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Post-transcriptional regulation is carried out by RNA-binding proteins (RBPs) that

bind to specific RNA molecules and control their processing, localization, stability and

degradation. Experimental studies have successfully identified RNA targets associated

with specific RBPs. However, because the locations of the binding sites within the

targets are unknown and because RBPs recognize both sequence and structure elements

in their binding sites, identification of RBP binding preferences from these data remains

challenging.

The unifying theme of this thesis is to identify RBP binding preferences from experi-

mental data. First, we propose a protocol to design a complex RNA pool that represents

diverse sets of sequence and structure elements to be used in an in vitro assay to efficiently

measure RBP binding preferences. This design has been implemented in the RNAcom-

pete method, and applied genome-wide to human and Drosophila RBPs. We show that

RNAcompete-derived motifs are consistent with established binding preferences.

We developed two computational models to learn binding preferences of RBPs from

large-scale data. Our first model, RNAcontext uses a novel representation of secondary

structure to infer both sequence and structure preferences of RBPs, and is optimized

for use with in vitro binding data on short RNA sequences. We show that including

structure information improves the prediction accuracy significantly. Our second model,

MaLaRKey, extends RNAcontext to fit motif models to sequences of arbitrary length,
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and to incorporate a richer set of structure features to better model in vivo RNA sec-

ondary structure. We demonstrate that MaLaRKey infers detailed binding models that

accurately predict binding of full-length transcripts.
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Chapter 1

Introduction

Gene expression is regulated at multiple levels to precisely control the concentration of

macromolecular components according to the physiological needs of the cell(s). Most

of the research in the last decades has focused on the first layer of gene regulation,

namely the transcriptional control mediated by transcription factors that bind to DNA

and promote the initiation of transcription. Weak correlation observed between the

number of transcripts and protein products of a gene indicates that the control of

the post-transcriptional steps has a substantial regulatory impact as well [1, 2]. Post-

transcriptional regulation (PTR) is the control of gene expression at the mRNA level,

between transcription and translation. PTR controls all aspects of RNA processing in-

cluding splicing, stability, localization and degradation, and is mediated by numerous

factors with major players being the RNA-binding proteins (RBPs).

RBPs contain one or more RNA-binding domains that recognize specific sequence and

structure elements in short regions of RNA. Eukaryotic genomes encode for hundreds of

RBPs, and each RBP binds to a set of unique targets. Combinatorial binding of multiple

RBPs to functionally related mRNAs suggests the existence of a multi-dimensional net-

work that dynamically coordinates the fates of mRNAs in response to various conditions

[3–8].
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Chapter 1. Introduction 2

The importance of RBPs is further emphasized by their involvement in a variety of

diseases including developmental and cellular defects, as well as cancer [9]. For example,

Fragile X syndrome is caused by the loss of function mutation in the 5’UTR of the

RBP Fmr1 [10]. Besides the mutations of RBPs, mutations in cis-acting elements that

correspond to RBP binding sites can also lead to disease. Most prominent are point-

mutations that cause splicing defects [11]. A striking example is the mutation in the

exonic splicing signal of the SMN2 gene that disrupts the binding of the splicing factor

SF2/ASF, which in turn causes spinal muscular atrophy [12].

Detailed understanding of the role of RBPs in disease, and predicting the role of

disease-associated polymorphisms, requires the identification of cis-acting elements in the

transcripts to which RBPs bind. However, targets of most RBPs remain uncharacterized.

Experimental methods developed in the past decade promise to fill this gap by expanding

our knowledge of RBP binding targets using in vivo or in vitro techniques. In vivo

methods have the potential to identify the genome-wide targets of the RBPs; however,

some of these methods require RBP-specific antibodies, and are restricted in the cell

types that they can query binding. In vitro methods isolate the RBP-RNA interactions

in non-biological conditions; though, they have the advantage of providing a complete

characterization of the sequences and/or structures that an RBP can, or cannot bind.

Also, they can determine how disease-associated polymorphisms will impact the binding

of RBPs. However, the power of these methods strongly depends on the design of complex

RNA libraries.

Experimental methods provide noisy measurements of RBP affinity to several se-

quences, some of which contain one or more binding sites at unknown locations. Iden-

tification of binding preferences from such data requires the design of computational

models that can simultaneously infer the location and representations of the binding

sites. Several computational models have been developed addressing a similar problem:

identification of binding preferences of transcription factors (TFs). However, RNA sec-
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ondary structure, a key factor that is recognized by RBPs but not TFs, is ignored in

these models. As such, novel RBP-specific computational models are needed to elucidate

RBP binding preferences.

This thesis consists of two parts that relate to the overall goal of identifying RBP

binding preferences from experimental data. In the first part, we aim to design an

optimized RNA pool for use in an in vitro tool for rapid characterization of RBP binding

sites. In particular, our pool design allows us to efficiently query the entire space of

possible k-mers (i.e. ”k” base RNA sequences) as well as selected elements of RNA

secondary structure. An important contribution of our design is the consideration of RNA

secondary structure, which is ignored in most of the current pool designs. Our design has

been experimentally implemented and applied to several RBPs across different organisms.

The analysis of the output data shows that the method is able to systematically identify

the sequence and structure preferences of RBPs.

In the second part of this thesis, we develop computational models to elucidate RBP

binding preferences from experimental data. Existing models that are used to identify

RBP binding preferences either ignore RNA secondary structure completely, or use lim-

ited representations of it. To address this absence, we introduce a novel representation

of RNA secondary structure that takes into account the distribution of all possible sec-

ondary structures that a sequence can assume. This representation allows us to query

general (i.e. paired or unpaired) or detailed (i.e. in a hairpin loop) types of structural

contexts that a base is in. We incorporate this representation in a motif model, and

show that including structure information improves the prediction accuracy for several

RBPs. We also extend our initial model to query a much richer set of secondary structure

features, and show how to construct detailed models of RBP binding.

This thesis is organized into six chapters as follows:

• Chapter 2 provides background on RBPs and experimental methods to query RBP

targets. This chapter also gives a summary of existing motif models to identify RBP
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binding preferences, introduces RNA secondary structure and the computational

methods to predict it.

• Chapter 3 describes RNAcompete, an in vitro experimental method for rapid anal-

ysis of RBP recognition specificities with a pool containing diverse elements of

sequence and structure. In particular, we explain how we designed a complex pool

that conforms to several constraints defined by the experimental protocol.

• Chapter 4 describes RNAcontext, our initial work on identification of sequence

and structure preferences from large-scale binding data. We introduce a novel

representation of RNA secondary structure, and show that incorporating structural

information improves the prediction accuracy for several RBPs.

• Chapter 5 describes MaLaRKey, extension of RNAcontext that incorporates a much

richer set of secondary structure features, and that uses a motif scoring model

suitable for input sequences of arbitrary length. We show that detailed models of

RBP binding can be constructed with the use of these features.

• Chapter 6 summarizes our findings and provides some possible future directions for

this work.



Chapter 2

Background and Literature Review

This chapter is intended to cover the main concepts required to understand later chap-

ters, and to examine the relevant literature in the field. First, we give an introduction

to RNA-binding proteins (RBPs) and the mechanisms by which RBPs recognize their

targets. Since identification of RBP targets is crucial for understanding their function,

several experimental methods have been developed to identify RBP targets. We continue

with a summary of these methods, and also discuss their limitations. We explain why

computational models are still needed to identify RBP binding preferences. Then, we

provide background on RNA secondary structure: an important factor to consider in

modeling RBP binding. Finally, we review existing computational models to identify

binding preferences of RBPs.

2.1 RNA-binding proteins and their roles

In order to relay the information stored in DNA, portions of DNA (i.e. genes) are copied

or transcribed to RNA molecules called messenger RNAs (mRNAs). Unlike DNA, which

resides in the nucleus, mRNAs can move around the cell and serve as genetic messengers

by carrying instructions that are necessary for protein synthesis (i.e. translation).

RNA binding proteins (RBPs) are key factors in regulation of gene expression at the

5
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mRNA level, also called post-transcriptional regulation. These proteins bind to target

mRNAs and control multiple aspects of RNA processing including splicing, stability, lo-

calization and degradation (Figure 2.1) [13]. Individual RBPs typically have hundreds

of targets, and the combinatorial binding of multiple RBPs to mRNAs suggests the exis-

tence of a multi-dimensional network that dynamically coordinates the fates of mRNAs

in response to various conditions [3–8].

Not surprisingly, alterations in the activity of RBPs are associated with many human

diseases such as fragile X syndrome, muscular atrophies, breast and lung cancer [9].

However, the biological mechanisms behind these associations are still unclear as many

RBPs have uncharacterized targets (and consequently functions). In the next section,

we discuss how RBPs recognize their binding sites.

Figure 2.1: Roles of RBPs in various post-transcriptional processes. RBPs have critical roles in
numerous cellular processes including splicing, transport, localization, stability and translation
(shown with numbers 1-5) that take place in the nucleus and cytoplasm. Figure taken from
[14].
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2.2 Binding mechanisms of RBPs

RBPs bind to their targets through one or more RNA-binding domains (RBDs). There

are about 40 different types of RBDs that are found to be involved in RNA binding [15].

Some of these domains are quite abundant and found in hundreds of proteins such as

RNA recognition motif (RRM) and K homology domain (KH), whereas some others are

seen only in specific organisms. The diverse activities of RBPs would suggest a similar

diversity in their RBDs; however, the architecture of RBPs is more simple. Most RBPs

are constructed from few individual domains that often recognize short RNA stretches

with weak affinity. The versatility in affinity and specificity is achieved by combining

multiple domains in variable number of copies and with different arrangements.

Unlike DNA-binding proteins, which recognize the sequence content of their binding

sites, many RBPs recognize both the sequence and the secondary structure of their

binding sites. This difference is because of the different helical configurations adopted

by DNA and RNA. DNA assumes a B-form helix where the major groove is wide and

easily accessible by proteins. In contrast to the B-form helix, the A-form helix formed by

RNA has a major groove that is too deep and narrow for proteins to access and recognize

the bases therein. As such, most RBPs recognize single-stranded regions or openings in

double-stranded regions where the major groove has been widened by bulges or hairpins

[16]. For example, an HIV-1 protein TAT binds to three-nucleotide (UCU) bulge loops

with high affinity [17]. Puf3, a yeast RBP, contains a Pumilio-homology domain (PUM-

HD or PUF) consisting of 8 PUF repeats that each recognize a single nucleotide of the

motif UGUACAUA in single-stranded context (Figure 2.2-a) [18]. Another yeast RBP,

Vts1p, binds to hairpins with the loop consensus sequence CNGG (N stands for any base)

by means of its SAM domain (Figure 2.2-b)[19]. Staufen is a Drosophila RBP that binds

to double-stranded regions without any sequence preference [20]. These examples show

that some RBPs bind single-stranded RNA by direct readout of the primary sequence,

whereas others recognize primarily the structure of the RNA or both the sequence and
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the structure.

a b 

Figure 2.2: X-ray crystal structures of two RBP-RNA interactions. a) The interaction of Puf3
repeats (purple) with the RNA sequence CCUGUAAAUA (PDB 3K49)[18]. b) Structure of
Vts1p SAM domain (purple) contacting to the RNA sequence CUGGC in a hairpin loop (PDB
2B6G) [19].

The most common families of RBDs, RRMs and KHs, bind a variety of sequence and

structural contexts, and there is no known simple relationship between their amino acid

sequence and the RNA sequences they recognize. Recognition codes are lacking for the

vast majority of other RBDs as well. For this reason, several experimental methods have

been developed to investigate the binding specificities of RBPs. In the next section, we

give an overview of those that are relevant to this thesis.

2.3 Experimental methods to identify targets of RBPs

Experimental methods for detection of RBP binding sites can be classified into low-

throughput and high-throughput techniques. Also, depending on where the experiment

is carried out, these methods could be referred as in vivo (i.e. within the cell) or in vitro

(i.e. not within the cell but in some controlled environment) studies. In vivo methods
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have the advantage to query RBP-RNA interactions in biological conditions; however,

they may not identify direct interactions, and require prior knowledge on the experimental

conditions that the RBP is active. Also, some in vivo assays require engineering cells to

generate RBP levels that are much higher than normal and/or require analysing RBP

targets in cell cultures that are derived from the organism but are not representative of

the organism (e.g. HeLa cells). In vitro methods identify RBP targets in non-biological

conditions, but this also allows querying non-genomic sequences such as variants of the

wild-type binding sites and testing a wide range of interesting conditions (e.g. salts, pH)

that would be incompatible with traditional in vivo selection methods.

2.3.1 In vitro experiments

Selection of ligands by exponential enrichment

Selection of ligands by exponential enrichment (SELEX) is a low-throughput method for

in vitro detection of RBP targets [21]. High-affinity binding sequences are selected from

a randomized pool through multiple rounds of selection, purification and amplication.

The resulting RNAs are cloned and sequenced, providing a set of high-affinity targets.

Recently, SELEX is combined with massively parallel sequencing to analyze binding

preferences of proteins in a high-throughput manner [22]. One disadvantage of SELEX

assay is that it reveals only the highest affinity RNA targets, which do not necessarily

reflect the physiological targets.

RNAcompete

RNAcompete is a high-throughput in vitro method that estimates relative binding affini-

ties of selected RBPs to each RNA sequence in a defined population [23]. The experi-

mental protocol consists of three steps: (i) generation of an RNA pool comprising each

k-mer in a variety of structural contexts; (ii) a single pulldown of the RNAs bound to a

tagged RBP of interest; and (iii) microarray analysis of the relative enrichment of each

RNA in the bound fraction relative to the initial pool. The relative recovery of each
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RNA in the pulldown RNA population as compared to the total pool signal provides a

measure of binding preference. Chapter 3 describes the RNAcompete method in greater

detail.

2.3.2 In vivo experiments

RNA immunoprecipitation

Genome-wide immunoprecipitation studies allow identification of in vivo targets of RBPs

by querying cellular RNA. RNA immunoprecipitation (RIP) is a high-throughput method

that purifies RBP-mRNA complexes from cellular extracts and identifies protein-bound

mRNAs using either a microarray (RIP-chip) or high-throughput sequencing (RIP-seq)

[24, 25]. Targets identified with this method should be interpreted carefully since the

absence of a cross-linking step may allow RBPs to dissociate from their in vivo targets

and re-associate with higher affinity targets after cell-lysis [26]. Therefore, this method

may not measure the true in vivo interactions.

Cross linking and immunoprecipation

Cross linking and immunoprecipation (CLIP or HITS-CLIP) is proposed to eliminate the

re-association artifact by incorporating a ultraviolet light (UV) cross-linking step before

immunoprecipitation. This allows a more stringent washing procedure to reduce contam-

inants and eliminate interactions that occur after cell lysis [27]. Another advantage of

CLIP is the detection of binding sites with a resolution as few as a few hundred nucleotides

as opposed to some RIP methods that can provide information on only full-length tran-

scripts. This is achieved by the ribonuclease digestion step that liberates the binding

sites from full transcripts. PAR-CLIP, which stands for photoactivatable-ribonucleoside

enhanced crosslinking and immunoprecipitation, is a recent variant of CLIP technique

where cross-linked sites are enriched with a thymidine to cytidine transition [28] and

this is utilized for locating the binding sites in higher resolution. iCLIP, another CLIP-

based technique, utilizes the fact that reverse transcriptase stops at cross-linked sites to
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determine binding sites in higher resolution [29].

2.4 Limitations of current experimental methods

Recent developments in experimental methods are quite promising; however, it is also

important to realize their inherent limitations. To begin with, one of the most important

limitations is the possibility of identifying false-positive targets. This could be due to

non-specific binding and would be revealed as high-background effect in SELEX or RNA-

compete. Similarly, for CLIP experiments, false-positive targets could be identified due

to contamination with non-cross-linked sites. In RIP, false-positive targets might stem

from the re-association of the RBP with in vitro targets after cell lysis. Another source

of inaccuracy common to any of the mentioned experimental methods is the additional

noise introduced by the downstream method to identify bound sequences (i.e. microarray

or sequencing). Even when we ignore these limitations, identification of binding sites is

still difficult because the locations of the binding sites within these sequences are not

known. CLIP techniques can pinpoint binding sites within a couple hundred nucleotides

resolution, whereas methods like RIP-Chip (and most RIP-seq methods) can only pro-

vide binding information for full-length transcripts. In vitro experimental methods (e.g.

SELEX, RNAcompete) usually query short oligos (i.e. less than 50nts); however, the lo-

cation of the binding site within the oligo is still unknown. Altogether, these limitations

make the task of determining RBP binding sites challenging. In the next section, we

discuss how these challenges are being addressed by computational methods.

2.5 Computational identification of binding sites

As described in the previous section, experimental methods provide noisy measurements

of RBP affinity to several sequences, some of which contain one or more binding sites

at unknown locations. Hence, the input to computational models is a set of unaligned
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sequences and their associated observations. Computational models can be classified into

two groups based on how they treat the input. Models in the first group define a subset

of the sequences as bound (or unbound) based on a threshold and discard the rest of the

data. Binding sites can then be determined using only bound sequences or using both

bound and unbound sequences. Models in the second group adhere to the continuum

of binding principle, and utilize all the available sequences with associated quantitative

measurements.

Once the input is defined, the rest of the task amounts to finding patterns that explain

the input data. Namely, identified patterns should be over-represented in the sequences

that are likely to be bound. Since the locations of these patterns are not known, this task

requires simultaneously inferring the location and representations of the binding sites.

The former challenge can be handled either by treating the location of the binding site

as a hidden variable or by scanning across all possible starting positions. For the latter,

representations that can model the degeneracy of the binding sites have to be considered.

Typically, motif models fit parameters for all possible bases at every position in the site.

Also, unlike DNA motif finding models, models for RNA motifs have to consider the

secondary structure of the binding sites.

In the next section, we present an extensive discussion of different representations

of binding sites. Most of the discussed models are developed for DNA motif finding;

however, they are still relevant as they form the basis for RNA motif models.

2.6 Review of motif finding

There are two major classes of motif model representations for sequence preferences of

nucleic acid-binding (i.e. DNA-binding or RNA-binding) proteins (NBPs). The models

in the first class (hereafter ”word frequency (motif) models”) represent a probability

distribution over nucleic acid words. Models in the second class (hereafter ”affinity-
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based (motif) models”) parameterize a function that assigns the relative binding affinity

(or log binding affinity) of the protein for nucleic acid words.

Typically, algorithms that learn word frequency models take as input a set of se-

quences enriched for NBP binding sites and fit their models using maximum likelihood

or penalized maximum likelihood methods. Though recently methods that use different

point estimates of the parameter posterior have been developed [30, 31]. In contrast,

most algorithms that learn affinity-based models directly also take as input a numerical

value associated with each sequence. This value is interpreted as a measurement of the

binding affinity of the NBP for the sequence. Typically, these types of models require ex-

amples of both bound and unbound sequences. These types of affinity data have become

increasingly common [23, 32, 33] as have algorithms (including RNAcontext, see Chapter

4) to fit motifs using these values [34–39]. However, it is also possible to transform a

word frequency model into an affinity-based model, as we describe below.

2.6.1 Word frequency motif models

A key step in fitting word frequency motif models is using the input sequences to generate

counts of words that represent NBP binding sites; motif models are then fit to these

counts. Often generating these word counts, or expected word counts, is done as part of

procedure that iterates between attempting to locate the NBP binding sites within the

input sequences and refining the fit of the motif model [31, 40].

Formally, let {#P-s1,#P-s2, . . . ,#P-sN} be the counts (or expected counts) of how

often various words {s1, s2, . . . , sN} appear as binding sites of protein P in the input

set. Let Pr(s; Θ) be a word frequency motif model where Pr(s; Θ) is a probability

distribution over words s parameterized by Θ. Often, but not always, the support of

Pr(s; Θ) is nucleic acid words of a fixed, pre-defined length K. The parameters Θ can
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be learned by optimizing the fit to the empirical word probabilities, i.e.,

Pr(si; Θ) ≈ #P-si∑N
j=1 #P-sj

, ∀i. (2.1)

Until recently, NBP binding preferences were estimated from a relatively small number

of binding sites defined in vivo or through low-throughput in vitro selection procedures.

This small number of observations was insufficient to reliably estimate Pr(si; Θ) for each

word, and as such word probabilities for fixed-length motif models were estimated using

a product-multinomial model, commonly known as a position frequency matrix (PFM),

in which the distributions of bases at each position in the word are independent. In the

PFM, Pr(si; Θ) =
∏K

k=1 Θk,si(k) where si(k) indicates the k-th base in word si. This model

only contains a small number of parameters, 3K, and its maximum likelihood estimate is

easily found by setting Θk,si(k) = fk,si(k) where fk,si(k) is the frequency of si(k) at position

k. However, because PFM models are inaccurate representations of transcription factor

(TF) binding affinity [41, 42], a variety of more complex probability distributions have

been developed to model interactions between bases [43–47] or variable-spacing between

binding sites of obligatory heterodimers like bZIP or bHLH proteins [48].

2.6.2 Affinity-based motif models

These models are based on physical principles of protein-ligand interactions. In particu-

lar, consider the equilibrium reaction of binding of a protein P to the DNA or RNA word

s:

P + s
kon−−−⇀↽−−−
koff

P-s (2.2)

where kon and koff represents the protein binding and dissociation rates respectively.

The binding affinity of the protein for s can be expressed in terms of its equilibrium
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constant Ka(s):

Ka(s) =
[P-s]

[P][s]
=

kon

koff

(2.3)

where [P], [s], [P-s] correspond to the concentrations of the unbound protein, unbound

s, and the protein in complex with s, respectively. Affinity-based motif finding methods

fit parameters Ω of their motif models W (s; Ω) by trying to match their affinity estimates

for a given word s those implied by the input, i.e. W (s; Ω) ≈ Ka(s).

Note that, in addition to Ka(s), motif models in this class have also been designed

to estimate a number of other measures of binding affinity, e.g. the dissociation constant

Kd(s) = Ka(s)−1 , the log binding affinity logKa(s), or the relative binding affinity

CKa(s) up to an unknown constant C that is independent of s [36, 49]. The popular

position weight matrix (PWM) [50, 51] or the position-specific affinity matrix (PSAM)

[52] are examples of these types of models. Note also, that one can derive an estimate

of relative binding affinity W (si; Θ) implied by a word frequency model, Pr(si; Θ) by

dividing the latter by [si], i.e.

W (si; Θ) =
Pr(si; Θ)

[si]
≈

(
#P-si

/∑N
j=1 #P-sj

)
[si]

∝ Ka(si) (2.4)

For example, MotifRegressor [34] uses this approach, approximating [si] with a third-

order Markov model trained on background sequence, to translate word frequency models

fit by MDScan [53] into affinity-based models suitable for scoring sequences.

2.6.3 Estimating sequence affinity from word affinity

As mentioned in the previous sections, rarely do the sequences input into motif finding

algorithms consist of delineated binding sites. Furthermore, the input sequences ”en-

riched” for binding sites can contain more than one binding site, or possibly none at all.

As such, an important component of any motif finding procedure is a sequence scoring
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function that takes as input the probabilities or affinities assigned to each word by the

motif model and outputs a ”score” for the entire sequence that reflects the number of

likely NBP binding sites therein and their strength.

Word frequency motif models are usually paired with probabilistic generative models

of sequences. The ”score” computed by these generative models for an arbitrary sequence

is the probability of generating the sequence under the model. MEME is a widely used

DNA motif finding method of this kind [40]. A mixture model is used to generate a

sequence from a combination of a motif model and a background model, where the

former is parameterized by a multinomial distribution and the latter is parameterized

with a vector of letter frequencies. Locations of the motifs are treated as hidden variables

and a uniform prior distribution is often used for possible motif start positions. Though,

these priors can be changed to incorporate other knowledge about the location of the

binding site (see next paragraph), or to incorporate information about RNA accessibility

(see Section 2.8.2). These hidden variables and the parameters of the motif model are

simultaneously estimated using Expectation Maximization (EM) algorithm [54].

Further refinements to generative models of sequences employ, for example, hidden

Markov models to model steric hindrances that prevent overlapping binding sites and/or

to model clustering of binding sites within cis-regulatory modules. A good summary of

recent work in this area is provided in [55]. One advantage to this approach is that it

is easy to incorporate competition for NBP binding sites from, for example nucleosomes

[56] or internal RNA secondary structure [57], by assessing a prior probability on possible

NBP binding sites according to the strength of competition for the site. A disadvantage to

this approach is that the physical interpretation of these generative probabilities becomes

difficult when there are multiple binding sites within a sequence.

There remains some controversy about the best approach for scoring sequences using

affinity-based motif models. Early algorithms (e.g. MotifRegressor [34], MatrixREDUCE

[36]) used the sum of the affinities of each word in the sequence as an estimate of the
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NBP affinity for the entire sequence. One criticism of this approach is that the number

of proteins bound to the sequence (also called the ”occupancy” of the sequence) also

depends on the number of proteins initially available for binding. So, if the initial protein

concentration is low and the sequence has many high affinity binding sites, the actual

occupancy of the sequence can be much lower than its potential occupancy implied by

the estimated affinity. To address these concerns, some sequence scoring functions use

affinity-based motif models to compute a function N(s), the ”occupancy” of word s [58–

60], that also considers the initial concentration of proteins available for binding. This

occupancy, which represents the proportion of words s bound by the protein, can be

expressed as follows:

N(s) =
[P-s]

[P-s] + [s]
. (2.5)

Note that dividing both sides with [P-s] gives:

N(s) =
1

1 +
[s]

[P-s]

(2.6)

Now we can rewrite the occupancy in terms of Kd(S) since
[S]

[P-s]
is equal to

Kd(S)

[P]
:

N(s) =
1

1 +
Kd(s)

[P]

(2.7)

which is equal to:

N(s) =
1

1 + exp(logKd(s))− log[P])
(2.8)

So, given an affinity-based motif model W (s; Ω) of binding affinity Ka(s) = Kd(s)−1,

measured under the same conditions, one can calculate an estimate N̂(s) of occupancy

as follows:

N̂(s) =
1

1 + exp(− logW (s; Ω)− log[P])
. (2.9)



Chapter 2. Background and Literature Review 18

When fitting an affinity-based model using occupancy-based scoring, one can represent

the often unknown constant log[P] with a bias β and train it while fitting the model.

Note also, that one can adapt an existing affinity-based motif model W̃ for an NBP to

predict occupancy under different experimental conditions (i.e. a change in temperature)

by also introducing a scale α, so that the final model becomes:

N̂(s) =
1

1 + exp(−α log W̃ (s; Ω)− β)
. (2.10)

As we will describe in Chapter 4, in RNAcontext, we replace α log W̃ (s; Ω) ≈ logKd(S)

with
∑K

k=1 Θk,s(k) where Θ represents the model parameters. So that we write equation

2.10 as follows:

N seq(s) = σ(
K∑

k=1

Θk,s(k) + bias) (2.11)

where σ(x) = 1/(1 + e−x) is the logistic function.

Occupancy-based sequence scoring functions include those that simply sum the occu-

pancy of all words in the sequence [58], those that calculate the probability that at least

one site in the sequence is bound using the ”noisy-OR” function [60], and more complex

schemes that consider competitive and cooperative binding [60, 61].

2.7 RNA secondary structure

A single-stranded RNA molecule can fold back onto itself forming a secondary structure.

After the formation of secondary structure, higher order interactions can occur to form

the tertiary structure. The secondary or tertiary structure of an RNA can be determined

using experimental techniques including X-ray crystallography, nuclear magnetic reso-

nance (NMR) spectroscopy and cryo-electron microscopy. However, these methods are

difficult and time-consuming. Also, structures of many RNAs cannot be characterized by

these methods because of their conformational flexibility or large size. Recently, advances
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in RNA structure analysis by chemical probing increased the accuracy and the through-

put of probing experiments [62–64]. The idea is to treat the RNA of interest (or RNA

pool) with a chemical reagent that leaves an imprint on the RNA molecule (or ensemble

of RNA molecules). These imprints can then be used to reveal which nucleotides are

in double-stranded (i.e. paired) or single-stranded (i.e. unpaired) conformation. These

experiments, however, only report partial information of the structure.

Computational prediction methods have provided a valuable alternative to the dis-

covery of RNA secondary structure. Most of the existing computational methods only

aim to predict secondary structure since less is known about higher-order interactions

that form the tertiary structure. This simplification is supported by the fact that the

interactions that govern the secondary structure are stronger than tertiary interactions,

and can be determined independently [65].

RNA secondary structure can be represented formally by assigning an index to each

base in the RNA sequence. RNA molecule has a chemical orientation: the left end of

the sequence is the 5’ end and the right end of the sequence is the 3’ end. The bases of

an RNA molecule can be indexed starting from the 5’ end and proceeding towards the

3’end. If we assume that the indexing starts from 1 and the length of the sequence is

N, a secondary structure S can be defined as a set of pairs i − j, 1 ≤ i < j ≤ N where

each base is only paired with at most one other base. Most common base pairs are the

Watson-Crick pairings A-U, G-C and the wobble pairing G-U. An example secondary

structure is shown in Figure 2.3. A stack of base pairs is called a stem. Unpaired regions

that are enclosed by one or more base pairs are called loops. Loops can be annotated as

hairpin loops, internal or bulge loops, or multi-loops depending on the number of closing

base pairs. A pseudoknot, which is not shown in the figure, is a structural motif that

involves non-nested, crossing base pairs. Most of the existing models ignore pseudoknots

because they make the computational task much more difficult due to the violation of

nestedness.
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Figure 2.3: An RNA secondary structure example. One or more consecutive base pairs form a
stem. Unpaired bases form various kinds of loops (shown in blue) which are classified according
to the number of neighboring stems; hairpin loop, when there is a single closing base pair, bulge
or internal loop, when there are two closing base pairs, multi-loop when there are more than two
closing base pairs and, external loop if the unpaired bases are at the ends of the sequence. The
same structure is shown with a dot-parenthesis notation on the bottom of the figure. In this
notation, a matching pair of parentheses indicates a base pair and a dot denotes an unpaired
base.

Algorithms for RNA secondary structure prediction fall into three general categories:

(i) comparative methods that infer the secondary structure common to aligned sequences

across conserved species; (ii) thermodynamic methods that predict the structure with the

minimum free energy (MFE); and (iii) probabilistic models that use parameters learned

from known structures to predict unknown structures. The comparative approach is the

most accurate method when several aligned homologous RNA sequences are available [66].

The idea is to find base pairs that covary across the aligned sequences (e.g. compensatory

mutations). Most of these methods use aligned sequences to infer a consensus secondary

structure using a combination of energy-based scores and covariation scores [67, 68].

These methods are limited to data sets where the sequences are similar enough to get

a reliable alignment yet divergent enough to find covarying base pairs. If this is not

the case, ”Sankoff algorithm” can be used to simultaneously align and infer a consensus
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structure; however, this algorithm requires extreme amounts of memory and time [69].

Current approaches that employ simultaneous folding and alignment either limit the

size or shape of substructures, (SLASH [70], Dynalign [71], pmcomp [72]) or exploit the

sparsity in probable base pairings and aligned nucleotides (RAF [73]).

The second class of methods use a set of thermodynamic parameters that predict

the folding free energy of a given structure and a dynamic programming algorithm

to find the structure with minimum free energy [74, 75]. However, since thermody-

namic parameters have substantial uncertainities and an RNA molecule can fold into

multiple structures during its lifetime, the predicted MFE structure may not be the

real, functional structure. To address the latter concern, instead of a single structure,

some methods consider the distribution of possible structures. RNAshapes is one such

method that can be used to enumerate secondary structures within a certain energy

range of the MFE [76]. The probability of an individual secondary structure s can

then be calculated as e−E(s)/RT/Z where E(s) is the free energy of s, R is the gas

constant, T is the absolute temperature, and Z is the partition function that repre-

sents the Boltzmann ensemble of all possible structures. RNAshapes can also be used

to enumerate ”shapes” (i.e. secondary structure motifs) that represent the topology

of the secondary structure at various levels of specificity. For example, the structure

..((((((.((((....)))).....)))))).((((((....))))))... can be repre-

sented with the bracket notation [ ] at the most abstract level and with [ [ ] ] [ ]

at the least abstract level, where [ ] denotes a stem and denotes unpaired regions. The

topological properties of the ensemble can be characterized by calculating the probability

of individual shapes, which is defined as the sum of the probabilities of all structures that

fall into that shape. Sfold represents the distribution of possible structures by sampling

structures from the Boltzmann ensemble of RNA secondary structures (i.e. partition

function) [77]. RNAfold is another method of this kind [78–80], and computes probabili-

ties for every possible base pair from the partition function. RNAplfold is a local folding
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variant of RNAfold, and only base pairs within a certain span are considered possible

[81]. In this approach, average base pair probabilities are calculated by averaging over

all windows of a certain length that contain the pair. RNAplfold is shown to perform

more accurate than the classic global folding algorithms in predicting mRNA secondary

structure [82]. This result is in agreement with previous studies supporting local folding

of mRNA [83, 84].

Models in the last category, probabilistic models, use parameters estimated from

known RNA structures to predict secondary structure. CONTRAfold is the first prob-

abilistic method that significantly outperforms existing physics-based approaches [85].

Contextfold is based on the same idea but fits a much larger set of features [86]. SimFold

combines both thermodynamic parameters and probabilistically estimated parameters

[87]. These methods are becoming more powerful due to the increasing availability of

known RNA structures. Also, a number of methods have been proposed to combine the

probing data with thermodynamic parameters or comparative analysis [88–90]. These

methods improve the accuracy over computational predictions alone; however, currently

they are limited to existing probing data.

The set of sequences that are queried for identification of RBP targets are quite

diverse. In vitro experiments query random or specifically designed oligos and in vivo

methods query arbitrary sets of transcripts. Hence, comparative methods are not suitable

to determine the secondary structure of these sequences. In the rest of this thesis, we use

thermodynamic methods that consider the ensemble of all possible structures to predict

secondary structure as these are applicable to all the data sets (i.e. in vitro and in vivo

for any organism) that we will consider.
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2.8 Related work in RNA-motif finding

In section 2.6 we gave an overview of motif representations. In this section, we focus on

methods that are specifically designed for RNA motifs.

2.8.1 Hackermuller-Stadler model

Hackermuller et al. developed the first quantitative model to measure the effect of RNA

secondary structure on RBP-RNA binding [91]. This model predicts that the binding

affinity of an RBP for a RNA sequence containing a single potential binding site is equal

to the product of the probability that the site is in the preferred context and the affinity

of the RBP for the site in the preferred context. The probability of the binding site

to be in some particular structural context is calculated by considering the ensemble of

possible secondary structures that the RNA sequence can form. They demonstrated that

this model is a good fit to in vitro affinity data for HuR to sequences with differing levels

of accessibility of the HuR binding site [92]. However, this model cannot be used for de

novo motif finding as it assumes that the preferences of the RBP are already known.

2.8.2 Extension of MEME for RNA motifs: MEMERIS

MEMERIS [57] is an RNA motif model that extends MEME by integrating RNA sec-

ondary structure information to the motif search. As a preprocessing step, it precomputes

for each word (i.e. kmer) the probability that the word is in single stranded context and

then uses these values as priors on possible motif start positions. This adaptation changes

the search so that motifs that are enriched in single stranded regions are preferentially

found (See Figure 2.4 for an example). In fact, the score assigned to a k-mer with this

model precisely implements the Hackermuller-Stadler model. It has been demonstrated

that MEMERIS performs better than MEME in RNA motif finding on both artificial

and in vitro data sets.
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known U1A sites MEME predicted site MEMERIS predicted site 

Figure 2.4: Comparison of MEME and MEMERIS results for the PIE Rfam (RF00460) data
set. The figure on the left shows the consensus sequence and structure of the PIE RNA. The
U1A protein binds the single-stranded sequences in the two asymmetrical internal loops in a
cooperative manner. MEME identifies double stranded motifs that do not overlap with the real
binding sites. On the other hand, MEMERIS is able to identify the correct binding sites as it
preferentially searches for single stranded regions. (Figure taken from [57])

MEMERIS is shown to work well on in vitro data; however, global folding of RNAs

(as computed by RNAfold) might limit its use on in vivo data. Moreover, MEMERIS

cannot differentiate between different kinds of single stranded regions (e.g. hairpin loop

or external loop).

2.8.3 Covariance Models

Covariance models (CMs) are probabilistic models that are originally proposed to model

RNA families (e.g. tRNA, group I introns) and are also applicable for problems such

as multiple RNA sequence alignment and consensus RNA structure prediction for a set

of sequences [93]. CMs can be thought of as a generalization of Hidden Markov Models

(HMMs) for modeling both primary sequence consensus and secondary structure of an

RNA multiple sequence alignment. CMs are implemented in the software package COVE

[93]. COVE would be the method of choice when the input sequences are expected to
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have a good alignment and their consensus secondary structure is global. However, it

may not be well suited for identification of RBP binding sites as most RBPs have binding

sites ranging between 2-10 nts [15]. In other words, the problem of finding RBP sites is

akin to searching for local RNA motifs in a set of long sequences (i.e. full length mRNAs

or UTRs) with low sequence similarity and with variable flanking regions. CMfinder [94]

is introduced to overcome some of the disadvantages of CMs for finding local motifs.

It is a combination of the DNA-motif finding algorithm MEME and CM-based RNA

analysis tool COVE. Original CMs consider only the existence of possible pairings but

not their thermodynamic stability, whereas CMfinder initially chooses motif candidates

with thermodynamically stable structures and initializes a CM from these candidates.

CMfinder had promising results in discovering RNA motifs from 19 families of noncoding

RNAs from the Rfam database. However, CMfinder is not suitable for finding RBP

motifs for several reasons. During the selection of candidate motifs, absence rather than

the presence of stable secondary structure must be preferred as most RBPs prefer their

binding sites to be in single stranded context. Also, the authors of CMfinder report

that the candidate selection process becomes harder with longer flanking regions due to

the larger number of stable local structures. Lastly, the smallest allowed motif size on

CMfinder website is 15 [95]; however, most RBPs have much shorter binding sites.

RNApromo [96] is a recent CM-based model for finding local motifs. It first finds

the structural elements that appear in a maximal number of input RNAs to initialize a

CM-model, and then improves this model using the EM algorithm. RNApromo correctly

predicts three human RNA motifs: HFD, IRE, SECIS. The method is further tested on

predicting motifs from mRNA targets of the RBPs Puf5, Puf4, Puf3, Pub1 and SAM68.

All predicted motifs from these data sets appear in a hairpin loop and some of the bases

of the binding site are paired. This contradicts with solved co-crystal structures for Puf3p

and Puf4p, which show that both proteins bind unstructured RNA [18, 97].

CM-based models have good results in discovering RNA motifs from Rfam families.
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They are also the only possible ways to model RBP binding sites with complex structure

(e.g. ADAR proteins [98]). However, it should be noted that CMs have a reported

tendency to overpredict secondary structure [99]. Indeed, as mentioned above, CM-

based motif models of Puf3p, Puf4p, and HuR predict that they preferentially bind

RNA hairpins and contradict structural, in vitro and in vivo evidence that they bind

unstructured single-stranded RNA.

2.8.4 Extension of MatrixREDUCE for RNA motifs: Struc-

tRED

Foat and Stormo introduced the StructRED method that extends MatrixREDUCE to

find RNA cis-regulatory elements in mRNAs [100]. MatrixREDUCE is a biophysical

(i.e. affinity-based) model of protein-DNA interaction that fits a PSAM whose elements

predict relative affinity for each nucleotide. MatrixREDUCE uses all the available data

rather than a subset pre-defined as bound or unbound. StructRED is highly similar

to MatrixREDUCE except that it models loop sequences of a certain length to explain

quantitative measurements of mRNAs. Stem loops are formed through Watson-Crick

base pairs, but their thermodynamic stability is not taken into account. StructRED

correctly recovers the known binding preferences of Vts1p in yeast and Smaug in flies, and

discovers a number of RNA regulatory elements in human and flies. However, modeling

only stem-loops restricts its use in finding preferences of single stranded RNA binding

RBPs.
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Engineering the RNAcompete array

In this chapter, we present the RNAcompete method for rapid characterization of binding

specificities of RBPs in vitro [23]. RNAcompete consists of three main steps: (i) gener-

ation of a custom-designed RNA pool containing short sequences; (ii) a single binding

reaction to identify the RNAs bound by the tagged RBP of interest; and (iii) analysis

of the microarray data to determine binding preferences of the RBP. Our contributions

within this framework are to design the RNA pool and to analyze the microarray data

to identify the binding specificities of the RBP.

There are two versions of the RNAcompete method which we will call RNAcompete-v1

[23] and RNAcompete-v2 (unpublished) hereafter. Besides the differences in experimental

procedure, one of the key differences between the two versions is the representation of

secondary structure elements in the RNA pool. RNAcompete-v1 (Agilent array design:

AMADID # 022053) was an initial design to evaluate the protocol, and the pool contained

both probes that are designed to fold into weakly structured sequences and probes that

are designed to fold into stem-loops. However, in analyzing RNAcompete-v1 data on nine

RBPs, we found very little binding to stem-loops and we could determine the structural

preference of the stem-loop binding protein Vts1p using only weakly structured sequences.

Therefore, to increase the coverage of all possible k-mers in the array, we redesigned the

27
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pool so that all probes are likely to be weakly structured. Our collaborators 1 performed

RNAcompete-v2 experiments on a large set of fly and human RBPs and our analysis of

this data revealed binding preferences of many RBPs with unknown binding specificities.

The rest of the chapter is organized as follows. First, we give an overview of the ex-

perimental protocol in order to justify the design constraints that it imposes on the probe

design. We then describe the design of the RNA pool (i.e. probe set) for RNAcompete-

v1 and v2. Since many of the steps are common in between, we will only mention the

differences from v1 when describing RNAcompete-v2 pool design. We then describe the

normalization procedure of the microarray data. Finally, we will explain the computa-

tional analysis of normalized intensities to identify binding motifs, and show that the

array design is successful.

3.1 Experimental protocol

RNAcompete experiment consists of the following steps: synthesis of the RNA pool,

a single pulldown reaction with the RBP of interest, detection of bound RNA on the

array (Figure 3.1). RNA pool is generated using a custom designed Agilent array. The

Agilent 244K array is a microarray that contains 244,000 separate spots. Each spot

contains millions of short oligonucleotides with the identical sequences and each sequence

is attached to the microarray surface via a linker on its 5’ end. Each of the 244K sequences

starts with the same primer sequence and the remaining 27-35nt are complementary to

one of the sequences in the RNA probe set, and so will bind to it by hybridization. We

use the microarray as a template to generate an RNA pool as follows. First, primer

extension is performed to make the probe sequences on the array double stranded. Then,

a common double stranded DNA (dsDNA) linker is ligated to all double-stranded probes

on the array. Next, single stranded DNA (ssDNA) containing the linker are stripped from

1Debashish Ray, Kate Cook, Timothy R Hughes
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Figure 3.1: Outline of the RNAcompete method. Figure modified from [23].

the array and amplified using polymerase chain reaction (PCR). The linkers could be

removed from the probes since they contain the Type IIS (Sap1) restriction site. Finally,

the resulting dsDNA pool is used as a template for in vitro T7 RNA polymerase-mediated

RNA transcription to generate the RNA pool. In the pulldown step, GST-tagged RBP of

interest is incubated with a 75-fold molar excess of RNA pool. The recovered pulldown

RNA is directly labelled with Cy5 and co-hybridized with Cy3 labelled pool RNA to

an unused Agilent 244K microarray with the same design as used to generate the RNA

pool. The relative recovery of each RNA in the pulldown is then measured and used as

an estimate of binding affinity.

The experimental protocol imposed the following constraints for the pool design:

(i) probes can only share a certain amount of primary sequence as otherwise cross-

hybridization will occur on the microarray; (ii) probes cannot have long regions that are

reverse-complementary as this would lead to RNA-RNA interactions in the pool; (iii) each

probe must have the T7 initiator sequence (i.e. AGA or AGG) to get transcribed to RNA;
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and (iv) probes cannot contain the Sap1 binding sites (i.e. GCUCUUC/GAAGAGC) as

this would result in cutting at wrong positions. In the next section, we explain how we

designed the RNA pool subject to these constraints.

3.2 RNA pool design v1

The pool contains two independent replicate designs (Set A and Set B) with differ-

ent probe sequences, but each containing a nearly equal representation of sequence and

structure elements. This allows us to evaluate the success of the experiment and also

the performance of computational motif models on this data by training on one set of

sequences and evaluating the performance on the other set. Each of the replicate designs

is formed from a combination of two types of probes: those that are linear, non-folding

sequences or fold into weak structures; or those fold into a single stem-loop. As required

by the experimental design, we ensured that the probes do not contain the Sap1 restric-

tion sites by removing or modifying (i.e. changing single bases) the probes that contain

these sites.

3.2.1 Weakly structured probes

The sequences in this group are designed to satisfy two constraints: (i) each 8-mer is

represented at least 16 times; and (ii) the probe sequences have to fold into weakly struc-

tures as defined based on their predicted free energies. We satisfied the first constraint

using de Bruijn sequences, a well known approach for representing all possible k-mers on

an array [101]. Here, we first give a brief introduction to de Bruijn sequences. We then

describe how to generate them using linear feedback shift registers (LFSRs) by following

the procedure from a previous study [101]. Lastly, we explain how we ensure that the

resulting probe sequences fold into weak structures.
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de Bruijn sequence

A de Bruijn sequence of order k is a circular string containing every k-mer from an

alphabet Σ exactly once, and thus it is of length |Σ|k. De Bruijn sequences represent

all possible k-mers with a minimum length and also ensure that the distribution of n-

mers, for all n < k, are uniform. We can compare de Bruijn sequences against randomly

designed sequences. Namely, we can think of random sequence as obtained by sampling

from the set of all possible k-mers with replacement. Let m be the number of all possible

k-mers. Then, every k-mer has a probability 1 − (1 − 1/m)m of being selected at least

once within a sample of size m. The limit of this expression for large values of m is

1− 1/e ≈ 63.2. Therefore, on average, only a 63.2% of all possible k-mers will be present

in a random sequence, some of them appearing multiple times. This argument ignores

the constraint that the k-mers have to overlap by assuming that they can be sampled

independently. However, in our empirical tests, we found that it is a good approximation.

Namely, when we generated five probe sets from random sequences, 36.8% of all possible

10-mers were missing on average.

There exist many de Bruijn sequences for a particular k and alphabet Σ [102]. We

chose to use linear feedback shift registers (LFSRs) to generate de Bruijn sequences be-

cause of their desirable pseudo-randomness properties [103]. As background, let GF(p,n)

represent a Galois field with order pn where p is prime. GF(p,n) is a set containing pn

elements that is closed over multiplication and addition operations where arithmetic is

performed modulo p. Elements of GF(p,n) can be generated using the roots of a prim-

itive polynomial over that field. A primitive polynomial over GF(p,n) is an irreducible

polynomial of degree n with coefficients taken from GF(p,n). A polynomial p(x) over

GF(p,n) is irreducible if it is not divisible by any polynomial over GF(p,n) of degree n′,

0 < n′ < n.

In order to construct de Bruijn sequences with LFSRs, the size of the alphabet has

to be a prime power. To satisfy this constraint for generating a de Bruijn sequence of
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order k over the RNA alphabet, we first generated a de Bruijn sequence of order 2k over

the Boolean field A = {0, 1}. That is, we recursively generated S = (s1s2 . . . s2k−1) from

the preceding 2k elements by the equation: si = θk−1si−1 + θk−2si−2 + ... + θ0si−2k∀i. If

the coefficients θ is chosen so that the polynomial
∑k−1

i=0 θixi is primitive , the sequence S

generated by this recursive equation will have periodicity 22k − 1 and will contain every

subsequence of length 2k over the Boolean alphabet except the sub-sequence that consists

of 2k 0s. We inserted an additional 0 into one of the subsequences of 2k − 1 0s in S to

convert it a de Bruijn sequence. Finally, we traversed S twice considering both reading

frames (Figure 3.2) and transformed pairs of letters to the RNA alphabet A,C,G, U

using the following embedding: A↔ (0, 0), C ↔ (0, 1), G↔ (1, 0), U ↔ (1, 1).

U

C

A
C

G

G
U

U

C

A

G A

G
U

C

Figure 3.2: Generation of a de Bruijn sequence over the RNA alphabet. A de Bruijn sequence
over the Boolean alphabet Σ = {0, 1} can be transformed into an RNA sequence using the
following embedding: A ↔ (0, 0), C ↔ (0, 1), G ↔ (1, 0), U ↔ (1, 1) and considering both
reading frames. Figure modified from [101].

We repeated the same process twice for each of the sets (i.e. Set A and Set B). Two

primitive polynomials corresponding to LFSRs we used are 1:

• x20 + x19 + x18 + x17 + x16 + x15 + x13 + x11 + x9 + x8 + x7 + x6 + x4 + 1

1Primitive polynomials were taken from http://fchabaud.free.fr/English/Poly/ )
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• x20+x19+x18+x17+x16+x15+x14+x13+x10+x9+x8+x7+x6+x5+x4+x3+x2+x+1

We then partitioned the two de Bruijn sequences into subsequences (i.e. probes or oligos)

with sliding windows of 35nts and overlapping by 9nts to prevent losing any 10-mers.

After this process, each probe set contained 40,330 oligos of length 35.

Checking the secondary structure of probes

Because our aim is to design a set of probe sequences that, when transcribed, would give

rise to RNA oligos that were as linear (i.e. unstructured) as possible, we first identified

those sequences that would give rise to RNA oligos with stable secondary structure. To

do this, we used the existing RNA secondary structure prediction program RNAshapes

[76] to enumerate all secondary structures that had predicted free energies within 70%

of the minimum free energy (MFE structure) using the following call: RNAshapes

-s -c 70.0 -r -M 30 -t 1 -o 2. Generating secondary structures within a larger percent of

the MFE substantially slows down the program and does not increase the coverage of the

full ensemble significantly. For each enumerated secondary structure, RNAshapes also

outputs the probability of occurrence within the full ensemble. Using these probabilities,

we classified as ”strongly structured” all RNA oligos for which the sum of probabilities of

all secondary structures with predicted free energies less than -3 kcal/mol is greater than

0.6. The free energy value -3 kcal /mol can be illustrated with an example: one of the pre-

dicted structures of the probe sequence AGAUAUGUAACUAGGUAUAAGACACGCCACCG

GUGGAG is ........................(((.....))).... Note that I have ital-

icized the paired bases in the RNA sequence for clarity. So, the constraint of -3 kcal /

mol does not lead to highly structured sequences.

Designing weakly structured RNA sequences is difficult because 6 pairs (i.e. AU,

UA, CG, GC, UG, GU) out of 16 can form a canonical base pair. To illustrate this

empirically, we have generated five random probe sets where each probe set consists

of 40,330 overlapping oligos of length 35nt. On average, 72% of oligos were strongly
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structured. Interestingly, probes generated from de Bruijn sequence were less structured

than those generated from random sequence: there were 26,429 (65%) and 26,385 (65%)

strongly structured sequences in Set A and Set B, respectively. As we will describe in

the following four subsections, we recombined subsequences of the strongly structured

probes to produce less structured probes that had the same 8-mer content.

original probe (35 nts)  

splits 
17 nts 18 nts 

14 nts 

Figure 3.3: Splitting strongly structured probes. Probes that fold into strong secondary struc-
tures are split approximately in half (blue and red fragments). Fragments that belong to dif-
ferent strongly structured probes are then recombined to produce less structured probes. The
green segment that spans the breakpoint (7 bases on each side) also needs to be recombined in
order to recover the lost 8-mers in the middle.

Rearranging fragments of strongly structured sequences

We first split each of the strongly structured probe sequences into two fragments of length

17nts and 18nts which we will reassemble with other probe fragments (Figure 3.3). We

split probes in half rather than at the point that is most disruptive to their structure,

because it provides consistent lengths for the fragments, thus simplifying their reassembly,

and typically disrupts their structure well enough to satisfy our design criteria. Compared

to generating random probes, splitting the probes (generated from de Bruijn sequence)

into two fragments of length 17-nt and 18-nt and then reassembling these together with

the fragment in the middle (14 nts) allows us to capture all of the 10-mer content and gives
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the flexibility to make unstructured probes while only increases the amount of sequence

used by (17 + 18 + 14)/35 = 40%. In comparison, when we increased the number of

randomly generated probes by 40% (i.e. 40,330 to 56,462), 24.6% of all possible 10-mers

were still missing on average.

After splitting, our next step was to pair the fragments belonging to different strongly

structured sequences which, when attached, were weakly structured. We deemed a newly

formed sequence (of length 34 = 17+17, 35 = 17+18 or 36 = 18+18) weakly structured

if the sum of probabilities of the predicted structured with free energies less than -2.5

kcal/mol was less than 0.5. Note that the criterion for weakly structuredness is slightly

more strict compared to the initial structure check. We paired the fragments of strongly

structured sequences using a greedy search, at the end of these search, we were left with

5,292 and 6,247 strongly structured sequences in Set A and B respectively.

Recovering lost 8-mers

This process of splitting and recombining probe sequences maintains most of the 8-mer

content, except for the seven 8-mers spanning the middle of each of the original probes.

We attempted to recover these lost 8-mers by forming additional probe sequences (of

length 28) by merging the 14 bases fragments of the strongly structured probes that

span the breakpoint (7 bases on either side). Again, we used a greedy algorithm to search

for pairs of fragments that, when appended produced weakly structured sequences (as

defined by the criterion mentioned above). Before merging, the two sets had 24,575 and

25,176 missing 14mers. After the merge, there remained 4,463 and 5,152 missing 14mers

in Set A and Set B, respectively, which could not be combined into weakly structured

sequences.
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Merging remaining missing 14-mers with fragments of still structured se-

quences

We then attempted to merge the 14-mers with the previously unmergeable 17- and 18-

nt fragments of the original set of strongly structured sequences to produce 31-nt (i.e.

14 + 17) or 32-nt (i.e. 14 + 18) weakly structured sequences. After this final redesign

attempt, there remained 695 missing 14mers, 1,968 still structured sequences of length

35 and 2,880 still structured fragments of length 17 or 18 in Set A and 708 missing

14mers, 2,484 still structured sequences of length 35 and 3,082 still structured fragments

of length 17 or 18 in Set B. We removed these sequences completely from consideration,

determined the 8-mer distribution and attempted to design probes from scratch in order

ensure that each 8-mer was represented at least 16 times.

Adding missing 8mers

We found that we needed to add 6,118 and 6,887 8-mers in total (often multiple copies

of the same 8-mer) in order to ensure that each 8-mer was represented at least 16 times.

We started by appending four missing 8-mers by forming a new sequence of length 32

provided that they are weakly structured. After finding all possible merges of four 8-

mers, we tried to merge combinations of three missing 8-mers to produce a sequence of

length 24 which we then padded out to a 27-mer (minimum allowed probe length) using

three random bases in such a way that the probes remained weakly structured. Similarly

after finding all possible merges of three 8-mers, we tried to merge two missing 8-mers

and fill out the sequence so that it was 27-nt long and weakly structured. Finally, for the

8-mers that could not be merged, we attempted to design a linear sequence (of length

27) containing this missing 8-mer using the program RNAinverse [80] with the constraint

that no other bases in the sequence outside of the 8-mer could pair. After the steps

described above, all possible 8-mers were represented at least 16 times in each set and

the sets had 52,259 and 52,219 weakly structured sequences, respectively.
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Figure 3.4: Flow chart describing the RNA pool design for RNAcompete-v1. The numbers in
square brackets show the number of probes or n-mers during that step for Set A and Set B,
respectively. Initial Set A or Set B pool consists of all possible 8-loops (65K), all possible 7-
loops (16K), weakly structured de Bruijn probes (14K), and probes that are formed by merging
fragments of strongly structured probes (35K), merging missing 8-mers or designing new probes
to represent missing 8-mers (4K). Note that the numbers below ”Lost 8-mers in the middle (14-
mers)” are less than the number of strongly structured probes because they show the number of
14-mers that could be merged. Once the initial Set A or B pool is formed, MegaBLAST is used
to check for cross-hybridization and RNA-RNA interaction. The probes that have matches to
other probes are either removed or redesigned. Lastly, some of the probes in Set A and Set
B are duplicated (14K), and control probes that contain the known binding sites for a set of
RBPs (3K) are added to the final design.
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3.2.2 Stem-loops

The stem loop probes sets within Set A and Set B were each designed to contain all

possible 7-mers and 8-mers within a loop under the constraints that (i) the stems were

all distinct, in order to minimize microarray cross-hybridization between different probes;

(ii) the free energy of each stem was within a defined range; (iii) no stem was dominated

by a particular base; and iv) that the expected stem-loop structure was very likely to

form.

In this step, we generated two sets of stem-loop sequences each of which contained

all possible 7mer and 8mer loops. First, we generated a set of possible stem sequence

that satisfied a set of criteria designed to ensure that the stem was stable but unlikely to

cross-hybridize either with other RNA oligos in the library (i.e. RNA-RNA interactions

in the pool) or with other microarray probes. We generated all possible 10-base pair (bp)

long stems in which the first and last pair were 5’ G-C 3’ to ensure tight bonds at either

end of the stem. The remaining 8-bps were selected from the set of Watson-Crick and

wobble pairs (i.e. A-U, U-A, G-C, C-G, G-U and U-G) such that the number of A-U

and U-A base pairs is less than 5, the number of G-U and U-G base pairs is less than

3, the number of A-U, U-A, G-U and U-G base pairs is less than 6, and the number of

G-C and C-G base pairs is less than 5. To this set, we applied the additional constraint

that the stems have to have stacking free energy between -13kcal/mol and -20kcal/mol.

Stems with lower free energies had G-C rich sequences and/or G-repeats. Because strong

secondary structure and G-repeats are known to cause problems at the PCR stage, we

opted to keep the stems with ”strong” probability for stem formation but not ”too”

strong. Enumeration of all possible sequences satisfying these criteria led to 253,473

unique stems. We then matched all possible loops of 7-mers and 8-mers with the set of

stems in such a way to avoid obvious complementary between the loop sequence and the

stem sequence. In order to check for other structural features, we estimated the base

pair probabilities for each probe sequence using SFOLD [77] . Using this information,
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we identified the sequences that fold into structures with interfering bulges or internal

loops in their stems. In order to replace these problematic stems, we generated a new

stem set with the same constraints as described above except that the stacking free

energy range is between -20.1kcal/mol and -20.8kcal/mol and then attempted to pair

these new stems with the problematic loop sequences. Finally, RNAinverse [80] is used

to design stem-loop sequences for the loops of the sequences that still fold into undesired

structures after the stem replacement. At the end of this design process, we prepended

the T7 initiator sequence AGA to the 5 end of each probe. We also added a set of control

probes containing likely binding sites for each of the RBPs with known sequence binding

preferences.

Removal of cross-hybridizing sequences

We then combined the probes in Set A and Set B into the same pool, and applied a series

of BLAST-based filtering and redesign steps to remove probes likely to cross-hybridize.

During this stage, our goal was to retain all control sequences, all loop sequences of size 7

or smaller, and ensure that each 8-mer was represented at least 12 times in unstructured

probes in each of Set A and Set B. As such, we prioritized the removal of loops of size

8 which did not generate smaller loops (i.e. we would deem GAAAAAAC a loop of size

6). To this end, we ran MegaBLAST (version 2.2-18 with command line parameters

-W 12 -D 3 - g -S 3) to identify to identify 81,774 sequences that had a match of at

least 14 consecutive bases, or a match of at least 17 bases with at least 12 consecutive

bases, to other sequences in either the forward orientation (which could lead to array

cross-hybridization) or reverse orientation (which could lead to RNA-RNA interactions

in the pool). We first removed the 28,532 8-base loop sequences among these matched

sequences. We then used a greedy algorithm to remove the minimum number of probe

sequences necessary to ensure that there were no more matches, except that when a non

8-base loop sequence aligned with an unstructured sequence, we would remove the loop
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sequence and that we would only remove control probes when they aligned with other

control probes. Through this process, we removed 20,137 loops with 7 or fewer bases, and

6,495 unstructured sequences. We attempted to replace these sequences as follows: (i) by

changing the AGA T7 initiator to AGG; (ii) by swapping or replacing stems; and (iii) by

replacing single bases in the middle of matching fragments of the unstructured sequences.

We then removed any newly designed sequences still containing at least 14 consecutive

base matches, checked the 8-mer distribution and added new sequences to represent the

missing 8-mers. The final pool design contained 213,130 unique sequences. We duplicated

28,269 non-control probes so that the array contained 241,399 spots: 119,415 probes in

Set A, 119,248 probes in Set B and 2,736 RBP binding control probes. Each of the sets

contained at least 12 copies of all possible 8-mers, 59% of all stem-loops of length 8 and

99% of all stem-loops of length 7 and smaller.

3.3 RNA pool design v2

The RNA pool for v2 is very similar to v1 except that there are no stem-loops, and the

procedure for converting strongly structured sequences to weakly structured sequences

is simpler. By removing the stem-loop sequences, much more space was available for

unstructured probes, as such, we started with a de Bruijn sequence of order 11 (generated

using LFSRs with the primitive polynomial x22 +x21 +x20 +x19 +x18 +x17 +x16 +x15 +

x13 +x12 +x11 +x10 +x9 +x4 +x3 +x2) and then partitioned it into overlapping windows

of length 35-nt as described before. This resulted in 167,773 probes. For each probe, we

chose to prepend the T7 initiator (AGA or AGG) that forms a less strongly structured

probe of length 38nt. The definition of structuredness, as before, is based on RNAshapes

predictions (with arguments: -s -c 70.0 -r -M 30 -t 1 -o 2). If the sum of the probabilities

of structures with free energies less than -2.5kcal/mol is larger than 0.5, then that probe

is classified as strongly structured. Based on this, there were 130,936 strongly structured
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probes and 36,837 weakly structured probes. The percentage of strongly structured

sequences is higher than the v1 design (79% compared to 65%) because the definition

for strongly structuredness is more strict and prepending the T7 initiator forms longer

probes that have greater potential to form stable structures. In the v1 design, the T7

initiator was prepended after the structuredness assessment.

We tried a number of strategies to make the strongly structured probes less structured

so that every 9-mer is represented in weakly structured context at least 16 times. First, we

split each of the strongly structured probes into two equal fragments of length 19nt. We

fixed the prefixes ([1−19]) of the probes and tried swapping the suffixes ([20−38]). This

succeeded in forming 98,602 weakly structure probes, leaving 32,334 strongly structured.

Then, we recombined the fragments [4− 19] and [20− 38] from two strongly structured

probes, and prepended the T7 initiator sequence (i.e. the sequence [1-3]) that results

in a less structured probe. This step produced 8,260 weakly structured probes. Finally,

we merged 16-mers that span the breakpoints of strongly structured probes (8 bases

on either side). We were able to merge 107,070 16-mers that resulted in 53,535 weakly

structured probes. We combined all the weakly structured probes and calculated the

distribution of 9-mer occurrences. For 65,723 9-mers (often multiple copies of the same

8-mer) that were represented less than 16 times, we attempted to increase the number of

occurrences by merging four 9-mers or three 9-mers. For the 9-mers that did not form a

weakly structured probe when merged, we designed probes that each contain one missing

9-mer using RNAinverse [80]. The final probe set contained 214,948 weakly structured

probes after this step.

Similar to the v1 design, we would like to have two replicate sets for evaluation

purposes. Therefore, we divided the probe set into two sets (i.e. Set A and Set B) such

that the distribution of 9-mer occurrences is balanced across two sets. To do this, we

first randomly assigned each probe to Set A or Set B, and then identified the 9-mers

that have unbalanced distributions between Set A and Set B. For each such 9-mer, we



Chapter 3. Engineering the RNAcompete array 42

tried to find probes that would give a more balanced distribution when swapped. After

this greedy swapping step, Set A had 105,527 probes and Set B had 106,558 probes. We

ensured that each 9-mer appears at least 8 times in any of the sets by adding probes

(3804 for Set A and 3538 for Set B) that are formed by merging three 9-mers.

We ran MegaBLAST (version 2.2.20 with command line parameters -W 12 -D 3 -g -S 3)

in order to identify matches with at least 14 consecutive bases, or with at least 17 bases

with at least 12 consecutive bases, to other sequences in either the forward or reverse-

complement orientation. Some probes can match to many other probes because the same

set of 9-mers tend to get merged in the same probe when we combine three or four 9-mers.

We removed the probes that have matches to at least four other probes. For probes with

less than 4 matches, we disrupted the matches by replacing two bases in the middle of

matching subsequences. Among the 15 (excluding the original probe from 16 possible

cases) modified probes, we kept the ones that are weakly structured. We also checked

for matches between the set of modified probes and the original probe set, and removed

the modified probes that have matches to the original probe set. Then, we checked the

distribution of 9-mers and designed probes to add missing 9-mers either by merging three

9-mers or designing a probe for a single 9-mer (using RNAinverse) when merging was not

possible. We continued with running MegaBLAST with the addition of designed probes.

During this iterative process, we ensured that the Sap1 binding sites did not appear in

newly added probes. We fixed the probe set once each 9-mer is represented at least 8

copies in each set. There were 109,642 probes in Set A and 110,348 in Set B. Since we

had more space in the array we duplicated some of the probes and ended up with 120,326

probes in Set A and 121,031 probes in Set B. Lastly, we added 22 control sequences which

are known targets for a set of RBPs (i.e. RBM4, SLM2, SF2, HuR, Nucleolin, Gtf3a,

Egr1). The final Set A and Set B each contained at least 8 copies of each 9-mer, 33 copies

of each 8-mer, and 155 copies of each 7-mer. There remained 2,858 strongly structured

probes (containing 9-mers that are self-structured) in the final design.
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Figure 3.5: Flow chart describing the RNA pool design for RNAcompete-v2. The numbers in
square brackets show the number of probes or n-mers during that step for Set A and Set B,
respectively. Initial pool (Set A + Set B) consists of weakly structured de Bruijn probes (37K),
and probes that are formed by merging fragments of strongly structured probes (160K), merging
missing 9-mers or designing new probes to represent missing 9-mers (17K). Initial pool is then
divided into two sets (Set A and Set B) that each contains at least 8 copies of all possible
9-mers. Next, MegaBLAST is used to check for cross-hybridization and RNA-RNA interaction.
The probes that have matches to other probes are either removed or redesigned. Lastly, some
of the probes in Set A and Set B are duplicated (10K), and control probes that contain known
binding sites (22) are added to the final design.
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3.4 Normalization

The normalization procedures for v1 and v2 were similar to widely used methods. First,

each batch of experiments was represented with a matrix where rows correspond to probes

and columns are the pulldown intensities of the RBPs in that batch. The v1 normal-

ization involved removing low-quality spots due to problems related to image analysis,

running variance stabilization normalization to calibrate multiple arrays[104], adjusting

pool and pulldown channels with an offset and multiplicative constant, and removing

the spots with low intensity in either pool or pulldown channels. Similarly, the v2 nor-

malization involved removing low-quality spots due to spatial trends or other problems

related to image analysis, applying quantile normalization to calibrate multiple arrays,

and removing effects due to background signal or nonspecific binding by subtracting the

row medians from each probe intensity.

3.5 Analysis of binding specificities from v1 data

We analyzed the binding specificities of an RBP by estimating its affinity to every possible

7-mer. The affinity for a 7-mer is estimated as the trimmed average (excluding the top and

bottom quartiles) of the intensities of the probes containing that 7-mer. We performed

the 7-mer analysis within each of the replicate designs and evaluated the success of an

experiment by comparing 7-mer scores across the two sets.

We evaluated RNAcompete-v1 using nine RBPs (GEO record GSE15769) represent-

ing four different classes of RNA-binding domains (RRM, K Homology (KH), SAM and

cold-shock domain). We first checked whether there is any correlation between stem-loops

with identical loop sequences (embedded in different stems) for each protein. Except for

Vts1p, we did not find any correlation between Set A and Set B stem-loops containing

the same loop sequence (Figure 3.6). This is consistent with the fact that Vts1p is the

only protein (among the nine RBPs) that is known to bind to loop sequences within
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an RNA stem-loop structure. Surprisingly, Vts1p also bound to weakly structured se-

quences; however, we found out that these probes can fold into short stem-loops with the

Vts1p binding site in the loop region. We therefore decided to include only weakly struc-

tured sequences to calculate 7-mer scores. Figure 3.7 shows the 7-mer scores across Set

A and B for the nine RBPs. For all the proteins, Set A and Set B 7-mer scores were well

correlated and the motifs were readily apparent among the top-scoring sequences. Figure

3.8 compares the previously reported Position Weight Matrix (PWM) models (column

3) with PWMs learned from RNAcompete data (work done by Esther T Chan) and with

the top five scoring 7-mers. For six of the proteins that are tested (HuR, PTB, SF2/ASF,

U1A, Vts1p and FUSIP1), top scoring 7-mers correspond to known binding preferences

[105–110]. We identified novel binding preferences for three RBPs with unknown binding

specificities. In summary, RBM4 preferred GC-rich sequences, SLM2 bound to sequences

with UAA motif, and YB1 preferred sequences with combinations of G, C and U.
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Figure 3.6: Correlations between identical loop sequences in Set A and Set B. Correlations for
HuR that does not bind to loop sequences (a) Vts1p that binds to CNGG motif in a hairpin
loop (b), displayed as Z-scores. Figure modified from [23].
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Figure 3.7: Correlations between robust average 7-mer scores (i.e. excluding the top and bottom
quartiles) from independent microarray probe sets (Set A and Set B) displayed as Z-scores (i.e.
both axes have a median of zero and standard deviation of one). Figure modified from [23].

3.6 Analysis of binding specificities from v2 data

Similar to the analysis of v1 data, we calculated scores for every 7-mer as the trimmed

average (excluding top and bottom five percentiles) of intensities of the probes con-

taining that k-mer. Unlike v1 analysis, we ignored probes with negative intensities by
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Figure 3.8: RNAcompete analysis of nine RBPs, representing four different classes of RNA
binding domains. Previously reported consensus or PWMs models are shown for comparison.
The entries under Our motifs are the highest scoring of the two possibilities (A vs. B) or (B
vs. A). Figure modified from [23].

collapsing them to zero since we think that these represent the background signal. We

began by checking whether RNAcompete-v2 can recover the known binding preferences
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of two well-characterized proteins HuR and Vts1p. In particular, it is important to check

whether Vts1p’s structure preferences can still be recovered with the removal of stem-

loops from the pool design. Figure 3.9 shows that there is a strong correlation between

7-mer scores calculated from Set A and Set B probes. Also, the top scoring 7-mers

contain the core motif CNGG motif flanked by sequences that can basepair, confirming

that RNAcompete-v2 recovers Vts1p’s sequence and structure preferences. We further

evaluated RNAcompete-v2 on a set of RBPs from fly and human. Figures 3.10 and 3.11

show the 7-mer scores across Set A and Set B for 15 fly and human RBPs, respectively.

Strong correlations between Set A and Set B 7-mer scores, and correspondence of mo-

tifs to known binding sites for several proteins (i.e. Lark, Pum, msi, MSI1, IGFBP2,

PABPC4, hnRNPC, QKI, TIA1, SAM68, SRSF2-dSR, lin28, Vts1p) demonstrate that

RNAcompete-v2 is able to determine the binding specificities of diverse RBPs.

GCUGGCC 

GCUGGUC 

GCUGGAC 
UUAGUUU 

UUUAUUU 

AUUAUUU 

a b 

Figure 3.9: Correlations between 7-mer scores from Set A and Set B for HuR (a) and Vts1p
(b) The top three 7-mers are shown with arrows.
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Figure 3.10: RNAcompete analysis of 15 RBPs from fly. Correlations between robust average
7-mer scores (i.e. excluding the top and bottom quartiles) from independent microarray probe
sets (Set A and Set B) are displayed. The top three 7-mers are shown with arrows.
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Figure 3.11: RNAcompete analysis of 15 RBPs from human. Correlations between robust
average 7-mer scores (i.e. excluding the top and bottom quartiles) from independent microarray
probe sets (Set A and Set B) are displayed. The top three 7-mers are shown with arrows.
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3.7 Discussion

Determining the RNA-binding specificities of RBPs is critical to identify their targets and

functions. In this chapter, we introduced RNAcompete, an in vitro method to rapidly

characterize the binding specificities of RBPs against a custom RNA pool. One of the

main contributions of RNAcompete is its careful pool design that represents diverse ele-

ments of sequence and structure. To evaluate the experiment and to increase the robust-

ness, the pool (i.e.v1) contained two internal duplicates that each represents all possible

10-mers and all possible loops of length 8 or smaller using unique probe sequences. To

compactly represent all possible 10-mers on the array, we utilized de Bruijn sequences, a

well-known approach that has been previously used in protein binding microarrays [101].

A large proportion of probes generated from de Bruijn sequences were predicted to

fold into strong structures. Since most characterized RBPs prefer their binding sites to be

in unstructured context, we aimed to represent all possible 10-mers in unstructured (or

weakly structured) context. Our strategy to produce less structured probes was to design

new probes by rearranging fragments of strongly structured probes. This strategy allowed

us to represent all possible 10-mers in weakly structured context using only 50K probes.

We confirmed that this is superior to a random design strategy: probes generated from

a random sequence of equivalent length only contained 76% of all possible 10-mers, and

a large percentage of these probes were strongly structured. We put substantial effort to

avoid cross-hybridization and RNA-RNA interactions by removing or redesigning probes,

and this resulted in reduction of desired coverage.

RNAcompete-v1 design was evaluated on nine RBPs encompassing four classes of

RNA-binding domains. For all nine proteins tested, motifs were apparent among the

top-scoring sequences, and individual 7-mer scores correlated well between Set A and

Set B. Motifs deduced from top scoring 7-mers recovered the known binding preferences

of six of the proteins, and identified novel binding preferences for three uncharacterized

RBPs.
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In analyzing RNAcompete-v1 data, except for Vts1p, we did not observe a correlation

for stem-loop sequences between the duplicate designs, suggesting that none of these

additional RBPs have a preference for stem-loops. Also, we were able to recover Vts1p’s

preferences using weakly structured sequences alone. Therefore, we decided to remove

stem-loops from the array design in the improved version of RNAcompete (i.e. v2).

We used the space generated by the removal of stem-loops to increase the coverage of

all possible k-mers in weakly structured context. The initial design for RNAcompete-

v2 pool initially contained all possible 11-mers. After satisfying several constraints of

the protocol (e.g. removing cross-hybridization), and splitting the total probe set to

two replicate designs, there remained at least 8 copies of all possible 9-mers in weakly

structured context. RNAcompete-v2 was evaluated on several RBPs from fly, human and

yeast. Similar to v1 results, we observed a high correlation between 7-mer scores from

Set A and Set B, and top scoring 7-mers correspond to known binding preferences for

several control RBPs. Moreover, Vts1p’s preference for stem-loops was recovered with

the v2 design that only contained weakly structured sequences.

Our results from RNAcompete-v1 and v2 data indicate that RNAcompete is a valu-

able tool to study RBP-RNA interactions. Other strengths of RNAcompete are that the

system is relatively fast, and that arbitrary binding preferences can be queried without

any prior knowledge. The complex pool design provides a proof-of-principle to represent

arbitrary sequence and structure elements on a microarray. We envision that much more

complex defined pools can be generated and coupled to a deep sequencing output to

avoid problems of cross-hybridization.



Chapter 4

RNAcontext: motif models for

RNA-binding proteins

Several motif finding methods have been introduced to identify the binding preferences

of transcription factors. These methods can also be used for finding RBP sequence

preferences. However, this approach can give misleading results when an RBP has non-

trivial structural preferences. For example, Vts1p is a yeast RBP that preferentially binds

CNGG loop sequences within RNA hairpins [111], however, this binding preference can

be difficult to detect without consideration of this structural preference (e.g., [6]). RBP

motif finding can made more reliable by training structure-naive algorithms only on RNA

sequence likely to be in the preferred context [57, 100]. For example, Foat and Stormo

[100] could reliably extract the Vts1p sequence binding preferences from in vivo binding

data by using only loop sequences (from likely hairpin loops) to train the MatrixREDUCE

[36] motif finding algorithm. Similarly, the MEMERIS [57] algorithm adapts the MEME

[40] motif finding algorithm to search for RNA motifs enriched in single-stranded regions

by assessing a prior on each word according to its structural accessibility. MEMERIS

0The work in this chapter previously appeared in the following publication:
Kazan et. al. (2010) RNAcontext: A New Method for Learning the Sequence and Structure Binding
Preferences of RNA-Binding Proteins. PLoS Comp Biol 6(7):e1000832
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predicts binding sites more accurately than MEME for a number of proteins, including

the mammalian stem-loop binding RBP U1A. However, applying this strategy only allows

a single, pre-defined structural preference to be queried. Ideally, an RBP motif finding

method should consider multiple possible structural contexts simultaneously, and detect

the relative preferences of a particular RBP for each.

Covariance models (CMs) [93] are RNA motif models often used for modeling families

of ncRNAs (e.g., [112]) and have the capacity, in theory, to represent both the sequence

and (arbitrary) structure preferences of RBPs. However, CMs have a reported tendency

to overpredict secondary structure [99]. Indeed, recent CM-based motif models of Puf3p,

Puf4p, and HuR [96, 113] predict they preferentially bind RNA hairpins and contradict

structural, in vitro and in vivo evidence [23, 97, 108, 114], that they bind unstructured

single-stranded RNA.

In this chapter, we present a new strategy for modeling RBP binding sites that learns

both the sequence and structure binding preferences of an RBP. Our method assumes

that the primary role of RNA secondary structure in RBP binding is to establish a struc-

tural context (e.g., loop or unstructured) for the RNA sequence recognized by the RBP.

As such, we annotate each nucleotide in terms of its secondary structural context (e.g.,

paired, in a hairpin loop or bulge). Cognizant of the fact that a given RNA sequence

can have multiple, distinct stable secondary structures, this annotation takes the form

of a distribution over all its possible contexts. These distributions are estimated using

computational algorithms for RNA folding. Compared to CMs, this simpler secondary

structure representation is much more suitable to query RBP structure preferences in-

cluding the preference to single-strandedness. Our new model can be discriminatively

trained (as [36, 59, 115]) thus facilitating its use with either binding affinity data or sets

of bound sequences.

We apply RNAcontext to several RNA-binding affinity datasets (obtained with RNA-

compete), demonstrating that it can infer the RBP structure and sequence-binding pref-



Chapter 4. RNAcontext: motif models for RNA-binding proteins 55

erences with greater accuracy than other motif-finding methods. RNAcontext recov-

ers previously reported sequence and structure binding preferences for well-charactered

RBPs including Vts1p, HuR, and PTB and predicts new structure binding preferences

for FUSIP1, SF2/ASF, SLM2, and RBM4.

4.1 Methods

We now present our approach for discovering RNA sequence and structure binding pref-

erences of RBPs. This section is organized as follows: we first describe how we annotate

an RNA sequence in terms of its structural context. Then, we discuss the details and

the mathematical formulation of our motif model. Lastly, we describe our procedure for

fitting the RNAcontext motif model.

4.1.1 Structural annotation of RNA sequences

We use computational models to predict the RNA secondary structure though our al-

gorithm can use experimentally determined RNA secondary structures when they are

available [89]. Instead of focusing on the single minimum free energy structure, which is

often not representative of the full ensemble of possible structures [77], we consider the

ensemble of secondary structures that the RNA can form.

In the experiments reported here, we used Sfold [77] to estimate the marginal distribu-

tion at each nucleotide over structural contexts (e.g. paired, unpaired, hairpin loop) for

each position of the sequence by sampling a large number of structures for the sequence

according to the Boltzmann distribution. We annotated each base in each structure using

our context annotation alphabet (described below) and then we set the structural con-

text distribution (hereafter called the annotation profile) to be the empirical annotation

frequencies for that base across these samples. In all experiments described herein we

used 1,000 samples.
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Our motif model can use any annotation alphabet. However, in the experiments

described herein, we only use the alphabet P, L, U, M indicating that the nucleotide is

paired (P), in a hairpin loop (L), or in an unstructured (or external) region (U). The

last annotation, M, stands for miscellaneous because we combine the remaining unpaired

contexts (i.e. the nucleotide is in a bulge, internal loop or multiloop). This group of

structural contexts can capture most known RBP structural context preferences.

4.1.2 Motif model

Figure 5.1 shows an overview of our method. A set of sequences together with Sfold

predicted structure annotation profiles serve as input to the model. Each input RNA

molecule is scored using the sequence and structure parameters. Formally, let S =

{s1, s2, . . . , sN} represent the input set of sequences and let P = {p1, p2, . . . , pN} be a

set of real-valued matrices that represent the annotation profiles of the corresponding

sequences. We use A to represent the alphabet which is composed of the structure

features and associate each annotation in A with one of the rows of pi. The columns of

pi correspond to the positions in sequence si and are discrete probability distributions

over the annotations in the alphabet A.

Let Θ = {Φ,Γ, βs, βp, K} represent the model parameters where K is the width of the

binding site, Φ is a Position Weight Matrix (PWM) of sequence features with dimensions

4×K, Γ is a vector of structure annotation parameters with one element for each letter

in the alphabet A. For instance if A = {P, L, M, U} then Γ will consist of parameters (ΓP ,

ΓL, ΓM , ΓU) for the structure annotations P , L, M and U , respectively. Lastly, βs and

βp stands for the bias terms in sequence affinity model and structural context model

respectively.

We use Θ to assign a score, f(s, p,Θ), to a sequence s and its corresponding annotation

profile p. For an RBP with a binding site of width K, following [60], we define f(s, p,Θ)

as the probability that at least one of its subsequences of length K (which we call K-mers)
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Figure 4.1: Overview of RNAcontext method: the input, parameters and motif model. The
input to RNAcontext consists of a set of sequences together with their associated structure
annotation profiles (estimated using Sfold) and RNA-binding affinity estimates for the given
RBP. The motif model has sequence parameters (Φ) and structure parameters (Γ) where the
former describes the inferred base preferences (as a Position Weight Matrix) and the latter
describes the relative structural preferences of the RBP to different structural contexts. Shown
is a toy example, where the sequences with highest binding affinities have AUA or CUA in
hairpin loop context and the sequences with lowest binding affinities either lack the sequence
motif or contain the sequence motif in another structural context. By learning a motif model
that predicts the input affinities, RNAcontext would infer the sequence and RNA structure
preferences as shown on the right part of the figure.

is bound by the RBP, that is:

f(s, p,Θ) = 1−
|s|−K+1∏

t=1

1−N(st:t+K , pt:t+K ,Θ) (4.1)

where N(st:t+K , pt:t+K ,Θ) is an estimate of the probability that the K-mer with base

content st:t+K and with structural context defined by the probability profile matrix pt:t+K

is bound. Here, st:t+K indicates the subsequence of s between (t)-th element and (t+K)-th

element, inclusive, and pt:t+K is a matrix whose columns are the annotation distributions

for each of the bases between (t)-th and (t+K)-th position. We set N(st:t+K , pt,t+K ,Θ)

to be the product between a term that depends only its base content, N seq(st:t+K ,Θ),
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and one that depends only upon its structural context C(pt,t+K ,Θ), i.e.:

N(st:t+K , pt:t+K ,Θ) = N seq(st:t+K ,Θ)× C(pt:t+K ,Θ). (4.2)

We interpret the term N seq(s,Θ) as an estimate of the probability that the RBP will

bind st:t+k in the ideal structural context. We use a standard biophysical model [58–60]

to define N seq(s,Θ):

N seq(s,Θ) = σ(βs +
K∑

k=1

Φsk,k) (4.3)

where σ(x) = (1 + exp(−x))−1 is the well-known logistic function. The logistic function

takes value σ(0) = 0.5 at x = 0 where it is an approximately linear function of x, but

it quickly saturates toward 0 for negative x and 1 for positive x. We also model the

structural context term using a logistic function of the sum of the structure parameters

weighted by corresponding profile values plus a bias term βp:

C(p,Θ) = σ(βp + (
∑
a∈A

Γa ×
K∑

k=1

pa,k)) (4.4)

where pa,k represents the probability that the base at position k of s has structural anno-

tation a. In a preferred structural context, as represented by an annotation a associated

with large positive values of Γa, the score N(s, p,Θ) for a K-mer s approximately equals

N seq(s,Θ) and is thus determined by the base content s. Whereas in a highly disfavored

structural context, as represented by highly negative values of Γa, C(p,Θ) ≈ 0 and there-

fore the score N(s, p,Θ) ≈ 0 regardless of s because N seq(s,Θ) is bounded above by 1

for all s. So, the context term licenses binding in favored structured contexts.

In the following section, we describe how to estimate the parameters of our motif

model from binding data. However, in theory, our motif model has the flexibility to

represent many different modes of RBP binding. For example, the binding preferences of

RBPs, like HuR and Vts1p, that bind their preferred sequences within a specific structural
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context, unstructured (U) [92] and hairpin (H) [111] respectively, can be represented by

setting Φ to match their sequence binding preferences and Γ to have negative elements

except for the elements of Γ that corresponds to their preferred structural context (either

ΓU or ΓH respectively). The binding preferences of RBPs, like U1A, that have multiple

preferred contexts (e.g., hairpin loops [105] or unstructured ssRNA [116]) can be captured

by setting ΓH and ΓU to large positive values. RBPs, like Staufen, that bind dsRNA

without obvious sequence preferences [117], can be represented by setting the elements of

Φ to constant values, and setting ΓP to a large positive value. Similarly, RBPs without

strong structure preferences can be represented by setting the elements of Γ to zero and

setting βp to a large positive value. Our model thus extends previous efforts that model

RBP binding preferences [91] by associating each RBP with a single preferred structured

context which is required for binding.

In the next section, we describe how we can estimate the sequence and structure

preferences of new RBPs by training our model using RBP binding (bound or unbound)

or RBP binding affinity data (quantitative) for short RNA sequences.

4.1.3 Parameter estimation

We learn Θ by using our model to attempt to reproduce the observed affinity data

R = {r1, r2, . . . , rN} given the associated sequences S = {s1, s2, . . . , sN}. In particular,

we model the affinity ri of a sequence si as a linear function of the sequence score

f(si,Θ) with unknown slope α and y-intercept b and search for settings of Θ, α, and b

that minimize the sum of the squared differences between the measured affinity ri and

our predicted affinities r̂i = α× f(si,Θ) + b. When we only know whether or not a given

sequence is bound we use ri = 1 for all bound sequences and ri = −1 for sequences not

bound. This formulation leads to the following least squares cost function, E(Θ, α, b),

that we attempt to minimize with respect to α, b, and Θ using the limited memory



Chapter 4. RNAcontext: motif models for RNA-binding proteins 60

BroydenFletcherGoldfarbShanno (L-BFGS) method [118]:

E(Θ, α, b) =
N∑

i=1

(ri − r̂i)2 + λ(
∑

Φk∈Φ

(Φk)2 +
∑
Γk∈Γ

(Γk)2) (4.5)

Here, we have added a regularization term scaled by a small constant λ to avoid overfitting

and to avoid indeterminancy (i.e. due to the bias terms inside the logistic function for

sequence and structure model and due to the scaling factor α) thus ensuring a unique

global minimum. We use the same value of this constant in all experiments. We use

the bound constraints feature of the L-BFGS-B package to constrain α to take positive

values so that the estimated affinity increases as a function of the sequence score.

Different initializations can generate different results when running RNAcontext. For

the experiments reported here, we used ten different initialization for each motif width.

For motif lengths, K + 1, longer than the minimum length, two of these initial settings

are generated by taking the optimal Φ matrix learned for K and adding a column of

zeros to its left and right sides, respectively. The elements of Φ matrix for the other

initializations are randomly sampled uniformly between -0.05 and 0.05. In all cases, the

other parameters (Γ, βs, βp, α, b) are randomly sampled uniformly between -0.05 and

0.05.

4.2 Results

4.2.1 Dataset

We evaluated our motif model on RNAcompete-derived datasets (see Chapter 3 and [23])

comprised of the measured binding preferences of nine RBPs (i.e. HuR, Vts1p, PTB,

FUSIP1, U1A, SF2/ASF, SLM2, RBM4 and YB1) to a pool of 213,130 unique short

(29- to 38-nt) RNA sequences (the RNAcompete-v1 design described in the previous

chapter). RNAcompete estimates an RBP’s binding affinity for each sequence in an
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RNA pool based on the relative enrichment of that RNA sequence in the bound fraction

versus the total RNA pool (as measured by transformed microarray intensity ratios).

The RNA pool can be divided into two separate sets, Set A and Set B, that each

individually satisfy the following constraints: (i) each loop of length 3 to 7 (inclusive)

is represented on at least one sequence flanked by RNA stems of 10 bases; and (ii) a

population of ”weakly structured RNAs” wherein each possible 7-mer is represented in

at least 64 different sequences that have high folding free energy, and therefore are linear

or form weak secondary structures. We call the group satisfying the first constraint the

stem-loop sequences. This group also contains 60% of all possible 8-base loop sequences.

We call the sequences satisfying the second constraint the weakly structured sequences.

There is no overlap between the stem-loop and weakly structured sequences.

So in summary, there are two different groups of stem-loops, one in Set A and one in

Set B, and similarly, two different groups of weakly structured sequences. It is important

to note two things. First, though we attempted to design these sequences to be linear

or hairpins, there are many unintended structures represented in the pool. For example,

some of the stem-loops contain bulge or internal loops and some of the weakly structured

sequences contain stem-loops. Second, no two sequences within the pool share a common

subsequence more than 14 nt long.

The division of the RNA sequence pool into Set A and Set B provides a natural

strategy for evaluating our motif models using two-fold cross-validation: we train our

algorithm on one of the two sets and test its predictive power on the other set. This strat-

egy provides us with two independent measurements of performance on non-overlapping

training sets. Table 4.1 contains more information on the sizes and compositions of the

sequences used for training and testing. The categorizations ”Positive”, ”Negative”, and

”Other” that appear in this table are described below. Note that because of the removal

of some probes due to RNAcompete quality controls, some affinity data is not available

for some of the sequences, so the numbers in the table do not add up to 213,130 for each
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Proteins

Set A Set B

positive negative other positive negative other

weak stem-loop weak stem-loop weak stem-loop weak stem-loop weak stem-loop weak stem-loop

Vts1p 289 260 16,863 3409 11,390 9,107 282 239 16,697 3373 11,136 8,885

SLM2 520 1 18,373 9,984 19,109 14,819 566 5 18,143 10,100 18,879 14,671

YB1 555 59 15,985 11,838 29,317 21,858 519 62 15,701 11,784 29,177 21,905

RBM4 726 6 16,762 9,798 17,140 9,231 792 14 16,655 9,659 16,841 9,127

SF2 523 71 17,961 12,616 22,713 11,922 529 92 17,867 12,282 22,378 12,017

FUSIP1 201 436 21,181 4,148 9,918 15,149 234 426 20,986 4,096 9,928 15,185

HuR 608 1 16,379 13,422 24,877 4,348 586 0 15,944 13,332 25,095 4,405

U1A 310 322 8,232 325 6,752 1,740 277 328 8,250 337 6,665 1,738

PTB 467 62 21,315 6,908 18,040 15,356 448 72 21,309 6,820 17,779 15,332

Table 4.1: The composition of Sets A and B in terms of relative proportions of stem-loops and
weakly structured sequences among their Positive, Negative and Other groups. The input sets
are partitioned into these three groups according to their RNAcompete-measured affinities. The
sequences with affinities above a threshold are defined as Positive; the sequences with affinities
below the median affinities over all the sequences in the given set are defined as Negative and the
remaining sequences are placed in the Other group. Within each group, the number of weakly
structured sequences and stem-loops are displayed. For RNAcontext and MatrixREDUCE all
the sequences in Positive, Negative and Other categories are used for training whereas when
running MEMERIS, only Positive sequences are used for training. The test sets are comprised
of all sequences in the Positive and Negative groups.

RBP.

4.2.2 Justification of choice of motif models for comparison

We evaluate RNAcontext against two other motif finding methods: MEMERIS [57] and

MatrixREDUCE [36]. MEMERIS and RNAcontext use similar approaches to model

the structural context of an RNA binding site except that MEMERIS only models a

single structural context where RNAcontext considers multiple contexts simultaneously.

In contrast, MatrixREDUCE does not consider the structural context of RBP binding

sites and therefore can help determine the value of considering structural context in

RNA motif finding. Additionally, MatrixREDUCE outperforms many standard DNA

motif finding algorithms on a similar experimental assay [37] and therefore provides a

strong algorithm to benchmark to compare RNAcontext and MEMERIS against. Also,

like RNAcontext, MatrixREDUCE learns its motif model by trying to predict RNA
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sequence affinity whereas MEMERIS searches for motif models enriched in a set of bound

sequences.

4.2.3 Fitting motif models

In this subsection we describe our protocol for using the training data to fit the MEMERIS,

MatrixREDUCE and RNAcontext motif models. Note that for all three methods, we fit

all parameters, including those of the motif models and any free parameters (like motif

width), using the training data. One of the free parameters that we consider for each

method is whether it is better to train their motif model on the whole training set, or a

defined subset of the training set. All of the free parameters that we consider for each

method are described below. For every setting of the free parameters, we fit one motif

model. The ”best” motif model for each method was selected based on its ability to cor-

rectly classify ”Positive” and ”Negative” RNA sequences in the training set, as defined in

the next paragraph. The final result of training is a single motif model for each method

that we then evaluate on the test set.

The parameters of some motif models are fit using subsets of the training set because:

(i) MatrixREDUCE does not model RNA secondary structure and it is possible that its

performance would degrade when trained on stem-loop sequences (most of whose bases

are paired); and (ii) MEMERIS takes as input a set of ”bound” sequences that contain

RBP binding sites. For MEMERIS, ”bound” sequences are selected using a manual cutoff

that captures the right tail of the distribution of the RNAcompete affinity estimates. We

used a different cutoff for each RBP and each training set and the number of bound

sequences ranged between 234 and 792 for the RBPs analyzed. Additionally, we used

these bound sequence as the ”Positive” sequences for Area Under the Precision-Recall

Curve (AU-PR). For the ”Negative” sequences required by the AU-PR calculation, we

used those with estimated affinities below the median affinity of the training set. Any

sequence not deemed a ”Positive” or ”Negative” is labelled as ”Other” in Table 4.1.



Chapter 4. RNAcontext: motif models for RNA-binding proteins 64

We score each motif model’s performance by using it to estimate RNA-binding affinities

for the ”Positive” and ”Negative” sequences and then evaluating classification accuracy

using the AU-PR. Because each algorithm models RBP binding preferences in a slightly

different manner, in this section, we also describe how we estimate RNA-binding affinity

for each sequence using the motif models for each algorithm.

For each method, we trained two sets of motif models. One set of models was fit

using the full training set which consists of all RNA sequences in the training set for

MatrixREDUCE and RNAcontext and all bound RNA sequences in the training set for

MEMERIS. The other set of models was fit using only the weakly structured sequences

in the training set (i.e. removing the stem-loops).

We consider a wide range of combinations of free parameters for MEMERIS. In par-

ticular, we tried all possible combinations of the following free parameter choices: the

EF and PU options for measurement of single-strandedness; OOPS, ZOOPS and TCM

options for the expected number of motifs per sequence; motif lengths between 4 and 12

nts (inclusive); different values for the pseudocount parameter (i.e. 0.1, 1 and 3); and se-

lecting the training set using a permissive cutoff (i.e. the bound sequences) or a stringent

cutoff (i.e. the top half of bound sequences). The final option means that we consider

four different subsets of the training set for each setting of the other free parameters (i.e.

permissive/full, stringent/full, permissive/weak, stringent/weak). In total, we fit 648

different motif models for MEMERIS for each training set. We estimate affinity for each

RNA sequence using a MEMERIS Position Frequency Matrix (PFM) motif model by fol-

lowing an approach similar to that used by MotifRegressor [34]. Namely, we calculated

the foreground probability of a K-mer under the product-multinomial distribution de-

fined by the PFM and calculated the background probability using a third-order Markov

model trained on either the full training set (or test set, as appropriate). As explained in

Chapter 2, the ratio of the foreground and background probabilities is an estimate of the

relative affinity of the RBP for that K-mer. For some RBPs, when it led to a performance
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increase, we also multiplied this affinity by the probability that the site was accessible,

as determined using the optimized settings of the EF/PU and pseudocount parameters

for that training set. To estimate the affinity of the entire sequence, we summed its k-

mer relative affinities. Note that we also tried MAST [119] to score the sequences using

MEMERIS’s motif models but test set performance decreased (data not shown).

We used MatrixREDUCE to generate single motifs with widths ranging from 4 to

12 by setting max motif to 1. The MatrixREDUCE program automatically selects the

appropriate motif width, so we only needed to choose between two different MatrixRE-

DUCE motifs on each training set (one trained on the full set and the other only on

the weakly structured sequences). Note that MatrixREDUCE’s PSAM motif model di-

rectly estimates relative binding affinity of the RBP for each k-mer, so to estimate RNA

sequence affinity, we summed PSAM scores for each constituent k-mer.

We ran RNAcontext with motif widths ranging from 4 to 12, thus creating 18 motif

models per training set, and used equation (4.1) to score RNA sequences using these

models.

For all three methods, for each training set, we used the AU-PR on training set

”Positives” and ”Negatives”, to select the best single model among the fitted models.

The free parameters settings for the selected models are in Table 4.2.

4.2.4 Performance evaluation

RNAcontext achieved higher average AU-PR values than MEMERIS and MatrixRE-

DUCE on all of the nine RBPs analyzed (Table 4.3). It also had significantly higher

AU-PRs than either method on 15 of the 18 test sets encompassing seven of the nine

RBPs (the largest P-value was P = 10−94, Wilcoxon’s sign-rank test on the AU-PR values

of 1,000 bootstrap samples; See Table 4.4 for the complete results of bootstrap analysis).

The improvement in AU-PR of RNAcontext compared with MatrixREDUCE is largest

for proteins whose preferred structural context is less common in the RNA pool, reflecting
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Proteins RNAcontext MEMERIS MatrixREDUCE

Set MW-A MW-B Set MW-A Other-A MW-B Other-B Set MW-A MW-B

Vts1p full 7 7 full 7 EF ZOOPS 0.1 * 7 EF ZOOPS 0.1 * full 8 9

SLM2 weak 8 8 full 11 PU ZOOPS 0.1 5 PU OOPS 3 weak 8 9

YB1 full 8 8 weak 8 EF ZOOPS 1 12 EF ZOOPS 1 full 8 8

RBM4 full 6 8 weak 4 EF OOPS 3 4 PU ZOOPS 3 full 7 7

SF2 weak 5 5 weak 4 PU OOPS 1 * 4 EF OOPS 3 full 4 5

FUSIP1 full 12 11 full 6 EF TCM 0.1 * 6 EF TCM 0.1 full 8 8

HuR weak 9 9 full 10 PU OOPS 0.1 12 PU OOPS 1 full 8 8

U1A weak 9 9 weak 12 EF ZOOPS 0.1 8 EF ZOOPS 0.1 * full 8 9

PTB weak 7 7 weak 12 EF OOPS 3 12 EF OOPS 1 weak 7 5

Table 4.2: Details about the chosen models for RNAcontext, MEMERIS and MatrixREDUCE
Optimal free parameter settings for RNAcontext, MEMERIS and MatrixREDUCE. The col-
umn Set describes the training set and contains either weak or full where weak indicates that
both motifs were trained on the weakly structured sequences and full indicates that full set of
sequences was used. The columns, MW-A and MW-B, show the selected motif length for the
test sets A and B. There is an extra other column for MEMERIS which shows the other free
parameters that are chosen. Namely, EF and PU are two different ways to measure single-
strandedness of a region. OOPS (exactly one motif occurrence per sequence), ZOOPS (zero
or one motif occurrence per sequence), TCM (zero or more motif occurrence per sequence)
are options (-mod) that indicate the expected number of motifs per sequence. The values in
the next column (i.e. 0.1 or 1) are the chosen pseudocount parameters among the available
values {0.1, 1, 3}. The lower the pseudocount value, the more impact the single-strandedness
of the binding site has in the model. Two different thresholds were used to define the input
to MEMERIS. The rows containing * indicate that the more stringent threshold was selected.
The last three columns contain the selected free parameter settings for MatrixREDUCE.

the fact these are the hardest binding sites for MatrixREDUCE to predict. For exam-

ple, RNAcontext performs much better than MatrixREDUCE on Vts1p which binds to

CNGG in the loop of an RNA stem-loop. This sequence appears frequently outside of

a loop context in the RNA pool. We also see large improvements for RBM4 that binds

to CG containing sequences in an unpaired context, likely because these sequences of-

ten appear in stems. In contrast, HuR’s binding site is U-rich and, as such, is rarely

paired in either the training or test set. In this circumstance, MatrixREDUCE’s lack of

a structural model does little harm to its performance.

Although MEMERIS has higher average AU-PR than MatrixREDUCE for stem-loop

binding proteins Vts1p and U1A, reflecting the value of its model of structural context,
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Proteins RNAcontext MEMERIS MatrixREDUCE

RBM4 0.91* 0.43 0.63

FUSIP1 0.53* 0.31 0.32

Vts1p 0.65* 0.58 0.56

YB1 0.17* 0.07 0.11

SLM2 0.81* 0.49 0.77

SF2 0.70* 0.50 0.66

U1A 0.30 0.27 0.21

HuR 0.96* 0.74 0.94

PTB 0.69 0.26 0.67

Table 4.3: Comparison of predictive accuracy of three motif finding models using both weakly
structured and stem-loop sequences in the test set The values show the average AU-PR across
two test sets and bold values indicate the best performing method. Rows are sorted by de-
creasing relative gain of RNAcontext to the best of MEMERIS & MatrixREDUCE. For all the
methods, displayed values were calculated using the single best motif model for each method
chosen based on the two training set performance. According to the Wilcoxon’s sign rank test
performed on paired AU-PR values across 1,000 bootstrap samples from the test set results of
the three methods, all differences between RNAcontext AU-PR and that of the other algorithms
are statistically significant (the largest P-value is 1.9×10−95) except for the differences on PTB
and U1A.

Proteins MatrixREDUCE MEMERIS

A B A B

RBM4 1000/0 1000/0 1000/0 1000/0

FUSIP1 1000/0 1000/0 1000/0 1000/0

Vts1p 990/10 999/1 996/4 959/41

YB1 1000/0 995/5 1000/0 1000/0

SLM2 974/26 803/197 1000/0 1000/0

SF2 983/117 875/125 1000/0 1000/0

U1A 1000/0 504/496* 999/1 295/705

HuR 978/22 996/4 1000/0 1000/0

PTB 213/787 961/39 1000/0 1000/0

Table 4.4: Bootstrap analysis of relative AU-PRs Each entry represents the number of times
RNAcontext has a larger/smaller AU-PR value compared to AU-PR values of MatrixREDUCE
& MEMERIS on 1,000 bootstrap samples from the test set results (shown in Table 1). *
indicates that difference is not significant according to Wilcoxon’s sign rank test.
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its average AU-PR was otherwise worse than that of MatrixREDUCE and always worse

than that of RNAcontext. This is likely due to its inability to make use of the affinity

data associated with each sequence. One consequence of this is that it can only trained

on a small subset of the data. Some of the loss in AU-PR on the test set may also be due

to overfitting because of the large number of parameter combinations that needed to be

considered.

4.2.5 The predictive value of structural context

Having established that RNAcontext can capture RBP binding preferences better than

comparable motif models that either do not model RNA secondary structure (MatrixRE-

DUCE), or use a limited representation (MEMERIS), we then attempted to confirm that

the added predictive value was due to the incorporation of structural context, rather than

differences in how we estimate sequence affinity.

To do this, we compared our model based on the {P, L, U, M} structural annotation

alphabet to a simplified version where we removed the structure model. That is, we used

RNAcontext motif models selected in Section 1.2.3 to score the sequences in the full test

set. For the simplified version of RNAcontext, we only used the sequence parameters

to score the test sequences. As in previous sections, we compared test set AU-PRs to

evaluate the two models. To assess the significance of difference in AU-PR, we used

95% confidence interval of the difference estimated from 1,000 bootstrap samples. Figure

4.2 shows these differences for nine RBPs on the two cross-validation test sets. Using

structural context lead to a significant improvement in AU-PR for all of the RBPs. In

some cases, the difference was dramatic, particularly for RBM4, FUSIP1, U1A and Vts1p.
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Figure 4.2: Change in predictive accuracy of RNAcontext due to the representation of RNA
structural context. Bar graph shows the increase in AU-PR of RNAcontext with {P, L, U, M}
alphabet compared with the model without the structure model for each of nine RBPs using
the two test sets. Error bars show 95% confidence interval of the difference estimated from
1,000 bootstrap samples of the test set.

4.2.6 Position weight matrices provide good approximations of

sequence binding preferences for six RBPs

We then sought to assess the accuracy of PWM approximations of RNA-sequence binding

preferences by comparing the predictive power of inferred 7-mers affinities to that of the

three PWM-based models. We trained a ”fully-specified 7-mer model” that estimates the

binding affinity of an RBP for every 7-mer by taking a trimmed average of the transformed

intensity ratios of the weakly-structured sequences that contain the 7-mer in the training

set (see [23] for more details of this model). We then used these estimated affinities to

assign a score to RNA sequences longer than seven nucleotides, by taking the mean of the

affinities of each 7-mer in each sequence in the test set. We also trained and evaluated

RNAcompete, MatrixREDUCE and MEMERIS motif models as previously described

except that we always restricted the training and test sets to the weakly-structured

sequences. We used only the weakly-structured sequences in this comparison so that
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Figure 4.3: The predictive value of the fully-specified 7-mer model (i.e. the RNAcompete model)
with respect to the motif models. This scatter plot compares the performance of the RNAcom-
pete model to other motif models where the training and test sets are formed using only weakly
structured sequences. The x-axis shows the AU-PRs of RNAcompete and the y-axis shows the
AU-PRs of the three motif models: RNAcontext (blue), MEMERIS (red) and MatrixREDUCE
(green). Each point corresponds to the mean AU-PR of 1,000 bootstrap samples, averaged
across the two test sets. The error bars indicate the 95% bootstrap confidence interval.

we could more readily evaluate the ability of PWM models to assess sequence binding

preferences separately from each method’s ability to capture RBP structure binding

preferences. Figure 4.3 compares the 7-mer model against the three methods with respect

to average AU-PR on the test sets. PWM-based motif models perform significantly better

than the 7-mer model for every RBP except U1A (and only on test set A), YB1, and

SF2/ASF (the Wilcoxon sign-rank P-values for the best PWM motif model are all less

than 10−22). Notice that because MatrixREDUCE performs significantly better than

the RNAcompete method for five of the nine RBPs, this performance gain can not be

explained by the incorporation of structural context in RNAcontext.
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4.2.7 The sequence and structure binding preferences for seven

RBPs

Having established that RNAcontext accurately predicts the in vitro affinity for seven of

the nine RBPs (with the exception of YB-1 and U1A), we applied RNAcontext to the

entire dataset to make the best possible prediction for their binding preferences. The

results are shown in Figures 4.4 and 4.5. Figure 4.4 shows the relative structural context

preference of each RBP. RNAcontext’s predicted structural preferences are consistent

with co-crystal structures for Vts1p [111] (loop) and PTB [120] (ssRNA) and in vitro

and in vivo binding data for HuR [23, 91, 108]. RNAcontext also predicts new structural

preferences for SLM2, RBM4 and SF2/ASF. Of particular interest, is that RNAcontext

predicts that SF2/ASF has a slight preference for RNA binding sites in bulges, internal

loops, and/or multiloops (the M annotation). For FUSIP1, we report the motif model

trained using only the weakly structured sequences even though the model trained on the

full set (shown in Figure 4.6) had higher AU-PR. As mentioned in the legend of Figure

4.6, we could not rule out the possibility that this model reflected an artifact of our pool

design despite the fact that the two models both suggest that FUSIP1 prefers its binding

site to be 5’ to an RNA stem.

Figure 4.5 compares the motif logo representations (generated by enoLOGOS software[121])

of RNAcontext’s Φ parameters with previously reported motifs for those RBPs. To derive

the energy parameters required by Enologos, we uniformly rescaled the elements of the

Φ matrix so that N seq(s∗,Θ) of the optimal binding site, s∗, would be 0.5 (as suggested

by [60]). Underneath each of the logos for the RNAcontext motifs, we have displayed

an estimate of the preferred structural context for each base. In order to identify this

context, we found the top 20 best scoring k-mers in the test set under each motif model,

averaged the annotation profiles for these 20 k-mers and deemed the annotation with

the highest average frequency to be the preferred context for each position in the k-mer.
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Figure 4.4: Relative RNA structure preferences inferred by RNAcontext. Y-axis indicates the
ratio between the context scale factor C(pa) (see equation 4.4) for a structural context with
probability one for the indicated annotation (a) for all bases (i.e. pa

a,k = 1, ∀k) to the context
scale factor C(p∗) for the best possible structural context for the RBP (i.e. p∗a∗,k = 1, ∀k
where a∗ = argmaxaΓa). Displayed are ratios across parameters learned from the training set
containing all the sequences (i.e. both Set A and Set B). For Vts1p, the most preferred context
was predicted to be hairpin loop and this is consistent with the known binding preferences.
SLM2, RBM4, and HuR have similar preferences, and predicted to bind regions that are not
paired.

These estimates recover the fact that the Vts1p binding site (CNGG) occurs at the 5’

end of the hairpin loop. Our RNAcontext motifs match previously reported binding sites

and the motifs that we have previously derived from the RNAcompete data[23].
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Figure 4.5: Inferred sequence and structure binding preferences for seven RBPs. RNA-binding
domains of the proteins are displayed on the second column and previously reported binding sites
are displayed on the third column for reference. RNAcontext predicted sequence parameters
are shown as a PWM (fourth column). Also, an estimate of the preferred structural context
for each base is displayed underneath each of the logos.
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Figure 4.6: Inferred sequence and structure binding preferences for FUSIP1 using all the se-
quences as the training set. a) Predicted sequence parameters are shown using a sequence logo
representation. An estimate of the preferred structural context for each base is displayed un-
derneath the logo. b) The bar graph shows the relative RNA structure preferences of FUSIP1.
Note that all sequences in the RNA pool, including the stem-loop sequences, have an unpaired
5’-AGA or 5’-AGG (the initiation sequence for T7 promoter) at their 5’ end. In all stem-loop
sequences, this initiation sequence is followed by a G because the bottom base pair of every
stem-loop is G-C. Because AG(A/G)G is very similar to previously reported FUSIP1 binding
sites [23, 110], we were concerned that this artifact of the pool design had an impact on the
model of FUSIP1 binding preferences fit to the full training set. However, even in the model
fit only to the weakly-structured sequences shown in Figure 4.4, there is a slight preference for
the paired context compared to L and M.
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4.2.8 In vivo confirmation of RNAcontext motif for SF2/ASF

In both Figure 4.4 and Figure 4.5, we observe a preference for the M structural context

for the SF2/ASF motif. This preference has not been previously reported for SF2/ASF

[122]. To confirm this unusual preference, we collected data on the in vivo targets of

SF2/ASF from [123]. These targets were generated using the CLIP-Seq assay and consist

of 296 short RNA fragments that cross-link to the protein in cultured cells which we

call ”bound”; and 314 transcript sequences not observed to cross-link which we call

”unbound”. These data supported our inferred structure preferences for SF2/ASF. In

particular, by manual inspection, we discovered a number of cases of the RNAcontext

motif within bulge and internal loops within the bound sequences. Also, using our

model trained on the RNAcompete data, we were able to distinguish between bound and

unbound sequences with higher accuracy using our model (AU-PR 0.915) compared with

the version of our model with a single letter annotation alphabet (AU-PR 0.898) and

MatrixREDUCE (AU-PR 0.898). Furthermore, when we train our RNAcontext model

on the in vivo data, assigning bound sequences an affinity of 1 and unbound ones an

affinity of -1, we recover the same structural preference for SF2/ASF (Figure 4.7).

4.3 Discussion

We have demonstrated that RNAcontext represents an advance over existing methods

for modeling RBP binding preferences. Motifs learned by RNAcontext more accurately

predicted a held out in vitro binding dataset for all of the nine RBPs tested. Seven of these

differences were statistically significant. As expected, the size of an improvement depends

on the relative representation of the preferred binding site in the preferred structural

context (or contexts) in the RNAcontext dataset.

RNAcontext motif models reflect previously reported sequence and structure prefer-

ences for well-studied RBPs like HuR, Vts1p and PTB and predict new structure binding
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Figure 4.7: Inferred sequence and structure binding preferences for SF2/ASF from in vivo data
[123] a) Predicted sequence parameters are shown use a sequence logo representation and an
estimate of the preferred structural context for each base is displayed underneath the logo. b)
The bar graph shows the relative RNA structure preferences of SF2/ASF.

preferences for SLM2, RBM4 and SF2/ASF. RNAcontext’s predictions are supported by

in vivo binding data for SF2/ASF: the RNAcontext in vitro motif model more accurately

predicts in vivo binding of SF2/ASF, and RNAcontext motif models trained using the in

vivo data recover the same structural context preference. We expect similar success with

our other new predictions because, as we have previously established (in [23]), binding

preferences inferred from RNAcompete data are consistent with in vivo binding prefer-

ences and more accurate prediction of RNAcompete-measured binding affinity translates

into more accurate prediction of in vivo binding.

We have also provided evidence that the position weight matrix (PWM) motif repre-

sentation is a better approximation for the RNA binding preferences of RBPs than it is

for dsDNA binding preferences of TFs. In particular, in previous work [37], using a simi-

lar evaluation framework, we had found that that a ”fully-specified 8-mer model” trained

on protein-binding microarray (PBM) [32] data had greater predictive power for 7 of 10

TFs than a set of standard DNA motif-finding algorithms, including MatrixREDUCE,

trained on the same data. These observations were consistent with many others (e.g.,
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[41, 42, 124]) that PWMs were inaccurate approximations dsDNA binding affinities for

the majority of TFs. In Figure 3, we show that the opposite holds for RNA-binding data:

PWM models learned by MatrixREDUCE, which does not consider RNA structure, had

greater predictive power than a fully-specified 7-mer model for a majority of RBPs. Al-

though the sample size is small, this result may reflect the increased flexibility of RNA

compared with dsDNA, which may permit more independent movement and recognition

of individual bases. Our observations further suggests that modifications of the basic

PWM model made for TFs that incorporate interactions between bases may not be as

indispensible for modeling RBP binding preferences. Note that our conclusions here dif-

fer from our previous analyses on the same data [23]. We suspect that this difference is

due our use, in the present study, of motif finding methods that take full advantage of the

affinity data associated with each sequence. Indeed, MEMERIS, one of the algorithms

we also used in [23] performed worse than the fully 7-mer model in Figure 4.3 for eight

of the nine RBPs.

In summary, we have introduced a new motif model of RBP binding preferences and a

corresponding algorithm for fitting this model to quantitative estimates of RBP binding

affinity for short RNA sequences. Our RNAcontext model makes use of a new technique

for representing RNA structure based on a structural context alphabet that we use to

annotate individual bases of RNA sequence. This representation is particularly amenable

to modeling RBP binding preferences. Although we provide a pipeline to annotate RNA

sequences according to the PLUM alphabet, our motif finding code does not require a

particular structural context annotation alphabet for bases or even a particular RNA

structure prediction method. Hence, RNAcontext can easily be expanded to integrate

more parsimonious annotations of structural context or improvements in RNA structure

prediction methods.



Chapter 5

MaLaRKey: detailed in vivo binding

models

In the previous chapter, we introduced RNAcontext, a motif model that can learn both

the sequence and structure preferences of RBPs from large-scale binding data. RNA-

context recovers known binding preferences of several RBPs from RNAcompete data;

however, it also has some limitations. To begin with, fitting RNAcontext to in vivo

data sets is difficult for two main reasons. First, in vivo data sets usually contain long

sequences (i.e. mRNAs) which are problematic because the noisy-or function that is

used by RNAcontext (i.e. to combine k-mer scores) gets saturated when the number

of k-mers is large. Also, predicting RNA secondary structure with Sfold becomes infea-

sible for long sequences. Second, most of the in vivo experiments only provide binary

binding information (i.e. bound or unbound), and fitting a least squares loss function

for this type of data might not be optimal. Another limitation of RNAcontext is the

restricted representation of structural information. RNAcontext represents the structure

of the binding site by summing profiles of single bases across the binding site. Thus, its

structure parameters can only represent overall preferences to the structural context of

the binding site. Considering additional structural features would allow a more detailed

78



Chapter 5. MaLaRKey: detailed in vivo binding models 79

representation of structural preferences. For instance, rather than summing profiles of

single positions across the binding site, probabilities for the entire binding site to be

in different structural contexts can be considered. Indeed, it has been shown that the

accessibility of the entire binding site is a better predictor than single-base accessibility

when predicting RBP binding [125].

In this chapter, we introduce a new motif finding method, MaLaRKey (Multilin-

ear regression RNAContext), that extends RNAcontext by incorporating a much richer

model of secondary structure preferences and by using a motif scoring method suitable

for sequences of arbitrary length. MaLaRKey’s motif models are fit to RNA binding

data from large-scale assays by using multilinear regression to maximize the agreement

between the RNA sequence affinity predicted by the motif model and that measured

(or implied) by the binding assay. MaLaRKey uses a feature-based product model to

represent RBP binding affinity for a given site. Although MaLaRKey can make use of

arbitrary additional sequence and structural features, we have had success by adding

just three: an overall preference for a secondary structure context of the binding site

(i.e. RNAcontext’s structure representation, e.g. does the RBP prefer its site to be in a

hairpin loop?); predicted transitions between paired and unpaired bases in the binding

site (e.g. does the RBP prefer the first base in its binding site to be paired and the

rest in a hairpin loop?); and the tendency for the entire binding site to share the same

secondary structure context.

5.1 Methods

5.1.1 Overview of input and output of MaLaRKey

The input to MaLaRKey is a set of sequences S = {S1, S2, ..., SN} and their associated

binding affinities to the RBP of interest R = {r1, r2, ..., rN}. When there is only informa-

tion on whether or not a given sequence is bound, we assign ri = 1 for bound sequences
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and ri = 0 for unbound sequences.

The output of MaLaRKey consists of RBP preferences for various sequence and struc-

ture features, and also the predicted affinities of the RBP for the given input sequences.

5.1.2 Structural annotation of RNA sequences

Previous studies of RNA secondary structure prediction methods show that considering

the ensemble of all possible structures instead of the one with the minimum free energy

improves the prediction accuracy [75]. Also, there is evidence that mRNAs fold locally

instead of globally [82, 84, 126]. For these reasons, we decided to use RNAplfold [81]

that considers the ensemble of all possible structures to calculate probabilities for a

base or a set of bases to be unpaired with a maximal base pair span of L nucleotides.

RNAplfold employs local folding by predicting structure in sliding windows of length

W, and averaging base pair probabilities over all windows that contain the base pair.

RNAplfold was modified 1 to output probabilities for not only unpaired context, but

also for its subclasses (e.g. hairpin loop, internal loop). If the sequences are short (i.e.

less than 80-nts), we assigned -W and -L to be equal to the length of the sequence.

Otherwise, we ran RNAplfold with parameters -W 200 -L 150 for human transcripts and

-W 80 -L 40 for yeast transcripts.

RNAplfold uses a backtracking procedure for the partition function-folding algorithm

to calculate base pair probabilities or probabilities for multiple positions to be in unpaired

context [79]. This procedure does not allow calculating probabilities for multiple posi-

tions to be in paired context, or probabilities of transitioning from a paired context to an

unpaired context. In order to estimate these probabilities, we ran RNAshapes to enumer-

ate all secondary structures that had predicted free energies within 70% of the minimum

free energy (MFE) using the following call: RNAshapes -s -c 70.0 -r -M 30 -t 1 -o 2. We

then parsed individual structures to scan for patterns of interest (e.g. PP, PU, PPU

1by Wei Jiao



Chapter 5. MaLaRKey: detailed in vivo binding models 81

where P stands for paired context and U stands for unpaired context). The probability

of a structure pattern is then calculated as the sum of probabilities of structures (with

energies within 70% of the MFE) containing that pattern. When the sequences are long,

similar to RNAplfold, we ran RNAshapes in windows and averaged the probabilities

across the windows that the base is in.

5.1.3 Motif model

Given a set of input sequences S = {S1, S2, ..., SN}, we define L = {L1, L2, ..., LN} to be

the set of feature values of the corresponding sequences. Li contains an element for each

K-mer (subsequence of length K) of the sequence Si. Let Lij be the set of feature values

for the K-mer that starts at j-th position of Si. Lij consists of a set of vectors with each

vector containing the values for a single feature. For example, if feature t is defined as

”nucleotide at position 2 of the K-mer”, Lij
t is a vector containing four elements (i.e.

Lij
t1, Lij

t2, Lij
t3,Lij

t4) that correspond to the four nucleotides A,C,G,U. We require that the

feature values are always non-negative for all K-mers.

MaLaRKey associates a non-negative parameter vector Θt with each feature t and

uses these parameters to predict the score of a sequence, f(Si, Li,Θ):

f(Si, Li,Θ) =

|Si|−K+1∑
j=1

T∏
t=1

cijt (5.1)

where T is the number of features and cijt is the contribution of feature t for the K-mer

that starts at j-th position of sequence i. The sum iterates over all K-mers, and a K-mer

score is calculated as the product of feature contributions. Contribution of a feature is

defined as follows:

cijt =
nt∑

n=1

Θt
nL

ij
tn (5.2)
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where nt is the number of states for feature t.

5.1.4 Feature design

Figure 5.1 summarizes the features that we consider in our motif model. The first set

of features represents the sequence preferences with a Position-Specific Affinity Matrix

(PSAM) that has been previously used in MatrixREDUCE model [36]. Elements of

PSAM represent the change in the binding affinity when the corresponding position is

mutated from the wild-type binding site. MaLaRKey represents the PSAM by fitting a

feature for each position of the motif where each feature is associated with a vector Θt

that consists of four parameters corresponding to the four possible bases. The second set

of features is defined to represent the structure preferences. The ”single nucleotide struc-

tural context feature” models each nucleotide independently and calculates the expected

number of bases in each structural context by summing the annotation profiles across the

positions of the binding site (i.e. equivalent to RNAcontext’s structure representation).

If the structures are annotated with paired, hairpin loop, bulge or internal loop, multi-

loop and external loop (i.e. unstructured) contexts, this feature contains five parameters

corresponding to each of these contexts. Note that bulge and internal loop contexts are

combined into a single context since RNAplfold does not distinguish them. The ”full site

structural context feature” calculates the probability of the entire site to be in specified

structural contexts. Since the probabilities for multiple positions to be in paired context

cannot be calculated with RNAplfold, the states for this feature consist of hairpin loop,

bulge or internal loop, multiloop, external loop and dummy state where dummy state

represents the remaining probability mass. Another structure feature that we consider

models the 5’ transition from paired to unpaired state (or from unpaired to paired state).

Namely, the states of this feature correspond to the probability of the 5’ transition from

a paired to an unpaired state at a specific position within the binding site. For example,

this feature can represent the preference for the first base of the binding site to be in
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Figure 5.1: Overview of MaLaRKey method: the input, parameters and motif model. The input
to MaLaRKey consists of a set of sequences together with their associated structure annotation
profiles (estimated using RNAplfold and RNAshapes) and RNA-binding affinity estimates for
the given RBP. Each feature t is associated with a parameter vector Θt. In this figure, random
values are assigned to the entries of Θt for illustration purposes. The sequence features are
represented with a Position-Specific Affinity Matrix (PSAM) [36]. Boxes on the right show
the structure features that are considered: single nucleotide structural context feature, full site
structural context feature, 5’ transition from paired to unpaired state within a binding site. ”N”
indicates that the corresponding nucleotide is unconstrained, i.e., paired or unpaired. Note that
5’ transition from unpaired to paired state is not shown in this figure.

paired context and the rest of the binding site to be in a hairpin loop context.

5.1.5 Parameter estimation

Parameters are fit by minimizing two different cost functions E(Θ) depending on the

provided binding data. If quantitative binding affinity data is provided, we minimize
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the sum of the squared differences, between the measured affinities ri and our predicted

affinities r̂i:

E(Θ, β) =
N∑

i=1

(ri − r̂i)
2 + λ(

∑
t,n

Θt
n

2
) (5.3)

We predict the affinity of Si of the sequence score as f(Si, Li,Θ) +β, where β is the bias

term. We also include a L2 regularization term with λ as the regularization constant.

If only bound or unbound information is provided we assign ri = 1 for bound se-

quences and ri = 0 for unbound sequences, and minimize the cross entropy error between

ri and r̂i:

E(Θ, β) =
N∑
i

[−ri log(r̂i)− (1− ri) log(1− r̂i)] + λ(
∑
t,n

Θt
n

2
) (5.4)

where r̂i is defined as σ(f(Si, Li,Θ) + β). σ(x) = (1 + exp(−x))−1 corresponds to the

logistic function that scales x to the range of [0,1].

We use L-BFGS-B package [118] to optimize our cost function where we utilize box

constraints to enforce positivity constraints for Θ. Different initializations can give differ-

ent results when running MaLaRKey. As such, it is important to start the search from a

good initialization point. For this purpose, we use a pre-filtering procedure to determine

the K-mers that are most predictive. That is, we input counts of all possible k-mers

as features and affinity measurements as response variables to glmnet package [127] and

fit a logistic regression model with lasso penalty. We use the top five k-mers with the

highest coefficients as initialization points. For each of these k-mers, we initialize the

sequence parameters by assigning 1 for the consensus base in each column and 0.1 for

the non-consensus bases. Also, we determine the optimal motif length by calculating the

average cross-validation area under ROC curve (AU-ROC) on glmnet predictions, and

we choose the length that gives the minimum average cross-validation AU-ROC.

While learning the parameters, we first fit the sequence parameters using five different
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initializations and choose the parameter setting that has the lowest error (on the training

set). Then, to determine which structure feature to add, we fix the sequence parameters

and only fit one structure feature at a time. In the default setting, we consider two

alternative structure features: single nucleotide structural context feature and full site

structural context feature. We choose the one that reduces the error most. Finally, we

fit all the parameters (i.e. sequence features and the selected structural context feature)

to determine the final settings of the parameters. If we have prior knowledge that the

RBP binds to stem-loops, we also consider the 5’ transition feature by adding it after we

fit the first structural feature (i.e. single nucleotide or full site structural context).

5.2 Results

To evaluate the performance of MaLaRKey, we first compare it against RNAcontext on

RNAcompete-v1 data. Here, we also show how the 5’ transition feature can be used

to construct a detailed binding model for Vts1p. Next, we test MaLaRKey’s ability to

reproduce various binding data that we compiled on mRNA targets of a diverse set of

RBPs from yeast and human. We describe our results on binding data for 14 RBPs from

RIP-chip data and for seven RBPs from CLIP data.

5.2.1 Comparison of RNAcontext and MaLaRKey

We ran MaLaRKey on binding data for nine RBPs from RNAcompete-v1 experiments

(the details of this data is described in Chapter 3). We minimized the least squares

error to train MaLaRKey. Except for Vts1p, we chose one of the two structural context

features i.e., single nucleotide or full site structural context feature (as described in the

previous section). Since we have prior knowledge that Vts1p binds to stem-loops, we

checked whether we can model the transition from stem to hairpin loop within a binding

site. As such, we considered two structural features for Vts1p: first was selected between
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single nucleotide structural context feature and full site structural context feature, and

the second was selected between the 5’ transition from unpaired to paired context feature

and 5’ transition from paired to unpaired context feature.

We followed the same procedure described in the previous chapter (i.e. Chapter 4) for

model selection. Namely, we fit two motif models for RNAcontext and MaLaRKey. One

set of models was fit using only weakly structured sequences, and the other model was fit

using the full data set containing both stem-loops and weakly structured sequences. Also,

as before, we used the training set AU-PR to choose the optimal motif width, and to

choose between the full training set and only the weakly structured sequences. We then

scored the test sequences (i.e. full data set) with the selected motif model, and calculated

AU-PR. We used RNAplfold (rather than Sfold) to calculate profiles for single nucleotide

and full site structural context features, and RNAshapes to calculate the profiles for

transition features. Because of this change, RNAcontext AU-PRs for some RBPs are

different when compared to the results in the previous chapter (Table 4.3, first column).

The first and second columns of Table 5.1 show the average AU-PRs across the two cross-

validation sets (i.e. Set A and B) for RNAcontext and MaLaRKey. The AU-PRs of the

two methods are the same for SLM2, SF2, HuR. MaLaRKey gives a better performance

for FUSIP1 and Vts1p, and RNAcontext gives a better performance for RBM4, YB1,

U1A and PTB. Since RNAcontext’s motif scoring is more suitable for short sequences,

it is not surprising that its predictions are more accurate than MaLaRKey for a number

of RBPs. However, many of these differences are small suggesting that both algorithms

can be applied to large binding data of short sequences.

Figure 5.2 shows MaLaRKey’s predicted sequence and structure preferences for Vts1p

when the entire data set (both Set A and Set B) is used for training. The sequence logo

contains a G 5’ to the core loop sequence CNGG (Figure 5.2-a). Since the predicted

motif includes some flanking in addition to the core binding site, the single nucleotide

structural context feature is selected. The bar graph on the bottom left (Figure 5.2-b)
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Proteins RNAcontext MaLaRKey
RBM4 0.91 0.90
FUSIP1 0.34 0.46
Vts1p 0.65 0.72
YB1 0.17 0.16
SLM2 0.81 0.81
SF2 0.69 0.69
U1A 0.42 0.21
HuR 0.96 0.96
PTB 0.72 0.70

Table 5.1: Comparison of predictive accuracy of RNAcontext and MaLaRKey on nine RBPs
from RNAcompete-v1 data. The values show the average AU-PR across two test sets. The
first and second columns show the results for RNAcontext and MaLaRKey when motif lengths
between 4 and 12-nts (inclusive) are considered, and the secondary structure profiles are pre-
dicted with RNAplfold. Bold values indicate the best performing method between the first and
second columns.

shows that there is a strong preference for hairpin loop. Among the transition features, 5’

transition to unpaired context is chosen, and the transition is predicted to occur after the

first position (Figure 5.2-c). Taken together, learned sequence and structure parameters

recover Vts1p’s known binding preferences (i.e. preference to hairpin loops that contain

the CNGG motif with closing base pair G-C), and allow constructing a more detailed

representation of the binding site. We also checked whether the inclusion of 5’ transition

feature improves the prediction accuracy. The sequence model alone results in an average

AU-PR of 0.56. The inclusion of the single nucleotide structural context feature increases

the average AU-PR to 0.65. Finally, the addition of 5’ transition feature further improves

the average AU-PR to 0.72 confirming that the higher performance of MaLaRKey for

Vts1p is due to the addition of 5’ transition feature.

5.2.2 RIP-chip data

Hogan et. al. queried for the RNA targets of 40 RBPs in yeast using RIP-chip technique

[6]. We used a subset of this data that had a large enough number of transcripts to fit a

statistical model. The selection of the subset of the data and the definition of bound and
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Figure 5.2: Inferred sequence and structure preferences of Vts1p from RNAcompete-v1 data. a)
Sequence logo representation of inferred sequence preferences (generated by enoLOGOS soft-
ware [121]). b-c) Relative structure preferences are shown with bar graphs where the parameters
associated with the structure feature are scaled so that the maximum value is 1. Note that
we combined bulge / internal / multi loop into a single context to compare against Chapter 4
results. b) single nucleotide structural feature. c) 5’ transition to unpaired state feature.

unbound transcripts are based on a previous study [125]. Table 5.2 shows the number

of bound and unbound transcripts for each of the 14 data sets that we used. Note that

many of the data sets are unbalanced, thereby exacerbating the classification problem.

Also, the length of the input sequences (i.e. full-length transcripts) is quite long (i.e.

average length is 1851) compared to a typical motif-finding problem.

We fit MaLaRKey to binding data for 14 RBPs by minimizing the cross entropy

error. To assess the confidence in inferred structure preferences, we ran MaLaRKey on

100 training sets (for each RBP) that are created by bootstrapping. We used stratified

bootstrapping to ensure that each training set contains similar proportions of bound and

unbound transcripts. We used the transcripts that are not selected for the training set

as the test set, and evaluated the fitted motif models by predicting binding of these
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RBPs bound unbound total
Vts1p 121 1433 1554
Khd1 567 3108 3675
Gbp2 212 2180 2392
Nab2 620 962 1582
Ypl184 305 174 479
Scp160 1230 303 1533
Pub1 1378 1034 2412
Bfr1 985 790 1775
Puf3 212 2608 2820
Puf4 219 3889 4108
Puf5 178 949 1127
Yll032c 49 1872 1921
Nop56 292 105 397
Tdh3 125 452 577

Table 5.2: The number of bound and unbound transcripts for 14 RBPs from RIP-chip data [6].

transcripts.

Figure 5.3 contains the inferred sequence and structure binding preferences. Since

displaying each of the 100 sequence models is difficult, we only show the sequence model

that is learned from the entire data set (third column). MaLaRKey recovers previously re-

ported sequence preferences for most of the RBPs [6, 125, 128]. For example, MaLaRKey

correctly predicts that Vts1p binds to CNGG motifs, and Puf proteins (i.e. Puf3, Puf4,

Puf5) prefer sequences that contain the UGUA core motif. The bar graph next to the

sequence logo displays the median of the structure parameters that are learned from

bootstrapped training sets. Note that the parameters associated with the structure fea-

ture are scaled so that the maximum value is 1. The structure feature that is selected in

maximum number of training sets (i.e. out of 100) is shown on the left of the bar graph:

single refers to the single nucleotide structural context feature and full corresponds to

the full site structural context feature. MaLaRKey recovers the fact that Vts1p binds

to hairpin loops with the CNGG motif in a hairpin loop, and Puf proteins (i.e. Puf3,

Puf4, Puf5) recognize single-stranded regions [18, 111]. For four RBPs with unknown
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structure preferences (i.e. Khd1, Ypl184, Scp160 and Bfr1), MaLaRKey predicts a strong

preference to external regions.

We evaluated the fitted motif models by calculating area under ROC curve (AU-ROC)

and area under precision-recall curve (AU-PR) on the test set predictions. The right-

most four columns of Figure 5.3 show the average AU-ROC and AU-PR of the complete

MaLaRKey model and a simpler version of it that only includes the sequence features.

By comparing the performances of the two models, we can evaluate the added predictive

value of structure features. Table 5.3 shows the p-values of two-sided Wilcoxon sign rank

test on 100 AU-ROC or AU-PR pairs for each RBP. Including structure information

improves the predictions significantly for 9 out of 14 RBPs (p-value < 0.005). The

improvement due to structure features is prominent for RBPs such as Khd1, Vts1p,

Ypl184 and Gbp2. Including structure information does not improve the prediction

accuracy for RBPs Puf3, Puf5, Scp160, Nop56 and Bfr1. MaLaRKey can be easily

modified such that the inferred structure preferences are not reported when their inclusion

does not improve the prediction accuracy.
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Figure 5.3: Inferred sequence and structure preferences of yeast RBPs from RIP-chip data [6].
First and second columns display the names and the RNA-binding domains of the RBPs. Se-
quence preferences are shown with a motif logo representation (third column). In the fourth
column, the type of the structural context feature that is selected in the majority of the boot-
strap runs is reported. This column also shows the number of times this feature is selected
among the 100 bootstrap runs. In the fifth column, relative structure preferences are shown
with a bar graph where the parameters of the selected structure feature are scaled so that the
maximum value is 1. The values show the median of the bootstrap results. Lastly, AU-ROC
and AU-PR values are displayed for the complete MaLaRKey model and a simpler version of
it containing only sequence features. * indicates that the difference is significant according to
two-sided Wilcoxon sign rank test (p-val < 0.005).
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Proteins AU-ROC p-value AU-PR p-value
Khd1 complete 3.9e-18 complete 3.9e-18
Vts1p complete 8.1e-16 complete 1.3e-15
Nab2 complete 3.9e-18 complete 3.9e-18
Ypl184 complete 4.0e-18 complete 5.0e-18
Pub1 complete 7.3e-18 complete 3.9e-18
Gbp2 complete 3.9e-18 complete 3.9e-18
Puf3 - 1.6e-01 sequence-only 1.5e-06
Puf4 complete 2.1e-15 complete 2.3e-14
Puf5 - 4.1e-01 sequence-only 7.6e-07
Yll032c complete 4.0e-12 complete 1.6e-13
Tdh3 complete 1.4e-14 complete 7.5e-10
Scp160 sequence-only 1.5e-03 - 4.2e-02
Nop56 sequence-only 3.1e-05 sequence-only 8.2e-04
Bfr1 sequence-only 4.5e-04 - 1.0e-01

Table 5.3: P-values for Wilcoxon sign rank test on 100 AU-ROC and AU-PR pairs. The
performance of the ”complete” model is significantly better than the ”sequence-only” model for
RBPs Khd1, Vts1p, Nab2, Ypl184, Pub1, Gbp2, Puf4, Yll032c and Tdh3. Including structure
information either results in no change or gives significantly worse performance for the remaining
set of RBPs ( i.e. Puf3, Puf5, Scp160, Nop56, Bfr1). Though, the p-values for these RBPs
are higher when compared to the p-values for RBPs for which including structure information
improves the prediction accuracy. Entries with ”-” shows that the hypothesis (i.e. the difference
of the two distributions come from a distribution whose median is 0) cannot be rejected at the
5% significance level.

We next assessed the uncertainty in inferred structure preferences by plotting the dis-

tribution of structure parameters learned from bootstrapped training sets. Note that we

only plot a subset of the structure parameters inferred from 100 bootstrapped training

sets. We identify the structural feature (i.e. either single nucleotide or full site) that is

selected in the majority of the runs and only plot the distribution of parameters of this

feature type. Figure 5.4 and Figure 5.5 show these distributions with box plots where

the red lines show the medians, and the bottom and top of the pink boxes correspond

to the 25th percentile and 75th percentile, respectively. The tables next to the box plots

compare the distributions of structure parameters using two-sided Wilcoxon sign rank

test. For each RBP, we report eight comparisons i.e., four comparisons between the

most preferred structural context (i.e. that has the highest median value) and remaining
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structural contexts, and four comparisons between the paired / dummy structural con-

text and remaining structural contexts. We observe that the magnitude of the structure

parameters is larger for RBPs for which including structure information is helpful. For

instance, the median values for the preferred structure context for Khd1 and Vts1p are

above two. On the other hand, most of the values of the structure parameters are below

one for RBPs Scp160 and Bfr1. Also, we see a clear difference between the preferred

structural context and the other structural contexts for RBPs for which structure is im-

portant. For example, Khd1 and Puf4 prefers to bind external regions, and Vts1p prefers

to bind hairpin loops. RBPs such as Pub1, Gbp2 and Ypl184 seem to have preferences

for multiple contexts. For RBPs for which structure results in no gain of performance

(e.g. Puf3, Nop56), the distributions of structural contexts are highly overlapping.

For the RBPs for which the inclusion of structure features does not improve the

prediction accuracy (i.e. Scp160, Nop56, Bfr1, Puf3, Puf5), we investigated whether this

is due to lack of signal in the data or MaLaRKey’s inability to learn the correct structure

preferences. We first determined the highest scoring k-mer (which will be called top k-mer

hereafter) under the sequence model. Then, we found the occurrences of the top k-mer

in the set of input transcripts, and compared the structure profiles of these occurrences

between bound and unbound transcripts. Figure 5.6 shows the mean profile values and

standard error for each structure context for RBPs Ypl184 (left) and Scp160 (right). Note

that one of the structural contexts differs (i.e. Dummy vs Paired) between the two bar

graphs since Ypl184 prefers the full site structural context feature, and Scp160 prefers the

single nucleotide structural context feature. The bar graph for Ypl184 clearly shows that

the top k-mers within bound sequences have a higher probability to be in external regions

when compared to unbound transcripts. This difference is reflected in strong preference

to external regions predicted for Ypl184. On the other hand, the profiles of the top k-mer

occurrences between bound and unbound sequences are indistinguishable for Scp160. As

expected, inclusion of structure information does not change the prediction performance
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for Scp160.

We next checked whether fitting MaLaRKey with the alternative structure feature

(the one that is not selected) changes the prediction performance. Namely, we fit

MaLaRKey with the single nucleotide structural context feature on binding data for

Vts1p, and with full site structural context feature on binding data for Tdh3, Nop56 and

Yll032c. We found that the average AU-ROC decreases from 0.71 to 0.63 for Vts1p. The

AU-ROCs remained the same for Nop56, Tdh3 and Yll032. Therefore, we decided to

keep the two alternative structural context features; however, we note that the selection

of single nucleotide structural context feature usually indicates a weak preference for

structure. Although rare, the single nucleotide structural context feature can be useful

for RBPs that prefer to bind paired regions because the alternative full site structural

context feature cannot represent pairedness.
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Figure 5.4: Distribution of structure parameters inferred from bootstrapped training sets.The box
plots show the distributions of structure parameters for each RBP. Each box plot displays the
parameters for structural contexts hairpin loop (H), internal loop (I), multiloop (M), external
loop (E), paired (P) or dummy (D). Note that these plots are different from traditional box
plots in that they display all the points rather than a subset of the points that do not reside in
inter-quartile range. The tables next to the box plots display the p-values that are calculated
by comparing the distributions of the structural contexts using two-sided Wilcoxon sign rank
test. Highlighted entries indicate that the p-values are not significant i.e., ≥ 0.0005 considering
10 multiple tests.
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Figure 5.5: Distribution of structure parameters inferred from bootstrapped training sets.The box
plots show the distributions of structure parameters for each RBP. Each box plot displays the
parameters for structural contexts hairpin loop (H), internal loop (I), multiloop (M), external
loop (E), paired (P) or dummy (D). Note that these plots are different from traditional box
plots in that they display all the points rather than a subset of the points that do not reside in
inter-quartile range. The tables next to the box plots display the p-values that are calculated
by comparing the distributions of the structural contexts using two-sided Wilcoxon sign rank
test. Highlighted entries indicate that the p-values are not significant i.e., ≥ 0.0005 considering
10 multiple tests.
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Figure 5.6: Mean profile values for the top k-mer occurrences in bound and unbound sequences
for RBPs a) Ypl184 b) Scp160. The error bars show the standard error of the mean. Since full
site structural context feature is selected for Ypl184, the profiles are calculated such that the
whole k-mer is in the same structural context. On the other hand, single nucleotide structural
context feature is selected for Scp160. As such, expected number of bases in each structural
context was calculated by summing individual profiles across the positions of the k-mer. The
profiles show these values divided by the length of the k-mer.

Next, we checked whether we could recover Vts1p’s preferences that we inferred

from RNAcompete-v1 data when we fit MaLaRKey to RIP-chip data for Vts1p. To

do this, we followed the procedure that we previously used to fit 5’ transition feature

on RNAcompete-v1 data. Figure 5.7 shows the predicted sequence and structure prefer-

ences for Vts1p. Predicted preferences confirm that Vts1p prefers hairpin loops with the

CNGG motif where the closing base pair is a G-C pair. We repeated our evaluation using

bootstrapped training /test sets mentioned in the previous section to check whether the

inclusion of transition feature improves the prediction accuracy. The motif model that

only considers sequence features results in an average AU-ROC of 0.62. Average AU-

ROC increases from 0.62 to 0.69 with the addition of single nucleotide structural context

feature. The addition of transition feature further improves the average AU-ROC from

0.69 to 0.76 confirming its high predictive value.
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Figure 5.7: Inferred sequence and structure preferences of Vts1p from RIP-chip data. a) Se-
quence logo representation of inferred sequence preferences from the entire data set. b) Box
plot shows the structure parameters learned from 93 bootstrapped training sets for which single
nucleotide structural context feature is selected. The labels of the x axis corresponds to the
structural contexts: H (hairpin loop), I (internal loop), M (multiloop), E (external loop) and
P (paired). By comparing the distribution of the first column against the other columns, we
can infer a strong preference for hairpin loop context. c) Box plot shows the distribution of
parameters for the transition feature that are learned from 100 bootstrapped training sets (i.e.
transition to unpaired state feature rather than transition to paired state feature is selected for
all of the training sets). Strong preference to PUNNN implies that the transition from paired
to unpaired state occurs after the first position.

5.2.3 CLIP data

CLIP-derived binding data of six human RBPs (i.e. IGFBP1-3, QKI, Pum2, TIA1,

TIAL1 and TDP-43) were downloaded from doRINA database [129]. Also, CLIP data

on the yeast RBP Khd1 were downloaded from the supplementary material of Wolf et al.

[130]. Since CLIP experiments are followed by high-throughput sequencing to identify

the cross-linked sites, the binding data consists of peak locations and their associated

scores that are calculated based on the number of reads matching to the peak region.

Sequences that correspond to peak locations were extracted from the human (hg18) and
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yeast (Sigma1278b) genomes using BEDtools [131] utilities. Some flanking region (i.e.

80-nts for yeast and 200-nts for human) were also included for RNA secondary structure

prediction. Sequences with scores in the top five percentile were defined as the bound

sequences. If the number of bound sequences based on this selection is less than 1000,

the percentile cutoff is reduced to include 1000 sequences. Random non-peak windows

of matching length were selected from the same set of transcripts as the peaks to form

the set of unbound sequences. These random regions were also constrained to be at least

300-nt away from the end of the peaks. This selection criterion is designed to produce a

”negative set” of unbound sequences available for binding but reported not to be bound.

We assigned a score of 1 to bound sequences and 0 to unbound sequences and fit

MaLaRKey by minimizing the cross entropy error. The results are shown in Figure 5.8.

Our predicted sequence motifs for IGFBP1-3, QKI and Pum2 are highly similar to the

motifs identified by the original study that produced the CLIP data [28]. For the RBPs

TIA1 and TIAL1, our predicted sequence preferences confirm the finding that these

proteins have similar preferences, and bind to U-rich sequences [132]. Sequence motifs

for IGFBP1-3, QKI, and TIA1 are further confirmed by RNAcompete identified sequence

preferences (See Figure 3-12). We predict that TDP-43 prefers UG-rich sequences that

agrees with a previous study showing that TDP-43 binds to UG clusters [133]. Finally,

sequence preferences for Khd1 are in accordance with those that we identified from RIP-

chip data (Figure 5.3). Including structural features improve the prediction accuracy of

IGFBP1-3 and Khd1 (p-val < 0.005 from two-sided Wilcoxon sign rank test). Table 5.4

shows a complete list of p-values of two-sided Wilcoxon sign rank test applied on a set

of 100 AU-ROC and AU-PR pairs.

As we did for RIP-chip data, we plot the distributions of structure parameters in order

to assess the uncertainty. Figure 5.9 shows these distributions for each of the seven RBPs.

For Khd1, MaLaRKey infers a strong preference to external loop, which is in accordance

with Khd1’s preferences previously inferred from RIP-chip data. Interestingly, we see a
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Figure 5.8: Inferred sequence and structure preferences of seven RBPs from CLIP data. First
and second columns display the names and the RNA-binding domains of the RBPs. Third
column shows the learned sequence preferences with a motif logo representation. In the fourth
column, relative structure preferences are shown with a bar graph where the parameters of the
selected structure feature are scaled so that the maximum value is 1. Lastly, AU-ROC and AU-
PR values from the complete MaLaRKey model and a simpler model containing only sequence
features are reported. * indicates that the difference is significant (p-val < 0.005, two-sided
Wilcoxon sign rank test)

preference to external loop context for Pum2 and QKI, although including structure does

not improve the performance for these RBPs.

Similar to our analysis on RIP-chip data, we investigated the profiles of the top k-mer

occurrences between bound and unbound sequences. Figure 5.10 shows the mean profile

values and standard errors for Khd1 and TIAL1. The profile for Khd1 shows a strong

enrichment for external regions in bound sequences, whereas the difference between the

profiles for bound and unbound sequences are small for TIAL1.
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Proteins AU-ROC p-value AU-PR p-value
Khd1 complete 3.9e-18 complete 3.9e-18
Pum2 sequence-only 8.2e-06 sequence-only 3.1e-10
TDP-43 sequence-only 1.8e-04 sequence-only 6.8e-06
IGFBP1-3 complete 3.9e-18 complete 3.9e-18
QKI - 1.1e-01 sequence-only 3.5e-03
TIA1 - 2.0e-01 complete 4.2e-11
TIAL1 - 6.3e-01 complete 1.6e-03

Table 5.4: P-values of Wilcoxon sign rank test on 100 AU-ROC and AU-PR pairs. The AU-
ROCs and AU-PRs of the ”complete” model is significantly higher than the ”sequence-only”
model for RBPs Khd1 and IGFBP1-3. For TIA1 and TIAL1, only AU-PRs of the ”complete”
model is significantly higher than the ”sequence only” model. Including structure information
either results in no change or gives significantly worse performance for the remaining set of
RBPs (i.e. Pum2, TDP-43, QKI). However, we should note that the p-values for these RBPs
are higher when compared to the p-values for RBPs for which including structure information
improves the prediction accuracy. The entries with ”-” indicates that the hypothesis (i.e. the
difference of the two distributions come from a distribution whose median is 0) cannot be
rejected at the 5% significance level.
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 M 8.7e-14 3.7e-13 4.2e-13 7.7e-14 

 P 1.2e-05 1.2e-05 1.2e-05 7.7e-14 

  H    I   M P  / E 

 E 2.4e-11 2.4e-11 2.4e-11 2.4e-11 

 P 3.3e-11 2.9e-07 9.2e-04 2.4e-11 

  H    M   E P  / I 

 I 7.6e-12 7.6e-12 7.6e-12 7.6e-12 

 P 6.6e-01 2.4e-08 7.6e-12 7.6e-12 

  H    M   E P  / I 

 I 9.9e-14 1.2e-12 2.1e-09 1.1e-14 

 P 1.1e-12 9.9e-02 4.0e-07 1.1e-14 

Figure 5.9: Distribution of structure parameters inferred from bootstrapped training sets.The
box plots show the distributions of structure parameters for each of the seven RBPs. Each
box plot displays the parameters for structural contexts hairpin loop (H), internal loop (I),
multiloop (M), external loop (E), paired (P) or dummy (D). The tables next to the box plots
display the p-values that are calculated by comparing the distributions of the structural contexts
using two-sided Wilcoxon sign-rank test. Highlighted entries indicate that the p-values are not
significant i.e., ≥ 0.0005 considering 10 multiple tests.
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Figure 5.10: Mean profile values for the top k-mer occurrences in bound and unbound sequences
for RBPs a) Khd1 b) TIAL1. The error bars show the standard error of the mean.
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5.3 Discussion

In this chapter, we have introduced MaLaRKey, a new motif finding method that infers

detailed binding preferences of RBPs from large-scale binding data. MaLaRKey is flexible

enough to handle either binary-valued (i.e. bound and unbound) or real-valued binding

data. Also, MaLaRKey can be fit to sequences of arbitrary length such as full-length

transcripts or short probe sequences. In addition to sequence features, a rich set of

secondary structure features are incorporated to build detailed models of RBP binding.

Secondary structure features can be used to infer whether the RBP of interest prefers

the entire binding site to be in the same structural context, or whether there is an overall

preference for a structural context. For the latter case, additional structural features can

be added to check whether there is a transition from unpaired to paired state, or vice

versa.

To evaluate MaLaRKey, we first compared it against RNAcontext on the binding data

of nine RBPs from RNAcompete-v1. The performances of RNAcontext and MaLaRKey

are quite similar except for a few RBPs. Since RNAcontext’s motif scoring (i.e. noisy-or

function [60]) is much more suitable for short sequences, we do not expect MaLaRKey

to outperform RNAcontext on this particular data set. However, we show that the

additional features considered by MaLaRKey are useful. By fitting the sequence features,

single nucleotide structural context feature and 5’ transition to unpairedness feature,

MaLaRKey recovers the preference of Vts1p for CNGG within a hairpin loop and with

G as the 5’ closing base of the loop.

We then evaluated MaLaRKey with 14 RIP-chip data sets that provide binding in-

formation on full-length yeast transcripts. Predicting binding of full-length transcripts

is challenging both because of increased uncertainty of the location of the binding site(s)

within the long sequence and also because of decreased accuracy of secondary structure

prediction methods for long sequences. Despite these challenges, MaLaRKey is able to

learn motif models that accurately predict binding for held-out transcripts. Sequence
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preferences inferred by MaLaRKey agree with known preferences (when applicable) or

with previous analysis of the same data. Incorporation of secondary structure features

improves the prediction accuracy significantly for 9 out of 14 RBPs. For a set of RBPs

for which the accuracy does not improve, we showed that this is due to lack of signal in

data rather than MaLaRKey’s inability to learn the correct structure preference. We also

showed that the Vts1p’s preferences inferred from RNAcompete-v1 data and RIP-chip

data are consistent with each other.

Lastly, we ran MaLaRKey on CLIP data for seven RBPs. Learned sequence motifs for

these RBPs are in agreement with previous analysis of these data, and predict binding

of held-out data accurately. Including structural information improves the prediction

accuracy significantly for two RBPs (i.e. IGFBP1-3 and Khd1). The lack of performance

gain with the addition of structural features for the remaining five human RBPs could

be due to one (or more) of the following reasons: (i) MaLaRKey is not able to learn the

correct structural preferences from CLIP data; (ii) the RBP does not have a structural

preference; and (iii) RNA secondary structure cannot be predicted accurately for human

sequences. We argue that (i) cannot be the case since the binding models that are

inferred from RIP-chip and CLIP data for Khd1 are highly similar, and the addition of

structure improves the accuracy substantially. Since the five RBPs that are tested have

unknown structure preferences (ii) could be the reason. The base content of the sequence

motif is likely to also play a role in the ability to detect structural preferences. If the

binding site is enriched for G’s and C’s, and the RBP prefers single-stranded regions, it

is easy to detect this preference as GC-rich regions are likely to be paired. On the other

hand, detecting a preference to single-stranded regions that are AU-rich can be difficult

as only a small number of the occurrences are not in the preferred context (i.e. paired).

Inaccuracies in predicting secondary structure may also play a role since the fact that

the transcripts are occupied by many factors during secondary structure formation is not

taken into account by computational prediction methods.
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Although added predictive value of structural features is little or none for some RBPs,

construction of detailed models of binding is still critical for identifying the true binding

sites of an RBP. For example, a genome-wide scan of Vts1p binding sites would identify

all occurrences of CNGG’s when only its sequence preferences are known. On the other

hand, once the fact that Vts1p binds to CNGGs within a hairpin loop is learned, the false

positive matches where CNGG is not in a hairpin loop can be discarded. Furthermore,

if Vts1p is known to prefer a G 5’ to the hairpin loop, more confidence can be assigned

to those sites that contain a G 5’ to the hairpin loop.



Chapter 6

Conclusions and Future Work

Information about RBP-RNA interactions is fundamental for the understanding of post-

transcriptional networks and its associated diseases. In vitro and in vivo studies, using

affinity selection-based approaches, have successfully identified RBP targets. However,

inferring RBP binding preferences from these data is challenging. The goal of this thesis

is to develop models to identify RBP binding preferences from experimental data. We

address two separate but related problems. First, we describe a new strategy to design

a complex pool for in vitro assays to query RBP sequence and structure preferences.

Second, we propose motif models to learn RBP sequence and structure preferences from

experimental data.

In Chapter 3, we described a protocol to design a complex RNA pool that supports

querying RBP binding preferences in vitro. A common strategy to design an RNA pool for

in vitro assays is to randomly generate RNA sequences. Although simple, this approach

fails to represent the maximum possible diversity of sequence elements, and ignores RNA

secondary structure. We propose a new strategy for designing a pool that represents the

entire space of possible k-mers as well as selected elements of RNA secondary structure.

Moreover, our design fits into the limited space of the array, and minimizes microarray

cross-hybridization. We utilized de Bruijn sequences to represent all possible k-mers

107
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using minimum space, and we used existing RNA secondary structure prediction tools

to design RNA sequences that fold into specific secondary structures. Our design has

been implemented in the RNAcompete method, and applied to several RBPs across

different organisms. To evaluate RNAcompete, we took advantage of the fact that our

pool contains two distinct replicate designs. We observed strong correlations between

relative binding affinities of 7-mers that are estimated from the two replicate designs.

Furthermore, we confirmed that the identified motifs are consistent with established

binding preferences when available. In conclusion, our design played a key role in the

success of RNAcompete, an in vitro tool for comprehensive analysis of RNA binding

specificities.

In Chapter 4, we developed RNAcontext, a discriminative probabilistic model to learn

sequence and structure binding preferences of RBPs from large-scale binding data. Exist-

ing models to identify RBP binding preferences fail to take into account RNA secondary

structure, or use limited representations of it. RNAcontext augments the standard PWM

representation of RBP sequence binding preferences with a representation of its preferred

structural context(s). RNAcontext represents the structural context of a base using a

probability distribution over a set of non-overlapping annotated states (i.e. paired, hair-

pin loop etc.). The probability distribution over these states is computed using Sfold,

which samples a large set of structures from the ensemble of all possible structures. The

level of specificity of structural contexts can be easily adjusted by changing the anno-

tation alphabet. We evaluated RNAcontext by comparing it against two existing motif

models: MEMERIS and MatrixREDUCE. RNAcontext achieved higher average AU-PR

values than MEMERIS and MatrixREDUCE on all of the nine RBPs analyzed. We also

confirmed that the added predictive value for RNAcontext was due to the incorporation

of structural context. Lastly, we showed that RNAcontext predicted motif models reflect

previously reported sequence and structure preferences for well-studied RBPs like HuR,

Vts1p and PTB. In summary, we demonstrated that RNAcontext represents an advance
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over existing methods for modeling RBP binding preferences. However, RNAcontext’s

motif scoring scheme and RNA secondary structure prediction procedure is restricted to

short input sequences, and its structure model is limited to query overall preferences of

the binding site.

In Chapter 5, we described MaLaRKey, which extends RNAcontext in several ways.

For example, MaLaRKey uses a motif scoring scheme suitable for input sequences of

arbitrary length. To predict secondary structures of full-length transcripts, MaLaRKey

uses RNAplfold, a local folding algorithm that considers the Boltzmann ensemble of all

possible structures. MaLaRKey’s structure model allows to infer whether the RBP prefers

the entire binding site to be in the same structural context, or whether there is an overall

preference for a structural context. For the latter case, additional structural features

can be added to check whether there is a transition from unpaired to paired state, or

vice versa. Another advantage of MaLaRKey is the use of a parameter fitting procedure

that is flexible enough to handle either binary-valued (i.e. bound and unbound) or real-

valued binding data. We evaluated MaLaRKey with both in vitro and in vivo data sets.

MaLaRKey performs as good as RNAcontext for many of the RBPs from RNAcompete-

v1 data. MaLaRKey is able to learn motif models that accurately predict binding for

held-out transcripts of 14 RIP-chip datasets which provide binding information on full-

length yeast transcripts. Incorporation of secondary structure features improves the

prediction accuracy significantly for 8 out of 14 RBPs. We also ran MaLaRKey on CLIP

data for seven RBPs. Learned sequence motifs for these RBPs are in agreement with

previous analysis of these data, and predict binding of held-out data accurately. Including

structural information improves the prediction accuracy significantly for two RBPs For

the RBPs for which the accuracy does not improve, we showed that this is due to lack of

signal in data rather than MaLaRKey’s inability to learn the correct structure preference.

In summary, MaLaRKey has the ability to successfully infer both sequence preferences

and complex structure preferences of RBPs from input sequences of arbitrary length.
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In conclusion, although RNA secondary structure is known to play an important role

in RBP-RNA interactions, it is ignored in most experimental designs and subsequent

analysis of the binding data. The methods developed in this thesis support the inves-

tigation of the effect of RNA secondary structure in RBP binding, and constructing

detailed models of RBP preferences. An important motivation for characterizing RBP

preferences is to be able to predict the role of disease-associated mutations. This could

be made possible within the RNAcompete framework by designing and testing a pool

containing the various variants of the wild-type binding site. Likewise, once the motif

models are learned, RNAcontext and MaLaRKey can be used to scan new sequences con-

taining variants of the wild-type binding site and predict whether these will be bound by

the RBP of interest. As transcripts are occupied by many factors, rather than scanning

for binding sites of individual RBPs independently, combined knowledge of RBP-RNA

interactions needs to be taken into account. As such, an important goal of the research

in this area is to increase the coverage of RBPs with characterized binding preferences.

6.1 Future directions

A number of challenges remain in modeling RNA-protein interactions.

An important fact ignored by both RNAcontext and MaLaRKey is that many RBPs

have multiple RNA-binding domains that each binds RNA. For example, PTB has 4

RRMs domains that each bind short pyrimidine sequences with variable spacing between

the binding sites of individual domains [120]. If each individual domain has the same

binding specificities, summing the k-mer scores to obtain the score for the entire sequence

(i.e. as in MaLaRKey model) can provide a crude approximation. However, when the

binding specificities of individual domains are distinct and require variable spacing in

between, more complex models are needed. A similar problem in DNA motif finding has

been addressed by the use of hidden Markov models (HMM) or conditional random fields
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(CRF), and similar approaches can be used for RNA motif models [134, 135].

The feature set used by MaLaRKey can be extended to allow for more detailed rep-

resentations of sequence and structure preferences. The sequence model of MaLaRKey

assumes that the individual positions within the site make independent contributions

to binding. However, there exist examples of RBP binding preferences where two or

more positions are dependent on each other. MaLaRKey could be easily extended to

include additional features that span multiple positions, and represent the dependencies

in between. Similarly, the set of structural features considered by MaLaRKey can be

expanded to represent more complex structure elements. Our procedure for calculating

the probabilities of structure patterns for transition features could be extended to in-

clude arbitrary structure patterns such as PPIIPP where P and I correspond to paired

and internal loop contexts, respectively. In general, including additional features would

be useful to construct more detailed binding models, but may also lead to overfitting.

This problem can be solved by switching to a Bayesian setting where we can automati-

cally determine the relevant features by introducing priors for parameters and performing

Bayesian inference.

The performance of the methods introduced in this thesis heavily depends on the

accuracy of existing RNA secondary structure prediction tools. We used a small subset

of the available tools (i.e. RNAshapes, Sfold, RNAplfold) in this thesis. An immediate

future step would be to try other secondary structure prediction tools such as proba-

bilistic models, and those that incorporate probing data or that consider pseudoknots to

assess whether their predictions result in better models of RBP binding. Also, existing

secondary structure prediction tools can be improved by considering co-transcriptional

folding (i.e. 5’ of the transcript is available to fold first).

Finally, an important major goal would be to combine existing knowledge on miRNA

binding sites and RBP binding sites to explain several post-transcriptional phenomena

such as RNA localization and stability. Such a model needs to incorporate competi-
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tive interactions among RBPs and miRNAs as several studies demonstrate the interplay

between these two classes of regulators[136].
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[113] I López de Silanes, M Zhan, A Lal, X Yang, and M Gorospe. Identification of

a target RNA motif for RNA-binding protein HuR. Proc Nat Acad Sci USA,

101(9):2987–92, 2004.

[114] AP Gerber, D Herschlag, and PO Brown. Extensive association of functionally

and cytotopically related mRNAs with PuF family RNA-binding proteins in yeast.

PLoS Biol, 2(3):e79, 2004.

[115] S Sinha. On counting position weight matrix matches in a sequence, with applica-

tion to discriminative motif finding. Bioinformatics, 22(14):e454–e463, 2006.

[116] MJ Law, AJ Rice, P Lin, and IA Laird-Offringa. The role of RNA structure in the

interaction of U1A protein with U1 hairpin II RNA . RNA, 12:1168–1178, 2006.

[117] L Wickham, T Duchaine, M Luo, IR Nabi, and L DesGroseillers. Mammalian

Staufen is a double-stranded-RNA- and tubulin-binding protein which localizes to

the rough endoplasmic reticulum. Mol Cell Biol, 19:2220–2230, 1999.

[118] RH Byrd, P Lu, and J Nocedal. A limited memory algorithm for bound constrained

optimization. SIAM J Sci and Stat Comp, 16:1190–1208, 1995.

[119] TM Bailey and M Gribskov. Combining evidence using p-values: applications to

sequence homology searches. Bioinformatics, 14(1):48–54, 1998.

[120] FC Oberstrass, SD Auweter, M Erat, Y Hargous, A Henning, P Wenter, L Rey-

mond, B Amir-Ahmady, S Pitsch, DL Black, and FHT Allain. Structure of PTB

bound to RNA: Specific binding and implications for splicing regulation. Science,

309:2054–2057, 2005.



BIBLIOGRAPHY 126

[121] CT Workman, Y Yin, DL Corcoran, T Ideker, GD Stormo, and PV Benos. enoL-

OGOS: a versatile web tool for energy normalized sequence logos. Nucleic Acids

Res, 33:W389–W392, 2005.

[122] R Tacke and JL Manley. The human splicing factors ASF/SF2 and SC35 possess

different, functionally significant RNA binding specificities. EMBO J, 14:3540,

1995.

[123] JR Sanford, X Wang, M Mort, N VanDuyn, DN Cooper, and SD Mooney. Splic-

ing factor SFRS1 recognizes a functionally diverse landscape of RNA transcripts.

Genome Res, 19:381–394, 2008.

[124] G Badis, MF Berger, AA Philippakis, S Talukder, AR Gehrke, SA Jaeger,

ET Chan, G Metzler, A Vedenko, X Chen, H Kuznetsov, C Wang, D Coburn,

DE Newburger, Q Morris TR Hughes, and ML Bulyk. Diversity and complexity in

DNA recognition by transcription factors. Science, 324:1720–1723, 2009.

[125] X Li, G Quon, H Lipshitz, and Q Morris. Predicting in vivo binding sites of RNA-

binding proteins using mRNA secondary structure. RNA, doi:10.1261/rna.2017210,

2010.

[126] T Pan and T Sosnick. RNA folding during transcription. Ann Rev of Biophys and

Biomol Struct, 35(1):161–175, 2006.

[127] R Tibshirani J Friedman, T Hastie. Regularization paths for generalized linear

models via coordinate descent. J Stats Soft, 33(1):1–22, 2010.

[128] PO Brown DP Riordan, D Herschlag. Identification of RNA recognition elements

in the Saccharomyces cerevisiae transcriptome. Nucleic Acids Res, pages 1–9, 2010.

[129] G Anders, SD Mackowiak, M Jend, J Maaskola, A Kuntzagk, N Rajewsky,



BIBLIOGRAPHY 127

M Landthaler, and C Dieterich. doRINA: a database of RNA interactions in

post-transcriptional regulation. Nucleic Acids Res, 40(D1):180–186, 2011.

[130] JJ Wolf, RD Dowell, S Mahony, M Rabani, DK Gifford, and GR Fink. Feed-

forward regulation of a cell fate determinant by an RNA-binding protein generates

asymmetry in yeast. Genetics, 185(2):513–522, 2010.

[131] IM Hall AR Quinlan. BEDtools: A flexible suite of utilities for comparing genomic

features. Bioinformatics, 26(6):841–842, 2010.

[132] Z Wang, M Kayikci, M Briese, K Zarnack, and NM Luscombe. iCLIP predicts the

dual splicing effects of TIA-RNA interactions. PLoS Biol, 8(10):e1000530, 2010.

[133] JR Tollervey, T Curk, B Rogelj, M Briese, M Cereda, M Kayikci, J Konig, T Hor-

tobagyi, AL Nishimura, V Zupunski, R Patani, S Chandran, G Rot, B Zupan,

CE Shaw, and J Ule. Characterizing the RNA targets and position-dependent

splicing regulation by TDP-43. Nat Neurosci, 14(4):452–458, 04 2011.

[134] MC Frith, SFW Saunders, B Kobe, and TL Bailey. Discovering sequence motifs

with arbitrary insertions and deletions. PLoS Comput Biol, 4(5):e1000071, 2008.

[135] W Fu, P Ray, and EP Xing. DISCOVER: A feature-based discriminative method

for motif search in complex genomes. Bioinformatics, 25(12):i321–i329, 2009.

[136] M Van Kouwenhove, M Kedde, and R Agami. MicroRNA regulation by RNA-

binding proteins and its implications for cancer. Nature Reviews Cancer, 11(9):644–

656, 2011.


