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ÖZET 

Yüksek Lisans Tezi 

GÜNEŞ PANELİ KUSURLARININ DERİN ÖĞRENME TABANLI 

SINIFLANDIRILMASI 

Sebahattin Yiğit LERMİ 

Zonguldak Bülent Ecevit Üniversitesi 

Fen Bilimleri Enstitüsü  

Elektrik Elektronik Mühendisliği Anabilim Dalı 

Tez Danışmanı: Dr. Öğr. Üyesi Tuğba Özge ONUR 

Temmuz 2024,75 sayfa 

Yenilenemez enerji kaynaklarının çevreye ve ekolojiye verdiği zararlar, yenilenebilir enerji 

kaynaklarına olan ilginin artmasına neden olmaktadır. Fotovoltaik (FV) enerji üretimi, temiz 

ve sürdürülebilir enerji üretimi için mükemmel enerji alternatiflerinden biridir. FV paneller 

üzerindeki kar, toz, kuş pisliği, mekaniksel hasar, fiziksel hasar ve gölgelenme gibi etkenler 

enerji üretimindeki verimi azaltmaktadır ve bu yüzden panel bakımı düzenli olarak 

yapılmalıdır. Bakımlar manuel olarak yapıldığında hatalar olmakta ve uzun zaman almaktadır. 

Bu nedenle güneş paneli kusurları son zamanlarda geliştirilen görüntü işleme ve derin öğrenme 

algoritmaları kullanılarak tespit edilebilmektedir.  

Bu çalışmada, derin öğrenme tekniği kullanılarak güneş panelleri üzerinde hasar tespiti 

sınıflandırması yapılmıştır. Çalışma iki aşamadan oluşmaktadır. İlk aşama, ön işleme 

aşamasıdır ve bu aşamada veri setinin yetersiz olması nedeniyle veri seti görüntüyü döndürme, 

görüntünün simetriğini alma ve görüntüye gürültü ekleme gibi veri çoğaltma teknikleri 

kullanılarak arttırılmıştır. İkinci aşama olan eğitim aşamasında ise çoğaltılan veri seti önerilen 
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ÖZET (devam ediyor) 

derin öğrenme modeliyle eğitilmiştir. Ayrıca veri seti önceden eğitilmiş VGG-19, InceptionV3 

ve Resnet101 modelleriyle de eğitilmiş ve sonuçlar önerilen modelle karşılaştırılmıştır. Eğitim 

sonucunda önerilen modelin 7 farklı kusurun sınıflandırılmasında %97,19 başarıyla 

sınıflandırma yapabildiği gözlenmiştir.   

Anahtar Kelimeler: Evrişimli sinir ağları, derin öğrenme, güneş panelleri, fotovoltaik, veri 

çoğaltma, sınıflandırma. 

Bilim Kodu: 608.05.00, 608.05.02
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ABSTRACT 

M. Sc. Thesis 

CLASSIFICATION OF SOLAR PANELS DEFECTS BASED ON DEEP LEARNING 

Sebahattin Yiğit LERMİ 

Zonguldak Bülent Ecevit University  

Graduate School of Natural and Applied Sciences  

Department of Electrical and Electronics Engineering 

 

Thesis Advisor: Assist. Prof. Dr. Tuğba Özge ONUR 

July 2024, 75 pages 

The damage caused by non-renewable energy sources to the environment and ecology causes 

an increase in interest in renewable energy sources. Photovoltaic (PV) energy production is one 

of the excellent energy alternatives for clean and sustainable energy production. Factors such 

as snow, dust, bird droppings, mechanical damage, physical damage and shading on PV panels 

reduce the efficiency in energy production, and therefore panel maintenance should be done 

regularly. When maintenance is done manually, errors occur and it takes a long time. Therefore, 

solar panel defects can be detected using recently developed image processing and deep 

learning algorithms. 

In this study, damage detection classification was made on solar panels using the deep learning 

technique. The study consists of two stages. The first stage is the pre-processing stage, and at 

this stage, due to insufficient data set, it is increased by using data augmentation techniques 

such as rotating the image, taking the symmetry of the image and adding noise to the image. In 

the second stage, the training stage, the replicated data set was trained with the proposed deep 

learning model. In addition, the dataset was trained with pre-trained VGG-19, InceptionV3 and
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ABSTRACT (continued) 

Resnet101 models and the results were compared with the proposed model. As a result of the 

training, it was observed that the proposed model was able to classify 7 different defects with a 

success rate of 97,19%.  

Keywords: Convolutional neural networks, deep learning, solar panels, Photovoltaic, data 

augmentation, classification. 

Science Code: 608.05.00, 608.05.02 

 



 

vii 

 

TEŞEKKÜR 

Tez çalışma süresi boyunca yardım ve katkılarıyla beni yönlendiren saygıdeğer hocam Dr. Öğr. 

Üyesi Tuğba Özge ONUR’a teşekkürlerimi sunarım.  

Her daim eşsiz sevgi ve desteklerini hissettiren, tüm fedakarlıklarıyla başarımda en büyük payı 

olan değerli aileme teşekkürlerimi sunarım. 



 

viii 

 



 

ix 

 

İÇİNDEKİLER 

Sayfa 

KABUL: ..................................................................................................................................... ii 

ÖZET ......................................................................................................................................... iii 

ABSTRACT ............................................................................................................................... v 

TEŞEKKÜR ............................................................................................................................. vii 

İÇİNDEKİLER .......................................................................................................................... ix 

ŞEKİLLER DİZİNİ ................................................................................................................. xiii 

ÇİZELGELER DİZİNİ ............................................................................................................ xv 

SİMGELER VE KISALTMALAR DİZİNİ ........................................................................... xvii 

BÖLÜM 1 GİRİŞ ....................................................................................................................... 1 

BÖLÜM 2 GÜNEŞ ENERJİSİ VE PANELLERİ ..................................................................... 7 

2.1 GÜNEŞ ENERJİSİ ........................................................................................................... 7 

2.2 GÜNEŞ PANELLERİ ...................................................................................................... 8 

2.3 GÜNEŞ PANELİ SİSTEMİ ELEMANLARI .................................................................. 9 

2.3.1 Güneş Panelleri .......................................................................................................... 9 

2.3.2 Dönüştürücü ............................................................................................................... 9 

2.3.3 Solar Şarj Kontrol Cihazı ........................................................................................... 9 

2.3.4 Akü ............................................................................................................................. 9 

2.4 FV HÜCRELERİN YAPISI VE ÇALIŞMA PRENSİBİ ................................................. 9 

2.4.1 FV Hücrelerin Yapısı ............................................................................................... 10 

2.4.2 FV Hücrelerin Çalışma Prensibi .............................................................................. 11 

2.5 FV HÜCRE, MODÜL VE DİZİ ..................................................................................... 12 

2.5.1 FV Hücre .................................................................................................................. 12 

2.5.2 FV Modül ................................................................................................................. 12 



 

x 

 

İÇİNDEKİLER (devam ediyor) 

Sayfa 

2.5.3 FV Dizi ..................................................................................................................... 12 

2.6 GÜNEŞ PANELİ TÜRLERİ .......................................................................................... 13 

2.6.1 Kristal Silikon Güneş Panelleri ................................................................................ 13 

2.6.2 İnce Film Teknolojileri ............................................................................................ 14 

2.7 GÜNEŞ PANELLERİNİN AVANTAJLARI VE DEZAVANTAJLARI ..................... 15 

2.7.1 Güneş Panellerinin Avantajları ................................................................................ 15 

2.7.2 Güneş Panellerinin Dezavantajları ........................................................................... 16 

2.8 GÜNEŞ PANELİ SİSTEMLERİNDE OLABİLECEK KUSURLAR ........................... 17 

2.8.1 Gölgelenme .............................................................................................................. 17 

2.8.2 Kuş Pisliği ................................................................................................................ 18 

2.8.3 Tozlanma .................................................................................................................. 18 

2.8.4 Elektriksel Hasar ...................................................................................................... 19 

2.8.5 Fiziksel Hasar ........................................................................................................... 19 

2.8.6 Karlanma .................................................................................................................. 20 

BÖLÜM 3 DERİN ÖĞRENME TABANLI GÜNEL PANELİ KUSURLARI     

SINIFLANDIRILMASI ........................................................................................ 21 

3.1 DERİN ÖĞRENME ....................................................................................................... 21 

3.2 EVRİŞİMLİ SİNİR AĞLARI ........................................................................................ 23 

3.2.1. ESA’yı Oluşturan Katmanlar .................................................................................. 24 

3.2.1.1 Giriş Katmanı .................................................................................................... 24 

3.2.1.2 Konvolüsyon Katmanı (Evrişim Katmanı) ....................................................... 24 

3.2.1.3 Aktivasyon Katmanı .......................................................................................... 27 

3.2.1.3.1 Sigmoid Fonksiyonu ................................................................................... 27 

3.2.1.3.2 ReLU .......................................................................................................... 28 

3.2.1.3.3 Hiperbolik Tanjant Fonksiyonu .................................................................. 29 

3.2.1.4 Havuzlama Katmanı .......................................................................................... 30 

3.2.1.5 Düzleştirme Katmanı ......................................................................................... 31 

3.2.1.6 Tam Bağlantılı Katman ..................................................................................... 31 

3.2.1.7 Seyreltme Katmanı ............................................................................................ 32 

3.2.1.8 Sınıflandırma Katmanı ...................................................................................... 33 



 

xi 

 

İÇİNDEKİLER (devam ediyor) 

Sayfa 

3.2.2 Batch Boyutu ........................................................................................................... 34 

3.2.3 Kayıp Fonksiyonu .................................................................................................... 34 

3.2.3.1 Kategorik Çapraz Entropi (Categorical Crossentropy) ..................................... 34 

3.2.3.2 İkili Çapraz Entropi (Binary Cross-Entropy) .................................................... 35 

3.2.3.3 Seyrek Kategorik Çapraz Entropi (Sparse Categorical Cross-Entropy) ........... 35 

3.2.3.4 Ortalama Karesel Hata (Mean Squared Error -MSE) ....................................... 35 

3.2.4 Eğitim Tur (Epok) Sayısı ......................................................................................... 36 

3.2.5 Modelin Öğrenme Oranı .......................................................................................... 36 

3.2.6 Optimizasyon Çeşitleri ............................................................................................. 36 

3.2.6.1 Gradyan Azalması (Gradient Descent-GD) ...................................................... 36 

3.2.6.1.1 Toplu Gradyan Azalması (Batch Gradient Descent-BGD) ........................ 37 

3.2.6.1.2 Stokastik Gradyan Azalması (Stochastic Gradient Descent-SGD) ............ 37 

3.2.6.1.3 Mini Toplu Gradyan Azalması (Mini-Batch Gradient Descent) ................ 38 

3.2.6.2 Uyarlanabilir Gradyan Azalması (Adaptive Gradient Descent-AdaGrad) ....... 38 

3.2.6.3 Uyarlanabilir Delta (Adaptive Delta-AdaDelta) ............................................... 38 

3.2.6.4 Karekök Ortalama Yayılımı (Root Mean Square Propagation-RMSProp) ....... 38 

3.2.6.5 Uyarlanabilir Moment Tahmini (Adaptive Moment Estimation-Adam) .......... 39 

3.2.6.6 Maksimum Uyarlanabilir Moment Tahmini (Maximum Adaptive Moment 

Estimation-AdaMax) ......................................................................................... 39 

3.2.7 Transfer Öğrenme .................................................................................................... 39 

3.2.7.1 Görsel Geometri Grubu (Visual Geometry Group-VGG) ................................. 40 

3.2.7.2 ResNet ............................................................................................................... 40 

3.2.7.3 InceptionV3 (GoogLeNet) ................................................................................ 41 

3.2.7.4 Xception ............................................................................................................ 41 

3.2.7.5 DenseNet ........................................................................................................... 41 

BÖLÜM 4 BULGULAR .......................................................................................................... 43 

4.1 GÜNEŞ PANELİ VERİ SETİ ........................................................................................ 43 

4.2 ÖN İŞLEM ADIMLARI ................................................................................................ 45 



 

xii 

 

İÇİNDEKİLER (devam ediyor) 

Sayfa 

4.2.1 Görüntüyü Döndürme .............................................................................................. 45 

4.2.2 Görüntünün x ve y Eksenlerine Göre Simetriğini Alma .......................................... 46 

4.2.3 Görüntüye Gürültü Ekleme ...................................................................................... 47 

4.3 PERFORMANS METRİKLERİ .................................................................................... 48 

4.3.1 Karışıklık Matrisi ..................................................................................................... 48 

4.4 ÖNERİLEN MODEL ..................................................................................................... 49 

4.5 DENEYSEL SONUÇLAR ............................................................................................. 51 

4.5.1 VGG-19 Modeli Sonuçları ....................................................................................... 51 

4.5.2 InceptionV3 Modeli Sonuçları ................................................................................. 54 

4.5.3 Resnet101 Modeli Sonuçları .................................................................................... 57 

4.5.3 Önerilen Modelin Sonuçları ..................................................................................... 60 

BÖLÜM 5 SONUÇLAR .......................................................................................................... 65 

KAYNAKLAR ......................................................................................................................... 67 

ÖZGEÇMİŞ ............................................................................................................................. 75 



 

xiii 

 

ŞEKİLLER DİZİNİ 

No            Sayfa 

Şekil 2.1 Yakın geçmişte ve gelecekte güneş enerjisi kullanımının evrimi  .............................. 7 

Şekil 2.2 FV sistemin çalışma yapısı ......................................................................................... 8 

Şekil 2.3 FV  hücrenin basit yapısı  ......................................................................................... 10 

Şekil 2.4 FV hücrelerin çalışma prensibi  ................................................................................ 11 

Şekil 2.5 FV Hücre, Modül ve Dizi  ........................................................................................ 12 

Şekil 2.6 Monokristal ve Polikristal Güneş paneli  .................................................................. 13 

Şekil 2.7 İnce film güneş paneli  .............................................................................................. 14 

Şekil 2.8 Gölgelenmiş güneş paneli  ........................................................................................ 17 

Şekil 2.9 Kuş pisliği olan güneş paneli  ................................................................................... 18 

Şekil 2.10 Tozlanmış güneş paneli  ......................................................................................... 18 

Şekil 2.11 Elektriksel hasarlı güneş paneli  ............................................................................. 19 

Şekil 2.12 Fiziksel hasarlı güneş paneli  .................................................................................. 19 

Şekil 2.13 Karla kaplanmış güneş paneli  ................................................................................ 20 

Şekil 3.1 YSA modeli .............................................................................................................. 22 

Şekil 3.2 ESA bileşenleri ......................................................................................................... 23 

Şekil 3.3 Özellik haritası .......................................................................................................... 24 

Şekil 3.4 Konvolüsyon işlemi uygulanma örneği .................................................................... 25 

Şekil 3.5 Sigmoid fonksiyonu grafiği ...................................................................................... 27 

Şekil 3.6 ReLU fonksiyonunun çıkış verisi üzerinde gösterdiği etki ...................................... 28 

Şekil 3.7 ESA modelinde ReLU katmanının görüntüye yapmış olduğu etki .......................... 29 

Şekil 3.8 Tanh fonksiyonu grafiği............................................................................................ 29 

Şekil 3.9 Maksimum ve Ortalama havuzlama örneği .............................................................. 30 

Şekil 3.10 Giriş görseline konvolüsyon ve maksimum havuzlama uygulanması sonrası oluşan 

görüntüler ................................................................................................................ 30 

Şekil 3.11 Düzleştirme katmanı örneği .................................................................................... 31 

Şekil 3.12 Tam bağlantılı katman yapısı .................................................................................. 32 



 

xiv 

 

ŞEKİLLER DİZİNİ (devam ediyor) 

No                                                                                                                                                     Sayfa  

Şekil 3.13 Standart bir ESA ağına seyreltme katmanın uygulanması  ..................................... 33 

Şekil 3.14 GD Algoritması ...................................................................................................... 37 

Şekil 3.15 VGG-16 mimarisi ................................................................................................... 40 

Şekil 4.1 Veri setinden örnekler ............................................................................................... 44 

Şekil 4.2 Veri seti üzerinde görüntü işleme tekniklerinden döndürme örneği ......................... 46 

Şekil 4.3 Veri seti üzerinde görüntü işleme tekniklerinden simetriğini alma örneği ............... 47 

Şekil 4.4 Veri seti üzerinde görüntü işleme tekniklerinden gürültü ekleme örneği ................. 48 

Şekil 4.5 Önerilen modelin yapısı ............................................................................................ 50 

Şekil 4.6 VGG-19 modelinin eğitim ve doğrulama kaybı grafiği ............................................ 52 

Şekil 4.7 VGG-19 modelinin eğitim ve doğrulama başarısı grafiği ........................................ 52 

Şekil 4.8 VGG-19 modelinin karışıklık matrisi ....................................................................... 53 

Şekil 4.9 InceptionV3 modelinin eğitim ve doğrulama kaybı grafiği ...................................... 54 

Şekil 4.10 InceptionV3 modelinin eğitim ve doğrulama başarısı grafiği ................................ 55 

Şekil 4.11 InceptionV3 modelinin karışıklık matrisi ............................................................... 56 

Şekil 4.12 Resnet101 modelinin eğitim ve doğrulama kaybı grafiği ....................................... 57 

Şekil 4.13 Resnet101 modelinin eğitim ve doğrulama başarısı grafiği ................................... 58 

Şekil 4.14 Resnet101 modelinin karışıklık matrisi .................................................................. 59 

Şekil 4.15 Önerilen modelin eğitim ve doğrulama kaybı grafiği ............................................. 60 

Şekil 4.16 Önerilen modelin eğitim ve doğrulama başarısı grafiği ......................................... 61 

Şekil 4.17 Önerilen modelinin karışıklık matrisi ..................................................................... 62 



 

xv 

 

ÇİZELGELER DİZİNİ 

No            Sayfa 

Çizelge 4.1 Orijinal veri seti .................................................................................................... 43 

Çizelge 4.2 Çoğaltılmış veri seti .............................................................................................. 45 

Çizelge 4.3 Karışıklık matrisi parametreleri ............................................................................ 49 

Çizelge 4.4 Önerilen modelde kullanılan parametreler ........................................................... 50 

Çizelge 4.5 VGG-19 modelinin performansı ........................................................................... 54 

Çizelge 4.6 InceptionV3 modelinin performansı ..................................................................... 56 

Çizelge 4.7 Resnet101 modelinin performansı ........................................................................ 59 

Çizelge 4.8 Önerilen modelinin performansı ........................................................................... 62 

Çizelge 4.9 Önerilen modelin diğer modellerle karşılaştırılması ............................................ 63 



 

xvi 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xvii 

 

SİMGELER VE KISALTMALAR DİZİNİ 

SİMGELER 

𝑊 : Giriş görseli genişliği 

𝐻 : Giriş görseli yüksekliği 

𝐶 : Giriş görseli kanal sayısı 

𝐹 : Filtre boyutları 

𝑆 : Adım 

𝐾 : Filtre sayısı 

𝑛 : Girdi görselinin boyutu 

𝑝 : Sıfır doldurma değeri 

𝑧 : Sigmoid fonksiyona giriş değeri 

𝑥 : Tanh fonksiyona giriş değeri 

𝑦 : Gerçek etiket 

𝑦̂𝑖 : Modelin tahmin ettiği etiket 

𝑐 : Modelin tahmin ettiği toplam sınıf sayısı 

𝑎 : Ortalama kare hata örnek sayısı 

KISALTMALAR 

AA  : Alternatif Akım  

AdaDelta : Uyarlanabilir Delta-Adaptive Delta  

AdaGrad : Uyarlanabilir Gradyan Azalması-Adaptive Gradient Descent 

Adam  : Uyarlanabilir Moment Tahmini-Adaptive Moment Estimation 

AdaMax : Maks. Uyarlanabilir Moment Tahmini-Maximum Adaptive Moment Estimation  

a-Si                 : Amorf silikon  

 



 

xviii 

 

SİMGELER VE KISALTMALAR DİZİNİ (devam ediyor) 

BGD  : Toplu Gradyan Azalması-Batch Gradient Descent 

ÇÜA  : Çekişmeli Üretici Ağ  

DA  : Doğru Akım  

DESA  : Derin Evrişimli Sinir Ağları  

DVM  : Destek Vektör Makinesi  

EL  : Elektrolüminesans  

ESA  : Evrişimli Sinir Ağı  

FN   : Tahmin Negatif-False Negative 

FP  : Tahmin Pozitif-False Positive 

FV   : Fotovoltaik  

GD  : Gradyan İnişi-Gradient Azalması  

İHA  : İnsansız Hava Aracı  

MATLAB : Matrix Laboratory  

MGN  : Maksimum Güç Noktası  

Mono-Si : Monokristalin Silikon  

Multi-Si : Çok Kristalli Silikon  

MSE  : Ortalama Karesel Hata-Mean Squared Error  

RMSProp : Karekök Ortalama Yayılımı-Root Mean Square Propagation 

SGD  : Stokastik Gradyan Azalması-Stochastic Gradient Descent 

Si  : Silikon   

TN   : Doğru Negatif-True Negative  

TP   : Doğru Pozitif-True Positive 

VGG  : Görsel Geometri Grubu-Visual Geometry Group 

YSA  : Yapay Sinir Ağı



 

1 
 

BÖLÜM 1 

GİRİŞ 

Yenilenemez enerji kaynaklarının tükenmesi ve çevreye verdikleri zarar, başta güneş enerjisi 

olmak üzere yenilenebilir enerji kaynaklarına olan ilginin artmasına neden olmuştur. 

Uluslararası Enerji Ajansı (UEA), 2030 ve 2040 yılına kadar dünyanın elektrik üretiminde 

yenilenebilir enerji oranının sırasıyla %30 ve %50'ye ulaşabileceğini, FV gücünün ise bu payın 

%10 ve %20'sini oluşturacağını öngörmektedir [1]. FV teknolojisi son yıllarda hızlı bir şekilde 

büyümüştür. 2008'den 2011'e kadar yalnızca Kanada'da güneş FV elektriği kurulu kapasitesi 

yıllık yaklaşık %150 artış göstererek 2011'de 495 Megawatt 'a ulaşmıştır [2]. FV sistemler 

genellikle güneş enerjisi üretimi sağlar. FV sistemlerinin ucuz kurulum maliyetleri, güvenli 

enerji üretimi, sessiz çalışması ve çevre dostu olması gibi faydaları da dikkat çekmektedir [3,4]. 

Son yıllarda FV sistemlerine olan ilginin artması FV üreticilerinin sayısında artışa yol açmıştır. 

Bu nedenle FV güç üreten sistemlerin dayanıklılığının üretici tarafından garanti edilmesi 

gerekmektedir. Her ne kadar üretici 25 yıl sonra FV sisteminin çıkış gücünün %80'ini 

Maksimum Güç Noktasında (MGN) garanti etse de FV sisteminin çıkış performansı zamanla 

kademeli olarak düşmektedir [5]. FV sistemlerdeki verim düşüşü bozulmalara ve çevresel 

etkenlere bağlıdır. Tozlanma, karlanma, kuş pisliği, gölgelenme, mekaniksel ve fiziksel hasarlar 

gibi etkenler panellerin performansını ciddi ölçüde olumsuz etkilemektedir ve bu yüzden panel 

bakımları düzenli olarak yaptırılmalıdır. Panel kusurunu insan gözüyle saptamak hatalara neden 

olabildiği gibi zaman ve maliyet açısından da kayıplara yol açmaktadır. Bu sorunların 

giderilebilmesi için günümüzde kullanımı giderek artan derin öğrenme ve görüntü işleme 

teknolojileri önerilmektedir. 

Güneş panelleri üzerindeki kusurları saptama ve sınıflandırma konusunda çalışmalar FV 

modüllerin verimliliği için büyük önem taşımaktadır. Son yıllarda FV panel arızalarının 

anomalilerini sınıflandırmak için çeşitli çalışmalar yapılmıştır. 
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Korkmaz ve Açıkgöz FV paneller üzerindeki anormallikleri tespit edebilmek ve sınıflandırmak 

için önerdikleri yöntemi transfer öğrenme stratejisine bağlı çok ölçekli bir Evrişimli Sinir Ağı 

(ESA) olarak tasarlamışlardır. Veri kümesindeki dengesiz sınıf dağılımı sorununu çözmek için 

veri büyütme ve aşırı örnekleme tekniği kullanarak ağ performansını arttırmışlardır. 

Çalışmalarında 11 farklı FV panel kusuru (çatlama, sıcak nokta gibi) kullanarak 11 anormali 

türünü sınıflandırmada %93,51 doğruluk elde etmişlerdir. Elde edilen sonuçların FV 

panellerdeki kusurları bulmak ve sınıflandırmak için yeterli olduğu gözlenmiştir [6]. 

Espinosa ve arkadaşları yaptıkları çalışmalarda, FV kusurları tespit etmek için anlamsal 

bölümlendirme ve görüntüleri sınıflandırmak için ESA’ ları kullanan otomatik hata 

sınıflandırma yöntemi önermektedir. Bu çalışma kusurlu ve kusursuz tanımlanan 2 çıkış sınıfı 

ve kolayca tespit edilemeyen arıza, çatlak, gölge ve toz yok şeklinde 4 çıkış sınıfı için deneysel 

sonuçları göstermektedir. Önerilen yöntemle 2 çıkış sınıfı için %75 ve 4 sınıf için %70 doğruluk 

oranına ulaşılmıştır [7]. 

Kaycı ve arkadaşları çalışmalarında güneş panellerinden termal kamera yerleştirilmiş dronla 

elde edilen termal görüntüleri hücre, modül ve panel arızalarının tespitinde kullanmışlardır. 

Edinilen görüntüler ile modül kusuru, hücre kusuru ve panel kusuru içeren veri seti 

hazırlanmıştır. Veri seti YOLOv3 derin öğrenme tabanlı Yapay Sinir Ağıyla (YSA) eğitilmiştir. 

Eğitim sonucunda panel arızaları %95 başarıyla sınıflandırılmıştır. [8]. 

Pierdicca ve arkadaşları çalışmalarında, FV hücresi bozulmasını tahmin etmek için Derin 

Evrişimli Sinir Ağları (DESA) kullanmaya yönelik yeni bir yöntem önermişlerdir. Bu 

araştırmada ilk kez termal kızılötesi sensöre sahip bir drondan alınan bilgiler kullanılmıştır. 

Bozulma sorununu göstermek ve bu çalışmada önerilen çözümü kapsamlı bir şekilde 

değerlendirmek için, toplanan FV görüntüler veri kümesi üzerinde deneyler yapılmıştır. 

Eğitilen ağın başarı oranı %70 olarak bulunmuştur [9]. 

Li ve arkadaşları tarafından yapılan çalışmada büyük boyutlu FV paneli alanlarının denetimi 

sırasında panellerin durumunu gözlemleyebilmek için derin öğrenme tabanlı kusur tespiti 

kullanan bir yöntem oluşturulmuştur. Oluşturulan bu sistemde kullanılan derin öğrenme tekniği 

ESA tabanlı bir yapıdır. Çalışma sonucunda toz, kapsülleme, delaminasyon, ızgara hattı 

aşınması, salyangoz izleri ve sararma hataları tespit edilmiş ve ortalama %97,9 doğruluk oranı 
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elde edilmiştir. Önerilen yöntemin Visual Geometry Group (VGG)-16 ve geleneksel 

yöntemlerden daha başarılı olduğu gözlenmiştir [10]. 

Wei ve arkadaşları tarafından güneş panellerinde sıcak nokta ve yansıtıcı bölge arızalarının 

teşhis edilebilmesi için iki yaklaşım önerilmiştir. Sıcak noktaların algılanması için Hough çizgi 

dönüşümünü ve Canny operatörünü, reflektör arızalarının tespit edilmesinde ise derin öğrenme 

yöntemini kullanmışlardır. Çalışma sonucunda geleneksel görüntü işleme ve daha hızlı bölge 

tabanlı evrişimli sinir ağları başarı oranları sırasıyla %89,96 ve %95,15 olarak elde edilmiştir 

[11].  

Herraiz ve arkadaşları çalışmalarında, güneş panellerindeki kusurları bulmak için insansız hava 

aracına monte edilen termografik kameradan yararlanan yeni bir teknik önermişlerdir. Yapılan 

çalışmada sıcak noktaların tespit edilmesinde ve yeniden konumlandırılmasında 

kullanılabilecek panellerin yerinin tespit edilmesi amacıyla yeni bir yöntem sunulmuştur. İki 

yeni bölge tabanlı ESA’nın birleştirilmesiyle güçlü bir tespit çerçevesi geliştirmişlerdir. 

Otomatik veri toplama ve işleme, denetim sırasında kusurların tespit edilmesini sağlamaktadır. 

Elde edilen sonuçlar, yaklaşımın %91,67 hassasiyetle ve %99,02'den fazla doğrulukla güneş 

takip cihazlarının ve göreceli sıcak bölgelerinin otomatik lokalizasyonu için uygun olduğunu 

göstermektedir [12]. 

Venkatesh ve arkadaşları İnsansız Hava Araçlarından (İHA) elde edilen hava görüntülerinin 

yardımıyla derin öğrenmeye dayalı FV modüllerdeki arıza tespitini sunmaktadır. Veri setlerini 

VGG16 ile eğitmişler ve yanık izleri, delaminasyon, renk bozulması, fiziksel hasar, sağlam ve 

salyangoz izi gibi kusurları sınıflandırmada başarılı olduğu gözlenmiştir. Sonuçlar, modelin 

tüm FV kusurlarını sınıflandırmada %95,40 gibi yüksek bir sınıflandırma doğruluğuna 

ulaştığını göstermektedir [13]. 

Xie ve arkadaşları FV kızılötesi hedef anomali tespit sistemi önermektedir. FV panel 

kusurlarının İHA tarafından tespitinin doğruluğunu arttırmak için Sobel ve Canny 

operatörlerini birleştirdiler. Yatay ve dikey özellikleri çıkarmak için Sobel operatörünü, dikey 

ve yatay kenar özelliklerini hesaplamak ve doldurmak için Canny operatörü kullandılar. Eş 

zamanlı olarak görüntünün ayırt edici özelliklerini öğrenmek için algoritmaya derin öğrenme 

uygulanmıştır. Çalışmalar sonucunda model %90,91 oranında sınıflandırma başarısı elde 

etmiştir [14]. 
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Díaz ve arkadaşları İHA üzerine monte edilmiş termal kamerayla FV’ler için otomatik bir kusur 

tespit yöntemi önermektedir. Güneş paneli arızalarının tespitinde klasik ve derin öğrenmeye 

dayalı iki yöntem kullanılmaktadır. Öncelikle, bazı ön işleme teknikleri kullanılarak termal 

görüntünün düşük kontrastını düzeltilir. Daha sonra, kenar algılama, segmentasyon ve segment 

sınıflandırması uygulanır. İkinci yöntem, üç farklı ön işleme işlemine tabi tutulmuş görüntülerle 

eğitilmiş derin öğrenmeye dayanmaktadır. İlk yöntem sonucu %98,3, ikinci yöntem sonucu 

%98,9 doğruluğa ulaşılmıştır [15]. 

Akram ve arkadaşları izole edilmiş derin öğrenme ve model geliştirme-transfer derin öğrenme 

teknikleriyle kızılötesi görüntülerdeki FV modül kusurlarının otomatik olarak tespit edilmesi 

üzerine çalışmışlardır. Veri setleri normal çalışan ve arızalı modüllerin kızılötesi görüntülerini 

içermektedir. Başlangıçta transfer öğrenimi için FV hücrelerin Elektrolüminesans (EL) 

görüntülerinden oluşan bir veri kümesi oluşturmuşlar ve ardından kızılötesi görüntülerden 

oluşan bir veri kümesi kullanmışlardır. Önerilen yaklaşımla ortalama %99,23'lük bir doğruluk 

elde edilmiştir [16]. 

Kurukuru ve arkadaşları termografi ve makine öğrenimi tabanlı FV modülü arıza 

sınıflandırması üzerine çalışmışlardır. Hasar görmüş panellerden alınan çeşitli termal 

görüntülerin özelliklerini, doku özelliği analizinin değiştirilmiş bir versiyonu kullanılarak 

incelemişlerdir. Kusur sınıflandırıcısını oluşturulmak için, alınan özellikler bir YSA 

sınıflandırıcısı kullanılarak eğitilmiştir. Oluşturulan yöntem %93,4 eğitim verimliliği ve %91,7 

test verimliliği göstermiştir [17].  

Zaki ve arkadaşları derin öğrenme tabanlı FV sistem için hata sınıflandırma çalışması 

yapmışlardır. Yaptıkları çalışmada öncelikle FV modelin en uygun beş özelliğini çıkarmak için 

bir algoritma önermişler ve bunun Matrix Laboratory (MATLAB) simülasyon modeline 

yardımcı olacağını düşünmüşlerdir. İkinci olarak, derin öğrenme kullanılarak FV sistemlerdeki 

hataların sınıflandırılmasına yönelik yeni bir yaklaşım sağlamışlardır. Bu yöntem, 

bilgisayardaki performansı ve sınıflandırma doğruluğunu artıran otomatik özellik çıkarma 

özelliğine sahiptir. Son olarak, kullanılan ESA modelinin teorik ve pratik doğrulaması için 

çeşitli atmosferik koşullara dayalı olarak normal ve altı arıza örneği seçmişlerdir. Önerilen ESA 

modeli, eğitim ve test süreçlerinde simülasyon testlerinde sırasıyla %98,3 ve %98,9, deneysel 

testlerde ise %96,76 ve %97,41 civarında ortalama sınıflandırma doğruluğu elde etmiştir [18]. 
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Deitsch ve arkadaşları EL görüntülerinde arızalı FV modül hücrelerinin otomatik 

sınıflandırılması adlı çalışmalarında FV hücrelerdeki sorunları tespit edebilmek adına 2 farklı 

yaklaşım ortaya sunmuşlardır. Yaklaşımlar donanım gereksinimleri nedeniyle farklılık 

göstermektedir. Donanım açısından verimli olan Destek Vektör Makinesinde (DVM) 

sınıflandırılmaya dayanmaktadır. Daha fazla donanım isteyen yöntem ise ESA’yı kullanmaktır. 

Her iki yaklaşımda 1968 farklı hücre üzerinde eğitilmiştir. ESA başarı oranı %88,42 ve DVM 

başarı oranı %82,44‘tür [19]. 

Tang ve arkadaşları EL görüntüleri kullanılarak FV modülün derin öğrenme tabanlı otomatik 

kusur tespiti isimli çalışmalarında 2 farklı adımla EL görüntülerini derin öğrenmeye dayalı 

kusur tespitini sunmuşlardır. Birinci adım kısıtlı sayıdaki EL görüntüyü yüksek kalitede 

arttırmak, ikinci adım elde edilen görüntüler ile otomatik sınıflandırma yapan bir model ortaya 

koymaktır. EL görüntü oluşturma yöntemi, Çekişmeli Üretici Ağ (ÇÜA) özelliklerini 

geleneksel görüntü işleme teknolojileriyle birleştirmektedir. EL görüntülerinden derin özelliği 

çıkarmak için ESA kullanılmaktadır. Önerilen model diğer çözümlerle karşılaştırıldığında, FV 

modülü denetiminin doğruluğunu ve verimliliğini önemli ölçüde artırabilir. Önerilen model 

%83’lük başarı oranına sahiptir [20]. 

Güneş panellerindeki hasarların tespiti için son dönemde birçok çalışma yapılmıştır, ancak 

yapılan çalışmalardaki yaklaşımların hiçbiri yüksek doğrulukta çok sınıflı hasarları kısa bir 

sürede sınıflandıramamaktadır. Güneş panelleri üzerindeki hasarların erken tespiti ve müdahale 

edilmesi veriminin artması için çok önemlidir. 

Bu tez çalışması ile güneş panelleri üzerindeki hasarların hızlı ve otomatik bir şekilde tespit 

edilebilmesi amacıyla görüntü işleme ve derin öğrenme tabanlı arıza tespit yöntemi 

önerilmiştir. Önerilen işlem 2 aşamadan oluşmaktadır. Bu aşamalar ön işlem ve ESA tabanlı 

oluşturulan derin öğrenme mimarisiyle sınıflandırmasıdır. 

Bu tez kapsamında farklı iklim şartlarında çekilmiş görüntüler, modelin daha iyi performans 

vermesi ve veri setinin yetersiz olması nedeniyle veri arttırma teknikleri ile (simetrisini alma, 

görüntüyü belirli açılarla döndürme, gürültü ekleme) arttırılmıştır. Sınıflandırma aşamasının 

temel hedefinde ise arttırılmış olan veri setinin ESA tabanlı oluşturulan derin öğrenme 

mimarisiyle modelin yüksek doğrulukta 7 sınıfı eğitebilmesidir. Ayrıca önerilen model daha 
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önce yapılan çalışmalarda kullanılan ESA tabanlı önceden eğitilmiş derin öğrenme 

mimarileriyle de karşılaştırılmıştır. 



 

7 
 

BÖLÜM 2 

GÜNEŞ ENERJİSİ VE GÜNEŞ PANELLERİ 

Bu bölüm güneş enerjisinin önemi, güneş panellerinin önemi, yapısı, çalışma mantığı, türleri, 

avantaj ve dezavantajları ve güneş panellerinde oluşabilecek hasarları içermektedir. 

2.1 GÜNEŞ ENERJİSİ 

Küresel sorunlara çözüm olabilecek en önemli yenilenebilir enerji kaynaklarından biri güneş 

enerjisidir. Güneş enerjisi temiz ve çevreci bir enerji kaynağı olduğundan dolayı fosil enerji 

kaynaklarına göre daha çok avantajlıdır [21]. Güneşten bir dakika içerisinde dünyaya ulaşan 

enerji, bir yıl içerisinde tüketilen enerjiye eşittir [22]. Dört önemli alanda (elektrik üretimi, sıcak 

su üretimi, kırsal enerji tedariği ve araç yakıtı) yenilenebilir kaynaklar geleneksel yakıtların 

yerini alabilir [23]. Termal toplayıcılar ve FV hücreler, güneş enerjisinin doğrudan ısı ve 

elektriğe dönüştürülmesine olanak tanır [24]. Şekil 2.1’ de yakın geçmişte ve gelecekte güneş 

enerjisi kullanımının evrimi görülmektedir  

 

Şekil 2.1 Yakın geçmişte ve gelecekte güneş enerjisi kullanımının evrimi [25] 
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2.2 GÜNEŞ PANELLERİ 

Güneş panelleri güneş enerjisini elektrik enerjisine çeviren sistemlerdir. Hücreler, genellikle 

FV paneller olarak bilinen güneş panellerini oluşturur. Yaygın olarak güneş pili olarak 

adlandırılan FV hücre, yarı iletken diyota benzer şekilde çalışarak güneş ışığını elektrik 

enerjisine dönüştürür. 

FV panellerin çıkışı Doğru Akım (DA) olarak kabul edilir. DA ile çalışan yüklerin doğrudan 

beslenmesi mümkündür. Gün boyunca güneş radyasyonunun yoğunluğu periyodik olarak 

değişir. Mevsimsel durumlarda da oldukça etkilidir. Bu nedenle üretilen güç miktarı yeterli 

olamayabilir veya gereğinden fazla olabilir. Piller ekstra elektrik enerjisini depolamak için 

kullanılabilir. Güneş panellerinin ürettiği elektrik enerjisi miktarı gerekenden az ise akülerdeki 

enerji boşluğu doldurmak için kullanılır. Alternatif Akım (AA) tarafından desteklenen bir yük 

beslendiğinde DA' yı AA'ya dönüştürmek için bir invertör kullanılır [26]. Şekil 2.2’de FV 

sistemin çalışma yapısı görülmektedir. 

 

Şekil 2.2 FV sistemin çalışma yapısı 
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2.3 GÜNEŞ PANELİ SİSTEMİ ELEMANLARI 

Güneş paneli sistemleri; güneş panelleri, dönüştürücü, solar şarj kontrol cihazı ve aküden 

oluşur. 

2.3.1 Güneş Panelleri 

Bunlar bir FV sisteminin en tanınabilir bileşenleridir. Güneş panelleri, güneş ışığını yakalayan 

ve onu FV etki yoluyla DA’a dönüştüren birçok güneş hücresinden oluşur. 

2.3.2 Dönüştürücü 

Çoğu evde ve işyerinde kullanılan AA gücünün, bir invertör kullanılarak güneş panellerinin 

ürettiği DA elektriğinden dönüştürülmesi gerekir. Bu dönüşüm invertörler aracılığıyla yapılır. 

2.3.3 Solar Şarj Kontrol Cihazı 

Güneş enerjisi şarj kontrolörü, bulutlu günlerde veya gece kullanım için ekstra enerji 

depolamak üzere şebekeden bağımsız FV sistemlerde akülerin şarj edilmesini ve boşaltılmasını 

kontrol eder. 

2.3.4 Akü 

Şebekeden bağımsız veya hibrit FV sistemlerde, güneşli günlerde üretilen ekstra enerjiyi daha 

sonra kullanmak üzere depolamak için akü kullanılır. Güneşin olmadığı durumlarda bu elektrik 

sağlar. 

2.4 FV HÜCRELERİN YAPISI VE ÇALIŞMA PRENSİBİ 

Genellikle güneş pilleri olarak bilinen FV hücreler, güneş panellerinin ve güneş ışığını enerjiye 

dönüştüren cihazların temel yapı taşlarıdır. 
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2.4.1 FV Hücrelerin Yapısı 

Yarı İletken Malzemeler: FV hücreler yarı iletken malzemeden yapılır. Silikon, FV hücreler 

için en sık kullanılan malzemedir ve farklı türlerde olabilir: 

-n-tipi Silikon: Bu tip silikonda fazla miktarda serbest elektron bulunur. 

-p tipi Silikon: Bu tip silikonda "delikler" veya elektronların eksik olduğu yerler bulunur. 

p-n Bağlantısı: p-n bağlantısı bir FV hücrenin kalbidir. n-tipi ve p-tipi silikon alanların 

birleşimidir. Hücrenin aktivitesi için gereklidir ve dahili elektrik alanının oluşumunda önemli 

bir rol oynar. 

Metal Kontaklar: Hücrenin ön ve arka yüzeylerine ince metal kontaklar yerleştirilmiştir. Bu 

bağlantılar, foton emilimi sayesinde üretilen elektronların toplanmasına ve elektron akışı için 

harici bir elektrik devresinin oluşmasına yardımcı olur. 

Yansıtıcı Olmayan Kaplama: Güneş ışığının yansımasını azaltmak ve ışık emilimini artırmak 

için hücrenin ön yüzeyine sıklıkla ince bir yansıma önleyici kaplama eklenir. Şekil 2.3’te FV 

sistemin yapısı görülmektedir. 

 

Şekil 2.3 FV  hücrenin basit yapısı [27] 
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2.4.2 FV Hücrelerin Çalışma Prensibi 

Güneş ışığından gelen fotonlar bir FV hücrenin yüzeyine ulaştığında, bunların bir kısmı yarı 

iletken malzeme tarafından emilir. Her foton, kendi dalga boyuna bağlı enerjiyi içerir. Emilen 

fotonlardan gelen enerji, yarı iletken malzemedeki elektronları uyararak onların normal atomik 

konumlarından kaçmalarını sağlar. Bu, bir elektronun enerji kazandığı ve geride pozitif yüklü 

bir delik bırakıldığı elektron-delik çiftleri üretir. Hücre içinde p-n bağlantısının bir sonucu 

olarak bir iç elektrik alanı oluşur. Bu elektrik alanı elektronları ve delikleri ayırır. Elektronlar 

n-tipi alana, delikler ise p-tipi bölgeye çekilir. Yük ayrımının bir sonucu olarak hücre boyunca 

bir voltaj farkı (elektrik potansiyeli) yaratılır. Hücreye metal kontaklar aracılığıyla harici bir 

elektrik devresi bağlandığında, elektronlar devre boyunca n-tipi taraftan p-tipi tarafa doğru 

akmaya itilir ve bu da bir elektrik akımının oluşmasına neden olur. Elektrikli ekipmanlara güç 

sağlamak, pilleri şarj etmek ve invertörler aracılığıyla elektrik şebekesine besleme dahil olmak 

üzere çeşitli amaçlarla kullanılabilir. Hücreye ne kadar çok güneş ışığı çarparsa, o kadar çok 

elektron deliği çifti oluşur ve bu da güç çıkışının artmasına neden olur. Şekil 2.4’te FV 

hücrelerin çalışma prensibi görülmektedir. 

 

Şekil 2.4 FV hücrelerin çalışma prensibi [28] 
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2.5 FV HÜCRE, MODÜL VE DİZİ 

FV sistemlerde 3 çeşit hücre tipi vardır. Bunlar FV hücre, FV modül ve FV dizi ’dir. 

2.5.1 FV Hücre 

FV hücreler güneş ışığını elektriğe dönüştürmekten sorumlu temel bileşenlerdir. Her modül 

içerisinde seri olarak bağlanarak toplu olarak güç üretmelerine olanak tanırlar. Her pil normalde 

0,5-0,6 volt üretir. 

2.5.2 FV Modül 

Gerilimi ve akım üretimini artırmak için birden fazla güneş pili seri ve bazen de paralel olarak 

bağlanır. Çatılara yerleştirilen veya güneş panellerine entegre edilen en tipik bileşenler 

modüllerdir.  

2.5.3 FV Dizi 

FV modüllerin birleştirilmesiyle bir dizi oluşturulur. Diziler gerekli sistem voltajı ve akım 

seviyelerine ulaşacak şekilde tasarlanabilir. Binaların üzerine kurulurlar ve alan için en fazla 

güneş ışığını toplayacak şekilde açılıdırlar. Şekil 2.5’ te sırasıyla FV Hücre, Modül ve Dizi 

görülmektedir.  

 

Şekil 2.5 FV Hücre, Modül ve Dizi [29]  
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2.6 GÜNEŞ PANELİ TÜRLERİ 

FV hücrenin birincil rolü, güneş enerjisini saf ışık biçiminde kabul etmek ve onu, FV etki olarak 

bilinen bir dönüşüm süreci yoluyla elektriğe dönüştürmektir [30]. 

FV hücrelerinin üretiminde çeşitli teknolojiler kullanılmıştır. Bu hücrelerin yapısal bileşeninde, 

poli ve monokristalin silikon teknolojileri gibi, fotoelektrik dönüşüm verimleri değişen çeşitli 

malzemeler kullanılmaktadır. 

2.6.1 Kristal Silikon Güneş Panelleri 

Onlarca yıldır silikonun (Si) kristal düzenlemeleri onu kullanımda olan birincil yarı iletken 

malzeme haline getirmiştir. Güneş pili üretiminin geçmişi, diğer seçeneklerle 

karşılaştırıldığında üstün verimliliği, güvenilirliği ve kullanılabilirliği nedeniyle Si’ye güçlü bir 

bağımlılık göstermektedir. Güneş pillerinin üretiminde kristalin Si, çok kristalli Si (Multi-Si) 

veya monokristalin Si (Mono-Si) olarak bilinir [31]. Multi-Si ayrıca çok kristalli Si (Poli-Si) 

veya yarı kristalli Si olarak da sınıflandırılır; bunların her ikisi de küçük ve çok sayıda kristalit 

içerir. Bu çeşitlilik, güneş pili yapısında belirgin bir tanecik oluşmasına neden olur. Mono-Si 

ise tane sınırları olmayan sürekli bir kristaldir [31]. Sonuç olarak Mono-Si veya tek kristalli 

Si’nin, Multi-Si veya Poli-Si'den daha verimli olduğu düşünülmektedir. Şekil 2.6’ da 

Monokristal ve Polikristal güneş paneli görülmektedir. 

 

Şekil 2.6 Monokristal ve Polikristal Güneş paneli [32] 
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2.6.2 İnce Film Teknolojileri 

İnce film teknolojileri, enerji (özellikle güneş enerjisi) alanında spesifik imalat, iletkenlik, 

verimli enerji dönüşümü ve muhafazası, foto iletkenlik özellikleri ve güneş kontrol özellikleri 

ile istenilen ve başarılı modelleri sunmaktadır [33]. 

Amorf Si (a-Si), en köklü ince film güneş paneli teknolojisidir. Güneş panelleri genellikle ön 

ve arka şeffaf iletken oksitlerden oluşan ince film katmanlarına sahip bir cam alt tabakadan, p-

i-n konfigürasyonunda katkılı ve katkısız a-Si'den oluşan bir FV katmandan ve bir arka metal 

kontaktan oluşur [34]. 

İnce film güneş panelleri, mevcut kristal panellere göre çok daha az Si kullanmaları ve çok 

sayıda üretilip seri olarak bağlanabilmeleri sayesinde az maliyetli ve yaygın kullanıma sahiptir. 

Devasa panellerin belirli boyut ve şekillerde işlenmesi ve işlemden sonra hatasız bir şekilde 

birleştirilmesi durumunda, ticari ürünler olarak daha fazla fayda ve kullanılabilirlik elde 

edilebilecektir. Bu durum, mekanik ve elektriksel bütünlüğü korurken güneş panellerinin 

verimli bir şekilde çalışmasını sağlayacaktır. İnce film güneş panellerindeki cam, Si ve seramik 

katmanlarının kırılgan doğasından dolayı, geleneksel işleme süreçlerini kullanarak hem kalite 

hem de üretkenlik açısından zorlu gereksinimleri karşılamak son derece zahmetlidir [34]. Şekil 

2.7’de ince film güneş paneli görülmektedir. 

 

Şekil 2.7 İnce film güneş paneli [35] 



 

15 
 

2.7 GÜNEŞ PANELLERİNİN AVANTAJLARI VE DEZAVANTAJLARI 

Yaygın olarak FV paneller olarak bilinen güneş panellerinin çeşitli avantajları ve dezavantajları 

vardır. Güneş panellerinin kullanıcının enerji taleplerine ve koşullarına uygun olup olmadığı 

belirlenirken bu unsurlar incelenmelidir. 

2.7.1 Güneş Panellerinin Avantajları 

1. Yenilenebilir ve Sürdürülebilir: Güneş enerjisi yenilenebilir bir kaynaktır, yani güneş 

parladığı sürece neredeyse sınırsızdır. Güneş, fosil yakıtlara olan bağımlılığımızı en aza 

indirmeye yardımcı olabilecek yenilenebilir bir enerji kaynağıdır. 

 

2. Temiz ve Çevre Dostu: Güneş panelleri sera gazı veya hava kirliliği yaratmadan enerji 

üretir. Bu, karbon ayak izinizi azaltır ve daha temiz bir çevreye katkıda bulunur, bu da 

iklim değişikliğiyle mücadeleye yardımcı olur. 

 

3. Elektrik Faturası Tasarrufu: Güneş panelleri güneş ışığından elektrik üretir ve bu 

elektrik, evlere veya şirketlere güç sağlamak için kullanılabilir. Tüketici kendi 

elektriğini üreterek uzun vadede tasarruf sağlayabilir. 

 

4. Parasal Teşvikler: Birçok ülke ve belediye hükümeti, güneş panellerinin kurulumunu 

teşvik etmek için vergi kredileri, indirimler ve tarife garantileri gibi mali teşvikler 

sağlamaktadır. Bu sübvansiyonlar bir güneş enerjisi sisteminin başlangıç maliyetini 

büyük ölçüde azaltabilir. 

 

5. Enerji Bağımsızlığı: Güneş panelleri bir miktar enerji bağımsızlığı sağlar. Tüketici 

kendi elektriğini üretirse, kamu hizmeti sağlayıcılarına daha az bağımlı olur ve enerji 

fiyatlarındaki dalgalanmalara daha az maruz kalır. 

 

6. Düşük İşletme Giderleri: Güneş panelleri düşük işletme ve bakım giderleri sunar. Rutin 

temizlik ve muayene gerektirirler ancak yakıt giderleri yoktur. 
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7. Uzun Ömür: Güneş panelleri genellikle 25 yıl veya daha fazla garantiye sahiptir ve 

oldukça uzun bir ömre sahiptir. İlk harcamadan sonra onlarca yıl boyunca enerji 

üretebilirler. 

 

8. Şebekenin Kararlılığı: Dağıtılmış güneş enerjisi üretimi, talebin en yüksek olduğu 

dönemlerde basıncı düşürerek ve kesintiler sırasında yedek güç sağlayarak şebeke 

stabilitesini artırabilir. 

2.7.2 Güneş Panellerinin Dezavantajları 

1. Yüksek Başlangıç Maliyeti: Güneş panellerini edinmenin ve kurmanın ilk maliyeti 

yüksek olabilir. Devlet sübvansiyonları bu giderlerin bir kısmının karşılanmasına 

yardımcı olsa da başlangıçtaki harcamalar bazı hane halkı veya şirketler için hâlâ engel 

teşkil edebilmektedir. 

  

2. Düzensiz Enerji Kaynağı: Güneş panelleri yalnızca güneş parladığında güç üretir. 

Bulutlu günlerde veya geceleri enerji üretimi büyük ölçüde azalabilir. Bu tutarsızlık, 

daha fazla enerji depolama seçeneğini veya şebekeye güvenmeyi gerektirmektedir. 

 

3. Yer Gereksinimleri: Özellikle çok fazla güç üretmek isteniyorsa, güneş panellerinin 

kurulumu çok fazla alan gerektirir. Çatı üstü kurulumlar mevcut çatı alanıyla sınırlı 

olabilir. 

 

4. Estetik Kaygılar: Bazı kişiler, özellikle çatıya yerleştirildiklerinde güneş panellerini 

çekici bulmamaktadır. Bu, bazı durumlarda emlak fiyatlarını etkileyebilecek subjektif 

bir sorundur. 

 

5. Hava Durumuna Bağlılık: Yoğun kar yağışı, dolu veya yüksek sıcaklık gibi hava 

koşullarının tümü güneş panellerinin etkinliğini etkileyebilir. Her ne kadar çeşitli hava 

koşullarında hayatta kalabilecek şekilde inşa edilmiş olsalar da şiddetli olaylar zarara 

neden olabilir. 
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6. Enerji Depolama Maliyetleri: Güneş enerjisinin kesintili doğasını çözmek için aküler 

gibi enerji depolama teknolojilerine yatırım yapılması gerekebilir. Bunlar bir güneş 

enerjisi sisteminin genel maliyetini artırabilir. 

 

7. Coğrafi Sınırlamalar: Güneş enerjisi üretimi, bol güneş ışığı alan bölgelerde en 

verimlidir. Sık bulutlu veya yetersiz güneş ışığı olan yerlerde enerji verimi daha düşük 

olabilir, bu da güneş enerjisi sistemlerinin finansal fizibilitesini azaltabilir. 

 

8. Üretimin Çevresel Etkisi: Güneş panelleri çeşitli malzemeler ve enerji yoğun üretim 

teknikleri kullanılarak yapılır. Çevresel etkisi fosil yakıtlara göre daha küçük olsa da 

tamamen sıfır değildir. 

2.8 GÜNEŞ PANELİ SİSTEMLERİNDE OLABİLECEK KUSURLAR 

2.8.1 Gölgelenme 

Bir FV paneli seri olarak bağlanan FV hücrelerinden oluşur. FV paneli seri bağlı hücrelerin 

sayısına eşit bir çıkış voltajı üretir. Yeterli bir akım mevcut olduğunda ancak daha yüksek bir 

voltaj seviyesi istendiğinde, FV panellerin seri bağlanmasıyla çıkış voltajı artırılır. Seri bağlı 

FV paneller her zaman eşit miktarda güneş ışınımı almayabilir. Bulut, bina, direk, baca, ağaç 

vb. çeşitli nedenlerden dolayı FV panelinin/hücrelerinin bir kısmı gölgelenmiş olabilir. Buna 

kısmi gölgeleme denir [36]. Şekil 2.8’de gölgelenmiş güneş paneli görülmektedir. 

 

Şekil 2.8 Gölgelenmiş güneş paneli [37] 



 

18 
 

2.8.2 Kuş Pisliği 

Kuş pisliklerinin güneş panellerinizin verimliliği üzerinde önemli bir etkisi olabilir. 

Dışkılardaki ürik asit, güneş panellerindeki FV modüller için özellikle tehlikeli olabilir. Bu, 

güneş pillerinin enerjiyi üretmek yerine emdiği sıcak noktalar gibi sorunlara yol açabilir. Diğer 

bir sorun ise temizlikten sonra bile devam edebilecek damlamanın ana hatları olan aşındırmadır. 

Kalıcı hasarı önlemek için kuş pisliklerinin kısa sürede temizlenmesi gerekir, ancak düzenli 

temizlik pahalı olabilir. Şekil 2.9’ da kuş pisliği olan güneş paneli görülmektedir. 

 

 

 

 

 

Şekil 2.9 Kuş pisliği olan güneş paneli [37] 

2.8.3 Tozlanma 

Toz birikmesi nedeniyle FV sistem performansının bozulması sorunu ciddi bir sorun haline 

geldi. FV hücreler üzerinde toz birikmesi, kaplama camı üzerinde zararlı bir etkiye sahiptir ve 

spektral geçirgenliği ve FV güç üretim verimliliğini azaltır [38]. Uzun süreli toz birikmesi, 

panel katmanını bozarak daha düşük çıktıya ve daha kısa bir kullanım ömrüne yol açar [39]. 

Şekil 2.10’ da tozlanmış güneş paneli görülmektedir. 

 

 

 

 

Şekil 2.10 Tozlanmış güneş paneli [37] 
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2.8.4 Elektriksel Hasar 

Güneş panellerindeki elektrik hasarının, performansı ve ömrü üzerinde çeşitli zararlı etkileri 

olabilir. Yıldırım çarpmaları, güneş paneli sistemindeki elektrik arızaları veya hatalı kurulum, 

elektriksel zarara neden olabilir. Şekil 2.11’ de elektriksel hasarlı güneş paneli görülmektedir.  

 

Şekil 2.11 Elektriksel hasarlı güneş paneli [37] 

2.8.5 Fiziksel Hasar 

Güneş panellerindeki fiziksel hasar, performansları ve dayanıklılıkları üzerinde olumsuz bir 

etkiye sahip olabilir. Güneş panelleri çeşitli çevresel koşullara ve olası risklere maruz kalır ve 

çeşitli şekillerde fiziksel hasar (cam kırılması, mikro çatlak vb.) meydana gelebilir. Şekil 2.12 

de fiziksel hasarlı güneş paneli görülmektedir. 

 

 

 

 

 

Şekil 2.12 Fiziksel hasarlı güneş paneli [37] 
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2.8.6 Karlanma 

Hafif bir kar tabakasının güneş panelleri üzerindeki etkisi minimum düzeydedir, çünkü rüzgâr 

onu kolayca uçurur. Işık, yetersiz bir kaplama yoluyla iletilebilir, panele ulaşabilir ve güç 

üretebilir. Yoğun kar yağdığında FV paneller elektrik üretemez. Karın ağırlığının FV sisteminin 

destek yapısı üzerinde baskı oluşturması nedeniyle yoğun kar yağışı sorun yaratabilir. Kar 

kaymaya başladığında panel kısmen açığa çıksa bile elektrik üretimi devam edebilir. Şekil 

2.13’te karla kaplanmış güneş paneli görülmektedir. 

 

Şekil 2.13 Karla kaplanmış güneş paneli [37] 
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BÖLÜM 3 

DERİN ÖĞRENME TABANLI GÜNEŞ PANELİ KUSURLARI SINIFLANDIRMASI 

Tezin bu aşamasında hasarlı güneş panellerinin sınıflandırılması için kullanılan derin öğrenme 

yöntemi ve temelleri açıklanacaktır. Hasarlı güneş panellerinin sınıflandırılması için önerilen 

model, esas olarak güneş paneli görüntülerinin ön işleme tabi tutulması, önerilen ESA 

algoritmasının eğitilmesi ve ortaya çıkan modelin test için belirlenen güneş paneli veri seti 

üzerinde test edilmesi süreçlerinden oluşur. Önerilen modelin ön işleme adımında güneş paneli 

görsellerini ölçeklendirme, gürültü ekleme, simetriğini alma ve belirli açılarla döndürme 

tekniklerinden yararlanılarak veri artırma teknikleri kullanılmıştır. Ön işlem kısmı 

tamamlandıktan sonra önerilen ESA modeli ile eğitim gerçekleştirilmiştir. Eğitim aşamasında 

veri seti %80 eğitim, %10 doğrulama ve %10 test için kullanılmıştır. Veri seti işlem yükünü 

azaltmak ve performansı arttırmak adına 32’li kümeler halinde eğitilmiştir. Eğitim ve test 

aşamalarından sonra çizdirilen doğrulama ve hata grafikleri, karışıklık matrisi ile modelin 

performansı gözlenmiştir. Veri seti önceden eğitilmiş modellerde eğitilerek karşılaştırmalar 

yapılmıştır. 

3.1 DERİN ÖĞRENME 

Modern toplum, web aramaları, sosyal ağlarda içerik filtreleme ve e-ticaret platformlarındaki 

öneriler dahil olmak üzere çeşitli alanlarda kullanılan makine öğrenimi teknolojisinden büyük 

ölçüde faydalanıyor. Makine öğrenimi sistemleri, görüntülerde nesne tanımlama, konuşmanın 

metne dönüştürülmesi, haber ve gönderilerin kullanıcı ilgi alanlarıyla eşleştirilmesi ve ilgili 

arama sonuçlarının sağlanması gibi görevlerde çok önemli bir rol oynamaktadır. Belirli bir 

yöntem sınıfı olan derin öğrenme teknikleri, bu uygulamalarda giderek daha yaygın hale 

gelmektedir [40]. 

Derin öğrenme, makine öğrenmenin bir alt dalıdır ve 3 veya daha fazla katmanlı sinir ağlarını 

içerir. Bu ağlar insan beynindeki sinirlere benzer ve onları taklit eder. Tek katmanlı kabaca tah-
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min yapabilse de optimizasyon ve doğruluğu arttırabilmek için gizli katmanlar dahil       

edilmelidir. Derin öğrenme veri biliminin önemli bir elemanıdır. Veri bilimciler büyük 

miktarda veriyi toplamak, analiz etmek ve yorumlamakla ilgilenirler. Derin öğrenme bu işlemi 

hızlı ve kolay hale getirir. Ses tanıma, görsel nesne tanımlama, nesne algılama ve daha pek çok 

alanda bu teknik sayesinde son teknoloji önemli ölçüde geliştirilmiştir [40]. 

Derin öğrenmenin temeli yapay sinir katmanlarından oluşan bir ağdır. Çoklu nöron bağlantıları 

birleşerek katmanları oluşturur. Derin sinir ağları, katmanların üst üste istiflenmesiyle 

oluşturulan YSA’nın diğer adıdır. Burada oluşan ağın derinliği katman sayısının az veya çok 

olmasıyla belirtilir. Katman sayısı arttıkça ağ yapısı derinleşmektedir. Benzer şekilde katman 

sayısının azalması, ağ yapısının ya derin olmadığını ya da derinleştiğini gösterir. Şekil 3.1’ de 

basit yapılı bir YSA modeli görülmektedir. 

 

Şekil 3.1 YSA modeli
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3.2 EVRİŞİMLİ SİNİR AĞLARI 

ESA, en sık kullanılan derin sinir ağları arasındadır. Evrişim terimin ortaya çıkmasına neden 

olan matrisler arasındaki matematiksel doğrusal bir eylemdir. ESA’lar evrişim katmanı, lineer 

olmayan katman, havuzlama katmanı ve tamamen bağlantılı katmanlardan oluşur. Havuzlama 

ve doğrusal olmayan katmanlarda parametreler yoktur, ancak evrişimli ve tamamen bağlantılı 

katmanlarda parametreler vardır [41]. Şekil 3.2’ de bu tez çalışmasındaki probleme yönelik bir 

ESA modeli örneği görülmektedir. 

 

Şekil 3.2 ESA bileşenleri 

ESA'ların en faydalı yönü YSA'daki parametre sayısının azaltılmasıdır. ESA' ların kullanımı 

YSA' lar ile çözümü mümkün olmayan problemleri çözebilmeleri nedeniyle artmıştır. ESA’ 

larda problemlerle ilgili en önemli varsayım, mekânsal bağımlılığın olmamasıdır. Örneğin 

mimikleri sınıflandıran bir modelde insan yüzünün görseldeki konumunun önemli olmaksızın 

modelin yüzü tanımlayabilmesidir [41]. ESA'ları oluşturmak için birden fazla eğitilebilir bölüm 

ardışık olarak sıralanır. Giriş verileri ESA tarafından alındıktan sonra eğitim prosedürü katman 

katman süreçler kullanılarak gerçekleştirilir. Final çıktısı, doğru sonuçla karşılaştırma için 

sağlanır. Final çıktısıyla beklenen sonuç arasındaki tutarsızlık, bu tutara eşit bir hataya neden 

olur. Bu hatayı tüm ağırlıklara yaymak için geri yayılım mekanizması kullanılır. Ağırlıklar her 

yinelemeden sonra güncellenir, bu da yanlışlığı azaltır. Görüntü, müzik veya video gibi 

herhangi bir sinyal, ESA giriş verileri olarak kullanılabilir. Özellikle görsel sınıflandırma 

üzerine yoğunlaşan ESA'lar, son yıllarda çeşitli alanlarda yaygın olarak kullanılmaya başlandı 

[41]. 
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3.2.1. ESA’yı Oluşturan Katmanlar 

ESA mimarisi; giriş katmanı, evrişim katmanı, aktivasyon katmanı, havuzlama katmanı, tam 

bağlantılı katmanı, seyreltme katmanı ve sınıflandırma katmanından oluşmaktadır. Bu 

katmanların sayısı farklı ESA modellerini oluşturur. 

3.2.1.1 Giriş Katmanı 

Bu katman, adından da anlaşılacağı gibi ESA'nın en üst katmanıdır. Bu katmanda ağa ham 

veriler sağlanır. Giriş görselinin büyük boyutu, her görüntü için daha uzun eğitim ve test 

oturumlarının yanı sıra daha yüksek bellek ihtiyacına da yol açabilir. Ayrıca ağ performansını 

da artırabilir. Küçük bir giriş görseli boyutu seçilerek daha hızlı ve daha az hafıza kullanımıyla 

eğitim yapılabilir. Ağın performansı ortalamanın altında olabilir ve sonuç olarak derinliği 

azalacaktır. Görüntü analizinde ağ derinliği, donanım hesaplama maliyeti ve ağ başarısı için 

doğru giriş görsel boyutunun kullanılması gerekir. 

3.2.1.2 Konvolüsyon Katmanı (Evrişim Katmanı) 

Evrişim katmanı ESA'ların temel yapı taşıdır [42]. Bu katman dönüşüm katmanı olarak da 

bilinir bu dönüşüm filtrenin bütün görüntü üzerinde dolaştırılmasıdır [43]. Filtreler 2x2, 3x3, 

5x5 gibi farklı boyutlarda olabilir. Filtreler, önceki katmandaki görüntüler üzerinde evrişim 

işlemini kullanarak çıktı verilerini üretir. Bu işlem sonucu Özellik Haritası oluşur. Şekil 3.3’te 

konvolüsyon işlemleri sonucu oluşturulan özellik haritası örneği gösterilmiştir. 

 

 

 

 

Şekil 3.3 Özellik haritası 
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Giriş görüntüsündeki veya özellik haritasındaki belirli özellikleri temsil eden evrişimli bir 

katman, ESA'larda bir özellik haritası üretir. Giriş görüntüsü, bir ESA’nın ileri geçişi sırasında 

çeşitli özellik haritaları oluşturmak için bir veya daha fazla filtreyle evrilir. Her özellik haritası, 

belirli bir filtrenin giriş resmine nasıl tepki verdiğini ve bu filtreyle nasıl ilişkilendirildiğini 

gösterir. Özellik haritasındaki her öğenin değeri, ilgili özelliğin giriş görüntüsünde mevcut olma 

derecesini belirtir ve özellik haritasındaki her öğe, ağdaki belirli bir nöronun aktivasyonunu 

yansıtır. Örneğin, bir ESA’nın ilk katmanlarındaki özellik haritaları kenarlar, çizgiler ve köşeler 

gibi düşük seviyeli özellikleri temsil edebilir. Ağın derinliklerine doğru ilerledikçe, formlar, 

dokular ve hatta nesnelerin tamamı gibi daha karmaşık özellikler, özellik haritaları ile temsil 

edilebilir. Ağ tasarım süreci sırasında, evrişimli bir katmandaki özellik eşlemelerinin sayısı 

ayarlanabilir. Ağ, daha fazla özellik haritası kullanarak daha karmaşık ve soyut özellikleri 

öğrenebilir, ancak bunu yapmak daha yüksek hesaplama maliyetine neden olur ve ağ çok 

büyükse aşırı uyumla sonuçlanabilir.  

Şekil 3.4 Konvolüsyon işlemi uygulanma örneği 

Şekil 3.4‘te 5x5 bir görsele 3x3 bir filtre uygulanarak 3x3 lük bir özellik haritası 

oluşturulmuştur. İşlemler filtre görselin bütün pikselleri üzerinde dolaşacak şekilde adım adım 

devam eder ve sonuç olarak 3x3 lük bir özellik haritası elde edilir. 

Giriş verilerindeki çeşitli modelleri veya özellikleri vurgulayarak, çeşitli filtreler bir ESA'da 

çeşitli özellik haritaları üretebilir. Filtre, giriş verilerini tarayan ve filtredeki değerler ile giriş 

verilerindeki karşılık gelen değerler arasındaki nokta çarpımı hesaplayan küçük bir pencere 

olarak düşünülebilir. Çeşitli değerlere sahip birkaç filtre uygulanarak giriş verisinden farklı 

özellikler elde edilebilir. 
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Giriş verileri üzerinde çeşitli filtreler kullanılarak çeşitli özellikler çıkarılabilir. Giriş verilerinin 

birçok yönünü yakalayan son bir özellik haritası, her filtrenin ürettiği farklı özellik haritalarının 

birleştirilmesiyle yapılabilir. 

Giriş veya özellik haritasının boyutu, filtrenin boyutu ve evrişim işleminin adımı, ESA'lardaki 

çıkış özellik haritasının boyutunu etkileyen değişkenlerden yalnızca birkaçıdır. 

Giriş boyutları 𝑊 𝑋 𝐻 𝑋 𝐶 (𝑊 = genişlik, 𝐻 = yükseklik, 𝐶 = kanal sayısı) ve filtre olarak    𝐹 

𝑋 𝐹 𝑋 𝐶 kullanılırsa (𝐹 = filtre boyutları) ve 𝑆 adım olarak düşünülürse çıktı özelliği haritası şu 

boyutlara sahip olacaktır: 

[(𝑊 − 𝐹)/(𝑆 + 1) 𝑋 [(𝐻 − 𝐹)/(𝑆 + 1)] 𝑋 𝐾                                         (3.1) 

Burada 𝐾 kullanılacak filtre sayısını belirtir. 

Örneğin 256 𝑋 256 𝑋 3 bir görsele 5 𝑋 5 𝑋 3 filtre adım adım uygulandığında çıktı özellik 

haritasının boyutu 252 𝑋 252 𝑋 K olacaktır. 2 filtre uygulandığında çıktı özellik haritasının 

boyutları 252 𝑋 252 𝑋 2 olacaktır. 

Çıktılarının optimizasyonu sayesinde evrişimli katmanlar, modelin karmaşıklığını da önemli 

ölçüde azaltabilir. Bunları optimize etmek için derinlik, adım ve sıfır dolgu ayarından oluşan 

üç hiper parametre kullanılır. 

Girişin aynı alanına göre her katmandaki nöronların sayısı ayarlanarak, evrişimli katmanlar 

tarafından üretilen çıkış hacminin derinliği manuel olarak ayarlanabilir. Bu, gizli katmandaki 

her nöronun, gizli katman ortaya çıkmadan önce diğer nöronlara doğrudan bağlandığı diğer 

YSA türlerinde de açıkça görülmektedir. Bu hiper parametrenin düşürülmesi ağın genel nöron 

sayısını önemli ölçüde azaltabilirken, aynı zamanda modelin örüntü tanıma kapasitesini de 

önemli ölçüde azaltabilir [44]. 

Girişin sınırlarını doldurmanın basit bir işlemi olan sıfır doldurma, çıkış hacimlerinin 

boyutluluğu üzerinde daha fazla kontrol sağlamanın etkili bir yoludur. Bu teknik kullanılarak 

evrişimin uzaysal boyutu değiştirilebilir. 
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Sıfır doldurma işlemi 0 kullanılarak yapılır. 0 sayısı kullanılarak piksel ekleme işlemi 

yapıldığında görüntünün orijinali korunmuş olur. Yani girdi ile çıktı boyutu aynı olur. Sıfır 

doldurma işlemi sonucu çıktı boyutu; 

(𝑛 − 2𝑝 − 𝐹 + 1)𝑥(𝑛 + 2𝑝 − 𝐹 + 1)                                                                                           (3.2)                                                                                                 

ifadesi ile hesaplanabilir. Burada 𝑛 girdi görselinin boyutu, 𝑝 sıfır doldurma değerini ve 𝐹 filtre 

boyutunu temsil etmektedir [45]. 

3.2.1.3 Aktivasyon Katmanı  

ESA’ da doğrusal olmayan dönüşümlere olanak sağlayarak ağın eğitimini tamamlayabilmeyi   

kolaylaştırır. 

3.2.1.3.1 Sigmoid Fonksiyonu 

Grafikleri S şeklinde eğrilere benzeyen sigmoid fonksiyonu lojistik fonksiyon olarak da bilinir 

ve ESA’ da kullanılan transfer fonksiyonlarındandır. İkili sınıflandırma problemlerinde oldukça 

kullanışlıdır. Grafiği şekil 3.5’te görüldüğü gibidir.  

 

 

 

 

 

 

 

Şekil 3.5 Sigmoid fonksiyonu grafiği 
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𝑓(𝑧) =
1

1+𝑒−𝑧                                                                                                                       (3.3)        

Burada 𝑓(𝑧) sigmoid fonksiyonun çıkışı, z ise fonksiyona giriştir. 

3.2.1.3.2 ReLU 

Evrişim katmanında üretilen her özellik haritası, bir ESA'ya doğrusal olmama sağlamak 

amacıyla ayrı ayrı düzeltilmiş doğrusal birim (ReLU) işlevi aracılığıyla çalıştırılır. ReLU 

fonksiyonu şu şekilde tanımlanır: 

𝑓(𝑧) = max(0, 𝑧)                                                                                                                     (3.4)                                              

Burada z, ReLU fonksiyonunun girişidir. ReLU, genelleme doğruluğundan önemli ölçüde ödün 

vermeden ağların daha hızlı eğitilmesine olanak tanıdığı için sıklıkla diğer aktivasyon 

fonksiyonları (sigmoid veya tanh gibi) yerine seçilir. Şekil 3.6’ da ReLU fonksiyonu grafiği 

görülmektedir. 

 

Şekil 3.6 ReLU fonksiyonunun çıkış verisi üzerinde gösterdiği etki 

Şekil 3.7’ de ReLU katmanının görüntüye yapmış olduğu katkı görülmektedir. Şekil 3.7 (a)’da 

ReLU katmanı öncesi görselin durumu gösterilirken, (b)’de ReLU katmanı sonrası görselin 

durumu gösterilmiştir. Şekilde de görüldüğü üzere ReLU katmanına giren görüntünün 

parlaklığı ve keskinliği artmıştır. 
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Şekil 3.7 ESA modelinde ReLU katmanının görüntüye yapmış olduğu etki 

 

3.2.1.3.3 Hiperbolik Tanjant Fonksiyonu 

Hiperbolik tanjant fonksiyonu sigmoid fonksiyonuna benzer ama sınırları farklıdır. Sigmoid 

fonksiyonunda sınırlar 0 ile 1 arasındayken hiperbolik tanjant fonksiyonunda -1 ile 1 

arasındadır. Tanh fonksiyonu olarak da bilinir. Tanh fonksiyonu şu şekilde gösterilmektedir: 

tanh(𝑥) =
2

1+𝑒−2𝑥 − 1                                                                                                           (3.5) 

Burada tanh(𝑥) tanh fonksiyonunun çıkış değeri ve x, fonksiyonun giriş değeridir. Şekil 

3.8 ‘de tanh fonksiyonu grafiği görülmektedir. 

 

 

 

 

 

Şekil 3.8 Tanh fonksiyonu grafiği 
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3.2.1.4 Havuzlama Katmanı 

Bir ESA tasarımında, havuzlama katmanı evrişim katmanları arasına sıkıştırılmıştır. 

Havuzlama katmanının temel amacı, ağın hesaplamasını ve parametre sayısını azaltmak için 

düzeltilmiş özellik haritalarının boyutunu azaltmaktır, bu da eğitim süresini kısaltır ve aşırı 

uyumu önler. Havuzlamayı gerçekleştirmek için sıklıkla ortalama veya maksimum 

havuzlama gibi basit bir yöntem kullanılır. Maksimum havuzlamayı diğer havuzlama 

yöntemleriyle karşılaştırıldığında, maksimum havuzlama daha yüksek performans ve daha 

hızlı yakınsama göstermiştir [46]. Şekil 3.9’da maksimum ve ortalama havuzlama örneği 

görülmektedir. 

 

 

 

 

 

Şekil 3.9 Maksimum ve ortalama havuzlama örneği 

Şekil 3.10 (a)’da giriş görseli, (b)’de giriş görselinin konvolüsyon katmanı sonrası görselin 

durumu, (c)’ de giriş görselinin maksimum havuzlama katmanı sonrası görselin durumu 

gösterilmiştir.  

Şekil 3.10 Giriş görseline konvolüsyon ve maksimum havuzlama uygulanması sonrası oluşan 

görüntüler 
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Şekilde de görüldüğü üzere konvolüsyon sonrası görüntünün kenarları belirginleştirilmiş ve 

maksimum havuzlama katmanı sonrası görselin gürültüsü azaltılmış ve boyutu küçültülmüştür. 

3.2.1.5 Düzleştirme Katmanı 

ESA’lar ve ileri beslemeli sinir ağlarının her ikisi de topolojilerinde ortak bir katman olarak 

düzleştirilmiş katmanı kullanır. 2 boyutlu veya 3 boyutlu gibi çok boyutlu formattaki veriler bu 

amaçla tek boyutlu bir vektöre dönüştürülür. Bir ESA'daki tamamen bağlı katmanlar, girişinin 

1 boyutlu bir vektör olmasını beklediklerinden, bu yeniden şekillendirme, evrişimli ve 

havuzlama katmanlarından tamamen bağlı katmanlara geçerken gereklidir. Şekil 3.11’ de 

Düzleştirme katmanı örneği görülmektedir. 

 

 

 

 

 

 

 

 

Şekil 3.11 Düzleştirme katmanı örneği 

3.2.1.6 Tam Bağlantılı Katman 

Bir ESA tasarımında tam bağlantılı katman genellikle en sonda bulunur. Tam bağlantılı 

katmanda nöronlar, geleneksel sinir ağlarındakine benzer şekilde gruplandırılır. Önceki 

evrişimli veya havuzlama katmanının çıktısından elde edilen düzleştirilmiş bir vektör, girdi 

olarak kullanır. Bu nedenle, Şekil 3.12’ de gösterildiği gibi, tamamen bağlantılı bir katmandaki 

her düğüm, önceki ve sonraki katmanlardaki her düğüme doğrudan bağlanır. Bunlar, ESA'nın 
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bu katmanların içinde kullandığı parametrelerin çoğu olduğundan, çok fazla eğitim süresi 

gerektirir [47]. 

 

 

 

 

 

 

 

 

 

 

 

 

Şekil 3.12 Tam bağlantılı katman yapısı 

3.2.1.7 Seyreltme Katmanı  

Aşırı uyumu azaltmak için derin öğrenmede ve sinir ağlarında seyreltme katmanı adı verilen 

bir düzenleme yöntemi kullanılır. Bir model, eğitim verileri üzerinde iyi performans göstermeyi 

öğrendiğinde ancak yeni, denenmemiş verilere genelleme yapmakta zorlandığında, modelin 

aşırı uyumlu olduğu söylenir. Seyreltme, bu soruna basit ama etkili bir çözümdür. Seyreltme 

katmanındaki nöronların (birimlerin) rastgele bir alt kümesi, her eğitim döngüsü sırasında anlık 

olarak "bırakılır" veya kapatılır. Bu durum bu nöronların sıfır çıktıya sahip olduğunu ve söz 

konusu yineleme için ağın ileri veya geri geçişine dahil edilmediklerini gösterir. Bir nöronun 

devre dışı bırakılma olasılığı, genellikle 0,2 ile 0,5 arasında ayarlanan bir hiper parametre olan 

ayrılma oranıyla belirlenir. 
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Seyreltme, eğitim sırasında nöronları rastgele devre dışı bırakarak ağın belirli nöronlara aşırı 

derecede bağımlı olmasını veya eğitim verilerinden gürültü almasını önler. Ağı daha dayanıklı 

ve yaygın özellikler kazanmaya motive eder. 

Seyreltme normalde devre dışıdır ve çıkarım sırasında tüm nöronlar kullanılır (taze verilere 

dayalı tahminler üretilirken). Bu, modelin eğitim sırasında geliştirilen çeşitli alt ağlardan 

edinilen bilgileri başarılı bir şekilde entegre ettiğini ve daha fazla genellemeye yol açtığını 

gösterir. Şekil 3.13 (a)’da standart bir ESA yapısı gösterilirken, (b)’de seyreltme katmanından 

sonraki hali gösterilmiştir. 

 

Şekil 3.13 Standart bir ESA ağına seyreltme katmanın uygulanması [48] 

3.2.1.8 Sınıflandırma Katmanı 

Tamamen bağlantılı katmanın ardından bu katman gelir. Derin öğrenme mimarisinin bu 

katmanında sınıflandırma gerçekleşir. Bu katmanın çıkış değeri sınıflandırılacak nesne sayısı 

kadardır. Örneğin 7 farklı sınıf varsa çıkış sayısı 7’dir. Farklı sınıflandırıcılar olsa da 

başarısından dolayı genellikle softmax kullanılır. Softmax olarak bilinen, bazen "softmax 

işlevi" veya "softmax aktivasyonu" olarak da bilinen bir matematiksel işlev, özellikle çok sınıflı 

sınıflandırma sorunları ve sinir ağları bağlamında derin öğrenme ve makine öğreniminde 

sıklıkla kullanılır. Gerçek değerlerin bir vektöründen olasılık dağılımı oluşturmak için 

uygulanır. Bir sınıflandırma sorununda birden fazla sınıfa olasılık vermek için softmax işlevi, 
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bir giriş vektörünü toplamı 1 olan bir olasılık vektörüne dönüştürür. Sınıflandırılacak nesneler 

0-1 arasında bir çıkış değeri verir ve en büyük değer ağın tahmin ettiği sınıf anlamına gelir. 

3.2.2 Batch Boyutu 

ESA’ da görüntüleri doğru bir şekilde sınıflandırabilmenin yanında modelin performansına etki 

eden hiperparametreler de önemlidir. Bu hiperparametrelerin en önemlilerinden biri Batch 

boyutudur. Batch boyutunun yüksek ayarlanması ağın yakınsamaya ulaşma süresini arttırırken, 

düşük ayarlanması istenilen performansa ulaşmadan ağın ileri geri sıçramasına neden olur. 

Batch boyutu veri setinin büyüklüğüne ve türüne göre genellikle 2’nin katları olacak şekilde 

(16,32,64,128) ayarlanır. Batch boyutunda veri setindeki verileri tek tek eğitmek yerine veri 

setini tasarımcının belirlediği küme sayısına ayırıp bu parçalar üzerinde eğitim gerçekleştirilir 

[49]. 

3.2.3 Kayıp Fonksiyonu 

Kayıp Fonksiyonları derin öğrenmede modelin tahmini ile gerçek sonuç arasındaki farkı 

hesaplayan hiperparemetredir. Bu fonksiyonlar modelin doğruluğunu değerlendirir ve eğitim 

sürecinde ağırlık güncellemelerinde yardımcı olur [50].  

3.2.3.1 Kategorik Çapraz Entropi (Categorical Crossentropy) 

ESA’ da sınıflandırma içeren verilerde kullanılan bir kayıp fonksiyondur. Kategorik çapraz 

entropi şu şekilde gösterilmektedir. 

𝐻(𝑦, 𝑦̂) =  − ∑ 𝑦𝑖 . log(𝑦̂𝑖) 𝑐
𝑖=1                                                                                                               (3.6) 

Burada;  

𝐻(𝑦, 𝑦̂) kategorik çapraz entropi, 𝑦 gerçek etiket (0 veya 1), 𝑦̂𝑖 modelin tahmin ettiği etiket, 𝑐 

sınıf sayısıdır. 
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3.2.3.2 İkili Çapraz Entropi (Binary Cross-Entropy) 

İkili çapraz entropi genellikle ikili sınıflandırmalarda kullanılır. Her bir sınıfın bağımsız ele 

alındığı durumlarda kullanılır. Şu şekilde gösterilir. 

𝐻(𝑦, 𝑦̂) =  −[𝑦. log(𝑦̂) + (1 − 𝑦). log(1 − 𝑦̂)]                                                                       (3.7) 

Burada; 

𝐻(𝑦, 𝑦̂) ikili çapraz entropi, 𝑦 gerçek etiket (0 veya 1), 𝑦̂ modelin tahmin ettiği etikettir. 

3.2.3.3 Seyrek Kategorik Çapraz Entropi (Sparse Categorical Cross-Entropy) 

Etiketlerin tek sıcak kodlanmış (one hot encoded) yerine tamsayılar olarak sağlandığı çok sınıflı 

sınıflandırmalar için kullanılır. Seyrek kategorik çapraz entropi şu şekilde gösterilir. 

𝐻(𝑦, 𝑦̂) = − ∑ 𝐼𝐼(𝑦 = 𝑖). log(𝑦̂𝑖) 𝑐
𝑖=1                                                                                         (3.8) 

Burada; 

𝐻(𝑦, 𝑦̂) seyrek kategorik çapraz entropi, 𝑦 gerçek etiket (0 veya 1), 𝑦̂𝑖 modelin tahmin ettiği 

etiket, 𝑐 sınıf sayısı, 𝐼𝐼(𝑦 = 𝑖)  𝑦 = 𝑖 olduğunda 1’e aksi durumda 0’ a eşit olan gösterge 

fonksiyonudur. 

3.2.3.4 Ortalama Karesel Hata (Mean Squared Error -MSE) 

Modelin tahminlerini gerçek değerlerle karşılaştırır ve her hata değerinin karesini alır. MSE şu 

şekilde gösterilir. 

𝑀𝑆𝐸(𝑦, 𝑦̂) =
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑎
𝑖=1                                                                                                    (3.9) 
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Burada; 

𝑀𝑆𝐸(𝑦, 𝑦̂) Ortalama kare hata, 𝑦𝑖 gerçek etiket, 𝑦̂𝑖 modelin tahmin ettiği etiket ve 𝑎 örnek 

sayısıdır. 

3.2.4 Eğitim Tur (Epok) Sayısı  

Epok sayısı, eğitim sırasında veri setinin modelden kaç kez geçirildiğini belirleyen 

parametredir. Tur sayısı, karmaşık ve büyük veri setlerinde fazla olabilirken küçük veri 

setlerinde daha azdır. Modelin başarı oranı her turda ağırlıklar yenilendikçe artmaktadır. Belirli 

bir tur sayısından sonra modelin başarı oranı daha da artmamaya başlar ve böyle durumlarda 

eğitim sonlandırılabilir. 

3.2.5 Modelin Öğrenme Oranı 

Model öğrenme oranı, modelin eğitimi sırasında ağırlıkların güncellenme miktarını belirleyen 

faktördür. Bu değer her iterasyon işleminden sonra güncellenir. Öğrenme oranı modelin ne 

kadar hızlı ve yavaş eğitileceği konusunda önemli bir parametredir.  Yüksek öğrenme oranı 

modeli hızlı eğitirken atlamalara neden olabilir. Düşük öğrenme oranı modelin yavaş 

öğrenmesini sağlar ve eğitim süresini uzatır. İdeal öğrenme oranı deneme yanılma yöntemiyle 

bulunabilir. Doğru öğrenme modeli seçilerek model hızlı ve iyi bir performansla eğitilebilir. 

3.2.6 Optimizasyon Çeşitleri 

Optimizasyon metotları, sinir ağlarını düzgün ve etkili bir şekilde eğitmek için kullanılan 

algoritmalardır. Temel amaç sinir ağlarının ağırlık ve sapma parametrelerini ayarlayarak 

maliyet ve kaybı en aza indirmektir.  

3.2.6.1 Gradyan Azalması (Gradient Descent-GD) 

En popüler optimizasyon metotlarından olan GD bir diferansiyel denklemin yerel minimumunu 

bulmada 1.dereceden yinelemeli bir algoritmadır. GD da teori fonksiyonun rastgele bir yerinde 

başlanarak eğimin tersi yönünde adımlar atılmasıdır ve bu dik iniş yönü olarak kabul edilir. 
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Gradyan yönünde adım atmak ise yerel maksimum ile sonuçlanacaktır [51]. Şekil 3.14’ de GD 

algoritması gösterilmektedir. 

 

Şekil 3.14 GD algoritması [52] 

Veri miktarına bağlı olarak değişen 3 farklı GD algoritması vardır. Bunlar Batch Gradient 

Descent, Stochastic Gradient Descent ve Mini-Batch Gradient Descent. 

3.2.6.1.1 Toplu Gradyan Azalması (Batch Gradient Descent-BGD) 

Bazı yerlerde Vanilla GD olarak da bilenen BGD eğitim veri setindeki (training data set) her 

bir örnek için hatayı hesaplar [53]. Ancak model, tüm eğitim örnekleri değerlendirildikten sonra 

revize edilir Tüm bu sürece eğitim dönemi denir. Doğru hesaplama, dengeli bir hata eğilimi ve 

kararlı bir yakınsama BGD’nin yararlarındandır. Tüm veri setinin algoritmada hazır ve 

kullanılabilir durumda olması ise zararlarındandır. BGD en hassas performansı sunar ancak 

verilerin tam taranması gerekir [54]. 

3.2.6.1.2 Stokastik Gradyan Azalması (Stochastic Gradient Descent-SGD)   

BGD’nin aksine SGD veri kümesindeki her eğitim örneği için yapar. Eğitim örneğinin 

parametrelerini tek tek günceller. Bu yaklaşım, tüm veri kümesinin eğimini bulmak yerine 

rastgele seçilen bir bölümünün eğimini yaklaşık olarak hesaplayarak hatayı azaltır. Sık sık 

yapılan güncellemelerle hesaplama açısından BGD ‘den karmaşıktır. Ayrıca güncellemelerin 

sıklığı gürültülü eğimlere neden olabilir ve bu gürültülü eğimler hata oranının yavaş yavaş 

azalması yerine atlamalara neden olabilir [55]. 
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3.2.6.1.3 Mini Toplu Gradyan Azalması (Mini-Batch Gradient Descent) 

Mini-batch gradient descent SGD ile BGD’nin birleşimi sonucu ortaya çıkarılmıştır. Eğitim 

veri kümesini küçük parçalara ayırır ve her parça için güncellemeler yapılır. Mini-batch 

boyutları 2’nin katları (32, 64,128,256) arasında değişir ve modele göre uygulandığı için sabit 

bir kuralı yoktur [56]. 

3.2.6.2 Uyarlanabilir Gradyan Azalması (Adaptive Gradient Descent-AdaGrad) 

AdaGrad duruma göre öğrenme oranını seçen bir algoritmadır. Adagrad'ın arkasındaki temel 

fikir, parametrelerin öğrenme oranlarını tarihsel değişimlerine göre ölçeklendirmektir. Sık ve 

büyük gradyanlar alan parametrelerin öğrenme oranları daha hızlı azalırken, seyrek veya küçük 

gradyanlar alan parametrelerin öğrenme oranları daha yavaş azalır. Seyrek gradyanlarla 

çalışırken veya özelliklerin oldukça farklı boyutlara sahip olduğu senaryolarda Adagrad'ın 

öğrenme oranlarını verilerin özelliklerine göre dinamik olarak ayarlama kapasitesi yararlı 

olabilir. Eğitim sırasında AdaGrad optimizasyon yaklaşımına eklenen her terim pozitif 

olduğundan toplam birikir. Bu durumda modelin öğrenme hızı azalır ve sonunda sonsuz hale 

gelir, bu da algoritmanın daha fazla veri toplamasını imkânsız hale getirir [57]. 

3.2.6.3 Uyarlanabilir Delta (Adaptive Delta-AdaDelta) 

AdaDelta, Adagrad’ın bir eklentisidir. Adagrad'ın bazı dezavantajlarını, özellikle de zamanla 

monoton bir şekilde azalan ve son derece küçük güncellemelere ve yavaş yakınsamaya neden 

olabilen öğrenme oranları sorununu çözmek için 2012 yılında Matthew Zeiler tarafından 

tanıtılmıştır. SGD manuel öğrenme hızı seçimi gerektirdiğinden dolayı seçilen öğrenme hızı 

düşük tahmin doğruluğuna neden olacaktır. AdaDelta öğrenme hızını otomatik bir şekilde 

ayarlayarak yüksek tahmin doğruluğu sonucuna ulaşılabilir [58]. 

3.2.6.4 Karekök Ortalama Yayılımı (Root Mean Square Propagation-RMSProp) 

RMSProp öğrenme oranını gradyanların büyüklüğüne göre optimize eden bir algoritmadır. 

Büyük gradyanlara sahip parametrelerin öğrenme oranı küçülürken, küçük gradyanlara sahip 

parametrelerin öğrenme oranı büyür ve bu durum daha etkili optimizasyon için değerlidir. 

RMSprop’un AdaGrad’a göre avantajı öğrenme oranlarının azalma sorununu çözmesidir. 
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RMSProp, kare gradyanların üstel ağırlıklı hareketli ortalamasını birleştirerek öğrenme 

oranlarının çok hızlı azalması sorununu önler ve böylece yavaş yakınsama ile ilgili potansiyel 

zorlukların önüne geçer [59]. 

3.2.6.5 Uyarlanabilir Moment Tahmini (Adaptive Moment Estimation-Adam) 

Adam her parametre için öğrenme oranlarını ölçen bir optimizasyon yöntemidir. RMSPRop ve 

Momentum birleştirilerek oluşturulmuştur. Adam, RMSProp da olduğu gibi kare bir gradyan 

kullanır ve Momentum gibi gradyanın hareketli ortalamasını izler [60]. Bu Adam’ı anlara göre 

uyarlanabilen bir algoritma haline getirir. Adam kullanmanın avantajlarından biri, nispeten 

düşük bellek ihtiyaçları ve gradyanların birinci ve ikinci anlarına dayalı olarak parametre 

güncellemelerini yeniden ölçeklendirme yeteneği nedeniyle gürültülü ve seyrek gradyanlarla 

ilgili problemlere uygulanabilmesidir. 

3.2.6.6 Maksimum Uyarlanabilir Moment Tahmini (Maximum Adaptive Moment 

Estimation-AdaMax) 

AdaMax, Adam’ın maksimum mutlak değerini kullanarak uyarlanabilir öğrenme oranı 

yaklaşımını genişleten bir türüdür. AdaMax daha istikrarlı ve tutarlı bir güncelleme kuralı 

sağmak için tasarlanmıştır.ve SGD’ye göre daha az hassas hiperparametre seçimi sunar [61]. 

3.2.7 Transfer Öğrenme 

ESA’larda yüksek başarı oranına ulaşmak amacıyla büyük veri setleri kullanılır. Veri setinin 

büyük olması modelin daha fazla örnekle karşılaşması ve daha spesifik özellikleri 

saptayabilmesi adına önemlidir. Veri seti büyüdükçe modelde kullanılacak donanım 

artmaktadır. Bunun neticesinde daha fazla katman kullanılacak ve maliyet de artacaktır. 

İnsanlar geçmişlerinde edindikleri bilgiler sayesinde karşısına çıkan yeni problemlere çözümler 

üretebilmektedir. Tıpkı insanlar gibi yapay zekâ da aynı durum geçerlidir. Transfer öğrenmesi 

YSA’ da eğitim aşamalarında öğrenilen bilgileri farklı sorunları çözmede de kullanma 

yöntemidir bu da maliyet, donanım ve zaman aşamasından pozitif etki etmektedir. Transfer 

Öğrenme iki aşamadan oluşur. İlk aşama, belirli bir görev için hazırlanmış veri kümesi bir 

model yardımıyla eğitilir. Bu model verilerden özellik haritaları çıkarır ve bilgileri yakalar. 
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Önceden eğitilmiş model daha sonra farklı bir veri seti için uyarlanır ve ince ayarlamaları                       

(özellik çıkarma, hedef göreve adaptasyon) yapılır. Sonuç olarak model sıfırdan eğitilmek 

yerine daha önceden öğrendiği bilgiyi kullanır ve bu da daha az veri ve hesaplama gerektirir 

[62].  

3.2.7.1 Görsel Geometri Grubu (Visual Geometry Group-VGG) 

Adını Oxford Üniversitesi Görsel Geometri grubundan alan VGG, görüntü sınıflandırma 

görevleri için tasarlanmış bir transfer öğrenme modelidir. VGG-16 ve VGG-19 olmak üzere 2 

farklı modeli vardır. Model yanlarındaki sayılar katman sayısını ifade eder. VGG-16 da 16 

katman (13 evrişimli katman + 3 tam bağlantılı katman) ve VGG-19 da 19 katman (16 evrişimli 

katman + 3 tam bağlantılı katman) vardır. VGG de giriş görseli boyutu 224x224’tür. 

Tüm evrişimli katmanlar 3x3 filtreler kullanır. Parametre ve hesap sayısını azaltmak amacıyla 

2x2 filtre boyutunda maksimum havuzlama katmanları kullanır. Aktivasyon fonksiyonu olarak 

ReLU kullanılır ve Evrişimli katmanlar sınıflandırma için 3 adet tam bağlantılı katman ile 

bağlanır. Tam bağlantılı katmanların ilk ikisi 4096 boyutunda sonuncusu ise ImageNet veri seti 

yarışması için 1000 katmanlıdır [63]. Şekil 3.15’ te VGG-16 mimarisi gösterilmektedir. 

 

Şekil 3.15 VGG-16 mimarisi 

3.2.7.2 ResNet 

Derin Ağlarda kaybolan gradyan sorunu çözmek adına 2016 yılında Kaiming He, Xiangyu 

Zhang, Shaoqing Ren ve Jian Sun tarafından tanıtılmıştır. ResNet ile birlikte gelen en büyük 
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yenilik, bir veya daha fazla katmanı atlayan bağlantıların veya kısayolların atlanmasını 

sağlayan artık blokların kullanılmasıdır. Bu atlama bağlantıları eğimin ağ üzerinden daha kolay 

akmasını sağlayarak performans düşüşü olmadan ağın derin ağların eğitilmesini sağlar [64]. 

ResNet katman sayısına bağlı olarak değişen farklı türlere sahiptir. (ResNet-18, ResNet-34, 

ResNet-50, ResNet-101 ve ResNet-152) Yüksek katman sayısına sahip türler daha karmaşık 

problemlerin çözümünde kullanılır. Her bir blok darboğaz olarak bilinen 3 evrişimli katmandan 

oluşur (1x1,3x3 ve 1x1). Bu durum verimlilik açısından önemlidir. 

3.2.7.3 InceptionV3 (GoogLeNet) 

2014 yılında Christian Szegedy ve arkadaşları tarafından geliştirildi. Bu mimarinin en büyük 

yeniliği aynı katmanda paralel olarak birden fazla filtre boyutunu birleştiren modüllerin 

kullanılmasıdır. Bu durum çeşitli ölçeklerde ve karmaşıklıklarda özelliklerin çıkarılmasına 

olanak tanır. Mimarisi geleneksel katmanlardan daha karmaşıktır. Verimlilik için 

tasarlanmasına rağmen çok sayıda işlem nedeniyle kaynak kullanımı fazladır [65]. 

3.2.7.4 Xception 

Inception mimarisinin genişletilmiş ve geliştirilmiş versiyonudur. 2017 yılında François 

Chollet tarafından oluşturulmuştur. Xception mimarisinin en büyük yeniliği derinlemesine 

ayrılabilir evrişimlerin kullanılmasıdır. ESA’nın özellik haritalarındaki kanallar arası 

korelasyonlar ve uzaysal korelasyonlar tamamen ayrıştırılabilir şekildedir [66]. Bu, mimarinin 

tanımlanmasını ve değiştirilmesini çok kolaylaştırır. Xception’da filtreler önce mekânsal 

ardından da kanal tabanlı işlenir ve bu Inception’a göre daha az parametre ve hesaplama 

maliyeti anlamına gelir. 

3.2.7.5 DenseNet 

Yoğun Bağlantılı Evrişimli Ağlar yani kısaca DenseNet 2017 yılında Gao Huang, Zhuang Liu 

ve Kilian Q. Weinberger tarafından tanıtıldı. DenseNet te temel amaç katmanlar arası yoğun 

bağlantılar oluşturularak ağ boyunca bilgi akışı ve gradyanları iyileştirmektir. Geleneksel ESA 

lardan farklı olarak her katman önceki katmandan girdi alır. Bu durum yok olan gradyan 

sorununu çözmeye çalışır ve ağın bilgileri ağ üzerinden daha iyi yakalayıp yaymasını sağlar. 

Geleneksel mimarilere kıyasla daha az parametre içermesi daha az hesaplama sağlar ve maliyeti 
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düşürür. DenseNet'ler, parametreleri verimli bir şekilde kullanarak diğer mimarilerden daha iyi 

performans göstererek, görüntü sınıflandırmada olağanüstü performans sergilemiştir [67].  
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BÖLÜM 4 

BULGULAR 

4.1 GÜNEŞ PANELİ VERİ SETİ 

Çalışma kapsamında kullanılan veri seti açık erişimli kaggle web sitesinden elde edilmiştir [37]. 

Veri setinde Tablo 4.1‘de görüldüğü üzere toplam 988 adet farklı görüntü vardır. Görüntülerin 

boyutları 196 x 110 piksel ile 6240 x 4160 piksel aralığındadır. Her görüntü 0-6 arası 

sınıflandırılmıştır. Kuş pisliği olan paneller 0, temiz olan paneller 1, tozlu olan paneller 2, 

elektriksel hasarlı paneller 3, fiziksel hasarlı paneller 4, karla kaplı paneller 5, gölgelenmiş 

paneller 6 olarak sınıflandırılmıştır. 

Çizelge 4.1 Orijinal veri seti 

Sınıf Panel Durumu Görüntü Sayısı 

0 Kuş pisliği 200 

1 Temiz 202 

2 Tozlu 220 

3 Elektriksel hasarlı 98 

4 Fiziksel hasarlı 66 

5 Karlı 122 

6 Gölgelenmiş 80 

Çizelge 4.1’de görüldüğü üzere veri setinde 200 adet kuş pisliği, 202 adet temiz, 220 adet tozlu 

98 adet elektriksel hasarlı 66 adet fiziksel hasarlı, 122 adet karlı ve 80 adet gölgelenmiş panel 

görüntüsü vardır. Bu çalışmada kullanılan veri setindeki panel görüntüsü örnekleri Şekil 4.1’de 

gösterilmiştir. 
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Şekil 4.1 Veri setinden örnekler 

Çizelge 4.1’ de görüldüğü üzere veri setinin görüntü sayısı açısından yetersiz olması ve 

sınıflandırma elemanları arasındaki sayı dengesizliği dikkat çekmektedir. Ayrıca, .png ve .jpg 

olarak bulunan görüntülerin çözünürlükleri farklılık göstermektedir. Bunun önüne geçmek için 

veri seti çözünürlükleri 256x256 hale getirilmiş ve farklı veri çoğaltma metotları 

(ölçeklendirme, döndürme, yakınlaştırma, gürültü ekleme) kullanılarak veri setinin her sınıfı 

için yaklaşık 1000’er ve toplamda 6097 adet görüntü elde edilmiştir. Çoğaltılan veri seti ile 

modelin aşırı öğrenmesinin önüne geçilmiştir. Yeni veri setinin görüntü sayısı Çizelge 4.2’de 

gösterilmiştir.
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Çizelge 4.2 Çoğaltılmış veri seti 

Sınıf Panel Durumu Görüntü Sayısı 

0 Kuş pisliği 820 

1 Temiz 1040 

2 Tozlu 920 

3 Elektriksel Hasarlı 850 

4 Fiziksel Hasarlı 830 

5 Karlı 917 

6 Gölgelenmiş 720 

4.2 ÖN İŞLEM ADIMLARI 

Ön işlem adımında veri setindeki anormallikler ve eksiklikler giderilerek veri seti eğitim için 

hazır hale getirilmiştir. Ön işleme adımı iki aşamadan oluşmaktadır. 

İlk aşamada veri setindeki görüntülerin piksellerinin değişkenliğinin giderilmesi için her 

görüntü 256*256 piksel boyutuna düzenlenmiştir. Böylece hem görüntü boyutlarındaki 

tutarsızlık düzenlenmiş oldu hem de modelin işlem yükü azaltılmış oldu. Görüntü boyutunun 

büyük olması modelin daha fazla sayıyla uğraşmasına neden olur ve bu da maliyeti arttırır.  

İkinci aşamada veri setindeki görüntü sayısının yetersiz oluşu ve veri setindeki sınıflardaki 

elemanların sayı dengesizliği veri çoğaltma tekniklerini kullanmayı zorunlu kılmıştır. Veri 

çoğaltma teknikleri veri seti sayısındaki eksikleri gidermek için kullanılan (Görüntüyü 90º 180º 

ve 270 º döndürme, x eksenine göre simetriğini alma ve y eksenine göre simetriğini alma, 

görüntüye gürültü ekleme vb.) görüntü işleme metotlarını içermektedir. Sonuç olarak 980 olan 

veri sayısı 6097’ ye çıkarılmıştır. 

4.2.1 Görüntüyü Döndürme 

Görüntüyü döndürme tekniği mevcut görüntünün belirli açılarla döndürülerek yeni görüntüler 

elde edilmesi işlemidir. Bu işlem veri setindeki eleman sayısını arttırarak modelin çeşitli veri 

örnekleriyle karşılaşmasını sağlar ve aşırı uyumu önler. Şekil 4.2’de veri setinden, görüntü 

döndürme tekniği kullanılan örnek bir görüntü gösterilmektedir. Şekil 4.2 (a)’ da orijinal güneş 

paneli görüntüsü, (b)’ de Orijinal görüntünün 90º döndürülmesi sonucu oluşan görüntü, (c)’ de 
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Orijinal görüntünün 180º döndürülmesi sonucu oluşan görüntü, (d)’ de Orijinal görüntünün 

270º döndürülmesi sonucu oluşan görüntü görülmektedir. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Şekil 4.2 Veri seti üzerinde görüntü işleme tekniklerinden döndürme örneği 

4.2.2 Görüntünün x ve y Eksenlerine Göre Simetriğini Alma 

Görüntünün x eksenine göre simetriğini alma işlemi görüntüyü yatay olarak yansıtmak 

anlamına gelmektedir. Yani görüntünün sağ ve sol taraflarının değişmesidir. Görüntünün y 

eksenine göre simetriğini alma işlemi de görüntünün dikey olarak yansıtılmasıdır. Yani 

görüntünün üst ve alt taraflarının değişmesidir. Şekil 4.3’te simetriği alma işlemi uygulanmış 

örnek bir görüntü görülmektedir. Şekil 4.3 (a)’ da orijinal güneş paneli görüntüsü, (b)’ de 

orijinal görüntünün x eksenine göre simetriği alınması sonucu oluşan görüntü, (c)’ de orijinal 

görüntünün y eksenine göre simetriği alınması sonucu oluşan görüntü görülmektedir. 
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Şekil 4.3 Veri seti üzerinde görüntü işleme tekniklerinden simetriğini alma örneği 

4.2.3 Görüntüye Gürültü Ekleme 

Görüntü çeşitliliğini arttırmak ve modelin dayanıklılığını yani bozulma yaşamış görüntülere 

karşı da performans vermesini sağlamak amacıyla orijinal görüntülere gürültü eklenmiştir. Bir 

görüntünün gürültüsü, görüntünün içindeki piksel değerlerinde kasıtsız, rastgele bozulmalara 

veya ayarlamalara neden olan bir tür yanlışlıktır. Gürültü çeşitli kaynaklardan ortaya çıkabilir 

ve görüntünün kalitesini düşürebilir. Gürültü, görüntüde rastgele bir oranla dağılır [68]. Şekil 

4.4’ te gürültü eklenmiş bir görsel örneği görülmektedir. Şekil 4.4 (a)’ da orijinal güneş paneli 

görüntüsü, (b)’ de orijinal görüntüye %20 oranında gürültü eklenmesi sonucu oluşan yeni 

görüntü gösterilmektedir. 
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Şekil 4.4 Veri seti üzerinde görüntü işleme tekniklerinden gürültü ekleme örneği 

4.3 PERFORMANS METRİKLERİ 

Derin öğrenmede modelin ne kadar doğru bir şekilde eğitildiğini test etmek için test veri seti 

kullanılır. Test verisi modelin eğitim aşamasına dahil olmaz. Bu durum modelin başarısını 

görebilmek adına oldukça önemlidir. Çünkü model eğitim aşamasında işlem yaptığı görüntüyü 

daha kolay bir şekilde tanır. Modelin performansının değerlendirilmesi için bazı performans 

teknikleri kullanılır. Bu çalışmada modelin performansı görülmesi için karışıklık matrisi ve bu 

matrisle hesaplanan kesinlik, geri çağırma, doğruluk ve f-1 skoru performans metrikleri 

kullanılmıştır. 

4.3.1 Karışıklık Matrisi 

Karışıklık matrisi model performansını değerlendirmek için kullanılan araçlardan biridir. 

Karışıklık matrisi modelin doğru ve yanlış sınıflandırmalarını özet bir şekilde görülmesini 

sağlar. Karışıklık matrisine göre kesinlik, geri çağırma, doğruluk ve f1 skoru gibi performans 

metrikleri hesaplanabilir. 

Kesinlik: Gerçek pozitiflerin tahmin edilen toplam pozitiflere oranıdır [69]. Eşitlik (4.1)’de TP 

gerçek pozitif (True Positive- TP), FP tahmin pozitif (False Positive- FP) değerleri 

göstermektedir. 

𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                                                                                         (4.1) 
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Geri Çağırma: Veri kümesindeki tüm olumlu örnekler arasında model tarafından doğru şekilde 

tahmin edilen gerçek olumlu örneklerin oranını gösterir [69]. Eşitlik (4.2)’ de TN gerçek negatif 

(True Negative- TN) değeri gösterilmektedir. 

𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                                                                       (4.2) 

Doğruluk: Tüm tahminler içinden doğru tahmin edilen örneklerin oranıdır [70]. Eşitlik (4.3)’ 

de FN tahmin negatif (False Negative- FN) değeri gösterilmektedir. 

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                                                                                              (4.3) 

F1-Skoru: İki ölçüm arasında denge sağlayan hassaslık ve hatırlamanın harmonik 

ortalamasıdır [69]. 

2∗𝐺𝑒𝑟𝑖 Ç𝑎ğ𝚤𝑟𝑚𝑎∗𝐾𝑒𝑠𝑖𝑛𝑙𝑖𝑘

(𝐾𝑒𝑠𝑖𝑛𝑙𝑖𝑘+𝐺𝑒𝑟𝑖 Ç𝑎ğ𝚤𝑟𝑚𝑎)
                                                                                                                            (4.4) 

Eşitlik (1), (2) (3) ve (4) ’te TP modelin pozitif bir sınıfın bir örneğini pozitif olarak doğru bir 

şekilde tanımladığı örnekleri gösteren gerçek pozitifler; TN modelin negatif sınıfın bir örneğini 

negatif olarak doğru bir şekilde tanımladığı örnekleri gösteren gerçek negatifler; FP modelin 

negatif bir sınıf örneğini hatalı olarak pozitif olarak yansıttığı örnekleri gösteren yanlış 

pozitifler; FN modelin pozitif bir sınıf örneğini olumsuz olarak yanlış yorumladığı örnekleri 

gösteren yanlış negatifler anlamına gelmektedir. Çizelge 4.3’te sınıflandırma işlemi için 

karışıklık matrisi gösterilmiştir. 

Çizelge 4.3 Karışıklık matrisi parametreleri 

 Tahmin Pozitif Tahmin Negatif 

Gerçek Pozitif TP FP 

Gerçek Negatif FN TN 

4.4 ÖNERİLEN MODEL 

Bu tez çalışmasında güneş paneli kusurlarının sınıflandırılması için oluşturulan model 

kullanılmıştır. Modelin performansı belirli ayarlamalar ile arttırılmaya çalışılmıştır. 
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Önerilen modelin öğrenme oranı 10−5, epok sayısı 50 ve kümeleme sayısı modelin eğitim 

süresini ve işlem sayısını azaltmak için 32 olarak belirlenmiştir. En hızlı şekilde en iyi 

yakınsamayı yaptığı için “Adam” optimizasyonu ve kayıp fonksiyonu olarak” Seyrek Kategorik 

Çapraz Entropi” kullanılmıştır. Veri seti %80 eğitim, %10 doğrulama ve %10 test olarak 3 

parçaya bölünmüştür. Çizelge 4.4’ te önerilen modelde kullanılan parametreler görülmektedir. 

Çizelge 4.4 Önerilen modelde kullanılan parametreler 

Epok sayısı 50 

Kümeleme(batch) 32 

Öğrenme oranı 10-5 

Görsel boyutları  256x256 

Evrişim  

Aktivasyon fonksiyonu 

 

ReLU 

Optimizasyon Adam 

Sınıflandırma 

Aktivasyon fonksiyonu 

 

Softmax 

Kayıp fonksiyonu 

 

Seyrek Kategorik Çapraz 

Entropi 

Seyreltme katsayısı 0,5 

 

Şekil 4.5 Önerilen modelin yapısı 
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Şekil 4.5’te önerilen modelin yapısı görülmektedir. Önerilen modelin giriş katmanı 256x256 

pikselli görüntülerden oluşmaktadır. Giriş katmanının ardından 6 adet evrişim katmanı 

içermektedir. Evrişim katmanları sırasıyla (32,64,64,64,64,64) derinliklerini içermektedir. 

Evrişim katmanında işlemler ReLU aktivasyon fonksiyonuyla tamamlanır bu durum eğitimin 

tamamlanmasını kolaylaştırır. Her evrişim katmanından sonra 2x2’lik maksimum havuzlama 

katmanı kullanılmıştır. Havuzlama katmanı ağın hesaplama miktarını azaltarak eğitim süresini 

azaltma görevini üstlenmektedir. Üste üste gelen evrişim ve havuzlama katmanlarından sonra 

modele düzleştirme katmanı eklenmiştir. Düzleştirme katmanına 64 derinlikli tam bağlantılı 

katman bağlanmıştır. Modelde aşırı uyumu azaltmak için 0,5 değerde seyreltme katmanı 

kullanılmıştır. Tamamen bağlantılı katmanın hemen ardından sınıflandırma katmanı 

bağlanmıştır. Sınıflandırma katmanı; “kuş pisliği, temiz, tozlu, elektriksel hasarlı, fiziksel 

hasarlı, karlı ve gölgelenmiş” olarak 7 sınıftan oluştuğu için 7 nöronludur. 

4.5 DENEYSEL SONUÇLAR 

Güneş paneli kusurlarının sınıflandırılmasına yönelik yapılan bütün çalışmalar, Intel(R) 

Core(TM) i5-7200U CPU @ 2,50GHz   2,71 GHz işlemci, 2 GB NVIDIA GeForce 940 MX 

ekran kartı ve 12 GB RAM’e sahip bilgisayarda Jpyter Notebook kullanılarak 

gerçekleştirilmiştir. Çalışmada kullanılan veri seti önerilen model dışında en yaygın kullanılan 

modellerden olan VGG-19 InceptionV3 ve Resnet101 gibi modellerde de eğitilerek sonuçlar 

karşılaştırılmıştır. 

4.5.1 VGG-19 Modeli Sonuçları 

Veri seti VGG-19 modeliyle 8 saat 13 dakikada eğitilmiştir. Veri setinin VGG-19 modeliyle 

eğitilmesi sonucu ortaya çıkan eğitim doğrulama kaybı grafiği Şekil 4.6’ da gösterilmektedir. 

Eğitim kaybının son değeri:0,5158 ve doğrulama kaybının son değeri:0,2417 olarak 

gözlenmiştir. Değerlerin 0’ a yakınsaması modelin aşıra uyuma düşmediğini göstermektedir. 
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Şekil 4.6 VGG-19 modelinin eğitim ve doğrulama kaybı grafiği 

VGG-19 modelinin eğitim ve doğrulama başarısı grafiği Şekil 4.7’ de görülmektedir. Model 

test edilen verileri %94,53’ lük başarıyla sınıflandırabilmektedir. 

 

 

 

 

 

 

 

 

 

 

 

Şekil 4.7 VGG-19 modelinin eğitim ve doğrulama başarısı grafiği 
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VGG-19 modelinin karışıklık matrisi Şekil 4.8’ de gösterilmektedir. Şekilde görüldüğü üzere 

“kuş pisliği” sınıfında 83, “temiz” sınıfında 101,” tozlu” sınıfında 100, “elektriksel hasarlı” 

sınıfında 96,” fiziksel hasarlı” sınıfında 75, “karlı” sınıfında 100,” gölgelenmiş” sınıfında 85 ve 

toplamda 640 adet test verisi bulunmaktadır. Model test verisindeki 83 adet kuş pisliği 

etiketinden 76 adetini doğru sınıflandırmış, 6 adetini tozlu ve 1 adetini fiziksel hasarlı olarak 

yanlış sınıflandırmıştır. Modelin kuş pisliği etiketini sınıflandırma başarısı %91,56’dır. Model 

test verisindeki 101 adet temiz etiketinden 86 adetini doğru sınıflandırmış, 12 adetini tozlu ve 

3 adetini karlı olarak yanlış sınıflandırmıştır. Modelin temiz etiketini sınıflandırma başarısı 

%85,14’tür. Model test verisindeki 100 adet tozlu etiketinden 95 adetini doğru sınıflandırmış, 

2 adetini kuş pisliği, 1 adetini elektriksel hasarlı, 1 adetini karlı ve 1 adetini gölgelenmiş olarak 

yanlış sınıflandırmıştır. Modelin tozlu etiketini sınıflandırma başarısı %95’tir. Model test 

verisindeki 96 adet elektriksel hasarlı etiketinden tamamını doğru sınıflandırmıştır. Modelin 

elektriksel hasarlı etiketini sınıflandırma başarısı %100’ dür. Model test verisindeki 75 adet 

fiziksel hasarlı etiketinden 73 adetini doğru sınıflandırmış, 1 adetini kuş pisliği ve 1 adetini 

tozlu olarak yanlış sınıflandırmıştır. Modelin fiziksel hasarlı etiketini sınıflandırma başarısı 

%97,33’tür. Model test verisindeki 100 adet karlı etiketinden tamamını doğru sınıflandırmıştır. 

Modelin karlı etiketini sınıflandırma başarısı %100’ dür. Model test verisindeki 85 adet 

gölgelenmiş etiketinden 79 adetini doğru sınıflandırmış, 1 adetini kuş pisliği ve 5 adetini tozlu 

olarak yanlış sınıflandırmıştır. Modelin gölgelenmiş etiketini sınıflandırma başarısı 

%92,94’tür. 

 

Şekil 4.8 VGG-19 modelinin karışıklık matrisi 
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Çizelge 4.5 VGG-19 modelinin performansı 

 Kesinlik Geri Çağırma  Doğruluk F1-skoru 

Kuş Pisliği 0,92 0,95 0,98 0,93 

Temiz 0,85 1 0,98 0,92 

Tozlu 0,95 0,8 0,95 0,87 

Elektriksel Hasarlı 1 0,99 1 0,99 

Fiziksel Hasarlı 0,97 0,99 0,99 0,98 

Karlı 1 0,96 0,99 0,98 

Gölgelenmiş 0,93 0,99 0,99 0,96 

Ortalama 0,95 0,95 0,98 0,95 

Çizelge 4.5’de VGG-19 modelinin her bir sınıf için Kesinlik, Geri Çağırma, Doğruluk değerleri 

gösterilmektedir. Bunun sonucunda Kesinlik değeri:0,95, Geri Çağırma değeri: 0,95, Doğruluk 

değeri:0,98 ve F1-skoru: 0,95 olarak hesaplanmıştır. 

4.5.2 InceptionV3 Modeli Sonuçları 

Veri seti InceptionV3 modeliyle 1 saat 30 dakikada eğitilmiştir. Veri setinin InceptionV3 

modeliyle eğitilmesi sonucu ortaya çıkan eğitim doğrulama kaybı grafiği Şekil 4.9’ da 

gösterilmektedir.  

 

 

 

 

 

 

Şekil 4.9 InceptionV3 modelinin eğitim ve doğrulama kaybı grafiği 
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Eğitim kaybının son değeri:0,3112 ve doğrulama kaybının son değeri:0,3071 olarak 

gözlenmiştir. Değerlerin 0’ a yakınsaması modelin aşıra uyuma düşmediğini göstermektedir. 

InceptionV3 modelinin eğitim ve doğrulama başarısı grafiği Şekil 4.10’ da görülmektedir. 

Model test edilen verileri %89,68’ lik başarı oranıyla sınıflandırabilmektedir. 

 

 

 

 

 

 

 

Şekil 4.10 InceptionV3 modelinin eğitim ve doğrulama başarısı grafiği 

InceptionV3 modelinin karışıklık matrisi Şekil 4.11’ de gösterilmektedir. Şekilde görüldüğü 

“kuş pisliği” sınıfında 83, “temiz” sınıfında 101,” tozlu” sınıfında 100, “elektriksel hasarlı” 

sınıfında 96,” fiziksel hasarlı” sınıfında 75, “karlı” sınıfında 100,” gölgelenmiş” sınıfında 85 ve 

toplamda 640 adet test verisi bulunmaktadır. Model test verisindeki 83 adet kuş pisliği 

etiketinden 73 adetini doğru sınıflandırmış, 4 adetini temiz,5 adetini tozlu ve 1 adetini fiziksel 

hasarlı olarak yanlış sınıflandırmıştır. Modelin kuş pisliği etiketini sınıflandırma başarısı 

%87,95’tir. Model test verisindeki 101 adet temiz etiketinden 88 adetini doğru sınıflandırmış, 

1 adetini kuş pisliği,7 adetini tozlu ve 5 adetini gölgelenmiş olarak yanlış sınıflandırmıştır. 

Modelin temiz etiketini sınıflandırma başarısı %87,12’dir. Model test verisindeki 100 adet tozlu 

etiketinden 94 adetini doğru sınıflandırmış, 1 adetini kuş pisliği, 4 adetini temiz ve 1 adetini 

elektriksel hasarlı olarak yanlış sınıflandırmıştır. Modelin tozlu etiketini sınıflandırma başarısı 

%94’tür. Model test verisindeki 96 adet elektriksel hasarlı etiketinden 93 adetini doğru 

sınıflandırmış, 1 adetini temiz ve 2 adetini tozlu olarak yanlış sınıflandırmıştır. Modelin 

elektriksel hasarlı etiketini sınıflandırma başarısı %96,87’dir. Model test verisindeki 75 adet 

fiziksel hasarlı etiketinden 71 adetini doğru sınıflandırmış, 2 adetini temiz ve 2 adetini tozlu 

olarak yanlış sınıflandırmıştır. Modelin fiziksel hasarlı etiketini sınıflandırma başarısı 
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%94,66’dır. Model test verisindeki 100 adet karlı etiketinden 97 adetini doğru sınıflandırmış, 2 

adetini temiz ve 1 adetini gölgelenmiş olarak yanlış sınıflandırmıştır. Modelin sınıflandırma 

karlı etiketini başarısı %97’ dir. Model test verisindeki 85 adet gölgelenmiş etiketinden 58 

adetini doğru sınıflandırmış, 16 adetini temiz,10 adetini tozlu ve 1 adetini fiziksel hasarlı olarak 

yanlış sınıflandırmıştır. Modelin gölgelenmiş etiketini sınıflandırma başarısı %68,23’tür. 

 

 

 

 

 

 

 

 

 

 

Şekil 4.11 InceptionV3 modelinin karışıklık matrisi 

Çizelge 4.6 InceptionV3 modelinin performansı 

 Kesinlik Geri Çağırma  Doğruluk F1-skoru 

Kuş Pisliği 0,88 0,97 0,98 0,92 

Temiz 0,87 0,75 0,93 0,81 

Tozlu 0,94 0,78 0,95 0,85 

Elektriksel Hasarlı 0,97 0,99 0,99 0,98 

Fiziksel Hasarlı 0,95 0,97 0,99 0,96 

Karlı 0,97 1 0,99 0,98 

Gölgelenmiş 0,68 0,91 0,95 0,78 

Ortalama 0,94 0,91 0,95 0,9 

Çizelge 4.6’da InceptionV3 modelinin her bir sınıf için Kesinlik, Geri Çağırma, Doğruluk 

değerleri gösterilmektedir. Bunun sonucunda Kesinlik değeri:0,94, Geri Çağırma değeri: 0,91, 

Doğruluk değeri:0,95 ve F1-skoru: 0,9 olarak hesaplanmıştır. 
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4.5.3 Resnet101 Modeli Sonuçları 

Veri seti Resnet101 modeliyle 4 saat 18 dakikada eğitilmiştir. Veri setinin Resnet101 modeliyle 

eğitilmesi sonucu ortaya çıkan eğitim doğrulama kaybı grafiği Şekil 4.12’ de gösterilmektedir. 

Eğitim kaybının son değeri:1,6398 ve doğrulama kaybının son değeri:1,5708 olarak 

gözlenmiştir. Değerlerin 0’ a yakınsama konusunda başarısız olduğu görülmektedir. Model 

aşırı uyuma düşmemiş ancak modelin eğitimi de başarılı geçmemiştir. Model eğitim sırasında 

iyi bir şekilde öğrenemediği için test etme sırasında başarısız olmuştur. 

 

 

 

 

 

 

 

Şekil 4.12 Resnet101 modelinin eğitim ve doğrulama kaybı grafiği 

Resnet101 modelinin eğitim ve doğrulama başarısı grafiği Şekil 4.13’ te görülmektedir. Model 

test edilen verileri %39,68’ lik başarı oranıyla sınıflandırabilmektedir. 
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Şekil 4.13 Resnet101 modelinin eğitim ve doğrulama başarısı grafiği 

Resnet101 modelinin karışıklık matrisi Şekil 4.14’ te gösterilmektedir. Şekilde görüldüğü üzere 

“kuş pisliği” sınıfında 83, “temiz” sınıfında 101,” tozlu” sınıfında 100, “elektriksel hasarlı” 

sınıfında 96,” fiziksel hasarlı” sınıfında 75, “karlı” sınıfında 100,” gölgelenmiş” sınıfında 85 ve 

toplamda 640 adet test verisi bulunmaktadır. Model test verisindeki 83 adet kuş pisliği 

etiketinden 20 adetini doğru sınıflandırmış, 40 adetini temiz, 11 adetini tozlu, 3 adetini 

elektriksel hasarlı, 7 adetini fiziksel hasarlı ve 2 adetini karlı olarak yanlış sınıflandırmıştır. 

Modelin kuş pisliği etiketini sınıflandırma başarısı %48,19’dur. Model test verisindeki 101 adet 

temiz etiketinden 72 adetini doğru sınıflandırmış, 6 adetini kuş pisliği, 11 adetini tozlu, 9 adetini 

elektriksel hasarlı, 1 adetini fiziksel hasarlı ve 2 adetini karlı olarak yanlış sınıflandırmıştır. 

Modelin temiz etiketini sınıflandırma başarısı %79,12’dir. Model test verisindeki 100 adet tozlu 

etiketinden 49 adetini doğru sınıflandırmış, 5 adetini kuş pisliği, 23 adetini temiz,16 adetini 

elektriksel hasarlı, 4 adetini karlı ve 3 adetini gölgelenmiş olarak yanlış sınıflandırmıştır. 

Modelin tozlu etiketini sınıflandırma başarısı %49’dur. Model test verisindeki 96 adet 

elektriksel hasarlı etiketinden 56 adetini doğru sınıflandırmış, 3 adetini kuş pisliği, 16 adetini 

temiz, 13 adetini tozlu, 1 adetini fiziksel hasarlı, 4 adetini karlı ve 1 adetini gölgelenmiş olarak 

yanlış sınıflandırmıştır. Modelin elektriksel hasarlı etiketini sınıflandırma başarısı %60,42’ dir. 

Model test verisindeki 75 adet fiziksel hasarlı etiketinden 13 adetini doğru sınıflandırmış, 26 

adetini kuş pisliği, 22 adetini temiz, 9 adetini tozlu, 1 adetini elektriksel hasarlı ve 4 adetini 

olarak yanlış sınıflandırmıştır. Modelin fiziksel hasarlı etiketini sınıflandırma başarısı %17,33 

tür. Model test verisindeki 100 adet karlı etiketinden 40 adetini doğru sınıflandırmış, 1 adetini 

kuş pisliği, 24 adetini temiz, 31 adetini tozlu, 3 adetini elektriksel hasarlı ve 1 adetini 
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gölgelenmiş olarak yanlış sınıflandırmıştır. Modelin karlı etiketini sınıflandırma başarısı %40 

dır. Model test verisindeki 85 adet gölgelenmiş etiketinden 2 adetini doğru sınıflandırmış, 8 

adetini kuş pisliği, 25 adetini temiz, 18 adetini tozlu, 9 adetini elektriksel hasarlı, 1 adetini 

fiziksel hasarlı ve 22 adetini karlı olarak yanlış sınıflandırmıştır. Modelin gölgelenmiş etiketini 

sınıflandırma başarısı %2,35’ tir. 

 

 

 

 

 

 

 

 

 

 

Şekil 4.14 Resnet101 modelinin karışıklık matrisi 

Çizelge 4.7 Resnet101 modelinin performansı 

 Kesinlik Geri Çağırma  Doğruluk F1-skoru 

Kuş Pisliği 0,24 0,29 0,83 0,26 

Temiz 0,71 0,32 0,72 0,45 

Tozlu 0,49 0,35 0,78 0,41 

Elektriksel Hasarlı 0,6 0,59 0,88 0,59 

Fiziksel Hasarlı 0,17 0,57 0,89 0,27 

Karlı 0,4 0,51 0,85 0,45 

Gölgelenmiş 0,02 0,29 0,86 0,04 

Ortalama 0,38 0,4 0,82 0,41 

Çizelge 4.7’de Resnet101 modelinin her bir sınıf için Kesinlik, Geri Çağırma, Doğruluk 

değerleri gösterilmektedir. Bunun sonucunda Kesinlik değeri:0,38, Geri Çağırma değeri: 0,4 

Doğruluk değeri:0,82 ve F1-skoru: 0,41 olarak hesaplanmıştır. 
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4.5.3 Önerilen Modelin Sonuçları 

Veri seti Önerilen modelle 1 saat 45 dakikada eğitilmiştir. Veri setinin Önerilen modelle 

eğitilmesi sonucu ortaya çıkan eğitim doğrulama kaybı grafiği Şekil 4.15’ te gösterilmektedir. 

Eğitim kaybının son değeri:0,0827 ve doğrulama kaybının son değeri:0,1034 olarak 

gözlenmiştir. Modelin eğitim ve doğrulama kaybının sıfıra yakınsadığı görülmektedir. Bu 

durum da modelin aşırı uyuma düşmediğini göstermektedir. 

 

 

 

 

 

 

 

 

Şekil 4.15 Önerilen modelin eğitim ve doğrulama kaybı grafiği 

Önerilen modelin eğitim ve doğrulama başarısı grafiği Şekil 4.16’ da görülmektedir. Grafik 

incelendiğinde modelin güneş panellerindeki kusurları sınıflandırmada başarılı olduğu 

gözlenmektedir. Model test edilen verileri %97,19’ luk başarı oranıyla sınıflandırabilmektedir. 
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Şekil 4.16 Önerilen modelin eğitim ve doğrulama başarısı grafiği 

Önerilen modelinin karışıklık matrisi Şekil 4.17’ de gösterilmektedir. Şekilde görüldüğü üzere 

“kuş pisliği” sınıfında 83, “temiz” sınıfında 101,” tozlu” sınıfında 100, “elektriksel hasarlı” 

sınıfında 96,” fiziksel hasarlı” sınıfında 75, “karlı” sınıfında 100,” gölgelenmiş” sınıfında 85 ve 

toplamda 640 adet test verisi bulunmaktadır. Model test verisindeki 83 adet kuş pisliği 

etiketinden 80 adetini doğru sınıflandırmış, 3 adetini fiziksel hasarlı olarak yanlış 

sınıflandırmıştır. Modelin kuş pisliği etiketini sınıflandırma başarısı %96,39’dur. Model test 

verisindeki 101 adet temiz etiketinden 100 adetini doğru sınıflandırmış, 1 adetini karlı olarak 

yanlış sınıflandırmıştır. Modelin temiz etiketini sınıflandırma başarısı %99,01’dir. Model test 

verisindeki 100 adet tozlu etiketinden 97 adetini doğru sınıflandırmış, 1 adetini elektriksel 

hasarlı ve 2 adetini gölgelenmiş olarak yanlış sınıflandırmıştır. Modelin tozlu etiketini 

sınıflandırma başarısı %97’dir. Model test verisindeki 96 adet elektriksel hasarlı etiketinden 95 

adetini doğru sınıflandırmış, 1 adetini tozlu olarak yanlış sınıflandırmıştır. Modelin elektriksel 

hasarlı etiketini sınıflandırma başarısı %98,96’ dır. Model test verisindeki 75 adet fiziksel 

hasarlı etiketinden 74 adetini doğru sınıflandırmış, 1 adetini kuş pisliği olarak yanlış 

sınıflandırmıştır. Modelin fiziksel hasarlı etiketini sınıflandırma başarısı %98,67’dir. Model 

test verisindeki 100 adet karlı etiketinden 96 adetini doğru sınıflandırmış,1 adetini temiz, 2 

adetini tozlu ve 1 adetini fiziksel hasarlı olarak yanlış sınıflandırmıştır. Modelin karlı etiketini 

sınıflandırma başarısı %96’ dır. Model test verisindeki 85 adet gölgelenmiş etiketinden 80 

adetini doğru sınıflandırmış, 1 adetini temiz, 2 adetini tozlu, 1 adetini fiziksel hasarlı ve 1 
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adetini karlı olarak yanlış sınıflandırmıştır. Modelin gölgelenmiş etiketini sınıflandırma başarısı 

%94,11’dir. 

 

 

 

 

 

 

 

 

 

 

 

 

Şekil 4.17 Önerilen modelinin karışıklık matrisi 

Çizelge 4.8 Önerilen modelinin performansı 

 Kesinlik Geri Çağırma  Doğruluk F1-skoru 

Kuş Pisliği 0,96 0,99 0,99 0,98 

Temiz 0,99 0,98 0,99 0,99 

Tozlu 0,97 0,95 0,99 0,96 

Elektriksel Hasarlı 0,99 0,99 0,99 0,99 

Fiziksel Hasarlı 0,99 0,94 0,99 0,96 

Karlı 0,96 0,98 0,99 0,97 

Gölgelenmiş 0,94 0,98 0,99 0,96 

Ortalama 0,96 0,96 0,99 0,97 

Çizelge 4.8’de Önerilen modelinin her bir sınıf için Kesinlik, Geri Çağırma, Doğruluk değerleri 

gösterilmektedir. Bunun sonucunda Kesinlik değeri:0,96, Geri Çağırma değeri: 0,96 Doğruluk 

değeri:0,99 ve F1-skoru: 0,97 olarak hesaplanmıştır. 
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Çizelge 4.9 Önerilen modelin diğer modellerle karşılaştırılması 

Model Başarı oranı Eğitim Süresi 

Önerilen Model %97,19 1 saat 45 dakika 

VGG-19 %94,53 8 saat 15 dakika 

InceptionV3 %89,68 1 saat 30 dakika 

Resnet101 %39,68 4 saat 18 dakika 

Çizelge 4.9’ da önerilen modelin başarı oranı ve eğitim süresi diğer modellerle 

karşılaştırılmıştır. Çizelge 4.9 ‘da görüldüğü üzere en yüksek başarı oranına %97,19 ile önerilen 

modelle ulaşılmıştır. VGG-19 modeli veri setini %94,53 gibi başarılı bir oranla eğitmiştir ancak 

eğitim süresinin 8 saat 15 dakika olması zaman ve maliyet açısından kayba neden olacaktır.  

InceptionV3 modeli veri setini başarılı denebilecek bir oranla %89,68 doğrulukla 

sınıflandırabilmiştir. Eğitim süresi de diğer modellere göre daha iyidir ancak başarı oranı 

önerilen modelin altında kalmıştır. Resnet101 modeli veri setini %39,68 gibi başarısız bir 

oranla eğitmiştir ve eğitim süresi 4 saat 18 dakika gibi fazla bir süredir. Bu durum Resnet101’ 

in bu veri setinde kullanılmaması gerektiği anlamına gelmektedir. Bu modeller içerisinden en 

uygunu çizelge 4.9’ da görüldüğü üzere önerilen modeldir. Başarı oranın yüksek olması ve 

eğitim süresinin kısa olması bu modeli diğer modellerin önüne atmıştır. 
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BÖLÜM 5 

SONUÇLAR 

Yenilenemez enerji kaynaklarının tükenmesi ve çevreye verdikleri zarar, başta güneş enerjisi 

olmak üzere yenilenebilir enerji kaynaklarına olan ilginin artmasına neden olmuştur. Yenilebilir 

enerji kaynaklarının en yaygını, doğada en çok bulunan güneştir. Güneş panelleri, güneş 

enerjisini elektrik enerjisine çeviren sistemlerdir. Güneş panellerinin yaygınlığı günümüzde 

giderek artmaktadır. Güneş panelleri üzerindeki kar, toz, kuş pisliği, mekaniksel hasar, fiziksel 

hasar ve gölgelenme gibi etkenler enerji üretimindeki verimi azaltmaktadır. Güneş 

panellerinden iyi performans alabilmek için panel bakımı düzenli yapılmalıdır. Ancak panel 

bakımları maliyet ve zaman gerektirmektedir. 

Günümüzde kullanımı yaygınlaşan derin öğrenme tabanlı modeller görüntülerdeki kusurları 

saptama ve sınıflandırma konusunda dikkat çekmektedir. Bu tez çalışmasında, güneş 

panellerindeki kusurların sınıflandırılması üzerine çalışılmıştır. Amaç, güneş panellerindeki 

“kar, toz, gölge, kuş pisliği, mekaniksel hasar, fiziksel hasar ve gölgelenme” gibi kusurların 

yüksek doğrulukta sınıflandırılarak olabildiğince hızlı şekilde uzmanlarca müdahale 

edilmesidir. Bu işlem önerilen derin öğrenme tabanlı modelle mümkün olacaktır. Çalışma 2 

aşamadan oluşmaktadır. İlk aşama, ön işleme aşamasıdır ve bu aşamada veri seti yetersiz olması 

nedeniyle görüntüyü döndürme görüntünün simetriğini alma ve görüntüye gürültü ekleme gibi 

veri çoğaltma teknikleri kullanılarak arttırılmıştır. İkinci aşama olan eğitim aşamasında ise 

çoğaltılan veri seti önerilen derin öğrenme modeliyle eğitilmiştir. 

Çalışmada kaggle’ da bulunan açık erişimli güneş paneli kusuru veri seti kullanılmıştır. Veri 

setinde çeşitliliğin sağlanabilmesi için yapay görüntüler oluşturularak toplamda 6098 görüntü 

elde edilmiştir. Bu görüntülerin 5458 tanesi eğitim ve 640 tanesi ise test için kullanılarak 

eğitilen modelin performans değerleri gözlenmiştir. Önerilen modelin Kesinlik, Geri çağırma, 

Doğruluk ve F1-Skoru ortalama değerleri sırasıyla 0,96, 0,96, 0,99, 0,97 olarak hesaplanmıştır. 
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Bu tez çalışmasında önerilen model, kullanımı en yaygın olan VGG-19, InceptionV3 ve 

Resnet101 gibi önceden eğitilmiş modellerle karşılaştırılmıştır. Önceden eğitilmiş modeller 

sırasıyla % 94,53, %89,68 ve %39,68 başarı oranıyla sınıflandırabilirken Önerilen modelin 

%97,19 başarı oranıyla kusurları sınıflandırdığı gözlenmiştir. Ayrıca önerilen modelin 1 saat 

45 dakika gibi kısa bir sürede eğitimini tamamlayarak zaman ve maliyet açısından da diğer 

modellerden önde olduğu görülmektedir. 

Önerilen modelle birlikte güneş enerjisi santralleri veya kişisel kullanımdaki güneş panelleri 

üzerindeki kusurlar otomatik olarak kısa sürede yüksek doğrulukla saptanabilecek ve böylece 

verimliliğin azaldığı sürelerde büyük düşüşler yaşanmayacaktır. Gelecek çalışmalarda, güneş 

panelleri kusurlarını sınıflandırmaya yönelik modeller daha fazla kusur ve veri içeren, görüntü 

kalitesinin iyi olduğu, aydınlatmanın modeli yanıltmadığı ve farklı iklim koşullarında çekilen 

görsellerin kullanıldığı veri setleriyle eğitilirse daha başarılı ve güvenilir sonuçlar elde 

edilebilir. 
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ÖZGEÇMİŞ 

Sebahattin Yiğit LERMİ, 2022 yılında Zonguldak Bülent Ecevit Üniversitesi Elektrik ve 

Elektronik Mühendisliği bölümünden mezun oldu. 2022 yılında Zonguldak Bülent Ecevit 

Üniversitesi Fen Bilimler Enstitüsü Elektrik ve Elektronik Mühendisliği bölümünde tezli 

yüksek lisans eğitimine başladı ve hala eğitimine devam etmektedir. Araştırma ilgi alanları 

arasında görüntü işleme teknikleri, yapay sinir ağı yapıları ve evrişimli sinir ağları 

bulunmaktadır. 
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