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ABSTRACT 

Scattering of Surface Plasmon Polaritons by 

Metallic Nanostructures 

Lina Cao 

         Surface Plasmons (SPs) which are coherent oscillations of conduction electrons on a 

metal surface excited by electromagnetic radiation at a metal-dielectric interface have 

variety of applications in chemistry, optical devices, spectroscopy and bio/chemi sensors. 

Plasmon scattering is a growing area of importance for nonconventional meta-materials, 

condensed matter physics, and surface chemistry, thus it is very interested to study. A 

simulation tool for imaging scattering properties allows ab-initial design for plasmon 

devices as well as gives better physical insight for experiments. Furthermore, due to the 

high electric field density associated with SPs, Second-Harmonic Generation (SHG) is 

expected to be enhanced thus gives us extra physical insights. 

           In this thesis, a simulation tool is developed to calculate the scattering properties of 

Surface Plamon Polaritons (SHG) at both fundamental frequency (FF) and second-

harmonic (SH). We present a comprehensive study of linear and nonlinear effects observed 

in the scattering process of surface plasmon polaritons (SPP) from localized surface 

deformations at a metal/dielectric interface. The electromagnetic field at the fundamental 

frequency (FF) is first determined by solving the corresponding set of reduced Rayleigh 

equations. The complete solution of these equations then allows us to investigate both the 

complex structure of the scattered electromagnetic field as well as the subtle mechanisms 



by which incident SPPs are scattered into radiative modes (light) and outgoing SPP waves. 

Furthermore, the electromagnetic field at the FF is used to determine the nonlinear surface 

polarization at the second harmonic (SH) and subsequently both the electromagnetic field 

distribution as well as the amount of light generated at the SH. In this thesis, we will 

discuss our results including the size dependence of the scattering into both surface and 

radiated waves for several defect shapes as well as the computational issues and the 

physical phenomena of the scattering process.   

        This thesis is organized as follows. In chapter 1, I will give a brief introduction of SPs 

as well as their various applications. In chapter 2, the background theories as well as 

numerical techniques are discussed. Chapter 3 gives us a detailed description of surface 

SHG from scattering of SPPs by 1D Gaussian metallic nanostructures. Consequently, in 

chapter 4, the theory is extended to 2D circularly symmetric metallic nanostructures, which 

include Gaussian, Sphere-cap and Cylinder. Finally in Chapter 5, the some future direction 

of this thesis work is described. 
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Chapter 1 

INTRODUCTION 

This thesis is concerned with understanding the propagation of plasmon waves at the 

interface between a metal surface and a dielectric over-layer or vacuum.  Such waves are of 

interest in many areas of physical chemistry and thus examining their interaction at 

surfaces is appropriate for advancing our understanding of elementary excitations for 

chemistry.  In this chapter we will introduce the reader to the physical origins of the 

plasmonics followed by several sub-areas of interest for chemistry. We will also examine 

recent reports, which describe observations of plasmonic-wave scattering at surfaces; these 

reports have been enabled by impressive advances in nanoscale imaging tools.  Finally we 

will briefly outline other related theoretical work in this area. 
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1.1. PHYSICAL ORIGIN OF PLASMONS 
 

Surface Plasmons (SPs) are coherent oscillations of conduction electrons on a metal 

surface excited by electromagnetic radiation at a metal-dielectric interface. [1].  A plasmon 

is a coupling of an electro-magnetic wave with the oscillations of the valence electrons 

around the ion-cores in a conducting solid, typically metals or, in the infrared, doped 

semiconductors. The growing field of research of on such light-metal interactions is known 

as ‘plasmonics’. [2-3]. Two types of Surface Plasmon Resonances (SPRs) are widely used 

in surface-based chemical sensing, optical devices and photonic circuits. [4-18]. There are 

propagating surface plasmons which are known as surface plasmon polaritons (SPP) and 

non-propagating surface plasmons which are called localized surface plasmons (LSP). 

Detailed descriptions of these surface plasmons are listed here. 
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1.1.1 Surface plasmon polartions 

Surface-plasmon polaritons (SPPs) are evanescent electromagnetic waves coupled 

to oscillations of the electron plasma in the metal that propagate along a metal-dielectric 

interface. A propagating surface plasmon wave is sketched schematically in Fig. 1.1.  SPPs 

oscillate at optical frequencies. They are localized by a material interface with a positive 

dielectric constant (a dielectric) above, and a negative dielectric constant (metal) below.  

 

 

 
 Figure 1.1 The charges and the electromagnetic field of SPs propagating on the 

surface in x direction are shown schematically. (ref. [4]) 

 

At wave-vectors much smaller than the metal Fermi wave-vector, these modes can be 

described by using Maxwell’s equations. For these low wave-vectors, SPPs are essentially 

transverse in character with only a small longitudinal component; thus longitudinal 

component does increase in relative magnitude as the wave-increases. The transverse fields 

𝜖1 

𝜖2 
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polarize the dielectric along the driving field. In the metal, the polarization is opposite to 

the driving field due to the negative dielectric constant. This then creates equal and 

opposite electric displacements (D), in phase across the interface. These opposing electric 

displacements confine the current to this interface, generating the SPP collective electron 

oscillations. 

Starting from Maxwell’s Equations, we can derive the characteristics of this simple 

plasmonic system. The behavior in the z direction decays exponentially away from the 

interface. This derivation of the wave equation tells us that the exponential decay constant 

in a metallic medium is 

 𝑘𝑖
2 = 𝑘𝑥

2 − 𝜖𝑖 (
𝜔

𝑐
)
2

 1.1 

The retarded dispersion relation for the plane surface of a semi-infinite metal with the 

dielectric function 𝜖1 = 𝜖1
′ + 𝑖𝜖1

′′′, adjacent to a medium 𝜖2 as air or vacuum can be written 

as: 

 𝐷0 =
𝑘𝑧1
𝜖1
−
𝑘𝑧2
𝜖2

= 0 1.2 

Since the wave vector 𝑘𝑥 is continuous across the interface [1], a simple algebra 

manipulation may then be used to solve for 𝑘𝑥, finally generating the dispersion relation for 

these simple surface plasmon modes. The dispersion relation from equation (1.2) can be 

written as:  

 𝑘𝑥 =
𝜔

𝑐
√
𝜖1𝜖2
𝜖1 + 𝜖2

 1.3 
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This wave-vector is no longer a simple linear function of permittivity as in standard 

dielectrics. Because we have the sum of dielectrics of opposite sign in the denominator, 

very large wave-vectors are possible. As we will show below the metallic dielectric 

constant, 𝜖1, has a substantial dependence on frequency. This dependence causes the SP 

wave-vectors to be very large at frequencies close to the resonant surface plasmon 

frequency. In particular, propagation of plasmon polaritons follows a dispersion relation, 

such as that seen for propagation of light in a periodic medium or as seen in the case of 

phonons in a crystal.  The dispersion relation for surface plasmons, which is shown in 

Fig. 1.2, approaches the light line √𝜖2𝜔/𝐶  at small 𝑘𝑥, but remains larger than √𝜖2𝜔/𝐶.  

 

 

 

Figure 1.2 Dispersion of surface plasmon polaritons on a metal surface.  
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At larger 𝑘𝑥 or when 𝜖1 → 𝜖2, the value of  𝜔𝑠𝑝 approaches 

 𝜔𝑠𝑝 = 𝜔𝑝/√1 + 𝜖2 1.4 

where 𝜔𝑝 is the plasma frequency. For a free electron gas, 𝜔𝑝 = √
4𝜋𝑛𝑒2

𝑚
, with 𝑛 the bulk 

electron density. With the increasing  𝜖2, the value of 𝜔𝑠𝑝 is reduced. At the interface of 

metal/air, 𝜖2 = 1, thus, 𝜔𝑠𝑝 = 𝜔𝑝/√2. 

          Note that frequency is plotted in units of the plasma frequency (𝜔𝑝) and the 

wavevector in units of 𝜔𝑝/𝑐.  In the figure we plot the ‘so-called’ light line as a dashed 

line; it gives the dispersion relation of an optical field propagating in the dielectric medium 

along the same direction as the surface plasmon. 

The reason surface plasmon modes can achieve anomalously high wave-vectors at 

visible frequencies (“visible frequencies at X-ray wavelengths”) is because they involve 

electrons rather than free-space optical fields. This simplified dispersion curve shows two 

important characteristics of surface plasmons. First the dispersion relation always lies at 

higher wave-vectors than the light line. Hence due to the difference in wave-vector, the 

plasmon field cannot efficiently couple to radiating modes. Conversely, free-space optical 

fields cannot directly stimulate surface plasmons unless momentum matching is somehow 

provided, using, say, a grating or prism. This behavior can be shown to be a consequence of 

the exponential decay normal to the surface, which requires an imaginary wave-vector in 

this direction. The absolute square of this positive quantity then adds to the light-line wave-

vector to determine k2, hence k must always be greater than that of the free space field. 

A second feature of this dispersion relation is seen close to the frequency of 0.7 ωp. 

At this point the wave-vector grows to be much larger than the light line. This large wave-
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vector originates from the collective electron oscillations with sub-Angstrom wavelengths, 

which result in very large optical wave-vectors. 

 

1.1.2 Localized Surface Plasmons 

In addition to surface plasmons on a plane surface solid-state plasma oscillations 

can occur; in other geometries such as metallic particles or voids of different topologies, 

localized surface plasma excitations can be considered. Such surface plasma excitations in 

bounded geometries are called localized surface plasmons (LSPs). Fig. 1.3 illustrates the 

localized surface plasmon polaritons. 

 

 

Figure 1.3  Schematic diagram illustration of localized surface plasmon 

polaritons. (ref. [4]) 

 

The LSP frequency can be determined in a non-retarded (electrostatic) approximation by 

solving the classical Dirichlet problem. This approximation is valid when the 
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characteristic length of the object is smaller than incident wavelength. The LSP has a 

different character from the SPP that is discussed above. As illustrated, the SPP has the 

dispersion relation 𝝎𝒔𝒑 = 𝝎(𝒌𝒔𝒑) given by equation (1.3) and is a propagating surface 

mode. In contrast, LSPs are confined within discrete metal objects of limited spatial 

extend. They are characterized by discrete, complex frequencies which depend on the size 

and shape of the object, to which the surface plasmon is confined. LSPs can be resonantly 

excited with light of appropriate frequency (and polarization) irrespective of the excitation 

light wavevector. Therefore, LSPs also effectively decay with light emission. In contrast, 

the SPP mode can be excited only if both the frequency and wavevector of the excitation 

light match the SPP frequency and wavevector. 

LSPs are confined to particles, and are due to the resonant build up of the electron 

oscillations within the metallic sphere, a significant electromagnetic field enhancement at 

small metallic particles is expected. This effect contributes to numerous phenomena such as 

light emission from STM tunnel junctions, enhanced scattering, surface enhanced Raman 

scattering (SERS) and second-harmonic generation (SHG). 

 

1.1.3 Drude model 

The plasmon properties are a result of the dispersion of the constituent materials. 

Thus it is essential to have a model for their relative permittivities. A common model 

which is used to treat the dispersion relations of a typical material system is the Drude 

model which is based on the assumption that metals have free valence electrons. In Drude 

model, it is assumed that the interactions between collisions are neglected as well as 

collisions are instantaneous. It can provide a simple approximation for a metal. If we 
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assume a lossless Drude metal, with plasma frequency, ωp, by solving Newton’s equations 

for the electron motion, we can obtain the example dispersion relation for plasmons shown 

in Fig 1.3. The dispersion relation follows this: 

 𝜖 = 1 −
𝜔𝑝
2

𝜔2
 1.5 

Where 𝜖 is the dielectric constant of the metal. 

 

 

1.2  APPLICATIONS OF PLASMONS 

           One of the most important roles that plasmons have played is in the area of surface 

spectroscopy, surface reactions and surface structural probing.  Several extremely 

important examples of these roles have been described in the literature and here we try only 

to give a brief summary of applications, which are applicable to chemical science. 

 

           1.2.1.Enhancing chemical reactions on surfaces 

          Chemical processes on bare, or uncapped, noble-metal nanoclusters have recently 

become a subject of renewed interest.  This interest stems from several recent studies that 

have indicated the potential importance of nanoclusters as effective heterogeneous 

catalysts, e.g. for olefin oxidation, and the fact that size-dependent reactivity has been 

displayed in these experiments. This work has also given new impetus to the synthesis of 

high-quality low-dispersion nanosystems as well as the development of new nanoprobes to 

examine these systems.  Other metallic nanocatalyst systems, include those prepared 

electrochemically, etc.  The enhanced reactivity observed in some of these nanostructures, 
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particularly Au, has been the subject of significant discussion and interest and has been 

variously attributed to quantum-size dependence, surface structure, or defects and has led to 

related work on, for example roughened Au surface chemistry. 

 

 

 

Similarly photochemistry on these same metallic nanoparticles is also an area of 

growing interest because enhanced-reaction chemistry can then also be derived from near-

field enhancement of an incident optical beam due to local-plasmon excitation or if 

mounted on a dielectric substrate due to surface waves and their scattering.  While work in 

this area has recently grown rapidly, the original work in this area was reported by Chen 

and Osgood using Cd nanoparticles of ~200A on carbon grids and relied on UV 

photoreactions in a low-pressure ambient of dimethyl cadmium. [5]. In this case, TEM 

 
 

Fig. 1.4: Structure resonantly grown by plasmonically driven UV photochemistry 

of Cd from (CH3)Cd at 254nm.  The spontaneous ordered growth is a result of a 

feedback mechanism with gain. ref. [5] 
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microscopy and polarization effects were used to show local field enhancement including 

growth controlled and “feedback” via local plasmon resonances determined by the particle 

geometry.  This feedback effect was seen for both spontaneous particle growth on SiO2 

surfaces (see Fig. 1.4) and for intentional growth of diffraction gratings.  More recently the 

Brus Group has reported plasmon-assisted growth by for local plasmon-enhanced CVD and 

electrochemistry on nano-particles. [6]. Finally, there has been a resurgence of interest in 

the chemical dynamics occurring at the surfaces of metal nanoparticles or clusters. One of 

these by the Wolf Group in Germany showed clearly that it was possible to couple into a 

plasmon resonance of a particle using pulsed excitation and excitation yielded desorbed 

molecules (water). [7].  

In addition, photodynamics experiments on nanoscale silver spheres have also been 

recently reported for both desorbed molecular species and metal photoelectrons.  With 

regard to the desorption of molecular fragments, Wolf and coworkers [7] have reported a 

femtosecond study of water desorption form nanoclusters of silver on an oxide support.  In 

this case, excitation was close to the plasmon frequency of the silver particle, that is, at 

visible wavelengths. Desorption was attributed to coupling to phonons (or simple laser 

heating) due to plasmon relaxation. 

 

            1.2.2 Plasmons for control of surface energy flow 

 

There have been many proposals for using plasmonic structures to enable a new 

generation of ultrasmall integrated optical devices as well structures to improve solar-

energy collection or light-emitting diode performance. Most of these applications are far 

away from chemical physics and thus will not be described here.  However, concepts 

embodied in plasmonic photonic devices structures carry the essence of ideas, which can 
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have a more chemical or photochemical nature to them.  In particular, it is possible to use 

plasmonic structures to control the flow of surface energy in an interfacial region.  As one 

example, of this we show the application of an array of metal spheres to form a type of 

plasmonic lens to reflect and redirect plasmonic energy in Fig. 1.5. [8]. The paper showed 

that incident SPP is focused by the SPP condensing lens. When the focused SPP was 

incident into the nanodot coupler, its transmission length through the nanodot coupler was 

confirmed to be three times longer than that of a metallic core waveguide owing to the 

efficient near-field coupling between the localized surface plasmon of neighboring 

nanoparticles. Furthermore, the transmission length through a waveguide zigzag-shaped 

nanodot coupler was as long as that through a linear one; again showing the low loss of 

plasmonic strengths over short distances. 

 

 

Fig. 1.5. Sketch of Nanodot coupler and SPP condenser. Ref. [8] 

 

 

            1.2.3 Surface Plasmons for surface probing 

Probing the chemical and structiural state of surfaces is of continuing interest for 

catalysis; such probing can be done either using optical excitation of SPs or via direct 
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launching of SP’s using an electron source. Prior to recent experiments, there had been no 

or very limited observations of the propagation of plasmons on surfaces. Most experimental 

observations of surface plasmons were based on the observations of energy loss 

spectroscopy, which showed an energy loss peak at integral values of sp, or via optical 

resonances in the optical spectroscopy of light transmission through thin films. 

Of course it is and was possible to carry out static imaging of surfaces using 

photographic film or via local photochemistry. These showed clearly the periodic nature 

expected for scattering of plasmonic waves.  However, time-dependent phenomena were 

not observed. More recently advanced ultrafast laser excitation in conjunction with 

photoemission electron spectroscopy has been used to probe and image plasmons in real 

time. For example, Atsushi Kubo and his co-workers have demonstrated the imaging and 

quantum control of SP dynamics in a nanostructured silver film.  

 

 

Fig 1.6. PEEM micrographs of the identical region on the silver grating 

obtained with (a) 254-nm line of a Hg lamp (1PP-PEEM), (b) p-polarized 

400-nm femtosecond laser excitation (2PP-PEEM). Ref. [9]. 
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By inducing and imaging the nonlinear two-photon photoemission from the sample with a 

pair of identical 10-fs laser pulses while scanning the pulse delay, they recorded a movie of 

SP fields at a rate of 330-attoseconds/frame. This development advances the time-

resolution of electron microscopy for imaging the fundamental excitations in solids by 

more than twelve orders of magnitude. The dynamical imaging of surface plasmons in the 

suboptical cycle regime adds a new dimension to the study of plasmonic nanostructures. 

Surface probing can be enhanced by the nonlinear wavelength contrast of second harmonic 

generation.  Thus in this case we hope to see scattering via conversion of the incident 

plasmon wave into second harmonic radiation.  In particular, second-harmonic generation 

is a nonlinear optical process, in which photons interacting with a nonlinear material are 

effectively "combined" to form new photons with twice the energy, and therefore twice the 

frequency and half the wavelength of the initial photons. Within the electric dipole 

approximation, even-order harmonic generation is forbidden in the bulk of a 

centrosymmetric medium. The inversion symmetry, however, is broken at the surface of 

the medium, thus making even-order processes allowed in this region.  Even-order 

nonlinear processes, such as second-harmonic generation (SHG), consequently exhibit a 

high degree of surface sensitivity for centrosymmetric media. [8,9]. As a result, second-

harmonic (SH) fields, whether enhanced by plasmonic effects or not, have become an 

important surface diagnostic in surface science or colloidal chemistry. Surface SHG has 

been used to study a diverse set of surface phenomena and applications, e.g., the symmetry 

properties of surfaces, the nature of adsorbates at surfaces or interfaces, or noninvasive 
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probing of buried interfaces. [10]. Due to the highly enhanced field caused by surface 

plasmons, SHG is expected to be highly enhanced thus are very interested to study. 

 

1.3   OVERVIEW 

 

Using the above material as background, in this thesis we will be concerned with 

the scattering of plasmons from surface defects.  Thus in this case, we assume that a 

plasmon wave is somehow excited and we examine how this wave scatters off of the 

defects. Further and most important we focus on the fact that such a plasmon wave may 

drive a nonlinear response in its medium.  Our approach to solving this problem will be to 

use scattering theory to derive near analytic expressions; more details will provided in the 

next chapter on theoretical methods. 

The general approach to solving the linear scattering problem has been previously 

examined by Maradudin and his collaborators in a series of seminal papers.  In brief these 

results have shown provided the general outline of the theoretical method and provided 

initial theoretical insight.  These authors have shown for example that scattering at the 

fundamental results in two general phenomena: scattering in plane of the SPP and 

scattering out of plane to yield radiated light.  The former process is strongly resonant, the 

latter is less resonant but yield a highly directional surface to vacuum light beam – a 

nanoflashlight! These approaches used by these authors’ have guided our work in this 

thesis. 
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Chapter 2 

 
 

BACKGROUND THEORY AND RELEVANT NUMERICAL 

TECHNIQUES 

 

        In this chapter we discuss the background theory for the research work in this thesis. 

Our discussion will include the main theoretical scattering equations following the theory 

description of Rayleigh scattering process by the used of impedance boundary conditions, 

as well as a short overview of the computational issues involved. Basic formulae of 

Second Harmonic Generation from the scattering of SPs are also included. In addition, to 

provide perspective, we will also describe a widely used numerical method, Finite 

Difference Time Domain (FDTD), which can be used to tackle the problems such as those 

discussed here.  

          This chapter is organized as follows. In Section 2.1, we will discuss the main 

theoretical equations we used as well as the background theories. In Section 2.2, the 

numerical approaches will be discussed as well as the challenges and our problem-solving 

methods. In Section 3, we will discuss Finite Difference Time Domain method, which is 

also widely used to simulate nano-plasmonics.  
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2.1 SCATTERING THEORY FOR SURFACE INTERACTIONS 

 

Scattering of Surface Plasmon Polaritons is an interesting topic which has variety of 

applications as discussed in chapter 1. Thus, construction of a simulation tool to understand 

the scattering process is essential to give physical insight to experiments and to design ab 

initio experiments. In this thesis, we seek to establish a model which enables us to calculate 

the scattering process of SPP by metallic nanostructures at both fundamental frequency and 

Second Harmonic. 

The sketch of our methodology is illustrated in Figure 2.1.  To calculate the Second 

Harmonic Generation (SHG) from scattering of Surface Plasmon Polaritons (SPPs), two 

basic steps which correspond to scattering at fundamental frequency and second harmonic 

respectively are needed. For the linear scattering process, or the first step, we used the 

reduced Rayleigh-equation method, in which the electric field after the scattering is 

characterized by the sum over the incident electric field and the scattered electric field at 

different directions which are determined by wave-vectors. An impedance boundary 

condition is then incorporated to set up an equation, which is used for solving the scattering 

amplitude associated with different wave-vectors. All information about the scattered 

waves is well-defined by their corresponding wave-vectors, corresponding to different 

electronic modes (photons or SPP) at different out-going directions. The scattering 

amplitudes are then solved numerically in this thesis. By substituting scattering amplitudes 

back into the initial electric field distribution equation, we can get the electric-field 

distribution after scattering all over the space, which definitely include the electric field at 

the metal surface.  
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Fig. 2.1 Illustration of scattering theory for surface plasmon polaritons. The left side 

shows two basic steps while the right side gives the method at each step respectively. 

 

 

For the second step, which is calculation for second-harmonic generation (SHG), as 

shown in figure 2.1, the electric field at FF at the surface is required. In this case, the 

second-order susceptibility is inserted into the electric-field distribution of FF to get 

polarization at the second-harmonic frequency for different spatial points, followed by an 

expansion method to obtain different orders of multipole moments. A multipole-moment 

expansion method can only be used when the object is very small (𝑘𝑎 ≪ 1). In this thesis, 

the object is chosen to be small compared to the incident wavelength so that by keeping the 

multi-moments up to second order, which include electric-dipole moment, magnetic-dipole 

moment and electric-quadrupole moment, we can get accurate results. These three 
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moments lead to the radiation at the second-harmonic frequency. Detailed explain of this 

methodology is described in the following section. 

2.1.1  Linear SPP scattering 

One can solve linear SPP scattering starting from Maxwell’s equations, which is in 

fact the methodology used by the more completely FDTD algorithm (see below). In this 

thesis, an impedance boundary condition incorporated with Rayleigh scattering approach is 

next used. The use of impedance boundary condition [2] in theoretical studies of optical 

interactions at rough metal/vacuum interfaces simplifies such studies by eliminating the 

need for determining the electromagnetic field in the metal [1]. Consequently, only the 

electromagnetic field in the vacuum region is dealt with explicitly. For a metal/vacuum 

interface defined by the function 𝑥3 = 𝜉(𝑥1, 𝑥2) in the case of two-dimensional or   𝑥3 =

𝜉(𝑥1) in the case of one-dimensional surface, while the region 𝑥3 > 𝜉(𝑥1, 𝑥2) is vacuum 

and 𝑥3 < 𝜉(𝑥1, 𝑥2) is metal, the usual Maxwell boundary conditions satisfied by the 

tangential components of the magnetic and electric fields at the surface can be replaced by 

local impedance boundary conditions on the planar surface 𝑥3 =  𝜉(𝑥1, 𝑥2) of the form for 

one-dimensional case: 

 
(−𝜉′(𝑥1)

𝜕

𝜕𝑥1
+

𝜕

𝜕𝑥3
)𝐻2

↑(𝑥1, 𝑥3|𝜔)|(𝑥3=𝜉(𝜔) )

=
1

𝜖(𝜔)
𝐾(𝑥1|𝜔)𝐻2

↑(𝑥1, 𝑥3|𝜔)|(𝑥3=𝜉(𝜔) ) 

2.1 

where the time dependence of the form 𝑒−𝑖𝜔𝑡 has been suppressed. Thus, this form of the 

impedance boundary condition is satisfied on the rough surface 𝑥3 =  𝜉(𝑥1, 𝑥2), In the case 

of a deterministic surface profile function 𝜉(𝑥1, 𝑥2), the impedance function 𝐾(𝑥1|𝑤) can 
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be expanded in powers of the ratio of the optical skin depth of the metal at the frequency 𝜔. 

𝑑(𝜔) = (
𝑐

𝜔
) (−𝜀)−1/2, to the radius of curvature of the surface at each point. If 𝑥3 =

 𝜉(𝑥1, 𝑥2) is a periodic function of 𝑥1, as in the case of a classical grating, a matrix equation 

for the Fourier coefficients of K, that is valid to all orders in 𝑑(𝜔), is obtained. 

An alternative approach to the use of an impedance boundary condition is to satisfy 

it at the planar metal/vacuum interface 𝑥3  =  0, and the effects of the corrugations of the 

real surface are taken into account through the coordinate dependence of the surface 

impedance. Following this approach, the impedance boundary condition is written as 

 𝐻2
↑(𝑥1, 𝑥3|𝜔)|(𝑥3=𝜉(𝜔) )

= exp(𝑖𝑘(𝜔)𝑥1) 𝑃(𝑥1|𝜔)𝐻2
↑(𝑥1, 𝑥3|𝜔)|(𝑥3=0 )  

2.2 

for the p and s-polarized fields, respectively for one dimensional case. Here, H and E are 

the single, nonzero components of the total magnetic and electric fields in the vacuum 

region above the metal surface, respectively.  The attractiveness of this boundary condition 

is due to the fact that the Rayleigh expression for the nonzero component of the magnetic 

field in the vacuum region 𝑥3 > 0,  𝐻2, is exact.  

         The derivation of the boundary condition (2.2) for p-polarization starts by introducing 

a generalized, nonlocal, form of it [1] 

 𝜕

𝜕𝑥3
𝐻2
↑(𝑥1, 𝑥3|𝜔)|(𝑥3=0 )

= ∫ 𝑑𝑥1′
∞

−∞

𝑃(𝑥1|𝑥1′)𝐻2
↑(𝑥1, 𝑥3|𝜔)|(𝑥3=0 ) 

2.3 

The magnetic field component 𝐻2 is the sum of an incident wave and scattered waves 
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 𝐻2
↑(𝑥1, 𝑥3|𝜔)|(𝑥3=0 )

= 𝑒𝑖𝑘𝑥1−𝑖𝛼0(𝑘,𝜔)𝑥3

+∫
𝑑𝑞

2𝜋
𝑅𝑝(𝑞|𝑘)

∞

−∞

𝑒𝑖𝑞𝑥1−𝑖𝛼0(𝑞,𝜔)𝑥3  

2.4 

where 𝛼0(𝑞, 𝜔) = ((𝜔
2/𝑐2) − 𝑞2)1/2. By substituting equation 2.4 to equation 2.3, we 

obtain the integral equation satisfied by the scattering amplitude 𝑅𝑞(𝑞, 𝑘) 

 

𝑖𝛼0(𝑞, 𝜔)𝑅𝑝(𝑞|𝑘) − ∫
𝑑𝑞

2𝜋
𝑃̂(𝑞|𝑝)𝑅𝑝(𝑞|𝑘)

∞

−∞

= 𝑖𝛼0(𝑞, 𝜔)2𝜋𝛿(𝑞 − 𝑘) + 𝑃̂(𝑞|𝑘) 

2.5 

while 𝑃̂ is the Fourier transform of the function P through: 

 

𝑃(𝑥1|𝑥1
′) = ∫

𝑑𝑞

2𝜋
∫

𝑑𝑘

2𝜋
𝑒𝑖𝑞𝑥1𝑃̂(𝑞|𝑘)𝑒−𝑖𝑘𝑥1

′′
∞

−∞

∞

−∞

 2.6 

By expressing 𝑃̂ as the sum of a contribution 𝑃0 associated with an ideal metal/vacuum 

interface at 𝑥3  =  0, and a part which describes the effects of the surface roughness, we 

introduce the Green’s function 

 

𝐺𝑝(𝑘, 𝜔) =
𝑖𝜖(𝜔)

𝜖(𝜔)𝛼0(𝑘, 𝜔) + 𝛼(𝑘,𝜔)
 2.7 

The final expression for 𝑃(𝑥1|𝜔) can be achieved and expressed as: 

 

𝑃(𝑥1|𝜔) = −
𝜔

𝑐

1

(−𝜖(𝜔))
1/2
[1 +

1 − 𝜖(𝜔)

𝜖(𝜔)

1

𝑑(𝜔)

× (1 − 𝑑2(𝜔)𝐷2)
1
2𝜉(𝑥1) + 𝑂(𝜉

2)] 

2.8 

where 𝐷 ≡ 𝑑/𝑑𝑥1, and 𝑑(𝜔) is the optical skin depth of the metal at frequency 𝜔. 
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          Similarly, s-polarization component can be solved and is has the expression 

 

𝑆(𝑥1|𝜔) =
𝜔

𝑐
 (−𝜖(𝜔))

1/2
[1 −

1 − 𝜖(𝜔)

𝜖(𝜔)

𝜉(𝑥1)

𝑑(𝜔)

+ 𝑂(𝜉2)] 

2.9 

 

2.1.2  Second Harmonic Generation 

Nonlinear optical studies can provide substantial information about ambient 

surfaces and interfaces. They can determine symmetry properties of the surface, 

characterize the nature of adsorbates or defects in the surface layers, and probe monolayers 

of molecules that have been applied to the surface. Surface second-harmonic generation 

(SHG) is particularly useful for systems with inversion symmetry, as much of the signal 

comes from dipolar response of atoms near surfaces and interfaces. The early theoretical 

model of surface SHG focused on solving Maxwell’s equations for a reradiated second-

harmonic field that arises from a nonlinear polarization induced by the incident field. In 

this way, the polarization is given by 𝑃𝑖
(2) = 𝜒𝑖𝑗𝑘

(2)𝐸𝑗
(𝜔)𝐸𝑘

(𝜔)
, where 𝜒(2) is the material-

dependent nonlinear susceptibility tensor and 𝐸(𝜔) is the incident linear field with the 

frequency 𝜔.  

A simple classical model serves to illustrate the expected magnitude of the second-

order response. In the presence of an applied harmonic field 𝐸(𝜔), an atom in the material 

develops an induced dipole moment 𝑝(𝜔) = 𝛼(𝜔)𝐸(𝜔), while 𝛼(𝜔) is the atomic 

polarizability. For atoms near surfaces or interfaces, 𝐸(𝜔) is also expected to have 



 

 26 

significant spatial variation. Therefore, the induced atomic dipoles feel a gradient force at 

twice the frequency.  

 𝐹(2𝜔) = (𝑝(𝜔). ∇)E(ω) = 𝛼(𝜔)(𝐸(𝜔). ∇)𝐸(𝜔) 2.10 

Assuming the force is primarily effective at accelerating a single electron charge per atom, 

we can find an induced dipole moment per unit volume, 

 
𝑃(2𝜔) ≈

𝑛𝑒

4𝑚𝜔2
𝛼(𝜔)(𝐸(𝜔). ∇)𝐸(𝜔)

=
𝑒

16𝜋𝑚𝜔2
4𝜋𝛼(𝜔)𝑛(𝐸(𝜔). ∇)𝐸(𝜔) 

2.11 

where n is the atomic density. In terms of the dielectric function 𝜖(𝑚) this can be written 

as: 

 
𝑃(2𝜔) ≈

𝑒

16𝜋𝑚𝜔2
(𝜖𝑚 − 1)(𝐸

(𝜔). ∇)𝐸(𝜔) 2.12 

By integrating across the surface layer, one can get 

 
𝑃𝑠
(2𝜔)

≈
𝑒

16𝜋𝑚𝜔2
(𝜖𝑚 − 1)𝐸𝑧

(𝜔)
𝐸(𝜔) 2.13 

Thus the expected second order susceptibility tensor has the expression: 

 
𝜒(2) ≈

𝑒

16𝜋𝑚𝜔2
(𝜖𝑚 − 1) 2.14 

When the surface is isotropic, symmetry arguments show that the surface second-order 

nonlinear susceptibility tensor 𝜒(2) has three families (z direction is normal to the surface):  

 𝜒𝑥𝑥𝑧
(2)

= 𝜒𝑥𝑧𝑧
(2)

= 𝜒𝑦𝑦𝑧
(2)

= 𝜒𝑦𝑧𝑧
(2)

 

𝜒𝑧𝑧𝑧
(2)

 

𝜒𝑧𝑥𝑥
(2)

= 𝜒𝑧𝑦𝑦
(2)

 

2.15 
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2.1.3 Multipole expansion method: 

The multipole expansion method is widely used to calculate radiation. It starts with the 

electric vector potential and then a Taylor expansion to get different term. For electric 

vector potential 𝐴(𝑟), In MKS unit system, the relation between A and current density J is 

expressed as: 

 

𝐴(𝑟) =
1

𝑐
∫ 𝐽(𝑥 ′)

𝑒𝑖𝑘|𝑥−𝑥
′|

|𝑥 − 𝑥 ′|
𝑑3𝑥 ′

 2.16 

Inserting the equation |𝑥 − 𝑥′| = 𝑟 − 𝑛 ∙ 𝑥′, we can rewrite equation (2.16) to be: 

 
𝐴(𝑟)  =

1

𝑐
∑

(−𝑖𝑘)𝑛

𝑛!
𝑛

∫𝐽(𝑥 ′) ∙ (𝐧 ∙ 𝑥 ′)𝑛 ∙ 𝑑3𝑥′ 2.17 

 

In order to use this method for 2D system, we need to use cylindrical coordinates. Thus, 

equation (2.16) is written as:  

 
𝐴(𝑟) =

𝜇0
4𝜋
∫𝑑2𝑟⊥

′

∙ 𝐽(𝑟⊥
′ )∫

𝑒𝑖𝑘√(𝑟⊥−𝑟⊥)
2+(𝑧−𝑧 ′)2

√(𝑟⊥ − 𝑟⊥)
2 + (𝑧 − 𝑧 ′)2

𝑑𝑧 ′
∞

−∞

 

2.18 

Notice that equation (2.18) is in SI units. Let’s assume 𝑧 − 𝑧 ′ = 𝜁; equation (2.18) can be 

rewritten as 

 

𝐴(𝑟⊥) =
𝜇0
4𝜋
∫𝑑2𝑟⊥

′ ∙ 𝐽(𝑟⊥
′ ) 2∫

𝑒𝑖𝑘√(𝑟⊥−𝑟⊥)
2+𝜁2

√(𝑟⊥ − 𝑟⊥)
2 + 𝜁2

𝑑𝑧 ′
∞

0

 2.19 
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As we know, 

 

∫ 𝑔(𝑧)𝑒𝑖𝑘𝑓(𝑧)𝑑𝑧 = √−
𝜋

2𝑓 ′′(𝑧0)
𝑔(𝑧0)𝑒

−
𝑖𝜋
4
𝑒𝑖𝑘𝑓(𝑧0)

√𝑘

∞

0

 2.20 

In order to use equation (2.20), we assume 𝑓(𝜁) =
1

𝑔(𝜁)
= √(𝑟⊥ − 𝑟⊥

′ )
2
+ 𝜁2, thus, 

We can get  

 

𝐴(𝑟⊥) =
𝜇0
4𝜋
√2𝜋𝑖∫𝑑2𝑟⊥

′ ∙ 𝐽(𝑟⊥
′ ) ∙

𝑒𝑖𝑘|𝑟⊥−𝑟⊥
′ |

√𝑘|𝑟⊥ − 𝑟⊥
′ |

 
2.21 

Equation (2.21) has the similar form as equation (2.16), thus a similar approach which is 

assuming |𝑟⊥ − 𝑟⊥
′ | ≅ 𝜌 − 𝑛 ∙ 𝑟⊥

′ . Substituting this equation back to the expression of 

vector potential, we can get 

 

𝐴(𝑟⊥)  =
𝜇0
4𝜋
√2𝜋𝑖

𝑒𝑖𝑘𝜌

√𝑘𝜌
∑

(−𝑖𝑘)𝑛

𝑛!
𝑛

∫𝐽(𝑟⊥
′ ) ∙ (𝑛 ∙ 𝑟⊥

′ )
𝑛

∙ 𝑑2𝑟⊥
′
 

2.22 

From electromagnetic theory, as we know, magnetic induction 

 𝐵 = ∇ × 𝐴 2.23 

For radiation system, 

 𝐸 = 𝐵 × 𝑛 2.24 

After the electric field E and magnetic field B are known from the expression, the radiation 

power is given by this equation: 

 𝑑𝑃

𝑑𝜃
=
1

2
𝑅𝑒[𝜌 ∙ 𝑛 ∙ (𝐸 × 𝐻∗)] 2.25 
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 𝑑𝑃

𝑑Ω
=
1

2
𝑅𝑒[𝜌 ∙ 𝑛 ∙ (𝐸 × 𝐻∗)] 

for 2D and 3D system respectively. In equation (2.25), 𝜃 is the angle defined by cylindrical 

coordinates while 𝑑Ω = 𝑑𝜃𝑑𝜙 which is defined by spherical coordinates. 

        Equation (2.25) is used to calculate the angular distribution of the radiated power 

while the total radiated power can be gotten by a simple integration. 

        Equations (2.17) and (2.22) clearly show the vector electric potential’s dependence on 

the order of (𝑘 ∙ 𝑟). Where 𝑘 ∙ 𝑟 ≪ 1, we have to keep only the first several orders to get 

accurate result.  The first term (𝑛 = 1) is related to an electric dipole term while the second 

term (𝑛 = 2) ends up as two terms which are magnetic dipole and electric quadrupole term. 

In this thesis, we kept the expansion order to be 2, which means the electric dipole, 

magnetic dipole, electric quadrupole moments are kept. 

 

 

2.2. NUMERICAL APPROACH 

          After having derived all equations to solve the problem, another major challenge is 

our choice of numerical approach. In this dissertation, the numerical approaches, which are 

used in both linear and nonlinear frequencies as well as for both 1D and 2D codes, are 

described as follows. 

          Recall the theoretical approaches which is illustrated in Fig. 2.1 we described above, 

there are two main steps. For numerical simulations, three main source codes were used; 

FF scattering-amplitude solving (step 1), electric field distribution at FF (step 2) and SHG 
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(step 3) respectively. Each of these three codes is about 1000 lines long and all of them are 

written in C++.    

 

         2.2.1 Step 1: solving integral equations for scattering amplitudes 

           After all the analytical derivations, solving the scattering amplitudes becomes 

solving an integral equation which has the form of for 1D: 

 
𝑅(𝑞) = 𝑇(𝑞) + ∫ 𝑑𝑝𝑉(𝑝, 𝑞)𝑅(𝑝)

∞

−∞

 2.26 

while both function 𝑇(𝑞) and function 𝑉(𝑝, 𝑞) are well defined as an associated analytical 

formulation. The function R is what we need to solve. Furthermore, in equation (2.26), 

function 𝑉(𝑝, 𝑞) has singular points at 𝑞 = ±𝑘. In order to solve this equation, we factored 

the term 
1

𝑞−𝑘
−

1

𝑞+𝑘
 out, which means equation (2.26) becomes 

 
𝑅(𝑞) = 𝑇(𝑞) + ∫ 𝑑𝑝𝑀(𝑝, 𝑞) ( 

1

𝑞 − 𝑘
−

1

𝑞 + 𝑘
)𝑅(𝑝)

∞

−∞

 2.27 

We add a delta function on the left hand side of equation (2.27), since ∫ 𝑑𝑝𝑅(𝑝)𝛿(𝑝 −
∞

−∞

𝑞) = 𝑅(𝑞), the equation we need to solve becomes 

 
−𝑇(𝑞) = ∫ 𝑑𝑝(𝑀(𝑝, 𝑞) ( 

1

𝑞 − 𝑘
−

1

𝑞 + 𝑘
)

∞

−∞

− 𝛿(𝑝 − 𝑞))𝑅(𝑝) 

2.28 

To solve this equation numerically, the grid points are evenly distributed along p and we 

used the numerical method from the book Numerical Recipes in C++ for solving integral 

equations with singular kernels.  [3].  
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          The difference between 2D and 1D include that for 2D the integral equation which 

we need to solve becomes two coupled integral equations, which has the form 

 
−𝑇1(𝑞) = ∫ 𝑑𝑝(𝑀11(𝑝, 𝑞)𝑅1(𝑝) + 𝑀12(𝑝, 𝑞)𝑅2(𝑝)) 

∞

−∞

 

−𝑇2(𝑞) = ∫ 𝑑𝑝(𝑀21(𝑝, 𝑞)𝑅1(𝑝) + 𝑀22(𝑝, 𝑞)𝑅2(𝑝)) 
∞

−∞

 

2.29 

In order to solve both 𝑅1 and 𝑅2, we generate new vectors 𝑇(𝑞) = [
𝑇1(𝑞)

𝑇2(𝑞)
] , 𝑅(𝑝) =

[
𝑅1(𝑝)

𝑅2(𝑝)
] ,  as well as a new matrix 𝑀(𝑝, 𝑞) = [

𝑀11(𝑝, 𝑞)  𝑀12(𝑝, 𝑞)

𝑀21(𝑝, 𝑞)  𝑀22(𝑝, 𝑞)
]. Equation (2.29) 

becomes 

 
−𝑇(𝑞) = ∫ 𝑑𝑝𝑀(𝑝, 𝑞)𝑅(𝑝) 

∞

−∞

 2.30 

This equation is solved by the same approach as we used for solving equation (2.26). 

Notice that because of this reorganization of functions, the matrix equation for numerically 

solution doubles the dimension, thus leads to a numerical cost of up to 23 = 8 times. 

 

 

         2.2.2 Step 2: getting FF field distribution 

           Electric (and/or magnetic) field distribution at FF has the expression of sum over 

incident SPP field and an integral of scattered field over all the wave-vectors. From 

numerical code of step 1, scattering amplitudes are saved in files. Thus the main code for 

this step is an integration function. An adaptive numerical integration method [3] is used to 

ensure the convergence of code. Since scattering amplitudes are solved numerically, we 
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only have a discretized series of values (for our case, around 1500 to 2000 grid points). The 

scattering amplitudes’ values where we don’t have are reached by interpolation of the two 

neighbor grid points. 

          As we have mentioned, the integral equation has a singular point at 𝑞 = 𝑘, for the 

integration, this point is considered separately by analytical approach, which is the 

principal value as illustrated in equation (2.31).  

  

 

∫ 𝑑𝑝𝐸(𝑝)𝑅(𝑝) = 
∞

−∞

∫ 𝑑𝑝𝐸(𝑝)𝑅(𝑝)
𝑘−
𝛿
2

−∞

+∫ 𝑑𝑝𝐸(𝑝)𝑅(𝑝)
∞

𝑘+
𝛿
2

+∫ 𝑑𝑝𝐸(𝑝)𝑅(𝑝)
𝑘+

𝛿
2

𝑘−
𝛿
2

 

2.31 

𝛿 is chosen to be really small (10−6𝑘) to ensure the correct result, furthermore, we did try 

smaller 𝛿 to check the convergence. Even the singular point is taken out, we still expect a 

denser grid points needed when 𝑝 → 𝑘, thus, a decomposition of the first two terms is 

incorporated, which is 

 

∫ 𝑑𝑝𝐸(𝑝)𝑅(𝑝)
𝑘−

𝛿
2

−∞

= ∫ 𝑑𝑝𝐸(𝑝)𝑅(𝑝)
𝑘−Δ

−∞

+∫ 𝑑𝑝𝐸(𝑝)𝑅(𝑝)
𝑘−

𝛿
2

𝑘−Δ

 

2.32 

Similar approach is used for the second term. Here  is chose to be around 10 − 100𝛿 for 

numerical calculation. By doing this, the simulation time goes down from 5 hours to 

around 1 hour. 
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         2.2.3 Step 3: Second Harmonic Generation 

           Electric-field distribution for the defect region is saved from step 2. The C++ code 

for step 3 starts from obtaining the second-order polarization and then the integration for 

three multipole moments. A similar integration approach as step 2 is used. Furthermore, the 

radiation angular distribution and radiated power are calculated and plotted by Matlab 

codes.   

 

  

2.3 FINITE DIFFERENCE TIME DOMAIN METHOD 

 

The Finite-diference time-domain (FDTD) method is an ab initio solution method 

to obtain the full exact solution to Maxwell's equations [6]. It is based upon a spatial 

sampling of the unknown electric field ~E and magnetic field ~H within the computational 

domain and application of initial conditions on this space grid. The Maxwell's equations at 

a particular time step are then solved on the entire space grid, and finally the electric and 

magnetic fields are forward-stepped in time. The sampling in space is at sub-wavelength 

resolution and is set depending on the smallest spatial feature that needs to be resolved. The 

time-step for advancing the solution in time is selected to ensure numerical stability of the 

algorithm using the Courant stability criterion. Since FDTD is a generic, non-system-

dependent numerical technique, it can be applied to a wide variety of problems without 

changing the underlying simulation engine. Moreover, since vector field boundary 

conditions are rigorously enforced at all material interfaces, as nonlinearity, gain / 
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absorbtion, and dispersion can be naturally incorporated into the algorithm. Furthermore, 

due to FDTD's ab initio nature, accurate field solutions can be obtained with an accuracy 

determined primarily by the grid resolution.  

 

2.3.1 Maxwell's equations in a material medium 

In vacuum, 𝐸(𝑟, 𝑡)and 𝐻(𝑟, 𝑡) can collectively predict complete electromagnetic 

wave behavior. However, in a material medium two more vector fields, the electric 

displacement 𝐷(𝑟, 𝑡) and the magnetic flux density 𝐵(𝑟, 𝑡), need to be defined. For a 

source-free region, i.e. with no free electric charges or currents, Maxwell's equations relate 

the four fields 𝐸(𝑟, 𝑡), 𝐻(𝑟, 𝑡), 𝐷(𝑟, 𝑡) and 𝐵(𝑟, 𝑡) through the following relations: 

 

 
∇ × 𝐻(𝑟, 𝑡) =

𝜕𝐷(𝑟, 𝑡)

𝜕𝑡
 

∇ × 𝐸(𝑟, 𝑡) = −
𝜕𝐵(𝑟, 𝑡)

𝜕𝑡
 

∇ ∙ 𝐷(𝑟, 𝑡) = 0 

∇ ∙ 𝐵(𝑟, 𝑡) = 0 

2.33 

Here the electric displacement field, 𝐷(𝑟, 𝑡), describing the electric properties of the 

medium is related to the electric field, 𝐸(𝑟, 𝑡), by this following equation: 

 𝐷(𝑟, 𝑡) = 𝜖0𝐸(𝑟, 𝑡) + 𝑃(𝑟, 𝑡) 2.34 

where 𝑃(𝑟, 𝑡) is the induced polarization density. 

Similarly the magnetic flux density, 𝐵(𝑟, 𝑡), describing the magnetic properties of 

the medium is related to the magnetic field, 𝐻(𝑟, 𝑡), by 
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 𝐵(𝑟, 𝑡) = 𝜇0𝐻(𝑟, 𝑡) + 𝑀(𝑟, 𝑡) 2.35 

where 𝑀(𝑟, 𝑡) is the magnetization density; if nonmagnetic medium is 

considered, 𝑀(𝑟, 𝑡) = 0 . 

Moreover, the induced polarization density, 𝑃(𝑟, 𝑡), is related to the electric field, 

𝐸(𝑟, 𝑡), through relations determined by the electric properties of the medium. This 

𝐸(𝑟, 𝑡)~𝑃(𝑟, 𝑡) relation for most medium is non-trivial and depends on different kinds of 

medium's inherent properties, namely homogeneity, linearity, dispersiveness, and 

absorbtion characteristics. However, for describing the basic premises of the finite-

difference time-domain method, we consider a homogeneous, nondispersive, and linear 

medium where 𝑃(𝑟, 𝑡) = 𝜖0𝜒𝐸(𝑟, 𝑡). For such a medium, the electric displacement field is 

given by 

 𝐷(𝑟, 𝑡) = 𝜖𝐸(𝑟, 𝑡) 2.36 

where 𝜖 = 𝜖0(1 + 𝜒) is the electric permittivity of the medium and 𝜒 is the electric 

susceptibility. The Maxwell's equations in such a media can then be written as: 

 𝜕𝐸(𝑟, 𝑡)

𝜕𝑡
=
1

𝜖
(∇ × 𝐻(𝑟, 𝑡)) 

𝜕𝐻(𝑟, 𝑡)

𝜕𝑡
= −

1

𝜇0
(∇ × 𝐸(𝑟, 𝑡)) 

∇ ∙ 𝐸(𝑟, 𝑡) = 0 

∇ ∙ 𝐻(𝑟, 𝑡) = 0 

2.37 

 

2.3.2 Basic FDTD algorithm 
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Based on equation 2.37 for a homogeneous, linear, lossless and nondispersive 

material with no free sources, the components of 𝐸(𝑟, 𝑡) and 𝐻(𝑟, 𝑡) satisfy the following 

coupled scalar equations: 

 𝜕𝐸𝑥(𝑟, 𝑡)

𝜕𝑡
=
1

𝜖
(
𝜕𝐻𝑧(𝑟, 𝑡)

𝜕𝑦
−
𝜕𝐻𝑦(𝑟, 𝑡)

𝜕𝑧
) 

𝜕𝐸𝑦(𝑟, 𝑡)

𝜕𝑡
=
1

𝜖
(
𝜕𝐻𝑥(𝑟, 𝑡)

𝜕𝑧
−
𝜕𝐻𝑧(𝑟, 𝑡)

𝜕𝑥
) 

𝜕𝐸𝑧(𝑟, 𝑡)

𝜕𝑡
=
1

𝜖
(
𝜕𝐻𝑦(𝑟, 𝑡)

𝜕𝑥
−
𝜕𝐻𝑥(𝑟, 𝑡)

𝜕𝑦
) 

𝜕𝐻𝑥(𝑟, 𝑡)

𝜕𝑡
=
1

𝜇0
(
𝜕𝐸𝑦(𝑟, 𝑡)

𝜕𝑥
−
𝜕𝐸𝑧(𝑟, 𝑡)

𝜕𝑦
) 

𝜕𝐻𝑦(𝑟, 𝑡)

𝜕𝑡
=
1

𝜇0
(
𝜕𝐸𝑧(𝑟, 𝑡)

𝜕𝑥
−
𝜕𝐸𝑥(𝑟, 𝑡)

𝜕𝑧
) 

𝜕𝐻𝑧(𝑟, 𝑡)

𝜕𝑡
=
1

𝜇0
(
𝜕𝐸𝑥(𝑟, 𝑡)

𝜕𝑦
−
𝜕𝐸𝑦(𝑟, 𝑡)

𝜕𝑥
) 

2.38 

           These above equations are solved using the FDTD algorithm [33, 34] that solves 

simultaneously for the 𝐸(𝑟, 𝑡)and 𝐻(𝑟, 𝑡) fields rather than using the wave equation and 

solving for only the electric field (or magnetic field). As illustrated in Fig. 2.2, the FDTD 

algorithm centers the 𝐸(𝑟, 𝑡) and  𝐻(𝑟, 𝑡) components in a three-dimensional space grid in 

such a manner that every 𝐻(𝑟, 𝑡) component is surrounded by four circulating 𝐸(𝑟, 𝑡) 

components and vice versa. 
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Figure 2.2: Positions of the components of 𝐸(𝑟, 𝑡) and 𝐻(𝑟, 𝑡) fields about a cubic 

cell of the Yee spatial lattice. 

 

Moreover, the 𝐸 (𝑟;  𝑡) and 𝐻 (𝑟;  𝑡) components in time are computed in a 

“leapfrog" arrangement. Thus at a particular time step, using previously stored 𝐻(𝑟;  𝑡) 

data, all the 𝐸(𝑟;  𝑡) computations in the simulation domain are performed and the results 

stored. Subsequently, using the 𝐸 (𝑟;  𝑡) data just computed, all of the 𝐻(𝑟;  𝑡) 

computations are performed and the results stored. This leapfrogging cycle continues with 

the new 𝐸(𝑟;  𝑡) components being recomputed based on the newly obtained 𝐻(𝑟;  𝑡), until 

finally the time-stepping is concluded. 

We denote any function, 𝜉(𝑥, 𝑦, 𝑧, 𝑡), of space and time as 
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 𝜉𝑛(𝑖, 𝑗, 𝑘) = 𝜉(𝑖Δ𝑥, 𝑗Δ𝑦, 𝑘Δ𝑧, 𝑛Δ𝑡) 2.39 

and use second-order accurate, center-difference finite-difference expressions for both 

space and time derivatives, i.e. 

 𝜕𝜉

𝜕𝑥
(𝑖Δ𝑥, 𝑗Δ𝑦, 𝑘Δ𝑧, 𝑛Δ𝑡)

=

(𝜉𝑛 (𝑖 +
1
2 , 𝑗, 𝑘) − 𝜉

𝑛 (𝑖 −
1
2 , 𝑗, 𝑘))

Δ𝑥
+ 𝑂[Δ𝑥2] 

𝜕𝜉

𝜕𝑡
(𝑖Δ𝑥, 𝑗Δ𝑦, 𝑘Δ𝑧, 𝑛Δ𝑡)

=

(𝜉𝑛+
1
2(𝑖, 𝑗, 𝑘) − 𝜉𝑛−

1
2(𝑖, 𝑗, 𝑘))

Δ𝑡
+ 𝑂[Δ𝑡2] 

2.40 

 

 

 

The applications of the above definitions for numerically approximating the 

Maxwell’s equations in a material medium yields for Eq. 2.17 and 2.20: 

 
𝐸𝑥
𝑛 (𝑖 +

1
2 , 𝑗, 𝑘) − 𝐸𝑥

𝑛−1 (𝑖 +
1
2 , 𝑗, 𝑘)

Δ𝑡

=
1

𝜖

[
 
 
 
 
 (𝐻𝑧

𝑛−
1
2 (𝑖 +

1
2 , 𝑗 +

1
2 , 𝑘) − 𝐻𝑧

𝑛−
1
2 (𝑖 +

1
2 , 𝑗 −

1
2 , 𝑘))

Δ𝑦

−

(𝐻𝑦
𝑛−

1
2 (𝑖 +

1
2 , 𝑗, 𝑘 +

1
2) − 𝐻𝑦

𝑛−
1
2 (𝑖 +

1
2 , 𝑗, 𝑘 −

1
2))

Δ𝑧

]
 
 
 
 
 

 

2.41 
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𝐻𝑥
𝑛+

1
2 (𝑖, 𝑗 +

1
2 , 𝑘 +

1
2) − 𝐻𝑥

𝑛−
1
2 (𝑖, 𝑗 +

1
2 , 𝑘 +

1
2)

Δ𝑡

=
1

𝜇0

[
 
 
 
 (𝐸𝑦

𝑛 (𝑖, 𝑗 +
1
2 , 𝑘 + 1) − 𝐸𝑦

𝑛 (𝑖, 𝑗 +
1
2 , 𝑘 + 1))

Δ𝑧

−

(𝐸𝑧
𝑛 (𝑖, 𝑗 + 1, 𝑘 +

1
2) − 𝐸𝑧

𝑛 (𝑖, 𝑗, 𝑘 +
1
2))

Δ𝑦

]
 
 
 
 

 

 

 

Rearranging the above equations results in the following discrete equation, which can then 

be directly used for time-stepping: 

 
𝐸𝑥
𝑛(𝑖 +

1

2
, 𝑗, 𝑘

= 𝐸𝑥
𝑛−1 (𝑖 +

1

2
, 𝑗, 𝑘)

+
Δ𝑡

𝜖

[
 
 
 
 
 (𝐻𝑧

𝑛−
1
2 (𝑖 +

1
2 , 𝑗 +

1
2 , 𝑘) − 𝐻𝑧

𝑛−
1
2 (𝑖 +

1
2 , 𝑗 −

1
2 , 𝑘))

Δ𝑦

−

(𝐻𝑦
𝑛−

1
2 (𝑖 +

1
2 , 𝑗, 𝑘 +

1
2) − 𝐻𝑧

𝑛−
1
2 (𝑖 +

1
2 , 𝑗, 𝑘 −

1
2))

Δ𝑧

]
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𝐻𝑥
𝑛+

1
2(𝑖, 𝑗 +

1

2
, 𝑘 +

1

2
)

= 𝐻𝑥
𝑛−

1
2 (𝑖, 𝑗 +

1

2
, 𝑘 +

1

2
)

+
Δ𝑡

𝜇0

[
 
 
 
 (𝐸𝑦

𝑛 (𝑖, 𝑗 +
1
2 , 𝑘 + 1) − 𝐸𝑦

𝑛 (𝑖, 𝑗 +
1
2 , 𝑘))

Δ𝑦

−

(𝐸𝑧
𝑛 (𝑖+, 𝑗 + 1, 𝑘 +

1
2
) − 𝐸𝑧

𝑛 (𝑖, 𝑗, 𝑘 −
1
2
))

Δ𝑦

]
 
 
 
 

 

 

 

 

The finite difference equations corresponding to Eqs. (2.38) can be similarly 

constructed. Note that the location of the 𝐸(𝑟;  𝑡) and 𝐻(𝑟;  𝑡) components on the spatial 

grid shown in Fig. 2.2, and the central difference operations on these components 

automatically enforce the divergence Eqs. (2.37); thus the above solution solves the 

complete system of equations (2.36, 2.37) for a homogeneous, linear, and nondispersive 

medium. 

 

2.4 DIFFERENCE BETWEEN GREEN’S FUNCTION METHOD AND FDTD 

          Every theoretical method has its advantages and disadvantages. As we have 

described, we used the Green’s function method incorporated with a reduced Rayleigh 

equation approach in this dissertation. There are several advantages. First, our approach 
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gives better physical insight of the scattering process as the scattering amplitudes clearly 

show how the incident SPP is coupled to different modes while FDTD only gives the field 

distribution after a certain time. Second, our approach leads to more accurate result 

compared to FDTD. As long as the code converges, we get exact solution of the field 

distribution. While for FDTD, different grid size and step size always leads to error, no 

matter how small the grid size chosen.  Third, our approach can separate SH from FF 

during the calculation while for FDTD, everything has to be calculated together.  Fourth, 

our approach saves time compared to FDTD. However, FDTD is very robust and can be 

easily used in different systems. Our approach includes an analytical derivation for 

different defect shape, which is not as easily implemented in FDTD.  
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Chapter 3  

Surface second-harmonic generation from surface plasmon 

waves scattered by metallic nanostructures 

 

Abstract 

In this chapter, my coworkers and I analyzed second-harmonic (SH) generation 

from scattering of surface plasmon polaritons (SPPs) by one-dimensional metallic 

nanostructures. The electromagnetic field at the fundamental frequency (FF) is calculated 

by using a formalism based on the reduced Rayleigh equations, in which the arbitrary shape 

of the nanostructure is accounted for by means of the impedance boundary condition. The 

near field at the FF, the induced nonlinear-source surface polarization at the SH, and the 

associated multipole moments up to second order are calculated from this fundamental 

field. The dependence of near field and radiated optical power at the SH on the SPP 

wavelength and nanostructure geometry is then investigated. 
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3.1 INTRODUCTION 

Surface plasmon polaritons (SPPs) have attracted a great deal of attention in recent 

years in several areas of nanooptics and chemistry [1–20]. SPPs are p-polarized strongly 

localized surface waves that form at metal-dielectric interfaces [21–25]. Because they are 

bound at an interface and are sensitive to its dielectric properties, SPPs are ideal tools to 

sense surface-interfacial properties. Equally important, the unusual dielectric properties of 

metals provide unique functionalities for use in ultrasmall nanodevices. Thus, metallic 

nanostructures have found widespread use in optical sensor applications [27] [28], linear 

[2–6] and nonlinear [18–20] plasmonic nanodevices, and photochemical processes. 

[11],[12]. Besides its high degree of localization in metal structures, the electromagnetic 

field of either localized or propagating SPP modes is greatly enhanced compared to the 

incident excitation field. As a result, the excitation of SPPs at metal nanoparticles or 

surface defects on a metal-dielectric interface represents an efficient interface-selective 

probing method, especially when nonlinear optical or chemical processes are employed. 

For example, it has already been demonstrated that the excitation of SPPs greatly increases 

the efficiency of nonlinear optical effects such as surface-enhanced Raman scattering 

(SERS) [7–10] or second-harmonic generation (SHG).[13–19],[23–25]. Because of the lack 

of dipole-allowed optical transitions in the bulk of centrosymmetric materials, SHG optical 

fields are generated only at interfacial regions of such materials. These fields exhibit a 

strong and complex dependence on the physical and chemical properties of surfaces and 

interfaces. As a result, second-harmonic (SH) fields, whether enhanced by plasmonic 

effects or not, have become an important surface diagnostic in surface science or colloidal 

chemistry. Surface SHG has been used to study a diverse set of surface phenomena and 
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applications, e.g., the symmetry properties of surfaces, the nature of adsorbates at surfaces 

or interfaces, or noninvasive probing of buried interfaces; this rapidly expanding body of 

research has been recently reviewed in several articles. [22–25]. 

In most previous studies of surface SHG, the pump or excitation source is a light 

beam. However, due to their strong spatial localization and efficient coupling to metallic 

nanostructures, SPPs can be used directly for excitation. In this case, a plasmon wave 

could, for example, be an effective probe of surface nanodefects. Thus, it is of interest to 

understand how propagating plasmon waves interact with a surface feature to produce SHG 

radiation. Such interactions could form the basis for a new approach for high-resolution 

imaging of surface features on nominally bare or on nanostructured surfaces. Whereas a 

considerable body of research has been devoted to understanding SHG through light 

scattering off metallic nanostructures (see, e.g., Ref. [26] and the review article [22] with 

the references therein), the nonlinear process of SHG by means of scattering of surface 

plasmon polaritons of metallic nanodefects has yet to be investigated. In the paper 

published, we analyzed this latter process, namely, generation of SH during scattering of an 

SPP, which is propagating on a flat metal-dielectric interface, by one-dimensional (1D) 

metallic nanostructures, such as linear ridges (protuberances) or grooves (indentations). 

Our analysis used a formulation based on the reduced Rayleigh equations [29] to first 

determine the total electromagnetic field at the fundamental frequency (FF). Subsequently, 

we computed the induced nonlinear surface polarization density at the SH and used it to 

compute the dominant multipoles in a series expansion. We then use these multipoles to 

calculate the electromagnetic field and its spectral distribution at the SH. 
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This chapter is organized as follows. In Sec. 3.2, I will introduce the analytical 

formulation of our problem and the numerical method we used to determine the 

electromagnetic field at both the fundamental frequency and the second harmonic. 

Furthermore, in Sec. 3.3, I will present our results obtained by solving the analytical model 

in the paper. Thus, we determine the spectral properties and the spatial distribution of the 

field at the fundamental frequency and second harmonic as well as the influence of the 

structure of the nanodefect on the scattering process. In the last section, I will summarize 

our results. 

 

3.2 THEORETICAL APPROACH 

In order to investigate SHG via scattering of SPP by metallic nanostructures, we 

consider a system consisting of a 1D metallic defect on a planar metal surface; the 

corresponding geometry is illustrated in Fig. 2.1. The surface profile is thus described  

by an 𝑥1-dependent function, i.e., 𝑥3 = 𝑓(𝑥1), only. The incoming SPP propagates along 

the 𝑥1 direction and, upon its interaction with the defect, it generates transmitted and 

reflected SPP waves as well as outgoing photon states (radiative modes). For the work in 

this paper, we chose the metal to be silver, which is characterized by the Drude model with 

dielectric constant  𝜖(𝜔) = 1 − 𝜔𝑝
2/𝜔2, where 𝜔𝑝 is the plasma frequency of the metal 

and  𝜔 is the frequency of incident SPP. For silver, 𝜆𝑝=157 nm. Note that in the description 

of the scattering process, the optical losses (via the damping frequency 𝛾) can be neglected, 

as the size of the nanodefect is much smaller than the characteristic propagation length of 

the SPP. As a result, the scattering process conserves the total energy, a property that is 

very useful in analyzing the convergence rate of the numerical method used here. To 
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calculate the electromagnetic field at the FF, we use the Rayleigh-equation approach [29] 

and express the only nonvanishing component of the magnetic field as  

 𝐻2
↑(𝑥1, 𝑥3) = exp[𝑖𝑘(𝜔)𝑥1 − 𝛽0𝑥3]

+ ∫
𝑑𝑞

2𝜋
𝑅(𝑞,𝜔) exp[𝑖𝑞𝑥1 + 𝑖𝛼0(𝑞, 𝜔)𝑥3]

∞

−∞

 

3.1 

where 𝐻2
↑ is the magnetic-field component in the 𝑥2 direction, the arrow ↑ denotes the 

vacuum region, 𝑘(𝜔) = √1 − 1/𝜖(𝜔)𝜔/𝑐 and 𝛽0(𝜔) = 𝜔/[𝑐√−𝜖(𝜔)] are the SPP wave 

vector and the decay constant in the vacuum, respectively, 𝛼0(𝜔) = √𝜔2/𝑐2 − 𝑞2, and 

𝑅(𝑞, 𝜔) is the scattering amplitude. To calculate this scattering amplitude, we use a local 

impedance boundary condition, [30], which accounts for the planar surface perturbation 

centered at 𝑥3 = 0, 

 
 

Fig. 3.1  Schematic of the scattering geometry and the radiated waves 

involved in the nonlinear scattering process. Fields in the region denoted by 

L=4a are integrated to calculate SHG. 
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 𝜕

𝜕𝑥3
𝐻2
↑(𝑥1, 𝑥3|𝜔)|𝑥3=0

= −
𝜔[1 + 𝑠(𝑥1)]

𝑐√−𝜖(𝜔)
 𝐻2

↑(𝑥1, 𝑥3|𝜔)|𝑥3=0  

3.2 

The prefactor in the right-hand side of Eq. 3.2 is defined by the surface structure; namely, 

for small surface perturbations, the Fourier transform of the surface impedance function, 

𝑠̂(𝑞)
, is determined by the Fourier transform of the real-space surface profile, 

 𝑓(𝑞)

 , by 

the relation, [29], [30]: 

 

𝑠̂(𝑞) = −
1 − 𝜖(𝜔)

𝑑(𝜔)𝜖(𝜔)
 𝑓(𝑞) 3.3 

Where 𝑑(𝜔)  =  𝑐/ [𝜔√−𝜖(𝜔)] is the optical skin depth. 

         By substituting Eq. (3.1) into Eq. (3.2), we obtain a Fredholm equation of the second 

kind whose solution determines the scattering amplitude, 

 𝑇(𝑞,𝜔) = 𝑉(𝑞, 𝑘(𝜔))

+ ∫
𝑑𝑝

2𝜋
𝑉(𝑞|𝑝)𝐺0(𝑝, 𝜔)𝑇(𝑝, 𝜔)

∞

−∞

 

3.4 

where𝑉(𝑞, 𝑝) = 𝛽0(𝜔)𝑠̂(𝑞 − 𝑝)plays the role of a scattering potential, 𝑇(𝑞, 𝜔) =

𝐺0
−1(𝑞, 𝜔)𝑅(𝑞, 𝜔)

 
is the rescaled scattering amplitude, and  

 

𝐺0(𝑝, 𝜔) =
𝑖𝜖(𝜔)

𝜖(𝜔)𝛼0(𝑝, 𝜔) + 𝛼(𝑘,𝜔)
 3.5 

is Green’s function of an SPP propagating on a planar surface.  
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Equation (3.4) is of central importance to our analysis of the field distribution at the 

FF: upon solving for the scattering amplitude 𝑇(𝑞, 𝜔), and then 𝑅(𝑞, 𝜔), we insert 

𝑅 (𝑞, 𝜔) into Equation (3.1) and calculate the magnetic field 𝐻2
↑(𝑥1 , 𝑥3) in the vacuum 

region. Then, using Maxwell equations, we determine the nonvanishing components of the 

electric field at any point in the vacuum region, 

 𝜔

𝑐
𝐸1
↑(𝑥1, 𝑥3) = 𝑖𝛽0(𝜔) exp[𝑖𝑘(𝜔)𝑥1 − 𝛽0(𝜔)𝑥3]

+ ∫
𝑑𝑞

2𝜋
𝛼0(𝑞, 𝜔)𝑅(𝑞, 𝜔) exp[𝑖𝑞𝑥1

∞

−∞

+ 𝑖𝛼0(𝜔)𝑥3] 

3.6a 

 𝜔

𝑐
𝐸3
↑(𝑥1, 𝑥3) = −𝑘(𝜔) exp[𝑖𝑘(𝜔)𝑥1 − 𝛽0(𝜔)𝑥3]

− ∫
𝑑𝑞

2𝜋
𝑞𝑅(𝑞,𝜔) exp[𝑖𝑞𝑥1 + 𝑖𝛼0(𝜔)𝑥3]

∞

−∞

 

3.6b 

Here, 𝐸1 and 𝐸3 are the electric-field components in the 𝑥1 and 𝑥3 directions, repectively, 

thus yielding the complete set of fields for the linear scattering process. 

          In a phenomenological model that is widely used in studies of SHG at surfaces and 

interfaces, the electromagnetic field at the SH is viewed as being generated by two 

nonlinear polarization sources. The first consists of a sheet of surface nonlinear 

polarization, 𝑃(2𝜔), occupying an interfacial domain of a few angstroms. Within this 

region, the material properties and the electromagnetic field undergo a steep transition 

between their bulk values in the two media. In addition, within this region the inversion 

symmetry is broken and therefore the surface nonlinear polarization induced at the SH is 

related to the electric field at the FF by a second-order nonlinear optical response. 
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 𝑃(2𝜔) = 𝜒𝑠
2𝐸(𝜔)(𝑟)𝐸(𝜔)(𝑟)𝛿(𝑥3 − 𝑓(𝑥1)) 3.7 

Here, χs
2 is the surface second-order susceptibility, whereas the Dirac function expresses 

the surface characteristic of the source polarization. In most cases of practical interest, the 

metal-vacuum interfaces possess an isotropic mirror-symmetry plane perpendicular to the 

interface. Under these circumstances, the surface nonlinear susceptibility χs
2 has only three 

independent components, namely, 𝜒𝑠⊥⊥⊥
2 , 𝜒𝑠⊥∥∥

2  , 𝜒𝑠∥∥⊥
2 = 𝜒𝑠∥⊥∥

2  , where ⊥ and ∥ refer to 

normal and perpendicular directions to the surface, respectively. Note that   𝜒𝑠∥∥⊥
2 ≠ 𝜒𝑠∥⊥∥

2    

if the surface does not have an isotropic mirror plane, as is the case with metallic 

monocrystals cleaved along certain crystal symmetry planes or surfaces containing 

adsorbed chiral molecules. In our calculations, we assume the following values for the 𝜒𝑠
2 

components: , 𝜒𝑠⊥⊥⊥
2 = 5.02 × 10−20𝑚2/𝑉 , 𝜒𝑠⊥∥∥

2 = 0 , 𝜒𝑠∥∥⊥
2 = 𝜒𝑠∥⊥∥

2 = 1.13 ×

10−18𝑚2/𝑉. 

The second source for the electromagnetic field at the SH is the bulk nonlinear 

polarization, which in the case of isotropic centrosymmetric metals can be expressed as 

 𝑃𝑏𝑢𝑙𝑘
(2𝜔)

(𝑟) = 𝛾[𝐸(𝜔)(𝑟) ∙ 𝐸(𝜔)(𝑟)] 3.8 

Where 𝛾 = 𝑒[1 − 𝜖(𝜔)]/32𝜋𝑚𝜔2 and e and m are the charge and mass of the electron, 

respectively. Note that although the two sources of SH have very different physical origins, 

namely, the surface nonlinear polarization stems from dipole allowed transitions, whereas 

the bulk (longitudinal) component originates from quadrupolar ones, their contributions to 

the SH are experimentally indistinguishable. [32]. Nevertheless, these two nonlinear 

polarization sources have largely different relative contributions to the SHG process, 

especially if is close to the frequency of resonantly excited SPPs. Thus, at this frequency, 

the contribution of the surface nonlinear polarization to the SHG is enhanced significantly 
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more than that of the bulk source. [33]. In addition, the spatial distribution of the SH is 

much more sensitive to variation in surface nonlinear polarization; indeed, recent 

experiments [34] have demonstrated that in the case of metals with good, i.e., low loss, 

optical properties (Ag, Au), the surface nonlinear susceptibility is about 2 orders of 

magnitude larger than the bulk one. As a final argument for the validity of neglecting the 

bulk contribution to the SH, note not only that the bulk component of the SH is smaller 

than the surface one but also that it is primarily generated within a thin layer with thickness 

comparable to the skin depth, which at optical frequencies is only 20 nm; therefore, if the 

defect size is considerably larger than the skin depth, the bulk contribution to the total SH 

can be safely neglected. 

The electromagnetic field at the SH, generated by the surface nonlinear 

polarization, can be represented in terms of the multipole moments associated with 𝑃𝑠
2𝜔(𝑟). 

As the nanodefect size is considerably smaller than the plasmon wavelength, 𝑘(𝜔)𝑎 ≪ 1, 

we have restricted our calculations to multipoles up to the second order, that is, the electric 

dipole moment, the magnetic dipole moment, and the electric quadrupole moment; they are 

defined by the following relations, [35]: 

 
𝑝 = ∫𝑃(2𝜔)(𝑟′)𝑑𝑟′ 3.9a 

 
𝑚 = −

𝑖𝜔

2
∫𝑟′ × 𝑃(2𝜔)(𝑟′)𝑑𝑟′ 3.9b 

 
𝑄(𝑛) = ∫{3 [(𝑟 ̂ ∙ 𝑟′)𝑃(2𝜔)(𝑟′) + (𝑟 ̂ ∙ 𝑃(2𝜔)(𝑟′)) 𝑟′]

− 2[(𝑟′ ∙ 𝑃(2𝜔)(𝑟))𝑟̂]} 𝑑𝑟′ 

3.9c 
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Note that the polarization vector in Eq. (3.9) does not depend on the 𝑥2 coordinate, so the 

integrals are calculated in the two-dimensional plane defined by the x1 and x3 coordinates. 

Therefore, the multipoles defined in Eq. (3.9) represent linear densities of the 

corresponding physical quantities. Moreover, since we are only interested in the SH 

radiation generated by the defect, the integral region is chosen to be 𝐿 = 4𝑎, as illustrated 

in Fig. 3.1. This characteristic size of the defect is defined by the spatial extent over which 

the electromagnetic field at the FF is strongly inhomogeneous, i.e., the size of the domain 

in which this field is markedly different from that of  SPPs that propagate along a flat air-

metal interface. As a result, we used the spatial distribution of the computed field at the FF 

to estimate the value of the characteristic length 𝐿 over which we performed the integrals in 

Eq. (3.9). Finally, the SHG from SPPs propagating on flat surfaces [23] is a well 

understood process, so it is not considered here.  

The angular distribution of the radiated power at the SH, originating from the 

multipoles in Eq. (3.9), is given by the following relations: 

 𝑑𝑃𝑒𝑑
𝑑𝜃

=
𝑍0𝑐

2𝐾3

16𝜋
|(𝑛 × 𝑝) × 𝑛|2 3.10a 

 𝑑𝑃𝑚𝑑
𝑑𝜃

=
𝑍0𝐾

3

16𝜋
|(𝑛 × 𝑚) × 𝑛|2 3.10b 

 𝑑𝑃𝑒𝑞
𝑑𝜃

=
𝑍0𝑐

2𝐾5

288𝜋
|(𝑛 × 𝑄(𝑛)) × 𝑛|

2
 3.10c 

where 𝑃𝑒𝑑, 𝑃𝑚𝑑 , and 𝑃𝑒𝑞 correspond to the electric dipole, magnetic dipole, and electric 

quadrupole, respectively, 𝑘 = 2𝜔/𝑐 is the wave vector at the SH, and 𝑍0 = √𝜇0/𝜖0 is the 

vacuum impedance. As is well known from classical electrodynamics, at the smaller 

wavelengths considered here, the radiated energy comes primarily from the magnetic and 
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quadrupole moments (𝑃𝑚𝑑 , 𝑃𝑒𝑞~𝜆
−5), while at longer wavelengths, the main contribution 

to the emitted energy comes from the electric-dipole moment (𝑃𝑒𝑑~𝜆
−3). Finally, the 

multipoles allow us to calculate not only the radiative field at 2𝜔 but also the near field; the 

corresponding near-field formulas are not presented here due to their large size. [36]. 

 

3.3. RESULTS AND DISCUSSION 

In what follows, we will illustrate how our formalism describes linear and nonlinear 

scatterings of SPPs by metallic nanostructures. For our calculations, we use as a model a 

small surface defect whose mathematical representation allows a convenient calculation of 

its Fourier transform. [29]. In particular, the surface structure is characterized by the 

function 𝑓(𝑥1) = ℎ𝑒𝑥𝑝(−
𝑥1
2

𝑎2
), where ℎ > 0(ℎ < 0) is the height (depth) of the defect and 

𝑎/√2 is its half-width (see Fig. 2.1). With these assumptions, we performed our 

calculations for two types of nanostructures, namely, ridges ℎ > 0 and grooves ℎ < 0. 

Specifically, we solved Eq. (2.1.4) numerically by using a method of quadrature on a 

uniform mesh with arbitrary weight. [37]. Convergence was reached when using 

around1000 discretization points, the relative error of the results being less than 5%. We 

then calculated the magnetic field, via Eq. (3.1), the electric field from Eq. (3.6), and the 

radiated power in Eq. (3.10), which correspond to the multipoles in Eq. (3.9). 

 

3.3.1 SPP scattering at the fundamental frequency 

Consider first the linear scattering process. The physics of this process is illustrated 

most clearly by a plot of the near-field distribution resulting from the scattering of an 
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incident SPP wave at a defect, say, a groove (see Fig. 2). As shown in the figure, a portion 

of the incident SPP is reflected back; this back reflected wave interferes with the incident 

wave to form a standing-wave pattern to the left of the defect in Fig. 3.2.  

 

 

 

In addition, a portion of the incident SPP is transmitted through the defect. Finally, in this 

case of a groove, the scattering of the SPP is coupled into radiative modes and, thus, leads 

to emission of a narrow beam in a narrow angular range, leading to photonic nanojets [22] 

radiated in a narrow cone above the defect. In the case illustrated in Fig. 3.2, the nanojet 

has a spectral width of 450 nm and is emitted in the forward direction at an angle of ~45°. 

         The linear scattering process illustrated in Fig. 3.2 varies strongly with the plasmon 

wavelength and defect geometries. This variation is shown clearly by a plot of the 

normalized scattered intensity versus the plasmon wavelength given in Fig. 3.3. By 

scattered intensity, we mean the integrated optical radiation in the far field normalized by 

the intensity of the incident plasmon wave. Note that at long SPP wavelength, both groove 

 
Fig. 3.2 Near-field distribution in vacuum, at FF,computed for 

Gaussian-shaped nano groove with width a=100 nm, h=−100 

nm, and incident SPP wavelength =560 nm. 
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and ridge defects exhibit a monotonic decrease in scattered intensity with ; this decrease 

simply reflects the expected long-wavelength behavior of scattering processes. 

 

 

Specifically, as shown in Ref. 28, for large SPP wavelength , the amount of energy of the 

SPP scattered into radiative modes (light) varies as ~𝜆−2. In addition, in the case of groove, 

the intensity of the emitted radiation exhibits a series of oscillations as the incident plasmon 

wavelength is varied. The fact that the oscillation period seen in the spectrum of the 

radiated light increases with the depth of the groove suggests that these oscillations 

 
Fig. 3.3 Normalized SPP-FF conversion ratio vs the plasmon 

wavelength , computed for (a) grooves with a=100 nm and (b) 

ridges with a=120 nm, calculated for 𝜆𝑝 = 157𝑛𝑚. The inset in the 

top panel shows the plasmon  wavelength for the first peak vs 

depth of grooves with groove with remaining constant a=100 nm. 
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originate from cavity effects. For the ridge defect, in contrast, the intensity of the scattered 

light does not oscillate with increasing plasmon wavelength and in fact exhibits only a 

monotonic decrease with 𝜆. Figure 3.3 shows that the scattered intensity increases rapidly 

with the defect height. Note also that the plasmon wavelength for the largest radiation peak, 

denoted by 𝜆𝑚𝑎𝑥, redshifts as the defect height increases. The 𝜆𝑚𝑎𝑥’s dependence on the 

defect depth is shown in the inset in Fig. 3.3.  

          Consider now the spatial distribution of the near field of the scattered light for 

different defect sizes, shapes, and different incident SPP wavelengths. In particular, 

consider the near field at both groove resonant and nonresonant wavelengths (see Fig. 3.4) 

and both for grooves and ridges. The first three panels in this figure show the spatial 

distribution of the electric field in the near proximity of a groove with a=100 nm and 

h=−160 nm, i.e., the green curve in Fig. 3.3, calculated at the wavelengths of the first two 

resonant peaks, =561 nm [Fig. 3.4(a)] and =370 nm (Fig. 3.4(c)), and the “intervalley” 

minimum, =424 nm [Fig. 4(b)]. While each of these figures shows field enhancement 

inside the groove, particularly near the metal-vacuum interface, the maximum enhancement 

is seen at the wavelength corresponding to the strongest resonance, i.e., oscillation peak in 

Fig. 3.3. For ridges, calculations of the near field show that the interaction with the 

nanodefect leads to strong spatial distortions in the field of the incoming SPP; these 

distortions increase with the defect size. As a result, larger defects are more efficient in 

coupling the plasmon wave into the radiative modes. 
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Fig. 3.4 Near-field distribution in vacuum, at FF, computed for 

Gaussian-shaped nanodefects with width a=100 nm. Plots (a), (b), and 

(c) correspond to grooves with h=−160 nm and incident SPP 

wavelengths =561 nm, =424 nm, and =370 nm, respectively. Panel 

(d) corresponds to a ridge with h=160 nm and =460 nm. 

 

 

3.3.2 SPP scattering at second harmonic 

Next, we consider SHG due to scattering of the SPPs by the metallic nanodefect. In 

particular, we determine both the 2 far-field radiation spectrum and the spatial 

distribution of its near field. Both of these quantities may be obtained from the multipoles 

of the nonlinear surface polarization. To compute these multipoles, we calculate the 

integrals in Eq. (3.9) by discretizing the surface profile at the nanodefect in ~ 400 segments 

of equal length. Figure 3.5(a) presents the results of such calculations, performed in the 
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case of a groove with a=100 nm and h=−100 nm. As is typical in scattering, the SHG due 

to the electric dipole dominates at long wavelength (𝜆 > ~ − 2𝜇𝑚), whereas for smaller 

wavelengths all three multipoles make contributions of comparable magnitude. Note, 

however, that as the wavelength approaches the characteristic size of the defect, additional 

multipoles must be included in the calculations. We have restricted our calculations to > 

300nm, a cutoff value that ensures that the errors introduced by ignoring higher-order 

multipoles remain smaller than 1%. Furthermore, we have observed that the SHG process 

depends in a rather subtle way on the shape of the defect. At small wavelengths, the 

maxima of the quadrupole SHG coincide with the maxima of the total SHG, which 

suggests that the quadrupole SHG represents the dominant contribution. However, our 

calculations show that the resonant peaks in Fig. 3.3 correspond to the maxima in the 

spectrum of the electric dipole SHG. This result suggests that the spectral characteristics of 

the SHG depend not only on the strength of the field at the FF but also on its spatial 

distribution and the geometrical and physical characteristics of the surface, i.e., the surface 

susceptibility tensor 𝜒𝑠
2. More exactly, the strength of the electric dipole, magnetic dipole, 

and electric quadrupole, which are sources for the SH, are determined by the electric field 

through a surface integral of a sum of terms, each term being the product between a 

component of the susceptibility tensor and two field components [see Eq. 3.7]. These 

differences in the properties of SPP scattering at the FF and SH should not be surprising as 

it is well known that, for instance, due to their strong frequency dispersion, the localization 

properties of SPP at the FF are quite different from their localization effects at the SH. [22].  

To gain a more in-depth understanding of the physical properties of the radiated 

SHG, we present in Fig. 3.5(b) the total SHG emitted by grooves, ridges, and a flat surface 
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(h=0), with the feature width a being the same. First, this figure shows that, at smaller , 

grooves radiate 10–100 times larger amount of power at the SH, as compared to ridges; this 

observation again suggests that grooves are more efficient nanostructures for light 

extraction from SPP excitations. In addition, note that the SHG spectra in Fig. 3.5(b) show 

several resonant features. In the case of ridges, this behavior is in contrast with that seen for 

the radiated power at the FF, which exhibited a monotonic decrease with wavelength (see 

Fig. 3.3). This finding again shows that the magnitude of scattered  

 

 

 Fig 3.5 (a) SHG radiation power vs. plasmon wavelength, calculated for a 

groove with a=100 nm and h=−100 nm. Both the total SHG and its 

multipole components are presented. (b) The total SHG radiation power 

generated by grooves and ridges with a=100 nm and by a flat surface. The 

height (depth) of ridges (grooves) is h=100 nm (h=−100 nm). 
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SH light depends both on the geometry of the defect, since optical resonances are typically 

dependent on the geometry of the nanodefect, and on the electric field at the FF. 

Importantly, such frequency-selective optical response may allow optical detection of 

defects with specific geometries using surface spectroscopy optical probes. Finally, we 

observe that the amount of radiation corresponding to a flat surface is larger (smaller) than 

that corresponding to ridges (grooves); as expected, when h → 0, i.e., the defect height or  

 

 

Fig. 3.6  A comparison of the spectral density of the SH radiated power 

computed for grooves and ridges. Left (right) panels correspond to ridges 

(grooves). In the top panels, a=100 nm and h=60 nm (dot green), h=100 nm 

(solid blue), and h=160 nm (dashed red); In the bottom panels, h=100 nm 

and a=60 nm (dot green), a=100 nm (solid blue), and a=160 nm (dashed 

red). 
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depth decreases to zero, the power of radiated SH light converges to the case of flat surface. 

In all cases, the amount of scattered SHG power corresponding to an incident SPP with a 

power per unit length of 1 W/m is 10−6–10−8 W/m. 

In as much as the particular geometry of the nanostructure appears to be the main 

factor that determines the power in the SHG radiation for a fixed incident SPP wavelength 

, we have investigated the dependence of the SHG power on the geometrical parameters 

of the metallic nanostructure, namely, the width a and height h. The results of these 

calculations are presented in Fig. 3.6 for two different choices of  and defect shapes. This 

figure shows that in the case of ridges, the scattered SH power decreases as h increases, a 

counterintuitive result that is explained by the reduced field excitation at the surface of 

ridges with increasing h. Thus, our calculations show that as the defect height increases, the 

magnitude of the electric field and, consequently, the nonlinear surface polarization at the 

back side of the defect decreases (see Fig. 3.4(d)). Since the multipole moments are 

calculated by integrating the nonlinear surface polarization over the surface of the whole 

defect, smaller field excitation over the defect area leads to smaller multipole moments; as 

a result, the SHG radiation power decreases. In contrast, for the case of groove, deeper 

defects generate more SH radiation in the wavelength region where the electric quadrupole 

moment dominates. In addition, the SH spectra show a series of resonances, which, as in 

the linear case, are redshifted with the increase in the depth of a groove. Finally, Figs. 

3.6(a) and 3.6(d) illustrate that for a fixed h, the amount of SH radiated by both ridges and 

grooves increases with the width a. 

In many cases of practical importance, valuable information about the properties of 

surfaces and interfaces can be extracted not only from the excitation-wavelength  
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Fig. 3.7 Second-harmonic near-field distribution, computed for Gaussian-

shaped nanodefects for the region above the surface, with (a) width a=100 

nm, height h=100 nm, and incident SPP wavelength =512 nm and (b) 

a=100 nm, h=−100 nm, and =1.33m. Clockwise, panels correspond to 

the electric dipole, electric quadrupole, total field, and magnetic dipole. 
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dependence of the SH signal but also from its near-field distribution. To illustrate this 

point, we have calculated the spatial distribution of the SH field in the near proximity of the 

nanodefect; the results for two generic cases are presented in Fig. 3.7. Since the near-field 

distribution is strongly dependent on the relative strength of the multipole moments, this 

field profile and angular distribution will in turn be strongly dependent on the wavelength 

of the SPP. For example, in Fig. 3.7 the SPP wavelength was chosen so that the three 

dominant multipole moments each make contributions of comparable magnitude to the 

total field. The total electric field in Fig. 3.7 is the sum of the fields generated by the 

electric dipole, magnetic dipole, and electric quadrupole. Since there are phase differences 

among the three terms, the total field is not simply the sum of the field amplitudes. Note 

also that the near-field distribution at the SH is markedly different from that at the FF, 

which can make the SH imaging a useful tool for nonlinear optical probing of surfaces. 

 

3.4 CONCLUSIONS 

In conclusion, we have presented a comprehensive description of the surface SH 

generated by surface plasmon scattering from metallic nanodefects at metal-dielectric 

interface. Our formalism has a wide applicability, as it can be used to study metallic 

nanostructures of arbitrary shape and can describe metals whose dielectric constant is 

described by a Drude or Lorentz model, that is, most metals with good optical properties. 

Our results clearly show that the properties of the emitted SH are highly sensitive to the 

material and geometrical characteristics of the metallic surface or metal dielectric interface, 

through the surface susceptibility 𝜒𝑠
(2)

 and surface profile function 𝑓(𝑥1). As a result, 

scattering of SPPs by metallic nanostructures can be a powerful alternative in noninvasive 



 

 64 

spectroscopy studies of chemical and physical properties of surfaces and interfaces. 

Specifically, our study demonstrates that this SHG can provide unique information not only 

about the material parameters of the surface, e.g., the components of surface nonlinear 

susceptibility tensor, but also give valuable insight into the geometry and symmetry 

properties of the metallic nanostructures. Finally, since the surface nonlinear susceptibility   

𝜒𝑠
(2)

 is strongly dependent on the nature of the surface or interface, the formalism 

introduced has applicability to measurements of molecular adsorbates at interfaces or on 

metallic surfaces. 
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Chapter 4  

 

Surface Second Harmonic Generation from Scattering of 

Surface Plasmon Polaritons from Radially Symmetric 

Nanostructures 

 

Abstract 

 
We present a comprehensive study of linear and nonlinear effects observed in the scattering 

process of surface plasmon polaritons (SPP) from localized two-dimensional surface 

deformations at a metal/dielectric interface. Thus, the electromagnetic field at the 

fundamental frequency (FF), for both p- and s-polarizations, is first determined by solving 

the corresponding set of reduced Rayleigh equations. The complete solution of these 

equations allows us to investigate both the complex structure of the scattered 

electromagnetic field as well as subtle mechanisms by which incident SPPs are scattered 

into radiative modes (light) and outgoing SPP waves. Furthermore, the electromagnetic 

field at the FF is used to determine the nonlinear surface polarization at the second 

harmonic (SH) and subsequently both the electromagnetic field distribution as well as the 

amount of light generated at the SH. Calculations are performed for three geometries that 

are relevant in many experiments, namely, Gaussian, hemispherical, and cylindrical 

nanodefects. Finally, throughout our analysis, we discuss potential applications of our 

findings to surface spectroscopy, surface chemistry, or new imaging techniques of surface 

nanodefects. 
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4.1 INTRODUCTION 

Over the last few years, we have witnessed a renewed interest in both the physical 

properties of surface plasmon polaritons (SPPs) as well as their use in nanodevices with 

new or improved functionality. In particular, recent advances in materials, surface science, 

and nanofabrication techniques have made possible the design and experimental 

implementation of new plasmonic nanostructures and nanodevices, which exhibit 

remarkable physical properties and a great potential for advanced technological 

applications. To this end, of particular interest has been the optical properties of SPPs, [1- 

29], which are strongly localized p-polarized surfaced waves formed at the interface 

between a metal and a dielectric, [30 -33], as well as their interaction with metallic 

nanostructures. [34 – 36]. One of the consequences of the extreme light localization at 

metal/dielectric interfaces or close to the surface of metallic nanoparticles, is that extended 

(propagating waves) or localized surface plasmon polaritons can be used to achieve strong 

enhancement of the electromagnetic field, a property with important technological 

applications. To be more specific, this property can be employed to design new linear 

plasmonic devices, [1-9], detectors and other photovoltaic devices (solar cells), [14-17] 

optical sensors, [38,39], or study a series of photochemical processes. [18, 19]. In addition, 

and also of particular importance for practical applications, the strong enhancement of the 

electromagnetic field leads to the possibility to achieve strong nonlinear optical effects, 

such as second harmonic generation (SHG) [20-28], [30 36] and surface enhanced Raman 

scattering (SERS), [10-13] at remarkably low optical power.  

Surface SHG has become an essential diagnostic tool for physical chemistry, non-

invasive surface analysis, and catalytic chemistry, chiefly because this nonlinear optical 
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wave interaction is strongly dependent on the physical properties and local structure of 

surfaces and interfaces. This sensitivity of SHG is particularly important if one considers 

SHG at the surface of a centrosymmetric material, as in this case the lack of dipole-allowed 

optical transitions in the bulk of such materials leads to the vanishing of the otherwise 

dominant bulk SHG. In this case, the total SH signal is generated within a layer of only a 

few  Ảngstroms thickness, and therefore it is strongly dependent on the physical structure 

of this surface layer or its chemical properties, e.g. the nature of adsorbates at the surface or 

interface. In addition, surface SHG is a useful probing technique because it is non-invasive 

and has micrometer-scale spatial resolution. Moreover, the properties of surface SHG 

process, e.g. the polarization of the generated signal and the spatial distribution of the near- 

and far-field, are markedly different from those of the corresponding linear scattering 

process, and further enabling this nonlinear optical process to be a unique tool for the 

analysis of surfaces and interfaces. 

            In the standard approach to nonlinear surface probing, a laser source illuminates a 

surface and the scattered radiation is detected. In some cases metal particles are present on 

the surface and in that case it is well known that the scattering process is enhanced via the 

excitation of local surface plasmon-polariton modes in the metal object. More recently the 

interest in propagating plasmon polaritons has led several groups to consider the use of 

these waves as the primary probing source of surface features. Indeed recent beautiful work 

involving photoemission electron microscopy studies of illuminated surfaces [37] has 

shown that this approach is not only useful but can also provide a route to examine 

coherent plasmon effects. The question then arises as to whether this “plasmon-source" 

approach could also provide a useful source to examine surface features via nonlinear 
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surface wave excitation. Such an approach would have the advantage of a closer coupling 

of the excitation source with the surface feature to be examined. Further it would also be 

possible to envision using non optical excitation means such as injected electrons. Thus, in 

this paper we examine the physics of two-dimensional (2D) wave scattering from surface 

nanodefects. In fact we extend our earlier analysis [27] of the SHG from scattering of SPP 

waves from one-dimensional (1D) surface nanodefects to the more realistic case of two-

dimensional, radially symmetric surface nanodefects. Importantly, our analysis does not 

simply extends the results obtained in the 1D case to the 2D geometry, as the latter case 

presents an additional complexity that stems from the more intricate polarization properties 

of the electromagnetic field that is generated near a 2D metallic nanodefect. Thus, unlike 

the 1D case, when both the SPP waves and the radiated light are p-polarized, in the 2D case 

the radiative modes have both s- and p-polarized components. This increased degree of 

complexity has important implications for the structure of the near- and far-field angular 

distribution and the magnitude of emitted radiation, both at the fundamental frequency (FF) 

and at the second harmonic (SH).  

The chapter is organized as follows. In Sec. 4.2, we introduce the analytical 

formulation of our problem and the numerical method we used in our approach. Thus, we 

introduce a set of coupled reduced Rayleigh equations, whose solution fully determines the 

electromagnetic field at the FF. Also, we introduce the numerical method used to solve this 

system of equations. Moreover, we describe our approach to determine the electromagnetic 

field and the amount of emitted radiation at the SH, from the electromagnetic field at the 

FF. In Sec. 4.3, we present our results obtained by solving this analytical model. Thus, we 

consider three different radially symmetric surface nanodefects, namely Gaussian, 
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hemispherical, and cylindrical nanodefects, and for each of them we determine the spectral 

properties and the spatial distribution of the field at the FF and SH, Also, we investigate the 

influence of the geometrical structure of the nanodefect on the scattering process. In the last 

section, we summarize our results. 

 

4.2 THEORETICAL APPROACH AND NUMERICAL 

ALGORITHM 

          In this section we present the theoretical formalism used to analyze the scattering of 

SPPs from surface metallic nanodefects as well as the numerical method used in our 

analysis. Our calculations provide the spatial distribution of the electromagnetic field and 

the spatial pattern of the radiated light, both at the FF and the SH. 

 

          4.2.1 Linear scattering of surface plasmon polaritons 

          In order to study the scattering process of SPP waves from surface nanodefects, we 

consider a system consisting of a SPP wave propagating on a planar metallic surface 

located in the (x1 ,x2)-plane, a wave that is incident onto a surface nanodefect; the 

corresponding geometry is illustrated in Fig. 4.1. The surface profile, which for the sake of 

simplicity is chosen to be radially symmetric, is described by a surface profile function 

𝑥3 = 𝜁(𝑥∥), where 𝑥∥ = (𝑥1, 𝑥2), For the function 𝜁(𝑥∥), which describes the shape of the 

surface nanodefect, we considered three choices, namely a Gaussian, 𝜁(𝑥∥) =

ℎ exp(−𝑥∥
2/𝑅2), with height h and width R; a cylinder, 𝜁(𝑥∥) = ℎ, 𝑥∥ ≤ 𝑅, with height h 

and radius R; and a spherical cap, 𝜁(𝑥∥) =  √𝑅2 − 𝑥∥
2 −√𝑅2 − 𝜌2, 𝑥∥ ≤ 𝜌, with R and 𝜌 
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the radius of the sphere and the cap, respectively. Note that with these choices for the 

surface profile function 𝜁(𝑥∥), we can study surfaces with both protuberances (h > 0) and 

indentations (h < 0). The incoming SPP propagates along the x1 direction and, upon its 

interaction with the surface nanodefect, generates scattered SPP waves as well as radiative 

modes (photon states), which propagate outwardly, away from the nanodefect. 

 

 

 

Fig 4.1 Schematic of the scattering geometry and the radiated waves 

involved in the nonlinear scattering process. Fields in the region denoted by 

L = 3.5R are integrated to calculate SHG. 

 

We consider that the SPP propagates at the interface between vacuum and a metal, which is 

chosen to be silver in our calculations; the extension to the more general case of a 
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dielectric/metal interface is trivial. The electromagnetic properties of the metal are modeled 

via a dielectric function that obeys the Drude model, 𝜖(𝜔) = 1 − 𝜔𝑝
2/𝜔2, while 𝜔𝑝 is the 

plasma frequency of the metal and 𝜔 is the frequency. For silver, the corresponding plasma 

wavelength is 𝜔𝑝 = 145.9 nm. [40]. Note that this choice for the metal dielectric function 

does not take into account the optical losses, that is, the imaginary part of 𝜖(𝜔) is set to 

zero; however, this is a good approximation since the characteristic size of the nanodefect 

is much smaller than the plasmon absorption length and therefore only a negligible amount 

of energy is dissipated during the scattering process. As a result, the electromagnetic 

energy is conserved during the scattering process. Accounting for loss is relatively 

straightforward since its effect on the wave is over a scale size which is much longer than 

that of the scatterer. 

In order to analyze the scattering process of the SPP wave at the FF, we employ a 

method based upon a set of coupled reduced Rayleigh equations. [31,41,43,44]. To begin 

with, it is assumed that in the vacuum region, 𝑥3 > 𝜁(𝑥∥), the amplitude 𝐸(𝑥, 𝜔) of the 

electric field, which is defined by the harmonic dependence 𝐸(𝑥, 𝑡) = 𝐸(𝑥, 𝜔)𝑒𝑖𝜔𝑡, 

consists of the incident SPP wave and a scattered field that contains both radiative modes 

(scattered light) and scattered SPP waves: 
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𝐸↑(𝑥⃑, 𝜔) =

𝑐

𝜔
[𝑖𝑥̂1𝛽0(𝜔) − 𝑥̂3𝑘∥(𝜔)] exp[𝑖𝑘∥(𝜔)𝑥1 − 𝛽0(𝜔)𝑥3]

+ ∫
𝑑2𝑞∥
2𝜋

{
𝑐

𝜔
[𝑖𝑞̂∥𝛽0(𝑞∥) − 𝑥3̂𝑞∥]𝐴𝑝(𝑞∥)

+ (𝑥3̂ × 𝑞̂∥)𝐴𝑠(𝑞∥)} exp[𝑖𝑞⃑∥ ∙ 𝑥⃑∥ − 𝛽0(𝑞∥)𝑥3] 

4.1 

Here, 𝐸↑(𝑥, 𝜔) is the electric field at the frequency , the arrow designates the vacuum 

region, 𝑘∥(𝜔) and 𝛽0(𝜔) are the plasmon wave vector and the inverse decay length of the 

field in the direction normal to the surface, respectively, and are given by the relations: 

 

𝑘∥(𝜔) =
𝜔

𝑐
√

𝜖(𝜔)

𝜖(𝜔) + 1
 4.2a 

 

𝛽0(𝜔) =
𝜔

𝑐
√

−1

𝜖(𝜔) + 1
 4.2b 

These components of the plasmon wave vector satisfy the dispersion relation 𝑘∥
2(𝜔) −

𝛽0
2(𝜔) = 𝜔2/𝑐2, Moreover, the function 𝛼0(𝑞∥) is defined by 

 

𝛼0(𝑞∥) =

{
 
 

 
 
√𝑞∥

2 − (
𝜔

𝑐
)
2

        𝑞∥ >
𝜔

𝑐

−𝑖√(
𝜔

𝑐
)
2

− 𝑞∥
2        𝑞∥ <

𝜔

𝑐

  4.3 

where the vector 𝑞⃗∥ = (𝑞1, 𝑞2, 0) is parallel to the metal surface. Note that for a surface 

plasmon 𝑘∥(𝜔) > 𝜔/𝑐, and therefore 𝛼0 (𝑘∥(𝜔)) = 𝛽0(𝜔). Finally, 𝐴𝑠(𝑞⃗∥) and 𝐴𝑝(𝑞⃗∥) 

are scattering amplitudes of the s- and p-polarized waves, respectively. Based on the 

definition of 𝛼0(𝑞∥), Eq. (4.3), it can be seen that for 𝑞∥ > 𝜔/𝑐 the scattered waves in Eq. 
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(4.1) are surface scattered into the vacuum. Note the expansion given in Eq. (4.1) is valid 

within the Rayleigh hypothesis, namely, close to the surface the series expansion of the 

electromagnetic field contains only outward propagating waves. In particular, for small 

surface nanodefects this assumption is rigorously satisfield. [45]. 

         In order to calculate the scattering amplitudes 𝐴𝑠(𝑞⃗∥) and 𝐴𝑝(𝑞⃗∥), one requires that 

Eq. (4.1) together with the corresponding equation for the metal region satisfy the boundary 

conditions at the vacuum/metal interface, a condition that can be cast into a set of coupled 

reduced Rayleigh equations: [41, 42]. 

 

𝑓𝑖(𝑝∥)𝐴𝑖(𝑝∥) + ∑
𝑑2𝑞∥
(2𝜋)2

𝑔𝑖𝑗(𝑝∥, 𝑞∥)𝐴𝑗(𝑞∥)

𝑗=𝑝,𝑠

= −𝑔𝑖𝑝(𝑝∥, 𝑘∥)              𝑖 = 𝑝, 𝑠 

4.4 

and the functions 𝑓𝑠,𝑝 are given by  

 

𝑓𝑝(𝑝∥) =
𝜖(𝜔)𝛽0(𝑝∥) + 𝛽(𝑝∥)

1 − 𝜖(𝜔)
 4.5a 

 

𝑓𝑠(𝑝∥) =
𝛽0(𝑝∥) + 𝛽(𝑝∥)

1 − 𝜖(𝜔)
 4.5b 

With 

 

𝛼(𝑞∥ = √𝑞∥
2 − 𝜖(𝜔) (

𝜔

𝑐
)
2

 4.6 

is the inverse decay length of the electromagnetic field inside the metal and the kernel 

functions 𝑔𝑖𝑗 are given by the following expressions: 

 
𝑔𝑠𝑠(𝑝∥, 𝑞∥) = 𝐽(𝑝∥, 𝑞∥) (

𝜔

𝑐
)
2

𝑝∥ ∙ 𝑞⃑∥ 4.7a 
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 𝑔𝑝𝑝(𝑝∥, 𝑞∥) = 𝐽(𝑝∥, 𝑞∥)[𝑝∥𝑞∥ − 𝛽(𝑝∥)𝑝⃑∥ ∙ 𝑞⃑∥𝛽0(𝑞∥)] 4.7b 

 
𝑔𝑠𝑝(𝑝∥, 𝑞∥) = 𝑖𝐽(𝑝∥, 𝑞∥) (

𝜔

𝑐
)𝛽0(𝑝∥)(𝑝∥ × 𝑞⃑∥)3 4.7c 

 
𝑔𝑝𝑠(𝑝∥, 𝑞∥) = −𝑖𝐽(𝑝∥, 𝑞∥) (

𝜔

𝑐
)𝛽(𝑝∥)(𝑝⃑∥ × 𝑞⃑∥)3 4.7d 

Here, 𝑝⃗∥ and 𝑞⃗∥ are unit vectors and the function 𝐽(𝑝∥, 𝑞∥) is defined as: 

 
𝐽(𝑝∥, 𝑞∥) = ∫𝑑

2𝑥∥ exp[−𝑖(𝑝∥ − 𝑞∥)

∙ 𝑥∥]
exp [(𝛼(𝑝∥) − 𝛼0(𝑞 ∥)) 𝜁(𝑥∥)] − 1 

𝛼(𝑝∥) − 𝛼0(𝑞∥)
 

4.8 

We now introduce the azimuthal angles 𝜙𝑥, 𝜙𝑞, and 𝜙𝑝, which characterize the direction 

of the vectors 𝑥∥, 𝑞∥, and 𝑝∥, respectively. The scattering amplitudes 𝐴𝑠(𝑞∥) and 𝐴𝑝(𝑞∥) are 

then expanded in Fourier series, 

 

𝐴𝑗(𝑞⃑∥) =  ∑ 𝐴𝑗
(𝑛)(𝑞∥) exp(𝑖𝑛𝜙𝑞) , 𝑗 = 𝑠, 𝑝

∞

𝑛=−∞

 4.9 

and the Fourier coefficients corresponding to the p-polarized waves, 𝐴𝑝
(𝑛)
(𝑞∥), are rescaled 

so as to separate their singular behavior at the plasmon wave vector 𝑞∥ = 𝑘∥ [the function 

𝑓𝑝(𝑘∥) = 0 has a simple zero at 𝑞∥ = 𝑘∥, 𝑓𝑝(𝑘∥) = 0, 

 𝐴𝑝
𝑛(𝑞∥) =  𝑎𝑝

(𝑛)
(𝑞∥)/𝑓𝑝(𝑞∥) 4.10 

 

. 

Note that since the scattering amplitudes 𝐴𝑝
(𝑛)(𝑞∥) have a simple pole at 𝑞∥ = 𝑘∥, the 

reduced scattering amplitudes 𝑎𝑝
(𝑛)(𝑞∥) are bounded functions. Finally, by substituting Eqs. 
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(4.9) - (4.10) into the relations (4.4) one obtains the following set of coupled integral 

equations: 

 

𝑎𝑝
𝑛(𝑝∥) +

1

2𝜋
∫ 𝑑𝑞∥𝑞∥ [

ℎ𝑝𝑝
𝑛 (𝑝∥, 𝑞∥)

𝑓𝑝(𝑞∥)
𝑎𝑝
𝑛(𝑞∥)

∞

0

+ ℎ𝑝𝑠
𝑛 (𝑝∥, 𝑞∥)𝐴𝑠

𝑛(𝑞∥)] = −ℎ𝑝𝑝
𝑛 (𝑝∥, 𝑘∥) 

4.11a 

 𝑓𝑠(𝑝∥)𝐴𝑠
𝑛(𝑝∥)

+
1

2𝜋
∫ 𝑑𝑞∥𝑞∥ [

ℎ𝑠𝑝
𝑛 (𝑝∥, 𝑞∥)

𝑓𝑝(𝑞∥)
𝑎𝑝
𝑛(𝑞∥)

∞

0

+ ℎ𝑠𝑠
𝑛 (𝑝∥, 𝑞∥)𝐴𝑠

𝑛(𝑞∥)] = −ℎ𝑠𝑝
𝑛 (𝑝∥, 𝑘∥) 

4.11b 

Where 
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ℎ𝑠𝑠
𝑛 (𝑝∥, 𝑞∥) =

1

2
(
𝜔

𝑐
)
2

[𝑁𝑛−1 +𝑁𝑛+1] 4.12a 

 
ℎ𝑝𝑝
𝑛 (𝑝∥, 𝑞∥) = 𝑁𝑛𝑝∥𝑞∥ −

1

2
𝛼(𝑝∥)𝛼0(𝑞∥)[𝑁𝑛−1 +𝑁𝑛+1] 4.12b 

 
ℎ𝑠𝑝
𝑛 (𝑝∥, 𝑞∥) = −

1

2

𝜔

𝑐
𝛼0(𝑞∥)[𝑁𝑛−1 −𝑁𝑛+1] 4.12c 

 
ℎ𝑝𝑠
𝑛 (𝑝∥, 𝑞∥) =

1

2

𝜔

𝑐
𝛼(𝑞∥)[𝑁𝑛−1 −𝑁𝑛+1] 4.12d 

And 

 

𝑁𝑚 =
2𝜋

𝛽(𝑝∥) − 𝛽0(𝑞∥)
∫ 𝑥∥𝑑𝑥∥ {exp [(𝛽(𝑝∥)
∞

0

− 𝛽0(𝑞∥))  𝜁(𝑥∥)] − 1} 𝐽𝑚(𝑝∥𝑥∥)𝐽𝑚(𝑞∥𝑥∥) 

4.13 

Equations [4.11] are solved numerically for the scattering amplitude coefficients 𝑎𝑝
(𝑛)(𝑞∥) 

and 𝐴𝑠
(𝑛)(𝑞∥), and subsequently, by using the Fourier expansions in Eq. [4.9] the  scattering 

amplitudes 𝐴𝑠,𝑝(𝑝∥)are determined. These scattering amplitudes fully determine the 

distribution of the electric field in the spatial region 𝑥3 ≥ 𝜁(𝑥∥), at the FF, as shown by the 

Eq. (4.1). 

 

4.2.2 Light scattering at second harmonic 

             The complete description of the spatial distribution of the electromagnetic field at 

the FF allows one to determine the field distribution at the SH. Thus, according to the 

phenomenological model that is used to describe the physical properties of the SHG at the 

interface between two centrosymmetric media, the generated SH has two sources, namely a 
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surface nonlinear polarization localized within a thin surface layer at the interface between 

the two media and a non-local polarization originating from bulk magnetic dipoles and 

electric quadrupoles. Although the two media are centrosymmetric, and thus electric-dipole 

transitions are not allowed, the inversion symmetry is broken in the thin layer at the 

interface between the two media and therefore the sheet of nonlinear surface polarization at 

the SH, 𝑃𝑠
(2𝜔)(𝑟), is induced at this interface. This nonlinear polarization  is related to the 

electric field at the FF by a second-order nonlinear susceptibility tensor, 

 𝑃𝑠
(2𝜔)(𝑟) = 𝜒𝑠

(2)
: 𝐸(𝜔)𝐸(𝜔)𝛿(𝑥3 − 𝜁(𝑥1, 𝑥2)) 4.14 

where  𝜒𝑠
(2)

 is the surface second-order susceptibility and the Dirac function describes the 

surface characteristic of the source polarization. 

           In the case of homogeneous isotropic media excited by plane waves the bulk 

nonlocal nonlinear polarization can be expressed as [45,46]  𝑃𝑏𝑢𝑙𝑘
(2𝜔)(𝑟) = 𝛾∇[𝐸(𝜔)(𝑟) ∙

𝐸(𝜔)(𝑟)], where 𝛾 = 𝑒[1 − 𝜖(𝜔)]/32𝜋𝑚𝜔2 and e and m are the charge and mass of the 

electron, respectively. As has been demonstrated, [47] the longitudinal nature of this 

nonlinear polarization makes it that its contribution to the SHG is indistinguishable from 

that of the surface nonlinear polarization given in Eq. (1.14). In practice, this contribution is 

accounted for by rescaling the components of the surface susceptibility 𝜒𝑠
(2)  so as to 

include the contributions of both the surface and bulk polarizations. Nevertheless, in the 

case of metals these two nonlinear polarization sources have largely different relative 

contributions to the SHG process, especially if 𝜔 is close to the frequency of resonantly 

excited SPPs. Thus at this frequency, the contribution of the surface nonlinear polarization 

to the SHG is enhanced significantly more than that of the bulk source, [48] and therefore 

the bulk contribution can be neglected. Indeed, recent experiments have demonstrated that 



 

 81 

in the case of metals with good, i.e. low-loss, optical properties (Ag, Au) the surface 

nonlinear susceptibility is about two orders of magnitude larger than the bulk one. [49]. 

In most cases of practical interest, the metal/vacuum interfaces possess an isotropic mirror-

symmetry plane perpendicular to the interface. Under these circumstances, the surface 

nonlinear susceptibility 𝜒𝑠
(2)

 has only three independent components, which are  𝜒𝑠,⊥⊥⊥
(2)

, 

and 𝜒𝑠,⊥∥∥
(2)

 and 𝜒𝑠,∥⊥∥
(2) = 𝜒𝑠,∥∥⊥

(2)
, where ⊥ 𝑎𝑛𝑑 ∥ refer to normal and perpendicular directions 

to the surface, respectively. In our calculations, we assume the following values for the 

independent components of the susceptibility tensor 𝜒𝑠
(2)

, 𝜒𝑠,⊥⊥⊥
(2) = 5.02 × 10−18𝑚2/𝑉, 

𝜒𝑠,⊥∥∥
(2) = −2.54 × 10−21𝑚2/𝑉, 𝜒𝑠,∥⊥∥

(2) = 𝜒𝑠,∥∥⊥
(2) = 1.13 × 10−20𝑚2/𝑉. [50]. However, it 

should be noted that in certain cases the metal/vacuum interface lacks a mirror symmetry 

plane, namely when chiral molecules are adsorbed at the interface or in the case of 

nanopatterned metallic surfaces. 

         Since the source of the electromagnetic field at the SH is the surface nonlinear 

polarization 𝑃𝑠
(2𝜔)(𝑟), we can fully characterize the SHG process once we know multipole 

moments associated with this nonlinear polarization. As the nanodefect characteristic size a 

of the nanodefect is considerably smaller than the plasmon wavelengths, 𝑘(𝜔)𝑎 ≪ 1, we 

have restricted our calculations to multipoles up to the second order, that is, the electric 

dipole moment, the magnetic dipole moment, and the electric quadrupole moment; they are 

defined by the following relations: [50], 

 
𝑝 = ∫𝑃(2𝜔)(𝑟′)𝑑𝑟′ 4.15a 

 
𝑚 = −

𝑖𝜔

2
∫𝑟′ × 𝑃(2𝜔)(𝑟′)𝑑𝑟′ 4.15b 
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𝑄(𝑛) = ∫{3 [(𝑟 ̂ ∙ 𝑟′)𝑃(2𝜔)(𝑟′) + (𝑟 ̂ ∙ 𝑃(2𝜔)(𝑟′)) 𝑟′]

− 2[(𝑟′ ∙ 𝑃(2𝜔)(𝑟))𝑟̂]} 𝑑𝑟′ 

4.15c 

Since we are only interested in the SH generated by the nanodefect, the integration region 

in Eqs. [4.15] for a Gaussian defect is chosen to be L = 3.5R, as illustrated in Fig 4.1. For 

the case of spherical cap and cylinder, the domains of integration are chosen to be 𝜁(𝑥∥) ≠

0, that is, 𝐿 = 2𝜌 for the spherical cap and 𝐿 = 2𝑅 for the cylinder. It should be noted that 

in our study we do not consider the SHG from the entire flat surface, which has been 

extensively studied, because it provides only a uniform background illumination. [32].  

          The angular distribution for the radiated power at the SH, originating from the 

multipoles described by Eqs. [4.15], is given by the following equations, [52]: 

 𝑑𝑃𝑒𝑑
𝑑𝜃

=
𝑍0𝑐

2𝐾4

32𝜋
|(𝑛 × 𝑝) × 𝑛|2 4.16a 

 𝑑𝑃𝑚𝑑
𝑑𝜃

=
𝑍0𝐾

4

32𝜋
|(𝑛 × 𝑚) × 𝑛|2 4.16b 

 𝑑𝑃𝑒𝑞
𝑑𝜃

=
𝑍0𝑐

2𝐾5

1152𝜋
|(𝑛 × 𝑄(𝑛)) × 𝑛|

2
 4.16c 

Where 𝑃𝑒𝑑 , 𝑃𝑚𝑑 , 𝑃𝑒𝑞  correspond to the power radiated by the electric dipole, magnetic 

dipole, and electric quadrupole, respectively. 𝐾 = 2𝜔/𝐶 is the wave vector at the second 

harmonic and 𝑍0 = √𝜇0/𝜖0 is the vacuum impedance. As is well known from classical 

electrodynamics, at longer wavelengths the main contribution to the emitted energy comes 

from the electric-dipole moment (𝑃𝑒𝑑~𝜆
−4) whereas at smaller wavelengths the radiated 

energy comes primarily from the magnetic and quadrupole moments (𝑃𝑚𝑑 , 𝑃𝑒𝑞~ 𝜆
−6). 
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Finally, calculating these multipoles allow us to determine not only the radiative field at the 

SH but also the near-field; the corresponding near-field formulae are not presented here as 

their expressions are rather long and cumbersome. 

 

4.2.3 Numerical approach 

           To solve Eqs. [4.11] numerically, we follow a procedure described in Ref. [31]. 

Thus, this system of coupled equations is discretized on a uniform computational grid that 

spans the domain 𝑞∥, 𝑝∥  ∈ (0, Λ𝑚𝑎𝑥), the step size of the computational grid being Δ𝑞∥. To 

reach convergence of the numerical results, ∼1500 grid points are necessary, whereas the 

upper limit of the wave vectors 𝑝∥ and 𝑞∥, Λ𝑚𝑎𝑥, is chosen to be in the range of  

20/R~70/R. In addition, the computational grid is constructed in such a way that the point 

𝑘∥ is one of the grid points. 

            In the discretization process, the integrals in Eqs. [4.11] are calculated as a sum of 

integrals defined over the intervals between adjacent grid points, each of these integrals 

being then approximated as the product between the integrand evaluated at the midpoint of 

the interval and the size of the interval, Δ𝑞∥. As previously explained, the integral equations 

[4.11] have a singularity (a simple pole) at 𝑞∥ = 𝑘∥. This singular point is treated 

separately, and the corresponding integral is being calculated analytically. As a result of 

this discretization procedure, Eqs. [4.11] are cast into two linear coupled matrix equations, 

which are solved by using standard numerical techniques. The corresponding discretized 

equations can be written in the following form: 

  



 

 84 

 

𝑎𝑝
𝑛(𝑝𝑗) +

1

2𝜋
∑Δ𝑞𝑞𝑖 [

ℎ𝑝𝑝
𝑛 (𝑝𝑗 , 𝑞𝑖)

𝑓𝑝(𝑞𝑖)
𝑎𝑝
𝑛(𝑞𝑖)

𝑖

+ ℎ𝑝𝑠
𝑛 (𝑝𝑗 , 𝑞𝑖)𝐴𝑠

𝑛(𝑞𝑖)] = −ℎ𝑝𝑝
𝑛 (𝑝𝑗 , 𝑘∥) 

4.17a 

 𝑓𝑠(𝑝𝑗)𝐴𝑠
𝑛(𝑝𝑗)

+
1

2𝜋
∑Δ𝑞𝑞𝑖 [

ℎ𝑠𝑝
𝑛 (𝑝𝑗 , 𝑞𝑖)

𝑓𝑝(𝑞𝑖)
𝑎𝑝
𝑛(𝑞𝑖)

𝑖

+ ℎ𝑠𝑠
𝑛 (𝑝𝑗 , 𝑞𝑖)𝐴𝑠

𝑛(𝑞𝑖)] = −ℎ𝑠𝑝
𝑛 (𝑝𝑗 , 𝑘∥) 

4.18b 

where i and j indexes the grid points. Furthermore, in the case of a Gaussian-shaped defect, 

the integrals 𝑁𝑚defined by Eq. [4.13] can be expressed as a series of Bessel functions of 

the second kind, 𝐼𝑚, 

 𝑁𝑚

= 𝜋𝐴𝑅2∑
{[𝛽(𝑝∥) − 𝛽0(𝑞∥)]𝐴}

𝑛−1

𝑛. 𝑛!
exp [−

(𝑝∥
2 + 𝑞∥

2)𝑅2

4𝑛
] 𝐼𝑚 (

𝑝∥𝑞∥𝑅
2

2𝑛
)

∞

𝑛=1

 
4.19 

For the hemisphere- and cylinder-shaped defects the integral that defines the functions 

𝑁𝑚(𝑞∥, 𝑝∥) are calculated numerically, by using an adaptive integration algorithm. [53]. 

Moreover, in the case of cylindrical nanodefects, in order to resolve the strongly 

inhomogeneous electromagnetic field near the sharp corners, a considerably large number 

of grid point must be used, with the result of a slow convergence rate of the numerical 

algorithm. In order to overcome this problem, a numerical procedure was employed that in 

effect smoothes out the top edge of the cylinder, namely, the shape function 𝜁(𝑥∥) was 
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multiplied by the function shape factor 1 − 1/cosh [𝑝1(𝑝2𝑅 − 𝑥∥)]  , with 𝑝1 = 0.6 × 108 

and 𝑝2 = 1.12. 

Finally, once the complete distribution of the electromagnetic field at the FF is 

determined through the method just described, the scattering process at the SH is 

numerically characterized as follows. First the surface nonlinear polarization 𝑃𝑠
(2𝜔)(𝑟) is 

calculated using Eq. [4.14] and subsequently the multipoles are determined from Eqs. 

[4.15]. The spatial distribution of the electromagnetic field at the SH and the corresponding 

emitted power are then calculated by using Eqs. [4.16]. 

 

4.3 RESULTS AND DISCUSSIONS 

In this section we present and discuss the main results pertaining to the spatial 

distribution of near- and far-field, as well as the spatial pattern of the scattered light, both at 

the FF and the SH. 

 

4.3.1 Field distribution and scattered light: fundamental frequency 

The theoretical formalism presented in subsection 4.2.1 provides a full description 

of the distribution of the electromagnetic field, both in the close proximity of the defect (the 

near-field), as well as far from the scatterer (the far-field). A generic example of the spatial 

distribution of the field amplitude at the FF, |𝐸↑ (𝑟;  𝜔)|, corresponding to a Gaussian 

indentation, is presented in Fig. 2. Among other things, this figure clearly shows the 

transition between the near-field, seen as a series of ripples that are formed through the 

interference between the incident plasmon field and the scattered field, and the far-field, 

which is seen as an emerging beam of scattered light (a nanoflashlight) emitted by the 
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defect. The angle of this flashlight “beam” with respect to the surface normal is a result of 

momentum matching between the SPP and scattered light momenta and a characteristic 

reciprocal vector of the scatterer, i.e. 𝜋/𝑅, much as is the case of plasmon scattering from a 

surface diffraction grating. [30]. Note that the width of the emitted beam, measured in a 

transverse plane located at 1.5 𝜇𝑚 above the metallic surface, is only a few hundreds 

nanometers. Hence the plasmon scattering by metallic nanodefects could provide an 

interesting and flexible approach to generate and manipulate sub-wavelength optical 

beams, an idea discussed in Ref. [31]. 

 

 

FIG. 4.2: Electric field distribution corresponding to the scattering of a SPP off 

a Gaussian nanodefect with 𝑅 =  200 𝑛𝑚 and ℎ =  −50 𝑛𝑚 where only the 

scattered light is shown. The wavelength of the incident SPP is 𝜆 =  328 𝑛𝑚. 
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As an interesting aside, the property that the shape of the defects considered here is 

invariant to rotation transformations implies that the scattering coefficients 𝐴𝑝,𝑠
(𝑛)(𝑞∥) 

defined by Eq. [4.9] obey the symmetry relation |𝐴𝑝,𝑠
(𝑛)(𝑞∥)| = |𝐴𝑝,𝑠

(−𝑛)(𝑞∥)| and therefore the 

total angular momentum of the scattered electromagnetic field is zero. However, it can be 

easily seen that in the case of chiral scatterers the just mention symmetry relation no longer 

holds, and thus the scattered field, in particular the nanoflashlight seen in Fig. 4.2, will have 

a finite angular momentum. One immediate consequence of this effect is that the scattering 

of SPPs from chiral defects can be readily used to generate sub-wavelength optical beams 

carrying angular momentum, namely, optical nanotweezers. 

Deeper insight into the characteristics of the plasmon scattering at the FF is 

provided by the frequency dependence of the total scattering cross sections of SPPs and 

light. Thus, using the relations (A.4) and (A.5) in the Appendix, we have calculated the 

spectra of these scattering cross sections, both for indentations and protuberances. Note that 

the scattering cross section corresponding to the emitted radiation contains the contribution 

of both the s- and p-polarized waves. The results of these calculations, summarized in Fig. 

4.3, lead us to several important conclusions. But before discussing the results note that the 

general shape and appearance of these two scattering cross sections is similar to that 

presented earlier by the Maradudin Group [31], [43], although the greater computation 

resources available at present allows a fuller spectral range to be examined. First, both 

spectra show a resonant behavior, in both cases the scattering process being most efficient 

at a certain resonant frequency. The two resonant frequencies are very different from each 

other, and thus one can infer that the two scattering processes are only weakly coupled. 

More specifically, whereas the generation of radiative modes can be viewed as the result of 



 

 88 

the creation of spatial inhomogeneities in the incoming field, at the location of the defect, 

the scattered surface plasmons are generated via the excitation of localized plasmon modes 

supported by the surface defect. This dichotomy in the scattering process also explains the 

markedly different width of the SPP and light spectra of the corresponding cross-sections. 

In addition, a comparison of the peak scattering cross sections suggests that the scattering 

of the incident SPP into SPP waves is a much more efficient process as compared to the 

scattering of the incident SPP into radiation, the corresponding ratio of the cross sections 

being ∼5. This result is explained by the fact that, due to their similar characteristics, the 

overlap between the electromagnetic field of the incident and scattered SPP waves is larger 

than the overlap between the fields of the incident SPP wave and the emitted radiation. 

Figure 4.3 also shows that surface indentations are more effective in scattering the 

incident SPP, as compared with protuberances, a result that can be attributed to the cavity 

effect associated with such surface defects. Moreover, the spectra of the scattering cross 

sections of both SPPs and light show a steep decrease near 𝜔/𝜔𝑝  ∼  0.7, which is due to 

the fact that surface SPP waves at the metal/vacuum interface can not exist if 𝜔 > 𝜔𝑝/√2. 

We have also investigated the dependence of the scattering cross sections on the 

size of the surface defect. The results corresponding to the scattering cross section of light 

are summarized in Fig. 4.4(a). Thus one can observe that in the case of shallow surface 

defects the amount of radiated light decreases as the radius of the defect increases, which 

suggests that in the case of larger defects the field can easier readjust to the shape of the 

defect and thus it is perturbed to a smaller extent. However, if one compares the amount of 

light scattered by defects with the same radius R but different depth h one observe that 

more light is emitted by defects with larger depth. Again, this result is explained by the fact 
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that the larger the depth of a surface defect, the stronger the perturbation of the incident 

plasmon field; although not shown, this same behavior follows when varying the height of 

protuberance. 

 

 

 

FIG. 4.3: Total scattering cross section of light and SPP, for both indentation 

(ℎ <  0, solid line) and protuberance (ℎ >  0, dash line). The defect 

parameters are |ℎ|  =  50 𝑛𝑚 and 𝑅 =  200 𝑛𝑚. Red and blue curves 

correspond to the scattering cross section of SPPs and light, respectively. 
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FIG. 4.4: Dependence of the scattering cross section of light on the size of 

the Gaussian defect and polarization of the scattered light. The curves in the 

panel (a) correspond to R = 200 nm and h = −50 nm (solid curve), R = 200 

nm and h = −20 nm (dash curve), R = 150 nm and h = −20 nm (dotted 

curve). Panel (b) shows the spectra of the scattering cross sections 

corresponding to R = 200 nm and |h| = 50 nm: the solid (dash) curves 

correspond to h < 0 (h > 0). As indicated, the black curves correspond to the 

total scattering cross section whereas the blue and red curves correspond to 

the s- and p-polarized light, respectively. 

 

As we have discussed, unlike the 1D case, in the case of 2D surface defects the 

emitted light can not only be p-polarized but also s-polarized. The spectra of the total 

scattering cross section as well as the corresponding spectra of the s- and p-polarized light 
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are shown in Fig. 4.4(b). Thus, it can be seen from this figure that the spectra 

corresponding to the two polarizations show a similar resonant behavior; however, the two 

resonant frequencies have slightly different values. In addition, our calculations show that 

at low frequency (long wavelength side of the spectra) the radiated light is predominantly s-

polarized whereas the light emitted at high frequencies (at the blue side of the spectrum) is 

predominantly p-polarized. 

 

FIG. 4.5: Dependence of the scattering cross section of SPPs on the size of 

the Gaussian defect. The curves correspond to R = 200 nm and h = −50 nm 

(solid curve), R = 200 nm and h = −20 nm (dash curve), R = 150 nm and h 

= −20 nm (dotted curve). 
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Similar studies have been done of the dependence of the peak SPP scattering cross 

sectionnand the width of its spectrum on the width and depth/height of the defect. The main 

results, plotted in Fig. 4.5, support the general conclusion according to which the incident 

SPP wave generates SPP modes localized at the site of the defect, which subsequently 

decay into outgoing SPP waves. Thus, Fig. 4.5 shows that the width of the spectrum of the 

scattering cross section decreases with the depth of the defect. As expected, deeper defects 

are more effective in capturing and thus re-emitting the incident SPP wave, an effect that 

leads to the broadening of the SPP scattering cross section spectra with the width of the 

defect. On the other hand, the scattering cross section depends only slightly on the radius of 

the defect. 

A better understanding of scattering of the incident SPP, at the FF, can be achieved 

by analyzing the distribution of the electromagnetic field in the proximity of the surface 

defect. In this connection, Fig. 4.6 shows the field distribution in two horizontal sections, 

one at a distance that is only a fraction of the wavelength of the plasmon and the other one 

located a few wavelengths away from the metallic surface. Note that the plots in Fig. 4.6 do 

not contain the field of the incident SPP wave. This figure clearly illustrates the transition 

from the near-field to far-field as well as the strong dependence of the electromagnetic field 

on the polarization of the emitted field. Thus, as expected, in the case of the s-polarized 

light, the field is predominantly located at the position of the surface defect. This behavior 

is a direct consequence of the fact that the SPP waves are p-polarized, and thus the s-

polarized field cannot propagate along the vacuum/metal interface. Moreover, Fig. 4.6 

shows that in the case of the s-polarized scattered light the electric field vanishes in the 

plane 𝑥2  =  0. To understand this property, note that the electric field of the s-polarized 
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scattered light, at the plane  𝑥2  =  0, is perpendicular on this plane and thus symmetry 

considerations require that it vanishes within this plane. In addition the electric field for p-

polarized light has a large value even a few wavelengths away from the surface defect. This 

electric field is radiated by the outgoing surface SPP waves that are generated in the 

scattering process. Also, note that the spatial distribution of the total field is similar to that 

of the p-polarized light, which suggests that, at this wavelength, the radiated light in the 

nanobeam directed in the 𝑥2  =  0 plane is predominantly p-polarized. S-polarized light is 

emitted at two angles with respect to this plane and is thus more diffuse in the 𝑥3  =

 1.2 𝜇𝑚 plane shown here. 
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FIG. 4.6: Near- to far-field transition corresponding to a Gaussian surface 

defect with R = 200 nm and h = −50 nm. The incident SPP wavelength is  

𝜆 =  328 𝑛𝑚. The panels on the left and on the right correspond to 

horizontal plane sections at 𝑥3  =  0.2 𝜇𝑚 and 𝑥3  =  1.2 𝜇𝑚, respectively. 
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We have also investigated the dependence of the SPP-surface defect scattering 

process on the specific shape of the defect. In particular, we have considered Gaussian, 

cylindrical and hemispherical defects. The main results of this analysis are presented in Fig. 

4.7, which shows the frequency dependence of the scattered light corresponding to these 

three shapes of the surface defect. As expected, the scattering cross sections of light emitted 

by Gaussian and hemispherical defects have similar spectral characteristics, namely, a 

broad spectrum with a maximum at a certain resonant frequency.  

 

 

FIG. 4.7: Scattering cross sections corresponding to cylindrical (𝑅 =

 200 𝑛𝑚 and |ℎ|  =  20 𝑛𝑚, solid curves), hemispherical (𝑅 =  600 𝑛𝑚 

and |ℎ|  =  50 𝑛𝑚, dash curves), and Gaussian (𝑅 =  200 𝑛𝑚 and |ℎ|  =

 20 𝑛𝑚, dotted curves) surface defects. The thick and thin curves 

correspond to ℎ <  0 and ℎ >  0, respectively. 
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Unlike the case of these two types of surface defects, the spectra corresponding to 

cylindrical defects, i.e. cylindrical holes or pillars, present a series of sharp, well defined 

maxima which become more closely spaced as the frequency approaches the asymptotic 

limit 𝜔 = 𝜔𝑝/√2. These spectral peaks can be associated with the excitation of plasmon 

modes with a vanishing longitudinal (along the 𝑥3 axis of the cylinder) propagation 

constant, at the surface of the cylindrical defects. Indeed, the propagation constant of the 

incident surface plasmon lies in the surface plane, and therefore any modes excited in the 

𝑥3 plane for a cylindrical defect must have a vanishing longitudinal propagation constant. 

As it is well known, [54,55],  these modes form a sharp, discrete spectrum with the mode 

frequency asymptotically approaching the limit frequency of 
𝜔𝑝

√2
, irrespective of the radius 

of the cylinder. 

 

Our calculations show not only that the spectra of the scattering cross sections 

depend on the particular shape of the defect but also that the field distribution is strongly 

dependent on the geometry of the defect. This property, which can have a series of 

applications to near field optical microscopy, is illustrated by the results summarized in 

Fig. 4.8. This figure clearly shows that both the near field and the far-field generated in the 

scattering process, at the FF, are strongly dependent on the shape of the defect. For 

example, it can be seen that, unlike the case of a Gaussian or hemispherical defect, two 

nano-beams are emitted in the case of a cylindrical defect. 
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FIG. 4.8: Near-field and far-field distribution corresponding to cylindrical 

(𝑅 =  200 𝑛𝑚 and ℎ =  −20 𝑛𝑚, top panels) and hemispherical (𝑅 =

 600 𝑛𝑚 and ℎ =  −50 𝑛𝑚, bottom panels) surface defects. The panels on 

the left and on the right correspond to horizontal plane sections at 𝑥3  =

 0.2 𝜇𝑚 and 𝑥3  =  1.2 𝜇𝑚, respectively. The incident SPP wavelength is  

𝜆 =  328 𝑛𝑚. 

 

 

4.3.2 Field distribution and scattered light: second harmonic 

The theoretical formalism presented in Sec. 4.2.2 allows one to determine the 

spatial distribution of the electric field at the SH and the corresponding scattering cross 
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section, once the electric field at the FF has been calculated. In addition, our theoretical 

model allows us to study the relative contribution of the multipole moments to the total 

amount of light generated at the SH. 

 

 

FIG. 4.9: Spectra of the SH radiated upon the scattering of SPP waves off 

Gaussian surface defects. Panels (a) and (b) correspond to indentations (h = 

−50 nm) and protuberances (h = 50 nm), respectively. In both panels, R = 

200 nm and the spectra in both panels correspond to the electric dipole 

moment (thin dash curves), the magnetic dipole moment (thick dotted 

curves), the electric quadrupole moment (thin dotted curves), and the total 

SHG (thin solid curves). 
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         A generic example that illustrates how our theoretical model can be applied to study 

the generation of SH via the scattering of SPP waves by surface defects is presented in Fig. 

4.9. Thus, this figure shows the spectra of the radiated SH, the surface defects considered 

being Gaussian-shaped indentations and protuberances. Our theoretical formalism allows 

us to separate the contribution of each multipole moment to the total generated SHG, so 

that we show in Fig. 4.9 the spectrum of each of all these moments (up to the second-

order). As expected, our calculations show that the SH generated at short wavelengths is 

predominantly due to the higher-order multipole moments (magnetic dipole and electric 

quadrupole), whereas at long wavelengths (low frequency) the SH is primarily generated 

by the induced electric dipoles. In addition, it can be seen that the frequencies of the 

maxima and minima in the spectra corresponding to the magnetic dipole and electric 

quadrupole are the same; in fact overall, these spectra exhibit nearly identical spectral 

variation. However, the spectrum corresponding to the electric dipole shows a quite 

different frequency dependence, a fact that is explained by the particular dependence on 

wavelength of the power radiated by the induced multipole moments [see Eq. (4.16)]. Note 

also that the total amount of generated SH increases with the frequency of the incident SPP 

wave. Indeed, as the frequency increases the incident SPP wave has a shorter wavelength 

and thus interacts more strongly with the surface defect. Consequently, the induced 

multipole moments have a larger magnitude. Importantly, the spectral characteristics of the 

radiated power at the FF are significantly different from those corresponding to the SH, 

which further illustrates the differences in the physical phenomena involved in the radiation 

process at the two frequencies. 
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FIG. 4.10: Dependence of the total SHG on the size of Gaussian surface 

defects. Panels (a) and (b) correspond to protuberances (h > 0) and 

indentations (h < 0), respectively. In both panels, the parameters of the 

defect are: R = 200 nm and |h| = 50 nm (solid curves), R = 200 nm and |h| = 

20 nm (dash curves), and R = 150 nm and |h| = 20 nm (dotted curves). 

 

We have also investigated the dependence of the spectra of the generated SH on the 

geometrical parameters of the surface defect. The results corresponding to a Gaussian 

surface defect are summarized in Fig. 10. This figure shows that larger defects lead to the 

generation of a larger SH signal. This result is an expected dependence of the SHG on the 
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size of the defect since in the case of larger defects the nonlinear surface polarization is 

induced over a larger area and therefore the multipole moments that generate light at the  

SH are larger. Also, Fig. 4.10 suggests that the frequencies at which the SH spectra have 

minima are primarily determined by the radius of the defect, the height (depth)  having 

only a marginal influence on the location of these frequencies. 

 

 

FIG. 4.11: Top and bottom panels show the SHG corresponding to 

cylindrical and hemispherical surface defects, respectively. In all panels, the 

spectra correspond to the electric dipole moment (dotted curves), the 

magnetic dipole moment (dash curves), the electric quadrupole moment 

(dotted-dash curves), and the total amount of generated SH (solid curves). 
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Our calculations show that, unlike the case of the FF, the spectra of the radiated 

light at the SH depend to a lesser extent on the shape of the surface defect. This conclusion 

is illustrated by Fig. 4.11, which shows the spectra corresponding to cylindrical and 

hemispherical defects, for both ℎ >  0 and ℎ <  0. The general characteristics of these 

spectra are very similar to those corresponding to the Gaussian surface defects, part of the 

observed differences being attributable to the fact that the defects have different size. 

Indeed, the amount of radiation emitted at the SH depends primarily on the magnitude of 

the induced multipole moments and thus one expects that the general characteristics of the 

corresponding spectra would depend only slightly on the shape of the surface defect. 

One of the important applications of the theoretical formalism presented here is that 

the spectral characteristics of the radiation emitted at the SH can be used to extract 

information about the geometry of the surface defects and their surface properties. For 

example, since the angular distribution of the radiation emitted by electric dipoles, electric 

quadrupoles, and magnetic dipoles are quite different from each other, the angular 

distribution of the total radiated light at the SH will depend strongly on the relative strength 

of the magnitude of these induced multipoles. Therefore, the angular distribution of the 

total light emitted at the SH can provide valuable information about the shape and surface 

properties of the defect. This idea is illustrated in Fig. 4.12, where we show the angular 

distribution of the light emitted at the SH, as well as the angular distribution corresponding 

to the electric dipole, electric quadrupole, and magnetic dipole. Note that in this figure the 

parameters of the surface defect and the wavelength of the incident SPP wave have been 

chosen such that the amount of light radiated by each of the three multipoles has a 

comparable magnitude, and therefore the angular distribution of the total radiated light is 
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different from each of the angular distributions corresponding to the three multipoles. 

However, in the case in which one of the multipoles dominates, the total angular 

distribution of the SH will be similar to the angular distribution of that multipole and thus 

this information can be used to determine the properties of the surface defect. 

 

 

 

FIG. 4.12: Angular distribution of the power emitted at the SH. The panels 

correspond to a Gaussian surface defect with R = 200 nm and h = −50 nm, 

and an incident SPP wave with wavelength  = 1012 nm. The panels 

correspond to, (a), the electric dipole momentum; (b), the magnetic dipole 

momentum; (c), the electric quadrupole moment; and (d), the total SH. 
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The angular distribution of the power emitted at the SH can be used not only to 

infer which is the dominant multipole that generates light at the SH, but also to obtain 

information about the shape of the surface defect. As illustrated in Fig. 4.13, this is possible 

because the angular distribution of the power radiated at the SH is strongly dependent on 

the shape of the surface defect. Thus, as Fig. 4.13 shows, the angular distribution of the 

power emitted by a cylindrical defect is very different from the angular dependence of the 

power emitted by a hemispherical defect. Consequently, measuring the angular distribution 

of the power generated at the SH could represent a powerful surface probing tool. 

 

 

 

FIG. 4.13: Angular distribution of the power emitted at the SH. The panels 

correspond to a cylindrical (left) and hemispherical (right) surface defect, 

the wavelength of the incident SPP being  = 1012 nm. The defect 

parameters are: (a), R = 200 nm and h = −20 nm; (b), R = 600 nm and h = 

−50 nm. 
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In addition to the angular dependence of the power emitted at the SH, the spatial 

distribution of the near-field at the SH can provide valuable information about the 

properties of the surface defect. In particular, the spatial distribution of the near-field at the 

SH depends on the shape of the surface defect and the nature of the surface (through the 

surface susceptibility) and thus near-field surface optical microscopy measurements at the 

SH can be used as an effective tool to study the properties of surface defects. [13]. As an 

example, we show in Fig. 4.14 the spatial distribution of the near-field at the SH, 

corresponding to a Gaussian defect. Our calculations show clearly that such field 

distributions are strongly dependent on the shape of the surface defect and the wavelength 

of the incident SPP wave, a property explained by the fact that the relative strength of the 

induced multipoles that determine this field distribution is strongly dependent on these 

parameters. Arguments similar to those just presented in connection to the angular 

distribution of the power radiated at the SH allow us to conclude that the near-field at the 

SH can be used to retrieve additional information, which is not contained in the field 

distribution at the FF. 
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FIG. 4.14: Electric field distribution corresponding to the scattering of a 

SPP off a Gaussian surface defect with R = 200 nm and h = −50 nm. The 

wavelength of the incident SPP is  = 328 nm. 

 

 

4.4. CONCLUSIONS 

 

In conclusion, we have presented a comprehensive analysis of the physical 

characteristics of the SH generated as a result of the scattering of SPP waves off surface 

metallic nanodefects with radial symmetry. Our analysis, based on a set of coupled reduced 

Rayleigh equations, can be applied to surface nanodefects of arbitrary shape; in particular, 

we have investigated surface nanodefects with three different geometries that are important 

in practical applications, namely, Gaussian, hemispherical, and cylindrical nanodefects. 

Moreover, our study shows that the physical characteristics of the scattering process at the 
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FF, namely the distribution of the electromagnetic field and the spatial pattern of the 

emitted radiation, is markedly different from those of the scattering process at the SH, and 

therefore the surface generated SH could prove to be an invaluable non-invasive diagnosis 

tool in surface spectroscopy. In particular, we have demonstrated that the structure of the 

generated electromagnetic field at the SH is strongly dependent on the shape of the surface 

nanodefects and on the physical properties of the surface, through the surface profile 

function 𝜁(𝑥∥) and the surface susceptibility 𝜒𝑠
(2)

 , respectively. As a result, our study 

proves that the formalism introduced here has applicability to surface imaging or to surface 

physical chemistry, e.g, to measurements of physical quantities related to molecular 

adsorbates at interfaces or on metallic surfaces. 

It is important to note, also, that our formalism can be easily extended to the case of 

more than one surface nanodefect or to a periodic distribution of such surface nanodefects. 

Thus, by extending our theoretical work to these more complex nanostructures would allow 

one not only to reach a deeper understanding of linear and nonlinear light interaction with 

nanopatterned metallic structure, but also provide us with a powerful tool to design and 

investigate new plasmonic nanodevices, such as light concentrators in deep-sub-

wavelength spatial domains or optical nanoantennae. 

 

4.5 APPENDIX:  

4.5.1 DIFFERENTIAL AND TOTAL SCATTERING CROSS SECTIONS AT 

THE FUNDAMENTAL FREQUENCY 

The field distribution described by the Eq. (4.1) contains two components that are 

of particular interest for an experimental investigation of scattering of SPPs by metallic 
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nanostructures, namely the far field component radiated as an outward propagating 

spherical wave, in the region 𝑥3  ≥  𝜁(𝑥∥), and a cylindrical SPP wave, which represents 

the far field component of the scattered SPP. The far field distribution of the scattered light 

can be derived from Eq. (4.1), by using the stationary phase approximation, [45], and is 

given by the expression 

 

𝐸𝑟𝑎𝑑
↑ (𝑥; 𝜔) = −

𝑖𝜔

2𝜋𝑐
cos(𝜃𝑥)

𝑒
𝑖𝜔
𝑐
𝑥

𝑥
[𝑒̂𝑝𝐴𝑝 (

𝑥∥𝜔

𝑐
sin(𝜃𝑥))

+ 𝑒̂𝑠𝐴𝑠 (
𝑥∥𝜔

𝑐
sin(𝜃𝑥))] 

4.20 

whereas the far field scattered SPP can be written as [43]: 

 

𝐸𝑟𝑎𝑑
↑ (𝑥;𝜔) = −

𝑐𝛼(𝜔)

𝜔

𝑒𝑖𝑘∥
(𝜔)𝑥∥−𝛼0(𝜔)𝑥3+

𝑖𝜋
4

√2𝜋𝑘∥(𝜔)𝑥∥
 

(𝑖𝑥∥𝛼0(𝜔) − 𝑥3𝑘∥(𝜔))

𝜖(𝜔) + 1
𝑎𝑝(𝑥∥𝑘∥(𝜔)) 

4.21 

The unit vectors 𝑒̂𝑠  =  (− sin( 𝜙𝑥) , cos ( 𝜙𝑥), 0) and 𝑒̂𝑝  =

 (cos θx cos ϕx, cos θx sin𝜙𝑥 , − sin 𝜃𝑥) in define the polarization direction of s- and p-

polarized waves, respectively, whereas 𝑥⃗  =  𝑥(sin 𝜃𝑥   cos𝜙𝑥  , sin 𝜃𝑥  sin𝜙𝑥  , cos 𝜃𝑥 ) is 

a vector that defines the direction of observation. Note that the expression (A.2) is equal to 

2π times the residue of the integrand in Eq. (1) at the pole 𝑞∥ = 𝑘∥(𝜔). The Eqs. (A.1) and 

(A.2) can be used to calculate the amount of energy scattered into radiative modes (light) 

and surface plasmon waves. Thus, the power density radiated in the solid angle defined by 

the angles 𝜃𝑥 and 𝜙𝑥 is 
𝑑𝑃𝑟𝑎𝑑(𝜃𝑥,𝜙𝑥)

𝑑Ω
= 𝑥2𝑅𝑒{𝑆𝑟,𝑟𝑎𝑑(𝐱;𝜔)}, whereas the power density 
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emitted by the surface plasmon wave, in a direction defined by the angle 𝜙𝑥, is 
𝑑𝑃𝑠𝑃𝑃(,𝜙𝑥)

𝑑𝜙𝑥
=

𝑥∥𝑅𝑒{𝑆𝑟,𝑆𝑃𝑃(𝐱;𝜔)}. Here, 𝑆𝑟,𝑆𝑃𝑃(𝐱;𝜔) is the radial component of the Poynting vector. 

Moreover, the power density associated to the incident surface plasmon wave, per unit 

length, can be written as 
𝑑𝑃𝑖𝑛𝑐

𝑑𝑥2
=  𝑅𝑒 {𝑆1,𝑖𝑛𝑐(𝐱;  𝜔)}, where the component 𝑆1,𝑖𝑛𝑐(𝐱;  𝜔) 

corresponds to the first term in the r.h.s. of Eq. (4.1). Furthermore, these power densities 

can be used to define two deferential scattering cross-sections, 𝜎𝑟𝑎𝑑(𝜃𝑥, 𝜙𝑥) and 𝜎𝑆𝑃𝑃( 𝜙𝑥), 

which characterize the scattering of the incident surface plasmon wave into radiation and 

outgoing surface plasmons, respectively: 

 

Σ𝑟𝑎𝑑(𝜃𝑥, 𝜙𝑥) ≡
𝑑𝜎𝑟𝑎𝑑
𝑑Ω

=
1

𝑃𝑖𝑛𝑐

𝑑𝑃𝑟𝑎𝑑(𝜃𝑥, 𝜙𝑥)

𝑑Ω
 4.22a 

 

Σ𝑆𝑃𝑃(𝜙𝑥) ≡
𝑑𝜎𝑆𝑃𝑃
𝑑𝜙𝑥

=
1

𝑃𝑖𝑛𝑐

𝑑𝑃𝑆𝑃𝑃(𝜙𝑥)

𝑑𝜙𝑥
 4.22b 

Finally, from the differential scattering cross-sections we can determine the total scattering 

cross-sections, quantities that are given by the following expressions: 

 

𝜎𝑟𝑎𝑑 =
1

𝑃𝑖𝑛𝑐
∫ 𝑑𝜃𝑥 sin 𝜃𝑥∫ 𝑑𝜙𝑥𝑥

2𝑅𝑒{𝑆𝑟,𝑟𝑎𝑑(𝐱;𝜔)}
𝜋

−𝜋

𝜋
2

0

 4.23a 

 

𝜎𝑆𝑃𝑃 =
1

𝑃𝑖𝑛𝑐
∫ 𝑑𝑥3∫ 𝑑𝜙𝑥𝑥∥𝑅𝑒{𝑆𝑟,𝑆𝑃𝑃(𝐱;𝜔)}

𝜋

−𝜋

∞

0

 4.23b 

Here, the incident power 𝑃𝑖𝑛𝑐 can be written as 

 

𝑃𝑖𝑛𝑐 = ∫𝑑𝑥2

𝐿
2

−
𝐿
2

∫ 𝑑𝑥3𝑅𝑒{𝑆1,𝑖𝑛𝑐(𝐱, 𝜔)}
∞

0

 4.24 
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4.5.2 BORN APPROXIMATION 

           A big challenge for simulations is to verify the correctness of numerical codes. In 

order to do this, we use Born Approximation for the lower frequency range to get a better 

understanding of our results as well as to verify our code. 

           Born Approximation is an analytical approach for analyzing scattering properties in 

which the higher orders of interactions are neglected.   
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Chapter 5 

Future Studies 

 

     There are several clear central directions for interesting future work after this thesis. 

As we have discussed, this thesis yielded an analytical approach for understanding the 

scattering properties of SPP by metallic nanostructures. We were still able to do the 

simulations for 1D Gaussian structures as well as 2D circularly symmetric 

nanostructures. Finally, this approach is a general approach and is easy applicable to 

different systems. These more complex systems are as follows: 

 

1. Scattering of SPP by grating metallic structures  

        A grating structure is a simple extension of the 1D Gaussian structure we have 

discussed in Chapter 3. The approach to solve this problem should start from Eq. (3.3) 

and change the function 𝑓(𝑞). All the other equations should hold. In this way, we can 

simulated the interaction of SPP’s with gratings, which are typical coupling devices for 

optical SPP excitation. 

 

2. Scattering of SPP by multiple circularly symmetric nanodefects  

          An important goal of this project is to simulate random distributions of defects, 

adsorbates, or adsorbates on planar surfaces.  A first-order approximation for such 

multiple nanodefects can come from the simple superposition of the electric field of 
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single defects. However, for more accuracy, a better approach should start from Eq. (4.8) 

and use the exact form for the surface function.  The chief difficulty in these calculations 

is the loss of a simple single spatial origin for the nanostudies. 

 

3. Design of optical devices  

      Once we could solve the multiply defects problem, an application should be the 

prediction of surface scattering phenomena thus to design new optical devices for the 

control of optical-like surface energy flow.  

 

4. Scattering of SPP by chiral metallic nanostructures.  

       If the surface defect has chirality, it is expected that we could generate 

nanoflashlights with angular momentum. This is a very interesting direction, which can 

be used for chiral molecule probing. 
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2. L. Cao, N. C. Panoiu, R. Bhat, R. M. Osgood Jr., “Surface Second-Harmonic 

Generation from Scattering of Surface Plasmon Polaritons from Radially Symmetric 

Nanostructures” (under review for Phy. Rev.B) 

 

A.2 Conference presentations: 

1. L. Cao, N. C. Panoiu, S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck and R. M. 

Osgood, “Second Harmonic Generation by Scattering of Surface Plasmon Polaritons 

by Metallic Nanodefects”, Materials Research Society Fall 2005 meeting, GG3.5. 

2. L. Cao, N. C. Panoiu, R. M. Osgood, “Second Harmonic Generation of Surface 

Plasmon Polaritons Scattered by Metallic Nanostructures”, Integrated Photonics 

Research and Applications (IPRA) 2006 paper: IMC2 



 

 118 

3. X. Chen, L. Cao, N.C. Panoiu, R.M. Osgood, R. Scarmozzino, “Numerical Studies 

of Dispersion Properties of SOI Photonic Nanowires”,. 3rd IEEE International 

Conference on Group IV Photonics, 2006, page 155-157, 9274207 

4.  L. Cao,  N. C. Panoiu,  R. M. Osgood , “Surface Second-Harmonic Generation 

from Scattering of Surface Plasmon Polaritons from Circularly Symmetric Metallic 

Nanostructures”, Frontiers in Optics (FiO) 2008 paper: FThC2 

 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
119 

 



 
120 

 

 


