii temsil eder.

Ornek 2.3.3. E® Uzerindeki 7 = dz — ydx, Reeb vektor alan1 & = ai ile birlikte bir kontakt
z

yapt tanimlar [4]. Burada {x,y,z} E® iin koordinat fonksiyonlaridr.

Tamm 2.3.4 (Sasakian manifold): (M,7) bir kontakt manifold, & karakteristik vektor

alan1 olsun. Eger bu manifold, asagidaki ek yapilari tasiyorsa Sasakian manifold olarak

adlandirilir:

) 9(&,¢)=1 n(X)=9(X,&), VX € y(M) Oozelliklerini saglayan bir g Riemann
metrigi,

i) @’ =—1+7®¢&, dp(X,Y)=g(X,9Y), VXY e y(M) ve

g(@X, oY )=g(X,Y)-n(X)n(Y), VX,Y € x(M)

ozellikleri saglayan bir (1,1)-tipinden ¢ tensor alani,

iii) Normalite kosulu: N =-2d7 ®¢ olmasi. Burada N: (M )x (M) — z(M),

N(p(X,Y):[(pX,¢)X]—¢)[(pX,Y]—(0[X,(pY]+(p2[X,Y]



ile tanimli Nijenhuis tensér alanidir. Normalite kosuluna ayni zamanda integrallenebilirlik

kosulu da denir [10].

Ornek 2.3.5. $*(1) = E* birim (hiper)kiiresi Gizerindeki kontakt form
1 = X, dX, + X, 0x, — x,dx; — x,0x,
olmak iizere, E* den indirgenen metrikle birlikte uygun bir ¢ de tamimlanarak Sasakian

manifold olur [4].

Teorem 2.3.6. (M, ¢,&,77,9) Sasakian manifoldunda
Vi E=—pX, ¥Xe x(M)

ve

(V@)Y =g(X,Y)E=n(Y)X, ¥X,Y € (M)

dir [4].

Burada, (1,1)-tipinden tensér alanmin kovaryant tirevi Vo, (V,@)Y =V,¢Y —@V,Y

esitligi ile tanimlidir [4].

2.4 Frenet Egrileri

Bu alt boliimde Frenet egrileri ilgili genel tanimlar verilecektir.

Tanmim 2.4.1 (3-boyutlu Oklid uzayinda Frenet Egrisi): Birim hizli bir y: 1 — E® egrisi
icin

T=p,N=r—

esitlikleri ile verilen {T,N,B} tgliisiine egrinin Frenet catisi, x ya egrilik (bikim) ve 7

ya da torsiyon (burulma) denir [2].

Omek 24.2. y:1 >E, y(t)=(acost,asint,bt) cgrisinin egriligi K:szz ve
a +
: b
torsiyonu 7 = ——— olarak hesaplanir [2].
a“+b



Tamim 2.4.3 (Yiiksek boyutlu uzaylarda Frenet Egrisi): (M,g) n—boyutlu Riemann

manifold ve r <n olsun. Bir y:1 — M birim hizli egrisi i¢in T = ' olmak Uzere,

T, V,T, V.V,T, .., V;..V, T
R —

(r-1) tane

kiimesi lineer bagimsiz ancak

{T, V. T, V.V.T, .., VT...VTT}
%,_/

r tane

kiimesi lineer bagimli oluyorsa y ya oskulator mertebesi r olan_Frenet egrisi adi verilir

[7]. Oskilator mertebesi r olan bir Frenet egrisi lizerinde, Gram-Schmidt metodu ile
T =V, =" olmak Uzere,

V. T =k\V,,
V.V, =—kT + KV,

2<i<r

i+l

V.V, =—«_\V, +&V,

ViV, =—k.V,

ile verilen Frenet denklemlerini saglayan {T =V,, V,, ..., V,} Frenet catisi olusturulabilir.

Burada «;=9(V;V,\V.,), (i=12,..,r—-1) fonksiyonlarma y mn egrilik fonksivonlari

denir [7].

Ozel durumlar: r =1 olmasi durumunda y bir geodeziktir. r =2 ve x, =sabit >0 olmasi
durumunda y bir gemberdir. Eger «; =sabit>0, (i=12,..,r-1) ise y mertebesi r olan

bir helistir. Helisin mertebesi belirtilmediginde r =3 oldugu kastedilir [7].



3. D-HOMOTETIK DONUSUMLER VE KONTAKT GEOMETRI
Bu boélimde D-homotetik doniisiimler ve kontakt geometri ile ilgili temel bilgiler detayli
olarak verilecek ve kire yiizeyinin Sasakian yapist kullanilarak bu doniigiimlerin etkileri

incelenecektir.

3.1 D-homotetik Doniisiimler ve Sasakian Yapiya Etkileri
D-homotetik doniisiimler diferansiyel geometri ve 6zellikle Sasakian manifoldlar tizerinde
Oonemli bir yere sahiptir. Bu doniislimler manifoldun metrik ve kontakt yapisinit belli

parametreler dogrultusunda 6lgeklendirmek icin kullamlir. Oncelikle bir (M,¢,&,n,9)

kontakt manifoldu verildiginde, D-homotetik doniisiimiin nasil tanimlandigini verelim:

Tanmm 3.1.1. (M,¢,&,1,9) bir kontakt metrik manifold ve a pozitif bir sabit olmak

Uzere;

g(X,Y)=ag(X,Y)+@ -a)p(X)n(Y), VX,Y € x(M),

esitlikleri ile yeni bir (M,(p,f,n,g) yapist tanimlanabilir. Bu doénisime (¢, &,7,9)

yapisinin D-homotetik déniistimii denir [5].

Onerme 3.1.2. (¢,&,n,9) kontakt metrik yapisindan D-homoteti ile elde edilen

(go,é‘,n, g) yapist da bir kontakt metrik yapidir. Yani, (M ,g?), E,;y, 6) de bir kontakt metrik

manifolddur [5].

Ispat: (M, 9,¢&,17,9) bir kontakt metrik manifold olsun. Bu durumda, VX,Y € (M) igin
Nn(&)=1,

i) & =0,

i) @’X =-X +7(X)¢&,

v) 7(X)=9g(X.$) .



V) 9(0X,0Y) =g (X.Y)=n(X)n(Y),
vi) dn(X,Y)=g(X,eY)
esitlikleri saglanir. Bu esitliklerin (gNo, 5, 7~7, 6) i¢in de saglandigini gosterelim.
N~ 1 1
=a - =a— =1)
i) 7(Z) n(aéj ~1(S)
% 1 1
i) coe*:co(—éj:—cof:O,
a a

iii)
9 X =X ==X +7(X)¢&

=—X+wﬂx)§§

=-X+7(X)¢,

g(@X, 0¥ )=g(pX,0Y)
=ag((0X,(pY)+(a2—a)n(goX)n((pY)
=ag(pX,¢Y)
=a[g(X.Y)=n(X)7
=ag(X,Y)-an(X)n

g(X.Y)=n(X)n(Y)=ag(X,

Boylece (3.1) ve (3.2) geregi

§(oX, 9 )= 3(X.Y -7 (X)7(Y)

10

(3.1)

(3.2)



bulunur.

Vi)

dn(X,Y)=d(an)(X,Y)=adnp(X,Y)
=ag(X,¢Y)
zag(X,goY)+(a2—a)n(X)n(goY)
=g(X,0Y)=g(X.0Y)

elde edilir. m

D-homotetik doniisiimiin Levi-Civita koneksiyonunu nasil etkiledigini asagidaki Teorem

ile verelim:

Teorem 3.1.3. (M, ¢, ¢&,;7,9) bir kontakt metrik manifold ve (M&E?yé) ise D-

homotetik doniisiim sonrasi elde edilen yeni yapi olsun. g Ve g metrik tensorlerine

karsilik gelen Levi-Civita koneksiyonlar1 sirasiyla V ve V ile gosterilsin. Bu iki
koneksiyon arasindaki fark tensorii ise W ile gosterilmek tzere
W (X,Y)=VxY -V,Y

=@1-a)n(Y)pX +n(X)eY]

1

+§(1—%][(Vxn)(Y)+(Vv’7)(x)}

dir [5].

Bir (M, ¢,&,77,9) kontakt metrik manifoldu igin 7(Y) = g(Y,&) esitligini kullanarak

(Vi)Y =Vyn(Y)=n(VY)
=V, g(Y,&)-9(VyY.&)
=g(V,Y.&)+a(Y,V,&E)-g(V,Y.&)
=g(Y.Vy<)
elde ederiz. Buradan
W(X,Y)=(@-a)[n(Y)pX +77(X)¢Y]+%(1—§)[9(Y,VX§)+Q(X,VY§)]

bulunur. Dolayisiyla
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VY =V, Y +(L-a)n(Y)pX +7(X)eY]

1

+E(1_§j[g(v,vxé)+g(Xvva)]

yazilabilir. Eger (M, ¢,&,77,9) Sasakian manifold ise,
a(Y.Vi&)+9(X,V,&)=g(Y,—pX)+g(X,—¢Y)
=—g(Y,pX)-g(X,0Y)
=g (oY, X)-g(X,9Y)
=g(X,(pY)—g(X,(pY)=O
oldugundan, bir Sasakian manifold i¢in
VY =V, Y +@-a)n(Y)eX +1(X)eY] (3.3)

iligkisi vardir.
Simdi, D-homotetik doniistimlerin Sasakian yapiy1 nasil etkiledigini inceleyelim:

Teorem 3.1.4. (M,p,&,17,9) bir Sasakian manifold olsun. D-homotetik doniisiim yardimi

ile elde edilen (M &5736) manifoldu da bir Sasakian manifold olur. Yani, D-homoteti

altinda Sasakian manifold olma 6zelligi korunur [5].

Ispat: Onerme 3.1.2 geregi kontakt yapinin korundugunu biliyoruz. Ayrica, Sasakian

manifold i¢in normal olma kosulu

(V,0)Y =g(X.Y)£-n(Y)X

ve

Vig=-¢X

kosullarina denktir. Bunlardan herhangi biri kontakt manifoldun Sasakian olmasi igin
yeterlidir. D-homotetik doniisiim ile elde edilen (M ,g~0, E,f], 5) manifoldu igin

(Vxo)Y =g(X.Y)E-n(Y)X

ve

Vx & =—pX

oldugunu géstermeliyiz. Buradan
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(%x g~0)Y :(§x¢)Y :§x(pY —go%xY
=V, oY +(1=a)[n(¢Y )X +7(X)9?Y]
—p(VyY +@=a)[n(Y)pX +7(X)eY])
=V, oY +1-a)n(X)e®Y —eV,Y —(1-a)n(Y)p*X —(1-a)p(X)p”Y
=Vp¥ =gV, Y —(1-a)p(Y)(-X +7(X)£)
=(Vyo)Y +@-a)p(Y)X —@-a)y(X)n(Y)&
=g(X,Y)E-n(Y)X +@-a)p(Y)X —@-a)p(X)n(Y)é
=g(X,Y)&-an(Y)X +@-Dn(X)n(Y)eé
ve

g(X,Y)E-n(Y)X :[ag(x,Y)+(a2 —a)n(X)n(Y)](éfj—an(Y)X
=g(X.Y)&+(a=D)n(X)n(Y)S-an(Y)X

olarak hesaplayabiliriz. Boylece (%xq))Y = é(X ,Y);E—;](Y)X cikar. Ayrica

ViE=Vy [Eéjziw:i{vx&(l—a)[n(f)cox+n(><)<o§]}

a
1

:—(—¢X)+(1—1)¢X :—E(oX +£¢)X —pX
a a a a

elde ederiz. Sonug olarak, D-homotetik doniisiim bir Sasakian yapiy1 yine bir Sasakian

yapiya doniistiiriir. H

3.2 D-Homotetik Déniisiimlerin Frenet Egrileri Uzerindeki Etkileri

M =(M,p,&,n,9) bir Sasakian manifold ve mz(MéEﬁé) ise

P=0, ézié, n=an, g=ag+(a’ -a)(n®n)

seklinde verilen D-homotetik doniisiim ile elde edilen Sasakian manifold olsun. Bir

y:1 — M birim hizli egrisi ele alalim. Yani, T = »' olmak Uzere,

2 112
o T)=1=[T| =[]
dir. D-homotetik doniisiim yapildiktan sonra egrinin hizi ile ilgili asagidaki teoremi

verebiliriz:
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Teorem 3.2.1. D-homotetik doniisiim altinda birim hizli egrinin hiz1 genellikle korunmaz.

Eger v ile egrinin D-homotetik doniisiimden sonraki hiz1 gosterilirse

v=+/asin?0+a?cos® 6

dir. Burada, @ ile T =y’ ve & vektor alanlari arasindaki a¢1 fonksiyonu gosterilmektedir.

Ispat: y:1 > M birim hizli bir egri olsun. T =%" ve & vektdr alanlari arasindaki ag
fonksiyonu @ oldugundan, 7(T)=cosé dir. D-homotetik doniisiimden sonra, y: 1 — M
manifoldundaki hizinin karesi
1|2 T
V=l =9(rr)
! ! ! 2

=ag(y'7')+(a*~a)[n(+)]

=a+(a’-a)cos’ @

=a(1-cos’#)+a’ cos* @

=asin’ @ +a’ cos’

dir. Genel olarak v #1 oldugundan egrinin hizi korunmaz. W

Simdi Legendre ve slant egrilerin tanimlarin1 hatirlayalim:

Tanimm 3.2.2. M =(M,¢,&,7,9) bir kontakt metrik manifold ve y:1 — M birim hizli bir

egriolsun. T =»" olmak (izere
D={Xeyx(M):n(X)=0}

ile verilen D kimesine kontakt distriblsyon (degme dagilimi) denir [4]. Bu dagilimin

integral egrilerine ise Legendre egrisi denir. Bir bagka deyisle, Legendre egrileri 7(T)=0

kosulunu saglayan egrilerdir [11]. Eger 7(T ) =cosé =sabit oluyorsa, y egrisine bir slant

egri adi verilir [12].

Sonug¢ 3.2.3. Sasakian manifoldlarin D-homotetik doniisiimleri altinda, Legendre egrilerin

hizi, a>ligcin +a katma ¢ikar veya O<a<1 icin +a katina diser. Sasakian
manifoldlarin D-homotetik dontisiimleri altinda, Legendre egrileri i¢in egrinin sabit hizli

olma 6zelligi bozulmaz.
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Ispat: Teorem 3.2.1 geregi, 77(T)=cos@=0 oldugundan v>=a bulunur ve ispat biter.

y@): 1> M, y(@t)= (), 7, (1),.. 7, ) verildiginde, y'(t) ifadesine egrinin hiz vektorii
denir. Eger, ||)/ '(t)” # 0ise bu egriye regiiler egri denir [2]. Regiiler her egri birim hizli bir
yeniden parametrizasyona sahip oldugundan, D-homotetik doniisiim sonrasi, y:1 — M
egrisi igin yay parametresini hesaplayabiliriz. y:1 — M, birim hizli bir egri ve yay
parametresi t olsun. D-homotetik doniisiimden sonra y: 1 — M egrisinin yay parametresi
s ise, 77(7'(t))=cos6(t) olmak iizere,

s=h(t)= [ (w)] e

:'[;1/§(T,T)du

_ ‘2 2 (a2
= [ JJasin® 6(u)+a’ cos* 0 (u)du

seklinde hesaplamir. Boylece, B(s) = y/(h’l (s)) egrisi igin
d d

p'(s)= %7(”1 (s)) ZEV(t)Eh_l(S) =7 (t) =~
ve dolayistyla

|5(s)]; —Jg(ﬂ’

= \/asinze(t)+a2 cos®4(t)
\/asinz O(t)+a’cos® O(t)
=1
¢ikar. Yani, B(s) birim hizlidur.

Simdi, y:1 — M birim hizli Legendre egrisi olsun. D-homotetik doniigiimiin ardindan,

yil— M icin g(T,T) =a olur. Dolayisiyla,

Iy ©]=e(.T)=Va
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oldugundan yay parametresi

s=h(t) = [[r'(W]du = [Vadu =+at

bulunur. Boylece,

h‘l(s):tzis

Ja

ifadesini kullanarak, egrinin birim hizli yeniden parametrizasyonunu
1
B(s)=r)=(yoh™)(s)= 7[—8)
(5)=r|

seklinde yazabiliriz. Buradan

T(6)=8(5) = 5= r0=£T0)

dir.

Sonu¢ 3.2.4. Sasakian manifoldlarin D-homotetik dOniisiimleri altinda, Legendre egrisi

olma 6zelligi korunur.

Ispat. y:1 > M birim hizli Legendre egrisi olsun. Tanim geregi, 77(T)=O dir. D-

homotetik doniigiimiin ardindan, y: 1 —> M egrisinin birim hizl1 yeniden parametrizasyonu

icin,
ﬁ(f):(an)(%Tj:\/an(T)zo
bulunur ve ispat biter.

Benzer bir sonug, slant egriler i¢in de verilebilir:

Sonu¢ 3.2.5. Sasakian manifoldlarin D-homotetik doniisiimleri altinda, slant egri olma
ozelligi korunur. T =+& veya T 1 £ olmast durumunda kontakt agist sabit kalir. Diger

durumlarda kontakt agis1 degisir.
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Ispat. y:1 > M birim hizli slant egri olsun. Tanim geregi, n(T)=cos@ = sabittir. D-

homotetik doniigiimiin ardindan, y: 1 —> M egrisinin birim hizl1 yeniden parametrizasyonu

icin,

s =h(t) =+/asin? @ + a2 cos’ 6t

oldugundan

~ (= 1

77(1_) - (aﬂ)(\/asinz 0+a’cos’ o T]
~ Ja
~ Jsin?0 +acos? 0
B Jacoso
~ Jsin?@ +acos? 0
_ Jasgn(cos@)|cosd)
~ Jsin?0+acos? 6

acos’ 0
=sgn(cos 9)\/sin2 6 +acos’ 6

n(T

sin® @ )
=sgn(cos@),|1— =sabit
on( )\/ sin®@+acos’ 0

bulunur. Dikkat edilirse,
~1<p(T)<1

ve sabit oldugundan, kontakt agis1

sin® @
sin’ @ +acos’ 0

cos @ = sgn (cos 9)\/1—

olan bir slant egriye doniisiir. Eger T =+£ ise, cosd =7 (T ) =+1 oldugundan, 6 =0 veya

6 = dir. Her iki durumda da sin@ =0 dir. Buradan,

~ sin” 0
cosé =sgn(cose)\/ "ot aceid +1

¢ikar. Yani d=0=0,7 dir. Eger, T L& ise, yani y Legendre egrisi ise, bu durumda

cosd = cos (%} =0 ve sin@ =sin [%j =1 oldugundan

sinf9
sin’@+acos’ 6

cos @ = sgn (cos 6‘)\/1—
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dir. Boylece, 5:9:% bulunur. Diger durumlarda, 0#6 di. Gergekten, 0=0 ise,

oncelikle

~ sin” 0
cosezsgn(cose)\/ ST araceid cosé

ifadesinde her iki tarafin karesini alarak ilerleyelim.
sin* @

-— —=c05"6
sin“ @ +acos‘ ¢

sin®@
sin” 6+ acos® @
sin” @
sin? 6?+acos2 6

—=1-c0s?60 =

= sin?@ =

=sin’ 0| 1- j
sin®@+acos’ 0

sin@+acos’6-1
sin®@+acos’ @

=sin@

=sin@

acos’0—cos’0 )
sin® @ +acos’ @

:sinzecosze( — aal . j:
sin“@+acos” 6

hesaplariz. Béylece, a#1 oldugundan, sin®@cos*d =0 denklemi, bize 6 = 0,%,7[ Verir.

Bu durumlar disinda, =6 olur. ®

Sasakian manifoldlarda, D-homotetik doniisiimlerin  geodezik egrilere etkilerini

inceleyecegiz. Bir Riemann manifoldunda geodezik tanimini vererek baslayalim:

Tamm 3.2.6. (M,g) bir Riemann manifold ve y:1 —M birim hizli bir egri olsun.
T =" olmak Uzere, V. T =0 ise, y egrisine M Uzerinde bir geodezik denir. Burada, V

ile Levi-Civita koneksiyonu gosterilmektedir [2].

M =(M,p,&,n,9) bir Sasakian manifold ve y: 1 — M birim hizli bir Legendre geodezik

olsun. Yani, n(y')=0 ve V,y'=0 dir. D-homotetik doniisiim sonrasi elde edilen
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M :(M (7)5736) Sasakian manifoldunun Levi-Civita koneksiyonu V ile, M nin Levi-

Civita koneksiyonu V arasinda,

VxY =V, Y +(1-a)n(Y)eX +7(X)eY]

~ 1
iligkisinin var oldugunu gostermistik. S:1 > M, ,B(S) = y(T S] birim hizli yeniden
a

parametrizasyonunu kullanarak, ﬁ’(s) =%7'(%Sj yazabiliriz. Boylece,
a a

dir.

Sonug 3.2.7. Sasakian manifoldlarin D-homotetik doniisiimleri altinda, Legendre egrilerin

geodezik olma 6zelligi korunur.

M =(M,p,&,n,g9) bir Sasakian manifold ve y:1 - M birim hizli bir slant geodezik
olsun. Yani, 77(") = cos @ =sabit ve V »'=0 dir. Buradan,
V07 © =V, O+A-a)[n(T)eT +1(T)oT |

=2(1—a)cos OpT

1
Jasin?@+a?cos? 8

yazabiliriz.  g:1 > M, ﬂ(s):y( sJ birim hizh  yeniden

i kullanarak, /3 1 : 1
parametrizasyonunu kullanarak, ﬂ(s):\/asin20+a2coszz97/ \/asin20+azcoszt9$

yazabiliriz. Boylece,

%ﬁ'ﬂ, 26 1 L ! ’(t)] L %y’(t)}/’(t)

, V4 =—
Tom7aY \Jasin? @ +a2 cos? @ asin’@+a’cos’ ¢

2(1—a)cosé ,
= t
asin?@+a?cos’ 0 (0(7/ ( ))

olarak hesaplariz.
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Sonug 3.2.8. Sasakian manifoldlarin D-homotetik doniisiimleri altinda, slant egrilerin
geodezik olma 6zelligi genellikle korunmaz. Bir bagka deyisle, birim hizli slant geodezik
egrinin D-homotetik doniisiim sonrasinda geodezik olmasi igin gerek ve yeter sart

Legendre egrisi olmasi veya & nin integral egrisi olmasidir.

Ispat. % # B =0 olmasi igin gerek ve yeter sart

o(7'(1)=0

olmasidir. a#1 oldugundan cosd=0 veya go(y/'(t))=0 dir. cos@=0 ise, y bir

2(l—a)cosé
asin®6@+a’cos’ @

Legendre egrisidir. go(;/’(t)) =0 ise,

o’ (7)=p(pr')=0
=—y'+n(r')¢
=—y'+C0SO

dir. Sonug olarak, y'=cosé&& ve y birim hizl oldugundan,
1=9(y"7")=9g(cosé&,cosb¢)

=cos’ 09 (&, &) =cos’ 6
yazabiliriz. Buradan, cos@=+1 ve y'=+& buluruz. Yani, y egrisi +&nin integral

egrisidir. W

Uyar.. 3-boyutlu Sasakian manifoldlarda geodezik olmayan Legendre egrilerin
torsiyonunun 1’e esit oldugu bilinmektedir (x, =1) ([11] ve [13] nolu kaynaklara bakiniz).
Burada, “geodezik olmayan” ifadesi olduk¢a Onemlidir. Yukarida verdigimiz sonuglar
ancak bu egriler var oldugunda anlamlidir. Sonraki boéliimlerdeki orneklerden de
goriilecegi tizere, 3-boyutlu Sasakian manifoldlarda geodezik olan Legendre ve slant

egriler de vardir. Bu egriler i¢in dogal olarak x; =0 oldugundan torsiyonun 1’e esit olmasi

ozelligi gecerli degildir.

3.3 Kiire Yiizeyinin Sasakian Yapisi
Bu alt bélimde o6ncelikle S*"'(1) c E*™** hiperkiiresinin Sasakian yapisi verilecektir.

Sonraki alt boliimlerde, bu yap1 kullanilarak egriler incelenecektir.
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B> = (RZM {, >) Oklid uzay1 ve {X,,X,,...,X,,,} OKklid koordinat fonksiyonlar1 olsun.
Burada
< ' >:Z(EZMZ)XZ(EZMZ)_)Cw(E2n+2'R)

2n+2 2n+2

Oklid i¢ carpiminin VX,Y e ;((EZ”*Z), X = Z u—,Y=>v 6i icin
a1 i-1 X;

2n+2

<X,Y>:i§uivi

olarak tanimlandigini biliyoruz. Simdi, 1 yarigapli ve orijin merkezli S*"**(1) hiperkiresini

tanimlayalim:

2n+2
SZn#(l):{XZ(Xl'XZ’ 2n+2) E2n+2 - ZX _1}

=1

olsun. E*™? uzerinden S°"*(1) altmanifolduna indirgenen metrik tensorii ise

g=(.)

ile gosterelim. (SZ”+1 (1) g) de bir Riemann manifolddur. Bu manifold Gzerinde,

J= 0 _In+1
In+1 O

E*"™? iizerinde bir kompleks yap1 (J 2= —IZM) olmak Uzere & karakteristik vektor alani,

S 2n+1 (1)

0 —1 X. X . n+l 0 n+l o
— —JN - _ n+l i — n+1+i — X S X
: [Iml 0 :|{Xn+l+i} { =% } IZ:l: e aXi IZ:l: I axn+1+i
olarak tammlamir. Burada N =X=(X,X,,.... %p.,) € 1" (SZ””(l)), orijin ile hiperkiire

lizerindeki x € S*™*(1) noktasini birlestiren birim normali gostermektedir. Bu gdsterimi

kullanabilmemizin sebebi, E*"** hem bir afin uzay, hem de bir vektor uzayr oldugundan

her bir noktasina, orijin ile birlesen bir vektor gozii ile bakabilmemizdir.

N=xey" (SZ”+1 (1)) oldugunu daha agik bir sekilde yazalim. S*"**(1) in denklemi

2n+2
= x-1=0
i=1
oldugundan,
of of of
radf =| —,—,..., =2( X, Xy ooy Xop,
J (ﬁxl X, 8x2n+2J (50% 0 %n.2)
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ve

|gradf||=2 /Znizxf =2
i=1

dir. Dolayisiyla,

gradf

:W:(XI’XZ""’XZMZ)z X

birim normaldir.

2n+2
Daha sonra,  1—formunu, VY = > v, aie 7(87(@) igin
i1 OX

2n+2 o o 0 n+l 0
V)=9(Y.&)={ 2vi= D X o= D%
77( ) 9 ( 5) <; VI 6Xi ; Xn+1+| aXi ; XI aXn-*—1+i >

n+1l n+1

= Zvi Knstsi — Zvn+1+i X;
i=1 i=1

veya kisaca

n+1 n+1

n= Z Xou1i 0% — Z XidX, 1,
= =
olarak tanimlariz. (1,1)—tipinden ¢ tensor alanim ise
oY =JY —n(Y)N
ile tanimlarsak, S*"*'(1) = (SZ”+l W), e, &1, g) c E*™? lizerindeki bu yapilarla bir Sasakian

manifold olur [14].

S*1(1) c E*™? hiperkiiresinin sekil operatdrii, A, =-l oldugunu biliyoruz. Boylece

ikinci temel form,

h:z(S™™@)x (S @) - 2 (™ ®),

h(X,Y)=(AX,Y)N ==(X,Y)N

dir. Gauss ve Weingarten formullerinden, vX,Y € (S*"*(1)) ve N e z*(S*™*(1)) icin
VY =V, Y —(X,Y)N,

VxN=—AX =X

yazabiliriz. Burada V ile E*"* nin Levi-Civita koneksiyonu, V ile S*(1) uzerine

indirgenen koneksiyon gosterilmektedir.
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S (1) =(S*"(1),¢,&,7,9) < E*"*  manifoldunun gergekten bir Sasakian manifold
oldugunu gosterelim. Tanim geregi, Y =¢& igin
n(£)=9(&&E)=(=IN,=IN)=(IN,IN)=(N,N)=1

bulunur. Simdi, VY e z(S*™*(1)) icin, J nin anti-simetrikliginden ve IN e x(S*"*(1)),
Ney" (SZ””(l)) olmasindan dolay1

n(eY)=g(eY.&)=(I¥ =n(Y)N,-IN)

=—(JY,IN)+n(Y)(N,IN)
=—(Y,N}=0

elde ederiz. Bu son esitligi de kullanarak, VY e ;((82”*1 (l)) icin

PY ==Y +n(Y)¢

esitligini dogrulayalim. Gergekten

oY = (oY) =3(¢Y)-n(p¥)N
=J(JY-n(Y)N)
=J% —n(Y)IN ==Y =n(Y)(=<£)
=Y +n(Y)¢

dir. Ayrica,

I
—~
X
=<
~—
+
d
—<
><
(_n
=2
~—
+
=
—_

Il
—
P
_<
~
+

=
> -<><><
P
|
('S
~
+
3
—_
X X
\-/\/\_/
i
o
_<
~
+
3
—~
>
N—"
S
—
<
N—

I
«Q «
—_~~
~
| |
=S
—_~
~—
=
—~~
<
~

oldugu kolayca goriilebilir. Simdi, V,¢& ve Ve ifadelerini hesaplayalim. VJ =0

oldugundan, Gauss ve Weingarten formiillerini kullamirsak, VX e ;((SZ”+1 (1)) icin
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V, E=VxE+(X,EN
=Vx (=IN)+7(X)N
=-VxJIN+n(X)N
= (Vx3)N+IVxN [+7(X)N
=-JVxN+7(X)N
=—JX +77(X)N
==(X=n(X)N)
=—pX
buluruz. Diger taraftan, VX,Y € y(S*" (1)) icin
(V@)Y =V oY —pV,Y
= Vxg¥ +(X,0Y )N —p(VxY +(X,Y)N)
=Vx (Y =n(Y)N)+(X,I¥ =p(Y)N)N
[ 3(VaY (X YIN)=n (V¥ + (X, YIN)N |
=VxJY = X[{Y.E)IN=5(Y)VxN+(X,IY)N -5 (Y)(X,N)N
“IVY (Y )IN+(VY E)N + (XY )N, EN

=(Vx3 )Y =(Vi¥ & )N (Y, Vx&)N = (Y) X +(X, IV )N
—(X,Y)IN+(ViY,E)N

=(X,Y)é-n(Y )X—<Y §x§>N+<x V)N

=g(X,Y)E=n(Y)X =(Y,V,E=(X,E)N)N +(X,IY)N
=g(X,Y)é- 77(Y)X (Y,=IX +7(X)N)N+(X,IY)N
=g(X,Y)E-n(Y)X+(Y,IX)N+(X,JY)N
=9(X.Y)E=n(Y) X =3, X)N +({X, V)N
=g(X,Y).§—77(Y)X

oldugundan
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0 -1 V. -V . n+l 0 n+1 o
JY = n+l i — n+1+i - _ Vv oy V.
{I 0 Mv } [ V. } ,Zzll M Ox ,Z_l: ' X

n+1 n+1+i i i n+1+i

dir. Buradan,

_ n+l 0 n+l 0
VxJY = X(JY)==2 X{Voail—+ 2. XV
X ( ) ; [Vn+l+l ] 6Xi " ; [VI ] 6Xn+l+i

yazabiliriz. Ayrica,

— n+l 0 n+l 0
VxY =X(Y)=) X|v. [— X ]—
' ( ) ; [VI ] aXi ' ; [Vn+1+l ] axn+l+i
esitliginden
J%xY = 0l X [Vi] _ -X [Vn+l+i]
In+l O X [Vn+l+i] X [Vi]

n+1 n+1 a

- —; X [me]aiXJriZ_l: X [Vi]ax

n+1+i

buluruz. Sonug olarak,

(%J)Y =VxJY —JVxY =0

dir. Tiim bu dzellikler ve yapilar ile birlikte, (S*"(1),¢,£,7,9) bir Sasakian manifolddur.

(SZ”+1 (1),77) manifoldunun bir kontakt manifold oldugu da ayrica gosterelim. Tanim

geregi
n+l n+l
n= Z Xo,1i 0% — Z XidX, 1,
i1 i-1
oldugundan,

i=1

i1 i-1 i=

= ZnZJrl an+l+i A dXi

i=1

elde ederiz. Buradan, (dz)" hesaplarken (n-+1)-tane {dx,.,.; Adx;} arasindan n-tanesini

n+1+j

secip onlarin sapka (wedge) ¢arpimini almamiz gerekir.
. (n+1 et
e TUmM " =n+1 giftli se¢im yapilir.

e Hersecim, n adet 2-formun sapka(wedge) carpimudir.

¢ Bu islem tiim siralamalar i¢in yapilir.
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Bdylece,

n+l n
(dn)" = (ZdeMﬂ /\dXij

i=1

n+l n+l n+l
= (22 dX,...; A dX; j A [22 dX,...; AdX j A A (22 dX,...; AdX j

i=1 i=1 i=1

n tane

n+l

=2"n1y" A (dx,.,; Adx)

i=1 j=i

dir.  Burada, A(dxmﬂ,/\dxj) ifadesi ile, i. ciftliyi icermeyen 2n-formlar

ji

gosterilmektedir. Sonug olarak,

n+l n+l
nA (d77)n = 2n n lz (Xn+1+i dXi - Xi an+1+i) A ZA(an+1+j A de ) #0
i=1 i=1 j=i
hesaplanir. Ciinkii, bu (2n+1)-form, ancak x, =X, =...= X,,, =0 durumunda sifira esit

olur. Ancak, orijin $*"*(1) kiiresi iizerinde degildir. Boylece, 7 bir kontakt yapidir.

34 §° (1) Kiiresi Uzerinde Legendre ve Slant Egri Orneklerinin Hesaplanmasi ve D-

Homotetik Déniisiimiin Bu Egrilere Etkisinin Incelenmesi
Bu alt bolimde 3-boyutlu birim Kkirenin Sasakian yapisi kullanilarak uygulamalar

yapilacaktir. BOIUm 3.3 deki yapilar kullanilarak, n=1 secilirse

4
83(1)={x:(x1,x2,x3,x4)eE4: > X =1}CE4

i=1
(hiper)kuresi elde edilir. M =(53(1),(p,¢f,77,g) Sasakian manifoldunda, teorik sonuglari

Legendre ve slant egriler iizerinde uygulayacagiz.

y:i1 58 (1)c B,

t— y(t)=(c cos(t),c,sin(t),c,cos(t),c,sin(t))
egri ailesini tanimlayalim. Burada ¢/ +c? =1 dir.
yiryitys vy =ci+cl =1

oldugundan egri S°(1) de yatar. Teget vektor alani,
T =y"=(-¢,sin(t),c,cos(t),—c,sin(t),c, cos(t))

olarak hesaplanir. Dikkat edilirse,
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Qe (727) = (7)) =l +c; =1

dir, yani y egrisi birim hizlidir. Egri boyunca karakteristik vektor alani,

&=(c,cos(t),c,sin(t),—c cos(t),—c,sin(t))

seklinde yazilabilir. Boylece,

n(T)= <(—c1 sin(t),c, cos(t),—c,sin(t),c, cos(t)),(c, cos(t),c,sin(t),—c, cos(t),—c,sin (t))>
=—c,C,sin(t)cos(t)+c,c, cos(t)sin(t)+c.c,sin(t)cos(t)—c,c, cos(t)sin(t)

=0
elde edilir. Dolayisiyla, y bir Legendre egrisidir. Geodezik oldugunu gosterelim. V ve V

ile, sirasiyla E* ve S°(1) in Levi-Civita koneksiyonlar ifade edilsin. Gauss formiiliinden
ViT=ViT +(T,T)N| =y"+y

=(—c, cos(t),—c;sin(t),—c, cos(t),—c,sin(t))+(c, cos(t),c,sin(t),c, cos(t),c,sin(t))

=0
bulunur. Boylece y bir Legendre geodeziktir.

Simdi, S°®(1) manifoldundan D-homoteti ile bagka bir Sasakian yap: elde edecegiz ve bu
egrilere etkilerini inceleyecegiz. Ozel olarak, a=1/9 secelim. S°(1) Sasakian manifoldu,
D-homotetik doniisiimiin ardindan;

p=p=J3-n®N,

i

1
=< =9(Xg, Xy, =X, =%, ) = (9%, 9X,,~9%, ~9X, ),

~ 1 1
n=an=gn= g(xgdx1 + X, dx, — X, dx; — x,dX, )
1 1 1 1
=9 X;0x, + 3 X,dx, — 3 X,dX; — 3 X,dX,

8
53(1) _En@)n

~ 1
g=aglsy +(a*-a)n®n=5(,)
olmak Uizere, M = ( ( ) g?) 5‘ 7~7 N) Sasakian manifolduna doniisiir. : 1 — M,
t— y(t)=(c,cos(t),c,sin(t),c,cos(t),c,sin(t))

egrisi i¢in,

y'=(-¢,sin(t),c cos(t),—c,sin(t),c, cos(t))

oldugundan, D-homotetik doniisiimiin ardindan egrinin hizi,
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1

2
<>__’7(7) ~3

=377 = o,

bulunur. Boylece egrinin hizi, ligte birine iner. Egriyi birim hizli hale getirelim.
B:I>M, ﬁ(s) =y(t)= 7(h’1(s)) ile egrinin birim hizli yeniden parametrizasyonunu

gbsterelim. Burada,

|du

yay parametresidir. Boylece,
B(s)=7r(3s)=(c,cos(3s),c,sin(3s),c,cos(3s),c,sin(3s))

dir. Egrinin tanjant vektor alan,

T(s)=B'(s)=(-3c,sin(3s),3c, cos(3s),-3c, sin(3s),3c, cos(3s)) =3y'(t)

yazabiliriz. Buradan,
ﬁ(f) - (%77)(37'(t)) = %U(V'(t)) =0 dir.

Dolayistyla, ,E bir Legendre egrisidir. Yani, Legendre egrisi olma 6zelligi korunmus olur.

Son olarak,
VxY =V, Y +@-a)n(Y )eX +1(X)eY]

ozelligini kullanarak,
o~ =~ 8
ViT =V.T +§[77( )¢T +77( )(oT]

! 16 ’ ’
= Vi, (37'(1)) 537 (1) 2 (37 (1))
=9v,7'+167(7'(t))o(7')
=0
yazabiliriz. Boylece, ﬁ bir geodeziktir. Sonug olarak, D-homotetik doniisiim Oncesi bir

Legendre geodezik olan y egrisi igin, doniisim sonrasinda Legendre geodezik olma

0zelligi korunmustur.

Simdi, Legendre olmayan slant egrileri inceleyelim.

7,1 > S8 (1)cEY,
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t— 7, (t)=(cos(t),0,—sin(t),0)

ve

t— 7,(t)=(cos(t),0,sin(t),0)

egrilerini tammlayalim. Bu egriler sirasi ile, §|h ve §|h dogrultular1 ile 0 ve 7z radyan

kontakt agisina sahip slant egrilerdir. Yani, karakteristik vektor alaninin integral egrileridir.
Dolayist ile slant geodezik olurlar. D-homotetik doniisiim sonrasi, Sonu¢ 3.2.5 geregi

kontakt agis1 sabit kalir. Sonug 3.2.8 den ise geodezik olma 6zellikleri korunur.

Bu alt boliimii, geodezik olmayan bir slant egri ile bitirecegiz. y: 1 — S$°(1) c E*,

(ol F ool i) F ol - o)

egrisi, 6 =% kontakt agisina, x; :gy’fz :% egriliklerine sahip bir Hopf helisidir ve

slant egridir ([8] ve [9] nolu kaynaklara bakiniz). D-homotetik doniisiim sonrasi, egrinin

hiz,

1,, , 8 N2
V—\/§<7, 7 New 5777
_ 183 1 _~3

9 814 7 9

bulunur. Yani, egrinin hiz1 V319 katina diismiistiir. Sonug 3.2.5 geregi, kontakt agis1 igin,

sin® g
sin@+acos’ 0

cosd =sgn (cos@)\/ -

oldugundan, 0 :% olan bir slant egriye doniisiir. Son durum ile ilk durum arasindaki ac1

farki,
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0-0="_"_" radyan =30°
3 6 6

oldugundan degme agis1 artmistir. A¢inin degisim orani ise,

T

3 6 _o4100

oy

dir. Yani, y egrisinin £ ile arasindaki agiklik (ag1), D-homotetik doniisiim sonrasi artarak

iki katina ¢ikmustir.

35 R® (—3) Sasakian Manifoldu Uzerinde Legendre ve Slant Egriler ile Uygulama

Bu alt bolimde R®(-3) Sasakian manifoldu iizerinde uygulamalar yapilacaktir. Oncelikle

bu manifoldu hatirlayalim.

M =R? ve {X,y,2} koordinat fonksiyonlari olsun. M {izerinde,

0
=22
d 0z

karakteristik vektor alani,

n :%(dz — ydx)

1-formu, X =U i+V i+Wie;((M) olmak lzere
OX oy 0z
pX =V i—U £+Vy£
OX oy 0z

(1,1)-tipinden tensor alani,
1
=n®n+=(dx* +dy’
g =n @+ (dx" +dy’)
Riemann metrigi alinarak elde edilen (M, ¢,&,7,9) manifoldu, bir Sasakian manifolddur.

Bu manifold, ¢ok iyi bilinen R®(—3) manifoldudur [4]. (M) in ortonormal bazi

X :ZQ, Y =¢pX :2£i+yij, éj:2i
oy OX oz oz
dir. Bu baza gore, Levi-Civita koneksiyonu

VX =V,Y =0, V,Y=¢ V,X ==
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Vi E=V. X =Y, V,E=V,Y =X, V,£=0
olarak hesaplamir [4]. y: 1 - R*(-3), y(t)= (7’1 (1), 7, (1), 7 (t)) birim hizli bir slant egri

olsun. Bu durumda, teget vektor alani

by 0 N0\ O
T= 71(t)&+72 (t)a*‘?/a (t)g

l ’ ’ ’ !
=R OX+ A OY +[7(0)-7 (07 (0)]¢]
dir. y egrisi slant oldugundan, eger kontakt acis1 € ile gosterilirse,
1 ! !
n(T)=cos0=2(r:(t) -7 (t)72(1))
elde edilir. Boylece, slant olma kosulunu,

7s(t)=2c0s0+y ()7, (t)

buluruz. Buna gore, teget vektor alanini

T :%{}/; (t) X+ (t)Y } +cos e

seklinde yeniden diizenleyebiliriz. g (T,T)=1 oldugundan

1=g (%{y; (t) X +7{(t)Y}+cos€§,%{y; (t)X +7{(t)Y}+cos(9§]
O] +2[A O] +oost0

=[BT +[A O] =4sin’0

birim hizli olma kosulu elde edilir. Levi-Civita koneksiyonu kullanilirsa,
V.T=V, {%{7% N A 2cos¢9§}}

= %[y;’x +7,Vi X+ 7Y +7V.Y +2c0s OV, £]

- %{(7£'+ 2¢0s6y;) X +(7,'~2cos 0y} )Y }

bulunur. Eger, y bir Legendre egrisi ise, c0S6 =0 olacagindan,

75 (t)=71(t)7,(t), (Legendre olma kosulu)

T= %{yé ()X +7 ()Y }, (teget vektor alant)

(7] +[7(t)] =4, (birim hizhi olma kosulu)
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1 " 1/
V. T 25{7/2 ()X +71(t)Y}

esitlikleri, R® (—3) iin Legendre egrileri i¢in gegerlidir. Ek olarak, eger » bir geodezik ise,

= 7(t)=74(t) =0

elde edilir. Boylece,

7()=7r/(t)=0, 75 () =1 (1) 7 (1)

diferansiyel denklem sisteminin ¢6ziimii var oldugundan 3-boyutlu Sasakian manifoldlarda

Legendre geodezikler i¢in elde ettigimiz sonuglar da anlamlidir. Denklem ¢ozulirse,
7 (t)=ct+d,
7, (t)=c,t+d,,

72(t)= %clczt2 +c,d,t+d,

¢ikar. Boylece, R®(-3) Uin Legendre geodezikleri, y : 1 — R*(-3),
1

ty(t)=| ct+d, ct+d,, Eclczt +cd,t+d,

seklindedir. Burada, c,,c,,d,,d,,d, keyfi sabitler ve birim hizh kosulu geregi ¢’ +c2 =4

tar.

Benzer sekilde, Legendre olmayan slant geodezikler i¢in de bir parametrizasyon

bulabiliriz. Kontakt acis1 8 ise, V,T =0 esitliginden,
0= %{(7;# 205 60y;) X +(7{—2c0s Oy, )Y |

=y, +2c0s6y; =0, y/'—2cosby, =0
denklemlerini buluruz. Slant egri olma kosulunu da eklersek,

7, +2c0s6y, =0,
y/—2c0s0y, =0,
73 =2C0SO+7y,

diferansiyel denklem sistemi elde edilir. Bu sistemi ¢6zelim. Oncelikle, birim hizli olma

kosulundan, bir f (t) fonksiyonu igin,

y,=2sin@cos f, y, =2sin@sin f
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yazabiliriz. Buradan,

¥y =2sin@(-sin f) ',

¥, =2sin@(cos f) f'

denklemlerini, y;+2cosé&y, =0 denkleminde yerine yazarsak,

2sin@(cos f) f'+2cos@(2sindcos f)=0
= 2sin@(cos f )[ f'+2c0s0] =0
=sind=0veya cos f =0 veyaf'+2cosd=0

bulunur. Benzer sekilde, y,'-2cosé&y, =0 denkleminde yerine yazarsak,
2sin@(—sin f) f'—2cos@(2sinOsin f)
= —2sin@sin f [ f'+2c0s0]=0

=sind=0veya sinf =0veyaf'+2cosd=0

0

bulunur. Bdylece, sin@=0 veya f’'+2cosd=0 olmak zorundadir. Ciinkii, cos f ve
sinf aym anda sifir olamaz. Sonug olarak, sin@=0 veyaf(t)=-2cos6t+c dir.
Burada, c keyfi sabittir. Oncelikle sin@ =0 olsun. Bu durumda,

7n=07=0= y=0c,7=C

olacak sekilde ¢, ve c, keyfi sabitleri vardir. Bu durumda cosd==x1 ve slant olma

kosulundan,

75 =2C0S0+yy, =12 = y, =%2t+c,

olur. Burada c, keyfi sabittir. BOylece, dikkat edilirse, sin@=0 durumu T =% olmasi
durumudur ve y: 1 - R*(-3),

ty(t)=(c,c, £2t+c,)

seklinde elde edilir. Diger durumda, siné #0 ise, f (t)=-2cosét+c dir. Bu durumda,

¥, =2sin@cos(—2cosbt +c),
¥, = 2sin@sin(-2cos bt +c)
oldugundan,

7, =—tan@sin(-2cos gt +c)+c,,

¥, =tan@cos(-2cosbt+c)+c,
cikar. Ayrica,

¥4 =2€080+ 1y, = 2¢0s 0 +| 2sin O cos(—2cos bt +¢) |[ tan O cos (—2cos Ot +c) +c, |
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oldugundan,

7/3(t):2cos¢9t—%tan0{4c35in(—20039t+c)+tan6?[sin(—4cosé?t+2c)+2c]—4sin6?t}+c4
bulunur. Burada, c, c,, ¢, ¢, keyfi sabitlerdir. Boylece, f’'+2cos&=0 durumunda,

yi Il 5>R¥(=3), ty(t)= (;/1 (t), 7,(t).7 (t)) egrisi, birim hizli slant geodezik olur.

Simdi, R®(-3) manifoldundan D-homoteti ile bagka bir Sasakian yap1 elde edecegiz ve bu
egrilere etkilerini inceleyecegiz. Ozel olarak, a=4 segelim. R®(—3) Sasakian manifoldu,
D-homotetik doniisiimiin ardindan; R? Uizerinde,

9=9,

p-Lel(22).10
a

n=an= 4.%(dz — ydx) = 2(dz — ydx),
g=ag+(a’-a)p®n=4g+127®py
= 4(77 ®n +%(dx2 + dyz)j+12n ®n
=1677®77+(dx2 +dy2)
olmak Uzere, M =(]R3,(;,§,7;, 6) Sasakian manifolduna doniisiir. Bu manifold iizerinde,
yil—->M,
ty(t)= (clt +d,, c,t+d,, %clcztz +c,d,t+ dgj
egrisi i¢in teorik sonuclarimizi dogrulayalim. Beklenen sonug, bu egrinin yine bir
Legendre geodezik olmasidir. Gergekten, M Uzerinde,
7' (t)=(c,c,,c0t+cd,)
icin,
V2= 6(7/', 7") 21677(7/')77(;/')+(C12 +022) =421

oldugundan, egrinin hiz1 v =

y' ;= J4 =2 dir ve sabittir; ancak, birim hizli olma ozelligi
korunmaz. Egriyi birim hizli hale getirelim. f:J —>M, B(s)=y(t)=y(h"(s)) ile

egrinin birim hizli yeniden parametrizasyonunu gosterelim. Burada,

34



0=Jlr )

0

=|2du =2t

O —

yay parametresidir. Boylece,
B(s)= y(%sj = (%cls +d,, %czs+ d,, %clczs2 +%c1dzs + dsj
dir. Egrinin tanjant vektor alani,

~ ~ 1 1 1 1 1 1 1,
T(S):ﬂ(s):(zcl’ Ecz’ Zc1czs+zc1d2jza(cl’ Cy» Eclczs"'cldzj:E?/ (t)

yazabiliriz. Buradan,
7A7'(f):2(dz—ydx)|~ 1 c, C,, Lecsted
B 2 1 2 2 1~2 12
1 0 0 1 0
=|dz—-| =c,s+d, |dx || c,—+C,—+cC,| =C,5+d, |[—
( (2 2 zj j[ 18)( 2ay 1(2 2 2)52]
0 0 1 0 1 0 0 1 0
=dz| ¢,—+¢,—+¢,| =C,s+d, |— |-| =¢,s+d, |dX| c,—+C,—+¢C,| =C,5+d, |—
(lax 28y 1(2 2 2]62] (2 2 2) [16)( Zay 1(2 2 Zjazj
=C 2+c g+c (ic s+d )g—(ic s+d ) c %+c %+c (lc s+d J%
laX 28y 122 282 22 2 1ax Zay 122 282

1 1
:c1(§c25+d2]—(5025+d2jc1

=0
dir. Dolayistyla, ZB’ bir Legendre egrisidir. Yani, Legendre egrisi olma 6zelligi korunmug

olur. Son olarak, (3.3) esitligi geregi

VxY =V, Y +@-a)n(Y )eX +1(X)eY]
oldugundan,

ViT =fo—3[77( )(/)T +77( )(pT]

oz O o1z Ol )

:%vy,y’—gn(f(t)ﬁ”(f)
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yazabiliriz. Boylece, B bir geodeziktir. Sonug olarak, D-homotetik doniisiim Oncesi bir
Legendre geodezik olan y egrisi igin, doniisim sonrasinda Legendre geodezik olma

0zelligi korunmustur.

Benzer tartisma, Legendre olmayan slant geodezikler i¢in de yapilabilir. Slant olma
ozelliginin korundugunu, kontakt acisiin ve geodezik olma 0&zelliginin genellikle

korunmadigini; ancak, Legendre egrisi olma veya +& nin integral egrisi olma durumunda,

slant geodezik olma &zelliginin korundugunu soyleyebiliriz. Yani, y:1—R°(-3),
7(t)=(c,,C,, ¥2t +c;) slant geodezik egrileri i¢in de, D-homotetik doniisiim sonrasi bu

Ozellikleri korunur.

Son bir uygulama ile bdliimii tamamlayalim. y: 1 —R*(=3), y(t) = (t,0,+/3t) egrisini ele
alalim. ;((]R3 (—3)) un {X ,Y,f} ortonormal bazi cinsinden, y egrisinin tanjant vektor

alani,

Ve

T :y'(t)z(l,o,ﬁ):%v o

dir. Yani, egri birim hizidir. 7(T)=g(T,&)= g =sabit oldugundan, y egrisi 0 :%

radyan kontakt agisina sahip bir slant egridir. Daha sonra,

1, V¥3.) 1 3
VTT :VT [EY +7§J :EVTY +7VT§
1 3
==V Y +—V
2 %Y+§§ 2 %wg;f

1 V3 NE]

3
:ZVYY +TV§Y +TVY§+ZV§§

—1. +£X +£X +§.O
4 4 4 4

J3

:7X :K']_Ez

oldugundan x; :g ve E, = X tir. Devam edilirse,
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=-x I +x,E;

= —Q[EY +§§j+l€2E3 = —?Y —if

2|2 2

J3

= Ky ==Y +%§

:>K2:‘/3+i:£ve E3=—£Y+£§
16 16 2 2 2

bulunur. Boylece, y egrisi bir slant helistir. D-homotetik doniisiimiimiiz yine bir dnceki

gibi a=4 olarak uygulansin.
V' =g(y,7)=49(7\7)+12n(y)
2
= 4+12(£J
2
=13

oldugundan egrinin hizi V13 katma cikar. Egrinin birim hizli yeniden parametrizasyonu

ise,

E(s)zy(%sjz(%s,o,\/gs)

dir. Bu egri, yine bir slant egridir, ancak kontakt agis1 degismistir. Gergekten,

= | 1 3) 1 13
T(s):ﬂ(s)_(ﬁ,o, E}_EY+E\/%§

5(?):477(?):477(%\(%\/%5]

= 2\/E = sabit
13

olarak hesaplanir. Boylece, ,B egrisi, kontakt agis1
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0= arccos[Z\/%J ~0.28103 radyan ~16,1°

olan bir slant egridir. Son durum ile ilk durum arasindaki a¢1 farki,
~ 3 T i
0—-0= arccos(Z\/% ] r ~ —0,24256 radyan ~—13,9

oldugundan degme agis1 azalmistir. Aginin degisim orani ise,

3 T
arccos| 2,|— |——
( \/13 6

T

6

dir. Yani, y egrisinin ¢ ile arasindaki agiklik (ag1), D-homotetik doniisiim sonras1 azalarak

~ —%46,32

yaklasik %53,68 ine diismiistiir.
Boylece, Sasakian manifoldlardaki D-homotetik doniisiimlerin gesitli egriler Uzerinde ag1

ve uzunluk élglimlerine etkisini detayli hesaplamalar ile incelemis olduk. Bu etkileri daha

bircok egriye uygulamak miimkiindiir.
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4. SONUC VE ONERILER

Bu tez caligmasinda, Sasakian manifoldlarin D-homotetik doniisiimlerinin Frenet egrileri
lizerindeki etkileri detayl1 olarak ¢aligilmustir. Ozel olarak, kiire yiizeyinin Sasakian yapisi

ele alinmigtir. Legendre ve slant geodezikler ile ilgili uygulamalar yapilmistir.

Bir Sasakian manifoldda yatan bir Frenet egrisi i¢in, D-homotetik doniisiim sonrasi, birim
hizl1 egri olma 6zelliginin korunmadigi; ancak, sabit hizli egri olma 6zelliginin korundugu
goriilmiistiir. Legendre veya slant egri olma 6zellikleri de korunmaktadir. Slant egriler igin
kontakt acist genel olarak korunmamaktadir. Geodezik olma Ozelliginin ne zaman

korundugu da ispatlanmistir. Kiire iizerinde 6rnekler verilerek sonuglar desteklenmistir.

Yapilan galigmalari, Sasakian manifoldlar diginda diger manifoldlara uygulamak mumkdn

gorilmektedir.
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