ABSTRACT

Title of Dissertation: SPATIAL DECOMPOSITIONS FOR
GEOMETRIC INTERPOLATION AND
EFFICIENT RENDERING
Fatma Betul Atalay-Satoglu, Doctor of Philosophy, 2004

Dissertation directed by: Professor David M. Mount
Department of Computer Science

Interpolation is fundamental in many applications that are based on multidimen-
sional scalar or vector fields. In such applications, it is possible to sample points from the
field, for example, through the numerical solution of some mathematical model. Because
point sampling may be computationally intensive, it is desirable to store samples in a data
structure and estimate the values of the field at intermediate points through interpolation.
We present methods based on building dynamic spatial data structures in which the sam-
ples are computed on-demand, and adaptive strategies are used to avoid oversampling.

We first show how to apply this approach to accelerate realistic rendering through
ray-tracing. Ray-tracing can be formulated as a sampling and reconstruction problem,
where rays in 3-space are modeled as points in a 4-dimensional parameter space. Sample
rays are associated with various geometric attributes, which are then used in rendering.
We collect and store a relatively sparse set of sampled rays, and use inexpensive inter-
polation methods to approximate the attribute values for other rays. We present two data

structures: (1) theay interpolant tree (RI-treg)which is based on a kd-tree-like sub-

division of space, and (2) th@mplex decomposition tree (SD-tre@hich is based on
a hierarchical regular simplicial mesh, and improves the functionality of the Rl-tree by
guaranteeing continuity.

For compact storage as well as efficient neighbor computation in the mesh, we
present a pointerless representation of the SD-tree. An essential element of this approach
is the development of a location code that enables efficient access and navigation of the
data structure. For this purpose we introduce a location code, called an LPT code, that
uniquely encodes the geometry of each simplex of the hierarchy. We present rules to com-
pute the neighbors of a given simplex efficiently through the use of this code. We show
how to traverse the associated tree and how to answer point location and interpolation
gueries. Our algorithms work in arbitrary dimensions. We also demonstrate the use of the
SD-tree for rendering atmospheric effects. We present empirical evidence that our meth-

ods can produce renderings of good quality significantly faster than simple ray-tracing.

SPATIAL DECOMPOSITIONS FOR GEOMETRIC INTERPOLATION
AND EFFICIENT RENDERING

by

Fatma Betul Atalay-Satoglu

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
2004

Advisory Committee:

Professor David M. Mount, Chair/Advisor
Professor William M. Goldman

Professor Leila De Floriani

Professor Amitabh Varshney

Professor Samir Khuller

© Copyright by
Fatma Betul Atalay-Satoglu
2004

DEDICATION

To my parents,

Yildiz and Bgs Atalay
To my sisters,

Tuba andrem Atalay
And to my dear aunt,

Emine Fidan

ACKNOWLEDGEMENTS

Firstly, | would like to extend my deepest gratitude to my advisor, Dr. David Mount,
the best advisor and teacher | could have wished for. His incredible support and guidance,
and above all, his endless patience and kindness made this thesis possible. The time and
care he puts into his students sets an example | hope to follow. | am grateful to Dr.
Amitabh Varshney for his encouragement and helpful comments on this research. Special
thanks to Dr. Leila De Floriani for her invaluable help, excellent geometric modeling
class and especially for traveling such a long way to serve in my thesis committee. My
sincere thanks also goes to the other members of my thesis committee, Dr. Samir Khuller
and Dr. William Goldman.

Throughout this long long process, my life was richly blessed with many good
friends without whom | cannot imagine my Maryland days. | am forever indebted to
my dear friend Tikir who has always been there for me, seeing me through some of the
hardest years of my life, listening to my complaints and frustrations for hours and always
knowing the best thing to say to give comfort. | offer my heartfelt thanks to my dear
friend and roommate Chiraz, who has been a source of emotional and practical support.
Thank you for constantly reminding me that this is a matter of persistence and hard-work,
for being such a cheerful person who brightened my days, and of course for providing
the best coffee on campus. | am grateful to my dear friend Okan for his kindness and
eagerness to help and for the countless times he came to my rescue throughout the grad

school till the very last day of submitting this thesis. Special thanks to my two dear friends
with whom | have had some of the most fun times of my life here: to Sule, for sharing my
loneliness and for teaching me so much with her faith, intellect and humor. | will surely
miss our long lunch breaks and conversations; to Esin for her warmth and selflessness,
for her moral support when most needed and for never saying “no”.

| would like to extend my sincere appreciation for many people who have helped
me survive with their help and friendship starting from the earliest years in Maryland:
Sahin Family, Berrin and Cengiz Celik, Cuneyt Akinlar, Ibrahim Korpeoglu, Yuce Fam-
ily, Selda Kapan, Gamze Tunali, Ugur Cetintemel, Esin and Ismail Haritaoglu, Hatice
Burakgazi and Erhan Yilmaz, Suheyla Aytac, Kevser and Gokturk Ozer and Gulsum Oz-
turk. Thank you Dilek Akar, Marat Fayzullin, Ahmed Elgammal, Dmitry Zotkin, Khaled
Arisha, Burcu and Fazil Ayan, Fusun Yaman, Evren Sirin, Laura Bright, Mounya Elhilali,
Cagdas Dirik, Akin Akturk, Rajiv Gandhi, Tamer Sharnouby, and Funda Ertunc for your
friendship.

Greatest of thanks goes to my family: To my mother who has always been and
will always be my ultimate role model for her character and determination; and for her
excellent balance of a demanding career and perfect motherhood of three (fine) children.
She stood by me at every single step of my life, and her love and inspiration has given
me all the strength | have ever needed since as far as | can remember. | would not be
here if it were not for her. To my father for teaching me the value of a life with dignity,
and setting an excellent example of that, for his wisdom which keeps enlightening my
path and for instilling in me the love of books and knowledge in my very early childhood.
To my beloved sisters, Tuba and Irem, who are the most precious gifts God has given

v

me. They are the reason | maintained my sanity all these years. Through our long phone
conversations—including the ones that woke them up in the middle of the night—they
have endured all the fears and tears and raised my spirits all along. To my dearest aunt,
who has been a second mother to me, thank you for your love and sacrifice, and your
prayers for my success. To my in-laws for their prayers and for sharing my happiness and
pride on completion of this dissertation.

And finally, but definitely not least, a very special thank you to my dear husband
Mirat, my best friend and companion, whose enormous support, patience and optimism
kept me going through the past years and made the completion of this thesis possible.
Thank you for sharing my times of despair as well as times of joy and thank you for

believing in me.

Contents

List of Tables

List of Figures

1 Introduction

2 Hierarchical Data Structures for Multidimensional Data
2.1 Simplicial Mesh Refinement

2.2 Pointerless Representations and Neighbor Finding

3 Efficient Methods for Rendering
3.1 Ray-tracing Acceleration Techniques

3.2 Image-BasedRendering

4 The Ray Interpolant Tree for Efficient Ray-tracing

4.1 Introduction
411 DesignlIssues

4.2 Mapping Rays to Geometric Attributes and Ray Coherence

4.3 TheRayInterpolantTree
4.3.1 Parameterizing RaysasPoints
4.3.2 The Structure oftheRI-tree
4.3.3 Adaptive Subdivision and Cache Structure

4.4 Rendering and Interpolation Queries

4.5 Handling Discontinuities and Regions of High Curvature

Vi

19

30

30

37

46

46

49

50

52

53

54

55

62

64

45.1 Grouping Samples in Equivalence Classes
452 AngularThresholds.
4.6 Experimental Results

46.1 Testlnputs
46.2 MetriCS. e
4.6.3 Varyingthe Parameters.
4.6.4 Results for the Tomatoes Scene

4.6.5 Radiance versus Ray Interpolation
4.6.6 Animations

4.7 Conclusions

Simplex Decomposition Tree: A Pointerless Representation

5.1 Introduction

64

68

69

69

71

72

83

83

88

89

92

5.1.1 Hierarchical Regular Subdivisions and Pointerless Representations 97

5.2 Preliminaries e 100
5.2.1 Permutations and Reflections 101
5.2.2 The Simplex Decomposition Tree 103
5.2.3 Reference Simplices and the Reference Tree 105

53 ThelLPTcode 108

5.4 Decomposition Tree Operations 118
541 TreeTraversal. 118
5.4.2 Point Location and Interpolation Queries 121

5.5 Neighbors in the Simplicial Complex... 125

Vii

5.5.1 Neighbor PermutationCode.
5.5.2 Neighbor OrthantList.
5.6 Compatible Refinement and the Simplicial Complex
5.7 Neighbors at differentdepths...,
58 Conclusions

5.9 Proofof Theorem5.5.1

6 Using Hierarchical Simplicial Meshes to Render Atmospheric Effects
6.1 Introduction
6.2 Constructionofthe SD-tree
6.3 Rendering by Interpolation
6.3.1 One-pass versus Two-pass Rendering.
6.3.2 On-demand Compatible Refinement

6.4 ExperimentalResults

7 Conclusions
7.1 Summary of Contributions L L L

7.2 Future Work s

Bibliography

viii

. 132

134

135

136

147

147

150

152

152

154

156

162

162

165

167

List of Tables

4.1 Varying the distance threshold: Speedup and actual erroénieBSur-
face and Random Volumes (ray-tracing and volume visualization).. . 80
4.2 Varying the tree depth: Speedup and actual error@rieB Surface and
Random Volumes (ray-tracing and volume visualization).... 81

4.3 Varying the angular threshold: Speedup and actual erroréaieBSur-

face and Random Volumes (ray-tracing and volume visualization).. . 82
4.4 Sample results for tomatoes scern#(x 900 non-antialiased). 83
4.5 Sample results for light animatioi200 x 900 non-antialiased). 89
4.6 Sample results for viewpoint animatior2(0 x 900 non-antialiased). . . 89

6.1 Sample results for the warehouse sc&n@ & 600 anti-aliased, distance
threshold =0.015). 159
6.2 The percentage of cracks for multiple passes of the on-demand compati-

ble algorithm. 160

List of Figures

1.1 A simplicial mesh in the plane and the corresponding interpolating sur-
face. (a) Crack in the interpolating surface due to bisection of one of the

triangles. (b) Bisection of the neighbor triangle eliminates thecrack. . . . 5

2.1 Red-green refinement in 2-dimensions (a) initial state (b) after red refine-

ment (c) after greenrefinement. 12
2.2 Red refinement in 3-dimensions (a) initial state (b) after red refinement. . 13
2.3 Irregular refinement in 3-dimensions. 14
2.4 Procedur8isectSimplex. e 18
2.5 Two types of diamonds in 2-dimensional bisection-based mesh...... 20

2.6 DAG representation corresponding to a 2-dimensional bisection-based

2.7 (a) 2-dimensional bisection-based mesh (b) corresponding tree represen-

tation. 23
2.8 (@) tip-up (b) tip-down (c) triangle codes atdepth2. 25
3.1 Ray-tracer (Whitted) 31
3.2 Two-plane parameterization 40
4.1 Geometricattributes. L 51

4.2 The two-plane parameterization of directed lines. The +X plane pair is

4.3 Subdivisionalongs-axis. 56

4.4 Maximum angle is achieved by the cross diagonals of orthogonally op-
posingfaces. 59
4.5 Minkowski difference of two planar squares of side-length 61
4.6 Maximum angle between the cross diagonals of two equal length parallel
segments is achieved when the two segments are aligned orthogonally
opposite one another. L L Lo 62
4.7 Sampled rays within a directional group. 63
4.8 (a) Interpolation betweeA and B is allowed. Interpolation betweet

and D is not allowed. (b) Rays are grouped in two equivalence classes,

implying a single discontinuity boundary. 65
4.9 (a)-(b)Badcases(c)-(d)Goodcases 66
4.10 Interpolation algorithm. L. 68

4.11 Varying the distance threshold. (Angular threshoB= maximum tree
depth = 28600 x 600 image, non-antialiased). Note that thaxis does
notalwaysstartatO., 73
4.12 (a) Ray-traced image, (b) Lower right part of interpolated image (distance
threshold=0.01), error = 0.00377, (c) Lower right part of interpolated im-
age (distance threshold=0.15), error=0.01331. 74
4.13 (a) Ray-traced image, (b) Interpolated image (distance threshold=0.05)
and the corresponding color-coded image where white regions indicate
pixels that wereray-traced. 75
4.14 Varying angular threshold (distance threshold=0.25, maximum depth=28,

300 x 300, antialiased).. 76

4.15 Varying tree depth (distance threshold=0.05, angular threshol66g,
600, non-antialiased). L 77
4.16 Varying cache size (distance threshold = 0.05, angular threshold = 30,
maximum tree depth = 2800 x 600 image, non-antialiased). 78
4.17 (a) Ray-traced image, (b) Interpolated image (distance threshold=0.25).
4.18 (a) Ray-traced image, (b) Interpolated image (dist. thr.=0.25, ang. thr.=30)
and corresponding color-coded image, white areas show the ray-traced re-
gions, (c) Interpolated image (dist. thr.=0.05, ang. thr.=10). 84
4.19 (a) Ray-traced simplecier surface (b) Upper right part zoomed.. . . 86
4.20 (a) Normal interpolation, max. depth = 28, no. of nodes = 7.4K. (b) Nor-
mal interpolation, max. depth =32, no. of nodes = 13K. (c) Radiance in-

terpolation, max. depth = 32, no. of nodes = 25K. (d) Depth color scale.

5.1 (a) A crack (b) A hierarchical simplicial mesh inthe plane. 93
5.2 Results of a ray-tracing application to produce&@hx 800 image based
on 4-dimensional interpolations using (a) a kd-tree based on 14,492 sam-
ples (96 CPU seconds) and (b) a simplex decomposition tree based on
6,072 samples (97 CPU seconds). Details of these images are shown in

(c) and (d), respectively. Note the blocky artifacts in the kd-tree approach

5.3 The simplex decomposition tree. The corresponding bisected simplex is
shown on the top-left. The newly created vertex is indicated by an arrow

in each case. The reference simplicesare indicated aswell. 106

Xii

79

87

5.4 The signed permutatio$y, associated with each simplex are shown
below each simplex matrix, and the entries of the orthant list are shown for

the shaded simple&;;o;. The LPT code for this simplex i, [+1 +2],

(1, =1), (1, 41))) o o e e 110
55 OrthantList 111
5.6 Procedur&PTcode. 112
5.7 Thetwo children of areferencesimplex. 113
58 Theprocedurparent 121

5.9 The procedureBndRootand search which are used to locate a query
pointq in the hierarchy. The permutatiat, is defined in Lemma 5.4.3
and the permutatioR, was given in Section 5.3, Eq. 5.1.... 123
5.10 Neighbor permutations. (The circle with a minus sign indicates that the
elementisnegated.) L 127

5.11 OrthantB is a neighbor of orthant in + X direction. (a) The quadtree-

like subdivision of space (b) The corresponding tree representation. . . . 130
5.12 ProcedureompatBisect 133
6.1 Compatible refinement (a) arrives first (b);, arrivesfirst. 153
6.2 On-demand compatible refinement 155

6.3 On-demand compatible refinement in multiple passes, queries arrive in
the order ofg;, ¢z andgs in both passes. (a) First-pass (b) Second pass

corrects the crack between the cellgjoindgs. 155

Xiii

6.4 Given errors are with respect to color. (a) distance thr = 0.015, average
error = 0.00233, max error = 0.02704. (b) distance thr = 0.035, average
error = 0.00371, max error = 0.06754. (c) distance thr = 0.05, average
error = 0.00545, max error=0.13001.. 158

6.5 (a) Ray-marchedimage (b) Interpolated image using the on-demand com-

patible algorithm (800x600, anti-aliased, distance threshold = 0.015). . . 161

Xiv

Chapter 1

Introduction

Spatial data structures can play a vital role in achieving efficient computation for geo-
metric applications. In this thesis we consider how spatial data structures can be used to
improve the running time of algorithms used in the field of computer graphics for produc-
ing photo-realistic images. Computer graphics is concerned with all aspects of the process
of creating images from 3-dimensional models, which is often caladering Given a
scene modeled as a collection of objects and light sources, and viewing specifications for
the camera, rendering algorithms generate images by simulating the propagation of light
in the scene. Light rays originate from light sources and go through several interactions
with the scene objects being reflected, transmitted, or absorbed until finally leaving the
scene or reaching the camera.

Different graphics applications demand different levels of realism. At one end of
the spectrum iphoto-realismwhich aims to capture physically accurate, complex illu-
mination effects such as reflections, specular highlights and shadows. Simulating these

effects, even approximately, is a computationally demanding task. Many graphics systems

simplify the effects of light for fast rendering at the expense of realism. Fast hardware
renderers usical illumination modelsin which the color of the surface point is com-
puted as a function of only the direct light coming from the light sources ignoring the
inter-reflections from surface to surface. In contrggtpal illumination modelgrovide

a more accurate approximation to reality by incorporating both direct lighting from light
sources and indirect lighting from other scene objects.

This thesis is mainly motivated by the ray-tracing method which has long been
the most popular global illumination algorithm. Ray-tracing can accurately captwe
dependenphenomena such as specular highlights, reflections and refractions. However, it
remains a computationally very expensive technique. In traditional ray-tracing solutions,
at least one ray is shot through each pixel of the image plane, and the intensity gathered
by tracing the ray through the scene constitutes the color of that pixel. A critical part of
any ray-tracer is the ability to determine the intersection of rays with objects of the model
and how these rays may reflect off of and refract through the objects. This involves many
expensive ray-object intersection computations, especially for scenes containing complex
objects such as&ier surfaces or NURBS.

In computer graphics, itis common to infer knowledge from samples. A ray-tracer,
for example, is basically sampling rays at the pixel level (or at the sub-pixel level), where
each sample demands high computational effort. Pixel level may not always be the most
appropriate level at which to sample. The color of any given pixel in an image is a combi-
nation of many different phenomena, including the base color of the object, the intensity
of the accumulated light at this point, the nature of the reflection function of the object’s

surface, the presence of reflection or transparency, and the scattering and obscuration

2

due to atmospheric effects such as smoke or clouds. Some of these elements may vary
relatively slowly and smoothly over large areas of an image. These elements can be repro-
duced realistically with relatively sparse samples, since rays have to be sampled densely
only in the regions where rapid changes occur with respect to the function that is of in-
terest. This suggests adaptively collecting a set of sparse samples, and using inexpensive
interpolation methods to approximate others.

To determine the appropriate level that we should be interpolating, we need data
structures. These data structures should support efficient storage and efficient querying
and interpolation of samples. The main problem we consider in this thesis is how to
design efficient data structures for answering multidimensional interpolation queries. We
show how to apply this approach for efficient ray-tracing by formulating ray-tracing as
a sampling and reconstruction problem based on 4-dimensional fields of directed lines,
where each directed line is associated with a set of vector-valued geometric attributes. We
focus on accelerating the geometric component of ray-tracing by substituting accurate-
but-slow intersection computations by approximate-but-fast interpolations.

Interpolation involves a weighted average of the field values of nearby sampled
points. There are a number of approaches for determining which sample points to use and
how to assign weights [Alf89, Sib81]. For the sake of efficiency in answering queries, we
use a simple method. A spatial subdivision is constructed over the domain of interest, and
the field values are sampled at the vertices of this subdivision. For a given query point, the
interpolated value is an appropriate linear or multi-linear combination of the field values
at the vertices of the cell that contains it. To avoid the complex computational issues
associated with maintaining, accessing, and updating arbitrary multidimensional spatial

3

subdivisions, we ensure that the subdivision possesses some regular structure. This is
possible since we have the flexibility of controlling the location of our samples, unlike
some applications that are given a fixed set of samples in advance.

The requirement of adaptive sampling suggests that one way to approach answering
interpolation queries is through data structures based on hierarchical subdivision of space,
such as quadtrees and kd-trees [Sam90b]. We introdudrlttreedata structure, which
is a spatial decomposition based on a kd-tree-like subdivision of 4-dimensional space of
directed lines. In higher dimensions, the storage requirements for representing a complete
interpolation function by sampling the entire space is extremely high. To overcome this
problem, we build a dynamic data structure in which samples are computed on demand,
and only the most recently used samples are stored. We investigate tradeoffs between
space and time used by this data structure and the accuracy of the interpolation results.

Another important concern when building data structures for interpolation purposes
is the continuity of the interpolated surface. A significant problem with kd-tree-like sub-
divisions is that they do not guarantee any degree of continGitgcksmay exist on the
interpolating surface whenever cells fail to intersect alosingle common face, hence
not allowing even the lowest level of functional continuity. We address this issue by in-
troducing theSD-treedata structure, which is based on a reggianplicial subdivision
that is refined in a particular way to provide continuity. Simplicial decompositions are
preferable also for other reasons that will be discussed further in the thesis. However, for
them to be considered feasible alternatives, it is crucial that basic operations such as sub-
division and point location can be performed rapidly since these operations may not be as
trivial as they are for kd-trees. We address algorithmic issues involved in efficient imple-

4

mentation of hierarchical simplicial meshes in arbitrary dimensions, based on a bisection
approach proposed by Maubach [Mau95].

In order to avoid cracks in the subdivision, the refinement algorithm must en-
sure that bisection of a simplex triggers the bisection of its facet neighbors. (See the
2-dimensional example in Figure 1.1.) This makes computation of facet neighbors of
a simplex an essential operation, imposing the requirement for efficient neighbor finding
algorithms. For space concerns, itis not preferable to store neighbor poihteraéigh-
bors for each node of @dimensional subdivision), especially for large high-dimensional
meshes. On the other hand, it is highly desirable to compute neighbors of a simplex in
time independent of its depth in the hierarchy, that is, we do not want to traverse the path
to and from the root in order to compute neighbors. Instead, we present a pointerless rep-
resentation of hierarchical regular simplicial meshes, in which the nodes of the hierarchy
are accessed through an index callddaation code We introduce a new location code,
called an LPT code, that uniquely encodes each simplex of the hierarchy. We present

rules to compute any neighbor of a given simplex directly from its code in constant-time.

(a (b)

Figure 1.1: A simplicial mesh in the plane and the corresponding interpolating surface.
(a) Crack in the interpolating surface due to bisection of one of the triangles. (b) Bisection

of the neighbor triangle eliminates the crack.

We prove correctness of these rules. We show how to traverse the associated tree and how
to answer point location and interpolation queries through the use of these codes. Our
system works in arbitrary dimensions.

Finally, we discuss a number of issues in efficient use of the SD-tree data struc-
ture in another expensive rendering application, that is, rendering of atmospheric effects
such as smoke. We propose a variation in the construction of the SD-tree to reconcile
between the continuity requirement and the on-demand sampling requirement which nor-
mally conflict. This is a heuristic approach aiming to reduce the size of the data structure
as well as to increase the performance.

The rest of this dissertation is organized as follows. Chapter 2 presents a survey
of spatial data structures for multidimensional data, emphasizing simplicial refinement
methods, and previously proposed pointerless representations of hierarchical simplicial
meshes. Chapter 3 contains related work on accelerating ray-tracing and animations, as
well as on image-based rendering methods, which are relevant to this thesis in the way
they use interpolation. In Chapter 4, we introduce Ridreedata structure and present
empirical results to demonstrate its application in efficient ray-tracing. In Chapter 5, we
introduce a pointerless representation for hierarchical regular simplicial meshes, called
the SD-tree in a theoretical setting which is applicable in arbitrary dimensions. We
present theorems that are necessary to develop our labeling scheme, and to prove cor-
rectness of our neighbor finding rules. In Chapter 6, we illustrate the practical value of
the SD-treein rendering smoke based on experimental evidence. Finally, in Chapter 7,

we conclude by summarizing our contributions, and proposing future research directions.

Chapter 2

Hierarchical Data Structures for Multidimensional Data

The first large piece of literature relevant to this thesis is in the area of hierarchical data
structures developed for efficient storage and retrieval of multidimensional data. Repre-
sentation of spatial data has become important in many application areas such as computer
graphics, visualization, image processing and geographic information systems, where ef-
ficient algorithms for manipulating data is crucial in the performance of the application.
Many of the general purpose data structures that are commonly used are hierarchical,
based on the principle of recursive decomposition of space. The most widely used ones
of these data structures are quadtrees (octrees), kd-trees, and BSP-trees which differ in
the way they choose the cutting plane(s), and in the branching factor (the number of sub-
regions each region is decomposed into).

For quadtreeseven though a number of variations exist [FB74, Web84, Sam90b],
the most common representation is based on recursively decomposing the square domain
into four equal-sized squares. An octree is the 3-dimensional extension to the quadtree,

subdividing the cubic domain into 8 equal-volume sub-cubes. Hence, in quadtrees and

their higher dimensional extensions, the split is performed in all dimensionsmultie
dimensional binary search treer kd-treeas it is more commonly known as [Ben75], are
slower growing subdivisions compared to quadtrees, since they split one dimension at a
time. Different methods have been proposed on how to choose the split dimension such as
alternating dimensions or choosing the dimension corresponding to the longest side of the
hyperrectangle being subdivided. A hyperrectangle is split into two sub-hyperrectangles
by a cutting plane which is always perpendicular to the coordinate axis corresponding
to the split dimension, but the positioning of the cut plane could differ depending on the
application. In these respects, kd-trees are more flexible than quadtredsnadiyespace
partition tree or BSP-tregfFKN80] for short, are also organized as binary search trees,
however the cutting planes of arbitrary orientation are allowed as opposed to kd-trees.
Hence, each node is an arbitrarily shaped convex polytope. For a good survey of these
general data structures and various others for spatial data as well as their applications, we
refer the reader to the well known reference books by Samet [Sam90a, Sam90b].

Our particular interest, however within the context of this thesis, is in simplicial
decompositions. We will also refer to simplicial decompositiongramgulationsre-
gardless of the dimension—even though the tetamgulationis generally only used for
a 2-dimensional simplicial decomposition. In this chapter, we first survey a number of
adaptive refinement methods for generating simplicial decompositions. Next, we review
pointerless data structures developed for space-efficient representation of these simplicial
meshes, and efficient methods to perform operations like traversal and neighbor finding

based on the pointerless representation.

2.1 Simplicial Mesh Refinement

There has been a considerable amount of work in adaptive simplicial mesh refinement,
mostly due to its importance in finite element methods for numerical solution of partial
differential equations. The mesh serves as a discretization of the domain of a function,
and by means of adaptive local refinements, it is used to improve the approximate so-
lution of a partial differential equation locally. In addition, adaptively refined meshes
have been widely used in various application areas in computer graphics, scientific vi-
sualization and geometric modeling. For example, 2-dimensional meshes are used for
multiresolution terrain modeling and rendering [LK&6, DWS"97, Paj98, Ger03]; 3-
dimensional meshes for volume rendering of 3-dimensional scalar fields (such as medical
datasets) [GR99, ZCK97], and 4-dimensional meshes for visualization of time-varying
flow fields. Higher dimensional meshes are used in combinatorial algorithms to determine
fixed points of functions as described in [Tod76], and to approximate solution manifolds
of parameterized equations [Mau95].

Hierarchical simplicial meshes are obtained by starting with a coarse partition (tri-
angulation)7, of the domain, and generating a sequefige’, . .., 7; of increasingly
finer partitions by successive local mesh refinement, which is typically driven by a local
error estimator. Each refinement step involves selecting certain simplices for refinement
based on their local error estimate and refining those simplices and possibly some other
simplices to preserveompatibility. It is usually desired that the sequence of partitions
satisfy the conditions afompatibilityandstability.

A simplicial mesh is compatible if the intersection of two neighboring simplices is a

single common sub-simplex (face). A compatible simplicial mesh is also caedi-
cial complex The compatibility condition is important since otherwise cracks may occur
along the faces of the subdivision, which in turn causes discontinuities in the function.

The stability condition requires that the simplices generated during refinement do
not degenerate. This usually means that, a certain shape measueunded by a con-
stantc for all simplices in the hierarchy, where the constaistindependent of the level of
the simplex. A commonly used shape measure forsamplex is the aspect ratio, which
is defined as the ratio of the length of the longest edge to the diameter of the largest in-
scribedk-ball. Liu and Joe [LJ94b] studied other shape measures and their relationship
for tetrahedral meshes. Stability is important, since in many applications poorly-shaped
simplices must be avoided. In scientific visualization, for example, thin, elongated tetra-
hedra will result in visual artifacts. In finite element methods, stability is not only desired,
but is often essential to guarantee well-conditioned systems and numerical convergence.

Another desirable property for hierarchical simplicial meshes is that the number of
congruency classes generated is finite, and in fact minimal. Two simplices are defined
to be congruent if they are equivalent up to a rigid motion (translation, rotation and
reflection), and a nonzero uniform scaling.

The key element in an adaptive refinement algorithm is the basic subdivision step,
which defines how a single simplex is subdivided into smaller simplices. Our emphasis
here is onregular hierarchical simplicial meshes. We refer to a meshegsilar, if the
process by which a simplex is subdivided is identical for all simplices. (A more restricted
definition of regularity means that the vertices of a mesh are regularly distributed, such
as the vertices of a grid). Regular hierarchical meshes satisfyasiednessondition,

10

which states that each eleménte 7, is covered by exactly one eleméhte 7,_,. We
will also limit our survey to meshes where any vertexiofs either a vertex or an edge
midpoint of 77, i.e. new vertices are generated only at edge midpoints.

Various different refinement techniques have been proposed, particularly in 2- and
3-dimensions. Depending on the subdivision scheme, these techniques can be classified
in two major groupsred-green refinememhethods, which are based on subdividing a
simplex into2¢ descendants artnisectionmethods, which subdivide a simplex into two

descendants.

Red-Green Refinement Methods: Methods of this class typically consist adgular
andirregular local refinement rules, which are combined in a global refinement algorithm
to provide compatibility and stability. Theegular (red) refinement rules subdivide the
simplices with respect to a local error estimate and in a certain regular wayrrddndar

(greern rules are needed in case of adaptive refinements and they are only applied in order
to guarantee compatibility by providing transition between different refinement levels.
Irregular refinement is often referred to as tireen closureor the conforming closure

and is performedfter the regular refinements. Only regular refinements introduce new
vertices.

The first red-green refinement method was introduced by Bank in 2-dimensions
[BSW83], and later was implemented into the multigrid code PLTMG [Ban98]. A trian-
gle is subdivided into four congruent smaller triangles by connecting its edge midpoints
as shown in Figure 2.1(b). Without adaptive refinements, since the generated triangles

belong to a single congruency class, the triangulation will always be stable independent

11

(b) (o)

Figure 2.1: Red-green refinement in 2-dimensions (a) initial state (b) after red refinement

(a

(c) after green refinement.

of the depth of refinement. In case of adaptive refinements, compatibility is preserved by
the following irregular refinement rules. If a single edge of a triangles refined due

to refinement of a neighboring triangle, théns refined by connecting the midpoint of
that edge to the opposite vertex as shown in Figure 2.1(c). Thisshisected generating

two descendants, but without introducing any additional vertices. If two or more edges of
T are refined due to refinement of a neighboring triangle, thénregularly refined into

four descendants as explained above.

Triangles generated by irregular refinement are referred toeggilar elements
To avoid generating unstable meshes, irregular elements are never further refined. If they
need to be refined due to high local error, then they are removed and their parents are
regularly refined instead.

Bey [Bey95], Zhang [Zha95], and Liu and Joe [LJ96] generalized Bank’s method to
3-dimensions. A tetrahedron is subdivided into eight smaller tetrahedra of equal volume.
Consequently, Liu and Joe [LJ96] refer to this metho@-asibtetrahedron subdivision
By connecting the edge midpoints of each triangular face as in the 2-dimensional case,

we get four sub-tetrahedra at the corners and an octahedron in the middle as shown in Fig-

12

ure 2.2 [LJ96]. This octahedron is further subdivided into four sub-tetrahedra by adding
one of its three possible diagonals. Note that the corner tetrahedra are all congruent to
their parent, but the middle ones are in general not. Regarding which of the three diago-
nals to add when subdividing the octahedron, different strategies have been investigated.
Different choices may lead to substantially different meshes with respect to the quality of
the tetrahedra generated. Zhang [Zha95] proposed to always choose the shortest diago-
nal and showed that the measure of degeneracy is minimized in that case. Bey [Bey95],
on the other hand, selects the diagonal based on a certain vertex ordering of the vertices
of the tetrahedra, and proves that his method generates stable and compatible triangula-
tions with at most three congruency classes, no matter how many refinement steps are

performed.

L23

T12

Figure 2.2: Red refinement in 3-dimensions (a) initial state (b) after red refinement.

In Bey’s method [Bey95], the subdivision is summarized as follows: Assume that

a tetrahedrorf” is given by an ordered sequence of its vertiggsg, X, X2, X3). LetXx;;

13

denote the midpoint ok; andx;, i # j. Then, subdivision ofl" generates the eight

sub-tetrahedrd;, 1 < i < 8 with the following sequence of ordered vertices:

T1 = (Xo, Xo1, X02, X03) » Ty = (Xo1,X1, %12, X13)
T3 = (Xo2, X12, X2, X23) , Ty = (Xo3, X13, X23, X3) ,
T5 = (Xo1, Xo2; X03, X13) ; Ts = (Xo1, Xo2, X12, X13)
T7 = (Xo2, X03, X13, X23) , Ty = (Xo2, X12, X13, X23)

The diagonal chosen to subdivide the octahedron is always the one betyesmx, s,
meaning that it is determined by the vertex ordering, and not by means of any computa-
tion. Bey explains that Zhangs&hortest-interioredge strategy is equivalent to this method
when it is applied to initial tetrahedralizations with non-obtuse faces and a suitable vertex
ordering [Bey00].

Bey also enumerated the irregular refinement rules for 3-dimensional red-green re-
finement. In 3-dimensions, there &t = 64 possible edge refinement patterns. Two
of these correspond to the regular refinement and empty refinement. The other 62 corre-
spond to irregular cases, which can be classified into 9 groups. Bey restricts his algorithm
to only four of these types that are shown in Figure 2.3 [Bey95]. Type (1) corresponds

to three refined edges on the same face, type (2) correspond to exactly one refined edge,

babely Ay

Type (1) Type (2) Type (3) Type (4)
Figure 2.3: Irregular refinement in 3-dimensions.

14

types (3) and (4) correspond to two refined edges on the same face and on opposite edges,
respectively. For all other cases where there are three or more refined edges that belong
to different faces, the tetrahedron is refined regularly.

Liu and Joe [LJ96] provided a theoretical analysis of the quality of tetrahedral
meshes generated similarly to Bey's method. They have shown that successive applica-
tion of their refinement method to any initial tetrahedifoproduces at most three classes
of congruent tetrahedra, and will result in stable partitions such that for any tetrahedron
T in the hierarchy, and the mean ratjdLJ94a] as the tetrahedron shape measure, the
inequality0.5n(7T") < n(T7") < 2n(T') holds.

Bey [Bey00] explains that the 2-and 3-dimensional red-green refinement methods
are special cases of Freudenthdtdimensional algorithm [Fre42], which was introduced
within the context of fixed point computations, and is based on subdividing a simplex into
2¢ sub-simplices of equal volume. Bey [Bey00] also proved that Freudenthal’s algorithm

generates at mogt/2 congruency classes for an initidlsimplex.

Bisection Refinement Methods: The second major class of refinement methods are
based on dividing a simplex into two sub-simplices by bisection. A number of au-
thors proposed bisection algorithms in 2- and 3-dimensions, as well generalizations in
d-dimensions. There are two main approaches that differ in how they choose the edge to
be bisected. The 2-dimensional bisection method by Rivara [Riv91] always chooses the
longest edge for bisection, and consequently is referred to dserigest-edge-bisection

Rivara showed that, in 2-dimensions, the meshes constructed are guaranteed to be sta-

ble. This method can be applied to any initial compatible triangulation. Rivara and Levin

15

[RL92] presented a 3-dimensional extension of this method as well.

The well knownnewest-vertex-bisectioof Sewell [Sew72] and Mitchell [Mit92]
in 2-dimensions, chooses the edge opposite the newest vertex for refinement. In Sewell’s
terminology, one of the vertices of the triangle is designated asdhk and the opposite
edge as thdase To bisect the triangle, the peak is connected with the midpoint of the
base. The new vertex created at the midpoint of the base is assigned to be the peak of
the child triangles. Sewell showed that only four congruency classes arise from subdi-
vision of a single triangle. Unlike red-green refinement methods which perform closure
after regular refinement is completed, Mitchell's method maintains compatilitityng
the refinement process by subdividing two triangles simultaneously. This compatible re-
finement is a recursive process, but it is shown that the depth of the recursion is bounded
[Mit88]. This method as well can be applied to any coarse triangulation. It generates
stable triangulations, since the number of congruency classes is at most four times the
number of triangles in the coarse triangulation. A major advantage of Mitchell’'s method
is that the edge to be bisected can be determined without any computation.

Bansch [Ban91], Liu and Joe [LJ95], and Arnold et al. [AMLO1] developed exten-
sions of Mitchell’s method to 3-dimensions. Arnold et al. describeaaked tetrahedron
data structure, which simplifies the selection of the refinement edge and recursive com-
patible refinement. They also proved that the number of congruency classes is finite. Liu
and Joe presented an equivalent method and have shown that the quality of the refined
mesh is guaranteed. They also showed that the number of congruency classes is finite, but
their bound exceeds that of Arnold, et al. These 3-dimensional algorithms as well, apply
to any compatible coarse triangulation.

16

Maubach’s d-dimensional Bisection Algorithm: Maubach [Mau95] extended Mit-
chell’s algorithm to arbitrary dimensions, in the sense that it also makes use of a special
ordering of vertices and chooses the bisection edge without computation or global com-
munication. In 2-dimensions, Maubach’s method is equivalent to Mitchell’s but with a
different vertex ordering. Even though it is applicable to any arbitrary compatible trian-
gulation in 2-dimensions, Maubach’s methodditlimensions can satisfy compatibility

only for special coarse simplicial meshes. Maubach has shown that the simplices can
be properly ordered and the method can be applied to a simpliciatyggdnerated by
reflections in &; x ... x k,, grid of d-cubes coveringu,, b1| X ... X [a,, b,| as described

in [Tod76], and in which each-cube is initially subdivided int@! congruent simplices.

In addition, any simplicial grid that results from applying a nonsingular mappirg ito

also acceptable as an initial partition, since this type of mapping does not affect the order
of the vertices. Maubach presented a mathematically rigorous analysis of the geometric
structure of this type ofl-dimensional simplicial meshes. Even though his method is
restrictive regarding initial meshes, his is one of the most well known refinement algo-
rithms. This is because cubic domains are widely used in many applications such as direct
volume rendering and isosurface extraction [ZCK97, GR99, GLE97], and multiresolution
terrain modeling [LKR 96, DWSf97, Paj98, Ger03].

In Maubach’s system, bisection is applied to each ofdismplices within each
d-cube, and is defined by the codeblock BisectSimplex shown in Figure 2.41" bet
described by its ordered sequence of vertiogsx, ..., Xs_1,Xq), and let/(T") define
the level of T" in the hierarchy, and, and7; denote the two children of. The coarse
simplices are at level O.

17

BisectSimpleil")
k «—d—¢(T) mod d,

z — 2(Xo + Xx);
T() — <X0,X1, o0 0o Wh—ilg Ze Wil o o o ,Xd>;
Ty — (Xqy ooy Xy 2, Xpet 1y - - -5 X)

UTy) — T) + 1,
o1) —oT)+ 1,

Figure 2.4: ProcedurBisectSimplex

To avoid incompatibilities, this basic bisection step is incorporated in a recursive
compatible refinement algorithm, which triggers the bisection of neighboring simplices
that share the bisected edge. Maubach proved a number of important properties of this

subdivision.
1. The subdivision pattern repeats itself on a smaller scale at évevgls.

2. The descendants of the same lemab(ulod) are congruent. Thus, exactlycon-

gruency classes are generated for a gfids described above.

3. For a compatibly refined mesh, two simplices are said tcolepatibly divisiblef
their next subdivision will bisect the same edgel’lfshares the edge @f that will
be bisected, then the following holds: Eiti€7") = ¢(7), or ¢(T") = ¢(T') — 1. In
the first casd” and7” are compatibly divisible, in the second c&sés compatibly

divisible with one of the children of”.

4. The recursive compatible refinement algorithm terminates due to item (3).

18

5. For an arbitrary unstructured mesh consisting\oti-simplices refined by Mau-

bach’s method, the number of congruency classes is bounded from ab2¥& by

2.2 Pointerless Representations and Neighbor Finding

As mentioned above, regular meshes can be represented with nested noeketare

the most straightforward method for representing meshes that are generated by recursive
application of a basic subdivision step, since trees can easily describe the nested structure
of these meshes. For example, the meshes based on bisection can be represented by a
binary forest regardless of the dimension. Each coarse simplex serves as a separate root
node. Each node in the tree corresponds to a simpiethe subdivision and the children

of the node associated withcorrespond to the two sub-simplices generated by bisection

of s. Another example is a 2-dimensional mesh generated by red refinement, which can
be represented with a forest of quaternary trees, similar to quadtrees. (These meshes are
also referred to as triangle quadtrees [LS00, DM02].)

To provide compatibility in tree-based representations, it is necessary to be able to
compute the neighbors of a simplex in order to guarantee that the neighbors splitting the
same edge are split simultaneously. Within the context of mesh extraction from multires-
olution representations, other methods such as error saturation have also been proposed
to provide compatibility without finding neighbors [ZCK97].)

An alternative representation that has been applied both in in 2- and 3-dimensions
within the context of multiresolution mesh representations is basddirented Acyclic

Graphs (DAG)[DMO02, GDL*02, LKR"96]. Consider for example, the 2-dimensional

19

case for the meshes generated by bisection. A pair of triangles that must be split simul-
taneously to provide compatibility are referred to agiamond(or acluster [DKPO3].

Each diamond is split into four triangles as shown in Figure 2.5 when the edge shared
by the two triangles of the diamond is bisectedDAG of diamondgor aDAG of vertex
dependencieas in [LKR™96]) is constructed such that the root corresponds to the ini-
tial subdivision of the square into 2 triangles, which itself is a diamond (as described in
Maubach’s method [Mau95]). Each node is a diamond and each arc represents a parent-
child relation such that parents of a nafecorrespond to those diamonds that have to be
split before the diamond associated with(because the splitting of parents creates the
triangles of N). In 2-dimensions, each node has exactly two parents and four children
except at the boundary cases. A portion of the described DAG is shown in Figure 2.6
[DMO2]. In higher dimensions as well, the number of children and parents are bounded,

but are more complicated to enumerate.

Figure 2.5: Two types of diamonds in 2-dimensional bisection-based mesh.

Explicit representation of trees and DAGs in general involve storing pointers to
children, parent(s) and possibly neighbors. Thus, we refer to thgroiater-basedep-
resentations. On the hand, there has been a considerable amount of researglcadn

or pointerlesgepresentations for regular meshes, where the geometry (e.g., the vertices)

20

SN
I

Figure 2.6: DAG representation corresponding to a 2-dimensional bisection-based mesh.

and the relationships (child, parent, neighbor) within the mesh are implicitly encoded,
but not stored. This not only leads to more compact data structures in general, but also
operations such as neighbor finding can be efficiently performed.

Pointerless versions of the quadtree and its variants have been long known. The
most well known of these representations islthear quadtreantroduced by Gargantini
[Gar82]. In a linear quadtree, each node is identified by a unique label cdibedtion
code which consists of two components: tepthof the node in the tree, and tipath
from the root to that node. The path is constructed by concatenating the two-bit patterns
corresponding to the child types, depending on the direction of the child within the parent
guadtree block (00, 01, 10, 11) for each node along the path from the root to the node.
Given the location code for a node, not only the codes for the parent and the children, but
also the codes for the neighbors can be determined. Schrack [Sch92] introduced efficient
neighbor finding methods in linear quadtrees by making use of bit operations. Equal sized

neighbors can be found in constant-time regardless of the depth of the node in tree.

21

These ideas initially developed for quadtrees later provided the basis for many la-
beling schemes and pointerless representations developed for simplicial decompositions

in 2- and 3-dimensions as described below.

Right Triangulated Irregular Networks(RTIN): ~ The RTIN approach by Evans, Kirk-
patrick and Townsend [EKTO1] introduces a hierarchical data structure for represent-
ing height fields to provide approximations of the terrain at different levels-of-detail. It
is based on a triangulation of the underlying two-dimensional space using right-angled
triangles. This subdivision is basically equivalent to the 2-dimensional special case of
Maubach’s bisection scheme, where the initial coarse triangles are obtained by subdivid-
ing the square domain into two triangles by adding one of the diagonals of the square.
The triangles are then recursively subdivided by connecting the right-angled vertex to
the midpoint of the hypotenuse. (This is equivalent to both the new-vertex-bisection and
the longest-edge bisection.) This hierarchy is also referred totaangle bintree To
avoid cracks on the approximating surface, a compatible triangulation is guaranteed by
propagationof splits in a way conceptually equivalent to Mitchell's method [Mit92].

The main focus of the paper is on developing efficient data structures for represent-
ing this binary tree of right triangles and fast neighbor finding. As illustrated in Figure 2.7
[EKTO1], each node (triangl&)in the hierarchy is labeled by the path code, which is con-
structed by concatenating the bit for the child type (0 for left child, 1 for right child) of
each node on the path from the rootttoThe (z,y) coordinates of the vertices of the
triangulation do not have to be stored, as they can be computed easily from the label of

the triangle. In addition, the representation is pointerless eliminating storage for the child

22

0 AN
<X
1 0/ g % \1
A <X
0110 0000 - o/ \1 o/ \1
0001 AN N LS
o/ \1

N

o/ \s
D

D

(a) (b)

Figure 2.7: (a) 2-dimensional bisection-based mesh (b) corresponding tree representation.

and parent pointers, and thus, it is space efficient. The nodes are stored in an array (as
linear quadtrees), and a node is accessed by indexing this array using the node’s label,
which is treated as the binary representation of an integer. Note that, the labels of the
children and parent of a node can be easily determined from the label of the node. The
height values associated with, y) coordinates are stored in a 2-dimensional array, since
the full resolution of vertices corresponds to a uniform grid. This is more efficient than
storing in each node the height value corresponding to the midpoint of its hypotenuse,
since the straightforward way would lead to storing each height value twice.

The other major focus of this paper is on providing an efficient neighbor finding
scheme applicable to this hierarchy. This is important since many algorithms applied on
terrains require traversing the approximation surface from one triangle to the adjacent one.

The neighbors of a triangle are defined such thattheighboris the one that shares the

23

edge opposite th&" vertex. First, they have provided a recursive function that returns the
label of thesame-sizeé-neighbor of a triangle given its label. After the same-size neighbor
is determined, the actuaineighbor (which may or may not be the same-size neighbor)
can be computed with a constant number of additional steps. The time complexity of the
recursive algorithm is proportional to the depth of the triangle. They have also shown
how these computations can be performed with a small number of arithmetic and bitwise

logical operations in constant-time, provided that the path code fits in a single word.

Multiresolution Visualization and Compression of Global Topographic Data: With-

in the context of describing a compressed multiresolution hierarchy of the same triangle
bintrees for height fields, Gerstner [Ger03] used similar methods to label triangles with
bitcodes and manipulate bitcodes to find neighbors for determining the shared refinement
vertex. In addition, an efficient mesh traversal scheme (corresponding to the depth-first
traversal) based on this triangle numbering is described. Triangles are classified into up-
and down-triangles, and a triangle’s type can be identified from its bitcode. An up-triangle
can only be followed by a triangle at the same level or one level higher. A down triangle
can only followed by a triangle at the same level or one level lower. Encadaygon the

same levelith 0 and achange of levelvith 1, the entire triangulation can be encoded by

a starting triangle and one bit per each of the other triangles. The multiresolution DEM
defined over this triangulation is stored in two one-dimensional arrays: one containing
the height values in the order they appear in the tree traversal (taking special care to avoid
duplicates), and one containing the bitcode of the triangulation. It is also shown how an

adaptive triangulation can be extracted from the compressed representation.

24

Navigating through triangle meshes implemented as linear quadtrees: Lee and
Samet [LS00] presented a pointerless representation of triangle quadtrees. They have
provided algorithms to navigate between neighboring triangles of greater or equal size
based on their location codes. For equal sized neighbors, the algorithms have worst-
case constant time complexity, since they require only a few bit manipulation operations.
The underlying surface is a sphere, which is approximated by an icosahedron whose 20
faces are equilateral triangles. (They have also considered octahedron and tetrahedron
approximations to the sphere.) Each triangular face is then recursively subdivided as in
red refinement of triangles generating a triangle quadtree for that face. Neighbor finding
algorithms work with the same time complexity within each triangle quadtree (associated
with a single face of the icosahedron), as well as for neighboring triangles that are in
different base triangles of the icosahedron.

The 20 faces of the icosahedron are labeled using a 6-bit code ranging from 0 to
19. Each triangle in the decomposition has one of two orientations, tip-up and tip-down
as shown in Figure 2.8 [LS00]. The children resulting from the subdivision use the bit
patterns given in the figure, that is each child concatenates the corresponding two-bits to

its parent’s path to construct its own path.

0000

0010

0001 0011
1001 1011
00 TN 0100 1010 1100
10 0110 1000 1110
01 1 00 0101 0111 1101 1111

(a) (b (c)

Figure 2.8: (a) tip-up (b) tip-down (c) triangle codes at depth 2.

25

First, they described how traditional neighbor finding as in quadtrees [Sam90a,
Sam92] can be generalized to triangle quadtrees. This algorithm computes a neighbor
of a triangleT" in three steps. In step 1, the nearest common ancesfolaofl its neigh-
bor in given direction (left, right or vertical) is located by determining its path. Step 2
updates the path by concatenating the two-bits corresponding to that child of the nearest
common ancestor that contains the neighbor. And, the last step updates the rest of the path
to point to the neighbor. A number of relationships are encoded in look-up tables, which
are then used in the algorithm. Next, they have explained how these operations can be
performed in constant time by using the carry property of addition (subtraction) without
searching the path code for the nearest common ancestor and updating the path code as
much as its length (i.e. the iterative process is replaced by a few arithmetic operations).
Note that the constant time complexity is based on the assumption that the path code fits
into a single machine word. Algorithms for finding left, right and vertical neighbors are
separately outlined and make use of bit masks to identify and alter bit positions depending
on the different cases.

Other labeling methods for the same collections of triangle quadtrees have been
proposed by Fekete [Fek90], and Goodchild and Shiren [GS92], but their neighbor finding

algorithms have worst-case complexity proportional to the maximum depth of the tree.

Constant-time neighbor finding in hierarchical tetrahedral meshes: Lee, De Flori-
ani and Samet [LDSO01] extended the idea of labeling nodes with their binary path code,
and constant-time neighbor finding techniques to regular hierarchical tetrahedral meshes

generated by bisection. The hierarchy is generated by applying the basic longest edge

26

bisection to a unit cube initially subdivided into six tetrahedra. (This is the 3-dimensional
instance of the refinement method described by Maubach.) They have introduced a par-
ticular vertex ordering that enables choosing the edge to be bisected without any compu-
tation by ensuring that the longest edge is always the one between the vertices numbered
3 and 4. The three different shapes of tetrahedra that can arise in this particular subdivi-
sion are called thé/2 pyramid,1/4 pyramidand1/8 pyramid providing a very intuitive
explanation to the geometry of the subdivision. Similar to the 2-dimensional approached
described above, the path from the root to a tetrahedron is used as its label. However, the
path does not consist entirely of binary digits; at the highest level the children are labeled
from O to 5 corresponding to the six coarse tetrahedra.

They have described methods to compute the same-size neighbors of a tetrahedron.
First, they have explained an algorithm that runs in time proportional to the length of
the code. It works by first locating the nearest common ancestor by scanning the path
code from right to left until the particular neighbor direction forces to pass a particular
face which is always the one shared by sibling nodes. (the parent of these siblings is
the nearest common ancestor.) Then, all that is needed is to invert the last bit to point
to the sibling. Thus, regardless of the neighbor type, only one bit need to be inverted.
This method is first described for tetrahedra within the same coarse tetrahedron, and then
extended to the entire cube. Next, they show for each type of neighbor, how this algorithm
can be implemented to run in constant-time by performing just a few bit manipulations.
Similar to [LS00], they use bit masks to identify certain bit patterns, and they make use
of the carry property of binary addition to determine which bit to invert.

Zhou et al. [ZCK97] described a multiresolution hierarchy of tetrahedra for visual-

27

izing regular volume data using the same underlying mesh described in [LDS01]. They
also represented the binary as an array, without storing any child or parent pointers. The

subdivision is performed using only vertex indices without use of actual coordinates.

Symbolic Local Refinement of Tetrahedral Grids: Hebert [Heb94] introduced a la-
beling scheme for 3-dimensional tetrahedral meshes, which are generated by Maubach’s
bisection algorithm. His scheme more directly encodes the geometry of the tetrahedra,
and also leads to symbolic algorithms to find same-size neighbors. It is based on the fact
that the local geometric structure repeats itself on a smaller scale at every three levels of
the hierarchy. Basically, each 3-level subtree rooted at feweln > 0 is a scaled copy
of the 3-level subtree rooted at level 0. Each tetrahedron can be described by a unique
expression of translations, permutations, rotations and scalings, which can be encoded
symbolically. This symbolic label of a tetrahedron consists of octal digits. The first three
octal digits consist of a permutation, reflection and descendant number that determine
the unique position of the tetrahedron within an initial 3-level subtree (rooted at level 0),
which repeats itself at levéim subject to a scaling by a factor ©f2™. The remaining
digits encode the location of tHattice origin of the tetrahedron, which is the center of
the smallest enclosing octree box that contains the tetrahedron, and is shared by all the
tetrahedra in the 3-level subtree.

The basic bisection step, the compatible refinement algorithm and neighbor find-
ing methods are described by symbolic algorithms manipulating these labels, and can be
performed with only integer and logical operations. No neighbor, child and parent links

need to be stored as the above methods. In addition, the vertices of a tetrahedron can be

28

computed by decoding its label, thus, the vertices need not be stored, either.

Neighbor finding methods enumerate different cases for different neighbor types,
and for different permutation, reflection and descendant numbers. Three of the four same-
size neighbors share the same lattice origin as they are within the same 3-level subtree,
hence, only the other three components of the label have to be computed for the neighbor.
This is done by following the decision tree based on all possible cases, and can also be
implemented efficiently by table-lookups. The remaining neighbor is outside the smallest
enclosing octree box, and could be arbitrarily far away. Thus, its lattice origin has to be
computed as well. In this paper, it is not described how this can be done efficiently but,
this possibly can be done in constant-time by bit manipulation.

Both the formulation of the labeling scheme and the neighbor-finding methods re-
quire use of tables and enumerations, which makes the method complicated. In fact,
using similar ideas, simpler formulations are possible. Our labeling method for arbi-
trary dimensions is conceptually a generalization of Hebert's 3-dimensional method, but
is formulated in a much simpler way. Hebert’'s neighbor finding methods, however are
not readily generalizable to higher dimensions. We provide neighbor finding methods in

arbitrary dimensions with a very compact representation and using very few special cases.

29

Chapter 3

Efficient Methods for Rendering

In this chapter, we survey methods for efficient rendering that are relevant to the work pre-
sented in this thesis. First, we focus on methods for accelerating ray-tracing in particular,
as well as methods for accelerating animations. Next, we discuss image-based rendering.

We will concentrate on light field methods due their relevance to the work of this thesis.

3.1 Ray-tracing Acceleration Techniques

Ray-tracing is among the most popular techniques for generating complex illumination
effects such as shadows, specular highlights, reflection and refraction. The standard Whit-
ted ray-tracer [Whi80] computes global illumination by simulating the path of light rays
through the scene. The image is generated by tracing a ray from the viewpoint through
each pixel on the image. The color of each pixel is calculated as follows. The viewing
ray is intersected with every object in the scene, and the point of intersection closest to
the ray origin is determined. The diffuse and specular components of the radiance at this

point are computed by a local illumination model, incorporating the contributions of each

30

visible light source. Then, the reflected and refracted rays are traced recursively, if they

exist, and their contributions are added to the local radiance.

light source
NP

(Y=
a \‘\5:\\shadowray

viewing ray

object

A

viewpoint image plane

Figure 3.1: Ray-tracer (Whitted)

Ray-tracing is a computationally intensive technique. A major expense lies in the
intersection calculations, particularly for scenes that contain complex objects, and in case
of multiple reflections and/or refractions. Early research concentrated on accelerating ray-

tracing by reducing the cost for intersection computations using the following methods.

Bounding Volume Hierarchies: In these methods [KK86, RW80], each object is en-
closed by a simpler volume such as a sphere or a box, allowing for a simpler inter-
section check. Only those rays that intersect the bounding volume are checked for
intersection with the object itself. If most of the rays do not pass close to the object,
this results in an overall gain in performance. Furthermore, bounding volumes can
be organized in hierarchies—a number of bounding volumes are enclosed by larger

31

ones—, and so, by a single intersection check, many objects can be eliminated from

further intersection checks.

Space Partitioning Techniques: The goal of space partitioning is the same as bounding
volume hierarchies, to focus only on a smaller percentage of the scene to determine
the closest intersection. However, space partitioning techniques work top-down by
subdividing the entire volume containing the scene into smaller volumes. Nonuni-
form data structures such as BSP-Trees [Kap85] and Octrees [Gla84], or uniform
decompositions such as 3-dimensional Grids [FT186] have been proposed to subdi-
vide the space. In these methods, the candidates for intersection are the objects that

lie in the subregions pierced by the ray.

Ray Coherence Techniques:Ray coherence, which is one of the key elements of our
work, is exploited by various ray tracing acceleration techniques as well. Ray co-
herence means that similar rays are likely to follow similar paths in the scene, and
so, they are likely to intersect same set of objects at similar points. Beam tracing
[HH84] and cone tracing [Ama84] rely on the assertion that, since a bundle of rays
follow a similar path, it is more efficient to trace them as a group rather than indi-
vidually. In cone tracing, Amanatides [Ama84] generalized rays to circular cones
represented by an apex, centerline and spread angle, and objects are intersected
with cones. To compute reflection/refraction of a cone, the new centerline is com-
puted by reflection/refraction of the centerline of the cone. Beam tracing represents
a collection of rays as a generalized cone with a polygonal cross-section. Objects in

the scene are assumed to be composed of polygonal facets, so that polygon-polygon

32

intersection suffices to compute beam-object intersections. Reflections preserve the
nature of beams, since reflection is a linear transformation on polygonal surfaces.
However, refraction is not linear, and is only approximated by a linear transforma-
tion. The ray classification algorithm proposed by Arvo and Kirk [AK87] is another
technique that exploits ray coherence. The entire ray space is a 5-dimensional hy-
percube. A hierarchical data structure, which is the 5-dimensional analog of an
octree, is built by recursively subdividing the ray space. Each hypercube in the
hierarchy represents a collection of rays originating from a 3-dimensional rectan-
gular volume, and directed through a 2D solid angle. Each leaf is associated with
a set of objects that are candidates for intersection with the collection of rays rep-
resented by the leaf. During rendering, each ray is mapped to the corresponding
5-dimensional point, the hypercube containing this point is located in the tree, and

only those objects in the candidate list of the hypercube are tested for intersection.

The design and cost analysis of data structures for ray-tracing has been of interest in

the field of computational geometry. This includes, for example, the work of Mitchell,

Mount and Suri on simple cover complexity [MMS97], the work of Aronov and Fortune

on low weight triangulations [AF99], cost prediction for ray shooting by Aronoarisi-

mann, Chang and Chiang [ABCC02, ABCCO03] and hierarchical uniform grids (HUG)

space partitioning data structure introduced by Cazals, Drettakis and Puech [CDP95]. In

a later study, Cazals and Puech compared uniform grids, recursive grids, and HUG for

ray-tracing, and demonstrated statistically that recursive grids and HUG outperform uni-

form grids for non-uniform distribution of scene objects [CP97].

33

Interactive Ray-tracing and Accelerating Animations: Recent research has focused

on interactive ray-tracing and accelerating animation sequences. This requires fast gen-
eration of ray-traced images from multiple viewpoints. Pagtal. accelerate rendering
relying on multiprocessor hardware [PM$0]. Their implementation is brute-force—it
explicitly traces rays through each pixel.

Some systems accelerate animation sequences by exploiting frame-to-frame coher-
ence. The mainidea s to reuse pixels from the previous frame by reprojection and only re-
compute or possibly refine the potentially incorrect pixels [AH95, Bad88]. In the method
described by Adelson and Hodges [AH95], the reference frame is completely ray-traced
and along with each sampled pixel, the 3-dimensional intersection point, surface normal
and diffuse color is stored. The method proceeds in three steps to generate a new frame.
The first step is toeprojectthe intersection points from the previous frame to the new po-
sition. If more than one sample from the previous frame is projected to the same pixel of
the new frame, the closest one to the viewpoint is chosen, and verified in the second step.
The second step is called tierificationphase. The projected points are checked for
self-occlusions. Back faces are identified using the dot product of the viewing vector and
the surface normal at the intersection. Since the method is restricted to convex objects,
it is guaranteed that parts with forward-facing normals are not subject to self-occlusions.
Then, the system checks for the points which were visible in the previous frame, but oc-
cluded in the new frame. These cases are determined by casting a ray from the viewpoint
to the intersection point, and checking for potential occluding objects along the ray. For
the points that became disoccluded in the new frame, standard ray-tracing is used. The
last stepenhancemeniadds the view-dependent shading phenomena. However, this is

34

achieved by casting arbitrary levels of reflection and refraction rays as in the standard
ray-tracer. Thus, this method introduces savings in time only for diffuse scenes.
Chapmanet al. [CCD91] described another method to accelerate generation of
animation sequences by computing@ntinuous intersectionf rays with a polygonal
scene given the trajectory of the viewpoint.
Walter et al. cache the results while rendering a frame and reproject previously
cached samples to approximate the current frame [WDP99]. Similarly, in Larson’s Holo-
deck system, rays are computed, cached and reused for subsequent frames by utilizing a

4-dimensional data structure [Lar98].

Interpolant Ray Tracer: The ray-tracing acceleration techniqgue most similar to our
work is the Interpolant Ray Tracer system described by Bala, Dorsey and Teller [BDT99].
In their system, they distinguish between visibility and shading components of the ray
tracer and accelerate them independently. Acceleration of shading is similar to our ap-
proach of accelerating intersection computations such that they make use of the fact that
radiance is a smoothly varying function over the ray space most of the time, and a sparse
set of samples can be interpolated to approximate radiance. Radiance samples are cached
in a 4-dimensional quadtree-based data structure, calledteee However, we differ

in that our data structure is designed to map rays to geometric attributes such as normals
and reflection rays rather than mapping rays to radiance, and we are primarily interested
in fast rendering of reflective and refractive objects from multiple viewpoints. Storing
and interpolating geometric attributes rather than radiance lets the object be represented

independent of the illumination and the geometry of the environment unlike their method.

35

Moreover, their quadrilinear interpolation requires that the ray trees of all sixteen samples
used for interpolation be identical to constitute a valid interpolant. This strong require-
ment reduces the number of cases where interpolation could be substituted for ray-tracing,
especially when there are many reflective and refractive objects in the scene. Instead, we
apply heuristics that would allow us to use interpolations in more cases while trading off
guality to some extent. In their system, the approximation error is conservatively bounded
at the expense of allowing only convex objects. We do not provide theoretical bounds.
But, in addition to simple convex objects, our system supports rendering bicubic patches.
They also accelerate visibility independently in case of multiple frames. Interpolants from
the previous frame are reprojected to the new viewpoint, and used to shade the pixels they
cover in the new frame. We have also investigated the use of compatible simplicial de-
compositions for subdividing the ray space. This has provided us with a simpler data

structure as well as continuous interpolations in contrast to theirs.

Hybrid Rendering: The idea of treating a reflective/refractive object as a local lens
object, which maps incoming rays to outgoing rays is used by Hakura and Snyder [HSO1].
In this respect their work is similar to ours, and was developed both independently and
concurrently with ours. They apply this basic approach in a different setting than ours.
Their method is based on partitioning local and distant geometry as in environment map-
ping. They combine ray-tracing of local geometry of reflective/refractive objects with
hardware supported environment maps to approximate distant geometry. A set of layered
environment maps are generated in pre-processing for each local object and over a num-

ber of viewpoints. At run time, they dynamically trace rays through vertices of the local

36

object and determine where the ray exits the object. This outgoing ray then is used to
access the appropriate environment map. Unlike ours, their system traces rays accurately

for each viewpoint; there is no ray parameterization or ray interpolation.

3.2 Image-Based Rendering

Image-Based Rendering (IBR) is a relatively new rendering paradigm, which supports fast
rendering of scenes from multiple viewpoints. A good survey can be found in [MG99].
These systems store a database of pre-rendered or pre-acquired images of a 3-dimensional
scene from a set of viewpoints, and use them to synthesize new views of the scene. The

main advantages of IBR are:

e the rendering time is independent of the geometrical complexity of the scene,

e the reference images can be of real scenes, eliminating the need for modeling com-

plex geometry and light effects.

Image-based rendering has some common elements with our work in the sense that both
methods rely on sampling and reconstruction of scenes to accelerate rendering from mul-

tiple viewpoints.

Image Reprojection and View Interpolation: By storing a depth (disparity) value
along with each pixel of the reference images, new images can be generated by reproject-
ing pixels from one or more reference images to the desired view [MB95]. This method
is calledimage warpingor image reprojection Depth information might be stored ex-

plicitly or is encoded implicitly in the form of correspondences between pairs of points in

37

different projections. The method described by Merkl. [MMB97] treats the reference
image as a mesh. They use 3-dimensional warping to perturb the vertices of the mesh.
The reconstruction in the new frame occurs by rendering the perturbed mesh triangles.
The pixel colors are linearly interpolated across the reconstructed mesh triangle. They
perform this warping from the two nearest reference images one at a time, and composite
the results.

The view interpolation method proposed by Chen and Williams [CW93] is a sim-
ilar approach to image reprojection, but instead of reprojecting one or more images to a
new view, new views are interpolated between reference images associated with nearby
viewpoints. This method, too, relies on pixel-to-pixel correspondences between each pair
of reference images.

An important challenge in these methods is handling gaps—when reprojecting im-
ages, surfaces that were not visible in the reference images might become visible. Chen
and Williams propose using multiple reference images to avoid gaps. Otherwise, they fill
the gaps by interpolating nearby pixels. Another novel way of solving this problem is
to useLayered Depth Images (LD[PGHS98]. An LDI stores with each pixel, multiple
color and depth information corresponding to all the surfaces intersected by the ray rather
than storing only the information about closest intersection.

Most of these image-based methods using image reprojection cannot handle non-
diffuse phenomena such as specular highlights and reflection, since they assume that every

point in the scene will have the same color when viewed from different directions.

38

Lumigraph and Light Field Rendering: Among the IBR methods, the most relevant

to our work is the Lumigraph [GGSC96] and Light Field Rendering (LFR) [LH96] tech-
niques. Both systems are based on dense sampling pfeheptic functiofAB91]. The
plenoptic function is a 5-dimensional quantity describing the flow of light at every posi-
tion (x,y, z) for every direction(d, ¢). By considering only the light leaving a bounded
object (or scene), the domain of the plenoptic function can be reduced to 4-dimensional,
since the radiance along a ray is constant. The Lumigraph and Light Field techniques
capture and represent the plenoptic function in a bounded environment, and use this infor-
mation to render new images of the environment from an arbitrary viewpoint. However,
the viewpoint is restricted to lie outside the enclosed environment.

We will explain only the Lumigraph here, since Light Field Rendering is very sim-
ilar. The 4-dimensional plenoptic function is discretized by means of a data structure
called a Lumigraph. The scene is enclosed within a cube for simplicity. The surface of
the cube holds all the radiance information of the scene. At any point in space, the radi-
ance along any ray in any direction can be determined by tracing the ray to the surface of
the cube, assuming the empty space outside the cube does not alter the radiance.

Rays are parameterized by the so-cati@d-plane parameterizationTo conform
to the 4-dimensional representation of the plenoptic function, each ray is represented by
its intersection points with two parallel planes, hence a 4-dimensional quantity. The first
plane is actually the cube face with axes labeled@sdz. The direction is parameterized
by a second plane parallel to the first plane, with axes labeledasslv. Thus, a point
(s,t,u,v) in the Lumigraph corresponds to a ray intersecting the first plafe atand
the second atu, v). See Figure 3.2(a) [GGSC96].

39

Figure 3.2: Two-plane parameterization

During preprocessing, the data structure is built by sampling the 4-dimensional
Lumigraph function by uniformly subdividing in all four dimensions resulting in a regular
grid structure on both planes. See Figure 3.2(b). The associated radiance value is stored
associated with each grid point. One way of viewing a Lumigraph is as a 2D array of
images with viewpoints on a regular grid of thieplane. The image associated with each
(s,t) pointis referred to as thev image

It is easy to see how to get samples into the Lumigraph from an arbitrary image and
how to reconstruct a new image from the Lumigraph. For any image, when the viewpoint
and the pixel location is fixed, a ray is associated with each pixel—originating from the
viewpoint and passing through the pixel. Lett, u, v) be the parameterization of this ray.
Given an input image, the value to be stored at the locdtioh u, v) of the Lumigraph
is the color of the image at the pixel intersected by the ray parameterizedtas, v).

On the other hand, given a Lumigraph, a pixel on a new image that is associated with the
ray (s,t,u,v), can be constructed by using the value of the Lumigraph function at this

parameter value.

40

The radiance along any ray from any viewpoint is interpolated from the radiance
values from the nearest sixteen samples as follows. Each ray passes through a grid cell on
the st plane, and a grid cell on thev plane. Since each grid cell is bounded by four grid
points, there are sixteen nearby radiance samples corresponding to the rays from each
of the four (s,) grid points to each of the fout, v) points. The sixteen samples are
guadrilinearly interpolated to give an approximate radiance for the query ray.

Gortler et al. [GGSC96] describe a texture-mapping-based rendering to perform
the reconstruction of image with hardware acceleration. ®khemages associated with
the (s, ¢) points are used as textures and the process of blending textures to approximate
guadrilinear interpolation is described in detail.

To handle complex effects such as reflection, refraction and specular highlights
with reasonable quality, these methods should sample very densely. The Lumigraph and
LFR are simpler and considered closest to pure image-based rendering, since they do
not require additional information like depth or optical flow. However, since they rely
on dense sampling, they require very large amounts of storage. This is partly because
of oversampling in the regions where radiance is smooth due to the fixed sampling rate.
Compression mechanisms are proposed in both [GGSC96] and [LH96], however, this
introduces additional overhead of decompression when rendering from the Lumigraph.

Schirmachert al. [SHS99] proposed adaptive acquisition of images for Lumi-
graphs, by optimizing the set of viewpoints with respect to the quality of image recon-
struction using the images from these viewpoints. This is achieved lap@aori error
estimate predicting the gain in reconstruction quality when adding a new viewpoint to
the Lumigraph data structure. However, this estimate requires using geometric informa-

41

tion. When a new candidate viewpoint is to be rendered, they warp the nearest already
acquired images to the candidate point, and estimate the resulting error of object visibility
and color. By this error estimate, they decide how accurately the image for a viewpoint
could be reconstructed by warping. If it is accurate enough, there is no need to add the
new viewpoint to the database. Their algorithm constructs an adaptive mesh of already
sampled viewpoints, predicts the gain of adding new viewpoint at each edge and chooses
to split the edge with the greatest gain.

As opposed to adaptive Lumigraphs, Camalko#l. [CLF98] argue that uniformly
sampled Lumigraphs are advantageous. Since the two plane parameterization proposed in
[GGSC96] and [LH96] used different arrangements of pairs of planes, when the camera
crosses the boundary of two plane-pairs, there could be noticeable artifacts. To remedy
this, they propose two uniform sampling strategies referred to as the two-sphere (2SP) and
sphere-plane (SPP) parametrizations. An additional advantage is that uniform sampling
is essential for compression techniques like Fourier transforms.

For the 2SP parameterization, rays are represented by their two intersection points
(s,t) and(u,v) with two overlapping spheres. The object is enclosed by a tight sphere
and the sphere surface is subdivided into nearly equilateral triangles, called patches. One
light field sample is stored for each ordered pair of patches. For the SPP parameterization,
aray is defined by a normal directiof#, ¢) specifying a plane which passes through the
center of the sphere, and by some pdintv) on that plane. Both the normal and the
point are sampled from a uniform distribution.

Sloanet al. [SCG97] considered a number of methods to improve the performance
of lumigraph rendering trading off quality for time. The main motivation is to limit the

42

number of images used for the reconstruction of a new image due to limited texture mem-
ory and main memory. Their methods fall into two categories, those that use a smaller set
of textures than a full rendering, and a method that uses the current reconstructed image
as a new texture itself for subsequent nearby frames. They organize the viewpoints in an
adaptive triangle mesh. New viewpoints (their associateonages) are brought in, and
unused ones are deleted using a benefit/cost model.

Heidrichet al. [HLCS99] proposed a light field method focusing on rendering re-
fractive objects. Basically, they use the Lumigraph data structure with all methodologies
developed in [GGSC96], but, the RGB color triplet associated with each grid point is re-
placed with four numbers representing the direction component of a refraction ray. This
refraction ray is then used to access a static environment map, ignoring local effects fur-
ther from the object, or to access another light field. Their method has similarities to ours
in that they associate refraction rays with samples. However, since their system is built
on a lumigraph/light field structure, it relies on uniform dense sampling of the rays for
capturing clear object boundaries and handling discontinuities. This results in the main
problem with the light field methods, large storage requirements. Our method, on the
other hand, samples rays adaptively and applies a variety of heuristics to achieve high
quality discontinuity rendering at lower sampling rates. Their method rely on static large
structures built in a costly preprocessing phase, whereas our focus is on building dynamic
structures with caching—avoiding the preprocessing step and sampling rays on demand.
Moreover, we sample and interpolate normal vectors and intersection points in order to
compute the diffuse and specular components of shading. Our methods apply to a general
framework of ray-tracing.

43

Lischinski and Rappoport use LDIs to render both view-independent (geometry and
diffuse shading) and view-independent (specular highlights, reflections) scene informa-
tion from new viewpoints [LR98]. Their method is an integration of the Image-Based
Rendering and Light Field methods. All view-independent scene information is rep-
resented using three orthogonal high resolution LDI's—calledldlyered depth cube
(LDC). The view-dependent information is represented as a separate and larger collection
of low resolution LDIs corresponding to various directions—calledalyered light field
(LLF). Each sample in the LLF contains, in addition to its depth, the total radiance leaving
the scene sample in the direction of projection. Thus, each of the LDIs samples the light
field along oriented lines parallel to the direction of projection. Lischinski and Rappoport
describe a rendering algorithm to combine these two components. Rendering proceeds in
two stages: In the first stagepaimary imageis constructed by applying 3-dimensional
warping to view-independent LDIs similar to the method described in [SGHS98]. In the
second stage, first the specular component is computed by simply evaluating the local
shading model for each visible light source. Then, the reflections are computed by either

of the two methods:

e light field gather: In this technique, the light field is reconstructed from the LLF.
To determine the view-dependent radiance leaving the point of interest in a certain
direction, first, the incoming radiance from each direction in the LLF is computed
by interpolation of nearby samples. Then, the BRDF at that point is used to weigh

each incoming radiance, and compute the outgoing radiance.

e image-based ray-tracinglhis method traces rays through the LLF.

44

Light field gather is good for glossy objects with fuzzy reflections, but not for perfect
mirror reflections. Ray-tracing is used for such cases. Lischinski and Rappoport’s method

is a nice combination of different techniques, but is computationally expensive.

45

Chapter 4

The Ray Interpolant Tree for Efficient Ray-tracing

4.1 Introduction

There is a growing interest in algorithms and data structures that combine elements of
discrete algorithm design with continuous mathematics. This is particularly true in com-
puter graphics. Consider for example the process of generating a photo-realistic image.
The most popular method for doing thisray-tracing[Gla89a]. Ray-tracing models the

light emitted from light sources as traveling along rays in 3-space. The color of a pixel in
the image is a reconstruction of the intensity of light traveling along various rays that are
emitted from a light source, transmitted and reflected among the objects in the scene, and
eventually entering the viewer’s eye.

There are many different methods for mapping this approach into an algorithm. At
an abstract level, all ray-tracers involve forming an image by combining various continu-
ous quantities, aattributes that have been generated from a discrete set of sampled rays.
These continuous attributes include color, radiance, surface normals, and reflection and

refraction vectors. These attributes vary continuously either as a function of the location

46

on the surface of an object or as a function of the location of the viewer and the locations
of the various light sources in 3-space. The reconstruction process involves combining
various discretely sampled attributes in the context of some illumination model.

Producing images by ray-tracing is a computationally intensive process. The degree
of realism in the final image depends on a number of factors, including the density and
number of samples that are used to compute a pixel’s intensity and the fidelity of the
illumination model to the physics of illumination. Scenes can involve hundreds of light
sources and from thousands to millions of objects, often represented as smooth surfaces,
including implicit surfaces [Blo97], subdivision surfaces [ZSS96], a®zi8 surfaces
and NURBS [FvDFH90]. Reflective and transparent objects cause rays to be reflected and
refracted, further increasing the numbers of rays that need to be traced. In traditional ray-
tracing solutions, each ray is traced through the scene as needed to compute the intensity
of a pixel in the image [Gla89a]. To achieve smoothness and avoid problems with aliasing,
many rays may be shot for each pixel. A high resolution rendering can easily involve
shooting on the order of hundreds of millions of rays. Much of the computational effort
involves determining the first object that is intersected by each ray and the location that
the ray hits.

In this chapter, we propose an approach to help accelerate this process by reducing
the number of intersection calculations. Our algorithm facilitates fast, approximate ren-
dering of a scene from any viewpoint, and is also useful when the scene is rendered from
multiple viewpoints, as arises in computing animations. Rather than tracing each input
ray to compute the required attributes, we collect and store a relatively sparseaet-of

pled raysand associate a number of continuous geometric attributes with each sample in

47

a fast data structure. We can then use inexpenstegpolationmethods to approximate

the value of these sampled quantities for other input rays. Using an adaptive strategy, it is
possible to avoid oversampling in smooth areas while providing sufficiently dense sam-
pling in regions of high variation. We dynamically maintainacheof the most recently
generated samples, in order to reduce the space requirements of the data structure.

The information associated with a given ray is indexed according to the directed line
that supports the ray, which in turn is modeled as a point in a 4-dimendioaapace
The idea of associating radiance information with points in line space has a considerable
history, dating back to work in the 1930’s by Gershun on vector irradiance fields [Ger39]
and Moon and Spencer’s concept of photic fields [MS81], and more recently Light Fields
introduced by Levoy and Hanrahan [LH96] and the Lumigraph introduced by Gortler, et
al. [GGSC96].

Our notion is more general than the Light Fields and the Lumigraph because we
consider interpolation of any continuous information, not just radiance. Most methods for
storing light field information in computer graphics are based on discretizing the space
into uniform grids. In contrast, we sample rays adaptively, concentrating more samples
in regions where the variation in attribute values are higher. In addition, both Light Fields
and the Lumigraph sample the entire space of rays in a pre-processing step, which result
in high pre-processing times as well as very high space requirements. We, on the other
hand, fill our data structure on-demand, that is, we generate samples only when they are
needed by some interpolation.

The most closely related work to ours is the Interpolant Ray-tracer system intro-
duced by Bala, Dorsey, and Teller [BDT99], which combines adaptive sampliraglof

48

anceinformation and interpolation for rendering convex objects. Our method generalizes
theirs by storing and interpolating not only radiance information but other sorts of con-
tinuous information, which may be relevant to the rendering process. In particular, we
store and interpolate information such as normal vectors, intersection points, reflection
and refraction rays. Unlike radiance interpolants [BDT99], our method allows the objects
to be represented independent of the illumination and the geometry of the environment.
In Section 4.6.5 we demonstrate the value of our approach. We also allow nonconvex
objects. Unlike their method, however, we do not provide guarantees on the worst-case

approximation error.

4.1.1 Design Issues

The approach of computing a sparse set of sample rays and interpolating the results of
ray shooting is most useful for rendering smooth objects that are reflective or transpar-
ent, for rendering animations when the viewpoint varies smoothly, and for generating
high-resolution images and/or antialiased images generated by supersampling [Gla89a]
in which multiple rays are shot for each pixel of the image.

Although we have motivated our approach from the perspective of ray-tracing, there
are a number of applications having to do with lines in 3-space that can benefit from this
general approach. To illustrate this, in addition to ray-tracing, we have studied another
application involving volume visualization with applications in medical imaging for radi-
ation therapy.

There are a number of issues that arise in engineering a practical data structure for

interpolation in line space. These include the following.

49

How and where to sample rays?Regions of space where continuous information varies

more rapidly need to be sampled with higher density than regions that vary smoothly.

Whether to interpolate? In the neighborhood of a discontinuity, the number of rays that
may need to be sampled to produce reasonable results may be unacceptably high.
Because the human eye is very sensitive to discontinuities near edges and silhou-
ettes, it is often wise to avoid interpolating across discontinuities. This raises the
guestion of how to detect discontinuities. When they are detected, is it still possible

to interpolate or should we avoid interpolation and use standard ray-tracing instead?

How many samples to maintain? Even for reasonably smooth scenes, the number of
sampled rays that would need to be stored for an accurate reconstruction runs well
into millions. For this reason, weachethe results of only the most relevant rays.

What are the space-time tradeoffs involved with this approach?

In the sequel, we investigate these and other questions in the context of a number of

experiments based on the applications mentioned above.

4.2 Mapping Rays to Geometric Attributes and Ray Coherence

We can distinguish two major components in a ray-tracegedmetric componenivhich

is responsible for calculating the closest visible object point along a specific ray, and other
geometric attributes such as the surface normal at that point, ahdding component
which computes the color of that point. Our approach primarily aims to accelerate the

geometric component.

50

The key idea of our method is that each object can be modeled abstractly as a
function f that maps input rays to a set of geometric attributes that are used in color
and shading computation. These attributes depend on the object’s surface reflectance
properties. For objects whose surfaces are neither reflective nor transparent, denoted
simple surfacesthe function returns the point of intersection and the surface normal at
this point. For objects whose surfaces are either reflective or transparent, the function
additionally returns thexit ray, that is, the reflected or refracted ray, respectively, that
leaves the object’s surface after a number of reflections or refractions, respectively. The
exit ray Is represented by its origin, tegit point and directionaéxit vector In general,
objects that are both reflective and refractive could be handled by associating multiple
exit rays with an input ray, but our implementation currently does not support this. These

guantities are depicted in Figure 4.1 and the function is described schematically below.

For simple surfaces: f : Ray— {Normal IntersectionPoirjt

Otherwise: f : Ray— {Normal, IntersectionPoint, ExitPoirExitVector}
exit vector
))) intersection point
intersection point
normal
normal f
input ray f
input ray
Simple Object Refractive Object

Figure 4.1: Geometric attributes.

We refer to the combination of the underlined attributes asotitput ray The
output ray serves as thkeyof the entire set of attributes, and has a special function in the
construction and use of the data structure. Basicallydib&ancebetween two attribute

51

sets is defined to be thdistancebetween their output rays. This distance is used in
adaptive subdivision of the data structure as will be explained later.

For many real world objects that have large smooth surfatesexpected to vary
smoothly. In the context of ray-tracing, this is referred torag coherence Nearby
rays follow similar paths, hit nearby points having similar normal vectors, and hence are
subject to similar reflections and/or refractions.

In the neighborhood of discontinuities, however, nearby input rays may follow quite
different paths. We use additional heuristics to permit interpolation when the parts of an
interpolant lie on different sides of a discontinuity. While avoiding interpolation across
the discontinuity boundary, we still interpolate on either side. In cases where we cannot
find sufficient evidence to interpolate, we perform ray-tracing instead.

In a traditional ray-tracer, each object is associated with a procedure that computes
intersections between rays and this object. For objects whose ray-object intersection com-
putations are expensive (such aszier surfaces) and boundaries are sufficiently smooth,
we replace this intersection procedure with a data structure, which will be introduced in

Section 4.3. This data structure approximates the fungtitmough interpolation.

4.3 The Ray Interpolant Tree

In this section we introduce the main data structure used in our algorithnRltlree
or ray interpolant tree A RI-tree is associated with a singbbdjectof the scene, where
an object is loosely defined to be a collection of logically related surfaces. The object

is enclosed by an axis-aligned bounding box. The data structure stores the geometric

52

attributes associated with some set of sampled rays, which may originate from any point

in space and intersect the object’s bounding box.

4.3.1 Parameterizing Rays as Points

In ray-tracing implementations, a common way to represent a ray is by its origin and
unit-length directional vector. Since two spherical angles are sufficient to define a unique
direction vector, geometrically a ray has only five degrees of freedom. Thus, a ray in
3-space can be represented as a point in a 5-dimensional space. For the most part, it is
possible to achieve a reduction in the dimension of the space by representing a ray by a
directed line.

Consequently, we model each ray by the directed line that contains the ray. Directed
lines can be represented as a point lying on a 4-dimensional manifold in 5-dimensional
projective space using itker coordinates [Som34], but we will adopt a simpler and pop-
ular representation, called tiwo-plane parameterizatiofBDT99, GGSC96, LH96]. A
directed line is first classified into one of 6 different classes (correspondinglané
pairs) according to the line’sominant direction The dominant direction is defined to be
the axis corresponding to the largest coordinate of the line’s directional vector and its sign.
(Ties may be broken arbitrarily.) These classes are denefed- X, +Y, —-Y, +7, — 7.

The directed line is then represented by its two intercépty and (u, v) with the front
planeandback planerespectively, that are orthogonal to the dominant direction and coin-
ciding with the object’s bounding box. To define the planes, the corresponding bounding
box faces are extended on both sides by the distance between the two planes, so that a

ray R with dominant direction/ intersects both planes of the plane-pair corresponding

53

to the dominant directiod. For example, as shown in Figure 4.2, rdywith dominant
direction+X first intersects the front plane of theX plane pair afs, ¢), and then the
back plane atu, v), and hence is parameterized as a 4-typlé, u,v). Thus, each ray

is represented by a 4-dimensional point. Note that;theand— X dominant directions
involve the same plane pair but differ in the distinction between the front and back planes.
It is easy to see that if the bounding box has widtlfalongx), heighth (alongy) and
depthd (alongz), then a ray that intersects the bounding box and whose dominant direc-
tion is +X intersects the front and back planes through two parallel rectangles of height

h + 2w and depthi 4+ 2w. (See Figure 4.2 [BDT99].)

A

Front Plane Back Plane_~|+
X e S adl

g

| o | &

'h D+

| :c
L~ | |
el .
e

Figure 4.2: The two-plane parameterization of directed lines. The +X plane pair is shown.

4.3.2 The Structure of the RI-tree

The RI-tree is a binary tree based on a recursive subdivision of the 4-dimensional space of

directed lines. It consists of six separate 4-dimensional kd-trees [Ben75, Sam90b] one for

54

each of the six dominant directions. The root of each kd-tree is a 4-dimensional hypercube
in line space containing all rays that are associated with the corresponding plane pair. The
16 corner points of the hypercube represent the 16 rays from each of the four corners of
the front plane to the each of the four corners of the back plane. Each node in this data
structure is associated with a 4-dimensional hyperrectangle, catledl &he 16 corner

points of a leaf cell constitute the ray samples, which form the basis of our interpolation.
When the leaf cell is constructed, these 16 rays are traced and the associated geometric

attributes are stored in the leaf.

4.3.3 Adaptive Subdivision and Cache Structure

The RI-tree grows and shrinks dynamically based on demand. Initially, only the root cell
is built by sampling its 16 corner rays. A leaf cell is is subdivided by placing a cut-plane
at the midpoint orthogonal to the coordinate axis with the longest length. In terms of the
plane pair, this corresponds to dividing the corresponding front or back plane through the
midpoint of the longer side. We partition the existing 16 corner samples between the two
children, and sample eight new corner rays that are shared between the two child cells.
These new rays are illustrated in Figure 4.3 in the case thai-&heés is split. For this
case, front planes corresponding to the child cells are the split halves of the front plane of
the parent, but back plane corresponding to the child cells is the same as the parent.
Note that most of the corner points in the subdivision, that is, most of the sample
rays, are shared by more than one cell. Thus, we have to be careful not to sample the
same ray more than once in order to keep the cost of sampling as low as possible. For

rays shared between a parent and its children, or rays shared by two siblings, this can

55

v Back plane

front plane
of left child
S+

¢ S front plane
L 2" N~ of right child
5

Front plane of parent

Figure 4.3: Subdivision along s-axis.

be easily be done by careful implementation. However, for those rays that are shared by
neighboring cells which are arbitrarily far away in the tree, additional care has to be taken.
For this purpose, we use a hash-table of rays, which is indexed by the 4-dimensional
representation of the ray. One hash-table per plane-pair is used. The average search time
to determine whether aray is already sampled or not is constant, as supported by empirical
evidence.

Rays need to be sampled more densely in some regions than others, for example, in
regions where geometric attributes have greater variation. For this reason, the subdivision
is carried out adaptively based on the distance between output attributes. The distance
between two sets of output attributes are defined as the distance between their associated
output rays. We define thdistancebetween two rays to be thg, distance between their
4-dimensional representations. We determine whether a cell should be subdivided based
on the error of approximation corresponding to the midpoint of the cell. We first compute
the correct output ray associated with the midpoint of the cell, and then we compute
an approximate output ray by interpolation of the 16 corner rays for the same point. If

the distance between these two output rays is smaller than a given user-dieftaade

56

threshold we decide that the output attributes for any input ray that fall in that cell can be
approximated with an acceptably low error by interpolation of the sixteen corner rays, and
we stop subdividing. Otherwise, the cell is subdivided into two equal-sized children. We
also impose an upper limit on the tree depth to prevent the tree from growing excessively
at discontinuity regions. A cell can be subdivided only when the depth of the cell in the
tree is less than a user-defingelpth constraintWhen subdivision is not required due to

the error evaluation described above or not allowed due to the depth constraint, the leaf is
marked aginal.

If we were to expand all nodes in the tree until they are final, the resulting data
structure could be very large, depending on the distance threshold and the depth con-
straint. For this reason, we only expand a node to a final leaf if this leaf node is needed
for some interpolation. Once a final leaf node is used, it is marked with a time stamp. If
the size of the data structure exceeds a user-defiaehke sizethen the the tree is pruned
to a constant fraction of this size by removing all but the most recently used nodes. In this

way, the RI-tree behaves much like an LRU-cache.

Comment on the depth constraint: An absolute bound on the maximum tree depth is a
rather unnatural parameter. Itis, however, possible to infer this value based on some more
geometrically natural parameters. For example, consider insteady@ar similarity
constraint 6, which bounds the maximum angle between any two input rays that fall
within the same leaf cell. In other words, if the angle between any two input rays that lie
within the same leaf cell of the subdivision is at méghen these samples are sufficiently

close to one another that further subdivision is not required.

57

Let us illustrate how to compute the tree depth constraint ffortMe assume for
simplicity that the object has been enclosed within a bounding cube. Since angles are not
affected by uniform scaling, we may assume that this is a unit cube. It follows from our
parameterization, that for each of the dominant directions, it suffices to consider rays that
intersect a pair of parallel squares lying on the front and back planes for this direction,
whose side lengths are 3 units. (Consider Figure 4.2 in thewaseé:r = d = 1.) Now,
consider any leaf cell of the associated tree for this direction. Such a cell corresponds to
the set of rays passing through two rectangular faces, one on each of these two parallel
squares. Since the sides of each rectangle are alternatingly split along the side of max-
imum length, the worst case arises when both sides of these faces are of equal length,
sayr. (See Figure 4.4.) Among the 16 corner rays sampled for any face pair, it can be
shown that the maximum angle occurs between the cross diagonals of two faces that are
aligned orthogonally opposite one another, that is, so that the line connecting the cen-
ters of these two faces is orthogonal to both faces. This follows from Lemma 4.3.1 and
Lemma 4.3.2 presented below. In this case, the diagonals are of equal length and intersect
at their midpoints, from which we have

0 7“\/5/2
- = T = 2
tan 5 /2 V2,

And so,r = (tan(6/2))/v/2. Since four splits are required to halve the side length of
a cell, and the initial (root) face is of side length 3, it follows that the maximum depth

constraint, as a function of the angular similarity constraint, is

depthf) = 41g§ = 4lg 3v2 = 4lg (3\/500’5 g),
r

0
tan 5

wherelg denotes logarithm base 2.

58

Figure 4.4: Maximum angle is achieved by the cross diagonals of orthogonally opposing

faces.

We set a fixed depth constraints in our experiments, but this formulation in terms
of an angular similarity constraint would be a more appropriate parameter for software

design purposes.

Lemma 4.3.1 LetS; and S; denote two parallel squares of side-lengtthat are sepa-
rated by an orthogonal distance of 1 unit. DétS;, Sz) = {vs — v1|v; € Sy, 02 € Sa},
denoting the set of direction vectors corresponding to all possible directed lines from
S; to S;. Let ©O(R, R2) denote the angle between two direction vectBrisand R;.

VR, Rs € V(S1,82), O(R1, R2) is maximized whe®,; andR, correspond to the cross

diagonals betwee&; andsSs;.

Proof: Let u denote a unit-length vector orthogonalfpands,, and is directed frons;
towardssS,. Let O, denote the center &, and letO, = O; + u. In addition, letP; and

P, denote two-dimensional vectors defined as

7)1:?11—017 7)2:?12—(92-

59

This means thaP; andP, are vector representations of points®nandsS, respectively,

with respect to the origin®; andO, respectively. Then,

V(Sl,SQ) = {U + Py — P1|7D1 € Sl,Pz € 82}

Note thatV(S;,Ss) is the set of direction vectors corresponding to all possible directed
lines fromS; to S;. Now, consider the set of directed lines that pass thraQgim all
possible directions representedB§S;, S). Let this set be denoteéd(O,). Then the set

of intercepts of the lines iw(O;) with the plane ofS; is

= {O14+Uu+P,—Pi|P1 €51, Py €S}

= 0+ (85168,)
This corresponds to the Minkowski difference of two planar squares of side-lenttit
is a square of side-lengthr, and is coplanar witks,. Let this square be denoted &s.
Thus,V(0,) is the set of lines which are directed frafh to any point onS,,,.

Since the set of direction vectors represented/§§;, S,) is equal to the set of
direction vectors represented B} O;), maximum angle between any two vectors in
V(S1,S,) is equal to the maximum angle between any two directed lin@g @). The
angle between any two directed linesWQ;) is maximized when their corresponding
intercepts withS,, are furthest from each other. This corresponds to the case when the
two intercepts are at opposite corners of a diagond,of Let R, andR, denote those
directed lines as shown in Figure 4.5. The direction vectof® 0dndR, correspond to

those inV(S;, S,) that are associated with the cross diagonals betWeamds, . O

Lemma 4.3.2 LetS; and S, be equal length parallel segments of lengtlying on par-
allel planes that are separated by an orthogonal distance wfit. LetO(S;, S,) denote

60

O

Figure 4.5: Minkowski difference of two planar squares of side-length

the angle between the cross diagonals that are directed 8poin S,. Then

O(81,Sy) < 2arctan(r).

and the maximum angle is achieved when the two segments are aligned orthogonally

opposite one another.

Proof: Consider the parallelogram generated by connecting the endpoints of the two
segments as depicted in Figure 4.6(a). The height of such a parallelogram with base
is always greater than or equal to 1. Thus, The height of the shaded triangle is greater
than or equal to 1/2. Now, consider an isosceles triaAdglef height 1/2 and base,

and its circumcircle as shown Figure 4.6(b). k&t denote the angle opposite the base.

©; = 2arctan(r). Any other triangle of height 1/2 and the same baseas7 has its

apex vertex outside the circumcircle Bt Thus, its angle opposite the base is smaller
than©,. For example, in Figure 4.6(b}; > ©, > O3. The shaded triangle of the
parallegram could coincide with the isosceles triariglenly when the two segments are

61

DO =

(a (b)

Figure 4.6: Maximum angle between the cross diagonals of two equal length parallel seg-

ments is achieved when the two segments are aligned orthogonally opposite one another.

aligned orthogonally opposite one another, in which €268, S;) = ©; = 2 arctan(r).
If the segments are not aligned, the height of the shaded triangle is greater than 1/2, thus

O(81,8,) < ©1 = 2arctan(r) . 0

4.4 Rendering and Interpolation Queries

Recall that our goal is to use interpolation between sampled output rays whenever things
are sufficiently smooth. RI-tree can be used to perform a number of functions in ren-
dering, including determining the first object that a ray hits, computing the reflection or
refraction (exit) ray for nonsimple objects, and answering visibility queries, which are
used for example to determine whether a point is visible to a light source or in a shadow.
Let us consider the interpolation of a given input Ry We first mapR to the
associated point in the 4-dimensional directed line space and, depending on the dominant

direction of this line, we find the leaf cell of the appropriate kd-tree through a standard

62

descent. Since the nodes of the tree are constructed only as needed, it is poss®le that
will reside in a leaf that is not marked &gal. This means that this particular leaf has
not completed its recursive subdivision. In this case, the leaf is subdivided recursively,
along the path? would follow, until the termination condition is satisfied, and the final
leaf containingR is now marked afinal. (Other leaves generated by this process are not
so marked.)

Given the final leaf cell containing, the output attributes foR can now be inter-
polated. Interpolation proceeds in two steps. First we group the rays in groups of four,
which we call thedirectional groups Rays in the same group originate from the same
corner point on the front plane, and pass through each of the four corners of the back
plane. (For example, Figure 4.7 shows the rays that originate from the north-east corner
of the front plane.) Within each directional group, bilinear interpolation with respect to
the (u, v) coordinates is performed to compute intermediate output attributes. The outputs
of these interpolations are then bilinearly interpolated with respect {athecoordinates

to get the output attributes f@t. Thus, this is essentially a quadrilinear interpolation.

front plane

Figure 4.7: Sampled rays within a directional group.

63

4.5 Handling Discontinuities and Regions of High Curvature

Through the use of interpolation, we can greatly reduce the number of ray samples that
would otherwise be needed to render a smooth surface. However, if the ray-output func-
tion f contains discontinuities, as may occur at the edges and the outer silhouettes of the
object, then we will observe bleeding of colors across these edges. This could be remedied
by building a deeper tree, which might involve sampling of rays up to pixel resolution in
the discontinuity regions. This could result in unacceptably high memory requirements.
Instead our approach will be to detect and classify discontinuity regions. In some cases
we apply a more sophisticated interpolation. Otherwise we do not interpolate and instead

simply revert to ray-tracing.

4.5.1 Grouping Samples in Equivalence Classes

Our objects are specified as a collection of smooth surfaces, referredpiches A

patch could be a simple polygonal surface, or a more complex one suché&sea Br
NURBS surface. Each patch is assignguh&ch-identifier Associated with each sample

ray, we store the patch-identifier of the first patch it hits. Since each ray sample knows
which surface element it hits, it is possible to disallow any interpolation between dif-
ferent surfaces. It is often the case, however, that large smooth surfaces are composed
of many smaller patches, which are joined together along edges so that first and sec-
ond partial derivatives vary continuously across the edge. In such cases interpolation is
allowed. Thus, the patches that share a common edge may or may not be joined with

sufficiently high continuity to permit interpolation across the boundary. For example, in

64

Figure 4.8(a), we can interpolate between patchesd B, but not between patch&s
and D. We assume that the surfaces of the scene have been provided with this informa-
tion, by partitioning patches into surface equivalence classes. Two adjacent patches in the
same equivalence class are assumed to be connected continuouslpakhcidentifier

is associated with elass-identifiedenoting its equivalence class.

/\ 1 1
D

%v/ = -. il B ~.
(u,v
NE
A B | C 2 2
<o *(st) back plane
\ / front plane
(a (b)

Figure 4.8: (a) Interpolation betweehand B is allowed. Interpolation betweefi and
D is not allowed. (b) Rays are grouped in two equivalence classes, implying a single

discontinuity boundary.

If the patch-identifiers associated with the 16 corner ray samples of a final leaf are
in the same equivalence class, we conclude that there is no discontinuities crossing the
region surrounded by the 16 ray hits, and we apply the interpolation process described
above. Requiring that all 16 patches arise from the same equivalence class can signif-
icantly limit the number of instances in which interpolation can be applied. After all,
linear interpolation in 4-space can be performed with as few as 5 sample points. We as-
sume that at lower levels of the tree, discontinuities crossing a cell will be of a simple
nature and can be treated as a line segment. So, we find a model of the discontinuity
and while avoiding interpolation across the discontinuity boundary, we still interpolate on

65

either side. If the patch-identifiers for the 16 corner samples of the leaf arise from more
than two equivalence classes, we assume that multiple discontinuity boundaries cross the
the region, and we revert to ray tracing. On the other hand, if exactly two equivalence
classes are present, we decide that there is a single discontinuity boundary. Consider, for
example Figure 4.8(b). To simplify the demonstration, we illustrate only one directional
group. The projection of the discontinuity boundary on thev) plane is shown for the
NE directional group. Each corner on the v) plane is labeled with the class-identifier
of the patch hit by the ray passing through that corner. From the class-identifiers of the
corner rays, we decide that there is a single boundary crossing the region surrounded by
the four ray hits in this directional group.

Let us mention a few problematic cases that could arise. Since the knowledge of the
number of different equivalence classes overlappdahsed on the information obtained
from the vertices, we might be mistaken. Consider the cases depicted in Figure 4.9(a)
and (b). For example, in Figure 4.9(a), just by looking at the four corners, we would
decide that the cell is overlapped by two equivalence classes and overlook the third one in
between. Similarly for part (b). We do not detect these cases, and assume that they arise
very rarely. We assume that if the patches are grouped in two equivalence classes, only

thegoodcases depicted in Figure 4.9(c) and (d) could arise.

(a) (b) (c) (d)

Figure 4.9: (a)-(b) Bad cases (c)-(d) Good cases

66

In the case where exactly two equivalence classes are present, we perform an inter-
section test to determine which patch the query ray hits.pl.etenote this patch. This
intersection test is not as expensive as a general tracing of the ray, since typically only a
few patches are involved, and only the first level intersections of a ray-tracing procedure
is computed (that is, no reflection rays or light rays need be traced). Among the 16 corner
ray samples, only the ones that hit a patch in the same equivalence glassessableas
interpolants. These are the ray samples hitting the same side of a discontinuity boundary
as the query ray.

Since at least three interpolants are required to in each directional group interpo-
lation and in the final interpolation of intermediate results, some cells cannot be used
for interpolation due to unusable candidate rays. If we determine that there is a sufficient
number ofusableray samples, we then interpolate the ray. Otherwise, we use ray-tracing.
The algorithm given in Figure 4.10 summarizes the interpolation method. In the algorithm
f*(R) denotes the final interpolated output attributes for queryRathat is f*(R) is an
approximation off (R).

For the three-interpolant cases, if the point for which we attempt to interpolate lies
outside the triangular region formed by the points corresponding to the usable candidate
rays, this is not an interpolation anymore—it becomes an extrapolation. Since extrapo-
lated values are less reliable, the user is granted the option of tuning the extrapolation. If
the point to be extrapolated is farther from the triangular region—in terms of its barycen-
tric coordinates—than a given threshold, extrapolation is disabled and the cell cannot be

used for interpolation.

67

determine the patch hit by the query iy
NumberOfUsableGroups O;
for each of the four directional groupl®
if (number of usable rays 3) then
NumberOfUsableGroups;
compute intermediate output attributes
by interpolating usable rays;
if (NumberOfUsableGroups 3) then
computef*(R) using the intermediate
output attributes from successful directional groups;
return f*(R);
else

return failure; // Trace the ray

Figure 4.10: Interpolation algorithm

4.5.2 Angular Thresholds

Even if interpolation is allowed by the above criterion, itis still possible that interpolation
may be inappropriate because the surface has high curvature, resulting in very different
output rays for nearby input rays. High variations in the output ray (i.e. normal or the exit
ray), signal a discontinuous region. As a measure to determine the distance between two
output rays, we use the angular distance between their directional vectors. If any pairwise
distance between the output rays corresponding to the usable interpolants is greater than

a givenangular thresholdthen interpolation is not performed.

68

4.6 Experimental Results

The RI-tree is based on a number of parameters, which directly influence the algorithm’s
accuracy and the size and depth of the tree, and indirectly influences the running time.
We have implemented the data structure and have run a number of experiments to test
its performance as a function of a number of these parameters. We have performed our

comparisons in the context of two applications.

Ray-tracing: This has been described in the previous sections. We are given a scene
consisting of objects that are either simple, reflective or transparent and a number of

light sources. The output is a rendering of the scene from one or more viewpoints.

Volume Visualization: This application is motivated from the medical application of

modeling the amount of radiation absorbed in human tissue [dKL02]. We wish

to visualize the absorption of radiation through a set of nonintersecting objects in
3-space. In the medical application these objects may be models of human organs,
bones, and tumors. For visualization purposes, we treat these shapes as if they are
transparent (but are not refractive). If we imagine illuminating such a scene by x-
rays, then the intensity of a pixel in the image is inversely proportional to the length

of its intersection with the various objects of the scene. For each object stored as an

RI-tree, the geometric attribute associated with each ray is this intersection length.

4.6.1 Test Inputs

We have generated a number of input scenes including different types of objects. As men-
tioned earlier, for each object in a scene we may choose to represent it in the traditional

69

method or to use our data structure. Our choice of input sets has been influenced by the
fact that the RI-tree is most beneficial for high-resolution renderings of smooth objects,
especially those that are reflective or transparent. We know of no appropriate benchmark

data sets satisfying these requirements, and so we have generated our own data sets.

Bézier Surface: This surface is used to demonstrate the results of interpolation algorithm
for smooth reflective objects. It is a reflective surface consisting of 1€fieB
patches, joined witiC? continuity at the edges. The surface is placed within a
large sphere, which has been given a pseudo-random procedural texturéJBMP
Experiments run with the &ier surface have been averaged over renderings of the
surface from 3 different viewpoints. Figure 4.12(a) shows tkei®& surface from
one viewpoint. We rendered images of si#® x 600 without antialiasing. (That

is, only one ray is shot per pixel.)

Random volumes: We ran another set of experiments on randomly generated refrac-
tive, nonintersecting, convexéier objects. In order to generate nonintersect-
ing objects, a given region is recursively subdivided into a given number of non-
intersecting cells by randomly generated axis-aligned hyperplanes, and a convex
object is generated within each such cell. Each object is generated by first gener-
ating a random convex planar polyline that defines the silhouette of right half of
the object. The vertices of the polyline constitute the control points for a random
number () of Bézier curves, ranging from 5 to 16. Then a surface of revolution
is generated, giving rise ttn Bézier surface patches. The volumes are used both

for the ray-tracing and the volume visualization experiments. For ray-tracing we

70

rendered anti-aliased images of si# x 300 (with 9 rays shot per pixel). For
volume visualization we render&d0 x 600 images without antialiasing. Results
are averaged over three different random scenes containing 8, 6, and 5 volumes

respectively. Figure 4.13 shows a scene of refractive volumes.

Tomatoes: This is a realistic scene used to demonstrate the performance and quality of
our algorithm for real scenes. The scene consists of a number of tomatoes, modeled
as spheres, placed within a reflective bowl, modeled usigwjeB surfaces. This is
covered by a reflective and transparent but non-refractive plastic wrap (the same
Bézier surface described above). There i€aiBr surface tomato next to the bowl,
and they are both placed on a reflective table within a large sphere. The wrap

reflects the procedurally textured sphere. The scene is shown in Figure 4.18.

4.6.2 Metrics

We measured thepeedumndactual errorcommitted as a function of four different pa-
rameters. Speedup is defined both in terms of number of floating point operations, or
FLOPs and CPU-time. FLOP speedup is the ratio of the number of FLOPs performed by
traditional ray-tracing to the number of FLOPs used by our algorithm to render the same
scene. Similarly, CPU speedup is the ratio of CPU-times. Note that FLOPs and CPU-
times for our algorithm include both the sampling and interpolation time. FLOP counts
are machine independent, but they tend to underestimate the time spent in data struc-
ture access. However, our experience has shown that this access time is not a dominant

component of the overall running time.

71

The actual error committed in a ray-tracing application is measured as the average
L, distance between the RGB values of corresponding pixels in a ray-traced image and the
interpolated image. RGB value is a 3-dimensional vector with values normalized to the
range(0, 1]. Thus the maximum possible errory&. The error in a volume visualization
application is measured as the average distance between the actual length attribute and

the corresponding interpolated length attribute.

4.6.3 Varying the Parameters

Varying Distance Threshold: Recall that the distance threshold, described in Sec-
tion 4.3.3, is used to determine whether an approximate output ray and the corresponding
actual output ray are close enough (in termd.gfdistance) to terminate a subdivision
process. We varied the distance threshold ftb6i to 0.25 while the other parameters
are fixed. The results for the&ier surface scenes are shown in Figure 4.11. As ex-
pected, the actual error decreases as the threshold is lowered, due to denser sampling.
But, the overhead of more sample computations reduces the speedup. However, even for
low thresholds where the image quality is high, the CPU-speedup is greater than 2 and the
FLOP-speedup is greater than 3. These speedups can be quite significant for ray-tracing,
where a single frame can take a long time to render.

Figure 4.12 (b) and (c) demonstrate how the variation in error reflects the changes
in the quality of the rendered image. Notice the blockiness in part (c) when the data

structure is not subdivided as densely as in part (b).

72

Speedup (FLOPSs) vs. Distance Thresholt Speedup (CPU-time) vs. Distance Threshold

5

2

4.75-

»
f

4.25-

Speedup (FLOPSs)
w ow
Foo g e

w

Speedup (CPU-time)

o

. | . | . | . | .
0.05 0.1 0.15 0.2

4D Distance Threshold

@)

2.5

N
N
aE

N
T

17

. | .
0.05

|
0.1

. | . | .
0.15 0.2 0.25

4D Distance Threshold

0.02

0.0175-

RGB-Error

0.005-
0.0025-

0

0.015-
0.0125;
0.01;
0.0075;

0

P N B
0.05 0.1 0.15

[
0.2

[
0.25

4D Distance Threshold

(©

RGB-Error vs. Distance Threshold

(b)

Figure 4.11: Varying the distance threshold. (Angular threshob®°s maximum tree

depth = 28600 x 600 image, non-antialiased). Note that th@xis does not always start

at 0.

73

(©

Figure 4.12: (a) Ray-traced image, (b) Lower right part of interpolated image (distance
threshold=0.01), error = 0.00377, (c) Lower right part of interpolated image (distance

threshold=0.15), error = 0.01331.

74

(b)

Figure 4.13: (a) Ray-traced image, (b) Interpolated image (distance threshold=0.05) and
the corresponding color-coded image where white regions indicate pixels that were ray-

traced.

75

Varying Angular Threshold: The angular threshold, described in Section 4.5, is ap-
plied to each query to determine whether the surface curvature variation is too high to
apply interpolation. We investigated the speedup and error as a function of the angu-
lar threshold over the renderings of three different random volume scenes. The angular
threshold is varied from® to 30°. The results are shown in Figure 4.14.

For lower thresholds, fewer rays could be interpolated due to distant interpolants,
and those rays are traced instead. In this case, the actual error committed is smaller but at

the expense of lower speedups. However, the speedups are still acceptable even for low

thresholds.
Speedup (FLOPS) vs. Angular Threshold RGB-Error vs. Angular Threshold
4 : . T 0.01!
?."_T 87] 0.0125 .
O 35 g _ .]
i 324] g 0.01- -
S 4 Ul oo7e
_§. 3 R Ego.oo7ir)
Q 273] @ 0.005 8
Q 25 : -]
n | i
008 1 0.002¢-]
% 0 20 30 %1 2 30
Angular Threshold Angular Threshold

(a) (b)
Figure 4.14: Varying angular threshold (distance threshold=0.25, maximum depth=28,

300 x 300, antialiased).

Varying Maximum Tree Depth: Recall that the maximum tree depth, described in
Section 4.3.3, is imposed to avoid excessive tree depth near discontinuity boundaries. We
considered maximum depths ranging from 22 to 30—corresponding to angular similarity

ranges ofl 1° down t02.7° (Because this is a kd-tree in 4-space, four levels of descent are

76

generally required to halve the the diameter of a cell). The results foréaeBsurface
scenes are shown in Figure 4.15. The angular threshold is fixg&tt,aand the distance

threshold is fixed ab.05.

Speedup (FLOPSs) vs. Tree Depth RGB-Error vs. Tree Depth
0.0
;_U? 0.025- i
S 5 0ot |
T S 0.02
= Wl o ond
E E30.0157
] X 0.01
Q. L]
") 0.005- b
32 23 24 25 26 27 28 29 30 % 23 24 25 26 27 28 20 30
Tree Depth Tree Depth

(a) (b)
Figure 4.15: Varying tree depth (distance threshold=0.05, angular thresholg#Bg,

600, non-antialiased).

As the tree is allowed to grow up to a higher depth, rays are sampled with increasing
density in the regions where the geometric attributes have greater variation, and thus, error
committed by the interpolation algorithm decreases with higher depths. The speedup
graph shows a more interesting behavior. Up to a certain depth, the speedup increases
with depth. Speedups are poor for very low-depth trees, since many of the interpolants
cannot pass the angular threshold test, and so many rays need to be traced rather than
interpolated. However, the speedup decreases with very large depth values, since the
overhead caused by denser sampling starts to dominate. It seems that a wise choice of
depth would be a value that results in both a lower error, and reasonable speedup. For
example for the given graph, depth around 28 would be a good choice for this image. (This
corresponds to angular similarity constraint of roughB?.) However, peak performance

77

depends on a number of parameters that are particular to the ray tracing application, such
as the expected cost of a single ray shoot. In addition, Tables 4.1-4.3 shows the required
memory when depth is varied. When the tree is unnecessarily deep, not only does the

speedup decrease, but space requirements increase as well.

Varying Cache Size: As mentioned earlier, the RI-tree functions as an LRU cache. If

an upper limit for the available memory—the cache size—is specified, the least recently
used paths are pruned based on time stamps set whenever a path is accessed. Excessively
small cache sizes can result in frequent regeneration of the same cells. Faziee B
surface scene, we have varied the cache size from 0.128 to 2.048 megabytes (MB). The

resulting speedup graph is shown in Figure 4.16.

Speedup (FLOPs) vs. Cache Size Speedup (CPU-time) vs. Cache Size

4 T T T T T T 2.5 T T T T
. 375 = . . T 2028 q
P a5 R E i
9 3'2:: i n:'l. 1.75 4
L
- 275 4 O 15 4
g- 2.5~ B ~ 1.25 B
5 22% R S 4 J
o 2 1 D o075 .
Q. 1.75- B Q.
(%)) 15- | Q0.5 B

: n

1.25- B 0.25- b
| L 0 L | L | |

o5 1 15 2z 25 05 1T 15 2 25
Cache Size (MB) Cache Size (MB)

@) (b)

w
o

Figure 4.16: Varying cache size (distance threshold = 0.05, angular threshold = 30, max-

imum tree depth = 2800 x 600 image, non-antialiased).

Notice that we used small cache sizes to demonstrate the sudden increase in speedup
as the cache size approaches a reasonable value. Normally, we set the cache size to

100MB, which is high enough to handle bigger scenes with many data structures. There

78

are other parameters involved in garbage collection, such as the percentage of the cache

being pruned. In these experiments, each garbage collection prunes 70% of the cache.

Volume Visualization Experiments: We have tested the algorithm for the volume vi-
sualization application using the same random volumes we used for refractive objects.
Images ar&00 x 600 and not antialiased. Results of our sample runs are shown in Ta-
ble 4.1-4.3. The FLOP speedup varies fr@mM17 to 3.549, and CPU speedup varies

from 2.388 to 2.814. For higher resolutions, or anti-aliased images the speedups could
be higher. The error could be as low @808 for low distance thresholds, and is still at

a reasonable value for higher thresholds. Figure 4.17 shows the actual image, and the
interpolated image visualizing one of the random volume scenes. All objects have 0.5

opacity, and all have solid gray colors.

(@) (b)

Figure 4.17: (a) Ray-traced image, (b) Interpolated image (distance threshold=0.25).

79

Test Input Dist Thresh| Speedup (FLOP) Speedup(CPU-time) Error | Memory (MB)
Bézier Surface 0.010 3.12704 1.96466 0.00377 2.925
0.025 3.43796 1.99712 0.00483 2.371
0.050 3.74473 2.07705 0.00676 1.931
0.075 3.93950 2.11372 0.00858 1.699
0.100 4.08325 2.24707 0.0103 1. 549
0.125 4.19358 2.24816 0.01185 1.442
0.150 4.28194 2.29041 0.01331 1.361
0.175 4.35214 2.32532 0.01532 1.301
0.200 4.41940 2.32863 0.01655 1.253
0.225 4.48503 2.34465 0.01763 1.212
0.250 4.52146 2.34591 0.01867 1.185
Random Volumes 0.010 3.12173 2.63532 0.00627 19.252
(ray-tracing) 0.025 3.26194 2.64317 0.00645 17.518
0.050 3.40527 2.71941 0.00679 15.799
0.075 3.49906 2.76194 0.00722 14.765
0.100 3.56870 2.79244 0.00780 14.088
0.125 3.62689 2.84409 0.00853 13.603
0.150 3.67422 2.88046 0.00890 13.183
0.175 3.70776 2.89190 0.00945 12.875
0.200 3.74041 2.92770 0.00989 12.583
0.225 3.77341 2.94416 0.01048 12.331
0.250 3.80292 2.91917 0.01076 12.094
Random Volumes 0.050 2.95084 2.42804 0.00850 11.773
(volume 0.150 3.31043 2.67274 0.01179 9.503
visualization) 0.250 3.54958 2.81416 0.01488 8.344

Table 4.1: Varying the distance threshold: Speedup and actual erroezarBsurface

and Random Volumes (ray-tracing and volume visualization).

80

Test Input Tree Depth| Speedup (FLOP) Speedup(CPU-time) Error | Memory (MB)

Bézier Surface 22 3.50486 2.05642 0.02098 0.565
23 3.86223 2.14654 0.01491 0.706

24 4.05344 2.21946 0.01112 0.881

25 4.03178 2.17521 0.01032 1.084

26 3.97010 2.15906 0.00953 1.318

27 3.85335 2.05680 0.00760 1.603

28 3.74473 2.07705 0.00676 1.931

29 3.53944 2.04811 0.00663 2.265

30 3.36016 1.97434 0.00653 2.629

Random Volumesg 22 3.10450 2.56453 0.01859 3.729
(ray-tracing) 23 3.41967 2.63197 0.01708 4.431
24 3.70909 2.74675 0.01526 5.441

25 3.85445 2.90357 0.01449 6.560

26 3.85108 2.93271 0.01305 7.989

27 3.84435 2.87188 0.01187 9.660

28 3.80292 2.91917 0.01076 12.094

29 3.56893 2.79997 0.01026 14.361

30 3.34045 2.73197 0.00987 17.413

Table 4.2: Varying the tree depth: Speedup and actual erroreaieBSurface and Ran-

dom Volumes (ray-tracing and volume visualization).

81

Input Scene | Ang Thresh| Speedup (FLOP) Speedup(CPU-time) Error
Bézier Surface 5 2.68103 1.68226 0.00424
10 3.51840 2.01129 0.00591
15 3.68553 2.11734 0.00663
20 3.72731 2.12195 0.00673
25 3.74471 2.11754 0.00676
30 3.74473 2.07705 0.00676
Random Volumes 5 2.56317 2.15410 0.00478
(ray-tracing) 10 3.44274 2.67800 0.00896
15 3.70928 2.83973 0.01007
20 3.76320 2.88208 0.01055
25 3.78206 2.89311 0.01063
30 3.80292 2.91917 0.01076
Random Volumes 10 2.81703 2.38833 0.01047
(volume 15 3.21517 2.62693 0.01340
visualization) 20 3.40653 2.73348 0.01411
30 3.54958 2.81416 0.01488

Table 4.3: Varying the angular threshold: Speedup and actual erroezierBsurface and

Random Volumes (ray-tracing and volume visualization).

82

4.6.4 Results for the Tomatoes Scene

Finally, we have tested our algorithm on the tomatoes scene generating an image of size
1200 x 900, non-antialiased. Table 4.4 shows sample results for the tomato scene and
Figure 4.18 shows the corresponding images. Figure 4.18(a) shows the ray-traced im-
age. Part (b) shows the interpolated image, and a corresponding color-coded image in
which the white regions denote the pixels that were traced rather than interpolated. Part
(c) shows the interpolated image generated with lower thresholds and the corresponding

color-coded image. Notice that the artifacts in part (b) are corrected in part (c).

Dist.Thr.| Ang.Thr. | TreeDepth| Speedup(FLOP) Speedup(time) Error | Memory

0.25 30 28 2.65 1.89 0.00482| 34 MB

0.05 10 28 2.40 1.75 0.00190, 47 MB

Table 4.4: Sample results for tomatoes scdré(x 900 non-antialiased).

Note that the closest objects along the eye rays are correctly determined by inter-
polation, as are the reflection rays from the wrap and the bowl, and the shadows. The
sky (procedural texture of the enclosing sphere) is reflected on the wrap. As expected, for
lower threshold values we can get a very high quality image and still achieve speedups of
2 or higher. If quality is not the main objective, we can get approximate images at higher

speedups.

4.6.5 Radiance versus Ray Interpolation

As we have mentioned before, in a ray-tracing application, we prefer interpolating geo-
metric attributes such as normal vectors and exit rays, rather than interpolating radiance.

83

(b)

(©

Figure 4.18: (a) Ray-traced image, (b) Interpolated image (dist. thr.=0.25, ang. thr.=30)
and corresponding color-coded image, white areas show the ray-traced regions, (c) Inter-

polated image (dist. thr.=0.05, ang. thr.=10).

84

The main advantage of our approach is that it allows representation of an object inde-
pendent from the other objects in the environment and/or illumination. For example,
in methods based on radiance interpolation, if the illumination changes (a light source
is removed or its intensity increased), many samples have to be recomputed even if the
viewpoint remains the same, whereas our methods do not require altering the RI-tree of
any object. Or, consider the case of reflective and refractive objects,for example, if an
object A is reflected on objecB, and if A moves slightly, the RI-tree aB will also be
affected if radiance interpolants are used.

Another reason for sampling and interpolating normals and intersection points in-
stead of radiance is related to our focus on reflective and refractive objects. Recall that for
such objects, we also associate an exit ray with each sample. In order to build a unified
framework, it makes more sense to store normal vectors with exit rays, since the variation
in exit ray is more closely related to variation in normal vectors than radiance.

The comparison of radiance versus normal interpolation is somewhat analogous to
the difference in the interpolation methods used in Gouraud and Phong shading. Consider
the Bezier surface scene, where the surface is simple (neither reflective nor refractive), but
the specularity is high. Figure 4.19 shows the ray-traced imageof a part of the surface il-
luminated by 2 light sources. If we choose to interpolate radiance, similar to Gouraud
shading, we may have to collect samples much more densely, in the regions near spec-
ular highlights in order to achieve greater fidelity, since in those regions radiance varies
rapidly. However, when we choose to interpolate normals and then compute shading with
respect to the interpolated normal, dense sampling is only required in areas where the
surface is not smooth enough, regardless of the radiance.

85

(@) (b)

Figure 4.19: (a) Ray-traced simpl@&Ber surface (b) Upper right part zoomed.

Consider Figure 4.20. In part (a), the leftmost image shows the surface rendered
by using RI-tree, where normals are interpolated. The maximum depth allowed is 28,
and this is enough to obtain a high quality approximation to the ray-traced image in Fig-
ure 4.19. The middle image is a visualization of the RI-tree cells. The rightmost image
color codes the depth of the leaf cell used to interpolate the associated pixel. The depth-
color scale is given in part (d). Part (b) gives the corresponding images when the depth is
allowed to grow up to 32, some cells are refined more around regions of high curvature.

Part (c) shows the images when the image is rendered by radiance interpolation
such that the tree is refined according to the variance in radiance. To generate an image
of comparable quality to (a) and (b), the maximum depth should be set to at least 32. (For
values lower than 32, the highlights are noticeably distorted.) Number of nodes are 7.4K,
13K, and 25K for parts (a), (b) and (c) respectively. Note that Part (a) is a high quality
approximation to the ray-traced version, and to achieve the same quality by radiance
interpolation, 3 times more nodes—and, 3 times more samples—should be generated.

Depending on the scene and the relative costs of intersection computations and

86

Leaf Depth O 8 16 24 32

(d)

Figure 4.20: (a) Normal interpolation, max. depth = 28, no. of nodes = 7.4K. (b) Normal
interpolation, max. depth =32, no. of nodes = 13K. (c) Radiance interpolation, max. depth

=32, no. of nodes = 25K. (d) Depth color scale.

shading, either radiance interpolation or ray interpolation may be better than the other
in terms of performance. As described above in the case of a specular object, radiance
interpolants are usually more expensive in terms of sampling cost—they generate more
samples, and each sample is more costly since they also compute shading. On the other
hand, when rendering, ray interpolation methods interpolate at least two vectors (normal
and intersection point), and compute shading for each ray, whereas radiance interpolation

methods interpolate just radiance but compute intersections with objects for each ray.

4.6.6 Animations

In an animation sequence, since many samples will be reused by subsequent frames, we
expect that the performance gain after the first frame would be higher. We have tested
the algorithm on the following two animation sequences. In both cases, the degree of
speedup for the first frame was considerably lower than subsequent frames, since the data
structure is built from scratch for the first frame, and subsequent frames can reuse some

or all of the existing structure.

Light animation: In the first sequence, we use our tomatoes scene, illuminated by only
one spotlight. During the animation, the viewpoint is fixed, but the spotlight is
swinging, thus the illumination in the scene is different in each frame. Since, the
viewpoint is fixed as well as the location of the light, no more nodes/samples are
generated after the first frame, and so there is no sampling cost. The performance
for the first three frames are given in Table 4.5. The speed-ups are roughly constant

after the first frame.

88

Dist. Thresh.| Ang. Thresh.| Tree Depth Speedup (FLOP)| Speedup (CPU-time
Fr#l | Fr#2 | Fr#3 | Fr#l | Fri#2 | Fr#3
0.25 30 28 2351 298| 298| 1.83| 2.23| 2.21
0.05 10 28 202 | 2.67| 2.67| 1.67| 2.04| 2.09

Table 4.5: Sample results for light animatidrz(0 x 900 non-antialiased).

Viewpoint animation: In the second sequence, we use the original tomatoes scene illu-
minated by 9 light sources. In each frame, the viewpoint is rotated around the cup
by 1°. And so, even though many samples are reused, some new samples are also

generated in each frame. The performance for the first three frames are given in

Table 4.6. The speed-ups are roughly constant after the first frame.

Dist. Thresh.| Ang. Thresh.| Tree Depth, Speedup (FLOP)| Speedup (CPU-time
Fril | Fr#2 | Fré3 | Fr#l | Fré#2 | Fr#3

0.25 30 28 2.65|297| 298| 1.89| 2.04| 2.02
0.05 10 28 240| 2.83| 2.83|1.75| 1.99| 1.98

Table 4.6: Sample results for viewpoint animati@2d0 x 900 non-antialiased).

4.7 Conclusions

In this chapter, we introduced the RI-tree data structure and illustrated its use in the con-
text of efficient ray-tracing. By our approach of sampling and interpolating geometric
attributes rather than radiance, we decouple the local geometry of the object from the rest

of the scene geometry and illumination. Hence, we do not need to alter the RI-tree of a

89

specific object, if any other object moves, or lighting conditions in the scene changes. (Ex-
cept when the location of a light source changes, since it may cause additional sampling
in RI-trees of some objects. Recall that determining visibility of a light source involves
checking intersections with possibly occluding objects). We only need to sample addi-
tional rays if the viewpoint or the viewing direction changes, since these may cause new
parts of an object become visible.

The RI-tree is most useful for rendering smooth objects that are reflective or trans-
parent, for rendering animations when the viewpoint varies smoothly or when the illu-
mination varies from frame to frame, and for generating high resolution images and/or
antialiased images generated by supersampling in which multiple rays are shot for each
pixel of the image.

We demonstrated the performance-quality tradeoff by experimenting with the few
parameters that control the quality of approximation. For our test scenes consisting mostly
of reflective or refractive objects, we presented experimental results that our algorithm
speeds up ray-tracing at least by a factor of two in terms of CPU-time, and by at least
by a factor of three in terms of FLOPs. The speedups are higher if an input ray goes
through multiple levels of reflections/refractions before escaping the object, since our
algorithm performs a fixed set of interpolations independent of the number of levels of
reflections/refractions. We also presented performance results for animations where the
viewpoint changes and for animations where the lighting changes. Speedups are higher
after the the first frame, since some samples generated for a frame are being reused for
subsequent frames.

The performance gain is achieved at the potential expense of quality. However,

90

our system detects and deals with the object boundaries and other strong discontinuities
where the artifacts are more likely to be noticed. A number of heuristics are introduced
to allow more interpolation around discontinuity boundaries.

One of the disadvantages of the RI-tree is the need for these heuristics for detecting
and handling discontinuities. This is the result in part of the fact that each node of the
4-dimensional kd-tree has 16 vertices. Unless the nodes are subdivided to a very fine
level, it is quite likely that at least one of these vertices will lie on the wrong side of
discontinuity boundary. In addition, the kd-tree subdivision is not a cell complex, which
implies that there may be cracks, which also result in problems with continuity. In Chap-
ter 6 we introduce an approach based on a hierarchical decomposition into 4-dimensional

simplices. We will see that this method eliminates the need for these heuristics.

91

Chapter 5

Simplex Decomposition Tree: A Pointerless Representation

5.1 Introduction

In the previous chapter, we have suggested that an efficient approach to answering mul-
tidimensional interpolation queries is through data structures based on hierarchical sub-
division of space and we have used a kd-tree based subdivision. However, a significant
problem with both kd-trees and quadtrees is that the resulting subdivision is not generally
a cell complex. Intuitively, aell complexs a subdivision in which pairs of neighboring
cells meet along a common face. A cell complex whose faces are simplices is called a
simplicial complex(See [Mun75] for definitions.) A subdivision which is a cell complex

is also referred to asompatible (Some authors also prefeonformingor consisten)

We will use the terncompatibleor cell/simplicial complexnterchangeably in the rest

of this thesis. When the subdivision is not compatilol@cksoccur along faces of the
subdivision (see Figure 5.1(a)), which in turn present problems when using the mesh for
interpolation.

It is possible to further subdivide a kd-tree/quadtree subdivision to produce a sim-

92

crack

(a) (b)

Figure 5.1: (a) A crack (b) A hierarchical simplicial mesh in the plane.

plicial complex [SS92, Paj02], by firsestrictingthe quadtree with additional sampling
in such a way that two leaf cells in the tree differ at most by one level, and then trian-
gulating the quadtree according to a predefined set of patterns depending on the number
of neighboring cells that have been subdivided. However, this approach does not scale
well with dimension due to the exponential increase in the number of vertices and explo-
sion of cases that need to be considered. In addition, operations such as point location,
and determination of barycentric coordinates whose efficiency are crucial in our appli-
cation becomes more complicated and requires more computational effort. Moreover,
this approach usually creates more vertices compared to maintaining the subdivision as a
triangulation (we describe this below), which is more costly from our perspective, since
each vertex is sampled on-demand, and the sampling cost is included in the total cost of
rendering a frame.

Instead, we use an attractive and simpler alternativerarchical regular simpli-
cial mesh This is ad-dimensional generalization of the concept of hierarchical regular
triangulation in the plane [EKTO1] or in 3-space [LDS01]. Each element of such a mesh
is ad-simplex, that is, the convex hull @f+ 1 affinely independent points [Ede87]. The
vertices of the mesh correspond to the vertices@famensional grid. The mesh is gen-

erated by a process of repeated bisection applied to a hypercube initially subdivided into

93

d! congruent simplices. We employ a bisection process that was proposed by Maubach
[Mau95]. Whenever a simplex is bisected, some of its neighboring simplices may need to
be bisected as well, in order to guarantee that the entire subdivision remains compatible.
(See Figure 5.1(b) for an example.)

To illustrate the advantage of interpolation using simplicial complexes, consider the
images generated from our ray-tracing application in Figure 5.2. Images (a) and (c) show
the result of an interpolation based on kd-trees [AMO03], which is not a cell complex, and
images (b) and (d) show the results of using the hierarchical simplicial decomposition
described in this chapter.

For interpolation purposes, compatibly refined simplicial meshes are preferable
over kd-tree/quadtree based subdivisions, not only because they guardnteatinu-
ous interpolants, but also because that they are much simpler in the sense that the in-
terpolations are performed with a minimal number of samples, for example, 5 samples
for the 4-dimensional case, hence this is much cheaper than the quadrilinear interpola-
tion using 16 samples. Simplicial decompositions are also advantageous since they create
much fewer vertices (i.e. much fewer samples) to reach a certain level of refinement than
quadtree/kd-tree based subdivision.

For a simplicial subdivision to be a feasible alternative for our purposes, the follow-

ing issues are important:

e The scheme for subdivision should be computationally efficient. That is why we
have chosen the bisection scheme which decides which edge to be bisected without

any computation, but simply based on the order of vertices.

94

(@) (b)

(©) (d)

Figure 5.2: Results of a ray-tracing application to producg&iarnk 800 image based on 4-
dimensional interpolations using (a) a kd-tree based on 14,492 samples (96 CPU seconds)
and (b) a simplex decomposition tree based on 6,072 samples (97 CPU seconds). Details
of these images are shown in (c) and (d), respectively. Note the blocky artifacts in the

kd-tree approach (c).

95

e It should support efficient identification of the leaf cell containing a query point.
Note that, for kd-tree based subdivisions, the cutting planes are orthogonal to the
coordinate axes, hence it takes only one coordinate comparison to determine which
child of a cell contains the query point. In a simplicial subdivision, this is not the
case. Thus, itis more expensive to determine which child to descend to, if it is done
in the straightforward way of determining the location of a point with respect to a
given plane. We have shown an efficient way of doing this for the bisection-based

regular simplicial decompositions.

¢ It should support efficient computation barycentric coordinateslf barycentric
coordinates are computedter locating the leaf cell containing the query point, this
involves the inversion of & + 1) x (d + 1) matrix, hence, computationally quite
expensive. Instead, we have shown how this can be done incrementally in a much

simpler way with one comparison per level.

e It should support efficient neighbor finding. This is essential for providing compat-
ibility, since a number of neighbor simplices have to be subdivided as well, when-
ever a simplex is subdivided. In addition, computing facet neighbors of a simplex
efficiently is in general of great interest for many applications that require moving

along adjacent simplices.

In this chapter, we present an efficient implementation of multidimensional hierar-
chical regular simplicial meshes in any dimensibnRather than representing the hier-
archy explicitly as a tree using child pointers, we access nodes through an index called a
location code Thus, we provide a pointerless representation. Location codes [Sam90a]

96

have arisen as a popular alternative to standard pointer-based representations, because
they separate the hierarchy from its representation, and so allow the application of very
efficient access methods, such as hashing. Also, the space savings realized by not hav-
ing to store pointers (to the parent, two children, and 1 neighboring simplices) and
simplex vertices is quite significant for large multidimensional meshes.

We store the hierarchical mesh in a data structure call&ichplex decomposition
tree Our hierarchical decomposition is based on the same bisection method given by
Maubach [Mau95].(Note that Maubach’s representation is not pointerless.) We present a
location code, called thePT code which can be used to access nodes of this tree. We
show how to perform tree traversals, point locations, and answer interpolation queries
efficiently through the use of these codes. We also show how to compute neighboring
simplices using this code, which is an important step in guaranteeing that the subdivision

is a cell complex.

5.1.1 Hierarchical Regular Subdivisions and Pointerless Representations

Regular subdivisions have the disadvantage of limiting the mesh’s ability to adapt to the
variational structure of the scalar field, but they provide a number of significant advan-
tages from the perspectives of efficiency, practicality, and ease of use. The number of dis-
tinct element shapes is bounded (in our casé)byand hence it is easy to derive bounds

on the geometric properties of the cells, such as aspect ratios and angle bounds. The regu-
lar structure relieves us from having to store topological information explicitly, since this
information is encoded implicitly in the tree structure. Regular hierarchical decomposi-

tions can be selectively refined and coarsened efficiently, which is useful for interactive

97

visualization. Additionally, the hierarchical structure provides a straightforward method
for performing point location, which is important for answering interpolation queries.

One very practical advantage of regularity involves performance issues arising from
modern memory hierarchies. It is well known that modern memory systems are based on
multiple levels, ranging from registers and caches to main memory and disk (including
virtual memory). The storage capacity at each level increases, and so does the access
latency. There are often many orders of magnitude of difference between the time needed
to access local data (which may be stored in registers or cache) versus global data (which
may reside on disk) [CHL99]. Large dynamic pointer-based data structures are particu-
larly problematic from this perspective, because node storage is typically allocated and
deallocated dynamically and, unless special care is taken, simple pointer-based traversals
suffer from a nonlocal pattern of memory references. This is one of the principal mo-
tivating factors behind 1/O efficient algorithms [AV88, Arg02] and cache-sensitive and
cache-oblivious data structures and algorithms [CHL99, Dem02].

In contrast with pointer-based implementations, regular spatial subdivisions support
pointerlessmplementations. Pointerless versions of quadtree and its variants have been
known for many years [Gar82, Sam90a]. The idea is to associate each node of the tree
with a unique index, called lacation code Because of the regularity of the subdivision,
given any point in space, it is possible to compute the location code of the node of a
particular depth in the tree that contains this point. This can be done entirely in local
memory, without accessing the data structure in global memory. Once the location code
is known, the actual node containing the point can be accessed through a small number
of accesses to global memory (e.g., by hashing).

98

Prior work in the area of pointerless representations for the same class of regular
simplicial meshes and neighbor computation has principally been in 2- and 3-dimensions.
Evans, Kirkpatrick and Townsend [EKTO1] presented a location code for the 2- dimen-
sional case and provided an efficient neighbor finding method based on bit manipulation.
Hebert [Heb94] presented a location code for hierarchical tetrahedral meshes and a set of
rules to compute neighbors efficiently in 3-space. Lee, De Floriani and Samet [LDS01]
developed an alternative location code for this same tetrahedral mesh, and presented al-
gorithms for efficient neighbor computation. In both approaches, the neighbor finding
methods are quite specific to 3-space, and are not readily generalizable to higher dimen-
sions. We present neighbor finding methods in arbitrary dimensions with a very compact
representation and using very few special cases.

We introduce a new location code that provides a unique encoding of the simplices
generated by Maubach’s [Mau95] bisection algorithm. This labeling scheme works in
arbitrary dimensions. We define the components required to develop a pointerless imple-
mentation based on our location code. The geometry of the simplices and the operations
required for navigation in the associated tree can be computed easily based solely on the
code of a simplex. Our location code and the definitions of various operations depend
on the particular vertex ordering. We have adopted a different ordering than Maubach’s
system, which we feel leads to simpler formulas. Our vertex ordering is a generalization
of the vertex ordering used in Hebert’s 3-dimensional system.

The most challenging operation on the tree is neighbor computation. Maubach’s
system computes the neighbors of a simplex recursively during construction of the tree
[Mau96], and stores pointers to neighbors for each simplex. We, on the other hand, are

99

interested in efficiently computing any neighbor of any simplex directly from its code,
without storing any neighbor links, and without having to traverse the path to and from
the root in order to compute neighbors. This is significant gain both in terms of storage,
and computational efficiency, since our approach is local and ru@gdntime—in fact

in O(1) time, if the operations are encoded in lookup tables. Neighbor computation is a
valuable operation not only during construction of the hierarchy, but in general, for any

application that requires moving between adjacent simplices of a decomposition.

5.2 Preliminaries

Throughout, we consider redtdimensional spaceé?. We assume that the domain of
interest has been scaled to lie within a usference hypercubef side length 2, centered
at the origin, that ig—1, 1]¢. We shall denote points ift? using lower-case bold letters,
and represent them dselement row vectors, that i8,= (vy, vs, ..., vq) = (v;)L,. We
let e; denote theth unit vector. Ad-simplex is represented ag@+ 1) x d matrix whose
rows are the vertices of the simplex, numbered from 0.t®f particular interest is the
base simplexdenotedSy, whoseith vertex isz;z1 e — Ej:m €;.

For example, irit? we have

-1 -1-1

1-1-1
Sy =

1 1-1

1 1 1

Recall from basic geometry that two geometric objectscarggruentf are equiv-

100

alent up to a rigid motion (translation, rotation and reflection). Coordinate permutations
and coordinate reflections both preserve congruence. Two objecBrala&r if they can

be made congruent by a nonzero uniform scaling.

5.2.1 Permutations and Reflections

Let Sym(d) denote thesymmetric groupf all d! permutations ovef1,2,...,d}. We
denote a permutatiol € Sym(d) by a tuple of distinct integersr, 7, --- m,], where
m € {1,2,...,d}. We can interpret such a permutation as a linear function that maps
the unit vector, to thee,,, or equivalently as a coordinate permutation given ly>ad

matrix whoseith row is the unit vectoe,,. For example, foifl = [2 3 1],

—1-1-11rp 1 —1 -1 -1
010
1 -1 -1 —1 1-1
Spll = 00 1| =
1 1-1 -1 1 1
100
1 1 11]° - 1 1 1

It is well known that the collection of simplicesSyW : W € Sym(d)} fully subdi-
vides the reference hypercube, and further that this subdivision is compatible (is a simpli-
cial complex) [AG79]. Thesé! simplices form the starting point of our hierarchical sim-
plicial mesh. Theompositiorof two permutationgl o ¥, defined asS(Ilo W) = (SW)II
is given by the matrix productIl. Note that the notatiof2 3 1] is not a vector irR?,
but merely a convenient shorthand for a permutation matrix. Throughout, vectors will

be denoted with parentheses, and square brackets will be used for objects that are to be

101

interpreted as linear transformations, or equivalently a shorthand for a matrix. Another
useful class of transformations are coordinate reflections, which can be expressed as a
d-tupleR = [ry ro - -+ rq) Wherer; € {1}, and is interpreted as a linear transformation
represented by the diagonal matdiag(ry, s, ..., 7q).

It will simplify notation to combine the composition of a permutation and a reflec-
tion using a unified notation. We definesmned permutatioto be ad-tuple of integers
[rym]d,, where[m;|L | is a permutation angh;]¢_, is a reflection. This is interpreted as a
linear transformation that maps tité unit vector tor;e;,.

For example, irR?, the composition of the reflectioR = [-1 —1 +1] and the
permutationl] = [2 3 1] is expressed as the signed permutafie? —3 +1], which is just

a shorthand for the matrix produgtl, that is

1 0 0 010 0-1 0
RII = | 0-1 0 001l =10 0-1
0 041 100 41 0 0

An intuitive way to interpret the meaning of a signed permutation is as an operation
involving a selective negation followed by a subsequent permutation of some of the com-
ponents of a row vector or the columns of a matrix. For example the signed permutation
[—2 —3 +1] can be interpreted as negating the first and second components of a vector,
and then mapping the first, second, and third components of the resulting vector to posi-
tions 2, 3, and 1, respectively. Thus, the imagéwefuv,, v3) under this transformation is

(U37 —Uq, _UQ) .

102

We define the following functions that act on a signed permutdtios [r,]%_,.
The first,perm(II), extracts the permutation part of, the secondrefl(II), extracts the
(unpermuted) reflection part as a vector{itr1}?, and the third,orth(II), returns the

permutation ofefl(II) underll. More formally,

perm(Il) = [|m|]L,
refi(ll) = (sign(m))L,

orth(I) = refl(I)perm(II) = (sign(w; '))%,.

For example, ifil = [—-2 —3 +1] thenperm(IT) = [2 3 1], refl(I]) = (-1, -1, +1),
andorth(IT) = (+1, —1, —1). Note thatrefl(IT) andorth(II) are vectors. The associated
transformation matrices adgag(refl(IT)) anddiag(orth(II)), respectively. The following

lemma is an easy consequence, and will be useful in some of our later proofs.

Lemma 5.2.1 LetII be a signed permutation. Then
II = diag(refl(Il))perm(I)
= perm1I)diag(orth(II)).
5.2.2 The Simplex Decomposition Tree

Recall that the initial simplicial complex is formed from thepermutations of the base
simplex, that is Sy ¥ for ¥ € Sym(d). Simplices are then refined a process of repeated
subdivision, calledisection[Mau95]. (Details will be given below.) The resultiratild
simplices are labeled 0 and 1. By applying the process repeatedly, each simplex in this

hierarchy is uniquely identified by itsath, which is a string ovef0,1}. The result-

103

ing collection of trees is called tr@mplex decomposition treer SD-treefor short. It
consists ofl! separate binary trees, which conceptually are joined under a common super-
root. Each simplex of this tree is uniquely identified bgexmutation-path paiassSy,,,
whereV is the initial permutation of the base simplex, and {0, 1}* is the path string.
When starting with the base simplek (s the identity permutation) we may omit explicit
reference tol. By symmetry, it suffices to describe the bisection process on just the
base simplexS;. The ordering of the rows, that is, the numbering of vertices, will be
significant.

Maubach [Mau95] showed that with evedyconsecutive bisections, the resulting
simplices are similar copies of theirfold grandparent, subject to a uniform scaling by
1/2. Thus, the pattern of decomposition repeats evelgvels in the decomposition.
Define thelevel ¢, of a simplexS, to be the path length modulo the dimension, that is,
¢ = (|p| mod d), where|p| denotes the length @f The 0-childS,, and 1-childS,; of a

simplex are computed as follows:

Vo Vo Vo
Vi1 Vi1 Vi1
Sp Ve Spo (Ve 4 Vvg)/2 Sp1 (Ve + vg) /2
Vit Vit \Z
Vy Vg Va1

104

A portion of the tree is illustrated in Figure 5.3. Note that in both cases the first
vertices are unchanged. The néil vertex is the midpoint of the edge between ftre
and last vertices. The remainidg- ¢ vertices are a subsequence of the original vertices,
shifted by one position relative to each other.

Equivalently, we can defing,, = B,,S, andS,; = B,1S5,, whereB,, and B, ;
are(d + 1) x (d + 1) matrices whoséth row (starting from row 0) has the valug?2
in columns/? andd (starting from column 0), and all other rows are unit vectors. For

example, in dimensiod = 4 and for/ = 2 we have

_ 1 0 0 0 0 | _ 1 0 0 0 0 |
01 0 0 0 01 0 0 0
Bo=10 0 1/2 0 1/2 Bop=10 0 1/2 0 1/2
0 0 0 1 0 00 1 0 0
00 0 0 1 00 0 1 0

Our bisection scheme is geometrically equivalent to the one defined by Maubach
[Mau95], but we order the vertices differently from Maubach. Although the differences
are theoretically insignificant, our ordering results in somewhat simpler and more regular

formulas for computing descendents and neighbors.

5.2.3 Reference Simplices and the Reference Tree

Since with everyl consecutive bisections, the simplices are similar to, but half the size,
of their d-fold grandparent, we can partition the nodes of the decomposition tree into a

105

(L1)

(1,0)

(V2,~V2)

(-1,-1) (1,-1)

Ag=S, [-1-1 level O
1-1
1

A =S,[0 0 s,/ 00 level 1
1-1 -1-1
11 \ 1-1
A,=Sp| 0 0 Sey|0 0 level 0
10 10
11 1-1 \
So0 |¥2 % Sgy1|¥e ~¥5 level 1
10 00
1-1 10

Figure 5.3: The simplex decomposition tree. The corresponding bisected simplex is
shown on the top-left. The newly created vertex is indicated by an arrow in each case.

The reference simpliced; are indicated as well.

106

collection of isomorphic, disjoint subtrees of height The roots of these subtrees are
the nodes whose depths are multiplesidfvhere the root starts at depth 0). It suffices

to analyze the structure of just one of these trees, in particular, the subtree of dheight
starting at the root. We call this tmeference treeSince the two children of any simplex

are congruent, it follows that all the simplices at any given depth of the decomposition tree
are congruent to each other. Thus, all the similarity classes are representedripnical
simplices, called theeference simplicesThese are defined to &y, for 0 < k < d,

and denoted by\,. (See Figure 5.3.) Although it is not a reference simplex, we also
defineAy = S, Since it is useful in our proofs.

For example, irit? the 3 reference simplices together with are

—1—1—1 _0 0 0_
Ao 1-1-1| & 1-1-1
(S@)_ 1 1-1 (SO)_ 1 1-1
1 1 1 1 1 1
00 0 _000-
A, 10 0 As 100

107

5.3 The LPT code

So far we have defined an infinite decomposition tree and a procedure for generating the
simplices of this tree from the top down. In order to provide pointerless implementation of
the hierarchical mesh, we definéogation codewhich uniquely identifies encodes each
simplex of the hierarchy. The most direct location code is combination consisting of the
initial permutationV followed by the binary encoding of the tree patiUnfortunately, it
is not easy to compute basic properties of the simplex such as neighbors from this code.
Nonetheless, Lee, De Floriani, and Samet showed how to compute neighbors from the
path code in the 3-dimensional case [LDS01]. Instead we modify an approach presented
by Hebert [Heb94] for the 3-dimensional case, by defining a location code that more
directly encodes the geometric relationship between the each simplex and the reference
simplex at the same level. We call this thBT code since it encodes for each simplex
its Level its signedPermutation and itsTranslationrelative to some reference simplex.
We shall show that it is possible to compute tree relations (children and parents) as well
as neighbors in the simplicial complex using this code.

Given any simplexXSy,, in the hierarchy, th&PT codeis a 3-tuple(?, 11, @), where
¢ = |p| mod d is the simplex’s level]l is a signed permutation relatingy, to its ref-
erence simplex, and is a list of vectors, called the orthant list, which is used to derive
the translation relative to the reference simplex. The permutatiodlparily, and and
orthant listd = &y, are defined below as functions @f andp. Correctness will be

established in Theorem 5.3.1 below.

108

Permutation Part: The signed permutatioliy, is defined recursively as follows for a

base permutatios and binary pathp:
H\I!,(D = Vv H\I/,pO = H\I/,p H\I/,pl = H\I/,pozﬁa (51)

wherey, is the permutation that cyclically shifts the last ¢ elements to the right
and negates the element that is wrapped around. Thayis; [12 --- ¢ (—=d) (¢ +
1) (¢ +2) --- (d—1)]. Aportion of the simplex decomposition tree, and the associated
permutation values are shown in Figure 5.4. For example, observgtisatelated ta)\;
by the signed permutatign-2 +1|, which negates the first column of;, and then swaps

the two columns.

Orthant List: Recall that with everyl levels of descent in the decomposition tree, the
resulting simplices decrease in size by a factot &f. The bounding hypercube of the
resulting descendent is one of t€hypercubes that would result from a quadtree-like
decomposition (indicated by broken lines on the left side of Figure 5.4). Depending on the
level within the tree, the translation of the descendent hypercube relative to its ancestor
will be some power of(1/2) times ad-vector over{+1}. Such a vector defines the
orthantcontaining the descendent hypercube relative to the central vertex of its ancestor.
Consider, for example, the shaded simplex in Figure 5.4. Its translation relative to the
base simplex ig(+1, —1) + 1 (+1, +1), indicated by the arrowed lines on the left side of

the figure. The orthant list encodes these two vectors.

109

(1,0)

: N,=S, [-1-1

i , Ta-») o e { 1 -1]

i ! ! 11
(-1,-1) (1,-1) / [+1+2] \

81=8[0 0 s,[0o
~1-1
1-1

e [+1 +2] [-2 +1]

D,=Sy| 0 0 Sor | O
10 1

11 1-

1

[+1+2] / [+ 2:| ————————— = orth=(+1,-1)
Sowo | Y272 Souy | 7272
10 0 O
1-1 10
/ [+1 —2]\ [+2 +1]
Sot00 | 72 72 So101| 72 =72
1-% 1-%
1-1 10
[+1 -2] [+1 +2] = orth=(+1,+1)

Figure 5.4: The signed permutatiolls, associated with each simplex are shown below
each simplex matrix, and the entries of the orthant list are shown for the shaded simplex

So101- The LPT code for this simplex i@, [+1 +2], ((+1, —1), (+1,+1))).

110

To define the orthant list, we first remove the last

l Q,= 0,0,

bols intoL = | |p|/d| substringsg,¢s . .. qr, where

lg;| = d. (See Figure 5.5.) Since the reference tree

structure repeats evetylevels, eacly; can be viewed Figure 5.5: Orthant List

as a complete path in one of these subtrees of height

d. Let @Q; denote the concatenation of the firsiubstrings. Fot < i < L, definel'y,|[i]
to be the signed permutation for pah, that isIly,g,. Define theorthant listfor the pair

(¥, p) to be the sequence aéfvectors whoséth element iorth(I'y,[:]), that is

Oy, = (orth(I'y,[1]), orth(I'y,[2]), . . ., orth(T'y,[L])) .

The orthant list can be computed incrementally along with the permutation part of
the code as follows. Given the LPT codell, ®) for a simplexSy,,, first observe that
the orthant list only changes for the children if the current levéHd . If so, we compute
the child’s permutationl’ from Eg. (5.1) and apperatth(I1’) to the current list. Observe
that given the level and the orthant lis for any simplex, we can derive the length of

the associated tree pailfas(+ d - length(®).

The computation of the LPT code is summarized in the proceldafeodeshown
in Figure 5.6. The code for the simplé,,, is computed by the callPTcodép, (0, ¥, ().
We may now state the main result of this section, called_ & Theoremwhich estab-
lishes the geometric meaning of our LPT code by relating each simplex of the decom-
position tree to its associated reference simplex. Hebert [Heb94] proved the analogous

111

LPTcodép, (¢,11, D))
if (p=20)return (¢,1I,)
Expresg aszq, for z € {0, 1}
{— ({+1)modd
if (x=1)IM«—1IoX%,
if (¢{=0)® «— &+ orth(II)
return LPTcodéq, (¢,11, @))

Figure 5.6: ProcedurePTcode

result for his 3-dimensional bisection system. ILgt, denote gd + 1)-column vector of
1's. The following theorem makes use of the observation that, for/ayv vectorv, the
matrix productl’ ; - vis a(d + 1) x d vector whose rows are all equaltpand hence

adding this to any simplex matrix is equivalent to a translation.by

Theorem 5.3.1 (LPT Theorem)Let Sy, be the simplex of the decomposition tree asso-
ciated with some initial permutatior and binary pathp. Let (¢, 11, ®) be the LPT code
for this simplex, defined above. Th&g, is related toA,, the reference simplex at this

level, by the following similarity transformation:

L
L.
AJT+17,) 5 ®lil-

i=1

1
2L

Swp =
whereL = | |p|/d].
Before proving this theorem, we will prove the following technical lemmas.
Lemma 5.3.1 Given the reference simpléx,, 0 < ¢ < d,

BioAy = Bii A,

whereY, is as defined in Section 5.3.

112

Proof: Here is an informal justification of the lemma. Sinceis an orthogonal matrix,

the following holds.
St =0 =lel .oef —el efiy...el]

When a matrix is postmultiplied b, ', the last column is negated, and then the last
(d—?) columns are cyclically shifted to the right. Consider the general form of a reference
simplex and its two children as shown in Figure 5.7. It can be observed that, if we negate

the last column of the 1-child ak,, and cyclically shift the lastd — ¢) columns to the

right, we get the O-child of\,. O
Ay
0 |0 0
X
12 T TN -1
-1
1 |1 1
14
0 1
A1 = Booly By A,
o | do 0 0|0 0 |0
‘ T [0 14 T X 0 [0
C+1 T 1IN -1 (+1[T [t e |
1 -1 H
1 (1)1 1 1 |1 1
14 14

Figure 5.7: The two children of a reference simplex.

113

Lemma 5.3.2 Given the reference simpleX,, 0 < ¢ < d, and a signed permutation
H‘l/7pl

Bea Ay, = Apyi Ty
Proof: By definition, 1y ,; = %11y, thatisIly , = 3, 'Ly .
BoaAdly, = Ap1 Sdly, = A1 505, My 1 = Ay 1

0
Proof: (Theorem 5.3.1) We will prove Theorem 5.3.1 by induction. Recalllthat I1y,,

¢ =Py, | = [p| mod dandL = | |p|/d].

Induction Basis: The hypothesis holds for all root simplices; y. SinceL = ||p|/d] =

0, and? = 0 at root level,

Suo = 3loIlyg+ 17 50 | Ly il

= Ayllyp (holds by definition)

Induction Step: Assume that the inductive hypothesis holds far,, atlevel ¢/ =
|p| mod d. We will show that, it holds for the 0- and 1-children 8§ ,. In addition
to the above lemmas, we will make use of the following equalities:
Agp1 = BrolAy.
LetT =17, 327 L&y, [i]. Note that,

i=1 2

L L

1 , 1 .

T = 1g+1 Z §®W,p0[z] = 1§+1 Z i@ﬁ/,pl [1]
i=1 i=1

114

as well. Also, note that all rows d@f are equal to each other. For such a maffixhe

following equalities hold,
ByoT =T, ByT =T,
In the induction, there are two cases to be distinguished dependifig on
1.0</<d-1

(a) First, consideby ,0. By definition,Ily 0 = Ily .
S\p’po = Bg,os\pvp = Bg70(2%AgH\I/’p + T) (by ind. hyp)
= 3Ally,+T = Ay + T
This completes the induction féfy 0, since||p0|/d| = Lfor0 < ¢ < d—1.
(b) Now, consideSy ;.
Sept = BiiSvpy = Bui(GrAdly, +7T) (by ind. hyp.)
st A1y + T (by Lemma 5.3.2)

This completes the induction féiy ,,;, since| |pl|/d| = Lfor0 < /¢ < d—1.
2. { =d — 1, the children ofSy , will be atlevelO.

(a) First, consideby . By definition,Ily 0 = Iy .

S\I/,pO - Bd—l,OS\I/,p
= Baao(srAaalle, + 13, 200, 5@, [i]) (byind. hyp)
= Q%Adn‘l’vp + 1£+1 25:1 %‘qu,p[i]
= Q%Adn‘l’,po + 1§+1 ZiL:I %(D‘I’,po [1]
L+1 1

- %Adn‘lhpo + 1:‘1F+1 i=1 21'(1)\1'420[@'] - ﬁlgﬂ‘p@,pﬂ [L + 1]~

115

SinceA,; = % where[1] 441)xq i @ matrix of 1's anby ;[L+1] =

orth(Ily ,0), we have

Ao+[1 «
S\I/,po _ 2%(o+(](d+1) d)H

L+1 1 .
vp0 T 1d+1 i=1 ﬁ%,poh]
1
— srrr 14, 0rth(TTw o)

= g Qollypo + 17 125?211@)\1/130“

+ 2L1+1 ([]—](d+1)><dH\If,p0 - 1§+10rth(n\l’,p0))-

By Lemma 5.2.1,
17, orth(Ily o) = 17, refl(Ily ,0)permIly o)
= [1(ar1)xadiag(refl(Ily yo)) permIly ,)
= [1)(g+1)xallw po-
And so, we see that, the third term above is 0, yielding
Supo = grrlollypo+ 15, S 20y 0]
This completes the induction fcfy 0, since| |p0|/d| = L+ 1for{ =d — 1.
(b) Next, considety ;.
Svp = BriSu,
= Bm(A1y, + 1d+1 i 1 QZCD\I,p[i) (by ind. hyp.)
= Aqu, p1 T ldJrl i 1 21<I>\1, 1] (by Lemma 5.3.2)

= Ay + 15, S 5@y i) — 518 Py [L+ 1]

Applying the same derivations as in the previous case, this can be reduced to

. L+1 1
S\I’,pl - 2L+1 AOH\II ,pl + 1d+1 i=1 921 cI)\Il pl[]

This completes the induction &ty ,,;, since||pl|/d| = L+ 1for{ =d—1.

116

Implementation Issues: We can now describe a pointerless implementation of a sim-
plex decomposition tree. For each simplex, in the tree, we create an node that is in-
dexed by an appropriate encoding of the associated LPT code. Theorem 5.3.1 implies that
the geometry of this simplex is determined entirely from the LPT code, and, if desired, it
can be computed from the code in time proportional to the code length. In addition to the
index, this node may also contain application-specific data. These objects are then stored
in any index structure that supports rapid look-ups, for example, a hash table.

There are a number of practical observations that can be made in how to encode
LPT codes efficiently in low dimensional spaces. lLetlenotes the maximum depth of
any node in the tree. Each of tiepermutations of Syifa/) can be encoded as a integer
with log, d! bits [Knu73]. A d-element reflection vector ovéet1} can be represented
as ad-element bit string (e.g., by the mappirg — 0 and—1 — 1). Thus, a signed
permutationlI then can be encoded by a pair of integers. A convenient way to encode
the vectors of the orthant list is map them to bit strings and to store thefrsegarate
lists, one for each coordinate. (The advantage of this representation will be discussed
in Section 5.5.) The final code consists of the lefjeéxpressed withlog, d] bits, the
permutation and reflection, represented udiig,(d!)| + d bits, and finally the orthant
list, represented using length(®) bits, which is at mosi | D/d| < D. The total number
of bits needed to represent the code for a simplex at depghD+l1og, (d!)+O(d). Thisis
close to optimal in the worst case, since there2alé@ simplices at depttd in a full tree.
If we assume that the machine’s word sizélg D /d) + log, d!), then the permutation
part of the code can be stored in a constant number of machine words and the orthant lists
can be stored i®(d) machine words.

117

Also, note that for smald, the multiplication tables for the various signed permu-
tations (such a&, of Eqg. (5.1) and the neighbor permutations of Section 5.5 below) can
be precomputed and stored in tables. This allows very fast evaluation of permutation

operations by simple table look-up.

5.4 Decomposition Tree Operations

In this section we present methods for performing useful tree access operations based
on manipulations of LPT codes, including tree traversal, point location and interpolation

gueries, and computing neighbors in the simplicial complex.

5.4.1 Tree Traversal

Consider a simplex¥y,, of the tree whose LPT code {g,1I, ®). Let us consider how

to compute the children and parent of this simplex in the tree. The LPT codes of the
children of this simplex can be computeddrd) time by applying the recursive rules
used to define the LPT code, given in Section 5.3. We can compute the parent from the
LPT code by inverting this process, but in order to do so we need to know whether the
simplex is a left child, a right child, or the root. A root simplex is distinguished by having

an empty orthant list and levél= 0. Otherwise, we make use of the following lemma.

Lemma 5.4.1 Consider a nonroot simple% of the decomposition tree with LPT code
(¢,T1,®), and letS’ be its nearest proper ancestor at level 0. Let= [r;]., be the
signed permutation of, leto = (0;)%_, be the last entry of the orthant list &f, and let

=1+ ((¢ — 1) mod d). ThenS is a 0-child if and only if sigfwr) = sign(oyr,./)-

118

Proof: In order to prove Lemma 5.4.1, we prove the following more general lemma,

which characterizes the child relations for a simplex’s ancestors, up to the next Oth level.

Lemma5.4.2 Let Sy, be a nonroot simplex, and Iét;; be its nearest proper ancestor
of level 0. Letb = orth(Ily,) be the last orthant list entry ofy;. Letbb, ... b, denote
the path fromSy, to Sy,, where* = 1 + ((¢ — 1) mod d). Letlly, = [m]L, and
0= (0;)L,. Then

0 if sign(m;) = sign(or,)

1 if otherwise.

Proof: We do not know whatly; is, but since we knove, we know the signs of each
coordinate axis illy;. We can determing, b, . . . b~ by finding out which axes changed
signs as we go down the tree fra¥g, to Sg,,. Consider the step, when we descend down
from Sy, b, , 10 S, ;- Lww,.p, , @ndIlyy, », denote the associated permutations.
If b; = 0, we follow the O-path, andlly,.» Will be identical tolly, 5 ,. Thus, the

i entry inTly,. 5, remains with its original sign. On the other handpif= 1, we
follow the 1-path, and so thé" entry inTly, s, , iS negated and cyclically shifted to
thei’* position iNILyp, .5, Thus, thei’” entry in ITy4,..5, has changed its original sign.
Since the subsequent steps apply cyclical shifts only to the(dast i) entries of the
permutation, the' location remains the same until we descend dowSftg. And so,

looking at whether thé" entry inlly, has changed its sign or not, we can deternbine

Sl/),t
+1-4-3+2] - [24+1-4-3 L
Sw.,p
[—2+1-4-3 - [-2 +1 +3 —4]
—~—

Consider the above example whére- 3. Note that(o;)? = (+1,+1,—1,—1). 0,
had a positive sign, following the 1-path, it was negated, and became the first element in
Ily,, because after it was shifted to the first location, it was fixed. Similarly, following
the O-path, 1 remained positive and got fixed at the second location, and following 1-path
3 was negated and placed at the third location. And so, the pathdgrto Sy, is 101.

0

Now Lemma 5.4.1 follows as an immediate corollary sifgg is a O-child, if and
only if by = 0. 0

Lemma 5.4.1 can be applied as follows to determine the LPT code for the parent of
anonroot simplex. GivenS’s LPT code,(¢, IT, ®), we distinguish two cases, depending
on its level. If¢ is nonzero, then its parent’s levelds= ¢ — 1 and otherwise its parent’s
levelis?’ = d — 1. If £is nonzero, then the orthant vectwof the lemma is the last entry
of ®. We apply this lemma to determine whettters a O- or 1-child. From Eq. (5.1)
and Theorem 5.3.1 we know that, if it is a 0-child, it has the same permutation code as its
parent, and otherwise its parent’s permutation codé dsZ;,l. Its parent has the same
orthant list. On the other hand, 4f= 0 theno is the second to last entry df. Again
we apply the lemma to determine whetlfeis a 0- or 1-child, and derive its parent’s
permutation code. The last entry §fs orthant list is removed to form the orthant list
of its parent. This can be computed @hd) time. The computation of the parent is
summarized in the proceduparentin Figure 5.8. The parent of the simplé,, with

LPT code(/,I1, @) is computed by the cafiarentp, (¢,11, ®)).

120

paren{p, (¢,11, ®))
if (p=0)return 0
Expressp astb b . . . by-.
' — (¢ —1)modd
if ((=0)d — & — (P[L])
elsed’ — ¢
if (b = 0) I — II
elsell’ — 1o ,!

return (¢, 1I', ')

Figure 5.8: The proceduarent

5.4.2 Point Location and Interpolation Queries

In this section we consider how to compute the LPT code of the leaf simplex of the
decomposition tree that contains a given query pgirt (¢;)¢_,. We assume that lies
in the base hypercube, thatis] < ¢; < 1. If g lies on a face between two simplices, we
will choose one arbitrarily.

We begin by locating the root simple%;, that containgy. It is easy to see that
a pointq in the base hypercube lies in the base reference simplgxf and only if its
coordinate vector is sorted in decreasing order. It follows that determining the permutation
¥ of the root simplex reduces to sorting the coordinates @i decreasing order and
settingV to the permutation that produces this sorted order. Let us assume that we have a
functionsortDescendinghat computes this permutation.

Lettingv; denote theth vertex of the root simpleXy,» that containg, thebarycen-
tric coordinatesof g with respect to this simplex is the uniqder 1 vectora = (a;)%_,,

0 <a; <1,suchthad, a; = 1 andq =). a;v;. Because of the special structure of

121

Ay, it is easy to verify that the procedufi@dRootshown in Figure 5.9 computes these
coordinates.

After this initialization, we recursively descend the hierarchy until finding a leaf
simplex. We use the barycentric coordinates oélative to the current simplex to deter-
mine in which child it resides. Then we generate the barycentric coordinatgsvibi
respect to this child. This is done with the aid of the following lemma, which is proved
in the appendix. The descent algorithm is given in Figure 5.9 and its correctness fol-
lows from Lemma 5.4.3. To simplify the presentation, we have omitted the orthant list

processing, but it is essentially the same as in the code block just prior to Theorem 5.3.1.

Lemma 5.4.3 Consider a nonleaf simple%y, of the hierarchy at levef with the asso-
ciated permutation codHy, = [m;]L,. Suppose that lies within this simplex with the

barycentric coordinatesx = (;)2L,.

e If oy < oy, thenglies in the O-child. Letx’ be the(d + 1)-vector that is identical
a except thaty, = 2a, anda, = ay — ay. Then the barycentric coordinate vector

of g relative to this child isa’.

e Otherwiseg lies in the 1-child. Lek, be a(d + 1)-permutation that shifts the last
d+1—/ coordinates circularly one position to the right. Leetbe the(d+1)-vector
that is identical too except that!, = 2o, ando, = ay — g Then the barycentric

coordinate vector of] relative to this child isa').

Proof: Let Sy, be the simplex of the hierarchy at levethat containgy. LetIly, =

()L, be the associated permutation vector. bet= (o;)%, denoteq’s barycentric

122

findRootq)
U — sortDescendingq)L,)
ap — (1 —qy,)/2
aq — (1+qy,)/2
for (0 <i<d) o (qu; — Qisr)/2

return (¥, o)

searchq, (¢,11), o)
if ((¢,11) is a leaf return (¢,1I)
o — «
if (ar < aq)
oy — 20y Al — ag— ap
return searchq, ((¢ + 1) mod d,11), ')
else
ol — 204, o — oy —ay

return searchid, ((¢ + 1) mod d,1I o %), &'%})

Figure 5.9: The procedurdéimdRootandsearch which are used to locate a query pant
in the hierarchy. The permutatiag, is defined in Lemma 5.4.3 and the permutation

was given in Section 5.3, Eq. 5.1.

123

coordinates with respect t8y,. Letv; denote theth vertex ofSy,. Recall thatm =

VetV is the newly created vertex that bisects this simplex and that

S\pp :[V() ooV .Vd]T,

Swupo=[Vo .- Vee1 MVeyq ... Vg,
S\I/,plz[Vo Ve i mvg. . .Vdfl]T

And so,v, = 2m — v,, andv,; = 2m — v,. Thus,g can be written in terms of barycentric

coordinates as,

g = oagVo+ ...tV + ...+ agVy
= ooVo+ ... +tap_1Vo_1+ Ckg(Qm — Vd) + apr1Veyr1 + ..o+ Vg

= ooVo+ ...+ ap_1Ve_1 + 2a,m + Opp1Vep1 + ...+ (Ozd — Oég)Vd,

g = agVo+ ... +FapVe+ ...+ agVg
= aoVo+ ...+ Vo1 FaNe+ ..+ ag(2m — V)

= agVo+ ...+ ap_1Ve_1 + 2agm + (Oég — Ozd)Vg + ...+ ag_1Vg_1.

And so, if (g — ay) > 0, it follows thatq resides inSy,, and otherwise it resides in
Swyp1. From the above equations, we can also see the barycentric coordinates| when

resides inSy,o Or in Sy ;.

0

Given the query poingj, the point location procedure first cafladRootto find the
appropriate root simpleX¥ of the decomposition tree and the barycentric coordinates
Then itinvokes the recursive procedsesarch{0, ¥,) to locateq within the appropriate

124

root simplex. Once the point has been located, we can answer the interpolation query for
this point. We access the stored vector field values at each of the simplex vertices, and
then weight these values according to the barycentric coordinatgs ©he result is a
piecewise linear, continuous interpolant.

This simple sequential search makes as many memory accesses as the depth of the
final leaf simplex that contairge A more efficient procedure in terms of memory accesses
would be to employ a doubling binary search, which computes (using only local memory)
the LPT codes for the simplices at depths 0, 1, 2, 4, 8, and so on, until first finding a depth
whose simplex does not exist in the hierarchy. We then use standard binary search to
locate the exact depth of the leaf simplex that contginélthough the computation of
the LPT codes is performed sequentially in time linear in the depth of the final simplex,
the number accesses to the simplex decomposition tree is only logarithmic in the final
depth. Thus, the running time (dD), whereD is the maximum depth of the tree, and

O(log D) global memory accesses are made.

5.5 Neighbors in the Simplicial Complex

As we mentioned earlier, when simplices of the decomposition tree are bisected, it is
necessary to bisect some of its neighbors in order to guarantee that the final subdivision
is a simplicial complex. Henceforth, let us assume that the simplex tree decomposition
has been constructed so that the underlying subdivision is a simplicial complex. In order
to know what additional simplices must be bisected, it is necessary to compute neigh-

bors within the complex. Two simplices aneighborsif they share a commofi — 1)-

125

dimensional face. In addition to this major need for fast neighbor computation, in general,
computing facet neighbors of a simplex efficiently is of great interest for many applica-
tions that require moving along adjacent simplices, such as direct volume rendering and
isosurface extraction techniques.

In this section we provide rules for computing facet neighbors based solely on their
LPT codes. In all but one of the cases, the neighbor can be comput@intime,
independent of the depth of the simplex. In the case where the computation may require
time proportional to the depth in the tree, we show that this computation can be sped up
by a factor ofd times the machine’s word size, and so is nearly constant time for practical
purposes.

Consider a simplexX' in the complex defined by the decomposition tree. (et
i < d, letv; denote itsth vertex. Exactly onéd — 1)-face ofS does not contaiw;. If this
face is not on the boundary of the base hypercube, its neighbor exists in the complex. If
so, we defineV(?)(S) to be the neighboring simplex ®lying on the opposite side of this
face. Let(¢, T, ®) denote the LPT code faf and let(¢), TI) ()) denote the LPT code
for N®(S). We present rules here for computing LPT codes of these neighbors. The
proof of their correctness is based on a straightforward but lengthy induction argument.

The rules compute the LPT code for the neighbor simplex at the same degth as
and hencé” = ¢. Of course, this simplex need not be in the decomposition tree because
its parent may not yet have been bisected. In fact, in a compatible subdivigior, &)-
face neighbor of5 could also appear at one level higher or one level lower thakiVe

show how to compute the LPT codes of those neighbors, as well.

126

5.5.1 Neighbor Permutation Code

Each neighbor’s permutation code is determined by applying one of a set of special signed
permutations tdl. The permutation depends on whetlas a 0-child or a 1-child, which
can be determined using the test given in Section 5.4.1. These permutations are illustrated

in Figure 5.10, and include the following:

e I'\ec1, Negates the first element,

[rere, Shifts the lastl — ¢ elements cyclically one position to the right and negates

the element that was wrapped around,

' e 0 shifts the lastl — ¢ elements cyclically one position to the left and negates

the element that was wrapped around,

I"swei, SWaps elementsandi + 1,

I'vsw,e, SWaps and negates elemehendd.

1 d 1 7 d 1 7 d

Fucos LN 1, BT 1), ST |

Figure 5.10: Neighbor permutations. (The circle with a minus sign indicates that the

element is negated.)

The neighbor rules are given in Theorem 5.5.1. A number of the rules involve the
parent’s level, and so to condense notation, we défine ({(—1) mod d and/* = ¢~ +1.

127

Observe that~ = ¢ — 1 and/* = /¢, except wherd = 0, in which case they are larger
by d. These can be computedd@(d) time, and in fact inO(1) time if permutations are

encoded in look-up tables as described below.

Theorem 5.5.1 Let.S denote a simplex at levé] and letII denote the permutation code

for S.

if (Sisa0-child): N©(S): IO = TloTlyeq:
NOS): (0<i<d) IO = IToTlsye;
N@(S): M@ = Mo Tggr-

if (Sisal-child): N©(S): II© = Tlo e
NE)(S) - n“) = IIo Ciere-
NO(S): (0<i<di#¢) O = Tlo gy,
N@O(S): (d#) 9 = TloTyswe

The proof is presented at the end of this chapter.

Implementation Issues: In our implementation, we treat the signed permutation com-
ponent as a reflection and a permutation separately, as in the initial description given in
Section 5.2.1. Recall that the reflection could be orf eéflections, and the permutation
could be one off! permutations. Both the reflection and the permutation are represented
by a unique integer identifier. The operations defined on the permutation-reflection com-
ponent such as cyclical shifts and swaps are performed through use of tables, which can
be computed once the dimensidns given. Each possible operation is also given a
unique integer identifier. We precompute two tables, one for permutations, and one for
reflections. There is an entry for each possible permutation/reflection and each possible

128

operation combination. The permutation/reflection integer identifier and the operation
identifier could be used as indices to these tables to get the integer identifier of the result-

ing permutation/reflection. By these tables, all operations are perforn@ intime.

5.5.2 Neighbor Orthant List

In order to compute the orthant list component of the neighbor, from the LPT catle of

we distinguish 3 cases:
1. If¢#£0o0r1 <i<d, NY(S),isin the same final orthant & and so®®) = @,

2. If ¢ = 0, N9 is in a different orthant thas, but, N? is the sibling ofS in this
case. Thusp and®@ differ only in their last element, which rth(TI(9)) in (@,

Thus the orthant list can be updated’i) time in this case.

3. The only remaining case). This case is the most complex because the final
enclosing quadtree box of (*)(S) is disjoint fromS’s final quadtree box. Further,
it may be arbitrarily far away, in the sense that the least common ancestor of the

two nodes may be the root of the tree. This case is described below.

To computed®, we use a method similar to the one for computing neighbor quad-
rants in quadtrees [Sam90a]. In our representation, the path from the root to the orthant is
the list of orthants inb. Consider the 2-dimensional example in Figure 5.11(a). The or-
thantsA and B are neighbors, and their associated orthant lists, written as column vectors

are as follows. €1 and—1 are denoted with their signs only, asand—, respectively.)

129

1 Mg\\

N +-) =) =)

< RN

(+.4)

MJ\ SN
A //\

A(+,-) B(--)
(@) (b)

Figure 5.11: OrthanB is a neighbor of orthart in 4+ X direction. (a) The quadtree-like

subdivision of space (b) The corresponding tree representation.

It is easy to see that, paths tband B have a common prefix corresponding to
their common ancestors, that is the orthant+) in the example. Orthant entries are
identical for the remainder of the paths except that one coordinate (in our exakple,
is complemented. Figure 5.11(b) illustrates the pathd md B. The axis which has to
be complemented depends on which neighbor we are looking for. This generalizes to a
d-cube which is subdivided in a quadtree-like manner.

The problem of finding a neighbor orthant can be stated as follows: Given an orthant
A whose path from the root is representeddoy, and a direction defined as a 2-tuple

130

(D, X;) whereX; is thei" coordinate axis, and € {—, +} represents the direction of
X;, find the neighbor orthan® of equal size located in the given direction with respect
to A.

Similar to the algorithm described for quadtrees by Samet [Sam90a], the algorithm
to find the neighbor orthanB is a two-step process. Let the direction of the neighbor
be (D, X;). In terms of the tree representation, we first perform a bottom-up traversal
starting from A, until we find the closest ancestdr, such thatC' is the parent of the
lowest ancestor oft whosei?* coordinate is the complement &f. This is the desired
common ancestor ofl and B. If no such ancestor exists, then the desired neiglibsr
outside the bounding box, and so, it does not exist. Otherwise, let the patifiont
be denoted a&; 4. In the next step, we complement thig coordinates i 4, to get the
path fromC'to B, Pog. And since the path from the root ¢, ¢ is common for bott4
andB, &5 = ®¢ + Pop. Thus, finding the common ancestorby bottom-up traversal
corresponds to processifg, back-to-front, complementing th&; coordinate of each
orthant, until we come across an orthant whagecoordinate is—D. We complement
this coordinate as well. This completes the complementing part. Rest of the list remain
the same. The resulting list ¢s3.

Now, if we consider the original problem of computidg” corresponding to the
0™ neighbor of simplexS, we can use the algorithm explained above, if we know which
direction N(¥)(9) is located with respect t6. Consider thdl andII”) corresponding to
S andN©(S) respectively. By the given neighbor rules, these two permutation-reflection
codes differ only in the sign of their first element. This is the sign corresponding to the
X|r,| axis, given thafl = [7;]¢ is the code forS. The sign ofr; determines in which

131

direction ofX|,,,| axisS resides in its final orthant. And so, the neighbdf’ (.5) is also in
that direction. Thus, the axis component of the directiok ig|, and the sign component

of the direction issign(ry).

Implementation Issues: This operation can be implemented very rapidly through a
simple trick with bit manipulations. The neighbor computation [Sam90a] essentially in-
volves an operation, which is applied to a bit string that consists afttheoordinate of

each entry of the orthant list. Recall from our earlier discussion of implementation issues,
that the orthant list is stored dsseparate bit strings, one per coordinate, and packed into
machine words as binary numbers. The key operation needed for the neighbor computa-
tion involves complementing a maximal trailing sequence of matching bits. For example,
given a bit string of the formw10*, for w € {0,1}*, the desired result i&01* (and vice
versa). By packing these bits into a single word, we can compute this function with a
single arithmetic operation by subtracting (or adding) 1 from the resulting binary number.
(Similar tricks has been applied elsewhere in the context of neighbor finding [LDS01].)
Under the assumption that the machine’s word siZ&(i®/d), whereD is the maximum
depth of any simplex, it follows that the orthant list for the neighbor can be computed in

O(1) time.

5.6 Compatible Refinement and the Simplicial Complex

We have earlier mentioned thedmpatibilityis important, since otherwise, cracks occur
along faces of the subdivision, which in turn present problems when using the mesh for

interpolation. In order to keep the subdivision compatible at all times, whenever a simplex

132

is bisected a series of bisections will be triggered in other simplices. Hebert [Heb94] and
Maubach [Mau95] describe the process for their systems. For completeness we include a
short description here as well.

Consider a simplexX which is about to be bisected, and talenote the next edge
of S to be split. The simplices of the subdivision that share this edge, de@dted,
must be bisected as well. The rules given in Section 5.5 provide a means to locate same-
depth neighboring simplices that share a comrtibr 1)-face with S, that is, thefacet
neighborsof S. Let N.(S) denote the facet neighbors Sfthat contain the edge or
equivalently, the facet neighbors lying opposite all the 1 vertices ofS other than the
endpoints ofe. In order to access all the simplices Bf(S) we compute facet neigh-
bors recursively. The algorithm was given by Maubach [Mau95], and is shown as the
recursive functiorcompatBisecin the codeblock shown in Figure 5.12. The procedure

simpleBisecperforms the basic bisection step described in Section 5.2.2.

compatBiseqtS)
mark.S as pending
for (S € N.(9))
if (.S’ does not exisf
compatBisegparen{S’)) // now S’ exists
if (S is aleafand not marked as pending

compatBiseqts’) // bisectS’ and its neighbors

simpleBisedtS)

Figure 5.12: ProcedurmompatBisect

Maubach proved that in a compatible subdivision, the facet neighbgfshetded
in this refinement, either appear at the same depth as one level closer to the root

133

[Mau95]. For this reason, if theompatBisecprocedure does not find a simplék in
the tree, then it knows that its parent exists, and bisecting the parent will 5éintp
existence. Note that the bisection of the parent may trigger recursive bisections on levels

¢ —1and/¢ — 2, and so on.

5.7 Neighbors at different depths

Neighbor rules of Theorem 5.5.1 provide the LPT code for the same depth neighbors.
However, in a compatible subdivision, a neighbor could possibly appear one level closer
or one level further from the root, that is, some neighbors of a simfjjext depth|p|,

could appear at depthg| — 1 or [p| + 1. We can categorize the neighbors of a simplex
into two groups: neighbors that share the edge to be bisected, and neighbors that do not.
Maubach already proved that a neighbor sharing the edge-to-be-bisected is either at depth
|p| or at depthp| — 1, and that a neighbor at depfj — 1 is the parent of the same depth
neighbor which did not come into existence yet. And so, for a neighbor at gépthl,

we first compute the LPT code for the same depth neighbor by the above rules, and if
the same depth neighbor does not exist in the tree, we compute its parent’s LPT code as
described in Section 5.4.

In addition, any ¢-1)-face neighbor of5, that does not share the edge to be bi-
sected could possibly be at depth+ 1. Specifically, same depth neighbad¥s(S,) and
N@(S,), might have been bisected without triggering bisectiof,ofind so, one of their
children will now share a face with,. Moreover, the child ofV¢(S,) or N@(S,) that

shares a face with),, is the same depth neighbor of one of the childre§,0fSo, we can

134

compute a neighbor at depjhl + 1 by computing the appropriate same depth neighbor
of one of the children of,. Formally,
if (N(S,) is a bisected simplex
N*(S,0) is the neighbor of5,, across vertex,,
if (N(@(S,) is a bisected simplex
N‘(Spl) is the neighbor of,, across vertex,.

It can be easily shown that these neighbors cannot exist at depths highgi than
Intuitively, same depth neighbdv¥*(S,) (resp.,N@(S,)) have exactly one vertex differ-
ent fromsS,. Let that vertex bei. It can be shown that wheN*(S,) (resp.,N(®(S,)) is
bisectedu is one of the endpoints of the bisected edge. So, one of the childdgh(sf)
(resp.,N(d)(Sp)) will have two vertices different frons,, and cannot be a neighbor. The
other child has exactly one vertex)(different from.S,, thus is a neighbor aof,,. If that
child is further bisected however, its children will have an additional new vertex created
by bisection of an edge which does not contajrnence these children at depih + 2

cannot be neighbors ¢f,.

5.8 Conclusions

In this chapter, we have presented a representation of hierarchical regular simplicial
meshes based on Maubach’s [Mau95] simplex bisection algorithm. Unlike Maubach’s

approach, which requires the use of recursion or an explicit tree structure, our represen-
tation is pointerless, that is, the simplices of the mesh are uniquely identified through a
location code, called the LPT code. We have shown how to use this code to traverse the
hierarchy, compute neighbors, and to answer point location and interpolation queries.

135

The space savings realized by not having to store pointers (to the two children, the
parent, and + 1 neighbor simplices) is significant for large multidimensional meshes. If
desired, the vertices of a simplex need not be stored either, and can be computed entirely
from the code of the simplex. For example, for a 4-dimensional SD-tree consisting of 13.2
million nodes, the storage requirements when storing pointers and vertices is 708MB,
whereas it is 354MB without pointers, and 222MB without pointers and vertices (in fact
pointers to vertices) within the nodes. (Note that these numbers also include application
specific data associated with vertices.)

Processing of LPT codes is quite efficient. Given a tree of maximum depth
dimensiond, we showed that, under the reasonable assumption that the machine’s word
length isQ((D/d) + log, d!), it is possible to pack the LPT code into words so that all
traversal and neighbor-finding operations can be performéd di time through the use
of standard integer arithmetic and bit masking and shifting. In fact, by precomputing
multiplication tables for the small number of possible operations defined on codes these
operations can be performeddn1) time. (Computing the orthant list component of the
code for children or parent has worst-c@sgl) time complexity, however the amortized
costisO(1), since orthant list is updated only at evergvels.) In addition, point location
can be performed witly(log D) global memory accesses with the pointerless represen-

tation, in contrast wittD(D) global memory accesses with the pointer-based one.

5.9 Proof of Theorem 5.5.1

The following notation will be used throughout the proof.

136

S denotes any simplex.

S0 = N(O(S), i.e. theit" neighbor ofS.

I1 andII® denote the signed permutation code associated svitmd S
respectively.

So andS; denote the 0- and 1-children 6f respectively.

5" and S denote the 0- and 1-children 6", respectively.

Il andIl; denote the signed permutation code associated $gtand S,
respectively.

H((f) andﬂgi) denote the signed permutation code associated&ﬁ)[landsy),
respectively.

(Sp)® denote the!" neighbor ofS,. (I1,) denotes the code fdi5,).
(S1)® denote theé*" neighbor ofS;. (I1;)® denotes the code fdi5;)®.

m andm’ are used to denote the new vertex generated by bisection.

u is used for the vertex that differs in the neighbor simplex.
Inductive Hypothesis: LetS = [vy...V,...v,]" be asimplex at level = [p| mod d.
Let/~ = ({ — 1) mod dand¢* = ¢(~ + 1.
The rules of the theorem can be stated more explicitly as:
if (S is a 0-child)
SO = [uvy...vy" 11 = 1T 0 Pyeer
SO =|Vo.. . ViquVipy...vg]", (0<i<d) IO =TIoTsyp;

Sld) — Vo ...V~ UV .. .Vd_l]T N4 =Tlo [rer,e-

137

if (Sis a 1-child)

S(O) = [U Vi.. .Vd]T M =T1lo FNEG,I
SE) = Voo V- Vg ... vqu]") =Tl o Tyer -
SO =|Vo...ViiUVi1...Vg", (0<i<di#¢) 1D =ToTlsyp

S@ — vy vay Ul (d+0) [= ITo Tysug

Basis of Induction: We will show that the neighbor rules hold for th# root sim-
plices. Note that thdevel of a root simplex is), and the rules are the same whether
the simplex is a 0-child, or a 1-child. L&t denote any root simplex, with PT" code

H:[’ﬂ'l...ﬂ'i 7Ti+1...7Td].

e For all root simplicess® = ¢, andS¥ = (), that is, thed*” and thed"” neighbors

do not exist, since they are outside thérence hypercube

e Other neighborsS®™, 0 < i < d, should be obtainable by swaps. Recall that the

base simplexX, can be represented as,

Yi0 -1
Yii—1 -1
SQ):[yl yd]a yli =)
Yii 1
Yid 1

and, any root simple¥ can be written as,

138

Yi0 -1

Y) R B -1 » -
=i--Yal, Yi=Yi= = iff =
Yii 1
Yid 1

If m; = j, andm; 1 = k, theny; =y, andy, =y, ;.

H:[’YTl...W,L',l] k 7Ti+2...7Td]

Note that swapping columrnyg andy; of S, will give us another valid root simplex,
S’ that differs fromS only in thei'” row, that is thei'” vertex. So0,5’ is basically

the i neighbor ofS, that isS’ = S®. LetII’ denote the signed permutation for

S’. Then,

H/:[ﬂ'l...’ﬂ'i_l k] 7Ti+2---7rd]-
This shows that thé" and(i 4+ 1)"" entries inlI are swapped to obtaifi’. And so,

% = TI' = IT 0 Ty

Induction Step: Let S be a simplex at level™ such that the inductive hypothesis holds.

We will show that the inductive hypothesis holds for the two childrel§.o¥Ve consider

two cases, for the 0-child and the 1-child.

139

First, consider the 0-child of, that isS,. Let ¢ denote the level of,. Recall that
¢~ = (¢ —1) mod d, and¢* = ¢~ + 1. Letting: denote the neighbor number, there are a

number of cases to be distinguished.

1.:=0
If 0< /¢ <d-—1then
S=Vo Vi...Ve-...vg]T, So=[Vog Vi...Ve-_g m Ve...vg|T
SO=[u vi.. .V ..vg", SO=[u vi. vy m v ..v”
Otherwise if ¢~ = 0then
S=vo Vvi...vgT, Se=[m vi...vg"
SO=[u vi...vg7, SP=[m" wv;...vy".
In either case(,)© = S
And s0,(ITo)© =TI = I = T o Myeey = I 0 Dyeoyr.
2.1=d
By definition of the bisection rules, th#" neighbor ofSj, is its sibling, that isS;,

and so,

(HO>(d) =1II, =1Ilgo FRGT,E—-

3. 0<e< ™
S=Vo...Vi1 Vi Vig1...Ve——1 Ve ...Vg]T,
SO=[Vy...Vis1 U Vigp...Ve—y Ve ...vg]7,
So=[Vo..-Vis1 Vi Vig1...Ve——1 M Vp...vg"
SP=NVo.. Vit U Vigr.. Ve M Ve Vg7

140

In this casg5,)® = S, and so

(H(J)(i) = Héi) =% =Tlo Lswei = Tlp o Tswe;-
4. i=(040

(@) If S'is a 0-child then

S=Vo...Vg-—1 Vi ...vg|T, So=[Vo...Ve-—1 m...vy"

SE=vg.. Ve y. vy T ST e v mr v

Then, (S0)¢) = 57, And s0,(IT))¢) = I) = M) = T o Tgppp- =

Iy o FSWP,K*-
(b) If Sis a 1-child then

S=[Vg...Vy—_1 V= Vp...Vg"
SED=Vo... Ve 1 Vpe ... vg ul”

So=[Vo...Ve——1 M Vg ...V
Sy Ve M v v

Then, (S,)¢) = S\,

HOZH:[TFl...ﬂ'd],

H(Z_):[Wl...’ﬂ'g—_l T+ ... Tq —ng],

() _
Iy ' =m...Te-_1 Tpx T Tpeyq... T4

And s0,(ITo) ¢) = II"") = Iy o gyypy-.

141

5 - <i<d

S=[Vo...Vpy—_1 Vg ...Vig Vi...vg]T
SO=[vg.. Vi1 Ve ... Vi1 Y...vg"
S():[VO e VK*—l m Vi,1 Vi ‘e Vd]T

SO=Vo. . Veeor m Vi y...vg)T

In this cas€5,)® = S, and so(I1y)® = TI{" = 1) = Mo Dsywe; = oo Cgypy-

This completes the case of the 0-child.

Next, consider the 1-child of, that isS;. Let ¢ denote the level of;. Note that
¢~ =({—1)mod d. Let¢* = ¢~ + 1. Letting: denote the neighbor number, again, there
are multiple cases.

1.i=0
@ ¢—=0

S=Vo Vi...Vg1 Vgt, Si=[m vy...vg 4]

SD=vy vyi...vg1 U7, Sfd):[m/ Vo...Vai1]"
Then,(5,)© = 5%

I=[m... .74, Iy =[-7mg m1...7Tq-1],

0D =[m...mg1 —7a), 0@ =[mg m.. 7]

And so,(I1,)© = Hgd) =11 o I'ney1-

142

(b) £~ #£0

Si=[Vo Vi...Vg——1 m v ...vg)T

S%O):[YV Vi...Vp——1 M Vp—... Vd_l]T.

H:[ﬂ'l...ﬂ'd], H1:[7T1...7Tg— —Td 7Tg*...7Td_1],

H(O):[—ﬂ'l...ﬂ'd], Hgo):[—ﬂ'l...’ﬂ'gf —Tq ﬂg*...ﬂd_l].

And so,(I1,)© = H&‘” = Il o I'yec -

2. 0< i< (™
S=[Vg...Vii1 Vi...Vp—_1 Vo ...vg]T
SO=[Vg...Vii1 Y...Ve_1 Vi ...V
S1=[Vo... Vi1 Vi...Ve-1 M Vp—...Vgq]

Sii):[VO .V Y...Vy——1 M Vp—... Vd—l]T'
Then,(5;)® = S,

II=[m...74,
Iy =[m ...~ —Tq Toe...Ta-1),
H(l) = [7T1...7TZ',1 Ti+1) 7Ti+2...7Td],

(i) -
Hl :[7T1...7TZ‘_1 Ti+1 TU...Typ— —Tq 7Tg*...7Td_1].

143

3.

1=0"

(@) If S'is a 0-child then

S=Vo...Vg-_1 Vi ...Vg_1 V4T
SD=[vg...Vp_1 Y Vi ...Vgq|"
S1=[Vo... V-1 M Vp—...V4_4]
Séd)_[vo CVe—pom v v
Then,(5)¢) = 5.
II=[m...74,
I =[m...m- —mg mee...Tg1],
Héd) =114 = [Ty ... T-—1 —Tq T ... Tg-1].
And s0,(I1;)¢) = II{Y =TI, 0 Tgppy-.
(b) If Sis a 1-child then
S=Vo...Vg-_1 Vi ...Vg_1 Vg¥
SD=[vg...Vp_1 Vo ...Vq1 u]”
Si=[Vo...Ve-—1 m Ve ...vg 4T
Sfd)_[vo Ve move v)T
Then,(S;)¢) = s\
II = [7T1 Trd]a
I =[m ..M~ —Tg T ... Tg-1],
0@ = [7y... -1 —Tq Tpe...Tg1 —Tp),
Hgd) =[m...T-_1 —Tq T ...Tg_1].

And so,(IT;)¢) = I =11, o Cowpe--

144

4. i =10"

By definition, the(ﬁ*)th neighbor ofS; is its sibling, that isSy, and

(Hl)(g*) =1y =10 F|_FT,£*-

5.0 <i<d, (40

(@ r<i<d, l+#0,

S:[Vo...ng .o.Vio Vi1 V;...Vg_1 Vd]T,
._1 T
SOD=Ivy...Vpo...Vig U Vi...Vg1 Vg7,
T
Slz[VO V-1 M V-0V Vi1 VL. Vdfl] ,

SOV Vel M Ve Vs U ViV]
Then,(5;)® = stV

H:[Tfl...ﬂ'gf...ﬂ'i_l T ... T4,

II; = [71'1...77'(— —Tg Tpx...T;—1 7Ti...7Td,1],SiHC€ 1—1>0
i—1)

H(Z) = [71'1 e T T T—1 T4l - .7Td],

Hgiil) =M ..M~ —Tq Wpr...Mi—g T Ti—1 Titl--.Td—1)-
And s0,(IT;)@ = 1 =11, o Tgyp.
b)) i=d ¢ +0
S=[Vg...Vp—...Vg_o Vg1 Vg|T,
SUD=|vy...Vp-...Vgo U Vg7,

T
S1=[Vo...Veg-—1 M V- ...Vgo Vgq]",

d—1
S§):[vo...vﬁ_l m v, ...Vqo ul.

Then,(5;)@ = g\ Y.

O=[my... 70— ...Tq_1 T4,
Iy =[m ...~ —7g Tp=...Tg-1), since d—1>0"
HEY =[r .. 740 Tq 741,

1 :[7T1...7Tg7 —Tg—1 Typx ... Tq—2 7Td].

And SO,(H1>(d) — Hgd_l) == Hl [¢] FNSW,é* - Hl e} FNSW,Z'

This completes the induction step and so complete the proof of Theorem 5.5.1.

146

Chapter 6

Using Hierarchical Simplicial Meshes to Render Atmospheric Effects

6.1 Introduction

A fundamental element of computer graphics is producing realistic visualizations of var-
ious natural phenomena. An important and challenging problem in this area is that of
rendering atmospheric effects such as smoke and dust, which arise as a result of the ab-
sorption and scattering of light while passing through a participating medium. In this
chapter, we illustrate the practical value of ®i&-treefor rendering atmospheric effects.

An accurate simulation of the interaction of light with a participating medium is
guite complex, since it involves the use of radiative transport theory [Kru90, Cha60].
However, for the purpose of rendering atmospheric effects, simpler models have been
proposed, and have been shown to be quite satisfactory. A good survey of different optical
models can be found in [Max95]. There has been considerable success in recent years in
producing realistic physical models for smoke and related natural phenomena[FM97b,
JC98, Max86, NMN87, PPS99, Sta99]. Our interest here is not on how to model such

phenomena, but rather on how to render them efficiently.

147

A number of hardware-based approaches for rendering smoke and other atmo-
spheric phenomena have been proposed in the literature. In the context of rendering,
Stam [Sta99] and Fedkiw et al. [FSJO01] propose the use of 3-dimensional texture maps to
store the density of the atmospheric medium in each voxel of the texture map, and then
render this texture map from front to back. Dobashi, et al. [DYNOZ2] propose a similar ap-
proach based on computing a collection of preprocessed sample planes. For approaches
involving other types of atmospheric phenomena, see also [BR98, LHJ99, WE98].

However, these methods suffer from a limited ability to model multiple scatter-
ing and other effects needed to render media with high albedo. Also, the use of grid-
based representations, while amenable to hardware implementation, cannot readily adapt
to variations in the density and color of the media. An alternative approach for generat-
ing realistic images, which can handle media with high albedo, is based on photon maps
[JC98, FSJO1]. This process is more computationally intensive, but achieves a high de-
gree of realism by solving the full volume rendering equation for the medium. This is
done in two passes. The first pass builds a photon map for the volume containing the
medium, by shooting photons into the medium and storing these as they interact with the
medium, and the second pass that integrates the effects of the photon map by forward ray
marching. A significant component in the actual rendering time is the numerical integra-
tion performed by marching along the length of each ray in order to determine the overall
opacity and color of the media.

We propose utilizing the SD-tree for accelerating the ray-marching process. The
basic idea is similar to the one applied for accelerating ray-tracing as described in Chap-
ter 4, namely, we can think of the participating medium as a functjomhich maps rays

148

to a pair consisting of the color and opacity. These are the net color and opacity obtained
by marching the ray through the medium, until its collision with a solid object. Since we

model rays as points in 4-dimensional space, the fungtisna function ovefit*:

f : ray — (color, opacity).

In regions wher¢g varies smoothly, we expect that ray coherence can be exploited, that is,
nearby rays will pass through regions of similar color and density, and so the accumulated
color and opacity will be close to each other.

Hence, we replace wherever possible the computationally intensive numerical in-
tegration along each ray with a combination of sampling and interpolation. Rays are
sampled adaptively, and the result of the numerical integration (color and opacity) for
each of these rays is computed accurately and stored in a 4-dimernsiop&x decom-
position treethat serves as a spatial index. In order to achieve high accuracy, regions with
higher variations in color and density sampled with more densely. In order to generate
the final rendering, rather than integrating along each ray, we instead interpolate its values
from neighboring sampled rays.

Because a simplicial complex is used, we can guarantg&@ntinuous approxi-
mation of f. In addition, interpolations are performed with a minimal number of samples,

5 samples for the 4-dimensional case, and hence, this is much cheaper than the quadrilin-
ear interpolation using 16 samples.

The SD-tree involves a subdivision of 4-dimensional space, and it is well known
that the complexities of subdivisions tend to increase exponentially as a function of the

dimension. Consequently, it is important to save space wherever possible. We discuss a

149

number of issues involved in the use of the data structure for the purposes of rendering,
and how to minimize the size of the resulting data structure.

The data structure does not rely on any particular model or representation of the
medium or a particular method of modeling light transport along the ray. It merely as-
sumes that it is possible to determine the color and density of the medium at any point,
and that we have access to a function for integrating this information along each ray to

determine its contribution in terms of opacity and color.

6.2 Construction of the SD-tree

The smoke volume is defined by an axis-aligned bounding box, and the data structure
stores the attributes associated with some set of sample rays that intersect the volume.
Recall from Section 4.3.1 that space of rays intersecting an axis aligned bounding box can
be parameterized as points in 4-dimensional space by using 6 plane-pairs, each of which
is associated with a 4-dimensional hypercube in line space containing all rays that pass
through it. Recall from the SD-tree description that an hypercube is initially subdivided
into 4! = 24 coarse simplices which are then recursively bisected. Each coarse simplex is
the root of a separate binary tree, which are conceptually joined under a common super-
root corresponding to the hypercube. Hence, the data structure built for a single smoke
volume consists of 6 such SD-trees one for each plane-pair. From this point on, we will
use the ternSD-treeto refer to the collection of these 6 trees built for a volume. A 4-
dimensional simplex has 5 vertices, which is the minimum number of points required

for linear interpolation in 4-dimensional space. The 5 vertices of a simplicial leaf cell in

150

SD-treeconstitute the ray samples which form the basis of our interpolation.

Just like the RI-tree, the SD-tree grows and shrinks dynamically based on demand.
Initially, only the 16 corners of each hypercube are sampled, and the initial 24 coarse
simplices are constructed. A leaf simplex is subdivided by bisection along its longest
edge, by sampling the midpoint of that edge. To determine whether to subdivide the leaf

cell or not, we use the followingermination conditions

Degree of Variation: We use a heuristic that defines the degree of variatigh) asso-
ciated with a leaf simplex¥ as the maximum distance between the values of any

two distinct vertices ob:
V(S) = max{d(f(vs), f(v;)) |0 < < j < 4},

whereuvy,. .. v, are the vertices of. Here, f(v;) denotes the correct value of the
function atv; computed by ray marching. For the smoke volume application, the

distancel is a weighted distance of color and opacity.

Pixel Resolution versus Depth Constraint: The SD-tree could be allowed to grow until
pixel resolution (i.e. projected leaf simplex width is less than the pixel width), or,
in order to avoid excessive growth at strong discontinuity regions, the user may
specify adepth constraintsuch that the tree is not allowed to grow beyond that
depth. If the subdivision is stopped due to the depth constraint, though, that leaf is

not used for interpolation.

Consequently, i/(S) exceeds a user-defingistance threshol@nd the depth of
the cell in the tree is less than a user-defideg@th constrair{or pixel resolution is not
reached), the cell is subdivided. Otherwise, the leaf is said fmbak

151

6.3 Rendering by Interpolation

In order to interpolate the color and opacity for a given inputrraye first locate the leaf
simplex containing within the tree corresponding to the appropriate hypercube depend-
ing on the dominant direction of Along with the search, we also incrementally compute
barycentric coordinates afwith respect to the leaf simplex. This process is described
in Section 5.4.2 in detail. Recall that, due to on-demand construction, the nodes on the
path to thefinal leaf containingr may be constructed along with this process, if they
have not been already constructed. The color and opacity dan now be interpolated
by barycentric interpolation of the values associated with the 5 vertices dirthideaf
simplex.

However, other practical issues arise when building on-demand simplicial decom-

positions for efficient rendering purposes. In this section, we discuss these issues.

6.3.1 One-pass versus Two-pass Rendering

Notice that, even though the final tree constructed is compatible, this method does not
totally avoid cracks in interpolation if the rendering and construction are done in the same
single pass. Consider the two dimensional analogy in Figure 6.4, dfrives before

q2, there is no problem, since splitting 6f will force S, to split, and wheny, arrives,

the simplices will be compatible. However, assume thairrives beforey; and thatS,
satisfies the termination condition, and marked as final. Whexrives, it is answered

by interpolation of the vertices &,. Then, wheny, arrives, assume that the subdivision

in the figure occurs splitting; two more levels. Thusgy is answered by interpolating the

152

vertices of a grandchild of;. However, sincey, is already answered at this point, there

would be a crack in the interpolation, even thoughs forced to split by the split of;.

Compatible

S U1 Refinement G2 .

. — @
51 o o o

@
Compatible

S? a, . oF} . Refinement IS

— O — G a2
S . .
7 a;

(b)

Figure 6.1: Compatible refinement (@)arrives first (b)y, arrives first

To avoid this, we have to render in two passes. In the first pass, the tree is con-
structed given all the query points, but without doing the interpolations. In the second
pass, the queries are answered by performing the interpolations. Obviously, the two-pass
rendering will be slightly more expensive, since the point location procedure will be done
twice. Alternatively, for a smoke volume application, an auxiliary data structure can be
used to keep a pointer to the leaf simplex located in the first pass associated with each
pixel, and so, point location can start from this leaf simplex instead of the root in the

second pass.

153

6.3.2 On-demand Compatible Refinement

Note that, there is a conflict between on-demand construction and compatible refinement
for our purposes. To preserve compatibility, some simplices in the hierarchy will be re-
fined, even though they will not be used for any interpolation query eventually. Thus, a lot
of work done for construction of those simplices will be useless, unnecessarily reducing
the efficiency of the overall algorithm, and increasing the size of the data structure. To
prevent this, while keeping the compatibility property, we perfamdemand compati-
ble refinementwhich works as follows. The bisection of a simplgxioes not trigger the
bisection of a neighboring simplex, before that neighbor is actually required by some in-
terpolation. Consider Figure 6.3; and.S; are neighbors of each other at the same level.
Let the query point; cause refinement df; as shown. At the time, caused this re-
finement,S, is not bisected to provide compatibility. Unless another query negdse
tree will remain non-compatible in fact, but still compatible for our purposes. However,
if later, a queryy, is located inS,, before any termination condition is checked, we first
check whether any neighbor 6% is refined by bisecting an edge shared%yeven ifS;
is already marked as a final leaf, this check is performed, and might cause splitting of the
final leaf). In Figure 6.2, such a neighbor exists, thaf;isHence,S; will be bisected as
well, andg, will continue its descent in the tree until no more splits are required, before
being interpolated.

This method is much more efficient, since it generates a much smaller tree. But,
for similar reasons with the original compatible refinement, it cannot avoid cracks totally

(See Figure 6.3). In this case, two-pass rendering corrects a substantial percentage of the

154

Figure 6.2: On-demand compatible refinement

cracks, but may not eliminate all the cracks. (Unlike the two-pass rendering explained
in Section 6.3.1, the second pass as well, will induce subdivisions in the tree to correct
the cracks.) Experimentally, we have seen that, among the final leaf nodes, less than 5%
have cracks, and that the on-demand version performs comparably well with respect to
the quality of the image generated. Moreover, a two pass approach similar to the one
explained above, reduces the number of cracks substantially. In fact, after a number of

passes, the tree will converge to a crack-free tree.

o)) ‘g

(a) (b)

Figure 6.3: On-demand compatible refinement in multiple passes, queries arrive in the
order ofq, ¢» andgs in both passes. (a) First-pass (b) Second pass corrects the crack

between the cells af;, andgs.

155

6.4 Experimental Results

In order to establish the space and time efficiency, and accuracy of the two-pass and on-
demand methods, we ran a number of experiments. For our experiments, we applied a
simple light model, which accounts for extinction of light due to absorption by particles
(opacity) and for the addition of light by reflection of external illumination. We have
adapted the smoke volume shader code given in “PhotoRealistic RenderMan Applica-
tion Note 20-Writing Fancy Volume Shaders”’[PRM] to our own ray-tracer. The general
idea is to ray march along the viewing ray choosing an appropriate step size, sampling
illumination and accounting for atmospheric extinction based on smoke density at every
portion of the ray. The smoke density at any point is determined by a noise function. This
type of volume shaders that are used by renderers like PRMan or BMRT [GH96] are very
expensive, since reasonably small step sizes have to be chosen to avoid banding artifacts.

In general, this type of volume shaders must bind to surfaces, that is, there should
be an object in the background, so that, the ray marching continues until the background
object is hit. We model the smoke density as a finite volume, defined by an axis-aligned
bounding box. The viewing ray enters the volume and the integration continues until the
ray exits the volume (or hits an object that is within the volume). For simplicity, we have
assumed that the smoke volume is designed to extend up to the background objects, and
does not include any objects inside.

We have modeled the interior of a warehouse, with a number of windows letting
sunlight in. The smoke volume covers the interior, extending from the left wall to the

right wall, from the floor to the ceiling and from the back wall to the viewpoint. The

156

viewpoint is slightly outside the volume. The step size we picked is 0.3 units (the shortest
distance from the viewpoint to the back plane is 100 units). For smoke, we assume that
all wavelengths are subject to same amount of scattering (color and opacity values have
equal red, green, and blue components), thus, we store color and opacity as scalars. We
have rendered images of size) x 600 anti-aliased (9 rays per pixel are shot.)

We investigated the speedup and actual error committed by the interpolation algo-
rithm, as well as the number of ray samples required, and the percentage of cracks in the
data structure for the on-demand compatible refinement algorithm. Speedup is the ratio of
the CPU-time for the traditional ray marching approach to the CPU-time for our interpo-
lation algorithm. The error committed by the interpolation algorithm is measured as the
average distance between the actual color and opacity, and the corresponding quantity for
the interpolated case. We also report the maximum error committed among all the rays
shot. The color and opacity values are normalized to the range [0,1]. For our test scene,
the actual color values are in the range [0, 0.2953], and the opacity values are in the range
[0,0.5045]. Average color is 0.05419 and the average opacity is 0.1249. Figure 6.4(a), (b)
and (c) demonstrate how the variation in error reflects the change in the quality of the ren-
dered image. Notice the artifacts in (b) and (c) when the data structure is not subdivided
as densely as in (a).

The percentage of cracks is given both in terms of the percentage of the final leaves
(the leaves used for interpolation) that have cracks, and the percentage of the rays that are
interpolated using the leaves with cracks.

The number of ray samples is the number of rays that are sampled during the con-

struction of the data structure at simplex vertices. Sampling is the dominating cost. For

157

= e —]

@) (b) (©

Figure 6.4: Given errors are with respect to color. (a) distance thr = 0.015, average error
=0.00233, max error = 0.02704. (b) distance thr = 0.035, average error = 0.00371, max

error = 0.06754. (c) distance thr = 0.05, average error = 0.00545, max error = 0.13001.

example, for the compatible, two-pass rendering, the first pass during which the construc-
tion is done takes 90% of the total time, while the second pass takes only 10% of the total
time to do point location and interpolation. For more expensive smoke rendering models,
or for smaller step sizes, the cost of sampling will be even more dominant, since the time
taken by interpolation and point location will remain almost constant. Hence, the speedup
is bounded by the ratio of the total number of rays shot while rendering by ray marching
to the number of sample rays generated while rendering by the interpolation algorithm.
This suggests that, for higher resolution images, the speedups will be much higher.

Table 6.1 shows sample results for rendering the image by the compatible, two-pass
method, and by the on-demand compatible algorithms. We used a distance threshold of
0.015 which was found to perform well experimentally. Recall that the distance threshold,
described in Section 6.2, is used to determine whether to terminate a subdivision process.

The on-demand compatible algorithm performs as well as the compatible, two-pass algo-

158

rithm in terms of quality, while sampling 69% fewer rays and creating 92% fewer nodes.
Therefore, the on-demand compatible algorithm achieves a significant speedup of 18.24,
which is 3 times the speedup achieved by the compatible, two-pass method. Even the
speedup of 6.2 for the compatible, two-pass method is significant for expensive applica-
tions like this one. Corresponding images are given in Figure 6.5. Part (a) shows the
correct image generated by marching all rays, and part (b) shows the interpolated image
generated using the on-demand compatible algorithm. (Since the on-demand compati-
ble algorithm generates almost the same image as the compatible two-pass algorithm, we

show only the image generated by the on-demand version.)

Algorithm Speedup Error (color) Error(opacity) #Rays Size

average| max average max

Ray-marching 1 0 0 0 0 4,320,000 -

Compat., two-pass 6.20 | 0.00230| 0.02704| 0.00396| 0.04163| 334,438 | 354MB

On-demand comp. 18.24 | 0.00233| 0.02704| 0.00401| 0.04163| 101,605 | 38MB

Table 6.1: Sample results for the warehouse sc&ite{600 anti-aliased, distance thresh-

old = 0.015).

If the on-demand compatible algorithm is used to render in multiple passes as ex-
plained in Section 6.3.2, the percentage of cracks is reduced substantially as shown in
Table 6.2, but of course reducing the speedup.

If desired, higher quality approximations can be rendered by lowering the distance

threshold, at the potential expense of performance.

159

Algorithm %Cracks Speedup

%leaf nodes %rays

On-demand compatible, one-pass 2.494 4273 | 18.24

On-demand compatible, two-pass 0.204 0.489| 13.43

On-demand compatible, three-pass 0.041 0.055| 10.66

Table 6.2: The percentage of cracks for multiple passes of the on-demand compatible

algorithm.

160

(b)

Figure 6.5: (a) Ray-marched image (b) Interpolated image using the on-demand compat-

ible algorithm (800x600, anti-aliased, distance threshold = 0.015).

161

Chapter 7

Conclusions

We conclude this dissertation by summarizing our contributions and outlining a number

of possible directions for future work.

7.1 Summary of Contributions

The Ray Interpolant Tree: We introduced the RI-tree data structure and showed that
it can produce high-quality renderings significantly faster than ray-tracing by storing an
adaptively sampled set of rays, and using inexpensive interpolation methods to approxi-
mate the attribute values for new input rays. Our approach of sampling and interpolating
geometric attributes rather than radiance allows decoupling of an object from the rest of
the scene geometry and illumination. The RI-tree is most useful for rendering smooth ob-
jects that are reflective or transparent, for rendering animations when the viewpoint varies
smoothly or when the illumination varies from frame to frame, and for generating high

resolution images.

162

The Simplex Decomposition Tree: Next, we introduced the SD-tree data structure
which improves the functionality of the RI-tree by ensuring continuity of the interpo-
lating surface. We adapted a subdivision scheme based on bisection due to Maubach
[Mau95]. We presented efficient incremental methods for performing point location and
computing the weights needed in interpolation. Compared to the RI-tree, the SD-tree is
much simpler and more efficient for interpolation purposes, since linear interpolations are
performed with minimal number of samples. We also observed that better quality images
can be generated with fewer samples with the SD-tree, compared to the RI-tree. This is
mostly due to the refinement method, which avoids cracks, and partly because the same

level of refinement is achieved with fewer samples in a simplicial subdivision.

Pointerless Representation ofl-dimensional Hierarchical Regular Simplicial Mesh:
Another major contribution of this thesis is the development of a pointerless representa-
tion for hierarchical regular simplicial meshes. We introduced the LPT code, that uniquely
encodes the simplices of the hierarchy and is used to access a node in the hierarchy in
constant time. We addressed algorithmic issues in efficient implementation of the tree
operations based on the LPT code and showed that all traversal operations can be per-
formed in constant time. The space savings realized by not having to store pointers and
simplex vertices is significant for large multidimensional meshes. We believe that this
representation may find numerous applications in areas wheaireensional hierarchical

regular simplicial meshes are used.

163

Efficient Neighbor Computation for d-dimensional Simplicial Meshes: We intro-

duced a compact set of neighbor rules to compute equal-depth neighbors of a simplex
directly form its code, without storing any neighbor links, and without having to traverse
the path to and from the root in order to compute neighbors. This is a significant gain
both in terms of storage, and computational efficiency, since our approach is local and
runs in constant time. We proved correctness of our neighbor finding rules. In addition to
the same-depth neighbors, we presented rules to compute the neighbors that can possibly

appear at other depths in compatible subdivisions.

Two-pass Rendering and On-demand Compatible Refinement: We have also dem-
onstrated the use of a 4-dimensional SD-tree for accelerating rendering of smoke through
ray marching. Within this context, first we observed that in order to avoid cracks entirely,
the rendering has to be done in two passes. Experimentally we have seen that the overhead
of the second pass is tolerable, since the total cost is dominated by the cost of sampling
in the first pass.

Next we observed that full compatibility and on-demand construction conflict in
the sense that some portions of the data structure built due to compatible refinement are
never used for queries. Instead, we proposediemand compatible refinementhich
aims to provide compatibility only for those simplices that are needed for interpolation.
This approach generates a data structure of much smaller size—for our test scene %89
smaller— compared to the fully compatible version. More importantly, it achieved a
speedup of 18.24, which is 3 times the speedup achieved by the fully-compatible method.

Even though it cannot avoid cracks entirely, we have seen experimentally that a very small

164

fraction of the final leaf nodes have cracks, and that the on-demand version performs

comparably well with respect to the quality of the image generated.

7.2 Future Work

Bounds on error of approximation: In our current methods, we use heuristics to de-
termine the accuracy of the interpolation. Experimentally, these heuristics are shown to
work well in most cases, but the interpolation errors are not bounded. So, for some cases
arbitrary approximation errors could arise. It would be desirable to extend our methods to
provide theoretical bounds on the error introduced by interpolation. We have the option
of imposing conservative error bounds at the expense of lower performance. Bounding
error is likely to be easier for the smoke rendering application, since there is usually a

well-defined function for computing the color and opacity at a certain point.

Dealing with aliasing and improving animations: It is very desirable to investigate
how we can improve the quality of animations by examining ways for smoother transition
between frames. For example, how can we avoid flickering due to temporal aliasing and

variation in interpolation which result from different viewpoints.

Interpolation in temporal domains: A direct and interesting extention of our current
methods would be to consider how to apply our data structures for time varying physical
phenomena, for example, for rendering simulations of smoke or clouds over time. This
would require using 5-dimensional extentions of our data structures, and considering that

complexities of subdivisions tend to increase exponentially with dimension, it is not read-

165

ily clear whether interpolation methods would still be beneficial. It would be interesting

to see how the performance would be affected.

Application of neighbor rules in visualization: We believe, our neighbor rules would

be very useful for efficient visualization of high-dimensional fields—especially dimen-
sions greater or equal to four. (Many visualization algorithms require moving between
adjacent simplices rapidly.) This arises as an important problem with the emergence of
time-varying fields with various applications in medicine, computational fluid dynamics

(CFD) and molecular dynamics.

Different subdivision schemes: Our current work on hierarchical regular simplicial
meshes has led us to several related issues, including pointerless representations and
cache-sensitive data structures, efficient neighbor finding and different subdivision tech-
niques, independently of the interpolation problem. Along these lines, it would be in-
teresting to study other subdivision methods and develop labeling and neighbor finding

rules.

166

Bibliography

[ABO1]

[ABCC02]

[ABCCO3]

[AF99]

[AG79]

[AHO5]

[AK87]

[AK89]

E. Adelson and J. Bergen. The plenoptic function and the elements of early

vision. Computational Models of Visual Processjipgges 1-20, 1991.

B. Aronov, H. Bronnimann, A. Y. Chang, and Y. Chiang. Cost prediction
for ray shooting. IrfProc. 18th ACM Symp. on Comput. Geom.(SoCG’02)

pages 293-302, 2002.

B. Aronov, H. Bronnimann, A. Y. Chang, and Y. Chiang. Cost-driven
octree consruction schemes: An experimental studyProt. 19th ACM

Symp. Comput. Geom. (SoCG'0OBages 227-236, 2003.

B. Aronov and S. Fortune. Approximating minimum weight triangulations

in three dimensionsDiscrete Comput. Geon1(4):527-549, 1999.

E. Allgower and K. Georg. Generation of triangulations by reflectidiil-

itas Mathematical6:123-129, 1979.

S. J. Adelson and L. F. Hodges. Generating exact ray-traced animation
frames by reprojectionEEE Comp. Graph. and Appll5(3):43-52, May

1995.

J. Arvo and D. Kirk. Fast ray tracing by ray classificatiof€omputer

Graphics (Proc. of SIGGRAPH 8721(4):196-205, 1987.

J. Arvo and D. Kirk. A survey of ray tracing acceleration techniques. In
A.S. Glassner, editoAn Introduction to Ray Tracingpages 201-262. Aca-
demic Press, San Diego, 1989.

167

[Alf89]

[AMO2]

[AMO3]

[AMO4a]

[AMO4b]

[Ama84]

[AMLO1]

P. Alfeld. Scattered data interpolation in three or more variables. In T. Ly-
che and L. L. Schumaker, editorsathematical Methods in Computer

Aided Geometric Desigipages 1-34. Academic Press, 1989.

F. B. Atalay and D. M. Mount. Ray interpolants for fast ray-tracing relec-
tions and refractions.J. of WSCG 10(3):1-8, 2002. Proc. Int. Conf. in

Central Europe on Comp. Graph., Visual. and Comp. Vision.

F. B. Atalay and D. M. Mount. Interpolation over light fields with appli-
cations in computer graphics. Rroc. of the 5th Workshop on Algorithm

Engineering and Experiments (ALENEX 20(0&ges 56—-68. SIAM, 2003.

F. B. Atalay and D. M. Mount. Pointerless implementation of hierarchical
simplicial meshes and efficient neighbor finding in arbitrary dimensions.

To appear in Proc. International Meshing Roundable (IMR 2004), 2004.

F. B. Atalay and D. M. Mount. Pointerless implementation of hierarchi-
cal simplicial meshes and efficient neighbor finding in arbitrary dimen-
sions. Technical Report CS-TR-4586/UMIACS-TR-2004-29, University

of Maryland, College Park, 2004.

J. Amanatides. Ray tracing with cone€omputer Graphics (Proc. of

SIGGRAPH 84)18(3):129-135, 1984,

D.N. Arnold, A. Mukherjee, and L.Pouly. Locally adapted tetrahedral

meshes using bisectio®IAM J. Sci. Comput22(2):431-448, 2001.

168

[Arg02]

[AV88]

[Badsg]

[Balog]

[Ban91]

[Ban98]

[BDT99]

[BEG94]

[Ben75]

L. Arge. External memory data structures. In J. Abello, P. M. Pardalos,
and M. G. C. Resende, editoldandbook of Massive Data Sefgages

313-358. Kluwer Academic Publishers, 2002.

A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and

related problemsCommun. ACM31:1116-1127, 1988.

J. S. Badt. Two algorithms for taking advantage of temporal coherence in

ray tracing.The Visual Compute#(3):123-132, September 1988.

K. Bala.Radiance Interpolants for Interactive Scene Editing and Ray Trac-

ing. PhD thesis, Massachusetts Institute of Technology, 1999.

E. Bansch. Local mesh refinement in 2 and 3 dimensiomsact of Com-

puting in Science and Engineeringgt181-191, 1991.

R.E. Bank. PItmg: A software package for solving elliptic partial differ-
ential equations, user’s guide 8.@Goftware, Environments and Topk

1998.

K. Bala, J. Dorsey, and S. Teller. Radiance interpolants for accelerated

bounded-error ray tracindACM Trans. on Graph.18(3), August 1999.

M. Bern, D. Eppstein, and J. Gilbert. Provably good mesh generation.

Comput. Syst. S¢48:384-409, 1994.

J. L. Bentley. Multidimensional binary search trees used for associative

searchingCommun. of ACM18(9):509-517, 1975.

169

[Bey95]

[Bey00]

[Blo97]

[BN76]

[BROS]

[BSW83]

[Bur88]

[CBL99]

[CCD91]

J. Bey. Tetrahedral grid refineme@omputing 55:355-378, 1995.

J. Bey. Simplicial grid refinement: On freudenthal’s algorithm and the

optimal number of congruence classBlaimer. Math,.85(1), 2000.

J. Bloomenthal An Introduction to Implicit SurfacedMorgan-Kaufmann,

San Francisco, 1997.

J. F. Blinn and M. E. Newell. Texture and reflection in computer generated

images.Commun. of ACM19:542-546, 1976.

U. Behrens and R. Ratering. Adding shadows to a texture-based volume

renderer. M998 Volume Visualization Symposiymages 39-46, 1998.

R.E. Bank, A.H. Sherman, and A. Weiser. Refinement algorithms and data
structures for regular local mesh refineme8tientific Computingpages

3-17, 1983.

P. J. Burt. Moment images, polynomial fit filters, and the problem of sur-
face interpolation. InComputer Vision and Pattern Recognitjopages

144-152, 1988.

C. Chang, G. Bishop, and A. Lastra. LDI tree: A hierarchical representa-
tion for image-based renderinGomputer Graphics (Proc. of SIGGRAPH

99), pages 291-298, 1999.

J. Chapman, T. W. Calvert, and J. C. Dill. Spatio-temporal coherence in

ray tracing. InProc. of Graphics Interface '9Jpages 101-108, June 1991.

170

[CDM*03]

[CDP95]

[Cha60]

[Cheg5]

[Chi9g]

[CHL99]

[CLF98]

[CP97]

P. Cignoni, L. De Floriani, P. Magillo, E. Puppo, and R. Scopigno. Se-
lective refinement queries for volume visualization of unstructured tetrahe-
dral mesheslEEE Transactions on Visualization and Computer Graphics

2003. (in print).

F. Cazals, G. Drettakis, and C. Puech. Filtering, clustering and hierarchy
construction: A new solution for ray-tracing complex scen€amputer

Graphics Forum14(3):371-382, 1995.

S. Chandrasekh&adiative TransferDover, New York, 1960.

S. E. Chen. QuickTime VR — an image-based approach to virtual environ-
ment navigationComputer Graphics (Proc. of SIGGRAPH 939:29-38,

1995.

T. M. Chilimbi. Cache-Conscious Data Structurd3hD thesis, Computer

Sciences Dept., University of Wisconsin-Madison, 1999.

T. Chilimbi, M. D. Hill, and J. R. Larus. Cache-conscious structure layout.

In Programming Languages Design and Implementati®99.

E. Camahort, A. Lerios, and D. Fussell. Uniformly sampled light fields.
Rendering Techniques '98 (9th Eurographics Workshop on Rendgring)

pages 117-130, 1998.

F. Cazals and C. Puech. Bucket-like space partitioning data structures with
applications to ray tracing. IRroc. 13th ACM Symp. Comput. Geom.
(SoCG’97) pages 11-20, 1997.

171

[CPC84] R. L. Cook, T. Porter, and L. Carpenter. Distributed ray tracamputer

Graphics (Proc. of SIGRAPH 84)8(3):137-145, July 1984.

[CRMT91] S. E. Chen, H. E. Rushmeier, G. Miller, and D. Turner. A progressive
multi-pass method for global illuminationComputer Graphics (Proc. of

SIGGRAPH 91)25(4):165-174, 1991,

[CW93] S. E. Chen and L. Williams. View interpolation for image syntheSism-

puter Graphics (Proc. of SIGGRAPH 937:279-288, 1993.

[DB94] P. Diefenbach and N. Badler. Pipeline rendering: Interactive refractions,
reflections and shadowg®isplays: Special Issue on Interactive Computer

Graphics 15(3):173-180, 1994.

[dBVKOS97] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzk@uimpu-
tational Geometry: Algorithms and ApplicatianSpringer-Verlag, Berlin,

1997.

[DemO02] E. D. Demaine. Cache-oblivious algorithms and data structurésctaore

Notes from the EEF Summer School on Massive Data 3602 .

[dKLOZ2] J. B. Van de Kamer and J. J. W. Lagendijk. Computation of high-resolution
SAR distributions in a head due to a radiating dipole antenna representing a
hand-held mobile phon@&hysics in Medicine and Biolog¥7:1827-1835,

2002.

[DKPO3] L. De Floriani, L. Kobbelt, and E. Puppo. A survey on data structures for
level-of-detail models. 2003.

172

[DKW85]

[DKY *00]

[DMO02]

[DMMPOO]

[DWS*+97]

[DYNO2]

N. Dadoun, D. G. Kirkpatrick, and J. P. Walsh. The geometry of beam
tracing. InProc. of 1st Annual ACM Symp. Comput. Gegmages 55-61,

1985.

Y. Dobashi, K. Kaneda, H. Yamashita, T. Okita, and T. Nishita. A simple,
efficient method for realistic animation of clouds. Pnoc. of SIGGRAPH

200Q pages 19-28, 2000.

L. De Floriani and P. Magillo. Multiresolution mesh representation: Mod-
els and data structureBrinciples of Multiresolution in Geometric Model-

ing, 2002.

L. De Floriani, P. Magillo, F. Morando, and E. Puppo. Dynamic view-
dependent multiresolution on a client-server architectGmmputer-Aided
Design Journal (Special Issue on Multiresolution Geometric Models)

32(13):805-823, 2000.

M. Duchaineau, M. Wolinsky, D.E. Sigeti, M.C. Miller, C. Aldrich, and
M.B. Mineev-Weinstein. Roaming terain: Real-time optimally adapting

meshes. pages 81-88, 1997.

Y. Dobashi, T. Yamamoto, and T. Nishita. Interactive rendering of atmo-
spheric scattering effects using graphics hardwar&raphics Hardware

2002 pages 99-108, 2002.

173

[Ede87]

[EKTO1]

[EMP*+98]

[FB74]

[Feko0]

[FKNSO]

[FLPRO9]

[FM96]

H. EdelsbrunnerAlgorithms in Combinatorial Geometryolume 10 of
EATCS Monographs on Theoretical Computer Scierf8pringer-Verlag,

1987.

W. Evans, D. Kirkpatrick, and G. Townsend. Right-triangulated irregular

networks.Algorithmica, 30(2):264—-286, 2001.

D. S. Ebert, F. K. Musgrave, D. Peachey, K. Perlin, and S. Worlextur-

ing and Modelling Academic Press Professional, San Diego, 1998.

R.A. Finkel and J.L. Bentley. Quad trees: a data structure for retrieval on

composite keysActa Informatica4(1):1-9, 1974.

G. Fekete. Rendering and managing spherical data with spherical

quadtrees. IProc IEEE Visualization 90pages 176-186, 1990.

H. Fuchs, M. Kedem, and B.F. Naylor. On visible surface generation
by a priori tree structuresComputer Graphics (Proc. of SIGGRAPH,80

14(3):124-133, 1980,

M. Frigo, C. B. Leiserson, H. Prokop, and S. Ramachandran. Cache-
oblivious algorithms. IrProc. 40th Annual Symp. on Found. of Comput.

Sci, pages 285-297, 1999.

N. Foster and D. Metaxas. Realistic animation of liquids. Graphics

Interface '96 pages 204—-212, 1996.

174

[FM97a]

[FM97b]

[Fre42]

[FSJO1]

[FTI86]

[FVDFHI0]

[Gar82]

[GD]

[GDL*+02]

N. Foster and D. Metaxas. Controlling fluid animation. Gomputer

Graphics International 19971997.

N. Foster and D. Metaxas. Modeling the motion of a hot, turbulent gas. In

Proc. of SIGGRAPH 97Pages 181-188, 1997.

H. Freudenthal. Simplizialzerlegungen von beschrankter flacl#reitls

of Math, 43:580-582, 1942.

R. Fedkiw, J. Stam, and H. W. Jensen. Visual simulation of smoke. In

Proc. of SIGGRAPH 20Qpages 15-22, 2001.

A. Fujimoto, T. Tanaka, and K. Iwata. Arts: Accelerated ray tracing sys-

tem. IEEE Comp. Graph. and Appl6(4):16—-26, April 1986.

J. Foley, A. van Dam, S. Feiner, and J. Hugh@smputer Graphics Prin-

ciples and PracticeAddison-Wesley, Reading, Mass., 1990.

|. Gargantini. An effective way to represent quad-tre@smmun. ACM

25(12):905-910, 1982.

J. P. Grossman and W. J. Dally. Point sample renderingRédndering
Techniques '98 (9th Eurographics Workshop on Renderipgyjes 181—

192.

B. Gregorski, M. Duchaineau, P. Lindstrom, V. Pascucci, and K. Joy. In-
teractive view-dependent rendering of large isosurfacesPrtéic. IEEE

Visualization 20022002.

175

[Ger39]

[Ger03]

[GGCO7]

[GGSC96]

[GH96]

[G197]

[Gla84]

[Gla89a]

[Gla89b]

A. Gershun. The light field. Journal of Mathematics and Physjcs
XVII:51-151, 1939. Moscow, 1936, Translated by P. Moon and G. Timo-

shenko.

T. Gerstner. Multiresolution visualization and compression of global topo-

graphic dataGeolnformatica7(1):7-32, 2003.

X. Gu, S. J. Gortler, and M. F. Cohen. Polyhedral geometry and the two-
plane parameterization. IRendering Techniques '97 (8th Eurographics

Workshop on Renderingpages 1-12, 1997.

S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen. The lumigraph.

Computer Graphics (Proc. of SIGGRAPH 9fpages 43-54, August 1996.

L. Gritz and J. Hahn. Bmrt: A global illumination implementation of the

renderman standard. Graphics Tools1(3):29-47, 1996.

T. Gutzmer and A. Iske. Detection of discontinuities in scattered data ap-

proximation.Numerical Algorithms16(2):155-170, 1997.

A. S. Glassner. Space subdivision for fast ray tradiB&E Comp. Graph.

and Appl, 4(10):15-22, October 1984.

A. S. GlassnerAn Introduction to Ray Tracing Academic Press, San

Diego, 1989.

A. S. Glassner. An overview of ray tracing. In A.S. Glassner, editoin-

troduction to Ray Tracingpages 1-32. Academic Press, San Diego, 1989.

176

[Glags]

[GLE97]

[GR99]

[GS87]

[GS92]

[GTGB84]

[Guo098]

[HDD+92]

A. S. GlassnefPrinciples of Digital Image SynthesiMorgan Kaufmann,

New York, 1995.

R. Grosso, C. Lurig, and T. Ertl. The multilevel finite element method
for adaptive mesh optimization and visualization of volume datdrte.

Visualization’97 1997.

T. Gerstner and M. Rumpf. Multiresolutional parallel isosurface exraction

based on tetrahedral bisection.Rroc. Symp. Volume Visualizatioh999.

J. Goldsmith and J. Salmon. Automatic creation of object hierarchies for

ray tracing.IEEE Comp. Graph. and Appl7(5):14-20, May 1987.

M.F. Goodchild and Y. Shiren. A hierarchical spatial data structure for
global geographic information systen@®VGIP: Graph. Models and Image

Processing54(1):31-44, 1992.

C. M. Goral, K. E. Torrance, D. P. Greenberg, and B. Battaile. Modeling the
interaction of light between diffuse surfac&omputer Graphics (Proc. of

SIGGRAPH 84)pages 213-222, 1984.

B. Guo. Progressive radiance evaluation using directional coherence maps.

Computer Graphics (Proc. of SIGGRAPH 982:255—-266, 1998.

H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Sur-
face reconstruction from unorganized poir@@mputer Graphics (Proc. of

SIGGRAPH 92)26(2):71-78, 1992.

177

[Heb94]

[HH84]

[HLCS99]

[Hop96]

[HS01]

[ICG86]

[JC95]

[JCO8]

D. J. Hebert. Symbolic local refinement of tetrahedral gddsf Symbolic

Comput, 17:457-472, 1994.

P. S. Heckbert and P. Hanrahan. Beam tracing polygonal ob{eatsputer

Graphics (Proc. of SIGGRAPH 84)8(3):119-127, July 1984.

W. Heidrich, H. Lensch, M. Cohen, and H. Seidel. Light field techniques
for reflections and refractions. Oth Eurographics Rendering Workshop

June 1999.

H. Hoppe. Progressive mesh&mputer Graphics (Proc. of SIGGRAPH

96), pages 99-108, 1996.

Z. Hakura and J. Snyder. Realistic reflections and refractions on graphics
hardware with hybrid rendering and layered environment map$rdn.
12th Eurographics Workshop on Rendering Technigpeges 289-300,

2001.

D. S. Immel, M. F. Cohen, and D. P. Greenberg. A radiosity method for
non-diffuse environmentsComputer Graphics (Proc. of SIGGRAPH 386)

20(4):133-142, 1986.

H. W. Jensen and N. J. Christensen. Efficiently rendering shadows using

the photon map. IiProc. of Compugraphi¢pages 285-291, 1995.

H. W. Jensen and P. H. Christensen. Efficient simulation of light trans-
port in scenes with participating media using photon mapsPrbt. of
SIGGRAPH 98pages 311-320, 1998.

178

[Jen95]

[Jen96]

[Jen97]

[Kaj86]

[Kap85]

[Kap87]

[KH84]

[KK86]

[Knu73]

H. W. Jensen. Importance driven path tracing using the photon map. In
Rendering Techniques '95 (6th Eurographics Workshop on Rendering)

pages 326—335, 1995.

H. W. Jensen. Global illumination using photon map$dndering Tech-

niques '96 (7th Eurographics Workshop on Renderipgpes 21-30, 1996.

H. W. Jensen. Rendering caustics on non-Lambertian surfaoceguter

Graphics Forum16(1):57—-64, 1997.

J. T. Kajiya. The rendering equatiol@omputer Graphics (Proc. of SIG-

GRAPH 86)20(4):143-150, August 1986.

M. R. Kaplan. Space tracing a constant time ray traState of the Art in

Image Synthesis (SIGGRAPH 85 Course NotEk)July 1985.

M. R. Kaplan. The use of spatial coherence in ray tracimeghniques for

Computer Graphigspages 173-193, 1987.

J. T. Kajiya and B. P. Von Herzen. Ray tracing volume densities. In
Computer Graphics (Proc. of SIGGRAPH 84plume 18, pages 165-174,

1984.

T. L. Kay and J. Kajiya. Ray tracing complex scen&mputer Graphics

(Proc. of SIGGRAPH 8620(4):269-278, August 1986.

D. E. Knuth. Sorting and Searchingvolume 3 ofThe Art of Computer

Programming Addison-Wesley, 1973.

179

[Kru90] W. Krueger. The application of transport theory to visualization of 3d scalar

fields. InProc. IEEE Visualization '90pages 273-280, 1990.

[Lar98] G. W. Larson. The holodeck: A parallel ray-caching rendering system.
In 2nd Eurographics Workshop on Parallel Graphics and Visualisation

September 1998.

[LDSO01] M. Lee, L. De Floriani, and H. Samet. Constant-time neighbor finding in
hierarchical tetrahedral meshes. Rroc. Int. Conf. on Shape Modelling

pages 286—-295, 2001.

[LF94] S. Laveau and O. Faugeras. 3d scene representation as a collection of
images. Infwelfth International Conference on Pattern Recognitjpeges

689-691, 1994.

[LG95] D. Luebke and C. Georges. Portals and mirrors: Simple, fast evaluation of
potentially visible sets. IRroc. SIGGRAPH Symposium on Interactive 3D

Graphics pages 105-106, 1995.

[LH96] M. Levoy and P. Hanrahan. Light field renderingcomputer Graphics

(Proc. of SIGGRAPH 96)pages 31-42, August 1996.

[LHJ99] E. LaMar, B. Hamann, and K. Joy. Multiresolution techniques for interac-
tive texture-based volume visualization. Pnoc. IEEE Visualization '99

pages 355-362, 1999.

[LJ94a] A. Liu and B. Joe. On the shape of tetrahedra from bisedtath. Comp,
63:141-154, 1994.

180

[LJ94b]

[LJO5]

[LI96]

[LKR *96]

[LRO8]

[LS00]

[LW85]

[LWO3]

A. Liu and B. Joe. Relationship between tetrahedron shape meaBUrges.

34:268-287, 1994.

A. Liu and B. Joe. Quality local refinement of tetrahedral meshes based on

bisection.SIAM J. Sci. Compyt16:1269-1291, 1995.

A. Liu and B. Joe. Quality local refinement of tetrahedral meshes based
on 8-subtetrahedron subdivisioMath. of Comput.65(215):1183-1200,

1996.

P. Lindstrom, D. Koller, W. Ribarsky, L.F. Hodges, N. Faust, and G.A.
Turner. Real-time, continuous level of detail rendering of height fields. In

Proc. of SIGGRAPH 96ages 109-118, 1996.

D. Lischinski and A. Rappoport. Image-based rendering for non-diffuse
synthetic scenes9th Eurographics Workshop on Renderimges 301—

314, 1998.

M. Lee and H. Samet. Navigating through triangle meshes implemented as

linear quadtreesACM Trans. on Computer Graphic$9:79-121, 2000.

M. Levoy and T. Whitted. The use of points as a display primitive. Techni-
cal Report TR-85-022, Computer Science Department, University of North

Carolina at Chapel Hill, 1985.

E. P. Lafortune and Y. D. Willems. Bi-directional path tracing. Rroc.
of Third International Conference on Computational Graphics and Visual-
ization Techniques (Compugraphics '9Bpages 145-153, 1993.

181

[Mau95]

[Mau96]

[Max86]

[Max95]

[MBO5]

[MF53]

[MG99]

[Mit87]

[Mit88]

J. M. Maubach. Local bisection refinement férsimplicial grids gener-

ated by reflectionSIAM J. Sci. Stat. Compufl6:210-227, 1995.

J. M. Maubach. The efficient location of neighbors for locally refined

simplicial grids. In5th Int. Meshing Roundahl&996.

N. Max. Atmospheric illumination and shadowsComputer Graph-

ics(Proc. of SIGGRAPH 86P0(4):117—124, 1986.

N. Max. Optical models for direct volume renderingEEE Trans. on

Visualization and Comp. Graphl(2):99-108, 1995.

L. McMillan and G. Bishop. Plenoptic modelingComputer Graphics

(Proc. of SIGGRAPH 95pages 39-46, 1995.

P. M. Morse and H. FeshbachViethods of Theoretical Physics, Part |

McGraw-Hill, New York, 1953.

L. McMillan and S. Gortler. Image-based rendering: A new interface
between computer vision and computer graphi€omputer Graphics

33(4):61-64, November 1999.

D. P. Mitchell. Generating antialiased images at low sampling densities.

Computer Graphics (Proc. of SIGGRAPH 82)(4):65-72, 1987.

W. F. Mitchell. Unified multilevel adaptive finite element methods for el-
liptic problems. PhD thesis, UIUCDCS-R-88-1436, Dept. of Computer

Science, Univ. of lllinois, Urbana, IL, 1988.

182

[Mit91] W. F. Mitchell. Adaptive refinement for arbitrary finite-element spaces with
hierarchical basesJournal of Computational and Applied Mathematics

36:65-78, 1991.

[Mit92] W. F. Mitchell. Optimal multilevel iterative methods for adaptive grids.

SIAM J. Sci. Stat. Computl3:146-167, 1992.

[MMB97] W. R. Mark, L. McMillan, and G. Bishop. Post-rendering 3d warping. In

Symposium on Interactive 3D Graphigages 7-16, 1997.

[MMS97] J.S.B. Mitchell, D. M. Mount, and S. Suri. Query-sensitive ray shooting.

International Journal of Computational Geometi®(4):317-347, 1997.

[MS81] P. Moon and D. E. SpenceiThe Photic Field MIT Press, Cambridge,

1981.

[Mun75] J. R. Munkres.Topology: A first coursePrentice Hall, Englewood Cliffs,

NJ, 1975.

[NMN87] T. Nishita, Y. Miyawaki, and E. Nakamae. A shading model for atmo-
spheric scattering considering luminous intensity of light sourcesm-

puter Graphics (Proc. of SIGGRAPH 8§21(4):303-310, 1987.

[OM87] M. Ohta and M. Maekawa. Ray coherence theorem and constant time ray
tracing algorithm. Computer Graphics 1987 (Proc. of CG International

'87), pages 303-314, 1987.

183

[OR97]

[OR98]

[Pajos]

[Paj02]

[PMS+99]

[PPS99]

[PRM]

[PZBGOO]

M. Ohlberger and M. Rumpf. Hierarchical and adaptive visualization on

nested gridsComputing 56:365-385, 1997.

E. Ofek and A. Rappoport. Interactive reflections on curved obj€cis-

puter Graphics (Proc. of SIGGRAPH 98)4(3):333—-342, July 1998.

R. Pajarola. Large scale terrain visualization using the restricted quadtree

triangulation. InProc. IEEE Visualization’98pages 19-26, 1998.

R. Pajarola. Overview of quadtree-based terrain triangulation and visual-
ization. Technical report, UCI-ICS-02-01, Information & Computer Sci-

ence, University of California Irvine, 2002.

S. Parker, W. Martin, P.J. Sloan, P. Shirley, B. Smits, and C. Hansen. Inter-
active ray tracing. IPACM Symposium on Interactive 3D Graphipages

119-126, April 1999.

A.J. Preetham, P.Shirley, and B. Smits. A practical analytic model for

daylight. InProc. of SIGGRAPH 99%ages 91-100, 1999.

PRMan. Photorealistic renderman application note#20: Writing fancy
atmosphere shaders. http://graphics.stanford.edu/lab/soft/prman/Toolkit/-

AppNotes/appnote.20.html.

H. Pfister, M. Zwicker, J. Baar, and M. Gross. Surfels: Surface elements as
rendering primitives. IrComputer Graphics (Proc. of SIGGRAPH 2000)

pages 335-342, 2000.

184

[RivO1]

[RL9Z]

[RLOO]

[RWSO0]

[Sam90a]

[Sam90b]

[Sam92]

[SAWGO1]

M.C. Rivara. Local modification of meshes for adaptive and/or multigrid

finite-element methodsl. Comput. Appl. Math36:79-89, 1991.

M.C. Rivara and C. Levin. A 3-d refinement algorithm suitable for adaptive

and multi-grid technique<Comm. Appl. Numer. Metl8:281-290, 1992.

S. Rusinkiewicz and M. Levoy. QSplat: A multiresolution point rendering
system for large meshes. @omputer Graphics (Proc. of SIGGRAPH

2000) pages 343-352, 2000.

S. Rubin and T. Whitted. A three-dimensional representation for fast ren-
dering of complex scene€Computer Graphics (Proc. of SIGGRAPH 80)

14(3):110-116, July 1980.

H. SametApplications of Spatial Data Structures: Computer Graphics,

Image Processing, and Gl@&ddison-Wesley, 1990.

H. SametThe Design and Analysis of Spatial Data Structurdsldison-

Wesley, Reading, MA, 1990.

H. Samet. Neighbor finding techniques for images represented by
quadtrees.Comput. Vision, Graph. and Image Processiag(1):37-57,

1992.

F. X. Sillion, J. Arvo, S. H. Westin, and D. P. Greenberg. A global illumi-
nation solution for general reflectance distributiol@omputer Graphics

(Proc. of SIGGRAPH 91P5(4):187—196, 1991.

185

[SCG9I7] P. P. Sloan, M. F. Cohen, and S. J. Gortler. Time critical lumigraph ren-
dering. InProc. of 1997 Symp. on Interactive 3D Graphipages 17-24,

1997.

[Sch92] G. Schrack. Finding neighbors of equal size in linear quadtrees and octrees

in constant timeCVGIP: Image Underst55(3):221-230, 1992.

[SD96] S. M. Seitz and C. R. Dyer. View morphinGomputer Graphics (Proc. of

SIGGRAPH 96)pages 21-30, 1996.

[SDB85] L. R. Speer, T. D. DeRose, and B. A. Barsky. A theoretical and empirical
analysis of coherent ray tracinGraphics Interface '8bpages 11-25, May

1985.

[Sew72] E.G. SewellAutomatic generation of triangulations for piecewise polyno-
mial approximation PhD thesis, Purdue University, West Lafayette, IN,

1972.

[SGHS98] J. W. Shade, S. J. Gortler, L. He, and R. Szeliski. Layered depth images.

Computer Graphics (Proc. of SIGGRAPH 98p:231-242, 1998.

[Shi90] P. Shirley. A ray tracing method for illumination calculation in diffuse-

specular scenes. Proc. of Graphics Interface '9(pages 205-12, 1990.

[SHS99] H. Schirmacher, W. Heidrich, and H. P. Seidel. Adaptive acquisition of lu-
migraphs from synthetic scengSomputer Graphics Forum (Eurographics

'99), 18(3):151-160, September 1999.

186

[Sib81]

[SJO0]

[Som34]

[SS92]

[Sta99]

[SZ00]

[Tod76]

[WDP99]

[WE98]

R. Sibson. A brief description of natural neighbour interpolation. In Vic
Barnet, editor|nterpreting Multivariate Datapages 21-36. John Wiley &

Sons, Chichester, 1981.

G. Schaufler and H. W. Jensen. Ray tracing point sampled geometry. In
Rendering Techniques 2000 (11th Eurographics Workshop on Rendering)

pages 319-328, 2000.

D. M. Y. Sommerville.Analytical Geometry in Three DimensionSam-

bridge University Press, Cambridge, 1934.

R. Sivan and H. Samet. Algorithms for constructing quadtree surface maps.

In Proc. 5th Int. Symp. on Spatial Data Handlingages 361-370, 1992.

J. Stam. Stable fluids. Rroc. of SIGGRAPH 9%ages 121-128, 1999.

P. Schader and D. Zorin. Subdivision for modeling and animati@iG-

GRAPH 2000 Course Notez000.

M.J. Todd. The computation of fixed points and applications/oln124
of Lecture Notes in Economics and Mathematical Syst&wedin, 1976.

Springer.

B. Walter, G. Drettakis, and S. Parker. Interactive rendering using the ren-

der cache. 110th Eurographics Workshop on Rendetidgne 1999.

R. Westermann and T. Ertl. Efficiently using graphics hardware in volume

rendering applications. IRroc. of SIGGRAPH 9&ages 169-178, 1998.

187

[Web84]

[Whig0]

[ZCK97]

[Zha95]

[ZS01]

[2SS96]

R.E. WebberAnalysis of quadtree algorithm&hD thesis, Department of

Comp. Science, University of Maryland, College Park, MD, 1984.

T. Whitted. An improved illumination model for shaded displ@ammun.

of ACM, 23(6):343-349, June 1980.

Y. Zhou, B. Chen, and A. Kaufman. Multiresolution tetrahedral framework
for visualizing regular volume data. Proc. IEEE Visualization’9/pages

135-142, 1997.

S. Zhang. Successive subdivisions of tetrahedra and multigrid methods on

tetrahedral meshesiouston J. Math.21:541-556, 1995.

D. Zorin and P. Sclader. A unified framework for primal/dual quadri-
lateral subdivision scheme&omputer Aided Geometric DesigtB:429—

454, 2001.

D. Zorin, P. Sclider, and W. Sweldens. Interpolating subdivision for
meshes with arbitrary topologZomputer Graphics (Proc. of SIGGRAPH

96), pages 189-192, 1996.

188

