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Abstract

This work aims to provide insight into the three-dimensional vibration of gears
by investigating the mechanisms of excitation and nonlinearity coming from the gear
tooth mesh. The focus is on gear pairs and planetary gears.

The forces and moments generated at the gear tooth mesh cause three-dimensional
relative displacements of contacting gear tooth, which disengage portions of gear tooth
surface (partial contact loss) nominally designed to be in contact. While complete
tooth disengagement (total contact loss) is the most commonly recognized nonlinear-
ity in gears, partial contact loss is also a source of nonlinearity. A three-dimensional
lumped-parameter gear mesh model produces the net force and moment at the gear
mesh due to an arbitrary load distribution on the gear tooth surface using a transla-
tional and twist spring. Thus, the three-dimensional lumped-parameter model, named
the equivalent stiffness model, concisely captures the nonlinear behavior. Both trans-
lational and twist stiffnesses depend strongly on spatial displacements at the gear
mesh, and so are highly nonlinear and time-dependent. The twist moment periodi-
cally fluctuates over a mesh cycle, causing twist vibrations.

With gear pairs, there is a twist vibration mode, where the twist stiffness is
active, and a mesh deflection mode, where the translational stiffness is active. The

dynamic response is nonlinear due to partial and total contact loss. The dynamic
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displacements distorts the instantaneous dynamic contact loads compared with the
static design contact loads.

To quantitatively assess nonlinear vibrations of gear pairs, a method is developed
to give a closed-form analytical expression of the frequency-amplitude curve. Partial
contact loss is captured with quadratic and cubic nonlinear terms. The vibration
excitation comes from the time-dependent fluctuations due to periodic tooth engage-
ment. The closed-form solution, found using the method of multiple scales, enables
immediate calculation of nonlinear dynamic response, stability of the response, and
the frequency range of total contact loss.

With planetary gears, modes of vibration are crucial in understanding and re-
ducing vibration. For equally-spaced planetary gears, all vibration modes belong to
three types: 1) Rotational-axial modes (named for the displacements of the central
members), 2) Translational-tilting modes (named for the displacements of the cen-
tral members), and 3) Planet modes (only planets are active). This classification
is mathematically derived. It depends only on planet spacing, and thus persists for
axial asymmetry, e.g., use of helical gears, overhung shafts, different bearings at shaft
ends.

Planet spacing and gear tooth counts in planetary gears, when selected based on
a set of rules, eliminate some force and moment fluctuation harmonics. It is shown
that these fluctuations stem from the relative phase between planet gear meshes. The
set of rules that eliminate force and moment fluctuations are derived. The derivation
relies solely on the circumferential symmetry, so it is equally valid for static and

dynamic conditions, elastic or rigid components, and for axially asymmetric systems.
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Chapter 1: Introduction

1.1 Background and Motivation

Power transmission in vehicles, helicopters, wind turbines, machine tools, etc., use
gear trains in a wide variety of configurations including gear pairs, split-torque, and
epicyclic (planetary) arrangements. Gears generate vibrations that decrease durabil-
ity, reliability, and fatigue life. Gear noise, a result of vibration excited by the meshing
gear teeth, has adverse effects on the environment, perceived quality, and comfort.
Vibration reduction, therefore, has been of tremendous practical importance. This
requires a fundamental understanding of gear dynamics. The existing body of knowl-
edge is mostly derived from two-dimensional (2-D) vibration analysis. Thrust forces
and tilting/twisting moments in practical systems have been documented as gen-
erating three-dimensional (3-D) vibrations, but much remains to be understood in
the underlying mechanisms of vibration excitation, sources of nonlinearity, and the

consequent nonlinear dynamic response.

1.2 Literature Review

Significant previous research effort has gone into identifying the sources of vibra-

tion excitation in geared systems and how to reduce them. Considering gear pairs,



since Harris [30] and Gregory et al. [26] first identified transmission error as the pri-
mary quantifier of vibration excitation, transmission error has been treated as the
source of vibration [48,70,81,82,86]. Transmission error is a byproduct of gear mesh
elastic deformation and tooth surface modifications. As transmission error is reduced
via tooth surface modifications [81,104,116] or the use of helical gears, other excitation
sources at the gear mesh begin to dominate and drive the response, thus undermining
transmission error as a design metric of vibration reduction [37]. These excitations are
moment due to the periodic shifting (shuttling) of the contact loads in the facewidth
direction on the gear tooth surface, moment from the axial thrust [37,96], and fric-
tion forces [66,117,120,123]. Fluctuating mesh moments and axial thrust generate
tilting/twisting and axial motions, as experiments show [9,53,78]. Twisting and axial
motion are coupled with rotation and translation [13,35,39,41,53]. This is an issue
in gear pairs [13,24] as well as planetary gears [2,93].

Although the nonlinear dynamic behavior of 2-D spur gears is well established in
theory [11,41,49,50,54,81,86,101] and by experiments [11,45,46,48,54,105], experi-
mental investigations [53,112-114] are inconclusive regarding 3-D nonlinear vibration
of helical gears. Relative twisting of the gears and axial motion introduces partial
contact loss nonlinearity [6, 10, 34,35,81,121,122]. The contact pattern fluctuates
under dynamic conditions [6,121], and Velex and Ajmi [119] note the presence of
nonlinear response in a helical gear set. These phenomena, nonlinear dynamics and
3-D motions, must be intertwined. The 3-D excitation mechanisms and the path to
nonlinear response remain to be investigated.

The dynamic response of planetary gears involves multiple planet gears that mesh

with the sun and the ring gears. Consequently, they are more complicated and



there is less research on vibration of planetary gears than there is on gear pairs.
Symmetry in planetary gears gives rise to distinctive properties in the vibration
modes [15,20,40,58,60,87,97,98,133], which provides a starting point in understand-
ing the dynamics. Considering equally spaced planets, Lin and Parker [58] report
three types of vibration modes: 1) Rotational modes, where the central members
(the sun, ring and carrier) rotate but do not translate; 2) Translational modes, where
the central members translate but do not rotate; and 3) Planet modes, where only
the planets move and each planet’s motion is a scalar multiple of the first planet.
Similar classifications are shown when ring gear deformations are included [133], with
diametrically-opposed planets [60, 87], and with compound planetary gears [52].

The properties of vibration modes of planetary gears can be employed to reduce
vibration [4, 40, 58,59, 61,97,98]. Analytical expressions of the sensitivity of natu-
ral modes to design parameters [59,61] enable the tuning of the natural frequencies
to circumvent resonant behavior. Lin and Parker [59] use modal properties to de-
rive closed-form sensitivity expressions for design parameters. Guo and Parker [2§]
use the classification of vibration modes given in [52] to obtain closed form sensi-
tivity expressions for compound planetary gears. Another approach, as experiments
demonstrate [33,107], is to eliminate vibrations by planet mesh phasing using planet
spacing and tooth counts [62,97,98]. Despite the high level of understanding of plan-
etary gear vibration and success in vibration suppression, the inherent assumptions
of 2-D dynamic models in these studies limit their applicability. The aforementioned
vibration reduction methods, identification of modal properties, sensitivity expres-
sions, and mesh phasing are not addressed in the studies on 3-D planetary gear

vibration (2,40, 88].



1.3 Objectives

This work aims to explore the 3-D vibrations of gear pairs and planetary gears
because 2-D models may be too restrictive considering real-world applications. Spa-
tial 3-D vibrations may be important. A distinction must be made, however, between
getting accurate dynamic response and enhancing the understanding of gear dynam-
ics. Use of sophisticated large-scale computational models involving a finite element
approach [1,2,93,124,127] can give accurate 3-D dynamic response. Insofar as sophis-
ticated large-scale computational models can deal with gears and parts with a high
degree of physical detail, they are limited to parametric studies.

This work is thus concerned with exploring the underlying mechanisms of excita-
tion, nonlinearity, and methods of vibration reduction. To that end, the analytical
models are simplified to enable mathematical generalizations while retaining crucial

features to include 3-D motions and partial contact loss nonlinearity.

1.4 Scope of Investigation

The two most common types of gear configurations are investigated: gear pairs
and planetary gears. The gear mesh forces and moments from the load distribution
can be identically represented by a 3-D lumped-parameter model. The load distri-
bution is approximated by a discretization scheme that gives the numerical values
for the lumped-parameter model. The discretization method and the nonlinear char-
acteristics of the gear mesh, given in Chapter 2, provide a basis for the subsequent
nonlinear dynamic analysis in Chapters 3 and 4. It is shown in Chapter 5 that plan-

etary gears, using lumped-parameter model and the circumferential symmetry, the



vibration modes fall into three distinct categories. In Chapter 6 formulae that elimi-
nate force and moment fluctuations in planetary gears are found. The scope of each
chapter is detailed in what follows.

Chapter 2 mathematically proves that a 3-D lumped-parameter model, named
the equivalent stiffness model consisting of a translational and a twist spring, can
reproduce the forces and moments that develop from an arbitrary load distribution
on the gear tooth surface. A discretization of the distributed loads on the contact
lines provides a numerical approximation. FElasticity of each discretized segment is
represented by a network of springs. The contact condition of each segment is tracked
so that the discretization considers partial contact loss.

In Chapter 3, nonlinear dynamic analysis is performed. The discretization of con-
tact lines provide the dynamic gear tooth mesh forces and moments. The equivalent
stiffness model is used to interpret the calculated dynamic response. The nonlinearity
arises from partial and total contact loss, so the 3-D motions are intertwined with the
nonlinearity of the gear mesh. The primary resonance of the twist vibration mode is
excited by twist moments and the parametric resonance is excited by the fluctuating
twist stiffness.

Chapter 4 derives closed-form analytical expressions of nonlinear vibration re-
sponse of gear pairs, and so provides a design guideline, calculable with minimal
effort, to reduce vibration. The analysis method embeds partial contact loss non-
linearity into quadratic and cubic nonlinear terms, thus can consider any source as
input. Sphere/half-space contact vibrations are also analyzed for validation. A per-

turbation method (method of multiple scales) is used to solve the equation of motion.



The quadratic and cubic nonlinear terms yield nonlinear response. The parametric
time-dependent terms excite the vibrations.

Chapter 5 characterizes the modal properties of helical planetary gears in 3-D.
The mathematical proof of the modal properties and the conditions under which
these properties hold generalize the findings on 2-D spur planetary gear models in the
literature. The gear mesh is represented by the equivalent stiffness model of chapter
2. Computational observation of vibration modes uncovers three types of modes that
are grouped depending on the motion of the central members (the sun gear, ring gear,
and carrier): 1) Rotational-axial modes, where central members only rotate and move
axially, and the planets’ motions are identical; 2) Translational-tilting modes, where
central members only translate and tilt — these modes are degenerate with natural
frequency multiplicity of two; and 3) Planet modes, where the central members do
not move. It is mathematically proven that this is an exhaustive categorization of the
vibration mode types; no other vibration mode type is possible. This categorization
persists for asymmetric configurations in the gear plane, such as gears overhung from
shafts, and bearings with different stiffnesses at arbitrary shaft locations.

Chapter 6 finds a set of rules to eliminate the net force and moment fluctuations
at certain harmonics on the central members (sun, ring carrier) of planetary gears.
The analysis method relies solely on circumferential symmetry, and thus it is indepen-
dent of modeling assumptions. It, therefore, equally applies to elastic or rigid mem-
bers and under static or dynamic operating conditions. For equally-spaced planets,
force/moment fluctuations from the gear mesh fall into three categories: 1) In-phase,

2) Sequential-phase, and 3) Counter-phase. On central members, in-phase designs



eliminate radial force and tilting moment fluctuations, sequential-phase designs elim-
inate axial thrust and torque fluctuations, and counter-phase designs eliminate all
force and moment fluctuations. These three phasing conditions yield distinctive dy-
namic forces and moments on each planet. For diametrically opposed planets, there
are two conditions: 1) In-phase, which eliminates radial force and tilting moment
fluctuations on central members, and 2) Out-of-phase, which eliminates axial thrust

and torque fluctuations.



Chapter 2: An Investigation of Nonlinearity in Gear Pairs

Using a Lumped-Parameter Model

2.1 Introduction

The load on mating gear teeth is distributed along the lines of contact. This load
distribution is generally not uniform but depends on tooth surface modifications,
elastic deformations, and misalignments [18,64,76,109-111]. For practical values of
these quantities, the non-uniformity causes partial contact loss, where portions of
contact lines theoretically in contact are out of contact. This leads to nonlinearity.

The distribution of load generates axial thrust and tilting/twisting moments,
especially in helical gears, in addition to the useful mesh force [14, 37,39, 76, 77].
These forces and moments can adversely affect the noise and vibration of gears be-
cause they induce misalignment and fluctuate over a mesh period [13,37,77]. The
load distribution and the associated tilting/twisting moments depend on tooth sur-
face modifications, misalignments, and displacements under load. Although calcu-
lation of load distribution that includes partial contact loss using contact mechan-
ics or finite element analysis yields the nonlinear forces and moments at the gear
mesh [18,27,51,54,57,64,104,108-111, 121,124, 126, 127,131, 132], simpler lumped-

parameter representations provide insight into the mechanisms that generate those



forces and moments. As discussed herein, lumped-parameter models can elucidate the
nonlinearity of the gear mesh and explain how tilting/twisting moments that impact
gear vibration are generated.

Considering the existing literature on lumped-parameter gear mesh models, a
lumped translational stiffness at the gear mesh typically is used to represent the total
mesh force. Fluctuation of this stiffness is important for noise generation because it
excites vibration [26,30,39,86]. The net moment from tooth meshing can similarly
cause noise and vibration [9,31,37,77], but an analogous stiffness that captures this
moment and its fluctuation been investigated much less. Rigaud et al. [92] find a
2 x 2 stiffness matrix that couples translational and twisting motion of the gears.
Nishino [77] uses a translational and a torsional stiffness to account for the forces and
moments from the load distribution, but the stiffness expressions are approximate.

This work aims to identify a lumped-parameter model that accounts for the net
force and moment transmission at the gear mesh. The lumped stiffnesses must be a
consequence of force and moment balance and must be independent of the analysis
method that gives the load distribution on the gear teeth. Considering that the net
force and moment from the load distribution and the lumped-parameter model must
be equal, the lumped-parameter model is named the equivalent stiffness model. The
equivalent stiffness model must include the effects of tooth surface modifications,
misalignments, and elastic deflections. The dependence of the lumped-parameter
stiffnesses on elastic deflections causes nonlinearity that is important in dynamic
analysis. Furthermore, we explore force/moment behavior of the gear mesh using the

equivalent stiffness model.



To obtain numerical values of the equivalent stiffnesses, the load distribution is
approximated by a discretization scheme using results from the literature [18,57,121].
The discretization divides the nominal contact lines into segments on which the con-
tact is tracked. This captures partial contact loss and the resulting nonlinear behavior
arising from tooth surface modifications, misalignments, and elastic deflections. Com-

parisons with finite element analysis verify the discretization scheme.

2.2 Modeling

2.2.1 Gear Mesh Analytical Model

The net force and moment at the gear mesh comes from the distribution of contact
loads on the gear teeth. The dimensions of the gear teeth are large compared with
those of the contact area, so the load distribution on the gear teeth may be considered
as one-dimensional loading over a narrow strip or line-loading [38]. These lines of loads
are named contact lines. Load distribution on a contact line is shown in Figure 2.1(a).
The variable v keeps track of the position of contact along nominal contact lines by
assigning a unique v for each contact point. The nominal contact lines depend on time
t according to the specified pinion rotation speed €2,. When the elastic displacements
and tooth modifications are small, the position of contact lines is found from the
nominal kinematics from gear rotation.

The mesh deflection vector at a contact point on a contact line specified by v is
the difference between the position vectors of the contact points on the pinion and

gear. The projection of the mesh deflection vector along the tooth surface normal

10



gives the compressive deflection at v as

d(v) =[xy — xp + h(v) + Byrp + Byry] cos o)
2.1
+[zg = 2p = Dp1p — Ggrg — M(V)O,] sinh — Ay (v)0), — Ag(v),
A,(v) =[e(v) — ep) costh + b(v) sin
(2.2)
Ay(v) = —[c(v) — eg] cosp + [B — b(v)] siny

where B = (r, +r,)tan®. Figure 2.1 describes the relevant geometry. The fixed
basis is defined as {E;, Ey, E3} oriented such that E; is parallel to the line of action
of the gear mesh. The translational (z,,y,,2,) and angular (¢,, 6,, 5,) coordinates
of the pinion body are assigned to translations along and rotations about E;, Es,
and Es, respectively. The translational and angular coordinates of the gear body
follow similarly with subscript g. The base radii are r, and r,, ® is the transverse
operating pressure angle, and ¢ is the base helix angle. Micron-level deviations of
the tooth surface from an involute, such as from gear tooth surface modifications and
manufacturing errors, are denoted by h(v). For material removal h(v) > 0. The
radial and axial positions of contact are, respectively, b(v) measured from the pinion
mass center along E; and ¢(v) measured along E3. We refer to rotation about E; as
tilting (¢,, ¢4) and rotation about Ey as twisting (6,, 6,). The quantities A, and A,
are named moment arms because they turn out to generate twisting moments, as will
be shown in the next paragraph.
The distributed mesh force normal to the tooth surface along all lines of contact
is
f(v) = (f(v)cost, 0, f(v)sing)", with f(v) = k(v)&(v) (2.3)
The contact stiffness is k(v). The value of k(v) implicitly depends on tooth surface

modifications, elastic deflections, and misalignments.The contact stiffness k(v) must
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be in compression (d(v) > 0) to generate force. This criterion for contact [18] is
stated as k(v) = 0 for 6(v) < 0. The condition of equilibrium states that the forces
and moments be balanced. At a given point on the contact line, the distributed mesh

force generates the following moments about the pinion and gear mass centers

—b(v) f(v) costp Tpsin ¢
m,(v) = T'p X 0 = f(v) Ap(v)
c(v) —ep f(v)siny —7p COS Y 54
B —b(v) —f(v) cost rgsin 24)
my(v) = —Tg X 0 =fu) | Ayv)
c(v) — e, —f(v) siny —7T, COS Y
The total mesh force and moments about mass centers are
F = (Fcost,0, Fsing)", with F= / f(v)dv (2.5)
S
rpl'siny rogF siny
M= | [ e |oM = | [ e (2.6
S S
—1rpF cos —rgF cos

The E; components of the moments, r,F' sinv and r,F sin 1, are tilting moments due
to the axial thrust F'sin. The E; components are twisting moments and arise from
the moment arms A,(v) and A,(v) defined in Eq. (2.2). The E3 components are the
useful transmitted torque.

Use of Egs. (2.1) through (2.6) give the force and moment balance about the

pinion and gear mass centers cast in matrix form as
Kq = lext, (27>

@ = (90O Bos 0 Yo 2, By O Bis s U 2 ) (2.8)

Vo Ve
pinion gear
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[ 725 [kdv rps [kA,dv —r2sc [kdv  rpse [kdv 0 rps® [kdo
JEAZdv  —rpe [kA,dv ¢ [kA,dv 0 s [kA,dv
ric [kdv  —rpe [kdv 0 —rypse [kdv
K= Symmetric A [kdv 0 scfkdv
0 0
s [ kdv
i Symmetric
rpres® [kdv  rps [kA;dv —rprgse [kdv —rpse [kdv 0 —rps? [kdu ]
res [kA,dv  [kA,A,dv —rge [kA,dv —c [kA,dv 0 —s [kA,dv
—rprgcfkdv —rpckag dv ’f‘p’/’gc2f]€dv rpc2fkdv 0 rpscfkdv
rysc [ kdv c[kA,dv —ryc® [ kdv — [kdv 0 —sc[kdv
0 0 0 0 0 0
res? [ kdv s [kAgdv  —rgse [kdv  —sc[kdv 0 —s*[kdv
ris® [kdv  rgs [kAgdv  —risc [kdv  —rgsc [kdv 0 —rys® [kdv
JEAZdv  —rge [kAgdv  —c [kAgdv 0 —s [kA,dv
ric [kdv  rge® [kdv 0 7rgsc [kdv
Symmetric Afkdv 0 scfkdv
0 0
s* [kdv |
(2.9)
—rpcost [ khdv
— [kRh|[(c — €p) costp + (h + b) sine)] dv
T, — rpcos®t [ khdv
—cos® ¢ [ khdv
0
—cossiny | khdv
fo = / (2.10)
—rgcost [ khdv
— [kh|(ey — ¢) costp + (B — b) siny)] dv
T, +rycos®y [ khdv
cos? ¢ [ khdv
0
cossiny [ khdv

where s = sin® and ¢ = cos? only in Eq. (2.9). The upper-left matrix elements
relate to the pinion degrees-of-freedom, the lower-right matrix elements relate to the
gear degrees-of-freedom, and the upper-right matrix elements couple the pinion and
the gear degrees-of-freedom. The vector f,,; includes external loading; the torques on

the pinion 7}, and gear T, and tooth surface modifications h(v) appear here.
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All that is needed to find all numerical values in the mesh stiffness matrix K is a
calculation of the stiffness distribution k(v) and its coordinates b(v) and c(v). This
calculation requires a computational contact algorithm or an approximate analytical
method for contact. The stiffness distribution k(v) accommodates any flexibility along
the line of action including Hertz contact and elastic gear body deformations. Friction
forcesare neglected but could be incorporated. It must be noted that Eq. 2.7 is merely
a representation of force and moment balance specific for a state of displacement q
of the system. A stiffness matrix K found at a given pinion and gear torque 7, T},
and time ¢ may not be valid at other torques and time because k(v), b(v), and c(v)

depend on q and t.
2.2.2 Gear Body and Bearing Model

The gears are mounted on rigid shafts on two bearings, but these boundary con-
ditions may be altered depending on the application. Figure 2.2 shows the gears on
bearings. The axial positions of the bearings measured along E3 are L;;‘ and Lf. The

bearing translational and angular displacement vectors are

d;‘ = [917 (L;l - ep) + ‘Tp] E, + [¢p (ep - L;l) + yp} E; + 2, Es,
(2.11)
dl = [0, (L) — ep) + xp] Ex + [¢p (€p — L) + 4] Eo + 2,Es.

P

I')' = ¢,E + 6,E; + B,Es. (2.12)

The angular bearing deflection at point B is identical to Eq. (2.12) for rigid shafts.
The bearings are isotropic in the E; — Es plane giving the stiffness matrix for

translation as B;‘ = diag [k:pA,kﬁ,kpAz}, where the equality of stiffness in the two

translation directions is evident. The bearing stiffness matrix for rotation is x;‘ =

diag [/{;‘, /{;1, /{?2}. Similar definitions follow for the remaining bearings.

14



The governing equations with the bearings follow from force and moment balances

as

(K +B)q = fox (2.13)

Bi1 =By = H? + Hf + kpA (L;‘ - ep)2 + /{:f (LIJ,B — ep)z,

Bi;=-By,= kﬁ(ep — L?) + k‘f(ep - Lf), B;s = /ﬁﬁz + /{fz,
Biy=Bss =kl +k7, Beg=r,"+r.",

B:;7; =Bgs = H? + Hf + k:gA (L; — eg)2 + kf (LgB — eg)2 , (2.14)
B711 = —Bsio = k;‘(eg — L?) + kf(eg — Lf), Byo = /{;Z + Kfz,

Bio,ijo =B = k; + kf, Bis12 = k;‘z + kfz
2.2.3 Equivalent Stiffnesses Model

We show that it is possible to reduce net effect of the distribution of contact forces
on the contact lines to two discrete stiffnesses: a translational one acting at a certain
point called the center of stiffness and a twist stiffness. This reduction, described
in Figure 2.3, is called the equivalent stiffness model. The four parameters that the
equivalent stiffness model requires are: translational mesh stiffness k,,, spread-twist
stiffness k;, and the center of stiffness coordinates (b, ¢) that locate the translational
mesh stiffness on the contact plane.

The total force and moments with respect to centers of mass are

F = (Fcos,0, Fsing)", F =k (2.15)
B rpF sin B refFsingy
Mp = k‘t’}/ ‘l— FAp ,Mg = —k‘t’}/ + FAg (216)
—rpF cos —rgF cos
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A, =(¢—e,)costy + bsinp
(2.17)
Ay =—(c—ey)cost+ (B —b)siny

where § is mesh deflection at the center of stiffness found by substitution of b(v) = b
and ¢(v) = ¢into Eq. (2.1). In the equivalent stiffness model, the spread-twist stiffness
k: produces a moment k;y, where v = 6, — 6, is the relative angular twist about E,.

Force and moment balances give the equivalent stiffness model matrix K as

[ kmrs? k:mfpflps —k:mrgfc kemrpsc 0 l{:mr£82
kmAf, + ke —knryAyc kpA,e 00 ky,Aps
kmr2c®  —kprpe 0 —kprpsc
K= knc® 0 kpsc
Symmetric 0 0
ke S?
i Symmetric
k:mrprgs2 kmrgf_lgs ~kprprgsc —kprpsc 0 —kmr£s2 i
kmrgAps  kmApAy — ki —kmrgApe  —knApe 0 —kyAps
—kmrprgc  —kmrpAge  kprprgc®  kprpc® 0 kprpsc (2.18)
k1 gsc kmAge —kpmry® =k 0 —kpsc
0 0 0 0 0 0
Ky S* kmAgs —kprgsc  —kpsc 0 —kp,s?
kmr?s” kmfgf_lgs —kmrgfc ~kmrgsc 0 —kmrgs2
k:mAg +k —kprgAge —knAge 0 —k,Ags
k:mrgcz kmrgc2 0  Eyrgsc
kmc® 0 kysc
Symmetric 0 0
kms?

where s = sin and ¢ = cos® only in Eq. (2.18).
The stiffness matrix obtained from the equivalent stiffness model must be identical
to that obtained from the load distribution. This is expressed as K = K, where K
is the equivalent stiffness matrix. To find the equivalent translational mesh stiffness
Ky, consider the matrix element K3 from Eq. (2.9). Equating this to Kzs from
Eq. (2.18) gives
kp = /Sk(v) dv. (2.19)
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Similarly, the requirement I_(l,g = K 2 with
Kis=r, sin@b/ k(v)A,(v)dv, Kiyg=r,sink,A, (2.20)
s

yields the center of stiffness location

/Sk(v)b(v) dv /Sk(v)c(v) dv

h— — o= - (2.21)

Finally, to find the twist stiffness k;, K2,2 = Ky, yields
ky = / k(v)Ai(v) dv — k:m/_li. (2.22)
S

Similar calculations that require K = K for all remaining elements yield the same
values of ky,, k¢, b, and é.

This proves that, at any instant ¢, the net effect of the load distribution can be
contained in k,,, k;, b, and ¢. These quantities depend on the instantaneous contact
conditions implicit in k(v), b(v), and ¢(v). They vary with gear deflections and as
the gears rotate with a specified gear rotation speed. Thus, the equivalent stiffness
model is nonlinear and time-dependent. The foregoing development establishes that
the equivalent stiffness model identically reproduces the stiffness matrix arising from

an arbitrary load distribution.
2.2.4 Physical Interpretation of the Equivalent Stiffness Model

Although the equivalent stiffness model with k,,, k;, b, and & represents the load
distribution, a few more parameters provide further insight into the nonlinearity of
the gear mesh. These additional parameters are the moment arms of the mesh force
on the pinion and gear (A, and flg), off-mid-plane twist stiffnesses on the pinion and
gear (kp, and ky,), total twist stiffnesses on the pinion and gear (k,; and k), and the
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Figure 2.1: Distributed load and the position vectors from the pinion and gear mass
centers. (a) Front view, (b) Side view.

coupling-twist stiffness (k.). The physical interpretation of the equivalent stiffness

model and these additional parameters are discussed below.

Translational mesh stiffness k&,

This is the mesh stiffness given by Eq. (2.19) that resists any compression normal
to the tooth surface. It generates the mesh force F normal to the tooth surface by
Eq. (2.15). The line of action component is F'cos 1, and the axial thrust component

is F'sin).
Center of stiffness (b, ¢)

The axial component ¢ of the center of stiffness, given in Eq. (2.21), accounts for
the back and forth motion of the mesh force center identified as the shuttling of force
[31,37]. The location of the center of stiffness fluctuates with nominal rotation because

of two reasons: 1) In helical gears the axial span of contact lines along the facewidth
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continuously change, 2) If lead modifications vary with roll angle, that yields changes
in load distribution with time because the initial separations are functions of time
h(v) = h(t). The radial component b of the center of stiffness locates the position
of the mesh force along the line of action. Its nominal value of byom = rptan @ is
geometrically defined and dominates the rotation-dependent fluctuations for typical

pressure angles (¢).

Moment arms A, and 4,

These quantities are the moment arms of the mesh force that cause twisting mo-
ments about E,. They are given in Eq. (2.17) and include the moment arm due to:
a) an offset (¢ — e,) cos? along the facewidth, and b) the radial offset bsin due to

helix angle.

Total pinion and gear twist stiffnesses k,; and kg

The total twist stiffnesses are the sum of the spread-twist stiffness and the off-
mid-plane twist stiffness. This can be seen by dissecting Es components of the mesh

moment from Eq. (2.6) as

M, E; = [ f(v)A,(v)dv = [ k(v)d(v){[c(v) — e,] cos) + b(v)siny} dv
Jomn= ] oo

= [/ k:(v)Af)(v) dv — k:mflf)] v+ FA,=ky+ FA,
s

where the second equality is obtained following the substitution of Eq. (2.1), the
third following the substitution of Egs. (2.2), (2.15), (2.17), (2.19), and the fourth
following the substitution of Eq. (2.22). The analogous procedure for the gear gives

M, -E; = —kyy + FA,. The total pinion and gear twist stiffnesses are
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kpt :K2’2 = K272 = / ]C(U)A??(U) dv = kpo + kt

S (2.24)
kgt :K&g = K&g = / k’(U)Af](’U) dv = k'go + k‘t

S

Spread-twist stiffness k;

This stiffness gives the moment, k;y, which results from the spread of contact
along the facewidth direction. This spreading of contact resists gear twist even if
the center of stiffness at which the net force acts is aligned axially with the center of

mass: M, Ey = k;y for A, = 0.
The off-mid-plane twist stiffnesses k,, and £k,

With known k; from Eq. (2.22), the off-mid-plane twist stiffnesses are found from
Eq. (2.24) as

kpo = km A2, kgo = ki A2 (2.25)

The off-mid-plane twist stiffnesses capture the twist stiffness arising from a moment
about E, generated by the mesh force being offset. This is seen in Eq. (2.23) as
moments F'A, and FA,. They arise from two factors: the offset along the facewidth
direction Es, i.e., F(¢ — e,)cos®, and the offset along the radial direction Eq, i.e.,
Fbsint. The off-mid-plane stiffnesses vanish for spur pinion-gear pairs (1) = 0) that
are symmetric about the mid-plane (¢ = e,). They are always present in helical gears
where sin ) # 0 or when the center of stiffness fluctuates periodically in the facewidth

direction as the gears rotate.
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Coupling-twist stiffness k.

This stiffness couples pinion and gear twist by generating a twisting moment on

the gear due to a twist in the pinion. It is given by
ke = Kog =k ApyA, — Ky (2.26)

Again, there are two factors involved: the off-mid-plane component kmf_lpf_lg and the

spread-of-contact component k;.

Discussion of the Equivalent Stiffness Model

The equivalent stiffness model allows separate calculation (possibly using commer-
cial finite element or advanced gear tooth contact models) of the force-displacement
curve of the translational spring k,, and moment-rotation curve of the twist stiff-
nesses Kpi, kg, kpo, kgo, and k;. This feature identifies the nonlinearity of translation
and twisting individually. The equivalent stiffness model also paves the way for sim-
pler dynamic analysis via numerical integration and mathematical analysis. As an
example, one could calculate the strain energy stored in the equivalent stiffnesses to
identify the vibration modes where these stiffnesses are active. When these stiffnesses
are viewed as periodically fluctuating parameters over a mesh cycle, the fluctuating
twist stiffness excites twisting modes just as the fluctuating mesh stiffness k,, excites
the mesh deflection modes [26,30,92].

2.2.5 Approximation of Load Distribution With a Discretiza-
tion Scheme

The distribution of contact is discretized following the approach from [18,121].

Each nominal contact line is divided into n segments with equal length. Within the

22



ith segment, f(v) = fi, k(v) = k;, b(v) = b;, ¢(v) = ¢;, and §(v) =~ §;. Each contact
stiffness k; is at the center of its segment. As the contact lines progress with gear
rotation, the length [(¢) of segments in that contact line changes. Each contact line
has a specified number of segments. This discretization is based on the nominal lines
of contact with no gear deflections, so it is valid only for small elastic deflections.
To find an expression for the contact stiffnesses k;, the tooth deflection is divided
into two components: local (¢;) and bulk (J,). Discussion of this categorization can
be found in [6,18,57,79]. The local deflection represents the Hertz contact deflections.
The associated local stiffness is k.l(t), where the constant k. is the local stiffness per
unit contact length. The bulk deflection component represents all deflections except
local deflection, including gear blank deflection, tooth bending, and shear. Because
the Hertz contact deflections are localized and occur far from the bulk deflections, the
bulk deflection is assumed to be the same for all contact segments. The bulk stiffness
ks is assumed constant. The bulk stiffness is in series with the local stiffnesses, so the

total deflection at the ith contact point is

The mesh force must simultaneously equal the sum of all forces carried by the
local stiffnesses and the force carried by the bulk stiffness due to the series connection.

Thus,
F=) fi=kl(t)) eH(e)= kb, (2.28)
i=1 i=1

1 €; Z 0
H(e) = { 0 oo (2.29)

where H (¢;) is the Heaviside function that represents the contact or no contact con-
dition at each contact stiffness. Use of Eqs. (2.27) and (2.28) reduce the network of
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local and bulk stiffnesses into n contact springs (k;, ¢ = 1,2,...,n) in parallel across

the contact line. The stiffness of the ith contact spring is
kpk.l(t)H (€;)
ky + kel ()Y H(e)

1=1

k; = (2.30)
Even though the local stiffness per unit contact length k. and the bulk stiffness k; are
constants, the stiffness of each contact segment k; changes with partial contact loss
and contact line length. This is a mathematical result of the spring network, and it is
more realistic than assuming a constant stiffness for each contact segment [121,128].
To explain physically, a segment can only be as stiff as the softest component. For
example, consider a gear with wide facewidth but a thin rim (a T shaped profile).
Each stiffness k; is higher if only a few segments are in contact than having a lot of
segments in contact because having a lot of segments in contact dilutes k; as the total
stiffness Z k; is limited by the stiffness of the compliant thin rim.

The lg:clal stiffness per unit length k. and the bulk stiffness k;, are parameters of
the gear pair determined by the contact mechanics and elasticity of the gears. These
constants can be approximated analytically [18] or semi-analytically [121] by assigning
certain types of stiffnesses, such as Hertz contact, tooth bending, and shear, to k.
and k. In this work k. and k; are solved for from the deflections obtained from an
external finite element tool; k. and k; are numerical values that best fit the deflection
obtained from the analysis tool. Tooth bending flexibility only truly belongs to bulk
stiffness when one pair of teeth is in contact. If multiple pairs of teeth are in contact,
then a third layer of spring network for tooth bending that fluctuates with number
of tooth pairs in contact must provide better accuracy. The two stiffnesses, local and

bulk, may not be good approximations if they are found analytically that contains
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the tooth bending elasticity in the bulk stiffness, but the local and bulk stiffnesses,
being values that best fit finite element analysis data, automatically share the tooth
bending elasticity giving the upcoming results that compare reasonably well.

The following stipulations simplify the procedure for finding k. and k;: 1) The
tooth surface is perfectly involute, that is, h; = 0 for all ¢; 2) All degrees of freedom
are constrained to be zero except the pinion rotation f,; and 3) A specified moment
about Ej5 is applied to the pinion. With these stipulations, the deflections at all

contact points are identical and equal to the static transmission error, STE = §; =

dy = ... = 0,. Consequently, all points are in contact by Eq. (2.29); H(e;) = H(ez) =
.= H(e,) = 1,80k = ko = ... =k, by Eq. (2.30). Use of Eq. (2.27), and
Eq. (2.30) gives
1 1
STE=F|— 2.31
|:k:b * kCL(t):| ’ ( )

where L(t) = nl(t) is the total contact line length at an instant ¢. The two un-
knowns (k., k) are solved using the data from the results of the external analysis
tool. Although any two instances can be used, to increase accuracy, two data points
are found from the averages of four points where transmission error is the highest
{ST Exigh, Lnign } within a mesh period and the four points where transmission error

is the lowest {ST Eow, Liow}-

2.3 Analysis

2.3.1 Solution Procedure

In this work, the moment about Ej is specified and the bearings (springs) give the

remaining boundary conditions. There are situations, however, when the boundary
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conditions specify non-zero deflections of one or more of the twelve degrees-of-freedom
(as opposed to the case of specified torques and forces).

The nonlinear equations of motion in Eq. (2.13) are solved by iteration as follows.
For given K(q*,t) + B and f.(q*,t) calculated from the previous guess q*, the
solution q is found by Gauss elimination. This solution is used as the initial guess in
the next iteration. Iteration stops when the error in q is less than a specified tolerance.
A limit of 30 iterations is used when some highly misaligned or modified gears yield
a small but nonzero error. The starting initial guess is q* = 0, which corresponds to
the undeflected position of the gears with H(e;) = 1. The deflection q* alone does not
define the contact conditions H(¢;) that are required to find K(q*,t), and fo(q*, 7).
The needed quantities are the local deflections (¢;). They are found from Eq. (2.27)
where the constant known mesh force F' gives the bulk deflection 6, = F/k,. With
known ¢;, Eq. (2.29) gives the contact conditions H (¢;), which gives k; by Eq. (2.30).

Subsequently, K(q*,t) and f..;(q*,t) are found.
2.3.2 Comparison With Finite Element Model

This section compares the static deflections from the analytical model with those
from a finite element model to build confidence in the formulation. The finite element
model is based on the study by Vijayakar [124], and it is commercially available as
computer software [125]. This finite element model is specialized for analyzing near-
field contact between elastic bodies while using conventional finite elements for the
far-field elastic deformation of the bodies. It has been used in many gear studies

[5,65-67,85,86,99,100, 103] and considers partial contact loss. The analytical model
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uses the constants (k., k;) from the finite element model using the method described
with Eq. (2.31).

Two example gear pairs are analyzed. To keep the focus on the gear mesh model,
the bearing deflections are set to zero by constraining all degrees of freedom except
the pinion rotation (/,) in the analytical and the finite element model. The first
example is the helical gear pair defined in Table 2.1. Young’s modulus is 206 GPa
and Poisson’s ratio is 0.3. The pinion torque is 200 N-m, which is below the maximum
torque for infinite life based on the Fairfield gear design software. Table 2.2 gives the
tooth surface modifications on the gear, chosen to improve misalignment tolerance

and to eliminate corner contact [17,63,64].

Table 2.1: Example gear parameters.

Parameter Pinion Gear
Number of teeth 27 35
Base helix angle, ¢ [deg] 28.08
Center distance [mm] 88.9
Transverse module [mm] 3
Transverse operating pressure angle, ¢ [deg] 24.6
Transverse tooth thickness [mm] 5.2253 4.764
Facewidth [mm] 20.0 20.0
Tip diameter [mm] 84.0 104.8
Root diameter [mm)] 70.612 91.5416
Bearing A axial position, L# [mm] —-10 10
Bearing B axial position, L? [mm] —-10 10
Center of mass position , e [mm] 0 0
Translational bearing stiffness, k4, k% [N/m] 100 x 106 100 x 10°
Axial bearing stiffness, k4%, k%% [N/m] 10 x 106 10 x 10°
Twist bearing stiffness, k4, ¥ [Nm] 0 0
Mass (for Chapters 3 and 4), m [kg] 3 3
Tilting inertia, J* [kg-m?| 0.008 0.008
Rotational inertia, J* [kg-m?| 0.016 0.016
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Table 2.2: Tooth surface modification on the gear in Table 2.1.

Parameter Magnitude Begins Ends

Quadratic tip crown 10 um 26 deg  Gear tip
Quadratic root crown 10 um 26 deg 17 deg
Circular lead crown 10 um -10 mm 10 mm

The second example is the unity ratio spur gear pair from [47]. The pitch diameter
is 150 mm, and the facewidth is 20 mm. Three variations of this spur gear pair as
presented in [47] are analyzed. In all three variations, the tip relief amplitude is 10
pm and the lead crown is 5 wm on both the pinion and gear. The parameter that
varies is the roll angle where tip relief starts.

Figure 2.4(a) compares the static transmission error of the helical gear pair from
the finite element model with the analytical model. Figures 2.4(b), 2.4(c), and 2.4(d)
show the static transmission error of the spur gear pair with tip relief on both gears
starting at 20.9 deg (170 N-m torque), 22.2 deg (340 N-m torque), and 23.6 deg (340
N-m torque), respectively. The analytical model compares well with the benchmark
finite element model in all cases.

Figure 2.5 compares contact patterns from the analytical model and the finite
element model of the spur gear pair from [47]. The finite element model calculates the
contact pressure, the force divided by the contact area averaged over a mesh period.
Because the analytical model approximates the contact area, which is actually a thin
elliptical region, by a line, the discretization scheme uses the contact force divided by
the contact line length instead of the true pressure to find the contact pattern. Tip

relief starts at 20.9 deg on both gears. The applied torque is 85 N-m in Figures 2.5(a)
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and 2.5(b), 170 N-m in Figures 2.5(c) and 2.5(d), and 340 N-m in Figures 2.5(e) and
2.5(f). The contact from both models spans a larger area of the gear tooth surface
with increasing torque. At all three torques there is partial contact loss because parts
of the tooth surface are out of contact as the mesh deflection is not large enough to
compensate for the separation from tooth surface modifications.

The analytical model can treat misaligned gears (that is, gears with a specified
relative twist angle). The contact pressure from the finite element model at an instant
when the misalignment (relative twist angle) v = 0.01 deg is shown in Figure 2.6(a).
Figures 2.6(c) and 2.6(b) compare contact patterns from the analytical and finite
element models at 0.01 deg misalignment. Contact patterns from both models indicate
severe partial contact loss. The analytical model effectively captures partial contact

loss.
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Figure 2.4: Static transmission error from the analytical (solid line) and finite element
(circles) model. (a) Helical gear pair described in Tables 2.1 and 2.2. (b) Spur gear
pair in experiments. Tip relief starting at o = 20.9 deg. The applied torque is 170
N-m. (c) Spur gear pair in experiments. Tip relief starting at « = 22.2 deg. The
applied torque is 340 N-m. (d) Spur gear pair in experiments. Tip relief starting at
a = 23.6 deg. The applied torque is 340 N-m.
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Figure 2.5: Contact patterns from the analytical model (a), (c), (e), and the finite
element model (b), (d), (f), of the spur gear pair in experiments. Tip relief starts at
a = 20.9 deg. The applied torque is: (a,b) 85 N-m. (¢,d) 170 N-m. (e,f) 340 N-m.
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2.3.3 Gear Mesh Nonlinearity

The equivalent model concisely contains the sources of nonlinearity from the gear
mesh in the deflection-dependent changes of the translational stiffness k,,, spread-
twist stiffness k;, and center of stiffness (b,¢). The nonlinear behaviors of these
quantities are explored by examining the displacement and stiffness curves obtained
by applying torque and twisting moments on the gear pairs. At each data point the
average values of the translational stiffness k,,, the total twist stiffnesses k,, kg, off-
mid-plane twists stiffnesses ko, kg0, the spread-twist stiffness k;, the center of stiffness

(b,€), and the moment arms A, and flg over a mesh period are calculated.

Dependence on Mesh Deflection

To expose the effect of mesh deflection on the nonlinearity of the gear mesh, the
mesh deflection of the modified helical gear pair described in Tables 2.1 and 2.2 is
gradually increased from 1 um to 20 pum by increasing the driving and absorbing
torques on the pinion and gear about Es. All degrees-of-freedom except pinion and
gear rotation are constrained to isolate the translational mesh deflection. The trans-
lational stiffness k,, and the spread-twist stiffness k; are plotted in Figures 2.7(a) and
2.7(b). Figures 2.8(a), 2.8(b), and 2.8(c) show the contact pattern when the mesh
deflection is 1 um, 6 pum, and 10 um, respectively.

The loaded surface area increases with increasing mesh deflection, thereby increas-
ing the translational and spread-twist stiffnesses. This is a result of partial contact
loss, and it makes the translational stiffness k,, and the spread-twist stiffness k; non-

linear. The center of stiffness (not plotted) is always at the center of the facewidth
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because the modifications are symmetric along the facewidth; increasing mesh deflec-

tion does not cause an axial shift in the load distribution.

Dependence on Twist (misalignment)

To expose the effect of twist on the nonlinearity of the gear mesh, the relative
twist angle v = 6, — 0, is gradually varied by applying a moment on the pinion about
E,. The shafts supported on bearings provide the boundary conditions.

With unmodified helical gears as described in Table 2.1, the translational and
spread-twist stiffnesses, shown in Figures 2.9(a) and 2.9(b), are constant until |y| =
0.005 deg, after which there is a sharp drop initiated by the separation of the edges of
the teeth. This separation of the edges is reflected in the center of stiffness in Figure
2.9(c) with a sudden move of the center of stiffness toward the highly loaded side.
Figures 2.10(a) and 2.10(b) show the contact pattern at two relative twisting angles:
v =0 and v = 0.04 deg.

When || < 0.005 deg, which is just before the separation of the edges, the transla-
tional and spread-twist stiffnesses are linear and are at their maximum values because
there is no partial contact loss for |y| < 0.005. Twisting localizes the contact at the
edges of the facewidth thereby reducing both the spread-twist stiffness and the trans-
lational stiffness.

For helical gears with modifications described in Tables 2.1 and 2.2, Figures
2.11(a), 2.11(b), and 2.11(c) show the translational stiffness k,,, spread-twist stiff-
ness k;, and the center of stiffness axial component ¢. Figures 2.12(a) and 2.12(b)
show the contact pattern at v = 0 and v = 0.1 deg. For |y| < 0.03 deg, the stiff-
nesses change little from their highest values, but the center of stiffness varies. When

|v| > 0.03 deg, translational and spread-twist stiffnesses decrease because of partial
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contact loss as the rounded contact pattern becomes distorted and more localized at
the edges of the tooth face. The center of stiffness, plotted in Figure 2.11(c), moves
toward the more heavily loaded area. Localization, however, is less pronounced in
modified gears compared with the prior unmodified gears; larger twist angles are
needed to alter the contact pattern. This is because the contact pattern is already
localized as a result of tooth surface modifications.

The total pinion and gear twist stiffnesses, the spread-twist stiffness, and the
coupling-twist stiffness are shown in Figures 2.13(a), 2.14(a), 2.15(a), and 2.16(a) for
the unmodified spur, modified spur, unmodified helical, and modified helical gears,
respectively. With the same order, Figures 2.13(b), 2.14(b), 2.15(b), and 2.16(b) show
the moment arms A, and A, for the pinion and gear.

There is a crucial difference in the shape of the total twist stiffness between spur
and helical gears: the total pinion and gear twist stiffnesses are symmetric about
the relative twist angle v = 0 in spur gears but asymmetric in helical gears. This is
because in spur gears the length of the moment arm |A,| = |¢ — e,| only depends on
the amplitude of v but not its sign. For helical gears, however, this symmetry does not
exist due to the constant value of bsin ) arising from the helix angle. Consequently,
A,, A,, and the twist stiffnesses become asymmetric about v = 0.

The coupling-twist stiffness k. is nearly symmetric about v = 0 for both spur and
helical gears. This is because A, is very close to the mirror image of A, about v = 0.
If the pinion and gear base radii were equal, r, = r,, then A, would exactly be the

mirror image of f_lg about v =0, so f_lpf_lg and thus k. would be symmetric.
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Dependence on Facewidth

The common spread-twist stiffness, the pinion off-mid-plane twist stiffness, and
the pinion total twist stiffness of the pair described in Tables 2.1 and 2.2 is plotted
versus facewidth in Figure 2.17. Gear stiffness is not plotted for clarity. Three
cases are considered as follows: (I) the helix angle is zero, and there are no tooth
surface modifications; (II) the helix angle is 30 deg, and there are no tooth surface
modifications; and, (III) the helix angle is 30 deg, and tooth surface modifications in
Table 2.2 are added.

The spread-twist stiffness in Figure 2.17(a) increases with increasing facewidth
because the more the stiffness is distributed axially away from the center of the
facewidth, the more resistant the gear mesh is to twisting. This is the opposite of
localization. The dependence is strong for unmodified gears (I) and (II), but weak for
modified gears (III) because modifications localize the load distribution that reduce
the spread-twist stiffness. Comparing cases (I) and (II), the slight decrease in the
translational mesh stiffness with helix angle reduces the spread-twist stiffness a little.

The pinion off-mid-plane twist stiffnesses in Figure 2.17(b) of cases (II) and (III)
are almost constant with facewidth because a change in facewidth does not move
the center of stiffness relative to the mass center, so the moment arm A, is almost
constant. Spur gears of case (I) have zero off-mid-plane twist stiffness because the
mesh force does not create a moment (A, = 0). Gear off-mid-plane twist stiffnesses
(not plotted) exhibit the same behavior. The off-mid-plane stiffnesses dominate total
twist stiffness for narrow facewidth gears, but the spread-twist stiffness dominates

the total twist stiffness for wide facewidth gears.
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The unmodified helical gears of case (II) have the highest pinion total twist stiff-
ness as seen in Figure 2.17(c). The helical gears of cases (II) and (III) start with
a non-zero total twist stiffness due to the off-mid-plane component, whereas all the
twist resistance in the spur gears of case (I) come from the spread-twist stiffness.
For modified gears of (IIT) the rate of contribution from spread-twist it lower than
that of the unmodified cases of (I) and (IT) because modifications had reduced the

spread-twist stiffness.

Dependence on Modifications

To expose the effect of tooth surface modifications, the translational stiffness k,,,
spread-twist stiffness k;, and off-mid-plane twist stiffness k,, versus mesh deflection
§ are plotted in Figures 2.18(a), 2.18(b), and 2.18(c) with various modifications of
0, 2, 5, 10, and 20 pm. Figure 2.18(d) shows spread-twist stiffness k; versus twist
angle v with the same modifications. The helical gear pair used is described in Table
2.1 with surface modifications in Table 2.2, where the amplitudes of profile and lead
modifications change as indicated.

The translational stiffness k,, and spread-twist stiffness k; are independent of mesh
deflection for unmodified gears unless contact is completely lost as seen in Figures
2.18(a) and 2.18(b). For the modified gears, however, the translational mesh stiffness
continuously approaches the maximum value as the mesh deflection increases. The
approach is slower with increasing tooth surface modification amplitude because more
mesh deflection is needed to bring a larger portion of the tooth surface into contact.
Partial contact loss is responsible for this smoothing of the translational mesh stiffness
curve. In general, the larger the contact area, the higher the translational and spread-

twist stiffness.
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The nonlinear curve of the spread-twist stiffness is somewhat different than the
translational stiffness because the translational stiffness only depend on the size of
the contact area but the spread-twist stiffness is sensitive to localization of contact as
well as the size of the contact area. The pinion-off-mid-plane twist stiffness in Figure
2.18(c) is almost a constant multiple of the translational stiffness, so their nonlinear
curves are very similar.

Inspecting the spread-twist stiffness versus relative twist angle v in Figure 2.18(d),
the modified gears retain more of their existing (when aligned) spread-twist stiffness
at higher twist angles than unmodified gears. Tooth surface modifications localize the
contact pattern and make the tooth more rounded, thus reducing the spread-twist
stiffness and the total twist stiffness.

Unmodified gears have a range where the spread-twist and translational stiffness
is absolutely flat despite relative twist. In this region, twist angle does not cause
partial contact loss. For gear motions that do not exceed the range where stiffness
is flat, the system is linear. This linear region is distinct in unmodified spur and
helical gears as seen in the twist stiffnesses and moment arms in Figures 2.13(a) and
2.15(a). The transition to nonlinear region, where partial contact loss dominates, is
clear. With modified gears, although a similar region exists in Figures 2.14(a) and
2.16(a), it is not perfectly linear and the transition to the nonlinear region is smooth

and not sudden.
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2.3.4 Fluctuating Twist Moments and Stiffnesses as Sources
of Dynamic Excitation

The twist moments and stiffnesses periodically fluctuate, so can excite vibration
and noise. When a reduction in transmission error does not reduce noise, secondary
excitation sources such as tilting/twisting moments may be causing vibrations. To
investigate the nature of the time-dependent fluctuation, the total twist moments on
the pinion and gear (M,-E,, M,-E) and the spread-twist moment (kyy) common to
pinion and gear are plotted in Figures 2.19 and 2.20 for unmodified spur gears and
modified helical gears in two mesh periods. The values are obtained at three specified
twist values of |y| = 0.04, v = 0 deg in unmodified gears and |y| = 0.14, v = 0 deg in
modified gears.

Aligned (7 = 0 deg) spur gears generate no twist moments because A, = A, = 0.
Aligned helical gears generate fluctuating twist moments with a mean value because
A, # A, # 0 (or because the off-mid-plane twist stiffness). Moments on the pinion
and gear are different. The twist moments in aligned helical gears are significant,
being near 25% of the transmitted useful torque.

When misaligned (v = 0.04 deg), spur gears, however, do produce fluctuating
twist moments with a mean value. These moments are equal and opposite because
they come from the spread-twist stiffness by k;y. In helical gears, misalignment
(v = 0.14 deg) yields a subtler effect: pinion twist moment increases but gear twist
moment decreases compared with the aligned case (and vice-versa for a misalignment
in the other direction v = —0.14 deg). This is because the twist moments from the

spread-twist and off-mid-plane stiffness add for the pinion but subtract for the gear.
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The total twist stiffnesses of the pinion and gear and the common spread-twist
and coupling-twist stiffnesses are plotted in Figures 2.21 and 2.22 for unmodified spur
gears and modified helical gears with the same specified twist angles indicated above.
The periodic fluctuation of twist stiffnesses in a mesh period are summarized using
RMS (root-mean-square) calculation in Figure 2.23.

All types of twist stiffnesses in both spur and helical gears fluctuate with a mean
value. The stiffness fluctuation, although exists, must not be important in aligned
spur gears because aligned spur gears do not generate twist moments to excite twist
vibrations. Misalignment has two competing effects on RMS twist stiffnesses: a) it
tends to decrease RMS spread-twist stiffness in both spur and helical gears, b) in
spur gears it increases RMS off-mid-plane stiffnesses but in helical gears it either
decreases or increases the RMS off-mid-plane stiffnesses depending on the sign of the
misalignment. Overall, aligned gears seem to have the least fluctuation when equal
importance is attached to both total pinion and gear twist stiffnesses. A positive
misalignment in the helical gears analyzed however can reduce, for example, the
RMS gear twist stiffness, if that is specifically desired.

All twist moments and stiffnesses fluctuate periodically with gear rotation unless
the gears are aligned and the helix angle is zero. The RMS fluctuation amplitudes
strongly depends on the specified misalignment. Considering gear noise, the fluctuat-
ing twist moments can excite vibrations, and the stiffness fluctuation causes paramet-
ric excitation. This view can lead to a vibration reduction by reducing twist moment
fluctuations. The strong dependence of RMS amplitudes on twist angle adds another
nonlinear dimension; as the gears vibrate the dynamic changes in twist angle could

alter the excitation strength.
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Figure 2.19: Twist moments in two mesh periods of the unmodified spur gear pair.
(a) Total pinion twist moment, (b) total gear twist moment, (c) spread-twist moment.
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Figure 2.21: Twist stiffnesses in two mesh periods of the unmodified spur gear pair.
(a) Total pinion twist stiffness k,, (b) total gear twist stiffness &, (c) coupling-twist
stiffness k., (d) spread-twist stiffness k;.
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Figure 2.22: Twist stiffnesses in two mesh periods of the modified helical gear pair.
(a) Total pinion twist stiffness k,, (b) total gear twist stiffness &, (c) coupling-twist
stiffness k., (d) spread-twist stiffness k;.
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2.4 Conclusions

A lumped-parameter that consists of a translational mesh stiffness acting at the
center of stiffness and a spread-twist stiffness is mathematically shown to be identical
to an arbitrary load distribution on the gear teeth. This reduction is named the
equivalent stiffness model.

The distribution of the mesh force across the facewidth generates a twisting mo-
ment that has not been included in prior models that use a single translational spring
to represent tooth compliance. The spread-twist stiffness captures this twisting mo-
ment. The total twist stiffness on a gear is the sum of the off-mid-plane twist stiffness,
which results from the mesh force being offset from the mid-plane, and the spread-
twist stiffness.

Portions of contact lines can disengage from gear deflection, misalignment, and
tooth surface modification. This phenomenon is called partial contact loss. The
equivalent model concisely captures the nonlinearity resulting from partial contact
loss.

The nonlinear behavior of the translational and twist stiffnesses are numerically
investigated. A discretization of the load distribution supplies the numerical val-
ues for the equivalent stiffness model. The translational stiffness correlates with the
size of the contact area. When the contact area shrinks from modifications, mesh
deflection, or twist, the translational stiffness decreases. The spread-twist stiffness
correlates with the localization of contact. When the contact area is more localized
from twist, tooth surface modifications, or mesh deflection, the spread-twist stiffness
decreases. The off-mid-plane twist stiffness vanishes in centered spur gears but domi-

nates the total twist stiffness in helical gears with narrow facewidth. The spread-twist
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stiffness increases rapidly with larger facewidth. Both off-mid-plane and spread-twist
stiffnesses are highly nonlinear.

The twist moments fluctuate periodically with a mean value with nominal gear ro-
tation in helical gears. The total twist stiffnesses fluctuate with nominal gear rotation
as well. These fluctuations have the potential to excite twist vibration. If vibrations
are indeed excited by these twist moments, a reduction of the fluctuations may reduce
gear noise. If the translational and spread-twist stiffnesses and the center of stiffness
are explicitly known from computational analysis as functions of mesh deflection,
mesh twist and nominal gear rotation, that may allow simplified three-dimensional

nonlinear dynamic and static analyses.
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Chapter 3: Twisting Vibration and Partial Contact Loss in

Gear Pairs

3.1 Introduction

Research on spur gear pair dynamics [26,30] identify static transmission error as
the primary quantifier of vibration excitation. Since then, static transmission error
has been used as an input to two-dimensional spur gear dynamic models [26,30,81,82],
and it has proven to be an easily measurable and calculable design guideline to re-
duce gear vibration [81,102,130]. Helical gears have a lower fluctuation in static
transmission error when compared with spur gears, so vibration excitation due to
transmission error fluctuation is lower in helical gears. This reduction in static
transmission error, however, does not always coincide with a reduction in vibra-
tion [36] because helical gears introduce additional excitations as a result of the
non-zero helix angle [80] including a twisting moment, axial thrust, and an axial
moment [13,14,23,34,35,37,77,129]. Not only these moments excite dynamics, they
also alter the load distribution on the gear teeth to create a three-dimensional non-
linear vibration problem.

The core of the problem is that the three-dimensional vibrations lead to loss of

contact at portions of a gear tooth surface that otherwise would have been in contact.
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This is called partial contact loss. The dynamic contact pattern is distorted as a result
of partial contact loss [6,21]. Tooth surface modifications and specified misalignments
also cause partial contact loss. To that end, Velex et al. [122] and Raclot and Velex [90]
computationally show that misaligned gears exhibit partial contact loss under static
conditions. There is, however, a crucial difference between [90,122] and this work;
partial contact loss in [90,122] is due to a specified misalignment, but in this work
partial contact loss occurs as a result of dynamic displacements even though the gears
are perfectly aligned in assembly.

This work intends to scrutinize the nonlinear dynamic response as a result of par-
tial contact loss due to three-dimensional dynamic displacements. Dynamic response
is obtained using numerical integration. The modeling follows Chapter 2, where a
discretization of the gear contact lines using network of springs tracks instantaneous
dynamic contact conditions. The lumped-parameter model developed in Chapter 2,
the equivalent stiffness representation, identically reproduces the net mesh forces and
moments from any given load distribution on the contact lines. It uses a transla-
tional mesh stiffness acting at the center of stiffness and a twist stiffness. Response
is interpreted using the instantaneous dynamic values from the equivalent stiffness

representation.

3.2 Modeling

3.2.1 Gear Pair Dynamic Model

The gear pair model is constructed following [23]. The model consists of two gears

mounted on shafts. Each gear body is combined with its supporting shaft into a single
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rigid body. These gear-shaft bodies are each mounted on up two bearings placed at
arbitrary axial locations. Figure 3.1 shows the gear model and the bases.

A fixed, right-handed, orthonormal basis {E} = {E;, Es, E3} is oriented such that
E; is parallel to the line of action of the gear mesh. The origin is on the rotation
axis of the pinion body, midway in the active facewidth. Positive axial quantities are
measured along E; from the dashed line in Figure 3.1.The translational (z,,y,, 2,)
and angular (¢,, 6,, ,) coordinates of the pinion body are assigned to translations
along and rotations about E;, Es, and E3, respectively. We refer to a rotation about
E, as tilting and a rotation about E, as twisting. The translational and angular
coordinates of the gear body follow similarly with subscript g. Body-fixed bases
{er} = {e, e}, et} and {e?} = {ef, e, e}} for the pinion and gear are adopted.

The pinion translational and angular velocity vectors are
r, = 4,E + y,Eq + 2, Es,
. . . : . : (3.1)
Wp = [¢p — 0y (610 + Qp)} el + [ep + ¢p <5p + Qp)] e, + [ﬁp +Qp — dp0, | €5,
where 2, is the specified constant angular rotational speed of the pinion. The velocity
vectors for the gear are identical except with components for the gear.
The axial positions of the pinion bearings are measured along E3 by L;‘ and Lf.

The pinion bearing deflection vectors are the relative deflections at the bearings with

respect to ground, giving

d) =10, (L) —e,) + 2, E1 + [¢ (ep — L)) + yp) E2 + 2,Es,
(3.2)
df = [Gp (L;,B — ep) + xp} E, + [qbp (ep — Lf) + yp} E; + z,Es.

The bearing deflections for the gear follow similarly. The bearings resist tilting and
twisting as well. The angular deflection of all pinion bearings are identical for rigid
shafts, giving

' =T7 = ¢,E; + 6,E; + 3,E;. (3.3)
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The bearings are isotropic in the E; — E5 plane, so the bearing stiffness matrix for
translation is B;;x = diag [k;,“,kﬁ,k;‘z}, where the equality of stiffness in the two

translation directions is evident. The bearing stiffness matrix for rotation is x;‘ =

diag [f@f, Ii;‘, m;f‘z]. Similar definitions follow for other bearings.

Distributed gear contact loads are approximated by a discretization scheme de-
scribed in Chapter 2 Section 2.2.5. The nominal contact lines for no mesh deflection
are discretized into n segments with stiffness k;, i = 1,...,n. Displacements cause a
difference between the position vectors of the contact points on the pinion and gear.
That difference is the mesh deflection vector. The projection of the mesh deflection

vector on the tooth surface normal gives the relative compressive deflection of the

contact stiffness k; as

0 = { lep — ¢i] 0p + [ci — 4] 0, — Tp + x4 + By + Bpryp + ﬁgrg} cos
(3.4)
— { i + i) 0, + [(rp + 7y) tan @ — b;] 6, + 2z, — 2, + Pprp + gbgrg} sin v,

where 7, and r, are the base radii, ® is the transverse operating pressure angle, and
1 is the base helix angle. The axial position of a contact point, measured from the
origin along Ej, is ¢;, and the radial position of a contact point, measured from the
origin along Ei, is b;. The positions of contact (b;,¢;) are determined from known
gear rotation speed. Micron-level deviations of the tooth surface from an involute,
such as from gear tooth surface modifications and manufacturing errors, are denoted
by h;. Figure 3.1 depicts these quantities.

The contact stiffnesses k; depend implicitly on time ¢ due to specified nominal

gear rotation and displacements q. The formula for k; is given by Eq. (2.30)
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The kinetic and potential energies are

1

T = 5 Z (wg.]kwk + rgmkrk) s
K (3.5)
1 o o 1 ’
V=33 > (a' Bl + TN ) + 5 Y ke,
k=p,gj=A,B =1

The inertia tensor of the axisymmetric pinion body is J,, = diag [J;f, Iy, J;] with
similar definition for the axisymmetric gear body.
Lagrange’s equations of motion for unconstrained generalized coordinates follow

after substitution of equations Egs. (3.1) through (3.4) into the energy expressions

Eq. (3.5). In matrix form they are
Mg + Dg+ 2,Gq+ [K+ B — Q2C] q = foy (3.6)

The vector q comprises generalized coordinates

q= (¢p> Qp, ﬁpa Tpy Yp, Z}y ?ga 99, ﬁga LgyYg, Zg) (37)

pinion gear

The vector f. includes external loading; the driving and absorbing torques and
tooth surface modifications appear here. The matrix K is the three-dimensional mesh
stiffness matrix. The matrix B is the bearing stiffness matrix. The elements of K, B
and f.y are given in Egs. (2.9), (2.14), and (2.10) with integration [(...)dv replaced
by summation Y°(...). The terms that arise from the constant rotation speed are
contained in the gyroscopic matrix G and the centripetal acceleration matrix C. The
inertia matrix M, gyroscopic matrix G, and centripetal acceleration matrix C are
given by

M = diag(J,), J5, JZ, my, my, my, Jo, J7, JZ mg, mg, my) (3.8)

p)=p’Tp? 9’79779’

G’LQ :J; - 2J;, Gg,l == —J; + 2']1!:70’
Grs =R(J; —2J%), Ggr=—R(J; —2J3),
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Cllzjw

) p?

0272 =Jr

p?

Crr=RJ;, Css=RJ]. (3.10)
where R = ,/€),, and all unspecified elements are zero.
3.2.2 Equivalent Stiffness Representation

The equivalent stiffness representation, detailed in Chapter 2 Section 2.2.3, identi-
cally reproduces the net effect of load distribution obtained from the discretization of
contact line with the network of stiffnesses. There are four parameters in the equiv-
alent stiffness representation: translational mesh stiffness k,,, the center of stiffness

(b, ¢) at which the translational mesh stiffness acts, and the spread-twist stiffness k;.

These quantities are given by

km =Y ki, b (kiA2,) — kA2 (3.11)
i=1 1=1
b lzn:kb ¢ lik (3.12)
=7 i0i, €= 77— iCi .
im i=1 Fom i=1
where A, ; and A,; are the moment arms given by

A,i = [(e; —ep)costy+b;siny], (3.13)

Ay = [—(ci—ey)cosy)+ (B —b;)siny)] (3.14)

The quantities with the overbar are obtained using b; = b, and ¢; = & In Chapter
2, Figure 2.3 shows the equivalent stiffnesses, the center of stiffness, and the moment
arms.

The total twist stiffness of the pinion and gear are composed of the spread-twist
stiffness k;, which is due to the spread of contact along the gear teeth, and an off-

mid-plane component due to the mesh stiffness being offset by the moment arms A,
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or flg. The total twist stiffnesses are

ke =Kop =Y kA2, =k A2+ ky
= (3.15)
kg =Kss =Y kAL, = kn A2 + &

i=1

Coupling twist stiffness k. couples pinion and gear twist by generating a twist in the

gear due to a twist in the pinion, given by
ko =Kog =Y kidyiAg; = knAyAy — ky (3.16)
The total mesh force and moment due to spread of contact are
F=knd, M,=ky (3.17)

where ¢ is the equivalent mesh deflection and vy = 6, — 0, is the relative twist angle

between the pinion and the gear.

. Gear
5 B
*—Lﬁ Lg
P €g
Co_ntact//;"‘
points E ~¢, | Pinion
2T Contact
? : E, , points
_ep §
A : B
-L, L,

Figure 3.1: Gear pair model. The dashed line is at the center of the active facewidth.
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3.3 Dynamic Analysis

3.3.1 Method

The nonlinear dynamic response is obtained using numerical integration of the
equations of motion Eq. (3.6). The high-speed effects are neglected; €2, = 0. Numer-
ical integration at each excitation frequency is performed until the transient response
is settled and the steady state response is reached. In order to minimize transient
response, and so the computation time required, the initial guess for the numerical
integration is set to the static solution q = q, at ¢ = 0. The static solution is found

from

(K +B)qs = fox (3.18)

obtained by substitution of § = q = 0, €2, = 0 into Eq. (3.6).

Under dynamic conditions, the translational stiffness k,,, the spread-twist stiffness
k:, and the axial center of stiffness ¢ along facewidth are found instantaneously as
q is calculated at each time step from Egs. (3.11) and (3.12). These instantaneous
dynamic quantities are indicated by prefixing the word “dynamic” to stiffnesses and
center of stiffness in the upcoming discussions. The dynamic quantities are different
from quasi-static quantities and are crucial output metrics that help explore the
nonlinear vibrations.

The numerical integration requires K and f.;. These, however, are not known a
priori as they depend on the changing contact conditions H; of the contact springs
k;. The iteration procedure described in [23] is adopted to solve K and f.y; for a given

dynamic displacement vector q at an instant ¢.
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3.3.2 Linearization

The time-average of the mesh stiffness matrix K at the operating torque over a
mesh period gives the mean stiffness matrix K,,,. The excitation from the gear mesh
is approximated as a periodic external force [81,118], given by (K,, + B) qs(t). The
external force vector with its harmonic content is found from the static deflection
vector qs(t), which is solved from Eq. (3.18) at several points over a mesh period.

Linear time-invariant equations of motion are
Mg +Dq + (K + B) q = (K, + B) qs(1), (3.19)

which are solved in frequency domain using the first five harmonics of qs(t). Damping

matrix D is calculated using modal damping. Damping is difficult to estimate in gear

dynamics [11]. It is taken to be less than 10%, but it varies among different gear

pairs.

3.3.3 Spur Gear Pair With Modifications: Comparison with
Experiments

In this subsection, some modified spur gears from [47] are analyzed with the
purpose to find out whether partial contact loss occurs in experiments.

The static transmission errors generating qs(t) are plotted in Figures 2.4(b), 2.4(c),
and 2.4(d). Finite element analysis results are included to confirm the solution from
the analytical model. The agreement between the analytical and finite element anal-
ysis verifies the discretization of load distribution. Dynamic response is plotted in
Figure 3.2, which shows experimentally measured, linear, and nonlinear root mean
square (RMS) of the transmission error with gear rotation speed. The mean is re-
moved when calculating the RMS of quantities. The error bars, £1 pm, mark the
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repeatability of the measurements, which was reported in a closely related paper
by the same authors [46]. The agreement between the experimental measurements
and numerical integration in Figure 3.2 verifies the analytical model under dynamic
conditions.

Inspecting Figure 3.2, the nonlinear and experimental solutions gradually deviate
from the linear solution. There is not a kink point as in [5, 44, 67,72, 86] in the
amplitude versus frequency curve that marks the onset of contact loss. This distinct
behavior at the onset of contact loss will be observed in the upcoming analysis in
Figure 3.16. Total contact loss starts at mesh frequencies 2 = 1.09, 2 = 0.97,
Q = 0.96, Q2 = 0.98, but the nonlinear solution deviates from the linear solution
before total contact loss starts.

Figure 3.3 compares the static and dynamic translational mesh stiffnesses (k,,) of
the gear pairs in Figure 3.2 at selected gear rotation speeds. The dynamic stiffness
values are from numerical integration. These selected speeds are adjacent to the
speeds where total contact loss starts. In each case, total contact loss starts at
the next lower speed. The static and dynamic translational mesh stiffnesses k,, are
different. As the dynamic response amplitude increases, portions of gear teeth lose
contact (partial contact loss). Hence the deviation of dynamic mesh stiffness from
static mesh stiffness. Away from resonance (not shown), the static and dynamic mesh
stiffnesses are almost identical for all four gear pairs.

The dynamic contact patterns at three speeds at torques of 85 N-m and 170 N-m
are plotted in Figure 3.4. Figures 3.4(a) and 3.4(b) show contact patterns away from
resonance, Figures 3.4(c) and 3.4(d) just before total contact loss, and Figures 3.4(e)

and 3.4(f) at the frequency of peak response.
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The contact patterns away from resonance (Figure 3.4(a) and 3.4(b)) are similar to
static contact patterns in Figures 2.5(a) and 2.5(c), but the dynamic contact patterns
just before total contact loss (Figures 3.4(c) and 3.4(f)) are much different than the
static contact patterns. This distortion is the result of partial contact loss. The
dynamic contact patterns at peak response frequency (Figures 3.4(e) and 3.4(f)) are
also much different than static contact patterns, but this time because of total contact

loss.
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Figure 3.2: RMS (mean removed) of the transmission error from numerical integration
(cross), linear solution (solid line), and experimental measurement from Figure 13
of [47] (circles with error bars). All gears have 10 um of tip relief and 5 pm of
circular lead crown. (a) Tip relief on both gears starts at o = 20.9 deg; the torque is
85 N-m. (b) Tip relief on both gears starts at a = 20.9 deg; the torque is 170 N-m.
(c) Tip relief on both gears starts at o = 22.2 deg; the torque is 340 N-m. (d) Tip
relief on both gears starts at a = 23.6 deg; the torque is 340 N-m.
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Figure 3.4: Dynamic contact patterns of the gear pair in Figures 3.2(a) and 3.2(b)
at selected speeds. (a) Away from resonance, {2 = 0.61; applied torque 85 N-m. (b)
Away from resonance, {2 = 0.67; applied torque 170 N-m. (c) Before total contact
loss, €2 = 1.09; applied torque 85 N-m. (d) Before total contact loss, 2 = 0.97; applied
torque 170 N-m. (e) At peak response frequency, {2 = 0.87; applied torque 85 N-m.
(f) At peak response frequency, €2 = 0.93; applied torque 170 N-m.
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3.3.4 Helical Gear Pair With Modifications

In this subsection, the modified helical gear pair described in Tables 2.1 and 2.2
is analyzed. The static transmission error generating qs(t) is plotted and compared
with finite element analysis in Figure 2.4(a). Figure 2.12(a) shows the static contact
pattern.

Figure 3.5 shows the natural frequencies and modal strain energy distributions
of each mode. In the horizontal axes, x4 denotes the energy stored in the pinion
bearing at A in the x direction (along E;). The pinion bearing at B and the gear
bearings follow similarly. The last two columns denote the gear mesh strain energy
stored in the equivalent translational k,, and spread-twist stiffnesses k;. The signs of
the strain energy in the bearings reflect the direction of motion. The assignment of
direction of motion in strain energy differentiates between translation and twisting of
the gear-shaft bodies. The strain energies in the gear mesh are always positive. Some
natural frequencies are repeated because the mass and the inertia of the pinion and
gear are equal.

The 7th and the 12th vibration modes are interesting to explore because the 7th
mode involves relative mesh twist, and the 12th mode involves mesh deflection. These
are the only modes that cause a compression in the mesh twist and translational
stiffnesses. Ome expects nonlinear dynamic response if these vibration modes are

excited.

Twist Mode Peak at 490 Hz

The relative twisting peak at 490 Hz in Figure 3.9 is the resonance of the mesh

twist mode (mode 7). The inset plots show dynamic contact patterns. The response is
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nonlinear as confirmed by the differing linear and nonlinear curves. Figure 3.6 shows
the static and dynamic mesh force F', static and dynamic translational and spread-
twist mesh stiffnesses, static and dynamic center of stiffness, and dynamic contact
pattern at 490 Hz. The dynamic mesh force in Figure 3.6(a) is always positive,
and the dynamic fluctuation is mild. There is no total contact loss. The teeth
remain engaged at all times. One would not expect the difference between linear and
nonlinear response and static and dynamic contact patterns given that the dynamic
mesh force is almost constant.

To explain, the high dynamic fluctuation of the the center of stiffness indicates
significant relative twisting of the gears. Twisting distorts the dynamic contact pat-
tern significantly compared with the static contact pattern in Figure 2.12(a). While
the total mesh force changes only slightly and there is no total contact loss, its dis-
tribution on the tooth surface is markedly changed by twisting. This dynamically
changes which contact segments are in contact. This kind of twist vibration mode
has been neglected in prior studies, that must be restricted to narrow facewidth gears.
The relatively low natural frequency make it a potentially troublesome resonance in
practical applications.

The nonlinear resonant frequency of 490 Hz observed from Figure 3.9 is higher than
the natural frequency of 425 Hz. Consider the dynamic natural frequency obtained
using the stiffness matrix averaged over a few mesh cycles under stead-state dynamic
conditions. The dynamic natural frequency of the twist mode (mode 7), shown in
Figure 3.7(a), correlates with the increase in the response frequency. As a contrast, the

mesh deflection mode dynamic natural frequency, plotted in Figure 3.7(b), correlates
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with the decrease in the response frequency of the mesh deflection mode in Figure
3.13.

To explain the increase in the dynamic natural frequency of the twist mode, the
twist is almost purely pinion and gear twisting; only the twist degrees-of-freedom 6,
and 0, are active. Consequently, the simplest system that can reproduce the natural
frequency of the twist mode must include 6, and ¢,. The mass and stiffness matrices

of this reduced system are

— { Moz 0 (3.20)

Mt —y M8,8 :| ) Kt =

The time histories of the total pinion twist stiffnesses k,, total gear twist stiffnesses

kpt + B2,2 kct
kgt +Bgs |

k4, and coupling twist stiffnesses k. are shown in Figure 3.8. The mean value of the
coupling twist stiffness during vibrations drops significantly while mean values of the
total pinion and gear twist stiffnesses stay about the same. The drop in k. is due to
the nonlinear dependence of the moment arms A, and A, on relative twist . This
drop in k. drives the dynamic natural frequency higher.

The foregoing discussions of the twist mode is crucial because they highlight: 1)
Twist mode, with its previously unidentified subharmonic resonance, is excited. 2)
The interaction between the nonlinear gear mesh and the three-dimensional gear body

displacements yield peculiar dynamic response.
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Figure 3.5: Strain energy in bearings and gear mesh of the modified helical gear pair
in Tables 2.1 and 2.2. x4 through zp mark the strain energy in bearing degrees of
freedom. k,, marks the strain energy in the translational stiffness, and k; marks the
strain energy in the spread-twist stiffness. The positive/negative values distinguish
the direction of motion. Mesh strain energies are always positive.
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Subharmonic Peak at 1010 Hz

There is a peak in the response in Figure 3.9 when the mesh frequency is around
1010 Hz. The dynamic center of stiffness at 1010 Hz is plotted in Figure 3.10. The
time history is periodic at twice the mesh period, which is also seen in the frequency
components of the twist angle in Figure 3.11. High dynamic fluctuations indicate
twist vibration consistent with mode 7.

This response is the subharmonic resonance of the twist mode (mode 7) where the
mesh frequency is nearly twice w;. The indicators that this is a subharmonic resonance
are: 1) The sharp peak at 1010 Hz in Figure 3.9 without a natural frequency near
this value; 2) No linear response at 1010 Hz; and 3) The spectrum in Figure 3.11 at
1010 Hz with response at multiples of n/2 of the mesh frequency, n = 1, 2.

This resonance may be driven by parametric excitation from the time-varying
twist stiffnesses. This is a previously unidentified kind of gear vibration because it
stems from the twist mode. Had the twist mode been neglected, its subharmonic

resonance would not appear.

Mesh Deflection Mode Peak at 6200 Hz

This is the primary resonance of the mesh deflection mode (mode 12). There is
significant nonlinearity from partial contact loss, as evident by the difference between
the linear and nonlinear response curves in Figure 3.12. The dynamic mesh force
and both translational and twist stiffnesses at 6200 Hz reach zero in Figures 3.13(a),
3.13(b), and 3.13(c). Center of stiffness in Figure 3.13(d) is undefined at total contact
loss instants. Partial and total contact loss is reflected in the contact pattern in Figure

3.13(e).
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Figure 3.14 shows the static and dynamic mesh stiffnesses at selected operating
speeds. There is a difference between the static and dynamic stiffnesses although the
teeth remain in contact. The closer the operating speed to the resonant frequency,
the greater the difference between static and dynamic stiffnesses. Similar behavior
was observed in modified spur gears, and it is a result of partial contact loss.

When total contact loss occurs without prior partial contact loss, as in spur gears,
a sharp kink would appear in Figure 3.12 where the nonlinear curve diverges from
the linear curve [5,44,67,72,86]. Instead, the nonlinear response deviates slowly and

smoothly from the linear response in Figure 3.12 because of partial contact loss.

Peak at 890 Hz

This is the resonance of mode 8. Despite the high pinion bearing displacement
x, at 890 Hz, the transmission error is low (Figure 3.15). Consequently, the dynamic
fluctuations in mesh force and contact pattern are negligible (not plotted). The linear
behavior of this resonance demonstrates that not all deflections cause nonlinearity.
Dynamic displacements must be in the nonlinear mesh stiffnesses for a nonlinearity

in the dynamic response to develop.
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line) solutions response of the modified helical gear pair given in Tables 2.1 and 2.2.
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3.3.5 Spur Gear Pair Without Modifications

In this subsection, an unmodified spur gear pair is analyzed. The gear parameters
are given in Table 2.1 but the helix angle is zero. Figure 3.16 shows the linear and
nonlinear dynamic transmission error. The linear solution is almost identical to the
nonlinear solution until there is total contact loss. The nonlinear solution immediately
deviates from the linear solution at the onset of total contact loss near 9000 Hz and
the peak bends toward lower frequency. This nonlinear behavior of gears was reported
in the literature [5,44,67,72,86]. It contrasts with the primary resonance of modified
gear pairs discussed earlier. In the modified helical gear pair, softening nonlinearity
always exists but in the form of partial contact loss, so the transition from partial
to total contact loss is smooth. Thus, the nonlinear solution deviates gradually from
the linear solution rather than with a marked change in the frequency response curve

as in Figure 3.16 and [5,44,67,72,86].
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Figure 3.16: RMS transmission error from the linear (dashed line) and nonlinear
(speed-up and speed-down, dots at data points) solutions of an unmodified spur gear
pair. Note the high concentration of data points. Gear parameters are given in Table
2.1 except the helix angle is zero.
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3.3.6 Discussion

From the computational observations we deduce that partial contact loss can

appear when:

1. There are twisting vibrations. Gears may be helical or spur, but the twist
mode needs to be excited either via the moments from the helical gear mesh, or
via external periodic forcing. Twisting separates the edges of the gears hence

partial contact loss. Modified and unmodified gears are both susceptible.

2. There are tooth surface modifications. At the mesh deflection mode resonance,
the dynamic fluctuation of mesh force changes the contact, thus causing partial
contact loss. The gears may be helical or spur, but unmodified gears show only

total contact loss.

The observed dynamic response and the type of nonlinearity is summarized in

Table 3.1 for spur and helical gears with and without modifications.

Table 3.1: Summary of dynamic response for spur and helical gears with and without
modifications. PCL: Partial contact loss, TCL: Total contact loss

Twist mode Mesh deflection mode

Spur Gears (Unmodified) Not excited ~ TCL

Spur Gears (Modified) Not excited ~ PCL and TCL
Helical Gears (Unmodified) PCL TCL
Helical Gears (Modified) PCL PCL and TCL
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3.4 Conclusions

This work uses a nonlinear three-dimensional gear mesh model, where portions of
contact lines may disengage although the teeth may not totally lose contact. This is
called partial contact loss. The resulting equations of motion intertwine the gear mesh
nonlinearity with three-dimensional gear body displacements. Dynamic response is
obtained by numerical integration of the nonlinear time-varying equations of motion
and by frequency domain analysis of the linearized time-invariant equations of motion.

An equivalent lumped-parameter representation of the gear mesh (a translational
mesh stiffness located at the center of stiffness and a spread-twist mesh stiffness) en-
capsulates the consequences of the intertwinement of the three-dimensional dynamic

gear displacements with the nonlinear gear mesh. There are two important modes:

1. The mesh deflection mode involves compression of the translational mesh stiff-
ness. The translational mesh stiffness and the spread-twist mesh stiffness both
dynamically decrease as a result of partial contact loss. This decrease is ob-
served when there are tooth surface modifications in both spur and helical gears.
Eventually at higher amplitude vibrations contact is completely lost. Without
modifications, however, there is only total contact loss. Dynamic partial con-
tact loss in this mode is shown to exist in experiments, so it is not merely a
theoretical find. Overall reduction of translational mesh stiffness decreases the

peak resonance frequency.

2. The mesh twist mode involves relative twist between gears. The time depen-
dence of the spread-twist stiffness and the center of stiffness excite this mode in

helical gears. Twisting and the consequent partial contact loss severely distorts
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the dynamic contact pattern and so the surface stresses. In the helical gears
analyzed, partial contact loss near the twist mode resonance dynamically de-
creases the coupling twist stiffness. That increases the peak response frequency.
This inverse relationship between the coupling-twist stiffness and response fre-
quency is shown in a two degree-of-freedom, which is the simplest system that

can reproduce the twist mode.
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Chapter 4: Nonlinear Vibration of Gears with Tooth Surface
Modifications and Sphere/Half-Space Contact

4.1 Introduction

Vibration of gear pairs can be considered under the general category of contact
vibrations, which also includes vibration of bearings, splines, linkages, and other me-
chanical connections. In gear applications, the involute tooth surface shape is usually
modified slightly to improve misalignment tolerance [17] and to avoid undesirable
edge or corner contact [63]. With or without such tooth modifications gear vibrations
exhibit softening nonlinearity [5,24,47,86,115,121] near resonance as a result of total
or partial contact loss. Partial contact loss is where portions of nominally contact-
ing surfaces lose contact (and other nominally non-contacting portions potentially
gain contact) as a result of dynamic motions, surface modification, or misalignment.
Modifications are the major source of partial contact loss [23]. Although gear systems
that exhibit total contact loss have been analyzed, only numerical solutions for the
vibration of gears that exhibit partial contact loss are available in the literature, for
example [3,6,9,26,56,121]. To that end, this work applies approximate methods that

yield analytical solutions for nonlinear gear contact vibrations.
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Vibration of other contacting systems involve softening nonlinearity, in particular
sphere/half-space contact vibration [73,91,94]. The approach and results in this work
apply to such problems, and sphere/half-space contact is examined herein. Research
on nonlinear sphere/half-space contact vibrations uses force-deflection relations from
the Hertz formula, which can be treated by perturbation methods or harmonic bal-
ance [75,106]. Hess and Soom [32] solve a single degree-of-freedom system with
quadratic and cubic nonlinearities excited by harmonic forcing. Perret-Liaudet and
Rigaud [89] analyze subharmonic resonances of sphere/half-space contact vibrations.
Harmonic balance and perturbation analysis both compare well with experimental
measurements [69,91,94].

The equations of motion for gear vibrations include time-dependent parameters
such as periodic variation in mesh stiffness. In many cases, lumped-parameter gear
models excited by static transmission error or time-varying mesh stiffness give satis-
factory results [26,30,57,81,82,86,101,118]. A single spring is used to model the gear
mesh interface in these works. Velex and Ajmi [118] examine the validity of approx-
imating transmission error as the excitation source. Liu and Parker [65] explore the
conditions under which the aforementioned approximations work.

Lumped-parameter gear models allow closed-form solutions using harmonic bal-
ance [11,44,49,83] and perturbation methods [50,72,105]. The sole source of nonlin-
earity in the works listed above is total contact loss, a piecewise nonlinearity in which
the gear mesh ceases to transmit any force. Gear tooth surface modifications are not
included in the aforementioned works.

The modeling in [65,67] for the dynamic response of multi-mesh gears differs from

the literature listed above because it considers tooth profile modifications and contact
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loss at each of the individual meshing gear teeth rather than the gear mesh as a whole.
In [65,67], such contact loss is due to linear tooth profile modifications, which is the
only type of modification they consider.

Detailed tooth contact models allow dynamic analysis for any type of tooth sur-
face modification [24,54,71,115,121]. Such models predict partial contact loss arising
from arbitrary tooth surface modification [3,9,24,90,121,122]. Contact algorithms
that allow for partial contact loss, however, are prohibitively complex for analytical
methods and nonlinear dynamic response can only be obtained numerically. Numer-
ical methods give only restricted generalizations about dynamic behavior because
they are limited to selected parametric studies. There are no studies in the literature
that provide analytical closed-form solutions for the nonlinear vibration of gears when
partial contact loss is present.

This work gives analytical closed-form solutions for nonlinear rotational gear vi-
brations near primary resonance, that is, when the excitation frequency is close to
the natural frequency. The solution includes the nonlinear behavior due to partial
contact loss and admits arbitrary modifications of the gear tooth surface. The use of
a general force-deflection function as an input means the dynamic equation of motion
does not depend on the physical gear modeling assumptions and can apply to other
contact problems. Sphere/half-space contact is the other physical system analyzed
in this work. Considering gears, the force-deflection function effectively captures the
phenomena of partial contact loss, parameter time-dependence, tooth surface mod-
ifications, changing number of teeth in contact, and so on. The sphere/half-space

contact vibrations approximate Hertz contact behavior. With Taylor and Fourier
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series expansions, the equation of motion takes a generalized polynomial form that

enables use of the method of multiple scales.

4.2 Mathematical Model

4.2.1 Equation of Motion

This section presents a single degree-of-freedom equation of motion in a form
suitable for perturbation analysis. The key assumption is that the force-deflection
function and the applied load vary periodically with time. No further assumptions
are made at this point to tailor the equation of motion to gears, sphere/half-space
contact, or any other system.

The equation of motion is
mi + ci + C(x,t) f(x,t) = F(t) (4.1)

where F'(t) is the periodic applied load with period Pg, f(x,t) is the nonlinear,
time-dependent, periodic force-deflection function with period Py, and C(z,t) is the

separation function given by

0 ifz<g(?)
C(z,t) = { 1 itz > glt) (4.2)
where ¢(t) is the unloaded (F'(t) = 0), quasi-static (¥ = & = 0) deflection. It satisfies

fg(t),t) = 0.

This single degree-of-freedom mechanical oscillator can approximate the rotational
vibration of gear pairs. In this case, the force-deflection function f(x,t) considers the
elastic tooth contact, tooth bending, shear, and so on. Because of the changing
number of teeth in contact, the force-deflection function is periodic with tooth pass

frequency. Equation (4.2) restricts contact loss to single-sided impacts. Elimination
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of the rigid body motion [55,81] lumps the rotational inertias of both the pinion
(I,) and gear (I,) into m = LI,/ (I,r2 + I;r2) in Eq. (4.1), where 7, and r, are the
pinion and gear base radii, and 6, and 6, are the rotational deflections of the pinion
and gear. In this case, the load is constant and F(t) = F' = T,/r, represents the
mesh force due to a constant applied torque 7. Losses from all sources are lumped
into the viscous damping coefficient c. With this formulation, z(t) = 6,r, + 0,7, is
the dynamic transmission error in Eq. (4.1), and z, = ¢(t) is the unloaded static
transmission error.

Sphere/half-space contact is the other physical system examined in this work. The
single degree-of-freedom nonlinear equation of motion from [89] models sphere/half-
space contact vibration experiments. Although periodic irregularities on bearing races
and railway tracks are physical examples of contact vibrations that result in time-
dependence in f(z,t) and ¢(t), with sphere/half-space contact vibration experiments
there are no surface irregularities, so f(z,t) = f(x) and ¢g(t) = 0. The periodic applied
force F(t) from a shaker excites the experimental system used as a benchmark for
the current analysis.

The force-deflection function f(z,t) is the crucial quantity in this work. For
a variety of systems, it can be obtained from experiments, finite element analysis,
and analytical contact models. In gears, it is routinely calculated from computa-
tional models and readily measured. The force-deflection function, independent of
the physical system in question and the method used to obtain it, can be represented

by a Taylor series around z,, up to the nth order by

n

(= 2m) =) Bi(t) (x — x) (4.3)

T=Tm 1=0

"1 O f(x,t)
flz,t) = T Aa
;z! ozr
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where x,, is the deflection induced by the mean applied load. Averaging the force-
deflection function and the applied force over their shortest common period P, x,, is

found from
P P
/ F(t) dt = / Flamt) dt (4.4)
0 0

The Fourier series expansion of B;(t) in Eq. (4.3) is

p
Bi(t) = Bio+ Y Bircos(rét — @;,), i=0,1,....n (4.5)

r=1

where & = 27/ Py is the frequency of f(x,t). The Fourier expansion of F'(¢) is

F(t)=Fy+ zp: F,.cos(r(t — R,) (4.6)

r=1

where ( = 27/ Pp is the frequency of F(t). Substitution of y = = —x,,, Eq. (4.5), and

Eq. (4.6) into Egs. (4.1) and (4.2) gives

n P p
mij+cg+Cly, )Y |Bio+ Y Biscos(rét — &;,) | y' = Fo+ > F,cos(r(t — R,)
=0 r=1 r=1
(4.7)
[0 ify < -z, +g(t)

Substitution of fyo = Fp, a result of Egs. (4.4) and (4.5), and (4.6) into Eq. (4.7)

eliminates the mean load Fj under contact, giving

n

mij+ ey + Cy, t) Y

1=1

—C(y, 1) Boscos(rét — o) — Fy [Cly,t) — 1]
r=1

p p
Bio+ > Bircos(rét — @,»] y'=>_ Frcos(r(t— R,)
r=1 r=1

(4.9)
so the mean load Fj acts only when contact is lost.
Fourier expansion of g(t) gives
p
g(t) =go + Zgr cos(rét — U, (4.10)

r=1
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The definition d = x,, — go and substitution of T" = w,t, w, = \/P10/m, and

y = ud give the non-dimensional forms of Eqgs. (4.8) and (4.9) as

n

u" 4+ 2pu’ + C(u,T) Z

i=1

p p
a0 + Z a;, cos (rQT — (bi,r)] u' = Z qr cos (rQpT — py)

r=1 r=1

p
—C(u,T) |ag cos QT + Z ap, cos (rQT — gbo,r)] — g [Cu, t) — 1]
r=2
(4.11)
p
0 ifu< -1+ Zer cos(rQT — 4y)
C(u,T) = ot (4.12)
1 ifu>-1+ Z e, cos(rQT — 1)
P=lL
where ()’ = d/dT, the non-dimensional quantities are
5 C c Fr ﬁz rdi_l gr
Qp = —=—,Qp = = = r = 07 i = — ) r— 7
T w T Wy 4 2mw,,’ p dB1o r#0), B0 ¢ d
(4.13)
and the phase angles relative to ®g; are (1 =0,1,...,nand r =0,1,...,p)
¢i,r - (I)i,r - (I)O,la Pr = Rr - (I>O,1a ,lvbr = \IIT’ - (I)O,l (414)

Considering sphere/half-space contact vibrations, the equation of motion from

Eq. (7) in [89] is

5 \3/2
é+2,uz'+(1+§z) =1+ kcos(t, if z> —3/2

Z42uz =14 kcos(t, if z < —3/2

(4.15)

This equation approximates the Hertz contact between a sphere and a half-space.
A constant dimensionless load of 1 from the weight of the sphere and a sinusoidal
excitation amplitude k from a shaker are applied to the sphere. The transformation

x =1+ 22z/3 converts Eq. (4.15) into the form of Eq. (4.1) as

2 2 2k
i+ 2ui + =2 =2+ ZcosCt, if £ >0
3 g 23k (4.16)
9'5—|—2u:b:§+§cos(’t, ifx <0
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where contact is lost when x < 0. Comparing this equation with Egs. (4.1) and (4.2),
m=1,c=2u, f(x,t) =2/32%2 and F(t) = 2/3 + 2k/3 cos (t. The mean deflection
is z,, = 1 using Eq. (4.4). g(t) = go = 0, and so d = 1. The natural frequency is
w, = 1. Use of Eq. (4.13) gives apo = 2/3, ano = 1/4, asp = —1/24, ¢ = 2k/3.
Damping p and frequency ¢ are unchanged by the transformation, and ®y; = p; = 0.
Following [69], the Taylor coefficients «; ¢ are modified slightly to match the boundary

condition at contact loss such that asg = 2/7 and a3 = —1/21.

4.2.2 Physical Interpretation

Meaning of Non-dimensional Parameters

The physical interpretation of the important non-dimensional parameters are

listed below and summarized in Table 4.1.

1. The mean load o, linear mean stiffness oy, and nonlinear stiffnesses «;
(i > 1) come from Taylor expansion of the force-deflection function by Eq. (4.3).
In gears, ag o represents the constant mesh force, a; o the linear mesh stiffness,
and a;o (¢ > 1) the stiffness nonlinearities that include partial contact loss,
nonlinear Hertz contact and others. In sphere/half-space contact experiments,
ap o represents the weight of the sphere and the assembly, ;¢ the linear stiffness
due to Hertz contact, and ;o (¢ > 1) the stiffness nonlinearity associated with

Hertz contact mechanics.

2. The excitation harmonics from the force-deflection function, a,,, the harmonics
of linear stiffness, a;,, the harmonics of stiffness nonlinearity a;, (i > 1) r >0

and associated phase angles ¢;, come from Fourier expansion of the Taylor
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coefficients B;(t) by Eq. (4.5). They exist in gears due to periodic engage-
ment /disengagement of the gear teeth. They do not occur in sphere/half-space
contact. The quantity ag, excites the dynamics. It is close to what is called the
“static transmission error excitation” for unmodified gears. The a4, represent
the periodic change in the linear mesh stiffness. The periodicity of the stiffness
nonlinearity, that is, changes in the strength of nonlinearity as the gear teeth

engage/disengage, is contained in ., (i > 1).

. The harmonics of the external excitation ¢, and associated phase angles p, come
from Fourier expansion of the applied force F(t) by Eq. (4.6). For gears, the
applied torque is constant, so ¢, = 0. In sphere/half-space contact experiments

q1 excites the system.

. The harmonics of the unloaded deflection e, and associated phase angles 1,
come from Fourier expansion of the unloaded deflection g(t) by Eq. (4.10). They
only exist in gears and represent the time-dependent unloaded transmission

error.

Partial Contact Loss

Partial contact loss occurs when portions of nominal gear contact lines lose contact

while the other parts are still in contact [23,24]. This contrasts with total contact

loss, where the gear mesh ceases to transmit any force. Gear vibrations and tooth

surface modifications cause partial contact loss. Partial contact loss depends heavily

on applied torque. The mesh stiffness of modified gears, which depends on the total

length of the contacting lines, changes with applied torque. Figure 4.1 demonstrates
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this dependence by comparing the dimensional mesh stiffness of unmodified and mod-
ified gears. The modified gears depend heavily on torque; the unmodified gears do
not. This dependence of stiffness on torque is a source of nonlinearity, and it results
from partial contact loss. As mentioned in the foregoing paragraph, the parameters
a;, and ¢;, for ¢+ > 1 incorporate partial contact loss, and any other nonlinearity
present in the force-deflection function, into the equation of motion. Static finite
element analysis at many points in a tooth mesh cycle is one effective way to com-
pute the force-deflection function considering partial contact loss and Hertz contact

nonlinearity. Commercial software can do this accurately.

Independence of Total Contact Loss from Applied Torque

The analysis to this point helps explain the observation in [8,12,65,67,86] that
increasing the applied torque does not reduce the contact loss near primary reso-
nance in unmodified gears, that is, if contact loss occurs at one torque it will occur
at any other torque. Figure 4.2 shows dimensional, mean-removed excitations from
an unmodified and a modified gear pair. The dimensional mean removed excitation
By(t) — Fy and the mean deflection z,, for unmodified gears are almost directly pro-
portional to the applied torque. The modified gears show no such proportionality.
The first harmonic of the non-dimensional excitation c; is the dominant driver of
vibrations near primary resonance. This quantity from the unmodified and modified
gear pairs is shown in Figure 4.3. Changing the applied torque does not change the
first harmonic of the excitation for the unmodified gear pair much, but it dramatically
changes this quantity for the modified gear pair. In other words, the first harmonic
of the excitation is sensitive to torque for modified gears, but insensitive to torque for

unmodified gears. Because the first harmonic of the non-dimensional excitation o1
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from unmodified gears is similar for any applied torque, the applied torque has no
effect upon the non-dimensional response or the presence of contact loss. This math-
ematical explanation translates into a physical explanation as follows. In unmodified
gears, a higher torque nearly linearly increases both: a) the excitation and so the
vibration amplitude, and b) the threshold of vibration amplitude needed to trigger

contact loss. As a result, the occurrence of contact loss remains independent of the

applied torque.

3'5X10 ' x 10

Stiffness B,(7) [N/m]
Stiffness B(7) [N/m]

0 0.5 1 0 0.5
Gear mesh period (7) Gear mesh period (7)
(a) (b)

Figure 4.1: Dimensional gear mesh stiffness at 50 N-m (dash-dot line), 150 N-m
(dashed line), and 250 N-m (solid line) using finite element analysis. a) Unmodified
spur gear pair from [46] (IC'R = 1.37). b) Modified spur gear pair from [47] (tip relief
starts at 22.2 deg).
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Figure 4.2: Dimensional mean-removed excitation levels from the gears in Figure 4.1
at 50 N-m (dash-dot line), 150 N-m (dashed line), and 250 N-m (solid line) using
finite element analysis. a) Unmodified spur gear pair. b) Modified spur gear pair.
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Figure 4.3: The first harmonic of non-dimensional excitation from the unmodified
and modified gears with varying applied torque. The gears are the same as in Figure
4.1.
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Table 4.1: Summary of non-dimensional parameters and their physical interpretation considering gear and sphere/half-

space contact vibrations.

Parameter Definition

Source in gears

Source in sphere/half-space contact

Mean applied load

Sphere weight

« . Constant mesh force
0.0 Acts only when contact is lost and constant load
Qo Harmonics of parametric excitation Periodic change in the
i . . . . Zero
r>0 from force-deflection function number of contacting teeth
. . Linearized gear mesh stiffness Linearized Hertz contact
Qa1 Linear mean stiffness ) . .
’ at the operating torque stiffness at the operating force
g Harmonics of linear Periodic change in the
' . . . Zero
r>0 time dependent stiffness number of contacting teeth
Q0 Nonlinear stiffness Part}al contact loss, Nonlinear Hertz contact
’ nonlinear Hertz contact, etc.
; Harmonics of time Periodic changes in partial contact
’ . . Zero
r>0 dependent nonlinear stiffness loss, Hertz contact, etc.
er Harmonics of unloaded deflection Fluctuating unloaded transmission error Zero
qr Harmonics of external excitation Pulsations in zafpphe.d torque Shaker
(not analyzed in this work)
d Mean deflection Mean loaded transmission error Mean loaded contact deflection
Parametric excitation Periodic change in the
Qy . . Zero
frequency of f(z,t) number of contacting teeth
Op External excitation Pulsations in applied torque Shaker

frequency of F'(t)

(not analyzed in this work)




4.3 Analysis Method

4.3.1 Dynamic Response Near Primary Resonance

This section presents approximate analytical solutions of Egs. (4.11) and (4.12)
near the primary resonance region using the method of multiple scales. To unify the
analysis, we consider that parametric and external excitations are both present and
their frequencies are equal and close to the natural frequency, Q@ = Qy = Qp ~ 1.
The reason for setting 2y = Qp is to keep the length of the closed-form solution
to a minimum because in gear vibrations periodic external torque excitation is not
modeled here, and in sphere/half-space contact vibrations parametric excitation does
not exist; thus there is no reason to consider 2y # Qp. Following [75] to expand u,

T, and the forcing frequency €2 near the primary resonance gives

uw(T, €) = uo(To, 11, To) + euq (1o, T, T3) + €2U2(To, T, T5)
(4.17)
T,=€¢T, Q=140c=1+¢0

The small parameter € is a detuning parameter such that the excitation frequency is

close to the natural frequency. The separation function in Eq. (4.12) is rewritten as
C =1+ H where
H(ut) = > +1 zp: (T — )| — & (4.18)
— _sen — , rl =) — = .
u, 5580 (U 2 €, COS 5
This allows p contact losses per period. Fourier expansion of H(u,t) is admissible
because, like u(t), it has period 27, giving
N
H =2+ A cos(rTy — 1) (4.19)
r=1
The quantities Ag and A, depend on u(t) and are not yet known. Arbitrarily many

harmonics can be used to represent the separation function H, but N must not be
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less than the number of contact losses per period, N > p. These steps turn contact
loss into a form manageable by the method of multiple scales [65,67,74,134].

The O(e) parameters are
Qp,1 = €Qp 1, Qg = €A, (30 = €30, 1 = €G1, U = €U, 0 = €0, Ay = ey (4-20)

These orderings reflect the assumption that the nonlinearities, forcing, and damping
are small. The mean value Ay of the separation function H is ordered by assuming
that the duration of contact loss is small compared to the period of vibration. Fur-
thermore, all harmonics are assumed one order smaller than the corresponding mean

values. This gives the O(e?) parameters as
Qg1 = 62@2,1, Al = €2A1, Ag = €2A2 (421)

We consider up to the third order polynomial approximation of the nonlinear
force-deflection function, that is, a;, ~ 0 for ¢« > 4, and the first harmonic of the
periodically varying force-deflection function, that is, a;, ~ 0 for r > 2. Parametric
instability due to the first harmonic of the linear stiffness variation o ; is possible, but
this needs to be treated separately. The third and higher harmonics of the separation
function (A, for r > 3) and excitations «y, and ¢, for » > 2 do not contribute to the
solution, so they are excluded from subsequent equations for brevity.

Substitution of Eq. (4.17) into Eq. (4.11) and combining like orders of € gives the

perturbation equations

Diug +ug =0 (4.22)

Dgul +u; = —2DOD1UO — OAKQ,()U% — &370ug — QﬂD()UO — A(] (U(] + 06070)
. . 4.23
_ % (6iTg +e—iTg) +% [6i(To—p1) +e—i(T0—p1)} ( )
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DSUQ + ug = —Qﬂ(Dl?L(] + Doul) - 2DOD1U1 - 2DOD2U0 - D%UO — 26&2,0UOU1

A 2 A 3\ A A 2
— (u1 + Q20U + 04370U0)A0 — 3a3,0u0u1

Y01l . A . (4.24)
. Oé(],; 0 (ezTo + e—zTo) . (a0,0 4_2”0> 1 [ez(To—ul) + e—Z(TO—Vl):|
Ay . . Ao U2 ¢ .
_ (OZ(],O _'_QUO) 2 [62(2T0—V2) + 6—2(2T0—1/2):| N OK2,21uO |:€Z<TO_¢2’1) + 6_Z(TO_¢2’1)]
0 : .
where D; = 3T The general solution of Eq. (4.22) is
ug = A(Ty, Ty)e'™ + A(Ty, Ty)e™ ™0 (4.25)

Substitution of Eq. (4.25) into the first order equation (4.23) yields secular terms that

must be eliminated for ug to be periodic, giving the condition

A

2iD1A + A |21+ Ag + 3ds0A2A| + %em . %ei(&Tl_pl) —0 (4.26)

Transforming to polar coordinates by setting A = %aew, g =061y —~, with a,y € R

gives the real and imaginary parts of Eq. (4.26) as
3

aDyy =ao — §GA0 — —d300° — 5540,1 cosy + 5@1 cos (v — p1)
: 8 (4.27)
. Qo1 . 1, .
Dia = —jia = == siny + 54 sin (v —p1)

First Order Perturbation

If the process is terminated at the first order perturbation, only Eq. (4.27) is
considered. The steady state solutions of Eq. (4.25) result from Dyja =0, D1y =0 in
Eq. (4.27). This gives, after use of Eq. (4.20), the frequency-amplitude relation cast

in terms of the original parameters independent of € as

1 3 1 1
a0 — 5alg = 2a500” = S0 €08y + 5q1cos (Y = p1) =0
. . (4.28)
—Ha = 500 siny + 30 sin (y — p1) =0
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These two equations can be combined by eliminating ~, giving

1 5 2 2. 12
pra® + <aa - §A0a - gas,oa?)) - 0714 L + 040,21Q1 cos p; =0 (4.29)

Many parameters (oo, @20, a1, P21, A1, Ag, 11, and 1) do not appear in Eq. (4.28)
and only contribute through the second order perturbation. After calculation of the
general solution of Eq. (4.23), the approximate solution is constructed from u =
up + euy + O(e?), giving

Oé37061,3

32

Oé27061,2

1
—cos(2Tp — 27) — 1|+

3 cos(3Th—37) — 00 +O(€%)

u=acos(Ty—)+

(4.30)

Second Order Perturbation

Proceeding to the second order perturbation, substitution of Eq. (4.30) into Eq. (4.24)
yields secular terms that need to be eliminated for u; to have a periodic solution, giv-

ing the condition

1 _ _
DA+ 2iDyA + 2Dy A — EO&;OAA + §d§70A3A2

+ A(] (%eiéﬂ - QAOZO’OOAKQ’O + 31421407370)
~ - .
+ Mei(JTl—W) + %64(&%—@,1) + & W(26Ta—v2) 4 AAd271€i(&T1_¢2’1) =0

2 2 5 ¢
(4.31)
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Substitution of D; A from Eq. (4.26) into Eq. (4.31) and use of the polar coordinates

a(Ty,T) and (11, T5) give the real and imaginary parts of Eq. (4.31) as

. . 3 1 3. . 1. .
aDyy = [%,1 CoOSY — COS(’Y - P1)] 3—2a3 oa + 40 - gAOOéo,l cos 7y + Z/wéo,l S 7y

1. . 1 .
— —f1gy sin(y — p1) — =ap 0l cos (11 —7)

4 2

1 3
— ZA%L cos (g — 27) — éag 1a? cos (Pg1 — )

1 3 . =« 1 15 5 4.
+ gAgCL — EO@,,()A()CL?) + 2,U a+ ﬁa Oé30 + CLO&Q 000, OAO + — 12 30&3’0

. . 9 1, 34 1
Dya = [Goqsiny — i sin(y — p1)] <3—2a3 00’ + 40') F SAO% 1siny — ZMOKO 1COS7Y

1. 2 A 1 A
Y 1M cos(y — p1) + g#as,oa?’ + 5040,0A1 sin (v — )
1. 1
+ 4A2asm (v — 27) + 8@2 1a?sin (®y1 — )
(4.32)

Steady-state vibration requires Dia = D1y = 0 in Eq. (4.27) and Dya = Dyy =0
in Eq. (4.32). Combination of the real and imaginary parts of Eqs. (4.27) and (4.32)
according to the reconstitution method [68,134], substitution of Dya = Dy = 0 into

Eq. (4.27) and Dya = Dyy = 0 into Eq. (4.32), and use of Egs. (4.20) and (4.21) in

102



that sequence give the frequency-amplitude relations

Ay 3asea®  apg oS -+ Q1 cos( )+ 1 <in 1 sin( )
aoc — —a — - — = — o siny — — 1 —
9 3 9 Y B Y= P 4/~L 0,1 8 4/Mh Y — pP1
3 1 3
+ [awg,1 cosy — g1 cos(y — p1)] 32043 0a® + 40 — ngozo,l cos Y

1 1 3
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(4.33)

from which a and v can be solved. The expressions outside of the brackets are the first
order perturbation solution, and the expressions inside the brackets are the second

order corrections.

Separation

The quantities A, and v, in Eq. (4.19) are found using the separation instants
T;. These separation instants are solved by substitution of u from Eq. (4.30) into
Eq. (4.18) for H = —1 (i.e., C = 0). For arbitrarily many contact losses per period
p, the solutions T;, « = 1,...,2p 4+ 1, mark the instants when contact is lost or re-
established. Let H; denote whether there is contact (H; = 0) or not (H; = —1) when
T; < T < T;y1. The Fourier coefficients and phase angles of the separation function

H in Eq. (4.19) are then

Ag=o-> (T = T) H; (4.34)



Ap= A2, + A2 v=tan (A, Avy), r=1,...,N (4.35)

2p
1
A, =— inrl; 4 —sinrl;)H;, r=1,...,N 4.36
7 Tw;(smr 41 — sinrTy) r ( )
1 &
Ay = - ; (cosrTiry —cosrTy) Hyy r=1,....N (4.37)

The perturbation solution considers a maximum of N = 2 because harmonics of H
higher than the second, i.e., A, for r > 2 in Eq. (4.19), do not yield secular terms.
This limits contact loss to twice-per-period because N > p. Even when the contact
loss is limited to twice-per-period, finding the separation instants T; requires solving
Eq. (4.18) for p = 2. Finding a closed-form solution is not feasible unless: a) contact
loss occurs once per period (p = 1), and b) the mean change in solution u due to
contact loss does not affect when contact loss starts and ends (ag oA = 0). Adopting

these assumptions gives the closed-form expressions

2
Ag=—-1+ z, A, = —sinrr
m rm (4.38)
v, = rtan~! (—asiny + ey sinty, acosy —e;cosiby), r = 1,2
—1 2
T =cos ! 0200/ (4.39)

\/(a cosy — e1 cosy)” + (asiny — e; sinepy)”

The numerical solution for Ay, A,, and v, using Eqgs. (4.34) and (4.35) is computa-
tionally demanding. To save computation when analyzing a system with the second
order perturbation solution Eq. (4.33), we use a coarse frequency resolution across
the frequency range of interest to confirm that contact loss occurs once per period
using numerical solutions of Eqs. (4.34) and (4.35). Once confirmed the analytical ex-

pressions in Egs. (4.38) and (4.39) are used. The analytical expressions in Eqs. (4.38)
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and (4.39) and numerical solution of Egs. (4.34) and (4.35) give almost identical re-
sults for the cases analyzed in this work, so the presented results use the analytical
expressions.

The vibration amplitude and frequency at the onset of total contact loss can be
found from the foregoing analytical solution. Just before the onset of total contact
loss, the mean value of the separation function and its harmonics are zero and Ay =
A, =0 in Eq. (4.38). This gives 7 = m. Substitution of 7 = 7 into Eq. (4.39) gives
the amplitude at the onset of total contact loss as

dey cos(y — 1) — 2090 & 2\/6%045,0 + 4 — de?sin®(y — 1) — deragg cos(y — Yy)
a =

4 e OZ%’O
(4.40)

Substitution of a from Eq. (4.40) and Ag = A, = 0 into (4.33) gives the frequency
o and the phase 7 at the onset of total contact loss. The closed-form solution is
lengthy using the second order perturbation solution, but a compact expression can
be obtained using the first order perturbation solution. The first order does not
consider quadratic nonlinearity and unloaded fluctuations (they do not yield secular
terms), so azg = e; = 0. Subsequently, Eq. (4.40) reveals that a = 1 initiates
total contact loss. Substitution of @ = 1 and Ay = 0 into Eq. (4.29) gives the two

frequencies where total contact loss starts as

a2+ ¢ 3
o= i\/%ql - % cos p1 + 00 (4.41)

Key Points from the Analytical Solution

1. The first order perturbation gives the frequency amplitude relation by Eq. (4.29).
It considers only the cubic nonlinearity s and the mean reduction of stiffness
due to total contact loss A.
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2. The second order perturbation solution gives the frequency amplitude relation
by Eq. (4.33). It considers quadratic nonlinearities (ag g, aa1, ¢21), and cubic
nonlinearity (aso). The mean value of the separation (Ag) and its first two
harmonics (A1, Ag) with associated phase angles (v, 15) contribute. In gears
and sphere/half-space contact alike, these quantities account for total contact

loss.

3. The mean value (Ay) and the first two harmonics (A, Ay) of the separation
function and their phase angles (v, 1) are found from the perturbation equa-
tions numerically from Egs. (4.34) and (4.35) or analytically from Eqs. (4.38),
(4.39) when contact loss is limited to once per period (p = 1). Both harmonics

are crucial for an accurate response as the upcoming results will show.

4. When the expression inside cos™' in Eq. (4.39) is not in the range [—1,1],
total contact loss does not occur. The amplitude and frequency at onset of
contact loss is analytically given by Eq. (4.41) from the first order perturbation.
The second order approximation of the amplitude at onset of contact loss is
found from Eq. (4.40) and the frequencies can be solved by substitution of that

amplitude into Eq. (4.33).
4.3.2 Stability

The amplitude and phase evaluation Eqs. (4.27) and (4.32) linearized about a

stationary point (a, ) yields the matrix form

#(:)-(2)

106



where the matrix J denotes the Jacobian. The solution is unstable if any eigenvalues
of J have a positive real part. The algebraic expression for J is prohibitively long and
provides no practical insight. For these reasons, the stability is found numerically

from the Jacobian matrix J at the stationary points.

4.4 Results

In this section, dynamic response of the equation of motion Eq. (4.11) obtained
using the perturbation solution in Eq. (4.30) is compared with sphere/half-space
contact and gear vibration experiments from the literature, numerical integration, and
the linearized solution. The first order perturbation solution is found from Eq. (4.29),
and the second order perturbation solution is found from Eq. (4.33).

4.4.1 Key Regions in Dynamic Response and Comparison
with Numerical Solution

Independent of the physical system analyzed, there are four possible distinct re-
gions in the nonlinear response. These regions are common to both gear vibrations
and sphere/half-space contact vibrations. To investigate the characteristics of these
four regions, time domain numerical integration and the second order perturbation
solution of an example system is shown in Figure 4.4. The linear time-invariant so-
lution (only linear stiffness and external excitation exist, oy o, o1 7 0) is plotted to
provide a comparison: Region 1: The linear and nonlinear solutions give almost
identical responses. The response is relatively small. There is no contact loss, and
nonlinear terms negligibly affect the response.

Region 2: The nonlinear solution deviates significantly from the linear solution

as the vibration amplitude grows. This region does not exist, i.e., becomes identical
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Figure 4.4: Dynamic response of equation of motion (4.11)-(4.12) using second order
perturbation and numerical integration. Parameters are: ag; = 2/75, g = 2/3,
azg = 1/4, azg = —1/24, e, = 0.1, Yy = 0, az; = 0, g = 0.0082. Important
regions of solutions are marked with 1) through 4). (Stable perturbation solution:
solid line, unstable perturbation solution: dashed line, numerical integration: circles,
linear solution: dash-dot line).

to region 1, if a9 = 0 and a3 = 0. Although the contact is maintained, this region
represents partial contact loss in physical systems, where the nonlinearities are due
to a reduction in instantaneous dynamic stiffness. The nonlinear terms as g, s, and
the time-dependence ay 1, ¢2; dominate the response.

Region 3: Total contact loss, manifest from the kink in the response at {2 = 0.97,
starts in this region. Here C' = 0. The vibration amplitude a and the frequency of
excitation € at which total contact loss starts is given by Eq. (4.40). It depends
on the quadratic nonlinearity, the fluctuation in the unloaded deflection e;, and the

relative phase angle v — 1.
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Region 4: Total contact loss occurs. The solution is dominated by the mean
reduction in stiffness Ay due to separation, the first two harmonics of the separation
function Ay, Ao, their phase angles vy, 15, and the mean load og. The agreement
between the numerical and perturbation solution is excellent, justifying the assump-
tions in the perturbation solution. The nonlinearities are stronger if the periods of
separation become long, which would degrade the agreement somewhat as shown

in [8] for a simpler tooth mesh contact model in planetary gears.
4.4.2 Sphere/Half-Space Contact Vibrations

The sphere/half-space contact vibration experiments, given in Figure 5(a) of [69],
are compared with the first and second order perturbation solutions in Figure 4.5.
The experimental measurements and the second order perturbation solution agree
closely, even for strong nonlinearity.

The response around 2 ~ 1 in Figure 4.5 corresponds to region 2 as described in
Figure 4.4. The second order perturbation does well, but the first order perturbation
is not accurate in this region. This is because the first order perturbation only includes
the cubic nonlinear term (as), but both the quadratic (ag) and cubic (as) terms
contribute to nonlinear response. When either of the ayy or ag terms are set to
zero, the second order perturbation solution becomes inaccurate.

The response when 0.73 < 2 < 0.95 in Figure 4.5 corresponds to region 4 as
described in Figure 4.4. The second order perturbation solution agrees well with the
experiment. The slight deviation toward the peak is attributed to the nonlinearity
getting stronger. The first order perturbation solution does poorly in this region.

It includes only Ay, whereas the second order perturbation solution includes several
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parameters related to contact loss (ag o, Ag, Ay, Ag, v, and 15). When each one of
these parameters is individually set to zero in the second order perturbation solution,
the response becomes inaccurate. This confirms that ago, Ay, As, v1, and v,, which
only the second order perturbation can consider, are necessary for obtaining accurate

response in the contact loss region.
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Figure 4.5: Peak-to-peak acceleration Z of sphere-plane contact using first and second
order perturbation, experiment, and linearized model. Experimental measurements
are from Figure 5(a) of [69]. Non-dimensional parameters are ¢, = 0.08/3, ago = 2/3,
asg = 2/7, agp = —1/21, p = 0.008. (First order perturbation: dash-dot line,
second order perturbation: solid line(stable), dashed line (unstable), experimental
measurements: squares (speed-down), diamonds (speed-up)).
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4.4.3 Gear Vibrations

Computational Results

Computational dynamic response of a helical gear pair is obtained using the con-
tact algorithm in [23,24]. That model has been successfully compared against exper-
iments and a specialized finite element/contact mechanics model of gear dynamics.
Some elastic behaviors, such as corner contact, radius of curvature effects, buttressing
effects,and the coupling between the deflections of adjacent teeth, are neglected in
this contact algorithm.

The gear parameters are given in Tables 2.1 and 2.2. The non-dimensional pa-
rameters are given in Table 4.2.

The dynamic response of the helical gear pair with profile and lead modifications
and the force-deflection function shown in Figure 4.6 is plotted in Figure 4.7. The
computational dynamic response and perturbation solution agree throughout most
of the operating frequencies. There is a clear difference between the linear and the
nonlinear response. Region 2 of Figure 4.4 identifies this type of response. Physi-
cally, this difference is attributed to partial contact loss, where some portions of the
nominal contact lines separate while the gear mesh as a whole is still engaged. The
perturbation solution predicts the nonlinear dynamics arising from partial contact
loss.

The investigation of practical gear vibration raises the question of whether all the
nonlinear terms (agp, 30, 21, gz5271) are necessary to obtain an accurate response
or not. The importance of these terms are assessed by investigating the perturbation

solution when these are set to zero one at a time, as shown in Figure 4.8. The
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response becomes inaccurate when any one of them is set to zero; all nonlinear terms

are necessary to obtain an accurate response

20

Deflection for 780 N-m

15—

o

0 T/4 T/2 3T/4 T
Gear mesh period)(

Transmission Erronm]

0

Figure 4.6: Force-deflection function f(x,t) of a helical gear pair obtained by the
method of Chapter 2. Tooth surface modifications are: quadratic profile tip and root
crown of 10 pum and lead crown of 10 um on the gear.

Experimental Results

In this section, experimental measurements of rotational vibration of unity ratio
gear pairs with profile and lead modifications [47] are compared with the second order
perturbation solution. The experimental measurements are available for various tip
relief starting roll angles and for different applied torques. The gears in this test rig
are sufficiently isolated from the vibrations of the supporting structure to justify use
of a single degree-of-freedom oscillator to model the dynamics [11].

The force-deflection function would ideally come from the experimental setup by

slowly rotating the gears through a mesh period and measuring transmission error
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Figure 4.7: Primary resonance of a helical gear pair at 200 N-m using second or-
der perturbation, numerical integration, and the linearized model. The numerical
integration results are obtained using the method of Chapter 3. (Stable perturba-
tion solution: solid line, computational data by numerical integration: circles, linear
solution: dash-dot line).

at various applied torques. Because these data are not given, the force-deflection
function is obtained from finite element analysis [124] of the gears. When the tip
relief starts at roll angle 20.9 deg, the force-deflection function calculated by finite
element analysis is shown in Figure 4.9 for various torques. Even if the finite element
analysis could precisely replicate the elastic behavior of the experimental setup, the
crucial gear tooth profile and lead modifications are specified within a manufacturing
tolerance (3 pwm). These errors can cause a mismatch between the experimental data
and perturbation solution. To provide a visual sense of such errors that are not
associated with the analysis methods of this work, the precision of the experiments
(£1 pm reported in a closely related study [46]) are added to the experimental results

in the form of error bars in the upcoming figures.
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Figure 4.8: Perturbation solution when aw g, aso, ag1, and ¢ are set to zero one
at a time are shown. The non-zero parameters are the same as in Figure 4.7. The
circles denote numerical integration with no non-zero parameters.

The experimental measurements and the second order perturbation solution for
three gear pairs are compared in Figure 4.10 (where the applied torque is 85 N-m and
the 10 pum profile modification starts at 20.9 deg), Figure 4.11 (where the applied
torque is 170 N-m and the 10 pum profile modification starts at 20.9 deg), and Figure
4.12 (where the applied torque is 170 N-m and the profile 10 gm modification starts
at 23.6 deg). Table 4.2 lists the non-dimensional parameters used in these analysis.
All gears have 5 um lead crown modification.

The perturbation solutions agree accurately with the experimental results in all
three cases. The onset of total contact loss is manifest by the kinks in the perturbation
solution curves. Even in regions without total contact loss the linear response differs
from the experimental measurements and perturbation solutions. Region 2 of Figure

4.4 characterizes this type of response. The difference is attributed to partial contact
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loss, occurs due to the profile and lead modifications. The good agreement provides
experimental evidence that the perturbation solution predicts the nonlinear dynamic

response due to partial contact loss.
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Figure 4.9: Force-deflection function f(z,t) obtained by finite element analysis of a
spur gear pair with increasing applied torque. Gear data from [47], linear tip relief of
10 pum starts at 20.9 deg.

115



Transmission erroipm]

O n n n n
0.7 0.8 0.9 1 1.1 1.2
Non-dimensional frequency

Figure 4.10: Primary resonance of a spur gear pair (tip relief start at 20.9 deg) at
85 N-m using second order perturbation and linearized model. Experimental data
are from Figure 3(c) of [47]. (Stable second order perturbation: solid line, unstable
second order perturbation solution: dashed line, experimental measurement: circles,
linear solution: dash-dot line).

14

Transmission erroipm]

0 L L L L
0.85 0.9 0.95 1 1.05 1.1
Non-dimensional frequendy

Figure 4.11: Primary resonance of a spur gear pair (tip relief start at 20.9 deg) at
170 N-m using second order perturbation and linearized model. Experimental data
are from Figure 3(b) of [47]. (Stable second order perturbation: solid line, unstable
second order perturbation solution: dashed line, experimental measurement: circles,
linear solution: dash-dot line).
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Figure 4.12: Primary resonance of a spur gear pair (tip relief start at 23.6 deg) at
170 N-m using second order perturbation and linearized model. Experimental data
are from Figure 3(b) of [47]. (Stable perturbation solution: solid line, unstable per-

turbation solution: dashed line, experimental measurement: circles, linear solution:
dash-dot line).

Table 4.2: Parameters of the analyzed gears in Figures 4.7 through 4.12.
Figure 4.7 Figure 4.10 Figure 4.11 Figure 4.12

0.0 0.727 0.727 0.716 0.714
g 0.069 0.181 0.061 0.058
Qg 0.209 0.213 0.197 0.202
Qo 0.313 0.212 0.118 0.069
a0 -0.037 -0.034 -0.074 -0.074
¢oq [rad]  -2.801 -3.203 -3.228 -0.230
e 0.167 0.302 0.185 0.038
¥y [rad]  -3.293 -3.124 -3.124 0.037
1 0.030 0.050 0.016 0.028
d [pm] 4.350 5.516 9.005 9.201
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4.5 Conclusions

This work derives approximate, closed-form analytical solutions for the nonlinear

vibration of gear pairs with arbitrary tooth surface modifications. It applies equally

to other contact problems described by a specified nonlinear, periodic force-deflection

curve. To demonstrate this sphere/half-space contact vibrations are analyzed and

compared to experiments. The method of multiple scales provides the analytical

perturbation solutions in the primary resonance region.

|

IT

IT1

The dynamic excitation in gear pairs is mathematically shown to come from the
periodicity of the force-deflection function. This periodicity is due to engage-
ment/disengagement of the gear teeth resulting in linear and quadratic mesh

stiffness fluctuations that drive the gear vibration.

The presence of total contact loss in unmodified gears is shown to be independent
of applied torque. The reason is this: as the vibration amplitude increases with
larger torques, so does the threshold of vibrations needed to trigger total contact

loss. This is not true for modified gears.

The method of multiple scales gives the approximate, closed-form analytical so-
lutions. Comparisons with gear vibration experiments, sphere/half-space contact
vibration experiments, and numerical integration verify the analytical solution.
The second order perturbation solution is significantly more accurate than the
first order perturbation solution, indicating the nonlinearity is strong in the phys-

ical experiments.
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IV Key regions in the nonlinear response common to both gear and sphere/half-

space contact vibrations are:

1 Linear region: Vibration amplitude is relatively low, and the system behaves

linearly.

2 Partial contact loss region: The mean stiffness drops due to dynamic displace-
ments but contact is maintained. Partial contact loss in gears occurs when
parts of nominal contact lines lose contact although the gear teeth remain
engaged. It is most prominent in systems with tooth surface modifications.
Quadratic and cubic nonlinearities capture the partial contact loss nonlinearity
in modified gears and yield nonlinear dynamic response. In sphere/half-space
contact, the dependence of the size of the contact area on dynamic contact

load yields this type of nonlinearity.

3 Onset of total contact loss region: Vibrations reach the threshold to cause

total contact loss.

4 Total contact loss region: The contact separates fully and the mean load brings
the system back into contact. Total contact loss in gears occurs when the gear
teeth disengage completely. It is captured by the mean reduction in mesh
stiffness and its two harmonics. The amplitude and the frequency at the onset

of total contact loss is analytically given and is consistent with experiments.
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Chapter 5: Modal Properties of Three-Dimensional Helical

Planetary Gears

5.1 Introduction

Knowledge of the modal properties of planetary gears is crucial for developing
strategies to reduce vibration. Planetary gear dynamic models are developed in |7,
15,19,97]. Lin and Parker show that two-dimensional, spur planetary gears with
equally spaced [58] and diametrically opposed [60] planets possess well-defined modal
properties. They report all vibration modes belong to one of three categories: 1)
Rotational modes where the central members (sun, carrier, and ring) rotate but do not
translate. The planet motions are identical. 2) Translational modes with degenerate
natural frequencies, where the central members translate but do not rotate. There are
well-defined relations between the two independent vibration modes at each natural
frequency. 3) Planet modes where only the planets move, and their motions are scalar
multiples of the arbitrarily chosen first planet’s motion. Kiracofe and Parker [52]
prove that a similar categorization applies to compound planetary gears. Wu and
Parker [133] prove the modal properties of spur planetary gears having elastically

deformable ring gears.
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These vibration mode characteristics are crucial in vibration suppression strate-
gies using mesh phasing [62,95,97] and eigensensitivity analysis [29,59] of planetary
gears. Schlegel and Mard [95], Seager [97], and Hidaka et al. [33] assert that the vi-
bration of planetary gears is reduced by proper gear mesh phasing. Hidaka et al. [33]
experimentally and Kahraman [40] computationally investigate the effectiveness of vi-
bration suppression by planet mesh phasing. Kahraman [40] uses a three-dimensional
lumped-parameter model for computations. Blankenship and Kahraman [43] illus-
trate how some harmonics of the transmission error excitation vanish by adjusting
the mesh phasing. Based on the well-defined modal properties of planetary gears,
Parker [84] explains how proper mesh phasing suppresses many resonances of trans-
lational and rotational modes from certain harmonics of mesh frequency. Ambarisha
and Parker [4] explain the vibration suppression of planet modes from mesh phasing.

Finite element analysis is incorporated with elaborate gear contact analysis in [1,
5,8,85,93] to capture the complex dynamic behavior of planetary gears. These studies
enable computationally efficient analysis of complex planetary gears and survey the
effects of design parameters on dynamic behavior.

Although the vibration modes of two-dimensional planetary gears have been stud-
ied, it remains to be seen what the vibration mode characteristics are for helical
planetary gears with three-dimensional motion, a three-dimensional gear mesh inter-
face, and the gear-shaft bodies supported by bearings at arbitrary locations along
the shafts. A lumped parameter model is formulated to include the tilting and axial
motions, thus including all six degrees of freedom for each gear-shaft body. A tilting
mesh stiffness augments the gear mesh interface to produce the three-dimensional

force and moment transmission.
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This study proves that helical planetary gears with equally spaced planets have
exactly three types of vibration modes. Unique properties of these vibration modes
are given. Compared to two-dimensional spur gear models there are twice as many
natural modes, and their properties are different. The modal properties hold for
configurations that are asymmetric about the gear plane, such as when the bearings

are not equidistant from the gears.

5.2 Planetary Gear Analytical Model

The planetary gear model consists of three central members (the sun, ring, and
carrier) and p planets. The gears and the carrier are integrated with their supporting
shafts, so that each gear-shaft is a single body. These combined gear-shaft bodies
are each mounted on up to two bearings placed at arbitrary axial locations. The
sun, ring, and carrier bearings are connected to ground while the planet bearings are
connected to the carrier. The gear-shaft bodies and carrier are rigid; the compliant
elements are the meshing gear teeth and bearings. Figures 5.1(a) and (b) depict the
model with the parameters defining the system geometry. The vibration amplitudes
are small, so geometric nonlinearities are neglected.

The indexing conventions b = s,r,¢,1,...,p for the sun, ring, carrier, and the
planets, h = s,r, ¢ for the sun, ring, and carrier, and ¢ = 1,2,...,p for the planets
are maintained throughout this work. There are 2p gear meshes. Odd numbers are
assigned to the sun-planet meshes, and even numbers are assigned to the ring-planet
meshes.

The origin is at the undeflected position of the center of the sun. A right handed,

orthonormal basis {E} = {Eq, Ey, E3} rotates with the constant carrier angular speed
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Figure 5.1: Coordinates and dimensions used in the planetary gear model.

Eé axis

Dy Eé axis
1

Tooth surface ~ (Tilting axis)

Figure 5.2: Tooth surface normal and the tilting axis for the ith sun-planet mesh.
The tth planet gear is shown. 1 is the base helix angle, and ®,, is the transverse

operating pressure angle.
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Q.. For the central members, translational coordinates x, yn, 2, are assigned to
translations along E;, E,, and Es, respectively. Similarly, angular coordinates ¢y, 05,
B are assigned to small rotations about E;, Ey, and Eg, respectively. Translational
coordinates for the planets z;, y;, z; are measured from the undeflected position of the
centers of the planets in the bases {E'} = {E! E} E.} that rotate with the carrier
angular speed. The base vector E is parallel to the line of action of the ith sun-planet
mesh because this selection algebraically simplifies the sun-planet mesh deflections.
Angular coordinates ¢;, 6;, 3; for the planets are assigned to rotations about Ei,
Ei, and E{, respectively. Body fixed bases for all the bodies {€’} = {e}, e}, e’}
are adopted because the gear mesh deflection expressions are algebraically simpler in
these bases.

Axial position quantities in Fig. 5.1(a) are measured from the datum position,
which is at the center of the minimum active facewidth F' and denoted by the dashed
line. Any inactive facewidth is considered as part of the shaft. This setup allows
arbitrary axial positioning of gears with different facewidths. Positive planet position
angle «; is measured counter-clockwise from the arbitrarily chosen first planet.

Two linear springs, one translational and one tilting, model the gear mesh inter-
face. The translational stiffness (k;) accounts for the transmitted force through the
gear mesh. Its associated relative translational deflection (9;) is in the direction of the
tooth surface normal. The tilting stiffness (k;) accounts for the moment transmitted
through the gear mesh. Its associated angular deflection is about an axis that is in
the gear plane and perpendicular to both the line of action E¢ and the tooth surface
normal. Figure 5.2 shows the line of action E}, the tooth surface normal, and the

tilting axis EY for the ith sun-planet mesh. These two deflections are calculated at a
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specified point along the facewidth, called the center of stiffness. The axial position
of the center of stiffness is ¢;. The translational stiffness, tilting stiffness, and center
of stiffness can be reduced from gear tooth contact models, such as [121], averaged
over a mesh cycle.

The equations of motion come from Lagrange’s equations for unconstrained gen-

eralized coordinates. The kinetic and potential energies are

N
1
T = 5 Z (wngwb + I";;Fmbi'b),
b=1
1
V=33 (a4 Kasdas+db Kupdss) (5.1)
P
1 N 1 2p
+ 3 Z (CQbXA,bCA,b + Cg,bXB,bCB,b) + 3 Z (kjégz' + ’fjﬁ),
b=1 =1

where N = p + 3 is the number of bodies, w;, is the angular velocity, m, is the mass,
Jp is the inertia tensor, Iy, is the velocity vector, d4; is the translational bearing
deflection vector, ¢, is the angular bearing deflection vector, K4 is the bearing
stiffness matrix for translation, and x4, is the bearing stiffness matrix for rotation.
The translational gear mesh deflection is ¢;; the angular (tilting) gear mesh deflection
is 7;; the translational gear mesh stiffness is k;; and, the tilting gear mesh stiffness is
Kj.

The angular velocity of the bth body in its corotational basis {e’} is
wp = [% — b (517 + Qb)} el + [éb + o (ﬁb + Qb)} e} + [51» + € — ¢b9b] e, (5.2)

where €, is the constant kinematic rotation speed. The inertia tensor for each body
in its principal axes is J, = diag [JF, J/, JZ] with constant components. All gears are

axisymmetric, so JJ = JF. The velocity vectors of the central members and planets
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are

Iy = [T — Qeyn] By + [Jn + Qezn) B2 + £4,E3, h=s,7,¢, (5.3)
P = (i — Qe (i — s — 1) BY + [0 + Qe (2 + tan @ (1 + 1)) Eb + 2L
(5.4)
1=1,2,...,p,
where ®,, and ®,,, are the sun-planet and ring-planet transverse operating pressure

angles.

The bearings are attached to the points A, and B;, on the left and right sides
of the bth body, respectively. The bearing deflection vectors for central members at
points Ay, and By, (h = s,r,¢) are

dap = [zn — (en + L3) 0] Ev + [(en + L7) &1 + yn) Eo + 2, Es, (5.5)
dps, = [zn — (en — LY) 0] E1 + [(en — L7) &1 + yn] E2 + 2,E3, (5.6)
where e, L7, and LP are the axial positions of the mass centers, bearings A, and
bearings B, of the central members. Positive values of ¢, and Lg‘ are measured from
the datum along Es3, and positive values of L? are measured from the datum along
—E;. This sign convention is chosen so that for positive L{! and L? the gears are
in between the bearings. The bearing deflection vector for the planets is the relative
position between the point that is on the carrier and the point that is on the planet
shaft. The bearing deflection vectors for the planets at points A; and B; are
da, = { — [ye + dcles + L;‘)} sin oy + [6c(es + L?) — ] cos a;
— Be(rp +1s) + 2 — O;(ep + L;‘)}Ei
+ { [ze — 0c(es + L] sinoy — [ye + de(es + L] cos oy
(5.7)
— Bulry + 73) tan @y + s + diley + L) } B
+ { [—e(rs + 1)) tan @y, + 0.(rs + 1,)] sin
+ [0c(rs +1p) tan Dy + ¢o(rs +1p)] cos oy + 2 — zc}Eé,
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dp; = { — [ye + ¢ees — LE)] sina; + [0.(es — L) — x| cos oy
— Be(rp +1s) +x; — b;(e, — Lf)}E’i
+ { [xc —0.(es — Lf)] sin o; — [yc + ¢cles — Lf)] COS Qi
(5.8)
— Belrp + 1) tan @y, + i + die, — Lf)}E’é
+ { [—¢e(rs +1p) tan @, + O.(15 + 1)) sin oy
+ [0c(rs + 1) tan gy, + Ge (15 + 7p)] cOS Qs + 25 — Zc}Eé.
The angular bearing deflection vector is the relative angular displacements of the
connected bodies. The angular bearing deflection vectors for the central members

and planets at points A;, and A; are

Cap = OnE1 + 0, Es + BLE;3, (5.9)

Cai = [P — Ocsin o — P cos a] E} + [0; — 0, cosa; + ¢, sin o] B
| (5.10)

The angular bearing deflection vectors at points B, and B; are identical to Egs. (5.9)
and (5.10) for rigid shafts.

The bearings are isotropic in the E; — E, plane. There is no coupling be-
tween different directions. For all bodies the bearing stiffness matrix for transla-
tion is Ka, = diag [kg', k', k{*?], and the bearing stiffness matrix for rotation is
X = diag [/if, ki, mg‘ﬂ, where the equality of stiffness in the two in-plane trans-
lation directions is evident (and similarly for rotation). These stiffness components
are in the {E} basis for the central members and in the {E‘} basis for each of the
planets.

The translational gear mesh deflection ¢; is the relative compressive deflection at

the center of stiffness in the direction normal to the tooth surface. The translational
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gear mesh deflection for the sun-planet meshes (j = 1,3,5,...,2p — 1) is
d; = {[(es — ¢j)ps + ys] cos Y + 14 [0s — ¢ tan O] sin ¢} sin a;
+ {[zs — (€5 — ¢j)0s] cos Y + 1, [¢ps + 05 tan Oy, sin } cos oy
(5.11)
+ [(ep — ¢)0; + 150s + 103 — x;] cos Y
+ [z — zs + 1 (¢ + 0 tan O] sin,
where 1 is the base helix angle, and the center of stiffness for a gear mesh in the axial
direction measured from the datum is ¢;. For the ring-planet meshes (j = 2,4, ..., 2p)
the translational gear mesh deflection is
d; = A{r. [(¢r — 0, tan ;) sin(Py, + ;) — (0, + ¢, tan ;) cos(Py, + ;)] sin
T 1((er = ¢5) 0 = 2,) Sin(@ + D) + ((€r — ¢5) By + yy) c08(®y, + D) cos ¥ sin e
—{r. [(6, + ¢, tan ®,,) sin(P,, + D,;,) + (¢ — 6, tan ;) cos(Py, + ;)] sin g
+[((er — ¢j) &r + yr) sin(Dyp + D,) + ((¢; — €) 0, + x,.) cOS( Py, + Pyp)] cOS Y} COS 4

+{r, [(¢; — O tan D,.,) cos (P + Pyp) + (P tan @y, + 6;) sin (P, + )] + 2 — 2;} sin e

+{[(e, — ¢;) 0; — z;] cos (Psp + Dyp) + [(¢; — €p) &3 — yi] sin (P, + P,p) — 7,0;} cOS .
(5.12)

The angular gear mesh deflection «; for the sun-planet and ring-planet meshes is

v; = ¢ssiney —Oscosa; +0;, j=1,3,5...,2p—1, (5.13)
v; = — [¢r cos (Pgp + D) + O, sin (P, + D) sin oy
— ¢y sin (@gp + ;) — 6, cos (D + D) cOS 5 (5.14)

+ ¢isin (P + @) — 05 cos (P + Dyp) . J=2,4,...,2p.

Lagrange’s equations of motion are obtained following substitution of Egs. (5.2)

through (5.14) into the energy expressions in Eq. (5.1). In matrix form they are

Mg + Q.Gg+ (K — Q2C) q = Qc+f, (5.15)
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q= (q87q7‘7q07q17"’7qp>7

(5.16)
qpy = (¢b>9baﬁbyxb>ybazb)a b:S,T,C,l,...,p.
The diagonal inertia matrix M is
M = diag(M;,M,, M., My, ..., M;,....M,), (5.17)

where an individual block is M, = diag(J?, JF, J§, my, my, my,). Only certain blocks of
the stiffness matrix K are populated due to the geometric configuration of planetary

gears. The 6N x 6N matrix has the form

[ K, 0 0 K., K.» ... K,

Kr 0 Kr,l Kr,2 Kr,p

K. K.;. K.o ... K,

K= K, o ... O 7 (5.18)

K, ... 0
Symmetric :

K,

- 4 nXn

where the total number of degrees of freedom is n = 6 N. The 6 x 6 sub-matrices Ky,
and Ky ;, h = s,7, ¢, are expanded in the following section. The individual elements
of these sub-matrices and of K; are given in the appendix. Spinning of the system

generates the block diagonal gyroscopic matrix

G — diag (G, Gy, Ge, G1,..., Gy, G,), (5.19)
i 0 “R(2JF—JH) 0 0 0 0
Ry (27 — J7) 0 0o 0 0 0
0 0 00 0 0
Gy = 0 0 0 0 —2m 0| (5.20)
0 0 0 2my 0 0
i 0 0 00 0 O]

where the gear ratios R, relate the rotation speeds by €, = RyQ. (recall b =

s,r,¢,1,...,p). The centripetal stiffness matrix is

C = diag (C,,C,,C.,Cy,...,Ci,...,C,) (5.21)
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C, = diag [Jng, JERZ,0, my, my, O] , b=s,rc1,...,p. (5.22)
Carrier rotation induces constant planet centripetal accelerations evident in the Q%c
term of Eq. (5.15) where

c=1[0,0,0,cq,...,Ci,...,Cpl, (5.23)

ci =my|[0,0,0, —(rs + rp) tan @, 75 + 1, 0] . (5.24)

If one considers motion y = q — q. about the steady configuration q. defined
by (K —Q2C)q. = Q%c + f, where f is the constant external loading vector, the

governing equation is
My + Q.Gy + (K — QiC) y = £4(1), (5.25)
where f;(t) is the zero-mean, dynamic external loading vector.

5.3 Modal Analysis

5.3.1 Eigenvalue Problem

The high-speed effects that arise from the constant kinematic rotation fall outside

the scope of this study, so €2, = 0 is specified. The eigenvalue problem is
(K—XM)q=0 (5.26)

with natural frequencies v/A. The vibration modes are divided into 6 x 1 sub-vectors
as

q=(Vs, Vp, Ve, Vi, ..., V) (5.27)

The system is tuned, that is, all sun-planet and ring-planet mesh stiffnesses, and
their centers of stiffnesses, are identical among all planets; the planet bearing stiff-
nesses, the axial locations of the planet bearings, and the planet inertias are the same
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for all planets. Regardless of planet spacing, the stiffness and inertia sub-matrices

satisfy

p p p
K,=71, Z sino; + RY,RY Z cosa; + Oy, Z sin? oy

i=1 =1 i=1

) ) (5.28)
+RO,R” Z cos® oy + 5, Z sina;cosa; + Wy, h=s,r0c,
i=1 i=1
[0 10 0 0 0]
-1 00 0 0O
0O 01 0 0O
R = 0O 00 O 1 0]’ (5.29)
0O 00 —1 0 0
| 0 00 0 0 1]
K, =K;, M;=M,;, ij=12,...,p, (5.30)
Khﬂ' = Ah sin o; + RAh Ccos a; + Fh. (531)

System Matrices

Individual elements of X,, ©,, E,, ¥, Ay, Ty, and K; are given below with
all unspecified elements being zero. All sub-matrices in Egs. (5.32) through (5.43)
are associated with a particular mesh. Subscript s denotes the sun gear; for sub-
matrices with the subscript s, j = 1,3,...,2p — 1 indicates the particular sun-planet
mesh. Similarly, for sub-matrices with the subscript r, j = 2,4, ...,2p indicates the
particular ring-planet mesh.

Y =YY = ko Dy(j)eosyy, Y =YE2) = fjr? singeos 1,

S S

YD) = Y83 = kir cos?yy, YO =YED = kD) (5)siny (5.32)

Tg2’6) e Tg6’2) = _kj'rs Sin2 w
OV = k; + k;Di(j)?, O = OB = ;D (j)r, siny,
62272) = k:jrs sin? WY, @2575) = k‘jCOS2 Y, (5'33)
O =0l = k;Di(j)costy, O = OF? = kyr,sinyeos .
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B = 2k:D, (j)rgsing, EN? =BG = ki[r2sin? — Dy(5)%] — &,

521’4) = 324’1) = kjcos D1 (j), 321’5) = 525’1) = kjrscossin i,

(5.34)
522 = —2k; D1 (j)rs sinp, 522’4) = 524’2) = kjrscossin,
522,5) — Eg — _k .COS ,¢D1( ) 58475) — 5(5,4) — kf'COS2 ¢

O = pAD2 4 kBD2 4 kA + kB, WD) =90 — _pAD — kBDyg,

WP = kDY + kP DY + w4+ 6D, @B =D = kADy; + EP Dy,

P33 — Ii?z + mfz + l{:jrg cos?, WO — —k;rscossin, \Ilg4’4) = /4:;4 + kf,

s

PO = kA KD, WO = kA kP ysin? .
(5.35)

AMY = kD (j)rpsiney, AL = k;Di(5)Dy(5) + k5, ALY = k;D(j)r, cos,
AN = kD ()costp, AM® =k;D(j)siney, AP = ki, sin 1,

AP? = kirgsingDy(5), AP =k, singcosy, APY = —k;r,sincosp,
APY = i sin®y,  APY = Ekyrpcospsing, AP = kicos i Dy(5),

AP = kirpcos® e, APY = —kjcos’y, AP = kjsintpcos .

s

(5.36)
T3Y = kirgr, cosysing, TG = kjr cosyDy(j), T3P = kjr,r, cos®,
F(34 —k;jrs cos 2, 1‘96’ = kjrs cosysin 1, Fgﬁ’l) = —kjrpsin2w,
(5.37)
2 — —k;sin Dy (), I3 = —kjrpsin cos ), oY = k;jsin pcos 1),
%9 = —k;sin? 1),
where j = 1,3,...,2p — 1 for all matrices related to the sun.
Y09 = TOD = hyr, Dyeosts, TED = XD = Dy (Ghsin,
Y@ =B = ke Dy (j)cosp, YD =1ED = kD, (5)sin ),
(5.38)
YD = xS = kir, Dscosyp, Y3 =G = kr, Dgcos b,
YW = ¥ =k Dysiney, YO = Y6 =k, Dgsin ¢
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O = k;Dj + k;Ds(j)?, O = OPY = k; Dy Dy + k; Ds(5)Da(j),

Ol = 0" = k;Ds(j)Ds, O = @Y = k;Ds(5) D,

O3 = k; DYy + k;Da(5)?, O = O = k;Dy(j) Ds, (5.39)
©%) = @%? = k;Dy(j)Ds, O = k;DZ,

O = 0P = k;D;Ds, O = k;D?.

T

(11

(1) _ 2/ij9D10 —+ 2]€]D3(])D4(])7

T

2 = BV = k;[Da(5)? — Ds(4)%] + k;(D3y — D3),

=204 — =41 — kj[Ds(j)Ds + Da(j)Ds),

(15 = BGY = k;[D4(j)Ds — Ds(5)Ds),

(5.40)
E\*? = —2k;DyD1o — 2k; D3 () Da(j),
E*Y = B = k;[Da(j)Ds — Ds(j)Ds], E"MY = 2k;D;5 D,
29 = P = —k;[Ds(j) Ds + Da(j) Ds),
25 = 5P = k;(DZ — D?), EP = —2k;D;sDs.
OV = kDY + kP D3+ 6+ kP, @) = @B — —kA Dy — kP Dy,
P = kDY + k7 Do + w7 + w7, WY = WD = kID1g + k) Dy,
(5.41)

OO = 5 4 k7 4 kyr,” cos” ), P = WO = kyr, cos Psin ),

T

U = gt kP, WY = ke kWO = B k7 kysin® .
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A = k;Ds(§)D7(j) — K;DgD1o, AP = k;Ds(4) Ds(j) + k;Ds,
A = —k;D3(j)Ds, A = k;Ds(j) D5, AN = —k; Dy (j)sin o),

ALY = —kyr,Dy(j)eosts, AR = —k;r, Da(j)cos .

APY = k;Dy(§)D7(j) = K; DY, AP = k;Da(5)Ds(j) + £ Dy Dro,
APY = —k;Dy(j)Ds, AP = k;Dy(j)Ds, A9 = —kjsingDy(j),  (5.42)
AYY = kD5 D1 (5), A% =k;DsDs(j), AMY = —k;Dsr, cos v,

A = —k;j D5 D, A = k; D3, ALY = —FkjDssin ),

APV = k;DsDs(j), AP = k;DsDs(j),  APY = —kjr, Dcos ),

APY = ;D2 AP = ;DsDg,  APY = —f;sin 1) Dg.

r T

LY = kjrycospD7(j), T = kyrecoswDs(j), TP = —kyror, cos® o),

I‘£3’4) = —kjr,Dgcos 9, I‘£3’5) = kjr,.Dscos 1, F£3’6) = —Fkjr sintcos 1,
(5.43)

6D = EisinDr(5), T = ksingDg(j), T3 = —k;r,sincos,

T = —ksingDg, T = ksingDs, T8 = —Esin® ),

r r r

where j = 2,4, ..., 2p for all matrices related to the ring.
Y =YY = —Dig (k) D1y + kI Dis), YO = YOV = —Diy (k2 + £P7),

Y = YO = Dy (kADyy + kPDy5), YO =YD = — Dy (k2 + k5%),

YOV =YY = Dig(ky + k), X =X = Dig(ky + k).

C

(5.44)
O = kDY) + kED3 + DI, (k) + kP%) + ki + K2,
O? = 0P = DiyDi3(k)” + k),
0" =% = — 2Dy — kP D5,

(5.45)

O = kD3, + kP DY + Diy(k)* + k2*) + ki + k0,
O =0t = k' Dy + k) Dy, %Y =kt + k],

55) _ 1.A B
O A
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(1]

gl’l) = 2D12D13(k’§z + k‘fz), 5(2’2) = —2D12D13(k’§z + k’sz),

C

(5.46)
B = B2 = (Df — DY) (k)" + k7).
O = kDS + kP D3, + k2 + k52, WY = WOV — kA Dy — kP Dy,
WP = kD3 + kP D3, + w4+ k2, WP = WD = kDo) + kP Doy,
(5.47)
WP = k% + k5 + k27 + kD7 + (D + D) (k) + kD),
L e I e I e Aol el oy
AL = kg DD+ ky DisDig + Ky + 5y
Ag’l) = —kﬁDan = k5D15D16 — FGPA - va
A£471) = _kl;;qDl4 — k5D16a A£4’5) —= k’;;‘ + k‘f,
(5.48)
AP? = — Dy — kP Dyg, APY = -k — kP,
AN = k2D + kP D5, A®Y = kADy + k2 Dy,
Agl’ﬁ) = Dlg(k‘;z + k’sz), Ag’ﬁ) = Dlg(kﬁz + k‘fz)
e = —Dlz(kﬁpADm + kaw), (32 — —D13(7€;,4D14 + k;BDw),
G = _,{gz _ Kfz’ i = _D13(k7;;4 + kf), (5.49)

C

F(375) — Dlg(l{?A + ]{?B), I‘(G,6) — _kﬁz . ]prZ
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Equation (5.50) relates to planet i € {1,2,...,p}. The quantity 2i — 1 indicates

the sun-planet mesh, and 2: indicates the planet-ring mesh.

K" = ks 172 sin? b + kg D7(20)? + ko D3y + kD2, + kB D2 + w4 + k7,
K" = K®Y = ky_ 1 Dy(2i — 1)1, sin ) + ky; D7(2i) D (2i) — kg Do Dio,
K" = K@Y = [ky, 17, sin ) — kg D7(21)]r, cos o,

K" = K™ = ky;D7(2i) Ds — k' D1y — kP Dy,

KM = K%Y = — ko, 17y sinpcos ¢ — ko D7(2i) D,

KM = KO = ky v, sin ) — ko Dyp(20)sin e,

K = kyi_1D2(2i — 1)% + ks Dg(20)? + ki1 + kg D3 + k2 D2, + kB D3 + w2t + kP,
K = K® = [ky;_1Dy(2i — 1) — kg Ds(2i)]r, cos 1),

K = K& = —ky, 1 Dy(2i — 1)cos ) — kg Dg(20) Dg + kA Dyy + kP Dy,
K*? = K% = &y, Ds Dg(2i),

K9 = K% = ky, 1 Dy(2i — 1)sin1p — ky; Ds(2i)sin 1,

KZ(373) = (kgi_1 + kzgi)rf)cos2 v+ /@;‘Z + Kfz,

K = K% = (kyDg — kai_1cos)r, cos 1,

K* = K = _ky, Dr, cos v,

Kgg’ﬁ) = KZ(-G’?’) = (kgi—1 + koi)rpsinycos i,

K" = kyi1co8? ¢ + ki D2 + k2 + kP, KW = K™Y = — kD5 D,
KZ(.4’6) = KZ(.G’A‘) = —(kgi_1c081Y — k9; Dg)sin 9,

K" = kyD2 + k2 + k2, K = K% = —ky Dysin g,

KO = (ki y + kyy)sin ¢ + k4 kg
(5.50)
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In the quantities below, j € {1,2,...,2p} denotes one of the 2p tooth meshes.
Di(j) = (es — Cj) cos ) — rssiny tan Py,

Dy (j) = (e, — ¢j) costp + rpsintp tan D),

Ds5(j) = cos(®y, + D) [(€, — ¢;) cos®p — rpsine) tan D,.,] + 7, sin P sin( Py, + Py,
Dy(j) = sin(®yp + @) [(er — ¢;) cOs Y — 1, sinyp tan @] — 7, sin ¢ cos(Py, + @4p),
D5 = —cos ¢ sin(®g, + D,p), D = cos ) cos(Pg, + Py,

D7(j) = sin(®s, + @) [(¢; — €,) cosp + 1, tan D, sin @] + 1, sin ¢ cos(Py, + ©4p),
Dg(j) = cos(®s, + @) [(ep — ;) cOs — 1) tan Dy, sin )] + 1, sin ¢ sin( Py, + ©4,),
Dy = —cos(Pyp + D), D1g = —sin(Psp, + Dyp),

Dy =L} -

P €s, D12 = —tan (bgp(’l“s + rp), D13 =T + Tp, D14 = —LA

» ~ »
Dis =L —e,, Dig=L}—e, Diz=-L!—e, Dig=L—e,
Diy=—L~e,, Dy=Ll—e,, Dy=-L)—e, Dyp=Ll—e.

5.3.2 Computational Observation of Vibration Modes

Eigensolutions of a sample system (Table 5.1) with four and five equally spaced
planets are evaluated numerically to expose the modal properties. Some natural
frequencies and their corresponding mode types are given in Table 5.2. The vibration
modes exhibit distinctive characteristics. There are three types of vibration modes.
Figures 5.3, 5.4, 5.5, and 5.6 show two examples of each of the three types of vibration
modes for the example system with four planets. Regardless of the system parameters
the modal deflections of certain gears are zero, or there is a relation between certain

degrees of freedom such that not all modal deflections are independent. Based on
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these features, all vibration modes are categorized as rotational-axial, translational-
tilting, and planet modes. These three types bear some similarities to those described

by Lin and Parker [58], but they have important differences.
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Table 5.1:

Parameters of the planetary gear system.

Parameter Sun Mesh Planet Mesh Ring Carrier
Operating pressure angle, ® [deg] 21.3 21.3

Base helix angle, ¢ [deg] -28.5 28.5

Translational mesh stiffness, k& [N/m] 6.19x10° 22.3x10°

Tilting mesh stiffness, x [N m] 643x10° 2.31x10°

Center of stiffness, ¢ [mm)| 0 0

Base radius, r [mm] 24 16 56

Center of mass, e [mm] 0 0 0 0
Bearing distance at point A, L* [mm] -20 -20 -20 -20
Bearing distance at point B, L? [mm] 20 20 20 20
Radial bearing stiffnesses, k4, k% [N/m] 0.5 x 10? 0.5 x 10° 0.5 x10° 0.5 x 10°
Axial bearing stiffnesses, k4%, k%% [N/m] 0.5 x 10° 0.5 x 10° 0.5 x 10° 0.5 x 10°
Tilting bearing stiffnesses, x4, k& [N m] 50 x 106 5 x 106 50 x 106 50 x 106
Rotational brg. stiffnesses, £4%, k8% [N m] 0 0 90 x 10 90 x 10°
Mass, m [kg] 0.3 0.2 100 x 107° 0.5
Tilting inertia, J* [kg m?| 5x 1073 50 x 107° 10x 1078 4 x 1073
Rotational inertia, J* [kg m?| 10 x 1073 100x107° 20x107¢ 8% 1073




Table 5.2: Lowest 10 natural frequencies [Hz] and mode types of the planetary gear
system defined in Table 5.1 with four and five planets. R-A: Rotational-axial mode,
T-T: Translational-tilting mode, P: Planet mode.

Four Planets Five Planets
Natural frequency [Hz] Mode type | Natural frequency [Hz] Mode type

953 R-A 1011 R-A
3120 T-T 3068 T-T
3120 T-T 3068 T-T
3251 R-A 3114 R-A
3743 R-A 3670 R-A
5426 T-T 5184 T-T
5426 T-T 5184 T-T
8177 P 8177 P

8537 T-T 8177 P

8537 T-T 8506 R-A

Observed Rotational-Axial Modes

There are 12 rotational-axial modes for systems with more than two planets. The
natural frequency multiplicity is one. From the computed eigenvectors (in Fig. 5.3,
for example) the central members rotate and translate axially, but they do not tilt or

translate in-plane. The modal deflection of any central member is of the form

VvV, = (0,0,ﬁh,0,0,zh). (551)

The planets move in all degrees of freedom, and their modal deflections are identical
to one another as given by

Vi=Vy=...=V, (5.52)
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Observed Translational-Tilting Modes

There are 12 pairs of translational-tilting modes with natural frequency multiplic-
ity of two for systems with three or more planets. In both modes of a translational-
tilting mode pair the central members only translate in-plane and tilt but do not
rotate or translate axially. Figures 5.4 and 5.5 show two examples of translational-
tilting mode pairs. The modal deflections of any central member for a pair of vibration

modes have the form

vy, = (¢n,0n,0, 21, yn, 0), Wi, = (O, —bn, 0, yp, —4,0) — W;, = Rvy,
(5.53)
h=s,rc.

The planets move in all six degrees of freedom. Their motions are such that the modal
deflections of any planet can be found from the modal deflections of the arbitrarily

selected first planet using
vi \ cosa; I siney; 1 Vi .
(wi)_[—sinaiI cosaiI](wl)’ 1=20p (5.54)
where I is the 6 x 6 identity matrix.
Observed Planet Modes
In two sample planet modes shown in Fig. 5.6 all central members are stationary.
This is given by
v, =0, h=sr1c (5.55)

The planets move in all six degrees of freedom, and their motions are related to that

of the arbitrarily selected first planet, as given by
V; = W;Vy, 1= 2, o, Py (556)

where the w; are constants. Planet modes are observed only when there are four or

more planets (p > 4). The natural frequency multiplicity is p — 3.
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Figure 5.3: Two rotational-axial modes of the planetary gear system defined in Table
5.1 with four equally spaced planets. Angular and translational displacements are
scaled independently to emphasize behavior. a) 953 Hz. b) 3251 Hz.
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(b)

Figure 5.4: A pair of degenerate translational-tilting modes (10591 Hz) of the plane-
tary gear system defined in Table 5.1 with four equally spaced planets. Angular and
translational displacements are scaled independently to emphasize behavior.
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(b)

Figure 5.5: A pair of degenerate translational-tilting modes (25696 Hz) of the plane-
tary gear system defined in Table 5.1 with four equally spaced planets. Angular and
translational displacements are scaled independently to emphasize behavior.
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(b)

Figure 5.6: Two planet modes of the planetary gear system defined in Table 5.1
with four equally spaced planets. Angular and translational displacements are scaled
independently to emphasize behavior. a) 8177 Hz. b) 80538 Hz.
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5.3.3 Analytical Characterization of Vibration Modes

The observed properties of the different types of vibration modes will be proved
for general systems with three or more planets. The proof consists of constructing a
candidate vibration mode (for each mode type) based on the observed characteristics
and substituting it into the eigenvalue problem Eq. (5.26). Showing that the eigen-
value problem is satisfied ensures that the proposed vibration mode is truly a system
vibration mode.

The critical point for all three mode types is that some elements of the candidate
vibration mode are linearly dependent on others. A candidate vibration mode is
partitioned as

q=(u,q"), q"=Yu, (5.57)

where the vector u contains elements regarded as independent, and the vector q* is
the vector of dependent elements calculated from u. How the modal deflections are
partitioned between u and q* as well as the matrix Y differ for each of the three
mode types, but all three types can be expressed in this general form with known Y.
The three specific cases are discussed subsequently.

Substitution of the candidate vibration mode from Eq. (5.57) into the eigenvalue

problem Eq. (5.26) results in

BE-PE G e

where A, B, and E are partitioned matrices of K; M,, and M, are partitioned matrices
of the diagonal M. The upper row yields Au + BTq* = AM,u. Substitution of

q* = Yu expresses the upper row in the form of a reduced eigenvalue problem

(A+B'Y)u = \M,u. (5.59)
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This equation contains all the necessary information to find the natural frequencies
and vibration modes of the type of vibration mode under consideration. The remain-
ing elements q* of q are found from Eq. (5.57). For such a mode to indeed be a system

mode, however, the lower row of Eq. (5.58) must hold, which is given by
Bu + Eq" = \M,q". (5.60)

This equation is crucial for the rest of this chapter.

In what follows, we prove that Eq. (5.60) holds for appropriately selected candidate
vibration modes of the form Eq. (5.57) constructed for each of the three mode types.
In each case, u is calculated by the reduced eigenvalue problem in Eq. (5.59). In
this process, the algebraic properties of the stiffness and inertia matrices are pivotal.
Furthermore, we show that this process yields all of the system modes, that is, every
mode is either a rotational-axial, translational-tilting, or planet mode.

Several elements of q* are zero for each mode type. The non-zero elements are
collected in q¥,. To simplify the subsequent algebra Eq. (5.60) is partitioned into two

parts associated with the zero and non-zero elements of q* as

ot () ()
= —, (5.61)
dy AMnyqy

Dy ‘ Ey
where the subscripts 0 and N denote the partitioning, and Eq. (5.61) reflects M,

By
By

being diagonal. The upper and lower rows of Eq. (5.61) are
Bou + Eoyqy =0, (5.62)

BNll + ENqu = AMNq}‘V (563)

The construction of matrices Y, Bg, By, Eo, Ex, A, My, and M,, are dictated by
the partitioning of each candidate mode type by Eq. (5.57).
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With the stipulations that the planets are equally spaced and the system is tuned,
the following developments do not depend on, and are therefore valid for arbitrary
values of, system parameters such as gear radii, pressure and helix angles, locations

and stiffnesses of the bearings, mesh stiffnesses, and so on.

Rotational-Axial Modes

The decomposition of the candidate rotational-axial mode according to Egs. (5.51),
(5.52), and (5.57) is

u=(Vs, v, Ve, vi), q°=1(0,0,0,vy,...,vy), (5.64)

p—1

where the zero vector has dimension 4 x 1. The tilde accent is used here and for
the other two mode types to represent sub-vectors containing only the independent
elements u of the candidate mode q in Eq. (5.57). The specific elements in the
quantities with a tilde accent will differ based on the mode type in question. The
tilting and translational motions of the central members in a candidate rotational-
axial mode are zero as indicated in Eq. (5.51), so the sun, ring, and carrier modal

deflection sub-vectors are

{’s - (537 Zs>7 ‘7? = (ﬁra Zr>7 {’c = (ﬁw Zc)- (565)

The modal deflections of each planet are identical as given by Eq. (5.52). The modal
deflection of the arbitrarily selected first planet vy is chosen to be the independent
one hence the appearance of v; in Eq. (5.64). The dependent elements contained in

q* are all calculable from the vector of independent elements u using Eq. (5.57) and

Oi2x6 O12x6
v — 06.><6 IG.><6 (5.66)
Osx6  Isxe
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with dimension 12 4 6(p — 1) x 12.

One can readily partition Eq. (5.26) to obtain Eq. (5.58), and the reduced eigen-
vectors u are found from Eq. (5.59). To confirm that Eq. (5.64) is indeed a mode,
each of Eq. (5.62) and Eq. (5.63) must be satisfied for u and g*.

The matrices By and Eq in Eq. (5.62) are dictated by the partitioning given in

Eq. (5.64) to be

A~

KS 0 0 Ks,l Ks72 Ks,p
Bp=| 0 K, 0 K,; |. Eo=|K,, K,, (5.67)
O O KC KCJ KC,2 Kc,p

The sub-matrices Kh, h = s,r,c, are constructed from the 1st, 2nd, 4th, and 5th
rows and 3rd and 6th columns of the corresponding matrices K, in Eq. (5.18). The
sub-matrices KM, it =1,...,p, are constructed from the 1st, 2nd, 4th, and 5th rows
and all columns of the corresponding matrices Kj,; in Eq. (5.18). By has dimension
12 x 12 and Ej has dimension 12 x 6(p — 1).
Substitution of matrices By and Eq from Eq. (5.67) into Eq. (5.62) yields
p
Ko+ Y Kpivi =0. (5.68)
i=1
From Eq. (5.28), the sub-matrices K, satisfy
p p
K, = 'i‘thin oy + RThRTZCOS oy, (5.69)
i=1 =1
because ©, = &, = ¥, = 0 by Egs. (5.33), (5.34), (5.35), (5.39), (5.40), (5.41),
(5.45), (5.46), and (5.47). The hat accent on R indicates the 3rd and 6th rows and

3rd and 6th columns of R. The bar accent on R indicates the 1st, 2nd, 4th, and 5th
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rows and the 1st, 2nd, 4th, and 5th columns of R. From [25]

p

. .p+1 . pa «
Z sin i = sin 5 a sin TCosec— =0,
i=1

2
(5.70)
u ) p+1 | pa o
Zcos i = Cos asin —cosec— + 1 = 0,
par 2 2 2
where the second equalities are from equal planet spacing a = 27 /p. The sub-

matrices K, in Eq. (5.68) vanish as a result of Egs. (5.69) and (5.70). For vanishing
K, Eq. (5.68) becomes, after use of Eq. (5.31) and T’ = 0 (by Egs. (5.37), (5.43),
and (5.49))

p p p
Z Khﬂ-vl = A,vy Z sin o; + RA, vy Z cosa; = 0, (5.71)
i=1

i=1 i=1

where the second equality results from Eq. (5.70). This confirms that Eq. (5.62) is
satisfied for the candidate rotational-axial vibration mode defined in Eq. (5.64).
We now examine whether Eq. (5.63) is satisfied. The matrices By, Ey, and My

are

By = : : : :

K7, KI, K7, 0
MN = diag(Mg, NN ,Mp) .

The sub-matrices I_(M are constructed from all columns and the 3rd and 6th rows of

K} in Eq. (5.18), so using Eq. (5.31) and A, = 0 (by Eqgs. (5.36), (5.42), (5.48))

Eq. (5.31) becomes

KhJ == fh. (573)

The zero matrices are 6 x 6. The matrices By, Ey, and My have dimensions
6(p—1)x12,6(p—1) x6(p—1),and 6(p — 1) x 6(p — 1), respectively. Substitution

of Eq. (5.72) into Eq. (5.63) yields p—1 matrix equations Z TIv,+Kivi = AM,vy,

h=s,r,c
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i=2,...,p. Substitution of Eq. (5.30) gives

> T+ Kivi = AMyvy. (5.74)

h=s,r,c

We now show that this equality is satisfied for v, and vy calculated from the

reduced eigenvalue problem Eq. (5.59). The matrices A and M,, in Eq. (5.59) are

K. 0 0 K,
0 K, 0 K.,
0 0 K, K.
K7, KI, KI, K,

A— . M, = diag (M M, ., ML, M1> . (5.75)

where 1\7Ih and Kh are constructed from the 3rd and 6th rows and the 3rd and 6th
columns of the corresponding matrices in Egs. (5.17) and (5.18). The matrices A
and M, have dimension 12 x 12. Upon substitution of A, M,, By, By, and Y from
Egs. (5.75), (5.67), (5.72), (5.66), and (5.73) into Eq. (5.59), the reduced eigenvalue

problem for rotational-axial modes is

K, 0 0 pL, v, M, 0 0 0 Vs
0 K Dople Ve f ) 0 M 00 V| (5.76)
Q 9 ISC ch VC 0 O MC 0 VC
pI'L pIy pIl pKy Vi 0O 0 0 pM; \2!

The last row of the reduced eigenvalue problem in Eq. (5.76) is the same equation as
Eq. (5.74). Thus, u satisfying Eq. (5.59) ensures the satisfaction of Eq. (5.74), and
so the satisfaction of Eq. (5.63).

We have shown that every rotational-axial mode q of the form Eqs. (5.57) and
(5.64), defined by Egs. (5.51) and (5.52) satisfies the full eigenvalue problem Eq. (5.26);
each u is determined from the reduced eigenvalue problem Eq. (5.59). In the rotational-
axial mode case, Eq. (5.59) is a 12x 12 eigenvalue problem and the reduced eigenvector
u has 12 elements. Therefore, there are 12 rotational-axial modes. Because each re-
duced eigenvector u produces only one rotational-axial mode, each rotational-axial
mode has a distinct natural frequency.
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Translational-Tilting Modes

The candidate pair of translational-tilting modes given by the relations Eqs. (5.53)
and (5.54) satisfy the eigenvalue problem Eq. (5.26) with the same eigenvalue. This
is expressed as

(K—AM)q; =0, (K—AM)q; = 0. (5.77)

Any linear combination of q; and qy also satisfies the full eigenvalue problem with
the same eigenvalue. To apply the formulation in Egs. (5.59)-(5.63), we stack the two
expressions in Eq. (5.77) into a single block-diagonal matrix eigenvalue problem of

dimension 12(p + 3) with eigenvector

q = (q1,92)- (5.78)

This eigenvalue problem is partitioned to give Eq. (5.58). To that end, decomposition
of the candidate translational-tilting mode pair in Eq. (5.78) according to Egs. (5.53),

(5.54), and (5.57) gives

u = ({}87{}7‘7 {’C7V17 Wl) )
(5.79)

q* = (O,O,O,WS,WT,WC,VQ, sy Vpy, W, '>Wp)>
where the zero vectors are 2 x 1. The matrix Y combines Egs. (5.53) and (5.54) to
relate q* to u in Eq. (5.57), and it is given by

O6xa Osxa Oexa  Ogxe O6x6
R 04_><4 04><4 04><6 04><6
Osxa R Osxa Oaxe 04x6
04><4 04><4 R 04><6 04><6
06><6 06><6 06><6 Icos 9 Isin (6D)
Y = : : : : : ’ (5.80)
06><6 06><6 06><6 Icos ay ISiIlOép
Ox6 Osxs Ogxg —Isinas Icosas

O6x6 Osxs Osxs —Isina, Icosap_

152



where the bar accent on R indicates the 1st, 2nd, 4th, and 5th rows and the 1st, 2nd,
4th, and 5th columns of R.

The sub-matrices By and Eq in Eq. (5.62) are

K. 0 0 K, K.,
B=| 0 K, 0 K,, K,, |, (5.81)
0 0 K. K. K.
K. 0 0 K,, K., K.o ... K,
Ec;=| 0 K, 0 K, K, K., .. K, (5.82)
0 0 K. K., K., K. ... K

The sub-matrices K, are constructed from the 1st, 2nd, 4th, and 5th columns and
the 3rd and 6th rows of the corresponding matrices in Eq. (5.18). The sub-matrices
Kh,i are constructed from all columns and the 3rd and 6th rows of the corresponding
matrices in Eq. (5.18). By has dimension 6 x 24 and Eq has dimension 6 x 12p.
Substitution of By and Eg from Egs. (5.81) and (5.82) into Eq. (5.62) yields

p p
Ko+ Kpvi=0, Ky, +> Kjpw; =0, h=sr.c (5.83)

i=1 =1
Considering the specified K, and Eq. (5.28), ®, = &, = ¥, = 0 by Egs. (5.33),
(5.34), (5.35), (5.39), (5.40), (5.41), (5.45), (5.46), and (5.47). Thus, using Eq. (5.70),
the sub-matrices K}, vanish for equally spaced planets. Use of Eq. (5.31) and AL=0
(by Eqs. (5.36), (5.42), and (5.48)) simplifies the off-diagonal sub-matrices to Kj; =

I',. For vanishing K}, substitution of Eq. (5.54) into Eq. (5.83) yields

f‘th:vl cosa; + wysina; = 0, f‘th:wl cosa; — vysina; =0, h=s,7,c
. . (5.84)
These six matrix equations are satisfied in light of Eq. (5.70). This confirms that
Eq. (5.62) is satisfied for the candidate mode given in Eq. (5.79), or equivalently,
Egs. (5.53) and (5.54).
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The matrices By, Ex, and My in Eq. (5.63) are given by

04x4 0454 0454 O4x6 K,
04><4 04><4 04><4 04><6 Kr,l
04><4 04><4 04><4 04><6 Kc,l
By = KZ—:Q KZ:Q KZ:Q O6x6 O6x6
K;F,p K;F,p KZP O6x6 066
| O6p-1)xa Osp—1)x4  O6p—1)xa  O6(p—1)x6  O6(p—1)x6 _
[ Ks O%x4 04><4 04><6 04><6 Ks,2 Ks,p ]
0,04 K, OAiX4 O4x6 Oux6 Ko K.,
O4x4 Osxa K. Oux6 Ouxs Keo K.,
Osxa O6xa Opxa Ko Osx6  Osxe O6x4
Eyx = ; ' : : : ' :
06><4 06><4 06><4 06><6 Kp 06><6 06><4
KST,Q KZ?Q KZ:2 O6x6 Osxs Ko O6x6
L I_{;[:p I_{Z:p KCTJ, O6x6 O6x6  Osx6 K, |

My = diag (M M,, M., M,,...,M,,M,, ..., Mp) .

, (5.85)

, (5.86)

(5.87)

The sub-matrices I_{;m- are constructed from all columns and the 1st, 2nd, 4th, and

5th rows of the corresponding matrices in Eq. (5.18). Use of Eq. (5.31) and T'), = 0

(by Egs. (5.37), (5.43), and (5.49)) simplifies the off-diagonal sub-matrices to

Kh,i = f_\h.

(5.88)

The sub-matrices M, and K, are constructed from the 1st, 2nd, 4th, and 5th rows

and the 1st, 2nd, 4th, and 5th columns from the corresponding matrices in Egs. (5.17)

and (5.18). The planet stiffness and inertia sub-matrices M; and K; do not need par-

titioning; they are identical to the ones in Egs. (5.17) and (5.18). By has dimension

12p x 24, and Ey and My have dimension 12p x 12p.
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Substitution of Egs. (5.85), (5.86), (5.87), and the candidate mode from Eq. (5.79)

into Eq. (5.63) gives

p
K, W), + Z K, iw; = A\M,Wy,, h=sr,c (5.89)
i=1
S KIvi+Kivi =AMy, i=2....p, (5.90)
h=s,r,c
Z K?f,iwh +Kiw; = \AM;w;, 1=2,...,p. (5.91)
h=s,r,c
From [25]
SN p cos(p+ lasinpa p
Zsm == — : =
Py 2 2sin o 2
Zp: 055 P4 cos(p+ Dasinpa  p - 99
o = — — X
2 2 sin « 2’ ( )

p
1
Z sin i cos i = §Sin[(p + 1)ajsin(pa)coseca = 0,

i=1
where the second equalities result from equal planet spacing o = 27 /p. Substitution
of Egs. (5.53), (5.54), and (5.92) into Eq. (5.89), premultiplication by R, and use of

RTMhR = Mh, RTKhR = Kh giV@S
. P=— j= B . B
Kyvy, + iRAhvl + §Ahwl =M, vy, h=s,rc (5.93)

Substitution of Egs. (5.30), (5.53), and (5.54) into Egs. (5.90) and (5.91), and sum-

ming the p — 1 equations, gives (for a; = 0 and RTR = 1)

P
( Z AZRTVh +Kivy — )\M1V1> Zcos a; = 0, (5.94)

h=s,r,c =2

p
( Z AV, + Kiwy — )\M1w1> Zcos o; = 0. (5.95)

h=s,r,c 1=2
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We now show that Eqgs. (5.93), (5.94), and (5.95) are satisfied for v, Wy, v;, and
w; calculated from the reduced eigenvalue problem Eq. (5.59). A and M, are given
by
K, OA:x4 Osxa K1 Ouxe

K, 1 Osxe o

A= 0uy Ops K. Koi Ouss | Mu:diag(Ms,M,,MC,Ml). (5.96)
Kz,l K;F,l Kéﬂ K; 0Osxs
06><4 06><4 06><4 06><6 Kl |

Substitution of A, M, By, By, and Y from Egs. (5.96), (5.81), (5.85), (5.80), and
(5.88) into Eq. (5.59), and using algebra similar to that in (5.93) to (5.95), gives the

24 x 24 reduced eigenvalue problem

K, 044 0ixa  ERA, ZA, | Vs
04><4 KT’ 04><4 g]-:_{"/_‘r %Ar ‘77’
044 04x4 K. PRA. ZA, Ve
gAZRT gAzRT gj_\ZRT gKl 06><6 Vi
L BAL SAT SAL Osxs  5Ki1 | \ W1 (5.97)
(M, 0 0o o0 0 | /=%, ’
0 M, 0 0 0 v,
=\l 0 0 M, 0 0 Ve
0O 0 0 M, O Vi
0 0 0 0 M| \W

The first three rows of Eq. (5.97) are the sam-e as Eq. (5.93). The fourth row of
Eq. (5.97) is the same as Eq. (5.94) because zp: cos «; is non-zero. Similarly, the fifth
row of Eq. (5.97) is the same as Eq. (5.95). iai)nsequently, Eq. (5.63) is satisfied for
u satisfying the reduced eigenvalue problem Eq. (5.97).

The foregoing analysis confirms that the degenerate mode pair q; and q» defined
by Egs. (5.53) and (5.54) each satisfy Eq. (5.26) with the same eigenvalue. The
natural frequency multiplicity of two is also reflected in Eq. (5.97), which yields 12
degenerate eigenvalues with corresponding eigenvectors u; = (Vg, V., V., v, W) and

uy = (W4, W,,, We, wy,vy). This is true because one can exchange the letters v and
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w in Eq. (5.79) with no change to any subsequent matrices or results. As a result,
there are exactly 12 pairs of translational-tilting modes with twice repeated natural

frequencies.

Planet Modes

The decomposition of the candidate planet mode according to Egs. (5.55), (5.56),
and (5.57) is

u = wivy, q* = (O, O, O, WaVi, ..., wpvl) 5 (598)

where the zero vectors are 6 x 1. We specify without loss of generality that wyvy # 0,
that is, at least the arbitrarily selected first planet deflects. The modal deflections of
other planets are a scalar multiple of the modal deflections of the first planet as given
in Eq. (5.56), although the w; (i = 1,...,p) are yet to be determined.

The matrices in Eq. (5.62) are

K, K., ... K,
BO == Kr71 y EO == Kr,2 ‘e Kr,p 5 (599)
K. K. ... K

where By has dimension 18 x 6 and Ej has dimension 18 x 6(p — 1). Substitution of

Egs. (5.98) and (5.99) into Eq. (5.62) yields
p
> Kjwivi =0, h=sr.c (5.100)
i=1

Substitution of Eq. (5.31) into Eq. (5.100) gives

p p p
(Ah Z w; sin o; + RAy, Z w; cosa; + I'y, Z wi) vy =0, (5.101)

i=1 =1 i=1

which is satisfied if

zp:wi sinay; = 0, zp:w,- cosa; =0, zp:w,- = 0. (5.102)
i=1 i=1 i=1
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Equation (5.102) can be solved for p — 3 solutions for p > 4 [4,133]. Each solution
gives a non-trivial set of w;, « = 1,...,p, and this set can be scaled by an arbitrary
constant.

The matrices in Eq. (5.63) are
By =0, Ey = diag(K,,...,K,), My = diag(My, ..., M,), (5.103)

where By has dimension 6(p — 1) x 6, and E and My have dimension 6(p—1) x6(p—
1). Substitution of Egs. (5.98) and (5.103) into Eq. (5.63) gives K,w;vi = AMw; vy,

i=2,...,p. With use of Eq. (5.30) and w; # 0 for some i, these equations reduce to
K1V1 = )\Mlvl. (5104)

We now show that this equation is satisfied by the reduced eigenvalue problem
Eq. (5.59).
Considering Eq. (5.59), the matrices are given by A = K;, M, = M;, and

BTY = 0. With u = w;v; Eq. (5.59) becomes
Klwlvl = )\lelvl. (5105)

Equation (5.104) is satisfied for v; determined from Eq. (5.105) and w; # 0. Thus,
both Egs. (5.59) and (5.63) are satisfied. Equation (5.62) is satisfied by solution of
Eq. (5.102) for the p — 3 sets of w;.

Thus, every mode of the form Eq. (5.98), defined by Eqgs. (5.55) and (5.56) con-
structed from v; and a set of w;, satisfies the full eigenvalue problem Eq. (5.26). The
reduced 6 x 6 eigenvalue problem in Eq. (5.105) yields six planet mode eigenvalues
regardless of the number of planets. For each of the six eigensolution pairs (A, vy)
one can construct p — 3 (p > 4) eigenvectors of the full system using the solution sets
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for the w; from Eq. (5.102). Hence, each of the six planet mode natural frequencies
has multiplicity p — 3. There are no planet modes if there are less than four planets

because no set of w; satisfying Eq. (5.102) can be found.
5.3.4 Discussion

A helical planetary gear with p equally spaced planets and six degrees of freedom
per component has 18 + 6p degrees of freedom. There are 12 rotational-axial modes
with distinct natural frequencies; there are 24 translational-tilting modes (i.e., 12
degenerate mode pairs with natural frequency multiplicity two); there are six planet
modes each with natural frequency multiplicity p — 3 (i.e., 6(p — 3) modes) provided
p > 4. Thus, all 18 + 6p vibration modes have been accounted for. No other mode
type is possible.

The only restrictions that the proof needs are the tuned system assumption and
equal planet spacing. These restrictions are confined to the plane of the planetary
gear. Parameter variations that do not disturb these stipulations have no effect on
the properties of the vibration modes. There are no restrictions on the parameters
that define the system in the axial direction. Therefore, contrary to intuition, the
described mode types hold for configurations that are not symmetric about the plane

of the gears, such as:

1. The bearings at opposite ends of a given gear-shaft body have different stiffness
properties. An example is tapered roller bearings at one end and spherical roller

bearings at the other end.

2. The bearings on a given gear-shaft body are at different distances from the gear

plane; both bearings are on the same side of the gear plane; or, there is only one
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bearing. An example of such a configuration would be overhung gears and/or

carrier.
3. The mass centers of the various gear-shaft bodies are at different axial positions.

4. The contact pattern is off-centered at the gear meshes. This may be due to,
for example, lead modifications and deflection of the system under load. Note,
however, that the sun-planet contact patterns must be the same at each planet

(and the same for the ring-planet meshes).

These four items destroy symmetry about the gear plane, but the modal properties

hold for these configurations and any combination thereof.

5.4 Conclusions

We prove that there are exactly three types of vibration modes of any tuned
single-stage helical planetary gear system with equally spaced planets. The helical
planetary gear system is represented by a three-dimensional lumped parameter model
that allows for six degrees of freedom per gear-shaft body supported by bearings at
arbitrary axial positions. All vibration modes belong to one of these three types,

described below:

1. Rotational-axial modes: The central members rotate and move axially but do
not tilt or translate. The modal deflection of the planets are identical. There

are 12 rotational-axial modes with distinct natural frequencies.

2. Translational-tilting modes: The central members tilt and translate in-plane

but do not rotate or move axially. The modal deflections of all planets are
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related to one another according to Eq. (5.54). There are 12 pairs of degenerate

translational-tilting modes with natural frequency multiplicity two.

3. Planet modes: Only the planets have modal deflection. Fach planet’s modal
deflection is a known scalar multiple of any other planet’s modal deflection. The
central members do not move. There are six planet mode sets, where each set
consists of p—3 degenerate (for p > 4) modes having the same natural frequency.

Planet modes exist only for systems with four or more planets (p > 4).

This classification of the vibration modes persists for systems that are not sym-
metric about the plane of the planetary gear because the proof is valid for arbitrary

values of all parameters that lead to such asymmetry.
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Chapter 6: Vibration Suppression Rules for 3-D Helical
Planetary Gears Using Mesh Phasing

6.1 Introduction

Tooth counts and planet spacing in planetary gears alter the relative phase consid-
ering the periodic engagement-disengagement of the gear teeth. This is called planet
mesh phasing in the literature. Cunliffe et al. [19] and Schlegel and Mard [95] point
out the role of mesh phasing upon vibration reduction. The effectiveness of mesh
phasing in vibration reduction has been demonstrated computationally [4,84] and
experimentally [16,33,107].

Dynamic analysis using a lumped parameter model, either 2-D [97, 98], or 3-
D [40,43] confirm that mesh phasing works, but they rely on modeling assumptions
about the excitation, that is, the fluctuation in gear mesh force is assumed to be from
static transmission error, thus limiting the applicability of the findings. Parker [84]
explains how mesh phasing eliminates vibration in rotational and translational modes
independent of modeling. That explanation, however, is limited to 2-D spur gears

and applies to resonance at known mode types [58] of planetary gears.
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There are distinct mode types in planetary gears due to their symmetry [19,40,
42,97]. Lin and Parker [58,60] prove the identified properties of mode types in two-
dimensional (2-D) spur planetary gears. That proof is extended to include elastic
rings [87,133] and to three-dimensional (3-D) helical planetary gears [22] with a 3-D
gear mesh.

Most works cited above except [84] depend on static transmission error or mesh
stiffness fluctuation as the excitation to show excitations cancel or add as a result
of mesh phasing. With the cancellation of excitations, the dynamic model yields
vanishing response. We claim that the symmetry of the system is sufficient to relate
dynamic forces, thus the rules of vibration suppression may be stated independent of

any dynamic model therefore of any assumptions that come with it.

6.2 Symmetry in Planetary Gears and Its Implications

We consider planetary gears in three-dimensions. The only distinguishable phys-
ical features are the tooth counts and planet spacing. Other than those, there are
no features to distinguish the state of the system at a given angular position. The
symmetry argument implies that forces and moments that develop at the gear meshes
must be related with the only distinguishable quantity, their relative phase. Stated
differently, the gear mesh forces and moments do not know any better about their
state except the relative phase. That is the only quantity to distinguish the state of
the system at a given time from another.

The required symmetry implies a tuned system. To name a few stipulations: all
planet mass, inertia, bearing stiffnesses are identical, there are no splines on the sun

or ring, gears and the carrier are perfectly circular and mounted without run-out
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errors, the bearings have equal radial and tangential stiffnesses, and all gear teeth are
identical to one another for a given gear. There are no symmetry restrictions on the

features of the system except in the circumferential direction, consequently:

1. The system may be asymmetric in the axial direction, for example, shafts that
support the gears, carrier, and ring/housing may be overhung, conical or have

different stages of thickness. Gears may be helical or spur.
2. The forces and moments may include dynamic effects.

3. There is no restriction on deformations; gear bodies, shafts, housings may be

elastic.

Some physical phenomena can destroy the circumferential symmetry even if the man-
ufacturing had been perfectly symmetric. For example, severe vibrations may change
the contact conditions at the gears and bearings (such as disengagement). FElastic
deformations of a thin ring gear, contact conditions at ring-planet gear meshes may
change. In these examples, the symmetry on which the above argument relies is
destroyed. Furthermore, this work does not quantify the degree of symmetry destruc-
tion that may invalidate the results. In other words, to assess the effectiveness of
vibration suppression for a system with an imperfect circumferential symmetry, one
needs to perform dynamic analysis.

Figure 6.1 shows a planetary gear with the arbitrarily selected 1st planet, another
ith planet, and the base vectors B?. The bases B are oriented such that the line-
of-action of the sun-planet mesh is along B}. Planet spacing is denoted by a;. The

number of teeth on the sun gear is Z,. The matrix Q; that transforms vectors written
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in B to B! is given by

cosa; —sino; 0
Q= | sina; cosa; O (6.1)
0 0 1

Figure 6.1: Bases and planet spacing definition of a single-stage planetary gear.

6.2.1 Gear Mesh Forces and Moments

The force and moment vectors at the ith gear mesh can be written as F(#) and
M"(0), where § parametrizes angular position of the gear mesh. The superscript
h = s,r,c denotes the subject member: the sun, ring, and carrier, respectively. For
example, F5(0) denotes the mesh force on the sun from the 3rd sun-planet mesh.
Because single-stage planetary gears have one mesh frequency, the angular position
is a function of time, 0(t) = (wt + ¢;) with known mesh frequency w and phase angle
¢; of the 1th mesh relative to the arbitrarily chosen first mesh. The crucial step is

assuming the force and moment fluctuations are periodic with mesh period T'= 1/w.
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This assumption implies steady-state and linear time-invariant vibrations. It is not
valid if there are transients with a natural period. Similarly, nonlinear response can
have sub/super-harmonic components. Vibrations driven by parametric fluctuations
may be locked at the natural period. In these cases, the assumption is not valid.
Figure 6.2 describes the mesh force and moment fluctuation at two planet meshes,

issutrates the mesh phase ¢; and the mesh period T

N - & t
Mesh period 1 planet

>

Time (7)

Mesh Force and Moment (F, M)

Figure 6.2: Force and moment fluctuation showing the mesh period and the relative
phase at two arbitrarily chosen planet meshes.

Fourier expansion of the forces and moments using P harmonic components in

the B basis gives

Fi(t)=) Fi(t), MIt)=) M) (6.2)

fh’l mh,l
D . p .
th,p(t) — R fp:z o (Pwt+poi) ’ Mﬁp(t) =R m%,z o (Pwt+poi) (6.3)
fp ’ mp’

with complex f/# = |fMi|elw i = 1,2,3 where ~, is the phase of the pth harmonic
component. Defining £ = (f1, f2, f;"?’)T and m" = (m!, ml-?, mg’?’)T, the forces
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and moments on the ¢th planet mesh on the central members at the pth harmonic,
in Bl are

F?,p@) e [fgej(pwt+p¢i)} : le}’p(t) =R [m;lej(pwt—i-p(ﬁi)} (6_4)

Transforming the forces and moments to the 1st sun-planet basis B! gives

[ [ fleosa; — [P sina;
F} () =R filsineg + 2 cosay | el@etPo |

fh,3
L p
"/ mM!cos oy — mM2sin oy (6:5)

P i i i '
M7 (t) =R | | mPlsineg +ml?cosa; | el Peitpod
h,3

L mp

The sum of forces and moments from all sun-planet and ring-planet meshes (NV:

number of planets) at the pth harmonic in B! is given by
N N
Fp(t) =Y Fl (1), M) =) M/(t) (6.6)
i=1 i=1

6.2.2 Planet Gears

Each planet experiences a net, equal-and-opposite mesh force and moment from
its sun-planet and the ring-planet mesh. The forces and moments on the ith planet
from the sun and the ring meshes in the B? basis are

FP,(t) = = F;,(t) = Fi(t) = —F;, (1)
M, (1) = — M, (1) — Mj,(t) = =M, (t)

FE’}p(t) — _R [fgej(pwt-l-pd)i)} : MEL@) — _R [m;ej(pwtwm)} (6.8)
6.3 Phasing Rules
The mesh phase at a given harmonic is pp; = pZsa;. When planets are equally-

spaced

o = — (6.9)



2n 7 i )
the mesh phase becomes pp; = p WN Z. Defining

%, nez (6.10)

Z
k = mod(pZs, N), stated differently pNs =n+

2mp i . 2mik .
W?\f L 2mwin + % = ka;, where 27in is dropped

the mesh phase becomes pg; =
because n € Z.
When the planets are diametrically-opposed /2 = a; + 7, so the mesh phase

IS pOirn/2 = PLsiy N2 = pLsy + pZsm. Defining
k=pZ, (6.11)

the mesh phase becomes p¢; = ka;. For i > N/2 one gets PPitn/2 = kaign =

ka; + km, giving

" N/2

. Jkou 3
Zeﬂmi y 2; e £ 0 k:even (6.12)
i=1

0 k :odd
so the important property of & is that whether it is odd or even. With these definitions

of k, for equally-spaced Eq. (6.10) and diametrically-opposed planets Eq. (6.11), the

mesh phase has the same expression, that is
poi = kay (6.13)

Substitution of Eq. (6.13) into Eq. (6.4) gives the individual forces and moments on

central members in B’ as

sz(t) =R [fgej(Pwt—i-kai)} — R [f;)lejkaiejpwt}
(6.14)
A 1) — [l
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The resultant forces and moments on central members are obtained by substitution

of Eq. (6.10) into Eq. (6.6) in B! as

(i & ARl '
b 7P J(k+1)a i (k=1)ai
e By
h,2 hl N h,2 hl N
+ .
Fi(t) =R uz (k+1)a %Z k=i | pipwt
=1 =1
N
L i=1 ]
[ h . h2 N Rl _ :oh2 N ]
my gy i) M I J(k=1)ay
fz;e L E— Ze
h,2 . h,l N h,1 N
hip\ _ my™ — Jmy’ j(k+1)a; +jm J(k—1)a; Jpwit
M;n(t) =% #;e +f;e e
N
i=1

(6.15)
The resultant forces and moments on a planet is rewritten by substitution of Eq. (6.13)
into Eq. (6.8) as
FIL0) = R [15400] = [
(6.16)
MP (1) = =R [me/ @hed] = — R [méekereln!]

Equations (6.14), (6.15), and (6.16) are crucial for the rest of the analysis as
they combine the mesh phase with planet spacing. For equally-spaced planets, there
are three possible phase relations in Eq. (6.10): In-phase (k = 0), sequential-phase
(k =1,N — 1), and counter-phase (k = 2,3,..., N —2). For diametrically-opposed
planet spacing, there are two possible phase relations: In-phase (k: even) and out-of-
phase (k: odd).

In what follows substitution of the phasing relations into forces and moments

given by Egs. (6.14), (6.15), and (6.16) yields special mathematical relations.
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6.3.1 Equal Planet Spacing
In-Phase

Zs
When P

€ Z, then k = 0. An in-phase design is independent of the harmonic
p. Forces and moments on the sun and ring at a given planet mesh, from Eq. (6.14)

for k =0, in B?, are
Fl (t)=F, (t)=...=F) (), M (t)=Mj (t)=...=M} (t) (6.17)

so forces and moments at each planet mesh on the sun and ring are identical. The

resultant forces and moments on the central members are given in Eq. (6.15) for

k=0, in B!, as
0 0
Fi(t) = 0 , MI(t) = 0 (6.18)
NR [ fh-3eiret] NR [ml-3eiret]

so radial forces and tilting moments vanish, but axial thrust and torques exist. The

net forces and moments on a planet, by Eq. (6.16), in B, are equal
FPL(t) = —F5 (1) = ... = =F§, (1), Mp,(t) = —M5 (1) = ... = —=M5,(¢)
(6.19)

Sequential-Phase (Out-of-Phase)

If a design is not in-phase k # 0, then it is out-of-phase. An out-of-phase design

for equally-spaced planets fall into two subcategories: sequential-phase and counter-
pls+ 1

phase. Sequential-phase is defined by € Z, then k =1,N —1 (or k = £1).
It exists for any number of planets N > 2. A three planet design, if out-of-phase,

can only be sequentially-phased because only k = 1 or k£ = 2 are possible. Forces and

moments on the sun and ring from each planet, given in from Eq. (6.14) in B?, are
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related by

F?,p(t) =R [(fg cos oy £ jf]f sin ai) ejpwt}

_ (6.20)
Mﬁp(t) =R [(m;‘ cos oy ij sin o ) 7]
The resultant forces and moments on central members, from Eq. (6.15) with k = +1,
are
h % (fp:’l + jfp:’2) ipwt h % (m%l + j:m%g) jpwt
Bi =® | [ X (fhesifh) |er | Mo =R || ¥ (mh2 s mb) | e
0

0

(6.21)
so the pth harmonic of radial forces and tilting moments exist, but the axial thrust

and torques vanish. The net forces and moments on each planet from Eq. (6.16) are
related by

1
Fy,(t) =

- R [(f;j cos a; + jf7 sin ai) ejpwt:|

| (6.22)
Mglp(t) R [(m; cos y; & jm} sin av;) /P

Counter-Phase (Out-of-Phase)

In systems with four or more planets (N > 3), more out-of-phase designs are possi-

ble that are not sequentially-phased. Counter-phase is defined by k =2,3,..., N —2.
Forces on the sun and ring from each gear mesh, given by Eq. (6.14) for k =

2,3,...,N —2 at the pth harmonic, are
th,p(t) =R [(fg cos ka; + jf]f sin kOéi) ejpwtﬂ
‘ (6.23)
M?,p(t) =R [(m;‘ cos kay; + jm;‘ sin ]{;ai) ejpwt)}

The resultant forces and moments on central members, given by Eq. (6.15) for k =

2,3,..., N — 2 vanish

F(t) = (0,0,0)", MZ.(t) = (0,0,0)" (6.24)
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The forces and moments on a planet from Eq. (6.16) are
1 c -eC o :  pw
FP () = — R [(£; cos ka; + jf5 sin kay;) e/P)]
(6.25)
MP (1) = — R [(m cos ka; + jm: sin kay) eP')]
Equation (6.25) reveals that force and moment fluctuations on any planet can be
represented by a constant multiple w; of the force and moment fluctuations on the
first planet, given by
Ff,lp(t) =R [w; (£° cos kay + jE¢ sin kay) e?h))
lep(t) =R [w; (m cos kay + jmS sin kay ) e’P)] (6.26)
w; —eik(ai—a1)
The same argument is valid for individual mesh force and moment fluctuations on
the sun and ring gear by Eq. (6.23); the force and moment fluctuations from any
planet mesh can be represented by a constant multiple w; of the force and moment

fluctuations from the first planet mesh. These findings for equally-spaced planets are

summarized in Table 6.1.
6.3.2 Diametrically Opposed Planet Spacing

Using Eqs. (6.15) and (6.16), we get forces and moments for two cases: in-phase

(k: even) and out-of-phase (k: odd).

In-phase

When the planet meshes are in-phase, k: even (k + 1: odd). Substitution of

Eq. (6.12) into Eq. (6.15) and Eq. (6.16) gives the resultant forces and moments on
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Table 6.1: Forces and moments for equal planet spacing on central members and
planets at the pth harmonic, for given number of gear teeth on the sun Z,, and number
of planets N. In-phase relations are given by Eqgs. (6.18) and (6.19), sequential-phase
(Sq. ) relations are given by Egs. (6.21) and (6.22), and counter-phase (Ct. ) relations
are given by Egs. (6.24) and (6.26).

Central Members Planets
Phase | k =mod(pZ,, N) Pr:;r?esni;l ‘ 3—;)};2‘:15; wn :rﬂlf?rfcc)fr?ents
a)In | k=0 (forany p) | O # 0 Identical
b) Sq. E=1,N-1 #0 0 Related
c)Ct. | k=2,....N—2 10 0 Related

the central members and planets as

0 0
0 0
Fi(t) = N/2 , Ml(t) = N/2
R f}?,?; Z pikai gjpwt 2R mz,?) Z elkai gipwt
i=1 i=1
(6.27)
FP (1) = —R [foel™ ] | MP () = —R [me/ i eln'] (6.28)

so radial forces and tilting moments vanish but axial thrust and torques exist.

Out-of-phase

When the planet meshes are out-of-phase, k: odd (k 4 1: even). Substitution of

Eq. (6.12) into Eq. (6.15) and Eq. (6.16) gives the resultant forces and moments on
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the central members and planets as

Fl(t) =R
M (t) =R
FPl(t) =

(3! +it3?) %/j (7 4 D)
;V:/12 eIPet
(f;’Q . jf;,l) Z (ey’(k+1)ai + ej(k—l)ai)
i=1 . |
N/2
(m}?l + jm;’z) Z (ej(k+l)oci + 6j(k—1)ai)
;\72/12 eIt
(mf;z — jmf;l) Z (ej(kﬂ)o‘i + ej(k_l)o"')
i=1 .
—R [l L MP(t) = —R [mSe/ el

(6.29)

(6.30)

so axial thrust and torques vanish but radial forces and tilting moments exist. These

findings for diametrically-opposed planet spacing are summarized in Table 6.2.

Table 6.2: Forces and moments for diametrically-opposed planet spacing on central
members and planets at the pth harmonic for given number of gear teeth on the sun
Zs. In-phase relations are given by Egs. (6.27) and (6.28), and out-of-phase relations
are given by Egs. (6.29) and (6.30).

Central Members
Phase k= pZ, Radial | Axial thrust
forces | and torque
a) In | k: even (for any p) | 0 £0
b) Out k: odd £0 0
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6.4 Conclusions

Net force and moment fluctuations in planetary gears with equally-spaced and
diametrically-opposed planet spacing are formulated. There are two general fluctu-
ations of forces and moments: in-phase and out-of-phase. The formulation depends
solely on the circumferential symmetry of planetary gears and thus is independent of
the physical model. The findings apply to static and dynamic cases and to systems
with axial asymmetry, e.g., gears may be helical and shafts may be overhung from
bearings. One can eliminate certain harmonic components of fluctuating forces and /or
moments on central members using the rules given in Table 6.1 with equally-spaced
planets and in Table 6.2 with diametrically-opposed planets.

For equally-spaced planets, if a design is in-phase, all mesh force and moment
fluctuations are in-phase at any harmonic. An out-of-phase design can fall into either
sequential-phase or counter-phase cases. Force and moment suppression rules are

summarized below:

1. In-phase, k = 0. Net radial force and tilting moment fluctuations on central
members vanish but axial thrust and torque fluctuations exist. All net force

and moment fluctuations on each planet are identical.

2. Sequential-phase, k¥ = +1 (or K = 1, N — 1). Net axial thrust and torque
fluctuations on central members vanish but radial force and tilting moment
fluctuations exist. All net force and moment fluctuations on each planet are

related with a known transformation given in Eq. (6.22).
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3. Counter-phase , k =2,3,..., N — 2. All net force and moment fluctuations on
central members vanish. All net force and moment fluctuations on each planet

are multiples of one another, as given by Eq. (6.26)

For diametrically-opposed planets, if a design is in-phase, all mesh force and moment
fluctuations are in-phase at any harmonic. Otherwise, the fluctuations depend on the

harmonic of interest as summarized below:

1. In-phase, k : even. Net radial force and tilting moment fluctuations on central

members vanish but axial thrust and torque fluctuations exist.

2. Out-of-phase, k£ : odd. Net axial thrust and torque fluctuations on central

members vanish but radial force and tilting moment fluctuations exist.
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Chapter 7: Conclusions and Future Work

7.1 Conclusions

This body of work investigates the vibration of gears that arise from the interac-
tions between 3-D motions of the gears and the 3-D nonlinear gear contact. The load
distributions along the gear contact lines generate tilting and twisting moments and
an axial thrust force as well as the useful power-transmitting mesh force. The load
distribution depends on relative angular twist and translational displacements, so the
gear mesh forces and moments respond to spatial gear motions. With large twisting
and translation of gears, portions of contact lines lose contact (partial contact loss),

thus introducing nonlinearity.

7.1.1 Nonlinearity in Gear Pairs Using a Lumped-Parameter
Model

A 3-D lumped-parameter model is developed to consider the nonlinear force and

moment transmission at the meshing gear teeth. The nonlinearity of the gear mesh

is due to partial contact loss. It is shown that the lumped-parameter model needs

only a translational stiffness acting at the calculated center of stiffness location and a

twist stiffness to account for the net force and moment arising from an arbitrary load

distribution including partial contact loss. The twist stiffness generates a moment,
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named spread-twist moment, which is solely due to the spread of contact across the
tooth face. The movement of the translational stiffness across the tooth face generates
an additional moment, named off-mid-plane moment. The total twist stiffness is the
sum of the spread-twist and the off-mid-plane twist stiffnesses.

The translational and twist stiffnesses and the center of stiffness location depend
strongly on the relative translation and twist at the gear mesh. Tooth surface modi-
fications smoothen the translational stiffness profile and decrease the twist stiffness.
Spur gears have a symmetric nonlinear twist stiffness profile, while helical gears have
an asymmetric twist stiffness profile. The twist stiffnesses fluctuate periodically with
gear rotation except for aligned spur gears. The resulting fluctuating moments excite
twisting vibrations.

7.1.2 Twisting Vibration and Partial Contact Loss in Gear
Pairs

In a gear pair, there are two gear mesh modes: 1) a mesh twist mode where the
twist stiffness is active, and 2) a mesh deflection mode where the translational stiffness
is active. Resonances of both modes are nonlinear due to partial contact loss.

Near the mesh deflection mode resonance with modified gears, there is partial
contact loss evident from the dynamic contact pattern and differences between the
static and dynamic translational mesh stiffness. With increasing vibration ampli-
tude, the dynamic translational stiffness decreases and so does the dynamic natural
frequency. Consequently, the peak response frequency is lower than the natural fre-
quency. Unmodified gears exhibit only total contact loss, if at all. Modifications
combined with dynamic displacements, therefore, give rise to partial contact loss in

the mesh deflection mode resonance.
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Dynamic response near the mesh twist mode is nonlinear as a result of partial
contact loss. This is seen from the increasing distortion in the dynamic contact pattern
as the mesh frequency nears the mesh twist mode natural frequency. The nonlinearity
is also evident in the dynamic spread-twist stiffness; it gradually deviates from the
static stiffness as the operating mesh frequency approaches the natural frequency. The
resonant peak occurs at a higher frequency than the natural frequency because of the
nonlinear properties of total pinion and gear twist stiffnesses and the coupling-twist
stiffnesses. In particular, the drop in the dynamic mean value of the coupling-twist
stiffness increases the dynamic natural frequency and so the resonant frequency.

Partial contact loss, whether it is a consequence of mesh deflection combined with
tooth surface modifications or mesh twist, makes the dynamic response nonlinear. At
nonlinear peaks, the dynamic contact load distribution is distorted compared with
the static contact load distribution.

7.1.3 Nonlinear Vibration of Gears with Tooth Surface Mod-
ifications and Sphere/Half-Space Contact

An analytical solution for the nonlinear vibration of gear pairs that exhibit partial
and total contact loss is given. The gear teeth can have arbitrary tooth surface
modifications. Unlike models in the literature that are excited by static transmission
error or time-varying mesh stiffness, neither the excitation nor the nonlinearity are
a priori specified. Instead, the excitation and the nonlinearity arise from Fourier
and Taylor series expansions of the force-deflection function, which is provided by
an independent source, such as a finite element model or Hertz contact formula.
Quadratic and cubic nonlinear terms capture partial contact loss nonlinearity. Time-

dependent fluctuations give dynamic excitation.
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Although this work focuses on gear pairs with tooth surface modifications, the
physical system from which the force-deflection function comes is not limited to gear
pairs; sphere/half-space contact vibrations are also analyzed.

The method of multiple scales gives the dynamic response in terms of a frequency-
amplitude relation. Comparisons with experiments from the literature on gear vibra-
tions and sphere/half-space contact vibrations verify the method. The perturbation
solution traces the nonlinear response due to partial contact loss and total contact
loss. The nonlinear dynamic response deviates from linearized dynamic response al-
though gear contact is maintained. This is the result of dynamic partial contact
loss. Total contact loss appears in cases where the vibration amplitude exceeds an
analytically found threshold value.

7.1.4 Modal Properties of Three-Dimensional Helical Plan-
etary Gears

The structured modal properties of single-stage helical planetary gears with equally
spaced planets are categorized and mathematically proved. The equivalent stiffness
model of the gear mesh enables dynamic analysis of 3-D helical planetary gears. Three

types of modes are observed following the modal analysis of a few example systems:

1. Rotational-axial modes: The central members rotate and move axially but do
not tilt or translate. The modal deflection of the planets are identical. There

are 12 rotational-axial modes with distinct natural frequencies.

2. Translational-tilting modes: The central members tilt and translate in-plane

but do not rotate or move axially. The modal deflections of all planets are
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related to one another according to Eq. (5.54). There are 12 pairs of degenerate

translational-tilting modes with natural frequency multiplicity two.

3. Planet modes: Only the planets have modal deflection. Fach planet’s modal
deflection is a known scalar multiple of any other planet’s modal deflection. The
central members do not move. There are six planet mode sets, where each set
consists of p—3 degenerate (for p > 4) modes having the same natural frequency.

Planet modes exist only for systems with four or more planets (p > 4).

These three types of modes are mathematically proven to be the only possible
mode types. The proof consists of constructing a candidate mode from the observed
properties listed above and substitution of these candidate modes into the full eigen-
value problem. This substitution yields three uncoupled reduced eigenvalue problems,
the modes from which account for all the modes of the complete system, thus com-
pleting the proof. The properties of the vibration modes persists for systems that are
not symmetric about the plane of the planetary gear, for example, different bearing
stiffnesses at shaft ends, shaft stages with different thickness, and overhung shafts.
7.1.5 Vibration Suppression Rules for 3-D Helical Planetary

Gears Using Mesh Phasing

A set of rules is found that eliminates certain harmonics of the net force and mo-
ment fluctuations on the central members (sun, ring carrier) of planetary gears. The
analysis method relies solely on circumferential symmetry. The only distinguishable

feature of one planet mesh from any other is its relative phase angle. The analysis
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is independent from modeling assumptions provided that the system behaves lin-
early and is isotropic. The findings apply equally to static and steady-state dynamic
response.

For equally-spaced planets, 3-D force/moment fluctuations from the gear mesh
fall under three categories: 1) In-phase, 2) Sequential-phase, and 3) Counter-phase.
Considering the forces and moments on central members, in-phase designs eliminate
net radial force and tilting moment fluctuations, sequential-phase designs eliminate
net axial thrust and torque fluctuations, and counter-phase designs eliminate all net
force and moment fluctuations. These three phasing conditions yield distinctive re-
lations in force and moment fluctuations on each planet and each mesh. In counter-
phase designs, the net force and moment fluctuations on any planet are a known
constant multiple of the net force and moment fluctuations on the arbitrarily chosen
first planet. For diametrically-opposed planets, there are two phasing conditions: 1)
In-phase, which eliminates net radial force and tilting moment fluctuations on the
central members, and 2) Out-of-phase, which eliminates net axial thrust and torque

fluctuations on central members.

7.2 Future Work

7.2.1 Equivalent Stiffnesses as Approximate Functions to Re-
place Contact Algorithms in Dynamic Analysis

The translational and twist stiffnesses and the center of stiffness depend on rel-

ative mesh deflection, relative mesh twist, and time. This dependence may be ap-

proximated using a polynomial curve-fit and Fourier series. Preliminary polynomial

approximation for the translational stiffness, spread-twist stiffness, and the center of

stiffness are shown in Figure 7.1. Comprehensive approximations must include mesh
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deflection 0, twist 7, and time ¢ such that
b =k (0,7:1), ke=ke (,7,t), b=b(d,t), e=c(0,7t)  (T.1)

These approximate functions for the mesh stiffness, twist stiffness and center of stiff-
ness can replace contact algorithms to enable fast nonlinear static and dynamic anal-

ysis.
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Figure 7.1: Numerical data (solid line) and cubic polynomial approximation P =
Z a;7" (dashed line). (a) Mesh stiffness k,, versus mesh deflection with az = 0.03,
i=1

as = —0.11, a; = 0.31, a9 = 2.12. (b) Spread-twist stiffness k; versus mesh twist with

ag = 1.47, a3 = 0.29, ay = —9.71, a1 = —1.4, ap = 19. (c) Center of stiffness stiffness
¢ versus mesh twist with a3 = —0.77, a, = —0.15, a; = 6.3, ag = 0.68.

7.2.2 Analytical Solution for Twisting Vibrations of Gear
Pairs

There is a twist vibration mode in gear pairs as explored in Chapter 3, and its

resonance is nonlinear. In a twist vibration mode, only pinion and gear twist degrees-

of-freedom 6, and 6, are active. As one degree-of-freedom system approximates mesh
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deflection vibrations [11,26,30], it is likely that a two degree-of-freedom system can

approximate the twist vibrations. Such approximation is given by

() (L i ]ee) () -0 o
where [, and I, are pinion and gear inertias, k,; and kg are the total pinion and gear
twist stiffnesses, k. is the coupling twist stiffness, and B contains the appropriate
boundary conditions, for example, bearing stiffnesses. Fluctuating twist moments
my(t) and m,(t) can approximate vibration excitation. Figure 7.2 compares the in-
stantaneous dynamic twist stiffnesses at twist mode resonant frequency with the static
mean value of twist stiffness at a twist angle for a helical gear pair with modifications.

The dynamic and static values are not very different, so in a polynomial approximation
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Figure 7.2: Instantaneous dynamic twist stiffnesses in a mesh period (dots), mean
value of twist stiffness in a mesh period for a twist angle (solid line). (a) Pinion twist
stiffness k. (b) Gear twist stiffness k. (c) Coupling twist stiffness k.

(curve-fit) for twist stiffnesses time and mesh deflection dependence may be neglected.
That makes twist stiffnesses functions of relative twist k,; = k, (7), and so on, with
perhaps only quadratic coefficients. If this approximation is verified, a perturbation
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method or harmonic balance can be applied to give closed-form expressions for the

nonlinear twist vibrations.

7.2.3 Nonlinear 3-D Vibration of Planetary Gears

This work focused on linear vibration of planetary gears using modal analysis with
a rigid body model, so it has not explored the nonlinear dynamics or the dynamics
when gear components vibrate as elastic bodies. There is preliminary experimental
evidence of partial contact loss in planetary gears, plotted in Figure 7.3. The resonant
frequencies depend on applied torque, which suggests partial contact loss. Dynamic
response may become nonlinear in a fashion similar to the ones observed in Chapter

3. If the gears are helical, twist vibrations could be excited with ensuing nonlinear

response.

20- |

% " 110 ftlb; [——1

g ¥ 220 frlb, o]

2 440 frloy [=——=1

= 15

=

5

& ]

g T\ P
0'1 T
150 200 250 300 350

Response Frequency (Hz)

Figure 7.3: Dynamic response of spur planetary gears with tooth surface modifica-
tions on planets. Data is courtesy of Tristan M. Ericson using the test gears at the
Dynamics and Vibrations Laboratory of The Ohio State University Mechanical and
Aerospace Engineering Department.
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The modal properties presented in Chapter 5 may not hold under dynamic reso-
nant conditions. For example, if the resonance of a rotational-axial mode is nonlinear,
then the symmetry of the system may be destroyed, which in turn destroys the clas-
sification of mode types. Whether this occurs, and if it does, to what extent remains
to be seen. Similarly, vibration suppression rules may not hold if the dynamic re-
sponse becomes nonlinear. Large elastic deformations of, for example, the ring gear
may destroy the circumferential symmetry upon which the vibration suppression rules

rely.

7.2.4 Verification and Extension of Vibration Suppression
Rules

The set of rules that eliminate the net force and moment fluctuations needs to be
computationally verified. The analysis must test that the force and moment fluctua-
tions are eliminated with proper mesh phasing with: 1) Axially asymmetric system
with uneven load distribution and staged shafts, 2) Static and dynamic operating
conditions, 3) Elastic ring, sun, and carrier.

The vibration suppression rules come from circumferential symmetry, the period-
icity in the gear meshing action, and planet spacing. The symmetry may still exist (or
be destroyed) with other structural features such as splines on the ring gear, or bore
holes on gears. The set of rules for vibration suppression, if it indeed exists, may be
extended to include spacing of such modifications to the system. The use of splines
and other such features in real-world applications make this extension practically

important.
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