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ABSTRACT

Existence, Uniqueness and Stability Results For Some
Nonlinear Hyperbolic Partial Differential Equations

Faruk DEVELI

Department of Mathematics

Doctor of Philosophy Thesis

Supervisor: Prof. Dr. Canan CELIK KARAASLANLI

The main goal of this thesis is to contribute to the field of nonlinear analysis of
partial differential equations (abbreviated as PDEs) by investigating the existence
and uniqueness (E&U) of solutions using fixed point theory. More specifically,
E&U results are obtained for several second-order nonlinear hyperbolic PDEs.
Moreover, the stability of the corresponding nonlinear hyperbolic PDEs is also
performed in the sense of Ulam-Hyers (UH) and Ulam-Hyers-Rassias (UHR).
Finally, to support and illustrate the E&U and stability results obtained, several

examples are provided.

Keywords: Existence of solution, fixed point theory, partial differential equation,

Ulam-Hyers stability, Ulam-Hyers-Rassias stability.

YILDIZ TECHNICAL UNIVERSITY
GRADUATE SCHOOL OF SCIENCE AND ENGINEERING



OZET

Baz1 Dogrusal Olmayan Hiperbolik Kismi

Diferansiyel Denklemler Icin Varhk, Teklik ve
Kararhhk Sonuclar:

Faruk DEVELI

Matematik Anabilim Dali
Doktora Tezi

Danigman: Prof. Dr. Canan CELIK KARAASLANLI

Bu tezin temel amaci, sabit nokta teorisi yardimi ile ¢oziimlerin varlik ve tekligini
(E&U) aragtirarak kismi diferansiyel denklemlerin (kisaca PDEs) dogrusal olmayan
analizi alanina katkida bulunmaktir. Daha spesifik olarak, ikinci dereceden dogrusal
olmayan hiperbolik PDEs icin E&U sonuglari elde edilmistir.  Ayrica, ilgili
dogrusal olmayan hiperbolik denklemlerin kararliligt da Ulam-Hyers (UH) ve
Ulam-Hyers-Rassias (UHR) anlaminda gerceklestirilmistir. Son olarak, elde edilen
E&U ve kararlilik sonuglarini desteklemek ve drneklendirmek icin birka¢ ornek

verilmisgtir.

Anahtar Kelimeler: Coziimiin varligi, sabit nokta teorisi, kismi diferansiyel

denklemler, Ulam-Hyers kararlilik, Ulam-Hyers-Rassias kararlilik.
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1

INTRODUCTION

Differential equations have been used as mathematical models to make a description
of nature. That is why many of the general laws and phenomena in many fields such
as physics, chemistry, biology and engineering are formulated. As can be seen in
our life, reactions to a stimulus can often be delayed, even for a short time. The
behavior of phenomena at a certain time depends on the past history/memory, in
which case delays are observed in the mathematical descriptions (modelling) of
the phenomena under consideration. Taking the recent Covid 19 pandemic as an
example, the time delay in the models of this situation can be associated with the
duration of the infections period. Such a class of differential equations containing
delays in their formulations is called delay differential equations. Phenomena are
also influenced by many parameters due to the behaviour of nature. For this reason,
PDEs based on multiple independent variables are more suitable as compared to
ordinary differential equations (ODEs) to describe phenomena in nature. In this
manner, it allows us to analyze and shed mathematical light on the behaviour of
dynamics for real-world problems. In order to have an insight into this behaviour,
one of the most important analysis is the determination of whether the mathematical
description has a solution. For instance, solving the corresponding differential
equation serves to understand how phenomena will change over time. When the
behavior of a phenomenon happens in only one way, the uniqueness of the solution
allows us to make a single decision about this behavior, thus eliminating solutions
that do not occur in reality. Sometimes it can be very difficult to determine the
exact solution to a differential equation, even when it exists. For this challenge,
algorithms are being developed to find approximate solutions, particularly in
numerical analysis. To draw healthy inferences about the dynamics of an equation
using these approximate solutions, it is natural to hope that they are close to the
exact behaviour of the equation. The problem of whether there exists an exact
solution close to a function that almost solves a given equation establishes the
concept of stability for functional equations proposed by Ulam, which is also named

after him.



Nonlinear effects can often be observed in phenomena such as the dynamics of
the population in the interaction between predator and prey. In order to describe
this phenomena in a more realistic way, nonlinear differential equations are used.
They are thus quite common in different scientific fields and are an active area
of research in mathematics. Their analysis is not a simple task. It often requires
the use of special analytical techniques. As a powerful tool in nonlinear analysis,
fixed point theory can be shown as an example. Fixed points hold significance
as they denote states of equilibrium, stability, and serve as solutions to a range of
problems. The theory of fixed points offers techniques and approaches for analysing
the existence, properties and dynamics of these special points. For instance, this
theory has been a mathematical material to John Nash’s result in game theory, which
earned him a Nobel Prize in economics, and has also played a significant role in
investigating the E&U of solution for nonlinear differential equations. Moreover,
just by looking at [|1]], one may say that the theory has interactions with many areas
of mathematics from topology and analysis to algebra and geometry. Therefore, it
would be appropriate to characterize this theory as interdisciplinary. As can be seen,
this interdisciplinary theory has many applications in various fields of mathematics
and other sciences. To illustrate the theory with an interesting problem, one can
consider the question: "Is there always a pair of opposite points on the Earth’s
equator with the same temperature, where the temperature varies continuously?" At
first sight it seems difficult to answer this question. However, one can answer this
question in the affirmative with the help of the Borsuk-Ulam theorem. Because of
the above mentioned, as Felix Browder said, "The theory of fixed points is one of

the most powerful tools of modern mathematics".

This is followed by a review of the literature on some PDEs subjected to existence,

uniqueness and stability analysis, which will be carried out throughout the thesis.

1.1 Literature Review

In the theory of differential equations, one of the main areas of research is whether
there is a solution to the equation, and if so, its uniqueness. In this area, the
contributions of Cauchy, Peano, Picard, Lindel6f and Lipschitz on the initial value
problem (IVP)

U (z) = f(z,u(z), u(wo) =uo (1.1)

have been pioneering studies in the literature. In [2, 3], Peano established that there
is a solution to the equation assuming f is continuous, and extended this discovery
to systems of ODEs by employing successive approximations. Peano’s theorem

offers a very easily controllable condition to verify the existence of a solution.



The fundamental theorem, however, merely guarantees existence and gives no
information about its uniqueness. Another fundemantal theorem in ODEs is the
so-called Picard-Lindelof theorem, which requires a continuous function f to be
Lipschitz with respect to (w.r.t.) u, but it guarantees both the E&U of solutions.
Additionally, this theorem provides a method for approximating a solution. In the
theory of ODEs, two significant theorems mentioned above have caught the interest
of many authors, leading to the availability of many proofs today. Proof techniques
can be categorized into two groups depending on "construction of a sequence of
approximate solutions such as Tonelli sequence or the Euler-Cauchy polygons" and
"fixed point theory". Among these two groups, fixed point theory provides elegant
proofs for these classical theorems. For instance, the Peano and Picard-Lindelof
theorems are associated with the Schauder and Banach fixed point theorems (FPTs),

respectively.

As an analogue of the ODE (I.1I) in PDEs, the following example of hyperbolic

type can be considered:

QPu(z,t) ou(x,t) Ou(x,t)
o = f(tul, 1), S ) (1.2)
or 82u(a.1)
u(w,t)

The boundary value problem so called "Darboux-problem", which is the equation
(1.2) (or the equation (1.3)) together with the conditions

u(z,0) = p(x) and wu(0,t) =1(t) where ¢(0) = 1(0), (1.4)

has been treated by many different methods such as method of successive
approximation (today attributed to Picard), an analogue of the Euler-Cauchy
polygon method and fixed point method. Darboux [4] and Kamke [5S]] obtained a
unique solution to the equation (1.2)-(1.4) by applying the method of successive

approximation under the conditions that the countinuous function f(x,t,u,p,q),

u
ot>

to u. Unlike these papers, Hartman and Winter [6] have shown that the Lipschitz

p = % and ¢ = is bounded and satisfies a Lipschitz condition w.r.t. p,q and
condition in the argument v can be omitted to guarantee the existence of solutions,
though not in the uniqueness result, see also [7-9]]. Also, Lungu and Rus [10]
recently proved the E&U result for this equation under the Lipschitz condition
w.r.t. three variables as mentioned above by using the Banach FPT converting the

differential equation into the corresponding integral system.

In the simple scenario that f(z,t,u,p,q) is independent of the p and ¢ (that is,



the other equation (I.3))), Montel [11]] proved that there is at least one solution to
this equation with the conditions (I.4), but it is usually not unique, as shown by
simple examples in [[7] and [[6]. His proof was an adaptation of the standard proof
of Peano’s existence theorem in the theory of ODEs. In addition, by considering
this equation in Banach space, the existence of a solution is investigated in [12] and
[13]] by the use of the FPT of Sadovskii.

More specifically, the two types of Darboux problem (I.2) and (I.3) mentioned
above has been also considered in functional PDEs. Czlapinski has mainly dealt
with these problems for such types of PDEs in his studies [14-17]] and discussed
the existence of a solution. Rus has considered the type (I.3]) of Darboux problem
in a general framework and presented an E&U result in [18]. Other aspects like
periodicity, upper and lower solutions for these two types of equations mentioned
above have been considered by many authors besides the E&U of solutions [19-22].
For further details about these equations, see also [23] and to the references given
in these papers. Unlike these types of equations, Rzepecki [24] has considered the
right-hand side (RHS) function f as follows:

Q*u(x,t) Du(x,t)
w0t (WUW% W) ()

with the same boundary conditions as in (I.4) and has examined the existence of
solution in the first coordinate plane R, x R,. However, the question of whether
there is a solution to the equation (I.5)-(T.4) or not, has not been the subject of
many papers. Moreover, a fractional counterpart of the aforementioned equation
has recently derived by utilizing fractional derivatives, which has been currently
examined, and the existence of solution has been discussed in [25], where the

existence theorem has been proven via fixed point theory.

In addition to E&U problems, another subject discussed in the thesis is stability
analysis and the background on the concept of stability is mentioned below. At
a mathematical colloquium organised by the University of Wisconsin in 1940,
Ulam gave an extended talk. During this talk he dealt with various important
open questions [26]. One of the questions he posed concerned the stability of
homomorphisms: Consider two groups: (F1,0) and (FEs,*), where the second is
equipped with a metric p(-, -). For a given € > 0, is it feasible to find an 6 > 0 such
that if any function h : E; — FE, fulfilling the following relation

p(h(zoZ),h(x)xh(T)) <6, z,T€ E,

then there is a homomorphism ¢ : F; — FE, satisfying p(h(x),g(z)) < e for



x € E,7 The functional equation for homomorphisms is said to be stable if there is
a real homomorphism nearby when a mapping is almost homomorphic. That is, the
stability means that there is an exact solution near each approximate solution of the
equation under consideration. An answer to Ulam’s question was provided a year
later by Hyers in [27]: Let B, and Bs denote real Banach spaces and ¢ > 0. If a
function h : B; — B, satisfies

|h(z +7) — (h(z) + h(T)|| <e, =T € By, (1.6)
then there is a unique additive function g : By — By which fulfills
Hh(aj) - g(:E)H <€ x€ B.

With the help of Hyers to Ulam’s question, this concept of stability was later
recognized in the literature as UH stability. Moreover, Rassias [28]] enhanced the
result of Hyers by considering a function dependent on = and 7 instead of € in (1.6)),
which is referred to as UHR stability in the literature. Furthermore, Obloza was
the first author to study this type of stability in the context of linear differential
equations [29]. Later, Alsina and Ger [30] demonstrated that for any differentiable
function ¥ : I — R fulfilling |19’(m) — J(z)| < efore> 0andall z € I (an open
interval of reals), the differential equation «’(x) = u(x) has a solution represented
as u in a way that ensures ]u(w) — 19(95)’ < 3e for all x € I. Jung [31] employed
the fixed point method to establish the stability in the sense of both UH and UHR

of the equation
U (x) = f(z,u(z)).

This study extended the previous results to the nonlinear case. The concept of this

stability was also discussed in many topics such as ODEs and PDEs [32-37].

1.2 Objective of the Thesis

In this thesis, the general structure of a second-order PDE for u(x,t) is considered

as follows:

0%u 0%u 0%u ou Ou
A B ol <,t, ,—,—).
o2 ozt T Vo T I\ o
If the equation above is hyperbolic, a suitable transformation can reduce it to the
canonical form below:
0*u
ndy

ou 8u).

:f(ﬁy%uaa—nva



Since there is no general method to solve nonlinear equations as compared to linear
equations, these equations have to be treated as a separate problem. For that reason,
this thesis aims to investigate the E&U of solutions as well as the stability of
hyperbolic equations in canonical form with several functions f on the RHS. These
equations are determined by considering the above equation and its various forms

as the general second-order hyperbolic PDEs are reduced to this type of equation.

1.3 Thesis Outline

This thesis consists of five chapters and in the current chapter (Chapter [I)) the
importance of the analyses (existence, uniqueness and stability) that are discussed
in this thesis is briefly emphasized. The objective of the thesis is then presented

through a literature review.

In Chapter [2] there is an introduction where the basic concepts of PDEs are given.
Then it is followed by the main theorems of fixed point theory used as a tool

throughout thesis and the concept of stability handled in this thesis is also presented.

There are four sections in Chapter [3| where the E&U of solutions for various types
of hyperbolic PDEs are analyzed by applying fixed point theory. Inspired by
Burton’s method called "progressive contractions"”, his methodology is extended
to two-dimensional regions unlike the other related studies in Section It is also

applied to the hyperbolic PDEs with two delays:

OPu(x,t)
W_f(x,t,u(x,t),U(w—Oé,t—ﬁ)) (z,t) € D
u(x,t) _ ¢(l‘,t> (l‘,t) c D

with
u(z,0) = o(x) and w(0,t) = ¢(¢)

where D = [0,a] x [0,0], f € C(D xR% R), D = [—a, a] x [—4,b]\(0,a] x (0, ],
¢ € C(D,R), p(z) and ¢ (t) are continuously differentiable mappings with ¢ (z) =
o(x,0), ¥(t) = ¢(0,t) for the intervals [0, a] and [0, b], respectively. Later on,
Banach’s FPT is utilized to derive an E&U result for these equations. This method
takes advantage of the sufficiency of the Lipschitz condition of the function f w.r.t.
the third variable only, ignoring the Lipschitz condition w.r.t. the fourth variable. In
Section the same theorem is also utilized to establish the E&U of solutions for
the hyperbolic functional PDEs:

0*u(z, 1)

T f(x,t,u(g(:c,t),h(iv,t)))7 (z,t) € D

6



with

u(,0) = o(z)

u(0,1) = 4(t)
where D = [0,a] x [0,8], f € C(D x R,R), g € C(D,[0,al]), h € C(D,]0,b]),
©(z) and 1 (t) belong to the space of continuously differentiable mappings defined

such that (0) = ¢(0),

on [0, a] and [0, b, respectively. After that, based on the unique solutions discovered
in the bounded domains, the relevant result is then extended to an unbounded
domain. Section [3.3is devoted to investigating the E&U of solutions to the implicit
hyperbolic PDEs:

DPu(z,t) 0*u(z, 1)
W:f(l’,t,u(l‘,t),w); (I7t) GD
with
u(z,0) = () such that (0) = (0),
u(0,t) = ¥(?)

where D = [0,a] x [0,b], f € C(D x R,R), p(x) and 1 (t) belong to the space
of continuously differentiable mappings defined on [0, a] and [0, b], respectively.
Under appropriate conditions, the existence result is proved based on Schauder’s
FPT, and the uniqueness result is demonstrated using the Wendorff lemma. In
Section [3.4] following the idea of utilizing Banach’s FPT to construct well-defined
mappings, a novel proof of the existence theorem originally proposed by Hartman
and Winter for the following PDEs is constructed based on fixed point theory.

S = f( bt D 2. @
with
u(z,0) = o(z) such that  (0) = (0).
U(Ov t) = ?ﬁ(t)

where D = [0,a] x [0,b], f € C(D x R3,R), p(z) and 1(t) belong to the space of

continuously differentiable mappings defined on [0, a] and [0, 4], respectively.

Chapter [ is divided into three sections, each of which investigates the stability
of corresponding PDEs discussed in the first three sections of Chapter [3] utilizing
some tools from Picard operator theory, the Wendorff lemma, and weighted norms.

Finally, the thesis ends up with a conclusion (Chapter [3)).



2

FUNDAMENTAL CONCEPTS

In this chapter, some basic concepts of PDEs will be mentioned and the concepts,
definitions and theorems that are used throughout the analyses performed in this

thesis will be given.

2.1 Some Basic Concepts of PDEs

A PDE concerning a function u(z,t, - - - ) establishes a relationship between u and

du du *u u u
Oz’ Ot Ox2’ dxOt’ Ot2)

its partial derivatives such as -+, and can be expressed as:

% @ *u 0*u O*u
"B ot 9z dzot o

F(z,t, - ) =0 (2.1)

where [’ is a specified function, z,¢,--- represent independent variables, and
u(z,t,---) is referred to as the dependent variable. The highest derivative that
appears in equation (2.I) determines the order of this equation. The equation
described above in this configuration is referred to as implicit PDE. If the highest
order partial derivatives in this equation are isolated on one side, this equation is

called explicit.

A PDE is called as linear if the coefficients of the unknown function v and all its
derivatives are solely dependent on the independent variables, otherwise it is said
to be nonlinear. Moreover, the family of nonlinear PDEs are divided into three

categories as follows:

* A PDE of order k is called semi-linear if the coefficients of the k£ order
partial derivatives of the unknown function depend solely on the independent

variables.

* A PDE of order k is called quasi-linear if the coefficients of the k order

partial derivatives of the unknown function depend on the independent

8



variables and/or on partial derivatives of the unknown function of order at

most £ — 1 (including the unknown function itself)

* If a (nonlinear) PDE is not quasi-linear, then it is classified as fully nonlinear.

It is clear from the above definitions that a semi-linear PDE is also a quasi-linear
PDE. The above categorization of PDEs into linear, semilinear, quasilinear, and
fully nonlinear represents a rough hierarchy of complexity in terms of studying and
solving these equations. Indeed, the mathematical theory of linear PDEs is now well
understood. On the other hand, less is known about semi-linear and quasi-linear

PDEs, and even less about fully nonlinear PDE:s.

Let us now consider the general structure of a second-order PDE with the unknown

function u(z, t) specified as

0%u 0%u 0%u ou Ou
A + B +C g(m,t,u,%,E)

— 2.2
0x? O0xot ot? (2:2)

The other classification of the aforementioned PDE depends on the sign of the

following quantity called the discriminant of this equation, which is computed as
A(z,t) := B*(z,t) — 4A(x,t)C(z, 1).

If A > 0, the equation is said to be hyperbolic; if A = 0, it is parabolic; and if
A < 0, itis elliptic. This classification is mathematically based on the potential for

reducing the given equation to canonical form through coordinate transformation.

To illustrate the significance of the discriminant and thus the classification of the
PDE (2.2)), we demonstrate how to reduce this equation to its canonical form by

transforming the variables (z, t) into the new ones (7, )

n=mn(x,t) and v =7(z,?) (2.3)

where both 7 and v are twice continuously differentiable. Additionally, the Jacobian

of this transformation given by

o 77:1: 77t
Ve TVt

is non-zero in the region under consideration. Using the chain rule, we compute the



terms of the equation (2.2)) in these new variables

ou_oudy | uon
Or Ondx 0Ovyox
Ju Odudn = Oudy
ot onot oyt
P Tyt 5 0w oy | Ou9y*
ox?  0n?\ox ondvy 0x dx 0y \Ox
oud*n  Oud*y
o dx® " Oy dx?
0%u _5’2u onon  O*u [(Ondy Ondy
dxdt  On2dx Ot | Ondy (%E E%)
L Pudiy  ou Py, 0u P
0y?0x Ot  Ondxdt Oy dxdt
o (@ LI On GO u "
o> on? \ ot ondvy ot ot~ Oy?> \ Ot
L oudE | s
on otz Oy o2

Substitution of the above statements into equation (2.2) gives

Ag:“; i B*a(?;;’y +c*g%7; _ (n,%u, g—z, g—:) (2.4)
where
Hence,

onody Ondvy 2
*\2 *OE R R S 2
(B*)2 — 44%C < e (B 4A(J>.

From this relation, it follows that the discriminants of the equation (2.2)) and the
transformed equation (2.4)) have the same sign, and hence the type of equation will

not change under the transformation (2.3)).

Now let us consider the case of the equation (2.2) being hyperbolic, that is B? —
4AC > 0. This implies that the equation A\?> + BX + C' = 0 has two distinct real

10



roots, say A; and \y. Choosing 7 and ~ in a manner that

n and @:)\G'y

87)_)\ v
Yot or ot

o (2.5)

it can be seen as follows that the coefficients of 0%y o L and 2 a 2% will be zero:

A*_A(@) +Banan+(](an> <AA2+B>\1+C)(677> =0,

gx gxgt gt gt
c*:A(a—D +Ba—la—z+(]<£) <A)\2+B)\2+O)(aZ) — 0.

To determine the existence of 7 and ~ satisfying the equations (2.5), we consider

the characteristic curves of these equations given by

dt dt
dx gy dx 2

The solution curves of the above equations, known as the Lagrange’s auxiliary
equation, are as follows:

t+Mx=k and ¢+ Xz =k,

where k1, ko are integration constants. With the following choices for 7(x,t) and

V(z,t)
n=t+MNzr and vy=t+ Az,

one can obtain that

0%u Ju Ou 1
G( ) ) _)7 G = on
onoy G 877 oy BJ
which is another hyperbolic equation called "canonical form" of the original general

hyperbolic equation (2.2)).

Example 2.1. Let us examine the equation below:

Pu  ,0%u )

32 % 8t2_0 on Q= {(z,t) € R*|z #0}.
Comparing the given equation with (2.2)), one can get A = 1, B = 0 and C' = —1?
Then the discriminant of this equation is A = B? — 4AC = 42* > 0 and so the

equation is hyperbolic. The solutions of the characteristic equation AN?+ B\ +C =

0 are \; = x and Ay = —z. The corresponding characteristic curves are
dt
— =*x
dx
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whose two solutions are ¢ + 952—2 =kyandt — %2 = ko. Taking the transformations n

and v as follows:

n=t+— and = —I—,
2
we get
ou_ou, ou
ox _87731: 8731:
0?u . 02ux_ 0?u ., —i—%—x 0%u x—@x _ Ou
ox2 "\ on? onoy on 0yOn 0y? oy

N Pu  D%u ou  Ou
=x -2 + + 5 — 5
on? ond~y 072 an Oy

and similarly

du Ou  Ou

o oy oy

0%u :82u N 0*u v, 0%*u
otz on2 02 onody’

Substituting these expression in the given equation, we have

Pu 0% _$2(82u 5 Pu  Pu  Pu  Pu 0?u )

MR 4 Y - -
02 " o of  Conoy Toe 0P o2 “onoy
ou Ou
L%y
on Oy

This yields that

Tu _ L(Ou_Ow)_ L _(Ju_ 0wy
ondy  4x2\9n  Ov) Aly—m)\on Oy

which is the canonical form of the corresponding original equation.

2.2 Fixed Point Theory

The theory of fixed points is a mathematical discipline concerned with the E&U
of solutions to equations in the type 7'r = x (x represents the fixed point of 7).
Although this equation may seem simple, the fixed point has a profound impact as
it represents the solution, stability, and equilibrium point of many problems. Since
various problems in different fields can be reduced to the simple fixed point equation

mentioned above, having such a special point enables us to make assertions about
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these problems. For instance, one can consider the IVP given below:

u(z) = f(z,u(z), u(zo) = uo.

If f is continuous, then this equation can be converted into an integral equation as

follows:

u(z) = ug + /I f(s,u(s))ds.

o
N J/
-~

=Tu(x)

Hence, the fixed point of the operator I’ represents the solution to the given problem.
Now, let us initially give the concept of Lipschitz mappings to introduce Banach’s
FPT, which exemplifies mathematical beauty in terms of the simplicity and elegance

of its proof and its wide range of applications.

Definition 2.1. Consider a metric space (F, p). A mapping 7' : E — E is referred
to as Lipschitz if there exists a constant L > 0 such that

p(Tx, Tz) < Lp(x,T) forany x,7 € F.

The smallest value of L satisfying this inequality is known as the Lipschitz constant

of T'. Then this mapping specifically called a contraction mapping when L < 1.

While the continuity of a Lipschitz mapping is evident, the opposite is not usually

true. This fact can be demonstrated with the following example.

Example 2.2. Consider the mapping on R given below

rsin L, z € R\ {0}
0, x = 0.

Txr =

Obviously, this mapping is continuous on R. However it is not a Lipschitz mapping.

If it were not so, there would be L. > 0 ensuring that
Tz —Tz| < L|z — 7|
— : 1 — 1
for any x, 7 € R. Taking z,, = Tiom and T, = 5, we get

Tz, — TT,| < L|z, — T,

)

leading to the following

dn +1
T dn(2n+1)

13



This causes the contradiction 2 < ( as n goes to infinity.

The theorem stated below, proved by Banach in 1922, is one of the best-known
FPTs.

Theorem 2.3 (Banach’s FPT). Consider (E, p) as a complete metric space, and let
T : E — E be a contraction mapping. Then T’ possesses a unique fixed point in E.
Additionally, the sequence {x,} given by

Tpi1 =12, n=12 -

converge to the unique fixed point.

In the previous theorem, which is referred to the contraction mapping principle,
Banach ensures the existence of unique fixed point for the mapping provided that
it is a contraction and also gives the method of how to find the point. This method
known as Picard iteration or successive approximations in the literature is roughly

illustrated as follows:

yd\
®
4
N
,,,,,,, 4,,,,, ‘
\ SHN
: N 1
,,,,, . A T@o)
\ 3 3
g G T@)
| i } T(x2) i
| | | \
T To T i) x

Figure 2.1 The convergence of Picard iteration to the fixed point x* of T’

Unlike Banach’s FPT, Brouwer put forward a FPT known by his name, where he
takes continuity as the only condition for the mapping. Before stating this theorem,

let us give a familiar result from calculus:

Every continuous function f : [a,b] — |a, b] has a fixed point.
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This simple case can be considered as the one dimensional version of Brouwer’s
FPT. The important theorem given below finds extensive applications in nonlinear

analysis as well as many other fields of mathematics.

Theorem 2.4 (Brouwer’s FPT-Version 1). Let T' be a continuous mapping from a

closed unit ball B in R" into itself. Then T possesses a fixed point.

An alternative variant of Brouwer’s FPT is as follows:

Theorem 2.5 (Brouwer’s FPT-Version 2). Suppose S is a convex, compact and
nonempty subset of R", and let T' : S — S be a continuous mapping. Then T

possesses a fixed point.

Brouwer’s FPT is only applicable in finite dimensinal spaces, not infinite ones. The

following example explains this situation.

Example 2.6. Take into account the Banach space ¢, of sequences converging to 0,

equipped with the norm

||3:H = sup ‘:cn , where = (x1,29, ).
neN
Let B represent a closed unit ball in ¢y, and define the operator 7" : B — B as
follows:
Tx = (1,21, 29, ).

The continuity of 7' is evident as the equality HTx — TEH = Hx — EH holds for
every x,T € B. However, T' does not possess a fixed point in B because Tx = x

implies that xr1 = x5 = --- = 1 and hence x ¢ B C cy.

One of the generalizations of Brouwer’s FPT was given by Schauder, who extended

this theorem to infinite dimensional spaces as follows;

Theorem 2.7 (Schauder’s FPT-Version 1). Suppose S is a convex, compact and
nonempty subset of a Banach space E, and let'T' : S — S be a continuous mapping.

Then T possesses a fixed point.

Under some more assumptions, a continuous function may have a fixed point
even in the absence of a mapping from a compact convex set into itself. In the
following, it is stated an alternative version of Schauder’s FPT that is more suitable
for applications since compact sets are harder to find in an infinite dimensional

space.
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Theorem 2.8 (Schauder’s FPT-Version 2). Suppose S is a convex, closed and
nonempty subset of a Banach space E. If T is a continuous mapping of S into
itself such that T(S) is relatively compact (that is, its closer is compact), then T

possesses a fixed point.

The Ascoli-Arzela theorem below offers criteria for the relative compactness

required for Schauder’s FPT.

Theorem 2.9 (Ascoli-Arzela Theorem). Let I/ denote a compact metric space en-
dowed with p. A subset S of C(E,R") is relatively compact if and only if (shortly,

iff) it meets the following criteria:

i) S is bounded, which means that ||u(x) H < M for some constant M > Q.

ii) S is equicontinuous, which means that for any € > 0, there is a § > 0 such
that for all u € S,
|u(z) — u(@)| < e

holds for all x,T € E provided that p(x,T) < 0.

2.3 Stability Theory

This section presents the basic concepts of stability in the sense of Ulam-Hyers
(UH) and Ulam-Hyers-Rassias (UHR), and the necessary tools to achieve them.
These stability definitions will be given for the specific ODE of the general first

order:

u'(z) = f(z,u(z)), (2.6)
where f : [a,b] Xx R — R is a continuous function.

Definition 2.2. [32] The equation is called UH stable when there is a constant
C > 0 such that for every ¢ > 0, the following property holds: Given any
continuously differentiable function ¥ satisfying

[V (z) = f(z,9(2))] <,

there exists a solution u to the equation (2.6) fulfilling |(x) — u(x)| < Ce for all
x € [a,b].

Definition 2.3. [32]] Let ¢ be a non negative function. The equation is called
UHR stable w.r.t. ¢ when there is a constant C > 0 such that the following property
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holds: Given any continuously differentiable function ¥ satisfying

|9'(2) = f (2, 9(x)| < b(x),
there exists a solution u to the equation (2.6) fulfilling |¥(z) — u(z)| < Ce(z) for

all z € [a,b].

These definitions will be modified for some nonlinear hyperbolic PDEs that are
studied in this thesis. Now we state the concept of the Picard operator and the

abstract Gronwall lemma from Picard operator theory.

Definition 2.4. [38,[39] Consider an operator P : ' — F on a metric space (F, p).
If there exists a z* € E such that
i) Fp = {z*}, where Fp = {z € E : P(z) = z} denotes the fixed point set of

P,

ii) The sequence (P™(zo))nen converges to z* for all zy € E,
then P is called Picard operator.

And the triplet (F, p, <) is called an ordered metric space if (£, p) forms a metric

space and < represents a partial order relation on X.

Lemma 2.1. /38, 39] Consider an increasing Picard operator P : E — E with
Fp = {z*}, and let (E, p, X) be an ordered metric space. For z € E, if z < P(z),
then z = z*; whereas if z = P(z), then z = z*.

Next, the Wendorff lemma is stated, which is the extended form of the Gronwall

lemma.

Lemma 2.2. [40, 41] Let z, h,k € C([0,a] x [0,b],R), and let h(x,t) be non-

decreasing w.r.t. x and t. Suppose

z(x,t) < h(x,t) + /: /Otk(r, s)z(r,s)dsdr, x€[0,a], te]l0,b].

Then the inequality stated below holds:
T t
z(x,t) < h(x,t)exp (/ / E(r, s)dsdr).
o Jo
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3

EXISTENCE AND UNIQUENESS RESULTS FOR
NONLINEAR HYPERBOLIC PDEs

In this chapter, the E&U results are performed for several nonlinear hyperbolic
PDEs with or without time delay using fixed point theory which is the main
objective of the thesis. After obtaining these E&U results, in the next chapter,
we also investigate the stability in the sense of UH and UHR for these nonlinear
hyperbolic PDEs.

3.1 Nonlinear Hyperbolic PDEs with Two Delays

In this section, we examine the following class of hyperbolic PDEs involving finite

time delays o and [3,

0u(z, 1)
Oxot
u(x,t) = p(z,t) (z,t) € D (3.2)

= f(x, t,u(z,t),u(x —a,t — ) (x,t) € D (3.1)

with
u(z,0) = @(x) and wu(0,t) =(t) (3.3)

where D = [0,a] x [0,0], f € C(D xR2 R), D = [—a, a] x [—4,b]\(0,a] x (0, ],
¢ € C(D,R), p(z) and ¢ (t) are continuously differentiable mappings with o () =
o(z,0), ¥(t) = ¢(0,t) for the intervals [0, a] and [0, b], respectively.

This section is dedicated to the investigation of the E&U of solutions to this class
of PDEs. To prove the main result, we use a technique so called "progressive
contractions" which is introduced by Burton, and is carried out in one dimension in
[42, 43]]. Recently, they applied this technique to a form of integral equations with
delay and it allowed Burton and Purnaras to get rid of the function with delay in
[44]. Inspired by Burton’s method, we extend the progressive contraction technique

to two-dimensional regions unlike the other related studies and then apply it to our
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problem. More specifically, we create nested rectangular regions by dividing the
intervals [0, a] on the z-axis and [0, b] on the other properly. Using these partitions,
we demonstrate that a unique solution exists in the first rectangular region. After
that, we extend this region into an upper rectangular region and find a unique
solution in this upper region by considering the solution function we found in the
previous step as initial function. Continuing this process until we reach the whole

domain, we can obtain a unique solution for the equation (3.1)-(3.3).

Before stating the main result, we recall Bielecki’s norm E] which is used to obtain a
solution defined on the whole rectangle €2 := [—«, a| x [—f, b]. The Bielecki norm
||| 5 is defined by ||ul| ; = max(, yeq e @ [u(z,t)| on C(2, R). Note that the
maximum norm on C'(£2, R) is equivalent to the Bielecki norm, as indicated by the

inequality:

—0(a+b) 0(a+pB)
e max |u(z,t)] < |lu|lzg Le max |u(x,t)|.
max [ulz, )] < lullp < mmax [u(z, )]
Consequently, it follows straightforwardly that (C(£2,R),||-||;) constitutes a
Banach space. Let us now turn our attention to the proof of the E&U of solutions
to our problem (3.1)-(3.3). This is stated in the following theorem. As mentioned
above, we mainly apply the progressive contraction technique into two dimensional

region.

Definition 3.1. A function u € C?(D,R)NC([—«, a] x [, ], R) is called to be

a solution of the proposed equation (3.1)-(3.3) if it satisfies the equations (3.1)) and
1i on D, as well as (3.3) on D, where C?(D, R) denotes the set of functions

u(z,t) : D — R that are continuous along with their partial derivatives %, % and
9%u
dzot
Theorem 3.1. Suppose the following conditions hold:
i) The function f : D x R* — R is continuous.
ii) There exists Ly > 0 which ensures that
|f (@ tyu,w) = f(2,t,7,w)| < Lylu— 1) (3:4)

forany u,u,w € Rand (z,t) € D.

Then the problem (3.1)-(3.3)) has a unique solution on [—a, a) x [—03,b).

I'This norm was first used by Bielecki in [45]]
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Proof. We begin by transforming our problem (3.I)-(3.3) into a fixed point

problem. For this purpose, we introduce the operator /V as follows:
N: C([_Oéa CL] X [—ﬁ,b],R) — C([—Oé, CL] X [—ﬁ,b],R)
which is defined as:

o(z,t) (x,t) € D

Nu(z,t) = .
w(x, )+ [ fo f(r,s,ulr,s),u(r —a, s — B3))dsdr (x,t) € D,

where p(z,t) = p(z) + ¥(t) — ¢(0). The intervals [0,a] and [0,b] are now
appropriately divided on the x and ¢ axes respectively. Let 0 < S < « and
0 < T < B, where nS = a and nT" = b. Observe that the following argument

validates the existence of such n:

a a a a

N N — < — g

g € Ns<a:>n_NS<a:>S -

and b b b b
INFEN —— <f=-<— <B=T=-

reN F<f—=<g-<b n

where n = max{Ng, Nr}. The intervals are divided into the following partitions:
O:SO<81<~--<Sn:a, S,-—Si_lzs

and
0O=Ty<Ti<---<T,=b, T,—-T,_1="T.

To keep things simple, we shall utilize the following notations:

D; == [~a, S| x [-8,TI\(0, S;] x (0,T}]
D; :=10,S;] x [0,T;]
Ua,p)(T,1) = u(x —a,t = B), (x,t) € D.

Now, our observation deduced from the above partition is the following fact
(2,t) € Diy1 = (v —a,t — 3) € D;UD;. (3.5)
We notice that if (z,t) € D;

r—a< S —a<Si—-85=5
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and
t—=0<Tin—B8<Tia —T=T,

that is ((L‘—Oj,t—ﬁ) GDZ‘UDZ‘.

By using these partitions in the manner described below, we will show that there

exists only one solution.

Step 1:
Let (Ms,1),| - ||,) be complete
I
____________ AN - normed space of continuous functions
5 (21)
i (z, 1), w:[—a, 5] x [-8,T1] = R
: Ly
- . & with the Bielecki norm
| k2 1 Sl
(@ —a,t—p) I
: E |ull, =~ max e ?C|y(z, 1)
\ « | [—a,S1]x[-B8,11]
: (‘T - O[,t B) :
At _—_ﬁ_ """""" ' and we take u(z,t) = ¢(x,t) for
(z,t) € Dx.
Figure 3.1 The first rectangular
partition of progressive contraction
Define a mapping Ny : M(s, ) — M(s, 1)
¢(l‘,t) (l‘,t) €D~1

Nu(z,t) =
)+ s fo f(r,s,u(r, s), uep(r,s))dsdr (x,t) € Dy.

For u,@ € Ms, 1,y Niu = Ni@ when (z,t) € D, then we take (v,t) € D;.

Hence,

—0(z+t)

HNlu—NluH1§ max e

Jnax, rs ,u(r, 8), Uga,p) (T, S))

— f(r,s,ﬂ(r, s),ﬂ(aﬁ)('r’,s ‘dsdr.

By (3.5) and the definition of Mg, 1), We get U(q,5) = U(a,)- And thus, it is enough
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to put the Lipschitz condition on the function f w.r.t. the third variable. Hence,

HNlu—NlﬂHl < max e ”t/ /Lf‘ u(r, s) —u(r, s)|dsdr

(z,t)eD1
< LfHu—uH max e ”t)/ /69(’”“)0[3(17“
(z,t)eDq o Jo
Ly
< L,

By taking # > 0 (through the other steps below) such that 95 < lin HH1 norm

above, we obtain that /V; is a contraction mapping. According to Banach’s FPT,

there exists a unique fixed point ¢; € Mg, 1) such that ¢, satisfies the problem

B.1-3.3) on [-a, 51] x [-4,T1].

Step 2: In this step, we extend the interval of Step 1 into [—a, Sa] x [—5, T3]

Let (Ms,m),]-||,) be complete

I
1 . . normed space of continuous functions
i (2.1)
= —— (2, 1) : w:[—a, S x [-6,T5] = R
AT IAY bbby , !
<) : (z,t) E equipped with the norm
o (x—a,t—p)! |
1 é ! :
! ! 1\ o 0(z+t)
T 5 2 Ml = gmax e )
: (l‘ —a,t— ﬁ) |
too Y and we take
Figure 3.2 The second rectangular o(z,t) (x,t) € D
partition of progressive contraction u(z,t) =

¢1(x,t) (x,t) € D;.

Similarly, let us define a mapping Ny : Mg, 1,) — M (s, 1)

o(z,t) (z,t) € D,
Nou(z,t) = § ¢y(x,t) (x,t) € Dy
(e, t) + [ F (7 s,u(r, s), ugs (7, s))dsdr (x,t) € Dy\Dy.

For u,uw € Mg, mn,), Nou = Nou whenever (z,t) € D; U D,, then we consider
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(z,t) € Do\ Dq. Hence,

x t
HNQU — NQEH2 < max 6_0(x+t)/ /
(x,t)EDQ\Dl 0 0

— f(r, 5,7(7, 8), Ua,p) (T, s)) ‘dsdr

f(T’, 8, U(T’, S)? u(a,ﬁ)<7"7 S))

((by (3.5) and the definition of M(s, 7))

T t
< max e %@t / / Lylu(r,s) —u(r, s)|dsdr
: o Jo

x t
§Lf||u — EH max e /@) P9 dsdr
2 (z,t)€D2\ Dy o Jo
Ly

<L),
Therefore /N, is a contraction mapping and by Banach’s FPT there exists a unique
fixed point ¢, in Mg, 1,), which serves as a solution to the equation (3.1)-(3.3) on
[—(I, SQ] X [_Ba TQ]

Step 3: Continuing this process up to n* Step, we can obtain a unique continuous
solution ¢,, for the equation (3.1)-(3.3) on two dimensional region [—a,S,] x
[_B> Tn] = [—Oé, CL] X [_67 b]

AN

__________ L

S O .

9 ¢ i

; o | L

| ¢ | E

: | ! A
—a S1 S 'S ’

5 ¢ s

L e e o :b ___________________________________ !

Figure 3.3 All rectangular partitions of progressive contraction
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3.2 Nonlinear Hyperbolic Functional PDEs

In this section, we focus on the hyperbolic functional PDEs given by

85—5220 = f(l‘?taU(g(fv,t), h(fv,t))), (z,t) € D (3.6)
with
u(z,0) = ¢(x) such that  (0) = (0). a7
u(0,t) = (1)

where D = [0,a] x [0,b], f € C(D x R,R), g € C(D,[0,al]), h € C(D,]0,b]),
¢(x) and ¥ (t) belong to the space of continuously differentiable mappings defined
on [0, a] and [0, b], respectively.

The current section is dedicated to establish the E&U of solutions to the proposed
equation (3.6)-(3.7) on a bounded domain utilizing the Bielecki norm, and based
on these solutions obtained on bounded domains, the finding is extended to an
unbounded domain. Below, we present the main results regarding the E&U of
solutions for the equation (3.6)-(3.7) in both bounded and unbounded domains.

By a solution to the equation (3.6)-(3.7) we refer to a function u € C"?(D,R)
satisfying the equation (3.6) and the conditions (3.7).

Theorem 3.2. Assume the following conditions are satisfied:

(Cl) f e C(DxR,R), g e C(D,[0,a]), h € C(D,]0,b]) with g(x,t) < z and
h(z,t) < t.

(C2) There exists L > 0 which ensures that

forany u,u € R and (x,t) € D.
Then the equation (3.6)-(3.7) has a unique solution in C(D,R).

Proof. Under the condition (C1), the proposed equation (3.6)-(3.7) is equivalent to

the integral equation

w(z,t) = p(x,t) + /; /Ot f(r, s,u(g(r,s), h(r, s)))dsdr, (3.8)
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where u(x,t) = o(x) + 1(t) — ¢(0). Converting this equation to a fixed point

problem, we aim to find the fixed point of the mapping given below
F:C(D,R)— C(D,R)

defined by
Fu = the RHS of the equation (3.8).

We now demonstrate that F' is contraction w.r.t. the Bielecki norm given by

ull; = Rl lu(z,t)]e " where 60 > 0. (3.9)
x E

For any u,u € C(D,R), we have

t £ (7.5, ulg(r,9), h(r,)))
_ f(r s E(g('r’ s), h(r, s))) ’dsdr
<L/ / 00+9) (|u(g(r, 5), h(r, )
—u(g(r, ), h(r, s>)\ )Y dsdr

<HW—M@/‘/ e < a7 e

|Fu(z,t) — Fu(z,t)| <

which implies that

_ L _
|Fw = Fal| ;< Zlu —l]

By choosing # > 0 sufficiently large such that > > L, we obtain that F is a
contraction mapping, so the equation (3.6)-(3.7) has only one solution in C'(D,R)
by Banach’s FPT. [ ]

Now, we will show that the result proved above holds for unbounded domain. That
is, Theorem can be also proved if D is replaced by R? = [0,00) x [0,00) as

shown below.

Theorem 3.3. Assume the following conditions are satisfied:

(C3) f e C(RY xR,R), g € C(R,Ry), h € C(Ry,Ry) with g(z,t) <  and
h(z,t) <t

(C4) There exists L € C(R%, R, ) which ensures that
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forallu,@ € Rand (z,t) € R2.
Then the equation @) has a unique solution in C(R%,R).

Proof. According to Theorem for any n € N, there exists a unique continuous
mapping u,, : D,, — R such that

Up(z,t) = p(x,t) + /090 /Otf<r,s,un(g(r, s), h(r,s)))dsdr, (3.10)

where D,, = [0,n] x [0,n], since the continuous function L is bounded on this
compact domain. If (z,t) € D,, the following equality can be easily seen from the

uniqueness of u,,
Up(z,t) = Upyi(x,t) foreach i=1,2,3,---. (3.11)
For any (z,t) € R?, let us define n(z,t) € N as
n(z,t) =min{n € N | (z,t) € D, }.
Additionally, we introduce a mapping u : R2 — R by
w(x, 1) = Upzp) (2, 1). (3.12)

To demonstrate the continuity of u described above, we choose n; = n(z1, t;) for an
arbitrary (z1,¢) € R2. Then (z1,¢;) belongs to the interior of D,,, ;1. Thus, there
exists an € > 0 such that u(x,t) = u,,+1(x,t) for all (z,t) € B.(x1,t1). Since
U, +1 18 continuous at (1, ¢;), the mapping w is also continuous at this arbitrary
point. Now we show that the mapping u satisfies the equation (3.8). For any (z,t) €
IR?, there is an integer n(x, t) such that (z,t) € D, It follows from 1} and

(3.12) that

'LL(.I', t) = Un(z,t) (l’,

t)
= u(x,t) + /OI /Ot f(r, 8, Up(z,) (g(r, s), h(r, 5))>dsdr
= pu(x,t) + /Ox /Otf<r,s,u(g(r,s),h(r, 3))>dsdr.

where the last equality is obtained since n(g(r, s), h(r, s)) < n(z,t) forany (r,s) €
D, (1) implies

Un(z,t) (g(’f‘, 8)7 h(T, S)) = Un(g(r,s),h(r,s)) (g(’/’, 8)7 h(?“, 8)) - u(g(r, S)? h(T‘, 8))
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by using (3.11) and (3.12). To prove the uniqueness, we suppose that ) is a
continuous mapping which also satisfies (3.8). For an arbitrary (x,t) € R?, since

the restrictions v |p,, , and ¥ |p,, , both satisfy (3.8) for all (x,t) € Dy, the

uniqueness of ;1) = u | Dyat implies that

u(r,t) =ulp,,, (@,t)=7|p,,, (x,t)="0(z,1).

This completes the proof. |

3.3 Nonlinear Implicit Hyperbolic PDEs

In this section, unlike the explicit hyperbolic problems as in Section [3.1]and[3.2] we
deal with the existence of solutions to the following implicit hyperbolic PDEs:

Oulz,t) _ 0u(z,t)
D0t —f(x,t,u(a:,t),—awt > (z,t) € D (3.13)
with
w(0,t) = ¥(t)

where D = [0,a] x [0,b], f € C(D x R,R), ¢(x) and () belong to the space of
continuously differentiable mappings defined on [0, a] and [0, 4], respectively.

Let us express that what we mean by a solution of the equation (3.13)-(3.14). A
function u € C'"?(D,R) is defined as a solution of this equation if it satisfies the
equation (3.13)) and the conditions (3.14) on D.

Before stating our existence result, let us provide the following lemma, which

converts the proposed equation (3.13)-(3.14) into a fixed point problem.

Lemma 3.1. Suppose f : D x R? — R is continuous. The function u is a solution

of the equation (3.13)-(3-14) iff it satisfies

u(z,t) = p(x,t) + /OI /Ot h(r,s)dsdr

where ji(x,t) = p(z)+¢(t)—1(0) and h € C(D,R) holds the functional equation
hiw,t) = f(z,t ulz,1), h(z,1)).

Theorem 3.4. Suppose the following conditions hold:

(HI) The function f : D x R? — R is continuous.
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(H2) There is a positive constant L < 1 which ensures that
’f(x,t,u,zl) — f(z,t,u, 22)‘ < L‘zl - 22|

foru,z; € R (i =1,2)and (z,t) € D.

(H3) There existp,q,d € C(D,Ry) with d* = sup, ;cp d(x,t) < 1 which ensure
that
|f (.t u,2)| < pla,t) + gz, )]u] + d(z, 1)|2]

forall (z,t) € Dandu,z € R.
Then the equation (3.13)-(3.14) has at least one solution.

Proof. Let p* = sup, yep p(,1) and ¢* = sup(, yep q(z, ). Define the bounded,

closed and convex subset of €2 := C(D, R) as follows:
Sp={ueQ: |u(zt)| < Rty

where 0 > 0 is chosen sufficiently large such that ¢*/(1 — d*) < 6*. Consider an

operator P on Sg into {2 given by

T t
Pu(z,t) := p(x,t) +/ / h(r,s)dsdr
o Jo
where h € (2 satisfies the equation:
h(z,t) = f(x,t,u(a:,t), h(m,t)). (3.15)

To demonstrate the well-definedness of the operator P, there must exist an h
satisfying the equation (3.13) and it must be unique for each u € Sy. Utilizing
assumption (H2), this can be achieved through the application of Banach’s FPT to

the following operator:
h(.’ ) — f(’ .’u(.’ .)7 h(.7 ))

Lemma [3.1] indicates that the fixed point of the operator P corresponds to the
solution of the given equation (3.13)-(3.14). The existence of a fixed point to this

operator is discussed below using Schauder’s FPT.

Step I: The operator P maps Sg into itself with the value of R to be determined

below.
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Let u € Sg be arbitrary element. Then,

|Pu(z, t)| < |p(z,t)] + /ow/o |h(r, s)|dsdr.

By (H3),
\h(z,t)| = f (2, t,u(z,t), h(z, 1))
<p(xt)+q:ct|uxt‘+d ‘hxt‘
which yields
* *R O(x+t)
(1)) < L0 (3.16)
1 —d*
Then,

p* x
|Puxt‘<‘,uxt‘+ 1—d*)/ /dsdr

7“+s
1_ ) / / dsdr.

One can obtain the following

prab q 0(z+1)
Pu(x,t)| < sup |u(z,t)| + + Re
[Pute.0] < s I+ T35+ T @
~— o N——
;:A Z:T

— A+TR€9(x+t) S R€9(I+t),

here the last inequality holds by the choice of & > 0 satisfying the following

inequality

A
1-7

<R

Then we get P : Sp — Skg.
Step II: P is continuous operator on Sg.

Consider a sequence u,, in Si that converges to u within Si. Then we obtain

T t
|Pun(z,t) — Pu(z,t)| < / / |An(r, s) — h(r,s)|dsdr
o Jo
where h,,, h € () satisfy

ho(z,t) = f(z,t,un(z,t), hy(z,t)) and h(z,t) = f(z,t, u(z,t), h(z,1)).
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By (H2),

A (2, t) = Bz, )| <|f (2, t, un (2, t), hn(z,t)) — f(2,t, un(z, 1), h(z,1))|
+ ‘f(x,t,un(x,t),h(x,t)) — f(x,t,u(x,t), h(m,t))’
§‘f(:v,t,un(x,t),h(x,t)) — f(x,t,u(:p,t),h(x,t))‘
+ L|h,(z,t) — h(a:,t)|

then
[ — 1|, < %“f(" (s )R ) = (e )R ) |
As n goes to infinity, we get h, — h since f is continuous. Hence
|Pun — Pul| < ab||h, —h|| =0 as n—oc

that is P 1s continuous operator.

Step III: P(Sg) is uniformly bounded.

This is evident from the fact that P(Sg) C Sg and Sk is bounded.
Step IV: P(Sg) is equicontinuous.

Without loss of generality, let (z1,t1), (z2,t2) € D be such that x; < x5 and
t1 < to,

|73u(:p1,t1) — Pu(xo, tg)‘

<|p(zr, t) — (s, )| +

x1 t1 2 t2
/ / h(r,s)dsdr — / / h(r,s)dsdr
o Jo o Jo

<o) — olws)] + [(t2) — w(ta)] + / : / |h(r, 5)|dsdr

o to
+ / / |h(r, s)|dsdr
x1 0

where i € Q2 holds the following from (3.16))

p* + q*RGG(a—i—b)
B 1—d*

|h(x,t)| <M :
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Therefore, we get

[Pu(zy,t1) — Pu(xa, t2)| <|e(z1) — o(22)| + [¢(t1) — ©(t2)]
+ M<U,|t1 — t2| + b‘l’l — ZEQ})

Since ¢ and ) are uniformly continuous on the compact domains [0, a] and [0, b]

respectively, we can conclude that P(Sg) is an equicontinuous set.

By virtue of Steps I to IV together with the Ascoli-Arzela theorem, P(Sg) is

relatively compact. As a consequence of Schauder’s FPT, the operator P possesses
a fixed point in Sy that is the solution of the equation (3.13)-(3.14). This complete
the proof. |

Let us now apply the Wendorff lemma to obtain the uniqueness of solution.
Theorem 3.5. Suppose that (H1) and the following condition is satisfied:
(H4) There exist constants K > 0 and 0 < L < 1 which ensure that

| [z, t,ur, 21) — f(@,t, u9, )| < K|ug — up| 4 L]21 — 2o

forallu;, z; € R (1 =1,2) and (x,t) € D.
Then the equation (3.13)-(3.-14) has only one solution.

Proof. By Theorem we proved that the proposed equation (3.13))-(3.14) has a
solution u. Let w be another solution of this equation. Then, we have

‘u(x,t) — w(x,t)’ < /Ow /Ot ’hu(r, s) — hw(r,s)‘dsdr
where hy, h,, € C(D,R) such that
ha(z,t) = f(z,t,u(z,t), hy(z,t)) and  hy(z,t) = f(z,t,w(z,t), hy(z,1)).
By (H4), we get

}hu(:ﬁ,t) — hw(a:,t)‘ = ‘f(a:,t,u(x,t),hu(x,t)) — f(x,t,w(x,t),hw(x,t))‘
< Kl|u(z,t) — w(x, t)] + Llhy(z,t) — ho(z,1)|

31



which implies

|hu(@,t) — hy(z,t)] < L|u(x,t) —w(z,t)|.

Hence we obtain that

ule,t) —wie, 1) < 2 //}um—wmusdr

Thanks to the Wendorff lemma, we find |u(z, ) — w(z,t)| = 0 for all (z,t) € D,

which yields that the solution of the equation is unique. [

3.4 Nonlinear Hyperbolic PDEs Involving First Order Deriva-
tives

In this section, we focus on the following hyperbolic PDEs with a RHS function f

involving the first order derivatives 2% 2. and ‘9“
Pu(x,t) ou(z,t) Ou(z,t)
ozt —f(m,t,U(x,t), oz ' o1 >, (z,t) € D (3.17)
with
70 ==
w0 =2lr) o hat (0) = (), (3.18)
u(0,t) = (t)

where D = [0,a] x [0,0], f € C(D x R3 R), p(x) and () belong to the space of

continuously differentiable mappings defined on [0, a] and [0, b], respectively.

In the current part, we propose a novel proof of the theorem given by Hartman and
Winter, which is related to the existence of solution for the PDEs (3.17)-(3.18).
Our proof is based on fixed point theory. In the proof of this theorem, we employ
two FPTs which are Banach’s and Schauder’s theorems. To explain briefly method
applied in the proof, we use the Banach FPT to construct well-defined mappings
and we apply Schauder’s FPT to prove the existence result. This kind of use of
Banach’s FPT appears in some papers, especially in FPTs involving the sum and the
product of two operators (see [46, 47]]). By motivating these papers, we approach

the proposed PDE:s via fixed point theory.

Before we construct a new proof for the following theorem proved by Hartman and
Wintner, let us first state what the solution means: A function v € C*?(D, R) that
satisfies the equation (3.17) and the conditions (3.18)) is called a solution of the

equation (3.17)-(3.18).
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Theorem 3.6. Suppose the following conditions hold:

i) f € C(D x R?) and [ is bounded in absolute value, that is, there exists

non-negative constant M which ensures that

|flz,tou,p,q)| <M

forallu,p,q € Rand (x,t) € D.

ii) f satisfies the lipschitz condition in two arguments, that is, there is a constant
L > 0 which ensures that

|flz tu,prqr) = (@t u,p2,02)| < L(|py— po| + |@1 — a2|)

foru,pi,q € R(i=1,2)and (x,t) € D.
Then the equation (3.17)-[.18) has a solution.

Proof. Let us transform the main equation into a corresponding system of integral

equations by integrating w.r.t. the variables x and t

u(x,t) = p(x,t) + /oz/o f(r, s,u(r,s),v(r, s),w(r,s))dsdr

where p(z,t) = @(z) + ¥(t) — ¢(0) and also the pair of v, w holds the below

equations:

v(z,t) =¢'(z) + /Otf(x, s,u(z,s),v(z, s), w(z,s))ds
w(z,t) = (t) + /Ox f(r tou(r,t),v(rt), w(r,t))dr
or briefly
(u, v, w)(z,t) = (Ar(u, v, w), As(u, v,w), As(u, v, w)) (z,t). (3.19)

The proposed equation can be converted into a fixed point problem for the following

operator
A:C(D,R)® = C(D,R)?,

which is defined by the RHS of the equation (3.19). Let us consider the product
space (C(D,R) x C(D,R),

(,)H) such that it constitutes a Banach space
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equipped with the

el = ol + ol where [l = mas. Jote, D]~

By taking u € C(D,R) as a constant, we define a mapping from C'(D,R) x
C(D,R) to itself as follows:

Pu(v,w) = (As(u, v, w), As(u, v, w)).
For (v, w), (3,@) € C(D,R) x C(D,R),
| As(u, v, w) —:42(u,@,w)]
),
— f(=,s,u(z,s),0(z,s),w(z,s))

SL/Ot (’v(x, s) —0(z, s)| + |w(z, s) —w(x,s)Dds

t
<L(llo =]l + | —1w] ) /0 H9) g
L

f(x, s,u(z, s),v(x, s), w(x, s))

ds

H(U, w) — (7, E)Hee(“t),

and consequently we get

[Asfon,v,0) — As(u, 7 )|, < 7|0, 0) ~ @) B20)
Similarly,
A3 v,0) — A7), < Flw,w) ~ @) G2D)
It follows from (3.20) and (3.21)) that
[Puo,w) = Pu@. )| < 2 (0,0) ~ (@, 0)]|.

If we choose ¢ > 0 such that % < 1, then P, is a contraction mapping and so
P, has a unique fixed point in C'(D,R) x C(D,R). Now we can construct two
well-defined mappings from C'(D,R) to C'(D, R) as follows;

F:C(D,R) — C(D,R) q T:C(D,R) = C(D,R)
an
u— Fu u— Tu
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where (Fu, Tu) is the unique fixed point of P, and this pair satisfy

Fu(z,t) = ¢'(z) +/0 [z, s,u(z, s), Fu(z,s), Tu(z, s))ds

Tu(z,t) ='(t) + /OJ»‘ f(rt u(r,t), Fulr,t), Tu(r,t))dr

Now we show that these mappings are continuous. Let ||u,, — u||z — 0. Then we

have

| Fun(z, t)—Fu(z,t)]

</
0

— f(=, s, u(z,s), Fu(z,s), Tu(z, s))

</
0

— f(=, s, un(z, s), Fu(z,s), Tu(z, s))

t
/
0

— f(=, s,u(z,s), Fulz, s), Tu(z, s )‘ds

f(x, S, un(x, 8), Fun(x, s), Tu,(x, s))

ds

f(x, S, up (2, 8), Fun(x, 8), Tu,(x, s))

ds

[z, s,up(z, s), Fu(z, s), Tu(z, s))

gg(um .Fu||B+||Tun Tu| p )t

e Yoo Pt Tl )
_ f(.).’u(.7.)7_/Tu(.7.)’7'u(.7.))‘

69(m+t) ’

B

consequently

L
| Fu = Full <5 (|17 - fUHB [T = Tl )

5[ 7 ), Fut ), Tul )
—f(-,-,u<-,'>, Fu(,). Tul)| o 622

Similarly
L
[T = Tully <5 (117 - fUHB [T =T )

457, Ful, ), Tute, )
—f(-,-,u(-,-), u("')’T“("'))HB' (3.23)

Adding up the two inequalities (3.22) and (3.23) above, we obtain the following
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inequality:

(1= ) (hFu=Fully 4 70 = 7l
<7l Fut ), Tul )
_ f(.v.’u(.,.)7]:u(.,.)77~u(.7.))H .

B

Since f is a continuous mapping, when n goes to infinity, we have Fu,, and T u,,
converge to Fu and T u respectively, that is F and 7 continuous mappings. Since
||-|| 5 and the maximum norm ||-|| are equivalent, these mappings are also continuous

w.r.t. the maximum norm. Then we consider a mapping

which is given as
Yu(z,t) = As(u, Fu, Tu)(x,t).

The continuity of T is deduced from the continuity of f and the mappings F and
T. For each u € C'(D,R),

Il < ol + ao.
Let (l‘l,tl), (sz,tg) €D, x1 <x9,t1 <ty

|Tu(ac1,t1) — Tu(x27t2)| S’go(xl) - QO(IQ)‘ + W(h) — 1/)(t2)|
+ M(b‘xl — fL‘Q‘ + a|t1 — t2|>

Hence T(C’(DJR)) is a bounded and equicontinuous subset of C(D,R). The
Ascoli-Arzela theorem indicates that it is relatively compact. Then there exists
an u* € C(D,R) that equals to Tu* according to Schauder’s FPT. The triple of
(u*, Fu*, Tu*) is solution of our problem (3.17)-(3.18). We notice that

= Tu"

(Fu*, Tu") = Py (Fu*, Tu"),
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or

T t
u*(z,t) = p(x,t) + / f(rs,u*(r,s), Fu(r,s), Tu*(r,s))dsdr
o Jo
0

Fu*(z,t) = ¢'(x) —i—/o f(x,s,u*(a:,s),}"u*(x,3),Tu*(x,s))ds

Tu*(z,t) ='(t) +/ [t (r,t), Fu*(r,t), Tu*(r,t))dr.

0

Thus the proof is completed. [

As an application of our result, we give an illustrative example as follows;

Example 3.7. Let us consider the given equation

Pu(x,t ettt
Ox(ﬁt ) - COS(u%x)t)) + 1+ du(z,t) |’ (:L‘7t) © [0’ 5] py [07 7],
ox

with
uw(x,0) =14z, =z€]l0,5]
u(0,t) = cos(t), te€l0,7].

Set f(x,t,u,p,q) = cos(u?) + %. It is clear that f is bounded and satisfies

’f(xatvuapl7Q1> o f<x7t7u7p27q2)| < 62<’p1 _p2| + }Q1 - q2|>

for all u,p;,¢; € R (i = 1,2) and (z,t) € [0,5] x [0,7]. Then there is at least one
solution of the above problem by Theorem [3.6]
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4

STABILITY RESULTS FOR NONLINEAR
HYPERBOLIC PDEs

This chapter is devoted to the derivation of stability results for the nonlinear
hyperbolic PDEs for which the E&U of solutions is discussed in the previous
chapter. At this stage, the Bielecki norm, the Wendorff lemma, and the abstract
Gronwall lemma from Picard operator theory serve as tools for obtaining stability

findings.

4.1 Stability of Nonlinear Hyperbolic PDEs with Two Delays

In this section, a stability result in the sense of UH is obtained for the following
hyperbolic PDEs:

0*u(z, 1)

5eor — J @bl t)ulz —at=p)), (z,t) €D 4.1)

The E&U of solutions for this class of equations is analysed in Section [3.1] Before
stating the relevant stability result, the definition of UH stability is given below:

Definition 4.1. The equation (4.1)) is said to be UH stable when there exists a
constant C > 0 such that the following statement is true for any ¢ > 0: If
¥ € CY(D,R)N C([—a,a] x [—B,b], R) satisfies the inequality

0?9(x,t)
OxOt

— f(x, t, 9z, t), 0 (x — a,t — 6)) ’ <e (x,t)eD 4.2)
then there exists a solution u of the equation fulfilling

|9z, t) —u(xz,t)| < Ce, (1) € [~a,a] x [-5,0].
Theorem 4.1. Suppose the following conditions hold:

i) f€C(DxR%R).

38



ii) There exist Ly, Lo > 0 which ensure that

| [z, t,ur, o) — fz,tug, v2)| < Li|ur — ug| + La|vy

for (x,t) € D and u;,v; € R, 1 =1,2.
Then, the equation ({.1) is UH stable.

Proof. Let Y € CY*(D,R) N C([—a,a] x [—f3,0],R) fulfils the inequality (4.2),
that is

0*I(x, t)
oxot

_f(x,t,ﬁ(x,t),l(}(:v—Oz,t—ﬂ))‘ <e€ (x,t) € D.

By Theorem [3.1] we indicate u as a unique solution to the proposed equation:

Ou(x,t)

g = (@t ule—at-p), (et)eD

with u(z, t) = 9(z,t) on D. Equivalently,

u(z,t) = 0,t) — ¥(0,0)

// rs,ulr,s),ulr — a,s — B) ) dsdr

for (x,t) € D. Itis also evident that |J(z, ) — u(z, t)| = 0 for (z,t) € D. Since 9
holds the inequality (4.2)), then there is a function k£ € C'(D,R) such that

929 (x, t)

|k(z,t)| < e and Ddi

= f(:c,t, W, t), e —a,t — B)) + k(x,t).

Clearly, the following inequality can be derived for (z,t) € D
’ﬁ(x,t) Y(z,0) —9(0,t) + 9(0,0)

// Fr 5,00 5), ﬁ(r—as—ﬁ))dsdr

< ext.
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Furthermore, we obtain the following based on condition ii)

|9z, t) — u(z,t)| 4.3)

<‘19( t) — 9(x,0) — 9(0,t) + 9(0,0)

// r,s,ﬁrs ﬁ(r—as—ﬂ))dsdr

f r,s,0(r,s),(r —a,s — ﬁ))

- f<7°> sy,u(r,s),u(r —a, s — B)) dsdr

<ext + /: /Ot Li|9(r,s) — u(r,s)|

+ Lo|d(r — o, s — B) — u(r — o, s — B)|dsdr.

Forw € C([—a,a] x [-5,b],R,), we define
A C([_ava] X [_ﬁ7b]7R+) i C([_a7a] X [—ﬁ,b],R.ﬁ
by

ext + [ f(f Lyw(r, s) + Low(r — a, s — B)dsdr (z,t) € D

Aw(z,t) =
) 0 (x,t) € D

To establish that A is a Picard operator, we demonstrate that it is a contraction

mapping on C([—a, a] x [—f,b], R, ) equipped with the Bielecki norm:

_ $+t
lll; = (m)e[frcﬁ}fx[—ﬁ,b}e iz )]

Forw,w € C([—a,a] x [-5,b],Ry),

HAw—AwHB_ max e~ ”t/ /Ll‘wrs )|

(x,t)eD
+ Lo|w(r — o, s — B) —w(r — a, s — B)|dsdr
<(Ly + Lo) ||w—wHB max e~ ”t)/ / 0r+3) dsdr

(z,t)eD
(Ly + Lo)
B L)y g,

IN

If @ > 0 is chosen large enough so that (L; + Ly) < 6%, A is a contraction w.r.t. the
Bielecki norm on C'([—«, a] x [—f,b], R, ). Therefore, A is a Picard operator and
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the below equality is valid by means of the Banach FPT.

T t
w(x,t) = ext +/ / Liw*(r,s) + Low™(r — a, s — B)dsdr, (x,t) € D.
o Jo

Additionally, we observe that w*(r — a, s — ) < w*(r, s) due to the solution w* is

increasing. Obviously, then

T t
w(z,t) < ext+ (L + Lg)/ / w*(r, s)dsdr. 4.4)
o Jo
Now applying the Wendorff lemma to the inequality (4.4), we get
w*(x,t) < eabe!LrtE2)ab,

for all (z,t) € [~a,a] x [—3,b]. Particularly, w < Aw if we select w = |0 —
in (4.3). This means that as a result of A being an increasing Picard operator, the
inequality w < w* is satisfied by the abstract Gronwall lemma. Consequently, we
get

|9(2,t) — u(z,t)| < Ce, where C = abel"+52)"

forall (x,t) € [—a, a] x [, b]. Thus we proved that our delayed hyperbolic partial
differential equation (4.1) is UH stable.

4.2 Stability of Nonlinear Hyperbolic Functional PDEs

This part examines the stability in the sense of UH and UHR for the following
equations, whose E&U results are already proven in Section on both bounded

and unbounded domains

O*u(z,t
% — f(x,t,U(g(x,t), h(x,t))>, (z,t) € D. (4.5)
Let us now give the stability definitions for the proposed equation.

Definition 4.2. If for ¥ € C?(D, R) satisfying the inequality

0*9(x, t)
Ox0t

_ f<x,t,19(g(x,t), h(x,t)))‘ < ®(z, 1), (4.6)

there exists a solution u € C*?(D,R) of the equation (4.5 and a positive number
C with
[9(2,1) — ulz, )| < CB(x,t), (.t) € D,
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then we say that the equation (4.5) is UHR stable w.r.t. ® € C(D,R.).

Especially if Definition 4.2]is provided for each positive constant instead of ® in
above inequalities, we say that the equation (4.5)) is UH stable.

Remark 4.1. A function ¥ € C'?(D,R) satisfies the inequality (4.6) iff there is a
function k € C(D,R) which satisfies

9*9(z,t)

|k(z,t)| < ®(z,t) and i f(:c t,9(g(z,t), h(:c,t))) + k(x,1).

Remark 4.2. If ¥ € C"?(D,R) satisfies the inequality (4.6), it also satisfies the

integral inequality:

}19(:1; t) —9(x,0) — ¥(0,t) + 9(0,0)

// 7’319 rs)h(rs dsdr // (r, s)dsdr.

Note that if we replace D by R2, analogously we have the aforementioned

definitions and remarks.

4.2.1 Stability results on bounded domain

In this subsection, we present two stability results for the equation on bounded
domain. First, we prove a UH stability result in Theorem §.2] by using the
effectiveness of Bielecki norm. In Theorem [4.3] we prove a UHR stability result

inspired by Otrocol and Ilea’s paper [34]].

Theorem 4.2. The equation is UH stable under the conditions (C1) and (C2)
in Theorem

Proof. Lete > 0and ¥ € CV%(D,R) satisfy the following inequality

% — f(x,t,ﬁ(g(x,t),h(x,t)))’ <e

Based on Theorem [3.2] a unique solution (referred to as u) can be found for the

equation (4.5) with the following conditions:

u(z,0) = ¥(zx,0), x € [0, d]
u(0,t) = 9(0,1), t €10,0]

4.7)
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Hence, the solution u(x, t) satisfies

u(x,t) = 9(x,0) +9(0,t) —9(0,0) + / / r, s, u(g(r, s), h(r, s)))dsdr

From Remark [4.2] we derive the inequality

‘ﬁ(m,t) - u(x,t)|

<'19( £) — 9(x,0) — 9(0, ) + 9(0,0)

/ / r,s,9(g(r, s), h(r, s)))dsdr

f r,s,ﬁ(g(r,s),h(r, s))) — f(r,s,u(g(r, s), h(r, s)))‘dsdr

<ext+ L dsdr

h( 75)) 4 u(g(r,s),h(r, S))

x t
§eab+LH19 —uHB/ / P9 dsdr
o Jo

<eab + é”ﬁ — uHBeQ(”t),

which implies that
(1 - —> Hﬁ uHB < eab.

By taking 6 > 0 sufficiently large so that 6% > L, then

eab

[ 1) — ulw, O™ <} —ull , < 5.

Consequently, we get

abe@(a+b)

[0z, t) —u(z, )| < Ce, C:= - L)

for all (x,t) € D. Thus the equation (4.5) is UH stable. [

Theorem 4.3. If the conditions (C1) and (C2) in Theorem and the following
condition hold:

(C5) There exists X\ > O which ensures that
T t
/ / O(r, s)dsdr < A\®(x,t), (x,t) € D.
0o Jo
Then the equation is UHR stable w.rt. ® € C'(D,R.).
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Proof. Letd € C'?(D, R) satisfy the inequality (4.6) and let u represent a solution
for the equation (4.5)-(4.7). From Remark we derive the inequality

‘19(1‘, t) — u(x, t)|

<‘q9( £) — 9(x,0) — 9(0,¢) + 0(0,0)

r,s,9(g(r, s), h(r, 5)))d5dr

dsdr

f 7’,3,19(9(7’, 3),h(r,s))) — f(r,s,u(g(r,s),h(r, 5)))
s))

(r,s)dsdr + L

Al
L
//

Forw € C(D,R, ), we define P : C(D,R,) — C(D,Ry)

w)(,t) :/Ox/otcp(r, s)dserrL/oz /Otw(g(r, s), h(r, s))dsdr.

Considering the Bielecki norm defined in (3.9), the following inequality can be
obtained as in Theorem [3.2]for any w,@ in C(D, R})

(g(r,s), h(r,s) ‘dsdr

[Pe—Pa|, <l -3, where 5= -

Taking 6 > 0 sufficiently large such that § < 1, we get that P is a Picard operator
(Fp = {w*}). Then the following equality holds by Banach’s FPT

oz, 1) :/Oz /Otcb(r,s)dsdr—l—l)/om/Otw*(g(r,s),h(r, 5))dsdr.

Since w* is increasing, one get w*(g(r,s), h(r,s)) < w*(r,s) due to g(r,s) < r
and h(r, s) < s, which yields that

T t T t
w(x,t) < / / O(r, s)dsdr + L/ / w*(r, s)dsdr.
o Jo o Jo

Applying the Wendorff lemma to the above inequality, we obtain from the condition
(C5) that

T t
w*(z,t) < extL/ / ®(r, s)dsdr < A" ®(x,t), (x,t) € D.
o Jo

Specifically, it is possible to have w < Pw choosing w = ’19 — u‘ Since P is

an increasing Picard operator, the inequality w < w™ is obtained by the abstact
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Gronwall lemma. As a result, we get
[9(z,t) — u(z, )| < CP(z,t), C:=re"".

Hence the equation (4.5) is UHR stable w.r.t. & € C(D,R,). |

4.2.2 Stability result on unbounded domain
Theorem 4.4. Suppose that the conditions (C3)-(C4) in Theorem and the fol-

lowing condition hold:

(C6) There exists A > 0 which ensures that

T t
/ / O(r, s)dsdr < \P(x,t), (z,t) € Ri‘
o Jo

If the double integration of L in (C4) is finite, the equation ({.5)) is UHR stable w.r:.
® € C(RL,Ry).

Proof. Let ¥ € C'?*(R3,R) satisfy the inequality (4.6). One can obtain the unique
solution (denoted by u) of the following equation from Theorem [3.3]

0*u(z, 1)

ek f<$,t,u(g(x,t),h(x,t))>, (z,t) € RZ,

with

u(z,0) = ¥(z,0)
u(0,t) = ¥(0,1).

For arbitrary (x,¢) € R%, there is an n € N such that (x,t) € D,,. By considering

the restrictions on the domain D,, of functions 9 and w, it can be deduced that
[9(.1) = u(z,0)] = |9 b, (,6) = w |p, (z.)
(in view of Theorem [4.3))
x t
< AP(z,t) exp (/ / L(r, s)dsdr)
0o Jo
=CP(z,1),

where C = Aexp ( I3 J L, s)dsdr>. Hence the equation (4.5)) is UHR stable
wrt. @ € C(R%,Ry).
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To support our theoretical findings, let us now give some examples.

Example 4.5. Consider the following equation

OPu(x,t in zt
wel) ey G006 x0 4.8)
with
u(z,0) = e, x € |0, 6] 4.9)
u(0,t) = cost, t€10,1].
In Theorem 3.2} we set
£t u(g(o, 1), b, 1)) = st (@0 €[0,6] % [0,1]

1+ lu(g(z,t), h(z,t))

where g(x,t) = t and h(z,t) = t*. For each v,u € R and (z,t) € [0,6] x [0,1],
it is obvious that

Then, by Theorem the equation (4.8)-(.9) has a unique solution on [0, 6] x
[0, 1]. Moreover, applying Theorem |4.2] we obtain that the equation (4.8)) is stable
in the sense of UH. Taking k(z,t) = xt in the condition (C5) of Theorem 4.3]

T t
/ / k(r,s)dsdr < §xt = Mk(x,t).
o Jo 2

So the condition (C5) is satisfied with A = 2. Hence this equation is also UHR

2
stable w.r.t. k.

Example 4.6. Consider the following equation

O®u(x,t)  xcost+ u(x,te™™)

e g . (z,t) e RY (4.10)
with
u(z,0) = 22, reRy @10
w(0,) = t, teR,.
In Theorem[3.3] let us take
f(x,t,u(g(x,t), h(:v,t))) = veost + u<§x(i’ ), h(gj’t)), (x,t) € Ri

with g(x,t) = = and h(z,t) = te™*. For each u,u € R and (z,t) € R?, we have

‘f(x,t,u) - f(x,t,ﬂ)| < L(x,t)‘u —ﬂ‘ where L(xz,t) = o~ (@tt)
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Then, it follows from Theorem [3.3] that the equation (4.10)-(.11)) has a unique

solution on R . Also if we denote k(z,¢) = e”** in the condition (C6) of Theorem
4.4 we get
T t
/ / k(r,s)dsdr < e*** := \k(x, ).
o Jo

Therefore the condition (C6) is satisfied with A = 1. Hence the equation (4.10) is
UHR stable w.r.t. k.

In Examples 4.5|and 4.6 we have illustrated the existence, uniqueness and stability

results on both bounded and unbounded domains.

4.3 Stability of Nonlinear Implicit Hyperbolic PDEs
In addition to the E&U results obtained for the following types of equations in

Section[3.3] the stability of such equations is investigated in this current section

Ou(x,t)
Ox0t

0*u(z, 1)

= f<x,t,u(x,t), W

), (z,t) € D. (4.12)

The stability concepts for the problem under consideration are as follows:

Definition 4.3. If for ¥ € C''?(D, R) satisfying the inequality

0?9(x,t)
Oxot

0?0(x,t)

there exists a solution u € C*?(D, R) of the equation (4.12)) and a positive number
C with
|0z, ) — u(z,t)| < CP(x,t), (x,t) € D,

then we say that the equation (4.12)) is UHR stable w.r.t. ® € C(D,R,).

Especially if Definition 4.3|is provided for each positive constant instead of ® in
above inequalities, we say that the equation (4.12)) is UH stable.

Theorem 4.7. Suppose the following condition holds:
(H5) There exists Ay > 0 which ensures that
T t
/ / O(r, s)dsdr < Ap®(x,t) (z,t) € D.
o Jo

Under the assumptions (H1) and (H4) in Theorem [3.5] the equation {#.12) is UHR
stable w.rt. ® € C(D,R,).
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Proof. Let ¥ € C?(D,R) be a solution of the inequality (4.13). According to
Theorem there exists a unique solution (denoted by u) for the equation (4.12))

with the following conditions:

u(x,0) = J(z,0)
u(0,t) = 9(0,1).

Then, we derive from Lemma [3.1] that
u(z,t) = J(x,0) +9(0,¢) — 9(0,0) + / / gu(r, s)dsdr
where g, € C(D, R) satisfies the functional equation
gu(z,t) = f(x,t,u(x,t),gu(x,t)). (4.14)

Since ¥ € C'?(D, R) holds the inequality (4.13)), there is a function k¥ € C(D,R)
such that

0%9(x, %0 (x, t

% — f(g;j,ﬂ(g;,t), %) + k(x,t) where ‘k:(:v,t)! < O(x,t).

Again in the light of Lemma 3.1 we can express the given ¥ as follows:
Iz, t) =I(x,0) +9(0,¢) —9(0,0) + / / go(r, s)dsdr

where gy € C'(D, R) satisfies the functional equation

go(z,t) = f(x,t,ﬁ(x,t),g,g(x,t)) + k(z,t). (4.15)

Then we have

|9z, t) — u(z,t)| / / 9o (r, s) — gu(r, s)|dsdr

where g, and gy are as stated in (4.14) and (@.15)). By (H4), it is evident that

‘gﬂ(x7t) - gu(xat)‘ S‘k<x>t)| + |f($,t,19($,t),g19(l‘,t))

— f(a:,tu(x,t),gu(:v,t)ﬂ
<P(z,t) + K|0(x,t) — u(z,t)| + L|go(z, 1) — gu(w,1)|
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which yields that

}919(1‘7 t) - gu(I’ t)} <

Hence, we get that

9 (z,t) — u(z,1)] // dd +1_ //!197“3 u(r, s)|dsdr.

The application of the Wendorff lemma to the above inequality yields that

[9(z,t) — u(z,t)] < exp abK / /

abK )Aq,(b(x,t)
1-L 1-L

< exp ( by the hypothesis (HS).

Consequently, the following inequality is satisfied

abK > Ag

|9z, t) — u(z,t)| < {exp (1 —7 )1 L]@(m,t) = Co®(x,1).

Thus the equation (4.12) is UHR stable w.r.t. ® € C'(D,R.). |
Theorem 4.8. Under the assumptions (HI) and (H4) of Theorem|[3.5] the equation

(4.12) is UH stable.

Proof. Letd € CY?(D, R) satisfy the inequality:

2 2
%—f(m,t,ﬁ(w,t),%)‘ <e, >0 (4.16)

And we denote by u € C'?(D, R) the unique solution to the equation (4.12) under

the conditions:
u(z,0) = J(x,0)

u(0,t) = 9(0,1).

In the same way as the proof of Theorem we can easily observe that the

following is valid

‘ﬂ(x,t) u(z, t)} 1_ / / |19 r,s) — u(r, s)}dsdr.

By considering the Bielecki norm given as follows:

H ”B = (H%)anD ’Z(xat)}e_g(ﬂt) where 6 > 0,
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we get

eab K " [" gis
|19(x,t)—u(:v,t)‘§1_L+1_L/0/06(+)

X (e‘e(“ﬁ) ‘19(7", s) — u(r, s)‘)dsdr

eab K
Sl — L + (1 _ L)92H19 - UHBBH(

z+t)

Then we have

eab K
here A:= —
1 (1- L)%

(L= M)[J =y <

Taking 6 > 0 large enough so that A < 1, we get

e eab
[9(@,1) —u(a, )] < |9 —ull, < Fgya=gy
It follows that
abe?(@+0)
[9(z.1) —u(e.t)] < Ce. €= =y

for all (z,t) € D. Thus, the equation (4.12)) is UH stable.

We illustrate our theoretical results in this section with two examples to support our

findings.

Example 4.9. Let us consider the given equation

2 t t 't 9%u(x,t)

Putant) _ er e D)0 e 0,9 0,9

Oxot 7+ |u(z,t)]
with

u(z,0) =0 and wu(0,t)=t, x,t€]0,3].
Set
“o + |ul) +
f(x,t,u,z)ze(x }u’) Z, z,t €0,3] and wu,z€R.
7—|—|u’

It is clear that the following is provided

}f(x,t,u,z) —f(m,t,u,2)| < ‘Z—E‘

=

50

(4.17)

(4.18)



and .
[f(w,t,u, 2)] < we’ + 'fu] + 22|

forall u, 2,z € Rand (z,t) € [0,3] x [0, 3]. As aresult, the equation (4.17)-(4.18)
possesses at least one solution because all of the requirements of Theorem [3.4] are
fulfilled.

Example 4.10. Let us consider another equation below

Pu(z,t) 5 1 . /0%u(x,t)
dr = T T2 <W>’ (2,1) € 0,1] x [0,8] (4.19)
with
u(r,0)=1, x€[0,1] and u(0,t)=c¢€', te€]l0,8]. (4.20)
Let
flz, t,u,z) = > +sz, (x,t) € 0,1] x [0,8] and wu,z € R.
T+ |ul 2

For each (z,t) € [0,1] x [0,8] and u, @, 2z, Z € R, we get
iy W 1 -
|f(:1:,t,u,z) — f(x,t,u,z)| < 5‘u—u‘ + E‘z—z}

Consequently, Theorem [3.5] demonstrates that there is only one solution to this
problem (#.19)-(@.20) and also the equation (4.19) is UH stable by Theorem [4.8]
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S

CONCLUSION

In this thesis, we present E&U and stability results for nonlinear second-order

hyperbolic PDEs in canonical form:

0u(z,t)
Oxot

ou(z,t) OJu(z, t)>

= f(@toule, 1), ==, (5.1)

which are obtained by the reduction of general second-order hyperbolic equations
under appropriate transformations. Due to the lack of a general method for solving
nonlinear equations, we consider these types of equations with several functions f
individually and tackle each of them with different approaches. We investigate the
E&U of solutions for these hyperbolic PDEs in Chapter [3|on the basis of fixed point
theory.

More precisely, in Section 3.1} the E&U of solutions for nonlinear hyperbolic PDEs
with delays is obtained based on the Banach FPT by considering the RHS of the
equation as f(x, tyu(x,t),u(r — a,t — 6)) Here we extend the method of
Burton called "progressive contractions” to two dimensions in contrast to previous
studies conducted in one dimension, and apply it to our problem. We use the
Bielecki norm to apply Banach’s FPT due to the increasing contractivity constants
at each step of this proof. Applying Burton’s method to our problem in PDEs give
us the advantage that the Lipschitz condition on the function f is sufficient only
w.r.t. the third variable. Otherwise, it would be necessary to impose a Lipschitz

condition on the fourth variable as well.

In Section[3.2] we also apply the Banach FPT to the nonlinear hyperbolic functional
PDEs by taking the RHS of the equation 1i as f(x,t,u(g(x,t),h(x,t))) to
establish the E&U of solutions. Studying in the space equipped with the Bielecki
norm, we first derive the existence of a unique solution in the bounded domains
based on this theorem. Afterwards, we extend our finding to the unbounded domain

based on the unique solutions discovered for the bounded domains.
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In Section we consider f (x, t,u(x,t), az“;(gf)) to investigate the results
concerning the existence of solutions to implicit PDEs and also its uniqueness. Here
we provide suitable criteria to guarantee the existence of solutions to our problem.
After that we give the uniqueness result using the Wendorff lemma. To emphasise
the significance of our approach in the proof of our existence result, we reapply the

same technique to the following fractional counterpart of the problem:
D’u(z,t) = [z, t,u(z,t), D’u(z, t)).

Then the advantage of our result in [48] is outlined below by comparing it with the

result of a highly cited paper [25]] in the literature:

* While the existence of the solution in Theorem 5.3 of [25] depends on the
following condition:
q*ar? br2

d* + <1
L(1+ p)T(1 4+ p2)

where p = (p1, p2) € (0,1)? is the order of fractional derivative and T" is the
gamma function, our result requires a weaker condition d* < 1 to establish

the existence result.

* Instead of the Lipschitz condition (H4) imposed on f (for more information,

see also [49, 50]), we utilize the more general condition (H2) in our result.

We believe that the method applied in the existence result will inspire similar

equations in the literature; for instance, see [S1].

In Section [3.4, we present a new proof based on the fixed point theory of the
existence result proposed by Hartman and Winter [6], which differs from the
standard approach in the literature by considering f as indicated in (5.1)). Following
the idea of using the Banach’s FPT to construct well-defined mappings, we provide

our proof by meeting the requirements of Schauder’s FPT.

In Chapter[d] we deal with stability analyses in the sense of UH and UHR of the first
three equations that have been investigated in the previous chapter on the existence
of a solution. Together with the obtained existence results, we derive stability
results for these equations using Picard operator theory, the Wendorff lemma, and

the Bielecki norm which are the main tools for us to perform our analyses.

As a conclusion, by choosing appropriate methods for some nonlinear hyperbolic

PDEs, we obtain the E&U and stability results under weaker conditions, more
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general hypotheses, or with different approaches/techniques compared to similar
studies in the literature. In addition, we believe that the approaches applied in
their proofs rather than the results themselves will be a source of inspiration for
future studies, and we think that this thesis will contribute to the literature in these

respects.
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