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Abstract

This work aims to provide insight into the three-dimensional vibration of gears

by investigating the mechanisms of excitation and nonlinearity coming from the gear

tooth mesh. The focus is on gear pairs and planetary gears.

The forces and moments generated at the gear tooth mesh cause three-dimensional

relative displacements of contacting gear tooth, which disengage portions of gear tooth

surface (partial contact loss) nominally designed to be in contact. While complete

tooth disengagement (total contact loss) is the most commonly recognized nonlinear-

ity in gears, partial contact loss is also a source of nonlinearity. A three-dimensional

lumped-parameter gear mesh model produces the net force and moment at the gear

mesh due to an arbitrary load distribution on the gear tooth surface using a transla-

tional and twist spring. Thus, the three-dimensional lumped-parameter model, named

the equivalent stiffness model, concisely captures the nonlinear behavior. Both trans-

lational and twist stiffnesses depend strongly on spatial displacements at the gear

mesh, and so are highly nonlinear and time-dependent. The twist moment periodi-

cally fluctuates over a mesh cycle, causing twist vibrations.

With gear pairs, there is a twist vibration mode, where the twist stiffness is

active, and a mesh deflection mode, where the translational stiffness is active. The

dynamic response is nonlinear due to partial and total contact loss. The dynamic
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displacements distorts the instantaneous dynamic contact loads compared with the

static design contact loads.

To quantitatively assess nonlinear vibrations of gear pairs, a method is developed

to give a closed-form analytical expression of the frequency-amplitude curve. Partial

contact loss is captured with quadratic and cubic nonlinear terms. The vibration

excitation comes from the time-dependent fluctuations due to periodic tooth engage-

ment. The closed-form solution, found using the method of multiple scales, enables

immediate calculation of nonlinear dynamic response, stability of the response, and

the frequency range of total contact loss.

With planetary gears, modes of vibration are crucial in understanding and re-

ducing vibration. For equally-spaced planetary gears, all vibration modes belong to

three types: 1) Rotational-axial modes (named for the displacements of the central

members), 2) Translational-tilting modes (named for the displacements of the cen-

tral members), and 3) Planet modes (only planets are active). This classification

is mathematically derived. It depends only on planet spacing, and thus persists for

axial asymmetry, e.g., use of helical gears, overhung shafts, different bearings at shaft

ends.

Planet spacing and gear tooth counts in planetary gears, when selected based on

a set of rules, eliminate some force and moment fluctuation harmonics. It is shown

that these fluctuations stem from the relative phase between planet gear meshes. The

set of rules that eliminate force and moment fluctuations are derived. The derivation

relies solely on the circumferential symmetry, so it is equally valid for static and

dynamic conditions, elastic or rigid components, and for axially asymmetric systems.
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Chapter 1: Introduction

1.1 Background and Motivation

Power transmission in vehicles, helicopters, wind turbines, machine tools, etc., use

gear trains in a wide variety of configurations including gear pairs, split-torque, and

epicyclic (planetary) arrangements. Gears generate vibrations that decrease durabil-

ity, reliability, and fatigue life. Gear noise, a result of vibration excited by the meshing

gear teeth, has adverse effects on the environment, perceived quality, and comfort.

Vibration reduction, therefore, has been of tremendous practical importance. This

requires a fundamental understanding of gear dynamics. The existing body of knowl-

edge is mostly derived from two-dimensional (2-D) vibration analysis. Thrust forces

and tilting/twisting moments in practical systems have been documented as gen-

erating three-dimensional (3-D) vibrations, but much remains to be understood in

the underlying mechanisms of vibration excitation, sources of nonlinearity, and the

consequent nonlinear dynamic response.

1.2 Literature Review

Significant previous research effort has gone into identifying the sources of vibra-

tion excitation in geared systems and how to reduce them. Considering gear pairs,
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since Harris [30] and Gregory et al. [26] first identified transmission error as the pri-

mary quantifier of vibration excitation, transmission error has been treated as the

source of vibration [48,70,81,82,86]. Transmission error is a byproduct of gear mesh

elastic deformation and tooth surface modifications. As transmission error is reduced

via tooth surface modifications [81,104,116] or the use of helical gears, other excitation

sources at the gear mesh begin to dominate and drive the response, thus undermining

transmission error as a design metric of vibration reduction [37]. These excitations are

moment due to the periodic shifting (shuttling) of the contact loads in the facewidth

direction on the gear tooth surface, moment from the axial thrust [37, 96], and fric-

tion forces [66, 117, 120, 123]. Fluctuating mesh moments and axial thrust generate

tilting/twisting and axial motions, as experiments show [9,53,78]. Twisting and axial

motion are coupled with rotation and translation [13, 35, 39, 41, 53]. This is an issue

in gear pairs [13, 24] as well as planetary gears [2, 93].

Although the nonlinear dynamic behavior of 2-D spur gears is well established in

theory [11,41,49,50,54,81,86,101] and by experiments [11,45,46,48,54,105], experi-

mental investigations [53,112–114] are inconclusive regarding 3-D nonlinear vibration

of helical gears. Relative twisting of the gears and axial motion introduces partial

contact loss nonlinearity [6, 10, 34, 35, 81, 121, 122]. The contact pattern fluctuates

under dynamic conditions [6, 121], and Velex and Ajmi [119] note the presence of

nonlinear response in a helical gear set. These phenomena, nonlinear dynamics and

3-D motions, must be intertwined. The 3-D excitation mechanisms and the path to

nonlinear response remain to be investigated.

The dynamic response of planetary gears involves multiple planet gears that mesh

with the sun and the ring gears. Consequently, they are more complicated and
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there is less research on vibration of planetary gears than there is on gear pairs.

Symmetry in planetary gears gives rise to distinctive properties in the vibration

modes [15,20,40,58,60,87,97,98,133], which provides a starting point in understand-

ing the dynamics. Considering equally spaced planets, Lin and Parker [58] report

three types of vibration modes: 1) Rotational modes, where the central members

(the sun, ring and carrier) rotate but do not translate; 2) Translational modes, where

the central members translate but do not rotate; and 3) Planet modes, where only

the planets move and each planet’s motion is a scalar multiple of the first planet.

Similar classifications are shown when ring gear deformations are included [133], with

diametrically-opposed planets [60, 87], and with compound planetary gears [52].

The properties of vibration modes of planetary gears can be employed to reduce

vibration [4, 40, 58, 59, 61, 97, 98]. Analytical expressions of the sensitivity of natu-

ral modes to design parameters [59, 61] enable the tuning of the natural frequencies

to circumvent resonant behavior. Lin and Parker [59] use modal properties to de-

rive closed-form sensitivity expressions for design parameters. Guo and Parker [28]

use the classification of vibration modes given in [52] to obtain closed form sensi-

tivity expressions for compound planetary gears. Another approach, as experiments

demonstrate [33,107], is to eliminate vibrations by planet mesh phasing using planet

spacing and tooth counts [62,97,98]. Despite the high level of understanding of plan-

etary gear vibration and success in vibration suppression, the inherent assumptions

of 2-D dynamic models in these studies limit their applicability. The aforementioned

vibration reduction methods, identification of modal properties, sensitivity expres-

sions, and mesh phasing are not addressed in the studies on 3-D planetary gear

vibration [2, 40, 88].
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1.3 Objectives

This work aims to explore the 3-D vibrations of gear pairs and planetary gears

because 2-D models may be too restrictive considering real-world applications. Spa-

tial 3-D vibrations may be important. A distinction must be made, however, between

getting accurate dynamic response and enhancing the understanding of gear dynam-

ics. Use of sophisticated large-scale computational models involving a finite element

approach [1,2,93,124,127] can give accurate 3-D dynamic response. Insofar as sophis-

ticated large-scale computational models can deal with gears and parts with a high

degree of physical detail, they are limited to parametric studies.

This work is thus concerned with exploring the underlying mechanisms of excita-

tion, nonlinearity, and methods of vibration reduction. To that end, the analytical

models are simplified to enable mathematical generalizations while retaining crucial

features to include 3-D motions and partial contact loss nonlinearity.

1.4 Scope of Investigation

The two most common types of gear configurations are investigated: gear pairs

and planetary gears. The gear mesh forces and moments from the load distribution

can be identically represented by a 3-D lumped-parameter model. The load distri-

bution is approximated by a discretization scheme that gives the numerical values

for the lumped-parameter model. The discretization method and the nonlinear char-

acteristics of the gear mesh, given in Chapter 2, provide a basis for the subsequent

nonlinear dynamic analysis in Chapters 3 and 4. It is shown in Chapter 5 that plan-

etary gears, using lumped-parameter model and the circumferential symmetry, the
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vibration modes fall into three distinct categories. In Chapter 6 formulae that elimi-

nate force and moment fluctuations in planetary gears are found. The scope of each

chapter is detailed in what follows.

Chapter 2 mathematically proves that a 3-D lumped-parameter model, named

the equivalent stiffness model consisting of a translational and a twist spring, can

reproduce the forces and moments that develop from an arbitrary load distribution

on the gear tooth surface. A discretization of the distributed loads on the contact

lines provides a numerical approximation. Elasticity of each discretized segment is

represented by a network of springs. The contact condition of each segment is tracked

so that the discretization considers partial contact loss.

In Chapter 3, nonlinear dynamic analysis is performed. The discretization of con-

tact lines provide the dynamic gear tooth mesh forces and moments. The equivalent

stiffness model is used to interpret the calculated dynamic response. The nonlinearity

arises from partial and total contact loss, so the 3-D motions are intertwined with the

nonlinearity of the gear mesh. The primary resonance of the twist vibration mode is

excited by twist moments and the parametric resonance is excited by the fluctuating

twist stiffness.

Chapter 4 derives closed-form analytical expressions of nonlinear vibration re-

sponse of gear pairs, and so provides a design guideline, calculable with minimal

effort, to reduce vibration. The analysis method embeds partial contact loss non-

linearity into quadratic and cubic nonlinear terms, thus can consider any source as

input. Sphere/half-space contact vibrations are also analyzed for validation. A per-

turbation method (method of multiple scales) is used to solve the equation of motion.
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The quadratic and cubic nonlinear terms yield nonlinear response. The parametric

time-dependent terms excite the vibrations.

Chapter 5 characterizes the modal properties of helical planetary gears in 3-D.

The mathematical proof of the modal properties and the conditions under which

these properties hold generalize the findings on 2-D spur planetary gear models in the

literature. The gear mesh is represented by the equivalent stiffness model of chapter

2. Computational observation of vibration modes uncovers three types of modes that

are grouped depending on the motion of the central members (the sun gear, ring gear,

and carrier): 1) Rotational-axial modes, where central members only rotate and move

axially, and the planets’ motions are identical; 2) Translational-tilting modes, where

central members only translate and tilt – these modes are degenerate with natural

frequency multiplicity of two; and 3) Planet modes, where the central members do

not move. It is mathematically proven that this is an exhaustive categorization of the

vibration mode types; no other vibration mode type is possible. This categorization

persists for asymmetric configurations in the gear plane, such as gears overhung from

shafts, and bearings with different stiffnesses at arbitrary shaft locations.

Chapter 6 finds a set of rules to eliminate the net force and moment fluctuations

at certain harmonics on the central members (sun, ring carrier) of planetary gears.

The analysis method relies solely on circumferential symmetry, and thus it is indepen-

dent of modeling assumptions. It, therefore, equally applies to elastic or rigid mem-

bers and under static or dynamic operating conditions. For equally-spaced planets,

force/moment fluctuations from the gear mesh fall into three categories: 1) In-phase,

2) Sequential-phase, and 3) Counter-phase. On central members, in-phase designs
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eliminate radial force and tilting moment fluctuations, sequential-phase designs elim-

inate axial thrust and torque fluctuations, and counter-phase designs eliminate all

force and moment fluctuations. These three phasing conditions yield distinctive dy-

namic forces and moments on each planet. For diametrically opposed planets, there

are two conditions: 1) In-phase, which eliminates radial force and tilting moment

fluctuations on central members, and 2) Out-of-phase, which eliminates axial thrust

and torque fluctuations.
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Chapter 2: An Investigation of Nonlinearity in Gear Pairs

Using a Lumped-Parameter Model

2.1 Introduction

The load on mating gear teeth is distributed along the lines of contact. This load

distribution is generally not uniform but depends on tooth surface modifications,

elastic deformations, and misalignments [18, 64, 76, 109–111]. For practical values of

these quantities, the non-uniformity causes partial contact loss, where portions of

contact lines theoretically in contact are out of contact. This leads to nonlinearity.

The distribution of load generates axial thrust and tilting/twisting moments,

especially in helical gears, in addition to the useful mesh force [14, 37, 39, 76, 77].

These forces and moments can adversely affect the noise and vibration of gears be-

cause they induce misalignment and fluctuate over a mesh period [13, 37, 77]. The

load distribution and the associated tilting/twisting moments depend on tooth sur-

face modifications, misalignments, and displacements under load. Although calcu-

lation of load distribution that includes partial contact loss using contact mechan-

ics or finite element analysis yields the nonlinear forces and moments at the gear

mesh [18, 27, 51, 54, 57, 64, 104, 108–111, 121, 124, 126, 127, 131, 132], simpler lumped-

parameter representations provide insight into the mechanisms that generate those
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forces and moments. As discussed herein, lumped-parameter models can elucidate the

nonlinearity of the gear mesh and explain how tilting/twisting moments that impact

gear vibration are generated.

Considering the existing literature on lumped-parameter gear mesh models, a

lumped translational stiffness at the gear mesh typically is used to represent the total

mesh force. Fluctuation of this stiffness is important for noise generation because it

excites vibration [26, 30, 39, 86]. The net moment from tooth meshing can similarly

cause noise and vibration [9, 31, 37, 77], but an analogous stiffness that captures this

moment and its fluctuation been investigated much less. Rigaud et al. [92] find a

2 × 2 stiffness matrix that couples translational and twisting motion of the gears.

Nishino [77] uses a translational and a torsional stiffness to account for the forces and

moments from the load distribution, but the stiffness expressions are approximate.

This work aims to identify a lumped-parameter model that accounts for the net

force and moment transmission at the gear mesh. The lumped stiffnesses must be a

consequence of force and moment balance and must be independent of the analysis

method that gives the load distribution on the gear teeth. Considering that the net

force and moment from the load distribution and the lumped-parameter model must

be equal, the lumped-parameter model is named the equivalent stiffness model. The

equivalent stiffness model must include the effects of tooth surface modifications,

misalignments, and elastic deflections. The dependence of the lumped-parameter

stiffnesses on elastic deflections causes nonlinearity that is important in dynamic

analysis. Furthermore, we explore force/moment behavior of the gear mesh using the

equivalent stiffness model.
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To obtain numerical values of the equivalent stiffnesses, the load distribution is

approximated by a discretization scheme using results from the literature [18,57,121].

The discretization divides the nominal contact lines into segments on which the con-

tact is tracked. This captures partial contact loss and the resulting nonlinear behavior

arising from tooth surface modifications, misalignments, and elastic deflections. Com-

parisons with finite element analysis verify the discretization scheme.

2.2 Modeling

2.2.1 Gear Mesh Analytical Model

The net force and moment at the gear mesh comes from the distribution of contact

loads on the gear teeth. The dimensions of the gear teeth are large compared with

those of the contact area, so the load distribution on the gear teeth may be considered

as one-dimensional loading over a narrow strip or line-loading [38]. These lines of loads

are named contact lines. Load distribution on a contact line is shown in Figure 2.1(a).

The variable υ keeps track of the position of contact along nominal contact lines by

assigning a unique υ for each contact point. The nominal contact lines depend on time

t according to the specified pinion rotation speed Ωp. When the elastic displacements

and tooth modifications are small, the position of contact lines is found from the

nominal kinematics from gear rotation.

The mesh deflection vector at a contact point on a contact line specified by υ is

the difference between the position vectors of the contact points on the pinion and

gear. The projection of the mesh deflection vector along the tooth surface normal
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gives the compressive deflection at υ as

δ(υ) = [xg − xp + h(υ) + βprp + βgrg] cosψ

+ [zg − zp − φprp − φgrg − h(υ)θp] sinψ − Ap(υ)θp − Ag(υ)θg

(2.1)

Ap(υ) = [c(υ)− ep] cosψ + b(υ) sinψ

Ag(υ) =− [c(υ)− eg] cosψ + [B − b(υ)] sinψ
(2.2)

where B = (rp + rg) tanΦ. Figure 2.1 describes the relevant geometry. The fixed

basis is defined as {E1,E2,E3} oriented such that E1 is parallel to the line of action

of the gear mesh. The translational (xp, yp, zp) and angular (φp, θp, βp) coordinates

of the pinion body are assigned to translations along and rotations about E1, E2,

and E3, respectively. The translational and angular coordinates of the gear body

follow similarly with subscript g. The base radii are rp and rg, Φ is the transverse

operating pressure angle, and ψ is the base helix angle. Micron-level deviations of

the tooth surface from an involute, such as from gear tooth surface modifications and

manufacturing errors, are denoted by h(υ). For material removal h(υ) > 0. The

radial and axial positions of contact are, respectively, b(υ) measured from the pinion

mass center along E1 and c(υ) measured along E3. We refer to rotation about E1 as

tilting (φp, φg) and rotation about E2 as twisting (θp, θg). The quantities Ap and Ag

are named moment arms because they turn out to generate twisting moments, as will

be shown in the next paragraph.

The distributed mesh force normal to the tooth surface along all lines of contact

is

f(υ) = (f(υ) cosψ, 0, f(υ) sinψ)T , with f(υ) = k(υ) δ(υ) (2.3)

The contact stiffness is k(υ). The value of k(υ) implicitly depends on tooth surface

modifications, elastic deflections, and misalignments.The contact stiffness k(υ) must
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be in compression (δ(υ) ≥ 0) to generate force. This criterion for contact [18] is

stated as k(υ) = 0 for δ(υ) < 0. The condition of equilibrium states that the forces

and moments be balanced. At a given point on the contact line, the distributed mesh

force generates the following moments about the pinion and gear mass centers

mp(υ) =





−b(υ)
rp

c(υ)− ep



×





f(υ) cosψ
0

f(υ) sinψ



 = f(υ)





rp sinψ
Ap(υ)

−rp cosψ





mg(υ) =





B − b(υ)
−rg

c(υ)− eg



×





−f(υ) cosψ
0

−f(υ) sinψ



 = f(υ)





rg sinψ
Ag(υ)

−rg cosψ





(2.4)

The total mesh force and moments about mass centers are

F = (F cosψ, 0, F sinψ)T , with F =

∫

S

f(υ) dυ (2.5)

Mp =







rpF sinψ
∫

S

f(υ)Ap(υ) dυ

−rpF cosψ






, Mg =







rgF sinψ
∫

S

f(υ)Ag(υ) dυ

−rgF cosψ







(2.6)

The E1 components of the moments, rpF sinψ and rgF sinψ, are tilting moments due

to the axial thrust F sinψ. The E2 components are twisting moments and arise from

the moment arms Ap(υ) and Ag(υ) defined in Eq. (2.2). The E3 components are the

useful transmitted torque.

Use of Eqs. (2.1) through (2.6) give the force and moment balance about the

pinion and gear mass centers cast in matrix form as

Kq = fext, (2.7)

q =
(

φp, θp, βp, xp, yp, zp
︸ ︷︷ ︸

pinion

, φg, θg, βg, xg, yg, zg
︸ ︷︷ ︸

gear

)

. (2.8)
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K =














r2ps
2
∫
k dυ rps

∫
kAp dυ −r2psc

∫
k dυ rpsc

∫
k dυ 0 rps

2
∫
k dυ

∫
kA2

p dυ −rpc
∫
kAp dυ c

∫
kAp dυ 0 s

∫
kAp dυ

r2pc
2
∫
k dυ −rpc

∫
k dυ 0 −rpsc

∫
k dυ

Symmetric c2
∫
k dυ 0 sc

∫
k dυ

0 0
s2
∫
k dυ

Symmetric

rprgs
2
∫
k dυ rps

∫
kAg dυ −rprgsc

∫
k dυ −rpsc

∫
k dυ 0 −rps2

∫
k dυ

rgs
∫
kAp dυ

∫
kApAg dυ −rgc

∫
kAp dυ −c

∫
kAp dυ 0 −s

∫
kAp dυ

−rprgc
∫
k dυ −rpc

∫
kAg dυ rprgc

2
∫
k dυ rpc

2
∫
k dυ 0 rpsc

∫
k dυ

rgsc
∫
k dυ c

∫
kAg dυ −rgc2

∫
k dυ −c2

∫
k dυ 0 −sc

∫
k dυ

0 0 0 0 0 0
rgs

2
∫
k dυ s

∫
kAg dυ −rgsc

∫
k dυ −sc

∫
k dυ 0 −s2

∫
k dυ

r2gs
2
∫
k dυ rgs

∫
kAg dυ −r2gsc

∫
k dυ −rgsc

∫
k dυ 0 −rgs2

∫
k dυ

∫
kA2

g dυ −rgc
∫
kAg dυ −c

∫
kAg dυ 0 −s

∫
kAg dυ

r2gc
2
∫
k dυ rgc

2
∫
k dυ 0 rgsc

∫
k dυ

Symmetric c2
∫
k dυ 0 sc

∫
k dυ

0 0
s2
∫
k dυ
























(2.9)

fext =
























−rp cosψ
∫
kh dυ

−
∫
kh [(c− ep) cosψ + (h+ b) sinψ] dυ

Tp − rp cos
2 ψ
∫
kh dυ

− cos2 ψ
∫
kh dυ

0
− cosψ sinψ

∫
kh dυ

−rg cosψ
∫
kh dυ

−
∫
kh [(eg − c) cosψ + (B − b) sinψ] dυ

Tg + rg cos
2 ψ
∫
kh dυ

cos2 ψ
∫
kh dυ

0
cosψ sinψ

∫
kh dυ
























(2.10)

where s = sinψ and c = cosψ only in Eq. (2.9). The upper-left matrix elements

relate to the pinion degrees-of-freedom, the lower-right matrix elements relate to the

gear degrees-of-freedom, and the upper-right matrix elements couple the pinion and

the gear degrees-of-freedom. The vector fext includes external loading; the torques on

the pinion Tp and gear Tg and tooth surface modifications h(υ) appear here.
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All that is needed to find all numerical values in the mesh stiffness matrix K is a

calculation of the stiffness distribution k(υ) and its coordinates b(υ) and c(υ). This

calculation requires a computational contact algorithm or an approximate analytical

method for contact. The stiffness distribution k(υ) accommodates any flexibility along

the line of action including Hertz contact and elastic gear body deformations. Friction

forcesare neglected but could be incorporated. It must be noted that Eq. 2.7 is merely

a representation of force and moment balance specific for a state of displacement q

of the system. A stiffness matrix K found at a given pinion and gear torque Tp, Tg,

and time t may not be valid at other torques and time because k(υ), b(υ), and c(υ)

depend on q and t.

2.2.2 Gear Body and Bearing Model

The gears are mounted on rigid shafts on two bearings, but these boundary con-

ditions may be altered depending on the application. Figure 2.2 shows the gears on

bearings. The axial positions of the bearings measured along E3 are L
A
p and LB

p . The

bearing translational and angular displacement vectors are

dA
p =

[
θp
(
LA
p − ep

)
+ xp

]
E1 +

[
φp

(
ep − LA

p

)
+ yp

]
E2 + zpE3,

dB
p =

[
θp
(
LB
p − ep

)
+ xp

]
E1 +

[
φp

(
ep − LB

p

)
+ yp

]
E2 + zpE3.

(2.11)

ΓA
p = φpE1 + θpE2 + βpE3. (2.12)

The angular bearing deflection at point B is identical to Eq. (2.12) for rigid shafts.

The bearings are isotropic in the E1 − E2 plane giving the stiffness matrix for

translation as BA
p = diag

[
kAp , k

A
p , k

Az
p

]
, where the equality of stiffness in the two

translation directions is evident. The bearing stiffness matrix for rotation is χA
p =

diag
[
κAp , κ

A
p , κ

Az
p

]
. Similar definitions follow for the remaining bearings.
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The governing equations with the bearings follow from force and moment balances

as

(K+B)q = fext (2.13)

B1,1 = B2,2 = κAp + κBp + kAp
(
LA
p − ep

)2
+ kBp

(
LB
p − ep

)2
,

B1,5 = −B2,4 = kAp (ep − LA
p ) + kBp (ep − LB

p ), B3,3 = κAz
p + κBz

p ,

B4,4 = B5,5 = kAp + kBp , B6,6 = κAz
p + κBz

p ,

B7,7 = B8,8 = κAg + κBg + kAg
(
LA
g − eg

)2
+ kBg

(
LB
g − eg

)2
, (2.14)

B7,11 = −B8,10 = kAg (eg − LA
g ) + kBg (eg − LB

g ), B9,9 = κAz
g + κBz

g ,

B10,10 = B11,11 = kAg + kBg , B12,12 = kAz
g + kBz

g

2.2.3 Equivalent Stiffnesses Model

We show that it is possible to reduce net effect of the distribution of contact forces

on the contact lines to two discrete stiffnesses: a translational one acting at a certain

point called the center of stiffness and a twist stiffness. This reduction, described

in Figure 2.3, is called the equivalent stiffness model. The four parameters that the

equivalent stiffness model requires are: translational mesh stiffness km, spread-twist

stiffness kt, and the center of stiffness coordinates (b̄, c̄) that locate the translational

mesh stiffness on the contact plane.

The total force and moments with respect to centers of mass are

F̄ = (F cosψ, 0, F sinψ)T , F = kmδ̄ (2.15)

M̄p =





rpF sinψ
ktγ + FĀp

−rpF cosψ



 , M̄g =





rgF sinψ
−ktγ + FĀg

−rgF cosψ



 (2.16)
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Āp =(c̄− ep) cosψ + b̄ sinψ

Āg =− (c̄− eg) cosψ +
(
B − b̄

)
sinψ

(2.17)

where δ̄ is mesh deflection at the center of stiffness found by substitution of b(υ) = b̄

and c(υ) = c̄ into Eq. (2.1). In the equivalent stiffness model, the spread-twist stiffness

kt produces a moment ktγ, where γ = θp − θg is the relative angular twist about E2.

Force and moment balances give the equivalent stiffness model matrix K̄ as

K̄ =














kmr
2
ps

2 kmrpĀps −kmr2psc kmrpsc 0 kmrps
2

kmĀ
2
p + kt −kmrpĀpc kmĀpc 0 kmĀps

kmr
2
pc

2 −kmrpc 0 −kmrpsc
kmc

2 0 kmsc
Symmetric 0 0

kms
2

Symmetric

kmrprgs
2 kmrpĀgs −kmrprgsc −kmrpsc 0 −kmrps2

kmrgĀps kmĀpĀg − kt −kmrgĀpc −kmĀpc 0 −kmĀps
−kmrprgc −kmrpĀgc kmrprgc

2 kmrpc
2 0 kmrpsc

kmrgsc kmĀgc −kmrgc2 −kmc2 0 −kmsc
0 0 0 0 0 0

kmrgs
2 kmĀgs −kmrgsc −kmsc 0 −kms2

kmr
2
gs

2 kmrgĀgs −kmr2gsc −kmrgsc 0 −kmrgs2
kmĀ

2
g + kt −kmrgĀgc −kmĀgc 0 −kmĀgs

kmr
2
gc

2 kmrgc
2 0 kmrgsc

kmc
2 0 kmsc

Symmetric 0 0
kms

2
























(2.18)

where s = sinψ and c = cosψ only in Eq. (2.18).

The stiffness matrix obtained from the equivalent stiffness model must be identical

to that obtained from the load distribution. This is expressed as K = K̄, where K̄

is the equivalent stiffness matrix. To find the equivalent translational mesh stiffness

km, consider the matrix element K3,3 from Eq. (2.9). Equating this to K̄3,3 from

Eq. (2.18) gives

km =

∫

S

k(υ) dυ. (2.19)
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Similarly, the requirement K̄1,2 = K1,2 with

K1,2 = rp sinψ

∫

S

k(υ)Ap(υ) dυ, K̄1,2 = rp sinψkmĀp (2.20)

yields the center of stiffness location

b̄ =

∫

S

k(υ)b(υ) dυ

km
, c̄ =

∫

S

k(υ)c(υ) dυ

km
(2.21)

Finally, to find the twist stiffness kt, K̄2,2 = K2,2 yields

kt =

∫

S

k(υ)A2
p(υ) dυ − kmĀ

2
p. (2.22)

Similar calculations that require K = K̄ for all remaining elements yield the same

values of km, kt, b̄, and c̄.

This proves that, at any instant t, the net effect of the load distribution can be

contained in km, kt, b̄, and c̄. These quantities depend on the instantaneous contact

conditions implicit in k(υ), b(υ), and c(υ). They vary with gear deflections and as

the gears rotate with a specified gear rotation speed. Thus, the equivalent stiffness

model is nonlinear and time-dependent. The foregoing development establishes that

the equivalent stiffness model identically reproduces the stiffness matrix arising from

an arbitrary load distribution.

2.2.4 Physical Interpretation of the Equivalent Stiffness Model

Although the equivalent stiffness model with km, kt, b̄, and c̄ represents the load

distribution, a few more parameters provide further insight into the nonlinearity of

the gear mesh. These additional parameters are the moment arms of the mesh force

on the pinion and gear (Āp and Āg), off-mid-plane twist stiffnesses on the pinion and

gear (kpo and kgo), total twist stiffnesses on the pinion and gear (kpt and kgt), and the
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Figure 2.1: Distributed load and the position vectors from the pinion and gear mass
centers. (a) Front view, (b) Side view.

coupling-twist stiffness (kct). The physical interpretation of the equivalent stiffness

model and these additional parameters are discussed below.

Translational mesh stiffness km

This is the mesh stiffness given by Eq. (2.19) that resists any compression normal

to the tooth surface. It generates the mesh force F normal to the tooth surface by

Eq. (2.15). The line of action component is F cosψ, and the axial thrust component

is F sinψ.

Center of stiffness (b̄, c̄)

The axial component c̄ of the center of stiffness, given in Eq. (2.21), accounts for

the back and forth motion of the mesh force center identified as the shuttling of force

[31,37]. The location of the center of stiffness fluctuates with nominal rotation because

of two reasons: 1) In helical gears the axial span of contact lines along the facewidth
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Figure 2.2: Bearing positions with respect to the reference dashed line placed at the
center of the active facewidth.
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Figure 2.3: The equivalent model and the center of stiffness (b̄, c̄) where the total
mesh force F acts and the translational stiffness km is attached.
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continuously change, 2) If lead modifications vary with roll angle, that yields changes

in load distribution with time because the initial separations are functions of time

h(υ) = h(t). The radial component b̄ of the center of stiffness locates the position

of the mesh force along the line of action. Its nominal value of b̄nom = rp tanφ is

geometrically defined and dominates the rotation-dependent fluctuations for typical

pressure angles (φ).

Moment arms Āp and Āg

These quantities are the moment arms of the mesh force that cause twisting mo-

ments about E2. They are given in Eq. (2.17) and include the moment arm due to:

a) an offset (c̄− ep) cosψ along the facewidth, and b) the radial offset b̄ sinψ due to

helix angle.

Total pinion and gear twist stiffnesses kpt and kgt

The total twist stiffnesses are the sum of the spread-twist stiffness and the off-

mid-plane twist stiffness. This can be seen by dissecting E2 components of the mesh

moment from Eq. (2.6) as

Mp·E2 =

∫

S

f(υ)Ap(υ) dυ =

∫

S

k(υ)δ(υ) {[c(υ)− ep] cosψ + b(υ) sinψ} dυ

=

[∫

S

k(υ)A2
p(υ) dυ − kmĀ

2
p

]

γ + FĀp = ktγ + FĀp

(2.23)

where the second equality is obtained following the substitution of Eq. (2.1), the

third following the substitution of Eqs. (2.2), (2.15), (2.17), (2.19), and the fourth

following the substitution of Eq. (2.22). The analogous procedure for the gear gives

Mg·E2 = −ktγ + FĀg. The total pinion and gear twist stiffnesses are
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kpt =K2,2 = K̄2,2 =

∫

S

k(υ)A2
p(υ) dυ = kpo + kt

kgt =K8,8 = K̄8,8 =

∫

S

k(υ)A2
g(υ) dυ = kgo + kt

(2.24)

Spread-twist stiffness kt

This stiffness gives the moment, ktγ, which results from the spread of contact

along the facewidth direction. This spreading of contact resists gear twist even if

the center of stiffness at which the net force acts is aligned axially with the center of

mass: Mp·E2 = ktγ for Āp = 0.

The off-mid-plane twist stiffnesses kpo and kgo

With known kt from Eq. (2.22), the off-mid-plane twist stiffnesses are found from

Eq. (2.24) as

kpo = kmĀ
2
p, kgo = kmĀ

2
g (2.25)

The off-mid-plane twist stiffnesses capture the twist stiffness arising from a moment

about E2 generated by the mesh force being offset. This is seen in Eq. (2.23) as

moments FĀp and FĀg. They arise from two factors: the offset along the facewidth

direction E3, i.e., F (c̄ − ep) cosψ, and the offset along the radial direction E1, i.e.,

F b̄ sinψ. The off-mid-plane stiffnesses vanish for spur pinion-gear pairs (ψ = 0) that

are symmetric about the mid-plane (c̄ = ep). They are always present in helical gears

where sinψ 6= 0 or when the center of stiffness fluctuates periodically in the facewidth

direction as the gears rotate.
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Coupling-twist stiffness kct

This stiffness couples pinion and gear twist by generating a twisting moment on

the gear due to a twist in the pinion. It is given by

kct = K̄2,8 = kmĀpĀg − kt (2.26)

Again, there are two factors involved: the off-mid-plane component kmĀpĀg and the

spread-of-contact component kt.

Discussion of the Equivalent Stiffness Model

The equivalent stiffness model allows separate calculation (possibly using commer-

cial finite element or advanced gear tooth contact models) of the force-displacement

curve of the translational spring km and moment-rotation curve of the twist stiff-

nesses kpt, kgt, kpo, kgo, and kt. This feature identifies the nonlinearity of translation

and twisting individually. The equivalent stiffness model also paves the way for sim-

pler dynamic analysis via numerical integration and mathematical analysis. As an

example, one could calculate the strain energy stored in the equivalent stiffnesses to

identify the vibration modes where these stiffnesses are active. When these stiffnesses

are viewed as periodically fluctuating parameters over a mesh cycle, the fluctuating

twist stiffness excites twisting modes just as the fluctuating mesh stiffness km excites

the mesh deflection modes [26, 30, 92].

2.2.5 Approximation of Load Distribution With a Discretiza-
tion Scheme

The distribution of contact is discretized following the approach from [18, 121].

Each nominal contact line is divided into n segments with equal length. Within the
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ith segment, f(υ) ≈ fi, k(υ) ≈ ki, b(υ) ≈ bi, c(υ) ≈ ci, and δ(υ) ≈ δi. Each contact

stiffness ki is at the center of its segment. As the contact lines progress with gear

rotation, the length l(t) of segments in that contact line changes. Each contact line

has a specified number of segments. This discretization is based on the nominal lines

of contact with no gear deflections, so it is valid only for small elastic deflections.

To find an expression for the contact stiffnesses ki, the tooth deflection is divided

into two components: local (ǫi) and bulk (δb). Discussion of this categorization can

be found in [6,18,57,79]. The local deflection represents the Hertz contact deflections.

The associated local stiffness is kcl(t), where the constant kc is the local stiffness per

unit contact length. The bulk deflection component represents all deflections except

local deflection, including gear blank deflection, tooth bending, and shear. Because

the Hertz contact deflections are localized and occur far from the bulk deflections, the

bulk deflection is assumed to be the same for all contact segments. The bulk stiffness

kb is assumed constant. The bulk stiffness is in series with the local stiffnesses, so the

total deflection at the ith contact point is

δi = ǫi + δb (2.27)

The mesh force must simultaneously equal the sum of all forces carried by the

local stiffnesses and the force carried by the bulk stiffness due to the series connection.

Thus,

F =

n∑

i=1

fi = kcl(t)

n∑

i=1

ǫiH(ǫi) = kbδb, (2.28)

H(ǫi) =

{
1 ǫi ≥ 0
0 ǫi < 0

(2.29)

where H(ǫi) is the Heaviside function that represents the contact or no contact con-

dition at each contact stiffness. Use of Eqs. (2.27) and (2.28) reduce the network of
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local and bulk stiffnesses into n contact springs (ki, i = 1, 2, . . . , n) in parallel across

the contact line. The stiffness of the ith contact spring is

ki =
kbkcl(t)H(ǫi)

kb + kcl(t)
n∑

i=1

H(ǫi)

. (2.30)

Even though the local stiffness per unit contact length kc and the bulk stiffness kb are

constants, the stiffness of each contact segment ki changes with partial contact loss

and contact line length. This is a mathematical result of the spring network, and it is

more realistic than assuming a constant stiffness for each contact segment [121,128].

To explain physically, a segment can only be as stiff as the softest component. For

example, consider a gear with wide facewidth but a thin rim (a T shaped profile).

Each stiffness ki is higher if only a few segments are in contact than having a lot of

segments in contact because having a lot of segments in contact dilutes ki as the total

stiffness

n∑

i=1

ki is limited by the stiffness of the compliant thin rim.

The local stiffness per unit length kc and the bulk stiffness kb are parameters of

the gear pair determined by the contact mechanics and elasticity of the gears. These

constants can be approximated analytically [18] or semi-analytically [121] by assigning

certain types of stiffnesses, such as Hertz contact, tooth bending, and shear, to kc

and kb. In this work kc and kb are solved for from the deflections obtained from an

external finite element tool; kc and kb are numerical values that best fit the deflection

obtained from the analysis tool. Tooth bending flexibility only truly belongs to bulk

stiffness when one pair of teeth is in contact. If multiple pairs of teeth are in contact,

then a third layer of spring network for tooth bending that fluctuates with number

of tooth pairs in contact must provide better accuracy. The two stiffnesses, local and

bulk, may not be good approximations if they are found analytically that contains
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the tooth bending elasticity in the bulk stiffness, but the local and bulk stiffnesses,

being values that best fit finite element analysis data, automatically share the tooth

bending elasticity giving the upcoming results that compare reasonably well.

The following stipulations simplify the procedure for finding kc and kb: 1) The

tooth surface is perfectly involute, that is, hi = 0 for all i; 2) All degrees of freedom

are constrained to be zero except the pinion rotation βp; and 3) A specified moment

about E3 is applied to the pinion. With these stipulations, the deflections at all

contact points are identical and equal to the static transmission error, STE = δ1 =

δ2 = . . . = δn. Consequently, all points are in contact by Eq. (2.29); H(ǫ1) = H(ǫ2) =

. . . = H(ǫn) = 1, so k1 = k2 = . . . = kn by Eq. (2.30). Use of Eq. (2.27), and

Eq. (2.30) gives

STE = F

[
1

kb
+

1

kcL(t)

]

, (2.31)

where L(t) = nl(t) is the total contact line length at an instant t. The two un-

knowns (kc, kb) are solved using the data from the results of the external analysis

tool. Although any two instances can be used, to increase accuracy, two data points

are found from the averages of four points where transmission error is the highest

{STEhigh, Lhigh} within a mesh period and the four points where transmission error

is the lowest {STElow, Llow}.

2.3 Analysis

2.3.1 Solution Procedure

In this work, the moment about E3 is specified and the bearings (springs) give the

remaining boundary conditions. There are situations, however, when the boundary
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conditions specify non-zero deflections of one or more of the twelve degrees-of-freedom

(as opposed to the case of specified torques and forces).

The nonlinear equations of motion in Eq. (2.13) are solved by iteration as follows.

For given K(q∗, t) + B and fext(q
∗, t) calculated from the previous guess q∗, the

solution q is found by Gauss elimination. This solution is used as the initial guess in

the next iteration. Iteration stops when the error in q is less than a specified tolerance.

A limit of 30 iterations is used when some highly misaligned or modified gears yield

a small but nonzero error. The starting initial guess is q∗ = 0, which corresponds to

the undeflected position of the gears with H(ǫi) = 1. The deflection q∗ alone does not

define the contact conditions H(ǫi) that are required to find K(q∗, t), and fext(q
∗, t).

The needed quantities are the local deflections (ǫi). They are found from Eq. (2.27)

where the constant known mesh force F gives the bulk deflection δb = F/kb. With

known ǫi, Eq. (2.29) gives the contact conditions H(ǫi), which gives ki by Eq. (2.30).

Subsequently, K(q∗, t) and fext(q
∗, t) are found.

2.3.2 Comparison With Finite Element Model

This section compares the static deflections from the analytical model with those

from a finite element model to build confidence in the formulation. The finite element

model is based on the study by Vijayakar [124], and it is commercially available as

computer software [125]. This finite element model is specialized for analyzing near-

field contact between elastic bodies while using conventional finite elements for the

far-field elastic deformation of the bodies. It has been used in many gear studies

[5, 65–67, 85, 86, 99, 100, 103] and considers partial contact loss. The analytical model
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uses the constants (kc, kb) from the finite element model using the method described

with Eq. (2.31).

Two example gear pairs are analyzed. To keep the focus on the gear mesh model,

the bearing deflections are set to zero by constraining all degrees of freedom except

the pinion rotation (βp) in the analytical and the finite element model. The first

example is the helical gear pair defined in Table 2.1. Young’s modulus is 206 GPa

and Poisson’s ratio is 0.3. The pinion torque is 200 N-m, which is below the maximum

torque for infinite life based on the Fairfield gear design software. Table 2.2 gives the

tooth surface modifications on the gear, chosen to improve misalignment tolerance

and to eliminate corner contact [17, 63, 64].

Table 2.1: Example gear parameters.

Parameter Pinion Gear

Number of teeth 27 35
Base helix angle, ψ [deg] 28.08
Center distance [mm] 88.9
Transverse module [mm] 3
Transverse operating pressure angle, Φ [deg] 24.6
Transverse tooth thickness [mm] 5.2253 4.764
Facewidth [mm] 20.0 20.0
Tip diameter [mm] 84.0 104.8
Root diameter [mm] 70.612 91.5416
Bearing A axial position, LA [mm] −10 10
Bearing B axial position, LB [mm] −10 10
Center of mass position , e [mm] 0 0
Translational bearing stiffness, kA, kB [N/m] 100× 106 100× 106

Axial bearing stiffness, kAz, kBz [N/m] 10× 106 10× 106

Twist bearing stiffness, κA, κB [Nm] 0 0
Mass (for Chapters 3 and 4), m [kg] 3 3
Tilting inertia, Jx [kg-m2] 0.008 0.008
Rotational inertia, Jz [kg-m2] 0.016 0.016
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Table 2.2: Tooth surface modification on the gear in Table 2.1.

Parameter Magnitude Begins Ends

Quadratic tip crown 10 µm 26 deg Gear tip
Quadratic root crown 10 µm 26 deg 17 deg
Circular lead crown 10 µm -10 mm 10 mm

The second example is the unity ratio spur gear pair from [47]. The pitch diameter

is 150 mm, and the facewidth is 20 mm. Three variations of this spur gear pair as

presented in [47] are analyzed. In all three variations, the tip relief amplitude is 10

µm and the lead crown is 5 µm on both the pinion and gear. The parameter that

varies is the roll angle where tip relief starts.

Figure 2.4(a) compares the static transmission error of the helical gear pair from

the finite element model with the analytical model. Figures 2.4(b), 2.4(c), and 2.4(d)

show the static transmission error of the spur gear pair with tip relief on both gears

starting at 20.9 deg (170 N-m torque), 22.2 deg (340 N-m torque), and 23.6 deg (340

N-m torque), respectively. The analytical model compares well with the benchmark

finite element model in all cases.

Figure 2.5 compares contact patterns from the analytical model and the finite

element model of the spur gear pair from [47]. The finite element model calculates the

contact pressure, the force divided by the contact area averaged over a mesh period.

Because the analytical model approximates the contact area, which is actually a thin

elliptical region, by a line, the discretization scheme uses the contact force divided by

the contact line length instead of the true pressure to find the contact pattern. Tip

relief starts at 20.9 deg on both gears. The applied torque is 85 N-m in Figures 2.5(a)
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and 2.5(b), 170 N-m in Figures 2.5(c) and 2.5(d), and 340 N-m in Figures 2.5(e) and

2.5(f). The contact from both models spans a larger area of the gear tooth surface

with increasing torque. At all three torques there is partial contact loss because parts

of the tooth surface are out of contact as the mesh deflection is not large enough to

compensate for the separation from tooth surface modifications.

The analytical model can treat misaligned gears (that is, gears with a specified

relative twist angle). The contact pressure from the finite element model at an instant

when the misalignment (relative twist angle) γ = 0.01 deg is shown in Figure 2.6(a).

Figures 2.6(c) and 2.6(b) compare contact patterns from the analytical and finite

element models at 0.01 deg misalignment. Contact patterns from both models indicate

severe partial contact loss. The analytical model effectively captures partial contact

loss.
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Figure 2.4: Static transmission error from the analytical (solid line) and finite element
(circles) model. (a) Helical gear pair described in Tables 2.1 and 2.2. (b) Spur gear
pair in experiments. Tip relief starting at α = 20.9 deg. The applied torque is 170
N-m. (c) Spur gear pair in experiments. Tip relief starting at α = 22.2 deg. The
applied torque is 340 N-m. (d) Spur gear pair in experiments. Tip relief starting at
α = 23.6 deg. The applied torque is 340 N-m.
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Figure 2.5: Contact patterns from the analytical model (a), (c), (e), and the finite
element model (b), (d), (f), of the spur gear pair in experiments. Tip relief starts at
α = 20.9 deg. The applied torque is: (a,b) 85 N-m. (c,d) 170 N-m. (e,f) 340 N-m.
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Figure 2.6: Contact analysis of the spur gear pair in experiments. Relative twist is
γ = 0.01 deg. Tip relief starts at α = 20.9 deg. The applied torque is 85 N-m. (a)
Contact forces from the finite element model. Dots indicate theoretical contact lines,
bars indicate contact pressure. (b) Contact pattern averaged over a mesh cycle from
the finite element model (c) Contact pattern averaged over a mesh cycle from the
analytical model.
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2.3.3 Gear Mesh Nonlinearity

The equivalent model concisely contains the sources of nonlinearity from the gear

mesh in the deflection-dependent changes of the translational stiffness km, spread-

twist stiffness kt, and center of stiffness (b̄, c̄). The nonlinear behaviors of these

quantities are explored by examining the displacement and stiffness curves obtained

by applying torque and twisting moments on the gear pairs. At each data point the

average values of the translational stiffness km, the total twist stiffnesses kpt, kgt, off-

mid-plane twists stiffnesses kpo, kgo, the spread-twist stiffness kt, the center of stiffness

(b̄, c̄), and the moment arms Āp and Āg over a mesh period are calculated.

Dependence on Mesh Deflection

To expose the effect of mesh deflection on the nonlinearity of the gear mesh, the

mesh deflection of the modified helical gear pair described in Tables 2.1 and 2.2 is

gradually increased from 1 µm to 20 µm by increasing the driving and absorbing

torques on the pinion and gear about E3. All degrees-of-freedom except pinion and

gear rotation are constrained to isolate the translational mesh deflection. The trans-

lational stiffness km and the spread-twist stiffness kt are plotted in Figures 2.7(a) and

2.7(b). Figures 2.8(a), 2.8(b), and 2.8(c) show the contact pattern when the mesh

deflection is 1 µm, 6 µm, and 10 µm, respectively.

The loaded surface area increases with increasing mesh deflection, thereby increas-

ing the translational and spread-twist stiffnesses. This is a result of partial contact

loss, and it makes the translational stiffness km and the spread-twist stiffness kt non-

linear. The center of stiffness (not plotted) is always at the center of the facewidth
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because the modifications are symmetric along the facewidth; increasing mesh deflec-

tion does not cause an axial shift in the load distribution.

Dependence on Twist (misalignment)

To expose the effect of twist on the nonlinearity of the gear mesh, the relative

twist angle γ = θp−θg is gradually varied by applying a moment on the pinion about

E2. The shafts supported on bearings provide the boundary conditions.

With unmodified helical gears as described in Table 2.1, the translational and

spread-twist stiffnesses, shown in Figures 2.9(a) and 2.9(b), are constant until |γ| =

0.005 deg, after which there is a sharp drop initiated by the separation of the edges of

the teeth. This separation of the edges is reflected in the center of stiffness in Figure

2.9(c) with a sudden move of the center of stiffness toward the highly loaded side.

Figures 2.10(a) and 2.10(b) show the contact pattern at two relative twisting angles:

γ = 0 and γ = 0.04 deg.

When |γ| < 0.005 deg, which is just before the separation of the edges, the transla-

tional and spread-twist stiffnesses are linear and are at their maximum values because

there is no partial contact loss for |γ| < 0.005. Twisting localizes the contact at the

edges of the facewidth thereby reducing both the spread-twist stiffness and the trans-

lational stiffness.

For helical gears with modifications described in Tables 2.1 and 2.2, Figures

2.11(a), 2.11(b), and 2.11(c) show the translational stiffness km, spread-twist stiff-

ness kt, and the center of stiffness axial component c̄. Figures 2.12(a) and 2.12(b)

show the contact pattern at γ = 0 and γ = 0.1 deg. For |γ| < 0.03 deg, the stiff-

nesses change little from their highest values, but the center of stiffness varies. When

|γ| > 0.03 deg, translational and spread-twist stiffnesses decrease because of partial
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contact loss as the rounded contact pattern becomes distorted and more localized at

the edges of the tooth face. The center of stiffness, plotted in Figure 2.11(c), moves

toward the more heavily loaded area. Localization, however, is less pronounced in

modified gears compared with the prior unmodified gears; larger twist angles are

needed to alter the contact pattern. This is because the contact pattern is already

localized as a result of tooth surface modifications.

The total pinion and gear twist stiffnesses, the spread-twist stiffness, and the

coupling-twist stiffness are shown in Figures 2.13(a), 2.14(a), 2.15(a), and 2.16(a) for

the unmodified spur, modified spur, unmodified helical, and modified helical gears,

respectively. With the same order, Figures 2.13(b), 2.14(b), 2.15(b), and 2.16(b) show

the moment arms Ap and Ag for the pinion and gear.

There is a crucial difference in the shape of the total twist stiffness between spur

and helical gears: the total pinion and gear twist stiffnesses are symmetric about

the relative twist angle γ = 0 in spur gears but asymmetric in helical gears. This is

because in spur gears the length of the moment arm |Āp| = |c̄− ep| only depends on

the amplitude of γ but not its sign. For helical gears, however, this symmetry does not

exist due to the constant value of b̄ sinψ arising from the helix angle. Consequently,

Āp, Āg, and the twist stiffnesses become asymmetric about γ = 0.

The coupling-twist stiffness kct is nearly symmetric about γ = 0 for both spur and

helical gears. This is because Āp is very close to the mirror image of Āg about γ = 0.

If the pinion and gear base radii were equal, rp = rg, then Āp would exactly be the

mirror image of Āg about γ = 0, so ĀpĀg and thus kct would be symmetric.
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Dependence on Facewidth

The common spread-twist stiffness, the pinion off-mid-plane twist stiffness, and

the pinion total twist stiffness of the pair described in Tables 2.1 and 2.2 is plotted

versus facewidth in Figure 2.17. Gear stiffness is not plotted for clarity. Three

cases are considered as follows: (I) the helix angle is zero, and there are no tooth

surface modifications; (II) the helix angle is 30 deg, and there are no tooth surface

modifications; and, (III) the helix angle is 30 deg, and tooth surface modifications in

Table 2.2 are added.

The spread-twist stiffness in Figure 2.17(a) increases with increasing facewidth

because the more the stiffness is distributed axially away from the center of the

facewidth, the more resistant the gear mesh is to twisting. This is the opposite of

localization. The dependence is strong for unmodified gears (I) and (II), but weak for

modified gears (III) because modifications localize the load distribution that reduce

the spread-twist stiffness. Comparing cases (I) and (II), the slight decrease in the

translational mesh stiffness with helix angle reduces the spread-twist stiffness a little.

The pinion off-mid-plane twist stiffnesses in Figure 2.17(b) of cases (II) and (III)

are almost constant with facewidth because a change in facewidth does not move

the center of stiffness relative to the mass center, so the moment arm Āp is almost

constant. Spur gears of case (I) have zero off-mid-plane twist stiffness because the

mesh force does not create a moment (Āp = 0). Gear off-mid-plane twist stiffnesses

(not plotted) exhibit the same behavior. The off-mid-plane stiffnesses dominate total

twist stiffness for narrow facewidth gears, but the spread-twist stiffness dominates

the total twist stiffness for wide facewidth gears.
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The unmodified helical gears of case (II) have the highest pinion total twist stiff-

ness as seen in Figure 2.17(c). The helical gears of cases (II) and (III) start with

a non-zero total twist stiffness due to the off-mid-plane component, whereas all the

twist resistance in the spur gears of case (I) come from the spread-twist stiffness.

For modified gears of (III) the rate of contribution from spread-twist it lower than

that of the unmodified cases of (I) and (II) because modifications had reduced the

spread-twist stiffness.

Dependence on Modifications

To expose the effect of tooth surface modifications, the translational stiffness km,

spread-twist stiffness kt, and off-mid-plane twist stiffness kpo versus mesh deflection

δ̄ are plotted in Figures 2.18(a), 2.18(b), and 2.18(c) with various modifications of

0, 2, 5, 10, and 20 µm. Figure 2.18(d) shows spread-twist stiffness kt versus twist

angle γ with the same modifications. The helical gear pair used is described in Table

2.1 with surface modifications in Table 2.2, where the amplitudes of profile and lead

modifications change as indicated.

The translational stiffness km and spread-twist stiffness kt are independent of mesh

deflection for unmodified gears unless contact is completely lost as seen in Figures

2.18(a) and 2.18(b). For the modified gears, however, the translational mesh stiffness

continuously approaches the maximum value as the mesh deflection increases. The

approach is slower with increasing tooth surface modification amplitude because more

mesh deflection is needed to bring a larger portion of the tooth surface into contact.

Partial contact loss is responsible for this smoothing of the translational mesh stiffness

curve. In general, the larger the contact area, the higher the translational and spread-

twist stiffness.
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The nonlinear curve of the spread-twist stiffness is somewhat different than the

translational stiffness because the translational stiffness only depend on the size of

the contact area but the spread-twist stiffness is sensitive to localization of contact as

well as the size of the contact area. The pinion-off-mid-plane twist stiffness in Figure

2.18(c) is almost a constant multiple of the translational stiffness, so their nonlinear

curves are very similar.

Inspecting the spread-twist stiffness versus relative twist angle γ in Figure 2.18(d),

the modified gears retain more of their existing (when aligned) spread-twist stiffness

at higher twist angles than unmodified gears. Tooth surface modifications localize the

contact pattern and make the tooth more rounded, thus reducing the spread-twist

stiffness and the total twist stiffness.

Unmodified gears have a range where the spread-twist and translational stiffness

is absolutely flat despite relative twist. In this region, twist angle does not cause

partial contact loss. For gear motions that do not exceed the range where stiffness

is flat, the system is linear. This linear region is distinct in unmodified spur and

helical gears as seen in the twist stiffnesses and moment arms in Figures 2.13(a) and

2.15(a). The transition to nonlinear region, where partial contact loss dominates, is

clear. With modified gears, although a similar region exists in Figures 2.14(a) and

2.16(a), it is not perfectly linear and the transition to the nonlinear region is smooth

and not sudden.
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Figure 2.7: (a) Translational mesh stiffness km variation versus mesh deflection for
the modified helical gear pair in Tables 2.1 and 2.2. (b) Spread-twist stiffness kt
variation versus mesh deflection. Quantities are averaged over a mesh period.
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Figure 2.8: Contact pattern of the modified helical gear pair in Tables 2.1 and 2.2.
(a) Mesh deflection is 1 µm. (b) Mesh deflection is 6 µm. (c) Mesh deflection is 10
µm.
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Figure 2.9: (a) Translational mesh stiffness km variation versus twist angle γ for the
unmodified helical gear pair in Table 2.1. (b) Spread-twist stiffness kt variation versus
twist angle γ. (c) Variation of the center of stiffness c̄ versus twist angle γ. Quantities
are averaged over a mesh period.
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Figure 2.10: Contact pattern of the unmodified helical gear pair in Table 2.1. (a)
Gears are aligned, γ = 0 deg. (b) At γ = 0.04 deg.
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Figure 2.11: (a) Translational mesh stiffness km variation versus twist angle γ for the
modified helical gear pair in Tables 2.1 and 2.2. (b) Spread-twist stiffness kt variation
versus mesh twist angle γ. (c) Variation of the center of stiffness c̄ versus twist angle
γ. Quantities are averaged over a mesh period.
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Figure 2.12: Contact pattern of the modified helical gear pair in Tables 2.1 and 2.2.
(a) Gears are aligned, γ = 0 deg. (b) At γ = 0.1 deg.
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Figure 2.13: (a) Total pinion twist stiffness kpt, total gear twist stiffness kgt, spread-
twist stiffness kt, and coupling-twist stiffness kct. (b) Moment arms for the pinion Ap

and gear Ag from the unmodified spur gear with respect to twist angle.
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Figure 2.14: (a) Total pinion twist stiffness kpt, total gear twist stiffness kgt, spread-
twist stiffness kt, and coupling-twist stiffness kct. (b) Moment arms for the pinion Ap

and gear Ag from the modified spur gear with respect to twist angle.
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Figure 2.15: (a) Total pinion twist stiffness kpt, total gear twist stiffness kgt, spread-
twist stiffness kt, and coupling-twist stiffness kct. (b) Moment arms for the pinion Ap

and gear Ag from the unmodified helical gear with respect to twist angle.
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Figure 2.16: (a) Total pinion twist stiffness kpt, total gear twist stiffness kgt, spread-
twist stiffness kt, and coupling-twist stiffness kct. (b) Moment arms for the pinion Ap

and gear Ag from the modified helical gear with respect to twist angle.
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Figure 2.17: Spread-twist, pinion off-mid-plane twist, and pinion total pinion twist
stiffness variation with facewidth. Gear parameters are in Table 2.1. (I) Helix angle
is zero and teeth are unmodified. (II) Helix angle is 30 deg and gear teeth are
unmodified. (III) Helix angle is 30 deg and gear teeth are modified according to
Table 2.2.
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Figure 2.18: Translational and spread-twist stiffnesses of the helical gear pair de-
scribed in Tables 2.1 and 2.2 for various levels of tooth surface modifications. Tooth
surface modifications are: thick solid line 0 µm, solid line 2 µm, dashed line 5 µm,
dash-dot line 10 µm, and dotted line 20 µm. (a) Translational mesh stiffness versus
mesh deflection. (b) Spread-twist stiffness versus mesh deflection. (c) Pinion off-mid-
plane twist stiffness versus mesh deflection. (d) Spread-twist stiffness versus twist
angle.
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2.3.4 Fluctuating Twist Moments and Stiffnesses as Sources
of Dynamic Excitation

The twist moments and stiffnesses periodically fluctuate, so can excite vibration

and noise. When a reduction in transmission error does not reduce noise, secondary

excitation sources such as tilting/twisting moments may be causing vibrations. To

investigate the nature of the time-dependent fluctuation, the total twist moments on

the pinion and gear (Mp·E2, Mg·E2) and the spread-twist moment (ktγ) common to

pinion and gear are plotted in Figures 2.19 and 2.20 for unmodified spur gears and

modified helical gears in two mesh periods. The values are obtained at three specified

twist values of |γ| = 0.04, γ = 0 deg in unmodified gears and |γ| = 0.14, γ = 0 deg in

modified gears.

Aligned (γ = 0 deg) spur gears generate no twist moments because Āp = Āg = 0.

Aligned helical gears generate fluctuating twist moments with a mean value because

Āp 6= Āg 6= 0 (or because the off-mid-plane twist stiffness). Moments on the pinion

and gear are different. The twist moments in aligned helical gears are significant,

being near 25% of the transmitted useful torque.

When misaligned (γ = 0.04 deg), spur gears, however, do produce fluctuating

twist moments with a mean value. These moments are equal and opposite because

they come from the spread-twist stiffness by ktγ. In helical gears, misalignment

(γ = 0.14 deg) yields a subtler effect: pinion twist moment increases but gear twist

moment decreases compared with the aligned case (and vice-versa for a misalignment

in the other direction γ = −0.14 deg). This is because the twist moments from the

spread-twist and off-mid-plane stiffness add for the pinion but subtract for the gear.
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The total twist stiffnesses of the pinion and gear and the common spread-twist

and coupling-twist stiffnesses are plotted in Figures 2.21 and 2.22 for unmodified spur

gears and modified helical gears with the same specified twist angles indicated above.

The periodic fluctuation of twist stiffnesses in a mesh period are summarized using

RMS (root-mean-square) calculation in Figure 2.23.

All types of twist stiffnesses in both spur and helical gears fluctuate with a mean

value. The stiffness fluctuation, although exists, must not be important in aligned

spur gears because aligned spur gears do not generate twist moments to excite twist

vibrations. Misalignment has two competing effects on RMS twist stiffnesses: a) it

tends to decrease RMS spread-twist stiffness in both spur and helical gears, b) in

spur gears it increases RMS off-mid-plane stiffnesses but in helical gears it either

decreases or increases the RMS off-mid-plane stiffnesses depending on the sign of the

misalignment. Overall, aligned gears seem to have the least fluctuation when equal

importance is attached to both total pinion and gear twist stiffnesses. A positive

misalignment in the helical gears analyzed however can reduce, for example, the

RMS gear twist stiffness, if that is specifically desired.

All twist moments and stiffnesses fluctuate periodically with gear rotation unless

the gears are aligned and the helix angle is zero. The RMS fluctuation amplitudes

strongly depends on the specified misalignment. Considering gear noise, the fluctuat-

ing twist moments can excite vibrations, and the stiffness fluctuation causes paramet-

ric excitation. This view can lead to a vibration reduction by reducing twist moment

fluctuations. The strong dependence of RMS amplitudes on twist angle adds another

nonlinear dimension; as the gears vibrate the dynamic changes in twist angle could

alter the excitation strength.
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Figure 2.19: Twist moments in two mesh periods of the unmodified spur gear pair.
(a) Total pinion twist moment, (b) total gear twist moment, (c) spread-twist moment.
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Figure 2.20: Twist moments in two mesh periods of the modified helical gear pair. (a)
Total pinion twist moment, (b) total gear twist moment, (c) spread-twist moment.
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Figure 2.21: Twist stiffnesses in two mesh periods of the unmodified spur gear pair.
(a) Total pinion twist stiffness kpt, (b) total gear twist stiffness kgt, (c) coupling-twist
stiffness kct, (d) spread-twist stiffness kt.
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Figure 2.22: Twist stiffnesses in two mesh periods of the modified helical gear pair.
(a) Total pinion twist stiffness kpt, (b) total gear twist stiffness kgt, (c) coupling-twist
stiffness kct, (d) spread-twist stiffness kt.
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Figure 2.23: RMS twist stiffnesses over a mesh period. (a) Unmodified spur gears,
(b) modified spur gears, (c) unmodified helical gears, (d) modified helical gears. Solid
line: spread-twist stiffness, dashed line: total pinion twist stiffness kpt, dotted line:
coupling twist stiffness kct, dash-dot line: total gear twist stiffness kgt.
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2.4 Conclusions

A lumped-parameter that consists of a translational mesh stiffness acting at the

center of stiffness and a spread-twist stiffness is mathematically shown to be identical

to an arbitrary load distribution on the gear teeth. This reduction is named the

equivalent stiffness model.

The distribution of the mesh force across the facewidth generates a twisting mo-

ment that has not been included in prior models that use a single translational spring

to represent tooth compliance. The spread-twist stiffness captures this twisting mo-

ment. The total twist stiffness on a gear is the sum of the off-mid-plane twist stiffness,

which results from the mesh force being offset from the mid-plane, and the spread-

twist stiffness.

Portions of contact lines can disengage from gear deflection, misalignment, and

tooth surface modification. This phenomenon is called partial contact loss. The

equivalent model concisely captures the nonlinearity resulting from partial contact

loss.

The nonlinear behavior of the translational and twist stiffnesses are numerically

investigated. A discretization of the load distribution supplies the numerical val-

ues for the equivalent stiffness model. The translational stiffness correlates with the

size of the contact area. When the contact area shrinks from modifications, mesh

deflection, or twist, the translational stiffness decreases. The spread-twist stiffness

correlates with the localization of contact. When the contact area is more localized

from twist, tooth surface modifications, or mesh deflection, the spread-twist stiffness

decreases. The off-mid-plane twist stiffness vanishes in centered spur gears but domi-

nates the total twist stiffness in helical gears with narrow facewidth. The spread-twist
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stiffness increases rapidly with larger facewidth. Both off-mid-plane and spread-twist

stiffnesses are highly nonlinear.

The twist moments fluctuate periodically with a mean value with nominal gear ro-

tation in helical gears. The total twist stiffnesses fluctuate with nominal gear rotation

as well. These fluctuations have the potential to excite twist vibration. If vibrations

are indeed excited by these twist moments, a reduction of the fluctuations may reduce

gear noise. If the translational and spread-twist stiffnesses and the center of stiffness

are explicitly known from computational analysis as functions of mesh deflection,

mesh twist and nominal gear rotation, that may allow simplified three-dimensional

nonlinear dynamic and static analyses.
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Chapter 3: Twisting Vibration and Partial Contact Loss in

Gear Pairs

3.1 Introduction

Research on spur gear pair dynamics [26, 30] identify static transmission error as

the primary quantifier of vibration excitation. Since then, static transmission error

has been used as an input to two-dimensional spur gear dynamic models [26,30,81,82],

and it has proven to be an easily measurable and calculable design guideline to re-

duce gear vibration [81, 102, 130]. Helical gears have a lower fluctuation in static

transmission error when compared with spur gears, so vibration excitation due to

transmission error fluctuation is lower in helical gears. This reduction in static

transmission error, however, does not always coincide with a reduction in vibra-

tion [36] because helical gears introduce additional excitations as a result of the

non-zero helix angle [80] including a twisting moment, axial thrust, and an axial

moment [13,14,23,34,35,37,77,129]. Not only these moments excite dynamics, they

also alter the load distribution on the gear teeth to create a three-dimensional non-

linear vibration problem.

The core of the problem is that the three-dimensional vibrations lead to loss of

contact at portions of a gear tooth surface that otherwise would have been in contact.
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This is called partial contact loss. The dynamic contact pattern is distorted as a result

of partial contact loss [6,21]. Tooth surface modifications and specified misalignments

also cause partial contact loss. To that end, Velex et al. [122] and Raclot and Velex [90]

computationally show that misaligned gears exhibit partial contact loss under static

conditions. There is, however, a crucial difference between [90, 122] and this work;

partial contact loss in [90, 122] is due to a specified misalignment, but in this work

partial contact loss occurs as a result of dynamic displacements even though the gears

are perfectly aligned in assembly.

This work intends to scrutinize the nonlinear dynamic response as a result of par-

tial contact loss due to three-dimensional dynamic displacements. Dynamic response

is obtained using numerical integration. The modeling follows Chapter 2, where a

discretization of the gear contact lines using network of springs tracks instantaneous

dynamic contact conditions. The lumped-parameter model developed in Chapter 2,

the equivalent stiffness representation, identically reproduces the net mesh forces and

moments from any given load distribution on the contact lines. It uses a transla-

tional mesh stiffness acting at the center of stiffness and a twist stiffness. Response

is interpreted using the instantaneous dynamic values from the equivalent stiffness

representation.

3.2 Modeling

3.2.1 Gear Pair Dynamic Model

The gear pair model is constructed following [23]. The model consists of two gears

mounted on shafts. Each gear body is combined with its supporting shaft into a single
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rigid body. These gear-shaft bodies are each mounted on up two bearings placed at

arbitrary axial locations. Figure 3.1 shows the gear model and the bases.

A fixed, right-handed, orthonormal basis {E} = {E1,E2,E3} is oriented such that

E1 is parallel to the line of action of the gear mesh. The origin is on the rotation

axis of the pinion body, midway in the active facewidth. Positive axial quantities are

measured along E3 from the dashed line in Figure 3.1.The translational (xp, yp, zp)

and angular (φp, θp, βp) coordinates of the pinion body are assigned to translations

along and rotations about E1, E2, and E3, respectively. We refer to a rotation about

E1 as tilting and a rotation about E2 as twisting. The translational and angular

coordinates of the gear body follow similarly with subscript g. Body-fixed bases

{ep} = {ep1, ep2, ep3} and {eg} = {eg1, eg2, eg3} for the pinion and gear are adopted.

The pinion translational and angular velocity vectors are

ṙp = ẋpE1 + ẏpE2 + żpE3,

ωp =
[

φ̇p − θp

(

β̇p + Ωp

)]

ep1 +
[

θ̇p + φp

(

β̇p + Ωp

)]

ep2 +
[

β̇p + Ωp − φpθ̇p

]

ep3,
(3.1)

where Ωp is the specified constant angular rotational speed of the pinion. The velocity

vectors for the gear are identical except with components for the gear.

The axial positions of the pinion bearings are measured along E3 by LA
p and LB

p .

The pinion bearing deflection vectors are the relative deflections at the bearings with

respect to ground, giving

dA
p =

[
θp
(
LA
p − ep

)
+ xp

]
E1 +

[
φp

(
ep − LA

p

)
+ yp

]
E2 + zpE3,

dB
p =

[
θp
(
LB
p − ep

)
+ xp

]
E1 +

[
φp

(
ep − LB

p

)
+ yp

]
E2 + zpE3.

(3.2)

The bearing deflections for the gear follow similarly. The bearings resist tilting and

twisting as well. The angular deflection of all pinion bearings are identical for rigid

shafts, giving

ΓA
p = ΓB

p = φpE1 + θpE2 + βpE3. (3.3)
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The bearings are isotropic in the E1 − E2 plane, so the bearing stiffness matrix for

translation is BA
p = diag

[
kAp , k

A
p , k

Az
p

]
, where the equality of stiffness in the two

translation directions is evident. The bearing stiffness matrix for rotation is χA
p =

diag
[
κAp , κ

A
p , κ

Az
p

]
. Similar definitions follow for other bearings.

Distributed gear contact loads are approximated by a discretization scheme de-

scribed in Chapter 2 Section 2.2.5. The nominal contact lines for no mesh deflection

are discretized into n segments with stiffness ki, i = 1, . . . , n. Displacements cause a

difference between the position vectors of the contact points on the pinion and gear.

That difference is the mesh deflection vector. The projection of the mesh deflection

vector on the tooth surface normal gives the relative compressive deflection of the

contact stiffness ki as

δi =
{

[ep − ci] θp + [ci − eg] θg − xp + xg + hi + βprp + βgrg

}

cosψ

−
{

[bi + hi] θp + [(rp + rg) tanΦ− bi] θg + zp − zg + φprp + φgrg

}

sinψ,
(3.4)

where rp and rg are the base radii, Φ is the transverse operating pressure angle, and

ψ is the base helix angle. The axial position of a contact point, measured from the

origin along E3, is ci, and the radial position of a contact point, measured from the

origin along E1, is bi. The positions of contact (bi, ci) are determined from known

gear rotation speed. Micron-level deviations of the tooth surface from an involute,

such as from gear tooth surface modifications and manufacturing errors, are denoted

by hi. Figure 3.1 depicts these quantities.

The contact stiffnesses ki depend implicitly on time t due to specified nominal

gear rotation and displacements q. The formula for ki is given by Eq. (2.30)
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The kinetic and potential energies are

T =
1

2

∑

k=p,g

(
ωT

k Jkωk + ṙTkmkṙk
)
,

V =
1

2

∑

k=p,g

∑

j=A,B

(

dj
h

T
Bj

hd
j
h + Γj

h

T
χ

j
hΓ

j
h

)

+
1

2

n∑

i=1

kiδ
2
i ,

(3.5)

The inertia tensor of the axisymmetric pinion body is Jp = diag
[
Jx
p , J

x
p , J

z
p

]
with

similar definition for the axisymmetric gear body.

Lagrange’s equations of motion for unconstrained generalized coordinates follow

after substitution of equations Eqs. (3.1) through (3.4) into the energy expressions

Eq. (3.5). In matrix form they are

Mq̈ +Dq̇+ ΩpGq̇ +
[
K+B− Ω2

pC
]
q = fext (3.6)

The vector q comprises generalized coordinates

q =
(

φp, θp, βp, xp, yp, zp
︸ ︷︷ ︸

pinion

, φg, θg, βg, xg, yg, zg
︸ ︷︷ ︸

gear

)

(3.7)

The vector fext includes external loading; the driving and absorbing torques and

tooth surface modifications appear here. The matrix K is the three-dimensional mesh

stiffness matrix. The matrix B is the bearing stiffness matrix. The elements of K, B

and fext are given in Eqs. (2.9), (2.14), and (2.10) with integration
∫
(. . .) dυ replaced

by summation
∑N

i=1(. . .). The terms that arise from the constant rotation speed are

contained in the gyroscopic matrix G and the centripetal acceleration matrix C. The

inertia matrix M, gyroscopic matrix G, and centripetal acceleration matrix C are

given by

M = diag(Jx
p , J

x
p , J

z
p , mp, mp, mp, J

x
g , J

x
g , J

z
g , mg, mg, mg) (3.8)

G1,2 =J
z
p − 2Jx

p , G2,1 = −Jz
p + 2Jx

p ,

G7,8 =R(J
z
p − 2Jx

p ), G8,7 = −R(Jz
p − 2Jx

p ),
(3.9)
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C1,1 = Jx
p , C2,2 = Jx

p , C7,7 = R2Jx
g , C8,8 = R2Jx

g . (3.10)

where R = Ωg/Ωp, and all unspecified elements are zero.

3.2.2 Equivalent Stiffness Representation

The equivalent stiffness representation, detailed in Chapter 2 Section 2.2.3, identi-

cally reproduces the net effect of load distribution obtained from the discretization of

contact line with the network of stiffnesses. There are four parameters in the equiv-

alent stiffness representation: translational mesh stiffness km, the center of stiffness

(b̄, c̄) at which the translational mesh stiffness acts, and the spread-twist stiffness kt.

These quantities are given by

km =
n∑

i=1

ki, kt =
n∑

i=1

(
kiA

2
p,i

)
− kmĀ

2
p. (3.11)

b̄ =
1

km

n∑

i=1

kibi, c̄ =
1

km

n∑

i=1

kici (3.12)

where Ap,i and Ag,i are the moment arms given by

Ap,i = [(ci − ep) cosψ + bi sinψ] , (3.13)

Ag,i = [− (ci − eg) cosψ + (B − bi) sinψ] (3.14)

The quantities with the overbar are obtained using bi = b̄, and ci = c̄. In Chapter

2, Figure 2.3 shows the equivalent stiffnesses, the center of stiffness, and the moment

arms.

The total twist stiffness of the pinion and gear are composed of the spread-twist

stiffness kt, which is due to the spread of contact along the gear teeth, and an off-

mid-plane component due to the mesh stiffness being offset by the moment arms Āp
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or Āg. The total twist stiffnesses are

kpt =K2,2 =

n∑

i=1

kiA
2
p,i = kmĀ

2
p + kt

kgt =K8,8 =
n∑

i=1

kiA
2
g,i = kmĀ

2
g + kt

(3.15)

Coupling twist stiffness kct couples pinion and gear twist by generating a twist in the

gear due to a twist in the pinion, given by

kct = K2,8 =

n∑

i=1

kiAp,iAg,i = kmĀpĀg − kt (3.16)

The total mesh force and moment due to spread of contact are

F = kmδ̄, Ms = ktγ (3.17)

where δ̄ is the equivalent mesh deflection and γ = θp − θg is the relative twist angle

between the pinion and the gear.
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Figure 3.1: Gear pair model. The dashed line is at the center of the active facewidth.
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3.3 Dynamic Analysis

3.3.1 Method

The nonlinear dynamic response is obtained using numerical integration of the

equations of motion Eq. (3.6). The high-speed effects are neglected; Ωp = 0. Numer-

ical integration at each excitation frequency is performed until the transient response

is settled and the steady state response is reached. In order to minimize transient

response, and so the computation time required, the initial guess for the numerical

integration is set to the static solution q = qs at t = 0. The static solution is found

from

(K+B)qs = fext (3.18)

obtained by substitution of q̈ = q̇ = 0, Ωp = 0 into Eq. (3.6).

Under dynamic conditions, the translational stiffness km, the spread-twist stiffness

kt, and the axial center of stiffness c̄ along facewidth are found instantaneously as

q is calculated at each time step from Eqs. (3.11) and (3.12). These instantaneous

dynamic quantities are indicated by prefixing the word “dynamic” to stiffnesses and

center of stiffness in the upcoming discussions. The dynamic quantities are different

from quasi-static quantities and are crucial output metrics that help explore the

nonlinear vibrations.

The numerical integration requires K and fext. These, however, are not known a

priori as they depend on the changing contact conditions Hi of the contact springs

ki. The iteration procedure described in [23] is adopted to solve K and fext for a given

dynamic displacement vector q at an instant t.
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3.3.2 Linearization

The time-average of the mesh stiffness matrix K at the operating torque over a

mesh period gives the mean stiffness matrix Km. The excitation from the gear mesh

is approximated as a periodic external force [81, 118], given by (Km +B)qs(t). The

external force vector with its harmonic content is found from the static deflection

vector qs(t), which is solved from Eq. (3.18) at several points over a mesh period.

Linear time-invariant equations of motion are

Mq̈+Dq̇ + (Km +B)q = (Km +B)qs(t), (3.19)

which are solved in frequency domain using the first five harmonics of qs(t). Damping

matrix D is calculated using modal damping. Damping is difficult to estimate in gear

dynamics [11]. It is taken to be less than 10%, but it varies among different gear

pairs.

3.3.3 Spur Gear Pair With Modifications: Comparison with
Experiments

In this subsection, some modified spur gears from [47] are analyzed with the

purpose to find out whether partial contact loss occurs in experiments.

The static transmission errors generating qs(t) are plotted in Figures 2.4(b), 2.4(c),

and 2.4(d). Finite element analysis results are included to confirm the solution from

the analytical model. The agreement between the analytical and finite element anal-

ysis verifies the discretization of load distribution. Dynamic response is plotted in

Figure 3.2, which shows experimentally measured, linear, and nonlinear root mean

square (RMS) of the transmission error with gear rotation speed. The mean is re-

moved when calculating the RMS of quantities. The error bars, ±1 µm, mark the
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repeatability of the measurements, which was reported in a closely related paper

by the same authors [46]. The agreement between the experimental measurements

and numerical integration in Figure 3.2 verifies the analytical model under dynamic

conditions.

Inspecting Figure 3.2, the nonlinear and experimental solutions gradually deviate

from the linear solution. There is not a kink point as in [5, 44, 67, 72, 86] in the

amplitude versus frequency curve that marks the onset of contact loss. This distinct

behavior at the onset of contact loss will be observed in the upcoming analysis in

Figure 3.16. Total contact loss starts at mesh frequencies Ω = 1.09, Ω = 0.97,

Ω = 0.96, Ω = 0.98, but the nonlinear solution deviates from the linear solution

before total contact loss starts.

Figure 3.3 compares the static and dynamic translational mesh stiffnesses (km) of

the gear pairs in Figure 3.2 at selected gear rotation speeds. The dynamic stiffness

values are from numerical integration. These selected speeds are adjacent to the

speeds where total contact loss starts. In each case, total contact loss starts at

the next lower speed. The static and dynamic translational mesh stiffnesses km are

different. As the dynamic response amplitude increases, portions of gear teeth lose

contact (partial contact loss). Hence the deviation of dynamic mesh stiffness from

static mesh stiffness. Away from resonance (not shown), the static and dynamic mesh

stiffnesses are almost identical for all four gear pairs.

The dynamic contact patterns at three speeds at torques of 85 N-m and 170 N-m

are plotted in Figure 3.4. Figures 3.4(a) and 3.4(b) show contact patterns away from

resonance, Figures 3.4(c) and 3.4(d) just before total contact loss, and Figures 3.4(e)

and 3.4(f) at the frequency of peak response.
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The contact patterns away from resonance (Figure 3.4(a) and 3.4(b)) are similar to

static contact patterns in Figures 2.5(a) and 2.5(c), but the dynamic contact patterns

just before total contact loss (Figures 3.4(c) and 3.4(f)) are much different than the

static contact patterns. This distortion is the result of partial contact loss. The

dynamic contact patterns at peak response frequency (Figures 3.4(e) and 3.4(f)) are

also much different than static contact patterns, but this time because of total contact

loss.
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Figure 3.2: RMS (mean removed) of the transmission error from numerical integration
(cross), linear solution (solid line), and experimental measurement from Figure 13
of [47] (circles with error bars). All gears have 10 µm of tip relief and 5 µm of
circular lead crown. (a) Tip relief on both gears starts at α = 20.9 deg; the torque is
85 N-m. (b) Tip relief on both gears starts at α = 20.9 deg; the torque is 170 N-m.
(c) Tip relief on both gears starts at α = 22.2 deg; the torque is 340 N-m. (d) Tip
relief on both gears starts at α = 23.6 deg; the torque is 340 N-m.
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Figure 3.3: Static (dashed line) and dynamic (solid line) translational mesh stiffness
at selected speeds. (a) Ω = 1.09. (b) Ω = 0.97. (c) Ω = 0.96. (d) Ω = 0.98. Subfigure
indices in this figure and Figure 3.2 correspond to the same gear pairs.
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Figure 3.4: Dynamic contact patterns of the gear pair in Figures 3.2(a) and 3.2(b)
at selected speeds. (a) Away from resonance, Ω = 0.61; applied torque 85 N-m. (b)
Away from resonance, Ω = 0.67; applied torque 170 N-m. (c) Before total contact
loss, Ω = 1.09; applied torque 85 N-m. (d) Before total contact loss, Ω = 0.97; applied
torque 170 N-m. (e) At peak response frequency, Ω = 0.87; applied torque 85 N-m.
(f) At peak response frequency, Ω = 0.93; applied torque 170 N-m.
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3.3.4 Helical Gear Pair With Modifications

In this subsection, the modified helical gear pair described in Tables 2.1 and 2.2

is analyzed. The static transmission error generating qs(t) is plotted and compared

with finite element analysis in Figure 2.4(a). Figure 2.12(a) shows the static contact

pattern.

Figure 3.5 shows the natural frequencies and modal strain energy distributions

of each mode. In the horizontal axes, xA denotes the energy stored in the pinion

bearing at A in the x direction (along E1). The pinion bearing at B and the gear

bearings follow similarly. The last two columns denote the gear mesh strain energy

stored in the equivalent translational km and spread-twist stiffnesses kt. The signs of

the strain energy in the bearings reflect the direction of motion. The assignment of

direction of motion in strain energy differentiates between translation and twisting of

the gear-shaft bodies. The strain energies in the gear mesh are always positive. Some

natural frequencies are repeated because the mass and the inertia of the pinion and

gear are equal.

The 7th and the 12th vibration modes are interesting to explore because the 7th

mode involves relative mesh twist, and the 12th mode involves mesh deflection. These

are the only modes that cause a compression in the mesh twist and translational

stiffnesses. One expects nonlinear dynamic response if these vibration modes are

excited.

Twist Mode Peak at 490 Hz

The relative twisting peak at 490 Hz in Figure 3.9 is the resonance of the mesh

twist mode (mode 7). The inset plots show dynamic contact patterns. The response is
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nonlinear as confirmed by the differing linear and nonlinear curves. Figure 3.6 shows

the static and dynamic mesh force F , static and dynamic translational and spread-

twist mesh stiffnesses, static and dynamic center of stiffness, and dynamic contact

pattern at 490 Hz. The dynamic mesh force in Figure 3.6(a) is always positive,

and the dynamic fluctuation is mild. There is no total contact loss. The teeth

remain engaged at all times. One would not expect the difference between linear and

nonlinear response and static and dynamic contact patterns given that the dynamic

mesh force is almost constant.

To explain, the high dynamic fluctuation of the the center of stiffness indicates

significant relative twisting of the gears. Twisting distorts the dynamic contact pat-

tern significantly compared with the static contact pattern in Figure 2.12(a). While

the total mesh force changes only slightly and there is no total contact loss, its dis-

tribution on the tooth surface is markedly changed by twisting. This dynamically

changes which contact segments are in contact. This kind of twist vibration mode

has been neglected in prior studies, that must be restricted to narrow facewidth gears.

The relatively low natural frequency make it a potentially troublesome resonance in

practical applications.

The nonlinear resonant frequency of 490 Hz observed from Figure 3.9 is higher than

the natural frequency of 425 Hz. Consider the dynamic natural frequency obtained

using the stiffness matrix averaged over a few mesh cycles under stead-state dynamic

conditions. The dynamic natural frequency of the twist mode (mode 7), shown in

Figure 3.7(a), correlates with the increase in the response frequency. As a contrast, the

mesh deflection mode dynamic natural frequency, plotted in Figure 3.7(b), correlates
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with the decrease in the response frequency of the mesh deflection mode in Figure

3.13.

To explain the increase in the dynamic natural frequency of the twist mode, the

twist is almost purely pinion and gear twisting; only the twist degrees-of-freedom θp

and θg are active. Consequently, the simplest system that can reproduce the natural

frequency of the twist mode must include θp and θg. The mass and stiffness matrices

of this reduced system are

Mt =

[
M2,2 0

M8,8

]

, Kt =

[
kpt +B2,2 kct

kgt +B8,8

]

. (3.20)

The time histories of the total pinion twist stiffnesses kpt, total gear twist stiffnesses

kgt, and coupling twist stiffnesses kct are shown in Figure 3.8. The mean value of the

coupling twist stiffness during vibrations drops significantly while mean values of the

total pinion and gear twist stiffnesses stay about the same. The drop in kct is due to

the nonlinear dependence of the moment arms Āp and Āg on relative twist γ. This

drop in kct drives the dynamic natural frequency higher.

The foregoing discussions of the twist mode is crucial because they highlight: 1)

Twist mode, with its previously unidentified subharmonic resonance, is excited. 2)

The interaction between the nonlinear gear mesh and the three-dimensional gear body

displacements yield peculiar dynamic response.
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Figure 3.5: Strain energy in bearings and gear mesh of the modified helical gear pair
in Tables 2.1 and 2.2. xA through zB mark the strain energy in bearing degrees of
freedom. km marks the strain energy in the translational stiffness, and kt marks the
strain energy in the spread-twist stiffness. The positive/negative values distinguish
the direction of motion. Mesh strain energies are always positive.
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Figure 3.6: Dynamic response of the modified helical gear pair described in Tables
2.1 and 2.2 at 490 Hz. Time histories include static (dashed line) and dynamic (solid
line) fluctuations. Contact pattern is for the dynamic case.

300 400 500 600 700 800
400

450

500

550

600

ω
n [H

z]

Mesh frequency [Hz]

 

 

(a)

6000 6500 7000 7500
5600

5800

6000

6200

6400

Mesh frequency [Hz]

ω
n [H

z]

(b)

Figure 3.7: (a) Twist mode (7th) dynamic natural frequency around twisting res-
onance, (b) Mesh deflection mode (12th) natural frequency around mesh deflection
resonance.
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Subharmonic Peak at 1010 Hz

There is a peak in the response in Figure 3.9 when the mesh frequency is around

1010 Hz. The dynamic center of stiffness at 1010 Hz is plotted in Figure 3.10. The

time history is periodic at twice the mesh period, which is also seen in the frequency

components of the twist angle in Figure 3.11. High dynamic fluctuations indicate

twist vibration consistent with mode 7.

This response is the subharmonic resonance of the twist mode (mode 7) where the

mesh frequency is nearly twice ω7. The indicators that this is a subharmonic resonance

are: 1) The sharp peak at 1010 Hz in Figure 3.9 without a natural frequency near

this value; 2) No linear response at 1010 Hz; and 3) The spectrum in Figure 3.11 at

1010 Hz with response at multiples of n/2 of the mesh frequency, n = 1, 2.

This resonance may be driven by parametric excitation from the time-varying

twist stiffnesses. This is a previously unidentified kind of gear vibration because it

stems from the twist mode. Had the twist mode been neglected, its subharmonic

resonance would not appear.

Mesh Deflection Mode Peak at 6200 Hz

This is the primary resonance of the mesh deflection mode (mode 12). There is

significant nonlinearity from partial contact loss, as evident by the difference between

the linear and nonlinear response curves in Figure 3.12. The dynamic mesh force

and both translational and twist stiffnesses at 6200 Hz reach zero in Figures 3.13(a),

3.13(b), and 3.13(c). Center of stiffness in Figure 3.13(d) is undefined at total contact

loss instants. Partial and total contact loss is reflected in the contact pattern in Figure

3.13(e).
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Figure 3.14 shows the static and dynamic mesh stiffnesses at selected operating

speeds. There is a difference between the static and dynamic stiffnesses although the

teeth remain in contact. The closer the operating speed to the resonant frequency,

the greater the difference between static and dynamic stiffnesses. Similar behavior

was observed in modified spur gears, and it is a result of partial contact loss.

When total contact loss occurs without prior partial contact loss, as in spur gears,

a sharp kink would appear in Figure 3.12 where the nonlinear curve diverges from

the linear curve [5,44,67,72,86]. Instead, the nonlinear response deviates slowly and

smoothly from the linear response in Figure 3.12 because of partial contact loss.

Peak at 890 Hz

This is the resonance of mode 8. Despite the high pinion bearing displacement

xp at 890 Hz, the transmission error is low (Figure 3.15). Consequently, the dynamic

fluctuations in mesh force and contact pattern are negligible (not plotted). The linear

behavior of this resonance demonstrates that not all deflections cause nonlinearity.

Dynamic displacements must be in the nonlinear mesh stiffnesses for a nonlinearity

in the dynamic response to develop.
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Figure 3.9: Dynamic twist angle γ from nonlinear (solid line) and linear (dashed line)
solutions of the modified helical gear pair given in Tables 2.1 and 2.2.
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Figure 3.10: center of stiffness of the modified helical gear pair described in Tables
2.1 and 2.2 at 1010 Hz. Static fluctuations: dashed line), dynamic fluctuations: solid
line.
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(speed-down) solution. Gear parameters are in Tables 2.1 and 2.2.
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Figure 3.13: Dynamic response of the modified helical gear pair described in Tables
2.1 and 2.2 at 6200 Hz. Time histories include static (dashed line) and dynamic (solid
line) fluctuations. Contact pattern is for the dynamic case.
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Figure 3.14: Static (dashed line) and dynamic (solid line) mesh stiffness at selected
operating speeds of the helical gear pair described in Table 2.1 with tooth surface
modifications given in Table 2.2. (a) 7500 Hz. (b) 7000 Hz. (c) 6900 Hz. (d) 6800
Hz. (d) 6700 Hz. (f) 6500 Hz.
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Figure 3.15: Dynamic transmission error (dashed line) and pinion bearing displace-
ment xp (solid line) from nonlinear solution of the modified helical gear pair.
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3.3.5 Spur Gear Pair Without Modifications

In this subsection, an unmodified spur gear pair is analyzed. The gear parameters

are given in Table 2.1 but the helix angle is zero. Figure 3.16 shows the linear and

nonlinear dynamic transmission error. The linear solution is almost identical to the

nonlinear solution until there is total contact loss. The nonlinear solution immediately

deviates from the linear solution at the onset of total contact loss near 9000 Hz and

the peak bends toward lower frequency. This nonlinear behavior of gears was reported

in the literature [5,44,67,72,86]. It contrasts with the primary resonance of modified

gear pairs discussed earlier. In the modified helical gear pair, softening nonlinearity

always exists but in the form of partial contact loss, so the transition from partial

to total contact loss is smooth. Thus, the nonlinear solution deviates gradually from

the linear solution rather than with a marked change in the frequency response curve

as in Figure 3.16 and [5, 44, 67, 72, 86].
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Figure 3.16: RMS transmission error from the linear (dashed line) and nonlinear
(speed-up and speed-down, dots at data points) solutions of an unmodified spur gear
pair. Note the high concentration of data points. Gear parameters are given in Table
2.1 except the helix angle is zero.
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3.3.6 Discussion

From the computational observations we deduce that partial contact loss can

appear when:

1. There are twisting vibrations. Gears may be helical or spur, but the twist

mode needs to be excited either via the moments from the helical gear mesh, or

via external periodic forcing. Twisting separates the edges of the gears hence

partial contact loss. Modified and unmodified gears are both susceptible.

2. There are tooth surface modifications. At the mesh deflection mode resonance,

the dynamic fluctuation of mesh force changes the contact, thus causing partial

contact loss. The gears may be helical or spur, but unmodified gears show only

total contact loss.

The observed dynamic response and the type of nonlinearity is summarized in

Table 3.1 for spur and helical gears with and without modifications.

Table 3.1: Summary of dynamic response for spur and helical gears with and without
modifications. PCL: Partial contact loss, TCL: Total contact loss

Twist mode Mesh deflection mode

Spur Gears (Unmodified) Not excited TCL
Spur Gears (Modified) Not excited PCL and TCL
Helical Gears (Unmodified) PCL TCL
Helical Gears (Modified) PCL PCL and TCL
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3.4 Conclusions

This work uses a nonlinear three-dimensional gear mesh model, where portions of

contact lines may disengage although the teeth may not totally lose contact. This is

called partial contact loss. The resulting equations of motion intertwine the gear mesh

nonlinearity with three-dimensional gear body displacements. Dynamic response is

obtained by numerical integration of the nonlinear time-varying equations of motion

and by frequency domain analysis of the linearized time-invariant equations of motion.

An equivalent lumped-parameter representation of the gear mesh (a translational

mesh stiffness located at the center of stiffness and a spread-twist mesh stiffness) en-

capsulates the consequences of the intertwinement of the three-dimensional dynamic

gear displacements with the nonlinear gear mesh. There are two important modes:

1. The mesh deflection mode involves compression of the translational mesh stiff-

ness. The translational mesh stiffness and the spread-twist mesh stiffness both

dynamically decrease as a result of partial contact loss. This decrease is ob-

served when there are tooth surface modifications in both spur and helical gears.

Eventually at higher amplitude vibrations contact is completely lost. Without

modifications, however, there is only total contact loss. Dynamic partial con-

tact loss in this mode is shown to exist in experiments, so it is not merely a

theoretical find. Overall reduction of translational mesh stiffness decreases the

peak resonance frequency.

2. The mesh twist mode involves relative twist between gears. The time depen-

dence of the spread-twist stiffness and the center of stiffness excite this mode in

helical gears. Twisting and the consequent partial contact loss severely distorts
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the dynamic contact pattern and so the surface stresses. In the helical gears

analyzed, partial contact loss near the twist mode resonance dynamically de-

creases the coupling twist stiffness. That increases the peak response frequency.

This inverse relationship between the coupling-twist stiffness and response fre-

quency is shown in a two degree-of-freedom, which is the simplest system that

can reproduce the twist mode.
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Chapter 4: Nonlinear Vibration of Gears with Tooth Surface

Modifications and Sphere/Half-Space Contact

4.1 Introduction

Vibration of gear pairs can be considered under the general category of contact

vibrations, which also includes vibration of bearings, splines, linkages, and other me-

chanical connections. In gear applications, the involute tooth surface shape is usually

modified slightly to improve misalignment tolerance [17] and to avoid undesirable

edge or corner contact [63]. With or without such tooth modifications gear vibrations

exhibit softening nonlinearity [5,24,47,86,115,121] near resonance as a result of total

or partial contact loss. Partial contact loss is where portions of nominally contact-

ing surfaces lose contact (and other nominally non-contacting portions potentially

gain contact) as a result of dynamic motions, surface modification, or misalignment.

Modifications are the major source of partial contact loss [23]. Although gear systems

that exhibit total contact loss have been analyzed, only numerical solutions for the

vibration of gears that exhibit partial contact loss are available in the literature, for

example [3,6,9,26,56,121]. To that end, this work applies approximate methods that

yield analytical solutions for nonlinear gear contact vibrations.
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Vibration of other contacting systems involve softening nonlinearity, in particular

sphere/half-space contact vibration [73,91,94]. The approach and results in this work

apply to such problems, and sphere/half-space contact is examined herein. Research

on nonlinear sphere/half-space contact vibrations uses force-deflection relations from

the Hertz formula, which can be treated by perturbation methods or harmonic bal-

ance [75, 106]. Hess and Soom [32] solve a single degree-of-freedom system with

quadratic and cubic nonlinearities excited by harmonic forcing. Perret-Liaudet and

Rigaud [89] analyze subharmonic resonances of sphere/half-space contact vibrations.

Harmonic balance and perturbation analysis both compare well with experimental

measurements [69, 91, 94].

The equations of motion for gear vibrations include time-dependent parameters

such as periodic variation in mesh stiffness. In many cases, lumped-parameter gear

models excited by static transmission error or time-varying mesh stiffness give satis-

factory results [26,30,57,81,82,86,101,118]. A single spring is used to model the gear

mesh interface in these works. Velex and Ajmi [118] examine the validity of approx-

imating transmission error as the excitation source. Liu and Parker [65] explore the

conditions under which the aforementioned approximations work.

Lumped-parameter gear models allow closed-form solutions using harmonic bal-

ance [11,44,49,83] and perturbation methods [50,72,105]. The sole source of nonlin-

earity in the works listed above is total contact loss, a piecewise nonlinearity in which

the gear mesh ceases to transmit any force. Gear tooth surface modifications are not

included in the aforementioned works.

The modeling in [65,67] for the dynamic response of multi-mesh gears differs from

the literature listed above because it considers tooth profile modifications and contact
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loss at each of the individual meshing gear teeth rather than the gear mesh as a whole.

In [65, 67], such contact loss is due to linear tooth profile modifications, which is the

only type of modification they consider.

Detailed tooth contact models allow dynamic analysis for any type of tooth sur-

face modification [24,54,71,115,121]. Such models predict partial contact loss arising

from arbitrary tooth surface modification [3, 9, 24, 90, 121, 122]. Contact algorithms

that allow for partial contact loss, however, are prohibitively complex for analytical

methods and nonlinear dynamic response can only be obtained numerically. Numer-

ical methods give only restricted generalizations about dynamic behavior because

they are limited to selected parametric studies. There are no studies in the literature

that provide analytical closed-form solutions for the nonlinear vibration of gears when

partial contact loss is present.

This work gives analytical closed-form solutions for nonlinear rotational gear vi-

brations near primary resonance, that is, when the excitation frequency is close to

the natural frequency. The solution includes the nonlinear behavior due to partial

contact loss and admits arbitrary modifications of the gear tooth surface. The use of

a general force-deflection function as an input means the dynamic equation of motion

does not depend on the physical gear modeling assumptions and can apply to other

contact problems. Sphere/half-space contact is the other physical system analyzed

in this work. Considering gears, the force-deflection function effectively captures the

phenomena of partial contact loss, parameter time-dependence, tooth surface mod-

ifications, changing number of teeth in contact, and so on. The sphere/half-space

contact vibrations approximate Hertz contact behavior. With Taylor and Fourier
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series expansions, the equation of motion takes a generalized polynomial form that

enables use of the method of multiple scales.

4.2 Mathematical Model

4.2.1 Equation of Motion

This section presents a single degree-of-freedom equation of motion in a form

suitable for perturbation analysis. The key assumption is that the force-deflection

function and the applied load vary periodically with time. No further assumptions

are made at this point to tailor the equation of motion to gears, sphere/half-space

contact, or any other system.

The equation of motion is

mẍ+ cẋ+ C(x, t)f(x, t) = F (t) (4.1)

where F (t) is the periodic applied load with period PF , f(x, t) is the nonlinear,

time-dependent, periodic force-deflection function with period Pf , and C(x, t) is the

separation function given by

C(x, t) =

{
0 if x < g(t)
1 if x ≥ g(t)

(4.2)

where g(t) is the unloaded (F (t) = 0), quasi-static (ẋ = ẍ = 0) deflection. It satisfies

f (g(t), t) = 0.

This single degree-of-freedom mechanical oscillator can approximate the rotational

vibration of gear pairs. In this case, the force-deflection function f(x, t) considers the

elastic tooth contact, tooth bending, shear, and so on. Because of the changing

number of teeth in contact, the force-deflection function is periodic with tooth pass

frequency. Equation (4.2) restricts contact loss to single-sided impacts. Elimination
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of the rigid body motion [55, 81] lumps the rotational inertias of both the pinion

(Ip) and gear (Ig) into m = IpIg/
(
Ipr

2
g + Igr

2
p

)
in Eq. (4.1), where rp and rg are the

pinion and gear base radii, and θp and θg are the rotational deflections of the pinion

and gear. In this case, the load is constant and F (t) = F = Tp/rp represents the

mesh force due to a constant applied torque Tp. Losses from all sources are lumped

into the viscous damping coefficient c. With this formulation, x(t) = θprp + θgrg is

the dynamic transmission error in Eq. (4.1), and xs = g(t) is the unloaded static

transmission error.

Sphere/half-space contact is the other physical system examined in this work. The

single degree-of-freedom nonlinear equation of motion from [89] models sphere/half-

space contact vibration experiments. Although periodic irregularities on bearing races

and railway tracks are physical examples of contact vibrations that result in time-

dependence in f(x, t) and g(t), with sphere/half-space contact vibration experiments

there are no surface irregularities, so f(x, t) = f(x) and g(t) = 0. The periodic applied

force F (t) from a shaker excites the experimental system used as a benchmark for

the current analysis.

The force-deflection function f(x, t) is the crucial quantity in this work. For

a variety of systems, it can be obtained from experiments, finite element analysis,

and analytical contact models. In gears, it is routinely calculated from computa-

tional models and readily measured. The force-deflection function, independent of

the physical system in question and the method used to obtain it, can be represented

by a Taylor series around xm up to the nth order by

f(x, t) =
n∑

i=0

1

i!

∂if(x, t)

∂xi

∣
∣
∣
∣
x=xm

(x− xm)
i =

n∑

i=0

Bi(t) (x− xm)
i (4.3)
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where xm is the deflection induced by the mean applied load. Averaging the force-

deflection function and the applied force over their shortest common period P , xm is

found from
∫ P

0

F (t) dt =

∫ P

0

f(xm, t) dt (4.4)

The Fourier series expansion of Bi(t) in Eq. (4.3) is

Bi(t) = βi,0 +

p
∑

r=1

βi,r cos(rξt− Φi,r), i = 0, 1, . . . , n (4.5)

where ξ = 2π/Pf is the frequency of f(x, t). The Fourier expansion of F (t) is

F (t) = F0 +

p
∑

r=1

Fr cos(rζt− Rr) (4.6)

where ζ = 2π/PF is the frequency of F (t). Substitution of y = x−xm, Eq. (4.5), and

Eq. (4.6) into Eqs. (4.1) and (4.2) gives

mÿ + cẏ + C(y, t)

n∑

i=0

[

βi,0 +

p
∑

r=1

βi,r cos(rξt− Φi,r)

]

yi = F0 +

p
∑

r=1

Fr cos(rζt− Rr)

(4.7)

C(y, t) =

{
0 if y < −xm + g(t)
1 if y ≥ −xm + g(t)

(4.8)

Substitution of β0,0 = F0, a result of Eqs. (4.4) and (4.5), and (4.6) into Eq. (4.7)

eliminates the mean load F0 under contact, giving

mÿ + cẏ + C(y, t)

n∑

i=1

[

βi,0 +

p
∑

r=1

βi,r cos(rξt− Φi,r)

]

yi =

p
∑

r=1

Fr cos(rζt− Rr)

− C(y, t)

p
∑

r=1

β0,r cos(rξt− Φ0,r)− F0 [C(y, t)− 1]

(4.9)

so the mean load F0 acts only when contact is lost.

Fourier expansion of g(t) gives

g(t) = g0 +

p
∑

r=1

gr cos(rξt−Ψr) (4.10)
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The definition d = xm − g0 and substitution of T = ωnt, ωn =
√

β1,0/m, and

y = ud give the non-dimensional forms of Eqs. (4.8) and (4.9) as

u′′ + 2µu′ + C(u, T )

n∑

i=1

[

αi,0 +

p
∑

r=1

αi,r cos (rΩfT − φi,r)

]

ui =

p
∑

r=1

qr cos (rΩFT − ρr)

− C(u, T )

[

α0,1 cosΩfT +

p
∑

r=2

α0,r cos (rΩfT − φ0,r)

]

− α0,0 [C(u, t)− 1]

(4.11)

C(u, T ) =







0 if u < −1 +

p
∑

r=1

er cos(rΩfT − ψr)

1 if u ≥ −1 +

p∑

r=1

er cos(rΩfT − ψr)

(4.12)

where ()′ = d/ dT , the non-dimensional quantities are

Ωf =
ξ

ωn
,ΩF =

ζ

ωn
, µ =

c

2mωn
, qr =

Fr

dβ1,0
(r 6= 0), αi,r =

βi,rd
i−1

β1,0
, er =

gr
d

(4.13)

and the phase angles relative to Φ0,1 are (i = 0, 1, . . . , n and r = 0, 1, . . . , p)

φi,r = Φi,r − Φ0,1, ρr = Rr − Φ0,1, ψr = Ψr − Φ0,1 (4.14)

Considering sphere/half-space contact vibrations, the equation of motion from

Eq. (7) in [89] is

z̈ + 2µż +

(

1 +
2

3
z

)3/2

= 1 + k cos ζt, if z ≥ −3/2

z̈ + 2µż = 1 + k cos ζt, if z < −3/2

(4.15)

This equation approximates the Hertz contact between a sphere and a half-space.

A constant dimensionless load of 1 from the weight of the sphere and a sinusoidal

excitation amplitude k from a shaker are applied to the sphere. The transformation

x = 1 + 2z/3 converts Eq. (4.15) into the form of Eq. (4.1) as

ẍ+ 2µẋ+
2

3
x3/2 =

2

3
+

2k

3
cos ζt, if x ≥ 0

ẍ+ 2µẋ =
2

3
+

2k

3
cos ζt, if x < 0

(4.16)
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where contact is lost when x < 0. Comparing this equation with Eqs. (4.1) and (4.2),

m = 1, c = 2µ, f(x, t) = 2/3x3/2, and F (t) = 2/3 + 2k/3 cos ζt. The mean deflection

is xm = 1 using Eq. (4.4). g(t) = g0 = 0, and so d = 1. The natural frequency is

ωn = 1. Use of Eq. (4.13) gives α0,0 = 2/3, α2,0 = 1/4, α3,0 = −1/24, q1 = 2k/3.

Damping µ and frequency ζ are unchanged by the transformation, and Φ0,1 = ρ1 = 0.

Following [69], the Taylor coefficients αi,0 are modified slightly to match the boundary

condition at contact loss such that α2,0 = 2/7 and α3,0 = −1/21.

4.2.2 Physical Interpretation

Meaning of Non-dimensional Parameters

The physical interpretation of the important non-dimensional parameters are

listed below and summarized in Table 4.1.

1. The mean load α0,0, linear mean stiffness α1,0, and nonlinear stiffnesses αi,0

(i > 1) come from Taylor expansion of the force-deflection function by Eq. (4.3).

In gears, α0,0 represents the constant mesh force, α1,0 the linear mesh stiffness,

and αi,0 (i > 1) the stiffness nonlinearities that include partial contact loss,

nonlinear Hertz contact and others. In sphere/half-space contact experiments,

α0,0 represents the weight of the sphere and the assembly, α1,0 the linear stiffness

due to Hertz contact, and αi,0 (i > 1) the stiffness nonlinearity associated with

Hertz contact mechanics.

2. The excitation harmonics from the force-deflection function, α0,r, the harmonics

of linear stiffness, α1,r, the harmonics of stiffness nonlinearity αi,r (i > 1) r > 0

and associated phase angles φi,r come from Fourier expansion of the Taylor
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coefficients Bi(t) by Eq. (4.5). They exist in gears due to periodic engage-

ment/disengagement of the gear teeth. They do not occur in sphere/half-space

contact. The quantity α0,r excites the dynamics. It is close to what is called the

“static transmission error excitation” for unmodified gears. The α1,r represent

the periodic change in the linear mesh stiffness. The periodicity of the stiffness

nonlinearity, that is, changes in the strength of nonlinearity as the gear teeth

engage/disengage, is contained in αi,r, (i > 1).

3. The harmonics of the external excitation qr and associated phase angles ρr come

from Fourier expansion of the applied force F (t) by Eq. (4.6). For gears, the

applied torque is constant, so qr = 0. In sphere/half-space contact experiments

q1 excites the system.

4. The harmonics of the unloaded deflection er and associated phase angles ψr

come from Fourier expansion of the unloaded deflection g(t) by Eq. (4.10). They

only exist in gears and represent the time-dependent unloaded transmission

error.

Partial Contact Loss

Partial contact loss occurs when portions of nominal gear contact lines lose contact

while the other parts are still in contact [23, 24]. This contrasts with total contact

loss, where the gear mesh ceases to transmit any force. Gear vibrations and tooth

surface modifications cause partial contact loss. Partial contact loss depends heavily

on applied torque. The mesh stiffness of modified gears, which depends on the total

length of the contacting lines, changes with applied torque. Figure 4.1 demonstrates
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this dependence by comparing the dimensional mesh stiffness of unmodified and mod-

ified gears. The modified gears depend heavily on torque; the unmodified gears do

not. This dependence of stiffness on torque is a source of nonlinearity, and it results

from partial contact loss. As mentioned in the foregoing paragraph, the parameters

αi,r and φi,r for i > 1 incorporate partial contact loss, and any other nonlinearity

present in the force-deflection function, into the equation of motion. Static finite

element analysis at many points in a tooth mesh cycle is one effective way to com-

pute the force-deflection function considering partial contact loss and Hertz contact

nonlinearity. Commercial software can do this accurately.

Independence of Total Contact Loss from Applied Torque

The analysis to this point helps explain the observation in [8, 12, 65, 67, 86] that

increasing the applied torque does not reduce the contact loss near primary reso-

nance in unmodified gears, that is, if contact loss occurs at one torque it will occur

at any other torque. Figure 4.2 shows dimensional, mean-removed excitations from

an unmodified and a modified gear pair. The dimensional mean removed excitation

B0(t)− F0 and the mean deflection xm for unmodified gears are almost directly pro-

portional to the applied torque. The modified gears show no such proportionality.

The first harmonic of the non-dimensional excitation α0,1 is the dominant driver of

vibrations near primary resonance. This quantity from the unmodified and modified

gear pairs is shown in Figure 4.3. Changing the applied torque does not change the

first harmonic of the excitation for the unmodified gear pair much, but it dramatically

changes this quantity for the modified gear pair. In other words, the first harmonic

of the excitation is sensitive to torque for modified gears, but insensitive to torque for

unmodified gears. Because the first harmonic of the non-dimensional excitation α0,1
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from unmodified gears is similar for any applied torque, the applied torque has no

effect upon the non-dimensional response or the presence of contact loss. This math-

ematical explanation translates into a physical explanation as follows. In unmodified

gears, a higher torque nearly linearly increases both: a) the excitation and so the

vibration amplitude, and b) the threshold of vibration amplitude needed to trigger

contact loss. As a result, the occurrence of contact loss remains independent of the

applied torque.

0 0.5 1
1.5

2

2.5

3

3.5
x 10

8

Gear mesh period (T) 

S
ti

ff
n
es

s 
B

1
(T

) 
[N

/m
] 

 

(a)

0 0.5 1
1.5

2

2.5

3

3.5
x 10

8

Gear mesh period (T) 

S
ti

ff
n
es

s 
B

1
(T

) 
[N

/m
] 

(b)

Figure 4.1: Dimensional gear mesh stiffness at 50 N-m (dash-dot line), 150 N-m
(dashed line), and 250 N-m (solid line) using finite element analysis. a) Unmodified
spur gear pair from [46] (ICR = 1.37). b) Modified spur gear pair from [47] (tip relief
starts at 22.2 deg).
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Figure 4.2: Dimensional mean-removed excitation levels from the gears in Figure 4.1
at 50 N-m (dash-dot line), 150 N-m (dashed line), and 250 N-m (solid line) using
finite element analysis. a) Unmodified spur gear pair. b) Modified spur gear pair.
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Figure 4.3: The first harmonic of non-dimensional excitation from the unmodified
and modified gears with varying applied torque. The gears are the same as in Figure
4.1.
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Table 4.1: Summary of non-dimensional parameters and their physical interpretation considering gear and sphere/half-
space contact vibrations.

Parameter Definition Source in gears Source in sphere/half-space contact

α0,0
Mean applied load

Constant mesh force
Sphere weight

Acts only when contact is lost and constant load

α0,r Harmonics of parametric excitation Periodic change in the
Zero

r > 0 from force-deflection function number of contacting teeth

α1,0 Linear mean stiffness
Linearized gear mesh stiffness Linearized Hertz contact
at the operating torque stiffness at the operating force

α1,r Harmonics of linear Periodic change in the
Zero

r > 0 time dependent stiffness number of contacting teeth

αi,0 Nonlinear stiffness
Partial contact loss,

Nonlinear Hertz contact
nonlinear Hertz contact, etc.

αi,r Harmonics of time Periodic changes in partial contact
Zero

r > 0 dependent nonlinear stiffness loss, Hertz contact, etc.

er Harmonics of unloaded deflection Fluctuating unloaded transmission error Zero

qr Harmonics of external excitation
Pulsations in applied torque

Shaker
(not analyzed in this work)

d Mean deflection Mean loaded transmission error Mean loaded contact deflection

Ωf
Parametric excitation Periodic change in the

Zero
frequency of f(x, t) number of contacting teeth

ΩF
External excitation Pulsations in applied torque

Shaker
frequency of F (t) (not analyzed in this work)
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4.3 Analysis Method

4.3.1 Dynamic Response Near Primary Resonance

This section presents approximate analytical solutions of Eqs. (4.11) and (4.12)

near the primary resonance region using the method of multiple scales. To unify the

analysis, we consider that parametric and external excitations are both present and

their frequencies are equal and close to the natural frequency, Ω = Ωf = ΩF ≈ 1.

The reason for setting Ωf = ΩF is to keep the length of the closed-form solution

to a minimum because in gear vibrations periodic external torque excitation is not

modeled here, and in sphere/half-space contact vibrations parametric excitation does

not exist; thus there is no reason to consider Ωf 6= ΩF . Following [75] to expand u,

T , and the forcing frequency Ω near the primary resonance gives

u(T, ǫ) = u0(T0, T1, T2) + ǫu1(T0, T1, T2) + ǫ2u2(T0, T1, T2)

Tn = ǫnT, Ω = 1 + σ = 1 + ǫσ̂
(4.17)

The small parameter ǫ is a detuning parameter such that the excitation frequency is

close to the natural frequency. The separation function in Eq. (4.12) is rewritten as

C = 1 +H where

H(u, t) =
1

2
sgn

[

u+ 1−
p
∑

r=1

er cos(rT − ψr)

]

− 1

2
(4.18)

This allows p contact losses per period. Fourier expansion of H(u, t) is admissible

because, like u(t), it has period 2π, giving

H = ∆0 +

N∑

r=1

∆r cos(rT0 − νr) (4.19)

The quantities ∆0 and ∆r depend on u(t) and are not yet known. Arbitrarily many

harmonics can be used to represent the separation function H , but N must not be
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less than the number of contact losses per period, N ≥ p. These steps turn contact

loss into a form manageable by the method of multiple scales [65, 67, 74, 134].

The O(ǫ) parameters are

α0,1 = ǫα̂0,1, α2,0 = ǫα̂2,0, α3,0 = ǫα̂3,0, q1 = ǫq̂1, µ = ǫµ̂, σ = ǫσ̂, ∆0 = ǫ∆̂0 (4.20)

These orderings reflect the assumption that the nonlinearities, forcing, and damping

are small. The mean value ∆0 of the separation function H is ordered by assuming

that the duration of contact loss is small compared to the period of vibration. Fur-

thermore, all harmonics are assumed one order smaller than the corresponding mean

values. This gives the O(ǫ2) parameters as

α2,1 = ǫ2α̂2,1, ∆1 = ǫ2∆̂1, ∆2 = ǫ2∆̂2 (4.21)

We consider up to the third order polynomial approximation of the nonlinear

force-deflection function, that is, αi,r ≈ 0 for i ≥ 4, and the first harmonic of the

periodically varying force-deflection function, that is, αi,r ≈ 0 for r ≥ 2. Parametric

instability due to the first harmonic of the linear stiffness variation α1,1 is possible, but

this needs to be treated separately. The third and higher harmonics of the separation

function (∆r for r ≥ 3) and excitations α0,r and qr for r ≥ 2 do not contribute to the

solution, so they are excluded from subsequent equations for brevity.

Substitution of Eq. (4.17) into Eq. (4.11) and combining like orders of ǫ gives the

perturbation equations

D2
0u0 + u0 = 0 (4.22)

D2
0u1 + u1 = −2D0D1u0 − α̂2,0u

2
0 − α̂3,0u

3
0 − 2µ̂D0u0 − ∆̂0 (u0 + α0,0)

− α̂0,1

2

(
eiT0 + e−iT0

)
+
q̂1
2

[
ei(T0−ρ1) + e−i(T0−ρ1)

] (4.23)
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D2
0u2 + u2 = −2µ̂(D1u0 +D0u1)− 2D0D1u1 − 2D0D2u0 −D2

1u0 − 2α̂2,0u0u1

− (u1 + α̂2,0u
2
0 + α̂3,0u

3
0)∆̂0 − 3α̂3,0u

2
0u1

− α̂0,1∆̂0

2

(
eiT0 + e−iT0

)
− (α0,0 + u0)∆̂1

2

[
ei(T0−ν1) + e−i(T0−ν1)

]

− (α0,0 + u0)∆̂2

2

[
ei(2T0−ν2) + e−i(2T0−ν2)

]
− α̂2,1u

2
0

2

[
ei(T0−φ2,1) + e−i(T0−φ2,1)

]

(4.24)

where Di =
∂

∂Ti
. The general solution of Eq. (4.22) is

u0 = A(T1, T2)e
iT0 + Ā(T1, T2)e

−iT0 (4.25)

Substitution of Eq. (4.25) into the first order equation (4.23) yields secular terms that

must be eliminated for u0 to be periodic, giving the condition

2iD1A + A
[

2iµ̂+ ∆̂0 + 3α̂3,0A
2Ā
]

+
α̂0,1

2
eiσ̂T1 − q̂1

2
ei(σ̂T1−ρ1) = 0 (4.26)

Transforming to polar coordinates by setting A = 1
2
aeiβ , β = σ̂T1 − γ, with a, γ ∈ R

gives the real and imaginary parts of Eq. (4.26) as

aD1γ = aσ̂ − 1

2
a∆̂0 −

3

8
α̂3,0a

3 − 1

2
α̂0,1 cos γ +

1

2
q̂1 cos (γ − ρ1)

D1a = −µ̂a− α̂0,1

2
sin γ +

1

2
q̂1 sin (γ − ρ1)

(4.27)

First Order Perturbation

If the process is terminated at the first order perturbation, only Eq. (4.27) is

considered. The steady state solutions of Eq. (4.25) result from D1a = 0, D1γ = 0 in

Eq. (4.27). This gives, after use of Eq. (4.20), the frequency-amplitude relation cast

in terms of the original parameters independent of ǫ as

aσ − 1

2
a∆0 −

3

8
α3,0a

3 − 1

2
α0,1 cos γ +

1

2
q1 cos (γ − ρ1) = 0

− µa− 1

2
α0,1 sin γ +

1

2
q1 sin (γ − ρ1) = 0

(4.28)

100



These two equations can be combined by eliminating γ, giving

µ2a2 +

(

aσ − 1

2
∆0a−

3

8
α3,0a

3

)2

−
α2
0,1 + q21
4

+
α0,1q1
2

cos ρ1 = 0 (4.29)

Many parameters (α0,0, α2,0, α2,1, φ2,1, ∆1, ∆2, ν1, and ν2) do not appear in Eq. (4.28)

and only contribute through the second order perturbation. After calculation of the

general solution of Eq. (4.23), the approximate solution is constructed from u =

u0 + ǫu1 +O(ǫ2), giving

u = a cos(T0−γ)+
α2,0a

2

2

[
1

3
cos(2T0 − 2γ)− 1

]

+
α3,0a

3

32
cos(3T0−3γ)−α0,0∆0+O(ǫ

2)

(4.30)

Second Order Perturbation

Proceeding to the second order perturbation, substitution of Eq. (4.30) into Eq. (4.24)

yields secular terms that need to be eliminated for u1 to have a periodic solution, giv-

ing the condition

D2
1A + 2iD2A+ 2µD1A− 10

3
α̂2
2,0AĀ+

3

8
α̂2
3,0A

3Ā2

+ ∆̂0

(
α̂0,1

2
eiσ̂T1 − 2Aα0,0α̂2,0 + 3A2Āα̂3,0

)

+
α0,0∆̂1

2
ei(σT1−ν1) +

A2α̂2,1

2
e−i(σ̂T1−φ2,1) +

Ā∆̂2

2
ei(2σ̂T1−ν2) + AĀα̂2,1e

i(σ̂T1−φ2,1) = 0

(4.31)
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Substitution of D1A from Eq. (4.26) into Eq. (4.31) and use of the polar coordinates

a(T1, T2) and γ(T1, T2) give the real and imaginary parts of Eq. (4.31) as

aD2γ = [α̂0,1 cos γ − q̂1 cos(γ − ρ1)]

(
3

32
α̂3,0a

2 +
1

4
σ̂

)

− 3

8
∆̂0α̂0,1 cos γ +

1

4
µ̂α̂0,1 sin γ

− 1

4
µ̂q̂1 sin(γ − ρ1)−

1

2
α0,0∆̂1 cos (ν1 − γ)

− 1

4
∆̂2a cos (ν2 − 2γ)− 3

8
α̂2,1a

2 cos (Φ2,1 − γ)

+
1

8
∆2

0a−
3

16
α̂3,0∆̂0a

3 +
1

2
µ̂2a +

15

256
a5α̂2

3,0 + aα̂2,0α0,0∆̂0 +
5

12
a3α̂2

2,0

D2a = [α̂0,1 sin γ − q̂1 sin(γ − ρ1)]

(
9

32
α̂3,0a

2 +
1

4
σ̂

)

− 3

8
∆̂0α̂0,1 sin γ −

1

4
µ̂α̂0,1 cos γ

+
1

4
µ̂q̂1 cos(γ − ρ1) +

3

8
µ̂α̂3,0a

3 +
1

2
α0,0∆̂1 sin (ν1 − γ)

+
1

4
∆̂2a sin (ν2 − 2γ) +

1

8
α̂2,1a

2 sin (Φ2,1 − γ)

(4.32)

Steady-state vibration requires D1a = D1γ = 0 in Eq. (4.27) and D2a = D2γ = 0

in Eq. (4.32). Combination of the real and imaginary parts of Eqs. (4.27) and (4.32)

according to the reconstitution method [68,134], substitution of D1a = D1γ = 0 into

Eq. (4.27) and D2a = D2γ = 0 into Eq. (4.32), and use of Eqs. (4.20) and (4.21) in
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that sequence give the frequency-amplitude relations

aσ − ∆0

2
a− 3α3,0a

3

8
− α0,1

2
cos γ +

q1
2
cos(γ − ρ1) +

{

1

4
µα0,1 sin γ −

1

4
µq1 sin(γ − ρ1)

+ [α0,1 cos γ − q1 cos(γ − ρ1)]

(
3

32
α3,0a

2 +
1

4
σ

)

− 3

8
∆0α0,1 cos γ

− 1

2
α0,0∆1 cos (ν1 − γ)− 1

4
∆2a cos (ν2 − 2γ)− 3

8
α2,1a

2 cos (Φ2,1 − γ)

+
1

8
∆2

0a−
3

16
α3,0∆0a

3 +
1

2
µ2a+

15

256
a5α3,0

2 + aα2,0α0,0∆0 +
5

12
a3α2,0

2

}

= 0

− µa− 1

2
α0,1 sin γ +

1

2
q1 sin(γ − ρ1) +

{

− 1

4
µα0,1 cos γ +

1

4
µq1 cos(γ − ρ1)

+ [α0,1 sin γ − q1 sin(γ − ρ1)]

(
9

32
α3,0a

2 +
1

4
σ

)

− 3

8
∆0α0,1 sin γ

+
3

8
µα3,0a

3 +
1

2
α0,0∆1 sin (ν1 − γ) +

1

4
∆2a sin (ν2 − 2γ) +

1

8
α2,1a

2 sin (Φ2,1 − γ)

}

= 0

(4.33)

from which a and γ can be solved. The expressions outside of the brackets are the first

order perturbation solution, and the expressions inside the brackets are the second

order corrections.

Separation

The quantities ∆r and νr in Eq. (4.19) are found using the separation instants

Ti. These separation instants are solved by substitution of u from Eq. (4.30) into

Eq. (4.18) for H = −1 (i.e., C = 0). For arbitrarily many contact losses per period

p, the solutions Ti, i = 1, . . . , 2p + 1, mark the instants when contact is lost or re-

established. Let Hi denote whether there is contact (Hi = 0) or not (Hi = −1) when

Ti ≤ T < Ti+1. The Fourier coefficients and phase angles of the separation function

H in Eq. (4.19) are then

∆0 =
1

2π

2p
∑

i=1

(Ti+1 − Ti)Hi (4.34)
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∆r =
√

∆2
r,a +∆2

r,b, νr = tan−1 (∆r,b,∆r,a) , r = 1, . . . , N (4.35)

∆r,a =
1

rπ

2p
∑

i=1

(sin rTi+1 − sin rTi)Hi, r = 1, . . . , N (4.36)

∆r,b = − 1

rπ

2p
∑

i=1

(cos rTi+1 − cos rTi)Hi, r = 1, . . . , N (4.37)

The perturbation solution considers a maximum of N = 2 because harmonics of H

higher than the second, i.e., ∆r for r > 2 in Eq. (4.19), do not yield secular terms.

This limits contact loss to twice-per-period because N ≥ p. Even when the contact

loss is limited to twice-per-period, finding the separation instants Ti requires solving

Eq. (4.18) for p = 2. Finding a closed-form solution is not feasible unless: a) contact

loss occurs once per period (p = 1), and b) the mean change in solution u due to

contact loss does not affect when contact loss starts and ends (α0,0∆0 = 0). Adopting

these assumptions gives the closed-form expressions

∆0 = −1 +
τ

π
, ∆r =

2

rπ
sin rτ

νr = r tan−1 (−a sin γ + e1 sinψ1, a cos γ − e1 cosψ1) , r = 1, 2

(4.38)

τ = cos−1




−1 + α2,0a/2

√

(a cos γ − e1 cosψ1)
2 + (a sin γ − e1 sinψ1)

2



 (4.39)

The numerical solution for ∆0, ∆r, and νr using Eqs. (4.34) and (4.35) is computa-

tionally demanding. To save computation when analyzing a system with the second

order perturbation solution Eq. (4.33), we use a coarse frequency resolution across

the frequency range of interest to confirm that contact loss occurs once per period

using numerical solutions of Eqs. (4.34) and (4.35). Once confirmed the analytical ex-

pressions in Eqs. (4.38) and (4.39) are used. The analytical expressions in Eqs. (4.38)

104



and (4.39) and numerical solution of Eqs. (4.34) and (4.35) give almost identical re-

sults for the cases analyzed in this work, so the presented results use the analytical

expressions.

The vibration amplitude and frequency at the onset of total contact loss can be

found from the foregoing analytical solution. Just before the onset of total contact

loss, the mean value of the separation function and its harmonics are zero and ∆0 =

∆r = 0 in Eq. (4.38). This gives τ = π. Substitution of τ = π into Eq. (4.39) gives

the amplitude at the onset of total contact loss as

a =
4e1 cos(γ − ψ1)− 2α2,0 ± 2

√

e21α
2
2,0 + 4− 4e21 sin

2(γ − ψ1)− 4e1α2,0 cos(γ − ψ1)

4− α2
2,0

(4.40)

Substitution of a from Eq. (4.40) and ∆0 = ∆r = 0 into (4.33) gives the frequency

σ and the phase γ at the onset of total contact loss. The closed-form solution is

lengthy using the second order perturbation solution, but a compact expression can

be obtained using the first order perturbation solution. The first order does not

consider quadratic nonlinearity and unloaded fluctuations (they do not yield secular

terms), so α2,0 = e1 = 0. Subsequently, Eq. (4.40) reveals that a = 1 initiates

total contact loss. Substitution of a = 1 and ∆0 = 0 into Eq. (4.29) gives the two

frequencies where total contact loss starts as

σ = ±

√

α2
0,1 + q21
4

− µ2 − α0,1q1
2

cos ρ1 +
3

8
α3,0 (4.41)

Key Points from the Analytical Solution

1. The first order perturbation gives the frequency amplitude relation by Eq. (4.29).

It considers only the cubic nonlinearity α3,0 and the mean reduction of stiffness

due to total contact loss ∆0.
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2. The second order perturbation solution gives the frequency amplitude relation

by Eq. (4.33). It considers quadratic nonlinearities (α2,0, α2,1, φ2,1), and cubic

nonlinearity (α3,0). The mean value of the separation (∆0) and its first two

harmonics (∆1, ∆2) with associated phase angles (ν1, ν2) contribute. In gears

and sphere/half-space contact alike, these quantities account for total contact

loss.

3. The mean value (∆0) and the first two harmonics (∆1, ∆2) of the separation

function and their phase angles (ν1, ν2) are found from the perturbation equa-

tions numerically from Eqs. (4.34) and (4.35) or analytically from Eqs. (4.38),

(4.39) when contact loss is limited to once per period (p = 1). Both harmonics

are crucial for an accurate response as the upcoming results will show.

4. When the expression inside cos−1 in Eq. (4.39) is not in the range [−1, 1],

total contact loss does not occur. The amplitude and frequency at onset of

contact loss is analytically given by Eq. (4.41) from the first order perturbation.

The second order approximation of the amplitude at onset of contact loss is

found from Eq. (4.40) and the frequencies can be solved by substitution of that

amplitude into Eq. (4.33).

4.3.2 Stability

The amplitude and phase evaluation Eqs. (4.27) and (4.32) linearized about a

stationary point (a, γ) yields the matrix form

d

dT

(
a
γ

)

= J

(
a
γ

)

(4.42)
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where the matrix J denotes the Jacobian. The solution is unstable if any eigenvalues

of J have a positive real part. The algebraic expression for J is prohibitively long and

provides no practical insight. For these reasons, the stability is found numerically

from the Jacobian matrix J at the stationary points.

4.4 Results

In this section, dynamic response of the equation of motion Eq. (4.11) obtained

using the perturbation solution in Eq. (4.30) is compared with sphere/half-space

contact and gear vibration experiments from the literature, numerical integration, and

the linearized solution. The first order perturbation solution is found from Eq. (4.29),

and the second order perturbation solution is found from Eq. (4.33).

4.4.1 Key Regions in Dynamic Response and Comparison
with Numerical Solution

Independent of the physical system analyzed, there are four possible distinct re-

gions in the nonlinear response. These regions are common to both gear vibrations

and sphere/half-space contact vibrations. To investigate the characteristics of these

four regions, time domain numerical integration and the second order perturbation

solution of an example system is shown in Figure 4.4. The linear time-invariant so-

lution (only linear stiffness and external excitation exist, α1,0, α0,1 6= 0) is plotted to

provide a comparison: Region 1: The linear and nonlinear solutions give almost

identical responses. The response is relatively small. There is no contact loss, and

nonlinear terms negligibly affect the response.

Region 2: The nonlinear solution deviates significantly from the linear solution

as the vibration amplitude grows. This region does not exist, i.e., becomes identical
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Figure 4.4: Dynamic response of equation of motion (4.11)-(4.12) using second order
perturbation and numerical integration. Parameters are: α0,1 = 2/75, α0,0 = 2/3,
α2,0 = 1/4, α3,0 = −1/24, e1 = 0.1, ψ1 = 0, α2,1 = 0, µ = 0.0082. Important
regions of solutions are marked with 1) through 4). (Stable perturbation solution:
solid line, unstable perturbation solution: dashed line, numerical integration: circles,
linear solution: dash-dot line).

to region 1, if α2,0 = 0 and α3,0 = 0. Although the contact is maintained, this region

represents partial contact loss in physical systems, where the nonlinearities are due

to a reduction in instantaneous dynamic stiffness. The nonlinear terms α2,0, α3,0, and

the time-dependence α2,1, φ2,1 dominate the response.

Region 3: Total contact loss, manifest from the kink in the response at Ω = 0.97,

starts in this region. Here C = 0. The vibration amplitude a and the frequency of

excitation Ω at which total contact loss starts is given by Eq. (4.40). It depends

on the quadratic nonlinearity, the fluctuation in the unloaded deflection e1, and the

relative phase angle γ − ψ1.
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Region 4: Total contact loss occurs. The solution is dominated by the mean

reduction in stiffness ∆0 due to separation, the first two harmonics of the separation

function ∆1, ∆2, their phase angles ν1, ν2, and the mean load α0,0. The agreement

between the numerical and perturbation solution is excellent, justifying the assump-

tions in the perturbation solution. The nonlinearities are stronger if the periods of

separation become long, which would degrade the agreement somewhat as shown

in [8] for a simpler tooth mesh contact model in planetary gears.

4.4.2 Sphere/Half-Space Contact Vibrations

The sphere/half-space contact vibration experiments, given in Figure 5(a) of [69],

are compared with the first and second order perturbation solutions in Figure 4.5.

The experimental measurements and the second order perturbation solution agree

closely, even for strong nonlinearity.

The response around Ω ≈ 1 in Figure 4.5 corresponds to region 2 as described in

Figure 4.4. The second order perturbation does well, but the first order perturbation

is not accurate in this region. This is because the first order perturbation only includes

the cubic nonlinear term (α3,0), but both the quadratic (α2,0) and cubic (α3,0) terms

contribute to nonlinear response. When either of the α2,0 or α3,0 terms are set to

zero, the second order perturbation solution becomes inaccurate.

The response when 0.73 < Ω < 0.95 in Figure 4.5 corresponds to region 4 as

described in Figure 4.4. The second order perturbation solution agrees well with the

experiment. The slight deviation toward the peak is attributed to the nonlinearity

getting stronger. The first order perturbation solution does poorly in this region.

It includes only ∆0, whereas the second order perturbation solution includes several
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parameters related to contact loss (α0,0, ∆0, ∆1, ∆2, ν1, and ν2). When each one of

these parameters is individually set to zero in the second order perturbation solution,

the response becomes inaccurate. This confirms that α0,0, ∆1, ∆2, ν1, and ν2, which

only the second order perturbation can consider, are necessary for obtaining accurate

response in the contact loss region.
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Figure 4.5: Peak-to-peak acceleration z̈ of sphere-plane contact using first and second
order perturbation, experiment, and linearized model. Experimental measurements
are from Figure 5(a) of [69]. Non-dimensional parameters are q1 = 0.08/3, α0,0 = 2/3,
α2,0 = 2/7, α3,0 = −1/21, µ = 0.008. (First order perturbation: dash-dot line,
second order perturbation: solid line(stable), dashed line (unstable), experimental
measurements: squares (speed-down), diamonds (speed-up)).
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4.4.3 Gear Vibrations

Computational Results

Computational dynamic response of a helical gear pair is obtained using the con-

tact algorithm in [23,24]. That model has been successfully compared against exper-

iments and a specialized finite element/contact mechanics model of gear dynamics.

Some elastic behaviors, such as corner contact, radius of curvature effects, buttressing

effects,and the coupling between the deflections of adjacent teeth, are neglected in

this contact algorithm.

The gear parameters are given in Tables 2.1 and 2.2. The non-dimensional pa-

rameters are given in Table 4.2.

The dynamic response of the helical gear pair with profile and lead modifications

and the force-deflection function shown in Figure 4.6 is plotted in Figure 4.7. The

computational dynamic response and perturbation solution agree throughout most

of the operating frequencies. There is a clear difference between the linear and the

nonlinear response. Region 2 of Figure 4.4 identifies this type of response. Physi-

cally, this difference is attributed to partial contact loss, where some portions of the

nominal contact lines separate while the gear mesh as a whole is still engaged. The

perturbation solution predicts the nonlinear dynamics arising from partial contact

loss.

The investigation of practical gear vibration raises the question of whether all the

nonlinear terms (α2,0, α3,0, α2,1, φ2,1) are necessary to obtain an accurate response

or not. The importance of these terms are assessed by investigating the perturbation

solution when these are set to zero one at a time, as shown in Figure 4.8. The
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response becomes inaccurate when any one of them is set to zero; all nonlinear terms

are necessary to obtain an accurate response
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Figure 4.6: Force-deflection function f(x, t) of a helical gear pair obtained by the
method of Chapter 2. Tooth surface modifications are: quadratic profile tip and root
crown of 10 µm and lead crown of 10 µm on the gear.

Experimental Results

In this section, experimental measurements of rotational vibration of unity ratio

gear pairs with profile and lead modifications [47] are compared with the second order

perturbation solution. The experimental measurements are available for various tip

relief starting roll angles and for different applied torques. The gears in this test rig

are sufficiently isolated from the vibrations of the supporting structure to justify use

of a single degree-of-freedom oscillator to model the dynamics [11].

The force-deflection function would ideally come from the experimental setup by

slowly rotating the gears through a mesh period and measuring transmission error
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Figure 4.7: Primary resonance of a helical gear pair at 200 N-m using second or-
der perturbation, numerical integration, and the linearized model. The numerical
integration results are obtained using the method of Chapter 3. (Stable perturba-
tion solution: solid line, computational data by numerical integration: circles, linear
solution: dash-dot line).

at various applied torques. Because these data are not given, the force-deflection

function is obtained from finite element analysis [124] of the gears. When the tip

relief starts at roll angle 20.9 deg, the force-deflection function calculated by finite

element analysis is shown in Figure 4.9 for various torques. Even if the finite element

analysis could precisely replicate the elastic behavior of the experimental setup, the

crucial gear tooth profile and lead modifications are specified within a manufacturing

tolerance (3 µm). These errors can cause a mismatch between the experimental data

and perturbation solution. To provide a visual sense of such errors that are not

associated with the analysis methods of this work, the precision of the experiments

(±1 µm reported in a closely related study [46]) are added to the experimental results

in the form of error bars in the upcoming figures.
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Figure 4.8: Perturbation solution when α2,0, α3,0, α2,1, and φ2,1 are set to zero one
at a time are shown. The non-zero parameters are the same as in Figure 4.7. The
circles denote numerical integration with no non-zero parameters.

The experimental measurements and the second order perturbation solution for

three gear pairs are compared in Figure 4.10 (where the applied torque is 85 N-m and

the 10 µm profile modification starts at 20.9 deg), Figure 4.11 (where the applied

torque is 170 N-m and the 10 µm profile modification starts at 20.9 deg), and Figure

4.12 (where the applied torque is 170 N-m and the profile 10 µm modification starts

at 23.6 deg). Table 4.2 lists the non-dimensional parameters used in these analysis.

All gears have 5 µm lead crown modification.

The perturbation solutions agree accurately with the experimental results in all

three cases. The onset of total contact loss is manifest by the kinks in the perturbation

solution curves. Even in regions without total contact loss the linear response differs

from the experimental measurements and perturbation solutions. Region 2 of Figure

4.4 characterizes this type of response. The difference is attributed to partial contact

114



loss, occurs due to the profile and lead modifications. The good agreement provides

experimental evidence that the perturbation solution predicts the nonlinear dynamic

response due to partial contact loss.
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Figure 4.9: Force-deflection function f(x, t) obtained by finite element analysis of a
spur gear pair with increasing applied torque. Gear data from [47], linear tip relief of
10 µm starts at 20.9 deg.
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Figure 4.10: Primary resonance of a spur gear pair (tip relief start at 20.9 deg) at
85 N-m using second order perturbation and linearized model. Experimental data
are from Figure 3(c) of [47]. (Stable second order perturbation: solid line, unstable
second order perturbation solution: dashed line, experimental measurement: circles,
linear solution: dash-dot line).
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Figure 4.11: Primary resonance of a spur gear pair (tip relief start at 20.9 deg) at
170 N-m using second order perturbation and linearized model. Experimental data
are from Figure 3(b) of [47]. (Stable second order perturbation: solid line, unstable
second order perturbation solution: dashed line, experimental measurement: circles,
linear solution: dash-dot line).
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Figure 4.12: Primary resonance of a spur gear pair (tip relief start at 23.6 deg) at
170 N-m using second order perturbation and linearized model. Experimental data
are from Figure 3(b) of [47]. (Stable perturbation solution: solid line, unstable per-
turbation solution: dashed line, experimental measurement: circles, linear solution:
dash-dot line).

Table 4.2: Parameters of the analyzed gears in Figures 4.7 through 4.12.

Figure 4.7 Figure 4.10 Figure 4.11 Figure 4.12

α0,0 0.727 0.727 0.716 0.714
α0,1 0.069 0.181 0.061 0.058
α2,0 0.209 0.213 0.197 0.202
α2,1 0.313 0.212 0.118 0.069
α3,0 -0.037 -0.034 -0.074 -0.074
φ2,1 [rad] -2.891 -3.203 -3.228 -0.230
e1 0.167 0.302 0.185 0.038
ψ1 [rad] -3.293 -3.124 -3.124 0.037
µ 0.030 0.050 0.016 0.028
d [µm] 4.350 5.516 9.005 9.201
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4.5 Conclusions

This work derives approximate, closed-form analytical solutions for the nonlinear

vibration of gear pairs with arbitrary tooth surface modifications. It applies equally

to other contact problems described by a specified nonlinear, periodic force-deflection

curve. To demonstrate this sphere/half-space contact vibrations are analyzed and

compared to experiments. The method of multiple scales provides the analytical

perturbation solutions in the primary resonance region.

I The dynamic excitation in gear pairs is mathematically shown to come from the

periodicity of the force-deflection function. This periodicity is due to engage-

ment/disengagement of the gear teeth resulting in linear and quadratic mesh

stiffness fluctuations that drive the gear vibration.

II The presence of total contact loss in unmodified gears is shown to be independent

of applied torque. The reason is this: as the vibration amplitude increases with

larger torques, so does the threshold of vibrations needed to trigger total contact

loss. This is not true for modified gears.

III The method of multiple scales gives the approximate, closed-form analytical so-

lutions. Comparisons with gear vibration experiments, sphere/half-space contact

vibration experiments, and numerical integration verify the analytical solution.

The second order perturbation solution is significantly more accurate than the

first order perturbation solution, indicating the nonlinearity is strong in the phys-

ical experiments.
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IV Key regions in the nonlinear response common to both gear and sphere/half-

space contact vibrations are:

1 Linear region: Vibration amplitude is relatively low, and the system behaves

linearly.

2 Partial contact loss region: The mean stiffness drops due to dynamic displace-

ments but contact is maintained. Partial contact loss in gears occurs when

parts of nominal contact lines lose contact although the gear teeth remain

engaged. It is most prominent in systems with tooth surface modifications.

Quadratic and cubic nonlinearities capture the partial contact loss nonlinearity

in modified gears and yield nonlinear dynamic response. In sphere/half-space

contact, the dependence of the size of the contact area on dynamic contact

load yields this type of nonlinearity.

3 Onset of total contact loss region: Vibrations reach the threshold to cause

total contact loss.

4 Total contact loss region: The contact separates fully and the mean load brings

the system back into contact. Total contact loss in gears occurs when the gear

teeth disengage completely. It is captured by the mean reduction in mesh

stiffness and its two harmonics. The amplitude and the frequency at the onset

of total contact loss is analytically given and is consistent with experiments.

119



Chapter 5: Modal Properties of Three-Dimensional Helical

Planetary Gears

5.1 Introduction

Knowledge of the modal properties of planetary gears is crucial for developing

strategies to reduce vibration. Planetary gear dynamic models are developed in [7,

15, 19, 97]. Lin and Parker show that two-dimensional, spur planetary gears with

equally spaced [58] and diametrically opposed [60] planets possess well-defined modal

properties. They report all vibration modes belong to one of three categories: 1)

Rotational modes where the central members (sun, carrier, and ring) rotate but do not

translate. The planet motions are identical. 2) Translational modes with degenerate

natural frequencies, where the central members translate but do not rotate. There are

well-defined relations between the two independent vibration modes at each natural

frequency. 3) Planet modes where only the planets move, and their motions are scalar

multiples of the arbitrarily chosen first planet’s motion. Kiracofe and Parker [52]

prove that a similar categorization applies to compound planetary gears. Wu and

Parker [133] prove the modal properties of spur planetary gears having elastically

deformable ring gears.
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These vibration mode characteristics are crucial in vibration suppression strate-

gies using mesh phasing [62, 95, 97] and eigensensitivity analysis [29, 59] of planetary

gears. Schlegel and Mard [95], Seager [97], and Hidaka et al. [33] assert that the vi-

bration of planetary gears is reduced by proper gear mesh phasing. Hidaka et al. [33]

experimentally and Kahraman [40] computationally investigate the effectiveness of vi-

bration suppression by planet mesh phasing. Kahraman [40] uses a three-dimensional

lumped-parameter model for computations. Blankenship and Kahraman [43] illus-

trate how some harmonics of the transmission error excitation vanish by adjusting

the mesh phasing. Based on the well-defined modal properties of planetary gears,

Parker [84] explains how proper mesh phasing suppresses many resonances of trans-

lational and rotational modes from certain harmonics of mesh frequency. Ambarisha

and Parker [4] explain the vibration suppression of planet modes from mesh phasing.

Finite element analysis is incorporated with elaborate gear contact analysis in [1,

5,8,85,93] to capture the complex dynamic behavior of planetary gears. These studies

enable computationally efficient analysis of complex planetary gears and survey the

effects of design parameters on dynamic behavior.

Although the vibration modes of two-dimensional planetary gears have been stud-

ied, it remains to be seen what the vibration mode characteristics are for helical

planetary gears with three-dimensional motion, a three-dimensional gear mesh inter-

face, and the gear-shaft bodies supported by bearings at arbitrary locations along

the shafts. A lumped parameter model is formulated to include the tilting and axial

motions, thus including all six degrees of freedom for each gear-shaft body. A tilting

mesh stiffness augments the gear mesh interface to produce the three-dimensional

force and moment transmission.
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This study proves that helical planetary gears with equally spaced planets have

exactly three types of vibration modes. Unique properties of these vibration modes

are given. Compared to two-dimensional spur gear models there are twice as many

natural modes, and their properties are different. The modal properties hold for

configurations that are asymmetric about the gear plane, such as when the bearings

are not equidistant from the gears.

5.2 Planetary Gear Analytical Model

The planetary gear model consists of three central members (the sun, ring, and

carrier) and p planets. The gears and the carrier are integrated with their supporting

shafts, so that each gear-shaft is a single body. These combined gear-shaft bodies

are each mounted on up to two bearings placed at arbitrary axial locations. The

sun, ring, and carrier bearings are connected to ground while the planet bearings are

connected to the carrier. The gear-shaft bodies and carrier are rigid; the compliant

elements are the meshing gear teeth and bearings. Figures 5.1(a) and (b) depict the

model with the parameters defining the system geometry. The vibration amplitudes

are small, so geometric nonlinearities are neglected.

The indexing conventions b = s, r, c, 1, . . . , p for the sun, ring, carrier, and the

planets, h = s, r, c for the sun, ring, and carrier, and i = 1, 2, . . . , p for the planets

are maintained throughout this work. There are 2p gear meshes. Odd numbers are

assigned to the sun-planet meshes, and even numbers are assigned to the ring-planet

meshes.

The origin is at the undeflected position of the center of the sun. A right handed,

orthonormal basis {E} = {E1,E2,E3} rotates with the constant carrier angular speed
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Figure 5.1: Coordinates and dimensions used in the planetary gear model.
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Figure 5.2: Tooth surface normal and the tilting axis for the ith sun-planet mesh.
The ith planet gear is shown. ψ is the base helix angle, and Φsp is the transverse
operating pressure angle.
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Ωc. For the central members, translational coordinates xh, yh, zh are assigned to

translations along E1, E2, and E3, respectively. Similarly, angular coordinates φh, θh,

βh are assigned to small rotations about E1, E2, and E3, respectively. Translational

coordinates for the planets xi, yi, zi are measured from the undeflected position of the

centers of the planets in the bases {Ei} = {Ei
1,E

i
2,E

i
3} that rotate with the carrier

angular speed. The base vector Ei
1 is parallel to the line of action of the ith sun-planet

mesh because this selection algebraically simplifies the sun-planet mesh deflections.

Angular coordinates φi, θi, βi for the planets are assigned to rotations about Ei
1,

Ei
2, and Ei

3, respectively. Body fixed bases for all the bodies {eb} = {eb1, eb2, eb3}

are adopted because the gear mesh deflection expressions are algebraically simpler in

these bases.

Axial position quantities in Fig. 5.1(a) are measured from the datum position,

which is at the center of the minimum active facewidth F and denoted by the dashed

line. Any inactive facewidth is considered as part of the shaft. This setup allows

arbitrary axial positioning of gears with different facewidths. Positive planet position

angle αi is measured counter-clockwise from the arbitrarily chosen first planet.

Two linear springs, one translational and one tilting, model the gear mesh inter-

face. The translational stiffness (kj) accounts for the transmitted force through the

gear mesh. Its associated relative translational deflection (δj) is in the direction of the

tooth surface normal. The tilting stiffness (κj) accounts for the moment transmitted

through the gear mesh. Its associated angular deflection is about an axis that is in

the gear plane and perpendicular to both the line of action Ei
1 and the tooth surface

normal. Figure 5.2 shows the line of action Ei
1, the tooth surface normal, and the

tilting axis Ei
2 for the ith sun-planet mesh. These two deflections are calculated at a
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specified point along the facewidth, called the center of stiffness. The axial position

of the center of stiffness is cj . The translational stiffness, tilting stiffness, and center

of stiffness can be reduced from gear tooth contact models, such as [121], averaged

over a mesh cycle.

The equations of motion come from Lagrange’s equations for unconstrained gen-

eralized coordinates. The kinetic and potential energies are

T =
1

2

N∑

b=1

(

ωT
b Jbωb + ṙTb mbṙb

)

,

V =
1

2

N∑

b=1

(

dT
A,bKA,bdA,b + dT

B,bKB,bdB,b

)

+
1

2

N∑

b=1

(

ζT
A,bχA,bζA,b + ζT

B,bχB,bζB,b

)

+
1

2

2p
∑

j=1

(

kjδ
2
j + κjγ

2
j

)

,

(5.1)

where N = p+ 3 is the number of bodies, ωb is the angular velocity, mb is the mass,

Jb is the inertia tensor, ṙb is the velocity vector, dA,b is the translational bearing

deflection vector, ζA,b is the angular bearing deflection vector, KA,b is the bearing

stiffness matrix for translation, and χA,b is the bearing stiffness matrix for rotation.

The translational gear mesh deflection is δj ; the angular (tilting) gear mesh deflection

is γj; the translational gear mesh stiffness is kj; and, the tilting gear mesh stiffness is

κj .

The angular velocity of the bth body in its corotational basis {eb} is

ωb =
[

φ̇b − θb

(

β̇b + Ωb

)]

eb1 +
[

θ̇b + φb

(

β̇b + Ωb

)]

eb2 +
[

β̇b + Ωb − φbθ̇b

]

eb3, (5.2)

where Ωb is the constant kinematic rotation speed. The inertia tensor for each body

in its principal axes is Jb = diag [Jx
b , J

y
b , J

z
b ] with constant components. All gears are

axisymmetric, so Jy
b = Jx

b . The velocity vectors of the central members and planets
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are

ṙh = [ẋh − Ωcyh]E1 + [ẏh + Ωcxh]E2 + żhE3, h = s, r, c, (5.3)

ṙi = [ẋh − Ωc (yi − rs − rp)]E
i
1 + [ẏi + Ωc (xi + tanΦsp(rs + rp))]E

i
2 + żiE

i
3

i = 1, 2, . . . , p,
(5.4)

where Φsp and Φrp are the sun-planet and ring-planet transverse operating pressure

angles.

The bearings are attached to the points Ab and Bb on the left and right sides

of the bth body, respectively. The bearing deflection vectors for central members at

points Ah and Bh (h = s, r, c) are

dA,h =
[
xh −

(
eh + LA

h

)
θh
]
E1 +

[(
eh + LA

h

)
φh + yh

]
E2 + zhE3, (5.5)

dB,h =
[
xh −

(
eh − LB

h

)
θh
]
E1 +

[(
eh − LB

h

)
φh + yh

]
E2 + zhE3, (5.6)

where eh, L
A
h , and L

B
h are the axial positions of the mass centers, bearings Ah, and

bearings Bh of the central members. Positive values of eh and LA
b are measured from

the datum along E3, and positive values of LB
b are measured from the datum along

−E3. This sign convention is chosen so that for positive LA
b and LB

b the gears are

in between the bearings. The bearing deflection vector for the planets is the relative

position between the point that is on the carrier and the point that is on the planet

shaft. The bearing deflection vectors for the planets at points Ai and Bi are

dA,i =
{

−
[
yc + φc(es + LA

p )
]
sinαi +

[
θc(es + LA

p )− xc
]
cosαi

− βc(rp + rs) + xi − θi(ep + LA
p )
}

Ei
1

+
{ [
xc − θc(es + LA

p )
]
sinαi −

[
yc + φc(es + LA

p )
]
cosαi

− βc(rp + rs) tanΦsp + yi + φi(ep + LA
p )
}

Ei
2

+
{

[−φc(rs + rp) tanΦsp + θc(rs + rp)] sinαi

+ [θc(rs + rp) tanΦsp + φc(rs + rp)] cosαi + zi − zc

}

Ei
3,

(5.7)
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dB,i =
{

−
[
yc + φc(es − LB

p )
]
sinαi +

[
θc(es − LB

p )− xc
]
cosαi

− βc(rp + rs) + xi − θi(ep − LB
p )
}

Ei
1

+
{ [
xc − θc(es − LB

p )
]
sinαi −

[
yc + φc(es − LB

p )
]
cosαi

− βc(rp + rs) tanΦsp + yi + φi(ep − LB
p )
}

Ei
2

+
{

[−φc(rs + rp) tanΦsp + θc(rs + rp)] sinαi

+ [θc(rs + rp) tanΦsp + φc(rs + rp)] cosαi + zi − zc

}

Ei
3.

(5.8)

The angular bearing deflection vector is the relative angular displacements of the

connected bodies. The angular bearing deflection vectors for the central members

and planets at points Ah and Ai are

ζA,h = φhE1 + θhE2 + βhE3, (5.9)

ζA,i = [φi − θc sinαi − φc cosαi]E
i
1 + [θi − θc cosαi + φc sinαi]E

i
2

+ [βi − βc]E
i
3.

(5.10)

The angular bearing deflection vectors at points Bh and Bi are identical to Eqs. (5.9)

and (5.10) for rigid shafts.

The bearings are isotropic in the E1 − E2 plane. There is no coupling be-

tween different directions. For all bodies the bearing stiffness matrix for transla-

tion is KA,b = diag
[
kAb , k

A
b , k

Az
b

]
, and the bearing stiffness matrix for rotation is

χA,b = diag
[
κAb , κ

A
b , κ

Az
b

]
, where the equality of stiffness in the two in-plane trans-

lation directions is evident (and similarly for rotation). These stiffness components

are in the {E} basis for the central members and in the {Ei} basis for each of the

planets.

The translational gear mesh deflection δj is the relative compressive deflection at

the center of stiffness in the direction normal to the tooth surface. The translational
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gear mesh deflection for the sun-planet meshes (j = 1, 3, 5, . . . , 2p− 1) is

δj = {[(es − cj)φs + ys] cosψ + rs [θs − φs tanΦsp] sinψ} sinαi

+ {[xs − (es − cj)θs] cosψ + rs [φs + θs tanΦsp] sinψ} cosαi

+ [(ep − cj)θi + rsβs + rpβi − xi] cosψ

+ [zi − zs + rp(φi + θi tanΦsp)] sinψ,

(5.11)

where ψ is the base helix angle, and the center of stiffness for a gear mesh in the axial

direction measured from the datum is cj . For the ring-planet meshes (j = 2, 4, . . . , 2p)

the translational gear mesh deflection is

δj = {rr [(φr − θr tanΦrp) sin(Φsp + Φrp)− (θr + φr tanΦrp) cos(Φsp + Φrp)] sinψ

+ [((er − cj) θr − xr) sin(Φsp + Φrp) + ((er − cj)φr + yr) cos(Φsp + Φrp)] cosψ} sinαi

−{rr [(θr + φr tanΦrp) sin(Φsp + Φrp) + (φr − θr tanΦrp) cos(Φsp + Φrp)] sinψ

+ [((er − cj)φr + yr) sin(Φsp + Φrp) + ((cj − er) θr + xr) cos(Φsp + Φrp)] cosψ} cosαi

+ {rp [(φi − θi tanΦrp) cos (Φsp + Φrp) + (φi tanΦrp + θi) sin (Φsp + Φrp)] + zr − zi} sinψ

+ {[(ep − cj) θi − xi] cos (Φsp + Φrp) + [(cj − ep)φi − yi] sin (Φsp + Φrp)− rpβi} cosψ.
(5.12)

The angular gear mesh deflection γj for the sun-planet and ring-planet meshes is

γj = φs sinαi − θs cosαi + θi, j = 1, 3, 5, . . . , 2p− 1, (5.13)

γj = − [φr cos (Φsp + Φrp) + θr sin (Φsp + Φrp)] sinαi

− [φr sin (Φsp + Φrp)− θr cos (Φsp + Φrp)] cosαi

+ φi sin (Φsp + Φrp)− θi cos (Φsp + Φrp) , j = 2, 4, . . . , 2p.

(5.14)

Lagrange’s equations of motion are obtained following substitution of Eqs. (5.2)

through (5.14) into the energy expressions in Eq. (5.1). In matrix form they are

Mq̈+ ΩcGq̇+
(
K− Ω2

cC
)
q = Ω2

cc+ f , (5.15)

128



q = (qs,qr,qc,q1, . . . ,qp) ,

qb = (φb, θb, βb, xb, yb, zb) , b = s, r, c, 1, . . . , p.
(5.16)

The diagonal inertia matrix M is

M = diag(Ms,Mr,Mc,M1, . . . ,Mi, . . . ,Mp), (5.17)

where an individual block is Mb = diag(Jx
b , J

x
b , J

z
b , mb, mb, mb). Only certain blocks of

the stiffness matrix K are populated due to the geometric configuration of planetary

gears. The 6N × 6N matrix has the form

K =














Ks 0 0 Ks,1 Ks,2 . . . Ks,p

Kr 0 Kr,1 Kr,2 . . . Kr,p

Kc Kc,1 Kc,2 . . . Kc,p

K1 0 . . . 0
K2 . . . 0

Symmetric
. . .

...
Kp














n×n

, (5.18)

where the total number of degrees of freedom is n = 6N . The 6× 6 sub-matrices Kh,

and Kh,i, h = s, r, c, are expanded in the following section. The individual elements

of these sub-matrices and of Ki are given in the appendix. Spinning of the system

generates the block diagonal gyroscopic matrix

G = diag (Gs,Gr,Gc,G1, . . . ,Gi, . . . ,Gp) , (5.19)

Gb =











0 −Rb (2J
x
b − Jz

b ) 0 0 0 0
Rb (2J

x
b − Jz

b ) 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −2mb 0
0 0 0 2mb 0 0
0 0 0 0 0 0











, (5.20)

where the gear ratios Rb relate the rotation speeds by Ωb = RbΩc (recall b =

s, r, c, 1, . . . , p). The centripetal stiffness matrix is

C = diag (Cs,Cr,Cc,C1, . . . ,Ci, . . . ,Cp) , (5.21)
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Cb = diag
[
Jx
b R

2
b , J

x
b R

2
b , 0, mb, mb, 0

]
, b = s, r, c, 1, . . . , p. (5.22)

Carrier rotation induces constant planet centripetal accelerations evident in the Ω2
cc

term of Eq. (5.15) where

c = [0, 0, 0, c1, . . . , ci, . . . , cp] , (5.23)

ci = mp [0, 0, 0,−(rs + rp) tanΦsp, rs + rp, 0] . (5.24)

If one considers motion y = q − qe about the steady configuration qe defined

by (K− Ω2
cC)qe = Ω2

cc + f , where f is the constant external loading vector, the

governing equation is

Mÿ + ΩcGẏ +
(
K− Ω2

cC
)
y = fd(t), (5.25)

where fd(t) is the zero-mean, dynamic external loading vector.

5.3 Modal Analysis

5.3.1 Eigenvalue Problem

The high-speed effects that arise from the constant kinematic rotation fall outside

the scope of this study, so Ωc = 0 is specified. The eigenvalue problem is

(K− λM)q = 0 (5.26)

with natural frequencies
√
λ. The vibration modes are divided into 6× 1 sub-vectors

as

q = (vs,vr,vc,v1, . . . ,vp) . (5.27)

The system is tuned, that is, all sun-planet and ring-planet mesh stiffnesses, and

their centers of stiffnesses, are identical among all planets; the planet bearing stiff-

nesses, the axial locations of the planet bearings, and the planet inertias are the same
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for all planets. Regardless of planet spacing, the stiffness and inertia sub-matrices

satisfy

Kh = Υh

p
∑

i=1

sinαi +RΥhR
T

p
∑

i=1

cosαi +Θh

p
∑

i=1

sin2 αi

+RΘhR
T

p
∑

i=1

cos2 αi +Ξh

p
∑

i=1

sinαi cosαi +Ψh, h = s, r, c,

(5.28)

R =











0 1 0 0 0 0
−1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 −1 0 0
0 0 0 0 0 1











, (5.29)

Ki = Kj, Mi = Mj , i, j = 1, 2, . . . , p, (5.30)

Kh,i = Λh sinαi +RΛh cosαi + Γh. (5.31)

System Matrices

Individual elements of Υh, Θh, Ξh, Ψh, Λh, Γh, and Ki are given below with

all unspecified elements being zero. All sub-matrices in Eqs. (5.32) through (5.43)

are associated with a particular mesh. Subscript s denotes the sun gear; for sub-

matrices with the subscript s, j = 1, 3, . . . , 2p− 1 indicates the particular sun-planet

mesh. Similarly, for sub-matrices with the subscript r, j = 2, 4, . . . , 2p indicates the

particular ring-planet mesh.

Υ(1,3)
s = Υ(3,1)

s = kjrsD1(j)cosψ, Υ(2,3)
s = Υ(3,2)

s = kjr
2
s sinψcosψ,

Υ(3,5)
s = Υ(5,3)

s = kjrs cos
2 ψ, Υ(1,6)

s = Υ(6,1)
s = −kjD1(j)sinψ

Υ(2,6)
s = Υ(6,2)

s = −kjrs sin2 ψ.

(5.32)

Θ(1,1)
s = κj + kjD1(j)

2, Θ(1,2)
s = Θ(2,1)

s = kjD1(j)rs sinψ,

Θ(2,2)
s = kjrs sin

2 ψ, Θ(5,5)
s = kjcos

2 ψ,

Θ(1,5)
s = Θ(5,1)

s = kjD1(j)cosψ, Θ(2,5)
s = Θ(5,2)

s = kjrs sinψcosψ.

(5.33)
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Ξ(1,1)
s = 2kjD1(j)rs sinψ, Ξ(1,2)

s = Ξ(2,1)
s = kj[r

2
s sin

2 ψ −D1(j)
2]− κj ,

Ξ(1,4)
s = Ξ(4,1)

s = kjcosψD1(j), Ξ(1,5)
s = Ξ(5,1)

s = kjrscosψsinψ,

Ξ(2,2)
s = −2kjD1(j)rs sinψ, Ξ(2,4)

s = Ξ(4,2)
s = kjrscosψsinψ,

Ξ(2,5)
s = Ξ(5,2)

s = −kjcosψD1(j), Ξ(4,5)
s = Ξ(5,4)

s = kjcos
2 ψ.

(5.34)

Ψ(1,1)
s = kAs D

2
17 + kBs D

2
18 + κAs + κBs , Ψ(1,5)

s = Ψ(5,1)
s = −kAs D17 − kBs D18,

Ψ(2,2)
s = kAs D

2
17 + kBs D

2
18 + κAs + κBs , Ψ(2,4)

s = Ψ(4,2)
s = kAs D17 + kBs D18,

Ψ(3,3)
s = κAz

s + κBz
s + kjr

2
s cos

2 ψ, Ψ(3,6)
s = −kjrs cosψsinψ, Ψ(4,4)

s = kAs + kBs ,

Ψ(5,5)
s = kAs + kBs , Ψ(6,6)

s = kAz
s + kBz

s + kjsin
2 ψ.

(5.35)

Λ(1,1)
s = kjD1(j)rp sinψ, Λ(1,2)

s = kjD1(j)D2(j) + κj , Λ(1,3)
s = kjD1(j)rp cosψ,

Λ(1,4)
s = −kjD1(j)cosψ, Λ(1,6)

s = kjD1(j)sinψ, Λ(2,1)
s = kjrsrp sin

2 ψ,

Λ(2,2)
s = kjrs sinψD2(j), Λ(2,3)

s = kjrsrp sinψcosψ, Λ(2,4)
s = −kjrs sinψcosψ,

Λ(2,6)
s = kjrs sin

2 ψ, Λ(5,1)
s = kjrpcosψsinψ, Λ(5,2)

s = kjcosψD2(j),

Λ(5,3)
s = kjrpcos

2 ψ, Λ(5,4)
s = −kjcos2 ψ, Λ(5,6)

s = kjsinψcosψ.

(5.36)

Γ(3,1)
s = kjrsrp cosψsinψ, Γ(3,2)

s = kjrs cosψD2(j), Γ(3,3)
s = kjrprs cos

2 ψ,

Γ(3,4)
s = −kjrs cos2 ψ, Γ(3,6)

s = kjrs cosψsinψ, Γ(6,1)
s = −kjrpsin2 ψ,

Γ(6,2)
s = −kjsinψD2(j), Γ(6,3)

s = −kjrpsinψcosψ, Γ(6,4)
s = kjsinψcosψ,

Γ(6,6)
s = −kjsin2 ψ,

(5.37)

where j = 1, 3, . . . , 2p− 1 for all matrices related to the sun.

Υ(1,3)
r = Υ(3,1)

r = kjrrD3(j)cosψ, Υ(1,6)
r = Υ(6,1)

r = kjD3(j)sinψ,

Υ(2,3)
r = Υ(3,1)

r = kjrrD4(j)cosψ, Υ(2,6)
r = Υ(6,2)

r = kjD4(j)sinψ,

Υ(3,4)
r = Υ(4,3)

r = kjrrD5cosψ, Υ(3,5)
r = Υ(5,3)

r = kjrrD6cosψ,

Υ(4,6)
r = Υ(6,4)

r = kjD5sinψ, Υ(5,6)
r = Υ(6,5)

r = kjD6sinψ.

(5.38)
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Θ(1,1)
r = κjD

2
9 + kjD3(j)

2, Θ(1,2)
r = Θ(2,1)

r = κjD9D10 + kjD3(j)D4(j),

Θ(1,4)
r = Θ(4,1)

r = kjD3(j)D5, Θ(1,5)
r = Θ(5,1)

r = kjD3(j)D6,

Θ(2,2)
r = κjD

2
10 + kjD4(j)

2, Θ(2,4)
r = Θ(4,2)

r = kjD4(j)D5,

Θ(2,5)
r = Θ(5,2)

r = kjD4(j)D6, Θ(4,4)
r = kjD

2
5,

Θ(4,5)
r = Θ(5,4)

r = kjD5D6, Θ(5,5)
r = kjD

2
6.

(5.39)

Ξ(1,1)
r = 2κjD9D10 + 2kjD3(j)D4(j),

Ξ(1,2)
r = Ξ(2,1)

r = kj[D4(j)
2 −D3(j)

2] + κj(D
2
10 −D2

9),

Ξ(1,4)
r = Ξ(4,1)

r = kj[D3(j)D6 +D4(j)D5],

Ξ(1,5)
r = Ξ(5,1)

r = kj[D4(j)D6 −D3(j)D5],

Ξ(2,2)
r = −2κjD9D10 − 2kjD3(j)D4(j),

Ξ(2,4)
r = Ξ(4,2)

r = kj[D4(j)D6 −D3(j)D5], Ξ(4,4)
r = 2kjD5D6,

Ξ(2,5)
r = Ξ(5,2)

r = −kj[D3(j)D6 +D4(j)D5],

Ξ(4,5)
r = Ξ(5,4)

r = kj(D
2
6 −D2

5), Ξ(5,5)
r = −2kjD5D6.

(5.40)

Ψ(1,1)
r = kAr D

2
19 + kBr D

2
20 + κAr + κBr , Ψ(1,5)

r = Ψ(5,1)
r = −kAr D19 − kBr D20,

Ψ(2,2)
r = kAr D

2
19 + kBr D

2
20 + κAr + κBr , Ψ(2,4)

r = Ψ(4,2)
r = kAr D19 + kBr D20,

Ψ(3,3)
r = κAz

r + κBz
r + kjrr

2 cos2 ψ, Ψ(3,6)
r = Ψ(6,3)

r = kjrr cosψsinψ,

Ψ(4,4)
r = kAr + kBr , Ψ(5,5)

r = kAr + kBr , Ψ(6,6)
r = kAz

r + kBz
r + kjsin

2 ψ.

(5.41)
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Λ(1,1)
r = kjD3(j)D7(j)− κjD9D10, Λ(1,2)

r = kjD3(j)D8(j) + κjD
2
9,

Λ(1,4)
r = −kjD3(j)D6, Λ(1,5)

r = kjD3(j)D5, Λ(1,6)
r = −kjD3(j)sinψ,

Λ(1,3)
r = −kjrpD3(j)cosψ, Λ(2,3)

r = −kjrpD4(j)cosψ,

Λ(2,1)
r = kjD4(j)D7(j)− κjD

2
10, Λ(2,2)

r = kjD4(j)D8(j) + κjD9D10,

Λ(2,4)
r = −kjD4(j)D6, Λ(2,5)

r = kjD4(j)D5, Λ(2,6)
r = −kjsinψD4(j),

Λ(4,1)
r = kjD5D7(j), Λ(4,2)

r = kjD5D8(j), Λ(4,3)
r = −kjD5rp cosψ,

Λ(4,4)
r = −kjD5D6, Λ(4,5)

r = kjD
2
5, Λ(4,6)

r = −kjD5sinψ,

Λ(5,1)
r = kjD6D7(j), Λ(5,2)

r = kjD6D8(j), Λ(5,3)
r = −kjrpD6cosψ,

Λ(5,4)
r = −kjD2

6, Λ(5,5)
r = kjD5D6, Λ(5,6)

r = −kjsinψD6.

(5.42)

Γ(3,1)
r = kjrr cosψD7(j), Γ(3,2)

r = kjrr cosψD8(j), Γ(3,3)
r = −kjrrrp cos2 ψ,

Γ(3,4)
r = −kjrrD6cosψ, Γ(3,5)

r = kjrrD5cosψ, Γ(3,6)
r = −kjrrsinψcosψ,

Γ(6,1)
r = kjsinψD7(j), Γ(6,2)

r = kjsinψD8(j), Γ(6,3)
r = −kjrpsinψcosψ,

Γ(6,4)
r = −kjsinψD6, Γ(6,5)

r = kjsinψD5, Γ(6,6)
r = −kjsin2 ψ,

(5.43)

where j = 2, 4, . . . , 2p for all matrices related to the ring.

Υ(1,3)
c = Υ(3,1)

c = −D13(k
A
p D11 + kBp D15), Υ(1,6)

c = Υ(6,1)
c = −D12(k

Az
p + kBz

p ),

Υ(2,3)
c = Υ(3,2)

c = D12(k
A
p D11 + kBp D15), Υ(2,6)

c = Υ(6,2)
c = −D13(k

Az
p + kBz

p ),

Υ(3,4)
c = Υ(4,3)

c = D12(k
A
p + kBp ), Υ(3,5)

c = Υ(5,3)
c = D13(k

A
p + kBp ).

(5.44)

Θ(1,1)
c = kAp D

2
11 + kBp D

2
15 +D2

12(k
Az
p + kBz

p ) + κAp + κBp ,

Θ(1,2)
c = Θ(2,1)

c = D12D13(k
Az
p + kBz

p ),

Θ(1,5)
c = Θ(5,1)

c = −kAp D11 − kBp D15,

Θ(2,2)
c = kAp D

2
11 + kBp D

2
15 +D2

13(k
Az
p + kBz

p ) + κAp + κBp ,

Θ(2,4)
c = Θ(4,2)

c = kAp D11 + kBp D15, Θ(4,4)
c = kAp + kBp ,

Θ(5,5)
c = kAp + kBp .

(5.45)

134



Ξ(1,1)
c = 2D12D13(k

Az
p + kBz

p ), Ξ(2,2)
c = −2D12D13(k

Az
p + kBz

p ),

Ξ(1,2)
c = Ξ(2,1)

c = (D2
13 −D2

12)(k
Az
p + kBz

p ).
(5.46)

Ψ(1,1)
c = kAc D

2
21 + kBc D

2
22 + κAc + κBc , Ψ(1,5)

c = Ψ(5,1)
c = −kAc D21 − kBc D22,

Ψ(2,2)
c = kAc D

2
21 + kBc D

2
22 + κAc + κBc , Ψ(2,4)

c = Ψ(4,2)
c = kAc D21 + kBc D22,

Ψ(3,3)
c = κAz

c + κBz
c + κAz

p + κBz
p + (D2

13 +D2
12)(k

A
p + kBp ),

Ψ(4,4)
c = kAc + kBc , Ψ(5,5)

c = kAc + kBc , Ψ(6,6)
c = kAz

c + kBz
c + kAz

p + kBz
p .

(5.47)

Λ(1,2)
c = kAp D11D14 + kBp D15D16 + κAp + κBp ,

Λ(2,1)
c = −kAp D11D14 − kBp D15D16 − κAp − κBp ,

Λ(4,1)
c = −kAp D14 − kBp D16, Λ(4,5)

c = kAp + kBp ,

Λ(5,2)
c = −kAp D14 − kBp D16, Λ(5,4)

c = −kAp − kBp ,

Λ(1,4)
c = kAp D11 + kBp D15, Λ(2,5)

c = kAp D11 + kBp D15,

Λ(1,6)
c = D12(k

Az
p + kBz

p ), Λ(2,6)
c = D13(k

Az
p + kBz

p ).

(5.48)

Γ(3,1)
c = −D12(k

A
p D14 + kBp D16), Γ(3,2)

c = −D13(k
A
p D14 + kBp D16),

Γ(3,3)
c = −κAz

p − κBz
p , Γ(3,4)

c = −D13(k
A
p + kBp ),

Γ(3,5)
c = D12(k

A
p + kBp ), Γ(6,6)

c = −kAz
p − kBz

p .

(5.49)
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Equation (5.50) relates to planet i ∈ {1, 2, . . . , p}. The quantity 2i − 1 indicates

the sun-planet mesh, and 2i indicates the planet-ring mesh.

K
(1,1)
i = k2i−1r

2
p sin

2 ψ + k2iD7(2i)
2 + κ2iD

2
10 + kAp D

2
14 + kBp D

2
16 + κAp + κBp ,

K
(1,2)
i = K

(2,1)
i = k2i−1D2(2i− 1)rp sinψ + k2iD7(2i)D8(2i)− κ2iD9D10,

K
(1,3)
i = K

(3,1)
i = [k2i−1rp sinψ − k2iD7(2i)]rp cosψ,

K
(1,5)
i = K

(5,1)
i = k2iD7(2i)D5 − kAp D14 − kBp D16,

K
(1,4)
i = K

(4,1)
i = −k2i−1rp sinψcosψ − k2iD7(2i)D6,

K
(1,6)
i = K

(6,1)
i = k2i−1rp sin

2 ψ − k2iD7(2i)sinψ,

K
(2,2)
i = k2i−1D2(2i− 1)2 + k2iD8(2i)

2 + κ2i−1 + κ2iD
2
9 + kAp D

2
14 + kBp D

2
16 + κAp + κBp ,

K
(2,3)
i = K

(3,2)
i = [k2i−1D2(2i− 1)− k2iD8(2i)]rp cosψ,

K
(2,4)
i = K

(4,2)
i = −k2i−1D2(2i− 1)cosψ − k2iD8(2i)D6 + kAp D14 + kBp D16,

K
(2,5)
i = K

(5,2)
i = k2iD5D8(2i),

K
(2,6)
i = K

(6,2)
i = k2i−1D2(2i− 1)sinψ − k2iD8(2i)sinψ,

K
(3,3)
i = (k2i−1 + k2i)r

2
pcos

2 ψ + κAz
p + κBz

p ,

K
(3,4)
i = K

(4,3)
i = (k2iD6 − k2i−1cosψ)rp cosψ,

K
(3,5)
i = K

(5,3)
i = −k2iD5rp cosψ,

K
(3,6)
i = K

(6,3)
i = (k2i−1 + k2i)rpsinψcosψ,

K
(4,4)
i = k2i−1cos

2 ψ + k2iD
2
6 + kAp + kBp , K

(4,5)
i = K

(5,4)
i = −k2iD5D6,

K
(4,6)
i = K

(6,4)
i = −(k2i−1cosψ − k2iD6)sinψ,

K
(5,5)
i = k2iD

2
5 + kAp + kBp , K

(5,6)
i = K

(6,5)
i = −k2iD5sinψ,

K
(6,6)
i = (k2i−1 + k2i)sin

2 ψ + kAz
p + kBz

p .

(5.50)
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In the quantities below, j ∈ {1, 2, . . . , 2p} denotes one of the 2p tooth meshes.

D1(j) = (es − cj) cosψ − rs sinψ tanΦsp,

D2(j) = (ep − cj) cosψ + rp sinψ tanΦsp,

D3(j) = cos(Φsp + Φrp) [(er − cj) cosψ − rr sinψ tanΦrp] + rr sinψ sin(Φsp + Φrp),

D4(j) = sin(Φsp + Φrp) [(er − cj) cosψ − rr sinψ tanΦrp]− rr sinψ cos(Φsp + Φrp),

D5 = − cosψ sin(Φsp + Φrp), D6 = cosψ cos(Φsp + Φrp),

D7(j) = sin(Φsp + Φrp) [(cj − ep) cosψ + rp tanΦrp sinψ] + rp sinψ cos(Φsp + Φrp),

D8(j) = cos(Φsp + Φrp) [(ep − cj) cosψ − rp tanΦrp sinψ] + rp sinψ sin(Φsp + Φrp),

D9 = − cos(Φsp + Φrp), D10 = − sin(Φsp + Φrp),

D11 = −LA
p − es, D12 = − tanΦsp(rs + rp), D13 = rs + rp, D14 = −LA

p − ep,

D15 = LB
p − es, D16 = LB

p − ep, D17 = −LA
s − es, D18 = LB

s − es,

D19 = −LA
r − er, D20 = LB

r − er, D21 = −LA
c − ec, D22 = LB

c − ec.

5.3.2 Computational Observation of Vibration Modes

Eigensolutions of a sample system (Table 5.1) with four and five equally spaced

planets are evaluated numerically to expose the modal properties. Some natural

frequencies and their corresponding mode types are given in Table 5.2. The vibration

modes exhibit distinctive characteristics. There are three types of vibration modes.

Figures 5.3, 5.4, 5.5, and 5.6 show two examples of each of the three types of vibration

modes for the example system with four planets. Regardless of the system parameters

the modal deflections of certain gears are zero, or there is a relation between certain

degrees of freedom such that not all modal deflections are independent. Based on
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these features, all vibration modes are categorized as rotational-axial, translational-

tilting, and planet modes. These three types bear some similarities to those described

by Lin and Parker [58], but they have important differences.
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Table 5.1: Parameters of the planetary gear system.

Parameter Sun Mesh Planet Mesh Ring Carrier

Operating pressure angle, Φ [deg] 21.3 21.3
Base helix angle, ψ [deg] -28.5 28.5
Translational mesh stiffness, k [N/m] 6.19×109 22.3×109

Tilting mesh stiffness, κ [N m] 643×103 2.31×106

Center of stiffness, c [mm] 0 0
Base radius, r [mm] 24 16 56
Center of mass, e [mm] 0 0 0 0
Bearing distance at point A, LA [mm] -20 -20 -20 -20
Bearing distance at point B, LB [mm] 20 20 20 20
Radial bearing stiffnesses, kA, kB [N/m] 0.5× 109 0.5× 109 0.5× 109 0.5× 109

Axial bearing stiffnesses, kAz, kBz [N/m] 0.5× 109 0.5× 109 0.5× 109 0.5× 109

Tilting bearing stiffnesses, κA, κB [N m] 50× 106 5× 106 50× 106 50× 106

Rotational brg. stiffnesses, κAz, κBz [N m] 0 0 90× 109 90× 109

Mass, m [kg] 0.3 0.2 100× 10−6 0.5
Tilting inertia, Jx [kg m2] 5× 10−3 50× 10−6 10× 10−6 4× 10−3

Rotational inertia, Jz [kg m2] 10× 10−3 100×10−6 20×10−6 8× 10−3
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Table 5.2: Lowest 10 natural frequencies [Hz] and mode types of the planetary gear
system defined in Table 5.1 with four and five planets. R-A: Rotational-axial mode,
T-T: Translational-tilting mode, P: Planet mode.

Four Planets Five Planets

Natural frequency [Hz] Mode type Natural frequency [Hz] Mode type

953 R-A 1011 R-A
3120 T-T 3068 T-T
3120 T-T 3068 T-T
3251 R-A 3114 R-A
3743 R-A 3670 R-A
5426 T-T 5184 T-T
5426 T-T 5184 T-T
8177 P 8177 P
8537 T-T 8177 P
8537 T-T 8506 R-A

Observed Rotational-Axial Modes

There are 12 rotational-axial modes for systems with more than two planets. The

natural frequency multiplicity is one. From the computed eigenvectors (in Fig. 5.3,

for example) the central members rotate and translate axially, but they do not tilt or

translate in-plane. The modal deflection of any central member is of the form

vh = (0, 0, βh, 0, 0, zh). (5.51)

The planets move in all degrees of freedom, and their modal deflections are identical

to one another as given by

v1 = v2 = . . . = vp. (5.52)

140



Observed Translational-Tilting Modes

There are 12 pairs of translational-tilting modes with natural frequency multiplic-

ity of two for systems with three or more planets. In both modes of a translational-

tilting mode pair the central members only translate in-plane and tilt but do not

rotate or translate axially. Figures 5.4 and 5.5 show two examples of translational-

tilting mode pairs. The modal deflections of any central member for a pair of vibration

modes have the form

vh = (φh, θh, 0, xh, yh, 0), wh = (θh,−φh, 0, yh,−xh, 0) → wh = Rvh,

h = s, r, c.
(5.53)

The planets move in all six degrees of freedom. Their motions are such that the modal

deflections of any planet can be found from the modal deflections of the arbitrarily

selected first planet using
(

vi

wi

)

=

[
cosαi I sinαi I
− sinαi I cosαi I

](
v1

w1

)

, i = 2, . . . , p, (5.54)

where I is the 6× 6 identity matrix.

Observed Planet Modes

In two sample planet modes shown in Fig. 5.6 all central members are stationary.

This is given by

vh = 0, h = s, r, c. (5.55)

The planets move in all six degrees of freedom, and their motions are related to that

of the arbitrarily selected first planet, as given by

vi = wiv1, i = 2, . . . , p, (5.56)

where the wi are constants. Planet modes are observed only when there are four or

more planets (p ≥ 4). The natural frequency multiplicity is p− 3.
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(a)

(b)

Figure 5.3: Two rotational-axial modes of the planetary gear system defined in Table
5.1 with four equally spaced planets. Angular and translational displacements are
scaled independently to emphasize behavior. a) 953 Hz. b) 3251 Hz.
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(a)

(b)

Figure 5.4: A pair of degenerate translational-tilting modes (10591 Hz) of the plane-
tary gear system defined in Table 5.1 with four equally spaced planets. Angular and
translational displacements are scaled independently to emphasize behavior.
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(a)

(b)

Figure 5.5: A pair of degenerate translational-tilting modes (25696 Hz) of the plane-
tary gear system defined in Table 5.1 with four equally spaced planets. Angular and
translational displacements are scaled independently to emphasize behavior.
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(a)

(b)

Figure 5.6: Two planet modes of the planetary gear system defined in Table 5.1
with four equally spaced planets. Angular and translational displacements are scaled
independently to emphasize behavior. a) 8177 Hz. b) 80538 Hz.
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5.3.3 Analytical Characterization of Vibration Modes

The observed properties of the different types of vibration modes will be proved

for general systems with three or more planets. The proof consists of constructing a

candidate vibration mode (for each mode type) based on the observed characteristics

and substituting it into the eigenvalue problem Eq. (5.26). Showing that the eigen-

value problem is satisfied ensures that the proposed vibration mode is truly a system

vibration mode.

The critical point for all three mode types is that some elements of the candidate

vibration mode are linearly dependent on others. A candidate vibration mode is

partitioned as

q = (u,q∗) , q∗ = Yu, (5.57)

where the vector u contains elements regarded as independent, and the vector q∗ is

the vector of dependent elements calculated from u. How the modal deflections are

partitioned between u and q∗ as well as the matrix Y differ for each of the three

mode types, but all three types can be expressed in this general form with known Y.

The three specific cases are discussed subsequently.

Substitution of the candidate vibration mode from Eq. (5.57) into the eigenvalue

problem Eq. (5.26) results in

[
A BT

B E

](
u
q∗

)

= λ

[
Mu 0
0 Ml

](
u
q∗

)

, (5.58)

whereA, B, and E are partitioned matrices ofK; Mu andMl are partitioned matrices

of the diagonal M. The upper row yields Au + BTq∗ = λMuu. Substitution of

q∗ = Yu expresses the upper row in the form of a reduced eigenvalue problem

(A+BTY)u = λMuu. (5.59)
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This equation contains all the necessary information to find the natural frequencies

and vibration modes of the type of vibration mode under consideration. The remain-

ing elements q∗ of q are found from Eq. (5.57). For such a mode to indeed be a system

mode, however, the lower row of Eq. (5.58) must hold, which is given by

Bu+ Eq∗ = λMlq
∗. (5.60)

This equation is crucial for the rest of this chapter.

In what follows, we prove that Eq. (5.60) holds for appropriately selected candidate

vibration modes of the form Eq. (5.57) constructed for each of the three mode types.

In each case, u is calculated by the reduced eigenvalue problem in Eq. (5.59). In

this process, the algebraic properties of the stiffness and inertia matrices are pivotal.

Furthermore, we show that this process yields all of the system modes, that is, every

mode is either a rotational-axial, translational-tilting, or planet mode.

Several elements of q∗ are zero for each mode type. The non-zero elements are

collected in q∗

N . To simplify the subsequent algebra Eq. (5.60) is partitioned into two

parts associated with the zero and non-zero elements of q∗ as

[
B0

BN

]

u+

[
D0 E0

DN EN

](
0

q∗

N

)

=

(
0

λMNq
∗

N

)

, (5.61)

where the subscripts 0 and N denote the partitioning, and Eq. (5.61) reflects Ml

being diagonal. The upper and lower rows of Eq. (5.61) are

B0u+ E0q
∗

N = 0, (5.62)

BNu+ ENq
∗

N = λMNq
∗

N . (5.63)

The construction of matrices Y, B0, BN , E0, EN , A, MN , and Mu are dictated by

the partitioning of each candidate mode type by Eq. (5.57).
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With the stipulations that the planets are equally spaced and the system is tuned,

the following developments do not depend on, and are therefore valid for arbitrary

values of, system parameters such as gear radii, pressure and helix angles, locations

and stiffnesses of the bearings, mesh stiffnesses, and so on.

Rotational-Axial Modes

The decomposition of the candidate rotational-axial mode according to Eqs. (5.51),

(5.52), and (5.57) is

u = (ṽs, ṽr, ṽc,v1) , q∗ = (0, 0, 0,v1, . . . ,v1
︸ ︷︷ ︸

p−1

), (5.64)

where the zero vector has dimension 4 × 1. The tilde accent is used here and for

the other two mode types to represent sub-vectors containing only the independent

elements u of the candidate mode q in Eq. (5.57). The specific elements in the

quantities with a tilde accent will differ based on the mode type in question. The

tilting and translational motions of the central members in a candidate rotational-

axial mode are zero as indicated in Eq. (5.51), so the sun, ring, and carrier modal

deflection sub-vectors are

ṽs = (βs, zs), ṽr = (βr, zr), ṽc = (βc, zc). (5.65)

The modal deflections of each planet are identical as given by Eq. (5.52). The modal

deflection of the arbitrarily selected first planet v1 is chosen to be the independent

one hence the appearance of v1 in Eq. (5.64). The dependent elements contained in

q∗ are all calculable from the vector of independent elements u using Eq. (5.57) and

Y =








012×6 012×6

06×6 I6×6

...
...

06×6 I6×6








(5.66)
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with dimension 12 + 6(p− 1)× 12.

One can readily partition Eq. (5.26) to obtain Eq. (5.58), and the reduced eigen-

vectors u are found from Eq. (5.59). To confirm that Eq. (5.64) is indeed a mode,

each of Eq. (5.62) and Eq. (5.63) must be satisfied for u and q∗.

The matrices B0 and E0 in Eq. (5.62) are dictated by the partitioning given in

Eq. (5.64) to be

B0 =






K̂s 0 0 K̂s,1

0 K̂r 0 K̂r,1

0 0 K̂c K̂c,1




 , E0 =






K̂s,2 . . . K̂s,p

K̂r,2 . . . K̂r,p

K̂c,2 . . . K̂c,p




 . (5.67)

The sub-matrices K̂h, h = s, r, c, are constructed from the 1st, 2nd, 4th, and 5th

rows and 3rd and 6th columns of the corresponding matrices Kh in Eq. (5.18). The

sub-matrices K̂h,i, i = 1, . . . , p, are constructed from the 1st, 2nd, 4th, and 5th rows

and all columns of the corresponding matrices Kh,i in Eq. (5.18). B0 has dimension

12× 12 and E0 has dimension 12× 6(p− 1).

Substitution of matrices B0 and E0 from Eq. (5.67) into Eq. (5.62) yields

K̂hṽh +

p∑

i=1

K̂h,iv1 = 0. (5.68)

From Eq. (5.28), the sub-matrices K̂h satisfy

K̂h = Υ̂h

p
∑

i=1

sinαi + R̄Υ̂hR̂
T

p
∑

i=1

cosαi, (5.69)

because Θ̂h = Ξ̂h = Ψ̂h = 0 by Eqs. (5.33), (5.34), (5.35), (5.39), (5.40), (5.41),

(5.45), (5.46), and (5.47). The hat accent on R̂ indicates the 3rd and 6th rows and

3rd and 6th columns of R. The bar accent on R̄ indicates the 1st, 2nd, 4th, and 5th
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rows and the 1st, 2nd, 4th, and 5th columns of R. From [25]

p
∑

i=1

sin iα = sin
p+ 1

2
α sin

pα

2
cosec

α

2
= 0,

p
∑

i=0

cos iα = cos
p+ 1

2
α sin

pα

2
cosec

α

2
+ 1 = 0,

(5.70)

where the second equalities are from equal planet spacing α = 2π/p. The sub-

matrices K̂h in Eq. (5.68) vanish as a result of Eqs. (5.69) and (5.70). For vanishing

K̂h Eq. (5.68) becomes, after use of Eq. (5.31) and Γ̂h = 0 (by Eqs. (5.37), (5.43),

and (5.49))
p
∑

i=1

K̂h,iv1 = Λ̂hv1

p
∑

i=1

sinαi + R̄Λ̂hv1

p
∑

i=1

cosαi = 0, (5.71)

where the second equality results from Eq. (5.70). This confirms that Eq. (5.62) is

satisfied for the candidate rotational-axial vibration mode defined in Eq. (5.64).

We now examine whether Eq. (5.63) is satisfied. The matrices BN , EN , and MN

are

BN =






K̄T
s,2 K̄T

r,2 K̄T
c,2 0

...
...

...
...

K̄T
s,p K̄T

r,p K̄T
c,p 0




 , EN = diag (K2, . . . ,Kp) ,

MN = diag (M2, . . . ,Mp) .

(5.72)

The sub-matrices K̄h,i are constructed from all columns and the 3rd and 6th rows of

Kh,i in Eq. (5.18), so using Eq. (5.31) and Λ̄h = 0 (by Eqs. (5.36), (5.42), (5.48))

Eq. (5.31) becomes

K̄h,i = Γ̄h. (5.73)

The zero matrices are 6 × 6. The matrices BN , EN , and MN have dimensions

6(p− 1)× 12, 6(p− 1)× 6(p− 1), and 6(p− 1)× 6(p− 1), respectively. Substitution

of Eq. (5.72) into Eq. (5.63) yields p−1 matrix equations
∑

h=s,r,c

Γ̄T
h ṽh+Kiv1 = λMiv1,
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i = 2, . . . , p. Substitution of Eq. (5.30) gives

∑

h=s,r,c

Γ̄T
h ṽh +K1v1 = λM1v1. (5.74)

We now show that this equality is satisfied for ṽh and v1 calculated from the

reduced eigenvalue problem Eq. (5.59). The matrices A and Mu in Eq. (5.59) are

A =








Ḱs 0 0 K̄s,1

0 Ḱr 0 K̄r,1

0 0 Ḱc K̄c,1

K̄T
s,1 K̄T

r,1 K̄T
c,1 K1







, Mu = diag

(

Ḿs, Ḿr, Ḿc,M1

)

, (5.75)

where Ḿh and Ḱh are constructed from the 3rd and 6th rows and the 3rd and 6th

columns of the corresponding matrices in Eqs. (5.17) and (5.18). The matrices A

and Mu have dimension 12× 12. Upon substitution of A, Mu, B0, BN , and Y from

Eqs. (5.75), (5.67), (5.72), (5.66), and (5.73) into Eq. (5.59), the reduced eigenvalue

problem for rotational-axial modes is







Ḱs 0 0 pΓ̄s

0 Ḱr 0 pΓ̄r

0 0 Ḱc pΓ̄c

pΓ̄T
s pΓ̄T

r pΓ̄T
c pK1














ṽs

ṽr

ṽc

v1







= λ








Ḿs 0 0 0

0 Ḿr 0 0

0 0 Ḿc 0
0 0 0 pM1














ṽs

ṽr

ṽc

v1






. (5.76)

The last row of the reduced eigenvalue problem in Eq. (5.76) is the same equation as

Eq. (5.74). Thus, u satisfying Eq. (5.59) ensures the satisfaction of Eq. (5.74), and

so the satisfaction of Eq. (5.63).

We have shown that every rotational-axial mode q of the form Eqs. (5.57) and

(5.64), defined by Eqs. (5.51) and (5.52) satisfies the full eigenvalue problem Eq. (5.26);

each u is determined from the reduced eigenvalue problem Eq. (5.59). In the rotational-

axial mode case, Eq. (5.59) is a 12×12 eigenvalue problem and the reduced eigenvector

u has 12 elements. Therefore, there are 12 rotational-axial modes. Because each re-

duced eigenvector u produces only one rotational-axial mode, each rotational-axial

mode has a distinct natural frequency.
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Translational-Tilting Modes

The candidate pair of translational-tilting modes given by the relations Eqs. (5.53)

and (5.54) satisfy the eigenvalue problem Eq. (5.26) with the same eigenvalue. This

is expressed as

(K− λM)q1 = 0, (K− λM)q2 = 0. (5.77)

Any linear combination of q1 and q2 also satisfies the full eigenvalue problem with

the same eigenvalue. To apply the formulation in Eqs. (5.59)-(5.63), we stack the two

expressions in Eq. (5.77) into a single block-diagonal matrix eigenvalue problem of

dimension 12(p+ 3) with eigenvector

q = (q1,q2). (5.78)

This eigenvalue problem is partitioned to give Eq. (5.58). To that end, decomposition

of the candidate translational-tilting mode pair in Eq. (5.78) according to Eqs. (5.53),

(5.54), and (5.57) gives

u = (ṽs, ṽr, ṽc,v1,w1) ,

q∗ = (0, 0, 0,ws,wr,wc,v2, . . . ,vp,w2, . . . ,wp) ,
(5.79)

where the zero vectors are 2 × 1. The matrix Y combines Eqs. (5.53) and (5.54) to

relate q∗ to u in Eq. (5.57), and it is given by

Y =





















06×4 06×4 06×4 06×6 06×6

R̄ 04×4 04×4 04×6 04×6

04×4 R̄ 04×4 04×6 04×6

04×4 04×4 R̄ 04×6 04×6

06×6 06×6 06×6 I cosα2 I sinα2

...
...

...
...

...
06×6 06×6 06×6 I cosαp I sinαp

06×6 06×6 06×6 −I sinα2 I cosα2

...
...

...
...

...
06×6 06×6 06×6 −I sinαp I cosαp





















, (5.80)
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where the bar accent on R̄ indicates the 1st, 2nd, 4th, and 5th rows and the 1st, 2nd,

4th, and 5th columns of R.

The sub-matrices B0 and E0 in Eq. (5.62) are

B0 =






K̂s 0 0 K̂s,1 K̂s,1

0 K̂r 0 K̂r,1 K̂r,1

0 0 K̂c K̂c,1 K̂c,1




 , (5.81)

E0 =






K̂s 0 0 K̂s,2 . . . K̂s,p K̂s,2 . . . K̂s,p

0 K̂r 0 K̂r,2 . . . K̂r,p K̂r,2 . . . K̂r,p

0 0 K̂c K̂c,2 . . . K̂c,p K̂c,2 . . . K̂c,p




 . (5.82)

The sub-matrices K̂h are constructed from the 1st, 2nd, 4th, and 5th columns and

the 3rd and 6th rows of the corresponding matrices in Eq. (5.18). The sub-matrices

K̂h,i are constructed from all columns and the 3rd and 6th rows of the corresponding

matrices in Eq. (5.18). B0 has dimension 6× 24 and E0 has dimension 6× 12p.

Substitution of B0 and E0 from Eqs. (5.81) and (5.82) into Eq. (5.62) yields

K̂hṽh +

p
∑

i=1

K̂h,ivi = 0, K̂hw̃h +

p
∑

i=1

K̂h,iwi = 0, h = s, r, c. (5.83)

Considering the specified K̂h and Eq. (5.28), Θ̂h = Ξ̂h = Ψ̂h = 0 by Eqs. (5.33),

(5.34), (5.35), (5.39), (5.40), (5.41), (5.45), (5.46), and (5.47). Thus, using Eq. (5.70),

the sub-matrices K̂h vanish for equally spaced planets. Use of Eq. (5.31) and Λ̂h = 0

(by Eqs. (5.36), (5.42), and (5.48)) simplifies the off-diagonal sub-matrices to K̂h,i =

Γ̂h. For vanishing K̂h, substitution of Eq. (5.54) into Eq. (5.83) yields

Γ̂h

p
∑

i=1

v1 cosαi +w1 sinαi = 0, Γ̂h

p
∑

i=1

w1 cosαi − v1 sinαi = 0, h = s, r, c.

(5.84)

These six matrix equations are satisfied in light of Eq. (5.70). This confirms that

Eq. (5.62) is satisfied for the candidate mode given in Eq. (5.79), or equivalently,

Eqs. (5.53) and (5.54).
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The matrices BN , EN , and MN in Eq. (5.63) are given by

BN =














04×4 04×4 04×4 04×6 K̄s,1

04×4 04×4 04×4 04×6 K̄r,1

04×4 04×4 04×4 04×6 K̄c,1

K̄T
s,2 K̄T

r,2 K̄T
c,2 06×6 06×6

...
...

...
...

...
K̄T

s,p K̄T
r,p K̄T

c,p 06×6 06×6

06(p−1)×4 06(p−1)×4 06(p−1)×4 06(p−1)×6 06(p−1)×6














, (5.85)

EN =



















Ḱs 04×4 04×4 04×6 . . . 04×6 K̄s,2 . . . K̄s,p

04×4 Ḱr 04×4 04×6 . . . 04×6 K̄r,2 . . . K̄r,p

04×4 04×4 Ḱc 04×6 . . . 04×6 K̄c,2 . . . K̄c,p

06×4 06×4 06×4 K2 . . . 06×6 06×6 . . . 06×4

...
...

...
...

. . .
...

...
. . .

...
06×4 06×4 06×4 06×6 . . . Kp 06×6 . . . 06×4

K̄T
s,2 K̄T

r,2 K̄T
c,2 06×6 . . . 06×6 K2 . . . 06×6

...
...

...
...

. . .
...

...
. . .

...
K̄T

s,p K̄T
r,p K̄T

c,p 06×6 . . . 06×6 06×6 . . . Kp



















, (5.86)

MN = diag
(

Ḿs, Ḿr, Ḿc,M2, . . . ,Mp,M2, . . . ,Mp

)

. (5.87)

The sub-matrices K̄h,i are constructed from all columns and the 1st, 2nd, 4th, and

5th rows of the corresponding matrices in Eq. (5.18). Use of Eq. (5.31) and Γ̄h = 0

(by Eqs. (5.37), (5.43), and (5.49)) simplifies the off-diagonal sub-matrices to

K̄h,i = Λ̄h. (5.88)

The sub-matrices Ḿh and Ḱh are constructed from the 1st, 2nd, 4th, and 5th rows

and the 1st, 2nd, 4th, and 5th columns from the corresponding matrices in Eqs. (5.17)

and (5.18). The planet stiffness and inertia sub-matrices Mi and Ki do not need par-

titioning; they are identical to the ones in Eqs. (5.17) and (5.18). BN has dimension

12p× 24, and EN and MN have dimension 12p× 12p.
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Substitution of Eqs. (5.85), (5.86), (5.87), and the candidate mode from Eq. (5.79)

into Eq. (5.63) gives

Ḱhw̃h +

p
∑

i=1

K̄h,iwi = λḾhw̃h, h = s, r, c, (5.89)

∑

h=s,r,c

K̄T
h,ivh +Kivi = λMivi, i = 2, . . . , p, (5.90)

∑

h=s,r,c

K̄T
h,iwh +Kiwi = λMiwi, i = 2, . . . , p. (5.91)

From [25]

p
∑

i=1

sin2 iα =
p

2
− cos(p+ 1)α sin pα

2 sinα
=
p

2
,

p
∑

i=1

cos2 iα =
p

2
+

cos(p+ 1)α sin pα

2 sinα
=
p

2
,

p∑

i=1

sin iα cos iα =
1

2
sin[(p+ 1)α]sin(pα)cosecα = 0,

(5.92)

where the second equalities result from equal planet spacing α = 2π/p. Substitution

of Eqs. (5.53), (5.54), and (5.92) into Eq. (5.89), premultiplication by R̄T , and use of

R̄TḾhR̄ = Ḿh, R̄
T ḰhR̄ = Ḱh gives

Ḱhṽh +
p

2
R̄Λ̄hv1 +

p

2
Λ̄hw1 = λḾhṽh, h = s, r, c. (5.93)

Substitution of Eqs. (5.30), (5.53), and (5.54) into Eqs. (5.90) and (5.91), and sum-

ming the p− 1 equations, gives (for α1 = 0 and R̄T R̄ = I)

(
∑

h=s,r,c

Λ̄T
h R̄

T ṽh +K1v1 − λM1v1

)
p
∑

i=2

cosαi = 0, (5.94)

(
∑

h=s,r,c

Λ̄T
h ṽh +K1w1 − λM1w1

)
p
∑

i=2

cosαi = 0. (5.95)
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We now show that Eqs. (5.93), (5.94), and (5.95) are satisfied for ṽh, w̃h, vi, and

wi calculated from the reduced eigenvalue problem Eq. (5.59). A and Mu are given

by

A =










Ḱs 04×4 04×4 K̄s,1 04×6

04×4 Ḱr 04×4 K̄r,1 04×6

04×4 04×4 Ḱc K̄c,1 04×6

K̄T
s,1 K̄T

r,1 K̄T
c,1 K1 06×6

06×4 06×4 06×4 06×6 K1










, Mu = diag
(

Ḿs, Ḿr, Ḿc,M1

)

. (5.96)

Substitution of A, Mu, B0, BN , and Y from Eqs. (5.96), (5.81), (5.85), (5.80), and

(5.88) into Eq. (5.59), and using algebra similar to that in (5.93) to (5.95), gives the

24× 24 reduced eigenvalue problem









Ḱs 04×4 04×4
p
2
R̄Λ̄s

p
2
Λ̄s

04×4 Ḱr 04×4
p
2
R̄Λ̄r

p
2
Λ̄r

04×4 04×4 Ḱc
p
2
R̄Λ̄c

p
2
Λ̄c

p
2
Λ̄T

s R̄
T p

2
Λ̄T

r R̄
T p

2
Λ̄T

c R̄
T p

2
K1 06×6

p
2
Λ̄T

s
p
2
Λ̄T

r
p
2
Λ̄T

c 06×6
p
2
K1


















ṽs

ṽr

ṽc

v1

w1









=λ










Ḿs 0 0 0 0

0 Ḿr 0 0 0

0 0 Ḿc 0 0
0 0 0 p

2
M1 0

0 0 0 0 p
2
M1


















ṽs

ṽr

ṽc

v1

w1









.

(5.97)

The first three rows of Eq. (5.97) are the same as Eq. (5.93). The fourth row of

Eq. (5.97) is the same as Eq. (5.94) because

p
∑

i=2

cosαi is non-zero. Similarly, the fifth

row of Eq. (5.97) is the same as Eq. (5.95). Consequently, Eq. (5.63) is satisfied for

u satisfying the reduced eigenvalue problem Eq. (5.97).

The foregoing analysis confirms that the degenerate mode pair q1 and q2 defined

by Eqs. (5.53) and (5.54) each satisfy Eq. (5.26) with the same eigenvalue. The

natural frequency multiplicity of two is also reflected in Eq. (5.97), which yields 12

degenerate eigenvalues with corresponding eigenvectors u1 = (ṽs, ṽr, ṽc,v1,w1) and

u2 = (w̃s, w̃r, w̃c,w1,v1). This is true because one can exchange the letters v and
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w in Eq. (5.79) with no change to any subsequent matrices or results. As a result,

there are exactly 12 pairs of translational-tilting modes with twice repeated natural

frequencies.

Planet Modes

The decomposition of the candidate planet mode according to Eqs. (5.55), (5.56),

and (5.57) is

u = w1v1, q∗ = (0, 0, 0, w2v1, . . . , wpv1) , (5.98)

where the zero vectors are 6×1. We specify without loss of generality that w1v1 6= 0,

that is, at least the arbitrarily selected first planet deflects. The modal deflections of

other planets are a scalar multiple of the modal deflections of the first planet as given

in Eq. (5.56), although the wi (i = 1, . . . , p) are yet to be determined.

The matrices in Eq. (5.62) are

B0 =





Ks,1

Kr,1

Kc,1



 , E0 =





Ks,2 . . . Ks,p

Kr,2 . . . Kr,p

Kc,2 . . . Kc,p



 , (5.99)

where B0 has dimension 18× 6 and E0 has dimension 18× 6(p− 1). Substitution of

Eqs. (5.98) and (5.99) into Eq. (5.62) yields

p∑

i=1

Kh,iwiv1 = 0, h = s, r, c. (5.100)

Substitution of Eq. (5.31) into Eq. (5.100) gives

(

Λh

p
∑

i=1

wi sinαi +RΛh

p
∑

i=1

wi cosαi + Γh

p
∑

i=1

wi

)

v1 = 0, (5.101)

which is satisfied if

p
∑

i=1

wi sinαi = 0,

p
∑

i=1

wi cosαi = 0,

p
∑

i=1

wi = 0. (5.102)
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Equation (5.102) can be solved for p − 3 solutions for p ≥ 4 [4, 133]. Each solution

gives a non-trivial set of wi, i = 1, . . . , p, and this set can be scaled by an arbitrary

constant.

The matrices in Eq. (5.63) are

BT
N = 0, EN = diag (K2, . . . ,Kp) , MN = diag (M2, . . . ,Mp) , (5.103)

whereBN has dimension 6(p− 1)× 6, and EN andMN have dimension 6(p−1)×6(p−

1). Substitution of Eqs. (5.98) and (5.103) into Eq. (5.63) gives Kiwiv1 = λMiwiv1,

i = 2, . . . , p. With use of Eq. (5.30) and wi 6= 0 for some i, these equations reduce to

K1v1 = λM1v1. (5.104)

We now show that this equation is satisfied by the reduced eigenvalue problem

Eq. (5.59).

Considering Eq. (5.59), the matrices are given by A = K1, Mu = M1, and

BTY = 0. With u = w1v1 Eq. (5.59) becomes

K1w1v1 = λM1w1v1. (5.105)

Equation (5.104) is satisfied for v1 determined from Eq. (5.105) and w1 6= 0. Thus,

both Eqs. (5.59) and (5.63) are satisfied. Equation (5.62) is satisfied by solution of

Eq. (5.102) for the p− 3 sets of wi.

Thus, every mode of the form Eq. (5.98), defined by Eqs. (5.55) and (5.56) con-

structed from v1 and a set of wi, satisfies the full eigenvalue problem Eq. (5.26). The

reduced 6 × 6 eigenvalue problem in Eq. (5.105) yields six planet mode eigenvalues

regardless of the number of planets. For each of the six eigensolution pairs (λ,v1)

one can construct p− 3 (p ≥ 4) eigenvectors of the full system using the solution sets
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for the wi from Eq. (5.102). Hence, each of the six planet mode natural frequencies

has multiplicity p− 3. There are no planet modes if there are less than four planets

because no set of wi satisfying Eq. (5.102) can be found.

5.3.4 Discussion

A helical planetary gear with p equally spaced planets and six degrees of freedom

per component has 18 + 6p degrees of freedom. There are 12 rotational-axial modes

with distinct natural frequencies; there are 24 translational-tilting modes (i.e., 12

degenerate mode pairs with natural frequency multiplicity two); there are six planet

modes each with natural frequency multiplicity p− 3 (i.e., 6(p− 3) modes) provided

p ≥ 4. Thus, all 18 + 6p vibration modes have been accounted for. No other mode

type is possible.

The only restrictions that the proof needs are the tuned system assumption and

equal planet spacing. These restrictions are confined to the plane of the planetary

gear. Parameter variations that do not disturb these stipulations have no effect on

the properties of the vibration modes. There are no restrictions on the parameters

that define the system in the axial direction. Therefore, contrary to intuition, the

described mode types hold for configurations that are not symmetric about the plane

of the gears, such as:

1. The bearings at opposite ends of a given gear-shaft body have different stiffness

properties. An example is tapered roller bearings at one end and spherical roller

bearings at the other end.

2. The bearings on a given gear-shaft body are at different distances from the gear

plane; both bearings are on the same side of the gear plane; or, there is only one
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bearing. An example of such a configuration would be overhung gears and/or

carrier.

3. The mass centers of the various gear-shaft bodies are at different axial positions.

4. The contact pattern is off-centered at the gear meshes. This may be due to,

for example, lead modifications and deflection of the system under load. Note,

however, that the sun-planet contact patterns must be the same at each planet

(and the same for the ring-planet meshes).

These four items destroy symmetry about the gear plane, but the modal properties

hold for these configurations and any combination thereof.

5.4 Conclusions

We prove that there are exactly three types of vibration modes of any tuned

single-stage helical planetary gear system with equally spaced planets. The helical

planetary gear system is represented by a three-dimensional lumped parameter model

that allows for six degrees of freedom per gear-shaft body supported by bearings at

arbitrary axial positions. All vibration modes belong to one of these three types,

described below:

1. Rotational-axial modes: The central members rotate and move axially but do

not tilt or translate. The modal deflection of the planets are identical. There

are 12 rotational-axial modes with distinct natural frequencies.

2. Translational-tilting modes: The central members tilt and translate in-plane

but do not rotate or move axially. The modal deflections of all planets are
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related to one another according to Eq. (5.54). There are 12 pairs of degenerate

translational-tilting modes with natural frequency multiplicity two.

3. Planet modes: Only the planets have modal deflection. Each planet’s modal

deflection is a known scalar multiple of any other planet’s modal deflection. The

central members do not move. There are six planet mode sets, where each set

consists of p−3 degenerate (for p > 4) modes having the same natural frequency.

Planet modes exist only for systems with four or more planets (p ≥ 4).

This classification of the vibration modes persists for systems that are not sym-

metric about the plane of the planetary gear because the proof is valid for arbitrary

values of all parameters that lead to such asymmetry.
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Chapter 6: Vibration Suppression Rules for 3-D Helical

Planetary Gears Using Mesh Phasing

6.1 Introduction

Tooth counts and planet spacing in planetary gears alter the relative phase consid-

ering the periodic engagement-disengagement of the gear teeth. This is called planet

mesh phasing in the literature. Cunliffe et al. [19] and Schlegel and Mard [95] point

out the role of mesh phasing upon vibration reduction. The effectiveness of mesh

phasing in vibration reduction has been demonstrated computationally [4, 84] and

experimentally [16, 33, 107].

Dynamic analysis using a lumped parameter model, either 2-D [97, 98], or 3-

D [40, 43] confirm that mesh phasing works, but they rely on modeling assumptions

about the excitation, that is, the fluctuation in gear mesh force is assumed to be from

static transmission error, thus limiting the applicability of the findings. Parker [84]

explains how mesh phasing eliminates vibration in rotational and translational modes

independent of modeling. That explanation, however, is limited to 2-D spur gears

and applies to resonance at known mode types [58] of planetary gears.
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There are distinct mode types in planetary gears due to their symmetry [19, 40,

42, 97]. Lin and Parker [58, 60] prove the identified properties of mode types in two-

dimensional (2-D) spur planetary gears. That proof is extended to include elastic

rings [87, 133] and to three-dimensional (3-D) helical planetary gears [22] with a 3-D

gear mesh.

Most works cited above except [84] depend on static transmission error or mesh

stiffness fluctuation as the excitation to show excitations cancel or add as a result

of mesh phasing. With the cancellation of excitations, the dynamic model yields

vanishing response. We claim that the symmetry of the system is sufficient to relate

dynamic forces, thus the rules of vibration suppression may be stated independent of

any dynamic model therefore of any assumptions that come with it.

6.2 Symmetry in Planetary Gears and Its Implications

We consider planetary gears in three-dimensions. The only distinguishable phys-

ical features are the tooth counts and planet spacing. Other than those, there are

no features to distinguish the state of the system at a given angular position. The

symmetry argument implies that forces and moments that develop at the gear meshes

must be related with the only distinguishable quantity, their relative phase. Stated

differently, the gear mesh forces and moments do not know any better about their

state except the relative phase. That is the only quantity to distinguish the state of

the system at a given time from another.

The required symmetry implies a tuned system. To name a few stipulations: all

planet mass, inertia, bearing stiffnesses are identical, there are no splines on the sun

or ring, gears and the carrier are perfectly circular and mounted without run-out
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errors, the bearings have equal radial and tangential stiffnesses, and all gear teeth are

identical to one another for a given gear. There are no symmetry restrictions on the

features of the system except in the circumferential direction, consequently:

1. The system may be asymmetric in the axial direction, for example, shafts that

support the gears, carrier, and ring/housing may be overhung, conical or have

different stages of thickness. Gears may be helical or spur.

2. The forces and moments may include dynamic effects.

3. There is no restriction on deformations; gear bodies, shafts, housings may be

elastic.

Some physical phenomena can destroy the circumferential symmetry even if the man-

ufacturing had been perfectly symmetric. For example, severe vibrations may change

the contact conditions at the gears and bearings (such as disengagement). Elastic

deformations of a thin ring gear, contact conditions at ring-planet gear meshes may

change. In these examples, the symmetry on which the above argument relies is

destroyed. Furthermore, this work does not quantify the degree of symmetry destruc-

tion that may invalidate the results. In other words, to assess the effectiveness of

vibration suppression for a system with an imperfect circumferential symmetry, one

needs to perform dynamic analysis.

Figure 6.1 shows a planetary gear with the arbitrarily selected 1st planet, another

ith planet, and the base vectors Bi. The bases Bi are oriented such that the line-

of-action of the sun-planet mesh is along Bi
1. Planet spacing is denoted by αi. The

number of teeth on the sun gear is Zs. The matrix Qi that transforms vectors written
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in Bi to B1 is given by

Qi =





cosαi − sinαi 0
sinαi cosαi 0
0 0 1



 (6.1)

Planet i

Ring

αi

Sun

Planet 1

B
1

i

B
2

i

B
1

1

B
2

1

2π/Zs

Figure 6.1: Bases and planet spacing definition of a single-stage planetary gear.

6.2.1 Gear Mesh Forces and Moments

The force and moment vectors at the ith gear mesh can be written as Fh
i (θ) and

Mh
i (θ), where θ parametrizes angular position of the gear mesh. The superscript

h = s, r, c denotes the subject member: the sun, ring, and carrier, respectively. For

example, Fs
3(θ) denotes the mesh force on the sun from the 3rd sun-planet mesh.

Because single-stage planetary gears have one mesh frequency, the angular position

is a function of time, θ(t) = (ωt+ φi) with known mesh frequency ω and phase angle

φi of the ith mesh relative to the arbitrarily chosen first mesh. The crucial step is

assuming the force and moment fluctuations are periodic with mesh period T = 1/ω.
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This assumption implies steady-state and linear time-invariant vibrations. It is not

valid if there are transients with a natural period. Similarly, nonlinear response can

have sub/super-harmonic components. Vibrations driven by parametric fluctuations

may be locked at the natural period. In these cases, the assumption is not valid.

Figure 6.2 describes the mesh force and moment fluctuation at two planet meshes,

issutrates the mesh phase φi and the mesh period T .

φ 
i

Time (t) 

M
es

h
 F

o
rc

e 
an

d
 M

o
m

en
t 

(F
, 
M

)

1st planet

ith planet

Mesh period T

Figure 6.2: Force and moment fluctuation showing the mesh period and the relative
phase at two arbitrarily chosen planet meshes.

Fourier expansion of the forces and moments using P harmonic components in

the Bi basis gives

Fh
i (t) =

P∑

p=1

Fh
i,p(t), Mh

i (t) =
P∑

p=1

Mh
i,p(t) (6.2)

Fh
i,p(t) = ℜ









fh,1
p

fh,2
p

fh,3
p



 ej(pωt+pφi)



 , Mh
i,p(t) = ℜ









mh,1
p

mh,2
p

mh,3
p



 ej(pωt+pφi)



 (6.3)

with complex fh,i
p = |fh,i

p |ejγp, i = 1, 2, 3 where γp is the phase of the pth harmonic

component. Defining fhp =
(
fh,1
p , fh,2

p , fh,3
p

)T
and mh

p =
(
mh,1

p , mh,2
p , mh,3

p

)T
, the forces
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and moments on the ith planet mesh on the central members at the pth harmonic,

in Bi, are

Fh
i,p(t) = ℜ

[
fhp e

j(pωt+pφi)
]
, Mh

i,p(t) = ℜ
[
mh

pe
j(pωt+pφi)

]
(6.4)

Transforming the forces and moments to the 1st sun-planet basis B1 gives

Fh
i,p(t) =ℜ









fh,1
p cosαi − fh,2

p sinαi

fh,1
p sinαi + fh,2

p cosαi

fh,3
p



 ej(pωt+pφi)



 ,

Mh
i,p(t) =ℜ









mh,1
p cosαi −mh,2

p sinαi

mh,1
p sinαi +mh,2

p cosαi

mh,3
p



 ej(pωt+pφi)





(6.5)

The sum of forces and moments from all sun-planet and ring-planet meshes (N :

number of planets) at the pth harmonic in B1 is given by

Fh
p(t) =

N∑

i=1

Fh
i,p(t), Mh

p(t) =

N∑

i=1

Mh
i,p(t) (6.6)

6.2.2 Planet Gears

Each planet experiences a net, equal-and-opposite mesh force and moment from

its sun-planet and the ring-planet mesh. The forces and moments on the ith planet

from the sun and the ring meshes in the Bi basis are

Fpl
i,p(t) =− Fs

i,p(t)− Fr
i,p(t) = −Fc

i,p(t)

Mpl
i,p(t) =−Ms

i,p(t)−Mr
i,p(t) = −Mc

i,p(t)
(6.7)

Fpl
i,p(t) = −ℜ

[
f cpe

j(pωt+pφi)
]
, Mpl

i,p(t) = −ℜ
[
mc

pe
j(pωt+pφi)

]
(6.8)

6.3 Phasing Rules

The mesh phase at a given harmonic is pφi = pZsαi. When planets are equally-

spaced

αi =
2πi

N
(6.9)
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the mesh phase becomes pφi = p
2πZsi

N
. Defining

k = mod(pZs, N), stated differently
pZs

N
= n+

k

N
, n ∈ Z (6.10)

the mesh phase becomes pφi =
2πpZsi

N
= 2πin+

2πik

N
= kαi, where 2πin is dropped

because n ∈ Z.

When the planets are diametrically-opposed αi+N/2 = αi + π, so the mesh phase

is pφi+N/2 = pZsαi+N/2 = pZsαi + pZsπ. Defining

k = pZs (6.11)

the mesh phase becomes pφi = kαi. For i > N/2 one gets pφi+N/2 = kαi+N/2 =

kαi + kπ, giving

N∑

i=1

ejkαi =







2

N/2
∑

i=1

ejkαi 6= 0 k : even

0 k : odd

(6.12)

so the important property of k is that whether it is odd or even. With these definitions

of k, for equally-spaced Eq. (6.10) and diametrically-opposed planets Eq. (6.11), the

mesh phase has the same expression, that is

pφi = kαi (6.13)

Substitution of Eq. (6.13) into Eq. (6.4) gives the individual forces and moments on

central members in Bi as

Fh
i,p(t) = ℜ

[
fhp e

j(pωt+kαi)
]
= ℜ

[
fhp e

jkαiejpωt
]

Mh
i,p(t) = ℜ

[
mh

pe
jkαiejpωt

]
(6.14)
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The resultant forces and moments on central members are obtained by substitution

of Eq. (6.10) into Eq. (6.6) in B1 as

Fh
p(t) =ℜ





























fh,1
p + jfh,2

p

2

N∑

i=1

ej(k+1)αi +
fh,1
p − jfh,2

p

2

N∑

i=1

ej(k−1)αi

fh,2
p − jfh,1

p

2

N∑

i=1

ej(k+1)αi +
fh,2
p + jfh,1

p

2

N∑

i=1

ej(k−1)αi

fh,3
p

N∑

i=1

ejkαi















ejpωt















Mh
p(t) =ℜ





























mh,1
p + jmh,2

p

2

N∑

i=1

ej(k+1)αi +
mh,1

p − jmh,2
p

2

N∑

i=1

ej(k−1)αi

mh,2
p − jmh,1

p

2

N∑

i=1

ej(k+1)αi +
mh,2

p + jmh,1
p

2

N∑

i=1

ej(k−1)αi

mh,3
p

N∑

i=1

ejkαi















ejpωt















(6.15)

The resultant forces and moments on a planet is rewritten by substitution of Eq. (6.13)

into Eq. (6.8) as

Fpl
i,p(t) = −ℜ

[
f cpe

j(pωt+kαi)
]
= −ℜ

[
f cpe

jkαiejpωt
]

Mpl
i,p(t) = −ℜ

[
mc

pe
j(pωt+kαi)

]
= −ℜ

[
mc

pe
jkαiejpωt

]
(6.16)

Equations (6.14), (6.15), and (6.16) are crucial for the rest of the analysis as

they combine the mesh phase with planet spacing. For equally-spaced planets, there

are three possible phase relations in Eq. (6.10): In-phase (k = 0), sequential-phase

(k = 1, N − 1), and counter-phase (k = 2, 3, . . . , N − 2). For diametrically-opposed

planet spacing, there are two possible phase relations: In-phase (k: even) and out-of-

phase (k: odd).

In what follows substitution of the phasing relations into forces and moments

given by Eqs. (6.14), (6.15), and (6.16) yields special mathematical relations.
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6.3.1 Equal Planet Spacing

In-Phase

When
pZs

N
∈ Z, then k = 0. An in-phase design is independent of the harmonic

p. Forces and moments on the sun and ring at a given planet mesh, from Eq. (6.14)

for k = 0, in Bi, are

Fh
1,p(t) = Fh

2,p(t) = . . . = Fh
N,p(t), Mh

1,p(t) = Mh
2,p(t) = . . . = Mh

N,p(t) (6.17)

so forces and moments at each planet mesh on the sun and ring are identical. The

resultant forces and moments on the central members are given in Eq. (6.15) for

k = 0, in B1, as

Fh
p(t) =





0
0

Nℜ
[
fh,3
p ejpωt

]



 , Mh
p(t) =





0
0

Nℜ
[
mh,3

p ejpωt
]



 (6.18)

so radial forces and tilting moments vanish, but axial thrust and torques exist. The

net forces and moments on a planet, by Eq. (6.16), in Bi, are equal

Fpl
1,p(t) = −Fc

2,p(t) = . . . = −Fc
N,p(t), Mpl

1,p(t) = −Mc
2,p(t) = . . . = −Mc

N,p(t)

(6.19)

Sequential-Phase (Out-of-Phase)

If a design is not in-phase k 6= 0, then it is out-of-phase. An out-of-phase design

for equally-spaced planets fall into two subcategories: sequential-phase and counter-

phase. Sequential-phase is defined by
pZs ± 1

N
∈ Z, then k = 1, N − 1 (or k = ±1).

It exists for any number of planets N ≥ 2. A three planet design, if out-of-phase,

can only be sequentially-phased because only k = 1 or k = 2 are possible. Forces and

moments on the sun and ring from each planet, given in from Eq. (6.14) in Bi, are
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related by

Fh
i,p(t) =ℜ

[(
fhp cosαi ± jfhp sinαi

)
ejpωt

]

Mh
i,p(t) =ℜ

[(
mh

p cosαi ± jmh
p sinαi

)
ejpωt

]
(6.20)

The resultant forces and moments on central members, from Eq. (6.15) with k = ±1,

are

Fh
p(t) = ℜ









N
2

(
fh,1
p ∓ jfh,2

p

)

N
2

(
fh,2
p ± jfh,1

p

)

0



 ejpωt



 , Mh
p(t) = ℜ









N
2

(
mh,1

p ∓ jmh,2
p

)

N
2

(
mh,2

p ± jmh,1
p

)

0



 ejpωt





(6.21)

so the pth harmonic of radial forces and tilting moments exist, but the axial thrust

and torques vanish. The net forces and moments on each planet from Eq. (6.16) are

related by

Fpl
i,p(t) =−ℜ

[(
f cp cosαi ± jf cp sinαi

)
ejpωt

]

Mpl
i,p(t) =−ℜ

[(
mc

p cosαi ± jmc
p sinαi

)
ejpωt

]
(6.22)

Counter-Phase (Out-of-Phase)

In systems with four or more planets (N > 3), more out-of-phase designs are possi-

ble that are not sequentially-phased. Counter-phase is defined by k = 2, 3, . . . , N −2.

Forces on the sun and ring from each gear mesh, given by Eq. (6.14) for k =

2, 3, . . . , N − 2 at the pth harmonic, are

Fh
i,p(t) =ℜ

[(
fhp cos kαi + jfhp sin kαi

)
ejpωt)

]

Mh
i,p(t) =ℜ

[(
mh

p cos kαi + jmh
p sin kαi

)
ejpωt)

]
(6.23)

The resultant forces and moments on central members, given by Eq. (6.15) for k =

2, 3, . . . , N − 2, vanish

Fh
p(t) = (0, 0, 0)T , Mh

p(t) = (0, 0, 0)T (6.24)
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The forces and moments on a planet from Eq. (6.16) are

Fpl
i,p(t) =− ℜ

[(
f cp cos kαi + jf cp sin kαi

)
ejpωt)

]

Mpl
i,p(t) =− ℜ

[(
mc

p cos kαi + jmc
p sin kαi

)
ejpωt)

]
(6.25)

Equation (6.25) reveals that force and moment fluctuations on any planet can be

represented by a constant multiple wi of the force and moment fluctuations on the

first planet, given by

Fpl
i,p(t) =ℜ

[
wi

(
f cp cos kα1 + jf cp sin kα1

)
ejpωt)

]

Mpl
i,p(t) =ℜ

[
wi

(
mc

p cos kα1 + jmc
p sin kα1

)
ejpωt)

]

wi =e
jk(αi−α1)

(6.26)

The same argument is valid for individual mesh force and moment fluctuations on

the sun and ring gear by Eq. (6.23); the force and moment fluctuations from any

planet mesh can be represented by a constant multiple wi of the force and moment

fluctuations from the first planet mesh. These findings for equally-spaced planets are

summarized in Table 6.1.

6.3.2 Diametrically Opposed Planet Spacing

Using Eqs. (6.15) and (6.16), we get forces and moments for two cases: in-phase

(k: even) and out-of-phase (k: odd).

In-phase

When the planet meshes are in-phase, k: even (k ± 1: odd). Substitution of

Eq. (6.12) into Eq. (6.15) and Eq. (6.16) gives the resultant forces and moments on
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Table 6.1: Forces and moments for equal planet spacing on central members and
planets at the pth harmonic, for given number of gear teeth on the sun Zs, and number
of planets N . In-phase relations are given by Eqs. (6.18) and (6.19), sequential-phase
(Sq. ) relations are given by Eqs. (6.21) and (6.22), and counter-phase (Ct. ) relations
are given by Eqs. (6.24) and (6.26).

Central Members Planets

Phase k = mod(pZs, N)
Forces and Thrust and All forces
moments torque and moments

a) In k = 0 (for any p) 0 6= 0 Identical

b) Sq. k = 1, N − 1 6= 0 0 Related

c) Ct. k = 2, . . . , N − 2 0 0 Related

the central members and planets as

Fh
p(t) =









0
0

2ℜ



fh,3
p

N/2
∑

i=1

ejkαiejpωt













, Mh
p(t) =









0
0

2ℜ



mh,3
p

N/2
∑

i=1

ejkαiejpωt













(6.27)

Fpl
i,p(t) = −ℜ

[
f cpe

jkαiejpωt
]
, Mpl

i,p(t) = −ℜ
[
mc

pe
jkαiejpωt

]
(6.28)

so radial forces and tilting moments vanish but axial thrust and torques exist.

Out-of-phase

When the planet meshes are out-of-phase, k: odd (k ± 1: even). Substitution of

Eq. (6.12) into Eq. (6.15) and Eq. (6.16) gives the resultant forces and moments on
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the central members and planets as

Fh
p(t) =ℜ























(
f s,1
p + jf s,2

p

)
N/2
∑

i=1

(
ej(k+1)αi + ej(k−1)αi

)

(
f s,2
p − jf s,1

p

)
N/2
∑

i=1

(
ej(k+1)αi + ej(k−1)αi

)

0












ejpωt












Mh
p(t) =ℜ























(
ms,1

p + jms,2
p

)
N/2
∑

i=1

(
ej(k+1)αi + ej(k−1)αi

)

(
ms,2

p − jms,1
p

)
N/2
∑

i=1

(
ej(k+1)αi + ej(k−1)αi

)

0












ejpωt












(6.29)

Fpl
p (t) = −ℜ

[
f cpe

jkαiejpωt
]
, Mpl

p (t) = −ℜ
[
mc

pe
jkαiejpωt

]
(6.30)

so axial thrust and torques vanish but radial forces and tilting moments exist. These

findings for diametrically-opposed planet spacing are summarized in Table 6.2.

Table 6.2: Forces and moments for diametrically-opposed planet spacing on central
members and planets at the pth harmonic for given number of gear teeth on the sun
Zs. In-phase relations are given by Eqs. (6.27) and (6.28), and out-of-phase relations
are given by Eqs. (6.29) and (6.30).

Central Members

Phase k = pZs
Radial Axial thrust
forces and torque

a) In k: even (for any p) 0 6= 0

b) Out k: odd 6= 0 0
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6.4 Conclusions

Net force and moment fluctuations in planetary gears with equally-spaced and

diametrically-opposed planet spacing are formulated. There are two general fluctu-

ations of forces and moments: in-phase and out-of-phase. The formulation depends

solely on the circumferential symmetry of planetary gears and thus is independent of

the physical model. The findings apply to static and dynamic cases and to systems

with axial asymmetry, e.g., gears may be helical and shafts may be overhung from

bearings. One can eliminate certain harmonic components of fluctuating forces and/or

moments on central members using the rules given in Table 6.1 with equally-spaced

planets and in Table 6.2 with diametrically-opposed planets.

For equally-spaced planets, if a design is in-phase, all mesh force and moment

fluctuations are in-phase at any harmonic. An out-of-phase design can fall into either

sequential-phase or counter-phase cases. Force and moment suppression rules are

summarized below:

1. In-phase, k = 0. Net radial force and tilting moment fluctuations on central

members vanish but axial thrust and torque fluctuations exist. All net force

and moment fluctuations on each planet are identical.

2. Sequential-phase, k = ±1 (or k = 1, N − 1). Net axial thrust and torque

fluctuations on central members vanish but radial force and tilting moment

fluctuations exist. All net force and moment fluctuations on each planet are

related with a known transformation given in Eq. (6.22).
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3. Counter-phase , k = 2, 3, . . . , N − 2. All net force and moment fluctuations on

central members vanish. All net force and moment fluctuations on each planet

are multiples of one another, as given by Eq. (6.26)

For diametrically-opposed planets, if a design is in-phase, all mesh force and moment

fluctuations are in-phase at any harmonic. Otherwise, the fluctuations depend on the

harmonic of interest as summarized below:

1. In-phase, k : even. Net radial force and tilting moment fluctuations on central

members vanish but axial thrust and torque fluctuations exist.

2. Out-of-phase, k : odd. Net axial thrust and torque fluctuations on central

members vanish but radial force and tilting moment fluctuations exist.
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Chapter 7: Conclusions and Future Work

7.1 Conclusions

This body of work investigates the vibration of gears that arise from the interac-

tions between 3-D motions of the gears and the 3-D nonlinear gear contact. The load

distributions along the gear contact lines generate tilting and twisting moments and

an axial thrust force as well as the useful power-transmitting mesh force. The load

distribution depends on relative angular twist and translational displacements, so the

gear mesh forces and moments respond to spatial gear motions. With large twisting

and translation of gears, portions of contact lines lose contact (partial contact loss),

thus introducing nonlinearity.

7.1.1 Nonlinearity in Gear Pairs Using a Lumped-Parameter

Model

A 3-D lumped-parameter model is developed to consider the nonlinear force and

moment transmission at the meshing gear teeth. The nonlinearity of the gear mesh

is due to partial contact loss. It is shown that the lumped-parameter model needs

only a translational stiffness acting at the calculated center of stiffness location and a

twist stiffness to account for the net force and moment arising from an arbitrary load

distribution including partial contact loss. The twist stiffness generates a moment,
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named spread-twist moment, which is solely due to the spread of contact across the

tooth face. The movement of the translational stiffness across the tooth face generates

an additional moment, named off-mid-plane moment. The total twist stiffness is the

sum of the spread-twist and the off-mid-plane twist stiffnesses.

The translational and twist stiffnesses and the center of stiffness location depend

strongly on the relative translation and twist at the gear mesh. Tooth surface modi-

fications smoothen the translational stiffness profile and decrease the twist stiffness.

Spur gears have a symmetric nonlinear twist stiffness profile, while helical gears have

an asymmetric twist stiffness profile. The twist stiffnesses fluctuate periodically with

gear rotation except for aligned spur gears. The resulting fluctuating moments excite

twisting vibrations.

7.1.2 Twisting Vibration and Partial Contact Loss in Gear
Pairs

In a gear pair, there are two gear mesh modes: 1) a mesh twist mode where the

twist stiffness is active, and 2) a mesh deflection mode where the translational stiffness

is active. Resonances of both modes are nonlinear due to partial contact loss.

Near the mesh deflection mode resonance with modified gears, there is partial

contact loss evident from the dynamic contact pattern and differences between the

static and dynamic translational mesh stiffness. With increasing vibration ampli-

tude, the dynamic translational stiffness decreases and so does the dynamic natural

frequency. Consequently, the peak response frequency is lower than the natural fre-

quency. Unmodified gears exhibit only total contact loss, if at all. Modifications

combined with dynamic displacements, therefore, give rise to partial contact loss in

the mesh deflection mode resonance.
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Dynamic response near the mesh twist mode is nonlinear as a result of partial

contact loss. This is seen from the increasing distortion in the dynamic contact pattern

as the mesh frequency nears the mesh twist mode natural frequency. The nonlinearity

is also evident in the dynamic spread-twist stiffness; it gradually deviates from the

static stiffness as the operating mesh frequency approaches the natural frequency. The

resonant peak occurs at a higher frequency than the natural frequency because of the

nonlinear properties of total pinion and gear twist stiffnesses and the coupling-twist

stiffnesses. In particular, the drop in the dynamic mean value of the coupling-twist

stiffness increases the dynamic natural frequency and so the resonant frequency.

Partial contact loss, whether it is a consequence of mesh deflection combined with

tooth surface modifications or mesh twist, makes the dynamic response nonlinear. At

nonlinear peaks, the dynamic contact load distribution is distorted compared with

the static contact load distribution.

7.1.3 Nonlinear Vibration of Gears with Tooth Surface Mod-
ifications and Sphere/Half-Space Contact

An analytical solution for the nonlinear vibration of gear pairs that exhibit partial

and total contact loss is given. The gear teeth can have arbitrary tooth surface

modifications. Unlike models in the literature that are excited by static transmission

error or time-varying mesh stiffness, neither the excitation nor the nonlinearity are

a priori specified. Instead, the excitation and the nonlinearity arise from Fourier

and Taylor series expansions of the force-deflection function, which is provided by

an independent source, such as a finite element model or Hertz contact formula.

Quadratic and cubic nonlinear terms capture partial contact loss nonlinearity. Time-

dependent fluctuations give dynamic excitation.
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Although this work focuses on gear pairs with tooth surface modifications, the

physical system from which the force-deflection function comes is not limited to gear

pairs; sphere/half-space contact vibrations are also analyzed.

The method of multiple scales gives the dynamic response in terms of a frequency-

amplitude relation. Comparisons with experiments from the literature on gear vibra-

tions and sphere/half-space contact vibrations verify the method. The perturbation

solution traces the nonlinear response due to partial contact loss and total contact

loss. The nonlinear dynamic response deviates from linearized dynamic response al-

though gear contact is maintained. This is the result of dynamic partial contact

loss. Total contact loss appears in cases where the vibration amplitude exceeds an

analytically found threshold value.

7.1.4 Modal Properties of Three-Dimensional Helical Plan-
etary Gears

The structured modal properties of single-stage helical planetary gears with equally

spaced planets are categorized and mathematically proved. The equivalent stiffness

model of the gear mesh enables dynamic analysis of 3-D helical planetary gears. Three

types of modes are observed following the modal analysis of a few example systems:

1. Rotational-axial modes: The central members rotate and move axially but do

not tilt or translate. The modal deflection of the planets are identical. There

are 12 rotational-axial modes with distinct natural frequencies.

2. Translational-tilting modes: The central members tilt and translate in-plane

but do not rotate or move axially. The modal deflections of all planets are
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related to one another according to Eq. (5.54). There are 12 pairs of degenerate

translational-tilting modes with natural frequency multiplicity two.

3. Planet modes: Only the planets have modal deflection. Each planet’s modal

deflection is a known scalar multiple of any other planet’s modal deflection. The

central members do not move. There are six planet mode sets, where each set

consists of p−3 degenerate (for p > 4) modes having the same natural frequency.

Planet modes exist only for systems with four or more planets (p ≥ 4).

These three types of modes are mathematically proven to be the only possible

mode types. The proof consists of constructing a candidate mode from the observed

properties listed above and substitution of these candidate modes into the full eigen-

value problem. This substitution yields three uncoupled reduced eigenvalue problems,

the modes from which account for all the modes of the complete system, thus com-

pleting the proof. The properties of the vibration modes persists for systems that are

not symmetric about the plane of the planetary gear, for example, different bearing

stiffnesses at shaft ends, shaft stages with different thickness, and overhung shafts.

7.1.5 Vibration Suppression Rules for 3-D Helical Planetary
Gears Using Mesh Phasing

A set of rules is found that eliminates certain harmonics of the net force and mo-

ment fluctuations on the central members (sun, ring carrier) of planetary gears. The

analysis method relies solely on circumferential symmetry. The only distinguishable

feature of one planet mesh from any other is its relative phase angle. The analysis
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is independent from modeling assumptions provided that the system behaves lin-

early and is isotropic. The findings apply equally to static and steady-state dynamic

response.

For equally-spaced planets, 3-D force/moment fluctuations from the gear mesh

fall under three categories: 1) In-phase, 2) Sequential-phase, and 3) Counter-phase.

Considering the forces and moments on central members, in-phase designs eliminate

net radial force and tilting moment fluctuations, sequential-phase designs eliminate

net axial thrust and torque fluctuations, and counter-phase designs eliminate all net

force and moment fluctuations. These three phasing conditions yield distinctive re-

lations in force and moment fluctuations on each planet and each mesh. In counter-

phase designs, the net force and moment fluctuations on any planet are a known

constant multiple of the net force and moment fluctuations on the arbitrarily chosen

first planet. For diametrically-opposed planets, there are two phasing conditions: 1)

In-phase, which eliminates net radial force and tilting moment fluctuations on the

central members, and 2) Out-of-phase, which eliminates net axial thrust and torque

fluctuations on central members.

7.2 Future Work

7.2.1 Equivalent Stiffnesses as Approximate Functions to Re-
place Contact Algorithms in Dynamic Analysis

The translational and twist stiffnesses and the center of stiffness depend on rel-

ative mesh deflection, relative mesh twist, and time. This dependence may be ap-

proximated using a polynomial curve-fit and Fourier series. Preliminary polynomial

approximation for the translational stiffness, spread-twist stiffness, and the center of

stiffness are shown in Figure 7.1. Comprehensive approximations must include mesh
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deflection δ̄, twist γ, and time t such that

km = km
(
δ̄, γ, t

)
, kt = kt

(
δ̄, γ, t

)
, b̄ = b̄

(
δ̄, γ, t

)
, c̄ = c̄

(
δ̄, γ, t

)
(7.1)

These approximate functions for the mesh stiffness, twist stiffness and center of stiff-

ness can replace contact algorithms to enable fast nonlinear static and dynamic anal-

ysis.

0 5 10 15 20
0

0.5

1

1.5

2

2.5

 

 

T
ra

n
sl

at
io

n
al

 s
ti

ff
n

es
s 

k m
 [

N
/m

]x
1

0
9

Mesh deflection [µm] 

(a)

-0.1 -0.05 0 0.05 0.1
5

10

15

20

Twist angle γ [deg] S
p

re
ad

-t
w

is
t 

st
if

fn
es

s 
k t

 [
N

-m
/r

ad
]x

1
0

3

(b)

-0.1 -0.05 0 0.05 0.1
-10

-5

0

5

10

C
en

te
r 

o
f 

st
if

fn
es

s 
c 

[m
m

] 
 

Twist angle γ [deg] 

(c)

Figure 7.1: Numerical data (solid line) and cubic polynomial approximation P =
n∑

i=1

aix
i (dashed line). (a) Mesh stiffness km versus mesh deflection with a3 = 0.03,

a2 = −0.11, a1 = 0.31, a0 = 2.12. (b) Spread-twist stiffness kt versus mesh twist with
a4 = 1.47, a3 = 0.29, a2 = −9.71, a1 = −1.4, a0 = 19. (c) Center of stiffness stiffness
c̄ versus mesh twist with a3 = −0.77, a2 = −0.15, a1 = 6.3, a0 = 0.68.

7.2.2 Analytical Solution for Twisting Vibrations of Gear
Pairs

There is a twist vibration mode in gear pairs as explored in Chapter 3, and its

resonance is nonlinear. In a twist vibration mode, only pinion and gear twist degrees-

of-freedom θp and θg are active. As one degree-of-freedom system approximates mesh
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deflection vibrations [11, 26, 30], it is likely that a two degree-of-freedom system can

approximate the twist vibrations. Such approximation is given by

[
Ip 0
0 Ig

](
θ̈p
θ̈g

)

+

([
kpt kct
kct kgt

]

+B

)(
θp
θg

)

=

(
mp(t)
mg(t)

)

(7.2)

where Ip and Ig are pinion and gear inertias, kpt and kgt are the total pinion and gear

twist stiffnesses, kct is the coupling twist stiffness, and B contains the appropriate

boundary conditions, for example, bearing stiffnesses. Fluctuating twist moments

mp(t) and mg(t) can approximate vibration excitation. Figure 7.2 compares the in-

stantaneous dynamic twist stiffnesses at twist mode resonant frequency with the static

mean value of twist stiffness at a twist angle for a helical gear pair with modifications.

The dynamic and static values are not very different, so in a polynomial approximation
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Figure 7.2: Instantaneous dynamic twist stiffnesses in a mesh period (dots), mean
value of twist stiffness in a mesh period for a twist angle (solid line). (a) Pinion twist
stiffness kpt. (b) Gear twist stiffness kgt. (c) Coupling twist stiffness kct.

(curve-fit) for twist stiffnesses time and mesh deflection dependence may be neglected.

That makes twist stiffnesses functions of relative twist kpt = kpt (γ), and so on, with

perhaps only quadratic coefficients. If this approximation is verified, a perturbation
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method or harmonic balance can be applied to give closed-form expressions for the

nonlinear twist vibrations.

7.2.3 Nonlinear 3-D Vibration of Planetary Gears

This work focused on linear vibration of planetary gears using modal analysis with

a rigid body model, so it has not explored the nonlinear dynamics or the dynamics

when gear components vibrate as elastic bodies. There is preliminary experimental

evidence of partial contact loss in planetary gears, plotted in Figure 7.3. The resonant

frequencies depend on applied torque, which suggests partial contact loss. Dynamic

response may become nonlinear in a fashion similar to the ones observed in Chapter

3. If the gears are helical, twist vibrations could be excited with ensuing nonlinear

response.

Figure 7.3: Dynamic response of spur planetary gears with tooth surface modifica-
tions on planets. Data is courtesy of Tristan M. Ericson using the test gears at the
Dynamics and Vibrations Laboratory of The Ohio State University Mechanical and
Aerospace Engineering Department.
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The modal properties presented in Chapter 5 may not hold under dynamic reso-

nant conditions. For example, if the resonance of a rotational-axial mode is nonlinear,

then the symmetry of the system may be destroyed, which in turn destroys the clas-

sification of mode types. Whether this occurs, and if it does, to what extent remains

to be seen. Similarly, vibration suppression rules may not hold if the dynamic re-

sponse becomes nonlinear. Large elastic deformations of, for example, the ring gear

may destroy the circumferential symmetry upon which the vibration suppression rules

rely.

7.2.4 Verification and Extension of Vibration Suppression

Rules

The set of rules that eliminate the net force and moment fluctuations needs to be

computationally verified. The analysis must test that the force and moment fluctua-

tions are eliminated with proper mesh phasing with: 1) Axially asymmetric system

with uneven load distribution and staged shafts, 2) Static and dynamic operating

conditions, 3) Elastic ring, sun, and carrier.

The vibration suppression rules come from circumferential symmetry, the period-

icity in the gear meshing action, and planet spacing. The symmetry may still exist (or

be destroyed) with other structural features such as splines on the ring gear, or bore

holes on gears. The set of rules for vibration suppression, if it indeed exists, may be

extended to include spacing of such modifications to the system. The use of splines

and other such features in real-world applications make this extension practically

important.
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