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ABSTRACT

RADIATIVE AND TOPOLOGICAL PROPERTIES
OF ONE-DIMENSIONAL ATOMIC CHAINS

In this thesis, the topological and vacuum-mediated collective properties of a one
dimensional diatomic chain consisting of two identical two-level atoms per unit cell are
examined. In the subspace where there is a fixed number of excitations on the chain, the
system is described by a non-Hermitian effective Hamiltonian which takes the dissipative
effects into account. In the presence of a single excitation on the chain, collective radiative
behavior for an infinite chain is revealed from the complex energy bands corresponding
to the effective Hamiltonian whose eigenstates are Bloch type states. For a finite chain
with a single excitation, the radiative properties are revealed by the exact diagonalization
of the effective Hamiltonian of the system. We identify the conditions for the existence of
subradiant states. The considered model is an extended, non Hermitian SSH model due to
mediated long range interactions and dissipation. For this system, we calculate the complex
Berry phase to reveal the topological properties, then we identify the edge states for the
topologically non-trivial cases. Furthermore, radiation patterns from radiant, subradiant
and topological edge states are shown by computing the Poynting vector in the radiation

zone.
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OZET

TEK BOYUTLU ATOMIK ZINCIRLERIN
ISINIMSAL VE TOPOLOJIK OZELLIKLERI

Bu tezde, bir boyutlu, her birim hiicresinde iki 6zdes iki seviyeli atom bulunan bir diatomik
zincirin topolojik ve vakum aracili kolektif 6zellikleri incelenmistir. Zincir iizerinde sabit
sayida uyarilmanin oldugu altuzayda, sistem, dissipatif etkileri dikkate alan non-Hermityen bir
efektif Hamiltonyen ile tantmlanmaktadir. Zincirde tek bir uyarim varliginda, sonsuz bir zincir
icin kolektif radyatif davranig, 6z durumlar1 Bloch tipi durumlar olan etkin Hamiltoniyene
karsilik gelen karmagik enerji bantlarindan ortaya ¢ikarilmistir. Tek bir uyarima sahip sonlu
bir zincir i¢in radyatif 6zellikler, sistemin etkin Hamiltonyeninin tam diyagonalizasyonuyla
ortaya ¢ikarimigtir. Altiginimli durumlarin varlik kosullart belirlenmigtir. Ele alinan model,
uzun menzilli etkilesimler ve dissipasyon nedeniyle genisletilmis, non-Hermityen bir SSH
modelidir. Bu sistem i¢in topolojik Ozellikleri ortaya cikarmak amaciyla kompleks Berry
faz1 hesaplanmig ve ardindan topolojik olarak trivial olmayan durumlar i¢in kenar durumlari
belirlenmistir. Ayrica, 1sitnimli, altisitnimli ve topolojik kenar durumlarindan gelen radyasyon

desenleri, radyasyon bolgesindeki Poynting vektoriiniin hesaplanmasiyla gosterilmistir.
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CHAPTER 1

INTRODUCTION

A system of closely spaced atoms sharing a common environment is known to
decay collectively with a rate larger or smaller than that of an individual atom. This
phenomenon was first pointed out by Dicke in his seminal work showing the enhanced
spontaneous emission for a gas of emitters confined to a container with dimensions
smaller than the radiation wavelength and referred to such states as superradiant states
of the gas.! The innate counterpart of these states are the ones that are formed due
to destructive interatomic interference, leading to a reduced collective decay rate, are the
subradiant states.* A stimulating work of Ficek and Tanas proposed to exploit subradiance
to achieve decoherence-free two-atom entangled state without isolating the two-atom
system from the environment.® Ordered lattices of emitters allow collective effects to
survive outside the Dicke regime.®’ Their subradiant behavior offers many practical

12 and

applications such as efficient photon storage,®!'! high reflectivity atomic mirrors
atomic clocks!? with enhanced stability. 1D arrays of atoms can also be employed as
atomic waveguides, where the subradiant states serve as guided modes by prohibiting
decay into free space.'* Collective dynamics are also being studied in the context of
waveguide QED, since waveguide mediated interactions between emitters survive beyond
subwavelength limit. 1518

Topologically non-trivial systems are of interest due to their accommodation to
implementing efficient quantum technologies such as single photon generation with en-
hanced indistinguishability, ! fast and robust quantum-state transfer.?>>! Diatomic 1D
arrays with mediated interactions differ from the standard Su—Schrieffer—Heeger (SSH)

122

model ““ by inherent long-range interactions within the chain and non-Hermiticity due to

dissipation. In such non-Hermitian models, the adiabatic connection can be determined
using the complex Berry phase calculated on a biorthogonal basis, serving as a topological

invariant.?3



1.1 Time Evolution for Closed Systems

It is known from the fundamental postulates of quantum mechanics that a pure
state of a system isolated from its environment evolves according to the time-dependent
Schrodinger Equation, and its time evolution is reversible. Namely, the time evolution of

such states can be described by a unitary operator U such that,
d i
iho W) = H|®(t)) — [¥(E)=U[¥0), U=e ™

Here, time evolution operator is defined in Schrodinger picture and for time independent
Hamiltonians, which is the case for isolated systems. The conjugate transpose of the time
evolution operator is its inverse, such that; UT(¢)U(¢) = 1 as long as the Hamiltonian is
a Hermitian operator. This is always the case for closed systems, where the probability
(¥ (t)|¥(t)) is conserved throughout the time evolution. This can be easily generalized

for the mixed states using density operators;
p= pi (¥l (1.1)
i

Where, p; are the probabilities of the system to be found in state |¥;). The evolution
of the pure states {|¥;)} € S in Schrodinger picture is defined by the unitary operator
U = e~ 7!, Therefore, in Schrodinger picture, p(t) can be found as:

pt) = 3, piU Wiy (¥i| U = U pUT (12)

Differentiating by t gives us the Schrodinger picture von Neumann equation as follows;

pt) = - H.p(t) 13)

1

Where [e, o] is the commutator such that [H, p(t)] = HUpU' —UpUT H, and we exploited
the fact that [H, UT] = 0.



1.2 Open System Dynamics

Time evolution for a system interacting with its surroundings is no longer a re-
versible process due to vulnerability to phenomena like dissipation and decoherence.
Apart from Section 1.1, the dynamics of an open system can neither be described by von
Neumann equation nor be carried by a unitary operator, since conservation of probability
is no longer ensured. In this section, I will discuss the master equation approach for
a system interacting with a Markovian bath, and there also will be a short introductory

discussion of quantum trajectories.

System + Bath
pE A
System
ps € Hs
Bath
pB € Hp

Figure 1.1: A schematic description of a closed composite system containing an open
system of consideration and its environment. Its state p lives in in 7 =

Hs @ Hp.

To present the basis of what will be discussed about an open system, the situation
to be considered is visualized in Figure 1.1. The open system lies in Hilbert space 7%
and its time-dependent state is described by the density matrix pg(¢). Similarly, for its
environment, we have pp € 3, and for the total universe of system and bath, we have

p € H = HsQ Hp. The total Hamiltonian of this composite system, can be written as:

Hr=Hs®1p+1s® Hg + V, (1.4)

Here, Hg and Hp are the interaction-free Hamiltonians of the system and the bath re-
spectively. And V is the interaction. Since the interaction Hamiltonian ) operates on

Hs ® 5, without loss of generality, it can be decomposed into operators acting on the



two Hilbert spaces .75 and .73 as:
V=>4,®B, (1.5)
«

A, and B, are operators on the Hilbert space of the system .75 and the reservoir 3
respectively. This decomposition can be shown non rigorously by choosing complete
orthonormal bases {|p;)} and {|¢;)} in %5 and 5. The set {|¢;) ® |¢;)} forms an
orthonormal basis on .75 ® .#5. Then, we will have,

V=" Vil (o) ® (16, (), (1.6)

ij k,l

where we used the completeness relation for both subsystems. Here, V; ;.1 ; are the matrix
elements of interaction term. ) is already written as a linear combination of operators
lying on each subspace, such that reshaping gives; V = .  co A ® B, where a runs over
all possible combinations of indices. Lastly, we can redefine the operators absorbing the
scalar coefficients ¢, coming from matrix elements into either of them and obtain Equation
(1.5). Having the total Hamiltonian and the description of considered system-environment

setup, we can proceed delving into the dynamics of this system.

1.2.1 Gorini-Kossakowski-Sudarshan-Lindblad Master Equation

Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) master equation describes the
dynamics of an open system weakly coupled to a Markovian bath. To derive this, we begin
by considering the total system-environment setup. The total universe consisting both of
the environment and the system is closed and therefore, its time evolution is described by
the von Neumann Equation (1.3). We begin solving the interaction picture von Neumann

equation for p € 5 ® 5 by integrating both sides;

mw:mm—gﬁummwwf (1.7)



Differentiating again, with respect to time t, by using Von neumann equation for p(t)

again, we obtain an integro-diftferential equation:

%y:_gmﬂm_;memmwmwmﬂ (18)

One more iteration gives a term which contains coupling constant of third order;

t

[mﬂm—;ﬁwmmmwmwwwo@> (1.9)

dp(t) i
dt h

And, further iterations will contain higher order coupling constants. In the realm of
Born approximation, weak coupling limit, we can neglect O(g®) and higher order terms.
Further, we take Born approximation one step further and claim that, the system and bath
remains separable at all times p ~ pg(t) ® pp. We could have also neglect higher order
terms in Equation (1.9) under Born approximation beforehand by replacing ps (') by ps(¢)
in Equation (1.8) assuming that the past does not effect the future of the system state which
is consistent with markov approximation.?* Lastly, since we are particularly interested in

system dynamics, we trace out the reservoir degrees of freedom to obtain:

st) _ L L traHi(t), [Hi (), ps(t) @ pi]] dt (1.10)

Notice that we can choose that initially mean of B, is zero trp{[H(t),p(0)]} = 0. In

Equation (1.10), time evolution of density matrix depends on past times. In order to

achieve a memoryless form, we substitute ¢’ by ¢ — ¢’ and set the upper limit of the integral

to infinity. This is valid under Markovian approximation since the elapsed time for the

system is much greater than the time for bath, for t' » 7, making the integrand disappears
24

fast. dps(t) |

i trp[Hy(t), [H(t —t'), ps(t) ® pp]| dt’ (1.11)
0

Equation (1.11) is the Redfield equation.?’ It is Markovian as desired but does not guar-
antee the preservation of positivity of the density matrix.?® Since negative properties are
not physically acceptable, the map we provide should be completely positive and trace
preserving. Positivity can be guaranteed by applying a secular approximation which is
the well known rotating wave approximation in quantum optics. In order to do so, we

first, decompose the Hermitian system operators A, : 75 — 5 forming the interaction



Hamiltonian in Equation (1.5).

Ao(w) = > P(e) Ay P(€) (1.12)

Where, the operator P(¢) projects onto the eigenstate with eigenvalue ¢, and the index
w runs over all energy differences %(e’ — €). The operators A(w) are eigenoperators of

superoperator [ Hg, o] following;

[H, Aa(w)] = Y HsP(€)AaP(¢)) = Y P(€)AaP(¢')Hs
fuw fuw

(1.13)
= (=€) D] P()AuP(¢) = —hwAq(w)
And,
[Hs, AL(w)] = hwAl(w) (1.14)
The time evolution of A, (w) in interaction picture are found as;
€iHstAa(CL))€7iHSt — efitha(w> (115)
ISt AL w)e st = ¢4 (1) (1.16)

Giving A (w) = Aq(—w). The interaction picture interaction Hamiltonian is Hermitian

and reads as:

Hy(t) = Y e ™ Ag(w) ® Ba(t) = ) ¢ Al (w) @ BI(1) (1.17)

W a,w

Where, B, (t) = etflstp e—ilpt, Recalling the Markovian Master Equation (1.11) for
Equation (1.17), we have:

0

g = _;2 0 tre{H(t)H;(t — t')ps(t)ps — Hi(t —t')ps(t)ppHi(t)

— Hi(t)ps(t)ppHr(t — s) + ps(t)ppHr(t — t')Hy(t)} dt’

Q0

= —i; | tro{H (O Hy(t - )ps(t)pp — Hi(t —t)ps()ppH ()} dt’ + h.c.

(1.18)



Here, the tensor products are dropped for simplicity. Now we will substitute the interaction
Hamiltonian in Equation (1.17). Since, H7 is Hermitian, we can use the first equality
for Hy(t —t') = X5, e~ (=) As(w) ® Bg(t — t') and the second one for H(t) =
S AL (W) ® BL(1).

b=z % [ trale AL B 450 Balt — (B

w,w’;a, 8
B e_iw(t_tl)Aﬁ(u})BB(t . t/)ps(t)pBeiw,tAL(Wl)Bge(t)} + h.c.
(1.19)

Simplifying this expression using the fact that system operators are not affected by the
trace operation over bath degrees of freedom, and exploiting the cyclic property of trace,

we obtain:

dt/ fz w— w t iwt't,r B(]; ) Balt — t/
2ﬁ f PELOB o)
x {AL (W) Ag(w)ps(t) — Ap(w)ps(t) AL (W)} + hec.

Where the expression;
trp{Ba(t)Bs(t —t')} = (Ba(t)Bg(t — t')) (1.21)

are the bath correlation functions. And the remaining integral;

1 o0
Kag(w) = WJ ' ( Bo(t)Ba(t — ")) dt’ (1.22)

is spectral correlation tensor of the form:*

KaB = ;F(w) + iQ(w) (1.23)

We can apply the rotating wave approximation by neglecting the fast oscillating

terms w # w’ to obtain the following:

ps = O ras(@HALW) As@)os(t) — As(@)os DAL + he. (1.2

w7w/;a75



Defining 'y = Kap + K}, and Qqp = _72 (Kap — fis3) We obtain GKSL master equation:

. i
ps(t) = —7[H. ps] + Dlps] (1.25)
With the dissipator:
1
Dlps] = Y. Tap(AapsAl — 2 {AlAa. ps}) (1.26)
a’/B

This is also called the dissipator. and H = h},, 3 QaﬁALAB is the Hamiltonian with a
Lamb shift correction. We can also put Equation (1.25) into a form referred to as Lindblad

equation by diagonalizing the positive semi-definite matrix I" by a unitary operator U;
U'rU = A (1.27)
where A is a diagonal matrix with eigenvalues A\ € R>. Then, we can define L, as;
. = ; Unk Ao (1.28)
Reshaping this way, we can write Equation (1.25) as:

. 1 1
p=—3lH.pl+ S Ne(LipL], — §{L;1Lk7p}) (1.29)
B

which is the Lindblad master equation.

1.2.1.1 Quantum Trajectories

The quantum trajectory approach (also referred to as jump approach or Monte
Carlo wave function method) describes the state of the system at a time as the sum of all
possible trajectories. The idea is that the open system evolves continuously under a non

Hermitian effective Hamiltonian in between sudden jumps.?’~2° To do so, we begin by



rewriting the GKSL Master Equation (1.25) in the form
p(t) = Lp (1.30)

Where the superoperator £ is the generator of the time evolution with p(¢t + dt) ~
p(t) + dtLp(t). A formal solution to Equation (1.30) is;

p(t) = e*'p(0) (1.31)

Form of superoperator £ is evident from Equation (1.25). And consists of the parts:

1 1
Lo::i;fa-]+-;;ragc4a-x42—-Q{A%fhuo}>=:ao--%§;9aw- (1.32)

With Loe = £[H, o] and K50 = Fag(AQOAL—%{A};Aa, e}). Without loss of generality,

we can write Equation (1.31) in the following form (dropping the bullets for simplicity):

p(t) = elfotZasldapt(Kas—9as)} ) (1.33)

With §,,5[e] = AaoAg. We can isolate the jump part by defining S = Lot 2ap(Kap=Jap) I}t

Iterative solution gives a Dyson’s series;

0 t t”
:Zfdt(m)..j d'[S(t — t™ Zgaﬁ m =Dy s
m=0+0 0
ngaﬂ

In time ordered form such that ¢ > ¢(™) > ¢(m=1) > ... > ¢/ >~ /. This gives an

expansion as follows:

pstt) =s(0p0)+ S { [ afste - 19510000

t t/
+J dt’S(t—t’)g(f dt" St — ") g(S(t")p(0))) +}

0 0

Here, the jump operators ¢ obviously represent the occurrence of instantaneous jumps in

the system’s state, while the continuous (but non-unitary) evolution in between successive



jumps is described by the superoperator S. Since the system evolves continuously under
S, we can define operators S as:
S[p] = SpST (1.34)

Where S = e'Hesft. The defined effective Hamiltonian H, £f 1s non Hermitian since in
between jumps, the time evolution is still irreversible and therefore, S is not a unitary
evolution operator. This effective Hamiltonian describing the continuous dynamics of the

system is written as:

ih
Hepp =H -~ Y TagAaAl (1.35)
a?/B

We can also rewrite Equation (1.25) by separating the terms resposible for contin-
uous evolution and jump terms in the dissipator with the non-Hermitian effective Hamil-
tonian Hy:

; R _ .y f
ps = =3 (Heppps = psHg) +Zﬂraﬁ Aa ps Al (1.36)
a,

1.2.2 Quantum Optical Master Equation

This section, leans on the simple situation when an atom is interacting with an
external field. The overall Hamiltonian is again expressed as sum of uncoupled system

Hamiltonian, free quantized field Hamiltonian and the interaction Hamiltonian.
H=Hgs+ Hp+ Hj (1.37)

Hamiltonian of the isolated two level atom is:

hew
Hg = TOUZ (1.38)
Where, wy is the transition frequency, and o, = |e){e| — |g){g| = or0_ —0o_04 is

well known Pauli z matrix. The environment is considered as 3D vacuum field. And the

second quantized Hamiltonian of the multi mode field can be written in normal order by

10



choosing ground state energy zero as

Hp = ) hwblb, (1.39)

=
q,v
Here, ¢ is the wave vector with ¢ = “—Cq, indices v are over the field polarizations é; » and

b, bl are the annihilation and creation operators respectively. Lastly, the Hamiltonian for

atom-field interaction can be written in dipole approximation as:
- =
Hr=—d E(r) (1.40)
where, d is the atomic dipole operator satisfying; d = 17 |e){g| + ©*|g){e| = Ho4 +
Ji*o_ with dipole moment i = (g| d |e) which is going to be considered real. The

diagonal elements are zero, since the position operator (and therefore dipole operator) has

odd parity. E is the external field at the position of the dipole. Such that;

E(T) =i /QthVégybgyei@'?) + h.c. (1.41)
q.,V

By decomposing the interaction Hamiltonian in terms of bath and system related operators

as in Equation (1.5), we have,

d(t) =Y e Aw) = Y e Al (w) (1.42)

w

With that, and the interaction picture electric field, we write the interaction picture Hamil-

tonian as

—

Hi(t)=—d(t)- E(t) = — Y. e “AW)E() (1.43)

We have <E) (t)> = tr B{E) (t)pp} = 0 and the bath correlation functions introduces in
Equation (1.21) are:

trp{Ei() Ej(t —t')} = CEi(H) Ey(t — ') (1.44)

11



where 7, j run over cartesian coordinates. For ordinary vacuum, we have;

<0!bmbl, 10> = 64 gt

<O|b» b— 7 ,]O} =0

(1.45)
Olog v ,10) =0
fopt
Olpg,b5 10y =0
Substitution into Equation (1.22) gives;
1 hwg \ . . w0 il
Rij(w) = zjﬁ(zmé)%f%wﬁ dtl ="t (1.46)

To go further, we can make use of the completeness relation for the polarization vectors;

kik;
sy, = by~ 2 147

—
X |k [

Moreover, we apply the continuum limit to the summation over the wave vectors. For

normalization length L, such that L3 = V, we have, ¢; = QWL’” ,dg; = %’rdni. Hence;
d3q = (25)3d3n.Therefore, we have;
1 1 vV 1 1
SN L Z2@3a= | 2 d3q = Jd3 1.48
V; JV " JV@ﬂ3q (2m)3 ) 1 (1.48)

Wlth the dispersion relation w, = cg, and d3q being ¢?sinfdgdfd¢ = ¢*dgdQ =

vy —+dw, dQ in spherical coordinates. We can construct the integral as;

1 I
VZ_U%WJ~MMJ& (1.49)
q

0

Substituting this limit yields;

1 “ hw 4i4; * —i(wg—w)t’ 34/
K}Z](W) = (27{')3037'12\[ du}qw Jdg(ng) <5U — |_q_)|2) f e g dt (150)

0

12



The integration over solid angle results in !;

qiqj 8T
Q0 — =% ) = =0y 1.51
Jd <5J IQIQ) 3 % b

Moreover, From Sokhotski-Plemelj theorem, 27 the integral over t’ takes the form;

o0
f At e 1= — 15 (w k_w)—ip(ajklw) (1.52)
) -

Such That;

1
Kij(w) = K = §F(w) + 1Q(w)
1 (1.53)
———0; d O(wy —w) —iP—
6 c350h J J b’ (W (o~ w) =i (wr — w))
The term Q(w) gives the renormalization to energy levels due to interaction with vacuum

as a principal value integral, and I"(w) gives the single atom decay rate as:

1203

r=—--=*
3eomc3h

(1.54)

- —
Which is the spontaneous emission rate for a two level atom. Note that, the term p2 = d - d

did not naturally come from calculations. However, since j is a constant scalar, we could
have embedded its value into bath operators B instead of system operators and obtain >
from bath correlation functions. Further, For Z(w) = o_, we have the Master Equation
(1.25) in the form:

ps = k(o_ps(t)oy —oro_ps(t)) + h.c. (1.55)

IThe integral is,

04, 27 271'
fdQ(éij—é)fQ> =f J 0ijsinfddde¢ — J J

The first Part of this integral gives SZ}T SSW 035 sin 0 df d¢ = 47d;;. and the second part gives for §; = %

o 47
- ffqz‘qg'dﬂ =—3 0

This is so, since the mean of components of unit vector in all directions is zero (¢; = ¢; = g4 = 0), and
we have g2 + 6]2» + q,% = 1. The result of the integration can also be achieved by doing the integration for
components of g.

5 sinf df do



which is also called quantum optical master equation.

1.2.2.1 System Consisting Of N Atoms and Collective Effects

This section is a generalization of the previous discussion to more than one atom.

The system, reservoir, and interaction Hamiltonians for this system are as follows:

N ﬁw(n) R R N
H,™ = ;1 ) M. Hp= gmkbi(/@)m(/@), H™ = —;d(”) L E(r™)
And the interaction Hamiltonian is;
Hy= =YY e ®™tAt ). B0 () (1.56)
where,
A () = g™, BM(@t) = E(r™, 1) (1.57)

Yields, by the light of previous considerations;

s = 2 mam(@ ps ()0 = oo (1)) + e

m,n

1 : (n) (m) _ _(m) (n) (1.58)
= > 5 (@) + Q) (@) (0 ps (D)o = oo™ (1)) + hc.

with,

1
i "™ = ST (W) + Q" (w)

And self interaction terms recover the previous result for single atom decay rate:

3
r‘.(m) e ,u2w(()n)
Y " 3egnc3h

14



And for n # m, we need to solve,

(nm) - w,?; ] 1
Rij =~ = Jo dwkmMij (W5(wk —w) — Zp(wk—w)) (1.59)

The M;;’s are results of solid angle integration?. For ease of calculation, we assume that
the dipole moments are parallel to each other. The result of this integration gives the

collective decay rate I'(7",,,,,), and the coherent dipole-dipole interaction strength Q(r ;)
5

as
3V, sin(kornm) cos(kornm)  sin(kornm)
P C C! — 1.60
2 { ! koTnm * (kornm)z (kornm)g ( )
and

Q, - 3V _Clcos(k’ornm) o sin(korpm)  cos(koTnm) (1.61)
kOrnm Uf(ﬂnnm)2 <k07nnm)3

Where, C and C5 are some constants determined depending on the cosine of the angle
between the dipole moments, and the direction of the distance between the atoms (| 7° .| =
|7m — Tn| = |m — nla), such that for parallel dipoles; C; = [1 — (fi - m)?] and
Cy = [1—3(fi-72,,]. Distance dependence of this collective parameters are demonstrated
in Figure 1.2 for two identical atoms with dipole moments parallel to each other. Figure
shows that the collective dynamics are mostly effective in the limit where the distance is
less than half the wavelength and they damp as the distance increases. To investigate the
dynamics of the system state, we can further exploit the discussions above. And we can
write Equation (1.58) as (see Section 1.2.1.1):

ps = —’i(Heffps - psH;rff) + Z anagn)psagrm) (1.62)

]

where, the effective Hamiltonian is:

gyl (n) (m)
Hefy —7—[—2§an0+ o (1.63)

2For example, for two atoms M is the following matrix;

o3 (kRcoskR + (k*R? — 1) sinkR) 0 0
M = 0 555 (kRcoskR + (k*R? — 1) sin kR) 0
0 0 373 (sin kR — kRsin kR)

15



Plot of I; /T vs ri/ Ay

Plot of /T var /Ay
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Figure 1.2: The collective parameters as functions of interatomic distance for two identical
atoms with parallel dipole moments. d- Pom = 1,1/4/3,0 are plotted in red,
green, and blue, respectively. In left panel, vertical axis shows I',,/T" and
in right panel, it shows Q,,,,,/T" where, I" is decay rate of a single atom, in
both plots, horizontal axis shows the ratio of interatomic distance to resonant
wavelength (7,,/A\o)-

And H is the system Hamiltonian with a Lamb Shift renormalization. It reads:

H= Qoo™ (1.64)

1.3 Su-Schrieffer—-Heeger Model

A dimerized one-dimensional lattice is energetically more stable than a monatomic
chain with a band gap opening at Fermi level due to increased unit cell length. This
phenomenon of the tendency of a regularly ordered chain to dimerize is called the
Peierls instability.>® In their pioneering work, W. P. Su, J. R. Schrieffer, and A. J. Heeger
investigated the conductive properties of polyacetalyne which is an example of such
structures. 2> The SSH model generally describes a closed one-dimensional diatomic system
with nearest-neighbor hoppings,3! as illustrated in Figure 1.3.

The model has the following tight binding Hamiltonian.

N-1
CL,iCB,i tw Z CL7i+1cB,Z‘ + h.c. (1.65)
i=1

M=

H=wv
i=1

Here, v is the intracell and w is intercell hopping amplitudes. And the two sublattices A

and B are as shown in Figure 1.3. Switching to reciprocal space with the help of Fourier

16



A

Figure 1.3: Schematic description of standard SSH model with staggered nearest neighbor
hopping amplitudes v and w being hopping from sublattice A to B and from
B to A respectively. Choice of a unit cell is always as shown in square which
makes v and w the intracell and intercell hopping amplitudes respectively.

transform of annihilation operators:

. 1 ieﬁ;nﬁc
k= —r— An
Nn=1
1 A - A
bk_ Zefzk naCBn
”Nn=1

With periodic boundary conditions, we have the bulk Hamiltonian:

H=v Z aLbk + blak + wz eik“a,zbk + e*ikab};ak = Z ‘P};H(k)‘l‘k
ke[—m,m] k k

With spinors ¥, = (ak
b,

) . Therefore, we have:

0 v + wetha
H<k) - < ika 0 )

v+ we

This 2 x 2 Hamiltonian can be written in terms of Pauli matrices, as:

H(k) = 7(k)- &

(1.66)

(1.67)

(1.68)

The vector ¥ (k) = (v+w cos(ka), wsin(ka), 0)is closely related to topological invari-

ant of the system. The winding of (k) around the origin in a closed loop over k gives the

topological invariant associated with the model of consideration.For the parametrization

in Equation (1.68), the Berry’s phase can be obtained as:

_L k) d _ LT de(R)
<1>_2Lr |7<k>|2xdk7(k)dk_2f —dk = W

-7

(1.69)
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Phase ¢(k) vs k - Topological Case Phase ¢(k) vs k - Trivial Case
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Figure 1.4: The phase p(k) = arg(yz(k)) + iyy(k)) for v < w (left) and v > w
(right).

Where p(k) = arg(v.(k)) + ivy(k)). This phase ¢ is plotted in Figure 1.4 for
v > w and v < w. In the left panel of the figure (v < w), the phase ¢ increases without
returning to its original point. This makes the integral in Equation (1.69) over closed path
nonzero. Therefore, this corresponds to the topologically non-trivial case. On the right
panel, v > w and the angle ¢ returns to its initial point over a closed loop, making the

Berry phase 0.

1x(k) vs 1y(k) - Trivial Case 7X(k) vs '1y(k) - Topological Phase Transition "’x(k) vs 'ry(k) - Topological Case

25 25
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Figure 1.5: The winding of 7 (k) are shown in upper panel and the band diagrams of the

SSH chain are plotted in lower panel. From left to right, we have v > w, v =
w, v < w respectively.
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In Equation (1.69), W is called the winding number and represents the number of
windings of 7' (k) around the origin in a closed loop. ¢ will be the angle that ¥ (k) makes
with its vertical axis. The windings and band diagrams for different intercell/intracell
hoppings are shown in Figure 1.5. For v < w, the origin is enclosed by the closed path
of v(k) with W = 1 making the system topologically non-trivial. For v > w, we have a
topologically trivial system with I/ = 0. Note that band closing occurs at w = v making

the topological invariant undefined, This is the topological phase transition point.
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CHAPTER 2

THE MODEL AND RESULTS

This chapter leans on a particular model. The atomic system of consideration will
be a singly excited one-dimensional diatomic chain, and the environment will be again a
three-dimensional vacuum. The detailed description of the model is presented in Section
2.2. Although some relevant calculations were done in the previous chapter, for the sake of
completeness, some steps will be briefly introduced again without diving into details that
are already discussed. Before introducing the diatomic model, as an example, collective

dynamics of an infinite monatomic chain will be discussed in Section 2.1.

2.1 Collective Dynamics of Infinite Monatomic Chain

This section leans on the particular example of a one-dimensional singly excited
infinite monatomic chain. The chain consists of equally spaced, identical, two-level atoms
with dipole moments parallel to each other. Introducing one excitation to the infinite

system such that the Bloch states read:

[Ways(k)) = > €™y [n) 2.1)

n

Where |n) = 0™ |g) indicates that one excitation is in n'* atom while all other atoms are

in ground state. And, the effective bulk Hamiltonian obeys;

Hepp(k) [Wsys(k)) = B [Wsys(k)) (2.2)

We have, in real space, H.rr = > (Qpm — %an)aia’f where n, m indicates atoms.

nm(

Since 0™ |Wyys(k)) = €*M36™ |g), and we can substitute it to obtain coherent and
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dissipative interactions as follows:
Q; = Y eklnmmlag (2.3a)
= etklr=mar (2.3b)

Where the real space collective parameters are as in Equations (1.60) and (1.61).

Then we have the Green’s function in reciprocal space:

Gy = Qp — %rk (2.42)
Giving complex energies Fy with Equation (2.2) of the from :
=4 1

+C2((kornm)2 + (kornm)S)} (2.5)

3T .
- _ —i(k—ko)rnm § _
E. =G, = 1 ;ne 0) { Oli(kornm)

Again, C; = [1 — (fi - #m)?] and Cy = [1 — 3(u - 72,,)]. The real part E}, gives the
dispersion, and the imaginary part gives the collective decay rate. This example model
shows collective subradiant behavior when the atomic spacings a is smaller than half
the resonant wavelength as can be seen in Figure 2.1. The figure shows decay rates and
dispersions in first Brillouin zone for parallel dipoles. In the first panel of the figure, the
interatomic spacing a lies within the discussed critical region such thata = 0.4\g < 0.5).

And we can observe completely subradiant modes for |k| > |ko|. However, this single

Im[E]T
Im[E}T

0.1 /\

0.0

=01 2 _06
Ao

-0.2

kiko kiko klko

Re[E]I
Re[E]I
Re[E]I

Figure 2.1: Real (lower panel) and imaginary (upper panel) bands are plotted for d /7.
columns show different lattice parameters a = 0.4)\g, 0.5\g, 0.6y from left
to right. Green lines which only lie on first Brillouin zone when a < 0.5
are the light lines (K = tko).
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band example is not suitable for investigating the topological properties since we cannot

define a topological invariant ensuring protected edge/surface states for such models.

2.2 Description of The Diatomic Model

The discussions in the following sections will all be about a singly excited one-
dimensional diatomic chain immersed in a 3D vacuum field. The two level atoms forming
the chain are all identical and separated by alternating spacings. The chain is illustrated
in Figure 2.2. Here, all atoms have natural frequencies wy when isolated, The unit cell
length is indicated by a, and the interatomic distance within a unit cell is denoted by 0.

This model can be considered as an extended non Hermitian SSH model.

i5 Fad = a2

—ae Twg=mna+bz

Figure 2.2: Schematic of the atomic system.

The model Hamiltonian, again, consists of the uncoupled atomic system Hamilto-
nian H 4, Hamiltonian of the bath Hp and interaction Hamiltonian H7.

H=Hg+ Hp + Hy (2.6)

Total Hamiltonian of the atomic system can be written under dipole approximation as:

no N

hw —> —> _>na —>
H=Hs+Hp+H =) =02+ > hwbl (@), () = > d ™ E(Fpa) 2.7)
no

2

=
no q,v

Where, the index n runs through all unit cells, and « runs through the two sublattices A
and B. Here, d ™ s the dipole operator for the atom at unit cell » and sublattice o and
E (7' na) is the external field at the position of the dipole. Such that;

no q,V

22



Where g¢ = d " ho fs — g, for identical atoms with parallel
ere g, = €A/ o7 = d - €A/ 57 = Jqu for identical atoms with paralle
dipole moments. Giving the total Hamiltonian in Schrodinger picture:

H = Z 2 o, + Z hwqbzubqlf - qz gqu(e R o bq,j + hc) (2.9)
no quv v

It can be seen from previous sections that the dynamics of the atomic chain can be described

by the following quantum optical master equation:

ps = D, Fnams (0" ps(D)0 — 070 ps (1)) + hc.
n,m

a,f

(2.10)

Where, ky,q.mp 18 the one-sided Fourier transform of bath correlation functions, defined

as
- |M| p 1wt mp no N 1 .
Knaymp = dt’e <E (t)E (t —t >> F irna;mﬂ + ZSznoz;mﬂ (2-1 1)
0

* i
no;mp> _Q(/{na;mﬁ -

m:a;mﬁ) are respectively, related to collective decay rate, and coherent dipole-dipole

Collective atomic parameters I';,n.m8 = Knazms + K and €,,.;m3 =

interaction due to coupling between atoms through the reservoir. After the calculation of

Equation (2.11) for vacuum field, they are found to be as follows:

3F{C’1 sin (ko?“na;mﬁ) L0 {Cos(kzorm;mg) B sm(k:orm;mg) }} (2.12)

Tnasmp = =
no;mpf 9 kOTnoz;mﬁ (k?()rna;mﬁ)Q (k?()rna;mﬁ)?)

and

31“{ _o COS(koT’na;m@) L0 [Sin(k(ﬂ'na;mﬂ) N cos(korna;mg) } } (2.13)

Qpomp =
nosmf 4 koTna;mp (korna;m5)2 (korn‘JC?mﬂ)g

Where, I" is the spontaneous emission rate of an individual atom, which is the same for all
identical atoms forming the chain. C| and Cy are some constants determined depending
on the cosine of the angle between the dipole moment, and the direction of the chain, such
that; C1 = [1— (A Prasmp)?] and Co = [1 — 3(fi Pra:mp)?]- The Master Equation (2.10)

can be rewritten in the Lindblad form as,

ps = —i[H, ps()] + Z(ps(t)) (2.14)
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with dissipator,

1
D(ps(t) = Y, Tnampo™*ps’t = 2{ 3 Tuaimsot70™, ps} (2.15)
n,m n,m
a,B a,B

‘H is the renormalization of uncoupled system Hamiltonian /g with a Lamb shift-like

correction.

H = quamigiigne (2.16)
n,m

o.f

Further, We can separate the continuous(jump free) non-unitary dissipation terms and the
jump term in Equation (2.15) and rewrite the master equation by defining a non-Hermitian
effective Hamiltonian for the system dynamics.
) 1
Ps = _ﬁ(Heffps _psHeff Zrnam,é’o- p50'+6 (2.17)
,ﬂ

With non-Hermitian effective Hamiltonian,

Heff HLS -5 Z Cha; m60+a Tﬂ = —1 Z Rna; mﬂa+a Tﬁ (2.18)
7/3 75

You may find more discussion about this step in Section 1.2.1.1. Here H generates
coherent unitary dynamics, and non-unitary of evolution comes from the non-Hermiticity
of H.ry due to the second part with dissipative rate I8 , and Kpa;mpg 18 defined in
Equation (2.11) in reciprocal space, for infinite diatomic chain, the corresponding ansatz

wavefunction will be of the form;

Wiy = ca |9 + cp |27 (2.19)
With,
ey = Y enagl |gy (2.20)

Satisfying, Schrodinger equation for the effective Hamiltonian:
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Hepg <zg> =Ey (22) (2.21)

(m)

Since we have o, o™ |¥p) = e ™nm P we have the Green’s functions
Gap(k) = —ira;p(k) = Qasp(k) — % a;8(k) as:

3 bk ) 1
GAA(k) = GBB<k) =Gaa = Z Z e (k—=ko) nm{ - CIW
o o (2.22a)
L —1 n 1
? (kornm)? — (Kornm)?

300 —ikr 1ko|r 1
g ofrnm + 5 (2.22b)
+ C —! + 1 .

2 k'(2)|7nnm + b|2 kg\rnm —+ 6’3

3L ikrnm iko|rmm— 1
y olrnm =8 (2.22¢)

+C — 4 !
2Lk |rmm — 02 k3| rom — b

Where, for the hoppings between same sublattices G, Equation (2.22a) is the same as
that of a monatomic chain which is shown in Equation (2.5). We therefore have, for the
effective Hamiltonian Heyr(k) = 3,5 Ga/g(k:)aiaé, the following energies;

Ey = Gaa £ G(aﬂ)G(ﬂa) (2.23)

2.3 Subradiant Behavior

When an atomic system interacts with its surroundings, the atoms forming the
chain become mutually coupled to the environment, leading to interatomic correlations
mediated by interactions with a common field. And the information is kept in the chain
rather than the individual atoms. This results in a collective photon emission. The

wavefunctions of the atomic chain are superpositions of the different atomic states and due
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constructive/destructive quantum interference between these atomic states the collective
decay rate may be enhanced/reduced relative to that of an independent atom leading to
occurrence of superradiance/subradiance.’

The discussions in this section will be based on the collective decay rates 2F|[ E]
for different states of the system in the single excitation framework. Where E’s are
the complex eigenvalues that corresponds to the considered eigenstate of non Hermitian
effective Hamiltonian of the atomic chain. For infinite chain, I will refer to the states
as subradiant when the decay rates [ Ey] become zero for some modes. However, for
a finite chain, the boundaries of the chain prevent an excitation from having an infinite
lifetime. Therefore, I will refer to states that have much smaller decay rates than that of

an individual atom, such that S| E| « 0.5T as subradiant.

2.3.1 Infinite Diatomic Chain

Similar to the monatomic case, as discussed in Section 2.2, we have the bloch

states in reciprocal space (see Equation (2.19)):

1 .
|Pr) = ca “I’,‘f> +cp }‘PE> - U Z e*rac, Ing) (2.24)

n,o

And, the effective Hamiltonian H,f; = vag Gna;mg(k)aiaaTﬂ becomes.
a?

Gaa(k) GAB(k)> (2.25)

Hers () = <G3A<k> Gpp(k)
The Green functions are as given in Equation (2.22). They are all complex, and G (k) #
wa(k). And E1 (k) = G4 + v/Gap Gpa. The real and imaginary parts of £ (k) for
different lattice parameters are plotted in Figure 2.3. As in Figure 2.1, the real parts give
the dispersion while the imaginary parts give the decay rates for the corresponding modes.
As can be seen in top row of Figure 2.3, for a = 0.4 \g, we observe a subradiant
regime outside the region enclosed by the light line k£ = +kg, namely outside —kg < k <
ko, where the decay rates of all modes diminish. This means that the excitation stays in the
chain and do not decay into free space. At a = 0.5\, the imaginary parts of £ (k) touch
at the two end of first Brillouin zone. And lastly, there is no subradiant behavior performed
by the chain observed since the imaginary parts of the complex energies never become

zero when the lattice parameter is greater than half the transition wavelength (a > 0.5)¢).
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Figure 2.3: The band diagrams for real (bottom) and imaginary (top) parts of energies
for different lattice parameters (a = 0.4)\g, 0.5\, 0.6\ respectively). In
all cases, dipole moments are oriented parallelly to the chain and intracell
separations are the same (b = 0.15)¢).

This can also be discussed in terms of crystal momentum £ meaningfully by considering
that in order to obtain subradiant modes, it requires the light line to lie inside the first

. . 2 . A
Brillouin zone of the such that |7| > [ko| = | £ 57|, givinga < 2.
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Figure 2.4: Plots of §[E+ | in logarithmic scale for {- = 0.7.

Another key point to consider here, is that the one dimensional diatomic chain of
interest display subradiant behavior with modes having zero decay rate depending on the

length of a unit cell relative to natural wavelength and not on the atomic spacings. In
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the upper panel of Figure 2.4 Imaginary parts of energies are plotted in logarithmic scale
for the case where interatomic spacings are less than half the wavelength, but unit cell
length is larger than the critical value ()\lO = 0.7, g = 0.5 — 10~%). It s clear that there is
no subradiant regime for this case. The bottom row of Figure 2.4 shows the decay rates
for /\% = 0.7 and g = 0.5. In this configuration, we actually have a monatomic chain
with unit cell length 0.35\g < 0.5)\¢ and as expected from Section 2.1, we indeed see
subradiant modes between k = i%.The reason that the period of spatial repetition plays
a crucial role suppressing the emission is that it is the states belonging to same sublattices

that interfere destructively.

2.3.2 Finite Diatomic Chain

In one excitation framework, the real space non-Hermitian tight binding Hamilto-
nian given in Equation (2.18) for a finite chain of /V unit cells, has 2N complex eigenvalues

that are shown in Figure 2.5 for different dipole moment orientations (6 = 0, arccos -, T

V372
and )\% = (0.3. Again, the imaginary parts of the eigenvalues denote half the collective
decay rates of the corresponding eigenstates (S| F;| = %), while the real parts are the

energies associated with them. It can be seen that, for some states, emission is extremely
suppressed. However, due to the boundaries of the chain, the decay rates of the subradiant

states are not zero, but considerably small relative to the decay rate I" of an individual

a0 1 10
¥
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# 0™ 100
20 % *
* *
% = 5
10 m\@, w5 , 02 &
& E; 0% g & o
= = = doF kg %\
[ W . % § ¥ r JRE %,
g % # 4 = g * l %
@ A e @ L * 0
10 E & e N
* g i * 4 *
* *
& %,
20 £ * %
* 10 % 1
* %
-30 M i
40 20

108 108 108
0 10 22 30 4 5 6 70 8 9 10 o 1 20 3 4 5 6 70 8 9 100 0 10 20 3 4 50 6 70 8 90 100
Eigenvalue Index Eigenvalue Index Eigenvalue Index

Figure 2.5: The figures are for the configurations where the dipole moments forming

the chain make an angle 6 = 0, 0 = cos‘l(%), ¢ = 5 with the chain
axis respectively. The intercell and intracell separations are chosen such that
a = 0.3\, b = 0.8a. Inevery plot, the number of unit cells is 50. Left vertical
axes (blue) show the real parts of energy eigenvalues and the right axes (red)

show the imaginary parts in logarithmic scale.
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2.4 Topological Properties of Atomic Chain

The model considered here has some crucial distinctions with the standard SSH
model that are discussed briefly in Section 1.3. Firstly, the diatomic chain of consideration
is interacting with its environment and vulnerable to dissipation. Therefore, the Hamilto-
nian that effectively describes its dynamic is no longer Hermitian. One other distinction is
that the SSH model leans on situations where only nearest-neighbor hoppings are allowed.

But this model displays all-to-all hoppings between atoms with amplitudes that decay
1

polinomially with interatomic distance, with a dominant factor This is especially

Tna;mp ’
problematic for the insurance of a quantized Berry phase, since intra-sublattice hoppings
may break chiral symmetry since the Hamiltonian will have non-zero diagonal elements.
This, for instance, is the case for a one-dimensional diatomic lattice with nonidentical

sites.

2.4.1 Infinite Chain and Calculation of Complex Berry Phase

We can see that the real and imaginary parts of .5 and I',g are related such that;

R(Qap(k)) = R(Qpa(k)) = QF, R(Tap(k)) = R(Tpa(k)) =T"

(2.26)
S(Qap(k)) = —S(Qpa(k)) = @', S(Tap(k)) = —S(Tpa(k)) =T'
Therefore, The effective Hamiltonian can be written as;
Goa (QF + 11! +i(Qf — TF)
Hy, = 1 ~ 1
(QR — 51—‘]) + Z(—QI - §FR> Gaa
(2.27)

=Gaa00 + (QR — iFR)ax + (—QI — irl)ay =7 -7 + Gaaoo

Which lacks a term proportional to o, since the diagonal elements are equal. Here, the

vector 7 is defined in the same way as in Section 1.3 but its components are now complex.
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This makes Equation (2.27) of the form;

H = (2.28)

Gococ Y — V}/y
Yz + 1Yy Gaa

With right eigenstates;

1 Yz — i7y
plis = [ ] (2.29)
" 200 +13) LF4) 0= + W)

And, complex eigenvalues, E+ = Goa £ 4 /72 + 77. The left eigenvalues and eigenstates

are the ones of H.

1 Yo~y

\q@ Sy & * (2.30)
203 ++3) [FVETW

And they are biorthogonal to the right states shown in Equation (2.29). Here, the star is

for complex conjugation. The corresponding energy eigenvalues satisfy; Ei =L} =
*
Goo T/ +75 -

The Berry phase is defined for biorthogonal basis as;

Qs = f]g (P oWy dk (2.31)
BZ
This is often referred to as cBerry/complex Berry phase.?® To proceed, ‘Pi]f> and, ‘P§>
can be parameterized as;
1 oS ( g)
Pl = 2 2.32
‘ +) £/ 2c0s(5)sin($) [isin(g)em] (232
1 n(5
\/2 cos($)sin($) [ cos(§)e
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Where « and ¢ take real values and are defined such that, tana = % and, the
Y+

phase ¢ = Arg[y, +iv,] — Arg[y /72 + 2] This yields, a real valued cBerry phase;

04 = f bdk (2.34)

B

The phase ¢ is plotted in first Brillouin zone for different spacings in Figure 2.6. For
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Figure 2.6: Phases ¢ are plotted in first Brillouin zone for different g values. In left
panel, the phases are plotted for parallel dipole moments, In middle and right
panels, the dipole moments are perpendicular, and making an angle arccos %

respectively. Since for § = 7, arccos 4/1/3 we have singularities at k = +ky,
a Yukawa potential with e = 0.01 is used to alter that.



three different dipole orientations of interest. One can see from the plots that regardless of
orientation of dipoles, the obtained complex Berry phases require same conditions to be
nonzero over a Brillouin zone as the standard SSH model requires for non-trivial topology.
We obtain the closed integral over k of ¢ as zero for b < 0.5a namely, intracell hopping

amplitudes being greater than intercell hopping amplitudes, and nonzero for b > 0.5a.

2.4.2 Finite Chain and Edge States

When the eigenvalue equation is solved for real space tight binding Hamiltonian
in Equation (2.18) of N unit cells, As predicted from the bulk properties, mid gap edge
states arise when the distance b between two atoms in the unit cell is greater than half of
the lattice parameter a. In the previous section, the mid-gap states in Figure 2.5 are the

edge states and their decay rates are around that of an individual atom.

b/a=055

bla =095

o wms A

: ' g - ! : R e W e Win Wik W e W AW RN |

50 60 70 80 90 100 50 60 70 80 50 60 70 80 90 100
Atom Index Atom Index Atom Index

Figure 2.7: One of the two edge states of an atomic chain with 50 unit cells for different 2

values. left, middle and right panels are for 6 = 0, arccos%, 5 respectively.

It can be seen from figures that as b gets closer to §, probability distributions
start to delocalize towards the bulk.

The probability distributions of the edge states are plotted in Figure 2.7. It can be
seen that the states get highly localized around the boundaries of the chain as we approach
fully dimerized limit, namely, as 3 gets larger. Participation ratio (PR) can be used as a

measure of localization of a state, It is usually defined as:

1 1

R ——i7——— (2.35)
2N 32 (o (ry) !

Where, it measures localizations at atomic positions, and ¢’s are over atomic indices.
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A completely delocalized state 1)(r) = ﬁ, we would have PR = 1 and For a state

Y(r) = d;; that is completely localized at r;, we would have, PR = ﬁ The participation

ratios are plotted in Figure 2.8 for both trivial and topological cases. It can be seen that in

topological case, the edge states do have very small participation ratios near ﬁ

Participation Ratio Participation Ratio
T T T T T T T T T T T T

)PR .
e PR«

‘Ln:»am

Eigenstate Index Eigenstate Index

Participation Ratio Participation Ratio
T T T T T T T T T T T T

PR
“P R

Eigenstate Index Eigenstate Index

Participation Ratio Participation Ratio
T T T T T T T T

=PR=

‘Ln: w @

Eigenstate Index ’ Eigenstate Index

Figure 2.8: The figures show participation ratios of all states for, again § = 0, m’ccos%, 5
respectively from top to bottom. The insets show the probability distributiions

of all states. The right panel is in topologically trivial regime with 2 = 0.3

and the left is topologically nontrivial with g = 0.8. In these figures, the chain
has 50 unit cells..
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2.5 Radiative Properties of Atomic Chain

In this chapter, the Poynting vector of the emitted radiation from different states of
the atomic chain will be investigated at times much larger than the lifetime of an excitation.

In single excitation realm, the time dependent state of the whole model is,

W (1)) = [Wo(t)) + [¥r(1)) (2.36)

Where |W((t)) is the state of the model before emission, and |¥r(t)) is the state after the

occurrence of collective emission from the chain.

|lP0(t)> = |q}at(t)>chain ® |0>field

(2.37)
YR () = (9 chain ® \Pph(t»ﬁezd

The initial (before de-excitation) state of the field is vacuum state |0), and the atomic chain
is singly excited having the state |Wo(£)) = Y., cna(t)ot™ |g). As before, the expression
o'l |g) is used to state that all atoms forming the chain are in their ground state except for
the atom at position 7°,,,. Therefore, it is evident that the initial atomic state | Wy (¢)) is a
superposition of singly excited atomic states. After the chain emits photon to the field, its
state is denoted as |g) implying that the chain, and of course all atoms forming the chain
are in ground state, in a similar manner, the field is in “Pph(t)> = > Cav(t) |1g) and as
in previous sections, the summation is over field modes ¢ and polarizations . We can

rewrite Equation (2.36) explicitly in the form:
(1)) = D cna(t)ot |9) ®10) + 3 cqu(t) 19) ® 1) (2.38)
no qu

The wavefunctions of the excited atomic systems can be found via Weisskopf-Wigner
method under the same approximations that we have done.?’ Yet they are already known
from previous sections, for an infinite chain of atoms, we have, ¢, (f) = Tlﬁe_ 7 Ext gikna Crovs
E}’s are the complex energy bands for infinite chain from section 2.2, and for finite chain,
the eigenvectors and eigenvalues of effective Hamiltonian given by Equation (2.18) are

Et

found numerically obeying ¢, (t) = e h Cno- It is worth reminding that since the con-

tinuous evolution of the initial atomic chain is defined by the non Hermitian Hamiltonian
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Ht, the eigenvalues are complex. Recall the total Hamiltonian in Equation (2.9).

th noz z 7 na ~No
H = Z + > hwgbh,bay — qZ G (€T T, + h.c). (2.39)
qu v

With, the local coupling constant for identical atoms, and parallel dipole moments; g,, =
N
d-€q ; {-. Switching to interaction picture by the use of the unitary operator U,

Uv _ eiWOt(Zna 302520 bql,qu/) (2.40)
The transformed state vector becomes [¥') = U |¥) By the use of Schrodinger equation,
i) = H' ') = ikl [¥) + Uih|¥) = ihlU [¥) + UH [¥) = H'U|¥)  (2.41)

The Hamiltonian in this picture becomes

H' = inUU" + UHUT (2.42)
Giving,
= D Al b — . g (€T TG b, + huc) (2.43)
qv q,V

Here, the detuning A, is defined as,
Ag = h(wq — wo) (2.44)

Substituting Equations (2.43) and (2.38), into Schrodinger equation, we find the following

differential equation for ¢, :
iéqn(t) = Agequ(t) =D gave ™ T 7 cpal(t) (2.45)
no

Initially, the atomic chain is in excited state and no photon is present in reservoir. Therefore,

with the initial condition ¢,(0) = 0, Equation (2.45) is solved for the photon amplitude ¢,
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as:

ef%Et . 67%Aqt

J(t) = gge” T 7ne 0 2.46
Cq () ;gqe Aq—E Cnoz( ) ( )

In the limit ¢ » Eif the time evolution of atomic system amplitudes goes to zero e mPt

0. Therefore, ¢, (t) can be expressed as,

e~ #Aqt

ca(t) = = D e T na(0) (2.47)
no q

Note that at the times we considered (¢ >» ELLI) we also have |¥y) — 0. Therefore, after a

time sufficiently longer than excitation lifetime, we have:
() = Y cau(t) [9) 1) (2.48)
qU

Where, |/ (t)) = |¥(t » h/ET)) Now that we have all the necessary information about
the total state at late times, we can investigate the directional power flow of the emitted

radiaton. The Poynting vector in vacuum is
— 1 — —
S:—<:E><B:> (2.49)
Ho

Where the expectation value is over the state at late times which is given in Equation (2.48)
for large t, and vacuum contribution to the expectation value is eliminated by applying

normal order. This gives an open form

5 - LYEO « B ZBO « E0)) (2.50)
Ho

Where, E*) and B*) are the positive and negative frequency parts of electric and

magnetic fields respectively, and they read:

(2.51)
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We can use completeness relations for both system and bath, and obtain the following

nonzero contributions.

:/jo<<w<>|ﬁ 19) 105 x {g| O] BY) ¥ (2))
—Q¥(8)] B |g) [0y x (g| (O] EC (1))

(2.52)

Where the last two terms are complex conjugation of the rest. From these, for instance,

(g 0| E) |¥’(t)) term with positive frequency part of the electric field gives us,

, hew (77 —int Cnal0)
OEO N (1)) = =i Y4 | g, @ e’ T (T Tna) = iiat Znol) (2.53)
i ; 2e0V 7 1 Aj—E
n,o

The summation over the polarizations v of the radiation can be taken beforehand con-

g is
2eoV

-
substituted, the only v dependence is in (d - €4,) €, term which is mutual for both

sidering that when the coupling constant for identical dipoles g, = d - €

infinite and finite chain.

Z( Z Z di(&5) Y [4 (2.54)

v v
In order to further simplify this, we can apply the fact that, since the unit vector along

propagation direction ¢ , and the unit polarization vectors are orthogonal to each other,

they obey completeness relation.

YI€wlil€awl; = 6 — [dlildl; (2.55)

v

With the help of Equation (2.55), Equation (2.54) is simplified as

M TP = 3D dii 0 — [aldly) = Ydid — (D addl)(Yllsi) @56)

14

Meaningly, we simplified the expression to
Y(d ) =d—(d 93 (2.57)

Since Y, djv = d, Y, di[G]i = d - g, and > ;[] ;J = . Substituting Equation (2.54) and
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the coupling constant g, Equation (2.53) becomes:

oAt

Aq—E[

- = =

- hwg,
0| EC) W (1)) = —i AN (]
B0y = ~13 5 e na(0)

n,o

—

d—(d-9q @58

2.5.1 Radiation From Infinite Chain

For infinite chain of atoms, we have £/ = Ej, = G4 + /G apGpa and ¢,,,(0) =
\/iﬁe“m“ca. Therefore, Equation (2.58) reads:

= —ih i(k—q.)na —1q
O ED |9/(t)) o > eilkmana cy + e~y (0)
4 ;i 2.59)
- e d .—> —> @ h Aqt (
Ay g7
X _)é [d —(d-q§)§]wge 7Aq o

Where we exploited the fact that § - 7, = ¢-7na. And notice that we took the summation

over « is also taken:

Z e_ﬁ'?’w‘ca(()) = e W oy 4 e b)) (2.60)

[e%

— — —
And, d,o = d,;3 = d. While moving to the continuum limit, we can impose the

periodicity along along z on ¢ .

A
- )2 ZHqquLd@ (2.61)
7 4

Where, g, is the component of the photon momentum in the parallel direction to the chain,
q. is the component in the radial direction and the azimuth ¢ is the angle that ¢ makes
with the chain. In Equation (2.59), we can easily carry out the summation over the unit

cells;

Dleltkmana — NGy o (2.62)

n
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Restricting the component of photon momentum on chain direction to k. Substitution

yields:
—ihAVN
E \P/ Zqzb
OLED W) = (opeqyy L ea+ e en)0) G
. (2.63)
T (d. igw €0
X J][d (d-q)qlwgqre md%_d%o

And é = % where L is the normalization length. At this step, I will take the summation
over ¢, making q = «/qi + k2. However, I will not change the notation and denote it
as q. Therefore, it is useful to keep in mind that ¢, is constant and equals to the crystal

momentum k.

ihn/N
O E \P/ —ikb
<0l ’ = @n)225L (ca + e "cp)
» (2.64)
— R ig-7 €F Aqt
Xff[d—(d'Q)Q]quLe Aq_Ekquds@
The integration over the azimuthal angle ¢ of the radiation can be isolated as
2 — — JREN
| - paeT7a 269
0

The integral in Equation (2.65) is a Laplace integral with a pure imaginary phase. Since
the integral has a rapidly oscillating exponential, one can apply the method of stationary
phase, stating that the most contribution will come from the neighborhood of the stationary
point of the phase.3? Stationary point of the phase is where cos ¢ has its maximum which
corresponds to the situation where the azimuths of ¢ and 7 are the same. Therefore, we

have;

27
7 , 2T . o . o
d —(d - i 7qd x @Zkz . P A Ry _|_€—’quj_+lz
|| T =@ e e ~ flane’y e

~ 21 f(q1)e™* Jo(pa.)

Where, f(q1) = d - (E) - 4)§ and p is the radial distance from the chain. We also
have /2% [e#01 =% 4 emiarptid] = 2n(HY + HEY) = 2mJo(pqL) . Where Jy(pq.)

is Bessel function of first kind, and, HZ(,I), HZ(JQ) Denotes Hankel functions of the first
and second kinds respectively. With asymptotic forms ngl)(z) =4/ %ei('z_%p_g), and,
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HI(,Q) (2) = 4 /%e‘i("‘_%p_%). Substituting what we have in hand, we obtain

—ihiv/N

<O| ’ 7[/(47?)80 (ca+e " cp)e
- - Jyipar) oD
o —iwgt P
fo aa[d = (@ - aemer P8

Where, now, after summation over n, and integration over ¢, the z component of ¢ is
fixed as k, and the radial direction of § is fixed to the radial direction p of the position
vector 7°,. In order to determine the final expression for (2.53), we are only left with the
integration over radial component of . The lower limit of the integral can be extended
without worrying about the signs of exponential +7% terms, since their sign will be taken
care of by sgn(—q1p) coming from the stationary phase method. And, we can make
narrow band approximation ¢ ~ ¢ with fiw, = R[Ey] + hwy = heq) considering that
the imaginary parts of energies are relatively small and, ¢7 ~ gf? — k? for non-oscillatory

terms except from the one in denominator.

e/ N : : 2
0| EC) W) = o kb ke |2
<01 E® |¥'(6)) =5 (ea e~
— —
x Y (g = k)[d = (d - §)q] (2.68)
(0%
X foo dq e~ it eHPiL=%) 4 e=ilPaL=%)
—00 Aq - Ek

This approximation we made is valid since we applied the rotating wave approximation,
we are imposing that the spectral width of emitted light is narrow around a mean frequency
cqp, i.e. the amplitude C; is non-zero only inside the range Aw, which is small compared
to the mean photon frequency of emitted light. |wy — cqh| ~ Aw « cg).3*3* Poles of
the integral over ¢ in Equation (2.68) is at ¢, = qOL where, qg = %(Ek + hwyp) and,
(qOL)2 + k% = (qo)?, since S[E}] is always negative, there is no pole in the upper half
plane. For the first exponential term, we can close the contour from the lower half-plane.
However, for the term including Hankel function of second kind, since r + ct is always
positive, we obtain exponential growth in lower half-plane, we need to close the contour
from upper half plane and the result of the integration is zero. Embedding the constant

T . . .
e "4 terms into coeflicients c,, this gives:

0
1 , p . W ,
J din — Ek( e (PaL=1) 4 omiPaL—F))pmiwat
» (2.69)
_ 2T —igoct+(pay) gy — P
he © ( c)
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The Heaviside step function 6(t — £) comes from the fact that for p > ct, we should close
the contour in the upper half plane obtaining zero since there is no pole. And it also takes
care of the fact that at time ¢, physically, the radiation cannot be found at positions p > ct.

Gathering all together, we have, for Equation (2.53),

Z(+) [ :\/N 3 12 N3 T A —ikb
SGIOTED [¥(0)) =Fon | (= B)T[d = (d - )l (ea+ e ep) o0
x oi(—doct+pay +kz) 0t — B)
c

Again, Tused the notation: hcg) = R[Ej ]+ hwy coming from narrow band approximation,
2 : . :
9 = = (Ey, + huwo) and (g5)” + k? = go? coming from the contour integration.
In a similar fashion, the positive frequency magnetic field term gives,

= VN 2 3 — .
\P/t B(—) _ 4 /2_k_2 2ra d ikb
VOB 19210y =F5 A 706 = K)T[3 x d](ea + e ™ep) o)
x eTi(=aietrpaa k=) gy L)
C

This makes the Poynting vector introduced in Equation (2.49) lie along ¢:

g :<\P<t>| BO) 19310 x (9] 0| BD [(8)) + hec. 2.72)
0

2.5.2 Radiation From A Finite Chain

For a finite chain, after the summation over field polarizations is taken, Equation
(2.58) is,

;iAqt — —
OIED|w'(1)) = i) My 07T ~Toae, (0)L[d — (d-3)d] @73
7 2€0V Aq —F

An important remark is that the indices na in complex energies £, do not correspond
to atoms at unit cell n sublattice « instead, FE,, are the eigenvalues of tight binding
Hamiltonian in Equation (2.18) that correspond to state with amplitude c¢,,, out of 2NV
eigenvalues and eigenvectors. We can define the distance from atom at position 7°,, to
the point of consideration as Tna = T — T no beforehand. And an important distinction

from above calculations is that since the chain is now finite, the cylindrical symmetry is
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broken and we cannot impose periodic boundary conditions in any direction for . We
no longer have the advantage to take n summation beforehand to restrict the z direction of

photon momentum to k. To proceed with the summation over ¢, we have:

y
2 P f ¢*dgdQ (2.74)

7
In continuum limit. This makes Equation (2.73):

O ED|# (1) = ~ip 5 32% fq wg e TFre [d = (d - 4)q]

e~ At

L 4gdQ
“ Ay — Ena

Where, again, Zna = T — T ne is the distance between the point of interest, and the atom

at position 7 ,,. The integral over the solid angle Q can be isolated as follows.
f T [d — (d - §)q] d (2.76)

Performing Stationary phase approximation for integration over the solid angle Q, where,

the stationary point occurs when ¢ /%, we obtain:

RN — — 2 : ; s -
felq-lrzu [d _ (d q)(ﬂ dQ = m:<€1qz o e-qu)[d _ (d .%na)%na] 2.77)

Substitution gives:

O] Et “P' 260 2e0(2m)2 Z 4 200 —Cna(0 — (d - tha)ina]
2.78
J~ (elqz _ 6-1qz)67ﬁAqt J ( )
X1 qw q
" Ag—Ena

Again, applying the narrow band approximation, we have for hw, = Er — hwy = hcgy,

/ =z a2 e
O EC|9(t)) = ~ ot %22 ——na(0) [d = (d - £n0)nal

Zna

(2.79)

dq

o JOO (elqz _ 6-1qz)€fﬁAqt

X ¢
o J Ay — B



(natect) Jg — ( since always tpq + ¢t > 0. and in

In remaining integral, the ¢! S(o)o e "
the q integral we can extend the lower limit to infinity as before. Remaining expression
has a pole at ¢ = 7= (hwy + R[Epa] + iS[Ena]) = qo which is always in the lower half
plane since S[FE,o] < 0. As discussed above while considering an infinite chain, using

the residue theorem, we obtain:

dg = 76iqo(znafct)9(ct . Zna> (2.80)

JOO eld(tna—ct) 271
—oo Ay — Enq hc

Gathering these, we obtain the following.

ih 1 s
(O] B+ (1)) = i Efcm(())[d — (d  tna)inal
0 pa M (2.81)

)

4 q/QGZqO(Zna ct)e(ct = Zna)

Simplifying the expression using BAC-CAB [Z — (E) Tna)inal = [g(%na Tha) — (3 .

Tna)tna] = tna X (E) X Tpa ), We have:

ih 1 -
(0] B+ V(1)) D —na(0) (Ena x (d % tna))
dmeg St (2.82)

n,

X q’261q0 (tna— Ct)Q(ct — na)

Similarly, E) (=) term gives,

¥ B [g)[0) =

1 —
Z —na(0) Fpa x d)
47T€ ¢~ tnq (2.83)

% gt - 5 (o= (et — 1)

And the Poynting vector in Equation (2.49) as:

—

S = :<\P<t>r E©) ) 10) x (g O] B [®(8)) + h.c. (2.84)
0

Figure 2.9, The Poynting vectors of radiation from states with different character-
istics are Visualized in the x — 2 plane for a finite chain of 50 unit cells in the radiation zone
att » ( ik The chain lies between z = —7.62 and z = 7.62, lattice parameter is taken as

0.3\, and the intacell separation is 0.8a. Since the chain lies along z axis (z = 0, y = 0),
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to avoid taking the plane in which the chain lies on, there is an offset by y = 5a in figures.

In all plots, ¢t = lOonLj except from the most radiant state of the chain with 6 = 7 for
r
Er
directional power flow from the most subradiant state for the three angles of consideration

which, the radiation is illustrated at ¢ = 50w+ . The bottom row of the figure shows the
in logarithmic scale. It most clearly reveals for dipoles oriented parallelly to the chain that
the emission from the subradiant state is significantly suppressed in the radial direction
of the alignment of the chain. Implying that, the emission occurs from the ends of the
finite chain, and it is suppressed from the bulk. However, it is less clear to see for other
alignments. In the central row, emission from the state with the shortest lifetime is shown
to be dominant in the direction radial to the bulk of the chain, except for = g, since the
radial direction is also the direction of the dipole moments. Plots in the top row are for
edge states localized at one end of the finite chain. Notice that they display a radiation
pattern similar to that of individual dipoles, given the dipole moment orientations. It was
also shown in Section 2.3.2 that decay rates of the edge states were close to single atom

decay rate.
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Figure 2.9: The figures in the right column are for the configurations where the dipole
moments forming the chain are parallel to chain direction ( d //z 0 = 0). ﬁgures
in the central column are for § = arccos (1 /N3 ) and in the left column, d 1z
0 = %), the intercell and intracell separations are chosen such that a = 0.3\,
b = 0.8a. In every plot, the number of unit cells is 50, the chain lies on z
axis. And the Poynting vector is plotted at around wio = 1OELI except for the
most radiant state of perpendicular dipoles, Poynting vector from this state is
demonstrated at wio = 50ELI. The dipole moments lie on « — z plane in every
case. And the rows are for states with different properties. The top row shows
one of the edge states for each situation, the middle row shows the most radiant
states, and the bottom row shows radiation for subradiant states in logarithmic
scale.



CHAPTER 3

CONCLUSION

In this thesis, the topological and radiative behaviors of a one-dimensional diatomic
chain immersed in vacuum field is investigated. Radiative properties of the model are
discussed via the decay rates obtained from the complex eigenvalues of effective non-
Hermitian Hamiltonian describing the interacting system with a fixed excitation number.
It is shown for a singly excited infinite chain with two identical atoms per unit cell that
radiative dark states arise when the lattice constant is smaller than half the resonant
wavelength of the atoms. It is shown that the same condition applies for a finite chain to
have subradiant states with decay rates close to zero. However, decay rates of these states
remain nonzero because of finite-size effects.

The presence of dissipation and vacuum mediated long range hoppings distin-
guishes the system of interest from the standard SSH model. However, for obtaining a
topologically non-trivial phase, the criteria are shown to be the same as SSH model. For
this model, the hopping amplitudes depend only on the atomic spacings. When the intracell
hopping amplitudes are smaller than the intercell hopping amplitudes, the chain exhibits
non-trivial topology and this occurs when 2 < 0.5. The Hamiltonian that effectively
describes open system dynamics of consideration is non-Hermitian, so orthogonality of
eigenstates are not guaranteed anymore. Therefore, the bulk boundary correspondence is
shown on a biorthogonal basis, using the complex Berry phase. In real space, the mid-gap
edge states are shown to highly localize at the edges as the intracell separation gets larger
compared to half the unit cell length. The radiative decay rates of these localized states
are close to that of an individual atom.

When the dipoles are aligned parallel to the chain, radiation in radial direction is
suppressed for subradiant states, while the intensity of radiation from states with largest
decay rates is highest in the radial direction. On the other hand, the edge states display a

radiation pattern similar to that of a single dipole radiation.
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