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ÖZET 

Birinci bölümde diğer bölümlerde kullanılacağımız kategori, fanktor, topolojik fanktor, 

başlangıç ve bitiş kaldırmaları, öz süzgeç, diskre ve indiskre obje kavramları verildi. 

İkinci bölümde, kapalı alt nesneler verilmiştir. Üçüncü bölümde indirgenemez Cauchy 

uzaylarını karakterize edilmiş ve indirgenemez, bağlantılı Cauchy uzaylarının her biri 

arasındaki ilişkiyi incelenmiştir. Dördüncü bölümde Cauchy uzayları için Urysohn 

Lemması ve Tietze Genişleme Teoremi verilmiştir. Beşinci bölümde sonuç ve 

değerlendirmelere yer verilmiştir. 
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ABSTRACT 

In the first chapter, the concepts of category, functor, topological functor, initial and final 

lifts, proper filter, discrete and indiscrete objects, which will be used in the following 

chapters, are given. In the second chapter, closed subobjects are discussed. In the third 

chapter, irreducible Cauchy spaces are characterized and the relationships among each of 

the irreducible and connected Cauchy spaces are examined. In the fourth chapter, 

Urysohns Lemma and the Tietze Extension Theorem are given for Cauchy spaces. In the 

fifth chapter, results and evaluations are presented. 
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GİRİŞ 

Matematik bilim dalının değişik branşlarındaki farklılaşma ve uzmanlaşmanın artması 

matematikçileri, bu çok sayıdaki farklı branşların ortak bir alan üzerinde düşünmelerini 

zorunlu kılmıştır. İşte kategori teorisi bu ortak alanlardan bir tanesidir ki, farklı 

alanlardaki araştırmacıların daha kolay bir iletişim kurmaları için ortak bir dil 

sağlamaktadır. Genel topoloji matematiğinin cebir, analiz, fonksiyonel analiz, olasılık 

teorisi, lattice teorisi gibi pek çok teoride uygulamalara sahip olduğundan, topoloji ile 

uğraşanların çoğu topolojik fikirleri kategori diline çevirmeyi tercih ederler. 

Topolojide ki bazı önemli kavramlar (Kompaktlık, Bağlantılılık, İndirgenemezlik, 

Ayrılma Aksiyomları, Kapalılık, vb.) değişik yollarla topolojik kategoriye 

genişletilmiştir. Bu genişlemelerin çoğu kapanış operatörleri kullanılarak yapılmıştır. 

Cauchy isim olarak, reel analizdeki Cauchy dizileri bir genelleştirilmesine 

dayanmaktadır. Süzgeçlerin var olması ve düzgün uzayların ortaya çıkması neticesinde, 

Cauchy süzgeçleri topolojik teoride Cauchy dizilerine genelleştirilmiştir. Yakınsak 

teoride ise, Cauchy yakınsaklık anlamında kullanılmıştır. Ancak Cauchy uzaylarının 

aksiyomatik tanımı 1968 tarihinde Keller [1] tarafından yapılmıştır.  

Bu tezin amacı, cümle tabanlı topolojik kategorilerde kapalı ve kuvvetli kapalılık 

kavramlarını kullanarak özellikle [10] makaleden yararlanarak Cauchy Uzayların 

topolojik kategorisinde iki tane kapanış operatörünü tanımlamak ve bu kapanış 

operatörlerinden yararlanarak her bir Ti, i = 0, 1, 2 Cauchy Uzaylarının alt kategorilerini 

tanımlamaktır. Ayrıca, indirgenemez Cauchy uzaylarını karakterize ediliyor ve 

indirgenemez, bağlantılı Cauchy uzaylarının her biri arasındaki ilişkiyi inceliyoruz. Son 

olarak, Cauchy uzayları için Urysohn Lemmasını ve Tietze Genişleme Teoremi ifade 

ediliyor. 
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1. BÖLÜM 

TEMEL KAVRAMLAR 

Bu bölümde, diğer bölümlerde kullanacağımız bazı temel kategori tanımları ve topolojik 

kavramlara yer verilmiştir [11- 34].   

1.1. Bazı Temel Tanımlar 

1940 lardan sonra Samuel Eilenberg ve Saunders Mac Lane tarafından temelleri atılan ve 

kısa sürede matematiğin diğer dallarında birçok kullanım alanı bulan kategori teorisi, aynı 

tip nesneler ve bunlar arasındaki dönüşümler olarak düşünülebilir. 

Biraz daha ayrıntılı olarak, kümeler arasındaki fonksiyonların bileşkesinin birleşme 

özelliğine sahip olduğunu ve her küme için birim fonksiyonu bulunduğunu biliyoruz. 

Burada daha genel olarak kümeler yerine nesneler ve fonksiyonların yerine morfizmler 

alındığında kategori kavramı elde edilmiş olur. 

Tanım 1.1.1. (Kategori) Nesnelerin bir sınıfı olan 𝑂𝑏(ε) ve her bir 𝑀, 𝑁 ∈ 𝑂𝑏(ε) nesne 

çifti için 𝑀 dan 𝑁 ye tüm morfizmlerin sınıfı ε (𝑀, 𝑁) için,  

Mor(ε) =  ⋃ ε(M,N) 

olsun.  𝑀𝑜𝑟(ε) üzerinde şu şekilde kısmi işlem tanımlansın: 

Her 𝑀, 𝑁, 𝐾 ∈ 𝑂𝑏(ε)  için                                                                                                          

                   ε (𝑁, 𝐾)  × ε (𝑀, 𝑁)                ε(𝑀, 𝐾) 

                             (𝑔, 𝑓)                    𝑔𝑓 

İşlemi bulunsun. 
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Bu şekilde tanımlanan tanımlanan aşağıdaki özellikleri sağlasın. 

1. Eğer 𝑓 ∈   ε(𝑀, 𝑁), 𝑔 ∈ (𝑁, 𝐾) ve ℎ ∈ ε(𝐾, 𝐿) ise (ℎ𝑔)𝑓 = ℎ(𝑔𝑓) olsun. 

2. Her 𝑀 ∈ 𝑂𝑏( ε) için 𝑓 ∈  ε(𝑀, −) ve 𝑔 ∈ ε(−, 𝑀) iken 𝑓1𝑀= 𝑓 ve 1𝑀𝑔 = 𝑔           

olacak şekilde birim morfizm olarak adlandırılan 1𝑀 ∈  ε (𝑀, 𝑀) morfizmi bulunsun. 

Bu şekildeki yapıya kategori denir.  

Burada morfizimler fonksiyonlar ve morfizimlerin bileşkesi ise fonksiyonların bileşkesi 

gibi yazılmasına rağmen kategorideki morfizimlerin her zaman fonksiyon olmadığına 

dikkat edelim. Bundan dolayı morfizimler bazen oklar olarak da adlandırılır [11-34] 

Önerme 1.1.2. [11- 34] ε kategorisinde her 𝑀 ∈ 𝑂𝑏( ε)   nesnesi için birim morfizm 

olarak adlandırılan 1𝐴 ∈  ε (𝑀, 𝑀) morfizmi tektir. 

İspat: 𝑀 ∈ 𝑂𝑏( ε) nesnesi için  1𝑀 ve 1′𝑀  iki tane birim morfizm olduğunu kabul 

edelim. 1𝑀 nın birim morfizm olmasından 1′𝑀 1𝑀 = 1′𝑀 ve 1′𝑀 nın birim morfizm 

olmasından 1′𝑀 1𝑀 = 1𝑀 olacağından 1𝑀 =  1′𝑀  elde edilir. 

Örnek 1.1.3. [11-34] Tüm kümelerin sınıfı kategori oluşturur. Bu kategorinin nesneleri 

kümeler ve morfizimleri ise kümeler arasındaki fonksiyonlardır. 𝑀, 𝑁 kümeleri için 

ε(𝑀, 𝑁) sınıfı 𝑀 den 𝑁 ye tüm fonksiyonların sınıfıdır. Burada tanımlanan 

fonksiyonların bileşkesi olarak tanımlanır. Her 𝑀 kümesi için birim morfizim                  

1𝑀 ∶ 𝑀 → 𝑀 birim fonksiyonudur. 

O halde tüm kümelerin sınıfı kategori oluşturur. Bu kategoriye kümelerin kategorisi denir 

ve 𝐒𝐞𝐭 ile gösterilir. 

Örnek 1.1.4. [11-34] Topolojik uzayların sınıfı kategori oluşturur. Bu kategorinin 

nesneleri topolojik uzaylar, morfizimleri topolojik uzaylar arasındaki sürekli fonksiyonlar 

ve tanımlanan fonksiyonların bileşkesidir. Sürekli fonksiyonların bileşkeleri de sürekli 

olduğundan böyle kısmi işlem tanımlıdır. Bu kategori kısaca 𝑻𝒐𝒑 ile gösterilir.  

Örnek 1.1.5. [11-34] Nesneleri gruplar, morfizmleri grup homomorfizimleri ve 

tanımlanan grup homomorfizimlerin bileşkesi olarak alındığında kategori elde edilir. Bu 

kategori 𝑮𝒓𝒖𝒑 olarak yazılır. 
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Benzer olarak halkalar ve halka homomorfizimleri de kategori oluşturur. Bu kategori  

𝑹𝒊𝒏𝒈 ile gösterilir. 

Tanım 1.1.6. [11-34] Bir ℇ kategorisinde morfizmlerin bir diyagramı aşağıdaki gibi 

verilsin. 

 

 

 

 

Şekil 1. Değişmeli diyagram 

Başlangıç ve bitişleri aynı olan bileşke morfizimleri eşit ise yani  β 𝑓 = 𝑔𝛼  ise bu 

diyagram değişmelidir denir. 

Tanım 1.1.7. [11-34] 𝛆 ve 𝓓 iki kategori olsun. Aşağıdaki şartlar sağlanıyor ise                    

𝛆 kategorisine 𝓓 nin alt kategorisi denir.  

1. Ob( 𝛆) ⊆ 𝐎𝐛 (𝓓) dir. 

2. Her 𝑨, 𝑩 ∈ Ob (𝛆) için  𝛆(𝑨, 𝑩) ⊆   𝓓(𝑨, 𝑩) dir. 

3. 𝛆 kategorisindeki morfizimlerin kısmi bileşke işlemi, 𝓓 kategorisindeki morfizimlerin 

kısmi bileşke işlemi ile aynıdır.  

4. Her 𝑨 ∈ 𝐎𝐛(𝛆) için 𝛆 deki 𝟏𝑨 birim morfizmi, 𝓓 deki birim morfizim ile aynıdır. 

 𝛆 kategorisi 𝓓 kategorisinin alt kategorisi olsun. Her A, B ∈ 𝑶𝒃(𝛆) nesne çifti için 

 𝛆(𝑨, 𝑩) = 𝓓(𝑨, 𝑩)  ise 𝛆 alt kategorisine dolu alt kategori,  𝑶𝒃(𝜺) = 𝑶𝒃 (𝓓) ise 𝛆 ye 

geniş alt kategori denir. 

Tanım 1.1.8. [11-34] ε  kategorisinde A∈ Ob(ε) nesnesi verilsin. Her 𝑋 ∈ Ob(ε) nesnesi 

için 𝑀𝑜𝑟𝛆(𝑋, 𝐴) tek morfizme sahip ise A∈ Ob(ε) nesnesine başlangıç nesnesi denir. 

Benzer olarak her 𝑋 ∈ 𝑂𝑏(ε) nesnesi için 𝑀𝑜𝑟𝛆(𝑋, 𝐴) tek morfizme sahip ise                       

A ∈ Ob(ε) nesnesine final nesnesi veya bitiş nesnesi denir. 

𝑓 

𝛼 

A 𝐵 

𝐶 𝐷 
g 

β 
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Tanım 1.1.9. [11-34] ε kategorisinde { 𝐴İ : 𝑖 ∈ 𝐼 } nesnelerin bir sınıfı, P ∈  Ob(ε) ve her 

𝑖 ∈ 𝐼 için 𝑝İ : 𝑃 → 𝐴İ  morfizmi verilsin. X ∈  Ob(ε ) olmak üzere eğer 𝑓İ : 𝑋 → 𝐴İ (𝑖 ∈ 𝐼) 

morfizimleri verildiğinde  

                            𝑝İ                       

                                              

                                   𝑓İ  

               X 

Şekil 2. Çarpım diyagramı  

diyagramı değişmeli olacak şekilde tek γ: 𝑋 → 𝑃 morfizmi varsa { 𝑃 → 𝐴İ ∶ 𝑖 ∈ 𝐼} ye 

çarpım diyagramı ve P ye {𝐴İ : 𝑖 ∈ 𝐼} nesne sınıfının çarpımı denir. 

Tanım 1.1.10. [11-34] ε kategorisinde A→ 𝐶 ← 𝐵 morfizimler olmak üzere bir değişmeli 

diyagramı verilsin. Eğer herhangi bir  

 

Şekil 3. Değişmeli diyagram 

değişmeli diyagramı verildiğinde  

 

 

𝑘 

ℎ 

X 𝐵 

𝐴 𝐶 𝑓 

𝑔 

P 

𝐴İ  

γ 
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Şekil 4. Değişmeli diyagram 

diyagramı değişmeli, yani 𝛼𝜃 = ℎ  𝑣𝑒 𝛽𝜃 = 𝑘 olacak şekilde tek 𝜃: 𝑋 → 𝑃 morfizmi 

varsa  

 

Şekil 5. Pullback diyagramı 

diyagramına f ve g nin pullback diyagramı denir. 

Tanım 1.1.11. 

[11-34] ε  kategorisinde 𝐵 ← 𝐴 → 𝐶 morfizimler olmak üzere bir 

𝑘 

X 

𝐵 

𝑎 

𝛽 

g 

h 

𝐴 

P 

𝑓 

 

C 

 

𝛽 

𝑔 

P 𝐵 

𝐴 𝐶 
f 

g 

 
𝜃 
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değişmeli diyagramı verilsin. Eğer herhangi bir  

 

değişmeli diyagramı verildiğinde  

 

 

 

 

 

 

 

diyagramı değişmeli yani 𝜃𝛼 = ℎ 𝑣𝑒 𝜃𝛽 = 𝑘 olacak şekilde tek 𝜃: 𝐷 → 𝑍 morfizmi varsa  

 

 

 

𝑔 

𝑓 

A 𝐶 

𝐵 𝐷 
a 

β 

𝑔 

𝑓 

A 𝐶 

𝐵 𝑍 
h 

k 

𝑘 

Z 

𝐶 

𝑓 

𝑔 

β 

h 

𝐵 

A 

𝑎 

 

D 

 

θ 
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Şekil 6. Pushout diyagram 

  diyagramına f ve g nin pushoutu denir. 

1.2. Topolojik Fanktorlar 

Tanım 1.2.1. [11-34] ε ve 𝒟 kategorileriler olmak üzere  ε nin her 𝐴 nesnesini 𝒟 nin 

𝐹(𝐴) nesnesine, ε nin her bir  𝑓 ∶  𝐴 →  𝐵 morfizmini ise 𝒟 deki bir                                   

𝐹(𝑓) ∶  𝐹(𝐴)  →   𝐹(𝐵) morfizmine dönüştüren ve aşağıdaki şartları sağlayan                        

F dönüşümüne ε den 𝒟 ye  fanktor denir ve 𝐹: ε → 𝒟  olarak yazılır. 

1. ε kategorisinde 𝑔 𝜊 𝑓 bileşkesi tanımlı olacak şekilde f ve g morfizimleri için 

𝐹(𝑔 𝜊 𝑓) =  𝐹(𝑔)𝜊 𝐹(𝑓) dır. 

2. Her 𝐴 ∈ 𝑂𝑏(ε ) için 𝐹(1A) = 1F(A)  dır. 

Tanım 1.2.2. [11-34] ε  ve 𝒟 kategoriler ve 𝐹: ε →  𝐷 olsun. 

1.  Her 𝐴, 𝐵 ∈  𝑂𝑏(ε) ve her 𝑓 ∶  𝐹(𝐴)  →   𝐹(𝐵) için 𝐹(𝑔)  =  𝑓 olacak şekilde en az 

bir  𝑔 ∶  𝐴 →  𝐵 varsa 𝐹 ye dolgun (full) fanktor denir. 

2.  𝐴, 𝐵 ∈  𝑂𝑏 (ε) ve her 𝑓, 𝑔 ∶  𝐴 →   𝐵 için 𝐹(𝑓)  =  𝐹(𝑔) iken  𝑓 =  𝑔 oluyorsa 𝐹 ye 

düzenli (faithful) fanktor denir. 

3.  𝑓 ∶  𝐴  →  𝐴 için 𝐹(𝑓)  = 1F(A) ve 𝑓 izomorfizm iken 𝑓 = 1A oluyorsa 𝐹  amnestik 

fanktor dur. 

4.  𝐹 düzenli ve amnestik ise 𝐹 ye belirli  (concrete) fanktor denir. 

𝑔 

𝑓 

A 𝐶 

𝐵 𝐷 
a 

𝛽 
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Örnek 1.2.3. [11-34] TOP da ∀(𝑋, 𝒯) topolojik uzayını, 𝒰(𝑋, 𝒯) = 𝑋 yani üzerindeki 

topoloji yapısını bırakarak 𝒰(𝑓)  =  𝑓 dönüştüren fanktoruna unutkan fanktor denir.  

Örnek 1.2.4. [11-34] SET de her 𝑋 kümesini, üzerine diskre topoloji yapısını ekleyerek 

(𝑋, 𝑃(𝑋)) diskre topolojik uzayına 𝒟: SET → TOP dönüşümüne diskre fanktor denir. 

Örnek 1.2.5. [11-34] SET de (𝑋, {∅, 𝑋}) indiskre obje ve her bir 𝑓 ∶  𝑋 →   𝑌 nı topolojik 

uzaylar arasındaki  𝒟*(𝑓) = 𝑓 : (𝑋, {∅, 𝑋}) → (𝑌, {∅, 𝑌}) fonksiyonuna çeviren                         

𝒟*: SET →  TOP ya fanktor indiskre fanktor denir. 

Tanım 1.2.6. [11-34] ε  ve 𝒟 kategoriler ve 𝐹, 𝐺: ε → 𝒟 fanktorlar olsun. Her                        

𝐴 ∈  𝑂𝑏(ε) yı 𝒟 nin bir 𝛼A: 𝐹(𝐴)  →   𝐺(𝐴) ne dönüştüren bir  𝛼 : 𝑂𝑏(ε)  →   𝑀𝑜𝑟(𝒟) 

verilsin. ε  deki ∀𝑓 ∶  𝐴 →  𝐵 morfizmi için 

 

Şekil 7. Doğal dönüşüm diyagram 

diyagramı değişmeli ise 𝛼, 𝐹 den 𝐺 ye doğal dönüşüm dür ve  𝛼: 𝐹  →  𝐺 şeklinde 

gösterilir. 

1.3. Topolojik Kategori 

Tanım 1.3.1. [11-34] ε  kategori ve I indis kümesi için her 𝑖 ∈ I için 𝐴 ve 𝐴𝑖 ∈  𝑂𝑏(ε) 

için 𝑓𝑖  : A → 𝐴𝑖  verilsin. (𝐴, (𝑓𝑖)𝑖∈ I) ye bir kaynak (source) denir. 

 

𝛼A           

F(f)                                       

F(A) G(A) 

 

F(B) 

 
G(B) 𝛼B          

G(f)                                  
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Tanım 1.3.2. [11-34] ε kategori ve I bir indis kümesi olmak üzere ∀ 𝑖 ∈ I için 𝐴 ve              

𝐴𝑖 ∈  𝑂𝑏(ε) olmak üzere  𝑓𝑖   :  𝐴𝑖   → 𝐴 verilsin.  ((𝑓𝑖)𝑖∈ I, 𝐴) kavşak (sink) denir. 

Tanım 1.3.3. [11-34]  ε ve 𝒟 kategorileri ve 𝒰: ε → 𝒟 bir fanktoru verilsin.                           

1. 𝑖 ∈ I için 𝐴𝑖 ∈  𝑂𝑏(ε) ve 𝑓𝑖   : 𝐵 → 𝐵𝑖 = 𝒰(𝐴𝑖) leri 𝒟 de bir 𝒰 −kaynağı olsun.            

{𝑓𝑖}𝑖∈ I  ailesinin bir başlangıç kaldırmasının (initial lift) 𝐴 ∈  𝑂𝑏(ε), 𝒰(𝐴) = 𝐵 ve        

𝒰(𝑓𝑖̅) = 𝑓𝑖 olacak şekilde  𝑓𝑖̅ : 𝐴  →  𝐴𝑖 olması için şu şartlar sağlanmalıdır:  

 𝑔̅𝑖: 𝑋  →  𝐴𝑖, nin bir ailesi ve 𝒰 ( 𝑔̅𝑖) = 𝑔𝑖  olmak üzere ∀ 𝑖 ∈ I için 𝑓𝑖 𝜊 ℎ = 𝑔𝑖 olacak 

şekilde bir ℎ : 𝒰(𝑋) → 𝐵 varsa ∀ 𝑖 ∈ I için  𝑓𝑖̅ 𝜊 ℎ =  𝑔̅𝑖 olacak şekilde                                      

 ∃ℎ:  𝑋 →   𝐴 vardır. Eğer   𝑓𝑖̅: 𝐴 →  𝐴𝑖 başlangıç kaldırma ise 𝐴 daki yapıya  𝑓𝑖̅ lere            

𝐴𝑖 lerden elde edilen yapı denir. 

 

 

 

 

 

Şekil 8. Başlangıç kaldırma 

 

 

 

 

 

 

𝑓𝑖̅ 
 

ℎത 

A 𝐴𝑖 

𝑋 

𝑔̅𝑖 

ℰ 

 𝑓𝑖 

ℎ 

𝐵 

B 

𝐵𝑖 = 𝒰(𝐴𝑖) 

𝒰(𝑋) 

𝑔𝑖 = 𝒰(𝑔̅𝑖)  

𝒟 

𝒰 
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2. 𝑖 ∈  𝐼 için 𝐴𝑖 ∈  𝑂𝑏(ε)  ve 𝑓𝑖  : 𝒰 (𝐴𝑖) = 𝐵𝑖  →  𝐵 leri 𝐷 de bir 𝒰-kavşağı olsun.       

{𝑓𝑖} 𝑖∈ I nin bitiş kaldırmasının (final lift) 𝐴 ∈  𝑂𝑏(ε),  𝒰(𝐴) = 𝐵 ve 𝒰(𝑓𝑖̅) = 𝑓𝑖 olacak 

şekilde  𝑓𝑖̅: 𝐴𝑖  →  𝐴 morfizmler ailesi olması için aşağıdaki şartlar sağlanmalıdır: 

𝑔i: 𝐴𝑖  → 𝑋, ε de morfizmlerin bir ailesi ve 𝒰 (𝑔i) = 𝑔𝑖 olmak üzere ∀i ∈ I için                         

ℎ 𝜊 𝑓𝑖  =  𝑔𝑖  olacak şekilde bir ℎ : 𝐵 →  𝒰(X) varsa ∀i ∈ I için ℎ 𝜊 𝑓i = 𝑔i   olacak şekilde    

∃ℎ: A→ 𝑋 vardır. 

 

Şekil 9. Bitiş Kaldırma 

𝑓𝑖̅ : 𝐴𝑖   →  𝐴 bir bitiş kaldırma ise 𝐴 daki yapıya 𝑓i ler tarafından 𝐴𝑖  den elde edilen yapı 

denir. 

Not 1.3.4. [11-34] Topolojik kategorilerde keyfi bir 𝒰- kaynağının başlangıç 

kaldırmasının varlığı, keyfi 𝒰- kavşağının bitiş kaldırmasının varlığına denktir.  

Tanım 1.3.5. (Topolojik Kategori) [11-34] ε ve 𝒟 kategorileri ve 𝒰 : ε → 𝒟  fanktoru 

verilsin. Aşağıdaki şartlar sağlanıyor ise 𝒰 ya topolojik fanktor veya ε kategorisine 𝒟 

de topolojik kategori denir. 

1. 𝒰 belirli (düzenli ve amnestik) dir. 

2. 𝒰 küçük demetlere sahiptir. 

3. Her 𝒰- kaynağı bir başlangıç kaldırmaya (initial lift) sahiptir. 

𝑓𝑖̅ 

ℎത 

𝐴𝑖 

 

A 

𝑋 

𝑔̅𝑖 

𝓔 

𝑓𝑖 

ℎ 

B 𝒰(𝐴𝑖)
= 𝐵  

𝒰(𝑋) 

𝒰(𝑔̅𝑖) = 𝑔𝑖  

𝓓 
𝒰 
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1.4. Süzgeçler 

Süzgeç kavramı ilk olarak 1937 yılınca Cartan tarafından ortaya konmuş [20, 21], 

ardından 1940 yılında Bourbaki [22] tarafından çeşitli çalışmalarda kullanılmıştır. Bu 

kavram üzerine daha sonra 1961 yılında Kowalsky [23] tarafından da önemli çalışmalar 

yapılmıştır.                                                                                                                                                               

Tanım 1.4.1 𝑁 ≠ ∅ cümle, 𝛼 ≠∅ 𝑣𝑒 𝛼 ⊂ 𝑃(𝑁) olsun. Aşağıdaki üç şart sağlanıyorsa, 

𝛼 ya 𝑁 üzerinde bir öz süzgeç denir. 

1. ∅ ∉ 𝛼 dır. 

2.  Her 𝑈, 𝑉 ∈ 𝛼 için  𝑈 ∩ 𝑉 ∈ 𝛼 dır. 

3. 𝑈 ∈ 𝛼 ve 𝑈 ⊂ 𝑉 ise 𝑉 ∈ 𝛼 dır. 

1 ve 2 şartlarından 𝛼 süzgecine ait sonlu sayıda cümlelerin kesişiminin boş olamayacağı 

ve 3 şartından 𝛼 süzgecine ait her sayıda cümlelerin birleşiminin 𝛼 süzgecine ait olduğu 

anlaşılır. Ayrıca 1 şartından 𝑃(𝑁) cümlesinin kendisi bir süzgeç değildir. 3 şartından ise 

süzgeçlerin artan bir yapıda olduğu anlaşılır [22]. ∅ ∈ 𝛼 ve 2 ve 3 şartları sağlanırsa       

𝛼 = 𝑃(𝑁) dir. Bu durumda 𝛼 ya  𝑁 üzerinde bir öz olmayan süzgeç denir. 𝑁 üzerindeki 

tüm süzgeçlerin cümlesi 𝐹(𝑁) ile gösterilir [22]. 

Örnek 1.4.2 1. 𝑋 = {𝑎} kümesi üzerinde 𝜏 = {∅, 𝑋} = 𝑃(𝑋) tek bir topoloji ve süzgeç 

[𝑎] = {𝑋} vardır. 

2. 𝑋 = {𝑎, 𝑏} kümesi verilsin. 

𝒊. 𝑋 üzerindeki topolojiler şunlardır:  

 𝜏1 = {∅, 𝑋},  𝜏2 = {∅, {𝑎}, 𝑋},  𝜏3 = {∅, {𝑏}, 𝑋},  𝜏4 = 𝑃(𝑋)  

𝒊𝒊. 𝑋 üzerindeki üç süzgeç vardır: 

[𝑎] = {{𝑎}}, 𝑋} , [𝑏] = [𝑏] = {{𝑏}, 𝑋}, [𝑋] = {{𝑋}} 
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Tanım 1.4.3. 𝛼, 𝛽 ∈ 𝐹(𝐵) , 𝛾 ∈ 𝐹(𝐴) ve 𝑓: 𝐵 → 𝐴 bir fonksiyon olsun. Bu taktirde ; 

1. 𝛼 ∩ 𝛽 = {𝑈 ⊂ 𝐵 ∶ 𝑈 ∈ 𝛼  ve 𝑈 ∈ 𝛽},  

2. 𝛼 ∪ 𝛽 = {𝑈 ⊂ 𝐵: ∃ 𝑉 ∈ 𝛼 ve ∃𝑊 ∈ 𝛽 için 𝑈 ⊃ 𝑉 ∩ 𝑊},  

3. 𝑓(𝛼) = {𝑉 ⊂ 𝐴: ∃𝐶 ∈ 𝛼 için 𝑓(𝐶) ⊂ 𝑉},  

4. f −1(𝛾) = {𝑈 ⊂ 𝐵: ∃𝐶 ∈ 𝛾 vardır öyle ki ∅ ≠ f −1(𝐶) ⊂ 𝑈} şeklinde tanımlanır. 

Bunların her biri birer öz süzgeçtirler [2].                                                                                                 

Burada [𝛼 ∩ 𝛽 ] = 𝛼 ∩ 𝛽 dır. 𝛼 ∩ 𝛽 ⊂ [𝛼 ∩ 𝛽 ] olduğu öz süzgecin tanımından açıktır. 

Şimdi [𝛼 ∩ 𝛽] ⊂ 𝛼 ∩ 𝛽  olduğunu gösterelim. U ∈ [𝛼 ∩ 𝛽 ]  alalım. En az bir 𝑉 ∈ 𝛼 ∩ 𝛽 

vardır öyle ki 𝑉 ⊂  𝑈 dur. 𝑉 ∈ 𝛼 ∩ 𝛽 olduğundan 𝑉 ∈ 𝛼 ve 𝑉 ∈ 𝛽dır. 𝛼 ve 𝛽 ve öz 

süzgeç olduğundan 𝑈 ∈ 𝛼 ve 𝑈 ∊ 𝛽 dır. Dolayısıyla 𝑈 ∈ 𝛼 ∩ 𝛽 dır. Ayrıca süzgeçlerin 

birleşim işleminin cümlelerin birleşim işleminden farklı olduğu unutulmamalıdır. Çünkü 

normal birleşim işlemi alınsa iki süzgecin birleşimi süzgeç olmayabilirdi. 

Tanım 1.4.4 𝛼, 𝛽 ∈ 𝐹(𝐴) ve 𝑓: 𝐴 → 𝐵 bir fonksiyon olsun [24].  

1. 𝑓(𝛼 ∩ 𝛽) = 𝑓(𝛼 ) ∩ 𝑓(𝛽), 

2. 𝑓(𝛼 ∪ 𝛽) ⊃ 𝑓(𝛼 ) ∪ 𝑓(𝛽), 

3. 𝑓−1𝑓(𝛼) ⊂ 𝛼  dır, 

4. 𝛽 ⊂ 𝑓(𝑓−1(𝛽)) dır. 

İspat: 1.  𝑈 ∈ 𝑓 𝛼 ∩ 𝛽  olsun. Bu takdirde en az bir 𝑉 ∈ 𝛼 ∩ 𝛽 vardır, öyle ki         

𝑓(𝑉) ⊂  𝑈 dur. 𝑓(𝑉) ∈ 𝛼 ve 𝑓(𝑉) ∈ 𝛽 demektir. Böylece 𝑈 ∈ 𝑓 𝛼 ∩ 𝑓 𝛽dır.                

Dolayısıyla, 𝑓𝛼 ∩ 𝛽 ⊂ 𝑓𝛼 ∩ 𝑓 𝛽 dır. Diğer taraftan, 𝑈 ∈ 𝑓𝛼 ∩ 𝑓 𝛽 ise                  

𝑈 ∈  𝑓 𝛼  ve 𝑈 ∈ 𝑓𝛽  dır. 𝑓(𝑉) ⊂  𝑈 ve 𝑓(𝑊) ⊂  𝑈 olacak şekilde 𝑉 ∈ 𝛼 ve           

 𝑊 ∈ 𝛽 vardır. Buradan 𝑈 ⊃ 𝑓(𝑉) ∩ 𝑓 (𝑊) = 𝑓 (𝑉 ∩  𝑊) ∈  𝛼 ∩ 𝛽  olduğundan                        

𝑈 ∈ 𝑓𝛼 ∩ 𝛽  ve 𝑓𝛼 ∩ 𝑓 𝛽 ⊂ 𝑓𝛼 ∩ 𝛽 dır. O halde eşitlik sağlanır. 

2. 𝑈 ∈ 𝑓𝛼  ∪ 𝑓  𝛽  olsun. 𝑈 ∈ 𝑓  𝛼  veya 𝑈 ∈ 𝑓( 𝛽dır. 𝑓(𝑉) ⊂  𝑈 ve 𝑓(𝑊) ⊂  𝑈 

olacak şekilde 𝑉 ∈ 𝛼 ve 𝑊 ∈ 𝛽 vardır. 

Buradan 𝑈 ⊃ 𝑓 (𝑉) ∩ 𝑓 (𝑊) = 𝑓(𝑉 ∩  𝑊)  ∈ 𝑓 𝛼 ∪ 𝛽 olur ki 𝑈 ∈ 𝑓 𝛼 ∪ 𝛽 dır. 

Dolayısıyla, 𝑓𝛼 ∪ 𝛽  ⊃ 𝑓𝛼  ∪ 𝑓 𝛽 dır. 
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 3. 𝑈 ∈  𝑓−1𝑓(𝛼 ) ise bazı 𝑉 ∈ 𝑓  𝛼 için 𝑓−1(𝑉 )  ⊂ 𝑈 dur. Sonuç olarak 𝑓(𝑊) ⊂  𝑉 

olacak şekilde 𝑊 ∈ 𝛼 vardır. Buradan 𝑊 ⊂  𝑓−1(𝑊)  ⊂ 𝑓−1(𝑉) ⊂  𝑈 dur. Dolayısıyla, 

𝑈 ∈ 𝛼 dır. Yani 𝑓−1𝑓(𝛼) ⊂ 𝛼  dır.  

4. 𝑈 ∈ 𝛽 ise, 𝑓 ( 𝑓−1(𝑈)) ∈ 𝑓(𝑓−1 (𝛽 )) ve 𝑓( 𝑓−1(𝑈))𝑈 olduğundan sonuç olarak   

  𝑈 ∈ 𝑓(𝑓−1(𝛽)) dır. Buradan  𝛽 ⊂ 𝑓(𝑓−1(𝛽)) dır. 

Tanım 1.4.5. (𝑁, 𝜏)  bir topolojik uzay, 𝑅 ⊆ 𝑁 × 𝑁 bir denklik bağıntısı olsun.                  

[𝑥] = {𝑦 ∈ 𝑁 |(𝑥, 𝑦) ∈ 𝑅} cümlesine 𝑥 ∈ 𝑁 nin denklik sınıfı, 𝑁/𝑅 = {[𝑥]}| 𝑥 ∈ 𝑁} 

cümlesine bölüm cümlesi ve 𝑞: (𝑁, 𝜏) → 𝑁/𝑅 bölüm fonksiyonuna göre N/R üzerinde ki 

bitiş topolojisi bölüm topolojisi ve bu topoloji ile birlikte 𝑁/𝑅 bölüm uzayı olarak bilinir. 

Burada 𝑞 bölüm fonksiyonu örten ve süreklidir [25]. 

Tanım 1.4.6. 𝑞: 𝑁 → 𝑁/𝑀 epi dönüşümü 𝑁 nin boş olmayan bir alt cümlesi 𝑀 yi * a 

eşleyen bölüm fonksiyonu olarak alalım. 𝑎 ∈ 𝑁 ve 𝛼, 𝑁 üzerinde bir öz süzgeç olsun [26]. 

Tanım1.4.7. 𝑞: 𝑁 → 𝑁/𝐹 epi dönüşümü N nin boş olmayan bir alt cümlesi 𝐹 𝑦𝑖 ∗ a 

eşleyen bölüm fonksiyonu olarak alalım.𝛼 ve 𝛽, B üzerinde öz süzgeç olsun. O halde 

𝑞(𝛼) ∪ 𝑞(𝛽) öz süzgeçtir ancak ve ancak 𝛼 ∪ 𝛽 öz süzgeç veya 𝛼 ∪ [𝐹] ve 𝛽 ∪ [𝐹] öz 

süzgeçtir [26]. 

Lemma 1.4.8 𝛼, 𝛽   𝑁 üzerinde öz süzgeçler ve 𝑞: 𝑁 → 𝑁/𝑀, 𝑁 nin boş olmayan bir alt 

cümlesi 𝑀 yi ∗ a eşleyen bölüm fonksiyonu olsun.   

1.𝛼 ∪ [𝑀] öz süzgeç değil ise, 𝑞(𝑁) ⊂ [𝑞(𝛼)] dır ancak ve ancak 𝛽 ⊂ 𝛼 dır [26]. 

2. 𝛼 ∪ [𝑀] öz süzgeç ise, 𝑞(𝑁) ⊂ [𝑞(𝛼)] dır ancak ve ancak 𝛽 ∩ [𝑀] ⊂ 𝛼 ve 𝛼 ∪ [𝑀] öz 

süzgeçtir [26]. 

Tanım 1.4.9 𝑁 ≠ ∅ ve 𝛼, 𝑁 de bir süzgeç olmak üzere her 𝑈 ⊂ 𝑁 için 𝑈 ∈ 𝛼 veya         

𝐴 = 𝑈𝐶 ∈ 𝛼  ise α ya ultra ( maximal) süzgeç denir [26]. 

Tanım 1.4.10 𝑁 ≠ ∅ ve 𝛼 ve  𝛽 de iki öz süzgeç olmak üzere 𝛼 ⊂ 𝛽 ise 𝛼 öz süzgeci       

 𝛽 dan daha kalındır veya 𝛽 öz süzgeci 𝛼 dan daha incedir [26]. 
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Tanım 1.4.11 (𝑁, 𝜏) bir topolojik uzay olmak üzere, 𝑥 ∈ 𝑁 ve 𝑥 noktasının bütün 

komşuluklarını ihtiva eden aile 𝐵𝑥 olsun. 𝐵𝑥 sınıfı 𝑁 üzerinde tanımlı öz süzgeç olup bu 

öz süzgece 𝑥 in komşuluk süzgeci adı verilir [26,34]. 

Tanım 1.4.12  𝛼, (𝑁, 𝜏) topolojik uzayında öz süzgeç ve 𝑥 ∈ 𝑁 𝑜𝑙𝑠𝑢𝑛. 𝛼 öz süzgeci 

𝑥 noktasının 𝐵𝑥 komşuluklar öz süzgecinden daha ince ise, yani 𝐵𝑥 ⊂ 𝛼 ise 𝛼 öz 

süzgecine 𝑥 noktasına yakınsıyor denir ve 𝛼 → 𝑥 veya 𝑙𝑖𝑚 𝛼 = 𝑋 şeklinde gösterilir [27]. 

Tanım 1.4.13 𝑁 ≠∅ ve 𝛽 ⊂ 𝑃(𝑁), 𝛽 ≠ ∅ olsun. 𝛽 aşağıdaki şartları sağlarsa β ya 

süzgeç bazı (tabanı) denir. 

1. ∅ ∉ 𝛽 dır. 

2. Her 𝑈, 𝑉 ∈ 𝛽 için 𝑊 ⊂ 𝑈 ∩ 𝑉 olacak şekilde 𝑊 ∈ 𝛽 vardır. Yani 𝛽 ya ait herhangi iki 

cümlenin arakesiti 𝛽 ya ait bir cümleyi kapsar.  

Tanım 1.4.14 (𝑁, 𝜏) bir topolojik uzay ve 𝛽 ailesi B üzerinde bir süzgeç bazı olsun.            

 𝛽 süzgeç bazının ürettiği 𝛼 süzgeci bir 𝑥 noktasına yakınsıyorsa, 𝛽 süzgeç bazı da                    

 𝑥 noktasına yakınsar ya da 𝑥 noktasına 𝛽 süzgeç bazının limit noktasıdır denir ve            

𝛽 → 𝑥 ile gösterilir [28]. 

Önerme 1.4.15 (𝑁, 𝜏) ve (𝑀, 𝜇) topolojik uzaylar ve 𝑓: ( 𝑁, 𝜏) →  (𝑀, 𝜇) fonksiyonu 

verilsin.𝑓 fonksiyonu bir 𝑥 noktasında süreklidir ancak ve ancak 𝑁 üzerindeki her 𝛼 öz 

süzgeci için 𝛼 → 𝑥 olduğunda 𝑀 üzerinde 𝑓(𝛼 ) → 𝑓(𝑥) dir [29]. 

1.5.Cauchy Uzayları Kategorisi 

Tanım 1.5.1. 𝐴 bir küme ve 𝐹(𝐴) da 𝐴 üzerinde süzgeçlerin kümesi ve 𝐾 ⊂ 𝐹(𝐴)  olsun. 

1. Her 𝑥 ∈ 𝐴 için [𝑥] = [{𝑥}] ∈ 𝐾 ve [𝑥] =  {𝐵 ⊂ 𝐴 ∶ 𝑥 ∈ 𝐵 } dir. 

2. 𝛼, 𝛽 ∈ 𝐾 ve 𝛼 ∪ 𝛽  öz süzgeç (proper) ise  𝛼 ∩ 𝛽 ∈ 𝐾  dır. 

3. 𝛼 ve 𝛽, N üzerindeki süzgeçler  ve 𝛼 ⊂ 𝛽 olsun. 𝛼 ∈ 𝐿(𝑥) ise 𝛽 ∈ 𝐿(𝑥) dir. 

𝐾 yukarıdaki şartları sağlarsa 𝐾 ya Cauchy yapısı, (𝐴, 𝐾) ya da Cauchy Uzayı denir. 

Sadece (1) ve (2) şartları sağlanıyorsa (𝐴, 𝐾) uzayına pre-Cauchy uzayı denir. K da ki 

elemanlarına da Cauchy süzgeci adı verilir. 
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(𝐴, 𝐾), ( 𝐵, 𝑁) Cauchy uzayları olmak üzere 𝑓: (𝐴, 𝐾) → (𝐵, 𝑁) Cauchy uzayları 

arasındaki morfizmin Cauchy sürekli fonksiyon olması için gerek ve yeter şart                      

𝑓: 𝐴 → 𝐵 bir fonksiyon olmak üzere her 𝛼 ∈ 𝐾 için 𝑓(𝛼) ∈ 𝑁 dir. 

Nesneleri Cauchy uzayları, morfizmleri yukarıdaki gibi tanımlanan Cauchy sürekli 

fonksiyonlar ve işlem olarak da fonksiyonlardaki bileşke işlemi olan kategoriye sırasıyla 

pre- Cauchy uzayları kategorisi ve Cauchy uzayların kategorisi denir. Sırasıyla PCHY ve 

CHY ile gösterilir. 

Teorem 1.5.2. 𝑪𝑯𝒀 kategorisinde { 𝑓𝑖: (𝑁, 𝐾) → (𝑁𝑖𝐾𝑖), 𝑖 ∈ 𝐼} kaynağı bir başlangıç 

kaldırmadır ancak ve ancak her 𝑖 ∈ 𝐼  için  𝛼 ∈ 𝐾 iken 𝑓𝑖(𝛼) ∈  𝐾𝑖 dır [12-14]. 

Teorem 1.5.3. 𝑪𝑯𝒀 kategorisinde ki 𝑓: (𝐴, 𝐾) → (𝐵, 𝑁) epimorfizması bitiş kaldırmadır. 

(final lift) ancak ve ancak her 𝛼 ∈ 𝑁 için 𝐾 da 𝛼1, 𝛼2, … , 𝛼𝑛 olacak şekilde sonlu tane 

Cauchy süzgeci vardır öyle ki 𝑖 ≤ 𝑛 için 𝛼𝑖 nin elemanları 𝛼𝑖+1 de ki elemanlarla kesişir 

ve ⋂ 𝑓(
𝑛

𝑖=1
𝛼𝑖) ⊂ 𝛼 olur [12-14]. 

Teorem 1.5.4. (𝐴, 𝐾) uzayı CHY de nesne olsun. 

1. (𝐴, 𝐾) uzayının diskre obje olması için gerek ve yeter şart her 𝑎 ∈ 𝐴 için                  

𝐾 = {[𝑎], 𝑃(𝐴) = [∅]} olmasıdır. 

2. (𝐴, 𝐾) uzayının indiskre obje olması için gerek ve yeter şart  𝐾 = 𝐹(𝐴) olmasıdır 

[12-13]. 
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2. BÖLÜM 

KAPALI ALT NESNELER 

Bu bölümde kalıtım, ayrılabilirlik ve idempotentlik koşullarını sağlayan, Cauchy uzayları 

kategorisinde iki kapanış kavramı tanıtılmakta ve bu kapanış operatörleri kullanılarak 

𝑇𝑖 , 𝑖 = 0, 1, 2  Cauchy uzayları karakterize edilmektedir. Ayrıca, bu alt kategorilerin 

birbiriyle izomorf olduğu gösterilmektedir. 

2.1. p Noktasında Wedge Çarpımı ve Dönüşümler 

Tanım 2.1.1. N bir cümle, 𝑝 ∈ 𝑁 ve 𝑁2 = 𝑁 × 𝑁, 𝑁 nin kartezyen çarpımı olsun. Ayrıca 

𝑁⨆𝑁, 𝑁 nin ayrık iki kopyası olsun. 𝑁 nin p de wedge çarpımı 𝑁⨆𝑁 nin p de 

çakışmasıdır ve 𝑁𝑉𝑝𝑁 şeklinde gösterilir. 𝑁𝑉𝑝𝑁 de ki bir x noktası birinci bileşende ise 

𝑥1 ikinci bileşende ise 𝑥2 ile gösterilecektir. Ayrıca 𝑥 = 𝑝 ise 𝑥1 = 𝑥2 dir.  

Not: 2.1.2. N bir cümle,  𝑝 ∊ 𝑁 ve 𝑁 ∨𝑝 𝑁 de 𝑁 cümlesinin p noktasında ki wedge 

çarpımı olsun. 𝑖1, 𝑖2: 𝑁 → 𝑁𝑉𝑝𝑁 dönüşümleri de sırasıyla birinci ve ikinci içerme 

dönüşümleri olmak üzere,   

                                                       

 

 

 

değişmeli diyagramı bir pushout diyagramıdır. 

 

 

 

𝑓 

𝑓 

{p} 𝑁 

𝐵  𝑁 ∨𝑝 𝑁  
𝑖2 

𝑖1, 
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𝑖𝑑 ∶ 𝑁 → 𝑁 birim dönüşüm ve 𝑓: 𝑁 → 𝑁 de p ye giden sabit dönüşüm olmak üzere,   

𝐴𝑝𝑖1 = (𝑖𝑑, 𝑓) ∶ 𝑁 → 𝑁2,  𝐴𝑝𝑖2(𝑓, 𝑖𝑑): 𝑁 → 𝑁2, 𝑆𝑝𝑖1 = (𝑖𝑑, 𝑖𝑑): 𝑁 → 𝑁2, 

𝑆𝑝𝑖2 = (𝑓, 𝑖𝑑) ∶ 𝑁 → 𝑁2 ve 𝛥𝑝𝑖1 = 𝛥𝑝𝑖2 = 𝑖𝑑𝑁: 𝑁 → 𝑁 dönüşümleri yukarıda verilen 

pushout diyagramına uygulandığında aşağıda verilen 𝐴𝑝 , 𝑆𝑝 ve 𝛥𝑝 dönüşümleri elde 

edilir. 

𝟏. 𝑝 de Temel Eksen Dönüşümü  

𝐴𝑝: 𝑁 ∨𝑝 𝑁 → 𝑁2, 𝐴𝑝(𝑥𝑖) = {
(𝑥, 𝑝), 𝑖 = 1 
(𝑝, 𝑥), 𝑖 = 2 

 

2. 𝑝 de Eğik Eksen Dönüşümü  

𝑆𝑝: 𝑁 ∨𝑝 𝑁 → 𝑁2, 𝑆𝑝(𝑥𝑖) = {
(𝑥, 𝑥), 𝑖 = 1 
(𝑝, 𝑥), 𝑖 = 2 

 

3. 𝑝 de Katlama Dönüşümü  

𝛻𝑝: 𝑁 ∨𝑝 𝑁 → 𝑁, 𝑖 = 1,2 için 𝛻𝑝(𝑥𝑖) = 𝑥   

olarak tanımlanır [2-3]. 

Tanım 2.1.3 N bir küme 𝑝 ∊ 𝑁 olsun. 𝑉𝑝
∞𝑁 sonsuz wedge çarpım N nin sayılabilir 

adetteki ayrık kopyalarının alınması ve bunların p noktasında çakıştırılması ile elde 

edilir. 𝑁∞ = 𝑁 × 𝑁 × …nin sayılabilir kartezyen çarpımı olsun.                                   

 𝐴𝑃
∞  ∶  𝑉𝑝

∞𝑁 → 𝑁∞ dönüşümü 𝐴𝑃
∞ (𝑥𝑖) = (𝑝, 𝑝, … , 𝑝, 𝑥, 𝑝, … ) ve                            

 𝛻𝑝
∞: 𝑉𝑝

∞𝑁 → 𝑁 dönüşümü 𝛻𝑝
∞(𝑥𝑖) = 𝑥 şeklinde tanımlanır [30]. 

Teorem 2.1.4 𝑈 ∶ 𝐸 → 𝑆𝑒𝑡 topolojik bir fanktor , 𝑈(𝑥) = 𝐵 olmak üzere 𝑋 ∊ 𝐸 bir nesne 

ve 𝑝 ∈ 𝐵 ve 𝐹 ⊆ 𝐵 boş olmayan bir alt küme olsun. 𝑞 , (𝐵/𝐹) üzerinde birim ve 𝐹 yi {∗} 

noktasına dönüştüren örten fonksiyon olmak üzere 𝑞: 𝑈(𝑥) = 𝐵 → 𝐵\𝐹 ∪ {∗} epi                   

𝑈-kavşağının bitiş kaldırması 𝑋/𝐹 ile gösterilir [2]. 

1. 𝑋 objesinin 𝑝 𝑑𝑒 𝑇1 olması için gerek ve yeter şart  {𝑆𝑝: 𝑁 ∨𝑝 𝑁 → 𝑈(𝑋2) = 𝑁2 ve 

𝛻𝑝: 𝑁 ∨𝑝 𝑁 → 𝑈𝐷(𝑁) = 𝑁}, U- kaynağının başlangıç kaldırmasının diskre olmasıdır 

[31]. 
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2. 𝑝 nin 𝑁 de kapalı olması için gerek ve yeter şart                                                                              

 {𝐴𝑃
∞  ∶  𝑉𝑝

∞𝑁 → 𝑈(𝑋∞) = 𝑁∞𝑣𝑒𝛻𝑝
∞: 𝑉𝑝

∞𝑁 → 𝑈𝐷(𝑁) = 𝑁}, 𝑈- başlangıç kaldırmasının 

diskre olmasıdır. Burada 𝐷, 𝑈 nun sol adjointi olan diskre fanktordur [2,3]. 

3. 𝐹 ⊂ 𝑋 nin kapalı olması için gerek ve yeter şart 𝐹 nin {∗} görüntüsünün  𝑋/𝐹 de kapalı 

veya  F =∅ olmasıdır [2,3]. 

4. 𝐹 ⊂ 𝑋 nin  kuvvetli kapalı olması için gerek ve yeter şart 𝑋/𝐹 in {∗} da  𝑇1  veya               

F =∅ olmasıdır [2,3]. 

Açıklama 2.1.5 ([15], s.106)  𝛼 ve β, 𝐴 üzerinde süzgeçler olsun.  𝑓: 𝐴 → 𝐵  bir 

fonksiyon olmak üzere, 

𝑓(𝛼 ∩ 𝛽) = 𝑓(𝛼) ∩ 𝑓(𝛽) dır. 

Lemma 2.1.6. ([3])  𝑞: 𝐵 → 𝐵/𝐹 𝐹 𝑦𝑖 ∗ noktasıyla özdeşlik dönüşümü , 𝜎 𝐵 üzerinde bir 

süzgeç ve 𝑎 ∈ 𝐵 ile 𝑎 ∉ 𝐹 olsun. O halde, 𝜎 , 𝐵 üzerinde bir süzgeç olmak üzere                  

 𝑎 ∈ 𝐵 ve 𝑎 ∉ 𝐹, 𝐹 ⊆ 𝐵 boş olmayan bir alt küme olsun. 𝑞 , (𝐵/𝐹) üzerinde birim ve         

𝐹 yi {∗} noktasına dönüştüren örten fonksiyon olmak üzere 𝜎 ∪ [𝐹] öz süzgeç  ve                 

𝜎 ⊆ [𝑎] olması için gerek ve yeter şart [𝑎] ∩ [∗] = 𝑞([𝑎] ∩ [𝐹]) ⊇ 𝑞(𝜎) dır. 

Lemma 2.1.7.  𝑓: 𝐴 → 𝐵 bir dönüşüm olsun, 

1. 𝛼 ve 𝛽 süzgeçler olmak üzere,  

𝑓(𝛼)⋃𝑓(𝛽) ⊆ 𝑓(𝛼 ∪ 𝛽) 

2. 𝛿,  𝐵 üzerinde bir süzgeç ise, 

𝛿 ⊆ 𝑓𝑓−1(𝛿), 

burada  𝑓−1(𝛿) süzgeci  {𝑓−1(𝐷): 𝐷𝜖𝛿} ile üretilendir [16]. 

Teorem 2.1.8 (𝐴, 𝐾) bir Cauchy uzayı ve 𝑝 ∈ 𝐴 ise (𝐴, 𝐾) p noktasında 𝑇1 dir ancak ve 

ancak 𝛼 ∈ 𝐾 ve 𝑎 ≠ 𝑝 için, 𝑈 ∈ 𝛼 olacak şekilde 𝑝 ∉ 𝑈 vardır [8]. 
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Teorem 2.1.9 (𝐴, 𝐾) bir Cauchy uzayı, 𝑝 ∈ 𝐴 ve ∅ ≠ 𝑀 ⊂ 𝐴 olsun. O halde, 

1. {𝑝} ⊂ 𝐴 , (𝐴, 𝐾) içinde kapalıdır ancak ve ancak 𝛼 ∊ 𝐾 ve 𝑎 ≠ 𝑝 için 𝑈 ∊ 𝛼 olacak 

şekilde 𝑝 ∉ 𝑈 vardır. 

2. Aşağıdakiler denktir. 

(a)  M kuvvetli kapalıdır.  

(b) M kapalıdır. 

(c)  Her 𝑎 ∊  𝐴 ve 𝑎 ∉  𝑀 için ve her 𝛼 ∊  𝐾 için 𝑎 ∪ [𝑀] öz süzgeçtir ya da 𝛼 ⊄ [𝑎] dır. 

3. Aşağıdakiler denktir. 

(a) M kuvvetli açıktır. 

(b) M  açıktır. 

(c) Her 𝑎 ∊ 𝐴 ve 𝑎 ∉ 𝑀𝐶  için ve her  𝛼 ∊ 𝐾 için  𝛼 ∪ [𝑀𝐶] öz olmayan süzgeçtir ya da 

𝛼 ⊄ [𝑎] dır [8]. 

Teorem 2.1.10. (𝐴, 𝐾) ve (𝐵, 𝐿) Cauchy uzayları ve 𝑓: (𝐴, 𝐾) → (𝐵, 𝐿) bir Cauhy 

dönüşümü olsun.  

1. 𝑀 ⊆ 𝐵 kapalı(kuvvetli) ise , 𝑓−1(𝑀) ⊆ 𝐴  kapalıdır (kuvvetli). 

2. 𝑀 ⊆ 𝑁 ⊆ 𝐵  ve N kapalı(kuvvetli) ise, 𝑀 ⊆ 𝐵 kapalıdır (kuvvetli) [10]. 

İspat: 1. 𝑀 ⊂ 𝐵 (kuvvetli) kapalı olsun. 𝑎 ∈ 𝐴 ve 𝑎 ∉ 𝑓−1(𝑀) ve 𝛼 ∈ 𝐾 herhangi bir 

Cauchy süzgeç olsun. Yani 𝑓(𝑎) ∉ 𝑀, 𝑓(𝛼) ∈ 𝐿 ve 𝑓(𝛼) ⊄ [𝑓(𝑎)] ya da 𝑓(𝛼) ∪ [𝑀]  öz 

süzgeçtir. 𝑎 ∈ 𝐾 herhangi bir Cauchy süzgeci olsun. 𝑓(𝑎) ∊ 𝐿 veya 𝑓(𝑎) ⊄ [𝑓(𝑎)] ya 

da 𝑓(𝑎) ∪ [𝑀] öz süzgeçtir. (Çünkü M kapalıdır). Tanım2.1.4. e göre                                   

𝑓(𝑎) ∪ [𝑀] ⊆ 𝑓(𝑎) ∪ [𝑓(𝑓−1(𝑀))] ⊆ 𝑓(𝑎 ∪ [𝑓−1(𝑀)]) dır. 

Eğer 𝛼 ∪ [ 𝑓−1(𝑀)] öz süzgeç ise, 𝑓 sürekliliğinden dolayı 𝑓(𝛼 ∪ [𝑓−1(𝑀)] de öz süzgeç 

olurdu; ama bu durumda ∃ 𝑈 ∈ 𝛼 öyle ki ∅ ⊃  𝑈 ∪ [𝑓−1(𝑀)] olur, bu çelişki yaratır. 
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 Dolayısıyla 𝑎 ∪ [𝑓−1(𝑀)] öz olmayan süzgeçtir ve bu durumda 𝑓(𝑎) ∪ [𝑀]de öz 

olmayan süzgeçtir. Ayrıca, eğer 𝑎 ⊆ [𝑎] olsaydı, 𝑓(𝑎) ⊆ [𝑓(𝑎)] olurdu; bu da                      

𝑀 ⊂ 𝐵 nin kapalı oluşuna aykırıdır. Sonuç olarak 𝑎 ⊄ [𝑎] ve Teorem 2.1.4 den                          

𝑓−1(𝑀) ⊂ 𝐴 (kuvvetli) kapalıdır. 

2. 𝑀 ⊂ 𝑁  ve 𝑁 ⊂ 𝐵 (kuvvetli) kapalı olsun. 𝑎 ∉ 𝑀, 𝑎 ∈ 𝐵 ve 𝛼 ∈ 𝐾 olsun.                             

Eğer 𝑎 ∉ 𝑁 ise Teorem 2.1.4 e göre 𝑎 ⊄ [𝑎] veya 𝑁 ⊂ 𝐵  (kuvvetli) kapalı olduğunda 

𝑎 ∪ [𝑁] öz olmayan süzgeçtir. Eğer 𝑎 ∪ [𝑁] öz olmayan süzgeç ise                                        

𝑀 ⊂ [𝑁] olduğundan 𝛼 ∪ [𝑀] ⊂ 𝛼 ∪ [𝑁] olur. Sonuç olarak 𝛼 ∪ [𝑀] öz olmayan 

süzgeçtir. Eğer 𝑎 ∈ 𝑁 ise     𝑖: (𝑁 → 𝐿𝑁) → (𝐵, 𝐿) dönüşümü ile oluşturulan altuzay yapısı 

𝐿𝑁 alınır. 𝑖−1(𝑎) = 𝑎 ∪ [𝑁], Tanım2.1.4 e göre 𝑎 ⊆ 𝑖(𝑖−1(𝑎)) ve 𝑎 ∈ 𝐿 olduğu için  

𝑖(𝑖−1(𝑎)) ∈ 𝐿 sonuç olarak  𝑖−1(𝑎) ∈ 𝐿𝑁 olur. Bu durumda da                                              

 𝑖−1(𝑎) ⊄ [𝑎] veya 𝑖−1(𝑎) ∪ [𝑀] öz olmayan süzgeçtir. Çünkü 𝑀 ⊆ 𝑁 (kuvvetli) 

kapalıdır. Sonuç olarak 𝑎 ⊄ [𝑎] veya 𝑎 ∪ [𝑀] öz olmayan süzgeçtir.                                           

Bu da Teorem 2.1.4 e göre 𝑀 ⊆ 𝐵 nin (kuvvetli) kapalı olduğunu gösterir. 

ε küme tabanlı bir topolojik kategori olsun. ε kategorisinde tanımlı bir kapanış operatörü 

(closure operator), her nesne 𝑋 in (küme olarak ele alınan) herhangi bir alt kümesi 𝐾 ye, 

yine 𝑋 in bir alt kümesi olan 𝑐(𝐾) yı eşleyen bir işlemdir. Bu işlem aşağıdaki koşulları 

sağlar.  

1. 𝐾 ⊂ 𝑐(𝐾) 𝑑𝚤𝑟, 

2.  𝐿 ⊂ 𝐾 ise 𝑐(𝐿) ⊂ 𝑐(𝐾) olur, 

 3. Her 𝑓: 𝑋 → 𝑌 morfizması ve her 𝐾 ⊂ 𝑌 için, 𝑐𝑓−1((𝐾)) ⊂ 𝑓−1(𝑐(𝐾)) ya da eşdeğer 

olarak, 𝑓(𝑐(𝐾)) ⊂ 𝑐(𝑓(𝐾)) dır (süreklilik şartı ) [32, 33]. 

𝑐, ε kategorisinde tanımlı bir kapanış operatörü olsun. Bu durumda: 

1. ε0𝑐 = {𝑋 ∈ ε|𝑥 ∈ 𝑐({𝑦}) ve 𝑦 ∈ 𝑐({𝑥}) ⟹  𝑥, 𝑦 ∈ 𝑋 iken 𝑥 = 𝑦}  [32]. 

2. ε1𝑐 = {𝑋 ∈ ε| her  𝑥 ∈ 𝑋 için 𝑐({𝑥}) = {𝑥}}  [32]. 

3. ε2𝑐 = {𝑋 ∈ ε| 𝑐(𝛥) = 𝛥} (Burada 𝛥 , 𝑋 üzerindeki diagonal (çapraz) kümedir) [32]. 
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Not: 2.1.11 ε = 𝑇𝑜𝑝 (topolojik uzayların kategorisi) ve 𝑐 kapanış operatörü olmak üzere, 

her 𝑇𝑜𝑝𝑖𝑐 altkategorisi 𝑖 = 0, 1, 2 için 𝑇𝑖 uzaylar sınıfına indirgenir [32]. 

Tanım 2.1.12. [10] (𝐴, 𝐾) bir Cauchy uzayı  ve 𝑀 ⊂ 𝐴 olsun.  

 𝑐𝐴(𝑀) =∩ {𝑈 ⊆ 𝐴 |𝑀 ⊆ 𝑈 ve 𝑈 kapalıdır} ifadesi M nin kapanışı olarak adlandırılır. 

 𝑠𝑐𝐴(𝑀) =∩ {𝑈 ⊆ 𝐴 |𝑀 ⊆ 𝑈 ve 𝑈 kuvvetli kapalı} ifadesi M nin kuvvetli kapanışı 

olarak adlandırılır. 

Topolojik kategorilerde, kapalılık kavramının bir kapanış operatörü oluşturduğu 

gösterilmiştir [32]. 

Teorem 2.1.13. 𝑐 ve 𝑠𝑐 , 𝐶𝐻𝑌 kategorisi üzerinde (zayıf) kalıtsal, çarpımsal ve 

idempotent kapanış operatörleridir.  

İspatı Teorem 2.1.5, Teorem 2.1.4, ve Teorem 1.5.3 ten elde edilir. 

Teorem 2.1.14. Bir Cauchy uzayı (𝐴, 𝐾) için aşağıdakiler denktir. 

1.  (𝐴, 𝐾) ∈ 𝐶𝐻𝑌0𝑐 , 

2.  (𝐴, 𝐾) ∈ 𝐶𝐻𝑌0𝑠𝑐, 

3. Her 𝑥, 𝑦 ∈ 𝐴 ve 𝑥 ≠ 𝑦 için aşağıdaki durumlardan en az biri sağlanır: 

 𝑥 ∉ 𝑀, 𝑦 ∈ 𝑀 olacak şekilde 𝐴 kümesinin (kuvvetli) kapalı bir alt kümesi                 

𝑀 ⊂ 𝐴 vardır ve her 𝛼 ∈ 𝐾 için ya 𝛼 ⊈ [𝑥] ya da 𝛼 ∪ [𝑀] öz olmayan süzgeçtir 

(improper), 

veya 

 𝑥 ∈ 𝑁, 𝑦 ∉ 𝑁 olacak şekilde 𝐴 kümesinin (kuvvetli) kapalı bir altkümesi                              

𝑁 ⊂ 𝐴 vardır ve her 𝛼 ∈ 𝐾 için ya 𝛼 ⊈ [𝑦] ya da 𝛼 ∪ [𝑁] öz olmayan süzgeçtir 

(improper).  

İspat: Tanım 2.1.4 e göre, (𝐴, 𝐾) ∈ 𝐶𝐻𝑌0𝑐 olması ancak ve ancak (𝐴, 𝐾) ∈ 𝐶𝐻𝑌0𝑠𝑐 

olması ile mümkündür. Bu da (1) ile (2) nin denk olduğunu gösterir. 
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Varsayalım ki (𝐴, 𝐾) ∈ 𝐶𝐻𝑌0𝑠𝑐 ve 𝑥, 𝑦 ∈ 𝐴 öyle ki 𝑥 ≠ 𝑦 olsun.                                           

(𝐴, 𝐾) ∈ 𝐶𝐻𝑌0𝑠𝑐   olduğundan, 𝑥 ∉ 𝑐𝐴({y}) veya 𝑦 ∉ 𝑐𝐴 ({𝑥}) olur.                                       

İlk olarak, 𝑥 ∉ 𝑐𝐴({y}) olduğunu varsayalım. 

Tanım 2.1.4 e göre, 𝑥 ∉ 𝑀, 𝑦 ∈ 𝑀 olacak şekilde 𝐴 nın (kuvvetli) kapalı bir altkümesi 

𝑀 ⊂ 𝐴 vardır. 

Teorem 2.1.4 e göre ise, her 𝛼 ∈ 𝐾 için ya 𝛼 ⊈ [𝑥] ya da 𝛼 ∪ [𝑀] öz olmayan süzgeçtir 

(improper). 

Benzer şekilde, 𝑦 ∉ 𝑐𝐴({𝑥}) olduğunu varsayalım. 

Tanım 2. 1. 4 e göre, 𝑥 ∈ 𝑁, 𝑦 ∉ 𝑁 olacak şekilde 𝐴 nın (kuvvetli) kapalı bir altkümesi 

𝑁 ⊂ 𝐴 vardır. 

Teorem 2.1.4 e göre, her 𝛼 ∈ 𝐾 için ya 𝛼 ⊈ [𝑦] ya da 𝛼 ∪ [𝑁] öz olmayan süzgeçtir. 

Bu, (2) nin (3) ü sağladığını gösterir. 

Şimdi, (3) ün sağlandığını ve 𝑥, 𝑦 ∈ 𝐴 ve 𝑥 ≠ 𝑦 olduğunu varsayalım. Eğer (3) teki 

birinci durum sağlanıyorsa, Teorem 2.1.4 e göre 𝑀 ⊆ 𝐴 kuvvetli kapalıdır ve                 

Tanım 2.1.4 e göre 𝑦 ∈ 𝑐𝐴({𝑥}) olur. 

Eğer (3) teki ikinci durum sağlanıyorsa, Teorem 2.1.4 e göre 𝑁 ⊆ 𝐴 kuvvetli kapalıdır ve 

Tanım 2.1.4 e göre 𝑥 ∈ 𝑐𝐴({𝑦}) olur. 

Dolayısıyla, (𝐴, 𝐾) ∈ 𝐶𝐻𝑌0𝑠𝑐 olur ve bu da (3)  ün (2) yi sağladığını gösterir. 

Teorem 2.1.15. Bir Cauchy uzayı (𝐴, 𝐾) için aşağıdakiler denktir. 

1. (𝐴, 𝐾) ∈ 𝐶𝐻𝑌1𝑐 , 

2.  (𝐴, 𝐾) ∈ 𝐶𝐻𝑌1𝑠𝑐 , 

3. Tüm 𝑥 ≠ 𝑦 ∈ 𝐴 𝑖ç𝑖𝑛 [𝑥] ∩ [𝑦] ∉ 𝐾 dır. 

Teorem 2.1.4 e göre, (𝐴, 𝐾) ∈ 𝐶𝐻𝑌1𝑐 ancak ve ancak (𝐴, 𝐾) ∈ 𝐶𝐻𝑌1𝑠𝑐 olduğunda, bu 

durum (1) ile (2) nin birbirine denk olduğunu gösterir. 

Tanım 2.1.4 e göre, (𝐴, 𝐾) ∈ 𝐶𝐻𝑌1𝑐 olması, (𝐴, 𝐾) ∈ 𝐶𝐻𝑌1𝑠𝑐 olmasıyla eşdeğerdir. Bu 

durum, (1) ile (2) nin denk olduğunu gösterir. 



24 

Şimdi (𝐴, 𝐾) ∈ 𝐶𝐻𝑌1𝑠𝑐    olduğunu ve 𝑥 ∈ 𝐴 olduğunu varsayalım. 

𝑠𝑐𝐴({𝑥}) = 𝑥 olduğu görülmektedir; yani, {𝑥} kuvvetli kapalıdır (𝑠𝑐-kapalıdır). 

Tanım 2.1.4 e göre, 𝑥 ≠ 𝑦 olmak üzere tüm 𝑥, 𝑦 ∈ 𝐴 için [𝑥] ∩ [𝑦] ∉ 𝐾  bağıntısı 

sağlanır. 

Tersine, tüm 𝑥, 𝑦 ∈ 𝐴 için 𝑥 ≠ 𝑦 olmak üzere [𝑥] ∩ [𝑦] ∉ 𝐾 olduğunu varsayalım. 

Tanım 2.1.4 e göre, özellikle {𝑥} kümesi kuvvetli kapalıdır, yani 𝑠𝑐𝐴({𝑥}) = [𝑥] olur. 

Dolayısıyla  (𝐴, 𝐾) ∈ 𝐶𝐻𝑌1𝑠𝑐 olur ve bu da (3) ün (2) yi sağladığını gösterir. 

Teorem 2.1.16. Bir Cauchy uzayı (𝐴, 𝐾) için aşağıdakiler denktir. 

1.  (𝐴, 𝐾) ∈ 𝐶𝐻𝑌2𝑐, 

2.  (𝐴, 𝐾) ∈ 𝐶𝐻𝑌2𝑠𝑐, 

3. Tüm 𝑥 ≠ 𝑦 ∈ 𝐴 için 𝑎, 𝛽 ∈ 𝐾 için, eğer 𝑎 ⊆ [𝑥] ve 𝛽 ⊆ [𝑦] ise 𝑎 ∪ 𝛽 öz olmayan 

süzgeçtir. 

Tanım 2.1.4 e göre, (𝐴, 𝐾) ∈ 𝐶𝐻𝑌2𝑐 olması, (𝐴, 𝐾) ∈ 𝐶𝐻𝑌2𝑠𝑐 olmasıyla tam olarak 

eşdeğerdir. Bu durum, (1) in (2) ye denk olduğunu gösterir. 

Şimdi (𝐴, 𝐾) ∈ 𝐶𝐻𝑌2𝑠𝑐 olduğunu varsayalım ve 𝑥 ≠ 𝑦 olmak üzere 𝑥, 𝑦 ∈ 𝐴 ve                    

 𝛼, 𝛽 ∈ 𝐾 olsun. Ayrıca 𝛼 ⊆ [𝑥] ve 𝛽 ⊆ [𝑦] olduğunu kabul edelim. 

Şöyle tanımlayalım: 

𝜎 = 𝜋1
−1𝛼 ∪ 𝜋2

−2𝛽 , 

burada 𝜋1 ve 𝜋2 , birinci ve ikinci bileşenlere ait izdüşüm fonksiyonlarıdır. 

𝜋1 𝜎 = 𝛼 ∈ 𝐾 ve 𝜋2 𝜎 = 𝛽 ∈ 𝐾 

Tanım 1.5.2 ye göre 𝜎 ∈ 𝐾2 yani 𝐵2 üzerindeki çarpım yapısına aittir. 
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Şimdi, 𝑉 ∈ 𝜎 alınsın. O halde 𝑉1 ∈ 𝛼 ve 𝑉2  ∈ 𝛽 olmak üzere 𝑉 ⊃ 𝑉1  × 𝑉2  mevcuttur. 

𝛼 ⊆ [𝑥] ve 𝛽 ⊆ [𝑦] olduğundan, 𝑥 ∈ 𝑉1 ve 𝑦 ∈ 𝑉2  olur. Dolayısıyla, 𝛼 ∪ 𝛽 ⊆ [(𝑥, 𝑦)] 

dir. 

𝛥, 𝐵2 uzayında kapalı olduğundan ve Teorem 2.1.4 e göre, 𝛼 ∪ [𝛥] öz olmayan süzgeç 

(improper) olmak zorundadır. Bu nedenle, 𝜎 da öyle bir 𝑉 vardır ki 𝑉 ∩ 𝛥 = ∅ dir. 

Bu da şunu gösterir: 

(𝑉1 × 𝑉2) ∩ 𝛥 = ∅   ⟺    𝑉1 ∩ 𝑉2 = ∅  

yani 𝛼 ∪ 𝛽 öz olmayan süçgeçtir. Böylece (2) ifadesi (3) ü sağlar. 

Şimdi tersini ele alalım: Tüm 𝑥, 𝑦 ∈ 𝐴 için 𝑥 ≠ 𝑦 ve 𝛼, 𝛽 ∈ 𝐾 alındığında,                              

𝛼 ⊆ [𝑥], 𝛽 ⊆ [𝑦] ise, 𝛼 ∪ 𝛽 öz olmayan süzgeç olsun. 

Amacımız  (𝐴, 𝐾) ∈ 𝐶𝐻𝑌2𝑠𝑐  olduğunu göstermek, yani 𝛥 nın kuvvetli kapalı (𝑠𝑐 −kapalı) 

olduğunu ortaya koymaktır. Teorem 2.1.4 e göre, her (𝑥, 𝑦) ∈ 𝐵2, (𝑥, 𝑦)  ∉ 𝛥 ve              

her 𝜎 ∈ 𝐾2 için, ya 𝛼 ∪ [𝛥] öz olmayan süzgeçtir ya da 𝜎 ⊈ [(𝑥, 𝑦)] olmalıdır.                   

𝜎 ∈ 𝐾2 olduğundan, Tanım 1.5.2 gereği 𝜋1𝜎, 𝜋2𝜎 ∈ 𝐾 ve ayrıca 𝑥 ≠ 𝑦 dir. Aşağıdaki 

şekilde tanımlanan σ0 ı ele alalım: 

𝜎 = 𝜋1
−1𝛼 ∪ 𝜋2

−2𝛽 , 

Lemma 2.1.4 e göre: 

σ0 ⊆ 𝜎, 𝜋1σ0 = 𝜋1 𝜎 ∈ 𝐾 , 𝜋2σ0 = 𝜋2 𝜎 ∈ 𝐾 ve yine Tanım 1.5.2 ye göre σ0 ∈ 𝐾2 ve 

σ0 ⊆ [(𝑥, 𝑦)] dır. Varsayım gereği 𝜋1σ0 ∪ 𝜋2σ0 öz olmayan süzgeçtir yani 𝜋1σ0 den 

bir 𝑉1 ve 𝜋2σ0 den bir 𝑉2  vardır ki 𝑉1 ∩ 𝑉2 = ∅ olur.  

Böylece, 

(𝑉1 × 𝑉2) ∩ 𝛥 = ∅ 

olur. Bu da σ0 ∪ 𝛥 nın öz olmayan süzgeç olduğunu gösterir. 

Teorem 2.1.4 e göre bu durumda 𝛥 kuvvetli kapalıdır, dolayısıyla  (𝐴, 𝐾) ∈ 𝐶𝐻𝑌2𝑠𝑐  olur. 
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Teorem 2.1.17. Bir Cauchy uzayı (𝐴, 𝐾) ∈ 𝐶𝐻𝑌0𝑐  ⇔(𝐴, 𝐾) ∈ 𝐶𝐻𝑌𝑖𝑐 (𝑖 = 1, 2 ) dir. 

İspat: (𝐴, 𝐾) ∈  𝐶𝐻𝑌0𝑐 olduğunu ve 𝑥, 𝑦 ∈ 𝐴 olmak üzere 𝑥 ≠ 𝑦 olduğunu varsayalım. 

Bu durumda, 𝐴 nın kapalı bir altkümesi 𝑀 vardır ve 𝑥 ∉ 𝑀, 𝑦 ∈ 𝑀 olup, her 𝛼 ∈ 𝐾 için 

ya 𝛼 ⊈ [𝑥] ya da 𝛼 ∪ [𝑀] öz olmayan süzgeçtir; veya 𝐴 nın kapalı bir altkümesi 𝑁 vardır 

ve 𝑥 ∈ 𝑁, 𝑦 ∉ 𝑁 olup, her 𝛼 ∈ 𝐾 için ya 𝛼 ⊈ [𝑦] ya da 𝛼 ∪ [𝑁] öz olmayan süzgeçtir. 

Birinci durumun geçerli olduğunu ve 𝑀 = {𝑦} olduğunu varsayalım. 

𝑀 = {𝑦} kapalı olduğundan, Teorem 2.1.4 (2) gereği, 𝑎 ∉ 𝑀 olan her 𝑎 ∈ 𝐴 ve                      

her 𝛼 ∈ 𝐾 için, ya 𝛼 ∪ [𝑀] öz olmayan süzgeçtir ya da 𝛼 ⊈ [𝑎] olur. 

Bundan, Teorem 2.1.8 ve Teorem 2.1.9 a göre (𝐴, 𝐾) ∈ 𝐶𝐻𝑌𝑖𝑐  (𝑖 = 1, 2 ) olduğu 

sonucuna ulaşılır. 

İkinci durum gerçekleşirse, benzer şekilde (𝐴, 𝐾) ∈ 𝐶𝐻𝑌𝑖𝑐  (𝑖 = 1, 2 )olduğu gösterilir. 

Tersine, {𝑥} ve {𝑦} kapalı kümeler olsun. 𝑀 = {𝑦} veya 𝑁 = {𝑥} alalım. 

Bu durumda 𝑥 ∉ 𝑀 ve 𝑦 ∈ 𝑀 ya da 𝑥 ∈ 𝑁 ve 𝑦 ∉ 𝑁 olur. 

Dolayısıyla, Teorem 2.1.7 ye göre (𝐴, 𝐾) ∈  𝐶𝐻𝑌0𝑐  elde edilir. 

Teorem 2.1.18. [10] (𝐴, 𝐾) bir Cauchy uzayı olsun. O halde( 𝑖 = 1, 2) için            

(𝐴, 𝐾) ∈ 𝐶𝐻𝑌𝑖𝑐  ⇔  (𝐴, 𝐾) ∈ 𝐶𝐻𝑌𝑖𝑠𝑐 

sağlanır. 

Bu sonuç Teorem 2.1.4 ve Teorem 2.1.12 den elde edilir. 

Not 2.1.19. T-CHY, CHY kategorisinin, tüm 𝑇 nesnelerinden oluşan full (tam) alt 

kategorisidir. 

Burada 𝑇, [2] de tanımlanan 𝑇0 (sırasıyla (𝑇0, 𝑇1, 𝑇2) ayrılma aksiyomlarından birini ifade 

eder. 
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Teorem 2.1.20. Bir Cauchy uzayı (𝐴, 𝐾), 𝑇0( 𝑇0
′, 𝑇1) dir ancak ve ancak her                            

 𝑥 ≠ 𝑦 için [x] ∩ [y] ∉ 𝐾 dır [8]. 

Teorem 2.1.21 (𝐴, 𝐾) Cauchy uzayı T2
തതത dir ancak ve ancak her farklı                                         

𝑥, 𝑦 ∈ 𝐴 için [𝑥] ∩ [𝑦] ∉ 𝐾 dır [8]. 

 

Teorem 2.1.22. [10] Aşağıdaki kategoriler birbirine izomorftur: 

1. 𝐶𝐻𝑌𝑖𝑘, 𝑖 = 0, 1, 2 , 𝑘 = 𝑐 veya 𝑠𝑐 

2. 𝑇-𝐶𝐻𝑌, 𝑇 =  T0
തതത , 𝑇0

′, 𝑇1, T2
തതത  

Sonuç Teorem 2.1.17, 2.1.18, 2.1.12, 2.1.13 den doğrudan çıkar. 

NOT 2.1.23 Teorem 2.1.17, 2.1.18, 2.1.12, 2.1.13 den elde edilir ki:   

1. Aşağıdaki eşitlik geçerlidir[10]. 

𝐶𝐻𝑌2𝑐 , = 𝐶𝐻𝑌2𝑠𝑐  = 𝐶𝐻𝑌1𝑐 , =  𝐶𝐻𝑌1𝑠𝑐 =   𝐶𝐻𝑌0𝑐  = 𝐶𝐻𝑌0𝑠𝑐 

2. Top için 

𝑇𝑜𝑝2𝑐 = 𝑇𝑜𝑝2𝑠𝑐 ⊂ 𝑇𝑜𝑝1𝑐 =  𝑇𝑜𝑝1𝑠𝑐  ⊂ 𝑇𝑜𝑝0𝑐 =  𝑇𝑜𝑝0𝑠𝑐 

3. Prord için 

𝑃𝑟𝑜𝑟𝑑2𝑐 = 𝑃𝑟𝑜𝑟𝑑2𝑠𝑐 ⊂ 𝑃𝑟𝑜𝑟𝑑0𝑐 = 𝑃𝑟𝑜𝑟𝑑0𝑠𝑐   

𝑃𝑟𝑜𝑟𝑑1𝑐 = 𝑃𝑟𝑜𝑟𝑑1𝑠𝑐 ⊂ 𝑃𝑟𝑜𝑟𝑑0𝑐 = 𝑃𝑟𝑜𝑟𝑑0𝑠𝑐 

4. Born için 

𝐵𝑜𝑟𝑛0𝑐 = 𝐵𝑜𝑟𝑛1𝑐 = 𝐵𝑜𝑟𝑛2𝑐  ⊂ 𝐵𝑜𝑟𝑛0𝑠𝑐 = 𝐵𝑜𝑟𝑛1𝑠𝑐 =  𝐵𝑜𝑟𝑛2𝑠𝑐 

5. FCO için: 

𝐹𝐶𝑂2𝑠𝑐 ⊂ 𝐹𝐶𝑂2𝑐 = 𝐹𝐶𝑂1𝑠𝑐 = 𝐹𝐶𝑂1𝑐  ⊂ 𝐹𝐶𝑂0𝑠𝑐 = 𝐹𝐶𝑂0𝑐 
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6. ConFCO için 

𝐶𝑜𝑛𝐹𝐶𝑂2𝑐 = 𝐶𝑜𝑛𝐹𝐶𝑂2𝑠𝑐 ⊂ 𝐶𝑜𝑛𝐹𝐶𝑂1𝑐 = 𝐶𝑜𝑛𝐹𝐶𝑂1𝑠𝑐  ⊂ 𝐶𝑜𝑛𝐹𝐶𝑂0𝑐 = 𝐶𝑜𝑛𝐹𝐶𝑂0𝑠𝑐 

7. pqsMet için 

𝑝𝑞𝑠𝑀𝑒𝑡1𝑠𝑐 = 𝑝𝑞𝑠𝑀𝑒𝑡2𝑠𝑐 ⊂ 𝑝𝑞𝑠𝑀𝑒𝑡1𝑐 = 𝑝𝑞𝑠𝑀𝑒𝑡2𝑐   𝑣𝑒 𝑝𝑞𝑠𝑀𝑒𝑡0𝑠𝑐 ⊂ 𝑝𝑞𝑠𝑀𝑒𝑡0𝑐 

8. SUConv için 

𝑆𝑈𝐶𝑜𝑛𝑣1𝑐 = 𝑆𝑈𝐶𝑜𝑛𝑣1𝑠𝑐 = 𝑆𝑈𝐶𝑜𝑛𝑣0𝑐 

9. CApp için 

𝐶𝐴𝑝𝑝2𝑠𝑐 ⊂ 𝐶𝐴𝑝𝑝1𝑠𝑐 ⊂ 𝐶𝐴𝑝𝑝0𝑠𝑐 

𝐶𝐴𝑝𝑝2𝑐 ⊂ 𝐶𝐴𝑝𝑝1𝑐 ⊂ 𝐶𝐴𝑝𝑝0𝑐 

10. RRel ve  PBorn için 

𝑅𝑅𝑒𝑙2𝑐 = 𝑅𝑅𝑒𝑙2𝑠𝑐 = 𝑅𝑅𝑒𝑙1𝑠𝑐 ⊂ 𝑅𝑅𝑒𝑙1𝑐 

𝑃𝐵𝑜𝑟𝑛0𝑐 = 𝑃𝐵𝑜𝑟𝑛1𝑐 = 𝑃𝐵𝑜𝑟𝑛2𝑐 ⊂ 𝑃𝐵𝑜𝑟𝑛0𝑠𝑐 = 𝑃𝐵𝑜𝑟𝑛1𝑠𝑐 = 𝑃𝐵𝑜𝑟𝑛2𝑠𝑐 
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3. BÖLÜM 

İNDİRGENEMEZ CAUCHY UZAYLARI 

3.1. İndirgenemez Cauchy Uzayları 

Tanım 3.1.1 [17]  𝑈: 𝐸 → 𝑆𝑒𝑡 topolojik bir fanktör ve 𝑋, 𝐸′𝑑𝑒 bir nesne olsun. 

1. 𝑋 in kapalı alt nesneleri 𝐴 ve 𝐵 için 𝑋 = 𝐴 ∪ 𝐵 olduğunda 𝐴 = 𝑋 ya da 𝐵 = 𝑋 oluyorsa 

X indirgenemez (irreducible) olarak tanımlanır. 

2.  𝐴 ve 𝐵 X in kuvvetli kapalı (strongly closed) alt nesneleri olmak üzere 𝑋 = 𝐴 ∪ 𝐵 

olduğunda  𝐴 = 𝑋 veya 𝐵 = 𝑋 oluyorsa X kuvvetli indirgenemez (strongly irreducible) 

olarak adlandırılır. 

İndigenemezlik kavramı cebirsel geometri açısından önemli bir rol oynar. Örneğin klasik 

cebirsel geometrinin temel bir teoremine göre, her cebirsel küme, sonlu sayıda 

indirgenemez bileşenin birleşimi olarak yalnızca bir şekilde ifade edilebilir. Ayrıca, 

Zariski topolojileri indirgenemezdir. 

Top kategorisinde, indirgenemezlik kavramı klasik indirgenemezlik kavramı ile 

örtüşmektedir [17]. 

Ayrıca, eğer (𝑋, 𝜏) bir topolojik uzay olup indirgenemezse, o zaman bu uzay bağlantılıdır. 

Ve eğer  (𝑋, 𝜏) 𝑇1 ayırdedici aksiyomuna sahipse, o zaman indirgenemezlik ile kuvvetli 

indirgenemezlik kavramları çakışır. [17] Buna ek olarak, eğer (𝑋, 𝜏) boş olmayan, 

indirgenemez ve 𝑇2 bir uzaysa, o zaman bu uzay yalnızca bir noktadan oluşan bir uzay 

olmalıdır [17].  
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Teorem 3.1.2. Bir Cauchy uzayı (𝐴, 𝐾) (kuvvetli) indirgenemezdir ancak ve ancak A nın 

her boş olmayan öz altkümesi F (yani ne boş ne de tüm A olan) için aşağıdaki koşullardan 

en az biri sağlanıyor olmasıdır. 

1. 𝐾 içinde;  α ∪ [𝐹] öz süzgeç ve α ⊆ [𝑎] olacak şekilde en az bir öz süzgeç 𝛼 ve en az 

bir  𝑎 ∊ 𝐹𝑐 vardır. 

2. K içinde; α ∪ [𝐹𝑐] öz süzgeçtir ve α ⊆ [𝑏] olacak şekilde en az bir öz süzgeç 𝛼 ve en 

az bir 𝑏 ∊ 𝐹 vardır. 

İspat: Varsayalım ki (𝐴, 𝐾) kuvvetli indirgenemezdir ancak A nın öz altkümesi F için 

yukarıdaki koşullardan hiçbiri sağlanmıyor olsun. 

Koşul (1) in sağlanmadığını kabul edersek, 𝐹 ⊂ 𝐴 ve 𝛼 ∊ 𝐹 için her α ∈ 𝐾  süzgeci ya     

𝛼 ∪ [𝐹] öz olmayan süzgeçtir ya da 𝛼 ⊆ [𝑎] değildir.  Bu da 𝐹 nin kuvvetli kapalı 

olduğunu gösterir. 

Benzer şekilde koşul (2) nin sağlanmadığını kabul edersek, 𝐹𝑐 kuvvetli kapalı olur. 

Böylece 𝑋 =  𝐹 ∪ 𝐹𝑐 olur ancak 𝑋 = 𝐹 ya da 𝑋 = 𝐹𝑐  değildir. Bu, (𝐴, 𝐾) nın kuvvetli 

indirgenemez olduğu varsayımıyla çelişir. 

Tersine, (1) koşulunun sağlandığını varsayalım. O hâlde, Teorem 2.1.4 (2) gereğince          

𝐹 (kuvvetli) kapalı değildir. Benzer şekilde, (2) koşulunun sağlandığını varsayalım. Bu 

durumda 𝐹𝑐 (kuvvetli) kapalı değildir. Dolayısıyla, 𝑋 in hem (kuvvetli) açık hem de 

(kuvvetli) kapalı olan tek alt kümeleri ∅ ve 𝑋 tir. Buradan, 𝐴 ve 𝐵, 𝑋 in kapalı alt kümeleri 

olup 𝑋 = 𝐴 ∪ 𝐵 eşitliği sağlanırsa, ya 𝐴 = 𝑋 ya da 𝐵 = 𝑋 olduğu sonucu çıkar. Böylece, 

(𝐴, 𝐾) (kuvvetli) indirgenemezdir. 

Teorem 3.1.3. Bir Cauchy uzayı (𝐴, 𝐾) indirgenemezdir ancak ve ancak (𝐴, 𝐾) kuvvetli 

indirgenemezdir. 

İspat: teorem 2.1.4(2) ve Tanım 3.1.1den elde edilir. 
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Örnek 3.1.4 

𝐴 = R reel sayılar kümesi, 

𝐾1 = 𝐹(𝐴), 

𝐾2 = {[𝑎] ∣ 𝑎 ∈ 𝐴} ∪ {[∅]} olsun.  

Bu durumda (𝐴, 𝐾1) (kuvvetli) indirgenemezdir, ancak (𝐴, 𝐾2) (kuvvetli) indirgenemez 

değildir. Çünkü Teorem 3.1.2 de verilen iki koşul da 𝐹 = {5} için sağlanmamaktadır. 

Teorem 3.1.5. (𝐴, 𝐾) ∈ 𝐶𝐻𝑌 bir Cauchy uzayı olsun. 

(𝐴, 𝐾) nın 𝑃𝑟eT2
′ olması için gerek ve yeter şart A da ki her bir farklı  𝑥 ve 𝑦   noktaları 

için [𝑥] ∩ [𝑦] ∈ 𝐾 (denk olarak A nın her bir sonlu alt kümesi F için [𝐹] ∈ 𝐾) olmasıdır 

[8]. 

Teorem 3.1.6.  (A, K) ∈ 𝐶𝐻𝑌 bir Cauchy uzayı olsun. 

(𝐴, 𝐾) nın 𝑇2
′ olması için gerek ve yeter şart A da ki her bir farklı  𝑥 ve 𝑦 noktaları için 

[𝑥] ∩ [𝑦] ∈ 𝐾  (denk olarak A nın herhangi bir sonlu alt kümesi için [𝐹] ∈ 𝐾 ) 

olmasıdır [8]. 

Teorem 3.1.7. (𝐴, 𝐾) Cauchy uzayının (kuvvetli) indirgenemez olması için gerek ve yeter 

şart (𝐴, 𝐾) nın (kuvvetli) bağlantılı olmasıdır. 

İspat. Teorem 3.1.2, 3.1.3 ve [8] deki Teorem 3.6 dan elde edilir. 

Teorem 3.1.8. (𝐴, 𝐾) boştan farklı (kuvvetli) indirgenemez Cauchy uzayı olsun.   

1. (𝐴, 𝐾) ∈ 𝐶𝐻𝑌𝑖𝑘 ve 𝑖 = 0, 1, 2, 𝑘 = 𝑐 veya 𝑠𝑐 için  (𝐴, 𝐾) tek noktalı bir uzay 

olmalıdır. 

2. Eğer (𝐴, 𝐾) T̅0(veya 𝑇0, 𝑇1, T̅2) ise, bu taktirde (𝐴, 𝐾) tek noktalı bir uzay olmalıdır. 

3. Eğer (𝐴, 𝐾) 𝑃𝑟eT2
′ veya T2

′  ise bu taktirde (𝐴, 𝐾) tek noktalı bir uzay olmak zorunda 

değildir. 



32 

İspat: 1. Kabul edelim ki (𝐴, 𝐾) boştan farklı, (kuvvetli) indirgenebilir ve                   

(𝐴, 𝐾) ∈ 𝐶𝐻𝑌𝑖𝑘 ve 𝑖 = 0, 1, 2, 𝑘 = 𝑐 veya 𝑠𝑐 ve A da en az iki noktalı 𝑥 ve 𝑦 içeren bir 

küme bulunsun. Teorem 2.1.17, 2.1.18 ve açıklama 2.1.6, 2.1.7 e göre, A nın tüm alt 

kümeleri (kuvvetli) kapalıdır. Bu durumda {x} ve {y} hem öz hem de (kuvvetli) kapalıdır 

ve 𝐴 = {𝑥} ∪ {𝑥}𝑐 olur. Bu, (𝐴, 𝐾) nin (kuvvetli) indirgenemez olmasıyla çelişir. 

2. (1) in ispatı ile benzer şekilde yapılır, yalnızca Teorem 2.1.12, 2.1.13, 2.1.14 ve 

Açıklama 2.1.6, 2.1.7 kullanılır. 

3. Teorem 3.1.3 ve Örnek 3.1.4 den bir Cauchy uzayı 𝑃𝑟eT2
′ ve T2

′ olsun. Örnek 3.1.1 de 

tanımlanan (A, 𝐾1) Cauchy uzayı, (kuvvetli) indirgenebilir ve 𝑃𝑟eT2
′ ya da T2

′  dir, ancak 

tek noktalı bir uzay değildir.  

3.2. Tanımsal Açıklamalar ve Kategori İlişkileri 

IR ε : ε kategorisindeki tüm indirgenemez nesnelerden oluşan full (tam) alt kategoridir. 

 𝑇 ε kategorisinde 𝑇 aksiyomlarını sağlayan tüm nesnelerden oluşan full (tam) 

altkategoridir. Burada 𝑇0, 𝑇ത0, 𝑇′0, 𝑇1, 𝑇ത2, 𝑇′2 olarak alınır. 

Açıklama 3.2.1 

1.Teorem 3.1.6 ya göre 𝑖 =  1, 2 𝑣𝑒  𝑘 = 𝑐 veya 𝑠𝑐 için: 

IR𝐶𝐻𝑌𝑖𝑘 = 𝑇ത0IRCHY= 𝑇1IRCHY= 𝑇ത2IRCHY= 𝑇′2 IRCHY⊂ 𝑇′0IRCHY. 

2. Topolojik uzaylar kategorisi için [6] daki Açıklama 3.5 ve Teorem 2.1.14 e göre:                        

           𝑇2IRTop = IR𝑇𝑜𝑝2𝑐𝑙= IR𝑇𝑜𝑝2𝑠𝑐𝑙⊂  𝑇2𝑇𝑜𝑝 ∩ IRTop⊂  𝑇0𝑇𝑜𝑝. 

3. PBorn da [10] daki Teorem 3.6, 3.9 ve [7] deki Teorem 3.7 ye göre, 𝑖 =  1, 2  için: 

𝑃𝐵𝑜𝑟𝑛𝑖𝑐𝑙 = 𝑇0𝑃𝐵𝑜𝑟𝑛 = 𝑇′2𝑃𝐵𝑜𝑟𝑛 ⊂ 𝑇ത2𝑃𝐵𝑜𝑟𝑛 ⊂IR 𝑃𝐵𝑜𝑟𝑛=𝑇ത0𝑃𝐵𝑜𝑟𝑛=𝑇′0𝑃𝐵𝑜𝑟𝑛= 

𝑇1𝑃𝐵𝑜𝑟𝑛= 𝑃𝐵𝑜𝑟𝑛𝑖𝑠𝑐𝑙. 

4. CP de [5] ve [18] daki Teorem 3.7, 3.10 a göre, 𝑖 = 0, 1, 2  için: 

𝑇0𝐶𝑃 = IRCP⊂𝑇ത0𝐶𝑃= 𝑇′0𝐶𝑃 =  𝑇1𝐶𝑃= 𝑇ത2𝐶𝑃 = 𝑇′2𝐶𝑃 = 𝐶𝑃𝑖𝑐𝑙. 
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5. RRel de [18] daki Teorem 3.8, 3.11 ve [5] deki Teorem 3.7 ye göre, 𝑖 =  1, 2  için: 

𝐼𝑅𝑅𝑅𝑒𝑙𝑖𝑠𝑐𝑙 = 𝑇1𝐼𝑅𝑅𝑒𝑙 = 𝑇2𝐼𝑅𝑅𝑒𝑙 = 𝑇′2𝐼𝑅𝑅𝑅𝑒𝑙 ⊂ 𝑇0𝑅𝑅𝑒𝑙 ⊂ 𝑇0𝑅𝑅𝑒𝑙 = 𝑅𝑅𝑒𝑙𝑖𝑐𝑙

⊂ 𝑇′0𝑅𝑅𝑒𝑙 

6. PqsMet de [5] ve [17] deki Teorem 3.10 a göre, 𝑖 =  1, 2için: 

𝐼𝑅𝑝𝑞𝑠𝑀𝑒𝑡𝑖𝑠𝑐𝑙 = 𝑇1𝐼𝑅𝑝𝑞𝑠𝑀𝑒𝑡 = 𝑇2𝐼𝑅𝑝𝑞𝑠𝑀𝑒𝑡 = 𝑇′2𝐼𝑅𝑝𝑞𝑠𝑀𝑒𝑡 ⊂ 𝑇′0𝐼𝑅𝑝𝑞𝑠𝑀𝑒𝑡. 

7. Prox de [19] teki Teorem 4.7 ve Açıklama 4.8 e göre, 𝑘 = 𝑐 veya 𝑠𝑐: 

𝐼𝑅𝑃𝑟𝑜𝑥𝑖𝑘 = 𝑇0𝐼𝑅𝑃𝑟𝑜𝑥 = 𝑇1𝐼𝑅𝑃𝑟𝑜𝑥 = 𝑇2𝐼𝑅𝑃𝑟𝑜𝑥 = 𝑇′2𝐼𝑅𝑃𝑟𝑜𝑥 ⊂ 𝑇′0𝐼𝑅𝑃𝑟𝑜𝑥. 
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4. BÖLÜM 

URYSOHN LEMMASI VE TİETZE GENİŞLEME TEOREMİ 

4.1. Cauchy Uzayları İçin Urysohn Lemması ve Tietze Genişleme Teoremi 

Bu bölümde Cauchy uzayları için Urysohn Lemması ve Tietze Genişleme Teoremini 

vereceğiz. 

Teorem 4.1. (Urysohn Lemması) (𝐴, 𝐾)  Cauchy uzayı ve 𝑀, 𝑁 ⊂ 𝐴 , 𝐴 nın boştan 

farklı, ayrık, kapalı alt kümeleri olsun. Bu taktirde en az bir, 

𝑓: (𝐴, 𝐾) → ([0,1], 𝐿) 

şeklinde bir Cauchy dönüşümü vardır; burada 𝐿, [0,1] üzerinde tanımlı herhangi bir 

Cauchy yapısıdır ve 

𝑓(𝑀) = 0, 𝑓(𝑁) = 1 

 sağlanır [10]. 

İspat:  Kabul edelim ki  𝑓: (𝐴, 𝐾) → ([0,1], 𝐿)  

𝑓(𝑥) = {
0, 𝑥 ∊ 𝑀
1, 𝑥 ∉ 𝑀

   

şeklinde tanımlansın. 

Buna göre, 𝑓(𝑀) = 0, 𝑓(𝑁) = 1 olur. Şimdi 𝑓 nin bir Cauchy dönüşümü olduğunu 

gösterelim. 
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 𝛼 ∈ 𝐾 olsun.  𝛼 öz olmayan süzgeç ise, 𝑓(𝛼) de öz olmayan süzgeçtir. 

 Kabul edelim ki  𝛼 öz süzgeç olsun. 𝑀 ⊂ 𝐴 kapalı olduğu için, Teorem 2.1.4 e göre 

𝑥 ∉ 𝑀 olmak üzere 𝑥 ∈ 𝐴 ve 𝑎 ∈ 𝐾 için ya 𝛼 ∪ [𝑀] öz olmayan süzgeçtir ya da 𝛼 ⊄ [𝑥] 

olur. 

Şu iki durumdan biri geçerlidir: 

1. 𝛼 ∪ [𝑀] öz olmayan süzgeç ise bu taktirde ∃𝑉 ∈ 𝛼 öyle ki 𝑉 ∩ 𝑀 = ∅ olur. Bu 

durumda 𝑓(𝛼) = [1] ∈ 𝐿 çünkü 𝑉 ⊂ 𝑀𝑐 ⇒ 𝑓(𝑉) = {1} ∈ 𝑓(𝛼). 

2. Eğer 𝛼 ⊄ [𝑥] (𝑥 ∉ 𝑀 ve 𝑥 ∈ 𝐴)  olsun. Bu taktirde 𝑓(𝛼) ⊄ [𝑓(𝑥)] = [1] buradan  

𝑓(𝛼) ⊂ [0] ve 𝑓(𝛼) ∪ [[0,1]] ⊆ [0] ∪ [[0,1]] = [0].  Buradan 𝑓(𝛼) ∪ [[0,1]] ∈ 𝐿 öz 

süzgeçtir. 𝐿 [0,1] üzerinde Cauchy yapısı olduğundan, 𝑓(𝛼) ∩ [[0,1]] ∈ 𝐿 dir bu da 

𝑓(𝛼) ∈ 𝐿 demektir. 

Sonuç olarak 𝑓 Cauchy dönüşümüdür. 

Teorem 4.2. (𝐴, 𝐾) yı 𝑇ത0 (veya 𝑇0, 𝑇1, 𝑇2 ) Cauchy uzayı ve 𝑀, 𝑁 ⊂ 𝐴 ayrık, boş olmayan 

alt kümeler olsun. Bu taktirde, 

𝑓(𝑀) = {0}, 𝑓(𝑁) = {1}  

olacak şekilde en az bir 

𝑓: (𝐴, 𝐾) → ([0,1], 𝐿) 

şeklinde bir Cauchy dönüşümü vardır ve burada 𝐿, [0,1] üzerinde tanımlı herhangi bir 

Cauchy yapısıdır [10]. 

İspat. Teorem 4.1 in ispatına benzer şekilde yapılır; ayrıca Teorem 2.1.4, 2.1.12, 2.1.13 

kullanılır. 
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Tanım 4.3. (Cauchy Genişlemesi) (𝐴, 𝐾) ve (𝐵, 𝐿) Cauchy dönüşümleri, 𝑀 ⊂ 𝐴 ve 

𝑔: (𝑀, 𝐾𝑀) → (𝐵, 𝐿) Cauchy dönüşümü olsun; burada 𝐾𝑀, 𝑖: 𝑀 → (𝐴, 𝐾) şeklinde ki 

içine dönüşümler tarafından üretilmiş başlangıç (initial) Cauchy yapısı olsun. 

𝑓: (𝐴, 𝐾) → (𝐵, 𝐿) ye tüm 𝑥 ∈ 𝑀 için 𝑔(𝑥) = 𝑓(𝑥) olacak şekilde en az bir           

𝑓: (𝐴, 𝐾) → (𝐵, 𝐿) ye Cauchy dönüşümü mevcutsa bu taktirde f e  𝑔 nin Cauchy 

genişlemesi denir [10]. 

Teorem 4.4. (Tietze Genişleme Teoremi) (𝐴, 𝐾) bir Cauchy uzayı ve 𝑀 ⊂ 𝐴 boştan 

farklı kapalı bir altkümesi olsun. Bu taktirde 𝑓: (𝑀, 𝐾𝑀) → ([0,1], 𝐿) ye her bir Cauchy 

dönüşümü 𝐿, [0,1] üzerindeki herhangi bir Cauchy yapısı ve 𝐾𝑀, 𝑀 üzerinde bir başlangıç 

Cauchy yapısı olmak üzere; 

𝑔: (𝐴, 𝐾) → ([0,1], 𝐿) 

 Cauchy genişleme dönüşümü tarafından üretilmiş olur [10]. 

 

İspat. Kabul edelim ki (𝐴, 𝐾) Cauchy uzayı, 𝑀 ⊂ 𝐴 boştan farklı kapalı bir alt kümesi 

olsun.  

Bu taktirde  𝑓: (𝑀, 𝐾𝑀) → ([0,1], 𝐿) ye her bir Cauchy dönüşümü ve 𝐾𝑀 de 𝑀 üzerinde 

bir başlangıç Cauchy yapısı olmak üzere  𝑖: 𝑀 → (𝐴, 𝐾) şeklinde ki içine dönüşümler 

tarafından üretilmiş olan başlangıç Cauchy yapısı olsun. 

𝑔: (𝐴, 𝐾) → ([0,1], 𝐿) dönüşümü, tüm 𝑥 ∈ 𝑀 için 𝑔(𝑥) = 𝑓(𝑥)  

𝑔(𝑥) = {
𝑓(𝑥), 𝑥 ∊ 𝑀

0, 𝑥 ∉ 𝑀
 

şeklinde tanımlansın. 
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 𝛼 ∈ 𝐾 bir süzgeç olsun. Eğer öz olmayan süzgeç ise, 𝑔(𝛼) da öz olmayan süzgeçtir. 

Eğer öz süzgeç ise ve 𝑥 ∈ 𝐴 dır. 

 M kapalı olduğu için, ya 𝛼 ∪ [𝑀] öz olmayan süzgeçtir ya da 𝛼 ⊄ [𝑥] olur. 

Şu iki durum incelenir: 

1. 𝛼 ∪ [𝑀] öz olmayan süzgeç ise:  ∃𝑉 ∈ 𝛼 öyle ki 𝑉 ∩ 𝑀 = ∅ olur. Bu durumda   

𝑔(𝑉) = {0}  dolayısıyla 𝑔(𝛼) = [0] ∈ 𝐿 olur. 

2. 𝛼 ⊄ [𝑥]: ∃𝑈 ∈ 𝛼 öyle ki 𝑥 ∈ 𝑈. O hâlde 𝑈 ∪ 𝑀 ∈ 𝛼 olur. 

 𝑔 (𝑈 ∪ 𝑀) = {0} ∪ 𝑓(𝑀) ⊂ [𝑓(𝑥)] ∩ [0] ⇒ 𝑔(𝛼) ⊂ [0] ∩ [𝑓(𝑥)] ∈ 𝐿 dir. 

𝐿 bir Cauchy yapısı olduğundan 𝑔 dönüşümü de bir Cauchy dönüşümüdür. 

Teorem 4.5. (𝐴, 𝐾) bir T0
തതത Cauchy uzayı ve 𝑀 ⊂ 𝐴 boştan farklı A nın bir alt uzayı olsun.                         

Bu taktirde 𝑓: (𝑀, 𝐾𝑀) → ([0,1], 𝐿) ye her Cauchy dönüşümü ki burada                         

𝐿, [0,1] üzerindeki herhangi bir Cauchy yapısı ve 𝐾𝑀, 𝑀 üzerinde üretilmiş bir başlangıç 

Cauchy yapısı olmak üzere 

𝑔: (𝐴, 𝐾) → ([0,1], 𝐿) 

bir Cauchy genişletilmiş dönüşümüne sahiptir [10]. 

İspat. 

Teorem 4.4 ün ispatına benzerdir. Ek olarak Teorem 2.1.4, 2.1.12 ve 2.1.13 kullanılır. 
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5. BÖLÜM 

SONUÇ VE DEĞERLENDİRME 

5.1. Sonuç ve Değerlendirme 

Bu çalışmada, Cauchy uzayları kategorisi bağlamında iki farklı kapanış operatörü 

tanımlanmıştır. Söz konusu operatörler, (zayıf anlamda) kalıtsal olma, üretkenlik 

(productivity) ve idempotentlik gibi önemli yapısal özellikleri sağlamaktadır. Bu kapanış 

kavramları aracılığıyla, her bir 𝑇𝑖  ayrıklık aksiyomuna (𝑖 =  0, 1, 2) sahip Cauchy 

uzayları ayrı ayrı incelenmiş; bu uzaylar, söz konusu kapanış operatörleri kullanılarak 

karakterize edilmiştir. Ayrıca, bu ayrıklık sınıflarının oluşturduğu alt kategorilerin 

birbirleriyle izomorfik olduğu da gösterilmiştir. Bu sonuç, farklı ayrıklık düzeylerine 

sahip Cauchy uzaylarının, uygun kapanış operatörleri perspektifinden yapısal olarak denk 

olduğunu ortaya koymaktadır. 

Çalışmada bununla birlikte, indirgenemez (irreducible) Cauchy uzayları özel olarak ele 

alınmış, bu uzayların yapısal özellikleri belirlenmiş ve bağlantılılık (connectedness) 

kavramıyla olan ilişkileri ayrıntılı biçimde incelenmiştir. Bu bağlamda, 

indirgenemezliğin bağlantılılıkla koşutluk gösterdiği durumlar ortaya konmuş ve bu 

kavramların birbirine dönüştürülebilirliği analiz edilmiştir. 

Elde edilen teorik bulgular, yalnızca Cauchy uzaylarıyla sınırlı kalmamış, aynı zamanda 

farklı topolojik kategorilerdeki kapanış operatörleri ve ayrıklık aksiyomları ile 

karşılaştırmalı olarak değerlendirilmiştir. Bu karşılaştırmalar, önerilen yaklaşımın 

kategorik topoloji çerçevesinde evrensel bir bakış açısına katkı sunduğunu 

göstermektedir. 

Son olarak, klasik topolojinin temel taşlarından olan Urysohn Lemmaları ile Tietze 

Uzantı Teoremi, ilk kez Cauchy uzayları bağlamında sunulmuş ve bu uzaylar üzerinde 
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sürekli fonksiyonların genişletilebilmesi gibi önemli yapıların varlığı ispatlanmıştır. Bu 

sonuçlar, Cauchy uzaylarının yalnızca soyut teorik yapılar değil, aynı zamanda analize ve 

fonksiyonel genişletmelere elverişli yapılar olduğunu göstermektedir. 

Gelecek çalışmalar için öneriler 

İlerleyen araştırmalarda, aşağıdaki özel tür Cauchy uzaylarının da tanımlanması ve 

karakterizasyonu amaçlanmaktadır: 

 Kalıtsal olarak ayrık (hereditarily disconnected) uzaylar, 

 Tamamen ayrık (totally disconnected) uzaylar, 

 Sober (ayırt edilebilir temsilcisi olan) Cauchy uzayları. 

Bu tür çalışmalar, Cauchy uzayları kuramını daha da derinleştirecek ve genel topolojiyle 

olan ilişkisini daha güçlü biçimde ortaya koyacaktır. 
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