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Interpolation is fundamental in many applications that are based on multidimen-

sional scalar or vector fields. In such applications, it is possible to sample points from the

field, for example, through the numerical solution of some mathematical model. Because

point sampling may be computationally intensive, it is desirable to store samples in a data

structure and estimate the values of the field at intermediate points through interpolation.

We present methods based on building dynamic spatial data structures in which the sam-

ples are computed on-demand, and adaptive strategies are used to avoid oversampling.

We first show how to apply this approach to accelerate realistic rendering through

ray-tracing. Ray-tracing can be formulated as a sampling and reconstruction problem,

where rays in 3-space are modeled as points in a 4-dimensional parameter space. Sample

rays are associated with various geometric attributes, which are then used in rendering.

We collect and store a relatively sparse set of sampled rays, and use inexpensive inter-

polation methods to approximate the attribute values for other rays. We present two data

structures: (1) theray interpolant tree (RI-tree), which is based on a kd-tree-like sub-



division of space, and (2) thesimplex decomposition tree (SD-tree), which is based on

a hierarchical regular simplicial mesh, and improves the functionality of the RI-tree by

guaranteeing continuity.

For compact storage as well as efficient neighbor computation in the mesh, we

present a pointerless representation of the SD-tree. An essential element of this approach

is the development of a location code that enables efficient access and navigation of the

data structure. For this purpose we introduce a location code, called an LPT code, that

uniquely encodes the geometry of each simplex of the hierarchy. We present rules to com-

pute the neighbors of a given simplex efficiently through the use of this code. We show

how to traverse the associated tree and how to answer point location and interpolation

queries. Our algorithms work in arbitrary dimensions. We also demonstrate the use of the

SD-tree for rendering atmospheric effects. We present empirical evidence that our meth-

ods can produce renderings of good quality significantly faster than simple ray-tracing.
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Chapter 1

Introduction

Spatial data structures can play a vital role in achieving efficient computation for geo-

metric applications. In this thesis we consider how spatial data structures can be used to

improve the running time of algorithms used in the field of computer graphics for produc-

ing photo-realistic images. Computer graphics is concerned with all aspects of the process

of creating images from 3-dimensional models, which is often calledrendering. Given a

scene modeled as a collection of objects and light sources, and viewing specifications for

the camera, rendering algorithms generate images by simulating the propagation of light

in the scene. Light rays originate from light sources and go through several interactions

with the scene objects being reflected, transmitted, or absorbed until finally leaving the

scene or reaching the camera.

Different graphics applications demand different levels of realism. At one end of

the spectrum isphoto-realismwhich aims to capture physically accurate, complex illu-

mination effects such as reflections, specular highlights and shadows. Simulating these

effects, even approximately, is a computationally demanding task. Many graphics systems
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simplify the effects of light for fast rendering at the expense of realism. Fast hardware

renderers uselocal illumination models, in which the color of the surface point is com-

puted as a function of only the direct light coming from the light sources ignoring the

inter-reflections from surface to surface. In contrast,global illumination modelsprovide

a more accurate approximation to reality by incorporating both direct lighting from light

sources and indirect lighting from other scene objects.

This thesis is mainly motivated by the ray-tracing method which has long been

the most popular global illumination algorithm. Ray-tracing can accurately captureview-

dependentphenomena such as specular highlights, reflections and refractions. However, it

remains a computationally very expensive technique. In traditional ray-tracing solutions,

at least one ray is shot through each pixel of the image plane, and the intensity gathered

by tracing the ray through the scene constitutes the color of that pixel. A critical part of

any ray-tracer is the ability to determine the intersection of rays with objects of the model

and how these rays may reflect off of and refract through the objects. This involves many

expensive ray-object intersection computations, especially for scenes containing complex

objects such as B́ezier surfaces or NURBS.

In computer graphics, it is common to infer knowledge from samples. A ray-tracer,

for example, is basically sampling rays at the pixel level (or at the sub-pixel level), where

each sample demands high computational effort. Pixel level may not always be the most

appropriate level at which to sample. The color of any given pixel in an image is a combi-

nation of many different phenomena, including the base color of the object, the intensity

of the accumulated light at this point, the nature of the reflection function of the object’s

surface, the presence of reflection or transparency, and the scattering and obscuration
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due to atmospheric effects such as smoke or clouds. Some of these elements may vary

relatively slowly and smoothly over large areas of an image. These elements can be repro-

duced realistically with relatively sparse samples, since rays have to be sampled densely

only in the regions where rapid changes occur with respect to the function that is of in-

terest. This suggests adaptively collecting a set of sparse samples, and using inexpensive

interpolation methods to approximate others.

To determine the appropriate level that we should be interpolating, we need data

structures. These data structures should support efficient storage and efficient querying

and interpolation of samples. The main problem we consider in this thesis is how to

design efficient data structures for answering multidimensional interpolation queries. We

show how to apply this approach for efficient ray-tracing by formulating ray-tracing as

a sampling and reconstruction problem based on 4-dimensional fields of directed lines,

where each directed line is associated with a set of vector-valued geometric attributes. We

focus on accelerating the geometric component of ray-tracing by substituting accurate-

but-slow intersection computations by approximate-but-fast interpolations.

Interpolation involves a weighted average of the field values of nearby sampled

points. There are a number of approaches for determining which sample points to use and

how to assign weights [Alf89, Sib81]. For the sake of efficiency in answering queries, we

use a simple method. A spatial subdivision is constructed over the domain of interest, and

the field values are sampled at the vertices of this subdivision. For a given query point, the

interpolated value is an appropriate linear or multi-linear combination of the field values

at the vertices of the cell that contains it. To avoid the complex computational issues

associated with maintaining, accessing, and updating arbitrary multidimensional spatial
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subdivisions, we ensure that the subdivision possesses some regular structure. This is

possible since we have the flexibility of controlling the location of our samples, unlike

some applications that are given a fixed set of samples in advance.

The requirement of adaptive sampling suggests that one way to approach answering

interpolation queries is through data structures based on hierarchical subdivision of space,

such as quadtrees and kd-trees [Sam90b]. We introduce theRI-treedata structure, which

is a spatial decomposition based on a kd-tree-like subdivision of 4-dimensional space of

directed lines. In higher dimensions, the storage requirements for representing a complete

interpolation function by sampling the entire space is extremely high. To overcome this

problem, we build a dynamic data structure in which samples are computed on demand,

and only the most recently used samples are stored. We investigate tradeoffs between

space and time used by this data structure and the accuracy of the interpolation results.

Another important concern when building data structures for interpolation purposes

is the continuity of the interpolated surface. A significant problem with kd-tree-like sub-

divisions is that they do not guarantee any degree of continuity.Cracksmay exist on the

interpolating surface whenever cells fail to intersect along asinglecommon face, hence

not allowing even the lowest level of functional continuity. We address this issue by in-

troducing theSD-treedata structure, which is based on a regularsimplicial subdivision

that is refined in a particular way to provide continuity. Simplicial decompositions are

preferable also for other reasons that will be discussed further in the thesis. However, for

them to be considered feasible alternatives, it is crucial that basic operations such as sub-

division and point location can be performed rapidly since these operations may not be as

trivial as they are for kd-trees. We address algorithmic issues involved in efficient imple-
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mentation of hierarchical simplicial meshes in arbitrary dimensions, based on a bisection

approach proposed by Maubach [Mau95].

In order to avoid cracks in the subdivision, the refinement algorithm must en-

sure that bisection of a simplex triggers the bisection of its facet neighbors. (See the

2-dimensional example in Figure 1.1.) This makes computation of facet neighbors of

a simplex an essential operation, imposing the requirement for efficient neighbor finding

algorithms. For space concerns, it is not preferable to store neighbor pointers (d+1 neigh-

bors for each node of ad-dimensional subdivision), especially for large high-dimensional

meshes. On the other hand, it is highly desirable to compute neighbors of a simplex in

time independent of its depth in the hierarchy, that is, we do not want to traverse the path

to and from the root in order to compute neighbors. Instead, we present a pointerless rep-

resentation of hierarchical regular simplicial meshes, in which the nodes of the hierarchy

are accessed through an index called alocation code. We introduce a new location code,

called an LPT code, that uniquely encodes each simplex of the hierarchy. We present

rules to compute any neighbor of a given simplex directly from its code in constant-time.

(b)(a)

Figure 1.1: A simplicial mesh in the plane and the corresponding interpolating surface.

(a) Crack in the interpolating surface due to bisection of one of the triangles. (b) Bisection

of the neighbor triangle eliminates the crack.
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We prove correctness of these rules. We show how to traverse the associated tree and how

to answer point location and interpolation queries through the use of these codes. Our

system works in arbitrary dimensions.

Finally, we discuss a number of issues in efficient use of the SD-tree data struc-

ture in another expensive rendering application, that is, rendering of atmospheric effects

such as smoke. We propose a variation in the construction of the SD-tree to reconcile

between the continuity requirement and the on-demand sampling requirement which nor-

mally conflict. This is a heuristic approach aiming to reduce the size of the data structure

as well as to increase the performance.

The rest of this dissertation is organized as follows. Chapter 2 presents a survey

of spatial data structures for multidimensional data, emphasizing simplicial refinement

methods, and previously proposed pointerless representations of hierarchical simplicial

meshes. Chapter 3 contains related work on accelerating ray-tracing and animations, as

well as on image-based rendering methods, which are relevant to this thesis in the way

they use interpolation. In Chapter 4, we introduce theRI-treedata structure and present

empirical results to demonstrate its application in efficient ray-tracing. In Chapter 5, we

introduce a pointerless representation for hierarchical regular simplicial meshes, called

the SD-tree, in a theoretical setting which is applicable in arbitrary dimensions. We

present theorems that are necessary to develop our labeling scheme, and to prove cor-

rectness of our neighbor finding rules. In Chapter 6, we illustrate the practical value of

the SD-treein rendering smoke based on experimental evidence. Finally, in Chapter 7,

we conclude by summarizing our contributions, and proposing future research directions.
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Chapter 2

Hierarchical Data Structures for Multidimensional Data

The first large piece of literature relevant to this thesis is in the area of hierarchical data

structures developed for efficient storage and retrieval of multidimensional data. Repre-

sentation of spatial data has become important in many application areas such as computer

graphics, visualization, image processing and geographic information systems, where ef-

ficient algorithms for manipulating data is crucial in the performance of the application.

Many of the general purpose data structures that are commonly used are hierarchical,

based on the principle of recursive decomposition of space. The most widely used ones

of these data structures are quadtrees (octrees), kd-trees, and BSP-trees which differ in

the way they choose the cutting plane(s), and in the branching factor (the number of sub-

regions each region is decomposed into).

For quadtrees, even though a number of variations exist [FB74, Web84, Sam90b],

the most common representation is based on recursively decomposing the square domain

into four equal-sized squares. An octree is the 3-dimensional extension to the quadtree,

subdividing the cubic domain into 8 equal-volume sub-cubes. Hence, in quadtrees and
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their higher dimensional extensions, the split is performed in all dimensions. Themulti-

dimensional binary search tree, or kd-treeas it is more commonly known as [Ben75], are

slower growing subdivisions compared to quadtrees, since they split one dimension at a

time. Different methods have been proposed on how to choose the split dimension such as

alternating dimensions or choosing the dimension corresponding to the longest side of the

hyperrectangle being subdivided. A hyperrectangle is split into two sub-hyperrectangles

by a cutting plane which is always perpendicular to the coordinate axis corresponding

to the split dimension, but the positioning of the cut plane could differ depending on the

application. In these respects, kd-trees are more flexible than quadtrees. Thebinary space

partition tree, or BSP-tree[FKN80] for short, are also organized as binary search trees,

however the cutting planes of arbitrary orientation are allowed as opposed to kd-trees.

Hence, each node is an arbitrarily shaped convex polytope. For a good survey of these

general data structures and various others for spatial data as well as their applications, we

refer the reader to the well known reference books by Samet [Sam90a, Sam90b].

Our particular interest, however within the context of this thesis, is in simplicial

decompositions. We will also refer to simplicial decompositions astriangulationsre-

gardless of the dimension—even though the termtriangulation is generally only used for

a 2-dimensional simplicial decomposition. In this chapter, we first survey a number of

adaptive refinement methods for generating simplicial decompositions. Next, we review

pointerless data structures developed for space-efficient representation of these simplicial

meshes, and efficient methods to perform operations like traversal and neighbor finding

based on the pointerless representation.
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2.1 Simplicial Mesh Refinement

There has been a considerable amount of work in adaptive simplicial mesh refinement,

mostly due to its importance in finite element methods for numerical solution of partial

differential equations. The mesh serves as a discretization of the domain of a function,

and by means of adaptive local refinements, it is used to improve the approximate so-

lution of a partial differential equation locally. In addition, adaptively refined meshes

have been widely used in various application areas in computer graphics, scientific vi-

sualization and geometric modeling. For example, 2-dimensional meshes are used for

multiresolution terrain modeling and rendering [LKR+96, DWS+97, Paj98, Ger03]; 3-

dimensional meshes for volume rendering of 3-dimensional scalar fields (such as medical

datasets) [GR99, ZCK97], and 4-dimensional meshes for visualization of time-varying

flow fields. Higher dimensional meshes are used in combinatorial algorithms to determine

fixed points of functions as described in [Tod76], and to approximate solution manifolds

of parameterized equations [Mau95].

Hierarchical simplicial meshes are obtained by starting with a coarse partition (tri-

angulation)T0 of the domain, and generating a sequenceT0, T1, . . . , Tj of increasingly

finer partitions by successive local mesh refinement, which is typically driven by a local

error estimator. Each refinement step involves selecting certain simplices for refinement

based on their local error estimate and refining those simplices and possibly some other

simplices to preservecompatibility. It is usually desired that the sequence of partitions

satisfy the conditions ofcompatibilityandstability.

A simplicial mesh is compatible if the intersection of two neighboring simplices is a
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single common sub-simplex (face). A compatible simplicial mesh is also called asimpli-

cial complex. The compatibility condition is important since otherwise cracks may occur

along the faces of the subdivision, which in turn causes discontinuities in the function.

The stability condition requires that the simplices generated during refinement do

not degenerate. This usually means that, a certain shape measureρ is bounded by a con-

stantc for all simplices in the hierarchy, where the constantc is independent of the level of

the simplex. A commonly used shape measure for ak-simplex is the aspect ratio, which

is defined as the ratio of the length of the longest edge to the diameter of the largest in-

scribedk-ball. Liu and Joe [LJ94b] studied other shape measures and their relationship

for tetrahedral meshes. Stability is important, since in many applications poorly-shaped

simplices must be avoided. In scientific visualization, for example, thin, elongated tetra-

hedra will result in visual artifacts. In finite element methods, stability is not only desired,

but is often essential to guarantee well-conditioned systems and numerical convergence.

Another desirable property for hierarchical simplicial meshes is that the number of

congruency classes generated is finite, and in fact minimal. Two simplices are defined

to be congruent, if they are equivalent up to a rigid motion (translation, rotation and

reflection), and a nonzero uniform scaling.

The key element in an adaptive refinement algorithm is the basic subdivision step,

which defines how a single simplex is subdivided into smaller simplices. Our emphasis

here is onregular hierarchical simplicial meshes. We refer to a mesh asregular, if the

process by which a simplex is subdivided is identical for all simplices. (A more restricted

definition of regularity means that the vertices of a mesh are regularly distributed, such

as the vertices of a grid). Regular hierarchical meshes satisfy thenestednesscondition,
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which states that each elementT ∈ Tk is covered by exactly one elementT ′ ∈ Tk−1. We

will also limit our survey to meshes where any vertex ofT is either a vertex or an edge

midpoint ofT ′, i.e. new vertices are generated only at edge midpoints.

Various different refinement techniques have been proposed, particularly in 2- and

3-dimensions. Depending on the subdivision scheme, these techniques can be classified

in two major groups:red-green refinementmethods, which are based on subdividing ad-

simplex into2d descendants andbisectionmethods, which subdivide a simplex into two

descendants.

Red-Green Refinement Methods: Methods of this class typically consist ofregular

andirregular local refinement rules, which are combined in a global refinement algorithm

to provide compatibility and stability. Theregular (red) refinement rules subdivide the

simplices with respect to a local error estimate and in a certain regular way. Theirregular

(green) rules are needed in case of adaptive refinements and they are only applied in order

to guarantee compatibility by providing transition between different refinement levels.

Irregular refinement is often referred to as thegreen closureor theconforming closure

and is performedafter the regular refinements. Only regular refinements introduce new

vertices.

The first red-green refinement method was introduced by Bank in 2-dimensions

[BSW83], and later was implemented into the multigrid code PLTMG [Ban98]. A trian-

gle is subdivided into four congruent smaller triangles by connecting its edge midpoints

as shown in Figure 2.1(b). Without adaptive refinements, since the generated triangles

belong to a single congruency class, the triangulation will always be stable independent
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(c) (b) (a)

Figure 2.1: Red-green refinement in 2-dimensions (a) initial state (b) after red refinement

(c) after green refinement.

of the depth of refinement. In case of adaptive refinements, compatibility is preserved by

the following irregular refinement rules. If a single edge of a triangleT , is refined due

to refinement of a neighboring triangle, thenT is refined by connecting the midpoint of

that edge to the opposite vertex as shown in Figure 2.1(c). Thus,T is bisected generating

two descendants, but without introducing any additional vertices. If two or more edges of

T are refined due to refinement of a neighboring triangle, thenT is regularly refined into

four descendants as explained above.

Triangles generated by irregular refinement are referred to asirregular elements.

To avoid generating unstable meshes, irregular elements are never further refined. If they

need to be refined due to high local error, then they are removed and their parents are

regularly refined instead.

Bey [Bey95], Zhang [Zha95], and Liu and Joe [LJ96] generalized Bank’s method to

3-dimensions. A tetrahedron is subdivided into eight smaller tetrahedra of equal volume.

Consequently, Liu and Joe [LJ96] refer to this method as8-subtetrahedron subdivision.

By connecting the edge midpoints of each triangular face as in the 2-dimensional case,

we get four sub-tetrahedra at the corners and an octahedron in the middle as shown in Fig-

12



ure 2.2 [LJ96]. This octahedron is further subdivided into four sub-tetrahedra by adding

one of its three possible diagonals. Note that the corner tetrahedra are all congruent to

their parent, but the middle ones are in general not. Regarding which of the three diago-

nals to add when subdividing the octahedron, different strategies have been investigated.

Different choices may lead to substantially different meshes with respect to the quality of

the tetrahedra generated. Zhang [Zha95] proposed to always choose the shortest diago-

nal and showed that the measure of degeneracy is minimized in that case. Bey [Bey95],

on the other hand, selects the diagonal based on a certain vertex ordering of the vertices

of the tetrahedra, and proves that his method generates stable and compatible triangula-

tions with at most three congruency classes, no matter how many refinement steps are

performed.

(a) (b)

x3

x2

x1

x0

x3

x23

x2

x12

x1

x02

x03

x13

x01

x0

Figure 2.2: Red refinement in 3-dimensions (a) initial state (b) after red refinement.

In Bey’s method [Bey95], the subdivision is summarized as follows: Assume that

a tetrahedronT is given by an ordered sequence of its vertices,〈x0, x1, x2, x3〉. Let xij
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denote the midpoint ofxi and xj, i 6= j. Then, subdivision ofT generates the eight

sub-tetrahedraTi, 1 ≤ i ≤ 8 with the following sequence of ordered vertices:

T1 = 〈x0, x01, x02, x03〉 , T2 = 〈x01, x1, x12, x13〉 ,

T3 = 〈x02, x12, x2, x23〉 , T4 = 〈x03, x13, x23, x3〉 ,

T5 = 〈x01, x02, x03, x13〉 , T6 = 〈x01, x02, x12, x13〉 ,

T7 = 〈x02, x03, x13, x23〉 , T8 = 〈x02, x12, x13, x23〉

The diagonal chosen to subdivide the octahedron is always the one betweenx02 andx13,

meaning that it is determined by the vertex ordering, and not by means of any computa-

tion. Bey explains that Zhang’sshortest-interioredge strategy is equivalent to this method

when it is applied to initial tetrahedralizations with non-obtuse faces and a suitable vertex

ordering [Bey00].

Bey also enumerated the irregular refinement rules for 3-dimensional red-green re-

finement. In 3-dimensions, there are26 = 64 possible edge refinement patterns. Two

of these correspond to the regular refinement and empty refinement. The other 62 corre-

spond to irregular cases, which can be classified into 9 groups. Bey restricts his algorithm

to only four of these types that are shown in Figure 2.3 [Bey95]. Type (1) corresponds

to three refined edges on the same face, type (2) correspond to exactly one refined edge,

Type (1) Type (2) Type (3) Type (4)

Figure 2.3: Irregular refinement in 3-dimensions.
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types (3) and (4) correspond to two refined edges on the same face and on opposite edges,

respectively. For all other cases where there are three or more refined edges that belong

to different faces, the tetrahedron is refined regularly.

Liu and Joe [LJ96] provided a theoretical analysis of the quality of tetrahedral

meshes generated similarly to Bey’s method. They have shown that successive applica-

tion of their refinement method to any initial tetrahedronT produces at most three classes

of congruent tetrahedra, and will result in stable partitions such that for any tetrahedron

T n
i in the hierarchy, and the mean ratioη [LJ94a] as the tetrahedron shape measure, the

inequality0.5η(T ) ≤ η(T n
i ) ≤ 2η(T ) holds.

Bey [Bey00] explains that the 2-and 3-dimensional red-green refinement methods

are special cases of Freudenthal’sd-dimensional algorithm [Fre42], which was introduced

within the context of fixed point computations, and is based on subdividing a simplex into

2d sub-simplices of equal volume. Bey [Bey00] also proved that Freudenthal’s algorithm

generates at mostd!/2 congruency classes for an initiald-simplex.

Bisection Refinement Methods: The second major class of refinement methods are

based on dividing a simplex into two sub-simplices by bisection. A number of au-

thors proposed bisection algorithms in 2- and 3-dimensions, as well generalizations in

d-dimensions. There are two main approaches that differ in how they choose the edge to

be bisected. The 2-dimensional bisection method by Rivara [Riv91] always chooses the

longest edge for bisection, and consequently is referred to as thelongest-edge-bisection.

Rivara showed that, in 2-dimensions, the meshes constructed are guaranteed to be sta-

ble. This method can be applied to any initial compatible triangulation. Rivara and Levin
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[RL92] presented a 3-dimensional extension of this method as well.

The well knownnewest-vertex-bisectionof Sewell [Sew72] and Mitchell [Mit92]

in 2-dimensions, chooses the edge opposite the newest vertex for refinement. In Sewell’s

terminology, one of the vertices of the triangle is designated as thepeak, and the opposite

edge as thebase. To bisect the triangle, the peak is connected with the midpoint of the

base. The new vertex created at the midpoint of the base is assigned to be the peak of

the child triangles. Sewell showed that only four congruency classes arise from subdi-

vision of a single triangle. Unlike red-green refinement methods which perform closure

after regular refinement is completed, Mitchell’s method maintains compatibilityduring

the refinement process by subdividing two triangles simultaneously. This compatible re-

finement is a recursive process, but it is shown that the depth of the recursion is bounded

[Mit88]. This method as well can be applied to any coarse triangulation. It generates

stable triangulations, since the number of congruency classes is at most four times the

number of triangles in the coarse triangulation. A major advantage of Mitchell’s method

is that the edge to be bisected can be determined without any computation.

Bänsch [Ban91], Liu and Joe [LJ95], and Arnold et al. [AML01] developed exten-

sions of Mitchell’s method to 3-dimensions. Arnold et al. describe amarked tetrahedron

data structure, which simplifies the selection of the refinement edge and recursive com-

patible refinement. They also proved that the number of congruency classes is finite. Liu

and Joe presented an equivalent method and have shown that the quality of the refined

mesh is guaranteed. They also showed that the number of congruency classes is finite, but

their bound exceeds that of Arnold, et al. These 3-dimensional algorithms as well, apply

to any compatible coarse triangulation.
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Maubach’s d-dimensional Bisection Algorithm: Maubach [Mau95] extended Mit-

chell’s algorithm to arbitrary dimensions, in the sense that it also makes use of a special

ordering of vertices and chooses the bisection edge without computation or global com-

munication. In 2-dimensions, Maubach’s method is equivalent to Mitchell’s but with a

different vertex ordering. Even though it is applicable to any arbitrary compatible trian-

gulation in 2-dimensions, Maubach’s method ind-dimensions can satisfy compatibility

only for special coarse simplicial meshes. Maubach has shown that the simplices can

be properly ordered and the method can be applied to a simplicial gridG generated by

reflections in ak1× . . .× kn grid of d-cubes covering[a1, b1]× . . .× [an, bn] as described

in [Tod76], and in which eachd-cube is initially subdivided intod! congruent simplices.

In addition, any simplicial grid that results from applying a nonsingular mapping toG is

also acceptable as an initial partition, since this type of mapping does not affect the order

of the vertices. Maubach presented a mathematically rigorous analysis of the geometric

structure of this type ofd-dimensional simplicial meshes. Even though his method is

restrictive regarding initial meshes, his is one of the most well known refinement algo-

rithms. This is because cubic domains are widely used in many applications such as direct

volume rendering and isosurface extraction [ZCK97, GR99, GLE97], and multiresolution

terrain modeling [LKR+96, DWS+97, Paj98, Ger03].

In Maubach’s system, bisection is applied to each of thed simplices within each

d-cube, and is defined by the codeblock BisectSimplex shown in Figure 2.4. LetT be

described by its ordered sequence of vertices〈x0, x1, . . . , xd−1, xd〉, and let`(T ) define

the level ofT in the hierarchy, andT0 andT1 denote the two children ofT . The coarse

simplices are at level 0.
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BisectSimplex(T )

k ← d− `(T ) mod d;

z ← 1
2
(x0 + xk);

T0 ← 〈x0, x1, . . . , xk−1, z, xk+1, . . . , xd〉;
T1 ← 〈x1, . . . , xk, z, xk+1, . . . , xd〉;
`(T0)← `(T ) + 1;

`(T1)← `(T ) + 1;

Figure 2.4: ProcedureBisectSimplex.

To avoid incompatibilities, this basic bisection step is incorporated in a recursive

compatible refinement algorithm, which triggers the bisection of neighboring simplices

that share the bisected edge. Maubach proved a number of important properties of this

subdivision.

1. The subdivision pattern repeats itself on a smaller scale at everyd levels.

2. The descendants of the same level (modulod) are congruent. Thus, exactlyd con-

gruency classes are generated for a gridG as described above.

3. For a compatibly refined mesh, two simplices are said to becompatibly divisibleif

their next subdivision will bisect the same edge. IfT ′ shares the edge ofT that will

be bisected, then the following holds: Either`(T ′) = `(T ), or `(T ′) = `(T )− 1. In

the first caseT andT ′ are compatibly divisible, in the second caseT is compatibly

divisible with one of the children ofT ′.

4. The recursive compatible refinement algorithm terminates due to item (3).
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5. For an arbitrary unstructured mesh consisting ofN d-simplices refined by Mau-

bach’s method, the number of congruency classes is bounded from above by2dN .

2.2 Pointerless Representations and Neighbor Finding

As mentioned above, regular meshes can be represented with nested models.Treesare

the most straightforward method for representing meshes that are generated by recursive

application of a basic subdivision step, since trees can easily describe the nested structure

of these meshes. For example, the meshes based on bisection can be represented by a

binary forest regardless of the dimension. Each coarse simplex serves as a separate root

node. Each node in the tree corresponds to a simplexs in the subdivision and the children

of the node associated withs correspond to the two sub-simplices generated by bisection

of s. Another example is a 2-dimensional mesh generated by red refinement, which can

be represented with a forest of quaternary trees, similar to quadtrees. (These meshes are

also referred to as triangle quadtrees [LS00, DM02].)

To provide compatibility in tree-based representations, it is necessary to be able to

compute the neighbors of a simplex in order to guarantee that the neighbors splitting the

same edge are split simultaneously. Within the context of mesh extraction from multires-

olution representations, other methods such as error saturation have also been proposed

to provide compatibility without finding neighbors [ZCK97].)

An alternative representation that has been applied both in in 2- and 3-dimensions

within the context of multiresolution mesh representations is based onDirected Acyclic

Graphs (DAG)[DM02, GDL+02, LKR+96]. Consider for example, the 2-dimensional
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case for the meshes generated by bisection. A pair of triangles that must be split simul-

taneously to provide compatibility are referred to as adiamond(or acluster) [DKP03].

Each diamondD is split into four triangles as shown in Figure 2.5 when the edge shared

by the two triangles of the diamond is bisected. ADAG of diamonds(or aDAG of vertex

dependenciesas in [LKR+96]) is constructed such that the root corresponds to the ini-

tial subdivision of the square into 2 triangles, which itself is a diamond (as described in

Maubach’s method [Mau95]). Each node is a diamond and each arc represents a parent-

child relation such that parents of a nodeN correspond to those diamonds that have to be

split before the diamond associated withN (because the splitting of parents creates the

triangles ofN ). In 2-dimensions, each node has exactly two parents and four children

except at the boundary cases. A portion of the described DAG is shown in Figure 2.6

[DM02]. In higher dimensions as well, the number of children and parents are bounded,

but are more complicated to enumerate.

Figure 2.5: Two types of diamonds in 2-dimensional bisection-based mesh.

Explicit representation of trees and DAGs in general involve storing pointers to

children, parent(s) and possibly neighbors. Thus, we refer to them aspointer-basedrep-

resentations. On the hand, there has been a considerable amount of research onimplicit

or pointerlessrepresentations for regular meshes, where the geometry (e.g., the vertices)
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Figure 2.6: DAG representation corresponding to a 2-dimensional bisection-based mesh.

and the relationships (child, parent, neighbor) within the mesh are implicitly encoded,

but not stored. This not only leads to more compact data structures in general, but also

operations such as neighbor finding can be efficiently performed.

Pointerless versions of the quadtree and its variants have been long known. The

most well known of these representations is thelinear quadtreeintroduced by Gargantini

[Gar82]. In a linear quadtree, each node is identified by a unique label called alocation

code, which consists of two components: thedepthof the node in the tree, and thepath

from the root to that node. The path is constructed by concatenating the two-bit patterns

corresponding to the child types, depending on the direction of the child within the parent

quadtree block (00, 01, 10, 11) for each node along the path from the root to the node.

Given the location code for a node, not only the codes for the parent and the children, but

also the codes for the neighbors can be determined. Schrack [Sch92] introduced efficient

neighbor finding methods in linear quadtrees by making use of bit operations. Equal sized

neighbors can be found in constant-time regardless of the depth of the node in tree.
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These ideas initially developed for quadtrees later provided the basis for many la-

beling schemes and pointerless representations developed for simplicial decompositions

in 2- and 3-dimensions as described below.

Right Triangulated Irregular Networks(RTIN): The RTIN approach by Evans, Kirk-

patrick and Townsend [EKT01] introduces a hierarchical data structure for represent-

ing height fields to provide approximations of the terrain at different levels-of-detail. It

is based on a triangulation of the underlying two-dimensional space using right-angled

triangles. This subdivision is basically equivalent to the 2-dimensional special case of

Maubach’s bisection scheme, where the initial coarse triangles are obtained by subdivid-

ing the square domain into two triangles by adding one of the diagonals of the square.

The triangles are then recursively subdivided by connecting the right-angled vertex to

the midpoint of the hypotenuse. (This is equivalent to both the new-vertex-bisection and

the longest-edge bisection.) This hierarchy is also referred to as atriangle bintree. To

avoid cracks on the approximating surface, a compatible triangulation is guaranteed by

propagationof splits in a way conceptually equivalent to Mitchell’s method [Mit92].

The main focus of the paper is on developing efficient data structures for represent-

ing this binary tree of right triangles and fast neighbor finding. As illustrated in Figure 2.7

[EKT01], each node (triangle)t in the hierarchy is labeled by the path code, which is con-

structed by concatenating the bit for the child type (0 for left child, 1 for right child) of

each node on the path from the root tot. The (x, y) coordinates of the vertices of the

triangulation do not have to be stored, as they can be computed easily from the label of

the triangle. In addition, the representation is pointerless eliminating storage for the child
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Figure 2.7: (a) 2-dimensional bisection-based mesh (b) corresponding tree representation.

and parent pointers, and thus, it is space efficient. The nodes are stored in an array (as

linear quadtrees), and a node is accessed by indexing this array using the node’s label,

which is treated as the binary representation of an integer. Note that, the labels of the

children and parent of a node can be easily determined from the label of the node. The

height values associated with(x, y) coordinates are stored in a 2-dimensional array, since

the full resolution of vertices corresponds to a uniform grid. This is more efficient than

storing in each node the height value corresponding to the midpoint of its hypotenuse,

since the straightforward way would lead to storing each height value twice.

The other major focus of this paper is on providing an efficient neighbor finding

scheme applicable to this hierarchy. This is important since many algorithms applied on

terrains require traversing the approximation surface from one triangle to the adjacent one.

The neighbors of a triangle are defined such that thei-neighboris the one that shares the
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edge opposite theith vertex. First, they have provided a recursive function that returns the

label of thesame-sizei-neighbor of a triangle given its label. After the same-size neighbor

is determined, the actuali-neighbor (which may or may not be the same-size neighbor)

can be computed with a constant number of additional steps. The time complexity of the

recursive algorithm is proportional to the depth of the triangle. They have also shown

how these computations can be performed with a small number of arithmetic and bitwise

logical operations in constant-time, provided that the path code fits in a single word.

Multiresolution Visualization and Compression of Global Topographic Data: With-

in the context of describing a compressed multiresolution hierarchy of the same triangle

bintrees for height fields, Gerstner [Ger03] used similar methods to label triangles with

bitcodes and manipulate bitcodes to find neighbors for determining the shared refinement

vertex. In addition, an efficient mesh traversal scheme (corresponding to the depth-first

traversal) based on this triangle numbering is described. Triangles are classified into up-

and down-triangles, and a triangle’s type can be identified from its bitcode. An up-triangle

can only be followed by a triangle at the same level or one level higher. A down triangle

can only followed by a triangle at the same level or one level lower. Encodingstay on the

same levelwith 0 and achange of levelwith 1, the entire triangulation can be encoded by

a starting triangle and one bit per each of the other triangles. The multiresolution DEM

defined over this triangulation is stored in two one-dimensional arrays: one containing

the height values in the order they appear in the tree traversal (taking special care to avoid

duplicates), and one containing the bitcode of the triangulation. It is also shown how an

adaptive triangulation can be extracted from the compressed representation.
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Navigating through triangle meshes implemented as linear quadtrees: Lee and

Samet [LS00] presented a pointerless representation of triangle quadtrees. They have

provided algorithms to navigate between neighboring triangles of greater or equal size

based on their location codes. For equal sized neighbors, the algorithms have worst-

case constant time complexity, since they require only a few bit manipulation operations.

The underlying surface is a sphere, which is approximated by an icosahedron whose 20

faces are equilateral triangles. (They have also considered octahedron and tetrahedron

approximations to the sphere.) Each triangular face is then recursively subdivided as in

red refinement of triangles generating a triangle quadtree for that face. Neighbor finding

algorithms work with the same time complexity within each triangle quadtree (associated

with a single face of the icosahedron), as well as for neighboring triangles that are in

different base triangles of the icosahedron.

The 20 faces of the icosahedron are labeled using a 6-bit code ranging from 0 to

19. Each triangle in the decomposition has one of two orientations, tip-up and tip-down

as shown in Figure 2.8 [LS00]. The children resulting from the subdivision use the bit

patterns given in the figure, that is each child concatenates the corresponding two-bits to

its parent’s path to construct its own path.
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Figure 2.8: (a) tip-up (b) tip-down (c) triangle codes at depth 2.

25



First, they described how traditional neighbor finding as in quadtrees [Sam90a,

Sam92] can be generalized to triangle quadtrees. This algorithm computes a neighbor

of a triangleT in three steps. In step 1, the nearest common ancestor ofT and its neigh-

bor in given direction (left, right or vertical) is located by determining its path. Step 2

updates the path by concatenating the two-bits corresponding to that child of the nearest

common ancestor that contains the neighbor. And, the last step updates the rest of the path

to point to the neighbor. A number of relationships are encoded in look-up tables, which

are then used in the algorithm. Next, they have explained how these operations can be

performed in constant time by using the carry property of addition (subtraction) without

searching the path code for the nearest common ancestor and updating the path code as

much as its length (i.e. the iterative process is replaced by a few arithmetic operations).

Note that the constant time complexity is based on the assumption that the path code fits

into a single machine word. Algorithms for finding left, right and vertical neighbors are

separately outlined and make use of bit masks to identify and alter bit positions depending

on the different cases.

Other labeling methods for the same collections of triangle quadtrees have been

proposed by Fekete [Fek90], and Goodchild and Shiren [GS92], but their neighbor finding

algorithms have worst-case complexity proportional to the maximum depth of the tree.

Constant-time neighbor finding in hierarchical tetrahedral meshes: Lee, De Flori-

ani and Samet [LDS01] extended the idea of labeling nodes with their binary path code,

and constant-time neighbor finding techniques to regular hierarchical tetrahedral meshes

generated by bisection. The hierarchy is generated by applying the basic longest edge
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bisection to a unit cube initially subdivided into six tetrahedra. (This is the 3-dimensional

instance of the refinement method described by Maubach.) They have introduced a par-

ticular vertex ordering that enables choosing the edge to be bisected without any compu-

tation by ensuring that the longest edge is always the one between the vertices numbered

3 and 4. The three different shapes of tetrahedra that can arise in this particular subdivi-

sion are called the1/2 pyramid,1/4 pyramidand1/8 pyramid, providing a very intuitive

explanation to the geometry of the subdivision. Similar to the 2-dimensional approached

described above, the path from the root to a tetrahedron is used as its label. However, the

path does not consist entirely of binary digits; at the highest level the children are labeled

from 0 to 5 corresponding to the six coarse tetrahedra.

They have described methods to compute the same-size neighbors of a tetrahedron.

First, they have explained an algorithm that runs in time proportional to the length of

the code. It works by first locating the nearest common ancestor by scanning the path

code from right to left until the particular neighbor direction forces to pass a particular

face which is always the one shared by sibling nodes. (the parent of these siblings is

the nearest common ancestor.) Then, all that is needed is to invert the last bit to point

to the sibling. Thus, regardless of the neighbor type, only one bit need to be inverted.

This method is first described for tetrahedra within the same coarse tetrahedron, and then

extended to the entire cube. Next, they show for each type of neighbor, how this algorithm

can be implemented to run in constant-time by performing just a few bit manipulations.

Similar to [LS00], they use bit masks to identify certain bit patterns, and they make use

of the carry property of binary addition to determine which bit to invert.

Zhou et al. [ZCK97] described a multiresolution hierarchy of tetrahedra for visual-
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izing regular volume data using the same underlying mesh described in [LDS01]. They

also represented the binary as an array, without storing any child or parent pointers. The

subdivision is performed using only vertex indices without use of actual coordinates.

Symbolic Local Refinement of Tetrahedral Grids: Hebert [Heb94] introduced a la-

beling scheme for 3-dimensional tetrahedral meshes, which are generated by Maubach’s

bisection algorithm. His scheme more directly encodes the geometry of the tetrahedra,

and also leads to symbolic algorithms to find same-size neighbors. It is based on the fact

that the local geometric structure repeats itself on a smaller scale at every three levels of

the hierarchy. Basically, each 3-level subtree rooted at level3m,m ≥ 0 is a scaled copy

of the 3-level subtree rooted at level 0. Each tetrahedron can be described by a unique

expression of translations, permutations, rotations and scalings, which can be encoded

symbolically. This symbolic label of a tetrahedron consists of octal digits. The first three

octal digits consist of a permutation, reflection and descendant number that determine

the unique position of the tetrahedron within an initial 3-level subtree (rooted at level 0),

which repeats itself at level3m subject to a scaling by a factor of1/2m. The remaining

digits encode the location of thelattice origin of the tetrahedron, which is the center of

the smallest enclosing octree box that contains the tetrahedron, and is shared by all the

tetrahedra in the 3-level subtree.

The basic bisection step, the compatible refinement algorithm and neighbor find-

ing methods are described by symbolic algorithms manipulating these labels, and can be

performed with only integer and logical operations. No neighbor, child and parent links

need to be stored as the above methods. In addition, the vertices of a tetrahedron can be
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computed by decoding its label, thus, the vertices need not be stored, either.

Neighbor finding methods enumerate different cases for different neighbor types,

and for different permutation, reflection and descendant numbers. Three of the four same-

size neighbors share the same lattice origin as they are within the same 3-level subtree,

hence, only the other three components of the label have to be computed for the neighbor.

This is done by following the decision tree based on all possible cases, and can also be

implemented efficiently by table-lookups. The remaining neighbor is outside the smallest

enclosing octree box, and could be arbitrarily far away. Thus, its lattice origin has to be

computed as well. In this paper, it is not described how this can be done efficiently but,

this possibly can be done in constant-time by bit manipulation.

Both the formulation of the labeling scheme and the neighbor-finding methods re-

quire use of tables and enumerations, which makes the method complicated. In fact,

using similar ideas, simpler formulations are possible. Our labeling method for arbi-

trary dimensions is conceptually a generalization of Hebert’s 3-dimensional method, but

is formulated in a much simpler way. Hebert’s neighbor finding methods, however are

not readily generalizable to higher dimensions. We provide neighbor finding methods in

arbitrary dimensions with a very compact representation and using very few special cases.
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Chapter 3

Efficient Methods for Rendering

In this chapter, we survey methods for efficient rendering that are relevant to the work pre-

sented in this thesis. First, we focus on methods for accelerating ray-tracing in particular,

as well as methods for accelerating animations. Next, we discuss image-based rendering.

We will concentrate on light field methods due their relevance to the work of this thesis.

3.1 Ray-tracing Acceleration Techniques

Ray-tracing is among the most popular techniques for generating complex illumination

effects such as shadows, specular highlights, reflection and refraction. The standard Whit-

ted ray-tracer [Whi80] computes global illumination by simulating the path of light rays

through the scene. The image is generated by tracing a ray from the viewpoint through

each pixel on the image. The color of each pixel is calculated as follows. The viewing

ray is intersected with every object in the scene, and the point of intersection closest to

the ray origin is determined. The diffuse and specular components of the radiance at this

point are computed by a local illumination model, incorporating the contributions of each
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visible light source. Then, the reflected and refracted rays are traced recursively, if they

exist, and their contributions are added to the local radiance.
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Figure 3.1: Ray-tracer (Whitted)

Ray-tracing is a computationally intensive technique. A major expense lies in the

intersection calculations, particularly for scenes that contain complex objects, and in case

of multiple reflections and/or refractions. Early research concentrated on accelerating ray-

tracing by reducing the cost for intersection computations using the following methods.

Bounding Volume Hierarchies: In these methods [KK86, RW80], each object is en-

closed by a simpler volume such as a sphere or a box, allowing for a simpler inter-

section check. Only those rays that intersect the bounding volume are checked for

intersection with the object itself. If most of the rays do not pass close to the object,

this results in an overall gain in performance. Furthermore, bounding volumes can

be organized in hierarchies—a number of bounding volumes are enclosed by larger
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ones—, and so, by a single intersection check, many objects can be eliminated from

further intersection checks.

Space Partitioning Techniques:The goal of space partitioning is the same as bounding

volume hierarchies, to focus only on a smaller percentage of the scene to determine

the closest intersection. However, space partitioning techniques work top-down by

subdividing the entire volume containing the scene into smaller volumes. Nonuni-

form data structures such as BSP-Trees [Kap85] and Octrees [Gla84], or uniform

decompositions such as 3-dimensional Grids [FTI86] have been proposed to subdi-

vide the space. In these methods, the candidates for intersection are the objects that

lie in the subregions pierced by the ray.

Ray Coherence Techniques:Ray coherence, which is one of the key elements of our

work, is exploited by various ray tracing acceleration techniques as well. Ray co-

herence means that similar rays are likely to follow similar paths in the scene, and

so, they are likely to intersect same set of objects at similar points. Beam tracing

[HH84] and cone tracing [Ama84] rely on the assertion that, since a bundle of rays

follow a similar path, it is more efficient to trace them as a group rather than indi-

vidually. In cone tracing, Amanatides [Ama84] generalized rays to circular cones

represented by an apex, centerline and spread angle, and objects are intersected

with cones. To compute reflection/refraction of a cone, the new centerline is com-

puted by reflection/refraction of the centerline of the cone. Beam tracing represents

a collection of rays as a generalized cone with a polygonal cross-section. Objects in

the scene are assumed to be composed of polygonal facets, so that polygon-polygon
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intersection suffices to compute beam-object intersections. Reflections preserve the

nature of beams, since reflection is a linear transformation on polygonal surfaces.

However, refraction is not linear, and is only approximated by a linear transforma-

tion. The ray classification algorithm proposed by Arvo and Kirk [AK87] is another

technique that exploits ray coherence. The entire ray space is a 5-dimensional hy-

percube. A hierarchical data structure, which is the 5-dimensional analog of an

octree, is built by recursively subdividing the ray space. Each hypercube in the

hierarchy represents a collection of rays originating from a 3-dimensional rectan-

gular volume, and directed through a 2D solid angle. Each leaf is associated with

a set of objects that are candidates for intersection with the collection of rays rep-

resented by the leaf. During rendering, each ray is mapped to the corresponding

5-dimensional point, the hypercube containing this point is located in the tree, and

only those objects in the candidate list of the hypercube are tested for intersection.

The design and cost analysis of data structures for ray-tracing has been of interest in

the field of computational geometry. This includes, for example, the work of Mitchell,

Mount and Suri on simple cover complexity [MMS97], the work of Aronov and Fortune

on low weight triangulations [AF99], cost prediction for ray shooting by Aronov, Brönni-

mann, Chang and Chiang [ABCC02, ABCC03] and hierarchical uniform grids (HUG)

space partitioning data structure introduced by Cazals, Drettakis and Puech [CDP95]. In

a later study, Cazals and Puech compared uniform grids, recursive grids, and HUG for

ray-tracing, and demonstrated statistically that recursive grids and HUG outperform uni-

form grids for non-uniform distribution of scene objects [CP97].
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Interactive Ray-tracing and Accelerating Animations: Recent research has focused

on interactive ray-tracing and accelerating animation sequences. This requires fast gen-

eration of ray-traced images from multiple viewpoints. Parkeret al. accelerate rendering

relying on multiprocessor hardware [PMS+99]. Their implementation is brute-force—it

explicitly traces rays through each pixel.

Some systems accelerate animation sequences by exploiting frame-to-frame coher-

ence. The main idea is to reuse pixels from the previous frame by reprojection and only re-

compute or possibly refine the potentially incorrect pixels [AH95, Bad88]. In the method

described by Adelson and Hodges [AH95], the reference frame is completely ray-traced

and along with each sampled pixel, the 3-dimensional intersection point, surface normal

and diffuse color is stored. The method proceeds in three steps to generate a new frame.

The first step is toreprojectthe intersection points from the previous frame to the new po-

sition. If more than one sample from the previous frame is projected to the same pixel of

the new frame, the closest one to the viewpoint is chosen, and verified in the second step.

The second step is called theverificationphase. The projected points are checked for

self-occlusions. Back faces are identified using the dot product of the viewing vector and

the surface normal at the intersection. Since the method is restricted to convex objects,

it is guaranteed that parts with forward-facing normals are not subject to self-occlusions.

Then, the system checks for the points which were visible in the previous frame, but oc-

cluded in the new frame. These cases are determined by casting a ray from the viewpoint

to the intersection point, and checking for potential occluding objects along the ray. For

the points that became disoccluded in the new frame, standard ray-tracing is used. The

last step,enhancement, adds the view-dependent shading phenomena. However, this is
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achieved by casting arbitrary levels of reflection and refraction rays as in the standard

ray-tracer. Thus, this method introduces savings in time only for diffuse scenes.

Chapmanet al. [CCD91] described another method to accelerate generation of

animation sequences by computing acontinuous intersectionof rays with a polygonal

scene given the trajectory of the viewpoint.

Walter et al. cache the results while rendering a frame and reproject previously

cached samples to approximate the current frame [WDP99]. Similarly, in Larson’s Holo-

deck system, rays are computed, cached and reused for subsequent frames by utilizing a

4-dimensional data structure [Lar98].

Interpolant Ray Tracer: The ray-tracing acceleration technique most similar to our

work is the Interpolant Ray Tracer system described by Bala, Dorsey and Teller [BDT99].

In their system, they distinguish between visibility and shading components of the ray

tracer and accelerate them independently. Acceleration of shading is similar to our ap-

proach of accelerating intersection computations such that they make use of the fact that

radiance is a smoothly varying function over the ray space most of the time, and a sparse

set of samples can be interpolated to approximate radiance. Radiance samples are cached

in a 4-dimensional quadtree-based data structure, called alinetree. However, we differ

in that our data structure is designed to map rays to geometric attributes such as normals

and reflection rays rather than mapping rays to radiance, and we are primarily interested

in fast rendering of reflective and refractive objects from multiple viewpoints. Storing

and interpolating geometric attributes rather than radiance lets the object be represented

independent of the illumination and the geometry of the environment unlike their method.
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Moreover, their quadrilinear interpolation requires that the ray trees of all sixteen samples

used for interpolation be identical to constitute a valid interpolant. This strong require-

ment reduces the number of cases where interpolation could be substituted for ray-tracing,

especially when there are many reflective and refractive objects in the scene. Instead, we

apply heuristics that would allow us to use interpolations in more cases while trading off

quality to some extent. In their system, the approximation error is conservatively bounded

at the expense of allowing only convex objects. We do not provide theoretical bounds.

But, in addition to simple convex objects, our system supports rendering bicubic patches.

They also accelerate visibility independently in case of multiple frames. Interpolants from

the previous frame are reprojected to the new viewpoint, and used to shade the pixels they

cover in the new frame. We have also investigated the use of compatible simplicial de-

compositions for subdividing the ray space. This has provided us with a simpler data

structure as well as continuous interpolations in contrast to theirs.

Hybrid Rendering: The idea of treating a reflective/refractive object as a local lens

object, which maps incoming rays to outgoing rays is used by Hakura and Snyder [HS01].

In this respect their work is similar to ours, and was developed both independently and

concurrently with ours. They apply this basic approach in a different setting than ours.

Their method is based on partitioning local and distant geometry as in environment map-

ping. They combine ray-tracing of local geometry of reflective/refractive objects with

hardware supported environment maps to approximate distant geometry. A set of layered

environment maps are generated in pre-processing for each local object and over a num-

ber of viewpoints. At run time, they dynamically trace rays through vertices of the local
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object and determine where the ray exits the object. This outgoing ray then is used to

access the appropriate environment map. Unlike ours, their system traces rays accurately

for each viewpoint; there is no ray parameterization or ray interpolation.

3.2 Image-Based Rendering

Image-Based Rendering (IBR) is a relatively new rendering paradigm, which supports fast

rendering of scenes from multiple viewpoints. A good survey can be found in [MG99].

These systems store a database of pre-rendered or pre-acquired images of a 3-dimensional

scene from a set of viewpoints, and use them to synthesize new views of the scene. The

main advantages of IBR are:

• the rendering time is independent of the geometrical complexity of the scene,

• the reference images can be of real scenes, eliminating the need for modeling com-

plex geometry and light effects.

Image-based rendering has some common elements with our work in the sense that both

methods rely on sampling and reconstruction of scenes to accelerate rendering from mul-

tiple viewpoints.

Image Reprojection and View Interpolation: By storing a depth (disparity) value

along with each pixel of the reference images, new images can be generated by reproject-

ing pixels from one or more reference images to the desired view [MB95]. This method

is calledimage warpingor image reprojection. Depth information might be stored ex-

plicitly or is encoded implicitly in the form of correspondences between pairs of points in
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different projections. The method described by Market al. [MMB97] treats the reference

image as a mesh. They use 3-dimensional warping to perturb the vertices of the mesh.

The reconstruction in the new frame occurs by rendering the perturbed mesh triangles.

The pixel colors are linearly interpolated across the reconstructed mesh triangle. They

perform this warping from the two nearest reference images one at a time, and composite

the results.

The view interpolation method proposed by Chen and Williams [CW93] is a sim-

ilar approach to image reprojection, but instead of reprojecting one or more images to a

new view, new views are interpolated between reference images associated with nearby

viewpoints. This method, too, relies on pixel-to-pixel correspondences between each pair

of reference images.

An important challenge in these methods is handling gaps—when reprojecting im-

ages, surfaces that were not visible in the reference images might become visible. Chen

and Williams propose using multiple reference images to avoid gaps. Otherwise, they fill

the gaps by interpolating nearby pixels. Another novel way of solving this problem is

to useLayered Depth Images (LDI)[SGHS98]. An LDI stores with each pixel, multiple

color and depth information corresponding to all the surfaces intersected by the ray rather

than storing only the information about closest intersection.

Most of these image-based methods using image reprojection cannot handle non-

diffuse phenomena such as specular highlights and reflection, since they assume that every

point in the scene will have the same color when viewed from different directions.
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Lumigraph and Light Field Rendering: Among the IBR methods, the most relevant

to our work is the Lumigraph [GGSC96] and Light Field Rendering (LFR) [LH96] tech-

niques. Both systems are based on dense sampling of theplenoptic function[AB91]. The

plenoptic function is a 5-dimensional quantity describing the flow of light at every posi-

tion (x, y, z) for every direction(θ, φ). By considering only the light leaving a bounded

object (or scene), the domain of the plenoptic function can be reduced to 4-dimensional,

since the radiance along a ray is constant. The Lumigraph and Light Field techniques

capture and represent the plenoptic function in a bounded environment, and use this infor-

mation to render new images of the environment from an arbitrary viewpoint. However,

the viewpoint is restricted to lie outside the enclosed environment.

We will explain only the Lumigraph here, since Light Field Rendering is very sim-

ilar. The 4-dimensional plenoptic function is discretized by means of a data structure

called a Lumigraph. The scene is enclosed within a cube for simplicity. The surface of

the cube holds all the radiance information of the scene. At any point in space, the radi-

ance along any ray in any direction can be determined by tracing the ray to the surface of

the cube, assuming the empty space outside the cube does not alter the radiance.

Rays are parameterized by the so-calledtwo-plane parameterization. To conform

to the 4-dimensional representation of the plenoptic function, each ray is represented by

its intersection points with two parallel planes, hence a 4-dimensional quantity. The first

plane is actually the cube face with axes labeled ass andt. The direction is parameterized

by a second plane parallel to the first plane, with axes labeled asu andv. Thus, a point

(s, t, u, v) in the Lumigraph corresponds to a ray intersecting the first plane at(s, t) and

the second at(u, v). See Figure 3.2(a) [GGSC96].
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Figure 3.2: Two-plane parameterization

During preprocessing, the data structure is built by sampling the 4-dimensional

Lumigraph function by uniformly subdividing in all four dimensions resulting in a regular

grid structure on both planes. See Figure 3.2(b). The associated radiance value is stored

associated with each grid point. One way of viewing a Lumigraph is as a 2D array of

images with viewpoints on a regular grid of thest plane. The image associated with each

(s, t) point is referred to as theuv image.

It is easy to see how to get samples into the Lumigraph from an arbitrary image and

how to reconstruct a new image from the Lumigraph. For any image, when the viewpoint

and the pixel location is fixed, a ray is associated with each pixel—originating from the

viewpoint and passing through the pixel. Let(s, t, u, v) be the parameterization of this ray.

Given an input image, the value to be stored at the location(s, t, u, v) of the Lumigraph

is the color of the image at the pixel intersected by the ray parameterized as(s, t, u, v).

On the other hand, given a Lumigraph, a pixel on a new image that is associated with the

ray (s, t, u, v), can be constructed by using the value of the Lumigraph function at this

parameter value.
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The radiance along any ray from any viewpoint is interpolated from the radiance

values from the nearest sixteen samples as follows. Each ray passes through a grid cell on

thest plane, and a grid cell on theuv plane. Since each grid cell is bounded by four grid

points, there are sixteen nearby radiance samples corresponding to the rays from each

of the four(s, t) grid points to each of the four(u, v) points. The sixteen samples are

quadrilinearly interpolated to give an approximate radiance for the query ray.

Gortler et al. [GGSC96] describe a texture-mapping-based rendering to perform

the reconstruction of image with hardware acceleration. Theuv images associated with

the(s, t) points are used as textures and the process of blending textures to approximate

quadrilinear interpolation is described in detail.

To handle complex effects such as reflection, refraction and specular highlights

with reasonable quality, these methods should sample very densely. The Lumigraph and

LFR are simpler and considered closest to pure image-based rendering, since they do

not require additional information like depth or optical flow. However, since they rely

on dense sampling, they require very large amounts of storage. This is partly because

of oversampling in the regions where radiance is smooth due to the fixed sampling rate.

Compression mechanisms are proposed in both [GGSC96] and [LH96], however, this

introduces additional overhead of decompression when rendering from the Lumigraph.

Schirmacheret al. [SHS99] proposed adaptive acquisition of images for Lumi-

graphs, by optimizing the set of viewpoints with respect to the quality of image recon-

struction using the images from these viewpoints. This is achieved by anapriori error

estimate predicting the gain in reconstruction quality when adding a new viewpoint to

the Lumigraph data structure. However, this estimate requires using geometric informa-
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tion. When a new candidate viewpoint is to be rendered, they warp the nearest already

acquired images to the candidate point, and estimate the resulting error of object visibility

and color. By this error estimate, they decide how accurately the image for a viewpoint

could be reconstructed by warping. If it is accurate enough, there is no need to add the

new viewpoint to the database. Their algorithm constructs an adaptive mesh of already

sampled viewpoints, predicts the gain of adding new viewpoint at each edge and chooses

to split the edge with the greatest gain.

As opposed to adaptive Lumigraphs, Camahortet al. [CLF98] argue that uniformly

sampled Lumigraphs are advantageous. Since the two plane parameterization proposed in

[GGSC96] and [LH96] used different arrangements of pairs of planes, when the camera

crosses the boundary of two plane-pairs, there could be noticeable artifacts. To remedy

this, they propose two uniform sampling strategies referred to as the two-sphere (2SP) and

sphere-plane (SPP) parametrizations. An additional advantage is that uniform sampling

is essential for compression techniques like Fourier transforms.

For the 2SP parameterization, rays are represented by their two intersection points

(s, t) and(u, v) with two overlapping spheres. The object is enclosed by a tight sphere

and the sphere surface is subdivided into nearly equilateral triangles, called patches. One

light field sample is stored for each ordered pair of patches. For the SPP parameterization,

a ray is defined by a normal direction,(θ, φ) specifying a plane which passes through the

center of the sphere, and by some point(u, v) on that plane. Both the normal and the

point are sampled from a uniform distribution.

Sloanet al. [SCG97] considered a number of methods to improve the performance

of lumigraph rendering trading off quality for time. The main motivation is to limit the
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number of images used for the reconstruction of a new image due to limited texture mem-

ory and main memory. Their methods fall into two categories, those that use a smaller set

of textures than a full rendering, and a method that uses the current reconstructed image

as a new texture itself for subsequent nearby frames. They organize the viewpoints in an

adaptive triangle mesh. New viewpoints (their associateduv images) are brought in, and

unused ones are deleted using a benefit/cost model.

Heidrichet al. [HLCS99] proposed a light field method focusing on rendering re-

fractive objects. Basically, they use the Lumigraph data structure with all methodologies

developed in [GGSC96], but, the RGB color triplet associated with each grid point is re-

placed with four numbers representing the direction component of a refraction ray. This

refraction ray is then used to access a static environment map, ignoring local effects fur-

ther from the object, or to access another light field. Their method has similarities to ours

in that they associate refraction rays with samples. However, since their system is built

on a lumigraph/light field structure, it relies on uniform dense sampling of the rays for

capturing clear object boundaries and handling discontinuities. This results in the main

problem with the light field methods, large storage requirements. Our method, on the

other hand, samples rays adaptively and applies a variety of heuristics to achieve high

quality discontinuity rendering at lower sampling rates. Their method rely on static large

structures built in a costly preprocessing phase, whereas our focus is on building dynamic

structures with caching—avoiding the preprocessing step and sampling rays on demand.

Moreover, we sample and interpolate normal vectors and intersection points in order to

compute the diffuse and specular components of shading. Our methods apply to a general

framework of ray-tracing.
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Lischinski and Rappoport use LDIs to render both view-independent (geometry and

diffuse shading) and view-independent (specular highlights, reflections) scene informa-

tion from new viewpoints [LR98]. Their method is an integration of the Image-Based

Rendering and Light Field methods. All view-independent scene information is rep-

resented using three orthogonal high resolution LDI’s—called thelayered depth cube

(LDC). The view-dependent information is represented as a separate and larger collection

of low resolution LDIs corresponding to various directions—called thelayered light field

(LLF). Each sample in the LLF contains, in addition to its depth, the total radiance leaving

the scene sample in the direction of projection. Thus, each of the LDIs samples the light

field along oriented lines parallel to the direction of projection. Lischinski and Rappoport

describe a rendering algorithm to combine these two components. Rendering proceeds in

two stages: In the first stage aprimary imageis constructed by applying 3-dimensional

warping to view-independent LDIs similar to the method described in [SGHS98]. In the

second stage, first the specular component is computed by simply evaluating the local

shading model for each visible light source. Then, the reflections are computed by either

of the two methods:

• light field gather: In this technique, the light field is reconstructed from the LLF.

To determine the view-dependent radiance leaving the point of interest in a certain

direction, first, the incoming radiance from each direction in the LLF is computed

by interpolation of nearby samples. Then, the BRDF at that point is used to weigh

each incoming radiance, and compute the outgoing radiance.

• image-based ray-tracing:This method traces rays through the LLF.
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Light field gather is good for glossy objects with fuzzy reflections, but not for perfect

mirror reflections. Ray-tracing is used for such cases. Lischinski and Rappoport’s method

is a nice combination of different techniques, but is computationally expensive.
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Chapter 4

The Ray Interpolant Tree for Efficient Ray-tracing

4.1 Introduction

There is a growing interest in algorithms and data structures that combine elements of

discrete algorithm design with continuous mathematics. This is particularly true in com-

puter graphics. Consider for example the process of generating a photo-realistic image.

The most popular method for doing this isray-tracing [Gla89a]. Ray-tracing models the

light emitted from light sources as traveling along rays in 3-space. The color of a pixel in

the image is a reconstruction of the intensity of light traveling along various rays that are

emitted from a light source, transmitted and reflected among the objects in the scene, and

eventually entering the viewer’s eye.

There are many different methods for mapping this approach into an algorithm. At

an abstract level, all ray-tracers involve forming an image by combining various continu-

ous quantities, orattributes, that have been generated from a discrete set of sampled rays.

These continuous attributes include color, radiance, surface normals, and reflection and

refraction vectors. These attributes vary continuously either as a function of the location
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on the surface of an object or as a function of the location of the viewer and the locations

of the various light sources in 3-space. The reconstruction process involves combining

various discretely sampled attributes in the context of some illumination model.

Producing images by ray-tracing is a computationally intensive process. The degree

of realism in the final image depends on a number of factors, including the density and

number of samples that are used to compute a pixel’s intensity and the fidelity of the

illumination model to the physics of illumination. Scenes can involve hundreds of light

sources and from thousands to millions of objects, often represented as smooth surfaces,

including implicit surfaces [Blo97], subdivision surfaces [ZSS96], and Bézier surfaces

and NURBS [FvDFH90]. Reflective and transparent objects cause rays to be reflected and

refracted, further increasing the numbers of rays that need to be traced. In traditional ray-

tracing solutions, each ray is traced through the scene as needed to compute the intensity

of a pixel in the image [Gla89a]. To achieve smoothness and avoid problems with aliasing,

many rays may be shot for each pixel. A high resolution rendering can easily involve

shooting on the order of hundreds of millions of rays. Much of the computational effort

involves determining the first object that is intersected by each ray and the location that

the ray hits.

In this chapter, we propose an approach to help accelerate this process by reducing

the number of intersection calculations. Our algorithm facilitates fast, approximate ren-

dering of a scene from any viewpoint, and is also useful when the scene is rendered from

multiple viewpoints, as arises in computing animations. Rather than tracing each input

ray to compute the required attributes, we collect and store a relatively sparse set ofsam-

pled raysand associate a number of continuous geometric attributes with each sample in
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a fast data structure. We can then use inexpensiveinterpolationmethods to approximate

the value of these sampled quantities for other input rays. Using an adaptive strategy, it is

possible to avoid oversampling in smooth areas while providing sufficiently dense sam-

pling in regions of high variation. We dynamically maintain acacheof the most recently

generated samples, in order to reduce the space requirements of the data structure.

The information associated with a given ray is indexed according to the directed line

that supports the ray, which in turn is modeled as a point in a 4-dimensionalline space.

The idea of associating radiance information with points in line space has a considerable

history, dating back to work in the 1930’s by Gershun on vector irradiance fields [Ger39]

and Moon and Spencer’s concept of photic fields [MS81], and more recently Light Fields

introduced by Levoy and Hanrahan [LH96] and the Lumigraph introduced by Gortler, et

al. [GGSC96].

Our notion is more general than the Light Fields and the Lumigraph because we

consider interpolation of any continuous information, not just radiance. Most methods for

storing light field information in computer graphics are based on discretizing the space

into uniform grids. In contrast, we sample rays adaptively, concentrating more samples

in regions where the variation in attribute values are higher. In addition, both Light Fields

and the Lumigraph sample the entire space of rays in a pre-processing step, which result

in high pre-processing times as well as very high space requirements. We, on the other

hand, fill our data structure on-demand, that is, we generate samples only when they are

needed by some interpolation.

The most closely related work to ours is the Interpolant Ray-tracer system intro-

duced by Bala, Dorsey, and Teller [BDT99], which combines adaptive sampling ofradi-
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anceinformation and interpolation for rendering convex objects. Our method generalizes

theirs by storing and interpolating not only radiance information but other sorts of con-

tinuous information, which may be relevant to the rendering process. In particular, we

store and interpolate information such as normal vectors, intersection points, reflection

and refraction rays. Unlike radiance interpolants [BDT99], our method allows the objects

to be represented independent of the illumination and the geometry of the environment.

In Section 4.6.5 we demonstrate the value of our approach. We also allow nonconvex

objects. Unlike their method, however, we do not provide guarantees on the worst-case

approximation error.

4.1.1 Design Issues

The approach of computing a sparse set of sample rays and interpolating the results of

ray shooting is most useful for rendering smooth objects that are reflective or transpar-

ent, for rendering animations when the viewpoint varies smoothly, and for generating

high-resolution images and/or antialiased images generated by supersampling [Gla89a]

in which multiple rays are shot for each pixel of the image.

Although we have motivated our approach from the perspective of ray-tracing, there

are a number of applications having to do with lines in 3-space that can benefit from this

general approach. To illustrate this, in addition to ray-tracing, we have studied another

application involving volume visualization with applications in medical imaging for radi-

ation therapy.

There are a number of issues that arise in engineering a practical data structure for

interpolation in line space. These include the following.
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How and where to sample rays?Regions of space where continuous information varies

more rapidly need to be sampled with higher density than regions that vary smoothly.

Whether to interpolate? In the neighborhood of a discontinuity, the number of rays that

may need to be sampled to produce reasonable results may be unacceptably high.

Because the human eye is very sensitive to discontinuities near edges and silhou-

ettes, it is often wise to avoid interpolating across discontinuities. This raises the

question of how to detect discontinuities. When they are detected, is it still possible

to interpolate or should we avoid interpolation and use standard ray-tracing instead?

How many samples to maintain?Even for reasonably smooth scenes, the number of

sampled rays that would need to be stored for an accurate reconstruction runs well

into millions. For this reason, wecachethe results of only the most relevant rays.

What are the space-time tradeoffs involved with this approach?

In the sequel, we investigate these and other questions in the context of a number of

experiments based on the applications mentioned above.

4.2 Mapping Rays to Geometric Attributes and Ray Coherence

We can distinguish two major components in a ray-tracer. Ageometric component, which

is responsible for calculating the closest visible object point along a specific ray, and other

geometric attributes such as the surface normal at that point, and ashading component,

which computes the color of that point. Our approach primarily aims to accelerate the

geometric component.
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The key idea of our method is that each object can be modeled abstractly as a

function f that maps input rays to a set of geometric attributes that are used in color

and shading computation. These attributes depend on the object’s surface reflectance

properties. For objects whose surfaces are neither reflective nor transparent, denoted

simple surfaces, the function returns the point of intersection and the surface normal at

this point. For objects whose surfaces are either reflective or transparent, the function

additionally returns theexit ray, that is, the reflected or refracted ray, respectively, that

leaves the object’s surface after a number of reflections or refractions, respectively. The

exit ray is represented by its origin, theexit point, and directionalexit vector. In general,

objects that are both reflective and refractive could be handled by associating multiple

exit rays with an input ray, but our implementation currently does not support this. These

quantities are depicted in Figure 4.1 and the function is described schematically below.

For simple surfaces: f : Ray→ {Normal, IntersectionPoint}

Otherwise: f : Ray→ {Normal, IntersectionPoint, ExitPoint, ExitVector}

exit vector

Simple Object

input ray

normal

intersection point
intersection point

normal

input ray

Refractive Object

exit point

f
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Figure 4.1: Geometric attributes.

We refer to the combination of the underlined attributes as theoutput ray. The

output ray serves as thekeyof the entire set of attributes, and has a special function in the

construction and use of the data structure. Basically, thedistancebetween two attribute
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sets is defined to be thedistancebetween their output rays. This distance is used in

adaptive subdivision of the data structure as will be explained later.

For many real world objects that have large smooth surfaces,f is expected to vary

smoothly. In the context of ray-tracing, this is referred to asray coherence. Nearby

rays follow similar paths, hit nearby points having similar normal vectors, and hence are

subject to similar reflections and/or refractions.

In the neighborhood of discontinuities, however, nearby input rays may follow quite

different paths. We use additional heuristics to permit interpolation when the parts of an

interpolant lie on different sides of a discontinuity. While avoiding interpolation across

the discontinuity boundary, we still interpolate on either side. In cases where we cannot

find sufficient evidence to interpolate, we perform ray-tracing instead.

In a traditional ray-tracer, each object is associated with a procedure that computes

intersections between rays and this object. For objects whose ray-object intersection com-

putations are expensive (such as Bézier surfaces) and boundaries are sufficiently smooth,

we replace this intersection procedure with a data structure, which will be introduced in

Section 4.3. This data structure approximates the functionf through interpolation.

4.3 The Ray Interpolant Tree

In this section we introduce the main data structure used in our algorithm, theRI-tree

or ray interpolant tree. A RI-tree is associated with a singleobjectof the scene, where

an object is loosely defined to be a collection of logically related surfaces. The object

is enclosed by an axis-aligned bounding box. The data structure stores the geometric
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attributes associated with some set of sampled rays, which may originate from any point

in space and intersect the object’s bounding box.

4.3.1 Parameterizing Rays as Points

In ray-tracing implementations, a common way to represent a ray is by its origin and

unit-length directional vector. Since two spherical angles are sufficient to define a unique

direction vector, geometrically a ray has only five degrees of freedom. Thus, a ray in

3-space can be represented as a point in a 5-dimensional space. For the most part, it is

possible to achieve a reduction in the dimension of the space by representing a ray by a

directed line.

Consequently, we model each ray by the directed line that contains the ray. Directed

lines can be represented as a point lying on a 4-dimensional manifold in 5-dimensional

projective space using Plücker coordinates [Som34], but we will adopt a simpler and pop-

ular representation, called thetwo-plane parameterization[BDT99, GGSC96, LH96]. A

directed line is first classified into one of 6 different classes (corresponding to 6plane

pairs) according to the line’sdominant direction. The dominant direction is defined to be

the axis corresponding to the largest coordinate of the line’s directional vector and its sign.

(Ties may be broken arbitrarily.) These classes are denoted+X,−X, +Y,−Y, +Z,−Z.

The directed line is then represented by its two intercepts(s, t) and(u, v) with the front

planeandback plane, respectively, that are orthogonal to the dominant direction and coin-

ciding with the object’s bounding box. To define the planes, the corresponding bounding

box faces are extended on both sides by the distance between the two planes, so that a

ray R with dominant directiond intersects both planes of the plane-pair corresponding
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to the dominant directiond. For example, as shown in Figure 4.2, rayR with dominant

direction+X first intersects the front plane of the+X plane pair at(s, t), and then the

back plane at(u, v), and hence is parameterized as a 4-tuple(s, t, u, v). Thus, each ray

is represented by a 4-dimensional point. Note that, the+X and−X dominant directions

involve the same plane pair but differ in the distinction between the front and back planes.

It is easy to see that if the bounding box has widthw (alongx), heighth (alongy) and

depthd (alongz), then a ray that intersects the bounding box and whose dominant direc-

tion is±X intersects the front and back planes through two parallel rectangles of height

h + 2w and depthd + 2w. (See Figure 4.2 [BDT99].)

Front Plane Back Plane 

d + 2w

h+
 2

w

d

h

(u,v)

w

(s,t)

X

Z
Y

Figure 4.2: The two-plane parameterization of directed lines. The +X plane pair is shown.

4.3.2 The Structure of the RI-tree

The RI-tree is a binary tree based on a recursive subdivision of the 4-dimensional space of

directed lines. It consists of six separate 4-dimensional kd-trees [Ben75, Sam90b] one for
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each of the six dominant directions. The root of each kd-tree is a 4-dimensional hypercube

in line space containing all rays that are associated with the corresponding plane pair. The

16 corner points of the hypercube represent the 16 rays from each of the four corners of

the front plane to the each of the four corners of the back plane. Each node in this data

structure is associated with a 4-dimensional hyperrectangle, called acell. The 16 corner

points of a leaf cell constitute the ray samples, which form the basis of our interpolation.

When the leaf cell is constructed, these 16 rays are traced and the associated geometric

attributes are stored in the leaf.

4.3.3 Adaptive Subdivision and Cache Structure

The RI-tree grows and shrinks dynamically based on demand. Initially, only the root cell

is built by sampling its 16 corner rays. A leaf cell is is subdivided by placing a cut-plane

at the midpoint orthogonal to the coordinate axis with the longest length. In terms of the

plane pair, this corresponds to dividing the corresponding front or back plane through the

midpoint of the longer side. We partition the existing 16 corner samples between the two

children, and sample eight new corner rays that are shared between the two child cells.

These new rays are illustrated in Figure 4.3 in the case that thes-axis is split. For this

case, front planes corresponding to the child cells are the split halves of the front plane of

the parent, but back plane corresponding to the child cells is the same as the parent.

Note that most of the corner points in the subdivision, that is, most of the sample

rays, are shared by more than one cell. Thus, we have to be careful not to sample the

same ray more than once in order to keep the cost of sampling as low as possible. For

rays shared between a parent and its children, or rays shared by two siblings, this can
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Figure 4.3: Subdivision along s-axis.

be easily be done by careful implementation. However, for those rays that are shared by

neighboring cells which are arbitrarily far away in the tree, additional care has to be taken.

For this purpose, we use a hash-table of rays, which is indexed by the 4-dimensional

representation of the ray. One hash-table per plane-pair is used. The average search time

to determine whether a ray is already sampled or not is constant, as supported by empirical

evidence.

Rays need to be sampled more densely in some regions than others, for example, in

regions where geometric attributes have greater variation. For this reason, the subdivision

is carried out adaptively based on the distance between output attributes. The distance

between two sets of output attributes are defined as the distance between their associated

output rays. We define thedistancebetween two rays to be theL2 distance between their

4-dimensional representations. We determine whether a cell should be subdivided based

on the error of approximation corresponding to the midpoint of the cell. We first compute

the correct output ray associated with the midpoint of the cell, and then we compute

an approximate output ray by interpolation of the 16 corner rays for the same point. If

the distance between these two output rays is smaller than a given user-defineddistance
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threshold, we decide that the output attributes for any input ray that fall in that cell can be

approximated with an acceptably low error by interpolation of the sixteen corner rays, and

we stop subdividing. Otherwise, the cell is subdivided into two equal-sized children. We

also impose an upper limit on the tree depth to prevent the tree from growing excessively

at discontinuity regions. A cell can be subdivided only when the depth of the cell in the

tree is less than a user-defineddepth constraint. When subdivision is not required due to

the error evaluation described above or not allowed due to the depth constraint, the leaf is

marked asfinal.

If we were to expand all nodes in the tree until they are final, the resulting data

structure could be very large, depending on the distance threshold and the depth con-

straint. For this reason, we only expand a node to a final leaf if this leaf node is needed

for some interpolation. Once a final leaf node is used, it is marked with a time stamp. If

the size of the data structure exceeds a user-definedcache size, then the the tree is pruned

to a constant fraction of this size by removing all but the most recently used nodes. In this

way, the RI-tree behaves much like an LRU-cache.

Comment on the depth constraint: An absolute bound on the maximum tree depth is a

rather unnatural parameter. It is, however, possible to infer this value based on some more

geometrically natural parameters. For example, consider instead aangular similarity

constraint, θ, which bounds the maximum angle between any two input rays that fall

within the same leaf cell. In other words, if the angle between any two input rays that lie

within the same leaf cell of the subdivision is at mostθ, then these samples are sufficiently

close to one another that further subdivision is not required.
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Let us illustrate how to compute the tree depth constraint fromθ. We assume for

simplicity that the object has been enclosed within a bounding cube. Since angles are not

affected by uniform scaling, we may assume that this is a unit cube. It follows from our

parameterization, that for each of the dominant directions, it suffices to consider rays that

intersect a pair of parallel squares lying on the front and back planes for this direction,

whose side lengths are 3 units. (Consider Figure 4.2 in the casew = h = d = 1.) Now,

consider any leaf cell of the associated tree for this direction. Such a cell corresponds to

the set of rays passing through two rectangular faces, one on each of these two parallel

squares. Since the sides of each rectangle are alternatingly split along the side of max-

imum length, the worst case arises when both sides of these faces are of equal length,

sayr. (See Figure 4.4.) Among the 16 corner rays sampled for any face pair, it can be

shown that the maximum angle occurs between the cross diagonals of two faces that are

aligned orthogonally opposite one another, that is, so that the line connecting the cen-

ters of these two faces is orthogonal to both faces. This follows from Lemma 4.3.1 and

Lemma 4.3.2 presented below. In this case, the diagonals are of equal length and intersect

at their midpoints, from which we have

tan
θ

2
=

r
√

2/2

1/2
= r
√

2,

And so,r = (tan(θ/2))/
√

2. Since four splits are required to halve the side length of

a cell, and the initial (root) face is of side length 3, it follows that the maximum depth

constraint, as a function of the angular similarity constraint, is

depth(θ) = 4 lg
3

r
= 4 lg

3
√

2

tan θ
2

= 4 lg

(
3
√

2 cot
θ

2

)
,

wherelg denotes logarithm base 2.
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Figure 4.4: Maximum angle is achieved by the cross diagonals of orthogonally opposing

faces.

We set a fixed depth constraints in our experiments, but this formulation in terms

of an angular similarity constraint would be a more appropriate parameter for software

design purposes.

Lemma 4.3.1 LetS1 andS2 denote two parallel squares of side-lengthr that are sepa-

rated by an orthogonal distance of 1 unit. LetV(S1,S2) = {v2 − v1|v1 ∈ S1, v2 ∈ S2},

denoting the set of direction vectors corresponding to all possible directed lines from

S1 to S2. Let Θ(R1,R2) denote the angle between two direction vectorsR1 andR2.

∀R1,R2 ∈ V(S1,S2), Θ(R1,R2) is maximized whenR1 andR2 correspond to the cross

diagonals betweenS1 andS2.

Proof: Let u denote a unit-length vector orthogonal toS1 andS2, and is directed fromS1

towardsS2. LetO1 denote the center ofS1, and letO2 = O1 + u. In addition, letP1 and

P2 denote two-dimensional vectors defined as

P1 = v1 −O1, P2 = v2 −O2.
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This means thatP1 andP2 are vector representations of points onS1 andS2 respectively,

with respect to the originsO1 andO2 respectively. Then,

V(S1,S2) = {u + P2 − P1|P1 ∈ S1,P2 ∈ S2}

Note thatV(S1,S2) is the set of direction vectors corresponding to all possible directed

lines fromS1 to S2. Now, consider the set of directed lines that pass throughO1 in all

possible directions represented byV(S1,S2). Let this set be denotedV(O1). Then the set

of intercepts of the lines inV(O1) with the plane ofS2 is

= {O1 + u + P2 − P1|P1 ∈ S1,P2 ∈ S2}

= O2 + (S1 	 S2)

This corresponds to the Minkowski difference of two planar squares of side-lengthr, that

is a square of side-length2r, and is coplanar withS2. Let this square be denoted asSm.

Thus,V(O1) is the set of lines which are directed fromO1 to any point onSm.

Since the set of direction vectors represented byV(S1,S2) is equal to the set of

direction vectors represented byV(O1), maximum angle between any two vectors in

V(S1,S2) is equal to the maximum angle between any two directed lines inV(O1). The

angle between any two directed lines inV(O1) is maximized when their corresponding

intercepts withSm are furthest from each other. This corresponds to the case when the

two intercepts are at opposite corners of a diagonal ofSm. LetR1 andR2 denote those

directed lines as shown in Figure 4.5. The direction vectors ofR1 andR2 correspond to

those inV(S1,S2) that are associated with the cross diagonals betweenS1 andS2 . ut

Lemma 4.3.2 LetS1 andS2 be equal length parallel segments of lengthr lying on par-

allel planes that are separated by an orthogonal distance of1 unit. LetΘ(S1,S2) denote
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Figure 4.5: Minkowski difference of two planar squares of side-lengthr.

the angle between the cross diagonals that are directed fromS1 to S2. Then

Θ(S1,S2) ≤ 2 arctan(r).

and the maximum angle is achieved when the two segments are aligned orthogonally

opposite one another.

Proof: Consider the parallelogram generated by connecting the endpoints of the two

segments as depicted in Figure 4.6(a). The height of such a parallelogram with baser

is always greater than or equal to 1. Thus, The height of the shaded triangle is greater

than or equal to 1/2. Now, consider an isosceles triangleT of height 1/2 and baser,

and its circumcircle as shown Figure 4.6(b). LetΘ1 denote the angle opposite the base.

Θ1 = 2 arctan(r). Any other triangle of height≥ 1/2 and the same baser asT has its

apex vertex outside the circumcircle ofT . Thus, its angle opposite the base is smaller

thanΘ1. For example, in Figure 4.6(b),Θ1 > Θ2 > Θ3. The shaded triangle of the

parallegram could coincide with the isosceles triangleT only when the two segments are
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Figure 4.6: Maximum angle between the cross diagonals of two equal length parallel seg-

ments is achieved when the two segments are aligned orthogonally opposite one another.

aligned orthogonally opposite one another, in which caseΘ(S1,S2) = Θ1 = 2 arctan(r).

If the segments are not aligned, the height of the shaded triangle is greater than 1/2, thus

Θ(S1,S2) < Θ1 = 2 arctan(r) . ut

4.4 Rendering and Interpolation Queries

Recall that our goal is to use interpolation between sampled output rays whenever things

are sufficiently smooth. RI-tree can be used to perform a number of functions in ren-

dering, including determining the first object that a ray hits, computing the reflection or

refraction (exit) ray for nonsimple objects, and answering visibility queries, which are

used for example to determine whether a point is visible to a light source or in a shadow.

Let us consider the interpolation of a given input rayR. We first mapR to the

associated point in the 4-dimensional directed line space and, depending on the dominant

direction of this line, we find the leaf cell of the appropriate kd-tree through a standard
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descent. Since the nodes of the tree are constructed only as needed, it is possible thatR

will reside in a leaf that is not marked asfinal. This means that this particular leaf has

not completed its recursive subdivision. In this case, the leaf is subdivided recursively,

along the pathR would follow, until the termination condition is satisfied, and the final

leaf containingR is now marked asfinal. (Other leaves generated by this process are not

so marked.)

Given the final leaf cell containingR, the output attributes forR can now be inter-

polated. Interpolation proceeds in two steps. First we group the rays in groups of four,

which we call thedirectional groups. Rays in the same group originate from the same

corner point on the front plane, and pass through each of the four corners of the back

plane. (For example, Figure 4.7 shows the rays that originate from the north-east corner

of the front plane.) Within each directional group, bilinear interpolation with respect to

the(u, v) coordinates is performed to compute intermediate output attributes. The outputs

of these interpolations are then bilinearly interpolated with respect to the(s, t) coordinates

to get the output attributes forR. Thus, this is essentially a quadrilinear interpolation.

(u, v)NE

(s,t)

front plane

back plane

R

Figure 4.7: Sampled rays within a directional group.
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4.5 Handling Discontinuities and Regions of High Curvature

Through the use of interpolation, we can greatly reduce the number of ray samples that

would otherwise be needed to render a smooth surface. However, if the ray-output func-

tion f contains discontinuities, as may occur at the edges and the outer silhouettes of the

object, then we will observe bleeding of colors across these edges. This could be remedied

by building a deeper tree, which might involve sampling of rays up to pixel resolution in

the discontinuity regions. This could result in unacceptably high memory requirements.

Instead our approach will be to detect and classify discontinuity regions. In some cases

we apply a more sophisticated interpolation. Otherwise we do not interpolate and instead

simply revert to ray-tracing.

4.5.1 Grouping Samples in Equivalence Classes

Our objects are specified as a collection of smooth surfaces, referred to aspatches. A

patch could be a simple polygonal surface, or a more complex one such as a Bézier or

NURBS surface. Each patch is assigned apatch-identifier. Associated with each sample

ray, we store the patch-identifier of the first patch it hits. Since each ray sample knows

which surface element it hits, it is possible to disallow any interpolation between dif-

ferent surfaces. It is often the case, however, that large smooth surfaces are composed

of many smaller patches, which are joined together along edges so that first and sec-

ond partial derivatives vary continuously across the edge. In such cases interpolation is

allowed. Thus, the patches that share a common edge may or may not be joined with

sufficiently high continuity to permit interpolation across the boundary. For example, in
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Figure 4.8(a), we can interpolate between patchesA andB, but not between patchesC

andD. We assume that the surfaces of the scene have been provided with this informa-

tion, by partitioning patches into surface equivalence classes. Two adjacent patches in the

same equivalence class are assumed to be connected continuously. Eachpatch-identifier

is associated with aclass-identifierdenoting its equivalence class.

A

D

C

          (a) (b)

B

11

2 2
back plane

NE

front plane

(s,t)

(u, v)

Figure 4.8: (a) Interpolation betweenA andB is allowed. Interpolation betweenC and

D is not allowed. (b) Rays are grouped in two equivalence classes, implying a single

discontinuity boundary.

If the patch-identifiers associated with the 16 corner ray samples of a final leaf are

in the same equivalence class, we conclude that there is no discontinuities crossing the

region surrounded by the 16 ray hits, and we apply the interpolation process described

above. Requiring that all 16 patches arise from the same equivalence class can signif-

icantly limit the number of instances in which interpolation can be applied. After all,

linear interpolation in 4-space can be performed with as few as 5 sample points. We as-

sume that at lower levels of the tree, discontinuities crossing a cell will be of a simple

nature and can be treated as a line segment. So, we find a model of the discontinuity

and while avoiding interpolation across the discontinuity boundary, we still interpolate on
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either side. If the patch-identifiers for the 16 corner samples of the leaf arise from more

than two equivalence classes, we assume that multiple discontinuity boundaries cross the

the region, and we revert to ray tracing. On the other hand, if exactly two equivalence

classes are present, we decide that there is a single discontinuity boundary. Consider, for

example Figure 4.8(b). To simplify the demonstration, we illustrate only one directional

group. The projection of the discontinuity boundary on the(u, v) plane is shown for the

NE directional group. Each corner on the(u, v) plane is labeled with the class-identifier

of the patch hit by the ray passing through that corner. From the class-identifiers of the

corner rays, we decide that there is a single boundary crossing the region surrounded by

the four ray hits in this directional group.

Let us mention a few problematic cases that could arise. Since the knowledge of the

number of different equivalence classes overlappedis based on the information obtained

from the vertices, we might be mistaken. Consider the cases depicted in Figure 4.9(a)

and (b). For example, in Figure 4.9(a), just by looking at the four corners, we would

decide that the cell is overlapped by two equivalence classes and overlook the third one in

between. Similarly for part (b). We do not detect these cases, and assume that they arise

very rarely. We assume that if the patches are grouped in two equivalence classes, only

thegoodcases depicted in Figure 4.9(c) and (d) could arise.

(a) (b)
2

1

1

1

1

11

2

1

2 2

1

1

1 1

2
(c) (d)

Figure 4.9: (a)-(b) Bad cases (c)-(d) Good cases
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In the case where exactly two equivalence classes are present, we perform an inter-

section test to determine which patch the query ray hits. Letpr denote this patch. This

intersection test is not as expensive as a general tracing of the ray, since typically only a

few patches are involved, and only the first level intersections of a ray-tracing procedure

is computed (that is, no reflection rays or light rays need be traced). Among the 16 corner

ray samples, only the ones that hit a patch in the same equivalence class aspr areusableas

interpolants. These are the ray samples hitting the same side of a discontinuity boundary

as the query ray.

Since at least three interpolants are required to in each directional group interpo-

lation and in the final interpolation of intermediate results, some cells cannot be used

for interpolation due to unusable candidate rays. If we determine that there is a sufficient

number ofusableray samples, we then interpolate the ray. Otherwise, we use ray-tracing.

The algorithm given in Figure 4.10 summarizes the interpolation method. In the algorithm

f∗(R) denotes the final interpolated output attributes for query rayR, that isf∗(R) is an

approximation off(R).

For the three-interpolant cases, if the point for which we attempt to interpolate lies

outside the triangular region formed by the points corresponding to the usable candidate

rays, this is not an interpolation anymore—it becomes an extrapolation. Since extrapo-

lated values are less reliable, the user is granted the option of tuning the extrapolation. If

the point to be extrapolated is farther from the triangular region—in terms of its barycen-

tric coordinates—than a given threshold, extrapolation is disabled and the cell cannot be

used for interpolation.
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determine the patch hit by the query rayR;

NumberOfUsableGroups= 0;

for each of the four directional groupsdo

if (number of usable rays≥ 3) then

NumberOfUsableGroups++;

compute intermediate output attributes

by interpolating usable rays;

if (NumberOfUsableGroups≥ 3) then

computef ∗(R) using the intermediate

output attributes from successful directional groups;

return f∗(R);

else

return failure;// Trace the ray

Figure 4.10: Interpolation algorithm

4.5.2 Angular Thresholds

Even if interpolation is allowed by the above criterion, it is still possible that interpolation

may be inappropriate because the surface has high curvature, resulting in very different

output rays for nearby input rays. High variations in the output ray (i.e. normal or the exit

ray), signal a discontinuous region. As a measure to determine the distance between two

output rays, we use the angular distance between their directional vectors. If any pairwise

distance between the output rays corresponding to the usable interpolants is greater than

a givenangular threshold, then interpolation is not performed.
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4.6 Experimental Results

The RI-tree is based on a number of parameters, which directly influence the algorithm’s

accuracy and the size and depth of the tree, and indirectly influences the running time.

We have implemented the data structure and have run a number of experiments to test

its performance as a function of a number of these parameters. We have performed our

comparisons in the context of two applications.

Ray-tracing: This has been described in the previous sections. We are given a scene

consisting of objects that are either simple, reflective or transparent and a number of

light sources. The output is a rendering of the scene from one or more viewpoints.

Volume Visualization: This application is motivated from the medical application of

modeling the amount of radiation absorbed in human tissue [dKL02]. We wish

to visualize the absorption of radiation through a set of nonintersecting objects in

3-space. In the medical application these objects may be models of human organs,

bones, and tumors. For visualization purposes, we treat these shapes as if they are

transparent (but are not refractive). If we imagine illuminating such a scene by x-

rays, then the intensity of a pixel in the image is inversely proportional to the length

of its intersection with the various objects of the scene. For each object stored as an

RI-tree, the geometric attribute associated with each ray is this intersection length.

4.6.1 Test Inputs

We have generated a number of input scenes including different types of objects. As men-

tioned earlier, for each object in a scene we may choose to represent it in the traditional
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method or to use our data structure. Our choice of input sets has been influenced by the

fact that the RI-tree is most beneficial for high-resolution renderings of smooth objects,

especially those that are reflective or transparent. We know of no appropriate benchmark

data sets satisfying these requirements, and so we have generated our own data sets.

Bézier Surface: This surface is used to demonstrate the results of interpolation algorithm

for smooth reflective objects. It is a reflective surface consisting of 100 Bézier

patches, joined withC2 continuity at the edges. The surface is placed within a

large sphere, which has been given a pseudo-random procedural texture [EMP+98].

Experiments run with the B́ezier surface have been averaged over renderings of the

surface from 3 different viewpoints. Figure 4.12(a) shows the Bézier surface from

one viewpoint. We rendered images of size600 × 600 without antialiasing. (That

is, only one ray is shot per pixel.)

Random volumes: We ran another set of experiments on randomly generated refrac-

tive, nonintersecting, convex Bézier objects. In order to generate nonintersect-

ing objects, a given region is recursively subdivided into a given number of non-

intersecting cells by randomly generated axis-aligned hyperplanes, and a convex

object is generated within each such cell. Each object is generated by first gener-

ating a random convex planar polyline that defines the silhouette of right half of

the object. The vertices of the polyline constitute the control points for a random

number (n) of Bézier curves, ranging from 5 to 16. Then a surface of revolution

is generated, giving rise to4n Bézier surface patches. The volumes are used both

for the ray-tracing and the volume visualization experiments. For ray-tracing we
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rendered anti-aliased images of size300 × 300 (with 9 rays shot per pixel). For

volume visualization we rendered600 × 600 images without antialiasing. Results

are averaged over three different random scenes containing 8, 6, and 5 volumes

respectively. Figure 4.13 shows a scene of refractive volumes.

Tomatoes: This is a realistic scene used to demonstrate the performance and quality of

our algorithm for real scenes. The scene consists of a number of tomatoes, modeled

as spheres, placed within a reflective bowl, modeled using Bézier surfaces. This is

covered by a reflective and transparent but non-refractive plastic wrap (the same

Bézier surface described above). There is a Bézier surface tomato next to the bowl,

and they are both placed on a reflective table within a large sphere. The wrap

reflects the procedurally textured sphere. The scene is shown in Figure 4.18.

4.6.2 Metrics

We measured thespeedupandactual errorcommitted as a function of four different pa-

rameters. Speedup is defined both in terms of number of floating point operations, or

FLOPs, and CPU-time. FLOP speedup is the ratio of the number of FLOPs performed by

traditional ray-tracing to the number of FLOPs used by our algorithm to render the same

scene. Similarly, CPU speedup is the ratio of CPU-times. Note that FLOPs and CPU-

times for our algorithm include both the sampling and interpolation time. FLOP counts

are machine independent, but they tend to underestimate the time spent in data struc-

ture access. However, our experience has shown that this access time is not a dominant

component of the overall running time.
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The actual error committed in a ray-tracing application is measured as the average

L2 distance between the RGB values of corresponding pixels in a ray-traced image and the

interpolated image. RGB value is a 3-dimensional vector with values normalized to the

range[0, 1]. Thus the maximum possible error is
√

3. The error in a volume visualization

application is measured as the average distance between the actual length attribute and

the corresponding interpolated length attribute.

4.6.3 Varying the Parameters

Varying Distance Threshold: Recall that the distance threshold, described in Sec-

tion 4.3.3, is used to determine whether an approximate output ray and the corresponding

actual output ray are close enough (in terms ofL2 distance) to terminate a subdivision

process. We varied the distance threshold from0.01 to 0.25 while the other parameters

are fixed. The results for the Bézier surface scenes are shown in Figure 4.11. As ex-

pected, the actual error decreases as the threshold is lowered, due to denser sampling.

But, the overhead of more sample computations reduces the speedup. However, even for

low thresholds where the image quality is high, the CPU-speedup is greater than 2 and the

FLOP-speedup is greater than 3. These speedups can be quite significant for ray-tracing,

where a single frame can take a long time to render.

Figure 4.12 (b) and (c) demonstrate how the variation in error reflects the changes

in the quality of the rendered image. Notice the blockiness in part (c) when the data

structure is not subdivided as densely as in part (b).
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Figure 4.11: Varying the distance threshold. (Angular threshold =30◦, maximum tree

depth = 28,600× 600 image, non-antialiased). Note that they-axis does not always start

at 0.
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(a) (b)

(c)

Figure 4.12: (a) Ray-traced image, (b) Lower right part of interpolated image (distance

threshold=0.01), error = 0.00377, (c) Lower right part of interpolated image (distance

threshold=0.15), error = 0.01331.
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(a)

(b)

Figure 4.13: (a) Ray-traced image, (b) Interpolated image (distance threshold=0.05) and

the corresponding color-coded image where white regions indicate pixels that were ray-

traced.
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Varying Angular Threshold: The angular threshold, described in Section 4.5, is ap-

plied to each query to determine whether the surface curvature variation is too high to

apply interpolation. We investigated the speedup and error as a function of the angu-

lar threshold over the renderings of three different random volume scenes. The angular

threshold is varied from5◦ to 30◦. The results are shown in Figure 4.14.

For lower thresholds, fewer rays could be interpolated due to distant interpolants,

and those rays are traced instead. In this case, the actual error committed is smaller but at

the expense of lower speedups. However, the speedups are still acceptable even for low

thresholds.
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Figure 4.14: Varying angular threshold (distance threshold=0.25, maximum depth=28,

300× 300, antialiased).

Varying Maximum Tree Depth: Recall that the maximum tree depth, described in

Section 4.3.3, is imposed to avoid excessive tree depth near discontinuity boundaries. We

considered maximum depths ranging from 22 to 30—corresponding to angular similarity

ranges of11◦ down to2.7◦ (Because this is a kd-tree in 4-space, four levels of descent are
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generally required to halve the the diameter of a cell). The results for the Bézier surface

scenes are shown in Figure 4.15. The angular threshold is fixed at30◦, and the distance

threshold is fixed at0.05.
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Figure 4.15: Varying tree depth (distance threshold=0.05, angular threshold=30,600 ×

600, non-antialiased).

As the tree is allowed to grow up to a higher depth, rays are sampled with increasing

density in the regions where the geometric attributes have greater variation, and thus, error

committed by the interpolation algorithm decreases with higher depths. The speedup

graph shows a more interesting behavior. Up to a certain depth, the speedup increases

with depth. Speedups are poor for very low-depth trees, since many of the interpolants

cannot pass the angular threshold test, and so many rays need to be traced rather than

interpolated. However, the speedup decreases with very large depth values, since the

overhead caused by denser sampling starts to dominate. It seems that a wise choice of

depth would be a value that results in both a lower error, and reasonable speedup. For

example for the given graph, depth around 28 would be a good choice for this image. (This

corresponds to angular similarity constraint of roughly3.8◦.) However, peak performance
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depends on a number of parameters that are particular to the ray tracing application, such

as the expected cost of a single ray shoot. In addition, Tables 4.1–4.3 shows the required

memory when depth is varied. When the tree is unnecessarily deep, not only does the

speedup decrease, but space requirements increase as well.

Varying Cache Size: As mentioned earlier, the RI-tree functions as an LRU cache. If

an upper limit for the available memory—the cache size—is specified, the least recently

used paths are pruned based on time stamps set whenever a path is accessed. Excessively

small cache sizes can result in frequent regeneration of the same cells. For the Bézier

surface scene, we have varied the cache size from 0.128 to 2.048 megabytes (MB). The

resulting speedup graph is shown in Figure 4.16.
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Figure 4.16: Varying cache size (distance threshold = 0.05, angular threshold = 30, max-

imum tree depth = 28,600× 600 image, non-antialiased).

Notice that we used small cache sizes to demonstrate the sudden increase in speedup

as the cache size approaches a reasonable value. Normally, we set the cache size to

100MB, which is high enough to handle bigger scenes with many data structures. There
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are other parameters involved in garbage collection, such as the percentage of the cache

being pruned. In these experiments, each garbage collection prunes 70% of the cache.

Volume Visualization Experiments: We have tested the algorithm for the volume vi-

sualization application using the same random volumes we used for refractive objects.

Images are600 × 600 and not antialiased. Results of our sample runs are shown in Ta-

ble 4.1-4.3. The FLOP speedup varies from2.817 to 3.549, and CPU speedup varies

from 2.388 to 2.814. For higher resolutions, or anti-aliased images the speedups could

be higher. The error could be as low as0.008 for low distance thresholds, and is still at

a reasonable value for higher thresholds. Figure 4.17 shows the actual image, and the

interpolated image visualizing one of the random volume scenes. All objects have 0.5

opacity, and all have solid gray colors.

(a) (b)

Figure 4.17: (a) Ray-traced image, (b) Interpolated image (distance threshold=0.25).
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Test Input Dist Thresh Speedup (FLOP) Speedup(CPU-time) Error Memory (MB)

Bézier Surface 0.010 3.12704 1.96466 0.00377 2.925

0.025 3.43796 1.99712 0.00483 2.371

0.050 3.74473 2.07705 0.00676 1.931

0.075 3.93950 2.11372 0.00858 1.699

0.100 4.08325 2.24707 0.0103 1. 549

0.125 4.19358 2.24816 0.01185 1.442

0.150 4.28194 2.29041 0.01331 1.361

0.175 4.35214 2.32532 0.01532 1.301

0.200 4.41940 2.32863 0.01655 1.253

0.225 4.48503 2.34465 0.01763 1.212

0.250 4.52146 2.34591 0.01867 1.185

Random Volumes 0.010 3.12173 2.63532 0.00627 19.252

(ray-tracing) 0.025 3.26194 2.64317 0.00645 17.518

0.050 3.40527 2.71941 0.00679 15.799

0.075 3.49906 2.76194 0.00722 14.765

0.100 3.56870 2.79244 0.00780 14.088

0.125 3.62689 2.84409 0.00853 13.603

0.150 3.67422 2.88046 0.00890 13.183

0.175 3.70776 2.89190 0.00945 12.875

0.200 3.74041 2.92770 0.00989 12.583

0.225 3.77341 2.94416 0.01048 12.331

0.250 3.80292 2.91917 0.01076 12.094

Random Volumes 0.050 2.95084 2.42804 0.00850 11.773

(volume 0.150 3.31043 2.67274 0.01179 9.503

visualization) 0.250 3.54958 2.81416 0.01488 8.344

Table 4.1: Varying the distance threshold: Speedup and actual error on Bézier Surface

and Random Volumes (ray-tracing and volume visualization).
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Test Input Tree Depth Speedup (FLOP) Speedup(CPU-time) Error Memory (MB)

Bézier Surface 22 3.50486 2.05642 0.02098 0.565

23 3.86223 2.14654 0.01491 0.706

24 4.05344 2.21946 0.01112 0.881

25 4.03178 2.17521 0.01032 1.084

26 3.97010 2.15906 0.00953 1.318

27 3.85335 2.05680 0.00760 1.603

28 3.74473 2.07705 0.00676 1.931

29 3.53944 2.04811 0.00663 2.265

30 3.36016 1.97434 0.00653 2.629

Random Volumes 22 3.10450 2.56453 0.01859 3.729

(ray-tracing) 23 3.41967 2.63197 0.01708 4.431

24 3.70909 2.74675 0.01526 5.441

25 3.85445 2.90357 0.01449 6.560

26 3.85108 2.93271 0.01305 7.989

27 3.84435 2.87188 0.01187 9.660

28 3.80292 2.91917 0.01076 12.094

29 3.56893 2.79997 0.01026 14.361

30 3.34045 2.73197 0.00987 17.413

Table 4.2: Varying the tree depth: Speedup and actual error on Bézier Surface and Ran-

dom Volumes (ray-tracing and volume visualization).
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Input Scene Ang Thresh Speedup (FLOP) Speedup(CPU-time) Error

Bézier Surface 5 2.68103 1.68226 0.00424

10 3.51840 2.01129 0.00591

15 3.68553 2.11734 0.00663

20 3.72731 2.12195 0.00673

25 3.74471 2.11754 0.00676

30 3.74473 2.07705 0.00676

Random Volumes 5 2.56317 2.15410 0.00478

(ray-tracing) 10 3.44274 2.67800 0.00896

15 3.70928 2.83973 0.01007

20 3.76320 2.88208 0.01055

25 3.78206 2.89311 0.01063

30 3.80292 2.91917 0.01076

Random Volumes 10 2.81703 2.38833 0.01047

(volume 15 3.21517 2.62693 0.01340

visualization) 20 3.40653 2.73348 0.01411

30 3.54958 2.81416 0.01488

Table 4.3: Varying the angular threshold: Speedup and actual error on Bézier Surface and

Random Volumes (ray-tracing and volume visualization).
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4.6.4 Results for the Tomatoes Scene

Finally, we have tested our algorithm on the tomatoes scene generating an image of size

1200 × 900, non-antialiased. Table 4.4 shows sample results for the tomato scene and

Figure 4.18 shows the corresponding images. Figure 4.18(a) shows the ray-traced im-

age. Part (b) shows the interpolated image, and a corresponding color-coded image in

which the white regions denote the pixels that were traced rather than interpolated. Part

(c) shows the interpolated image generated with lower thresholds and the corresponding

color-coded image. Notice that the artifacts in part (b) are corrected in part (c).

Dist.Thr. Ang.Thr. TreeDepth Speedup(FLOP) Speedup(time) Error Memory

0.25 30 28 2.65 1.89 0.00482 34 MB

0.05 10 28 2.40 1.75 0.00190 47 MB

Table 4.4: Sample results for tomatoes scene (1200× 900 non-antialiased).

Note that the closest objects along the eye rays are correctly determined by inter-

polation, as are the reflection rays from the wrap and the bowl, and the shadows. The

sky (procedural texture of the enclosing sphere) is reflected on the wrap. As expected, for

lower threshold values we can get a very high quality image and still achieve speedups of

2 or higher. If quality is not the main objective, we can get approximate images at higher

speedups.

4.6.5 Radiance versus Ray Interpolation

As we have mentioned before, in a ray-tracing application, we prefer interpolating geo-

metric attributes such as normal vectors and exit rays, rather than interpolating radiance.
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(a)

(b)

(c)

Figure 4.18: (a) Ray-traced image, (b) Interpolated image (dist. thr.=0.25, ang. thr.=30)

and corresponding color-coded image, white areas show the ray-traced regions, (c) Inter-

polated image (dist. thr.=0.05, ang. thr.=10).
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The main advantage of our approach is that it allows representation of an object inde-

pendent from the other objects in the environment and/or illumination. For example,

in methods based on radiance interpolation, if the illumination changes (a light source

is removed or its intensity increased), many samples have to be recomputed even if the

viewpoint remains the same, whereas our methods do not require altering the RI-tree of

any object. Or, consider the case of reflective and refractive objects,for example, if an

objectA is reflected on objectB, and if A moves slightly, the RI-tree ofB will also be

affected if radiance interpolants are used.

Another reason for sampling and interpolating normals and intersection points in-

stead of radiance is related to our focus on reflective and refractive objects. Recall that for

such objects, we also associate an exit ray with each sample. In order to build a unified

framework, it makes more sense to store normal vectors with exit rays, since the variation

in exit ray is more closely related to variation in normal vectors than radiance.

The comparison of radiance versus normal interpolation is somewhat analogous to

the difference in the interpolation methods used in Gouraud and Phong shading. Consider

the B́ezier surface scene, where the surface is simple (neither reflective nor refractive), but

the specularity is high. Figure 4.19 shows the ray-traced imageof a part of the surface il-

luminated by 2 light sources. If we choose to interpolate radiance, similar to Gouraud

shading, we may have to collect samples much more densely, in the regions near spec-

ular highlights in order to achieve greater fidelity, since in those regions radiance varies

rapidly. However, when we choose to interpolate normals and then compute shading with

respect to the interpolated normal, dense sampling is only required in areas where the

surface is not smooth enough, regardless of the radiance.
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(a) (b)

Figure 4.19: (a) Ray-traced simple Bézier surface (b) Upper right part zoomed.

Consider Figure 4.20. In part (a), the leftmost image shows the surface rendered

by using RI-tree, where normals are interpolated. The maximum depth allowed is 28,

and this is enough to obtain a high quality approximation to the ray-traced image in Fig-

ure 4.19. The middle image is a visualization of the RI-tree cells. The rightmost image

color codes the depth of the leaf cell used to interpolate the associated pixel. The depth-

color scale is given in part (d). Part (b) gives the corresponding images when the depth is

allowed to grow up to 32, some cells are refined more around regions of high curvature.

Part (c) shows the images when the image is rendered by radiance interpolation

such that the tree is refined according to the variance in radiance. To generate an image

of comparable quality to (a) and (b), the maximum depth should be set to at least 32. (For

values lower than 32, the highlights are noticeably distorted.) Number of nodes are 7.4K,

13K, and 25K for parts (a), (b) and (c) respectively. Note that Part (a) is a high quality

approximation to the ray-traced version, and to achieve the same quality by radiance

interpolation, 3 times more nodes—and, 3 times more samples—should be generated.

Depending on the scene and the relative costs of intersection computations and
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(a)

(b)

(c)

16 24 3280Leaf Depth

(d)

Figure 4.20: (a) Normal interpolation, max. depth = 28, no. of nodes = 7.4K. (b) Normal

interpolation, max. depth =32, no. of nodes = 13K. (c) Radiance interpolation, max. depth

= 32, no. of nodes = 25K. (d) Depth color scale.
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shading, either radiance interpolation or ray interpolation may be better than the other

in terms of performance. As described above in the case of a specular object, radiance

interpolants are usually more expensive in terms of sampling cost—they generate more

samples, and each sample is more costly since they also compute shading. On the other

hand, when rendering, ray interpolation methods interpolate at least two vectors (normal

and intersection point), and compute shading for each ray, whereas radiance interpolation

methods interpolate just radiance but compute intersections with objects for each ray.

4.6.6 Animations

In an animation sequence, since many samples will be reused by subsequent frames, we

expect that the performance gain after the first frame would be higher. We have tested

the algorithm on the following two animation sequences. In both cases, the degree of

speedup for the first frame was considerably lower than subsequent frames, since the data

structure is built from scratch for the first frame, and subsequent frames can reuse some

or all of the existing structure.

Light animation: In the first sequence, we use our tomatoes scene, illuminated by only

one spotlight. During the animation, the viewpoint is fixed, but the spotlight is

swinging, thus the illumination in the scene is different in each frame. Since, the

viewpoint is fixed as well as the location of the light, no more nodes/samples are

generated after the first frame, and so there is no sampling cost. The performance

for the first three frames are given in Table 4.5. The speed-ups are roughly constant

after the first frame.
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Dist. Thresh. Ang. Thresh. Tree Depth Speedup (FLOP) Speedup (CPU-time)

Fr#1 Fr#2 Fr#3 Fr#1 Fr#2 Fr#3

0.25 30 28 2.35 2.98 2.98 1.83 2.23 2.21

0.05 10 28 2.02 2.67 2.67 1.67 2.04 2.09

Table 4.5: Sample results for light animation (1200× 900 non-antialiased).

Viewpoint animation: In the second sequence, we use the original tomatoes scene illu-

minated by 9 light sources. In each frame, the viewpoint is rotated around the cup

by 1◦. And so, even though many samples are reused, some new samples are also

generated in each frame. The performance for the first three frames are given in

Table 4.6. The speed-ups are roughly constant after the first frame.

Dist. Thresh. Ang. Thresh. Tree Depth Speedup (FLOP) Speedup (CPU-time)

Fr#1 Fr#2 Fr#3 Fr#1 Fr#2 Fr#3

0.25 30 28 2.65 2.97 2.98 1.89 2.04 2.02

0.05 10 28 2.40 2.83 2.83 1.75 1.99 1.98

Table 4.6: Sample results for viewpoint animation (1200× 900 non-antialiased).

4.7 Conclusions

In this chapter, we introduced the RI-tree data structure and illustrated its use in the con-

text of efficient ray-tracing. By our approach of sampling and interpolating geometric

attributes rather than radiance, we decouple the local geometry of the object from the rest

of the scene geometry and illumination. Hence, we do not need to alter the RI-tree of a
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specific object, if any other object moves, or lighting conditions in the scene changes. (Ex-

cept when the location of a light source changes, since it may cause additional sampling

in RI-trees of some objects. Recall that determining visibility of a light source involves

checking intersections with possibly occluding objects). We only need to sample addi-

tional rays if the viewpoint or the viewing direction changes, since these may cause new

parts of an object become visible.

The RI-tree is most useful for rendering smooth objects that are reflective or trans-

parent, for rendering animations when the viewpoint varies smoothly or when the illu-

mination varies from frame to frame, and for generating high resolution images and/or

antialiased images generated by supersampling in which multiple rays are shot for each

pixel of the image.

We demonstrated the performance-quality tradeoff by experimenting with the few

parameters that control the quality of approximation. For our test scenes consisting mostly

of reflective or refractive objects, we presented experimental results that our algorithm

speeds up ray-tracing at least by a factor of two in terms of CPU-time, and by at least

by a factor of three in terms of FLOPs. The speedups are higher if an input ray goes

through multiple levels of reflections/refractions before escaping the object, since our

algorithm performs a fixed set of interpolations independent of the number of levels of

reflections/refractions. We also presented performance results for animations where the

viewpoint changes and for animations where the lighting changes. Speedups are higher

after the the first frame, since some samples generated for a frame are being reused for

subsequent frames.

The performance gain is achieved at the potential expense of quality. However,
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our system detects and deals with the object boundaries and other strong discontinuities

where the artifacts are more likely to be noticed. A number of heuristics are introduced

to allow more interpolation around discontinuity boundaries.

One of the disadvantages of the RI-tree is the need for these heuristics for detecting

and handling discontinuities. This is the result in part of the fact that each node of the

4-dimensional kd-tree has 16 vertices. Unless the nodes are subdivided to a very fine

level, it is quite likely that at least one of these vertices will lie on the wrong side of

discontinuity boundary. In addition, the kd-tree subdivision is not a cell complex, which

implies that there may be cracks, which also result in problems with continuity. In Chap-

ter 6 we introduce an approach based on a hierarchical decomposition into 4-dimensional

simplices. We will see that this method eliminates the need for these heuristics.
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Chapter 5

Simplex Decomposition Tree: A Pointerless Representation

5.1 Introduction

In the previous chapter, we have suggested that an efficient approach to answering mul-

tidimensional interpolation queries is through data structures based on hierarchical sub-

division of space and we have used a kd-tree based subdivision. However, a significant

problem with both kd-trees and quadtrees is that the resulting subdivision is not generally

a cell complex. Intuitively, acell complexis a subdivision in which pairs of neighboring

cells meet along a common face. A cell complex whose faces are simplices is called a

simplicial complex. (See [Mun75] for definitions.) A subdivision which is a cell complex

is also referred to ascompatible. (Some authors also preferconformingor consistent.)

We will use the termcompatibleor cell/simplicial complexinterchangeably in the rest

of this thesis. When the subdivision is not compatible,cracksoccur along faces of the

subdivision (see Figure 5.1(a)), which in turn present problems when using the mesh for

interpolation.

It is possible to further subdivide a kd-tree/quadtree subdivision to produce a sim-
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(b)(a)

crack

Figure 5.1: (a) A crack (b) A hierarchical simplicial mesh in the plane.

plicial complex [SS92, Paj02], by firstrestricting the quadtree with additional sampling

in such a way that two leaf cells in the tree differ at most by one level, and then trian-

gulating the quadtree according to a predefined set of patterns depending on the number

of neighboring cells that have been subdivided. However, this approach does not scale

well with dimension due to the exponential increase in the number of vertices and explo-

sion of cases that need to be considered. In addition, operations such as point location,

and determination of barycentric coordinates whose efficiency are crucial in our appli-

cation becomes more complicated and requires more computational effort. Moreover,

this approach usually creates more vertices compared to maintaining the subdivision as a

triangulation (we describe this below), which is more costly from our perspective, since

each vertex is sampled on-demand, and the sampling cost is included in the total cost of

rendering a frame.

Instead, we use an attractive and simpler alternative:hierarchical regular simpli-

cial mesh. This is ad-dimensional generalization of the concept of hierarchical regular

triangulation in the plane [EKT01] or in 3-space [LDS01]. Each element of such a mesh

is ad-simplex, that is, the convex hull ofd + 1 affinely independent points [Ede87]. The

vertices of the mesh correspond to the vertices of ad-dimensional grid. The mesh is gen-

erated by a process of repeated bisection applied to a hypercube initially subdivided into
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d! congruent simplices. We employ a bisection process that was proposed by Maubach

[Mau95]. Whenever a simplex is bisected, some of its neighboring simplices may need to

be bisected as well, in order to guarantee that the entire subdivision remains compatible.

(See Figure 5.1(b) for an example.)

To illustrate the advantage of interpolation using simplicial complexes, consider the

images generated from our ray-tracing application in Figure 5.2. Images (a) and (c) show

the result of an interpolation based on kd-trees [AM03], which is not a cell complex, and

images (b) and (d) show the results of using the hierarchical simplicial decomposition

described in this chapter.

For interpolation purposes, compatibly refined simplicial meshes are preferable

over kd-tree/quadtree based subdivisions, not only because they guaranteeC0 continu-

ous interpolants, but also because that they are much simpler in the sense that the in-

terpolations are performed with a minimal number of samples, for example, 5 samples

for the 4-dimensional case, hence this is much cheaper than the quadrilinear interpola-

tion using 16 samples. Simplicial decompositions are also advantageous since they create

much fewer vertices (i.e. much fewer samples) to reach a certain level of refinement than

quadtree/kd-tree based subdivision.

For a simplicial subdivision to be a feasible alternative for our purposes, the follow-

ing issues are important:

• The scheme for subdivision should be computationally efficient. That is why we

have chosen the bisection scheme which decides which edge to be bisected without

any computation, but simply based on the order of vertices.
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(a) (b)

(c) (d)

Figure 5.2: Results of a ray-tracing application to produce an800×800 image based on 4-

dimensional interpolations using (a) a kd-tree based on 14,492 samples (96 CPU seconds)

and (b) a simplex decomposition tree based on 6,072 samples (97 CPU seconds). Details

of these images are shown in (c) and (d), respectively. Note the blocky artifacts in the

kd-tree approach (c).
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• It should support efficient identification of the leaf cell containing a query point.

Note that, for kd-tree based subdivisions, the cutting planes are orthogonal to the

coordinate axes, hence it takes only one coordinate comparison to determine which

child of a cell contains the query point. In a simplicial subdivision, this is not the

case. Thus, it is more expensive to determine which child to descend to, if it is done

in the straightforward way of determining the location of a point with respect to a

given plane. We have shown an efficient way of doing this for the bisection-based

regular simplicial decompositions.

• It should support efficient computation ofbarycentric coordinates. If barycentric

coordinates are computedafter locating the leaf cell containing the query point, this

involves the inversion of a(d + 1) × (d + 1) matrix, hence, computationally quite

expensive. Instead, we have shown how this can be done incrementally in a much

simpler way with one comparison per level.

• It should support efficient neighbor finding. This is essential for providing compat-

ibility, since a number of neighbor simplices have to be subdivided as well, when-

ever a simplex is subdivided. In addition, computing facet neighbors of a simplex

efficiently is in general of great interest for many applications that require moving

along adjacent simplices.

In this chapter, we present an efficient implementation of multidimensional hierar-

chical regular simplicial meshes in any dimensiond. Rather than representing the hier-

archy explicitly as a tree using child pointers, we access nodes through an index called a

location code. Thus, we provide a pointerless representation. Location codes [Sam90a]
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have arisen as a popular alternative to standard pointer-based representations, because

they separate the hierarchy from its representation, and so allow the application of very

efficient access methods, such as hashing. Also, the space savings realized by not hav-

ing to store pointers (to the parent, two children, andd + 1 neighboring simplices) and

simplex vertices is quite significant for large multidimensional meshes.

We store the hierarchical mesh in a data structure called asimplex decomposition

tree. Our hierarchical decomposition is based on the same bisection method given by

Maubach [Mau95].(Note that Maubach’s representation is not pointerless.) We present a

location code, called theLPT code, which can be used to access nodes of this tree. We

show how to perform tree traversals, point locations, and answer interpolation queries

efficiently through the use of these codes. We also show how to compute neighboring

simplices using this code, which is an important step in guaranteeing that the subdivision

is a cell complex.

5.1.1 Hierarchical Regular Subdivisions and Pointerless Representations

Regular subdivisions have the disadvantage of limiting the mesh’s ability to adapt to the

variational structure of the scalar field, but they provide a number of significant advan-

tages from the perspectives of efficiency, practicality, and ease of use. The number of dis-

tinct element shapes is bounded (in our case byd), and hence it is easy to derive bounds

on the geometric properties of the cells, such as aspect ratios and angle bounds. The regu-

lar structure relieves us from having to store topological information explicitly, since this

information is encoded implicitly in the tree structure. Regular hierarchical decomposi-

tions can be selectively refined and coarsened efficiently, which is useful for interactive
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visualization. Additionally, the hierarchical structure provides a straightforward method

for performing point location, which is important for answering interpolation queries.

One very practical advantage of regularity involves performance issues arising from

modern memory hierarchies. It is well known that modern memory systems are based on

multiple levels, ranging from registers and caches to main memory and disk (including

virtual memory). The storage capacity at each level increases, and so does the access

latency. There are often many orders of magnitude of difference between the time needed

to access local data (which may be stored in registers or cache) versus global data (which

may reside on disk) [CHL99]. Large dynamic pointer-based data structures are particu-

larly problematic from this perspective, because node storage is typically allocated and

deallocated dynamically and, unless special care is taken, simple pointer-based traversals

suffer from a nonlocal pattern of memory references. This is one of the principal mo-

tivating factors behind I/O efficient algorithms [AV88, Arg02] and cache-sensitive and

cache-oblivious data structures and algorithms [CHL99, Dem02].

In contrast with pointer-based implementations, regular spatial subdivisions support

pointerlessimplementations. Pointerless versions of quadtree and its variants have been

known for many years [Gar82, Sam90a]. The idea is to associate each node of the tree

with a unique index, called alocation code. Because of the regularity of the subdivision,

given any point in space, it is possible to compute the location code of the node of a

particular depth in the tree that contains this point. This can be done entirely in local

memory, without accessing the data structure in global memory. Once the location code

is known, the actual node containing the point can be accessed through a small number

of accesses to global memory (e.g., by hashing).
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Prior work in the area of pointerless representations for the same class of regular

simplicial meshes and neighbor computation has principally been in 2- and 3-dimensions.

Evans, Kirkpatrick and Townsend [EKT01] presented a location code for the 2- dimen-

sional case and provided an efficient neighbor finding method based on bit manipulation.

Hebert [Heb94] presented a location code for hierarchical tetrahedral meshes and a set of

rules to compute neighbors efficiently in 3-space. Lee, De Floriani and Samet [LDS01]

developed an alternative location code for this same tetrahedral mesh, and presented al-

gorithms for efficient neighbor computation. In both approaches, the neighbor finding

methods are quite specific to 3-space, and are not readily generalizable to higher dimen-

sions. We present neighbor finding methods in arbitrary dimensions with a very compact

representation and using very few special cases.

We introduce a new location code that provides a unique encoding of the simplices

generated by Maubach’s [Mau95] bisection algorithm. This labeling scheme works in

arbitrary dimensions. We define the components required to develop a pointerless imple-

mentation based on our location code. The geometry of the simplices and the operations

required for navigation in the associated tree can be computed easily based solely on the

code of a simplex. Our location code and the definitions of various operations depend

on the particular vertex ordering. We have adopted a different ordering than Maubach’s

system, which we feel leads to simpler formulas. Our vertex ordering is a generalization

of the vertex ordering used in Hebert’s 3-dimensional system.

The most challenging operation on the tree is neighbor computation. Maubach’s

system computes the neighbors of a simplex recursively during construction of the tree

[Mau96], and stores pointers to neighbors for each simplex. We, on the other hand, are
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interested in efficiently computing any neighbor of any simplex directly from its code,

without storing any neighbor links, and without having to traverse the path to and from

the root in order to compute neighbors. This is significant gain both in terms of storage,

and computational efficiency, since our approach is local and runs inO(d) time—in fact

in O(1) time, if the operations are encoded in lookup tables. Neighbor computation is a

valuable operation not only during construction of the hierarchy, but in general, for any

application that requires moving between adjacent simplices of a decomposition.

5.2 Preliminaries

Throughout, we consider reald-dimensional space,<d. We assume that the domain of

interest has been scaled to lie within a unitreference hypercubeof side length 2, centered

at the origin, that is[−1, 1]d. We shall denote points in<d using lower-case bold letters,

and represent them asd-element row vectors, that is,v = (v1, v2, . . . , vd) = (vi)
d
i=1. We

let ei denote theith unit vector. Ad-simplex is represented as a(d + 1)× d matrix whose

rows are the vertices of the simplex, numbered from 0 tod. Of particular interest is the

base simplex, denotedS∅, whoseith vertex is
∑i

j=1 ej −
∑d

j=i+1 ej.

For example, in<3 we have

S∅ =




−1 −1 −1

1 −1 −1

1 1 −1

1 1 1




.

Recall from basic geometry that two geometric objects arecongruentif are equiv-
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alent up to a rigid motion (translation, rotation and reflection). Coordinate permutations

and coordinate reflections both preserve congruence. Two objects aresimilar if they can

be made congruent by a nonzero uniform scaling.

5.2.1 Permutations and Reflections

Let Sym(d) denote thesymmetric groupof all d! permutations over{1, 2, . . . , d}. We

denote a permutationΠ ∈ Sym(d) by a tuple of distinct integers[π1 π2 · · · πd], where

πi ∈ {1, 2, . . . , d}. We can interpret such a permutation as a linear function that maps

the unit vectorei to theeπi , or equivalently as a coordinate permutation given by ad× d

matrix whoseith row is the unit vectoreπi . For example, forΠ = [2 3 1],

S∅Π =




−1 −1 −1

1 −1 −1

1 1 −1

1 1 1







0 1 0

0 0 1

1 0 0


 =




−1 −1 −1

−1 1 −1

−1 1 1

1 1 1




.

It is well known that the collection of simplices{S∅Ψ : Ψ ∈ Sym(d)} fully subdi-

vides the reference hypercube, and further that this subdivision is compatible (is a simpli-

cial complex) [AG79]. Thesed! simplices form the starting point of our hierarchical sim-

plicial mesh. Thecompositionof two permutationsΠ ◦Ψ, defined asS(Π ◦Ψ) = (SΨ)Π

is given by the matrix productΨΠ. Note that the notation[2 3 1] is not a vector in<d,

but merely a convenient shorthand for a permutation matrix. Throughout, vectors will

be denoted with parentheses, and square brackets will be used for objects that are to be
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interpreted as linear transformations, or equivalently a shorthand for a matrix. Another

useful class of transformations are coordinate reflections, which can be expressed as a

d-tupleR = [r1 r2 · · · rd] whereri ∈ {±1}, and is interpreted as a linear transformation

represented by the diagonal matrixdiag(r1, r2, . . . , rd).

It will simplify notation to combine the composition of a permutation and a reflec-

tion using a unified notation. We define asigned permutationto be ad-tuple of integers

[riπi]
d
i=1, where[πi]

d
i=1 is a permutation and[ri]di=1 is a reflection. This is interpreted as a

linear transformation that maps theith unit vector torieπi .

For example, in<3, the composition of the reflectionR = [−1 −1 +1] and the

permutationΠ = [2 3 1] is expressed as the signed permutation[−2−3 +1], which is just

a shorthand for the matrix productRΠ, that is

RΠ =



−1 0 0

0 −1 0

0 0 +1







0 1 0

0 0 1

1 0 0


 =




0 −1 0

0 0 −1

+1 0 0


 .

An intuitive way to interpret the meaning of a signed permutation is as an operation

involving a selective negation followed by a subsequent permutation of some of the com-

ponents of a row vector or the columns of a matrix. For example the signed permutation

[−2 −3 +1] can be interpreted as negating the first and second components of a vector,

and then mapping the first, second, and third components of the resulting vector to posi-

tions 2, 3, and 1, respectively. Thus, the image of(v1, v2, v3) under this transformation is

(v3,−v1,−v2).
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We define the following functions that act on a signed permutationΠ = [πi]
d
i=1.

The first,perm(Π), extracts the permutation part ofΠ, the second,refl(Π), extracts the

(unpermuted) reflection part as a vector in{±1}d, and the third,orth(Π), returns the

permutation ofrefl(Π) underΠ. More formally,

perm(Π) = [ |πi| ]di=1

refl(Π) = (sign(πi))di=1

orth(Π) = refl(Π)perm(Π) = (sign(π−1
i ))di=1.

For example, ifΠ = [−2 −3 +1] thenperm(Π) = [2 3 1], refl(Π) = (−1,−1, +1),

andorth(Π) = (+1,−1,−1). Note thatrefl(Π) andorth(Π) are vectors. The associated

transformation matrices arediag(refl(Π)) anddiag(orth(Π)), respectively. The following

lemma is an easy consequence, and will be useful in some of our later proofs.

Lemma 5.2.1 LetΠ be a signed permutation. Then

Π = diag(refl(Π))perm(Π)

= perm(Π)diag(orth(Π)).

5.2.2 The Simplex Decomposition Tree

Recall that the initial simplicial complex is formed from thed! permutations of the base

simplex, that is,S∅Ψ for Ψ ∈ Sym(d). Simplices are then refined a process of repeated

subdivision, calledbisection[Mau95]. (Details will be given below.) The resultingchild

simplices are labeled 0 and 1. By applying the process repeatedly, each simplex in this

hierarchy is uniquely identified by itspath, which is a string over{0, 1}. The result-
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ing collection of trees is called thesimplex decomposition tree, or SD-treefor short. It

consists ofd! separate binary trees, which conceptually are joined under a common super-

root. Each simplex of this tree is uniquely identified by apermutation-path pairasSΨ,p,

whereΨ is the initial permutation of the base simplex, andp ∈ {0, 1}∗ is the path string.

When starting with the base simplex (Ψ is the identity permutation) we may omit explicit

reference toΨ. By symmetry, it suffices to describe the bisection process on just the

base simplexS∅. The ordering of the rows, that is, the numbering of vertices, will be

significant.

Maubach [Mau95] showed that with everyd consecutive bisections, the resulting

simplices are similar copies of theird-fold grandparent, subject to a uniform scaling by

1/2. Thus, the pattern of decomposition repeats everyd levels in the decomposition.

Define thelevel, `, of a simplexSp to be the path length modulo the dimension, that is,

` = (|p| mod d), where|p| denotes the length ofp. The 0-childSp0 and 1-childSp1 of a

simplex are computed as follows:

Sp =




v0

...

v`−1

v`

v`+1

...

vd




Sp0 =




v0

...

v`−1

(v` + vd)/2

v`+1

...

vd




Sp1 =




v0

...

v`−1

(v` + vd)/2

v`

...

vd−1




.
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A portion of the tree is illustrated in Figure 5.3. Note that in both cases the first`

vertices are unchanged. The new`th vertex is the midpoint of the edge between the`th

and last vertices. The remainingd− ` vertices are a subsequence of the original vertices,

shifted by one position relative to each other.

Equivalently, we can defineSp0 = B`,0Sp andSp1 = B`,1Sp, whereB`,0 andB`,1

are(d + 1) × (d + 1) matrices whosèth row (starting from row 0) has the value1/2

in columns` andd (starting from column 0), and all other rows are unit vectors. For

example, in dimensiond = 4 and for` = 2 we have

B`,0 =




1 0 0 0 0

0 1 0 0 0

0 0 1/2 0 1/2

0 0 0 1 0

0 0 0 0 1




B`,1 =




1 0 0 0 0

0 1 0 0 0

0 0 1/2 0 1/2

0 0 1 0 0

0 0 0 1 0




.

Our bisection scheme is geometrically equivalent to the one defined by Maubach

[Mau95], but we order the vertices differently from Maubach. Although the differences

are theoretically insignificant, our ordering results in somewhat simpler and more regular

formulas for computing descendents and neighbors.

5.2.3 Reference Simplices and the Reference Tree

Since with everyd consecutive bisections, the simplices are similar to, but half the size,

of their d-fold grandparent, we can partition the nodes of the decomposition tree into a
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  1  −1
  1    0
 ½ −½

  1 −1
  1   0
  0   0

  1   1
  1   0
  0   0

  0   0
−1 −1
  1 −1  1   1

  1 −1
  0   0

  1   1
  1 −1
−1 −1

∆   =

ø

level 0

level 1011S010S

S01

1S

2 00S

1∆   = 0S

0 S∆   =

  1    0
  0    0
 ½ −½

level 1

level 0

(0,0) (1,0)

(1,1)

(½,−½)

(1,−1)(−1,−1)

Figure 5.3: The simplex decomposition tree. The corresponding bisected simplex is

shown on the top-left. The newly created vertex is indicated by an arrow in each case.

The reference simplices∆i are indicated as well.
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collection of isomorphic, disjoint subtrees of heightd. The roots of these subtrees are

the nodes whose depths are multiples ofd (where the root starts at depth 0). It suffices

to analyze the structure of just one of these trees, in particular, the subtree of heightd

starting at the root. We call this thereference tree. Since the two children of any simplex

are congruent, it follows that all the simplices at any given depth of the decomposition tree

are congruent to each other. Thus, all the similarity classes are represented byd canonical

simplices, called thereference simplices. These are defined to beS(0k), for 0 ≤ k < d,

and denoted by∆k. (See Figure 5.3.) Although it is not a reference simplex, we also

define∆d = S(0d), since it is useful in our proofs.

For example, in<3 the 3 reference simplices together with∆3 are

∆0

(S∅)
=




−1 −1 −1

1 −1 −1

1 1 −1

1 1 1




∆1

(S0)

=




0 0 0

1 −1 −1

1 1 −1

1 1 1




∆2

(S00)

=




0 0 0

1 0 0

1 1 −1

1 1 1




∆3

(S000)

=




0 0 0

1 0 0

1 1 0

1 1 1




.
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5.3 The LPT code

So far we have defined an infinite decomposition tree and a procedure for generating the

simplices of this tree from the top down. In order to provide pointerless implementation of

the hierarchical mesh, we define alocation code, which uniquely identifies encodes each

simplex of the hierarchy. The most direct location code is combination consisting of the

initial permutationΨ followed by the binary encoding of the tree pathp. Unfortunately, it

is not easy to compute basic properties of the simplex such as neighbors from this code.

Nonetheless, Lee, De Floriani, and Samet showed how to compute neighbors from the

path code in the 3-dimensional case [LDS01]. Instead we modify an approach presented

by Hebert [Heb94] for the 3-dimensional case, by defining a location code that more

directly encodes the geometric relationship between the each simplex and the reference

simplex at the same level. We call this theLPT code, since it encodes for each simplex

its Level, its signedPermutation, and itsTranslationrelative to some reference simplex.

We shall show that it is possible to compute tree relations (children and parents) as well

as neighbors in the simplicial complex using this code.

Given any simplexSΨ,p in the hierarchy, theLPT codeis a 3-tuple(`, Π, Φ), where

` = |p| mod d is the simplex’s level,Π is a signed permutation relatingSΨ,p to its ref-

erence simplex, andΦ is a list of vectors, called the orthant list, which is used to derive

the translation relative to the reference simplex. The permutation partΠ = ΠΨ,p and and

orthant listΦ = ΦΨ,p are defined below as functions ofΨ andp. Correctness will be

established in Theorem 5.3.1 below.
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Permutation Part: The signed permutationΠΨ,p is defined recursively as follows for a

base permutationΨ and binary pathp:

ΠΨ,∅ = Ψ ΠΨ,p0 = ΠΨ,p ΠΨ,p1 = ΠΨ,p ◦ Σ`, (5.1)

whereΣ` is the permutation that cyclically shifts the lastd− ` elements to the right

and negates the element that is wrapped around. That is,Σ` = [1 2 · · · ` (−d) (` +

1) (` + 2) · · · (d− 1)]. A portion of the simplex decomposition tree, and the associated

permutation values are shown in Figure 5.4. For example, observe thatS1 is related to∆1

by the signed permutation[−2 +1], which negates the first column of∆1 and then swaps

the two columns.

Orthant List: Recall that with everyd levels of descent in the decomposition tree, the

resulting simplices decrease in size by a factor of1/2. The bounding hypercube of the

resulting descendent is one of the2d hypercubes that would result from a quadtree-like

decomposition (indicated by broken lines on the left side of Figure 5.4). Depending on the

level within the tree, the translation of the descendent hypercube relative to its ancestor

will be some power of(1/2) times ad-vector over{±1}. Such a vector defines the

orthantcontaining the descendent hypercube relative to the central vertex of its ancestor.

Consider, for example, the shaded simplex in Figure 5.4. Its translation relative to the

base simplex is1
2
(+1,−1)+ 1

4
(+1, +1), indicated by the arrowed lines on the left side of

the figure. The orthant list encodes these two vectors.
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orth=(+1,−1)

orth=(+1,+1)

  1 −1

0 S −1 −1
  1 −1
  1   1

+1 +2

ø

1 S0   0   0

  1   0
  0   000S2∆   =

−2 +1

  1 −1 −1 −1
  0   01S

+1 +2

  1   1

0101

  1  −1

+1  −2

S011  ½ −½
  0    0
  1    0

+2  +1

S0100  ½ −½
  1 −½
  1  −1

+1  −2

S

  1    0

  1   1

+1 +2

S01

+1  +2

  1    0
  1 −½

  0   0
  1   0
  1 −1

+1 −2

 ½ −½

010S  ½ −½

(−1,−1) (1,−1)

(½,−½) (1,−½)

(1,0)(0,0)

(1,1)

∆   =

∆   =

Figure 5.4: The signed permutationsΠΨ,p associated with each simplex are shown below

each simplex matrix, and the entries of the orthant list are shown for the shaded simplex

S0101. The LPT code for this simplex is(0, [+1 +2], 〈(+1,−1), (+1, +1)〉).
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Figure 5.5: Orthant List

To define the orthant list, we first remove the last

` symbols ofp, leaving a multiple ofd symbols (pos-

sibly empty). We then partition the remaining sym-

bols intoL = b |p|/dc substrings,q1q2 . . . qL, where

|qi| = d. (See Figure 5.5.) Since the reference tree

structure repeats everyd levels, eachqi can be viewed

as a complete path in one of these subtrees of height

d. Let Qi denote the concatenation of the firsti substrings. For1 ≤ i ≤ L, defineΓΨ,p[i]

to be the signed permutation for pathQi, that isΠΨ,Qi . Define theorthant list for the pair

(Ψ, p) to be the sequence ofL vectors whoseith element isorth(ΓΨ,p[i]), that is

ΦΨ,p = 〈orth(ΓΨ,p[1]), orth(ΓΨ,p[2]), . . . , orth(ΓΨ,p[L])〉 .

The orthant list can be computed incrementally along with the permutation part of

the code as follows. Given the LPT code(`, Π, Φ) for a simplexSΨ,p, first observe that

the orthant list only changes for the children if the current level isd−1. If so, we compute

the child’s permutationΠ′ from Eq. (5.1) and appendorth(Π′) to the current list. Observe

that given the level̀ and the orthant listΦ for any simplex, we can derive the length of

the associated tree pathp as` + d · length(Φ).

The computation of the LPT code is summarized in the procedureLPTcodeshown

in Figure 5.6. The code for the simplexSΨ,p is computed by the callLPTcode(p, (0, Ψ, ∅)).

We may now state the main result of this section, called theLPT Theorem, which estab-

lishes the geometric meaning of our LPT code by relating each simplex of the decom-

position tree to its associated reference simplex. Hebert [Heb94] proved the analogous
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LPTcode(p, (`, Π, Φ))

if (p = ∅) return (`, Π, Φ)

Expressp asxq, for x ∈ {0, 1}
`← (` + 1) mod d

if (x = 1) Π ← Π ◦ Σ`

if (` = 0) Φ ← Φ + orth(Π)

return LPTcode(q, (`, Π, Φ))

Figure 5.6: ProcedureLPTcode

result for his 3-dimensional bisection system. Let1Td+1 denote a(d+1)-column vector of

1’s. The following theorem makes use of the observation that, for anyd-row vectorv, the

matrix product1Td+1 · v is a(d + 1) × d vector whose rows are all equal tov, and hence

adding this to any simplex matrix is equivalent to a translation byv.

Theorem 5.3.1 (LPT Theorem)Let SΨ,p be the simplex of the decomposition tree asso-

ciated with some initial permutationΨ and binary pathp. Let (`, Π, Φ) be the LPT code

for this simplex, defined above. ThenSΨ,p is related to∆`, the reference simplex at this

level, by the following similarity transformation:

SΨ,p =
1

2L
∆`Π + 1Td+1

L∑
i=1

1

2i
Φ[i].

whereL = b |p|/dc.

Before proving this theorem, we will prove the following technical lemmas.

Lemma 5.3.1 Given the reference simplex∆`, 0 ≤ ` < d,

B`,0∆` = B`,1∆`Σ
−1
` ,

whereΣ` is as defined in Section 5.3.
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Proof: Here is an informal justification of the lemma. SinceΣ` is an orthogonal matrix,

the following holds.

Σ−1
` = ΣT

` = [eT1 . . . eT` −eTd eT`+1 . . . eTd−1]

When a matrix is postmultiplied byΣ−1
` , the last column is negated, and then the last

(d−`) columns are cyclically shifted to the right. Consider the general form of a reference

simplex and its two children as shown in Figure 5.7. It can be observed that, if we negate

the last column of the 1-child of∆`, and cyclically shift the last(d − `) columns to the

right, we get the 0-child of∆`. ut

0

0
−1

−1−1

1
1

1

1
1
1

11

−1
0

10

1

0 0

−1

−1

11

0

1

1
1

0

−111
01

1

00

1

−1

00

111

1

0

1

0

0
` + 1

`

B`,1∆`

∆`

`

`

∆`+1 = B`,0∆`

`
` + 1

`

`

Figure 5.7: The two children of a reference simplex.
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Lemma 5.3.2 Given the reference simplex∆`, 0 ≤ ` < d, and a signed permutation

ΠΨ,p,

B`,1∆`ΠΨ,p = ∆`+1ΠΨ,p1

Proof: By definition,ΠΨ,p1 = Σ`ΠΨ,p, that isΠΨ,p = Σ−1
` ΠΨ,p1.

B`,1∆`ΠΨ,p = ∆`+1Σ`ΠΨ,p = ∆`+1Σ`Σ
−1
` ΠΨ,p1 = ∆`+1ΠΨ,p1

ut

Proof: (Theorem 5.3.1) We will prove Theorem 5.3.1 by induction. Recall thatΠ = ΠΨ,p,

Φ = ΦΨ,p, l = |p| mod d andL = b |p|/dc.

Induction Basis: The hypothesis holds for all root simplices,SΨ,∅. SinceL = b|p|/dc =

0, and` = 0 at root level,

SΨ,∅ = 1
20 ∆0ΠΨ,∅ + 1Td+1

∑0
i=1

1
2i

ΦΨ,∅[i]

= ∆0ΠΨ,∅ (holds by definition).

Induction Step: Assume that the inductive hypothesis holds forSΨ,p, at level ` =

|p| mod d. We will show that, it holds for the 0- and 1-children ofSΨ,p. In addition

to the above lemmas, we will make use of the following equalities:

∆`+1 = B`,0∆`.

Let T = 1Td+1

∑L
i=1

1
2i

ΦΨ,p[i]. Note that,

T = 1Td+1

L∑
i=1

1

2i
ΦΨ,p0[i] = 1Td+1

L∑
i=1

1

2i
ΦΨ,p1[i]
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as well. Also, note that all rows ofT are equal to each other. For such a matrixT , the

following equalities hold,

B`,0T = T, B`,1T = T.

In the induction, there are two cases to be distinguished depending on`:

1. 0 ≤ ` < d− 1

(a) First, considerSΨ,p0. By definition,ΠΨ,p0 = ΠΨ,p.

SΨ,p0 = B`,0SΨ,p = B`,0(
1
2L

∆`ΠΨ,p + T ) (by ind. hyp.)

= 1
2L

∆`+1ΠΨ,p + T = 1
2L

∆`+1ΠΨ,p0 + T.

This completes the induction forSΨ,p0, sinceb|p0|/dc = L for 0 ≤ ` < d− 1.

(b) Now, considerSΨ,p1.

SΨ,p1 = B`,1SΨ,p = B`,1(
1
2L

∆`ΠΨ,p + T ) (by ind. hyp.)

= 1
2L

∆`+1ΠΨ,p1 + T. (by Lemma 5.3.2)

This completes the induction forSΨ,p1, sinceb|p1|/dc = L for 0 ≤ ` < d− 1.

2. ` = d− 1, the children ofSΨ,p will be at level0.

(a) First, considerSΨ,p0. By definition,ΠΨ,p0 = ΠΨ,p.

SΨ,p0 = Bd−1,0SΨ,p

= Bd−1,0(
1
2L

∆d−1ΠΨ,p + 1Td+1

∑L
i=1

1
2i

ΦΨ,p[i]) (by ind. hyp.)

= 1
2L

∆dΠΨ,p + 1Td+1

∑L
i=1

1
2i

ΦΨ,p[i]

= 1
2L

∆dΠΨ,p0 + 1Td+1

∑L
i=1

1
2i

ΦΨ,p0[i]

= 1
2L

∆dΠΨ,p0 + 1Td+1

∑L+1
i=1

1
2i

ΦΨ,p0[i]− 1
2L+11

T
d+1ΦΨ,p0[L + 1].
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Since∆d =
∆0+[1](d+1)×d

2
where[1](d+1)×d is a matrix of 1’s andΦΨ,p0[L+1] =

orth(ΠΨ,p0), we have

SΨ,p0 = 1
2L

(∆0+[1](d+1)×d)
2

ΠΨ,p0 + 1Td+1

∑L+1
i=1

1
2i

ΦΨ,p0[i]

− 1
2L+11

T
d+1orth(ΠΨ,p0)

= 1
2L+1 ∆0ΠΨ,p0 + 1Td+1

∑L+1
i=1

1
2i

ΦΨ,p0[i]

+ 1
2L+1 ([1](d+1)×dΠΨ,p0 − 1Td+1orth(ΠΨ,p0)).

By Lemma 5.2.1,

1Td+1orth(ΠΨ,p0) = 1Td+1refl(ΠΨ,p0)perm(ΠΨ,p0)

= [1](d+1)×ddiag(refl(ΠΨ,p0))perm(ΠΨ,p0)

= [1](d+1)×dΠΨ,p0.

And so, we see that, the third term above is 0, yielding

SΨ,p0 = 1
2L+1 ∆0ΠΨ,p0 + 1Td+1

∑L+1
i=1

1
2i

ΦΨ,p0[i].

This completes the induction forSΨ,p0, sinceb|p0|/dc = L + 1 for ` = d− 1.

(b) Next, considerSΨ,p1.

SΨ,p1 = B`,1SΨ,p

= B`,1(
1
2L

∆d−1ΠΨ,p + 1Td+1

∑L
i=1

1
2i

ΦΨ,p[i]) (by ind. hyp.)

= 1
2L

∆dΠΨ,p1 + 1Td+1

∑L
i=1

1
2i

ΦΨ,p1[i] (by Lemma 5.3.2)

= 1
2L

∆dΠΨ,p1 + 1Td+1

∑L+1
i=1

1
2i

ΦΨ,p1[i]− 1
2L+11

T
d+1ΦΨ,p1[L + 1].

Applying the same derivations as in the previous case, this can be reduced to

SΨ,p1 = 1
2L+1 ∆0ΠΨ,p1 + 1Td+1

∑L+1
i=1

1
2i

ΦΨ,p1[i].

This completes the induction forSΨ,p1, sinceb|p1|/dc = L + 1 for ` = d− 1.

ut
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Implementation Issues: We can now describe a pointerless implementation of a sim-

plex decomposition tree. For each simplexSΨ,p in the tree, we create an node that is in-

dexed by an appropriate encoding of the associated LPT code. Theorem 5.3.1 implies that

the geometry of this simplex is determined entirely from the LPT code, and, if desired, it

can be computed from the code in time proportional to the code length. In addition to the

index, this node may also contain application-specific data. These objects are then stored

in any index structure that supports rapid look-ups, for example, a hash table.

There are a number of practical observations that can be made in how to encode

LPT codes efficiently in low dimensional spaces. LetD denotes the maximum depth of

any node in the tree. Each of thed! permutations of Sym(d) can be encoded as a integer

with log2 d! bits [Knu73]. A d-element reflection vector over{±1} can be represented

as ad-element bit string (e.g., by the mapping+1→ 0 and−1→ 1). Thus, a signed

permutationΠ then can be encoded by a pair of integers. A convenient way to encode

the vectors of the orthant list is map them to bit strings and to store them asd separate

lists, one for each coordinate. (The advantage of this representation will be discussed

in Section 5.5.) The final code consists of the level`, expressed withdlog2 de bits, the

permutation and reflection, represented usingdlog2(d!)e + d bits, and finally the orthant

list, represented usingd· length(Φ) bits, which is at mostd bD/dc ≤ D. The total number

of bits needed to represent the code for a simplex at depthD isD+log2(d!)+O(d). This is

close to optimal in the worst case, since there are2Dd! simplices at depthD in a full tree.

If we assume that the machine’s word size isΩ((D/d) + log2 d!), then the permutation

part of the code can be stored in a constant number of machine words and the orthant lists

can be stored inO(d) machine words.
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Also, note that for smalld, the multiplication tables for the various signed permu-

tations (such asΣ` of Eq. (5.1) and the neighbor permutations of Section 5.5 below) can

be precomputed and stored in tables. This allows very fast evaluation of permutation

operations by simple table look-up.

5.4 Decomposition Tree Operations

In this section we present methods for performing useful tree access operations based

on manipulations of LPT codes, including tree traversal, point location and interpolation

queries, and computing neighbors in the simplicial complex.

5.4.1 Tree Traversal

Consider a simplexSΨ,p of the tree whose LPT code is(`, Π, Φ). Let us consider how

to compute the children and parent of this simplex in the tree. The LPT codes of the

children of this simplex can be computed inO(d) time by applying the recursive rules

used to define the LPT code, given in Section 5.3. We can compute the parent from the

LPT code by inverting this process, but in order to do so we need to know whether the

simplex is a left child, a right child, or the root. A root simplex is distinguished by having

an empty orthant list and level` = 0. Otherwise, we make use of the following lemma.

Lemma 5.4.1 Consider a nonroot simplexS of the decomposition tree with LPT code

(`, Π, Φ), and letS ′ be its nearest proper ancestor at level 0. LetΠ = [πi]
d
i=1 be the

signed permutation ofS, let o = (oi)
d
i=1 be the last entry of the orthant list ofS ′, and let

`∗ = 1 + ((`− 1) mod d). ThenS is a 0-child if and only if sign(π`∗) = sign(o|π`∗ |).
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Proof: In order to prove Lemma 5.4.1, we prove the following more general lemma,

which characterizes the child relations for a simplex’s ancestors, up to the next 0th level.

Lemma 5.4.2 Let SΨ,p be a nonroot simplex, and letSΨ,t be its nearest proper ancestor

of level 0. Leto = orth(ΠΨ,t) be the last orthant list entry ofSΨ,t. Let b1b2 . . . b`∗ denote

the path fromSΨ,t to SΨ,p, where`∗ = 1 + ((` − 1) mod d). Let ΠΨ,p = [πi]
d
i=1 and

o = (oi)
d
i=1. Then

bi =




0 if sign(πi) = sign(o|πi|)

1 if otherwise.

,

Proof: We do not know whatΠΨ,t is, but since we knowo, we know the signs of each

coordinate axis inΠΨ,t. We can determineb1b2 . . . b`∗ by finding out which axes changed

signs as we go down the tree fromSΨ,t to SΨ,p. Consider the step, when we descend down

from SΨ,tb1...bi−1
to SΨ,tb1...bi. ΠΨ,tb1...bi−1

andΠΨ,tb1...bi denote the associated permutations.

If bi = 0, we follow the 0-path, andΠΨ,tb1...bi will be identical toΠΨ,tb1...bi−1
. Thus, the

ith entry in ΠΨ,tb1...bi remains with its original sign. On the other hand, ifbi = 1, we

follow the 1-path, and so thedth entry inΠΨ,tb1...bi−1
is negated and cyclically shifted to

theith position inΠΨ,tb1...bi. Thus, theith entry inΠΨ,tb1...bi has changed its original sign.

Since the subsequent steps apply cyclical shifts only to the last(d − i) entries of the

permutation, theith location remains the same until we descend down toSΨ,p. And so,

looking at whether theith entry inΠΨ,p has changed its sign or not, we can determinebi.

Sψ,t︷ ︸︸ ︷
[+1− 4− 3 + 2]

1−→ [−2 + 1− 4− 3]
0−→

[−2 + 1− 4− 3]
1−→

Sψ,p︷ ︸︸ ︷
[ −2︸︷︷︸
b1=1

+1︸︷︷︸
b2=0

+3︸︷︷︸
b3=1

−4]
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Consider the above example where` = 3. Note that(oi)
d
1 = (+1, +1,−1,−1). o2

had a positive sign, following the 1-path, it was negated, and became the first element in

ΠΨ,p, because after it was shifted to the first location, it was fixed. Similarly, following

the 0-path, 1 remained positive and got fixed at the second location, and following 1-path

3 was negated and placed at the third location. And so, the path fromSΨ,t to SΨ,p is 101.

ut

Now Lemma 5.4.1 follows as an immediate corollary sinceSΨ,p is a 0-child, if and

only if b`∗ = 0. ut

Lemma 5.4.1 can be applied as follows to determine the LPT code for the parent of

a nonroot simplexS. GivenS’s LPT code,(`, Π, Φ), we distinguish two cases, depending

on its level. If` is nonzero, then its parent’s level is`′ = `− 1 and otherwise its parent’s

level is`′ = d− 1. If ` is nonzero, then the orthant vectoro of the lemma is the last entry

of Φ. We apply this lemma to determine whetherS is a 0- or 1-child. From Eq. (5.1)

and Theorem 5.3.1 we know that, if it is a 0-child, it has the same permutation code as its

parent, and otherwise its parent’s permutation code isΠ ◦ Σ−1
`′ . Its parent has the same

orthant list. On the other hand, if` = 0 theno is the second to last entry ofΦ. Again

we apply the lemma to determine whetherS is a 0- or 1-child, and derive its parent’s

permutation code. The last entry ofS’s orthant list is removed to form the orthant list

of its parent. This can be computed inO(d) time. The computation of the parent is

summarized in the procedureparent in Figure 5.8. The parent of the simplexSΨ,p with

LPT code(`, Π, Φ) is computed by the callparent(p, (`, Π, Φ)).
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parent(p, (`, Π, Φ))

if (p = ∅) return ∅
Expressp astb1b2 . . . b`∗.

`′ ← (`− 1) mod d

if (` = 0) Φ′ ← Φ − 〈Φ[L]〉
elseΦ′ ← Φ

if (b`∗ = 0) Π′ ← Π

elseΠ′ ← Π ◦ Σ−1
`′

return (`′, Π′, Φ′)

Figure 5.8: The procedureparent.

5.4.2 Point Location and Interpolation Queries

In this section we consider how to compute the LPT code of the leaf simplex of the

decomposition tree that contains a given query pointq = (qi)
d
i=1. We assume thatq lies

in the base hypercube, that is,−1 ≤ qi ≤ 1. If q lies on a face between two simplices, we

will choose one arbitrarily.

We begin by locating the root simplex,SΨ,∅ that containsq. It is easy to see that

a pointq in the base hypercube lies in the base reference simplex,∆0, if and only if its

coordinate vector is sorted in decreasing order. It follows that determining the permutation

Ψ of the root simplex reduces to sorting the coordinates ofq in decreasing order and

settingΨ to the permutation that produces this sorted order. Let us assume that we have a

functionsortDescendingthat computes this permutation.

Lettingvi denote theith vertex of the root simplexSΨ,∅ that containsq, thebarycen-

tric coordinatesof q with respect to this simplex is the uniqued + 1 vectorα = (αi)
d
i=0,

0 ≤ αi ≤ 1, such that
∑

i αi = 1 andq =
∑

i αivi. Because of the special structure of
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∆0, it is easy to verify that the procedurefindRootshown in Figure 5.9 computes these

coordinates.

After this initialization, we recursively descend the hierarchy until finding a leaf

simplex. We use the barycentric coordinates ofq relative to the current simplex to deter-

mine in which child it resides. Then we generate the barycentric coordinates ofq with

respect to this child. This is done with the aid of the following lemma, which is proved

in the appendix. The descent algorithm is given in Figure 5.9 and its correctness fol-

lows from Lemma 5.4.3. To simplify the presentation, we have omitted the orthant list

processing, but it is essentially the same as in the code block just prior to Theorem 5.3.1.

Lemma 5.4.3 Consider a nonleaf simplexSΨ,p of the hierarchy at level̀ with the asso-

ciated permutation codeΠΨ,p = [πi]
d
i=1. Suppose thatq lies within this simplex with the

barycentric coordinatesα = (αi)
d
i=0.

• If α` ≤ αd, thenq lies in the 0-child. Letα′ be the(d + 1)-vector that is identical

α except thatα′
` = 2α` andα′

d = αd − α`. Then the barycentric coordinate vector

of q relative to this child isα′.

• Otherwise,q lies in the 1-child. LetΣ′
` be a(d + 1)-permutation that shifts the last

d+1−` coordinates circularly one position to the right. Letα′ be the(d+1)-vector

that is identical toα except thatα′
d = 2αd andα′

` = α`−αd. Then the barycentric

coordinate vector ofq relative to this child isα′Σ′
`.

Proof: Let SΨ,p be the simplex of the hierarchy at level` that containsq. Let ΠΨ,p =

[πi]
d
i=1 be the associated permutation vector. Letα = (αi)

d
i=0 denoteq’s barycentric
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findRoot(q)

Ψ← sortDescending((q)di=1)

α0 ← (1− qψ1)/2

αd ← (1 + qψd)/2

for (0 < i < d) αi ← (qψi − qψi+1
)/2

return (Ψ,α)

search(q, (`, Π),α)

if ((`, Π) is a leaf) return (`, Π)

α′ ← α

if (α` ≤ αd)

α′
` ← 2α`; α′

d ← αd − α`

return search(q, ((` + 1) mod d, Π),α′)

else

α′
d ← 2αd; α′

` ← α` − αd

return search(q, ((` + 1) mod d, Π ◦ Σ`),α
′Σ′

`)

Figure 5.9: The proceduresfindRootandsearch, which are used to locate a query pointq

in the hierarchy. The permutationΣ′
` is defined in Lemma 5.4.3 and the permutationΣ`

was given in Section 5.3, Eq. 5.1.
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coordinates with respect toSΨ,p. Let vi denote theith vertex ofSΨ,p. Recall thatm =

v`+vd
2

is the newly created vertex that bisects this simplex and that

SΨ,p =[v0 . . . v` . . . vd]T ,

SΨ,p0=[v0 . . . v`−1 m v`+1 . . . vd]T ,

SΨ,p1=[v0 . . . v`−1 m v` . . . vd−1]
T

And so,v` = 2m− vd, andvd = 2m− v`. Thus,q can be written in terms of barycentric

coordinates as,

q = α0v0 + . . . + α`v` + . . . + αdvd

= α0v0 + . . . + α`−1v`−1 + α`(2m− vd) + α`+1v`+1 + . . . + αdvd

= α0v0 + . . . + α`−1v`−1 + 2α`m + α`+1v`+1 + . . . + (αd − α`)vd,

and similarly,

q = α0v0 + . . . + α`v` + . . . + αdvd

= α0v0 + . . . + α`−1v`−1 + α`v` + . . . + αd(2m− v`)

= α0v0 + . . . + α`−1v`−1 + 2αdm + (α` − αd)v` + . . . + αd−1vd−1.

And so, if (αd − α`) ≥ 0, it follows thatq resides inSΨ,p0, and otherwise it resides in

SΨ,p1. From the above equations, we can also see the barycentric coordinates whenq

resides inSΨ,p0 or in SΨ,p1.

ut

Given the query pointq, the point location procedure first callsfindRootto find the

appropriate root simplexΨ of the decomposition tree and the barycentric coordinatesα.

Then it invokes the recursive proceduresearch(0, Ψ,α) to locateq within the appropriate
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root simplex. Once the point has been located, we can answer the interpolation query for

this point. We access the stored vector field values at each of the simplex vertices, and

then weight these values according to the barycentric coordinates ofq. The result is a

piecewise linear, continuous interpolant.

This simple sequential search makes as many memory accesses as the depth of the

final leaf simplex that containsq. A more efficient procedure in terms of memory accesses

would be to employ a doubling binary search, which computes (using only local memory)

the LPT codes for the simplices at depths 0, 1, 2, 4, 8, and so on, until first finding a depth

whose simplex does not exist in the hierarchy. We then use standard binary search to

locate the exact depth of the leaf simplex that containsq. Although the computation of

the LPT codes is performed sequentially in time linear in the depth of the final simplex,

the number accesses to the simplex decomposition tree is only logarithmic in the final

depth. Thus, the running time isO(dD), whereD is the maximum depth of the tree, and

O(log D) global memory accesses are made.

5.5 Neighbors in the Simplicial Complex

As we mentioned earlier, when simplices of the decomposition tree are bisected, it is

necessary to bisect some of its neighbors in order to guarantee that the final subdivision

is a simplicial complex. Henceforth, let us assume that the simplex tree decomposition

has been constructed so that the underlying subdivision is a simplicial complex. In order

to know what additional simplices must be bisected, it is necessary to compute neigh-

bors within the complex. Two simplices areneighborsif they share a common(d − 1)-
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dimensional face. In addition to this major need for fast neighbor computation, in general,

computing facet neighbors of a simplex efficiently is of great interest for many applica-

tions that require moving along adjacent simplices, such as direct volume rendering and

isosurface extraction techniques.

In this section we provide rules for computing facet neighbors based solely on their

LPT codes. In all but one of the cases, the neighbor can be computed inO(d) time,

independent of the depth of the simplex. In the case where the computation may require

time proportional to the depth in the tree, we show that this computation can be sped up

by a factor ofd times the machine’s word size, and so is nearly constant time for practical

purposes.

Consider a simplexS in the complex defined by the decomposition tree. For0 ≤

i ≤ d, letvi denote itsith vertex. Exactly one(d−1)-face ofS does not containvi. If this

face is not on the boundary of the base hypercube, its neighbor exists in the complex. If

so, we defineN (i)(S) to be the neighboring simplex toS lying on the opposite side of this

face. Let(`, Π, Φ) denote the LPT code forS and let(`(i), Π(i), Φ(i)) denote the LPT code

for N (i)(S). We present rules here for computing LPT codes of these neighbors. The

proof of their correctness is based on a straightforward but lengthy induction argument.

The rules compute the LPT code for the neighbor simplex at the same depth asS,

and hencè(i) = `. Of course, this simplex need not be in the decomposition tree because

its parent may not yet have been bisected. In fact, in a compatible subdivision, a(d− 1)-

face neighbor ofS could also appear at one level higher or one level lower thanS. We

show how to compute the LPT codes of those neighbors, as well.
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5.5.1 Neighbor Permutation Code

Each neighbor’s permutation code is determined by applying one of a set of special signed

permutations toΠ. The permutation depends on whetherS is a 0-child or a 1-child, which

can be determined using the test given in Section 5.4.1. These permutations are illustrated

in Figure 5.10, and include the following:

• ΓNEG,1, negates the first element,

• ΓRGT,`, shifts the lastd− ` elements cyclically one position to the right and negates

the element that was wrapped around,

• ΓLFT,` shifts the lastd − ` elements cyclically one position to the left and negates

the element that was wrapped around,

• ΓSWP,i, swaps elementsi andi + 1,

• ΓNSW,`, swaps and negates elements` andd.

1 ` di+1i

ΓSWP,i ΓNSW,`

`

ΓLFT,`ΓNEG,1 ΓRGT,`

1 d 1 d 1 ` d

Figure 5.10: Neighbor permutations. (The circle with a minus sign indicates that the

element is negated.)

The neighbor rules are given in Theorem 5.5.1. A number of the rules involve the

parent’s level, and so to condense notation, we define`− = (`−1) mod d and`∗ = `−+1.

127



Observe that̀− = ` − 1 and`∗ = `, except wheǹ = 0, in which case they are larger

by d. These can be computed inO(d) time, and in fact inO(1) time if permutations are

encoded in look-up tables as described below.

Theorem 5.5.1 LetS denote a simplex at level`, and letΠ denote the permutation code

for S.

if (S is a 0-child): N (0)(S) : Π(0) = Π ◦ ΓNEG,1

N (i)(S) : (0 < i < d) Π(i) = Π ◦ ΓSWP,i

N (d)(S) : Π(d) = Π ◦ ΓRGT,`−

if (S is a 1-child): N (0)(S) : Π(0) = Π ◦ ΓNEG,1

N (`∗)(S) : Π(`∗) = Π ◦ ΓLFT,`−

N (i)(S) : (0 < i < d, i 6= `∗) Π(i) = Π ◦ ΓSWP,i

N (d)(S) : (d 6= `∗) Π(d) = Π ◦ ΓNSW,`

The proof is presented at the end of this chapter.

Implementation Issues: In our implementation, we treat the signed permutation com-

ponent as a reflection and a permutation separately, as in the initial description given in

Section 5.2.1. Recall that the reflection could be one of2d reflections, and the permutation

could be one ofd! permutations. Both the reflection and the permutation are represented

by a unique integer identifier. The operations defined on the permutation-reflection com-

ponent such as cyclical shifts and swaps are performed through use of tables, which can

be computed once the dimensiond is given. Each possible operation is also given a

unique integer identifier. We precompute two tables, one for permutations, and one for

reflections. There is an entry for each possible permutation/reflection and each possible
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operation combination. The permutation/reflection integer identifier and the operation

identifier could be used as indices to these tables to get the integer identifier of the result-

ing permutation/reflection. By these tables, all operations are performed inO(1) time.

5.5.2 Neighbor Orthant List

In order to compute the orthant list component of the neighbor, from the LPT code ofS,

we distinguish 3 cases:

1. If ` 6= 0 or 1 ≤ i < d, N (i)(S), is in the same final orthant asS, and soΦ(i) = Φ.

2. If ` = 0, N (d) is in a different orthant thanS, but,N (d) is the sibling ofS in this

case. Thus,Φ andΦ(d) differ only in their last element, which isorth(Π(d)) in Φ(d).

Thus the orthant list can be updated inO(d) time in this case.

3. The only remaining case isΦ(0). This case is the most complex because the final

enclosing quadtree box ofN (0)(S) is disjoint fromS’s final quadtree box. Further,

it may be arbitrarily far away, in the sense that the least common ancestor of the

two nodes may be the root of the tree. This case is described below.

To computeΦ(0), we use a method similar to the one for computing neighbor quad-

rants in quadtrees [Sam90a]. In our representation, the path from the root to the orthant is

the list of orthants inΦ. Consider the 2-dimensional example in Figure 5.11(a). The or-

thantsA andB are neighbors, and their associated orthant lists, written as column vectors

are as follows. (+1 and−1 are denoted with their signs only, as+ and−, respectively.)
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1

2 ø

X

(b)(a)

(−,−)(+,−)

(−,−)(+,−)

(−,+) (+,+)

(+,−)    (−,−)    (−,+)

BA

BA

X

Figure 5.11: OrthantB is a neighbor of orthantA in +X1 direction. (a) The quadtree-like

subdivision of space (b) The corresponding tree representation.

ΦA =

〈
 −

+





 −

+





 +

−





 +

−




〉

ΦB =

〈
 −

+





 +

+





 −
−





 −
−




〉
.

It is easy to see that, paths toA andB have a common prefix corresponding to

their common ancestors, that is the orthant(−, +) in the example. Orthant entries are

identical for the remainder of the paths except that one coordinate (in our example,X1)

is complemented. Figure 5.11(b) illustrates the paths toA andB. The axis which has to

be complemented depends on which neighbor we are looking for. This generalizes to a

d-cube which is subdivided in a quadtree-like manner.

The problem of finding a neighbor orthant can be stated as follows: Given an orthant

A whose path from the root is represented byΦA, and a direction defined as a 2-tuple
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(D,Xi) whereXi is theith coordinate axis, andD ∈ {−, +} represents the direction of

Xi, find the neighbor orthantB of equal size located in the given direction with respect

to A.

Similar to the algorithm described for quadtrees by Samet [Sam90a], the algorithm

to find the neighbor orthantB is a two-step process. Let the direction of the neighbor

be (D,Xi). In terms of the tree representation, we first perform a bottom-up traversal

starting fromA, until we find the closest ancestor,C such thatC is the parent of the

lowest ancestor ofA whoseith coordinate is the complement ofD. This is the desired

common ancestor ofA andB. If no such ancestor exists, then the desired neighborB is

outside the bounding box, and so, it does not exist. Otherwise, let the path fromC to A

be denoted asPCA. In the next step, we complement theXi coordinates inPCA, to get the

path fromC to B, PCB. And since the path from the root toC, ΦC is common for bothA

andB, ΦB = ΦC + PCB. Thus, finding the common ancestorC by bottom-up traversal

corresponds to processingΦA back-to-front, complementing theXi coordinate of each

orthant, until we come across an orthant whoseXi coordinate is−D. We complement

this coordinate as well. This completes the complementing part. Rest of the list remain

the same. The resulting list isΦB.

Now, if we consider the original problem of computingΦ(0) corresponding to the

0th neighbor of simplexS, we can use the algorithm explained above, if we know which

directionN (0)(S) is located with respect toS. Consider theΠ andΠ(0) corresponding to

S andN (0)(S) respectively. By the given neighbor rules, these two permutation-reflection

codes differ only in the sign of their first element. This is the sign corresponding to the

X|π1| axis, given thatΠ = [πi]
d
1 is the code forS. The sign ofπ1 determines in which
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direction ofX|π1| axisS resides in its final orthant. And so, the neighborN (0)(S) is also in

that direction. Thus, the axis component of the direction isX|π1|, and the sign component

of the direction issign(π1).

Implementation Issues: This operation can be implemented very rapidly through a

simple trick with bit manipulations. The neighbor computation [Sam90a] essentially in-

volves an operation, which is applied to a bit string that consists of theith coordinate of

each entry of the orthant list. Recall from our earlier discussion of implementation issues,

that the orthant list is stored asd separate bit strings, one per coordinate, and packed into

machine words as binary numbers. The key operation needed for the neighbor computa-

tion involves complementing a maximal trailing sequence of matching bits. For example,

given a bit string of the formw10k, for w ∈ {0, 1}∗, the desired result isw01k (and vice

versa). By packing these bits into a single word, we can compute this function with a

single arithmetic operation by subtracting (or adding) 1 from the resulting binary number.

(Similar tricks has been applied elsewhere in the context of neighbor finding [LDS01].)

Under the assumption that the machine’s word size isΩ(D/d), whereD is the maximum

depth of any simplex, it follows that the orthant list for the neighbor can be computed in

O(1) time.

5.6 Compatible Refinement and the Simplicial Complex

We have earlier mentioned thatcompatibilityis important, since otherwise, cracks occur

along faces of the subdivision, which in turn present problems when using the mesh for

interpolation. In order to keep the subdivision compatible at all times, whenever a simplex
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is bisected a series of bisections will be triggered in other simplices. Hebert [Heb94] and

Maubach [Mau95] describe the process for their systems. For completeness we include a

short description here as well.

Consider a simplexS which is about to be bisected, and lete denote the next edge

of S to be split. The simplices of the subdivision that share this edge, denotedEe(S),

must be bisected as well. The rules given in Section 5.5 provide a means to locate same-

depth neighboring simplices that share a common(d − 1)-face withS, that is, thefacet

neighborsof S. Let Ne(S) denote the facet neighbors ofS that contain the edgee, or

equivalently, the facet neighbors lying opposite all thed − 1 vertices ofS other than the

endpoints ofe. In order to access all the simplices ofEe(S) we compute facet neigh-

bors recursively. The algorithm was given by Maubach [Mau95], and is shown as the

recursive functioncompatBisectin the codeblock shown in Figure 5.12. The procedure

simpleBisectperforms the basic bisection step described in Section 5.2.2.

compatBisect(S)

markS as pending

for (S ′ ∈ Ne(S))

if ( S ′ does not exist)

compatBisect(parent(S ′)) // nowS ′ exists

if ( S ′ is a leaf and not marked as pending)

compatBisect(S ′) // bisectS ′ and its neighbors

simpleBisect(S)

Figure 5.12: ProcedurecompatBisect

Maubach proved that in a compatible subdivision, the facet neighbors ofS needed

in this refinement, either appear at the same depth asS or one level closer to the root
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[Mau95]. For this reason, if thecompatBisectprocedure does not find a simplexS ′ in

the tree, then it knows that its parent exists, and bisecting the parent will beingS ′ into

existence. Note that the bisection of the parent may trigger recursive bisections on levels

`− 1 and`− 2, and so on.

5.7 Neighbors at different depths

Neighbor rules of Theorem 5.5.1 provide the LPT code for the same depth neighbors.

However, in a compatible subdivision, a neighbor could possibly appear one level closer

or one level further from the root, that is, some neighbors of a simplexSp at depth|p|,

could appear at depths|p| − 1 or |p| + 1. We can categorize the neighbors of a simplex

into two groups: neighbors that share the edge to be bisected, and neighbors that do not.

Maubach already proved that a neighbor sharing the edge-to-be-bisected is either at depth

|p| or at depth|p| − 1, and that a neighbor at depth|p| − 1 is the parent of the same depth

neighbor which did not come into existence yet. And so, for a neighbor at depth|p| − 1,

we first compute the LPT code for the same depth neighbor by the above rules, and if

the same depth neighbor does not exist in the tree, we compute its parent’s LPT code as

described in Section 5.4.

In addition, any (d-1)-face neighbor ofSp that does not share the edge to be bi-

sected could possibly be at depth|p|+ 1. Specifically, same depth neighborsN `(Sp) and

N (d)(Sp), might have been bisected without triggering bisection ofSp, and so, one of their

children will now share a face withSp. Moreover, the child ofN `(Sp) or N (d)(Sp) that

shares a face withSp, is the same depth neighbor of one of the children ofSp. So, we can
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compute a neighbor at depth|p| + 1 by computing the appropriate same depth neighbor

of one of the children ofSp. Formally,

if (N `(Sp) is a bisected simplex)

N `(Sp0) is the neighbor ofSp across vertexv`,

if (N (d)(Sp) is a bisected simplex)

N `(Sp1) is the neighbor ofSp across vertexvd.

It can be easily shown that these neighbors cannot exist at depths higher than|p|+1.

Intuitively, same depth neighborN `(Sp) (resp.,N (d)(Sp)) have exactly one vertex differ-

ent fromSp. Let that vertex beu. It can be shown that whenN `(Sp) (resp.,N (d)(Sp)) is

bisected,u is one of the endpoints of the bisected edge. So, one of the children ofN `(Sp)

(resp.,N (d)(Sp)) will have two vertices different fromSp, and cannot be a neighbor. The

other child has exactly one vertex (u) different fromSp, thus is a neighbor ofSp. If that

child is further bisected however, its children will have an additional new vertex created

by bisection of an edge which does not containu, hence these children at depth|p| + 2

cannot be neighbors ofSp.

5.8 Conclusions

In this chapter, we have presented a representation of hierarchical regular simplicial

meshes based on Maubach’s [Mau95] simplex bisection algorithm. Unlike Maubach’s

approach, which requires the use of recursion or an explicit tree structure, our represen-

tation is pointerless, that is, the simplices of the mesh are uniquely identified through a

location code, called the LPT code. We have shown how to use this code to traverse the

hierarchy, compute neighbors, and to answer point location and interpolation queries.
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The space savings realized by not having to store pointers (to the two children, the

parent, andd + 1 neighbor simplices) is significant for large multidimensional meshes. If

desired, the vertices of a simplex need not be stored either, and can be computed entirely

from the code of the simplex. For example, for a 4-dimensional SD-tree consisting of 13.2

million nodes, the storage requirements when storing pointers and vertices is 708MB,

whereas it is 354MB without pointers, and 222MB without pointers and vertices (in fact

pointers to vertices) within the nodes. (Note that these numbers also include application

specific data associated with vertices.)

Processing of LPT codes is quite efficient. Given a tree of maximum depthD in

dimensiond, we showed that, under the reasonable assumption that the machine’s word

length isΩ((D/d) + log2 d!), it is possible to pack the LPT code into words so that all

traversal and neighbor-finding operations can be performed inO(d) time through the use

of standard integer arithmetic and bit masking and shifting. In fact, by precomputing

multiplication tables for the small number of possible operations defined on codes these

operations can be performed inO(1) time. (Computing the orthant list component of the

code for children or parent has worst-caseO(d) time complexity, however the amortized

cost isO(1), since orthant list is updated only at everyd levels.) In addition, point location

can be performed withO(log D) global memory accesses with the pointerless represen-

tation, in contrast withO(D) global memory accesses with the pointer-based one.

5.9 Proof of Theorem 5.5.1

The following notation will be used throughout the proof.
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S denotes any simplex.

S(i) = N (i)(S), i.e. theith neighbor ofS.

Π andΠ(i) denote the signed permutation code associated withS andS(i)

respectively.

S0 andS1 denote the 0- and 1-children ofS, respectively.

S
(i)
0 andS

(i)
1 denote the 0- and 1-children ofS(i), respectively.

Π0 andΠ1 denote the signed permutation code associated withS0 andS1,

respectively.

Π
(i)
0 andΠ

(i)
1 denote the signed permutation code associated withS

(i)
0 andS

(i)
1 ,

respectively.

(S0)
(i) denote theith neighbor ofS0. (Π0)

(i) denotes the code for(S0)
(i).

(S1)
(i) denote theith neighbor ofS1. (Π1)

(i) denotes the code for(S1)
(i).

m andm′ are used to denote the new vertex generated by bisection.

u is used for the vertex that differs in the neighbor simplex.

Inductive Hypothesis: Let S = [v0 . . . v` . . . vd]
T be a simplex at level̀ = |p| mod d.

Let `− = (`− 1) mod d and`∗ = `− + 1.

The rules of the theorem can be stated more explicitly as:

if ( S is a 0-child)

S(0) = [u v1 . . . vd]
T Π(0) = Π ◦ ΓNEG,1

S(i) = [v0 . . . vi−1 u vi+1 . . . vd]
T , (0 < i < d) Π(i) = Π ◦ ΓSWP,i

S(d) = [v0 . . . v`− u v`∗ . . . vd−1]
T Π(d) = Π ◦ ΓRGT,`−
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if ( S is a 1-child)

S(0) = [u v1 . . . vd]
T Π(0) = Π ◦ ΓNEG,1

S(`∗) = [v0 . . . v`− v`−+2 . . . vd u]T Π(`∗) = Π ◦ ΓLFT,`−

S(i) = [v0 . . . vi−1 u vi+1 . . . vd]
T , (0 < i < d, i 6= `∗) Π(i) = Π ◦ ΓSWP,i

S(d) = [v0 . . . vd−1 u]T , (d 6= `∗) Π(d) = Π ◦ ΓNSW,`

Basis of Induction: We will show that the neighbor rules hold for thed! root sim-

plices. Note that thelevel of a root simplex is0, and the rules are the same whether

the simplex is a 0-child, or a 1-child. LetS denote any root simplex, withLPT code

Π = [π1 . . . πi πi+1 . . . πd].

• For all root simplices,S(0) = ∅, andS(d) = ∅, that is, the0th and thedth neighbors

do not exist, since they are outside thereference hypercube.

• Other neighbors,S(i), 0 < i < d, should be obtainable by swaps. Recall that the

base simplexS∅ can be represented as,

S∅ = [y1 . . . yd], yi =




yi,0

...

yi,i−1

yi,i

...

yi,d




=




−1

...

−1

1

...

1




,

and, any root simplexS can be written as,
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S = [y′
1 . . . y′

d], y′
j = yi =




yi,0

...

yi,i−1

yi,i

...

yi,d




=




−1

...

−1

1

...

1




iff πi = j.

If πi = j, andπi+1 = k, theny′
j = yi andy′

k = yi+1.

Π = [π1 . . . πi−1 j k πi+2 . . . πd]

Note that swapping columnsy′
j andy′

k of S, will give us another valid root simplex,

S ′ that differs fromS only in theith row, that is theith vertex. So,S ′ is basically

the ith neighbor ofS, that isS ′ = S(i). Let Π′ denote the signed permutation for

S′. Then,

Π′ = [π1 . . . πi−1 k j πi+2 . . . πd].

This shows that theith and(i + 1)th entries inΠ are swapped to obtainΠ′. And so,

Π(i) = Π′ = Π ◦ ΓSWP,i.

Induction Step: Let S be a simplex at level̀− such that the inductive hypothesis holds.

We will show that the inductive hypothesis holds for the two children ofS. We consider

two cases, for the 0-child and the 1-child.
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First, consider the 0-child ofS, that isS0. Let ` denote the level ofS0. Recall that

`− = (`− 1) mod d, and`∗ = `− + 1. Letting i denote the neighbor number, there are a

number of cases to be distinguished.

1. i = 0

If 0 < `− ≤ d− 1 then

S=[v0 v1 . . . v`− . . . vd]T , S0=[v0 v1 . . . v`−−1 m v`∗ . . . vd]T

S(0)=[ u v1 . . . v`− . . . vd]T , S
(0)
0 =[ u v1 . . . v`−−1 m v`∗ . . . vd]T .

Otherwise if `− = 0 then

S=[v0 v1 . . . vd]T , S0=[m v1 . . . vd]T

S(0)=[ u v1 . . . vd]T , S
(0)
0 =[m′ v1 . . . vd]T .

In either case,(S0)
(0) = S

(0)
0 .

And so,(Π0)
(0) = Π

(0)
0 = Π(0) = Π ◦ ΓNEG,1 = Π0 ◦ ΓNEG,1.

2. i = d

By definition of the bisection rules, thedth neighbor ofS0 is its sibling, that isS1,

and so,

(Π0)
(d) = Π1 = Π0 ◦ ΓRGT,`− .

3. 0 < i < `−

S=[v0 . . . vi−1 vi vi+1 . . . v`−−1 v`− . . . vd]T ,

S(i)=[v0 . . . vi−1 u vi+1 . . . v`−−1 v`− . . . vd]T ,

S0=[v0 . . . vi−1 vi vi+1 . . . v`−−1 m v`∗ . . . vd]T ,

S
(i)
0 =[v0 . . . vi−1 u vi+1 . . . v`−−1 m v`∗ . . . vd]T .
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In this case(S0)
(i) = S

(i)
0 , and so

(Π0)
(i) = Π

(i)
0 = Π(i) = Π ◦ ΓSWP,i = Π0 ◦ ΓSWP,i.

4. i = `−, `− 6= 0

(a) If S is a 0-child then

S=[v0 . . . v`−−1 v`− . . . vd]T , S0=[v0 . . . v`−−1 m . . . vd]T

S(`−)=[v0 . . . v`−−1 y . . . vd]T , S
(`−)
0 =[v0 . . . v`−−1 m′ . . . vd]T .

Then,(S0)
(`−) = S

(`−)
0 . And so,(Π0)

(`−) = Π
(`−)
0 = Π(`−) = Π ◦ ΓSWP,`− =

Π0 ◦ ΓSWP,`− .

(b) If S is a 1-child then

S=[v0 . . . v`−−1 v`− v`∗ . . . vd]T

S(`−)=[v0 . . . v`−−1 v`∗ . . . . . . vd u]T

S0=[v0 . . . v`−−1 m v`∗ . . . vd]T

S
(`−)
1 =[v0 . . . v`−−1 m′ v`∗ . . . vd]T .

Then,(S0)
(`−) = S

(`−)
1 .

Π0 = Π = [π1 . . . πd],

Π(`−) = [π1 . . . π`−−1 π`∗ . . . πd −π`− ],

Π
(`−)
1 = [π1 . . . π`−−1 π`∗ π`− π`∗+1 . . . πd].

And so,(Π0)
(`−) = Π

(`−)
1 = Π0 ◦ ΓSWP,`− .
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5. `− < i < d

S=[v0 . . . v`−−1 v`− . . . vi−1 vi . . . vd]T

S(i)=[v0 . . . v`−−1 v`− . . . vi−1 y . . . vd]T

S0=[v0 . . . v`−−1 m vi−1 vi . . . vd]T

S
(i)
0 =[v0 . . . v`−−1 m vi−1 y . . . vd]T .

In this case(S0)
(i) = S

(i)
0 ., and so,(Π0)

(i) = Π
(i)
0 = Π(i) = Π◦ΓSWP,i = Π0 ◦ΓSWP,i.

This completes the case of the 0-child.

Next, consider the 1-child ofS, that isS1. Let ` denote the level ofS1. Note that

`− = (`− 1) mod d. Let `∗ = `− + 1. Lettingi denote the neighbor number, again, there

are multiple cases.

1. i = 0

(a) `− = 0

S=[v0 v1 . . . vd−1 vd]T , S1=[m v0 . . . vd−1]
T

S(d)=[v0 v1 . . . vd−1 u]T , S
(d)
1 =[m′ v0 . . . vd−1]

T .

Then,(S1)
(0) = S

(d)
1 .

Π = [π1 . . . πd], Π1 = [−πd π1 . . . πd−1],

Π(d) = [π1 . . . πd−1 −πd], Π
(d)
1 = [πd π1 . . . πd−1].

And so,(Π1)
(0) = Π

(d)
1 = Π1 ◦ ΓNEG,1.
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(b) `− 6= 0

S=[v0 v1 . . . v`− . . . vd]T

S(0)=[ y v1 . . . v`− . . . vd]T

S1=[v0 v1 . . . v`−−1 m v`− . . . vd−1]
T

S
(0)
1 =[ y v1 . . . v`−−1 m v`− . . . vd−1]

T .

Then,(S1)
(0) = S

(0)
1 .

Π = [π1 . . . πd], Π1 = [π1 . . . π`− −πd π`∗ . . . πd−1],

Π(0) = [−π1 . . . πd], Π
(0)
1 = [−π1 . . . π`− −πd π`∗ . . . πd−1].

And so,(Π1)
(0) = Π

(0)
1 = Π1 ◦ ΓNEG,1.

2. 0 < i < `−

S=[v0 . . . vi−1 vi . . . v`−−1 v`− . . . vd]T

S(i)=[v0 . . . vi−1 y . . . v`−−1 v`− . . . vd]T

S1=[v0 . . . vi−1 vi . . . v`−−1 m v`− . . . vd−1]
T

S
(i)
1 =[v0 . . . vi−1 y . . . v`−−1 m v`− . . . vd−1]

T .

Then,(S1)
(i) = S

(i)
1 .

Π = [π1 . . . πd],

Π1 = [π1 . . . π`− −πd π`∗ . . . πd−1],

Π(i) = [π1 . . . πi−1 πi+1 πi πi+2 . . . πd],

Π
(i)
1 = [π1 . . . πi−1 πi+1 πi . . . π`− −πd π`∗ . . . πd−1].

And so,(Π1)
(i) = Π

(i)
1 = Π1 ◦ ΓSWP,i.

143



3. i = `−

(a) If S is a 0-child then

S=[v0 . . . v`−−1 v`− . . . vd−1 vd]T

S(d)=[v0 . . . v`−−1 y v`− . . . vd−1]
T

S1=[v0 . . . v`−−1 m v`− . . . vd−1]
T

S
(d)
0 =[v0 . . . v`−−1 m′ v`− . . . vd−1]

T .

Then,(S1)
(`−) = S

(d)
0 .

Π = [π1 . . . πd],

Π1 = [π1 . . . π`− −πd π`∗ . . . πd−1],

Π
(d)
0 = Π(d) = [π1 . . . π`−−1 −πd π`− . . . πd−1].

And so,(Π1)
(`−) = Π

(d)
0 = Π1 ◦ ΓSWP,`− .

(b) If S is a 1-child then

S=[v0 . . . v`−−1 v`− . . . vd−1 vd]T

S(d)=[v0 . . . v`−−1 v`− . . . vd−1 u]T

S1=[v0 . . . v`−−1 m v`− . . . vd−1]
T

S
(d)
1 =[v0 . . . v`−−1 m′ v`− . . . vd−1]

T .

Then,(S1)
(`−) = S

(d)
1 .

Π = [π1 . . . πd],

Π1 = [π1 . . . π`− −πd π`∗ . . . πd−1],

Π(d) = [π1 . . . π`−−1 −πd π`∗ . . . πd−1 −π`− ],

Π
(d)
1 = [π1 . . . π`−−1 −πd π`− . . . πd−1].

And so,(Π1)
(`−) = Π

(d)
1 = Π1 ◦ ΓSWP,`− .
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4. i = `∗

By definition, the(`∗)th neighbor ofS1 is its sibling, that isS0, and

(Π1)
(`∗) = Π0 = Π1 ◦ ΓLFT,`− .

5. `∗ < i ≤ d, ` 6= 0

(a) `∗ < i < d, ` 6= 0,

S=[v0 . . . v`− . . . vi−2 vi−1 vi . . . vd−1 vd]T ,

S(i−1)=[v0 . . . v`− . . . vi−2 u vi . . . vd−1 vd]T ,

S1=[v0 . . . v`−−1 m v`− . . . vi−2 vi−1 vi . . . vd−1]
T ,

S
(i−1)
1 =[v0 . . . v`−−1 m v`− . . . vi−2 u vi . . . vd−1]

T .

Then,(S1)
(i) = S

(i−1)
1 .

Π = [π1 . . . π`− . . . πi−1 πi . . . πd],

Π1 = [π1 . . . π`− −πd π`∗ . . . πi−1 πi . . . πd−1], since i− 1 > `−

Π(i−1) = [π1 . . . πi−2 πi πi−1 πi+1 . . . πd],

Π
(i−1)
1 = [π1 . . . π`− −πd π`∗ . . . πi−2 πi πi−1 πi+1 . . . πd−1].

And so,(Π1)
(i) = Π

(i−1)
1 = Π1 ◦ ΓSWP,i.

(b) i = d, ` 6= 0

S=[v0 . . . v`− . . . vd−2 vd−1 vd]T ,

S(d−1)=[v0 . . . v`− . . . vd−2 u vd]T ,

S1=[v0 . . . v`−−1 m v`− . . . vd−2 vd−1]
T ,

S
(d−1)
1 =[v0 . . . v`−−1 m v`− . . . vd−2 u]T .
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Then,(S1)
(d) = S

(d−1)
1 .

Π = [π1 . . . π`− . . . πd−1 πd],

Π1 = [π1 . . . π`− −πd π`∗ . . . πd−1], since d− 1 > `−

Π(d−1) = [π1 . . . πd−2 πd πd−1],

Π
(d−1)
1 = [π1 . . . π`− −πd−1 π`∗ . . . πd−2 πd].

And so,(Π1)
(d) = Π

(d−1)
1 = Π1 ◦ ΓNSW,`∗ = Π1 ◦ ΓNSW,`.

This completes the induction step and so complete the proof of Theorem 5.5.1.
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Chapter 6

Using Hierarchical Simplicial Meshes to Render Atmospheric Effects

6.1 Introduction

A fundamental element of computer graphics is producing realistic visualizations of var-

ious natural phenomena. An important and challenging problem in this area is that of

rendering atmospheric effects such as smoke and dust, which arise as a result of the ab-

sorption and scattering of light while passing through a participating medium. In this

chapter, we illustrate the practical value of theSD-treefor rendering atmospheric effects.

An accurate simulation of the interaction of light with a participating medium is

quite complex, since it involves the use of radiative transport theory [Kru90, Cha60].

However, for the purpose of rendering atmospheric effects, simpler models have been

proposed, and have been shown to be quite satisfactory. A good survey of different optical

models can be found in [Max95]. There has been considerable success in recent years in

producing realistic physical models for smoke and related natural phenomena[FM97b,

JC98, Max86, NMN87, PPS99, Sta99]. Our interest here is not on how to model such

phenomena, but rather on how to render them efficiently.
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A number of hardware-based approaches for rendering smoke and other atmo-

spheric phenomena have been proposed in the literature. In the context of rendering,

Stam [Sta99] and Fedkiw et al. [FSJ01] propose the use of 3-dimensional texture maps to

store the density of the atmospheric medium in each voxel of the texture map, and then

render this texture map from front to back. Dobashi, et al. [DYN02] propose a similar ap-

proach based on computing a collection of preprocessed sample planes. For approaches

involving other types of atmospheric phenomena, see also [BR98, LHJ99, WE98].

However, these methods suffer from a limited ability to model multiple scatter-

ing and other effects needed to render media with high albedo. Also, the use of grid-

based representations, while amenable to hardware implementation, cannot readily adapt

to variations in the density and color of the media. An alternative approach for generat-

ing realistic images, which can handle media with high albedo, is based on photon maps

[JC98, FSJ01]. This process is more computationally intensive, but achieves a high de-

gree of realism by solving the full volume rendering equation for the medium. This is

done in two passes. The first pass builds a photon map for the volume containing the

medium, by shooting photons into the medium and storing these as they interact with the

medium, and the second pass that integrates the effects of the photon map by forward ray

marching. A significant component in the actual rendering time is the numerical integra-

tion performed by marching along the length of each ray in order to determine the overall

opacity and color of the media.

We propose utilizing the SD-tree for accelerating the ray-marching process. The

basic idea is similar to the one applied for accelerating ray-tracing as described in Chap-

ter 4, namely, we can think of the participating medium as a functionf , which maps rays
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to a pair consisting of the color and opacity. These are the net color and opacity obtained

by marching the ray through the medium, until its collision with a solid object. Since we

model rays as points in 4-dimensional space, the functionf is a function over<4:

f : ray→ (color, opacity).

In regions wheref varies smoothly, we expect that ray coherence can be exploited, that is,

nearby rays will pass through regions of similar color and density, and so the accumulated

color and opacity will be close to each other.

Hence, we replace wherever possible the computationally intensive numerical in-

tegration along each ray with a combination of sampling and interpolation. Rays are

sampled adaptively, and the result of the numerical integration (color and opacity) for

each of these rays is computed accurately and stored in a 4-dimensionalsimplex decom-

position treethat serves as a spatial index. In order to achieve high accuracy, regions with

higher variations in color and density sampled with more densely. In order to generate

the final rendering, rather than integrating along each ray, we instead interpolate its values

from neighboring sampled rays.

Because a simplicial complex is used, we can guarantee aC0 continuous approxi-

mation off . In addition, interpolations are performed with a minimal number of samples,

5 samples for the 4-dimensional case, and hence, this is much cheaper than the quadrilin-

ear interpolation using 16 samples.

The SD-tree involves a subdivision of 4-dimensional space, and it is well known

that the complexities of subdivisions tend to increase exponentially as a function of the

dimension. Consequently, it is important to save space wherever possible. We discuss a
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number of issues involved in the use of the data structure for the purposes of rendering,

and how to minimize the size of the resulting data structure.

The data structure does not rely on any particular model or representation of the

medium or a particular method of modeling light transport along the ray. It merely as-

sumes that it is possible to determine the color and density of the medium at any point,

and that we have access to a function for integrating this information along each ray to

determine its contribution in terms of opacity and color.

6.2 Construction of the SD-tree

The smoke volume is defined by an axis-aligned bounding box, and the data structure

stores the attributes associated with some set of sample rays that intersect the volume.

Recall from Section 4.3.1 that space of rays intersecting an axis aligned bounding box can

be parameterized as points in 4-dimensional space by using 6 plane-pairs, each of which

is associated with a 4-dimensional hypercube in line space containing all rays that pass

through it. Recall from the SD-tree description that an hypercube is initially subdivided

into 4! = 24 coarse simplices which are then recursively bisected. Each coarse simplex is

the root of a separate binary tree, which are conceptually joined under a common super-

root corresponding to the hypercube. Hence, the data structure built for a single smoke

volume consists of 6 such SD-trees one for each plane-pair. From this point on, we will

use the termSD-treeto refer to the collection of these 6 trees built for a volume. A 4-

dimensional simplex has 5 vertices, which is the minimum number of points required

for linear interpolation in 4-dimensional space. The 5 vertices of a simplicial leaf cell in
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SD-treeconstitute the ray samples which form the basis of our interpolation.

Just like the RI-tree, the SD-tree grows and shrinks dynamically based on demand.

Initially, only the 16 corners of each hypercube are sampled, and the initial 24 coarse

simplices are constructed. A leaf simplex is subdivided by bisection along its longest

edge, by sampling the midpoint of that edge. To determine whether to subdivide the leaf

cell or not, we use the followingtermination conditions:

Degree of Variation: We use a heuristic that defines the degree of variationV(S) asso-

ciated with a leaf simplexS as the maximum distance between the values of any

two distinct vertices ofS:

V(S) = max{d(f(vi), f(vj)) | 0 ≤ i < j ≤ 4},

wherev0,. . . ,v4 are the vertices ofS. Here,f(vi) denotes the correct value of the

function atvi computed by ray marching. For the smoke volume application, the

distanced is a weighted distance of color and opacity.

Pixel Resolution versus Depth Constraint:The SD-tree could be allowed to grow until

pixel resolution (i.e. projected leaf simplex width is less than the pixel width), or,

in order to avoid excessive growth at strong discontinuity regions, the user may

specify adepth constraint, such that the tree is not allowed to grow beyond that

depth. If the subdivision is stopped due to the depth constraint, though, that leaf is

not used for interpolation.

Consequently, ifV(S) exceeds a user-defineddistance thresholdand the depth of

the cell in the tree is less than a user-defineddepth constraint(or pixel resolution is not

reached), the cell is subdivided. Otherwise, the leaf is said to befinal.
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6.3 Rendering by Interpolation

In order to interpolate the color and opacity for a given input rayr , we first locate the leaf

simplex containingr within the tree corresponding to the appropriate hypercube depend-

ing on the dominant direction ofr . Along with the search, we also incrementally compute

barycentric coordinates ofr with respect to the leaf simplex. This process is described

in Section 5.4.2 in detail. Recall that, due to on-demand construction, the nodes on the

path to thefinal leaf containingr may be constructed along with this process, if they

have not been already constructed. The color and opacity forr can now be interpolated

by barycentric interpolation of the values associated with the 5 vertices of thisfinal leaf

simplex.

However, other practical issues arise when building on-demand simplicial decom-

positions for efficient rendering purposes. In this section, we discuss these issues.

6.3.1 One-pass versus Two-pass Rendering

Notice that, even though the final tree constructed is compatible, this method does not

totally avoid cracks in interpolation if the rendering and construction are done in the same

single pass. Consider the two dimensional analogy in Figure 6.1. Ifq1 arrives before

q2, there is no problem, since splitting ofS1 will force S2 to split, and whenq2 arrives,

the simplices will be compatible. However, assume thatq2 arrives beforeq1 and thatS2

satisfies the termination condition, and marked as final. Whenq2 arrives, it is answered

by interpolation of the vertices ofS2. Then, whenq1 arrives, assume that the subdivision

in the figure occurs splittingS1 two more levels. Thus,q1 is answered by interpolating the
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vertices of a grandchild ofS1. However, sinceq2 is already answered at this point, there

would be a crack in the interpolation, even thoughS2 is forced to split by the split ofS1.
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Figure 6.1: Compatible refinement (a)q1 arrives first (b)q2 arrives first

To avoid this, we have to render in two passes. In the first pass, the tree is con-

structed given all the query points, but without doing the interpolations. In the second

pass, the queries are answered by performing the interpolations. Obviously, the two-pass

rendering will be slightly more expensive, since the point location procedure will be done

twice. Alternatively, for a smoke volume application, an auxiliary data structure can be

used to keep a pointer to the leaf simplex located in the first pass associated with each

pixel, and so, point location can start from this leaf simplex instead of the root in the

second pass.

153



6.3.2 On-demand Compatible Refinement

Note that, there is a conflict between on-demand construction and compatible refinement

for our purposes. To preserve compatibility, some simplices in the hierarchy will be re-

fined, even though they will not be used for any interpolation query eventually. Thus, a lot

of work done for construction of those simplices will be useless, unnecessarily reducing

the efficiency of the overall algorithm, and increasing the size of the data structure. To

prevent this, while keeping the compatibility property, we performon-demand compati-

ble refinement, which works as follows. The bisection of a simplexS does not trigger the

bisection of a neighboring simplex, before that neighbor is actually required by some in-

terpolation. Consider Figure 6.2.S1 andS2 are neighbors of each other at the same level.

Let the query pointq1 cause refinement ofS1 as shown. At the timeq1 caused this re-

finement,S2 is not bisected to provide compatibility. Unless another query needsS2, the

tree will remain non-compatible in fact, but still compatible for our purposes. However,

if later, a queryq2 is located inS2, before any termination condition is checked, we first

check whether any neighbor ofS2 is refined by bisecting an edge shared byS2 (even ifS2

is already marked as a final leaf, this check is performed, and might cause splitting of the

final leaf). In Figure 6.2, such a neighbor exists, that isS1. Hence,S2 will be bisected as

well, andq2 will continue its descent in the tree until no more splits are required, before

being interpolated.

This method is much more efficient, since it generates a much smaller tree. But,

for similar reasons with the original compatible refinement, it cannot avoid cracks totally

(See Figure 6.3). In this case, two-pass rendering corrects a substantial percentage of the
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Figure 6.2: On-demand compatible refinement

cracks, but may not eliminate all the cracks. (Unlike the two-pass rendering explained

in Section 6.3.1, the second pass as well, will induce subdivisions in the tree to correct

the cracks.) Experimentally, we have seen that, among the final leaf nodes, less than 5%

have cracks, and that the on-demand version performs comparably well with respect to

the quality of the image generated. Moreover, a two pass approach similar to the one

explained above, reduces the number of cracks substantially. In fact, after a number of

passes, the tree will converge to a crack-free tree.

q2

(a) (b)

3

q1

q3
q2

q1

q

Figure 6.3: On-demand compatible refinement in multiple passes, queries arrive in the

order ofq1, q2 andq3 in both passes. (a) First-pass (b) Second pass corrects the crack

between the cells ofq2 andq3.
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6.4 Experimental Results

In order to establish the space and time efficiency, and accuracy of the two-pass and on-

demand methods, we ran a number of experiments. For our experiments, we applied a

simple light model, which accounts for extinction of light due to absorption by particles

(opacity) and for the addition of light by reflection of external illumination. We have

adapted the smoke volume shader code given in “PhotoRealistic RenderMan Applica-

tion Note 20-Writing Fancy Volume Shaders”[PRM] to our own ray-tracer. The general

idea is to ray march along the viewing ray choosing an appropriate step size, sampling

illumination and accounting for atmospheric extinction based on smoke density at every

portion of the ray. The smoke density at any point is determined by a noise function. This

type of volume shaders that are used by renderers like PRMan or BMRT [GH96] are very

expensive, since reasonably small step sizes have to be chosen to avoid banding artifacts.

In general, this type of volume shaders must bind to surfaces, that is, there should

be an object in the background, so that, the ray marching continues until the background

object is hit. We model the smoke density as a finite volume, defined by an axis-aligned

bounding box. The viewing ray enters the volume and the integration continues until the

ray exits the volume (or hits an object that is within the volume). For simplicity, we have

assumed that the smoke volume is designed to extend up to the background objects, and

does not include any objects inside.

We have modeled the interior of a warehouse, with a number of windows letting

sunlight in. The smoke volume covers the interior, extending from the left wall to the

right wall, from the floor to the ceiling and from the back wall to the viewpoint. The
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viewpoint is slightly outside the volume. The step size we picked is 0.3 units (the shortest

distance from the viewpoint to the back plane is 100 units). For smoke, we assume that

all wavelengths are subject to same amount of scattering (color and opacity values have

equal red, green, and blue components), thus, we store color and opacity as scalars. We

have rendered images of size800× 600 anti-aliased (9 rays per pixel are shot.)

We investigated the speedup and actual error committed by the interpolation algo-

rithm, as well as the number of ray samples required, and the percentage of cracks in the

data structure for the on-demand compatible refinement algorithm. Speedup is the ratio of

the CPU-time for the traditional ray marching approach to the CPU-time for our interpo-

lation algorithm. The error committed by the interpolation algorithm is measured as the

average distance between the actual color and opacity, and the corresponding quantity for

the interpolated case. We also report the maximum error committed among all the rays

shot. The color and opacity values are normalized to the range [0,1]. For our test scene,

the actual color values are in the range [0, 0.2953], and the opacity values are in the range

[0,0.5045]. Average color is 0.05419 and the average opacity is 0.1249. Figure 6.4(a), (b)

and (c) demonstrate how the variation in error reflects the change in the quality of the ren-

dered image. Notice the artifacts in (b) and (c) when the data structure is not subdivided

as densely as in (a).

The percentage of cracks is given both in terms of the percentage of the final leaves

(the leaves used for interpolation) that have cracks, and the percentage of the rays that are

interpolated using the leaves with cracks.

The number of ray samples is the number of rays that are sampled during the con-

struction of the data structure at simplex vertices. Sampling is the dominating cost. For
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(a) (b) (c)

Figure 6.4: Given errors are with respect to color. (a) distance thr = 0.015, average error

= 0.00233, max error = 0.02704. (b) distance thr = 0.035, average error = 0.00371, max

error = 0.06754. (c) distance thr = 0.05, average error = 0.00545, max error = 0.13001.

example, for the compatible, two-pass rendering, the first pass during which the construc-

tion is done takes 90% of the total time, while the second pass takes only 10% of the total

time to do point location and interpolation. For more expensive smoke rendering models,

or for smaller step sizes, the cost of sampling will be even more dominant, since the time

taken by interpolation and point location will remain almost constant. Hence, the speedup

is bounded by the ratio of the total number of rays shot while rendering by ray marching

to the number of sample rays generated while rendering by the interpolation algorithm.

This suggests that, for higher resolution images, the speedups will be much higher.

Table 6.1 shows sample results for rendering the image by the compatible, two-pass

method, and by the on-demand compatible algorithms. We used a distance threshold of

0.015 which was found to perform well experimentally. Recall that the distance threshold,

described in Section 6.2, is used to determine whether to terminate a subdivision process.

The on-demand compatible algorithm performs as well as the compatible, two-pass algo-
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rithm in terms of quality, while sampling 69% fewer rays and creating 92% fewer nodes.

Therefore, the on-demand compatible algorithm achieves a significant speedup of 18.24,

which is 3 times the speedup achieved by the compatible, two-pass method. Even the

speedup of 6.2 for the compatible, two-pass method is significant for expensive applica-

tions like this one. Corresponding images are given in Figure 6.5. Part (a) shows the

correct image generated by marching all rays, and part (b) shows the interpolated image

generated using the on-demand compatible algorithm. (Since the on-demand compati-

ble algorithm generates almost the same image as the compatible two-pass algorithm, we

show only the image generated by the on-demand version.)

Algorithm Speedup Error (color) Error(opacity) #Rays Size

average max average max

Ray-marching 1 0 0 0 0 4,320,000 -

Compat., two-pass 6.20 0.00230 0.02704 0.00396 0.04163 334,438 354MB

On-demand comp. 18.24 0.00233 0.02704 0.00401 0.04163 101,605 38MB

Table 6.1: Sample results for the warehouse scene (800×600 anti-aliased, distance thresh-

old = 0.015).

If the on-demand compatible algorithm is used to render in multiple passes as ex-

plained in Section 6.3.2, the percentage of cracks is reduced substantially as shown in

Table 6.2, but of course reducing the speedup.

If desired, higher quality approximations can be rendered by lowering the distance

threshold, at the potential expense of performance.
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Algorithm %Cracks Speedup

%leaf nodes %rays

On-demand compatible, one-pass 2.494 4.273 18.24

On-demand compatible, two-pass 0.204 0.489 13.43

On-demand compatible, three-pass 0.041 0.055 10.66

Table 6.2: The percentage of cracks for multiple passes of the on-demand compatible

algorithm.
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(a)

(b)

Figure 6.5: (a) Ray-marched image (b) Interpolated image using the on-demand compat-

ible algorithm (800x600, anti-aliased, distance threshold = 0.015).
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Chapter 7

Conclusions

We conclude this dissertation by summarizing our contributions and outlining a number

of possible directions for future work.

7.1 Summary of Contributions

The Ray Interpolant Tree: We introduced the RI-tree data structure and showed that

it can produce high-quality renderings significantly faster than ray-tracing by storing an

adaptively sampled set of rays, and using inexpensive interpolation methods to approxi-

mate the attribute values for new input rays. Our approach of sampling and interpolating

geometric attributes rather than radiance allows decoupling of an object from the rest of

the scene geometry and illumination. The RI-tree is most useful for rendering smooth ob-

jects that are reflective or transparent, for rendering animations when the viewpoint varies

smoothly or when the illumination varies from frame to frame, and for generating high

resolution images.
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The Simplex Decomposition Tree: Next, we introduced the SD-tree data structure

which improves the functionality of the RI-tree by ensuring continuity of the interpo-

lating surface. We adapted a subdivision scheme based on bisection due to Maubach

[Mau95]. We presented efficient incremental methods for performing point location and

computing the weights needed in interpolation. Compared to the RI-tree, the SD-tree is

much simpler and more efficient for interpolation purposes, since linear interpolations are

performed with minimal number of samples. We also observed that better quality images

can be generated with fewer samples with the SD-tree, compared to the RI-tree. This is

mostly due to the refinement method, which avoids cracks, and partly because the same

level of refinement is achieved with fewer samples in a simplicial subdivision.

Pointerless Representation ofd-dimensional Hierarchical Regular Simplicial Mesh:

Another major contribution of this thesis is the development of a pointerless representa-

tion for hierarchical regular simplicial meshes. We introduced the LPT code, that uniquely

encodes the simplices of the hierarchy and is used to access a node in the hierarchy in

constant time. We addressed algorithmic issues in efficient implementation of the tree

operations based on the LPT code and showed that all traversal operations can be per-

formed in constant time. The space savings realized by not having to store pointers and

simplex vertices is significant for large multidimensional meshes. We believe that this

representation may find numerous applications in areas whered-dimensional hierarchical

regular simplicial meshes are used.
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Efficient Neighbor Computation for d-dimensional Simplicial Meshes: We intro-

duced a compact set of neighbor rules to compute equal-depth neighbors of a simplex

directly form its code, without storing any neighbor links, and without having to traverse

the path to and from the root in order to compute neighbors. This is a significant gain

both in terms of storage, and computational efficiency, since our approach is local and

runs in constant time. We proved correctness of our neighbor finding rules. In addition to

the same-depth neighbors, we presented rules to compute the neighbors that can possibly

appear at other depths in compatible subdivisions.

Two-pass Rendering and On-demand Compatible Refinement: We have also dem-

onstrated the use of a 4-dimensional SD-tree for accelerating rendering of smoke through

ray marching. Within this context, first we observed that in order to avoid cracks entirely,

the rendering has to be done in two passes. Experimentally we have seen that the overhead

of the second pass is tolerable, since the total cost is dominated by the cost of sampling

in the first pass.

Next we observed that full compatibility and on-demand construction conflict in

the sense that some portions of the data structure built due to compatible refinement are

never used for queries. Instead, we proposedon-demand compatible refinement, which

aims to provide compatibility only for those simplices that are needed for interpolation.

This approach generates a data structure of much smaller size—for our test scene %89

smaller— compared to the fully compatible version. More importantly, it achieved a

speedup of 18.24, which is 3 times the speedup achieved by the fully-compatible method.

Even though it cannot avoid cracks entirely, we have seen experimentally that a very small
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fraction of the final leaf nodes have cracks, and that the on-demand version performs

comparably well with respect to the quality of the image generated.

7.2 Future Work

Bounds on error of approximation: In our current methods, we use heuristics to de-

termine the accuracy of the interpolation. Experimentally, these heuristics are shown to

work well in most cases, but the interpolation errors are not bounded. So, for some cases

arbitrary approximation errors could arise. It would be desirable to extend our methods to

provide theoretical bounds on the error introduced by interpolation. We have the option

of imposing conservative error bounds at the expense of lower performance. Bounding

error is likely to be easier for the smoke rendering application, since there is usually a

well-defined function for computing the color and opacity at a certain point.

Dealing with aliasing and improving animations: It is very desirable to investigate

how we can improve the quality of animations by examining ways for smoother transition

between frames. For example, how can we avoid flickering due to temporal aliasing and

variation in interpolation which result from different viewpoints.

Interpolation in temporal domains: A direct and interesting extention of our current

methods would be to consider how to apply our data structures for time varying physical

phenomena, for example, for rendering simulations of smoke or clouds over time. This

would require using 5-dimensional extentions of our data structures, and considering that

complexities of subdivisions tend to increase exponentially with dimension, it is not read-
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ily clear whether interpolation methods would still be beneficial. It would be interesting

to see how the performance would be affected.

Application of neighbor rules in visualization: We believe, our neighbor rules would

be very useful for efficient visualization of high-dimensional fields—especially dimen-

sions greater or equal to four. (Many visualization algorithms require moving between

adjacent simplices rapidly.) This arises as an important problem with the emergence of

time-varying fields with various applications in medicine, computational fluid dynamics

(CFD) and molecular dynamics.

Different subdivision schemes: Our current work on hierarchical regular simplicial

meshes has led us to several related issues, including pointerless representations and

cache-sensitive data structures, efficient neighbor finding and different subdivision tech-

niques, independently of the interpolation problem. Along these lines, it would be in-

teresting to study other subdivision methods and develop labeling and neighbor finding

rules.

166



Bibliography

[AB91] E. Adelson and J. Bergen. The plenoptic function and the elements of early

vision. Computational Models of Visual Processing, pages 1–20, 1991.

[ABCC02] B. Aronov, H. Bronnimann, A. Y. Chang, and Y. Chiang. Cost prediction

for ray shooting. InProc. 18th ACM Symp. on Comput. Geom.(SoCG’02),

pages 293–302, 2002.

[ABCC03] B. Aronov, H. Bronnimann, A. Y. Chang, and Y. Chiang. Cost-driven

octree consruction schemes: An experimental study. InProc. 19th ACM

Symp. Comput. Geom. (SoCG’03), pages 227–236, 2003.

[AF99] B. Aronov and S. Fortune. Approximating minimum weight triangulations

in three dimensions.Discrete Comput. Geom., 21(4):527–549, 1999.

[AG79] E. Allgower and K. Georg. Generation of triangulations by reflection.Util-

itas Mathematica, 16:123–129, 1979.

[AH95] S. J. Adelson and L. F. Hodges. Generating exact ray-traced animation

frames by reprojection.IEEE Comp. Graph. and Appl., 15(3):43–52, May

1995.

[AK87] J. Arvo and D. Kirk. Fast ray tracing by ray classification.Computer

Graphics (Proc. of SIGGRAPH 87), 21(4):196–205, 1987.

[AK89] J. Arvo and D. Kirk. A survey of ray tracing acceleration techniques. In

A.S. Glassner, editor,An Introduction to Ray Tracing, pages 201–262. Aca-

demic Press, San Diego, 1989.

167



[Alf89] P. Alfeld. Scattered data interpolation in three or more variables. In T. Ly-

che and L. L. Schumaker, editors,Mathematical Methods in Computer

Aided Geometric Design, pages 1–34. Academic Press, 1989.

[AM02] F. B. Atalay and D. M. Mount. Ray interpolants for fast ray-tracing relec-

tions and refractions.J. of WSCG, 10(3):1–8, 2002. Proc. Int. Conf. in

Central Europe on Comp. Graph., Visual. and Comp. Vision.

[AM03] F. B. Atalay and D. M. Mount. Interpolation over light fields with appli-

cations in computer graphics. InProc. of the 5th Workshop on Algorithm

Engineering and Experiments (ALENEX 2003), pages 56–68. SIAM, 2003.

[AM04a] F. B. Atalay and D. M. Mount. Pointerless implementation of hierarchical

simplicial meshes and efficient neighbor finding in arbitrary dimensions.

To appear in Proc. International Meshing Roundable (IMR 2004), 2004.

[AM04b] F. B. Atalay and D. M. Mount. Pointerless implementation of hierarchi-

cal simplicial meshes and efficient neighbor finding in arbitrary dimen-

sions. Technical Report CS-TR-4586/UMIACS-TR-2004-29, University

of Maryland, College Park, 2004.

[Ama84] J. Amanatides. Ray tracing with cones.Computer Graphics (Proc. of

SIGGRAPH 84), 18(3):129–135, 1984.

[AML01] D.N. Arnold, A. Mukherjee, and L.Pouly. Locally adapted tetrahedral

meshes using bisection.SIAM J. Sci. Comput., 22(2):431–448, 2001.

168



[Arg02] L. Arge. External memory data structures. In J. Abello, P. M. Pardalos,

and M. G. C. Resende, editors,Handbook of Massive Data Sets, pages

313–358. Kluwer Academic Publishers, 2002.

[AV88] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and

related problems.Commun. ACM, 31:1116–1127, 1988.

[Bad88] J. S. Badt. Two algorithms for taking advantage of temporal coherence in

ray tracing.The Visual Computer, 4(3):123–132, September 1988.

[Bal99] K. Bala.Radiance Interpolants for Interactive Scene Editing and Ray Trac-

ing. PhD thesis, Massachusetts Institute of Technology, 1999.

[Ban91] E. Bansch. Local mesh refinement in 2 and 3 dimensions.Impact of Com-

puting in Science and Engineering, 3:181–191, 1991.

[Ban98] R.E. Bank. Pltmg: A software package for solving elliptic partial differ-

ential equations, user’s guide 8.0.Software, Environments and Tools, 5,

1998.

[BDT99] K. Bala, J. Dorsey, and S. Teller. Radiance interpolants for accelerated

bounded-error ray tracing.ACM Trans. on Graph., 18(3), August 1999.

[BEG94] M. Bern, D. Eppstein, and J. Gilbert. Provably good mesh generation.J.

Comput. Syst. Sci., 48:384–409, 1994.

[Ben75] J. L. Bentley. Multidimensional binary search trees used for associative

searching.Commun. of ACM, 18(9):509–517, 1975.

169



[Bey95] J. Bey. Tetrahedral grid refinement.Computing, 55:355–378, 1995.

[Bey00] J. Bey. Simplicial grid refinement: On freudenthal’s algorithm and the

optimal number of congruence classes.Numer. Math., 85(1), 2000.

[Blo97] J. Bloomenthal.An Introduction to Implicit Surfaces. Morgan-Kaufmann,

San Francisco, 1997.

[BN76] J. F. Blinn and M. E. Newell. Texture and reflection in computer generated

images.Commun. of ACM, 19:542–546, 1976.

[BR98] U. Behrens and R. Ratering. Adding shadows to a texture-based volume

renderer. In1998 Volume Visualization Symposium, pages 39–46, 1998.

[BSW83] R.E. Bank, A.H. Sherman, and A. Weiser. Refinement algorithms and data

structures for regular local mesh refinement.Scientific Computing, pages

3–17, 1983.

[Bur88] P. J. Burt. Moment images, polynomial fit filters, and the problem of sur-

face interpolation. InComputer Vision and Pattern Recognition, pages

144–152, 1988.

[CBL99] C. Chang, G. Bishop, and A. Lastra. LDI tree: A hierarchical representa-

tion for image-based rendering.Computer Graphics (Proc. of SIGGRAPH

99), pages 291–298, 1999.

[CCD91] J. Chapman, T. W. Calvert, and J. C. Dill. Spatio-temporal coherence in

ray tracing. InProc. of Graphics Interface ’91, pages 101–108, June 1991.

170



[CDM+03] P. Cignoni, L. De Floriani, P. Magillo, E. Puppo, and R. Scopigno. Se-

lective refinement queries for volume visualization of unstructured tetrahe-

dral meshes.IEEE Transactions on Visualization and Computer Graphics,

2003. (in print).

[CDP95] F. Cazals, G. Drettakis, and C. Puech. Filtering, clustering and hierarchy

construction: A new solution for ray-tracing complex scenes.Computer

Graphics Forum, 14(3):371–382, 1995.

[Cha60] S. Chandrasekhar.Radiative Transfer. Dover, New York, 1960.

[Che95] S. E. Chen. QuickTime VR — an image-based approach to virtual environ-

ment navigation.Computer Graphics (Proc. of SIGGRAPH 95), 29:29–38,

1995.

[Chi99] T. M. Chilimbi. Cache-Conscious Data Structures. PhD thesis, Computer

Sciences Dept., University of Wisconsin-Madison, 1999.

[CHL99] T. Chilimbi, M. D. Hill, and J. R. Larus. Cache-conscious structure layout.

In Programming Languages Design and Implementation, 1999.

[CLF98] E. Camahort, A. Lerios, and D. Fussell. Uniformly sampled light fields.

Rendering Techniques ’98 (9th Eurographics Workshop on Rendering),

pages 117–130, 1998.

[CP97] F. Cazals and C. Puech. Bucket-like space partitioning data structures with

applications to ray tracing. InProc. 13th ACM Symp. Comput. Geom.

(SoCG’97), pages 11–20, 1997.

171



[CPC84] R. L. Cook, T. Porter, and L. Carpenter. Distributed ray tracing.Computer

Graphics (Proc. of SIGRAPH 84), 18(3):137–145, July 1984.

[CRMT91] S. E. Chen, H. E. Rushmeier, G. Miller, and D. Turner. A progressive

multi-pass method for global illumination.Computer Graphics (Proc. of

SIGGRAPH 91), 25(4):165–174, 1991.

[CW93] S. E. Chen and L. Williams. View interpolation for image synthesis.Com-

puter Graphics (Proc. of SIGGRAPH 93), 27:279–288, 1993.

[DB94] P. Diefenbach and N. Badler. Pipeline rendering: Interactive refractions,

reflections and shadows.Displays: Special Issue on Interactive Computer

Graphics, 15(3):173–180, 1994.

[dBvKOS97] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf.Compu-

tational Geometry: Algorithms and Applications. Springer-Verlag, Berlin,

1997.

[Dem02] E. D. Demaine. Cache-oblivious algorithms and data structures. InLecture

Notes from the EEF Summer School on Massive Data Sets, 2002.

[dKL02] J. B. Van de Kamer and J. J. W. Lagendijk. Computation of high-resolution

SAR distributions in a head due to a radiating dipole antenna representing a

hand-held mobile phone.Physics in Medicine and Biology, 47:1827–1835,

2002.

[DKP03] L. De Floriani, L. Kobbelt, and E. Puppo. A survey on data structures for

level-of-detail models. 2003.

172



[DKW85] N. Dadoun, D. G. Kirkpatrick, and J. P. Walsh. The geometry of beam

tracing. InProc. of 1st Annual ACM Symp. Comput. Geom., pages 55–61,

1985.

[DKY +00] Y. Dobashi, K. Kaneda, H. Yamashita, T. Okita, and T. Nishita. A simple,

efficient method for realistic animation of clouds. InProc. of SIGGRAPH

2000, pages 19–28, 2000.

[DM02] L. De Floriani and P. Magillo. Multiresolution mesh representation: Mod-

els and data structures.Principles of Multiresolution in Geometric Model-

ing, 2002.

[DMMP00] L. De Floriani, P. Magillo, F. Morando, and E. Puppo. Dynamic view-

dependent multiresolution on a client-server architecture.Computer-Aided

Design Journal (Special Issue on Multiresolution Geometric Models),

32(13):805–823, 2000.

[DWS+97] M. Duchaineau, M. Wolinsky, D.E. Sigeti, M.C. Miller, C. Aldrich, and

M.B. Mineev-Weinstein. Roaming terain: Real-time optimally adapting

meshes. pages 81–88, 1997.

[DYN02] Y. Dobashi, T. Yamamoto, and T. Nishita. Interactive rendering of atmo-

spheric scattering effects using graphics hardware. InGraphics Hardware

2002, pages 99–108, 2002.

173



[Ede87] H. Edelsbrunner.Algorithms in Combinatorial Geometry, volume 10 of

EATCS Monographs on Theoretical Computer Science. Springer-Verlag,

1987.

[EKT01] W. Evans, D. Kirkpatrick, and G. Townsend. Right-triangulated irregular

networks.Algorithmica., 30(2):264–286, 2001.

[EMP+98] D. S. Ebert, F. K. Musgrave, D. Peachey, K. Perlin, and S. Worley.Textur-

ing and Modelling. Academic Press Professional, San Diego, 1998.

[FB74] R.A. Finkel and J.L. Bentley. Quad trees: a data structure for retrieval on

composite keys.Acta Informatica, 4(1):1–9, 1974.

[Fek90] G. Fekete. Rendering and managing spherical data with spherical

quadtrees. InProc IEEE Visualization 90, pages 176–186, 1990.

[FKN80] H. Fuchs, M. Kedem, and B.F. Naylor. On visible surface generation

by a priori tree structures.Computer Graphics (Proc. of SIGGRAPH 80,

14(3):124–133, 1980.

[FLPR99] M. Frigo, C. B. Leiserson, H. Prokop, and S. Ramachandran. Cache-

oblivious algorithms. InProc. 40th Annual Symp. on Found. of Comput.

Sci., pages 285–297, 1999.

[FM96] N. Foster and D. Metaxas. Realistic animation of liquids. InGraphics

Interface ’96, pages 204–212, 1996.

174



[FM97a] N. Foster and D. Metaxas. Controlling fluid animation. InComputer

Graphics International 1997, 1997.

[FM97b] N. Foster and D. Metaxas. Modeling the motion of a hot, turbulent gas. In

Proc. of SIGGRAPH 97, pages 181–188, 1997.

[Fre42] H. Freudenthal. Simplizialzerlegungen von beschrankter flachheit.Annals

of Math., 43:580–582, 1942.

[FSJ01] R. Fedkiw, J. Stam, and H. W. Jensen. Visual simulation of smoke. In

Proc. of SIGGRAPH 2001, pages 15–22, 2001.

[FTI86] A. Fujimoto, T. Tanaka, and K. Iwata. Arts: Accelerated ray tracing sys-

tem. IEEE Comp. Graph. and Appl., 6(4):16–26, April 1986.

[FvDFH90] J. Foley, A. van Dam, S. Feiner, and J. Hughes.Computer Graphics Prin-

ciples and Practice. Addison-Wesley, Reading, Mass., 1990.

[Gar82] I. Gargantini. An effective way to represent quad-trees.Commun. ACM,

25(12):905–910, 1982.

[GD] J. P. Grossman and W. J. Dally. Point sample rendering. InRendering

Techniques ’98 (9th Eurographics Workshop on Rendering), pages 181–

192.

[GDL+02] B. Gregorski, M. Duchaineau, P. Lindstrom, V. Pascucci, and K. Joy. In-

teractive view-dependent rendering of large isosurfaces. InProc. IEEE

Visualization 2002, 2002.

175



[Ger39] A. Gershun. The light field. Journal of Mathematics and Physics,

XVIII:51–151, 1939. Moscow, 1936, Translated by P. Moon and G. Timo-

shenko.

[Ger03] T. Gerstner. Multiresolution visualization and compression of global topo-

graphic data.GeoInformatica, 7(1):7–32, 2003.

[GGC97] X. Gu, S. J. Gortler, and M. F. Cohen. Polyhedral geometry and the two-

plane parameterization. InRendering Techniques ’97 (8th Eurographics

Workshop on Rendering), pages 1–12, 1997.

[GGSC96] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen. The lumigraph.

Computer Graphics (Proc. of SIGGRAPH 96), pages 43–54, August 1996.

[GH96] L. Gritz and J. Hahn. Bmrt: A global illumination implementation of the

renderman standard.J. Graphics Tools, 1(3):29–47, 1996.

[GI97] T. Gutzmer and A. Iske. Detection of discontinuities in scattered data ap-

proximation.Numerical Algorithms, 16(2):155–170, 1997.

[Gla84] A. S. Glassner. Space subdivision for fast ray tracing.IEEE Comp. Graph.

and Appl., 4(10):15–22, October 1984.

[Gla89a] A. S. Glassner.An Introduction to Ray Tracing. Academic Press, San

Diego, 1989.

[Gla89b] A. S. Glassner. An overview of ray tracing. In A.S. Glassner, editor,An In-

troduction to Ray Tracing, pages 1–32. Academic Press, San Diego, 1989.

176



[Gla95] A. S. Glassner.Principles of Digital Image Synthesis. Morgan Kaufmann,

New York, 1995.

[GLE97] R. Grosso, C. Lurig, and T. Ertl. The multilevel finite element method

for adaptive mesh optimization and visualization of volume data. InProc.

Visualization’97, 1997.

[GR99] T. Gerstner and M. Rumpf. Multiresolutional parallel isosurface exraction

based on tetrahedral bisection. InProc. Symp. Volume Visualization, 1999.

[GS87] J. Goldsmith and J. Salmon. Automatic creation of object hierarchies for

ray tracing.IEEE Comp. Graph. and Appl., 7(5):14–20, May 1987.

[GS92] M.F. Goodchild and Y. Shiren. A hierarchical spatial data structure for

global geographic information systems.CVGIP: Graph. Models and Image

Processing, 54(1):31–44, 1992.

[GTGB84] C. M. Goral, K. E. Torrance, D. P. Greenberg, and B. Battaile. Modeling the

interaction of light between diffuse surfaces.Computer Graphics (Proc. of

SIGGRAPH 84), pages 213–222, 1984.

[Guo98] B. Guo. Progressive radiance evaluation using directional coherence maps.

Computer Graphics (Proc. of SIGGRAPH 98), 32:255–266, 1998.

[HDD+92] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Sur-

face reconstruction from unorganized points.Computer Graphics (Proc. of

SIGGRAPH 92), 26(2):71–78, 1992.

177



[Heb94] D. J. Hebert. Symbolic local refinement of tetrahedral grids.J. of Symbolic

Comput., 17:457–472, 1994.

[HH84] P. S. Heckbert and P. Hanrahan. Beam tracing polygonal objects.Computer

Graphics (Proc. of SIGGRAPH 84), 18(3):119–127, July 1984.

[HLCS99] W. Heidrich, H. Lensch, M. Cohen, and H. Seidel. Light field techniques

for reflections and refractions. In10th Eurographics Rendering Workshop,

June 1999.

[Hop96] H. Hoppe. Progressive meshes.Computer Graphics (Proc. of SIGGRAPH

96), pages 99–108, 1996.

[HS01] Z. Hakura and J. Snyder. Realistic reflections and refractions on graphics

hardware with hybrid rendering and layered environment maps. InProc.

12th Eurographics Workshop on Rendering Techniques, pages 289–300,

2001.

[ICG86] D. S. Immel, M. F. Cohen, and D. P. Greenberg. A radiosity method for

non-diffuse environments.Computer Graphics (Proc. of SIGGRAPH 86),

20(4):133–142, 1986.

[JC95] H. W. Jensen and N. J. Christensen. Efficiently rendering shadows using

the photon map. InProc. of Compugraphics, pages 285–291, 1995.

[JC98] H. W. Jensen and P. H. Christensen. Efficient simulation of light trans-

port in scenes with participating media using photon maps. InProc. of

SIGGRAPH 98, pages 311–320, 1998.

178



[Jen95] H. W. Jensen. Importance driven path tracing using the photon map. In

Rendering Techniques ’95 (6th Eurographics Workshop on Rendering),

pages 326–335, 1995.

[Jen96] H. W. Jensen. Global illumination using photon maps. InRendering Tech-

niques ’96 (7th Eurographics Workshop on Rendering), pages 21–30, 1996.

[Jen97] H. W. Jensen. Rendering caustics on non-Lambertian surfaces.Computer

Graphics Forum, 16(1):57–64, 1997.

[Kaj86] J. T. Kajiya. The rendering equation.Computer Graphics (Proc. of SIG-

GRAPH 86), 20(4):143–150, August 1986.

[Kap85] M. R. Kaplan. Space tracing a constant time ray tracer.State of the Art in

Image Synthesis (SIGGRAPH 85 Course Notes), 11, July 1985.

[Kap87] M. R. Kaplan. The use of spatial coherence in ray tracing.Techniques for

Computer Graphics, pages 173–193, 1987.

[KH84] J. T. Kajiya and B. P. Von Herzen. Ray tracing volume densities. In

Computer Graphics (Proc. of SIGGRAPH 84), volume 18, pages 165–174,

1984.

[KK86] T. L. Kay and J. Kajiya. Ray tracing complex scenes.Computer Graphics

(Proc. of SIGGRAPH 86), 20(4):269–278, August 1986.

[Knu73] D. E. Knuth. Sorting and Searching, volume 3 ofThe Art of Computer

Programming. Addison-Wesley, 1973.

179



[Kru90] W. Krueger. The application of transport theory to visualization of 3d scalar

fields. InProc. IEEE Visualization ’90, pages 273–280, 1990.

[Lar98] G. W. Larson. The holodeck: A parallel ray-caching rendering system.

In 2nd Eurographics Workshop on Parallel Graphics and Visualisation,

September 1998.

[LDS01] M. Lee, L. De Floriani, and H. Samet. Constant-time neighbor finding in

hierarchical tetrahedral meshes. InProc. Int. Conf. on Shape Modelling,

pages 286–295, 2001.

[LF94] S. Laveau and O. Faugeras. 3d scene representation as a collection of

images. InTwelfth International Conference on Pattern Recognition, pages

689–691, 1994.

[LG95] D. Luebke and C. Georges. Portals and mirrors: Simple, fast evaluation of

potentially visible sets. InProc. SIGGRAPH Symposium on Interactive 3D

Graphics, pages 105–106, 1995.

[LH96] M. Levoy and P. Hanrahan. Light field rendering.Computer Graphics

(Proc. of SIGGRAPH 96), pages 31–42, August 1996.

[LHJ99] E. LaMar, B. Hamann, and K. Joy. Multiresolution techniques for interac-

tive texture-based volume visualization. InProc. IEEE Visualization ’99,

pages 355–362, 1999.

[LJ94a] A. Liu and B. Joe. On the shape of tetrahedra from bisection.Math. Comp.,

63:141–154, 1994.

180



[LJ94b] A. Liu and B. Joe. Relationship between tetrahedron shape measures.BIT,

34:268–287, 1994.

[LJ95] A. Liu and B. Joe. Quality local refinement of tetrahedral meshes based on

bisection.SIAM J. Sci. Comput., 16:1269–1291, 1995.

[LJ96] A. Liu and B. Joe. Quality local refinement of tetrahedral meshes based

on 8-subtetrahedron subdivision.Math. of Comput., 65(215):1183–1200,

1996.

[LKR+96] P. Lindstrom, D. Koller, W. Ribarsky, L.F. Hodges, N. Faust, and G.A.

Turner. Real-time, continuous level of detail rendering of height fields. In

Proc. of SIGGRAPH 96, pages 109–118, 1996.

[LR98] D. Lischinski and A. Rappoport. Image-based rendering for non-diffuse

synthetic scenes.9th Eurographics Workshop on Rendering, pages 301–

314, 1998.

[LS00] M. Lee and H. Samet. Navigating through triangle meshes implemented as

linear quadtrees.ACM Trans. on Computer Graphics, 19:79–121, 2000.

[LW85] M. Levoy and T. Whitted. The use of points as a display primitive. Techni-

cal Report TR-85-022, Computer Science Department, University of North

Carolina at Chapel Hill, 1985.

[LW93] E. P. Lafortune and Y. D. Willems. Bi-directional path tracing. InProc.

of Third International Conference on Computational Graphics and Visual-

ization Techniques (Compugraphics ’93), pages 145–153, 1993.

181



[Mau95] J. M. Maubach. Local bisection refinement forN -simplicial grids gener-

ated by reflection.SIAM J. Sci. Stat. Comput., 16:210–227, 1995.

[Mau96] J. M. Maubach. The efficient location of neighbors for locally refinedn-

simplicial grids. In5th Int. Meshing Roundable, 1996.

[Max86] N. Max. Atmospheric illumination and shadows.Computer Graph-

ics(Proc. of SIGGRAPH 86), 20(4):117–124, 1986.

[Max95] N. Max. Optical models for direct volume rendering.IEEE Trans. on

Visualization and Comp. Graph., 1(2):99–108, 1995.

[MB95] L. McMillan and G. Bishop. Plenoptic modeling.Computer Graphics

(Proc. of SIGGRAPH 95), pages 39–46, 1995.

[MF53] P. M. Morse and H. Feshbach.Methods of Theoretical Physics, Part I.

McGraw-Hill, New York, 1953.

[MG99] L. McMillan and S. Gortler. Image-based rendering: A new interface

between computer vision and computer graphics.Computer Graphics,

33(4):61–64, November 1999.

[Mit87] D. P. Mitchell. Generating antialiased images at low sampling densities.

Computer Graphics (Proc. of SIGGRAPH 87), 21(4):65–72, 1987.

[Mit88] W. F. Mitchell. Unified multilevel adaptive finite element methods for el-

liptic problems. PhD thesis, UIUCDCS-R-88-1436, Dept. of Computer

Science, Univ. of Illinois, Urbana, IL, 1988.

182



[Mit91] W. F. Mitchell. Adaptive refinement for arbitrary finite-element spaces with

hierarchical bases.Journal of Computational and Applied Mathematics,

36:65–78, 1991.

[Mit92] W. F. Mitchell. Optimal multilevel iterative methods for adaptive grids.

SIAM J. Sci. Stat. Comput., 13:146–167, 1992.

[MMB97] W. R. Mark, L. McMillan, and G. Bishop. Post-rendering 3d warping. In

Symposium on Interactive 3D Graphics, pages 7–16, 1997.

[MMS97] J.S.B. Mitchell, D. M. Mount, and S. Suri. Query-sensitive ray shooting.

International Journal of Computational Geometry, 7(4):317–347, 1997.

[MS81] P. Moon and D. E. Spencer.The Photic Field. MIT Press, Cambridge,

1981.

[Mun75] J. R. Munkres.Topology: A first course. Prentice Hall, Englewood Cliffs,

NJ, 1975.

[NMN87] T. Nishita, Y. Miyawaki, and E. Nakamae. A shading model for atmo-

spheric scattering considering luminous intensity of light sources.Com-

puter Graphics (Proc. of SIGGRAPH 87), 21(4):303–310, 1987.

[OM87] M. Ohta and M. Maekawa. Ray coherence theorem and constant time ray

tracing algorithm. Computer Graphics 1987 (Proc. of CG International

’87), pages 303–314, 1987.

183



[OR97] M. Ohlberger and M. Rumpf. Hierarchical and adaptive visualization on

nested grids.Computing, 56:365–385, 1997.

[OR98] E. Ofek and A. Rappoport. Interactive reflections on curved objects.Com-

puter Graphics (Proc. of SIGGRAPH 98), 14(3):333–342, July 1998.

[Paj98] R. Pajarola. Large scale terrain visualization using the restricted quadtree

triangulation. InProc. IEEE Visualization’98, pages 19–26, 1998.

[Paj02] R. Pajarola. Overview of quadtree-based terrain triangulation and visual-

ization. Technical report, UCI-ICS-02-01, Information & Computer Sci-

ence, University of California Irvine, 2002.

[PMS+99] S. Parker, W. Martin, P.J. Sloan, P. Shirley, B. Smits, and C. Hansen. Inter-

active ray tracing. InACM Symposium on Interactive 3D Graphics, pages

119–126, April 1999.

[PPS99] A.J. Preetham, P.Shirley, and B. Smits. A practical analytic model for

daylight. InProc. of SIGGRAPH 99, pages 91–100, 1999.

[PRM] PRMan. Photorealistic renderman application note#20: Writing fancy

atmosphere shaders. http://graphics.stanford.edu/lab/soft/prman/Toolkit/-

AppNotes/appnote.20.html.

[PZBG00] H. Pfister, M. Zwicker, J. Baar, and M. Gross. Surfels: Surface elements as

rendering primitives. InComputer Graphics (Proc. of SIGGRAPH 2000),

pages 335–342, 2000.

184



[Riv91] M.C. Rivara. Local modification of meshes for adaptive and/or multigrid

finite-element methods.J. Comput. Appl. Math., 36:79–89, 1991.

[RL92] M.C. Rivara and C. Levin. A 3-d refinement algorithm suitable for adaptive

and multi-grid techniques.Comm. Appl. Numer. Meth., 8:281–290, 1992.

[RL00] S. Rusinkiewicz and M. Levoy. QSplat: A multiresolution point rendering

system for large meshes. InComputer Graphics (Proc. of SIGGRAPH

2000), pages 343–352, 2000.

[RW80] S. Rubin and T. Whitted. A three-dimensional representation for fast ren-

dering of complex scenes.Computer Graphics (Proc. of SIGGRAPH 80),

14(3):110–116, July 1980.

[Sam90a] H. Samet.Applications of Spatial Data Structures: Computer Graphics,

Image Processing, and GIS. Addison-Wesley, 1990.

[Sam90b] H. Samet.The Design and Analysis of Spatial Data Structures. Addison-

Wesley, Reading, MA, 1990.

[Sam92] H. Samet. Neighbor finding techniques for images represented by

quadtrees.Comput. Vision, Graph. and Image Processing, 18(1):37–57,

1992.

[SAWG91] F. X. Sillion, J. Arvo, S. H. Westin, and D. P. Greenberg. A global illumi-

nation solution for general reflectance distributions.Computer Graphics

(Proc. of SIGGRAPH 91), 25(4):187–196, 1991.

185



[SCG97] P. P. Sloan, M. F. Cohen, and S. J. Gortler. Time critical lumigraph ren-

dering. InProc. of 1997 Symp. on Interactive 3D Graphics, pages 17–24,

1997.

[Sch92] G. Schrack. Finding neighbors of equal size in linear quadtrees and octrees

in constant time.CVGIP: Image Underst., 55(3):221–230, 1992.

[SD96] S. M. Seitz and C. R. Dyer. View morphing.Computer Graphics (Proc. of

SIGGRAPH 96), pages 21–30, 1996.

[SDB85] L. R. Speer, T. D. DeRose, and B. A. Barsky. A theoretical and empirical

analysis of coherent ray tracing.Graphics Interface ’85, pages 11–25, May

1985.

[Sew72] E.G. Sewell.Automatic generation of triangulations for piecewise polyno-

mial approximation. PhD thesis, Purdue University, West Lafayette, IN,

1972.

[SGHS98] J. W. Shade, S. J. Gortler, L. He, and R. Szeliski. Layered depth images.

Computer Graphics (Proc. of SIGGRAPH 98), 32:231–242, 1998.

[Shi90] P. Shirley. A ray tracing method for illumination calculation in diffuse-

specular scenes. InProc. of Graphics Interface ’90, pages 205–12, 1990.

[SHS99] H. Schirmacher, W. Heidrich, and H. P. Seidel. Adaptive acquisition of lu-

migraphs from synthetic scenes.Computer Graphics Forum (Eurographics

’99), 18(3):151–160, September 1999.

186



[Sib81] R. Sibson. A brief description of natural neighbour interpolation. In Vic

Barnet, editor,Interpreting Multivariate Data, pages 21–36. John Wiley &

Sons, Chichester, 1981.

[SJ00] G. Schaufler and H. W. Jensen. Ray tracing point sampled geometry. In

Rendering Techniques 2000 (11th Eurographics Workshop on Rendering),

pages 319–328, 2000.

[Som34] D. M. Y. Sommerville.Analytical Geometry in Three Dimensions. Cam-

bridge University Press, Cambridge, 1934.

[SS92] R. Sivan and H. Samet. Algorithms for constructing quadtree surface maps.

In Proc. 5th Int. Symp. on Spatial Data Handling, pages 361–370, 1992.

[Sta99] J. Stam. Stable fluids. InProc. of SIGGRAPH 99, pages 121–128, 1999.

[SZ00] P. Schr̈oder and D. Zorin. Subdivision for modeling and animation.SIG-

GRAPH 2000 Course Notes, 2000.

[Tod76] M.J. Todd. The computation of fixed points and applications. Invol. 124

of Lecture Notes in Economics and Mathematical Systems, Berlin, 1976.

Springer.

[WDP99] B. Walter, G. Drettakis, and S. Parker. Interactive rendering using the ren-

der cache. In10th Eurographics Workshop on Rendering, June 1999.

[WE98] R. Westermann and T. Ertl. Efficiently using graphics hardware in volume

rendering applications. InProc. of SIGGRAPH 98, pages 169–178, 1998.

187



[Web84] R.E. Webber.Analysis of quadtree algorithms. PhD thesis, Department of

Comp. Science, University of Maryland, College Park, MD, 1984.

[Whi80] T. Whitted. An improved illumination model for shaded display.Commun.

of ACM, 23(6):343–349, June 1980.

[ZCK97] Y. Zhou, B. Chen, and A. Kaufman. Multiresolution tetrahedral framework

for visualizing regular volume data. InProc. IEEE Visualization’97, pages

135–142, 1997.

[Zha95] S. Zhang. Successive subdivisions of tetrahedra and multigrid methods on

tetrahedral meshes.Houston J. Math., 21:541–556, 1995.
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