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ÖZET 

-BOYUTLU KÜRE YÜZEYİNİN KONTAKT YAPISI VE D-
HOMOTETİK DÖNÜŞÜMLER YARDIMIYLA EĞRİLERİN İNCELENMESİ 

YÜKSEK LİSANS TEZİ 
TUĞBA KUŞCU 

BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ 
MATEMATİK ANABİLİM DALI 

 
(TEZ DANIŞMANI: DOÇ. DR. ŞABAN GÜVENÇ) 

 
BALIKESİR,  TEMMUZ - 2025 

 
Dört bölümden oluşan bu tezde, Sasakian manifoldların D-homotetik dönüşümleri ele
alınarak, bu dönüşümlerin Frenet eğrileri üzerindeki etkileri incelenmiştir. Küre yüzeyinin
Sasakian yapısı detaylı olarak ele alınmış, bulunan sonuçlar 3-boyutlu birim küre
üzerindeki Legendre ve slant geodezik eğrilere uygulanmıştır. Ayrıca, küre dışında bir
Sasakian manifold üzerinde de örnekler verilmiştir.  
 
Birinci bölüm giriş bölümüdür. 
 
İkinci bölümde, daha sonraki bölümlerde kullanılacak olan temel kavramlar ve tanımlar
verilmiştir.  
 
Üçüncü bölüm, tezin esas kısmını oluşturmaktadır. Bu bölümde, Sasakian manifoldların D-
homotetik dönüşümleri tanımlanarak eğriler üzerindeki etkilerine odaklanılmıştır. Bulunan
sonuçlar çeşitli Sasakian manifoldlar üzerinde uygulanmıştır. 
 
Son bölüm olan dördüncü bölümde ise genel bir değerlendirme yapılarak, bulunan
sonuçların gelecek çalışmalara nasıl ışık tutacağına değinilmiştir.      

ANAHTAR KELİMELER: D-homoteti, Frenet eğrisi, kontakt yapı, Sasakian manifold  
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ABSTRACT 

ANALYSIS OF CURVES BY MEANS OF D-HOMOTHETIC 
TRANSFORMATIONS AND CONTACT STRUCTURES OF  

-DIMENSIONAL SPHERE 
MSC THESIS 

TUĞBA KUŞCU 
BALIKESIR UNIVERSITY INSTITUTE OF SCIENCE 

MATHEMATICS 
 

(SUPERVISOR: ASSOC. PROF. DR. ŞABAN GÜVENÇ ) 
      

BALIKESİR,  JULY - 2025 
 

This thesis, consisting of four chapters, explores the D-homothetic transformations of
Sasakian manifolds and examines their effects on Frenet curves. The Sasakian structure of
the sphere is studied in detail, and the obtained results are applied to Legendre and slant
geodesic curves on the 3-dimensional unit sphere. Additionally, examples are provided on
a Sasakian manifold other than the sphere. 

 
The first chapter is the introduction. 

 
In the second chapter, the fundamental concepts and definitions that will be used in the
following chapters are presented. 

 
The third chapter is the main part of the thesis. In this chapter, D-homothetic
transformations of Sasakian manifolds are defined, and their effects on curves are
examined. The obtained results are applied to various Sasakian manifolds. 

 
In the final chapter, a general evaluation is made and it is discussed how the results of this
thesis can guide future studies. 
 

 

KEYWORDS: D-homothety, Frenet curve, contact structure, Sasakian manifold  
 
Science Code / Codes : 20402 Page Number : 41
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SEMBOL LİSTESİ 

 
( , )M g   : Riemann manifoldu 
ϕ    : (1,1)-tipinden tensör alanı 
ξ    : Reeb (Karakteristik) vektör alanı 
η    : Kontakt form 
g    : Metrik tensör alanı (Riemann metriği) 

( )Mχ   : Vektör alanları uzayı 
2 1(1)nS +   : (2n+1)-boyutlu birim (hiper)küre 
2 2n+    : (2n+2)-boyutlu Öklid uzayı 

∇    : 2 2n+  nin Levi-Civita koneksiyonu 
∇    : 2 1(1)nS +  in Levi-Civita koneksiyonu 
∇    : D-homotetik dönüşümden sonraki Levi-Civita koneksiyonu 

iκ    : i. Frenet eğriliği 
D    : Kontakt distribüsyon (değme dağılımı) 
X    : Vektör alanının uzunluğu 
θ    : Kontakt açısı 
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1. GİRİŞ 
Diferansiyel geometri, çok boyutlu uzaylarda tanımlı geometrik yapıların lokal ve global 

özelliklerini inceleyen matematiksel bir alandır [1,2]. Bu alanın önemli bir alt disiplini olan 

kontakt geometri ise, (2n+1)-boyutlu manifoldlar üzerinde tanımlanan kontakt yapılar 

aracılığıyla, simplektik geometrinin tekil durumlarına karşılık gelen geometrik sistemleri 

ele alır [3,4]. Kontakt yapılar, fiziksel sistemlerde (özellikle Hamiltonyen mekanik, 

termodinamik ve optik gibi alanlarda) önemli rol oynayan yapılar olup, matematiksel 

olarak bir (2n+1)-boyutlu diferansiyellenebilir manifold üzerindeki bir 1-formla 

karakterize edilir. 

 

Sasakian manifoldlar, kontakt metrik manifoldların özel bir sınıfını oluşturur [4]. Bu 

manifoldlar, Kaehler manifoldların tek boyutlu benzerleri olarak değerlendirilebilir ve 

kompleks geometri ile olan yakın ilişkileri nedeniyle önemli bir araştırma konusudur [3]. 

Sasakian yapıların diferansiyel geometri içindeki rolü, yalnızca teorik açıdan değil, aynı 

zamanda çeşitli fiziksel modellere uygulanabilirliği açısından da dikkat çekicidir. 

 

Bu tezde, (2n+1)-boyutlu küresel manifoldlar üzerinde tanımlı kontakt yapılar incelenecek 

ve bu yapılarla D-homotetik dönüşümler arasındaki ilişkiler ele alınacaktır. D-homotetik 

dönüşümler, kontakt yapıyı ve ona eşlik eden Riemann metriğini belirli oranlarda yeniden 

ölçeklendiren dönüşümlerdir [5,6]. Bu dönüşümler altında manifold üzerindeki geometrik 

yapıların nasıl değiştiği, özellikle de eğrilerin geometrik karakteristiklerinin korunup 

korunmadığı araştırılacaktır. 

 

Tez kapsamında ele alınacak temel yapılardan biri de Frenet eğrileridir. Diferansiyel 

geometride bir eğrinin lokal özelliklerini incelemek için kullanılan Frenet çatısı, eğrinin 

tanjant, asli normal, binormal vektörleriyle birlikte eğrilik ve burulma gibi büyüklükleri 

tanımlar [7]. Yüksek boyutlu uzaylarda ise, Frenet çatısı ve Frenet eğrilik fonksiyonları 

Gram-Schmidt metodu yardımıyla elde edilmektedir.  D-homotetik dönüşümün ardından 

eğrilerin bu özelliklerinin nasıl değiştiği, eğrinin geodezik olup olmadığı, slant veya 

Legendre eğri olup olmadığı gibi özelliklerin korunup korunmadığı analiz edilecektir.  

 

Metrik tensör, bu incelemelerin merkezinde yer alır. Manifold üzerindeki uzunluk, açı ve 

eğrilik ölçümlerini tanımlayan metrik tensörün D-homotetik dönüşüm altındaki değişimi, 
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yalnızca eğriler değil, aynı zamanda manifoldun genel geometrik yapısı üzerinde de etkili 

olmaktadır. Bu bağlamda, tezde yalnızca teorik analiz yapılmayacak, aynı zamanda çeşitli 

örnekler üzerinden elde edilen sonuçlar uygulamalı olarak gösterilecektir. Örneğin Hopf 

fibrasyonu yardımı ile hesaplanan Hopf helisi [8,9] gibi klasik yapılar da bu bağlamda 

değerlendirilerek, farklı türde Sasakian manifoldlar üzerinde tanımlı Legendre ve slant 

eğrilerin davranışı incelenecektir. 

 

Bu tez çalışmasının temel amacı, kontakt geometri ve diferansiyel geometri alanlarındaki 

yapıları D-homotetik dönüşümler bağlamında analiz ederek, özellikle eğrilerin 

davranışlarını sistematik biçimde ortaya koymaktır. Elde edilen sonuçların, kontakt ve 

Sasakian geometriye ilişkin daha derin bir anlayışa katkı sağlaması ve ileride yapılacak 

çalışmalara zemin oluşturması beklenmektedir. 
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2. TEMEL KAVRAMLAR 
Bu bölümde daha sonra kullanılacak olan temel kavramlar, tanımlar ve örnekler 

verilecektir. 

 

2.1 Riemann Manifoldları ve Metrik Tensör Alanı 

Öncelikle metrik tensör alanı ve Riemann manifoldu tanımını vereceğiz. 

 

Tanım 2.1.1 (Metrik Tensör Alanı): Bir M  diferensiyellenebilir manifoldu üzerinde 

pozitif tanımlı, iki-lineer ve simetrik bir (0,2)-tipinden tensör alanına metrik tensör alanı 

veya Riemann metriği denir.  Yani,  

( ) ( ) ( ): ,g M M C Mχ χ ∞× →    

bir metrik tensör alanı ise, ( ), ,X Y Z Mχ∀ ∈  ve ( ), ,f h C M∞∀ ∈   için 

i) ( ) ( ), 0,  , 0  0,g X X g X X X≥ = ⇔ =  (pozitif tanımlı) 

ii) ( ) ( ), , ,g X Y g Y X=  (simetrik) 

iii) ( ) ( ) ( ), , , ,g fX hY Z fg X Z hg Y Z+ = +  (birinci bileşene göre lineer)  

     ( ) ( ) ( ), , , ,g X fY hZ fg X Y hg X Z+ = +  (ikinci bileşene göre lineer) 

özelliklerini sağlar [1].   

 

Tanım 2.1.2 (Riemann Manifoldu): M  bir C∞ (diferensiyellenebilir) manifold ve 

üzerinde tanımlı bir metrik tensör alanı g   olmak üzere, ( ),M g  çiftine bir Riemann 

manifoldu denir [1].  

 

Bu yapı, manifold üzerinde uzunluk ve açı gibi temel geometrik kavramları tanımlamayı 

sağlar. Doğal olarak uzunluk ve açıdan türetilen alan, hacim vb. geometrik kavramlar da 

metrik tensöre bağlı olarak tanımlanabilir. Hatırlatmak gerekirse, bir manifold üzerindeki 

( )X Mχ∈  vektör alanının uzunluğu; 

( ),X g X X=   

şeklinde tanımlanır. Sıfırdan farklı ( ),X Y Mχ∈  vektör alanları arasındaki açı ise 

( )
( ) ( )

,
cos

, ,

g X Y
g X X g Y Y

θ =   
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ile verilir [3]. 

 

Örnek 2.1.3. nM =   Öklid uzayı, üzerindeki 2 2 2 2
1 2 ... ng ds dx dx dx= = + + +  Öklid metriği 

ile birlikte bir Riemann manifoldu olur. Burada { }1 2, ,..., nx x x  koordinat fonksiyonlarıdır 

[2]. 

 

Örnek 2.1.4. ( ) ( ){ }2 3 2 2 2
1 2 3 1 2 31 , , : 1M S x x x x x x= = ∈ + + =  küresi, üzerine 3  Öklid 

uzayından indirgenen ve küresel koordinatlarda 2 2 2 2sing ds d dθ θ φ= = +  ile verilen g  

metriğiyle birlikte bir Riemann manifoldu olur. Burada { },θ φ  küresel koordinat 

fonksiyonlarıdır [4]. 

 

2.2 Levi-Civita Koneksiyonu 

Tanım 2.2.1 (Afin koneksiyon): Bir M  manifoldu üzerinde tanjant vektör alanlarının 

türevlenebilmesini (diferensiyellenebilmesini) sağlayan 

( ) ( ) ( ) ( ): ,  , XM M M X Y Yχ χ χ∇ × → ∇   

operatörüne afin koneksiyon veya kısaca koneksiyon denir. Yani, M  üzerindeki bir afin 

koneksiyon, ( ), ,X Y Z Mχ∀ ∈  ve ( ), ,f h C M∞∀ ∈   için 

i) ( ) ,X X XY Z Y Z∇ + = ∇ +∇   

ii) ,fX hY X YZ f Z h Z+∇ = ∇ + ∇   

iii) [ ]X XfY X f Y f Y∇ = + ∇  

özelliklerini sağlar [2]. 

 

Tanım 2.2.2 (Levi-Civita Koneksiyonu): Bir ( ),M g  Riemann manifoldu üzerinde 

aşağıdaki iki koşulu sağlayan ∇  afin koneksiyonuna Levi-Civita Koneksiyonu (veya 

Riemann Koneksiyonu) denir [2]: 

• Metrikle uyumluluk: 

( ) ( ) ( ) ( )0  , , , ,  , , .X Yg Xg Y Z g Y Z g X Z X Y Z Mχ∇ = ⇔ = ∇ + ∇ ∀ ∈  

• Torsiyonsuzluk: 

[ ] ( ), ,  , .X YY X X Y X Y Mχ∇ −∇ = ∀ ∈   

 

4 



Teorem 2.2.3 (Riemann Geometrisinin Temel Teoremi): Her ( ),M g  Riemann 

manifoldu üzerinde, metrikle uyumlu ve torsiyonsuz bir tek ∇  Levi-Civita koneksiyonu 

vardır [3]. 

 

Temel teoremin ispatı, ( ), ,X Y Z Mχ∀ ∈  için 

( ) ( )( ) ( )( ) ( )( )
[ ]( ) [ ]( ) [ ]( )

2 , , , ,

, , , , , ,
Xg Y Z X g Y Z Y g Z X Z g X Y

g X Y Z g Y Z X g Z X Y

∇ = + −

+ − +
  

eşitliği ile bilinen Koszul formülü yardımı ile yapılır [3]. Bu formülün sağ tarafı, g  nin 

simetrisi ve pozitif tanımlılığı nedeniyle iyi tanımlıdır. Bu, varlık ispatını sağlar. Metrik ile 

uyumluluk ve torsiyonsuzluk koşulları, koneksiyonu tek olarak belirler.   

 

Örnek 2.2.4. nM =   Öklid uzayı, 2 2 2 2
1 2 ... ng ds dx dx dx= = + + +  Öklid metriği olmak 

üzere; ( ),M g  Riemann manifoldunun Levi-Civita koneksiyonu, ( )Mχ  vektör alanları 

uzayının 
1 2

, ,...,
nx x x

 ∂ ∂ ∂
 ∂ ∂ ∂ 

 bazına göre,  

0
jxi

x
∂
∂

∂
∇ =

∂
  

olarak Koszul formülünden hesaplanır. Buna göre, bir ( )X Mχ∈  vektör alanı yönünde 

( )
1

n

i
i i

Y f M
x

χ
=

∂
= ∈

∂∑  vektör alanının kovaryant türevi 

( )
1

n

X i
i i

Y X f
x=

∂
∇ =

∂∑   

 olur [2]. 

 

Örnek 2.2.5. ( )2 1 ,M S=  2 2 2 2sing ds d dθ θ φ= = +  olmak üzere, ( ),M g  Riemann 

manifoldunun Levi-Civita koneksiyonu, ( )Mχ  vektör alanları uzayının ,
θ φ

 ∂ ∂
 ∂ ∂ 

 bazına 

göre,  

10,  tan ,  sin 2
2

θ θ φ φθ φ θ φ

θ θ
φ θ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂
∇ = ∇ = ∇ = − ∇ =

∂ ∂ ∂ ∂ ∂ ∂
  

olarak Koszul formülünden hesaplanır [4]. 
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2.3 Kontakt Manifoldlar ve Sasakian Yapılar 

Bu kısımda kontakt manifold tanımı ve Sasakian manifoldların temel özellikleri 

incelenecektir.  

 

Tanım 2.3.1 (Kontakt Manifold): ( ),  2 1M n + − boyutlu  bir C∞ −manifold olmak üzere, 

M  üzerinde aşağıdaki koşulu sağlayan η  1− formuna M  üzerinde bir kontakt form denir: 

( ) 0.ndη η∧ ≠  

Bu koşul η  nın maksimal derecede non-dejenere olduğunu gösterir. ( ),M η  ikilisine de 

kontakt manifold denir [4]. 

 

Tanım 2.3.2 (Reeb vektör alanı): ( ),M η  kontakt manifoldu üzerinde  

( ) ( ) ( )1,  , 0,  d X X Mη ξ η ξ χ= = ∀ ∈   

koşulunu sağlayan ξ  vektör alanına Reeb vektör alanı veya karakteristik vektör alanı denir 

[4]. Reeb vektör alanı kontakt yapının dikey yönünü temsil eder. 

 

Örnek 2.3.3. 3  üzerindeki ,dz ydxη = −  Reeb vektör alanı 
z

ξ ∂
=
∂

 ile birlikte bir kontakt 

yapı tanımlar [4]. Burada { }, ,x y z  3  ün koordinat fonksiyonlarıdır. 

 

Tanım 2.3.4 (Sasakian manifold): ( ),M η  bir kontakt manifold, ξ  karakteristik vektör 

alanı olsun. Eğer bu manifold, aşağıdaki ek yapıları taşıyorsa Sasakian manifold olarak 

adlandırılır: 

i) ( ), 1,g ξ ξ =  ( ) ( ) ( ), ,  X g X X Mη ξ χ= ∀ ∈  özelliklerini sağlayan bir g  Riemann 

metriği, 

ii) 2 ,Iϕ η ξ= − + ⊗  ( ) ( ) ( ), , ,  ,d X Y g X Y X Y Mη ϕ χ= ∀ ∈  ve 

( ) ( ) ( ) ( ) ( ), , ,  ,g X Y g X Y X Y X Y Mϕ ϕ η η χ= − ∀ ∈   

özellikleri sağlayan bir (1,1)-tipinden ϕ  tensör alanı, 

iii) Normalite koşulu: 2N dϕ η ξ= − ⊗  olması. Burada ( ) ( ) ( ):N M M Mχ χ χ× → , 

( ) [ ] [ ] [ ] [ ]2, , , , ,N X Y X X X Y X Y X Yϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ= − − +   
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ile tanımlı Nijenhuis tensör alanıdır. Normalite koşuluna aynı zamanda integrallenebilirlik 

koşulu da denir [10].    

 

Örnek 2.3.5. ( )3 41S ⊂   birim (hiper)küresi üzerindeki kontakt form 

3 1 4 2 1 3 2 4x dx x dx x dx x dxη = + − −   

olmak üzere, 4  den indirgenen metrikle birlikte uygun bir ϕ  de tanımlanarak Sasakian 

manifold olur [4].   

 

Teorem 2.3.6. ( ), , , ,M gϕ ξ η  Sasakian manifoldunda  

( ),  XX X Mξ ϕ χ∇ = − ∀ ∈   

ve  

( ) ( ) ( ) ( ), ,  ,X Y g X Y Y X X Y Mϕ ξ η χ∇ = − ∀ ∈   

dir [4]. 

 

Burada, (1,1)-tipinden tensör alanının kovaryant türevi ϕ∇ ,  ( )X X XY Y Yϕ ϕ ϕ∇ = ∇ − ∇  

eşitliği ile tanımlıdır [4].  

 

2.4 Frenet Eğrileri 

Bu alt bölümde Frenet eğrileri ilgili genel tanımlar verilecektir. 

 

Tanım 2.4.1 (3-boyutlu Öklid uzayında Frenet Eğrisi): Birim hızlı bir 3: Iγ →   eğrisi 

için  

( )'',  ,  ,  ' ,  ',
'

TT N B T N T g B N
T

γ κ τ= = = × = = −   

eşitlikleri ile verilen { }, ,T N B  üçlüsüne eğrinin Frenet çatısı, κ  ya eğrilik (büküm) ve τ  

ya da torsiyon (burulma) denir [2]. 

 

Örnek 2.4.2. ( ) ( )3: ,  cos , sin ,I t a t a t btγ γ→ =  eğrisinin eğriliği 2 2

a
a b

κ =
+

 ve 

torsiyonu 2 2

b
a b

τ =
+

 olarak hesaplanır [2]. 
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Tanım 2.4.3 (Yüksek boyutlu uzaylarda Frenet Eğrisi): ( ),M g  n − boyutlu Riemann 

manifold ve r n≤  olsun. Bir : I Mγ →  birim hızlı eğrisi için 'T γ=  olmak üzere, 

( )1  tane

,  ,  ,  ...,  ...T T T T T

r

T T T T
−

  ∇ ∇ ∇ ∇ ∇ 
  



  

kümesi lineer bağımsız ancak  

r tane

,  ,  ,  ...,  ...T T T T TT T T T
  ∇ ∇ ∇ ∇ ∇ 
  



  

kümesi lineer bağımlı oluyorsa γ  ya oskülatör mertebesi r  olan Frenet eğrisi adı verilir 

[7]. Oskülatör mertebesi r  olan bir Frenet eğrisi üzerinde, Gram-Schmidt metodu ile 

1 'T V γ= =  olmak üzere,  

1 2

2 1 2 3

1 1

1 1

,
,

,  2

T

T

T i i i i i

T r i r

T V
V T V

V V V i r

V V

κ
κ κ

κ κ

κ

− +

− −

∇ =
∇ = − +

∇ = − + < <

∇ = −





  

 ile verilen Frenet denklemlerini sağlayan { }1 2,  ,  ...,  rT V V V=  Frenet çatısı oluşturulabilir. 

Burada ( ) ( )1, ,  1, 2,..., 1i T i ig V V i rκ += ∇ = −  fonksiyonlarına γ  nın eğrilik fonksiyonları 

denir [7].    

 

Özel durumlar: 1r =  olması durumunda γ  bir geodeziktir. 2r =  ve 1 sabit 0κ = >  olması 

durumunda γ  bir çemberdir. Eğer ( )sabit 0,  1, 2,..., -1i i rκ = > =  ise γ  mertebesi r  olan 

bir helistir. Helisin mertebesi belirtilmediğinde 3r =  olduğu kastedilir [7].   
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3. D-HOMOTETİK DÖNÜŞÜMLER VE KONTAKT GEOMETRİ 
Bu bölümde D-homotetik dönüşümler ve kontakt geometri ile ilgili temel bilgiler detaylı 

olarak verilecek ve küre yüzeyinin Sasakian yapısı kullanılarak bu dönüşümlerin etkileri 

incelenecektir. 

 

3.1 D-homotetik Dönüşümler ve Sasakian Yapıya Etkileri 

D-homotetik dönüşümler diferansiyel geometri ve özellikle Sasakian manifoldlar üzerinde 

önemli bir yere sahiptir. Bu dönüşümler manifoldun metrik ve kontakt yapısını belli 

parametreler doğrultusunda ölçeklendirmek için kullanılır. Öncelikle bir ( , , , , )M gϕ ξ η  

kontakt manifoldu verildiğinde, D-homotetik dönüşümün nasıl tanımlandığını verelim: 

 

Tanım 3.1.1.  ( , , , , )M gϕ ξ η  bir kontakt metrik manifold ve a  pozitif bir sabit olmak 

üzere; 

 ( ),  ,X X X Mϕ ϕ χ= ∀ ∈   



1 ,  
a

ξ ξ=   

 ( ) ( ) ( ),  ,X a X X Mη η χ= ∀ ∈   

 ( ) ( ) ( ) ( ) ( )2, , ( ) ,  ,g X Y ag X Y a a X Y X Y Mη η χ= + − ∀ ∈ ,  

eşitlikleri ile yeni bir    ( ), , , ,M gϕ ξ η  yapısı tanımlanabilir. Bu dönüşüme ( , , , )gϕ ξ η  

yapısının D-homotetik dönüşümü denir [5].   

 

Önerme 3.1.2.  ( ), , , gϕ ξ η  kontakt metrik yapısından D-homoteti ile elde edilen 

   ( ), , , gϕ ξ η  yapısı da bir kontakt metrik yapıdır. Yani,    ( ), , , ,M gϕ ξ η  de bir kontakt metrik 

manifolddur [5]. 

 

İspat: ( ), , , ,M gϕ ξ η  bir kontakt metrik manifold olsun. Bu durumda, ( ),X Y Mχ∀ ∈  için  

i) ( ) 1η ξ = ,  

ii) 0,ϕξ =   

iii) ( )2 X X Xϕ η ξ= − + ,  

iv) ( ) ( ),X g Xη ξ=  , 
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v) ( ) ( ) ( ) ( ), ,g X Y g X Y X Yϕ ϕ η η= − , 

vi) ( ) ( ), ,d X Y g X Yη ϕ=   

eşitlikleri sağlanır. Bu eşitliklerin    ( ), , , gϕ ξ η  için de sağlandığını gösterelim.  

i)  ( ) ( )1 1 1,a a
a a

η ξ η ξ η ξ = = = 
 

  

ii)   1 1 0,
a a

ϕξ ϕ ξ ϕξ = = = 
 

  

iii) 

 

 ( )

( )
 ( ) 

2 2

1

,

X X X X

X a X
a

X X

ϕ ϕ η ξ

η ξ

η ξ

= = − +

= − +

= − +

 

iv)  

 ( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )
 ( )

2

2

2

, ,

1 1,

1 1,

,

g X ag X a a X

ag X a a X
a a

a g X a a X
a a
X a X X

X

ξ ξ η η ξ

ξ η η ξ

ξ η η ξ

η η η

η

= + −

   = + −   
   

= + −

= + −

=

 

v)  

 

  ( )  ( )

( ) ( ) ( ) ( )
( )
( ) ( ) ( )

2

, ,

,

,

,

g X Y g X Y

ag X Y a a X Y

ag X Y

a g X Y X Y

ϕ ϕ ϕ ϕ

ϕ ϕ η ϕ η ϕ

ϕ ϕ

η η

=

= + −

=

= −  

  

                    ( ) ( ) ( ),ag X Y a X Yη η= −    (3.1) 

 ( )  ( )  ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

2

2 2

, ,

,

g X Y X Y ag X Y a a X Y a X a Y

ag X Y a X Y a X Y a X Y

η η η η η η

η η η η η η

− = + − −

= + − −
  

( ) ( ) ( ),ag X Y a X Yη η= −   (3.2) 

Böylece (3.1) ve (3.2) gereği  

  ( )  ( )  ( )  ( ), ,g X Y g X Y X Yϕ ϕ η η= −   
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bulunur. 

 vi) 

 

 ( ) ( )( ) ( )
( )
( ) ( ) ( ) ( )

 ( )  ( )
2

, , ,

,

,

, ,

d X Y d a X Y ad X Y

ag X Y

ag X Y a a X Y

g X Y g X Y

η η η

ϕ

ϕ η η ϕ

ϕ ϕ

= =

=

= + −

= =

  

elde edilir. ■ 
 

D-homotetik dönüşümün Levi-Civita koneksiyonunu nasıl etkilediğini aşağıdaki Teorem 

ile verelim: 

 

Teorem 3.1.3.  ( ), , , ,M gϕ ξ η  bir kontakt metrik manifold ve    ( ), , , ,M gϕ ξ η  ise D-

homotetik dönüşüm sonrası elde edilen yeni yapı olsun. g  ve g  metrik tensörlerine 

karşılık gelen Levi-Civita koneksiyonları sırasıyla ∇  ve ∇  ile gösterilsin. Bu iki 

koneksiyon arasındaki fark tensörü ise W  ile gösterilmek üzere 

( ) 

( ) ( )

( ) ( )

,

(1 )[ ]

1 11 ( ) ( )
2

X X

X Y

W X Y Y Y

a Y X X Y

Y X
a

η ϕ η ϕ

η η

= ∇ −∇

= − +

 + − ∇ + ∇     

  

dir [5]. 

 

Bir ( ), , , ,M gϕ ξ η  kontakt metrik manifoldu için ( ) ( , )Y g Yη ξ=  eşitliğini kullanarak 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( )

, ,

, , ,

,

X X X

X X

X X X

X

Y Y Y

g Y g Y

g Y g Y g Y

g Y

η η η

ξ ξ

ξ ξ ξ

ξ

∇ = ∇ − ∇

= ∇ − ∇

= ∇ + ∇ − ∇

= ∇

  

elde ederiz. Buradan 

( ) ( ) ( ) ( )1 1( , ) (1 )[ ] 1 , ,
2 X YW X Y a Y X X Y g Y g X

a
η ϕ η ϕ ξ ξ = − + + − ∇ + ∇     

  

bulunur. Dolayısıyla 
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 ( ) ( )

( ) ( )

(1 )[ ]

1 11 , ,
2

X X

X Y

Y Y a Y X X Y

g Y g X
a

η ϕ η ϕ

ξ ξ

∇ = ∇ + − +

 + − ∇ + ∇     

  

yazılabilir. Eğer ( ), , , ,M gϕ ξ η  Sasakian manifold ise,  

( ) ( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

, , , ,

, ,

, ,

, , 0

X Yg Y g X g Y X g X Y

g Y X g X Y

g Y X g X Y

g X Y g X Y

ξ ξ ϕ ϕ

ϕ ϕ

ϕ ϕ

ϕ ϕ

∇ + ∇ = − + −

= − −

= −

= − =

 

olduğundan, bir Sasakian manifold için 

 ( ) ( )(1 )[ ]X XY Y a Y X X Yη ϕ η ϕ∇ = ∇ + − +    (3.3) 

ilişkisi vardır. 

 

Şimdi, D-homotetik dönüşümlerin Sasakian yapıyı nasıl etkilediğini inceleyelim: 

 

Teorem 3.1.4. ( ), , , ,M gϕ ξ η  bir Sasakian manifold olsun. D-homotetik dönüşüm yardımı 

ile elde edilen    ( ), , , ,M gϕ ξ η  manifoldu da bir Sasakian manifold olur. Yani, D-homoteti 

altında Sasakian manifold olma özelliği korunur [5]. 

 

İspat: Önerme 3.1.2 gereği kontakt yapının korunduğunu biliyoruz. Ayrıca, Sasakian 

manifold için normal olma koşulu 

( ) ( ) ( ),X Y g X Y Y Xϕ ξ η∇ = −  

ve 

X Xξ ϕ∇ = −   

koşullarına denktir. Bunlardan herhangi biri kontakt manifoldun Sasakian olması için 

yeterlidir. D-homotetik dönüşüm ile elde edilen    ( ), , , ,M gϕ ξ η  manifoldu için  

( )  ( )   ( ),X Y g X Y Y Xϕ ξ η∇ = −  

ve 

  X Xξ ϕ∇ = −  

olduğunu göstermeliyiz. Buradan 

12 



 ( ) ( )  

( ) ( )
( ) ( )( )

( ) ( ) ( )
( ) ( )( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( )

2

2 2 2

(1 )[ ]

(1 )[ ]

(1 ) (1 ) (1 )

(1 )

(1 ) (1 )

, (1 ) (1 )

, (

X X X X

X

X

X X

X X

X

Y Y Y Y

Y a Y X X Y

Y a Y X X Y

Y a X Y Y a Y X a X Y

Y Y a Y X X

Y a Y X a X Y

g X Y Y X a Y X a X Y

g X Y a Y X

ϕ ϕ ϕ ϕ

ϕ η ϕ ϕ η ϕ

ϕ η ϕ η ϕ

ϕ η ϕ ϕ η ϕ η ϕ

ϕ ϕ η η ξ

ϕ η η η ξ

ξ η η η η ξ

ξ η

∇ = ∇ = ∇ − ∇

= ∇ + − +

− ∇ + − +

= ∇ + − − ∇ − − − −

= ∇ − ∇ − − − +

= ∇ + − − −

= − + − − −

= − + ( ) ( )1)a X Yη η ξ−

  

ve 

 ( )   ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 1, , ( )

, 1

g X Y Y X ag X Y a a X Y a Y X
a

g X Y a X Y a Y X

ξ η η η ξ η

ξ η η ξ η

  − = + − −    
= + − −

  

olarak hesaplayabiliriz. Böylece ( )  ( )   ( ),X Y g X Y Y Xϕ ξ η∇ = −  çıkar. Ayrıca 

    ( ) ( ){ }

( )


1 1 1 (1 )[ ]

1 1 1 1( 1)

X X X X a X X
a a a

X X X X X
a a a a

X X

ξ ξ ξ ξ η ξ ϕ η ϕξ

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ

 ∇ = ∇ = ∇ = ∇ + − + 
 

= − + − = − + −

= − = −

 

elde ederiz. Sonuç olarak, D-homotetik dönüşüm bir Sasakian yapıyı yine bir Sasakian 

yapıya dönüştürür. ■ 
   

3.2 D-Homotetik Dönüşümlerin Frenet Eğrileri Üzerindeki Etkileri 

( , , , , )M M gϕ ξ η=  bir Sasakian manifold ve     ( ), , , ,M M gϕ ξ η=  ise  

 ,ϕ ϕ=   1 ,  
a

ξ ξ=   ,aη η=   ( )2( )g ag a a η η= + − ⊗  

şeklinde verilen D-homotetik dönüşüm ile elde edilen Sasakian manifold olsun. Bir  

: I Mγ →  birim hızlı eğrisi ele alalım. Yani, 'T γ=  olmak üzere, 
2 2( , ) 1 'g T T T γ= = =   

dir. D-homotetik dönüşüm yapıldıktan sonra eğrinin hızı ile ilgili aşağıdaki teoremi 

verebiliriz: 
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Teorem 3.2.1. D-homotetik dönüşüm altında birim hızlı eğrinin hızı genellikle korunmaz. 

Eğer v  ile eğrinin D-homotetik dönüşümden sonraki hızı gösterilirse 

2 2 2sin cosv a aθ θ= +   

dır. Burada, θ  ile T γ ′=  ve ξ  vektör alanları arasındaki açı fonksiyonu gösterilmektedir.  

  

İspat: : I Mγ →  birim hızlı bir eğri olsun. T γ ′=  ve ξ  vektör alanları arasındaki açı 

fonksiyonu θ  olduğundan, ( ) cosTη θ=  dır. D-homotetik dönüşümden sonra, : I Mγ →  

manifoldundaki hızının karesi 



 ( )

( ) ( ) ( )
( )

22

22

2 2

,

,

cos

g
v g

ag a a

a a a

γ γ γ

γ γ η γ

θ

′ ′ ′= =

′ ′ ′= + −   

= + −

  

( )2 2 2

2 2 2

1 cos cos

sin cos

a a

a a

θ θ

θ θ

= − +

= +
  

dır. Genel olarak 1v ≠  olduğundan eğrinin hızı korunmaz.  ■ 

 

Şimdi Legendre ve slant eğrilerin tanımlarını hatırlayalım: 

 

Tanım 3.2.2. ( , , , , )M M gϕ ξ η=  bir kontakt metrik manifold ve : I Mγ →  birim hızlı bir 

eğri olsun. T γ ′=  olmak üzere 

( ) ( ){ }: 0D X M Xχ η= ∈ =  

 ile verilen D kümesine kontakt distribüsyon (değme dağılımı) denir [4]. Bu dağılımın 

integral eğrilerine ise Legendre eğrisi denir.  Bir başka deyişle, Legendre eğrileri ( ) 0Tη =  

koşulunu sağlayan eğrilerdir [11]. Eğer ( ) cos sabitTη θ= =  oluyorsa, γ  eğrisine bir slant 

eğri adı verilir [12]. 

 

Sonuç 3.2.3. Sasakian manifoldların D-homotetik dönüşümleri altında, Legendre eğrilerin 

hızı, 1a > için a  katına çıkar veya 0 1a< <  için a  katına düşer. Sasakian 

manifoldların D-homotetik dönüşümleri altında, Legendre eğrileri için eğrinin sabit hızlı 

olma özelliği bozulmaz. 

 

14 



İspat: Teorem 3.2.1 gereği, ( ) cos 0Tη θ= =  olduğundan 2v a=  bulunur ve ispat biter.  

■ 

 

( ) : ,t I Mγ →  1 2( ) ( ( ), ( ),..., ( ))nt t t tγ γ γ γ=  verildiğinde, '( )tγ  ifadesine eğrinin hız vektörü 

denir. Eğer, '( ) 0tγ ≠ ise  bu eğriye regüler eğri denir [2]. Regüler her eğri birim hızlı bir 

yeniden parametrizasyona sahip olduğundan, D-homotetik dönüşüm sonrası, : I Mγ →  

eğrisi için yay parametresini hesaplayabiliriz. : I Mγ → , birim hızlı bir eğri ve yay 

parametresi t  olsun.  D-homotetik dönüşümden sonra : I Mγ →  eğrisinin yay parametresi 

s  ise, ( )( ) ( )cost tη γ θ′ =  olmak üzere, 

( )


 ( )

( ) ( )

0

0

2 2 2

0

( )

,

sin cos

t

g

t

t

s h t u du

g T T du

a u a u du

γ

θ θ

′= =

=

= +

∫

∫
∫

  

şeklinde hesaplanır. Böylece, ( ) ( )( )1s h sβ γ −=  eğrisi için 

( ) ( )( ) ( ) ( ) ( ) ( )
1 1 1' d d ds h s t h s t

ds dt ds h t
β γ γ γ− − ′= = =

′
 

ve dolayısıyla 

( )


 ( ) ( )( )

 ( ) ( ) ( ) ( )

( )
 ( ) ( )( )

( ) ( )
( ) ( )2 2 2

2 2 2

,

1 1,

1 ,

1 sin cos
sin cos

1

g
s g s s

g t t
h t h t

g t t
h t

a t a t
a t a t

β β β

γ γ

γ γ

θ θ
θ θ

′ ′ ′=

 
′ ′=   ′ ′ 

′ ′=
′

= +
+

=

  

çıkar. Yani, ( )sβ  birim hızlıdır.   

Şimdi,  : I Mγ →  birim hızlı Legendre eğrisi olsun. D-homotetik dönüşümün ardından, 

: I Mγ →  için ( , )g T T a=  olur. Dolayısıyla, 

'( ) ( , )t g T T aγ = =  
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olduğundan yay parametresi 

0 0

( ) '( )
t t

s h t u du adu atγ= = = =∫ ∫
 

bulunur. Böylece, 
 

1 1( )h s t s
a

− = =
 

ifadesini kullanarak, eğrinin birim hızlı yeniden parametrizasyonunu 

( )1 1( ) ( ) ( )s t h s s
a

β γ γ γ−  = = =  
 



 
şeklinde yazabiliriz. Buradan 

 ( ) ( ) ( ) ( )1 1 1 1T s s s t T t
a a a a

β γ γ ′ ′ ′= = = = 
 

 

dir.  

 

Sonuç 3.2.4. Sasakian manifoldların D-homotetik dönüşümleri altında, Legendre eğrisi 

olma özelliği korunur. 

 

İspat. : I Mγ →  birim hızlı Legendre eğrisi olsun. Tanım gereği, ( ) 0Tη =  dır. D-

homotetik dönüşümün ardından, : I Mγ →  eğrisinin birim hızlı yeniden parametrizasyonu  

için, 

 ( ) ( ) ( )1 0T a T a T
a

η η η = = = 
 

  

bulunur ve ispat biter.  ■ 
 

Benzer bir sonuç, slant eğriler için de verilebilir: 

 

Sonuç 3.2.5. Sasakian manifoldların D-homotetik dönüşümleri altında, slant eğri olma 

özelliği korunur. T ξ= ±  veya T ξ⊥   olması durumunda kontakt açısı sabit kalır. Diğer 

durumlarda kontakt açısı değişir.  
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İspat. : I Mγ →  birim hızlı slant eğri olsun. Tanım gereği, ( ) cos sabittir.Tη θ= =  D-

homotetik dönüşümün ardından, : I Mγ →  eğrisinin birim hızlı yeniden parametrizasyonu  

için,  

2 2 2( ) sin coss h t a a tθ θ= = +   

olduğundan 

 ( ) ( )

( )

( )

( )

( )

2 2 2

2 2

2 2

2 2

2

2 2

2

2 2

1
sin cos

sin cos
cos

sin cos
sgn cos cos

sin cos

cossgn cos
sin cos

sinsgn cos 1 =sabit
sin cos

T a T
a a
a T
a

a
a

a

a

a
a

a

η η
θ θ

η
θ θ

θ
θ θ

θ θ

θ θ

θθ
θ θ

θθ
θ θ

 
=  

+ 

=
+

=
+

=
+

=
+

= −
+

  

bulunur. Dikkat edilirse,  

 ( )1 1Tη− ≤ ≤   

ve sabit olduğundan, kontakt açısı 

 ( )
2

2 2

sincos sgn cos 1
sin cosa

θθ θ
θ θ

= −
+

  

 olan bir slant eğriye dönüşür. Eğer T ξ= ±  ise, ( )cos 1Tθ η= = ±  olduğundan, 0θ =  veya 

θ π=  dir. Her iki durumda da sin 0θ =  dır. Buradan, 

 ( )
2

2 2

sincos sgn cos 1 1
sin cosa

θθ θ
θ θ

= − = ±
+

 

çıkar. Yani  0,θ θ π= =  dir. Eğer, T ξ⊥   ise, yani γ  Legendre eğrisi ise, bu durumda 

cos cos 0
2
πθ  = = 
 

 ve sin sin 1
2
πθ  = = 
 

 olduğundan 

 ( )
2

2 2

sincos sgn cos 1 0
sin cosa

θθ θ
θ θ

= − =
+
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dır. Böylece, 
2
πθ θ= =  bulunur. Diğer durumlarda, θ θ≠  dır.  Gerçekten, θ θ=  ise, 

öncelikle 

 ( )
2

2 2

sincos sgn cos 1 cos
sin cosa

θθ θ θ
θ θ

= − =
+

  

ifadesinde her iki tarafın karesini alarak ilerleyelim.   
2

2
2 2

2
2

2 2

2
2

2 2

2
2 2

2 2
2

2 2

2 2
2

2 2

2 2
2

sin1 cos
sin cos

sin1 cos
sin cos

sinsin
sin cos

1sin 1 0
sin cos

sin cos 1sin 0
sin cos

cos cossin 0
sin cos

1sin cos
sin

a

a

a

a

a
a

a
a

a

θ θ
θ θ

θθ
θ θ
θθ

θ θ

θ
θ θ

θ θθ
θ θ

θ θθ
θ θ

θ θ

− =
+

⇒ − =
+

⇒ =
+

 ⇒ − = + 
 + −

⇒ = + 
 −

⇒ = + 
−

⇒ 2 0
cosaθ θ

  = + 

  

hesaplarız. Böylece, 1a ≠  olduğundan, 2 2sin cos 0θ θ =  denklemi, bize 0, ,
2
πθ π=  verir. 

Bu durumlar dışında, θ θ≠   olur. ■ 
 

Sasakian manifoldlarda, D-homotetik dönüşümlerin geodezik eğrilere etkilerini 

inceleyeceğiz. Bir Riemann manifoldunda geodezik tanımını vererek başlayalım: 

 

Tanım 3.2.6. ( ),M g  bir Riemann manifold ve : I Mγ →  birim hızlı bir eğri olsun. 

T γ ′=  olmak üzere, 0TT∇ =  ise, γ  eğrisine M  üzerinde bir geodezik denir. Burada, ∇  

ile Levi-Civita koneksiyonu gösterilmektedir [2].  

 

( , , , , )M M gϕ ξ η=  bir Sasakian manifold ve : I Mγ →  birim hızlı bir Legendre geodezik  

olsun. Yani, ( ) 0η γ ′ =  ve 0γ γ′ ′∇ =  dır. D-homotetik dönüşüm sonrası elde edilen 
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    ( ), , , ,M M gϕ ξ η=  Sasakian manifoldunun Levi-Civita koneksiyonu ∇   ile, M  nin Levi-

Civita koneksiyonu ∇  arasında, 

 ( ) ( )(1 )[ ]X XY Y a Y X X Yη ϕ η ϕ∇ = ∇ + − +   

ilişkisinin var olduğunu göstermiştik. : ,I Mβ →  ( ) 1s s
a

β γ  =  
 

 birim hızlı yeniden 

parametrizasyonunu kullanarak, ( ) 1 1s s
a a

β γ  ′ ′=  
 

 yazabiliriz. Böylece, 

   ( ) ( )

( ) ( ) ( )( ) ( )( ) ( )( ) ( )( ){ }

1 1

1 1 1

1 (1 )[ ]

0

s
a a

t

t

s t
aa a

t a t t t t
a

γ
β γ

γ

β γ γ

γ η γ ϕ γ η γ ϕ γ

 ′ 
 

′ ′

′

  ′ ′ ′∇ = ∇ = ∇  
  

′ ′ ′ ′ ′= ∇ + − +

=

  

dır.  

 

Sonuç 3.2.7. Sasakian manifoldların D-homotetik dönüşümleri altında, Legendre eğrilerin 

geodezik olma özelliği korunur. 

 

( , , , , )M M gϕ ξ η=  bir Sasakian manifold ve : I Mγ →  birim hızlı bir slant geodezik 

olsun. Yani, ( ) cos sabitη γ θ′ = =  ve 0γ γ′ ′∇ =  dır. Buradan, 

( )'( ) '( )'( ) '( ) (1 ) ( )

2(1 )cos
t tt t a T T T T

a T
γ γγ γ η ϕ η ϕ

θϕ

∇ = ∇ + − +  
= −



  

yazabiliriz. : ,I Mβ →  ( )
2 2 2

1
sin cos

s s
a a

β γ
θ θ

 
=  

+ 
 birim hızlı yeniden 

parametrizasyonunu kullanarak, ( )
2 2 2 2 2 2

1 1
sin cos sin cos

s s
a a a a

β γ
θ θ θ θ

 
′ ′=  

+ + 
 

yazabiliriz. Böylece, 

 

( )
( )  ( ) ( )

( )( )

1
2 2 2sin cos

2 2 22 2 2

2 2 2

1 1
sin cossin cos

2(1 )cos
sin cos

t
a a

tt t
a aa a

a t
a a

γ
θ θ

β γβ γ γ
θ θθ θ

θ ϕ γ
θ θ

′
+

′ ′
 

′ ′ ′∇ = ∇ = ∇  ++ 
− ′=
+

  

olarak hesaplarız.  
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Sonuç 3.2.8. Sasakian manifoldların D-homotetik dönüşümleri altında, slant eğrilerin 

geodezik olma özelliği genellikle korunmaz. Bir başka deyişle, birim hızlı slant geodezik 

eğrinin D-homotetik dönüşüm sonrasında geodezik olması için gerek ve yeter şart 

Legendre eğrisi olması veya ξ± nin integral eğrisi olmasıdır.  

İspat.   0β β′ ′∇ =  olması için gerek ve yeter şart 

( )( )2 2 2

2(1 )cos 0
sin cos

a t
a a

θ ϕ γ
θ θ
− ′ =
+

  

olmasıdır. 1a ≠  olduğundan cos 0θ =  veya ( )( ) 0tϕ γ ′ =  dır. cos 0θ =  ise, γ  bir 

Legendre eğrisidir. ( )( ) 0tϕ γ ′ =  ise, 

( ) ( )
( )

2 0

cos

ϕ γ ϕ ϕγ

γ η γ ξ
γ θξ

′ ′= =

′ ′= − +

′= − +

 

dir.  Sonuç olarak, cosγ θξ′ =  ve γ  birim hızlı olduğundan,  

( ) ( )
( )2 2

1 , cos ,cos

cos , cos

g g

g

γ γ θξ θξ

θ ξ ξ θ

′ ′= =

= =
 

yazabiliriz. Buradan, cos 1θ = ±  ve  γ ξ′ = ±  buluruz. Yani, γ  eğrisi ξ± nin integral 

eğrisidir. ■   

 

Uyarı. 3-boyutlu Sasakian manifoldlarda geodezik olmayan Legendre eğrilerin 

torsiyonunun 1’e eşit olduğu bilinmektedir ( )2 1κ =  ([11] ve [13] nolu kaynaklara bakınız). 

Burada, “geodezik olmayan” ifadesi oldukça önemlidir. Yukarıda verdiğimiz sonuçlar 

ancak bu eğriler var olduğunda anlamlıdır. Sonraki bölümlerdeki örneklerden de 

görüleceği üzere, 3-boyutlu Sasakian manifoldlarda geodezik olan Legendre ve slant 

eğriler de vardır. Bu eğriler için doğal olarak 1 0κ =  olduğundan torsiyonun 1’e eşit olması 

özelliği geçerli değildir.  
 
3.3 Küre Yüzeyinin Sasakian Yapısı 

Bu alt bölümde öncelikle 2 1 2 2(1)n nS + +⊂   hiperküresinin Sasakian yapısı verilecektir. 

Sonraki alt bölümlerde, bu yapı kullanılarak eğriler incelenecektir. 
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( )2 2 2 2 ,  ,  n n+ +=   Öklid uzayı ve { }1 2 2 2, ,..., nx x x +  Öklid koordinat fonksiyonları olsun. 

Burada 

( ) ( ) ( )2 2 2 2 2 2 ,  : ,n n nCχ χ+ + ∞ +× →      

Öklid iç çarpımının ( )2 2, ,nX Y χ +∀ ∈   
2 2 2 2

1 1
,  

n n

i i
i ii i

X u Y v
x x

+ +

= =

∂ ∂
= =

∂ ∂∑ ∑  için 

2 2

1
,

n

i i
i

X Y u v
+

=

= ∑   

olarak tanımlandığını biliyoruz. Şimdi, 1 yarıçaplı ve orijin merkezli 2 1(1)nS +  hiperküresini 

tanımlayalım: 

( )
2 2

2 1 2 2 2
1 2 2 2

1
(1) , ,..., :  1

n
n n

n i
i

S x x x x x
+

+ +
+

=

 = = ∈ = 
 

∑  

olsun. 2 2n+  üzerinden ( )2 1 1nS +  altmanifolduna indirgenen metrik tensörü ise 

( )2 1 1
 ,  nS

g +=   

ile gösterelim. ( )( )2 1 1 ,nS g+  de bir Riemann manifolddur. Bu manifold üzerinde,   

1

1

0
0
n

n

I
J

I
+

+

− 
=  
 

  

2 2n+  üzerinde bir kompleks yapı ( )2
2 2nJ I += −  olmak üzere ξ  karakteristik vektör alanı, 

1 1
1 1

1
1 11 1 1

0
0

n n
n i n i

n i i
i in n i i i n i

I x x
JN x x

I x x x x
ξ

+ +
+ + +

+ +
= =+ + + + +

−      ∂ ∂
= − = − = = −     − ∂ ∂     

∑ ∑   

olarak tanımlanır. Burada ( ) ( )2 1
1 2 2 2, ,..., (1)n

nN x x x x Sχ⊥ +
+= = ∈ , orijin ile hiperküre 

üzerindeki 2 1(1)nx S +∈  noktasını birleştiren birim normali göstermektedir. Bu gösterimi 

kullanabilmemizin sebebi, 2 2n+  hem bir afin uzay, hem de bir vektör uzayı olduğundan 

her bir noktasına, orijin ile birleşen bir vektör gözü ile bakabilmemizdir. 

( )2 1(1)nN x Sχ⊥ += ∈  olduğunu daha açık bir şekilde yazalım. 2 1(1)nS +  in denklemi  

( )
2 2

2

1
1 0

n

i
i

f x x
+

=

= − =∑   

olduğundan, 

( )1 2 2 2
1 2 2 2

, ,..., 2 , ,..., n
n

f f fgradf x x x
x x x +

+

 ∂ ∂ ∂
= = ∂ ∂ ∂ 
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ve 

2 2
2

1
2 2

n

i
i

gradf x
+

=

= =∑   

dir. Dolayısıyla,  

( )1 2 2 2, ,..., n
gradfN x x x x
gradf += = =  

 birim normaldir.  

 Daha sonra, η  1− formunu, ( )
2 2

2 1

1
(1)

n
n

i
i i

Y v S
x

χ
+

+

=

∂
∀ = ∈

∂∑  için 

( ) ( )
2 2 1 1

1
1 1 1 1

1 1

1 1
1 1

, ,
n n n

i n i i
i i ii i n i

n n

i n i n i i
i i

Y g Y v x x
x x x

v x v x

η ξ
+ + +

+ +
= = = + +

+ +

+ + + +
= =

∂ ∂ ∂
= = −

∂ ∂ ∂

= −

∑ ∑ ∑

∑ ∑
  

veya kısaca 
1 1

1 1
1 1

n n

n i i i n i
i i

x dx x dxη
+ +

+ + + +
= =

= −∑ ∑   

olarak tanımlarız. ( )1,1 − tipinden ϕ  tensör alanını ise 

( )Y JY Y Nϕ η= −   

ile tanımlarsak, ( )2 1 2 1 2 2(1) (1), , , ,n n nS S gϕ ξ η+ + += ⊂    üzerindeki bu yapılarla bir Sasakian 

manifold olur [14]. 

 
2 1 2 2(1)n nS + +⊂   hiperküresinin şekil operatörü, NA I= −  olduğunu biliyoruz. Böylece 

ikinci temel form,  

( ) ( ) ( )2 1 2 1 2 1: (1) (1) (1)n n nh S S Sχ χ χ+ + ⊥ +× → ,  

( ), , ,Nh X Y A X Y N X Y N= = −  

dir. Gauss ve Weingarten formüllerinden, ( )2 1, (1)nX Y Sχ +∀ ∈   ve ( )2 1(1)nN Sχ⊥ +∈  için 

, ,X XY Y X Y N∇ =∇ −   

X NN A X X∇ = − =   

yazabiliriz. Burada ∇  ile 2 2n+  nin Levi-Civita koneksiyonu, ∇  ile 2 1(1)nS +  üzerine 

indirgenen koneksiyon gösterilmektedir. 
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( )2 1 2 1 2 2(1) (1), , , ,n n nS S gϕ ξ η+ + += ⊂   manifoldunun gerçekten bir Sasakian manifold 

olduğunu gösterelim. Tanım gereği, Y ξ=  için 

( ) ( ), , , , 1g JN JN JN JN N Nη ξ ξ ξ= = − − = = =   

bulunur. Şimdi, ( )2 1(1)nY Sχ +∀ ∈  için, J  nin anti-simetrikliğinden ve ( )2 1(1) ,nJN Sχ +∈  

( )2 1(1)nN Sχ⊥ +∈  olmasından dolayı 

( ) ( ) ( )
( )

, ,

, ,

, 0

Y g Y JY Y N JN

JY JN Y N JN

Y N

η ϕ ϕ ξ η

η

= = − −

= − +

= − =

  

elde ederiz. Bu son eşitliği de kullanarak, ( )2 1(1)nY Sχ +∀ ∈  için 

( )2Y Y Yϕ η ξ= − +   

eşitliğini doğrulayalım. Gerçekten 

( ) ( ) ( )
( )( )

( ) ( )( )
( )

2

2

Y Y J Y Y N

J JY Y N

J Y Y JN Y Y

Y Y

ϕ ϕ ϕ ϕ η ϕ

η

η η ξ

η ξ

= = −

= −

= − = − − −

= − +

  

dir. Ayrıca,  

( ) ( ) ( )( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

, ,

, , , ,

, , ,

, , ,

,

,

g X Y g JX X N JY Y N

JX JY Y JX N X N JY X Y N N

X Y Y X JN X JN Y X Y

X Y Y X X Y X Y

g X Y Y X X Y X Y

g X Y X Y

ϕ ϕ η η

η η η η

η η η η

η ξ η ξ η η

η η η η η η

η η

= − −

= − − +

= + + +

= + − + − +

= − − +

= −

 

 olduğu kolayca görülebilir. Şimdi, Xξ∇  ve ϕ∇  ifadelerini hesaplayalım. 0J∇ =  

olduğundan, Gauss ve Weingarten formüllerini kullanırsak, ( )( )2 1 1nX Sχ +∀ ∈  için 
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( ) ( )
( )

( ) ( )

( )
( )
( )( )

,XX

X

X

X X

X

X N

JN X N

JN X N

J N J N X N

J N X N

JX X N

JX X N

X

ξ ξ ξ

η

η

η

η

η

η

ϕ

∇ = ∇ +

= ∇ − +

= −∇ +

 = − ∇ + ∇ + 
= − ∇ +

= − +

= − −

= −

 

buluruz.  Diğer taraftan, ( )( )2 1, 1nX Y Sχ +∀ ∈  için 

( )
( )

( )( ) ( )

( ) ( )
( ) ( )

, ,

,

, ,

, , ,

, , , ,

X X X

X X

X

X X

X X

X X

Y Y Y

Y X Y N Y X Y N

JY Y N X JY Y N N

J Y X Y N Y X Y N N

JY X Y N Y N X JY N Y X N N

J Y X Y JN Y N X Y N N

ϕ ϕ ϕ

ϕ ϕ ϕ

η η

η

ξ η η

ξ ξ

∇ = ∇ − ∇

= ∇ + − ∇ +

= ∇ − + −

 − ∇ + − ∇ + 
= ∇ −   − ∇ + − 

− ∇ − + ∇ +

  

( ) ( )

( )
( ) ( )
( ) ( ) ( )
( ) ( )
( ) ( )
( ) ( )

, , ,

, ,

, , ,

, , , ,

, , ,

, , ,

, , ,

,

X X X

X

X

X

J Y Y N Y N Y X X JY N

X Y JN Y N

X Y Y X Y N X JY N

g X Y Y X Y X N N X JY N

g X Y Y X Y JX X N N X JY N

g X Y Y X Y JX N X JY N

g X Y Y X JY X N X JY N

g X Y Y X

ξ ξ η

ξ

ξ η ξ

ξ η ξ ξ

ξ η η

ξ η

ξ η

ξ η

= ∇ − ∇ − ∇ − +

− + ∇

= − − ∇ +

= − − ∇ − +

= − − − + +

= − + +

= − − +

= −

  

olarak hesaplarız. Bu son iki özelliği hesaplarken, 0J∇ =  olduğunu da kullandık. 

Gerçekten, ( )2 2, ,nX Y χ +∀ ∈   
2 2 2 2

1 1
,  

n n

i i
i ii i

X u Y v
x x

+ +

= =

∂ ∂
= =

∂ ∂∑ ∑  için 

1

1

0
0
n

n

I
J

I
+

+

− 
=  
 

 

olduğundan  
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1 1
1 1

1
1 11 1 1

0
0

n n
n i n i

n i i
i in n i i i n i

I v v
JY v v

I v v x x

+ +
+ + +

+ +
= =+ + + + +

− −      ∂ ∂
= = = − +      ∂ ∂     

∑ ∑   

dir. Buradan, 

( ) [ ] [ ]
1 1

1
1 1 1

n n

X n i i
i ii n i

JY X JY X v X v
x x

+ +

+ +
= = + +

∂ ∂
∇ = = − +

∂ ∂∑ ∑  

yazabiliriz. Ayrıca, 

( ) [ ] [ ]
1 1

1
1 1 1

n n

X i n i
i ii n i

Y X Y X v X v
x x

+ +

+ +
= = + +

∂ ∂
∇ = = +

∂ ∂∑ ∑   

eşitliğinden 

[ ]
[ ]

[ ]
[ ]

[ ] [ ]

1 1

1 1

1 1

1
1 1 1

0
0
n i n i

X
n n i i

n n

n i i
i ii n i

I X v X v
J Y

I X v X v

X v X v
x x

+ + +

+ + +

+ +

+ +
= = + +

   − − 
∇ = =    

     
∂ ∂

= − +
∂ ∂∑ ∑

 

buluruz. Sonuç olarak,  

( ) 0X X XJ Y JY J Y∇ =∇ − ∇ =   

dır. Tüm bu özellikler ve yapılar ile birlikte, ( )( )2 1 1 , , , ,nS gϕ ξ η+  bir Sasakian manifolddur.  

 

( )( )2 1 1 ,nS η+  manifoldunun bir kontakt manifold olduğu da ayrıca gösterelim.  Tanım 

gereği 
1 1

1 1
1 1

n n

n i i i n i
i i

x dx x dxη
+ +

+ + + +
= =

= −∑ ∑   

olduğundan, 
1 1 1 1

1 1 1 1
1 1 1 1

1

1
1

2

n n n n

n i i i n i n i i i n i
i i i i

n

n i i
i

d d x dx x dx dx dx dx dx

dx dx

η
+ + + +

+ + + + + + + +
= = = =

+

+ +
=

 = − = − 
 

=

∧ ∧

∧

∑ ∑ ∑ ∑

∑
  

elde ederiz. Buradan, ( )ndη  hesaplarken ( )1n + -tane { }1n j jdx dx+ + ∧  arasından n -tanesini 

seçip onların şapka (wedge) çarpımını almamız gerekir.  

•  Tüm 
1

1
n

n
n
+ 

= + 
 

 çiftli seçim yapılır. 

•  Her seçim, n   adet 2-formun şapka(wedge) çarpımıdır. 

•  Bu işlem tüm sıralamalar için yapılır. 
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Böylece, 

( )

( )

1

1
1

1 1 1

1 1 1
1 1 1

1

1
1

 tane

2

2 2 ... 2

2 !
n

n
n j j

j i

nn
n

n i i
i

n n n

n i i n i i n

i

i i
i i i

n

dx

d dx dx

dx dx dx dx d

x

x dx

n d

η

+

+ +
≠=

+

+ +
=

+ + +

+ + + + + +
= = =

∧

∧ ∧ ∧ ∧ ∧

 =  
 
     =      
    

∧

∧



=

∑

Λ∑

∑ ∑ ∑


  

dir. Burada, ( )1n j j
j i

dx dx+ +
≠

∧Λ  ifadesi ile, .i  çiftliyi içermeyen 2n -formlar 

gösterilmektedir.  Sonuç olarak,  

( )
1 1

1 1 1
1 1

( ) 2 ( )! 0
n n

n n
n i i i n i n j j

j ii i
d x dx x dx dx dn xη η

+ +

+ + + + + +
≠= =

∧ = ∧ ∧− ≠Λ∑ ∑  

hesaplanır. Çünkü, bu ( )2 1n + -form, ancak 1 2 2 2... 0nx x x += = = =  durumunda sıfıra eşit 

olur. Ancak, orijin ( )2 1 1nS +  küresi üzerinde değildir. Böylece, η  bir kontakt yapıdır.  

 

3.4 ( )3 1S  Küresi Üzerinde Legendre ve Slant Eğri Örneklerinin Hesaplanması ve D-

Homotetik Dönüşümün Bu Eğrilere Etkisinin İncelenmesi 

Bu alt bölümde 3-boyutlu birim kürenin Sasakian yapısı kullanılarak uygulamalar 

yapılacaktır. Bölüm 3.3 deki yapılar kullanılarak, 1n =  seçilirse 

( )
4

3 4 2 4
1 2 3 4

1
(1) , , , :  1i

i
S x x x x x x

=

 = = ∈ = ⊂ 
 

∑    

(hiper)küresi elde edilir. ( )3 (1), , , ,M S gϕ ξ η=  Sasakian manifoldunda, teorik sonuçları 

Legendre ve slant eğriler üzerinde uygulayacağız.  

 

( )3 4: 1I Sγ → ⊂  , 

( ) ( ) ( ) ( ) ( )( )1 1 2 2cos , sin , cos , sint t c t c t c t c tγ =   

eğri ailesini tanımlayalım. Burada 2 2
1 2 1c c+ =  dir.  

2 2 2 2 2 2
1 2 3 4 1 2 1c cγ γ γ γ+ + + = + =   

olduğundan eğri ( )3 1S  de yatar. Teğet vektör alanı, 

( ) ( ) ( ) ( )( )1 1 2 2sin , cos , sin , cosT c t c t c t c tγ ′= = − −   

olarak hesaplanır. Dikkat edilirse, 
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( ) ( )3
2 2
1 21

, , 1
S

g c cγ γ γ γ′ ′ ′ ′= = + =   

dir, yani γ  eğrisi birim hızlıdır. Eğri boyunca karakteristik vektör alanı,  

( ) ( ) ( ) ( )( )2 2 1 1cos , sin , cos , sinc t c t c t c tξ = − −   

şeklinde yazılabilir. Böylece, 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 2 2 2 2 1 1

1 2 1 2 1 2 1 2

sin , cos , sin , cos , cos , sin , cos , sin

sin cos cos sin sin cos cos sin
0

T c t c t c t c t c t c t c t c t

c c t t c c t t c c t t c c t t

η = − − − −

= − + + −

=
elde edilir. Dolayısıyla, γ  bir Legendre eğrisidir. Geodezik olduğunu gösterelim. ∇  ve ∇  

ile, sırasıyla 4  ve ( )3 1S  in Levi-Civita koneksiyonları ifade edilsin. Gauss formülünden

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )1 1 2 2 1 1 2 2

,

cos , sin , cos , sin cos , sin , cos , sin

0

TTT T T T N

c t c t c t c t c t c t c t c t
γ

γ γ′′∇ = ∇ + = +

= − − − − +

=
bulunur. Böylece γ  bir Legendre geodeziktir.  

 

Şimdi, ( )3 1S  manifoldundan D-homoteti ile başka bir Sasakian yapı elde edeceğiz ve bu 

eğrilere etkilerini inceleyeceğiz. Özel olarak, 1/ 9a =  seçelim. ( )3 1S  Sasakian manifoldu, 

D-homotetik dönüşümün ardından;  

 ,J Nϕ ϕ η= = − ⊗   

 ( ) ( )3 4 1 2 3 4 1 2
1 9 , , , 9 ,9 , 9 , 9 ,x x x x x x x x
a

ξ ξ= = − − = − −   

 ( )3 1 4 2 1 3 2 4

3 1 4 2 1 3 2 4

1 1
9 9

1 1 1 1
9 9 9 9

a x dx x dx x dx x dx

x dx x dx x dx x dx

η η η= = = + − −

= + − −
  



( ) ( ) ( )3 3
2

1 1

1 8 ,  
9 81S S

g a g a a η η η η= + − ⊗ = − ⊗   

olmak üzere,  ( )    ( )3 1 , , , ,M S gϕ ξ η=  Sasakian manifolduna dönüşür. : I Mγ → , 

( ) ( ) ( ) ( ) ( )( )1 1 2 2cos , sin , cos , sint t c t c t c t c tγ =  

eğrisi için, 

( ) ( ) ( ) ( )( )1 1 2 2sin , cos , sin , cosc t c t c t c tγ ′ = − −   

olduğundan, D-homotetik dönüşümün ardından eğrinin hızı, 
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 ( ) ( ) ( )3

2

1

1 8 1, ,
9 81 3S

v g γ γ γ γ η γ′ ′ ′ ′ ′= = − =   

bulunur. Böylece eğrinin hızı, üçte birine iner. Eğriyi birim hızlı hale getirelim. 

   ( ) ( ) ( )( )1: ,  J M s t h sβ β γ γ −→ = =  ile eğrinin birim hızlı yeniden parametrizasyonunu 

gösterelim. Burada,  

( ) ( )
0

0

1 1
3 3

t

g

t

s h t u du

du t

γ ′= =

= =

∫

∫
  

yay parametresidir. Böylece,  

 ( ) ( ) ( ) ( ) ( ) ( )( )1 1 2 23 cos 3 , sin 3 , cos 3 , sin 3s s c s c s c s c sβ γ= =   

dir. Eğrinin tanjant vektör alanı,  

 ( )  ( ) ( ) ( ) ( ) ( )( ) ( )1 1 2 23 sin 3 ,3 cos 3 , 3 sin 3 ,3 cos 3 3T s s c s c s c s c s tβ γ′ ′= = − − =   

yazabiliriz. Buradan,  

 ( ) ( )( ) ( )( )1 13 0
9 3

T t tη η γ η γ  ′ ′= = = 
 

 dır.  

Dolayısıyla, β  bir Legendre eğrisidir. Yani, Legendre eğrisi olma özelliği korunmuş olur. 

Son olarak,  

 ( ) ( )(1 )[ ]X XY Y a Y X X Yη ϕ η ϕ∇ = ∇ + − +  

özelliğini kullanarak,  









 ( )  ( ) 

( ) ( )( ) ( )( ) ( )( )
( )( ) ( )

3

8 [ ]
9

163 3 3
9

9 16

0

T T

t

T T T T T T

t t t

t

γ

γ

η ϕ η ϕ

γ η γ ϕ γ

γ η γ ϕ γ

′

′

∇ = ∇ + +

′ ′ ′= ∇ +

′ ′ ′= ∇ +

=

  

yazabiliriz. Böylece, β  bir geodeziktir. Sonuç olarak, D-homotetik dönüşüm öncesi bir 

Legendre geodezik olan γ  eğrisi için, dönüşüm sonrasında Legendre geodezik olma 

özelliği korunmuştur.  

 

Şimdi, Legendre olmayan slant eğrileri inceleyelim.  

( )3 4
1,2 : 1 ,I Sγ → ⊂    
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( ) ( ) ( )( )1 cos ,0, sin ,0t t t tγ = −  

ve 

( ) ( ) ( )( )2 cos ,0,sin ,0t t t tγ =   

eğrilerini tanımlayalım. Bu eğriler sırası ile, 
1γ

ξ  ve 
2γ

ξ doğrultuları ile 0  ve π  radyan 

kontakt açısına sahip slant eğrilerdir. Yani, karakteristik vektör alanının integral eğrileridir. 

Dolayısı ile slant geodezik olurlar. D-homotetik dönüşüm sonrası, Sonuç 3.2.5 gereği 

kontakt açısı sabit kalır. Sonuç 3.2.8 den ise geodezik olma özellikleri korunur.  

 

Bu alt bölümü, geodezik olmayan bir slant eğri ile bitireceğiz. ( )3 4: 1 ,I Sγ → ⊂    

( ) 3 3 3 3cos cos ,cos sin , sin cos , sin sin
2 2 2 2 2 2 2 2

t t t t t t t ttγ
               = − −                                      

 

eğrisi, 
6
πθ =   kontakt açısına, 1 2

3 1,
2 2

κ κ= =  eğriliklerine sahip bir Hopf helisidir ve 

slant eğridir ([8] ve [9] nolu kaynaklara bakınız).  D-homotetik dönüşüm sonrası, eğrinin 

hızı, 

( ) ( )3

2

1

1 8,  
9 81
1 8 3 1 3.
9 81 4 27 9

S
v γ γ η γ′ ′ ′= −

= − = =

  

bulunur. Yani, eğrinin hızı 3 / 9  katına düşmüştür. Sonuç 3.2.5 gereği, kontakt açısı için,  

 ( )
2

2 2

2

2 2

sincos sgn cos 1
sin cos

sin
6sgn cos 1

16 sin cos
6 9 6

1
141 1 1 3 2.

4 9 4

a
θθ θ

θ θ

π
π

π π

= −
+

 
     = −         +   

   

= − =
+

  

olduğundan, 
3
πθ =  olan bir slant eğriye dönüşür. Son durum ile ilk durum arasındaki açı 

farkı, 
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

3 6 6
 radyan 30π π πθ θ = − =− =    

olduğundan değme açısı artmıştır. Açının değişim oranı ise,  

3 6 %

6

100

π π

π

−
=  

dür. Yani, γ  eğrisinin ξ  ile arasındaki açıklık (açı), D-homotetik dönüşüm sonrası artarak 

iki katına çıkmıştır.  

 

3.5 ( )3 3−  Sasakian Manifoldu Üzerinde Legendre ve Slant Eğriler ile Uygulama 

Bu alt bölümde ( )3 3−  Sasakian manifoldu üzerinde uygulamalar yapılacaktır. Öncelikle 

bu manifoldu hatırlayalım.  

 
3M =   ve { }, ,x y z  koordinat fonksiyonları olsun. M  üzerinde,  

2
z

ξ ∂
=

∂
 

karakteristik vektör alanı,  

( )1
2

dz ydxη = −  

1-formu, ( )X U V W M
x y z

χ∂ ∂ ∂
= + + ∈

∂ ∂ ∂
 olmak üzere 

X V U Vy
x y z

ϕ ∂ ∂ ∂
= − +

∂ ∂ ∂  

(1,1)-tipinden tensör alanı,
 

( )2 21
4

g dx dyη η= ⊗ + +
 

Riemann metriği alınarak elde edilen ( ), , , ,M gϕ ξ η  manifoldu, bir Sasakian manifolddur. 

Bu manifold, çok iyi bilinen ( )3 3−  manifoldudur [4]. ( )Mχ  in ortonormal bazı 

2 ,  2 ,  2X Y X y
y x z z

ϕ ξ
 ∂ ∂ ∂ ∂ = = = + =  ∂ ∂ ∂ ∂  

 

dir. Bu baza göre, Levi-Civita koneksiyonu 

0,  ,  ,X Y X YX Y Y Xξ ξ∇ = ∇ = ∇ = ∇ = −   
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,  ,  0X YX Y Y Xξ ξ ξξ ξ ξ∇ = ∇ = − ∇ = ∇ = ∇ =   

olarak hesaplanır [4]. ( )3: 3Iγ → − , ( ) ( ) ( ) ( )( )1 2 3, ,t t t tγ γ γ γ=  birim hızlı bir slant eğri 

olsun. Bu durumda, teğet vektör alanı 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ){ }

1 2 3

2 1 3 1 2
1
2

T t t t
x y z

t X t Y t t t

γ γ γ

γ γ γ γ γ ξ

∂ ∂ ∂′ ′ ′= + +
∂ ∂ ∂

′ ′ ′ ′= + + −  

  

dir. γ  eğrisi slant olduğundan, eğer kontakt açısı θ  ile gösterilirse, 

( ) ( ) ( ) ( )( )3 1 2
1cos
2

T t t tη θ γ γ γ′ ′= = −   

elde edilir. Böylece, slant olma koşulunu, 

( ) ( ) ( )3 1 22cost t tγ θ γ γ′ ′= +   

buluruz. Buna göre, teğet vektör alanını 

( ) ( ){ }2 1
1 cos
2

T t X t Yγ γ θξ′ ′= + +   

şeklinde yeniden düzenleyebiliriz. ( ), 1g T T =  olduğundan 

( ) ( ){ } ( ) ( ){ }

( ) ( )

2 1 2 1

2 2 2
2 1

1 11 cos , cos
2 2

1 1 cos
4 4

g t X t Y t X t Y

t t

γ γ θξ γ γ θξ

γ γ θ

 ′ ′ ′ ′= + + + + 
 

′ ′= + +      

  

( ) ( )2 2 2
2 1 4sint tγ γ θ′ ′⇒ + =         

birim hızlı olma koşulu elde edilir. Levi-Civita koneksiyonu kullanılırsa,  

{ }

[ ]

( ) ( ){ }

2 1

2 2 1 1

2 1 1 2

1 2cos
2

1 2cos
2
1 2cos 2cos
2

T T

T T T

T X Y

X X Y Y

X Y

γ γ θξ

γ γ γ γ θ ξ

γ θγ γ θγ

 ′ ′∇ = ∇ + + 
 

′′ ′ ′′ ′= + ∇ + + ∇ + ∇

′′ ′ ′′ ′= + + −

 

bulunur. Eğer, γ  bir Legendre eğrisi ise, cos 0θ =  olacağından,  

( ) ( ) ( )3 1 2t t tγ γ γ′ ′= , (Legendre olma koşulu)  

( ) ( ){ }2 1
1 ,
2

T t X t Yγ γ′ ′= +  (teğet vektör alanı) 

( ) ( )2 2
2 1 4t tγ γ′ ′+ =       , (birim hızlı olma koşulu) 
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( ) ( ){ }2 1
1
2TT t X t Yγ γ′′ ′′∇ = +  

eşitlikleri, ( )3 3−  ün Legendre eğrileri için geçerlidir. Ek olarak, eğer γ  bir geodezik ise,   

( ) ( ){ }2 1
1 0
2TT t X t Yγ γ′′ ′′∇ = + =    (geodezik olma koşulu) 

( ) ( )1 2 0t tγ γ′′ ′′⇒ = =  

elde edilir. Böylece, 

( ) ( ) ( ) ( ) ( )1 2 3 1 20,  t t t t tγ γ γ γ γ′′ ′′ ′ ′= = =   

diferansiyel denklem sisteminin çözümü var olduğundan 3-boyutlu Sasakian manifoldlarda 

Legendre geodezikler için elde ettiğimiz sonuçlar da anlamlıdır. Denklem çözülürse,  

( )
( )

( )

1 1 1

2 2 2

2
3 1 2 1 2 3

,

,
1
2

t c t d

t c t d

t c c t c d t d

γ

γ

γ

= +

= +

= + +

  

 çıkar. Böylece, ( )3 3−  ün Legendre geodezikleri, ( )3: 3 ,Iγ → −   

( ) 2
1 1 2 2 1 2 1 2 3

1,  ,  
2

t t c t d c t d c c t c d t dγ  = + + + + 
 

   

şeklindedir. Burada, 1 2 1 2 3, , , ,c c d d d  keyfi sabitler ve birim hızlı koşulu gereği 2 2
1 2 4c c+ =  

tür.  

 

Benzer şekilde, Legendre olmayan slant geodezikler için de bir parametrizasyon 

bulabiliriz. Kontakt açısı θ  ise,  0TT∇ =  eşitliğinden, 

( ) ( ){ }2 1 1 2
10 2cos 2cos
2

X Yγ θγ γ θγ′′ ′ ′′ ′= + + −   

2 1 1 22cos 0,  2cos 0γ θγ γ θγ′′ ′ ′′ ′⇒ + = − =  

denklemlerini buluruz. Slant eğri olma koşulunu da eklersek,  

2 1

1 2

3 1 2

2cos 0,  
2cos 0,
2cos

γ θγ
γ θγ
γ θ γ γ

′′ ′+ =
′′ ′− =
′ ′= +

  

diferansiyel denklem sistemi elde edilir. Bu sistemi çözelim. Öncelikle, birim hızlı olma 

koşulundan, bir ( )f t  fonksiyonu için, 

1 22sin cos ,  2sin sinf fγ θ γ θ′ ′= =   
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yazabiliriz. Buradan,  

( )
( )

1

2

2sin sin ,

2sin cos

f f

f f

γ θ

γ θ

′′ ′= −

′′ ′=
  

denklemlerini, 2 12cos 0γ θγ′′ ′+ =  denkleminde yerine yazarsak, 

( ) ( )
( )[ ]

2sin cos 2cos 2sin cos 0

2sin cos 2cos 0
sin 0 veya cos 0 veya 2cos 0

f f f

f f
f f

θ θ θ

θ θ
θ θ

′ + =

′⇒ + =

′⇒ = = + =

 

bulunur.  Benzer şekilde, 1 22cos 0γ θγ′′ ′− =  denkleminde yerine yazarsak, 

( ) ( )
[ ]

2sin sin 2cos 2sin sin 0

2sin sin 2cos 0
sin 0 veya sin 0 veya 2cos 0

f f f

f f
f f

θ θ θ

θ θ
θ θ

′− − =

′⇒ − + =

′⇒ = = + =

  

bulunur. Böylece, sin 0θ =  veya 2cos 0f θ′ + =  olmak zorundadır. Çünkü, cos f  ve 

sin f  aynı anda sıfır olamaz.  Sonuç olarak, sin 0θ =  veya ( ) 2cosf t t cθ= − +  dir. 

Burada, c  keyfi sabittir. Öncelikle sin 0θ =  olsun. Bu durumda,  

1 2 1 1 2 20,  0  ,  c cγ γ γ γ′ ′= = ⇒ = =   

olacak şekilde 1c  ve 2c  keyfi sabitleri vardır. Bu durumda cos 1θ = ±  ve slant olma 

koşulundan, 

3 1 2 3 32cos 2  2t cγ θ γ γ γ′ ′= + = ± ⇒ = ± +   

olur. Burada 3c  keyfi sabittir. Böylece, dikkat edilirse, sin 0θ =  durumu T ξ= ±  olması 

durumudur ve ( )3: 3 ,Iγ → −   

( ) ( )1 2 3, , 2t t c c t cγ = ± +   

şeklinde elde edilir. Diğer durumda, sin 0θ ≠  ise, ( ) 2cosf t t cθ= − +  dir. Bu durumda,  

( )
( )

1

2

2sin cos 2cos ,  

2sin sin 2cos

t c

t c

γ θ θ

γ θ θ

′ = − +

′ = − +
 

olduğundan,  

( )
( )

1 2

2 3

tan sin 2cos ,  

tan cos 2cos

t c c

t c c

γ θ θ

γ θ θ

= − − + +

= − + +
 

çıkar. Ayrıca,  

( ) ( )3 1 2 32cos 2cos 2sin cos 2cos tan cos 2cost c t c cγ θ γ γ θ θ θ θ θ′ ′= + = + − + − + +        
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olduğundan,

( ) [ ]{ }3 3 4
12cos tan 4 sin( 2cos ) tan sin( 4cos 2 ) 2 4sin
4

t t c t c t c c t cγ θ θ θ θ θ θ= − − + + − + + − +

 bulunur. Burada, 2 3 4,  ,  ,  c c c c  keyfi sabitlerdir. Böylece, 2cos 0f θ′ + =  durumunda, 

( )3: 3 ,Iγ → −  ( ) ( ) ( ) ( )( )1 2 3,  ,t t t t tγ γ γ γ=  eğrisi, birim hızlı slant geodezik olur. 

 

Şimdi, ( )3 3−  manifoldundan D-homoteti ile başka bir Sasakian yapı elde edeceğiz ve bu 

eğrilere etkilerini inceleyeceğiz. Özel olarak, 4a =  seçelim. ( )3 3−  Sasakian manifoldu, 

D-homotetik dönüşümün ardından; 3
  üzerinde,  

 ,ϕ ϕ=   



1 1 12 ,
4 2a z z

ξ ξ ∂ ∂ = = = ∂ ∂ 
  

 ( ) ( )14. 2 ,
2

a dz ydx dz ydxη η= = − = −   

 ( )

( )

( )

2

2 2

2 2

4 12

14 12
4

16

g ag a a g

dx dy

dx dy

η η η η

η η η η

η η

= + − ⊗ = + ⊗

 = ⊗ + + + ⊗ 
 

= ⊗ + +

  

olmak üzere,     ( )3, , , ,M gϕ ξ η=   Sasakian manifolduna dönüşür. Bu manifold üzerinde, 

: ,I Mγ →   

( ) 2
1 1 2 2 1 2 1 2 3

1,  ,  
2

t t c t d c t d c c t c d t dγ  = + + + + 
 



 
eğrisi için teorik sonuçlarımızı doğrulayalım. Beklenen sonuç, bu eğrinin yine bir 

Legendre geodezik olmasıdır. Gerçekten, M  üzerinde, 

( ) ( )1 2 1 2 1 2, ,t c c c c t c dγ ′ = +   

için, 

 ( ) ( ) ( ) ( )2 2 2
1 2, 16 4 1v g c cγ γ η γ η γ′ ′ ′ ′= = + + = ≠   

olduğundan, eğrinin hızı 


4 2
g

v γ ′= = =  dir ve sabittir; ancak, birim hızlı olma özelliği 

korunmaz. Eğriyi birim hızlı hale getirelim.    ( ) ( ) ( )( )1: ,  J M s t h sβ β γ γ −→ = =  ile 

eğrinin birim hızlı yeniden parametrizasyonunu gösterelim. Burada,  
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( ) ( )
0

0

2 2

t

g

t

s h t u du

du t

γ ′= =

= =

∫

∫
  

yay parametresidir. Böylece,  

 ( ) 2
1 1 2 2 1 2 1 2 3

1 1 1 1 1,  ,  
2 2 2 8 2

s s c s d c s d c c s c d s dβ γ    = = + + + +   
   

  

dir. Eğrinin tanjant vektör alanı,  

 ( )  ( ) ( )1 2 1 2 1 2 1 2 1 2 1 2
1 1 1 1 1 1 1,  ,  ,  ,  
2 2 4 2 2 2 2

T s s c c c c s c d c c c c s c d tβ γ   ′ ′= = + = + =   
   

  

yazabiliriz. Buradan,  

 ( ) ( )


1 2 1 2 1 2

2 2 1 2 1 2 2

1 2 1 2 2 2 2 1 2 1 2 2

1 12 ,  ,  
2 2

1 1
2 2

1 1 1
2 2 2

T dz ydx c c c c s c d

dz c s d dx c c c c s d
x y z

dz c c c c s d c s d dx c c c c s d
x y z x y z

β
η   = − +    

   ∂ ∂ ∂   = − + + + +      ∂ ∂ ∂     
   ∂ ∂ ∂ ∂ ∂ ∂     = + + + − + + + +       ∂ ∂ ∂ ∂ ∂ ∂       

1 2 1 2 2 2 2 1 2 1 2 2

1 2 2 2 2 1

1 1 1
2 2 2

1 1
2 2

0

z z z x x xc c c c s d c s d c c c c s d
x y z x y z

c c s d c s d c




 ∂ ∂ ∂ ∂ ∂ ∂     = + + + − + + + +      ∂ ∂ ∂ ∂ ∂ ∂      
   = + − +   
   

=
 dır. Dolayısıyla, β  bir Legendre eğrisidir. Yani, Legendre eğrisi olma özelliği korunmuş 

olur. Son olarak, (3.3) eşitliği gereği 

 ( ) ( )(1 )[ ]X XY Y a Y X X Yη ϕ η ϕ∇ = ∇ + − +  

olduğundan,  









 ( )  ( ) 

( )
( ) ( )

( )( ) ( )

1
2

3[ ]

1 1 16
2 2 2

1 3
4 2
0

T T

t

T T T T T T

t t

t

γ

γ

η ϕ η ϕ

γ η γ ϕ γ

γ η γ ϕ γ

′

′

∇ = ∇ − +

     ′ ′ ′= ∇ −     
     

′ ′ ′= ∇ −

=
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yazabiliriz. Böylece, β  bir geodeziktir. Sonuç olarak, D-homotetik dönüşüm öncesi bir 

Legendre geodezik olan γ  eğrisi için, dönüşüm sonrasında Legendre geodezik olma 

özelliği korunmuştur.  

 

Benzer tartışma, Legendre olmayan slant geodezikler için de yapılabilir. Slant olma 

özelliğinin korunduğunu, kontakt açısının ve geodezik olma özelliğinin genellikle 

korunmadığını; ancak, Legendre eğrisi olma veya ξ± nin integral eğrisi olma durumunda, 

slant geodezik olma özelliğinin korunduğunu söyleyebiliriz. Yani, ( )3: 3 ,Iγ → −  

( ) ( )1 2 3, , 2t c c t cγ = ± +  slant geodezik eğrileri için de, D-homotetik dönüşüm sonrası bu 

özellikleri korunur.  

 

Son bir uygulama ile bölümü tamamlayalım. ( )3: 3 ,  ( ) ( ,0, 3 )I t t tγ γ→ − =  eğrisini ele 

alalım. ( )( )3 3χ −  ün { }, ,X Y ξ  ortonormal bazı cinsinden, γ  eğrisinin tanjant vektör 

alanı,  

( ) ( ) 1 31,0, 3
2 2

T t Yγ ξ′= = = +   

dir. Yani, eğri birim hızlıdır. ( ) ( ) 3, sabit
2

T g Tη ξ= = =  olduğundan, γ  eğrisi 
6
πθ =  

radyan kontakt açısına sahip bir slant eğridir. Daha sonra, 

1 3 1 3
2 2 2 2T T T TT Y Yξ ξ

 
∇ = ∇ + = ∇ + ∇  

 
  

1 3 1 3
2 2 2 2

1 3
2 2Y Y

Y
ξ ξ

ξ
+ +

= ∇ + ∇   

1 3 3 3
4 4 4 4Y YY Yξ ξξ ξ= ∇ + ∇ + ∇ + ∇   

1 3 3 3.0 .0
4 4 4 4

X X= + + +   

1 2
3

2
X Eκ= =   

olduğundan 1
3

2
κ =  ve 2E X=  tir. Devam edilirse, 
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2 1 3
2 2

T T
Y

E X X
ξ+

∇ = ∇ = ∇   

1 3
2 2Y X Xξ= ∇ + ∇   

3 1
2 2

Y ξ= − −   

1 2 3T Eκ κ= − +   

2 3
3 1 3 3 1

2 2 2 2 2
Y E Yξ κ ξ

 
⇒ − + + = − −  

 
  

2 3
3 1

4 4
E Yκ ξ⇒ = − +   

2
3 1 1

16 16 2
κ⇒ = + =  ve 3

3 1
2 2

E Y ξ= − +   

bulunur. Böylece, γ  eğrisi bir slant helistir. D-homotetik dönüşümümüz yine bir önceki 

gibi 4a =  olarak uygulansın.  

 ( ) ( ) ( )22

2

, 4 , 12

34 12
2

13

v g gγ γ γ γ η γ′ ′ ′ ′ ′= = +

 
= +   

 
=

 

olduğundan eğrinin hızı 13  katına çıkar. Eğrinin birim hızlı yeniden parametrizasyonu 

ise, 

 ( ) 1 1 3( ,0, )
1313 13

s s s sβ γ  = = 
 

  

dir. Bu eğri, yine bir slant eğridir, ancak kontakt açısı değişmiştir. Gerçekten,  

 ( )  ( ) 1 3 1 1 3,0,
13 2 1313 2 13

T s s Yβ ξ
 

′= = = +  
 

  

olup 

 ( ) ( ) 1 1 34 4
2 132 13

32 sabit
13

T T Yη η η ξ
 

= = +  
 

= =

  

olarak hesaplanır. Böylece, β  eğrisi, kontakt açısı 
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 0.28103 radyan 163arccos 2 ,
1

1
3

θ
 

= ≈ ≈
 

   

olan bir slant eğridir. Son durum ile ilk durum arasındaki açı farkı, 



3arccos 2
13 6

0,24256 radyan 13,9πθ θ
 

− = − ≈ − ≈ −
 

   

olduğundan değme açısı azalmıştır. Açının değişim oranı ise,  

46,32

3arccos 2
13 6

%

6

π

π

 
− 

  ≈ −  

dir. Yani, γ  eğrisinin ξ  ile arasındaki açıklık (açı), D-homotetik dönüşüm sonrası azalarak 

yaklaşık %53,68  ine düşmüştür.  

 

Böylece, Sasakian manifoldlardaki D-homotetik dönüşümlerin çeşitli eğriler üzerinde açı 

ve uzunluk ölçümlerine etkisini detaylı hesaplamalar ile incelemiş olduk. Bu etkileri daha 

birçok eğriye uygulamak mümkündür.  
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4. SONUÇ VE ÖNERİLER   
Bu tez çalışmasında, Sasakian manifoldların D-homotetik dönüşümlerinin Frenet eğrileri 

üzerindeki etkileri detaylı olarak çalışılmıştır. Özel olarak, küre yüzeyinin Sasakian yapısı 

ele alınmıştır. Legendre ve slant geodezikler ile ilgili uygulamalar yapılmıştır. 

 

Bir Sasakian manifoldda yatan bir Frenet eğrisi için, D-homotetik dönüşüm sonrası, birim 

hızlı eğri olma özelliğinin korunmadığı; ancak, sabit hızlı eğri olma özelliğinin korunduğu 

görülmüştür. Legendre veya slant eğri olma özellikleri de korunmaktadır. Slant eğriler için 

kontakt açısı genel olarak korunmamaktadır. Geodezik olma özelliğinin ne zaman 

korunduğu da ispatlanmıştır. Küre üzerinde örnekler verilerek sonuçlar desteklenmiştir. 

 

Yapılan çalışmaları, Sasakian manifoldlar dışında diğer manifoldlara uygulamak mümkün 

görülmektedir. 
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