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ABSTRACT

Scattering of Surface Plasmon Polaritons by
Metallic Nanostructures

Lina Cao

Surface Plasmons (SPs) which are coherent oscillations of conduction electrons on a
metal surface excited by electromagnetic radiation at a metal-dielectric interface have
variety of applications in chemistry, optical devices, spectroscopy and bio/chemi sensors.
Plasmon scattering is a growing area of importance for nonconventional meta-materials,
condensed matter physics, and surface chemistry, thus it is very interested to study. A
simulation tool for imaging scattering properties allows ab-initial design for plasmon
devices as well as gives better physical insight for experiments. Furthermore, due to the
high electric field density associated with SPs, Second-Harmonic Generation (SHG) is

expected to be enhanced thus gives us extra physical insights.

In this thesis, a simulation tool is developed to calculate the scattering properties of
Surface Plamon Polaritons (SHG) at both fundamental frequency (FF) and second-
harmonic (SH). We present a comprehensive study of linear and nonlinear effects observed
in the scattering process of surface plasmon polaritons (SPP) from localized surface
deformations at a metal/dielectric interface. The electromagnetic field at the fundamental
frequency (FF) is first determined by solving the corresponding set of reduced Rayleigh
equations. The complete solution of these equations then allows us to investigate both the

complex structure of the scattered electromagnetic field as well as the subtle mechanisms



by which incident SPPs are scattered into radiative modes (light) and outgoing SPP waves.
Furthermore, the electromagnetic field at the FF is used to determine the nonlinear surface
polarization at the second harmonic (SH) and subsequently both the electromagnetic field
distribution as well as the amount of light generated at the SH. In this thesis, we will
discuss our results including the size dependence of the scattering into both surface and
radiated waves for several defect shapes as well as the computational issues and the

physical phenomena of the scattering process.

This thesis is organized as follows. In chapter 1, I will give a brief introduction of SPs
as well as their various applications. In chapter 2, the background theories as well as
numerical techniques are discussed. Chapter 3 gives us a detailed description of surface
SHG from scattering of SPPs by 1D Gaussian metallic nanostructures. Consequently, in
chapter 4, the theory is extended to 2D circularly symmetric metallic nanostructures, which
include Gaussian, Sphere-cap and Cylinder. Finally in Chapter 5, the some future direction

of this thesis work is described.
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Chapter 1

INTRODUCTION

This thesis is concerned with understanding the propagation of plasmon waves at the
interface between a metal surface and a dielectric over-layer or vacuum. Such waves are of
interest in many areas of physical chemistry and thus examining their interaction at
surfaces is appropriate for advancing our understanding of elementary excitations for
chemistry. In this chapter we will introduce the reader to the physical origins of the
plasmonics followed by several sub-areas of interest for chemistry. We will also examine
recent reports, which describe observations of plasmonic-wave scattering at surfaces; these
reports have been enabled by impressive advances in nanoscale imaging tools. Finally we

will briefly outline other related theoretical work in this area.



1.1. PHYSICAL ORIGIN OF PLASMONS

Surface Plasmons (SPs) are coherent oscillations of conduction electrons on a metal
surface excited by electromagnetic radiation at a metal-dielectric interface. [1]. A plasmon
is a coupling of an electro-magnetic wave with the oscillations of the valence electrons
around the ion-cores in a conducting solid, typically metals or, in the infrared, doped
semiconductors. The growing field of research of on such light-metal interactions is known
as ‘plasmonics’. [2-3]. Two types of Surface Plasmon Resonances (SPRs) are widely used
in surface-based chemical sensing, optical devices and photonic circuits. [4-18]. There are
propagating surface plasmons which are known as surface plasmon polaritons (SPP) and
non-propagating surface plasmons which are called localized surface plasmons (LSP).

Detailed descriptions of these surface plasmons are listed here.



1.1.1 Surface plasmon polartions

Surface-plasmon polaritons (SPPs) are evanescent electromagnetic waves coupled
to oscillations of the electron plasma in the metal that propagate along a metal-dielectric
interface. A propagating surface plasmon wave is sketched schematically in Fig. 1.1. SPPs
oscillate at optical frequencies. They are localized by a material interface with a positive

dielectric constant (a dielectric) above, and a negative dielectric constant (metal) below.

Dielectric

OO

+++ - - - +++ - - - X
N <’ o €

Metal

Figure 1.1 The charges and the electromagnetic field of SPs propagating on the

surface in x direction are shown schematically. (ref. [4])

At wave-vectors much smaller than the metal Fermi wave-vector, these modes can be
described by using Maxwell’s equations. For these low wave-vectors, SPPs are essentially
transverse in character with only a small longitudinal component; thus longitudinal

component does increase in relative magnitude as the wave-increases. The transverse fields



polarize the dielectric along the driving field. In the metal, the polarization is opposite to
the driving field due to the negative dielectric constant. This then creates equal and
opposite electric displacements (D), in phase across the interface. These opposing electric
displacements confine the current to this interface, generating the SPP collective electron
oscillations.

Starting from Maxwell’s Equations, we can derive the characteristics of this simple
plasmonic system. The behavior in the z direction decays exponentially away from the
interface. This derivation of the wave equation tells us that the exponential decay constant

in a metallic medium is
ON 2
k? = k2 — ¢ (?) 1.1

The retarded dispersion relation for the plane surface of a semi-infinite metal with the
dielectric function €; = €, + ie;’, adjacent to a medium e, as air or vacuum can be written

as:
Dy=-2-"2=9 1.2

Since the wave vector k, is continuous across the interface [1], a simple algebra
manipulation may then be used to solve for k., finally generating the dispersion relation for
these simple surface plasmon modes. The dispersion relation from equation (1.2) can be

written as:

kxz— _— 1.3



This wave-vector is no longer a simple linear function of permittivity as in standard
dielectrics. Because we have the sum of dielectrics of opposite sign in the denominator,
very large wave-vectors are possible. As we will show below the metallic dielectric
constant, €;, has a substantial dependence on frequency. This dependence causes the SP
wave-vectors to be very large at frequencies close to the resonant surface plasmon
frequency. In particular, propagation of plasmon polaritons follows a dispersion relation,
such as that seen for propagation of light in a periodic medium or as seen in the case of
phonons in a crystal. The dispersion relation for surface plasmons, which is shown in

Fig. 1.2, approaches the light line y/e,w/C at small k., but remains larger than \/e,w/C.

9 photon 7/ .
@ / w=ckie”
=4 /!
i S
. / surface plasmon
Ogp 7
/ T
/ surface polariton

Wavevector k,

Figure 1.2 Dispersion of surface plasmon polaritons on a metal surface.



At larger k, or when €; — €,, the value of wg, approaches
Wsp = Wy /1 + € 1.4

2
where w, is the plasma frequency. For a free electron gas, w, = /4”% with n the bulk

electron density. With the increasing e,, the value of ws, is reduced. At the interface of
metal/air, €, = 1, thus, ws, = w,/V2.

Note that frequency is plotted in units of the plasma frequency (w,) and the
wavevector in units of w,/c. In the figure we plot the ‘so-called” light line as a dashed
line; it gives the dispersion relation of an optical field propagating in the dielectric medium
along the same direction as the surface plasmon.

The reason surface plasmon modes can achieve anomalously high wave-vectors at
visible frequencies (“visible frequencies at X-ray wavelengths™) is because they involve
electrons rather than free-space optical fields. This simplified dispersion curve shows two
important characteristics of surface plasmons. First the dispersion relation always lies at
higher wave-vectors than the light line. Hence due to the difference in wave-vector, the
plasmon field cannot efficiently couple to radiating modes. Conversely, free-space optical
fields cannot directly stimulate surface plasmons unless momentum matching is somehow
provided, using, say, a grating or prism. This behavior can be shown to be a consequence of
the exponential decay normal to the surface, which requires an imaginary wave-vector in
this direction. The absolute square of this positive quantity then adds to the light-line wave-
vector to determine k?, hence k must always be greater than that of the free space field.

A second feature of this dispersion relation is seen close to the frequency of 0.7 wp.

At this point the wave-vector grows to be much larger than the light line. This large wave-



vector originates from the collective electron oscillations with sub-Angstrom wavelengths,

which result in very large optical wave-vectors.

1.1.2 Localized Surface Plasmons

In addition to surface plasmons on a plane surface solid-state plasma oscillations
can occur; in other geometries such as metallic particles or voids of different topologies,
localized surface plasma excitations can be considered. Such surface plasma excitations in
bounded geometries are called localized surface plasmons (LSPs). Fig. 1.3 illustrates the

localized surface plasmon polaritons.

Electric field

Electron cloud

Figure 1.3 Schematic diagram illustration of localized surface plasmon

polaritons. (ref. [4])

The LSP frequency can be determined in a non-retarded (electrostatic) approximation by

solving the classical Dirichlet problem. This approximation is valid when the
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characteristic length of the object is smaller than incident wavelength. The LSP has a
different character from the SPP that is discussed above. As illustrated, the SPP has the
dispersion relation wy, = w(ksp,) given by equation (1.3) and is a propagating surface
mode. In contrast, LSPs are confined within discrete metal objects of limited spatial
extend. They are characterized by discrete, complex frequencies which depend on the size
and shape of the object, to which the surface plasmon is confined. LSPs can be resonantly
excited with light of appropriate frequency (and polarization) irrespective of the excitation
light wavevector. Therefore, LSPs also effectively decay with light emission. In contrast,
the SPP mode can be excited only if both the frequency and wavevector of the excitation
light match the SPP frequency and wavevector.

LSPs are confined to particles, and are due to the resonant build up of the electron
oscillations within the metallic sphere, a significant electromagnetic field enhancement at
small metallic particles is expected. This effect contributes to numerous phenomena such as
light emission from STM tunnel junctions, enhanced scattering, surface enhanced Raman

scattering (SERS) and second-harmonic generation (SHG).

1.1.3 Drude model

The plasmon properties are a result of the dispersion of the constituent materials.
Thus it is essential to have a model for their relative permittivities. A common model
which is used to treat the dispersion relations of a typical material system is the Drude
model which is based on the assumption that metals have free valence electrons. In Drude
model, it is assumed that the interactions between collisions are neglected as well as

collisions are instantaneous. It can provide a simple approximation for a metal. If we



assume a lossless Drude metal, with plasma frequency, mp, by solving Newton’s equations
for the electron motion, we can obtain the example dispersion relation for plasmons shown

in Fig 1.3. The dispersion relation follows this:

e=1-—-2 15

Where € is the dielectric constant of the metal.

1.2 APPLICATIONS OF PLASMONS

One of the most important roles that plasmons have played is in the area of surface
spectroscopy, surface reactions and surface structural probing.  Several extremely
important examples of these roles have been described in the literature and here we try only

to give a brief summary of applications, which are applicable to chemical science.

1.2.1.Enhancing chemical reactions on surfaces

Chemical processes on bare, or uncapped, noble-metal nanoclusters have recently
become a subject of renewed interest. This interest stems from several recent studies that
have indicated the potential importance of nanoclusters as effective heterogeneous
catalysts, e.g. for olefin oxidation, and the fact that size-dependent reactivity has been
displayed in these experiments. This work has also given new impetus to the synthesis of
high-quality low-dispersion nanosystems as well as the development of new nanoprobes to
examine these systems. Other metallic nanocatalyst systems, include those prepared

electrochemically, etc. The enhanced reactivity observed in some of these nanostructures,



particularly Au, has been the subject of significant discussion and interest and has been
variously attributed to quantum-size dependence, surface structure, or defects and has led to

related work on, for example roughened Au surface chemistry.

Fig. 1.4: Structure resonantly grown by plasmonically driven UV photochemistry
of Cd from (CH3)Cd at 254nm. The spontaneous ordered growth is a result of a

feedback mechanism with gain. ref. [5]

Similarly photochemistry on these same metallic nanoparticles is also an area of
growing interest because enhanced-reaction chemistry can then also be derived from near-
field enhancement of an incident optical beam due to local-plasmon excitation or if
mounted on a dielectric substrate due to surface waves and their scattering. While work in
this area has recently grown rapidly, the original work in this area was reported by Chen
and Osgood using Cd nanoparticles of ~200A on carbon grids and relied on UV

photoreactions in a low-pressure ambient of dimethyl cadmium. [5]. In this case, TEM

10



microscopy and polarization effects were used to show local field enhancement including
growth controlled and “feedback” via local plasmon resonances determined by the particle
geometry. This feedback effect was seen for both spontaneous particle growth on SiO-
surfaces (see Fig. 1.4) and for intentional growth of diffraction gratings. More recently the
Brus Group has reported plasmon-assisted growth by for local plasmon-enhanced CVD and
electrochemistry on nano-particles. [6]. Finally, there has been a resurgence of interest in
the chemical dynamics occurring at the surfaces of metal nanoparticles or clusters. One of
these by the Wolf Group in Germany showed clearly that it was possible to couple into a
plasmon resonance of a particle using pulsed excitation and excitation yielded desorbed
molecules (water). [7].

In addition, photodynamics experiments on nanoscale silver spheres have also been
recently reported for both desorbed molecular species and metal photoelectrons. With
regard to the desorption of molecular fragments, Wolf and coworkers [7] have reported a
femtosecond study of water desorption form nanoclusters of silver on an oxide support. In
this case, excitation was close to the plasmon frequency of the silver particle, that is, at
visible wavelengths. Desorption was attributed to coupling to phonons (or simple laser

heating) due to plasmon relaxation.

1.2.2 Plasmons for control of surface energy flow

There have been many proposals for using plasmonic structures to enable a new
generation of ultrasmall integrated optical devices as well structures to improve solar-
energy collection or light-emitting diode performance. Most of these applications are far
away from chemical physics and thus will not be described here. However, concepts
embodied in plasmonic photonic devices structures carry the essence of ideas, which can

11



have a more chemical or photochemical nature to them. In particular, it is possible to use
plasmonic structures to control the flow of surface energy in an interfacial region. As one
example, of this we show the application of an array of metal spheres to form a type of
plasmonic lens to reflect and redirect plasmonic energy in Fig. 1.5. [8]. The paper showed
that incident SPP is focused by the SPP condensing lens. When the focused SPP was
incident into the nanodot coupler, its transmission length through the nanodot coupler was
confirmed to be three times longer than that of a metallic core waveguide owing to the
efficient near-field coupling between the localized surface plasmon of neighboring
nanoparticles. Furthermore, the transmission length through a waveguide zigzag-shaped
nanodot coupler was as long as that through a linear one; again showing the low loss of

plasmonic strengths over short distances.

T "
— \A Nanodot
"88ay, couple
-~ vyl
i
Manophotonic
| device

Fig. 1.5. Sketch of Nanodot coupler and SPP condenser. Ref. [8]

1.2.3 Surface Plasmons for surface probing

Probing the chemical and structiural state of surfaces is of continuing interest for

catalysis; such probing can be done either using optical excitation of SPs or via direct

12



launching of SP’s using an electron source. Prior to recent experiments, there had been no
or very limited observations of the propagation of plasmons on surfaces. Most experimental
observations of surface plasmons were based on the observations of energy loss
spectroscopy, which showed an energy loss peak at integral values of wsp, Or via optical

resonances in the optical spectroscopy of light transmission through thin films.

Of course it is and was possible to carry out static imaging of surfaces using
photographic film or via local photochemistry. These showed clearly the periodic nature
expected for scattering of plasmonic waves. However, time-dependent phenomena were
not observed. More recently advanced ultrafast laser excitation in conjunction with
photoemission electron spectroscopy has been used to probe and image plasmons in real
time. For example, Atsushi Kubo and his co-workers have demonstrated the imaging and

quantum control of SP dynamics in a nanostructured silver film.

Fig 1.6. PEEM micrographs of the identical region on the silver grating

obtained with (a) 254-nm line of a Hg lamp (1PP-PEEM), (b) p-polarized

400-nm femtosecond laser excitation (2PP-PEEM). Ref. [9].
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By inducing and imaging the nonlinear two-photon photoemission from the sample with a
pair of identical 10-fs laser pulses while scanning the pulse delay, they recorded a movie of
SP fields at a rate of 330-attoseconds/frame. This development advances the time-
resolution of electron microscopy for imaging the fundamental excitations in solids by
more than twelve orders of magnitude. The dynamical imaging of surface plasmons in the
suboptical cycle regime adds a new dimension to the study of plasmonic nanostructures.
Surface probing can be enhanced by the nonlinear wavelength contrast of second harmonic
generation. Thus in this case we hope to see scattering via conversion of the incident
plasmon wave into second harmonic radiation. In particular, second-harmonic generation
is a nonlinear optical process, in which photons interacting with a nonlinear material are
effectively "combined" to form new photons with twice the energy, and therefore twice the
frequency and half the wavelength of the initial photons. Within the electric dipole
approximation, even-order harmonic generation is forbidden in the bulk of a
centrosymmetric medium. The inversion symmetry, however, is broken at the surface of
the medium, thus making even-order processes allowed in this region. Even-order
nonlinear processes, such as second-harmonic generation (SHG), consequently exhibit a
high degree of surface sensitivity for centrosymmetric media. [8,9]. As a result, second-
harmonic (SH) fields, whether enhanced by plasmonic effects or not, have become an
important surface diagnostic in surface science or colloidal chemistry. Surface SHG has
been used to study a diverse set of surface phenomena and applications, e.g., the symmetry

properties of surfaces, the nature of adsorbates at surfaces or interfaces, or noninvasive

14



probing of buried interfaces. [10]. Due to the highly enhanced field caused by surface

plasmons, SHG is expected to be highly enhanced thus are very interested to study.

1.3 OVERVIEW

Using the above material as background, in this thesis we will be concerned with
the scattering of plasmons from surface defects. Thus in this case, we assume that a
plasmon wave is somehow excited and we examine how this wave scatters off of the
defects. Further and most important we focus on the fact that such a plasmon wave may
drive a nonlinear response in its medium. Our approach to solving this problem will be to
use scattering theory to derive near analytic expressions; more details will provided in the
next chapter on theoretical methods.

The general approach to solving the linear scattering problem has been previously
examined by Maradudin and his collaborators in a series of seminal papers. In brief these
results have shown provided the general outline of the theoretical method and provided
initial theoretical insight. These authors have shown for example that scattering at the
fundamental results in two general phenomena: scattering in plane of the SPP and
scattering out of plane to yield radiated light. The former process is strongly resonant, the
latter is less resonant but yield a highly directional surface to vacuum light beam — a
nanoflashlight! These approaches used by these authors’ have guided our work in this

thesis.
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Chapter 2

BACKGROUND THEORY AND RELEVANT NUMERICAL

TECHNIQUES

In this chapter we discuss the background theory for the research work in this thesis.
Our discussion will include the main theoretical scattering equations following the theory
description of Rayleigh scattering process by the used of impedance boundary conditions,
as well as a short overview of the computational issues involved. Basic formulae of
Second Harmonic Generation from the scattering of SPs are also included. In addition, to
provide perspective, we will also describe a widely used numerical method, Finite
Difference Time Domain (FDTD), which can be used to tackle the problems such as those
discussed here.

This chapter is organized as follows. In Section 2.1, we will discuss the main
theoretical equations we used as well as the background theories. In Section 2.2, the
numerical approaches will be discussed as well as the challenges and our problem-solving
methods. In Section 3, we will discuss Finite Difference Time Domain method, which is

also widely used to simulate nano-plasmonics.
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2.1 SCATTERING THEORY FOR SURFACE INTERACTIONS

Scattering of Surface Plasmon Polaritons is an interesting topic which has variety of
applications as discussed in chapter 1. Thus, construction of a simulation tool to understand
the scattering process is essential to give physical insight to experiments and to design ab
initio experiments. In this thesis, we seek to establish a model which enables us to calculate
the scattering process of SPP by metallic nanostructures at both fundamental frequency and
Second Harmonic.

The sketch of our methodology is illustrated in Figure 2.1. To calculate the Second
Harmonic Generation (SHG) from scattering of Surface Plasmon Polaritons (SPPs), two
basic steps which correspond to scattering at fundamental frequency and second harmonic
respectively are needed. For the linear scattering process, or the first step, we used the
reduced Rayleigh-equation method, in which the electric field after the scattering is
characterized by the sum over the incident electric field and the scattered electric field at
different directions which are determined by wave-vectors. An impedance boundary
condition is then incorporated to set up an equation, which is used for solving the scattering
amplitude associated with different wave-vectors. All information about the scattered
waves is well-defined by their corresponding wave-vectors, corresponding to different
electronic modes (photons or SPP) at different out-going directions. The scattering
amplitudes are then solved numerically in this thesis. By substituting scattering amplitudes
back into the initial electric field distribution equation, we can get the electric-field
distribution after scattering all over the space, which definitely include the electric field at

the metal surface.
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Reduced Rayleigh-equation approach

Linear scatterin .
; ne E(X) = Incident SPP + Scattered Waves
Impedance Boundary Condition
1 i Solve integral equation numerically
FF field -l

Scattering Amplitudes

distribution

1 \ Second-order susceptibility

Polarization at Second Harmonic

Second-Harmonic v
generation

Multipole moments

Fig. 2.1 Illustration of scattering theory for surface plasmon polaritons. The left side

shows two basic steps while the right side gives the method at each step respectively.

For the second step, which is calculation for second-harmonic generation (SHG), as
shown in figure 2.1, the electric field at FF at the surface is required. In this case, the
second-order susceptibility is inserted into the electric-field distribution of FF to get
polarization at the second-harmonic frequency for different spatial points, followed by an
expansion method to obtain different orders of multipole moments. A multipole-moment
expansion method can only be used when the object is very small (ka <« 1). In this thesis,
the object is chosen to be small compared to the incident wavelength so that by keeping the
multi-moments up to second order, which include electric-dipole moment, magnetic-dipole

moment and electric-quadrupole moment, we can get accurate results. These three
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moments lead to the radiation at the second-harmonic frequency. Detailed explain of this

methodology is described in the following section.

2.1.1 Linear SPP scattering

One can solve linear SPP scattering starting from Maxwell’s equations, which is in
fact the methodology used by the more completely FDTD algorithm (see below). In this
thesis, an impedance boundary condition incorporated with Rayleigh scattering approach is
next used. The use of impedance boundary condition [2] in theoretical studies of optical
interactions at rough metal/vacuum interfaces simplifies such studies by eliminating the
need for determining the electromagnetic field in the metal [1]. Consequently, only the
electromagnetic field in the vacuum region is dealt with explicitly. For a metal/vacuum
interface defined by the function x; = (x4, x,) in the case of two-dimensional or x; =
&(x4) in the case of one-dimensional surface, while the region x5 > &(x4, x,) is vacuum
and x3; < &(xq1,x,) is metal, the usual Maxwell boundary conditions satisfied by the
tangential components of the magnetic and electric fields at the surface can be replaced by
local impedance boundary conditions on the planar surface x; = &(x4, x,) of the form for

one-dimensional case:

d d
(¢G5 HA G sl =t
21
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where the time dependence of the form e =t has been suppressed. Thus, this form of the
impedance boundary condition is satisfied on the rough surface x; = &(x,, x,), In the case

of a deterministic surface profile function ¢ (x4, x;), the impedance function K (x;|w) can
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be expanded in powers of the ratio of the optical skin depth of the metal at the frequency w.

Cc

dlw) = (Z) (—e)~Y2, to the radius of curvature of the surface at each point. If x; =

& (x4, x,) is a periodic function of x4, as in the case of a classical grating, a matrix equation
for the Fourier coefficients of K, that is valid to all orders in d(w), is obtained.

An alternative approach to the use of an impedance boundary condition is to satisfy
it at the planar metal/vacuum interface x; = 0, and the effects of the corrugations of the
real surface are taken into account through the coordinate dependence of the surface

impedance. Following this approach, the impedance boundary condition is written as

HJ (1, X310) | (xy = (0))
2.2

= exp(ik(w)x,) P(x1|a))H2T(x1,x3|a))|(x3=0)
for the p and s-polarized fields, respectively for one dimensional case. Here, H and E are
the single, nonzero components of the total magnetic and electric fields in the vacuum
region above the metal surface, respectively. The attractiveness of this boundary condition
is due to the fact that the Rayleigh expression for the nonzero component of the magnetic
field in the vacuum region x; > 0, H,, is exact.
The derivation of the boundary condition (2.2) for p-polarization starts by introducing

a generalized, nonlocal, form of it [1]

6_x3Hg(x1' X3 |(U)|(x3:0)

2.3
=J dxl'P(x1|x1')Hg(x1,x3|a))|(x3:0)

The magnetic field component H, is the sum of an incident wave and scattered waves
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Hg(xlrx3|w)|(x3=0)

—e ikxi—iag(k,w)xs
24

T o) elaxi-iao@a)rs
+| SrRale

where a,(q, w) = ((w?/c?) — q?)/2. By substituting equation 2.4 to equation 2.3, we

obtain the integral equation satisfied by the scattering amplitude R, (q, k)

. “dq .
it (g, )R, (k) — j 2 p(qIpIR, (qlk)

21
25
= iay(q, w)2m8(q — k) + P(qlk)
while P is the Fourier transform of the function P through:
P(x;1x}) = f°° ﬂf‘” 3 eiaxsp(qliye-itt 26
1 _ 2T )_ 2T '

By expressing P as the sum of a contribution P, associated with an ideal metal/vacuum
interface at x; = 0, and a part which describes the effects of the surface roughness, we
introduce the Green’s function

G,(k,w) = le(w) 2.7
pr e(w)ay(k, w) + a(k, ) '

The final expression for P(x; |w) can be achieved and expressed as:

) 1 1-€e(w) 1
1/2

P(x;|w) = _?(—e(a))) c(w) d(w)

2.8

x(1- dz(w)Dz)%f(xl) + 0(52)]

where D = d/dx;, and d(w) is the optical skin depth of the metal at frequency w.
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Similarly, s-polarization component can be solved and is has the expression

1/2 1_ 1-e€e(w)&(xy)
e(w) d(w)

Slw) == (—e()

2.9

+ 0(52)]

2.1.2 Second Harmonic Generation

Nonlinear optical studies can provide substantial information about ambient
surfaces and interfaces. They can determine symmetry properties of the surface,
characterize the nature of adsorbates or defects in the surface layers, and probe monolayers
of molecules that have been applied to the surface. Surface second-harmonic generation
(SHG) is particularly useful for systems with inversion symmetry, as much of the signal
comes from dipolar response of atoms near surfaces and interfaces. The early theoretical
model of surface SHG focused on solving Maxwell’s equations for a reradiated second-
harmonic field that arises from a nonlinear polarization induced by the incident field. In
this way, the polarization is given by PL.(Z) = )(i(jz,zEj(“’)E,E“’), where y® is the material-
dependent nonlinear susceptibility tensor and E@) is the incident linear field with the
frequency w.

A simple classical model serves to illustrate the expected magnitude of the second-
order response. In the presence of an applied harmonic field £, an atom in the material
develops an induced dipole moment p@) = a(w)E®, while a(w) is the atomic

polarizability. For atoms near surfaces or interfaces, £ is also expected to have

25



significant spatial variation. Therefore, the induced atomic dipoles feel a gradient force at

twice the frequency.
FC0) = (p@) V)E® = q(w)(E@.V)E® 2.10

Assuming the force is primarily effective at accelerating a single electron charge per atom,

we can find an induced dipole moment per unit volume,

ne
pRo ~ — a(w)(E@.V)E@®
211
e
= W 47Ta(a))n(E(“’). V)E(w)

where n is the atomic density. In terms of the dielectric function e(m) this can be written

as.
e
PC®) x —— (¢, — D(E@W.V)E@) 2.12

By integrating across the surface layer, one can get

Qw) _ () 7 (w)
P ~———(€,—1E,'E 2.13
§ 16nmw2( m — DE;
Thus the expected second order susceptibility tensor has the expression:

e

¥ @ ~ (€, — 1) 2.14

l6mmw?

When the surface is isotropic, symmetry arguments show that the surface second-order
nonlinear susceptibility tensor )((2) has three families (z direction is normal to the surface):

2 2 2 2
Xeie = Xior = Xye = Xyos

2 2.15
Xezr

2 2
Xexe = Xigy
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2.1.3 Multipole expansion method:

The multipole expansion method is widely used to calculate radiation. It starts with the
electric vector potential and then a Taylor expansion to get different term. For electric
vector potential A(r), In MKS unit system, the relation between A and current density J is

expressed as:

1 eik|x—x'|
A(r) = —j](x') ——a3x’ 2.16
c lx — x|

Inserting the equation |x — x'| = r —n - x’, we can rewrite equation (2.16) to be:

1 —ik)" , ,
40 =2 > S [ 16 e 217

In order to use this method for 2D system, we need to use cylindrical coordinates. Thus,

equation (2.16) is written as:

u ,
A(r) = ﬁ} d?r,

2.18

o eik\/(rJ_—rJ_)2+(z—z')2
J(ry) —dz
oy (ry = T1)2 + (2 = 2)?

’

Notice that equation (2.18) is in SI units. Let’s assume z — z' = {; equation (2.18) can be

rewritten as

‘Lto [e) eikﬂ(TJ_—T'l)2+(2
A(r) = —j d?r, -](r')Z.I dz 2.19
T R A e R
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As we know,

(2)e"™\Bdz = |————=g(zy)e %
jo ! 2?7 TR

2.20

In order to use equation (2.20), we assume f({) = ﬁ = \/(rl — rl')z + {2, thus,

We can get

eik|rl—rj_|

’ 2.21
fk|rl — 71|

Equation (2.21) has the similar form as equation (2.16), thus a similar approach which is

Ary) = 52 Vo j d2r) ()

assuming |rl —rl'| =~ p —n-r,. Substituting this equation back to the expression of

vector potential, we can get

A(ry) = V2w 3;2 S [5G0 (er)”
P 2.22
-d?r,
From electromagnetic theory, as we know, magnetic induction
B=VXxXA 2.23
For radiation system,
EFE=BXn 2.24

After the electric field E and magnetic field B are known from the expression, the radiation
power is given by this equation:

P _Ig ExH 2.25
19 = 7 Relp-n- (EXHY)] -
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dp—lR EXH*
d_Q_E e[p-n-( )]

for 2D and 3D system respectively. In equation (2.25), 6 is the angle defined by cylindrical
coordinates while dQQ = d8d¢ which is defined by spherical coordinates.

Equation (2.25) is used to calculate the angular distribution of the radiated power
while the total radiated power can be gotten by a simple integration.

Equations (2.17) and (2.22) clearly show the vector electric potential’s dependence on
the order of (k - r). Where k - r « 1, we have to keep only the first several orders to get
accurate result. The first term (n = 1) is related to an electric dipole term while the second
term (n = 2) ends up as two terms which are magnetic dipole and electric quadrupole term.
In this thesis, we kept the expansion order to be 2, which means the electric dipole,

magnetic dipole, electric quadrupole moments are kept.

2.2. NUMERICAL APPROACH

After having derived all equations to solve the problem, another major challenge is
our choice of numerical approach. In this dissertation, the numerical approaches, which are
used in both linear and nonlinear frequencies as well as for both 1D and 2D codes, are
described as follows.

Recall the theoretical approaches which is illustrated in Fig. 2.1 we described above,
there are two main steps. For numerical simulations, three main source codes were used,

FF scattering-amplitude solving (step 1), electric field distribution at FF (step 2) and SHG
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(step 3) respectively. Each of these three codes is about 1000 lines long and all of them are

written in C++.

2.2.1 Step 1: solving integral equations for scattering amplitudes

After all the analytical derivations, solving the scattering amplitudes becomes

solving an integral equation which has the form of for 1D:

R(q) =T(q) + f_ dpV (p, DR (p) 2.26

while both function T (q) and function V(p, q) are well defined as an associated analytical
formulation. The function R is what we need to solve. Furthermore, in equation (2.26),

function V(p, q) has singular points at g = +k. In order to solve this equation, we factored

the term q%k — qﬁ out, which means equation (2.26) becomes

R(q) = T(q) + j apM(p,9) q%k _ qﬁ) R(p) 227

We add a delta function on the left hand side of equation (2.27), since f_°°oo dpR(p)6(p —

q) = R(q), the equation we need to solve becomes

(ee)

—T(q) = J_wdp<M(p,q)(L—L)

q—k q+k
2.28

—6(p— q)) R(p)

To solve this equation numerically, the grid points are evenly distributed along p and we
used the numerical method from the book Numerical Recipes in C++ for solving integral
equations with singular kernels. [3].
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The difference between 2D and 1D include that for 2D the integral equation which

we need to solve becomes two coupled integral equations, which has the form

(00]

Ty(q) = f dp(My1 (0, DR (@) + Mz (0, )R, (0))

2.29
@) = | dpMo . DR ) + Moo b, DR )
In order to solve both R, and R,, we = [Tl(CI) —
1 2 generate new vectors T(q) = T,(q) ,R(p) =
2

Mi1(p,q) Mi2(p,q)

R:(p)
[ M,1(p,q) M3;(p,q)

R,(p) ] Equation (2.29)

] , as well as a new matrix M(p,q) =

becomes

~T(q) = j dpM(p, PR(P) 230

This equation is solved by the same approach as we used for solving equation (2.26).
Notice that because of this reorganization of functions, the matrix equation for numerically

solution doubles the dimension, thus leads to a numerical cost of up to 2% = 8 times.

2.2.2 Step 2: getting FF field distribution

Electric (and/or magnetic) field distribution at FF has the expression of sum over
incident SPP field and an integral of scattered field over all the wave-vectors. From
numerical code of step 1, scattering amplitudes are saved in files. Thus the main code for
this step is an integration function. An adaptive numerical integration method [3] is used to

ensure the convergence of code. Since scattering amplitudes are solved numerically, we
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only have a discretized series of values (for our case, around 1500 to 2000 grid points). The
scattering amplitudes’ values where we don’t have are reached by interpolation of the two
neighbor grid points.

As we have mentioned, the integral equation has a singular point at g = k, for the
integration, this point is considered separately by analytical approach, which is the

principal value as illustrated in equation (2.31).

é

o k-2

j dpE(p)R(p)=j  4pE ()R (D)

— 00

231

00 ks
v | aE@R®)+ |, drE@R®)

t2 2
& is chosen to be really small (10~%k) to ensure the correct result, furthermore, we did try
smaller & to check the convergence. Even the singular point is taken out, we still expect a
denser grid points needed when p — k, thus, a decomposition of the first two terms is

incorporated, which is

f_ dpE(p)R(p)
2.32
k—A k-g
= J dpE(p)R(p) + f dpE(p)R(p)
—0 k—A

Similar approach is used for the second term. Here A is chose to be around 10 — 1006 for
numerical calculation. By doing this, the simulation time goes down from 5 hours to

around 1 hour.

32



2.2.3 Step 3: Second Harmonic Generation

Electric-field distribution for the defect region is saved from step 2. The C++ code
for step 3 starts from obtaining the second-order polarization and then the integration for
three multipole moments. A similar integration approach as step 2 is used. Furthermore, the
radiation angular distribution and radiated power are calculated and plotted by Matlab

codes.

2.3 FINITE DIFFERENCE TIME DOMAIN METHOD

The Finite-diference time-domain (FDTD) method is an ab initio solution method
to obtain the full exact solution to Maxwell's equations [6]. It is based upon a spatial
sampling of the unknown electric field ~E and magnetic field ~H within the computational
domain and application of initial conditions on this space grid. The Maxwell's equations at
a particular time step are then solved on the entire space grid, and finally the electric and
magnetic fields are forward-stepped in time. The sampling in space is at sub-wavelength
resolution and is set depending on the smallest spatial feature that needs to be resolved. The
time-step for advancing the solution in time is selected to ensure numerical stability of the
algorithm using the Courant stability criterion. Since FDTD is a generic, non-system-
dependent numerical technique, it can be applied to a wide variety of problems without
changing the underlying simulation engine. Moreover, since vector field boundary
conditions are rigorously enforced at all material interfaces, as nonlinearity, gain /
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absorbtion, and dispersion can be naturally incorporated into the algorithm. Furthermore,
due to FDTD's ab initio nature, accurate field solutions can be obtained with an accuracy

determined primarily by the grid resolution.

2.3.1 Maxwell's equations in a material medium

In vacuum, E(r,t)and H(r,t) can collectively predict complete electromagnetic
wave behavior. However, in a material medium two more vector fields, the electric
displacement D(r,t) and the magnetic flux density B(r,t), need to be defined. For a
source-free region, i.e. with no free electric charges or currents, Maxwell's equations relate

the four fields E(r,t), H(r,t), D(r, t) and B(r, t) through the following relations:

aD(r, t)

VX H(rt) = ey

B dB(r,t)

V-D(r,t) =0
V-B(r,t) =0

Here the electric displacement field, D(r,t), describing the electric properties of the

medium is related to the electric field, E (r, t), by this following equation:
D(r,t) = €,E(r,t) + P(r,t) 2.34
where P(r, t) is the induced polarization density.

Similarly the magnetic flux density, B(r,t), describing the magnetic properties of

the medium is related to the magnetic field, H(r, t), by
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B(r,t) = uoH(r,t) + M(r,t) 2.35
where M(r,t) is the magnetization density; if nonmagnetic medium is
considered, M(r,t) = 0.

Moreover, the induced polarization density, P(r,t), is related to the electric field,
E(r,t), through relations determined by the electric properties of the medium. This
E(r,t)~P(r,t) relation for most medium is non-trivial and depends on different kinds of
medium's inherent properties, namely homogeneity, linearity, dispersiveness, and
absorbtion characteristics. However, for describing the basic premises of the finite-
difference time-domain method, we consider a homogeneous, nondispersive, and linear
medium where P(r,t) = €, xE(r, t). For such a medium, the electric displacement field is
given by

D(r,t) = €E(r,t) 2.36
where € = €,(1 + y) is the electric permittivity of the medium and y is the electric

susceptibility. The Maxwell's equations in such a media can then be written as:

OE(r,t) 1 Ux H
T_E( X H(r,t))

OH(r,t)

1
ot —M—O(V XE0) 2.37

V-E(r,t) =0

V-H(r,t) =0
2.3.2 Basic FDTD algorithm
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Based on equation 2.37 for a homogeneous, linear, lossless and nondispersive

material with no free sources, the components of E(r,t) and H(r, t) satisfy the following

coupled scalar equations:

0FE (r t) 1/0H,(r,t) 6Hy(r, t)
B E( 0z )
dE, (r t) 1/0H,(rt) aHZ(r, t)
B E( d0x )
0E (r t) 1(0H,(r,t) aHx(r, t)
B E( 0y )
2.38
OHy(r,t) 1 0E,(r,t) O0E,(r,t)
ot ,T( ox 9y
0H,(r,t) 1 0E,(r,t) O0E,(r,t)
ot ,T( ax 0z
0H,(r,t) 1 0E,(r,t) O0E,(rt)
ot .U_o< dy  ox )

These above equations are solved using the FDTD algorithm [33, 34] that solves

simultaneously for the E(r,t)and H(r,t) fields rather than using the wave equation and

solving for only the electric field (or magnetic field). As illustrated in Fig. 2.2, the FDTD

algorithm centers the E(r,t) and H(r,t) components in a three-dimensional space grid in

such a manner that every H(r,t) component is surrounded by four circulating E(r,t)

components and vice versa.
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Figure 2.2: Positions of the components of E(r,t) and H(r,t) fields about a cubic

cell of the Yee spatial lattice.

Moreover, the E (r; t) and H (r; t) components in time are computed in a
“leapfrog" arrangement. Thus at a particular time step, using previously stored H(r; t)
data, all the E(r; t) computations in the simulation domain are performed and the results
stored. Subsequently, using the E (r; t) data just computed, all of the H(r; t)
computations are performed and the results stored. This leapfrogging cycle continues with
the new E(r; t) components being recomputed based on the newly obtained H(r; t), until
finally the time-stepping is concluded.

We denote any function, &(x, y, z, t), of space and time as

37



EM(i,j, k) = &E(iAx, jAy, kAz, nAt) 2.39
and use second-order accurate, center-difference finite-difference expressions for both

space and time derivatives, i.e.

o
P (iAx, jAy, kAz, nAt)

(67 +300) =130
= " + 0[Ax?]

2.40
o .
Fn (iAx, jAy, kAz, nAt)

(f’”%(i,j, k) — €2, k))
= Y + 0[At?]

The applications of the above definitions for numerically approximating the

Maxwell’s equations in a material medium yields for Eq. 2.17 and 2.20:

£ (i+3,5,k) = B2 (i + 5., k)
At
[[ 37 1., 1 n2ro 1. 1
1|<HZ (z+7,]+7,k)—HZ <L+7,]—7,k))
:E Ay

241

(175 ks )= 3= )

]
I
B Az J
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H:+%(i,j+1,k+%)—H:_%(i,j+1,k+1)

2
At

{(E;}(i,j+%,k+1)—E;‘(i,j+1,k+1)>
.Uoll Az

(E;l(i,j+1,k+%)—E;l(i,j,k+%)>

Ay
|

Rearranging the above equations results in the following discrete equation, which can then

be directly used for time-stepping:

1

2

At{(H:_%(H%,H%,k)—Hf‘f(i+%,j—%,k)>

1
- E}}‘l(i+—,j,k)

242

<H;_%(i+%,j,k+%)—H:_%<i+%,j,k—%)>

Az

I
N —
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nty o011
Hx (l,]+§,k+§)

1

TL—E .. 1 1
:Hx (l,]+5,k+5>

At{(Eg(i,H%,kH)—E;l(i,j+%,k)>

Uo [ Ay

(52 (e 16 +3) -2 (=)
B I
I
|

Ay

The finite difference equations corresponding to Egs. (2.38) can be similarly
constructed. Note that the location of the E(r; t) and H(r; t) components on the spatial
grid shown in Fig. 2.2, and the central difference operations on these components
automatically enforce the divergence Egs. (2.37); thus the above solution solves the
complete system of equations (2.36, 2.37) for a homogeneous, linear, and nondispersive

medium.

2.4 DIFFERENCE BETWEEN GREEN’S FUNCTION METHOD AND FDTD

Every theoretical method has its advantages and disadvantages. As we have
described, we used the Green’s function method incorporated with a reduced Rayleigh

equation approach in this dissertation. There are several advantages. First, our approach
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gives better physical insight of the scattering process as the scattering amplitudes clearly
show how the incident SPP is coupled to different modes while FDTD only gives the field
distribution after a certain time. Second, our approach leads to more accurate result
compared to FDTD. As long as the code converges, we get exact solution of the field
distribution. While for FDTD, different grid size and step size always leads to error, no
matter how small the grid size chosen. Third, our approach can separate SH from FF
during the calculation while for FDTD, everything has to be calculated together. Fourth,
our approach saves time compared to FDTD. However, FDTD is very robust and can be
easily used in different systems. Our approach includes an analytical derivation for

different defect shape, which is not as easily implemented in FDTD.
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Chapter 3

Surface second-harmonic generation from surface plasmon

waves scattered by metallic nanostructures

Abstract

In this chapter, my coworkers and | analyzed second-harmonic (SH) generation
from scattering of surface plasmon polaritons (SPPs) by one-dimensional metallic
nanostructures. The electromagnetic field at the fundamental frequency (FF) is calculated
by using a formalism based on the reduced Rayleigh equations, in which the arbitrary shape
of the nanostructure is accounted for by means of the impedance boundary condition. The
near field at the FF, the induced nonlinear-source surface polarization at the SH, and the
associated multipole moments up to second order are calculated from this fundamental
field. The dependence of near field and radiated optical power at the SH on the SPP

wavelength and nanostructure geometry is then investigated.
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3.1 INTRODUCTION

Surface plasmon polaritons (SPPs) have attracted a great deal of attention in recent
years in several areas of nanooptics and chemistry [1-20]. SPPs are p-polarized strongly
localized surface waves that form at metal-dielectric interfaces [21-25]. Because they are
bound at an interface and are sensitive to its dielectric properties, SPPs are ideal tools to
sense surface-interfacial properties. Equally important, the unusual dielectric properties of
metals provide unique functionalities for use in ultrasmall nanodevices. Thus, metallic
nanostructures have found widespread use in optical sensor applications [27] [28], linear
[2-6] and nonlinear [18-20] plasmonic nanodevices, and photochemical processes.
[11],[12]. Besides its high degree of localization in metal structures, the electromagnetic
field of either localized or propagating SPP modes is greatly enhanced compared to the
incident excitation field. As a result, the excitation of SPPs at metal nanoparticles or
surface defects on a metal-dielectric interface represents an efficient interface-selective
probing method, especially when nonlinear optical or chemical processes are employed.
For example, it has already been demonstrated that the excitation of SPPs greatly increases
the efficiency of nonlinear optical effects such as surface-enhanced Raman scattering
(SERS) [7-10] or second-harmonic generation (SHG).[13-19],[23-25]. Because of the lack
of dipole-allowed optical transitions in the bulk of centrosymmetric materials, SHG optical
fields are generated only at interfacial regions of such materials. These fields exhibit a
strong and complex dependence on the physical and chemical properties of surfaces and
interfaces. As a result, second-harmonic (SH) fields, whether enhanced by plasmonic
effects or not, have become an important surface diagnostic in surface science or colloidal

chemistry. Surface SHG has been used to study a diverse set of surface phenomena and
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applications, e.g., the symmetry properties of surfaces, the nature of adsorbates at surfaces
or interfaces, or noninvasive probing of buried interfaces; this rapidly expanding body of
research has been recently reviewed in several articles. [22—25].

In most previous studies of surface SHG, the pump or excitation source is a light
beam. However, due to their strong spatial localization and efficient coupling to metallic
nanostructures, SPPs can be used directly for excitation. In this case, a plasmon wave
could, for example, be an effective probe of surface nanodefects. Thus, it is of interest to
understand how propagating plasmon waves interact with a surface feature to produce SHG
radiation. Such interactions could form the basis for a new approach for high-resolution
imaging of surface features on nominally bare or on nanostructured surfaces. Whereas a
considerable body of research has been devoted to understanding SHG through light
scattering off metallic nanostructures (see, e.g., Ref. [26] and the review article [22] with
the references therein), the nonlinear process of SHG by means of scattering of surface
plasmon polaritons of metallic nanodefects has yet to be investigated. In the paper
published, we analyzed this latter process, namely, generation of SH during scattering of an
SPP, which is propagating on a flat metal-dielectric interface, by one-dimensional (1D)
metallic nanostructures, such as linear ridges (protuberances) or grooves (indentations).
Our analysis used a formulation based on the reduced Rayleigh equations [29] to first
determine the total electromagnetic field at the fundamental frequency (FF). Subsequently,
we computed the induced nonlinear surface polarization density at the SH and used it to
compute the dominant multipoles in a series expansion. We then use these multipoles to

calculate the electromagnetic field and its spectral distribution at the SH.
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This chapter is organized as follows. In Sec. 3.2, | will introduce the analytical
formulation of our problem and the numerical method we used to determine the
electromagnetic field at both the fundamental frequency and the second harmonic.
Furthermore, in Sec. 3.3, | will present our results obtained by solving the analytical model
in the paper. Thus, we determine the spectral properties and the spatial distribution of the
field at the fundamental frequency and second harmonic as well as the influence of the
structure of the nanodefect on the scattering process. In the last section, I will summarize

our results.

3.2 THEORETICAL APPROACH

In order to investigate SHG via scattering of SPP by metallic nanostructures, we
consider a system consisting of a 1D metallic defect on a planar metal surface; the
corresponding geometry is illustrated in Fig. 2.1. The surface profile is thus described
by an x,-dependent function, i.e., x3; = f(x;), only. The incoming SPP propagates along
the x, direction and, upon its interaction with the defect, it generates transmitted and
reflected SPP waves as well as outgoing photon states (radiative modes). For the work in
this paper, we chose the metal to be silver, which is characterized by the Drude model with
dielectric constant e(w) = 1 — wj/w?, where w,, is the plasma frequency of the metal
and w is the frequency of incident SPP. For silver, 1,=157 nm. Note that in the description
of the scattering process, the optical losses (via the damping frequency y) can be neglected,
as the size of the nanodefect is much smaller than the characteristic propagation length of
the SPP. As a result, the scattering process conserves the total energy, a property that is

very useful in analyzing the convergence rate of the numerical method used here. To
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Fig. 3.1 Schematic of the scattering geometry and the radiated waves

involved in the nonlinear scattering process. Fields in the region denoted by

L=4a are integrated to calculate SHG.

calculate the electromagnetic field at the FF, we use the Rayleigh-equation approach [29]

and express the only nonvanishing component of the magnetic field as

HzT(xpxg) = exp|ik(w)x; — Boxs]

- dq 3.1
+ J ER(q, w) expliqx; + iay(q, w)xs]

where HJ is the magnetic-field component in the x, direction, the arrow 1 denotes the

vacuum region, k(w) = /1 — 1/e(w)w/c and By(w) = w/[c\/—€(w)] are the SPP wave
vector and the decay constant in the vacuum, respectively, ao(w) = /w2/c2 — q2, and
R(q, w) is the scattering amplitude. To calculate this scattering amplitude, we use a local
impedance boundary condition, [30], which accounts for the planar surface perturbation

centered at x; = 0,
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d T
a—%Hz(x1;x3|w)|x3=0
[ ( )] 3.2
w|1 + s(x;
= — Hg(x1px3|w)|x3=0

cy/—€(w)

The prefactor in the right-hand side of Eq. 3.2 is defined by the surface structure; namely,

for small surface perturbations, the Fourier transform of the surface impedance function,

$(q) f(@

, Is determined by the Fourier transform of the real-space surface profile, , by

the relation, [29], [30]:
6(0) = — ). f(g)
S =——"—— 3.3
D= " a@e@ /1
Where d(w) = ¢/ [w,/—e(w)] is the optical skin depth.
By substituting Eg. (3.1) into Eg. (3.2), we obtain a Fredholm equation of the second
kind whose solution determines the scattering amplitude,
T(q, @) =V(q k(w))
3.4

“d
+_[_OO£V(CI|P)G0(ID, w)T (p, w)

whereV (q,p) = Bo(w)S5(q — p)plays the role of a scattering potential, T(q,w) =
Gy 1 (q, w)R(q, w) is the rescaled scattering amplitude, and

Go(p,w) = le(w) 35
o\p, @) = e(w)ay(p, w) + alk, w) '

is Green’s function of an SPP propagating on a planar surface.
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Equation (3.4) is of central importance to our analysis of the field distribution at the
FF: upon solving for the scattering amplitude T'(q, w), and then R(q,w), we insert
R (q, w) into Equation (3.1) and calculate the magnetic field H}(x; ,x3) in the vacuum
region. Then, using Maxwell equations, we determine the nonvanishing components of the

electric field at any point in the vacuum region,

%Ef(xp x3) = ifo(w) explik(w)x; — Bo(w)xs]

* dq .
+j an(q, w)R(q, w) expligx, 3.6a

+ iag(w)x3]

%Eg(xl,x3) = —k(w) exp[ik(w)x; — Bo(w)x3]

3.6b

“ dq . .
— J EqR(q, w) expligx; + iay(w)xs]

Here, E; and E5 are the electric-field components in the x; and x5 directions, repectively,
thus yielding the complete set of fields for the linear scattering process.

In a phenomenological model that is widely used in studies of SHG at surfaces and
interfaces, the electromagnetic field at the SH is viewed as being generated by two
nonlinear polarization sources. The first consists of a sheet of surface nonlinear
polarization, P2®) occupying an interfacial domain of a few angstroms. Within this
region, the material properties and the electromagnetic field undergo a steep transition
between their bulk values in the two media. In addition, within this region the inversion
symmetry is broken and therefore the surface nonlinear polarization induced at the SH is

related to the electric field at the FF by a second-order nonlinear optical response.
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pw) — )(EE(“’)(r)E(“’)(r)6(x3 — f(x1) 3.7
Here, ys? is the surface second-order susceptibility, whereas the Dirac function expresses
the surface characteristic of the source polarization. In most cases of practical interest, the
metal-vacuum interfaces possess an isotropic mirror-symmetry plane perpendicular to the
interface. Under these circumstances, the surface nonlinear susceptibility s> has only three
independent components, namely, xZ,11, Xsi, XL = Xsu » where L and || refer to
normal and perpendicular directions to the surface, respectively. Note that x2,,. # xZ..y
if the surface does not have an isotropic mirror plane, as is the case with metallic
monocrystals cleaved along certain crystal symmetry planes or surfaces containing
adsorbed chiral molecules. In our calculations, we assume the following values for the y?2
components: , xZ,,, =5.02%x1072°m?/V, x2,, =0, xZL = x4 = 113 x
107 8m2/v.
The second source for the electromagnetic field at the SH is the bulk nonlinear

polarization, which in the case of isotropic centrosymmetric metals can be expressed as
Pb(i;‘,? () =y[E@ () E@(r)] 3.8
Where y = e[1 — e(w)]/32mrmw? and e and m are the charge and mass of the electron,
respectively. Note that although the two sources of SH have very different physical origins,
namely, the surface nonlinear polarization stems from dipole allowed transitions, whereas
the bulk (longitudinal) component originates from quadrupolar ones, their contributions to
the SH are experimentally indistinguishable. [32]. Nevertheless, these two nonlinear
polarization sources have largely different relative contributions to the SHG process,

especially if is close to the frequency of resonantly excited SPPs. Thus, at this frequency,

the contribution of the surface nonlinear polarization to the SHG is enhanced significantly
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more than that of the bulk source. [33]. In addition, the spatial distribution of the SH is
much more sensitive to variation in surface nonlinear polarization; indeed, recent
experiments [34] have demonstrated that in the case of metals with good, i.e., low loss,
optical properties (Ag, Au), the surface nonlinear susceptibility is about 2 orders of
magnitude larger than the bulk one. As a final argument for the validity of neglecting the
bulk contribution to the SH, note not only that the bulk component of the SH is smaller
than the surface one but also that it is primarily generated within a thin layer with thickness
comparable to the skin depth, which at optical frequencies is only 20 nm; therefore, if the
defect size is considerably larger than the skin depth, the bulk contribution to the total SH
can be safely neglected.

The electromagnetic field at the SH, generated by the surface nonlinear
polarization, can be represented in terms of the multipole moments associated with P2 (r).
As the nanodefect size is considerably smaller than the plasmon wavelength, k(w)a < 1,
we have restricted our calculations to multipoles up to the second order, that is, the electric
dipole moment, the magnetic dipole moment, and the electric quadrupole moment; they are

defined by the following relations, [35]:
p= j PG (r")dr! 3.9

lw
m=-— r' x PO (r")dy' 3.9b

Q(n) = f{S [(; - r’) PG@) (1) + (7/: - P(Z“’)(r’)>r’]

3.9c
= 2[(" - PE ()P} dr’
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Note that the polarization vector in Eq. (3.9) does not depend on the x, coordinate, so the
integrals are calculated in the two-dimensional plane defined by the x1 and x3 coordinates.
Therefore, the multipoles defined in Eqg. (3.9) represent linear densities of the
corresponding physical quantities. Moreover, since we are only interested in the SH
radiation generated by the defect, the integral region is chosen to be L = 4a, as illustrated
in Fig. 3.1. This characteristic size of the defect is defined by the spatial extent over which
the electromagnetic field at the FF is strongly inhomogeneous, i.e., the size of the domain
in which this field is markedly different from that of SPPs that propagate along a flat air-
metal interface. As a result, we used the spatial distribution of the computed field at the FF
to estimate the value of the characteristic length L over which we performed the integrals in
Eqg. (3.9). Finally, the SHG from SPPs propagating on flat surfaces [23] is a well
understood process, so it is not considered here.

The angular distribution of the radiated power at the SH, originating from the

multipoles in Eq. (3.9), is given by the following relations:

dPeq  Zoc?K?

do 167 |(n xp) Xn|? 3.10a
dP. 7 K3
dgd - 1067r |(n xm) xn|? 3.10b
dPeq ZOCZKS ,
20 = 2ger (X Q) xn| 3.10c

where P,q4, Prq , and B, correspond to the electric dipole, magnetic dipole, and electric

quadrupole, respectively, k = 2w/c is the wave vector at the SH, and Z, = /iy /€, is the
vacuum impedance. As is well known from classical electrodynamics, at the smaller
wavelengths considered here, the radiated energy comes primarily from the magnetic and
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quadrupole moments (P4, P.q~A""), while at longer wavelengths, the main contribution

to the emitted energy comes from the electric-dipole moment (P,;~A73). Finally, the
multipoles allow us to calculate not only the radiative field at 2w but also the near field; the

corresponding near-field formulas are not presented here due to their large size. [36].

3.3. RESULTS AND DISCUSSION

In what follows, we will illustrate how our formalism describes linear and nonlinear
scatterings of SPPs by metallic nanostructures. For our calculations, we use as a model a
small surface defect whose mathematical representation allows a convenient calculation of

its Fourier transform. [29]. In particular, the surface structure is characterized by the
function f(x;) = hexp(— Z—i), where h > 0(h < 0) is the height (depth) of the defect and

a/N2 is its half-width (see Fig. 2.1). With these assumptions, we performed our
calculations for two types of nanostructures, namely, ridges h > 0 and grooves h < 0.
Specifically, we solved Eq. (2.1.4) numerically by using a method of quadrature on a
uniform mesh with arbitrary weight. [37]. Convergence was reached when using
around1000 discretization points, the relative error of the results being less than 5%. We
then calculated the magnetic field, via Eq. (3.1), the electric field from Eqg. (3.6), and the

radiated power in Eqg. (3.10), which correspond to the multipoles in Eg. (3.9).

3.3.1 SPP scattering at the fundamental frequency
Consider first the linear scattering process. The physics of this process is illustrated

most clearly by a plot of the near-field distribution resulting from the scattering of an
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incident SPP wave at a defect, say, a groove (see Fig. 2). As shown in the figure, a portion
of the incident SPP is reflected back; this back reflected wave interferes with the incident

wave to form a standing-wave pattern to the left of the defect in Fig. 3.2.

1.0

1.0 0.8
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0.4
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0.0
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X¢ (um)
Fig. 3.2 Near-field distribution in vacuum, at FF,computed for

Gaussian-shaped nano groove with width a=100 nm, h=-100

nm, and incident SPP wavelength A=560 nm.

In addition, a portion of the incident SPP is transmitted through the defect. Finally, in this
case of a groove, the scattering of the SPP is coupled into radiative modes and, thus, leads
to emission of a narrow beam in a narrow angular range, leading to photonic nanojets [22]
radiated in a narrow cone above the defect. In the case illustrated in Fig. 3.2, the nanojet
has a spectral width of 450 nm and is emitted in the forward direction at an angle of ~45°.
The linear scattering process illustrated in Fig. 3.2 varies strongly with the plasmon
wavelength and defect geometries. This variation is shown clearly by a plot of the
normalized scattered intensity versus the plasmon wavelength given in Fig. 3.3. By
scattered intensity, we mean the integrated optical radiation in the far field normalized by

the intensity of the incident plasmon wave. Note that at long SPP wavelength, both groove
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and ridge defects exhibit a monotonic decrease in scattered intensity with A; this decrease

simply reflects the expected long-wavelength behavior of scattering processes.
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Fig. 3.3 Normalized SPP-FF conversion ratio vs the plasmon
wavelength A, computed for (a) grooves with a=100 nm and (b)
ridges with a=120 nm, calculated for A4,, = 157nm. The inset in the
top panel shows the plasmon wavelength for the first peak vs

depth of grooves with groove with remaining constant a=100 nm.

Specifically, as shown in Ref. 28, for large SPP wavelength A, the amount of energy of the
SPP scattered into radiative modes (light) varies as ~A72. In addition, in the case of groove,
the intensity of the emitted radiation exhibits a series of oscillations as the incident plasmon
wavelength is varied. The fact that the oscillation period seen in the spectrum of the

radiated light increases with the depth of the groove suggests that these oscillations
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originate from cavity effects. For the ridge defect, in contrast, the intensity of the scattered
light does not oscillate with increasing plasmon wavelength and in fact exhibits only a
monotonic decrease with A. Figure 3.3 shows that the scattered intensity increases rapidly
with the defect height. Note also that the plasmon wavelength for the largest radiation peak,
denoted by A,,,,, redshifts as the defect height increases. The A,,,,’S dependence on the
defect depth is shown in the inset in Fig. 3.3.

Consider now the spatial distribution of the near field of the scattered light for
different defect sizes, shapes, and different incident SPP wavelengths. In particular,
consider the near field at both groove resonant and nonresonant wavelengths (see Fig. 3.4)
and both for grooves and ridges. The first three panels in this figure show the spatial
distribution of the electric field in the near proximity of a groove with a=100 nm and
h=—160 nm, i.e., the green curve in Fig. 3.3, calculated at the wavelengths of the first two
resonant peaks, A=561 nm [Fig. 3.4(a)] and A=370 nm (Fig. 3.4(c)), and the “intervalley”
minimum, A=424 nm [Fig. 4(b)]. While each of these figures shows field enhancement
inside the groove, particularly near the metal-vacuum interface, the maximum enhancement
is seen at the wavelength corresponding to the strongest resonance, i.e., oscillation peak in
Fig. 3.3. For ridges, calculations of the near field show that the interaction with the
nanodefect leads to strong spatial distortions in the field of the incoming SPP; these
distortions increase with the defect size. As a result, larger defects are more efficient in

coupling the plasmon wave into the radiative modes.
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X (pm)
Fig. 3.4 Near-field distribution in vacuum, at FF, computed for
Gaussian-shaped nanodefects with width a=100 nm. Plots (a), (b), and
(c) correspond to grooves with h=—160 nm and incident SPP

wavelengths A=561 nm, A=424 nm, and A=370 nm, respectively. Panel

(d) corresponds to a ridge with h=160 nm and A=460 nm.

3.3.2 SPP scattering at second harmonic

Next, we consider SHG due to scattering of the SPPs by the metallic nanodefect. In
particular, we determine both the 2w far-field radiation spectrum and the spatial
distribution of its near field. Both of these quantities may be obtained from the multipoles
of the nonlinear surface polarization. To compute these multipoles, we calculate the
integrals in Eq. (3.9) by discretizing the surface profile at the nanodefect in ~ 400 segments

of equal length. Figure 3.5(a) presents the results of such calculations, performed in the
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case of a groove with a=100 nm and h=—100 nm. As is typical in scattering, the SHG due
to the electric dipole dominates at long wavelength (A > ~ — 2um), whereas for smaller
wavelengths all three multipoles make contributions of comparable magnitude. Note,
however, that as the wavelength approaches the characteristic size of the defect, additional
multipoles must be included in the calculations. We have restricted our calculations to A >
300nm, a cutoff value that ensures that the errors introduced by ignoring higher-order
multipoles remain smaller than 1%. Furthermore, we have observed that the SHG process
depends in a rather subtle way on the shape of the defect. At small wavelengths, the
maxima of the quadrupole SHG coincide with the maxima of the total SHG, which
suggests that the quadrupole SHG represents the dominant contribution. However, our
calculations show that the resonant peaks in Fig. 3.3 correspond to the maxima in the
spectrum of the electric dipole SHG. This result suggests that the spectral characteristics of
the SHG depend not only on the strength of the field at the FF but also on its spatial
distribution and the geometrical and physical characteristics of the surface, i.e., the surface
susceptibility tensor y2. More exactly, the strength of the electric dipole, magnetic dipole,
and electric quadrupole, which are sources for the SH, are determined by the electric field
through a surface integral of a sum of terms, each term being the product between a
component of the susceptibility tensor and two field components [see Eg. 3.7]. These
differences in the properties of SPP scattering at the FF and SH should not be surprising as
it is well known that, for instance, due to their strong frequency dispersion, the localization
properties of SPP at the FF are quite different from their localization effects at the SH. [22].

To gain a more in-depth understanding of the physical properties of the radiated

SHG, we present in Fig. 3.5(b) the total SHG emitted by grooves, ridges, and a flat surface
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(h=0), with the feature width a being the same. First, this figure shows that, at smaller A,
grooves radiate 10-100 times larger amount of power at the SH, as compared to ridges; this
observation again suggests that grooves are more efficient nanostructures for light
extraction from SPP excitations. In addition, note that the SHG spectra in Fig. 3.5(b) show
several resonant features. In the case of ridges, this behavior is in contrast with that seen for
the radiated power at the FF, which exhibited a monotonic decrease with wavelength (see

Fig. 3.3). This finding again shows that the magnitude of scattered
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Fig 3.5 (a) SHG radiation power vs. plasmon wavelength, calculated for a
groove with a=100 nm and h=—100 nm. Both the total SHG and its
multipole components are presented. (b) The total SHG radiation power
generated by grooves and ridges with a=100 nm and by a flat surface. The

height (depth) of ridges (grooves) is h=100 nm (h=—100 nm).
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SH light depends both on the geometry of the defect, since optical resonances are typically
dependent on the geometry of the nanodefect, and on the electric field at the FF.
Importantly, such frequency-selective optical response may allow optical detection of
defects with specific geometries using surface spectroscopy optical probes. Finally, we
observe that the amount of radiation corresponding to a flat surface is larger (smaller) than

that corresponding to ridges (grooves); as expected, when # — 0, i.e., the defect height or

depth increases

SHG radiation power (w/m)

© . —
G5 10 15 20 25 30

wavelength (um)

Fig. 3.6 A comparison of the spectral density of the SH radiated power
computed for grooves and ridges. Left (right) panels correspond to ridges
(grooves). In the top panels, a=100 nm and h=60 nm (dot green), h=100 nm
(solid blue), and h=160 nm (dashed red); In the bottom panels, h=100 nm
and a=60 nm (dot green), a=100 nm (solid blue), and a=160 nm (dashed

red).
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depth decreases to zero, the power of radiated SH light converges to the case of flat surface.
In all cases, the amount of scattered SHG power corresponding to an incident SPP with a
power per unit length of 1 W/m is 10°-10"8 W/m.

In as much as the particular geometry of the nanostructure appears to be the main
factor that determines the power in the SHG radiation for a fixed incident SPP wavelength
A, we have investigated the dependence of the SHG power on the geometrical parameters
of the metallic nanostructure, namely, the width a and height h. The results of these
calculations are presented in Fig. 3.6 for two different choices of A and defect shapes. This
figure shows that in the case of ridges, the scattered SH power decreases as h increases, a
counterintuitive result that is explained by the reduced field excitation at the surface of
ridges with increasing h. Thus, our calculations show that as the defect height increases, the
magnitude of the electric field and, consequently, the nonlinear surface polarization at the
back side of the defect decreases (see Fig. 3.4(d)). Since the multipole moments are
calculated by integrating the nonlinear surface polarization over the surface of the whole
defect, smaller field excitation over the defect area leads to smaller multipole moments; as
a result, the SHG radiation power decreases. In contrast, for the case of groove, deeper
defects generate more SH radiation in the wavelength region where the electric quadrupole
moment dominates. In addition, the SH spectra show a series of resonances, which, as in
the linear case, are redshifted with the increase in the depth of a groove. Finally, Figs.
3.6(a) and 3.6(d) illustrate that for a fixed h, the amount of SH radiated by both ridges and
grooves increases with the width a.

In many cases of practical importance, valuable information about the properties of

surfaces and interfaces can be extracted not only from the excitation-wavelength
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Fig. 3.7 Second-harmonic near-field distribution, computed for Gaussian-
shaped nanodefects for the region above the surface, with (a) width a=100
nm, height h=100 nm, and incident SPP wavelength A=512 nm and (b)
a=100 nm, h=—100 nm, and A=1.33um. Clockwise, panels correspond to

the electric dipole, electric quadrupole, total field, and magnetic dipole.
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dependence of the SH signal but also from its near-field distribution. To illustrate this
point, we have calculated the spatial distribution of the SH field in the near proximity of the
nanodefect; the results for two generic cases are presented in Fig. 3.7. Since the near-field
distribution is strongly dependent on the relative strength of the multipole moments, this
field profile and angular distribution will in turn be strongly dependent on the wavelength
of the SPP. For example, in Fig. 3.7 the SPP wavelength was chosen so that the three
dominant multipole moments each make contributions of comparable magnitude to the
total field. The total electric field in Fig. 3.7 is the sum of the fields generated by the
electric dipole, magnetic dipole, and electric quadrupole. Since there are phase differences
among the three terms, the total field is not simply the sum of the field amplitudes. Note
also that the near-field distribution at the SH is markedly different from that at the FF,

which can make the SH imaging a useful tool for nonlinear optical probing of surfaces.

3.4 CONCLUSIONS

In conclusion, we have presented a comprehensive description of the surface SH
generated by surface plasmon scattering from metallic nanodefects at metal-dielectric
interface. Our formalism has a wide applicability, as it can be used to study metallic
nanostructures of arbitrary shape and can describe metals whose dielectric constant is
described by a Drude or Lorentz model, that is, most metals with good optical properties.
Our results clearly show that the properties of the emitted SH are highly sensitive to the

material and geometrical characteristics of the metallic surface or metal dielectric interface,

through the surface susceptibility )(5(2) and surface profile function f(x;). As a result,

scattering of SPPs by metallic nanostructures can be a powerful alternative in noninvasive
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spectroscopy studies of chemical and physical properties of surfaces and interfaces.
Specifically, our study demonstrates that this SHG can provide unique information not only
about the material parameters of the surface, e.g., the components of surface nonlinear
susceptibility tensor, but also give valuable insight into the geometry and symmetry
properties of the metallic nanostructures. Finally, since the surface nonlinear susceptibility

)(gz) is strongly dependent on the nature of the surface or interface, the formalism

introduced has applicability to measurements of molecular adsorbates at interfaces or on

metallic surfaces.
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Chapter 4

Surface Second Harmonic Generation from Scattering of
Surface Plasmon Polaritons from Radially Symmetric

Nanostructures

Abstract

We present a comprehensive study of linear and nonlinear effects observed in the scattering
process of surface plasmon polaritons (SPP) from localized two-dimensional surface
deformations at a metal/dielectric interface. Thus, the electromagnetic field at the
fundamental frequency (FF), for both p- and s-polarizations, is first determined by solving
the corresponding set of reduced Rayleigh equations. The complete solution of these
equations allows us to investigate both the complex structure of the scattered
electromagnetic field as well as subtle mechanisms by which incident SPPs are scattered
into radiative modes (light) and outgoing SPP waves. Furthermore, the electromagnetic
field at the FF is used to determine the nonlinear surface polarization at the second
harmonic (SH) and subsequently both the electromagnetic field distribution as well as the
amount of light generated at the SH. Calculations are performed for three geometries that
are relevant in many experiments, namely, Gaussian, hemispherical, and cylindrical
nanodefects. Finally, throughout our analysis, we discuss potential applications of our
findings to surface spectroscopy, surface chemistry, or new imaging techniques of surface

nanodefects.
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4.1 INTRODUCTION

Over the last few years, we have witnessed a renewed interest in both the physical
properties of surface plasmon polaritons (SPPs) as well as their use in nanodevices with
new or improved functionality. In particular, recent advances in materials, surface science,
and nanofabrication techniques have made possible the design and experimental
implementation of new plasmonic nanostructures and nanodevices, which exhibit
remarkable physical properties and a great potential for advanced technological
applications. To this end, of particular interest has been the optical properties of SPPs, [1-
29], which are strongly localized p-polarized surfaced waves formed at the interface
between a metal and a dielectric, [30 -33], as well as their interaction with metallic
nanostructures. [34 — 36]. One of the consequences of the extreme light localization at
metal/dielectric interfaces or close to the surface of metallic nanoparticles, is that extended
(propagating waves) or localized surface plasmon polaritons can be used to achieve strong
enhancement of the electromagnetic field, a property with important technological
applications. To be more specific, this property can be employed to design new linear
plasmonic devices, [1-9], detectors and other photovoltaic devices (solar cells), [14-17]
optical sensors, [38,39], or study a series of photochemical processes. [18, 19]. In addition,
and also of particular importance for practical applications, the strong enhancement of the
electromagnetic field leads to the possibility to achieve strong nonlinear optical effects,
such as second harmonic generation (SHG) [20-28], [30 36] and surface enhanced Raman
scattering (SERS), [10-13] at remarkably low optical power.

Surface SHG has become an essential diagnostic tool for physical chemistry, non-

invasive surface analysis, and catalytic chemistry, chiefly because this nonlinear optical
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wave interaction is strongly dependent on the physical properties and local structure of
surfaces and interfaces. This sensitivity of SHG is particularly important if one considers
SHG at the surface of a centrosymmetric material, as in this case the lack of dipole-allowed
optical transitions in the bulk of such materials leads to the vanishing of the otherwise
dominant bulk SHG. In this case, the total SH signal is generated within a layer of only a
few Angstroms thickness, and therefore it is strongly dependent on the physical structure
of this surface layer or its chemical properties, e.g. the nature of adsorbates at the surface or
interface. In addition, surface SHG is a useful probing technique because it is non-invasive
and has micrometer-scale spatial resolution. Moreover, the properties of surface SHG
process, e.g. the polarization of the generated signal and the spatial distribution of the near-
and far-field, are markedly different from those of the corresponding linear scattering
process, and further enabling this nonlinear optical process to be a unique tool for the
analysis of surfaces and interfaces.

In the standard approach to nonlinear surface probing, a laser source illuminates a
surface and the scattered radiation is detected. In some cases metal particles are present on
the surface and in that case it is well known that the scattering process is enhanced via the
excitation of local surface plasmon-polariton modes in the metal object. More recently the
interest in propagating plasmon polaritons has led several groups to consider the use of
these waves as the primary probing source of surface features. Indeed recent beautiful work
involving photoemission electron microscopy studies of illuminated surfaces [37] has
shown that this approach is not only useful but can also provide a route to examine
coherent plasmon effects. The question then arises as to whether this “plasmon-source”

approach could also provide a useful source to examine surface features via nonlinear
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surface wave excitation. Such an approach would have the advantage of a closer coupling
of the excitation source with the surface feature to be examined. Further it would also be
possible to envision using non optical excitation means such as injected electrons. Thus, in
this paper we examine the physics of two-dimensional (2D) wave scattering from surface
nanodefects. In fact we extend our earlier analysis [27] of the SHG from scattering of SPP
waves from one-dimensional (1D) surface nanodefects to the more realistic case of two-
dimensional, radially symmetric surface nanodefects. Importantly, our analysis does not
simply extends the results obtained in the 1D case to the 2D geometry, as the latter case
presents an additional complexity that stems from the more intricate polarization properties
of the electromagnetic field that is generated near a 2D metallic nanodefect. Thus, unlike
the 1D case, when both the SPP waves and the radiated light are p-polarized, in the 2D case
the radiative modes have both s- and p-polarized components. This increased degree of
complexity has important implications for the structure of the near- and far-field angular
distribution and the magnitude of emitted radiation, both at the fundamental frequency (FF)
and at the second harmonic (SH).

The chapter is organized as follows. In Sec. 4.2, we introduce the analytical
formulation of our problem and the numerical method we used in our approach. Thus, we
introduce a set of coupled reduced Rayleigh equations, whose solution fully determines the
electromagnetic field at the FF. Also, we introduce the numerical method used to solve this
system of equations. Moreover, we describe our approach to determine the electromagnetic
field and the amount of emitted radiation at the SH, from the electromagnetic field at the
FF. In Sec. 4.3, we present our results obtained by solving this analytical model. Thus, we

consider three different radially symmetric surface nanodefects, namely Gaussian,
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hemispherical, and cylindrical nanodefects, and for each of them we determine the spectral
properties and the spatial distribution of the field at the FF and SH, Also, we investigate the
influence of the geometrical structure of the nanodefect on the scattering process. In the last

section, we summarize our results.

42 THEORETICAL APPROACH AND NUMERICAL

ALGORITHM

In this section we present the theoretical formalism used to analyze the scattering of
SPPs from surface metallic nanodefects as well as the numerical method used in our
analysis. Our calculations provide the spatial distribution of the electromagnetic field and

the spatial pattern of the radiated light, both at the FF and the SH.

4.2.1 Linear scattering of surface plasmon polaritons

In order to study the scattering process of SPP waves from surface nanodefects, we
consider a system consisting of a SPP wave propagating on a planar metallic surface
located in the (x1 ,x2)-plane, a wave that is incident onto a surface nanodefect; the
corresponding geometry is illustrated in Fig. 4.1. The surface profile, which for the sake of
simplicity is chosen to be radially symmetric, is described by a surface profile function
x3 = {(x;), where x; = (x4, x,), For the function {(x;), which describes the shape of the
surface nanodefect, we considered three choices, namely a Gaussian, {(x;) =

h exp(—x;/R%), with height h and width R; a cylinder, {(x;) = h,x; < R, with height h

and radius R; and a spherical cap, {(x;) = fRZ —xf —+y/R? —p?%,x; < p,withRand p
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the radius of the sphere and the cap, respectively. Note that with these choices for the
surface profile function {(x;), we can study surfaces with both protuberances (h > 0) and
indentations (h < 0). The incoming SPP propagates along the x1 direction and, upon its
interaction with the surface nanodefect, generates scattered SPP waves as well as radiative

modes (photon states), which propagate outwardly, away from the nanodefect.

X5 Scattered light (FF, SH)

F'y

Fig 4.1 Schematic of the scattering geometry and the radiated waves

involved in the nonlinear scattering process. Fields in the region denoted by

L = 3.5R are integrated to calculate SHG.

We consider that the SPP propagates at the interface between vacuum and a metal, which is

chosen to be silver in our calculations; the extension to the more general case of a
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dielectric/metal interface is trivial. The electromagnetic properties of the metal are modeled
via a dielectric function that obeys the Drude model, e(w) = 1 — wj/w?, while w, is the
plasma frequency of the metal and w is the frequency. For silver, the corresponding plasma
wavelength is w, = 145.9 nm. [40]. Note that this choice for the metal dielectric function
does not take into account the optical losses, that is, the imaginary part of e(w) is set to
zero; however, this is a good approximation since the characteristic size of the nanodefect
is much smaller than the plasmon absorption length and therefore only a negligible amount
of energy is dissipated during the scattering process. As a result, the electromagnetic
energy is conserved during the scattering process. Accounting for loss is relatively
straightforward since its effect on the wave is over a scale size which is much longer than
that of the scatterer.

In order to analyze the scattering process of the SPP wave at the FF, we employ a
method based upon a set of coupled reduced Rayleigh equations. [31,41,43,44]. To begin
with, it is assumed that in the vacuum region, xs > {(x;), the amplitude E (x, w) of the
electric field, which is defined by the harmonic dependence E(x,t) = E(x, w)e'®t,
consists of the incident SPP wave and a scattered field that contains both radiative modes

(scattered light) and scattered SPP waves:
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E'(%,0) = = [i21o(w) — Z3ky ()] expliky () = fo(@)s]

d’qyc _ a1
+ ﬁ{z [ig,B0(qy) — X39,14,(q)) :
+ (s x 51||)As(Q||)} expliqy - %y — Bo(qy)xs]

Here, ET(x, w) is the electric field at the frequency o, the arrow designates the vacuum

region, k;(w) and B, (w) are the plasmon wave vector and the inverse decay length of the

field in the direction normal to the surface, respectively, and are given by the relations:

27 e Je(w) + 1 '
Bo(w) = @1 4.2b
c Je(w)+1

These components of the plasmon wave vector satisfy the dispersion relation kf(w) —

Bé(w) = w?/c?, Moreover, the function a,(q,) is defined by

ao(q”) = 1 4.3

where the vector g, = (q4,q»,0) is parallel to the metal surface. Note that for a surface
plasmon ky(w) > w/c, and therefore a (k"(w)) = Bo(w). Finally, A;(qy) and A,(q)

are scattering amplitudes of the s- and p-polarized waves, respectively. Based on the

definition of ay(q,), Eq. (4.3), it can be seen that for g, > w/c the scattered waves in Eq.
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(4.1) are surface scattered into the vacuum. Note the expansion given in Eq. (4.1) is valid
within the Rayleigh hypothesis, namely, close to the surface the series expansion of the
electromagnetic field contains only outward propagating waves. In particular, for small
surface nanodefects this assumption is rigorously satisfield. [45].

In order to calculate the scattering amplitudes A;(q,) and A,(g,), one requires that
Eqg. (4.1) together with the corresponding equation for the metal region satisfy the boundary
conditions at the vacuum/metal interface, a condition that can be cast into a set of coupled

reduced Rayleigh equations: [41, 42].

fiwAi(p) + Z n )2 gu(Pll»QH)Aj(QM)

J=ps 44
—Jip (1, k) i=p,s
and the functions f; ,, are given by
_|_
fp (o)) = G(w),Blo(_pl)(w)ﬁ(p”) 4.5a
fs(o) = Po (f 'B -El_(f)gp") 4.5b
With
O\ 2
alqy = |qi — €(w) (?) 4.6

is the inverse decay length of the electromagnetic field inside the metal and the kernel

functions g;; are given by the following expressions:

2

wNe L
9ss(w a1) =J oy, qi) (?) P-4 4.7a
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Iop @1 1) =J @y adeyay — By - 41Bo(qy)] 4.7b

w - R
YIsp (i qy) = Jpqp) (?) Bo (o)) (@) X q1)3 4.7c

. (l) - =
gps(p”; q) = =iy qp) (?) L)@ X q))3 4.7d
Here, p, and g are unit vectors and the function J(py, q;) is defined as:

J(pan) = f d?x exp[—i(p, — q)

4.8

exp [(@(y) —aolg D) G| -1
a(py) — ao(qy)

- x]

We now introduce the azimuthal angles ¢,, ¢,, and ¢, which characterize the direction
of the vectors x, q;, and py, respectively. The scattering amplitudes As(q,) and 4, (q,) are
then expanded in Fourier series,

[ee)
>\ (n) : :
4;(qy) = z A" (qy) exp(ingq).j = s,p 49
n=-oo
and the Fourier coefficients corresponding to the p-polarized waves, Az(gn) (qy), are rescaled
so as to separate their singular behavior at the plasmon wave vector g, = k; [the function

fp(ky) = 0 has asimple zero at q; = k, f,(k;) = 0,

Ax(qp) = al”(aD/f(ay) 410

Note that since the scattering amplitudes Ag‘)(q") have a simple pole at g, = k;, the

reduced scattering amplitudes afgn) (q,) are bounded functions. Finally, by substituting Egs.
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(4.9) - (4.10) into the relations (4.4) one obtains the following set of coupled integral

equations:

1 r® h (py, qy)
ap (py) + %JO dq,qy [%a;}(q")

+ hgs(PM'CIn)A?(QM)] = —hpyp (o1, ky)

fs (o) A3 (o))

I so (1 Q1) o
+ﬂf0 dq,q ||[ @) ap (qy)

+ h?s(Pn'CIn)A?(CIu)] = _h?p(pllrkll)

Where
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1 /w\?2

h?s(pllf qll) = E(?) [Nn—l + Nn+1] 4.12a
hpy (o, ay) = Nppyq — —“(Pn)“o(CIu)[ n—1 1 Npi1] 4.12b
n lw
he, (o qy) = 37 ao(q)[Nn—1 — Np41] 4.12c
n lw
hps(pII' QII) = E? a(QII)[Nn—l - Nn+1] 4.12d

And

Nom = By — ﬁo(CIu)f x”dx” exp[(ﬁ(p”)

4.13

- ,30(61")) ((xn)] - 1}]m(pllxll)]m(qllxll)

Equations [4.11] are solved numerically for the scattering amplitude coefficients a,g”) (q1)

and Agn) (qy), and subsequently, by using the Fourier expansions in Eq. [4.9] the scattering
amplitudes A, (p,)are determined. These scattering amplitudes fully determine the
distribution of the electric field in the spatial region x; > {(x;), at the FF, as shown by the

Eq. (4.1).

4.2.2 Light scattering at second harmonic

The complete description of the spatial distribution of the electromagnetic field at
the FF allows one to determine the field distribution at the SH. Thus, according to the
phenomenological model that is used to describe the physical properties of the SHG at the

interface between two centrosymmetric media, the generated SH has two sources, namely a
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surface nonlinear polarization localized within a thin surface layer at the interface between
the two media and a non-local polarization originating from bulk magnetic dipoles and
electric quadrupoles. Although the two media are centrosymmetric, and thus electric-dipole
transitions are not allowed, the inversion symmetry is broken in the thin layer at the

interface between the two media and therefore the sheet of nonlinear surface polarization at

the SH, Ps(zw)(r), is induced at this interface. This nonlinear polarization is related to the

electric field at the FF by a second-order nonlinear susceptibility tensor,
PS(Zw)(r) = )(_gz): E(‘“)E(w)S(x3 — {(xl,xz)) 4.14

where )(5(2) is the surface second-order susceptibility and the Dirac function describes the

surface characteristic of the source polarization.

In the case of homogeneous isotropic media excited by plane waves the bulk
nonlocal nonlinear polarization can be expressed as [45,46] P22 (r) = yV[E@)(r) -
E@ ()], where ¥y = e[1 — e(w)]/32rmw? and e and m are the charge and mass of the
electron, respectively. As has been demonstrated, [47] the longitudinal nature of this

nonlinear polarization makes it that its contribution to the SHG is indistinguishable from

that of the surface nonlinear polarization given in Eg. (1.14). In practice, this contribution is

accounted for by rescaling the components of the surface susceptibility ;(_52) so as to
include the contributions of both the surface and bulk polarizations. Nevertheless, in the
case of metals these two nonlinear polarization sources have largely different relative
contributions to the SHG process, especially if w is close to the frequency of resonantly
excited SPPs. Thus at this frequency, the contribution of the surface nonlinear polarization
to the SHG is enhanced significantly more than that of the bulk source, [48] and therefore

the bulk contribution can be neglected. Indeed, recent experiments have demonstrated that
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in the case of metals with good, i.e. low-loss, optical properties (Ag, Au) the surface
nonlinear susceptibility is about two orders of magnitude larger than the bulk one. [49].
In most cases of practical interest, the metal/vacuum interfaces possess an isotropic mirror-

symmetry plane perpendicular to the interface. Under these circumstances, the surface

nonlinear susceptibility ng) has only three independent components, which are )(szl) Lo

and )(;22"" and XS(,ZII)J.II = )(5,2")” »Where L and || refer to normal and perpendicular directions

to the surface, respectively. In our calculations, we assume the following values for the

independent components of the susceptibility tensor )(5(2), )(S(i)ll =5.02 x 107 8m?/v,

Xy = —254x 1072 m? /v, x@ = x| =1.13 x 1072°m?/V. [50]. However, it

should be noted that in certain cases the metal/vacuum interface lacks a mirror symmetry
plane, namely when chiral molecules are adsorbed at the interface or in the case of
nanopatterned metallic surfaces.

Since the source of the electromagnetic field at the SH is the surface nonlinear
polarization Ps(z“’)(r), we can fully characterize the SHG process once we know multipole
moments associated with this nonlinear polarization. As the nanodefect characteristic size a
of the nanodefect is considerably smaller than the plasmon wavelengths, k(w)a < 1, we
have restricted our calculations to multipoles up to the second order, that is, the electric
dipole moment, the magnetic dipole moment, and the electric quadrupole moment; they are

defined by the following relations: [50],

p = jP(Z‘”)(r’)dr’ 4.15a
lw
m= —7.[ r' x PC®) (r"dy' 4.15b
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Q(n) = J{S [(; - r’) PCD () + (7/: . P(Z“’)(r’)> r’]
4.15¢c
= 2[(" - PCO ()P} dr’

Since we are only interested in the SH generated by the nanodefect, the integration region
in Egs. [4.15] for a Gaussian defect is chosen to be L = 3.5R, as illustrated in Fig 4.1. For
the case of spherical cap and cylinder, the domains of integration are chosen to be {(x;) #
0, that is, L = 2p for the spherical cap and L = 2R for the cylinder. It should be noted that
in our study we do not consider the SHG from the entire flat surface, which has been

extensively studied, because it provides only a uniform background illumination. [32].
The angular distribution for the radiated power at the SH, originating from the

multipoles described by Egs. [4.15], is given by the following equations, [52]:

APy Zoc?K*

do 321 |(n X p) x n|? 4.16a
dP, ZoK*
dgld - 302n |(n X m) x n|? 4.16b
dP.y  Zoc?K® R
6 = 1152y |(mx Q@) x1| 4.16¢

Where Py, P, Peq correspond to the power radiated by the electric dipole, magnetic
dipole, and electric quadrupole, respectively. K = 2w/C is the wave vector at the second
harmonic and Z, = \/m is the vacuum impedance. As is well known from classical
electrodynamics, at longer wavelengths the main contribution to the emitted energy comes
from the electric-dipole moment (P,;~A"*) whereas at smaller wavelengths the radiated

energy comes primarily from the magnetic and quadrupole moments (Pmd,Peq~/1‘6).
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Finally, calculating these multipoles allow us to determine not only the radiative field at the
SH but also the near-field; the corresponding near-field formulae are not presented here as

their expressions are rather long and cumbersome.

4.2.3 Numerical approach

To solve Eqgs. [4.11] numerically, we follow a procedure described in Ref. [31].
Thus, this system of coupled equations is discretized on a uniform computational grid that
spans the domain g, p; € (0, Ajnqy), the step size of the computational grid being Ag,. To
reach convergence of the numerical results, ~1500 grid points are necessary, whereas the
upper limit of the wave vectors pjand qy, Amqax, IS chosen to be in the range of
20/R~70/R. In addition, the computational grid is constructed in such a way that the point
k, is one of the grid points.

In the discretization process, the integrals in Eqgs. [4.11] are calculated as a sum of
integrals defined over the intervals between adjacent grid points, each of these integrals
being then approximated as the product between the integrand evaluated at the midpoint of
the interval and the size of the interval, Aq,. As previously explained, the integral equations
[4.11] have a singularity (a simple pole) atq; = k. This singular point is treated
separately, and the corresponding integral is being calculated analytically. As a result of
this discretization procedure, Egs. [4.11] are cast into two linear coupled matrix equations,
which are solved by using standard numerical techniques. The corresponding discretized

equations can be written in the following form:
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(p1)+—2A [ (p’l)ql) a?(qy)

4.17a

+ hgs(pjlqi)A?(Qi)] = —hy, (pj, ky)

fs(pj) A% (p))
(pp 4i)
an A4 AOE p(a) 4.18b

+ h?s(Pj'Qi)A?(CIi)] = —hg,(pj, ky)

where i and j indexes the grid points. Furthermore, in the case of a Gaussian-shaped defect,
the integrals N,,defined by Eq. [4.13] can be expressed as a series of Bessel functions of
the second kind, I,,,,

N

— 7AR? C {[B(y) — Bolqp]A}* ! exp | — (Pnz + %%)Rzl I <P||CI||R2> 419

n.n! 4n 2n

For the hemisphere- and cylinder-shaped defects the integral that defines the functions
N, (qy,py) are calculated numerically, by using an adaptive integration algorithm. [53].
Moreover, in the case of cylindrical nanodefects, in order to resolve the strongly
inhomogeneous electromagnetic field near the sharp corners, a considerably large number
of grid point must be used, with the result of a slow convergence rate of the numerical
algorithm. In order to overcome this problem, a numerical procedure was employed that in

effect smoothes out the top edge of the cylinder, namely, the shape function {(x;) was
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multiplied by the function shape factor 1 — 1/cosh[p;(p,R — x;)] , with p;, = 0.6 x 108
and p, = 1.12.
Finally, once the complete distribution of the electromagnetic field at the FF is

determined through the method just described, the scattering process at the SH is

numerically characterized as follows. First the surface nonlinear polarization PS(Z‘”)(r) IS
calculated using Eq. [4.14] and subsequently the multipoles are determined from Egs.
[4.15]. The spatial distribution of the electromagnetic field at the SH and the corresponding

emitted power are then calculated by using Egs. [4.16].

4.3 RESULTS AND DISCUSSIONS

In this section we present and discuss the main results pertaining to the spatial
distribution of near- and far-field, as well as the spatial pattern of the scattered light, both at

the FF and the SH.

4.3.1 Field distribution and scattered light: fundamental frequency

The theoretical formalism presented in subsection 4.2.1 provides a full description
of the distribution of the electromagnetic field, both in the close proximity of the defect (the
near-field), as well as far from the scatterer (the far-field). A generic example of the spatial
distribution of the field amplitude at the FF, |[E' (r; w)|, corresponding to a Gaussian
indentation, is presented in Fig. 2. Among other things, this figure clearly shows the
transition between the near-field, seen as a series of ripples that are formed through the
interference between the incident plasmon field and the scattered field, and the far-field,

which is seen as an emerging beam of scattered light (a nanoflashlight) emitted by the
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defect. The angle of this flashlight “beam” with respect to the surface normal is a result of
momentum matching between the SPP and scattered light momenta and a characteristic
reciprocal vector of the scatterer, i.e. /R, much as is the case of plasmon scattering from a
surface diffraction grating. [30]. Note that the width of the emitted beam, measured in a
transverse plane located at 1.5 um above the metallic surface, is only a few hundreds
nanometers. Hence the plasmon scattering by metallic nanodefects could provide an
interesting and flexible approach to generate and manipulate sub-wavelength optical

beams, an idea discussed in Ref. [31].
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FIG. 4.2: Electric field distribution corresponding to the scattering of a SPP off
a Gaussian nanodefect with R = 200 nm and h = —50 nm where only the

scattered light is shown. The wavelength of the incident SPP is A = 328 nm.
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As an interesting aside, the property that the shape of the defects considered here is

invariant to rotation transformations implies that the scattering coefficients Agfs) (qn)

defined by Eq. [4.9] obey the symmetry relation |Agfs (] = |A§;S") (qy)| and therefore the
total angular momentum of the scattered electromagnetic field is zero. However, it can be
easily seen that in the case of chiral scatterers the just mention symmetry relation no longer
holds, and thus the scattered field, in particular the nanoflashlight seen in Fig. 4.2, will have
a finite angular momentum. One immediate consequence of this effect is that the scattering
of SPPs from chiral defects can be readily used to generate sub-wavelength optical beams
carrying angular momentum, namely, optical nanotweezers.

Deeper insight into the characteristics of the plasmon scattering at the FF is
provided by the frequency dependence of the total scattering cross sections of SPPs and
light. Thus, using the relations (A.4) and (A.5) in the Appendix, we have calculated the
spectra of these scattering cross sections, both for indentations and protuberances. Note that
the scattering cross section corresponding to the emitted radiation contains the contribution
of both the s- and p-polarized waves. The results of these calculations, summarized in Fig.
4.3, lead us to several important conclusions. But before discussing the results note that the
general shape and appearance of these two scattering cross sections is similar to that
presented earlier by the Maradudin Group [31], [43], although the greater computation
resources available at present allows a fuller spectral range to be examined. First, both
spectra show a resonant behavior, in both cases the scattering process being most efficient
at a certain resonant frequency. The two resonant frequencies are very different from each
other, and thus one can infer that the two scattering processes are only weakly coupled.

More specifically, whereas the generation of radiative modes can be viewed as the result of
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the creation of spatial inhomogeneities in the incoming field, at the location of the defect,
the scattered surface plasmons are generated via the excitation of localized plasmon modes
supported by the surface defect. This dichotomy in the scattering process also explains the
markedly different width of the SPP and light spectra of the corresponding cross-sections.
In addition, a comparison of the peak scattering cross sections suggests that the scattering
of the incident SPP into SPP waves is a much more efficient process as compared to the
scattering of the incident SPP into radiation, the corresponding ratio of the cross sections
being ~5. This result is explained by the fact that, due to their similar characteristics, the
overlap between the electromagnetic field of the incident and scattered SPP waves is larger
than the overlap between the fields of the incident SPP wave and the emitted radiation.
Figure 4.3 also shows that surface indentations are more effective in scattering the
incident SPP, as compared with protuberances, a result that can be attributed to the cavity
effect associated with such surface defects. Moreover, the spectra of the scattering cross

sections of both SPPs and light show a steep decrease near w/w, ~ 0.7, which is due to

the fact that surface SPP waves at the metal/vacuum interface can not exist if w > w, JN2.
We have also investigated the dependence of the scattering cross sections on the
size of the surface defect. The results corresponding to the scattering cross section of light
are summarized in Fig. 4.4(a). Thus one can observe that in the case of shallow surface
defects the amount of radiated light decreases as the radius of the defect increases, which
suggests that in the case of larger defects the field can easier readjust to the shape of the
defect and thus it is perturbed to a smaller extent. However, if one compares the amount of
light scattered by defects with the same radius R but different depth h one observe that

more light is emitted by defects with larger depth. Again, this result is explained by the fact
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that the larger the depth of a surface defect, the stronger the perturbation of the incident

plasmon field; although not shown, this same behavior follows when varying the height of

protuberance.
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FIG. 4.3: Total scattering cross section of light and SPP, for both indentation
(h < 0, solid line) and protuberance (h > 0, dash line). The defect
parameters are |h|] = 50nm and R = 200 nm. Red and blue curves

correspond to the scattering cross section of SPPs and light, respectively.
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FIG. 4.4: Dependence of the scattering cross section of light on the size of
the Gaussian defect and polarization of the scattered light. The curves in the
panel (a) correspond to R = 200 nm and h = —50 nm (solid curve), R = 200
nm and h = =20 nm (dash curve), R = 150 nm and h = —20 nm (dotted
curve). Panel (b) shows the spectra of the scattering cross sections
corresponding to R = 200 nm and |h| = 50 nm: the solid (dash) curves
correspond to h <0 (h > 0). As indicated, the black curves correspond to the
total scattering cross section whereas the blue and red curves correspond to

the s- and p-polarized light, respectively.

As we have discussed, unlike the 1D case, in the case of 2D surface defects the
emitted light can not only be p-polarized but also s-polarized. The spectra of the total

scattering cross section as well as the corresponding spectra of the s- and p-polarized light
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are shown in Fig. 4.4(b). Thus, it can be seen from this figure that the spectra
corresponding to the two polarizations show a similar resonant behavior; however, the two
resonant frequencies have slightly different values. In addition, our calculations show that
at low frequency (long wavelength side of the spectra) the radiated light is predominantly s-
polarized whereas the light emitted at high frequencies (at the blue side of the spectrum) is

predominantly p-polarized.

o
E | i
= 16/ 20| _
7 12 O
8 1 .
= % | AT
S 4l gl L 3; _
S | 0665 0685  0.710 /3
W - a ]
0 L e

025 035 045 055 065 0.75
mf’mp

FIG. 4.5: Dependence of the scattering cross section of SPPs on the size of
the Gaussian defect. The curves correspond to R =200 nm and h =—50 nm
(solid curve), R = 200 nm and h = —20 nm (dash curve), R = 150 nm and h

= —20 nm (dotted curve).
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Similar studies have been done of the dependence of the peak SPP scattering cross
sectionnand the width of its spectrum on the width and depth/height of the defect. The main
results, plotted in Fig. 4.5, support the general conclusion according to which the incident
SPP wave generates SPP modes localized at the site of the defect, which subsequently
decay into outgoing SPP waves. Thus, Fig. 4.5 shows that the width of the spectrum of the
scattering cross section decreases with the depth of the defect. As expected, deeper defects
are more effective in capturing and thus re-emitting the incident SPP wave, an effect that
leads to the broadening of the SPP scattering cross section spectra with the width of the
defect. On the other hand, the scattering cross section depends only slightly on the radius of
the defect.

A better understanding of scattering of the incident SPP, at the FF, can be achieved
by analyzing the distribution of the electromagnetic field in the proximity of the surface
defect. In this connection, Fig. 4.6 shows the field distribution in two horizontal sections,
one at a distance that is only a fraction of the wavelength of the plasmon and the other one
located a few wavelengths away from the metallic surface. Note that the plots in Fig. 4.6 do
not contain the field of the incident SPP wave. This figure clearly illustrates the transition
from the near-field to far-field as well as the strong dependence of the electromagnetic field
on the polarization of the emitted field. Thus, as expected, in the case of the s-polarized
light, the field is predominantly located at the position of the surface defect. This behavior
is a direct consequence of the fact that the SPP waves are p-polarized, and thus the s-
polarized field cannot propagate along the vacuum/metal interface. Moreover, Fig. 4.6
shows that in the case of the s-polarized scattered light the electric field vanishes in the

plane x, = 0. To understand this property, note that the electric field of the s-polarized
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scattered light, at the plane x, = 0, is perpendicular on this plane and thus symmetry
considerations require that it vanishes within this plane. In addition the electric field for p-
polarized light has a large value even a few wavelengths away from the surface defect. This
electric field is radiated by the outgoing surface SPP waves that are generated in the
scattering process. Also, note that the spatial distribution of the total field is similar to that
of the p-polarized light, which suggests that, at this wavelength, the radiated light in the
nanobeam directed in the x, = 0 plane is predominantly p-polarized. S-polarized light is
emitted at two angles with respect to this plane and is thus more diffuse in the x; =

1.2 um plane shown here.
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FIG. 4.6: Near- to far-field transition corresponding to a Gaussian surface
defect with R =200 nm and h = —50 nm. The incident SPP wavelength is
A = 328nm. The panels on the left and on the right correspond to

horizontal plane sections at x; = 0.2 um and x; = 1.2 um, respectively.
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We have also investigated the dependence of the SPP-surface defect scattering
process on the specific shape of the defect. In particular, we have considered Gaussian,
cylindrical and hemispherical defects. The main results of this analysis are presented in Fig.
4.7, which shows the frequency dependence of the scattered light corresponding to these
three shapes of the surface defect. As expected, the scattering cross sections of light emitted
by Gaussian and hemispherical defects have similar spectral characteristics, namely, a

broad spectrum with a maximum at a certain resonant frequency.
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FIG. 4.7: Scattering cross sections corresponding to cylindrical (R =
200 nm and |h| = 20 nm, solid curves), hemispherical (R = 600 nm
and |h| = 50 nm, dash curves), and Gaussian (R = 200 nm and |h| =
20 nm, dotted curves) surface defects. The thick and thin curves

correspondto h < Oand h > 0, respectively.
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Unlike the case of these two types of surface defects, the spectra corresponding to
cylindrical defects, i.e. cylindrical holes or pillars, present a series of sharp, well defined
maxima which become more closely spaced as the frequency approaches the asymptotic
limit w = w, /N2. These spectral peaks can be associated with the excitation of plasmon
modes with a vanishing longitudinal (along the x; axis of the cylinder) propagation
constant, at the surface of the cylindrical defects. Indeed, the propagation constant of the
incident surface plasmon lies in the surface plane, and therefore any modes excited in the
x3 plane for a cylindrical defect must have a vanishing longitudinal propagation constant.

As it is well known, [54,55], these modes form a sharp, discrete spectrum with the mode

frequency asymptotically approaching the limit frequency of % irrespective of the radius

of the cylinder.

Our calculations show not only that the spectra of the scattering cross sections
depend on the particular shape of the defect but also that the field distribution is strongly
dependent on the geometry of the defect. This property, which can have a series of
applications to near field optical microscopy, is illustrated by the results summarized in
Fig. 4.8. This figure clearly shows that both the near field and the far-field generated in the
scattering process, at the FF, are strongly dependent on the shape of the defect. For
example, it can be seen that, unlike the case of a Gaussian or hemispherical defect, two

nano-beams are emitted in the case of a cylindrical defect.
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FIG. 4.8: Near-field and far-field distribution corresponding to cylindrical
(R = 200nm and h = —20 nm, top panels) and hemispherical (R =
600 nm and h = —50 nm, bottom panels) surface defects. The panels on
the left and on the right correspond to horizontal plane sections at x; =
0.2 um and x; = 1.2 um, respectively. The incident SPP wavelength is

A = 328 nm.

4.3.2 Field distribution and scattered light: second harmonic
The theoretical formalism presented in Sec. 4.2.2 allows one to determine the

spatial distribution of the electric field at the SH and the corresponding scattering cross
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section, once the electric field at the FF has been calculated. In addition, our theoretical
model allows us to study the relative contribution of the multipole moments to the total

amount of light generated at the SH.
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FIG. 4.9: Spectra of the SH radiated upon the scattering of SPP waves off
Gaussian surface defects. Panels (a) and (b) correspond to indentations (h =
—50 nm) and protuberances (h = 50 nm), respectively. In both panels, R =
200 nm and the spectra in both panels correspond to the electric dipole
moment (thin dash curves), the magnetic dipole moment (thick dotted
curves), the electric quadrupole moment (thin dotted curves), and the total

SHG (thin solid curves).
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A generic example that illustrates how our theoretical model can be applied to study
the generation of SH via the scattering of SPP waves by surface defects is presented in Fig.
4.9. Thus, this figure shows the spectra of the radiated SH, the surface defects considered
being Gaussian-shaped indentations and protuberances. Our theoretical formalism allows
us to separate the contribution of each multipole moment to the total generated SHG, so
that we show in Fig. 4.9 the spectrum of each of all these moments (up to the second-
order). As expected, our calculations show that the SH generated at short wavelengths is
predominantly due to the higher-order multipole moments (magnetic dipole and electric
quadrupole), whereas at long wavelengths (low frequency) the SH is primarily generated
by the induced electric dipoles. In addition, it can be seen that the frequencies of the
maxima and minima in the spectra corresponding to the magnetic dipole and electric
quadrupole are the same; in fact overall, these spectra exhibit nearly identical spectral
variation. However, the spectrum corresponding to the electric dipole shows a quite
different frequency dependence, a fact that is explained by the particular dependence on
wavelength of the power radiated by the induced multipole moments [see Eq. (4.16)]. Note
also that the total amount of generated SH increases with the frequency of the incident SPP
wave. Indeed, as the frequency increases the incident SPP wave has a shorter wavelength
and thus interacts more strongly with the surface defect. Consequently, the induced
multipole moments have a larger magnitude. Importantly, the spectral characteristics of the
radiated power at the FF are significantly different from those corresponding to the SH,
which further illustrates the differences in the physical phenomena involved in the radiation

process at the two frequencies.
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FIG. 4.10: Dependence of the total SHG on the size of Gaussian surface
defects. Panels (a) and (b) correspond to protuberances (h > 0) and
indentations (h < 0), respectively. In both panels, the parameters of the
defect are: R = 200 nm and |h| = 50 nm (solid curves), R =200 nm and |h| =

20 nm (dash curves), and R = 150 nm and |h| = 20 nm (dotted curves).

We have also investigated the dependence of the spectra of the generated SH on the
geometrical parameters of the surface defect. The results corresponding to a Gaussian
surface defect are summarized in Fig. 10. This figure shows that larger defects lead to the

generation of a larger SH signal. This result is an expected dependence of the SHG on the
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size of the defect since in the case of larger defects the nonlinear surface polarization is
induced over a larger area and therefore the multipole moments that generate light at the
SH are larger. Also, Fig. 4.10 suggests that the frequencies at which the SH spectra have
minima are primarily determined by the radius of the defect, the height (depth) k having

only a marginal influence on the location of these frequencies.
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FIG. 4.11: Top and bottom panels show the SHG corresponding to
cylindrical and hemispherical surface defects, respectively. In all panels, the
spectra correspond to the electric dipole moment (dotted curves), the
magnetic dipole moment (dash curves), the electric quadrupole moment

(dotted-dash curves), and the total amount of generated SH (solid curves).
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Our calculations show that, unlike the case of the FF, the spectra of the radiated
light at the SH depend to a lesser extent on the shape of the surface defect. This conclusion
is illustrated by Fig. 4.11, which shows the spectra corresponding to cylindrical and
hemispherical defects, for both h > 0 and h < 0. The general characteristics of these
spectra are very similar to those corresponding to the Gaussian surface defects, part of the
observed differences being attributable to the fact that the defects have different size.
Indeed, the amount of radiation emitted at the SH depends primarily on the magnitude of
the induced multipole moments and thus one expects that the general characteristics of the
corresponding spectra would depend only slightly on the shape of the surface defect.

One of the important applications of the theoretical formalism presented here is that
the spectral characteristics of the radiation emitted at the SH can be used to extract
information about the geometry of the surface defects and their surface properties. For
example, since the angular distribution of the radiation emitted by electric dipoles, electric
quadrupoles, and magnetic dipoles are quite different from each other, the angular
distribution of the total radiated light at the SH will depend strongly on the relative strength
of the magnitude of these induced multipoles. Therefore, the angular distribution of the
total light emitted at the SH can provide valuable information about the shape and surface
properties of the defect. This idea is illustrated in Fig. 4.12, where we show the angular
distribution of the light emitted at the SH, as well as the angular distribution corresponding
to the electric dipole, electric quadrupole, and magnetic dipole. Note that in this figure the
parameters of the surface defect and the wavelength of the incident SPP wave have been
chosen such that the amount of light radiated by each of the three multipoles has a

comparable magnitude, and therefore the angular distribution of the total radiated light is
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different from each of the angular distributions corresponding to the three multipoles.
However, in the case in which one of the multipoles dominates, the total angular
distribution of the SH will be similar to the angular distribution of that multipole and thus

this information can be used to determine the properties of the surface defect.
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FIG. 4.12: Angular distribution of the power emitted at the SH. The panels
correspond to a Gaussian surface defect with R = 200 nm and h = —50 nm,
and an incident SPP wave with wavelength A = 1012 nm. The panels
correspond to, (a), the electric dipole momentum; (b), the magnetic dipole

momentum; (c), the electric quadrupole moment; and (d), the total SH.
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The angular distribution of the power emitted at the SH can be used not only to
infer which is the dominant multipole that generates light at the SH, but also to obtain
information about the shape of the surface defect. As illustrated in Fig. 4.13, this is possible
because the angular distribution of the power radiated at the SH is strongly dependent on
the shape of the surface defect. Thus, as Fig. 4.13 shows, the angular distribution of the
power emitted by a cylindrical defect is very different from the angular dependence of the
power emitted by a hemispherical defect. Consequently, measuring the angular distribution

of the power generated at the SH could represent a powerful surface probing tool.

FIG. 4.13: Angular distribution of the power emitted at the SH. The panels
correspond to a cylindrical (left) and hemispherical (right) surface defect,
the wavelength of the incident SPP being A = 1012 nm. The defect
parameters are: (a), R =200 nm and h = —20 nm; (b), R = 600 nm and h =

=50 nm.
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In addition to the angular dependence of the power emitted at the SH, the spatial
distribution of the near-field at the SH can provide valuable information about the
properties of the surface defect. In particular, the spatial distribution of the near-field at the
SH depends on the shape of the surface defect and the nature of the surface (through the
surface susceptibility) and thus near-field surface optical microscopy measurements at the
SH can be used as an effective tool to study the properties of surface defects. [13]. As an
example, we show in Fig. 4.14 the spatial distribution of the near-field at the SH,
corresponding to a Gaussian defect. Our calculations show clearly that such field
distributions are strongly dependent on the shape of the surface defect and the wavelength
of the incident SPP wave, a property explained by the fact that the relative strength of the
induced multipoles that determine this field distribution is strongly dependent on these
parameters. Arguments similar to those just presented in connection to the angular
distribution of the power radiated at the SH allow us to conclude that the near-field at the
SH can be used to retrieve additional information, which is not contained in the field

distribution at the FF.
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FIG. 4.14: Electric field distribution corresponding to the scattering of a
SPP off a Gaussian surface defect with R = 200 nm and h = —50 nm. The

wavelength of the incident SPP is A = 328 nm.

4.4, CONCLUSIONS

In conclusion, we have presented a comprehensive analysis of the physical
characteristics of the SH generated as a result of the scattering of SPP waves off surface
metallic nanodefects with radial symmetry. Our analysis, based on a set of coupled reduced
Rayleigh equations, can be applied to surface nanodefects of arbitrary shape; in particular,
we have investigated surface nanodefects with three different geometries that are important
in practical applications, namely, Gaussian, hemispherical, and cylindrical nanodefects.

Moreover, our study shows that the physical characteristics of the scattering process at the
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FF, namely the distribution of the electromagnetic field and the spatial pattern of the
emitted radiation, is markedly different from those of the scattering process at the SH, and
therefore the surface generated SH could prove to be an invaluable non-invasive diagnosis
tool in surface spectroscopy. In particular, we have demonstrated that the structure of the
generated electromagnetic field at the SH is strongly dependent on the shape of the surface

nanodefects and on the physical properties of the surface, through the surface profile

function {(x;) and the surface susceptibility X§z) , respectively. As a result, our study

proves that the formalism introduced here has applicability to surface imaging or to surface
physical chemistry, e.g, to measurements of physical quantities related to molecular
adsorbates at interfaces or on metallic surfaces.

It is important to note, also, that our formalism can be easily extended to the case of
more than one surface nanodefect or to a periodic distribution of such surface nanodefects.
Thus, by extending our theoretical work to these more complex nanostructures would allow
one not only to reach a deeper understanding of linear and nonlinear light interaction with
nanopatterned metallic structure, but also provide us with a powerful tool to design and
investigate new plasmonic nanodevices, such as light concentrators in deep-sub-

wavelength spatial domains or optical nanoantennae.

4.5 APPENDIX:

45.1 DIFFERENTIAL AND TOTAL SCATTERING CROSS SECTIONS AT
THE FUNDAMENTAL FREQUENCY
The field distribution described by the Eq. (4.1) contains two components that are

of particular interest for an experimental investigation of scattering of SPPs by metallic
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nanostructures, namely the far field component radiated as an outward propagating
spherical wave, in the region x3 > {(x;), and a cylindrical SPP wave, which represents
the far field component of the scattered SPP. The far field distribution of the scattered light
can be derived from Eg. (4.1), by using the stationary phase approximation, [45], and is

given by the expression

iﬂx
c

1 lw . 56'\"(1) .
Erad (x; (U) = - _COS(Qx) [epAp (T Sln(ex))

27C
4.20

L (Yo
+ é.A; <T sm(@x))]

whereas the far field scattered SPP can be written as [43]:

in

iky(w)xy—ag(w)xz+—

ca(w)e

e(w)+1

E;ad(x; w) = —

421

ap (xky(w))

The unit vectors és = (—sin( ¢,),cos( ¢,),0) and ép =

(cos B4 cos ¢y, cos By sin ¢, , —sin 8,.) in define the polarization direction of s- and p-
polarized waves, respectively, whereas X = x(sin8, cos¢, ,sin6, sin¢, ,cosb, ) is
a vector that defines the direction of observation. Note that the expression (A.2) is equal to
2x times the residue of the integrand in Eq. (1) at the pole g, = k;(w). The Egs. (A.1) and
(A.2) can be used to calculate the amount of energy scattered into radiative modes (light)

and surface plasmon waves. Thus, the power density radiated in the solid angle defined by

dPrad (Bx:(.bx)

the angles 6, and ¢, is )

= x?Re{S; rqa(X; @)}, Whereas the power density

108



dPsPP(,d’x) —

emitted by the surface plasmon wave, in a direction defined by the angle ¢, is P

xRe{S; spp(X; w)}. Here, S, spp(X; w) is the radial component of the Poynting vector.

Moreover, the power density associated to the incident surface plasmon wave, per unit
length, can be written as % = Re {S;;m(x; w)}, where the component Sy ;,,.(x%; w)
2

corresponds to the first term in the r.h.s. of Eq. (4.1). Furthermore, these power densities
can be used to define two deferential scattering cross-sections, 0,44 (8, ¢,) and ospp( @),
which characterize the scattering of the incident surface plasmon wave into radiation and

outgoing surface plasmons, respectively:

daradz 1 dPrad(gxr(Px)
dQ P, Q.

Zrad(Bx, Py) = 4.22a

dJsppz 1 dPgpp(y)
dqu Pinc d¢x

Finally, from the differential scattering cross-sections we can determine the total scattering

4.22b

Zspp(Py) =

cross-sections, quantities that are given by the following expressions:

T
1 (2 T
Orqd = _J dgx sin Bx dd)xeRe{Sr rad (X; a))} 4.233
Pinc 0 -1 '
1 *© T
g =5 | s | dexiRe(Srsop (6 ) 423
Pinc 0 -1 '

Here, the incident power P;,,. can be written as

Pipe =

dx, j dxsRe{S; inc (X, w)} 4.24
0

|
Nl?‘%mw
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4.5.2 BORN APPROXIMATION
A big challenge for simulations is to verify the correctness of numerical codes. In
order to do this, we use Born Approximation for the lower frequency range to get a better
understanding of our results as well as to verify our code.
Born Approximation is an analytical approach for analyzing scattering properties in

which the higher orders of interactions are neglected.

110



Bibliography:

[1] W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature (London) 424, 824 (2003).

[2] T. W. Ebbesen, H. J.Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, Nature (London)
391,667(1998).

[3] S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam,
Phys. Rev Lett. 86, 3008 (2001).

[4] S. K. Gray and T. Kupka, Phys. Rev. B 68, 045415 (2003).

[5] W. Nomura, M. Ohtsu, and T. Yatsui, Appl. Phys. Lett. 86, 181108 (2005).

[6] S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, Nature
(London) 440, 508 (2006).

[7] X. P. Zhang, B. Q. Sun, R. H. Friend, H. C. Guo, D. Nau, and H. Giessen, Nano Lett.
6, 651 (2006).

[8] J. Cesario, M. U. Gonzalez, S. Cheylan, W. L. Barnes, S. Enoch, and R. Quidant,
Opt. Express 15, 10533 (2007).

[9] R. M. Roth, N. C. Panoiu, M. M. Adams, J. |. Dadap, and R. M. Osgood, Opt. Lett.
32, 3414 (2007).

[10] S. M. Nie and S. R. Emery, Science 275, 1102 (1997).

[11] K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. ltzkan, R. R. Dasari, and M. S.
Feld, Phys. Rev. Lett. 78, 1667 (1997).

[12] C. L. Haynes and R. P. VVan Duyne, J. Phys. Chem. B 107, 7426 (2003).

[13] R. M. Roth, N. C. Panoiu, M. M. Adams, R. M. Osgood, C. C. Neacsu, and M. B.

Raschke, Opt. Express 14, 2921 (2006).

111



[14] D. M. Schaadt, B. Feng, and E. T. Yu, Appl. Phys. Lett. 86, 063106 (2005).

[15] J. Cole and N. J. Halas, Appl. Phys. Lett. 89, 153120 (2006).

[16] N. C. Panoiu and R. M. Osgood, Opt. Lett. 32, 2827 (2007).

[17]R. D. R. Bhat, N. C. Panoiu, S. R. J. Brueck, and R. M. Osgood, Opt. Express 16,
4588 (2008).

[18] R. M. Osgood and D. J. Ehrlich, Opt. Lett. 7, 385 (1982).

[19] C. J. Chen and R. M. Osgood, Phys. Rev. Lett. 50, 1705 (1983).

[20] H. J. Simon, D. E. Mitchell, and J. G. Watson, Phys. Rev. Lett. 33, 1531 (1974).

[21] A. V. Baranov, Y. S. Bobovich, and V. I. Petrov, Opt Spektrosk+ 58, 578 (1985).

[22] C. K. Johnson and S. A. Soper, J. Phys. Chem. 93, 7281 (1989).

[23] R. Antoine, P. F. Brevet, H. H. Girault, D. Bethell, and D. J. Schiffrin, Chem.
Commun., 1901 (1997).

[24] E. C. Hao, G. C. Schatz, R. C. Johnson, and J. T. Hupp, J. Chem. Phys. 117, 5963
(2002).

[25] A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, Phys. Rev. Lett. 90,
013903 (2003).

[26] W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J.
Malloy, and S. R. J. Brueck, Nano Lett. 6, 1027 (2006).

[27] L. Cao, N. C. Panoiu, and R. M. Osgood, Phys. Rev. B 75, 205401 (2007).

[28] C. Hubert, L. Billot, P. M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. D.
Dorkenoo, and A. Fort, Appl. Phys. Lett. 90, 181105 (2007).

[29] N. C. Panoiu and R. M. Osgood, Nano Lett. 4, 2427 (2004).

112



[30] H. Raether, Surface Polaritons on Smooth and Rough Surfaces and on Gratings
(Springer-Verlag, Berlin, 1995).

[31] A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, Phys. Rep. 408, 131 (2005).

[32] T. F. Heinz, In Nonlinear Surface Electromagnetic Phenomena H. E. Panath, and G.
I. Stegeman, (Elsevier, Amsterdam, 1991); p 353.

[33] S. I. Bozhevolnyi and K. Pedersen, Surf. Sci. 377-379, 384 (1997).

[34] U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag,
Berlin, 1995).

[35] J. I. Dadap, J. Shan, and T. F. Heinz, J. Opt. Soc. Am. B 21, 1328 (2004).

[36] K. B. Eisenthal, Chem. Rev. 106, 1462 (2006).

[37] K. Atsushi, Y. S. Jung, H. K. Kim, and H. Petek, J. Phys. B: At. Mol. Opt. Phys. 40,
$259-S272 (2007)

[38] G. Boisde and A. Harmer, Chemical and Biochemical Sensing with Optical Fibers
and Waveguides (Arthech House, Boston, 1996).

[39] J. L. West and N. J. Halas, Annu. Rev. Biomed. Eng. 5, 285 (2003).

[40] M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C.
A. Ward, Appl. Opt. 22, 1099 (1983); M. A. Ordal, R. J. Bell, R. W. Alexander, L. L.
Long, and M. R. Querry, ibid. 24, 4493 (1985).

[41] G. C. Brown, V. Celli, M. Haller, and A. Marvin, Surf. Sci. 136, 381 (1984).\

[42] A. A. Maradudin, In Topics in Condensed Matter Physics; Das, M. P., Ed. (Nova
Science: New York, 1994); p 33.

[43] A. V. Shchegrov, I. V. Novikov, and A. A. Maradudin, Phys. Rev. Lett. 78, 4269

(1997).

113



[44] J. A. Sanchez-Gil and A. A. Maradudin, Phys. Rev. B 60, 8359 (1999).

[45] D. L. Mills, Phys. Rev. B 12 4036 (1975).

[46] N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, Phys. Rev. 174, 813
(1968).

[47]J. E. Sipe, V. C. Y. So, M. Fukui, and G. I. Stegeman, Phys. Rev. B 21, 4389
(1980).

[48] J. E. Sipe, V. Mizrahi, and G. I. Stegeman, Phys. Rev. B 35, 9091 (1987).

[49] G. S. Agarwal and S. S. Jha, Solid State Commun. 41, 499 (1982).

[50] D. Krause, C. W. Teplin, and C. T. Rogers, J. Appl. Phys. 96, 3626 (2004).

[51] J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley & sons, Inc., Hoboken,
1999).

[52] J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, Phys. Rev. Lett. 83, 4045
(1999).

[53] W. H. Press, S. A. Teukoisky, W. T. Vetterling, and B. P. Flannery, Numerical
Recipes in C (Cambridge University Press, Cambridge, U. K., 1992).

[54] V. Kuzmiak and A. A. Maradudin, Phys. Rev. B 55, 7427 (1997).

[55] T. Ito and K. Sakoda, Phys. Rev. B 64, 045117 (2001).

114



Chapter 5

Future Studies

There are several clear central directions for interesting future work after this thesis.
As we have discussed, this thesis yielded an analytical approach for understanding the
scattering properties of SPP by metallic nanostructures. We were still able to do the
simulations for 1D Gaussian structures as well as 2D circularly symmetric
nanostructures. Finally, this approach is a general approach and is easy applicable to

different systems. These more complex systems are as follows:

1. Scattering of SPP by grating metallic structures

A grating structure is a simple extension of the 1D Gaussian structure we have
discussed in Chapter 3. The approach to solve this problem should start from Eq. (3.3)
and change the function f(q). All the other equations should hold. In this way, we can
simulated the interaction of SPP’s with gratings, which are typical coupling devices for

optical SPP excitation.

2. Scattering of SPP by multiple circularly symmetric nanodefects
An important goal of this project is to simulate random distributions of defects,
adsorbates, or adsorbates on planar surfaces. A first-order approximation for such

multiple nanodefects can come from the simple superposition of the electric field of
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single defects. However, for more accuracy, a better approach should start from Eq. (4.8)
and use the exact form for the surface function. The chief difficulty in these calculations

is the loss of a simple single spatial origin for the nanostudies.

3. Design of optical devices
Once we could solve the multiply defects problem, an application should be the

prediction of surface scattering phenomena thus to design new optical devices for the

control of optical-like surface energy flow.

4. Scattering of SPP by chiral metallic nanostructures.
If the surface defect has chirality, it is expected that we could generate
nanoflashlights with angular momentum. This is a very interesting direction, which can

be used for chiral molecule probing.
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