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ABSTRACT 

 

OPTIMAL POWER FLOW SOLUTION USING FULLY CONNECTED NEURAL 

NETWORKS WITH DISCRETE WAVELET TRANSFORM 

 

 
 

Resul Çalışkan 

Master’s Program in Electrical and Electronics Engineering 

 

Supervisor: Assist. Prof. Dr. Gürkan Soykan 

 
 

September 2024, 46 pages 

 

 

The Optimal Power Flow (OPF) is one of the most valuable tools for operational and 

planning strategies in power systems. Traditional methods for solving OPF have faced 

problems such as complexity and computational difficulties in large-scale systems. 

This thesis proposes a Fully Connected Neural Network (FCNN) supported by the 

discrete wavelet transform to handle the problems. By using discrete wavelet 

processing, FCNN provides better solutions for non-stationary data and extracts 

features in both temporal and frequency details. These features can enhance the 

parameter prediction capability of the FCNN for optimal power distributions. The 

proposed models are compared with conventional FCNN method to demonstrate a 

considerable improvement in predictive accuracy as well as computational efficiency. 

The performance tests were conducted for the IEEE-24 bus system, IEEE-57 bus 

system, and IEEE-118 bus system cases. The performance was evaluated based on 

mean squared error analysis related to generator outputs and bus voltages. The discrete 

wavelet processing technique positively affects the performance of FCNN.  

Keywords: AC Optimal Power Flow, Neural Networks, Discrete Wavelet 

Transform
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ÖZ 

 

AYRIK DALGACIK DÖNÜŞÜMÜ İLE TAM BAĞLI SİNİR AĞLARI 

KULLANARAK OPTİMUM GÜÇ AKIŞI ÇÖZÜMÜ 
 

Resul Çalışkan 

Elektrik-Elektronik Mühendisliği Yüksek Lisans Programı 

 

Tez Danışmanı: Dr. Öğr. Üyesi Gürkan Soykan 

 

Eylül 2024, 46 sayfa 

 

 

Optimal Güç Akışı (OPF), güç sistemlerinde operasyonel ve planlama stratejileri için 

en değerli araçlardan biridir. OPF'yi çözmek için kullanılan geleneksel yöntemler, 

büyük ölçekli sistemlerde karmaşıklık ve hesaplama zorlukları gibi sorunlarla 

karşılaşmıştır. Bu tez, problemlerin üstesinden gelmek için ayrık dalgacık dönüşümü 

ile desteklenen bir Tam Bağlantılı Sinir Ağı (FCNN) önermektedir. FCNN, ayrık 

dalgacık işleme yöntemini kullanarak durağan olmayan veriler için daha iyi çözümler 

sunmakta ve hem zamansal hem de frekans detaylarında özellikler çıkarmaktadır. Bu 

özellikler, optimum güç dağılımları için FCNN'nin parametre tahmin kabiliyetini 

artırabilir. Önerilen modeller, tahmin doğruluğunda ve hesaplama verimliliğinde 

önemli bir gelişme göstermek için geleneksel FCNN yöntemiyle karşılaştırılmıştır. 

Performans testleri IEEE-24 bara sistemi, IEEE-57 bara sistemi ve IEEE-118 bara 

sistemi durumları için gerçekleştirilmiştir. Performans, jeneratör çıkışları ve bara 

gerilimleri ile ilgili ortalama karesel hata analizine dayalı olarak değerlendirilmiştir. 

Ayrık dalgacık dönüşüm tekniği FCNN'nin performansını olumlu yönde 

etkilemektedir.  

 

Anahtar Kelimeler: AC Optimal Güç Akışı, Sinir Ağları, Ayrık Dalgacık 

Dönüşümü,
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Chapter 1 

Introduction 

 

In today's world, where the demand for energy is increasingly growing and the 

efficient use of resources is emphasized, the electricity produced by thermal, 

hydroelectric, natural gas, and renewable energy power plants, being delivered to 

consumers with minimal loss and maximum efficiency continuously and in high 

quality, has transformed from a luxury to a mandatory necessity. In this context, the 

nature of electrical energy, which cannot be stored, necessitates balancing production 

and distribution processes, and makes instantaneous, demand-based production 

strategically significant in the energy sector. This situation has brought to the forefront 

issues such as the modernization of energy infrastructure and the integration of smart 

grid technologies, playing a critical role in achieving energy efficiency and 

sustainability goals. The necessity, which underscores the importance of instantaneous 

production and transmission, has also paved the way for innovative solutions and 

technological advancements in energy management systems. Thus, the energy sector, 

while aiming to provide high-quality service to consumers, also promotes practices 

that support environmental sustainability and takes steps towards the future. 

During the process of energy production and transmission, the distribution of 

energy produced with the demand, and the need to ensure that power plants are 

operated within their capacity limitations while maintaining a balance in-between is 

understood. It is only possible if this balance is maintained, which is a crucial 

prerequisite for the sustainability of the optimal power flow. Because if power plants 

are forced to operate fuzzy alterations or given the freedom to operate in alterations 

above their design values, then this results in the uneven sharing of the load by 

generators, and the entire energy system is exposed to the risk of collapse. 

Consequently, operational variables are pushed far beyond acceptable limits, and 

penalties are imposed, in addition to the substantial increase in the cost of fuel being 

used . Effective and efficient operation of power plants within their respective values 

of capacity is not only vital for the energy system to remain fit and healthy. It is through 

this principle that energy management strategies are built, thus, central to policy 

formulation for enhancing energy sustainability and efficiency. Deterministic Optimal 

Power Flow models were finally fostered by works initiated by Carpentier as early as 
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1962. Originally, they focused on the minimization of operational costs related to 

power systems without considering uncertainties. 

His first formulations as nonlinear programming problems were developed to 

include active reactive power and transformer tap ratios; the scope of studies expanded 

over the decades to include security constraints using advanced methods, such as 

sequential linear and quadratic programming. Improvements have been made to 

increase reliability while reducing the cost of power distribution, especially when 

integrating renewable sources and embedding security measures reflecting ongoing 

adaptations in modern power systems optimization. Carpentier's approach has mainly 

formulated OPF as a nonlinear NLP problem for minimizing the total operational cost 

of the power systems(Mohagheghi et al., 2018). 

The most important factor contributing to the development of OPF solutions in 

the 1970s, the gradient approach has brought efficiency in power systems engineering. 

Developed initially for the optimization of generation cost with considerations of 

system constraints and stability, this approach utilizes the derivatives of the objective 

function in order to implement adjustments so that a qualitative minimum of 

operational costs may be reached. It is possible that an update of power system 

variables in the direction of negative gradient may allow engineers to reduce fuel 

consumption and further enhance the reliability of electric grids. The gradient method 

realized high improvement in the management and planning of generation and 

distribution of electricity, which indicated the movement toward more severe yet cost-

effective power system management(Carpentier, 1985). 

Important to the work done in OPF solutions in the late 19th century, the 

Newton-Raphson method provided the strong algorithmic approach needed to enhance 

power system operations. Essentially, the method has been used for solving nonlinear 

equations in the analysis of power flow, one way through which the adjustment of 

settings in power systems can be done efficiently to obtain optimum operating 

conditions. The applications of the Newton-Raphson method allowed them to 

converge on solutions that met power generation requirements and system constraints 

on items such as voltage levels and power flow limits. This step is indispensable in the 

automation and optimization of the distribution of electricity, hence giving way to 

more reliable and economically feasible power grids. It marked a very important 
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development in electrical engineering and supported the advances in automation for 

the analysis and operational efficiency of power systems (Eltamaly et al., n.d.). 

Important developments in optimization algorithms beyond the classic gradient 

and Newton-Raphson methods have been made, particularly in nonlinear 

programming, since the 1980s. The emergence of the Conjugate Gradient (CG) 

method was a significant improvement over the Reduced Gradient (RG) method, when 

non-interfering search directions that speed up the convergence and reduce the 

computational steps were put forward. Simultaneously, the Generalized Reduced 

Gradient method was refined in a way that could handle both equality and nonlinear 

constraints more directly, by slack variables and dynamic changes of the constraints 

while optimizing. Interior Point Methods (IPMs) were gaining strength as methods 

capable of delivering robust solutions for large-scale linear and nonlinear optimization 

problems, guiding a path in the interior of the feasible region using barrier terms, and 

often performing better than classic methods like the Simplex Method for complex 

problems. Further evolution saw the emergence of Sequential Quadratic Programming 

(SQP) and Sequential Linear Programming (SLP), where a series of quadratic or linear 

approximations are iteratively solved, improving the model of the objective function 

and efficiency in finding the optimal solution, especially in the case of a tightly 

constrained optimization problem. The preceding development represents an 

important evolution in optimization techniques, driven by increased computing power 

and increased complexity of systems being modelled (Frank et al., 2012). 

Traditional methods in the power systems sector have been taken over by 

innovative solution techniques since the early 1990s. Fuzzy modelling in the power 

systems was done in 1991 to model uncertainties in loads and power generation by 

treating such uncertainties as fuzzy variables. In that way, the optimum power flow 

was achieved with maximized power production and distribution in uncertain 

situations. Fuzzy set theory is one which offers a method to handle imprecision in data 

and incomplete information which cannot be modelled probabilistically. The 

application of fuzzy modelling was a means of deriving the power generation and load 

distribution in a more effective way, even in indeterminate scenarios (Miranda & 

Saraiva, 1992). 

Stochastic OPF was first introduced during the early 1980s, when new and 

complex difficulties started to arise regarding the operations of the electric power 
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systems, particularly issues related to the planning and handling of uncertainties in 

renewable energy sources. In other words, stochastic OPF drew significant attention 

in the 1990s. This technique was proposed to face the intrinsic variability 

characterizing RESs, such as wind and solar, to ensure reliable and economical 

operation of power systems in the presence of such uncertainty. Deregulation, together 

with a strong drive for decarbonization, has heightened the need for the integration of 

a large share of renewable resources; the necessity for Stochastic OPF has become 

very high. Stochastic OPF uses probability density functions and scenario generation 

to model and mitigate the risks posed by the stochastic nature of renewable energy 

sources. It guarantees a more rigid framework than the traditional deterministic 

methods by optimizing the power flow considering the anticipation and planning of 

different possible future states. It is, therefore, increasingly enhancing the flexibility 

and resilience of power grids against the unpredictable nature of renewable energy 

inputs (Maheshwari et al., 2023). 

Over time, the introduction of distributed and decentralized OPF techniques has 

increasingly taken place in the handling of complex power systems. In particular, the 

development of the Augmented Lagrangian Alternating Direction Inexact Newton 

(ALADIN) method has significantly enhanced OPF computation efficiency. Designed 

for non-convex AC optimal power flow problems, ALADIN has outstanding 

performance when compared to the older methods such as the Alternating Direction 

Method of Multipliers (ADMM). Besides, it attains locally quadratic convergence 

rates and significantly reduces the number of iterations. This method especially stands 

out within those systems with large bus systems; it has shown better performance in 

300-bus test cases. The distributed OPF, including ALADIN, is leveraging the fast 

increase in the computational abilities of system devices such that they can locally 

solve subproblems while a coordinator synthesizes these local solutions. This approach 

does not only cut computational overhead but also offers solutions to enhance 

scalability and resilience in power systems operations, which remain key, especially 

in a setting with a high penetration of renewable sources (Engelmann et al., 2019). 

Against the modern scientific research landscape, many other fields have 

emerged due to the revolution brought about in the field of Artificial Intelligence and 

heuristic optimization algorithms. One such newly emerged field comprises the 

optimal power flow problem. These swarm intelligence techniques and nature-inspired 
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algorithms work better because they have fast convergence, can handle multi-variable 

problems, and have a large search space. These are capability factors for which it is 

particularly fit to deliver solutions within seconds on nonlinear complex challenges 

thanks to advances in computation.  

For example, AI optimizes OPF solutions using advanced modelling and 

adaptive systems to improve the efficiency and stability of grids. Swarm intelligence, 

on the other hand, attempts to optimize power flow with inspiration from the emergent 

collective behaviours of completely decentralized, self-organizing systems, such as 

flocks of birds or colonies of ants. This would do well in this distributed environment 

where a set of agents, all performing in unison to solve OPF problems give way to 

resilient energy networks. Besides, evolutionary algorithms take their inspiration from 

the principles of genetic evolution, using mechanisms of mutation, selection, and 

crossover toward efficient exploration and exploitation of the search space. Such 

algorithms are useful in that they are basically robust and flexible, with the capability 

of adapting to new or changing conditions without human interference. 

Heuristic algorithms rely on methods of trial and error guided by intuitive logic rather 

than rigid rules; thus, they always come up with practical solutions through educated 

guesses that hasten convergence toward optimal solutions. These are essential in real-

time applications where decisions should be made in the quickest and most efficient 

way. 

This ranges from efficient management in power systems to the fostering of 

development for increased integration of renewable energy sources into the grid. As 

this technology continues to evolve and integrate, there is more that is yet to be 

expected in terms of development in energy system optimization and management. 

Advanced computational techniques taken contribute to the field of OPF by making it 

efficient in the management of power systems and consequently allowing 

developments that enable more integration of renewable energy sources into the grid. 

Their continuous development and integration further lead to greater advancements in 

energy system optimization and management. Some of the techniques used in the 

analysis of the Optimal Power Flow problem include Newton's Method, Gradient 

Method, Linear Programming Method, Nonlinear Programming, QP, and AI Methods. 

Each of these techniques is shown in the Figure 1 (Singh Rana et al., 2019). 
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Figure 1. Optimal Power Flow Solution Techniques 

 (Singh Rana et al., 2019). 

1.1 Challenges and Limitations in OPF 

Against the backdrop of changing demands on electrical power systems and in 

the complexity of modern electricity markets, bring several found challenges in the 

realm of optimal power flow. The OPF models necessary to regulate the power flows 

in order to optimize some objectives, such as the minimization of production cost or 

losses, are not trivial tools and possess profound complexities. This is further driven 

by the restructuring of the electrical supply industry, along with increased load 

demands and constraints by environmental advocacy against new transmissions, which 

gives a stronger urge to maximize the capability of existing networks. This in turn 

leads utilities to delay new infrastructural projects and rely more on OPF models to 

manage and plan under these conditions. 

OPF tools are increasingly critical for engineers in the management of increased 

power flows in these networks. However, their usage presents several difficulties, 

especially for newer users who may find the convoluted technology of OPF difficult 

to master. A fundamental difference in the way OPF tools work from other non-OPF 

tools, like classical economic dispatch, is that OPF fundamentally uses a model of the 

power network. This difference is very critical because it highlights the unique offering 

of OPF in contributing to the optimization of the network but also reveals an inherent 

steep learning curve and misuse if not well understood. 
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However, the application of OPF tools in the restructured electricity supply 

industry has additional problems. Proper strategic application of OPF is of prime 

importance since improper use may lead to suboptimal operation and planning. For 

example, it is a matter of good judgment that may dramatically alter the effectiveness 

of OPF applications, such as the distinction between global optimization control and 

local regulation, understanding the levels of network security, and the priority of 

control variables. 

These challenges, therefore, call for an approach that is both rigorous on training 

and familiarization with OPF tools for new users. They must sort through these 

complexities if they are to employ OPF in a way that works for them in the betterment 

of the operation and planning of power systems. The industry is evolving, and so are 

the strategies and understandings of how these powerful tools are applied in order to 

ensure that power systems are efficient but also robust and resilient in the face of 

forthcoming demands and potential contingencies (Cheng, 1998). 

1.2 Benefits of OPF 

The application of Optimal Power Flow (OPF) programs gives profound 

advantages when operating and planning power systems, especially to enhance 

efficiency, reliability, and economic outcomes. These benefits will be increasingly 

critical as utilities try to meet growing demands and regulatory pressures using extant 

infrastructures. 

First and foremost, OPF allows the accomplishment of better economic 

efficiency. OPF will be able to pick out the best from among a set of possible options, 

optimizing the flow of power within the network for predefined objectives such as 

minimizing production costs or losses. These solutions will be selected considering 

engineering requirements and economic factors; therefore, operational decisions 

would not only be technically feasible but also economically viable. 

Another important advantage is the uniqueness of optimal solutions that meet all 

operational constraints, irrespective of the experience of the user. This systematic 

approach not only yields the best solution but also effectively traces the binding 

constraints within the network, as the bottlenecks are identified by the transfer limits. 

This clarity is important for strategic planning and mitigation of the potential problems 

before they impact system performance. 
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Moreover, OPF enables the in-depth scenario studies possible through its 

automated processes. It permits consideration of literally an infinite number of 

alternative configurations. For example, this functionality will be useful when 

decisions need to be made, such as identification of best locations and size for addition 

of new equipment. Comparing these alternatives against common criteria can result in 

better decisions that are in confluence with the utilities' long-run strategic objectives. 

Besides, the conditions of optimality and the associated mathematical 

expressions provided by OPF also carry significant insight into the impact brought 

about by the change in the control variables or easing several constraints-a process 

termed sensitivity analysis. These may pertain only to the vicinity of the computed 

optimum solution but do yield very helpful information for adjusting in the operations 

so that efficiency and stability of the system are enhanced. Where systems constraints 

lead to infeasible physical solutions, the OPF can formulate solutions with 

redundancies. This not only identifies conflicting constraints that have caused 

infeasibility but also suggests possible remedial measures to make the system 

operations viable. In certain cases, mild violations of constraints are tolerable, which 

OPF can accommodate to maintain system integrity without major redesigns. 

Furthermore, in the context of a restructured electricity supply industry, OPF 

provides a reference case for benchmarking. This is increasingly important as different 

stakeholders may use these benchmarks to negotiate new transactions or address 

contentious issues, ensuring that all parties have a common understanding based on 

optimized system performance. 

Overall, the use of OPF in power system operations and planning not only 

enhances the economic and operational efficiency but also aids in strategic decision-

making and system robustness. As such, it plays a critical role in enabling utilities to 

adapt to and thrive in the evolving energy landscape, where optimization and strategic 

foresight are key to maintaining system reliability and meeting future challenges 

(Cheng, 1998). 

During the operation and planning of energy systems, intensive studies have 

been conducted to solve the Economic Dispatch (ED) problem with the aim of 

ensuring the initial power (load) flow at the lowest possible cost, to avoid unwanted 

high costs and capacity overruns. These studies aim to ensure that generators produce 

power within permitted limits and that the sum of demanded power and power losses 
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is balanced with the total generated power. Successfully achieving economic load 

distribution requires fulfilling these two fundamental conditions. These conditions 

related to active power management make the solution of the ED problem 

straightforward and comprehensible, resulting in a structure that is simple and free of 

complexity. This approach is critically important for optimizing the cost of energy 

production and distribution, making more efficient use of energy resources, and 

enhancing the overall sustainability of the system. 

1.3 Objective of the Thesis 

The purpose of this thesis is to solve the OPF problem using a discrete wavelet 

transform and an FCNN. Utilizing the discrete wavelet transform to preprocess input 

data created by OPF will help the FCNN working model represent the underlying 

characteristics of both the time and frequency domains and better capture non-

stationary patterns characteristic of power system data.  The performance of the 

discrete wavelet transformed FCNN against a standard FCNN model is evaluated by 

using mean squared error. Overall, this thesis showcases how utilizing discrete wavelet 

transform incorporated into the neural network used for OPF modelling decreases 

computational load and generally increases overall prediction quality and 

performance, ultimately creating another contribution to the ongoing research 

enduring in OPF modelling using data science principles. 
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Chapter 2 

 

 Literature Review  

 

Optimal Power Flow (OPF) is an essential optimization problem in the energy 

sector, aimed at determining the optimal operating parameters for power generation to 

minimize costs and satisfy demand constraints. The problem is highly non-linear and 

non-convex, particularly in the Alternating Current OPF (ACOPF) form. Recently, 

machine learning techniques have proven effective in reducing the computational 

complexity of OPF problems.  

Machine Learning (ML) and power systems are increasingly intersecting, 

particularly in the field of Optimal Power Flow (OPF). OPF is central to many power 

system operation tools and market clearing processes. Initially approached through 

mathematical and heuristic methods, the advent of machine learning algorithms, 

combined with the increase in computational resources and data availability, has 

encouraged the power systems community to explore the potential of ML. Machine 

learning has found applications in power systems operation, planning, monitoring, and 

economics 

Although ML techniques are studied for many power system problems, their 

application to OPF is still emerging. From the early classical Lagrangian methods in 

the 1960s to today's machine learning techniques, the OPF problem has remained a 

significant challenge. Various approximation, relaxation, and decomposition methods 

have been used to find feasible OPF solutions. ML techniques are potential solutions 

to tackle variants of OPF with the goal of finding cost-effective solutions and reducing 

solver computational burdens. Figure 2 illustrates how ML techniques are currently 

used for OPF problems (Hasan et al., 2020). 
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Figure 2. ML Techniques in OPF Solutions 

 (Hasan et al., 2020). 

The direct mapping of OPF variables is done by the direct prediction of OPF 

solutions with a dataset of historical data or simulated scenarios, providing a 

framework for supervised learning in training models on input parameters that yield 

OPF results, voltages, line flows, and power generation. For example, it is found that 

boosting regression yields a better choice when considering time reduction or 

improving solution accuracy. However, this method results in infeasible or suboptimal 

solutions with small errors in the prediction. Prediction of active constraints: The 

machine learning models classify active and inactive constraints to improve the OPF 

formulation in this approach. This simplifies the learning task since the focus shifts to 

identifying critical constraints, rather than mapping continuous variables directly. For 

example, it has been realized that a fully connected neural network for the 

classification of constraints develops computational efficiency by a great margin. 

Binary decision variables mapping: This approach is very critical in learning unit 

commitment approximations for reducing computational costs. With nearest-

neighbour classification algorithms or techniques alike, the models can approximate 

unit commitment solutions to market clearing without requiring computationally 

expensive solvers. Learning the control policy for OPF: It uses local measurements in 

an attempt to emulate the centralized control policies by means of decentralized 
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reactive power controllers. This is especially important in distribution networks with 

high penetration of Distributed Energy Resources where decentralized decision-

making greatly improves grid stability and efficiency. Stability-Constrained OPF: 

Stability constraints are included in OPF by data-driven approaches in a way that 

small-signal and transient stability margins are bounded within an optimal solution. 

Then, decision trees and machine learning models classify the operating scenarios 

between stable and unstable, and this knowledge can then be integrated into OPF 

formulations. Put all together, this can substantially reduce computational time and 

yield reliable solutions of OPF problems.(Hasan et al., 2020). 

2.1 Direct Mapping of OPF Variables 

The most popular method is the direct prediction of OPF solutions by machine 

learning. It basically trains a learner with input parameters provided OPF results as 

voltages, line flows, and power generation outputs. For example, the various 

algorithms used by Navidi et al. have demonstrated that the gradient boosting 

regression algorithm enhances time in computation along with accuracy in the 

solution. Along this line, Sun et al. (2018) have recently proposed a Security-

Constrained OPF framework with the integration of multi-target regression based 

supervised learning. (Hasan et al., 2020). 

In this context, it was shown in Ng et al (2018) that an OPF solution is defined 

by a set of active constraints corresponding to a certain uncertainty occurrence and that 

such basic solutions can be used in order to create affine policies. It has been said in 

some literature that these affine policies may be sufficient in certain cases, but in the 

more complex scenarios of uncertainty, the general policies like PWA policies should 

be used instead. Furthermore, the direct mapping of OPF variables that define critical 

regions and monitoring of an optimal solution by switching between those regions 

have also been studied. It is in this connection that the selection of important bases 

through the techniques of statistical learning and utilizing them in OPF solutions are 

oft-repeated themes in the literature. (Ng et al., 2018). 

In the paper of Sun at et al. (2018), a study on the adequacy of direct mapping 

and local features for the estimation of security-constrained generation distribution is 

conducted. As traditional optimization approaches are not good enough in terms of 

time in large-scale power systems to solve the problems related to SCOPF, therefore 

usage of only local features along with local measurements is considered. In this work, 
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it has been shown that local generation distribution estimation can be done rather 

accurately with local data. Also, the local estimates provide similar results compared 

to estimates that were based on global data. This approach is highly significant in real-

time applications such as large and complex electrical systems (Sun et al., 2018). 

 In the article by Canyasse, a study on direct mapping OPF was conducted by 

investigating supervised learning algorithms to quickly estimate costs and feasibility 

of ACOPF. The authors then focused on this approach because of its benefits in 

making fast estimates instead of simulating the OPF solution, especially in long-term 

planning and control applications. This approach has been applied to large test systems 

such as IEEE RTS-96 and allowed the estimation of the OPF cost with an error rate 

less than about 1%. Besides that, the proposed approach enables the detection of spatial 

clusters caused by different modes of congestion due to the presence of multimodal 

structures. The solution of the cost estimation problem in large-scale power systems is 

therefore very efficient, as its execution is extremely fast with high accuracy  

(Canyasse et al., 2017). 

2.2 Predicting Active Constraints 

Active set classification methods learn active constraint sets corresponding to 

uncertainty realizations. The work of Deepjyoti Deka and Sidhant Misra will try to 

learn the relationship of these realizations to optimal active sets instead of directly 

mapping uncertainty realizations to optimal solutions. Neural network classifiers 

create a mapping from uncertainty states to active sets. Hence, these classifiers can 

predict optimum solutions in real time efficiently and quickly. The work shows the 

performance of this approach on various systems of the IEEE PES PGLib-OPF 

benchmark library. Active set classification simplifies the learning task and makes 

accurate predictions by taking advantage of the system and problem structure (Deka 

& Misra, 2019). 

A study by Kyri Baker and Andrey Bernstein introduced an alternative data-

driven method to account for joint chance constraints in AC optimal power flow (OPF) 

problems. The authors look at distribution systems with a significant penetration of 

distributed renewable generation resources, allowing a more formal mathematical 

model of uncertainty in the OPF problem. Then the authors use statistical learning 

tools to reduce the computational burden of the OPF optimization problem by allowing 

the user to classify given constraints as active or inactive and concisely substitute the 
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joint chance constraint with a string of independent (to minimize conservativeness) 

chance constraints. In this case, the authors choose support vector classifiers from the 

statistics learning motor. There are bounds on conservativeness relative to models with 

single chance constraints (like Boole's inequality) and considerable reduction in 

conservativeness using an off-the-shelf support vector machine solver to further 

disaggregate standard models for optimization in power systems dealing with 

significant uncertainty. The framework is tested within the IEEE 37-node test feeder. 

The study concludes with an interesting evaluation of optimization procedures to 

mitigate voltage regulation related challenges in distribution networks (Baker & 

Bernstein, 2019). 

Slightly erroneous predictions of the OPF results may lead to infeasible or 

suboptimal solutions from direct mapping of results. Prediction of active constraint 

sets has attracted a lot of attention in recent years. A new concept proposed a 

methodology to determine optimal active constraint sets using the advantages in 

statistical learning. It ensures probabilistic guarantees for output sample scenarios by 

identifying and learning important bases (Misra et al., 2021). 

2.3 Learning Control Policy for OPF 

ML can decentralize such control policies. A few linear regression learners have 

so far implemented decentralized OPF-based reactive power controllers. The learners 

leverage advanced metering infrastructure, coupled with simulations, to prepare a 

dataset for a range of scenarios and further map the local measurements to the optimal 

power injection of Distributed Energy Resources-DERs. In other words, machine 

learning techniques have indeed proven immensely promising in solving OPF 

problems. This has been an area of continual maturity with new learning techniques, 

with effective handling of the associated computational challenges, and with 

associated issues of robustness and reliability related to power system operation. 

(Hasan et al., 2020). 

Another contribution that could be taken into consideration has to do with 

Federica Bellizio et al., where there is an approach to active distribution grids by 

decentralized control, embedding principles of machine learning. The authors seek, 

the optimal solution for local control of DERs under the assumption of limited 

monitoring and communication infrastructure. Results will be detailed, resting on a 

two-step approach. First, it develops a dataset of optimal DER setpoints represented 
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under various weather and electrical network conditions through a centralized optimal 

power flow algorithm. Next, using the OPF dataset, local controllers at each DER 

resource are trained by the machine learning model, in this case, Support Vector 

Regression. The idea behind this is to surely attain real-time operations considered 

near optimal through designing DER controllers to measure quantities locally, and to 

use historical data from the local controllers to emulate the optimized settings and 

operating conditions from a centralized basis, yet still assure the security and 

efficiency of the whole distribution system. This operational framework was applied 

to a low-voltage distribution feeder and extended by conducting more comparisons 

against existing centralized and decentralized operational approaches, considering 

uncertainties and concerns that may arise from modern distribution systems.(Bellizio 

et al., 2018). 

Stavros Karagiannopoulos, Petros Aristidou, and Gabriela Hug introduce a 

Machine Learning control policy for active distribution grids that emulates the 

outcome of the optimum behaviours in case of absence of a high degree monitoring 

and communication architecture. The authors have proposed a data-driven algorithm 

that would make use of historical data in conjunction with an offline OPF model to 

compute the optimal setpoints of DERs and further train the machine learning models 

like SVM, and regression-based models required to realize the machine learning 

solution. This paper designs an online machine learning-based control policy that 

enables real-time operations of DERs using only local measurements to efficiently 

approximate a centralized OPF solution and guarantee stability of the grid and 

operation costs. It is applied to the control simulation of a three-phase unbalanced low-

voltage distribution network. Results are indicative that the approach can realize better 

outputs compared to other traditional local control strategies: it manages to track the 

optimal control outputs commonly achieved under centralized control 

strategies.(Karagiannopoulos et al., 2019a). 

2.4 Mapping Binary Decision Variables 

In the paper "Unit Commitment using Nearest Neighbour as a Short-Term 

Proxy," the authors propose a machine learning methodology for mapping binary 

decision variables within unit commitment issues, a classic problem that usually occurs 

within power systems. In this paper, a nearest neighbours algorithm is employed to 

approximate the optimum unit commitment solution achieved from problems that have 
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previously been solved. The authors have developed a database of solved unit 

commitment scenarios that is useful to estimate binary decision variables, i.e., the 

on/off state of generation units, from solved mixed-integer linear programs, without 

requiring the full solution of the latter in each occasion. That amounts to enormous 

saving in computation time with the same level of accuracy, so machine learning can 

be used in real time for hourly commitment/dispatch in large-scale power systems and 

also can be used normally while planning for a long-term reliable operation. In 

practice, this would represent a state-of-the-art use of supervised learning in 

operational decision-making for power networks. This is to outline, through examples, 

how machine learning applied to a previously obtained dataset goes to make energy 

management even more effective and reliable. (Dalal et al., 2016). 

2.5 Stability Constrained OPF 

The problem of stability-constrained OPF is mostly pointed out in the paper 

"Data-Driven Local Control Design for Active Distribution Grids using off-line 

Optimal Power Flow and Machine Learning Techniques". This paper is providing one 

approach for developing the local control policies of DERs in a data-driven manner by 

using historical data and machine learning techniques in approximating OPF outcomes 

in a centralized OPF framework. With this work, OPF models did not consider 

stability, and neither is there any discussion on methods of OPF operating under 

stability constraints. The goal of the research work is to study the local actions in such 

a way that they would be assured of maximum efficiency and security in the operation 

of a studied distribution grid, given implications of DER availability under 

contingencies (Karagiannopoulos et al., 2019). 

The stability-constrained OPF is discussed in the next paper: "Efficient Database 

Generation for Data-driven Security Assessment of Power Systems." 

Correspondingly, the authors go on to propose a method toward generating, in a 

modular and scalable fashion, the datasets needed for dynamic security assessment. In 

particular, the present methodology will organically make use of convex relaxation 

techniques and complex network theory, whereby it manages to reduce the 

computational burden when computing the security boundaries, including those 

imposed by small-signal stability. It brings forth an avenue of methodology that, 

though focused on N-k security and small disturbance stability, the researcher enables 

the fast discard of big infeasible regions and finds secure/insecure operating points 
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about stability. In this direction, especially, stability-constrained OPF analysis is 

presently being drastically reduced, compared to the effort of traditional techniques, 

with efforts in time used in quite a different way, for both off-line security assessment 

and real-time operation.(Thams et al., 2020). 

2.6 Prediction of Warm Start Points 

Ziyou Zhang, Qianchuan Zhao & Fa-An Dai published a study in 2023 that 

suggested an integral-point inner shrinking horizon variable step discretization 

(SWITS) model predictive control (MPC) using warm-start. The paper wanted to do 

that in a way that also dramatically cut down on computation time, so it went even 

further and built the initial guess using parts of prior solutions. This led to an 

approximately 80% cut in iterations when implemented for fuel-efficient planetary 

descent guidance in the context of second-order cone programming (SOCP) problems. 

Pubathon results showed that the warm-start strategy outperforms cold-start 

methods(Zhang et al., 2023). 

2.7 FCNN and DWT Related Studies 

In addition to the literature mentioned above, the following works have been 

included on Fully Connected Neural Networks (FCNN) and Discrete Wavelet 

Transform (DWT) in the context of optimal power flow. 

The role of FCNN in power system analysis has gained prominence due to their 

ability to model non-linear, complex relationships in the power system. They predict 

bus voltages and line flows under varied load conditions, hence have been applied for 

load flow analysis, and contribute to security assessment by mapping the operational 

states to secure or insecure categories. In OPF problems, FCNNs provide high 

accuracy in approximating the traditional OPF solution, directly predicting OPF 

variables using historical data or simulated scenarios, hence reducing the 

computational time of the classical optimization method considerably. Furthermore, 

some approaches predict active constraints directly, hence improving the 

computational efficiency of the OPF formulation. 

In fault detection and diagnosis, FCNNs utilize historical fault data to identify 

fault locations and classify fault types; hence, they can be used in transient stability 

assessments by predicting the fault's effect on system stability. They also contribute to 

the security assessment by classifying system states as secure or insecure with high 

accuracy; the robustness is improved as more diverse training data becomes available. 
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FCNNs in OPF, load flow, and security assessment show the scalability, high 

representational power, and speed of prediction compared to traditional methods. 

However, the challenges need to be addressed, such as the requirement of large 

datasets, which are always not available, and when not properly regularized, 

overfitting may occur. In addition, the interpretability of the FCNN models is an area 

of concern compared to the classical methods. 

Guha et al. (2019) showed that while FCNNs can predict ACOPF solutions, they 

mostly lack generalization. On the contrary, GNNs, as presented by Owerko et al. 

(2019), exploit the graph structure of power systems and reduce the RMSE by up to 

213% compared to FCNNs on larger networks because GNNs can process localized 

information with high efficiency. Moreover, GNNs have the capability to scale and 

provide stability against graph perturbations, making them suitable for large-scale 

power system analysis. Although FCNNs offer fast approximations to load flow and 

security assessment compared to the classical methods, the localized processing 

capability of GNNs and their scalability make GNNs the preferred choice, as they 

provide more accurate and robust solutions in OPF and other power system 

optimization problems (Owerko et al., 2019). 

In the paper "DeepOPF: A Deep Neural Network Approach for Security-

Constrained DC Optimal Power Flow", Pan et al. (2021) introduce how to apply a new 

solution framework-using a fully connected neural network-to solve the Security-

Constrained Direct Current Optimal Power Flow problem. The authors realize very 

well that the solution to the SC-DCOPF problem is intrinsically a mapping problem: 

it maps the power load input to the optimal generation output and voltage phase angle. 

DeepOPF leverages the universal approximation capability of FCNNs for effective 

and efficient learning of this high-dimensional mapping. It includes two major steps: 

prediction and reconstruction. First, DeepOPF applies an FCNN which predicts 

generation values based on the load inputs. Then FCNN calculates the phase angles by 

straightforward solution of power flow equations with the use of predicted generation 

values. This predict-then-reconstruct approach reduces the dimension of the problem; 

the FCNN needs to predict only the generation values. After being trained on historical 

data, DeepOPF can approximate the optimal solution with less than 0.2% optimality 

loss. On the other hand, it maintains feasibility and accelerates the computation time 

up to two orders of magnitude compared to conventional interior-point solvers. The 



 

19 

contribution of this approach to scalability and efficiency makes it quite appropriate to 

solve large-scale SC-DCOPF problems in real-time applications; that is, it can achieve 

an optimal balance between speed and accuracy in power system operation. In all, 

DeepOPF shows how FCNNs can significantly improve the computation of optimal 

power flow solutions. It provides a robust and practical alternative to traditional 

methods in the computation of optimal power flow solutions (Pan et al., 2021). 

In an analysis conducted by S. A. Saleh and M. A. Rahman in 2005, the wavelet 

packet transform has been applied to a novel algorithm for the differential protection 

of three-phase power transformers. The algorithm uses WPT to extract features from 

the differential current signals for distinguishing between magnetizing inrush and 

internal fault currents. Optimal wavelet and resolution levels were selected in light of 

the MDL criteria. Extensive offline testing using laboratory data revealed that the 

proposed method outperforms the traditional DFT-based method regarding speed and 

accuracy. In this paper, it is revealed that WPT is effective in bringing improvement 

to transformer protection with reduction in computational burden (Saleh & Rahman, 

2005). 

In the research of Amin Shabanpour-Haghighi, Ali Reza Seifi, and Taher 

Niknam, a modified teaching-learning-based optimization algorithm was applied to 

solve the optimal power flow problem. The algorithm was analysed to deal with the 

Mult objective OPF problem concerning total fuel cost and total emissions of 

generators. It adds up the modified phase with a self-adaptive wavelet mutation 

strategy. The algorithm performance was shown for IEEE 30-Bus and 57-Bus systems, 

where the results were compared with those in the literature. It was proved that such 

an approach can increase the search space to reach the best solutions with good 

convergence speed (Shabanpour-Haghighi et al., 2014). 

In the study "Whale Optimization Algorithm with Wavelet Mutation for the 

Solution of Optimal Power Flow Problem," V. Mukherjee, Aparajita Mukherjee, and 

Dharmbir Prasad have developed a novel approach for the solution of the AC optimal 

power flow problem. Wavelet mutation strategy is added to the WOA for enhancing 

its effectiveness. This wavelet mutation applied in the basic iterations of WOA 

enhances the exploration-exploitation capability of the algorithms to escape the local 

optima and converge to globally optimal solutions. The performances of the proposed 

method are studied in different standard power systems like IEEE 30-bus, 57-bus, and 
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118-bus systems and found giving superior performance for fuel cost minimization, 

transmission loss minimization, and voltage deviation minimization compared to the 

traditional optimization methods. The incorporation of wavelet theory in the 

optimization algorithm is an effective way to solve challenging OPF problems 

efficiently. (Mukherjee et al., 2018). 

The study "Optimal Power Flow Pursuit" by Dall'Anese, E., & Simonetto, A. 

presents a development of distributed feedback controllers that solve OPF problems in 

distribution networks with inverter-based distributed energy resources. These 

controllers iteratively adjust the powers of the inverter outputs based on real-time 

voltage measurements and time varying OPF targets. The control architecture 

leverages linear approximations of the AC power-flow equations and employs 

Lagrangian regularization to ensure effective performance. The authors provide 

analytical proofs of the convergence and OPF-target tracking properties of the 

proposed controllers. By rendering optimization in real time, the method overcomes 

the limitations of traditional hierarchical setups where the time scales of feedback 

control and optimization are very different, hence allowing for a far more effective and 

responsive management of distribution systems (Dall’anese & Simonetto, n.d.). 
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Chapter 3 

 

Optimal Power Flow 

 

Generators producing electrical energy, transmission systems carrying the 

generated energy at high voltage levels, distribution systems supplying the energy to 

the end user, and the loads consuming the energy are the sections that comprise a 

power system. The connection infrastructure of this power system is shown by means 

of a single line diagram.  It is used in the analysis of the given power system. Single-

line diagrams are generally named according to the total number of busbars. Figure 3 

shows an example of single line diagram of the IEEE 24 bus system.  

 

 

Figure 3. Single Line Diagram of IEEE 24 Bus System 

(Hameed et al., 2020). 
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Since the early 1900s, academic research on load flow has initially focused on 

Economic Distribution and Power Flow. In the 1960s, the first mathematical 

formulations of OPF revolutionized how electrical grids were managed. Today, it has 

evolved into a multi-parameter and complex structure where the power system's goal-

oriented objective function yields optimal results. OPF involves solving a constrained 

optimization problem that balances power supply and demand while minimizing 

generation costs or transmission losses.  

Key challenges include ensuring voltage stability, maintaining system security, 

and adhering to regulatory limits on generation and transmission capacity. With the 

growing integration of renewable energy sources, OPF is crucial for ensuring efficient 

and sustainable operation of modern power grids. Various algorithms, such as Newton-

Raphson, Linear Programming, and Interior-Point methods, have been developed to 

solve OPF problems efficiently. Before the complex and computer-aided OPF 

problem, the Economic Dispatch (ED) problem was frequently solved to reduce fuel 

costs in power systems. In comparison to OPF, Economic Dispatch focuses simply on 

minimizing fuel costs. The only inequality constraint is that the active power output of 

generators must remain within specified limits, while the equality constraint requires 

that the total output power of the generators, including transmission line losses, 

matches the total power demand. The equations required for OPF are given below. In 

this study, the objective function is used to minimize the total generation cost of the 

power system. The following equation represents the formulation of the optimization 

problem for OPF. 

𝑚𝑖𝑛

𝑃𝐺 , 𝑄𝐺 , 𝑉, 𝜃
∑ 𝐶𝑖(𝑃𝐺𝑖)

𝑖 ∈𝐺

 (3.1) 

Where 𝐶𝑖(𝑃𝐺𝑖) is the cost of generated power 𝑃𝐺𝑖   by generator i. 

OPF fundamentally involves ensuring that power generation in power systems 

meets the equality and inequality constraints within specified limits, that load flow is 

balanced and of high quality, and that the power system is operated under nominal 

conditions, avoiding faults. The primary distinction that sets OPF apart from the 

Economic Dispatch and load flow problems is that, within specified limits, OPF 

optimally manages the power system's operation and load distribution while meeting 
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mandatory requirements and essential criteria for load flow, simultaneously 

optimizing the objective function's outcome. Equality constraints include power 

balance equations that ensure the sum of generation equals the sum of demand plus 

losses, while inequality constraints involve limits on generator outputs, voltage levels, 

and line flow capacities.  

Active and reactive power balance equations given by: 

 

𝑄𝑖 = ∑(Vi Vj (Gij 𝑠𝑖𝑛 ϴij + Bij cos ϴij))

n

j=1

(3.2) 

𝑃𝑖 = ∑(Vi Vj (Gij𝑐𝑜𝑠 ϴij + Bij sin ϴij))

n

j=1

(3.3) 

Where 𝑃𝑖 is an active power injected to bus i. Vi and Vj  are the voltage magnitudes at 

bus i and j. ϴi and ϴj are the voltage angles at bus i and bus j. Gij and Bij conductance 

and susceptance of the line between i and j respectively.  A total number of buses also 

shown by n. 

Inequality constraints are defined as keeping the generator, transformer, 

compensation, and transmission line parameters within specified limit values in the 

power system. For OPF to be implemented as desired, all system component values 

must remain within the given range. This criterion is an absolute requirement that must 

be fulfilled to ensure optimal power flow. Generators need to maintain their active and 

reactive power outputs within specified minimum and maximum limits, while 

transformers must control tap changer positions and phase shift angles to avoid voltage 

violations. Additionally, transmission lines should not exceed their thermal limits to 

prevent overheating and potential failures. The boundary equations for decision and 

state variables are listed below. Generator constraints limit the output of the generators 

in term of active and reactive power. 

Active generation limits: 

 PGi
min ≤ PGi ≤  PGi

max (3.4) 

                                                               

Where PGi
min and  PGi

max  are the minimum and maximum active power outputs of 

generator i respectively.   

 Reactive generation limits: 
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  QGi
min ≤   QGi ≤  QGi

max (3.5)        

Where QGi
min and  QGi

max are the minimum and maximum reactive power outputs of 

generator i respectively.   

Voltage magnitude constraints ensure that the voltage magnitude at each bus 

stays within specified limits.                              

 Vi
min ≤  Vi  ≤ Vi

max (3.6) 

Where Vi
min and  Vi

max are the minimum and maximum allowable voltage magnitudes 

at bus i respectively. 

Line flow constraints ensure that the power flowing through each transmission 

line does not exceed its thermal limit: 

 

Sij
min ≤  Sij  ≤   Sij

max (3.7) 

Where Sij
min and Sij

max are the minimum and maximum apparent power that line can 

handle at bus i to j. 

Together, these equations and constraints form the core of the AC OPF problem, 

guiding the optimization process to determine the best operating conditions for a power 

system. 
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Chapter 4 

 

Methodology 

 

OPF is an important task within modern power systems, which involves the 

minimization of operating costs with respect to all system constraints on, for example, 

generator limits and voltage stability. These traditional optimization methods, 

including linear programming, non-linear programming, and interior-point methods, 

are usually too computationally expensive to handle the high non-linearities that 

appear in the equations of power flow. These conventional methods are 

computationally intensive, especially for large-scale systems. 

In the past years, machine learning methods and, particularly, neural networks 

have indicated the potential for accurate and computationally efficient solutions to 

OPF problems. Specifically, FCNNs can approximate the complex relationships 

between input loads and optimal generator outputs. However, conventional neural 

network models suffer from problems caused by high dimensionality and non-

stationarity of OPF input data. These problems lead to increased training times and 

possibly result in reduced accuracy in estimating optimal generator outputs and bus 

voltage levels. 

OPF is a very crucial activity in modern power systems, which basically entails 

minimizing operating costs without violating system constraints like generator limits 

and voltage stability. Classical optimization techniques, such as linear programming, 

nonlinear programming, and interior-point methods, normally have very high 

computational complexity, influenced by power flow equations being nonlinear. The 

traditional methods are computationally intensive, especially for large-scale systems. 

Machine learning techniques, especially neural networks, have obtained good 

results in recent years as accurate and computationally efficient solutions for the OPF 

problem. Specifically, fully connected neural networks can be used to approximate the 

highly nonlinear relationships between the input loads and the optimal generator 

outputs. However, conventional neural network models suffer from high-dimensional 

and non-stationary OPF input data, leading to longer training times and potentially 

reduced accuracy while predicting optimal generator outputs and bus voltage levels.  



 

26 

In the methodology section, we describe the structured approach followed to 

evaluate the effectiveness of Fully Connected Neural Networks and their 

enhancements through wavelet transformations in this thesis. This section describes in 

detail all the steps taken, from data preprocessing to the deep analysis and evaluation 

of the model performance. The order and justification for each methodological 

decision are included for clarity on how the study was conducted. To facilitate an 

understanding of the logical sequence of these steps, a flowchart has been provided, 

which is shown in Figure 4. 

 

Figure 4. The steps of the proposed method for OPF 

 

4.1 Data Preparation 

The data set required as input for the proposed method is prepared in this section. 

Initially, various loading scenarios are generated for the power system using Monte 

Carlo simulation. Subsequently, OPF analysis is conducted for each scenario to 

determine the active power output of the generators and the voltage magnitudes of the 

buses. Finally, these values undergo a normalization process to obtain the input data. 
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4.2 Discrete Wavelet Transform Integration 

4.2.1 Discrete Wavelet Transform. The Discrete Wavelet Transform (DWT) is 

an effective, powerful mathematical tool to analyse signals in the time and frequency 

domains. The Fourier transform only provides frequency-based information, while 

DWT provides simultaneous transitory and continuous signal information. DWT 

allows one to use varying elementary functions referred to as "mother wavelets" to 

filter the signal based on scale(s) and local regions of the signal. Therefore, one can 

then examine the signal features or characteristics in detail. 

The DWT allows one to analyse the signal f(t) at different resolutions using two 

different foundational functions namely the mother wavelet ψ(t) and the scaling 

function ϕ(t). The mother wavelet captures the high frequency components of the 

signal while the scaling function captures the low frequency components. DWT 

transforms a signal by scaling and shifting mother wavelet functions according to scale 

and translation parameters as shown below:  

ψj, k(t) = 2
𝑗
2ψ(2𝑗t − k) (3.8) 

Where j is scale parameter which allows analysis of the signal at various resolution 

levels. Translation parameter represented by k that shifts over time. 2jt represents the 

normalization factor. 

The decomposition of a signal using DWT is represented by wavelet coefficients 

(𝑐𝑖,𝑘), calculated based on the scale and translation parameters: 

c𝑖,𝑘 = ∫ 𝑓(𝑡)

∞

−∞

 ψ
j,k

𝑡𝑑𝑡 (3.9) 

These coefficients provide time-frequency characteristics of the signal with different 

resolutions 
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4.2.2 Applying DWT to Input Data. In this study, discrete wavelet Transform 

was incorporated in the data processing of the FCNN model to further advance the 

representation of its features in obtaining the optimal generator set points and bus 

voltage magnitudes. For training, both the input load data, active load ̀ PD` and reactive 

load `QD`, and output labels, bus voltage magnitude `VM` and active power generation 

`PG`, are normalized to unify scaling. This mainly involves incorporating a few DWTs 

into decomposing the `PD` and `QD` inputs into their respective wavelet coefficients. 

The latter step often aids in catching the unstructured localized variations in the 

signals, besides denoising them. Therefore, using discrete wavelets, the resulting 

wavelet coefficients yielded a more detailed structured representation of the input 

features and enhanced the capacity of the network to learn and generalize. This in turn 

improves this set of features that feeds into the FCNN model, improving predictive 

performance and providing more accurate solutions to the optimal power flow. 

4.3 FCNN Network and Training Process 

In this thesis, Fully Connected Neural Network (FCNN) architecture is presented 

to aid in solving the Optimal Power Flow (OPF) problem. A Fully Connected Neural 

Network (FCNN) is a form of artificial neural network in which every neuron is 

connected to every neuron in the previous layer. This model typically has an input 

layer, one or more hidden layers, and an output layer. A conventional FCNN consists 

of an input layer, one or more hidden layers, and an output layer. The input layer 

accepts the data while the hidden layers extracting and performing features from the 

data. Each neuron processes signals that receives information from other neurons with 

weight and a bias term. The neuron produces output values that is determined use an 

activation function. An activation function enables the neural network to acquire non-

linear relationships. FCNN network are an effective structure to allow the neural 

network to learn patterns, as the neurons are fully connected in all layers with flexible 

and powerful structures. A totally connected and dense format can enable a model to 

learn very complex relationships between inputs and outputs. FCNNs are often 

employed in applications, such as: classification, regression and pattern recognition. 

Benefits of FCNNs include capability to generalize across datasets, flexibility with 

inclusion of different data, and learn non-linear relationships. However, due to the 

large number of connections, FCNNs can be numerical expensive, and have issues 

with overfitting, that is the model may fit training data very well but generalizes lower 



 

29 

with new data. Moreover, as data grows larger and the number of features increases, 

training these models will become even more difficult. In Figure 5, the overall 

structure of the Fully Connected Neural Network (FCNN) architecture is presented 

(Tonello et al., 2019). 

 

 

Figure 5. FCNN Architecture 

(Tonello et al., 2019). 

The input features will consist of grid parameters like active and reactive power 

components of the loads presented in per-unit values (PD and QD), and the output labels 

will consist of optimal generator set points, active and reactive power injections (PG 

and VM), and bus voltage magnitudes which are represented in per-unit values. The 

data will be used for model fitting, and the hyperparameters will be tuned based on the 

validation data; they are also useful in overfitting. While the test data provides a 

realistic and unbiased evaluation of the final model. The foregoing procedure is 

reliable and true ways of assessing the models. The FCNN has been developed to 

predict the optimum generator set points along with the bus voltage magnitudes 

directly, reducing the computational complexity for OPF problem solutions. 

Performance for the Fully Connected Neural Network was measured by training and 

testing independently five times, recording average performance for results. Each 

independent run meant training from scratch and then testing on a separate test set. 

Then, mean and standard deviation of the performance metrics were calculated to get 

the measure of the consistency. Results obtained, therefore, give assurance of the 

reliability of predictive performance. This will ensure that there will not be any skew 

in random initialization and variability in the data that might make the model perform 

well. 
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Chapter 5 

 Simulations and Results 

 

5.1 Simulations 

Julia, a high-level, high-performance language, is the best for generating OPF 

data because it has speed and advanced optimization capabilities. With Just-In-Time 

compilation through the LLVM-based compiler and built-in support for multi-

threading and parallel computing, Julia achieves execution speeds comparable to those 

of C and Fortran and is extremely efficient at solving large-scale OPF problems. The 

speed of Julia in various domains is benchmarked against other languages. This 

language's performance, which rivals or even outdoes that of C, Python, and 

MATLAB. Its high capability to solve nonlinear problems through JuMP.jl and 

Ipopt.jl is also critical to solving the difficult, non-convex power flow equations in the 

problems of OPF analysis. (Bezanson et al., 2012) 

MLOPF.jl is a Julia package for machine learning assisted OPF that utilizes 

Julia's high-performance computing and flexible modelling capabilities. Building 

upon PowerModels.jl, MLOPF.jl provides a complete framework for efficient 

generation of the training data through Monte Carlo simulation and preprocessing; the 

package supports AC and DC power flow formulations. It integrates with the machine 

learning libraries like Flux.jl for direct training models such as Fully Connected Neural 

Networks (FCNNs). Other facilities in MLOPF.jl include normalization, feature 

engineering, and model evaluation tools. That makes it a complete solution for a 

researcher to handle, preprocess, and analyse large OPF datasets efficiently. 

Combining Julia's computational speed, a flexible modelling language with powerful 

optimization capabilities, MLOPF.jl enables researchers to take on large-scale OPF 

problems with confidence, thereby making Julia the best language for OPF data 

creation and analysis.  (Falconer & Mones, 2023) 

First, power system case studies are imported using the PowerModels.jl package 

in Julia, such as benchmark IEEE 24-bus, IEEE 57-bus, and IEEE-118-bus networks. 

Utilizing Monte Carlo simulation, varying load values, both active and reactive power, 

are changed within a ±20% range from their base load values to generate 10,000 

different feasible data for each case system. This will provide a wide number of 

feasible solutions, which will accurately model the variability in real-world power 
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systems. The optimal power flow data was generated and trained using an Asus 

Vivobook equipped with an AMD Ryzen 9 5900HX processor with Radeon Graphics. 

The system also had 16GB of RAM, providing adequate computational resources for 

the tasks. 

In this study, various kinds of discrete wavelet transforms have been tried: 

Coiflet, Haar, and Daubechies Wavelet Transforms, each for different capabilities to 

analyze the data. After evaluating the performance of each type of wavelet, Coiflet 8 

wavelet showed the best results. Among all these cases, the performance of Coiflet 8 

was found to be better, hence Coiflet 8 wavelet transform has been selected to carry 

out this analysis. Coiflet 8 DWT will henceforth capture low-and high-frequency 

components of the signal for more accurate and detailed modeling in OPF analysis. 

Additionally, noise reduction and multi-resolution ability will enhance the reliability 

and comprehensiveness in the data evaluation in OPF problems. The detailed analysis 

of FCNN and their wavelet-transformed counterparts have been analysed FCNN with 

Wavelet, on three different cases IEEE 24 bus, IEEE 57 bus, IEEE 118 bus systems. 

Cross validation tests for each case have been conducted to present the reliability of 

the results which is derived from these runs. Dataset will be randomly divided into 

training, validation, and test subsets in the ratio 70%, 20%, and 10%, respectively. 

These models are trained with the Adam optimizer using a learning rate of 10-4 and the 

mean squared error acts as the main loss function. For efficient convergence during 

training, a mini-batch size of 100 is used. 

5.2 Results of Simulations 

The generation of 10,000 optimal power flow solution datasets took 

approximately 8 minutes for the IEEE 24-bus system, around 13 minutes for the IEEE 

57-bus system, and about 28 minutes for the IEEE 118-bus system. Training, 

validating and testing of these systems with 10000 data samples took an average of 15 

seconds for the IEEE 24-bus system, 5 seconds for the IEEE 57-bus system, and 12 

seconds for the IEEE 118-bus system. The table below presents the average IPOPT 

durations required to generate feasible data for different cases, as well as the training, 

validation, and test for the data. 
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Table 1 

IPOPT Durations and Model Training, Validation and Testing Durations for 

Different Bus Systems 

Model IPOPT Durations 
Training, Validation and Testing 

Durations 

IEEE 24 Bus System 8 Minutes 15 Seconds 

IEEE 57 Bus System 13 Minutes 5 Seconds 

IEEE 118 Bus System 28 Minutes 12 Seconds 

 

In the simulations, FCNN models have been investigated as 2, 3, and 4 hidden 

layers to evaluate their performance across different datasets. The number of hidden 

layers in a neural network can significantly influence the model's ability to learn and 

generalize from the data. Following the analysis of the results, 3-hidden-layer model 

was chosen to be implemented for the final evaluations. The model with 3 hidden 

layers, regardless of training data, consistently produced lower loss values than that 

with 2 hidden layers suggesting the 3-hidden-layer model had superior learning 

capability and better generalization across learning datasets. It also performed 

comparably to the model with 4 hidden layers despite lower training and validation 

losses suggesting the 3-hidden-layer model was less vulnerable to overfitting and yet 

effectively learned complex data patterns. In the table below MSE loss values have 

been shown.  

Table 2 

 FCNN Architecture Results with Different Hidden Layer Sizes 

Case MSE Loss 2 hidden layers 3 hidden layers 
4 hidden 

layers 

IEEE 24 Bus 

System 

Training 

Validation 

Testing 

0.010734 

0.010417 

0.010879 

0.009706 

0.009389 

0.009830 

0.009489 

0.009162 

0.009549 

IEEE 57 Bus 

System 

Training 

Validation 

Testing 

0.004638 

0.004733 

0.004289 

0.004086 

0.004210 

0.003836 

0.004011 

0.004138 

0.003777 

IEEE 118 Bus 

System 

Training 

Validition 

Testing 

0.012964 

0.013053 

0.013452 

0.012152 

0.012380 

0.012810 

0.011992 

0.012373 

0.012949 
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Before the training and testing the data cross-validation is performed to ensure 

that our model generalizes well to unseen data by testing it on multiple subsets of the 

dataset. By using a 7-fold cross-validation approach, we can assess the model's 

performance more reliably across different portions of the data. Below is the table 

showing the results for IEEE 24 bus system using 7-fold cross-validation. 

Table 3 

Cross Validation Analysis of FCNN and the Proposed Method of IEEE 24 Bus 

System 

 

Below is the table showing the results for IEEE 57 bus system using 7-fold cross-

validation. 

Table 4 

Cross Validation Analysis of FCNN and the Proposed Method of IEEE 57 Bus 

System 

 

Below is the table showing the results for IEEE 118 bus system using 7-fold 

cross-validation. 

Method 

Average 

MSE in 

Training 

Average MSE in 

Validation 

Minimum and 

Maximum MSE 

in Training 

Minimum and 

Maximum MSE in 

Validation 

FCNN 0.01041 0.010491 
0.010070 

0.010990 

0.009698 

0.011847 

The Proposed 

Method 

0.009891 

 

0.009989 

 

0.009640 

0.010347 

0.009295 

0.011478 

Method 
Average MSE 

in Training 

Average MSE 

in Validation 

Minimum and 

Maximum MSE 

in Training 

Minimum and 

Maximum MSE 

in Validation 

FCNN 0.004770 0.004891 
0.004559 

0.005008 

0.004457 

0.005444 

The 

Proposed 

Method 

0.004348 0.004458 
0.004156 

0.004745 

0.003960 

0.004929 
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Table 5 

Cross Validation Analysis of FCNN and the Proposed Method of IEEE 118 Bus 

System 

 

For IEEE 24 bus system, as depicted by the corresponding tables, the integration 

of wavelet transformations in the FCNN model improved the loss metrics in all three 

phases of training, validation, and testing. This improvement suggests that wavelet 

transformations could help to effectively reduce overfitting and improve the 

generalization capabilities of neural networks dealing with complex datasets. The 

predicted values and the actual values of generator parameters are shown in Figure 6 

for 24 bus system.  

 

 

Figure 6. Predicted and Real Generator Parameters in IEEE 24 Bus System 

Method 
Average MSE 

in Training 

Average 

MSE in 

Validation 

Minimum and 

Maximum MSE in 

Training 

Minimum and 

Maximum MSE 

in Validation 

FCNN 
0.012956 

 

0.013379 

 

0.012539 

0.013286 

0.012919 

0.013564 

The Proposed 

Method 

0.011601 

 

0.012249 

 

0.011476 

0.011742 

0.011609 

0.012814 
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The figure 7 below shows the predicted and actual bus voltages for the IEEE-

24 bus system 

 

Figure 7. Predicted and Real Bus Voltages in IEEE 24 Bus System 

 

Notice that an outlying MSE value was noted for the wavelet model; this can be 

a subject of further research for understanding the impact of such outliers or conditions 

on the model performance. The figure 8 below shows the average training loss over 

epochs, highlighting a steady decrease in MSE loss as training progresses, indicating 

improved model performance and convergence. 
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Figure 8. Model Performance of Training Process for IEEE 24 Bus System 

 

The model performance improvements and the detailed statistical analyses are 

well documented in Table 6, for a view on the average losses and MSE values for each 

case and model configuration. 

Table 6 

Comparative Analysis of FCNN and the Proposed Method of IEEE 24 Bus System 

 

The results in IEEE 57 bus system show the clear benefits of wavelet 

transformation, the loss values are considerably lower for the wavelet-enhanced model 

and the deviations are very small. The predicted values and the actual values of 

generator parameters are shown in Figure 9 below. 

Method 

Average 

MSE in 

Training 

Average MSE 

in Validation 

Average MSE in 

Testing 

Average MSE with 

Actual Values in 

Testing 

FCNN 
0.009706 

±0.000348 

0.009389 

± 0.000532 

0.009880 

± 0.000508 

0.000836 

± 0.000017 

The Proposed 

Method 

0.009086 

± 0.000175 

0.008744 

± 0.000145 

0.009225 

± 0.000257 

0.000738 

± 0.000028 



 

37 

 

Figure 9. Predicted and Real Generator Parameters in IEEE 57 Bus System 

The figure 10 below shows the predicted and actual bus voltages for the IEEE-

57 bus system. 

 

Figure 10. Predicted and Real Bus Voltages in IEEE 57 Bus System 

This reflects a very stable and consistent model performance for runs with this 

case, reflecting the value of wavelets in capturing important features in the data 
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necessary for achieving the highest accuracy with dynamic systems like power 

networks. The figure 11 below shows the average training loss over epochs, 

highlighting a steady decrease in MSE loss as training progresses, indicating improved 

model performance and convergence. 

 

Figure 11.  Model Performance of Training Process for IEEE 57 Bus System 

Detailed results in the form of statistical analyses are given in Table 7, displaying 

the average losses and MSEs for each case and each model configuration. 

Table 7 

Comparative Analysis of FCNN and the Proposed Method of IEEE 57 Bus Systems 

Method 

Average 

MSE in 

Training 

Average 

MSE in 

Validation 

Average MSE in 

Testing 

Average MSE with 

Actual Values in 

Testing 

FCNN 
0.004060 

± 0.000520 

0.004250 

± 0.000136 

0.003859 

± 0.000114 

0.002536 

±0.000129 

The Proposed 

Method 

0.003674 

± 0.000519 

0.003864 

± 0.000525 

0.0034621 

± 0.000052 

0.002283 

±0.000126 

 

Finally, IEEE 118 bus system put our models to the test under more stringent 

conditions. The tables show that, while the standard FCNN model showed higher 

losses, the FCNN with wavelet model yielded lower average losses and at the same 
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time kept the variability of the results tighter than the standard model. IEEE 118 bus 

system underlines that the wavelet-transformed model is better when it comes to 

controlling complex and fluctuating data inputs; it is thus a strong argument for its 

application in advanced neural network architectures for optimal power flow analysis. 

The predicted values and the actual values of active generator parameters are shown 

in figure 12 below. 

 

Figure 12. Predicted and Actual Bus Parameters in IEEE 118 Bus System 

The figure below shows the predicted and actual bus voltages for the IEEE-118 

bus system. 

 

Figure 13. Predicted and Real Bus Voltages in IEEE 118 Bus System 
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The figure below shows the average training loss over epochs, highlighting a 

steady decrease in MSE loss as training progresses, indicating improved model 

performance and convergence. 

 

Figure 14. Model Performance of Training Process for IEEE 118 Bus System 

 

The improvements in model performance and the detailed statistical analyses are 

well-documented in Table 8 and, which represents the average losses and MSE values 

for all the cases and all model configurations. 

Table 8 

Comparative Analysis of FCNN and the Proposed Method of IEEE 118 Bus System 

 

Method 
Average MSE 

in Training 

Average MSE in 

Validation 

Average MSE 

in Testing 

Average MSE 

with Actual 

Values in Testing 

FCNN 0.012151 

±0.000041 

0.012388 

±0.000072 

0.012812 

±0.000291 

0.000645 

± 0.000031 

The Proposed 

Method 

0.011148 

± 0.000016 

0.011671 

± 0.000029 

0.012060 

± 0.000211 

0.000588 

±0.000024 



 

41 

Note that this study performed the calculations in MSE error using true labels, 

while the loss function was computed using normalized data. This distinction is 

important since it reflects how normalization affects the way the model is assessed in 

terms of performance, giving more subtle insights into the performance of the 

configurations of the neural network model used.  

This research performed a sensitivity analysis utilizing an optimized and 

confirmed model for optimal power flow (OPF) in the IEEE-24 bus system. A dataset 

consisting of 1000 instances was utilized to accurately predict active power (PG) and 

voltage (VM) values of generators using this model. Subsequently, these predicted 

results along with loading values (PD and QD) formed input into OPF solution. From 

the study findings, all obtained PG and VM were local optimal or global optimal in OPF 

hence resulting in high success rate of %100. The large success rate on the IEEE-24 

bus system signifies how sensitive and dependable can be the model when it comes to 

solving OPF problems. A similar analysis should also be done for both IEEE-57 and 

IEEE-118 bus systems. With their resulting numbers from IEEE-24 being successful, 

if it applies to others like IEEE-57 and 118, then that would validate its general 

applicability across various bus systems in general OPF analysis. Such sensitivity 

analysis contributes significantly towards assessing and enhancing performance of 

models during energy systems assessment. 

Overall, these results show that wavelet transformations improve the 

performance of FCNNs, allowing them to deal with the intricacies and variations of 

power system data. The fact that improvement can be seen regularly across the 

different cases and metrics indicates great potential for wavelet-transformed neural 

networks in devising strong solutions for complicated engineering problems.
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Chapter 6  

 

Conclusions 

 

In this study, the OPF problem is solved with one of the machine learning-based 

methods. Considering existing literature, discrete wavelet transformation is integrated 

into the FCNN method as a data preprocessing step. The inclusion of wavelet 

transforms into the architecture of FCNN significantly increased its capabilities for 

dealing with large datasets, as was shown by the reduced loss metrics and Mean 

Squared Errors across different cases. The number of generators in the system affects 

the performance of the proposed method. 

The discrete wavelet model continues to display superior performance by 

keeping the average loss lower and the results stable across the simulations. This not 

only points to the potential of wavelet transformation in enhancing the predictive 

capabilities of the neural network but also speaks to practical applicability in dynamic 

systems like power networks where variability and complexity of data are the rule. 

Further, the difference in MSE calculations with the use of true labels and the loss 

function with normalized data gave insight into the influence the normalization process 

has on model performance evaluation. This aspect serves to underline how important 

it is to take into consideration some techniques of data preprocessing in the 

development and assessment of neural network architectures. 

For future studies, results from this study encourage research into the integration 

of advanced techniques of data processing, such as wavelet transforms, into the body 

of neural network-based methods to solve the OPF problem for power systems. In 

addition, in methods other than FCNN, this data preprocessing step can be added, and 

its effects on the solution can be examined in different analyses.  
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