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OZET

Bu tez bes boliimden olusmaktadir.

Birinci bolimde calisma boyunca kullanilacak Burger ve RLW denklemleri ile ilgili
temel bilgiler verilmistir. Daha sonra bu denklemlerin ¢oziimleri i¢in kullanilacak olan ¢6ziim

yontemleri tanitilmisgtir.

Ikinci boliimde Burger Denkleminin niimerik ¢oziimleri, Geometrik Graded mesh
kullanilarak kiibik B-spline kolokeysin ve kuadratik B-spline Galerkin metodlar1 yardimiyla
elde edilecektir. Sonlu eleman metodlari, bu mesh iizerinde, sirasiyla Galerkin ve kolokeysin

metodlarinda kuadratik ve kiibik B-spline yaklasim fonksiyonlar1 yardimiyla uygulanir.

Uciincii bélimde RLW (regularized long wave ) denklemi kuadratik B-spline sonlu
elemanlar kullanilarak Petrov — Galerkin yontemi ile ¢oziilmiistiir. Solitary dalga hareketi

algoritma 6zelliklerini degerlendirmek i¢in ¢alistirilir.

Dordiincti boliimde tekil perturbe etme problemlerinin sonlu eleman ¢oziimleri
yapilacaktir. Coziim bolgesi lizerinde geometriksel graded mesh alinarak kuadratik ve kiibik B-

spline baz fonksiyonlari i¢in kolokeysin metodu uygulanmustir.

Besinci boliimde Burger denkleminin niimerik ¢oziimleri i¢in Kuadratik B-spline
Kolokeysin ve Kiibik B-spline kolokeysin metodu uygulanacaktir. Her iki algoritmanin
sonugclar1 bazi test problemleri ile karsilastirilir.

Anahtar Kelimeler: Graded mesh, Hidrodinamik, Kolokeysin, Petrov-Galerkin, RLW
denklemi, Sayisal Analiz, Sibernetik, Spline, Sonlu elemanlar.



APPLICATION OF FINITE ELEMENT METHODS FOR SOME NONLINEAR
PARTIAL DIFFERENTIAL EQUATIONS
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SUMMARY

The thesis is consists of five sections.

In the first section, the basic information about Burger and RIw equations which will be
used during the work is given. Then, the solution techniques which will be used for solving the

equations are introduced.

In the second section, Burgers’ equation is obtained using the methods of cubic B-
spline collocation and quadratic B-spline Galerkin. The finite element methods are constructed
within the quadratic and cubic B-splines as an approximate function, respectively, over this

mesh.

In the third section, the Rlw equation is solved by a Petrov-Galerkin method using
quadratic B-spline finite elements. The motion of solitary waves is studied to assess the

properties of the algorithm.

In the fourth section, The solutions of single perturbation problems will be done.
Collocation method is applied with quadratic and cubic B-spline base function over the

geometrically graded mesh of the solution domain.

In the fifth section, Quadratic B-spline collocation and Cubic B-spline collocation
methods will be applied to find the numeric solutions of Burger equation. The results of both

schemes are compared with some test problems.

Keywords: Cybernetics, Collocation, Finite elements, Graded mesh, Hydrodynamics,
Numerical analysis, Petrov-Galerkin, RLW equation, Spline.



Vi

TESEKKUR

Tezimi hazirlamamda yardimci olan danigmanim saym Yrd. Dog¢. Dr. Ahmet BOZ

hocama ve bu tezi hazirlarken bana karsi sevgi ve sabirlarimi esirgemeyen sevgili aileme ¢ok

tesekkiir ederim.

Tugba BOSTANCI



ICINDEKILER

Sayfa
OZET oottt sttt ettt bbbttt tns iv
SUMMOARY ..ottt ettt ettt sttt bbb sttt st a et st n st s st s ense s v
SEKILLER DIZINI.....coiiieiieieiei ettt ix
CIZELGELER DIZINT ..ottt X
SIMGELER VE KISALTMALAR DIZINI ......cocoiiiiiiiieiccceece e Xi
L GIRIS oottt ettt ettt ettt 1
1.1, BUT@ET DENKICINI .....ceviiiiieiiiie e 1
LIS R B VA B 131 (=3 oV 2
1.3. Tekil Perturbe Etme ProbDlemi......uciiciiiiiiiiiiiii ettt ettt 3
1.4. B- Spline KoloKey$1n MetOdU..........civeeiiiiieiisieie s 3
1.5. B- Spline Galerkin MetOdU .........ccoiiiieiiiiiieiiseee e 4
2. GEOMETRIKSEL GRADED MESH UZERINDE BURGER DENKLEMININ

NUMERIK COZUMLERI........c.ciiiiiititieeeeeeeeeee et 7
1 B € o TSRO OTRRTRTTP 7
2.2. B-SPline MetOAIari.......ccviiuiiieiiiiiieie ittt 7
2.2.1. Graded kuadratik B- spline galerkin metodu (GQBG) .........cccooveiiiiicniniciennn 8
2.2.2. Graded Kiibik B- spline Kolokeysin metodu (GCBC) ........ccccooeiviiiiiiiieniennene 11
2.3 NUMETTK OINEKIET ..ottt ettt ettt et e ettt ettt e et et et et e eeeee e et et e e eeeeeeee 14
2.3.1. Sok-dalg@a GOZUMIL .....c.veeiviiiiiiiiiiiiieie ettt ae e e 14

3. DUZENLENMIS UZUN DALGA (RLW) DENKLEMININ PETROV — GALERKIN
METODU ILE NUMERIK COZUMU ......coooiiiiiiiieceeeeeeeteee et 20
K TN R € 51 5 T TP P TP PSP PR PPUP 20
3.2. B- SpINE MeEtodlar.........cccveviiiiiiiiiice s 21
3.3, NUMETTK OINEKIET ..ottt ettt ettt ettt e et ettt ettt et e eeeee et et et e e eeeae e 24
3.3.1. Dal@a OIUSUIMUL ..ottt bbbt nb e e s 27

4. TEKIL PERTURBE ETME PROBLEMLERININ SONLU ELEMANLAR COZUMLERI 29

N B 53 £ P TUPPUT 29
4.2. B- SPlNe MeEtOALarT......couieiiiiiiieiiiitiee st 29
4.2.1. Kuadratik B- spline kolokeysin metodu (QM).........ccovvreeiininiiiiiieneseee e 30



ICINDEKILER (devam)

Sayfa
4.2.2. Kiibik B- spline kolokeysin metodu (CM) .......cccoverierenieneneeiene e 32
4.3, NUMETTK OINEKIET ......cvvvvvecececieieies ettt s sttt es sttt ettt en s s 34

5. BURGER DENKLEMININ B- SPLINE KOLOKEYSIN METODLARI iLE NUMERIK
COZUMLERI ...ttt ettt ettt s et 39
LT B € 5 T TSSO R R OURR PP 39
I & R o) 1 s T\ (5o | ' SRS 39
5.2.1. Kuadratik B- spline kolokeysin metodu (QBCM)........cccocviiiiiniiniiniiiieeieeni 39
5.2.2. Kiibik B- spline kolokeysin metodu (CBCM).........ccccvviiiiiiiiiinienicsiese e 42
5.2. Niimerik Ornekler Ve SONUGIATIT.........c.cvoviieeveiiiicieceteieeses sttt en s 44
6. SONUC VE ONERILER .......cocooiititeiiiieccece ettt ettt s st ne s 51

KAYNAKLAR DIZINT. ..ottt ettt eee et et ettt e e et eae et eeeeeete st eneseeteeneeseeeseeneans 52



SEKILLER DiZINi
Sekil Sayfa
2.1. v=0.005, N=200, At=0.01....ccoeriiiiiiiiiiiiiiiie s 15
2.2.v=0.005, N=200, At = 0.01. ..ocoiiiiiiiiiiiiiiie s 16
2.3, v=0.005, N=200, 2.5, it 16
2.4, v=0.005, N=200, 153.25. . sieieieeeeieiee et 17
2.5. v=0.0005, N=200, At=0.01.....cceirieeieiiieesiese e 17
2.6. v=0.0005, N=200, t=1.7. ..esiierieieieiiiii s 18
2.7.v=0.0005, N=200, t=2.5. ...eisereieieieiiise e 19
2.8. v=0.0005, N=200, t=3.25. ...icterereieieiiisi s 19
3.1. t = 0 ve t = 20 zamanlarinda Solitary dalganin goriniml. ...........ccceceeroveriiiieenieniennens 26
3.2. t = 20 zamaninda dalga goriiniimiinde hatanin konumunun b&linmesi. ..........ccccceereeninnns 26
4.1, € = 0.0 1IN GOZIIM. 1.veevuveeireeesitee ettt e sttt e st e stbe e s e et e e ssbe e e sbeeesaaeesrbe e e ssbeesnteesnbaeesnbeeenseeennns 35
4.2, & = 0.00T 1IN GOZUML ..eevieriiirieriiiiieaieeie e st e steesieesebe st be s e e beesbeesteesbaeebeesbeesbeesbeesbeesnbesnnas 35
4.3, € = 0.00 1GIN GOZUIM .e.vviiuvierieitie sttt st e ettt st sttt et e st e e s b b e e sbe e nbe e sbeesbeesbeesnbesnas 37
4.4, & = 0.0071 1GIN GOZIUML 1.vvriiirereirieeitieesiee st e sbeeste e rtee e s e e e st e e staeesbe e e ssbeesnteeanbaeesnbeeenseeenens 37
5.1.v = 0.005,h = 0.005, At = 0.0T..c.ociiiiiiiiiie e 47
52. v =10.005,h = 0.005, At = 0.01....coiiiiiiiiie e 47
53.v =0.005ve t = 3.25 (Nimerik — Analitik) hatalar. ............ccccooeriiriiininc e 48
5.4.v =0.005ve t = 3.25 (Niimerik — Analitik) hatalar. ...........ccccovvriiiiiinii e 48
5.5. v = 0.0005,h = 0.005, At = 0.071. .c.ooiiiiiiiii e 49
5.6. v = 0.0005,h = 0.005, At = 0.01. .cooiiiiiiiie e 49
5.7.t = 3.25,v = 0.0005 (Niimerik — Analitik) hatalar. ..........ccccccceviireiiienin e, 50
5.8. t = 3.25,v = 0.0005 (Niimerik — Analitik) hatalar. ...........cccoccveriieriniiniin e 50



CIiZELGELER DIiZiNi

Cizelge Savfa
2.1. Farkli zamanlarda v=0.005 ve At=0.01 icin L., X 10° Rata.......ocoeververereieseeeeereeeeneseennn 15
2.2. Farkli zamanlarda v=0.0005 ve At=0.01 igin L., X 10° hata........cccocovvvvevrseeerenrnerireeneenns 18
3.1. Tek solitary dalga derinligi = 0.03, h=0.125, At=0.1, -40 < x <60, [,=3.9799497,

[=0.81046249, I3=2.579007. ..cvtiuiiie ittt sttt st ee e 25
3.2. Sabitler ve tek solitary dalga dalganin hata normlar1 i¢in derinlik = 0.03, h=0.25, At=0.2, -

B0 < X 120, cuieiiiteeiie ettt ettt ettt ettt Rt tenbeaneenteeReetenteeneenrenne s 27
3.3. Tek solitary dalganin hata hormu t=0, derinlik=0.03, -80 < X < 120. .cccevvvviiiiiiiiieinne 27
4.1. Ornek 1 igin NUMETiK DALALATL. ........c.ovveieeieieiiieceees ettt en et 36
4.2. Ornek 2 igin NUMETiK DAtAlar. ........c.c.civeveieiiececee ettt 38
5.1. h=0.005, At=0.01 Ve V=0.005.......coreiieiriiiriite et 46

5.2. h=0.005, At=0.01 ve v="0.0005........ccceriririiririei i 46



Simgeler

W;(x)
i(x)
L(w)
Uplul

Q

J

ho
L,velLg

U(x,t)

Kisaltmalar

GQBG
GCBC
RLW
QM
CM
QBCM
CBCM

Xi

SIMGELER VE KISALTMALAR DiZiNi

Aciklama

Kinematik Vizkozite Sabiti

Agirlik Fonksiyonu

Yaklasik Coziim

u‘ nun Tiirevlerini iceren Genel Bir Diferansiyel Operatorii
Uygun Sayida Sinir Kosulu

Coziim Bolgesi

Agirlik Fonksiyonu

Aralik Boyutu

Hata Normu

Solitary Dalga Cozimii

Aciklama

Graded Kuadratik B-Spline Galerkin Metodu
Graded Kiibik B-Spline Kolokeysin Metodu
Regularized Long Wave ( Diizenlenmis Uzun Dlaga)
Kuadratik B-Spline Kolokeysin Metodu

Kiibik B-Spline Kolokeysin Metodu

Kuadratik B-Spline Kolokeysin Metodu

Kiibik B-Spline Kolokeysin Metodu



1. GIRIS
1.1. Burger Denklemi

Burger denklemleri ilk kez Bateman (1915) tarafindan tamitilmis ve ayrintili olarak
incelenmistir. Burger denklemi, birkac fiziksel 6zellik yiiziinden ¢ogu bilim adaminin dikkatini
cekmistir. Burger denkleminin analitik ¢6ziimii v sabitinin (Miller, 1966) kii¢iik degerleri i¢in
cok yavas yakinsayan seri ¢oziimleri igerir. Bu konuda ¢alisanlarin ¢ogu Burger denklemlerinin
cesitli baslangic ve smir kosullarinin niimerik ¢oziimleri ile mesgul olmuslardir. Burger
denkleminin iki farkli analitik ¢6ziimii sinirh keyfi baglangic ve sinir sartlar1 bulunmustur. v
sabitinin kii¢iik degerleri i¢in Burger denkleminin niimerik metodlarla ¢éziimlerinde zorluklar

ortaya ¢ikar.

Bu kiiciik degerler akiskan sivida sok dalgalar1 ve dinamik dalgalarin yayilmasinda dik
yonelmelere sebep olur. Pek ¢ok sayisal metod, kiigiik parametreler ile Burger denklemlerinin
nlimerik ¢6ziimiinii elde etmek icin iiretilmistir. Spline fonksiyonlar niimerik algoritmalar
kurmak i¢in uyarlanmistir. Kiibik spline kolokeysin yontemi Burger denklemlerinin niimerik
¢Oziimii i¢in gelistirildi (Rubin ve Graves, 1975; Rubin ve Khosla, 1976; Caldwell, 1987).
Kapali sonlu fark algoritmalar1 ile birlikte bu calismada Burger denklemlerinin niimerik
¢cOziimiinii elde etmede kiibik spline fonksiyonlari interpolasyonundan yararlanilmistir. Son
donemlerde B-spline fonksiyonlarinda hem Galerkin hem de Burger denklemlerinin niimerik
cOziimlerinde bulunan sonlu elemanlar iizerinde kolokeysin metodlar1 olusturuldu (Davies,
1977). Tiim bu B-spline Sonlu Eleman metodlar1 ayn1 mesh iizerinde diizenlendi. Baz1 degisken
mesh ve Geometriksel Graded meshler sayisal yontemlerin ¢aligmasini giiglendirmek igin
kullanilir. Ornegin; Bir boyutlu Burger denkleminin sok dalga ¢dziimii igin bir kiibik B- spline
mesh degisken yontemi gelistirilmistir. Bolgesel ayriklagtirma sinirlardaki biiylik degisiklikler
sebebiyle artan zorluklarin oldugu smirlarin yakinlarindaki ilgili bdlgede artirilmis Graded

meshin bi¢iminde yapilmistir.

Temel olarak bahsedilen Burger denkleminin siirekli ¢oziimlerinin ikisi Bateman (1915)
tarfindan bu calismada ilk kez agiga cikarildi. Burger kapsamli calismalar (Burgers, 1948)
sayesinde Ozellikle tlirbiilans i¢in bir matematiksel model olarak da bilinen Burger denklemini
icerir. Denklem; 1s1 iletimi (Cole, 1951), gaz dinamigi (Lighthill, 1956), sok dalgalar1 (Burgers,
1948), izotropik bir kati elastik dalga boyunca (Pospelov, 1966), sayilar teorisi (Vanderpol,
1951), devam eden stokastik siiregler ve benzeri gibi genis alanlarda bir model olarak kullanilir.
Hopf (1950) ve Cole (1951) keyfi baslangic kosullart igin bagimsiz ve analitik olarak

¢Oozmiiglerdir. Bir ¢ok durumda bu ¢oziimler, dinamik dalga sekillerinin yayiliminda dik



dalgalarin basinda karsiligini bulan v vizkozite sabitlerinin kiigiik degerleri i¢in ¢ok yavasga
yaklasabilen sonlu serileri igerir. Navier — Stokes denkleminin niimerik ¢6ziimiine
yogunlagsmadan 6nce Burger denkleminin basit bir modelini incelemek daha makul goriiniiyor.
Bu nedenle Burger denklemi Navier — Stokes denklemi i¢in dogruluk ve stabilite agisindan
niimerik metodlar1 denemek i¢in model denklemi olarakta kullanilmaktadir. Cok biiyiik bir
vizkoziteye sahip Burger denkleminin niimerik ¢6ziimlerinde niimerik giicliiklerle
karsilagilmistir. Burger denkleminin ¢oziimlerini hesaplamak igin spline fonksiyonlar ile
birlikte ¢esitli niimerik metodlar olusturulmustur. Rubin ve Graves (1975) bir boyutlu uzayda
Reynold sayilarinda Burger denkleminin niimerik ¢ozlimleri igin yari lineerlesme ve kiibik
spline fonksiyon teknigini kullanmistir. Kiibik bir spline kolokeysin islemi (Pospelov, 1966)
Burger denkleminin niimerik ¢6zimii i¢in gelistirilmigtir. Pargcali zamanli sema ve kiibik Spline
fonksiyonlarinin birlesim kombinasyonu (Jain ve Holla, 1978; Jain ve Lohar, vd., 1979)
calismalarinda Burger denkleminin niimerik ¢oéziimlerini elde etmek icin ortiilii sonlu fark
semalarmin kurulumu kullanildi. Denklem tektip elemanlar iizerinde kiibik B- spline
interpolasyon fonksiyonlari ile kolokeysin metodlari tarafindan niimerik olarak ¢oziiliir (Ali vd.,
1990; Beckett, Mackenzie, 2001; Burger, 1948) calismalarinda eleman sekil ve test
fonksiyonlarinin her ikisi ile B- Spline kullanilan  Galerkin metoduna dayali Burger
denkleminin sonlu elemanlar ¢6ziimii gelistirildi. Deneme fonksiyonlar1 olan kuadratik B-
spline’ lar kullanilan en kiigiik kareler formiilasyonu (Cole, 1951) de sonlu araliklar iizerinde
verildi. Kismi Diferansiyel denklemlerin niimerik ¢6ziimleri niimerik metodlar1 uygulanabilir
yapmak ve dogrulugunu artirmak icin parcalanarak bulunmustur. Parcali Burger denklemleri
icin iki algoritma yazilmistir. Birincisi, Burger denklemi zaman iginde parcalanir ve daha sonra
B-spline kolokeysin metodu uygulanir. Kolokeysin metodunda deneme fonksiyonlar1 olan
kuadratik B-spline’ lar1 kullanabilmek i¢in Burger denkleminde V = —U, denklemi birinci
mertebeden birlestirilmis bir sistemi verir. Ikincisi, birinci mertebeden denklemler iceren bu
denklem sistemi konuma gore parcalanir ve kuadratik B-spline kolokeysin metodu kullanilarak
hesaplanabilir. Bazi bilinen baglangi¢ ve sinir kosullari i¢in niimerik sonuglar, her iki metod i¢in

de gosterilmistir.
1.2. RLW Denklemi

Rlw denkleminin niimerik ¢6ziimii, hem kuadratik hem de kiibik B-spline ve boliinmiis
teknikler kullanilarak elde edilmistir. Sonugta olusan denklemler i¢in kiibik ve kuadratik B-
spline kolokeysin metodlart uygulanmistir. Ayrica parcali Rlw denklemi haricinde ¢oziimler

kiibik B-spline kolokeysin metodu ile elde edilmistir. Sonuglar solitary bir dalganin yayilimi ve



(undular bore) bore olusumu calisilarak dogrulanmustir. Onerilen sekillerin sonuclari ile

karsilastirma yapilmustir.
1.3. Tekil Perturbe Etme Problemi

Bu problemler kimyasal reaktor teorisi, optimal control, kuantum mekanigi, reaksiyon —
difiizyon siireci, (aerodinamik) ve birgok alanda yaygin olarak kullanilmaktadir. Bir ¢ok bilim
adami, yukarida bahsedilen zorluklarin iistesinden gelmek i¢in ugrasmistir ve bu problem
tizerinde calismistir. D. J. Fyfe (1969) esit-esit olmayan araliklar {izerinde kiibik spline’ lar az
avantaj kazandigim gozlemlemistir. G. Beckett ve J.A. Mackenzie diizensiz grid {izerinde a.

mertebeden Galerkin sonlu eleman metodu (Beckett vd., 2001) de verildi.

Denetleyici fonksiyon parametrelerinin uygun seceneklerinden sonra numerik ¢oziimler
elde edildi. Calistirilan koordinat W. Liu ve T.Tang (Liv vd., 2001) tekil perturbe etme sinir
deger problem i¢in Galerkin- Spektral metodunu gelistirerek uygulamiglardir.

M. K. Kadalbajoo ve K. C. Patidar tarafindan gerilmede kullanilan baz1 fark
algoritmalan (Kadalbajoo vd., 2002) de verildi. Bu metodlarin 2. mertebeden dogrulugu
gosterildi. Son zamanlarda S. C. Rao ve M. Kumar tarafindan kiibik B-spline kolokeysin
metodu (Rao vd., 2006) da uygulandi. Soyle ki; Calisma, ii¢ Ortiismeyen alt bolgede ¢6ziim

araliklarina ayristirildi ve bu bolgede diferansiyel denklemler ¢oziildii.
1.4. B- Spline Kolokeysin Metodu
Lu(x) = f(x) (L.1)

seklinde ifade edilen bir diferansiyel denklemde; L bir lineer diferansiyel operator, f(x) bilinen
bir fonksiyon ve u(x) aranan ¢6ziim olsun. (1.1) diferansiyel denkleminin sayisal ¢6ziimii igin

agirlikli rezidii metodu kullanildiginda, aranan u(x) ifadesi yerine
u(x) ~ @(x) = Xj; a;8;(x) (1.2)
formundaki % (x) sonlu yaklasim serisi kullanilir.

(1.2) esitliginde verilen @;(x), j = 1,..., N fonksiyonu, diferansiyel denklemin tanim
bolgesi lizerinde tammhdir ve aj,j =1,..,N bilinmeyen katsayilardir. Sonlu elemanlar
metodunda, @;(x) fonksiyonlar1 problem igin verilen tiim smr sartlarim saglayacak sekilde

secilirler ama genelde diferensiyel denklemi saglamazlar.



Agirlikli rezidiiler metodu, %(x) yaklasik ¢oziimiiyle orjinal denklem arasindaki sapma

miktarini minimuma indirmeyi amaglar. Bu sapma 6l¢iisii rezidii ile tanimlanir:
R(x) = Lii(x) — f(x) = Lii(x) — Lu(x) (1.3)

W; agirlik fonksiyonlari asagidaki integrasyonu minimize edecek bigimde tammlanmisg
olan 6zel fonksiyonlar olmak tizere, (1.3) ile verilen rezidii ifadesi; W;(x)agirlik fonksiyonlari

ile ¢arpilarak Q tanim bolgesi iizerindeki integrali alinirsa

Jo WiR(x)dx=0,j=1,..,N (1.4)
formunda N bilinmeyen N denklemden olusan denklem sistemi elde edilir. Bu sistemden a;
bilinmeyenleri bulunarak (1.1) yerine yazilirsa, #i(x) yaklasik ¢oziimiine ulasilir.

Kolokeysin metodu, agirlikli rezidii metodunun bir uygulamasidir. Bu metotta W;

agirlik fonksiyonlar1 olarak
W = 6(x — x;) (1.5)
dirac delta fonksiyonlari segilir. Dirac delta fonksiyonlar1

1, X = Xj

8(x —x) = { 0, diger durumlarda (10

ozelligine sahiptirler ve R(xj) =0,j=1,..,N oldugunda, (1.4) integralinin sonucu sifir
olacaktir. Dolayisiyla kolokeysin metodu i¢in ¢6ziim, (1.2) esitliginin sayisal ¢6ziimii aranan

denklemde yerine yazilmasiyla

Li(x) —f(x) =0
L(ia,-qé,-(x)j— f(x)=0 .

formunda elde edilir (Lapidus ve Pinder, 1982)
1.5. B- Spline Galerkin Metodu

Diferansiyel denklemlerin tam ¢6ziimlerinin bulunmasi igin kullanilan analitik
yontemler, problemlerin elde edilmesi ve ¢6ziimlerinin analizlerinin yapilmasi noktasinda
sayisal yontemler bir alternatiftir. Sonlu elemanlar metodu ise bu varyasyonel yontemlerden
birisidir. Bu yontem, yaklagim fonksiyonlarinin, problem ¢dziim bdlgesinin alt bolgelerinde,

sistematik bi¢cimde elde edilmesi olanag: saglar.



Bir diferansiyel denkleme bu sonlu elemanlar metodunun uygulanisi asagidaki gibidir.

L[u], u nun tiirevlerini igeren genel bir diferansiyel operatérii, U, [u] uygun sayida smir

kosulu, Q ¢6ziim bolgesi ve sinir1 9€) olmak {izere;
Llu] =r(x), x € Q,

U,[u]=7, xeoQ, (1.8)

sinir deger problemini dikkate alalim. Bu problemin ¢6ziimiine yapilacak yaklasim,
u(x) =w(x, aq,ay, ..., ay)
seklindedir. Burada a4, a,, ..., ay bulunmas1 gerekli olan parametrelerdir.
a = [a,a, ...ay] olarak alinirsa, segilecek uygun 1; taban fonksiyonlari igin yaklagik
¢0zim

W(x,a)zyxo(x)+iZNl:aiz//i(x) (1.9)

Seklinde ifade edilebilir. Bu se¢im, problemin smir kosullarim1 saglayacak sekilde

olmalidir. Bu yaklasik ¢6ziim, diferansiyel denklemde yerine yazilirsa
E[x.a]=L[w(x,a)]-r(x) (1.10)

kalintis1 (rezidii) bulunur. Bu kalinti, w(a,x) yaklasim fonksiyonunun diferansiyel
denklemi saglama Ol¢iisiinii bize verir. Yapilan yaklasimdaki 1; fonksiyonlarinin sayist olan N
biiyiidiikge E[x, a] kalintisinin da kii¢iilmesi beklenir. Bu kalinti dogrudan sifir oldugunda tam
¢ozliim elde edilir. Kalintinin dogrudan sifir olmasini saglamak zor oldugundan,sayisal yaklagim
yontemlerinde E[x.a] kalintisim miimkiin oldugunca kiigiik yapacak yollar aranir. Sonlu

elemanlar metodunda bunun i¢in kalintinin agirlikli integrali olan
(¢;,Elx,al)=0,j=1,2,..,N (1.11)

ifadesi sifira esitlenir. Burada, (q,’) i Elx, a]) bir i¢ ¢arpim olup,

(0,E) = | ¢.E dx
J



seklinde tanimlanir. ¢; ise bir agirlik fonksiyonudur. Eger w(x, a) ¢6ziimii bir tam ¢6ziim ise
(1.11) ifadesi, agirlik fonksiyonu nasil segilirse segilsin sifir olacaktir. Agirlik fonksiyonlarinin
secimi icin degisik alternatifler vardir ve bu secimlerin her birisi yaklasik metot iizerinde farkli
bir sonlu eleman yoOntemine karsilik gelir. Agirlik fonksiyonlari belirlenip metoda
uygulandiginda N bilinmeyenli bir cebirsel denklem sistemi elde edilir. Bu sistem uygun
yontemler kullanilarak ¢oziilebilir. Buradan elde edilen ¢oziimlerin, (1.9) denkleminde yerlerine

yazilmasiyla (1.8) ile verilen diferansiyel denkelmin yaklasik ¢6ziimii bulunmus olur.

Galerkin metodu da sonlu elemanlar metodlarinin i¢ginde en ¢ok kullanilan yontemdir.
Bu yontemin uygulanisinda, diferansiyel denklemin yaklasik ¢oziimii w(x, a) olmak tizere bu

yontem, (1.11) denklemindeki agirlik fonksiyonlarinin

¢ =v;(x), j=1,2,..,N

seklinde se¢ilmesi esasina dayanir. Boylece (1.11) ifadesi

f Y;.E[x,aldx =0, j=1,2,..,N
Q

halini alir. Buradan elde edilecek cebirsel denklem sisteminin ¢oziilmesiyle a = [a;a; ...ay]

bilinmeyenleri bulunmus olur (Reddy, 1993).



2. GEOMETRIKSEL GRADED MESH UZERINDE BURGER DENKLEMININ
NUMERIK COZUMLERI

2.1. Giris

Bu boliimde ilk olarak kuadratik B-spline Galerkin yontemi ile kiibik B-spline
kolokeysin yontemi uygulanacaktir. Diizenli mesh yardimiyla yapilan hesaplamalardan elde

edilen sonuglar ile Graded mesh yardimiyla yapilan hesaplamalarin sonuglari karsilastirilacaktir.

Daha sonra uygulanan yontemlerin  dogrulugunun anlagilabilmesi igin c¢esitli test

problemleri ¢oziilecektir.
2.2. B-Spline Metodlar1
U+ UU — VU, =0 2.1
Bir boyutlu Burger denklemini
ulx, tg) =f(x) , a<x<bh (2.2)
baslangic ve
u(a,t) =a; , ulb,t)= a, ,teltyT]
U (a,t) =0 , u,(bt) =0 (2.3)

sinir kosullar ile alalim. Burada v>0 kinematik vizkozite sabiti ve x, t sirasiyla konum ve

zamana gore tiirevi belirtir.

Calisma bolgesi olarak verilen [a, b] araligi geometrik graded alt araliklara boliiniir.

Boylece [a, b] araligi
a=xy<x;<-<xy=b

seklinde esit aralikli olmayan araliklara boliinmiis olur. Bu durumda ¢6ziim bolgesi x,,, diiglim

noktast i¢cin a < x < b seklindedir. Burada
Xm+1 = Xm T hpm
hpy1 = 0ohy, m=20,1.N-1
ve

ho = x1 — x¢ ilk elemanin uzunlugudur.



Degisken mesh olusturabilmek i¢in ilk hy araliginin boyutunun bulunmasi gerekir. Bu

yiizden
hg+hy+-+hy_1=b—a
esitliginden
ho + ohgr02hg + -+ " thg=b—a
ho(l+oc+d%+-+c"H)=b-a

_ b—a
1+0+02+-+on1

ho
elde ederiz.

Burada eger 0 =1 alimirsa parcalanma diizgiin pargalanmaya indirgenir. Co6ziim
bolgesinin en solunda mesh boyutu en kiiciik yapmak icin o > 1 alinmalidir. Benzer sekilde

¢0ziim bolgesinin en saginda mesh boyutunu en kii¢iik yapmak i¢in o < 1 alinir.
2.2.1. Graded kuadratik B- spline galerkin metodu (GQBG)

Galerkin metodunda kuadratik B-spline fonksiyonlarin kullanilmasi ile diizgiin
cOziimlerin elde edilmesi icgin diferansiyel denklem, bilinmeyen ¢oziimiin en ¢ok birinci
mertebeden tiirevini icermelidir. Bu ylizden (2.1) denklemine Galerkin yontemini uygulamak

icin denklem W agirlik fonksiyonu ile carpilip ¢6ziim bolgesinde integre edilir.
f:W(ut+uux—vvx—uuxx) dx =0 (2.4)

Kismi integrasyon alindiginda ve u,(a, t) = u,(b,t) = 0 sinir kosullar1 kullanildiginda

asagidaki zayif form elde edilir.
f:[w (us +uuy) +vweuy,] dx =0 (2.5)

Kuadratik B—spline fonksiyonlar ii¢ ardisik eleman tarafindan ortiiliir. Boylece graded
araliginin  [x,, , X,41] bir karakteristik elemani ti¢ kuadratik B-spline sekil fonksiyonu
tarafindan Ortilir. [X,, ,X;,41] sonlu elemani i¢in yerel koordinat sistemi & = x — x,,,0 <
§ < hy, = Xpy1 — Xy uygulanmistir. Dolayisiyla [0, hy,] graded aralig: izerinde kuadratik

B-spline sekil fonksiyonlar1 kuadratik B—spline fonksiyonlarina asagidaki sekilde doniistiiriiliir.



Q 1 (hm - 6)2 o )

m—1

o = {hh+2h,0i— (1+ 0)E (2.6)
Qm+1 m 52 ,

Bu ii¢ B-spline sekil fonksiyonu bir [0,h,,] elemani i¢in baz olusturur.Bu

yuzden[0, h,,] aralig1 tizerinde Uy (x, t) yaklagik ¢oziimii asagidaki formda aranir.
ue(,t)= ;‘n:;r%—l S (£)Qm ($) (2.7)

6 hesaplanacak zamana bagli parametrelerdir. (2.6) da verilen B-spline sekil

fonksiyon degerleri kullanilan &, parametre terimlerinde U ve konuma gore tiirevi U’ ,

Un=U@n) =08p-1+ 6n ,

hm U = by U'(xm) =20 (6m — 6—1) (2.8)
seklinde ifade edilir.
m+1 [hm m+1  m+1 [hm

Z fQjQids +6, Z Z fQjQ}deS 61 6;
1 \o 0

j=m- j=m—-1k=m-1

m+1 [hm

+ Z fQ{QJ’-de 5 =0
L\

J 1

ve bu elemanlarin kullanilmasiyla (2.5) denklemi [x,,, , X;,41] araliginda ,

[™iw (UE+ USUE) +v W, Ug] dx =0 (2.9)

X

haline gelir. W agirlik fonksiyonu alinarak Q; kuadratik B-spline sekil fonksiyonu alinirsa U®

eleman fonksiyonu (2.9) da yerine yazilarak
A°5 + (8°)TLES® + vC5° =0 (2.10)
elde edilir. Burada

hm hm hm
A = Q:Q;d¢, C¢ = Qi Qjdé, L= Qi Qj Qi d¢

0 0 0

Ve
6¢ = (Om-1,6m, 6m+1)T (2.11)

j ve k degerleri igin sadece m-1, m, m+1 (m=0, 1, ..., N-1) degerlerini alir.
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A€, C¢ eleman matrisi 3 X 3 boyutlu ve L matrisi 3 X 3 X 3 boyuta indirgenebilir.Bu

durumda
Bf; = Yichn-1 L5k Ok (2.12)
olur.

B® matrisi, 6° eleman parametrelerine baglidir. Tim eleman matrislerinin

birlestirilmesiyle

AS+B(8)6+vC6=0 (2.13)

1mon

diferansiyel denklem sistemi elde edilir. Burada zamana gore tlirevi gosterir.

8§ = (6_1,80,...64)7 (2.14)
tiim eleman parametrelerini icerir. Burada A, B ve C matrisleri besgensel matrislerdir.

Zamana bagli § parametresinin yaklasimi i¢in agagidaki ileri sonlu fark formiilii ve &'

nin zamana gore tiirevi igin Crank Nicolson metodu kullanilir.

n+1 n o n+1_ gn
sy s 5= s (2.15)

o =
2 ! At

(2.15) esitlikleri (2.13) matris denkleminde yazilirsa

5n+1_ 8n 6n+1+ 5n 5n+1+ 611 6n+1+ 611
A A +B 5 > +vC — =0

s™tl A" B C C
_ — n+1y2 n+ligon ny2 _ sn+1l — 852 —
v At+4((5 )2 +2(8 6)+(6))+v26 +v582=0
A B c A C
n+1 ([~ — sn+1 n _l_sn(__ _ sn _ —| =
5 (At+45 425 +v2) 5 (At 5 vz) 0

[A + 2B+ C)] snH1 = [A -2 (B +v C)] sm (2.16)
denklemi elde edilir.

B (6™) , 6 matrisine bagl oldugu i¢in (2.16) matris denklemi lineer degildir. (2.16)
denklem sistemi (N+2) bilinmeyen parametre ile (N+2) denklemden olugmaktadir.
U(at) =x; veU(b,t) =, smir kosullarinin uygulanmasiyla &, ve 6§ eleman

parametreleri elimine edilerek N X N boyutlu besgensel band matrsi elde edilir. Bu sistem
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o ,m=0,1,..,N—1 parametreleri i¢in Thomas algoritmasi yardimiyla

¢oziilebilir. 7, ve 6y eleman parametreleri her bir zaman adiminda sinir sartlar1 yardimiyla

Syt = (¢u— 88) /o ve 8F = ,— o 8{_; hesaplanabilir. Lineer olmayan terimler

nedeniyle i¢ iterasyonu takip eden her bir adimda iki veya {li¢ defa tekrarlanir.
()Mt = §m + 2 (874 — &™) 2.17)

(2.16) denkleminin iterasyonunu baslatmak icin, &° parametresinin baslangic
vektoriiniin hesaplanmasi gereklidir. Bu nedenle t = ¢, zamaninda asagidaki baslangi¢c ve sinir

kosullarinin kullanilmasina ihtiyag vardir.
Uv(a, to)x =0, Uy(b, to)x=0, (2.18)
Uy, to) =0,
Xp=0,...,N—1 (2.19)

seklinde yazilir. Bu eleman parametreleri yardimiyla herhangi bir diigiim degeri ve tiirevi (2.8)

denkleminden iyilestirilebilir.
2.2.2. Graded Kiibik B- spline Kolokeysin metodu (GCBC)

Geometrik graded mesh iizerinde, kiibik B-spline fonksiyonu

(hm - 5)3 0-3'
Q(r)n—l _ 1 J=o(0*+ 0+ D(hy — §? =60 hyp(hy, — ) —30%h3, (2.20)
Omys D —(0%+ 0+ 1) & +30%2 hpy&2 +30 h2, &+ K3, '
Qm+2 53 )
seklinde tanimlanir.
(Q-1,Q¢,..,Qn4+1) B-spline baz fonksiyonlari [a,b] tamim araligi {lizerinde bir

tabandir. Bu nedenle Uy yaklasik ¢ozimii U (x,t) analitik ¢oziimii i¢in kiibik B-spline baz

fonksiyonlar1 yardimiyla

Uy (x,8) = Zmty 8m(®) Qu(x) (2.21)

seklinde yazilabilir. Burada zamana bagli §,, parametreleri simir sartlarindan ve (2.1)
denklemindeki kolokeysin formundan bulunur. Graded kiibik B-spline yaklagim fonksiyonu,

U(x ,t) ¢oziimiiniin ikinci mertebeye kadar tiirevlerinin siirekli olmasini gerektirir.

U,U’,U" degerleri mesh noktalarinda &, eleman parametreleri yardimiyla
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Uy = 0381 +20 (0 +1) 6, + 6pi1
hpUly =30 [6_q + (62 =1) 6y — 02 8ppq] (2.22)
hi Urnn =60%[0 81— (0 +1)8p + Spns1l

ifade edilir. "ve "' x 'e gore birinci ve ikinci tiirevleri gostermektedir. Kolokeysin metodunun
tanimlanan mesh noktalarinda uygulanmasti, U,y,, Uy,, Uy, degerlerinin (2.1) denkleminde yerine

yazilmasiyla elde edilecek adi diferansiyel denklem sistemi yardimiyla
038 1+20(0+1) 6 + Oppyq + }31—0 Zm Oy + (02— 1) 8 — 02 6ppq1) —
2
T V(@81 = @+ 1) 8+ Gper) = 0 (2.23)

non

seklinde olacaktir. Burada "°" zamana gore tiirevi gosterir.

Zm = 03 86p_1+20(0+1) 6y + St
Zm > (2.23) denklemindeki lineer olmayan terimdir.

Kabul edelim ki §,, parametre vektorii ve zamana gore tiirevleri (2.15) esitlikleri
kullanilarak n ve n+1 zaman adimlar1 arasinda iki defa interpole edilsin. (2.15) de verilen ifade
(2.23) denklem sisteminde yerine yazildiginda asagidaki eleman parametreleri arasindaki iliski

elde edilir.
Ay OPFY + A ST + s 7Y = s 61y 4 A O+ A = 0
m=20,1,..,N. (2.24)
Burada katsayilar

63 303z, 603V

1= N T 2h, 22,

3 20(0+1)+ 30z,(0%—-1) 606%(+1v
Y 2 hyy 2 12, ’

1 30z, 6d%v
am3=_+ - 2 ’
A 2h, 2R

63 303z, 603V

=—+ + ,
me = AT o, 2
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_20(0+1) 20z, (02 -1) 60%2(c+1v
Ims = TA 2 oy 2 12, ’

1 302z, 60%v
me = 75— + 2 ’
At Z2h, | 2R

seklindedir. Yukaridaki denklem sistemi (N+3) bilinmeyen parametre ve (N+1) denklemden
olusmaktadir. U (a,t) =x; veU(b,t) =«, smr kosullariin kullanilmasiyla (2.24)
denkleminden &_4 ve 8y, parametreleri elimine edilir. Boylece (N + 1) X (N + 1) boyutlu
coziilebilir bir tiggensel band matris sistemi elde edilir. Bu matris sistemi Thomas algoritmast

yardimiyla ¢oziilebilir.
6_1 ve 8y 41 parametreleri; her bir zaman adiminda, u¢ noktalarda
Up= 036p_1+20(@ + 1)6p+ Spmi1

denklemi kullanilarak ,belirlenebilir.

Coziimii elde edebilmek igin 82 baslangig parametrelerinin hesaplanmasi gerekir.

Bunun i¢in baglangi¢ kosullari
Uy@xm,0)= 038 1+20(@+1)6pn+ 8py1 =U (xn,0), (2.25)
m=0,1,..,N
ve smir kosullari

U}, (x4 ,0) = ?;T: [6,+ (62 =1)8, — d26_4] = U’ (x,,0) (2.26)

30

Uy (xy,0) = [6y+1 + (02—1) Oy — o? Oy-1]1= U’ (xy,0)

hy-1
kullanilir.

(2.25) ve (2.26) denklemleri bir iiggensel band matris sistemi ile verilir. Bu sistemin
¢oziimii Thomas algoritmas1 yardimiyla hesaplanabilir. 82, baslangic parametrelerinin elde
edilmesinden sonra bir sonraki zaman adiminda &y, parametreleri (2.24) tekrarlama bagintisi
yardimiyla hesaplanir. Her bir §74*1 zaman adimina gegmeden 6nce, (2.17) iterasyonu lineer
olmayan cebirsel (2.24) denklem sisteminden daha iyi ¢dziim elde edebilmek igin iki veya ii¢

kez uygulanmalidir.
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2.3. Niimerik Ornekler

Bu boéliimde yapilan niimerik ¢6ziimiin hatasi L., hata normu ile 6l¢iiliir. Burada L,

hata normu,
Lo = U = Uyloo = max |V = UR |
Jj

seklindedir.
2.3.1. Sok-dalga coziimii

Burger denkleminin sok-dalga ¢6ziimii Ty = exp(1/8v) iken asagidaki analitik ¢oziime
sahiptir.

U(x.t)= X/t t>1,0<x<1 (2.27)

1+(t/T, Jexp(x* / 4xt)

to =1 zamaninda (2.27) denkleminde hesaplanan baslangi¢ sartlart ve
U(0,t) =U(1,t) = 0 smir sartlar1 kullanilir. Program daha 6nce kullanilan diizgiin
aralikta caligtirilir. Problem aralig1 iizerindeki hata dagilimina gore, eger sag sinir yakinlarinda
genis hata var ise o0 <1 graded mesh parametresini seceriz. Sag taraftaki graded mesh
noktasinda yigilmanin sonuglari ile benzer sekilde o > 1 se¢ilmesinin sol sinirin yakinlarindaki

mesh noktalarinda yigilmanin sonuglarinda genis hata saptanmustir.

[0,1] araliginda At = 0.01,v = 0.005 ve N = 200 parametreleri ile problem ¢o6ziliir.
Program t = 3.25 zamanina alinir. Algoritma ¢aligma esnasinda problem aralifinda gézlenen
hataya gore, sol sinirinda en genis yigilma hatasi olusur. Hatay1 indirgemek igin ¢ parametreleri
0.001 deger atisiyla [1,1.1] araliginda arastirma olarak yiiriitiiliir. Farkli zaman adimlarinda en
iyl o parametresi bulunur ve sonuglar seki 2.1° de verilmistir. Ayrica diger baz1 metodlarin
sonuclart karsilagtirma amaci ile ayni ¢izelgede verilmistir GQBG ve GCBC metodlarinin
t=17, t=25, t =3.25 zamanlarinda niimerik ¢ozimleri grafik olarak Sekil 2.1° de
verilmistir. Semalarin hatalari, bazi t zamanlarinda diizgiin ve graded mesh in en iyi
secimlerinin kullanildig1 Sekil 2.2-2.4 te bir ka¢ defa gorsellestirilmistir. Baglangi¢ sartlarinda
hatada onemli derecede indirgeme elde edildi. Bu sekilde Burger denkleminin ¢oziimiinde
graded meshin etkileri Onerilen algoritmalar igin azaltilir. Ayrica genelde GQBG metodunun
GCBC metodundan daha az hata sagladigi sonucuna variriz. Benzer simulasyon daha kiigiik
v = 0.0005 vizkozite sabiti kullanilarak yriitiiliir. Boylece, sok dalga siddeti artar. Niimerik

semalarmm amaci diizgiin araliklar killanilarak yeniden ¢alistirmaktir. Niimerik ¢6ziimlerin
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perspektif goriiniisii Sekil 2.5 te verilmistir. Problem araliginda hata yigilmasi belirlendikten
sonra, ¢ < 1 parametresi se¢ilir ve en kiigiik hatay1 tespit etmek i¢in [0.9,1] araliginda 0.0001
arti ile tamamlanir. o = 1 segilmesinin sonuglar karsilastirildiginda, tanim kiimesi araliginda
en iyl o parametresi Cizelge 2.2° de sunulmustur. Sekil 2.6 ve Sekil 2.8° in her ikisinde de
t=1.7, t =25, t =3.25 zamanlarindaki hata dagilimlar1 diizglin mesh ile graded mesh

birlikte verilmistir.

Cizelge 2.1. Farkli zamanlarda v=0.005 ve at=0.01 i¢in L_x10° hata.

t=1.7 t=25 t=3.25
o 1 1.026 1 1.025 1 1.004
GQBG 1.77619 0.05197 |1.23401 ]0.04015 0.95663 0.68244
QBCM  |0.31153 0.18902 8.98390
CBCM 27.5770 25.1517 21.0489
t=17 t=24 t=3.1
2.576 1.242 0.688
t=1.7 t=25 1.017 t=3.25
o 1 1.016 1 0.39872 1
GCBC 2.72298 0.43406 |2.76426 9.25009 Tiimii i¢in
QBCM  |0.31153 0.18902 8.98390 9.25009
CBCM 27.5770 25.1517 21.0489
t=17 t=24 t=3.1
2.576 1.242 0.688
0.50 0.50
0.40 ~ e 0.40
S w235 D o]
. 0.10
X X
(a) GQBG (b) GCBC

Sekil 2.1. v=0.005, N=200, At=0.01.
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X X
(a) GQBG (b) GCBC
— diizgiin mesh
———————— graded mesh
Sekil 2.2. v=0.005, N=200, At = 0.01.
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Sekil 2.3. v=0.005, N=200, t=2.5.
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Sekil 2.4. v=0.005, N=200, t=3.25.
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Sekil 2.5. v=0.0005, N=200, At=0.01.
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Cizelge 2.2. Farkli zamanlarda v=0.0005 ve at=0.01 i¢in L_x10* hata.

t=17 t=25 t =3.25
o 1 0.9822 1 0.9668 1 0.9563
GOQBG 22.0620 | 3.52912 |18.2474 |3.01278 | 17.1378 2.54251
QBCM 13.8155 16.7712 13.8155
CBCM 27.5770 25.1517 21.0489
t=1.75 t=25 t
5.880 2.705 = 325
t=17 t=25 2.291 0.9869
o 1 1.016 1 0.9869 t =3.25 |5.79884
GCBC 22.4378 |0.43406 |16.0589 |5.52013 1
QCBC 13.8155 16.7712 14.8614
CBCM 27.5770 25.1517 13.8155
t=175 t=25 21.0489
5.880 2.705 t=3.25
2.291
0.0250 5 0.0250 4
0.0200 0.0200
0.0150+ 0.0150 +
0.01004 0.0100 4
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0.0000 ‘\, T ., 0.0000 —r— IJ S Y
0.00 020 040 060 080 1.00 0.00 020 040 0.60 0.80 1.00
X X
(a) GQBG (b) GCBC

— diizglin mesh

graded mesh

Sekil 2.6. v=0.0005, N=200, t=1.7.
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Sekil 2.7. v=0.0005, N=200, t=2.5.
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0.00 020 040 0.60 0.80 1.00 0.00 020 040 0.60 0.80 1.00
X X
(a) GQBG (b) GCBC

—— diizgiin mesh

graded mesh

Sekil 2.8. v=0.0005, N=200, t=3.25.
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3. DUZENLENMIS UZUN DALGA (RLW) DENKLEMININ PETROV - GALERKIN
METODU iLE NUMERIK COZUMU

3.1. Giris

Bu boéliimde diizenlenmis uzun dalga denkleminin Petrov Galerkin metodu ile niimerik

¢Oziimii incelenecektir.

Bore, iki farkli su akisi arasindaki doniisiim bolgesidir. Cogu bore uzunlugu suyun
derinliginin birkag kat1 olan, tiirbiilans kiran su bdlgeleridir. Bununla birlikte, eger sudaki seviye
degisimi suyun derinliginden ¢ok daha az ise bore zayiftir ve dalga boyu suyun derinligine
kiyasla uzun olan ve bir¢ok dalgadan olusan bir seriden olusur. Bir bore, bir su akisinin yatay
bir kanaldaki durgun suya iletilmesiyle olusabilir. Durgun suya dogru akabilmesi igin, hareketli
suyun daha derin olmasi gerekir. Eger hareketli su ile durgun su arasindaki doniisiim ilk basta
cok hafif bir egime sahipse, egim diklesecek ve bir bore olusturacaktir. Su yiizey seviyesindeki
degisimin esas su derinliginin 0.28 inden daha az oldugunda bore un dalgali bore oldugunu
gosteren deneysel kanit vardir. Oran 0.28 ve 0.75 arasinda ise, hala dalgalar vardir ancak
birincisi kirillan dalgadir. Daha yiiksek oranlarda dalgalanma olmaz. Peregrine, diizenlenmis

uzun dalga denklemini bir dalgali bore igin esas denklem olarak ilk kez ortaya koyan kisidir.

x mesafesi ve U su yiiksekligi, h su derinligi ve t zamani (h/g)'/? ile &lgiiliir. Burada

g yergekimi ivmesidir. RLW denklemi

j VNP

a ox - ox Moxat G-

Fiziksel smir kosullar1 U —» 0 iken |x| — oo gerektirir. U (x,t) solitary dalga

¢Oziimiine sahiptir.

U (x ,t)=3csech2£ /m[x—xo —(1+c)t]} (3.2)

Bu ¢6ziim (Gardner vd.,1990) ile verilen ii¢ sabit degeri saglar. Bu sabitler;

I, :Tu dx, I, :T{UZ +ﬂ(%j2 }dx A, :T[U3 +3U° Jdx (3.3)

—0 —0

seklindedir.
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I; ,1, ve I3 sabitleri niimerik algoritmanin konumunu kontrol eder. Bu korunumu

kontrol etmek i¢in gerekli 6l¢iitler L, ve L., hata normlari ile gergeklestirilir. Buna gore

L, =Uc-U", =\/{hi|uf U 2} (3.4)

Ve

L, =U°-U", =max|u; U (3.5)

niimerik ve analitik ¢dziimler arasindaki maksimum farkliliklar 6l¢iiliir.
3.2. B- Spline Metodlar
Bu boliimde kuadratik spline sonlu elemanlar kullanilarak
a=xXgc X1 <+ <xy=Db
[a, b | araliginda bir ¢6ziim elde edilecektir. [x,;, , X;n41] aralig1 tizerinde U degiskeni
U =Q 8,1 +Qy I + Qs O (3.6)
seklindedir. Burada §,,, zamana bagli hesaplanacak parametrelerdir.

0 <§¢ <1 olmak iizere hg =x — xp, seklinde § ise (3.7) , (3.8) , (3.9) baz

fonksiyonlar kullanilir.

Qui=1-2&+¢&* (3.7)
Q, =1+2¢£-2¢° (3.8.)
Qm+1 :é:Z (39)

diigiim noktalarindaki x,,, degerlerinde

U, =654 +6, (3.10)
.2
U, :E(é'm —§m71) (3.11)
seklindedir.

(3.1) Denklemine V,, agirlik fonksiyonu ile (Burgers,1948) Petrov — Galerkin metodu
uygulandiginda zayif form
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b 3]
| Z+T 0 T k=0 (3.12)
Frlet o ax o oax D adat

buradam=0, 1, ..., N-1 seklindedir. Agirlik fonksiyonu V,, ile ifade edilir.

Xm S X S Xmya

1 <x <
Vn = { 0 X <Xy X > Xmaq (3.13)

(3.12) denklemi tek bir [ X, , X;n41 ] €lemant i¢in uygulanirsa

Xm 3
_[ Q+Q+UQ ﬂazu dx=0 (3.14)
ot oX oX ox“ ot

Xm+1

intagrasyon alindiginda

2 X1
j(aaltJj dx+[U ]j:w%[uz]:“—y{sxgt} =0 (3.15)

Xm+1

elde edilir.

Cranck — Nicolson yaklagiminin uygulanmasiyla U™*1/2 ve onun zamana gére tiirevi

ve (U*)™1/2 ifadeleri asagidaki sekilde elde edilir.

D= L (UE - UR), U = U UR (3.16)

1
Um — E (UTL Un+1) v

Burada n ve nt+1 zaman adimlarii gosterir. Bu degerler (3.15) de yerine yazildiginda

(3.10) ve (3.11) yardimiyla asagidaki yar1 — lineer tekrarlama bagintisi elde edilir.

(1_%_6_;1_3&[5” 52]j5ﬁ+( 12u 3At[m+1 ])5::1

2h  h*  2h h?

+(1+ﬁ bu 3“[5” +80, | jcs“*l

2h  h*  2h m
(222
2h h
3At 6u) .,
+( —E—h—fjamﬂ (3.17)

Uy , Uy sinir kosullart ile 6% + 63 = Uy ve 8y_, + 65 = Uy belirlenir.

Ik ve son denklemlerde m=0, N-1 icin asagidaki indirgenmis form elde edilir;
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(3 % 18_[11 3At|:5n 51n:|j5(;1+1+(1 ﬁ_6_’u %I:ém 5“]}5“1

2h  h®  2h 2h  h?
(3—% 182”}5“ (1—%—65}3“ #2838y (3.18)
2h  h 2h h 2h h
Ve
3At 6u 3At[ ., , o 3At 184 3Atr \ .
(1—E—F_ [é‘N 2 +0, _1:|j5N 12 (B_E_F_ [é‘N 2 +6, —l:|j§N :i
At 6u) ., 3At 18u) ., 3At, 3At
=122 50 4] 3+ — S —S—Ui-=U 3.19
(2h hzj’“( 2h hzj'“ 2h ¥ h M (3.19)
dir.

Yukaridaki yar1 — lineer denklem sistemi liggensel forma sahiptir. Bu yiizden ¢6ziim

Thomas algoritmasi kullanilarak direk iterasyon gerektirmeden hesaplanabilir.
Lineer kararlilik analizi; e hatasinin g biiylime faktoriiniin tipi Fourier modu &"
genligi ile

(%

§'= &"exp(ijkh) (3.20)

seklinde yapilir. Burada k mod sayist ve h eleman uzunlugu, niimerik algoritmanin

lineerlestirilmesi i¢in hesaplanan degerlerdir.

Lineerlestirmede lineer olmayan terimdeki U biiyiikliigliniin sabit oldugu farzedilir. Bu
sartlar altinda s hatas1 6” fonksiyonu gibi ayni sonlu farklar semasini karsilar ve (3.17)

denkleminin benzeri asagidaki formda elde edilir.
(1500 -5 ot 4+ 22 o o200 -5 o
2h h 2h h

=( +%—6—fj521 ( 12“}5” ( ﬁﬁ—ﬁ‘jéﬁm (3.21)
2h h h? 2h h

(3.20) ifadesi (3.21) de yerine yazildiginda k modu i¢in g biiylime faktori

_a-ib
a+ib

(3.22)

seklindedir. Burada
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a= (2 — 1:—2M) cos[kh] + (4 + 1:_2/1)
ve
b= g sin[kh]
2h
dir.

(3.22) de verilen sabit degerler alinarak

lgl=Jgg=1 (3.23)
elde edilir.

Bu yiizden lineerlestirme algoritmasi kosulsuz kararlhidir.
3.3. Niimerik Ornekler

(3.2) denkleminde [3, 5, 6] simulasyon sonuglari ile karsilagtirma yapmak i¢in solitary
dalga 0.3 genisligine sahip olsun diye —40 < x < 60,h = 0.125, At = 0.1 bolgesi ile xy = 0,
¢ = 0.1 ile baglangi¢ sartlar1 alinir. Simulasyon t = 20 zamaninda ¢aligtirilir ve L, ile L, hata
normlar1 ve analitik degeri Cizelge 3.1° de goriilen simulasyon yoluyla kaydedilmis I , I, I3

sabitleridir.

I, I; miktarlar1 yaklasik % 8 x 1073 e kadar degistirilirken I;, % 2 X 10~3 den daha az
degistirilir. Bu konumun derecesi kuadratik B-spline elemanlari ile bulunmasindan Galerkin

metodu ile bulunmasi kadar iyi degildir ama diger metodlarla bulunmasindan daha iyidir.
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Cizelge 3.1. Tek solitary dalga derinligi = 0.03, h=0.125, At=0.1, -40 < X < 60, 1,=3.9799497,
1,=0.81046249, 1,=2.579007.

Metod Zaman |L, Lo I I I3

Petrov 0 0.002x 1073 | 0.007 x 1073 [3.97993 [0.810461 |2.57901

Galerkin 4 0.045x 1073 | 0.018 x 1073 [3.97995 |0.810459 |2.57900

Kuadratik 8 0.090 X 1073 | 0.034 x10~3 |3.97995 |0.810445 |2.57895
12 0137 x 1073 | 0.052 x 1073 [3.97995 |0.810435 |2.57892
16 0183 % 10-3| 0.069 x 1073 |3.97992 |0.810418 |2.57887
20 0.227 x 103 | 0.081 x 10~3 |3-97986 |0.810399 |2.57880

Galerkin 20 0.220 x 1073 | 0.086 x 1073 [3.97989 |0.810467 |2.57902

Kuadratik [43]

En kiiglik kareler

Dogrusal 20 4688 x 1073 | 1.755x 1073 |3.98203 [0.808650 |[2.57302

[45]

Sonlu eleman 20 196.1x 1073 | 67.35x 1073 [4.41219 |0.897342 |2.85361

Kiibik [43,46]

Solitary  dalganin  goriinimii ¢t = O ve t = 20 zamanlarinda  Sekil 3.1 de

karsilastirilmistir. t = 20 zamaninda dalganin genisliginin az miktarda parcalandigi aciktir.
(Konumsal/iig boyutta dagilimi) t = 20 zamaninda dalga goriiniimiinde hatanin konumunun
boliindiigii Sekil 3.2 de goriilmektedir. Maksimum hata; yaklasik +9 X 107° e kadar

degisiklikler ve maksimum titresimin her iki kenarina da yerlestirilmistir.



0.3

U 0.15-
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005
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-40 -20 0

Sekil 3.1. t = 0 ve t = 20 zamanlarinda Solitary dalganin gériiniimii.

510,

010, 4o

-5*10, -

O -
n
o
&
(=]
3

-40 -20

Sekil 3.2. t = 20 zamaninda dalga goériiniimiinde hatanin konumunun béliinmesi.
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3.3.1. Dalga olusumu

Bir dalga olusumunun gelisimi

U(x,0) =3 Uq [1 —tanh (";")] 3.24

baslangic sartlari ile calisacagiz.

Cizelge 3.2. Sabitler ve tek solitary dalga dalganin hata normlari i¢in derinlik = 0.03, h=0.25,
At=0.2,-80 < x <120.

Metod Zaman L, Lo I I, I3

0 0.021 x 1073 0.042 x 1073 1.205551 0.024167 0.072938
Petrov |4 0.014 x 1073 0.028 x 1073 1.205682 0.024167 0.072938
Galerkin |8 0.012 x 1073 0.019 x 10™3 1.205758 0.024168 0.072938
Kuadratik | 12 0.012x 1073 0.013 x 1073 1.205799 0.024167 0.072938
16  0.013x1073 0.008 x 1073 1.205816 0.024167 0.072938
20 0.014x 1073 0.006 x 1073 1.205815 0.024168 0.072938

Cizelge 3.3. Tek solitary dalganin hata hormu t=0, derinlik=0.03, -80 < x < 120.

h At L, Ly
0.125 0.1 | 0.065x 1073 |0.020x 1073
0.25 0.2 | 0.014x 1073 |[0.006 x 1073
0.5 0.4 | 0.050x 1073 |0.015x 1073

U(x,0) ve t = 0.0 zamaninda su yiizeyinin yiiksekligi denge seviyesinin (ekilibriyum)
izerinde oldugu goriiliir. U, biiylikliiglinlin su seviyesindeki degisiklik x = x, ve yiikseklikteki
degisiklik d dlciisii cevresinde yogunlasir.

Smir sartlart x > 00 icin U—>0 ve x — —oo igin U — Uy m gerektirir. I, I, I3

miktarlar artik sabit degildir fakat M; orani sonrasinda simulasyon yoluyla lineer olarak artar:

d d[* 1
a11=a-f_wde=U0+EU0=M1



d d[*
dat 2 " dt)_,
d
dt

2 ou 2 2 2 3

e 3
a4, :%f [U3 + 3U2] d,, = 3U2 + 3U3 + - U¢ = M,

4

28
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4. TEKIL PERTURBE ETME PROBLEMLERININ SONLU ELEMANLAR
COZUMLERI

4.1. Giris

Bu calismada tekil perturbe etme problemlerin ¢6ziimiinii u (0) = A ve u (1) = B

sinir sartlar ile birlikte ele alalim :
—eu +p(x)u +q(x)u=f(x), 0<x<1 (4.1)
u(0)=2Ave u(l)=p4 4.2)

burada € > 0 kii¢iik parametre, p(x),q(x), f(x) diizgin ve sirh fonksiyonlar, A, sonlu
sabitlerdir. Etki alanlarmin smirlarinda ince katmanlarin olma ihtimali, sorunun standart

bigcimde sayisal ayriklastirilmasini giivenilmez kilmaktadir.

Bu katmanlarin kalinlig1r € ‘a bagh oldugu igin simirsiz salimmlar € - 0 oldugun da
(4.1) denklemi igin alisilmig niimerik metodlar ile elde edilen yaklasim ¢oziimlerinde

gozlenebilir.

Bu c¢alismada kuadratik ve kiibik B-spline’ lar1 ile sonlu elemanlar metodu
kullanilmistir. Geometrik Graded mesh iizerinde bahsedilen B-spline ifadeleri verildikten sonra
(4.1) denklemi icin kolokeysin metodu uygulanmistir. kolokeysin metodunda kuadratik B-
spline’ lar1 kullanabilmek i¢in (4.1) denkleminde verilen bir 1. mertebeden birlesmis sistemde
—u' = v olarak diizenlenmistir. Bu sistem kuadratik B-spline kolokeysin metodu ¢alistirilarak

hesaplanmistir. Niimerik sonuglar bazi test problemlerinde 6rneklendirilmistir.

Kisaca ozetlemek gerekirse 2. boliimde, niimerik metodlar verilmistir. Uygulanan
yontemin etkinligini géstermek igin iki test problemi ¢alisilmis, elde edilen sonuglar daha 6nce

elde edilen sonuglarla sonraki boliimde karsilastirilmigtir.
4.2. B- Spline Metodlar:
Niimerik hesaplama igin, [0, 1] ¢6ziim bolgesi , x,,, diiglim noktalarinda alt araliklara
O=xg <1 < <xy=1

seklinde boliinmiistiir.
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Xma1 = Xm+ hm » hpm = 0hp_q [Xm,Xme1] aral@min biyikligidir ve o mesh
oran sabitidir. Geometrik olarak Graded meshi diizenlemek icin, hy boyutlu birinci elemanin

belirlenmesi gereklidir.
h0+ h1++ hN—l =1

1
1+ 04 624+ g1

ho

yazilir. Bu kisimda eger ¢ mesh orami 1 alimirsa araliklar diizglin olacaktir. Sol sinirda ince
mesh elde etmek icin, o, o > 1 olarak se¢ilmelidir. Diger taraftan, sag sinirda mesh boyutunu

daha kiiciik yapmak i¢in, o, ¢ < 1 se¢ilmelidir.
4.2.1. Kuadratik B- spline kolokeysin metodu (QM)

Geometrik Graded mesh iizerinde kuadratik B-spline fonksiyonlar asagidaki formda

verilir.
Q (hm - 5)2 g,
m-1 1 2 _ 2
Qn = 5 {fm+2hma? 1+ 0)¢°, (4.3)
Qmar £

Burada ¢ = x—x,, ve 0 < & < h,, dir. Kuadratik B-spline bu ii¢ eleman
tarafindan kaplanir.. Herhangi bir Q,, Kuadratik B-spline fonksiyonu ve onun tiirevleri
[Xm—1, Xm+2] araligi disinda sifirdir ve bu ylizden bir eleman ti¢ ardigik kuadratik B-spline’ lar
tarafindan kaplanir. Kuadratik B-spline {Q_;,Qg, ..., Qy } kiimesi tanimlanan bdlge tizerinde

taban fonksiyonudur.Bdylece uy yaklasimi, u analitik yaklasimi i¢in
— VN
Uy = m= -1 5QO (4-4)
seklindedir.

Burada §,, bilinmeyen parametrelerdir. x,, noktalarinda  Q,, degerleri (4.4)

denkleminde yerine yazilirsa

Uy = U(Xy) = 061 + O, 4.5)

o
7 (5m - 6m—1)

u;n = u,(xm) = n
m

u nodal degeri ve u’ tiirevi 6, parametreleri cinsinden (4.5) seklinde ifade edilir.
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Kuadratik B-spline’ lar kullanilarak diizgiin ¢6ziimler elde etmek i¢in diferansiyel
denklemler en fazla 1. mertebeden tiirevlere sahiptir. (4.1) denkleminde —u' = v alinarak (4.1)

denklemini bir 1. mertebeden denklem sistemi haline getirilebilir.

ev' —p)v+q)u=f),

v+ u =0 (4.6)

Bdylece kuadratik B-spline’ lar niimerik ¢oziimler icin uygulanabilir hale gelmistir.

(4.6) sisteminde kolokeysin metodu uygulanirken, u,v fonksiyonlar1 ve onlarin

tiirevleri, (4.5) denkleminden elde edilen esitlikleri ile degistirilir. Bu yer degistirme sonucunda

asagidaki system ortaya ¢ikar.

2
£ 7 O = Vo) = P Yot + V) + Q) (0 Sus + ) = f o)

20
(0 VYm-1+ Ym) + h (6m — Op—1) =0
m

Gerekli islemler ile bu sistem asagidaki matris seklinde yazilabilir.
AX=F 4.7)

[ o0 @p1  qo Qo2
—Qgz3 O Qo3 1
q10 @11 1 a2

qno  Aan1 4N QAn2
—ay3 0 ayz 1]

X = [5—1 'y—1'50 'YO""'5N !yN]T!

F=1f,0,f1,0,...fn,0I"

Ve
Pm =P&Xm)  Gm = 4(xm) , fn = f(x) , m=0,1,..,N

20 20

20 4
,Om2 = —Pm O+ € — , Az = —

Om1 = —Pm0 — € h
m

dir.
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(4.7) matris sistemi 2 N + 4 bilinmeyen ve 2 N + 2 denkleme sahiptir. Bu sistemin
¢cOziimil i¢in, denklem ve bilinmeyen sayisi esit olmalidir. (4.2) smir sartlarindan ve (4.5)

denkleminden

A=
64 = pn , Oy =B — 0y

kolayca yazilabilir.

Bu esitlikler kullanilarak, §_; ve J§y bu sistemden yok edilebilir ve sonar (4.7) matris
denklemi Thomas algoritmasi ile ¢6ziilebilir. (4.5) denkleminde elde edilen &, parametreleri

yerine yazilarak niimerik ¢6ziim x,,, diigimde bulunmus olur.
4.2.2. Kiibik B- spline kolokeysin metodu (CM)

Graded kiibik B-spline ifadesi agagidaki gibi yazilabilir.

Qm-1 ( (hm — 5)3 a3,

Qn _ 1 -0 (@*+0+D)(hy— )*—60hyu(hy— &) —30%hE
Qm+1_h3m{ —(0%+0+1)83+30%h, 2 +30h% &+ h3,
Qm+2 k &3

(4.8)

Yukaridaki mesh {iizerinde { = x — x,,, ve 0 < ¢ < h,, dir. Bir ¢, kiibik B-spline,
dort ardigik sonlu eleman tarafindan kaplanir ve [x,,_5 , X;m42] araligt disinda sifira esittir. Bu
nedenle [X,, ,Xme1] elemanmt ¢py_q, Pm, dms1 Ve Pmez seklinde dort kiibik B-spline
tarafindan kaplanir. Bu B-spline’ lar (¢_;,¢q, ..., dn+1), [a,b] ¢bziim bolgesi iizerinde
parcali polinomlarin tabanidir. Bu o6zellikler kullanilarak, u analitik ¢éziimii i¢in niimerik

yaklagimi
Uy = ;Vnzl—l Om Pm (4.9)

seklindedir. Burada §,,, bilinmeyen parametrelerdir. Graded kiibik B-spline fonksiyonlar ikinci
mertebeden siireklilige sahiptir. Boylece yaklasim fonksiyonu da ikinci mertebeden siireklidir.
u degeri ve onun u',u’" konuma gore tiirevleri x,, diigiim noktasinda asagidaki ifadeye

sahiptir.
Up= 0381 +20(0+1)6,+ Spi1s
Ry Uy =30 [6pe1 + (02 —=1)6,, — 02611, (4.10)

hrzn Up =6 o*lo Om-1—(0+1)0n + Syl
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Kolokeysin yonteminin uygulanmasi (4.1) diferansiyel denklemini ile (4.10) ifadesinin

yer degistirilmesine dayanir. Bu denklem sistemi

602

30
—E&€—5 [U 6m—1 - (0 + 1)6m + 5m+1] + p(xm)_ [6m+1 + (02 - 1)6m - Uzgm—l]
h2, hin
+ Q(xm)[o-B(gm—l +20(0 + 1), + 8m+1] = f(xm)
m=0,.. N
seklinde verilir.

Bazi iglemler sonrasi bu sistem asagidaki matris sekline doniistiiriilebilir.
AX=F (4.11)

[fo1 6oz Bo3
A:| 011 012 O3

X= [5—1'50""'6N+1]T , F= [fo;fw---’fN]T

ve
603 303 s
Om1 = _gh_z_pm_‘l'chno- ’
m m
60%(c+1) 30 (6?2 —1)
Omz = 2 Pm +2qmo(o +1)
hs, hom
0 60? 30 N
= € 5~ Pm7— T qm,
pm = p(xm) ) Qm = Q(xm) Ifm = f(xm) ] m = 0' 'N
dir.

Bdylece N + 1 denklemde N + 3 bilinmeyene sahip bir denklem elde edilir. (4.2) sinir

sartlari; sistemden §_4 , 8y, parametrelerini yok etmemize olanak saglar. (4.2) denklemi (4.10)

denklemi ile birlikte kullanilarak sinir parametreleri
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—2(0+1) 1 1
8_1= T(SO— _61+0'_

5N+1 = _0-3 5N—1 - 20-(0- + 1)61\] + Uy

gibi bulunabilir. (4.11) de bu denklemlerin yerine yazilabilmesi ile system (N + 1) X (N + 1)
boyutta ¢oziilebilir. Uggensel band matris sistemine doniisiir. Thomas algoritmas1 kullamlarak
bu tip sistemler ¢oziilebilir. (4.10) denkleminde elde edilen &, parametrelerinin yerleri

degistirilerek ¢coziimler x,, diigiimiinde hesaplabilir.
4.3. Niimerik Ornekler

Verilecek iki drnekte niimerik metodlarin dogrulugu test edilecektir. Hatalar;

Lo =lu—uylew = mjaXIuj — (uy)j]

seklindedir.

Sinir katmanlar1 her iki 6rnekte de sag sinirlarda oldugu i¢in hatay1 en aza indirgemek
icin o mesh oramin en iyi se¢imi icin (0.1) araliginda arandi. Ilk drnek igin ¢oziim grafigi Sekil
4.1, Sekil 4.2, Sekil 4.3 ve Sekil 4.4 te, ikinci 6rnek igin Sekil 4.5, Sekil 4.6, Sekil 4.7 ve Sekil
4.8 de gosterilmistir. Bu sekiller € ve N = 20 iki farki i¢in grafiklestirilmistir. Elde edilen tiim
sonuglar aynm1 sekillerde numeric metodlarla dogrulanarak grafige yerlestirilmistir. Titresim,
diizgiin mesh i¢in goriiliir, 0 mesh oraninin en iyi se¢iminden sonar yok olur. Bazi € ne N igin,
bir ve ikinci ornekler icin sirasiyla; Cizelge 4.1 ve Cizelge 4.2 niimerik hatalar hesaplanarak

olusturulmstur.
Ornek 1: ilk 6rnek
—eu' +u' = exp(x),
u(0)=u(1)=0
kesin ¢oziim ile

1—exp(1—1/¢) + (exp(1) — Dexp((x — 1) /&)
1—exp(—1/¢)

u(x) = exp(x) —

1—¢

seklinde (Lorenz,1979) den alinir.
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Sekil 4.2. £ = 0.001 igin ¢oziim.

35



Cizelge 4.1. Ornek 1 igin niimerik hatalar.

€ N=16 N=32 N=64 N=128 N =256 N =512

QM 1/4  0.14E-2 0.36E-3 0.91E-4 0.23E-4 0.65E-5 0.15E-5
CM 0.33E-2 0.81E-3 0.20E-3 0.51E-4 0.13E-4 0.35E-5
0.45E-3 0.11E-3 0.28E-4 0.70E-5 0.18E-5 0.44E-6

QM 1/8 043E-2 0.11E-2 0.27E-3 0.66E-4 0.17E-4 0.45E-5
CM 0.82E-2 0.21E-2 0.52E-3 0.13E-3 0.32E-4 0.85E-5
0.66E-3 0.16E-3 0.41E-4 0.10E-4 0.26E-5 0.64E-6

QM 1/16 0.68E-2 0.17E-2 0.43E-3 0.11E-3 0.27E-4 0.74E-5
CM 0.14E-1 0.35E-2 0.87E-3 0.22E-3 0.54E-4 0.14E-4
0.81E-3 0.21E-3 0.51E4 0.13E4 0.32E-5 0.80E-6

QM 1/32 0.96E-2 0.24E-2 0.60E-3 0.15E-3 0.38E-4 0.95E-5
CM 0.20E-1 0.51E-2 0.13E-2 0.32E-3 0.80E-4 0.20E-4
0.89E-3 0.23E-3 0.58E-4 0.15E-4 0.36E-5 0.91E-6

QM 1/64 0.13E-1 0.32E-2 0.81E-3 0.20E-3 0.51E-4 0.13E-4
CM 0.27E-1 0.70E-2 0.17E-2 0.44E-3 0.11E-3 0.27E-4
0.91E-3 0.24E-3 0.62E-4 0.16E-4 0.39E-5 0.98E-6

QM 1/128 0.17E-1 0.42E-2 0.11E-2 0.26E-3 0.66E-4 0.17E-4
CM 0.32E-1 0.90E-2 0.23E-2 0.57E-3 0.14E-3 0.36E-4
0.80E-3 0.24E-3 0.64E-4 0.16E-4 0.41E-5 0.10E-5

QM 1/256 0.21E-1 0.53E-2 0.13E-2 0.33E-3 0.83E-4 0.21E-4
CM 0.28E-1 0.11E-1 0.29E-2 0.72E-3 0.18E-3 0.45E-4
0.68E-3 0.21E-3 0.61E-4 0.16E-4 0.42E-5 0.11E-5

QM 1/512 025E-1 0.65E-2 0.16E-2 041E-3 0.10E-3 0.25E-4
CM 0.34E-1 0.14E-1 0.35E-2 0.88E-3 0.22E-3 0.55E-4
0.60E-3 0.18E-3 0.53E-4 0.15E-4 0.42E-5 0.11E-5

QM 1/1000 0.31E-1 0.77E-2 0.19E-2 048E-3 0.12E-3 0.30E-4
CM 0.42E-1 0.16E-1 0.42E-2 0.10E-2 0.26E-3 0.65E-4
0.55E-3 0.16E-3 0.46E-4 0.14E-4 0.39E-5 0.10E-5

Ornek 2: ikinci 6rnek icin [49] diferansiyel denklemini diisiinelim:

1 1

x+1u +x+2u:f(x)

—eu' +

u(0)=1+4+2"Y | y(1) =exp(l) +2

alindiginda

1 1
f(x) = (—e +—F+ )exp(x) + m2—1/e(x + 1)+1/e)

x+1 x+2

dir.



Bu problem i¢in tam ¢6ziim
u(x) = exp(x) + 27 V&(x + 1)(1+1/2)

seklinde verilir.
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Sekil 4.3. € = 0.01 igin ¢6ziim.

3| i U(x) 1
{ I/
1y
U(x) - /\ ) 3 —
£ ! : : )
2 il
1 RTARY d /
1 vy oy
| / Y { 2
177 !
i
R L e 1 i LA B B | L A —
00 0.2 0.4 06 08 1.0 0.0 02 04 06 08
X X

Sekil 4.4. € = 0.001 igin ¢oziim.



Cizelge 4.2. Ornek 2 igin niimerik hatalar.

€ N=16 N=32 N=64 N=128 N=256 N =512

QM 1/4 083E-5 0.23E-5 0.15E-5 0.42E-6 0.45E-6 0.48E-6
CM 0.39E-3 0.99E-4 0.25E-4 0.62E-5 0.15E-5 0.39E-6
0.12E-3 0.30E-4 0.75E-5 0.19E-5 0.47E-6 0.12E-6

QM 1/8 0.12E-3 0.30E-4 0.8l1E-5 0.23E-5 0.47E-6 0.46E-6
CM 0.24E-2 0.60E-3 0.15E-3 0.37E-4 0.93E-5 0.23E-5
0.52E-3 0.13E-3 0.33E-4 0.82E-5 0.20E-5 0.51E-6

QM 1/16 0.90E-3 0.22E-3 0.54E-4 0.14E-4 0.34E-5 0.14E-5
CM 0.68E-2 0.17E-2 043E-3 0.11E-3 0.27E-4 0.66E-5
, 0.18E-2 0.44E-3 0.11E-3 0.28E-4 0.70E-5 0.17E-5
QM 1/32 027E2 0.67E-3 0.17E-3 0.42E4 0.10E4 0.35E-5
CM 0.13E-1 0.33E-2 0.83E-3 0.21E-3 0.52E-4 0.13E-4
A 0.45E-2 0.11E-2 0.27E-3 0.67E-4 0.17E-4 0.42E-5
QM 1/64 050E-2 0.13E-2 0.32E-3 0.79E4 020E4 0.55E-5
CM 0.21E-1 0.53E-2 0.13E-2 0.33E-3 0.83E-4 0.21E-4
0.82E-2 0.25E-2 0.60E-3 0.15E-3 0.37TE-4 0.92E-5

QM 1/128 0.76E-2 0.19E-2 0.48E-3 0.12E-3 0.30E-4 0.75E-5
CM 0.29E-1 0.77E-2 0.19E-2 0.48E-3 0.12E-3 0.30E-4
0.80E-2 043E-2 0.13E-2 0.31E-3 0.77E-4 0.19E-4

QM  1/256 0.11E-1 0.26E-2 0.65E-3 0.16E-3 0.41E-4 0.10E-4
CM 0.38E-1 0.10E-1 0.26E-2 0.64E-3 0.16E-3  0.40E-4
0.45E-2 0.42E-2 0.22E-2 0.66E-3 0.16E-3 0.39E-4

QM 1/512 0.13E-1 0.33E2 0.83E-3 0.21E-3 0.52E-4 0.13E4
CM 0.52E-1 0.13E-1 0.33E-2 0.82E-3 0.21E-3 0.51E-4
0.19E-2 0.24E-2 0.22E-2 0.11E-2 0.33E-3 0.80E-4

QM 1/1000 0.13E-1 040E-2 0.10E-2 0.25E-3 0.63E-4 0.16E-4
CM 0.44E-1 0.16E-1 0.40E-2 0.10E-2 0.25E-3 0.63E-4
0.62E-3 0.12E-2 0.13E-2 0.11E-2 0.56E-3 0.16E-3
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5. BURGER DENKLEMININ B- SPLINE KOLOKEYSIN METODLARI iLE
NUMERIK COZUMLERI

5.1. Giris

Parcali konum-zaman Burger denkleminin her ikisinin de niimerik ¢éziimii yapilmistir.
Parcali-zaman Burger denklemi i¢in kiibik B-spline kolokeysin metodu uygulanmistir. Parcali-
konum Burger denkleminin niimerik ¢oziimiinii elde etmek icin ise kuadratik B-spline metodu
kullanild.

Iki test problem igin niimerik hesaplamalar yiiriitiilmiis ve kullanilan bu metodlarin

sonuglari, teorik sonuglarla ve birbirleri ile karsilastirilmistir.
5.2. B —Spline Metodlar1
Bir boyutlu Burger denklemi
u,+uvu,-vU,, =0, (5.1

Seklindedir. Burada v > 0 sabiti ve x ve t sirasiyla konum ve zamana gore tiirevleri

belirtir. Baslangic ve sinir kosullar1 asagidaki gibi verilsin.
Ux,0)=f(x), a<x<bh (5.2)
U(a,t) =a,, Ub,t)=a, , te€][0,T] (5.3)
Calisma boyunca a < x < b ¢6ziim bolgesinin diizgiin bir kismi olarak x,,, digimii ve
h=x,—Xn_1, m=1,..,N, a=xg<x;<-<xy=b
almacaktir.
5.2.1. Kuadratik B- spline kolokeysin metodu (QBCM)

Kuadratik B-spline kolokeysin metodunun dogrudan uygulanmasi, denklemde diizgiin

coziimler elde etmek i¢in birinci mertebeden tiirevlerini gerektirir.

Burger denkleminin kuadratik B-spline kolokeysin metodu ile ¢6ziimiine baslayabilmek
icin , V = —=U, alinarak konum pargalamasi yapilacaktir. Bdylece Burger denklemi birinci
mertebeden tiirevler iceren denklem sistemine doniisiir. Denklem sisteminde, U,V bilinmeyen
fonksiyonlar1 ve onlarin konuma gore tiirevleri olan U,,V, kuadratik B-spline tarafindan

ayriklastirlir.
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Qm(x), m= _1;"-;N;

(xm+2 - x)z - 3(xm+1 - x)z + 3(xm - x)z ’ [xm—lwxm]

Qm(x) — i — (xm+2 - x)z - 3(x‘i’n+1 - 'x)zl [xmr xm+1] (54)
h? (xm+2 - x)z ’ [xm+1rxm+2]
0 , diger durumlarda.

Qm(x), x, digiim noktalarinda m =0, ..., N i¢in B-spline kuadratik fonksiyonlar
olsun. Bu kuadratik B-spline Q,,(x) fonksiyonlar1 [a, b] ¢6ziim bolgesinde bir baz olustururlar.
Birinci mertebeden zamana gore pargalanmis Burger denklemi ve V(x,t) = —U,(x, t) alinarak

U ve V igin asagidaki denklem sistemini verir.
U —UV+vl. =0 (5.5)
V+U,
bu denklem i¢in baslangi¢ sinir kosullart
U(a,t) =ay, U, t) =a,, V(a,t) =V (b,t)=0, t €[0,T], (5.6)
U(x,0) = f(x), V(x,0) =—f"(x), a<x<bh
seklindedir.
Kolokeysin metodu (5.5) sisteminin yaklasim ¢6ziimlerini bulmak i¢in uygulanir.

Kolokeysin yaklagimi &,, ve o, eleman parametreleri agisindan U(x, t) ve V(x, t) igin

ifade edilebilir. Q,,, (x) kuadratik B-spline fonksiyonlar yardimiyla ve sirasiyla;
Uy(x,t) = Zm=—18m(©)Qm (), V(1) = =g 0m () Qm(x) (5.7)
m=-1,..,N;
dir.

O Ve o, eleman parametreleri, x,, digiim noktalarinda m =0, ..., N , (5.5) denklem
sistemini saglayan Uy ve Vy icin bulunacaktir. U,, , V,, degiskenleri ve bunlarin tiirevleri
U, Vs, (5.7) iginde degiskeninin yer degistirmesi ile temsil edilir ve eleman parametreleri

agisindan onlarin birinci mertebeden tiirevleri:
Um = U(.xm) = 6‘"’1—1 + 6‘"’1 ’
h Urln =h U’(xm) = 2(6m - 5m—1) ,

Vi =V(Xpm) = Oy + O
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hV,, =hV'(x;) =2 (0, — Om-1), (5.8)
seklindedir.

(5.5) sisteminde (5.7) - (5.8) kolokeysin yaklasimlar ve onun diiglim noktalarmdaki

degerleri kullanildiginda agagidaki lineer olmayan denklem sistemi ortaya cikar.
h (6,",1_1 + 6m) —hzy(opm_1+0y) +2V(—0yp_1 +0y) =0,

h (Um—l + Um) +2 (6m - 5m—1) =0, (5.9)

non

zamana gore tlirevi ifade eder ve z,, = §,,_1 + &, lineer olmayan terim olarak da
bilinir.

(5.9) sisteminde elde edilen &§,, ve g, parametrelerinin zaman ayriklastirmasi n ve
n+ 1 iki ardisik zamanl seviye arasinda interpolasyon ile yapilmistir. Boylece asagidaki

t =(n+ 1/2)At ve zamana gore tiirevi degistirilerek ve (5.9) sisteminde Crank-Nicholson

yaklasimi ile zaman tiirevi,

_SBPLSE o _ SR-SW

Sy . (5.10)
n+1 n
ot —a
3 ottl + ol . 43 m
m =TT Im T TN

seklindedir. Boylece 2N + 2 denklem, 2N + 4 bilinmeyenden olusan lineer olmayan bir sistem
elde edilir.

2hSPMY — Bioltt 4 2REET + Brpott
= 2h6pm_1 — Pm10m—1 + 2h85 — Pm2om
=260t — hottl + 26041 + hottt = 280, — hot_, — 261 — hat1,
m=0,..,N (5.11)
Pm1 = ZmhAt + 2v At, Lo = —Zmh At + 2V AL, 2z = 81 + Oy (5.12)

Uy=06_1+6, ve Vy=oy_1+ oy sinir kosullar1 (2N + 2) X (2N + 2) besgensel

matris sistemine (5.11) sisteminden §_; ve gy parametrelerini yok etmek i¢in uygulanir.

(5.11) denklem sistemindeki iterasyon i¢in &,, ve o,, baslangi¢ parametrelerine ihtiyag

vardir. Bunu yapmak i¢in t = 0 da baslangi¢ ve simir kosullar asagidaki sartlar1 gerektirir.
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(UN)x(al 0) = 0; (VN)x(a! 0) = 0; (513)
Uy(x,0) =U(x,,0), Vy(x,0) =V(x,,,0), m=0,..,N,

Bilinmeyen eleman parametrelerinin belirlenmesi i¢in agagidaki kosullar verilir.

U(a,0) U(a, 0)
8—01 = 2 4 6(()) = 2 4 67011 = U(xmr 0) - 81’91—1
0, =10 50 - V@D 50 — V(x,n,0) — 02 =0,..,N 5.14
1=, 00 ==, O =V(Xp,0) —0op_y, m=0,..,N. (5.14)

Eleman parametreleri belirlendikten sonra 87, ve o}, zaman olusumlari sistemden
bulunur. Herhangi bir diigiim degeri ve tiirevleri programin g¢aligmasi esnasinda (5.8) den
iyilestirilebilir. (5.11) sisteminin lineer olmama durumunu ortadan kaldirmak igin 821, gttt

parametreleri i¢in her n + 1 de asagidaki iki veya {ii¢ iterasyon kullanilarak daha iyi hale

getirilebilir.
()1 = §n +%(6n+1 — &M, (") = g™ +%(O.n+1 — ™), (5.15)
n n n n T n n n n T
8" =(0%,8,...8y) , o"=(0"0%,...00) - (5.16)

5.2.2. Kiibik B- spline kolokeysin metodu (CBCM)
Burger denklemi zaman degiskeni i¢in ikiye pargalanir.
U, +20U,=0, (5.17)
U + 2vU,,, =0.

Pargali-zamanli Burger denklemi ikinci mertebeden tiirevleri igerir. Bu yiizden
kolokeysin metodunda deneme fonksiyonlari i¢in kiibik B-spline segmeliyiz. Bu se¢im deneme

fonksiyonlarinin ikinci mertebeye kadar siirekliligini saglar.

Qn kibik B-spline sekli m=—1,.., N+ 1 , [a, blaraliinda asagidaki gibi

tanimlanir.
1
Qm(x) = s =

( (x — xm—2)3: [xm—ZIxm—l]

h® + 3h?(x — Xm-1) + 3h(x — xm—l)z —3(x - xm—1)3' [Xm—1,%m]
{ h3 + 3h2 (xm+1 - x) + 3h(xm+1 - x)Z - 3(xm+1 - X)3, [xm: xm+1] (5-18)
I (xm+2 - x)z ’ [xm+11xm+2]
k 0, diger durumlarda.
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Bu formun parcali-zamanli Burger denleminin yaklagan bir ¢éziimii aranr.

Un(x,t) = Z0EL 1 6 (0)Qm (8) (5.19)

6, katsayilari, N +1 kolokeysin noktasi ve sinir sartlarinda (5.17) denklemi Upy

degerini gerektirerek bulunur.

U nodal degeri, U’ birinci mertebeden tiirevi ve U’ ikinci mertebeden tiirevi x,,

diigiimlerinde (5.19) ve (5.18) de kiibik B-spline ifadeleri kullanilarak elde edilir.
Up=0m-1+46n + 6mns1,
hUp =36 me1 — Om-1) (5.20)
h2U}, = 6(8me1 — 26m + Sms1)
eleman parametreleri cinsinden 've " sirasiyla X’ in birinci ve ikinci tlirevlerini gosterir.

Kolokeysin metodunu uygulamak igin, kolokeysin noktalari diigiimlere denk olarak
se¢ilir ve sonra Uy, nodal degerleri ve (5.17) de U, ve Uy, ilk iki ardigik tiirevleri ile degistirilir.

Bu, birinci mertebeden adi diferansiyel denklemlerin matris sistemini asagidaki gibi verir.
o o o 6
6m_1 + 46771 + 6m+1 + Ezm(_é‘m_l + 5m+1) =0 ) (521)

o o 12
Om—1 + 46m + 6791+1 - ﬁv((sm—l — 26 +6m41) =0, (5.22)

non

zamana gore tiirevi ifade etmektedir ve z,, = 8,1 + 46y, + Opyq (5.21) in lineer

olmayan bir terimidir.
Om parametreler vektorli ve onlarin zaman tiirevleri (5.21) i¢in n ve n + 1/2 i¢in iki
zaman seviyesi arasinda lineer olarak interpolasyon oldugunu varsayalim.

n n+1/2 o
B = B 5r = L(smrV2 - g7), (5.23)

ve &,, parametreleri ve onlarin zaman tiirevleri (5.22) i¢inn + 1/2 ve n + 1 iki zaman seviyesi

arasinda interpole edilir.

_ 57‘fln+1+5;ln+1/2 o _ 677711+1_611;L’l+1/2

O =B — | §y, =S om (5.24)

Yukaridaki (5.21)-(5.22) denklemlerinde (5.23)-(5.24) ifadeleri yerlerine yazarak,
sirastyla N + 3 bilinmeyen parametrelerde N + 1 denkleme sahip her bir denklem lineer

olmayan bir sisteme neden olur.
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S + a0+ b ? =yl + €83 + Oy (5.25)
a6 + ag S + a, 60t = a65,7::11/2 + a76,7,ll+1/2 + a6677:lﬁ/2 , (5.26)
@, = 4h—6d At, ay = 16h + 244, as = 4h + 6d At, (5.27)

a,=h?>—-3vAt, as=4h®+6vAt, az=h?+3vAt.

(5.25) - (5.26) ¢ozilebilir sistemi var, U(a,t) = U,,U(b,t) = Uy smur sartlarinin
uygulanmasi (5.23) - (5.26) ifadeleri

parametrelerinin yok edilmesine yardimci olur.

(N + 1) x (N + 1) tiggensel band matris denklemi Thomas algoritmasi ile ¢oziilebilir.

m=-1,..,N + 1,621“/ z parametreleri bulunarak, (5.25) sisteminden &2%'1  ¢dziim

parametreleri (5.26) sisteminden elde edilir.

Coziim parametrelerini ele almadan énce baslangic ve smir sartlart kullanilarak &,

baslangi¢ parametreleri bulunur.

3
(Ux)n(x0,0) = n (81 —6-1) = Ux(x0,0),

Un(%),0) = 8—q + 46y + 81ny1 = U(x;,0), j=0,..,N, (5.28)

3
(Ux)n(xpy,0) = n (On+1 = On+1) = Ux(xy,0) .

Yukaridaki denklemler Thomas algoritmasi kullanilarak ¢6ziimii bulunabilen ii¢gensel
band matris sistemi elde edillir. (5.28) sistemi kullamlarak &,, yaklasimu bulundugunda, 8%
zaman parametreleri disinda (5.25) - (5.26) cebirsel sistemlerinden hesaplanir. 8™+ her bir
zaman adimmma gecmeden Once (5.15) iterasyonu lineer olmayan denklem sisteminin

gelistirilmesi i¢in iki veya ii¢ kez tekrar edilmelidir.
5.2. Niimerik Ornekler Ve Sonuclar

Burger denkleminin niimerik sonuglar iki test problem i¢in bulunmustur. Metodlarin

dogrulugu ise ayrik L, ve L., hata normlari i¢in hesaplanmuistir.

U = Uyloo = max;|U; — W), |, U = Ul = hE) (U - W) (5:29)
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a.Burger denkleminin sok-dalga ¢oziimii t, = exp(1/8v) i¢in

x/t

UCx,t) = 1+4(¢/to)exp(x?/avD) ’

t>1,0<x<1, (5.30)

analitik ¢oziimiine sahiptir. (5.2) denkleminde ¢ = 1 alinarak hesaplanan baslangic¢ sartlar1 ve
U(0,t) = U(1,t) = Osmur sartlart  kullanilmustir. Metodun gegerliligi i¢in problem [0,1]
araliginda daha 6nce kullanilan h = 0.005, At = 0.01 ve v = 0.005 ile ¢ozilmiistiir. Program
t = 3.25 zamanina kadar ¢aligtirilmigti. QBCM ve CBCM ‘nin sonuglar1 ve bazi zamandaki

analitik ¢6ziim Cizelge 5.1° de verilmistir.

Niimerik ¢oziimler uygun sinirlar igerisinde analitik ¢oziimleri gdstermistir. Norm
terimlerinde QBCM’ nin sonuglarinin CBCM’ nin sonuglarindan daha iyi oldugu goriilmiistiir.
Sonuglarin 6nceki hata normlari bir sonrakinden daha iyidir. Sonuglar karsilastirilir. Denklem
parcalandiginda Burger denklemi icin kiibik B-spline kolokeysin metodunun sonuglarindan
daha az hataya sahip oldugu i¢in QBCM kullanilmasiin avatajli oldugu goriilmiistiir. Fakat
CBCM kullanilarak da ayn1 sonuglar elde edilmistir. Sekil 5.1 ve Sekil 5.2° nin her ikisinde de
grafik ¢oziimleri t¢ = 3.25 olarak alinmistir. Toplam hata dagilimlari, sag sinirda yogunlasmig
bir sekilde Sekil 5.3 - Sekil 5.4°de t = 3.25’de gdsterilmistir. Bunun anlami hata da artisa neden

olmasidir.

Daha kiiciik v = 0.0005 vizkozite sabiti ile uygun sayisal testler yiirlitilmiistiir.
Hesaplanan sonuglar Cizelge 5.2° de verilmistir. Bir kez daha QBCM’ nin, CBCM den daha az
hata sagladigi goriilmiistiir. Sekil 5.5 ve Sekil 5.6 bazi zamanlarda niimerik ¢ozlimleri
gostermistir. Daha kii¢lik vizkozite degeri icin yayilma degeri daha diktir. Daha kii¢iik vizkozite
degeri kullanildikga hata artar. Sekil 5.7 ve Sekil 5.8 sekillerinin her ikisinde de hata dagilimlar
da t = 3.25 alinarak ¢izilmis, maksimum hata sokun merkezinde QBCM igin 0.014 ve CBCM
icin 0.021 olarak Sl¢lilmiistiir. Burger denkleminin B-spline Galerkin sonlu eleman ve kiibik B-
spline kolokeysin metodlarinin direk uygulanmasi, gosterilen sekillerin her ikisinden daha az

hata saglar.

b. ikinci test drnegi i¢in, Burger denkleminin 6zel ¢oziimii

X—ut—
n= W alindiginda,
U, t) = ZHt@demn g -y <1 ¢>0 (5.31)
1+expn

elde edilir.



Cizelge 5.1. h=0.005, 4=0.01 ve v= 0.005.

X QBCM CBCM Tam QBCM CBCM Tam QBCM CBCM Tam
t=17 t=17 t=17 t=23 t=25 =25 t=3)5 =35 (=315
0.1 05882 005882 005882 004000 004000 004000 003077 003077 003077
02 01764 011764 001765 008000 008000 008000 006154 006154 006154
03 017646 017646 07646 012000 012000 012000 009230 00930 009231
04 023517 0317 02317 01598 05998 015%8 002307 007 012307
05 029190 029192 029190 019982 019983 019983 005380 015380 (015380
06 020572 020492 029591 023811 023812 023812 0I8430 01830 (018430
0.7 004207 004299 004193 025302 02525 028310 021269 02169 021270
08 000063 000066 000065 010228 000269 01020 021838 021817 021844
09 000000 000000 000000 000553 000568 000554 010170 01014 010126
Lx10° 007215 246642 005103 211187 124901 192482
Lo x10° 031153 275770 018902 25517 898390 210489
t=17 t=24 t=3l
L[] 087 0423 0,235
Lx10°(1] 2576 1242 0.688
LX) 0857 0423 0.235
Lx10°(2) 2576 1242 0,688
Cizelge 5.2. h=0.005, 47=0.01 ve v= 0.0005.
X QBCM CBCM Tam QBCM CBCM Tam QBCM CBCM Tam
t=17 t=17 t=17 t=125 =25 t=25  t=325 =315 (=31
0.1 00582 005882 005882 004000 004000 004000 003077 003077 003077
0.2 0.11765 0.11765 0.11765 0.08000 0.08000 0.08000 0.06154 0.06154 0.06154
03 017646 007647 07647 01199 012000 012000 009232 009231 009231
04 023525 02359 02359 01598 016000 016000 012309 012308 012308
05 029414 029412 029412 020002 020000 020000 015383 015385 015385
06 035303 035294 035294 02405 024000 024000 08457 018461  0.18462
07 000001 000000 00000 028002 028000 028000 021536 021538 (021538
0.8 0.00000 0.00000 0.00000 0.00719 0.00845 0.00977 0.24615 0.24615 0.24615
09 000000 000000 000000 000000 000000 000000 012021 011037 012434
Lx10° 124624 246642 143951 211186 124624 192482
Lo x10° 138155 275770 167712 251517 138155 210489
t=175 t=25 t=325
LxIC(] 0235 0.567 0.308
Lox10°(1] 0688 5,880 2707
LxI0°[2 0567 0.308 0.239
Lx10°(2) 5880 2705 291
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6. SONUC VE ONERILER

Bu ¢alismada, Burger, RIw denklemleri ile tekil perturbe etme problemlerinin B-spline

fonksiyonlar yardimiyla niimerik ¢6ziimleri incelenmistir.

Burger denklemi i¢in graded mesh kullanilarak Kuadratik B-spline Galerkin ve Kiibik
B-spline Kolokeysin yontemleri uygulanmis ve bu ¢oziimlerin diizenli mesh ile elde edilen
coziimlerle karsilastirilmasi yapilmistir. Bu karsilagtirma sonucunda graded mesh ¢oziimlerinin

diizgiin mesh ¢oziimlerine gore daha etkili oldugu goriilmiistiir.

Burger denklemindeki vizkozite sabitinin farkli degerlerinin ¢odziime ekisi de test

problemi {izerinde gosterilmistir.

Rlw denklemi i¢in Petrov-Galerkin metodu ile ¢oziimii yapilmis ve L,, L, hata
normlarina gore incelemeler yapilarak etkili bir ¢6ziim elde edildigi niimerik 6rnekler tizerinde

gosterilmistir.

Tekil perturbe etme problemi icin graded mesh kullanilarak Kuadratik ve Kiibik

Kolokeysin yontemleri uygulanmis, Ly, hata normuna gore ¢oziimlerin etkinligi arastirilmstir.

Sonug¢ olarak bu calismada graded mesh ve diizglin mesh c¢o6ziimleri incelenmis,

genellikle graded mesh ¢oziimlerinin daha iyi sonug verdigi goriilmiistiir.

Daha ileriki g¢aligmalarda, diizgiin mesh ile yapilan niimerik ¢odziimlerin hatasini

azaltmak ve ¢ozlimii iyilestirmek i¢in graded mesh kullanilmasi 6nerilir.
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