
T.C 

BİTLİS EREN ÜNİVERSİTESİ 

LİSANSÜSTÜ EĞİTİM ENSTİTÜSÜ 

MATEMATİK ANABİLİM DALI 

 

 

DEFERRED ARİTMETİK İSTATİSTİKSEL 

YAKINSAKLIK 

 

 

YÜKSEK LİSANS TEZİ 

 

 

KADİR GÜL 

 

 

DANIŞMAN 

DOÇ.DR. NAZLIM DENİZ ARAL 

 

 

 

AĞUSTOS 2025 

BİTLİS  



T.C 

BİTLİS EREN ÜNİVERSİTESİ 

LİSANSÜSTÜ EĞİTİM ENSTİTÜSÜ 

MATEMATİK ANABİLİM DALI 

 

 

DEFERRED ARİTMETİK İSTATİSTİKSEL 

YAKINSAKLIK 

 

 

YÜKSEK LİSANS TEZİ 

 

 

KADİR GÜL 

ORCID: 0009-0002-4009-5799 

 

 

DANIŞMAN 

DOÇ. DR. NAZLIM DENİZ ARAL 

 

 

AĞUSTOS 2025 

BİTLİS  



T.C. 

BİTLİS EREN ÜNİVERSİTESİ  

LİSANSÜSTÜ EĞİTİM ENSTİTÜSÜ 

YÜKSEK LİSANS TEZ ÇALIŞMASI  

ETİK BEYANI 

Lisansüstü Eğitim Enstitüsü Anabilim Dalı Yüksek Lisans öğrencisiyim. 

Hazırlamış olduğum “Deferred Aritmetik İstatistiksel Yakınsaklık” başlıklı tezde 

sunduğum verileri, bilgileri ve dokümanları akademik ve etik kurallar çerçevesinde 

elde ettiğimi; tüm bilgi, belge, değerlendirme ve sonuçları bilimsel etik ve ahlak 

kurallarına uygun olarak sunduğumu; tez çalışmasında yararlandığım eserlerin 

tümüne uygun atıfta bulunarak kaynak gösterdiğimi; kullanılan verilerde herhangi bir 

değişiklik yapmadığımı; bu tezde sunduğum çalışmanın özgün olduğunu bildirir, aksi 

bir durumda aleyhime doğabilecek tüm hak kayıplarını kabullendiğimi beyan ederim. 

……./……./2025 

 

 

İmza 

Kadir GÜL 



T.C. 

BİTLİS EREN ÜNİVERSİTESİ  

LİSANSÜSTÜ EĞİTİM ENSTİTÜSÜ 

TEZ YAZIM KILAVUZU UYGUNLUK BEYANI 

“Deferred Aritmetik İstatistiksel Yakınsaklık” başlıklı yüksek lisans tezi 

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü Tez Yazım Kılavuzuna uygun 

olarak hazırlanmıştır. ……./……../2025 

 

 

Tezi Hazırlayan       Danışman 

 

       İmza İmza 

Kadir GÜL   Doç.Dr. Nazlım Deniz ARAL 

   

 

 

 

 

 

Matematik Anabilim Dalı Başkanı 

 

İmza 

 

 

Prof. Dr. Hatice KUŞAK SAMANCI



 
 

T.C. 

BİTLİS EREN ÜNİVERSİTESİ 

LİSANSÜSTÜ EĞİTİM ENSTİTÜSÜ 

TEZ ONAY SAYFASI 

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü Matematik Anabilim Dalı 

öğrencisi Kadir GÜL tarafından hazırlanan “ Deferred Aritmetik İstatistiksel 

Yakınsaklık ” adlı Yüksek Lisans Tezi ile ilgili tez savunma sınavı, 

……./……../2025 tarihinde yapılmış ve tezin oy birliği ile kabul edilmesine karar 

verilmiştir. 

 

JÜRİ: İMZA 

 

Danışman: Doç. Dr. Nazlım Deniz ARAL 

(Bitlis Eren Üniversitesi)  

 

Üye: Unvanı Adı SOYADI 

(Üniversite Adı)  

 

Üye: Unvanı Adı SOYADI 

(Üniversite Adı)  

 

 

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü Yönetim Kurulunun …………… 

tarih ve ………… sayılı kararıyla jüri tarafından kabul edilmiş bu çalışmanın yüksek 

lisans / doktora tezi olarak kabulü onaylanmıştır. 

 

…./…../2025 

                                                                             Prof. Dr. Mehmet Bakır ŞENGÜL 

                                                                                               Enstitü Müdürü 



I 

T.C. 

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü 

Matematik Anabilim Dalı 

DEFERRED ARİTMETİK İSTATİSTİKSEL YAKINSAKLIK 

Yüksek Lisans Tezi 

Kadir GÜL 

Doç. Dr. Nazlım Deniz ARAL 

Ağustos 2025 

ÖZET 

Bu tez çalışması beş bölümden oluşmaktadır. Birinci bölümde, konuya dair 

literatürde yer alan önceki çalışmalar hakkında genel bir bilgi verilmiştir. İkinci 

bölümde ise “Temel Tanımlar ve Teoremler” başlığı altında Deferred Cesàro 

yakınsaklık, Deferred istatistiksel yoğunluk, Deferred istatistiksel yakınsaklık, 

aritmetik istatistiksel yakınsaklık ve aritmetik istatistiksel süreklilik kavramları 

tanıtılmıştır. Üçüncü bölümde, tez çalışmamızda elde edilen özgün sonuçlar 

sunulmuştur. Bu kapsamda, Deferred aritmetik istatistiksel yakınsaklık kavramı 

tanımlanmış ve temel özellikleri incelenmiştir. Ayrıca, Deferred aritmetik istatistiksel 

süreklilik kavramı tanımlanarak bu kavrama ilişkin bazı sonuçlara ulaşılmıştır. 

Dördüncü bölümde ise elde edilen bulgular doğrultusunda alana katkı sağlayacak yeni 

çalışma önerileri verilmiştir. Beşinci bölümde ise tezde yararlanılan kaynaklar 

listelenmiştir. 

Anahtar Kelimeler: İstatistiksel yakınsaklık, Aritmetik yakınsaklık, 

Aritmetik süreklilik, Deferred cesaro yakınsaklık. 
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ABSTRACT 

This thesis consists of five chapters. In the first section, general information is 

given about previous studies in the literature on the subject. In the second part, under 

the title of “Basic Definitions and Theorems”, the concepts of Deferred Cesàro 

convergence, Deferred statistical density, Deferred statistical convergence, arithmetic 

statistical convergence and arithmetic statistical continuity are introduced. In the third 

chapter, the original results obtained in our thesis are presented. In this context, the 

concept of Deferred arithmetic statistical convergence is defined and its basic 

properties are examined. In addition, the concept of Deferred arithmetic statistical 

continuity was defined and some results related to this concept were reached. In the 

fourth section, new study suggestions that will contribute to the field are given in line 

with the findings. In the fifth chapter, the sources used in the thesis are listed. 

Keywords: Statistical convergence, Arithmetic convergence, Arithmetic 

continuity, Deferred Cesaro convergence. 
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1. GİRİŞ 

Reel sayı dizilerinin limit davranışlarını anlamada önemli araçlardan biri olan 

klasik yakınsaklık kavramı genellemesi olarak istatistiksel yakınsaklık kavramı 1951 

yılında Fast (1951) ve Steinhaus (1951) tarafından tanımlanmış ve bu tarihten itibaren 

birçok matematikçinin ilgisini çeken bir konu haline gelmiştir. 

Agnew (1932) klasik Cesaro ortalamasının bir genellemesi olan Deferred 

Cesaro ortalaması kavramını tanıtmış ve bu kavram çok sayıda genel yakınsaklık 

kavramlarının gelişmesine katkı sağlamıştır. Deferred Cesaro ortalaması yardımıyla 

istatistiksel yakınsaklık kavramı aşağıdaki biçimde genelleştirilmiş ve Deferred 

istatistiksel yakınsaklık olarak adlandırılmıştır (Küçükaslan ve Yılmaztürk, 2016): 

lim
𝑛→∞

1

𝑞(𝑛)−𝑝(𝑛)
|{𝑝(𝑛) ≤ 𝑘 < 𝑞(𝑛): |𝑥𝑘 − 𝑙| ≥ 𝜀}| = 0. 

Bu tanım yardımıyla hem yeni sonuçlar elde edilmiş hem de mevcut birçok 

sonucun genelleştirmesi yapılmıştır.  

Çift diziler için deferred istatistiksel yakınsaklık (Dağadur ve Sezgek, 2016; 

Kişi ve Güler, 2019; Ulusu ve Gülle, 2022) çalışmalarda ele alınmış, topolojik 

gruplarda Şengül, Et ve Çakallı (2019) tarafından, metrik uzaylarda ise Et, Çınar ve 

Şengül tarafından (2019) incelenmiştir. Ayrıca, küme dizileri için Et ve Yılmazer 

(2020) tarafından, nötrosofik normlu uzaylarda ise Debnath, Debnath ve Choudhury 

(Debnath, Debnath ve Choudhury, 2022) tarafından incelenmiştir. Bu konu farklı 

araştırmacılar tarafından çalışılmıştır (Demirci ve Gürdal, 2021), (Et, 2021), (Huban 

ve Gürdal, 2021), (Nuray, 2020), (Patterson, Nuray ve Başarır, 2016). 

Aritmetik yakınsaklık kavramı ilk olarak Ruckle (2012) tarafından 

tanıtılmıştır. Bu yakınsaklık kavramından ve çarpan dizi tanımından yararlanarak 

Yaying ve Hazarika (2017a), aritmetik yakınsak çarpan dizi uzayı ve aritmetik 

toplanabilir çarpan dizi uzayı olmak üzere iki yeni dizi uzayı tanımlamış ve bu 

uzaylara ilişkin bazı temel özellikleri incelemişlerdir. Ayrıca, reel fonksiyonların 

sürekliliği ve dizilerdeki kompaktlık kavramları kullanılarak aritmetik süreklilik ve 

aritmetik kompaktlık tanımları verilmiştir. Daha sonra aritmetik yakınsaklık 

kavramından ve lacunary istatistiksel yakınsaklık tanımlarını kullanarak lacunary 

aritmetik yakınsaklık tanımları verilmiştir (Yaying ve Hazarika, 2020). Bununla 

birlikte invariant aritmetik istatistiksel yakınsaklık ve Lacunary invariant aritmetik 
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istatistiksel yakınsaklık, 𝐼-lacunary aritmetik istatistiksel yakınsaklık gibi kavramlarda 

Kişi tarafından incelenmiştir (Kişi, 2022a ve Kişi, 2022b). Nötrosofik normlu 

uzaylarda da aritmetik yakınsaklık ve aritmetik istatistiksel yakınsaklık çalışılmıştır 

(Bilgin, 2023). 

Bu tez çalışmamızda aritmetik yakınsaklık ve deferred istatistiksel yakınsaklık 

tanımlarından yararlanılarak deferred aritmetik istatistiksel yakınsaklık tanımı 

yapılmış ve bu kavramın bazı özellikleri incelenmiştir. Ayrıca, deferred aritmetik 

istatistiksel süreklilik kavramı tanımlanmış ve bu yeni kavrama ilişkin bazı sonuçlar 

elde edilmiştir. 
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2. MATERYEL VE YÖNTEM 

2.1. ARİTMETİK YAKINSAKLIK VE TOPLANABİLME  

Bir ∑ 𝑥𝑛 serisi ve onun kısmi toplamlar dizisi (𝑠𝑛) verildiğinde, eğer bazı yeni 

yöntemler kullanılarak (𝑠𝑛) dizisine bir 𝑠 sayısı karşılık getirilebiliyorsa, yani (𝑠𝑛) 

dizisi 𝑠-değerine yakınsak hale getirilebiliyorsa, o zaman bu dizi 𝑠 değerine 

limitlenebilir veya ∑ 𝑥𝑛 serisi 𝑠-değerine toplanabilirdir denir. Bu yeni yöntemlere 

limitleme veya toplanabilme metotları adı verilir. 

Örnek olarak bir toplanabilirlik türü olan (𝐶, 1) toplanabilirlik metodunu 

verebiliriz: 

Bir (𝑥𝑚) dizi Cesàro (C,1) ortalaması olarak adlandırılır eğer: 

1

𝑚
∑ 𝑥𝑘

𝑚

𝑘=1

 

şeklinde gösterilir. Eğer  𝑙𝑖𝑚
𝑚→∞

1

𝑚
∑ 𝑥𝑘 = 𝐿𝑚

𝑘=1  ise (𝑥𝑚) dizisi Cesàro yakınsaktır denir 

(Hardy, 1949). 

Ruckle tarafından aşağıda verilen toplam kavramından yola çıkarak yeni bir 

toplanabilirlik metodu ve buna bağlı bir yakınsaklık tanımı ortaya koyulmuştur. 

Tanımlanan bu yeni toplanabilirlik kuramı, klasik anlamda sonlu toplam ve mutlak 

yakınsaklık kavramlarını genelleştirmesidir. Her ne kadar klasik sonsuz toplam 

kavramı ile doğrudan karşılaştırılabilir olmasa da bir toplam uzayı oluşturur. 

Tanım 2.1.1. ℕ kümesi üzerinde tanımlı bir (𝑥𝑚) dizisi için ve herhangi bir  

𝑛 ∈ ℕ alındığında 

∑ 𝑥𝑚

𝑚|𝑟

 

gösterimi 𝑚 değerinin 1 ve 𝑟 dahil olmak üzere 𝑟 yi bölen pozitif tam sayılar üzerinde 

değiştiği ve bu değerler için  𝑥𝑚 sayılarının sonlu toplamını ifade eder. Genel olarak 

𝑚|𝑟 yi 𝑚, 𝑟 nın bir katıdır anlamında yazılır. Ayrıca, iki tam sayı 𝑚 ve 𝑟 için 〈𝑚, 𝑟〉 

sembolü bu iki tam sayının en büyük ortak bölenini (EBOB) ifade eder (Ruckle, 2012). 
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Tanım 2.1.2. ℕ  kümesi üzerinde tanımlı bir (𝑥𝑚) dizisi aritmetik olarak 

toplanabilirdir denir eğer her 𝜀 > 0 için bir 𝑟 tam sayısı vardır ve her 𝑚 tam sayısı 

için  

|∑ 𝑥𝑘

𝑘|𝑚

− ∑ 𝑥𝑘

𝑘|〈𝑚,𝑟〉

| < 𝜀 

şartı sağlanır (Ruckle, 2012). 

Tanım 2.1.3. (𝑥𝑚) dizisi aritmetik olarak yakınsaktır denir eğer her 𝜀 > 𝑜 için 

bir 𝑟 tam sayısı vardır ve her 𝑚 tam sayısı için, 

|𝑥𝑚 − 𝑥〈𝑚,𝑟〉| < 𝜀 

sağlanır (Ruckle, 2012). 

Örnek 2.1.1. (𝑥𝑚) = 5 sabit dizisi hem klasik anlamda yakınsaktır hem de 

aritmetik yakınsaktır.  

Örnek 2.1.2. (𝑥𝑚) =
1

𝑚
 dizisi ise klasik anlamda yakınsak olmasına rağmen 

aritmetik yakınsak değildir. ∀ 𝜀 > 0 için ∃𝑟 ∈ ℕ, ∀𝑚 : |𝑥𝑚 − 𝑥〈𝑚,𝑟〉| < 𝜀 koşulunu 

sağlayan diziler aritmetik yakınsaktır. |𝑥𝑚 − 𝑥〈𝑚,𝑟〉| = |
1

𝑚
−

1

〈𝑚,𝑟〉
| = |

〈𝑚,𝑟〉−𝑚

𝑚〈𝑚,𝑟〉
| farkı 

hiçbir sabit 𝑟 için  𝜀 > 0 olmak üzere 𝜀 dan küçük olacak şekilde sağlanmaz. Örneğin, 

𝑟 = 1 için 〈𝑚, 1〉 = 1 dir. Fark ise  

|𝑥𝑚 − 𝑥〈𝑚,𝑟〉| = |
1

𝑚
−

1

〈𝑚,𝑟〉
| = |

〈𝑚,𝑟〉−𝑚

𝑚〈𝑚,𝑟〉
| → 1 (𝑚 → ∞) olur. Bu fark 𝜀 < 1 

için sağlanamadığından aritmetik yakınsak değildir. 

2.2. YOĞUNLUK KAVRAMI VE İSTATİSTİKSEL YAKINSAKLIK 

Tanım 2.2.1. Doğal sayılar kümesinin bir alt kümesi olan   𝐷  için, bu kümenin 

eleman sayısı |𝐷| ile gösterilsin; yani 

|𝐷| = 𝑐𝑎𝑟𝑑𝐷 

olsun. 𝐷 ⊂ ℕ olmak üzere her 𝑛 ∈ ℕ için  

𝐷𝑛 = {𝑑 ≤ 𝑛 ∶ 𝑑 ∈ 𝐷} 

kümesi tanımlansın. Buna göre 𝐷 kümesinin alt ve üst yoğunlukları sırasıyla aşağıdaki 

limitler ile ifade edilir: 
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𝛿(𝐷) = lim
𝑛→∞

𝑖𝑛𝑓
|𝐷𝑛|

𝑛
 , 𝛿(𝐷) = lim

𝑛→∞
𝑠𝑢𝑝

|𝐷𝑛|

𝑛
. 

Eğer 𝛿(𝐷) = 𝛿(𝐷) eşitliği sağlanıyorsa, yani bu limitler çakışıyorsa, bu ortak 

limite 𝐷 kümesinin doğal yoğunluğu denir ve 𝛿(𝐷) ile gösterilir. Bu durumda doğal 

yoğunluk şu şekilde tanımlanır: 

𝛿(𝐷) = lim
𝑛→∞

|𝐷𝑛|

𝑛
= lim

𝑛→∞

1

𝑛
|{𝑑 ≤ 𝑛: 𝑑 ∈ 𝐷}|  

(Freedman ve Sember, 1981). 

Tanım 2.2.2. Reel (veya kompleks) sayı değerli bir dizi olan  𝑥 = (𝑥𝑚) için 

ve sabit bir 𝐿 ∈ ℝ olmak üzere, eğer ,∀𝜀 > 0 için 

𝛿({𝑚: |𝑥𝑚 − 𝐿| ≥ 𝜀}) = 0 

şartı sağlanıyorsa 𝑥 = (𝑥𝑚) dizisi 𝐿 sayısına “istatistiksel yakınsaktır” denir. Bu 

durumda yakınsama 𝑙𝑖𝑚 𝑥𝑚 = 𝐿(𝑆) biçiminde gösterilir (Fast, 1951). 

Örnek 2.2.1. 

𝑥𝒎 = {
1,                         𝑚 = 2𝑘

    0,       𝑑𝑖ğ𝑒𝑟 𝑑𝑢𝑟𝑢𝑚𝑙𝑎𝑟𝑑𝑎
      𝑘 = 0,1,2,3, … 

şeklinde tanımlanan dizi 0’a istatistiksel yakınsaktır. 

Dizi (𝑥𝑚) = (1,1,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0, . . . ) şeklinde yazılabilir. 

𝑙𝑖𝑚
𝑛→∞

1

𝑛
|{𝑚 ≤ 𝑛 ∶ |𝑥𝑚 − 0| ≥ 𝜀}| ≤ lim

𝑛→∞

⟦𝑙𝑜𝑔2𝑛⟧ + 1

𝑛
= 0 

olup 𝑙𝑖𝑚 𝑥𝑚 = 0(𝑆) elde edilir. 

Tanım 2.2.3. 𝐴 = (𝑎𝑛,𝑘) sonsuz matrisi ve 𝑥 = (𝑥𝑛) dizisi verilsin. Eğer 

𝑙𝑖𝑚
𝑛→∞

𝑥𝑛 = 𝑙 olduğunda 𝑙𝑖𝑚
𝑛→∞

(𝐴𝑥)𝑛 = 𝑙 ise 𝐴 = (𝑎𝑛,𝑘) matrisine “regüler matris” denir 

(Maddox, 1988). 

Keyfi bir 𝐴 = (𝑎𝑛,𝑘) matrisinin regüler olması, Silverman-Toeplitz koşulları 

olarak bilinen aşağıdaki teorem ile karakterize edilmektedir. 

Teorem 2.2.4. (Silverman-Toeplitz) 𝐴 = (𝑎𝑛,𝑘) matrisinin regüler olması 

için gerek ve yeter koşul; 

i) ∃𝑀 > 0 𝑖ç𝑖𝑛 , ‖𝐴‖ = 𝑠𝑢𝑝
𝑛

∑ |𝑎𝑛,𝑘| ≤ 𝑀 < ∞∞
𝑘=1  

ii) 𝑙𝑖𝑚
𝑛→∞

𝑎𝑛,𝑘 = ∞ , 𝑘 = 0,1,2, … . . 



6 

iii) 𝑙𝑖𝑚
𝑛→∞

∑ 𝑎𝑛,𝑘 = 1∞
𝑘=1  

koşullarının sağlanmasıdır (Maddox, 1988). 

Tanım 2.2.5. 

𝐶1[𝑛, 𝑚] = {

1

𝑛
, 0 < 𝑚 ≤ 𝑛

        0, 𝑑𝑖ğ𝑒𝑟 𝑑𝑢𝑟𝑢𝑚𝑢
 

şeklinde tanımlanan matrise birinci mertebeden Cesàro matrisi denir. 

𝐶1[𝑛, 𝑚] matrisinin Teorem 2.2.4’de verilen (𝑖), (𝑖𝑖) ve (𝑖𝑖𝑖) koşullarını 

sağladığı açıktır (Hardy, 1949). 

2.3. DEFERRED CESARO VE DEREFFED İSTATİSTİKSEL 

YAKINSAKLIK 

Tanım 2.3.1. 𝑝 = (𝑝𝑛) ve 𝑞 = (𝑞𝑛) pozitif tam sayıların  

                                          𝑝𝑛 < 𝑞𝑛   ve  𝑙𝑖𝑚
𝑛→∞

𝑞𝑛 = ∞             (2.1) 

koşulunu sağlayan diziler olmak üzere 

(𝐷𝑝,𝑞𝑥)
𝑛

=
1

𝑞𝑛 − 𝑝𝑛
∑ 𝑥𝑚, 𝑛 = 1,2,3, … . .

𝑞𝑛

𝑚=𝑝𝑛+1

 

 

biçiminde tanımlanan dönüşüme 𝑥 = (𝑥𝑚) dizisinin deferred Cesàro ortalaması 

denir. 𝐷𝑝,𝑞 −dönüşümünün regüler olduğu Silverman-Toeplitz teoreminden görülür 

(Agnew, 1932). 

Tanım 2.3.2.  𝑥 = (𝑥𝑚) dizisi için, 

lim
𝑛→∞

1

𝑞𝑛 − 𝑝𝑛
∑ |𝑥𝑚 − 𝐿| = 0

𝑞𝑛

𝑚=𝑝𝑛+1

 

sağlanırsa bu diziye güçlü 𝐷𝑝,𝑞-yakınsaktır denir ve bu yakınsama lim
𝑛→∞

𝑥𝑚 =

𝐿(𝐷[𝑝, 𝑞]) ile gösterilir. 

Tanım 2.3.3. Reel ya da karmaşık değerli bir dizi 𝑥 = (𝑥𝑚)  ve pozitif tam 

sayılar dizileri olan  {𝑝𝑛}𝑛∈ℕ ve {𝑞𝑛}𝑛∈ℕ  (2.1) de belirtilen koşulları sağlamak üzere 

verilsin. Eğer ∀𝜀 > 0 için 
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lim
𝑛→∞

1

𝑞𝑛 − 𝑝𝑛

|{𝑝𝑛 < 𝑚 ≤ 𝑞𝑛 ∶ |𝑥𝑚 − 𝐿| ≥ 𝜀}| = 0 

şartı sağlanıyorsa  𝑥 = (𝑥𝑚) dizisi 𝐿 sayısına Deferred istatistiksel yakınsaktır denir. 

Bu durum  lim
𝑘→∞

𝑥𝑚 = 𝐿(𝐷𝑆[𝑝, 𝑞]) şeklinde gösterilir (Küçükaslan ve Yılmaztürk, 

2016). 

Bu tanım; 

𝑝𝑛 = 0, 𝑞𝑛 = 𝑛 için istatistiksel yakınsaklığa indirgenir. 

𝑝𝑛 = 𝑘𝑛−1, 𝑞𝑛 = 𝑘𝑛 için lacunary istatistiksel yakınsaklığa indirgenir. 

𝑝𝑛 = 0, 𝑞𝑛 = 𝜆𝑛 için 𝜆 −istatistiksel yakınsaklığa indirgenir. 

Örnek 2.3.1.  𝑥𝑚 = {
 1 ,   𝑚 𝑡𝑎𝑚 𝑘𝑎𝑟𝑒 𝑖𝑠𝑒

0  , 𝑑𝑖ğ𝑒𝑟 𝑑𝑢𝑟𝑢𝑚
 dizisi için 𝑝𝑛 = 𝑛, 𝑞𝑛 = 2𝑛 

seçilirse 

1

𝑞𝑛−𝑝𝑛
|{𝑝𝑛 < 𝑚 ≤ 𝑞𝑛 ∶  𝑥𝑚 ≠ 0}| ≈

√𝑛

𝑛
=

1

√𝑛
→ 0 (𝑛 → ∞) 

elde edilir. Böylece 𝑙𝑖𝑚
𝑚→∞

𝑥𝑚 = 0(𝐷𝑆[𝑝, 𝑞]) dır. 

Teorem 2.3.4. Eğer bir dizi 𝑥 = (𝑥𝑚), 𝐿 sayısına güçlü 𝐷𝑝,𝑞-yakınsak ise o 

halde aynı dizi aynı limite deferred istatistiksel olarak da yakınsaktır (Küçükaslan ve 

Yılmaztürk, 2016). 

Sonuç: Eğer bir dizi 𝑥 = (𝑥𝑚), klasik anlamda 𝐿 sayısına yakınsıyorsa bu 

durumda aynı dizi aynı limite deferred istatistiksel olarak da yakınsaktır (Küçükaslan 

ve Yılmaztürk, 2016). 

Teorem 2.3.5. Eğer 𝑥 = (𝑥𝑚) dizisi sınırlı bir dizi ve 𝑙𝑖𝑚
𝑚→∞

𝑥𝑚 = 𝐿(𝐷𝑆[𝑝, 𝑞]), 

yani deferred istatistiksel yakınsıyorsa, bu durumda bu dizi aynı zamanda güçlü 𝐷𝑝,𝑞-

yakınsaktır; 𝑙𝑖𝑚
𝑚→∞

𝑥𝑚 = 𝐿(𝐷[𝑝, 𝑞]) dır (Küçükaslan ve Yılmaztürk, 2016). 

2.4. ARİTMETİK İSTATİSTİKSEL YAKINSAKLIK 

Tanım 2.4.1. Bir 𝑥 = (𝑥𝑚) dizisi aritmetik istatistiksel yakınsaktır denir, eğer 

𝜀 > 0 için öyle bir 𝑟 tamsayısı vardır ki  

lim
𝑡→∞

1

𝑡
|{𝑚 ≤ 𝑡: |𝑥𝑚 − 𝑥〈𝑚,𝑟〉| ≥ 𝜀}| = 0 dır. 
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Burada belirtilen 〈𝑚, 𝑟〉 ifadesi iki tam sayı olan 𝑚 ve 𝑟 nin en büyük ortak 

bölenini belirtmektedir (Yaying ve Hazarika, 2020).  

Tüm aritmetik istatistiksel yakınsak dizilerin kümesini belirtmek için 𝐴𝑆𝐶 ’yi 

kullanacağız. Böylece 𝜀 > 0 ve 𝑟 tamsayısı için  

𝐴𝑆𝐶 = { (𝑥𝑚): lim
𝑡→∞

1

𝑡
|{𝑚 ≤ 𝑡: |𝑥𝑚 − 𝑥〈𝑚,𝑟〉| ≥ 𝜀}| = 0 } 

şeklinde gösterilir. (𝑥𝑚) dizisinin 𝑥〈𝑚,𝑟〉’ ye istatistiksel olarak yakınsak olduğunu 

belirtmek için 𝐴𝑆𝐶 − 𝑙𝑖𝑚𝑥𝑚 = 𝑥〈𝑚,𝑟〉 ifadesini kullanacağız. 

Teorem 2.4.2: 𝑥 = (𝑥𝑚) ve  𝑦 = (𝑦𝑚) dizileri aritmetik istatistiksel yakınsak 

iki dizi olsun. 

(i)  Eğer 𝐴𝑆𝐶 − 𝑙𝑖𝑚𝑥𝑚 = 𝑥〈𝑚,𝑟〉 ve 𝑐 ∈ 𝑅 ise, o zaman 𝐴𝑆𝐶 − 𝑙𝑖𝑚𝑐𝑥𝑚 =

𝑐𝑥〈𝑚,𝑛〉 olur. 

(ii) Eğer 𝐴𝑆𝐶 − 𝑙𝑖𝑚𝑥𝑚 = 𝑥〈𝑚,𝑟〉 ve 𝐴𝑆𝐶 − 𝑙𝑖𝑚𝑦𝑚 = 𝑦〈𝑚,𝑟〉 ise 𝐴𝑆𝐶 −

lim(𝑥𝑚 + 𝑦𝑚) = (𝑥〈𝑚,𝑟〉 + 𝑦〈𝑚,𝑟〉)  dir (Yaying ve Hazarika, 2020). 

İspat: 

(i) 𝑐 = 0 olduğunda açıktır. Diyelim ki 𝑐 ≠ 0 o zaman 𝑟 tamsayısı için 

1

𝑡
|{𝑚 ≤ 𝑡: |𝑐𝑥𝑚 − 𝑐𝑥〈𝑚,𝑟〉| ≥ 𝜀}| =

1

𝑡
|{𝑚 ≤ 𝑡: |𝑥𝑚 − 𝑥〈𝑚,𝑟〉| ≥

𝜀

|𝑐|
}| 

bu da sonucu verir. 

(ii) 𝐴𝑆𝐶 − 𝑙𝑖𝑚𝑥𝑚 = 𝑥〈𝑚,𝑟〉 ve 𝐴𝑆𝐶 − 𝑙𝑖𝑚𝑦𝑚 = 𝑦〈𝑚,𝑟〉 yakınsaklık tanımları 

kullanılarak 

1

𝑡
|{𝑚 ≤ 𝑡: |(𝑥𝑚 + 𝑦𝑚) − (𝑥〈𝑚,𝑟〉 − 𝑦〈𝑚,𝑟〉)| ≥ 𝜀}|

≤
1

𝑡
|{𝑚 ≤ 𝑡: |𝑥𝑚 − 𝑥〈𝑚,𝑟〉| ≥

𝜀

2
}| +

1

𝑡
|{𝑚 ≤ 𝑡: |𝑦𝑚 − 𝑦〈𝑚,𝑟〉| ≥

𝜀

2
}| 

elde edilir. 

Şimdi Yaying ve Hazarika (Yaying ve Hazarika, 2017b) tarafından 

tanımlanmış aritmetik süreklilik ve fonksiyon dizilerinin aritmetik yakınsaklığı 

kavramlarını verelim. 
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2.5. ARİTMETİK SÜREKLİLİK 

Tanım 2.5.1. ℝ ‘nin bir 𝐸 alt kümesinde tanımlanan bir 𝑓 fonksiyonu, 

aritmetik yakınsak dizileri aritmetik yakınsak dizilere dönüştürüyor ise aritmetik 

süreklidir denir. Başka bir deyişle (𝑥𝑚) dizisi aritmetik yakınsak olması (𝑓(𝑥𝑚)) 

dizisinin de aritmetik yakınsak olduğu anlamına gelir (Yaying ve Hazarika, 2017b). 

Örnek 2.5.1.  𝑥𝒎 = {
  1,       𝑚 ≠ 5
  0,       𝑚 = 5

   dizisi ve 𝑓(𝑥) = 𝑥2 fonksiyonu verilsin. 

Verilen fonksiyon aritmetik yakınsaktır. 

Teorem 2.5.2. İki aritmetik sürekli fonksiyonun toplamı da aritmetik süreklidir 

(Yaying ve Hazarika, 2017b). 

İspat: 𝑓 ve 𝑔 ‘nin ℝ’ nin bir 𝐸 alt kümesi üzerinde aritmetik sürekli 

fonksiyonlar olduğunu kabul edelim. 𝑓 + 𝑔 fonksiyonunun 𝐸 üzerinde aritmetik 

sürekli bir fonksiyon olduğunu ispatlayalım. 

𝜀 > 0 ve (𝑥𝑚), 𝐸 üzerinde herhangi bir aritmetik yakınsak dizi olsun. 

Aritmetik sürekliliğin tanımı gereği (𝑓(𝑥𝑚)) ve (𝑔(𝑥𝑚)) dizileri aritmetik yakınsak 

dizilerdir. 

(𝑓(𝑥𝑚)) ve (𝑔(𝑥𝑚)) aritmetik yakınsak diziler olduğundan, 𝜀 > 0 ve pozitif 

bir 𝑟 tam sayısı ve her bir 𝑚 için 

|𝑓(𝑥𝑚) − (𝑓〈𝑚,𝑟〉)| ≤
𝜀

2
  ve  |𝑔(𝑥𝑚) − 𝑔(𝑥〈𝑚,𝑟〉)| <

𝜀

2
  

sağlanır. 

Şimdi her bir 𝑚 için 

|(𝑓 + 𝑔)(𝑥𝑚) − (𝑓 + 𝑔)(𝑥〈𝑚,𝑟〉| = | 𝑓(𝑥𝑚) + 𝑔(𝑥𝑚) − 𝑓(𝑥〈𝑚,𝑟〉) − 𝑔(𝑥〈𝑚,𝑟〉)| 

                                                           ≤ | 𝑓(𝑥𝑚) − 𝑓(𝑥〈𝑚,𝑟〉)| + |𝑔(𝑥𝑚) − 𝑔(𝑥〈𝑚,𝑟〉)| 

     <  
𝜀

2
+

𝜀

2
= 𝜀 

bulunur. Bu ise ispatı tamamlar. 

Teorem 2.5.3. İki aritmetik sürekli fonksiyonun farkı da aritmetik süreklidir 

(Yaying ve Hazarika, 2017b). 

İspat: Yukarıdaki teoremin ispatına benzer olarak, 𝑓 ve 𝑔’nin ℝ’ nin bir 𝐸 alt 

kümesi üzerinde aritmetik sürekli fonksiyonlar olsun. 𝑓 − 𝑔 fonksiyonunun aritmetik 
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sürekli olduğunu ispatlamak için, 𝜀 > 0 ve (𝑥𝑚), 𝐸 üzerinde herhangi bir aritmetik 

yakınsak dizi olsun. Aritmetik sürekliliğin tanımı gereği (𝑓(𝑥𝑚)) ve (𝑔(𝑥𝑚)) dizileri 

de aritmetik yakınsak dizilerdir. 

(𝑓(𝑥𝑚)) ve (𝑔(𝑥𝑚)) aritmetik yakınsak diziler olduğundan 𝜀 > 0 ve pozitif 

bir 𝑟 tam sayısı ve her 𝑚 için 

|𝑓(𝑥𝑚) − 𝑓(𝑥〈𝑚.𝑟〉)| <
𝜀

2
    ve  |𝑔(𝑥𝑚) − 𝑔(𝑥〈𝑚.𝑟〉)| <

𝜀

2
  

elde edilir. Her 𝑚 için, 

|(𝑓 − 𝑔)(𝑥𝑚) − (𝑓 − 𝑔)(𝑥〈𝑚.𝑟〉)| = |𝑓(𝑥𝑚) − 𝑔(𝑥𝑚) − 𝑓(𝑥〈𝑚.𝑟〉) + 𝑔(𝑥〈𝑚.𝑟〉)|

≤ |𝑓(𝑥𝑚) − 𝑓(𝑥〈𝑚.𝑟〉)| + |−𝑔(𝑥𝑚) + 𝑔(𝑥〈𝑚.𝑟〉)| <
𝜀

2
+

𝜀

2
= 𝜀 

elde edilir. Bu ise teoremi ispatlar. 

Teorem 2.5.4. Eğer 𝑓 bir aritmetik fonksiyon ise |𝑓| aritmetik süreklidir 

(Yaying ve Hazarika, 2017b). 

İspat: 𝑓, ℝ’ nin bir 𝐸 alt kümesi üzerinde aritmetik sürekli bir fonksiyon olsun. 

(𝑥𝑚)’nin 𝐸’ de herhangi bir aritmetik yakınsak dizi olduğunu varsayalım. Aritmetik 

sürekliliğin tanımı gereği (𝑓(𝑥𝑚)) dizisi aritmetik yakınsaktır. O halde 𝜀 > 0 için 

pozitif bir 𝑟 tamsayısı vardır öyle ki her bir 𝑚 için 

|𝑓(𝑥𝑚) − 𝑓(𝑥〈𝑚.𝑟〉)| < 𝜀 

dir. 

Her 𝑚 için, 

||𝑓|(𝑥𝑚) − |𝑓|(𝑥〈𝑚.𝑟〉)| = ||𝑓(𝑥𝑚)| − |𝑓(𝑥〈𝑚,𝑟〉)|| ≤ |𝑓(𝑥𝑚) − 𝑓(𝑥〈𝑚,𝑟〉)| < 𝜀 

bulunur. Bu ise ispatı tamamlar. 

Teorem 2.5.6. İki aritmetik sürekli fonksiyonun birleşimi yine aritmetik 

süreklidir (Yaying ve Hazarika, 2017b). 

İspat: 𝑓 ve 𝑔, ℝ kümesinin bir 𝐸 alt kümesi üzerinde iki aritmetik sürekli 

fonksiyon olsun. 

𝑓𝑜𝑔(𝑥𝑚) = 𝑓(𝑔(𝑥𝑚)) fonksiyonunun aritmetik sürekli bir fonksiyon 

olduğunu ispatlayalım. (𝑥𝑚) herhangi bir aritmetik yakınsak dizi olsun. 𝑔 aritmetik 

sürekli olduğundan, (𝑔(𝑥𝑚)) dizisi de aritmetik yakınsaktır. Ayrıca 𝑓’ nin aritmetik 
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sürekli olduğu verildiğinden, aritmetik yakınsak dizi (𝑔(𝑥𝑚)) aritmetik yakınsak 

diziye (𝑓(𝑔(𝑥𝑚)) dönüşür. Bu ise istenileni verir. 

Teorem 2.5.7. Eğer 𝑓, ℝ’nin bir 𝐸 alt kümesi üzerinde düzgün sürekli ise o 

zaman aritmetik süreklidir (Yaying ve Hazarika, 2017b). 

İspat:  𝑓, düzgün sürekli ve (𝑥𝑚) de 𝐸’ deki herhangi bir aritmetik yakınsak 

dizi olsun. 𝑓, 𝐸’ de düzgün sürekli olduğundan verilen 𝜀 > 0 için öyle bir 𝛿 > 0 sayısı 

vardır ki her 𝑥, 𝑦 ∈ 𝐸 için |𝑥 − 𝑦| < 𝛿, |𝑓(𝑥) − 𝑓(𝑦)| < 𝜀 dir. 

(𝑥𝑚) dizisi aritmetik yakınsak olduğundan aynı 𝛿 > 0 için bir pozitif 𝑟 tam 

sayısı vardır öyle ki her 𝑚 için |𝑥𝑚 − 𝑥〈𝑚,𝑟〉| < 𝛿 bu ise  

|𝑓(𝑥𝑚) − 𝑓(𝑥〈𝑚,𝑟〉)| < 𝜀 

dır. O halde her n için (𝑓(𝑥𝑚)) dizisi aritmetik yakınsaktır. Böylece 𝑓 fonksiyonu 

aritmetik süreklidir. İspat böylece tamamlanır. 

2.6. FONKSİYON DİZİLERİNİN ARİTMETİK YAKINSAKLIĞI 

Tanım 2.6.1. ℝ’nin bir 𝐸 alt kümesi üzerinde tanımlanan (𝑓𝑚) fonksiyon dizisi 

aritmetik yakınsak denir eğer herhangi bir 𝜀 > 0 ve ∀𝑥 ∈ 𝐸 için öyle bir 𝑟 pozitif tam 

sayısı vardır ki, tüm 𝑚 ∈ ℕ için; 

|𝑓𝑚(𝑥) − 𝑓〈𝑚,𝑟〉(𝑥)| < 𝜀    

dır (Yaying ve Hazarika, 2017b). 

Örnek: Her 𝑥 ∈ ℝ için,  𝑓𝑚(𝑥) = {
  3,       𝑚 ≥ 2 
  0,       𝑚 = 1

  dizisi aritmetik yakınsak bir 

fonksiyon dizisidir. 

Teorem 2.6.2. (𝑓𝑚), ℝ’ nin bir 𝐸 alt kümesi üzerinde tanımlanmış bir aritmetik 

fonksiyon dizisi ve 𝑥0, 𝐸’de bir nokta öyle ki  

lim
𝑥→𝑥0

𝑓𝑚(𝑥) = 𝑦𝑚         𝑛 = 1,2,3 … 

ise o zaman (𝑦𝑚) dizisi de aritmetik yakınsaktır (Yaying ve Hazarika, 2017b). 

Teorem 2.6.3. Eğer (𝑓𝑚) aritmetik sürekli fonksiyonlardan oluşan bir dizi ve 

(𝑓𝑚) dizisi 𝑓 fonksiyonuna düzgün yakınsak ise limit fonksiyonu olan 𝑓 de aritmetik 

süreklidir (Yaying ve Hazarika, 2017b). 
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Teorem 2.6.4. Aritmetik sürekli fonksiyonlar kümesi tüm sürekli fonksiyonlar 

kümesinde kapalıdır. Yani, 

𝑎𝑐𝑓(𝐸) = 𝑎𝑐𝑓(𝐸)̅̅ ̅̅ ̅̅ ̅̅ ̅ 

dır (Yaying ve Hazarika, 2017b).  
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3. BULGULAR VE TARTIŞMA 

Tanım 3.1. 𝑝 = (𝑝𝑛) ve 𝑞 = (𝑞𝑛), (2.1) koşulunu sağlayan diziler olmak 

üzere 𝑥 = (𝑥𝑚) dizisine deferred aritmetik istatistiksel yakınsaktır denir eğer her 𝜀 >

0 için öyle bir 𝑟  tamsayısı vardır ki 

𝑙𝑖𝑚
𝑛→∞

1

𝑞𝑛 − 𝑝𝑛
|{𝑝𝑛 < 𝑚 ≤ 𝑞𝑛 ∶ |𝑥𝑚 − 𝑥〈𝑚,𝑟〉| ≥ 𝜀}| = 0 

sağlanır. (𝑥𝑚) dizisinin deferred aritmetik istatistiksel olarak 𝑥〈𝑚,𝑟〉'ye yakınsak 

olduğunu göstermek için 𝐴𝑆𝐷[𝑝,𝑞] − 𝑙𝑖𝑚𝑥𝑚 = 𝑥〈𝑚,𝑟〉  ifadesini kullanacağız.  

Tüm deferred aritmetik istatistiksel yakınsak dizilerin kümesini 

𝐴𝑆𝐷[𝑝,𝑞] = {𝑥 = (𝑥𝑚): 𝑙𝑖𝑚
𝑛→∞

1

𝑞𝑛 − 𝑝𝑛
|{𝑝𝑛 < 𝑚 ≤ 𝑞𝑛 ∶ |𝑥𝑚 − 𝑥<𝑚,𝑟>| ≥ 𝜀}| = 0} 

ile göstereceğiz. 

Tanım 3.2. 𝑝 = (𝑝𝑛) ve 𝑞 = (𝑞𝑛), (2.1) koşulunu sağlayan diziler olmak 

üzere 𝑥 = (𝑥𝑚) dizisine güçlü deferred aritmetik yakınsaktır denir eğer her 𝜀 > 0 için 

öyle bir 𝑟  tamsayısı vardır ki 

𝑙𝑖𝑚
𝑛→∞

1

𝑞𝑛 − 𝑝𝑛
∑ |𝑥𝑚 − 𝑥〈𝑚,𝑟〉| = 0

𝑞(𝑛)

𝑚=𝑝(𝑛)+1

 

sağlanır. (𝑥𝑚) dizisinin kuvvetli deferred aritmetik olarak 𝑥〈𝑚,𝑟〉'ye yakınsak olduğunu 

göstermek için 𝐴𝐷[𝑝,𝑞] − 𝑙𝑖𝑚𝑥𝑚 = 𝑥〈𝑚,𝑟〉  ifadesini kullanacağız. 

Tüm kuvvetli deferred aritmetik yakınsak dizilerin uzayını aşağıdaki gibi 

tanımlayalım: 

𝐴𝐷[𝑝,𝑞] = {(𝑥𝑚): 𝑙𝑖𝑚
𝑛→∞

1

𝑞𝑛−𝑝𝑛
∑ |𝑥𝑚 − 𝑥〈𝑚,𝑟〉|

𝑞(𝑛)
𝑚=𝑝(𝑛)+1 = 0 𝑏𝑖𝑟 𝑟 𝑡𝑎𝑚𝑠𝑎𝑦𝚤𝑠𝚤 𝑖ç𝑖𝑛 }. 

Yukarıdaki tanımlar, 

𝑝𝑛 = 0, 𝑞𝑛 = 𝑛 için Tanım 3.1. aritmetik istatistiksel yakınsaklığa,                 

𝑝𝑛 = 𝑘𝑛−1, 𝑞𝑛 = 𝑘𝑛 için lacunary aritmetik istatistiksel yakınsaklığa indirgenir. 

Teorem 3.1.   𝑥 = (𝑥𝑚) ve 𝑦 = (𝑦𝑚)   iki dizi olsun. 

𝑖) Eğer 𝐴𝑆𝐷[𝑝,𝑞] − 𝑙𝑖𝑚𝑥𝑚 = 𝑥〈𝑚,𝑟〉 ve 𝑐 ∈ ℝ ise  𝐴𝑆𝐷[𝑝,𝑞] − 𝑙𝑖𝑚𝑐𝑥𝑚 =

𝑐𝑥〈𝑚,𝑟〉 . 
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𝑖𝑖) Eğer 𝐴𝑆𝐷[𝑝,𝑞] − 𝑙𝑖𝑚𝑥𝑚 = 𝑥<𝑚,𝑟> ve 𝐴𝑆𝐷[𝑝,𝑞] − 𝑙𝑖𝑚𝑦𝑚 = 𝑦〈𝑚,𝑟〉 , ise 

𝐴𝑆𝐷[𝑝,𝑞] − 𝑙𝑖𝑚(𝑥𝑚 + 𝑦𝑚) = (𝑥<𝑚,𝑟> + 𝑦〈𝑚,𝑟〉). 

İspat: (i) Sonuç 𝑐 = 0 ise açıktır.  𝑐 ≠ 0 olsun. O halde 𝑟 tamsayısı için 

1

𝑞𝑛 − 𝑝𝑛
|{𝑝𝑛 < 𝑚 ≤ 𝑞𝑛 ∶ |𝑐𝑥𝑚 − 𝑐𝑥<𝑚,𝑟>| ≥ 𝜀}| 

=  
1

𝑞𝑛 − 𝑝𝑛
|{𝑝𝑛 < 𝑚 ≤ 𝑞𝑛 ∶ |𝑐||𝑥𝑚 − 𝑥<𝑚,𝑟>| ≥ 𝜀}| 

=
1

𝑞𝑛−𝑝𝑛
|{𝑝𝑛 < 𝑚 ≤ 𝑞𝑛 ∶ |𝑥𝑚 − 𝑥<𝑚,𝑟>| ≥

𝜀

|𝑐|
}|   

elde edilir. Bu ise ispatı tamamlar. 

(ii) 𝐴𝑆𝐷[𝑝,𝑞] − 𝑙𝑖𝑚𝑥𝑚 = 𝑥<𝑚,𝑟> ve 𝐴𝑆𝐷[𝑝,𝑞] − 𝑙𝑖𝑚𝑦𝑚 = 𝑦〈𝑚,𝑟〉 olsun. 

1

𝑞𝑛 − 𝑝𝑛
|{𝑝𝑛 < 𝑚 ≤ 𝑞𝑛 ∶ |(𝑥𝑚 + 𝑦𝑚) − (𝑥<𝑚,𝑟> + 𝑦<𝑚,𝑟>)| ≥ 𝜀}| 

=  
1

𝑞𝑛 − 𝑝𝑛
|{𝑝𝑛 < 𝑚 ≤ 𝑞𝑛 ∶ |(𝑥𝑚 − 𝑥<𝑚,𝑟>) + (𝑦𝑚 − 𝑦<𝑚,𝑟>)| ≥ 𝜀}| 

≤
1

𝑞𝑛 − 𝑝𝑛
|{𝑝𝑛 < 𝑚 ≤ 𝑞𝑛 ∶ |𝑥𝑚 − 𝑥<𝑚,𝑟>| ≥

𝜀

2
}|

+
1

𝑞𝑛 − 𝑝𝑛
|{𝑝𝑛 < 𝑚 ≤ 𝑞𝑛 ∶ |𝑦𝑚 − 𝑦<𝑚,𝑟>| ≥

𝜀

2
}| 

ifadesinin her iki tarafının limiti alınırsa istenen sonuç elde edilir. 

Teorem 3.2. 𝑙𝑖𝑚 𝑖𝑛𝑓𝑛
𝑞𝑛

𝑝𝑛
> 1    ve 𝑞𝑛 − 𝑝𝑛 < 𝑝𝑛 ise 𝐴𝑆𝐶 ⊂ 𝐴𝑆𝐷[𝑝,𝑞] dır. 

İspat: Farz edelim ki  lim 𝑖𝑛𝑓𝑛
𝑞𝑛

𝑝𝑛
> 1  olsun. 

O halde 
𝑞𝑛

𝑝𝑛
≥ 1 + 𝑡 olacak şekilde yeterince büyük 𝑛 için bir 𝑡 > 0 sayısı 

vardır. Böylece 

𝑞𝑛 − 𝑝𝑛

𝑝𝑛
 ≥

𝑡

𝑡 + 1
 ⇒  

1

𝑝𝑛
≥

𝑡

1 + 𝑡
 .

1

𝑞𝑛 − 𝑝𝑛
 

elde edilir.  (𝑥𝑚) ∈ 𝐴𝑆𝐶 ise yeterince büyük 𝑛 ve 𝑟 tamsayısı ve her 𝜀 > 0 için 

1

𝑝𝑛
|{𝑚 ≤ 𝑝𝑛 ∶ |𝑥𝑚 − 𝑥〈𝑚,𝑟〉| ≥ 𝜀}| 
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≥
1

𝑝𝑛
|{𝑝𝑛 < 𝑚 ≤ 𝑞𝑛 ∶ |𝑥𝑚 − 𝑥〈𝑚,𝑟〉| ≥ 𝜀}| 

≥
𝑡

1 + 𝑡
 .

1

𝑞𝑛 − 𝑝𝑛
|{𝑝𝑛 < m ≤ 𝑞𝑛: |𝑥𝑚 − 𝑥〈𝑚,𝑟〉| ≥ 𝜀}| 

elde edilir. Böylece, 𝑥 = (𝑥𝑚) ∈ 𝐴𝑆𝐷 ⇒ (𝑥𝑚) ∈ 𝐴𝑆𝐷[𝑝,𝑞]  bulunur. 

Teorem 3.3.  lim
𝑛→∞

𝑖𝑛𝑓
𝑞𝑛−𝑝𝑛

𝑛
> 0 ve 𝑞𝑛 < 𝑛  ise   𝐴𝑆𝐶 ⊆ 𝐴𝑆𝐷[𝑝,𝑞] dır. 

İspat:   lim
𝑛→∞

𝑖𝑛𝑓
𝑞𝑛−𝑝𝑛

𝑛
> 0 ve 𝑞𝑛 < 𝑛  ise her bir 𝜀 > 0 için 

{𝑚 < 𝑛 ∶ |𝑥𝑚 − 𝑥<𝑚,𝑟>| ≥ 𝜀} ⊃ {𝑝𝑛 < 𝑚 ≤ 𝑞𝑛 ∶ |𝑥𝑚 − 𝑥〈𝑚,𝑟〉| ≥ 𝜀} 

 sağlanır. Böylece 

1

𝑛
|{𝑚 < 𝑛 ∶ |𝑥𝑚 − 𝑥<𝑚,𝑟>| ≥ 𝜀}| ≥

1

𝑛
|{𝑝𝑛 < 𝑚 ≤ 𝑞𝑛 ∶ |𝑥𝑚 − 𝑥〈𝑚,𝑟〉| ≥ 𝜀}| 

=
𝑞𝑛 − 𝑝𝑛

𝑛
 .

1

𝑞𝑛 − 𝑝𝑛
|{𝑝𝑛 < 𝑚 ≤ 𝑞𝑛 ∶ |𝑥𝑚 − 𝑥〈𝑚,𝑟〉| ≥ 𝜀}| 

elde edilir. Bu ise 𝐴𝑆𝐷 ⊆ 𝐴𝑆𝐷[𝑝,𝑞] olduğunu gösterir. 

Teorem 3.4.  (𝑝𝑛), (𝑞𝑛), (𝑝′𝑛) ve (𝑞′𝑛) dizileri (2.1)’deki koşulları sağlayan 

dört dizi olmak üzere tüm  𝑛 ∈ ℕ için   

                𝑝𝑛 < 𝑞𝑛, 𝑝′𝑛 < 𝑞′𝑛  ve  𝑞𝑛 − 𝑝𝑛 ≤ 𝑞′𝑛 − 𝑝′𝑛                           (3.1) 

sağlansın.                                          

(i) Eğer  

                                                      𝑙𝑖𝑚
𝑛→∞

𝑞𝑛−𝑝𝑛

𝑞′𝑛−𝑝′𝑛
= 𝑠 > 0                                                      (3.2) 

𝐴𝑆𝐷[𝑝′,𝑞′] ⊆ 𝐴𝑆𝐷[𝑝,𝑞]  dır. 

(ii) Eğer  

                                                      𝑙𝑖𝑚
𝑛→∞

𝑞′𝑛−𝑝′𝑛

𝑞𝑛−𝑝𝑛

= 1                                                                  (3.3) 

ise  𝐴𝑆𝐷[𝑝,𝑞] ⊆ 𝐴𝑆𝐷[𝑝′,𝑞′]  dır. 

İspat: (i) (3.2) koşulu sağlansın. 𝜀 > 0 için 

|{𝑝′𝑛 < 𝑚 ≤ 𝑞′𝑛 ∶ |𝑥𝑚 − 𝑥〈𝑚,𝑟〉| ≥ 𝜀}| ⊇ |{𝑝𝑛 < 𝑚 ≤ 𝑞𝑛 ∶ |𝑥𝑚 − 𝑥〈𝑚,𝑟〉| ≥ 𝜀}| 

sağlanır. Böylece 
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1

𝑞′
𝑛

− 𝑝′
𝑛

|{𝑝′𝑛 < 𝑚 ≤ 𝑞′
𝑛

∶ |𝑥𝑚 − 𝑥〈𝑚,𝑟〉| ≥ 𝜀}| 

≥  
𝑞𝑛 − 𝑝𝑛

𝑞′
𝑛

− 𝑝′
𝑛

 .
1

𝑞𝑛 − 𝑝𝑛
|{𝑝𝑛 < 𝑚 ≤ 𝑞𝑛 ∶ |𝑥𝑚 − 𝑥〈𝑚,𝑟〉| ≥ 𝜀}| 

elde edilir. Bu eşitsizlikten yararlanarak 𝐴𝑆𝐷[𝑝′,𝑞′] ⊆ 𝐴𝑆𝐷[𝑝,𝑞] bulunur. 

(ii) (3.3) koşulu sağlansın. 𝜀 > 0 için 

1

𝑞′𝑛 − 𝑝′𝑛
|{𝑝′𝑛 < 𝑚 ≤ 𝑞′

𝑛
∶ |𝑥𝑚 − 𝑥〈𝑚,𝑟〉| ≥ 𝜀}| ≤ 

 
1

𝑞′
𝑛

− 𝑝′
𝑛

|{𝑝′𝑛 < 𝑚 ≤ 𝑝𝑛 ∶ |𝑥𝑚 − 𝑥〈𝑚,𝑟〉| ≥ 𝜀}|

+
1

𝑞′
𝑛

− 𝑝′
𝑛

|{𝑞𝑛 < 𝑚 ≤ 𝑞′
𝑛

∶ |𝑥𝑚 − 𝑥〈𝑚,𝑟〉| ≥ 𝜀}|

+
1

𝑞′
𝑛

− 𝑝′
𝑛

|{𝑝𝑛 < 𝑚 ≤ 𝑞𝑛 ∶ |𝑥𝑚 − 𝑥〈𝑚,𝑟〉| ≥ 𝜀}| 

≤  
𝑝

𝑛
− 𝑝′

𝑛
+ 𝑞′

𝑛
− 𝑞′

𝑛

𝑞′
𝑛

− 𝑝′
𝑛

+
1

𝑞′
𝑛

− 𝑝′
𝑛

|{𝑝𝑛 < 𝑚 ≤ 𝑞𝑛 ∶ |𝑥𝑚 − 𝑥〈𝑚,𝑟〉| ≥ 𝜀}| 

=  
(𝑞′

𝑛
− 𝑝′

𝑛
) − (𝑞𝑛 − 𝑝𝑛)

𝑞′
𝑛

− 𝑝′
𝑛

+
1

𝑞′
𝑛

− 𝑝′
𝑛

|{𝑝𝑛 < 𝑚 ≤ 𝑞𝑛 ∶ |𝑥𝑚 − 𝑥〈𝑚,𝑟〉| ≥ 𝜀}| 

≤
(𝑞′

𝑛
− 𝑝′

𝑛
) − (𝑞𝑛 − 𝑝𝑛)

𝑞
𝑛

− 𝑝
𝑛

+
1

𝑞
𝑛

− 𝑝
𝑛

|{𝑝𝑛 < 𝑚 ≤ 𝑞𝑛 ∶ |𝑥𝑚 − 𝑥〈𝑚,𝑟〉| ≥ 𝜀}| 

= (
𝑞′

𝑛
− 𝑝′

𝑛

𝑞𝑛 − 𝑝𝑛
− 1)  .

1

𝑞𝑛 − 𝑝𝑛
|{𝑝𝑛 < 𝑚 ≤ 𝑞𝑛 ∶ |𝑥𝑚 − 𝑥⟨𝑚,𝑟⟩| ≥ 𝜀}| 

elde edilir. Böylece 𝐴𝑆𝐷[𝑝,𝑞] ⊆ 𝐴𝑆𝐷[𝑝′,𝑞′] bulunur. 

Teorem 3.5. (𝑝𝑛), (𝑞𝑛), (𝑝′𝑛) ve (𝑞′𝑛)  yukarıdaki (2.1) ve (3.1) koşullarını 

sağlayan dört dizi olmak üzere,  

(𝑖) Eğer (3.2) koşulu sağlanırsa 𝐴𝐷[𝑝′,𝑞′] ⊆ 𝐴𝐷[𝑝,𝑞] sağlanır. 

(𝑖𝑖) Eğer (3.3) koşulu sağlanırsa ve 𝑥 = (𝑥𝑚) sınırlı bir dizi ise 𝐴𝐷[𝑝,𝑞] ⊆

𝐴𝐷[𝑝′,𝑞′]  sağlanır. 
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İspat: (i) (3.2) koşulu sağlansın.  

∑ |𝑥𝑚 − 𝑥〈𝑚,𝑟〉|

𝑞𝑛

𝑚=𝑝𝑛+1

≤ ∑ |𝑥𝑚 − 𝑥〈𝑚,𝑟〉|

𝑞′𝑛

𝑚=𝑝′𝑛+1

 

𝑞𝑛 − 𝑝𝑛

𝑞𝑛 − 𝑝𝑛

1

𝑞′𝑛 − 𝑝′𝑛
∑ |𝑥𝑚 − 𝑥〈𝑚,𝑟〉|

𝑞𝑛

𝑚=𝑝𝑛+1

≤
1

𝑞′𝑛 − 𝑝′𝑛
∑ |𝑥𝑚 − 𝑥〈𝑚,𝑟〉|

𝑞′𝑛

𝑚=𝑝′𝑛+1

 

bulunur. 𝑛 → ∞ limit alınırsa  

𝑙𝑖𝑚
𝑛→∞

1

𝑞𝑛 − 𝑝𝑛
∑ |𝑥𝑚 − 𝑥〈𝑚,𝑟〉|

𝑞𝑛

𝑚=𝑝𝑛+1

= 0 

elde edilir. 

(ii) Farz edelim ki 𝐴𝐷[𝑝,𝑞] − 𝑙𝑖𝑚𝑥𝑚 = 𝑥〈𝑚,𝑟〉  ve 𝑥 = (𝑥𝑚) sınırlı bir dizi 

olsun. 

 
1

𝑞′
𝑛−𝑝′

𝑛

∑ |𝑥𝑚 − 𝑥〈𝑚,𝑟〉| =
1

𝑞′
𝑛−𝑝′

𝑛

[∑ |𝑥𝑚 − 𝑥〈𝑚,𝑟〉| +
𝑝𝑛

𝑚=𝑝′
𝑛+1

𝑞′
𝑛

𝑚=𝑝′
𝑛+1

∑ |𝑥𝑚 − 𝑥〈𝑚,𝑟〉| +
𝑞𝑛
𝑚=𝑝𝑛+1 ∑ |𝑥𝑚 − 𝑥〈𝑚,𝑟〉|

𝑞′
𝑛

𝑚=𝑞𝑛+1 ]        

≤
𝑝𝑛 − 𝑝′

𝑛
+ 𝑞′

𝑛
− 𝑞𝑛

𝑞′
𝑛

− 𝑝′
𝑛

𝑀 +
1

𝑞′𝑛 − 𝑝′𝑛
∑ |𝑥𝑚 − 𝑥〈𝑚,𝑟〉|

𝑞𝑛

𝑚=𝑝𝑛+1

 

≤
(𝑞′

𝑛
− 𝑝′

𝑛
) − (𝑞𝑛 − 𝑝𝑛)

𝑞𝑛 − 𝑝𝑛
𝑀 +

1

𝑞𝑛 − 𝑝𝑛
∑ |𝑥𝑚 − 𝑥〈𝑚,𝑟〉|

𝑞𝑛

𝑚=𝑝𝑛+1

 

= (
𝑞′𝑛 − 𝑝′𝑛

𝑞𝑛 − 𝑝𝑛
− 1) 𝑀 +  

1

𝑞𝑛 − 𝑝𝑛
∑ |𝑥𝑚 − 𝑥〈𝑚,𝑟〉|

𝑞𝑛

𝑚=𝑝𝑛+1

 

olduğundan sonuç elde edilir. 

Teorem 3.6. (𝑥𝑚) ∈ 𝐴𝐷[𝑝,𝑞] ise (𝑥𝑚) ∈ 𝐴𝑆𝐷[𝑝,𝑞] dır. 

İspat: (𝑥𝑚) ∈ 𝐴𝐷[𝑝,𝑞] olsun.  𝜀 > 0 ve bir 𝑟 tamsayısı için 

∑ |𝑥𝑚 − 𝑥〈𝑚,𝑟〉|

𝑞𝑛

𝑚=𝑝𝑛+1

≥
   ∑ |𝑥𝑚 − 𝑥〈𝑚,𝑟〉|

𝑞𝑛

𝑚=𝑝𝑛+1

|𝑥𝑚 − 𝑥〈𝑚,𝑟〉| ≥ 𝜀

+
  ∑ |𝑥𝑚 − 𝑥〈𝑚,𝑟〉|

𝑞𝑛

𝑚=𝑝𝑛+1

 |𝑥𝑚 − 𝑥〈𝑚,𝑟〉| < 𝜀
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≥
   ∑ |𝑥𝑚 − 𝑥〈𝑚,𝑟〉|

𝑞𝑛

𝑚=𝑝𝑛+1

|𝑥𝑚 − 𝑥〈𝑚,𝑟〉| ≥ 𝜀

 

≥ 𝜀|{𝑝𝑛 < 𝑚 ≤ 𝑞𝑛 ∶ |𝑥𝑚 − 𝑥〈𝑚,𝑟〉| ≥ 𝜀}| 

elde edilir. Bu ise istenen sonuçtur. 

Teorem 3.7. (𝑝𝑛), (𝑞𝑛), (𝑝′𝑛) ve (𝑞′𝑛)  yukarıdaki (2.1) ve (3.1) koşullarını 

sağlayan diziler olmak üzere;  

(𝑖) (3.2) koşulu sağlanırsa (𝑥𝑚) ∈ 𝐴𝐷[𝑝′,𝑞′] ise  (𝑥𝑚) ∈ 𝐴𝑆𝐷[𝑝,𝑞] dır. 

(𝑖𝑖) (3.3) koşulu sağlanırsa ve (𝑥𝑚) sınırlı bir dizi ise (𝑥𝑚) ∈ 𝐴𝑆𝐷[𝑝,𝑞] ise 

(𝑥𝑚) ∈ 𝐴𝐷[𝑝′,𝑞′] dır. 

İspat:  (𝑖) (3.2) koşulu sağlansın ve 𝐴𝐷[𝑝′,𝑞′] − 𝑙𝑖𝑚𝑥𝑚 = 𝑥〈𝑚,𝑟〉 olsun. 𝜀 > 0 

için 

1

𝑞′𝑛 − 𝑝′𝑛
∑ |𝑥𝑚 − 𝑥〈𝑚,𝑟〉| ≥

𝑞𝑛 − 𝑝𝑛

𝑞𝑛 − 𝑝𝑛

1

𝑞′𝑛 − 𝑝′𝑛
∑ |𝑥𝑚 − 𝑥〈𝑚,𝑟〉|

𝑞𝑛

𝑚=𝑝𝑛+1

𝑞′𝑛

𝑚=𝑝′𝑛+1

 

≥
𝑞𝑛 − 𝑝𝑛

𝑞′𝑛 − 𝑝′𝑛

1

𝑞𝑛 − 𝑝𝑛

∑ |𝑥𝑚 − 𝑥〈𝑚,𝑟〉|

𝑞𝑛

𝑚=𝑝𝑛+1

|𝑥𝑚 − 𝑥〈𝑚,𝑟〉| ≥ 𝜀

 

≥
𝑞𝑛 − 𝑝𝑛

𝑞′𝑛 − 𝑝′𝑛
𝜀

1

𝑞𝑛 − 𝑝𝑛
|{𝑝𝑛 < 𝑚 ≤ 𝑞𝑛 ∶ |𝑥𝑚 − 𝑥〈𝑚,𝑟〉| ≥ 𝜀}| 

sağlanır. Yukarıdaki eşitsizlikte her iki tarafın 𝑛 → ∞ limit alınırsa (𝑥𝑚) ∈ 𝐴𝑆𝐷[𝑝,𝑞] 

olduğu elde edilir. 

(ii) Farz edelim ki 𝐴𝑆𝐷[𝑝,𝑞] − 𝑙𝑖𝑚𝑥𝑚 = 𝑥<𝑚,𝑟> ve (𝑥𝑚)  sınırlı bir dizi olsun. 

O halde ∃𝑀 > 0 sayısı vardır ki tüm 𝑚 ∈ ℕ için |𝑥𝑚 − 𝑥〈𝑚,𝑟〉| < 𝑀 dır. Böylece her 

𝜀 > 0 için 

1

𝑞′𝑛 − 𝑝′𝑛
∑ |𝑥𝑚 − 𝑥〈𝑚,𝑟〉|

𝑞′𝑛

𝑚=𝑝′𝑛+1
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=
1

𝑞′𝑛 − 𝑝′𝑛
∑ |𝑥𝑚 − 𝑥〈𝑚,𝑟〉| +

𝑞′𝑛−𝑝′𝑛

𝑚=𝑞𝑛−𝑝𝑛+1

1

𝑞′𝑛 − 𝑝′𝑛
∑ |𝑥𝑚 − 𝑥〈𝑚,𝑟〉|

𝑞𝑛

𝑚=𝑝𝑛+1

 

≤ (
(𝑞′

𝑛
− 𝑝′

𝑛
) − (𝑞𝑛 − 𝑝𝑛)

(𝑞𝑛 − 𝑝𝑛)
) 𝑀 +

1

𝑞′
𝑛

− 𝑝′
𝑛

∑ |𝑥𝑚 − 𝑥〈𝑚,𝑟〉|

𝑞𝑛

𝑚=𝑝𝑛+1

 

≤ (
𝑞′

𝑛
− 𝑝′

𝑛

𝑞𝑛 − 𝑝𝑛
− 1) 𝑀 +

1

𝑞𝑛 − 𝑝𝑛

∑ |𝑥𝑚 − 𝑥〈𝑚,𝑟〉|

𝑞𝑛

𝑚=𝑝𝑛+1

|𝑥𝑚 − 𝑥〈𝑚,𝑟〉| ≥ 𝜀

 

+
1

𝑞𝑛 − 𝑝𝑛

∑ |𝑥𝑚 − 𝑥〈𝑚,𝑟〉|

𝑞𝑛

𝑚=𝑝𝑛+1

|𝑥𝑚 − 𝑥〈𝑚,𝑟〉| < 𝜀

 

≤ (
𝑞′

𝑛
− 𝑝′

𝑛

𝑞𝑛 − 𝑝𝑛
− 1) 𝑀 

+
𝑀

𝑞𝑛 − 𝑝𝑛
|{𝑝𝑛 < m ≤ 𝑞𝑛 ∶ |𝑥𝑚 − 𝑥〈𝑚,𝑟〉| ≥ 𝜀}| +

𝑞′
𝑛

− 𝑝′
𝑛

𝑞𝑛 − 𝑝𝑛
𝜀 

elde edilir. Bu eşitsizlikte her iki tarafın 𝑛 → ∞ limit alınırsa (𝑥𝑚) ∈ 𝐴𝐷[𝑝′,𝑞′] olduğu 

elde edilir. 

3.1. DEFERRED ARİTMETİK İSTATİSTİKSEL SÜREKLİLİK 

Bu bölümde deferred aritmetik istatistiksel sürekliliği tanımlayacağız ve bazı 

sonuçlar ortaya koyacağız. 

Tanım 3.1.1. ℝ'nin bir 𝐸 alt kümesinde tanımlanan bir 𝑓 fonksiyonu verilsin. 

Eğer bu fonksiyon deferred aritmetik istatistiksel yakınsaklığı koruyorsa yani 

𝐴𝑆𝐷[𝑝,𝑞] − 𝑙𝑖𝑚𝑥𝑚 = 𝑥〈𝑚,𝑟〉  olduğunda 𝐴𝑆𝐷[𝑝,𝑞] − 𝑙𝑖𝑚𝑓(𝑥𝑚) = 𝑓(𝑥〈𝑚,𝑟〉) ise 𝑓 

fonksiyonuna deferred aritmetik istatistiksel süreklidir denir. 

Deferred aritmetik istatistiksel sürekli fonksiyonu belirtmek için 𝐴𝑆𝐷[𝑝,𝑞] − 

sürekli fonksiyon şeklinde belirteceğiz. 

Teorem 3.1.1. 𝐸 üzerinde tanımlı iki 𝑓 ve 𝑔 fonksiyonları ve 𝐴𝑆𝐷[𝑝,𝑞] − 

sürekli fonksiyon olsunlar. Bu durumda (𝑓+̅𝑔)(𝑥𝑚) fonksiyonu da 𝐴𝑆𝐷[𝑝,𝑞] 

süreklidir. 

İspat: 𝑓 ve 𝑔 fonksiyonları ve 𝐴𝑆𝐷[𝑝,𝑞] − sürekli fonksiyonlar olduğundan 
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 𝐴𝑆𝐷[𝑝,𝑞] − 𝑙𝑖𝑚𝑥𝑚 = 𝑥〈𝑚,𝑟〉  ise  𝐴𝑆𝐷[𝑝,𝑞] − 𝑙𝑖𝑚𝑓(𝑥𝑚) = 𝑓(𝑥〈𝑚,𝑟〉)  ve  𝐴𝑆𝐷[𝑝,𝑞] −

𝑙𝑖𝑚𝑔(𝑥𝑚) = 𝑔(𝑥〈𝑚,𝑟〉) sağlanır. Buradan  

𝑙𝑖𝑚
𝑛→∞

1

𝑞𝑛−𝑝𝑛
|{𝑝𝑛 < 𝑚 ≤ 𝑞𝑛 ∶ |𝑓(𝑥𝑚) − 𝑓(𝑥〈𝑚,𝑟〉 )| ≥ 𝜀}|=0 ve  

𝑙𝑖𝑚
𝑛→∞

1

𝑞𝑛−𝑝𝑛
|{𝑝𝑛 < 𝑚 ≤ 𝑞𝑛 ∶ |𝑓(𝑥𝑚) − 𝑓(𝑥〈𝑚,𝑟〉 )| ≥ 𝜀}| = 0. 

 (𝑓 + 𝑔)(𝑥𝑚) fonksiyonunun 𝐴𝑆𝐷[𝑝,𝑞] −sürekli olduğunu gösterelim. 

lim
𝑛→∞

1

𝑞𝑛 − 𝑝𝑛
|{𝑝𝑛 < m ≤ 𝑞𝑛 ∶ |(𝑓 + 𝑔)(𝑥𝑚) − (𝑓 + 𝑔)(𝑥〈𝑚,𝑟〉)| ≥ 𝜀}| 

= lim
𝑛→∞

1

𝑞𝑛 − 𝑝𝑛
|{𝑝𝑛 < m ≤ 𝑞𝑛 ∶ |𝑓(𝑥𝑚) + 𝑔(𝑥𝑚) − 𝑓(𝑥〈𝑚,𝑛〉 ) − 𝑔(𝑥〈𝑚,𝑟〉)| ≥ 𝜀}| 

≤ lim
𝑛→∞

1

𝑞𝑛 − 𝑝𝑛
|{𝑝𝑛 < m ≤ 𝑞𝑛 ∶ |𝑓(𝑥𝑚) − 𝑓(𝑥〈𝑚,𝑟〉)| ≥ 𝜀}|

+ lim
𝑛→∞

1

𝑞𝑛 − 𝑝𝑛
|{𝑝𝑛 < m ≤ 𝑞𝑛 ∶ |𝑔(𝑥𝑚)−𝑔(𝑥〈𝑚,𝑟〉)| ≥ 𝜀}| = 0 

elde edilir. Böylece istenen sonuç elde edilir. 

(f − g)(xm) fonksiyonunun ASD[p,q] −sürekli olduğu benzer yöntemle gösterilir. 

Aynı zamanda iki 𝐴𝑆𝐷[𝑝,𝑞] − sürekli fonksiyonun çarpımı, bileşkesi de 

𝐴𝑆𝐷[𝑝,𝑞] − süreklidir. 

Teorem 3.1.2. (𝑓𝑚)𝑚∈ℕ, ℝ'nin 𝐸 alt kümesinde tanımlanan 𝐴𝑆𝐷[𝑝,𝑞] − sürekli 

fonksiyonlarının bir dizisi ve (𝑓𝑚) bir 𝑓 fonksiyonuna düzgün yakınsak olsun, o halde 

𝑓, 𝐴𝑆𝐷[𝑝,𝑞] − süreklidir. 

İspat: 𝜀 > 0 ve (𝑥𝑚), ℝ'nin bir 𝐸 alt kümesi üzerinde 𝐴𝑆𝐷[𝑝,𝑞] − yakınsak dizi 

olsun  (𝑓𝑚) dizisi 𝑓’e düzgün yakınsak olduğundan; tüm 𝑚 ≥ 𝑁 ve 𝑥 ∈ 𝐸’ler için 

|𝑓𝑚(𝑥) − 𝑓(𝑥)| <
𝜀

3
 olacak şekilde 𝑁 ∈ ℕ vardır. 

𝑓𝑁, 𝐸 üzerinde 𝐴𝑆𝐷[𝑝,𝑞] − sürekli olduğundan, bir 𝑟 tamsayısı için 

lim
𝑛→∞

1

𝑞𝑛 − 𝑝𝑛
|{𝑝𝑛 < m ≤ 𝑞𝑛 ∶ |𝑓𝑁(𝑥𝑚) − 𝑓𝑁(𝑥〈𝑚,𝑟〉)| ≥

𝜀

3
}| = 0 

dır. Öte yandan, bir 𝑟 tamsayısı için  

{𝑝𝑛 < m ≤ 𝑞𝑛 ∶ ⌈𝑓(𝑥𝑚) − 𝑓(𝑥〈𝑚,𝑟〉)⌉ ≥
𝜀

3
} 



21 

⊂ {𝑝𝑛 < m ≤ 𝑞𝑛 ∶ |𝑓𝑁(𝑥〈𝑚,𝑟〉) − 𝑓(𝑥〈𝑚,𝑟〉)| ≥
𝜀

3
} 

∪ {𝑝𝑛 < m ≤ 𝑞𝑛 ∶ |𝑓𝑁(𝑥〈𝑚,𝑟〉) − 𝑓𝑁(𝑥𝑚)| ≥
𝜀

3
} 

∪ {𝑝𝑛 < m ≤ 𝑞𝑛 ∶ |𝑓𝑁(𝑥𝑚) − 𝑓(𝑥𝑚)| ≥
𝜀

3
} 

elde edilir. Dolayısıyla yukarıdaki içermeden şu sonuç elde edilir. 

lim
𝑛→∞

1

𝑞𝑛 − 𝑝𝑛
|{𝑝𝑛 < m ≤ 𝑞𝑛 ∶ |𝑓(𝑥𝑚) − 𝑓(𝑥〈𝑚,𝑟〉)| ≥ 𝜀}| 

≤ lim
       𝑛→∞

1

𝑞𝑛 − 𝑝𝑛
|{𝑝𝑛 < m ≤ 𝑞𝑛 ∶ |𝑓𝑁(𝑥𝑚) − 𝑓(𝑥〈𝑚,𝑟〉)| ≥

𝜀

3
}| 

+lim
      𝑛→∞

1

𝑞𝑛 − 𝑝𝑛
|{𝑝𝑛 < m ≤ 𝑞𝑛 ∶ |𝑓𝑁(𝑥〈𝑚,𝑟〉)−𝑓𝑁(𝑥𝑚)| ≥

𝜀

3
}| 

≤ lim
𝑛→∞

1

𝑞𝑛 − 𝑝𝑛
|{𝑝𝑛 < m ≤ 𝑞𝑛 ∶ |𝑓𝑁(𝑥〈𝑚,𝑛〉) − 𝑓(𝑥𝑚)| ≥

𝜀

3
}| 

                           = 0. 

Dolayısıyla 𝑓, 𝐴𝑆𝐷[𝑝,𝑞] − süreklidir. 

Teorem 3.1.3. ℝ’nin bir 𝐸 alt kümesinde üzerinde tanımlı tüm 𝐴𝑆𝐷[𝑝,𝑞] − 

sürekli fonksiyonların kümesi, 𝐸 üzerinde tanımlı tüm sürekli fonksiyonların bir 

kapalı bir alt kümesidir. Yani, 

𝐴𝑆𝐷[𝑝.𝑞](𝐸) = 𝐴𝑆𝐷[𝑝.𝑞](𝐸)  

dır. 

Burada 𝐴𝑆𝐷[𝑝.𝑞](𝐸) kümesi 𝐸 üzerinde tanımlı tüm 𝐴𝑆𝐷[𝑝.𝑞] sürekli 

fonksiyonların kümesini göstermektedir. Ayrıca 𝐴𝑆𝐷[𝑝.𝑞](𝐸) kümesi 𝐴𝑆𝐷[𝑝.𝑞](𝐸) 

kümesinin kapanışını göstermektedir. 

İspat: 𝑓, 𝐴𝑆𝐷[𝑝.𝑞](𝐸)  kümesinden aldığımız herhangi bir elaman olsun. O 

halde 𝐴𝑆𝐷[𝑝.𝑞](𝐸) kümesinde lim 𝑓𝑚 = 𝑓 olacak şekilde bir (𝑓𝑚) dizi vardır. E 

kümesinde (𝑥𝑚) ∈ 𝐴𝑆𝐷[𝑝.𝑞] olsun. (𝑓𝑚), 𝑓′ ye yakınsadığından, öyle bir pozitif  𝑁 

tamsayısı vardır ki ∀ 𝑚 ≥ 𝑁 ve  ∀𝑥 ∈ E için 

                                      |𝑓(𝑥) − 𝑓𝑚(𝑥)| <
𝜀

3
 .                                                         (3.4) 
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Aynı zamanda  𝑓𝑁 , 𝐸 üzerinde 𝐴𝑆𝐷[𝑝.𝑞] − sürekli olduğundan bir 𝑟 tamsayısı için:  

lim
𝑛→∞

1

𝑞𝑛 − 𝑝𝑛
|{𝑝𝑛 < m ≤ 𝑞𝑛 ∶ |𝑓𝑁(𝑥𝑚) − 𝑓𝑁(𝑥〈𝑚,𝑟〉)| ≥

𝜀

3
}| = 0 

elde edilir. Diğer taraftan, bir 𝑟 tamsayısı için 

{𝑝𝑛 < m ≤ 𝑞𝑛 ∶ ⌈𝑓(𝑥𝑚) − 𝑓(𝑥〈𝑚,𝑟〉)⌉ ≥
𝜀

3
} 

⊂ {𝑝𝑛 < m ≤ 𝑞𝑛 ∶ |𝑓𝑁(𝑥〈𝑚,𝑟〉) − 𝑓(𝑥〈𝑚,𝑟〉)| ≥
𝜀

3
} 

∪ {𝑝𝑛 < m ≤ 𝑞𝑛 ∶ |𝑓𝑁(𝑥〈𝑚,𝑟〉) − 𝑓𝑁(𝑥𝑚)| ≥
𝜀

3
} 

∪ {𝑝𝑛 < m ≤ 𝑞𝑛: |𝑓𝑁(𝑥𝑚) − 𝑓(𝑥𝑚)| ≥
𝜀

3
} 

elde edilir. 

Dolayısıyla yukarıdaki içermeden şu sonuç elde edilir; 

lim
𝑛→∞

1

𝑞𝑛 − 𝑝𝑛
|{𝑝𝑛 < m ≤ 𝑞𝑛 ∶ |𝑓(𝑥𝑚) − 𝑓(𝑥〈𝑚,𝑟〉)| ≥ 𝜀}| 

≤ lim
       𝑛→∞

1

𝑞𝑛 − 𝑝𝑛
|{𝑝𝑛 < m ≤ 𝑞𝑛 ∶ |𝑓𝑁(𝑥𝑚) − 𝑓(𝑥〈𝑚,𝑟〉)| ≥

𝜀

3
}| 

+lim
      𝑛→∞

1

𝑞𝑛 − 𝑝𝑛
|{𝑝𝑛 < m ≤ 𝑞𝑛 ∶ |𝑓𝑁(𝑥〈𝑚,𝑟〉)−𝑓𝑁(𝑥𝑚)| ≥

𝜀

3
}| 

≤ lim
𝑛→∞

1

𝑞𝑛 − 𝑝𝑛
|{𝑝𝑛 < m ≤ 𝑞𝑛 ∶ |𝑓𝑁(𝑥〈𝑚,𝑟〉) − 𝑓(𝑥𝑚)| ≥

𝜀

3
}| 

                           = 0. 

Böylece 𝑓, 𝐴𝑆𝐷[𝑝.𝑞] − süreklidir. Yani 𝑓 ∈ 𝐴𝑆𝐷[𝑝.𝑞](𝐸) dir. Bu bize gerekli 

sonucu verir.  
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4. SONUÇ VE ÖNERİLER 

Aritmetik yakınsaklık kavramı, matematiksel analizde önemli bir yer tutmakta 

ve yıllar içinde birçok araştırmacı tarafından farklı yönleriyle ele alınmaktadır. Bu 

tezde, klasik aritmetik yakınsaklık kavramı ile deferred istatistiksel yakınsaklık 

kavramı birleştirilerek, deferred aritmetik istatistiksel yakınsaklık adı verilen yeni bir 

yakınsaklık türü incelenmiştir. Elde edilen sonuçlar, bu yeni kavramın klasik 

yakınsaklık türleriyle ilişkisini ortaya koymakta ve matematiksel analizde alternatif 

bir yaklaşım sunmaktadır. 

Bu çalışma, toplanabilme teorisi bağlamında yapılacak ileri araştırmalar için 

teorik bir temel oluşturmayı amaçlamaktadır. Özellikle, istatistiksel ve ideal 

yakınsaklık türlerinin farklı normlu uzaylara uygulanabilirliğine dair yapılacak 

çalışmalarda, bu çalışmanın bulgularının referans niteliği taşıyacağı düşünülmektedir. 

Buna ek olarak, bu yaklaşımlar nötrosofik normlu uzaylar ve bulanık (fuzzy) 

normlu uzaylar gibi daha genel yapılara taşınarak, bu alanlardaki yakınsaklık türleri 

üzerine yeni ve özgün sonuçlar elde edilebilir. Bu bağlamda, araştırmacıların bu 

çalışmadan ilham alarak benzer yapıların farklı yakınsaklık türleri ile etkileşimini 

incelemeleri, literatüre önemli katkılar sağlayacaktır. 

  



24 

KAYNAKLAR 

Agnew, R. P. (1932). On deferred Cesaro mean. Annals of Mathematics, 33, 413–421. 

Altinok, M., Inan, B., & Küçükaslan, M. (2015). On deferred statistical convergence 

of sequences of sets in metric space. Turkish Journal of Mathematics and 

Computer Science, Article ID 20150050, 9 pages. 

Bilgin, N. G. (2023). Arithmetic statistically convergent on neutrosophic normed 

spaces. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 13(2), 270–280. 

https://doi.org/10.17714/gumusfenbil.1180772 

Dağadur, I., & Sezgek, Ş. (2016). Deferred Cesaro mean and deferred statistical 

convergence of double sequences. Journal of Inequalities and Special 

Functions, 7(4), 118–136. 

Debnath, S., Debnath, S., & Choudhury, C. (2022). On deferred statistical 

convergence of sequences in neutrosophic normed spaces. Sahand 

Communications in Mathematical Analysis, 19(4), 81–96. 

https://doi.org/10.22130/scma.2022.544537.1031 

Demirci, I. A., & Gürdal, M. (2021). On deferred statistical convergence for the sets 

of triple sequences. Journal of Mathematics and Analysis, 12(4), 38–50. 

Et, M. (2021). On some generalized deferred Cesaro means of order β. Mathematical 

Methods in the Applied Sciences, 44(9), 7433–7441. 

Et, M., & Yilmazer, M. Ç. (2020). On deferred statistical convergence of sequences 

of sets. AIMS Mathematics, 5(3), 2143–2152. 

Et, M., Çınar, M., & Şengül, H. (2019). Deferred statistical convergence in metric 

spaces. Conference Proceedings of Science and Technology, 2(3), 189–193. 

Fast, H. (1951). Sur la convergence statistique. Colloquium Mathematicum, 2, 241–

244. 

Freedmand AR, Sember JJ.(1981). Density and summability, Pac. J. Math., 95(2): 

293-305. 

Hardy, G.H. (1949). Divergent series. Clarendon Press. 

https://doi.org/10.17714/gumusfenbil.1180772


25 

Huban, M. B., & Gürdal, M. (2021). Deferred invariant statistical convergent triple 

sequences via Orlicz function. Bulletin of Mathematical Analysis and 

Applications, 13(2), 25–38. 

Kişi, Ö. (2022a). I-lacunary arithmetic statistical convergence. Journal of Applied 

Mathematics & Informatics, 40(1–2), 327–339. 

Kişi, Ö. (2022b). On invariant arithmetic statistically convergence and lacunary 

invariant arithmetic statistically convergence. Palestine Journal of 

Mathematics, 11(2). 

Kişi, Ö., & Güler, E. (2019). Deferred statistical convergence of double sequences in 

intuitionistic fuzzy normed linear spaces. Turkish Journal of Mathematics and 

Computer Science, 11, 95–104. 

Küçükaslan, M., & Yılmaztürk, M. (2016). On deferred statistical convergence of 

sequences. Kyungpook Mathematical Journal, 56, 357–366. 

Maddox, I. J. (1988). Elements of functional analysis. Cambridge University Press. 

Nuray, F. (2020). Strongly deferred invariant convergence and deferred invariant 

statistical convergence. Journal of Computer Science and Computational 

Mathematics, 10(1), 1–6. 

Patterson, R. F., Nuray, F., & Başarir, M. (2016). Inclusion theorems of double 

deferred Cesaro means II. Tbilisi Mathematical Journal, 9(2), 15–23. 

Ruckle, W. H. (2012). Arithmetical summability. Journal of Mathematical Analysis 

and Applications, 396, 741–748. 

Steinhaus, H. (1951). Sur la convergence ordinaire et la convergence asymptotique. 

Colloquium Mathematicum, 2, 73–74. 

Şengül, H., Et, M., & Çakallı, H. (2019). Deferred statistical convergence of order α 

in topological groups. AIP Conference Proceedings, 2183(1), 050014. 

Ulusu, U., & Gülle, E. (2022). Deferred Cesaro summability and statistical 

convergence for double sequences of sets. Journal of Intelligent & Fuzzy 

Systems, 42(4), 4095–4103. 



26 

Yaying, T., & Hazarika, B. (2017a). On arithmetical summability and multiplier 

sequences. National Academy Science Letters, 40, 43–46. 

https://doi.org/10.1007/s40009-016-0525-2 

Yaying, T., & Hazarika, B. (2017b). On arithmetic countinuity. Bol. Soc. Paran. Mat., 

35(1), 139-145. 

Yaying, T., & Hazarika, B. (2020). Lacunary arithmetic statistical convergence. 

National Academy Science Letters, 43, 547–551. 

https://doi.org/10.1007/s40009-020-00910-6 

 

https://doi.org/10.1007/s40009-016-0525-2
https://doi.org/10.1007/s40009-020-00910-6

