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ABSTRACT

We investigate anonymous processors computing in a synchronous manner and commu-
nicating via read-write shared memory. This system is known as a parallel random access
machine (PRAM). It is parameterized by a number of processors n and a number of shared
memory cells. We consider the problem of assigning unique integer names from the interval
[1,n] to all n processors of a PRAM. We develop algorithms for each of the eight specific
cases determined by which of the following independent properties hold: (1) concurrently at-
tempting to write distinct values into the same memory cell either is allowed or not, (2) the
number of shared variables either is unlimited or it is a constant independent of n, and
(3) the number of processors n either is known or it is unknown. Our algorithms terminate
almost surely, they are Las Vegas when n is known, they are Monte Carlo when n is not
known.We show lower bounds on time, depending on whether the amounts of shared mem-
ory are constant or unlimited. In view of these lower bounds, all the Las Vegas algorithms
we develop are asymptotically optimal with respect to their expected time, as determined
by the available shared memory. Our Monte Carlo algorithms are correct with probabili-

ties that are 1 — n~%D

, which is best possible when terminating almost surely and using
O(nlogn) random bits. We also consider a communication channel in which the only pos-
sible communication mode is transmitting beeps, which reach all the nodes instantaneously.
The algorithmic goal is to randomly assign names to the anonymous nodes in such a manner
that the names make a contiguous segment of positive integers starting from 1. The algo-

rithms are provably optimal with respect to the expected time O(nlogn), the number of

used random bits O(nlogn), and the probability of error.
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1. Introduction

We consider a distributed system in which some n processors communicate using read-
write shared memory. It is assumed that operations performed on shared memory occur
synchronously, in that executions of algorithms are structured as sequences of globally syn-
chronized rounds. Each processor is an independent random access machine with its own
private memory. Such a system is known as a (synchronous) Parallel Random Access Machine
(PRAM). We consider the problem of assigning distinct integer names from the interval [1, n]
to the processors of a PRAM, when originally the processors do not have distinct identifiers.

The problem to assign unique names to anonymous processes in distributed systems
can be considered as a stage in either building such systems or making them fully opera-
tional. Correspondingly, this may be categorized as either an architectural challenge or an
algorithmic one. For example, tightly synchronized message passing systems are typically
considered under the assumption that processors are equipped with unique identifiers from
a contiguous segment of integers. This is because such systems impose strong demands on
the architecture and the task of assigning identifiers to processors is modest when compared
to providing synchrony. Similarly, when synchronous parallel machines are designed, then
processors may be identified by how they are attached to the underlying communication
network. In contrast to that, PRAM is a virtual model in which processors communicate
via shared memory; see an exposition of PRAM as a programming environment given by
Keller et al. [62]. This model does not assume any relation between the shared memory and
processors that identifies individual processors.

Distributed systems with shared read-write registers are usually considered to be asyn-
chronous. Synchrony in such environments can be added by simulations rather than by a
supportive architecture or an underlying communication network. Processes do not need to
be hardware nodes, instead, they can be virtual computing agents. When a synchronous
PRAM is considered, as obtained by a simulation, then the underlying system architecture

does not facilitate identifying processors, and so we do not necessarily expect that processors



are equipped with distinct identifiers in the beginning of a simulation.

We view PRAM as an abstract construct which provides a distributed environment to
develop algorithms with multiple agents/processors working concurrently; see Vishkin [89]
for a comprehensive exposition of PRAM as a vehicle facilitating parallel programing and
harnessing the power of multi-core computer architectures. Assigning names to processors
by themselves in a distributed manner is a plausible stage in an algorithmic development of
such environments, as it cannot be delegated to the stage of building hardware of a parallel
machine.

When processors of a distributed/parallel system are anonymous then the task of assign-
ing a unique identifier to each processor is a key step to make the system fully operational,
because names are needed for executing deterministic algorithms. We consider naming to be
the task of assigning unique integers in the range [1, n] to a given set of n processors as their
names. Distributed algorithms assigning names to anonymous processors are called naming
in this thesis. We assume that anonymous processors do not have any features facilitating
identification or distinguishing.

We deal with two kinds of randomized (naming) algorithms, called Monte Carlo and
Las Vegas, which are defined as follows. A randomized algorithm is Las Vegas when it
terminates almost surely and the algorithm returns a correct output upon termination. A
randomized algorithm is Monte Carlo when it terminates almost surely and an incorrect
output may be produced upon termination, but the probability of error converges to zero
with the size of input growing unbounded. The naming algorithms we develop have qualities
that depend on whether n is known or not, according to the following simple rule: each
algorithm for a known n is Las Vegas while each algorithm for an unknown n is Monte
Carlo. Our Monte Carlo algorithms have the probability of error converging to zero with a
rate that is polynomial in n. Moreover, when incorrect (duplicate) names are assigned, the
set of integers used as names makes a contiguous segment starting at the smallest name 1.

We say that a parameter of an algorithmic problem is known when it can be used in a



code of an algorithm. We consider two groups of naming problems for a PRAM, depending
on whether the number of processors n is known or not.

Additionally, we consider two categories of naming problems depending on how much
shared memory is available. In one case, there is a constant number of memory cells, which
means that the amount of memory is independent of n but as large as needed for algorithm
design. In the other case, the number of shared memory cells is unbounded, but how much
is used depends on an algorithm and n. When there is an unbounded amount of memory
then O(n) memory cells actually suffice for the algorithms we develop. We also categorize
naming problems depending on whether it is an Arbitrary PRAM (distinct values may be
concurrently attempted to be written into a register, an arbitrary one of them gets written)
or a Common PRAM variant (only equal values may be concurrently attempted to be written
into a register).

Next, we investigate anonymous channel with beeping. There are some n stations at-
tached to the channel that are devoid of any identifiers. Communication proceeds in syn-
chronous rounds. All the stations start together in the same round. The channel provides
a binary feedback to all the attached stations: when no stations transmit then nothing is
sensed on the communication medium, and when some station does transmit then every
station detects a beep.

A beeping channel resembles multiple-access channels, in that it can be interpreted as a
single-hop radio network. The difference between the two models is in the feedback provided
by each kind of channel. The traditional multiple access channel with collision detection
provides the following ternary feedback: silence occurs when no station transmits, a message
is heard when exactly one station transmits, and collision is produced by multiple stations
transmitting simultaneously, which results in no message heard and can be detected by
carrier sensing as distinct from silence. Multiple access channels also come in a variant
without collision detection. In such channels the binary feedback is as follows: when exactly

one station transmits then the transmitted message is heard by every station, and otherwise,



when either no station or multiple stations transmit, then this results in silence. A channel
with beeping has its communication capabilities restricted only to carrier sensing, without
even the functionality of transmitting specific bits as messages. The only apparent mode of
exchanging information on such a synchronous channel with beeping is to suitably encode it
by sequences of beeps and silences.

Modeling communication by a mechanism as limited as beeping has been motivated by
diverse aspects of communication and distributed computing. Beeping provides a detection of
collision on a transmitting medium by sensing it. Communication by only carrier sensing can
be placed in a general context of investigating wireless communication on the physical level
and modeling interference of concurrent transmissions, of which the signal-to-interference-
plus-noise ratio (SINR) model is among the most popular and well studied; see [54, 61, 85].
Beeping is then a very limited mode of wireless communication, with feedback in the form
of either interference or lack thereof. Another motivation comes from biological systems, in
which agents exchange information in a distributed manner, while the environment severely
restricts how such agents communicate; see [2, 78, 86]. Finally, communication with beeps
belongs to the area of distributed computing by weak devices, where the involved agents
have restricted computational and communication capabilities. In this context, the devices
are modeled as finite-state machines that communicate asynchronously by exchanging states
or messages from a finite alphabet. Examples of this approach include the “population-
protocols” model introduced by Angluin et at. [7], (see also [9, 11, 73]), and the “stone-age”

distributed computing model proposed by Emek and Wattenhoffer [41].



2. The Summary of the Results

We consider randomized algorithms executed by anonymous processors that operate in a
synchronous manner using read-write shared memory with a goal to assign unique names to
the processors. This problem is investigated in eight specific cases, depending on additional
assumptions, and we give an algorithm for each case. The three independent assumptions
regard the following: (1) the knowledge of n, (2) the amount of shared memory, and (3) the
PRAM variant.

Las Vegas algorithms have been submitted a journal paper are taken from [26]. The
naming algorithms we give terminate with probability 1. These algorithms are Las Vegas for
a known number of processors n and otherwise they are Monte Carlo. All our algorithms use
the optimum expected number O(nlogn) of random bits. We show that naming algorithms
with n processors and C' > 0 shared memory cells need to operate in 2(n/C') expected time
on an Arbitrary PRAM, and in Q(nlogn/C) expected time on a Common PRAM. We show
that any naming algorithm needs to work in the expected time 2(logn); this bound matters
when there is an unbounded supply of shared memory. Based on these facts, all our Las
Vegas algorithms for the case of known n operate in the asymptotically optimum time, and
when the amount of memory is unlimited, they use only an expected amount of space that
is provably necessary. The list of the naming problems’ specifications and the corresponding
Las Vegas algorithms with their performance bounds is summarized in Table 2.1.

Monte Carlo algorithms have been submitted a journal paper are taken from [27]. We
show that a Monte Carlo naming algorithm that uses O(nlogn) random bits has to have
the property that it fails to assign unique names with probability that is n=*"). All Monte
Carlo algorithms that we give have the optimum polynomial probability of error. The list
of the naming problems’ specifications and the corresponding Monte Carlo algorithms with
their performance bounds are summarized in Table 2.2.

A Las Vegas and a Monte Carlo naming algorithms for a beeping channel have been

submitted a journal paper are taken from [28]. We considered assigning names to anonymous
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Table 2.1: Four naming problems, as determined by the PRAM model and the
available amount of shared memory, with the respective performance bounds of their
solutions. When the number of shared memory cells is not a constant then the given
usage is the expected number of shared memory cells that are actually used.

PRAM Model | Memory Time Algorithm

Arbitrary o) O(n) ARBITRARY-CONSTANT-LV in Section 6.1
Arbitrary O(n/logn) | O(logn) | ARBITRARY-UNBOUNDED-LV in Section 6.2
Common O(1) O(nlogn) | COMMON-CONSTANT-LV in Section 6.3
Common O(n) O(logn) | COMMON-UNBOUNDED-LV in Section 6.4

Table 2.2: Four naming problems, as determined by the PRAM model and the
available amount of shared memory, with the respective performance bounds of their
solutions as functions of the number of processors n. When time is marked as “polylog”
this means that the algorithm comes in two variants, such that in one the expected
time is O(logn) and the amount of used shared memory is suboptimal n®®"), and in the

other the expected time is suboptimal O(log® n) but the amount of used shared memory
misses optimality only by at most a logarithmic factor.

PRAM Model | Memory Time Algorithm

Arbitrary o(1) O(n) ARBITRARY-BOUNDED-MC in Section 7.1
Arbitrary unbounded | polylog | ARBITRARY-UNBOUNDED-MC in Section 7.2
Common O(1) O(nlogn) | COMMON-BOUNDED-MC in Section 7.3
Common unbounded | polylog | COMMON-UNBOUNDED-MC in Section 7.4

stations attached to a channel that allows only beeps to be heard. We present a Las Vegas
naming algorithm and a Monte Carlo algorithm and show that algorithms are provably
optimal with respect to the number of used random bits O(n log n), the expected time O(n

log n), and the probability of error.




3. Previous and Related Work

Here we survey the previous work on anonymous naming.

Lipton and Park [70] were the first to consider the naming problem in asynchronous
shared memory systems. They studied naming in asynchronous distributed systems with
read-write shared memory controlled by adaptive schedulers; they proposed a solution that
terminates with positive probability, which can be made arbitrarily close to 1 assuming
a known n. They developed a randomized algorithm that solves naming problem. Their
algorithm is not guaranteed to terminate; however, if it terminates no two processors will
obtain the same names. Once the processors terminated the given names comprise completely
the set {1,2,...,n}.

Their algorithm operates as follows. In the beginning of an execution, all processors
initialize the contents of shared registers to zeros. Every processor randomly selects an
integer i from {1,2,...,n?}, where n is the number of processors. Then each processor writes
1 to selected cell 7. All processors repeat this procedure until there is at least one row which
contains n, 1’s bit value. Finally, the integer chosen by each processor is used as a name. The
algorithm presented in [70], uses O(Ln?) bits and terminates O(Ln?) time with probability
1 — ¢t for some constant ¢ > 1.

Teng [87] provided a randomized two layer solution for the naming problem considering
the same setting as Lipton and Park, (asynchronous processor, the algorithm would work
regardless of initial content of shared memory), but his solution improved the failure prob-
ability and decreased the space to O(n log? n) shared bits, with probability at least 1 — #,
for a constant c. The algorithm terminates O(nlog®n) time.

The author developed a simple algorithm for asynchronous systems with known n, that
is a trivial modification of Lipton and Park’s algorithm [70]. Teng assumed that n processors
divided into K groups with high probability, that is, each group has about n/K processors.
Hence, he reduced the problem size from n to n/K. Then he used the similar technique

of Lipton and Park for a smaller size problem. The number of processors is unknown in
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each group. Therefore, every processor checks if the sum of the number of 1’s equals to n in
maximum size rows of each group. The author also observed that if n is unknown then no
algorithm guaranteed to terminate with correct names.

Lim and Park [69] showed that the naming problem can be solved in O(n) space;
however, they used word operations instead of bit operations. The authors used a shared
memory array indexed 1 through n, where n is the number of processors. The basic idea of
their algorithm is, at the beginning of the execution, all processors initialize the contents of
shared registers to zeros. Then every processor randomly chooses a key and an ID, which is
corresponding to the index of a cell, and tries to store its key to claimed cell. When there
is more than one processors choose the same cell to write its ID, the processor with the
maximum key keeps the claimed ID and the rest of the processors with small keys claim
a new ID. If there are no zero entries in the array, i.e., each processor confirms its own
ID, then the algorithm terminates. Note that their protocol can fail when more than one
processor chooses the same ID and the same key. Additionally, the authors answered the
open questions in which Teng posted at the conclusion of [87].

Egecioglu and Singh [39] proposed a synchronous algorithm that each processor repeat-
edly chooses a new random index value, which selection made independently and uniformly
at random, and sets the corresponding shared register to 1. Then it counts the number of
ones. If the total number of ones equals to n then the processor exits the loop and assign
itself ID of the index value. The expected termination time for the synchronous algorithm is
O(n?). They also proposed a polynomial-time Las Vegas naming algorithm for asynchronous
systems with oblivious scheduling of events for a known n under weak shared read-write mem-
ory system. Intuitively, the idea in their algorithm is as follows. It uses K copies of an array.
Each processor chooses a random index value for each copies of array K rather than a single
array and sets the selected register to 1. Then every processor reads all K arrays. Processors
perform write operation to each K copy of arrays in ascending order, but afterwards, read all

arrays in descending order. A processor keeps executing the algorithm until the total number



of ones in a row equals to the number of processors. Processors may exit from the execution
after detecting a successful read because of asynchrony. The processor that exit from the
execution after a successful scan records the IDs of the succeeded row to its private memory.
Because of asynchrony, the rest of the processors cannot be able to execute a successful scan
at the same time. If there is a successful read and the number of detected processors are
less than K, the rest of processors repeat the same sequence of steps on a different array,
with argument n — 1 and so on. When a processor exits from the execution after successful
read waits for the rest of the processors to exit and then they assign names to themselves
in a range of [1,n|. The authors also showed that symmetry cannot be broken if the exact
number of processes is unknown. Moreover, they observed that the participation of every
processor is necessary in order to terminate.

Kutten et al. [68] considered the naming in asynchronous systems of shared read-write
memory. They gave a Las Vegas algorithm for an oblivious scheduler for the case of known n,
which works in the expected time O(logn) while using O(n) shared registers, and also
showed that a logarithmic time is required to assign names to anonymous processes. Authors
provided a nonterminating dynamic algorithm, where processes may stop and start taking
steps during the execution and then added a static termination detection mechanism which
works when the number of processors n is known.

Their dynamic algorithm operates as follows. When a process is active, it randomly
selects an ID and always check to see if the same ID claimed by any other processes. A
process repeatedly either reads the claimed register or writes a random bit which is chosen
independently and randomly and records the chosen value. When a process reads a register,
it checks out if the value of register has changed since it has written to it the last time. If
the process observes that his claimed ID is also selected by any other processes, it selects
randomly a new ID to claim. Note that in their algorithm each process detects the collision
in constant time. If a process observes no change after reading the contents of the shared

register then it moves on the next iteration. Next, they provided an algorithm to make the



dynamic algorithm to terminate. They assume that all shared registers are initialized. The
termination detection algorithm employs a binary tree, where its leaves corresponding to
claimed ID. Each process traverses the binary tree from leaves to root by updating the sum
of children in each node. When a process sees that the root of the tree has the value n it
exits the loop. In other words, the set of claimed IDs is fixed when the root of the binary
tree has the value n.

They used the size of O(logn) bits for some registers whereas the algorithm of [39, 70, 87]
used single bit register. Additionally, they showed that if n is unknown then a Las Vegas
naming algorithm does not exist, and a finite-state Las Vegas naming algorithm can work
only for an oblivious scheduler, that is to say, there is no terminating algorithm if n is not
known or the scheduler is adaptive.

The authors also gave a Las Vegas algorithm which works for unbounded space under
any fair scheduler. Finally, they provided a deterministic solution for the naming problem
in read-modify-write model by using just one register. This model is a much advanced
computational model, where a process can read and update a shared variable in just one
step.

Panconesi et al. [79] gave a randomized wait-free naming algorithm in anonymous systems
with processes prone to crashes that communicate by single-writer registers. They assume
different processes may address a register with different index number and can read all other
shared variables. They gave an algorithm that is based on wait-free implementation of a-
Test&SetOnce objects for an adaptive scheduler for the case of known n, which works in the
expected running time O(nlognloglogn) bit operation with probability at least 1 — o(1)
while using a namespace of size (1 + €)n, where € > 0. The model considered in that work
assigns unique registers to nameless processes and so has a potential to defy the impossibility
of wait-free naming for general multi-writer registers as observed by Kutten et al. [68].

Buhrman et al. [23] considered the relative complexity of naming and consensus problems

in asynchronous systems with shared memory that are prone to crash failures, demonstrating
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that naming is harder that consensus.

Now we review work on problems in anonymous distributed systems different from nam-
ing. Aspnes et al. [10] gave a comparative study of anonymous distributed systems with
different communication mechanisms, including broadcast and shared-memory objects of
various functionalities, like read-write registers and counters. Alistarh et al. [5] gave ran-
domized renaming algorithms that act like naming ones, in that process identifiers are not
referred to; for more or renaming see [4, 13, 30]. Aspnes et al. [12] considered solving con-
sensus in anonymous systems with infinitely many processes. Attiya et al. [15] and Jayanti
and Toueg [60] studied the impact of initialization of shared registers on solvability of tasks
like consensus and wakeup in fault-free anonymous systems. Bonnet et al. [21] considered
solvability of consensus in anonymous systems with processes prone to crashes but aug-
mented with failure detectors. Guerraoui and Ruppert [55] showed that certain tasks like
time-stamping, snapshots and consensus have deterministic solutions in anonymous systems
with shared read-write registers prone to process crashes. Ruppert [82] studied the impact
of anonymity of processes on wait-free computing and mutual implementability of types of
shared objects.

Lower bounds on PRAM were given by Fich et al. [43], Cook et al. [31], and Beame [19],
among others. A review of lower bounds based on information-theoretic approach is given by
Attiya and Ellen [14]. Yao’s minimax principle was given by Yao [91]; the book by Motwani
and Raghavan [77] gives examples of applications.

The problem of concurrent communication in anonymous networks was first considered
by Angluin [6]. That work showed, in particular, that randomization is needed in nam-
ing algorithms when executed in environments that are perfectly symmetric; other related
impossibility results are surveyed by Fich and Ruppert [44].

The work about anonymous networks that followed was either on specific network topolo-
gies or on problems in general message-passing systems. Most popular specific topologies

included that of a ring and hypercube. In particular, the ring topology was investigated
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by Attiya et al. [16, 17], Flocchini et al. [45], Diks et al. [38], Itai and Rodeh [58], and
Kranakis et al. [65], and the hypercube topology was studied by Kranakis and Krizanc [64]
and Kranakis and Santoro [67].

Work on algorithmic problems in anonymous networks of general topologies or anony-
mous/named agents in anonymous/named networks included the following specific contribu-
tions. Afek and Matias [3] and Schieber and Snir [84] considered leader election, finding span-
ning trees and naming in general anonymous networks. Angluin et al. [8] studied adversarial
communication by anonymous agents and Angluin et al. [9] considered self-stabilizing proto-
cols for anonymous asynchronous agents deployed in a network of unknown size. Chalopin et
al. [24] studied naming and leader election in asynchronous networks when a node knows the
map of the network but its position on the map is unknown. Chlebus et al. [29] investigated
anonymous complete networks whose links and nodes are subject to random independent
failures in which single fault-free node has to wake up all nodes by propagating a wakeup
message through the network. Dereniowski and Pelc [36] considered leader election among
anonymous agents in anonymous networks. Dieudonné and Pec [37] studied teams of anony-
mous mobile agents in networks that execute deterministic algorithm with the goal to convene
at one node. Fraigniaud et al. [48] considered naming in anonymous networks with one node
distinguished as leader. Gasieniec et al. [52] investigated anonymous agents pursuing the
goal to meet at a node or edge of a ring. Glacet et al. [53] considered leader election in
anonymous trees. Kowalski and Malinowski [63] studied named agents meeting in anony-
mous networks. Kranakis et al. [66] investigated computing boolean functions on anonymous
networks. Métivier et al. [72] considered naming anonymous unknown graphs. Michail et
al. [74] studied the problems of naming and counting nodes in dynamic anonymous networks.
Pelc [80] considered activating an anonymous ad hoc radio network from a single source by
a deterministic algorithm. Yamashita and Kameda [90] investigated topological properties
of anonymous networks that allow for deterministic solutions for representative algorithmic

problems.

12



General questions of computability in anonymous message-passing systems implemented
in networks were studied by Boldi and Vigna [20], Emek et al. [40], and Sakamoto [83].

Next, we review work on problems for Beeping Networks. The model of communication
by discrete beeping was introduced by Cornejo and Kuhn [32], who considered a general-
topology wireless network in which nodes use only carrier sensing to communicate, and
developed algorithms for node coloring. They were inspired by “continuous” beeping studied
by Degesys et al. [35] and Motskin et al. [76], and by the implementation of coordination by
carrier sensing given by Flury and Wattenhofer [46].

Afek et al. [1] considered the problem to find a maximal independent set of nodes in a
distributed manner when the nodes can only beep, under additional assumptions regarding
the knowledge of the size of the network, waking up the network by beeps, collision detection
among concurrent beeps, and synchrony. Brandes et al. [22] studied the problem of randomly
estimating the number of nodes attached to a single-hop beeping network. Czumaj and
Davies [34] approached systematically the tasks of deterministic broadcasting, gossiping,
and multi-broadcasting on the bit level in general-topology symmetric beeping networks. In
a related work, Hounkanli and Pelc [56] studied deterministic broadcasting in asynchronous
beeping networks of general topology with various levels of knowledge about the network.
Forster et al. [47] considered leader election by deterministic algorithms in general multi-hop
networks with beeping. Gilbert and Newport [51] studied the efficiency of leader election
in a beeping single-hop channel when nodes are state machines of constant size with a
specific precision of randomized state transitions. Huang and Moscibroda [57] considered
the problems of identifying subsets of stations connected to a beeping channel and compared
their complexity to those on multiple-access channels. Yu et al. [92] considered the problem
of constructing a minimum dominating set in networks with beeping.

Networks of nodes communicating by beeping share common features with radio networks
with collision detection. Ghaffari and Haeupler [49] gave efficient leader election algorithm

by treating collision detection as “beeping” and transmitting messages as bit strings. Their
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approach by way of “beep waves” was adopted to broadcasting in networks with beeping
by Czumaj and Davies [34]. In a related work, Ghaffari et al. [50] developed randomized

broadcasting and multi-broadcasting in radio networks with collision detection.

14



4. Technical Preliminaries

A synchronous shared-memory system in which some n processors operate concurrently
is the assumed model of computation. The essential properties of such systems are as fol-
lows: (1) shared memory cells have only reading/writing capabilities, and (2) operations of
accessing the shared registers are globally synchronized so that processors work in lockstep.

An execution of an algorithm is structured as a sequence of rounds so that each processor
performs either a read from or a write to a shared memory cell, along with local computation.
We assume that a processor carries out its private computation in a round in a negligible
portion of the round. Processors can generate as many private random bits per round as
needed; all these random bits generated in an execution are assumed to be independent.

Each shared memory cell is assumed to be initialized to 0 as a default value. This
assumption simplifies the exposition, but it can be removed as any algorithm assuming such
an initialization can be modified in a relatively straightforward manner to work with dirty
memory. A shared memory cell can store any value as needed in algorithms, in particular,
integers of magnitude that may depend on n; all our algorithms require a memory cell to
store O(logn) bits. An invocation of either reading from or writing to a memory location
is completed in the round of invocation. This model of computation is referred in the
literature as the Parallel Random Access Machine (PRAM) [59, 81]. PRAM is usually
defined as a model with unlimited number of shared-memory cells, by analogy with the
random-access machine (RAM) model. We consider the following two instantiations of the
model, determined by the amount of shared memory. In one situation, there is a constant
number of shared memory cells, which is independent of the number of processors n but as
large as needed in the specific algorithm. In the other case, the number of shared memory
cells is unlimited in principle, but the expected number of shared registers accessed in an
execution depends on n and is sought to be minimized.

A concurrent read occurs when a group of processors read from the same memory cell

in the same round; this results in each of these processors obtaining the value stored in the
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memory cell at the end of the preceding round. A concurrent write occurs when a group
of processors invoke a write to the same memory cell in the same round. Without loss of
generality, we may assume that a concurrent read of a memory cell and a concurrent write
to the same memory cell do not occur simultaneously: this is because we could designate
rounds only for reading and only for rounding depending on their parity, thereby slowing the
algorithm by a factor of two. A clarification is needed regarding which value gets written to a
memory cell in a concurrent write, when multiple distinct values are attempted to be written;
such stipulations determine suitable variants of the model. We will consider algorithms for
the following two PRAM variants determined by their respective concurrent-write semantics.
Common PRAM is defined by the property that when a group of processors want to write to

the same shared memory cell in a round then all the values that any of the processors

want to write must be identical, otherwise the operation is illegal. Concurrent attempts

to write the same value to a memory cell result in this value getting written in this

round.

Arbitrary PRAM allows attempts to write any legitimate values to the same memory cell
in the same round. When this occurs, then one of these values gets written, while a
selection of this value is arbitrary. All possible selections of values that get written

need to be taken into account when arguing about correctness of an algorithm.

We will rely on certain standard algorithms developed for PRAMs, as explained in [59,
81]. One of them is for prefix-type computations. A typical situation in which it is applied
occurs when there is an array of m shared memory cells, each memory cell storing either 0
or 1. This may represent an array of bins where 1 stands for a nonempty bin while 0 for
an empty bin. Let the rank of a nonempty bin of address x be the number of nonempty
bins with addresses smaller than or equal to . Ranks can be computed in time O(logm) by
using an auxiliary memory of O(m) cells, assuming there is at least one processor assigned to
a nonempty bin, while other processors do not participate. The bins are associated with the

leaves of a binary tree. The processors traverse a binary tree from the leaves to the root and
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back to the leaves. When updating information at a node, only the information stored at the
parent, the sibling and the children is used. We may observe that the same memory can be
used repeatedly when such computation needs to be performed multiple times. A possible
approach is to verify if the information at a needed memory cell, representing either a parent,
a sibling or a child of a visited node, is fresh or rather stale from previous executions. This
could be accomplished in the following three steps by a processor. First, the processor erases
a memory cell it needs to read by rewriting its present value by a blank value. Second, the
processor writes again the value at node it visits, which may have been erased in the previous
step by other processors that need the value. Finally, the processor reads again the memory
cell it just erased, to see if it stays erased, which means its contents were stale, or not, which
means its contents got rewritten so they are fresh.

Balls into bins. Assigning names to processors can be visualized as throwing balls into
bins. Imagine that balls are handled by processors and bins are represented by either memory
addresses or rounds in a segment of rounds. Throwing a ball means either writing into some
memory address a value that represents a ball or choosing a round from a segment of rounds.
A collision occurs when two balls end up in the same bin; this means that two processors
wrote to the same memory address, not necessarily in the same round, or that they selected
the same round. The rank of a bin containing a ball is the number of bins with smaller
or equal names that contain balls. When each in a group of processors throws a ball and
there is no collision then this in principle breaks symmetry in a manner that allows to assign
unique names in the group, namely, ranks of selected bins may serve as names.

The following terms refer to the status of a bin in a given round. A bin is called empty
where there are no balls in it. A bin is singleton when it contains a single ball. A bin
is multiple when there are at least two balls in it. Finally, a bin with at least one ball is
occupied.

The idea of representing attempts to assign names as throwing balls into bins is quite

generic. In particular, it was applied by Egecioglu and Singh [39], who proposed a syn-
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chronous algorithm that repeatedly throws all balls together into all available bins, the

selections of bins for balls made independently and uniformly at random. In their algorithm

for n processors, we can use 7 - n memory cells, where v > 1. Let us choose v = 3 for

the following calculations to be specific. This algorithm has an exponential expected-time

performance. To see this, we estimate the probability that each bin is either singleton or

empty. Let the balls be thrown one by one. After the first n/2 balls are in singleton bins, the
5

probability to hit an empty bin is at most % = g; we treat this as a success in a Bernoulli

trial. The probability of n/2 such successes is at most (%)”/ 2 so the expected time to wait

for the algorithm to terminate is at least ( g)n, which is exponential in n.

We consider related processes that could be as fast as O(logn) in expected time, while
still using only O(n) shared memory cells, see Section 6.4. The idea is to let balls in singleton
bins stay put and only move those that collided with other balls by landing in bins that
became thereby multiple. To implement this on a Common PRAM, we need a way to detect
collisions, which we explain next.

Collisions among balls. We will use a randomized procedure for Common PRAM to
verify if a collision occurs in a bin, say, a bin x, which is executed by each processor that
selected bin z. This procedure VERIFY-COLLISION is represented in Figure 4.1. There are
two arrays TAILS and HEADS of shared memory cells. Bin x is verified by using memory
cells TAILS[z] and HEADS|z]. First, the memory cells TAILS[z] and HEADS|z] are set to

false each, and next one of these memory cells is selected randomly and set to true.

Lemma 1 For an integer x, procedure VERIFY-COLLISION (x) ezecuted by one processor
never detects a collision, and when multiple processors execute this procedure then a collision

18 detected with probability at least %

Proof: When only one processor executes the procedure, then first the processor sets both
Heads[r| and Tails|z] to false and next only one of them to true. This guarantees that

Heads[z] and Tails|x] store different values and so collision is not detected. When some
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Procedure VERIFY-COLLISION ()

initialize Heads[z] < Tails[z] < false
toss, ¢« outcome of tossing a fair coin
if toss, = tails then Tails[z] < true else Heads|z] < true

if Tails[x] = Heads[z| then return true else return false

Figure 4.1: A pseudocode for a processor v of a Common PRAM, where
x is a positive integer. Heads and Tails are arrays of shared memory cells.
When the parameter x is dropped in a call then this means that x = 1. The
procedure returns true when a collision has been detected.

m > 1 processors execute the procedure, then collision is not detected only when either
all processors set Heads[z| to true or all processors set Tails[z]| to true. This means that
the processors generate the same outcome in their coin tosses. This occurs with probability

27+ which is at most 3. O

A beeping channel is related to multiple access channels [25]. It is a network consisting of
some n stations connected to a communication medium. We consider synchronous beeping
channels, in the sense that an execution of a communication algorithm is partitioned into
consecutive rounds. All the stations start an execution together. In each round, a station
may either beep or pause. When some station beeps in a round, then each station hears
the beep, otherwise all the stations receive silence as feedback. When multiple stations beep
together in a round then we call this a collision.

We say that a parameter of a communication network is known when it can be used in
codes of algorithms. The relevant parameter used in this thesis is the number of stations n.
We consider two cases, in which either n is known or it is not.

Randomized algorithms use random bits, understood as outcomes of tosses of a fair coin.
All different random bits used by our algorithms are considered stochastically independent
from each other.

Our naming algorithms have as their goal to assign unique identifiers to the stations,
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Procedure DETECT-COLLISION

toss, ¢ outcome of a random coin toss

if toss, = heads /* first round */
then beep else pause

if toss, = tails /% second round */

then beep else pause

return (a beep was heard in each of the two rounds)

Figure 4.2: A pseudocode for a station v. The procedure takes two rounds
to execute. It detect a collision and returns “true” when a beep is heard in each
of the rounds, otherwise it does not detect a collision and returns “false.”

moreover we want names to be integers in the contiguous range {1, 2, ..., n}, which we denote
as [n]. The Monte Carlo naming algorithm that we develop has the property that the names
it assigns make an interval of integers of the form [k] for k£ < n, so that when k < n then
there are duplicate identifiers assigned as names, which is the only form of error that can
occur.

We will use a procedure to detect collisions, called DETECT-COLLISION, whose pseu-
docode is in Figure 4.2. The procedure is executed by a group of stations, and they all start
their executions simultaneously. The procedure takes two rounds. Each of the participating
stations simulates the toss of a fair coin, with the outcomes independent among the partic-
ipating stations. Depending on the outcome of a toss, a station beeps either in the first or
the second of the allocated rounds. A collision is detected only when two consecutive beeps

are heard.

Lemma 2 If k stations perform m time-disjoint calls of procedure DETECT-COLLISION,

each station participating in exactly one call, then collision is not detected in any of these

calls with probability 27++™ .

Proof: Consider a call of DETECT-COLLISION performed concurrently by i stations, for
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1 > 1. We argue by “deferred decisions.” One of these stations tosses a coin and determines
its outcome X. The other ¢ — 1 stations participating concurrently in this call also toss their
coins; here we have ¢ — 1 > 0, so there could be no such a station. The only possibility
not to detect a collision is for all of these i — 1 stations also produce X. This happens with
probability 27! in this one call. The probability of producing only false during the m
calls is the product of these probabilities. When we multiply them out over m instances of
the procedure being performed, then the outcome is 2%+, because numbers i sum up to k

and the number of factors is m. O

Pseudocode conventions and notations. We give pseudocode representations of algo-
rithms, as in Figure 4.1. The conventions of pseudocode are summarized next.

We want that, at any round of an execution, all the processors that have not terminated
yet to be at the same line of the pseudocode. In particular, when an instruction is conditional
on a statement then a processor that does not meet the condition pauses as long as it would
be needed for all the processors that meet the condition complete their instructions, even
when there are no such processors.

A pseudocode for a processor refers to a number of variables, both shared and private.
We use the following notational conventions to emphasize their relevant properties. Shared
variables have names starting with a capital letter, while private variables have names all
in small letters. When a variable x is a private variable that may have different values at
different processors at the same time, then we denote this variable used by a processor v
by z,. Private variables that have the same value at the same time in all the processors are
usually used without subscripts, like variables controlling for-loops.

Each station has its private copy of any among the variables used in the pseudocode.
When the values of these copies may vary across the stations, then we add the station’s name
as a subscript of the variable’s name to emphasize that, and otherwise, when all the copies
of a variable are kept equal across all the stations then no subscript is used.

An assignment instruction of the form x < y < ... < z + «, where z,y,...,z are
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variables and « is a value, means to assign « as the value to be stored in all the listed
variables x,y, ..., z.

We use three notations for logarithms. The notation lgx stands for the logarithm of
x to the base 2. The notation Inz denotes the natural logarithm of . When the base of
logarithms does not matter then we use log z, like in the asymptotic notation O(log x).
Properties of naming algorithms. Naming algorithms in distributed environments in-
volving multi-writer read-write shared memory have to be randomized to break symme-
try [6, 18]. An eventual assignment of proper names cannot be a sure event, because, in
principle, two processors can generate the same strings of random bits in the course of an
execution. We say that an event is almost sure, or occurs almost surely, when it occurs
with probability 1. When n processors generate their private strings of random bits then it
is an almost sure event that all these strings are eventually pairwise distinct. Therefore, a
most advantageous scenario that we could expect, when a set of n processors is to execute
a randomized naming algorithm, is that the algorithm eventually terminates almost surely
and that at the moment of termination the output is correct, in that the assigned names are

without duplicates and fill the whole interval [1,n].
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5. Lower bounds and impossibilities
In this section, we show impossibility results to justify methodological approach to nam-
ing algorithms we apply, and use lower bounds on performance metrics for such algorithms

to argue about the optimality of the algorithms developed in subsequent sections.

5.1 Preliminaries

We start with basic definitions, terminologies, and theorems that are discussed through-
out this section.

Lower bounds prove that certain problems cannot be solved efficiently without sufficient
resources such as time or space. They also give us an idea about when to stop looking for
better solutions. Impossibility results show that certain problems cannot be solved under cer-
tain assumptions. To understand the nature of naming problem it is necessary to understand
lower bounds and impossibility results [14, 44].

The entropy [33] is the number of bits on average required to describe the random
variable. The entropy of a random variable is a lower bound on the average number of bits
required to represent the random variable. The entropy of a random variable X with a

probability mass function p(x) is defined by

H(z)=—) plx)lgp(x).

Yao’s Minimax Principle [91, 77] allows us to prove lower bounds on the performance of
Las Vegas and Monte Carlo algorithms. Yao’s Minimax Principle says that for an arbitrary
chosen input distribution, the expected running time of the optimal deterministic algorithm
is a lower bound on the expected running time of the optimal randomized algorithm. Yao’s
Minimax Principle for Las Vegas randomized algorithms as follows. Let P be a problem with
a finite set X’ of inputs and a finite set A be the set of all possible deterministic algorithms
that correctly solve the problem P. Let cost(X, A) be the running time of algorithm A for

algorithm A € A and input X € X. Let p be a probability distribution over X and ¢ over A.
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Let X, be a random input chosen according to p and A, shows a random algorithm chosen

according to ¢. For all distributions p over X and g over A,

IIL{IGIBE [cost(X,, A)] < r)r(lea)){{E [cost(X, Ag)].

Yao’s Minimax Principle for Monte Carlo randomized algorithms state that the expected
running time of any Monte Carlo algorithm that errs with probability A € [0, %]
5.2 Lower Bounds for a PRAM

We give algorithms that use the expected number of O(nlogn) random bits with a large
probability. This amount of random information is necessary if an algorithm is to terminate
almost surely. The following fact is essentially a folklore, but since we do not know if it was
proved anywhere in the literature, we give a proof for completeness’ sake. Our arguments
resort to the notions of information theory [33].
Proposition 1 If a randomized naming algorithm is correct with probability p,, when ez-
ecuted by m anonymous processors, then it requires Q2(nlogn) random bits with probability
at least p,. In particular, a Las Vegas naming algorithm for n processors uses Q(nlogn)

random bits almost surely.

Proof: Let us assign conceptual identifiers to the processors, for the sake of argument.
These unknown identifiers are known only to an external observer and not to algorithms.
The purpose of executing the algorithm is to assign explicit identifiers, which we call given
identifiers.

Let a processor with an unknown name wu; generate string of bits b;, for ¢ = 1,... n.
A distribution of given identifiers among the n anonymous processors, which results from
executing the algorithm, is a random variable X,, with a uniform distribution on the set of all
permutations of the unknown identifiers. This is because of symmetry: all processors execute
the same code, without explicit private identifiers, and if we rearrange the strings generated
bits b; among the processors u;, then this results in the corresponding rearrangement of the

given names.
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The underlying probability space consists of n! elementary events, each determined by
an assignment of the given identifiers to the processors identified by the unknown identifiers.
It follows that each of these events occurs with probability 1/n!. The Shannon entropy of
the random variable X, is thus lg(n!) = ©(nlogn). The decision about which assignment
of given names is produced is determined by the random bits, as they are the only source of
entropy, so the expected number of random bits used by the algorithm needs to be as large
as the entropy of the random variable X,,.

The property that all assigned names are distinct and in the interval [1,n] holds with
probability p,. An execution needs to generate a total of ©(n logn) random bits with proba-
bility at least p,,, because of the bound on entropy. A Las Vegas algorithm terminates almost
surely, and returns correct names upon termination. This means that p, = 1 and so that

Q(nlogn) random bits are used almost surely. O

We consider two kinds of algorithmic naming problems, as determined by the amount
of shared memory. One case is for a constant number of shared memory cells, for which
we give an optimal lower bound on time for O(1) shared memory. The other case is when
the number of shared memory cells and their capacity are unbounded, for which we give an
“absolute” lower bound on time. We begin with lower bounds that reflect the amount of
shared memory.

Intuitively, as processors generate random bits, these bits need to be made common
knowledge through some implicit process that assigns explicit names. There is an underlying
flow of information spreading knowledge among the processors through the available shared
memory. Time is bounded from below by the rate of flow of information and the total amount
of bits that need to be shared.

On the technical level, in order to bound the expected time of a randomized algorithm,
we apply the Yao’s minimax principle [91] to relate this expected time to the distributional
expected time complexity. A randomized algorithm whose actions are determined by random

bits can be considered as a probability distribution on deterministic algorithms. A determin-
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istic algorithm has strings of bits given to processors as their inputs, with some probability
distribution on such inputs. The expected time of such a deterministic algorithm, give any
specific probability distribution on the inputs, is a lower bound on the expected time of a
randomized algorithm.

To make such interpretation of randomized algorithms possible, we consider strings of
bits of equal length. With such a restriction on inputs, deterministic algorithm may not be
able to assign proper names for some assignments of inputs, for example, when all the inputs
are equal. We augment such deterministic algorithms in adding an option for the algorithm
to withhold a decision on assignment of names and output “no name” for some processors.
This is interpreted as the deterministic algorithm needing longer inputs, for which the given
inputs are prefixes, and which for the randomized algorithm means that some processors
need to generate more random bits.

Regarding probability distributions for inputs of a given length, it always will be the
uniform distribution. This is because we will use an assessment of entropy of such a distri-

bution.

Theorem 1 A randomized naming algorithm for a Common PRAM with n processors and
C' > 0 shared memory cells operates in Q(nlogn/C) expected time when it is either a Las

Vegas algorithm or a Monte Carlo algorithm with the probability of error smaller than 1/2.

Proof: We consider Las Vegas algorithms in this argument, the Monte Carlo case is similar,
the difference is in applying Yao’s principle for Monte Carlo algorithms. We interpret a
randomized algorithm as a deterministic one working with all possible assignments of ran-
dom bits as inputs with a uniform mass function on the inputs. The expected time of the
deterministic algorithm is a lower bound on the expected time of the randomized algorithm.

There are n! possible assignments of given names to the processors. Each of them
occurs with the same probability 1/n! when the input bit strings are assigned uniformly at

random. Therefore the entropy of name assignments, interpreted as a random variable, is
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lgn! = Q(nlogn).

Next we consider executions of such a deterministic algorithm on the inputs with a uni-
form distribution. We may assume without loss of generality that an execution is structured
into the following phases, each consisting of C' + 1 rounds. In the first round of a phase,
each processor either writes into a shared memory cell or pauses. In the following rounds of
a phase, every processor learns the current values of each among the C' memory cells. This
may take C' rounds for every processor to scan the whole shared memory, but we do not
include this reading overhead as contributing to the lower bound. Instead, since this is a
simulation anyway, we conservatively assume that the process of learning all the contents of
shared memory cells at the end of a phase is instantaneous and complete.

The Common variant of PRAM requires that if a memory cell is written into concurrently
then there is a common value that gets written by all the writers. Such a value needs to
be determined by the code and the address of a memory cell. This means that, for each
phase and any memory cell, a processor choosing to write into this memory cell knows the
common value to be written. By the structure of execution, in which all processors read all
the registers after a round of writing, any processor knows what value gets written into each
available memory cell in a phase, if any is written into a particular cell. This implies that
the contents written into shared memory cells may not convey any new information but are
already implicit in the states of the processors represented by their private memories after
reading the whole shared memory.

When a processor reads all the shared memory cells in a phase, then the only new
information it may learn is the addresses of memory cells into which writes were performed
and those into which there were no writes. This makes it possible obtain at most C' bits of
information per phase, because each register was either written into or not.

There are 2(nlogn) bits of information that need to be settled and one phase changes the
entropy by at most C' bits. It follows that the expected number of phases of the deterministic

algorithm is Q(nlogn/C). By the Yao’s principle, Q(nlogn/C) is a lower bound on the
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expected time of a randomized algorithm. 0

For Arbitrary PRAM, writing can spread information through the written values, be-
cause different processes can attempt to write distinct strings of bits. The rate of flow of
information is constrained by the fact that when multiple writers attempt to write to the
same memory cell then only one of them succeeds, if the values written are distinct. This
intuitively means that the size of a group of processors writing to the same register deter-
mines how much information the writers learn by subsequent reading. These intuitions are

made formal in the proof of the following Theorem 2.

Theorem 2 A randomized naming algorithm for an Arbitrary PRAM with n processors and
C' > 0 shared memory cells operates in Q(n/C) expected time when it is either a Las Vegas

algorithm or a Monte Carlo algorithm with the probability of error smaller than 1/2.

Proof: We consider Las Vegas algorithms in this argument, the Monte Carlo case is similar,
the difference is in applying Yao’s principle for Monte Carlo algorithms. We again replace a
given randomized algorithm by its deterministic version that works on assignments of strings
of bits of the same length as inputs, with such inputs assigned uniformly at random to the
processors. The goal is to use the property that the expected time of this deterministic
algorithm, for a given probability distribution of inputs, is a lower bound on the expected
time of the randomized algorithm. Next, we consider executions of this a deterministic
algorithm.

Similarly as in the proof of Theorem 1, we observe that there are n! assignments of given
names to the processors and each of them occurs with the same probability 1/n!, when the
input bit strings are assigned uniformly at random. The entropy of name assignments is
again lgn! = Q(nlogn). The algorithm needs to make the processors learn 2(nlogn) bits
using the available C' > 0 shared memory cells.

We may interpret an execution as structured into phases, such that each processor per-

forms at most one write in a phase and then reads all the registers. The time of a phase is
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assumed conservatively to be O(1). Consider a register and a group of processors that at-
tempt to write their values into this register in a phase. The values attempted to be written
are represented as strings of bits. If some of these values have 0 and some have 1 at some
bit position among the strings, then this bit position may convey one bit of information.
The maximum amount of information is provided by a write when the written string of bits
facilitates identifying the writer by comparing its written value to the other values attempted
to be written concurrently to the same memory cell. It follows that this amount is at most
the binary logarithm of the size of this group of processors, so that each memory cell written
to in a round contributes at most lgn bits of information because there may be at most n
writers to it. So the maximum number of bits of information learnt by the processors in a
phase is C'lgn.

Since the entropy of the assignment of names is Ilgn! = (nlogn), the expected number of
phases of the deterministic algorithm is Q(nlgn/(Clgn)) = Q(n/C). By the Yao’s principle,
this is also a lower bound on the expected time of a randomized algorithm. 0

Next, we consider “absolute” requirements on time for a PRAM to assign unique names
to the n available processors. The generality of the lower bound we give stems from the
weakness of assumptions. First, nothing is assumed about the knowledge of n. Second,
concurrent writing is not constrained in any way. Third, shared memory cells are unbounded
in their number and size. Kutten et al. [68] showed that any Las Vegas naming algorithm
for asynchronous read-write shared memory systems has expected time (logn) against a
certain oblivious schedule.

We show next in Theorem 3 that any Las Vegas naming algorithm has Q(log n) expected
time for the synchronous schedule of events. The argument we give is in the spirit of similar
arguments applied by Cook et al. [31] and Beame [19]. What these arguments share are a for-
malization of the notion of flow of information during an execution of an algorithm,combined
with a recursive estimate of the rate of this flow.

The relation processor v knows processor w in round t is defined recursively as follows.
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First, for any processor v, we have that v knows v in any round ¢ > 0. Second, if a processor v
writes to a shared memory cell R in a round ¢; and a processor w reads from R in a round
ty >ty such that there was no other write into this memory cell after ¢; and prior to t, then
processor w knows in round ¢, each processor that v knows in round ¢;. Finally, the relation
is the smallest transitive relation that satisfies the two postulates formulated above. This
means that it is the smallest relation such that if processor v knows processor w in round
t; and z knows v in round %, such that 5 > t; then processor z knows w in round ¢,. In
particular, the knowledge accumulates with time, in that if a processor v knows processor z

in round ¢; and round ¢y is such that ¢, > ¢; then v knows z in round %9 as well.

Lemma 3 Let A be a deterministic algorithm that assigns distinct names to the processors,
with the possibility that some processors output “no name” for some inputs, when each node
has an input string of bits of the same length. When algorithm A terminates with proper

names assigned to all the processors then each processor knows all the other processors.

Proof: We may assume that n > 1 as otherwise one processors knows itself. Let us consider
an assignment Z of inputs that results in a proper assignment of distinct names to all the
processors when algorithm A terminates. This implies that all the inputs in the assignment 7
are distinct strings of bits, as otherwise some two processors, say, v and w that obtain the
same input string of bits would either assign themselves the same name or declare “no name”
as output. Suppose that processor v does not know w when v halts for inputs from Z.
Consider an assignment of inputs J which is the same as Z for processors different from w
and such that the input of w is the same as input for v in Z. Then the actions of processor v
would be the same with J as with Z, because v is not affected by the input of w, so that v
would assign itself the same name with 7 as with Z. But the actions of processor w would
be the same in J as those of v, because their input strings of bits are identical under 7. It

follows that w would assign itself the name of v, resulting in duplicate names. 0

We will use Lemma 3 to asses running times by estimating the number of interleaved
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reads and writes needed for processors to get to know all the processors. The rate of learning
such information may depend on time, because we do not restrict the amount of shared
memory, unlike in Theorems 1 and 2. Indeed, the rate may increase exponentially, under
most conservative estimates.

The following Theorem 3 holds for both Common and Arbitrary PRAMs. The argument

used in the proof is general enough not to depend on any specific semantics of writing.

Theorem 3 A randomized naming algorithm for a PRAM with n processors operates in
Q(logn) expected time when it is either a Las Vegas algorithm or a Monte Carlo algorithm

with the probability of error smaller than 1/2.

Proof: The argument is for a Las Vegas algorithm, the Monte Carlo case is similar. A
randomized algorithm can be interpreted as a probability distribution on a finite set of
deterministic algorithms. Such an interpretation works when input strings for a deterministic
algorithm are of the same length. We consider all such possible lengths for deterministic
algorithms, similarly as in the previous proofs of lower bounds.

Let us consider a deterministic algorithm A, and let inputs be strings of bits of the same
length. We may structure an execution of this algorithm A into phases as follows. A phase
consists of two rounds. In the first round of a phase, each processor either writes to a shared
memory cell or pauses. In the second round of a phase, each processor either reads from a
shared memory cell or pauses. Such structuring can be done without loss of generality at the
expense of slowing down an execution by a factor of at most 2. Observe that the knowledge
in the first round of a phase is the same as in the last round of the preceding phase.

Phases are numbered by consecutively increasing integers, starting from 1. A phase ¢
comprised pairs of rounds {2i—1, 2¢}, for integers ¢ > 1. In particular, the first phase consists
of rounds 1 and 2. We also add phase 0 that represents the knowledge before any reads or
writes were performed.

We show the following invariant, for i > 0: a processor knows at most 2 processors at
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the end of phase 7. The proof of this invariant is by induction on .

The base case is for ¢ = 0. The invariant follows from the fact that a processor knows
only one processor in phase 0, namely itself, and 2° = 1.

To show the inductive step, suppose the invariant holds for a phase ¢ > 0 and consider
the next phase ¢ + 1. A processor v may increase its knowledge by reading in the second
round of phase i+ 1. Suppose the read is from a shared memory cell R. The latest write into
this memory cell occurred by the first round of phase ¢+ 1. This means that the processor w
that wrote to R by phase ¢ + 1, as the last one that did write, knew at most 2¢ processors
in the round of writing, by the inductive assumption and the fact that what is written in
phase 7 + 1 was learnt by the immediately preceding phase i. Moreover, by the semantics of
writing, the value written to R by w in that round removed any previous information stored
in R. Processor v starts phase i+ 1 knowing at most 2’ processors, and also learns of at most
2¢ other processors by reading in phase i+ 1, namely, those values known by the latest writer
of the read contents. It follows that processor v knows at most 2° + 2¢ = 21 processors by
the end of phase 7 + 1.

When proper names are assigned by such a deterministic algorithm, then each processor
knows every other processor, by Lemma 3. A processor knows every other processor in a
phase j such that 2/ > n, by the invariant just proved. Such a phase number j satisfies
J > lgn, and it takes 21gn rounds to complete lg n phases.

Let us consider inputs strings of bits assigned to processors uniformly at random. We
need to estimate the expected running time of an algorithm A on such inputs. Let us
observe that, in the context of interpreting deterministic executions for the sake to apply
Yao’s principle, terminating executions of A that do not result in names assigned to all
the processors could be pruned from a bound on their expected running time, because such
executions are determined by bounded input strings of bits that a randomized algorithm
would extend to make them sufficiently long to assign proper names. In other words, from the

perspective of randomized algorithms, such prematurely ending executions do not represent
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real terminating ones.
The expected time of A, conditional on terminating with proper names assigned, is
therefore at least 21gn. We conclude, by the Yao’s principle, that any randomized naming

algorithm has Q(logn) expected runtime. O

The three lower bounds on time given in this Section may be applied in two ways. One
is to infer optimality of time for a given amount of shared memory used. Another is to
infer optimality of shared memory use given a time performance. This is summarized in the

following Corollary 1.

Corollary 1 If the expected time of a naming Las Vegas algorithm is O(n) on an Arbitrary
PRAM with O(1) shared memory, then this time performance is asymptotically optimal.
If the expected time of a naming Las Vegas algorithm is O(nlogn) on a Common PRAM
with O(1) shared memory, then this time performance is asymptotically optimal. If a Las
Vegas naming algorithm operates in time O(logn) on an Arbitrary PRAM using O(n/logn)
shared memory cells, then this amount of shared memory is asymptotically optimal. If a Las
Vegas naming algorithm operates in time O(logn) on a Common PRAM using O(n) shared

memory cells, then this amount of shared memory is optimal.

Proof: We verify that the lower bounds match the assumed upper bounds. By Theorem 2, a
Las Vegas algorithm operates almost surely in Q(n) time on an Arbitrary PRAM when space
is O(1). By Theorem 1, a Las Vegas algorithm operates almost surely in 2(nlogn) time on a
Common PRAM when space is O(1). By Theorem 2, a Las Vegas algorithm operates almost
surely in Q(logn) time on an Arbitrary PRAM when space is O(n/logn). By Theorem 1,
a Las Vegas algorithm operates almost surely in 2(logn) time on a Common PRAM when
space is O(n). O

A naming algorithm cannot be Las Vegas when n is unknown, as was observed by Kutten
et al. [68] in a more general case of asynchronous computations against an oblivious adversary.

We show an analogous fact for synchronous computations.

33



Proposition 2 There is no Las Vegas naming algorithm for a PRAM with at least two

processors that does not refer to the total number of processors.

Proof: Let us suppose, to arrive at a contradiction, that such a naming Las Vegas algorithm
exists. Consider a system of n > 1 processors, when n is an arbitrary positive integer, and
an execution £ on these n processors that uses specific strings of random bits such that the
algorithm terminates in & with these random bits. Such strings of random bits exist because
the algorithm terminates almost surely.

Let v; be a processor that halts latest in &€ among the n processors. Let ag be the string
of random bits generated by processor v; by the time it halts in £. Consider an execution &’
on n + 1 > 2 processors such that n processors obtain the same strings of random bits as
in £ and an extra processor vy obtains ag as its random bits. The executions £ and £ are
indistinguishable for the n processors participating in £, so they assign themselves the same
names and halt. Processor vy performs the same reads and writes as processor v; and assigns
itself the same name as processor v; does and halts in the same round as processor v;. This
is the termination round because by that time all the other processor have halted as well.

It follows that execution &’ results in a name being duplicated. The probability of dupli-
cation for n+ 1 processors is at least as large as the probability to generate the finite random
strings for n processors as in £, and additionally to generate ag for an extra processor vq, S0
this probability is positive. 0]

If n is unknown, then the restriction O(nlogn) on the number of random bits makes it
inevitable that the probability of error is at least polynomially bounded from below, as we

show next.

Proposition 3 For unknown n, if a randomized naming algorithm is executed by n anony-
mous processors, then an execution s incorrect, in that duplicate names are assigned to
distinct processors, with probability that is at least n=*Y | assuming that the algorithm uses

O(nlogn) random bits with probability 1 — n~¥V,

34



Proof: Suppose the algorithm uses at most cnlgn random bits with a probability p, when
executed by a system of n processors, for some constant ¢ > 0. Then one of these processors
uses at most clgn bits with a probability p,, by the pigeonhole principle.

Consider an execution for n+1 processors. Let us distinguish a processor v. Consider the
actions of the remaining n processors: one of them, say w, uses at most clgn bits with the
probability p,. Processor v generates the same string of bits with probability 27¢8" = n=°.
The random bits generated by w and v are independent. Therefore duplicate names occur

with probability at least n=¢-p,,. When we have a bound p,, = 1—n~*")_ then the probability

of duplicate names is at least n=¢(1 — n~1)) = =21, O

5.3 Lower Bounds for a Channel with Beeping
We begin with an observation, formulated as Proposition 4, that if the system is suffi-
ciently symmetric then randomness is necessary to break symmetry. The given argument is

standard and is given for completeness sake; see [6, 14, 44].

Proposition 4 There is no deterministic naming algorithm for a synchronous channel with
beeping with at least two stations, in which all stations are anonymous, such that it eventually

terminates and assigns proper names.

Proof: We argue by contradiction. Suppose that there exists a deterministic algorithm that
eventually terminates with proper names assigned to the anonymous stations. Let all the
stations start initialized to the same initial state. The following invariant is maintained in
each round: the internal states of the stations are all equal. We proceed by induction on the
round number. The base of induction is satisfied by the assumption about the initialization.
For the inductive step, we assume that the stations are in the same state, by the inductive
assumption. Then either all of them pause or all of them beep in the next round, so that
either all of them hear their own beep or all of them pause and hear silence. This results
in the same internal state transition, which shows the inductive step. When the algorithm

eventually terminates, then each station assigns to itself the identifier determined by its
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state. The identifier is the same in all stations because their states are the same, by the
invariant. This violates the desired property of names to be distinct, because there are at

least two stations with the same name. O

Proposition 4 justifies developing randomized naming algorithms. We continue with
“entropy” arguments; see the book by Cover and Thomas [33] for a systematic exposition of
information theory. An execution of a naming algorithm coordinates and translated random
bits into names. This same amount of entropy needs to be processed /communicated on the
channel, by the Shannon’s noiseless coding theorem. An analogue of the following Proposi-
tion 5 was stated in Proposition 1 for the model of synchronized processors communicating

by reading and writing to shared memory.

Proposition 5 If a randomized naming algorithm for a channel with beeping is executed by
n anonymous stations and is correct with probability p, then it requires Q(nlogn) random
bits in total to be gemerated with probability at least p,. In particular, a Las Vegas naming

algorithm uses Q(nlogn) random bits almost surely.

One round of an execution of a naming algorithm allows the stations that do not transmit
to learn at most one bit, because, from the perspective of these stations, a round is either
silent or there is a beep. Intuitively, the running time is proportional to the amount of
entropy that is needed to assign names. This intuition leads to Proposition 6. In its proof,

we combine Shannon’s entropy [33] with Yao’s principle [91].

Proposition 6 A randomized naming algorithm for a beeping channel with n stations op-
erates in Q(nlogn) expected time, when it is either a Las Vegas algorithm or a Monte Carlo

algorithm with the probability of error smaller than 1/2.

Proof: We apply the Yao’s minimax principle to bound the expected time of a randomized
algorithm by the distributional complexity of naming. We consider Las Vegas algorithms

first.
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A randomized algorithm using strings of random bits generated by stations can be con-
sidered as a deterministic algorithm D on all possible assignments of such (sufficiently long)
strings of bits to stations as their inputs. We consider assignments of strings of bits of an
equal length with the uniform distribution among all such assignments of strings of the same
length. On a given assignment of input strings of bits to stations, the deterministic algo-
rithms either assigns proper names or fails to do so. A failure to assign proper names with
some input is interpreted as the randomized algorithm continuing to work with additional
random bits, which comes at an extra time cost. This is justified by a combination of two
factors. One is that the algorithm is Las Vegas and so it halts almost surely, and with a
correct output. Another is that the probability to assign a specific finite sequence as a prefix
of a used sequence of random bits is positive. So if starting with a specific string of bits, as a
prefix of a possibly longer needed string, would mean inability to terminate with a positive
probability, then the naming algorithm would not be Las Vegas.

The common length of these input strings is a parameter, and we consider all sufficiently
large positive integer values for this parameter such that their exist strings of random bits
of this length resulting in assignments of proper names. For a given length of input strings,
we remove input assignments that do not result in assignment proper names and consider a
uniform distribution of the remaining inputs. This is the same as the uniform distribution
conditional on the algorithm terminating with input strings of bits of a given length.

Let us consider such a deterministic algorithm D assigning names, and using strings of
bits at stations as inputs, these strings being of a fixed length, assigned under a uniform
distribution for this length, and such that they result in termination. An execution of this
algorithm produces a finite binary sequence of bits, where we translate the feedback from the
channel round by round, say, with symbol 1 representing a beep and symbol 0 representing
silence. Each such a sequence is a binary codeword representing a specific assignment of
names. These codewords have also a uniform distribution, by the same symmetry argument

as used in the proof of Proposition 1. The expected length of a word in this code is the
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expected time of algorithm D. The expected time of algorithm D is therefore at least
lgn! = Q(nlogn), by the Shannon’s noiseless coding theorem. We conclude that, by the
Yao’s principle, the original randomized Las Vegas algorithm has expected time that is
Q(nlogn).

A similar argument, by the Yao’s principle, applies to a Monte Carlo algorithm that is
incorrect with a constant probability smaller than 1/2. The only difference in the argument
is that when a given assignment of input sting bits does not result in a proper assignment
of names, then either the algorithm continues to work with more bits for an extra time, or

terminates with error. O

Next, we consider facts that hold when the number of stations n is unknown. The
following Proposition 7 is about the inevitability of error. Intuitively, when two comput-
ing/communicating agents generate the same string of bits, then their actions are the same,
and so they get the same name assigned. In other words, we cannot distinguish the case
when there is only one such an agent present from cases when at least two of them work in

unison.

Proposition 7 For an unknown number of station n, if a randomized naming algorithm is
executed by n anonymous stations, then an execution is incorrect, in that duplicate names

Q(1)

are assigned to different stations, with probability that is at least n=*\V  assuming that the

algorithm uses O(nlogn) random bits with probability 1 — n=*1),

The proof of Proposition 7 given in Proposition 3 is for the model of synchronous dis-
tributed computing in which processors communicate among themselves by reading from and
writing to shared registers. The same argument applies to a synchronous beeping channel,
when we understand actions of stations as either beeping or pausing in a round.

We conclude this section with a fact about impossibility of developing a Las Vegas

naming algorithm when the number of stations n is unknown.
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Proposition 8 There is no Las Vegas naming algorithm for a channel with beeping with at

least two stations such that it does not refer to the number of stations.

The proof of Proposition 8 given in Proposition 2 is for the model of synchronous dis-
tributed computing in which processors communicate among themselves by reading from and
writing to shared registers. The proof given for Proposition 2 is general enough to be directly
applicable here as well, as both models are synchronous. Proposition 8 justifies developing

Monte Carlo algorithm for unknown n, which we do in Section 8.2.
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6. PRAM: Las Vegas Algorithms

We consider naming of anonymous processors of a PRAM when the number of processors
n is known. This problem is investigated in four specific cases, depending on the additional
assumptions pertaining to the model, and we give an algorithm for each case. The two
independent assumptions regard the amount of shared memory (constant versus unbounded)
and the PRAM variant (Arbitrary versus Common).

6.1 Arbitrary with Constant Memory

We present a naming algorithm for Arbitrary PRAM in the case when there are a con-
stant number of shared memory cells. It is called ARBITRARY-CONSTANT-LV.

During an execution of this algorithm, processors repeatedly write random strings of
bits representing integers to a shared memory cell called Pad, and next read Pad to verify
the outcome of writing. A processor v that reads the same value as it attempted to write
increments the integer stored in a shared register Counter and uses the obtained number
as a tentative name, which it stores in a private variable name,. The values of Counter
could get incremented a total of less than n times, which occurs when some two processors
chose the same random integer to write to the register Pad. The correctness of the assigned
names is verified by the inequality Counter > n, because Counter was initialized to zero.
When such a verification fails then this results in another iteration of a series of writes to
register Pad, otherwise the execution terminates and the value stored at name, becomes the
final name of processor v. Pseudocode for algorithm ARBITRARY-CONSTANT-LV is given
in Figure 6.1. It refers to a constant 3 > 0 which determines the bounded range [1,n”] from
which processors select integers to write to the shared register Pad.

Balls into bins. The selection of random integers in the range [1,n”] by n processors can be
interpreted as throwing n balls into n® bins, which we call 3-process. A collision represents
two processors assigning themselves the same name. Therefore an execution of the algorithm
can be interpreted as performing such ball placements repeatedly until there is no collision.
Lemma 4 For each a > 0 there exists 3 > 0 such that when n balls are thrown into n® bins

during the B-process then the probability of a collision is at most n™®.
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Algorithm ARBITRARY-CONSTANT-LV

repeat

initialize Counter < name, < 0
bin, < random integer in [1, n”]
for i< 1tondo
if name, = 0 then
Pad < bin,
if Pad = bin, then
Counter < Counter + 1
name, <— Counter

until Counter = n

Figure 6.1: A pseudocode for a processor v of an Arbitrary PRAM, where the
number of shared memory cells is a constant independent of n. The variables
Counter and Pad are shared. The private variable name stores the acquired
name. The constant 5 > 0 is parameter to be determined by analysis.

Proof: Consider the balls thrown one by one. When a ball is thrown, then at most n bins
are already occupied, so the probability of the ball ending in an occupied bin is at most

n/n? = n=P*1. No collisions occur with probability that is at least

1 \» n
_ —B+2
(1—71571) >1- 5 =1-n2, (6.1)

by the Bernoulli’s inequality. If we take S > a + 2 then just one iteration of the repeat-loop

is sufficient with probability that is at least 1 — n=%. 0

Next we summarize the performance of algorithm ARBITRARY-CONSTANT-LV as a Las

Vegas algorithm.

Theorem 4 Algorithm ARBITRARY-CONSTANT-LV terminates almost surely and there is
no error when it terminates. For any a > 0, there exist 5 > 0 and ¢ > 0 and such that
the algorithm terminates within time cn using at most cnlnn random bits with probability

at least 1 — n=2.

Proof: The algorithm assigns consecutive names from a continuous interval starting from 1,

41



by the pseudocode in Figure 6.1. It terminates after n different tentative names have been
assigned, by the condition controlling the repeat loop in the pseudocode of Figure 6.1. This
means that proper names have been assigned when the algorithm terminates.

We map an execution of the [-process on an execution of algorithm ARBITRARY-
CONSTANT-LV in a natural manner. Under such an interpretation, Lemma 4 estimates
the probability of the event that the n processors select different numbers in the interval
[1,n”] as their values to write to Pad in one iteration of the repeat-loop. This implies that
just one iteration of the repeat-loop is sufficient with the probability that is at least 1 —n=¢.
The probability of the event that i iterations are not sufficient to terminate is at most n=%,

which converges to 0 as ¢ increases, so the algorithm terminates almost surely. One iteration

of the repeat-loop takes O(n) rounds and it requires O(nlogn) random bits. O

Algorithm ARBITRARY-CONSTANT-LV is optimal among Las Vegas naming algorithms
with respect to its expected running time O(n), given the amount O(1) of its available
shared memory, by Corollary 1, and the expected number of random bits O(nlogn), by

Proposition 1 in Section 5.2.

6.2 Arbitrary with Unbounded Memory

We give an algorithm for Arbitrary PRAM in the case when there is an unbounded supply
of initialized shared memory cells. This algorithm is called ARBITRARY-UNBOUNDED-LV.

The algorithm uses two arrays Bin and Counter of - shared memory cells each. An
execution proceeds by repeated attempts to assign names. During each such attempt, the
processors work to assign tentative names. Next, the number of distinct tentative names is
obtained and if the count equals n then the tentative names become final, otherwise another
attempt is made. We assume that each such attempt uses a new segment of memory cells
Counter initialized to Os; this is only to simplify the exposition and analysis, because this
memory can be reset to 0 with a straightforward randomized algorithm which is omitted. An
attempt to assign tentative names proceeds by each processor selecting two integers bin, and

label, uniformly at random, where bin € [1, | and label € [1,n°]. Next the processors

’Inn
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Algorithm ARBITRARY-UNBOUNDED-LV

repeat

allocate Counter [1, ] /* fresh memory cells initialized to Os/x*
initialize position, < (0,0)
bin < a random integer in [1, |

’Inn

label < a random integer in [1,n”]
repeat
initialize All-Named <— true
if position, = (0,0) then
Bin [bin| + label
if Bin|bin| = label then
Counter [bin] < Counter [bin] + 1
position, < (bin,Counter [bin])
else All-Named <— false

until All-Named /* each processor has a tentative name /x

name, < rank of position,

until n is the maximum name /% no duplicates among tentative names /x

Figure 6.2: A pseudocode for a processor v of an Arbitrary PRAM, where the
number of shared memory cells is unbounded. The variables Bin and Counter
denote arrays of -~ shared memory cells each, the variable A11-Named is also

shared. The private variable name stores the acquired name. The constant
B > 0 is a parameter to be determined by analysis.

repeatedly attempt to write label into Bin[bin|. Each such a write is followed by a read
and the lucky writer uses Counter|bin| to create a pair of numbers (bin, Counter[bin]),
after first incrementing Counter[bin|, which is called bin’s position and is stored in variable
position. After all processors have their positions determined, we define their ranks as
follows. To find the rank of position,, we arrange all such pairs in lexicographic order,
comparing first on bin and then on Counter([bin|, and the rank is the position of this entry
in the resulting list, where the first entry has position 1, the second 2, and so on. Ranks can
be computed using a prefix-type algorithm operating in time O(logn). This algorithm first
finds for each bin € [1, ;-] the sum s(bin) = ), ,;, Counter|i]. Next, each process v with

a position (bin,, c) assigns to itself s(bin,)+ c as its rank. After ranks have been computed,
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they are used as tentative names. Pseudocode for algorithm ARBITRARY-UNBOUNDED-LV
is given in Figure 6.2.

In the analysis of algorithm ARBITRARY-UNBOUNDED-LV we will refer to the following
bound on independent Bernoulli trials. Let S,, be the number of successes in n independent
Bernoulli trials, with p as the probability of success. Let b(i;n, p) be the probability of an
occurrence of exactly i successes. For r > np, the following bound holds

r(1—p)

Pr(Sh 2 7) < b(rin,p) - < —

(6.2)

see Feller [42].

Balls into bins. We consider throwing n balls into - bins. Each ball has a label assigned
randomly from the range [1,77], for 8 > 0. We say that a labeled collision occurs when there
are two balls with the same labels in the same bin. We refer to this process as S-process.
Lemma 5 For each a > 0 there exists 5 > 0 and ¢ > 0 such that when n balls are labeled
with random integers in [1,n°] and next are thrown into o= bins during the (3-process then
there are at most clnn balls in every bin and no labeled collision occurs with probability

1—n"2.

Proof: We estimate from above the probabilities of the event that there are more than clnn
balls in some bin and that there is a labeled collision. We show that each of them can be
made to be at most n~%/2, from which it follows that at least one of these two events occurs
with probability at most n=¢.

Let p denote the probability of selecting a specific bin when throwing a ball, which is

p= an When we set » = c¢Inn, for a sufficiently large ¢ > 1, then

s = (o (B0 (1= )T (6.3

clnn n n

Formula (6.3) translates (6.2) into the following bound

Pr(S, > 1) < ( " ) (ln—”)dn"@ - ln—”)"_cm" ccln(l - 52) (6.4)

clnn n n clnn —Inn
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The right-hand side of (6.4) can be estimated by the following upper bound:

( en )Clﬂﬂ(lnn>clnn<1 lnn>nclnn c
clnn n n c—1

B (6>clnn(1 lnn>n( n >clnn C
 \c n n—Inn c—1

1
< ncc—clnne—lnn( n )C nn . c
n—Inn c—1

nfc Inc+c—1 7

IA

for each sufficiently large n > 0. This is because

n cln Inn \chn cln’n
Gomn) =0+om) seelionn)
n—Ilnn n—Inn n—Inn

which converges to 1. The probability that the number of balls in some bin is greater than

—clnctc—1 Inc—1

clnn is therefore at most n - n = n = ), by the union bound. This probability
can be made smaller than n=%/2 for a sufficiently large ¢ > e.

The probability of a labeled collision is at most that of a collision when n balls are
thrown into n” bins. This probability is at most n="*2 by bound (6.1) used in the proof of

Lemma 4. This number can be made at most n=%/2 for a sufficiently large f. OJ

Next we summarize the performance of algorithm ARBITRARY-UNBOUNDED-LV as a

Las Vegas algorithm.

Theorem 5 Algorithm ARBITRARY-UNBOUNDED-LV terminates almost surely and there
1s no error when the algorithm terminates. For any a > 0, there exists 5 > 0 and ¢ > 0 such
that the algorithm assigns names within clnn time and generates at most cnlnn random

a

bits with probability at least 1 — n~%.

Proof: The algorithm terminates only when n different names have been assigned, which is
provided by the condition that controls the main repeat-loop in Figure 6.2. This means that
there is no error when the algorithm terminates.

We map executions of the S-process on executions of algorithm ARBITRARY-UNBOUNDED-

LV in a natural manner. The main repeat-loop ends after an iteration in which each group
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of processors that select the same value for variable bin next select distinct values for label.
We interpret the random selections in an execution as throwing n balls into - bins, where
a number bin determines a bin. The number of iterations of the inner repeat-loop equals
the maximum number of balls in a bin.

For any a > 0, it follows that one iteration of the main repeat-loop suffices with prob-
ability at least 1 — n™%, for a suitable § > 0, by Lemma 5. It follows that ¢ iterations are
executed by termination with probability at most n=%, so the algorithm terminates almost
surely.

Let us take ¢ > 0 as in Lemma 5. It follows that an iteration of the main repeat-loop
takes at most clnn steps and one processor uses at most c¢lnn random bits in this one

iteration with probability at least 1 — n™°. U

Algorithm ARBITRARY-UNBOUNDED-LV is optimal among Las Vegas naming algo-
rithms with respect to the following performance measures: the expected time O(logn),
by Theorem 3, the number of shared memory cells O(n/logn) used to achieve this run-
ning time, by Corollary 1, and the expected number of used random bits O(nlogn), by

Proposition 1 in Section 5.2.

6.3 Common with Constant Memory

Now we consider the case of Common PRAM when the number of available shared
memory cells is constant. We propose an algorithm called COMMON-CONSTANT-LV.

An execution of the algorithm is organized as repeated “attempts” to assign temporary
names. During such attempt, each processor without a name chooses uniformly at random an
integer in the interval [1, number-of-bins|, where number-of-bins is a parameter initialized
to n; such a selection is interpreted in a probabilistic analysis as throwing a ball into number-
of-bins many bins. Next, for each i € [1,number-of-bins|, the processors that selected i,
if any, verify if they are unique in their selection of i by executing procedure VERIFY-
COLLISION (given in Figure 4.1 in Section 4) flnn times, where 5 > 0 is a number that

is determined by analysis. After no collision has been detected, a processor that selected
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Algorithm CoMMON-CONSTANT-LV

repeat

initialize number-of-bins <— n ; name, <— Last-Name < 0 ;
no-collision, < true

repeat

initialize Collision-Detected < false
if name, = 0 then
bin, < random integer in [1, number-of-bins]
for 7 < 1 to number-of-bins do
for j< 1to fSlnn do
if bin, = ¢ then
if VERIFY-COLLISION then

Collision-Detected < collision, < true

if bin, =7 and not collision, then
Last-Name < Last-Name + 1
name, <— Last-Name

if n —Last-Name > Slnn
then number-of-bins <— (n — Last-Name)
else number-of-bins < n/(f1lnn)

until not Collision-Detected
until Last-Name =n

Figure 6.3: A pseudocode for a processor v of a Common PRAM, where
there is a constant number of shared memory cells. Procedure VERIFY-
CoOLLISION has its pseudocode in Figure 4.1; lack of parameter means the
default parameter 1. The variables Collision-Detected and Last-Name are
shared. The private variable name stores the acquired name. The constant /3
is a parameter to be determined by analysis.

1 assigns itself a consecutive name by reading and incrementing the shared variable Last-
Name. It takes up to [ number-of-binslInn verifications for collisions for all integers in
[1,number-of-bins|. When this is over, the value of variable number-of-bins is modified
by decrementing it by the number of new names just assigned, when working with the last
number-of-bins, unless such decrementing would result in a number number-of-bins that
is at most £ Inn, in which case variable number-of-bins is set ton /(5 Inn). An attempt ends

when all processors have tentative names assigned. These names become final when there
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are a total of n of them, otherwise there are duplicates, so another attempt is performed.
A pseudocode for algorithm COMMON-CONSTANT-LV is in Figure 6.3, in which the main
repeat loop represents an attempt to assign tentative names to each processor. An iteration
of the inner repeat loop during which number-of-bins > n/(51nn) is called shrinking and
otherwise it is called restored.

Balls into bins. As a preparation of analysis of performance of algorithm COMMON-
CONSTANT-LV, we consider a related process of repeatedly throwing balls into bins, which
we call B-process. The [-process proceeds through stages, each representing one iteration
of the inner repeat-loop in Figure 6.3. A stage results in some balls removed and some
transitioning to the next stage, so that eventually no balls remain and the process terminates.

The balls that participate in a stage are called eligible for the stage. In the first stage, n
balls are eligible and we throw n balls into n bins. Initially, we apply the principle that after
all eligible balls have been placed into bins during a stage, the singleton bins along with the
balls in them are removed. A stage after which bins are removed is called shrinking. There
are k bins and £ balls in a shrinking stage; we refer to k as the length of this stage. Given
balls and bins for any stage, we choose a bin uniformly at random and independently for
each ball in the beginning of a stage and next place the balls in their selected destinations.
The bins that either are empty or multiple in a shrinking stage stay for the next stage. The
balls from multiple bins become eligible for the next stage.

This continues until such a shrinking stage after which at most §1nn balls remain. Then
we restore bins for a total of n/(f1nn)) of them to be used in the following stages, during
which we never remove any bin; these stages are called restored. In these final restored stages,
we keep removing singleton balls at the end of a stage, while balls from multiple bins stay
as eligible for the next restored stage. This continues until all balls are removed.

Lemma 6 For any a > 0, there exists 3 > 0 such that the sum of lengths of all shrinking
stages in the B-process is at most 2en, where e is the base of natural logarithms, and there

are at most B1nn restored stages, both events holding with probability 1 —n=%, for sufficiently
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large n.

Proof: We consider two cases depending on the kind of analyzed stages. Let k& < n denote
the length of a stage.

In a shrinking stage, we throw k balls into £ bins choosing bins independently and
uniformly at random. The probability that a ball ends up singleton can be bounded from
below as follows:

k—1 _ _
b L DY s by ot bt L e
e e

where we used the inequality 1 — 2 > e~*~*", which holds for 0 < z < %

Let Z; be the number of singleton balls after k£ balls are thrown into k bins. It follows
that the expectancy of Zj satisfies E[Z;] > k/e.

To estimate the deviation of Z; from its expected value, we use the bounded differences
inequality [71, 75]. Let B; be the bin of ball b;, for 1 < j < k. Then Zj is of the form
Zy = h(By, ..., By) where h satisfied the Lipschitz condition with constant 2, because moving
one ball to a different bin results in changing the value of A by at most 2 with respect to the
original value. The bounded-differences inequality specialized to this instance is as follows,
for any d > 0:

Pr(Z, < E[Z] — dVk) < exp(—d?/) . (6.5)

We use this inequality for d = ‘2/—5 Then (6.5) implies the following bound:

Pr(ze <t B Cpr(zi< B) com(- (L)) —em(— s

e 2e 2e 8 2e

).

If we start a shrinking stage with £ eligible balls then the number of balls eligible for the

next stage is at most

2e

with probability at least 1 — exp(—k/32¢?). Let us continue shrinking stages as long as

k

the inequality 5=

> 3alnn holds. We denote this inequality concisely as k& > Slnn for
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3 = 96e%a. Then the probability that every shrinking stage results in the size of the pool of
eligible balls decreasing by a factor of at least

2e—1 1
2¢  f

is itself at least

logsn log,n
—3alnn f —2a
e e e

for sufficiently large n, by Bernoulli’s inequality.
If all shrinking stages result in the size of the pool of eligible balls decreasing by a factor

of at least 1/ f, then the total number of eligible balls summed over all such stages is at most

an_i:n L = 2en .

11
i>0 157
In a restored stage, there are at most §Inn eligible balls. A restored stage happens to

be the last one when all the balls become single after their placement, which occurs with

probability at least

n/(Blnn) — flnn Blnn_ . A 1n’n ﬁlnn>1 B3 1n®n
n/(61lnn) _< n ) = n

by the Bernoulli’s inequality. It follows that there are more than [ Inn restored stages with

)

probability at most

<ﬁ3 ln3n)ﬂlnn _ nfﬂ(logn) .
n

This bound is at most n =2 for sufficiently large n.
Both events, one about shrinking stages and the other about restored stages, hold with

probability at least 1 — 2n72% > 1 — n=%, for sufficiently large n. 0
Next we summarize the performance of algorithm COMMON-CONSTANT-LV as Las Ve-
gas one. In its proof, we rely on mapping executions of the [-process on executions of

algorithm COMMON-CONSTANT-LV in a natural manner.

Theorem 6 Algorithm COMMON-CONSTANT-LV terminates almost surely and there is no

error when the algorithm terminates. For any a > 0 there exist § > 0 and ¢ > 0 such that the
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algorithm terminates within time cnlnn using at most cnlnn random bits with probability

1 —n—°.

Proof: The condition controlling the main repeat-loop guarantees that an execution termi-
nates only when the assigned names fill the interval [1,n] so they are distinct.

To analyze time performance, we consider the S-process of throwing balls into bins as
considered in Lemma 6. Let $; > 0 be the number 3 specified in this Lemma, as determined
by a replaced by 2a in its assumptions. This Lemma gives that the sum of all values of K
summed over all shrinking stages is at most 2en with probability at least 1 — n =22,

For a given K and a number i € [1, K|, procedure VERIFY-COLLISION is executed 1nn
times, where [ is the parameter in Figure 6.3. If there is a collision then it is detected with
probability at least 278" We may take ($, > 3, sufficiently large so that the inequality
2en - 27Fnn < =24 holds.

The total number of instances of executing VERIFY-COLLISION during an iteration of
the main loop, while K is kept equal to n/(f1nn), is at most n. Observe that the inequality
n-27P2Inn < =20 holds with probability at most 1 — n 2% because n < 2en.

If 5 is set in Figure 6.3 to 5 then one iteration of the outer repeat-loop suffices with

2

probability at least 1 — 2n™=%, for sufficiently large n. This is because verifications for

collisions detect all existing collisions with this probability. Similarly, this one iteration

~2a_for sufficiently large n. The

takes O(nlogn) time with probability that is at least 1 —2n
claimed performance holds therefore with probability at least 1 — n™¢, for sufficiently large
n.

There are at least ¢ iterations of the main repeat-loop with probability at most n™"*, so

the algorithm terminates almost surely. 0

Algorithm COMMON-CONSTANT-LV is optimal among Las Vegas algorithms with re-
spect to the following performance measures: the expected time O(nlogn), given the amount
O(1) of its available shared memory, by Corollary 1, and the expected number of random

bits O(nlogn), by Proposition 1 in Section 5.2.
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6.4 Common with Unbounded Memory

Now we consider the last case when PRAM is of its Common variant and there is
an unbounded amount of shared memory. We propose an algorithm called COMMON-
UNBOUNDED-LV. The algorithm invokes procedure VERIFY-COLLISION, whose pseudocode
is in Figure 4.1.

An execution proceeds as a sequence of “attempts” to assign temporary names. When
such attempt results in assigning temporary names without duplicates then these transient
names become final. An attempt begins from each processor selecting an integer from the
interval [1, (8 + 1)n] uniformly at random and independently, where J is a parameter such
that only 8 > 1 is assumed. Next, for lgn steps, each process executes procedure VERIFY-
COLLISION(z) where z is the currently selected integer. If a collision is detected then a
processor immediately selects another number in [1, (8 + 1)n| and continues verifying for a
collision. After Ign such steps, the processors count the total number of selections of different
integers. If this number equals exactly n then the ranks of the selected integers are assigned
as names, otherwise another attempt to find names is repeated. Computing the number of
selections and the ranks takes time O(logn). In order to amortize this time O(logn) by
verifications, such a computation of ranks is performed only after lgn verifications. Here
a rank of a selected z is the number of numbers that are at most = that were selected. A
pseudocode for algorithm COMMON-UNBOUNDED-LV is given in Figure 6.4. Subroutines
of prefix-type, like computing the number of selects and ranks of selected numbers are not
included in this pseudocode.

Balls into bins. We consider auxiliary processes of placing balls into bins that abstracts
operations on shared memory as performed by algorithm CoOMMON-UNBOUNDED-LV.

The B-process is about placing n balls into (8 + 1)n bins. The process is structured as a
sequence of stages. A stage represents an abstraction of one iteration of the inner for-loop in
Figure 6.4 performed as if collisions were detected instantaneously and with certainty. When

a ball is moved then it is placed in a bin selected uniformly at random, all such selections
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Algorithm CoMMON-UNBOUNDED-LV

x < random integer in [1, (8 + 1)n] /* throw a ball into bin z /x*
repeat
for i+ 1 tolgn do
if VERIFY-COLLISION (z) then
x + random integer in [1, (8 + 1)n]

number-occupied-bins < the total number of selected values for z

until number-occupied-bins =n

name, < the rank of bin x among nonempty bins

Figure 6.4: A pseudocode for a processor v of a Common PRAM, where
the number of shared memory cells is unbounded. The constant ( is a param-
eter that satisfies the inequality § > 1. The private variable name stores the
acquired name.

independent from one another. The stages are performed as follows. In the first stage, n
balls are placed into (8 + 1)n bins. When a bin is singleton in the beginning of a stage then
the ball in the bin stays put through the stage. When a bin is multiple in the beginning
of a stage, then all the balls in this bin participate actively in this stage: they are removed
from the bin and placed in randomly-selected bins. The process terminates after a stage in
which all balls reside in singleton bins. It is convenient to visualize a stage as occurring by
first removing all balls from multiple bins and then placing the removed balls in randomly
selected bins one by one.

We associate the mimicking walk to each execution of the [-process. Such a walk is
performed on points with integer coordinates on a line. The mimicking walk proceeds through
stages, similarly as the ball process. When we are to relocate k balls in a stage of the ball
process then this is represented by the mimicking walk starting the corresponding stage at
coordinate k. Suppose that we process a ball in a stage and the mimicking walk is at some
position i. Placing this ball in an empty bin decreases the number of balls for the next stage;
the respective action in the mimicking walk is to decrement its position from 7 to ¢ — 1.

Placing this ball in an occupied bin increases the number of balls for the next stage; the

23



respective action in the mimicking walk is to increment its position from i to ¢ + 1. The
mimicking walk gives a conservative estimates on the behavior of the ball process, as we
show next.

Lemma 7 If a stage of the mimicking walk ends at a position k, then the corresponding
stage of the ball B-process ends with at most k balls to be relocated into bins in the next

stage.

Proof: The argument is broken into three cases, in which we consider what happens in the
ball process and what are the corresponding actions in the mimicking walk. A number of
balls in a bin in a stage is meant to be the final number of balls in this bin at the end of the
stage.

In the first case, just one ball is placed in a bin that begins the stage as empty. Then
this ball will not be relocated in the next stage. This means that the number of balls for the
next stage decreases by 1. At the same time, the mimicking walk decrements its position
by 1.

In the second case, some j > 1 balls land in a bin that is singleton at the start of this
stage, so this ball was not eligible for the stage. Then the number of balls in the bin becomes
J + 1 and these many balls will need to be relocated in the next stage. Observe that this
contributes to incrementing the number of the eligible balls in the next stage by 1, because
only the original ball residing in the singleton bin is added to the set of eligible balls, while
the other balls participate in both stages. At the same time, the mimicking walk increments
its position by 1 j times.

In the third and final case, some j > 2 balls land in a bin that is empty at the start
of this stage. Then this does not contribute to a change in the number of balls eligible for
relocation in the next stage, as these j balls participate in both stages. Let us consider these
balls as placed in the bin one by one. The first ball makes the mimicking walk decrement
its position. The second ball makes the walk increment its position, so that it returns to the

original position as at the start of the stage. The following ball placements, if any, result in
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the walk incrementing its positions. 0

Random walks. Next we consider a random walk which will estimate the behavior of a
ball process. One component of estimation is provided by Lemma 7, in that we will interpret
a random walk as a mimicking walk for the ball process.

The random walk is represented as movements of a marker placed on the non-negative
side of the integer number line. The movements of the marker are by distance 1 and they are
independent. The random [-walk has the marker’s position incremented with probability ﬁ
and decremented with probability /BLH This may be interpreted as a sequence of independent
Bernoulli trials, in which -2~ is chosen to be the probability of success. We will consider

B+1
£ > 1, for which % > ﬁ, which means that the probability of success is greater than the
probability of failure.

Such a random [-walk proceeds through stages, which are defined as follows. The first
stage begins at position n. When a stage begins at a position & then it ends after £ moves,
unless it reaches the zero coordinate in the meantime. The zero point acts as an absorbing
barrier, and when the walk’s position reaches it then the random walk terminates. This is the
only way in which the walk terminates. A stage captures one round of PRAM’s computation

and the number of moves in a stage represents the number of writes processors perform in a

round.

Lemma 8 For any numbers a > 0 and > 1, there exists b > 0 such that the random
B-walk starting at position n > 0 terminates within blnn stages with all of them comprising

a

O(n) moves with probability at least 1 —n=°.

Proof: Suppose the random walk starts at position & > 0 when a stage begins. Let X, be
the number of moves towards 0 and Y, = k — X be the number of moves away from 0 in

such a stage. The total distance covered towards 0, which we call drift, is
Lk) =X, =Y =X — (k— Xp) =2X, — k.

The expected value of X}, is E[X}] = % = pg. The event X < (1 — e)py holds with
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probability at most exp(—%uk), by the Chernoff bound [75], so that Xy > (1 — ) puy occurs
with the respective high probability. We say that such a stage is conforming when the event
Xk > (1 — &)y holds.

If a stage is conforming then the following inequality holds:

Bk, _p-2pe-1,

We want the inequality 2 52;6;51 L > 0 to hold, which is the case when ¢ < 221, Let us fix such

e > 0. Now the distance from 0 after k steps starting at k is

B —2Be—1 2(1 + Be)
k—Lk)=(1—-—F——) k=——="Fk,
(k) = ( 511 ) 511
where 21559 1 for ¢ < 821 Let p = 2L > 1. Consecutive 7 conforming stages make

p+1 2(1+p¢)

the distance from 0 decrease by at least a factor p—*

When we start the first stage at position n and the next log,n stages are conforming
then after these many stages the random walk ends up at a position that is close to 0. For
our purposes, it suffices that the position is of distance at most slnn from 0, for some s > 0,
because of its impact on probability. Namely, the event that all these stages are conforming
and the bound sInn on distance from 0 holds, occurs with probability at least

2
e“ B
PRI

1 —log,n - exp(— slnn) > 1 —log,n-n

2
28+1

Let us choose s > 0 such that

N

_ef B g
log,n-n" 271

IN

for sufficiently large n.

Having fixed s, let us take ¢t > 0 such that the distance covered towards 0 is at least sInn
when starting from & = tlnn and performing k steps. We interpret these movements as if
this was a single conceptual stage for the sake of the argument, but its duration comprises
all stages when we start from sInn until we terminate at 0. It follows that the conceptual

stage comprises at most tInn real stages, because a stage takes at least one round.
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If this last conceptual stage is conforming then the distance covered towards 0 is bounded

by
b —20e—1
B+1 &

We want this to be at least sInn for k = tInn, which is equivalent to

L(k) >

—20e—1
w t>s.
B+1
Now it is sufficient to take t > s- B_@gi_l. This last conceptual stage is not conforming with

probability at most exp(—%%tln n). Let us take ¢ that is additionally big enough for the
following inequality

2
tlnn) = n- T Al < 2
~ 2n@

2
exp(—;/B y |

to hold.

Having selected s and ¢, we can conclude that there are at most (s + ¢) Inn stages with

a

probability at least 1 —n~
Now let us consider only the total number of moves to the left X,, and to the right Y,,

after m moves in total, when starting at position n. The event X,, < (1 — -m holds

€)- 1+B

with probability at most exp(—;m m), by the Chernoff bound [75], so that X,,, > m- (1= T ;6

occurs with the respective high probability 1 — exp(—;% m). At the same time we have

that the number of moves away from zero, which we denote Y,,, can be estimated to be

(1—-9)p 1+56_m

Yn=m—-X,<m-—m- =
1+ 1+

This gives an estimate on the corresponding drift:

B —2Be—1
Lim)=X,—-Y,>—— - m
(m) B+1
We want the inequality 2=2%:=1 > ( to hold, which is the case when e < 221, The drift is at

=

least n, with the corresponding large probability, when m = d - n for d = ﬁf;ﬁjfl. The drift

is at least such with probability exponentially close to 1 in n, which is at least 1 — n™ for
sufficiently large n. O
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Lemma 9 For any numbers a > 0 and B > 1, there exists b > 0 such that the [-process
starting at position n > 0 terminates within blnn stages after performing O(n) ball throws

a

with probability at least 1 —n=%.

Proof: We estimate the behavior of the S-process on n balls by the behavior of the random
[-walk starting at position n. The justification of the estimation is in two steps. One is
the property of mimicking walks given as Lemma 7. The other is provided by Lemma 8
and is justified as follows. The probability of decrementing and incrementing position in
the random [-walk are such that they reflect the probabilities of landing in an empty bin
or in an occupied bin. Namely, we use the facts that during executing the S-process, there

are at most n occupied bins and at least § - n empty bins in any round. In the S-process,

the probability of landing in an empty bin is at least (ﬂ’i—"l)n e %, and the probability of
landing in an occupied bin is at most m = ﬁ This means that the random [-walk is

consistent with Lemma 7 in providing estimates on the time of termination of the S-process

from above. O

Incorporating verifications. We consider the random S-walk with verifications, which is
defined as follows. The process proceeds through stages, similarly as the regular random
B-walk. For any round of the walk and a position at which the walk is at, we first perform a
Bernoulli trial with the probability % of success. Such a trial is referred to as a verification,
which is positive when a success occurs otherwise it is negative. After a positive verification
a movement of the marker occurs as in the regular g-walk, otherwise the walk pauses at the

given position for this round.

Lemma 10 For any numbers a > 0 and 8 > 1, there exists b > 0 such that the random
B-walk with verifications starting at position n > 0 terminates within blnn stages with all of

a

them comprising the total of O(n) moves with probability at least 1 —n=°.

Proof: We provide an extension of the proof of Lemma 8, which states a similar property

of regular random S-walks. That proof estimated times of stages and the number of moves.
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Suppose the regular random [-walk starts at a position k, so that the stage takes k moves.
There is a constant d < 1 such that the walk ends at a position at most dk with probability
exponential in k.

Moreover, the proof of Lemma 8 is such that all the values of k considered are at least
logarithmic in n, which provides at most a polynomial bound on error. A random walk
with verifications is slowed down by negative verifications. Observe that a random walk
with verifications that is performed 3k times undergoes at least k positive verifications with
probability exponential in k& by the Chernoff bound [75]. This means that the proof of
Lemma 8 can be adapted to the case of random walks with verifications almost verbatim,
with the modifications contributed by polynomial bounds on error of estimates of the number

of positive verifications in stages. 0J

Next, we consider a 3-process with verifications, which is defined as follows. The process
proceeds through stages, similarly as the regular ball process. The first stage starts with
placing n balls into (8 4+ 1)n bins. For any following stage, we first go through multiple
bins and, for each ball in such a bin, we perform a Bernoulli trial with the probability %
of success, which we call a wverification. A success in a trial is referred to as a positive
verification otherwise it is a negative one. If at least one positive verification occurs for a
ball in a multiple bin then all the balls in this bin are relocated in this stage to bins selected
uniformly at random and independently for each such a ball, otherwise the balls stay put in

this bin until the next stage. The S-process terminates when all the balls are singleton.

Lemma 11 For any numbers a > 0 and 5 > 1, there exists b > 0 such that the B-process
with verifications terminates within blnn stages with all of them comprising the total of O(n)

a

ball throws with probability at least 1 — n=°.

Proof: The argument proceeds by combining Lemma 7 with Lemma 10, similarly as the
proof of Lemma 9 is proved by combining Lemma 7 with Lemma 8. The details follow.

For any execution of a ball process with verifications, we consider a “mimicking random

29



walk,” also with verifications, defined such that when a ball from a multiple bin is handled
then the outcome of a random verification for this ball is mapped on a verification for the
corresponding random walk. Observe that for a S-process with verifications just one positive
verification is sufficient among j — 1 trials when there are j > 1 balls in a multiple bin, so
a random [-walk with verifications provides an upper bound on time of termination of the
[B-process with verifications. The probabilities of decrementing and incrementing position in
the random [-walk with verifications are such that they reflect the probabilities of landing
in an empty bin or in an occupied bin, similarly as without verifications. All this give a
consistency of a S-walk with verifications with Lemma 7 in providing estimates on the time

of termination of the -process from above. O

Next we summarize the performance of algorithm COMMON-UNBOUNDED-LV as Las
Vegas one. The proof is based on mapping executions of the S-processes with verifications

on executions of algorithm COMMON-UNBOUNDED-LV in a natural manner.

Theorem 7 Algorithm COMMON-UNBOUNDED-LV terminates almost surely and when the
algorithm terminates then there is no error. For each a > 0 and any 3 > 1 in the pseudocode,
there exists ¢ > 0 such that the algorithm assigns proper names within time clgn and using

at most cnlgn random bits with probability at least 1 —n~*.

Proof: The algorithm terminates when there are n different ranks, by the condition con-
trolling the repeat-loop. As ranks are distinct and each in the interval [1,n], each name is
unique, so there is no error. The repeat-loop is executed O(1) times with probability at least
1—n"% by Lemma 11. The repeat-loop is performed ¢ times with probability that is at most
n~" so it converges to 0 with ¢ increasing. It follows that the algorithm terminates almost
surely.

An iteration of the repeat-loop in Figure 6.4 takes O(logn) steps. This is because of
the following two facts. First, it consists of lgn iterations of the for-loop, each taking O(1)

rounds. Second, it concludes with verifying the until-condition, which is carried out by
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counting nonempty bins by a prefix-type computation. It follows that time until termination
is O(logn) with probability 1 —n~°.
By Lemma 11, the total number of ball throws is O(n) with probability 1 — n~%. Each

placement of a ball requires O(logn) random bits, so the number of used random bits is

O(nlogn) with the same probability. O

Algorithm CoMMON-UNBOUNDED-LV is optimal among Las Vegas naming algorithms
with respect to the following performance measures: the expected time O(logn), by The-
orem 3, the number of shared memory cells O(n) used to achieve this running time, by

Corollary 1, and the expected number of random bits O(nlogn), by Proposition 1.

6.5 Conclusion

We considered the naming problem for the anonymous synchronous PRAM when the
number of processors n is known. We gave Las Vegas algorithms for four variants of the
problem, which are determined by the suitable restrictions on concurrent writing and the
amount of shared memory. Each of these algorithms is provably optimal for its case with
respect to the natural performance metrics such as expected time (as determined by the

amount of shared memory) and expected number of used random bits.
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7. PRAM: Monte Carlo Algorithms

We consider naming of anonymous processors of a PRAM when the number of processors
n is unknown. They are determined by two independent specifications the naming problems:
the amount of shared memory and the PRAM variant.

7.1 Arbitrary with Constant Memory

We develop a naming algorithm for an Arbitrary PRAM with a constant number of
shared memory cells. The algorithm is called ARBITRARY-BOUNDED-MC.

The underlying idea is to have all processors repeatedly attempt to obtain tentative
names and terminate when the probability of duplicate names is gauged to be sufficiently
small. To this end, each processor writes an integer selected from a suitable “selection range”
into a shared memory register and next reads this register to verify whether the write was
successful or not. A successful write results in each such a processor getting a tentative
name by reading and incrementing another shared register operating as a counter. One of
the challenges here is to determine a selection range from which random integers are chosen
for writing. A good selection range is large enough with respect to the number of writers,
which is unknown, because when the range is too small then multiple processors may select
the same integer and so all of them get the same tentative name after this integer gets
written successfully. The algorithm keeps the size of a selection range growing with each
failed attempt to assign tentative names.

There is an inherent tradeoff present, in that on the one hand we want to keep the
size of used shared memory small, as a measure of efficiency of the algorithm, while at the
same time the larger the range of memory the smaller the probability of collision of random
selections from a selection range and so of the resulting duplicate names. Additionally,
increasing the selection range repeatedly costs time for each such a repetition, while we also
want to minimize the running as a metric of performance. The algorithm keeps increasing
the selection range with a quadratic rate, which turns out to be sufficient to optimize all the

performance metrics we measure. The algorithm terminates when the number of selected
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Algorithm ARBITRARY-BOUNDED-MC

initialize k <1 /* initial approximation of lgn x/
repeat

initialize Last-Name < name, < 0

k < 2k

bin, < random integer in [1, 2] /* throw a ball into a bin */
repeat

All-Named < true
if name, = 0 then
Pad < bin,
if Pad = bin, then
Last-Name < Last-Name + 1
name, < Last-Name
else
All-Named < false

until All-Named

until Last-Name < 2K/

Figure 7.1: A pseudocode for a processor v of an Arbitrary PRAM with a
constant number of shared memory cells. The variables Last-Name, A11-Named
and Pad are shared. The private variable name stores the acquired name. The
constant 3 > 0 is a parameter to be determined by analysis.

integers from the current selection range makes a sufficiently small fraction of the size of the
used range.

A pseudocode of algorithm ARBITRARY-BOUNDED-MC is given in Figure 7.1. Its struc-
ture is determined by the main repeat-loop. Each iteration of the main loop begins with
doubling the variable k, which determines the selection range [1, 2¥]. This means that the size
of the selection range increases quadratically with consecutive iterations of the main repeat-
loop. A processor begins an iteration of the main loop by choosing an integer uniformly at
random from the current selection range [1,2¥]. There is an inner repeat-loop, nested within
the main loop, which assigns tentative names depending on the random selections just made.

All processors repeatedly write to a shared variable Pad and next read to verify if the
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write was successful. It is possible that different processors attempt to write the same value
and then verify that their write was successful. The shared variable Last-Name is used
to progress through consecutive integers to provide tentative names to be assigned to the
latest successful writers. When multiple processors attempt to write the same value to Pad
and it gets written successfully, then all of them obtain the same tentative name. The
variable Last-Name, at the end of each iteration of the inner repeat-loop, equals the number
of occupied bins. The shared variable A11-Named is used to verify if all processors have
tentative names. The outer loop terminates when the number of assigned names, which is
the same as the number of occupied bins, is smaller than or equal to 258, where § > 0 is a
parameter to be determined in analysis.
Balls into bins. We consider the following auxiliary 3-process of throwing balls into bins,
for a parameter 5 > 0. The process proceeds through stages identified by consecutive positive
integers. The ith stage has the number parameter & equal to k = 2° . During a stage, we
first throw n balls into the corresponding 2* bins and next count the number of occupied
bins. A stage is last in an execution of the S-process, and so the S-process terminates, when
the number of occupied bins is smaller than or equal to 2%/%. We observe that the S-process
always terminates. This is because, by its specification, the f-process terminates by the
first stage in which the inequality n < 2¥/# holds and n is an upper bound on the number
of occupied bins in a stage. The inequality n < 2¥/7 is equivalent to n? < 2¥ and so to
Blgn < k. Since k goes through consecutive powers of 2, we obtain that the number of
stages of the S-process with n balls is at most 1g(Glgn) =1g g + 1glgn.

We say that such a S-process is correct when upon termination each ball is in a separate
bin, otherwise the process is incorrect.
Lemma 12 For any a > 0 there exists > 0 such that the B-process is incorrect with

probability that is at most n=%, for sufficiently large n.

Proof: The p-process is incorrect when there are collisions after the last stage. The prob-

ability of the intersection of the events “[-process terminates” and “there are collisions” is
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bounded from above by the probability of any one of these events. Next we show that, for
each pair of k and n, some of these two events occurs with probability that is at most n™%,
for a suitable 3.

First, we consider the event that the S-process terminates. The probability that there

are at most 2/ occupied bins is at most

ok oF/B\ n
(2k/5) (7)

IN

( ei?/];)%/:zk(ﬁll)”
2

ez’f/ﬁ . 2k(1—5—1)2k/ﬂ . 2k(ﬁ_1—1)n

IA

D) (7.1

IN

We estimate from above the natural logarithm of the right-hand side of (7.1). We obtain
the following upper bound:

1
28 L k(71— 1)(n — 2¥/F)In2 < 2¥/F — (= 2k/5) In 2

— M6 _ mTQn + 20k

2
In2 24+1In2
—_ = ok/B 7.2
5t 5 (7.2)
for § > 4/3, as k > 2. The estimate (7.2) is at most —n-% when 258 < n.§, for § = %,
by a direct algebraic verification. These restrictions on k and [ can be restated as
k< Blg(nd) and g > 4/3 . (7.3)

When this condition (7.3) is satisfied, then the probability of at most 2*/# occupied bins is

at most

( 1112) -
exp(—n - —— n
p 1 )=

for sufficiently large n.
Next, let us consider the probability of collisions occurring. Collisions do not occur with

probability that is at least
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by the Bernoulli’s inequality. It follows that the probability of collisions occurring can be

bounded from above by Z—i This bound in turn is at most n~* when
k>(24a)lgn. (7.4)

In order to have some of the inequalities (7.3) and (7.4) hold for any k and n, it is
sufficient to have

(2+a)lgn < Blg(nd) .
This determines [ as follows:

y (24 a)lgn

2
~ lgn+1gd r 4

with n — oo. We obtain that the inequality § > 2 + a suffices, for n that is large enough. [J

Lemma 13 For each 8 > 0 there exists ¢ > 0 such that when the S-process terminates then
the number of bins ever needed is at most cn and the number of random bits ever generated

18 at most enlnn.

Proof: The f-process terminates by the stage in which the inequality n < 2¥/# holds, so k
gets to be at most lgn. We partition the range [2, f1gn] of values of k into two subranges
and consider them separately.

First, when k ranges from 2 to lgn through the stages, then the numbers of needed bins
increase quadratically through the stages, because k£ is doubled with each transition to the
next stage. This means that the total number of all these bins is O(n). At the same time,
the number of random bits increases geometrically through the stages, so the total number
of random bits a processor uses is O(logn).

Second, when k ranges from Ign to flgn, the number of needed bins is at most n in
each stage. There are only lg(5 + 1) such stages, so the total number of all these bins is
lg(8+ 1) -n. At the same time, a processor uses at most 1gn random bits in each of these

stages. 0
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There is a direct correspondence between iterations of the outer repeat-loop and stages
of a B-process. The ith stage has the number k£ equal to the value of k during the ith iteration
of the outer repeat-loop of algorithm ARBITRARY-BOUNDED-MC, that is, we have k = 2°.
We map an execution of the algorithm into a corresponding execution of a S-process in order
to apply Lemmas 12 and 13 in the proof of the following Theorem, which summarizes the

performance of algorithm ARBITRARY-BOUNDED-MC and justifies that it is Monte Carlo.

Theorem 8 Algorithm ARBITRARY-BOUNDED-MC always terminates, for any 5 > 0. For
each a > 0 there exists B > 0 and ¢ > 0 such that the algorithm assigns unique names, works
in time at most cn, and uses at most cnlnn random bits, all this with probability at least

1 —n°.

Proof: The number of stages of the S-process with n balls is at most 1g(8lgn) = lg f+1glgn.
This is also an upper bound on the number of iterations of the main repeat-loop. We conclude
that the algorithm always terminates.

The number of bins available in a stage is an upper bound on the number of bins occupied
in this stage. The number of bins occupied in a stage equals the number of times the inner
repeat-loop is iterated, because executing instruction Pad <— bin eliminates one occupied bin.
It follows that the number of bins ever needed is an upper bound on time of the algorithm.
The number of iterations of the inner repeat-loop is executed is recorded in the variable
Last-Name, so the termination condition of the algorithm corresponds to the termination
condition of the [-process.

When the S-process is correct then this means that the processors obtain distinct names.
We conclude that Lemmas 12 and 13 apply when understood about the behavior of the
algorithm. This implies the following: the names are correct and execution terminates in

O(n) time while O(nlogn) bits are used, all this with probability that is at least 1 —n~%. O

Algorithm ARBITRARY-BOUNDED-MC is optimal with respect to the following perfor-

mance measures: the expected time O(n), by Theorem 2, the expected number of random
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bits @(nlogn), by Proposition 1, and the probability of error n=°), by Proposition 3.

7.2 Arbitrary with Unbounded Memory

We develop a naming algorithm for Arbitrary PRAM with an unbounded amount of
shared registers. The algorithm is called ARBITRARY-UNBOUNDED-MC.

The underlying idea is to parallelize the process of selection of names applied in Sec-
tion 7.1 in algorithm ARBITRARY-BOUNDED-MC so that multiple processes could acquire
information in the same round that later would allow them to obtain names. As algorithm
ARBITRARY-BOUNDED-MC used shared registers Pad and Last-Name, the new algorithm
uses arrays of shared registers playing similar roles. The values read-off from Last-Name
cannot be uses directly as names, because multiple processors can read the same values, so
we need to distinguish between these values to assign names. To this end, we assign ranks
to processors based on their lexicographic ordering by pairs of numbers determined by Pad
and Last-Name.

A pseudocode for algorithm ARBITRARY-UNBOUNDED-MC is given in Figure 7.2. It is
structured as a repeat-loop. In the first iteration, the parameter k equals 1, and in subsequent
ones is determined by iterations of an increasing integer-valued function r(k), which is a
parameter. We consider two instantiations of the algorithm, determined by r(k) = k + 1
and by r(k) = 2k. In one iteration of the main repeat-loop, a processor uses two variables
bin € [1,2%/(Bk)] and label € [1,2°*] which are selected independently and uniformly at
random from the respective ranges.

We interpret bin as a bin’s number and label as a label for a ball. Processors write their
values label into the respective bin by instruction Pad [bin| <— label and verify what value
got written. After a successful write, a processor increments Last-Name[bin| and assigns the
pair (bin, Last-Name [bin]) as its position. This is repeated Sk times by way of iterating the
inner for-loop. This loop has a specific upper bound Sk on the number of iterations because
we want to ascertain that there are at most Sk balls in each bin. The main repeat-loop

terminates when all values attempted to be written actually get written. Then processors
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Algorithm ARBITRARY-UNBOUNDED-MC

initialize k <1 /* initial approximation of lgn */
repeat

initialize All-Named < true

initialize position, < (0,0)

k < r(k)
bin, < random integer in [1,2%/(8k)] /* choose a bin for the ball x/
label, < random integer in [1, 2°¥] /% choose a label for the ball x/

for i+ 1 to Bk do
if position, = (0,0) then
Pad [bin,| + label,
if Pad|bin,| = label, then
Last-Name [bin,| - Last-Name [bin,| + 1
position, < (bin,,Last-Name [bin,])
if position, = (0,0) then
All-Named < false

until All-Named

name, < the rank of position,

Figure 7.2: A pseudocode for a processor v of an Arbitrary PRAM, when
the number of shared memory cells is unbounded. The variables Pad and Last-
Name are arrays of shared memory cells, the variable A11-Named is shared as
well. The private variable name stores the acquired name. The constant 5 > 0
and an increasing function r(k) are parameters.

assign themselves names according to the ranks of their positions. The array Last-Name is
assumed to be initialized to 0’s, and in each iteration of the repeat-loop we use a fresh region
of shared memory to allocate this array.

Balls into bins. We consider a related process of placing labeled balls into bins, which is
referred to as [-process. Such a process proceeds through stages and is parametrized by a
function r(k). In the first stage, we have k = 1, and given some value of k in a stage, the
next stage has this parameter equal to r(k). In a stage with a given k, we place n balls
into 2%/(Bk) bins, with labels from [1,2°*]. The selections of bins and labels are performed

independently and uniformly at random. A stage terminates the S-process when there are
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at most Sk labels of balls in each bin.

Lemma 14 The (-process always terminates.

Proof: The §-process terminates by a stage in which the inequality n < gk holds, because
n is an upper bound on the number of balls in a bin. This always occurs when function r(k)

is increasing. 0

We expect the [-process to terminate earlier, as the next Lemma states.

Lemma 15 For each a >0, if k <lgn — 2 and 5 > 1+ a then the probability of halting in

the stage is smaller than n=%, for sufficiently large n.

Proof: We show that when k is suitably small then the probability of at most Sk different
labels in each bin is small. There are n balls placed into 2¥/(8k) bins, so there are at least
5 1 halls in some bin, by the pigeonhole principle. We consider these balls and their labels.
The probability that all these balls have at most Sk labels is at most
(2/3"3) <Bk ) o < (62’8k>6k , (Bk)
Bk ) \ 28k Bk (251@)“*"

Bkn
E

— Ok “”(6%)

— e fﬁi ) Ea (7.5)

—a

We want to show that this is at most n=* We compare the logarithms (But the base of

logarithms!) of n=* and the right-hand side of (7.5), and want the following inequality to
hold:

ﬁk+<6k

~ Bk) (1g(Bk) — BF) < —algn ,
which is equivalent to the following inequality, by algebra:

U algn
2k = Bk — 1g(Bk) Bk(Bk —1g(Bk))

Observe now that, assuming 8 > a + 1, if k¥ < y/Ign then the right-hand side of (7.6) is at

(7.6)

most 2 + lgn while the left-hand side is at least y/n, and when /Ign < k < lgn — 2 then
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right-hand side of (7.6) is at most 3 while the left-hand side is at least 4, for sufficiently

large n. ([l

We say that a label collision occurs, in a configuration produced by the process, if some

bin contains two balls with the same label.

Lemma 16 For any a > 0, if k > %lgn and 8 > 4a + 7 then the probability of a label

collision 1s smaller than n=°.

Proof: The number of pairs of a bin number and a label is 2% - 2%% /(). It follows that the
probability of some two balls in the same bin obtaining different labels is at least

n2

21~ omer(BE)

(1—zk+ﬁ+/(5k))n—

by the Bernoulli’s inequality. So the probability that two different balls obtain the same
label is at most ZHB’;—Z/(%). We want the following inequality to hold
2

L
280k [(BK)

—a

This is equivalent to the inequality obtained by taking logarithms
(24 a)lgn < (1 + Bk —1g(Bk) ,

which holds when (2 + a)lgn < 2k, It follows that it is sufficient for k to satisfy

2(2+a)

k>
1+

lgn .

This inequality holds for k& > %lgn when 3 > 4a + 7. 0

We say that such a [-process is correct when upon termination no label collision occurs,

otherwise the process is incorrect.

Lemma 17 For any a > 0, there exists > 0 such that the [-process is incorrect with

probability that is at most n=%, for sufficiently large n.
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Proof: The [-process is incorrect when there is a label collision after the last stage. The
probability of the intersection of the events “#-process terminates” and “there are label col-
lisions” is bounded from above by the probability of any one of these events. Next we show
that, for each pair of k and n, some of these two events occurs with probability that is at
most n~%, for a suitable .

To this end we use Lemmas 15 and 16 in which we substitute 2a for a. We obtain that,
on the one hand, if £ < lgn — 2 and # > 1+ 2a then the probability of halting is smaller
than n2%, and, on the other hand, that if & > %lgn and 8 > 8a + 7 then the probability

2a

of a label collision is smaller than n=*¢. It follows that some of the two considered events

—2a

occurs with probability at most 2n™°* for sufficiently large § and any sufficiently large n.

This probability is at most n™¢, for sufficiently large n. 0J

Lemma 18 For any a > 0, there exists 5 > 0 and ¢ > 0 such that the following two facts
about the 3-process hold. Ifr(k) = k-+1 then at most cn/Inn bins are ever needed and cnIn®n
random bits are ever generated, each among these properties occurring with probability that

a

is at least 1 — n=*. If r(k) = 2k then at most cn®/Inn bins are ever needed and cnlnn

random bits are ever generated, each among these properties occurring with probability that

1s at least 1 — n~2.

Proof: We throw n balls into 2¥/(8k) bins. As k keeps increasing, then the probability of

termination increases as well, because both 2¥/(8k) and Bk increase as functions of k. Let

2n

- We want to show that no bin contains

us take k = 1+ lgn so that the number of bins is
more than Sk balls with a suitably small probability.

Let us consider a specific bin and let X be the number of balls in this bin. The expected
number of balls in the bin is y = % We use the Chernoff bound for a sequence of Bernoulli

trials in the form of

Pr(X > (1+¢e)u) < exp(—e?u/3) ,

which holds for 0 < e < 1, see [75]. Let us choose € = 3, so that 1 + ¢ = % and %u = %51{.



We obtain that

k
Pr(X > fk) < Pr(X > % - Bk) < exp(—;L : %) = exp(—;i4 (1+1gn)) ,

which can be made smaller than n=17¢ for a 3 sufficiently large with respect to a, and
sufficiently large n. Using the union bound, each of the n bins contains at most Sk balls
with probability at most n~*. This implies that termination occurs as soon as k reaches or
surpasses k = 1 + lgn, with the corresponding large probability 1 — n=%.

In the case of r(k) = k+ 1, the consecutive integer values of k are tried, so the S-process
terminates by the time £ = 1 +1gn, and for this k£ the number of bins needed is ©(n/logn).
To choose a bin for any value of k requires at most k£ random bits, so implementing such
choices for k =1,2,...,1+ lgn requires (9(10g2 n) random bits per processor.

In the case of r(k) = 2k, the S-process terminates by k equal to 2(1 +1gn), and for this
value of k the number of bins needed is ©(n?/logn). As k progresses through consecutive
powers of 2, the sum of these numbers is a sum of a geometric progression, and so is of
the order of the maximum term, that is ©(logn), which is the number of random bits per

processor. [

There is a direct correspondence between iterations of the outer repeat-loop of algorithm
ARBITRARY-UNBOUNDED-MC and stages of the S-process. We map an execution of the
algorithm into a corresponding execution of a S-process in order to apply Lemmas 17 and 18
in the proof of the following Theorem, which summarizes the performance of algorithm

ARBITRARY-UNBOUNDED-MC and justifies that it is Monte Carlo.

Theorem 9 Algorithm ARBITRARY-UNBOUNDED-MC always terminates, for any 8 > 0.
For each a > 0 there exists 5 > 0 and ¢ > 0 such that the algorithm assigns unique names
and has the following additional properties with probability 1 —n=*. If r(k) =k + 1 then at
most en/Inn memory cells are ever needed, cn In? n random bits are ever generated, and the
algorithm terminates in time O(log®n). If r(k) = 2k then at most cn?/Inn memory cells

are ever needed, cnlnn random bits are ever generated, and the algorithm terminates in time
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O(logn).

Proof: The algorithm always terminates by Lemma 14. By Lemma 17, the algorithm assigns
correct names with probability that is at least 1 —n~%. The remaining properties follow from
Lemma 18, because the number of bins is proportional to the number of memory cells and

the number of random bits per processor is proportional to time. [l

The instantiations of algorithm ARBITRARY-UNBOUNDED-MC are close to optimality
with respect to some of the performance metrics we consider, depending on whether (k) =
k+1orr(k) =2k If r(k) = k + 1 then the algorithm’s use of shared memory would be
optimal if its time were O(logn), by Theorem 2, but it may miss space optimality by at
most a logarithmic factor, since the algorithm’s time is O(log®n). Similarly, if (k) = k + 1
then the number of random bits ever generated O(nlog® n) misses optimality by at most a
logarithmic factor, by Proposition 1. On the pother hand, if r(k) = 2k then the expected
time O(logn) is optimal, by Theorem 3, the expected number of random bits O(nlogn) is

optimal, by Proposition 1, and the probability of error n=°®)

is optimal, by Proposition 3,
but the amount of used shared memory misses optimality by at most a polynomial factor,

by Theorem 2.

7.3 Common with Bounded Memory

Algorithm CoMMON-BOUNDED-MC solves the naming problem for Common PRAM
with a constant number of shared read-write registers. To make its exposition more modular,
we use two procedures ESTIMATE-SIZE and EXTEND-NAMES. Procedure ESTIMATE-SIZE
produces an estimate of the number n of processors. Procedure EXTEND-INAMES is iterated
multiple times, each iteration is intended to assign names to a group of processors. This is
accomplished by the processors selecting integer values at random, interpreted as throwing
balls into bins, and verifying for collisions. Each selection of a bin is followed by a collision
detection. A ball placement without a detected collision results in a name assigned, otherwise

the involved processors try again to throw balls into a range of bins. The effectiveness of
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the algorithm hinges of calibrating the number of bins to the expected number of balls to be
thrown.

Algorithm CoMMON-BOUNDED-MC has its pseudocode in Figure 7.5. The private vari-
ables have the following meaning: size is an approximation of the number of processors n,
and number-of-bins determines the size of the range of bins. The pseudocodes of procedures
ESTIMATE-S1ZE and EXTEND-NAMES are given in Figures 7.3 and 7.4, respectively.

Balls into bins for the first time. The role of procedure ESTIMATE-SIZE, when called
by algorithm CoMMON-BOUNDED-MC, is to estimate the unknown number of processors n,
which is returned as size, to assign a value to variable number-of-bins, and assign values
to each private variable bin, which indicates the number of a selected bin in the range
[1, number-of-bins|. The procedure tries consecutive values of k as approximations of 1g n.
For a given k, an experiment is carried out to throw n balls into k2% bins. The execution
stops when the number of occupied bins is at most 2%, and then 3 - 2* is treated as an
approximation of n and k2* is the returned number of bins.

Lemma 19 For n > 20 processors, procedure ESTIMATE-SIZE returns an estimate size of
n such that the inequality size < 6n holds with certainty and the inequality n < size holds

with probability 1 — 27

Proof: The procedure returns 3 - 2¥, for some integer £ > 0. We interpret selecting of values
for variable bin in an iteration of the main repeat-loop as throwing n balls into k2" bins;
here k = 7 4+ 2 in the jth iteration of this loop, because the smallest value of k is 3. Clearly,
n is an upper bound on the number of occupied bins.

If n is a power of 2, say n = 2¢, then the procedure terminates by the time i = k, so that
2% < 271 = 2n. Otherwise, the maximum possible k equals [lgn], because olen) <« p <
2Men] - This gives 2M'871 = 2llen]+1 < 9 We obtain that the inequality 2¥ < 2n occurs with
certainty, and so 3 - 2¥ < 6n does.

Now we estimate the lower bound on 2%. Consider k such that 2* < 2. T hen n balls fall
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Procedure ESTIMATE-SIZE

initialize k < 2 /* initial approximation of lgn x/
repeat

k<« k+1

bin, < random integer in [1, k 2]

initialize Nonempty-Bins < 0

for i<+ 1 to k2F do

if bin, =7 then
Nonempty-Bins <— Nonempty-Bins 4 1

until Nonempty-Bins < 2F

return (3.2 k2F) /* 3-2Fis size, k2% is number-of-bins x/

Figure 7.3: A pseudocode for a processor v of a Common PRAM. This
procedure is invoked by algorithm CoMMON-BOUNDED-MC in Figure 7.5.
The variable Nonempty-Bins is shared.

into at most 2¥ bins with probability that is at most

k2" 28 \n ek2F\2" 1 2k —n ok 1 ok _p n/37.—2n/3
(zk)<@) <(G0) @@=t @)

The right-hand side of (7.7) is at most e~™/% when the inequality k& > e holds. The smallest
k considered in the pseudocode in Figure 7.3 is K = 3 > e. The inequality k > e is consistent
with 2F < z when n > 20. The number of possible values for & is O(logn) so the probability
of the procedure returning for 2% < 2 is e /% . O(logn) = 279", O

Procedure EXTEND-NAMES’s behavior can also be interpreted as throwing balls into
bins, where a processor v’s ball is in a bin # when bin, = z. The procedure first verifies the
suitable range of bins [1, number-of-bins| for collisions. A verification for collisions takes
either just a constant time or O(logn) time.

A constant verification occurs when there is no ball in the considered bin i, which is
verified when the line “if bin, = ¢ for some processor x” in the pseudocode in Figure 7.4 is

to be executed. Such a verification is performed by using a shared register initialized to 0,
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Procedure EXTEND-NAMES

initialize Collision-Detected <+ collision, < false
for ¢ «+ 1 to number-of-bins do

if bin, = for some processor x then
if bin, = ¢ then
for j <« 1to flgsize do

if VERIFY-COLLISION then
Collision-Detected < collision, < true

if not collision, then
Last-Name < Last-Name + 1
name, < Last-Name
bin, «+ 0

if (number-of-bins > size) then

number-of-bins < size

if collision, then

bin, < random integer in [1, number-of-bins]

Figure 7.4: A pseudocode for a processor v of a Common PRAM. This
procedure invokes procedure VERIFY-COLLISION, whose pseudocode is in Fig-
ure 4.1, and is itself invoked by algorithm CoOMMON-BOUNDED-MC in Fig-
ure 7.5. The variables Last-Name and Collision-Detected are shared. The
private variable name stores the acquired name. The constant 8 > 0 is to be
determined in analysis.

into which all processors v with bin, = ¢ write 1, then all the processors read this register,
and if the outcome of reading is 1 then all write 0 again, which indicates that there is at
least one ball in the bin, otherwise there is no ball.

A logarithmic-time verification of collision occurs when there is some ball in the cor-
responding bin. This triggers calling procedure VERIFY-COLLISION precisely [lgn times;
notice that this procedure has the default parameter 1, as only one bin is verified at a time.
Ultimately, when a collision is not detected for some processor v whose ball is the bin, then
this processor increments Last-Name and assigns its new value as a tentative name. Other-

wise, when a collision is detected, processor v places its ball in a new bin when the last line
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in Figure 7.4 is executed. To prepare for this, the variable number-of-bins may be reset.
During one iteration of the main repeat-loop of the pseudocode of algorithm COMMON-
BouNDED-MC in Figure 7.5, the number of bins is first set to a value that is ©(nlogn)
by procedure ESTIMATE-SIZE. Immediately after that, it is reset to ©(n) by the first call
of procedure EXTEND-NAMES, in which the instruction number-of-bins < size is per-
formed. Here, we need to notice that number-of-bins = O(nlogn) and size = ©(n), by
the pseudocodes in Figures 7.3 and 7.5 and Lemma 19.

Balls into bins for the second time. In the course of analysis of performance of procedure
EXTEND-NAMES, we consider a balls-into-bins process; we call it simply the ball process. It
proceeds through stages so that in a stage we have a number of balls which we throw into
a number of bins. The sets of bins used in different stages are disjoint. The number of
balls and bins used in a stage are as determined in the pseudocode in Figure 7.4, which
means that there are n balls and the numbers of bins are as determined by an execution of
procedure ESTIMATE-SIZE, that is, the first stage uses number-of-bins bins and subsequent
stages use size bins, as returned by ESTIMATE-SIZE. The only difference from the actions of
procedure EXTEND-NAMES is that collisions are detected with certainty in the ball process
rather than being tested for, which implies that the parameter § is not involved. The ball
process terminates in stage lg size or earlier in the first stage in which no multiple bins are

produced, when such a stage occurs.

Lemma 20 The ball process results in all balls ending singleton in their bins and the number
of times a ball is thrown, summed over all the stages, being O(n), both events occurring with

probability 1 — n~oegn)

Proof: The argument leverages the property that, in each stage, the number of bins exceeds
the number of balls by at least a logarithmic factor. We will denote the number of bins in a
stage by m. This number will take on two values, first m = k2* returned as number-of-bins

by procedure ESTIMATE-SIZE and then m = 3 - 2F returned as size by the same procedure
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ESTIMATE-SIZE, for k > 3. Because m = k2¥ in the first stage, and also size = 3 -2F > n,
by Lemma 19, we obtain that m > 2 1g 2 in the first stage, and that m is at least n in the
following stages, with probability exponentially close to 1.

In the first stage, we throw £; = n balls into at least m = Zlg% bins, with large
probability. Conditional on the event that there are at least these many bins, the probability

that a given ball ends the stage as a singleton in a bin is

l1—1 _ _
m~i(1—l)1 >1—£1 Log_n-ty,_ ¢4

m m - m lg? S lgn

for sufficiently large n, where we used the Bernoulli’s inequality. Let Y; be the number of
singleton balls in the first stage. The expectancy of Y] satisfies
E [i] zél(l—lgin) .

To estimate the deviation of Y7 from its expected value E [Y;] we use the bounded differences
inequality [71, 75]. Let B, be the bin of ball b;, for 1 < j < ¢;. Then Y; is of the form
Y1 = h(By,..., By, ), where h satisfies the Lipschitz condition with constant 2, because
moving one ball to a different bin results in changing the value of h by at most 2 with
respect to the original value. The bounded-differences inequality specialized to this instance

is as follows, for any d > 0:
Pr(Y; < E[Y;] —dy/f1) < exp(—d?/8) . (7.8)

We employ d = lgn, which makes the right-hand side of (7.8) asymptotically equal to
n~oen) - The number of balls ¢, eligible for the second stage can be estimated as follows,

this bound holding with probability 1 — n~®0ogn).

461 4£1 lg2n 5%0)
by < — +1 (= 1 < 7.9
2_lgnjL g/ lgn( +4\/£1) “lgn’ (7.9)

for sufficiently large n.
In the second stage, we throw ¢, balls into m > n bins, with large probability. Condi-

tional on the bound (7.9) holding, the probability that a given ball ends up as a singleton in
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a bin is

1 1 \f—1 ly — 1 15)
(1 ) >1-— 2 >1- =

- — Y

m lgn
where we used the Bernoulli’s inequality. Let Y5 be the number of singleton balls in the

second stage. The expectancy of Y; satisfies

E[i@]zez(l—lgin).

To estimate the deviation of Y, from its expected value E [Y5], we again use the bounded

differences inequality, which specialized to this instance is as follows, for any d > 0:
Pr(Y, < E[Y3] — dv/63) < exp(—d?/8) . (7.10)

We again employ d = lgn, which makes the right-hand side of (7.10) asymptotically equal

to n=%1°e™)  The number of balls /5 eligible for the third stage can be bounded from above
as follows, which holds with probability 1 — n~?(ogn) .
562 562 g’ n 6n
by o+ ( ) < , 7.11

for sufficiently large n.
Next, we generalize these estimates. In stages i, for i > 2, among the first O(logn) ones,
we throw balls into m > n bins with large probability. Let ¢; be the number of balls eligible

for such a stage 7. We show by induction that ¢;, for ¢ > 3, can be estimated as follows:

0 < o .93 (7.12)
T lg%n

with probability 1 — n=20°e") The estimate (7.11) provides the base of induction for ¢ = 3.
In the inductive step, we assume (7.12), and consider what happens during stage ¢ > 3 in
order to estimate the number of balls eligible for the next stage ¢ + 1.

In stage 2, we throw ¢; balls into m > n bins, with large probability. Conditional on the

bound (7.12), the probability that a given ball ends up single in a bin is

—(1- = > 1 —
m

9

1 141 (;—1 623
TREET 2
m m lg“n
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by the inductive assumption, where we also used the Bernoulli’s inequality. If Y; is the

number of singleton balls in stage 4, then its expectation E [Y;] satisfies

0 23i> (7.13)

mmzaﬁ—lgn

To estimate the deviation of Y; from its expected value E[Y;], we again use the bounded

differences inequality, which specialized to this instance is as follows, for any d > 0:
Pr(Y; <E[Y;] — d\/4;) < exp(—d?/8) . (7.14)

We employ d = lgn, which makes the right-hand side of (7.14) asymptotically equal to
n~%0gn) " The number of balls £;,; eligible for the next stage i + 1 can be estimated from

above in the following way, the estimate holding with probability 1 — n~0ogn)

6-25¢. 4
b1 < V. +1g ”\/Z
g'n
6-2571. ¢ L4 _1/2
= 1+ =231g°n - ¢, />
lg% n ( 6 s !
6 - 93—i 6 ) 2(1'73)/21 4
<——- 2n .93, (1 4 #)
lgn  lg°n 6v6n
. . 93—i (3—1)/2 152
< 6271 '23_1'<6 3 +2 Ig n>
lg“n lg"n Vbn
6 . 6 lg°
< 2” 2371 ( } + g n)
lg“n lg"n  6n
S 62”’ 23—7,—1 ’
lg“n

for sufficiently large n that does not depend on i. For the event Y; < E[Y;] — dv/?; in the

estimate (7.14) to be meaningful, it is sufficient if the following estimate holds:

lgn -/t = o(E[Yy)) .

This is the case as long as ¢; > lg®n, because E[Y;] = £;(1 + o(1)) by (7.13).

To summarize at this point, as long as ¢; is sufficiently large, that is, ¢; > lg°n, the
number of eligible balls decreases by at least a factor of 2 with probability that is at least
1 — n=20en) Tt follows that the total number of eligible balls, summed over these stages, is

O(n) with this probability.
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Algorithm CoMMON-BOUNDED-MC

repeat

initialize Last-Name < 0
(size, number-of-bins) < ESTIMATE-SIZE
for /< 1 to lgsize do

EXTEND-NAMES
if not Collision-Detected then return

Figure 7.5: A pseudocode for a processor v of a Common PRAM, where
there is a constant number of shared memory cells. Procedures ESTIMATE-SIZE
and EXTEND-NAMES have their pseudocodes in Figures 7.3 and 7.4, respec-
tively. The variables Last-Name and Collision-Detected are shared.

After at most 1g n such stages, the number of balls becomes at most lg® n with probability

—Q(logn)

1—n . It remains to consider the stages when ¢; < lg®n, so that we throw at most

lg® n balls into at least n bins. They all end up in singleton bins with a probability that is

at least

(n—1g3”>1g3n><1 lg3”)lg3n>1 1g°n

n n n

Y

by the Bernoulli’s inequality. So the probability of a collision is at most %. One stage
without any collision terminates the process. If we repeat such stages lgn times, without
even removing singleton balls, then the probability of collisions occurring in all these stages

1S at most

6 n
<1g TL)Ig _ nfﬁ(logn) )
n

The number of eligible balls summed over these final stages is only at most 1g"n = o(n). O
The following Theorem summarizes the performance of algorithm CoMMON-BOUNDED-

MC (see the pseudocode in Figure 7.5) as a Monte Carlo one.

Theorem 10 Algorithm COMMON-BOUNDED-MC terminates almost surely. For each a >
0 there exists B > 0 and ¢ > 0 such that the algorithm assigns unique names, works in time
at most ecnlnn, and uses at most cnlnn random bits, each among these properties holding

a

with probability at least 1 — n~%.
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Proof: One iteration of the main repeat-loop suffices to assign names with probability
1 —n~%0en) by Lemma 20. This means that the probability of not terminating by the ith
iteration is at most (n~*1°8™)7 which converges to 0 with i growing to infinity.

The algorithm returns duplicate names only when a collision occurs that is not detected
by procedure VERIFY-COLLISION. For a given multiple bin, one iteration of this procedure
does not detect collision with probability at most 1/2, by Lemma 1. Therefore §lgsize
iterations do not detect collision with probability O(n=%/2), by Lemma 19. The number
of nonempty bins ever tested is at most dn, for some constant d > 0, by Lemma 20, with

% on the

the suitably large probability. Applying the union bound results in estimate n~
probability of error for sufficiently large 5.

The duration of an iteration of the inner for-loop is either constant, then we call is short,
or it takes time O(logsize), then we call it long. First, we estimate the total time spent
on short iterations. This time in the first iteration of the inner for-loop is proportional to
number-of-bins returned by procedure ESTIMATE-SIZE, which is at most 6n - 1g(6n), by
Lemma 19. Each of the subsequent iterations takes time proportional to size, which is
at most 6n, again by Lemma 19. We obtain that the total number of short iterations is
O(nlogn) in the worst case. Next, we estimate the total time spent on long iterations. One
such an iteration has time proportional to lg size, which is at most lg 6n with certainty. The

Qlogn) ' for some constant

number of such iterations is at most dn with probability 1 — n~
d > 0, by Lemma 20. We obtain that the total number of long iterations is O(nlogn), with
the correspondingly large probability. Combining the estimates for short and long iterations,
we obtain O(nlogn) as a bound on time of one iteration of the main repeat-loop. One such
an iteration suffices with probability 1 — n~*1°¢") by Lemma 20.

Throwing one ball uses O(logn) random bits, by Lemma 19. The number of throws is

O(n) with the suitably large probability, by Lemma 20. O

Algorithm CoOMMON-BOUNDED-MC is optimal with respect to the following perfor-

mance metrics: the expected time O(nlogn), by Theorem 1, the number of random bits

83



O(nlogn), by Proposition 1, and the probability of error =" by Proposition 3.

7.4 Common with Unbounded Memory

We consider naming on a Common PRAM in the case when the amount of shared
memory is unbounded. The algorithm we propose, called COMMON-UNBOUNDED-MC, is
similar to algorithm CoOMMON-BOUNDED-MC in Section 7.3, in that it involves a randomized
experiment to estimate the number of processors of the PRAM. Such an experiment is then
followed by repeatedly throwing balls into bins, testing for collisions, and throwing again if
a collision is detected, until eventually no collisions are detected.

Algorithm COMMON-UNBOUNDED-MC has its pseudocode given in Figure 7.7. The
algorithm is structured as a repeat loop. An iteration starts by invoking procedure GAUGE-
S1zE, whose pseudocode is in Figure 7.6. This procedure returns size as an estimate of the
number of processors n. Next, a processor chooses randomly a bin in the range [1, 3size].
Then it keeps verifying for collisions flg size, in such a manner that when a collision is de-
tected then a new bin is selected form the same range. After such 1g size verifications and
possible new selections of bins, another (lg size verifications follow, but without changing
the selected bins. When no collision is detected in the second segment of 3 lgsize verifica-
tions, then this terminates the repeat-loop, which follows by assigning to each station the
rank of the selected bin, by a prefix-like computation. If a collision is detected in the second
segment of #lg size verifications, then this starts another iteration of the main repeat-loop.

Procedure GAUGE-S1ZE-MC returns an estimate of the number n of processors in the
form 2%, for some positive integer k. It operates by trying various values of k, and, for
a considered k, by throwing n balls into 2* bins and next counting how many bins contain
balls. Such counting is performed by a prefix-like computation, whose pseudocode is omitted
in Figure 7.6. The additional parameter 8 > 0 is a number that affects the probability of
underestimating n.

The way in which selections of numbers k is performed is controlled by function r(k),

which is a parameter. We will consider two instantiations of this function: one is func-
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Procedure GAUGE-S1ZE-MC

k<1
repeat

k< r(k)

bin, < random integer in [1,2"]

until the number of selected values of variable bin is < 2% /5

return ([2571/8])

Figure 7.6: A pseudocode for a processor v of a Common PRAM, where the
number of shared memory cells is unbounded. The constant S > 0 is the same
parameter as in Figure 7.7, and an increasing function r(k) is also a parameter.

tion r(k) = k + 1 and the other is function r(k) = 2k.

Lemma 21 Ifr(k) = k+1 then the value of size as returned by GAUGE-SIZE-MC satisfies
size < 2n with certainty and the inequality size > n holds with probability 1 — 3~™/3.

If r(k) = 2k then the value of size as returned by GAUGE-SIZE-MC satisfies size <

28n2 with certainty and size > Bn?/2 with probability 1 — 3~/3.

Proof: We model procedure’s execution by an experiment of throwing n balls into 2* bins.
If the parameter function r(k) is r(k) = k + 1 then we consider all possible consecutive
values of k starting from k& = 2, such that £k = ¢ + 1 in the ith iteration of the repeat-loop.
If parameter (k) is function r(k) = 2k then k takes on only the powers of 2.

There are at most n bins occupied in any such an experiment. Therefore, the procedure
returns by the time the inequality 2¥/3 > n holds and k is considered as determining the
range of bins. It follows that if 7(k) = k + 1 then the returned value [251/3] is at most 2n.
If r(k) = 2k then the worst error in estimating occurs when 2°/3 = n — 1 for some 7 that is
a power of 2. Then the returned value is 2% /8 = (8(n — 1))?/3, which is at most 28n?, this
occurring with probability 1 — 5~/3.

Given 2* bins, we estimate the probability that the number of occupied bins is at most
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2k /8. Tt is

(o) o) < ()™ e = e

Next, we identify a range of values of k for which this probability is exponentially close to 0
with respect to n.

To this end, let 0 < p < 1 and let us consider the inequality

(eB)? /7. g™ < p" . (7.15)

It is equivalent to the following one

k

%(1—1—1115) —nlnf<nlnp,

by taking logarithms of both sides. This in turn is equivalent to

k

2 1
E(1+1n@)<n(1nﬁ—1n;> . (7.16)

Let us choose p = 372 in (7.16). Then (7.15) specialized to this particular p is equivalent

In8
2
Inj g s

- —_ <_./n/’
2 1+Inpg 2

to the following inequality %( 1+1npB) < n=>. This in turn leads to the estimate

ok <

which means 27! /3 < n. When k satisfies this inequality then the probability of returning

n/2

is at most S~"/*. There are O(logn) such values of k considered by the procedure, so it

returns for one of them with probability at most
Ologn) - =% < "%,

for sufficiently large n.

Therefore, with probability at least 1 — 37"/3, the returned value [25+1/3] is at least as
large as determined the first considered k that satisfies 2¥71/8 > n. If 7(k) = k + 1 then all
the possible exponents k are considered, so the returned value [2¥71/3] is at least n with
probability 1— 73, If r(k) = 2k then the worst error of estimating n occurs when 27+! /3 =
n—1 for some i that is a power of 2. Then the returned value is 2%*1 /8 = 2-(8(n—1)/2)?/8,

which is is at least An?/2, this occurring with probability 1 — 5~™/3. O
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Algorithm CoMMON-UNBOUNDED-MC

repeat

size <+~ GAUGE-SIZE
bin, < random integer in [1, 3 size]
for i < 1 to flgsize do
if VERIFY-COLLISION (bin,) then
bin, < random number in [1,3 size]
Collision-Detected <« false
for i+ 1 to flgsize do

if VERIFY-COLLISION (bin,) then
Collision-Detected < true

until not Collision-Detected

name, < the rank of bin, among selected bins

Figure 7.7: A pseudocode for a processor v of a Common PRAM, where
the number of shared memory cells is unbounded. The constant 5 > 0 is a
parameter impacting the probability of error. The private variable name stores
the acquired name.

We discuss performance of algorithm COMMON-UNBOUNDED-MC (see the pseudocode
in Figure 7.7) by referring to analysis of a related algorithm COMMON-UNBOUNDED-LV
given in Section 6.4. We consider a [-process with verifications, which is defined as follows.
The process proceeds through stages. The first stage starts with placing n balls into 3 size
bins. For any of subsequent stages, for each multiple bins and for each ball in such a bin we
perform a Bernoulli trial with the probability % of success, which represents the outcome of
procedure VERIFY-COLLISION. A success in a trial is referred to as a positive verification
otherwise it is a negative one. If at least one positive verification occurs for a ball in a
multiple bin then all the balls in this bin are relocated in this stage to bins selected uniformly
at random and independently for each such a ball, otherwise the balls stay put in this bin

until the next stage. The process terminates when all balls are singleton.

Lemma 22 For any number a > 0 there exists 5 > 0 such that the 5-process with verifica-
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tions terminates within Blgn stages with all of them comprising the total of O(n) ball throws

a

with probability at least 1 — n~%.

Proof: We use the respective Lemma 11 in Section 6.4. The constant 3 determining our S-
process with verifications corresponds to 1 + 3 in Section 6.4. The corresponding [-process
in verifications considered in Section 6.4 is defined by referring to known n. We use the
approximation size instead, which is at least as large as n with probability 1 — 5~"/3, by
Lemma 21 just proved. By Section 6.4, our S-process with verifications does not terminate

~2¢ and the inequality size >

within flgn stages when size > n with probability at most n
n does not hold with probability at most 3="/3. Therefore the conclusion we want to prove
does not hold with probability at most n=2% + 5~/3, which is at most n=2* for sufficiently

large n. U

The following Theorem summarizes the performance of algorithm CoMMON-UNBOUNDED-
MC (see the pseudocode in Figure 7.7) as a Monte Carlo one. Its proof relies on map-
ping an execution of the S-process with verifications on executions of algorithm COMMON-

UNBOUNDED-MC in a natural manner.

Theorem 11 Algorithm COMMON-UNBOUNDED-MC terminates almost surely, for suffi-

ciently large B. For each a > 0 there exists f > 0 and ¢ > 0 such that the algorithm

assigns unique names and has the following additional properties with probability 1 — n=.

If r(k) = k + 1 then at most cn memory cells are ever needed, cnln®n random bits are

ever generated, and the algorithm terminates in time O(log>n). If r(k) = 2k then at most
2

cn® memory cells are ever needed, cnlnn random bits are ever generated, and the algorithm

terminates in time O(logn).

Proof: For a given a > 0, let us take 3 that exists by Lemma 22. When the -process with
verifications terminates then this models assigning unique names by the algorithm. It follows
that one iteration of the repeat-loop results in algorithm terminating with proper names

assigned with probability 1 — n~%. One iteration of the main repeat-loop does not result in
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@ so 1 iterations are not sufficient to terminate with

termination with probability at most n~
probability at most n~%. This converges to 0 with increasing 7 so the algorithm terminates
almost surely.

The performance metrics rely mostly on Lemma 21. We consider two cases, depending
on which function r(k) is used.

If r(k) = k4 1 then procedure GAUGE-SIZE-MC considers all the consecutive values
of k up to lgn, and for each such k, throwing a ball requires k£ random bits. We obtain
that procedure GAUGE-SIZE-MC uses O(nlog®n) random bits. Similarly, to compute the
number of selected values in an iteration of the main repeat-loop of this procedure takes time
O(k), for the corresponding k, so this procedure takes O(log?n) time. The value of size
satisfies size < 2n with certainty. Therefore, O(n) memory registers are ever needed and
one throw of a ball uses O(log n) random bits, after size has been computed. It follows that
one iteration of the main repeat-loop of the algorithm, after procedure GAUGE-S1ZE-MC
has been completed, uses O(nlogn) random bits, by Lemmas 21 and 22, and takes O(log n)
time. Since one iteration of the main repeat-loop suffices with probability 1 —n~%, the overall
time is dominated by the time performance of procedure GAUGE-SIZE-MC.

If 7(k) = 2k then procedure GAUGE-SIZE-MC considers all the consecutive powers of 2
as values of k up to lg n, and for each such k, throwing a ball requires k random bits. Since the
values k form a geometric progression, procedure GAUGE-SIZE-MC uses O(logn) random
bits per processor. Similarly, to compute the number of selected values in an iteration of the
main repeat-loop of this procedure takes time O(k), for the corresponding k that increase
geometrically, so this procedure takes O(logn) time. The value of size satisfies size < 2n
with certainty. By Lemma 21, O(n?) memory registers are ever needed, so one throw of
a ball uses O(logn) random bits. One iteration of the main repeat-loop, after procedure
GAUGE-S1ZE-MC has been completed, uses O(nlogn) random bits, by Lemmas 21 and 22,

and takes O(logn) time. O
The instantiations of algorithm CoMMON-UNBOUNDED-MC are close to optimality with

89



respect to some of the performance metrics we consider, depending on whether r(k) = k+ 1
or r(k) = 2k. If r(k) = k+ 1 then the algorithm’s use of shared memory would be optimal if
its time were O(logn), by Theorem 2, but it misses space optimality by at most a logarithmic
factor, since the algorithm’s time is O(log®n). Similarly, for this case of (k) = k + 1, the
number of random bits ever generated O(nlog® n) misses optimality by at most a logarithmic
factor, by Proposition 1. In the other case of r(k) = 2k, the expected time O(logn) is
optimal, by Theorem 3, the expected number of random bits O(nlogn) is optimal, by

o(1)

Proposition 1, and the probability of error n~ is optimal, by Proposition 3, but the amount

of used shared memory misses optimality by at most a polynomial factor, by Theorem 3.

7.5 Conclusion

We considered four variants of the naming problem for an anonymous PRAM when the
number of processors n is unknown and developed Monte Carlo naming algorithms for each
of them. The two algorithms for a bounded number of shared register are provably optimal
with respect to the following three performance metrics: expected time, expected number of

generated random bits and probability of error.
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8. Naming a Channel with Beeps

In this section, we consider anonymous channel with beeping. We present names can be
assigned to the anonymous stations by a Las Vegas and a Monte Carlo naming algorithms.
8.1 A Las Vegas Algorithm

We give a Las Vegas naming algorithm for the case when n is known. The idea is to have
stations choose rounds to beep from a segment of integers. As a convenient probabilistic
interpretation, these integers are interpreted as bins, and after selecting a bin a ball is
placed in the bin. The algorithm proceeds by considering all the consecutive bins. First, a
bin is verified to be nonempty by making the owners of the balls in the bin beep. When
no beep is heard then the next bin is considered, otherwise the nonempty bin is verified
for collisions. Such a verification is performed by O(logn) consecutive calls of procedure
DETECT-COLLISION. When a collision is not detected then the stations that placed their
balls in this bin assign themselves the next available name, otherwise the stations whose
balls are in this bin place their balls in a new set of bins. When each station has a name
assigned, we verify if the maximum assigned name is n. If this is the case then the algorithm
terminates, otherwise we repeat. The algorithm is called BEEP-NAMING-LV, its pseudocode
is in Figure 8.1.

Algorithm BEEP-NAMING-LV is analyzed by modeling its executions by a process of
throwing balls into bins, which we call the ball process. The process proceeds through stages.
There are n balls in the first stage. When a stage begins and there are some 7 balls eligible
for the stage then the number of used bins is i1gn. Each ball is thrown into a randomly
selected bin. Next, balls that are singleton in their bins are removed and the remaining balls
that participated in collisions advance to the next stage. The process terminates when no
eligible balls remain.

Lemma 23 The number of times a ball is thrown into a bin during an execution of the ball

process that starts with n balls is at most 3n with probability at least 1 — e~™/*,

Proof: In each stage, we throw some k balls into at least klgn bins. The probability that
91



Algorithm BEEP-NAMING-LV

repeat

counter <— 0 ; left < 1 ; right < nlgn ; name, < null
repeat

slot, <« random number in the interval [left,right]
for ¢ <— left to right do
if ¢ = slot, then
beep
if a beep was just heard then
collision < false
for 7+ 1to flgn do
if DETECT-COLLISION then collision ¢ true
if not collision then
counter < counter + 1
name, < counter
if name, = null then beep
if a beep was just heard then
left < counter
right < (n — counter)lgn
until no beep was heard in the previous round
until counter =n

Figure 8.1: A pseudocode for a station v. The number of stations n is
known. Constant 8 > 1 is a parameter determined in the analysis. Procedure
DETECT-COLLISION has its pseudocode in Figure 4.2. The variable name is to
store the assigned identifier.

a given ball ends up singleton in a bin is at least

k 1 1
klgn lgn

9

which we denote as p. A ball is thrown repeatedly in consecutive iterations until it lands
single in a bin. Our immediate concern is the number of trials to have all balls as singletons
in their bins.

Suppose that we perform some m independent Bernoulli trials, each with probability p
of success, and let X be the number of successes. We show next that m = ©(n) suffices with

large probability to have the inequality X > n.
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The expected number of successes is E [X] = ¢ = pm. We use the Chernoff bound in
the form

Pr(X < (1 —e)u) < e =H? (8.1)

for any 0 < e < 1; see [77]. It suffices to have the inequality (1 — &) > n. Let us set € = £,
so that it suffices to have u > 2n or pm > 2n, which is extended into the following form:
1
(1-==)-m=2n. (8.2)
lgn
If we choose m = 3n then inequality (8.2) holds for sufficiently large n.
The probability that this inequality (8.2) does not hold is estimated from above by (8.1).

Here we have that > 2n so the right-hand side of (8.1) is e™™/4. O

We proceed to Theorem 12, which summarizes all the good properties of algorithm
BEEP-NAMING-LV, in particular that the algorithm is Las Vegas. In the proof, we model
executions of the algorithm as that of the ball process starting with n balls. The main
difference between the ball process and the algorithm is that collisions of balls in bins are
detected with certainty, by the specification of the process, while in the algorithm collisions

between tentative names might be overlooked with some positive probability.

Theorem 12 Algorithm BEEP-NAMING-LV, for any 8 > 0, terminates almost surely and
there is mo error when it terminates. For each a > 0, there exists § > 1 and ¢ > 0 such that
the algorithm assigns unique names, works in time at most cnlgn, and uses at most cnlgn

a

random bits, all these properties holding with probability at least 1 — n~%, for sufficiently

large n.

Proof: Consider an iteration of the main repeat-loop. An error can occur in this iteration
only when there is a collision that is not detected by procedure DETECT-COLLISION in none
of its Blgn calls. Such an error results in duplicate names, so that the number of assigned
different names is smaller than n. The maximum name assigned in an iteration is the value
of the variable counter, which has the same value at each station. The algorithm terminates

93



by having an iteration that produces counter = n, but then there are no repetitions among
the names, and so there is no error.

Next we show that termination is a sure event. Consider an iteration of the main repeat-
loop. There are n balls and each of them is kept thrown until either it is not involved in a
collision or there is a collision but it is not detected. Eventually each ball is left to reside in
its bin with probability 1. This means that each iteration ends almost surely.

We introduce the notation for two events in an iteration of the main repeat-loop. Let
A be the event that there is a collision that passes undetected. The iteration fails to assign
proper names if and only if event A holds. Let B be the event that the total number of
throwing balls into bins is at most 3n. We denote by —FE the complements of an event F.
We have that Pr(-B) < e /4, by Lemma 23.

When a ball lands in a bin then it is verified for a collision Slgn times. If there is a
collision then it passes undetected with probability at most n~?. This is because one call of
procedure DETECT-COLLISION detects a collision with probability at least %, by Lemma 2,
in which m =1 and k > 2.

We estimate the probability of the event that an iteration fails to assign proper names,

which is the same as of event A. This is accomplished as follows:

Pr(A) =Pr(ANB)+ Pr(AN-B)
=Pr(A|B)-Pr(B)+ Pr(A|-B) - Pr(—=B)
<Pr(A| B) +Pr(—-B)

<3n-nP et (8.3)

where we used the union bound to obtain the last line (8.3). It follows that at least i
iterations are needed with probability at most (e™/* + 3n'=#)? which converges to 0 as i
grows unbounded, assuming only that # > 1 and n is sufficiently large.

Let us consider the event =A N B, which occurs when balls are thrown at most 3n times

and all collisions are detected, when modeling an iteration of the main repeat loop. The
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probability that event =A N B holds can be estimated from below as follows:

Pr(-=ANB)=Pr(-A| B) - Pr(B)
>(1—3n'"7) . (1 —e ™/

>1—3p7 — 41— 3p1P) . (8.4)

This bound (8.4) is at least 1 — n~* for sufficiently large 8 > 1, when also n is large enough.

Bound (8.4) holds for the first iteration of the main repeat loop. So with probability at
least 1 — n™* the first iteration assigns proper names with at most 3n balls thrown in total.
Let us assume that this event occurs. Then the whole execution takes time at most cnlgn,
for a suitably large ¢ > 0. This is because procedure DETECT-COLLISION is executed at
most 35nlgn times, and each of its calls takes two rounds. One assignment of a value to
variable slot requires lg(nlgn) < 2lgn bits, for sufficiently large n. There are at most 3n

such assignments, for a total of at most cnlgn random bits, for a suitably large ¢ > 0. 0O

Algorithm BEEP-NAMING-LV runs in the optimal expected time O(nlogn), by Proposi-
tion 6, and it uses the optimum expected number of random bits O(nlogn), by Proposition 5,

these propositions given in Section 5.3.

8.2 A Monte Carlo Algorithm

We give a randomized naming algorithm for the case when n is unknown. In view of
Proposition 8, no Las Vegas algorithm exists in this case, so we develop a Monte Carlo one.

The algorithm again can be interpreted as repeatedly throwing balls into bins and ver-
ifying for collisions. A bin is determined by a string of some k bits. Each station chooses
one such a string randomly. The algorithm proceeds to repeatedly identify the smallest lex-
icographically string among those not considered yet. This is accomplished by procedure
NEXT-STING which operates as a search implemented by using beeps. Having identified a
nonempty bin, all the stations that placed their balls into this bin verify if there is a col-
lision in this bin by calling DETECT-COLLISION a suitably large number of times. In case

no collision has been detected, the stations whose balls are in the bin assign themselves the
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consecutive available name as a temporary one. This continues until all the balls have been
considered. If no collision has ever been detected in the current stage, then the algorithm
terminates and the temporary names are considered as the final assigned names, otherwise
the algorithm proceeds to the next stage.

Next, we specify procedure NEXT-STRING. It operates as a radix search to identify
the smallest string of bits by considering consecutive bit positions. It uses two variables
my-string and k, where k is the length of the bit strings considered and my-string, is the
string of k bits generated by station v. The procedure begins by setting to 1 all bit positions
in variable string, which has k such bit positions. Then the consecutive bit positions
1 =1,2,...,k are considered one by one. For a given bit position 7, all the stations v, that
still can possibly have the smallest string and whose bit on position ¢ in my-string, is 0, do
beep. This determines the first ¢ bits of the smallest string, because if a beep is heard then
the sth bit of the smallest string is 0 and otherwise it is 1. This is recorded by setting the ith
bit position in the variable string to the determined bit. The stations eligible for beeping,
if their ith bit is 0, are those whose strings agree on the first ¢ — 1 positions with the smallest
string. After all k bit positions have been considered, the variable string is returned.

Procedure NEXT-STRING has its pseudocode in Figure 8.2. Its relevant property is
summarized as the following lemma.

Lemma 24 Procedure NEXT-STRING returns the smallest lexicographically string among

the non-null string values of the private copies of the variable my-string.

Proof: The string that is output is obtained by processing all the input strings my-string
through consecutive bit positions. We show the invariant that after ¢ bits have been consid-
ered, for 0 < i < k, then the bits on these positions make the prefix of the first ¢ bits of the
smallest string.

The invariant is shown by induction on <. When ¢ = 1 then the bits on previously
considered positions make an empty string, as no positions have been considered yet, and

the empty string is a prefix of the smallest string. Suppose that the invariant holds for all ¢
96



Procedure NEXT-STRING

string < a string of k bit positions, with all of them set to 1
for i <~ 1 to k do

if (my-string, matches string on the first i — 1 bit positions)
and (the ith bit of my-string, is 0)
then beep
if a beep was heard in the previous round then
set the ith bit of string to 0

return (string)

Figure 8.2: A pseudocode for a station v. This procedure is used by
algorithm BEEP-NAMING-MC. The variables my-string and k are the same
as those in the pseudocode in Figure 8.3.

such that 0 <7 < k, and consider the stations whose variable my-string has the same bits
on these first ¢ positions as variable string. This set includes the station v with the smallest
my-string by the inductive assumption. If the bit on the (i 4+ 1)st position of my-string,
is 0 then v beeps and string has its bit on position 7 + 1 set to 0. Otherwise there is no
station with 0 on the (i+ 1)st position of my-string,, because my-string, is smallest. Then
there is no beep and 1 at position ¢ 4+ 1 in string is not modified. This completes the proof
of the invariant.

The procedure NEXT-STRING terminates after k bit positions have been processed. The
proved invariant for ¢ = k means that the smallest my-string, and the final value of the

variable string are identical. U

The naming algorithm we develop is called BEEP-NAMING-MC. Its pseudocode is in
Figure 8.3. The algorithm proceeds through stages, where a stage is implemented by an
iteration of the main repeat-loop in the pseudocode. The number of bins in the ith stage is
2% where k = 2¢. The variable k is doubled in the beginning of each iteration of the main

loop. During a stage, first the next bin with a ball is identified by calling procedure NEXT-
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Algorithm BEEP-NAMING-MC

k<1
repeat

k< 2k
collision < false
counter <0
my-string, < a random string of k bits
repeat , .
1f my-string, = smallest—strln% then
if nyo—rs%rglgvtyoé Bu]kl chen smallest-string - NEXT-STRING

if DETECT-COLLISION then collision < true
if not collision then
counter < counter + 1
name, < counter
my-string, < null
if my-string, # null then beep

until no beep was heard in the previous round

until not collision

Figure 8.3: A pseudocode for a station v. Constant S > 0 is an integer
parameter determined in the analysis. Procedure DETECT-COLLISION has its
pseudocode in Figure 4.2 and procedure NEXT-STRING has its pseudocode in
Figure 8.2. The variable name is to store the assigned identifier.

STRING. Next, this bin is verified for collisions by calling procedure DETECT-COLLISION Sk
times, for a constant § > 0, which is a parameter to be settled in analysis. During such a
verification, the stations whose balls are in this bin participate only.

The next theorem summarizes the good properties of algorithm BEEP-NAMING-MC. In

particular, that it is a Monte Carlo algorithm with a suitably small probability of error.

Theorem 13 Algorithm BEEP-NAMING-MC, for any 5 > 0, terminates almost surely. For
each a > 0, there exists 5 > 0 and ¢ > 0 such that the algorithm assigns unique names, works
i time at most cnlgn, and uses at most cnlgn random bits, all these properties holding

a

with probability at least 1 — n=%.

Proof: We interpret an iteration of the outer repeat-loop as a stage in a process of throwing
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n balls into 2% bins and verifying 8k times for collisions. The string selected by a station
is the name of the bin. When at least one collision is detected then %k gets incremented
and another iteration is performed. An error occurs when there is a collision but it is not
detected.

Next we estimate from above the probability of not detecting a collision. To this end,
we consider two cases, depending on which of the inequalities 2¥ < n or 2 > n hold for a
given k.

In the first case, when 2% < n, collisions occur with certainty, by the pigeonhole principle.
Let m be the number of occupied bins. This results in m < 2 verifications performed,
one for each bin, where procedure DETECT-COLLISION is called Sk times per verification.
By Lemma 2, the probability of not detecting a collision, with just one call of DETECT-

COLLISION occurring in each of these verifications, is at most
2—n+m < 2—n+2k
When Sk calls of DETECT-COLLISION occur in each verification, as is the case by the design
of the algorithm, the probability of not detecting a collision is at most
2(—n+2k)5k ‘
Intuitively at this point, since 2¥ < n, this probability is maximized for n = 2¥ 4+ 1 and it is
about 27%% ~ n=F as k ~ Ign.

A precise argument to obtain an estimate is by considering two sub-cases, and is as

follows. If it is the sub-case that 28 < n/2, then

o(=n+25)Bk _ 9—Q(n)
Otherwise, when it is the sub-case that n > 2¥ > n/2, then n — 28 > 1 and k > 1gn — 1, so
that we obtain the following estimate:

2(—n+2k)ﬁk > 9—Agn—1) > WP
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We obtained the following two estimates: 27 and 2°n=7, of which the latter is larger, for
sufficiently large n. It is sufficient to take B > a, as then the inequality 2°n=% < n~® holds
for sufficiently large n.

The second case occurs when 2¥ > n. This implies that k£ > lgn. When a collision
occurs in a bin, then it is verified by at least §lgn calls of procedure DETECT-COLLISION.
This gives probability at most n=? of not detecting one such a collision. Multiple bins with
collisions make the probability of not detecting any of them even smaller. Now it is enough
to take 3 > a, as then n™? < n=? holds.

This completes estimating the probability of error by at most n~¢, for sufficiently large
B, and all correspondingly large n.

Next, we estimate the probability that the running time is O(nlogn). Let us consider a
stage with sufficiently many bins, say, when k = dlgn for d > 2. Then the number of bins

is 28 = n. The probability that there is no collision at all in this stage is at least

A" no_ —d+2
<1_E> 21— =1-n (8.5)

Choosing d = a + 2 we obtain that the algorithm terminates by the iteration of the outer

a

repeat-loop when k = dlgn with probability at least 1 — n~*. One iteration of the outer
repeat loop, for some k, is proportional to k - n. The total time spent up to and including
k = dlgn is proportional to

Ig((a+2)1gn) .
Z 2"-n<n-2(a+2)lgn=0(nlogn) (8.6)

i=1
with probability at least 1 —n=%.

The number of bits generated up to and including the iteration for & = dlgn is also
proportional to (8.6). This is because the number of bits generated in one iteration of the
main repeat-loop is proportional to k - n, similarly as the running time.

To show that the algorithm terminates almost surely, it is sufficient to demonstrate that

the probability of a collision converges to zero with k increasing. The probability of no
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collision for k = dlgn is at most n=9*2, by (8.6). If k grows to infinity then d = k/lgn

increases to infinity as well, and then n~%*2 converges to 0 as a function of d. U

Algorithm BEEP-NAMING-MC is optimal with respect to the following performance
measures: the expected running time O(nlogn), by Proposition 6, the expected number of
used random bits O(nlogn), by Proposition 5, and the probability of error, as determined

by the number of used bits, by Proposition 7.

8.3 Conclusion

We considered a channel in which a synchronized beeping is the only means of commu-
nication. We showed that names can be assigned to the anonymous stations by randomized
algorithms. The algorithms are either Las Vegas or Monte Carlo, depending on whether the
number of stations n is known or not, respectively. The performance characteristics of the
two algorithms, such as the running time, the number of random bits, and the probability

of error, are proved to be optimal.
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9. Open Problems and Future Work

Here we give some of the open problems and future work. The algorithms cover the
“boundary” cases for the anonymous synchronous PRAM. One case is about a minimum
amount of shared memory, that is, when only a constant number of shared memory cells
are available. The other case is about a minimum expected running time, that is, when the
expected running time is O(logn); such performance requires a number of shared registers
that grows unbounded with n. It would be interesting to have these results generalized by
investigating naming on a PRAM when the number of processors and the number of shared
registers are independent parameters of the model.

It is an open problem to develop Monte Carlo algorithms for Arbitrary and Common
PRAMs for the case when the amount of shared memory is unbounded, such that they are
simultaneously asymptotically optimal with respect to these same three performance metrics:
expected time, expected number of generated random bits and probability of error.

The algorithms we developed for beeping channels rely in an essential manner on syn-
chronization of the channel. It would be interesting to consider an anonymous asynchronous
beeping channel and investigate how to assign names to stations in such a communication

environment.
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