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SIMGELER VE KISALTMALAR

Bu caligmada kullanilan simgeler ve kisaltmalar, agiklamalar1 ile birlikte asagida

sunulmustur.

Simgeler Aciklamalar

N Dogal sayilar kiimesi

R Reel sayilar kiimesi

R" n-boyutlu 6klid uzayi, n € N

u® u’nun i. mertebeden tiirevi

Izl Oklid normu

I'(x) Gamma fonksiyonu

¢ o. mertebeden Riemann Liouville kesirli integrali
Lp« a. mertebeden Riemann Liouville kesirli tiirevi

Cp« . mertebeden Caputo kesirli tiirevi



1. GIRIS

300 yildir iizerinde durulan bir konu olan tiirev bir¢ok bilim insaninin dikkatini ¢ekmistir.
Newton, L’Hospital ve Leibniz gibi bilim insanlar tiirevin mertebesini baglangicta hep tam
say1 olarak diisiinmiislerdir. Daha sonra bu konu bir¢ok bilim insaminin da dikkatini
cekmigtir ve tiirevin mertebesinin tam sayidan farkli olabilecegi tizerinde durmuslardir [1].
Bu sebeple “Tiirevin mertebesini neden sadece tam say1 olarak diisiiniiliyor? Daha genis
say1 kiimesine genigletilebilir mi?” sorusuna deginilmistir. Hatta bu soruyu ilk defa 30
Eyliil 1695 yilinda Leibniz, I’Hospital’a yazdigr mektupta sormustur [2]. Boylelikle kesirli
mertebeden tiirev kavramu ilk olarak 1695 yilinda Leibniz tarafindan ortaya atilmigtir.
Leibniz gibi bir¢ok bilim insani da kesirli mertebeden tiirev ile ilgili calismalar yapmistir.
Bunlardan bazilari; Riemann Liouville, Weyl, Lagrange, Abel, Euler, Fourier ve Laplace
dir [3]. Kesirli mertebeden tiirev icin bir cok tanim yapilmistir fakat bu calismada Riemann
Liouville ve Caputo kesirli mertebeden tiirev tanimlarina yer verilmistir. Ayrica, kesirli
mertebeden tiirevin her taniminda mertebe tam sayr olarak alindiginda aynmi sonug
cikmaktadir. Yapilan bazi calismalarda tanimlar arasinda belli sartlar altinda kolaylikla
gecis yapilmasina ragmen, tanimlarin ifadeleri ve fiziksel yorumlar farkhdir [4,5]. Aslinda
kesirli analizde bircok tiirev taniminin olmasi, ¢oziilen problemin tiiriine gore istenilen
kesirli mertebeden tiirev taniminin kullanilmasi i¢in kolaylik saglar.  Ayrica, kesirli
mertebeden tiirevlerle olusturulan modeller, bazi etkilerin ihmal edildigi klasik tamsay1
mertebeli modellerle karsilastirildiginda kesirli mertebeden tiirevler daha avantajhdir.
Kesirli mertebeden tiirevlerin avantajlari, gercek malzemelerin mekanik ve elektriksel
ozelliklerinin modellenmesinde ve ayrica tanimlamalarda daha ¢ok On plana ¢ikar. Kesirli
mertebeden tiirev Ozellikle son yillarda matematik, miihendislik, fizik ve biyoloji gibi

alanlarda olduk¢a genis kullanim alanina sahiptir [6-9].

Ayrica bu calismada 6onemli bir yere sahip olan impalsif diferansiyel denklemler hakkinda
bilgi verelim. Dogadaki cogu uygulama problemi, fiziksel olaylarin siireksiz 6zelliklerinden
etkilenirler. Calisilan bu uygulama probleminin siireksiz oldugu durumlarin, uygulama
probleminin toplam siiresiyle kiyaslandiginda ihmal edilecek kadar kisa bir siirede

gerceklesir. Bu siirece etki eden kisa siireli dig etki yani siireksizlik durumu, impals olarak



adlandirilan anlik degisikliklere sebep olmaktadir. Iste bu anlik degisiklikler sistemde
siirecin davramiginda ¢ok biiyiik farkliliklar gosterebilmektedir. Adi diferansiyel
denklemlerle yapilan modelleme bu anlik degisimleri gz ardi etmektedir. Bu yiizden bu
siirecleri goz ard1 etmemize gerek olmadan matematiksel olarak modellememizi saglayan
impalsif diferansiyel denklemler diye adlandirilan siireksiz olan sistemler kullanilmaktadir.
Boylelikle onemsiz gibi goriinen anlik degisimlerin sebep oldugu sistemlerde daha dogru
sonuclar elde etmis olunur [10]. Buradan impalsif denklemler ani kuvvetlerin veya
darbelerin etkilerini matematiksel olarak modelleyen ve sistemlerin zamanla degisen
davranmiglarin1 aciklayan ©Onemli bir ara¢ oldugu soylenebilir [11]. Bu tiir impalsif
denklemler fizik, miihendislik, ekonomi, biyoloji gibi bir ¢ok alanda kullanilir [5, 12-17].
Ornegin finansal piyasalarda ani fiyat degisikliklerini veya ekolojik sistemlerde dogal

afetlerin etkilerini modellemek i¢in kullanilir [18].

Kesirli mertebeden

DY u(t) = f(t,u(t), t€J’
Au(ty) = I(u(t)), Au'(tr) = I(u(ty)),
Al () = Te(ut )) k=12,

au(0) + bu' (0 Zc, (&),

(1.1

cu(1)+du'( Z diu( =0
\
impalsif sinir deger problemi Tokmak Fen [19] tarafindan ¢alisilmigtir. Burada CDSL, oc
(2,3) mertebeden Caputo kesirli tiirevidir. Coziimlerin varhigi ve tekligini gostermek icin
Schaefer’in sabit nokta teoremi ve Banach sabit nokta teoremi kullanilmigtir. Bu ¢calismadan

alinan motivasyonla asagidaki kesirli mertebeden impalsif sinir deger problemi c¢oziilecektir:



D¢ u(t) = f(t,u(t), 1 €J
Au(tk) :Ik(u(tk)), k=1,2,....m
Au(j)(tk)—l(j)( ( )) j=1,2,...n—1.

au(0) + bu' (0 Zc, (&),

(1.2)

cu(1) +du'( Zdu (0)=0,1=2,3....n—1.

\

Burada CDS‘, o € (n-1,n) mertebeden Caputo kesirli tiirevidir. a, b, ¢ ve d reel sabitlerdir.
Fi01]xR—R, L :R—Rvej=12,...n—1iken I’ : R — R fonksiyonlar:
siireklidir. 0 < &1 < & <... <&, o<l heri=1,...,p—2icinc¢;, die R, k=1,2,...,m
iken 0 =7 <ft; < ... <t < ... <ty <ty =1, J=[0,1], J =JI\{r1,02,.--,Im},
Au(ty) = u(tl) —u(ty) ve u(rl) = tlin}Lu(t). j=12,...,n—1 iken Aul) (1), Au(ty)

—1
tanimina benzer sekilde tanimlanabilir.

Bu calismanin ikinci boliimiinde temel tanimlar, teoremler ve drnekler verilmistir. Uciincii
bolimde ise ¢oziimlerin varligi ve tekligi Banach sabit nokta teoremiyle, en az bir
cOziimiiniin varlig1 ise Schaefer’in sabit nokta teoremi kullanilararak ispatlanmistir. Daha
sonra, elde edilen teorik sonuclar1 desteklemek icin Ornekler verilmistir. Son olarak

dordiincii boliim ise sonug ve Oneriler kismina ayrilmistir.






2. TANIMLAR VE TEOREMLER

Bu boliimde, ilerleyen boliimlerde ihtiya¢ duyulan tanimlar ve teoremler verilecektir.

2.1. Tanim ve Teoremler
2.1.1. Tanim

Gamma fonksiyonu 0 < x < oo degerleri icin Euler integrali denilen ;

['(x)= /oosx_le_sds
0

genellestirilmis integrali ile tanimlanir [20].

Gamma fonksiyonunun temel 6zelliklerinden biri,

S§=0c0

+x/ e S5 lds = xI'(x)
0 0

S§=

[(x+1)= /0 e Tsds = (—e0s%)

esitliginden,

I'(x+1) =al(x),(x € R) (2.1)

elde edilir. Ayrica (2.1) esitligini ve I'(1) = 1 oldugunu kullanilarak,

I'n+1)=nI(n)=n(n—1)!=n!

olarak elde edilir [4]. Gamma fonksiyonunun baz1 6zel degerleri ise,



seklindedir.
2.1.2. Tamim

Bir g : [0,00) — R bir fonksiyon ve 7 > 0, a > 0 olmak iizere,

18‘+g(1) =

1 .
o /0 (t — )% g(s)ds

integraline . mertebeden Riemann Liouville kesirli integrali denir. Burada I', Gamma

fonksiyonudur [20].
Ornek

1
f(t) =t fonksiyonunun h mertebeden integralini bulunuz.

o 1. .
= — ic¢in;
29

110 = - <11) /ot (1 _Ss)éds

burada t — s = u doniisimii yapilarak gerekli islemler yapildiginda t> olarak

=0

1
bulunur. I' (5) = /7 oldugundan sonug £ olur.

4
NG
2.1.3. Tanim

Bir g : [0,00) — R fonksiyonu olmak iizere a. mertebeden Riemann Liouville kesirli tiirevi

Ldm o g(s)
L
D&g([):l“(n—a)ﬁ/o (t—s)““—"ds’ >0



seklinde tanimlanir. Burada n=[¢]+1 olmak {izere [¢¢], @ nin tam say1 kismidir [20].
Ornek

1
f(t) =t fonksiyonunun 5 mertebeden Riemann Liouville kesirli tiirevini bulunuz.

azivenzligin;

Lt 1 d [T s
D+ —_ < —1d
orf () F( l)dt/o (t—s)2 s

1——
2

2
buradan gerekli islemler yapildiginda sonu¢ ——+/f olarak bulunur.

NG

2.1.4. Tanim

stirekli g : [0,00) — R fonksiyonu n kez tiirevlenebilir bir fonksiyon ve @ > 0, t > 0 olmak

iizere Caputo kesirli tiirevi,

“Df:g(r) = "D

g@_i_lg"@]

|
=0 L

seklinde tanimlanir. Burada n=[a]+1 olmak {izere [¢¢], @ nin tam say1 kismudir [20].

Tanmim 2.1.4 den f(¢) = t” seklindeki fonksiyonlarin genel formu,

prf(r) =4 Tlp—a+1) (2.2)

07 PSH—LPER

seklinde yazilabilir [21].



Ornek

1
f(t) =t fonksiyonunun X mertebeden Caputo kesirli tiirevini bulunuz.

Denklemde verilen o = % ve n = 1 olmak iizere;

1——

oo SR
CDOJ(I)_r( ;)/O(ts)id

2
buradan gerekli islemler yapildiginda sonug ﬁ\ﬂ olarak bulunur. Diger taraftan verilen

degerler (2.2) denkleminde yerine yazilirsa ayn1 sonug ¢ikacaktir.
Ornek

4
f(t) = t? fonksiyonunun 3 mertebeden Caputo kesirli tiirevini bulunuz.

Denklemde verilen o = g ve n = 2 olmak iizere;

Coat B 1 B2
D0+f(t)r(2i)/0 (t—s)%ds
3

buradan gerekli islemler yapildiginda sonug /2 olarak bulunur. Diger taraftan verilen

degerler (2.2) denkleminde yerine yazilirsa ayni sonug ¢ikacaktir.
2.1.5. Tanim

Impalsif diferansiyel denklemlerin taniminmi vermek icin oOncelikle adi diferansiyel
denklemlere deginilmelidir. Adi diferansiyel denklemlerle modellenen sistemleri ¢ € R,

x € R", neNvebir f: RxR" — R” siirekli fonksiyonu icin genellikle,

X = f(t,x) (2.3)

seklinde ifade edilmektedir. Ancak, pratikte x durum degiskeninde anlik degisimlerin

oldugu uygulamalar mevcuttur. Anlik degisim kavramindan bahsedildigi i¢in impalsif



kavramindan bahsedebiliriz. Boyle uygulamalar i¢in de impalsif diferansiyel
denklemlerden yararlanilmaktadir.

Temel olarak impalsif diferansiyel denklemler, sabit zamanli impalsif diferansiyel
denklemler ve de8isken zamanli impalsif diferansiyel denklemler olmak iizere iki grupta
stniflandirilir.  Bu ¢alismada sabit zamanli impalsif diferansiyel denklemlerden

bahsedilecektir. Sabit zamanl impalsif diferansiyel denklemler,

X/:f(l,X), 1 # 6, 24)
Ax|i—g; = Ii(x)

seklinde tanimlanabilir [10]. Burada, x € R", ¢t € R, f ve [; ise n-boyutlu, siirekli
fonksiyonlardir. 6;, ardisik tam sayilardan olusan bir J kiimesi tarafindan olusturulan reel
degerli ve artan belirli bir zaman dizisi olmak iizere t = 6;, i € J, impalslarin gerceklestigi
zamanlar1 gostermektedir. 6; dizisinin, bos kiimeden farkli sonsuz bir kiime veya |i| — oo

iken |0;| — oo olacak bi¢cimde sonsuz bir kiime oldugu kabul edilmektedir.
AXl,:(.),. :x(9i+) —x(9,-) 2.5)

olup burada Ax impals miktarini, x(6;") ¢6ziimiin impalsdan sonraki degeri, x(6;) ¢dziimiin
impalsdan 6nceki degerini gostermektedir. Diger taraftan x(6,+) = lign x(t) ve x(6;) =
t—0;+

x(6;—) = lign x(t) olarak tammlanmaktadir. Bu nedenle, ¢6ziimlerin impals noktalarinda
t .

1

soldan siirekli oldugu varsayilmaktadir [10].

Sonug olarak, (2.4) sisteminin ¢oziimleri parcal siirekli bir fonksiyondur ve ¢ = 6; impals
anlarinda birinci tiir siireksizliklere sahiptir.  (2.4) ile verilen impalsif diferansiyel
denklemin ne anlama geldiginin basit¢e acgiklanmast i¢in J = 1,2,...,p, p € N,
fh < 6 < 6, < ... < 0, ve baslangi¢ degerinin x(fy) = xo oldugunu kabul edelim. (2.4)
sisteminin bir ¢6ziimii (faz noktasi) t # 6;, i = 1,2,...,p i¢in (2.3) adi diferansiyel
denkleminin bir yoriingesi boyunca hareket eder. Ancak ¢t = 6; oldugunda bu ¢6ziim (2.5)
denkleminin degeri kadar degisime ugrar. ¢(¢,0,v), (2.3) adi diferansiyel denkleminin
¢(0) = v baslangi¢ kosulunu saglayan c¢oziimiinii gostersin. Buna gore (2.4) impalsif

diferansiyel denkleminin [fp, 0] aralifinda ¢6ziimii, (2.3) diferansiyel denklemi ¢oziilerek
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bulunur. O halde, [fy,0;] araliginda (2.4) sisteminin ¢oziimii x(¢) = ¢ (¢,19,xp) olur. Bu

¢cOziim t = 6, degerine geldiginde, bu ¢oziimde;
Ax|—g, = x(01+) —x(01) = L;(x(6;))

degeri kadar bir degisime ugrar. Buradan,
x(6;") = Ii(x(6;)) +x(61)

oldugu goriiliir.

Genel olarak x(60;+) # x(6;) oldugundan yoriingenin yeri ¢ = 0; impals aninda degisir.
Impalsdan sonra sistemin yoriingesi hareketine (0,x(6;+)) noktasindan baglayarak, (2.3)
adi diferansiyel denkleminin ¢oziimii boyunca bir sonraki siireksizlik zamani olan t = 6,
anina kadar devam eder. Boylelikle, (6,6, araliginda (2.4) impalsif denklem sisteminin

¢oziimii x(z) = @ (, 01,x(6;+)) seklinde bulunur [10].

Ornek

W =0,1#i, (2.6)

Au|t:i =1
. . 1 y . :
u e R, i€ Z olmak lizere u (§> = 1 baslangi¢ kosulunu saglamasi icin gerekli olan (2.6)
impalsif diferansiyel denkleminin ¢6ziimiinii bulunuz.

u' = 0 adi diferansiyel denkleminin (p,v) noktasindan baglayan ¢oziimii,

o(t,p,v) =v

olmaktadir.

t # i olmak iizere ' = 0 oldugu gbz 6niinde bulundurulursa, ¢t € [3,1] aralifinda (2.6)
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sisteminin ¢oziimii,
1
u(t) = o(t, > 1)=1

bulunur. O halde u(1) =1 olur. 7 = 1 siireksizlik degerinde bu ¢6ziimde impals olacaktir.

1mpals miktari,
Auli—y =u(l+) —u(l) =1

seklinde oldugu goriilebilir. Buradan da u(1+) = u(1) + 1 = 2 oldugu sdylenebilir. Bu

durumda impalsdan sonra, 1 <t < 2 i¢in ¢oziimii

ut) =9t 1Lu(l+)) =2

olur. Boylece u(2) = 2 esitligine ulagilir. Benzer sekilde devam edilirse, u(2+) = 3 ve bunu

genelleyerek, n € N, n > 1 igin,
u(n)=n

ve

ulnt)=n+1

esitligi elde edilir. Her u € R i¢in Au,—; = 1 > 0 oldugundan tiim ¢dziimlerin artan oldugu
1 1
aciktir. Ayrica, M(E) = 1 i¢in ¢6zlimiin sola devam etmesi icin 0 < t < 3 olmak {iizere

u(t) = 1 ve siireksizlik degeri olan ¢+ = 0 aninda soldan siirekli oldugundan
u(04+) =1

sonucuna ulasilir. # = 0 aninda impalsdan sonraki deger bilindigine gore, impalsdan 6nceki
u(0) degeri de u(0+) —u(0) = 1 esitligi kullanilarak hesaplandiginda u(0) = 0 elde edilir.
Boylelikle, —1 < < 0 i¢in u(r) = 0 oldugu goriiliir. u(—1+) = 0 esitliginden u(—1) = —1

elde edilir. Islemler bu sekilde yapildiginda, ¢c6ziim sola dogru devam ettirebilir.
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1
Sonug olarak, (2.6) impalsif diferansiyel denkleminin u (5) = 1 baslangic degerini saglayan

¢Ozumii
u(t)=1[t|=min{n€Z:n>1t}
seklinde tanimlanan en kiiciik tam say1 fonksiyonudur [10].

2.1.6. Tanim

PC(J,R) = {u:u,JdenRyebirgbnderiméylekik:1,...,molmakijzeret7étk

iken u(r) stirekli, u(z;"), u(r; ) meveut ve u(t, ) = u(tk)}

seklinde tanimlanir. Benzer olarak ;

PC" NI R) = {PC(J,R) t 44, k=1,...,miken u" "V (r) meveut ve siirekli

WD) = u" (1) |

seklinde tanimlanir.
2.1.7. Lemma
f:JxR— Rsiirekliven—1 < a < nolsun. u € &/%¢"(J,R) nun

“D&.u(t) = f(t,u(t), t€J
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denklemini saglamasi icin gerek ve yeter sart u € PC"~'(J,R) ve ¢ € J igin

¥ Auli(z )y [ ds @7
u(t) = i:ZO +Z MZN— u () (¢ — 1) +/0 ey U @

olmasidir [22].
2.1.8. Teorem (Banach Sabit Nokta Teoremi)

X bir tam metrik uzay ve T : X — X bir daralma doniisiimii olsun. Bu durumda T

doniisiimiiniin X uzayinda tek bir sabit noktas1 vardir [23].
2.1.9. Teorem (Schaefer’in Sabit Nokta Teoremi)

2 bir Banach uzayi, ve T : 4 — 98 tamamen siirekli bir operator olsun. Eger,

D(A) = {uE%’:l € [0,1] ikenuz?LTu}

kiimesi sinirliysa 7' nin en az bir sabit noktas1 vardir [24].
2.1.10. Lemma (PC-type Ascoli-Arzela teoremi)

Q C PC(J,R) olsun. Eger,
(i) Q diizgiin sinirhdir.
(1) Q k=0,1,...,miken J; da es siireklidir.

kosullart saglaniyorsa o zaman Q, PC(J,R) nin bagil kompakt alt kiimesidir [25].
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3. YUKSEK MERTEBEDEN KESIRLI IMPALSIF SINIR DEGER
PROBLEMININ COZUMLERININ VARLIGI VE TEKLIGI

Tezin bu boliiminde,

(

Dg,u(t) = f(t,u(z), 1 €1
Au(tk) =Ik(u(tk)), k=1,2,....m
Au<'>(rk)—1<f>( (1 )) j=1,2,...n—1.

0)+bu' (0 Z ciu(&),

3.D

1) +du( Zdug, =0,1=2,3,...,n—1.

formundaki impalsif sinir deger problemini ele alacagiz. Burada CDS‘, o€ (n—1,n)
mertebeden Caputo kesirli tirevdir. a,b,c ve d reel sabitlerdir. f:[0,1] x R — R
fonksiyonuve j=1,2,...n—1,k=1,2,...,miken I,Ej) : R — R fonksiyonlar siireklidir.
0 <& <& <o <épn <1, her i =1,...,p—2 icin ¢, d € R,
0=t <t < ... <lp < ... <ty <ty =1, J=][0,1], J = JI\{r1,02,.--,tm},
Au(ty) = u(t]) —u(t,) ve u(t)) = tlim+u(t). j=12,....n—1 iken Aul)(r), Au(ty)

—1
tanimina benzer sekilde tanimlanabilir.

Bu boliimde (3.1) yiiksek mertebeden kesirli impalsif diferansiyel denkleminin ¢éziimlerinin
varlig1 arastiriacaktir. Banach sabit nokta teoremi kullanilarak ¢oziimlerin varligi ve tekligi,
Schaefer’in sabit nokta teoremi kullanilarak ise en az bir ¢oziimiiniin varlig1 ispatlanacaktir.

Daha sonra, elde edilen teorik sonuglar1 desteklemek i¢in ornekler verilecektir.

3.1. Problemin Coziimii

Bu béliimde (3.1) probleminin ¢dziimii icin esdeger bir integral denklem bulunacaktir. Bu
integral denklem yardimiyla bir 7' operatorii tanimlanarak, bu operatoriin tamamen siirekli

oldugu ispatlanacaktir.

p—2 p=2 p=2 p—2
A: = ac+ad—bc— Zdiéi (a— Zc,) + Zdi (b— ZQ‘&)
i=1

i=1 i=1
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p—2
+c Z ciEi#£0
i=1

oldugunu kabul edelim.
3.1.1. Lemma

Yiiksek mertebeden kesirli impalsif sinir deger probleminin (3.1) bir ¢6ziimii olan u(t)

fonksiyonu agsagidaki integral denkleme denktir:

( f(t—s)"‘*1 =

(@) ~—————f(s,u(s))ds + T ; ci%uéi
(c—l—d pZ’zd & — (c—lizdi)> t]
| , i=1 i=1
<Z dl-@uél )
i=1
< p_26i> t) , t€Jo, (3.2)
i=1

p—2

7
u(t) = ( b+2d%€,
@u( Zcz uéi
+I <,:Zl di-@uéi_%

| r€dk=1.2,...m

Burada Z,(t) ve %, asagida tanimlandig1 gibidir.

t(p— )01 . —+\J
i) = [Tt ds+2< y 1”<u<rk>><’]+f">> (33)

0 \0<n <t

veE

B Lic(l—s5)%"1  d(1—s)%2
Hy = /O( fa) " Ta-1) )f( ds+c< Y, L(u > (3.4)

o<t <1
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n—1 (1l — j i Jj—
+ Y (Zléj)(u(tk))( (1—t)’ 4 —t) 1))

0<y<1 \ j=1 J! (]_1)!

Ispat

u(t) nin (3.1) denkleminin bir ¢6ziimii olsun. Bu durumda Lemma 2.7 yardimiyla:

_ > 1y () (r =)
u(t) = er+ex+est"+...4e,_1t —1—2 Z L7 (u(ty)) (3.5)

j=1 \o<z<t (—=1!

Lt —s)%1
+/0 Wf(s,u(s))ds

seklinde oldugu elde edilir.

u(t) = ez+2e3t—|—...—|—(n—1)enlt”_2+ni:1< Z I]Ej)(u(tk))w) (3.6)

j=1 \0<t <t (—1!

t —5 o—2
+/O —(It‘(a)—l) f(s,u(s))ds

1" n—3 = () (t_tk)j_l
W'(t) = 2e3+...+(n—1)n-2e,t" >+ Y | Y I (u(tk))j—l (3.7)

j=1 \0<n <t ( B )!

t —5 a—3
g gy (st

(3.7) numarali denkleme «”(0) = 0 kosulunu uygulayarak e3 = 0 elde ederiz. Buna benzer

olarak u)(0) =0, (I =2,3,...,n— 1), kosulunu kullanarak e; = es = eg = ... = €, =0
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elde edilir. Bu sonucu goz oniine alarak u(r) ve u'(r) fonksiyonu tekrardan yazilirsa,

B 1 t—tk)j*1 Lt —s)%!

u(t) = e +e2r+j§ (o«qul —(]_ D1 > +/0 T f(s,u(s))ds (3.8)
N ~ () (t—1)"! (-5
u'(r) = ez+]; <0<§:‘<tlkj (u(ty)) G- —l—/o ﬁf(s Ju(s))ds (3.9
seklinde bulunur. Simdi au(0) + bu'(0 Z ciu(&) ve cu(1) + du'( Z diu(
kosullar1 kullanilarak,
u(0) =e
u'(0) = e
(l—tk) L(1—s)%!
u(l)=e; +ez+jzb <0<§<1I T) +/O Wf(s,u(s))ds
(1 ty.) O
= €2+ Z <0<§<11 W) +/0 ﬁf(s u(s))ds

olarak bulunur Slmr kosullar1 kullanilarak;

p—2 p—
(a— . ) e+ ( Z c,§,> e) = Z ;9 (3.10)

ve

p—2 p—2 p—2
(C— Zd,‘) e+ (C—l—d— Zdi§i> e = Zdi.@u(éi)—% (3.11)
i=1 i=1

i=1
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denklemleri elde edilir. e; ve e; i¢in (3.10) ve (3.11) dogrusal denklemleri ¢oziildiigiinde ;

<c+d Zd&,) Zc, (—b+l;;2c,~§,~) (Zd@ (&) — )] (3.12)

| —

ve

1 p—2 p—2 p=2 \ p=2
ey = I [(a— C;‘) (Z di@u(éi)_f%/u> - <C— Zdi> Zci@u(éi)] (3.13)
i=1 i=1 i=1 =

elde edilir. Bulunan e; ve e, degerleri (3.8) denkleminde yerine yazilarak (3.2) denklemi

elde edilir. O

Simdi bir T operatorii tanimlanirsa: T : PC(J,R) — PC(J,R) olmak iizere,

— p=2 p—2
Z ‘Sl <C+d— Z diéi) — <C— Z di) t] (3.14)
i=l = i=1

g (el £

Burada 2,(t) ve %, sirasiyla (3.3) ve (3.4) de tanimlandig1 gibidir. T operatdriiniin sabit

Tu(t) =

noktalar1 (3.1) probleminin ¢oziimleri oldugu agiktir.
Islemlerde kolaylik saglamak icin asagidaki kisaltmalari verelim:

e[0,1] 41

N
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p—2 p—2
(—b+ Z Ciéi) —+ (a— Z C,')l‘
i=1 i=1
V2= Sup
t€0,1] [A]

p—2
a— Z Ci
i=1

2]

p—2
C— Z d,‘
i=1

Al = ——M,
Al

Ay =
seklinde tanimlanir.
3.1.2. Lemma

T :PC(J,R) — PC(J,R) operatorii tamamen siireklidir.

Ispat

f, I,Ej ) ,j=0,1,2,...,n— 1 fonksiyonlarinin siirekli oldugundan 7" operatorii de siireklidir.
Q, PC(J,R)’nin siirekli bir alt kiimesi olsun. Her u € Q igin |f(f,u)| <My, j=0,1,...,n—1

iken |I,§j )(u)| < M5, olacak sekilde M pozitif sabitleri vardir. Béylece u € € igin;

& ,_Sotfl n—1 ) = i
2] < | %w,uw)dwzo( ) |1,£”<u<rk>>|@j—,’k)’> (315

Jj= 0<l‘k<€i

;_J:.a n—1 éj
< +Ml—f—l’l’l M‘+2+
S T(a+1) =]

c _Sa—l _sa—z
4 < [ (YR )|f<s,u<s>>dsr+c< 3 |1k<u<rk>>|) 3.16)

o<t<1

)

c(1—5)  d(1—g)/"!
J! (j—1!

0<i<1 \j=1

n—1 .
+ Y (Z 1 (u(tr))|
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<] |d| (= <] |d|
s (r(a+ N r(a)) Mi el - m (;M’“ <ﬁ +W>)

J

Dolayistyla,

0<f<t

n W(Z'C’”@ &) )‘(c-l—d—i_zidi&,-)—(c—lgzdi)t

1 p—2 p—2 p—2
+ l (Z \di||2u(&i)| — |=%/u|> —b+ ; cii+ (a— ; c,-)t

i=1
M, nflM. )
INo+1) " (J;) ﬁ )
p—2 éa n—1 gij
Mo+ *’"(Z “ﬁ)]

+ ) (nlal+nldl) | &
c] d|

i=1
o (r<a+1>+r<a>>Ml

+ nmlc|My+pm rlZ’]Mj+2(|C|+ |d| >
it G=1)!

J

t —s o—1 o j
IT,(t)] < /0%| ds|+2< Y I ))|(t j!t")J> (3.17)

N

esitsizlikleri saglandigi i¢in 7" operatorii diizgiin sinirhidir. Diger taraftan herhangi bir ¢ € ji

icin 0 < k < m dir. Ayrica,

t -2 B .
o) < [l ) ds|+2< Y r>>|%> (318
pP—

O<n <t
2
lcil | Zu(&i)]
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oldugu goriiliir. Bu nedenle,

' M, " Mjys r?
1, < + 8 + Atlci| +Az|d; 3.19
O < f m<go L ) Y (ial+ sl 3.19

é.oc n—1 gj
_ 5y M2l
+ T(a+1) 1t+m j;) 275

J:

c| |d|
+ A M, (F(a+ ) + F(a))

© c| d|
+ Azm‘C|M2—|—A2m ZMﬂ_Z T—i— - Y
j=1 J: (J_1>'

son esitsizlik 7(Q) nin Ji, (k=0,1,...,m) iizerinde eg zamanl siireklilik durumunu belirtir.
PC tipi Arzela-Ascoli teoremine gore T(Q), PC(J,R) i¢cinde kompakttir. Sonug olarak 7T :
PC(J,R) — PC(J,R) operatorii tamamen siireklidir. [

3.2. Coziimlerin Varhg ve Tekligi

Bu boliimde, T operatorii ve Banach sabit nokta teoremi yardimiyla yiiksek mertebeden
kesirli sinir deger probleminin ¢oziimiiniin varligi ve tekligi gosterilecektir. Daha sonra
Schaefer’in sabit nokta teoremi kullanilarak problemin en az bir ¢oziimiiniin oldugu

gosterilecektir.

IIk olarak, coziimlerin varhig1 ve tekligini gostermek icin asagidaki kosullara ihtiyag

duyulmaktadir.

(C1) Hert €Jveu,veRigin |f(t,u)— f(t,v)| < NJu—v| olacak sekilde bir N sayisi vardir.

(C2) Ny, Na, N3,...,N, pozitif reel sayilar1 vardir oyle ki tim u, ve R, k=1,2,....m
ve j=1,2,...,n—1igin [f(u) ~ (v)| < Nylu—v], 19 () ~ 19 ()| < NjaJu—v]

esitsizlikleri saglanir.

3.2.1. Teorem



(C1) ve (C2) kosullar1 saglansin ve

- -1
L (Ltplel + B (el + nldiDE? | nld
n+1 [o+1) o) ’

(-1 (72 .
N;j < Z(YlICi|+Yzldi|)§ "l pld+G-Dld) ] L i=1,2,...
m(n+1) Pae]

olsun. O zaman (3.1) denkleminin tek bir ¢dziimii vardir.

Ispat

u,v € PC(J,R) olsun. Her ¢ € J igin

L) =T,(0)] < [Zu(t) = 2,(1)]
1

+ _<Z|Cl||@ (&) — v(ét)|)

p—2

A
<C+d— id’&) —(C— Zdi)l‘

i=1

1
oo (Z 41| 2(8 %(é)l—%—%l)
— p—2
—b+ Z C,'&,'—i— (a— Z C,') t
i=1 i=1
o | (Lrpld X el +laDES | pldl
- INa+1) I'a)
p—2
+ (nleil +»ld; |)+1+?’2|C|> mN|
i=1
p—2
+ (vileil + r2ldi |)§l+1+Yz(IC|+Id|)> mN,
i=1
p—2
+ Z (nleil +rldil) 52+1+Y2(|C|+2|d|)) 7N
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=2
(Z (71lcil + p|di] ) E? +1+}’2(|c[+3|d|)) N4

m

p—2
(Z (Nleil +nldi) & 1+1+Yz(|0\+(n—1)!d\)> WNn]Hu—VH

elde edilir.

_|_

Lt plel + X7 (el + nldiDES | pldl)
INa+1) I'a)

8}

+ Z (1ileil + yaldil) +1+Y2|C|> mN|

B

N
,_.

p—2

+ (nileil + yaldi |)§z+1+7’2(\c\+!d|)> mN,
i=1
p—2

+ (71lcil + 1|di)) EF + 14+ p(|c| —|—2|d|)> —N3
i=1
p—2

+ (7ilci| + pldi)E? +1+}’2(|c|+3|d|)> 2V
i=1

-2
+ <pZ (71lei| + | EF T +1+n(|c|+ (n— 1)|d\)) #N" <1
i=1 !

esitsizligi saglandigindan 7 bir daralma doniistimiidiir. Teorem 2.1.8 Banach sabit nokta
teoreminden 7 nin PC(J,R) i¢inde tek bir sabit noktasi vardir ve bu nokta (3.1) problemi

i¢in bir ¢ozliimdiir. [

Simdi, (3.1) probleminin en az bir ¢dziimiiniin varligin1 Schaefer’in sabit nokta teoremini

kullanarak gosterelim. Bunun i¢in asagidaki kosullara ihtiya¢ vardir:

(C3) Negatif olmayan p ve o sabitleri vardir oyle ki, |f(f,u)| < p+olu|, t € J,u e R

esitsizligi saglanir.
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(C4) uecRicink=12,..., n—1 iken [I(u)| < pi + oplul, |17 (u)| <
p,Ej )4 Gk(j )\u| esitsizlikleri saglanacak sekilde negatif olmayan py, oy, plgj ), G,Ej ) reel

sabitleri vardir .

mve j=1,2,...,

kosullar1 verilsin.

Islemlerde kolaylik saglamak icin K* asagidaki sekilde tamimlansin:

Ltple] | pld K &
( (el + Bl 2 )

K*

MNo+1) F(oc) =

+ i(l—f— (e l M |d| ()

pleboet Y Y 5+l 5+ ) )% (3.20)

k=1 j=lk=1 \J* J: (J_ )
p—2

T <n|c,|+n|d|< ary ¥ & )
i=1 0<n<é; J= 10<tk<§,

(3.20) ile tanimlanan K* ifadesi asagidaki teoremde kullanilacaktir.

3.2.2. Teorem

(C3) ve (C4) kosullart saglansin. Eger K* < 1 ise (3.1) probleminin en az bir ¢6ziimii vardir

Ispat
T operatOriiniin tamamen siirekli oldugunu 3.1.2 Lemma ile elde ettik. Simdi, 0 < u <1

iken
u=ut, (3.21)



26

denklemini ele alalim. Eger u, (3.21) denkleminin bir ¢6ziimii ise o zaman ¢ € J i¢in,

& (£ _ g)a-]
26 < [ E g e et T (out adutu))

+ g( Y oo ut >r>(5";—,w>

0<n <&
§p o\, &0
< ph )+O<§<&pk+z(o<§<@ P )+ s
J
Py akuuu+z< y ol )H H
0<te<&; 0<f <& J!
L el(1 =)t Jaf(1 =)o
) < (A MO )|f<s,u<s>>|ds

(l—tk)j a’(l—tk)j_1
R VY

)

+ c|2|1k u(ty) |+Z<Z|1

=1 =1 =t \J!
m n—1 m H |d|
+ B ol L <;<(],+(1_1>) )H H

esitsizlikleri saglanir. Buradan,

)| = i) < [ (o olu)ds+ Y (put oilute))

O<n <t

n—1 . . _ i -2
" ( y <p,§”+c,§“|u(rk>|>(’j—f")’> Y lallZu(E)
: i=1



p—2

+ » Y 1dil|Zu(&)] + pl)
=

elde edilir. Dolayisiyla,

ol < (LEE L 2L y|cl\+n|d|>(5—a
pP-2

+ Y (nleil +nldi) ( ) Pk+z ) , )
0<n <& Jj= 10<Q<§,]

i=1

+ fmmc\pmngz( w(" ) )l

—

l:

k=1 & )
L+ pc| ?’2|d| - 5“ )
i di|) =———
& - (] ICI |d| ()
v Faenidot T Y (14n J_l), o
k=1 j=1k=1 :
p—2 ]

+ y1|cl|+w|d|< GHZZ )uH

esitsizligi elde edilir. Bu esitsizlikten

1+plc d o
K — ( »lel 'ﬁl | z: %]q\+ﬁéh1|-—£i———>P

F(a+1 Io+1)
P2 ~1 5/
+ Y (nlal+pla)| XL p +Z )
i=1 0<t<&; J=10<n.<&;
da — c d ;
boY 1+mc\pk>+zz( n(k ,'+(.'_—'1,>)p,£”
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olmak iizere ¢t € J icin |u(t)| < K+ K*||u| elde edilir K* < 1 oldugunundan ve son

esitsizlikten ||u|| < 1

K
Z oldugu goriiliir. Bu nedenle (3.21) in herhangi bir ¢6ziimii ¢ niin
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degerinden bagimsiz olarak sinirhidir.  Sonug¢ olarak 2.1.9 Teoreminin tiim kosullari

saglandigindan (3.1) sinir deger probleminin en az bir ¢oziimii vardir. [

3.3. Ornekler
Ornek

9
Asagidaki > mertebeden Caputo kesirli impalsif sinir deger problemini ele alalim:

3

CDéu(r) = cost+ % arctan(u(t)), t € [0,1]\ 411
1 11\ (1)1 1
Au <4_1) = 30" (Z) , Au (Z) = msmu (Z)
n(] _ L l _dp i 1
Lar (1) (1) (D 2 (1) -
u(0) — %u’(O) = 6u <%) —3u < )
1

L
2u(1) + (1) = —6u G) _ou Ei) W(0) =0, #"(0) = 0, u®(0) =0.

1 1
(3.22) denklemininox = -, t; =—-,p=4,a=1,b= —5 c=2,d=1,c;=6,co=-3,d; =

9

1 2 1 4 3 1

‘ gl, &= X f(t,u) = c;)s3t—|— 0 arctan(u(t)), Ii(u) = 30" I,El)(u) =
msmu I( )(u) = 5gcosu ve I,£3)(u) = 5" ile denklem (3.1) formunda oldugu agiktir.

6 1
Denklem (3.22) icin A =7, 91 = = S ven=; degerleri elde edilir. N =0.15, N = 0.025,

—6,dy=-2,§ =

N, =0.01, N3 =0.05 ve Ny = 0.02 degerleri i¢in (C1) ve (C2) kosullar1 saglanir. Ayrica,
3.2.1 Teoreminin tiim kogullar1 saglandigindan (3.22) impalsif kesirli sinir deger probleminin

tek bir ¢oziimii vardir.
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Ornek

8
Asagidaki 3 mertebeden kesirli impalsif sinir deger problemini ele alalim:

( CD§+u(t) = %sin(\/_) +21—0 tanh(u(r)), 1 € [0,1]\ {t1,12}
(-D)k 3 . 1
Au (lk) = 1 + %u(tk) Au (tk) = gcos(u (tk)),
1 .
A" (1) = %5 sin(u (1)), (3.23)

2u(0) — 34/ (0) = —6u (g) +du (‘-‘) ,
—u(1)+26(1) = Tu @5) —8u <‘§‘5) W(0) = 0.

1 3
Burada t; = T vet) = 3 dir.

8
(3.23) denkleminin @ = 3 p=4a=2,b=-3,c=—-1,d=2,c1=—-6,cp=4,d| =
3

7, dy = -8, &1——52—2 i, )—%sin(\/_)—l—z—lotanh(()),Ik(u) (1)+mu

1 1
i (u) = —cosu ve I,Ez) (u) = 75 sinu ile denklemin (3.1) formunda oldugu agiktir. Denklem

82 23 19
(3.23) igin A = 5 N = 0 ve p = 2 degerleri elde edilir. 3.2.2 Teoreminin (C3) ve
m_ ,m_L _m

. 1 1 3
(C4) kosullarindaki p = -, 0 = 20’ prL=p2= T 01 =0) = 200° Py =p, =2,0, "=

5
62(1) =0, pl(z) = péz) =35 61(2) = (72(2) = 0 degerleri olup, K* = 0.2306 olarak hesaplanir.

Boylelikle K* < 1 kosulu da saglanmis olur. Sonug olarak, (3.23) probleminin en az bir

—_—

— 9

¢Oziimii vardir.
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4. SONUC VE ONERILER

Bu tezde, n — 1 < o < n olmak iizere . mertebeden Caputo kesirli tiirev iceren p-nokta
impalsif sinir deger problemi iizerinde durulmustur. Coziimlerin varlig1 ve tekligi Banach
sabit nokta teoremiyle, en az bir ¢oziimiin varlig1 ise Schaefer’in sabit nokta teoremiyle
ispatlanmistir. ~ Daha sonra, elde edilen teorik sonuglari desteklemek icin Ornekler
verilmistir. Bu calisma kesirli diferansiyel denklemler ve impalsif diferansiyel denklemler
calisan aragtirmacilar igin kaynak olabilir. Ileride bu calismadan yararlanilarak Riemann
Liouville kesirli mertebeden ya da hem Riemann Liouville hem de Caputo kesirli tiirev
iceren impalsif sinir deger problemi i¢in c¢oziimlerin varligi ve tekliginin arastirilmasi

planlanmaktadir.
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