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ABSTRACT

Existence, Uniqueness and Stability Results For Some
Nonlinear Hyperbolic Partial Differential Equations

Faruk DEVELİ

Department of Mathematics
Doctor of Philosophy Thesis

Supervisor: Prof. Dr. Canan ÇELİK KARAASLANLI

The main goal of this thesis is to contribute to the field of nonlinear analysis of
partial differential equations (abbreviated as PDEs) by investigating the existence
and uniqueness (E&U) of solutions using fixed point theory. More specifically,
E&U results are obtained for several second-order nonlinear hyperbolic PDEs.
Moreover, the stability of the corresponding nonlinear hyperbolic PDEs is also
performed in the sense of Ulam-Hyers (UH) and Ulam-Hyers-Rassias (UHR).
Finally, to support and illustrate the E&U and stability results obtained, several
examples are provided.

Keywords: Existence of solution, fixed point theory, partial differential equation,
Ulam-Hyers stability, Ulam-Hyers-Rassias stability.
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ÖZET

Bazı Doğrusal Olmayan Hiperbolik Kısmi
Diferansiyel Denklemler İçin Varlık, Teklik ve

Kararlılık Sonuçları

Faruk DEVELİ

Matematik Anabilim Dalı
Doktora Tezi

Danışman: Prof. Dr. Canan ÇELİK KARAASLANLI

Bu tezin temel amacı, sabit nokta teorisi yardımı ile çözümlerin varlık ve tekliğini
(E&U) araştırarak kısmi diferansiyel denklemlerin (kısaca PDEs) doğrusal olmayan
analizi alanına katkıda bulunmaktır. Daha spesifik olarak, ikinci dereceden doğrusal
olmayan hiperbolik PDEs için E&U sonuçları elde edilmiştir. Ayrıca, ilgili
doğrusal olmayan hiperbolik denklemlerin kararlılığı da Ulam-Hyers (UH) ve
Ulam-Hyers-Rassias (UHR) anlamında gerçekleştirilmiştir. Son olarak, elde edilen
E&U ve kararlılık sonuçlarını desteklemek ve örneklendirmek için birkaç örnek
verilmiştir.

Anahtar Kelimeler: Çözümün varlığı, sabit nokta teorisi, kısmi diferansiyel
denklemler, Ulam-Hyers kararlılık, Ulam-Hyers-Rassias kararlılık.
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1
INTRODUCTION

Differential equations have been used as mathematical models to make a description
of nature. That is why many of the general laws and phenomena in many fields such
as physics, chemistry, biology and engineering are formulated. As can be seen in
our life, reactions to a stimulus can often be delayed, even for a short time. The
behavior of phenomena at a certain time depends on the past history/memory, in
which case delays are observed in the mathematical descriptions (modelling) of
the phenomena under consideration. Taking the recent Covid 19 pandemic as an
example, the time delay in the models of this situation can be associated with the
duration of the infections period. Such a class of differential equations containing
delays in their formulations is called delay differential equations. Phenomena are
also influenced by many parameters due to the behaviour of nature. For this reason,
PDEs based on multiple independent variables are more suitable as compared to
ordinary differential equations (ODEs) to describe phenomena in nature. In this
manner, it allows us to analyze and shed mathematical light on the behaviour of
dynamics for real-world problems. In order to have an insight into this behaviour,
one of the most important analysis is the determination of whether the mathematical
description has a solution. For instance, solving the corresponding differential
equation serves to understand how phenomena will change over time. When the
behavior of a phenomenon happens in only one way, the uniqueness of the solution
allows us to make a single decision about this behavior, thus eliminating solutions
that do not occur in reality. Sometimes it can be very difficult to determine the
exact solution to a differential equation, even when it exists. For this challenge,
algorithms are being developed to find approximate solutions, particularly in
numerical analysis. To draw healthy inferences about the dynamics of an equation
using these approximate solutions, it is natural to hope that they are close to the
exact behaviour of the equation. The problem of whether there exists an exact
solution close to a function that almost solves a given equation establishes the
concept of stability for functional equations proposed by Ulam, which is also named
after him.
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Nonlinear effects can often be observed in phenomena such as the dynamics of
the population in the interaction between predator and prey. In order to describe
this phenomena in a more realistic way, nonlinear differential equations are used.
They are thus quite common in different scientific fields and are an active area
of research in mathematics. Their analysis is not a simple task. It often requires
the use of special analytical techniques. As a powerful tool in nonlinear analysis,
fixed point theory can be shown as an example. Fixed points hold significance
as they denote states of equilibrium, stability, and serve as solutions to a range of
problems. The theory of fixed points offers techniques and approaches for analysing
the existence, properties and dynamics of these special points. For instance, this
theory has been a mathematical material to John Nash’s result in game theory, which
earned him a Nobel Prize in economics, and has also played a significant role in
investigating the E&U of solution for nonlinear differential equations. Moreover,
just by looking at [1], one may say that the theory has interactions with many areas
of mathematics from topology and analysis to algebra and geometry. Therefore, it
would be appropriate to characterize this theory as interdisciplinary. As can be seen,
this interdisciplinary theory has many applications in various fields of mathematics
and other sciences. To illustrate the theory with an interesting problem, one can
consider the question: "Is there always a pair of opposite points on the Earth’s
equator with the same temperature, where the temperature varies continuously?" At
first sight it seems difficult to answer this question. However, one can answer this
question in the affirmative with the help of the Borsuk-Ulam theorem. Because of
the above mentioned, as Felix Browder said, "The theory of fixed points is one of
the most powerful tools of modern mathematics".

This is followed by a review of the literature on some PDEs subjected to existence,
uniqueness and stability analysis, which will be carried out throughout the thesis.

1.1 Literature Review
In the theory of differential equations, one of the main areas of research is whether
there is a solution to the equation, and if so, its uniqueness. In this area, the
contributions of Cauchy, Peano, Picard, Lindelöf and Lipschitz on the initial value
problem (IVP)

u′(x) = f
(
x, u(x)

)
, u(x0) = u0 (1.1)

have been pioneering studies in the literature. In [2, 3], Peano established that there
is a solution to the equation assuming f is continuous, and extended this discovery
to systems of ODEs by employing successive approximations. Peano’s theorem
offers a very easily controllable condition to verify the existence of a solution.
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The fundamental theorem, however, merely guarantees existence and gives no
information about its uniqueness. Another fundemantal theorem in ODEs is the
so-called Picard-Lindelöf theorem, which requires a continuous function f to be
Lipschitz with respect to (w.r.t.) u, but it guarantees both the E&U of solutions.
Additionally, this theorem provides a method for approximating a solution. In the
theory of ODEs, two significant theorems mentioned above have caught the interest
of many authors, leading to the availability of many proofs today. Proof techniques
can be categorized into two groups depending on "construction of a sequence of
approximate solutions such as Tonelli sequence or the Euler-Cauchy polygons" and
"fixed point theory". Among these two groups, fixed point theory provides elegant
proofs for these classical theorems. For instance, the Peano and Picard-Lindelöf
theorems are associated with the Schauder and Banach fixed point theorems (FPTs),
respectively.

As an analogue of the ODE (1.1) in PDEs, the following example of hyperbolic
type can be considered:

∂2u(x, t)

∂x∂t
= f

(
x, t, u(x, t),

∂u(x, t)

∂x
,
∂u(x, t)

∂t

)
(1.2)

or
∂2u(x, t)

∂x∂t
= f

(
x, t, u(x, t)

)
. (1.3)

The boundary value problem so called "Darboux-problem", which is the equation
(1.2) (or the equation (1.3)) together with the conditions

u(x, 0) = φ(x) and u(0, t) = ψ(t) where φ(0) = ψ(0), (1.4)

has been treated by many different methods such as method of successive
approximation (today attributed to Picard), an analogue of the Euler-Cauchy
polygon method and fixed point method. Darboux [4] and Kamke [5] obtained a
unique solution to the equation (1.2)-(1.4) by applying the method of successive
approximation under the conditions that the countinuous function f(x, t, u, p, q),
p = ∂u

∂x
and q = ∂u

∂t
, is bounded and satisfies a Lipschitz condition w.r.t. p, q and

to u. Unlike these papers, Hartman and Winter [6] have shown that the Lipschitz
condition in the argument u can be omitted to guarantee the existence of solutions,
though not in the uniqueness result, see also [7–9]. Also, Lungu and Rus [10]
recently proved the E&U result for this equation under the Lipschitz condition
w.r.t. three variables as mentioned above by using the Banach FPT converting the
differential equation into the corresponding integral system.

In the simple scenario that f(x, t, u, p, q) is independent of the p and q (that is,

3



the other equation (1.3)), Montel [11] proved that there is at least one solution to
this equation with the conditions (1.4), but it is usually not unique, as shown by
simple examples in [7] and [6]. His proof was an adaptation of the standard proof
of Peano’s existence theorem in the theory of ODEs. In addition, by considering
this equation in Banach space, the existence of a solution is investigated in [12] and
[13] by the use of the FPT of Sadovskii.

More specifically, the two types of Darboux problem (1.2) and (1.3) mentioned
above has been also considered in functional PDEs. Czlapinski has mainly dealt
with these problems for such types of PDEs in his studies [14–17] and discussed
the existence of a solution. Rus has considered the type (1.3) of Darboux problem
in a general framework and presented an E&U result in [18]. Other aspects like
periodicity, upper and lower solutions for these two types of equations mentioned
above have been considered by many authors besides the E&U of solutions [19–22].
For further details about these equations, see also [23] and to the references given
in these papers. Unlike these types of equations, Rzepecki [24] has considered the
right-hand side (RHS) function f as follows:

∂2u(x, t)

∂x∂t
= f

(
x, t, u(x, t),

∂2u(x, t)

∂x∂t

)
(1.5)

with the same boundary conditions as in (1.4) and has examined the existence of
solution in the first coordinate plane R+ × R+. However, the question of whether
there is a solution to the equation (1.5)-(1.4) or not, has not been the subject of
many papers. Moreover, a fractional counterpart of the aforementioned equation
has recently derived by utilizing fractional derivatives, which has been currently
examined, and the existence of solution has been discussed in [25], where the
existence theorem has been proven via fixed point theory.

In addition to E&U problems, another subject discussed in the thesis is stability
analysis and the background on the concept of stability is mentioned below. At
a mathematical colloquium organised by the University of Wisconsin in 1940,
Ulam gave an extended talk. During this talk he dealt with various important
open questions [26]. One of the questions he posed concerned the stability of
homomorphisms: Consider two groups: (E1, ◦) and (E2, ⋆), where the second is
equipped with a metric ρ(·, ·). For a given ϵ > 0, is it feasible to find an δ > 0 such
that if any function h : E1 → E2 fulfilling the following relation

ρ(h(x ◦ x), h(x) ⋆ h(x)) < δ, x, x ∈ E1,

then there is a homomorphism g : E1 → E2 satisfying ρ(h(x), g(x)) < ϵ for
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x ∈ E1? The functional equation for homomorphisms is said to be stable if there is
a real homomorphism nearby when a mapping is almost homomorphic. That is, the
stability means that there is an exact solution near each approximate solution of the
equation under consideration. An answer to Ulam’s question was provided a year
later by Hyers in [27]: Let B1 and B2 denote real Banach spaces and ϵ > 0. If a
function h : B1 → B2 satisfies

∥∥h(x+ x)−
(
h(x) + h(x

)∥∥ ≤ ϵ, x, x ∈ B1, (1.6)

then there is a unique additive function g : B1 → B2 which fulfills

∥∥h(x)− g(x)
∥∥ ≤ ϵ, x ∈ B1.

With the help of Hyers to Ulam’s question, this concept of stability was later
recognized in the literature as UH stability. Moreover, Rassias [28] enhanced the
result of Hyers by considering a function dependent on x and x instead of ϵ in (1.6),
which is referred to as UHR stability in the literature. Furthermore, Obloza was
the first author to study this type of stability in the context of linear differential
equations [29]. Later, Alsina and Ger [30] demonstrated that for any differentiable
function ϑ : I → R fulfilling

∣∣ϑ′(x) − ϑ(x)
∣∣ ≤ ϵ for ϵ > 0 and all x ∈ I (an open

interval of reals), the differential equation u′(x) = u(x) has a solution represented
as u in a way that ensures

∣∣u(x) − ϑ(x)
∣∣ ≤ 3ϵ for all x ∈ I . Jung [31] employed

the fixed point method to establish the stability in the sense of both UH and UHR
of the equation

u′(x) = f
(
x, u(x)

)
.

This study extended the previous results to the nonlinear case. The concept of this
stability was also discussed in many topics such as ODEs and PDEs [32–37].

1.2 Objective of the Thesis
In this thesis, the general structure of a second-order PDE for u(x, t) is considered
as follows:

A
∂2u

∂x2
+B

∂2u

∂x∂t
+ C

∂2u

∂t2
= g

(
x, t, u,

∂u

∂x
,
∂u

∂t

)
.

If the equation above is hyperbolic, a suitable transformation can reduce it to the
canonical form below:

∂2u

∂η∂γ
= f

(
η, γ, u,

∂u

∂η
,
∂u

∂γ

)
.
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Since there is no general method to solve nonlinear equations as compared to linear
equations, these equations have to be treated as a separate problem. For that reason,
this thesis aims to investigate the E&U of solutions as well as the stability of
hyperbolic equations in canonical form with several functions f on the RHS. These
equations are determined by considering the above equation and its various forms
as the general second-order hyperbolic PDEs are reduced to this type of equation.

1.3 Thesis Outline
This thesis consists of five chapters and in the current chapter (Chapter 1) the
importance of the analyses (existence, uniqueness and stability) that are discussed
in this thesis is briefly emphasized. The objective of the thesis is then presented
through a literature review.

In Chapter 2, there is an introduction where the basic concepts of PDEs are given.
Then it is followed by the main theorems of fixed point theory used as a tool
throughout thesis and the concept of stability handled in this thesis is also presented.

There are four sections in Chapter 3 where the E&U of solutions for various types
of hyperbolic PDEs are analyzed by applying fixed point theory. Inspired by
Burton’s method called "progressive contractions", his methodology is extended
to two-dimensional regions unlike the other related studies in Section 3.1. It is also
applied to the hyperbolic PDEs with two delays:

∂2u(x, t)

∂x∂t
= f

(
x, t, u(x, t), u(x− α, t− β)

)
(x, t) ∈ D

u(x, t) = ϕ(x, t) (x, t) ∈ D̃

with
u(x, 0) = φ(x) and u(0, t) = ψ(t)

where D = [0, a]× [0, b], f ∈ C(D×R2,R), D̃ = [−α, a]× [−β, b]\(0, a]× (0, b],
ϕ ∈ C(D̃,R), φ(x) and ψ(t) are continuously differentiable mappings with φ(x) =
ϕ(x, 0), ψ(t) = ϕ(0, t) for the intervals [0, a] and [0, b], respectively. Later on,
Banach’s FPT is utilized to derive an E&U result for these equations. This method
takes advantage of the sufficiency of the Lipschitz condition of the function f w.r.t.
the third variable only, ignoring the Lipschitz condition w.r.t. the fourth variable. In
Section 3.2, the same theorem is also utilized to establish the E&U of solutions for
the hyperbolic functional PDEs:

∂2u(x, t)

∂x∂t
= f

(
x, t, u

(
g(x, t), h(x, t)

))
, (x, t) ∈ D
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with u(x, 0) = φ(x)

u(0, t) = ψ(t)
such that φ(0) = ψ(0),

where D = [0, a] × [0, b], f ∈ C(D × R,R), g ∈ C(D, [0, a]), h ∈ C(D, [0, b]),
φ(x) and ψ(t) belong to the space of continuously differentiable mappings defined
on [0, a] and [0, b], respectively. After that, based on the unique solutions discovered
in the bounded domains, the relevant result is then extended to an unbounded
domain. Section 3.3 is devoted to investigating the E&U of solutions to the implicit
hyperbolic PDEs:

∂2u(x, t)

∂x∂t
= f

(
x, t, u(x, t),

∂2u(x, t)

∂x∂t

)
, (x, t) ∈ D

with u(x, 0) = φ(x)

u(0, t) = ψ(t)
such that φ(0) = ψ(0),

where D = [0, a] × [0, b], f ∈ C(D × R,R), φ(x) and ψ(t) belong to the space
of continuously differentiable mappings defined on [0, a] and [0, b], respectively.
Under appropriate conditions, the existence result is proved based on Schauder’s
FPT, and the uniqueness result is demonstrated using the Wendorff lemma. In
Section 3.4, following the idea of utilizing Banach’s FPT to construct well-defined
mappings, a novel proof of the existence theorem originally proposed by Hartman
and Winter for the following PDEs is constructed based on fixed point theory.

∂2u(x, t)

∂x∂t
= f

(
x, t, u(x, t),

∂u(x, t)

∂x
,
∂u(x, t)

∂t

)
, (x, t) ∈ D

with u(x, 0) = φ(x)

u(0, t) = ψ(t)
such that φ(0) = ψ(0),

where D = [0, a]× [0, b], f ∈ C(D×R3,R), φ(x) and ψ(t) belong to the space of
continuously differentiable mappings defined on [0, a] and [0, b], respectively.

Chapter 4 is divided into three sections, each of which investigates the stability
of corresponding PDEs discussed in the first three sections of Chapter 3, utilizing
some tools from Picard operator theory, the Wendorff lemma, and weighted norms.
Finally, the thesis ends up with a conclusion (Chapter 5).
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2
FUNDAMENTAL CONCEPTS

In this chapter, some basic concepts of PDEs will be mentioned and the concepts,
definitions and theorems that are used throughout the analyses performed in this
thesis will be given.

2.1 Some Basic Concepts of PDEs
A PDE concerning a function u(x, t, · · · ) establishes a relationship between u and
its partial derivatives such as ∂u

∂x
, ∂u
∂t
, ∂

2u
∂x2 ,

∂2u
∂x∂t

, ∂
2u

∂t2
, · · · , and can be expressed as:

F (x, t, · · · , u, ∂u
∂x
,
∂u

∂t
,
∂2u

∂x2
,
∂2u

∂x∂t
,
∂2u

∂t2
, · · · ) = 0 (2.1)

where F is a specified function, x, t, · · · represent independent variables, and
u(x, t, · · · ) is referred to as the dependent variable. The highest derivative that
appears in equation (2.1) determines the order of this equation. The equation
described above in this configuration is referred to as implicit PDE. If the highest
order partial derivatives in this equation are isolated on one side, this equation is
called explicit.

A PDE is called as linear if the coefficients of the unknown function u and all its
derivatives are solely dependent on the independent variables, otherwise it is said
to be nonlinear. Moreover, the family of nonlinear PDEs are divided into three
categories as follows:

• A PDE of order k is called semi-linear if the coefficients of the k order
partial derivatives of the unknown function depend solely on the independent
variables.

• A PDE of order k is called quasi-linear if the coefficients of the k order
partial derivatives of the unknown function depend on the independent
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variables and/or on partial derivatives of the unknown function of order at
most k − 1 (including the unknown function itself)

• If a (nonlinear) PDE is not quasi-linear, then it is classified as fully nonlinear.

It is clear from the above definitions that a semi-linear PDE is also a quasi-linear
PDE. The above categorization of PDEs into linear, semilinear, quasilinear, and
fully nonlinear represents a rough hierarchy of complexity in terms of studying and
solving these equations. Indeed, the mathematical theory of linear PDEs is now well
understood. On the other hand, less is known about semi-linear and quasi-linear
PDEs, and even less about fully nonlinear PDEs.

Let us now consider the general structure of a second-order PDE with the unknown
function u(x, t) specified as

A
∂2u

∂x2
+B

∂2u

∂x∂t
+ C

∂2u

∂t2
= g

(
x, t, u,

∂u

∂x
,
∂u

∂t

)
. (2.2)

The other classification of the aforementioned PDE depends on the sign of the
following quantity called the discriminant of this equation, which is computed as

∆(x, t) := B2(x, t)− 4A(x, t)C(x, t).

If ∆ > 0, the equation is said to be hyperbolic; if ∆ = 0, it is parabolic; and if
∆ < 0, it is elliptic. This classification is mathematically based on the potential for
reducing the given equation to canonical form through coordinate transformation.

To illustrate the significance of the discriminant and thus the classification of the
PDE (2.2), we demonstrate how to reduce this equation to its canonical form by
transforming the variables (x, t) into the new ones (η, γ)

η = η(x, t) and γ = γ(x, t) (2.3)

where both η and γ are twice continuously differentiable. Additionally, the Jacobian
of this transformation given by

J =
∂(η, γ)

∂(x, t)
=

∣∣∣∣∣ηx ηt

γx γt

∣∣∣∣∣
is non-zero in the region under consideration. Using the chain rule, we compute the
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terms of the equation (2.2) in these new variables

∂u

∂x
=
∂u

∂η

∂η

∂x
+
∂u

∂γ

∂γ

∂x
∂u

∂t
=
∂u

∂η

∂η

∂t
+
∂u

∂γ

∂γ

∂t

and then

∂2u

∂x2
=
∂2u

∂η2

(∂η
∂x

)2

+ 2
∂2u

∂η∂γ

∂η

∂x

∂γ

∂x
+
∂2u

∂γ2

(∂γ
∂x

)2

+
∂u

∂η

∂2η

∂x2
+
∂u

∂γ

∂2γ

∂x2

∂2u

∂x∂t
=
∂2u

∂η2
∂η

∂x

∂η

∂t
+

∂2u

∂η∂γ

(
∂η

∂x

∂γ

∂t
+
∂η

∂t

∂γ

∂x

)
+
∂2u

∂γ2
∂γ

∂x

∂γ

∂t
+
∂u

∂η

∂2η

∂x∂t
+
∂u

∂γ

∂2γ

∂x∂t

∂2u

∂t2
=
∂2u

∂η2

(∂η
∂t

)2

+ 2
∂2u

∂η∂γ

∂η

∂t

∂γ

∂t
+
∂2u

∂γ2

(∂γ
∂t

)2

+
∂u

∂η

∂2η

∂t2
+
∂u

∂γ

∂2γ

∂t2
.

Substitution of the above statements into equation (2.2) gives

A∗∂
2u

∂η2
+ B∗ ∂

2u

∂η∂γ
+ C∗∂

2u

∂γ2
= g

(
η, γ, u,

∂u

∂η
,
∂u

∂γ

)
(2.4)

where

A∗ = A
(∂η
∂x

)2

+B
∂η

∂x

∂η

∂t
+ C

(∂η
∂t

)2

B∗ = 2A
∂η

∂x

∂γ

∂x
+B

(
∂η

∂x

∂γ

∂t
+
∂η

∂t

∂γ

∂x

)
+ 2C

∂η

∂t

∂γ

∂t

C∗ = A
(∂γ
∂x

)2

+B
∂γ

∂x

∂γ

∂t
+ C

(∂γ
∂t

)2

Hence,

(B∗)2 − 4A∗C∗ =

(
∂η

∂x

∂γ

∂t
− ∂η

∂t

∂γ

∂x

)2(
B2 − 4AC

)
.

From this relation, it follows that the discriminants of the equation (2.2) and the
transformed equation (2.4) have the same sign, and hence the type of equation will
not change under the transformation (2.3).

Now let us consider the case of the equation (2.2) being hyperbolic, that is B2 −
4AC > 0. This implies that the equation Aλ2 + Bλ + C = 0 has two distinct real
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roots, say λ1 and λ2. Choosing η and γ in a manner that

∂η

∂x
= λ1

∂η

∂t
and

∂γ

∂x
= λ2

∂γ

∂t
, (2.5)

it can be seen as follows that the coefficients of ∂2u
∂η2

and ∂2u
∂γ2 will be zero:

A∗ = A
(∂η
∂x

)2

+B
∂η

∂x

∂η

∂t
+ C

(∂η
∂t

)2

=
(
Aλ21 +Bλ1 + C

)(∂η
∂t

)2

= 0,

C∗ = A
(∂γ
∂x

)2

+B
∂γ

∂x

∂γ

∂t
+ C

(∂γ
∂t

)2

=
(
Aλ22 +Bλ2 + C

)(∂γ
∂t

)2

= 0.

To determine the existence of η and γ satisfying the equations (2.5), we consider
the characteristic curves of these equations given by

dt

dx
= −λ1 and

dt

dx
= −λ2.

The solution curves of the above equations, known as the Lagrange’s auxiliary
equation, are as follows:

t+ λ1x = k1 and t+ λ2x = k2

where k1, k2 are integration constants. With the following choices for η(x, t) and
γ(x, t)

η = t+ λ1x and γ = t+ λ2x,

one can obtain that

∂2u

∂η∂γ
= G

(
η, γ, u,

∂u

∂η
,
∂u

∂γ

)
, G =

1

B∗ g

which is another hyperbolic equation called "canonical form" of the original general
hyperbolic equation (2.2).

Example 2.1. Let us examine the equation below:

∂2u

∂x2
− x2

∂2u

∂t2
= 0 on Ω = {(x, t) ∈ R2 | x ̸= 0}.

Comparing the given equation with (2.2), one can get A = 1, B = 0 and C = −x2.
Then the discriminant of this equation is ∆ = B2 − 4AC = 4x2 > 0 and so the
equation is hyperbolic. The solutions of the characteristic equationAλ2+Bλ+C =

0 are λ1 = x and λ2 = −x. The corresponding characteristic curves are

dt

dx
= ±x

11



whose two solutions are t+ x2

2
= k1 and t− x2

2
= k2. Taking the transformations η

and γ as follows:

η = t+
x2

2
and γ = t− x2

2
,

we get

∂u

∂x
=
∂u

∂η
x− ∂u

∂γ
x

∂2u

∂x2
=x

(
∂2u

∂η2
x− ∂2u

∂η∂γ
x

)
+
∂u

∂η
− x

(
∂2u

∂γ∂η
x− ∂2u

∂γ2
x

)
− ∂u

∂γ

=x2
(
∂2u

∂η2
− 2

∂2u

∂η∂γ
+
∂2u

∂γ2

)
+
∂u

∂η
− ∂u

∂γ

and similarly

∂u

∂t
=
∂u

∂η
+
∂u

∂γ

∂2u

∂t2
=
∂2u

∂η2
+
∂2u

∂γ2
+ 2

∂2u

∂η∂γ
.

Substituting these expression in the given equation, we have

∂2u

∂x2
− x2

∂2u

∂t2
=x2

(
∂2u

∂η2
− 2

∂2u

∂η∂γ
+
∂2u

∂γ2
− ∂2u

∂η2
− ∂2u

∂γ2
− 2

∂2u

∂η∂γ

)
+
∂u

∂η
− ∂u

∂γ
= 0.

This yields that

∂2u

∂η∂γ
=

1

4x2

(
∂u

∂η
− ∂u

∂γ

)
=

1

4(γ − η)

(∂u
∂η

− ∂u

∂γ

)
which is the canonical form of the corresponding original equation.

2.2 Fixed Point Theory
The theory of fixed points is a mathematical discipline concerned with the E&U
of solutions to equations in the type Tx = x (x represents the fixed point of T ).
Although this equation may seem simple, the fixed point has a profound impact as
it represents the solution, stability, and equilibrium point of many problems. Since
various problems in different fields can be reduced to the simple fixed point equation
mentioned above, having such a special point enables us to make assertions about
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these problems. For instance, one can consider the IVP given below:

u′(x) = f
(
x, u(x)

)
, u(x0) = u0.

If f is continuous, then this equation can be converted into an integral equation as
follows:

u(x) = u0 +

∫ x

x0

f
(
s, u(s)

)
ds.︸ ︷︷ ︸

:=Tu(x)

Hence, the fixed point of the operator T represents the solution to the given problem.
Now, let us initially give the concept of Lipschitz mappings to introduce Banach’s
FPT, which exemplifies mathematical beauty in terms of the simplicity and elegance
of its proof and its wide range of applications.

Definition 2.1. Consider a metric space (E, ρ). A mapping T : E → E is referred
to as Lipschitz if there exists a constant L > 0 such that

ρ(Tx, Tx) ≤ Lρ(x, x) for any x, x ∈ E.

The smallest value of L satisfying this inequality is known as the Lipschitz constant
of T . Then this mapping specifically called a contraction mapping when L < 1.

While the continuity of a Lipschitz mapping is evident, the opposite is not usually
true. This fact can be demonstrated with the following example.

Example 2.2. Consider the mapping on R given below

Tx =

x sin π
x
, x ∈ R \ {0}

0, x = 0.

Obviously, this mapping is continuous on R. However it is not a Lipschitz mapping.
If it were not so, there would be L > 0 ensuring that

∣∣Tx− Tx
∣∣ ≤ L

∣∣x− x
∣∣

for any x, x ∈ R. Taking xn = 1
1
2
+2n

and xn = 1
2n

, we get

∣∣Txn − Txn
∣∣ ≤ L

∣∣xn − xn
∣∣,

leading to the following

2 ≤ 4n+ 1

4n(2n+ 1
2
)
.

13



This causes the contradiction 2 ≤ 0 as n goes to infinity.

The theorem stated below, proved by Banach in 1922, is one of the best-known
FPTs.

Theorem 2.3 (Banach’s FPT). Consider (E, ρ) as a complete metric space, and let

T : E → E be a contraction mapping. Then T possesses a unique fixed point in E.

Additionally, the sequence {xn} given by

xn+1 = Txn, n = 1, 2, · · · ,

converge to the unique fixed point.

In the previous theorem, which is referred to the contraction mapping principle,
Banach ensures the existence of unique fixed point for the mapping provided that
it is a contraction and also gives the method of how to find the point. This method
known as Picard iteration or successive approximations in the literature is roughly
illustrated as follows:

x

y

y
=
x

y
=
T
x

T (x0)

T (x1)

T (x2)

x0x1x2x∗

Figure 2.1 The convergence of Picard iteration to the fixed point x∗ of T

Unlike Banach’s FPT, Brouwer put forward a FPT known by his name, where he
takes continuity as the only condition for the mapping. Before stating this theorem,
let us give a familiar result from calculus:

Every continuous function f : [a, b] → [a, b] has a fixed point.
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This simple case can be considered as the one dimensional version of Brouwer’s
FPT. The important theorem given below finds extensive applications in nonlinear
analysis as well as many other fields of mathematics.

Theorem 2.4 (Brouwer’s FPT-Version 1). Let T be a continuous mapping from a

closed unit ball B in Rn into itself. Then T possesses a fixed point.

An alternative variant of Brouwer’s FPT is as follows:

Theorem 2.5 (Brouwer’s FPT-Version 2). Suppose S is a convex, compact and

nonempty subset of Rn, and let T : S → S be a continuous mapping. Then T

possesses a fixed point.

Brouwer’s FPT is only applicable in finite dimensinal spaces, not infinite ones. The
following example explains this situation.

Example 2.6. Take into account the Banach space c0 of sequences converging to 0,
equipped with the norm

∥∥x∥∥ = sup
n∈N

∣∣xn∣∣, where x = (x1, x2, · · · ).

Let B represent a closed unit ball in c0, and define the operator T : B → B as
follows:

Tx = (1, x1, x2, · · · ).

The continuity of T is evident as the equality
∥∥Tx − Tx

∥∥ =
∥∥x − x

∥∥ holds for
every x, x ∈ B. However, T does not possess a fixed point in B because Tx = x

implies that x1 = x2 = · · · = 1 and hence x ̸∈ B ⊂ c0.

One of the generalizations of Brouwer’s FPT was given by Schauder, who extended
this theorem to infinite dimensional spaces as follows;

Theorem 2.7 (Schauder’s FPT-Version 1). Suppose S is a convex, compact and

nonempty subset of a Banach spaceE, and let T : S → S be a continuous mapping.

Then T possesses a fixed point.

Under some more assumptions, a continuous function may have a fixed point
even in the absence of a mapping from a compact convex set into itself. In the
following, it is stated an alternative version of Schauder’s FPT that is more suitable
for applications since compact sets are harder to find in an infinite dimensional
space.
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Theorem 2.8 (Schauder’s FPT-Version 2). Suppose S is a convex, closed and

nonempty subset of a Banach space E. If T is a continuous mapping of S into

itself such that T (S) is relatively compact (that is, its closer is compact), then T

possesses a fixed point.

The Ascoli-Arzela theorem below offers criteria for the relative compactness
required for Schauder’s FPT.

Theorem 2.9 (Ascoli-Arzela Theorem). Let E denote a compact metric space en-

dowed with ρ. A subset S of C(E,Rn) is relatively compact if and only if (shortly,

iff) it meets the following criteria:

i) S is bounded, which means that
∥∥u(x)∥∥ ≤M for some constant M > 0.

ii) S is equicontinuous, which means that for any ϵ > 0, there is a δ > 0 such

that for all u ∈ S, ∥∥u(x)− u(x)
∥∥ ≤ ϵ

holds for all x, x ∈ E provided that ρ(x, x) < δ.

2.3 Stability Theory
This section presents the basic concepts of stability in the sense of Ulam-Hyers
(UH) and Ulam-Hyers-Rassias (UHR), and the necessary tools to achieve them.
These stability definitions will be given for the specific ODE of the general first
order:

u′(x) = f
(
x, u(x)

)
, (2.6)

where f : [a, b]× R → R is a continuous function.

Definition 2.2. [32] The equation (2.6) is called UH stable when there is a constant
C > 0 such that for every ϵ > 0, the following property holds: Given any
continuously differentiable function ϑ satisfying

∣∣ϑ′(x)− f
(
x, ϑ(x)

)∣∣ ≤ ϵ,

there exists a solution u to the equation (2.6) fulfilling
∣∣ϑ(x) − u(x)

∣∣ ≤ Cϵ for all
x ∈ [a, b].

Definition 2.3. [32] Let ϕ be a non negative function. The equation (2.6) is called
UHR stable w.r.t. ϕ when there is a constant C > 0 such that the following property
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holds: Given any continuously differentiable function ϑ satisfying

∣∣ϑ′(x)− f
(
x, ϑ(x)

)∣∣ ≤ ϕ(x),

there exists a solution u to the equation (2.6) fulfilling
∣∣ϑ(x) − u(x)

∣∣ ≤ Cϕ(x) for
all x ∈ [a, b].

These definitions will be modified for some nonlinear hyperbolic PDEs that are
studied in this thesis. Now we state the concept of the Picard operator and the
abstract Gronwall lemma from Picard operator theory.

Definition 2.4. [38, 39] Consider an operator P : E → E on a metric space (E, ρ).
If there exists a z∗ ∈ E such that

i) FP = {z∗}, where FP = {z ∈ E : P(z) = z} denotes the fixed point set of
P ,

ii) The sequence (Pn(z0))n∈N converges to z∗ for all z0 ∈ E,

then P is called Picard operator.

And the triplet (E, ρ,⪯) is called an ordered metric space if (E, ρ) forms a metric
space and ⪯ represents a partial order relation on X .

Lemma 2.1. [38, 39] Consider an increasing Picard operator P : E → E with

FP = {z∗}, and let (E, ρ,⪯) be an ordered metric space. For z ∈ E, if z ⪯ P(z),

then z ⪯ z∗; whereas if z ⪰ P(z), then z ⪰ z∗.

Next, the Wendorff lemma is stated, which is the extended form of the Gronwall
lemma.

Lemma 2.2. [40, 41] Let z, h, k ∈ C([0, a] × [0, b],R+), and let h(x, t) be non-

decreasing w.r.t. x and t. Suppose

z(x, t) ≤ h(x, t) +

∫ x

0

∫ t

0

k(r, s)z(r, s)dsdr, x ∈ [0, a], t ∈ [0, b].

Then the inequality stated below holds:

z(x, t) ≤ h(x, t) exp

(∫ x

0

∫ t

0

k(r, s)dsdr

)
.
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3
EXISTENCE AND UNIQUENESS RESULTS FOR

NONLINEAR HYPERBOLIC PDEs

In this chapter, the E&U results are performed for several nonlinear hyperbolic
PDEs with or without time delay using fixed point theory which is the main
objective of the thesis. After obtaining these E&U results, in the next chapter,
we also investigate the stability in the sense of UH and UHR for these nonlinear
hyperbolic PDEs.

3.1 Nonlinear Hyperbolic PDEs with Two Delays
In this section, we examine the following class of hyperbolic PDEs involving finite
time delays α and β,

∂2u(x, t)

∂x∂t
= f(x, t, u(x, t), u(x− α, t− β)) (x, t) ∈ D (3.1)

u(x, t) = ϕ(x, t) (x, t) ∈ D̃ (3.2)

with
u(x, 0) = φ(x) and u(0, t) = ψ(t) (3.3)

where D = [0, a]× [0, b], f ∈ C(D×R2,R), D̃ = [−α, a]× [−β, b]\(0, a]× (0, b],
ϕ ∈ C(D̃,R), φ(x) and ψ(t) are continuously differentiable mappings with φ(x) =
ϕ(x, 0), ψ(t) = ϕ(0, t) for the intervals [0, a] and [0, b], respectively.

This section is dedicated to the investigation of the E&U of solutions to this class
of PDEs. To prove the main result, we use a technique so called "progressive
contractions" which is introduced by Burton, and is carried out in one dimension in
[42, 43]. Recently, they applied this technique to a form of integral equations with
delay and it allowed Burton and Purnaras to get rid of the function with delay in
[44]. Inspired by Burton’s method, we extend the progressive contraction technique
to two-dimensional regions unlike the other related studies and then apply it to our
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problem. More specifically, we create nested rectangular regions by dividing the
intervals [0, a] on the x-axis and [0, b] on the other properly. Using these partitions,
we demonstrate that a unique solution exists in the first rectangular region. After
that, we extend this region into an upper rectangular region and find a unique
solution in this upper region by considering the solution function we found in the
previous step as initial function. Continuing this process until we reach the whole
domain, we can obtain a unique solution for the equation (3.1)-(3.3).

Before stating the main result, we recall Bielecki’s norm 1 which is used to obtain a
solution defined on the whole rectangle Ω := [−α, a]× [−β, b]. The Bielecki norm
∥·∥B is defined by ∥u∥B = max(x,t)∈Ω e

−θ(x+t) |u(x, t)| on C(Ω,R). Note that the
maximum norm on C(Ω,R) is equivalent to the Bielecki norm, as indicated by the
inequality:

e−θ(a+b) max
(x,t)∈Ω

|u(x, t)| ≤ ∥u∥B ≤ eθ(α+β) max
(x,t)∈Ω

|u(x, t)| .

Consequently, it follows straightforwardly that (C(Ω,R), ∥·∥B) constitutes a
Banach space. Let us now turn our attention to the proof of the E&U of solutions
to our problem (3.1)-(3.3). This is stated in the following theorem. As mentioned
above, we mainly apply the progressive contraction technique into two dimensional
region.

Definition 3.1. A function u ∈ C1,2(D,R)∩C([−α, a]× [−β, b],R) is called to be
a solution of the proposed equation (3.1)-(3.3) if it satisfies the equations (3.1) and
(3.2) on D, as well as (3.3) on D̃, where C1,2(D,R) denotes the set of functions
u(x, t) : D → R that are continuous along with their partial derivatives ∂u

∂x
, ∂u
∂t

and
∂2u
∂x∂t

.

Theorem 3.1. Suppose the following conditions hold:

i) The function f : D × R2 → R is continuous.

ii) There exists Lf > 0 which ensures that

∣∣f(x, t, u, w)− f(x, t, u, w)
∣∣ ≤ Lf

∣∣u− u
∣∣ (3.4)

for any u, u, w ∈ R and (x, t) ∈ D.

Then the problem (3.1)-(3.3) has a unique solution on [−α, a]× [−β, b].
1This norm was first used by Bielecki in [45]
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Proof. We begin by transforming our problem (3.1)-(3.3) into a fixed point
problem. For this purpose, we introduce the operator N as follows:

N : C([−α, a]× [−β, b],R) → C([−α, a]× [−β, b],R)

which is defined as:

Nu(x, t) =

ϕ(x, t) (x, t) ∈ D̃

µ(x, t) +
∫ x

0

∫ t

0
f
(
r, s, u(r, s), u(r − α, s− β)

)
dsdr (x, t) ∈ D,

where µ(x, t) = φ(x) + ψ(t) − φ(0). The intervals [0, a] and [0, b] are now
appropriately divided on the x and t axes respectively. Let 0 < S < α and
0 < T < β, where nS = a and nT = b. Observe that the following argument
validates the existence of such n:

∃NS ∈ N
a

NS

< α =⇒ a

n
≤ a

NS

< α =⇒ S =
a

n

and
∃NT ∈ N

b

NT

< β =⇒ b

n
≤ b

NT

< β =⇒ T =
b

n
,

where n = max{NS, NT}. The intervals are divided into the following partitions:

0 = S0 < S1 < · · · < Sn = a, Si − Si−1 = S

and
0 = T0 < T1 < · · · < Tn = b, Ti − Ti−1 = T.

To keep things simple, we shall utilize the following notations:
D̃i := [−α, Si]× [−β, Ti]\(0, Si]× (0, Ti]

Di := [0, Si]× [0, Ti]

u(α,β)(x, t) := u(x− α, t− β), (x, t) ∈ D.

Now, our observation deduced from the above partition is the following fact

(x, t) ∈ Di+1 =⇒ (x− α, t− β) ∈ Di ∪ D̃i. (3.5)

We notice that if (x, t) ∈ Di+1

x− α ≤ Si+1 − α < Si+1 − S = Si
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and
t− β ≤ Ti+1 − β < Ti+1 − T = Ti,

that is (x− α, t− β) ∈ Di ∪ D̃i.

By using these partitions in the manner described below, we will show that there
exists only one solution.

Step 1:

(x, t)

(x− α, t− β)

(x, t)

(x− α, t− β)

T1

S1
−α

−β

Figure 3.1 The first rectangular
partition of progressive contraction

Let
(
M(S1,T1),

∥∥ ·
∥∥
1

)
be complete

normed space of continuous functions

u : [−α, S1]× [−β, T1] → R

with the Bielecki norm

∥∥u∥∥
1
= max

[−α,S1]×[−β,T1]
e−θ(x+t)

∣∣u(x, t)∣∣
and we take u(x, t) = ϕ(x, t) for
(x, t) ∈ D̃1.

Define a mapping N1 :M(S1,T1) →M(S1,T1)

N1u(x, t) =

ϕ(x, t) (x, t) ∈ D̃1

µ(x, t) +
∫ x

0

∫ t

0
f
(
r, s, u(r, s), u(α,β)(r, s)

)
dsdr (x, t) ∈ D1.

For u, u ∈ M(S1,T1), N1u = N1u when (x, t) ∈ D̃1, then we take (x, t) ∈ D1.
Hence,

∥∥N1u−N1u
∥∥
1
≤ max

(x,t)∈D1

e−θ(x+t)

∫ x

0

∫ t

0

∣∣∣f(r, s, u(r, s), u(α,β)(r, s))
− f

(
r, s, u(r, s), u(α,β)(r, s)

)∣∣∣dsdr.
By (3.5) and the definition ofM(S1,T1), we get u(α,β) = u(α,β). And thus, it is enough
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to put the Lipschitz condition on the function f w.r.t. the third variable. Hence,

∥∥N1u−N1u
∥∥
1

≤ max
(x,t)∈D1

e−θ(x+t)

∫ x

0

∫ t

0

Lf

∣∣u(r, s)− u(r, s)
∣∣dsdr

≤ Lf

∥∥u− u
∥∥
1

max
(x,t)∈D1

e−θ(x+t)

∫ x

0

∫ t

0

eθ(r+s)dsdr

≤ Lf

θ2
∥∥u− u

∥∥
1
.

By taking θ > 0 (through the other steps below) such that Lf

θ2
< 1 in

∥∥.∥∥
1

norm
above, we obtain that N1 is a contraction mapping. According to Banach’s FPT,
there exists a unique fixed point ϕ1 ∈ M(S1,T1) such that ϕ1 satisfies the problem
(3.1)-(3.3) on [−α, S1]× [−β, T1].

Step 2: In this step, we extend the interval of Step 1 into [−α, S2]× [−β, T2].

(x, t)

(x− α, t− β)

(x, t)

(x
−
α
,t

−
β
)

(x, t)

(x− α, t− β)

S1

T1

T2

S2−α

−β

Figure 3.2 The second rectangular
partition of progressive contraction

Let
(
M(S2,T2),

∥∥.∥∥
2

)
be complete

normed space of continuous functions

u : [−α, S2]× [−β, T2] → R

equipped with the norm

∥∥u∥∥
2
= max

[−α,S2]×[−β,T2]
e−θ(x+t)

∣∣u(x, t)∣∣
and we take

u(x, t) =

ϕ(x, t) (x, t) ∈ D̃2

ϕ1(x, t) (x, t) ∈ D1.

Similarly, let us define a mapping N2 :M(S2,T2) →M(S2,T2)

N2u(x, t) =


ϕ(x, t) (x, t) ∈ D̃2

ϕ1(x, t) (x, t) ∈ D1

µ(x, t) +
∫ x

0

∫ t

0
f
(
r, s, u(r, s), u(α,β)(r, s)

)
dsdr (x, t) ∈ D2\D1.

For u, u ∈ M(S2,T2), N2u = N2u whenever (x, t) ∈ D1 ∪ D̃2, then we consider
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(x, t) ∈ D2\D1. Hence,

∥∥N2u−N2u
∥∥
2
≤ max

(x,t)∈D2\D1

e−θ(x+t)

∫ x

0

∫ t

0

∣∣∣f(r, s, u(r, s), u(α,β)(r, s))
− f

(
r, s, u(r, s), u(α,β)(r, s)

)∣∣∣dsdr
(

by (3.5) and the definition of M(S2,T2)

)

≤ max
(x,t)∈D2\D1

e−θ(x+t)

∫ x

0

∫ t

0

Lf

∣∣u(r, s)− u(r, s)
∣∣dsdr

≤Lf

∥∥u− u
∥∥
2

max
(x,t)∈D2\D1

e−θ(x+t)

∫ x

0

∫ t

0

eθ(r+s)dsdr

≤Lf

θ2
∥∥u− u

∥∥
2
.

Therefore N2 is a contraction mapping and by Banach’s FPT there exists a unique
fixed point ϕ2 in M(S2,T2), which serves as a solution to the equation (3.1)-(3.3) on
[−α, S2]× [−β, T2].

Step 3: Continuing this process up to nth Step, we can obtain a unique continuous
solution ϕn for the equation (3.1)-(3.3) on two dimensional region [−α, Sn] ×
[−β, Tn] = [−α, a]× [−β, b].

S1 S2

T1

T2

Tn

Sn−α

−β

· · ·

... . .
.

ϕ1

ϕ2ϕ

ϕϕ

Figure 3.3 All rectangular partitions of progressive contraction

■
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3.2 Nonlinear Hyperbolic Functional PDEs
In this section, we focus on the hyperbolic functional PDEs given by

∂2u(x, t)

∂x∂t
= f

(
x, t, u

(
g(x, t), h(x, t)

))
, (x, t) ∈ D (3.6)

with u(x, 0) = φ(x)

u(0, t) = ψ(t)
such that φ(0) = ψ(0), (3.7)

where D = [0, a] × [0, b], f ∈ C(D × R,R), g ∈ C(D, [0, a]), h ∈ C(D, [0, b]),
φ(x) and ψ(t) belong to the space of continuously differentiable mappings defined
on [0, a] and [0, b], respectively.

The current section is dedicated to establish the E&U of solutions to the proposed
equation (3.6)-(3.7) on a bounded domain utilizing the Bielecki norm, and based
on these solutions obtained on bounded domains, the finding is extended to an
unbounded domain. Below, we present the main results regarding the E&U of
solutions for the equation (3.6)-(3.7) in both bounded and unbounded domains.

By a solution to the equation (3.6)-(3.7) we refer to a function u ∈ C1,2(D,R)
satisfying the equation (3.6) and the conditions (3.7).

Theorem 3.2. Assume the following conditions are satisfied:

(C1) f ∈ C(D × R,R), g ∈ C(D, [0, a]), h ∈ C(D, [0, b]) with g(x, t) ≤ x and

h(x, t) ≤ t.

(C2) There exists L > 0 which ensures that

∣∣f(x, t, u)− f(x, t, u)
∣∣ ≤ L

∣∣u− u
∣∣

for any u, u ∈ R and (x, t) ∈ D.

Then the equation (3.6)-(3.7) has a unique solution in C(D,R).

Proof. Under the condition (C1), the proposed equation (3.6)-(3.7) is equivalent to
the integral equation

u(x, t) = µ(x, t) +

∫ x

0

∫ t

0

f
(
r, s, u

(
g(r, s), h(r, s)

))
dsdr, (3.8)
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where µ(x, t) = φ(x) + ψ(t) − φ(0). Converting this equation to a fixed point
problem, we aim to find the fixed point of the mapping given below

F : C(D,R) → C(D,R)

defined by
Fu = the RHS of the equation (3.8).

We now demonstrate that F is contraction w.r.t. the Bielecki norm given by

∥∥u∥∥
B
= max

(x,t)∈D

∣∣u(x, t)∣∣e−θ(x+t) where θ > 0. (3.9)

For any u, u ∈ C(D,R), we have

∣∣Fu(x, t)− Fu(x, t)
∣∣ ≤∫ x

0

∫ t

0

∣∣∣f(r, s, u(g(r, s), h(r, s)))
− f

(
r, s, u

(
g(r, s), h(r, s)

))∣∣∣dsdr
≤L

∫ x

0

∫ t

0

eθ(r+s)
(∣∣∣u(g(r, s), h(r, s))

− u
(
g(r, s), h(r, s)

)∣∣∣e−θ(r+s)
)
dsdr

≤L
∥∥u− u

∥∥
B

∫ x

0

∫ t

0

eθ(r+s)dsdr ≤ L

θ2
∥∥u− u

∥∥
B
eθ(x+t),

which implies that ∥∥Fu− Fu
∥∥
B
≤ L

θ2
∥∥u− u

∥∥
B
.

By choosing θ > 0 sufficiently large such that θ2 > L, we obtain that F is a
contraction mapping, so the equation (3.6)-(3.7) has only one solution in C(D,R)
by Banach’s FPT. ■

Now, we will show that the result proved above holds for unbounded domain. That
is, Theorem 3.2 can be also proved if D is replaced by R2

+ = [0,∞) × [0,∞) as
shown below.

Theorem 3.3. Assume the following conditions are satisfied:

(C3) f ∈ C(R2
+ × R,R), g ∈ C(R+,R+), h ∈ C(R+,R+) with g(x, t) ≤ x and

h(x, t) ≤ t.

(C4) There exists L ∈ C(R2
+,R+) which ensures that

∣∣f(x, t, u)− f(x, t, u)
∣∣ ≤ L(x, t)

∣∣u− u
∣∣
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for all u, u ∈ R and (x, t) ∈ R2
+.

Then the equation (3.6)-(3.7) has a unique solution in C(R2
+,R).

Proof. According to Theorem 3.2, for any n ∈ N, there exists a unique continuous
mapping un : Dn → R such that

un(x, t) = µ(x, t) +

∫ x

0

∫ t

0

f
(
r, s, un

(
g(r, s), h(r, s)

))
dsdr, (3.10)

where Dn = [0, n] × [0, n], since the continuous function L is bounded on this
compact domain. If (x, t) ∈ Dn, the following equality can be easily seen from the
uniqueness of un

un(x, t) = un+i(x, t) for each i = 1, 2, 3, · · · . (3.11)

For any (x, t) ∈ R2
+, let us define n(x, t) ∈ N as

n(x, t) = min{n ∈ N | (x, t) ∈ Dn}.

Additionally, we introduce a mapping u : R2
+ → R by

u(x, t) = un(x,t)(x, t). (3.12)

To demonstrate the continuity of u described above, we choose n1 = n(x1, t1) for an
arbitrary (x1, t1) ∈ R2

+. Then (x1, t1) belongs to the interior of Dn1+1. Thus, there
exists an ϵ > 0 such that u(x, t) = un1+1(x, t) for all (x, t) ∈ Bϵ(x1, t1). Since
un1+1 is continuous at (x1, t1), the mapping u is also continuous at this arbitrary
point. Now we show that the mapping u satisfies the equation (3.8). For any (x, t) ∈
R2

+, there is an integer n(x, t) such that (x, t) ∈ Dn(x,t). It follows from (3.10) and
(3.12) that

u(x, t) = un(x,t)(x, t)

= µ(x, t) +

∫ x

0

∫ t

0

f
(
r, s, un(x,t)

(
g(r, s), h(r, s)

))
dsdr

= µ(x, t) +

∫ x

0

∫ t

0

f
(
r, s, u

(
g(r, s), h(r, s)

))
dsdr.

where the last equality is obtained since n
(
g(r, s), h(r, s)

)
≤ n(x, t) for any (r, s) ∈

Dn(x,t) implies

un(x,t)
(
g(r, s), h(r, s)

)
= un(g(r,s),h(r,s))

(
g(r, s), h(r, s)

)
= u

(
g(r, s), h(r, s)

)
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by using (3.11) and (3.12). To prove the uniqueness, we suppose that ϑ is a
continuous mapping which also satisfies (3.8). For an arbitrary (x, t) ∈ R2

+, since
the restrictions u |Dn(x,t)

and ϑ |Dn(x,t)
both satisfy (3.8) for all (x, t) ∈ Dn(x,t), the

uniqueness of un(x,t) = u |Dn(x,t)
implies that

u(x, t) = u |Dn(x,t)
(x, t) = ϑ |Dn(x,t)

(x, t) = ϑ(x, t).

This completes the proof. ■

3.3 Nonlinear Implicit Hyperbolic PDEs
In this section, unlike the explicit hyperbolic problems as in Section 3.1 and 3.2, we
deal with the existence of solutions to the following implicit hyperbolic PDEs:

∂2u(x, t)

∂x∂t
= f

(
x, t, u(x, t),

∂2u(x, t)

∂x∂t

)
, (x, t) ∈ D (3.13)

with u(x, 0) = φ(x)

u(0, t) = ψ(t)
such that φ(0) = ψ(0), (3.14)

where D = [0, a]× [0, b], f ∈ C(D × R,R), φ(x) and ψ(t) belong to the space of
continuously differentiable mappings defined on [0, a] and [0, b], respectively.

Let us express that what we mean by a solution of the equation (3.13)-(3.14). A
function u ∈ C1,2(D,R) is defined as a solution of this equation if it satisfies the
equation (3.13) and the conditions (3.14) on D.

Before stating our existence result, let us provide the following lemma, which
converts the proposed equation (3.13)-(3.14) into a fixed point problem.

Lemma 3.1. Suppose f : D × R2 → R is continuous. The function u is a solution

of the equation (3.13)-(3.14) iff it satisfies

u(x, t) = µ(x, t) +

∫ x

0

∫ t

0

h(r, s)dsdr

where µ(x, t) = φ(x)+ψ(t)−ψ(0) and h ∈ C(D,R) holds the functional equation

h(x, t) = f
(
x, t, u(x, t), h(x, t)

)
.

Theorem 3.4. Suppose the following conditions hold:

(H1) The function f : D × R2 → R is continuous.
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(H2) There is a positive constant L < 1 which ensures that

∣∣f(x, t, u, z1)− f(x, t, u, z2)
∣∣ ≤ L

∣∣z1 − z2
∣∣

for u, zi ∈ R (i = 1, 2) and (x, t) ∈ D.

(H3) There exist p, q, d ∈ C(D,R+) with d∗ = sup(x,t)∈D d(x, t) < 1 which ensure

that ∣∣f(x, t, u, z)∣∣ ≤ p(x, t) + q(x, t)
∣∣u∣∣+ d(x, t)

∣∣z∣∣
for all (x, t) ∈ D and u, z ∈ R.

Then the equation (3.13)-(3.14) has at least one solution.

Proof. Let p∗ = sup(x,t)∈D p(x, t) and q∗ = sup(x,t)∈D q(x, t). Define the bounded,
closed and convex subset of Ω := C(D,R) as follows:

SR = {u ∈ Ω :
∣∣u(x, t)∣∣ ≤ Reθ(x+t)}

where θ > 0 is chosen sufficiently large such that q∗/(1 − d∗) < θ2. Consider an
operator P on SR into Ω given by

Pu(x, t) := µ(x, t) +

∫ x

0

∫ t

0

h(r, s)dsdr

where h ∈ Ω satisfies the equation:

h(x, t) = f
(
x, t, u(x, t), h(x, t)

)
. (3.15)

To demonstrate the well-definedness of the operator P , there must exist an h

satisfying the equation (3.15) and it must be unique for each u ∈ SR. Utilizing
assumption (H2), this can be achieved through the application of Banach’s FPT to
the following operator:

h(·, ·) → f
(
·, ·, u(·, ·), h(·, ·)

)
.

Lemma 3.1 indicates that the fixed point of the operator P corresponds to the
solution of the given equation (3.13)-(3.14). The existence of a fixed point to this
operator is discussed below using Schauder’s FPT.

Step I: The operator P maps SR into itself with the value of R to be determined
below.
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Let u ∈ SR be arbitrary element. Then,

∣∣Pu(x, t)∣∣ ≤ ∣∣µ(x, t)∣∣+ ∫ x

0

∫ t

0

∣∣h(r, s)∣∣dsdr.
By (H3),

∣∣h(x, t)∣∣ = f
(
x, t, u(x, t), h(x, t)

)
≤ p(x, t) + q(x, t)

∣∣u(x, t)∣∣+ d(x, t)
∣∣h(x, t)∣∣

≤ p∗ + q∗Reθ(x+t) + d∗
∣∣h(x, t)∣∣,

which yields ∣∣h(x, t)∣∣ ≤ p∗ + q∗Reθ(x+t)

1− d∗
. (3.16)

Then,

∣∣Pu(x, t)∣∣ ≤∣∣µ(x, t)∣∣+ p∗

(1− d∗)

∫ x

0

∫ t

0

dsdr

+
q∗R

(1− d∗)

∫ x

0

∫ t

0

eθ(r+s)dsdr.

One can obtain the following

∣∣Pu(x, t)∣∣ ≤ sup
(x,t)∈D

∣∣µ(x, t)∣∣+ p∗ab

(1− d∗)︸ ︷︷ ︸
:=∆

+
q∗

(1− d∗)θ2︸ ︷︷ ︸
:=Υ

Reθ(x+t)

= ∆+ΥReθ(x+t) ≤ Reθ(x+t),

here the last inequality holds by the choice of R > 0 satisfying the following
inequality

∆

1−Υ
≤ R.

Then we get P : SR → SR.

Step II: P is continuous operator on SR.

Consider a sequence un in SR that converges to u within SR. Then we obtain

∣∣Pun(x, t)− Pu(x, t)
∣∣ ≤ ∫ x

0

∫ t

0

∣∣hn(r, s)− h(r, s)
∣∣dsdr

where hn, h ∈ Ω satisfy

hn(x, t) = f
(
x, t, un(x, t), hn(x, t)

)
and h(x, t) = f

(
x, t, u(x, t), h(x, t)

)
.
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By (H2),

∣∣hn(x, t)− h(x, t)
∣∣ ≤∣∣f(x, t, un(x, t), hn(x, t))− f

(
x, t, un(x, t), h(x, t)

)∣∣
+
∣∣f(x, t, un(x, t), h(x, t))− f

(
x, t, u(x, t), h(x, t)

)∣∣
≤
∣∣f(x, t, un(x, t), h(x, t))− f

(
x, t, u(x, t), h(x, t)

)∣∣
+ L

∣∣hn(x, t)− h(x, t)
∣∣

then

∥∥hn − h
∥∥
∞ ≤ 1

1− L

∥∥f(·, ·, un(·, ·), h(·, ·))− f
(
·, ·, u(·, ·), h(·, ·)

)∥∥
∞.

As n goes to infinity, we get hn → h since f is continuous. Hence

∥∥Pun − Pu
∥∥
∞ ≤ ab

∥∥hn − h
∥∥
∞ → 0 as n→ ∞

that is P is continuous operator.

Step III: P(SR) is uniformly bounded.

This is evident from the fact that P(SR) ⊆ SR and SR is bounded.

Step IV: P(SR) is equicontinuous.

Without loss of generality, let (x1, t1), (x2, t2) ∈ D be such that x1 < x2 and
t1 < t2,∣∣Pu(x1,t1)− Pu(x2, t2)

∣∣
≤
∣∣µ(x1, t1)− µ(x2, t2)

∣∣+ ∣∣∣∣ ∫ x1

0

∫ t1

0

h(r, s)dsdr −
∫ x2

0

∫ t2

0

h(r, s)dsdr

∣∣∣∣
≤
∣∣φ(x1)− φ(x2)

∣∣+ ∣∣ψ(t1)− ψ(t2)
∣∣+ ∫ x1

0

∫ t2

t1

∣∣h(r, s)∣∣dsdr
+

∫ x2

x1

∫ t2

0

∣∣h(r, s)∣∣dsdr
where h ∈ Ω holds the following from (3.16)

∣∣h(x, t)∣∣ ≤M :=
p∗ + q∗Reθ(a+b)

1− d∗
.
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Therefore, we get

∣∣Pu(x1, t1)− Pu(x2, t2)
∣∣ ≤∣∣φ(x1)− φ(x2)

∣∣+ ∣∣ψ(t1)− ψ(t2)
∣∣

+M
(
a
∣∣t1 − t2

∣∣+ b
∣∣x1 − x2

∣∣).
Since φ and ψ are uniformly continuous on the compact domains [0, a] and [0, b]

respectively, we can conclude that P(SR) is an equicontinuous set.

By virtue of Steps I to IV together with the Ascoli-Arzela theorem, P(SR) is
relatively compact. As a consequence of Schauder’s FPT, the operator P possesses
a fixed point in SR that is the solution of the equation (3.13)-(3.14). This complete
the proof. ■

Let us now apply the Wendorff lemma to obtain the uniqueness of solution.

Theorem 3.5. Suppose that (H1) and the following condition is satisfied:

(H4) There exist constants K > 0 and 0 < L < 1 which ensure that

∣∣f(x, t, u1, z1)− f(x, t, u2, z2)
∣∣ ≤ K

∣∣u1 − u2
∣∣+ L

∣∣z1 − z2
∣∣

for all ui, zi ∈ R (i = 1, 2) and (x, t) ∈ D.

Then the equation (3.13)-(3.14) has only one solution.

Proof. By Theorem 3.4, we proved that the proposed equation (3.13)-(3.14) has a
solution u. Let w be another solution of this equation. Then, we have

∣∣u(x, t)− w(x, t)
∣∣ ≤ ∫ x

0

∫ t

0

∣∣hu(r, s)− hw(r, s)
∣∣dsdr

where hu, hw ∈ C(D,R) such that

hu(x, t) = f
(
x, t, u(x, t), hu(x, t)

)
and hw(x, t) = f

(
x, t, w(x, t), hw(x, t)

)
.

By (H4), we get

∣∣hu(x, t)− hw(x, t)
∣∣ = ∣∣f(x, t, u(x, t), hu(x, t))− f

(
x, t, w(x, t), hw(x, t)

)∣∣
≤ K

∣∣u(x, t)− w(x, t)
∣∣+ L

∣∣hu(x, t)− hw(x, t)
∣∣
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which implies

∣∣hu(x, t)− hw(x, t)
∣∣ ≤ K

1− L

∣∣u(x, t)− w(x, t)
∣∣.

Hence we obtain that

∣∣u(x, t)− w(x, t)
∣∣ ≤ K

1− L

∫ x

0

∫ t

0

∣∣u(r, s)− w(r, s)
∣∣dsdr.

Thanks to the Wendorff lemma, we find
∣∣u(x, t) − w(x, t)

∣∣ = 0 for all (x, t) ∈ D,
which yields that the solution of the equation is unique. ■

3.4 Nonlinear Hyperbolic PDEs Involving First Order Deriva-
tives

In this section, we focus on the following hyperbolic PDEs with a RHS function f
involving the first order derivatives ∂u

∂x
and ∂u

∂t

∂2u(x, t)

∂x∂t
= f

(
x, t, u(x, t),

∂u(x, t)

∂x
,
∂u(x, t)

∂t

)
, (x, t) ∈ D (3.17)

with u(x, 0) = φ(x)

u(0, t) = ψ(t)
such that φ(0) = ψ(0), (3.18)

where D = [0, a]× [0, b], f ∈ C(D×R3,R), φ(x) and ψ(t) belong to the space of
continuously differentiable mappings defined on [0, a] and [0, b], respectively.

In the current part, we propose a novel proof of the theorem given by Hartman and
Winter, which is related to the existence of solution for the PDEs (3.17)-(3.18).
Our proof is based on fixed point theory. In the proof of this theorem, we employ
two FPTs which are Banach’s and Schauder’s theorems. To explain briefly method
applied in the proof, we use the Banach FPT to construct well-defined mappings
and we apply Schauder’s FPT to prove the existence result. This kind of use of
Banach’s FPT appears in some papers, especially in FPTs involving the sum and the
product of two operators (see [46, 47]). By motivating these papers, we approach
the proposed PDEs via fixed point theory.

Before we construct a new proof for the following theorem proved by Hartman and
Wintner, let us first state what the solution means: A function u ∈ C1,2(D,R) that
satisfies the equation (3.17) and the conditions (3.18) is called a solution of the
equation (3.17)-(3.18).

32



Theorem 3.6. Suppose the following conditions hold:

i) f ∈ C(D × R3) and f is bounded in absolute value, that is, there exists

non-negative constant M which ensures that

∣∣f(x, t, u, p, q)∣∣ ≤M

for all u, p, q ∈ R and (x, t) ∈ D.

ii) f satisfies the lipschitz condition in two arguments, that is, there is a constant

L > 0 which ensures that

∣∣f(x, t, u, p1, q1)− f(x, t, u, p2, q2)
∣∣ ≤ L

(∣∣p1 − p2
∣∣+ ∣∣q1 − q2

∣∣)
for u, pi, qi ∈ R (i = 1, 2) and (x, t) ∈ D.

Then the equation (3.17)-(3.18) has a solution.

Proof. Let us transform the main equation into a corresponding system of integral
equations by integrating w.r.t. the variables x and t

u(x, t) = µ(x, t) +

∫ x

0

∫ t

0

f
(
r, s, u(r, s), v(r, s), w(r, s)

)
dsdr

where µ(x, t) = φ(x) + ψ(t) − φ(0) and also the pair of v, w holds the below
equations:

v(x, t) = φ′(x) +

∫ t

0

f
(
x, s, u(x, s), v(x, s), w(x, s)

)
ds

w(x, t) = ψ′(t) +

∫ x

0

f
(
r, t, u(r, t), v(r, t), w(r, t)

)
dr

or briefly

(u, v, w)(x, t) =
(
A1(u, v, w), A2(u, v, w), A3(u, v, w)

)
(x, t). (3.19)

The proposed equation can be converted into a fixed point problem for the following
operator

A : C(D,R)3 → C(D,R)3,

which is defined by the RHS of the equation (3.19). Let us consider the product
space

(
C(D,R) × C(D,R),

∥∥(·, ·)∥∥) such that it constitutes a Banach space
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equipped with the

∥∥(v, w)∥∥ =
∥∥v∥∥

B
+
∥∥w∥∥

B
where

∥∥v∥∥
B
= max

(x,t)∈D

∣∣v(x, t)∣∣e−θ(x+t).

By taking u ∈ C(D,R) as a constant, we define a mapping from C(D,R) ×
C(D,R) to itself as follows:

Pu(v, w) :=
(
A2(u, v, w), A3(u, v, w)

)
.

For (v, w), (v, w) ∈ C(D,R)× C(D,R),

∣∣A2(u, v, w)− A2(u, v, w)
∣∣

≤
∫ t

0

∣∣∣f(x, s, u(x, s), v(x, s), w(x, s))
− f

(
x, s, u(x, s), v(x, s), w(x, s)

)∣∣∣ds
≤L

∫ t

0

(∣∣v(x, s)− v(x, s)
∣∣+ ∣∣w(x, s)− w(x, s)

∣∣)ds
≤L

(∥∥v − v
∥∥
B
+
∥∥w − w

∥∥
B

)∫ t

0

eθ(x+s)ds

≤L
θ

∥∥(v, w)− (v, w)
∥∥eθ(x+t),

and consequently we get

∥∥A2(u, v, w)− A2(u, v, w)
∥∥
B
≤ L

θ

∥∥(v, w)− (v, w)
∥∥. (3.20)

Similarly,

∥∥A3(u, v, w)− A3(u, v, w)
∥∥
B
≤ L

θ

∥∥(v, w)− (v, w)
∥∥. (3.21)

It follows from (3.20) and (3.21) that

∥∥Pu(v, w)− Pu(v, w)
∥∥ ≤ 2L

θ

∥∥(v, w)− (v, w)
∥∥.

If we choose θ > 0 such that 2L
θ
< 1, then Pu is a contraction mapping and so

Pu has a unique fixed point in C(D,R) × C(D,R). Now we can construct two
well-defined mappings from C(D,R) to C(D,R) as follows;

F : C(D,R) → C(D,R)

u→ Fu
and

T : C(D,R) → C(D,R)

u→ T u
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where (Fu, T u) is the unique fixed point of Pu and this pair satisfy

Fu(x, t) = φ′(x) +

∫ t

0

f
(
x, s, u(x, s),Fu(x, s), T u(x, s)

)
ds

T u(x, t) = ψ′(t) +

∫ x

0

f
(
r, t, u(r, t),Fu(r, t), T u(r, t)

)
dr.

Now we show that these mappings are continuous. Let ∥un − u∥B → 0. Then we
have

∣∣Fun(x, t)−Fu(x, t)
∣∣

≤
∫ t

0

∣∣∣f(x, s, un(x, s),Fun(x, s), T un(x, s))
− f

(
x, s, u(x, s),Fu(x, s), T u(x, s)

)∣∣∣ds
≤
∫ t

0

∣∣∣f(x, s, un(x, s),Fun(x, s), T un(x, s))
− f

(
x, s, un(x, s),Fu(x, s), T u(x, s)

)∣∣∣ds
+

∫ t

0

∣∣∣f(x, s, un(x, s),Fu(x, s), T u(x, s))
− f

(
x, s, u(x, s),Fu(x, s), T u(x, s)

)∣∣∣ds
≤L
θ

(∥∥Fun −Fu
∥∥
B
+
∥∥T un − T u

∥∥
B

)
eθ(x+t)

+
1

θ

∥∥∥f(·, ·, un(·, ·),Fu(·, ·), T u(·, ·))
− f

(
·, ·, u(·, ·),Fu(·, ·), T u(·, ·)

)∥∥∥
B
eθ(x+t),

consequently

∥∥Fun −Fu
∥∥
B
≤L
θ

(∥∥Fun −Fu
∥∥
B
+
∥∥T un − T u

∥∥
B

)
+

1

θ

∥∥∥f(·, ·, un(·, ·),Fu(·, ·), T u(·, ·))
− f

(
·, ·, u(·, ·),Fu(·, ·), T u(·, ·)

)∥∥∥
B
. (3.22)

Similarly

∥∥T un − T u
∥∥
B
≤L
θ

(∥∥Fun −Fu
∥∥
B
+
∥∥T un − T u

∥∥
B

)
+

1

θ

∥∥∥f(·, ·, un(·, ·),Fu(·, ·), T u(·, ·))
− f

(
·, ·, u(·, ·),Fu(·, ·), T u(·, ·)

)∥∥∥
B
. (3.23)

Adding up the two inequalities (3.22) and (3.23) above, we obtain the following
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inequality: (
1− 2L

θ

)(∥∥Fun−Fu
∥∥
B
+
∥∥T un − T u

∥∥
B

)
≤2

θ

∥∥∥f(·, ·, un(·, ·),Fu(·, ·), T u(·, ·))
− f

(
·, ·, u(·, ·),Fu(·, ·), T u(·, ·)

)∥∥∥
B
.

Since f is a continuous mapping, when n goes to infinity, we have Fun and T un
converge to Fu and T u respectively, that is F and T continuous mappings. Since
∥·∥B and the maximum norm ∥·∥ are equivalent, these mappings are also continuous
w.r.t. the maximum norm. Then we consider a mapping

Υ :
(
C(D,R), ∥·∥

)
→

(
C(D,R), ∥·∥

)
which is given as

Υu(x, t) = A3(u,Fu, T u)(x, t).

The continuity of Υ is deduced from the continuity of f and the mappings F and
T . For each u ∈ C(D,R),

∥∥Υu∥∥ ≤
∥∥µ∥∥+ abM.

Let (x1, t1), (x2, t2) ∈ D, x1 < x2, t1 < t2∣∣Υu(x1, t1)−Υu(x2, t2)
∣∣ ≤∣∣φ(x1)− φ(x2)

∣∣+ ∣∣ψ(t1)− ψ(t2)
∣∣

+M
(
b
∣∣x1 − x2

∣∣+ a
∣∣t1 − t2

∣∣)
Hence Υ

(
C(D,R)

)
is a bounded and equicontinuous subset of C(D,R). The

Ascoli-Arzela theorem indicates that it is relatively compact. Then there exists
an u∗ ∈ C(D,R) that equals to Υu∗ according to Schauder’s FPT. The triple of
(u∗,Fu∗, T u∗) is solution of our problem (3.17)-(3.18). We notice that

u∗ = Υu∗

(Fu∗, T u∗) = Pu∗(Fu∗, T u∗),
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or

u∗(x, t) = µ(x, t) +

∫ x

0

∫ t

0

f
(
r, s, u∗(r, s),Fu∗(r, s), T u∗(r, s)

)
dsdr

Fu∗(x, t) = φ′(x) +

∫ t

0

f
(
x, s, u∗(x, s),Fu∗(x, s), T u∗(x, s)

)
ds

T u∗(x, t) = ψ′(t) +

∫ x

0

f
(
r, t, u∗(r, t),Fu∗(r, t), T u∗(r, t)

)
dr.

Thus the proof is completed. ■

As an application of our result, we give an illustrative example as follows;

Example 3.7. Let us consider the given equation

∂2u(x, t)

∂x∂t
= cos(u2(x, t)) +

ex+t

1 +
∣∣∣∂u(x,t)∂x

∣∣∣ , (x, t) ∈ [0, 5]× [0, 7],

with u(x, 0) = 1 + x, x ∈ [0, 5]

u(0, t) = cos(t), t ∈ [0, 7].

Set f(x, t, u, p, q) = cos(u2) + ex+t

1+|p| . It is clear that f is bounded and satisfies

|f(x, t, u, p1, q1)− f(x, t, u, p2, q2)| ≤ e2
(∣∣p1 − p2

∣∣+ ∣∣q1 − q2
∣∣)

for all u, pi, qi ∈ R (i = 1, 2) and (x, t) ∈ [0, 5] × [0, 7]. Then there is at least one
solution of the above problem by Theorem 3.6.
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4
STABILITY RESULTS FOR NONLINEAR

HYPERBOLIC PDEs

This chapter is devoted to the derivation of stability results for the nonlinear
hyperbolic PDEs for which the E&U of solutions is discussed in the previous
chapter. At this stage, the Bielecki norm, the Wendorff lemma, and the abstract
Gronwall lemma from Picard operator theory serve as tools for obtaining stability
findings.

4.1 Stability of Nonlinear Hyperbolic PDEs with Two Delays
In this section, a stability result in the sense of UH is obtained for the following
hyperbolic PDEs:

∂2u(x, t)

∂x∂t
= f(x, t, u(x, t), u(x− α, t− β)), (x, t) ∈ D. (4.1)

The E&U of solutions for this class of equations is analysed in Section 3.1. Before
stating the relevant stability result, the definition of UH stability is given below:

Definition 4.1. The equation (4.1) is said to be UH stable when there exists a
constant C > 0 such that the following statement is true for any ϵ > 0: If
ϑ ∈ C1,2(D,R) ∩ C([−α, a]× [−β, b],R) satisfies the inequality∣∣∣∣∂2ϑ(x, t)∂x∂t

− f
(
x, t, ϑ(x, t), ϑ(x− α, t− β)

)∣∣∣∣ ≤ ϵ, (x, t) ∈ D (4.2)

then there exists a solution u of the equation (4.1) fulfilling

∣∣ϑ(x, t)− u(x, t)
∣∣ ≤ Cϵ, (x, t) ∈ [−α, a]× [−β, b].

Theorem 4.1. Suppose the following conditions hold:

i) f ∈ C(D × R2,R).
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ii) There exist L1, L2 > 0 which ensure that

∣∣f(x, t, u1, v1)− f(x, t, u2, v2)
∣∣ ≤ L1

∣∣u1 − u2
∣∣+ L2

∣∣v1 − v2
∣∣,

for (x, t) ∈ D and ui, vi ∈ R, i = 1, 2.

Then, the equation (4.1) is UH stable.

Proof. Let ϑ ∈ C1,2(D,R) ∩ C([−α, a] × [−β, b],R) fulfils the inequality (4.2),
that is ∣∣∣∣∂2ϑ(x, t)∂x∂t

− f
(
x, t, ϑ(x, t), ϑ(x− α, t− β)

)∣∣∣∣ ≤ ϵ, (x, t) ∈ D.

By Theorem 3.1, we indicate u as a unique solution to the proposed equation:

∂2u(x, t)

∂x∂t
= f

(
x, t, u(x, t), u(x− α, t− β)

)
, (x, t) ∈ D

with u(x, t) = ϑ(x, t) on D̃. Equivalently,

u(x, t) =ϑ(x, 0) + ϑ(0, t)− ϑ(0, 0)

+

∫ x

0

∫ t

0

f
(
r, s, u(r, s), u(r − α, s− β)

)
dsdr

for (x, t) ∈ D. It is also evident that
∣∣ϑ(x, t)− u(x, t)

∣∣ = 0 for (x, t) ∈ D̃. Since ϑ
holds the inequality (4.2), then there is a function k ∈ C(D,R) such that

∣∣k(x, t)∣∣ ≤ ϵ and
∂2ϑ(x, t)

∂x∂t
= f

(
x, t, ϑ(x, t), ϑ(x− α, t− β)

)
+ k(x, t).

Clearly, the following inequality can be derived for (x, t) ∈ D∣∣∣∣ϑ(x, t)−ϑ(x, 0)− ϑ(0, t) + ϑ(0, 0)

−
∫ x

0

∫ t

0

f
(
r, s, ϑ(r, s), ϑ(r − α, s− β)

)
dsdr

∣∣∣∣ ≤ ϵxt.
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Furthermore, we obtain the following based on condition ii)

∣∣ϑ(x, t)− u(x, t)
∣∣ (4.3)

≤
∣∣∣∣ϑ(x, t)− ϑ(x, 0)− ϑ(0, t) + ϑ(0, 0)

−
∫ x

0

∫ t

0

f
(
r, s, ϑ(r, s), ϑ(r − α, s− β)

)
dsdr

∣∣∣∣
+

∫ x

0

∫ t

0

∣∣∣∣f(r, s, ϑ(r, s), ϑ(r − α, s− β)
)

− f
(
r, s, u(r, s), u(r − α, s− β)

)∣∣∣∣dsdr
≤ϵxt+

∫ x

0

∫ t

0

L1

∣∣ϑ(r, s)− u(r, s)
∣∣

+ L2

∣∣ϑ(r − α, s− β)− u(r − α, s− β)
∣∣dsdr.

For ω ∈ C([−α, a]× [−β, b],R+), we define

A : C([−α, a]× [−β, b],R+) → C([−α, a]× [−β, b],R+)

by

Aω(x, t) =

ϵxt+
∫ x

0

∫ t

0
L1ω(r, s) + L2ω(r − α, s− β)dsdr (x, t) ∈ D

0 (x, t) ∈ D̃

To establish that A is a Picard operator, we demonstrate that it is a contraction
mapping on C([−α, a]× [−β, b],R+) equipped with the Bielecki norm:

∥∥ω∥∥
B
= max

(x,t)∈[−α,a]×[−β,b]
e−θ(x+t)

∣∣ω(x, t)∣∣.
For ω, ω ∈ C([−α, a]× [−β, b],R+),

∥∥Aω − Aω
∥∥
B
≤ max

(x,t)∈D
e−θ(x+t)

∫ x

0

∫ t

0

L1

∣∣ω(r, s)− ω(r, s)
∣∣

+ L2

∣∣ω(r − α, s− β)− ω(r − α, s− β)
∣∣dsdr

≤(L1 + L2)
∥∥ω − ω

∥∥
B

max
(x,t)∈D

e−θ(x+t)

∫ x

0

∫ t

0

eθ(r+s)dsdr

≤(L1 + L2)

θ2
∥∥ω − ω

∥∥
B
.

If θ > 0 is chosen large enough so that (L1 +L2) < θ2, A is a contraction w.r.t. the
Bielecki norm on C([−α, a] × [−β, b],R+). Therefore, A is a Picard operator and
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the below equality is valid by means of the Banach FPT.

ω∗(x, t) = ϵxt+

∫ x

0

∫ t

0

L1ω
∗(r, s) + L2ω

∗(r − α, s− β)dsdr, (x, t) ∈ D.

Additionally, we observe that ω∗(r − α, s− β) ≤ ω∗(r, s) due to the solution ω∗ is
increasing. Obviously, then

ω∗(x, t) ≤ ϵxt+ (L1 + L2)

∫ x

0

∫ t

0

ω∗(r, s)dsdr. (4.4)

Now applying the Wendorff lemma to the inequality (4.4), we get

ω∗(x, t) ≤ ϵabe(L1+L2)ab,

for all (x, t) ∈ [−α, a] × [−β, b]. Particularly, ω ≤ Aω if we select ω =
∣∣ϑ − u

∣∣
in (4.3). This means that as a result of A being an increasing Picard operator, the
inequality ω ≤ ω∗ is satisfied by the abstract Gronwall lemma. Consequently, we
get ∣∣ϑ(x, t)− u(x, t)

∣∣ ≤ Cϵ, where C = abe(L1+L2)ab,

for all (x, t) ∈ [−α, a]×[−β, b]. Thus we proved that our delayed hyperbolic partial
differential equation (4.1) is UH stable.

■

4.2 Stability of Nonlinear Hyperbolic Functional PDEs
This part examines the stability in the sense of UH and UHR for the following
equations, whose E&U results are already proven in Section 3.2, on both bounded
and unbounded domains

∂2u(x, t)

∂x∂t
= f

(
x, t, u

(
g(x, t), h(x, t)

))
, (x, t) ∈ D. (4.5)

Let us now give the stability definitions for the proposed equation.

Definition 4.2. If for ϑ ∈ C1,2(D,R) satisfying the inequality∣∣∣∣∂2ϑ(x, t)∂x∂t
− f

(
x, t, ϑ

(
g(x, t), h(x, t)

))∣∣∣∣ ≤ Φ(x, t), (4.6)

there exists a solution u ∈ C1,2(D,R) of the equation (4.5) and a positive number
C with ∣∣ϑ(x, t)− u(x, t)

∣∣ ≤ CΦ(x, t), (x, t) ∈ D,
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then we say that the equation (4.5) is UHR stable w.r.t. Φ ∈ C(D,R+).

Especially if Definition 4.2 is provided for each positive constant instead of Φ in
above inequalities, we say that the equation (4.5) is UH stable.

Remark 4.1. A function ϑ ∈ C1,2(D,R) satisfies the inequality (4.6) iff there is a
function k ∈ C(D,R) which satisfies

∣∣k(x, t)∣∣ ≤ Φ(x, t) and
∂2ϑ(x, t)

∂x∂t
= f

(
x, t, ϑ

(
g(x, t), h(x, t)

))
+ k(x, t).

Remark 4.2. If ϑ ∈ C1,2(D,R) satisfies the inequality (4.6), it also satisfies the
integral inequality:∣∣∣∣ϑ(x, t)− ϑ(x, 0)− ϑ(0, t) + ϑ(0, 0)

−
∫ x

0

∫ t

0

f
(
r, s, ϑ

(
g(r, s), h(r, s)

))
dsdr

∣∣∣∣ ≤ ∫ x

0

∫ t

0

Φ(r, s)dsdr.

Note that if we replace D by R2
+, analogously we have the aforementioned

definitions and remarks.

4.2.1 Stability results on bounded domain

In this subsection, we present two stability results for the equation (4.5) on bounded
domain. First, we prove a UH stability result in Theorem 4.2 by using the
effectiveness of Bielecki norm. In Theorem 4.3, we prove a UHR stability result
inspired by Otrocol and Ilea’s paper [34].

Theorem 4.2. The equation (4.5) is UH stable under the conditions (C1) and (C2)

in Theorem 3.2.

Proof. Let ϵ > 0 and ϑ ∈ C1,2(D,R) satisfy the following inequality∣∣∣∣∂2ϑ(x, t)∂x∂t
− f

(
x, t, ϑ

(
g(x, t), h(x, t)

))∣∣∣∣ ≤ ϵ.

Based on Theorem 3.2, a unique solution (referred to as u) can be found for the
equation (4.5) with the following conditions:u(x, 0) = ϑ(x, 0), x ∈ [0, a]

u(0, t) = ϑ(0, t), t ∈ [0, b]
(4.7)
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Hence, the solution u(x, t) satisfies

u(x, t) = ϑ(x, 0) + ϑ(0, t)− ϑ(0, 0) +

∫ x

0

∫ t

0

f
(
r, s, u

(
g(r, s), h(r, s)

))
dsdr.

From Remark 4.2, we derive the inequality

∣∣ϑ(x, t)− u(x, t)
∣∣

≤
∣∣∣∣ϑ(x, t)− ϑ(x, 0)− ϑ(0, t) + ϑ(0, 0)

−
∫ x

0

∫ t

0

f
(
r, s, ϑ

(
g(r, s), h(r, s)

))
dsdr

∣∣∣∣
+

∫ x

0

∫ t

0

∣∣∣f(r, s, ϑ(g(r, s), h(r, s)))− f
(
r, s, u

(
g(r, s), h(r, s)

))∣∣∣dsdr
≤ϵxt+ L

∫ x

0

∫ t

0

∣∣∣ϑ(g(r, s), h(r, s))− u
(
g(r, s), h(r, s)

)∣∣∣dsdr
≤ϵab+ L

∥∥ϑ− u
∥∥
B

∫ x

0

∫ t

0

eθ(r+s)dsdr

≤ϵab+ L

θ2
∥∥ϑ− u

∥∥
B
eθ(x+t),

which implies that (
1− L

θ2

)∥∥ϑ− u
∥∥
B
≤ ϵab.

By taking θ > 0 sufficiently large so that θ2 > L, then

∣∣ϑ(x, t)− u(x, t)
∣∣e−θ(x+t) ≤

∥∥ϑ− u
∥∥
B
≤ ϵab

1− L/θ2
.

Consequently, we get

∣∣ϑ(x, t)− u(x, t)
∣∣ ≤ Cϵ, C :=

abeθ(a+b)

1− L/θ2
.

for all (x, t) ∈ D. Thus the equation (4.5) is UH stable. ■

Theorem 4.3. If the conditions (C1) and (C2) in Theorem 3.2 and the following

condition hold:

(C5) There exists λ > 0 which ensures that∫ x

0

∫ t

0

Φ(r, s)dsdr ≤ λΦ(x, t), (x, t) ∈ D.

Then the equation (4.5) is UHR stable w.r.t. Φ ∈ C(D,R+).
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Proof. Let ϑ ∈ C1,2(D,R) satisfy the inequality (4.6) and let u represent a solution
for the equation (4.5)-(4.7). From Remark 4.2, we derive the inequality

∣∣ϑ(x, t)− u(x, t)
∣∣

≤
∣∣∣∣ϑ(x, t)− ϑ(x, 0)− ϑ(0, t) + ϑ(0, 0)

−
∫ x

0

∫ t

0

f
(
r, s, ϑ

(
g(r, s), h(r, s)

))
dsdr

∣∣∣∣
+

∫ x

0

∫ t

0

∣∣∣f(r, s, ϑ(g(r, s), h(r, s)))− f
(
r, s, u

(
g(r, s), h(r, s)

))∣∣∣dsdr
≤
∫ x

0

∫ t

0

Φ(r, s)dsdr + L

∫ x

0

∫ t

0

∣∣∣ϑ(g(r, s), h(r, s))
− u

(
g(r, s), h(r, s)

)∣∣∣dsdr.
For ω ∈ C(D,R+), we define P : C(D,R+) → C(D,R+)

P(ω)(x, t) =

∫ x

0

∫ t

0

Φ(r, s)dsdr + L

∫ x

0

∫ t

0

ω
(
g(r, s), h(r, s)

)
dsdr.

Considering the Bielecki norm defined in (3.9), the following inequality can be
obtained as in Theorem 3.2 for any ω, ω in C(D,R+)

∥∥Pω − Pω
∥∥
B
≤ δ

∥∥ω − ω
∥∥
B

where δ =
L

θ2
.

Taking θ > 0 sufficiently large such that δ < 1, we get that P is a Picard operator
(FP = {ω∗}). Then the following equality holds by Banach’s FPT

ω∗(x, t) =

∫ x

0

∫ t

0

Φ(r, s)dsdr + L

∫ x

0

∫ t

0

ω∗(g(r, s), h(r, s))dsdr.
Since ω∗ is increasing, one get ω∗(g(r, s), h(r, s)) ≤ ω∗(r, s) due to g(r, s) ≤ r

and h(r, s) ≤ s, which yields that

ω∗(x, t) ≤
∫ x

0

∫ t

0

Φ(r, s)dsdr + L

∫ x

0

∫ t

0

ω∗(r, s)dsdr.

Applying the Wendorff lemma to the above inequality, we obtain from the condition
(C5) that

ω∗(x, t) ≤ extL
∫ x

0

∫ t

0

Φ(r, s)dsdr ≤ λextLΦ(x, t), (x, t) ∈ D.

Specifically, it is possible to have ω ≤ Pω choosing ω =
∣∣ϑ − u

∣∣. Since P is
an increasing Picard operator, the inequality ω ≤ ω∗ is obtained by the abstact
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Gronwall lemma. As a result, we get

∣∣ϑ(x, t)− u(x, t)
∣∣ ≤ CΦ(x, t), C := λeabL.

Hence the equation (4.5) is UHR stable w.r.t. Φ ∈ C(D,R+). ■

4.2.2 Stability result on unbounded domain

Theorem 4.4. Suppose that the conditions (C3)-(C4) in Theorem 3.3 and the fol-

lowing condition hold:

(C6) There exists λ > 0 which ensures that∫ x

0

∫ t

0

Φ(r, s)dsdr ≤ λΦ(x, t), (x, t) ∈ R2
+.

If the double integration of L in (C4) is finite, the equation (4.5) is UHR stable w.r.t.

Φ ∈ C(R2
+,R+).

Proof. Let ϑ ∈ C1,2(R2
+,R) satisfy the inequality (4.6). One can obtain the unique

solution (denoted by u) of the following equation from Theorem 3.3

∂2u(x, t)

∂x∂t
= f

(
x, t, u

(
g(x, t), h(x, t)

))
, (x, t) ∈ R2

+,

with u(x, 0) = ϑ(x, 0)

u(0, t) = ϑ(0, t).

For arbitrary (x, t) ∈ R2
+, there is an n ∈ N such that (x, t) ∈ Dn. By considering

the restrictions on the domain Dn of functions ϑ and u, it can be deduced that

∣∣ϑ(x, t)− u(x, t)
∣∣ = ∣∣∣ϑ |Dn (x, t)− u |Dn (x, t)

∣∣∣
(in view of Theorem 4.3)

≤ λΦ(x, t) exp
(∫ x

0

∫ t

0

L(r, s)dsdr
)

= CΦ(x, t),

where C = λ exp
( ∫∞

0

∫∞
0

L(r, s)dsdr
)

. Hence the equation (4.5) is UHR stable
w.r.t. Φ ∈ C(R2

+,R+). ■
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To support our theoretical findings, let us now give some examples.

Example 4.5. Consider the following equation

∂2u(x, t)

∂x∂t
=

sinxt

1 +
∣∣u(xt, t2)∣∣ , (x, t) ∈ [0, 6]× [0, 1] (4.8)

with u(x, 0) = ex, x ∈ [0, 6]

u(0, t) = cos t, t ∈ [0, 1].
(4.9)

In Theorem 3.2, we set

f
(
x, t, u

(
g(x, t), h(x, t)

))
=

sinxt

1 +
∣∣u(g(x, t), h(x, t))∣∣ , (x, t) ∈ [0, 6]× [0, 1]

where g(x, t) = xt and h(x, t) = t2. For each u, u ∈ R and (x, t) ∈ [0, 6] × [0, 1],
it is obvious that ∣∣f(x, t, u)− f(x, t, u)

∣∣ ≤ ∣∣u− u
∣∣.

Then, by Theorem 3.2, the equation (4.8)-(4.9) has a unique solution on [0, 6] ×
[0, 1]. Moreover, applying Theorem 4.2, we obtain that the equation (4.8) is stable
in the sense of UH. Taking k(x, t) = xt in the condition (C5) of Theorem 4.3,∫ x

0

∫ t

0

k(r, s)dsdr ≤ 3

2
xt := λk(x, t).

So the condition (C5) is satisfied with λ = 3
2
. Hence this equation is also UHR

stable w.r.t. k.

Example 4.6. Consider the following equation

∂2u(x, t)

∂x∂t
=
x cos t+ u(x, te−x)

ex+t
, (x, t) ∈ R2

+ (4.10)

with u(x, 0) = x2, x ∈ R+

u(0, t) = t, t ∈ R+.
(4.11)

In Theorem 3.3, let us take

f
(
x, t, u

(
g(x, t), h(x, t)

))
=
x cos t+ u

(
g(x, t), h(x, t)

)
ex+t

, (x, t) ∈ R2
+

with g(x, t) = x and h(x, t) = te−x. For each u, u ∈ R and (x, t) ∈ R2
+, we have

∣∣f(x, t, u)− f(x, t, u)
∣∣ ≤ L(x, t)

∣∣u− u
∣∣ where L(x, t) = e−(x+t).
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Then, it follows from Theorem 3.3 that the equation (4.10)-(4.11) has a unique
solution on R2

+. Also if we denote k(x, t) = ex+t in the condition (C6) of Theorem
4.4, we get ∫ x

0

∫ t

0

k(r, s)dsdr ≤ ex+t := λk(x, t).

Therefore the condition (C6) is satisfied with λ = 1. Hence the equation (4.10) is
UHR stable w.r.t. k.

In Examples 4.5 and 4.6, we have illustrated the existence, uniqueness and stability
results on both bounded and unbounded domains.

4.3 Stability of Nonlinear Implicit Hyperbolic PDEs
In addition to the E&U results obtained for the following types of equations in
Section 3.3, the stability of such equations is investigated in this current section

∂2u(x, t)

∂x∂t
= f

(
x, t, u(x, t),

∂2u(x, t)

∂x∂t

)
, (x, t) ∈ D. (4.12)

The stability concepts for the problem under consideration are as follows:

Definition 4.3. If for ϑ ∈ C1,2(D,R) satisfying the inequality∣∣∣∣∂2ϑ(x, t)∂x∂t
− f

(
x, t, ϑ(x, t),

∂2ϑ(x, t)

∂x∂t

)∣∣∣∣ ≤ Φ(x, t), (4.13)

there exists a solution u ∈ C1,2(D,R) of the equation (4.12) and a positive number
C with ∣∣ϑ(x, t)− u(x, t)

∣∣ ≤ CΦ(x, t), (x, t) ∈ D,

then we say that the equation (4.12) is UHR stable w.r.t. Φ ∈ C(D,R+).

Especially if Definition 4.3 is provided for each positive constant instead of Φ in
above inequalities, we say that the equation (4.12) is UH stable.

Theorem 4.7. Suppose the following condition holds:

(H5) There exists ∆Φ > 0 which ensures that∫ x

0

∫ t

0

Φ(r, s)dsdr ≤ ∆ΦΦ(x, t) (x, t) ∈ D.

Under the assumptions (H1) and (H4) in Theorem 3.5, the equation (4.12) is UHR

stable w.r.t. Φ ∈ C(D,R+).
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Proof. Let ϑ ∈ C1,2(D,R) be a solution of the inequality (4.13). According to
Theorem 3.5, there exists a unique solution (denoted by u) for the equation (4.12)
with the following conditions:u(x, 0) = ϑ(x, 0)

u(0, t) = ϑ(0, t).

Then, we derive from Lemma 3.1 that

u(x, t) = ϑ(x, 0) + ϑ(0, t)− ϑ(0, 0) +

∫ x

0

∫ t

0

gu(r, s)dsdr

where gu ∈ C(D,R) satisfies the functional equation

gu(x, t) = f
(
x, t, u(x, t), gu(x, t)

)
. (4.14)

Since ϑ ∈ C1,2(D,R) holds the inequality (4.13), there is a function k ∈ C(D,R)
such that

∂2ϑ(x, t)

∂x∂t
= f

(
x, t, ϑ(x, t),

∂2ϑ(x, t)

∂x∂t

)
+ k(x, t) where

∣∣k(x, t)∣∣ ≤ Φ(x, t).

Again in the light of Lemma 3.1, we can express the given ϑ as follows:

ϑ(x, t) = ϑ(x, 0) + ϑ(0, t)− ϑ(0, 0) +

∫ x

0

∫ t

0

gϑ(r, s)dsdr

where gϑ ∈ C(D,R) satisfies the functional equation

gϑ(x, t) = f
(
x, t, ϑ(x, t), gϑ(x, t)

)
+ k(x, t). (4.15)

Then we have

∣∣ϑ(x, t)− u(x, t)
∣∣ ≤ ∫ x

0

∫ t

0

∣∣gϑ(r, s)− gu(r, s)
∣∣dsdr

where gu and gϑ are as stated in (4.14) and (4.15). By (H4), it is evident that

∣∣gϑ(x, t)− gu(x, t)
∣∣ ≤∣∣k(x, t)∣∣+ ∣∣f(x, t, ϑ(x, t), gϑ(x, t))

− f
(
x, t, u(x, t), gu(x, t)

)∣∣
≤Φ(x, t) +K

∣∣ϑ(x, t)− u(x, t)
∣∣+ L

∣∣gϑ(x, t)− gu(x, t)
∣∣
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which yields that

∣∣gϑ(x, t)− gu(x, t)
∣∣ ≤ Φ(x, t)

1− L
+

K

1− L

∣∣ϑ(x, t)− u(x, t)
∣∣.

Hence, we get that

∣∣ϑ(x, t)− u(x, t)
∣∣ ≤ ∫ x

0

∫ t

0

Φ(r, s)

1− L
dsdr +

K

1− L

∫ x

0

∫ t

0

∣∣ϑ(r, s)− u(r, s)
∣∣dsdr.

The application of the Wendorff lemma to the above inequality yields that

∣∣ϑ(x, t)− u(x, t)
∣∣ ≤ exp

( abK

1− L

)∫ x

0

∫ t

0

Φ(r, s)

1− L
dsdr

≤ exp
( abK

1− L

)∆ΦΦ(x, t)

1− L
by the hypothesis (H5).

Consequently, the following inequality is satisfied

∣∣ϑ(x, t)− u(x, t)
∣∣ ≤ [

exp
( abK

1− L

) ∆Φ

1− L

]
Φ(x, t) := CΦΦ(x, t).

Thus the equation (4.12) is UHR stable w.r.t. Φ ∈ C(D,R+). ■

Theorem 4.8. Under the assumptions (H1) and (H4) of Theorem 3.5, the equation

(4.12) is UH stable.

Proof. Let ϑ ∈ C1,2(D,R) satisfy the inequality:∣∣∣∣∂2ϑ(x, t)∂x∂t
− f

(
x, t, ϑ(x, t),

∂2ϑ(x, t)

∂x∂t

)∣∣∣∣ ≤ ϵ, ϵ > 0. (4.16)

And we denote by u ∈ C1,2(D,R) the unique solution to the equation (4.12) under
the conditions: u(x, 0) = ϑ(x, 0)

u(0, t) = ϑ(0, t).

In the same way as the proof of Theorem 4.7, we can easily observe that the
following is valid

∣∣ϑ(x, t)− u(x, t)
∣∣ ≤ ϵab

1− L
+

K

1− L

∫ x

0

∫ t

0

∣∣ϑ(r, s)− u(r, s)
∣∣dsdr.

By considering the Bielecki norm given as follows:

∥∥z∥∥
B
= max

(x,t)∈D

∣∣z(x, t)∣∣e−θ(x+t) where θ > 0,
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we get

∣∣ϑ(x, t)− u(x, t)
∣∣ ≤ ϵab

1− L
+

K

1− L

∫ x

0

∫ t

0

eθ(r+s)

×
(
e−θ(r+s)

∣∣ϑ(r, s)− u(r, s)
∣∣)dsdr

≤ ϵab

1− L
+

K

(1− L)θ2
∥∥ϑ− u

∥∥
B
eθ(x+t).

Then we have

(1− Λ)
∥∥ϑ− u

∥∥
B
≤ ϵab

1− L
where Λ :=

K

(1− L)θ2
.

Taking θ > 0 large enough so that Λ < 1, we get

∣∣ϑ(x, t)− u(x, t)
∣∣e−θ(x+t) ≤

∥∥ϑ− u
∥∥
B
≤ ϵab

(1− Λ)(1− L)
.

It follows that

∣∣ϑ(x, t)− u(x, t)
∣∣ ≤ Cϵ, C :=

abeθ(a+b)

(1− Λ)(1− L)

for all (x, t) ∈ D. Thus, the equation (4.12) is UH stable. ■

We illustrate our theoretical results in this section with two examples to support our
findings.

Example 4.9. Let us consider the given equation

∂2u(x, t)

∂x∂t
=
et
(
x+

∣∣u(x, t)∣∣)+ ∂2u(x,t)
∂x∂t

7 +
∣∣u(x, t)∣∣ , (x, t) ∈ [0, 3]× [0, 3] (4.17)

with
u(x, 0) = 0 and u(0, t) = t, x, t ∈ [0, 3]. (4.18)

Set

f(x, t, u, z) =
et
(
x+

∣∣u∣∣)+ z

7 +
∣∣u∣∣ , x, t ∈ [0, 3] and u, z ∈ R.

It is clear that the following is provided

∣∣f(x, t, u, z)− f(x, t, u, z)
∣∣ ≤ 1

7

∣∣z − z
∣∣
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and ∣∣f(x, t, u, z)∣∣ ≤ xet + et
∣∣u∣∣+ 1

7

∣∣z∣∣
for all u, z, z ∈ R and (x, t) ∈ [0, 3]× [0, 3]. As a result, the equation (4.17)-(4.18)
possesses at least one solution because all of the requirements of Theorem 3.4 are
fulfilled.

Example 4.10. Let us consider another equation below

∂2u(x, t)

∂x∂t
=

5

1 +
∣∣u(x, t)∣∣ + 1

2
sin

(∂2u(x, t)
∂x∂t

)
, (x, t) ∈ [0, 1]× [0, 8] (4.19)

with
u(x, 0) = 1, x ∈ [0, 1] and u(0, t) = et, t ∈ [0, 8]. (4.20)

Let

f(x, t, u, z) =
5

1 +
∣∣u∣∣ + sin z

2
, (x, t) ∈ [0, 1]× [0, 8] and u, z ∈ R.

For each (x, t) ∈ [0, 1]× [0, 8] and u, u, z, z ∈ R, we get

∣∣f(x, t, u, z)− f(x, t, u, z)
∣∣ ≤ 5

∣∣u− u
∣∣+ 1

2

∣∣z − z
∣∣.

Consequently, Theorem 3.5 demonstrates that there is only one solution to this
problem (4.19)-(4.20) and also the equation (4.19) is UH stable by Theorem 4.8.
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5
CONCLUSION

In this thesis, we present E&U and stability results for nonlinear second-order
hyperbolic PDEs in canonical form:

∂2u(x, t)

∂x∂t
= f

(
x, t, u(x, t),

∂u(x, t)

∂x
,
∂u(x, t)

∂t

)
(5.1)

which are obtained by the reduction of general second-order hyperbolic equations
under appropriate transformations. Due to the lack of a general method for solving
nonlinear equations, we consider these types of equations with several functions f
individually and tackle each of them with different approaches. We investigate the
E&U of solutions for these hyperbolic PDEs in Chapter 3 on the basis of fixed point
theory.

More precisely, in Section 3.1, the E&U of solutions for nonlinear hyperbolic PDEs
with delays is obtained based on the Banach FPT by considering the RHS of the
equation (5.1) as f

(
x, t, u(x, t), u(x − α, t − β)

)
. Here we extend the method of

Burton called "progressive contractions" to two dimensions in contrast to previous
studies conducted in one dimension, and apply it to our problem. We use the
Bielecki norm to apply Banach’s FPT due to the increasing contractivity constants
at each step of this proof. Applying Burton’s method to our problem in PDEs give
us the advantage that the Lipschitz condition on the function f is sufficient only
w.r.t. the third variable. Otherwise, it would be necessary to impose a Lipschitz
condition on the fourth variable as well.

In Section 3.2, we also apply the Banach FPT to the nonlinear hyperbolic functional
PDEs by taking the RHS of the equation (5.1) as f

(
x, t, u

(
g(x, t), h(x, t)

))
to

establish the E&U of solutions. Studying in the space equipped with the Bielecki
norm, we first derive the existence of a unique solution in the bounded domains
based on this theorem. Afterwards, we extend our finding to the unbounded domain
based on the unique solutions discovered for the bounded domains.
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In Section 3.3, we consider f
(
x, t, u(x, t), ∂

2u(x,t)
∂x∂t

)
to investigate the results

concerning the existence of solutions to implicit PDEs and also its uniqueness. Here
we provide suitable criteria to guarantee the existence of solutions to our problem.
After that we give the uniqueness result using the Wendorff lemma. To emphasise
the significance of our approach in the proof of our existence result, we reapply the
same technique to the following fractional counterpart of the problem:

Dρ
u(x, t) = f

(
x, t, u(x, t),Dρ

u(x, t)
)
.

Then the advantage of our result in [48] is outlined below by comparing it with the
result of a highly cited paper [25] in the literature:

• While the existence of the solution in Theorem 5.3 of [25] depends on the
following condition:

d∗ +
q∗aρ1bρ2

Γ(1 + ρ1)Γ(1 + ρ2)
< 1

where ρ = (ρ1, ρ2) ∈ (0, 1)2 is the order of fractional derivative and Γ is the
gamma function, our result requires a weaker condition d∗ < 1 to establish
the existence result.

• Instead of the Lipschitz condition (H4) imposed on f (for more information,
see also [49, 50]), we utilize the more general condition (H2) in our result.

We believe that the method applied in the existence result will inspire similar
equations in the literature; for instance, see [51].

In Section 3.4, we present a new proof based on the fixed point theory of the
existence result proposed by Hartman and Winter [6], which differs from the
standard approach in the literature by considering f as indicated in (5.1). Following
the idea of using the Banach’s FPT to construct well-defined mappings, we provide
our proof by meeting the requirements of Schauder’s FPT.

In Chapter 4, we deal with stability analyses in the sense of UH and UHR of the first
three equations that have been investigated in the previous chapter on the existence
of a solution. Together with the obtained existence results, we derive stability
results for these equations using Picard operator theory, the Wendorff lemma, and
the Bielecki norm which are the main tools for us to perform our analyses.

As a conclusion, by choosing appropriate methods for some nonlinear hyperbolic
PDEs, we obtain the E&U and stability results under weaker conditions, more
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general hypotheses, or with different approaches/techniques compared to similar
studies in the literature. In addition, we believe that the approaches applied in
their proofs rather than the results themselves will be a source of inspiration for
future studies, and we think that this thesis will contribute to the literature in these
respects.
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