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• Tez içinde sunduğum verileri, bilgileri ve dokümanları akademik ve etik kurallar

çerçevesinde elde ettiğimi,

• Tüm bilgi, belge, değerlendirme ve sonuçları bilimsel etik ve ahlak kurallarına uygun

olarak sunduğumu,
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problemi için gerekli bazı temel tanımlar ve teoremler verilmiştir. Üçüncü bölümde
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Lisans Burs Programı kapsamında beni destekleyen TÜBİTAK’a eğitim hayatım ve tüm
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SİMGELER VE KISALTMALAR

Bu çalışmada kullanılan simgeler ve kısaltmalar, açıklamaları ile birlikte aşağıda

sunulmuştur.

Simgeler Açıklamalar

N Doğal sayılar kümesi

R Reel sayılar kümesi

Rn n-boyutlu öklid uzayı, n ∈ N
u(i) u’nun i. mertebeden türevi

||u|| Öklid normu

Γ(x) Gamma fonksiyonu

Iα
α . mertebeden Riemann Liouville kesirli integrali

LDα
α . mertebeden Riemann Liouville kesirli türevi

CDα
α . mertebeden Caputo kesirli türevi
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1. GİRİŞ

300 yıldır üzerinde durulan bir konu olan türev birçok bilim insanının dikkatini çekmiştir.

Newton, L’Hospital ve Leibniz gibi bilim insanları türevin mertebesini başlangıçta hep tam

sayı olarak düşünmüşlerdir. Daha sonra bu konu birçok bilim insanının da dikkatini

çekmiştir ve türevin mertebesinin tam sayıdan farklı olabileceği üzerinde durmuşlardır [1].

Bu sebeple ”Türevin mertebesini neden sadece tam sayı olarak düşünülüyor? Daha geniş

sayı kümesine genişletilebilir mi?” sorusuna değinilmiştir. Hatta bu soruyu ilk defa 30

Eylül 1695 yılında Leibniz, L’Hospital’a yazdığı mektupta sormuştur [2]. Böylelikle kesirli

mertebeden türev kavramı ilk olarak 1695 yılında Leibniz tarafından ortaya atılmıştır.

Leibniz gibi birçok bilim insanı da kesirli mertebeden türev ile ilgili çalışmalar yapmıştır.

Bunlardan bazıları; Riemann Liouville, Weyl, Lagrange, Abel, Euler, Fourier ve Laplace

dır [3]. Kesirli mertebeden türev için bir çok tanım yapılmıştır fakat bu çalışmada Riemann

Liouville ve Caputo kesirli mertebeden türev tanımlarına yer verilmiştir. Ayrıca, kesirli

mertebeden türevin her tanımında mertebe tam sayı olarak alındığında aynı sonuç

çıkmaktadır. Yapılan bazı çalışmalarda tanımlar arasında belli şartlar altında kolaylıkla

geçiş yapılmasına rağmen, tanımların ifadeleri ve fiziksel yorumları farklıdır [4, 5]. Aslında

kesirli analizde birçok türev tanımının olması, çözülen problemin türüne göre istenilen

kesirli mertebeden türev tanımının kullanılması için kolaylık sağlar. Ayrıca, kesirli

mertebeden türevlerle oluşturulan modeller, bazı etkilerin ihmal edildiği klasik tamsayı

mertebeli modellerle karşılaştırıldığında kesirli mertebeden türevler daha avantajlıdır.

Kesirli mertebeden türevlerin avantajları, gerçek malzemelerin mekanik ve elektriksel

özelliklerinin modellenmesinde ve ayrıca tanımlamalarda daha çok ön plana çıkar. Kesirli

mertebeden türev özellikle son yıllarda matematik, mühendislik, fizik ve biyoloji gibi

alanlarda oldukça geniş kullanım alanına sahiptir [6–9].

Ayrıca bu çalışmada önemli bir yere sahip olan impalsif diferansiyel denklemler hakkında

bilgi verelim. Doğadaki çoğu uygulama problemi, fiziksel olayların süreksiz özelliklerinden

etkilenirler. Çalışılan bu uygulama probleminin süreksiz olduğu durumların, uygulama

probleminin toplam süresiyle kıyaslandığında ihmal edilecek kadar kısa bir sürede

gerçekleşir. Bu sürece etki eden kısa süreli dış etki yani süreksizlik durumu, impals olarak
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adlandırılan anlık değişikliklere sebep olmaktadır. İşte bu anlık değişiklikler sistemde

sürecin davranışında çok büyük farklılıklar gösterebilmektedir. Adi diferansiyel

denklemlerle yapılan modelleme bu anlık değişimleri göz ardı etmektedir. Bu yüzden bu

süreçleri göz ardı etmemize gerek olmadan matematiksel olarak modellememizi sağlayan

impalsif diferansiyel denklemler diye adlandırılan süreksiz olan sistemler kullanılmaktadır.

Böylelikle önemsiz gibi görünen anlık değişimlerin sebep olduğu sistemlerde daha doğru

sonuçlar elde etmiş olunur [10]. Buradan impalsif denklemler ani kuvvetlerin veya

darbelerin etkilerini matematiksel olarak modelleyen ve sistemlerin zamanla değişen

davranışlarını açıklayan önemli bir araç olduğu söylenebilir [11]. Bu tür impalsif

denklemler fizik, mühendislik, ekonomi, biyoloji gibi bir çok alanda kullanılır [5, 12–17].

Örneğin finansal piyasalarda ani fiyat değişikliklerini veya ekolojik sistemlerde doğal

afetlerin etkilerini modellemek için kullanılır [18].

Kesirli mertebeden

CDα

0+u(t) = f (t,u(t)), t ∈ J′

∆u(tk) = Ik(u(tk)), ∆u′(tk) = Īk(u(tk)),

∆u′′(tk) = Ĩk(u(tk)), k = 1,2, ....,m.

au(0)+bu′(0) =
p−2

∑
i=1

ciu(ξi),

cu(1)+du′(1) =
p−2

∑
i=1

diu(ξi), u′′(0) = 0

(1.1)

impalsif sınır değer problemi Tokmak Fen [19] tarafından çalışılmıştır. Burada CDα

0+ , α ∈

(2,3) mertebeden Caputo kesirli türevidir. Çözümlerin varlığı ve tekliğini göstermek için

Schaefer’in sabit nokta teoremi ve Banach sabit nokta teoremi kullanılmıştır. Bu çalışmadan

alınan motivasyonla aşağıdaki kesirli mertebeden impalsif sınır değer problemi çözülecektir:



3

CDα

0+u(t) = f (t,u(t)), t ∈ J′

∆u(tk) = Ik(u(tk)), k = 1,2, . . . ,m

∆u( j)(tk) = I( j)
k (u(tk)), j = 1,2, . . . ,n−1.

au(0)+bu′(0) =
p−2

∑
i=1

ciu(ξi),

cu(1)+du′(1) =
p−2

∑
i=1

diu(ξi), u(l)(0) = 0, l = 2,3...,n−1.

(1.2)

Burada CDα
0 , α ∈ (n-1,n) mertebeden Caputo kesirli türevidir. a, b, c ve d reel sabitlerdir.

f : [0,1]×R −→ R, Ik : R −→ R ve j = 1,2, . . .n − 1 iken I(i)k : R −→ R fonksiyonları

süreklidir. 0 < ξ1 < ξ2 < .. . < ξp−2 < 1, her i = 1, . . . , p−2 için ci, di ∈ R, k = 1,2, . . . ,m

iken 0 = t0 < t1 < .. . < tk < .. . < tm < tm+1 = 1, J = [0,1], J′ = J\{t1, t2, . . . , tm},

∆u(tk) = u(t+k ) − u(t−k ) ve u(t+k ) = lim
t→t+k

u(t). j = 1,2, . . . ,n − 1 iken ∆u( j)(tk), ∆u(tk)

tanımına benzer şekilde tanımlanabilir.

Bu çalışmanın ikinci bölümünde temel tanımlar, teoremler ve örnekler verilmiştir. Üçüncü

bölümde ise çözümlerin varlığı ve tekliği Banach sabit nokta teoremiyle, en az bir

çözümünün varlığı ise Schaefer’ın sabit nokta teoremi kullanılararak ispatlanmıştır. Daha

sonra, elde edilen teorik sonuçları desteklemek için örnekler verilmiştir. Son olarak

dördüncü bölüm ise sonuç ve öneriler kısmına ayrılmıştır.
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2. TANIMLAR VE TEOREMLER

Bu bölümde, ilerleyen bölümlerde ihtiyaç duyulan tanımlar ve teoremler verilecektir.

2.1. Tanım ve Teoremler

2.1.1. Tanım

Gamma fonksiyonu 0 < x < ∞ değerleri için Euler integrali denilen ;

Γ(x) =
∫

∞

0
sx−1e−sds

genelleştirilmiş integrali ile tanımlanır [20].

Gamma fonksiyonunun temel özelliklerinden biri,

Γ(x+1) =
∫

∞

0
e−ssxds = (−e−ssx)

∣∣∣∣s=∞

s=0
+ x

∫
∞

0
e−ssx−1ds = xΓ(x)

eşitliğinden,

Γ(x+1) = xΓ(x),(x ∈ R) (2.1)

elde edilir. Ayrıca (2.1) eşitliğini ve Γ(1) = 1 olduğunu kullanılarak,

Γ(2) = 1.Γ(1) = 1 = 1!

Γ(3) = 2.Γ(2) = 2.1! = 2!

Γ(4) = 3.Γ(3) = 3.2! = 3!,
...

Γ(n+1) = n.Γ(n) = n.(n−1)! = n!

olarak elde edilir [4]. Gamma fonksiyonunun bazı özel değerleri ise,

Γ

(
1
2

)
=

√
π
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Γ

(
3
2

)
= Γ

(
1+

1
2

)
=

1
2

Γ

(
1
2

)
=

√
π

2

şeklindedir.

2.1.2. Tanım

Bir g : [0,∞)−→ R bir fonksiyon ve t > 0, α > 0 olmak üzere,

Iα

0+g(t) =
1

Γ(α)

∫ t

0
(t − s)α−1g(s)ds

integraline α . mertebeden Riemann Liouville kesirli integrali denir. Burada Γ, Gamma

fonksiyonudur [20].

Örnek

f (t) = t fonksiyonunun
1
2

. mertebeden integralini bulunuz.

α =
1
2

için;

I1/2
α+ f (t) =

1

Γ

(
1
2

) ∫ t

0

s

(t − s)
1
2

ds

burada t − s = u dönüşümü yapılarak gerekli işlemler yapıldığında
4

3Γ

(
1
2

)t
3
2 olarak

bulunur. Γ

(
1
2

)
=
√

π olduğundan sonuç
4

3
√

π
t

3
2 olur.

2.1.3. Tanım

Bir g : [0,∞)−→R fonksiyonu olmak üzere α . mertebeden Riemann Liouville kesirli türevi

LDα

0+g(t) =
1

Γ(n−α)

dn

dtn

∫ t

0

g(s)
(t − s)α+1−n ds, t > 0
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şeklinde tanımlanır. Burada n=[α]+1 olmak üzere [α], α nın tam sayı kısmıdır [20].

Örnek

f (t) = t fonksiyonunun
1
2

. mertebeden Riemann Liouville kesirli türevini bulunuz.

α =
1
2

ve n = 1 için;

LDα

0+ f (t) =
1

Γ

(
1− 1

2

) d
dt

∫ t

0

s

(t − s)
1
2

ds

buradan gerekli işlemler yapıldığında sonuç
2√
π

√
t olarak bulunur.

2.1.4. Tanım

sürekli g : [0,∞)−→ R fonksiyonu n kez türevlenebilir bir fonksiyon ve α > 0, t > 0 olmak

üzere Caputo kesirli türevi,

CDα

0+g(t) = LDα

0+

[
g(t)−

n

∑
i=o

−1
gi(0)

i!

]

şeklinde tanımlanır. Burada n=[α]+1 olmak üzere [α], α nın tam sayı kısmıdır [20].

Tanım 2.1.4 den f (t) = t p şeklindeki fonksiyonların genel formu,

CDα f (t) =


Γ(p+1)

Γ(p−α +1)
t p−α , p > n−1, p ∈ R

0, p ≤ n−1, p ∈ R
(2.2)

şeklinde yazılabilir [21].
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Örnek

f (t) = t fonksiyonunun
1
2

. mertebeden Caputo kesirli türevini bulunuz.

Denklemde verilen α =
1
2

ve n = 1 olmak üzere;

CDα

0+ f (t) =
1

Γ

(
1− 1

2

) ∫ t

0

1

(t − s)
1
2

ds

buradan gerekli işlemler yapıldığında sonuç
2√
π

√
t olarak bulunur. Diğer taraftan verilen

değerler (2.2) denkleminde yerine yazılırsa aynı sonuç çıkacaktır.

Örnek

f (t) = t2 fonksiyonunun
4
3

. mertebeden Caputo kesirli türevini bulunuz.

Denklemde verilen α =
4
3

ve n = 2 olmak üzere;

CDα

0+ f (t) =
1

Γ

(
2− 4

3

) ∫ t

0

2

(t − s)
1
3

ds

buradan gerekli işlemler yapıldığında sonuç
3

Γ

(
2
3

) 3
√

2 olarak bulunur. Diğer taraftan verilen

değerler (2.2) denkleminde yerine yazılırsa aynı sonuç çıkacaktır.

2.1.5. Tanım

İmpalsif diferansiyel denklemlerin tanımını vermek için öncelikle adi diferansiyel

denklemlere değinilmelidir. Adi diferansiyel denklemlerle modellenen sistemleri t ∈ R,

x ∈ Rn, n ∈ N ve bir f : R×Rn −→ Rn sürekli fonksiyonu için genellikle,

x′ = f (t,x) (2.3)

şeklinde ifade edilmektedir. Ancak, pratikte x durum değişkeninde anlık değişimlerin

olduğu uygulamalar mevcuttur. Anlık değişim kavramından bahsedildiği için impalsif
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kavramından bahsedebiliriz. Böyle uygulamalar için de impalsif diferansiyel

denklemlerden yararlanılmaktadır.

Temel olarak impalsif diferansiyel denklemler, sabit zamanlı impalsif diferansiyel

denklemler ve değişken zamanlı impalsif diferansiyel denklemler olmak üzere iki grupta

sınıflandırılır. Bu çalışmada sabit zamanlı impalsif diferansiyel denklemlerden

bahsedilecektir. Sabit zamanlı impalsif diferansiyel denklemler,

x′ = f (t,x), t ̸= θi, (2.4)

∆x|t=θi = Ii(x)

şeklinde tanımlanabilir [10]. Burada, x ∈ Rn, t ∈ R, f ve Ii ise n-boyutlu, sürekli

fonksiyonlardır. θi, ardışık tam sayılardan oluşan bir J kümesi tarafından oluşturulan reel

değerli ve artan belirli bir zaman dizisi olmak üzere t = θi, i ∈ J, impalsların gerçekleştiği

zamanları göstermektedir. θi dizisinin, boş kümeden farklı sonsuz bir küme veya |i| → ∞

iken |θi| → ∞ olacak biçimde sonsuz bir küme olduğu kabul edilmektedir.

∆x|t=θi = x(θi+)− x(θi) (2.5)

olup burada ∆x impals miktarını, x(θ+
i ) çözümün impalsdan sonraki değeri, x(θi) çözümün

impalsdan önceki değerini göstermektedir. Diğer taraftan x(θi+) = lim
t→θi+

x(t) ve x(θi) =

x(θi−) = lim
t→θi−

x(t) olarak tanımlanmaktadır. Bu nedenle, çözümlerin impals noktalarında

soldan sürekli olduğu varsayılmaktadır [10].

Sonuç olarak, (2.4) sisteminin çözümleri parçalı sürekli bir fonksiyondur ve t = θi impals

anlarında birinci tür süreksizliklere sahiptir. (2.4) ile verilen impalsif diferansiyel

denklemin ne anlama geldiğinin basitçe açıklanması için J = 1,2, . . . , p, p ∈ N,

t0 < θ1 < θ2 < .. . < θp ve başlangıç değerinin x(t0) = x0 olduğunu kabul edelim. (2.4)

sisteminin bir çözümü (faz noktası) t ̸= θi, i = 1,2, . . . , p için (2.3) adi diferansiyel

denkleminin bir yörüngesi boyunca hareket eder. Ancak t = θi olduğunda bu çözüm (2.5)

denkleminin değeri kadar değişime uğrar. φ(t,σ ,v), (2.3) adi diferansiyel denkleminin

φ(σ) = v başlangıç koşulunu sağlayan çözümünü göstersin. Buna göre (2.4) impalsif

diferansiyel denkleminin [t0,θ1] aralığında çözümü, (2.3) diferansiyel denklemi çözülerek
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bulunur. O halde, [t0,θ1] aralığında (2.4) sisteminin çözümü x(t) = φ(t, t0,x0) olur. Bu

çözüm t = θ1 değerine geldiğinde, bu çözümde;

∆x|t=θi = x(θ1+)− x(θ1) = Ii(x(θi))

değeri kadar bir değişime uğrar. Buradan,

x(θ+
1 ) = Ii(x(θi))+ x(θ1)

olduğu görülür.

Genel olarak x(θ1+) ̸= x(θ1) olduğundan yörüngenin yeri t = θ1 impals anında değişir.

İmpalsdan sonra sistemin yörüngesi hareketine (θ1,x(θ1+)) noktasından başlayarak, (2.3)

adi diferansiyel denkleminin çözümü boyunca bir sonraki süreksizlik zamanı olan t = θ2

anına kadar devam eder. Böylelikle, (θ1,θ2] aralığında (2.4) impalsif denklem sisteminin

çözümü x(t) = φ(t,θ1,x(θ1+)) şeklinde bulunur [10].

Örnek

u′ = 0, t ̸= i, (2.6)

∆u|t=i = 1

u ∈ R, i ∈ Z olmak üzere u
(

1
2

)
= 1 başlangıç koşulunu sağlaması için gerekli olan (2.6)

impalsif diferansiyel denkleminin çözümünü bulunuz.

u′ = 0 adi diferansiyel denkleminin (ρ,v) noktasından başlayan çözümü,

φ(t,ρ,v) = v

olmaktadır.

t ̸= i olmak üzere u′ = 0 olduğu göz önünde bulundurulursa, t ∈
[1

2 ,1
]

aralığında (2.6)
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sisteminin çözümü,

u(t) = φ(t,
1
2
,1) = 1

bulunur. O halde u(1) = 1 olur. t = 1 süreksizlik değerinde bu çözümde impals olacaktır.

İmpals miktarı,

∆u|t=1 = u(1+)−u(1) = 1

şeklinde olduğu görülebilir. Buradan da u(1+) = u(1) + 1 = 2 olduğu söylenebilir. Bu

durumda impalsdan sonra, 1 < t ≤ 2 için çözümü

u(t) = φ(t,1,u(1+)) = 2

olur. Böylece u(2) = 2 eşitliğine ulaşılır. Benzer şekilde devam edilirse, u(2+) = 3 ve bunu

genelleyerek, n ∈ N, n ≥ 1 için,

u(n) = n

ve

u(n+) = n+1

eşitliği elde edilir. Her u ∈ R için ∆u|t=i = 1 > 0 olduğundan tüm çözümlerin artan olduğu

açıktır. Ayrıca, u
(

1
2

)
= 1 için çözümün sola devam etmesi için 0 < t ≤ 1

2
olmak üzere

u(t) = 1 ve süreksizlik değeri olan t = 0 anında soldan sürekli olduğundan

u(0+) = 1

sonucuna ulaşılır. t = 0 anında impalsdan sonraki değer bilindiğine göre, impalsdan önceki

u(0) değeri de u(0+)− u(0) = 1 eşitliği kullanılarak hesaplandığında u(0) = 0 elde edilir.

Böylelikle, −1 < t ≤ 0 için u(t) = 0 olduğu görülür. u(−1+) = 0 eşitliğinden u(−1) =−1

elde edilir. İşlemler bu şekilde yapıldığında, çözüm sola doğru devam ettirebilir.
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Sonuç olarak, (2.6) impalsif diferansiyel denkleminin u
(

1
2

)
= 1 başlangıç değerini sağlayan

çözümü

u(t) = ⌈t⌉= min{n ∈ Z : n ≥ t}

şeklinde tanımlanan en küçük tam sayı fonksiyonudur [10].

2.1.6. Tanım

PC(J,R) =
{

u : u,J den R ye bir gönderim öyle ki k = 1, ...,m olmak üzere t ̸= tk

iken u(t) sürekli, u(t+k ), u(t−k ) mevcut ve u(t−k ) = u(tk)
}

şeklinde tanımlanır. Benzer olarak ;

PCn−1(J,R) =
{

PC(J,R) : t ̸= tk, k = 1, ...,m iken u(n−1)(t) mevcut ve sürekli

u(n−1)(t−k ) = u(n−1)(tk)
}

şeklinde tanımlanır.

2.1.7. Lemma

f : J×R−→ R sürekli ve n−1 < α < n olsun. u ∈ A C n(J,R) nun

CDα

0+u(t) = f (t,u(t)), t ∈ J
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denklemini sağlaması için gerek ve yeter şart u ∈ PCn−1(J,R) ve t ∈ J için

u(t) =
n−1

∑
i=0

u(i)(0)
i!

t i +
n−1

∑
i=0

(
∑

0<tk<t

1
i!

∆u(i)(tk)(t − tk)i

)
+
∫ t

0

(t − s)α−1

Γ(α)
f (s,u(s))ds (2.7)

olmasıdır [22].

2.1.8. Teorem (Banach Sabit Nokta Teoremi)

X bir tam metrik uzay ve T : X −→ X bir daralma dönüşümü olsun. Bu durumda T

dönüşümünün X uzayında tek bir sabit noktası vardır [23].

2.1.9. Teorem (Schaefer’ın Sabit Nokta Teoremi)

B bir Banach uzayı, ve T : B −→ B tamamen sürekli bir operatör olsun. Eğer,

D(B) =
{

u ∈ B : λ ∈ [0,1] iken u = λTu
}

kümesi sınırlıysa T nin en az bir sabit noktası vardır [24].

2.1.10. Lemma (PC-type Ascoli-Arzela teoremi)

Ω ⊂ PC(J,R) olsun. Eğer,

(i) Ω düzgün sınırlıdır.

(ii) Ω k = 0,1, . . . ,m iken Jk da eş süreklidir.

koşulları sağlanıyorsa o zaman Ω, PC(J,R) nin bağıl kompakt alt kümesidir [25].
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3. YÜKSEK MERTEBEDEN KESİRLİ İMPALSİF SINIR DEĞER
PROBLEMİNİN ÇÖZÜMLERİNİN VARLIĞI VE TEKLİĞİ

Tezin bu bölümünde,

CDα

0+u(t) = f (t,u(t)), t ∈ J′

∆u(tk) = Ik(u(tk)), k = 1,2, . . . ,m

∆u( j)(tk) = I( j)
k (u(tk)), j = 1,2, . . . ,n−1.

au(0)+bu′(0) =
p−2

∑
i=1

ciu(ξi),

cu(1)+du′(1) =
p−2

∑
i=1

diu(ξi),u(l)(0) = 0, l = 2,3, . . . ,n−1.

(3.1)

formundaki impalsif sınır değer problemini ele alacağız. Burada CDα
0 , α ∈ (n − 1,n)

mertebeden Caputo kesirli türevdir. a,b,c ve d reel sabitlerdir. f : [0,1] × R −→ R

fonksiyonu ve j = 1,2, . . .n−1, k = 1,2, . . . ,m iken I( j)
k : R −→ R fonksiyonları süreklidir.

0 < ξ1 < ξ2 < .. . < ξp−2 < 1, her i = 1, . . . , p − 2 için ci, di ∈ R,

0 = t0 < t1 < .. . < tk < .. . < tm < tm+1 = 1, J = [0,1], J′ = J\{t1, t2, . . . , tm},

∆u(tk) = u(t+k ) − u(t−k ) ve u(t+k ) = lim
t→t+k

u(t). j = 1,2, . . . ,n − 1 iken ∆u( j)(tk), ∆u(tk)

tanımına benzer şekilde tanımlanabilir.

Bu bölümde (3.1) yüksek mertebeden kesirli impalsif diferansiyel denkleminin çözümlerinin

varlığı araştırıacaktır. Banach sabit nokta teoremi kullanılarak çözümlerin varlığı ve tekliği,

Schaefer’ın sabit nokta teoremi kullanılarak ise en az bir çözümünün varlığı ispatlanacaktır.

Daha sonra, elde edilen teorik sonuçları desteklemek için örnekler verilecektir.

3.1. Problemin Çözümü

Bu bölümde (3.1) probleminin çözümü için eşdeğer bir integral denklem bulunacaktır. Bu

integral denklem yardımıyla bir T operatörü tanımlanarak, bu operatörün tamamen sürekli

olduğu ispatlanacaktır.

λ : = ac+ad −bc−
p−2

∑
i=1

diξ i

(
a−

p−2

∑
i=1

ci

)
+

p−2

∑
i=1

di

(
b−

p−2

∑
i=1

ciξ i

)



16

+c
p−2

∑
i=1

ciξ i ̸= 0

olduğunu kabul edelim.

3.1.1. Lemma

Yüksek mertebeden kesirli impalsif sınır değer probleminin (3.1) bir çözümü olan u(t)

fonksiyonu aşağıdaki integral denkleme denktir:

u(t) =



∫ t

0

(t − s)α−1

Γ(α)
f (s,u(s))ds+

1
λ

p−2

∑
i=1

ciDuξi

×

[(
c+d −

p−2

∑
i=1

diξi −

(
c−

p−2

∑
i=1

di

))
t

]

+
1
λ

(
p−2

∑
i=1

diDuξi −Ku

)

×

(
−b+

p−2

∑
i=1

diDuξi +

(
a−

p−2

∑
i=1

ci

)
t

)
, t ∈ J0,

Du(t)+
1
λ

p−2

∑
i=1

ciDuξi

[(
c+d −

p−2

∑
i=1

diξi

)
−

(
c−

p−2

∑
i=1

di

)
t

]

+
1
λ

(
p−2

∑
i=1

diDuξi −Ku

)(
−b+

p−2

∑
i=1

ciξi +

(
a−

p−2

∑
i=1

ci

)
t

)
t ∈ Jk,k = 1,2, . . . ,m.

(3.2)

Burada Du(t) ve Ku aşağıda tanımlandığı gibidir.

Du(t) =
∫ t

0

(t − s)α−1

Γ(α)
f (s,u(s))ds+

n−1

∑
j=0

(
∑

0<tk<t
I( j)
k (u(tk))

(t − tk) j

j!

)
(3.3)

ve

Ku =
∫ 1

0

(
c(1− s)α−1

Γ(α)
+

d(1− s)α−2

Γ(α −1)

)
f (s,u(s))ds+ c

(
∑

o<tk<1
Ik(u(tk))

)
(3.4)
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+ ∑
0<tk<1

(
n−1

∑
j=1

I( j)
k (u(tk))

(
c(1− tk) j

j!
+

d(1− tk) j−1

( j−1)!

))

İspat

u(t) nin (3.1) denkleminin bir çözümü olsun. Bu durumda Lemma 2.7 yardımıyla:

u(t) = e1 + e2t + e3t2 + . . .+ en−1tn−1 +
n

∑
j=1

(
∑

0<tk<t
I( j)
k (u(tk))

(t − tk) j−1

( j−1)!

)
(3.5)

+
∫ t

0

(t − s)α−1

Γ(α)
f (s,u(s))ds

şeklinde olduğu elde edilir.

u′(t) = e2 +2e3t + . . .+(n−1)en−1tn−2 +
n−1

∑
j=1

(
∑

0<tk<t
I( j)
k (u(tk))

(t − tk) j−1

( j−1)!

)
(3.6)

+
∫ t

0

(t − s)α−2

Γ(α −1)
f (s,u(s))ds

u′′(t) = 2e3 + . . .+(n−1)(n−2)en−1tn−3 +
n−2

∑
j=1

(
∑

0<tk<t
I( j)
k (u(tk))

(t − tk) j−1

( j−1)!

)
(3.7)

+
∫ t

0

(t − s)α−3

Γ(α −2)
f (s,u(s))ds

(3.7) numaralı denkleme u′′(0) = 0 koşulunu uygulayarak e3 = 0 elde ederiz. Buna benzer

olarak u(l)(0) = 0, (l = 2,3, . . . ,n− 1), koşulunu kullanarak e4 = e5 = e6 = . . . = en−1 = 0
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elde edilir. Bu sonucu göz önüne alarak u(t) ve u′(t) fonksiyonu tekrardan yazılırsa,

u(t) = e1 + e2t +
n

∑
j=1

(
∑

0<tk<t
I( j)
k (u(tk))

(t − tk) j−1

( j−1)!

)
+
∫ t

0

(t − s)α−1

Γ(α)
f (s,u(s))ds (3.8)

u′(t) = e2 +
n−1

∑
j=1

(
∑

0<tk<t
I( j)
k (u(tk))

(t − tk) j−1

( j−1)!

)
+
∫ t

0

(t − s)α−2

Γ(α −1)
f (s,u(s))ds (3.9)

şeklinde bulunur. Şimdi au(0) + bu′(0) =
p−2

∑
i=1

ciu(ξi) ve cu(1) + du′(1) =
p−2

∑
i=1

diu(ξi)

koşulları kullanılarak,

u(0) = e1

u′(0) = e2

u(1) = e1 + e2 +
n−1

∑
j=0

(
∑

0<tk<1
I( j)
k (u(tk))

(1− tk) j

j!

)
+
∫ 1

0

(1− s)α−1

Γ(α)
f (s,u(s))ds

u′(1) = e2 +
n−1

∑
j=1

(
∑

0<tk<1
I( j)
k (u(tk))

(1− tk) j−1

( j−1)!

)
+
∫ 1

0

(1− s)α−2

Γ(α −1)
f (s,u(s))ds

olarak bulunur. Sınır koşulları kullanılarak;

(
a−

p−2

∑
i=1

ci

)
e1 +

(
b−

p−2

∑
i=1

ciξi

)
e2 =

p−2

∑
i=1

ciDu(ξi) (3.10)

ve

(
c−

p−2

∑
i=1

di

)
e1 +

(
c+d −

p−2

∑
i=1

diξi

)
e2 =

p−2

∑
i=1

diDu(ξi)−Ku (3.11)
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denklemleri elde edilir. e1 ve e2 için (3.10) ve (3.11) doğrusal denklemleri çözüldüğünde ;

e1 =
1
λ

[(
c+d −

p−2

∑
i=1

diξi

)
p−2

∑
i=1

ciDu(ξi)+

(
−b+

p−2

∑
i=1

ciξi

)(
p−2

∑
i=1

diDu(ξi)−Ku

)]
(3.12)

ve

e2 =
1
λ

[(
a−

p−2

∑
i=1

ci

)(
p−2

∑
i=1

diDu(ξi)−Ku

)
−

(
c−

p−2

∑
i=1

di

)
p−2

∑
i=1

ciDu(ξi)

]
(3.13)

elde edilir. Bulunan e1 ve e2 değerleri (3.8) denkleminde yerine yazılarak (3.2) denklemi

elde edilir. □

Şimdi bir T operatörü tanımlanırsa: T : PC(J,R)−→ PC(J,R) olmak üzere,

Tu(t) = Du(t)+
1
λ

p−2

∑
i=1

ciDu(ξi)

[(
c+d −

p−2

∑
i=1

diξi

)
−

(
c−

p−2

∑
i=1

di

)
t

]
(3.14)

+
1
λ

(
p−2

∑
i=1

diDu(ξi)−Ku

)(
−b+

p−2

∑
i=1

ciξi +

(
a−

p−2

∑
i=1

ci

)
t

)

Burada Du(t) ve Ku sırasıyla (3.3) ve (3.4) de tanımlandığı gibidir. T operatörünün sabit

noktaları (3.1) probleminin çözümleri olduğu açıktır.

İşlemlerde kolaylık sağlamak için aşağıdaki kısaltmaları verelim:

γ1 = sup
t ∈ [0,1]

∣∣∣∣(c+d −
p−2

∑
i=1

diξi

)
−
(

c−
p−2

∑
i=1

di

)
t
∣∣∣∣

|λ |
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γ2 = sup
t ∈ [0,1]

∣∣∣∣(−b+
p−2

∑
i=1

ciξi

)
+

(
a−

p−2

∑
i=1

ci

)
t
∣∣∣∣

|λ |

A1 =

∣∣∣∣c− p−2

∑
i=1

di

∣∣∣∣
|λ |

, A2 =

∣∣∣∣a− p−2

∑
i=1

ci

∣∣∣∣
|λ |

şeklinde tanımlanır.

3.1.2. Lemma

T : PC(J,R)−→ PC(J,R) operatörü tamamen süreklidir.

İspat

f , I( j)
k , j = 0,1,2, . . . ,n− 1 fonksiyonlarının sürekli olduğundan T operatörü de süreklidir.

Ω, PC(J,R)’nin sürekli bir alt kümesi olsun. Her u ∈ Ω için | f (t,u)|⩽M1, j = 0,1, . . . ,n−1

iken |I( j)
k (u)|⩽ M j+2, olacak şekilde M j pozitif sabitleri vardır. Böylece u ∈ Ω için;

|Du(ξi)| ⩽
∫

ξi

0

(ξi − s)α−1

Γ(α)
| f (s,u(s))ds|+

n−1

∑
j=0

(
∑

0<tk<ξi

|I( j)
k (u(tk))|

(ξi − tk) j

j!

)
(3.15)

⩽
ξ α

i
Γ(α +1)

M1 +m

(
n−1

∑
j=0

M j+2
ξ

j
i
j!

)

|Ku| ⩽
∫ 1

0

(
c(1− s)α−1

Γ(α)
+

d(1− s)α−2

Γ(α −1)

)
| f (s,u(s))ds|+ c

(
∑

o<tk<1
|Ik(u(tk))|

)
(3.16)

+ ∑
0<tk<1

(
n−1

∑
j=1

|I( j)
k (u(tk))|

∣∣∣∣c(1− tk) j

j!
+

d(1− tk) j−1

( j−1)!

∣∣∣∣
)
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⩽

(
|c|

Γ(α +1)
+

|d|
Γ(α)

)
M1 +m|c|M2 +m

(
n−1

∑
j=1

M j+2

(
|c|
j!
+

|d|
( j−1)!

))

Dolayısıyla,

|Tu(t)| ⩽
∫ t

0

(t − s)α−1

Γ(α)
| f (s,u(s))ds|+

n−1

∑
j=0

(
∑

0<tk<t
|I( j)

k (u(tk))|
(t − tk) j

j!

)
(3.17)

+
1
|λ |

(
p−2

∑
i=1

|ci||Du(ξi)|

)∣∣∣∣∣
(

c+d −
p−2

∑
i=1

diξi

)
−

(
c−

p−2

∑
i=1

di

)
t

∣∣∣∣∣
+

1
|λ |

(
p−2

∑
i=1

|di||Du(ξi)|− |Ku|

)∣∣∣∣∣−b+
p−2

∑
i=1

ciξi +

(
a−

p−2

∑
i=1

ci

)
t

∣∣∣∣∣
⩽

M1

Γ(α +1)
+m

(
n−1

∑
j=0

M j+2

j!

)

+
p−2

∑
i=1

(γ1|ci|+ γ2|di|)

[
ξ α

i
Γ(α +1)

M1 +m

(
n−1

∑
j=0

M j+2
ξ

j
i
j!

)]

+ γ2M1

(
|c|

Γ(α +1)
+

|d|
Γ(α)

)
M1

+ γ2m|c|M2 + γ2m

(
n−1

∑
j=1

M j+2

(
|c|
j!
+

|d|
( j−1)!

))

eşitsizlikleri sağlandığı için T operatörü düzgün sınırlıdır. Diğer taraftan herhangi bir t ∈ jk

için 0 ⩽ k ⩽ m dir. Ayrıca,

|(Tu)
′
(t)| ⩽

∫ t

0

(t − s)α−2

Γ(α −1)
| f (s,u(s))ds|+

n−1

∑
j=1

(
∑

0<tk<t
|I( j)

k (u(tk))|
(t − tk) j

( j−1)!

)
(3.18)

+
1
|λ |

(
p−2

∑
i=1

|ci||Du(ξi)|

)∣∣∣∣∣c− p−2

∑
i=1

di

∣∣∣∣∣
+

1
|λ |

(
p−2

∑
i=1

|di||Du(ξi)|− |Ku|

)∣∣∣∣∣a− p−2

∑
i=1

ci

∣∣∣∣∣
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olduğu görülür. Bu nedenle,

|(Tu)
′
(t)| ⩽

M1

Γ(α)
+m

(
n−1

∑
j=0

M j+3

j!

)
+

p−2

∑
i=1

(A1|ci|+A2|di|) (3.19)

+
ξ α

i
Γ(α +1)

M1 +m

(
n−1

∑
j=0

M j+2
ξ

j
i
j!

)

+ A2M1

(
|c|

Γ(α +1)
+

|d|
Γ(α)

)
+ A2m|c|M2 +A2m

(
n−1

∑
j=1

M j+2

(
|c|
j!
+

|d|
( j−1)!

))

son eşitsizlik T (Ω) nin Jk, (k = 0,1, . . . ,m) üzerinde eş zamanlı süreklilik durumunu belirtir.

PC tipi Arzela-Ascoli teoremine göre T (Ω), PC(J,R) içinde kompakttır. Sonuç olarak T :

PC(J,R)−→ PC(J,R) operatörü tamamen süreklidir. □

3.2. Çözümlerin Varlığı ve Tekliği

Bu bölümde, T operatörü ve Banach sabit nokta teoremi yardımıyla yüksek mertebeden

kesirli sınır değer probleminin çözümünün varlığı ve tekliği gösterilecektir. Daha sonra

Schaefer’in sabit nokta teoremi kullanılarak problemin en az bir çözümünün olduğu

gösterilecektir.

İlk olarak, çözümlerin varlığı ve tekliğini göstermek için aşağıdaki koşullara ihtiyaç

duyulmaktadır.

(C1) Her t ∈ J ve u, v∈R için | f (t,u)− f (t,v)| ≤N|u−v| olacak şekilde bir N sayısı vardır.

(C2) N1, N2, N3, . . . ,Nn pozitif reel sayıları vardır öyle ki tüm u, v ∈ R, k = 1,2, . . . ,m

ve j = 1,2, . . . ,n− 1 için |Ik(u)− Ik(v)| ≤ N1|u− v|, |I( j)
k (u)− I( j)

k (v)| ≤ N j+1|u− v|

eşitsizlikleri sağlanır.

3.2.1. Teorem
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(C1) ve (C2) koşulları sağlansın ve

N <
1

n+1

(
1+ γ2|c|+∑

p−2
i=1 (γ1|ci|+ γ2|di|)ξ α

i
Γ(α +1)

+
γ2|d|
Γ(α)

)−1

,

N j <
( j−1)!
m(n+1)

(
p−2

∑
i=1

(γ1|ci|+ γ2|di|)ξ j−1
i +1+ γ2(|c|+( j−1)|d|)

)−1

, j = 1,2, . . . ,n.

olsun. O zaman (3.1) denkleminin tek bir çözümü vardır.

İspat

u, v ∈ PC(J,R) olsun. Her t ∈ J için

|Tu(t)−Tv(t)| ≤ |Du(t)−Dv(t)|

+
1
|λ |

(
p−2

∑
i=1

|ci||Du(ξi)−Dv(ξi)|

)
∣∣∣∣∣
(

c+d −
p−2

∑
i=1

diξi

)
− (c−

p−2

∑
i=1

di)t

∣∣∣∣∣
+

1
|λ |

(
p−2

∑
i=1

|di||Du(ξi)−Dv(ξi)|− |Ku −Kv|

)
∣∣∣∣∣−b+

p−2

∑
i=1

ciξi +

(
a−

p−2

∑
i=1

ci

)
t

∣∣∣∣∣
≤

[(
1+ γ2|c|+∑

p−2
i=1 (γ1|ci|+ γ2|di|)ξ α

i
Γ(α +1)

+
γ2|d|
Γ(α)

)
N

+

(
p−2

∑
i=1

(γ1|ci|+ γ2|di|)+1+ γ2|c|

)
mN1

+

(
p−2

∑
i=1

(γ1|ci|+ γ2|di|)ξi +1+ γ2(|c|+ |d|)

)
mN2

+

(
p−2

∑
i=1

(γ1|ci|+ γ2|di|)ξ 2
i +1+ γ2(|c|+2|d|)

)
m
2!

N3
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+

(
p−2

∑
i=1

(γ1|ci|+ γ2|di|)ξ 3
i +1+ γ2(|c|+3|d|)

)
m
3!

N4

...

+

(
p−2

∑
i=1

(γ1|ci|+ γ2|di|)ξ n−1
i +1+ γ2(|c|+(n−1)|d|)

)
m

(n−1)!
Nn

]
||u− v||

elde edilir.

(
1+ γ2|c|+∑

p−2
i=1 (γ1|ci|+ γ2|di|)ξ α

i
Γ(α +1)

+
γ2|d|
Γ(α)

)
N

+

(
p−2

∑
i=1

(γ1|ci|+ γ2|di|)+1+ γ2|c|

)
mN1

+

(
p−2

∑
i=1

(γ1|ci|+ γ2|di|)ξi +1+ γ2(|c|+ |d|)

)
mN2

+

(
p−2

∑
i=1

(γ1|ci|+ γ2|di|)ξ 2
i +1+ γ2(|c|+2|d|)

)
m
2!

N3

+

(
p−2

∑
i=1

(γ1|ci|+ γ2|di|)ξ 3
i +1+ γ2(|c|+3|d|)

)
m
3!

N4

...

+

(
p−2

∑
i=1

(γ1|ci|+ γ2|di|)ξ n−1
i +1+ γ2(|c|+(n−1)|d|)

)
m

(n−1)!
Nn < 1

eşitsizliği sağlandığından T bir daralma dönüşümüdür. Teorem 2.1.8 Banach sabit nokta

teoreminden T nin PC(J,R) içinde tek bir sabit noktası vardır ve bu nokta (3.1) problemi

için bir çözümdür. □

Şimdi, (3.1) probleminin en az bir çözümünün varlığını Schaefer’ın sabit nokta teoremini

kullanarak gösterelim. Bunun için aşağıdaki koşullara ihtiyaç vardır:

(C3) Negatif olmayan ρ ve σ sabitleri vardır öyle ki, | f (t,u)| ≤ ρ + σ |u|, t ∈ J,u ∈ R

eşitsizliği sağlanır.
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(C4) u ∈ R için k = 1,2, . . . ,m ve j = 1,2, . . . ,n− 1 iken |Ik(u)| ≤ ρk +σk|u|, |I
( j)
k (u)| ≤

ρ
( j)
k +σ

( j)
k |u| eşitsizlikleri sağlanacak şekilde negatif olmayan ρk, σk, ρ

( j)
k , σ

( j)
k reel

sabitleri vardır .

koşulları verilsin.

İşlemlerde kolaylık sağlamak için K∗ aşağıdaki şekilde tanımlansın:

K∗ =

(
1+ γ2|c|
Γ(α +1)

+
γ2|d|
Γ(α)

+
p−2

∑
i=1

(γ1|ci|+ γ2|di|)
ξ α

i
Γ(α +1)

)
σ

+
m

∑
k=1

(1+ γ2|c|)σk +
n−1

∑
j=1

m

∑
k=1

(
1
j!
+ γ2

(
|c|
j!
+

|d|
( j−1)!

))
σ
( j)
k (3.20)

+
p−2

∑
i=1

(γ1|ci|+ γ2|di|)

(
∑

0<tk<ξi

σk +
n−1

∑
j=1

∑
0<tk<ξi

ξ
j

i
j!

σ
( j)
k

)

(3.20) ile tanımlanan K∗ ifadesi aşağıdaki teoremde kullanılacaktır.

3.2.2. Teorem

(C3) ve (C4) koşulları sağlansın. Eğer K∗ < 1 ise (3.1) probleminin en az bir çözümü vardır.

İspat

T operatörünün tamamen sürekli olduğunu 3.1.2 Lemma ile elde ettik. Şimdi, 0 ≤ µ ≤ 1

iken

u = µTu (3.21)
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denklemini ele alalım. Eğer u, (3.21) denkleminin bir çözümü ise o zaman t ∈ J için,

|Du(ξi)| ⩽
∫

ξi

0

(ξi − s)α−1

Γ(α)
(ρ +σ |u(s)|)ds+ ∑

0<tk<ξi

(ρk +σk|u(tk)|)

+
n−1

∑
j=1

(
∑

0<tk<ξi

(ρ
( j)
k +σ

( j)
k |u(tk)|)

(ξi − tk) j

j!

)

≤
ξ α

i ρ

Γ(α +1)
+ ∑

0<tk<ξi

ρk +
n−1

∑
j=1

(
∑

0<tk<ξi

ξ
j

i ρ
( j)
k

j!

)
+

ξ α
i σ

Γ(α +1)
∥u∥

+ ∑
0<tk<ξi

σk ∥u∥+
n−1

∑
j=1

(
∑

0<tk<ξi

ξ
j

i σ
( j)
k

j!

)
∥u∥

ve

|Ku| ≤
∫ 1

0

(
|c|(1− s)α−1

Γ(α)
+

|d|(1− s)α−1

Γ(α −2)

)
| f (s,u(s))|ds

+ |c|
m

∑
k=1

|Ik(u(tk))|+
n−1

∑
j=1

(
m

∑
k=1

|I( j)
k (u(tk))|

∣∣∣∣c(1− tk) j

j!
+

d(1− tk) j−1

( j−1)!

∣∣∣∣
)

≤
(

|c|
Γ(α +1)

+
|d|

Γ(α)

)
(ρ +σ ∥u∥)

+
m

∑
k=1

|c|ρk +
n−1

∑
j=1

(
m

∑
k=1

(
|c|
j!
+

|d|
( j−1)!

)
ρ
( j)
k

)

+
m

∑
k=1

|c|σk ∥u∥+
n−1

∑
j=1

(
m

∑
k=1

(

(
|c|
j!
+

|d|
( j−1)!

)
σ
( j)
k

)
∥u∥

eşitsizlikleri sağlanır. Buradan,

|u(t)|= µ|Tu(t)| ≤
∫ t

0

(t − s)α−1

Γ(α)
(ρ +σ |u(s)|)ds+ ∑

0<tk<t
(ρk +σk|u(tk)|)

+
n−1

∑
j=1

(
∑

0<tk<t
(ρ

( j)
k +σ

( j)
k |u(tk)|)

(t − tk) j

j!

)
+ γ1

p−2

∑
i=1

|ci||Du(ξi)|
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+ γ2

p−2

∑
i=1

|di||Du(ξi)|+ γ2|Ku|

elde edilir. Dolayısıyla,

|u(t)| ≤
(

1+ γ2|c|
Γ(α +1)

+
γ2|d|
Γ(α)

+
p−2

∑
i=1

(γ1|ci|+ γ2|di|)
ξ α

i
Γ(α +1)

)
ρ

+
P−2

∑
i=1

(γ1|ci|+ γ2|di|)

(
∑

0<tk<ξi

ρk +
n−1

∑
j=1

∑
0<tk<ξi

ξ
j

i
j!

ρ
( j)
k

)

+
m

∑
k=1

(1+ γ2|c|ρk)+
n−1

∑
j=1

m

∑
k=1

(
1
j!
+ γ2

(
|c|
j!
+

|d|
( j−1)!

))
ρ
( j)
k

+

[(
1+ γ2|c|
Γ(α +1)

+
γ2|d|
Γ(α)

+
p−2

∑
i=1

(γ1|ci|+ γ2|di|)
ξ α

i
Γ(α +1)

)
σ

+
m

∑
k=1

(1+ γ2|c|)σk +
n−1

∑
j=1

m

∑
k=1

(
1
j!
+ γ2

(
|c|
j!
+

|d|
( j−1)!

))
σ
( j)
k

+
p−2

∑
i=1

(γ1|ci|+ γ2|di|)

(
∑

0<tk<ξi

σk +
n−1

∑
j=1

∑
0<tk<ξi

ξ
j

i
j!

σ
( j)
k

)]
∥u∥

eşitsizliği elde edilir. Bu eşitsizlikten

K =

(
1+ γ2|c|
Γ(α +1)

+
γ2|d|
Γ(α)

+
p−2

∑
i=1

(γ1|ci|+ γ2|di|)
ξ α

i
Γ(α +1)

)
ρ

+
P−2

∑
i=1

(γ1|ci|+ γ2|di|)

(
∑

0<tk<ξi

ρk +
n−1

∑
j=1

∑
0<tk<ξi

ξ
j

i
j!

ρ
( j)
k

)

+
m

∑
k=1

(1+ γ2|c|ρk)+
n−1

∑
j=1

m

∑
k=1

(
1
j!
+ γ2

(
|c|
j!
+

|d|
( j−1)!

))
ρ
( j)
k

olmak üzere t ∈ J için |u(t)| ≤ K + K∗ ∥u∥ elde edilir. K∗ < 1 olduğunundan ve son

eşitsizlikten ∥u∥ ≤ K
1−K∗ olduğu görülür. Bu nedenle (3.21) in herhangi bir çözümü µ nün



28

değerinden bağımsız olarak sınırlıdır. Sonuç olarak 2.1.9 Teoreminin tüm koşulları

sağlandığından (3.1) sınır değer probleminin en az bir çözümü vardır. □

3.3. Örnekler

Örnek

Aşağıdaki
9
2

. mertebeden Caputo kesirli impalsif sınır değer problemini ele alalım:



CD
9
2
0+u(t) = cos3 t +

3
40

arctan(u(t)), t ∈ [0,1]\
{

1
4

}
∆u
(

1
4

)
=

1
80

u
(

1
4

)
, ∆u′

(
1
4

)
=

1
100

sinu
(

1
4

)
,

∆u′′
(

1
4

)
=

1
20

cosu
(

1
4

)
, ∆u

′′′
(

1
4

)
=

1
50

u
(

1
4

)
,

u(0)− 1
2

u′(0) = 6u
(

1
3

)
−3u

(
1
2

)
,

2u(1)+u′(1) =−6u
(

1
3

)
−2u

(
1
2

)
, u′′(0) = 0, u′′′(0) = 0, u(4)(0) = 0.

(3.22)

(3.22) denkleminin α =
9
2

, t1 =
1
4

, p= 4, a= 1, b=−1
2

, c= 2, d = 1, c1 = 6, c2 =−3, d1 =

−6, d2 = −2, ξ1 =
1
3

, ξ2 =
1
2

, f (t,u) = cos3 t +
3

40
arctan(u(t)), Ik(u) =

1
80

u, I(1)k (u) =
1

100
sinu, I(2)k (u) =

1
20

cosu ve I(3)k (u) =
1

50
u ile denklem (3.1) formunda olduğu açıktır.

Denklem (3.22) için λ = 7, γ1 =
6
7

ve γ2 =
1
7

değerleri elde edilir. N = 0.15, N1 = 0.025,

N2 = 0.01, N3 = 0.05 ve N4 = 0.02 değerleri için (C1) ve (C2) koşulları sağlanır. Ayrıca,

3.2.1 Teoreminin tüm koşulları sağlandığından (3.22) impalsif kesirli sınır değer probleminin

tek bir çözümü vardır.
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Örnek

Aşağıdaki
8
3

. mertebeden kesirli impalsif sınır değer problemini ele alalım:



CD
8
3
0+u(t) =

1
3

sin
(√

t
)
+

1
20

tanh(u(t)), t ∈ [0,1]\{t1, t2}

∆u(tk) =
(−1)k

4
+

3
200

u(tk), ∆u′ (tk) =
1
5

cos(u(tk)),

∆u′′ (tk) =
1

25
sin(u(tk)),

2u(0)−3u′(0) =−6u
(

2
5

)
+4u

(
4
5

)
,

−u(1)+2u′(1) = 7u
(

2
5

)
−8u

(
4
5

)
, u′′(0) = 0.

(3.23)

Burada t1 =
1
10

ve t2 =
3
5

dir.

(3.23) denkleminin α =
8
3

, p = 4, a = 2, b = −3, c = −1, d = 2, c1 = −6, c2 = 4, d1 =

7, d2 = −8, ξ1 =
2
5

, ξ2 =
4
5

, f (t,u) =
1
3

sin
(√

t
)
+

1
20

tanh(u(t)), Ik(u) = (−1)k +
3

200
u,

I(1)k (u) =
1
5

cosu ve I(2)k (u) =
1
25

sinu ile denklemin (3.1) formunda olduğu açıktır. Denklem

(3.23) için λ =
82
5

, γ1 =
23
82

ve γ2 =
19
82

değerleri elde edilir. 3.2.2 Teoreminin (C3) ve

(C4) koşullarındaki ρ =
1
3

, σ =
1

20
, ρ1 = ρ2 =

1
4

, σ1 = σ2 =
3

200
, ρ

(1)
1 = ρ

(1)
2 =

1
5

, σ
(1)
1 =

σ
(1)
2 = 0, ρ

(2)
1 = ρ

(2)
2 =

1
25

, σ
(2)
1 = σ

(2)
2 = 0 değerleri olup, K∗ ≈ 0.2306 olarak hesaplanır.

Böylelikle K∗ < 1 koşulu da sağlanmış olur. Sonuç olarak, (3.23) probleminin en az bir

çözümü vardır.
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4. SONUÇ VE ÖNERİLER

Bu tezde, n− 1 < α ≤ n olmak üzere α . mertebeden Caputo kesirli türev içeren p-nokta

impalsif sınır değer problemi üzerinde durulmuştur. Çözümlerin varlığı ve tekliği Banach

sabit nokta teoremiyle, en az bir çözümün varlığı ise Schaefer’ın sabit nokta teoremiyle

ispatlanmıştır. Daha sonra, elde edilen teorik sonuçları desteklemek için örnekler

verilmiştir. Bu çalışma kesirli diferansiyel denklemler ve impalsif diferansiyel denklemler

çalışan araştırmacılar için kaynak olabilir. İleride bu çalışmadan yararlanılarak Riemann

Liouville kesirli mertebeden ya da hem Riemann Liouville hem de Caputo kesirli türev

içeren impalsif sınır değer problemi için çözümlerin varlığı ve tekliğinin araştırılması

planlanmaktadır.
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Mühendislik Mimarlık Fakültesi Dergisi, Ankara, 30(3), 487-501.

2. Dalir, M., Bashour, M. (2010). Applications of Fractional Calculus, Applied
Mathematical Sciences. 4(21), 1021-1032.

3. Loverro, A. (2004). Fractional Calculus. History, Defination and Applications for the
Engineer. Department of Aerospace and Mechanical Engineering, USA, 1-28.

4. Podlubny, I. (1999). Fractional Differential Equations. California: Academic Press, Inc.,
USA, 199-223.

5. Hilfer, R. (2000). Applications of Fractional Calculus in Physics. Germany: World
Scientific Singapore, 29-45.

6. Magin, R.L. (2004). Fractional Calculus in Bioengineering. Critical Reviews in
Biomedical Engineering, 101615, 32-33.

7. Mainardi, F. (1997). Fractional Calculus: Some basic problems in continum and
statistical mechanics. Fractals and Fractional Calculus in Continum Mechanics, Udine,
Italy, 378(1), 291-348.

8. Distefano, J. J., Stubberud, A.R., Williams, I. J. (1995). Schaum’s outline of theory and
problems of feedback and control systems. California, McGrawHill, 39-57.

9. Giona, M., Cerbelli, S., Roman, H.E. (1992). Fractional diffusion equation and relaxation
in complex viscoelastic materials. Physica A, 191(1), 449-450.
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