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ABSTRACT

We investigate anonymous processors computing in a synchronous manner and commu-

nicating via read-write shared memory. This system is known as a parallel random access

machine (PRAM). It is parameterized by a number of processors n and a number of shared

memory cells. We consider the problem of assigning unique integer names from the interval

[1, n] to all n processors of a PRAM. We develop algorithms for each of the eight specific

cases determined by which of the following independent properties hold: (1) concurrently at-

tempting to write distinct values into the same memory cell either is allowed or not, (2) the

number of shared variables either is unlimited or it is a constant independent of n, and

(3) the number of processors n either is known or it is unknown. Our algorithms terminate

almost surely, they are Las Vegas when n is known, they are Monte Carlo when n is not

known.We show lower bounds on time, depending on whether the amounts of shared mem-

ory are constant or unlimited. In view of these lower bounds, all the Las Vegas algorithms

we develop are asymptotically optimal with respect to their expected time, as determined

by the available shared memory. Our Monte Carlo algorithms are correct with probabili-

ties that are 1 − n−Ω(1), which is best possible when terminating almost surely and using

O(n log n) random bits. We also consider a communication channel in which the only pos-

sible communication mode is transmitting beeps, which reach all the nodes instantaneously.

The algorithmic goal is to randomly assign names to the anonymous nodes in such a manner

that the names make a contiguous segment of positive integers starting from 1. The algo-

rithms are provably optimal with respect to the expected time O(n log n), the number of

used random bits O(n log n), and the probability of error.
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1. Introduction

We consider a distributed system in which some n processors communicate using read-

write shared memory. It is assumed that operations performed on shared memory occur

synchronously, in that executions of algorithms are structured as sequences of globally syn-

chronized rounds. Each processor is an independent random access machine with its own

private memory. Such a system is known as a (synchronous) Parallel Random Access Machine

(PRAM). We consider the problem of assigning distinct integer names from the interval [1, n]

to the processors of a PRAM, when originally the processors do not have distinct identifiers.

The problem to assign unique names to anonymous processes in distributed systems

can be considered as a stage in either building such systems or making them fully opera-

tional. Correspondingly, this may be categorized as either an architectural challenge or an

algorithmic one. For example, tightly synchronized message passing systems are typically

considered under the assumption that processors are equipped with unique identifiers from

a contiguous segment of integers. This is because such systems impose strong demands on

the architecture and the task of assigning identifiers to processors is modest when compared

to providing synchrony. Similarly, when synchronous parallel machines are designed, then

processors may be identified by how they are attached to the underlying communication

network. In contrast to that, PRAM is a virtual model in which processors communicate

via shared memory; see an exposition of PRAM as a programming environment given by

Keller et al. [62]. This model does not assume any relation between the shared memory and

processors that identifies individual processors.

Distributed systems with shared read-write registers are usually considered to be asyn-

chronous. Synchrony in such environments can be added by simulations rather than by a

supportive architecture or an underlying communication network. Processes do not need to

be hardware nodes, instead, they can be virtual computing agents. When a synchronous

PRAM is considered, as obtained by a simulation, then the underlying system architecture

does not facilitate identifying processors, and so we do not necessarily expect that processors
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are equipped with distinct identifiers in the beginning of a simulation.

We view PRAM as an abstract construct which provides a distributed environment to

develop algorithms with multiple agents/processors working concurrently; see Vishkin [89]

for a comprehensive exposition of PRAM as a vehicle facilitating parallel programing and

harnessing the power of multi-core computer architectures. Assigning names to processors

by themselves in a distributed manner is a plausible stage in an algorithmic development of

such environments, as it cannot be delegated to the stage of building hardware of a parallel

machine.

When processors of a distributed/parallel system are anonymous then the task of assign-

ing a unique identifier to each processor is a key step to make the system fully operational,

because names are needed for executing deterministic algorithms. We consider naming to be

the task of assigning unique integers in the range [1, n] to a given set of n processors as their

names. Distributed algorithms assigning names to anonymous processors are called naming

in this thesis. We assume that anonymous processors do not have any features facilitating

identification or distinguishing.

We deal with two kinds of randomized (naming) algorithms, called Monte Carlo and

Las Vegas, which are defined as follows. A randomized algorithm is Las Vegas when it

terminates almost surely and the algorithm returns a correct output upon termination. A

randomized algorithm is Monte Carlo when it terminates almost surely and an incorrect

output may be produced upon termination, but the probability of error converges to zero

with the size of input growing unbounded. The naming algorithms we develop have qualities

that depend on whether n is known or not, according to the following simple rule: each

algorithm for a known n is Las Vegas while each algorithm for an unknown n is Monte

Carlo. Our Monte Carlo algorithms have the probability of error converging to zero with a

rate that is polynomial in n. Moreover, when incorrect (duplicate) names are assigned, the

set of integers used as names makes a contiguous segment starting at the smallest name 1.

We say that a parameter of an algorithmic problem is known when it can be used in a
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code of an algorithm. We consider two groups of naming problems for a PRAM, depending

on whether the number of processors n is known or not.

Additionally, we consider two categories of naming problems depending on how much

shared memory is available. In one case, there is a constant number of memory cells, which

means that the amount of memory is independent of n but as large as needed for algorithm

design. In the other case, the number of shared memory cells is unbounded, but how much

is used depends on an algorithm and n. When there is an unbounded amount of memory

then O(n) memory cells actually suffice for the algorithms we develop. We also categorize

naming problems depending on whether it is an Arbitrary PRAM (distinct values may be

concurrently attempted to be written into a register, an arbitrary one of them gets written)

or a Common PRAM variant (only equal values may be concurrently attempted to be written

into a register).

Next, we investigate anonymous channel with beeping. There are some n stations at-

tached to the channel that are devoid of any identifiers. Communication proceeds in syn-

chronous rounds. All the stations start together in the same round. The channel provides

a binary feedback to all the attached stations: when no stations transmit then nothing is

sensed on the communication medium, and when some station does transmit then every

station detects a beep.

A beeping channel resembles multiple-access channels, in that it can be interpreted as a

single-hop radio network. The difference between the two models is in the feedback provided

by each kind of channel. The traditional multiple access channel with collision detection

provides the following ternary feedback: silence occurs when no station transmits, a message

is heard when exactly one station transmits, and collision is produced by multiple stations

transmitting simultaneously, which results in no message heard and can be detected by

carrier sensing as distinct from silence. Multiple access channels also come in a variant

without collision detection. In such channels the binary feedback is as follows: when exactly

one station transmits then the transmitted message is heard by every station, and otherwise,
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when either no station or multiple stations transmit, then this results in silence. A channel

with beeping has its communication capabilities restricted only to carrier sensing, without

even the functionality of transmitting specific bits as messages. The only apparent mode of

exchanging information on such a synchronous channel with beeping is to suitably encode it

by sequences of beeps and silences.

Modeling communication by a mechanism as limited as beeping has been motivated by

diverse aspects of communication and distributed computing. Beeping provides a detection of

collision on a transmitting medium by sensing it. Communication by only carrier sensing can

be placed in a general context of investigating wireless communication on the physical level

and modeling interference of concurrent transmissions, of which the signal-to-interference-

plus-noise ratio (SINR) model is among the most popular and well studied; see [54, 61, 85].

Beeping is then a very limited mode of wireless communication, with feedback in the form

of either interference or lack thereof. Another motivation comes from biological systems, in

which agents exchange information in a distributed manner, while the environment severely

restricts how such agents communicate; see [2, 78, 86]. Finally, communication with beeps

belongs to the area of distributed computing by weak devices, where the involved agents

have restricted computational and communication capabilities. In this context, the devices

are modeled as finite-state machines that communicate asynchronously by exchanging states

or messages from a finite alphabet. Examples of this approach include the “population-

protocols” model introduced by Angluin et at. [7], (see also [9, 11, 73]), and the “stone-age”

distributed computing model proposed by Emek and Wattenhoffer [41].
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2. The Summary of the Results

We consider randomized algorithms executed by anonymous processors that operate in a

synchronous manner using read-write shared memory with a goal to assign unique names to

the processors. This problem is investigated in eight specific cases, depending on additional

assumptions, and we give an algorithm for each case. The three independent assumptions

regard the following: (1) the knowledge of n, (2) the amount of shared memory, and (3) the

PRAM variant.

Las Vegas algorithms have been submitted a journal paper are taken from [26]. The

naming algorithms we give terminate with probability 1. These algorithms are Las Vegas for

a known number of processors n and otherwise they are Monte Carlo. All our algorithms use

the optimum expected number O(n log n) of random bits. We show that naming algorithms

with n processors and C > 0 shared memory cells need to operate in Ω(n/C) expected time

on an Arbitrary PRAM, and in Ω(n log n/C) expected time on a Common PRAM. We show

that any naming algorithm needs to work in the expected time Ω(log n); this bound matters

when there is an unbounded supply of shared memory. Based on these facts, all our Las

Vegas algorithms for the case of known n operate in the asymptotically optimum time, and

when the amount of memory is unlimited, they use only an expected amount of space that

is provably necessary. The list of the naming problems’ specifications and the corresponding

Las Vegas algorithms with their performance bounds is summarized in Table 2.1.

Monte Carlo algorithms have been submitted a journal paper are taken from [27]. We

show that a Monte Carlo naming algorithm that uses O(n log n) random bits has to have

the property that it fails to assign unique names with probability that is n−Ω(1). All Monte

Carlo algorithms that we give have the optimum polynomial probability of error. The list

of the naming problems’ specifications and the corresponding Monte Carlo algorithms with

their performance bounds are summarized in Table 2.2.

A Las Vegas and a Monte Carlo naming algorithms for a beeping channel have been

submitted a journal paper are taken from [28]. We considered assigning names to anonymous
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Table 2.1: Four naming problems, as determined by the PRAM model and the
available amount of shared memory, with the respective performance bounds of their
solutions. When the number of shared memory cells is not a constant then the given
usage is the expected number of shared memory cells that are actually used.

PRAM Model Memory Time Algorithm

Arbitrary O(1) O(n) Arbitrary-Constant-LV in Section 6.1

Arbitrary O(n/ log n) O(log n) Arbitrary-Unbounded-LV in Section 6.2

Common O(1) O(n log n) Common-Constant-LV in Section 6.3

Common O(n) O(log n) Common-Unbounded-LV in Section 6.4

Table 2.2: Four naming problems, as determined by the PRAM model and the
available amount of shared memory, with the respective performance bounds of their
solutions as functions of the number of processors n. When time is marked as “polylog”
this means that the algorithm comes in two variants, such that in one the expected
time is O(log n) and the amount of used shared memory is suboptimal nO(1), and in the
other the expected time is suboptimal O(log2 n) but the amount of used shared memory
misses optimality only by at most a logarithmic factor.

PRAM Model Memory Time Algorithm

Arbitrary O(1) O(n) Arbitrary-Bounded-MC in Section 7.1

Arbitrary unbounded polylog Arbitrary-Unbounded-MC in Section 7.2

Common O(1) O(n log n) Common-Bounded-MC in Section 7.3

Common unbounded polylog Common-Unbounded-MC in Section 7.4

stations attached to a channel that allows only beeps to be heard. We present a Las Vegas

naming algorithm and a Monte Carlo algorithm and show that algorithms are provably

optimal with respect to the number of used random bits O(n log n), the expected time O(n

log n), and the probability of error.
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3. Previous and Related Work

Here we survey the previous work on anonymous naming.

Lipton and Park [70] were the first to consider the naming problem in asynchronous

shared memory systems. They studied naming in asynchronous distributed systems with

read-write shared memory controlled by adaptive schedulers; they proposed a solution that

terminates with positive probability, which can be made arbitrarily close to 1 assuming

a known n. They developed a randomized algorithm that solves naming problem. Their

algorithm is not guaranteed to terminate; however, if it terminates no two processors will

obtain the same names. Once the processors terminated the given names comprise completely

the set {1, 2, ..., n}.

Their algorithm operates as follows. In the beginning of an execution, all processors

initialize the contents of shared registers to zeros. Every processor randomly selects an

integer i from {1, 2, ..., n2}, where n is the number of processors. Then each processor writes

1 to selected cell i. All processors repeat this procedure until there is at least one row which

contains n, 1’s bit value. Finally, the integer chosen by each processor is used as a name. The

algorithm presented in [70], uses O(Ln2) bits and terminates O(Ln2) time with probability

1− cL for some constant c > 1.

Teng [87] provided a randomized two layer solution for the naming problem considering

the same setting as Lipton and Park, (asynchronous processor, the algorithm would work

regardless of initial content of shared memory), but his solution improved the failure prob-

ability and decreased the space to O(n log2 n) shared bits, with probability at least 1 − 1
nc

,

for a constant c. The algorithm terminates O(n log2 n) time.

The author developed a simple algorithm for asynchronous systems with known n, that

is a trivial modification of Lipton and Park’s algorithm [70]. Teng assumed that n processors

divided into K groups with high probability, that is, each group has about n/K processors.

Hence, he reduced the problem size from n to n/K. Then he used the similar technique

of Lipton and Park for a smaller size problem. The number of processors is unknown in
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each group. Therefore, every processor checks if the sum of the number of 1’s equals to n in

maximum size rows of each group. The author also observed that if n is unknown then no

algorithm guaranteed to terminate with correct names.

Lim and Park [69] showed that the naming problem can be solved in O(n) space;

however, they used word operations instead of bit operations. The authors used a shared

memory array indexed 1 through n, where n is the number of processors. The basic idea of

their algorithm is, at the beginning of the execution, all processors initialize the contents of

shared registers to zeros. Then every processor randomly chooses a key and an ID, which is

corresponding to the index of a cell, and tries to store its key to claimed cell. When there

is more than one processors choose the same cell to write its ID, the processor with the

maximum key keeps the claimed ID and the rest of the processors with small keys claim

a new ID. If there are no zero entries in the array, i.e., each processor confirms its own

ID, then the algorithm terminates. Note that their protocol can fail when more than one

processor chooses the same ID and the same key. Additionally, the authors answered the

open questions in which Teng posted at the conclusion of [87].

Eğecioğlu and Singh [39] proposed a synchronous algorithm that each processor repeat-

edly chooses a new random index value, which selection made independently and uniformly

at random, and sets the corresponding shared register to 1. Then it counts the number of

ones. If the total number of ones equals to n then the processor exits the loop and assign

itself ID of the index value. The expected termination time for the synchronous algorithm is

O(n2). They also proposed a polynomial-time Las Vegas naming algorithm for asynchronous

systems with oblivious scheduling of events for a known n under weak shared read-write mem-

ory system. Intuitively, the idea in their algorithm is as follows. It uses K copies of an array.

Each processor chooses a random index value for each copies of array K rather than a single

array and sets the selected register to 1. Then every processor reads all K arrays. Processors

perform write operation to each K copy of arrays in ascending order, but afterwards, read all

arrays in descending order. A processor keeps executing the algorithm until the total number

8



of ones in a row equals to the number of processors. Processors may exit from the execution

after detecting a successful read because of asynchrony. The processor that exit from the

execution after a successful scan records the IDs of the succeeded row to its private memory.

Because of asynchrony, the rest of the processors cannot be able to execute a successful scan

at the same time. If there is a successful read and the number of detected processors are

less than K, the rest of processors repeat the same sequence of steps on a different array,

with argument n− 1 and so on. When a processor exits from the execution after successful

read waits for the rest of the processors to exit and then they assign names to themselves

in a range of [1, n]. The authors also showed that symmetry cannot be broken if the exact

number of processes is unknown. Moreover, they observed that the participation of every

processor is necessary in order to terminate.

Kutten et al. [68] considered the naming in asynchronous systems of shared read-write

memory. They gave a Las Vegas algorithm for an oblivious scheduler for the case of known n,

which works in the expected time O(log n) while using O(n) shared registers, and also

showed that a logarithmic time is required to assign names to anonymous processes. Authors

provided a nonterminating dynamic algorithm, where processes may stop and start taking

steps during the execution and then added a static termination detection mechanism which

works when the number of processors n is known.

Their dynamic algorithm operates as follows. When a process is active, it randomly

selects an ID and always check to see if the same ID claimed by any other processes. A

process repeatedly either reads the claimed register or writes a random bit which is chosen

independently and randomly and records the chosen value. When a process reads a register,

it checks out if the value of register has changed since it has written to it the last time. If

the process observes that his claimed ID is also selected by any other processes, it selects

randomly a new ID to claim. Note that in their algorithm each process detects the collision

in constant time. If a process observes no change after reading the contents of the shared

register then it moves on the next iteration. Next, they provided an algorithm to make the
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dynamic algorithm to terminate. They assume that all shared registers are initialized. The

termination detection algorithm employs a binary tree, where its leaves corresponding to

claimed ID. Each process traverses the binary tree from leaves to root by updating the sum

of children in each node. When a process sees that the root of the tree has the value n it

exits the loop. In other words, the set of claimed IDs is fixed when the root of the binary

tree has the value n.

They used the size ofO(log n) bits for some registers whereas the algorithm of [39, 70, 87]

used single bit register. Additionally, they showed that if n is unknown then a Las Vegas

naming algorithm does not exist, and a finite-state Las Vegas naming algorithm can work

only for an oblivious scheduler, that is to say, there is no terminating algorithm if n is not

known or the scheduler is adaptive.

The authors also gave a Las Vegas algorithm which works for unbounded space under

any fair scheduler. Finally, they provided a deterministic solution for the naming problem

in read-modify-write model by using just one register. This model is a much advanced

computational model, where a process can read and update a shared variable in just one

step.

Panconesi et al. [79] gave a randomized wait-free naming algorithm in anonymous systems

with processes prone to crashes that communicate by single-writer registers. They assume

different processes may address a register with different index number and can read all other

shared variables. They gave an algorithm that is based on wait-free implementation of α-

Test&SetOnce objects for an adaptive scheduler for the case of known n, which works in the

expected running time O(n log n log log n) bit operation with probability at least 1 − o(1)

while using a namespace of size (1 + ε)n, where ε > 0. The model considered in that work

assigns unique registers to nameless processes and so has a potential to defy the impossibility

of wait-free naming for general multi-writer registers as observed by Kutten et al. [68].

Buhrman et al. [23] considered the relative complexity of naming and consensus problems

in asynchronous systems with shared memory that are prone to crash failures, demonstrating
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that naming is harder that consensus.

Now we review work on problems in anonymous distributed systems different from nam-

ing. Aspnes et al. [10] gave a comparative study of anonymous distributed systems with

different communication mechanisms, including broadcast and shared-memory objects of

various functionalities, like read-write registers and counters. Alistarh et al. [5] gave ran-

domized renaming algorithms that act like naming ones, in that process identifiers are not

referred to; for more or renaming see [4, 13, 30]. Aspnes et al. [12] considered solving con-

sensus in anonymous systems with infinitely many processes. Attiya et al. [15] and Jayanti

and Toueg [60] studied the impact of initialization of shared registers on solvability of tasks

like consensus and wakeup in fault-free anonymous systems. Bonnet et al. [21] considered

solvability of consensus in anonymous systems with processes prone to crashes but aug-

mented with failure detectors. Guerraoui and Ruppert [55] showed that certain tasks like

time-stamping, snapshots and consensus have deterministic solutions in anonymous systems

with shared read-write registers prone to process crashes. Ruppert [82] studied the impact

of anonymity of processes on wait-free computing and mutual implementability of types of

shared objects.

Lower bounds on PRAM were given by Fich et al. [43], Cook et al. [31], and Beame [19],

among others. A review of lower bounds based on information-theoretic approach is given by

Attiya and Ellen [14]. Yao’s minimax principle was given by Yao [91]; the book by Motwani

and Raghavan [77] gives examples of applications.

The problem of concurrent communication in anonymous networks was first considered

by Angluin [6]. That work showed, in particular, that randomization is needed in nam-

ing algorithms when executed in environments that are perfectly symmetric; other related

impossibility results are surveyed by Fich and Ruppert [44].

The work about anonymous networks that followed was either on specific network topolo-

gies or on problems in general message-passing systems. Most popular specific topologies

included that of a ring and hypercube. In particular, the ring topology was investigated
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by Attiya et al. [16, 17], Flocchini et al. [45], Diks et al. [38], Itai and Rodeh [58], and

Kranakis et al. [65], and the hypercube topology was studied by Kranakis and Krizanc [64]

and Kranakis and Santoro [67].

Work on algorithmic problems in anonymous networks of general topologies or anony-

mous/named agents in anonymous/named networks included the following specific contribu-

tions. Afek and Matias [3] and Schieber and Snir [84] considered leader election, finding span-

ning trees and naming in general anonymous networks. Angluin et al. [8] studied adversarial

communication by anonymous agents and Angluin et al. [9] considered self-stabilizing proto-

cols for anonymous asynchronous agents deployed in a network of unknown size. Chalopin et

al. [24] studied naming and leader election in asynchronous networks when a node knows the

map of the network but its position on the map is unknown. Chlebus et al. [29] investigated

anonymous complete networks whose links and nodes are subject to random independent

failures in which single fault-free node has to wake up all nodes by propagating a wakeup

message through the network. Dereniowski and Pelc [36] considered leader election among

anonymous agents in anonymous networks. Dieudonné and Pec [37] studied teams of anony-

mous mobile agents in networks that execute deterministic algorithm with the goal to convene

at one node. Fraigniaud et al. [48] considered naming in anonymous networks with one node

distinguished as leader. G ↪asieniec et al. [52] investigated anonymous agents pursuing the

goal to meet at a node or edge of a ring. Glacet et al. [53] considered leader election in

anonymous trees. Kowalski and Malinowski [63] studied named agents meeting in anony-

mous networks. Kranakis et al. [66] investigated computing boolean functions on anonymous

networks. Métivier et al. [72] considered naming anonymous unknown graphs. Michail et

al. [74] studied the problems of naming and counting nodes in dynamic anonymous networks.

Pelc [80] considered activating an anonymous ad hoc radio network from a single source by

a deterministic algorithm. Yamashita and Kameda [90] investigated topological properties

of anonymous networks that allow for deterministic solutions for representative algorithmic

problems.
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General questions of computability in anonymous message-passing systems implemented

in networks were studied by Boldi and Vigna [20], Emek et al. [40], and Sakamoto [83].

Next, we review work on problems for Beeping Networks. The model of communication

by discrete beeping was introduced by Cornejo and Kuhn [32], who considered a general-

topology wireless network in which nodes use only carrier sensing to communicate, and

developed algorithms for node coloring. They were inspired by “continuous” beeping studied

by Degesys et al. [35] and Motskin et al. [76], and by the implementation of coordination by

carrier sensing given by Flury and Wattenhofer [46].

Afek et al. [1] considered the problem to find a maximal independent set of nodes in a

distributed manner when the nodes can only beep, under additional assumptions regarding

the knowledge of the size of the network, waking up the network by beeps, collision detection

among concurrent beeps, and synchrony. Brandes et al. [22] studied the problem of randomly

estimating the number of nodes attached to a single-hop beeping network. Czumaj and

Davies [34] approached systematically the tasks of deterministic broadcasting, gossiping,

and multi-broadcasting on the bit level in general-topology symmetric beeping networks. In

a related work, Hounkanli and Pelc [56] studied deterministic broadcasting in asynchronous

beeping networks of general topology with various levels of knowledge about the network.

Förster et al. [47] considered leader election by deterministic algorithms in general multi-hop

networks with beeping. Gilbert and Newport [51] studied the efficiency of leader election

in a beeping single-hop channel when nodes are state machines of constant size with a

specific precision of randomized state transitions. Huang and Moscibroda [57] considered

the problems of identifying subsets of stations connected to a beeping channel and compared

their complexity to those on multiple-access channels. Yu et al. [92] considered the problem

of constructing a minimum dominating set in networks with beeping.

Networks of nodes communicating by beeping share common features with radio networks

with collision detection. Ghaffari and Haeupler [49] gave efficient leader election algorithm

by treating collision detection as “beeping” and transmitting messages as bit strings. Their

13



approach by way of “beep waves” was adopted to broadcasting in networks with beeping

by Czumaj and Davies [34]. In a related work, Ghaffari et al. [50] developed randomized

broadcasting and multi-broadcasting in radio networks with collision detection.
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4. Technical Preliminaries

A synchronous shared-memory system in which some n processors operate concurrently

is the assumed model of computation. The essential properties of such systems are as fol-

lows: (1) shared memory cells have only reading/writing capabilities, and (2) operations of

accessing the shared registers are globally synchronized so that processors work in lockstep.

An execution of an algorithm is structured as a sequence of rounds so that each processor

performs either a read from or a write to a shared memory cell, along with local computation.

We assume that a processor carries out its private computation in a round in a negligible

portion of the round. Processors can generate as many private random bits per round as

needed; all these random bits generated in an execution are assumed to be independent.

Each shared memory cell is assumed to be initialized to 0 as a default value. This

assumption simplifies the exposition, but it can be removed as any algorithm assuming such

an initialization can be modified in a relatively straightforward manner to work with dirty

memory. A shared memory cell can store any value as needed in algorithms, in particular,

integers of magnitude that may depend on n; all our algorithms require a memory cell to

store O(log n) bits. An invocation of either reading from or writing to a memory location

is completed in the round of invocation. This model of computation is referred in the

literature as the Parallel Random Access Machine (PRAM) [59, 81]. PRAM is usually

defined as a model with unlimited number of shared-memory cells, by analogy with the

random-access machine (RAM) model. We consider the following two instantiations of the

model, determined by the amount of shared memory. In one situation, there is a constant

number of shared memory cells, which is independent of the number of processors n but as

large as needed in the specific algorithm. In the other case, the number of shared memory

cells is unlimited in principle, but the expected number of shared registers accessed in an

execution depends on n and is sought to be minimized.

A concurrent read occurs when a group of processors read from the same memory cell

in the same round; this results in each of these processors obtaining the value stored in the
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memory cell at the end of the preceding round. A concurrent write occurs when a group

of processors invoke a write to the same memory cell in the same round. Without loss of

generality, we may assume that a concurrent read of a memory cell and a concurrent write

to the same memory cell do not occur simultaneously: this is because we could designate

rounds only for reading and only for rounding depending on their parity, thereby slowing the

algorithm by a factor of two. A clarification is needed regarding which value gets written to a

memory cell in a concurrent write, when multiple distinct values are attempted to be written;

such stipulations determine suitable variants of the model. We will consider algorithms for

the following two PRAM variants determined by their respective concurrent-write semantics.

Common PRAM is defined by the property that when a group of processors want to write to

the same shared memory cell in a round then all the values that any of the processors

want to write must be identical, otherwise the operation is illegal. Concurrent attempts

to write the same value to a memory cell result in this value getting written in this

round.

Arbitrary PRAM allows attempts to write any legitimate values to the same memory cell

in the same round. When this occurs, then one of these values gets written, while a

selection of this value is arbitrary. All possible selections of values that get written

need to be taken into account when arguing about correctness of an algorithm.

We will rely on certain standard algorithms developed for PRAMs, as explained in [59,

81]. One of them is for prefix-type computations. A typical situation in which it is applied

occurs when there is an array of m shared memory cells, each memory cell storing either 0

or 1. This may represent an array of bins where 1 stands for a nonempty bin while 0 for

an empty bin. Let the rank of a nonempty bin of address x be the number of nonempty

bins with addresses smaller than or equal to x. Ranks can be computed in time O(logm) by

using an auxiliary memory of O(m) cells, assuming there is at least one processor assigned to

a nonempty bin, while other processors do not participate. The bins are associated with the

leaves of a binary tree. The processors traverse a binary tree from the leaves to the root and
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back to the leaves. When updating information at a node, only the information stored at the

parent, the sibling and the children is used. We may observe that the same memory can be

used repeatedly when such computation needs to be performed multiple times. A possible

approach is to verify if the information at a needed memory cell, representing either a parent,

a sibling or a child of a visited node, is fresh or rather stale from previous executions. This

could be accomplished in the following three steps by a processor. First, the processor erases

a memory cell it needs to read by rewriting its present value by a blank value. Second, the

processor writes again the value at node it visits, which may have been erased in the previous

step by other processors that need the value. Finally, the processor reads again the memory

cell it just erased, to see if it stays erased, which means its contents were stale, or not, which

means its contents got rewritten so they are fresh.

Balls into bins. Assigning names to processors can be visualized as throwing balls into

bins. Imagine that balls are handled by processors and bins are represented by either memory

addresses or rounds in a segment of rounds. Throwing a ball means either writing into some

memory address a value that represents a ball or choosing a round from a segment of rounds.

A collision occurs when two balls end up in the same bin; this means that two processors

wrote to the same memory address, not necessarily in the same round, or that they selected

the same round. The rank of a bin containing a ball is the number of bins with smaller

or equal names that contain balls. When each in a group of processors throws a ball and

there is no collision then this in principle breaks symmetry in a manner that allows to assign

unique names in the group, namely, ranks of selected bins may serve as names.

The following terms refer to the status of a bin in a given round. A bin is called empty

where there are no balls in it. A bin is singleton when it contains a single ball. A bin

is multiple when there are at least two balls in it. Finally, a bin with at least one ball is

occupied.

The idea of representing attempts to assign names as throwing balls into bins is quite

generic. In particular, it was applied by Eğecioğlu and Singh [39], who proposed a syn-
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chronous algorithm that repeatedly throws all balls together into all available bins, the

selections of bins for balls made independently and uniformly at random. In their algorithm

for n processors, we can use γ · n memory cells, where γ > 1. Let us choose γ = 3 for

the following calculations to be specific. This algorithm has an exponential expected-time

performance. To see this, we estimate the probability that each bin is either singleton or

empty. Let the balls be thrown one by one. After the first n/2 balls are in singleton bins, the

probability to hit an empty bin is at most 2.5n
3n

= 5
6
; we treat this as a success in a Bernoulli

trial. The probability of n/2 such successes is at most (5
6
)n/2, so the expected time to wait

for the algorithm to terminate is at least
(√

6
5

)n
, which is exponential in n.

We consider related processes that could be as fast as O(log n) in expected time, while

still using only O(n) shared memory cells, see Section 6.4. The idea is to let balls in singleton

bins stay put and only move those that collided with other balls by landing in bins that

became thereby multiple. To implement this on a Common PRAM, we need a way to detect

collisions, which we explain next.

Collisions among balls. We will use a randomized procedure for Common PRAM to

verify if a collision occurs in a bin, say, a bin x, which is executed by each processor that

selected bin x. This procedure Verify-Collision is represented in Figure 4.1. There are

two arrays TAILS and HEADS of shared memory cells. Bin x is verified by using memory

cells TAILS[x] and HEADS[x]. First, the memory cells TAILS[x] and HEADS[x] are set to

false each, and next one of these memory cells is selected randomly and set to true.

Lemma 1 For an integer x, procedure Verify-Collision (x) executed by one processor

never detects a collision, and when multiple processors execute this procedure then a collision

is detected with probability at least 1
2
.

Proof: When only one processor executes the procedure, then first the processor sets both

Heads[x] and Tails[x] to false and next only one of them to true. This guarantees that

Heads[x] and Tails[x] store different values and so collision is not detected. When some
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Procedure Verify-Collision (x)

initialize Heads[x]← Tails[x]← false

tossv ← outcome of tossing a fair coin

if tossv = tails then Tails[x] ← true else Heads[x] ← true

if Tails[x] = Heads[x] then return true else return false

Figure 4.1: A pseudocode for a processor v of a Common PRAM, where
x is a positive integer. Heads and Tails are arrays of shared memory cells.
When the parameter x is dropped in a call then this means that x = 1. The
procedure returns true when a collision has been detected.

m > 1 processors execute the procedure, then collision is not detected only when either

all processors set Heads[x] to true or all processors set Tails[x] to true. This means that

the processors generate the same outcome in their coin tosses. This occurs with probability

2−m+1, which is at most 1
2
. �

A beeping channel is related to multiple access channels [25]. It is a network consisting of

some n stations connected to a communication medium. We consider synchronous beeping

channels, in the sense that an execution of a communication algorithm is partitioned into

consecutive rounds. All the stations start an execution together. In each round, a station

may either beep or pause. When some station beeps in a round, then each station hears

the beep, otherwise all the stations receive silence as feedback. When multiple stations beep

together in a round then we call this a collision.

We say that a parameter of a communication network is known when it can be used in

codes of algorithms. The relevant parameter used in this thesis is the number of stations n.

We consider two cases, in which either n is known or it is not.

Randomized algorithms use random bits, understood as outcomes of tosses of a fair coin.

All different random bits used by our algorithms are considered stochastically independent

from each other.

Our naming algorithms have as their goal to assign unique identifiers to the stations,
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Procedure Detect-Collision

tossv ← outcome of a random coin toss

if tossv = heads /∗ first round ∗/

then beep else pause

if tossv = tails /∗ second round ∗/

then beep else pause

return (a beep was heard in each of the two rounds)

Figure 4.2: A pseudocode for a station v. The procedure takes two rounds
to execute. It detect a collision and returns “true” when a beep is heard in each
of the rounds, otherwise it does not detect a collision and returns “false.”

moreover we want names to be integers in the contiguous range {1, 2, . . . , n}, which we denote

as [n]. The Monte Carlo naming algorithm that we develop has the property that the names

it assigns make an interval of integers of the form [k] for k ≤ n, so that when k < n then

there are duplicate identifiers assigned as names, which is the only form of error that can

occur.

We will use a procedure to detect collisions, called Detect-Collision, whose pseu-

docode is in Figure 4.2. The procedure is executed by a group of stations, and they all start

their executions simultaneously. The procedure takes two rounds. Each of the participating

stations simulates the toss of a fair coin, with the outcomes independent among the partic-

ipating stations. Depending on the outcome of a toss, a station beeps either in the first or

the second of the allocated rounds. A collision is detected only when two consecutive beeps

are heard.

Lemma 2 If k stations perform m time-disjoint calls of procedure Detect-Collision,

each station participating in exactly one call, then collision is not detected in any of these

calls with probability 2−k+m.

Proof: Consider a call of Detect-Collision performed concurrently by i stations, for
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i ≥ 1. We argue by “deferred decisions.” One of these stations tosses a coin and determines

its outcome X. The other i− 1 stations participating concurrently in this call also toss their

coins; here we have i − 1 ≥ 0, so there could be no such a station. The only possibility

not to detect a collision is for all of these i− 1 stations also produce X. This happens with

probability 2−i+1 in this one call. The probability of producing only false during the m

calls is the product of these probabilities. When we multiply them out over m instances of

the procedure being performed, then the outcome is 2−k+m, because numbers i sum up to k

and the number of factors is m. �

Pseudocode conventions and notations. We give pseudocode representations of algo-

rithms, as in Figure 4.1. The conventions of pseudocode are summarized next.

We want that, at any round of an execution, all the processors that have not terminated

yet to be at the same line of the pseudocode. In particular, when an instruction is conditional

on a statement then a processor that does not meet the condition pauses as long as it would

be needed for all the processors that meet the condition complete their instructions, even

when there are no such processors.

A pseudocode for a processor refers to a number of variables, both shared and private.

We use the following notational conventions to emphasize their relevant properties. Shared

variables have names starting with a capital letter, while private variables have names all

in small letters. When a variable x is a private variable that may have different values at

different processors at the same time, then we denote this variable used by a processor v

by xv. Private variables that have the same value at the same time in all the processors are

usually used without subscripts, like variables controlling for-loops.

Each station has its private copy of any among the variables used in the pseudocode.

When the values of these copies may vary across the stations, then we add the station’s name

as a subscript of the variable’s name to emphasize that, and otherwise, when all the copies

of a variable are kept equal across all the stations then no subscript is used.

An assignment instruction of the form x ← y ← . . . ← z ← α, where x, y, . . . , z are
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variables and α is a value, means to assign α as the value to be stored in all the listed

variables x, y, . . . , z.

We use three notations for logarithms. The notation lg x stands for the logarithm of

x to the base 2. The notation lnx denotes the natural logarithm of x. When the base of

logarithms does not matter then we use log x, like in the asymptotic notation O(log x).

Properties of naming algorithms. Naming algorithms in distributed environments in-

volving multi-writer read-write shared memory have to be randomized to break symme-

try [6, 18]. An eventual assignment of proper names cannot be a sure event, because, in

principle, two processors can generate the same strings of random bits in the course of an

execution. We say that an event is almost sure, or occurs almost surely, when it occurs

with probability 1. When n processors generate their private strings of random bits then it

is an almost sure event that all these strings are eventually pairwise distinct. Therefore, a

most advantageous scenario that we could expect, when a set of n processors is to execute

a randomized naming algorithm, is that the algorithm eventually terminates almost surely

and that at the moment of termination the output is correct, in that the assigned names are

without duplicates and fill the whole interval [1, n].
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5. Lower bounds and impossibilities

In this section, we show impossibility results to justify methodological approach to nam-

ing algorithms we apply, and use lower bounds on performance metrics for such algorithms

to argue about the optimality of the algorithms developed in subsequent sections.

5.1 Preliminaries

We start with basic definitions, terminologies, and theorems that are discussed through-

out this section.

Lower bounds prove that certain problems cannot be solved efficiently without sufficient

resources such as time or space. They also give us an idea about when to stop looking for

better solutions. Impossibility results show that certain problems cannot be solved under cer-

tain assumptions. To understand the nature of naming problem it is necessary to understand

lower bounds and impossibility results [14, 44].

The entropy [33] is the number of bits on average required to describe the random

variable. The entropy of a random variable is a lower bound on the average number of bits

required to represent the random variable. The entropy of a random variable X with a

probability mass function p(x) is defined by

H(x) = −
∑
x

p(x) lg p(x).

Yao’s Minimax Principle [91, 77] allows us to prove lower bounds on the performance of

Las Vegas and Monte Carlo algorithms. Yao’s Minimax Principle says that for an arbitrary

chosen input distribution, the expected running time of the optimal deterministic algorithm

is a lower bound on the expected running time of the optimal randomized algorithm. Yao’s

Minimax Principle for Las Vegas randomized algorithms as follows. Let P be a problem with

a finite set X of inputs and a finite set A be the set of all possible deterministic algorithms

that correctly solve the problem P . Let cost(X,A) be the running time of algorithm A for

algorithm A ∈ A and input X ∈ X . Let p be a probability distribution over X and q over A.
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Let Xp be a random input chosen according to p and Aq shows a random algorithm chosen

according to q. For all distributions p over X and q over A,

min
A∈A

E [cost(Xp, A)] ≤ max
X∈X

E [cost(X,Aq)].

Yao’s Minimax Principle for Monte Carlo randomized algorithms state that the expected

running time of any Monte Carlo algorithm that errs with probability λ ∈ [0, 1
2
].

5.2 Lower Bounds for a PRAM

We give algorithms that use the expected number of O(n log n) random bits with a large

probability. This amount of random information is necessary if an algorithm is to terminate

almost surely. The following fact is essentially a folklore, but since we do not know if it was

proved anywhere in the literature, we give a proof for completeness’ sake. Our arguments

resort to the notions of information theory [33].

Proposition 1 If a randomized naming algorithm is correct with probability pn, when ex-

ecuted by n anonymous processors, then it requires Ω(n log n) random bits with probability

at least pn. In particular, a Las Vegas naming algorithm for n processors uses Ω(n log n)

random bits almost surely.

Proof: Let us assign conceptual identifiers to the processors, for the sake of argument.

These unknown identifiers are known only to an external observer and not to algorithms.

The purpose of executing the algorithm is to assign explicit identifiers, which we call given

identifiers.

Let a processor with an unknown name ui generate string of bits bi, for i = 1, . . . , n.

A distribution of given identifiers among the n anonymous processors, which results from

executing the algorithm, is a random variable Xn with a uniform distribution on the set of all

permutations of the unknown identifiers. This is because of symmetry: all processors execute

the same code, without explicit private identifiers, and if we rearrange the strings generated

bits bi among the processors ui, then this results in the corresponding rearrangement of the

given names.
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The underlying probability space consists of n! elementary events, each determined by

an assignment of the given identifiers to the processors identified by the unknown identifiers.

It follows that each of these events occurs with probability 1/n!. The Shannon entropy of

the random variable Xn is thus lg(n!) = Θ(n log n). The decision about which assignment

of given names is produced is determined by the random bits, as they are the only source of

entropy, so the expected number of random bits used by the algorithm needs to be as large

as the entropy of the random variable Xn.

The property that all assigned names are distinct and in the interval [1, n] holds with

probability pn. An execution needs to generate a total of Ω(n log n) random bits with proba-

bility at least pn, because of the bound on entropy. A Las Vegas algorithm terminates almost

surely, and returns correct names upon termination. This means that pn = 1 and so that

Ω(n log n) random bits are used almost surely. �

We consider two kinds of algorithmic naming problems, as determined by the amount

of shared memory. One case is for a constant number of shared memory cells, for which

we give an optimal lower bound on time for O(1) shared memory. The other case is when

the number of shared memory cells and their capacity are unbounded, for which we give an

“absolute” lower bound on time. We begin with lower bounds that reflect the amount of

shared memory.

Intuitively, as processors generate random bits, these bits need to be made common

knowledge through some implicit process that assigns explicit names. There is an underlying

flow of information spreading knowledge among the processors through the available shared

memory. Time is bounded from below by the rate of flow of information and the total amount

of bits that need to be shared.

On the technical level, in order to bound the expected time of a randomized algorithm,

we apply the Yao’s minimax principle [91] to relate this expected time to the distributional

expected time complexity. A randomized algorithm whose actions are determined by random

bits can be considered as a probability distribution on deterministic algorithms. A determin-
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istic algorithm has strings of bits given to processors as their inputs, with some probability

distribution on such inputs. The expected time of such a deterministic algorithm, give any

specific probability distribution on the inputs, is a lower bound on the expected time of a

randomized algorithm.

To make such interpretation of randomized algorithms possible, we consider strings of

bits of equal length. With such a restriction on inputs, deterministic algorithm may not be

able to assign proper names for some assignments of inputs, for example, when all the inputs

are equal. We augment such deterministic algorithms in adding an option for the algorithm

to withhold a decision on assignment of names and output “no name” for some processors.

This is interpreted as the deterministic algorithm needing longer inputs, for which the given

inputs are prefixes, and which for the randomized algorithm means that some processors

need to generate more random bits.

Regarding probability distributions for inputs of a given length, it always will be the

uniform distribution. This is because we will use an assessment of entropy of such a distri-

bution.

Theorem 1 A randomized naming algorithm for a Common PRAM with n processors and

C > 0 shared memory cells operates in Ω(n log n/C) expected time when it is either a Las

Vegas algorithm or a Monte Carlo algorithm with the probability of error smaller than 1/2.

Proof: We consider Las Vegas algorithms in this argument, the Monte Carlo case is similar,

the difference is in applying Yao’s principle for Monte Carlo algorithms. We interpret a

randomized algorithm as a deterministic one working with all possible assignments of ran-

dom bits as inputs with a uniform mass function on the inputs. The expected time of the

deterministic algorithm is a lower bound on the expected time of the randomized algorithm.

There are n! possible assignments of given names to the processors. Each of them

occurs with the same probability 1/n! when the input bit strings are assigned uniformly at

random. Therefore the entropy of name assignments, interpreted as a random variable, is
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lg n! = Ω(n log n).

Next we consider executions of such a deterministic algorithm on the inputs with a uni-

form distribution. We may assume without loss of generality that an execution is structured

into the following phases, each consisting of C + 1 rounds. In the first round of a phase,

each processor either writes into a shared memory cell or pauses. In the following rounds of

a phase, every processor learns the current values of each among the C memory cells. This

may take C rounds for every processor to scan the whole shared memory, but we do not

include this reading overhead as contributing to the lower bound. Instead, since this is a

simulation anyway, we conservatively assume that the process of learning all the contents of

shared memory cells at the end of a phase is instantaneous and complete.

The Common variant of PRAM requires that if a memory cell is written into concurrently

then there is a common value that gets written by all the writers. Such a value needs to

be determined by the code and the address of a memory cell. This means that, for each

phase and any memory cell, a processor choosing to write into this memory cell knows the

common value to be written. By the structure of execution, in which all processors read all

the registers after a round of writing, any processor knows what value gets written into each

available memory cell in a phase, if any is written into a particular cell. This implies that

the contents written into shared memory cells may not convey any new information but are

already implicit in the states of the processors represented by their private memories after

reading the whole shared memory.

When a processor reads all the shared memory cells in a phase, then the only new

information it may learn is the addresses of memory cells into which writes were performed

and those into which there were no writes. This makes it possible obtain at most C bits of

information per phase, because each register was either written into or not.

There are Ω(n log n) bits of information that need to be settled and one phase changes the

entropy by at most C bits. It follows that the expected number of phases of the deterministic

algorithm is Ω(n log n/C). By the Yao’s principle, Ω(n log n/C) is a lower bound on the
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expected time of a randomized algorithm. �

For Arbitrary PRAM, writing can spread information through the written values, be-

cause different processes can attempt to write distinct strings of bits. The rate of flow of

information is constrained by the fact that when multiple writers attempt to write to the

same memory cell then only one of them succeeds, if the values written are distinct. This

intuitively means that the size of a group of processors writing to the same register deter-

mines how much information the writers learn by subsequent reading. These intuitions are

made formal in the proof of the following Theorem 2.

Theorem 2 A randomized naming algorithm for an Arbitrary PRAM with n processors and

C > 0 shared memory cells operates in Ω(n/C) expected time when it is either a Las Vegas

algorithm or a Monte Carlo algorithm with the probability of error smaller than 1/2.

Proof: We consider Las Vegas algorithms in this argument, the Monte Carlo case is similar,

the difference is in applying Yao’s principle for Monte Carlo algorithms. We again replace a

given randomized algorithm by its deterministic version that works on assignments of strings

of bits of the same length as inputs, with such inputs assigned uniformly at random to the

processors. The goal is to use the property that the expected time of this deterministic

algorithm, for a given probability distribution of inputs, is a lower bound on the expected

time of the randomized algorithm. Next, we consider executions of this a deterministic

algorithm.

Similarly as in the proof of Theorem 1, we observe that there are n! assignments of given

names to the processors and each of them occurs with the same probability 1/n!, when the

input bit strings are assigned uniformly at random. The entropy of name assignments is

again lg n! = Ω(n log n). The algorithm needs to make the processors learn Ω(n log n) bits

using the available C > 0 shared memory cells.

We may interpret an execution as structured into phases, such that each processor per-

forms at most one write in a phase and then reads all the registers. The time of a phase is
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assumed conservatively to be O(1). Consider a register and a group of processors that at-

tempt to write their values into this register in a phase. The values attempted to be written

are represented as strings of bits. If some of these values have 0 and some have 1 at some

bit position among the strings, then this bit position may convey one bit of information.

The maximum amount of information is provided by a write when the written string of bits

facilitates identifying the writer by comparing its written value to the other values attempted

to be written concurrently to the same memory cell. It follows that this amount is at most

the binary logarithm of the size of this group of processors, so that each memory cell written

to in a round contributes at most lg n bits of information because there may be at most n

writers to it. So the maximum number of bits of information learnt by the processors in a

phase is C lg n.

Since the entropy of the assignment of names is lg n! = Ω(n log n), the expected number of

phases of the deterministic algorithm is Ω(n lg n/(C lg n)) = Ω(n/C). By the Yao’s principle,

this is also a lower bound on the expected time of a randomized algorithm. �

Next, we consider “absolute” requirements on time for a PRAM to assign unique names

to the n available processors. The generality of the lower bound we give stems from the

weakness of assumptions. First, nothing is assumed about the knowledge of n. Second,

concurrent writing is not constrained in any way. Third, shared memory cells are unbounded

in their number and size. Kutten et al. [68] showed that any Las Vegas naming algorithm

for asynchronous read-write shared memory systems has expected time Ω(log n) against a

certain oblivious schedule.

We show next in Theorem 3 that any Las Vegas naming algorithm has Ω(log n) expected

time for the synchronous schedule of events. The argument we give is in the spirit of similar

arguments applied by Cook et al. [31] and Beame [19]. What these arguments share are a for-

malization of the notion of flow of information during an execution of an algorithm,combined

with a recursive estimate of the rate of this flow.

The relation processor v knows processor w in round t is defined recursively as follows.
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First, for any processor v, we have that v knows v in any round t > 0. Second, if a processor v

writes to a shared memory cell R in a round t1 and a processor w reads from R in a round

t2 > t1 such that there was no other write into this memory cell after t1 and prior to t2 then

processor w knows in round t2 each processor that v knows in round t1. Finally, the relation

is the smallest transitive relation that satisfies the two postulates formulated above. This

means that it is the smallest relation such that if processor v knows processor w in round

t1 and z knows v in round t2 such that t2 > t1 then processor z knows w in round t2. In

particular, the knowledge accumulates with time, in that if a processor v knows processor z

in round t1 and round t2 is such that t2 > t1 then v knows z in round t2 as well.

Lemma 3 Let A be a deterministic algorithm that assigns distinct names to the processors,

with the possibility that some processors output “no name” for some inputs, when each node

has an input string of bits of the same length. When algorithm A terminates with proper

names assigned to all the processors then each processor knows all the other processors.

Proof: We may assume that n > 1 as otherwise one processors knows itself. Let us consider

an assignment I of inputs that results in a proper assignment of distinct names to all the

processors when algorithm A terminates. This implies that all the inputs in the assignment I

are distinct strings of bits, as otherwise some two processors, say, v and w that obtain the

same input string of bits would either assign themselves the same name or declare “no name”

as output. Suppose that processor v does not know w when v halts for inputs from I.

Consider an assignment of inputs J which is the same as I for processors different from w

and such that the input of w is the same as input for v in I. Then the actions of processor v

would be the same with J as with I, because v is not affected by the input of w, so that v

would assign itself the same name with J as with I. But the actions of processor w would

be the same in J as those of v, because their input strings of bits are identical under J . It

follows that w would assign itself the name of v, resulting in duplicate names. �

We will use Lemma 3 to asses running times by estimating the number of interleaved
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reads and writes needed for processors to get to know all the processors. The rate of learning

such information may depend on time, because we do not restrict the amount of shared

memory, unlike in Theorems 1 and 2. Indeed, the rate may increase exponentially, under

most conservative estimates.

The following Theorem 3 holds for both Common and Arbitrary PRAMs. The argument

used in the proof is general enough not to depend on any specific semantics of writing.

Theorem 3 A randomized naming algorithm for a PRAM with n processors operates in

Ω(log n) expected time when it is either a Las Vegas algorithm or a Monte Carlo algorithm

with the probability of error smaller than 1/2.

Proof: The argument is for a Las Vegas algorithm, the Monte Carlo case is similar. A

randomized algorithm can be interpreted as a probability distribution on a finite set of

deterministic algorithms. Such an interpretation works when input strings for a deterministic

algorithm are of the same length. We consider all such possible lengths for deterministic

algorithms, similarly as in the previous proofs of lower bounds.

Let us consider a deterministic algorithm A, and let inputs be strings of bits of the same

length. We may structure an execution of this algorithm A into phases as follows. A phase

consists of two rounds. In the first round of a phase, each processor either writes to a shared

memory cell or pauses. In the second round of a phase, each processor either reads from a

shared memory cell or pauses. Such structuring can be done without loss of generality at the

expense of slowing down an execution by a factor of at most 2. Observe that the knowledge

in the first round of a phase is the same as in the last round of the preceding phase.

Phases are numbered by consecutively increasing integers, starting from 1. A phase i

comprised pairs of rounds {2i−1, 2i}, for integers i ≥ 1. In particular, the first phase consists

of rounds 1 and 2. We also add phase 0 that represents the knowledge before any reads or

writes were performed.

We show the following invariant, for i ≥ 0: a processor knows at most 2i processors at
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the end of phase i. The proof of this invariant is by induction on i.

The base case is for i = 0. The invariant follows from the fact that a processor knows

only one processor in phase 0, namely itself, and 20 = 1.

To show the inductive step, suppose the invariant holds for a phase i ≥ 0 and consider

the next phase i + 1. A processor v may increase its knowledge by reading in the second

round of phase i+1. Suppose the read is from a shared memory cell R. The latest write into

this memory cell occurred by the first round of phase i+ 1. This means that the processor w

that wrote to R by phase i + 1, as the last one that did write, knew at most 2i processors

in the round of writing, by the inductive assumption and the fact that what is written in

phase i+ 1 was learnt by the immediately preceding phase i. Moreover, by the semantics of

writing, the value written to R by w in that round removed any previous information stored

in R. Processor v starts phase i+1 knowing at most 2i processors, and also learns of at most

2i other processors by reading in phase i+1, namely, those values known by the latest writer

of the read contents. It follows that processor v knows at most 2i + 2i = 2i+1 processors by

the end of phase i+ 1.

When proper names are assigned by such a deterministic algorithm, then each processor

knows every other processor, by Lemma 3. A processor knows every other processor in a

phase j such that 2j ≥ n, by the invariant just proved. Such a phase number j satisfies

j ≥ lg n, and it takes 2 lg n rounds to complete lg n phases.

Let us consider inputs strings of bits assigned to processors uniformly at random. We

need to estimate the expected running time of an algorithm A on such inputs. Let us

observe that, in the context of interpreting deterministic executions for the sake to apply

Yao’s principle, terminating executions of A that do not result in names assigned to all

the processors could be pruned from a bound on their expected running time, because such

executions are determined by bounded input strings of bits that a randomized algorithm

would extend to make them sufficiently long to assign proper names. In other words, from the

perspective of randomized algorithms, such prematurely ending executions do not represent
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real terminating ones.

The expected time of A, conditional on terminating with proper names assigned, is

therefore at least 2 lg n. We conclude, by the Yao’s principle, that any randomized naming

algorithm has Ω(log n) expected runtime. �

The three lower bounds on time given in this Section may be applied in two ways. One

is to infer optimality of time for a given amount of shared memory used. Another is to

infer optimality of shared memory use given a time performance. This is summarized in the

following Corollary 1.

Corollary 1 If the expected time of a naming Las Vegas algorithm is O(n) on an Arbitrary

PRAM with O(1) shared memory, then this time performance is asymptotically optimal.

If the expected time of a naming Las Vegas algorithm is O(n log n) on a Common PRAM

with O(1) shared memory, then this time performance is asymptotically optimal. If a Las

Vegas naming algorithm operates in time O(log n) on an Arbitrary PRAM using O(n/ log n)

shared memory cells, then this amount of shared memory is asymptotically optimal. If a Las

Vegas naming algorithm operates in time O(log n) on a Common PRAM using O(n) shared

memory cells, then this amount of shared memory is optimal.

Proof: We verify that the lower bounds match the assumed upper bounds. By Theorem 2, a

Las Vegas algorithm operates almost surely in Ω(n) time on an Arbitrary PRAM when space

is O(1). By Theorem 1, a Las Vegas algorithm operates almost surely in Ω(n log n) time on a

Common PRAM when space is O(1). By Theorem 2, a Las Vegas algorithm operates almost

surely in Ω(log n) time on an Arbitrary PRAM when space is O(n/ log n). By Theorem 1,

a Las Vegas algorithm operates almost surely in Ω(log n) time on a Common PRAM when

space is O(n). �

A naming algorithm cannot be Las Vegas when n is unknown, as was observed by Kutten

et al. [68] in a more general case of asynchronous computations against an oblivious adversary.

We show an analogous fact for synchronous computations.
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Proposition 2 There is no Las Vegas naming algorithm for a PRAM with at least two

processors that does not refer to the total number of processors.

Proof: Let us suppose, to arrive at a contradiction, that such a naming Las Vegas algorithm

exists. Consider a system of n ≥ 1 processors, when n is an arbitrary positive integer, and

an execution E on these n processors that uses specific strings of random bits such that the

algorithm terminates in E with these random bits. Such strings of random bits exist because

the algorithm terminates almost surely.

Let v1 be a processor that halts latest in E among the n processors. Let αE be the string

of random bits generated by processor v1 by the time it halts in E . Consider an execution E ′

on n + 1 ≥ 2 processors such that n processors obtain the same strings of random bits as

in E and an extra processor v2 obtains αE as its random bits. The executions E and E ′ are

indistinguishable for the n processors participating in E , so they assign themselves the same

names and halt. Processor v2 performs the same reads and writes as processor v1 and assigns

itself the same name as processor v1 does and halts in the same round as processor v1. This

is the termination round because by that time all the other processor have halted as well.

It follows that execution E ′ results in a name being duplicated. The probability of dupli-

cation for n+1 processors is at least as large as the probability to generate the finite random

strings for n processors as in E , and additionally to generate αE for an extra processor v2, so

this probability is positive. �

If n is unknown, then the restriction O(n log n) on the number of random bits makes it

inevitable that the probability of error is at least polynomially bounded from below, as we

show next.

Proposition 3 For unknown n, if a randomized naming algorithm is executed by n anony-

mous processors, then an execution is incorrect, in that duplicate names are assigned to

distinct processors, with probability that is at least n−Ω(1), assuming that the algorithm uses

O(n log n) random bits with probability 1− n−Ω(1).
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Proof: Suppose the algorithm uses at most cn lg n random bits with a probability pn when

executed by a system of n processors, for some constant c > 0. Then one of these processors

uses at most c lg n bits with a probability pn, by the pigeonhole principle.

Consider an execution for n+1 processors. Let us distinguish a processor v. Consider the

actions of the remaining n processors: one of them, say w, uses at most c lg n bits with the

probability pn. Processor v generates the same string of bits with probability 2−c lgn = n−c.

The random bits generated by w and v are independent. Therefore duplicate names occur

with probability at least n−c ·pn. When we have a bound pn = 1−n−Ω(1), then the probability

of duplicate names is at least n−c(1− n−Ω(1)) = n−Ω(1). �

5.3 Lower Bounds for a Channel with Beeping

We begin with an observation, formulated as Proposition 4, that if the system is suffi-

ciently symmetric then randomness is necessary to break symmetry. The given argument is

standard and is given for completeness sake; see [6, 14, 44].

Proposition 4 There is no deterministic naming algorithm for a synchronous channel with

beeping with at least two stations, in which all stations are anonymous, such that it eventually

terminates and assigns proper names.

Proof: We argue by contradiction. Suppose that there exists a deterministic algorithm that

eventually terminates with proper names assigned to the anonymous stations. Let all the

stations start initialized to the same initial state. The following invariant is maintained in

each round: the internal states of the stations are all equal. We proceed by induction on the

round number. The base of induction is satisfied by the assumption about the initialization.

For the inductive step, we assume that the stations are in the same state, by the inductive

assumption. Then either all of them pause or all of them beep in the next round, so that

either all of them hear their own beep or all of them pause and hear silence. This results

in the same internal state transition, which shows the inductive step. When the algorithm

eventually terminates, then each station assigns to itself the identifier determined by its
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state. The identifier is the same in all stations because their states are the same, by the

invariant. This violates the desired property of names to be distinct, because there are at

least two stations with the same name. �

Proposition 4 justifies developing randomized naming algorithms. We continue with

“entropy” arguments; see the book by Cover and Thomas [33] for a systematic exposition of

information theory. An execution of a naming algorithm coordinates and translated random

bits into names. This same amount of entropy needs to be processed/communicated on the

channel, by the Shannon’s noiseless coding theorem. An analogue of the following Proposi-

tion 5 was stated in Proposition 1 for the model of synchronized processors communicating

by reading and writing to shared memory.

Proposition 5 If a randomized naming algorithm for a channel with beeping is executed by

n anonymous stations and is correct with probability pn then it requires Ω(n log n) random

bits in total to be generated with probability at least pn. In particular, a Las Vegas naming

algorithm uses Ω(n log n) random bits almost surely.

One round of an execution of a naming algorithm allows the stations that do not transmit

to learn at most one bit, because, from the perspective of these stations, a round is either

silent or there is a beep. Intuitively, the running time is proportional to the amount of

entropy that is needed to assign names. This intuition leads to Proposition 6. In its proof,

we combine Shannon’s entropy [33] with Yao’s principle [91].

Proposition 6 A randomized naming algorithm for a beeping channel with n stations op-

erates in Ω(n log n) expected time, when it is either a Las Vegas algorithm or a Monte Carlo

algorithm with the probability of error smaller than 1/2.

Proof: We apply the Yao’s minimax principle to bound the expected time of a randomized

algorithm by the distributional complexity of naming. We consider Las Vegas algorithms

first.
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A randomized algorithm using strings of random bits generated by stations can be con-

sidered as a deterministic algorithm D on all possible assignments of such (sufficiently long)

strings of bits to stations as their inputs. We consider assignments of strings of bits of an

equal length with the uniform distribution among all such assignments of strings of the same

length. On a given assignment of input strings of bits to stations, the deterministic algo-

rithms either assigns proper names or fails to do so. A failure to assign proper names with

some input is interpreted as the randomized algorithm continuing to work with additional

random bits, which comes at an extra time cost. This is justified by a combination of two

factors. One is that the algorithm is Las Vegas and so it halts almost surely, and with a

correct output. Another is that the probability to assign a specific finite sequence as a prefix

of a used sequence of random bits is positive. So if starting with a specific string of bits, as a

prefix of a possibly longer needed string, would mean inability to terminate with a positive

probability, then the naming algorithm would not be Las Vegas.

The common length of these input strings is a parameter, and we consider all sufficiently

large positive integer values for this parameter such that their exist strings of random bits

of this length resulting in assignments of proper names. For a given length of input strings,

we remove input assignments that do not result in assignment proper names and consider a

uniform distribution of the remaining inputs. This is the same as the uniform distribution

conditional on the algorithm terminating with input strings of bits of a given length.

Let us consider such a deterministic algorithm D assigning names, and using strings of

bits at stations as inputs, these strings being of a fixed length, assigned under a uniform

distribution for this length, and such that they result in termination. An execution of this

algorithm produces a finite binary sequence of bits, where we translate the feedback from the

channel round by round, say, with symbol 1 representing a beep and symbol 0 representing

silence. Each such a sequence is a binary codeword representing a specific assignment of

names. These codewords have also a uniform distribution, by the same symmetry argument

as used in the proof of Proposition 1. The expected length of a word in this code is the
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expected time of algorithm D. The expected time of algorithm D is therefore at least

lg n! = Ω(n log n), by the Shannon’s noiseless coding theorem. We conclude that, by the

Yao’s principle, the original randomized Las Vegas algorithm has expected time that is

Ω(n log n).

A similar argument, by the Yao’s principle, applies to a Monte Carlo algorithm that is

incorrect with a constant probability smaller than 1/2. The only difference in the argument

is that when a given assignment of input sting bits does not result in a proper assignment

of names, then either the algorithm continues to work with more bits for an extra time, or

terminates with error. �

Next, we consider facts that hold when the number of stations n is unknown. The

following Proposition 7 is about the inevitability of error. Intuitively, when two comput-

ing/communicating agents generate the same string of bits, then their actions are the same,

and so they get the same name assigned. In other words, we cannot distinguish the case

when there is only one such an agent present from cases when at least two of them work in

unison.

Proposition 7 For an unknown number of station n, if a randomized naming algorithm is

executed by n anonymous stations, then an execution is incorrect, in that duplicate names

are assigned to different stations, with probability that is at least n−Ω(1), assuming that the

algorithm uses O(n log n) random bits with probability 1− n−Ω(1).

The proof of Proposition 7 given in Proposition 3 is for the model of synchronous dis-

tributed computing in which processors communicate among themselves by reading from and

writing to shared registers. The same argument applies to a synchronous beeping channel,

when we understand actions of stations as either beeping or pausing in a round.

We conclude this section with a fact about impossibility of developing a Las Vegas

naming algorithm when the number of stations n is unknown.
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Proposition 8 There is no Las Vegas naming algorithm for a channel with beeping with at

least two stations such that it does not refer to the number of stations.

The proof of Proposition 8 given in Proposition 2 is for the model of synchronous dis-

tributed computing in which processors communicate among themselves by reading from and

writing to shared registers. The proof given for Proposition 2 is general enough to be directly

applicable here as well, as both models are synchronous. Proposition 8 justifies developing

Monte Carlo algorithm for unknown n, which we do in Section 8.2.
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6. PRAM: Las Vegas Algorithms

We consider naming of anonymous processors of a PRAM when the number of processors

n is known. This problem is investigated in four specific cases, depending on the additional

assumptions pertaining to the model, and we give an algorithm for each case. The two

independent assumptions regard the amount of shared memory (constant versus unbounded)

and the PRAM variant (Arbitrary versus Common).

6.1 Arbitrary with Constant Memory

We present a naming algorithm for Arbitrary PRAM in the case when there are a con-

stant number of shared memory cells. It is called Arbitrary-Constant-LV.

During an execution of this algorithm, processors repeatedly write random strings of

bits representing integers to a shared memory cell called Pad, and next read Pad to verify

the outcome of writing. A processor v that reads the same value as it attempted to write

increments the integer stored in a shared register Counter and uses the obtained number

as a tentative name, which it stores in a private variable namev. The values of Counter

could get incremented a total of less than n times, which occurs when some two processors

chose the same random integer to write to the register Pad. The correctness of the assigned

names is verified by the inequality Counter ≥ n, because Counter was initialized to zero.

When such a verification fails then this results in another iteration of a series of writes to

register Pad, otherwise the execution terminates and the value stored at namev becomes the

final name of processor v. Pseudocode for algorithm Arbitrary-Constant-LV is given

in Figure 6.1. It refers to a constant β > 0 which determines the bounded range [1, nβ] from

which processors select integers to write to the shared register Pad.

Balls into bins. The selection of random integers in the range [1, nβ] by n processors can be

interpreted as throwing n balls into nβ bins, which we call β-process. A collision represents

two processors assigning themselves the same name. Therefore an execution of the algorithm

can be interpreted as performing such ball placements repeatedly until there is no collision.

Lemma 4 For each a > 0 there exists β > 0 such that when n balls are thrown into nβ bins

during the β-process then the probability of a collision is at most n−a.
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Algorithm Arbitrary-Constant-LV

repeat

initialize Counter← namev ← 0

binv ← random integer in [1, nβ]

for i← 1 to n do

if namev = 0 then

Pad ← binv
if Pad = binv then

Counter ← Counter + 1
namev ← Counter

until Counter = n

Figure 6.1: A pseudocode for a processor v of an Arbitrary PRAM, where the
number of shared memory cells is a constant independent of n. The variables
Counter and Pad are shared. The private variable name stores the acquired
name. The constant β > 0 is parameter to be determined by analysis.

Proof: Consider the balls thrown one by one. When a ball is thrown, then at most n bins

are already occupied, so the probability of the ball ending in an occupied bin is at most

n/nβ = n−β+1. No collisions occur with probability that is at least

(
1− 1

nβ−1

)n
≥ 1− n

nβ−1
= 1− n−β+2 , (6.1)

by the Bernoulli’s inequality. If we take β ≥ a+ 2 then just one iteration of the repeat-loop

is sufficient with probability that is at least 1− n−a. �

Next we summarize the performance of algorithm Arbitrary-Constant-LV as a Las

Vegas algorithm.

Theorem 4 Algorithm Arbitrary-Constant-LV terminates almost surely and there is

no error when it terminates. For any a > 0, there exist β > 0 and c > 0 and such that

the algorithm terminates within time cn using at most cn lnn random bits with probability

at least 1− n−a.

Proof: The algorithm assigns consecutive names from a continuous interval starting from 1,
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by the pseudocode in Figure 6.1. It terminates after n different tentative names have been

assigned, by the condition controlling the repeat loop in the pseudocode of Figure 6.1. This

means that proper names have been assigned when the algorithm terminates.

We map an execution of the β-process on an execution of algorithm Arbitrary-

Constant-LV in a natural manner. Under such an interpretation, Lemma 4 estimates

the probability of the event that the n processors select different numbers in the interval

[1, nβ] as their values to write to Pad in one iteration of the repeat-loop. This implies that

just one iteration of the repeat-loop is sufficient with the probability that is at least 1−n−a.

The probability of the event that i iterations are not sufficient to terminate is at most n−ia,

which converges to 0 as i increases, so the algorithm terminates almost surely. One iteration

of the repeat-loop takes O(n) rounds and it requires O(n log n) random bits. �

Algorithm Arbitrary-Constant-LV is optimal among Las Vegas naming algorithms

with respect to its expected running time O(n), given the amount O(1) of its available

shared memory, by Corollary 1, and the expected number of random bits O(n log n), by

Proposition 1 in Section 5.2.

6.2 Arbitrary with Unbounded Memory

We give an algorithm for Arbitrary PRAM in the case when there is an unbounded supply

of initialized shared memory cells. This algorithm is called Arbitrary-Unbounded-LV.

The algorithm uses two arrays Bin and Counter of n
lnn

shared memory cells each. An

execution proceeds by repeated attempts to assign names. During each such attempt, the

processors work to assign tentative names. Next, the number of distinct tentative names is

obtained and if the count equals n then the tentative names become final, otherwise another

attempt is made. We assume that each such attempt uses a new segment of memory cells

Counter initialized to 0s; this is only to simplify the exposition and analysis, because this

memory can be reset to 0 with a straightforward randomized algorithm which is omitted. An

attempt to assign tentative names proceeds by each processor selecting two integers binv and

labelv uniformly at random, where bin ∈ [1, n
lnn

] and label ∈ [1, nβ]. Next the processors
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Algorithm Arbitrary-Unbounded-LV

repeat

allocate Counter [1, n
lnn

] /∗ fresh memory cells initialized to 0s/∗
initialize positionv ← (0, 0)

bin← a random integer in [1, n
lnn

]

label← a random integer in [1, nβ]

repeat

initialize All-Named← true

if positionv = (0, 0) then
Bin [bin]← label

if Bin [bin] = label then

Counter [bin]← Counter [bin] + 1
positionv ← (bin, Counter [bin])

else All-Named ← false

until All-Named /∗ each processor has a tentative name /∗
namev ← rank of positionv

until n is the maximum name /∗ no duplicates among tentative names /∗

Figure 6.2: A pseudocode for a processor v of an Arbitrary PRAM, where the
number of shared memory cells is unbounded. The variables Bin and Counter
denote arrays of n

lnn
shared memory cells each, the variable All-Named is also

shared. The private variable name stores the acquired name. The constant
β > 0 is a parameter to be determined by analysis.

repeatedly attempt to write label into Bin[bin]. Each such a write is followed by a read

and the lucky writer uses Counter[bin] to create a pair of numbers (bin, Counter[bin]),

after first incrementing Counter[bin], which is called bin’s position and is stored in variable

position. After all processors have their positions determined, we define their ranks as

follows. To find the rank of positionv, we arrange all such pairs in lexicographic order,

comparing first on bin and then on Counter[bin], and the rank is the position of this entry

in the resulting list, where the first entry has position 1, the second 2, and so on. Ranks can

be computed using a prefix-type algorithm operating in time O(log n). This algorithm first

finds for each bin ∈ [1, n
lnn

] the sum s(bin) =
∑

1≤i<bin Counter[i]. Next, each process v with

a position (binv, c) assigns to itself s(binv) + c as its rank. After ranks have been computed,
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they are used as tentative names. Pseudocode for algorithm Arbitrary-Unbounded-LV

is given in Figure 6.2.

In the analysis of algorithm Arbitrary-Unbounded-LV we will refer to the following

bound on independent Bernoulli trials. Let Sn be the number of successes in n independent

Bernoulli trials, with p as the probability of success. Let b(i;n, p) be the probability of an

occurrence of exactly i successes. For r > np, the following bound holds

Pr(Sn ≥ r) ≤ b(r;n, p) · r(1− p)
r − np

, (6.2)

see Feller [42].

Balls into bins. We consider throwing n balls into n
lnn

bins. Each ball has a label assigned

randomly from the range [1, nβ], for β > 0. We say that a labeled collision occurs when there

are two balls with the same labels in the same bin. We refer to this process as β-process.

Lemma 5 For each a > 0 there exists β > 0 and c > 0 such that when n balls are labeled

with random integers in [1, nβ] and next are thrown into n
lnn

bins during the β-process then

there are at most c lnn balls in every bin and no labeled collision occurs with probability

1− n−a.

Proof: We estimate from above the probabilities of the event that there are more than c lnn

balls in some bin and that there is a labeled collision. We show that each of them can be

made to be at most n−a/2, from which it follows that at least one of these two events occurs

with probability at most n−a.

Let p denote the probability of selecting a specific bin when throwing a ball, which is

p = lnn
n

. When we set r = c lnn, for a sufficiently large c > 1, then

b(r;n, p) =

(
n

c lnn

)( lnn

n

)c lnn(
1− lnn

n

)n−c lnn

. (6.3)

Formula (6.3) translates (6.2) into the following bound

Pr(Sn ≥ r) ≤
(

n

c lnn

)( lnn

n

)c lnn(
1− lnn

n

)n−c lnn

·
c lnn(1− lnn

n
)

c lnn− lnn
. (6.4)
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The right-hand side of (6.4) can be estimated by the following upper bound:( en

c lnn

)c lnn( lnn

n

)c lnn(
1− lnn

n

)n−c lnn

· c

c− 1

=
(e
c

)c lnn(
1− lnn

n

)n( n

n− lnn

)c lnn

· c

c− 1

≤ ncc−c lnne− lnn
( n

n− lnn

)c lnn

· c

c− 1

≤ n−c ln c+c−1 ,

for each sufficiently large n > 0. This is because( n

n− lnn

)c lnn

=
(

1 +
lnn

n− lnn

)c lnn

≤ exp
( c ln2 n

n− lnn

)
,

which converges to 1. The probability that the number of balls in some bin is greater than

c lnn is therefore at most n · n−c ln c+c−1 = n−c(ln c−1), by the union bound. This probability

can be made smaller than n−a/2 for a sufficiently large c > e.

The probability of a labeled collision is at most that of a collision when n balls are

thrown into nβ bins. This probability is at most n−β+2 by bound (6.1) used in the proof of

Lemma 4. This number can be made at most n−a/2 for a sufficiently large β. �

Next we summarize the performance of algorithm Arbitrary-Unbounded-LV as a

Las Vegas algorithm.

Theorem 5 Algorithm Arbitrary-Unbounded-LV terminates almost surely and there

is no error when the algorithm terminates. For any a > 0, there exists β > 0 and c > 0 such

that the algorithm assigns names within c lnn time and generates at most cn lnn random

bits with probability at least 1− n−a.

Proof: The algorithm terminates only when n different names have been assigned, which is

provided by the condition that controls the main repeat-loop in Figure 6.2. This means that

there is no error when the algorithm terminates.

We map executions of the β-process on executions of algorithm Arbitrary-Unbounded-

LV in a natural manner. The main repeat-loop ends after an iteration in which each group
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of processors that select the same value for variable bin next select distinct values for label.

We interpret the random selections in an execution as throwing n balls into n
lnn

bins, where

a number bin determines a bin. The number of iterations of the inner repeat-loop equals

the maximum number of balls in a bin.

For any a > 0, it follows that one iteration of the main repeat-loop suffices with prob-

ability at least 1 − n−a, for a suitable β > 0, by Lemma 5. It follows that i iterations are

executed by termination with probability at most n−ia, so the algorithm terminates almost

surely.

Let us take c > 0 as in Lemma 5. It follows that an iteration of the main repeat-loop

takes at most c lnn steps and one processor uses at most c lnn random bits in this one

iteration with probability at least 1− n−a. �

Algorithm Arbitrary-Unbounded-LV is optimal among Las Vegas naming algo-

rithms with respect to the following performance measures: the expected time O(log n),

by Theorem 3, the number of shared memory cells O(n/ log n) used to achieve this run-

ning time, by Corollary 1, and the expected number of used random bits O(n log n), by

Proposition 1 in Section 5.2.

6.3 Common with Constant Memory

Now we consider the case of Common PRAM when the number of available shared

memory cells is constant. We propose an algorithm called Common-Constant-LV.

An execution of the algorithm is organized as repeated “attempts” to assign temporary

names. During such attempt, each processor without a name chooses uniformly at random an

integer in the interval [1, number-of-bins], where number-of-bins is a parameter initialized

to n; such a selection is interpreted in a probabilistic analysis as throwing a ball into number-

of-bins many bins. Next, for each i ∈ [1, number-of-bins], the processors that selected i,

if any, verify if they are unique in their selection of i by executing procedure Verify-

Collision (given in Figure 4.1 in Section 4) β lnn times, where β > 0 is a number that

is determined by analysis. After no collision has been detected, a processor that selected
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Algorithm Common-Constant-LV

repeat

initialize number-of-bins← n ; namev ← Last-Name← 0 ;
no-collisionv ← true

repeat

initialize Collision-Detected← false

if namev = 0 then

binv ← random integer in [1, number-of-bins]
for i← 1 to number-of-bins do

for j ← 1 to β lnn do
if binv = i then
if Verify-Collision then

Collision-Detected← collisionv ← true

if binv = i and not collisionv then

Last-Name ← Last-Name + 1
namev ← Last-Name

if n− Last-Name > β lnn
then number-of-bins← (n− Last-Name)
else number-of-bins← n/(β lnn)

until not Collision-Detected

until Last-Name = n

Figure 6.3: A pseudocode for a processor v of a Common PRAM, where
there is a constant number of shared memory cells. Procedure Verify-
Collision has its pseudocode in Figure 4.1; lack of parameter means the
default parameter 1. The variables Collision-Detected and Last-Name are
shared. The private variable name stores the acquired name. The constant β
is a parameter to be determined by analysis.

i assigns itself a consecutive name by reading and incrementing the shared variable Last-

Name. It takes up to β number-of-bins lnn verifications for collisions for all integers in

[1, number-of-bins]. When this is over, the value of variable number-of-bins is modified

by decrementing it by the number of new names just assigned, when working with the last

number-of-bins, unless such decrementing would result in a number number-of-bins that

is at most β lnn, in which case variable number-of-bins is set to n/(β lnn). An attempt ends

when all processors have tentative names assigned. These names become final when there
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are a total of n of them, otherwise there are duplicates, so another attempt is performed.

A pseudocode for algorithm Common-Constant-LV is in Figure 6.3, in which the main

repeat loop represents an attempt to assign tentative names to each processor. An iteration

of the inner repeat loop during which number-of-bins > n/(β lnn) is called shrinking and

otherwise it is called restored.

Balls into bins. As a preparation of analysis of performance of algorithm Common-

Constant-LV, we consider a related process of repeatedly throwing balls into bins, which

we call β-process. The β-process proceeds through stages, each representing one iteration

of the inner repeat-loop in Figure 6.3. A stage results in some balls removed and some

transitioning to the next stage, so that eventually no balls remain and the process terminates.

The balls that participate in a stage are called eligible for the stage. In the first stage, n

balls are eligible and we throw n balls into n bins. Initially, we apply the principle that after

all eligible balls have been placed into bins during a stage, the singleton bins along with the

balls in them are removed. A stage after which bins are removed is called shrinking. There

are k bins and k balls in a shrinking stage; we refer to k as the length of this stage. Given

balls and bins for any stage, we choose a bin uniformly at random and independently for

each ball in the beginning of a stage and next place the balls in their selected destinations.

The bins that either are empty or multiple in a shrinking stage stay for the next stage. The

balls from multiple bins become eligible for the next stage.

This continues until such a shrinking stage after which at most β lnn balls remain. Then

we restore bins for a total of n/(β lnn)) of them to be used in the following stages, during

which we never remove any bin; these stages are called restored. In these final restored stages,

we keep removing singleton balls at the end of a stage, while balls from multiple bins stay

as eligible for the next restored stage. This continues until all balls are removed.

Lemma 6 For any a > 0, there exists β > 0 such that the sum of lengths of all shrinking

stages in the β-process is at most 2en, where e is the base of natural logarithms, and there

are at most β lnn restored stages, both events holding with probability 1−n−a, for sufficiently
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large n.

Proof: We consider two cases depending on the kind of analyzed stages. Let k ≤ n denote

the length of a stage.

In a shrinking stage, we throw k balls into k bins choosing bins independently and

uniformly at random. The probability that a ball ends up singleton can be bounded from

below as follows:

k · 1

k

(
1− 1

k

)k−1

≥ (e−
1
k
− 1
k2 )k−1 = e−

k−1
k
− k−1

k2 = e−1+ 1
k
− 1
k

+ 1
k2 =

1

e
· e1/k2 ≥ 1

e
,

where we used the inequality 1− x ≥ e−x−x
2
, which holds for 0 ≤ x ≤ 1

2
.

Let Zk be the number of singleton balls after k balls are thrown into k bins. It follows

that the expectancy of Zk satisfies E [Zk] ≥ k/e.

To estimate the deviation of Zk from its expected value, we use the bounded differences

inequality [71, 75]. Let Bj be the bin of ball bj, for 1 ≤ j ≤ k. Then Zk is of the form

Zk = h(B1, . . . , Bk) where h satisfied the Lipschitz condition with constant 2, because moving

one ball to a different bin results in changing the value of h by at most 2 with respect to the

original value. The bounded-differences inequality specialized to this instance is as follows,

for any d > 0:

Pr(Zk ≤ E [Zk]− d
√
k) ≤ exp(−d2/8) . (6.5)

We use this inequality for d =
√
k

2e
. Then (6.5) implies the following bound:

Pr
(
Zk ≤

k

e
− k

2e

)
= Pr

(
Zk ≤

k

2e

)
≤ exp

(
−1

8
·
(√k

2e

)2)
= exp

(
− k

32e2

)
.

If we start a shrinking stage with k eligible balls then the number of balls eligible for the

next stage is at most (
1− 1

2e

)
· k =

2e− 1

2e
· k ,

with probability at least 1 − exp(−k/32e2). Let us continue shrinking stages as long as

the inequality k
32e2

> 3a lnn holds. We denote this inequality concisely as k > β lnn for
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β = 96e2a. Then the probability that every shrinking stage results in the size of the pool of

eligible balls decreasing by a factor of at least

2e− 1

2e
=

1

f

is itself at least (
1− e−3a lnn

)logf n

≥ 1−
logf n

n−3a
≥ 1− n−2a ,

for sufficiently large n, by Bernoulli’s inequality.

If all shrinking stages result in the size of the pool of eligible balls decreasing by a factor

of at least 1/f , then the total number of eligible balls summed over all such stages is at most

n
∑
i≥0

f−i = n · 1

1− f−1
= 2en .

In a restored stage, there are at most β lnn eligible balls. A restored stage happens to

be the last one when all the balls become single after their placement, which occurs with

probability at least(
n/(β lnn)− β lnn

n/(β lnn)

)β lnn

=
(

1− β2 ln2 n

n

)β lnn

≥ 1− β3 ln3 n

n
,

by the Bernoulli’s inequality. It follows that there are more than β lnn restored stages with

probability at most (β3 ln3 n

n

)β lnn

= n−Ω(logn) .

This bound is at most n−2a for sufficiently large n.

Both events, one about shrinking stages and the other about restored stages, hold with

probability at least 1− 2n−2a ≥ 1− n−a, for sufficiently large n. �

Next we summarize the performance of algorithm Common-Constant-LV as Las Ve-

gas one. In its proof, we rely on mapping executions of the β-process on executions of

algorithm Common-Constant-LV in a natural manner.

Theorem 6 Algorithm Common-Constant-LV terminates almost surely and there is no

error when the algorithm terminates. For any a > 0 there exist β > 0 and c > 0 such that the
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algorithm terminates within time cn lnn using at most cn lnn random bits with probability

1− n−a.

Proof: The condition controlling the main repeat-loop guarantees that an execution termi-

nates only when the assigned names fill the interval [1, n] so they are distinct.

To analyze time performance, we consider the β-process of throwing balls into bins as

considered in Lemma 6. Let β1 > 0 be the number β specified in this Lemma, as determined

by a replaced by 2a in its assumptions. This Lemma gives that the sum of all values of K

summed over all shrinking stages is at most 2en with probability at least 1− n−2a.

For a given K and a number i ∈ [1, K], procedure Verify-Collision is executed β lnn

times, where β is the parameter in Figure 6.3. If there is a collision then it is detected with

probability at least 2−β lnn. We may take β2 ≥ β1 sufficiently large so that the inequality

2en · 2−β2 lnn < n−2a holds.

The total number of instances of executing Verify-Collision during an iteration of

the main loop, while K is kept equal to n/(β lnn), is at most n. Observe that the inequality

n · 2−β2 lnn < n−2a holds with probability at most 1− n−2a because n < 2en.

If β is set in Figure 6.3 to β2 then one iteration of the outer repeat-loop suffices with

probability at least 1 − 2n−2a, for sufficiently large n. This is because verifications for

collisions detect all existing collisions with this probability. Similarly, this one iteration

takes O(n log n) time with probability that is at least 1− 2n−2a, for sufficiently large n. The

claimed performance holds therefore with probability at least 1 − n−a, for sufficiently large

n.

There are at least i iterations of the main repeat-loop with probability at most n−ia, so

the algorithm terminates almost surely. �

Algorithm Common-Constant-LV is optimal among Las Vegas algorithms with re-

spect to the following performance measures: the expected time O(n log n), given the amount

O(1) of its available shared memory, by Corollary 1, and the expected number of random

bits O(n log n), by Proposition 1 in Section 5.2.
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6.4 Common with Unbounded Memory

Now we consider the last case when PRAM is of its Common variant and there is

an unbounded amount of shared memory. We propose an algorithm called Common-

Unbounded-LV. The algorithm invokes procedure Verify-Collision, whose pseudocode

is in Figure 4.1.

An execution proceeds as a sequence of “attempts” to assign temporary names. When

such attempt results in assigning temporary names without duplicates then these transient

names become final. An attempt begins from each processor selecting an integer from the

interval [1, (β + 1)n] uniformly at random and independently, where β is a parameter such

that only β > 1 is assumed. Next, for lg n steps, each process executes procedure Verify-

Collision(x) where x is the currently selected integer. If a collision is detected then a

processor immediately selects another number in [1, (β + 1)n] and continues verifying for a

collision. After lg n such steps, the processors count the total number of selections of different

integers. If this number equals exactly n then the ranks of the selected integers are assigned

as names, otherwise another attempt to find names is repeated. Computing the number of

selections and the ranks takes time O(log n). In order to amortize this time O(log n) by

verifications, such a computation of ranks is performed only after lg n verifications. Here

a rank of a selected x is the number of numbers that are at most x that were selected. A

pseudocode for algorithm Common-Unbounded-LV is given in Figure 6.4. Subroutines

of prefix-type, like computing the number of selects and ranks of selected numbers are not

included in this pseudocode.

Balls into bins. We consider auxiliary processes of placing balls into bins that abstracts

operations on shared memory as performed by algorithm Common-Unbounded-LV.

The β-process is about placing n balls into (β+ 1)n bins. The process is structured as a

sequence of stages. A stage represents an abstraction of one iteration of the inner for-loop in

Figure 6.4 performed as if collisions were detected instantaneously and with certainty. When

a ball is moved then it is placed in a bin selected uniformly at random, all such selections
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Algorithm Common-Unbounded-LV

x← random integer in [1, (β + 1)n] /∗ throw a ball into bin x /∗
repeat

for i← 1 to lg n do

if Verify-Collision (x) then
x← random integer in [1, (β + 1)n]

number-occupied-bins ← the total number of selected values for x

until number-occupied-bins = n

namev ← the rank of bin x among nonempty bins

Figure 6.4: A pseudocode for a processor v of a Common PRAM, where
the number of shared memory cells is unbounded. The constant β is a param-
eter that satisfies the inequality β > 1. The private variable name stores the
acquired name.

independent from one another. The stages are performed as follows. In the first stage, n

balls are placed into (β + 1)n bins. When a bin is singleton in the beginning of a stage then

the ball in the bin stays put through the stage. When a bin is multiple in the beginning

of a stage, then all the balls in this bin participate actively in this stage: they are removed

from the bin and placed in randomly-selected bins. The process terminates after a stage in

which all balls reside in singleton bins. It is convenient to visualize a stage as occurring by

first removing all balls from multiple bins and then placing the removed balls in randomly

selected bins one by one.

We associate the mimicking walk to each execution of the β-process. Such a walk is

performed on points with integer coordinates on a line. The mimicking walk proceeds through

stages, similarly as the ball process. When we are to relocate k balls in a stage of the ball

process then this is represented by the mimicking walk starting the corresponding stage at

coordinate k. Suppose that we process a ball in a stage and the mimicking walk is at some

position i. Placing this ball in an empty bin decreases the number of balls for the next stage;

the respective action in the mimicking walk is to decrement its position from i to i − 1.

Placing this ball in an occupied bin increases the number of balls for the next stage; the
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respective action in the mimicking walk is to increment its position from i to i + 1. The

mimicking walk gives a conservative estimates on the behavior of the ball process, as we

show next.

Lemma 7 If a stage of the mimicking walk ends at a position k, then the corresponding

stage of the ball β-process ends with at most k balls to be relocated into bins in the next

stage.

Proof: The argument is broken into three cases, in which we consider what happens in the

ball process and what are the corresponding actions in the mimicking walk. A number of

balls in a bin in a stage is meant to be the final number of balls in this bin at the end of the

stage.

In the first case, just one ball is placed in a bin that begins the stage as empty. Then

this ball will not be relocated in the next stage. This means that the number of balls for the

next stage decreases by 1. At the same time, the mimicking walk decrements its position

by 1.

In the second case, some j ≥ 1 balls land in a bin that is singleton at the start of this

stage, so this ball was not eligible for the stage. Then the number of balls in the bin becomes

j + 1 and these many balls will need to be relocated in the next stage. Observe that this

contributes to incrementing the number of the eligible balls in the next stage by 1, because

only the original ball residing in the singleton bin is added to the set of eligible balls, while

the other balls participate in both stages. At the same time, the mimicking walk increments

its position by 1 j times.

In the third and final case, some j ≥ 2 balls land in a bin that is empty at the start

of this stage. Then this does not contribute to a change in the number of balls eligible for

relocation in the next stage, as these j balls participate in both stages. Let us consider these

balls as placed in the bin one by one. The first ball makes the mimicking walk decrement

its position. The second ball makes the walk increment its position, so that it returns to the

original position as at the start of the stage. The following ball placements, if any, result in
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the walk incrementing its positions. �

Random walks. Next we consider a random walk which will estimate the behavior of a

ball process. One component of estimation is provided by Lemma 7, in that we will interpret

a random walk as a mimicking walk for the ball process.

The random walk is represented as movements of a marker placed on the non-negative

side of the integer number line. The movements of the marker are by distance 1 and they are

independent. The random β-walk has the marker’s position incremented with probability 1
β+1

and decremented with probability β
β+1

. This may be interpreted as a sequence of independent

Bernoulli trials, in which β
β+1

is chosen to be the probability of success. We will consider

β > 1, for which β
β+1

> 1
β+1

, which means that the probability of success is greater than the

probability of failure.

Such a random β-walk proceeds through stages, which are defined as follows. The first

stage begins at position n. When a stage begins at a position k then it ends after k moves,

unless it reaches the zero coordinate in the meantime. The zero point acts as an absorbing

barrier, and when the walk’s position reaches it then the random walk terminates. This is the

only way in which the walk terminates. A stage captures one round of PRAM’s computation

and the number of moves in a stage represents the number of writes processors perform in a

round.

Lemma 8 For any numbers a > 0 and β > 1, there exists b > 0 such that the random

β-walk starting at position n > 0 terminates within b lnn stages with all of them comprising

O(n) moves with probability at least 1− n−a.

Proof: Suppose the random walk starts at position k > 0 when a stage begins. Let Xk be

the number of moves towards 0 and Yk = k − Xk be the number of moves away from 0 in

such a stage. The total distance covered towards 0, which we call drift, is

L(k) = Xk − Yk = Xk − (k −Xk) = 2Xk − k .

The expected value of Xk is E [Xk] = βk
β+1

= µk. The event Xk < (1 − ε)µk holds with
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probability at most exp(− ε2

2
µk), by the Chernoff bound [75], so that Xk ≥ (1− ε)µk occurs

with the respective high probability. We say that such a stage is conforming when the event

Xk ≥ (1− ε)µk holds.

If a stage is conforming then the following inequality holds:

L(k) ≥ 2(1− ε) βk

β + 1
− k =

β − 2βε− 1

β + 1
k .

We want the inequality β−2βε−1
β+1

> 0 to hold, which is the case when ε < β−1
2β

. Let us fix such

ε > 0. Now the distance from 0 after k steps starting at k is

k − L(k) = (1− β − 2βε− 1

β + 1
) · k =

2(1 + βε)

β + 1
· k ,

where 2(1+βε)
β+1

< 1 for ε < β−1
2β

. Let ρ = β+1
2(1+βε)

> 1. Consecutive i conforming stages make

the distance from 0 decrease by at least a factor ρ−i.

When we start the first stage at position n and the next logρ n stages are conforming

then after these many stages the random walk ends up at a position that is close to 0. For

our purposes, it suffices that the position is of distance at most s lnn from 0, for some s > 0,

because of its impact on probability. Namely, the event that all these stages are conforming

and the bound s lnn on distance from 0 holds, occurs with probability at least

1− logρ n · exp(−ε
2

2

β

β + 1
s lnn) ≥ 1− logρ n · n

− ε
2

2
β
β+1

s .

Let us choose s > 0 such that

logρ n · n
− ε

2

2
β
β+1

s ≤ 1

2na
,

for sufficiently large n.

Having fixed s, let us take t > 0 such that the distance covered towards 0 is at least s lnn

when starting from k = t lnn and performing k steps. We interpret these movements as if

this was a single conceptual stage for the sake of the argument, but its duration comprises

all stages when we start from s lnn until we terminate at 0. It follows that the conceptual

stage comprises at most t lnn real stages, because a stage takes at least one round.
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If this last conceptual stage is conforming then the distance covered towards 0 is bounded

by

L(k) ≥ β − 2βε− 1

β + 1
· k .

We want this to be at least s lnn for k = t lnn, which is equivalent to

β − 2βε− 1

β + 1
· t > s .

Now it is sufficient to take t > s · β+1
β−2βε−1

. This last conceptual stage is not conforming with

probability at most exp(− ε2

2
β
β+1

t lnn). Let us take t that is additionally big enough for the

following inequality

exp(−ε
2

2

β

β + 1
t lnn) = n−

ε2

2
β
β+1

t ≤ 1

2na

to hold.

Having selected s and t, we can conclude that there are at most (s+ t) lnn stages with

probability at least 1− n−a.

Now let us consider only the total number of moves to the left Xm and to the right Ym

after m moves in total, when starting at position n. The event Xm < (1− ε) · β
1+β
·m holds

with probability at most exp(− ε2

2
β

1+β
·m), by the Chernoff bound [75], so that Xm ≥ m· (1−ε)β

1+β

occurs with the respective high probability 1− exp(− ε2

2
β

1+β
·m). At the same time we have

that the number of moves away from zero, which we denote Ym, can be estimated to be

Ym = m−Xm < m−m · (1− ε)β
1 + β

=
1 + εβ

1 + β
·m .

This gives an estimate on the corresponding drift:

L(m) = Xm − Ym >
β − 2βε− 1

β + 1
·m .

We want the inequality β−2βε−1
β+1

> 0 to hold, which is the case when ε < β−1
2β

. The drift is at

least n, with the corresponding large probability, when m = d · n for d = β+1
β−2βε−1

. The drift

is at least such with probability exponentially close to 1 in n, which is at least 1 − n−a for

sufficiently large n. �
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Lemma 9 For any numbers a > 0 and β > 1, there exists b > 0 such that the β-process

starting at position n > 0 terminates within b lnn stages after performing O(n) ball throws

with probability at least 1− n−a.

Proof: We estimate the behavior of the β-process on n balls by the behavior of the random

β-walk starting at position n. The justification of the estimation is in two steps. One is

the property of mimicking walks given as Lemma 7. The other is provided by Lemma 8

and is justified as follows. The probability of decrementing and incrementing position in

the random β-walk are such that they reflect the probabilities of landing in an empty bin

or in an occupied bin. Namely, we use the facts that during executing the β-process, there

are at most n occupied bins and at least β · n empty bins in any round. In the β-process,

the probability of landing in an empty bin is at least βn
(β+1)n

= β
β+1

, and the probability of

landing in an occupied bin is at most n
(β+1)n

= 1
β+1

. This means that the random β-walk is

consistent with Lemma 7 in providing estimates on the time of termination of the β-process

from above. �

Incorporating verifications. We consider the random β-walk with verifications, which is

defined as follows. The process proceeds through stages, similarly as the regular random

β-walk. For any round of the walk and a position at which the walk is at, we first perform a

Bernoulli trial with the probability 1
2

of success. Such a trial is referred to as a verification,

which is positive when a success occurs otherwise it is negative. After a positive verification

a movement of the marker occurs as in the regular β-walk, otherwise the walk pauses at the

given position for this round.

Lemma 10 For any numbers a > 0 and β > 1, there exists b > 0 such that the random

β-walk with verifications starting at position n > 0 terminates within b lnn stages with all of

them comprising the total of O(n) moves with probability at least 1− n−a.

Proof: We provide an extension of the proof of Lemma 8, which states a similar property

of regular random β-walks. That proof estimated times of stages and the number of moves.
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Suppose the regular random β-walk starts at a position k, so that the stage takes k moves.

There is a constant d < 1 such that the walk ends at a position at most dk with probability

exponential in k.

Moreover, the proof of Lemma 8 is such that all the values of k considered are at least

logarithmic in n, which provides at most a polynomial bound on error. A random walk

with verifications is slowed down by negative verifications. Observe that a random walk

with verifications that is performed 3k times undergoes at least k positive verifications with

probability exponential in k by the Chernoff bound [75]. This means that the proof of

Lemma 8 can be adapted to the case of random walks with verifications almost verbatim,

with the modifications contributed by polynomial bounds on error of estimates of the number

of positive verifications in stages. �

Next, we consider a β-process with verifications, which is defined as follows. The process

proceeds through stages, similarly as the regular ball process. The first stage starts with

placing n balls into (β + 1)n bins. For any following stage, we first go through multiple

bins and, for each ball in such a bin, we perform a Bernoulli trial with the probability 1
2

of success, which we call a verification. A success in a trial is referred to as a positive

verification otherwise it is a negative one. If at least one positive verification occurs for a

ball in a multiple bin then all the balls in this bin are relocated in this stage to bins selected

uniformly at random and independently for each such a ball, otherwise the balls stay put in

this bin until the next stage. The β-process terminates when all the balls are singleton.

Lemma 11 For any numbers a > 0 and β > 1, there exists b > 0 such that the β-process

with verifications terminates within b lnn stages with all of them comprising the total of O(n)

ball throws with probability at least 1− n−a.

Proof: The argument proceeds by combining Lemma 7 with Lemma 10, similarly as the

proof of Lemma 9 is proved by combining Lemma 7 with Lemma 8. The details follow.

For any execution of a ball process with verifications, we consider a “mimicking random
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walk,” also with verifications, defined such that when a ball from a multiple bin is handled

then the outcome of a random verification for this ball is mapped on a verification for the

corresponding random walk. Observe that for a β-process with verifications just one positive

verification is sufficient among j − 1 trials when there are j > 1 balls in a multiple bin, so

a random β-walk with verifications provides an upper bound on time of termination of the

β-process with verifications. The probabilities of decrementing and incrementing position in

the random β-walk with verifications are such that they reflect the probabilities of landing

in an empty bin or in an occupied bin, similarly as without verifications. All this give a

consistency of a β-walk with verifications with Lemma 7 in providing estimates on the time

of termination of the β-process from above. �

Next we summarize the performance of algorithm Common-Unbounded-LV as Las

Vegas one. The proof is based on mapping executions of the β-processes with verifications

on executions of algorithm Common-Unbounded-LV in a natural manner.

Theorem 7 Algorithm Common-Unbounded-LV terminates almost surely and when the

algorithm terminates then there is no error. For each a > 0 and any β > 1 in the pseudocode,

there exists c > 0 such that the algorithm assigns proper names within time c lg n and using

at most cn lg n random bits with probability at least 1− n−a.

Proof: The algorithm terminates when there are n different ranks, by the condition con-

trolling the repeat-loop. As ranks are distinct and each in the interval [1, n], each name is

unique, so there is no error. The repeat-loop is executed O(1) times with probability at least

1−n−a, by Lemma 11. The repeat-loop is performed i times with probability that is at most

n−ia, so it converges to 0 with i increasing. It follows that the algorithm terminates almost

surely.

An iteration of the repeat-loop in Figure 6.4 takes O(log n) steps. This is because of

the following two facts. First, it consists of lg n iterations of the for-loop, each taking O(1)

rounds. Second, it concludes with verifying the until-condition, which is carried out by
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counting nonempty bins by a prefix-type computation. It follows that time until termination

is O(log n) with probability 1− n−a.

By Lemma 11, the total number of ball throws is O(n) with probability 1− n−a. Each

placement of a ball requires O(log n) random bits, so the number of used random bits is

O(n log n) with the same probability. �

Algorithm Common-Unbounded-LV is optimal among Las Vegas naming algorithms

with respect to the following performance measures: the expected time O(log n), by The-

orem 3, the number of shared memory cells O(n) used to achieve this running time, by

Corollary 1, and the expected number of random bits O(n log n), by Proposition 1.

6.5 Conclusion

We considered the naming problem for the anonymous synchronous PRAM when the

number of processors n is known. We gave Las Vegas algorithms for four variants of the

problem, which are determined by the suitable restrictions on concurrent writing and the

amount of shared memory. Each of these algorithms is provably optimal for its case with

respect to the natural performance metrics such as expected time (as determined by the

amount of shared memory) and expected number of used random bits.
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7. PRAM: Monte Carlo Algorithms

We consider naming of anonymous processors of a PRAM when the number of processors

n is unknown. They are determined by two independent specifications the naming problems:

the amount of shared memory and the PRAM variant.

7.1 Arbitrary with Constant Memory

We develop a naming algorithm for an Arbitrary PRAM with a constant number of

shared memory cells. The algorithm is called Arbitrary-Bounded-MC.

The underlying idea is to have all processors repeatedly attempt to obtain tentative

names and terminate when the probability of duplicate names is gauged to be sufficiently

small. To this end, each processor writes an integer selected from a suitable “selection range”

into a shared memory register and next reads this register to verify whether the write was

successful or not. A successful write results in each such a processor getting a tentative

name by reading and incrementing another shared register operating as a counter. One of

the challenges here is to determine a selection range from which random integers are chosen

for writing. A good selection range is large enough with respect to the number of writers,

which is unknown, because when the range is too small then multiple processors may select

the same integer and so all of them get the same tentative name after this integer gets

written successfully. The algorithm keeps the size of a selection range growing with each

failed attempt to assign tentative names.

There is an inherent tradeoff present, in that on the one hand we want to keep the

size of used shared memory small, as a measure of efficiency of the algorithm, while at the

same time the larger the range of memory the smaller the probability of collision of random

selections from a selection range and so of the resulting duplicate names. Additionally,

increasing the selection range repeatedly costs time for each such a repetition, while we also

want to minimize the running as a metric of performance. The algorithm keeps increasing

the selection range with a quadratic rate, which turns out to be sufficient to optimize all the

performance metrics we measure. The algorithm terminates when the number of selected
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Algorithm Arbitrary-Bounded-MC

initialize k ← 1 /∗ initial approximation of lg n ∗/
repeat

initialize Last-Name← namev ← 0

k ← 2k

binv ← random integer in [1, 2k] /∗ throw a ball into a bin ∗/
repeat

All-Named ← true

if namev = 0 then

Pad ← binv
if Pad = binv then

Last-Name ← Last-Name + 1
namev ← Last-Name

else

All-Named ← false

until All-Named

until Last-Name ≤ 2k/β

Figure 7.1: A pseudocode for a processor v of an Arbitrary PRAM with a
constant number of shared memory cells. The variables Last-Name, All-Named
and Pad are shared. The private variable name stores the acquired name. The
constant β > 0 is a parameter to be determined by analysis.

integers from the current selection range makes a sufficiently small fraction of the size of the

used range.

A pseudocode of algorithm Arbitrary-Bounded-MC is given in Figure 7.1. Its struc-

ture is determined by the main repeat-loop. Each iteration of the main loop begins with

doubling the variable k, which determines the selection range [1, 2k]. This means that the size

of the selection range increases quadratically with consecutive iterations of the main repeat-

loop. A processor begins an iteration of the main loop by choosing an integer uniformly at

random from the current selection range [1, 2k]. There is an inner repeat-loop, nested within

the main loop, which assigns tentative names depending on the random selections just made.

All processors repeatedly write to a shared variable Pad and next read to verify if the
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write was successful. It is possible that different processors attempt to write the same value

and then verify that their write was successful. The shared variable Last-Name is used

to progress through consecutive integers to provide tentative names to be assigned to the

latest successful writers. When multiple processors attempt to write the same value to Pad

and it gets written successfully, then all of them obtain the same tentative name. The

variable Last-Name, at the end of each iteration of the inner repeat-loop, equals the number

of occupied bins. The shared variable All-Named is used to verify if all processors have

tentative names. The outer loop terminates when the number of assigned names, which is

the same as the number of occupied bins, is smaller than or equal to 2k/β, where β > 0 is a

parameter to be determined in analysis.

Balls into bins. We consider the following auxiliary β-process of throwing balls into bins,

for a parameter β > 0. The process proceeds through stages identified by consecutive positive

integers. The ith stage has the number parameter k equal to k = 2i . During a stage, we

first throw n balls into the corresponding 2k bins and next count the number of occupied

bins. A stage is last in an execution of the β-process, and so the β-process terminates, when

the number of occupied bins is smaller than or equal to 2k/β. We observe that the β-process

always terminates. This is because, by its specification, the β-process terminates by the

first stage in which the inequality n ≤ 2k/β holds and n is an upper bound on the number

of occupied bins in a stage. The inequality n ≤ 2k/β is equivalent to nβ ≤ 2k and so to

β lg n ≤ k. Since k goes through consecutive powers of 2, we obtain that the number of

stages of the β-process with n balls is at most lg(β lg n) = lg β + lg lg n.

We say that such a β-process is correct when upon termination each ball is in a separate

bin, otherwise the process is incorrect.

Lemma 12 For any a > 0 there exists β > 0 such that the β-process is incorrect with

probability that is at most n−a, for sufficiently large n.

Proof: The β-process is incorrect when there are collisions after the last stage. The prob-

ability of the intersection of the events “β-process terminates” and “there are collisions” is

64



bounded from above by the probability of any one of these events. Next we show that, for

each pair of k and n, some of these two events occurs with probability that is at most n−a,

for a suitable β.

First, we consider the event that the β-process terminates. The probability that there

are at most 2k/β occupied bins is at most(
2k

2k/β

)(2k/β

2k

)n
≤
( e2k

2k/β

)2k/β

2k(β−1−1)n

≤ e2k/β · 2k(1−β−1)2k/β · 2k(β−1−1)n

≤ e2k/β · 2k(β−1−1)(n−2k/β) . (7.1)

We estimate from above the natural logarithm of the right-hand side of (7.1). We obtain

the following upper bound:

2k/β + k(β−1 − 1)(n− 2k/β) ln 2< 2k/β − 1

2
(n− 2k/β) ln 2

= 2k/β − ln 2

2
n+

ln 2

2
2k/β

=− ln 2

2
n+ 2k/β · 2 + ln 2

2
, (7.2)

for β > 4/3, as k ≥ 2. The estimate (7.2) is at most −n· ln 2
4

when 2k/β ≤ n·δ, for δ = ln 2
2(2+ln 2)

,

by a direct algebraic verification. These restrictions on k and β can be restated as

k ≤ β lg(nδ) and β > 4/3 . (7.3)

When this condition (7.3) is satisfied, then the probability of at most 2k/β occupied bins is

at most

exp
(
−n · ln 2

4

)
≤ n−a

for sufficiently large n.

Next, let us consider the probability of collisions occurring. Collisions do not occur with

probability that is at least (
1− n

2k

)n
≥ 1− n2

2k
,

65



by the Bernoulli’s inequality. It follows that the probability of collisions occurring can be

bounded from above by n2

2k
. This bound in turn is at most n−a when

k ≥ (2 + a) lg n . (7.4)

In order to have some of the inequalities (7.3) and (7.4) hold for any k and n, it is

sufficient to have

(2 + a) lg n ≤ β lg(nδ) .

This determines β as follows:

β ≥ (2 + a) lg n

lg n+ lg δ
→ 2 + a ,

with n→∞. We obtain that the inequality β > 2 + a suffices, for n that is large enough. �

Lemma 13 For each β > 0 there exists c > 0 such that when the β-process terminates then

the number of bins ever needed is at most cn and the number of random bits ever generated

is at most cn lnn.

Proof: The β-process terminates by the stage in which the inequality n ≤ 2k/β holds, so k

gets to be at most β lg n. We partition the range [2, β lg n] of values of k into two subranges

and consider them separately.

First, when k ranges from 2 to lg n through the stages, then the numbers of needed bins

increase quadratically through the stages, because k is doubled with each transition to the

next stage. This means that the total number of all these bins is O(n). At the same time,

the number of random bits increases geometrically through the stages, so the total number

of random bits a processor uses is O(log n).

Second, when k ranges from lg n to β lg n, the number of needed bins is at most n in

each stage. There are only lg(β + 1) such stages, so the total number of all these bins is

lg(β + 1) · n. At the same time, a processor uses at most β lg n random bits in each of these

stages. �
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There is a direct correspondence between iterations of the outer repeat-loop and stages

of a β-process. The ith stage has the number k equal to the value of k during the ith iteration

of the outer repeat-loop of algorithm Arbitrary-Bounded-MC, that is, we have k = 2i.

We map an execution of the algorithm into a corresponding execution of a β-process in order

to apply Lemmas 12 and 13 in the proof of the following Theorem, which summarizes the

performance of algorithm Arbitrary-Bounded-MC and justifies that it is Monte Carlo.

Theorem 8 Algorithm Arbitrary-Bounded-MC always terminates, for any β > 0. For

each a > 0 there exists β > 0 and c > 0 such that the algorithm assigns unique names, works

in time at most cn, and uses at most cn lnn random bits, all this with probability at least

1− n−a.

Proof: The number of stages of the β-process with n balls is at most lg(β lg n) = lg β+lg lg n.

This is also an upper bound on the number of iterations of the main repeat-loop. We conclude

that the algorithm always terminates.

The number of bins available in a stage is an upper bound on the number of bins occupied

in this stage. The number of bins occupied in a stage equals the number of times the inner

repeat-loop is iterated, because executing instruction Pad← bin eliminates one occupied bin.

It follows that the number of bins ever needed is an upper bound on time of the algorithm.

The number of iterations of the inner repeat-loop is executed is recorded in the variable

Last-Name, so the termination condition of the algorithm corresponds to the termination

condition of the β-process.

When the β-process is correct then this means that the processors obtain distinct names.

We conclude that Lemmas 12 and 13 apply when understood about the behavior of the

algorithm. This implies the following: the names are correct and execution terminates in

O(n) time while O(n log n) bits are used, all this with probability that is at least 1−n−a. �

Algorithm Arbitrary-Bounded-MC is optimal with respect to the following perfor-

mance measures: the expected time O(n), by Theorem 2, the expected number of random
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bits O(n log n), by Proposition 1, and the probability of error n−O(1), by Proposition 3.

7.2 Arbitrary with Unbounded Memory

We develop a naming algorithm for Arbitrary PRAM with an unbounded amount of

shared registers. The algorithm is called Arbitrary-Unbounded-MC.

The underlying idea is to parallelize the process of selection of names applied in Sec-

tion 7.1 in algorithm Arbitrary-Bounded-MC so that multiple processes could acquire

information in the same round that later would allow them to obtain names. As algorithm

Arbitrary-Bounded-MC used shared registers Pad and Last-Name, the new algorithm

uses arrays of shared registers playing similar roles. The values read-off from Last-Name

cannot be uses directly as names, because multiple processors can read the same values, so

we need to distinguish between these values to assign names. To this end, we assign ranks

to processors based on their lexicographic ordering by pairs of numbers determined by Pad

and Last-Name.

A pseudocode for algorithm Arbitrary-Unbounded-MC is given in Figure 7.2. It is

structured as a repeat-loop. In the first iteration, the parameter k equals 1, and in subsequent

ones is determined by iterations of an increasing integer-valued function r(k), which is a

parameter. We consider two instantiations of the algorithm, determined by r(k) = k + 1

and by r(k) = 2k. In one iteration of the main repeat-loop, a processor uses two variables

bin ∈ [1, 2k/(βk)] and label ∈ [1, 2βk], which are selected independently and uniformly at

random from the respective ranges.

We interpret bin as a bin’s number and label as a label for a ball. Processors write their

values label into the respective bin by instruction Pad [bin]← label and verify what value

got written. After a successful write, a processor increments Last-Name[bin] and assigns the

pair (bin, Last-Name [bin]) as its position. This is repeated βk times by way of iterating the

inner for-loop. This loop has a specific upper bound βk on the number of iterations because

we want to ascertain that there are at most βk balls in each bin. The main repeat-loop

terminates when all values attempted to be written actually get written. Then processors
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Algorithm Arbitrary-Unbounded-MC

initialize k ← 1 /∗ initial approximation of lg n ∗/
repeat

initialize All-Named← true

initialize positionv ← (0, 0)

k ← r(k)

binv ← random integer in [1, 2k/(βk)] /∗ choose a bin for the ball ∗/
labelv ← random integer in [1, 2βk] /∗ choose a label for the ball ∗/
for i← 1 to βk do

if positionv = (0, 0) then
Pad [binv]← labelv
if Pad [binv] = labelv then

Last-Name [binv]← Last-Name [binv] + 1
positionv ← (binv, Last-Name [binv])

if positionv = (0, 0) then

All-Named ← false

until All-Named

namev ← the rank of positionv

Figure 7.2: A pseudocode for a processor v of an Arbitrary PRAM, when
the number of shared memory cells is unbounded. The variables Pad and Last-
Name are arrays of shared memory cells, the variable All-Named is shared as
well. The private variable name stores the acquired name. The constant β > 0
and an increasing function r(k) are parameters.

assign themselves names according to the ranks of their positions. The array Last-Name is

assumed to be initialized to 0’s, and in each iteration of the repeat-loop we use a fresh region

of shared memory to allocate this array.

Balls into bins. We consider a related process of placing labeled balls into bins, which is

referred to as β-process. Such a process proceeds through stages and is parametrized by a

function r(k). In the first stage, we have k = 1, and given some value of k in a stage, the

next stage has this parameter equal to r(k). In a stage with a given k, we place n balls

into 2k/(βk) bins, with labels from [1, 2βk]. The selections of bins and labels are performed

independently and uniformly at random. A stage terminates the β-process when there are
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at most βk labels of balls in each bin.

Lemma 14 The β-process always terminates.

Proof: The β-process terminates by a stage in which the inequality n ≤ βk holds, because

n is an upper bound on the number of balls in a bin. This always occurs when function r(k)

is increasing. �

We expect the β-process to terminate earlier, as the next Lemma states.

Lemma 15 For each a > 0, if k ≤ lg n− 2 and β ≥ 1 + a then the probability of halting in

the stage is smaller than n−a, for sufficiently large n.

Proof: We show that when k is suitably small then the probability of at most βk different

labels in each bin is small. There are n balls placed into 2k/(βk) bins, so there are at least

βkn
2k

balls in some bin, by the pigeonhole principle. We consider these balls and their labels.

The probability that all these balls have at most βk labels is at most(
2βk

βk

)( βk
2βk

)βkn
2k ≤

(e2βk
βk

)βk
· (βk)

βkn

2k

(2βk)
βkn

2k

= eβk2βk(βk−βkn
2k

)(βk)
βkn

2k
−βk

= eβk
( βk

2βk

)βkn
2k
−βk

. (7.5)

We want to show that this is at most n−a. We compare the logarithms (But the base of

logarithms!) of n−a and the right-hand side of (7.5), and want the following inequality to

hold:

βk +
(βkn

2k
− βk

)
(lg(βk)− βk) ≤ −a lg n ,

which is equivalent to the following inequality, by algebra:

n

2k
≥ 1

βk − lg(βk)
+ 1 +

a lg n

βk(βk − lg(βk))
. (7.6)

Observe now that, assuming β ≥ a + 1, if k <
√

lg n then the right-hand side of (7.6) is at

most 2 + lg n while the left-hand side is at least
√
n, and when

√
lg n ≤ k ≤ lg n − 2 then
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right-hand side of (7.6) is at most 3 while the left-hand side is at least 4, for sufficiently

large n. �

We say that a label collision occurs, in a configuration produced by the process, if some

bin contains two balls with the same label.

Lemma 16 For any a > 0, if k > 1
2

lg n and β > 4a + 7 then the probability of a label

collision is smaller than n−a.

Proof: The number of pairs of a bin number and a label is 2k · 2βk/(βk). It follows that the

probability of some two balls in the same bin obtaining different labels is at least

(
1− n

2k+βk/(βk)

)n
≥ 1− n2

2k+βk/(βk)
,

by the Bernoulli’s inequality. So the probability that two different balls obtain the same

label is at most n2

2k+βk/(βk)
. We want the following inequality to hold

n2

2k+βk/(βk)
< n−a .

This is equivalent to the inequality obtained by taking logarithms

(2 + a) lg n < (1 + β)k − lg(βk) ,

which holds when (2 + a) lg n < 1+β
2
k. It follows that it is sufficient for k to satisfy

k >
2(2 + a)

1 + β
lg n .

This inequality holds for k > 1
2

lg n when β > 4a+ 7. �

We say that such a β-process is correct when upon termination no label collision occurs,

otherwise the process is incorrect.

Lemma 17 For any a > 0, there exists β > 0 such that the β-process is incorrect with

probability that is at most n−a, for sufficiently large n.
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Proof: The β-process is incorrect when there is a label collision after the last stage. The

probability of the intersection of the events “β-process terminates” and “there are label col-

lisions” is bounded from above by the probability of any one of these events. Next we show

that, for each pair of k and n, some of these two events occurs with probability that is at

most n−a, for a suitable β.

To this end we use Lemmas 15 and 16 in which we substitute 2a for a. We obtain that,

on the one hand, if k ≤ lg n − 2 and β ≥ 1 + 2a then the probability of halting is smaller

than n−2a, and, on the other hand, that if k > 1
2

lg n and β > 8a + 7 then the probability

of a label collision is smaller than n−2a. It follows that some of the two considered events

occurs with probability at most 2n−2a for sufficiently large β and any sufficiently large n.

This probability is at most n−a, for sufficiently large n. �

Lemma 18 For any a > 0, there exists β > 0 and c > 0 such that the following two facts

about the β-process hold. If r(k) = k+1 then at most cn/ lnn bins are ever needed and cn ln2 n

random bits are ever generated, each among these properties occurring with probability that

is at least 1 − n−a. If r(k) = 2k then at most cn2/ lnn bins are ever needed and cn lnn

random bits are ever generated, each among these properties occurring with probability that

is at least 1− n−a.

Proof: We throw n balls into 2k/(βk) bins. As k keeps increasing, then the probability of

termination increases as well, because both 2k/(βk) and βk increase as functions of k. Let

us take k = 1 + lg n so that the number of bins is 2n
βk

. We want to show that no bin contains

more than βk balls with a suitably small probability.

Let us consider a specific bin and let X be the number of balls in this bin. The expected

number of balls in the bin is µ = βk
2

. We use the Chernoff bound for a sequence of Bernoulli

trials in the form of

Pr(X > (1 + ε)µ) < exp(−ε2µ/3) ,

which holds for 0 < ε < 1, see [75]. Let us choose ε = 1
2
, so that 1 + ε = 3

2
and 3

2
µ = 3

4
βk.
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We obtain that

Pr(X > βk) < Pr
(
X >

3

4
· βk

)
< exp(−1

4
· βk

6
) = exp

(
− β

24
· (1 + lg n)

)
,

which can be made smaller than n−1−a for a β sufficiently large with respect to a, and

sufficiently large n. Using the union bound, each of the n bins contains at most βk balls

with probability at most n−a. This implies that termination occurs as soon as k reaches or

surpasses k = 1 + lg n, with the corresponding large probability 1− n−a.

In the case of r(k) = k+ 1, the consecutive integer values of k are tried, so the β-process

terminates by the time k = 1 + lg n, and for this k the number of bins needed is Θ(n/ log n).

To choose a bin for any value of k requires at most k random bits, so implementing such

choices for k = 1, 2, . . . , 1 + lg n requires O(log2 n) random bits per processor.

In the case of r(k) = 2k, the β-process terminates by k equal to 2(1 + lg n), and for this

value of k the number of bins needed is Θ(n2/ log n). As k progresses through consecutive

powers of 2, the sum of these numbers is a sum of a geometric progression, and so is of

the order of the maximum term, that is Θ(log n), which is the number of random bits per

processor. �

There is a direct correspondence between iterations of the outer repeat-loop of algorithm

Arbitrary-Unbounded-MC and stages of the β-process. We map an execution of the

algorithm into a corresponding execution of a β-process in order to apply Lemmas 17 and 18

in the proof of the following Theorem, which summarizes the performance of algorithm

Arbitrary-Unbounded-MC and justifies that it is Monte Carlo.

Theorem 9 Algorithm Arbitrary-Unbounded-MC always terminates, for any β > 0.

For each a > 0 there exists β > 0 and c > 0 such that the algorithm assigns unique names

and has the following additional properties with probability 1− n−a. If r(k) = k + 1 then at

most cn/ lnn memory cells are ever needed, cn ln2 n random bits are ever generated, and the

algorithm terminates in time O(log2 n). If r(k) = 2k then at most cn2/ lnn memory cells

are ever needed, cn lnn random bits are ever generated, and the algorithm terminates in time
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O(log n).

Proof: The algorithm always terminates by Lemma 14. By Lemma 17, the algorithm assigns

correct names with probability that is at least 1−n−a. The remaining properties follow from

Lemma 18, because the number of bins is proportional to the number of memory cells and

the number of random bits per processor is proportional to time. �

The instantiations of algorithm Arbitrary-Unbounded-MC are close to optimality

with respect to some of the performance metrics we consider, depending on whether r(k) =

k + 1 or r(k) = 2k. If r(k) = k + 1 then the algorithm’s use of shared memory would be

optimal if its time were O(log n), by Theorem 2, but it may miss space optimality by at

most a logarithmic factor, since the algorithm’s time is O(log2 n). Similarly, if r(k) = k + 1

then the number of random bits ever generated O(n log2 n) misses optimality by at most a

logarithmic factor, by Proposition 1. On the pother hand, if r(k) = 2k then the expected

time O(log n) is optimal, by Theorem 3, the expected number of random bits O(n log n) is

optimal, by Proposition 1, and the probability of error n−O(1) is optimal, by Proposition 3,

but the amount of used shared memory misses optimality by at most a polynomial factor,

by Theorem 2.

7.3 Common with Bounded Memory

Algorithm Common-Bounded-MC solves the naming problem for Common PRAM

with a constant number of shared read-write registers. To make its exposition more modular,

we use two procedures Estimate-Size and Extend-Names. Procedure Estimate-Size

produces an estimate of the number n of processors. Procedure Extend-Names is iterated

multiple times, each iteration is intended to assign names to a group of processors. This is

accomplished by the processors selecting integer values at random, interpreted as throwing

balls into bins, and verifying for collisions. Each selection of a bin is followed by a collision

detection. A ball placement without a detected collision results in a name assigned, otherwise

the involved processors try again to throw balls into a range of bins. The effectiveness of
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the algorithm hinges of calibrating the number of bins to the expected number of balls to be

thrown.

Algorithm Common-Bounded-MC has its pseudocode in Figure 7.5. The private vari-

ables have the following meaning: size is an approximation of the number of processors n,

and number-of-bins determines the size of the range of bins. The pseudocodes of procedures

Estimate-Size and Extend-Names are given in Figures 7.3 and 7.4, respectively.

Balls into bins for the first time. The role of procedure Estimate-Size, when called

by algorithm Common-Bounded-MC, is to estimate the unknown number of processors n,

which is returned as size, to assign a value to variable number-of-bins, and assign values

to each private variable bin, which indicates the number of a selected bin in the range

[1, number-of-bins]. The procedure tries consecutive values of k as approximations of lg n.

For a given k, an experiment is carried out to throw n balls into k2k bins. The execution

stops when the number of occupied bins is at most 2k, and then 3 · 2k is treated as an

approximation of n and k2k is the returned number of bins.

Lemma 19 For n ≥ 20 processors, procedure Estimate-Size returns an estimate size of

n such that the inequality size < 6n holds with certainty and the inequality n < size holds

with probability 1− 2−Ω(n).

Proof: The procedure returns 3 ·2k, for some integer k > 0. We interpret selecting of values

for variable bin in an iteration of the main repeat-loop as throwing n balls into k2k bins;

here k = j + 2 in the jth iteration of this loop, because the smallest value of k is 3. Clearly,

n is an upper bound on the number of occupied bins.

If n is a power of 2, say n = 2i, then the procedure terminates by the time i = k, so that

2k < 2i+1 = 2n. Otherwise, the maximum possible k equals dlg ne, because 2blgnc < n <

2dlgne. This gives 2dlgne = 2blgnc+1 < 2n. We obtain that the inequality 2k < 2n occurs with

certainty, and so 3 · 2k < 6n does.

Now we estimate the lower bound on 2k. Consider k such that 2k ≤ n
3
. Then n balls fall
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Procedure Estimate-Size

initialize k ← 2 /∗ initial approximation of lg n ∗/

repeat

k ← k + 1

binv ← random integer in [1, k 2k]

initialize Nonempty-Bins← 0

for i← 1 to k 2k do

if binv = i then
Nonempty-Bins ← Nonempty-Bins + 1

until Nonempty-Bins ≤ 2k

return (3 · 2k, k 2k) /∗ 3 · 2k is size, k 2k is number-of-bins ∗/

Figure 7.3: A pseudocode for a processor v of a Common PRAM. This
procedure is invoked by algorithm Common-Bounded-MC in Figure 7.5.
The variable Nonempty-Bins is shared.

into at most 2k bins with probability that is at most(
k2k

2k

)( 2k

k2k

)n
≤
(ek2k

2k

)2k

· 1

kn
= (ek)2kk−n = e2kk2k−n ≤ en/3k−2n/3 . (7.7)

The right-hand side of (7.7) is at most e−n/3 when the inequality k > e holds. The smallest

k considered in the pseudocode in Figure 7.3 is k = 3 > e. The inequality k > e is consistent

with 2k ≤ n
3

when n ≥ 20. The number of possible values for k is O(log n) so the probability

of the procedure returning for 2k ≤ n
3

is e−n/3 · O(log n) = 2−Ω(n). �

Procedure Extend-Names’s behavior can also be interpreted as throwing balls into

bins, where a processor v’s ball is in a bin x when binv = x. The procedure first verifies the

suitable range of bins [1, number-of-bins] for collisions. A verification for collisions takes

either just a constant time or Θ(log n) time.

A constant verification occurs when there is no ball in the considered bin i, which is

verified when the line “if binx = i for some processor x” in the pseudocode in Figure 7.4 is

to be executed. Such a verification is performed by using a shared register initialized to 0,
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Procedure Extend-Names

initialize Collision-Detected← collisionv ← false

for i← 1 to number-of-bins do

if binx = i for some processor x then

if binv = i then
for j ← 1 to β lg size do

if Verify-Collision then
Collision-Detected ← collisionv ← true

if not collisionv then

Last-Name ← Last-Name + 1
namev ← Last-Name

binv ← 0

if (number-of-bins > size) then

number-of-bins ← size

if collisionv then

binv ← random integer in [1, number-of-bins]

Figure 7.4: A pseudocode for a processor v of a Common PRAM. This
procedure invokes procedure Verify-Collision, whose pseudocode is in Fig-
ure 4.1, and is itself invoked by algorithm Common-Bounded-MC in Fig-
ure 7.5. The variables Last-Name and Collision-Detected are shared. The
private variable name stores the acquired name. The constant β > 0 is to be
determined in analysis.

into which all processors v with binv = i write 1, then all the processors read this register,

and if the outcome of reading is 1 then all write 0 again, which indicates that there is at

least one ball in the bin, otherwise there is no ball.

A logarithmic-time verification of collision occurs when there is some ball in the cor-

responding bin. This triggers calling procedure Verify-Collision precisely β lg n times;

notice that this procedure has the default parameter 1, as only one bin is verified at a time.

Ultimately, when a collision is not detected for some processor v whose ball is the bin, then

this processor increments Last-Name and assigns its new value as a tentative name. Other-

wise, when a collision is detected, processor v places its ball in a new bin when the last line
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in Figure 7.4 is executed. To prepare for this, the variable number-of-bins may be reset.

During one iteration of the main repeat-loop of the pseudocode of algorithm Common-

Bounded-MC in Figure 7.5, the number of bins is first set to a value that is Θ(n log n)

by procedure Estimate-Size. Immediately after that, it is reset to Θ(n) by the first call

of procedure Extend-Names, in which the instruction number-of-bins ← size is per-

formed. Here, we need to notice that number-of-bins = Θ(n log n) and size = Θ(n), by

the pseudocodes in Figures 7.3 and 7.5 and Lemma 19.

Balls into bins for the second time. In the course of analysis of performance of procedure

Extend-Names, we consider a balls-into-bins process; we call it simply the ball process. It

proceeds through stages so that in a stage we have a number of balls which we throw into

a number of bins. The sets of bins used in different stages are disjoint. The number of

balls and bins used in a stage are as determined in the pseudocode in Figure 7.4, which

means that there are n balls and the numbers of bins are as determined by an execution of

procedure Estimate-Size, that is, the first stage uses number-of-bins bins and subsequent

stages use size bins, as returned by Estimate-Size. The only difference from the actions of

procedure Extend-Names is that collisions are detected with certainty in the ball process

rather than being tested for, which implies that the parameter β is not involved. The ball

process terminates in stage lg size or earlier in the first stage in which no multiple bins are

produced, when such a stage occurs.

Lemma 20 The ball process results in all balls ending singleton in their bins and the number

of times a ball is thrown, summed over all the stages, being O(n), both events occurring with

probability 1− n−Ω(logn).

Proof: The argument leverages the property that, in each stage, the number of bins exceeds

the number of balls by at least a logarithmic factor. We will denote the number of bins in a

stage by m. This number will take on two values, first m = k2k returned as number-of-bins

by procedure Estimate-Size and then m = 3 · 2k returned as size by the same procedure
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Estimate-Size, for k > 3. Because m = k2k in the first stage, and also size = 3 · 2k > n,

by Lemma 19, we obtain that m > n
3

lg n
3

in the first stage, and that m is at least n in the

following stages, with probability exponentially close to 1.

In the first stage, we throw `1 = n balls into at least m = n
3

lg n
3

bins, with large

probability. Conditional on the event that there are at least these many bins, the probability

that a given ball ends the stage as a singleton in a bin is

m · 1

m

(
1− 1

m

)`1−1

≥ 1− `1 − 1

m
≥ 1− n− 1

n
3

lg n
3

≥ 1− 4

lg n
,

for sufficiently large n, where we used the Bernoulli’s inequality. Let Y1 be the number of

singleton balls in the first stage. The expectancy of Y1 satisfies

E [Y1] ≥ `1

(
1− 4

lg n

)
.

To estimate the deviation of Y1 from its expected value E [Y1] we use the bounded differences

inequality [71, 75]. Let Bj be the bin of ball bj, for 1 ≤ j ≤ `1. Then Y1 is of the form

Y1 = h(B1, . . . , B`1), where h satisfies the Lipschitz condition with constant 2, because

moving one ball to a different bin results in changing the value of h by at most 2 with

respect to the original value. The bounded-differences inequality specialized to this instance

is as follows, for any d > 0:

Pr(Y1 ≤ E [Y1]− d
√
`1) ≤ exp(−d2/8) . (7.8)

We employ d = lg n, which makes the right-hand side of (7.8) asymptotically equal to

n−Ω(logn). The number of balls `2 eligible for the second stage can be estimated as follows,

this bound holding with probability 1− n−Ω(logn):

`2 ≤
4`1

lg n
+ lg n

√
`1 =

4`1

lg n

(
1 +

lg2 n

4
√
`1

)
≤ 5n

lg n
, (7.9)

for sufficiently large n.

In the second stage, we throw `2 balls into m ≥ n bins, with large probability. Condi-

tional on the bound (7.9) holding, the probability that a given ball ends up as a singleton in
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a bin is

m · 1

m

(
1− 1

m

)`2−1

≥ 1− `2 − 1

m
≥ 1− 5

lg n
,

where we used the Bernoulli’s inequality. Let Y2 be the number of singleton balls in the

second stage. The expectancy of Y2 satisfies

E [Y2] ≥ `2

(
1− 5

lg n

)
.

To estimate the deviation of Y2 from its expected value E [Y2], we again use the bounded

differences inequality, which specialized to this instance is as follows, for any d > 0:

Pr(Y2 ≤ E [Y2]− d
√
`2) ≤ exp(−d2/8) . (7.10)

We again employ d = lg n, which makes the right-hand side of (7.10) asymptotically equal

to n−Ω(logn). The number of balls `3 eligible for the third stage can be bounded from above

as follows, which holds with probability 1− n−Ω(logn), :

`3 ≤
5`2

lg n
+ lg n

√
`2 =

5`2

lg n

(
1 +

lg2 n

5
√
`2

)
≤ 6n

lg2 n
, (7.11)

for sufficiently large n.

Next, we generalize these estimates. In stages i, for i ≥ 2, among the first O(log n) ones,

we throw balls into m ≥ n bins with large probability. Let `i be the number of balls eligible

for such a stage i. We show by induction that `i, for i ≥ 3, can be estimated as follows:

`i ≤
6n

lg2 n
· 23−i (7.12)

with probability 1− n−Ω(logn). The estimate (7.11) provides the base of induction for i = 3.

In the inductive step, we assume (7.12), and consider what happens during stage i > 3 in

order to estimate the number of balls eligible for the next stage i+ 1.

In stage i, we throw `i balls into m ≥ n bins, with large probability. Conditional on the

bound (7.12), the probability that a given ball ends up single in a bin is

m · 1

m

(
1− 1

m

)`i−1

≥ 1− `i − 1

m
≥ 1− 6 · 23−i

lg2 n
,
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by the inductive assumption, where we also used the Bernoulli’s inequality. If Yi is the

number of singleton balls in stage i, then its expectation E [Yi] satisfies

E [Yi] ≥ `i

(
1− 6 · 23−i

lg2 n

)
. (7.13)

To estimate the deviation of Yi from its expected value E [Yi], we again use the bounded

differences inequality, which specialized to this instance is as follows, for any d > 0:

Pr(Yi ≤ E [Yi]− d
√
`i) ≤ exp(−d2/8) . (7.14)

We employ d = lg n, which makes the right-hand side of (7.14) asymptotically equal to

n−Ω(logn). The number of balls `i+1 eligible for the next stage i + 1 can be estimated from

above in the following way, the estimate holding with probability 1− n−Ω(logn) :

`i+1 ≤
6 · 23−i · `i

lg2 n
+ lg n

√
`i

=
6 · 23−i · `i

lg2 n

(
1 +

1

6
2i−3 lg3 n · `−1/2

i

)
≤ 6 · 23−i

lg2 n
· 6n

lg2 n
· 23−i ·

(
1 +

2(i−3)/2 lg4 n

6
√

6n

)
≤ 6n

lg2 n
· 23−i ·

(6 · 23−i

lg2 n
+

2(3−i)/2 lg2 n√
6n

)
≤ 6n

lg2 n
· 23−i ·

( 6

lg2 n
+

lg2 n√
6n

)
≤ 6n

lg2 n
· 23−i−1 ,

for sufficiently large n that does not depend on i. For the event Yi ≤ E [Yi] − d
√
`i in the

estimate (7.14) to be meaningful, it is sufficient if the following estimate holds:

lg n ·
√
`i = o(E [Yi]) .

This is the case as long as `i > lg3 n, because E [Yi] = `i(1 + o(1)) by (7.13).

To summarize at this point, as long as `i is sufficiently large, that is, `i > lg3 n, the

number of eligible balls decreases by at least a factor of 2 with probability that is at least

1− n−Ω(logn). It follows that the total number of eligible balls, summed over these stages, is

O(n) with this probability.
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Algorithm Common-Bounded-MC

repeat

initialize Last-Name← 0

(size, number-of-bins) ← Estimate-Size

for `← 1 to lg size do

Extend-Names
if not Collision-Detected then return

Figure 7.5: A pseudocode for a processor v of a Common PRAM, where
there is a constant number of shared memory cells. Procedures Estimate-Size
and Extend-Names have their pseudocodes in Figures 7.3 and 7.4, respec-
tively. The variables Last-Name and Collision-Detected are shared.

After at most lg n such stages, the number of balls becomes at most lg3 n with probability

1 − n−Ω(logn). It remains to consider the stages when `i ≤ lg3 n, so that we throw at most

lg3 n balls into at least n bins. They all end up in singleton bins with a probability that is

at least (n− lg3 n

n

)lg3 n

≥
(

1− lg3 n

n

)lg3 n

≥ 1− lg6 n

n
,

by the Bernoulli’s inequality. So the probability of a collision is at most lg6 n
n

. One stage

without any collision terminates the process. If we repeat such stages lg n times, without

even removing singleton balls, then the probability of collisions occurring in all these stages

is at most ( lg6 n

n

)lgn

= n−Ω(logn) .

The number of eligible balls summed over these final stages is only at most lg7 n = o(n). �

The following Theorem summarizes the performance of algorithm Common-Bounded-

MC (see the pseudocode in Figure 7.5) as a Monte Carlo one.

Theorem 10 Algorithm Common-Bounded-MC terminates almost surely. For each a >

0 there exists β > 0 and c > 0 such that the algorithm assigns unique names, works in time

at most cn lnn, and uses at most cn lnn random bits, each among these properties holding

with probability at least 1− n−a.
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Proof: One iteration of the main repeat-loop suffices to assign names with probability

1− n−Ω(logn), by Lemma 20. This means that the probability of not terminating by the ith

iteration is at most (n−Ω(logn))i, which converges to 0 with i growing to infinity.

The algorithm returns duplicate names only when a collision occurs that is not detected

by procedure Verify-Collision. For a given multiple bin, one iteration of this procedure

does not detect collision with probability at most 1/2, by Lemma 1. Therefore β lg size

iterations do not detect collision with probability O(n−β/2), by Lemma 19. The number

of nonempty bins ever tested is at most dn, for some constant d > 0, by Lemma 20, with

the suitably large probability. Applying the union bound results in estimate n−a on the

probability of error for sufficiently large β.

The duration of an iteration of the inner for-loop is either constant, then we call is short,

or it takes time O(log size), then we call it long. First, we estimate the total time spent

on short iterations. This time in the first iteration of the inner for-loop is proportional to

number-of-bins returned by procedure Estimate-Size, which is at most 6n · lg(6n), by

Lemma 19. Each of the subsequent iterations takes time proportional to size, which is

at most 6n, again by Lemma 19. We obtain that the total number of short iterations is

O(n log n) in the worst case. Next, we estimate the total time spent on long iterations. One

such an iteration has time proportional to lg size, which is at most lg 6n with certainty. The

number of such iterations is at most dn with probability 1 − n−Ω(logn), for some constant

d > 0, by Lemma 20. We obtain that the total number of long iterations is O(n log n), with

the correspondingly large probability. Combining the estimates for short and long iterations,

we obtain O(n log n) as a bound on time of one iteration of the main repeat-loop. One such

an iteration suffices with probability 1− n−Ω(logn), by Lemma 20.

Throwing one ball uses O(log n) random bits, by Lemma 19. The number of throws is

O(n) with the suitably large probability, by Lemma 20. �

Algorithm Common-Bounded-MC is optimal with respect to the following perfor-

mance metrics: the expected time O(n log n), by Theorem 1, the number of random bits

83



O(n log n), by Proposition 1, and the probability of error n−O(1), by Proposition 3.

7.4 Common with Unbounded Memory

We consider naming on a Common PRAM in the case when the amount of shared

memory is unbounded. The algorithm we propose, called Common-Unbounded-MC, is

similar to algorithm Common-Bounded-MC in Section 7.3, in that it involves a randomized

experiment to estimate the number of processors of the PRAM. Such an experiment is then

followed by repeatedly throwing balls into bins, testing for collisions, and throwing again if

a collision is detected, until eventually no collisions are detected.

Algorithm Common-Unbounded-MC has its pseudocode given in Figure 7.7. The

algorithm is structured as a repeat loop. An iteration starts by invoking procedure Gauge-

Size, whose pseudocode is in Figure 7.6. This procedure returns size as an estimate of the

number of processors n. Next, a processor chooses randomly a bin in the range [1, 3size].

Then it keeps verifying for collisions β lg size, in such a manner that when a collision is de-

tected then a new bin is selected form the same range. After such β lg size verifications and

possible new selections of bins, another β lg size verifications follow, but without changing

the selected bins. When no collision is detected in the second segment of β lg size verifica-

tions, then this terminates the repeat-loop, which follows by assigning to each station the

rank of the selected bin, by a prefix-like computation. If a collision is detected in the second

segment of β lg size verifications, then this starts another iteration of the main repeat-loop.

Procedure Gauge-Size-MC returns an estimate of the number n of processors in the

form 2k, for some positive integer k. It operates by trying various values of k, and, for

a considered k, by throwing n balls into 2k bins and next counting how many bins contain

balls. Such counting is performed by a prefix-like computation, whose pseudocode is omitted

in Figure 7.6. The additional parameter β > 0 is a number that affects the probability of

underestimating n.

The way in which selections of numbers k is performed is controlled by function r(k),

which is a parameter. We will consider two instantiations of this function: one is func-
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Procedure Gauge-Size-MC

k ← 1

repeat

k ← r(k)

binv ← random integer in [1, 2k]

until the number of selected values of variable bin is ≤ 2k/β

return ( d2k+1/βe )

Figure 7.6: A pseudocode for a processor v of a Common PRAM, where the
number of shared memory cells is unbounded. The constant β > 0 is the same
parameter as in Figure 7.7, and an increasing function r(k) is also a parameter.

tion r(k) = k + 1 and the other is function r(k) = 2k.

Lemma 21 If r(k) = k+1 then the value of size as returned by Gauge-Size-MC satisfies

size ≤ 2n with certainty and the inequality size ≥ n holds with probability 1− β−n/3.

If r(k) = 2k then the value of size as returned by Gauge-Size-MC satisfies size ≤

2βn2 with certainty and size ≥ βn2/2 with probability 1− β−n/3.

Proof: We model procedure’s execution by an experiment of throwing n balls into 2k bins.

If the parameter function r(k) is r(k) = k + 1 then we consider all possible consecutive

values of k starting from k = 2, such that k = i + 1 in the ith iteration of the repeat-loop.

If parameter r(k) is function r(k) = 2k then k takes on only the powers of 2.

There are at most n bins occupied in any such an experiment. Therefore, the procedure

returns by the time the inequality 2k/β ≥ n holds and k is considered as determining the

range of bins. It follows that if r(k) = k+ 1 then the returned value d2k+1/βe is at most 2n.

If r(k) = 2k then the worst error in estimating occurs when 2i/β = n− 1 for some i that is

a power of 2. Then the returned value is 22i/β = (β(n− 1))2/β, which is at most 2βn2, this

occurring with probability 1− β−n/3.

Given 2k bins, we estimate the probability that the number of occupied bins is at most
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2k/β. It is (
2k

2k/β

)(2k/β

2k

)n
≤
( 2ke

2k/β

)2k/β

· 1

βn
= (eβ)2k/β · β−n .

Next, we identify a range of values of k for which this probability is exponentially close to 0

with respect to n.

To this end, let 0 < ρ < 1 and let us consider the inequality

(eβ)2k/β · β−n < ρn . (7.15)

It is equivalent to the following one

2k

β
(1 + ln β)− n ln β < n ln ρ ,

by taking logarithms of both sides. This in turn is equivalent to

2k

β
(1 + ln β) < n

(
ln β − ln

1

ρ

)
. (7.16)

Let us choose ρ = β−1/2 in (7.16). Then (7.15) specialized to this particular ρ is equivalent

to the following inequality 2k

β
(1 + ln β) < n lnβ

2
. This in turn leads to the estimate

2k < n · ln β

2
· β

1 + ln β
<
β

2
· n ,

which means 2k+1/β < n. When k satisfies this inequality then the probability of returning

is at most β−n/2. There are O(log n) such values of k considered by the procedure, so it

returns for one of them with probability at most

O(log n) · β−n/2 < β−n/3 ,

for sufficiently large n.

Therefore, with probability at least 1− β−n/3, the returned value d2k+1/βe is at least as

large as determined the first considered k that satisfies 2k+1/β ≥ n. If r(k) = k + 1 then all

the possible exponents k are considered, so the returned value d2k+1/βe is at least n with

probability 1−β−n/3. If r(k) = 2k then the worst error of estimating n occurs when 2i+1/β =

n−1 for some i that is a power of 2. Then the returned value is 22i+1/β = 2 ·(β(n−1)/2)2/β,

which is is at least βn2/2, this occurring with probability 1− β−n/3. �
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Algorithm Common-Unbounded-MC

repeat

size← Gauge-Size

binv ← random integer in [1, 3 size]

for i← 1 to β lg size do

if Verify-Collision (binv) then
binv ← random number in [1, 3 size]

Collision-Detected ← false

for i← 1 to β lg size do

if Verify-Collision (binv) then
Collision-Detected ← true

until not Collision-Detected

namev ← the rank of binv among selected bins

Figure 7.7: A pseudocode for a processor v of a Common PRAM, where
the number of shared memory cells is unbounded. The constant β > 0 is a
parameter impacting the probability of error. The private variable name stores
the acquired name.

We discuss performance of algorithm Common-Unbounded-MC (see the pseudocode

in Figure 7.7) by referring to analysis of a related algorithm Common-Unbounded-LV

given in Section 6.4. We consider a β-process with verifications, which is defined as follows.

The process proceeds through stages. The first stage starts with placing n balls into 3 size

bins. For any of subsequent stages, for each multiple bins and for each ball in such a bin we

perform a Bernoulli trial with the probability 1
2

of success, which represents the outcome of

procedure Verify-Collision. A success in a trial is referred to as a positive verification

otherwise it is a negative one. If at least one positive verification occurs for a ball in a

multiple bin then all the balls in this bin are relocated in this stage to bins selected uniformly

at random and independently for each such a ball, otherwise the balls stay put in this bin

until the next stage. The process terminates when all balls are singleton.

Lemma 22 For any number a > 0 there exists β > 0 such that the β-process with verifica-

87



tions terminates within β lg n stages with all of them comprising the total of O(n) ball throws

with probability at least 1− n−a.

Proof: We use the respective Lemma 11 in Section 6.4. The constant 3 determining our β-

process with verifications corresponds to 1 + β in Section 6.4. The corresponding β-process

in verifications considered in Section 6.4 is defined by referring to known n. We use the

approximation size instead, which is at least as large as n with probability 1 − β−n/3, by

Lemma 21 just proved. By Section 6.4, our β-process with verifications does not terminate

within β lg n stages when size ≥ n with probability at most n−2a and the inequality size ≥

n does not hold with probability at most β−n/3. Therefore the conclusion we want to prove

does not hold with probability at most n−2a + β−n/3, which is at most n−2a for sufficiently

large n. �

The following Theorem summarizes the performance of algorithm Common-Unbounded-

MC (see the pseudocode in Figure 7.7) as a Monte Carlo one. Its proof relies on map-

ping an execution of the β-process with verifications on executions of algorithm Common-

Unbounded-MC in a natural manner.

Theorem 11 Algorithm Common-Unbounded-MC terminates almost surely, for suffi-

ciently large β. For each a > 0 there exists β > 0 and c > 0 such that the algorithm

assigns unique names and has the following additional properties with probability 1 − n−a.

If r(k) = k + 1 then at most cn memory cells are ever needed, cn ln2 n random bits are

ever generated, and the algorithm terminates in time O(log2 n). If r(k) = 2k then at most

cn2 memory cells are ever needed, cn lnn random bits are ever generated, and the algorithm

terminates in time O(log n).

Proof: For a given a > 0, let us take β that exists by Lemma 22. When the β-process with

verifications terminates then this models assigning unique names by the algorithm. It follows

that one iteration of the repeat-loop results in algorithm terminating with proper names

assigned with probability 1− n−a. One iteration of the main repeat-loop does not result in
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termination with probability at most n−a, so i iterations are not sufficient to terminate with

probability at most n−ia. This converges to 0 with increasing i so the algorithm terminates

almost surely.

The performance metrics rely mostly on Lemma 21. We consider two cases, depending

on which function r(k) is used.

If r(k) = k + 1 then procedure Gauge-Size-MC considers all the consecutive values

of k up to lg n, and for each such k, throwing a ball requires k random bits. We obtain

that procedure Gauge-Size-MC uses O(n log2 n) random bits. Similarly, to compute the

number of selected values in an iteration of the main repeat-loop of this procedure takes time

O(k), for the corresponding k, so this procedure takes O(log2 n) time. The value of size

satisfies size ≤ 2n with certainty. Therefore, O(n) memory registers are ever needed and

one throw of a ball uses O(log n) random bits, after size has been computed. It follows that

one iteration of the main repeat-loop of the algorithm, after procedure Gauge-Size-MC

has been completed, uses O(n log n) random bits, by Lemmas 21 and 22, and takes O(log n)

time. Since one iteration of the main repeat-loop suffices with probability 1−n−a, the overall

time is dominated by the time performance of procedure Gauge-Size-MC.

If r(k) = 2k then procedure Gauge-Size-MC considers all the consecutive powers of 2

as values of k up to lg n, and for each such k, throwing a ball requires k random bits. Since the

values k form a geometric progression, procedure Gauge-Size-MC uses O(log n) random

bits per processor. Similarly, to compute the number of selected values in an iteration of the

main repeat-loop of this procedure takes time O(k), for the corresponding k that increase

geometrically, so this procedure takes O(log n) time. The value of size satisfies size ≤ 2n

with certainty. By Lemma 21, O(n2) memory registers are ever needed, so one throw of

a ball uses O(log n) random bits. One iteration of the main repeat-loop, after procedure

Gauge-Size-MC has been completed, uses O(n log n) random bits, by Lemmas 21 and 22,

and takes O(log n) time. �

The instantiations of algorithm Common-Unbounded-MC are close to optimality with

89



respect to some of the performance metrics we consider, depending on whether r(k) = k+ 1

or r(k) = 2k. If r(k) = k+ 1 then the algorithm’s use of shared memory would be optimal if

its time were O(log n), by Theorem 2, but it misses space optimality by at most a logarithmic

factor, since the algorithm’s time is O(log2 n). Similarly, for this case of r(k) = k + 1, the

number of random bits ever generated O(n log2 n) misses optimality by at most a logarithmic

factor, by Proposition 1. In the other case of r(k) = 2k, the expected time O(log n) is

optimal, by Theorem 3, the expected number of random bits O(n log n) is optimal, by

Proposition 1, and the probability of error n−O(1) is optimal, by Proposition 3, but the amount

of used shared memory misses optimality by at most a polynomial factor, by Theorem 3.

7.5 Conclusion

We considered four variants of the naming problem for an anonymous PRAM when the

number of processors n is unknown and developed Monte Carlo naming algorithms for each

of them. The two algorithms for a bounded number of shared register are provably optimal

with respect to the following three performance metrics: expected time, expected number of

generated random bits and probability of error.
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8. Naming a Channel with Beeps

In this section, we consider anonymous channel with beeping. We present names can be

assigned to the anonymous stations by a Las Vegas and a Monte Carlo naming algorithms.

8.1 A Las Vegas Algorithm

We give a Las Vegas naming algorithm for the case when n is known. The idea is to have

stations choose rounds to beep from a segment of integers. As a convenient probabilistic

interpretation, these integers are interpreted as bins, and after selecting a bin a ball is

placed in the bin. The algorithm proceeds by considering all the consecutive bins. First, a

bin is verified to be nonempty by making the owners of the balls in the bin beep. When

no beep is heard then the next bin is considered, otherwise the nonempty bin is verified

for collisions. Such a verification is performed by O(log n) consecutive calls of procedure

Detect-Collision. When a collision is not detected then the stations that placed their

balls in this bin assign themselves the next available name, otherwise the stations whose

balls are in this bin place their balls in a new set of bins. When each station has a name

assigned, we verify if the maximum assigned name is n. If this is the case then the algorithm

terminates, otherwise we repeat. The algorithm is called Beep-Naming-LV, its pseudocode

is in Figure 8.1.

Algorithm Beep-Naming-LV is analyzed by modeling its executions by a process of

throwing balls into bins, which we call the ball process. The process proceeds through stages.

There are n balls in the first stage. When a stage begins and there are some i balls eligible

for the stage then the number of used bins is i lg n. Each ball is thrown into a randomly

selected bin. Next, balls that are singleton in their bins are removed and the remaining balls

that participated in collisions advance to the next stage. The process terminates when no

eligible balls remain.

Lemma 23 The number of times a ball is thrown into a bin during an execution of the ball

process that starts with n balls is at most 3n with probability at least 1− e−n/4.

Proof: In each stage, we throw some k balls into at least k lg n bins. The probability that
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Algorithm Beep-Naming-LV

repeat

counter ← 0 ; left ← 1 ; right ← n lg n ; namev ← null

repeat

slotv ← random number in the interval [left, right]
for i← left to right do

if i = slotv then

beep

if a beep was just heard then

collision ← false

for j ← 1 to β lg n do

if Detect-Collision then collision ← true

if not collision then

counter ← counter + 1
namev ← counter

if namev = null then beep

if a beep was just heard then

left ← counter

right ← (n− counter) lg n

until no beep was heard in the previous round

until counter = n

Figure 8.1: A pseudocode for a station v. The number of stations n is
known. Constant β > 1 is a parameter determined in the analysis. Procedure
Detect-Collision has its pseudocode in Figure 4.2. The variable name is to
store the assigned identifier.

a given ball ends up singleton in a bin is at least

1− k

k lg n
= 1− 1

lg n
,

which we denote as p. A ball is thrown repeatedly in consecutive iterations until it lands

single in a bin. Our immediate concern is the number of trials to have all balls as singletons

in their bins.

Suppose that we perform some m independent Bernoulli trials, each with probability p

of success, and let X be the number of successes. We show next that m = Θ(n) suffices with

large probability to have the inequality X ≥ n.
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The expected number of successes is E [X] = µ = pm. We use the Chernoff bound in

the form

Pr(X < (1− ε)µ) < e−ε
2µ/2 , (8.1)

for any 0 < ε < 1; see [77]. It suffices to have the inequality (1− ε)µ ≥ n. Let us set ε = 1
2
,

so that it suffices to have µ ≥ 2n or pm ≥ 2n, which is extended into the following form:

(
1− 1

lg n

)
·m ≥ 2n . (8.2)

If we choose m = 3n then inequality (8.2) holds for sufficiently large n.

The probability that this inequality (8.2) does not hold is estimated from above by (8.1).

Here we have that µ ≥ 2n so the right-hand side of (8.1) is e−n/4. �

We proceed to Theorem 12, which summarizes all the good properties of algorithm

Beep-Naming-LV, in particular that the algorithm is Las Vegas. In the proof, we model

executions of the algorithm as that of the ball process starting with n balls. The main

difference between the ball process and the algorithm is that collisions of balls in bins are

detected with certainty, by the specification of the process, while in the algorithm collisions

between tentative names might be overlooked with some positive probability.

Theorem 12 Algorithm Beep-Naming-LV, for any β > 0, terminates almost surely and

there is no error when it terminates. For each a > 0, there exists β > 1 and c > 0 such that

the algorithm assigns unique names, works in time at most cn lg n, and uses at most cn lg n

random bits, all these properties holding with probability at least 1 − n−a, for sufficiently

large n.

Proof: Consider an iteration of the main repeat-loop. An error can occur in this iteration

only when there is a collision that is not detected by procedure Detect-Collision in none

of its β lg n calls. Such an error results in duplicate names, so that the number of assigned

different names is smaller than n. The maximum name assigned in an iteration is the value

of the variable counter, which has the same value at each station. The algorithm terminates
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by having an iteration that produces counter = n, but then there are no repetitions among

the names, and so there is no error.

Next we show that termination is a sure event. Consider an iteration of the main repeat-

loop. There are n balls and each of them is kept thrown until either it is not involved in a

collision or there is a collision but it is not detected. Eventually each ball is left to reside in

its bin with probability 1. This means that each iteration ends almost surely.

We introduce the notation for two events in an iteration of the main repeat-loop. Let

A be the event that there is a collision that passes undetected. The iteration fails to assign

proper names if and only if event A holds. Let B be the event that the total number of

throwing balls into bins is at most 3n. We denote by ¬E the complements of an event E.

We have that Pr(¬B) ≤ e−n/4, by Lemma 23.

When a ball lands in a bin then it is verified for a collision β lg n times. If there is a

collision then it passes undetected with probability at most n−β. This is because one call of

procedure Detect-Collision detects a collision with probability at least 1
2
, by Lemma 2,

in which m = 1 and k ≥ 2.

We estimate the probability of the event that an iteration fails to assign proper names,

which is the same as of event A. This is accomplished as follows:

Pr(A) = Pr(A ∩B) + Pr(A ∩ ¬B)

= Pr(A | B) · Pr(B) + Pr(A | ¬B) · Pr(¬B)

≤ Pr(A | B) + Pr(¬B)

≤ 3n · n−β + e−n/4 , (8.3)

where we used the union bound to obtain the last line (8.3). It follows that at least i

iterations are needed with probability at most (e−n/4 + 3n1−β)i, which converges to 0 as i

grows unbounded, assuming only that β > 1 and n is sufficiently large.

Let us consider the event ¬A∩B, which occurs when balls are thrown at most 3n times

and all collisions are detected, when modeling an iteration of the main repeat loop. The
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probability that event ¬A ∩B holds can be estimated from below as follows:

Pr(¬A ∩B) = Pr(¬A | B) · Pr(B)

≥ (1− 3n1−β) · (1− e−n/4)

≥ 1− 3n1−β − e−n/4(1− 3n1−β) . (8.4)

This bound (8.4) is at least 1− n−a for sufficiently large β > 1, when also n is large enough.

Bound (8.4) holds for the first iteration of the main repeat loop. So with probability at

least 1− n−a the first iteration assigns proper names with at most 3n balls thrown in total.

Let us assume that this event occurs. Then the whole execution takes time at most cn lg n,

for a suitably large c > 0. This is because procedure Detect-Collision is executed at

most 3βn lg n times, and each of its calls takes two rounds. One assignment of a value to

variable slot requires lg(n lg n) < 2 lg n bits, for sufficiently large n. There are at most 3n

such assignments, for a total of at most cn lg n random bits, for a suitably large c > 0. �

Algorithm Beep-Naming-LV runs in the optimal expected time O(n log n), by Proposi-

tion 6, and it uses the optimum expected number of random bitsO(n log n), by Proposition 5,

these propositions given in Section 5.3.

8.2 A Monte Carlo Algorithm

We give a randomized naming algorithm for the case when n is unknown. In view of

Proposition 8, no Las Vegas algorithm exists in this case, so we develop a Monte Carlo one.

The algorithm again can be interpreted as repeatedly throwing balls into bins and ver-

ifying for collisions. A bin is determined by a string of some k bits. Each station chooses

one such a string randomly. The algorithm proceeds to repeatedly identify the smallest lex-

icographically string among those not considered yet. This is accomplished by procedure

Next-Sting which operates as a search implemented by using beeps. Having identified a

nonempty bin, all the stations that placed their balls into this bin verify if there is a col-

lision in this bin by calling Detect-Collision a suitably large number of times. In case

no collision has been detected, the stations whose balls are in the bin assign themselves the
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consecutive available name as a temporary one. This continues until all the balls have been

considered. If no collision has ever been detected in the current stage, then the algorithm

terminates and the temporary names are considered as the final assigned names, otherwise

the algorithm proceeds to the next stage.

Next, we specify procedure Next-String. It operates as a radix search to identify

the smallest string of bits by considering consecutive bit positions. It uses two variables

my-string and k, where k is the length of the bit strings considered and my-stringv is the

string of k bits generated by station v. The procedure begins by setting to 1 all bit positions

in variable string, which has k such bit positions. Then the consecutive bit positions

i = 1, 2, . . . , k are considered one by one. For a given bit position i, all the stations v, that

still can possibly have the smallest string and whose bit on position i in my-stringv is 0, do

beep. This determines the first i bits of the smallest string, because if a beep is heard then

the ith bit of the smallest string is 0 and otherwise it is 1. This is recorded by setting the ith

bit position in the variable string to the determined bit. The stations eligible for beeping,

if their ith bit is 0, are those whose strings agree on the first i−1 positions with the smallest

string. After all k bit positions have been considered, the variable string is returned.

Procedure Next-String has its pseudocode in Figure 8.2. Its relevant property is

summarized as the following lemma.

Lemma 24 Procedure Next-String returns the smallest lexicographically string among

the non-null string values of the private copies of the variable my-string.

Proof: The string that is output is obtained by processing all the input strings my-string

through consecutive bit positions. We show the invariant that after i bits have been consid-

ered, for 0 ≤ i ≤ k, then the bits on these positions make the prefix of the first i bits of the

smallest string.

The invariant is shown by induction on i. When i = 1 then the bits on previously

considered positions make an empty string, as no positions have been considered yet, and

the empty string is a prefix of the smallest string. Suppose that the invariant holds for all i
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Procedure Next-String

string ← a string of k bit positions, with all of them set to 1

for i← 1 to k do

if (my-stringv matches string on the first i− 1 bit positions)

and (the ith bit of my-stringv is 0)

then beep

if a beep was heard in the previous round then

set the ith bit of string to 0

return (string)

Figure 8.2: A pseudocode for a station v. This procedure is used by
algorithm Beep-Naming-MC. The variables my-string and k are the same
as those in the pseudocode in Figure 8.3.

such that 0 ≤ i < k, and consider the stations whose variable my-string has the same bits

on these first i positions as variable string. This set includes the station v with the smallest

my-string by the inductive assumption. If the bit on the (i + 1)st position of my-stringv

is 0 then v beeps and string has its bit on position i + 1 set to 0. Otherwise there is no

station with 0 on the (i+1)st position of my-stringv, because my-stringv is smallest. Then

there is no beep and 1 at position i+ 1 in string is not modified. This completes the proof

of the invariant.

The procedure Next-String terminates after k bit positions have been processed. The

proved invariant for i = k means that the smallest my-stringv and the final value of the

variable string are identical. �

The naming algorithm we develop is called Beep-Naming-MC. Its pseudocode is in

Figure 8.3. The algorithm proceeds through stages, where a stage is implemented by an

iteration of the main repeat-loop in the pseudocode. The number of bins in the ith stage is

2k where k = 2i. The variable k is doubled in the beginning of each iteration of the main

loop. During a stage, first the next bin with a ball is identified by calling procedure Next-
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Algorithm Beep-Naming-MC

k ← 1

repeat

k ← 2k

collision ← false

counter ← 0

my-stringv ← a random string of k bits

repeat

if my-stringv 6= null then smallest-string ← Next-String
if my-stringv = smallest-string then

for i← 1 to β · k do

if Detect-Collision then collision ← true

if not collision then

counter ← counter + 1
namev ← counter

my-stringv ← null

if my-stringv 6= null then beep

until no beep was heard in the previous round

until not collision

Figure 8.3: A pseudocode for a station v. Constant β > 0 is an integer
parameter determined in the analysis. Procedure Detect-Collision has its
pseudocode in Figure 4.2 and procedure Next-String has its pseudocode in
Figure 8.2. The variable name is to store the assigned identifier.

String. Next, this bin is verified for collisions by calling procedure Detect-Collision βk

times, for a constant β > 0, which is a parameter to be settled in analysis. During such a

verification, the stations whose balls are in this bin participate only.

The next theorem summarizes the good properties of algorithm Beep-Naming-MC. In

particular, that it is a Monte Carlo algorithm with a suitably small probability of error.

Theorem 13 Algorithm Beep-Naming-MC, for any β > 0, terminates almost surely. For

each a > 0, there exists β > 0 and c > 0 such that the algorithm assigns unique names, works

in time at most cn lg n, and uses at most cn lg n random bits, all these properties holding

with probability at least 1− n−a.

Proof: We interpret an iteration of the outer repeat-loop as a stage in a process of throwing
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n balls into 2k bins and verifying βk times for collisions. The string selected by a station

is the name of the bin. When at least one collision is detected then k gets incremented

and another iteration is performed. An error occurs when there is a collision but it is not

detected.

Next we estimate from above the probability of not detecting a collision. To this end,

we consider two cases, depending on which of the inequalities 2k < n or 2k ≥ n hold for a

given k.

In the first case, when 2k < n, collisions occur with certainty, by the pigeonhole principle.

Let m be the number of occupied bins. This results in m ≤ 2k verifications performed,

one for each bin, where procedure Detect-Collision is called βk times per verification.

By Lemma 2, the probability of not detecting a collision, with just one call of Detect-

Collision occurring in each of these verifications, is at most

2−n+m ≤ 2−n+2k .

When βk calls of Detect-Collision occur in each verification, as is the case by the design

of the algorithm, the probability of not detecting a collision is at most

2(−n+2k)βk .

Intuitively at this point, since 2k < n, this probability is maximized for n = 2k + 1 and it is

about 2−βk ≈ n−β, as k ≈ lg n.

A precise argument to obtain an estimate is by considering two sub-cases, and is as

follows. If it is the sub-case that 2k < n/2, then

2(−n+2k)βk = 2−Ω(n) .

Otherwise, when it is the sub-case that n > 2k ≥ n/2, then n− 2k ≥ 1 and k ≥ lg n− 1, so

that we obtain the following estimate:

2(−n+2k)βk ≥ 2−β(lgn−1) ≥ 2βn−β .
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We obtained the following two estimates: 2−Ω(n) and 2βn−β, of which the latter is larger, for

sufficiently large n. It is sufficient to take β > a, as then the inequality 2βn−β < n−a holds

for sufficiently large n.

The second case occurs when 2k ≥ n. This implies that k ≥ lg n. When a collision

occurs in a bin, then it is verified by at least β lg n calls of procedure Detect-Collision.

This gives probability at most n−β of not detecting one such a collision. Multiple bins with

collisions make the probability of not detecting any of them even smaller. Now it is enough

to take β > a, as then n−β < n−a holds.

This completes estimating the probability of error by at most n−a, for sufficiently large

β, and all correspondingly large n.

Next, we estimate the probability that the running time is O(n log n). Let us consider a

stage with sufficiently many bins, say, when k = d lg n for d > 2. Then the number of bins

is 2k = nd. The probability that there is no collision at all in this stage is at least

(
1− n

nd

)n
≥ 1− n

nd−1
= 1− n−d+2 . (8.5)

Choosing d = a + 2 we obtain that the algorithm terminates by the iteration of the outer

repeat-loop when k = d lg n with probability at least 1 − n−a. One iteration of the outer

repeat loop, for some k, is proportional to k · n. The total time spent up to and including

k = d lg n is proportional to

lg((a+2) lgn)∑
i=1

2i · n ≤ n · 2(a+ 2) lg n = O(n log n) (8.6)

with probability at least 1− n−a.

The number of bits generated up to and including the iteration for k = d lg n is also

proportional to (8.6). This is because the number of bits generated in one iteration of the

main repeat-loop is proportional to k · n, similarly as the running time.

To show that the algorithm terminates almost surely, it is sufficient to demonstrate that

the probability of a collision converges to zero with k increasing. The probability of no
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collision for k = d lg n is at most n−d+2, by (8.6). If k grows to infinity then d = k/ lg n

increases to infinity as well, and then n−d+2 converges to 0 as a function of d. �

Algorithm Beep-Naming-MC is optimal with respect to the following performance

measures: the expected running time O(n log n), by Proposition 6, the expected number of

used random bits O(n log n), by Proposition 5, and the probability of error, as determined

by the number of used bits, by Proposition 7.

8.3 Conclusion

We considered a channel in which a synchronized beeping is the only means of commu-

nication. We showed that names can be assigned to the anonymous stations by randomized

algorithms. The algorithms are either Las Vegas or Monte Carlo, depending on whether the

number of stations n is known or not, respectively. The performance characteristics of the

two algorithms, such as the running time, the number of random bits, and the probability

of error, are proved to be optimal.
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9. Open Problems and Future Work

Here we give some of the open problems and future work. The algorithms cover the

“boundary” cases for the anonymous synchronous PRAM. One case is about a minimum

amount of shared memory, that is, when only a constant number of shared memory cells

are available. The other case is about a minimum expected running time, that is, when the

expected running time is O(log n); such performance requires a number of shared registers

that grows unbounded with n. It would be interesting to have these results generalized by

investigating naming on a PRAM when the number of processors and the number of shared

registers are independent parameters of the model.

It is an open problem to develop Monte Carlo algorithms for Arbitrary and Common

PRAMs for the case when the amount of shared memory is unbounded, such that they are

simultaneously asymptotically optimal with respect to these same three performance metrics:

expected time, expected number of generated random bits and probability of error.

The algorithms we developed for beeping channels rely in an essential manner on syn-

chronization of the channel. It would be interesting to consider an anonymous asynchronous

beeping channel and investigate how to assign names to stations in such a communication

environment.
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