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SUMMARY

Power engineering is concerned with the generation, transmission, and distribution

of electricity over electric power network. In this thesis, we focus on two operational

level optimization problems from power system planning, namely the Optimal Power

Flow Problem (OPF) and the Optimal Transmission Switching (OTS) Problem. The

former is a nonlinear network problem and the latter is the network design version of

the first one. Due to nonlinearity induced by alternating current power flow equations,

these two optimization problems, defined precisely in Chapter 1, are nonconvex and

require efficient global optimization methods.

In Chapter 2, we consider Alternating Current OPF (AC OPF) problem over

radial networks and analyze the approximation outcomes of the semidefinite pro-

gramming (SDP) relaxation, which is proven to be exact over radial networks under

some technical conditions. We design a library of instances that demonstrate positive

SDP optimality gaps when these conditions do not hold. Finally, we propose valid

inequalities and variable bound tightening techniques that significantly improve the

computational performance of a global optimization solver. Our work demonstrates

the need of developing efficient global optimization methods for the solution of OPF

even in the simple but fundamental case of radial networks.

In Chapter 3, we focus on the solution of AC OPF problem for the general case of

meshed networks. This chapter proposes three strong second-order cone programming

(SOCP) relaxations for the AC OPF problem by exploiting the underlying network

structure. Two of these three relaxations are incomparable to the standard SDP

relaxation of OPF. Extensive computational experiments show that these relaxations

x



have numerous advantages over existing convex relaxations in the literature in terms of

both quality of the relaxations and practicability to obtain feasible solutions within

a time framework that is compatible with the real-time operations in the current

industry practice.

In Chapter 4, we again consider the AC OPF problem with a particular empha-

sis on solving more challenging instances. We analyze the properties of the minors

and submatrices of the matrix variable in a lifted formulation, and obtain a stronger

SOCP relaxation than the ones proposed in Chapter 3 by the addition of valid in-

equalities and improved bound tightening techniques. We also propose an SOCP

based spatial branch-and-cut algorithm to solve the most difficult instances. Over-

all, our methodology provides a computationally tractable approach to obtain strong

relaxation bounds for some of the hardest OPF instances from the literature.

In Chapter 5, we consider the so-called Direct Current OTS problem, which incor-

porates a linear approximation to nonconvex AC power flow equations. Most research

on DC OTS has focused on heuristic algorithms for generating quality solutions. How-

ever, the mathematical theory of the DC OTS problem is less well-developed. In this

chapter, we formally establish that DC OTS is NP-Hard. We characterize the con-

vex hull of a cycle-induced relaxation inspired by Kirchoff’s Voltage Law, and this

characterization provides strong valid inequalities that can be used in a cutting-plane

approach to solve the DC OTS. We give details of a practical implementation, and

show promising computational results on standard benchmark instances.

In Chapter 6, we focus on the OTS problem with the full AC power flow model

since the commonly-used DC approximation of the power flow model is known to

result in inaccurate flow solutions. In this chapter, we propose a new exact formula-

tion for AC OTS and its mixed-integer second-order cone programming (MISOCP)

relaxation. We improve this relaxation via several types of strong valid inequalities

xi



inspired by the developments for the AC OPF problem in Chapter 3. We also pro-

pose a practical algorithm to obtain high quality feasible solutions for the AC OTS

problem. Extensive computational experiments show that the proposed formulation

and algorithms lead to significant cost benefits with provably tight bounds.
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CHAPTER I

INTRODUCTION

Power engineering is concerned with the generation, transmission, and distribution

of electricity over electric power network, which is arguably one of the largest engi-

neering systems in the world, as electricity is used by billions of people in industry,

homes, businesses, and transportation continuously. The size of electric utility in-

dustry exceeds billions of dollars and its utilization in a cost-effective manner while

providing reliable accessibility is extremely important.

Power system planning is a hierarchical decision making environment [94]. Long

term planning in power systems includes decisions about generation and transmission

capacity expansion in order to satisfy future demand forecasts. These decisions are

typically taken over a time horizon of 5-15 years or longer. Medium term planning

involves decisions about scheduling of maintenance of key equipments such as gen-

erators. These decisions are usually taken annually or semi-annually. Short term

decisions are typically taken daily and involve decisions such as which generators to

use for the next few days. This fundamental operational problem is known as Unit

Commitment.

In this thesis, we focus on real-time operations with decisions taken every 5-15

minutes. We consider two fundamental problems: The first problem is known as Eco-

nomic Dispatch or Optimal Power Flow. Given the output of Unit Commitment, i.e.

the generation on and off schedules, Optimal Power Flow is used to match the supply

and demand in real time. This is an especially challenging optimization problem due

to nonconvexities introduced by the power flow equations and limited computational

time budget.

1



The second problem is known as Optimal Transmission Switching. Recent ad-

vances in the modern transmission control and relay technologies have made it possi-

ble to change the network topology by switching on and off transmission lines. Quite

interestingly, allowing this flexibility may reduce costs and improve reliability of the

underlying power network. In Optimal Transmission Switching, the network topology

is optimized to obtain the minimum cost dispatch while satisfying the physical laws

in Optimal Power Flow. Therefore, this problem contains additional nonconvexities

introduced due to discrete decisions based on line switching. In the remainder of

this chapter, we formally define these two problems and present the corresponding

optimization models.

1.1 Optimal Power Flow

1.1.1 Introduction and Literature Survey

Optimal Power Flow (OPF) was first introduced in the 1960s [21] and still remains to

be a fundamental optimization problem in electrical power systems analysis. There

are two challenges in the solution of OPF. First, it is an operational level problem

solved every few minutes, hence the computational budget is limited. Second, it is

a nonconvex optimization problem on a large-scale power network of thousands of

buses, generators, and loads. The importance of the problem and the aforementioned

difficulties have produced a rich literature, see e.g. [81, 82, 34, 35, 20]. Roughly

speaking, we can categorize the previous work into three categories.

The first category of algorithms finds local optimal solutions or stationary points

of the OPF problem. The academic literature has focused on improving nonlinear

optimization methods such as the interior point methods (IPM) to compute local

optimal solutions, see e.g. [108, 99, 49, 106]. A well-known implementation of IPM

tailored for the OPF problem is MATPOWER [111]. Although these local methods

are effective in solving IEEE test instances, they do not offer any quantification of

2



the quality of the solution. For instance, in [19], there are several examples which

have multiple local optima and it has been shown that local solvers tend to converge

to the solution which is closest to the initial guess.

The second category of algorithms attempts to obtain global optimal solutions of

OPF by solving convex relaxations. In the recent years, much research interests have

been drawn to the this approach. In particular, the second-order cone programming

(SOCP) and the semidefinite programming (SDP) relaxations are first applied to the

OPF problem in [52], and [6, 5] and [67]. Among these two approaches, the SDP

relaxation and its variations have drawn significant attention due to their strength.

Since convex conic programs are polynomially solvable, the SDP relaxation offers

an effective way for obtaining global optimal solutions to OPF problems whenever

the relaxation is exact. Unfortunately, the exactness of the SDP relaxations can be

guaranteed only for a restricted class of problems under some assumptions as listed

below:

- One of the early works that popularizes this approach is [67]. It is shown that

the SDP relaxation is tight for a resistive network with no reactive loads where

demand over-satisfaction is allowed, as long as the dual variables are positive.

It was conjectured that under normal operating conditions, the SDP relaxation

is tight.

- However, [69] gives a very simple counterexample (a 3-bus cycle) with nonzero

optimality gap.

- In [91], it is proven that SDP relaxation is exact if load over-satisfaction is

allowed and a sufficient number of virtual phase shifters are present.

- An attempt to solve OPF using SDP relaxation is made in [110] for radial

networks. In this work, it is proven that under operational constraints on voltage

magnitudes, line losses, and line flows, the SDP relaxation is tight if there are

3



no lower bounds on real and reactive power generation at any bus. Similar

results are also obtained in [18, 17] without line limit constraints.

- In [66], it is proven that if voltage magnitudes are fixed, then the convex re-

laxations are tight under practical angle restrictions for radial networks in the

presence of only real power lower bounds. This result extends to the case with

variable voltage magnitudes under reasonable assumptions.

A comprehensive survey can be found in [71, 72].

As we observe above, the exactness of the SDP relaxation can only be guaranteed

for special classes of OPF instances, often when we disregard some generation lower

bounds. Unfortunately, if the SDP relaxation is not tight, the physical meaning of its

solution is not easy to recover. A way to further strengthen the SDP relaxation is to

solve a hierarchy of moment relaxation problems [65, 86]. This approach is used in [55]

to globally solve small-size problems, and is also used in [80] to obtain tighter lower

bounds for larger problems of 300-bus systems. However, due to the NP-hardness of

the OPF problem [102, 67], in general the order of the Lasserre hierarchy required to

obtain a global optimal solution can be arbitrarily large. Furthermore, even the global

optimal objective function value is achieved, the solution matrices may not be rank

one, which poses another challenge in terms of recovering an optimal voltage solution

[66]. This indicates the computational difficulty of the SDP relaxation approach to

practically solve real-world sized power networks with more than a thousand buses.

For such large-scale OPF problems, a straightforward use of IPM to solve the SDP re-

laxation becomes prohibitively expensive. Interesting works have been done to exploit

the sparsity of power networks as in [48, 79, 74, 80, 75]. The underlying methodology

utilizes techniques such as chordal graph extension, tree-width decomposition, and

matrix completion, as proposed and developed in [36] and [83].

More recently, there is a growing trend to use computationally less demanding

relaxations based on linear programming (LP) and SOCP to solve the OPF problem.
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For instance, linear and quadratic envelopes for trigonometric functions in the polar

formulation of the OPF problem are constructed in [28, 45, 27]. In [14], LP based

outer approximations are proposed which are strengthened by incorporating several

types of valid inequalities.

The third category of algorithms attempts to remove the pitfalls of the previous

two approaches by endeavoring to obtain globally optimal solutions. One such algo-

rithm based on branch-and-bound method is proposed in [87] for the solution of OPF.

Lagrangian relaxation is used to find lower bounds while a local solver (IPOPT) is

utilized to obtain upper bounds. Global solution techniques are in their infancy today

and much work needs to be done to make them practically efficient.

1.1.2 Formulation

Consider a power network N = (B,L), where B denotes the node set, i.e., the set

of buses, and L denotes the edge set, i.e., the set of transmission lines. A typical

power system involves a power network, that is, a set of nodes called buses and edges

called transmission lines. See Figure 1 for an illustration. This small power network

contains 14 buses, 20 transmission lines and 5 generators. Generation units (i.e.

electric power generators) are connected to a subset of buses, denoted as G ⊆ B. We

assume that there is electric demand, also called load, at every bus. The aim of the

optimal power flow problem is to satisfy demand at all buses with the minimum total

production costs of generators such that the solution obeys the physical laws (e.g.,

Ohm’s Law and Kirchoff’s Law) and other operational restrictions (e.g., transmission

line flow limit constraints).

Let Y ∈ C|B|×|B| denote the nodal admittance matrix, which has components

Yij = Gij + iBij for each line (i, j) ∈ L, and Gii = gii−
∑

j 6=iGij, Bii = bii−
∑

j 6=iBij,

where gii (resp. bii) is the shunt conductance (resp. susceptance) at bus i ∈ B and

i =
√
−1. Let pgi , q

g
i (resp. pdi , q

d
i ) be the real and reactive power output of the
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Figure 1: Standard IEEE 14-bus network. Nodes with circles and arrows represent
generator and load buses, respectively [24].

generator (resp. load) at bus i. The complex voltage (also called voltage phasor) Vi

at bus i can be expressed either in the rectangular form as Vi = ei + ifi or in the

polar form as Vi = |Vi|(cos θi+ i sin θi), where |Vi|2 = e2
i +f 2

i is the voltage magnitude

and θi is the angle of the complex voltage. In power system analysis, the voltage

magnitude is usually normalized against a unit voltage level and is expressed in per

unit (p.u.). For example, if the unit voltage is 100kV, then 110kV is expressed as 1.1

p.u.. In transmission systems, the bus voltage magnitudes are usually restricted to

be close to the unit voltage level to maintain system stability. We also define active

and reactive power flow along a line as pij and qij, respectively. We assume that there

is at most one generator at each bus. This assumption is without loss of generality,

since the models we present can be extended to the case with multiple generators by

replacing the dispatch variable by the sum of different dispatch variables attached to
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a particular bus.

With the above notation, the OPF problem is given in the so-called rectangular

formulation as follows [94]:

min
∑
i∈G

Ci(p
g
i ) (1a)

s.t. pgi − pdi = gii(e
2
i + f 2

i ) +
∑
j∈δ(i)

pij i ∈ B (1b)

qgi − qdi = −bii(e2
i + f 2

i ) +
∑
j∈δ(i)

qij i ∈ B (1c)

pij = −Gij(e
2
i + f 2

i ) +Gij(eiej + fifj)−Bij(eifj − ejfi) (i, j) ∈ L (1d)

qij = Bij(e
2
i + f 2

i )−Bij(eiej + fifj)−Gij(eifj − ejfi) (i, j) ∈ L (1e)

V 2
i ≤ e2

i + f 2
i ≤ V

2

i i ∈ B (1f)

p2
ij + q2

ij ≤ S
2

ij (i, j) ∈ L (1g)

pmin
i ≤ pgi ≤ pmax

i i ∈ B (1h)

qmin
i ≤ qgi ≤ qmax

i i ∈ B. (1i)

Here, Ci(p
g
i ) in (1a) represents the production cost of generator i, which typically is

either a linear or a convex quadratic nondecreasing function of pgi . Constraints (1b)-

(1c) enforce flow conservation at each bus i, where δ(i) is the set of buses adjacent to

i. Constraints (1d)-(1e) define real and reactive power across line (i, j), namely pij

and qij, in terms of the complex voltage at buses i and j while constraint (1g) imposes

an upper bound on apparent power over line (i, j). Constraint (1f) limits the upper

and lower bounds on the bus voltage magnitudes. Usually V i and V i are close to the

unit voltage. Constraints (1h)-(1i) are the upper and lower bounds on generator i’s

real and reactive power, respectively. Here, we have pmin
i = pmax

i = qmin
i = qmax

i = 0

for bus i where there is no generator, i.e. i ∈ B \ G.

One can equivalently formulate the above OPF problem in polar coordinates by

replacing (1f)-(1f) with (2) [94]:

7



pgi − pdi = gii|Vi|2 +
∑
j∈δ(i)

pij i ∈ B (2a)

qgi − qdi = −bii|Vi|2 +
∑
j∈δ(i)

qij i ∈ B (2b)

V i ≤ |Vi| ≤ V i i ∈ B (2c)

pij = −Gij|Vi|2 +Gij|Vi||Vj| cos(θi − θj) +Bij|Vi||Vj| sin(θi − θj) (i, j) ∈ L (2d)

qij = Bij|Vi|2 −Bij|Vi||Vj| cos(θi − θj) +Gij|Vi||Vj| sin(θi − θj) (i, j) ∈ L. (2e)

Sometimes, the rectangular formulation is preferred since the Hessian matrices of

the constraints are constant and this is an advantage for the interior point methods.

On the other hand, when the voltage magnitude is fixed at some buses, the polar

formulation may become more advantageous [94].

1.1.3 DC Approximation

AC OPF is a difficult optimization problem due to its inherent nonlinearity and

nonconvexity. Due to these challenges, the current practice in the electricity industry

is to use the so-called DC OPF approximation [31]. DC OPF is a linearization of

AC OPF by exploiting some physical properties of the power flows in typical power

systems, such as tight bounds on voltage magnitudes at buses and small voltage

angle differences between buses. However, such an approximation completely ignores

important aspects of power flow physics, such as the reactive power and voltage

magnitude. To partially remedy this drawback, the current practice is to solve DC

OPF and then to solve a set of power flow equations with the DC OPF solution to

compute feasible reactive powers and voltages. Especially for uncongested systems

with small losses, DC OPF offers a reasonable approximation for AC OPF, or at least,

provides good starting points for nonlinear solvers.

DC approximation exploits some physical properties of the power flows. In par-

ticular, we make the following three assumptions to obtain DC power flow equations:
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(i) Resistance of transmission lines is small, i.e., G ≈ 0.

(ii) Voltage magnitudes are fixed to be around 1 p.u., i.e., |V | ≈ 1.

(iii) Phase angle difference between two neighboring buses is small, i.e., θi− θj ≈ 0.

This assumption leads to the approximation sin(θi − θj) ≈ θi − θj.

Now, we present the formulation for DC OPF using a subset of decision variables

in AC OPF with one exception: In order to emphasize the difference between AC and

DC versions of the problem, we denote the real power flow across line (i, j) as fij.

In the DC model, power flow on a transmission line is proportional to the difference

in phase angles of voltages at the two ends of the line with a constant coefficient

Bij. Since DC approximation implies that the lines are lossless, we have fij = −fji.

Each line (i, j) ∈ L is given an (arbitrary) orientation, with the convention that

power flow in the direction from i → j is positive, while power that flows along

line (i, j) in the direction j → i is negative. We use the standard notation that

δ+(i) := {j ∈ B : (i, j) ∈ L} and δ−(i) := {j ∈ B : (j, i) ∈ L}. Each transmission

line (i, j) ∈ L has an upper bound f̄ij on the allowed power flow. Finally, DC OPF

problem is modeled as follows [94]:

min
∑
i∈G

Ci(p
g
i ) (3a)

s.t. pgi − pdi =
∑

j∈δ+(i)

fij −
∑

j∈δ−(i)

fji i ∈ B (3b)

fij = Bij(θi − θj) (i, j) ∈ L (3c)

− f ij ≤ fij ≤ f ij (i, j) ∈ L, (3d)

(1h).

Here, constraint (3b) enforces flow conservation at each bus i. Constraint (3c) defines

real power across line (i, j), namely fij in terms of the phase angles at buses i and j

while constraint (3d) imposes an upper bound on power over line (i, j).
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1.2 Optimal Transmission Switching

1.2.1 Introduction and Literature Survey

Transmission switching, as an emerging operational scheme, has gained considerable

attention in both industry and academia in the recent years [84, 33, 42, 58, 43].

Switching on and off transmission lines, therefore, changing the network topology

in the real-time operation, may bring several benefits that the traditional economic

dispatch cannot offer, such as reducing the total operational cost [33, 41, 39], mit-

igating transmission congestion [98], clearing contingencies [57, 63], and improving

do-not-exceed limits [64] .

One consequence of the underlying physical laws of electric power flow is a type

of “Braess’s Paradox” where removing lines from a transmission network may result

in improved network efficiency. [84] proposes exploiting this well-known attribute

of power transmission networks by switching off lines in order to reduce generation

costs. In [33], this notion was formalized into a mathematical optimization problem

known as the Optimal Transmission Switching (OTS) problem. The OTS problem is

the OPF problem augmented with the additional flexibility of changing the network

topology by removing transmission lines. While motivated in [84] by an operational

problem in which lines may be switched off to improve efficiency, the same mathemat-

ical switching structure appears also in longer-term transmission network expansion

planning problems.

Because of the mathematical complexity induced by the AC power flow equations,

nearly all studies to date on the OTS problem have used the DC approximation to

power flow (e.g. see [84, 33, 10, 88, 89, 37, 107]). With this approximation, a mixed-

integer linear programming (MILP) model for DC OTS can be constructed and the

resulting model can be fed into to existing MILP software. In the MILP model,

binary variables are used to model the changing topology and enforce the network

power flow constraints on a line if and only if the line is present. Models with many
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“indicator constraints” of this form are often intractable for modern computational

integer programming software, since the linear relaxations of the formulations are

typically very weak. Previous authors have found this to be true for DC OTS, and

many heuristic methods have been developed based on ranking lines [10, 37, 107],

or by imposing an (artificial) cardinality constraint on the number of lines that may

be switched off in a solution [33]. The solutions found from these heuristics have

demonstrated that significant efficiency gains are possible via transmission switching.

A survey in [43] enumerates applications of transmission switching to improve

voltage profiles, reduce congestion and losses in the system, and to increase reliability

of the power grid. A standard reliability criterion for the power grid is that the system

must be able to withstand an “N − 1” event—in an interconnection network with N

elements, the system will operate reliably following the failure of any one of them. In

[42], authors augment the DC OTS model to ensure that the N −1 reliability criteria

is satisfied. Heuristics are used to iteratively decide which lines to be switched off,

while preserving N − 1 reliability for standard test cases. The authors show that

significant cost savings from transmission switching is still possible even if the N − 1

contingency is required. Switching can be beneficial in terms of cost savings but one

should also consider the reliability side. In [85], “connectivity-ensuring constraints”

are developed to prevent islanding, which is not a desirable topology under normal

operating conditions.

Transmission switching is also an important subproblem in power grid transmis-

sion expansion planning. In [58], a large MILP model is constructed to solve an

expansion planning problem with contingencies, where the DC power flow equations

are used, and transmission switching is allowed in finding the best configuration. In

[103], a slightly different model for expansion planning is developed that also relies

on the DC-power flow approximation and transmission switching. They employ their

method on a case study for a real power system expansion plan in Denmark (see [104]).
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In the context of expansion planning, it is important to note that the mathematical

structure of line addition is exactly the same as line removal.

As mentioned above, previous literature on transmission switching mainly focuses

on DC version of the problem and exploring fast heuristics to obtain good solutions

efficiently. However, it has also been recognized that the optimal topology obtained

by solving DC transmission switching is not guaranteed to be AC feasible, also it

may over-estimate cost improvements and overlook stability issues [45]. [26] offers

a criticism of the use of the DC-approximation to model power flow for the OTS

problem. The paper demonstrates that a direct application of the DC power flow

equations may not be accurate enough to recover useful AC operation solutions in

the context of the OTS. They thus argue for the use of the AC-power flow equations

in the OTS problem.

The AC optimal transmission switching problem (AC OTS) is much less explored

and the limited literature is relatively new. In [45], a convex relaxation of AC OTS is

proposed based on trigonometric outer-approximation. The problem is formulated as

a mixed integer nonlinear program (MINLP) and solved using the solver BONMIN

to obtain upper bounds. In [93], a new ranking heuristic is proposed based on the

economic dispatch solutions and the corresponding dual variables. In [11], DC OTS

is solved first and then a heuristic correction mechanism is utilized to restore AC

feasibility of the solutions.

There are several closely related problems in the literature, which have line switch-

ing decisions similar to AC OTS, such as network configuration [51, 32], transmission

system planning [50] and intentional islanding [100]. The main ideas are based on

conic relaxations or piecewise linear approximations of the nonconvex power flow

equations.
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1.2.2 Formulation

AC OPF and DC OPF formulations introduced in Sections 1.1.2 and 1.1.3 respectively

can be easily adapted to OTS by introducing binary variables xij that takes the value

1 if line (i, j) ∈ L is on, and 0 if the line is disconnected. Let us first start with

AC OTS, which can be obtained by replacing constraints (1d)-(1e) in rectangular

formulation (1) by

pij = [−Gij(e
2
i + f 2

i ) +Gij(eiej + fifj)−Bij(eifj − ejfi)]xij (4a)

qij = [ Bij(e
2
i + f 2

i )−Bij(eiej + fifj)−Gij(eifj − ejfi)]xij, (4b)

or constraints (2d)-(2e) in polar formulation by

pij = [−Gij|Vi|2 +Gij|Vi||Vj| cos(θi − θj) +Bij|Vi||Vj| sin(θi − θj)]xij (5a)

qij = [ Bij|Vi|2 −Bij|Vi||Vj| cos(θi − θj) +Gij|Vi||Vj| sin(θi − θj)]xij. (5b)

On the other hand, to obtain DC OTS, we simply replace constraint (3c) in DC OPF

formulation (3) by

fij = [Bij(θi − θj)]xij. (6)

This nonlinear constraint can be linearized using McCormick envelopes as in [33].

1.3 Contributions

Here, we summarize the key contributions of each chapter.

Chapter 2 is based on [61], in which we consider AC OPF problem over radial

networks. It has been recently proven that the SDP relaxation of the OPF problem

over radial networks is exact under technical conditions such as not including gener-

ation lower bounds or allowing load over-satisfaction. In this chapter, we investigate

the situation where generation lower bounds are present. We show that even for a

two-bus one-generator system, the SDP relaxation can have all possible approxima-

tion outcomes, that is (1) SDP relaxation may be exact or (2) SDP relaxation may
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be inexact or (3) SDP relaxation may be feasible while the OPF instance may be

infeasible. We provide a complete characterization of when these three approxima-

tion outcomes occur and an analytical expression of the resulting optimality gap for

this two-bus system. In order to facilitate further research, we design a library of

instances over radial networks in which the SDP relaxation has positive optimality

gap. Finally, we propose valid inequalities and variable bound tightening techniques

that significantly improve the computational performance of a global optimization

solver. Our work demonstrates the need of developing efficient global optimization

methods for the solution of OPF even in the simple but fundamental case of radial

networks.

Chapter 3 is based on [60], in which we focus on the solution of AC OPF problem

for the general case of meshed networks. This chapter proposes three strong SOCP

relaxations for the AC OPF problem. These three relaxations are incomparable to

each other and two of them are incomparable to the standard SDP relaxation of OPF.

Extensive computational experiments show that these relaxations have numerous ad-

vantages over existing convex relaxations in the literature: (i) their solution quality

is extremely close to that of the SDP relaxations (the best one is within 99.96% of

the SDP relaxation on average for all the IEEE test cases) and consistently outper-

form previously proposed convex quadratic relaxations of the OPF problem, (ii) the

solutions from the strong SOCP relaxations can be directly used as a warm start in

a local solver such as IPOPT to obtain a high quality feasible OPF solution, and (iii)

in terms of computation time, the strong SOCP relaxations can be solved an order

of magnitude faster than standard SDP relaxations. Overall, the proposed strong

SOCP relaxations provide a practical approach to obtain feasible OPF solutions with

extremely good quality within a time framework that is compatible with the real-time

operation in the current industry practice.

Chapter 4 focuses on solving the challenging OPF instances from the NESTA
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archive [25] by making use of global optimization techniques including cutting planes,

convex envelopes and bound tightening methods specialized for this problem. In this

chapter, we first model the OPF Problem as a SDP with additional minor restric-

tions. A thorough analysis of the properties of the minors and submatrices of the

matrix variable used in the formulation leads us to a stronger SOCP relaxation of the

OPF problem than the one proposed in Chapter 3. Our approach efficiently proves

stronger dual bounds than the ones obtained from SDP relaxation based approaches

in the literature. We also propose an SOCP based spatial branch-and-cut method to

globally solve the most challenging instances, for which our algorithm is able to prove

0.79% optimality gap in only 323 seconds on the average. Overall, our methodology

provides a computationally tractable approach to prove strong dual bounds for the

OPF problem.

Chapter 5 is based on [62], in which we consider the DC OTS problem. Most

research on DC OTS has focused on heuristic algorithms for generating quality solu-

tions or on the application of DC OTS to crucial operational and strategic problems

such as contingency correction, real-time dispatch, and transmission expansion. The

mathematical theory of the DC OTS problem is less well-developed. In this chap-

ter, we formally establish that DC OTS is NP-Hard, even if the power network is

a series-parallel graph with at most one load/demand pair. Inspired by Kirchoff’s

Voltage Law, we give a cycle-based formulation for DC OTS, and we use the new for-

mulation to build a cycle-induced relaxation. We characterize the convex hull of the

cycle-induced relaxation, and the characterization provides strong valid inequalities

that can be used in a cutting-plane approach to solve the DC OTS. We give details of

a practical implementation, and show promising computational results on standard

benchmark instances.

Chapter 6 is based on [59], in which we focus on the AC OTS problem. Most

recent research has relied on the DC approximation of the power flow model in the
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OTS problem as in Chapter 5. However, it is known that DC approximation may

lead to inaccurate flow solutions and also overlook stability issues. In this chapter,

we focus on the OTS problem with the full AC power flow model. We propose a new

exact formulation for AC OTS and its mixed-integer second-order conic programming

(MISOCP) relaxation. We improve this relaxation via several types of strong valid

inequalities inspired by the developments for the closely related AC OPF problem in

Chapter 3. We also propose a practical algorithm to obtain high quality feasible solu-

tions for the AC OTS problem. Extensive computational experiments show that the

proposed formulation and algorithms efficiently solve IEEE standard and congested

instances and lead to significant cost benefits with provably tight bounds.
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CHAPTER II

OPTIMAL POWER FLOW OVER RADIAL NETWORKS

2.1 Introduction

In this chapter, we focus on the OPF problem on radial networks in the presence of

generation lower bounds on both real and reactive power. The goal of this chapter

is two-fold: To highlight the inexactness of standard convex relaxations for these

instances and to make algorithmic progress in solving such instances globally. We

make two comments here in relation to the class of OPF problems we consider and

our assumptions. First, although most power flow networks are not radial, they

are usually quite sparse and analyzing radial networks can therefore be beneficial in

their own right, especially in the case of distribution networks [66]. Second, typically

power systems have ramping constraints, so that the power generation in the next

time period cannot deviate too much from the current one. Hence, it is important to

make a study of the effects of lower bounds.

In practice, SDPs may become prohibitively expensive as the size of the network

grows larger. One can turn to SOCP relaxations, which are in general weaker than

their SDP counterparts. However, in [92], it has been proven that both types of

relaxations give the same lower bound for the OPF problem over radial networks

even if they are inexact. Therefore any result stated for SOCPs in this chapter holds

for SDP relaxations and vice-versa.

The rest of this chapter is organized as follows: In the next section, we revisit the

rectangular formulation of the OPF problem and propose a reformulation that leads to

the SOCP relaxation. In Section 2.3, we begin working on our first goal by providing

a complete characterization of the approximation performance of SOCP relaxation
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for a two-bus system. In Section 2.4, we further study the feasible regions of two small

systems. Then, in Section 2.5, we begin working on our second goal by providing a

library of radial network instances generated from MATPOWER test cases for which

SOCP relaxation is inexact. In Section 2.6, we propose valid inequalities for the

SOCP relaxation, which significantly improve the computational performance of a

global solver. Concluding remarks are made in Section 2.7.

2.2 OPF Formulation Revisited

In Section 1.1.2, we introduced the mathematical programming formulation of the

OPF problem. In this section, we first revisit the rectangular formulation and then,

propose an alternative formulation.

2.2.1 Rectangular Formulation

Let us first omit transmission line limit constraint (1g) for the brevity of discussion1

and project out flow variables on lines, namely pij and qij to obtain the rectangular

formulation:

min
∑
i∈G

Ci(p
g
i ) (7a)

s.t. pgi − pdi = Gii(e
2
i + f 2

i ) +
∑
j∈δ(i)

[Gij(eiej + fifj)−Bij(eifj − ejfi)] i ∈ B (7b)

qgi − qdi = −Bii(e
2
i + f 2

i )−
∑
j∈δ(i)

[Bij(eiej + fifj) +Gij(eifj − ejfi)] i ∈ B, (7c)

(1f), (1h)− (1i).

2.2.2 Alternative Formulation

Note that the rectangular formulation (7) is a nonconvex quadratic optimization

problem. We can observe that all the nonlinearities in (1) are of the following three

1These constraints are included in our computational experiments.
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types:

(1) e2
i + f 2

i (2) eiej + fifj (3) eifj − ejfi, (8)

which are equal to |Vi|2, |Vi||Vj| cos(θi − θj), and −|Vi||Vj| sin(θi − θj) in the polar

form, respectively. Let us define new variables cii, cij, and sij for each of these three

quantities. Since the cosine function is even and the sine function is odd, we also have

cij = cji and sij = −sji. On each line (i, j), these quantities are linked through the

fundamental trigonometric identity cos2(θi − θj) + sin2(θi − θj) = 1, which translates

into

(eiej + fifj)
2 + (eifj − ejfi)2 = (e2

i + f 2
i )(e2

j + f 2
j ) (9)

in the rectangular form. In the space of our new variables, this relation is expressed

in the following quadratic equation c2
ij + s2

ij = ciicjj, which describes the surface of

a rotated second-order cone in four dimensions. With a change of variables, we can

introduce an alternative formulation of the OPF problem as follows:

min
∑
i∈G

Ci(p
g
i ) (10a)

s.t. pgi − pdi = Giicii +
∑
j∈δ(i)

(Gijcij −Bijsij) i ∈ B (10b)

qgi − qdi = −Biicii +
∑
j∈δ(i)

(−Bijcij −Gijsij) i ∈ B (10c)

V 2
i ≤ cii ≤ V

2

i i ∈ B (10d)

cij = cji, sij = −sji (i, j) ∈ L (10e)

c2
ij + s2

ij = ciicjj (i, j) ∈ L, (10f)

(1h)− (1i).

This formulation was first introduced in [30] and [52]. It is an exact formulation

for OPF on a radial network in the sense that the optimal power output of (10) is also
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optimal for (7) and one can always recover the voltage phase angles θi’s by solving

the following system of linear equations with the optimal solution cij, sij:

θj − θi = atan2(sij, cij) (i, j) ∈ L, (11)

which then provide an optimal voltage phasor solution to (7) (see e.g. [110]). Here,

in order to cover the entire range of 2π, we use the atan2(y, x) function2, which takes

value in (−π, π], rather than [−π/2, π/2] as is the case of the regular arctangent

function. Unfortunately, for meshed networks, the above formulation (10) can be a

strict relaxation of the OPF problem. The reason is that, given an optimal solution

cij, sij for all edges (i, j) of (10), it does not guarantee that atan2(sij, cij) sums to

zero over all cycles. In other words, the optimal solution of (10) may not be feasible

for the original OPF problem (7). This issue can be fixed by directly imposing (11) as

a constraint [53, 54]. Thus (10) together with (11) is a valid formulation for OPF in

mesh networks. Note that the constraints involving the atan2 function are nonconvex.

2.2.3 SOCP Relaxation of Alternative Formulation

Since we focus on radial networks in this chapter, alternative formulation (10) is exact.

Now, we consider its SOCP relaxation. Observe that except the coupling constraints

(10f), all other constraints in (10) are linear. Hence, all the nonconvexity of the OPF

problem (7) in a radial network is captured by (10f), and the feasible region is the

intersection of a polytope defined by (10b)-(10e), (1h)-(1i) with the boundaries of

rotated second-order cones defined by (10f). It is straightforward to obtain a SOCP

2atan2(y, x) =



arctan y
x x > 0

arctan y
x + π y ≥ 0, x < 0

arctan y
x − π y < 0, x < 0

+π
2 y > 0, x = 0

−π2 y < 0, x = 0

undefined y = 0, x = 0
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relaxation of (10) by relaxing constraint (10f) as follows:

c2
ij + s2

ij ≤ ciicjj (i, j) ∈ L, (12)

This constraint can be written more explicitly as a SOCP constraint:

c2
ij + s2

ij +

(
cii − cjj

2

)2

≤
(
cii + cjj

2

)2

(i, j) ∈ L. (13)

The SOCP relaxation is defined as (10a)-(10e), (1h)-(1i) and (13). It is proven that in

radial networks, the SOCP relaxation is equivalent to the SDP relaxation [92]. In this

chapter, we focus on SOCP relaxation due to its superior computational performance.

For a more general discussion on the pairwise strength of different types of relax-

ations for rectangular and alternative formulation over general networks, readers are

referred to Section 3.2.

2.3 Analytical Study of a Two-Bus System

In this section, we study the two-bus system with one generator and one load. This

is arguably the simplest power system, but also one of the most fundamental models

in power system analysis. Surprisingly, for this simple system, the SOCP relaxation

with generation lower bounds can have all three possible outcomes in terms of op-

timality gap, namely (1) SOCP obtains exact solution (i.e. optimality gap is zero);

(2) SOCP is feasible, yet OPF is infeasible (optimality gap is infinite); (3) SOCP

has a finite optimality gap, and we give an analytical expression of this gap. We

identify parameter ranges in closed form for each of these outcomes. We also study

the feasible region projected in the space of squared bus voltage magnitudes to gain

geometric intuition.

Let us assume that bus 1 is a generator bus and bus 2 is a load bus. Further

assume that gii = bii = 0 and G := G12 < 0 and B := B12 > 0 (the analysis for B < 0

is similar). Also assume the production cost C1(pg1) is linear in pg1.
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2.3.1 Feasible Region Projected to (c11, c22) space

The linear equality system (10b)-(10c) can be written as



1 G −G B

1 −B B G

G −G −B

−B B −G





pg1

qg1

c11

c22

c12

s12


=



0

0

pd2

qd2


. (14)

Let us define

α :=
Bpd2 +Gqd2
B2 +G2

and β :=
Gpd2 −Bqd2
B2 +G2

, (15)

which are constant for fixed B,G and load. Solving the linear system (14), we can

express (pg1, q
g
1 , c12, s12) in terms of (c11, c22) as follows

s12 = −α (16a)

c12 = c22 − β (16b)

pg1 = −G(c11 − c22)−Gβ +Bα (16c)

qg1 = B(c11 − c22) +Bβ +Gα. (16d)

We now reformulate constraint (10f) using (16a) and (16b) as

(c22 − β)2 + α2 = c11c22 ⇒ c11 = c22 − 2β +
α2 + β2

c22

, (17)

which defines a hyperbola for (c11, c22) with two asymptotes: c11 − c22 = −2β and

c22 = 0.

Observe that this hyperbola together with the constraints on c11 and c22 implied

from (10d), (1h)-(1i) define the feasible region of the OPF problem projected to the

(c11, c22) space. In particular, (10d) impose a box constraint on c11 and c22, whereas
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(1h)-(1i) imply upper and lower bounds on the difference c11 − c22, which defines a

region parallel to the first asymptote c11 − c22 = −2β. Figure 2a depicts the entire

feasible regions of OPF in black curve and of SOCP relaxation in the blue region.

Figures 2b-2e zoom in particular parts.

Furthermore, since the objective function C1(pg1) is assumed to be linear in pg1 and

by (16c), we can see that the level set of the objective function in (c11, c22) is also

parallel to the first asymptote, and decreases toward the upper left corner as pointed

by the arrow in Figure 2. Therefore, only the lower bounds on pg1 and qg1 can affect

the optimal solution of (10). For this reason, we find the effective lower bound for

the difference c11 − c22 as

∆ = max

{
pmin

1 +Gβ −Bα
−G

,
qmin

1 −Bβ −Gα
B

}
, (18)

which is given by the lower bounds of (1h)-(1i), and is plotted as magenta lines in

Figure 2. Also note that as pmin
1 and qmin

1 increase, the line c11 − c22 ≥ ∆ moves

toward the lower right corner in Figure 2.

2.3.2 Complete Characterization of Approximation Outcomes

At this point, we are ready to explore the optimal solutions of the OPF (10) and

its SOCP relaxation and classify all five possible cases of the configurations of their

feasible regions and the associated approximation outcomes.

• First of all, let us assume that ∆ defined in (18) is small enough. In this case,

as depicted in Figure 2a, the optimal solution of both the OPF and the SOCP

is unique and given by

(cO11, c
O
22) =


(
c22 − 2β + α2+β2

c22
, c22

)
if (a) holds(

c11,
2β+c11+

√
(2β+c11)2−4(α2+β2)

2

)
o.w.

(19)

where condition (a) is (c22− β)2 + α2 ≤ c11c22 and cii := V
2

i . Hence, the SOCP

relaxation is exact. This result is in accordance with the results in [110].
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• Consider the case where ∆ is large enough. In particular, cO11− cO22 < ∆. Define

the intersection of c11 − c22 = ∆ with the binding upper bound of either c11 or

c22 as

(cR11, c
R
22) =


(c22 + ∆, c22) if c11 − c22 ≥ ∆

(c11, c11 −∆) o.w.

(20)

Note that this point is OPF infeasible despite being SOCP optimal. Next, define

the intersection of the hyperbola (17) and c11 − c22 = ∆ as

(cE11, c
E
22) =

(
α2 + β2

2β + ∆
+ ∆,

α2 + β2

2β + ∆

)
. (21)

If cE22 < c22, where cii := V 2
i , then SOCP is feasible while OPF is infeasible. An

example of this case can be seen from Figure 2b, which shows the zoomed in

part of the hyperbola.

• If cO11 − cO22 < ∆, cE22 ≥ c22, and cE11 ≥ c11, then the SOCP relaxation is exact

as in Figure 2c. In fact, any point in the convex combination of cR and cE

is SOCP optimal. Such a point can always be corrected by reducing c11, c22

and c12 components by the same amount until we reach cE, which is the OPF

optimal solution.

• If cO11− cO22 < ∆, cE22 ≥ c22, and cE11 < c11, define the intersection of c11− c22 = ∆

with the bounding lower bound of either c11 or c22:

(cL11, c
L
22) =


(c22 + ∆, c22) if c11 − c22 ≤ ∆

(c11, c11 −∆) o.w.

(22)

Observe that any point in the convex combination of cL and cR is SOCP optimal.

However, there is no feasible OPF solution with the same objective function

value. Lastly, let us define the lower intersection of the hyperbola (17) and the

c11 lower bound as (cI11, c
I
22), where cI11 = c11, and cI22 as

cI22 =
2β + c11 −

√
(2β + c11)2 − 4(α2 + β2)

2
. (23)
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(a) Case 1: SOCP relaxation is exact. (b) Case 2: SOCP relaxation is feasi-
ble, OPF is infeasible.

(c) Case 3: SOCP relaxation is exact. (d) Case 4: SOCP relaxation is feasi-
ble, OPF is infeasible.

(e) Case 5: SOCP relaxation is inex-
act.

Figure 2: Projection of feasible region of 2-bus, 1-generator examples onto (c11, c22)
space for five cases. Horizontal axis is c11 and vertical axis is c22. Solid black curve
is (17) containing the feasible region of OPF with dashed lines being two asymptotes
shown in Fig. 1a. Green and red lines are bounds on c11 and c22, resp. Magenta line
is the effective lower bound on c11 − c22. Blue region is the feasible region of SOCP
relaxation. All figures are in p.u.
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We have two final cases:

– If cI22 < c22, any point in the convex combination of cL and cR is SOCP

optimal. However, OPF is infeasible. An example of this case can be seen

in Figure 2d.

– If cI22 ≥ c22, any point in the convex combination of cL and cR is SOCP

optimal. However, OPF has a unique optimal solution at cI as can be seen

in Figure 2e. Hence, relaxation is inexact. Assuming a linear cost function

with coefficient 1, optimality gap can be calculated as −G(cL22 − cI22).

The above analysis proves the following theorem.

Theorem 1. In a two-bus one-generator system with linear objective, the SOCP/SDP

relaxation of the AC OPF problem has the following possible outcomes:

(i) SOCP relaxation is exact: If cO11 − cO22 ≥ ∆ or if cO11 − cO22 < ∆, cE22 ≥ c22,

cE11 ≥ c11.

(ii) SOCP relaxation is inexact with finite optimality gap: If cO11−cO22 < ∆, cE22 ≥ c22,

cE11 < c11, cI22 ≥ c22. The optimality gap is −G(cL22 − cI22).

(iii) SOCP relaxation is feasible and OPF is infeasible: If cO11 − cO22 < ∆, cE22 < c22

or if cO11 − cO22 < ∆, cE22 ≥ c22, cE11 < c11, cI22 < c22.

Here, cO, cE, cR, cL, cI are defined in (19)-(23), respectively.

2.4 Examples of Inexact SOCP Relaxations

We have obtained a complete characterization for a 2-bus network with a single

generator, and shown that the SOCP relaxation is exact only under certain conditions.

In this section, we present further counterexamples of radial networks with two and

three buses. Most of the network parameters are selected from IEEE test instances.
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Transmission line capacity is assumed to be large. For all the buses, V i = 0.9 and V i =

1.1. Production costs are taken as linear functions. OPF problem with alternative

formulation (10) is solved to global optimality with BARON [95]. SOCP relaxations

are solved using interior point solver MOSEK [2].

2.4.1 2-Bus, 2-Generator Example

Let us consider a 2-bus network with one generator located at each bus. Data of this

example is given in Table 1. The impedance of line (1,2) is 0.01008 + i0.0504.

Table 1: Bus and generator data for 2-bus 2-generator example.

Bus pdi qdi pmin
i pmax

i qmin
i qmax

i cost
1 75 −84.7 75 250 −30 300 5.0
2 105 22.8 70 300 −30 300 1.2

In Table 2, we compare the SOCP relaxation and the global optimal solution of

OPF for different levels of load, where load is varied as [pd1 pd2 qd1 qd2 ] = γ · [75 105 −

84.7 22.8] for some positive parameter γ.

Table 2: Objective costs for 2-bus 2-generator with varying load.

γ OPF SOCP
0.12 infeasible infeasible
0.13 infeasible 459.00
0.80 infeasible 459.00
0.81 460.13 460.13
0.98 496.96 496.96
0.99 499.15 499.15
1.00 563.56 501.46
1.01 641.21 503.76
1.02 infeasible 506.07
2.92 infeasible 1608.75
2.93 infeasible infeasible

When γ ∈ [0.81, 0.99], we observe that the SOCP relaxation is exact. For γ

around 1.00, there is a finite optimality gap, which can be as large as 21.44% at
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(a) SOCP is exact. (b) SOCP is feasible while OPF is infeasible.

(c) SOCP is inexact due to reactive and active
lower bounds.

(d) SOCP is inexact due to angle and reactive
lower bounds.

Figure 3: Projection of feasible region of 2-bus, 2-generator example onto (pg1, p
g
2)

space. Horizontal axis is pg1 and vertical axis is pg2. Black curve is an ellipse with
counterclockwise orientation that contains the feasible region of OPF problem whereas
blue region is its SOCP relaxation. Green lines are the lower bound on pg1 and pg2
while red lines are the lower bound on qg1 and qg2 . Dashed lines represent angle bounds
corresponding to 30◦. Assuming linear functions, the arrow shows the cost vector.
Blue and orange dots are respectively the optimal solutions of SOCP relaxation and
OPF, whenever the latter exists.
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γ = 1.01. Finally, for γ ≥ 1.02, OPF becomes infeasible, whereas SOCP relaxation

is still feasible. In fact, SOCP relaxation fails to detect infeasibility of OPF problem

until γ exceeds 2.93.

Now, let us consider the case where voltages are fixed. In [66], it has been proven

that if angle differences are guaranteed to be small enough, then SDP/SOCP re-

laxations are tight even if there are real power lower bounds. However, we present

an example which demonstrates that this does not extend to the case with reac-

tive power lower bounds. To this end, let us fix the squared voltage magnitudes to

(c11, c22) = (0.874, 0.816). In this case, the global optimal solution of OPF is 573.82

while the SOCP relaxation gives 503.37. Hence, there is an optimality gap, even

though angle difference is less than 1◦.

Figure 3 presents possible configurations of the feasible region of the OPF and the

SOCP relaxation projected to the (pg1, p
g
2) space. In Figure 3a, the SOCP relaxation

is exact, while in Figure 3b, the OPF is infeasible although the SOCP is feasible. In

Figure 3c, the SOCP relaxation is inexact due to the combined effect of active and

reactive lower bounds. Finally, in Figure 3d, the SOCP relaxation is inexact due to

practical angle bounds (30◦) and reactive lower bounds.

2.4.2 3-Bus, 1-Generator Example

Consider a 3-bus radial network with three loads [pd1 pd2 pd3] = [50 70 60] and

[qd1 qd2 qd3 ] = [−52.3 14.1 − 82.3]. The impedance of lines (1,2) and (2,3) are

0.01008 + i0.0504 and 0.07500 + i0.0840. The only generator is located at bus 1 with

150 ≤ pg1 ≤ 550 and −100 ≤ qg1 ≤ 500. The cost of power generation is $5 per MW.

Assume that the reactive load is scaled as [qd1 qd2 qd3 ] = γ[−52.3 14.1 −82.3] for some

positive γ. Table 3 shows the optimal costs of the OPF and the SOCP relaxation for

different values of γ.

For small values of γ, e.g. γ ≤ 0.96, SOCP is exact. For values around γ = 1,
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(a) γ = 0.90 (b) γ = 1.00

(c) γ = 1.10

Figure 4: Projection of feasible region of 3-bus example onto (pg1, q
g
1) space with

respect to different load levels. Horizontal axis is pg1 and vertical axis is qg1 . Black curve
and blue region are the feasible regions of OPF and SOCP relaxation, respectively.
Red line is the lower bound on qg1 . All figures are in p.u.
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Table 3: Objective costs for 3-bus example with varying load.

γ OPF SOCP
0.95 939.45 939.45
0.96 939.90 939.90
0.97 941.57 940.87
1.00 950.70 945.45
1.03 959.91 950.05
1.04 infeasible 951.60

we observe a finite optimality gap between OPF and SOCP, where for larger values

of γ ≥ 1.04, the OPF becomes infeasible while the SOCP relaxation is still feasible.

The infeasibility is exactly caused by the lower bound on reactive generation power.

For this example, we also give the feasible region of OPF problem projected onto

the (pg1, q
g
1) space in Figure 4. When γ = 0.90, reactive power lower bound is re-

dundant and the optimal solution of SOCP relaxation is feasible for OPF. However,

for γ = 1.00, constraint qmin
1 ≤ qg1 is binding. Note that the optimal solution of

the SOCP relaxation is not feasible for OPF and hence, the relaxation is not exact.

Finally, when γ = 1.10, SOCP is feasible whereas OPF is infeasible.

2.5 Library of Radial Networks with Inexact SDP/SOCP
Relaxation

2.5.1 Generation of Instances

To facilitate further research, we generate several radial network instances from

meshed networks in MATPOWER [111]. Given a meshed network, we first find a

spanning tree by switching off lines to obtain a radial network. Then, only load

values and generation lower/upper bounds are changed, whenever necessary, to con-

struct examples where the SOCP/SDP relaxation is not exact. New instances can be

downloaded from https://sites.google.com/site/burakkocuk/research.

Our examples are based on 9-, 14-, 30-, 39- and 57-bus standard instances. Due

to our construction of the network topology, AC feasibility becomes a major issue.
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Although unrealistic examples can be constructed for even larger networks by reduc-

ing load values considerably, we choose not to sacrifice the realistic features of the

instances.

2.5.2 Computational Results for SDP Relaxation vs. Global Optimal
Solution

For each instance generated as described above, we solve the SDP relaxation using

MOSEK [2]. The code is written in C# language and Visual Studio 2010 is used as

the compiler. We report the value of the objective function, computation time and

the rank of the solution. Here, rank is determined as the number of eigenvalues that

are larger than 10−5.

SDP relaxation is compared against global optimal solution found using BARON

[95] and local solution found by MATPOWER [111] and IPOPT [105]. Relative

optimality gap for BARON is set to 0 so that global optimality can be certified. We

should note that performance of BARON on rectangular formulation (1) is very poor

as it requires hours to prove global optimality. Instead, we use reformulation (10),

which is valid for radial networks.

For all experiments, we used a 64-bit computer with Intel Core i5 CPU 3.33GHz

processor and 4 GB RAM. Each instance is solved twice with quadratic and linear

objectives. For the latter, we simply ignore the quadratic cost coefficients.

Our findings are summarized in Table 4. One can see that the SDP relaxation

solution can be of high-rank (up to 12 for case ieee30 and 20 for case57). Also, the

optimality gap (column “% gap”) computed as 100×(1−zSDP/zBARON), where zSDP

and zBARON are respectively the values of the SDP relaxation and the global optimal

solution found by BARON, can be quite large (more than 52% for case9 with quadratic

objective). Our examples clearly show that the optimal value of the SDP relaxation

can be quite different from the global optimal value. We also compare the optimal

dispatch solutions pSDP and pBARON computed by the SDP relaxation and BARON
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Table 4: SDP relaxation vs. global solver BARON vs. local solvers MATPOWER and IPOPT.

SDP Relaxation BARON MATPOWER IPOPT
based on type objective time(s) rank objective time(s) % gap objective time(s) objective time(s)

case9 quadratic 5335.70 0.04 8 11277.95 1.17 52.69 - 0.17 - 0.17
case9 linear 1481.93 0.06 8 1756.47 1.11 15.63 - 0.08 - 0.20

case9Q quadratic 10835.70 0.04 8 16778.87 1.36 35.42 - 0.08 16779.48 0.31
case14 quadratic 11861.87 0.07 8 11932.07 35.32 0.59 11932.25 0.11 11932.25 0.28
case14 linear 9892.70 0.09 4 9952.42 0.79 0.60 9952.59 0.09 9952.58 0.23

case ieee30 quadratic 4244.53 0.17 12 4336.03 8347.79 2.11 - 0.12 4794.32 0.15
case ieee30 linear 3035.61 0.22 12 3606.91 2494.31 15.84 - 0.09 4562.26 0.14

case30 quadratic 607.72 0.15 8 619.01 2.52 1.82 619.04 0.09 619.04 0.23
case30 linear 435.58 0.23 6 445.83 8.50 2.30 445.84 0.11 445.84 0.14

case30Q quadratic 676.88 0.20 4 690.06 5.16 1.91 690.08 0.11 690.08 0.36
case39 quadratic 44869.01 0.29 4 45035.32 110.59 0.37 - 0.14 45037.05 0.27
case39 linear 1900.09 0.36 4 1903.07 1566.88 0.16 - 0.16 1903.14 0.15
case57 quadratic 10458.06 0.92 20 12100.00 > 10800 13.57 12100.90 0.15 12100.86 0.27
case57 linear 8399.82 0.96 20 10173.10 > 10800 17.43 10173.00 0.16 10172.98 0.26
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to show that large differences in the objective function values are not artifacts of the

cost parameters. In fact, the 2-norm ‖pSDP − pBARON‖ is large, varying from 0.16

p.u. to 3.16 p.u. for our instances. This illustrates that the optimal solutions are

quite different from one another.

In general, MATPOWER is accepted to be a reliable and efficient OPF solver. It

manages to find the global optimal solution up to a negligible difference for seven of

the instances from our library. However, we observe that it fails to solve the remaining

seven instances due to numerical issues. There are other robust NLP solvers available,

e.g. IPOPT, which gives near global optimal solution for nine instances in the library,

where small discrepancies in optimal objective function values compared to BARON

are due to numerical errors. On the other hand, IPOPT fails in two 9-bus examples

and it finds suboptimal solutions three times for both of the case ieee30 instances and

case39 with quadratic objective.

We should note that the global solver BARON can be computationally expensive.

For instance, for case ieee30 with a quadratic objective, it requires more than 2 hours

to prove optimality whereas for 57-bus instances, BARON is not able to certify the

global optimal solution within 3 hours time limit. Upon termination, the optimality

gaps are 38.40% and 29.37% for quadratic and linear objectives, respectively. Also,

the reformulation of OPF (10) is only valid for radial networks. Hence, in general,

using BARON as it is may not be applicable to large-scale OPFs.

2.6 Bound Tightening and Valid Inequalities for Global Op-
timization

In this section, we propose valid inequalities for the SOCP relaxation of the OPF

problem to improve the computational time of the global solver BARON. The main

algorithm of BARON is based on spatial branch-and-bound [95]. It utilizes convex

envelopes of the feasible region and polyhedral relaxations to improve lower bounds

and prove global optimality. Therefore, it is very important to add valid inequalities
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and variable bounds so that BARON can obtain tighter relaxations.

To begin with, let us focus on formulation (10). Observe that cij and sij do not

have explicit variable bounds although they have implied bounds due to (10d) and

(10f) as

−V iV j ≤ cij, sij ≤ V iV j (i, j) ∈ L. (24)

However, these bounds are very loose knowing that angle differences are generally

small. This fact suggests that these bounds can be improved. One way to obtain

variable bounds is to optimize cij and sij over the set S = {(p, q, c, s) : (10b)− (10f)},

which is a nonconvex set. Alternatively, one can find weaker bounds over the set

S ′ = {(p, q, c, s) : (10b)− (10e), (10f)} by solving SOCP relaxations. Let cij (sij) and

cij (sij) denote lower and upper bounds found for cij (sij), respectively.

Now, let us investigate how the box Bij = [cij, cij] × [sij, sij] is positioned with

respect to the “ring”-like setRij = {(cij, sij) : R2
ij ≤ c2

ij+s
2
ij ≤ R

2

ij} where Rij = V iV j

and Rij = V iV j. In our experiments, we observe that cij > 0, which we assume

hereafter. We should note that this is not a restrictive assumption, similar valid

inequalities described below can be generated even if this assumption does not hold.

Let us focus on the case with cij < Rij, which gives rise to four possibilities:

• Case 1: ‖(cij, sij)‖ < Rij, ‖(cij, sij)‖ < Rij

• Case 2: ‖(cij, sij)‖ < Rij, ‖(cij, sij)‖ ≥ Rij

• Case 3: ‖(cij, sij)‖ ≥ Rij, ‖(cij, sij)‖ < Rij

• Case 4: ‖(cij, sij)‖ ≥ Rij, ‖(cij, sij)‖ ≥ Rij

Figure 5 shows typical examples for each of four cases. In the rest of this section, we

concentrate on how we can obtain valid inequalities for Cases 1, 2, and 3.
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(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

Figure 5: Positioning of Bij and Rij. Red line is the cut produced by Algorithm 1,
when applicable.
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2.6.1 Valid Inequalities

These cuts are designed to cut off the portion of Bij inside the inner circle for Cases

1, 2, and 3 as depicted in Figure 5. Algorithm 1 gives the exact procedure. Note that

the validity of the inequality follows from the fact that the points cut off from the

box have norm less than Rij. Note that for Case 4, the algorithm would produce the

inequality cij ≥ cij, hence it is omitted.

Algorithm 1 Generation of Valid Inequalities.

for all (i, j) ∈ L do
Compute cij, cij, sij and sij over S ′.
Update S ′ = S ′ ∩ Bij.
if 0 <cij < Rij then

if ‖(cij, sij)‖ < Rij, ‖(cij, sij)‖ < Rij then
Set y1 = sij, y2 = sij and compute

x1 =
√
R2
ij − s2

ij, x2 =
√
R2
ij − s2

ij

else if ‖(cij, sij)‖ < Rij, ‖(cij, sij)‖ ≥ Rij then
Set x1 = cij, y2 = sij and compute

y1 =
√
R2
ij − c2

ij, x2 =
√
R2
ij − s2

ij

else if ‖(cij, sij)‖ ≥ Rij, ‖(cij, sij)‖ < Rij then
Set y1 = sij, x2 = cij and compute

x1 =
√
R2
ij − s2

ij, y2 = −
√
R2
ij − c2

ij

end if
Add (y1 − y2)cij − (x1 − x2)sij ≥ x2y1 − x1y2 as a valid inequality and update
S ′.

end if
end for

2.6.2 Computational Experiments

The effect of valid inequalities are tested on our library of instances. The results

are summarized in Table 5. We should note that MATPOWER is very efficient and

accurate for the seven instances it is able to solve as shown in Table 4. Therefore,

we mainly focus on the other seven instances where MATPOWER fails to solve. In

Table 5, preprocessing refers to computing variable bounds and valid cuts.
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For the 9-bus instances (case9, case9Q), BARON’s computation time reduces

slightly with the addition of cuts. However, the preprocessing time dominates the

total computation time, which is larger than the case without cuts.

For the 30-bus IEEE instances, BARON can require hours to terminate. With

the addition of variable bounds, total computation time reduces by 89% and 90%

for quadratic and linear objectives, respectively. Quite impressively, the inclusion of

valid inequalities further reduces the total computation time to only 17 seconds, less

than 0.1% of the computation time without variable bounds and cuts.

For 39-bus instances, the addition of variable bounds brings down total computa-

tion time by 76% and 95% for quadratic and linear objectives, respectively. In this

case, the inclusion of valid inequalities decreases the computational time for linear

objective. On the other hand, cuts slightly increases the total computational time in

the case of quadratic objective. However, compared to the case without bounds and

cuts, BARON still requires less amount of time.

For 57-bus instances, BARON without bounds was not able to certify the global

optimal solution within 3 hours time limit. However, the strengthened variable

bounds and valid inequalities enable BARON to solve these instances to global opti-

mality within only 46 seconds.

As a final note, we should note that the applicability of the valid inequalities

proposed in this section is not limited to the global optimization of radial networks,

they can be used in meshed networks as well. Moreover, precisely the same valid

inequalities can be used in SOCP relaxation whereas the transformations cij = eiej +

fifj and sij = eifj− ejfi enable us to obtain linear matrix inequalities to be added to

SDP relaxation. Although, for our instances, we have not observed any lower bound

improvement in SOCP/SDP relaxations by the inclusion of the valid inequalities, we

obtain stronger root node relaxations in BARON. Let RG represent the percentage

root gap calculated as 100× (1− zr/zg), where zr and zg are respectively the values
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Table 5: BARON with bounds and cuts. PT, BT and TT represent times of preprocessing, BARON solution and total
computation in seconds. RG represents the percentage root gap.

BARON BARON with bounds BARON with bounds and cuts
based on type BT (s) RG (%) PT (s) BT (s) TT (s) RG (%) PT (s) BT (s) TT (s) #cuts RG (%)

case9 quadratic 1.17 11.72 4.34 1.08 5.42 9.72 4.41 1.01 5.42 6 9.71
case9 linear 1.11 16.13 4.12 0.86 4.98 16.02 4.42 1.00 5.42 6 16.05

case9Q quadratic 1.36 16.91 4.36 1.22 5.58 8.32 4.34 1.11 5.46 6 7.50
case14 quadratic 35.32 9.98 7.11 30.46 37.56 1.98 6.89 41.99 48.88 7 1.98
case14 linear 0.79 0.21 6.95 0.83 7.79 0.15 6.89 0.91 7.80 7 0.39

case ieee30 quadratic 8347.79 46.93 16.91 900.50 917.41 29.88 17.28 0.36 17.63 14 0.00
case ieee30 linear 2494.31 46.67 16.89 249.48 266.37 33.69 16.96 0.34 17.30 14 0.00

case30 quadratic 2.52 9.13 17.21 1.91 19.12 7.74 16.94 4.42 21.35 13 7.39
case30 linear 8.50 5.79 17.60 2.40 19.99 5.15 16.23 1.91 18.14 13 4.41

case30Q quadratic 5.16 13.25 16.53 2.39 18.93 12.11 16.80 1.83 18.64 13 4.27
case39 quadratic 110.59 8.89 28.07 26.03 54.10 0.48 27.72 33.25 60.98 12 1.12
case39 linear 1566.88 2.56 26.94 72.80 99.74 0.51 28.17 42.62 70.79 12 0.52
case57 quadratic > 10800 46.69 41.57 0.66 42.23 0.00 40.17 0.80 40.97 14 0.00
case57 linear > 10800 45.17 42.19 0.67 42.87 0.00 45.23 0.67 45.91 14 0.00
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of root node relaxation for BARON and global optimal solution. As we can see

from Table 5 that addition of bounds and valid inequalities strengthen the root node

relaxation of BARON in general. In fact, case ieee30 and case57 instances are already

solved at the root node. We should note that occasionally RG of BARON with bounds

and cuts is slightly worse than BARON with bounds. However, this is due to the

fact that valid inequalities change the problem structure and may lead to different

preprocessing procedures carried out by the solver at the root node.

2.7 Conclusions

In this chapter, we study the impact of generation lower bounds on the performance of

convex relaxations of AC OPF problems. For the fundamental two-bus one-generator

model, we provide a complete characterization of all possible outcomes of the SOCP

relaxation together with a detailed study of the projected feasible regions of the

OPF and SOCP relaxation. We provide a library of radial network instances that

demonstrate large optimality gaps for SDP and SOCP relaxations. We also propose

valid inequalities for the SOCP relaxation, which prove to be useful in reducing the

computation time of global solver BARON. We remind the reader here that SDP

relaxations are very powerful and their importance is definite. Our work only serves

to demonstrate the limitations of SDP relaxations and emphasizes the importance

and the need to develop efficient global methods in solving OPF problems.
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CHAPTER III

STRONG SOCP RELAXATIONS FOR THE OPTIMAL

POWER FLOW PROBLEM OVER MESHED NETWORKS

3.1 Introduction

This chapter proposes new strong SOCP relaxations of the OPF problem and demon-

strates their computational advantages over the SDP relaxation and previously de-

scribed convex quadratic relaxations for the purpose of practically solving large-scale

OPF problems. Our starting point is the alternative formulation for the OPF problem

introduced in Section 2.2 and proposed before in [30] and [52]. In this formulation,

the nonconvexities are present in two types of constraints: one type is the surface

of a rotated second-order cone, and the other type involves arctangent functions on

voltage angles. The SOCP relaxation in [52] is obtained by convexifying the first type

of constraints to obtain SOCP constraints and completely ignoring the second type

constraints. We refer to this relaxation as the classic SOCP relaxation of the OPF

problem. We prove that the standard SOCP relaxation of the rectangular formulation

of OPF provides the same bounds as the classic SOCP relaxation. Therefore, if we are

able to add convex constraints that are implied by the original constraints involving

the arctangent function to the classic SOCP relaxation, then this could yield stronger

relaxation than the classic SOCP relaxation that may also potentially be incompara-

ble to (i.e. not dominated by nor dominates) the standard SDP relaxation. In this

chapter, we propose three efficient ways to achieve this goal.

In the following, we summarize the key contributions of the chapter.
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(i) We theoretically analyze the relative strength of the McCormick (linear pro-

gramming), SOCP, and SDP relaxations of the rectangular and alternative for-

mulations of the OPF problem. As discussed above, this analysis leads us to

consider strengthening the classic SOCP relaxation as a way forward to obtain-

ing strong and tractable convex relaxations.

(ii) We propose three efficient methods to strengthen the classic SOCP relaxation.

(a) In the first approach, we begin by reformulating the arctangent constraints

as polynomial constraints whose degrees are proportional to the length

of the cycles. This yields a bilinear relaxation of the OPF problem in

extended space (that is by addition of artificial variables), where the new

variables correspond to edges obtained by triangulating cycles. With this

reformulation, we use the McCormick relaxation of the proposed bilinear

constraints to strengthen the classic SOCP relaxation. The resulting SOCP

relaxation is shown to be incomparable to the SDP relaxation.

(b) In the second approach, we construct a polyhedral envelope for the arctan-

gent functions in 3-dimension, which are then incorporated into the classic

SOCP relaxation. This SOCP relaxation is also shown to be incomparable

to the standard SDP relaxation.

(c) In the third approach, we strengthen the classic SOCP relaxation by dy-

namically generating valid linear inequalities that separate the SOCP so-

lution from the SDP cone constraints over cycles. We observe that running

such a separation oracle a few iterations already produces SOCP relaxation

solutions very close to the quality of the full SDP relaxation.

(iii) We conduct extensive computational tests on the proposed SOCP relaxations

and compare them with results for an existing SDP relaxation [66] and quadratic

relaxations [28, 27]. The computational results can be summarized as follows.
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(a) Lower bounds: The lower bounds obtained by the third proposed SOCP

relaxation for all MATPOWER test cases from 6-bus to 3375-bus are on

average within 99.96% of the lower bounds of the SDP relaxation. The

other two proposed relaxation are also on average within 99.7% of the

SDP relaxation.

(b) Computation time: Overall, the proposed SOCP relaxations can be solved

orders of magnitude faster than the SDP relaxation. The computational

advantage is even more evident when a feasible solution of the OPF prob-

lem is needed. As an example, consider the largest test instance of the

IEEE 3375-bus system. Our proposed SOCP relaxation together with

IPOPT provides a solution for this instance and also certifies that this so-

lution is within 0.13% of global optimality, all computed in 157.20 seconds

on a modest personal computer.

(c) Comparison with other convex quadratic relaxation: The proposed SOCP

relaxations consistently outperform the existing quadratic relaxation in

[28] and [27] on the test instances of typical, congested, and small angle

difference conditions.

(d) Non-dominance with standard SDP relaxation: The computation also

shows that the proposed SOCP relaxations are neither dominated by nor

dominate the standard SDP relaxation.

(e) Robustness: The proposed SOCP relaxations perform consistently well on

IEEE test cases with randomly perturbed load profiles.

This chapter is organized as follows. Section 3.2 compares six different convex

relaxations for the OPF problem based on the rectangular and alternative formula-

tions introduced in Section 2.2. Section 3.3 proposes three ways to strengthen the

classic SOCP relaxation. Section 3.4 presents extensive computational experiments.
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We make concluding remarks in Section 3.5.

3.2 Comparison of Convex Relaxations

In this section, we first present six different convex relaxations of the OPF problem.

In particular, we consider the McCormick, SOCP, and SDP relaxations of both the

rectangular formulation (7) and the alternative formulation (10). Then, we analyze

their relative strength by comparing their feasible regions. This comparison is an

important motivator for the approach we take in the rest of the chapter to generate

strong SOCP relaxations. We discuss this in Section 3.2.3.

3.2.1 Standard Convex Relaxations

3.2.1.1 McCormick Relaxation of Rectangular Formulation (RM).

As shown in [77], the convex hull of the set {(x, y, w) : w = xy, (x, y) ∈ [x, x]× [y, y]}

is given by

{
(x, y, w) : max{yx+ xy − xy, yx+ xy − xy} ≤ w ≤ min{yx+ xy − xy, yx+ xy − xy}

}
,

which we denote as M(w = xy). We use this result to construct McCormick envelopes

for the quadratic terms in the rectangular formulation (7). In particular, let us first

define the following new variables for each edge (i, j) ∈ L: Eij = eiej, Fij = fifj,

Hij = eifj, and for each bus i ∈ B: Eii = e2
i , Fii = f 2

i . Consider the following set of

constraints:
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pgi − pdi = Gii(Eii + Fii) +
∑
j∈δ(i)

[Gij(Eij + Fij)−Bij(Hij −Hji)] i ∈ B (25a)

qgi − qdi = −Bii(Eii + Fii) +
∑
j∈δ(i)

[−Bij(Eij + Fij)−Gij(Hij −Hji)] i ∈ B (25b)

V 2
i ≤ Eii + Fii ≤ V

2

i i ∈ B (25c)

− V i ≤ ei, fi ≤ V i i ∈ B (25d)

M(Eij = eiej),M(Fij = fifj),M(Hij = eifj) (i, j) ∈ L

(25e)

M(Eii = e2
i ),M(Fii = f 2

i ), Eii, Fii ≥ 0 i ∈ B, (25f)

where the McCormick envelopes in (25e)-(25f) are constructed using the bounds given

in (25d). Using these McCormick envelopes, we obtain a convex relaxation of the

rectangular formulation (7) with the feasible region denoted as

RM = {(p, q, e, f, E, F,H) : (25), (1h)− (1i)}. (26)

Note that this feasible region is a polyhedron. If the objective function Ci(p
g
i ) is

linear, then we have a linear programming relaxation of the OPF problem.

3.2.1.2 McCormick Relaxation of Alternative Formulation (AM).

Using the similar technique on the alternative formulation (10), we define new vari-

ables Cij = c2
ij, Sij = s2

ij, Dij = ciicjj for each edge (i, j) ∈ L, and consider the

following set of constraints:

Cij + Sij = Dij (i, j) ∈ L (27a)

− V iV j ≤ cij, sij ≤ V iV j (i, j) ∈ L (27b)

M(Cij = c2
ij),M(Sij = s2

ij),M(Dij = ciicjj), Cij, Sij ≥ 0 (i, j) ∈ L, (27c)

where the McCormick envelops in (27c) are constructed using the bounds given in

(27b) and (10d). Denote the feasible region of the corresponding convex relaxation
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as

AM = {(p, q, c, s, C, S,D) : (27), (10b)− (10e), (1h)− (1i)}. (28)

Again, AM is a polyhedron.

3.2.1.3 SDP Relaxations of Rectangular Formulation (RSDP ,Rc
SDP ,Rr

SDP ).

To apply SDP relaxation to the rectangular formulation (7), define a hermitian matrix

X ∈ C|B|×|B|, i.e., X = X∗, where X∗ is the conjugate transpose of X. Consider the

following set of constraints:

pgi − pdi = GiiXii +
∑
j∈δ(i)

[Gij<(Xij) +Bij=(Xij)] i ∈ B (29a)

qgi − qdi = −BiiXii +
∑
j∈δ(i)

[−Bij<(Xij) +Gij=(Xij)] i ∈ B (29b)

V 2
i ≤ Xii ≤ V

2

i i ∈ B (29c)

X is hermitian (29d)

X � 0 (29e)

where <(x) and =(x) are the real and imaginary parts of the complex number x,

respectively. Let V denote the vector of voltage phasors with the i-th entry Vi = ei+ifi

for each bus i ∈ B. If X = V V ∗, then rank(<(X)) and rank(=(X)) are both equal to

2, and (29a)-(29c) exactly recovers (7b)-(7c), (1f). By ignoring the rank constraints,

we come to the standard SDP relaxation of the rectangular formulation (7), whose

feasible region is defined as

Rc
SDP = {(p, q,W ) : (29), (1h)− (1i)}. (30)
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This SDP relaxation is in the complex domain. There is also an SDP relaxation in

the real domain by defining W ∈ R2|C|×2|C|. The associated constraints are

pgi − pdi = Gii(Wii +Wi′i′) +
∑
j∈δ(i)

[Gij(Wij +Wi′j′)−Bij(Wij′ −Wji′)] i ∈ B

(31a)

qgi − qdi = −Bii(Wii +Wi′i′) +
∑
j∈δ(i)

[−Bij(Wij +Wi′j′)−Gij(Wij′ −Wji′)] i ∈ B

(31b)

V 2
i ≤ Wii +Wi′i′ ≤ V

2

i i ∈ B

(31c)

W � 0, (31d)

where i′ = i + |B|. If W = [e; f ][eT , fT ], i.e. rank(W )=1, then (31a)-(31c) exactly

recovers (7b)-(7c), (1f). We denote the feasible region of this SDP relaxation in the

real domain as

Rr
SDP = {(p, q,W ) : (31a)− (31d), (1h)− (1i)}. (32)

The SDP relaxation in the real domain is first proposed in [6, 5], and [67]. The

SDP relaxation in the complex domain is formulated in [18] and [109] and is widely

used in the literature now for its notational simplicity. These two SDP relaxations

produce the same bound, since the solution of one can be used to derive a solution

to the other with the same objective function value. See e.g., Section 3.3 in [97] for

a formal proof. Henceforth, we refer to the standard SDP relaxation as RSDP that is

RSDP := Rc
SDP = Rr

SDP , where the second equality (with some abuse of notation) is

meant to imply that the two relaxations have the same projection in the space of the

p, q variables.
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3.2.1.4 SOCP Relaxation of Rectangular Formulation (RSOCP ).

We can further apply SOCP relaxation to the SDP constraint (29e) by only imposing

the following constraints on all the 2× 2 submatrices of X for each line (i, j) ∈ L,Xii Xij

Xji Xjj

 � 0 (i, j) ∈ L. (33)

This is a relaxation of (29e), because (29e) requires all principal submatrices of X

be SDP (see e.g., [47]). Note that (33) has a 2× 2 hermitian matrix, i.e., Xij = X∗ji.

Using the Sylvester criterion, (33) is equivalent to XijXji ≤ XiiXjj and Xii, Xjj ≥ 0.

The first inequality can be written as <(Xij)
2 + =(Xij)

2 +
(
Xii−Xjj

2

)2

≤
(
Xii+Xjj

2

)2

,

which is an SOCP constraint in the real domain. Thus, we have an SOCP relaxation

of the rectangular formulation with the feasible region defined as

RSOCP = {(p, q,X) : (29a)− (29c), (33), (1h)− (1i)}. (34)

This SOCP relaxation is also proposed in the literature, see e.g., [76]. In [71], this

relaxation is proven to be equivalent to the SOCP relaxation of DistFlow model

proposed in [8, 9].

3.2.1.5 SOCP Relaxation of Alternative Formulation (A∗SOCP ).

This is the classic SOCP relaxation introduced in Section 2.2.3 and first proposed in

[52]. We denote the feasible region of this SOCP relaxation as

A∗SOCP = {(p, q, c, s) : (10b)− (10e), (1h)− (1i), (13)}. (35)

3.2.1.6 SDP Relaxation of Alternative Formulation (ASDP ).

We can also apply SDP relaxation to the nonconvex quadratic constraints (10f) in

the alternative formulation (10). In particular, define a vector z ∈ R2|L|+|B|, of which

the first 2|L| components are indexed by the set of branches (i, j) ∈ L, and the

last |B| components are indexed by the set of buses i ∈ B. Essentially, z represents
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((cij)(i,j)∈L, (sij)(i,j)∈L, (cii)i∈B). Then define a real matrix variable Z to approximate

zzT and consider the following set of constraints:

Z(ij),(ij) + Z(i′j′),(i′j′) = Z(ii),(jj) (i, j) ∈ L (36a)

Z � zzT (36b)

Z(ij),(ij) ≤ (V iV j)
2, Z(i′j′),(i′j′) ≤ (V iV j)

2 (i, j) ∈ L (36c)

Z(ii),(ii) ≤ (V 2
i + V

2

i )cii − (V iV i)
2 i ∈ B, (36d)

where i′ = i + |L|. Constraints (36a) and (36b) are the usual SDP relaxation of

(10f), and constraints (36c) and (36d) are used to properly upper bound the diagonal

elements of Z, where constraint (36d) follows from applying McCormick envelopes

on the squared terms c2
ii. In particular, if z(ij) is restricted to be between [z(ij), z(ij)],

then the McCormick upper envelope for the diagonal element Z(ij),(ij) is given as

Z(ij),(ij) ≤ (z(ij)+z(ij))z(ij)−z(ij)z(ij). Denote the feasible region of this SDP relaxation

of the alternative formulation (10) as

ASDP = {(p, q, c, s, Z) : (36), (10b)− (10e), (1h)− (1i)}. (37)

Note that this SDP relaxation of the alternative formulation is derived using stan-

dard techniques, but to the best of our knowledge, it has not been discussed in the

literature.

3.2.2 Comparison of Relaxations

The main result of this section is Theorem 2, which presents the relative strength of

the various convex relaxations introduced above. In order to compare relaxations,

they must be in the same variable space. Also the objective function depends only

on the value of the real powers. Therefore, we study the feasible regions of the above

convex relaxations projected to the space of real and reactive powers, i.e. the (p, q)

space. We use ‘̂ ’ to denote this projection. For example, R̂M is the projection of RM

to the (p, q) space.
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Theorem 2. Let RM , AM , RSDP , RSOCP , A∗SOCP , and ASDP be the McCormick

relaxation of the rectangular formulation (7), the McCormick relaxation of the alter-

nate formulation (10), the SDP relaxation of the rectangular formulation (30), the

SOCP relaxation of the rectangular formulation (34), the SOCP relaxation of the

alternative formulation (35), and the SDP relaxation of the alternative formulation

(37), respectively. Then:

(i) The following relationships hold between the feasible regions of the convex relax-

ations when projected onto the (p, q) space:

R̂SDP ⊆ R̂SOCP = Â∗SOCP ⊆ ÂSDP

⊇

R̂M ⊇ ÂM

(38)

(ii) All the inclusions in (38) can be strict.

In Section 3.2.2.1 we present the proof of part (i) of Theorem 2, and in Section

3.2.2.2 we present examples to verify part (ii) of the theorem.

3.2.2.1 Pairwise comparison of relaxations

The proof of part (i) of Theorem 2 is divided into Propositions 1-4.

Proposition 1. R̂M ⊇ ÂM .

Proof. We want to show that for any given (p, q, c, s, C, S,D) ∈ AM , we can find

(e, f, E, F,H) such that (p, q, e, f, E, F,H) is in RM . For this purpose, set ei = fi = 0

for i ∈ B, Eij = cij, Fij=0, Hij = sij, Hji = 0 for each (i, j) ∈ L, and Eii = cii and

Fii = 0 for each i ∈ B. By this construction, we have Eii+Fii = cii, Eij+Fij = cij, and

Hij − Hji = sij. Therefore, (10b)-(10c) implies that the constructed E,F,H satisfy

(25a)-(25b); (10d) implies (25c); (25d) is trivially satisfied since ei = fi = 0. Now to
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see the McCormick envelopes (25e)-(25f) are satisfied, consider M(Eij = eiej). Using

the bounds (25d) on ei, fi, M(Eij = eiej) can be written as

max{−V iej − V jei − V iV j, V iej + V jei − V iV j} ≤ Eij

Eij ≤ min{−V iej + V jei + V iV j, V iej − V jei + V iV j}.

Since ei = 0 for all i ∈ B, the above inequalities reduce to −V iV j ≤ Eij ≤ V iV j,

which is implied by Eij = cij and the bounds (27b). Similar reasoning can be applied

to verify that the other McCormick envelopes in (25e)-(25f) are satisfied. Finally,

it is straightforward to see that Eii = cii ≥ 0, Fii = 0. Therefore, the constructed

(p, q, e, f, E, F,H) is in RM .

In fact, the above argument only relies on constraints (10b)-(10d) and (27b) in

AM . This suggests that ÂM may be strictly contained in R̂M , which is indeed the

case shown in Section 3.2.2.2.

Proposition 2. ÂM ⊇ Â∗SOCP .

Proof. It suffices to prove that projp,q,c,sAM ⊇ A∗SOCP . For this purpose, we want to

show that for each (p, q, c, s) ∈ A∗SOCP , there exists (C, S,D) such that (p, q, c, s, C, S,D) ∈

AM . In particular, set Cij = c2
ij, Sij = ciicjj − c2

ij ≥ s2
ij, and Dij = ciicjj for each

(i, j) ∈ L. Note that Cij and Dij satisfy constraints (27c) by the definition of Mc-

Cormick envelopes. So, it remains to verify if Sij satisfies M(Sij = s2
ij). This involves

verifying:

2(V jV i)|sij| − (V jV i)
2 ≤ Sij ≤ (V jV i)

2. (39)

The first inequality holds because Sij ≥ s2
ij and s2

ij−2(V jV i)|sij|+(V jV i)
2 = (|sij|−

V jV i)
2 ≥ 0. The second inequality holds since Sij = ciicjj − c2

ij ≤ ciicjj ≤ (V iV j)
2.

Thus, the result follows.

The next result is straightforward, however we present it for completion.
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Proposition 3. Â∗SOCP = R̂SOCP .

Proof. Note that Xii = cii, Xjj = cjj and Xij = cij+isij forms a bijection between the

(c, s) variables inA∗SOCP and the X variable inRSOCP . Given this bijection, (7b)-(7c),

(1f) are equivalent to (29a)-(29c) and (10e) is equivalent to Xij = X∗ji. As mentioned

in Section 3.2.1.4, the hermitian condition in (33) is equivalent to |Xij|2 ≤ XiiXjj

and Xii, Xjj ≥ 0, which is exactly (12).

Proposition 4. Â∗SOCP ⊆ ÂSDP .

Proof. It suffices to show that A∗SOCP ⊆ projp,q,c,sASDP . For this, we can show that

given any (p, q, c, s) ∈ A∗SOCP , there exists a Z such that (p, q, c, s, Z) ∈ ASDP . In

particular, we construct Z = zzT +Z ′, where z = ((cij)(i,j)∈L, (sij)(i,j)∈L, (cii)i∈B), and

Z ′ is a diagonal matrix with the first |L| entries on the diagonal equal to ciicjj−(c2
ij +

s2
ij) for each (i, j) ∈ L and all other entries equal to zero. By this construction, (36a)

is satisfied. Also Z � zzT , i.e. (36b) is satisfied. Note that the first |L| entries on the

diagonal of Z is equal to ciicjj − s2
ij. Therefore, the bounds in (36c) are equivalent to

ciicjj−s2
ij ≤ V

2

iV
2

j , s
2
ij ≤ V

2

iV
2

j , where the first one follows from (10d) and the second

one follows from (10d) and (12). Finally, constraint (36d) is the McCormick envelope

of c2
ii with the same bounds in (10d), therefore it is also satisfied by the solution of

A∗SOCP .

3.2.2.2 Strictness of Inclusions.

Now, we prove by examples that all the inclusions in Theorem 2 can be strict.

(i) Â∗SOCP ⊂ ÂM ⊂ R̂M : Consider the 9-bus radial network with quadratic objec-

tive function from Chapter 2. We compare the strength of these three types of

relaxations in Table 6, which shows that the inclusions can be strict.
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Table 6: Percentage optimality gap for RM , AM , and A∗SOCP with respect to global

optimality found by BARON.

case objective RM AM A∗SOCP

9-bus quadratic 89.46 69.13 52.69

Here we use BARON [95] to obtain the global optimal solutions of the OPF

problem.

(ii) Â∗SOCP ⊂ ÂSDP : Consider a 2-bus system. Since there is only one transmission

line, A∗SOCP has only one SOCP constraint

c2
12 + s2

12 ≤ c11c22, (40)

while the SDP relaxation ASDP has

Z � zzT ⇐⇒



1 c12 s12 c11 c22

c12 Z11 Z12 Z13 Z14

s12 Z21 Z22 Z23 Z24

c11 Z31 Z32 Z33 Z34

c22 Z41 Z42 Z43 Z44


� 0 (41)

with the additional constraints Z11 + Z22 = Z43, Z11 ≤ 1.4641, Z22 ≤ 1.4641,

Z33 ≤ 2.02c12−0.9801 and Z44 ≤ 2.02s12−0.9801, assuming that V 1 = V 2 = 0.9

and V 1 = V 2 = 1.1.

Now, consider a point (c12, s12, c11, c22) = (1.000, 0.100, 1.000, 1.000), which

clearly violates constraint (40). However, one can extend this point in SDP
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relaxation as follows:

1 zT

z Z

 =



1.000 1.000 0.100 1.000 1.000

1.000 1.006 0.100 0.997 0.997

0.100 0.100 0.017 0.100 0.100

1.000 0.997 0.100 1.029 1.023

1.000 0.997 0.100 1.023 1.029


� 0 (42)

This proves our claim that the SDP relaxation ÂSDP can be weaker than the

SOCP relaxation Â∗SOCP .

(iii) RSDP ⊂ RSOCP : Although this relation holds as equality for radial networks

[92], the inclusion can be strict for meshed networks. For example, Table 7

demonstrates this fact, e.g., the instance case6ww from the MATPOWER li-

brary [111].

3.2.3 Our Choice of Convex Relaxation

We discuss some consequences of Theorem 2 here.

Among LPs, SOCPs, and SDPs, the most tractable relaxation are LP relaxations.

In Chapter 2, we showed how AM may be used (together with specialized cutting

planes) to solve tree instances of OPF globally. Theorem 2 provides a theoretical basis

for selection of AM over RM if one wishes to use linear programming relaxations.

However, as seen in Theorem 2, both McCormick relaxations are weaker than the

SOCP relaxations. In the context of meshed systems, in our preliminary experiments,

the difference in quality of bounds produced by the LP and SOCP based relaxations

is quite significant.

As stated in Section 3.1, the goal of this chapter is to avoid using SDP relaxations.

However, it is interesting to observe the relative strength of different SDP relaxations.

On the one hand, RSDP is the best relaxation among the relaxation considered in

Theorem 2. On the other hand, quite remarkably, ASDP is weaker than A∗SOCP .
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Clearly, if one chooses to use SDPs, ASDP is not a good choice. One may define a

different SOCP relaxation applied to the SDP relaxation of the alternative formulation

by relaxing constraint (36b) and replacing it with 2× 2 principle submatrices. Such

a relaxation would yield very poor bounds and thus undesirable.

We note that [28] and [27] show that a relaxation with same bound as RSOCP

is quite strong. The equality RSOCP = A∗SOCP is a straightforward observation.

However, between these two relaxations, working with the classic SOCP relaxation

A∗SOCP provides a very natural way to strengthen these SOCP relaxations. In par-

ticular, A∗SOCP was obtained by first dropping the nonconvex arctangent constraint

(11). If one is able to incorporate LP/SOCPs based convex outer approximations of

these constraints, then A∗SOCP could be significantly strengthened. Indeed one may

be even able to produce relaxations that are incomparable to RSDP . We show how

to accomplish this in the next section.

3.3 Strong SOCP Relaxation for Meshed Networks

In this section, we propose three methods to strengthen the classic SOCP relaxation

A∗SOCP . In Section 3.3.1, we propose a new relaxation of the arctangent constraints

(11) as polynomial constraints over cycles in the power network. These polynomial

constraints with degrees proportional to the length of the cycles are then transformed

to systems of bilinear equations by triangulating the cycles. We apply McCormick re-

laxation to the bilinear constraints. The resulting convex relaxation is incomparable

to the standard SDP relaxation, i.e. the former does not dominate nor is dominated

by the latter. In Section 3.3.2, we construct a polyhedral envelope for the arctangent

functions in 3-dimension and incorporate it into the classic SOCP relaxation, which

again results in a convex relaxation incomparable to the SDP relaxation. In Section

3.3.3, we strengthen the classic SOCP relaxation by dynamically generating valid lin-

ear inequalities that separate the SOCP solution from the SDP cones. This approach
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takes the advantage of the efficiency of the SOCP relaxation and the accuracy of

the SDP relaxation. It very rapidly produces solutions of quality extremely close to

the SDP relaxation. In Section 3.3.4, we propose variable bounding techniques that

provide tight variable bounds for the first two strengthening approaches.

3.3.1 A New Cycle-based Relaxation of OPF

Our first method is based on the following observation: instead of satisfying the

angle condition (11) for each (i, j) ∈ L, we consider a relaxation that guarantees

angle differences sum up to 0 modulo 2π over every cycle C in the power network,

i.e. ∑
(i,j)∈C

θij = 2πk, for some k ∈ Z, (43)

where θij is the angle difference between adjacent buses i and j. Although the number

of cycles in a power network may be large, it suffices to enforce (43) only over cycles

in a cycle basis. For a formal definition of cycle basis, see Appendix B. Since θ =

2πk for some k ∈ Z ⇐⇒ cos θ = 1, we can equivalently write (43) as follows:

cos

( ∑
(i,j)∈C

θij

)
= 1. (44)

We call (44) cycle constraints. By expanding the cosine term appropriately, we can

express (44) in terms of cos(θij)
′s and sin(θij)’s. According to the construction of the

alternative formulation (10), we have the following relationship between c, s and θ

cos(θij) =
cij√
ciicjj

and sin(θij) = − sij√
ciicjj

∀(i, j) ∈ L. (45)

Using (45), the cycle constraint (44) can be reformulated as a degree |C| homogeneous

polynomial equality in the cii, cij, and sij variables. Denote it as p|C|.

Unfortunately, directly solving the polynomial reformulation can be intractable,

especially for large cycles, since p|C| can have up to 2|C|−1 + 1 monomials and each

monomial is of degree |C|. It is well known that any polynomial constraint can be
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written as a set of quadratic constraints using additional variables. In our case, there

is a natural way to obtain aO(|C|) sized system of bilinear constraints by decomposing

large cycles into smaller ones. Before introducing the cycle decomposition method,

we present two building blocks in the construction, namely, the cycle constraints over

3- and 4-cycles.

3.3.1.1 3-Cycle.

Let us first analyze the simplest case, namely the cycle constraint over a 3-cycle.

Expansion of cos(θ12 + θ23 + θ31) = 1 gives p3 = 0, where p3 is the following cubic

polynomial:

p3 = c12(c23c31 − s23s31)− s12(s23c31 + c23s31)− c11c22c33. (46)

Note that if the entire power network is a 3-cycle, then adding (46) to the alternative

formulation (10) makes it exactly equivalent to the rectangular formulation (7). Now

we claim that p3 can be replaced with two bilinear constraints. To start with, let us

define the polynomials

pij = c2
ij + s2

ij − ciicjj, (i, j) ∈ {(1, 2), (2, 3), (3, 1)} (47)

and

q1
3 = s12c33 + c23s31 + s23c31 (48a)

q2
3 = c12c33 − c23c31 + s23s31. (48b)

Then, we have the following result.

Proposition 5. {(c, s) : p3 = p12 = p23 = p31 = 0} = {(c, s) : q1
3 = q2

3 = p12 = p23 =

p31 = 0}.

Proof. We prove the above two sets are equal by showing they contain each other.

(⊆): p12 = p23 = p31 = 0 ensures that there exist θ12, θ23, and θ31 such that the c, s, θ
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variables satisfy (45). Then, using the fact that (46) is derived using (45) and (44),

p3 = 0 implies that

θ12 = −(θ23 + θ31) + 2kπ ∀k ∈ Z, (49)

which is equivalent to the following two equalities,

sin(θ12) = sin(−(θ23 + θ31)) and cos(θ12) = cos(−(θ23 + θ31)). (50)

Note that the sine constraint in (50) implies that

θ12 = −(θ23 + θ31) + 2kπ or θ12 = (θ23 + θ31) + (2k + 1)π ∀k ∈ Z,

while the cosine constraint in (50) implies that

θ12 = −(θ23 + θ31) + 2kπ or θ12 = (θ23 + θ31) + 2kπ ∀k ∈ Z.

Therefore, we need both the sine and cosine constraints in (50) to enforce (49). Then,

expanding the sine and cosine constraints in (50) using the sum formulas and replacing

the trigonometric terms with their algebraic equivalents in terms of the c and s

variables via (45), we obtain q1
3 = q2

3 = 0.

(⊇): q1
3 = q2

3 = p12 = p23 = p31 = 0 imply that we have

p3 = c12(c23c31 − s23s31)− s12(s23c31 + c23s31)− c11c22c33

= c12(c12c33)− s12(−s12c33)− c11c22c33

= (c12c12 + s12s12)c33 − c11c22c33

= 0,

where the second equality follows due to q1
3 = 0 and q2

3 = 0, and the last one follows

due to p12 = 0. This completes the proof.

Finally, we note that one can obtain two more pairs of equalities constructed in the

same fashion as (48) by considering other permutations such as θ23 = −(θ12+θ31)+2kπ

and θ31 = −(θ12 + θ23) + 2kπ.
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3.3.1.2 4-Cycle.

Now, let us analyze the cycle constraint over a 4-cycle. Expansion of cos(θ12 + θ34 +

θ23 + θ41) = 1 together with (45) gives p4 = 0, where p4 is the following quartic

polynomial,

p4 = (c12c34− s12s34)(c23c41− s23s41)− (s12c34 + c12s34)(s23c41 + c23s41)− c11c22c33c44.

(51)

We again claim that p4 can be replaced with two bilinear constraints. To start with,

define the following polynomials

pij = c2
ij + s2

ij − ciicjj, (i, j) ∈ {(1, 2), (2, 3), (3, 4), (4, 1)}

and

q1
4 = s12c34 + c12s34 + s23c41 + c23s41 (52a)

q2
4 = c12c34 − s12s34 − c23c41 + s23s41. (52b)

Then, we have the following proposition.

Proposition 6. {(c, s) : p4 = p12 = p23 = p34 = p41 = 0} = {(c, s) : q1
4 = q2

4 = p12 =

p23 = p34 = p41 = 0}.

Proof. The proof is similar to that of Proposition 5.

(⊆): p4 = p12 = p23 = p34 = p41 = 0 imply that we can find θ12, θ23, θ34 and θ41

satisfying

θ12 + θ34 = −(θ23 + θ41) + 2kπ ∀k ∈ Z. (53)

Then, by taking sine and cosine of both sides, expanding the right hand side using sine

and cosine sum formulas and replacing the trigonometric terms with their algebraic

equivalents in terms of c and s variables via (45), we obtain q1
4 = q2

4 = 0.
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(⊇): q1
4 = q2

4 = p12 = p23 = p34 = p41 = 0 imply that we have

p4 = (c12c34 − s12s34)(c23c41 − s23s41)− (s12c34 + c12s34)(s23c41 + c23s41)− c11c22c33c44

= (c23c41 − s23s41)2 + (s23c41 + c23s41)2 − c11c22c33c44

= (c2
23 + s2

23)(c2
41 + s2

41)− c11c22c33c44

= 0,

where the second equality follows due to q1
4 = 0 and q2

4 = 0, and the last one follows

due to p23 = 0 and p41 = 0. This completes the proof.

3.3.1.3 Larger Cycles.

Now we introduce the cycle decomposition procedure so that the cycle constraint (43)

over any cycle C can be reformulated as a system of bilinear equalities, where the

number of bilinear equations is O(|C|). Let C be a cycle with buses numbered from

1 to n.

3-decomposition of a cycle C. Suppose |C| = n ≥ 4. We can decompose C into

3-cycles by creating artificial edges (1, i) for i = 3, . . . , n − 1. Now, we apply the

exact reformulation from Section 3.3.1.1 for each of these cycles. The polynomial

cycle constraint pn is replaced by the following set of bilinear equalities:

s̃1,ici+1,i+1 + si,i+1c̃1,i+1 − s̃1,i+1ci,i+1 = 0 i = 2, 3, . . . , n− 1 (54a)

c̃1,ici+1,i+1 − ci,i+1c̃1,i+1 − s̃1,i+1si,i+1 = 0 i = 2, 3, . . . , n− 1 (54b)

c̃2
1,i + s̃2

1,i = c11cii i = 2, 3, . . . , n− 1 (54c)

c2
ij + s2

ij = ciicjj (i, j) ∈ C. (54d)

Here, c̃1i and s̃1i are extra variables representing
√
c11cii cos(θ1−θi) and−√c11cii sin(θ1−

θi), respectively, for i = 3, . . . , n− 1, and c̃1i and s̃1i for i = 2 and i = n coincidence

with the original variables c1i, s1i.
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Proposition 7. Suppose a cycle basis is given for the power network N = (B,L).

Then, constraints (48) for every 3-cycle in the cycle basis and constraints (54) for

every cycle with length n ≥ 4 in the cycle basis define a valid bilinear extended relax-

ation of OPF (10)-(11). Moreover, it implies that
∑

(i,j)∈C atan2(sij, cij) = 2πk for

some integer k for each cycle in the cycle basis.

Proof. First, let us prove that the proposed relaxation is valid for any feasible solution

of the OPF formulation over any cycle C with length |C| = n ≥ 4 in the cycle basis.

Without loss of generality, assume that the buses in the cycle are numbered from

1 to n. Let (c, s, θ) be a feasible solution for OPF (10)-(11). Recall that that we

have ci,i+1 =
√
ciici+1,i+1 cos(θi − θi+1) and si,i+1 = −√ciici+1,i+1 sin(θi − θi+1) for

i = 1, . . . , n − 1. Then, choose c̃1i =
√
c11cii cos(θ1 − θi), s̃1i = −√c11cii sin(θ1 − θi)

for each artificial line (1, i) for i = 2, . . . , n− 1. Now, we have

s̃1,ici+1,i+1 + si,i+1c̃1,i+1 − s̃1,i+1ci,i+1

= [−
√
c11cii sin(θ1 − θi)]ci+1,i+1 + [−√ciici+1,i+1 sin(θi − θi+1][

√
c11cii cos(θ1 − θi)]

+ [−√c11ci+1,i+1 sin(θ1 − θi+1)][
√
ciici+1,i+1 cos(θi − θi+1)]

= ci+1,i+1

√
c11cii

[
sin(θ1 − θi)− sin(θi − θi+1) cos(θ1 − θi) + cos(θi − θi+1) sin(θ1 − θi+1

]
= 0,

which proves the validity of (54a). A similar argument can be used to prove the

validity of (54b) as well. Also, since we have c̃2
1,i + s̃2

1,i − c11cii = (
√
c11cii cos(θ1 −

θi))
2 + (−√c11cii sin(θ1 − θi))2 − c11cii = c11cii[cos2(θ1 − θi) + sin2(θ1 − θi) − 1] = 0,

(54c) follows. Hence, constraints (54) for every cycle with length n ≥ 4 are valid for

OPF (10)-(11).

For the second part, it is sufficient to show that adding (54) to (10) implies

cos
(∑n−1

i=1 θi,i+1 + θn1

)
= 1 for every cycle C with length n ≥ 4. Using the argument

in Proposition 5, we know that the equalities in (54) and (10f) enforce the cycle
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constraint over the 3-cycle (1, i, i+ 1)

θ1,i + θi,i+1 + θi+1,1 = 2πki i = 2, · · · , n− 1, (55)

for some integers ki. Therefore, summing (55) over all i and canceling θ1,i + θi,1 = 0,

we conclude that
∑n−1

i=1 θi,i+1 + θn1 = 2πk, for some k ∈ Z.

4-decomposition of a cycle C. Suppose |C| ≥ 5 and odd. We can decompose the

cycle C into 4-cycles by creating artificial edges (1, 2i) for i = 2, 3, . . . , n−1
2

and one

3-cycle. Now, we apply the exact reformulation from Section 3.3.1.1 and 3.3.1.2 for

each of these cycles. Finally, polynomial pn is replaced by the following set of bilinear

equalities:

c̃1,2i−2c2i−1,2i − s̃1,2i−2s2i−1,2i − c̃1,2ic2i−2,2i−1 − s̃1,2is2i−2,2i−1 = 0 i = 2, . . . ,
n− 1

2

(56a)

s̃1,2i−2c2i−1,2i + c̃1,2i−2s2i−1,2i − s̃1,2ic2i−2,2i−1 + c̃1,2is2i−2,2i−1 = 0 i = 2, . . . ,
n− 1

2

(56b)

c̃1,n−1cn−1,n − s̃1,n−1sn−1,n − cn,1cn−1,n−1 = 0 (56c)

s̃1,n−1cn−1,n + c̃1,n−1sn−1,n + sn,1cn−1,n−1 = 0 (56d)

s̃2
1,i + c̃2

1,i = c11cii i = 2, 3, . . . , n− 1

(56e)

c2
ij + s2

ij = ciicjj (i, j) ∈ C, (56f)

where (56a)-(56b) are constraints on 4-cycles and (56c)-(56d) are constraints on the

last 3-cycle, c̃1,2i, s̃1,2i for i = 2, 3, . . . , (n − 1)/2 are additional variables and c̃12, s̃12

coincide with the original variables c12, s12.

Suppose |C| ≥ 6 and even. We can decompose the cycle C into 4-cycles by creating

the artificial edges (1, 2i) for i = 2, . . . , n−2
2

. Now, we apply the exact reformulation

from Section 3.3.1.2 for each of these cycles. Finally, polynomial pn is replaced by
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the following set of bilinear equalities:

c̃1,2i−2c2i−1,2i − s̃1,2i−2s2i−1,2i − c̃1,2ic2i−2,2i−1 − s̃1,2is2i−2,2i−1 = 0 i = 2, . . . ,
n

2

(57a)

s̃1,2i−2c2i−1,2i + c̃1,2i−2s2i−1,2i − s̃1,2ic2i−2,2i−1 + c̃1,2is2i−2,2i−1 = 0 i = 2, . . . ,
n

2

(57b)

s̃2
1,i + c̃2

1,i = c1,1ci,i i = 2, 3, . . . , n− 1

(57c)

c2
ij + s2

ij = ciicjj (i, j) ∈ C,

(57d)

where c̃1,2i, s̃1,2i are additional variables for i = 2, . . . , n/2 − 1, and c̃1,n, s̃1,n coincide

with the original variables c1,n, s1,n.

Proposition 8. Suppose a cycle basis is given for the power network N = (B,L).

Then,

(i) Constraints (48) for every 3-cycle in the cycle basis,

(ii) Constraints (52) for every 4-cycle in the cycle basis,

(iii) Constraints (56) for every odd cycle with length n ≥ 5 in the cycle basis,

(iv) Constraints (57) for every even cycle with length n ≥ 6 in the cycle basis,

define a valid bilinear extended relaxation of OPF (10)-(11). Moreover, it implies

that
∑

(i,j)∈C atan2(sij, cij) = 2πk for some integer k for each cycle in the cycle basis.

The proof is similar to the proof of Proposition 7.
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3.3.1.4 McCormick Based LP Relaxation and Separation.

The cycle-based relaxations presented in Proposition 7 and Proposition 8 are non-

convex quadratic problems, for which we can obtain LP relaxation by using Mc-

Cormick relaxations of the bilinear constraints over cycles. For large networks, in-

cluding McCormick relaxations for all the cycle constraints may be computationally

inefficient. Therefore, we propose a separation routine which generates cutting planes

to separate a solution of the classic SOCP relaxation from the McCormick envelopes

of the cycle constraints. The separation is applied to every cycle in the cycle basis

individually.

For a given cycle C, the McCormick relaxation of the bilinear cycle constraints,

which could be any one of: (48), (52), (54), (56), or (57), can be written compactly

as follows:

Az + Ãz̃ +By ≤ c (58a)

Ey = 0, (58b)

where z is a vector composed of the c, s variables in the alternative formulation

(10), z̃ is a vector composed of the additional c̃, s̃ variables introduced in the cycle

decomposition, and y is a vector of new variables defined to linearize the bilinear

terms in the cycle constraints. Constraint (58a) contains the McCormick envelopes of

the bilinear terms and bounds on the c, s variables, while (58b) includes the linearized

cycle equality constraints.

Given an optimal solution z∗ of the classic SOCP relaxation A∗SOCP , we can solve
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the following separation problem for a cycle C,

v∗ := min
α,β,γ,µ,λ

β − αT z∗ (59a)

s.t. ATλ = α (59b)

ÃTλ = 0 (59c)

BTλ+ ETµ = 0 (59d)

cTλ ≤ β, λ ≥ 0 (59e)

− e ≤ α ≤ e (59f)

− 1 ≤ β ≤ 1, (59g)

where (59b)-(59e) is the dual system equivalent to the condition that αT z ≤ β for

all (z, z̃, y) satisfies (58); (59f)-(59g) bounds the coefficients α, β, and e is the vector

of 1’s. If v∗ < 0, then the corresponding optimal solution (α, β) of (59) gives a

separating hyperplane such that αT z∗ > β and αT z ≤ β for all (z, z̃, y) in (58). If

v∗ ≥ 0, then (59) certifies that (z∗, z̃, y) is contained in the McCormick relaxation

(58) for some z̃, y.

We remark that the McCormick relaxations obtained from 3-decomposition and

4-decomposition of cycles do not dominate one another. Therefore, we use both

of them in the separation routine. We also note that the classic SOCP relaxation

strengthened by dynamically adding valid inequalities through separation over the

McCormick relaxations of the cycle constraints is incomparable to the standard SDP

relaxations of OPF.

Proposition 9. A∗SOCP strengthened by the valid inequalities from the McCormick

relaxation of the cycle constraints is not dominated by nor dominates RSDP .

This result is verified by an example in Section 3.4.4.
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3.3.2 Arctangent Envelopes

In this section, we propose a second approach to strengthen the classic SOCP relax-

ation A∗SOCP . The key idea is still to incorporate convex approximation of the angle

condition (11) to the SOCP relaxation. This time, instead of reformulating polyno-

mial constraints over cycles such as (54), (56), and (57), we propose linear envelopes

for the arctangent function over a box, and incorporate this relaxation to A∗SOCP .

Our construction uses four linear inequalities to approximate the convex envelope

for the following set defined by the arctangent constraint (11) for each line (i, j) ∈ L,

AT :=
{

(c, s, θ) ∈ R3 : θ = arctan
(s
c

)
, (c, s) ∈ [c, c]× [s, s]

}
, (60)

where we denote θ = θj− θi and drop (i, j) indices for brevity. We also assume c > 0.

The four corners of the box correspond to four points in the (c, s, θ) space:

ζ1 = (c, s, arctan (s/c)), ζ2 = (c, s, arctan (s/c)),

ζ3 = (c, s, arctan (s/c)), ζ4 = (c, s, arctan (s/c)).

(61)

Two inequalities that approximate the upper envelop of AT are described below.

Proposition 10. Let θ = γ1 +α1c+β1s and θ = γ2 +α2c+β2s be the planes passing

through points {ζ1, ζ2, ζ3}, and {ζ1, ζ3, ζ4}, respectively. Then, two valid inequalities

for AT can be obtained as

γ′k + αkc+ βks ≥ arctan
(s
c

)
(62)

for all (c, s) ∈ [c, c]× [s, s] with γ′k = γk + ∆γk, where

∆γk = max
{

arctan
(s
c

)
− (γk + αkc+ βks) : c ∈ [c, c], s ∈ [s, s]

}
, (63)

for k = 1, 2.

Note that by the construction of (63), it is evident that γ′k +αkc+ βks dominates

the arctan(s/c) over the box. The nonconvex optimization problem (63) can be solved

by enumerating all possible Karush-Kuhn-Tucker (KKT) points.

Two inequalities that approximate the lower envelop of AT are described below.
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(a) Lower envelopes. (b) Upper envelopes.

Figure 6: Arctangent envelopes from different viewpoints. Red planes are the en-
velopes.

Proposition 11. Let θ = γ3 +α3c+β3s and θ = γ4 +α4c+β4s be the planes passing

through points {ζ1, ζ2, ζ4}, and {ζ2, ζ3, ζ4}, respectively. Then, two valid inequalities

for AT are defined as

γ′k + αkc+ βks ≤ arctan
(s
c

)
(64)

for all (c, s) ∈ [c, c]× [s, s] with γ′k = γk −∆γk, where

∆γk = max
{

(γk + αkc+ βks)− arctan
(s
c

)
: c ∈ [c, c], s ∈ [s, s]

}
, (65)

for k = 3, 4.

Figure 6 shows an example of these upper and lower envelopes. One may further

strengthen these envelopes via additional inequalities, although the benefit is minimal

according to our experiments.

We have the following proposition, whose proof is provided by an example in

Section 3.4.4.

Proposition 12. A∗SOCP strengthened by arctangent envelopes defined in (152)-(106)

is not dominated by nor dominates the SDP relaxation RSDP .
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3.3.3 SDP Separation

The last approach we propose to strengthen the classic SOCP relaxation is similar in

spirit to the separation approach in Section 3.3.1.4, but here, instead of separating

over the McCormick relaxations of the cycle constraints (58), we separate a given

SOCP relaxation solution from the feasible region of the SDP relaxation of cycles. In

the following, we first explore the relationship between the classic SOCP relaxation

A∗SOCP and the SDP relaxation Rr
SDP . Then, we explain the separation procedure

over cycles.

Let x ∈ R2|B| be a vector of bus voltages defined as x = [e; f ] such that xi = ei

for i ∈ B and xi′ = fi for i′ = i + |B|. Observe that if we have a set of c, s variables

satisfying the cosine, sine definition (45) and a matrix variable W = xxT , then the

following linear relationship between c, s and W holds,

cij = eiej + fifj = Wij +Wi′j′ (i, j) ∈ L (66a)

sij = eifj − ejfi = Wij′ −Wji′ (i, j) ∈ L (66b)

cii = e2
i + f 2

i = Wii +Wi′i′ , i ∈ B. (66c)

Given a solution of the classic SOCP relaxation, denoted as (p∗, q∗, c∗, s∗), if there

exists a symmetric matrix W ∗ ∈ R2|B|×2|B| such that (c∗, s∗) and W ∗ satisfy the

linear system (66), then (p∗, q∗,W ∗) satisfies the flow conservation and voltage bound

constraints (31a)-(31c) (because (c∗, s∗) satisfies (10b)-(10d)) as well as the generator

real and reactive bounds (1h)-(1i). If, furthermore, W ∗ � 0, then (p∗, q∗,W ∗) is

a feasible solution to the standard SDP relaxation Rr
SDP , therefore, optimal for the

SDP relaxation. If there does not exists such a W ∗, then we can add a valid inequality

to the SOCP relaxation to separate (c∗, s∗) from the set defined by (66) and W � 0.

This procedure can be repeated until the optimal SDP relaxation solution is obtained.

Notice that the above separation procedure requires solving an SDP problem with

a matrix of the size equal to the original SDP relaxation, which can be quite time
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consuming. Instead of separating over the full matrix, or equivalently the entire power

network, we can consider a separation only over cycles. In this way, we effectively

use an SDP relaxation to provide a convex approximation of the angle condition (11)

over a cycle.

In particular, for any cycle C in the power network, we only consider the equalities

in (66) associated with this cycle and the corresponding submatrix matrix W̃ ∈

R2|C|×2|C| of W . Consider the following set S

S := {z ∈ R2|C| : ∃W̃ ∈ R2|C|×2|C| s.t. − zl + Al • W̃ = 0 ∀l ∈ L, W̃ � 0}, (67)

where z = (c, s), the linear equality represents the linear system (66) restricted to the

cycle C, and L is the index set for all these equalities; • denotes the Frobenius inner

product between matrices. We suppress labeling variables with C for conciseness. It

should be understood that the construction is done for each cycle in a cycle basis.

For a given z∗, the separation problem over S can be written as follows,

v∗ := min − αT z∗ (68a)

s.t.
∑
l∈L

λlAl � 0 (68b)

α + λ = 0 (68c)

− e ≤ α ≤ e. (68d)

Since the system (67) is strictly feasible (e.g., W̃ = I and zl = Al · I, for l ∈ L),

strong duality holds between the primal system in S and the dual system in (68). In

particular, (68b)-(68c) is equivalent to maxz∈S α
T z ≤ 0. Therefore, the solution of

(68) either gives a separating hyperplane of the form αT z ≤ 0 such that αT z∗ > 0 and

αT z ≤ 0 ∀z ∈ S, or certifies that z∗ ∈ S. If the optimal objective value v∗ of (68) is

strictly less than 0, then we add the homogeneous inequality αT z ≤ 0 to the classic

SOCP relaxation. We can now apply this procedure to every element of a cycle basis

and resolve SOCP with the added linear inequalities. In computational experiments,
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we observe that a few iterations of this algorithm give very tight approximations to

SDP relaxation of rectangular formulation.

3.3.4 Obtaining Variable Bounds

The proposed McCormick relaxations of the cycle constraints and the convex en-

velopes for the arctangent functions are useful only when good variable upper and

lower bounds are available for the c and s variables. In this section, we explain how

to obtain good bounds, which is the key ingredient in the success of the first two

proposed methods.

Recall that cij and sij do not have explicit variable bounds except the implied

bounds in (24). However, these bounds may be loose, since it is usually the case

that phase angle differences in a power network under normal operation are small,

implying cij ≈ 1 and sij ≈ 0. Therefore, one can try to improve these bounds. A

straightforward approach is to optimize cij and sij over the feasible region of the SOCP

relaxation as is proposed in Section 2.6. However, this procedure can be expensive

because we need to solve 4|L| SOCPs, each of the size of the classic SOCP relaxation.

To be computationally efficient, instead of solving the full size SOCPs to tighten

variable bounds, we can obtain potentially weaker bounds by solving a reduced version

of the full SOCP relaxation. In particular, to find variable bounds for ckl and skl for

some (k, l) ∈ L, consider the buses which can be reached from either k or l in at

most r steps. Denote these buses by a set Bkl(r). For instance, Bkl(0) = {k, l},

Bkl(1) = δ(k) ∪ δ(l), etc. Also define Gkl(r) = Bkl(r) ∩ G and Lkl(r) = {(i, j) ∈ L :
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i ∈ Bkl(r) or j ∈ Bkl(r)}. Consider the following SOCP relaxation,

pgi − pdi = Giicii +
∑
j∈δ(i)

[Gijcij −Bijsij] i ∈ Bkl(r) (69a)

qgi − qdi = −Biicii +
∑
j∈δ(i)

[−Bijcij −Gijsij] i ∈ Bkl(r) (69b)

V 2
i ≤ cii ≤ V

2

i i ∈ Bkl(r + 1) (69c)

pmin
i ≤ pgi ≤ pmax

i i ∈ Gkl(r) (69d)

qmin
i ≤ qgi ≤ qmax

i i ∈ Gkl(r) (69e)

cij = cji, sij = −sji (i, j) ∈ Lkl(r) (69f)

c2
ij + s2

ij ≤ ciicjj (i, j) ∈ Lkl(r). (69g)

Essentially, (69) is the classic SOCP relaxation applied to the part of the power

network within r steps of the buses k and l. Note that (69) for each edge (k, l) can

be solved in parallel, since they are independent of each other. We observed that a

good trade-off between accuracy and speed is to select r = 2. In our experiments,

larger values of r improve variable bounds marginally.

For artificial edges, we cannot use the above procedure as they do not appear in

the flow balance constraints. Instead, we use bounds on the original variables that

are computed through (69) to obtain some improved bounds for the variables on the

artificial edges. Since any large cycle can be decomposed into 3-cycles and/or 4-cycles

as shown in Section 3.3.1.3, we only need to consider 3- and 4-cycles here. Let us start

from a 3-cycle. Assume the upper and lower bounds on c12, s12, c23, s23 are already

known, and we want to tighten the bounds on the artificial edge c13, s13. Then, the

bilinear constraints (48) over the cycle can be written as follows:

c13 =
c12c23 − s12s23

c22

(70a)

s13 =
s12c23 + c12s23

c22

. (70b)

Now, we can obtain variable bounds on c13, s13 by bounding the right-hand sides of
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(70a)-(70b) over the box for c12, s12, c23, s23, and c22. In particular, an upper bound

on c13 can be computed as

c̄13 =


ĉ13/c22 if ĉ13 > 0

ĉ13/c22 if ĉ13 ≤ 0,

(71)

where

ĉ13 = max{c12c23 : c12 ∈ [c12, c12], c23 ∈ [c23, c23]}

−min{s12s23 : s12 ∈ [s12, s12], s23 ∈ [s23, s23]}.
(72)

A similar procedure can be applied to obtain lower bounds on c13 and s13.

For a 4-cycle of buses 1, 2, 3, 4, assume we have bounds on c12, s12, c23, s23, c34, s34,

and want to find variable bounds on the artificial edge c14, s14. Using the two bilinear

constraints for the 4-cycle in (52) and (10f), we can express c14 and s14 in terms of

the other variables as follows

c14 =
c12(c23c34 − s23s34)− s12(s23c34 + c23s34)

c22c33

(73a)

s14 =
s12(c23c34 − s23s34) + c12(s23c34 + c23s34)

c22c33

. (73b)

Now, proceed in two steps. (1) Define a := c23c34 − s23s34 and b := s23c34 + c23s34,

and calculate bounds a, b as described for the 3-cycle case. (2) Repeat this process

to obtain bounds on c14, s14.

3.4 Computational Experiments

In this section, we present the results of extensive computational experiments on stan-

dard IEEE instances available from MATPOWER [111] and instances from NESTA

0.3.0 archive [25]. The code is written in the C# language with Visual Studio 2010

as the compiler. For all experiments, a 64-bit laptop with Intel Core i7 CPU with

2.00GHz processor and 8 GB RAM is used. Time is measured in seconds, unless

otherwise stated. Conic interior point solver MOSEK 7.1 [2] is used to solve SOCPs

and SDPs.
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3.4.1 Methods

We report the results of the following four algorithmic settings:

• SOCP: The classic SOCP formulation A∗SOCP without any improvement.

• SOCPA: SOCP strengthened by the arctangent envelopes (152)-(106).

• S34A: SOCPA further strengthened by dynamically generating linear valid in-

equalities from the McCormick relaxation of the cycle constraints via the 3- and

4-cycle decompositions and the separation routine developed in Sections 3.3.1.3

and 3.3.1.4.

• SSDP: SOCP strengthened by dynamically generating linear valid inequalities

obtained from separating an SOCP feasible solution from the SDP relaxation

over cycles. The separation routine is developed in Section 3.3.3.

We note that SOCPA and S34A require preprocessing to improve variable bounds

on the c and s variables as developed in Section 3.3.4. This process is parallelized

but still it constitutes a sizable portion in the computational cost of the method.

Constraint generation procedures are also parallelized, since each separation problem

is defined for a different cycle in the cycle basis. We use a Gaussian elimination

based approach to construct a cycle basis proposed in Appendix B. We repeat the

constraint generation algorithm for five iterations or terminate when there are no cuts

to be added.

In the following, we compare the above four methods with the SDP relaxation

based approaches in Section 3.4.2 and with a recent quadratic convex relaxation

approach in Section 3.4.3. We also show that the proposed methods are not dominated

by nor dominate the SDP relaxations in Section 3.4.4. Finally, in Section 3.4.5 we

demonstrate the robustness of the proposed methods by solving randomly perturbed

instances from the standard IEEE instances.
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3.4.2 Comparison to SDP Relaxation Based Methods

It is well known in the power systems literature that SDP relaxations have small

duality gaps for the standard IEEE instances. However, the computational burden

of SDP relaxations is typically very high. Chordal extensions and matrix comple-

tion type methods are used to significantly accelerate the solution time of the SDP

relaxations. A publicly available implementation is called OPF Solver [73]. This

package exploits the sparsity of underlying network to solve large-scale SDPs more

efficiently as discussed in [74, 75]. In this section, we compare the accuracy and per-

formance of the four proposed SOCP relaxation based methods to the SDP relaxation

implemented in OPF Solver.

3.4.2.1 Lower Bound and Computation Time Comparison

We first compare the computation time and the lower bounds obtained by the SDP

relaxation with those obtained by the four types of SOCP relaxations. Table 7 shows

the results. Here, “ratio” is defined as the lower bound of an SOCP relaxation divided

by that of the SDP relaxation. We can see that the arctangent envelopes in SOCPA

give non-trivial strengthening to the classic SOCP relaxation SOCP. On the other

hand, having the arctangent envelopes, the effect of the valid inequalities due to

the McCormick relaxation of the cycle constraints is small. The SDP separation

approach, SSDP, is the most successful among the four methods, which achieves the

same lower bound as the SDP relaxation in nine instances and provides very tight

bounds for the others (99.96% on average). In terms of computational time, SOCPA,

S34A, and SSDP are roughly one order-of-magnitude faster than the SDP relaxation

for large problems (2383-bus and above). We also note that OPF Solver does not

support instances with reactive power cost functions, hence the case9Q and case30Q

instances are solved using the standard rectangular SDP formulation. The largest

instance case3375wp requires at least 3 hours to even construct the SDP model.
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Table 7: Comparison of lower bounds and computation time.

SDP SOCP SOCPA S34A SSDP
case time ratio time ratio time ratio time ratio time
6ww 1.66 0.9937 0.02 0.9998 0.40 0.9999 0.43 1.0000 0.46

9 0.84 1.0000 0.02 1.0000 0.17 1.0000 0.18 1.0000 0.12
9Q NS 1.0000 0.02 1.0000 0.18 1.0000 0.19 1.0000 0.12
14 1.07 0.9992 0.02 0.9992 0.41 0.9994 0.45 1.0000 0.64

ieee30 1.84 0.9996 0.03 0.9996 0.78 0.9996 0.84 1.0000 1.15
30 2.19 0.9943 0.06 0.9963 0.95 0.9966 1.07 0.9993 1.22

30Q NS 0.9753 0.07 0.9765 1.02 0.9769 1.11 1.0000 1.32
39 2.20 0.9998 0.04 0.9999 0.90 0.9999 0.99 1.0000 0.72
57 2.60 0.9994 0.04 0.9994 1.43 0.9994 1.47 1.0000 2.14
118 4.58 0.9976 0.11 0.9976 3.69 0.9984 4.83 0.9997 5.19
300 9.81 0.9985 0.21 0.9988 7.62 0.9989 10.40 1.0000 9.83

2383wp 682.86 0.9932 7.11 0.9949 92.83 0.9950 130.03 0.9984 101.31
2736sp 853.92 0.9970 5.14 0.9977 90.93 0.9976 163.80 0.9994 94.48
2737sop 792.25 0.9974 3.85 0.9979 95.28 0.9979 158.80 0.9997 78.70
2746wop 1138.06 0.9963 4.35 0.9971 102.37 0.9973 180.42 0.9995 109.65
2746wp 941.04 0.9967 5.79 0.9975 109.82 0.9975 186.31 0.9998 102.16
3012wp 746.08 0.9936 7.28 0.9946 143.10 0.9946 185.56 0.9974 109.19
3120sp 904.90 0.9955 7.33 0.9962 127.90 0.9965 196.05 0.9987 103.77
3375wp > 3hr NA 8.25 NA 149.03 NA 422.35 NA 133.62
Average 380.37 0.9959 2.62 0.9968 48.88 0.9970 86.59 0.9996 45.04

3.4.2.2 Upper Bound and Optimality Gap Comparison

In this part, we compare the quality of the feasible solutions to the original OPF

problem derived from relaxation solutions of our approaches to that of OPF Solver.

Let us first describe our method of finding an OPF feasible solution. The procedure

is simple: we use an optimal solution of one of the SOCP relaxations as a starting

point to the nonlinear interior point solver IPOPT [105], which produces a locally

optimal solution to the OPF problem. We observed empirically that independent of

the relaxation we use, the method always converges to the same OPF solution. We

also note that this method gives the same OPF feasible solutions as MATPOWER.

OPF Solver utilizes the SDP relaxation solution to obtain OPF feasible solutions.

When the optimal matrix variable is rank optimal, e.g., rank one in the SDP relax-

ation in the real domain (32), a vector of feasible voltages e, f can be easily derived

by computing the leading eigenvalue and the corresponding eigenvector of the SDP
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optimal matrix. However, when the rank is greater than one, it is difficult to put

a physical meaning to the relaxation solution. OPF Solver uses a penalization ap-

proach to reduce the rank of the matrices in order to obtain nearly feasible solutions

to OPF. In particular, the reactive power dispatch and the total apparent power on

some lines are penalized with certain penalty coefficients. Empirical results show

that these coefficients are problem dependent and fine-tuning seems to be essential

to obtain high quality feasible solutions. In our comparison, we use the suggested

penalty parameters in [74] and exclude the computational burden of fine-tuning these

parameters.

We compare the OPF feasible solutions found by our methods against the nearly

feasible solutions obtained by OPF Solver. The results are shown in Table 8. Here,

“ratio” is calculated as the objective cost of an OPF feasible solution of our methods

divided by that of OPF Solver. A ratio less than 1 means our approach produces

a better OPF feasible solution than OPF Solver. The percentage optimality gap,

“%gap”, is calculated as %gap = 100 × zUB−zLB

zUB , where zUB is the objective cost of

an OPF feasible solution derived from a relaxation, and zLB is the optimal objective

cost of this relaxation. The total computation time, reported as “time”, includes the

time solving the corresponding relaxation and deriving a feasible solution to OPF.

We observe that SSDP significantly closes the optimality gap to 0.08% or 99.92% to

the global optimum on average, improving over the SDP relaxation’s 0.19%. The

ratio of upper bounds is less than 1 for large systems, which implies the quality

of the OPF feasible solutions obtained by the penalization method in OPF Solver

are not as good as our approaches, even though best known penalty parameters are

used. The reason is that the penalization method does not produce locally optimal

solutions. This issue may perhaps be fixed by applying a local solver to improve

the solution obtained from the penalization method at the cost of converting the

optimal matrix variable to a vector of voltages and calling a local solver. We also
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note that computing a feasible solution from the SDP relaxation is rather difficult,

demonstrated by the large computational time of the SDP column, whereas SOCP is

about two orders of magnitude faster than SDP, and SOCPA, S34A, SSDP are roughly

one order of magnitude faster.

We also compare the SDP bound with the feasible solution found by our SOCP

based methods and calculate the percentage optimality gap. Under an optimality

threshold of 0.01%, we observe that SDP is tight for 14 instances out of 19 (the gaps

for cases 9Q, 2383wp, 3012wp, 3120sp and 3375wp are respectively 0.04%, 0.37%,

0.15%, 0.09%, NA). We note that our SOCP based relaxations are not as successful

according to this comparison. SOCP, SOCPA, S34A and SSDP are tight for 1, 2, 3

and 8 instances, respectively. Nevertheless, we remind the reader that SOCP based

methods have small optimality gap (e.g. 0.08% on the average for SSDP) as can be

seen from Table 8.
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Table 8: Comparison of upper bounds and percentage optimality gap.

SDP SOCP SOCPA S34A SSDP
case %gap time ratio %gap time %gap time %gap time %gap time
6ww NA NR NA 0.63 0.13 0.02 0.48 0.01 0.45 0.00 0.53

9 NA NR NA 0.00 0.04 0.00 0.19 0.00 0.20 0.00 0.17
9Q NA NR NA 0.04 0.04 0.04 0.20 0.04 0.21 0.04 0.17
14 0.00 4.49 1.0000 0.08 0.05 0.08 0.44 0.06 0.48 0.00 0.68

ieee30 NA NR NA 0.04 0.07 0.04 0.83 0.04 0.88 0.00 1.20
30 0.00 6.54 1.0000 0.57 0.12 0.37 1.01 0.34 1.13 0.07 1.28

30Q NA NR NA 2.48 0.11 2.35 1.07 2.32 1.16 0.00 1.36
39 0.01 5.09 1.0000 0.02 0.10 0.01 0.96 0.01 1.05 0.01 0.78
57 0.00 6.68 1.0000 0.06 0.11 0.06 1.50 0.06 1.55 0.00 2.22
118 0.00 11.16 1.0000 0.25 0.27 0.24 3.86 0.16 5.00 0.03 5.34
300 0.00 22.65 1.0000 0.15 0.62 0.12 8.04 0.11 10.83 0.00 10.33

2383wp 0.68 911.47 0.9969 1.05 21.39 0.89 104.71 0.88 145.29 0.54 124.34
2736sp 0.03 1181.09 0.9997 0.30 16.15 0.23 97.37 0.24 170.92 0.06 114.81
2737sop 0.00 1093.29 1.0000 0.26 12.05 0.21 102.27 0.21 167.59 0.03 103.81
2746wop 0.01 1470.10 0.9999 0.37 9.19 0.29 108.53 0.27 186.91 0.05 138.39
2746wp 0.04 1251.95 0.9996 0.33 14.08 0.25 116.18 0.25 193.91 0.02 124.07
3012wp 0.81 1314.16 0.9934 0.79 19.65 0.70 154.72 0.70 195.56 0.41 134.19
3120sp 0.93 1633.28 0.9916 0.54 16.14 0.47 137.70 0.44 206.20 0.22 121.77
3375wp NA >3hr NA 0.26 18.66 0.24 158.21 0.23 431.87 0.13 157.20
Average 0.19 685.53 0.9985 0.43 6.79 0.35 52.54 0.34 90.59 0.08 54.88

78



3.4.3 Comparison to Other SOCP Based Methods

Now, we compare the strength of our SOCP based relaxations to other similar meth-

ods. A recent work utilizing SOCP relaxations is [27], in which a Quadratic Convex

(QC) relaxation of OPF is proposed. It is empirically observed that the phase an-

gles of neighboring buses in a power network are usually close to each other in OPF

problems and the QC relaxation is specialized to take advantage of this observation.

However, very tight angle bounds are typically not available in practice and choosing

very small angles may restrict the feasible region of the OPF problem. In this regards,

we remind the reader that our proposed methods do not depend on the availability

of such tight angle bounds and our methods use a preprocessing procedure to obtain

bounds on the c and s variables. Explicit angle difference bounds can be incorporated

into the SOCP relaxations by addition of the following constraints for (i, j) ∈ L,

− tan(θij)cij ≤ sij ≤ tan(θij)cij (74)

and

−θij ≤ θi − θj ≤ θij, (75)

where θij is the maximum absolute difference between phase angles at buses i and

j. We also note that although the bounding techniques in Section 3.3.4 and the

arctangent envelopes in SOCPA, S34A may be adapted to exploit the availability of

such bounds, we choose not to do so in the experiments.

In Table 9, we compare the percentage optimality gaps of all the NESTA instances

obtained by our methods and those achieved by the QC approach reported in [27]. The

percentage optimality gap is defined the same as “%gap” in the previous section. For

the QC results, only instances with an optimality gap more than 1% are reported in

[27]. Those instances of optimal gaps less than 1% are indicated by blanks in Table 9.

The average optimality gap for the QC approach is taken over instances with reported

values. The NESTA library has three types of instances, namely, the typical operating
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conditions, congested operating conditions, and small angle difference conditions [27].

From Table 9 we have the following observations.

(i) For instances from Typical Operating Conditions, each of our three strong

SOCP relaxations dominates QC for all instances, except for the 3-bus instance

3lmbd SOCPA has an optimality gap 1.25% comparing to QC’s 1.24%. For all

the instances where QC achieves an optimality gap less than 1%, SOCP relax-

ations also achieve less than 1% gaps, except for the 1460wp instance, for which

a gap slightly higher than 1% is obtained by the strong SOCP relaxations. The

SSDP approach significantly outperforms QC in all instances and on average

achieves 1.82% gap versus QC’s 5.17%.

(ii) A similar picture holds for the Congested Operating Conditions, where the three

strong SOCP relaxations dominate QC for all instances, except for SOCPA on

the 3-bus instance 3lmbd. All three strong SOCP relaxations achieve less than

1% optimality gaps on all instances that QC achieves less than 1% gaps. SSDP

again has the best performance and significantly outperforms QC.

(iii) For the instances from Small Angle Difference Conditions, which is a condition

that is most suitable for QC, QC only dominates SSDP 4 times out of 19 in-

stances reported in [27], and QC is better than all of strong SOCP relaxation in

3 out of the 19 instances. In terms of the average optimality gap, both SOCPA

and S34A outperform QC.

Computational costs of different relaxation methods for NESTA instances are

provided in Table 10.
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Table 9: Comparison of percentage optimality gap for NESTA instances.

Typical Operating Conditions Congested Operating Conditions Small Angle Difference Conditions
case SOCP SOCPA S34A SSDP QC SOCP SOCPA S34A SSDP QC SOCP SOCPA S34A SSDP QC

3lmbd 1.32 1.25 0.97 0.43 1.24 3.30 1.97 1.20 1.31 1.83 4.28 2.33 1.51 2.13 1.24
4gs 0.00 0.00 0.00 0.01 0.65 0.16 0.12 0.00 4.90 0.42 0.02 0.14 0.81

5pjm 14.54 14.47 14.26 6.22 14.54 0.45 0.11 0.06 0.00 3.61 0.45 0.34 0.01 1.10
6ww 0.63 0.02 0.01 0.00 13.33 0.35 0.14 0.00 13.14 0.80 0.02 0.01 0.00

9wscc 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.50 0.43 0.37 0.01 0.41
14ieee 0.11 0.11 0.07 0.00 1.35 1.32 1.32 0.00 1.35 0.07 0.06 0.06 0.00
29edin 0.14 0.08 0.05 0.00 0.44 0.40 0.36 0.03 34.47 25.94 21.06 31.33 20.57
30as 0.06 0.05 0.05 0.00 4.76 2.02 1.89 1.72 4.76 9.16 2.43 2.36 0.95 3.07
30fsr 0.39 0.23 0.23 0.03 45.97 42.22 41.85 40.28 45.97 0.62 0.33 0.27 0.12
30ieee 15.65 5.24 4.79 0.00 15.44 0.99 0.86 0.85 0.08 5.87 2.07 1.98 0.00 3.95
39epri 0.05 0.02 0.02 0.01 2.99 0.77 0.77 0.00 2.97 0.11 0.09 0.09 0.09
57ieee 0.06 0.06 0.06 0.00 0.21 0.21 0.20 0.13 0.11 0.09 0.09 0.05
118ieee 2.10 1.12 0.94 0.25 1.75 44.19 40.18 38.22 39.09 44.03 12.88 7.77 7.32 9.50 8.30
162ieee 4.19 3.99 3.95 3.50 4.17 1.52 1.44 1.43 1.20 1.51 7.06 5.94 5.81 6.36 6.88
189edin 0.22 0.22 0.22 0.07 5.59 3.34 3.33 0.22 5.56 2.27 2.21 2.25 1.23 2.24
300ieee 1.19 0.78 0.71 0.30 1.18 0.85 0.51 0.47 0.15 1.27 0.77 0.70 0.33 1.16
1460wp 1.22 1.18 1.18 1.04 1.10 0.98 0.84 0.68 1.37 1.33 1.32 1.22
2224edin 6.22 4.30 4.25 4.60 6.16 3.16 2.51 2.43 2.58 3.15 6.43 3.91 3.87 4.80 5.79
2383wp 1.06 0.87 0.87 0.54 1.04 1.12 0.91 0.87 0.52 1.12 4.01 2.92 2.80 2.82 2.97
2736sp 0.30 0.21 0.20 0.08 1.33 1.14 1.12 0.91 1.32 2.34 1.86 1.86 1.92 2.01
2737sop 0.26 0.20 0.20 0.03 1.06 0.86 0.86 0.54 1.05 2.43 2.23 2.23 1.97 2.21
2746wop 0.37 0.28 0.27 0.06 0.49 0.35 0.34 0.17 2.94 2.30 2.31 2.60 1.83
2746wp 0.32 0.22 0.22 0.03 0.58 0.34 0.34 0.07 2.44 1.68 1.67 1.83 2.48
3012wp 1.04 0.90 0.89 0.50 1.01 1.25 0.90 0.89 0.58 1.24 2.14 2.00 1.96 1.54 1.92
3120sp 0.56 0.45 0.44 0.23 3.03 2.78 2.78 2.34 3.02 2.79 2.60 2.57 2.19 2.56
3375wp 0.53 0.47 0.46 0.29 0.82 0.64 0.64 0.39 0.53 0.45 0.45 0.28
Average 5.26 3.66 3.51 1.82 5.17 8.93 6.85 6.62 6.14 8.80 5.94 3.70 3.36 4.38 3.76
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Table 10: Computational costs of different methods for NESTA instances.

Typical Operating Conditions Congested Operating Conditions Small Angle Conditions
case SOCP SOCPA S34A SSDP SOCP SOCPA S34A SSDP SOCP SOCPA S34A SSDP

3lmbd 0.02 0.13 0.31 0.21 0.03 0.09 0.14 0.11 0.02 0.14 0.32 0.13
4gs 0.04 0.11 0.10 0.08 0.02 0.09 0.11 0.10 0.02 0.09 0.14 0.14

5pjm 0.02 0.13 0.15 0.21 0.02 0.14 0.16 0.23 0.02 0.12 0.13 0.21
6ww 0.02 0.22 0.24 0.39 0.02 0.22 0.24 0.51 0.02 0.21 0.25 0.39

9wscc 0.02 0.17 0.18 0.11 0.02 0.18 0.19 0.13 0.02 0.17 0.19 0.17
14ieee 0.02 0.45 0.48 0.67 0.02 0.42 0.46 0.66 0.02 0.40 0.44 0.65
29edin 0.20 3.89 4.86 2.44 0.14 3.61 4.53 2.50 0.14 3.42 5.01 2.56
30as 0.04 1.00 1.08 1.09 0.04 0.93 1.16 1.14 0.04 0.99 1.14 1.15
30fsr 0.03 0.99 1.06 1.11 0.04 0.91 1.05 1.15 0.04 0.88 1.16 1.14
30ieee 0.04 0.88 1.03 1.08 0.04 0.91 1.00 1.14 0.04 0.89 0.97 1.14
39epri 0.04 0.89 0.97 0.64 0.04 0.95 0.96 0.86 0.04 0.90 0.98 0.82
57ieee 0.08 2.04 2.09 2.17 0.07 1.71 1.94 2.33 0.07 1.84 2.06 2.10
118ieee 0.25 4.98 5.57 5.97 0.19 4.75 5.84 5.79 0.33 4.86 5.92 6.34
162ieee 0.25 8.97 12.14 11.37 0.23 9.30 13.50 11.93 0.34 9.04 13.65 11.53
189edin 0.40 4.84 5.79 2.89 0.35 4.89 5.38 3.21 0.43 5.35 6.34 3.31
300ieee 0.47 9.93 14.96 11.58 0.44 10.54 14.26 11.11 0.55 9.74 13.11 11.76
1460wp 2.96 63.26 83.04 45.46 3.88 74.73 117.83 52.09 3.64 78.12 114.10 42.69
2224edin 5.99 118.38 167.43 95.95 8.72 130.32 234.88 112.95 6.65 110.46 159.24 96.03
2383wp 7.59 120.68 165.48 117.79 8.39 132.29 296.21 127.18 7.08 117.14 205.04 108.82
2736sp 5.67 119.35 221.79 130.44 10.28 151.94 294.40 191.63 5.11 112.51 150.25 121.21
2737sop 4.61 114.62 149.41 95.37 9.59 148.50 218.83 142.93 3.90 108.21 143.75 85.97
2746wop 5.22 118.63 215.98 116.85 6.48 130.92 260.75 142.77 4.49 113.43 221.35 109.04
2746wp 6.84 123.01 203.85 117.24 7.42 136.72 229.48 137.48 5.65 116.49 209.42 127.23
3012wp 7.12 142.06 242.37 123.21 13.30 184.93 373.88 179.50 7.97 162.75 370.68 132.40
3120sp 7.72 147.32 255.43 125.04 11.34 164.37 310.54 150.02 9.38 177.76 337.48 137.24
3375wp 9.15 184.14 306.22 169.13 18.31 239.98 600.27 247.87 10.66 208.05 436.30 194.67

82



Table 11: Percentage optimality gap of three instances from NESTA with small angle
difference conditions.

case S34 SOCPA SDP
5pjm 0.40 0.45 0.00
3lmbd 1.53 2.33 2.06
29edin 31.39 25.94 28.44

3.4.4 Incomparability of the Proposed Methods with SDP Relaxation

We now prove the incomparability of our proposed methods with the SDP relaxation

as stated in Propositions 9 and 12 using three specific instances from the NESTA

archive. To start with, let S34 denote a variant of S34A without the arctangent

envelopes. The percentage optimality gaps of these instances are presented in Table

11. First of all, note that the SDP relaxation is not dominated by S34 or SOCPA

as the 5-bus case 5pjm demonstrates. And SDP does not dominate S34 due to case

3lmbd, which proves Proposition 9; also SDP does not dominate SOCPA due to case

29edin, which proves Proposition 12. These instances also show that S34 and SOCPA

are incomparable.

3.4.5 Robustness of the Proposed Methods

We test the robustness of our methods by solving perturbed instances to the standard

IEEE benchmarks. In particular, load values are randomly perturbed 5% to obtain 10

similar and realistic instances. Results in Table 12 show that our methods consistently

provide provably good solutions and tight relaxations for OPF problem.

We note that we have not reported 3 instances, namely cases 30, 30Q and 2383wp,

in Table 12. In fact, for case2383wp, all the instances are proven to be infeasible by

SOCP. On the other hand, for cases 30 and 30Q, we are able to find feasible solutions

for only one instance. For the remaining nine instances, six of them are proven to

be infeasible by SOCPA, S34A, and SSDP but not by SOCP. We also note that eight
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Table 12: Average percentage optimality gaps of perturbed IEEE standard bench-
marks.

SOCP SOCPA S34A SSDP
case %gap time %gap time %gap time %gap time
6ww 0.62 0.06 0.02 0.26 0.01 0.32 0.00 0.46

9 0.00 0.04 0.00 0.19 0.00 0.20 0.00 0.11
9Q 0.09 0.04 0.09 0.19 0.09 0.20 0.09 0.12
14 0.08 0.05 0.08 0.38 0.06 0.41 0.00 0.61

ieee30 0.04 0.06 0.04 0.78 0.04 0.81 0.00 1.03
39 0.03 0.09 0.01 0.91 0.01 0.99 0.00 0.82
57 0.07 0.11 0.07 1.45 0.07 1.51 0.00 1.93
118 0.25 0.30 0.25 3.64 0.17 5.12 0.04 5.04
300 0.63 0.66 0.60 7.90 0.58 13.71 0.33 10.05

2736sp 0.30 12.67 0.23 110.42 0.23 201.81 0.05 120.92
2737sop 0.26 11.98 0.22 108.89 0.22 188.52 0.03 92.18
2746wop 0.38 9.46 0.30 114.89 0.28 215.16 0.06 115.31
2746wp 0.32 12.43 0.25 125.95 0.25 217.88 0.05 117.24
3012wp 0.81 16.77 0.71 125.77 0.71 167.80 0.43 116.88
3120sp 0.53 16.19 0.44 134.98 0.44 180.07 0.25 115.47
3375wp 0.26 19.30 0.24 179.34 0.23 481.92 0.19 161.67
Average 0.29 6.26 0.22 57.25 0.21 104.78 0.10 53.74

instances are proven to be infeasible by SDP.

3.5 Conclusions

In this chapter, we study the OPF problem, a fundamental optimization problem in

electric power system analysis. We have the following main conclusions:

(i) The proposed strong SOCP relaxations offer a computationally attractive alter-

native to the SDP relaxations for practically solving large-scale OPF problems.

The lower bounds obtained by the strong SOCP relaxations are extremely close

to those of the SDP relaxations, and are not always dominated by the SDP

relaxations, but within a computation time that is an order of magnitude faster

than the latter. In case tight bounds on phase angles are known, the strong

SOCP relaxation involving arctangent linearization together with McCormick
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constraints from the cycle decompositions is recommended. In case explicit

bounds on phase angles are not known, the third approach of SOCP with SDP

separation is recommended.

(ii) The proposed SOCP relaxation produces a solution that can be conveniently

used as a good warm start for a local solver, such as IPOPT. In comparison,

recovering a feasible solution from SDP relaxations is a computationally chal-

lenging task, even when the SDP relaxation is tight.

(iii) The proposed SOCP relaxations provide stronger bounds than existing quadratic

relaxation approaches [28, 27] on most instances.

85



CHAPTER IV

MINOR RELAXATION AND SOCP BASED SPATIAL

BRANCH-AND-CUT METHOD FOR THE OPTIMAL

POWER FLOW PROBLEM

4.1 Introduction

In this chapter, we aim to solve the OPF problem using global optimization methods.

This chapter builds on Chapter 3 and proposes several enhancements to the ideas

originated in that chapter with the addition of new ones which helps us to obtain

significantly better results. Throughout the chapter, we compare and contrast the

common ideas presented here with Chapter 3. Our analysis starts with a reformulation

of the rectangular formulation using a rank-constrained SDP problem with a complex

matrix variable. In this reformulation, there are two difficult constraints: the positive

semidefiniteness of the matrix variable and the rank-one condition. Although the

former is a convex constraint, solving SDP problems involving large matrices remains

a challenge. Therefore, we seek alternative approaches that would avoid including

a positive semidefiniteness restriction on the original matrix variable. Instead, we

consider principal submatrices, which may correspond to any subgraph (in particular,

cycles) of the original power network. This clearly relaxes the positive semidefiniteness

constraint on a large matrix into constraints involving smaller matrices. Finally, we

outer-approximate these small positive semidefiniteness conditions via hyperplanes in

a cutting-plane framework.

The rank-one restriction, the second difficult constraint, is nonconvex and, in

general, difficult to deal with. We first write it as an equivalent set of 2 × 2 minor

conditions. It turns out that there are three types of such minors and we propose
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outer-approximation methods for each of them, using either SOCP or LP relaxations.

We again use these relaxations as a basis to generate cutting planes. We also propose

an alternative characterization of the minor conditions using a constraint involving the

arctangent function, which we then convexify via linear envelopes. Our construction

heavily depends on the availability of tight variable bounds obtained by solving small-

size SOCP problems.

We use these several different kinds of relaxations in a spatial branch-and-cut

framework. Our algorithm is based on computationally attractive SOCP relaxations,

and designed to spend a non-trivial amount of time at the root node relaxation

to improve the dual bound on the problem. Many of the difficult test cases are

solved at the root node relaxation, and for the others we utilize spatial branching.

Extensive computational experiments show that our approach scales reasonably well

and provides strong dual guarantees, often significantly better than the ones obtained

from the SDP relaxation.

The rest of the chapter is organized as follows: In Section 4.2, we give an al-

ternative formulation of the OPF based on an SDP reformulation with a rank, or

equivalently, minor constraint. We propose several outer-approximation schemes to

incorporate the minor conditions in a convex relaxation of the OPF problem. Sec-

tion 4.3 presents our SOCP based spatial branch-and-cut algorithm with a particular

emphasis on the root node relaxation. Our extensive computational experiments on

challenging NESTA instances [25] are summarized in Section 4.4. Finally, Section

4.5 concludes the chapter with some further remarks and possible future research

directions.
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4.2 Rank Constrained OPF Problem and Minor Relaxations

4.2.1 Formulation

The OPF problem given in (7) is a polynomial optimization problem, and it can

be posed as a quadratically constrained quadratic program (QCQP). For nonconvex

QCQPs, a general strategy is lifting. This can be accomplished by defining a matrix

variable which will replace the quadratic terms in the original variables with linear

ones in the lifted matrix variable. In this reformulation, the only nonconvexity will

be a rank-one requirement on the matrix variable. We formally obtain this lifted

formulation for the OPF problem as

zrank = min

{∑
i∈G

Ci(p
g
i ) : (29), (77), (1h)− (1i), rank(X) = 1

}
, (76)

where the apparent flow limit constraint can be stated as follows:

[−GijXii +Gij<(Xij) +Bij=(Xij)]
2 + [BijXii −Bij<(Xij) +Gij=(Xij)]

2 ≤ (Smax
ij )2,

(i, j) ∈ L.

(77)

Let zrect denote the optimal value of the OPF problem (7). Then, clearly zrect = zrank.

The sole nonconvexity in the rank-constrained OPF formulation (76) is captured by

the rank constraint rank(X) = 1, which is difficult to analyze in general.

Definition 1. Let X be an n×n complex matrix. Then, a 2× 2 minor of the matrix

X is the determinant of a 2× 2 submatrix of X obtained by deleting n− 2 rows and

columns.

Another characterization of the rank constraint is due to Proposition 13.

Proposition 13. For a nonzero, hermitian matrix X, X � 0 and rank(X) = 1 iff

all the 2× 2 minors are zero and the diagonal elements are nonnegative.
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Proof. (⇒) Let X � 0 and rank(X) = 1. Then, there exists a vector x ∈ Cn such that

X = xx∗. Let us consider a 2×2 submatrix of X of the form X(i,j),(k,l) =

Xik Xil

Xjk Xjl

.

Note that we have Xik = xix̄k, Xil = xix̄l, Xjk = xjx̄k, and Xjl = xjx̄l. Hence,

detX(i,j),(k,l) = 0, implying that all the 2 × 2 minors of X are zero. Also, for any

diagonal element of the matrix X, we have Xii = xix̄i = |xi|2 ≥ 0. Therefore, we

conclude that the diagonal elements of X are nonnegative.

(⇐) Recall that rank(X) is equal to the size of the largest invertible submatrix of

X. Since all the 2× 2 minors of X are zero, none of the 2× 2 submatrices of X are

invertible. This implies that rank(X) = 1 as X is a nonzero matrix. Finally, since

a rank-one, hermitian matrix with nonnegative diagonal elements can be written in

the form X = xx∗ for some vector x ∈ Cn, we conclude that X � 0.

Then, we can further reformulate the OPF problem as

zminor = min

{∑
i∈G

Ci(p
g
i ) : (29a)− (29e), (77), (1h)− (1i),

all 2× 2 minors of X are zero

}
,

(78)

where we again have zrect = zrank = zminor.

Now, let us discuss some possible relaxations. A straightforward SDP relaxation

for the OPF problem can be obtained by relaxing the rank, or equivalently, minor

constraints as

zSDP = min

{∑
i∈G

Ci(p
g
i ) : (29a)− (29e), (77), (1h)− (1i)

}
. (79)

By construction, zSDP ≤ zrect. In practice, this SDP relaxation has been shown

to be quite strong in terms of the dual bound it provides for standard IEEE test

cases [67, 76]. However, for challenging test cases such as the instances from NESTA

archive [25], the duality gap can be quite large [27]. Another challenge is due to

the computational difficulty of solving large-scale SDP problems. Although sparsity
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exploitation methods help reduce the solution times significantly, one may prefer to

use computationally less demanding methods to obtain dual bounds.

A simple example of a computationally attractive relaxation can be obtained by

relaxing further the positive definiteness requirement of the matrix X. In this case,

we obtain a flow relaxation as

zflow = min

{∑
i∈G

Ci(p
g
i ) : (29a)− (29d), (77), (1h)− (1i)

}
. (80)

This relaxation is clearly weaker than the SDP relaxation, hence we have zflow ≤

zSDP ≤ zrect. On the other hand, flow relaxation is much easier than solving the full

SDP relaxation.

Our approach will be based on solving an improved version of the flow relaxation

by incorporating convex relaxations of the minor restrictions in the form of linear or

second-order cone representable constraints. Some of the additional constraints will

be a relaxed version of the 2×2 minor restrictions (Sections 4.2.2 and 4.2.3) and some

of them will be a weaker version of the semidefiniteness requirement on X (Sections

4.2.2 and 4.2.4). In this way, our computational cost will be between the SDP relax-

ation and the flow relaxation. Also, by construction, our approach can be expected

to give better bounds than the flow relaxation. Numerical experiments demonstrate

that the proposed approach is incomparable to, and often provides much better dual

bounds than, the SDP relaxation, especially for challenging NESTA instances.

4.2.2 Analysis of 2× 2 Minors

In this section, we analyze the 2× 2 minors of the matrix X in detail, which are one

of the three different types as listed below. Note that for notational purposes, we will

define cij := <(Xij) and sij := −=(Xij) for i, j ∈ B in the sequel.

(i) Type 1: Edge Minor. Let i and j be distinct elements of the set B. Then, we
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have ∣∣∣∣∣∣∣
Xii Xij

Xji Xjj

∣∣∣∣∣∣∣ = 0, (81)

which is equivalent to

0 = XiiXjj −XijXji = ciicjj − (cij − isij)(cij + isij) = ciicjj − (c2
ij + s2

ij). (82)

Note that this relation defines the boundary of the rotated cone in R4.

(ii) Type 2: 3-Cycle Minor. Let i, j and k be distinct elements of the set B,

assuming |B| ≥ 3. Then, consider the following minor∣∣∣∣∣∣∣
Xii Xij

Xki Xkj

∣∣∣∣∣∣∣ = 0, (83)

which is equivalent to

0 =XiiXkj −XijXki = cii(ckj − iskj)− (cij − isij)(cki − iski)

=(ciickj − cijcki + sijski)− i(ciiskj − sijcki − cijski).
(84)

Note that this relation defines two bilinear equations in R7.

(iii) Type 3: 4-Cycle Minor. Let i, j, k and l be distinct elements of the set B,

assuming |B| ≥ 4. Then, consider the following minor∣∣∣∣∣∣∣
Xij Xik

Xlj Xlk

∣∣∣∣∣∣∣ = 0, (85)

which is equivalent to

0 =XijXlk −XijXlj = (cij − isij)(clk − islk)− (cij − isij)(clj − islj)

=(cijclk − sijslk − cljcik + sljsik)− i(sijclk − cijslk − sljcik − cljsik).
(86)

Note that this relation defines two bilinear equations in R8.
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We analyze these minors in detail below. At this point, we would like to contrast

our approach with the existing literature. In [22, 23, 44], only principal 2× 2 minors,

corresponding to Type 1 minors in our language, are considered to improve the SDP

relaxation. By considering Type 2 and 3 minors, we can potentially obtain stronger

relaxations.

4.2.2.1 Type 1: Edge Minors

Let i and j be distinct elements of the set B such that (i, j) ∈ L. Note that since

this minor is also principal, guaranteeing its nonnegativity also relaxes the positive

semidefinitess restriction. Therefore, an accurate relaxation of Type 1 minors will

help two-fold.

Suppose that we are interested in the convex hull of the set defined by a Type 1

minor in (81) over the box Dij := [cii, cii]×[cjj, cjj]×[cij, cij]×[sij, sij]. More precisely,

let us define the following nonconvex set

K=
ij :=

{
(cii, cjj, cij, sij) ∈ Dij : c2

ij + s2
ij = ciicjj

}
. (87)

It follows from [96] that

conv(K=
ij) = K≤ij ∩ conv(K≥ij), (88)

where

K≤ij :=
{

(cii, cjj, cij, sij) ∈ Dij : c2
ij + s2

ij ≤ ciicjj
}
, (89)

and

K≥ij :=
{

(cii, cjj, cij, sij) ∈ Dij : c2
ij + s2

ij ≥ ciicjj
}
. (90)

First of all, K≤ij is a convex set (in fact, second-order cone representable as it is the

rotated cone in R4). Therefore, in order to construct conv(K=
ij), it suffices to find

conv(K≥ij), which is the intersection of a polytope and the complement of a convex

set. Here, we use the following result:
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Theorem 3. (Theorem 1 in [46]) Let P ⊂ Rn be a nonempty polytope and G be a

proper subset of Rn such that Rn \G is convex. Then, conv(P ∩G) is a polytope.

The proof of Theorem 3 is also constructive: Let El, l = 1, . . . , L be one-

dimensional faces of the polytope P . Then, we have

conv(P ∩G) = conv

(
L⋃
l=1

conv(El ∩G)

)
. (91)

Hence, conv(P ∩G) is precisely the convex hull of the extreme points of conv(El∩G),

l = 1, . . . , L.

We can easily apply Theorem 3 to our case by choosing P = Dij and G ={
(cii, cjj, cij, sij) ∈ R4 : c2

ij + s2
ij ≥ ciicjj

}
since one-dimensional faces of the box Dij

are trivial to obtain (fix three of the variables to one of their bounds). The exact

procedures to obtain extreme points are given in Algorithms 3-4.

Algorithm 2 Extreme points when cii = ĉii, cjj = ĉjj and cij = ĉij are fixed to one

of their bounds.
Compute φ = ĉiiĉjj − ĉ2

ij.

Let E be the set of sij coordinates of the extreme points.

E =



{sij, sij} if φ < 0

{sij, sij} if φ ≥ 0 and sij < −
√
φ

{sij,−
√
φ} if φ ≥ 0 and sij ≤ −

√
φ ≤ sij

{sij,−
√
φ,
√
φ, sij} if φ ≥ 0 and sij ≤ −

√
φ,
√
φ ≥ sij

∅ if φ ≥ 0 and −
√
φ ≤ sij, sij ≤

√
φ

{
√
φ, sij} if φ ≥ 0 and −

√
φ ≤ sij ≤

√
φ ≤ sij

{sij, sij} if φ ≥ 0 and sij >
√
φ
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Algorithm 3 Extreme points when cii = ĉii, cjj = ĉjj and sij = ŝij are fixed to one

of their bounds.
Compute φ = ĉiiĉjj − ŝ2

ij.

Let E be the set of cij coordinates of the extreme points.

E =



{cij, cij} if φ < 0

{cij, cij} if φ ≥ 0 and
√
φ < cij

{
√
θ, cij} if φ ≥ 0 and cij ≤

√
φ ≤ cij

∅ if φ ≥ 0 and
√
φ > cij

Algorithm 4 Extreme points when cjj = ĉjj, cij = ĉij and sij = ŝij are fixed to one

of their bounds.

Compute φ =
ĉ2ij+ŝ2ij
ĉjj

.

Let E be the set of cii coordinates of the extreme points.

E =


∅ if φ < cii

{θ, cii} if cii ≤ φ ≤ cii

{cii, cii} if θ > cii

So far, we have computed the extreme points of one-dimensional faces, say zkij,

k = 1, . . . , K, where zij = (cii, cjj, cij, sij). Now, we give the convex hull description

of K≥ij as follows:

conv(K≥ij) = conv({zkij}Kk=1) = {zij : ∃λ : zij =
K∑
k=1

λkz
k
ij,

K∑
k=1

λk = 1, λ ≥ 0}. (92)

Finally, the above discussion proves the following proposition:

Proposition 14. Let zkij be computed using Algorithms 2-4. Then,

conv(K=
ij) = {zij ∈ Dij : ∃λ : c2

ij + s2
ij ≤ ciicjj, zij =

K∑
k=1

λkz
k
ij,

K∑
k=1

λk = 1, λ ≥ 0}.
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An Outer Approximation to conv(K=
ij): Since Proposition 14 describes the con-

vex hull of conv(K=
ij) in an extended space, it may have several facets in the original

space of the variables. Instead, we propose an outer approximation to conv(K=
ij)

in the space of (c, s) variables using only four linear inequalities. Our preliminary

experiments showed that this approximation is quite accurate and computationally

cheap.

We again focus on conv(K≥ij) and rewrite the “reverse-cone” constraint as follows:

f(cij, sij) :=
√
c2
ij + s2

ij ≥
√
ciicjj =: g(cii, cjj). (93)

Note that f is a convex function and g is a concave function. If we overestimate the

former and underestimate the latter by hyperplanes, the inequality still holds. We

have the following propositions which formalize this idea:

Proposition 15. The affine functions νmij + ηmij cii + δmij cjj, m = 1, 2, underestimate

√
ciicjj over the box [cii, cii]× [cjj, cjj], where

η1
ij =

√
cii

√
cjj+
√
cjj

, δ1
ij =

√
cjj√

cii+
√
cii

, ν1
ij =
√
ciicjj − η1

ijcii − δ1
ijcjj and

η2
ij =

√
cii

√
cjj+
√
cjj

, δ2
ij =

√
cjj

√
cii+
√
cii

, ν2
ij =

√
ciicjj − η2

ijcii − δ2
ijcjj.

Proposition 16. If
√
c2
ij + s2

ij +
√
c2
ij + s2

ij −
√
c2
ij + s2

ij −
√
c2
ij + s2

ij < 0, then the

affine functions νnij + ηnijcij + δlijsij, n = 3, 4, overestimate
√
c2
ij + s2

ij over the box

[cij, cij]× [sij, sij], where

η3
ij =

√
c2ij+s2ij−

√
c2ij+s2ij

cij−cij
, δ3

ij =

√
c2ij+s2ij−

√
c2ij+s2ij

sij−sij
, ν3

ij =
√
c2
ij + s2

ij − η3
ijcij − δ3

ijsij

and

η4
ij =

√
c2ij+s2ij−

√
c2ij+s2ij

cij−cij
, δ4

ij =

√
c2ij+s2ij−

√
c2ij+s2ij

sij−sij
, ν4

ij =
√
c2
ij + s2

ij − η4
ijcij − δ4

ijsij.

Proposition 17. If
√
c2
ij + s2

ij +
√
c2
ij + s2

ij −
√
c2
ij + s2

ij −
√
c2
ij + s2

ij > 0, then the

affine functions νnij + ηnijcij + δnijsij, n = 3, 4, overestimate
√
c2
ij + s2

ij over the box

[cij, cij]× [sij, sij], where

η3
ij =

√
c2ij+s2ij−

√
c2ij+s2ij

cij−cij
, δ3

ij =

√
c2ij+s2ij−

√
c2ij+s2ij

sij−sij
, ν3

ij =
√
c2
ij + s2

ij − η3
ijcij − δ3

ijsij

and
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η4
ij =

√
c2ij+s2ij−

√
c2ij+s2ij

cij−cij
, δ4

ij =

√
c2ij+s2ij−

√
c2ij+s2ij

sij−sij
, ν4

ij =
√
c2
ij + s2

ij − η4
ijcij − δ4

ijsij.

Proposition 18. Let νmij , ηmij and δmij , m = 1, . . . , 4 be calculated using Propositions

15-17. Then, the edge cuts (EC) defined as

ECij(c, c, s, s) : νnij + ηnijcij + δnijsij ≥ νmij + ηmij cii + δmij cjj, m = 1, 2 and n = 3, 4 (94)

are valid for conv(K=
ij).

A different analysis related to Type 1 minor condition is carried out in [23] by

considering the following set:

K′ij = {(cii, cjj, cij, sij) : c2
ij + s2

ij = ciicjj, (cii, cjj) ∈ [cii, cii]× [cjj, cjj],

cij tan θij ≤ sij ≤ cij tan θij}.
(95)

It turns out that conv(K′ij) is second-order cone representable with two non-trivial

linear inequalities. In our experiments, we observe that the addition of these valid

linear inequalities does not produce any extra gap closure in our approach, and hence,

they are not used in our relaxation scheme.

4.2.2.2 Types 2 and 3: 3- and 4-Cycle Minors

Real and imaginary parts of Type 2 and Type 3 minors in (83) and (85) can be

written generically as
∑N

i=1 aixiyi = 0 for some a ∈ RN with ai 6= 0. Let x, x, y, y be

N -vectors with the property that x < x and y < y. We are interested in finding the

convex hull of the following set:

Sa = {(x, y) ∈ RN × RN :
N∑
i=1

aixiyi = 0, x ≤ x ≤ x, y ≤ y ≤ y}. (96)

We verify the following theorem, whose proof can be seen in Appendix A:

Theorem 4. conv(Sa) is second-order cone representable.
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An Outer Approximation to conv(Sa) In the proof of Theorem 4, we construct

the convex hull of conv(Sa) in an extended space with exponentially many disjunctions

in N , where some of the descriptions may contain second-order cones. Therefore,

including conv(Sa) as part of the relaxation might be quite costly. Instead, we propose

a linear outer-approximation to conv(Sa) using McCormick envelopes [77] as follows:

SMa = {(x, y) ∈ RN × RN : ∃w ∈ RN :
N∑
i=1

aiwi = 0,

max{yx+ xy − xy, yx+ xy − xy} ≤ w ≤ min{yx+ xy − xy, yx+ xy − xy}}.

(97)

Our preliminary experiments have shown that SMa tightly approximates conv(Sa).

A Cycle Based Relaxation Although we have a linear outer-approximation to

Type 2 and 3 minors, their total number is cubic and quartic in the number of buses.

Therefore, including relaxations for every minor can be quite expensive. Instead, we

focus on a set of cycles in the graph and include a subset of minors for each cycle.

This corresponds to triangulating a given cycle into 3- and 4-cycles. This idea is

similar to the one used in Chapter 3 although the construction in that chapter is

entirely different.

We do not propose to include all such minors in our relaxation scheme, either.

Rather, we construct a cycle relaxation and use it as a basis to generate cutting planes.

More precisely, let C be a given cycle and XC denote the principal submatrix which

corresponds to the rows and columns of the nodes in the cycle C. Next, we choose a

subset of Type 2 and 3 minors from the submatrix XC and define the following set

QC = {(c, s) : ∃(c̃, s̃) : qk(c, s, c̃, s̃) = 0, k ∈ KC}, (98)

where qk’s are bilinear equations corresponding to minor restrictions from a collection

KC . Here, we denote the variables which correspond to an i, j pair such that (i, j) ∈ L

as cij, sij, and c̃ij, s̃ij otherwise. In the latter case, such “artificial” tilde variables
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appear for extra edges added to the cycle C after triangulation. See Figure 7 for an

illustration on how a 7-cycle can be triangulated.

1

c11

2 c22

3 c33

4

c44

5

c55

6c66

7c77

c12, s12

c23, s23

c34, s34

c45, s45

c56, s56

c67, s67

c71, s71

c̃14, s̃14

c̃16, s̃16

Figure 7: Triangulation of a 7-cycle. Here, we consider three minors corresponding
to the “subcycles” {1, 2, 3, 4}, {1, 4, 5, 6} and {1, 6, 7}. Variables corresponding to
each node and edge are also shown.

Finally, we write the McCormick relaxation of the nonconvex setQC , parametrized

by the variable bounds c, c, s, s, for a given cycle C, compactly, as follows:

MC(c, c, s, s) =

{
(c, s) : ∃(c̃, s̃, w) : A

c
s

+ Ã

c̃
s̃

+Bw ≤ c, Ew = 0

}
. (99)

Here, w is a vector of new variables defined to linearize the bilinear terms in the minor

constraints. Inequality constraints contain the McCormick envelopes of the bilinear

terms and bounds on the variables, while equality constraints include the linearized

minor equality constraints.

Discretization Our preliminary analysis has shown that MC does not approxi-

mate conv(QC) accurately in most cases. However, it is well-known that McCormick

relaxation of a nonconvex set converges to the convex hull of the set as the variable
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ranges shrink. Motivated by this fact, we propose a discretization technique to im-

prove the accuracy of the set MC . We note that this idea has been applied to other

nonconvex problems in the literature (e.g. pooling problem [78]).

To begin with, let [cd, cd] × [sd, sd], for d ∈ D, be a partition of the initial box

[c, c]× [s, s]. Then, the following relations trivially hold:

MD
C := conv

(⋃
d∈D

MC(cd, cd, sd, sd)

)
⊆MC(c, c, s, s) and conv(QD) ⊆MD

C .

(100)

Note that since
⋃
d∈DMC(cd, cd, sd, sd) is a finite union of polyhedral representable

sets, MD
C is also polyhedral representable.

In our implementation, we use the following construction: First, we decide a

set of variables and bisect their variable ranges to obtain the collection D. Then,

we construct the set MD
C . Finally, we solve the separation problem presented in

Appendix C.2 to obtain cutting planes valid for MD
C .

After initial calibration, we decided to choose the collection D as follows. We

first choose a reference node to start triangulation. Then, for each subcycle of a

cycle, we pick the edges which are neither the first nor the last line in a subcycle and

apply bisection to the corresponding cij and sij variables. For instance, in Figure 7,

variables c23, s23, c34, s34, c45, s45, c56, s56, c67, s67 are bisected.

4.2.3 An Alternative to Type 2 and 3 Minor Conditions: Arctangent
Constraints

In this section, we propose another equivalent characterization of the rank-one, or

equivalently 2 × 2 minors requirement explained above. Our alternative condition

is based on the following relationship between the phase angles θ and c, s variables,

which correspond to the real and imaginary part of the complex matrix variable X:

θj − θi = atan2(sij, cij) i, j ∈ B (101)
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4.2.3.1 Equivalence

First, we claim that Type 1 minor constraint (81) together with arctangent constraint

(101) implies Type 2 minor (83) equations.

Proposition 19.

{
(c, s) :

∣∣∣∣∣∣∣
Xii Xij

Xki Xkj

∣∣∣∣∣∣∣ = 0

}
⊇
{

(c, s) : ∃θ :

∣∣∣∣∣∣∣
Xii Xij

Xji Xjj

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
Xkk Xki

Xik Xii

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
Xkk Xkj

Xjk Xjj

∣∣∣∣∣∣∣ = 0,

θj − θi = atan2(sij, cij), θi − θk = atan2(ski, cki), θj − θk = atan2(skj, ckj)

}
.

Proof. From (101), we have that cij =
√
ciicjj cos(θj−θi) and sij =

√
ciicjj sin(θj−θi).

Then,

ciickj − cijcki + sijski =cii
√
ckkcjj cos(θj − θk)−

√
ciicjj cos(θj − θi)

√
ckkcii cos(θi − θk)

+
√
ciicjj sin(θj − θi)

√
ckkcii sin(θi − θk)

=cii
√
cjjckk[cos(θj − θk)− cos(θj − θi) cos(θi − θk)

+ sin(θj − θi) sin(θi − θk)]

=0,

and

ciiskj − sijcki − cijski =cii
√
ckkcjj sin(θj − θk)−

√
ciicjj sin(θj − θi)

√
ckkcii cos(θi − θk)

−√ciicjj cos(θj − θi)
√
ckkcii sin(θi − θk)

=cii
√
cjjckk[sin(θj − θk)− sin(θj − θi) cos(θi − θk)

− cos(θj − θi) sin(θi − θk)]

=0,

which imply Type 2 minor (83).

A similar proposition about Type 3 minors is also true, that is, Type 1 minor

constraint (81) together with arctangent constraint (101) implies Type 3 minor (85)

equations.
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Proposition 20.

{
(c, s) :

∣∣∣∣∣∣∣
Xij Xik

Xlj Xlk

∣∣∣∣∣∣∣ = 0

}
⊇
{

(c, s) : ∃θ :

∣∣∣∣∣∣∣
Xii Xij

Xji Xjj

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
Xii Xik

Xki Xkk

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
Xjj Xjl

Xlj Xll

∣∣∣∣∣∣∣ = 0,

∣∣∣∣∣∣∣
Xkk Xkl

Xlk Xll

∣∣∣∣∣∣∣ = 0, θj − θi = atan2(sij, cij), θk − θi = atan2(sik, cik),

θj − θl = atan2(slj, clj), θl − θl = atan2(slk, clk)

}
.

We omitted the proof of Proposition 20 due to its similarity to the proof of Propo-

sition 19.

4.2.3.2 Convexification

In Section 4.2.2.2, we analyzed Type 2 and 3 minors and proposed a method to obtain

a linear outer-approximation. Now, we propose another linearization method using

the arctangent restriction (101). To start with, let us define the following nonconvex

set

AT ′ :=
{

(c, s, θ) ∈ R3 : θ = arctan
(s
c

)
, (c, s, θ) ∈ [c, c]× [s, s]× [θ, θ]

}
. (102)

Note that AT ′ is an improved version of AT defined in (60) with the addition of

angle difference bounds.

Two inequalities that approximate the upper envelope of AT ′ are described below.

Proposition 21. Let θ = γ1 +α1c+β1s and θ = γ2 +α2c+β2s be the planes passing

through points {ζ1, ζ2, ζ3}, and {ζ1, ζ3, ζ4} defined in (61), respectively. Then, two

valid inequalities for AT ′ can be obtained as

γ̄m + αmc+ βms ≥ arctan
(s
c

)
(103)

for all (c, s) ∈ [c, c]× [s, s] with γ̄m = γm + ∆γm, where

∆γm = max
{

arctan
(s
c

)
− (γm + αmc+ βms) : (c, s) ∈ [c, c]× [s, s],

c tan θ ≤ s ≤ c tan θ
}
,

(104)

101



for m = 1, 2.

Note that by the construction of (104), it is evident that γ̄m + αmc + βms domi-

nates the arctan(s/c) over the box. The nonconvex optimization problem (104) can

be solved by enumerating all possible Karush-Kuhn-Tucker (KKT) points. These

inequalities are improvements over the similar ones in Section 3.3.2 since the bounds

on θ variables are also taken into consideration in the calculation of the offset value

∆γm.

Two inequalities that approximate the lower envelope of AT ′ are described below.

Proposition 22. Let θ = γ3 +α3c+β3s and θ = γ4 +α4c+β4s be the planes passing

through points {ζ1, ζ2, ζ4}, and {ζ2, ζ3, ζ4}, respectively. Then, two valid inequalities

for AT are defined as

γ̄n + αnc+ βns ≤ arctan
(s
c

)
(105)

for all (c, s) ∈ [c, c]× [s, s] with γ̄n = γn −∆γn, where

∆γn = max
{

(γn + αnc+ βns)− arctan
(s
c

)
: (c, s) ∈ [c, c]× [s, s],

c tan θ ≤ s ≤ c tan θ
}
,

(106)

for n = 3, 4.

In summary, the four linear inequalities that approximate conv(AT ′ij) are given

as

ATij(c, c, s, s) : γ̄mij +αmij cij +βmij sij ≤ θj−θi ≤ γ̄nij +αnijcij +βnijsij, m = 1, 2 ; n = 3, 4

(107)

for some line (i, j).

4.2.4 General Principal Submatrices

Up until this point, we have mainly discussed how to incorporate the minor restric-

tions into our relaxation scheme. In this section, we propose an approach to include
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a relaxed version of the positive semidefiniteness restriction by considering general

principal minors of the matrix variable X. Our approach is a relaxation of the posi-

tive semidefiniteness requirement since X � 0 implies that all principal submatrices

should be positive semidefinite while we only include a few hyperplanes which outer-

approximate Xs � 0 for some principal submatrix Xs. From a different view point,

the approach in this section can be seen as a simultaneous convexification of several,

appropriately chosen Type 2 and 3 minor conditions (83) and (85).

Let B′ ⊆ B. Let x ∈ R2|B′| be a vector of bus voltages defined as x = [e; f ] such

that xi = ei for i ∈ B′ and xi′ = fi for i′ = i+ |B′|. Observe that the following linear

relationship between c, s and W holds,

cij = eiej + fifj = Wij +Wi′j′ i, j ∈ B′ (108a)

sij = eifj − ejfi = Wij′ −Wji′ i, j ∈ B′ (108b)

cii = e2
i + f 2

i = Wii +Wi′i′ , i ∈ B′ (108c)

W = xxT . (108d)

Here, we used real matrices instead of complex matrices for convenience. It is proven

in [97] that using real matrices is equivalent to complex matrices.

Clearly, the set defined by (108) is nonconvex. A straightforward SDP relaxation

can be presented as follows:

SB′ := {(c, s) ∈ R2|B′| : ∃W ∈ S2|B′| : cij = Wij +Wi′j′ i, j ∈ B′

sij = Wij′ −Wji′ i, j ∈ B′

cii = Wii +Wi′i′ i ∈ B′ }.

(109)

Note that this relaxation is a further relaxation of the SDP relaxation since only

one principal submatrix is considered here. Although the subset B′ can be general,

previous experience [60] shows that it makes sense to use a subset of buses that
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correspond to a cycle. In particular, we define the following set SC for a cycle C

SC := {(c, s) ∈ R2|C| : ∃W ∈ S2|C| :cij = Wij +Wi′j′ (i, j) ∈ C

sij = Wij′ −Wji′ (i, j) ∈ C

cii = Wii +Wi′i′ i ∈ {k : (k, l) ∈ C} },

(110)

and then, use the procedure in Appendix C.2 to obtain cutting planes for this set.

4.2.5 Bound Tightening

So far, one of the standing assumptions for the construction of McCormick relaxations

and arctangent outer-approximation was the availability of lower and upper bounds

on c and s variables. Clearly, tighter variable bounds will lead to better relaxations.

In this section, we explain how good bounds can be obtained by first solving small size

bounding SOCPs and then, improving these bounds further by incorporating some

dual information.

4.2.5.1 Optimization-Based Bound Tightening

Assuming some angle bounds for a line (i, j) ∈ L as

θij ≤ θi − θj ≤ θij, (111)

we can obtain a rough first estimate for the bounds on c and s as follows:

cij = V iV j cos(θij), cij = V iV j, (112a)

sij = V iV j sin(θij), sij = V iV j sin(θij). (112b)

We claim that these bounds can be further tightened by solving an improved version

of the SOCP bounding problems in Section 3.3.4.
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Consider the following second-order cone representable set,

ECij(c, c, s, s) (i, j) ∈ Lkl(r) (113a)

ATij(c, c, s, s) (i, j) ∈ Lkl(r) (113b)

θij ≤ θi − θj ≤ θij (i, j) ∈ Lkl(r) (113c)

cij ≤ cij ≤ cij, sij ≤ sij ≤ sij (i, j) ∈ Lkl(r) (113d)

(69),

where EC and AT are defined as in (94) and (107), respectively. Note that this set

is an improved version of the one proposed in Section 3.3.4, which does not contain

edge cut inequalities (113a) or arctangent envelopes (113b).

Let us now define the following problems:

P c
kl(c, c, s, s, r) : c∗kl = min{ckl : (113), (69)}

P
c

kl(c, c, s, s, r) : c∗kl = max{ckl : (113), (69)}

P s
kl(c, c, s, s, r) : s∗kl = min{skl : (113), (69)}

P
s

kl(c, c, s, s, r) : s∗kl = max{skl : (113), (69)}

(114)

As an implementation note, since these problems are independent of each other for

different edges, they can be solved in parallel. According to our experiments, this

synchronous parallelization saves a significant amount of computational time.

For artificial edges, it is not possible to use the above procedure as they do not

appear in the flow balance constraints. However, we can utilize the bounds already

computed for the original variables to obtain some bounds for the variables defined

for the artificial edges by adopting the procedure proposed in Section 3.3.4.

4.2.5.2 Dual-Based Bound Tightening

Let us suppose that the problems (114) have been solved and we have updated the

variable bounds on c and s variables to c∗, c∗, s∗ and s∗. Note that while solving these

problems, the existing variable bounds are used, that is, the bounds are not updated.
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A simple way to incorporate the change in one problem to another is to use the dual

variables. Let us now formally explain how this can be accomplished.

Consider the problem P c
kl. Let πckl(cij), π

c
kl(cij), π

c
kl(sij) and πckl(sij) be the optimal

dual variables corresponding to the constraints cij ≥ cij, cij ≤ cij, sij ≥ sij and

sij ≤ sij, respectively. First, we calculate the contribution of the constraints other

than the bounds on the dual objective as

Πc
kl = c∗kl −

∑
(i,j)∈∈Lkl(r)

(
cijπ

c
kl(cij) + cijπ

c
kl(cij) + sijπ

c
kl(sij) + sijπ

c
kl(sij)

)
. (115)

Now, since the bounds on cij and sij variables are improved via their own bounding

problems P c
ij, P

c

ij, P
s
ij and P

s

ij, the lower bound on ckl can be updated as follows:

c∗kl = max

{
c∗kl, Πc

kl +
∑

(i,j)∈∈Lkl(r)

(
c∗ijπ

c
kl(cij) + c∗ijπ

c
kl(cij) + s∗ijπ

c
kl(sij) + s∗ijπ

c
kl(sij)

)}
.

(116)

Similarly, using the dual variables from P
c

kl, P
s
kl and P

s

kl, we may try to tighten c∗kl,

s∗kl and s∗kl further.

4.3 SOCP Based Spatial Branch-and-Cut Method

In Section 4.2, we proposed several convexification techniques for the rank (or equiv-

alently, minor) constrained OPF problem including envelopes and cutting planes. In

this section, we will show how they can be used in a relaxation scheme. In Section

4.3.1, we develop an algorithm which can be used stand-alone as a cutting plane

approach to find dual bounds for the OPF problem. It can also be treated as the

root node relaxation of the SOCP based spatial branch-and-cut algorithm proposed

in Section 4.3.2. Finally, Section 4.3.3 presents the implementation details of the

spatial branch-and-cut algorithm.
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4.3.1 Root Node Relaxation

Our computational experiments will be based on an SOCP relaxation of the OPF

problem. Let SOCP(c, c, s, s,H) denote this relaxation constructed by using the vari-

able bounds c, c, s and s, and a set of cutting planes of the form αTh

c
s

 ≥ βh from

an index set H obtained by solving separation problems. The full model is defined as

follows:

SOCP(c, c, s, s,H) :

min
∑
i∈G

Ci(p
g
i ) (117a)

s.t. [−Gijcii +Gijcij −Bijsij]
2 + [Bijcii −Bijcij −Gijsij]

2 ≤ (Smax
ij )2 (i, j) ∈ L

(117b)

ECij(c, c, s, s) (i, j) ∈ L

(117c)

ATij(c, c, s, s) (i, j) ∈ L

(117d)

θij ≤ θi − θj ≤ θij (i, j) ∈ L

(117e)

cij ≤ cij ≤ cij, sij ≤ sij ≤ sij (i, j) ∈ L

(117f)

αTh

c
s

 ≥ βh h ∈ H

(117g)

(10b)− (10e), (1h)− (1i), (13).

Our approach heavily depends on tightening the variable bounds and enriching
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the set of cutting planes so that SOCP relaxation gets tightened. The main steps of

this root node relaxation algorithm is summarized in Algorithm 5.

Algorithm 5 Root node relaxation.

LB = −∞, UB =∞, C = ∅, H = ∅, t = 0
Use a local solver to find a feasible solution and update UB.
Obtain a cycle basis Cb and set C = Cb.
Solve bound tightening problems P c

kl, P
c

kl, P
s
kl and P

s

kl for all (k, l) ∈ L with r1

and apply dual improvement.
while t < T and LB < (1− ε)UB do

Enlarge C.
Solve bound tightening problems P c

kl, P
c

kl, P
s
kl and P

s

kl for all (k, l) ∈ L with r2

and apply dual improvement.
Solve SOCP(c, c, s, s,H) to obtain a solution (c∗, s∗) and update LB.
Solve SEP(SC , c∗, s∗) and/or SEP(MD

C , c
∗, s∗) to obtain a set of cutting planes

Ht for all C ∈ C.
Update H = H ∪Ht.
Set t = t+ 1.

end while

4.3.2 Spatial Branch-and-Cut Algorithm

Algorithm 5 is quite successful in proving strong dual bounds for many instances from

the NESTA archive as the numerical experiments in Section 4.4.2.1 show. Neverthe-

less, the optimality gap may be more than an acceptable threshold for some of the

more challenging instances, for which we propose an SOCP based spatial branch-and-

cut algorithm. The main steps can be seen in Algorithm 6.

Our approach is built on the following principles:

(i) Branching: In our approach, we decide a transmission line (i, j) and branch on

either cij and sij. This branching rule allows us to update convex approxima-

tions to both ECij and ATij. We pick the line to be branched on node L of the

branch-and-bound tree as follows:

lineL = max
(i,j)∈L

∣∣∣∣θj − θi − arctan

(
sij
cij

)∣∣∣∣ . (118)
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Then, among cij and sij, we choose the variable whose smallest distance to

the boundary is largest. In particular, if min{cij − cij, cij − cij} ≥ min{sij −

sij, sij−sij}, then cij is chosen; otherwise, sij is chosen. Finally, we use bisection-

branching to partition the space [95].

(ii) Local bound tightening: Since branching on a variable cij or sij reduces the

variable range, other variables which correspond to the nearby lines to the

branched line can be improved as well. Therefore, we solve the bound tightening

problems for such lines in our algorithm.

(iii) Node selection: Since our aim is to reduce the duality gap on the problem,

we choose the node with the smallest node relaxation value and carry out the

branching.

(iv) Cutting plane generation: We keep on generating cutting planes to separate re-

laxation solutions. To be computationally efficient, we only solve the separating

problems for the cycles at hand which contains the branched line.

4.3.3 Implementation

In Algorithm 6, SOCP relaxation of each node can be constructed from scratch given

the following four pieces of information:

(i) variable bounds,

(ii) its parent’s relaxation solution,

(iii) transmission line branched on, and

(iv) the valid inequalities of its parent.

Therefore, a direct implementation can be obtained by explicit tree handling as long

as the parent inherits this set of information.
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Algorithm 6 Spatial branch-and-cut.

Let LB, UB, C and H be computed from Algorithm 5.
Set list = {root}.
while |list| > 0 do
LB = minl∈list LBl and L = argminl∈list LBl.
list = list \ {L}.
if LB ≥ (1− ε)UB then

STOP.
end if
Solve bound tightening problems P c

kl, P
c

kl, P s
kl and P

s

kl for all (k, l) near
lineparent(L) with r2 and apply dual improvement.
Solve SEP(SC , c∗, s∗) and/or SEP(MD

C , c
∗, s∗) to obtain a set of cutting planes

Ht for all C ∈ C such that lineparent(L) ∈ C.
Update HL = HL ∪Ht.
Solve SOCP(c, c, s, s,H) to obtain a solution (c∗, s∗) and update LB.
Decide on a transmission line lineL to branch on.
Obtain two children L1 and L2 by updating variable bounds, EC and AT.
list = list ∪ {L1, L2}.

end while

This implementation is a reasonable attempt since, unlike LPs, there is no efficient

warm-start availability for SOCPs. There are also some disadvantages: For instance,

the proposed implementation requires the construction of each problem from scratch

and explicit tree handling. Although the data needed to be stored at each node is

limited, there may be some issues for large problems.

In this implementation, the overhead is the solution of SOCPs at each node of the

branch-and-bound tree. We prefer to use MOSEK in this implementation since it is

an efficient conic interior point solver.

Finally, bound tightening and separation problems are parallelized to reduce the

total computational time.

4.4 Computational Experiments

In this section, we present the results of our extensive computational experiments

from NESTA 0.3.0 archive [25]. We are particularly interested in this set of instances

due to their difficulty level, as explained below. Our main code is written in the C#

110



language with Visual Studio 2010 as the compiler. For comparison purposes, we use

OPF Solver [73] to solve the SDP relaxation of the OPF problem. This MATLAB

package exploits sparsity of the power networks to efficiently solve large-scale SDP

problems [74, 75]. We modified the code slightly to incorporate phase angle difference

constraints. For all experiments, we used a 64-bit computer with Intel Core i5 CPU

2.50GHz processor and 16 GB RAM. Time is measured in seconds, unless otherwise

stated. Conic interior point solver MOSEK 7.1 [2] is used to solve LPs, SOCPs and

SDPs in our main algorithms. OPF Solver is run with MOSEK and SDPT3.

4.4.1 Methods

We run our algorithms with different settings as to cutting plane generation proce-

dures:

• McCormick Separation (SEP(M)): We only separate the point fromMD
C defined

in (100).

• SDP Separation (SEP(S)): We only separate the point from SC defined in (110).

• SDP + McCormick Separation (SEP(M, S)): We separate the point from MD
C

and SC .

We used a fixed cycle basis to generate cutting planes for most instances. For small

and difficult instances, we enlarge the set of cycles to obtain more cuts. After initial

calibration, we decided to set number of bound tightening rounds T to 5, initial radius

r1 to 2, later radius r2 to 4, and optimality tolerance ε to 10−3. We also employed

coefficient rounding for SDP cuts to improve numerical stability.

We modified OPF Solver code to incorporate the phase angle bounds in NESTA

instances by adding the following constraints:

=(Xij)− tan θij<(Xij) ≤ 0 and =(Xij)− tan θij<(Xij) ≥ 0. (119)

We run the OPF Solver with two solvers:
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• MOSEK

• SDPT3

In the following, we compare our three methods with the SDP relaxation based

approaches in both root node relaxation and after branching. We only used the

instances from the NESTA archive with at least 1% SOCP optimality gap since we

are only interested in the challenging instances.

4.4.2 Comparison to SDP Relaxation

We compared the relaxation values obtained from our approach to SDP relaxation in

terms of the optimality gap, which is calculated as follows: %gap = 100 × zUB−zLB

zUB .

Here, zLB is the optimal objective cost of a relaxation and zUB is the objective cost

of a feasible solution obtained by the local solver IPOPT [105].

4.4.2.1 Root Node Relaxation

In this section, we present the computational results in Table 13 for all the instances

separately. Also, we provide a scatter plot Figure 8, which visualizes the average %

gap and computational times.

Table 13 summarizes the results of our three methods applied only to the root

node relaxation. We see that SEP(M) approach is both the most efficient and the

weakest in terms of the optimality gap proven among the three methods whereas

SEP(M, S) approach takes the longest computational times but provides the strongest

relaxations overall. However, we should point out that this comes with an issue of

numerical difficulties. Cutting planes obtained from the set SC are not as reliable as

the ones obtained from MD
C since an SDP problem has to be solved in the former

whereas only an LP is solved in the latter. Therefore, in SEP(S) and SEP(M, S)

methods, respectively two and one large instances experience numerical issues.

Figure 8 compares our three methods against SDP Relaxation solved using OPF
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Table 13: Root node relaxation results (OC: Operating Condition, *: numerical
difficulty encountered).

SEP(M) SEP(S) SEP(M, S) SDP Relaxation
OC Instance % gap time % gap time % gap time % gap time

T
Y

P
IC

A
L

3lmbd 0.09 0.59 0.08 0.42 0.07 0.97 0.39 2.32
5pjm 5.18 1.20 3.62 1.11 1.84 1.79 5.22 0.97
30ieee 0.06 13.87 0.01 7.07 0.01 8.02 0.00 1.57
118ieee 0.42 129.61 0.15 166.53 0.15 169.67 0.07 6.31
162ieee 2.06 606.08 1.51 606.57 1.50 516.97 1.12 17.86
300ieee 0.22 243.07 0.09 192.66 0.10 128.66 0.08 16.23
2383wp 0.86 197.91 0.71 278.97 0.62 286.46 0.37 851.73

C
O

N
G

E
S
T

E
D

3lmbd 0.77 0.47 0.78 0.39 0.70 0.55 1.26 0.84
6ww 0.08 1.22 0.00 1.09 0.00 1.39 0.00 0.92

14ieee 0.12 5.76 0.01 2.93 0.01 4.18 0.00 1.48
30as 0.40 19.22 0.28 13.39 0.26 18.42 0.00 1.8
30fsr 10.01 17.44 5.24 17.97 5.22 20.93 11.06 2.02

39epri 0.06 5.28 0.03 5.77 0.03 5.38 0.00 2.54
118ieee 13.41 172.98 7.49 171.68 7.47 173.87 31.53 7.11
162ieee 1.16 607.29 1.03 611.71 1.03 597.39 1.00 21.53
189edin 0.51 102.75 0.11 96.69 0.11 67.98 0.05 6.41
300ieee 0.21 239.42 0.09 188.65 0.09 185.37 0.00 14.41
2383wp 0.78 198.54 0.78* 121.49 0.50 373.36 0.10 853.97
2736sp 1.15 228.42 0.82 505.76 0.83 497.63 0.07 1430.13
2737sop 0.89 239.74 0.48 494.38 0.59 497.11 0.01 1203.97

S
M

A
L

L
A

N
G

L
E

3lmbd 0.34 0.34 0.31 0.41 0.14 0.45 2.06 1.02
4gs 0.08 0.36 0.05 0.19 0.05 0.23 0.05 0.88

5pjm 0.10 0.30 0.08 0.31 0.08 0.34 0.00 0.95
9wscc 0.05 0.44 0.05 0.44 0.05 0.53 0.00 0.85
29edin 2.21 136.62 2.17 127.04 1.82 137.81 28.44 2.53
30as 0.24 12.43 0.14 12.37 0.14 20.45 0.47 1.81

30ieee 0.09 6.61 0.08 3.57 0.08 5.40 0.00 2.45
118ieee 4.54 172.12 3.34 172.55 3.34 209.82 7.55 6.11
162ieee 4.08 618.42 3.75 600.37 3.76 688.69 3.56 20.44
189edin 1.21 107.44 1.13 77.26 1.06 124.30 1.20 6.27
300ieee 0.22 246.93 0.10 254.45 0.10 190.36 0.13 15.16
2383wp 2.61 231.87 2.45 229.66 2.27* 288.14 1.30 845.6
2736sp 1.84 186.33 1.76 313.54 1.55 381.33 0.69 1364.31
2737sop 2.14 174.36 2.14* 320.40 2.02 214.41 1.00 1294.13
2746wp 1.64 195.51 1.31 398.51 1.36 314.85 0.43 1322.23

Average 1.71 146.31 1.20 171.32 1.11 175.23 2.83 266.54
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Figure 8: Scatter plot for root node relaxation results.

Solver with SDPT3 chosen as the solver. Although MOSEK is much faster with 143.64

seconds on the average than SDPT3 with 266.54 seconds, SDPT3 provides more

accurate solutions with 2.83% optimality gap on the average while the optimality gap

for MOSEK is 3.50%. Therefore, we will base our comparisons with SDPT3 results.

We can easily see that all our methods dominate OPF Solver. Our methods are

about 2-3 times more accurate than OPF Solver in terms of the average optimality

gap proven and the computational times are about 50% less. In general, we should

note that our approaches are much faster on large instances, more accurate on hard

instances, and comparable to the SDP relaxation on small or easy instances.

We would like to emphasize the success of purely LP and SOCP based method

SEP(M) here. Although it provides the weakest relaxation among our three ap-

proaches, it is still much stronger than a purely SDP based approach in about 45% of

the computational time. Also, it is the most stable approach in terms of the numerical

issues.
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4.4.2.2 Effect of Branching

In this section, we present the results in Table 14 for the instances up to 300 buses

which are not solved within the optimality threshold at the root node relaxation. We

run the branch-and-cut algorithm with a budget of 15 minutes. We have not presented

the results for larger instances since it is not possible to process a reasonable number

of nodes in the alloted time.

Overall, the branching reduces the average optimality gaps from 1.71, 1.20 and

1.11 at the root node to 1.26, 0.80 and 0.79 after 15 minutes for the methods SEP(M),

SEP(S) and SEP(M, S), respectively. There are quite significant gap closure thanks

to branching for 5pjm (typical OC instance), 30fsr (congested OC) and 118ieee (con-

gested and small angle OC) instances. The average computation times increase from

146.31, 171.32 and 175.23 to 417.69, 322.83 and 323.83 after branching. We should

point out that it is possible to process more nodes with SEP(M) method, which helps

to reduce the optimality gaps the most among our three methods, however, it is still

the weakest relaxation approach. Also, we can see that SEP(S) method is able to

provide the same average optimality gap as SEP(M, S) at the end since it processes

more nodes.
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Table 14: Branch-and-cut results.

SEP(M) SEP(S) SEP(M, S)
OC Instance % gap time #nodes % gap time #nodes % gap time #nodes

T
Y

P
IC

A
L 5pjm 0.10 170.86 591 0.10 82.82 329 0.10 74.86 224

118ieee 0.25 907.58 110 0.09 235.57 11 0.09 240.82 11
162ieee 1.74 900.40 10 1.35 925.87 10 1.28 926.37 19

C
O

N
G

E
S
T

E
D

3lmbd 0.05 1.09 5 0.02 1.00 5 0.02 1.20 5
14ieee 0.10 6.88 3
30as 0.15 902.26 412 0.10 96.75 59 0.10 98.98 57
30fsr 4.87 901.75 379 0.65 900.13 415 0.70 900.34 372

118ieee 11.02 900.30 85 5.23 904.83 78 5.27 905.89 82
162ieee 1.14 908.88 10 0.99 932.17 10 0.98 929.08 10
189edin 0.41 905.74 205 0.10 245.64 49 0.10 200.72 41
300ieee 0.16 903.13 92

S
M

A
L

L
A

N
G

L
E 3lmbd 0.04 0.69 3 0.04 0.72 3 0.04 0.76 3

29edin 2.15 909.61 80 2.11 901.39 73 1.75 901.57 70
30as 0.10 97.08 65 0.09 26.77 11 0.09 35.52 7

118ieee 4.09 905.63 75 2.12 906.17 72 2.16 900.31 59
162ieee 4.01 903.53 13 3.67 917.27 10 3.68 928.49 9
189edin 0.95 902.21 189 0.87 901.58 187 0.87 904.84 177
300ieee 0.17 906.46 86
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4.5 Conclusions

In this chapter, we solved the Optimal Power Flow Problem using global optimiza-

tion methods. We first reformulated the OPF problem as a rank/minor constrained

SDP problem and then proposed several convexification techniques for nonconvexi-

ties involving minor restrictions using only second-order conic and linear relaxations.

We improved the resulting SOCP relaxation via cutting planes and convex envelopes

by incorporating bound tightening. We proposed three methods with respect to

the cutting plane procedure utilized. Our methods are quite successful in proving

the global optimal solutions for many challenging OPF instances from the NESTA

archive. Compared to SDP relaxation, our approaches provide about 2-3 times smaller

optimality gaps with only half of the computation time on the average. For the in-

stances not solved, we propose to use a branch-and-cut scheme where the proposed

SOCP relaxation serves as the root node relaxation. The strongest of our SOCP

based branch-and-cut algorithms proves 0.79% optimality gap in 323 second on the

average for some of the most challenging OPF instances publicly available.

As a future work, we would like to apply the methodology developed in this chapter

to multi-period Optimal Power Flow and Optimal Transmission Switching Problems.

Another possible line of research is to implement an LP based outer-approximation

to SOCP based branch-and-cut method. This would lead weaker relaxations than a

pure SOCP based approach but can incorporate warm-start and it may be possible

to process significantly more nodes in the same amount of time.
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CHAPTER V

VALID INEQUALITIES FOR THE DC OPTIMAL

TRANSMISSION SWITCHING PROBLEM

5.1 Introduction

Recent works that have first considered the DC OTS problem have found that the

resulting MILP model is very challenging and called for a more systematic study on

its underlying mathematical structure. For example, the authors of [41] state that

“When solving the transmission switching problem, . . . the techniques for

closing the optimality gap, specifically improving the lower bound, are

largely ineffective.”

The primary focus of this chapter is an attempt to change this state of affairs by

developing strong classes of valid inequalities that may be applied to power systems

planning problems that involve the addition or removal of transmission elements, in

order to solve such problems more efficiently. We summarize the main contributions

as follows:

• Using a new formulation of DC OPF based on Kirchoff’s Voltage Law, we give a

cycle-based linear mixed integer programming (MIP) formulation for DC OTS.

• We formally establish that the DC OTS problem is NP-Hard, even if the in-

terconnection network is a series-parallel graph and there is only one genera-

tion/demand pair. (Additional complexity results were recently independently

established in [68]).

• Using the cycle-based formulation as inspiration, we derive classes of strong valid

inequalities for a cycle–relaxation of the DC OTS. We additionally establish that
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inequalities define the convex hull of the cycle-relaxation, and we show how to

separate the inequalities over a given cycle in polynomial time.

• We perform computational experiments focusing on improving performance of

integer programming-based methods for the OTS using the DC power flow

approximation. We show that the new inequalities can help improve solution

performance of commercial MIP software.

This chapter is organized as follows: in Section 5.2, we propose a new formulation

for the DC OPF problem based on Kirchoff’s voltage law. The formulation idea is also

applied to the DC OTS problem. In Section 5.3, we prove some complexity results for

DC OTS problem. In Section 5.4, we characterize the convex hull of a substructure

in the formulation and develop valid inequalities that strengthen the LP relaxation

of the proposed switching model. In Section 5.5, we give an efficient implementation

of the proposed valid inequalities. We present extensive computational results in

Section 5.6. Finally, Section 5.7 concludes this chapter with potential future research

directions.

5.2 DC OPF and OTS Formulations Revisited

In Sections 1.1.3 and 1.2.2, we introduced the mathematical programming formulation

of DC OPF and OTS problems, respectively. In this section, we first revisit these

angle-based formulations and then, propose new cycle-based formulations.

In this chapter, we assume that the cost of production is a linear function of

the production quantities at the generators, i.e. Ci(p
g
i ) := cip

g
i for all i ∈ G. This

assumption, while standard in the literature surrounding the DC OTS [33, 37], ignores

the convex quadratic portion of generation costs. As we discuss in Section 5.4, our

formulation and valid inequalities can still be applied when the cost is a nonlinear

function.
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5.2.1 Formulations for DC OPF

Recall that the standard formulation of DC OPF, which we call the Angle Formula-

tion, is already introduced in 1.1.3. Now, we propose a new formulation, which we

call the Cycle Formulation.

The DC power flow model gets its name from the fact that the equations describing

the power flow in a network are the same as those that describe current flow in a

standard direct current electric network. The constraints (3b) describe Kirchoff’s

Current Law (KCL) at each bus, and the equations (3c), which define the branch

current, follow from Ohm’s Law. With this analogy, it is natural to think about an

alternative way to represent power flows in a DC circuit using the branch current fij

and Kirchoff’s Voltage Law (KVL). Kirchoff’s Voltage Law states that around any

directed cycle C, the voltage differences must sum to zero:

∑
(i,j)∈C

(θi − θj) =
∑

(i,j)∈C

fij
Bij

= 0. (120)

If the directed cycle C contains arc (i, j), but the transmission line has been given

the alternate orientation ((j, i) ∈ L), we adjust (120) by flipping the sign of the

susceptance:

B̄C
ij =

 Bij if (i, j) ∈ C, (i, j) ∈ L

−Bij if (i, j) ∈ C, (j, i) ∈ L

In this equivalent representation, the power flow should satisfy the KVL (120) for

each cyle. Although the number of cycles in a network can be large, it is sufficient

to enforce (120) over any set of cycles that forms a cycle basis Cb of the network (see

Appendix B for a rigorous definition of cycle basis). If angle differences sum up to

zero over the cycle basis, they also must sum up to zero over any other cycle (e.g. see

[16]). Thus, the KVL-inspired formulation for the DC OPF is the following:
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min
∑
i∈G

cip
g
i (121a)

s.t.
∑

(i,j)∈C

fij
B̄C
ij

= 0 C ∈ Cb, (121b)

(3b), (3d), (1h).

The voltage angles may be recovered using the equations (3c).

Proposition 23. Formulations (3) and (121) are equivalent.

Proof. In order to prove the equivalence of the formulations, it suffices to show that∑
(i,j)∈C

fij
B̄C
ij

= 0, C ∈ Cb ⇐⇒ there exists θ such that fij = Bij(θi − θj), (i, j) ∈ L.

(122)

(⇒) First observe that because Cb is a cycle basis, equations (121b) imply
∑

(i,j)∈C
fij
B̄C

ij
=

0 for any cycle C. Now let T = (B,L′) be a spanning tree of G. Clearly, the following

system in θ has a solution:

Bij(θi − θj) = fij, (i, j) ∈ L′. (123)

Therefore, it suffices to check if a solution of (123) satisfies Bij(θi − θj) = fij for

(i, j) ∈ L \ L′. Note that for any (k, l) ∈ L \ L′, there exists a unique path Pkl from

k to l in T and a cycle C = Pkl ∪ {(l, k)}. Then, we have

(θk − θl) =
∑

(i,j)∈Pkl

(θi − θj) =
∑

(i,j)∈Pkl

fij
B̄C
ij

=
fkl
B̄C
kl

, (124)

which implies Bkl(θk − θl) = fkl.

(⇐) Suppose there exist θ such that fij = Bij(θi − θj), for each (i, j) ∈ L. Then, for

each cycle C, we have∑
(i,j)∈C

fij
B̄C
ij

=
∑

(i,j)∈C

Bij(θi − θj)
B̄C
ij

=
∑

(i,j)∈C

(θi − θj) = 0, (125)

which concludes the proof.
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5.2.2 Formulations for DC OTS

The angle-based DC OPF formulation (3) can be easily adapted to switching by

introducing binary variables xij that take the value 1 if line (i, j) ∈ L is on, and 0 if the

line is disconnected. A direct nonlinear formulation of DC OTS is already mentioned

in Section 1.2.2, where the nonlinearity stems from constraint (6). However, this

constraint can be linearized as follows [33]:

Bij(θi − θj)−Mij(1− xij) ≤ fij ≤ Bij(θi − θj) +Mij(1− xij) (i, j) ∈ L (126a)

− f̄ijxij ≤ fij ≤ f̄ijxij (i, j) ∈ L (126b)

Here, Mij is chosen sufficiently large to make the inequalities (126a) redundant if

xij = 0. The constraints (126) ensure both that Ohm’s Law is enforced if the line

is switched on and that power flow fij = 0 if the line is switched off. After this

linearization, the angle-based DC OTS becomes as follows:

min
∑
i∈G

cip
g
i (127a)

s.t. xij ∈ {0, 1} (i, j) ∈ L, (127b)

(3b), (1h), (126a)− (126b).

Inspired by the cycle formulation (121) for the DC OPF, we can formulate the DC

OTS problem without angle variables as well. The full formulation enforces Kirchoff’s

Voltage Law only if all arcs in a cycle are switched on.

min
∑
i∈G

cip
g
i (128a)

s.t. −MC

∑
(i,j)∈C

(1− xij) ≤
∑

(i,j)∈C

fij
B̄C
ij

≤MC

∑
(i,j)∈C

(1− xij) C ∈ C, (128b)

(3b), (1h), (126b)− (127b).

The value MC must be selected so that the inequalites (128b) are redundant if∑
(i,j)∈C(1 − xij) ≥ 1. In formulation (128), C is the set of all cycles in the graph
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N = (B,L). The cardinality of C is in general quite large, so we do not propose using

(128) directly. Rather, we use the formulation (128) as the starting point for deriving

strong valid inequalities in Section 5.4. Furthermore, the inequalities (128b) could be

added as cuts within a branch-and-cut algorithm. These inequalities are required to

define the feasible region, so the branch-and-cut procedure would search for a violated

inequality from the class (128b) any time it identifies a candidate solution with the

x components binary. (Inequalities added as cuts in this way are sometimes referred

to as “lazy cuts”.)

5.3 Complexity of DC OTS

In this section, we discuss the complexity of the DC optimal transmission switching

problem. The input to the problem is a power network as described at the beginning of

Section 5.2. In the feasibility version of DC OTS, we ask if there exists a subset of lines

to switch off such that the DC OPF is feasible for the induced topology. The feasibility

version of DC OTS with a cardinality constraint has been proven to be strongly NP-

Complete in [13] by reduction from the Exact 3-Cover Problem. Recently, many

complexity and approximability results on DC-Switching problems were given in [68],

including the result that DC OTS is NP-Hard, even if the underlying graph is a

cactus. Our results were established independently, and complement the results of

[68] by formally establishing that the DC OTS problem is easy if the graph is a tree

and NP-Hard even if there is one generation/load pair on series-parallel graphs.

Proposition 24. In the DC OTS, there exists an optimal solution in which the lines

switched on form a connected network.

Proof. Consider the Cycle Formulation (128) of the DC OTS, and let L′ be the active

lines in an optimal solution. Assume that the network corresponding to this solution

has k connected components. Since the original network N = (B,L) is connected, we

can find a set of transmission lines L′′ with cardinality k−1 such thatN ′ = (B,L′∪L′′)

123



is connected. Now, let xij = 1 and fij = 0 for all (i, j) ∈ L′′. By construction, no

new cycles are created by switching on lines in L′′. Further, the balance constraints

(3b) and bound constraints (126b) are satisfied. Hence, we have demonstrated a

new solution with the same objective value where the network formed by the active

lines is connected.

Corollary 1. If N = (B,L) is a tree, the DC OTS problem is solvable in polynomial

time.

Proof. Due to Proposition 24, there exists an optimal solution which induces a con-

nected network. Since removing any line disconnects the tree, there exists an optimal

solution in which all lines are active. But this is exactly the DC OPF problem with-

out switching, which can be solved via linear programming, a problem known to be

polynomially solvable.

Theorem 5 establishes that DC OTS is NP-Complete even if the power network

is a series-parallel graph, and there is only one demand-supply pair.

Theorem 5. The feasibility version of DC OTS is NP-complete even when N =

(B,L) is a series-parallel graph, there is |G| = 1 generator, and one node i ∈ B such

that pdi 6= 0.

Proof. We prove this result by a reduction from the subset sum problem, which is

known to be NP-Complete [38]. Consider an instance of a subset problem as: Given

ai ∈ Z++ for i ∈ {1, . . . , n} and b ∈ Z++, does there exist a subset I ⊆ {1, . . . , n}

such that
∑

i∈I ai = b? We construct an instance of switching problem as follows:

(i) There are n+ 3 buses {0, 1, . . . , n, n+ 1, n+ 2}.

(ii) Following are the lines: (0, i) for all i ∈ {1, . . . , n}; (i, n+1) for all i ∈ {1, . . . , n};

(n+ 1, n+ 2); (0, n+ 2).
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(iii) The capacities of the lines are: ai
b

for the line (0, i) and (i, n + 1) for all i ∈

{1, . . . , n}; 1 for (n+ 1, n+ 2) and (0, n+ 2).

(iv) The susceptances of the lines are: 2ai for the line (0, i) and (i, n + 1) for all

i ∈ {1, . . . , n}; 1 for (n+ 1, n+ 2); b
b+1

for (0, n+ 2).

(v) There is a generation of 2 at bus 0 and load of 2 at bus n+ 2.

Clearly, the size of the instance of the switching problem is polynomial in the size of

the given instance of the subset sum problem. Also note that the graph is a series

parallel graph and there is only one demand supply pair.

We now verify that the subset sum problem is feasible if and only if the switching

problem is feasible.

(⇒): Since the subset sum problem is feasible, let
∑

i∈I ai = b where I ⊆

{1, . . . , n}. Then construct a solution to the switching problem as follows: Switch off

the lines (0, i), (i, n+ 1) for i ∈ {1, . . . , n} \ I. It is straightforward to establish that a

feasible solution to the DC OTS exists. (In the solution, the angle at bus 0 is 1 + 1
b
,

the angle at bus i is 1 + 1
2b

for all i ∈ I, the angle at bus n+ 1 is 1, and the angle at

bus n+ 2 is 0).

(⇐): The subset sum problem is infeasible and assume by contradiction that the

switching problem is feasible. Then note that the flow in arcs (0, n+2) and (n+1, n+2)

are 1 each (and these lines are not switched off). Without loss of generality, let the

angle at bus n + 2 be 0. This implies that the angle at bus 0 is 1 + 1
b

and at bus

n + 1 is 1. Then note that if a pair of lines (0, i), (i, n + 1) is not switched off, this

implies that the angle at bus i is 1 + 1
2b

and the resulting flow is ai
b

along the path

(0, i), (i, n + 1). Therefore, as a switching solution exists, we have that there exists

some I ⊆ {1, . . . , n} such that the paths (0, i), (i, n + 1) for i ∈ I are switched on

(and others are switched off). Then
∑

i∈I
ai
b

= 1 (by flow conservation at bus n+ 1),

the required contradiction.
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5.4 Valid Inequalities

In this section, we give two (symmetric) classes of inequalities for DC OTS that are

derived by considering a relaxation of the cycle formulation (128). The inequalities

are derived by projecting an extended formulation of our chosen relaxation. We

additionally show that the inequalities define the convex hull of the relaxation and

that each of the inequalities defines a facet of the relaxation. The separation problem

for the new class of inequalities is a knapsack problem, but we show in Section 5.4.2

how to exploit the special structure of the knapsack to give a closed-form solution.

We remind the reader that the objective function is assumed to be linear, as

opposed to convex quadratic. In general, finding the convex hull of the feasible

region may not be as useful algorithmically when the objective function is nonlinear

convex as the optimal solution may lie in the interior of the convex hull. However, the

generation cost functions are usually convex increasing functions of pgi over the interval

[pmin
i , pmax

i ] and, therefore, the optimal solutions of any convex relaxation will lie on

the boundary of the relaxation. Thus, finding the convex hull of the feasible solutions

may still be useful in improving bounds when we are working with a convex quadratic

increasing objective function instead of a linear objective function. Nevertheless, we

also point out that when the optimal solution is not an extreme point, the bound

obtained by this approach might be weak. As future work, numerical experiments

should be carried out to analyze this case empirically.

5.4.1 Derivation

Consider the constraints (128b), (126b) and (127b) in the cycle-based formulation

for DC OTS for one specific cycle C ∈ C and define the following relaxation of the

feasible region of (128):
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SC = {(f, x) : −MC

∑
(i,j)∈C

(1− xij) ≤
∑

(i,j)∈C

fij
B̄C
ij

≤MC

∑
(i,j)∈C

(1− xij),

− f̄ijxij ≤ fij ≤ f̄ijxij (i, j) ∈ C, xij ∈ {0, 1} (i, j) ∈ C}.

(129)

In the remainder of this section, we assume that C is a directed cycle and hence,

B̄C
ij = Bij. Our main result in this section concerns the inequalities

−∆(S)(|C| − 1) +
∑

(i,j)∈S

[∆(S)− wij]xij + ∆(S)
∑

(i,j)∈C\S

xij

≤
∑

(i,j)∈S

fij
Bij

≤

∆(S)(|C| − 1)−
∑

(i,j)∈S

[∆(S)− wij]xij −∆(S)
∑

(i,j)∈C\S

xij

S ⊆ C s.t. ∆(S) > 0,

(130)

where wij :=
f̄ij
Bij

, and

w(S) :=
∑

(i,j)∈S

wij for S ⊆ C

∆(S) := w(S)− w(C \ S) = 2w(S)− w(C) for S ⊆ C.

We show that the inequalities (130) are the only non-trivial inequalities defining

conv(SC).

Theorem 6.

conv(SC) = {(f, x) : (130),−f̄ijxij ≤ fij ≤ f̄ijxij, xij ≤ 1 (i, j) ∈ C} (131)

In proving this result, for ease of presentation, we assume without loss of generality

thatBij = 1 for all (i, j) ∈ L by appropriately scaling f̄ij. The result is proven through

a series of propositions using disjunctive arguments. Let us start with the following
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linear system

− f̄ijx1
ij ≤ f 1

ij ≤ f̄ijx
1
ij (i, j) ∈ C (132a)∑

(i,j)∈C

x1
ij = |C|yC (132b)

∑
(i,j)∈C

f 1
ij = 0 (132c)

0 ≤ x1
ij ≤ yC (i, j) ∈ C (132d)

− f̄ijx0
ij ≤ f 0

ij ≤ f̄ijx
0
ij (i, j) ∈ C (132e)∑

(i,j)∈C

x0
ij ≤ (|C| − 1)(1− yC) (132f)

0 ≤ x0
ij ≤ 1− yC (i, j) ∈ C (132g)

xij = x1
ij + x0

ij (i, j) ∈ C (132h)

fij = f 1
ij + f 0

ij (i, j) ∈ C (132i)

0 ≤ yC ≤ 1, (132j)

and define the polytope

EC = {(f, f 1, f 0, x, x1, x0, y) : (132)}.

Proposition 25. System (132) is an extended formulation for conv(SC). Further-

more, polytope EC is integral so that we have conv(SC) = projf,xEC.

Proof. Let us first consider the following disjunction for cycle C: Either every line is

active or at least one line is disconnected. If all the lines are active, then we have

− f̄ijxij ≤ fij ≤ f̄ijxij (i, j) ∈ C (133a)∑
(i,j)∈C

xij = |C| (133b)

∑
(i,j)∈C

fij = 0 (133c)

0 ≤ xij ≤ 1 (i, j) ∈ C (133d)
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Define polytope S1
C = {(f, x) : (133)}. Note that S1

C is integral in x since constraint

(133b) forces xij = 1 for all (i, j) ∈ C in a feasible solution.

Otherwise, at least one of the lines is inactive and we have

− f̄ijxij ≤ fij ≤ f̄ijxij (i, j) ∈ C (134a)∑
(i,j)∈C

xij ≤ |C| − 1 (134b)

0 ≤ xij ≤ 1 (i, j) ∈ C (134c)

Define polytope S0
C = {(f, x) : (134)} , which is again integral in x.

By construction, we have conv(SC) = conv(S1
C ∪ S0

C). Let us duplicate variables

(f, x) as (f 1, x1) and (f 0, x0) in the descriptions of S1
C and S0

C , respectively. Then,

by assigning a binary variable yC to S1
C and 1− yC to S0

C , we get system (132). So,

it is an extended formulation for conv(SC) [7].

Further, observe that EC is the union of the convex hull of two polyhedra that are

integral in x. Therefore, EC must be integral in x as well.

By noticing that x1
ij = yC and x0

ij = xij − yC for every (f, f 1, f 0, x, x1, x0, y) ∈ EC ,

we can simplify the notation by immediately projecting out these variables. Specifi-

cally, if we define the linear system

− f̄ijyC ≤ f 1
ij ≤ f̄ijyC (i, j) ∈ C (135a)∑

(i,j)∈C

f 1
ij = 0 (135b)

− f̄ij(xij − yC) ≤ f 0
ij ≤ f̄ij(xij − yC) (i, j) ∈ C (135c)∑

(i,j)∈C

xij − yC ≤ |C| − 1 (135d)

yC ≤ xij ≤ 1 (i, j) ∈ C (135e)

fij = f 1
ij + f 0

ij (i, j) ∈ C (135f)

0 ≤ yC ≤ 1, (135g)
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we have that PC := {(f, f 1, f 0, x, y) : (135)} = projf,f1,f0,x,yEC . In Proposition 26 we

can further project out the f 1 and f 0 variables by defining

−
∑

(i,j)∈S

wijxij + ∆(S)yC ≤
∑

(i,j)∈S

fij ≤
∑

(i,j)∈S

wijxij−∆(S)yC S ⊆ C s.t. ∆(S) > 0.

(136)

Proposition 26. projf,x,yPC = {(f, x, y) : (126b), (136), (135d), (135e), yC ≥ 0}.

Proof. We begin by defining Q := {(f, x, y) : (126b), (136), (135d), (135e), yC ≥ 0},

and let (f, f 1, f 0, x, y) ∈ PC . We claim that (f, x, y) ∈ Q. For each line (i, j) ∈ C,

summing (135a) and (135c) and using (135f) yields (126b). So, it suffices to check

constraint (136). We have, for each S ⊆ C,

0 =
∑

(i,j)∈C

f 1
ij =

∑
(i,j)∈S

f 1
ij +

∑
(i,j)∈C\S

f 1
ij

due to (135b). Recall that by scaling f̄ij, we have assumed Bij = 1, and thus wij = f̄ij

for all (i, j) ∈ L. Combined with (135f), we have∑
(i,j)∈S

fij =
∑

(i,j)∈S

f 0
ij −

∑
(i,j)∈C\S

f 1
ij

≤
∑

(i,j)∈S

f̄ij(xij − yC) +
∑

(i,j)∈C\S

f̄ijyC due to (135c) and (135a)

=
∑

(i,j)∈S

wijxij −

 ∑
(i,j)∈S

wij −
∑

(i,j)∈C\S

wij

 yC

=
∑

(i,j)∈S

wijxij −∆(S)yC .

(137)

This is exactly the right inequality of (136). Note that although this inequality is

valid for all S ⊆ C, the ones with ∆(S) ≤ 0 are dominated. In fact, due to (126b)

for a subset S̄ with ∆(S̄) ≤ 0, we have

∑
(i,j)∈S̄

fij ≤
∑

(i,j)∈S̄

wijxij ≤
∑

(i,j)∈S̄

wijxij −∆(S̄)yC . (138)
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Using a symmetric argument, we can show the validity of the left inequality similarly.

Hence, projf,x,yPC ⊆ Q.

Next, we prove that any solution (f, x, y) ∈ Q can be extended by some (f 1, f 0)

such that it satisfies (135). First, we can eliminate f 0 variables by setting f 0
ij =

fij−f 1
ij. Then, for contradiction, assume that there exists (f, x, y) ∈ Q such that the

following system in f 1 is infeasible:

− f̄ijyC ≤ f 1
ij ≤ f̄ijyC (i, j) ∈ C (139a)

− f̄ij(xij − yC) ≤ fij − f 1
ij ≤ f̄ij(xij − yC) (i, j) ∈ C (139b)∑

(i,j)∈C

f 1
ij = 0. (139c)

This system can be rewritten as

f 1
ij ≤ f̄ijyC (i, j) ∈ C (140a)

−f 1
ij ≤ f̄ijyC (i, j) ∈ C (140b)

f 1
ij ≤ fij + f̄ij(xij − yC) (i, j) ∈ C (140c)

−f 1
ij ≤ −fij + f̄ij(xij − yC) (i, j) ∈ C (140d)∑

(i,j)∈C

f 1
ij = 0. (140e)

By Farkas’ Lemma, the following system must have a solution:

z :=
∑

(i,j)∈C

[
f̄ijyCλ

+
ij + f̄ijyCλ

−
ij + (fij + f̄ij(xij − yC))µ+

ij + (−fij + f̄ij(xij − yC))µ−ij
]

z < 0 (141a)

λ+
ij − λ−ij + µ+

ij − µ−ij + γ = 0 (i, j) ∈ C (141b)

λ+
ij, λ

−
ij, µ

+
ij, µ

−
ij ≥ 0 (i, j) ∈ C. (141c)

Now, we consider the subsystem Tγ defined by (141b) and (141c) with respect to γ.

Let us find the finite generators of this subsystem. There are three cases:
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(i) γ = 0: In this case, T0 has a single extreme point at the origin and 4 extreme

rays for each (i, j) ∈ C. Their generators with corresponding z values are given

as follows:

(a) (λ+
ij, λ

−
ij, µ

+
ij, µ

−
ij) = (1, 1, 0, 0): z = 2f̄ijyC ≥ 0

(b) (λ+
ij, λ

−
ij, µ

+
ij, µ

−
ij) = (1, 0, 0, 1): z = −fij + f̄ijxij ≥ 0

(c) (λ+
ij, λ

−
ij, µ

+
ij, µ

−
ij) = (0, 1, 1, 0): z = fij + f̄ijxij ≥ 0

(d) (λ+
ij, λ

−
ij, µ

+
ij, µ

−
ij) = (0, 0, 1, 1): z = 2f̄ij(xij − yC) ≥ 0

So, in all cases, z ≥ 0 and hence, there is no solution to (141) when γ = 0.

(ii) γ < 0: By scaling, we can assume that γ = −1. In this case, the extreme rays

of T−1 are exactly the extreme rays of T0 while the extreme points of T−1 have

the following structure: exactly one of λ+
ij and µ+

ij is 1 for each (i, j) ∈ C and

others are zero. Now, let us define S = {(i, j) ∈ C : fij + f̄ij(xij − yC) ≤ f̄ijyC}

and calculate the value of z at the extreme point defined by S. Then, we have

z ≥
∑

(i,j)∈S

fij +
∑

(i,j)∈S

wij(xij − yC) +
∑

(i,j)∈C\S

wijyC

=
∑

(i,j)∈S

fij +
∑

(i,j)∈S

wijxij −∆(S)yC ≥ 0 due to (136)

Hence, there is no solution to (141) when γ < 0.

(iii) γ > 0: By scaling, we can assume that γ = 1. In this case, the extreme rays of

T1 are exactly the extreme rays of T0 while the extreme points of T1 have the

following structure: exactly one of λ−ij and µ−ij is 1 for each (i, j) ∈ C and others

are zero. Now, let us define S = {(i, j) ∈ C : −fij + f̄ij(xij − yC) ≤ f̄ijyC} and

calculate the value of z at the extreme point defined by S. Then, we have

z ≥
∑

(i,j)∈S

−fij +
∑

(i,j)∈S

wij(xij − yC) +
∑

(i,j)∈C\S

wijyC

=
∑

(i,j)∈S

−fij +
∑

(i,j)∈S

wijxij −∆(S)yC ≥ 0 due to (136)
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Hence, there is no solution to (141) when γ > 0.

We complete the proof of Theorem 6 by projecting out the yC variable as well.

Proof of Theorem 6. By construction, we have that conv(SC) = projf,xPC . It suffices

to show that conv(SC) = projf,xPC = R where R = {(f, x) : (126b), (130), xij ≤

1 (i, j) ∈ C}.

First, let us rewrite inequalities involving yC in projf,x,yPC :

0 ≤yC (142a)∑
(i,j)∈C

xij − (|C| − 1) ≤yC (142b)

yC ≤ xij (i, j) ∈ C (142c)

yC ≤
1

∆(S)

∑
(i,j)∈S

wijxij +
1

∆(S)

∑
(i,j)∈S

fij S ⊆ C,∆(S) > 0

(142d)

yC ≤
1

∆(S)

∑
(i,j)∈S

wijxij −
1

∆(S)

∑
(i,j)∈S

fij S ⊆ C,∆(S) > 0.

(142e)

Now, we use Fourier-Motzkin elimination on yC to show necessity and sufficiency

of the convex hull description. Note that equation (142c) together with (142a) and

(142b) give redundant inequalities dominated by 0 ≤ xij ≤ 1. Similarly, (142a) with

(142d) and (142e) exactly give equation (126b).
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Next, we look at (142b) and (142e) together, which give∑
(i,j)∈C

xij − (|C| − 1) ≤ 1

∆(S)

∑
(i,j)∈S

wijxij −
1

∆(S)

∑
(i,j)∈S

fij

⇐⇒ ∆(S)
∑

(i,j)∈C

xij −∆(S)(|C| − 1) ≤
∑

(i,j)∈S

wijxij −
∑

(i,j)∈S

fij

⇐⇒
∑

(i,j)∈S

fij ≤ ∆(S)(|C| − 1) +
∑

(i,j)∈S

wijxij −∆(S)
∑

(i,j)∈S

xij −∆(S)
∑

(i,j)∈C\S

xij

⇐⇒
∑

(i,j)∈S

fij ≤ ∆(S)(|C| − 1)−
∑

(i,j)∈S

[∆(S)− wij]xij −∆(S)
∑

(i,j)∈C\S

xij,

(143)

for S ⊆ C,∆(S) > 0. But, this is the right inequality in (130). Finally, using a similar

argument, if we look at (142b) and (142d) together, we get exactly left inequality in

(130) for S ⊆ C,∆(S) > 0, which concludes the proof.

Theorem 6 shows that the inequalities (130) are sufficient to define the convex

hull of SC . In Theorem 7 we show that each inequality is also necessary by showing

that they always define facets.

Theorem 7. The inequalities (130) are facet-defining for the set conv(SC).

Proof. See [62].

5.4.2 Separation

We now investigate the separation problem over constraints (130). Given a fractional

point (f̂ , x̂), let us first define KC = 1 −
∑

(i,j)∈C(1 − x̂ij). We focus on the right

inequality in (130); the left is analyzed similarly. For the given cycle C and S ⊆ C

with ∆(S) > 0 the inequality takes the form:∑
(i,j)∈S

fij +
∑

(i,j)∈S

[∆(S)− wij]xij + ∆(S)
∑

(i,j)∈C

xij ≤ ∆(S)(|C| − 1).

For convenience, we rearrange the inequality as follows:∑
(i,j)∈S

(fij − wijxij) + ∆(S)
(

1−
∑

(i,j)∈C

(1− xij)
)
≤ 0. (144)
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Our aim is to determine if there exists S ⊆ C with ∆(S) > 0 such that

viol(S) :=
∑

(i,j)∈S

(f̂ij − wijx̂ij) + ∆(S)KC > 0. (145)

Recalling that ∆(S) = w(S)−w(C \ S) = 2w(S)−w(C), this can be determined by

solving

max
S⊆C

{ ∑
(i,j)∈S

(f̂ij − wijx̂ij) + ∆(S)KC : ∆(S) > 0
}
. (146)

A violated inequality exists if and only if the optimal value of (146) is positive.

Introducing binary variables zij for (i, j) ∈ C to indicate whether or not line (i, j) ∈ S,

(146) can be reformulated as follows:

max
z∈{0,1}|C|

{ ∑
(i,j)∈C

(f̂ij − wijx̂ij)zij +
∑

(i,j)∈C

wijKCzij −
∑

(i,j)∈C

wijKC(1− zij) :

∑
(i,j)∈C

wijzij −
∑

(i,j)∈C

wij(1− zij) > 0
}

= −w(C)KC + max
z∈{0,1}|C|

{ ∑
(i,j)∈C

(
f̂ij − wijx̂ij + 2wijKC

)
zij :

∑
(i,j)∈C

wijzij >
1

2
w(C)

}
.

(147)

Note that here we do need the condition that ∆(S) > 0, which yields a knapsack

problem. A similar minimization problem can be posed to separate left inequalities.

There is a necessary condition for a cycle C to have a violating inequality of form

(130) given in Proposition 27.

Proposition 27. Given (f̂ , x̂) for a cycle C, if KC = 1−
∑

(i,j)∈C(1− x̂ij) ≤ 0, then

inequalities (130) are not violated.

Proof. Consider right inequalities first. If KC < 0, then given an optimal solu-

tion z to problem (147), we have
∑

(i,j)∈C

(
f̂ij − wijx̂ij + 2wijKC

)
zij < w(C)KC

since
∑

(i,j)∈C wijzij >
1
2
w(C) and fij ≤ wijxij. Therefore, no violating inequality

exists. If KC = 0, then given an optimal solution z to problem (147), we have∑
(i,j)∈C

(
f̂ij − wijx̂ij + 2wijKC

)
zij ≤ 0 = w(C)KC since f̂ij ≤ wijx̂ij. Therefore,
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no violating inequality exists. A similar argument can be used to show that the

requirement KC > 0 is necessary for a left inequality to be violating.

Although (147) formulates the separation problem of inequalities (130) as a knap-

sack problem, the special structure of this knapsack problem enables it to be solved

efficiently. In fact, we could solve a linear program derived from the extended formu-

lation (135) to solve the separation problem over conv(SC). However, we next show

how separation of the cycle inequalities can be accomplished efficiently in closed form.

Define

S∗C = {(i, j) ∈ C : f̂ij − wijx̂ij + 2wijKC > 0}.

The following proposition shows that S∗C is the only subset that needs to be considered

when solving the separation problem for cycle C.

Proposition 28. Assume KC > 0. If there is any S ⊆ C with ∆(S) > 0 and

viol(S) > 0, then the separation problem (146) is solved by S∗C.

Proof. See [62].

Recall from Proposition 27 that KC > 0 is a necessary condition for a violated

inequality to exist from cycle C. Thus, for a given cycle C with KC > 0, a violated

inequality exists for this cycle if and only if:

∑
(i,j)∈C

(
(f̂ij − wijx̂ij + 2wijKC)+ − wijKC

)
> 0. (148)

where (·)+ = max{·, 0}. The separation problem then reduces to a search for a cycle

C having KC > 0 and that satisfies (148).

5.5 Algorithms

In this section, we describe our algorithmic framework for solving the DC switching

problem, beginning with section 5.5.1 where we describe the overall algorithm. Section

5.5.2 describes algorithms we implemented for separating over cycle inequalities (130)
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for a fixed cycle C, and section 5.5.3 describes our procedure for generating a set of

cycles over which we will perform the separation.

5.5.1 Overall Algorithm

The overall structure of the proposed algorithm is shown in Algorithm 7. The pre-

processing phase of the algorithm aims to add cycle inequalities to strengthen the LP

relaxation of the Angle Formulation (127). In particular, we first generate a set of

cycles over the original power network, and solve the LP relaxation of (127). Then, a

separation algorithm finds all the cycle inequalities (130) that are violated by the LP

solution over the generated set of cycles. These violated inequalities are added to the

LP relaxation as cuts. This procedure is iterated for a number of times to strengthen

the LP relaxation, which is then fed to the MIP solver (we use CPLEX). We prefer

to implement our separation in this “cut-and-branch” manner in order to investigate

the utility of the cutting planes when combined with all advanced features of modern

MIP software. An alternative approach would be to the use User Cut callback facility

of CPLEX. However, this procedure disables many advanced features of the solver

such as dynamic search. We implemented a version of our cutting planes using the

CPLEX callback features and found that on average the performance was around

30% worse than with our cut-and-branch Algorithm 7.

Algorithm 7 Overall Algorithm for DC Switching

(i) Preprocessing:

(a) Generate a set Γ of cycles (Cycle basis generation Algorithm 12).

(b) Strengthen LP relaxation of Angle Formulation (127) by adding violated
cycle inequalities (130) from each cycle C ∈ Γ (Separation Algorithms 8
or 9).

(ii) Solve the Angle Formulation with added cuts using CPLEX.
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5.5.2 Separation Algorithms

For a given LP relaxation solution, the separation algorithm implements the ideas

presented in Section 5.4.2 to identify all violated cycle constraints of the form (130)

for a predetermined set of cycles. The procedure is summarized in Algorithm 8.

Algorithm 8 Separation Algorithm

Given a set Γ of cycles and a LP relaxation solution (f̂ , x̂).
for every cycle C ∈ Γ do

Compute KC = 1−
∑

a∈C(1− x̂a).
if KC > 0 then

For each a ∈ C, compute za =

{
1 if f̂a − wax̂a + 2waKC ≥ 0

0 otherwise

if
∑

a∈C waza >
1
2
w(C) and

∑
a∈C

(
(f̂a−wax̂a+2waKC)+−waKC

)
> 0 then

A violated cycle inequality for C is found.
end if

end if
end for

Algorithm 8 generates a single violating inequality for each cycle, if such a vio-

lated inequality exists. However, the method can be extended to find all violating

inequalities for a cycle. This procedure is summarized in Algorithm 9, which uses a

recursive subroutine described in Algorithm 10.

Algorithm 9 Finding all valid inequalities.

Given a cycle C, define vij = f̂a − wax̂a + 2waKC for a ∈ C
Set S = {a ∈ C : va ≥ 0} and denote C \ S = {a1, . . . , an}
Calculate v(S) =

∑
a∈S va and w(S) =

∑
a∈S wa

Recursion(S, 0)

5.5.3 Cycle Generation Algorithm

This section discusses how to generate a set of cycles for the preprocessing phase of

Algorithm 7. The number of cycles in a graph G = (V,E) grows exponentially in

|V |, so in computations, finding all cycles is not efficient. Instead, we find a cycle

basis for the original power network and use the cycle basis to generate cycles for
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Algorithm 10 Recursion(S, k)

if v(S) ≤ w(C)KC or k = n then
Stop.

end if
if v(S) > w(C)KC and w(S) > 1

2
w(C) then

A violating inequality is found.
end if
for l = k + 1, . . . , n do

Recursion(S ∪ {al}, l)
end for

separation. There are many algorithms for finding a cycle basis [56]. We use a simple

algorithm based on the LU decomposition of the incidence matrix of the graph G.

See Appendix B for details.

Given an initial set of cycles Γ coming from the cycle basis, the following proce-

dure is used to generate additional cycles from which we may apply the separation

procedures 8 and 9. Any pair of cycles in Γ := C0 that share at least one common

edge can be combined to form a new cycle by removing the common edges. Denote

C̄0 as the set of all the new cycles thus generated from C0. Then, the set C1 := C0∪C̄0

has more cycles than the cycle basis Cb. This process can be repeated to generate sets

Ck+1 := Ck ∪ C̄k for k ≥ 1.

Given a set of cycles Γ, we can use Algorithms 8 or 9 to identify and add all

violated cycle inequalities for that set of cycles to the LP relaxation of the Angle

Formulation. We solve this strengthened LP relaxation again and add further violated

cycle inequalities. This procedure can be carried out in several iterations (five times

for our experiments) to produce a strengthened LP relaxation that is eventually passed

to the MIP solver.

5.6 Computational Experiments

In this section, we present extensive computational studies that demonstrate the

effectiveness of our proposed cut-and-branch algorithms on the DC OTS problem.
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Section 5.6.1 explains how the test instances are generated. Section 5.6.2 compares

the default branch-and-cut algorithm of CPLEX with two algorithms that employ

the cycle inequalities (130). The first algorithm generates inequalities from cycles in

one fixed cycle basis, and the other generates inequalities from a larger set of cycles.

The results show that the proposed algorithm with cutting planes separated from

more cycles consistently outperforms the default algorithm in terms of the size of

the branch-and-bound tree, the total computation time, and the number of instances

solved within the time limit.

For all experiments, we use a single thread in a 64-bit computer with Intel Core

i5 CPU 3.33GHz processor and 4 GB RAM. Codes are written in the C# language.

Considering that the transmission switching problem is usually solved under a limited

time budget, the relative optimality gap is set to a moderate amount of 0.1% for all

MIPs solved using CPLEX 12.4 [1]. We set a time limit of one hour in all experiments.

5.6.1 Instance Generation

Our computational experiments focus on instances where the solution of the DC OTS

is significantly different than the solution of the DC OPF. In addition to selecting

instances where switching made an appreciable instance, we selected instances whose

network size was large enough so that the instances were not trivial for existing

algorithms, but small enough to not be intractable. The 118-bus instance case118B

generated in [15] turns out to be suitable for our purposes, and we also modified

the 300-bus instance case300 so that transmission switching produces meaningfully

different solutions from the OPF problem without switching. Furthermore, in order

to extensively test the effectiveness of the proposed cuts and separation algorithms,

we generate the following five sets of instances based on case118B and case300:

• Set 118 15: We generate 35 instances by modifying case118B, where the load

at each bus of the original case118B is increased by a discrete random variable
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following a uniform distribution on [0, 15].

• Set 118 15 6: To each of the instances in Set 118 15, we randomly add 5 new

lines to the power network, each creating a 6-cycle. The transmission limits for

the lines in the cycle are set to 30% of the smallest capacity f̄ij in the network,

and Bij is chosen randomly from one of the lines which is already in the original

network.

• Set 118 15 16: The instances are constructed the same as in Set 118 15 6, ex-

cept that a 16-cycle is created by adding 5 new transmission lines.

• Set 118 9G: We generate 35 different instances from case118B, where the orig-

inal load at each bus is increased by a discrete random variable following a

uniform distribution on [0, 9]. Furthermore, the generation topology of the net-

work is changed. In particular, a generator located at bus i is moved to one of

its neighboring buses or stays at its current location with equal probability.

• Set 300 5: We generate 35 different instances from case300, where the origi-

nal load at each node is incremented by a discrete random variable following a

uniform distribution on [−5, 5]. Also, eight generators are turned off and the

cost coefficients of remaining generators are updated to be similar to the ob-

jective coefficients in [15]. Finally, more restrictive transmission line limits are

imposed.

These instances can be downloaded from https://sites.google.com/site/

burakkocuk/research.

5.6.2 DC Transmission Switching

We now investigate the computational impact of using the proposed valid inequali-

ties within the proposed cut-and-branch procedure. We compare the following three

solution procedures:
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(i) The angle formulation (127) solved with CPLEX, abbreviated by Default.

(ii) The angle formulation (127) with valid inequalities (130) found using cycles

coming from a single cycle basis, abbreviated by BasicCycles.

(iii) The angle formulation (127) with valid inequalities (130) coming from more

cycles than a cycle basis, abbreviated by MoreCycles. The procedure for gener-

ating additional cycles for separation is discussed in Section 5.5.3. We use the

set of cycles C2 for the 118-bus networks, where |C2| ≈ 3500. For the 300-bus

networks, C2 has more than 37, 000 cycles, which makes the separation proce-

dure quite computationally expensive. For the 300-bus networks, we select 10%

of the cycles in C2 randomly for separation.

We conducted preliminary experiments comparing Algorithms 8 and 9 when using

the valid inequalities (130), and found Algorithm 9 yielded consistently better per-

formance. Therefore, we use Algorithm 9 as the separation algorithm for inequalities

(130) in both BasicCycles and MoreCycles.

Tables 15-19 show the computational results for the five sets of test instances

described in Section 5.6.1. To measure the impact of the cuts on closing the integrality

gap, we use the following objective values:

• zLP : the objective value of the LP relaxation at the root node without inequal-

ities (130) and without CPLEX cuts;

• zcutsLP : the objective value of the LP relaxation at the root node with inequalities

(130) and without CPLEX cuts;

• zrootLP : the objective value of the LP relaxation at the root node with inequalities

(130) and with CPLEX cuts;

• zIP : the objective value of the final integer solution of the switching problem.
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The integrality gap measures reported in the tables are defined as

• “Initial LP Gap (%)” := 100%× (zIP − zLP )/zIP ;

• “Gap Closed by Cuts (%)” := 100%× (zcutsLP − zLP )/(zIP − zLP );

• “Root Gap Closed (%)” := 100%× (zrootLP − zLP )/(zIP − zLP ).

Other performance metrics reported in the tables are the average number of valid in-

equalities generated by the proposed algorithm (row “# Cuts”); the average prepro-

cessing time for generating valid inequalities (“Preprocessing Time”), which includes

the time for solving five rounds of the LP relaxation of the switching problem and

the associated separation problems; the average total computation time including the

preprocessing time (“Total Time”); the number of Branch-and-Bound nodes (“B&B

Nodes”); the number of unsolved instances within a time limit of one hour (“# Un-

solved”); and the average final optimality gap for unsolved instances (“Unsolved Opt

Gap (%)”). For each metric, we report both the arithmetic mean (the first number)

and the geometric mean (the second number).

From these tables, we can see that the proposed algorithm MoreCycles consistently

outperforms the default algorithm in terms of the percentage of optimality gap closed

at the root note, the size of the Branch-and-Bound tree, the total computation time,

and the number of instances solved.

Figures 9-13 show the performance profiles of the three algorithms on the five sets

of test instances. In particular, each curve in a performance profile is the cumulative

distribution function for the ratio of one algorithm’s runtime to the best runtime

among the three [29].
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Set 118 15 is a relatively easy test set. Figure 9 shows that for 42.9% of the

instances, the Default algorithm is the fastest algorithm, the BasicCycles algorithm

is fastest on 37.1%, and the MoreCycles algorithm is fastest on 20%. However, if

we choose being within a factor of two of the fastest algorithm as the comparison

criterion, both BasicCycles and MoreCycles surpass Default. BasicCycles solves all

the instances and has the dominating performance for this set of instances.

Table 15: Summary of results for Set 118 15. Initial LP Gap (%): 26.87/26.57
Default BasicCycles MoreCycles

# Cuts - 32.91/31.64 218.66/190.10
Preprocessing Time (s) - 0.05/0.04 0.80/0.44

Gap Closed by Cuts (%) - 1.50/0 2.90/0
Root Gap Closed (%) 4.41/0 7.84/7.32 18.43/17.33

Total Time (s) 437.75/35.39 26.12/15.71 234.43/30.51
B&B Nodes 6.1E+5/3.6E+4 3.6E+4/1.5E+4 2.7E+5/2.2E+4
# Unsolved 2 0 1

Unsolved Opt Gap (%) 0.30/0.29 0/0 0.11/0.11

Figure 9: Performance profile for Set 118 15.
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Figure 10 shows the results for Set 118 9G. BasicCycles is the fastest algorithm in

40% of the instances; MoreCycles and Default have the success rate of 20% of being

the fastest. If we choose being within a factor of four of the fastest algorithm as

the interest of comparison, then MoreCycles starts to outperform BasicCycles. Also,

MoreCycles solves 74.3% of the instances, which is the highest among the three.

Table 16: Summary of results for Set 118 9G. Initial LP Gap (%): 19.12/13.37
Default BasicCycles MoreCycles

# Cuts - 28.37/27.63 150.31/139.02
Preprocessing Time (s) - 0.05/0.04 1.14/0.32

Gap Closed by Cuts (%) - 5.43/0 10.83/0
Root Gap Closed (%) 13.44/0 22.26/0 27.24/0

Total Time (s) 1126.54/148.65 1170.22/129.52 951.47/121.90
B&B Nodes 1.9E+6/2.1E+5 1.9E+6/1.8E+5 1.3E+6/1.5E+5
# Unsolved 10 10 7

Unsolved Opt Gap (%) 0.71/0.45 0.79/0.36 0.50/0.33

Figure 10: Performance profile for Set 118 9G.

For instance sets 118 15 6 and 118 15 16, Figures 11-12 show that BasicCycles is

the fastest algorithm in the highest percentage of instances. For the ratio factor higher
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than one, BasicCycles and MoreCycles clearly dominate Default, and both solve sig-

nificantly more instances than Default. MoreCycles is the most robust algorithm in

the sense that it solves the most instances.

Table 17: Summary of results for Set 118 15 6. Initial LP Gap (%): 26.76/26.48

Default BasicCycles MoreCycles

# Cuts - 29.34/28.91 145.20/141.54

Preprocessing Time (s) - 0.11/0.03 1.30/0.44

Gap Closed by Cuts (%) - 1.50/0 2.92/0

Root Gap Closed (%) 5.42/0 7.80/7.32 18.19/17.00

Total Time (s) 901.31/124.72 506.40/55.70 515.05/72.37

B&B Nodes 1.3E+6/1.4E+5 4.5E+5/4.9E+4 6.1E+5/6.6E+4

# Unsolved 5 3 1

Unsolved Opt Gap (%) 1.31/0.76 1.87/1.68 0.13/0.13

Figure 11: Performance profile for Set 118 15 6.
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Table 18: Summary of results for Set 118 15 16. Initial LP Gap (%): 3.25/2.81

Default BasicCycles MoreCycles

# Cuts - 26.54/25.85 86.23/84.23

Preprocessing Time (s) - 0.11/0.05 0.54/0.31

Gap Closed by Cuts (%) - 0.05/0 0.31/0

Root Gap Closed (%) 0.47/0 4.38/0 11.65/0

Total Time (s) 2243.71/1750.82 1473.52/924.64 1581.60/1170.37

B&B Nodes 2.0E+6/1.5E+6 1.2E+6/8.1E+5 1.2E+6/9.0E+5

# Unsolved 13 4 3

Unsolved Opt Gap (%) 0.54/0.41 0.93/0.74 1.22/0.73

Figure 12: Performance profile for Set 118 15 16.
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On the 300 5 instance set, Figure 13 shows that MoreCycles is the fastest in the

largest fraction of instances and it also solves the most instances. BasicCycles is

dominated by the other two methods for this set of instances.

Table 19: Summary of results for Set 300 5. Initial LP Gap (%): 4.88/4.88

Default BasicCycles MoreCycles

# Cuts - 15.66/15.26 34.83/33.56

Preprocessing Time (s) - 0.09/0.06 0.48/0.43

Gap Closed by Cuts (%) - 7.26/7.25 7.26/7.25

Root Gap Closed (%) 7.11/4.17 48.37/48.28 48.39/48.30

Total Time (s) 1685.39/634.75 1940.16/841.88 1524.14/514.76

B&B Nodes 6.6E+5/2.3E+5 7.8E+5/3.1E+5 6.2E+5/1.9E+5

# Unsolved 13 16 10

Unsolved Opt Gap (%) 0.21/0.19 0.22/0.21 0.40/0.23

Figure 13: Performance profile for Set 300 5.
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Figure 14 shows the performance profiles of the three algorithms over all the

five test sets. It shows that, BasicCycles is the fastest algorithm in 38.3% of the

instances, whereas Default is the fastest in 29.7% of the instances and MoreCycles is

the fastest in 25.7% of the instances. If we look at the algorithm that can solve 75%

of all the instances with the highest efficiency, then BasicCycles and MoreCycles have

almost identical performance, and both significantly dominate Default. MoreCycles

solves slightly more instances than BasicCycles within the time limit. In summary,

the performance profiles show that BasicCycles has the highest probability of being

the fastest algorithm and MoreCycles solves the most instances. These experiments

demonstrate that the cycle inequalities (130) can be quite useful in improving the

performance of state-of-the-art MIP software for solving the DC OTS.

Table 20: Summary of all the instances. Initial LP Gap (%): 16.17/10.53

Default BasicCycles MoreCycles

# Cuts - 26.57/25.10 127.05/101.12

Preprocessing Time (s) - 0.08/0.05 0.85/0.38

Gap Closed by Cuts (%) - 3.15/0 4.84/0

Root Gap Closed (%) 6.17/0 18.13/0 24.78/0

Total Time (s) 1278.94/235.82 1023.29/154.57 961.34/174.58

B&B Nodes 1.3E+6/2.1E+5 8.8E+5/1.3E+5 7.9E+5/1.3E+5

# Unsolved 43 33 22

Unsolved Opt Gap (%) 0.56/0.35 0.63/0.34 0.52/0.28
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Figure 14: Performance profile for all the instances.

5.6.3 Sensitivity Analysis

Previous literature on the DC OTS demonstrates that significant cost savings can be

achieved by switching off only a few lines [33, 107]. However, the optimal solutions

obtained by the integer program turn off a significantly larger number of lines than

suggested by previous studies. Specifically, the average number of lines turned off

in the optimal solutions to the 118-bus instances is 42, and the maximum number

turned off is 57. For the 300-bus instances, an average of 85 lines are turned off in the

optimal solutions, with a maximum of 107. This surprising result is a consequence of

our observation that there are many optimal or near-optimal topologies for the DC

OTS. To demonstrate the impact of switching off fewer lines than suggested by the

optimal solution to the integer program, we performed a sensitivity analysis of the

cost versus the number of lines N that are allowed to be switched off.

In this analysis, we chose one instance from each of the five sets whose optimal

solution had a large number of lines switched off (41, 38, 41, 48, 91, respectively -
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refered to as instances (a), (b), (c), (d), (e) henceforth) and solved a number of DC

OTS instances with the cardinality constraint:

∑
(i,j)∈L

xij ≥ |L| −N (149)

added to the formulation. Here, N is the switching budget, that is, the number

of lines allowed to be switched off (note that N = 0 corresponds to DC OPF). We

experimented with different N values and the results are given in Figures 15(a)-15(e).

We make the following observations:

• DC OPF versions of instances (a), (c), (d) and (e) are infeasible.

• Once a particular instance becomes feasible, increasing the switching budget

has a significant effect on the objective value for the first few lines (especially,

for instances (b), (d) and (e)).

• Nevertheless, the full cost benefit can only be realized by switching off several

lines.

• Switching off 11 lines is enough for 118-bus instances (a), (b), (c), (d) to achieve

the maximum cost benefit (just seven lines are needed for instance (b)).

• For the 300-bus instance, switching off 15 lines yields nearly the maximum cost

benefit.

• The LP relaxation value is not affected by the switching budget.

Our results support the observation that most, although not all, of the cost benefits

in transmission switching can be realized by switching off only a few lines. This

has a positive impact on the robustness of the network. In our experience, the MIP

instances with cardinality constraints were more time consuming to solve that without

the cardinality constraint. For example the two instances which had the largest
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number of switched off lines in the optimal solutions we found (the 118-bus instance

with 57 lines switched off and the 300-bus instance with 107 lines switched off) could

not be solved in one hour for most switching budgets. Our observation that the LP

relaxation value is not affected by the switching budget may help explain this. Since

the optimal IP value is larger for smaller switching budgets, the LP relaxation gap is

larger for these instances.
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(a) An instance from Set 118 15. (b) An instance from Set 118 9G.

(c) An instance from Set 118 15 6. (d) An instance from Set 118 15 16.

(e) An instance from Set 300 5.

Figure 15: Evolution of objective function (IP) and linear programming relaxation (LP) with respect to different switching
budgets for five instances.
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5.7 Conclusions

In this chapter, we propose new cycle-based formulations for the optimal power flow

problem and the optimal transmission switching problems that use the DC approxima-

tion to the power flow equations. We characterize the convex hull of a cycle-induced

substructure in the new formulation, which provides strong valid inequalities that

we may add to improve the new formulation. We demonstrate that separating the

new inequalities may be done in linear time for a fixed cycle. We conduct extensive

experiments to show that the valid inequalities are very useful in reducing the size of

the search tree and the computation time for the DC optimal transmission switching

problem.

The inequalities we derive may be gainfully employed for any power systems prob-

lem that involves the addition or removal of transmission lines and for which the DC

approximation to power flow is sufficient for engineering purposes. We will pursue

the application of these inequalities to other important power systems planning and

operations problems as a future line of research. Other future lines of research include

the investigation of more complicated substructure of the new formulation, and engi-

neering the cutting plane procedure to effectively solve larger-scale networks. As an

example of studying more complicated substructures, stronger relaxations could be

obtained by separating cutting-planes using an extended formulation similar to (132)

that includes flow balance constraints.
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CHAPTER VI

STRONG MISOCP RELAXATIONS FOR THE AC

OPTIMAL TRANSMISSION SWITCHING PROBLEM

6.1 Introduction

In Chapter 5, we used the DC approximation of the power flow model to avoid the

mathematical complexity induced by the non-convexity of AC power flow equations

and proposed a class of valid inequalities to exactly solve the MILP problem. However,

even if this problem can be solved quickly, it has been recognized that the optimal

topology obtained by solving DC transmission switching is not guaranteed to be AC

feasible, also it may over-estimate cost improvements and overlook stability issues

[45]. In this chapter, we aim to push the control scheme for transmission switching

closer to the real-world power system operation by proposing a new exact formulation

and an efficient algorithm for the AC OTS problem.

In Chapter 3, we proposed several strong second-order cone programming relax-

ations for AC OPF, which produce extremely high quality feasible AC solutions (not

dominated by the SDP relaxations) in a time that is an order of magnitude faster

than solving the SDP relaxations. In this chapter, we extend these new techniques to

the more challenging AC OTS problem. In particular, we first formulate the AC OTS

problem as an MINLP problem. Then, we propose a mixed-integer second-order cone

programming relaxation, which relaxes the non-convex AC power flow constraints to

a set of convex quadratic constraints, represented in the form of SOCP constraints.

The chapter then provides several techniques to strengthen this MISOCP relaxation

by adding several types of valid inequalities. Some of these valid inequalities have

demonstrated to have excellent performance for the AC OPF in Chapter 3, and some
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others are specifically developed for the AC OTS problem. Finally, we also propose

practical algorithms that utilize the solutions from the MISOCP relaxation to obtain

high quality feasible solutions for the AC OTS problem.

The rest of this chapter is organized as follows: In Section 6.2, we present AC OTS

as an MINLP problem and discuss its MISOCP relaxation. Then, we propose several

valid inequalities in Section 6.3 and develop a practical algorithm to solve AC OTS

in Section 6.4. We present the results of our extensive computational experiments in

Section 6.5. Finally, some concluding remarks are given in Section 6.6.

6.2 AC OTS Formulation Revisited

In Section 1.2.2, we introduced the formulation of the AC OTS problem as an MINLP.

In this section, we propose an Alternative Formulation of AC OTS based on the

Alternative Formulation of the AC OPF problem introduced in Section 2.2.2.

6.2.1 Alternative Formulation

Mathematical programming formulation of OTS can be stated with the same variables

as used in OPF with the addition of a set of binary variables, denoted by xij, for each

line. The variable xij takes the value one if the corresponding line (i, j) is switched

on, and zero otherwise. Then, OTS is formulated as the following MINLP problem:

min
∑
i∈G

Ci(p
g
i ) (150a)

s.t. pij = (−Gijcii +Gijcij −Bijsij)xij (i, j) ∈ L (150b)

qij = (Bijcii −Bijcij −Gijsij)xij (i, j) ∈ L (150c)

(c2
ij + s2

ij − ciicjj)xij = 0 (i, j) ∈ L (150d)

(θj − θi − atan2(sij, cij))xij = 0 (i, j) ∈ L (150e)

xij ∈ {0, 1} (i, j) ∈ L, (150f)

(1g)-(1i), (10b)-(10c), (10d)-(10e).

156



Here, constraints (150b) and (150c) guarantee that real and reactive flow on every

line takes the associated values if the line is switched on and zero otherwise. Similarly,

constraints (150d) and (150e) are active only when the corresponding binary variable

takes the value one.

We also note that the model (150) can be appropriately modified to include circuit

breakers between bus bars [101].

6.2.2 MISOCP Relaxation of Alternative Formulation

Now, we propose an MISOCP relaxation of OTS (150). For notational convenience,

let cii = V 2
i and cii = V

2

i . Here, we extend the definition of variables cij and sij,

which now take the values as before when the corresponding line is switched on and

zero otherwise. We also denote lower and upper bounds of cij (resp. sij) as cij (resp.

sij) and cij (resp. sij), respectively, when the line is switched on. Next, we define

new variables cjii := ciixij. Using this notation, we present an MISOCP relaxation as

follows:

min
∑
i∈G

Ci(p
g
i ) (151a)

s.t. pij = −Gijc
j
ii +Gijcij −Bijsij (i, j) ∈ L (151b)

qij = Bijc
j
ii −Bijcij −Gijsij (i, j) ∈ L (151c)

cijxij ≤ cij ≤ cijxij (i, j) ∈ L (151d)

sijxij ≤ sij ≤ sijxij (i, j) ∈ L (151e)

ciixij ≤ cjii ≤ ciixij (i, j) ∈ L (151f)

cii − cii(1− xij) ≤ cjii (i, j) ∈ L (151g)

cjii ≤ cii − cii(1− xij) (i, j) ∈ L (151h)

c2
ij + s2

ij ≤ cjiic
i
jj (i, j) ∈ L, (151i)

(1g)-(1i), (10b)-(10c), (10d)-(10e), (150f).
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Here, constraints (151b) and (151c) again guarantee that flow variables takes the

correct value when the line is switched on and zero otherwise, due to constraints

(151d)-(151f). On the other hand, (151g)-(151h) restrict that cjii takes value cii when

line in switched on. We note that constraints (151f)-(151h) are precisely the Mc-

Cormicks envelopes [77] applied to cjii = ciixij. Finally, (151i) is the SOCP relaxation

of (150d).

We note that the non-convex constraint (150e) is dropped altogether to obtain the

MISOCP relaxation (151). In the next section, we propose three ways to incorporate

the constraint (150e) back into the MISOCP relaxation.

6.3 Valid Inequalities

In this section, we propose three methods to strengthen the MISOCP relaxation

(151). They are based on the strengthening methods we proposed for the SOCP

relaxation of the AC OPF problem in Section 3.3, which are combined with integer

programming techniques. In Section 6.3.1, we construct a polyhedral envelope for the

arctangent constraint (150e) in 3-dimension. In Section 6.3.2, we propose a disjunctive

cut generation scheme that separates a given SOCP solution from the SDP cones. In

Section 6.3.3, we propose another disjunctive cut generation scheme that separates a

given SOCP solution from the cycle based McCormick relaxation of the OPF problem.

Finally, in Section 6.3.4, we propose variable bounding techniques that provide tight

variable bounds, which is essential for the success of the proposed approach.

6.3.1 Arctangent Envelopes

First, we propose a convex outer-approximation of the angle condition (150e) to the

MISOCP relaxation. Our construction uses four linear inequalities to approximate

the convex envelope for the following set defined by the arctangent constraint (150e).

Let us first focus on the upper envelopes. Proposition 29 is adapted from Propo-

sition 10 to the case of OTS:

158



Proposition 29. Let θ = γ1 +α1c+β1s and θ = γ2 +α2c+β2s be the planes passing

through points {z1, z2, z3}, and {z1, z3, z4}, respectively. Then, for k = 1, 2, we have

γ′k + αkc+ βks+ (2π − γ′k)(1− x) ≥ arctan
(s
c

)
(152)

for all (c, s) ∈ [c, c]× [s, s] with γ′k = γk + ∆γk, where ∆γk is calculated as in (63).

A similar argument can be used to construct lower envelopes as well. See Section

3.3.2 for details.

6.3.2 SDP Disjunction

In the second method to strengthen the MISOCP relaxation (151), we propose a

cutting plane approach to separate a given SOCP relaxation solution from the feasible

region of the SDP relaxation of cycles. To start with, let us consider a cycle with

the set of lines C and the set of buses BC . Let v ∈ R2|C| be a vector of bus voltages

defined as v = [e; f ] such that vi = ei for i ∈ B and vi′ = fi for i′ = i+ |C|. Observe

that if we have a set of c, s variables satisfying the definitions in (8) and a matrix

variable W = vvT , then the following relationship holds between c, s, x and W ,

cij = (Wij +Wi′j′)xij (i, j) ∈ C (153a)

sij = (Wij′ −Wji′)xij (i, j) ∈ C (153b)

cii = Wii +Wi′i′ i ∈ BC (153c)

cijxij ≤ cij ≤ cijxij (i, j) ∈ C (153d)

sijxij ≤ sij ≤ sijxij (i, j) ∈ C (153e)

cii ≤ cii ≤ cii i ∈ BC (153f)

cjii = ciixij (i, j) ∈ C (153g)

xij ∈ {0, 1} (i, j) ∈ C (153h)

W � 0. (153i)
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Let us define S := {(c, s, x) : ∃W : (153)}. Clearly, any feasible solution to the OTS

formulation (150) must also satisfy (153). Therefore, any valid inequality for S is also

valid for the formulation (150).

Note that S is a mixed-integer set. Ideally, one would be interested in finding

conv(S) to generate strong valid inequalities. However, this is a quite computation-

ally challenging task, no easier than solving the original MINLP. Instead, we outer-

approximate conv(S) and obtain cutting planes by utilizing a simple disjunction for

a cycle C: Either every line is active, that is
∑

(i,j)∈C xij = |C|, or at least one line

is disconnected, that is
∑

(i,j)∈C xij ≤ |C| − 1. Below, we approximate these two

disjunctions.

Disjunction 1: In the first disjunction, we have xij = 1 for all (i, j) ∈ C. Let us

consider the following constraints

cij = Wij +Wi′j′ (i, j) ∈ C (154a)

sij = Wij′ −Wji′ (i, j) ∈ C (154b)

cii = cjii (i, j) ∈ C (154c)

xij = 1 (i, j) ∈ C, (154d)

and define S1 := {(c, s, x) : ∃W : (154), (153c)− (153f), (153i)}.

Disjunction 0: In the second disjunction, xij = 0 for some (i, j) ∈ C. Let us

consider the following constraints

c2
ij + s2

ij ≤ cjiic
i
jj (i, j) ∈ C (155a)

ciixij ≤ cjii ≤ ciixij (i, j) ∈ C (155b)

cii − cii(1− xij) ≤ cjii (i, j) ∈ C (155c)

cjii ≤ cii − cii(1− xij) (i, j) ∈ C (155d)

0 ≤ xij ≤ 1 (i, j) ∈ C (155e)∑
(i,j)∈C

xij ≤ |C| − 1, (155f)
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and define S0 := {(c, s, x) : (155), (153d)-(153f)}.

We note that both S1 and S0 are conic representable. In particular, these bounded

sets are respectively semidefinite and second-order cone representable. Therefore,

conv(S1 ∪ S0) is also conic representable (see Appendix C.1 on how to obtain a

representation as an extended formulation), and by construction, contains S.

Now, suppose a point (c∗, s∗, x∗) is given. We want to decide whether this point

belongs to conv(S1 ∪ S0) or otherwise, find a separating hyperplane. Given that we

have an extended semidefinite representation for conv(S1 ∪S0), we can solve an SDP

separation problem to achieve this. See Appendix C.2 for details.

6.3.3 McCormick Disjunction

The last method to strengthen the MISOCP relaxation (151) is based on the cycle-

based relaxation proposed in Section 3.3.1. The key observation is as follows: instead

of satisfying the angle condition (150e) for each (i, j) ∈ L, we guarantee that angle

differences sum up to 0 modulo 2π over every cycle C in the power network if all the

lines of the cycle C are switched on, i.e.

( ∑
(i,j)∈C

θij − 2πk
) ∏

(i,j)∈C

xij = 0, for some k ∈ Z, (156)

where θij := θj − θi.

Next, we consider

[
cos
( ∑

(i,j)∈C

θij
)
− 1
] ∏

(i,j)∈C

xij = 0 (157a)

cij =
√
ciicjj cos θijxij (i, j) ∈ C (157b)

sij =
√
ciicjj sin θijxij (i, j) ∈ C, (157c)

(153d)− (153h).

Here, (157a) is equivalent to (156) and (157b)-(157c) follow from the definition of

c, s variables. Let us define M := {(c, s, x) : ∃θ : (157), (153d)− (153h)}. Again,
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observe that any feasible solution to the OTS formulation (150) must also satisfy

(157). Therefore, any valid inequality for M is also valid for the formulation (150).

We again follow a similar procedure to the previous section and consider two

disjunctions for a cycle C.

Disjunction 1: In the first disjunction, we have xij = 1 for all (i, j) ∈ C. Note

that (157a) reduces to

cos
( ∑

(i,j)∈C

θij
)

= 1. (158)

Now, we can apply the proposed decomposition scheme in Section 3.3.1.3 to obtain a

set of bilinear equations qk(c, s, c̃, s̃) = 0, k ∈ KC , for a given cycle C, which ensure

that phase angle differences sum up to 0 modulo 2π (recall that the additional c̃, s̃

variables are introduced in the cycle decomposition and represent the values for the

artificial lines in the triangulation). Finally, we use McCormick envelopes for each

bilinear constraint to linearize the system of polynomials as in Section 3.3.1.4 to

obtain an extended polyhedral relaxation written compactly in (58). Let us define

the set M1 := {(c, s, x) : ∃(c̃, s̃) : (58), (153d)-(153f), (154c)-(154d)}.

Disjunction 0: In the second disjunction, xij = 0 for some (i, j) ∈ C. We take

M0 := S0.

We note that both M1 and M0 are conic representable. In particular, these

bounded sets are respectively polyhedral and second-order cone representable. There-

fore, conv(M1 ∪M0) is also conic representable, and by construction, contains M.

Now, suppose a point (c∗, s∗, x∗) is given. We want to decide whether this point

belongs to conv(M1 ∪M0) or otherwise, find a separating hyperplane. Given that

we have an extended second-order cone representation for conv(M1 ∪M0), we can

solve an SOCP separation problem.

In our computations, we observed that stronger cuts are obtained by combining

SDP and McCormick Disjunction. In particular, we separate cutting planes from

conv((S1 ∩M1) ∪ S0) by solving SDP separation problems.
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6.3.4 Obtaining Variable Bounds

Note that the arctangent envelopes and the McCormick relaxations are more effective

when tight variable upper/lower bounds are available for the c and s variables. Now,

we explain how we obtain good bounds for these variables, which is the key ingredient

in the success of our proposed methods.

Recall that cij and sij do not have explicit variable bounds except the implied

bounds in (24). However, these bounds may be quite loose, especially when the phase

angle differences are small, implying cij ≈ 1 and sij ≈ 0 when the corresponding line

is switched on. Therefore, one should try to improve these bounds.

We adapt the procedure proposed in Section 3.3.4 (which dealt only with OPF)

to the case of OTS in order to obtain variable bounds, that is, we solve a reduced

version of the full MISOCP relaxation to efficiently compute bounds. In particular,

consider (159), the continuous relaxation of MISOCP relaxation applied to the part

of the power network within r steps of the buses k and l. ckl and skl can be minimized

and maximized subject to (159) for each edge (k, l) to obtain lower and upper bounds,

respectively. These SOCPs can be solved in parallel, since they are independent of

each other. Recall that a good trade-off between accuracy and speed is to select

r = 2 in Chapter 3. Constraint (159n) may seem to restrict the feasible region,

however, the way we defined ckl and skl variables, they are the values for cosine and

sine components when xkl = 1 (otherwise, they are 0). Therefore, it is enough for the

bounds to be valid for xkl = 1 only.
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pgi − pdi = giicii +
∑
j∈δ(i)

pij i ∈ Bkl(r) (159a)

qgi − qdi = −biicii +
∑
j∈δ(i)

qij i ∈ Bkl(r) (159b)

pij = −Gijc
j
ii +Gijcij −Bijsij (i, j) ∈ Lkl(r) (159c)

qij = Bijc
j
ii −Bijcij −Gijsij (i, j) ∈ Lkl(r) (159d)

p2
ij + q2

ij ≤ (Smax
ij )2 (i, j) ∈ Lkl(r) (159e)

cijxij ≤ cij ≤ cijxij (i, j) ∈ Lkl(r) (159f)

sijxij ≤ sij ≤ sijxij (i, j) ∈ Lkl(r) (159g)

ciixij ≤ cjii ≤ ciixij (i, j) ∈ Lkl(r) (159h)

cii − cii(1− xij) ≤ cjii (i, j) ∈ Lkl(r) (159i)

cjii ≤ cii − cii(1− xij) (i, j) ∈ Lkl(r) (159j)

cij = cji, sij = −sji (i, j) ∈ Lkl(r) (159k)

c2
ij + s2

ij ≤ cjiic
i
jj (i, j) ∈ Lkl(r) (159l)

0 ≤ xij ≤ 1 (i, j) ∈ Lkl(r) (159m)

xkl = 1, (159n)

(69c)-(69e). (159o)

Bounds on an artificial edge (i, j) used in the construction of McCormick envelopes

are chosen as follows:

cij = −cij = sij = −sij = V iV j. (160)

A similar idea can be used to fix some of the binary variables as well. In particular,

we can minimize xkl over (69) after omitting (159n). If the optimal value turns out

to be strictly positive, then xkl can be fixed to one.
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6.4 Algorithm

In this section, we propose an algorithm to solve OTS. The algorithm has two phases.

The first phase involves solving a sequence of SOCPs obtained by relaxing integrality

restriction of the binary variables in MISOCP (151), and incorporates cycle inequal-

ities generated from the extended SDP and McCormick relaxations in Section 6.3.2

and 6.3.3. In this phase, the aim is to strengthen the lower bound on the MISOCP

relaxation. The second phase involves solving a sequence of MISOCP relaxations

strengthened by cycle inequalities. The aim in this phase is to obtain high qual-

ity feasible solutions for OTS. In particular, this is achieved by solving OPF sub-

problems with fixed topologies obtained from the integral solutions found during the

branch-and-cut process of solving the MISOCP (151). This procedure is repeated by

“forbidding” the topologies already considered in order to obtain different network

configurations in the subsequent iterations.

Now we formally define the ingredients of the algorithm. First, let SOCP (V) be

the continuous relaxation of MISOCP (151) with a set of valid inequalities V obtained

from cycle inequalities using extended SDP and McCormick relaxations. The set V is

dynamically updated T1 times. Similarly, we define MISOCP (V ,F) as the MISOCP

relaxation of OTS with a set of valid cycle inequalities V and forbidden topologies F .

Here, we forbid a topology x∗ ∈ F by adding the following “no-good” cut (see [4] for

generalizations) to the formulation:

∑
(i,j):x∗ij=1

(1− xij) +
∑

(i,j):x∗ij=0

xij ≥ 1. (161)

We denote by LBt as the optimal value of MISOCP (V ,F) and Pt as the set of all

integral solutions found by the solver at the t-th iteration. For instance, CPLEX offers

this option called solution pool. In a practical implementation, this part is repeated

T2 times.

Let OPF (x) denote the value of a feasible solution to OPF problem (10) for the
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fixed topology induced by the integral vector x. Finally, UB is the best upper bound

on OTS. Now, we present Algorithm 11.

Algorithm 11 OTS algorithm.
Input: T1, T2, ε.
Phase I: Set V ← ∅, F ← ∅, UB ←∞.
for τ = 1, . . . , T1 do

Solve SOCP (V).
Separate cycle inequalities for each cycle in a cycle basis to obtain a set of valid
inequalities Vτ .
Update V ← V ∪ Vτ .

end for
Phase II: Set t← 0.
repeat
t← t+ 1
Solve MISOCP (V ,F) to obtain a pool of integral solutions Pt and record the
optimal cost as LBt.
for all x ∈ Pt do

if OPF (x) < UB then
UB ← OPF (x)

end if
end for
Update F ← F ∪ Pt.

until LBt ≥ (1− ε)UB or t ≥ T2

Observation 1. If OPF (x) returns globally optimal solution for every topology x,

ε = 0 and T2 = ∞, then Algorithm 11 converges to the optimal solution of OTS in

finitely many iterations.

Observation 1 follows from the fact that there are finitely many topologies and

by the hypothesis that OPF (x) can be solved globally, which is possible for some

IEEE instances using moment/sum-of-squares relaxations [55]. Although Observation

1 states that Algorithm 11 can be used to solve OTS to global optimality in finitely

many iterations, the requirement of solving OPF (x) to global optimality may not be

satisfied always. In practice, we can solve OPF subproblems using local solver, in

which case we have Observation 2.
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Observation 2. If OPF (x) is solved by a local solution method, then we have LB1 ≤

z∗ ≤ UB upon termination of Algorithm 11, where z∗ is the optimal value of OTS.

6.5 Computational Experiments

In this section, we present the results of our extensive computational experiments

on standard IEEE instances available from MATPOWER [111] and instances from

NESTA 0.3.0 archive with congested operating conditions [25]. The code is written

in the C# language with Visual Studio 2010 as the compiler. For all experiments, we

used a 64-bit computer with Intel Core i5 CPU 2.50GHz processor and 16 GB RAM.

Time is measured in seconds. We use three different solvers:

• MIP solver CPLEX 12.6 [3] to solve MISOCPs.

• Conic interior point solver MOSEK 7.1 [2] to solve SDP separation problems.

• Nonlinear interior point solver IPOPT [105] to find local optimal solutions to

OPF (x).

We use a Gaussian elimination based approach to construct a cycle basis given in

Appendix B and use this set of cycles in the separation phase.

6.5.1 Methods

We report the results of three algorithmic settings:

• SOCP: MISOCP formulation (151) in Phase II without Phase I (i.e. T1 = 0).

• SOCPA: SOCP strengthened by the arctangent envelopes introduced in Section

6.3.1.

• SOCPA Disj: SOCPA strengthened further by dynamically generating linear

valid inequalities obtained from separating an SOCP feasible solution from the

SDP and McCormick relaxation over cycles using a disjunctive argument T1
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times. In particular, a separation oracle is used to separate a given point from

conv((S1 ∩M1) ∪ S0).

The following four performance measures are used to assess the accuracy and the

efficiency of the proposed methods:

• “%OG” is the percentage optimality gap proven by our algorithm calculated

as 100 × (1 − L̃B1/UB). Here, L̃B1 is the lower bound proven, which may be

strictly smaller than LB1 due to optimality gap tolerance and time limit.

• “%CB” is the percentage cost benefit obtained by line switching calculated

as 100 × (1 − UB/OPF (e)), where e is the vector of ones so that OPF (e)

corresponds to the OPF solution with the initial topology.

• “#off” is the number of lines switched off in the topology which gives UB.

• “TT” is the total time in seconds, including preprocessing (bound tightening),

solution of T1 = 5 rounds of SOCPs to improve lower bound and separation

problems to generate cutting planes (in the case of SOCPA Disj), solution of T2

rounds of MISOCPs and several calls to local solver IPOPT with given topolo-

gies. MISOCPs are solved under 720 seconds time limit so that 5 iterations take

about 1 hour (optimality gap for integer programs is 0.01%). Preprocessing and

separation subproblems are parallelized.

We choose parameter T2 = 5 and pre-terminate Algorithm 11 if 0.1% optimality gap

is proven.

6.5.2 Results

The results of our computational experiments are presented in Tables 21 and 22 for

standard IEEE and NESTA instances, respectively. We considered instances up to

300-bus since Phase II of the Algorithm 11 does not scale up well for larger instances.
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Let us start with the former: IEEE instances are a relatively easy set since trans-

mission line limits are generally not binding. Therefore, cost benefits obtained by

switching are also limited. The largest cost reduction is obtained for case30Q with

2.24%. Among the three methods, the most successful one is SOCPA Disj, on average

proving 0.05% optimality gap and providing 0.31% cost savings. In terms of com-

putational time, SOCP is the fastest, however, its performance is not as good as the

other two. Quite interestingly, SOCPA Disj is faster than SOCPA, on average, for this

set of instances. In terms of comparison with other methods, unfortunately, there is

limited literature for this purpose. In [45], nine of these instances (except for cases

9Q and 30Q) are considered and a quadratic convex (QC) relaxation based approach

is used. On average, their approach proves 0.14% optimality gap, which is worse than

any of our methods over the same nine instances. The only instance QC approach is

better is 118ieee with 0.11% optimality gap, while it is worse than our methods for

case300 with a 0.47% optimality gap.
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Table 21: Results summary for standard IEEE Instances.

SOCP SOCPA SOCPA Disj

case %OG %CB #off TT(s) %OG %CB #off TT(s) %OG %CB #off TT(s)

6ww 0.16 0.48 2 1.29 0.02 0.48 2 0.67 0.01 0.48 2 1.28

9 0.00 0.00 0 0.26 0.00 0.00 0 0.22 0.00 0.00 0 0.55

9Q 0.04 0.00 0 0.42 0.04 0.00 0 0.33 0.04 0.00 0 0.97

14 0.08 0.00 0 0.66 0.09 0.00 0 0.70 0.01 0.00 1 1.81

ieee30 0.05 0.00 1 1.95 0.05 0.00 0 1.67 0.02 0.00 1 3.84

30 0.07 0.52 1 4.60 0.06 0.52 2 5.01 0.03 0.51 2 9.39

30Q 0.44 2.05 2 24.43 0.43 2.03 5 25.80 0.13 2.24 5 44.16

39 0.03 0.00 0 2.53 0.01 0.02 1 3.17 0.01 0.02 1 4.48

57 0.07 0.02 4 6.18 0.07 0.02 4 8.72 0.08 0.01 1 13.59

118 0.19 0.08 4 3065.64 0.15 0.12 10 2553.59 0.17 0.08 16 3174.01

300 0.16 0.02 9 2318.89 0.15 0.03 12 3624.12 0.10 0.05 15 2803.31

Avg. 0.12 0.29 2.1 493.35 0.10 0.29 3.3 565.82 0.05 0.31 4.0 550.67
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Now let us consider NESTA instances with congested operating conditions. This

set is particularly suited for line switching as more stringent transmission line limits

are imposed. In fact, large cost improvements are observed for some test cases.

For instance, about 45% and 39% cost reductions are possible for cases 30fsr and

118ieee, respectively. Other instances with sizable cost reductions include cases 6ww

and 30as. SOCPA Disj is again the most successful method if we look at averages of

optimality gap (1.16%) and cost savings (6.21%). It certifies that the best topology

is within 1.17% of the optimal for all the cases except for 118ieee and 189edin. In

terms of computational time, SOCP is again the fastest, however, its performance is

significantly worse than the other two. We also note that SOCPA improves quite a bit

over SOCP in terms of optimality and cost benefits with 70% increase in computational

time. SOCPA Disj takes about only 10% more time than SOCPA. As we go from SOCP

to SOCPA Disj, problems get more complicated and sometimes, MISOCPs are not

solved to optimality within time limit. Consequently, for cases 189edin and 300ieee,

the optimality gaps proven and cost benefits obtained by SOCPA Disj can be slightly

worse.

Finally, we note that that optimality gaps can be explained by two non-convexities:

1) integrality, 2) power flow equations. For instance, in case 3lmbd, the optimality gap

can only be explained by the non-convexity of power flow equation since all the rele-

vant topologies are considered. Similarly, at least some portion of the relatively large

optimality gaps for cases 118ieee and 189edin may be attributed to non-convexity of

power flow equations. Consequently, any future improvements on strengthening the

convex relaxations of OPF problem can be useful in closing more gaps in OTS as

well.
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Table 22: Results summary for NESTA Instances from Congested Operating Conditions.

SOCP SOCPA SOCPA Disj

case %OG %CB #off TT(s) %OG %CB #off TT(s) %OG %CB #off TT(s)

3lmbd 3.30 0.00 0 0.14 2.00 0.00 0 0.14 1.17 0.00 0 0.30

4gs 0.65 0.00 0 0.11 0.16 0.00 0 0.13 0.00 0.00 0 0.27

5pjm 0.18 0.27 1 0.61 0.01 0.27 1 0.41 0.02 0.27 1 0.89

6ww 6.06 7.74 1 1.23 1.34 7.74 1 1.64 1.05 7.74 1 1.97

9wscc 0.00 0.00 0 0.19 0.00 0.00 0 0.20 0.00 0.00 0 0.30

14ieee 1.02 0.33 1 2.86 0.89 0.45 2 3.48 0.41 0.45 2 4.49

29edin 0.43 0.00 2 12.79 0.24 0.18 13 299.82 0.33 0.08 21 181.74

30as 1.81 3.13 2 14.82 0.35 3.30 5 19.52 0.34 3.30 5 24.93

30fsr 3.24 44.20 2 9.72 0.05 44.98 2 4.76 0.03 44.98 3 6.97

30ieee 0.54 0.46 1 12.28 0.40 0.48 2 10.61 0.15 0.48 2 13.37

39epri 1.92 1.10 1 11.56 0.80 1.41 2 13.20 0.70 1.52 2 12.65

57ieee 0.12 0.10 3 41.48 0.12 0.10 2 58.97 0.09 0.10 3 29.86

118ieee 41.67 4.33 3 225.57 21.51 27.98 30 3838.62 7.50 39.09 21 3856.76

162ieee 0.57 1.05 9 3675.75 0.63 1.00 15 3861.29 0.60 1.00 15 3855.50

189edin 5.31 1.10 3 540.02 4.81 0.13 2 2194.80 5.58 0.00 0 3634.02

300ieee 1.00 0.10 12 3655.10 0.65 0.37 21 3640.14 0.61 0.35 21 3651.95

Avg. 4.24 3.99 2.6 512.76 2.12 5.52 6.1 871.73 1.16 6.21 6.1 954.75
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6.5.3 Discussion

In this section, we take a closer look at some of the instances with large cost benefits

and try to gain some insight as to 1) how these large savings are obtained, and 2)

how simple heuristics may fail to produce comparable results. Firstly, using a small

example, we illustrate how large cost savings can be obtained. Secondly, we compare

the results of our algorithm with a commonly used heuristic based on switching the

best line and demonstrate how different the solution quality can be.

To address the first issue, let us concentrate on a small instance, namely case6ww

from NESTA archive. This instance has the same topology and line characteristics as

the standard IEEE test case but load and generation parameters are slightly different.

In particular, pdi = 78.24, qdi = 70, V i = 0.95 and V i = 1.05 for the load buses

i = 4, 5, 6 while the data for generation buses 1, 2 and 3 is summarized in Table 23.

With this topology, the local optimal solution obtained using IPOPT with objective

Table 23: Generator data for NESTA case6ww test case.

pmin
i pmax

i qmin
i qmax

i V i = V i cost
1 25 200 −100 100 1.05 1.276311
2 18.75 106 −100 100 1.05 0.586272
3 22.5 93 −100 100 1.07 1.29111

value of 273.76 is given in Figure 16. We note that the lines (1, 5), (2, 4) and (3, 6) are

congested in this configuration. On the other hand, if the line (1, 2) is switched off,

then the objective value reduces to 252.57, corresponding to a 7.74% cost saving over

the initial topology. The difference is due to the fact that the outputs of generators 1

and 2 are now changed to (85.56, 32.74) and (84.25, 63.26), respectively. Notice that

with the new topology, the cheaper generator 2 is used more, which results in the cost

reduction. In the initial topology, this is not possible since the voltage magnitudes of

the generators are fixed, and lines (1, 5) and (2, 4) are congested.
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Bus 1

Bus 2

Bus 3

Bus 4

Bus 5

Bus 6

(29.88,−15.92) (1.14,−11.93)

(4.15,−4.85) (0.91,−9.82)

(47.36, 20.85) (17.30, 15.89) (51.32, 61.37)

(38.19, 11.88) (2
2.5

7,
22
.93

)

(3
7.9

6,
46
.46

) (27.85, 12.84)

(115.44, 16.81)

(55.35, 76.74)

(72.79, 89.66)

(78.24, 70)

(78.24, 70)

(78.24, 70)

Figure 16: Flow diagram for the solution of NESTA case6ww without any line switch-

ing. The numbers above each generator node respectively represent the active and

reactive power output. Similarly, the numbers near each edge respectively represent

the active and reactive power flow of the line in the direction from the small indexed

bus to the large indexed one. The figure is generated by modifying [70].

Now, let us consider the second issue. Due to the combinatorial nature of OTS

problem, heuristics are frequently used to obtain suboptimal solutions. A commonly

used one is to switch off a single line to obtain cost benefits [90, 64]. Although this

heuristic idea is easy to implement and works well in some instances, there are no

guarantees on its accuracy. For example, in case6ww, the best line to switch off is, in

fact, (1, 2) suggested by both the best line heuristic and our algorithm. However, for

other problems with large cost benefits, this is not always the case. For instance, in

case30as and case30fsr, the best line heuristic reduces the overall cost to 2.99% and

44.02% respectively, compared to 3.30% and 44.98% obtained from our algorithm.

For case118ieee, the cost reduction is dramatically different. The best line heuristic
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reduces the cost only by 19.52% while our algorithm provides a topology with 39.09%

saving. Moreover, the best line heuristic does not provide any guarantee on how

good the solution is while our algorithm gives optimality guarantees by construction.

Therefore, adapting Algorithm 11 in real-time operations can yield significant savings

over simple heuristics.

6.6 Conclusions

In this chapter, we proposed a systematic approach to solve the AC OTS problem.

In particular, we presented an alternative formulation for OTS and constructed a

MISOCP relaxation. We improved the strength of this relaxation by the addition of

arctangent envelopes and cutting planes obtained using disjunctive techniques. The

use of these disjunctive cuts help in closing gap significantly. Our experiments on

standard and congested instances suggest that the proposed methods are effective in

obtaining strong lower bounds and producing provably good feasible solutions.

We remind the reader that AC OTS is a challenging problem since it embodies

two types of non-convexities due to AC power flow constraints and integrality of

variables. We hope that the methodology developed in this chapter can eventually

be further improved to solve AC OTS problem in real life operations. As a future

work, we would like to pursue finding ways to improve the solution time of MISOCPs

as this step is the bottleneck in Algorithm 11. Also, decomposition methods can be

sought to solve large-scale problems more efficiently, which could make the proposed

approach adaptable to real life instances.
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APPENDIX A

PROOF OF THEOREM 4

Our proof approach is based on identifying the extreme points of Sa. Let us start

with a proposition.

Proposition 30. Let (x, y) be an extreme point of the set Sa. Then, for a distinct

pair of indices i and j

(i) either xi or yj is at one of its bounds.

(ii) either xi or yi is at one of its bounds.

(iii) either xj or yj is at one of its bounds.

(iv) either xj or yi is at one of its bounds.

Proof. We only prove the first statement. The others can be proven using exactly the

same reasoning.

Assume for a contradiction that xi < xi < xi and y
j
< yj < yj. Consider the

following cases:

Case 1: yi 6= 0 and xj 6= 0

Case 1a: aiyi
ajxj

> 0

Let ε = {xi−xi, xi−xi,
ajxj
aiyi

(yi−yi),
ajxj
aiyi

(yi−yi)} and δ = aiyi
ajxj

ε. Note that

both ε and δ are positive. Now, construct (x+, y−) = (x+ εei, y− δej) and

(x−, y+) = (x− εei, y + δej) where ei is the i-th unit vector. Observe that

both (x+, y−) and (x−, y+) belong to Sa. Moreover, (x, y) = 1
2
(x+, y−) +

1
2
(x−, y+). But, this is a contradiction to (x, y) being an extreme point of

Sa.
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Case 2b: aiyi
ajxj

< 0

Let ε = {xi − xi, xi − xi,
ajxj
aiyi

(y
i
− yi), ajxjaiyi

(yi − yi)} and δ = − aiyi
ajxj

ε. Note

that both ε and δ are positive. Now, construct (x+, y+) = (x+ εei, y+ δej)

and (x−, y−) = (x− εei, y− δej). Observe that both (x+, y+) and (x−, y−)

belong to Sa. Moreover, (x, y) = 1
2
(x+, y+) + 1

2
(x−, y−). But, this is a

contradiction to (x, y) being an extreme point of Sa.

Case 2: yi = 0

Let ε = {xi − xi, xi − xi}. Note that ε is positive. Now, construct (x+, y) =

(x + εei, y) and (x−, y) = (x − εei, y). Observe that both (x+, y) and (x−, y)

belong to Sa. Moreover, (x, y) = 1
2
(x+, y)+ 1

2
(x−, y). But, this is a contradiction

to (x, y) being an extreme point of Sa.

Case 3: xj = 0

Let δ = {yi − y
i
, yi − yi}. Note that δ is positive. Now, construct (x, y+) =

(x, y + δej) and (x, y−) = (x, y − εej). Observe that both (x, y+) and (x, y−)

belong to Sa. Moreover, (x, y) = 1
2
(x, y+)+ 1

2
(x, y−). But, this is a contradiction

to (x, y) being an extreme point of Sa.

Proposition 30 implies the following corollary.

Corollary 2. Let (x, y) be an extreme point of the set Sa. Then, either xi and yi or

xj and yj are at their bounds for a distinct pair of indices i and j.

Proof. Let xi = x̂i be a shorthand for “either xi = xi or xi = xi”. Then, Proposition

30 implies that

(xi = x̂i ∨ yj = ŷj) ∧ (xi = x̂i ∨ xj = x̂j) ∧ (yi = ŷi ∨ yj = ŷj) ∧ (yi = ŷi ∨ xj = x̂j)

=(xi = x̂i ∧ yi = ŷi) ∨ (xj = x̂j ∧ yj = ŷj),

(162)
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which is the desired conclusion.

An immediate consequence of Corollary 2 is the following characterization of ex-

treme points of Sa:

Corollary 3. All the extreme points of Sa are in one of the following sets:

• D0 = {(x, y) ∈ Sa : (xi, yi) = (x̂i, ŷi) ∀i}

• Dk = {(x, y) ∈ Sa : (xi, yi) = (x̂i, ŷi) i 6= k, xkyk = − 1
ak

∑
i 6=k aix̂iŷi, xk ∈

[xk, xk], yk ∈ [y
k
, yk]} k = 1, . . . , N

Note that D0 is a collection of at most 4N singletons whereas Dk is a collection

of 4N−1 sets for each k. The projection of such a set onto (xk, yk) is of the following

form

Tα = {(x, y) ∈ R2 : xy = α, x ∈ [x, x], y ∈ [y, y]} (163)

for some constant α.

Proposition 31. Set conv(Tα) is second-order cone representable for any value of α.

There are several cases based on parameter values. In the worst case, we need

xy ≥ α (which is conic representable) and McCormick envelopes.

Now, we are ready to prove the main result.

Proof of Theorem 4. Since the convex hull of all the disjunctions are second-order

cone representable (could be polyhedral or singleton depending on parameter values),

conv(Sa) is also second-order cone representable.
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APPENDIX B

CYCLE BASIS

Consider a directed graph G = (V,E) with vertex set V and arc set A. Let |V | = n

and |E| = m. We define edge-node incidence matrix A as

A(i,j),k =


1 if i = k

−1 if j = k

0 otherwise

(164)

Definition 2. [40] Let v ∈ {0,±1}|E| be an incidence vector for a cycle C in graph

G = (V,E), where

vij =


1 if (i, j) is traversed in the right direction by C

−1 if (i, j) is traversed in the opposite direction by C

0 if (i, j) is not in C.

The cycle space of G is the vector space that is spanned by the incidence vectors of its

cycles. A set of cycles is called a cycle basis if it forms a basis for this vector space.

A cycle basis of G is then a minimal set of cycles of G with the property that all

cycles of G are linear combinations of the cycles in the basis. Assuming that G is

connected, Algorithm 12 can be used to find a cycle basis.

Algorithm 12 Cycle basis generation.

Define edge-node incidence matrix A of directed graph G as given in (164).
Carry out LU decomposition of A with partial pivoting to compute PA = LU with
a unit lower triangular matrix L.
Last m− n+ 1 rows of L−1P , denoted by Cb, gives a cycle basis.

Proposition 32. Algorithm 12 works correctly.
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Proof. Without loss of generality, assume that the first n− 1 rows of A are selected

such that no row permutation is necessary during LU decomposition. In the remaining

of the proof, we will replace PA with A for brevity.

The LU decomposition of A can be obtained by a sequence of Gaussian elimina-

tions on A as

Ã1 = L̃1 · A, Ã2 = L̃2 · Ã1, . . . , U = Ãn−1 = L̃n−1 · Ãn−1,

where each matrix L̃i is an elementary row operation that adds or subtracts multiples

of the i-th row of Ãi−1 to other rows to make the i-th column of Ãi−1 the i-th

unit vector. Consider a nonzero entry ai1 of A. Since a11, ai1 ∈ {+1,−1}, the row

operation only adds +1 or −1 copy of row 1 to row i, that is, the first column of L̃1

only contains 0,±1. Also, after eliminating ai1, row i of A1 will either be all zero, or

contain exactly one 1 and one −1. In other words, A1 is an arc-node incidence matrix

for a new digraph G1 = (V,E1). Since rank(A) = n − 1, we have rank(Ã1) = n − 1,

which implies the new digraph G1 is connected. Repeating this argument for each

subsequent round of Gaussian elimination, we have that U is an incidence matrix of

the connected digraph Gn−1 with n − 1 arcs, which implies Gn−1 is a spanning tree

of the node set V . Denote the first n− 1 rows of U as U1. The last m− n + 1 rows

of U are zeros.

Denote A =

A1

A2

 where A1 is the first n−1 rows of A and represents a spanning

tree T in the original graph G. Note that the rows of A1 are linearly independent. Let

us first carry out the LU decomposition of A1 to get A1 = L1U1. In fact, U1 represents

a spanning tree, say T ′, on a new graph G′ = (V,E ′). Note that the entries of L1 are

precisely the negative of the pivots in Gaussian elimination and hence, they are ±1.

Moreover, we can interpret the rows of L1 indexed by the edges in T and columns

indexed by the edges in T ′. In particular, the elements of row (i, j) ∈ T represent the

unique path in T ′ going from i to j.
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Claim 1. A path in T can be mapped to a path in T ′ by post-multiplication of L1 and

this transformation is unique.

Proof. Let us consider a path p in T as a row vector where +1 (-1) means an arc

is traversed in forward (backward) direction and 0 means that arc is not part of the

path. Define p′ = pL1. We claim that the row vector p′ is a path in T ′. Let us

traverse the path p in terms of the edges in T ′. In particular, we weight the rows of

T corresponding to (i, j) with the value of that edge in the path p. In other words,

for each arc (i, j) in the path, we traverse the path from i to j in T ′. But, this gives

a path in T ′. Finally, this transformation is unique since the path joining two nodes

in a tree is unique.

Now, consider A′ =

U1

A2

. We continue LU decomposition on A′ to obtain A′ =

U1

A2

 =

 I 0

L2 I


U1

0

. In particular, we have A2 = L2U1. Since the rows of U1 are

linearly independent and U1 defines a tree, the elements of A2 can be traced via a

unique path in T ′. In fact, the paths are exactly L2 in the new network. If the paths

in L2 are traced backwards, we obtain cycles in G′. Hence,

[
−L2 I

]
is a cycle basis

in G′.

At this point, we can write A = LU where

L =

L1 0

0 I


 I 0

L2 I

 and L−1 =

 L−1
1 0

−L2L
−1
1 I


Finally, we claim that Cb =

[
−L2L

−1
1 I

]
is a cycle basis in G. Let us first focus

on the system L2 = ML1. Recall that the rows of L2 are paths in G′. We claim that

the rows of M are the corresponding paths in G. Using Claim 1, we know that post-

multiplication of a path in G by L1 gives a path in G′. But, since L1 is invertible,

M = L2L
−1
1 is the unique solution and therefore, the rows of M should represent
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paths in G. Then, by tracing the paths in M backwards, we obtain cycles in G.

Therefore,

[
−L2L

−1
1 I

]
is a cycle basis in G.

Note that we do not need to explicitly invert L to obtain L−1. In fact, LU

decomposition produces L−1. Hence, it is computationally efficient to find cycle basis

using Algorithm 12.
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APPENDIX C

SOME OPERATIONS WITH CONIC REPRESENTABLE

SETS

C.1 Convex Hull of Union of Two Conic Representable
Sets

Let S1 and S2 be two bounded, conic representable sets

Si = {x : ∃ui : Aix+Biu
i �Ki

bi} i = 1, 2. (165)

Here, Ki’s are regular (closed, convex, pointed with non-empty interior) cones. Then,

a conic representation for conv(S1 ∪ S2) is given as follows [12]:

x = x1 + x2, λ1 + λ2 = 1, λ1, λ2 ≥ 0 (166a)

Aix
i +Biu

i �Ki
biλi i = 1, 2. (166b)

C.2 Separation from an Extended Conic Representable Set

Let S be a conic representable set S = {x : ∃u : Ax + Bu �K b}. Here, K is a

regular cone. Suppose we want to decide if a given point x∗ belongs to S and find

a separating hyperplane αTx ≥ β if x∗ /∈ S. This problem can be formulated as

maxα,β
{
β − αTx∗ : αTx ≥ β ∀x ∈ S

}
, where the constraint can be further dualized

as

SEP(S, x∗) : Z∗ := max
α,β,µ
{β − αTx∗ : bTµ ≥ β,ATµ = α,BTµ = 0,

µ ∈ K∗,−e ≤ α ≤ e,−1 ≤ β ≤ 1},
(167)

where K∗ is the dual cone of K. If Z∗ ≤ 0, then x∗ ∈ S, otherwise, the optimal α, β

from the above program gives the desired separating hyperplane.
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[105] Wächter, A. and Biegler, L. T., “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming,” Math-
ematical Programming, vol. 106, no. 1, pp. 25–57, 2006.

[106] Wang, H., Murillo-Sánchez, C. E., Zimmerman, R. D., and Thomas,
R. J., “On computational issues of market based optimal power flow,” IEEE
Transactions on Power Systems, vol. 22, no. 3, pp. 1185–1193, 2007.

[107] Wu, J. and Cheung, K., “On selection of transmission line candidates for
optimal transmission switching in large power networks,” in Power and Energy
Society General Meeting (PES), 2013 IEEE, pp. 1–5, July 2013.

[108] Wu, Y., Debs, A. S., and Marsten, R. E., “A direct nonlinear predictor-
corrector primal-dual interior point algorithm for optimal power flows,” IEEE
Transactions on Power Systems, vol. 9, no. 2, pp. 876–883, 1994.

[109] Zhang, B. and Tse, D., “Geometry of feasible injection region of power net-
works,” IEEE Transactions on Power Systems, vol. 28, no. 2, pp. 788–797,
2013.

[110] Zhang, B. and Tse, D., “Geometry of feasible injection region of power net-
works,” in Communication, Control, and Computing (Allerton), 2011 49th An-
nual Allerton Conference on, pp. 1508–1515, Sept 2011.

[111] Zimmerman, R., Murillo-Sanchez, C., and Thomas, R., “MATPOWER:
Steady-state operations, planning, and analysis tools for power systems research
and education,” IEEE Transactions on Power Systems, vol. 26, pp. 12–19, Feb
2011.

192


