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ÖZET 

Bu tez beş bölümden oluşmaktadır. 

Birinci bölümde çalışma boyunca kullanılacak Burger ve RLW denklemleri ile ilgili 

temel bilgiler verilmiştir. Daha sonra bu denklemlerin çözümleri için kullanılacak olan çözüm 

yöntemleri tanıtılmıştır. 

İkinci bölümde Burger Denkleminin nümerik çözümleri, Geometrik Graded mesh 

kullanılarak kübik B-spline kolokeyşın ve kuadratik B-spline Galerkin metodları yardımıyla 

elde edilecektir. Sonlu eleman metodları, bu mesh üzerinde, sırasıyla Galerkin ve kolokeyşın 

metodlarında kuadratik ve kübik B-spline yaklaşım fonksiyonları yardımıyla uygulanır. 

Üçüncü bölümde RLW (regularized long wave ) denklemi kuadratik B-spline sonlu 

elemanlar kullanılarak Petrov – Galerkin yöntemi ile çözülmüştür. Solitary dalga hareketi 

algoritma özelliklerini değerlendirmek için çalıştırılır. 

Dördüncü bölümde tekil perturbe etme problemlerinin sonlu eleman çözümleri 

yapılacaktır. Çözüm bölgesi üzerinde geometriksel graded mesh alınarak kuadratik ve kübik B-

spline baz fonksiyonları için kolokeyşın metodu uygulanmıştır. 

Beşinci bölümde Burger denkleminin nümerik çözümleri için Kuadratik B-spline 

Kolokeysın ve Kübik B-spline kolokeyşın metodu uygulanacaktır.  Her iki algoritmanın 

sonuçları bazı test problemleri ile karşılaştırılır. 

Anahtar Kelimeler: Graded mesh, Hidrodinamik, Kolokeyşın, Petrov-Galerkin, RLW 

denklemi, Sayısal Analiz, Sibernetik, Spline, Sonlu elemanlar. 
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APPLICATION OF FINITE ELEMENT METHODS FOR SOME NONLINEAR 

PARTIAL DIFFERENTIAL EQUATIONS 
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SUMMARY 

The thesis is consists of five sections. 

In the first section, the basic information about Burger and Rlw equations which will be 

used during the work is given. Then, the solution techniques which will be used for solving the 

equations are introduced. 

In the second section,  Burgers’ equation is obtained using the methods of cubic B-

spline collocation and quadratic B-spline Galerkin. The finite element methods are constructed 

within the quadratic and cubic B-splines as an approximate function, respectively, over this 

mesh. 

In the third section, the Rlw equation is solved by a Petrov-Galerkin method using 

quadratic B-spline finite elements. The motion of solitary waves is studied to assess the 

properties of the algorithm. 

In the fourth section, The solutions of single perturbation problems will be done. 

Collocation method is applied with quadratic and cubic B-spline base function over the 

geometrically graded mesh of the solution domain. 

In the fifth section, Quadratic B-spline collocation and Cubic B-spline collocation 

methods will be applied to find  the numeric solutions of Burger equation. The results of both 

schemes are compared with some test problems. 

Keywords: Cybernetics, Collocation, Finite elements, Graded mesh, Hydrodynamics, 

Numerical analysis, Petrov-Galerkin, RLW equation, Spline. 
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1. GİRİŞ 

1.1. Burger Denklemi 

Burger denklemleri ilk kez Bateman (1915) tarafından tanıtılmış ve ayrıntılı olarak 

incelenmiştir. Burger denklemi, birkaç fiziksel özellik yüzünden çoğu bilim adamının dikkatini 

çekmiştir. Burger denkleminin analitik çözümü v sabitinin (Miller, 1966) küçük değerleri için 

çok yavaş yakınsayan seri çözümleri içerir. Bu konuda çalışanların çoğu Burger denklemlerinin 

çeşitli başlangıç ve sınır koşullarının nümerik çözümleri ile meşgul olmuşlardır. Burger 

denkleminin iki farklı analitik çözümü sınırlı keyfi başlangıç ve sınır şartları bulunmuştur. v 

sabitinin küçük değerleri için Burger denkleminin nümerik metodlarla çözümlerinde zorluklar 

ortaya çıkar. 

Bu küçük değerler  akışkan sıvıda şok dalgaları ve dinamik dalgaların yayılmasında dik 

yönelmelere sebep olur. Pek çok sayısal metod, küçük parametreler ile Burger denklemlerinin 

nümerik çözümünü elde etmek için üretilmiştir. Spline fonksiyonlar nümerik algoritmalar 

kurmak için uyarlanmıştır. Kübik spline kolokeyşın yöntemi Burger denklemlerinin nümerik 

çözümü için geliştirildi (Rubin ve Graves, 1975; Rubin ve Khosla, 1976; Caldwell, 1987). 

Kapalı sonlu fark algoritmaları ile birlikte bu çalışmada Burger denklemlerinin nümerik 

çözümünü elde etmede kübik spline fonksiyonları interpolasyonundan yararlanılmıştır. Son 

dönemlerde B-spline fonksiyonlarında hem Galerkin hem de Burger denklemlerinin nümerik 

çözümlerinde bulunan sonlu elemanlar üzerinde kolokeyşın metodları oluşturuldu (Davies, 

1977). Tüm bu B-spline Sonlu Eleman metodları aynı mesh üzerinde düzenlendi. Bazı değişken 

mesh ve Geometriksel Graded meshler sayısal yöntemlerin çalışmasını güçlendirmek için 

kullanılır. Örneğin; Bir boyutlu Burger denkleminin şok dalga çözümü için bir kübik B- spline 

mesh değişken yöntemi  geliştirilmiştir. Bölgesel ayrıklaştırma sınırlardaki büyük değişiklikler 

sebebiyle artan zorlukların olduğu sınırların yakınlarındaki ilgili bölgede artırılmış Graded 

meshin biçiminde yapılmıştır. 

Temel olarak bahsedilen Burger denkleminin sürekli çözümlerinin ikisi Bateman (1915) 

tarfından bu çalışmada ilk kez açığa çıkarıldı. Burger kapsamlı çalışmalar (Burgers, 1948) 

sayesinde özellikle türbülans için bir matematiksel model olarak da bilinen Burger denklemini 

içerir. Denklem; ısı iletimi (Cole, 1951), gaz dinamiği (Lighthill, 1956), şok dalgaları (Burgers, 

1948), izotropik bir katı elastik dalga boyunca (Pospelov, 1966), sayılar teorisi (Vanderpol, 

1951), devam eden stokastik süreçler ve benzeri gibi geniş alanlarda bir model olarak kullanılır. 

Hopf (1950) ve Cole (1951) keyfi başlangıç koşulları için bağımsız ve analitik olarak 

çözmüşlerdir. Bir çok durumda bu çözümler, dinamik dalga şekillerinin yayılımında dik 
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dalgaların başında karşılığını bulan 𝑣 vizkozite sabitlerinin küçük değerleri için çok yavaşça 

yaklaşabilen sonlu serileri içerir. Navier – Stokes denkleminin nümerik çözümüne 

yoğunlaşmadan önce Burger denkleminin basit bir modelini incelemek daha makul görünüyor. 

Bu nedenle Burger denklemi Navier – Stokes denklemi için doğruluk ve stabilite açısından 

nümerik metodları denemek için model denklemi olarakta kullanılmaktadır. Çok büyük bir 

vizkoziteye sahip Burger denkleminin nümerik çözümlerinde nümerik güçlüklerle 

karşılaşılmıştır. Burger denkleminin çözümlerini hesaplamak için spline fonksiyonları ile 

birlikte çeşitli nümerik metodlar oluşturulmuştur. Rubin ve Graves (1975) bir boyutlu uzayda 

Reynold sayılarında Burger denkleminin nümerik çözümleri için yarı lineerleşme ve kübik 

spline fonksiyon tekniğini kullanmıştır. Kübik bir spline kolokeyşın işlemi (Pospelov, 1966) 

Burger denkleminin nümerik çözümü için geliştirilmiştir. Parçalı zamanlı şema ve kübik Spline 

fonksiyonlarının birleşim kombinasyonu (Jain ve Holla, 1978; Jain ve Lohar, vd., 1979) 

çalışmalarında Burger denkleminin nümerik çözümlerini elde etmek için örtülü sonlu fark 

şemalarının kurulumu kullanıldı. Denklem tektip elemanlar üzerinde kübik B- spline 

interpolasyon fonksiyonları ile kolokeyşın metodları tarafından nümerik olarak çözülür (Ali vd., 

1990; Beckett, Mackenzie, 2001; Burger, 1948) çalışmalarında eleman şekil ve test 

fonksiyonlarının her ikisi ile B- Spline kullanılan  Galerkin metoduna dayalı Burger 

denkleminin sonlu elemanlar çözümü geliştirildi. Deneme fonksiyonları olan kuadratik B-

spline’ lar kullanılan en küçük kareler formülasyonu (Cole, 1951)  de sonlu aralıklar üzerinde 

verildi. Kısmi Diferansiyel denklemlerin nümerik çözümleri nümerik metodları uygulanabilir 

yapmak ve doğruluğunu artırmak için parçalanarak bulunmuştur. Parçalı Burger denklemleri 

için iki algoritma yazılmıştır. Birincisi, Burger denklemi zaman içinde parçalanır ve daha sonra 

B-spline kolokeyşın metodu uygulanır. Kolokeyşın metodunda deneme fonksiyonları olan 

kuadratik B-spline’ ları kullanabilmek için Burger denkleminde  𝑉 =  −𝑈𝑥 denklemi birinci 

mertebeden birleştirilmiş bir sistemi verir. İkincisi, birinci mertebeden denklemler içeren bu 

denklem sistemi konuma göre parçalanır ve kuadratik B-spline kolokeyşın metodu kullanılarak 

hesaplanabilir. Bazı bilinen başlangıç ve sınır koşulları için nümerik sonuçlar, her iki metod için 

de gösterilmiştir. 

1.2. RLW Denklemi 

Rlw denkleminin nümerik çözümü, hem kuadratik hem de kübik B-spline ve bölünmüş 

teknikler kullanılarak elde edilmiştir. Sonuçta oluşan denklemler için kübik ve kuadratik B-

spline kolokeyşın metodları uygulanmıştır. Ayrıca parçalı Rlw denklemi haricinde çözümler 

kübik B-spline kolokeyşın metodu ile elde edilmiştir. Sonuçlar solitary bir dalganın yayılımı ve 
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(undular bore) bore oluşumu çalışılarak doğrulanmıştır. Önerilen şekillerin sonuçları ile 

karşılaştırma yapılmıştır. 

1.3. Tekil Perturbe Etme Problemi 

Bu problemler kimyasal reaktör teorisi, optimal control, kuantum mekaniği, reaksiyon – 

difüzyon süreci, (aerodinamik) ve birçok alanda yaygın olarak kullanılmaktadır. Bir çok bilim 

adamı, yukarıda bahsedilen zorlukların üstesinden gelmek için uğraşmıştır ve bu problem 

üzerinde çalışmıştır. D. J. Fyfe (1969) eşit-eşit olmayan aralıklar üzerinde kübik spline’ lar az 

avantaj kazandığını gözlemlemiştir. G. Beckett ve J.A. Mackenzie düzensiz grid üzerinde a. 

mertebeden Galerkin sonlu eleman metodu (Beckett vd., 2001) de verildi. 

Denetleyici fonksiyon parametrelerinin uygun seçeneklerinden sonra numerik çözümler 

elde edildi. Çalıştırılan koordinat W. Liu  ve T.Tang (Liv vd., 2001) tekil perturbe etme sınır 

değer problem için Galerkin- Spektral metodunu geliştirerek uygulamışlardır. 

M. K. Kadalbajoo ve K. C. Patidar tarafından gerilmede kullanılan bazı fark 

algoritmaları (Kadalbajoo vd., 2002) de verildi. Bu metodların 2. mertebeden doğruluğu 

gösterildi. Son zamanlarda S. C. Rao ve M. Kumar tarafından kübik B-spline kolokeyşın 

metodu (Rao vd., 2006)  da uygulandı. Şöyle ki; Çalışma, üç örtüşmeyen alt bölgede çözüm 

aralıklarına ayrıştırıldı ve bu bölgede diferansiyel denklemler çözüldü. 

1.4. B- Spline Kolokeyşın Metodu 

𝐿 𝑢(𝑥) = 𝑓(𝑥)            (1.1) 

şeklinde ifade edilen bir diferansiyel denklemde; 𝐿 bir lineer diferansiyel operatör, 𝑓(𝑥) bilinen 

bir fonksiyon ve 𝑢(𝑥) aranan çözüm olsun. (1.1) diferansiyel denkleminin sayısal çözümü için 

ağırlıklı rezidü metodu kullanıldığında, aranan 𝑢(𝑥) ifadesi yerine 

𝑢(𝑥) ≈ 𝑢̃(𝑥) = ∑ 𝑎𝑗∅𝑗(𝑥) 
𝑁
𝑗=1                         (1.2) 

formundaki 𝑢̃(𝑥) sonlu yaklaşım serisi kullanılır. 

(1.2) eşitliğinde verilen ∅𝑗(𝑥), 𝑗 = 1,… , 𝑁 fonksiyonu, diferansiyel denklemin tanım 

bölgesi üzerinde tanımlıdır ve 𝑎𝑗, 𝑗 = 1,… ,𝑁 bilinmeyen katsayılardır. Sonlu elemanlar 

metodunda, ∅𝑗(𝑥) fonksiyonları problem için verilen tüm sınır şartlarını sağlayacak şekilde 

seçilirler ama genelde diferensiyel denklemi sağlamazlar. 
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Ağırlıklı rezidüler metodu, 𝑢̃(𝑥) yaklaşık çözümüyle orjinal denklem arasındaki sapma 

miktarını minimuma indirmeyi amaçlar. Bu sapma ölçüsü rezidü ile tanımlanır: 

𝑅(𝑥) = 𝐿𝑢̃(𝑥) − 𝑓(𝑥) = 𝐿𝑢̃(𝑥) − 𝐿𝑢(𝑥)      (1.3) 

𝑊𝑗 ağırlık fonksiyonları aşağıdaki integrasyonu minimize edecek biçimde tanımlanmış 

olan özel fonksiyonlar olmak üzere, (1.3) ile verilen rezidü ifadesi; 𝑊𝑗(𝑥)ağırlık fonksiyonları 

ile çarpılarak Ω tanım bölgesi üzerindeki integrali alınırsa 

∫ 𝑊𝑗(𝑥)𝑅(𝑥) 𝑑𝑥 = 0 , 𝑗 = 1,… ,𝑁Ω
                                         (1.4) 

formunda 𝑁 bilinmeyen  𝑁 denklemden oluşan denklem sistemi elde edilir. Bu sistemden 𝑎𝑗 

bilinmeyenleri bulunarak (1.1) yerine yazılırsa, 𝑢̃(𝑥) yaklaşık çözümüne ulaşılır. 

Kolokeyşın metodu, ağırlıklı rezidü metodunun bir uygulamasıdır. Bu metotta 𝑊𝑗 

ağırlık fonksiyonları olarak  

𝑊𝑗 = 𝛿(𝑥 − 𝑥𝑗)         (1.5) 

dirac delta fonksiyonları seçilir. Dirac delta fonksiyonları 

𝛿(𝑥 − 𝑥𝑗) = { 
1,   𝑥 = 𝑥𝑗

0,   𝑑𝑖ğ𝑒𝑟 𝑑𝑢𝑟𝑢𝑚𝑙𝑎𝑟𝑑𝑎 
               (1.6) 

özelliğine sahiptirler ve 𝑅(𝑥𝑗) = 0, 𝑗 = 1,… ,𝑁 olduğunda, (1.4) integralinin sonucu sıfır 

olacaktır. Dolayısıyla kolokeyşın metodu için çözüm, (1.2) eşitliğinin sayısal çözümü aranan 

denklemde yerine yazılmasıyla  

𝐿𝑢̃(𝑥) − 𝑓(𝑥) = 0 

   
1

0
N

j j

j

L a x f x


 
  

 
        (1.7) 

formunda elde edilir (Lapidus ve Pinder, 1982) 

1.5. B- Spline Galerkin Metodu   

Diferansiyel denklemlerin tam çözümlerinin bulunması için kullanılan analitik 

yöntemler, problemlerin elde edilmesi ve çözümlerinin analizlerinin yapılması noktasında 

sayısal yöntemler bir alternatiftir. Sonlu elemanlar metodu ise bu varyasyonel yöntemlerden 

birisidir. Bu yöntem, yaklaşım fonksiyonlarının, problem çözüm bölgesinin alt bölgelerinde, 

sistematik biçimde elde edilmesi olanağı sağlar.  
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Bir diferansiyel denkleme bu sonlu elemanlar metodunun uygulanışı aşağıdaki gibidir. 

𝐿[𝑢], 𝑢 nun türevlerini içeren genel bir diferansiyel operatörü, 𝑈𝜇[𝑢] uygun sayıda sınır 

koşulu, Ω çözüm bölgesi ve sınırı 𝜕Ω olmak üzere; 

𝐿[𝑢] = 𝑟(𝑥),   𝑥 ∈ Ω ,  

    ,    Ω ,U u x           (1.8) 

sınır değer problemini dikkate alalım. Bu problemin çözümüne yapılacak yaklaşım, 

𝑢(𝑥) = 𝑤(𝑥, 𝑎1, 𝑎2, … , 𝑎𝑁) 

şeklindedir. Burada 𝑎1, 𝑎2, … , 𝑎𝑁 bulunması gerekli olan parametrelerdir.           

𝑎 = [𝑎1𝑎2…𝑎𝑁] olarak alınırsa, seçilecek uygun 𝜓𝑖 taban fonksiyonları için yaklaşık 

çözüm 

     0

1

,
N

i i

i

w x a x a x 


         (1.9) 

Şeklinde ifade edilebilir. Bu seçim, problemin sınır koşullarını sağlayacak şekilde 

olmalıdır. Bu yaklaşık çözüm, diferansiyel denklemde yerine yazılırsa  

     ,  , E x a L w x a r x            (1.10) 

kalıntısı (rezidü) bulunur. Bu kalıntı, 𝑤(𝑎, 𝑥) yaklaşım fonksiyonunun diferansiyel 

denklemi sağlama ölçüsünü bize verir. Yapılan yaklaşımdaki 𝜓𝑖 fonksiyonlarının sayısı olan 𝑁 

büyüdükçe 𝐸[𝑥, 𝑎] kalıntısının da küçülmesi beklenir. Bu kalıntı doğrudan sıfır olduğunda tam 

çözüm elde edilir. Kalıntının doğrudan sıfır olmasını sağlamak zor olduğundan,sayısal yaklaşım 

yöntemlerinde 𝐸[𝑥. 𝑎] kalıntısını mümkün olduğunca küçük yapacak yollar aranır. Sonlu 

elemanlar metodunda bunun için kalıntının ağırlıklı integrali olan  

(𝜙𝑗, 𝐸[𝑥, 𝑎]) = 0  , 𝑗 = 1, 2, … ,𝑁                                         (1.11) 

ifadesi sıfıra eşitlenir. Burada, (𝜙𝑗 , 𝐸[𝑥, 𝑎]) bir iç çarpım olup, 

(𝜙, 𝐸) = ∫ 𝜙. 𝐸 𝑑𝑥

Ω
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şeklinde tanımlanır. 𝜙𝑗 ise bir ağırlık fonksiyonudur. Eğer 𝑤(𝑥, 𝑎) çözümü bir tam çözüm ise 

(1.11) ifadesi, ağırlık fonksiyonu nasıl seçilirse seçilsin sıfır olacaktır. Ağırlık fonksiyonlarının 

seçimi için değişik alternatifler vardır ve bu seçimlerin her birisi yaklaşık metot üzerinde farklı 

bir sonlu eleman yöntemine karşılık gelir. Ağırlık fonksiyonları belirlenip metoda 

uygulandığında 𝑁 bilinmeyenli bir cebirsel denklem sistemi elde edilir. Bu sistem uygun 

yöntemler kullanılarak çözülebilir. Buradan elde edilen çözümlerin, (1.9) denkleminde yerlerine 

yazılmasıyla (1.8) ile verilen diferansiyel denkelmin yaklaşık çözümü bulunmuş olur. 

Galerkin metodu da sonlu elemanlar metodlarının içinde en çok kullanılan yöntemdir. 

Bu yöntemin uygulanışında, diferansiyel denklemin yaklaşık çözümü 𝑤(𝑥, 𝑎) olmak üzere bu 

yöntem, (1.11) denklemindeki ağırlık fonksiyonlarının  

𝜙𝑗 = 𝜓𝑗(𝑥),   𝑗 = 1, 2, … ,𝑁 

şeklinde seçilmesi esasına dayanır. Böylece (1.11) ifadesi 

∫ 𝜓𝑗. 𝐸[𝑥, 𝑎] 𝑑𝑥 = 0,   𝑗 = 1, 2, … ,𝑁
Ω

 

halini alır. Buradan elde edilecek cebirsel denklem sisteminin çözülmesiyle 𝑎 = [𝑎1𝑎2…𝑎𝑁] 

bilinmeyenleri bulunmuş olur (Reddy, 1993). 
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2. GEOMETRİKSEL GRADED MESH ÜZERİNDE BURGER DENKLEMİNİN 

NÜMERİK ÇÖZÜMLERİ 

2.1. Giriş 

Bu bölümde ilk olarak kuadratik B-spline Galerkin yöntemi ile kübik B-spline 

kolokeyşın yöntemi uygulanacaktır. Düzenli mesh yardımıyla yapılan hesaplamalardan elde 

edilen sonuçlar ile Graded mesh yardımıyla yapılan hesaplamaların sonuçları karşılaştırılacaktır. 

Daha sonra uygulanan yöntemlerin  doğruluğunun anlaşılabilmesi için çeşitli test 

problemleri çözülecektir. 

2.2. B-Spline Metodları 

𝑢𝑡 + 𝑢 𝑢𝑥 − 𝑣 𝑢𝑥𝑥 = 0                      (2.1) 

Bir boyutlu Burger denklemini  

𝑢(𝑥, 𝑡0) = 𝑓(𝑥)       ,         𝑎 ≤ 𝑥 ≤ 𝑏                                           (2.2) 

başlangıç ve  

 𝑢(𝑎, 𝑡) = 𝛼1       ,   𝑢(𝑏, 𝑡) =  𝛼2        , 𝑡 𝜖 [𝑡0, 𝑇]  

 𝑢𝑥(𝑎, 𝑡) = 0     ,    𝑢𝑥(𝑏, 𝑡) = 0                                            (2.3) 

sınır koşulları ile alalım. Burada v>0 kinematik vizkozite sabiti ve x, t sırasıyla konum ve 

zamana göre türevi belirtir. 

Çalışma bölgesi olarak verilen [𝑎, 𝑏] aralığı geometrik graded alt aralıklara bölünür. 

Böylece [𝑎, 𝑏] aralığı  

𝑎 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑁 = 𝑏 

şeklinde eşit aralıklı olmayan aralıklara bölünmüş olur. Bu durumda çözüm bölgesi 𝑥𝑚 düğüm 

noktası için 𝑎 ≤ 𝑥 ≤ 𝑏 şeklindedir. Burada 

𝑥𝑚+1 = 𝑥𝑚 + ℎ𝑚  

ℎ𝑚+1 = 𝜎ℎ𝑚             𝑚 = 0, 1, …𝑁 − 1 

ve  

ℎ0 = 𝑥1 − 𝑥0 ilk elemanın uzunluğudur. 
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Değişken mesh oluşturabilmek için ilk ℎ0 aralığının boyutunun bulunması gerekir. Bu 

yüzden  

ℎ0 + ℎ1 +⋯+ ℎ𝑁−1 = 𝑏 − 𝑎 

eşitliğinden 

ℎ0 + 𝜎ℎ0+𝜎
2ℎ0 +⋯+ 𝜎

𝑛−1ℎ0 = 𝑏 − 𝑎 

ℎ0(1 + 𝜎 + 𝜎
2 +⋯+ 𝜎𝑛−1) = 𝑏 − 𝑎 

ℎ0 =
𝑏 − 𝑎

1 + 𝜎 + 𝜎2 +⋯+ 𝜎𝑛−1
 

elde ederiz. 

Burada eğer 𝜎 = 1 alınırsa parçalanma düzgün parçalanmaya indirgenir. Çözüm 

bölgesinin en solunda mesh boyutu en küçük yapmak için 𝜎 > 1  alınmalıdır. Benzer şekilde 

çözüm bölgesinin en sağında mesh boyutunu en küçük yapmak için 𝜎 < 1 alınır. 

2.2.1. Graded kuadratik B- spline galerkin metodu (GQBG) 

Galerkin metodunda kuadratik B-spline fonksiyonların kullanılması ile düzgün 

çözümlerin elde edilmesi için diferansiyel denklem, bilinmeyen çözümün en çok birinci 

mertebeden türevini içermelidir. Bu yüzden (2.1) denklemine Galerkin yöntemini uygulamak 

için denklem W ağırlık fonksiyonu ile çarpılıp çözüm bölgesinde integre edilir. 

∫ 𝑤 (𝑢𝑡
𝑏

𝑎
+ 𝑢 𝑢𝑥 − 𝑣 𝑣𝑥 − 𝑢 𝑢𝑥𝑥) 𝑑𝑥 = 0                                    (2.4) 

Kısmi integrasyon alındığında ve 𝑢𝑥(𝑎, 𝑡) = 𝑢𝑥(𝑏, 𝑡) = 0 sınır koşulları kullanıldığında 

aşağıdaki zayıf form elde edilir. 

∫ [𝑤 (𝑢𝑡 + 𝑢 𝑢𝑥) + 𝑣 𝑤𝑥𝑢𝑥]
𝑏

𝑎
 𝑑𝑥 = 0                                        (2.5) 

Kuadratik B–spline fonksiyonlar üç ardışık eleman tarafından örtülür. Böylece graded 

aralığının [𝑥𝑚 , 𝑥𝑚+1] bir karakteristik elemanı üç kuadratik B-spline şekil fonksiyonu 

tarafından örtülür. [𝑥𝑚 , 𝑥𝑚+1] sonlu elemanı için yerel koordinat sistemi 𝜉 = 𝑥 − 𝑥𝑚 , 0 ≤

 𝜉 ≤ ℎ𝑚 = 𝑥𝑚+1 − 𝑥𝑚 uygulanmıştır. Dolayısıyla [0 , ℎ𝑚] graded aralığı üzerinde kuadratik 

B-spline şekil fonksiyonları kuadratik B–spline fonksiyonlarına aşağıdaki şekilde dönüştürülür. 
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𝑄𝑚−1
𝑄𝑚
𝑄𝑚+1

    =  
1

ℎ𝑚
2      {

(ℎ𝑚 −  𝜉)
2 𝜎      ,

ℎ𝑚
2 + 2 ℎ𝑚 𝜎 𝜉 − (1 +  𝜎)𝜉

2

𝜉2     ,

     ,                           (2.6) 

Bu üç B-spline şekil fonksiyonu bir [0 , ℎ𝑚] elemanı için baz oluşturur.Bu 

yüzden[0 , ℎ𝑚] aralığı üzerinde 𝑈𝑁  (𝑥 , 𝑡) yaklaşık çözümü aşağıdaki formda aranır. 

  𝑈𝑒 (𝜉 , 𝑡 ) =  ∑ 𝛿𝑚(𝑡)𝑄𝑚(𝜉)
𝑚+1
𝑗=𝑚−1                                                              (2.7) 

 𝛿𝑚 hesaplanacak zamana bağlı parametrelerdir. (2.6) da verilen B–spline şekil 

fonksiyon değerleri kullanılan 𝛿𝑚 parametre terimlerinde  U ve konuma göre türevi 𝑈′ , 

𝑈𝑚 =  𝑈(𝑥𝑚) = 𝜎 𝛿𝑚−1 + 𝛿𝑚  , 

ℎ𝑚 𝑈𝑚
′ = ℎ𝑚 𝑈

′(𝑥𝑚) = 2 𝜎 (𝛿𝑚 − 𝛿𝑚−1)                                  (2.8) 

şeklinde ifade edilir.  

∑ (∫ 𝑄𝑗𝑄𝑖 𝑑𝜀

ℎ𝑚

0

)

𝑚+1

𝑗=𝑚−1

+ 𝛿𝑗+ ∑ ∑ (∫ 𝑄𝑗𝑄𝑗
′

ℎ𝑚

0

𝑄𝑘  𝑑𝜀)

𝑚+1

𝑘=𝑚−1

𝑚+1

𝑗=𝑚−1

𝛿𝑘𝛿𝑗 

+ ∑ (∫ 𝑄𝑖
′

ℎ𝑚

0

𝑄𝑗
′  𝑑𝜀)

𝑚+1

𝑗=𝑚−1

𝛿𝑗 = 0 

ve bu elemanların kullanılmasıyla (2.5) denklemi [𝑥𝑚 , 𝑥𝑚+1] aralığında ,  

                      ∫ [𝑤 (𝑈𝑡
𝑒 + 𝑈𝑒 𝑈𝑥

𝑒 ) + 𝑣 𝑊𝑥  𝑈𝑥
𝑒 ]  𝑑𝑥 = 0

𝑥𝑚+1
𝑥𝑚

                             (2.9)  

haline gelir. W ağırlık fonksiyonu alınarak 𝑄𝑖 kuadratik B-spline şekil fonksiyonu alınırsa 𝑈𝑒 

eleman fonksiyonu (2.9) da yerine yazılarak 

𝐴𝑒𝛿𝑒° + (𝛿𝑒)𝑇𝐿𝑒𝛿𝑒 + 𝑣𝐶𝑒𝛿𝑒 = 0                                                 (2.10) 

elde edilir. Burada  

𝐴𝑒 = ∫ 𝑄𝑖 𝑄𝑗  𝑑𝜉 ,  𝐶
𝑒 = ∫ 𝑄𝑖

′ 𝑄𝑗
′  𝑑𝜉 ,    𝐿𝑒 = ∫ 𝑄𝑖  𝑄𝑗

′  𝑄𝑘  𝑑𝜉
ℎ𝑚

0

ℎ𝑚

0

ℎ𝑚

0

 

ve  

                     𝛿𝑒 = (𝛿𝑚−1 , 𝛿𝑚 , 𝛿𝑚+1)
𝑇                               (2.11) 

j ve k değerleri için sadece m-1, m , m+1  (m= 0, 1 , … , N-1 ) değerlerini alır.  
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 𝐴𝑒 , 𝐶𝑒 eleman matrisi 3 × 3 boyutlu ve 𝐿𝑒 matrisi  3 × 3 × 3 boyuta indirgenebilir.Bu 

durumda  

                                𝐵𝑖𝑗
𝑒 = ∑ 𝐿𝑗𝑘

𝑒  𝛿𝑘
𝑒𝑚+1

𝑘=𝑚−1                                          (2.12) 

olur.  

𝐵𝑒 matrisi, 𝛿𝑒 eleman parametrelerine bağlıdır. Tüm eleman matrislerinin 

birleştirilmesiyle  

                                    𝐴 𝛿° + 𝐵 (𝛿) 𝛿 + 𝑣 𝐶 𝛿 = 0                                             (2.13) 

diferansiyel denklem sistemi elde edilir. Burada  "°" zamana göre türevi gösterir. 

                                       𝛿 =  (𝛿−1, 𝛿0, … 𝛿𝑁)
𝑇                                                   (2.14) 

tüm eleman parametrelerini içerir. Burada A, B ve C matrisleri beşgensel matrislerdir. 

Zamana bağlı 𝛿 parametresinin yaklaşımı için aşağıdaki ileri sonlu fark formülü ve 𝛿 ' 

nin zamana göre türevi için Crank Nicolson metodu kullanılır. 

𝛿 =  
𝛿𝑛+1+ 𝛿𝑛

2
   ,   𝛿° = 

𝛿𝑛+1− 𝛿𝑛

∆𝑡
             (2.15) 

(2.15) eşitlikleri (2.13) matris denkleminde yazılırsa 

𝐴 (
𝛿𝑛+1 − 𝛿𝑛

∆𝑡
) + 𝐵 (

𝛿𝑛+1 + 𝛿𝑛

2
) (

𝛿𝑛+1 + 𝛿𝑛

2
) + 𝑣 𝐶 (

𝛿𝑛+1 + 𝛿𝑛

2
)  = 0 

𝐴 
𝛿𝑛+1

∆𝑡
− 
𝐴 𝛿𝑛

∆𝑡
+
𝐵

4
 ((𝛿𝑛+1)2 + 2 (𝛿𝑛+1𝛿𝑛) + (𝛿𝑛)2) + 𝑣 

𝐶

2
 𝛿𝑛+1 + 𝑣 

𝐶

2
 𝛿2 = 0 

𝛿𝑛+1  (
𝐴

∆𝑡
+ 
𝐵

4
 𝛿𝑛+1 + 2 𝛿𝑛 + 𝑣 

𝐶

2
) − 𝛿𝑛 (

𝐴

∆𝑡
− 𝛿𝑛 − 𝑣 

𝐶

2
) = 0 

[𝐴 + 
∆𝑡

2
(𝐵 (𝛿𝑛) + 𝑣 𝐶)] 𝛿𝑛+1 = [𝐴 − 

∆𝑡

2
 (𝐵 (𝛿𝑛) + 𝑣 𝐶)] 𝛿𝑛          (2.16) 

denklemi elde edilir. 

𝐵 (𝛿𝑛)  , 𝛿 matrisine bağlı olduğu için (2.16) matris denklemi lineer değildir. (2.16) 

denklem sistemi (N+2) bilinmeyen parametre ile (N+2) denklemden oluşmaktadır. 

         𝑈 (𝑎, 𝑡) = ∝1  𝑣𝑒 𝑈 (𝑏 , 𝑡) = ∝2 sınır koşullarının uygulanmasıyla 𝛿−1
𝑛  𝑣𝑒 𝛿𝑁

𝑛 eleman 

parametreleri elimine edilerek 𝑁 × 𝑁 boyutlu beşgensel band matrsi elde edilir. Bu sistem 
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𝛿𝑚
𝑛  , 𝑚 = 0, 1, … ,𝑁 − 1 parametreleri için Thomas algoritması yardımıyla 

çözülebilir. 𝛿−1
𝑛  𝑣𝑒 𝛿𝑁

𝑛 eleman parametreleri her bir zaman adımında sınır şartları yardımıyla  

𝛿𝑛
−1 = (∝1− 𝛿0

𝑛) 𝜎⁄  ve 𝛿𝑁
𝑛 = ∝2−  𝜎 𝛿𝑁−1

𝑛   hesaplanabilir. Lineer olmayan terimler 

nedeniyle iç iterasyonu takip eden her bir adımda iki veya üç defa tekrarlanır. 

(𝛿∗)𝑛+1 = 𝛿𝑛 + 
1

2
 (𝛿𝑛+1 − 𝛿𝑛)          (2.17) 

 (2.16) denkleminin iterasyonunu başlatmak için, 𝛿0 parametresinin başlangıç 

vektörünün hesaplanması gereklidir. Bu nedenle 𝑡 =  𝑡0 zamanında aşağıdaki başlangıç ve sınır 

koşullarının kullanılmasına ihtiyaç vardır. 

𝑈𝑁(𝑎 ,   𝑡0)𝑥 = 0,  𝑈𝑁(𝑏 ,   𝑡0)𝑥 = 0 ,                                       (2.18) 

  𝑈𝑁(𝑥𝑚 ,   𝑡0) = 0 , 

𝑥𝑚 = 0,… ,𝑁 − 1                                   (2.19) 

şeklinde yazılır. Bu eleman parametreleri yardımıyla herhangi bir düğüm değeri ve türevi (2.8) 

denkleminden iyileştirilebilir. 

2.2.2. Graded Kübik B- spline Kolokeyşın metodu (GCBC) 

Geometrik graded mesh üzerinde,  kübik B-spline fonksiyonu  

𝑄𝑚−1
𝑄𝑚
𝑄𝑚+1
𝑄𝑚+2

=
1

ℎ𝑚
3  

{
 
 

 
 (ℎ𝑚 −  𝜉)

3 𝜎3,

−𝜎 (𝜎2 +  𝜎 + 1)(ℎ𝑚 −  𝜉)
2 − 6 𝜎 ℎ𝑚(ℎ𝑚 −  𝜉) − 3 𝜎

2ℎ𝑚
3

−(𝜎2 +  𝜎 + 1) 𝜉3 + 3 𝜎2 ℎ𝑚𝜉
2 + 3𝜎 ℎ𝑚

2  𝜉 + ℎ𝑚
3

𝜉3     ,

      (2.20) 

şeklinde tanımlanır. 

(𝑄−1 , 𝑄0 , … , 𝑄𝑁+1) B-spline baz fonksiyonları [𝑎 , 𝑏] tanım aralığı üzerinde bir 

tabandır. Bu nedenle 𝑈𝑁 yaklaşık çözümü 𝑈 (𝑥 , 𝑡) analitik çözümü için kübik B-spline  baz 

fonksiyonları yardımıyla  

𝑈𝑁  (𝑥 , 𝑡) =  ∑ 𝛿𝑚(𝑡) 𝑄𝑚(𝑥)
𝑁+1
𝑚= −1                                        (2.21) 

şeklinde yazılabilir. Burada zamana bağlı 𝛿𝑚 parametreleri sınır şartlarından ve (2.1) 

denklemindeki kolokeyşın formundan bulunur. Graded kübik B-spline yaklaşım fonksiyonu, 

𝑈(𝑥 , 𝑡) çözümünün ikinci mertebeye kadar türevlerinin sürekli olmasını gerektirir. 

𝑈,𝑈′, 𝑈′′ değerleri mesh noktalarında 𝛿𝑚 eleman parametreleri yardımıyla 
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𝑈𝑚  =  𝜎
3𝛿𝑚−1 + 2 𝜎 (𝜎 + 1) 𝛿𝑚 + 𝛿𝑚+1 

ℎ𝑚𝑈𝑚
′  = 3 𝜎 [𝛿𝑚−1 + (𝜎

2 − 1) 𝛿𝑚 − 𝜎
2 𝛿𝑚−1]        (2.22) 

ℎ𝑚
2  𝑈𝑚

" = 6 𝜎2[𝜎 𝛿𝑚−1 − (𝜎 + 1)𝛿𝑚 + 𝛿𝑚+1] 

ifade edilir. ′ ve ′′  x ' e göre birinci ve ikinci türevleri göstermektedir. Kolokeyşın metodunun 

tanımlanan mesh noktalarında uygulanması, 𝑈𝑚,  𝑈𝑚
′ ,  𝑈𝑚

′′  değerlerinin (2.1) denkleminde yerine 

yazılmasıyla elde edilecek adi diferansiyel denklem sistemi yardımıyla  

𝜎3 𝛿𝑚−1
° + 2 𝜎 (𝜎 + 1) 𝛿𝑚

° + 𝛿𝑚+1
° + 

3 𝜎

ℎ𝑚
 𝑧𝑚 (𝛿𝑚+1 + (𝜎

2 − 1) 𝛿𝑚 − 𝜎
2 𝛿𝑚−1 ) −

 
6 𝜎2

ℎ𝑚
2  𝑣 (𝜎 𝛿𝑚−1 − (𝜎 + 1) 𝛿𝑚 + 𝛿𝑚+1) =  0                                    (2.23) 

şeklinde olacaktır. Burada "°" zamana göre türevi gösterir. 

𝑧𝑚 = 𝜎3 𝛿𝑚−1 + 2 σ (𝜎 + 1) 𝛿𝑚 + 𝛿𝑚+1 

𝑧𝑚 , (2.23) denklemindeki lineer olmayan terimdir. 

Kabul edelim ki 𝛿𝑚 parametre vektörü ve zamana göre türevleri (2.15) eşitlikleri 

kullanılarak n ve n+1 zaman adımları arasında iki defa interpole edilsin. (2.15) de verilen ifade 

(2.23) denklem sisteminde yerine yazıldığında aşağıdaki eleman parametreleri arasındaki ilişki 

elde edilir. 

𝑎𝑚1 𝛿𝑚−1
𝑛+1 + 𝑎𝑚2 𝛿𝑚

𝑛+1 + 𝑎𝑚3 𝛿𝑚+1
𝑛+1 = 𝑎𝑚4 𝛿𝑚−1

𝑛 + 𝑎𝑚5 𝛿𝑚
𝑛 + 𝑎𝑚6 = 0  

 𝑚 = 0,1, … , 𝑁.               (2.24) 

Burada katsayılar 

𝑎𝑚1 = 
𝜎3

∆𝑡
− 
3 𝜎3 𝑧𝑚
2 ℎ𝑚

− 
6 𝜎3 𝑣

2 ℎ𝑚
2    , 

                          𝑎𝑚2 = 
2 𝜎 (𝜎 + 1)

∆𝑡
+ 
3 𝜎 𝑧𝑚 (𝜎

2 − 1)

2 ℎ𝑚
+ 
6 𝜎2 (𝜎 + 1) 𝑣

2 ℎ𝑚
2     , 

𝑎𝑚3 =
1

∆𝑡
+ 
3 𝜎 𝑧𝑚
2 ℎ𝑚

− 
6 𝜎2 𝑣

2 ℎ𝑚
2     , 

𝑎𝑚4 = 
𝜎3

∆𝑡
+ 
3 𝜎3 𝑧𝑚
2 ℎ𝑚

+ 
6 𝜎3 𝑣

2 ℎ𝑚
2     , 
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𝑎𝑚5 = 
2 𝜎 (𝜎 + 1)

∆𝑡
− 
2 𝜎 𝑧𝑚 (𝜎

2  −  1)

2 ℎ𝑚
− 
6 𝜎2 (𝜎 + 1) 𝑣

2 ℎ𝑚
2     , 

𝑎𝑚6 = 
1

∆𝑡
− 
3 𝜎 𝑧𝑚
2 ℎ𝑚

+ 
6 𝜎2 𝑣

2 ℎ𝑚
2     , 

şeklindedir. Yukarıdaki denklem sistemi (N+3) bilinmeyen parametre ve (N+1) denklemden 

oluşmaktadır. 𝑈 (𝑎, 𝑡) =∝1  𝑣𝑒 𝑈(𝑏 , 𝑡) = ∝2 sınır koşullarının kullanılmasıyla (2.24) 

denkleminden 𝛿−1 𝑣𝑒 𝛿𝑁+1 parametreleri elimine edilir. Böylece (𝑁 + 1) × (𝑁 + 1) boyutlu 

çözülebilir bir üçgensel band matris sistemi elde edilir. Bu matris sistemi Thomas algoritması 

yardımıyla çözülebilir. 

𝛿−1 𝑣𝑒 𝛿𝑁+1 parametreleri; her bir zaman adımında, uç noktalarda  

𝑈𝑚 = 𝜎3 𝛿𝑚−1 + 2 𝜎 (𝜎 +  1) 𝛿𝑚 +  𝛿𝑚+1  

denklemi kullanılarak ,belirlenebilir. 

Çözümü elde edebilmek için 𝛿𝑚
0  başlangıç parametrelerinin hesaplanması gerekir. 

Bunun için başlangıç koşulları 

 𝑈𝑁(𝑥𝑚 , 0 ) =  𝜎
3 𝛿𝑚−1 + 2 𝜎 (𝜎 + 1) 𝛿𝑚 + 𝛿𝑚+1 = 𝑈 (𝑥𝑚 , 0)  ,    (2.25) 

𝑚 = 0, 1,… ,𝑁 

ve sınır koşulları 

𝑈𝑁
′  (𝑥0 , 0) =  

3 𝜎

ℎ0
 [𝛿1 + (𝜎

2 − 1) 𝛿0 − 𝜎
2 𝛿−1] =  𝑈

′ (𝑥0 , 0)   (2.26) 

𝑈𝑁
′  (𝑥𝑁 , 0) =  

3 𝜎

ℎ𝑁−1
 [𝛿𝑁+1 + (𝜎

2 − 1) 𝛿𝑁 − 𝜎
2 𝛿𝑁−1] =  𝑈

′ (𝑥𝑁 , 0) 

kullanılır.  

 (2.25) ve (2.26) denklemleri bir üçgensel band matris sistemi ile verilir. Bu sistemin 

çözümü Thomas algoritması yardımıyla hesaplanabilir. 𝛿𝑚
0  başlangıç parametrelerinin elde 

edilmesinden sonra bir sonraki zaman adımında 𝛿𝑚
𝑛  parametreleri (2.24) tekrarlama bağıntısı 

yardımıyla hesaplanır. Her bir 𝛿𝑚
𝑛+1 zaman adımına geçmeden önce, (2.17) iterasyonu lineer 

olmayan cebirsel (2.24) denklem sisteminden daha iyi çözüm elde edebilmek için iki veya üç 

kez uygulanmalıdır. 
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2.3. Nümerik Örnekler 

Bu bölümde yapılan nümerik çözümün hatası 𝐿∞ hata normu ile ölçülür. Burada 𝐿∞ 

hata normu, 

𝐿∞ = |𝑈 − 𝑈𝑁|∞ = max
𝑗
|𝑈 − 𝑈𝑁

𝑛
𝑗
| 

şeklindedir. 

2.3.1. Şok-dalga çözümü 

Burger denkleminin şok-dalga çözümü 𝑇0 = 𝑒𝑥𝑝(1 8𝑣⁄ ) iken aşağıdaki analitik çözüme 

sahiptir.  

 
   2

0

/
,   ,   1  ,  0 1

1 / / 4

x t
U x t t x

t T exp x xt
   


    (2.27) 

𝑡0 = 1 zamanında  (2.27) denkleminde hesaplanan başlangıç şartları ve 

               𝑈(0, 𝑡) = 𝑈(1, 𝑡) = 0 sınır şartları kullanılır. Program daha önce kullanılan düzgün 

aralıkta çalıştırılır. Problem aralığı üzerindeki hata dağılımına göre, eğer sağ sınır yakınlarında 

geniş hata var ise 𝜎 < 1 graded mesh parametresini seçeriz. Sağ taraftaki graded mesh 

noktasında yığılmanın sonuçları ile benzer şekilde  𝜎 > 1 seçilmesinin sol sınırın yakınlarındaki 

mesh noktalarında yığılmanın sonuçlarında geniş hata saptanmıştır. 

[0,1] aralığında ∆𝑡 = 0.01 , 𝑣 = 0.005 𝑣𝑒 𝑁 = 200 parametreleri ile problem çözülür. 

Program 𝑡 = 3.25 zamanına alınır. Algoritma çalışma esnasında problem aralığında gözlenen 

hataya göre, sol sınırında en geniş yığılma hatası oluşur. Hatayı indirgemek için 𝜎 parametreleri 

0.001 değer atışıyla [1,1.1] aralığında araştırma olarak yürütülür. Farklı zaman adımlarında en 

iyi  𝜎 parametresi bulunur ve sonuçlar şeki 2.1‘ de verilmiştir. Ayrıca diğer bazı metodların 

sonuçları karşılaştırma amacı ile aynı çizelgede verilmiştir. GQBG ve  GCBC metodlarının  

𝑡 = 1.7, 𝑡 = 2.5, 𝑡 = 3.25 zamanlarında nümerik çözümleri grafik olarak Şekil 2.1‘ de 

verilmiştir. Şemaların hataları, bazı 𝑡 zamanlarında düzgün ve graded mesh in en iyi 

seçimlerinin kullanıldığı Şekil 2.2-2.4 te bir kaç defa görselleştirilmiştir. Başlangıç şartlarında 

hatada önemli derecede indirgeme elde edildi. Bu şekilde Burger denkleminin çözümünde 

graded meshin etkileri önerilen algoritmalar için azaltılır. Ayrıca genelde GQBG metodunun 

GCBC metodundan daha az hata sağladığı sonucuna varırız. Benzer simulasyon daha küçük 

𝑣 = 0.0005 vizkozite sabiti kullanılarak yürütülür. Böylece, şok dalga şiddeti artar. Nümerik 

şemaların amacı düzgün aralıklar kıllanılarak yeniden çalıştırmaktır. Nümerik çözümlerin 
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perspektif görünüşü Şekil 2.5‘ te verilmiştir. Problem aralığında hata yığılması belirlendikten 

sonra,  𝜎 < 1 parametresi seçilir ve en küçük hatayı tespit etmek için [0.9,1] aralığında 0.0001 

artış ile tamamlanır.  𝜎 = 1 seçilmesinin sonuçları karşılaştırıldığında, tanım kümesi aralığında 

en iyi  𝜎 parametresi Çizelge 2.2‘ de sunulmuştur. Şekil 2.6 ve Şekil 2.8‘ in her ikisinde de 

 𝑡 = 1.7, 𝑡 = 2.5, 𝑡 = 3.25 zamanlarındaki hata dağılımları düzgün mesh ile graded mesh 

birlikte verilmiştir.  

Çizelge 2.1. Farklı zamanlarda 
3v=0.005 ve  t=0.01 için  L ×10  hata. 

 𝑡 = 1.7 𝑡 = 2.5 𝑡 = 3.25 

𝜎 

GQBG 

QBCM 

CBCM 

 

 

 

𝜎 

GCBC 

QBCM 

CBCM 

 

1 

1.77619 

0.31153 

27.5770 

𝑡 = 1.7 

2.576 

𝑡 = 1.7 

1 

2.72298 

0.31153 

27.5770 

𝑡 = 1.7 

2.576 

1.026 

0.05197 

 

 

 

 

 

1.016 

0.43406 

 

1 

1.23401 

0.18902 

25.1517  

𝑡 = 2.4 

1.242 

𝑡 = 2.5 

1 

2.76426 

0.18902 

25.1517 

𝑡 = 2.4  

1.242 

1.025 

0.04015 

 

 

 

 

1.017 

0.39872 

 

 

1             

0.95663 

8.98390       

21.0489 

t =3.1 

0.688 

t =3.25 

1            

9.25009      

8.98390       

21.0489 

t =3.1 

0.688 

1.004 

0.68244 

 

 

 

 

 

 

Tümü için 

9.25009      

 

 

 

Şekil 2.1. v=0.005, N=200, ∆t=0.01. 
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Şekil 2.2. v=0.005, N=200,  ∆t = 0.01. 

  

 

 

Şekil 2.3.  v=0.005, N=200, t=2.5. 

 

 

 

                 düzgün mesh 

   --------   graded mesh 

                 düzgün mesh 

   --------   graded mesh 
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Şekil 2.4. v=0.005, N=200, t=3.25. 

 

Şekil 2.5. v=0.0005, N=200, ∆t=0.01. 

 

 

 

 

 

 

                 düzgün mesh 

   --------   graded mesh 
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Çizelge 2.2. Farklı zamanlarda 
3v=0.0005 ve  t=0.01 için  L ×10  hata. 

 𝑡 = 1.7 𝑡 = 2.5 𝑡 = 3.25 

𝜎 

GQBG 

QBCM 

CBCM 

 

 

 

𝜎 

GCBC 

QCBC 

CBCM 

 

1 

22.0620 

13.8155 

27.5770 

𝑡 = 1.75 

5.880 

𝑡 = 1.7 

1 

22.4378 

13.8155 

27.5770 

𝑡 = 1.75 

5.880 

0.9822 

3.52912 

 

 

 

 

 

1.016 

0.43406 

 

 

 

 

1 

18.2474 

16.7712 

25.1517 

𝑡 = 2.5 

2.705 

𝑡 = 2.5 

1 

16.0589 

16.7712 

25.1517 

𝑡 = 2.5 

2.705 

 

0.9668 

3.01278 

 

 

 

 

 

0.9869 

5.52013 

 

 

 

 

1 

17.1378 

13.8155 

21.0489  

𝑡

=      3.25 

2.291 

𝑡 = 3.25 

1 

14.8614 

13.8155 

21.0489 

𝑡 = 3.25  

2.291 

0.9563 

2.54251 

 

 

 

 

0.9869 

5.79884 

 

 

 

 

 

 

Şekil 2.6. v=0.0005, N=200, t=1.7. 

 

                 düzgün mesh 

   --------   graded mesh 
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Şekil 2.7. v=0.0005, N=200, t=2.5. 

 

 

Şekil 2.8. v=0.0005, N=200, t=3.25. 

 

 

 

 

                 düzgün mesh 

   --------   graded mesh 

                 düzgün mesh 

   --------   graded mesh 
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3. DÜZENLENMİŞ UZUN DALGA (RLW) DENKLEMİNİN   PETROV – GALERKİN 

METODU İLE NÜMERİK ÇÖZÜMÜ 

3.1. Giriş 

Bu bölümde düzenlenmiş uzun dalga denkleminin Petrov Galerkin metodu ile nümerik 

çözümü incelenecektir. 

Bore, iki farklı su akışı arasındaki dönüşüm bölgesidir. Çoğu bore uzunluğu suyun 

derinliğinin birkaç katı olan, türbülans kıran su bölgeleridir. Bununla birlikte, eğer sudaki seviye 

değişimi suyun derinliğinden çok daha az ise bore zayıftır ve dalga boyu suyun derinliğine 

kıyasla uzun olan ve birçok dalgadan oluşan bir seriden oluşur. Bir bore, bir su akışının yatay 

bir kanaldaki durgun suya iletilmesiyle oluşabilir. Durgun suya doğru akabilmesi için, hareketli 

suyun daha derin olması gerekir. Eğer hareketli su ile durgun su arasındaki dönüşüm ilk başta 

çok hafif bir eğime sahipse, eğim dikleşecek ve bir bore oluşturacaktır. Su yüzey seviyesindeki 

değişimin esas su derinliğinin 0.28 inden daha az olduğunda bore un dalgalı bore olduğunu 

gösteren deneysel kanıt vardır. Oran 0.28 ve 0.75 arasında ise, hala dalgalar vardır ancak 

birincisi kırılan dalgadır. Daha yüksek oranlarda dalgalanma olmaz. Peregrine, düzenlenmiş 

uzun dalga denklemini bir dalgalı bore için esas denklem olarak ilk kez ortaya koyan kişidir. 

x mesafesi  ve U su yüksekliği, h su derinliği ve t zamanı (ℎ 𝑔⁄ )1 2⁄   ile ölçülür. Burada 

g yerçekimi ivmesidir. RLW denklemi  

3

2

 
          0

 

U U U U
U

t x x x t


   
   

    
       (3.1) 

Fiziksel sınır koşulları 𝑈 → 0 iken  |𝑥|  →  ∞ gerektirir. 𝑈 (𝑥 , 𝑡) solitary dalga 

çözümüne sahiptir. 

 
 

 2

0     ,  3          1  
4   1

c
U x t c sech x x c t

c

 
         

    (3.2) 

Bu çözüm (Gardner vd.,1990) ile verilen üç sabit değeri sağlar. Bu sabitler; 

2

2 3 2

1 3     ,              ,    3   x

U
I U dx I U dx I U U dx

x


  

  

  
            

      (3.3) 

şeklindedir.  
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𝐼1 , 𝐼2  ve 𝐼3 sabitleri nümerik algoritmanın konumunu kontrol eder. Bu korunumu 

kontrol etmek için gerekli ölçütler 𝐿2 ve 𝐿∞ hata normları ile gerçekleştirilir. Buna göre 

2

2 2

1

         
N

e n e n

i i

i

L U U h U U


 
    

 
       (3.4) 

Ve 

     max    e n e n

i i
i

L U U U U            (3.5) 

nümerik ve analitik çözümler arasındaki maksimum farklılıklar ölçülür. 

3.2. B- Spline Metodlar 

Bu bölümde kuadratik spline sonlu elemanlar kullanılarak 

𝑎 =  𝑥0 <  𝑥1 < ⋯ < 𝑥𝑁 =   𝑏 

 [𝑎, 𝑏 ] aralığında bir çözüm elde edilecektir. [𝑥𝑚 , 𝑥𝑚+1] aralığı üzerinde U değişkeni  

1 1 1 1           m m m m m mU Q Q Q              (3.6) 

şeklindedir. Burada 𝛿𝑚 zamana bağlı hesaplanacak parametrelerdir.     

0 < 𝜉 ≤ 1 olmak üzere ℎ𝜉 = 𝑥 − 𝑥𝑚 şeklinde 𝜉 ise (3.7) , (3.8) , (3.9) baz 

fonksiyonları kullanılır. 

2

1 1 2   mQ              (3.7) 

21 2  2 mQ             (3.8.) 

2

1  mQ            (3.9) 

düğüm noktalarındaki 𝑥𝑚 değerlerinde  

1   m m mU             (3.10) 

 '

1 

2
         m m mU
h
            (3.11) 

şeklindedir. 

    (3.1) Denklemine 𝑉𝑚 ağırlık fonksiyonu ile (Burgers,1948) Petrov – Galerkin metodu 

uygulandığında zayıf form 
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3

2
              0

 

b

m

a

U U U U
V U dx

t x x x t


    
    

     
      (3.12) 

burada m = 0, 1 , … , N-1 şeklindedir. Ağırlık fonksiyonu 𝑉𝑚 ile ifade edilir. 

                𝑉𝑚 =  {
  1                      𝑥𝑚 ≤ 𝑥 ≤  𝑥𝑚+1
0              𝑥 < 𝑥𝑚, 𝑥 >  𝑥𝑚+1

                           (3.13) 

(3.12) denklemi tek bir [ 𝑥𝑚 , 𝑥𝑚+1 ] elemanı için uygulanırsa 

1

3

2
             0

 

m

m

x

x

U U U U
U dx

t x x x t




    
    

     
      (3.14) 

intagrasyon alındığında  

  
1

11

1

2
21

               0 
2  

mm

mm

m m

m m

xx
xx

x x
x x

U U
dx U U

t x t








   
             

     (3.15) 

elde edilir.  

Cranck – Nicolson  yaklaşımının uygulanmasıyla 𝑈𝑛+1 2⁄  ve onun zamana göre türevi 

ve   (𝑈2)𝑛+1 2⁄  ifadeleri aşağıdaki şekilde elde edilir. 

𝑈𝑚 = 
1

2
 (𝑈𝑚

𝑛 + 𝑈𝑚
𝑛+1 )  ,

𝜕𝑈𝑚

𝜕𝑡
= 

1

Δ𝑡
 (𝑈𝑚

𝑛+1  −  𝑈𝑚
𝑛 ) , 𝑈𝑚

2 = 𝑈𝑚
𝑛+1 𝑈𝑚

𝑛           (3.16) 

Burada n ve n+1 zaman adımlarını gösterir. Bu değerler (3.15) de yerine yazıldığında 

(3.10) ve (3.11) yardımıyla aşağıdaki yarı – lineer tekrarlama bağıntısı elde edilir. 

1 1

1 1 1 12 2

3 Δt 6  3  12  3 
1             4          

2h 2 2

n n n n n n

m m m m m m

t t

h h h h

 
      

   

    
                

   
 

1

1 12

3  6  3 
1             

2 2

n n n

m m m

t t

h h h


   

 

  
       

 
 

12 2

3  6  12 
  1         4    

2

n n

m m

t

h h h

 
 

   
       
   

 

1     2

3  6 
  1      

2

n

m

t

h h


 

 
   
 

        (3.17) 

𝑈0 , 𝑈𝑁 sınır koşulları ile 𝛿−1
𝑛 + 𝛿0

𝑛 = 𝑈0 ve 𝛿𝑁−1
𝑛 + 𝛿𝑁

𝑛 = 𝑈𝑁 belirlenir.  

İlk ve son denklemlerde m=0, N-1  için aşağıdaki indirgenmiş form elde edilir; 
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1 1

0 1 0 0 1 12 2

3  18  3  3  6  3 
3                 1              

2 2 2 2

n n n n n nt t t t

h h h h h h

 
            
                 

   
 

  2

0 1 0 0 2 2

3  18  3  6  3  3 
  3         1               

2 2 2

n nt t t t
U v U

h h h h h h

 
 

      
          
   

   (3.18) 

ve 

1 1

2 1 2 2 1 12 2

3  6  3  3  18  3 
1                 3            

2 2 2 2

n n n n n n

N N N N N N

t t t t

h h h h h h

 
      

     

      
                 

   
 

2

2 12 2

3  6  3  18  3  3 
   1           3                 

2 2 2

n n

N N N N

t t t t
U U

h h h h h h

 
  

      
          
   

  (3.19) 

dir. 

Yukarıdaki yarı – lineer denklem sistemi üçgensel forma sahiptir. Bu yüzden çözüm 

Thomas algoritması kullanılarak direk iterasyon gerektirmeden hesaplanabilir. 

Lineer kararlılık analizi; 𝜀𝑗
𝑛 hatasının 𝑔 büyüme faktörünün tipi Fourier modu  𝜀̂𝑛 

genliği ile 

  𝜀𝑗̂
𝑛 = 𝜀̂𝑛 exp( 𝑖 𝑗 𝑘 ℎ )          (3.20) 

şeklinde yapılır. Burada 𝑘 mod sayısı ve ℎ eleman uzunluğu, nümerik algoritmanın 

lineerleştirilmesi için hesaplanan değerlerdir. 

Lineerleştirmede lineer olmayan terimdeki U büyüklüğünün sabit olduğu farzedilir. Bu 

şartlar altında 𝜀𝑗
𝑛 hatası 𝛿𝑗

𝑛 fonksiyonu gibi aynı sonlu farklar şemasını karşılar ve (3.17) 

denkleminin benzeri aşağıdaki formda elde edilir. 

1 1 1

1 12 2 2

3  6  12  3  6 
1           4       1        

2 2

n n n

m m m

t t

h h h h h

  
    

 

      
           

     
 

1 12 2 2

3  6  12  3  6 
  1           4       1          

2 2

n n n

m m m

t t

h h h h h

  
   

      
            
     

   (3.21) 

 (3.20) ifadesi  (3.21)  de yerine yazıldığında 𝑘 modu için 𝑔  büyüme faktörü  

 
    

 

a ib
g

a ib





         (3.22) 

şeklindedir. Burada  
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𝑎 =  (2 − 
12 𝜇

ℎ2
) cos[𝑘ℎ] + (4 + 

12 𝜇

ℎ2
) 

ve 

𝑏 =  
6 𝛥𝑡

2ℎ
 sin[𝑘ℎ] 

dir. 

(3.22) de verilen sabit değerler alınarak  

|𝑔| =  √𝑔 𝑔̅ = 1           (3.23) 

elde edilir.  

Bu yüzden lineerleştirme algoritması koşulsuz kararlıdır. 

3.3. Nümerik Örnekler 

(3.2) denkleminde [3, 5, 6] simulasyon sonuçları ile karşılaştırma yapmak için solitary 

dalga 0.3 genişliğine sahip olsun diye −40 ≤ 𝑥 ≤ 60, ℎ = 0.125, ∆𝑡 = 0.1 bölgesi ile 𝑥0 = 0,

𝑐 = 0.1 ile başlangıç şartları alınır. Simulasyon 𝑡 = 20 zamanında çalıştırılır ve 𝐿2 ile 𝐿∞ hata 

normları ve analitik degeri Çizelge 3.1‘ de görülen simulasyon yoluyla kaydedilmiş 𝐼1 , 𝐼2, 𝐼3 

sabitleridir. 

𝐼2, 𝐼3 miktarları yaklaşık % 8 × 10−3 e kadar değiştirilirken 𝐼1, % 2 × 10−3 den daha az 

değiştirilir. Bu konumun derecesi kuadratik B-spline elemanları ile bulunmasından Galerkin 

metodu ile bulunması kadar iyi değildir ama diğer metodlarla bulunmasından daha iyidir. 
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Çizelge 3.1. Tek solitary dalga derinliği = 0.03, h=0.125, Δt=0.1, -40 ≤ x ≤ 60, I1=3.9799497, 

I2=0.81046249, I3=2.579007. 

Metod Zaman 𝐿2                             𝐿∞ 𝐼1 𝐼2 𝐼3 

Petrov 

Galerkin 

Kuadratik 

 

 

 

 

0 

4 

8 

12 

16 

20 

 

0.002 × 10−3       0.007 × 10−3 

0.045 × 10−3      0.018 × 10−3 

0.090 × 10−3       0.034 × 10−3 

0.137 × 10−3       0.052 × 10−3 

0.183 × 10−3         0.069 × 10−3 

0.227 × 10−3      0.081 × 10−3 

3.97993 

3.97995 

3.97995 

3.97995 

3.97992 

3.97986 

0.810461 

0.810459 

0.810445 

0.810435 

0.810418 

0.810399 

2.57901 

2.57900 

2.57895 

2.57892 

2.57887 

2.57880 

Galerkin 

Kuadratik [43] 

En küçük kareler 

20 

 

 

0.220 × 10−3      0.086 × 10−3 

 

 

3.97989 

 

 

0.810467 

 

 

2.57902 

 

 

Doğrusal 

[45] 

20 

 

4.688 × 10−3       1.755 × 10−3 

 

3.98203 

 

0.808650 

 

2.57302 

 

Sonlu eleman 

Kübik [43,46] 

20 196.1 × 10−3       67.35 × 10−3 4.41219 0.897342 2.85361 

 

Solitary dalganın görünümü 𝑡 = 0 𝑣𝑒 𝑡 = 20 zamanlarında Şekil 3.1 de 

karşılaştırılmıştır. 𝑡 = 20 zamanında dalganın genişliğinin az miktarda parçalandığı açıktır. 

(Konumsal/üç boyutta dağılımı) 𝑡 = 20 zamanında dalga görünümünde hatanın konumunun 

bölündüğü Şekil 3.2 de görülmektedir. Maksimum hata; yaklaşık ±9 × 10−5 e kadar 

değişiklikler ve maksimum titreşimin her iki kenarına da yerleştirilmiştir. 
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Şekil 3.1.  𝑡 = 0 𝑣𝑒 𝑡 = 20 zamanlarında Solitary dalganın görünümü. 

 

Şekil 3.2.  𝑡 = 20 zamanında dalga görünümünde hatanın konumunun bölünmesi. 
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3.3.1. Dalga oluşumu 

Bir dalga oluşumunun gelişimi  

𝑈(𝑥, 0) =
1

2
𝑈0  [1 − tanℎ (

𝑥−𝑥𝑐

𝑑
)]                                            3.24 

başlangıç şartları ile çalışacağız. 

Çizelge 3.2. Sabitler ve tek solitary dalga dalganın hata normları için derinlik = 0.03, h=0.25, 

Δt=0.2, -80 ≤  x  ≤ 120. 

Metod Zaman              𝐿2                 𝐿∞                   𝐼1          𝐼2                 𝐼3 

 

Petrov 

Galerkin 

Kuadratik 

0          0.021 × 10−3   0.042 × 10−3  1.205551   0.024167  0.072938 

4          0.014 × 10−3   0.028 × 10−3  1.205682   0.024167  0.072938 

8          0.012 × 10−3   0.019 × 10−3  1.205758   0.024168  0.072938 

12        0.012 × 10−3   0.013 × 10−3   1.205799   0.024167  0.072938 

16        0.013 × 10−3   0.008 × 10−3   1.205816   0.024167  0.072938 

20        0.014 × 10−3   0.006 × 10−3   1.205815   0.024168  0.072938 

 

Çizelge 3.3. Tek solitary dalganın hata hormu t=0, derinlik=0.03, -80 ≤  x  ≤ 120. 

h ∆𝑡 L2 𝐿∞  

 0.125 

 0.25 

 0.5 

0.1 

0.2 

0.4 

0.065 × 10−3 

0.014 × 10−3 

0.050 × 10−3 

0.020 × 10−3    

0.006 × 10−3    

0.015 × 10−3    

 

 𝑈(𝑥, 0) ve 𝑡 = 0.0 zamanında su yüzeyinin yüksekliği denge seviyesinin (ekilibriyum) 

üzerinde olduğu görülür. 𝑈0 büyüklüğünün su seviyesindeki değişiklik 𝑥 = 𝑥𝑐 ve yükseklikteki 

değişiklik d ölçüsü çevresinde yoğunlaşır. 

Sınır şartları 𝑥 → ∞ için  𝑈 → 0 ve  𝑥 → −∞ için  𝑈 → 𝑈0 nı gerektirir. 𝐼1, 𝐼2, 𝐼3 

miktarları artık sabit değildir fakat 𝑀𝑗 oranı sonrasında simulasyon yoluyla lineer olarak artar: 

𝑑

𝑑𝑡
𝐼1 =

𝑑

𝑑𝑡
∫ 𝑈 𝑑𝑥

+∞

−∞

= 𝑈0 +
1

2
𝑈0
2 = 𝑀1 
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𝑑

𝑑𝑡
𝐼2 =

𝑑

𝑑𝑡
∫ [𝑈2 + 𝜇 (

𝜕𝑈

𝜕𝑥
)
2

] 𝑑𝑥

+∞

−∞

= 𝑈0
2 +

2

3
𝑈0
3 = 𝑀2 

𝑑

𝑑𝑡
𝐼3 =

𝑑

𝑑𝑡
∫ [𝑈3 + 3𝑈2] 𝑑𝑥

+∞

−∞

= 3𝑈0
2 + 3𝑈0

3 +
3

4
𝑈0
4 = 𝑀3 

. 
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4. TEKİL PERTURBE ETME PROBLEMLERİNİN SONLU ELEMANLAR 

ÇÖZÜMLERİ 

4.1. Giriş 

Bu çalışmada tekil perturbe etme problemlerin çözümünü  𝑢 (0) =  𝜆 ve 𝑢 (1) =  𝛽 

sınır şartları ile birlikte ele alalım : 

     '' '              ,       0 1u p x u q x u f x x           (4.1) 

𝑢(0) = 𝜆  ve  𝑢(1) = 𝛽                                                          (4.2) 

burada 𝜀 > 0 küçük parametre, 𝑝(𝑥) , 𝑞(𝑥) , 𝑓(𝑥)  düzgün ve sınırlı fonksiyonlar, 𝜆 , 𝛽  sonlu 

sabitlerdir. Etki alanlarının sınırlarında ince katmanların olma ihtimali, sorunun standart 

biçimde sayısal ayrıklaştırılmasını güvenilmez kılmaktadır. 

Bu katmanların kalınlığı 𝜀 ‘a bağlı olduğu için sınırsız salınımlar 𝜀 → 0 olduğun da  

(4.1) denklemi için alışılmış nümerik metodlar ile elde edilen yaklaşım çözümlerinde 

gözlenebilir. 

Bu çalışmada kuadratik ve kübik B-spline’ ları ile sonlu elemanlar metodu 

kullanılmıştır. Geometrik Graded mesh üzerinde bahsedilen B-spline ifadeleri verildikten sonra 

(4.1) denklemi için kolokeyşın metodu uygulanmıştır. kolokeyşın metodunda kuadratik B-

spline’ ları kullanabilmek için (4.1) denkleminde verilen bir 1. mertebeden birleşmiş sistemde 

−𝑢′ = 𝑣 olarak düzenlenmiştir. Bu sistem kuadratik B-spline kolokeyşın metodu çalıştırılarak 

hesaplanmıştır. Nümerik sonuçlar bazı test problemlerinde örneklendirilmiştir.  

 Kısaca özetlemek gerekirse 2. bölümde, nümerik metodlar verilmiştir. Uygulanan 

yöntemin etkinliğini göstermek için iki test problemi çalışılmış, elde edilen sonuçlar daha önce 

elde edilen sonuçlarla sonraki bölümde karşılaştırılmıştır. 

4.2. B- Spline Metodları 

Nümerik hesaplama için, [0, 1] çözüm bölgesi , 𝑥𝑚 düğüm noktalarında alt aralıklara 

0 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑁 = 1 

şeklinde bölünmüştür.  
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𝑥𝑚+1 = 𝑥𝑚 + ℎ𝑚 ,    ℎ𝑚 =  𝜎 ℎ𝑚−1 [𝑥𝑚 , 𝑥𝑚+1] aralığının büyüklüğüdür ve 𝜎 mesh 

oran sabitidir. Geometrik olarak Graded meshi düzenlemek için, ℎ0  boyutlu birinci elemanın 

belirlenmesi gereklidir. 

ℎ0 + ℎ1 +⋯+ ℎ𝑁−1 = 1 

ℎ0 = 
1

1 +  𝜎 + 𝜎2 +⋯+ 𝜎𝑁−1
 

yazılır. Bu kısımda eğer  𝜎 mesh oranı 1 alınırsa aralıklar düzgün olacaktır. Sol sınırda ince 

mesh elde etmek için,  𝜎,  𝜎 > 1 olarak seçilmelidir. Diğer taraftan, sağ sınırda mesh boyutunu 

daha küçük yapmak için ,  𝜎 ,  𝜎 < 1 seçilmelidir. 

4.2.1. Kuadratik B- spline kolokeyşın metodu (QM) 

Geometrik Graded mesh üzerinde kuadratik B-spline fonksiyonlar aşağıdaki formda 

verilir. 

                     

𝑄𝑚−1
𝑄𝑚
𝑄𝑚+1

= 
1

ℎ𝑚
2  {

(ℎ𝑚 −  𝜉)
2 𝜎 ,

ℎ𝑚
2 + 2 ℎ𝑚 𝜎 𝜉 − (1 +  𝜎) 𝜉

2  ,

𝜉
2

                               (4.3) 

Burada 𝜉 =  𝑥 − 𝑥𝑚 ve  0 ≤  𝜉 ≤  ℎ𝑚  dir. Kuadratik B-spline bu üç eleman 

tarafından kaplanır.. Herhangi bir 𝑄𝑚 Kuadratik B-spline fonksiyonu ve onun türevleri 

[𝑥𝑚−1 , 𝑥𝑚+2] aralığı dışında sıfırdır ve bu yüzden bir eleman üç ardışık kuadratik B-spline’ lar 

tarafından kaplanır. Kuadratik B-spline {𝑄−1 , 𝑄0 , … , 𝑄𝑁   } kümesi tanımlanan bölge üzerinde 

taban fonksiyonudur.Böylece 𝑢𝑁 yaklaşımı, 𝑢 analitik yaklaşımı için  

                            𝑢𝑁 = ∑ 𝛿𝑚𝑄𝑚
𝑁
𝑚= −1                                                       (4.4) 

şeklindedir.  

Burada 𝛿𝑚 bilinmeyen parametrelerdir. 𝑥𝑚 noktalarında  𝑄𝑚 değerleri (4.4) 

denkleminde yerine yazılırsa 

𝑢𝑚 = 𝑢(𝑥𝑚) = 𝜎𝛿𝑚−1 + 𝛿𝑚,         (4.5) 

𝑢𝑚
′ = 𝑢′(𝑥𝑚) =

2𝜎

ℎ𝑚
(𝛿𝑚 − 𝛿𝑚−1) 

 𝑢 nodal değeri ve 𝑢′ türevi 𝛿𝑚 parametreleri cinsinden (4.5) şeklinde ifade edilir. 
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Kuadratik B-spline’ lar kullanılarak düzgün çözümler elde etmek için diferansiyel 

denklemler en fazla 1. mertebeden türevlere sahiptir. (4.1) denkleminde −𝑢′ = 𝑣 alınarak (4.1) 

denklemini bir 1. mertebeden denklem sistemi haline getirilebilir. 

𝜀 𝑣′ − 𝑝(𝑥) 𝑣 + 𝑞(𝑥) 𝑢 = 𝑓(𝑥), 

                                                                𝑣 + 𝑢′ = 0                                                (4.6) 

Böylece kuadratik B-spline’ lar nümerik çözümler için uygulanabilir hale gelmiştir. 

(4.6) sisteminde kolokeyşın metodu uygulanırken, 𝑢 , 𝑣  fonksiyonları ve onların 

türevleri, (4.5) denkleminden elde edilen eşitlikleri ile değiştirilir. Bu yer değiştirme sonucunda 

aşağıdaki system ortaya çıkar. 

𝜀 
2 𝜎

ℎ𝑚
(𝛾𝑚 − 𝛾𝑚−1) − 𝑝(𝑥𝑚)(𝜎 𝛾𝑚−1 + 𝛾𝑚) + 𝑞(𝑥𝑚)(𝜎 𝛿𝑚−1 + 𝛿𝑚) = 𝑓(𝑥𝑚) 

(𝜎 𝛾𝑚−1 + 𝛾𝑚) + 
2 𝜎

ℎ𝑚
 (𝛿𝑚 − 𝛿𝑚−1) = 0 

Gerekli işlemler ile bu sistem aşağıdaki matris şeklinde yazılabilir. 

                                                   𝐴 𝑋 = 𝐹                                                                (4.7) 

𝐴 = 

[
 
 
 
 
 
 
 
𝑞0𝜎 𝛼01 𝑞0 𝛼02
−𝛼03 𝜎 𝛼03 1

𝑞1𝜎 𝛼11 𝑞1 𝑎12
−𝛼13 𝜎 𝑎13 1

⋱ ⋱ ⋱
𝑞𝑁𝜎 𝑎𝑁1 𝑞𝑁 𝛼𝑁2
−𝛼𝑁3 𝜎 𝛼𝑁3 1 ]

 
 
 
 
 
 
 

 

𝑋 =  [𝛿−1 , 𝛾−1 , 𝛿0 , 𝛾0 , … , 𝛿𝑁  , 𝛾𝑁]
𝑇 , 

𝐹 = [𝑓0 , 0 , 𝑓1 , 0 , … , 𝑓𝑁 , 0]
𝑇 

ve 

𝑝𝑚 = 𝑝(𝑥𝑚) , 𝑞𝑚 = 𝑞(𝑥𝑚) , 𝑓𝑚 = 𝑓(𝑥𝑚) ,𝑚 = 0,1, … ,𝑁 

𝛼𝑚1 = −𝑝𝑚 𝜎 −  𝜀 
2 𝜎

ℎ𝑚
 , 𝛼𝑚2 =  −𝑝𝑚 𝜎 +  𝜀 

2 𝜎

ℎ𝑚
 , 𝛼𝑚3 = 

2 𝜎

ℎ𝑚
  

dır. 
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(4.7) matris sistemi 2 𝑁 + 4 bilinmeyen ve 2 𝑁 + 2 denkleme sahiptir. Bu sistemin 

çözümü için, denklem ve bilinmeyen sayısı eşit olmalıdır. (4.2) sınır şartlarından ve (4.5) 

denkleminden  

𝛿−1 = 
𝜆 − 𝛿0
𝜎

  , 𝛿𝑁 =  𝛽 −  𝜎 𝛿𝑁−1 

kolayca yazılabilir. 

Bu eşitlikler kullanılarak, 𝛿−1 ve  𝛿𝑁 bu sistemden yok edilebilir ve sonar (4.7) matris 

denklemi Thomas algoritması ile çözülebilir. (4.5) denkleminde elde edilen  𝛿𝑚 parametreleri 

yerine yazılarak nümerik çözüm  𝑥𝑚 düğümde bulunmuş olur. 

4.2.2. Kübik B- spline kolokeyşın metodu (CM) 

Graded kübik B-spline ifadesi aşağıdaki gibi yazılabilir. 

  

𝑄𝑚−1
𝑄𝑚
𝑄𝑚+1
𝑄𝑚+2

= 
1

ℎ3 𝑚
 

{
 
 

 
 (ℎ𝑚 −  𝜉)

3 𝜎3 ,

−𝜎  (𝜎2 + 𝜎 + 1)(ℎ𝑚 −  𝜉)
2 − 6 𝜎 ℎ𝑚(ℎ𝑚 −  𝜉) − 3 𝜎

2ℎ𝑚
2   

−(𝜎2 + 𝜎 + 1) 𝜉3 + 3𝜎2 ℎ𝑚 𝜉
2 + 3𝜎 ℎ𝑚

2  𝜉 + ℎ𝑚
3

𝜉3

     (4.8) 

Yukarıdaki mesh üzerinde 𝜉 = 𝑥 − 𝑥𝑚 ve 0 ≤  𝜉 ≤ ℎ𝑚 dir. Bir 𝜙𝑚 kübik B-spline, 

dört ardışık sonlu eleman tarafından kaplanır ve [𝑥𝑚−2 , 𝑥𝑚+2] aralığı dışında sıfıra eşittir. Bu 

nedenle [𝑥𝑚 , 𝑥𝑚+1] elemanı 𝜙𝑚−1 , 𝜙𝑚 , 𝜙𝑚+1 ve 𝜙𝑚+2 şeklinde dört kübik B-spline 

tarafından kaplanır. Bu B-spline’ lar (𝜙−1 , 𝜙0 , … , 𝜙𝑁+1),  [𝑎 , 𝑏] çözüm bölgesi üzerinde 

parçalı polinomların tabanıdır. Bu özellikler kullanılarak, 𝑢 analitik çözümü için nümerik 

yaklaşımı 

                             𝑢𝑁 = ∑ 𝛿𝑚 𝜙𝑚
𝑁+1
𝑚=−1                                                      (4.9) 

şeklindedir. Burada 𝛿𝑚 bilinmeyen parametrelerdir. Graded kübik B-spline fonksiyonlar ikinci 

mertebeden  sürekliliğe sahiptir. Böylece yaklaşım fonksiyonu da ikinci mertebeden süreklidir. 

 𝑢 değeri ve onun 𝑢′ , 𝑢′′ konuma göre türevleri 𝑥𝑚 düğüm noktasında aşağıdaki ifadeye 

sahiptir. 

𝑢𝑚 = 𝜎3 𝛿𝑚−1 + 2 𝜎 (𝜎 + 1) 𝛿𝑚 + 𝛿𝑚+1 , 

                         ℎ𝑚 𝑢𝑚
′ = 3 𝜎 [𝛿𝑚+1  +  (𝜎

2 − 1)𝛿𝑚 − 𝜎
2𝛿𝑚−1 ] ,                         (4.10) 

ℎ𝑚
2  𝑢𝑚

′′ = 6 𝜎2[𝜎 𝛿𝑚−1 − (𝜎 + 1) 𝛿𝑚 + 𝛿𝑚+1] 
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Kolokeyşın yönteminin uygulanması (4.1) diferansiyel denklemini ile (4.10) ifadesinin 

yer değiştirilmesine dayanır. Bu denklem sistemi  

 

−𝜀
6 𝜎2

ℎ𝑚
2  [𝜎 𝛿𝑚−1 − (𝜎 + 1)𝛿𝑚 + 𝛿𝑚+1] + 𝑝(𝑥𝑚)

3𝜎

ℎ𝑚
[𝛿𝑚+1 + (𝜎

2 − 1)𝛿𝑚 − 𝜎
2𝛿𝑚−1]

+ 𝑞(𝑥𝑚)[𝜎
3𝛿𝑚−1 + 2𝜎(𝜎 + 1)𝛿𝑚 + 𝛿𝑚+1] = 𝑓(𝑥𝑚)   ,    

 𝑚 = 0,… ,𝑁 

şeklinde verilir. 

Bazı işlemler sonrası bu sistem aşağıdaki matris şekline dönüştürülebilir. 

                                                    𝐴 𝑋 = 𝐹                                                            (4.11) 

𝑨 = 

[
 
 
 
𝜃01 𝜃02 𝜃03

𝜃11 𝜃12 𝜃13
⋱ ⋱ ⋱

𝜃𝑁1 𝜃𝑁2 𝜃𝑁3]
 
 
 
 ,  

               𝑿 =  [𝛿−1 , 𝛿0 , … , 𝛿𝑁+1]
𝑇     ,    𝑭 =  [𝑓0 , 𝑓1 , … , 𝑓𝑁]

𝑇 

ve 

𝜃𝑚1 = −𝜀
6 𝜎3

ℎ𝑚
2 − 𝑝𝑚

3 𝜎3

ℎ𝑚
+ 𝑞𝑚𝜎

3 , 

                              𝜃𝑚2 =  𝜀
6 𝜎2(𝜎 + 1)

ℎ𝑚
2 + 𝑝𝑚

3𝜎 (𝜎2 − 1)

ℎ𝑚
+ 2𝑞𝑚𝜎(𝜎 + 1) 

 

𝜃𝑚3 = −𝜀
6 𝜎2

ℎ𝑚
2 − 𝑝𝑚

3 𝜎

ℎ𝑚
+ 𝑞𝑚 , 

 𝑝𝑚 = 𝑝(𝑥𝑚) , 𝑞𝑚 = 𝑞(𝑥𝑚) , 𝑓𝑚 = 𝑓(𝑥𝑚) ,     𝑚 = 0,… ,𝑁 

dir. 

Böylece 𝑁 + 1 denklemde  𝑁 + 3 bilinmeyene sahip bir denklem elde edilir. (4.2) sınır 

şartları; sistemden 𝛿−1 , 𝛿𝑁+1 parametrelerini yok etmemize olanak sağlar. (4.2) denklemi (4.10) 

denklemi ile birlikte kullanılarak sınır parametreleri  
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𝛿−1 = 
−2 (𝜎 + 1)

𝜎2
 𝛿0 − 

1

𝜎3
𝛿1 +

1

𝜎3
𝑢0  , 

𝛿𝑁+1 = −𝜎
3 𝛿𝑁−1 − 2𝜎(𝜎 + 1)𝛿𝑁 + 𝑢𝑁 

gibi bulunabilir. (4.11) de bu denklemlerin yerine yazılabilmesi ile system (𝑁 + 1) × (𝑁 + 1) 

boyutta çözülebilir. Üçgensel band matris sistemine dönüşür. Thomas algoritması kullanılarak 

bu tip sistemler çözülebilir. (4.10) denkleminde elde edilen 𝛿𝑚 parametrelerinin yerleri 

değiştirilerek çözümler 𝑥𝑚 düğümünde hesaplabilir. 

4.3. Nümerik Örnekler 

Verilecek iki örnekte nümerik metodların doğruluğu test edilecektir. Hatalar; 

𝐿∞ = |𝑢 − 𝑢𝑁|∞ = max
𝑗
|𝑢𝑗 − (𝑢𝑁)𝑗| 

şeklindedir. 

Sınır katmanları her iki örnekte de sağ sınırlarda olduğu için hatayı en aza indirgemek 

için 𝜎 mesh oraının en iyi seçimi için (0.1) aralığında arandı. İlk örnek için çözüm grafiği Şekil 

4.1, Şekil 4.2, Şekil 4.3 ve Şekil 4.4 te, ikinci örnek için Şekil 4.5, Şekil 4.6, Şekil 4.7 ve Şekil 

4.8 de gösterilmiştir. Bu şekiller 𝜀 ve 𝑁 = 20 iki farkı için grafikleştirilmiştir. Elde edilen tüm 

sonuçlar aynı şekillerde numeric metodlarla doğrulanarak grafiğe yerleştirilmiştir. Titreşim, 

düzgün mesh için görülür, 𝜎 mesh oranının en iyi seçiminden sonar yok olur. Bazı  𝜀 ne  𝑁 için, 

bir ve ikinci örnekler için sırasıyla; Çizelge 4.1 ve Çizelge 4.2 nümerik hatalar hesaplanarak 

oluşturulmştur. 

Örnek 1: İlk örnek 

−𝜀𝑢′′ + 𝑢′ = 𝑒𝑥𝑝(𝑥), 

𝑢(0) = 𝑢(1) = 0 

kesin çözüm ile 

𝑢(𝑥) =
1

1 − 𝜀
[𝑒𝑥𝑝(𝑥) −

1 − 𝑒𝑥𝑝(1 − 1 𝜀⁄ ) + (𝑒𝑥𝑝(1) − 1)𝑒𝑥𝑝((𝑥 − 1) 𝜀⁄ )

1 − 𝑒𝑥𝑝(−1 𝜀⁄ )
] 

şeklinde (Lorenz,1979) den alınır. 
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Şekil 4.1.  𝜀 = 0.01 için çözüm. 

 

Şekil 4.2.  𝜀 = 0.001 için çözüm. 
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Çizelge 4.1. Örnek 1 için nümerik hatalar. 

 

Örnek 2: İkinci örnek için [49] diferansiyel denklemini düşünelim: 

−𝜀𝑢′′ +
1

𝑥 + 1
𝑢′ +

1

𝑥 + 2
𝑢 = 𝑓(𝑥) 

𝑢(0) = 1 + 2−1 𝜀⁄     ,    𝑢(1) = 𝑒𝑥𝑝(1) + 2 

alındığında 

𝑓(𝑥) = (−𝜀 +
1

𝑥 + 1
+

1

𝑥 + 2
) 𝑒𝑥𝑝(𝑥) +

1

𝑥 + 2
2−1 𝜀⁄ (𝑥 + 1)(1+1 𝜀⁄ ) 

dır. 
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Bu problem için tam çözüm 

𝑢(𝑥) = 𝑒𝑥𝑝(𝑥) + 2−1 𝜀⁄ (𝑥 + 1)(1+1 𝜀⁄ ) 

şeklinde verilir. 

 

Şekil 4.3.  ε = 0.01 için çözüm. 

 

Şekil 4.4.  𝜀 = 0.001 için çözüm. 
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Çizelge 4.2. Örnek 2 için nümerik hatalar. 
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5. BURGER DENKLEMİNİN B- SPLINE KOLOKEYŞIN METODLARI İLE 

NÜMERİK ÇÖZÜMLERİ 

5.1. Giriş 

Parçalı konum-zaman Burger denkleminin her ikisinin de nümerik çözümü yapılmıştır. 

Parçalı-zaman Burger denklemi için kübik B-spline kolokeyşın metodu uygulanmıştır. Parçalı-

konum Burger denkleminin nümerik çözümünü elde etmek için ise kuadratik B-spline metodu 

kullanıldı. 

İki test problem için nümerik hesaplamalar yürütülmüş ve kullanılan bu  metodların 

sonuçları, teorik sonuçlarla ve birbirleri ile karşılaştırılmıştır. 

5.2. B –Spline Metodları 

Bir boyutlu Burger denklemi 

                                  𝑈𝑡 +𝑈 𝑈𝑥 − 𝑣 𝑈𝑥𝑥 = 0  ,                                                      (5.1) 

Şeklindedir. Burada 𝑣 > 0 sabiti ve 𝑥 ve 𝑡 sırasıyla konum ve zamana göre türevleri 

belirtir. Başlangıç ve sınır koşulları aşağıdaki gibi verilsin. 

𝑈(𝑥, 0) = 𝑓(𝑥) ,     𝑎 ≤ 𝑥 ≤ 𝑏                                              (5.2)   

𝑈(𝑎, 𝑡) = 𝛼1 , 𝑈(𝑏, 𝑡) = 𝛼2  ,      𝑡 ∈ [0, 𝑇]                 (5.3) 

Çalışma boyunca  𝑎 ≤ 𝑥 ≤ 𝑏  çözüm bölgesinin düzgün bir kısmı olarak 𝑥𝑚 düğümü ve  

ℎ = 𝑥𝑚 − 𝑥𝑚−1  , 𝑚 = 1,… ,𝑁  , 𝑎 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑁 = 𝑏 

alınacaktır. 

5.2.1. Kuadratik B- spline kolokeyşın metodu (QBCM) 

Kuadratik B-spline kolokeyşın metodunun doğrudan uygulanması, denklemde düzgün 

çözümler elde etmek için birinci mertebeden türevlerini gerektirir. 

Burger denkleminin kuadratik B-spline kolokeyşın metodu ile çözümüne başlayabilmek 

için , 𝑉 = −𝑈𝑥  alınarak konum parçalaması yapılacaktır. Böylece Burger denklemi birinci 

mertebeden türevler içeren denklem sistemine dönüşür. Denklem sisteminde, 𝑈, 𝑉 bilinmeyen 

fonksiyonları ve onların konuma göre türevleri olan 𝑈𝑥 , 𝑉𝑥 kuadratik B-spline tarafından 

ayrıklaştırılır. 
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𝑄𝑚(𝑥),    𝑚 = −1,… ,𝑁, 

𝑄𝑚(𝑥) =
1

ℎ2
=

{
 

 
(𝑥𝑚+2 − 𝑥)

2 − 3(𝑥𝑚+1 − 𝑥)
2 + 3(𝑥𝑚 − 𝑥)

2 ,   [𝑥𝑚−1, 𝑥𝑚]

                 (𝑥𝑚+2 − 𝑥)
2 − 3(𝑥𝑚+1 − 𝑥)

2,                [𝑥𝑚, 𝑥𝑚+1]  

                                (𝑥𝑚+2 − 𝑥)
2  ,                             [𝑥𝑚+1, 𝑥𝑚+2]

                                             0                   ,       𝑑𝑖ğ𝑒𝑟 𝑑𝑢𝑟𝑢𝑚𝑙𝑎𝑟𝑑𝑎.

                    (5.4) 

   𝑄𝑚(𝑥), 𝑥𝑚 düğüm noktalarında 𝑚 = 0,… ,𝑁 için B-spline kuadratik fonksiyonlar 

olsun. Bu kuadratik B-spline 𝑄𝑚(𝑥) fonksiyonları [𝑎, 𝑏] çözüm bölgesinde bir baz oluştururlar. 

Birinci mertebeden zamana göre parçalanmış Burger denklemi ve 𝑉(𝑥, 𝑡) = −𝑈𝑥(𝑥, 𝑡) alınarak 

𝑈 ve 𝑉 için aşağıdaki denklem sistemini verir. 

𝑈𝑡 − 𝑈𝑉 + 𝑣𝑉𝑥 = 0           (5.5) 

𝑉 + 𝑈𝑥 

bu denklem için başlangıç sınır koşulları 

𝑈(𝑎, 𝑡) = 𝛼1, 𝑈(𝑏, 𝑡) = 𝛼2, 𝑉(𝑎, 𝑡) = 𝑉(𝑏, 𝑡) = 0, 𝑡 ∈ [0, 𝑇],                         (5.6) 

𝑈(𝑥, 0) = 𝑓(𝑥), 𝑉(𝑥, 0) = −𝑓′(𝑥), 𝑎 ≤ 𝑥 ≤ 𝑏 

şeklindedir.  

Kolokeyşın metodu (5.5) sisteminin yaklaşım çözümlerini bulmak için uygulanır. 

Kolokeyşın yaklaşımı 𝛿𝑚  ve  𝜎𝑚 eleman parametreleri açısından 𝑈(𝑥, 𝑡) ve 𝑉(𝑥, 𝑡) için 

ifade edilebilir. 𝑄𝑚(𝑥) kuadratik B-spline fonksiyonlar yardımıyla  ve sırasıyla;  

𝑈𝑁(𝑥, 𝑡) = ∑ 𝛿𝑚(𝑡)𝑄𝑚(𝑥),   𝑉𝑁(𝑥, 𝑡) = ∑ 𝜎𝑚(𝑡) 𝑄𝑚(𝑥)
𝑁
𝑚=−1

𝑁
𝑚=−1               (5.7) 

𝑚 = −1,… ,𝑁; 

dir. 

𝛿𝑚  ve 𝜎𝑚 eleman parametreleri, 𝑥𝑚 düğüm noktalarında 𝑚 = 0,… ,𝑁 , (5.5) denklem 

sistemini sağlayan 𝑈𝑁 ve 𝑉𝑁 için bulunacaktır. 𝑈𝑚 , 𝑉𝑚  değişkenleri ve bunların türevleri 

𝑈𝑚
′ , 𝑉𝑚

′   (5.7) içinde değişkeninin yer değiştirmesi ile temsil edilir ve eleman parametreleri 

açısından onların birinci mertebeden türevleri: 

𝑈𝑚 = 𝑈(𝑥𝑚) = 𝛿𝑚−1 + 𝛿𝑚 , 

ℎ 𝑈𝑚
′ = ℎ 𝑈′(𝑥𝑚) = 2(𝛿𝑚 − 𝛿𝑚−1) , 

𝑉𝑚 = 𝑉(𝑥𝑚) = 𝜎𝑚−1 + 𝜎𝑚 , 
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                ℎ 𝑉𝑚
′ = ℎ 𝑉′(𝑥𝑚) = 2 (𝜎𝑚 − 𝜎𝑚−1) ,                                       (5.8) 

şeklindedir.  

(5.5) sisteminde (5.7) - (5.8) kolokeyşın yaklaşımlar ve onun düğüm noktalarındaki 

değerleri kullanıldığında aşağıdaki lineer olmayan denklem sistemi ortaya çıkar. 

ℎ (𝛿𝑚−1
∘ + 𝛿𝑚

° ) − ℎ 𝑧𝑚(𝜎𝑚−1 + 𝜎𝑚) + 2𝑣 (−𝜎𝑚−1 + 𝜎𝑚) = 0 ,   

ℎ (𝜎𝑚−1 + 𝜎𝑚) + 2 (𝛿𝑚 − 𝛿𝑚−1) = 0 ,                                       (5.9) 

"°" zamana göre türevi ifade eder ve 𝑧𝑚 = 𝛿𝑚−1 + 𝛿𝑚 lineer olmayan terim olarak da 

bilinir. 

(5.9) sisteminde elde edilen 𝛿𝑚  ve 𝜎𝑚 parametrelerinin zaman ayrıklaştırması 𝑛 ve 

𝑛 + 1 iki ardışık zamanlı seviye arasında interpolasyon ile yapılmıştır. Böylece aşağıdaki 

𝑡 = (𝑛 + 1 2⁄ )∆𝑡 ve zamana göre türevi değiştirilerek ve  (5.9) sisteminde Crank-Nicholson 

yaklaşımı ile zaman türevi, 

𝛿𝑚 =
𝛿𝑚
𝑛+1+𝛿𝑚

𝑛

2
  , 𝛿𝑚

° =
𝛿𝑚
𝑛+1−𝛿𝑚

𝑛

∆𝑡
                                            (5.10) 

𝜎𝑚 =
𝜎𝑚
𝑛+1 + 𝜎𝑚

𝑛

2
 , 𝜎𝑚

° =
𝜎43
𝑚

𝑛+1 − 𝜎𝑚
𝑛

∆𝑡
 

şeklindedir. Böylece 2𝑁 + 2 denklem, 2𝑁 + 4 bilinmeyenden oluşan lineer olmayan bir sistem 

elde edilir. 

 2ℎ𝛿𝑚−1
𝑛+1 − 𝛽𝑚1𝜎𝑚−1

𝑛+1 + 2ℎ𝛿𝑚
𝑛+1 + 𝛽𝑚2𝜎𝑚

𝑛+1 

                                                = 2ℎ𝛿𝑚−1
𝑛 − 𝛽𝑚1𝜎𝑚−1

𝑛 + 2ℎ𝛿𝑚
𝑛 − 𝛽𝑚2𝜎𝑚

𝑛  

−2𝛿𝑚−1
𝑛+1 − ℎ𝜎𝑚−1

𝑛+1 + 2𝛿𝑚
𝑛+1 + ℎ𝜎𝑚

𝑛+1 = 2𝛿𝑚−1
𝑛 − ℎ𝜎𝑚−1

𝑛 − 2𝛿𝑚
𝑛 − ℎ𝜎𝑚

𝑛+1 ,   

                                                                             𝑚 = 0,… ,𝑁                           (5.11)            

𝛽𝑚1 = 𝑧𝑚ℎ∆𝑡 + 2𝑣 ∆𝑡 , 𝛽𝑚2 = −𝑧𝑚ℎ ∆𝑡 + 2𝑣 ∆𝑡 , 𝑧𝑚 = 𝛿𝑚−1 + 𝛿𝑚             (5.12) 

𝑈0 = 𝛿−1 + 𝛿0   ve  𝑉𝑁 = 𝜎𝑁−1 + 𝜎𝑁 sınır koşulları (2𝑁 + 2) × (2𝑁 + 2) beşgensel 

matris sistemine (5.11) sisteminden 𝛿−1 ve 𝜎𝑁 parametrelerini yok etmek için uygulanır. 

(5.11) denklem sistemindeki iterasyon için 𝛿𝑚
°  ve 𝜎𝑚

°  başlangıç parametrelerine ihtiyaç 

vardır. Bunu yapmak için 𝑡 = 0  da başlangıç ve sınır koşulları aşağıdaki şartları gerektirir. 
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(𝑈𝑁)𝑥(𝑎, 0) = 0 ,   (𝑉𝑁)𝑥(𝑎, 0) = 0 ,                                                (5.13) 

𝑈𝑁(𝑥, 0) = 𝑈(𝑥𝑚, 0) , 𝑉𝑁(𝑥, 0) = 𝑉(𝑥𝑚, 0) , 𝑚 = 0,… ,𝑁,  

Bilinmeyen eleman parametrelerinin belirlenmesi için aşağıdaki koşullar verilir. 

𝛿−1
0 =

𝑈(𝑎, 0)

2
 , 𝛿0

0 =
𝑈(𝑎, 0)

2
 , 𝛿𝑚

0 = 𝑈(𝑥𝑚, 0) − 𝛿𝑚−1
0  

𝜎−1
0 =

𝑉(𝑎,0)

2
 , 𝜎0

0 =
𝑉(𝑎,0)

2
 , 𝜎𝑚

0 = 𝑉(𝑥𝑚, 0) − 𝜎𝑚−1
0 ,     𝑚 = 0,… ,𝑁.               (5.14) 

Eleman parametreleri belirlendikten sonra 𝛿𝑚
𝑛   ve 𝜎𝑚

𝑛   zaman oluşumları sistemden 

bulunur. Herhangi bir düğüm değeri ve türevleri programın çalışması esnasında (5.8) den 

iyileştirilebilir. (5.11) sisteminin lineer olmama durumunu ortadan kaldırmak için 𝛿𝑚
𝑛+1, 𝜎𝑚

𝑛+1 

parametreleri için her 𝑛 + 1 de aşağıdaki iki veya üç iterasyon kullanılarak daha iyi hale 

getirilebilir. 

(𝛿∗)𝑛+1 = 𝛿𝑛 +
1

2
(𝛿𝑛+1 − 𝛿𝑛) , (𝜎∗)𝑛+1 = 𝜎𝑛 +

1

2
(𝜎𝑛+1 − 𝜎𝑛) ,              (5.15) 

   1 0 1 0, , ,   ,     , , ., 
T T

n n n n n n n n

N N                (5.16) 

5.2.2. Kübik B- spline kolokeyşın metodu (CBCM) 

Burger denklemi zaman değişkeni için ikiye parçalanır. 

𝑈𝑡 + 2𝑈𝑈𝑥 = 0 ,          (5.17) 

𝑈𝑡 + 2𝑣𝑈𝑥𝑥 = 0 . 

Parçalı-zamanlı Burger denklemi ikinci mertebeden türevleri içerir. Bu yüzden 

kolokeyşın metodunda deneme fonksiyonları için kübik B-spline seçmeliyiz. Bu seçim deneme 

fonksiyonlarının ikinci mertebeye kadar sürekliliğini sağlar. 

𝑄𝑚 kübik B-spline şekli 𝑚 = −1,… , 𝑁 + 1 ,  [𝑎, 𝑏]aralığında aşağıdaki gibi 

tanımlanır. 

𝑄𝑚(𝑥) =
1

ℎ3
=

{
 
 

 
 
                                                 (𝑥 − 𝑥𝑚−2)

3,                                            [𝑥𝑚−2, 𝑥𝑚−1]

  ℎ3 + 3ℎ2(𝑥 − 𝑥𝑚−1) + 3ℎ(𝑥 − 𝑥𝑚−1)
2 − 3(𝑥 − 𝑥𝑚−1)

3,                [𝑥𝑚−1, 𝑥𝑚]  

ℎ3 + 3ℎ2(𝑥𝑚+1 − 𝑥) + 3ℎ(𝑥𝑚+1 − 𝑥)
2 − 3(𝑥𝑚+1 − 𝑥)

3,                [𝑥𝑚, 𝑥𝑚+1]

                                                 (𝑥𝑚+2 − 𝑥)
2  ,                                          [𝑥𝑚+1, 𝑥𝑚+2]

                                                            0  ,                                       𝑑𝑖ğ𝑒𝑟 𝑑𝑢𝑟𝑢𝑚𝑙𝑎𝑟𝑑𝑎.

    (5.18) 
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Bu formun parçalı-zamanlı Burger denleminin yaklaşan bir çözümü aranır. 

𝑈𝑁(𝑥, 𝑡) = ∑ 𝛿𝑚(𝑡)𝑄𝑚(𝑡)
𝑁+1
𝑚=−1                                            (5.19) 

𝛿𝑚  katsayıları, 𝑁 + 1  kolokeyşın noktası ve sınır şartlarında (5.17) denklemi  𝑈𝑁 

değerini gerektirerek bulunur.  

U nodal değeri, 𝑈′ birinci mertebeden türevi ve 𝑈′′ ikinci mertebeden türevi 𝑥𝑚   

düğümlerinde (5.19) ve (5.18) de kübik B-spline ifadeleri kullanılarak elde edilir.  

𝑈𝑚 = 𝛿𝑚−1 + 4𝛿𝑚 + 𝛿𝑚+1 , 

                           ℎ 𝑈𝑚
′ = 3(𝛿𝑚+1 − 𝛿𝑚−1) ,                                               (5.20) 

ℎ2𝑈𝑚
′′ = 6(𝛿𝑚−1 − 2𝛿𝑚 + 𝛿𝑚+1) , 

eleman parametreleri cinsinden  ' ve " sırasıyla x’ in birinci ve ikinci türevlerini gösterir.  

Kolokeyşın metodunu uygulamak için, kolokeyşın noktaları düğümlere denk olarak 

seçilir ve sonra 𝑈𝑚 nodal değerleri ve (5.17) de 𝑈𝑚
′  ve 𝑈𝑚

′′  ilk iki ardışık türevleri ile değiştirilir. 

Bu, birinci mertebeden adi diferansiyel denklemlerin matris sistemini aşağıdaki gibi verir. 

𝛿𝑚−1
° + 4𝛿𝑚

° + 𝛿𝑚+1
° +

6

ℎ
𝑧𝑚(−𝛿𝑚−1 + 𝛿𝑚+1) = 0 ,                        (5.21) 

𝛿𝑚−1
° + 4𝛿𝑚

° + 𝛿𝑚+1
0 −

12

ℎ2
𝑣(𝛿𝑚−1 − 2𝛿𝑚 + 𝛿𝑚+1) = 0 ,                      (5.22) 

"°" zamana göre türevi ifade etmektedir ve 𝑧𝑚 = 𝛿𝑚−1 + 4𝛿𝑚 + 𝛿𝑚+1 (5.21)’ in lineer 

olmayan bir terimidir.  

𝛿𝑚 parametreler vektörü ve onların zaman türevleri (5.21) için 𝑛 ve 𝑛 + 1 2⁄  için iki 

zaman seviyesi arasında lineer olarak interpolasyon olduğunu varsayalım. 

𝛿𝑚 =
𝛿𝑚
𝑛 +𝛿𝑚

𝑛+1 2⁄

4
 ,   𝛿𝑚

° =
1

∆𝑡
(𝛿𝑚

𝑛+1 2⁄ − 𝛿𝑚
𝑛 ) ,                                  (5.23) 

ve 𝛿𝑚 parametreleri ve onların zaman türevleri (5.22) için 𝑛 + 1 2⁄   ve 𝑛 + 1 iki zaman seviyesi 

arasında interpole edilir. 

               𝛿𝑚 =
𝛿𝑚
𝑛+1+𝛿𝑚

𝑛+1 2⁄

4
 ,   𝛿𝑚

° =
𝛿𝑚
𝑛+1−𝛿𝑚

𝑛+1 2⁄

∆𝑡
    .                              (5.24) 

Yukarıdaki (5.21)-(5.22) denklemlerinde (5.23)-(5.24) ifadeleri yerlerine yazarak, 

sırasıyla 𝑁 + 3 bilinmeyen parametrelerde 𝑁 + 1 denkleme sahip her bir denklem lineer 

olmayan bir sisteme neden olur. 
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𝛼1𝛿𝑚−1
𝑛+1 2⁄ + 𝛼2𝛿𝑚

𝑛+1 2⁄ + 𝛼3𝛿𝑚+1
𝑛+1 2⁄ = 𝛼3𝛿𝑚−1

𝑛 + 𝛼2𝛿𝑚
𝑛 + 𝛼1𝛿𝑚+1

𝑛  ,              (5.25) 

𝛼4𝛿𝑚−1
𝑛+1 + 𝛼5𝛿𝑚

𝑛+1 + 𝛼4𝛿𝑚+1
𝑛+1 = 𝛼6𝛿𝑚−1

𝑛+1 2⁄ + 𝛼7𝛿𝑚
𝑛+1 2⁄ + 𝛼6𝛿𝑚+1

𝑛+1 2⁄  ,             (5.26) 

𝛼1 = 4ℎ − 6𝑑 ∆𝑡 , 𝛼2 = 16ℎ + 24𝜇 , 𝛼3 = 4ℎ + 6𝑑 ∆𝑡 ,                  (5.27) 

𝛼4 = ℎ
2 − 3𝑣 ∆𝑡 , 𝛼5 = 4ℎ

2 + 6𝑣 ∆𝑡 , 𝛼6 = ℎ
2 + 3𝑣 ∆𝑡 . 

(5.25) - (5.26) çözülebilir sistemi var, 𝑈(𝑎, 𝑡) = 𝑈0 , 𝑈(𝑏, 𝑡) = 𝑈𝑁 sınır şartlarının 

uygulanması (5.23) - (5.26) ifadeleri  

𝛿−1
𝑛+1 2⁄ = 𝑈0 − 𝛿0

𝑛+1 2⁄  , 𝛿𝑁
𝑛+1 2⁄ = 𝑈𝑁 − 𝛿𝑁−1

𝑛+1 2⁄
 

parametrelerinin yok edilmesine yardımcı olur. 

(𝑁 + 1) × (𝑁 + 1) üçgensel band matris  denklemi Thomas algoritması ile çözülebilir. 

𝑚 = −1,… ,𝑁 + 1 , 𝛿𝑚
𝑛+1 2⁄   parametreleri bulunarak, (5.25) sisteminden 𝛿𝑚

𝑛+1 çözüm 

parametreleri (5.26) sisteminden elde edilir. 

 Çözüm parametrelerini ele almadan önce başlangıç ve sınır şartları kullanılarak 𝛿𝑚
°  

başlangıç parametreleri bulunur. 

(𝑈𝑥)𝑁(𝑥0, 0) =
3

ℎ
(𝛿1 − 𝛿−1) = 𝑈𝑥(𝑥0, 0) , 

𝑈𝑁(𝑥𝑗, 0) = 𝛿𝑚−1 + 4𝛿𝑚 + 𝛿𝑚+1 = 𝑈(𝑥𝑗, 0) , 𝑗 = 0,… ,𝑁,                        (5.28) 

(𝑈𝑥)𝑁(𝑥𝑁, 0) =
3

ℎ
(𝛿𝑁+1 − 𝛿𝑁+1) = 𝑈𝑥(𝑥𝑁, 0) . 

Yukarıdaki denklemler Thomas algoritması kullanılarak çözümü bulunabilen üçgensel 

band matris sistemi elde edillir. (5.28) sistemi kullanılarak  𝛿𝑚
°  yaklaşımı bulunduğunda, 𝛿𝑚

𝑛  

zaman parametreleri dışında (5.25) - (5.26) cebirsel sistemlerinden hesaplanır. 𝛿𝑛+1 her bir 

zaman adımına geçmeden önce (5.15) iterasyonu lineer olmayan denklem sisteminin 

geliştirilmesi için iki veya üç kez tekrar edilmelidir. 

5.2. Nümerik Örnekler Ve Sonuçları 

Burger denkleminin nümerik sonuçları iki test problem için bulunmuştur. Metodların 

doğruluğu ise ayrık 𝐿2 ve 𝐿∞ hata normları için hesaplanmıştır. 

|𝑈 − 𝑈𝑁|∞ = max𝑗|𝑈𝑗 − (𝑈𝑁
𝑛)𝑗| ,    ‖𝑈 − 𝑈𝑁‖2

2 = ℎ∑ |(𝑈𝑗 − (𝑈𝑁
𝑛)𝑗)

2
|  𝑁

𝑗=0        (5.29) 
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a.Burger denkleminin şok-dalga çözümü 𝑡0 = 𝑒𝑥𝑝(1 8𝑣⁄ ) için 

𝑈(𝑥, 𝑡) =
𝑥 𝑡⁄

1+√(𝑡 𝑡0⁄ )𝑒𝑥𝑝(𝑥2 4𝑣𝑡⁄ )
 , 𝑡 ≥ 1  , 0 ≤ 𝑥 ≤ 1  ,                             (5.30) 

analitik çözümüne sahiptir. (5.2) denkleminde 𝑡 = 1 alınarak hesaplanan başlangıç şartları ve 

𝑈(0, 𝑡) = 𝑈(1, 𝑡) = 0sınır şartları kullanılmıştır. Metodun geçerliliği için problem [0,1] 

aralığında daha önce kullanılan ℎ = 0.005, ∆𝑡 = 0.01 ve 𝑣 = 0.005 ile çözülmüştür. Program 

𝑡 = 3.25 zamanına kadar çalıştırılmıştır. QBCM ve CBCM ‘nın sonuçları ve bazı zamandaki 

analitik çözüm Çizelge 5.1’ de verilmiştir. 

Nümerik çözümler uygun sınırlar içerisinde analitik çözümleri göstermiştir. Norm 

terimlerinde QBCM’ nın sonuçlarının CBCM’ nın sonuçlarından daha iyi olduğu görülmüştür. 

Sonuçların önceki hata normları bir sonrakinden daha iyidir. Sonuçlar karşılaştırılır. Denklem 

parçalandığında Burger denklemi için kübik B-spline kolokeyşın metodunun sonuçlarından 

daha az hataya sahip olduğu için QBCM kullanılmasının avatajlı olduğu görülmüştür. Fakat 

CBCM kullanılarak da aynı sonuçlar elde edilmiştir. Şekil 5.1 ve Şekil 5.2’ nin her ikisinde de 

grafik çözümleri 𝑡 = 3.25 olarak alınmıştır. Toplam hata dağılımları, sağ sınırda yoğunlaşmış 

bir şekilde Şekil 5.3 - Şekil 5.4’de 𝑡 = 3.25’de gösterilmiştir. Bunun anlamı hata da artışa neden 

olmasıdır. 

Daha küçük 𝑣 = 0.0005  vizkozite sabiti ile uygun sayısal testler yürütülmüştür. 

Hesaplanan sonuçlar Çizelge 5.2’ de verilmiştir. Bir kez daha QBCM’ nin, CBCM den daha az 

hata sağladığı görülmüştür. Şekil 5.5 ve Şekil 5.6 bazı zamanlarda nümerik çözümleri 

göstermiştir. Daha küçük vizkozite değeri için yayılma değeri daha diktir. Daha küçük vizkozite 

değeri kullanıldıkça hata artar. Şekil 5.7 ve Şekil 5.8 şekillerinin her ikisinde de hata dağılımları 

da  𝑡 = 3.25 alınarak çizilmiş, maksimum hata şokun merkezinde QBCM için 0.014 ve CBCM 

için 0.021 olarak ölçülmüştür. Burger denkleminin B-spline Galerkin sonlu eleman ve kübik B-

spline kolokeyşın metodlarının direk uygulanması, gösterilen şekillerin her ikisinden daha az 

hata sağlar.  

b. İkinci test örneği için, Burger denkleminin özel çözümü 

 x t

v

  


 
   alındığında, 

𝑈(𝑥, 𝑡) =
∝+𝜇+(𝜇−𝛼)𝑒𝑥𝑝𝜂

1+𝑒𝑥𝑝𝜂
 ,   0 ≤ 𝑥 ≤ 1 , 𝑡 ≥ 0                                    (5.31) 

elde edilir. 
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Çizelge 5.1.  h=0.005, Δt=0.01 ve v= 0.005. 

X            QBCM  CBCM    Tam       QBCM    CBCM      Tam      QBCM    CBCM   Tam      

 

Çizelge 5.2.  h=0.005, Δt=0.01 ve v= 0.0005. 

X             QBCM     CBCM     Tam       QBCM   CBCM   Tam      QBCM   CBCM    Tam 
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Şekil 5.1. 𝑣 = 0.005, ℎ = 0.005, ∆𝑡 = 0.01. 

 

Şekil 5.2.  𝑣 = 0.005, ℎ = 0.005, ∆𝑡 = 0.01. 
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Şekil 5.3. 𝑣 = 0.005 𝑣𝑒 𝑡 = 3.25  (Nümerik – Analitik) hatalar. 

 

Şekil 5.4. 𝑣 = 0.005 𝑣𝑒 𝑡 = 3.25 (Nümerik – Analitik) hatalar. 
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Şekil 5.5.  𝑣 = 0.0005, ℎ = 0.005, ∆𝑡 = 0.01. 

 

Şekil 5.6.  𝑣 = 0.0005, ℎ = 0.005, ∆𝑡 = 0.01. 
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Şekil 5.7. 𝑡 = 3.25, 𝑣 = 0.0005  (Nümerik – Analitik) hatalar. 

 

Şekil 5.8.  𝑡 = 3.25, 𝑣 = 0.0005 (Nümerik – Analitik) hatalar. 
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6. SONUÇ VE ÖNERİLER 

Bu çalışmada, Burger, Rlw denklemleri ile tekil perturbe etme problemlerinin B-spline 

fonksiyonlar yardımıyla nümerik çözümleri incelenmiştir. 

Burger denklemi için graded mesh kullanılarak Kuadratik B-spline Galerkin ve Kübik 

B-spline Kolokeyşın yöntemleri uygulanmış ve bu çözümlerin düzenli mesh ile elde edilen 

çözümlerle karşılaştırılması yapılmıştır. Bu karşılaştırma sonucunda graded mesh çözümlerinin 

düzgün mesh çözümlerine göre daha etkili olduğu görülmüştür. 

Burger denklemindeki vizkozite sabitinin farklı değerlerinin çözüme ekisi de test 

problemi üzerinde gösterilmiştir. 

Rlw denklemi için Petrov-Galerkin metodu ile çözümü yapılmış ve 𝐿2, 𝐿∞  hata 

normlarına göre incelemeler yapılarak etkili bir çözüm elde edildiği nümerik örnekler üzerinde 

gösterilmiştir. 

Tekil perturbe etme problemi için graded mesh kullanılarak Kuadratik ve Kübik 

Kolokeyşın yöntemleri uygulanmış, 𝐿∞  hata normuna göre çözümlerin etkinliği araştırılmıştır.  

Sonuç olarak bu çalışmada graded mesh ve düzgün mesh çözümleri incelenmiş, 

genellikle graded mesh çözümlerinin daha iyi sonuç verdiği görülmüştür. 

Daha ileriki çalışmalarda, düzgün mesh ile yapılan nümerik çözümlerin hatasını 

azaltmak ve çözümü iyileştirmek için graded mesh kullanılması önerilir. 
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