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TOPLU VE KARISIK ELEMANLI KAYIPSIZ iKi KAPILI DEVRELERIN
PARAMETRIK TASARIMI

Bu tezde, gerek uyumlastirma devreleri, filtre ve yiikselte¢ tasarimlar1 gibi
mikrodalga uygulamalarinda, gerekse mikrodalga entegre devrelerindeki (MICs)
arabaglant1 yapilarinda kullamlabilecek olan, kayipsiz karma elemanh simetrik

iki kapili devre modelleri incelenmigtir.

Yiiksek frekanslarda c¢alisan haberlesme sistemlerinde kullanilan
uyumlastirma devreleri, filtre ve mikrodalga yiikseltecleri, fiziksel gercekleme
problemi nedeniyle, tek degiskenli olarak tasarlanamazlar. Karma elemanh devre
modellerine ihtiya¢ duyulur. Fakat, karma elemanh devrelerde, her devre modeli
icin analitik fonksiyonlar ve sentez taniml degildir. Bu nedenle, pratikte anlaml
olan sinirh devre yapilar ele alinarak, analitik veya yar analitik yontemlerle
tammlanmiglardir. Bu ¢cahymada ise, karma elemanl simetrik kayipsiz iki kapih
devreler, sa¢ilma parametreleri yaklasimiyla yar1 analitik olarak tamimlamp,
mikrodalga uygulamalari incelenmigtir. Ote yandan, aym1 monolitik devre yapisi
iizerinde iiretilmek zorunda olan analog ve dijital devreler arasimndaki baglanti
yapillann da hizlan itibariyle dagilms ve toplu elemanlardan olusan kayipsiz

simetrik iki kapih devreler olarak modellenebilir.

Bu ¢aliyjmada incelenen karma elemanh simetrik devre yapilari, arabaglanti
modelleri, mikrodalga yiikselte¢, filtre ve uyumlagtrma devreleri
uygulamalarinda, Spice gibi simiilasyon paket programlar icin de kullamgh

yapilardir.



DESIGN OF LOSSLESS TWO PORTS WITH LUMPED AND MIXED
ELEMENTS USING PARAMETRIC METHOD

In this thesis, symmetrical lossless two ports with mixed lumped and
distributed elements, which can be implemented in both microwave applications-
such as matching networks, filters, and amplifier networks - and interconnects at

microwave integrated circuits (MICs) are examined.

It is not possible to design matching networks, filters and microwave
amplifiers, - which are used in communication systems at high frequencies as one
variable networks. For this reason mixed lumped and distributed element
networks structures are required. However, analytic network functions and
synthesis for each circuit structure are not defined. Consequently, analytic or
semi-analytic methods are described on practically
meaningful restricted circuit topologies. In this study, after having described
symmetrical lossless two ports with mixed elements analytically with a scattering
parameters approach, we have examined the microwave applications. On the
other hand, interconnects between analog and digital circuits, which have to be
produced on the same monolithic circuits, can be designed- due to their speed as

symmetrical lossless two port networks with lumped and distributed elements.

The symmetrical mixed element networks, which are investigated in this
thesis, are efficient at simulation tools such as Spice, in interconnects, microwave

amplifiers, filters and matching networks applications.
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ONSOZ

Son yillarda, haberlesme sistemlerinin minyatiirlesmesi, yilkksek hiz ve yiiksek
frekanslarda ¢aligma istemi, analog ve digital devrelerin aym monolitik mikrodalga
entegre devre (MMIC) yapis: lizerinde tretilmesini zorunlu kilmugtir. Ayni entegre
iizerinde hem analog hem de dijital devreler s6z konusu olunca, fiziksel olarak
gergeklenebilir olmasinin yamsira, bunlar arasindaki baglantilanin da modellenmesi
gerekir. Bu ¢alismada ise, MMIC tasanmlarindaki arabaglanti1 yapilarinin
modellenmesinde ve mikrodalga uygulamalarinda fiziksel yonden anlaml1 yapilar olan

kayipsiz karma elemanli simetrik devre modelleri incelenecektir.
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OzZET

TOPLU VE KARISIK ELEMANLI KAYIPSIZ iKi KAPILI DEVRELERIN
PARAMETRIK TASARIMI

Bu tezde, gerek uyumlagtirma devreleri, filtre ve yiikselteg tasarimlan gibi
mikrodalga uygulamalarinda, gerekse mikrodalga entegre devrelerindeki (MICs)
arabaglant1 yapilarinda kullanilabilecek olan, kayipsiz karma elemanli simetrik iki

kapili devre modelleri incelenmigtir.

Yiiksek frekanslarda galigan haberlesme sistemlerinde kuilamilan uyumlagtirma
devreleri, filtre ve mikrodalga yiikseltegleri, fiziksel ger¢ekleme problemi nedeniyle,
tek degigkenli olarak tasarlanamazlar. Karma elemanli devre modellerine ihtiyag
duyulur. Fakat, karma elemanh devrelerde, her devre modeli i¢in analitik fonksiyonlar
ve sentez tammli degildir. Bu nedenle, pratikte anlamli olan sinirli devre yapilari ele
alinarak, analitik veya yar analitik yontemlerle tammlanmiglardir. Bu galigmada ise,
karma elemanh simetrik kayipsiz iki kapil1 devreler, sagilma parametreleri yaklagimiyla
yan analitik olarak tammlanip, mikrodalga ﬁygulamalan incelenmigtir. Ote yéndan,
ayn1 monolitik devre yapis1 iizerinde iiretilmek zorunda olan analog ve dijital devreler
arasindaki baglant1 yapilan da lizlan itibariyle dagilmis ve toplu elemanlardan olusan
kayipsiz simetrik iki kapili devreler olarak modellenebilir.

Bu g¢aligmada incelenen karma elemanli simetrik devre yapilari, arabaglanti
modelleri, mikrodalga yiikselteg, filtre ve uyumlagtirma devreleri uygulamalarinda,
Spice gibi simiilasyon paket programlan i¢in de kullamgh yapilardir.



SUMMARY

DESIGN OF LOSSLESS TWO PORTS WITH LUMPED AND MIXED
ELEMENTS USING PARAMETRIC METHOD

In this thesis, symmetrical lossless two ports with mixed lumped and distributed
elements, which can be implemented in both microwave applications-such as matching
networks, filters, and amplifier networks - and interconnects at microwave integrated

circuits (MICs) are examined.

It is not possible to design matching networks, filters and microwave amplifiers, -
which are used in communication systems at high frequencies as one variable networks.
For this reason mixed lumped and distributed element networks structures are required.
However, analytic network functions and synthesis for each circuit structure are not
defined. Consequently, analytic or semi-analytic methods are described on practically
meaningful restricted circuit topologies. In this study, after having described
symmetrical lossless two ports with mixed elements analytically with a scattering
parameters approach, we have examined the microwave applications. On the other
hand, interconnects between analog and digital circuits, which have to be produced on
the same monolithic circuits, can be designed- due to their speed as symmetrical

lossless two port networks with lumped and distributed elements.

The symmetrical mixed element networks, which are investigated in this thesis,
are efficient at simulation tools such as Spice, in interconnects, microwave amplifiers,

filters and matching networks applications.



1. GIRiS

Igine girdiimiz milenyumda, artik iyice kiigillmig olan, yilksek hizh ve yiiksek
frekansli haberlesme sistemleri, uygun devre tasanim tekniklerini ve uygun CAD
araglarinin  geligtirilmesini gerekli kilmaktadir. CAD tekniklerinin dogru olarak
tasanmda kullanilabilmesi de, uygun devre modellerinin geligtirilmesi ihtiyacini
dogurmaktadir.

Yiiksek hizlarda galigan haberlegsme devrelerinde, analog ve dijital devreler, aym
monolitik entegre devre yapist iizerinde iiretilmek zorundadir. Bu ise, tasanimecilan
ciddi problemlerle yiizyiize birakir. Analog ve dijital devreleri aym entegre iizerinde
iretmenin en zor yani, fiziksel gergekleme ve analog devrelerle dijital devreler ve
dijital devrelerle dijital devreler arasindaki arabaglanti yapilarimin, tretim agisindan
modellenmesidir. Monolitik mikrodalga entegre devrelerinde, analog devreleri genelde
toplu devre elemanlan ile modellemek tercih edilir. Fakat toplu devre elemanlarinin
fiziksel boyutundan dolay1 bu miimkiin degildir. Ayrica siireksizlik ve parazitik etkiler
de olusturulan modelde yer almalidir. Bu ise tasarimu daha da gugclegtirir. Devre
tasanmcilan sozii edilen problemi, toplu elemanlarla birlikte transmisyon hatlarim da
modelleyerek, fiziksel boyutu, siireksizlik ve parazitik etkileri de yapinin i¢ine gémerek
¢6zme yoluna gitmiglerdir. Bu amagla birgok aragtirmaci analitik, yan-analitik ve
niimerik tekniklerinin geligtirilmesi igin literatiire degerli katkilar yapmuslardir.
Burada, karma elemanli (toplu ve dagilmig) devre tasarimimin kisa bir tarihi geligim
siirecine bakmakta fayda bulunabilir.

Karma elemanli devre tasarimi ya tek degiskenli yada g¢ok degigkenli devre
fonksiyonlarinin ¢dziimii olarak kargimiza g¢ikabilmektedir. Dagilmig parametreli
elemanlar 4 Richards degiskeni, toplu parametreli elemanlar p kompleks frekans
degiskeni cinsinden tammlandiginda, 4 ve p degiskenleri arasindaki hiperbolik iligki
(A=tanh(pz), tiletim hattinin gecikmesi) kullamlirsa tek degiskenli, 4 ve p



degiskenleri bagimsiz kabul edilirse iki degigkenli devre tasarim problemi ile
kargilagilmaktadur.

Bu tezde, iki degiskenli karma elemanli devre tasanim yaklagim kullamldig igin,
bu yaklagim tizerinde durmak istiyoruz. Iki degigkenli devre tasanmu, dzellikle OZAKI
ve KASAMI’nin [1] ¢ok degiskenli pozitif reel fonksiyonlar tizerine ¢aligmas: ile 6nem
kazandi. Bir diger onemli katki, ANSELL tarafindan gergeklestirildi [2]. Ansell toplu
clemanhi reaktans ve egit uzonlukiu iletim hatlarimi igeren sonlu devrelerin girig
empedans fonksiyonunun aslinda, iki de@igkenli bir reaktans fonksiyonu oldugunu

gostermisgtir.

KOGA, tek degiskenli fonksiyonlarin belirli bir smfi ile ¢ok degiskenli
fonksiyonlar arasindaki iligkinin varlifini inceledi ve ¢ok degiskenli rasyonel
fonksiyonlarin gergeklenebilirligi ile tek degiskenli rasyonel olmayan fonksiyonlarin
gercgeklenebilirligi arasindaki iligkiyi gosterdi [3].

Tek degiskenli empedanslardaki gibi, ¢ok degiskenli empedans fonksiyonlarinin
ardigil sentezi i¢in de DARLINGTON teorisinin [4] gecerli oldugu samldi Iki
degiskenli her pozitif reel empedans fonksiyonun (Z(p,4)) LC reaktansi ve birim
elemanlarin (UE) ardigil baglanmas: ile gergeklenebilecegi kabul edildi. RHODES ve
MARSTON bunun yanhghgm goésterdi [5]. Daha sonra YOULA, RHODES ve
MARSTON toplu parametreli alt devrenin yansima katsayilan igin agik (explicit)
ifadeleri ve fiziksel gergeklenebilirlik gartim1 tanmimlad: [6,7,8]

Biitiin bu caligmalardan, pozitif reellik sartimin iki degiskenli yapilarda, tek
degiskenli yapilarda oldugu gibi yeter sart olmadi@, topolojik yapiya ait birtakim ilave

bilgilerin de gerektigi sonucuna vanilds.

Cok degiskenti kayipsiz iki kapih devrelerin sagilma parametreleri yardimyla
tammlanmasina dayanan yaklagim ilk defa FETTWEIS tarafindan ortaya konuldu [9].
Fettweis ‘Sagilma Hurwitz Polinomu’ adim verdigi 6zel bir tip Hurwitz polinomu
tamtarak sagilma matrisinin kanonik gosterimini gok degiskenli olarak tammlad: [10-
14]. YARMAN, AKSEN ve SERTBAS ise iki degiskenli (karma elemanlr) merdiven



tipi devre yapilarim 5. dereceye kadar agik ifadelerle tammlayak, fiziksel ger¢ekiemede
sorunlar yaratan mikrodalga uyumlagtirma devreleri ve yiikselteg tasarimlarina
uyarladilar [15-23].

Bu tezde, pratikte ¢ok kullanilan, cep telefonu, g¢ok hizli bilgisayarlar, telsiz
telefon gibi birgok mikrodalga sisteminde hizlan nedeniyle arabaglanti modeli olarak,
dagilmig ve toplu elemanlardan olusan simetrik iki kapili devrelerin tasarimi
incelenmigtir. Karma elemanli simetrik iki kapili devrelerin sinirlandirilmig bir alt
kimesi iginde yer alabilecek cesitli devre topolojileri analiz edilerek, devreyi
tammlayan sagilma parametrelerinin eleman degerleri cinsinden elde edilmesine

dayanan yari-analitik bir yaklagim ortaya konulmugtur.

Tezin ikinci bolimde tek degiskenli; sadece toplu veya dagilmig elemanlardan
olusan iki kapili devrelerde sagilma fonksiyonlari, f A g kanonik polinomlan
cinsinden sagilma matrisi, sa¢ilma transfer matrisi tammlan verilip, fiziksel
gergeklenebilirlik igin sagilma matrisinin sahip olmasi gereken ozellikler dolayisiyla

kanonik polinomlar arasindaki iligkiler 6zetlendi.

Ugiincii boliimde, toplu ve dagilmis elemanlari arka arkaya baglayarak olugturulan
iki degigkenli ardigil iki kapililar1 belirleyen kanonik polinomlarin, katsay: matrislerine
ait genel formlari tammlanarak iki degigkenli ardisil devrelerde sagilma transfer

matrisinin 6zellikleri incelendi.

Dérdiincii boliimde, simetrinin getirdigi avantajlaria 5. derecenin tizerindeki karma

elemanl1 simetrik devre yapilari igin de agik ifadeler tretildi.

Beginci boliimde ise, bir énceki bélimde incelenen devre yapilan ile mikrodalga
uygulamalari (uyumlagtirma ve yikselteg tasarimu problemleri) ve arabaglanti

devrelerinin tasarimi 6rnekler iizerinde incelenmigtir.



2. KAYIPSIZ iKi KAPILILARIN TEMEL OZELLIKLERI

Bu boliimde, yapilan c¢aligma ile ilgili temel devre teorileri incelenmigtir. 1ki
kapililarin sagilma gosterimiyle ilgili temel tanimlar ve ozellikler gézden gegirilerek,
devre fonksiyonlarinin bazi temel Ozellikleri, kayipsiz toplu ve dagilmig parametreli

devrelerle birlestirilerek 6zetlenmisgtir.

2.1. Kayipsiz iki Kapih Devrelerin Saciima Parametreleri

Kayipsiz iki kapil: devreler empedans matrisi, admitans matrisi, zincir matrisi
(ABCD matrisi) veya sagilma matrisileri gibi ¢egitli karakteristik matrislerle
tammlanirlar. Empedans ve admitans matrisi iki kapililan karakterize etmek igin
kullamigh olsalar da, bu matrisler sifir veya sonsuz yiikle sonlandinlmig olarak
tammlandiklarindan, her devre igin varliklar1 garanti edilemez. Sagilma matrisi ise,
sonlu bir yiikle sonlandirtlmug kapilar igin tammlamrlar ve her devre igin varhklari
gosterilebilir [24-26].

Sac¢ilma parametreleri, iki kapili devrelerin girig ve ¢ikisindaki gelen ve yansiyan
dalgalar arasindaki iligkiyi belirleyen parametrelerdir.

) I, L )
O - < 0
__al_) 4_;3.2__.
\'A N v,
- —_
b, b
2
O O
R, R,

L

Sekil 2.1.1 Iki kapilida gelen ve yansiyan dalgalarin gosterimi



Sekil 2.1.1°de; N, kayipsiz iki kapilt devreyi, R; ise i kapisina ait pozitif reel
normalizasyon sayisim gosterir. a; ve b; degiskenleri, i kapisina gelen ve yansiyan dalga

biiyiikliikleri olup bu kapidaki akim ve gerilim cinsinden su gekilde tammlanirlar:
1 V. 1, V.
a, =—(~—==+1, JR,), b, =—(—=-1I, R, ). 2.1.1
=R R @1

a;, i kapist i¢in normalize edilmis gelen dalga, b; normalize edilmiy yansiyan dalga,

i ve I, 4/R, ise sirastyla normalize edilmig gerilim ve akim degiskenleridir [24]. N

IR

iki kapihisinda sagilma matrisi S olmak i{izere, normalize gelen dalga ile normalize

yanstyan dalga arasindaki iligki

S:[S" S12:| ) b={bl] a=l:al} b=Sa (2.1.2)
Sn Sp b, %

seklindedir. S matrisinin elemanlar: Sy, sagtima parametreleri olarak adlandirilirlar.
(2.1.1) ile tammlanan o; ve b; biiyiiklikleri incelenirse |a;* ve |b** nin normalize giig

ifadeleri oldugu goriiliir.

(2.1.2)’den kolayca agagidaki ifadeleri bulabiliriz.

b b
S, =-1 , s =1 2.1.3a
un a, Iaz =0 2 g Ial =0 ( )
_bz — bz
Sa ";l'laz =0 ° S, _;:ia, =0 (2.1.3b)

Burada @; = 0, i kapisimin, R; normalizasyon sayisina egdeger bir direng ile
sonlandmilmig olmasi demektir. S11 ve S22, sirayla, iki kapilinin giris ve ¢ikig yansima

katsayilari, Sz; ve Si2 ise kapilar arasinda ileri ve geri yondeki iletim katsayilan olarak



adlandinilirlar. Sekil 2.1.2°de gosterildigi gibi, birinci kapinin giris empedans1 Z; olup,

ikinci kap1 R; yikk empedansiyla sonlandiriimis olsun.

L
— o-
3
=
N TVZ R,
A
b2
R,

Sekil 2.1.2 Cift yonlii sonlandirilmug iki kapih

Sekil 2.1.2°de, birinci kapidan goriilen Z; empedans, ikinci kapinin normalizasyon
sayisina esit bir empedans ile sonlandirildiginda goriilen giris empedansi olup, birinci
kapida V1=Zil; seklinde bir akim gerilim iligkisi vardir (a;=0). Bu durumda Si;
parametresi igin (2.1.4)’deki ifade elde edilir:

N
1
=~

Sy = 2.1.4)

Z, + R,

Bu ifade iki kapililarda giris yansima katsayis1 ile giriy empedans: arasindaki temel
bagmntidir. Benzer gekilde Sz, iletim katsayist igin de

Sy =2 /%% @.1.5)

bagintisim tiiretebiliriz. S2:’in genliginin karesi, iki kapili devredeki giiglerin oram

olup, transfer gii¢ kazanci (transducer power gain) adim alir.

2
|82 l’=-1~&—lz—/-&=f2— (2.1.6)
4|EP/R, P,



Burada P, ikinci kapinin gikig giicii, Py, ise birinci kapiya gelen giicti gostermektedir.
Benzer ifadeler, S5, ¢ikig yansima katsayist ve Sy ters yondeki transmisyon katsayist

icin de aym yaklagimlarla gikartilabilir.

iki kapihilarda kayipsizhk ve giig iliskileri, sagilma parametrelerine gore
incelenirse, Sekil 2.1.2° den de goriilebilecegi gibi |aif?, iki kapih devrede birinci
kapinin giiciinii gosterir. Birinci kapi igin bu ifadeyi yazarsak,

2
E _p 2.1.7)

2
al’=
o P~ =P

seklinde E kaynagindan iki kapilimin girisine uygulanan giicii buluruz. Aym kapi igin

|b1[? ise, birinci kapidan yansiyan giig ifadesidir.
Birinci kapidan iki kapiliya giren reel net glig,
P=Re ("iI;") (2.1.8)

olarak tammlamr. Buradaki iist yildiz isareti kompleks eslenigi gosterir. (2.1.1)’de
verilen tammlan kullanarak,

Pi=Re {(a1+b)(@ b1 )}=|ar|*-|b: (2.1.9)

oldugunu gorebiliriz. Yani birinci kapidan iki kapiliya giren reel net g, gelen ve
kapidan yansiyan giglerin farkina esittir. Aym tammlamalar ikinci kapi igin de
gecerlidir. Genel bir ifadeyle iki kapilida harcanan toplam gii¢ ifadesi Ps, gelen ve
yanstyan giiclerin farki geklinde agagidaki gibi tammlanmir [24]:

2
P =Yaa’ —f:bi b, (2.1.10)

i=1 i=1

(2.1.2)’ deki tanimlar1 (2.1.10)’da yerine koyarsak,



Pa=a’[I-S7 S]a (2.1.11)

gii¢ farki ifadesini sagilma parametreleri cinsinden belirlemiy oluruz. Burada 7 birim
matris, *7 ise kompleks eglenifin devrigi (transpoze) anlamina gelir. Pasif iki kapililar
i¢in harcanan gii¢ Py, Re{p} >0 i¢in daima pozitifiir (p = ¢ + jo kompleks frekans
degiskenidir.). Oyleyse Re{p} > 0 sart1 igin, [7 - §'* S} matrisi pozitif tammlidir. Bu da
bizi, S matrisinin sinirlt reel bir matris oldugu sonucuna ulagtirir [24]. Bilindigi gibi, iki

kapih kayipsiz oldugundan, Re{p} = 0 i¢in iki kapilida harcanan gii¢ sifir olur.

STS=1 Re{p} =0 (2.1.12)
Bu nedenle kayipsiz iki kapilinin sagilma matrisi imajiner eksen iizerinde birimsel
(unitary) dir. Aynica bu ozellik analitik siireklilik 6zelliginden dolay: biitiin p diizlemi
boyunca da gegerlidir [24]. Yani biitiin p degerleri igin,

SIS=1 (2.1.13)
dir. Burada alt yildiz isareti S« = S*(-p*) yi ifade eder. Bu durumda direng ile
sonlandirilmig kayipsiz iki kapili igin sagilma matrisi “birimsel” (paraunitary) olarak

adlandirilir.

“Birimsellik” 6zelligi sagtlma matrisi elemanlar1 arasinda, agagidaki sekilde ifade

edilen temel ikigkiyi kurar.
S11811%+ S2Sa1+= 1 (2.1.14a)
822822+ + S12812+ = 1 (2.1.14b)
S11812%+ $21822+ = 0 (2.1.14¢)
822521+ + 12811 = 0 2.1.14d)

Bu egitliklerden goriilebilecegi gibi,

S11811% = S22822%, 812812+ = $21.821% (2.1.15)



dir. Bu ifadeler, yansima ve iletim katsayilarinin genliklerinin “birim smrh”

olduklarim gosterir, yani p= jo i¢in |S5| < 1 olur.

Ozet olarak, kayipsiz bir iki kapilinin sagilma matrisi agafidaki temel ozellikleri

gosterir:

1. Biitiin p degerleri i¢in S matrisinin elemanlar reel ve rasyoneldir.

2. Re{p} > 0 iken S analitiktir.

3. Her p igin S+* S birimseldir ( S« § = I).

4. Eger S matrisi simetrik ise (S12 = S21) kayipsiz iki kapih kargiliklidir

(reciprocal).

Direng ile sonlandirilmug bir iki kapilinin, girig yansima katsayisi ile empedansi

arasindaki temel iliski ve 6zellikler ise su gekilde 6zetlenebilir:

o Eger

1. p’nin reel degerleri igin S)(p) reel ise,
2. Re {p} > 0 iken S)(p) analitik ise,
3.Voigin|Sifo) | <1 ise

Si(p) simirl reeldir denir.

¢ Direng ile sonlandirilmug bir iki kapilida giriy empedanst,

1+5,(p) 2.1.16)

Z(p)= 1-8,(p)

ile verilip,

1. Biitiin p degerleri i¢in Z1(p) reel
2. Re {p} > 0 igin Re Zi(p) > O ise,

Z1(p) pozitif reel bir fonksiyondur denir.



10

e Pozitif reel rasyonel bir empedans fonksiyonu (veya simrli reel yansima
fonksiyonu) Sekil 2.1.3” teki gibi pozitif direngle sonlandinlmig kayipsiz bir iki
kapili olarak ger¢eklenebilir [4,24].

O
l Ry=1

Z(p), $i(p)

Sekil 2.1.3 Pozitif reel empedans fonksiyonunun Darlington gosterimi

2.1.1. Sacilma Transfer Matrisi

Ardarda baglanmig (cascaded) diki kapililardan olusan iki kapili bir devreyi
transfer matrisi ile tamimlamak, sagilma matrisi ile tammlamaktan daha elveriglidir.
(2.1.2)deki sagilma ifadelerindeki a; ve b; kapt degigkenlerini birinci kap ile ikinci kapi
arasmdaki iliskileri verecek sekilde yeniden diizenlersek 7 sagilma matrisini agagidaki

gibi elde ederiz:

(bl) = T(azj T — (Til T;Z] (2 1 17)
al bz TZI T22

Transfer matrisinin 7; eleman degerleri ile sagilma parametreleri arasindaki iligki,

agagida tanimlandig: sekildedir:

detS
—_ ]"21 = - T'lZ = —— T22 = — (2118)

hy==3 S S S
21 21 21 21

Burada detS sagilma matrisinin determinantim gosterir.
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Kayipsiz iki kapili devrelerde, sagilma transfer matrisinin elemanlari rasyonel

fonksiyonlar olup eger iki kapili devre kargilikli ise, yani S12=355; ise det7=1"dir.

1 2 3 4
o——— -0—C 0
a
By <2 B, <
N, N,
+—— _— -— —_—
b, b, b, b,

o——— 0—0— o
R, R,~R, R,

Sekil 2.1.4 Ardigil bagh iki kapililardan olugan devrede parametrelerin tanitinu

Sekil 2.1.4°de ardigil bagh bir devredeki parametreler tanimlanmugtir. Her kapida
aym normalizasyon yapilacak olunursa (R,=Rj3), birinci kapinin ¢ikigi ile ikinci kapinin
girigi cakigtigindan (a2=bs, br=as3), ardisil devrenin transfer matrisi, her bir iki kapili
devrenin transfer matrislerinin ¢arpimina esit olacaktir (I=T7,12). Boylece ardisil bagli

iki kapililardan olugan devrenin sagilma parametreleri de kolayca bulunabilir.

2.1.2. Sacilma Matrisinin Kanonik Gisterimi (Belevitch Formu)

Sagilma matrisinin \i¢ kanonik polinom cinsinden gosterimi Belevitch tarafindan

yapilmistir [24]. Kayipsiz bir iki kapili igin sagilma matrisinin kanonik formda

gosterimi su gekildedir:
h .
S:l(f ‘ZJ (2.1.19)
g - &

Burada f+ reel fonksiyonun eslenifini gostermektedir (f+« = f(-p)). f h ve g kanonik
polinomlar: agagidaki 6zelliklere sahiptirler:

o f=fw), h = h(p) ve g = g(p) polinomlan, p kompleks frekansina bagh reel

polinomlardir.
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¢ g polinomu kesin Hurwitz bir polinomdur.
e fmoniktir. Yani en yiiksek dereceli teriminin katsayis: birdir.

e f, /1, g polinomlan arasinda,
88+= hh++ ff+ (2.1.20)

seklinde bir iliski vardir. Bu iligki (2.1.14) te verilen birimsellik 6zelligine karg
gelmekte olup, “kayipsizlik kogulu “ olarak adlandirilir [24].

Iki kapili kargilikli ise, ftek veya ift bir polinomudur. Bu durumda f ¢ift ise ¢ = +
1, eger ftek ise o = - 1 degerini alir. Kayipsiz kargilikl1 bir iki kapilt devrede (S12=2521),

o= fo/f=%£1 (2.1.21)

olup (2.1.20)’deki kayipsizlik kosulu,

gg+= hh«+ of’ (2.1.22)

seklinde yazilabilir [2]. (2.1.20)’den p = jo igin,

lhi<g |f1=<]gl (2.1.23)

elde edilir. Buradan agagidaki derece esitsizliklerine gegilebilir.

deg {h} <deg {g}, deg {f} <deg {g}, (2.1.29)

“deg” ile polinomun derecesi gosterilmektedir. (deg{g} — deg{f}) farki, sonsuzdaki
transmisyon sifirlarinin sayisi1 gostermekte ve g polinomunun derecesi, kayipsiz iki

kapilinin derecesini belirlemektedir.
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2.2. Orantih Uzunluklu Hatlardan (Commensurate lines) Olusan Dagilmis

Parametreli Devreler

Mikrodalga frekanslarinda, klasik toplu devre elemanlanimi gergeklegtirme
(realization) problemi nedeniyle transmisyon hatlarindan olusan dagilmig parametreli
devrelere ihtiyag duyulmaktadir. Ote yandan, transmisyon hatlann ile dagilmig

parametreli devre tasarim literatiirde yerlegmis bir konudur.

Dagilmig parametreli devre sentezinde yaklagimlar, standart wuzunluktaki
transmisyon hatlarindandan olusan yapilarla yapilir. Standart uzunluklu transmisyon

hattina birim eleman (unit element, UE) denir [27].

A
~
v
S

&

C <
S+ 0

(@ (b)

Sekil 2.2.1 (a) Birim eleman (UE)
(b) Birim elemanin (UE) sembolik gosterimi

Richards, ¢ogu mikrodalga filtreleri ve uyumlagtrma devrelerini, ideal birim
elemanlar (UEs) seklinde orantih uzunluklu sonlu transmisyon hatlariyla modellemistir
[28]. Orantih uzunluklu hatlarda (commensurate lines), devredeki tim hatlarin

uzunluklar birim elemamin (UE) uzunlugu L’nin katlart geklindedir. Richards,

A = tanh pr 22.1)

doniigiimii kullanarak egit uzunluklu transmisyon hatlarindan olusan (commensurate
lines) dagilmig parametreleri devrelerin, toplu elemanli devrelere uygulanan analiz ve

sentez yontemleri ile incelenebilecegini gostermistir [28,29]. Burada 1, egit uzunluklu
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transmisyon hattinin tek yonla gecikmesi, p, p=c +jo seklindeki kompleks frekans
degiskeni ve 4, (4 =X +jQ) Richards degiskenini gostermektedir. A =tanhpz geklinde
p diizleminden A4 diizlemine olan doniigiim birebir degildir, fakat periyodiktir. Bu
doéniisimiin bazi ozellikleri Sekil 2.2.2°de gosterilmistir.

p - diizlemi A - diizlemi
j3nl2t jo iQ
jmi2t
I I
c < > — GE—
m v
-jnl2z
-j3nl27

Sekil 2.2.2 Frekans diizleminde Richards doniigiimii

Sekil 2.2.2°den de goriildiigi gibi p = o+ jn / (27) ile simrlanmig olan p dizlemi,
tiim doniigiim bilgilerini tagir. p diizleminin sag ve sol yar1 bélgeleri, reel ve imajiner
eksenler, A diizleminde aym yerlere kars1 diigmektedir. A =jO=j tan @t geklini alir ve
periyodu

—SwS - 00<Q<o0 (k=1,2,3,.......) (2.2.2)

seklindedir. Sonug olarak egit uzunluklu transmisyon hatlarindan olugan dagilmig
parametreli devrenin frekans cevabi, w reel frekansina goére periyodiktir. Toplu iki
kapili devrelerin sentezinde uygulanan devre teorileri, orantihi uzunluklu transmisyon

hatli devrelere de (commensurate transmission line networks) aynen uygulanabilir.

Buna gore A diizleminde, orantili uzunluklu iletim hatlarindan olugan kayipsiz bir

iki kapil: devrenin S(4) sa¢ilma matrisi su 6zellikleri géstermek zorundadir [28]:



15

1. A reel degerleri igin S(4) reel olmalidir.

2. Re {1} >0 iken S(4) analitiktir.

(A=% 1 “deki 2. dereceden dallanma noktalar: harig)

3. Re {1} >0 iken I-S"(1)S(4) pozitiftir. (ya da Red >0 ise)

4. Eger iki kapili kargilikls ise S(4) simetriktir. Yani S;2(4)=S2;(4)° dir.

5. Re {A}=0 iken S() birimseldir (unitary). Boylece S”(j£2)S(j2)=I veya
ST-2)S(3)=I olur. Birimsellik ozelliginden toplu elemanli devredeki ifadeye
benzer gekilde agagidaki egitlikler yazilabilir:

S1811++ S21821+= 1 (2.23.2)
S11812++ $21822x= 0 (2.2.3.b)
822821+ 812811« = 0 (2.2.3.¢)
822822+ + S12812% = 1 (2.2.3.d)

Burada * alt indisi A‘mn -4 ile yer degistirecegi anlamina gelir. Direng ile

sonlandiriimiy kayipsiz bir iki kapilida giris empedansi

_1+8u(d)

~ 2.2.4)

Z(4)

olup pozitif reel oldugu garanti edilebilir.

Boliim 2.1.’de anlatildig: gibi, kayipsiz bir iki kapilinin sagilma matrisi sinirl: reel
paraunitary olup oOzellikleri Bolim 2.1.2.°de 6zetlenen £, # ve g kanonik polinomlan
olarak yazilabilirler. Richards dontustimiiniin 6zelliine gore, A diizlemindeki devrelerin
S matrisi igin de yukarida tekrarladigimiz ozellikler aynen gegerlidir. Ozellikle, Sy; ve
S22 yansima katsayilan A dizleminde rasyonel fonksiyonlar olup, sag yan diizlemde
(RHP) holomorfiktir'. Diger yandan iki kapilida birim elemanlar ardigil baglandiginda,
pay polinomunda (1-4%)'? geklinde terimler gikmasi olasigindan, Sp; ve )z iletim
katsayilar1 rasyonel olmak zorunda degildir. Ardarda bagl transmisyon hatlarindan

olusan devrelerde, iletim sifirfarini belirleyen f{/4) polinomu agagidaki sekildedir:

' h ve g polinomlan A diizleminde reel polinomlardir ve g kesin Hurwitz’dir
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JO) = folA)(1-2) (2.2.5)

Burada fy(4) polinomu reel bir polinomdur. u tamsayist ise iki kapilinin girisi ile ¢tkigt

arasindaki birim eleman sayisin1 belirler.
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3. TOPLU VE DAGILMIS PARAMETRELi ELEMANLARDAN OLUSAN
KAYIPSIZ iKi KAPILI DEVRELER

Bu boliimde once, karma elemanli olarak tammladifimiz, toplu ve dagilmug
elemanlardan olugan, iki degigkenli devrelerin temel 6zellikleri incelenip, iki degigkenli
sacilma ve transfer fonksiyonlart tammlanacak, ardindan galigmanin ana konusu olan
karma elemanh simetrik iki kapih devrelerin tasarimi sagilma parametreleri

yaklasimiyla incelenecektir.

Genig bandli uyumlagtirma devrelerinin tasarimi problemi, hibrit veya monolitik
mikrodalga entegre devre (MIC) tasarimu teknolojilerinde, uydu haberlegmesi ve genis
bandli haberlesme sistemlerinde olan hizhi geligmeler nedeniyle siirekli canli bir
problem olarak kalmigtir. Kazang-band genisligi teorisi ile baslayp, stirekli geligen
genis bandlt uyumlastirma devreleri tasarimi, 1977°de Carlin’in gelistirdigi “Reel/
Frekans Teknigi’nin uygulanmasi sonucu her tiirlii yiik igin ¢6zilebilir bir problem
haline gelmigtir.  Nitekim, yalmizca toplu veya dafilmis elemanlardan olusan
uyumlagtirma devrelerinin tasarimi konusu artik literatiire yerlesmis bir konudur [30-
41].

Pratikte, 6zellikle de mikrodalga entegre devrelerinin (MIC) tasanminda gergekte
ideal toplu ve dagilmis elemanlar olmadifindan ciddi problemlerle kargilagthr. Bir
MIC yapmin komple tasarimi igin biitiin fiziksel etkilerin de ayn ayri modellenmesi
gerekir. Bu durumda karma, yani toplu ve dafilmig elemanlarla devre tasarim
kaginilmaz bir zorunluluktur. Karma elemanli yapilar, fiziksel gergeklemeye uygunluk
agisindan son derece elverigli devre topolojileridir. Ancak, yalniz toplu veya yalnz
dagilmis elemanlarla uyumlagtirma devre tasanimlarindaki gibi genel bir teori, karma
elemanl: yapilar i¢in mevcut degildir. Klasik toplu elemanh devre teorisindeki baz:
kavramlar, karma elemanls iki kapili devre teorisinin sturli bir alt kiimesine uyarlanmig
olup, heniiz her devre yapisi iin gelistirilememigtir. Simrh karma elemanh iki kapils
devre yapilarinin, fiziksel gergeklenebilirligi i¢in iki degiskenli devre fonksiyonlan ve
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bazt sentez yontemleri Youla, Rhodes, Marston {6,7,8], Scanlan, Baher, [42] ve Rieder,
Weinberg [43] tarafindan geligtirilmistir.

Gergekte toplu ve dagilmig elemanlardan olugan iki kapih devrelerin tanimlanmasi
problemi, p ve A kompleks frekans degiskenleri arasindaki hiperbolik iligki nedeniyle
tek degiskenli olarak tammlanabilir. Ancak tek degigkenli yaklagimin kompleksligi bu
yoldan gitmeyi son derece simirlamugtir. Bu nedenle, p ve A ayn ayn bafimsiz
degiskenler olarak kabul edilebilir. Genig bandli uyumlagturma problemini ¢ézmeye
yonelik, toplu ve dagilmig (birim) elemanlarla olusturulan algak gegiren, yiiksek
geciren, bant gegiren ve bant sondiiren sinirhi topolojik karma elemanli devre yapilan
igin, Yarman, Aksen ve Sertbag tarafindan, iki degigkenli sagilma polinomlan
katsayilarninin agik c¢oziimlerinin (explicit) elde edilmesine dayanan onemli katkilar
yapilmugtir [15-23].

Sirlt karma elemanhi devrelere ait topolojik Ozelliklerin elde edilmesi, iki
degiskenli yaklasimda kargimiza c¢ikan dogrusal olmayan denklemlerin ¢oziimiinde
gerekli ilave kisitlamalart sagladify igin son derece 6nemlidir. Bu nedenle iki
degiskenli devre yapilarinin ¢6ziimii, belirli yapilar segilerek yapiimigtir. Bu galigmada
ise, simetrik devre yapilan segilerek iki degiskenli uyumlagtirma probleminin sinirlart

ve uygulama alanlar: bir derece daha genigletilecektir.

3.1. Karma Elemanh Kayipsiz iki Kapih Devrelerde Sacilma Parametreleri

Basit toplu elemanli ve orantili uzunluklu dagilmig elemanl yapilann ard arda
baglanmas: ile olusturulan ve “ardigil karma elemanh iki kapili” olarak adlandinilan
kayipsiz iki kapililar, kompleks frekans degiskenleri p ve A’nin fonksiyonu olan iki
degiskenli sagilma parametreleri ile tammlanabilirler. Ardigil karma elemanh iki kapil
yapida sagilma matrisini S=S(p,4), sagilma transfer matrisini de 7=7(p,4) ile
gosterelim. S(@,A) ve T(p,4) matrisleri, iki degigkenli olarak tammlanan kanonik
polinomlar f = fijp, ), h = h (p, 4), g = g (p, 4), cinsinden asafidaki gibi ifade
edilebilir[9]:
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_ L h of. 3 _1_ og. h
S = e (f —ah,)’ T = 7 (ah. g) G.1.)

burada, * indisi, iki degiskenli fonksiyonun g. = g(-p,-4) olarak tammlanan
parakonjugesini gostermektedir.

Gergeklenebilir karma elemanli devre yapilant igin kanonik polinomlarin

saglamas: gereken ozellikler agafida verilmigtir:

e f hveg, pve Akompleks frekans degigkenine bagl reel polinomlardir.

e g(p, 4) ‘sagilma Hurwitz’ polinomudur [9,10,13]. Yani,
1. Re{p, 4}>0i¢in g(p, =0,
2. g(p, 4), parakonjugesi olan g(-p,- ) ile ortak bir garpam yoktur.

e f{p, 2) monic bir polinomdur. Yani en yiiksek dereceli katsayis: 1°dir. o ise
modiiler olmayan bir sabittir (| | =1).

e f h ve g polinomlart (3.1.2)’de verilen kayipsizlik denklemi uyarinca
birbirleri ile iligkilidir.

gg¢=hhn+ffs (312)

e Eger ardigil karma elemanh iki kapii devrede birim eleman (UE) varsa f

polinomu,

10.%) = folp, ) (1-2)*2 (.1.3)

ile tammlamir. Burada u, yapidaki birim eleman sayisin1 gostermektedir.
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3.1.1. iki Degigkenli Kanonik Polinomlarin Matrisel Gésterimi

Bolim 3.1°deki kosullan saglayan herhangi bir sagilma matrisinin, fiziksel olarak
gerceklenebilir kayipsiz bir iki kapiliya kars: gelecegi [44,451 de gosterilmistir. Ancak
ardigtl bagh, karma elemanli kayipsiz bir iki kapilinin gergeklenebilirligini garanti
etmek igin sagilma matrisi, dolayisiyla kanonik polinomlarin baz ilave sartlani da
saglamas: gereklidir. Bu ilave sartlan incelemek igin kanonik polinomlar asagidaki
gibi matrisel formda tanimlanabilir.

Iki degigkenli g(p,4), h(p,4) polinomlan katsayr formunda agagidaki gibi

yazilabilir;

g ny n, 1,

g(pAM)=Y.> g.r'N, h(pA)=> hp® (3.1.4)
=0 j=0

i=0 j=0

burada, n, ve m, sirastyla p ve 4 degiskenlerine gore, g(p,4)’mn kismi dereceleridir.
(3.1.4)°deki katsayilar formu, tek degigkenli olarak asagidaki gibi ifade edilebilir:

n, _

np p - .
g(p))=2 8NP =2.g(p)X . Wp\)=3 h(\)p' =ﬁhf(p)7~' (3.1.5)

i=1

Bu iki degiskenli polinomlar: bir bagka gostetim sekli olan matrisel formda ise
asagidaki gekilde gosterebiliriz:

g(p.A)=p Ah=2 A5 p, h(p)=p Agh=N A p, (3.1.6)
Burada,

p’=fipp’ ..p"], Al=fl A 2% . A"] (3.1.7)
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Ag ve Ap, katsayilar matrisi olarak adlandinlip, [(ny+1) x (my+1)] (gosterime gore
[(ma+1) x (n,+1)] ) boyuthy matrislerdir. Iki degiskenli polinomlarin katsay1 matrislerini
asagidaki gekilde tammlayabiliriz:

8o 8 ' &on | hoo hm hOn;
A, = g:m g:u glzn,z , A, = h:o h:l hml (.18)
_g"p o &n1 7 &up, J h”Po h"pl o h”p"l J

n, ve my, kismi dereceleri ile tammlanan iki degiskenli g(p,4) polinomunun toplam

derecesi

n = Max g0 {it]} i=0,1,...,n,, j=0,1,...,m (3.1.9)

ile tammlidir.

3.2. Karma Elemanh Kayipsiz iki Kapih Devrelerde Sacilma Transfer Matrisi

Toplu ve dagilmig elemanlarin arka arkaya (cascaded) baglanmis oldugu kayipsiz
iki kapili devrelerin analizinde sagilma transfer matrisini kullanmak daha avantajlidir.
Kayipsiz bir iki kapili devreyi olugturan herbir devre elemantni ayn ayn iki kapililar
seklinde diigiinecek olursak, devrenin tamamimn sagilma transfer matrisi, herbir iki

kapilimin sagilma transfer matrislerinin arka arkaya garpimuna esittir (7=1;.72.73.--).

- " - /- — 1
] - - -
|l L ) Le D o
- T
e o o —— e -

Sekil 3.2.1 Ardigil bagh toplu ve dagilmig elemanlardan olugan devre yapist
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Sekil 3.2.1°de gosterildigi gibi, toplu ve dagilmig elemanlardan olugan, iki
degiskenli kayipsiz bir N iki kapili devresinde sagilma transfer matrisi 7=7(p,4),

kanonik polinomlar cinsinden agagidaki gekilde tammlanir:

I{p,2)

1 [crg( -p-1) h( P,'U] G.2.1)

T f(pA)oh(-p-1) g(p.Ai)

Arka arkaya baglanan, biri toplu elemanli digeri dagilmig elemanl: olan iki iki-
kapili devreyi inceleyelim (Sekil 3.2.2). Dagilmig elemanl: iki kapili devre birim
elemanlann zincir seklinde baglanmasindan olugsun. Toplu elemanh iki kapilt yapinin
ise karsihikli ozelligini sagladifim kabul edelim. L ve D ile gosterecegimiz toplu ve
dagilmig elemanh yapilarin transfer matrisleri agagidaki formda tammlanirlar:

« h . h
T, :_L(O'LgL LJ T, ___i_(gn DJ (22)
fi\oh. g o\l 8o
1 2
p— - o
L D
00— - o

Sekil 3.2.2 Arka arkaya baglanmig toplu ve dagilmig elemanl: iki kapili

Burada * indisi fonksiyonun parakonjugesini gosterir. Ifadelerdeki {fi, /1, g.} ve {fp,
hp, gp}sirasiyla, toplu ve dagilmg elemanh devreleri tammlayan, p ve 4 kompleks
frekans degigkenlerine bagh reel polinomlardir. Aralarinda kayipsizlik kogulu olarak
bilinen ve agagidaki sekilde ifade edilen bir iligki vardir:

8.8 =hhy + f fre
gn8ps = Mphpe + [ foe (3.2.3)
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burada g, ve gp kesin Hurwitz polinomlardir.

Dagilmisg elemanli D iki kapilisinin birim elemanlardan (UEs) olustugunu kabul
ettigimizden fp polinomu f, = (1——)»2)"“/2 olarak tanimlanir. ny, D iki kapilismdaki

birim eleman sayisidir. Bu durumda gp polinomunun, dolayisiyla Ap polinomunun

dereceleri n)’ya esittir.

Karsilikh toplu elemanl: iki kapih igin fi, p’nin tek veya ¢ift bir polinomudur. Bu
durumda oy =fi+/i.=(-1)? olup, L algak geciren bir yap: olursa 1’dir. (g, iki kapilinin

dc’deki iletim sifirlarinin sayisidir.)

Sekil 3.2.1°deki ardial iki kapilnin sagilma transfer matrisi 7, herbir yapinin
transfer matrislerinin garpimina egit olup (7=71.7p) asagidaki formdadir:

T_l og. h
~ floh g
Burada

0/
S=10 =fL(l-ﬂ'Z)" ’ o=o,=*1
8=8.8p +O-LhL“hD (324
h=hg,+0,8,.h,

burada * indisi parakonjuge olup iki degiskenli bir fonksiyondag. =g(-p,~4)
seklindedir. ki degigkenli yapilarin sagilma parametrelerinin tammindan da
hatirlanacag: gibi karma elemanh iki degiskenli N devresinde g, sagilma Hurwitz bir

polinom olmak zorundadir [49].

Sekil 3.2.1°deki gibi ardigil bagli karma elemanli kayipstz bir iki kapili devrenin
sagtlma transfer matrisi ise ard arda her birinin transfer matrislerini carparak

bulunabilecegi gibi, (3.2.4)ifadesindeki polinom esitliklerinin ardigil ifadesinden de
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bulunabilir. k tane basit iki kapilt yapinin ardisil baglanmasi ile olusturulan ardigil iki
kapili devre i¢in (3.2.4)’deki ifadelerin genellestirilmis formunu (3.2.5)’deki gibi
tiiretebiliriz.

M=
g™ =gl Vg, 1ot VpVp (3.2.5)

(k) _ 3,(&-1) -1y . (1)
e =n""g +c" g, "h,

Burada (k-1) st indisi bir onceki ardigil bagl yapiyi, (k) alt indisi ise son yapiy1
gosterir. {9, g®, A%} polinomlari, p ve A kompleks degiskenlerinde reel polinomlar
olup (3.2.3)deki iligkiyi saglarlar. Ancak g™ polinomu, ardisil yapilar arasinda
olabilecek muhtemel ortak ¢arpanlardan dolay: sagilma Hurwitz olmayabilir.

3.2.1. Ardigil Basit Devre Yapilarimin Transfer Fonksiyonlar:

Dagilmis parametreli iki kapili devrenin (D;) yalmz bir birim elemandan, toplu
elemanli devrenin de (L;) algak gegiren devre yapilarindan olustugu (seri L veya paralel
C) iki kapili karma elemanli devreyi ele alalim (Sekil 3.2.3). Ardisil hesaplama
algoritmasina uyarlanabilecek formda, herbir yapinin sagilma transfer matrisleri

agagidaki sekilde tammlamrlar.

e Algak Gegiren Basit Toplu Elemanh Yapiar: Birinci dereceden algak gegiren

toplu elemanl yapilarin polinom formu:

1, g=l+gip, I=hp (3.2.6)
£1>0 hy=pg; pu=t1

Burada seri endiiktans igin p=+1 olup hj=g;=L/2’dir. p=-1 ise, paralel kapasitansi
tammlayip hy=g;= - C/2’dir. Sagilma transfer matrisleri ise {f, 4 g} polinomlarinin
(3.2.1)’de yerine konmas: ile agagidaki sekilde elde edilirler.
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Seri Endiiktans:
p=+1 I
1 2P
g=1+(L/2) p I, = s
=(@L2)p —5P
Paralel Kapasitans:
p=-1 _1 c
1 2F
g=1-(C/2)p Ie=
I=-(C2)p —g—p
L

e Birim Eleman (UE) : Birim elemam tanimlayan polinomlar agagidaki gekilde ifade

edilirler:
F=(1-2%)"* g=1+g14 h=h,A
glzzl-"'hl2 g1>|h1|

Birim elemanin karakteristik empedansi,
Zo=gth=1/(g1-h)>0

dir. Veya,
Z,’ -1

h, = B, =

27,

Z,’ +1
27,

(3.2.7)

(3.2.8)

Buradan % ve g polinomlan ile sagilma transfer matrisi agagidaki gibi yazilabilir:
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g=l+ZjZ+12. —(z,2 412z, Eé;p— -
0 oo 2Z, °
=
h=1+207; 1-% 1), @l eiherz,
2, | T2z, 2Z, |

Bu tanimlanmalara gore herhangi bir sirada k. dereceden ardisil baglanmmg iki
degiskenli iki kapili bir devre igin kanonik polinomlar asagidaki ardigil ifadelerle
tiiretilebilir.

£O(p,0)= 1 22)*"

£9(p,2)=> P (A)p’ (3.2.9)
i=0

h®(p,2)=> h®A)p'

i=0

3.3. Karma Elemanh Simetrik Devrelerin Saciima Parametreieri

Alcak gegiren elemanlarla (seri L veya paralel C), birim elemamn degisik
siralarda (toplu eleman-dagilmig eleman-toplu eleman-... siralamasi zorunlu degildir)
arka arkaya baglanmasi ile olugturulan iki degiskenli simetrik iki kapili devrelerde, p ve
A kompleks frekans degiskenleri cinsinden S=S(p,4) sagilma matrisinin f=f(p,4),
h=h(p,2), g=gpA) iki degigkenli kanonik polinomlar1 ile gosterimi agagidaki
sekildedir:

Burada;
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- h(p, ?\«) S = f(_p’—x) 33.1
Y, ey @319
Fo\) h(-p-\)
=Ler) , =—c 2P 33.1b
2(Ph) Py (3.3.10)

Simetrik devrelerde S11(p, J)=Sx(p,4) oldugundan h(-p,-A) = -oh(p,4) olup, h(p,}) tek

veya ¢ift bir polinomdur. A(p,4)’nm tek veya ¢ift polinom olmas: o = f ; ;P,;j)
y &
sabitinin alacag: degere baghdir.
o= +1 .lse h(p’ A‘) tek (332)
-1 ise A(p,MA)gift

Bu ¢aliymada algak gegiren toplu devre elemanlar ile olusturulan karma elemanli

simetrik devreler inceleneceginden o= +1 ve h(p,4) polinomu tek bir polinomdur.

Tamm 3.3.1: Toplu ve dagilmug elemanlardan olusan iki degiskenli simetrik iki kapilt
devrelerde h(p,A) polinomu, h(-p,-A) = -h(p,A) seklinde tek bir polinom

olup, katsayilar cinsinden

h(p,\) = ZZh,J p'N (3:3.3)

i=0 =0

seklinde ifade edilir. Burada hy katsayilan igin genel kural

_ {hij (i+j) tekise (334)

0 G+j) iftise
seklinde olup birinci siitunda katsay1 yozlagsmas: olur.

Burada n, ve m, p ve A degiskenlerine gore devrenin kismi dereceleri olup, sirasiyla

devredeki toplu ve dagilmis eleman sayisim gosterir.



28

(3.1.8)de verilen Ag katsayr matrisini Tamm 3.3.1°¢ gore yeniden diizenlersek
(3.3.5)°deki gekilde ifade ederiz.

0 A, O Ry, |
th 0 h12 hln,.
0 h, O hy,
hao 0 hsz : h3n
A, = * 335
< 0 A 0 . h,m1 ( )
0 0 A, © h,
hn,o hnpl hn,,z ot hnpn,L

3.4. Karma Elemanh Simetrik iki Kapih Devrelerin Sacilma Transfer Matrisi

Toplu ve dagilmis elemanlardan olusan iki degiskenli iki kapihi devrede sagilma
transfer matrisi boliim 3.2”den hatirlanacag: gibi

po 1 [-detS S,
TS, -8, 1

seklinde sagilma parametreleri cinsinden tamimlanip £ /4, g iki degigkenli kanonik

polinomlarn cinsinden

1 {GL g(-p~1) h(P,U]

N=——
T@,) f(p’}") GLh(_'p:—x) g(P,’&)

Sie

L

matrisel formu ile verilmektedir. Burada ¢ =0, ==~=F1’dir. Bu caligmada

incelenen iki kapililar, algak geciren elemanlardan olugan simetrik devreler oldugundan

o= +1 ve Su(p,2) = Sxu(p, A) olacagindan sagilma transfer matrisi agagidaki forma gelir:
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1 [g(—p,~x) h(p,x)] 6l

TP\ = ——
f@. M) -h(p,))  g(p,A)
Tammm 3.4.1: Eger karma elemanl: iki kapili devre simetrik ise (Su(p,A)=Sz2(p,4))
sagilma transfer matrisinde 721(p, A) = -T12(p,A) dur.

Ozetleyecek olursak bu boliimde, olarak, toplu ve dagilmig elemanlant arka arkaya
baglayarak olusturulan iki degigkenli ardigil iki kapililan tammlayan kanonik
polinomlar ve kanonik polinomlarin matrisel gosterimine ait katsayt matrislerinin genel
formlar1 tammlanarak iki degiskenli ardisil devrelerde sagilma transfer matrisinin

ozellikleri incelendi. Temel devre elemanlarinin sagilma transfer matrisleri verildi.
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4. TOPLU VE DAGILMIS PARAMETRELI ELEMANLARDAN OLUSAN
SIMETRIK iKi KAPILI DEVRELERIN TASARIMI

Bu bolimde, ¢aligmanin ana konusu olan karma elemanli simetrik iki kapilt
devrelerin tasarmm, YARMAN’in gelistirdigi sagilma parametreleri yaklagimu [30-
33,35,37-41] ile incelenecektir. Buraya kadar ikinci boliimde tek degiskenli; sadece
toplu veya dagilmig elemanlardan olugan iki kapil devrelerde sagilma fonksiyonlari, f,
A, g kanonik polinomlan cinsinden sagilma matrisi, sagilma transfer matrisi tammlan
verilip, fiziksel gergeklenebilirlik icin sagilma matrisinin sahip olmasi gereken
ozellikler dolayistyla kanonik polinomlar arasindaki iligkiler ozetlendi. Ukgiinct
bolimde, toplu ve dagilmig elemanlan arka arkaya baglayarak olugturulan iki
degiskenli ardisal iki kapililar1 belirleyen kanonik polinomlarin, katsayr matrislerine ait
genel formlar tammlanarak iki degiskenli ardigil devrelerde sagilma transfer matrisinin
Ozellikleri incelendi. Ardindan karma elemanli simetrik iki kapili devrelerdeki temel

tammlar verilerek gerekli altyap: tamamlanmig oldu.

Son willarda, mikrodalga entegre devre (MIC) teknolojisinin onem kazanmast,
karma elemanl1 yapilarla devre tasarimina olan ilgiyi daha da arttirmigtir. Ancak toplu
(veya dagilmis) elemanlarla devre tasannmindaki gibi tam bir tasarim teorisi karma
elemanli devreler i¢in hala gelistirilememistir. Bununla beraber klasik devre teorisinin
bazi kavramlan geligtirilerek karma elemanh iki kapili devrelere uyarlanmigtir. Fakat
her tirli devre yapis: ile yaklagim ve sentez problemleri tamamen ¢ozilebilmig

degildir.

Karma elemanli devre tasariminda yapilan ilk ¢aligmalar, 6zel fakat pratikte anlamli
devre yapilani olan ardigil bagli toplu elemanlardan olusan kayipsiz iki kapililarla
transmisyon hatlarindan (UEs) meydana gelen yapilar iizerinde olmugtur. A=tanhpr
seklindeki RICHARDS doniigiimii ile rasyonel olmayan devre fonksiyonlari, rasyonel
fonksiyonlara dontugtiralmigtiir. Ancak p ile A arasindaki iligkinin hiperbolik olusunun
getirdigi karmagiklik nedeniyle, p ve A kompleks frekans degiskenleri iki ayr1 degisken
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kabul edilerek butiin devre fonksiyonlan iki degigkenli rasyonel fonksiyonlar olarak
yazilmigtir. Cok degiskenli empedans fonksiyonunun pozitif reelligi incelenmig fakat
pozitif reel olma kogsulunun gerek sart olmasina ragmen yeter sart olmadig

gorilmigtir]1].

Uzun bir sire, gok degigkenli empedans fonksiyonlarimin ardigil sentezinde
DARLINGTON teorisinin gegerli oldufu sanilarak, her pozitif reel degigkenli Z(p,A)
empedans fonksiyonunun LC reaktansi ve birim elemamn ardigil baglanmasi ile
gerceklenebilecedi kabul edildi. Fakat, RHODES ve MARSTON bu kammnin
yanhigligin, toplu elemanh ardigil iki kapililarin birim elemanlarla ayrilmas: geklindeki
devre yapilan tizerinde gosterdi [S]. Daha sonra YOULA, RHODES ve MARSTON
toplu elemanh ardisil bagh alt yapilarin yansima katsayilan igin agik ifadeleri (explicit)
ve gergeklenebilirlik gsartim tammlad [6].

Biitiin bu galigmalar gosterdi ki pozitif reellik iki degiskenli yapilarda tek degiskenli
yapilar gibi gerek ve yeter sart degildir. Iki degiskenli yapilarda pozitif reel kosuluna
ilave olarak devrenin topolojisine ait kogullarin bilinmesi de gerekmektedir. Bu
nedenle iki degigkenli devre yapilarinin ¢6ziimii belirli yapilar segilerek yapilmagtir,
Bilgisayar destekli tasarimlarla karma elemanh iki kapili devrelerden olusan yaklagim

problemlerine ¢oziimler aranmigtir.

Uyumlagtirma problemini ¢ozmeye yonelik toplu ve dagilmig elemanlarla
olusturulan algak gegiren, yiiksek gegiren, bant gegiren ve band séndiiren yapilar igin 5.
dereceye kadar, iki degiskenli polinomlarn katsay1 formunda tanimlayarak reel frekans
teknigine uyarlanabilen yaklagimlar AKSEN YARMAN ve SERTBAS [15-23]
tarafindan gelistirilmigtir.

Bu g¢aligmada ise, Ozellikle mikrodalga entegre devre tasanminda kullamilan
arabaglasim (interconnectivity) modelleri igin olduk¢a iyi sonuglar veren karma
elemanli simetrik devrelerin tasarimi incelenecektir. Simetrinin getirdidi avantajlarla 5.

derecenin iizerindeki devre yapilar iginde agik ifadeler aranacaktir.
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4.1. Karma Elemanh Simetrik Yapilarda Katsay: Matrisi

Simetrik bir iki kapili devreyi tammlayan A(p,4) ve g(p,4) iki degigkenli kanonik
polinomlar katsayilar formunda agagidaki ifadede goraldigu gibi yazilabilir:

Ty 1, . o, 1 i
W)=Y Y hyp'¥ g@N=Y. 3 sV @1
=0 §=0 =0 =0

Burada n, ve m, g(p,4)’nin p ve A degiskenlerine gore kismi dereceleri olup sirasiyla
karma elemanl: devredeki toplu ve dagilmig eleman sayisina esittir. Bu iki degigkenli

polinomlar1 matrisel formda

h(p,\)=p AA=NALp, g@,N)=p AA=NAgp, (412

seklinde ifade edebiliriz. Bu gosterimdeki Ag ve Ag katsayilar matrisi adim alip
agagidaki gekilde tanimlamrlar [18]:

Bw 8un " 8o ] —hoo hy o hOn,1
T A A B
gn,o gnpl o gnpnn | _hn,,o hu,l e hnpn,;

Boliim 3.3 Tamm3.3.1°de verilen simetrik devrelerin tammimt uyannca Ag katsay
matrisi (4.1.4) ifadesinde goriildugn sekilde yazilir:

0 A 0o ... h‘,,,A

hy 0 hy ... W,

0 h o .- h:m,

h30 0 h32 o han,L
A, = 414
"0 by 0 - b @14

0 0 hy - by

Lhnpo hnpl hn,,z et hn,n,_ ]
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Katsayilar matrisi iizerindeki incelememizi biraz daha derinlegtirelim.

Ozellik 4.1.1: 2=0 igin simetrik iki kapili devreyi tanimlayan kanonik polinomlar tek
degiskenli (p degigkenine bagli) polinomlara dontigiirler. Bu durumda katsayi
matrisinin birinci situnu iki kapili devrenin toplu elemanlardan olugan kismimi
tanimlar. Ancak devre simetrik yapida oldugundan katsayilar yozlagmaya ugrar.
Endiiktans, kapasitans ve birim elemandan olugan simetrik devrelerde hso’ dan sonra
gelen, sadece kapasite-birim eleman veya endiiktans-birim elemandan olugan
devrelerde ile hjo’dan sonraki katsayilar sifir olacaktir (4.1.4).

Ozellik 4.1.2 :p=0 igin simetrik iki kaptli devreyi tanimlayan £, 4 ve g polinomlart tek
degiskenli polinomlara doniigirler. Bu durumda katsay: matrisinin birinci satmn iki

kapili devrenin sadece birim elemanlardan olusan kismini tanimlar [18].

4.1 ve 4.2 ozellikleri bize devre elemanlarinin hangi sirada baglandiklan (Biz
bunu “baglant: bilgisi” olarak adlandiracagiz) bilinmek kosuluyla Ag ve Ag katsayilar
matrislerinin 1. satir ve 1. siitunundan iki kapili devrenin tam olarak belirlenebilecegi

sonucunu gosterir.

o ﬁT Tl""""_| —
- 1 | I
(2)
W T 1}
o L L ° o— — _i—

®) (c)

Sekil 4.1.1 (a) Simetrik karma elemanl iki kapili devre
(b) Toplu elemanh prototipi
(c) Dagilmig elemanti (UE) prototipi
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Ozellik 4.1 ve 4.2 Sekil 4.1.1’de 6zetlenmigtir. Sekil 4.1.1b’de 2=0 konularak

elde edilen, algak gegiren toplu elemanlardan olusan yapi, Sekil 4.1.1c’de ise p=0
kondugunda birim elemanlardan olusan devre yapis: goriilmektedir.

Sekil 4.1.1°deki gibi herhangi bir simetrik iki kapili devreyi tanimlayan sagiima
matrisi S(p,4) olsun.

e i=0igin S(p,)|,_, =S(p)

o p=0igin S(p,M)| _, =S

yazabiliriz. Burada S(p), karma elemanl: simetrik devrenin sadece toplu elemanlardan
olusan kisminin sagilma matrisini, S(4) ise birim elemanlardan olugan kisminin sagilma
matrisini gésterir. Buradan baglant: bilgisi bilinmek kosuluyla Ay matrisininl. satir ve
1. situnundan karma elemanli simetrik devrenin S(p,4) sagilma matrisinin tamamin

elde edebilecegimiz sonucuna ulaginz (f{p, 4) 6nceden segilmelidir) [15-18].

Bu genel tamm ve Ozelliklerden sonra eleman degerleri yaklagimiyla katsay:

matrislerinin olusturulmasint inceleyelim.

4.2.Eleman Degerleri Yaklagimiyla Kanonik Polinomlarin Tamumlanmasi

Toplu ve dagilmig elemanlardan olusan karma elemanh simetrik bir iki kapili
devrenin Ay katsay1 matrisini, eleman degerleri cinsinden agik formda (explicit) elde
eder ve buradan eleman degerlerini belirleyebilirsek iki kapih devreyi tammlayan
kanonik polinomlar f{p, 1) 6nceden bilinmek koguluyla tamamen elde edilebilir.

Sekil 4.1.1°deki gibi karma elemanli simetrik bir iki kapili devreyi, her bir devre
eleman bir iki kapiliya gelecek gekilde alt bolimlere ayiralim ($ekil 4.2.1). Her alt

boliimiin sagilma transfer fonksiyonlar elemanter formda boliim 3.2.1°de
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Sekil 4.2.1 Altboliimlere ayriimig bir simetrik iki kapil1 devre

tamimlanmigts. Buradan devrenin tamamina ait sagilma transfer matrisi elemanter
formda T=T11:37s...Tigpimy ¢arpimindan elde edilebilir. Boylece karma elemanls
simetrik iki kapilh devreyi tanimlayan iki degiskenli kanonik polinomlar elde edilir.
h(p,A)=p"AuA formunda ifade edilen h(p,4) polinomundan katsayr matrisi Ag,
devredeki eleman degerleri cinsinden diizenlenip, bagimsiz katsayilar segilerek eleman
degerleri ¢oziiliir. Sonug olarak Ay ve Ag katsayr matrisleri eleman degerleri cinsinden

elde edilir.

Yukarida ifade etmeye calisgifimiz eleman degerleri cinsinden kanonik

polinomlarin tanimlanmasini basit bir 6rnek yap1 iizerinde inceleyelim.

Sekil 4.2.2ada gosterilen 3. derece (n,=2, m;=1) karma elemanh simetrik iki kapil1
devreyi 6nce alt boliimlere ayiralim (Sekil 4.2.2b)

Sekil 4.2.2 tigiincii derece simetrik devre modeli

Alt boliimlerin sagilma transfer matrisleri eleman degerleri cinsinden agagidaki yekilde

tanimlanirlar:
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i D
c  c ~(z,* +1p+22, ———(Z"Zzolh
I -1 - 1——2—p 5P T, = 1 2 2Z,
_S_p 1+.‘23p Bl I A N AlS | e Y2
T2z, 27,

421
Karma eclemanli simetrik iki kapili devrenin sagilma transfer matrisi I=T11373

carpimindan elemanter elde edilir. Bu devrede f(p,)=(1-4%)"? olup h(p,4) ve g(p,})
polinomu, sa¢ilma transfer matrisinin tammindan asagidaki gibi elde edilir:

( p,))=hy())+h(A)p+h(2)p*

1 1 1 (422)
=l —zZAa--2|+(-C —~C*Z,A |p?
(2 ] 2ZOJ ( )p+( 5C*Z, )p
g(pA)=go(A)+g(M)p+8,(M)p*
1 12 1 (4.2.3)
=| =ZA+——+1|+(C+CZ )p+|=C*Z,A |p?
(2 0 27, + J"‘( o)P [2 0 )P

Katsay: matrisleri ise devredeki eleman degerleri cinsinden su sekilde yazilabilir:

- -

0 Z, 1 1 Z, 1 ]
2 2z, 2 27,
Ag=-C 0 Ag=|C  CZ, (4.2.4)
0 —-ZC 0o 1z
5 J | 2

Burada (i+j)=¢ift saytya karsilik gelen hy terimlerinin O oldugu gorilmektedir.
(i=0,1,...n,, §=0,1,...m;) Bu ornek yapt igin bilinmeyen eleman sayisi 2°dir. (C ve Zy)
Ag katsayr matrisinden bu eleman degerlerini en basit gozebilecegimiz iki katsayiy1
bagimsiz degisken olarak seger ve eleman degerleri her zaman pozitif olacagindan
saglamalart gereken kogullart belirleriz.  Sectigimiz 3. derece yap: igin bagimsiz
degiskenler ve eleman degerleri agsagida verilmigtir:
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Bagimsiz segilen degiskenler; Eleman degerleri:
hip=-C hyp<0 C=-hyp

1 h
hzf‘*--izocz hy1<0 Zo=-2 -1-1—1301-

Ag ve Ag katsayilar matrislerinin dier terimleri ise bafimsiz segilen katsayilar

cinsinden agagida dzetlenmigtir:

L gt LB
o 4hy o 4hy
hoo =hy; =hy=0 gi10= -hyo
h21
Bi1=4<si—
hy
g21=-hyn
8oo =1
g20=0

4.2.1.Bagimsyz Degiskenlerin Secimi

Eleman degerleri yaklagimiyla kanonik polinomlann tanimlanmasinda, dnemli bir
konu olan bagimsiz degigkenlerin se¢imi igin zorlayic1 bir kural bulunmamaktadir.
Bagimsiz degiskenler katsay: matrisinin 1. satir ve 1. siitunundan segcilebilecegi gibi,
baglant1 bilgisini tagiyan katsayilar arasindan da segilebilir.  Segilecek bagimsiz
degtisken sayist, devredeki birbirinden farkli degerdeki eleman sayisina esittir. Ornegin
simetri ekseni birim eleman olan 5.derece karma elemanl bir yapida (UE1-C-UE2-C-
UE1) farkh degerli eleman sayis1 3 oldugu igin Ay katsayr matrisinden 3 tane katsayi
bagimsiz degisken olarak segilir.

Bagimsiz degigkenleri segerken dikkat edilecek énemli noktalar gunlardsr:

e Eleman degeri basit iligkilerden ¢6zilebiliyor olmali
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e FEger basit iligkilerden eleman degeri elde edilemiyorsa, ikinci ve liglincii derece
denklem ¢dziimii gerektiren iligkilere gegilmeli.

® Bagimsiz degiskenler segildikten sonra, her degisken igin eleman degerini pozitif
yapacak kosullar belirlenmeli.

e Baz bagimsiz degigkenler iizerinde higbir igaret kogsulu olmayabilir. Miimkiin

oldugunca igaret kogulu belirli olan katsayilar segilmelidir.

Bagimsiz degiskenlerin se¢iminin 6nemini 5. derece simetrik IT devresi olarak

adlandirdifimmz yapida iki farkh degisken seti izerinde inceleyelim.

e =3
C

A T ‘T % 2

Sekil 4.2.3 5.derece simetrik IT devresi

Sekil 4.2.3’deki 5. derece simetrik TI devresinde 3 farkh eleman degeri
oldugundan (Z,, L ve C) segilecek bagimsiz degigken sayis1 3°tir. Devrenin Ay katsay:
matrisi (4.2.5)’de verilmistir.

( 0 Z, ——-1- 0
ZO
ol o -l
Ay = L 27, 4.2.5)
0 -—+LCZ, 0
ZO

e 0 liceze
2 2 1

Birinci yaklagimda bagimsiz degisken olarak segilen katsayilar {hio, hso, hsz}

olsun.

hy, =~ LC’ h3e<0 (4.2.6)
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h,, ==~LC’Z} h3>0 427

h,, ==L-~-C herhangi bir isaret kogulu yok (4.2.8)

%-3-2— =-Z2  oramndan Z,= _By olarak bulunur. (4.2.8)’den
30 30

L=2(hjo+C)’dir. Bunu (4.2.6)’da yerine koyarsak hsg=-C> - h;oC? olup, diizenlersek
C*+h,,C* +h,, =0
Bu 3.derece denklemin koklerinden C’yi veren koékler bulunur. Bulunan bu koklerden
pozitif reel olan kokler segilerck L degerinde yerine konur ve pozitif L deSerini veren
kok segilir. L degeri ise
L=2(h10+C)
ifadesinden hesaplanir. Eger birden fazla kok, L ‘yi pozitif yaptyorsa, burada simetrik
devrenin kullanilma amacina gore, L degeri segilir. Eger bir uyumlagtirma devresinde

kullaniliyorsa kazancin kontrol edilmesi gibi.

Bagimsiz degisken olarak segilen ikinci katsay: seti ise {ho, hz;, hso} olsun.

1

ho =2y~ (4.2.9)

h, =-2C 10z, (4.2.10)
0

hy, = —-;ch hgo<0 “.2.11)

(4.2.9dan Zo’-hp1Zp-1=0 2.derece denkleminin goziimiinden Zy degeri belirlenir. Zo:
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h 1 5
Z°=—20—1+5 hﬁ1+4

(4.2.10) ifadesinden

h, = Lc{zu —-—LJ =LCh,,
Z,
————

hg;

olup (LC) ¢arpim i¢in LC= %’l oram yazilabilir. Bu oram (4.2.11)’de yerine
01

koyarsak: h,, = -—%%&c olup eleman degerleri agafidaki sekilde ¢oziiliir:

01

C — __2 h30h01 L = o
h, 2hg;hy,

Bu iki bagimsiz degisken seti igin ¢oziim adimlarim kargilagtiracak olursak, ikinci
segimin daha basit ve programlamaya daha yatkin oldugunu goruriiz.

4.3.Karma Elemanh Simetrik Yapilar Igin Aqik ifadeler

Bu boliimde, algak gegiren toplu devre elemanlann ve birim elemandan olugan
karma elemanli simetrik iki kapili devreleri tamimlayan polinomlarin eleman degerleri
cinsinden acik ifadeleri toplu olarak verilecektir. Basit simetrik devre yapilarindan
baglayarak karmagiklik derecesi artinlmigtir. Burada incelenen devre yapilarm
arttirmak miimkiindiir. Katsayr matrislerini olugturmada MATLAB’de yazilan ardigil
algoritma kullanilmig olup 9. Dereceye kadar devreleri incelemig olmamizin nedeni,
MATLAB’de yazdigimiz algoritmanin performanst ile smnirli kalmig olmamizdandir.
11. ve daha ileri dereceler daha iyi algoritmalar hazirlanarak incelenmeli ve ¢oziimler

aragtirilmalidir.
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3.Derece Simetrik Devreler:
L L
— T
C= Z, =C Z,
—Ll — T - —
@ (b)

Sekil 43.1 3. derece simetrik devreler (n,=2, m=1)

Sekil 4.3.1a°daki simetrik iki kapili devre igin, gelistirilen Matlab algoritmasindan

tiretilen katsayr matrisleri, bagimsiz de@igkenler ve eleman degerleri asagida
Ozetlenmistir.

Katsay1 matrisleri:

0 Zi_ 1 1 _Z_°_+__l__
2 2z, 2 2z,
Au=|-Cc o0 Ag=|C cz,
o iz o Llzc
L 2 i i 2 4

Ay katsayi matrisindensegilen bagimsiz degigkenler:
hyo=-C hje<0
hy;=- %ZOCZ hy1<0

Secilen bagimsiz degigkenler arasindaki iligkilerden, eleman degerleri ise
agagidaki gekilde tammlamrlar:

C="’h10 ZO':'

Bagimsiz degiskenler cinsinden Ay ve Ag matrislerinin diger hy ve g katsayilan
ise su gekilde bulunurlar:
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b by 1B g b 183
hi, 4h, hy, 4h,
hoo =hy; =hz0 =0 g10=-hyo
_p By
gll hlo
g21= -ha;
goo=1 g20=0

Sekil 4.3.1b’deki simetrik iki kapili devre igin katsay:r matrisleri, bagimsiz
degiskenler ve eleman degerleri:

0 Lo L ! ‘Zé‘"*‘z‘;"
2 27, L o
Ag=|L 0 Ag=|L —
112 Zy
0 . 112
| 2Z, i 0 ——
] 22, |

Bagimsiz segilen degiskenler;

hpp=L hip >0
112

hyj=—— hy; >0

21 27, 21

Bagimsiz segilen degigkenler cinsinden eleman degerleri;

hiy
2h,,

L=hy Zy=

Bagimsiz degigkenler cinsinden Ay ve Ag matrislerinin diger hy ve g katsayilan

ise su gekilde bulunurlar:
hOI—-—_h.l‘_._}_lhlzo g01=_l~1_2._1.+_1_h120
hlzo 4 h21 hlzo 4 h21
hoo=hj1 =hz=0 g10= hyo
h,,
gu=i—
th
821 ha1
goo =1

g20=0
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— —
Z, cC Z Z, %
e e T — —
@) ®
Sekil 4.3.2 3.derece simetrik devreler

(n,=1, ;=2)

Sekil 4.3.2a’daki simetrik iki kapilh devre i¢in katsayr matrisleri, bagimsiz
degiskenler ve eleman degerleri agagida dzetlenmistir:

—0 Z,-— 0 T _1 Z, + 1 ]
[+ Zo 0 .
An= A=
1 1 1 1
- 0 ~Cz2 ~C  Z,C ~CZ?
! 2 |2 2]

Bagimsiz segilen degigkenler;

hjo= -=C h1o<0

h12=-;—CZ§ hi2>0

Bagimsiz secilen degigkenler cinsinden eleman degerleri;

C=-2h Zy= Dy
hlo

Bagimsiz degiskenler cinsinden Axve Ag matrislerinin diger h; ve g; katsayilan

hm:J_.};_u__J_%ﬂ gmz\/_%_z_Jr\F%&

10 12 10 12

hoo=hos=hy; =0 g10=-hyo
g11=2y~h;;h,

g12= hpz
go=1 gz=1




Sekil 4.3.2b’deki simetrik iki kapili devre igin katsayi matrisleri, bagimsiz

degiskenler ve eleman degerleri:

. - 1
0 z, _21_ 0 1 Z, +ZO— 1
AH= 0 AG=
1 L i
lL 0 _.l__L__ ~L il ——
| 2 27; ] ] Z, 2Z; |

Bagimsiz segilen degiskenler;

hyo = —;-L hio >0
1L
12 2Z3 12

Bagimsiz segilen degigkenler cinsinden eleman degerleri,

h
L=2h Zo=, |-
10 0 hu

Bagimsiz degiskenler cinsinden Ay ve Ag matrislerinin diger hy ve gy katsayilar

ise su sekilde bulunurlar:

h h h b
hlZ hlo h12 hlo

hoo =hga =h;; =0 g10=hio

g11=2y—h;,hy,

Bi2= -hya
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5.Derece Simetrik Devreler:

Z, IIc z, IIC Z

Sekil 4.3.3 5.derece simetrik devre (UE1-C-UE2-C-UE1)

(0p=2, m=3)
Katsay1 matrisleri:
= 2 1
0 Z1=~L lzz‘n#l_ 0 lEL__l_ZZ
................................................ Zy 2P 220 22
Au= ~C 0 f2c+zz,0-L2c 0
: . Zy i
0 -12202 0 ! z}z,c?
i ; : 2 i
1 iZ, +i+lzz Yy L2y lz—‘+lz—§
7, 2zt 7, 7, P2z, 27
A= C P 20Z,+CZ, sz+zlzzc+%—c Z,C
..... fereeeeae Loondd
0 %zzc2 Z,7,C %ZfZZC’

Bagimsiz segilen degiskenler;

hio=-C h;p<0
hgﬁ-%Z,Cz hy <0
1

hy = EZIZZZCZ hy3 >0

Bagimsiz segilen degiskenler cinsinden eleman degerleri;

C = -hlo

Z= ,._.1_1_31 Z2=—2-I-1-%~
hZI hlo

Katsayr matrisi baZimsiz degiskenler cisinden, yukanida 3. derece igin

tanimiandig: sekilde hesaplanir
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Z Z, Z,
o— 1] | I I

Sekil 4.3.4 5.derece simetrik devre (UE1-L-UE2-L-UE1)

®=2, m=3)
Katsay1 matrisleri:
- e \ :
0 Z, _i+.l_z2 1 lz_l__l. Z:
iz 27z, 22, 27
............................... e
A= L : 0 S P 0
§ E ZZ Zf ZI‘Z2
....... 5 : S—
) i 0 i
I 22, 2727,
[ P11 1 Z, Z 122 12, |
1 V2 b= Zy Ly—241 e 2
iz, 27 2z, zZ, Z, 27, 277
i Z7L L it
A= L i oL L A == SR =
. Z, 7, P Z, le Z,z, Z,
. i i i
i 27, Z,Z, 2727, ]
Bagimsiz segilen degiskenler;
hpe=L hio> 0
112
hyy =-—— hz1> 0
27,
LZ
23 = — hz3 <0
2727,

Bagimsiz segilen degigkenler cinsinden eleman degerleri;

2
L=hyp Z, = _by 2= Lt
hy 2h,,

Bagimsiz degiskenler cinsinden Ay ve Ag matrislerinin diger hy ve gj katsayilan

ise su gekilde bulunurlar:
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Sekil 4.3.5 5.derece simetrik devre (C1-UE-C2-UE-C1)
(n,=3, m=2)

Katsay1 matrisleri:

0 iz, 0
............................................ LY N
-G, “’;‘Cz 0 -G, +%CZZ§
Ap=| S SO OUOUISHPIOIN: NSO S
0 0 ~%cfczzg
1 1,z 1
............................. R T N
c,+ic, i c,z,+20.z2, c,+%czz§
) P ——— M A -
2
0 C’Z, +C,C,Z C,C,Z?
0 0 %cfczzg

hipo= -C,-=C, hip<0
hj2=-C, +—;—C2Z§
Bagimsiz segilen degiskenler cinsinden eleman degerleri;

1 1 _hy-h ~2(h )
Z, =—hgy +—4/h2 +4 Cl—ﬁ_hlo C,= lrzz 12
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Sekil 4.3.6 5.derece simetrik devre (L1-UE-L2-UE-L1)
(np=3 » Ilz,=2)

Katsay1 matrisleri:

0 Lz, 0 1 P tez, b
.......................... Zy oo SRR .. SR NSRS
: L : L L, | L
lL2 +L, 0 iL ——— —1-L2+L1 i =242l L, +—1-—%
A= 2 : 2 Z; Ac= 2 1 Ly 4 { 27,
...... SPUSOOUOORMRTUNN So s NOONONNI W SO crd. I SOSOc
0 L LL, 0 0 L LI, L,L,
...................... Zo Ly oo i Zo i Zg
0 1L°L, 0 g 1L3L,
| 2 Z, | i 2 Z,

Bagimsiz segilen degiskenler;

1
hy = ——i—+Zo

0
h10=—%L2 +L, h;e> 0

L,

hi;=L, -
to2z?

Bagimsiz segilen degiskenler cinsinden eleman degerleri;

Z,= —;:hm +—;-,/h§1 +4

h,-h
L, =h, - 10 112

L,=210" i)
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L L

IC IC

= T
I °

O

Sekil 4.3.7 5.derece simetrik devre (L-C-UE-C-L)
(n,=4, m=1)

Katsay: matrisleri;

0 ﬁ__.l__. 1 ..Z_o..+ 1
2.2, ... OSSO SR S . SO

-C+L 0 C+L : —L—+CZo
= ............‘...............................; ............................................ AG= ........................................ f\ ............ ‘? L 2

0 Loz WAL ez 2LC Ly (L e

U N Y Y 2 W . R & N~ W .

L’C 0 L*C LC*Z,
............................................................ - e g g

0 ~12C*Z, 0 ~12C?Z,
L 2 | ] 2 ]

Bagimsiz segilen degiskenler;

Z 1
o 2z,
h3o=L2C h3 o >0
1
hqy =5L2CZZO h4r> 0

Bagimsiz segilen degigkenler cinsinden eleman degerleri;

Zo= h01 +‘}h§1 +1

hyZ, *Y2h %3]
7.Derece Simetrik Devreler:

Aksen ve Sertbag’in yaptig1 ¢aligmalarda karma elemanl: devreleri tanimlayan iki
degiskenli kanonik polinomlar katsay1 formunda tammlanarak algak gegiren, yiiksek
gegiren, band gegiren ve band séndiiren yapilar i¢in 5. dereceye kadar agik ifadeler elde
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edilmigtir. Bu g¢aligmada ise simetrinin getirdigi avantajlarla 7 ve 9. Derece devreler
icin de gOzimler tiretilmigtir.

Sekil 4.5.8°deki Z, birim elemanina gore simetrik olan 7.derece devre igin

bagimsiz segilen degerler, ve bagimsiz parametreler cinsinde eleman degerleri agagida

Ozetlenmistir.:

C, Z C, & C, 4 C,

Sekil 4.5.8 7.derece simetrik devre (C1-UE1-C2-UE2-C2-UE1-C1)
(0,=4, m;=3)

Katsay1 matrisleri:

] 1
0 | z4+lz L L 0 1z 1%,
zZ, 2z, 2z, 227
R R —CZ2+CZZ+CZ2 .......................................
2 Z_ 261442 244
-C -G, | 0 zl z 0
-G - G -G -
i ZZ Zl_ H
----------------- g-------.....-....".........................--5.---."-.-.- esamaseyerrimctacaandharesnun g “vuapeascaaa 1 v
i-2C,C,Z, -C,C,2Z, - CiCZ, + —2—(:§zfz2
0 0
-Gz, -Ciz,-2Ciz, ez
H 2 2 H H 2 1 V/
OO OO SO OO UUO U OTOTOUTUOUNI: S OO SO
0 0 - Clzczzlzz - Clcgzlzz 0
T P
0 0 0 Poo- —2-Cl CZ,Z,
L .
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H ZZ

1 Z1 +.1..Z2 +.l..+__l_ i 1+E’L+.ZL .I_._l.g.}.é_:_
i 2 Z, 22, i Z, Z, 2Z, 277

i C Z—2+c Z,Z,+C z’i'
c 2C,Z,+C,Z, +C,Z, 7 C.z 1 72
+Ct ez z z w2ty
2 +C, =1+C, +C, 2 2

Zz Zl

g i
s : C,C,Z, +—C22%Z
2C,C,7, +C,C,Z, 20,0,2,2, +C1z,2, (OG5 G

0 1 1
+—2~C§Z2 +C?z, +ECfZ2 +2C,C,Z} +1Cf _Zf_
.......... 2
0 0 cic,2,Z,+C,Cy2,Z, C.C2727,
+Cfczzf H 1284 492
0 i 0 0 %cfcngz2
i )
Bagimsiz segilen degiskenler;
ho1 = Z, +lzz - hyo=-Ci-C, hyo <0
2 Z, 27,
1z} 1z 1
3=-——~l—-—-——§- 1143-'=-——*C12C§ZfZ2 h43<0
272, 22, 2

Bagimsiz segilen degiskenler cinsinden eleman degerleri;

Zy, Z3+2kZ?-2kh,Z}-2kZ -k*>=0 4. Derece denkleminin (Ek 1)’de
verilen explicit ¢6ziimiinden bulunur. Bulunan koklerden pozitif reel (Z;>0) sartim
saglayan kok Z, olarak segilir. Pozitif rrel olma satrnini saglayan birden fazla kok
oldugu taktirde hangi kékiin segilecegine, uygulamamin cinsine ve amaca gore karar
verilir.

2

Z, ile Z, arasindaki iligki Z, :—Zl—(l— seklinde olup,

2kh,, =0 4. Derece denkleminin (Ek 1)’de verilen

4
1

C;; Cji+2h,C,+hiCi+

explicit ¢oziimiinden bulunur. C; ise C1= -h;¢-C; “dir.

k sabiti bagimsiz segilen katsayilar cinsinden k=hg + \/hf,',, +1
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9. Derece Simetrik Devreler:

‘”“———]_‘I*'”I‘*TT":H
o ST 2 TR 5 TRE TY A

Sekil 4.5.9 9.derece simetrik devre (UE1-C1-UE2-C2-UE3-C2-UE2-C1-UE1)

(n,=4, m;=5)
Bagimsiz segilen degiskenler;

ho=Z,+Z, +IZ LN N

Zl ZZ 223
s = 1232, 1 Z;

2 722 277,
hyo=-C1-C, hip <0
1

has :“Eclzcgzilzz has <0
has =%cfc§zfz;zs hes> 0

Bagimsiz segilen degiskenler cinsinden eleman degerleri;

h
Z = 8
hy
Zy, Z; +(2me )ZZ - (2mef)Z§ -—(Zme)Z2 -m?>Z! =0 4. Derece denkleminin (Ek
1)’de verilen explicit ¢oziimiinden bulunur. Bulunan koklerden pozitif reel (Z;>0)
sartim saglayan kok Zs olarak segilir.
z,
1

C;; C;+2h,C5+hiCi +

Z;cinsindenZ3 Z, =

20%hs _ o 4 Derece denkleminin (Ek 1yde
2
verilen explicit ¢éziimiinden bulunur.

Cz cinsinden C1 C1= =h10-C2
m ve b sabiti bagimsiz segilen katsayilar cinsinden m=h, +,/h§5 +1 ve

1
b=h,~-Z, +—
01 1 Z

1
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Burada Ozetlenen karma elemanli simetrik devre yapilan pratikte en gok
kullamlan devre yapilan olduklan igin segilmiglerdir. Aymi yaklasimla omek devre

yapilarim geligtirmek miimkiindiir.
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5. UYYGULAMALAR

Bu boliimde, karma elemanli kayipsiz simetrik iki kapili devrelerin pratikdeki
uygulamalar1 incelenecektir. Karma elemanh simetrik devrelerin uygulamalarim,
mikrodalga yiikselteg, filtre ve uyumlagtrma devresi tasarimu gibi mikrodalga
uygulamalari ve MMIC tasarimlarinda arabaglant: yapilarinin modellenmesi geklinde
iki ana grupta toplayabiliriz.

5.1. Reel Frekans Tekniginin iki Degigkenli Formda incelenmesi

Yiiksek frekanslarda, istenen frekans bandinda, empedans: reel veya kompleks
olan bir kaynaktan, kompleks bir yitke maksimum gii¢ aktarimi problemi olarak bilinen
uyumlagtirma probleminin tek degiskenli uyumlagtirma devreleri ile ¢oziimii literatiirde
yerlegmis bir konudur [30-33,37-40]. Ote yandan iki degiskenli; toplu ve dagilmug
elemanli karma devre yapilan ile uyumlagtirma probleminin ¢oziimi, tek degiskenli
kazang ifadelerinde, iki degiskenli kompleks frekans degiskenini tanimlayarak kolayca
tiiretilebilir.

Uyumlastirma devrelerinin tasariminda, reel frekans tekniginin iki degigkenli
olarak ifade edilebilmesi i¢in, uyumlagtirma devresini bagimsiz segilen parametreler
cinsinden tek bir sekilde ifade etmek gerekir. Bu durumda problem klasik bir numerik
optimizasyon problemine doniigiir. Iki degiskenli uyumlastirma problemini dogrudan
eleman degerlerine baglh olarak, niimerik optimizasyon problemi olarak ¢6zmek de
miimkiindiir, Ancak sistemin kazang ifadesi, eleman degerleri cinsinden dogrusal
olmayan (nonlinear) yapida oldugundan optimizasyon baglangic degerlerine ¢ok
baghidir.

Iki degiskenli ardisil (cascade) devrelerden olugan uyumlagtuma devrelerinin
tasarimina yonelik, simirh topolojik yapilar i¢in yan analitik yaklagimlar gelistirilmistir

[15-22]. Besinci dereceye kadar algak gegiren, yiiksek gegiren, band gegiren ve band
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sondiiren birim elemanli yapilar igin agik ifadeler (explicit) elde edilmistir. Bu
caligmada ise, bir bagka topolojik yap: olan simetrik devrelerle, devrenin eleman
degerleri bagimsiz segilen parametreler cinsinden ifade edilerek, dokuzuncu dereceye
kadar acik ifadeler tiretilmigtir.

iki degigkenli uyumlagtirma devrelerinin tasarimi, devrenin iki degiskenli
sagilma parametrelerinin tammlanmas: esasina dayamr. Ardigil karma elemanh iki
kapili devreler igin reel frekans teknigi, iki degiskenli sagilma parametrelerinin tek
degiskenli kazang ifadesinde uygun sekilde yerine konmasiyla tiiretilebilir [18,21].

Bu boliimdeki uygulamalarda iki degigkenli simetrik devreler ile uyumlagtirma
probleminin ¢oziimii yapilmigtir. Iki deBigkenli simetrik devreler igin sagilma
fonksiyonlarinin tanimlanmasi bir 6nceki boliimde detayli olarak incelendiginden, bu
bolimde tekrar edilmeyecektir. /(p,4) polinomunun Ay katsayr matrisinden bagimsiz
degisken olarak segilen 4 katsayilari izerinde, eleman degerlerini pozitif yapacak
kosullar belirlendikten sonra herhangi bir kosullu dogrusal olmayan optimizasyon
algoritmast (nonlinear constrained optimization) ile iki degiskenki kazang ifadesi igin
tammlanan amag¢ fonksiyonu (objective function) minimize edilerek, iki degiskenli

simetrik devrenin eleman degerleri elde edilir.

|
Se

"0 e 70
s, SZSL

Sekil 5.1.1. Ikili uyumlagtirma devresi

Sekil 5.1.1°deki ikili uyumlagtirma devresinde iki degiskenli kazang ifadesi
agagidaki sekilde tanimlamr;
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Saul fLu[”

T(w,Q) =T, NIEPURTE
-8Sof 1- 8,8, |

(5.1.1)

S:l SG

Burada; T, =1=—|SG{2, |L21|2 = 1—{SL|2 ve §2 =§,, +—
1‘S11SG

tek degiskenli

ifadelerin ayms1 olup, Sy = Sy(iw,j) (Q=tanwr) sagilma parametreleri toplu ve
dagilmis elemanlardan olusan karma devrenin sagilma parametreleridir. Sg ve Sp Sekil

5.1.1°den anlagilabilecegi gibi kaynak ve yiike ait yansima fonksiyonlaridir.

S, =28, S, = (5.1.2)

(5.1.2)’de verilen kazang fonksiyonu, sagilma parametrelerinin kanonik

polinomlar cinsinden ifade edilmesiyle iki degiskenli formda

(=185 )1=|8.[* If (w, jQF

T(w,Q)= :
g, j©Q) - h(jw, jQ)S; + 08, (h(- jw,~jQ)- Scg(jw, jQ))|

(5.1.3)

seklinde yazilabilir.  Burada A@p,4) ve g({,A) polinomlar, bagimsiz segilen
parametrelerle tanimlanan katsay: matrisleri ile matrisel formda tanimlamr. Devrenin
fiziksel olarak gergeklenebilmesi igin bagimsiz parametreler lizerindeki kisitlamalarin
tammlandigi, dogrusal olmayan algoritmalarindan biri ile devrenin eleman degerleri
belirlenir. Secilen 7, dizgin kazang seviyesinde, kazang fonksiyonunun
optimizasyonunda minimize edilecek amag fonksiyonu

X, i=L..n,
5= [tlw..f.,} - T.)F j=1..n, (5.1.4)
k=t t = simetrik devrenin derecesi

ile verilir. Burada
{hLj }m= Ay matrisi iginden bagimsiz olarak segilen t tane katsay1y:
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Ny : Band igerisindeki 6rnek frekans sayisim gosterir.

5.1.1. Mikrodalga Yiikselte¢c Tasarim

Mikrodalga yiikselteg tasanimi, yiiksek frekanslarda calisan aktif elemamn
giriginden yilkke maksimum giic aktaracak gekilde, giriy ve ¢ikiginda uyumlagtirma
probleminin ¢oziimi olarak ozetlenebilir. Daha agik bir ifade ile, yiikselteg katlan
arasinda maksimum giic akigim saglayacak gekilde ard arda tekli veya ikili
uyumlagtirma problemi ¢6zerek uyumlastirma devrelerinin tasarimidir [25,37,38,40].

Ardigil bagh kayipsiz iki kapililanin tasannminda sagilma yaklasimi en uygun
yaklagim oldugundan, ¢ok kath yiikselteg tasariminda da gevirim gii¢ kazanci sagilma
parametreli yaklagimla tanimlanabilir [37.38.39].

1Q
+

N1 <_| A 1Q

SL (2)
1Q

+

N1 A j N2 10

®) A

Ax

Sekil 5.1.2 a) Girigi dengelenmig tek kath yiikselteg devresi
b) Girig ve ¢ikigi dengelenmis tek kath yiikselteg devresi

Sekil 5.1.2b’deki gibi tek katlt bir yiikseltecin tasanimini diigiinelim. Burada A iki
kapilis1 aktif elemam, N; ve Ny’de aktif elemamn oOmniindeki ve arkasindaki



uyumlagtirma devrelerini gostersin. Pratikte aktif elemanlar bir dizi 6l¢iim parametresi
ile tammlamirlar. Bunlardan biri olan sagilma parametreleri ile bir dnceki boliimde
(5.1.1.°de) verilen reel frekans teknigini uygulayarak, aktif elemam modellemeden girig
ve ¢ikig dengeleyicileri iki degigkenli olarak tasarlanir,

Aktif eleman A’min birim normalize sagilma parametrelerini A, kayipsiz Ny ve
N; iki kapililarinin sagilma parametrelerini de Sy ve Si; ile tammladifimzi kabul
edersek Sekil 5.1.2b’deki gibi ardisil bagh bir yapinin gevirim gii¢ kazanci su gekilde

ifade edilir:

2 2
T(w,Q)=T, [a zlsz” l . (5.1.5)
Il - Szz,Aul ‘1 - AzzSu2 I
Burada
To =[S, =1-[8,[ (5.1.6)
18,0, " =18, (5.1.7)

;122 ise aktif elemamin g¢ikigindan sola dogru bakildiinda goriilen yansima katsayist
olup agagidaki gekilde yazilir:

AzlAlzszz,

518
1-S, A, ©18)

An =A, +
Bu tanimlara gére (5.1.5)’i yeniden yazarsak ¢evirim gii¢ kazanci (5.1.9)ile verilir.

S 2
T(w,Q) =:z;(w,g)—lfl’-|———z (5.1.9)
ll —An Suz‘

I(w,Q) ise



61

2
[

L,(w,Q)=To(w,Q)—————
-85, Ay

(5.1.10)

Buradan 73(w,Q)’min Sekil 5.1.2a’daki aktif elemanin 1 ile sonlandirildigi durumdaki
sistemin gevirim gii¢ kazanci oldugu kolayca goriilebilir. Aktif elemam bir dizi sagilma
parametresi ile tammlanmig yiik olarak kabul edersek 6n dengeleyici Ny’in tasarim
tekli uyumlastirma probleminin ¢oziimiinden ibarettir. (5.1.9) ifadesine (7(w,£2)
bakacak olursak, 7;(w,&2)’y1 agiwrlik fonksiyonu gibi diigiinebilirizz. Bu durumda
kompleks bir kaynak ile (aktif elemamn ¢ikis1) direngsel bir yiik arasinda yine bir ikili
uyumlagtirma problemi ¢oziilir (Sekil 5.1.2b).

1Q

E N, Ay Ny Ay Nk+1

<]| )

A A A
IAZZ("‘” Sk Aok

Sy

Sekil 5.1.3 (k) kath yiikselteg devresi

— 1 4

Sekil 5.1.3°deki gibi ¢ok kath yiikselte¢ tasariminda kazang ifadesi ise, tek katht
yiikselteg tasarim igin tammlanan kazang ifadesi, ardigil forma donigtirilerek genel

bir formda yazilabilir.

2

2
A, | 1S
T (w, Q) =T, ,(w,2) N | - |2| 21‘11
'1—522,: Allk

(5.1.11)

2

1-Axn, S,

Burada 7j;, (k-1). katin normalize 1 Q direnci ile sonlandinimig durumdaki

kazancidir.



62

5.2. MMIC’lerdeki Arabaglantilarm Karma Elemanh Simetrik Yapilarla

Modellenmesi

Aymi monolitik entegre devre yapist izerinde iiretiimek zorunda olan analog
devrelerle, dijital devreler arasindaki baglanti yapilanmin, Uretim agisindan
modellenmesi gerekir. Arabaglant: devreleri yapilan itibariyle gogu zaman simetriktir.
Aynica fiziksel ozellikleri itibariyle ele alindifinda hattin T birim zaman gecikmesi
hattin fiziksel uzunlugu, ¢ok inceldifi yerlerin endiiktans, baglant1 yerlerinin
siireksizlik kapasitesi, kalin oldugu yerlerin de dogrudan kapasite olarak ele alinmalar
miimkiindiir. Dolayisiyla pratikte kullanilan (cep telefonu, telsiz telefon, bilgisayar
gibi) birgok mikrodalga sisteminde, hizlar1 nedeniyle arabaglantilar, toplu ve dagilms
devre elemanlarindan olugan simetrik iki kapili devreler olarak modellenebilir.
Literatiirde 20, 50, 60 hatta sonsuz sayida toplu devre elemam igeren simetrik modeller
mevcuttur. Ancak devre elemanlanmin sayisinn artmas: fiziksel tretime yonelik
yapilan modellerle fevkalade niimerik hatalara neden olabilir. Bu nedenle karma
elemanli simetrik devre yapilan olarak 6nerdigimiz arabaglant1 yapilan pratikte anlaml

modellerdir.

5.3. Ornekler

Bu boliimdeki ilk iki omekte, iki degiskenli simetrik devrelerle uyumlasturma
devreleri tasarim: incelenecektir. Uyumlagtirma devreleri tasaniminin en karakteristik
uygulamalar olan ikili uyumlagtirma problemi ve yiikselteg tasarum, toplu ve dagilmig
elemanlardan olusan simetrik devrelerle ¢oziilmiigtiir. Ornekler literatiirde sadece toplu
elemanlar kullanilarak degigik yaklagimlarla gozillen 6rnekler arasindan segilmigtir, Ilk
ornek; topolojileri onceden bilinen kaynak ve yiik devrelerini uyumlagtirma yani ikili
uyumlagtirma problemidir. Ikinci omek ise aktif eleman olarak sagilma
parametrelerine ait olgiim degerleri ile tammli HFET 2001’in kullamldigr tek katls
yiikselteg tasarimdir [18,21,39,41,].
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Optimizasyonda, simetrik devrenin eleman degerlerini pozitif yapacak katsay
kosullar1 altinda hata fonksiyonunu minimize etmek igin kogullu optimizasyom
algoritmas: tercih edilmigtirr Bunun igin MATLAB yazilimindaki ardigil karesel
programlama teknigine (Sequential Quadratic Programming-SQP) dayanan dogrusal
olmayan kosullu optimizasyon algoritmast kullamlmigtir. Ardiil karesel programlama
teknigi (SQP) kosullu dogrusal olmayan problemlerin ¢oziimiinde en popiiler ve
bagarili olamidir. Dogrusal kosullar altinda karesel amag¢ fonksiyonunun ¢oziimi,
sonuca en yakin dogruyu bulma temeline dayanir. Bir anlamda Newton metodunun
genellestirilmis halidir. Ardigil karesel programlama teknigini

g(x)<0
kosulu saglanacak gekilde

n}‘in f(x)

probleminin ¢oziimii olarak ozetleyebiliriz [46,47]. Omneklerin ¢dziimiinde bagimsiz
olarak segilen parametrelerin baglangi¢ degerlerinde ad-hoc segimi (+1 veya ~1)

kullamilmgtar,

5.3.1. ikili Uyumlagtirma Problemi

Bu ornekte, Sekil 5.3.1°deki devrede goriilen kaynak ve yiik devreleri 0 < w < 1
normalize frekans bandinda istenen diizgiin kazang seviyesini saglayacak sekilde

uyumlagtirilmagtir.

Segilen simetrik yapiyr (n,=3, m=2) tammlayan iki degigkenli sagilma
polinomlar: agagidaki sekildedir:

Wp,2)=p"A,A, g(p,A)=p A4, flpA)=0-2). (3.1

n,=3, ;=2 olan bu devrede simetri tammina gore katsay! matrislerinin genel formu



0 h, O 1 g, 1
h 0 h
Ay = (1)0 ) 12 ) Ag = 8o Bun B2 (53.2)
a 0 B B8xn Bxn
0 0 h, B Ban B8Baxn

seklinde olup p ve A vektorleri agagida tanimlanmigtir
P =0 p p* p*) =@ A W) (533)

An katsayr matrisinden bagimsiz degigken olarak {hio, hzi, hgs} katsayilan
secilmigtir. Devrede kullanilan eleman degerleri ile katsayilar arasinda, agafida

tammlanan iligkiler mevcuttur:
hyo=-C hie<0 (5.3.4&)
hay =-%zzcz By< 0 (5.3.4b)
gy = %zfzzc2 hys >0 (5.3.40)
1Q 1H 2H
IYYYYW\
+*
E N F -4 10
O l—C

(@

Lo Loz Lo
T T T

(®)
Sekil 5.3.1 a)iki uyumlagtirma problemi
b)Uyumlagtirma devresi igin segilen simetrik model
Bu devre yapisi igin bafimsiz secilen parametrelere gore ({hig, ha1, ha3}) yapilan

kosullu optimizasyon sonucunda elde edilen sagilma polinomlan asagidaki gekildedir;
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0 2.5451 0
-1.3297 0 -0.9141
h{p,A)=p" ' ,
(p ) P 0 —-5.1059 0
0 0 -0.6132

1 3.2369 1
113297 7.6883 1.6565
A)=p" )
gP.A)=p"| 7" S oso 00542
0 0 06132

Bagimsiz segilen katsayilar cinsinden devredeki eleman degerleri (5.3.5a) ve
(5.3.5b) deki bagintilarla tammlanip optimizasyon sonucunda elde edilen degerler
yerine kondugunda tasanmu yapilan uyumlagtirma devresindeki kapasite ve birim

elemanin degerleri bulunur.

C=-hy (5.3.52)

h h
Z = ,-—23- Zy=—2-2 (5.3.5b)
h'21 hxzo

Uyumlastirma devresi ve tiimdevrenin kazancina ait grafikler $ekil 5.3.2a-b’de
gosterilmigtir.

Sekil 5.3.2. a) Uyumlagtirma devresi (Z,=2.8910, C,=1.2852, C,=0.0888)

1Q
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Nw
0.9

0.8 \ Karma elemanli

. f
0.5 \ /
I

Toplu devre elemanlarn ile
tasarlana model <

0.3
S
0.1 \ -
0 N
0 0.5 1 1.5

Sekil 5.3.2. b)Tium devrenin kazang karakteristigi

Sekil 5.3.1°deki kaynak ve yiik devreleri i¢in, ikili uyumlagtirma problemini, bu
sefer gene pratik uygulamalarda anlamli bir yap: olan, 5.derece simetrik ® devresi igin

¢ozelim. Segilen 5. derece simetrik 7w devresi Sekil 5.3.3’de goriilmektedir

Sekil 5.3.3 Uyumlagtirma problemi igin segilen simetrik 7 devresi

5.derece simetrik 7 devresini tammlayan kanonik polinomlar katsayr matrisleri
cinsinden agagidaki gekilde tanimlamrlar:

h(p,A)=p" A2, glp.A)=p"A 4, (53.5)
Jfip,7) polinomu ise ;=2 oldugundan

feN)=0-») (5.3.6)
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seklindedir. An ve Ac katsayr matrisleri n,=3, m=2 oldugun 5.3.2’de tammlanan
matrislerle aym formdadir. Ancak burada katsayi1 yozlagmast olmadig
unutulmamalidir. Aqmatrisinden bagimsiz degisken olarak segilen katsayilar {hgy, hy,
h3o} olup, devrede kullamlan eleman degerleri ile katsayilar arasinda asagida

tamimlanan iligkiler mevcuttur:

1

hy, =Z, A (5.3.72)

h, = -2 +LCZ, (5.3.7b)
Zo

h, = —%ch h3<0 (5.3.7¢)

h ve g polinomlann yukarida tammlanan iligkilere gore bagimsiz degiskenler
cinsinden tammlanip (5.1.3)’de verilen kazang ifadesinde yerine konur ve dogrusal
olmayan kosullu bir optimizasyon algoritmas: uygulanarak diizgiin kazang seviyesini
saglayan eleman degerleri hesaplanir. Bu o6rnek i¢in optimizasyon sonucunda elde

edilen katsay1 matrisleri agagida verilmigtir:

0 -27141 0
0.879 0  -10.1631
Ag= ,
0 -13218 0
00539 0 0.0058

1 33714 1
13216 6.8414 10.2109
0.4870 1.6419 0.4870
| 0.0539 0.0354 0.0058

Devredeki eleman degerleri ise (5.3.7a-b-c) bagntilarinin ¢oziimiinden bulunur. Buna
gore uyumlagtirma devresinin kazanci Sekil 5.3.4’de cizilmigtir. Devredeki eleman
degerleri ise; Z;=0.3287, C=0.2213, L=2.2006’dr.
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Bu uyumlagtirma problemi literatiirde analitik ve reel frekans teknikleri ile pekgok
aragtirmac: tarafindan ¢oziilmiig bir problemdir [18,21,39,41]. Burada ise, toplu ve
dagilmis elemanlardan olugan simetrik iki kapili devre yapist ile ¢oziilmistiir. Yiiksek
frekanslarda toplu devre elemanlarim fiziksel nedenlerden dolay: gergeklemek oldukega
glictir. Oysa bu ornekte segilen, transmisyon hatti-kapasite-transmisyon hatti
seklindeki iki degigkenli simetrik bir devrede, kapasiteleri yap: igerisine gommek gok
kolaydir. Ciinkii kapasiteler yapinin siireksizlik noktalarina karsi gelmektedir. Ayrica
kapasiteler devredeki dagilmig parametreli elemanlann getireceSi periyodik etkiyi de
bastirmaktadir.

—_— = ——————

0.9 ‘\J
08
0.7
0.6 ®
tasarlana model
0.5 Toplu de i lar1 1l
tasactana model ‘\/’?

- I
. I

o 1\

0 0.5 1 1.5

deKil >.3.4 O, derece simetrik 1 devresli 1€ tasarlanan 1K1 Kapiii aévrenin Kazanci

Fiziksel gergekleme agisindan son derece elverigli yapilar olan simetrik devre ile
uyumlagtirma probleminin ¢dziimiinii diger analitik ve reel frekans teknikleri yapilan
¢ozimler ile karsilagtiracak olursak, simetrik devre ¢6ziimii chebyshev ve parametrik
reel freakans teknigine oldukga yakindir. Hat-kapasite hat seklindeki simetrik model
toplu devrelerle yapilan goziimlere daha yakin sonug vermistir. 1ki degiskenli simetrik
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devre ile uyumlagtirma probleminin ¢Oziimiinin, analitik ve yari analitik ¢dziimler
arasindaki yeri Tablo 5.3.1°de 6zetlenmigtir.

Tablo 5.3.1 Degisik yontemlerle ¢ozilen uyumlagtirma probleminin

kargilagtiriimas:
G A .
Yontem A="m= 1 | Toplu eloman sayist | D2EU™S parametreli
G in eleman sayis1
CHEB 0.181 3 0
PRFT 0.061 3 0
SFE 0.056 3 2
LPLU 0.072 2 2
Simetrik 0.1336 3 2
Simetrik 7t 0.1616 3 2

5.3.2. Tek Kath Mikrodalga Yiikselte¢ Tasarum

Bu ikinci émnekte ise 6 ile 16 GHz arasinda ¢aligmasi istenen, 50 ohm ile
sonlandirilmig tek kath yiikselteg aktif eleman olarak HFET 2001 kullamilarak
tasarlanmigtir. FET’in sagilma parametrelerine ait genlik ve faz degerleri Tablo
5.3.2’de verilmigtir. Kuvvetlendirici tasarim 6n dengeleyici ve arka dengeleyicinin
tasarnimi1 olmak iizere iki adimdan olusur. On ve arka dengeleyicinin tasariminda n,=2

ve ;=3 (5. derece simetrik devre) olarak segilmigtir.

Tablo 5.3.2 HFET 2001’in Sagilma Parametreleri

Frekans Sy S Sy S,

GHz m p m p | m p m P
6 0.88 -65 200 125 | 005 60 071 -22
083 -85 1.81 109 | 0.06 353 0.68 -30

10 0.79 -101 164 95 | 0.06 51 0.66 -37

12 076 -113 148 84 | 006 52 0.66 -43
14 073 -126 | 139 73 | 006 54 0.64 -48

16 071 -141 | 132 61 [ 007 55 0.63 -56
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Simetrik yapiy1 tammlayan sagilma polinomlan esitlik (5.3.1) ve (5.3.2)de

verilmistir. On ve son dengeleyicinin tasariminda, optimizasyon sonucu elde edilen

katsay1 matrisleri, agagidaki gibi elde edilir:

On dengeleyici,

[

0
-0.8278
0

1.4167
0
—-0.4160

0
3.8578
0

1.1175

0 |

1.3216

1 3.3624 3.1493 1.4996
0.8278 3.9561 4.9853 1.0050
0 0.4160 1.4829 1.3216

Son dengeleyici;

-

0
-0.2143
0

1

0

0.3861
0
—-0.0352

0
0.1852
0

—-0.5002
0
0.0333

3.0934 3.2099 1.1181

0.2143 0.7455 0.8601 0.3285

0.0352 0.0685 0.0333

Tasarlanan tek katli yiikseltece ait sonug devresi ve kazang egrisi Sekil 5.3.5 ve
Sekil 5.3.67da ¢izilmigtir.

1Q

HFET 2001 r{:lT . l
Z oF &

i

T
¢, z §1o

Sekil 5.3.5 5. Derece simetrik devrelerle tasarlanan yiikselteg devresi
C,=0.8278, Z,=1.7825, Z,=1.2140
C,=0.2143, Z,=0.9733, Z,~1.5329
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Sekil 5.3.6 Yiikseltecin kazang grafigi

5.3.3. Ardisil Birim Elemanlarla Modellenen Arabaglant: Devresinin Tasarum

Sekil 5.3.7a’daki gibi bir arabaglant1 igin, transmisyon hatlarindan olugan yap1 Sekil
5.3.7b’de verilmigtir. Bu arabaglantiy, karma elemanh kayipsiz iki kapili simetrik

devre olarak modelleyelim.

~_ — ++{ }—
T = 300 750 300
s N o N S E

1=0.5 =0.3 =0.5

(a) (b)
Sekil 5.3.7 (a) MMIC iizerinde arabaglantimin goriiniigi
(b) Ardigt bagli UE’lerden olugturulan model



Boliim 4.3’de tammlanan simetrik devre yapilarindan, 5.derece ii¢ farkli devre

elemamndan olugan Sekil 4.3.5’deki devreyi topolojik yap: olarak segelim.

Ik 6nce modellenecek olan arabaglanti yapisina ait, transmisyon hatlarindan
olusan devrenin sonuna 1Q) yikk direnci baglayarak, esit aralikli normalize frekans
degerleri igin veriler wiretilir. Daha sonra simetrik devrenin girig yansima fonksiyonu,
h(p,2) ve g(p,4) polinomlan cinsinden tammlanarak, verilere uygun bir yap1 elde
edebilmek igin, bagimsiz segilen parametreler cinsinden optimizasyon uygulantr.

Sekil 5.3.7°deki arabaglant1 yapisi igin tasarlanan karma elemanli simetrik devre
modeli ve modelin girig yansima katsayist Sekil 5.3.8’de gizdirilmistir.

0.25 T T T T T T T ¥ T

(b)
Sekil 5.3.8 a) Arabaglant1 olarak tasarlanan simetrik devre (C,=0.3739, C,=0.5104,
Z5~1.30899 1=0.4)

b) Girig yansima katsayisinin genlik ve fazi
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Ayni simetrik modeli Sekil 5.3.9°daki ardigt] bagl: transmisyon hatlarindan olugan
9. derece bir yap: olarak modellenmig arabaglant: yapisina uygularsak, karma elemanli
simetrik devre yapisi ve giri§ yansima katsayis: $ekil 5.3.10°daki gibidir.

100

Sekil 5.3.9 Ardiil bagh transmisyon hatlan seklinde modellenmis arabaglanti yapisi

Sekil 5.3.10 Giris yansima katsayisinin genlik ve faz1
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6. TARTISMA VE SONUC

Bu tezde, mikrodalga yiikselteg, filtre ve gi¢ aktannnm problemlerindeki
uyumlagtirma devrelerinin tasanimu gibi mikrodalga uygulamalani ve mikrodalga
entegre devrelerinde, arabaglanti yapis1 olarak tasarlanabilen, karma elemanh kayipsiz

iki kap1li devre modelleri incelendi.

Ginimiiz artk iz gagidir.  Arasgtumacilar, cep telefonlarindan haberlesme
sistemlerine, bilgisayarlara kadar herseyde “daha mzh olur mu?”, “nasil olur?”
sorularina yanit verecek gekilde tasarimlarina yon verir olmuglardir. MMIC’ler de bu

gidigin bir sonucu olarak, biiyiik 6nem kazanmigtir.

Son yillarda mikrodalga entegre devre teknolojisindeki izl gelismeler, karma
elemanli devre yapilarina olan ilgiyi daha da arttrmigtir. Ancak karma elemanh
devrelerde, her devre yapisi igin, yaklagim ve sentez problemi ¢éziilebilmig degildir.
Pratikte uygulama alanlan oldukga genis olan karma elemanl: simetrik devre yapilan
bu galismanin ana konusu olup, daha dnce tammlanmig olan algak gegiren, yiksek
geciren, band gegiren, band séndiiren ardigil karma elemanli yapilara, bir yenisi daha
eklenerek, iki degiskenli diinyadaki stmurlar biraz daha genigletilmigtir.

Karma elemanli kayipsiz iki kapili simetrik devreleri tanimlarken, iki degigkenli
kanonik polinomlar matrisl formda ele alinnmglardir. Katsayr matrisleri, bagimsiz
segtifimiz parametrelere bagli olarak tiiretilen eleman degerleri cinsinden
diizenlenerek, dogrusal olmayan kogullu bir optimizasyon algoritmas: ile, tanimlanan
amag fonksiyonu minimize edilir. Buradan bagimsiz parametreler cinsinden, dogrudan

devrenin eleman degerleri bulunur.
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Bagimsiz parametrelerin segiminde higbir kogul yoktur. Baglanti bilgisini tagtyan
katsayillar da bagimsiz defigken olarak segilebilir. Yeterki segilen katsayilar ile

devrenin eleman degerleri pozitif olarak tammlanabilsin.

Bu caligmada 9. dereceye kadar olan (9.derece dahil) karma elemanli simetrik
devre yapilan igin katsayr matrisleri ¢oziilebilmigtir. Katsayr matrislerini
olusturabilmek i¢in MATLAB’de gelistirilen sembolik destekli bir algoritma
kullanilmigtir. Ancak bu algoritma ile, sembolik destekli olmasinin olumsuz bir sonucu
olarak 9.derecenin tizerine ¢ikilamamigtir. Daha aktif bir algoritma yazilarak 11. ve
tizeri dereceler igin ¢dziimler aragtiriimalidir. Ancak bu goziimler tek olmayabilir, bu
nedenle dogrusal olmayan denklem takimlan ¢ozmek gerekebilir. Simetrik devre
yapilan iizerinde yaptifimiz incelemeler sonucunda, iki kapili devreyi tamimlayan
kanonik polinomlardan 7 polinomunun tek bir polinom olmas: gerektii ve katsay:

matrisinde dejenerasyon oldugu sonucuna ulagtik.

Uygulamalar boliimiinde inceledifimiz Orneklerden, toplu ve dagilmug
elemanlardan olugan simetrik devrelerin uyumlagtirma devresi, filtre, mikrodalga
yiikselteg tasarimlarinda dengeleyici devresi gibi mikrodalga uygulamalannda
kullanilabilecegini basariyla gordik

Bu tezde, karma eclemanli simetrik devrelerin bir bagka uygulamada da
kullanimini inceledik. Ayni monilitik entegre devre yapis: tizerinde iiretilmek zorunda
olunan analog devrelerle dijital devreler arasindaki arabaglanti (interconnect)
yapilarinin, hizlani nedeniyle simetrik devreler olarak modellenebilecegini orneklerle
gosterdik. Arabaglantilar igin literatiirde 20,50,60 hatta sonsuz sayida toplu eleman
iceren modeller meveuttur. Ancak devre elemanmin sayisinin artmasi, fiziksel iretime
yonelik yapilan modellerde ok fazla niimerik hatalara neden olur. Bu yiizden, simetrik
devre yapilar ile énermig oldufumuz karma elemanl: arabaglant modellerinin, pratikte

uygulama bulacag inancindayiz.

Bundan sonraki ¢aligmalarda, prototip devre konfigiirasyonlan zenginlestirilmeli
ve karma elemanli simetrik devrelerin, simiilasyon paketlerindeki uygulamalan

incelenmelidir.
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8. EKLER

EK-1: 3. Derece Denklemin Kéklerinin Bulunmas:
3.derece bir denklem
(Ek-1.1)

y+py +ay+r=0

seklinde tanimlansin. Bu denklemde y degiskeninin yerine (x - %) koyarsak;

x> + ax + b=0 (Ek-1.2)
formuna indirgenir. Burada a ve b katsayilan
a=§(3q—p2) (Ek-1.3a)
b -_—-2-13(2p3 +9pq +27r) (Ek-1.3b)
seklindedir. a ve b katsayilarina bagh olarak A ve B
A=\/:g+ 242—4-%37— (Ek-1.4a)
B——-\/—%— 1—341+§; (Ek-1.4b)
Buradan x kokleri ise agagidaki gekilde tanimlanir:
x=A+B, —A;B+A;BJ~_3, —A;B+£;—EE (Ek-1.5)
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Eger p, q, r reel say1 ise:

2 3
° %— + % >0 bir reel iki kompleks konjuge kok vardir
bz a3
. ” + = 0 ise en az ikisi birbirine egit ti¢ tane reel kok vardir
»* a°
. vy + > <0 birbirinden farkli ii¢ reel kok vardir.

3. derece denklemin kokleri ise y = x—% doniisiimiinde yerine x degerleri yerine

konarak bulunur.
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EK-2: 4. Derece Denklemin Koklerinin Bulunmas:

tral+bxl+ex+d=0

4. derece denkleminin koklerini bularim. Once 4. derece denklem

¥y - by? + (ac-4dy) - a’d + 4bd - ¢ =0

(Ek-2.1)

(Ek-2.2)

seklindeki 3. derece denkleme indirgenir. Bu denklemin herhangi bir y koki igin

2

a
R=,—=-b+
2 y

incelenir.

Eger R 20 ise

D=\/%—R2 2b +

R =0 ise;

D_JEZ——% +2\y -4d  ve

_____3
4ab—-8c—a ve E

(Ek-2.3)

2 Rn_ 3
J3a _R*_2b— 4ab—-8c—a
4 4R

J————Zb 24y —4d

Buradan 4. derece denklemin kokleri agagidaki sekilde bulunur:

+
H+
N N|Y

R
NFE N

+
H+

N

(Ek-2.4)

(Ek-2.5)

(Ek-2.6)

(Ek-2.7)
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EK-3: 1ki Degiskenli 5. Derece Simetrik Devre ile Uyumlastirma Probleminin
Coziimiine ait MATLAB Program:

clear

T0O=0.42;
w=0.0:0.02:1.5;
p=1j*w;

Zg=1+p; %kaynak devresinin empedansi
ZL=2*p+(1./(p+1)): $ylik devresinin empedansi

Sg=(Zg-1)./ (Zg+1); $Kaynak ait yansma katsayisi
SL=(2L~1)./(Z14+1); %Yiike ait yansma katsayisi

% Toplu devre elemanlari ile tasarlanan 5. derece prototip
uyumlagtirma devresine ait kazang fonksiyonunun olusturulmasi ve
kazan¢ edrisinin ¢izimi

hkat=[-7.6654 00,1864 -5.6392 -0.0695 -0.0028 0,0];
gkat=[7.6654 10.7224 13.1362 9.7376 4.4132 1.0];

h=polyval (hkat,p); he=polyval (hkat,-p}:
g=polyval {(gkat,p): ge=polyval (gkat,-p}:

sll=h./g; sl12=1./g;

s21=1./9; $22=-he./q;

Sl=s811+{(s1l2.72.*SL)./ (1-822.*SL) ) ;

T pro=((l-abs(Sg)."2).*(1-abs(S1).72))./ (abs(1~Sg.*51).72);
plot(w,T pro,'b-'),axis([0 1.5 0.0 1.021),grid,hold on

% Iki deJiskenli simetrik devre ile uyumlastirma probleminin c¢dzimi
‘dmatch’ adli alt programda yapilmigtir.

[20,cl,c2]=dmatch (TO,w);

%

function [Z0,cl, c2]l=dmatch(TO,w)

np=3; %Toplu eleman sayisi

nl=2; %Dagilmig parametreli eleman sayisi

$bagdimsiz segilen dediskenler icin baslangi¢ deferleri
% hbas5=[h0l1 hl10 hl2 TO]
hbas5=[1 -1 1 TO}:;

% Optimizasyon

OPTIONS (14)=500;
katsayi=constr('Thatab',6 hbas5,0PTIONS, []1,I[],[],np,nl);
hOl=katsayi(1,1)

hl0=katsayi(l,2)

hl2=katsayi (1, 3)

TOopt=katsayi(1,4)
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% Optimizisyon ile bulunan katsayilardan olusan kazang¢ fonksiyonun
cizimi ig¢in 6n hazirlik ‘Thatadbcizim’ adli alt programda yapirlmistir.
[T,Z0,cl,c2}=Thata5cizim(w, katsayi,np,nl, TOopt)
plot(w,T,'c~"),axis ([0 1.5 0.0 1.011)

%

function [tophata,g]=Thatab (hb,np,nl)
h01l=hb (1) ;

h10=hb (2) ;

h12=hb(3);

TO=hb (4) ;

% Bagimsiz secilen katsayilar cinsinden devredeki eleman deferleri
Z0=(1/2)*h01+4(1/2)*((h01~2+4)"~(1/2));

cl=((h10-h12)/(1+20°2))-h10;

c2=~-2* (h10-h12)/(1+20"2);

% Bagimsiz defiskenler cinsinden h;; katsayilarz
h21=-cl”"2*20-cl*c2*%0;

h32=-(1/2)*(c1”2) *c2* (20"2);

h00=0; h02=0; hl1l1=0; h20=0; h22=0; h23=0; h30=0; h31=0;

H=[h00 hO0l1l h02;h10 hll hl12;h20 h21 h22;h30 h31 h32]; % Ay matrisi

syms P p L
P=p.”({1:1)'*(0:np));
Lam=L.”~ ({1:1)*(0:nl)");
H p lam=P*H*Lam;

% Badimsiz dediskenler cinsinden g;; katsayilari
g01=(1/20)+%0;

glo=~hl0;

gll=c2*Z0+2*cl*70;

gl2=cl+0.5%c2* (20"2) ;

g2l=cl”2*Z0+cl*c2*20;

g22=cl*c2*20"2;

g32=(0.5)* (c172) *c2* {Z20"2) ;

g00=1; g02=1; g20=0; g30=0; g31=0;

G=[g00 g01 g02; gl0 gll gl2; g20 g21 g22; g30 g31 g32]; % Ac matrisi
G_p_ lam=P*G*Lam;

w=0,0001:0.02:1.01;
p=li*w; L=tanh (p*TO) ;

Zg=l+p; %kaynak empedansi
LZL=2*%p+(1./ (p+1)); $yuk empedansi
Sg=(Zg=1) ./ {Zg+1);

SL=(ZL-1) ./ (Z2L+1);

% f£{p,A) fonksiyonunun tanimi
£f={-1 0 11;
Fpl=polyval(f,L);

Hpl=subs(H_p lam);
Gpl=subs (G_p_lam);
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s11=Hpl./Gpl; s12=Fpl./Gpl;
s21=Fpl./Gpl; s22=s11;

Sl=s11+4((s12.72.*SL)./ (1-s22.*SL));
Tx=((l-abs(Sg).”2).*(l-abs(S1).72)) ./ (abs(1-Sg.*S1) ."2);

hata=abs (0.98~Tx} ;
waitl=ones (30,1):
wait2=ones (21,1) *4;
wait=[waitl; wait2};
hata=hata*wait;
tophata=sum(hata.”2);

% Kosullarin tanimlanmasi
g(1)=h10;

g{2)=h10-h1l2;
g{3)=hi0-(h10~h12)/(1+20"2);
g(4)=-T0+0.40;

%

function [T,20,cl,c2]=Thatabcizim(w,bas,np,nl,TO)
h0l=bas (1) ;
hl0=bas(2);
hil2=bas(3);

% Eleman de§erleri

20=(1/2) *h01+(1/2)* (h01"2+4)"~ (1/2);

cl=((h10-h12)/(1+Z072))-h10;

c2=-2*(h10-h12)/ (1+20"2);

% Bagimsiz deJiskenler cinsinden h;; eleman deferleri
h21=-cl”2%Z0-cl*c2*20;

h32=-(1/2)*{c1"2) *c2* (Z0"2);

h00=0; h02=0; h1ll=0; h20=0; h22=0; h23=0; h30=0; h31=0;

H=[hO00O h0l h02;hl10 hll hl2;h20 h2l h22;h30 h31 h32]; %Ayx matrisi

syms P p L
P=p.*{(1:1)'*(0:np));
Lam=L." ({(1:1)*(0:nl)"');
H p lam=P*H*Lam;

% Bagimsiz degiskenler cinsinden g;; eleman deferleri
g01=(1/20)+50;

gl0=-h10;

gll=c2*Z0+2*cl*%0;

gl2=¢cl+0.5*¢2* (Z20"2);

g21=cl1”2*Z0+cl*c2*20;

g22=cl*c2*720"2;

g32=(0.5)*{(cl"2)*c2*(z0"2);

gb0=1; g02=1; g20=0; g30=0; g31=0;

G=[g00 g01 g02; gl1l0 gll gl2; g20 g21 g22; g30 g3l g32}; %Ay matrisi
G_p lam=P*G*Lam;

p=1j*w; L=tanh (p*TO) ;
Zg=1l4p; %kaynak empedansi
ZL=2%p+(1./ (p+1)); $yuk empedansi
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sg=1{zg~-1) ./ (Zg+l);
SL=(ZL-1) ./ (21+1);

% f£(p,A) fonksiyonunun tanimi
f=[-1 0 11;
Fpl=polyval (f£,L);

Hpl=subs (H p lam);
Gpl=subs(G_p_ lam);

sll=Hpl./Gpl; s1l2=Fpl./Gpl;
s21=Fpl./Gpl; 522=sll;

Sl=s11+((sl2.72.*SL)./(1-822.%8L));
T={(l-abs(Sg)."2).*(l-abs(S1).72))./ (abs (1~Sg.*S1)."2);
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EK-4: Tek Kath Yiikselteg Devresinin iki Degiskenli Simetrik Devreler ile
Tasarmmuna ait MATLAB Programi

% Simetrik devreler ile tek katli FET amplifier tasarimi
% (50 ohm ile sonlandirilmis tek katli FET amplifier)

clear
% Problemin ve baslanagic de§erlerinin tanimlanmasi

w=[6 8 10 12 14 16]./16;

% FET'in sacilma parametrelerinin tanimi[l.sutun genlik 2.sutun

faz (derece)]

£11p=[0.88 ~-65; 0.83 -85; 0.79 -101; 0.76 -113; 0.73 -126; 0.71 -141};
f21p=[2 125; 1.81 109; 1.64 95; 1.48 84; 1.39 73; 1.32 61];
£12p=[0.05 60; 0.06 53; 0.06 51; 0.06 52; 0.06 54; 0.07 551;
f22p=[0.71 -22; 0.68 -30; 0.66 -37; 0.66 -43; 0.64 -48; 0.63 -56];

% FET'e ait sacilma parametrelerinin karmasik sayi haline
donusturulmesi (1. sutun reel kisim 2. sutun imajiner kisim)

fllfazrd=(pi/180).*£f11lp(:,2);
f21fazrd=(pi/180).*£21p(:,2);
fl2fazrd=(pi/180) .*£12p(:,2);
f22fazrd=(pi/180).*£22p(:,2);

fll=[fllp{:,1).*cos (flifazrd)+1.0j.* £llp(:,1).*sin(fllfazrd}l;
f2i=[£f21p{:,1) .*cos(f21fazrd)+1.0j.* £21p{:,1).*sin(£21fazrd)}];
f12={f12p(:,1) .*cos (fl2fazrd)+1.0j.* fl12p(:,1).*sin(fl2fazrd)];
£f22=[f22p(:,1) .*cos (f22fazrd)+1.0j.* £22p(:,1).*sin(f22fazrd)];

¢ On katin tasarimi on.m adli altprogramda yapilmistir.
% ________________________ ————
[katsayi_on]=on;

% TPG cizimi icin 8n hazirlik

[Tx,c_on,Zlon,ZZon]=Tampcizl(katsayi_pn,w,fll,f21,f12,f22);

c_on, Zlon, Z2on,

T1ll=10*1logl0(Tx);

plot(w,Tll,'r-"),axis([0.375 1 0 8]),grid, hold on,gtext('dn kat')

% Son katin tasarimi sonkat.m adli funtion da yapilmistir.

[Ta,c_on,Zlon,ZZon]=Tampcizl(katsayi_on,w,fll,fZl,le,fZZ,np,nl);
Tlb=10*1ogl0(Ta);

katsayi_son=sonkat(katsayi_on,le,w)
paysl=carpi (£21, £12);

s5221loptx=s22lopt (katsayi_on,w);

pays=carpi (paysl,s22loptx) ;
paydasl=carpi(s22loptx, £11);

paydas=l-paydasl;

f22sapka=(real (£22)-1j*imag(£22)) '+(pays./paydas);



91

[Ty,c_son,Zlson,Z2sonl=Tampciz2 (katsayi_son,w, f22sapka,Tlb,np,nl};
c_son, Zlson, Z2son

T2=10*10gl0(Ty);

plot(w,T2, 'b-'),xlabel ('frequency'),ylabel ('gain'),gtext ('back-end')

%

function [katsayi_on]=on

% Optimizasyon bolumu(tpg amp ile hata fonk tanimlanir)
bas_ampl={-1 -1 1]; % bas_ampl={h10 h21 h23]

OPTIONS (14)=250;
katsayi on=constr('Tampl’,bas_ampl,OPTIONS,[],{],[],np,nl,w)

%

function [tothata,g]=Tampl(basl,np,nl,w)

hl0=basl(1l);
h21l=basl (2);
h23=basl(3);
TO=0.52;

% Eleman de§erleri
c=~h10;
Zl=sqrt(~-h23/h21);
Z2=-2*h21/h10"2;

% Bagimsiz dediskenler cinsinden h;y katsayilarinin degerleri
h01=21-(1/Z1)+40.5%22-1/(2*Z2);
h03=(h23*h1072)/(4*h2172)-h212/ (h23*h10"2) ;
h12=21"2%c+21*%2*%c-(22/Z21) *c;

h00=0; h02=0; hll=0; h13=0; h20=0; h22=0;

H=[h00 hOl1l h02 h03;h10 hll hl2 hl1l3;h20 h21 h22 h23]; %Ay matrisi

syms P p L
P=p.~((1:1)'*(0:np));
Lam=L.”~ ((1:1)*(0:nl)");
H p_ lam=P*H*Lam;

% Bagimsiz degiskenler cinsinden g;; katsayilarinin deferleri
gO01l=21+(1/Z1)40.5%22+1/(2*%2);

g02=(21/22)+(22/21)+1;
g03=(h23*h1072) / (4*h21"~2)+h2172/ (h23*h10"2);

gl0=-~hl10;

gll=2*c*Z1+c*22;

al2=21"2*c+31*22*c+(22/21) *c;

gl13=2*h21/h10;

g21=-h21;

g22=Z1*Z2%*c"2;

g23=h23;

g00=1; g20=0;

G={g00 g0l g02 g03; gl0 gll gl2 gl3; g20 g21 g22 g23]; 3A; matrisi
G_p_lam=P*G*Lam;

p=1j*w; I=1j*tan(w*TO) ;
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% f(p,A) fonksiyonunun tanimlanmasi
Fpl=(1-L."2) .7 {3/2);
Hpl=subs (H p lam);

Gpl=subs (G_p_lam);

s11l1=Hpl./Gpl;
s211=Fpl./Gpl; s221=s5111;

% FET'in sacilma parametrelerinin tanimi[l.sutun genlik 2.sutun

faz (derece)]

f1lp={0.88 -65; 0.83 —-85; 0.79 -101; 0.76 -113; 0.73 -126; 0.71 -141);
f21p=[2 125; 1.81 109; 1.64 95; 1.48 84; 1.39 73; 1.32 611;
£12p=[0.05 60; 0.06 53; 0.06 51; 0.06 52; 0.06 54; 0.07 55];
£22p=[{0.71 -22; 0.68 -30; 0.66 -37; 0.66 -43; 0.64 -48; 0.63 -56];

% FET'e ait sacilma parametrelerinin karmasik sayi haline
donusturulmesi
% (1. sutun reel kisim 2. sutun imajiner kisim)

fllfazrd=(pi/180).*£11lp(:,2);
£21fazrd=(pi/180) .*£21p(:,2);
£12fazrd=(pi/180) .*£12p(:,2) ;
£f22fazrd=(pi/180) .*£22p(:,2);

£f11=[f1lp(:,1) .*cos (fllfazrd)+1.03.* £fllp(:,1).*sin(fllfazrd)];
£21={£f21p(:,1) .*cos{f21fazrd)+1.0j.* £21p(:,1).*sin{f21fazrd)];
f12=[f12p(:,1) .*cos(f12fazrd)+1.0j.* £12p(:,1).*sin(fl2fazrd)];
£f22={f22p(:,1).*cos (f22fazrd)+1.0j.* £22p(:,1).*sin(£f22fazrd)];

Tg=l-abs(sl1ll).”2;

pay=abs (£21) ."2;
payda=abs (i-conj (s221)'.*£f11).72;
Tl=Tg'.* (pay./payda);

T01=5.2;
hata=10*1o0gl0(T1)-T01;
tothata=sum(hata.”2);

g(1)=h10+0.1;
g(2)=h21+0.1;
g(3)=-h23+0.1;

%

function [T1,c¢,Z1,22]=Tampl (basl,w,fll,f21,£f12,£22,np,nl)

hl0=basl(l);
hZ2l=basl(2):
h23=basl (3);
T0=0.52;

% Eleman degerleri
c=-hl0;

Zl=sqrt (-h23/h21);
Z22=-2*h21/h10"2;
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% Badimsiz dediskenler cinsinden h;; katsayilarinin dederleri
h01=21-(1/21)+0.5*%22-1/(2%22);

h03=(h23*h1072)/ (4*h2172)~h21"2/ (h23*h10"2);
h12=21"2*%c+Z1*22*%c~(Z22/21) *c;

h00=0; hO02=0; hll=0; h13=0; h20=0; h22=0;

H=[h00 h0l h02 h03;h10 hll hl12 h1l3;h20 h2l1 h22 h23]; %Ay matrisi

syms Pp L
P=p.”{(1:1)'*(0:np)};
Lam=L.” {{1:1)*{0:nl)"');

H p_lam=P*H*Lam; % hip,A)

% Bagimsiz dedisgkenler cinsinden g;; katsayilarinin dederleri
g01=21+(1/21)+0.5%22+1/(2*22) ;
g02=(21/72)+(22/21)+1;

g03=(h23*h10"2)/ (4*h2172)+h2172/ (h23*h10"2) ;
gl0=-hl0;

gli=2*c*21l+c*22;
gl2=Z1"2*c+Z1*22*c+(Z2/21) *c;

gl3=2*h21/h10;

g21=-h21;

g22=21%722*%c"2;

g23=h23;

g00=1; g20=0;

G=[g00 g0l g02 g03; gl0 gll gl2 gl3; g20 g2l g22 g23]; $%A; matrisi
G_p_lam=P*G*Lam; % glp.,M)

p=1li*w; L=tanh (p*TO) ;

% f(p,A) fonksiyonunun tanimlanmasi
Fpl=(1-L."2) .7 (3/2);

Hpl=subs(H_p lam);
Gpl=subs (G_p lam);

s111l=Hpl./Gpl;
s211=Fpl./Gpl; s8221=8111;

Tg=l-abs(slll).”2;

pay=abs (f21c¢) ."2;

payda=abs (l-conj{s221)'.*£fllc) . 2;
T1l=Tg'.* (pay./payda);

0/
70

3Tek katli yukseltecin son katinin tasarimina ait alt program
function [katsayi_son]=sonkat (katsayi on,Tlb,w)

% FET'in sacilma parametrelerinin tanimi{l.sutun genlik 2.sutun

faz (derece) ]

f11p={0.88 -65; 0.83 -85; 0.79 -101; 0.76 —113; 0.73 -126; 0.71 -141}];
f21lp=[2 125; 1.81 109; 1.64 95; 1.48 84; 1.39 73; 1.32 611;
£12p={0.05 60; 0.06 53; 0.06 51; 0.06 52; 0.06 54; 0.07 551;
£22p=[0.71 ~22; 0.68 -30; 0.66 -37; 0.66 -43; 0.64 -48; 0.63 -56];
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% FET'e ait sacilma parametrelerinin karmasik sayi haline
donusturulmesi

fllfazrd=(pi/180) .*£f11lp(:,2);
f21fazrd=(pi/180}.*f21p(:,2);
fl2fazrd=(pi/180) .*£12p(:,2);
f22fazrd=(pi/180) .*£22p(:,2);

£11=[f1llp(:,1) .*cos(fllfazrd)+1.0j.* £fllp(:,1).*sin(fllfazrd)];
£21={£f21p(:,1) .*cos{f21fazrd)+1.0j.* £21p(:,1).*sin{f21fazrd)];
£12=[{£f12p(:,1) .*cos (fl2fazrd)+1.0j.* £12p(:,1).*sin(fl2fazrd)];
f22=[{f22p(:,1) .*cos (f22fazrd)+1.03.* £22p(:,1).*sin{f22fazrd)];

paysl=carpi (£f21, £12);

s22loptx=s22lopt (katsayi_on,w);
pays=carpi (paysl, s22loptx);

paydasl=carpi (s22loptx, £11);

paydas=l-paydasl;

f22sapka=(real (£22)-1j*imag(£f22)) '+(pays./paydas);

T02=6.8;
% Optimizasyon bolumu(Tamp2 ile hata fonk tanimlanir)

bas_amp2=[~1 -1 1];

OPTIONS {14)=350;
katsayi_son=constr('Tamp2',6bas_amp2,O0PTIONS, [}, [1,{],f22sapka,Tlb,T02,
np,nl)

o/
I4'

function [tothata?2,g2]=Tamp2 (basl, f22sapka,Tlb,T02,np,nl)

hl0=basl(1l):;
h2l=basl (2);
h23=basl(3);
T0=0.52;

% Eleman degerleri
c=-h10;

Zl=sqrt (~h23/h21);
Z2=-2*h21/h10"2;

% Bagimsiz deJiskenler cinsinden h;; katsayilarinin deferleri
h01=21-(1/21)+0.5*%2~1/ (2*22) ;

h03=(h23*h1072)/ (4*h2172)-h2172/ (h23*h10"2);
hl2=71"2*c+21*22*%c-(22/21) *c;

h00=0; h02=0; h11l=0; hl3=0; h20=0; h22=0;

H=[h00 h0l h02 h03;hl10 hll hl2 hl13;h20 h21 h22 h23]; %Ay matrisi

syms Pp L
P=p."((1:1)'*(0:np))
Lam=L." {{1l:1)*{(0:nl)"');
H p lam=P*H*Lam;

% Bajimsiz dediskenler cinsinden g¢;; katsayilarinin degerleri
g01l=%1+(1/21)+0.5*%22+1/(2*22);

g02=(21/22)+(22/21)+1;

g03=(h23*h1072)/ (4*h2172)+h2172/ (h23*h10"2);
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gl0=-hl10;

gli=2*c*Z1+c*22;
gl2=21"2*c+Z1*Z2*c+(Z22/21) *c;
gi3=2+*h21/h10;

g2l=-h21;

g22=%1*Z2*c"2;

g23=h23;

g00=1; g20=0;

G=[g00 g01 g02 g03; gl0 gll gl2 gl13; g20 g2l g22 g23]; $A¢ matrisi

G_p_lam=P*G*Lam;

w=[{6 8 10 12 14 16]./16;
p=1j*w; L=1j*tan (w*TO) ;

% f({p,A) fonksiyonunun tanimi
Fpl={1-1L.72).7(3/2);
Hpl=subs(H p lam);
Gpl=subs (G p lam);

s1l12=Hpl./Gpl;
s212=Fpl./Gpl;

T2=(T1lb').*abs (s212).72./ (abs (1-f22sapka.*8112).72);

hata2=10*1ogl0(T2)-T02;
tothata2=sum(hataz."2);

g2 (1)=h10;

g2(2)=h21;
g2 (3})=-h23;

%

function [T2,¢,Z1,42]=Tampciz2 (basl,wc,f22sapka,Tlb,np,nl)

hl0=basl (1);
h2l=basl(2);
h23=basl(3);
TO=0.52;

% Eleman degerleri
c=-h10;

Zl=sqrt (~h23/h21);
Z2=-2*h21/h10"2;

% Bagimsiz defiskenler cinsinden h;; katsayilarinin de§erleri

h0l=21-(1/21)+0.5*%22-1/(2*22);

h03=(h23*h10"2)/ (4*h21"2)-h21"2/(h23*h10"2);

hl2=71%2*c+21*22*%c- (Z2/Z1) *c;

h00=0; h02=0; hll=0; h13=0; h20=0;
H=[h00 h01l h02 h03;hl10 hll hl2 hl13;h20 h2l h22 h23]

syms Pp L
P=p.~({1:1)'*({0:np)):
Lam=L.”{{1:1}*{0:nl)"');
H_p lam=P*H*Lam;

$Ay matrisi



% Badimsiz de§iskenler cinsinden g¢;; katsayilarinin de§erleri

gO01=Z1+(1/21)+0.5%22+1/(2*%2);
g02=(21/22)+(22/21)+1;

g03=(h23*h10°2)/ (4*h21"2)+h21"2/ (h23*h10"2) ;

gl0=-h10;

gll=2*c*Z1+c*22;
gl2=21"2*c+Z1*Z2*c+(22/21) *c;
gl3=2*h21/h10;

g21=-h21;

g22=21%22%c"2;

g23=h23;

g00=1; g20=0;

G=[g00 g01 g02 g03; gl0 gll gl2 gl13; ¢g20 g2l g22 g23]

G _p_lam=P*G*Lam;
p=lj*w; L=tanh (p*TO) ;

% f(p,A) fonksiyonunun tanimi
Fpl=(1-L.72) .7 (3/2);
Hpl=subs(H p lam);
Gpl=subs (G_p lam);

5112=Hpl./Gpl;
5212=Fpl./Gpl;

T2=T1lb'.*abs (8212).72./ (abs (1-£22sapka.*s112).72);

$A; matrisi
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