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ABSTRACT 

 

DEVELOPING ALGEBRAIC THINKING OF FIFTH GRADERS: 

AN INTERACTION WITH UNITS COORDINATION 

 

 

Acar, Fatma 

Doctor of Philosophy, Mathematics Education in Mathematics and Science 

Education 

Supervisor : Assoc. Prof. Dr. Şerife Sevinç 

 

 

July 2024, 271 pages 

 

This study examined how fifth-grade students’ progress in algebraic thinking 

interacted with their levels of units coordination. Four students from two different 

units coordination levels attended pre-assessment interviews, six teaching episodes, 

and post-assessment interviews. The findings demonstrated some patterns in 

students’ progressions depending on both inter- and intra-level differences in units 

coordination. For example, the students with higher level of units coordination 

learned to write symbolic representations with fewer prompts and more quickly, used 

different forms of functional thinking interchangeably, and demonstrated structural 

thinking explicitly. The students with lower levels of units coordination relied on 

recursive thinking in every new context, and could not generalize the functional 

relationships in the form of y = ax + b without help. However, all students achieved 

most of the learning goals despite the differences in their learning path. This is 

promising for introducing algebraic thinking practices in the early middle school 

years. The prominent differences in their learning path showed the need to consider 

the differences in the nature of problems and the level of units coordination. 

Keywords: Algebraic Thinking, Units Coordination, Functional Thinking
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ÖZ 

 

BEŞİNCİ SINIF ÖĞRENCİLERİNİN CEBİRSEL DÜŞÜNMELERİNİN 

GELİŞTİRİLMESİ: BİRİM KOORDİNASYON İLE İLİŞKİSİ 

 

 

 

Acar, Fatma 

Doktora, Matematik Eğitimi, Matematik ve Fen Bilimleri Eğitimi  

Tez Yöneticisi: Doç. Dr. Şerife Sevinç 

 

 

Temmuz 2024, 271 sayfa 

 

Bu çalışma, beşinci sınıf öğrencilerinin cebirsel düşünmedeki ilerlemelerinin birim 

koordinasyon düzeyleri ile etkileşimini incelemiştir. İki farklı birim koordinasyon 

düzeyinden dört öğrenci ön değerlendirme görüşmelerine, altı tane öğretim deneyine 

ve son değerlendirme görüşmelerine katılmıştır. Bulgular, birim koordinasyonda 

hem seviyeler arası hem de seviye içi farklılıklara bağlı olarak öğrencilerin 

ilerlemelerinde de farklılıklar olduğunu göstermiştir. Örneğin, birim koordinasyon 

düzeyi daha yüksek olan öğrenciler daha az yönergeyle ve daha hızlı biçimde 

sembolik ifadeler yazmayı öğrenmiş, fonksiyonel düşünmenin farklı biçimlerini 

kullanmış ve yapısal düşünme göstermiştir. Birim koordinasyon düzeyi daha düşük 

olan diğer öğrenciler ise yinelemeli düşünmeye eğilim göstermiş ve 𝑦 =  𝑎𝑥 +  𝑏 

şeklindeki fonksiyonel ilişkileri yardımsız genelleyememişlerdir. Öğrenme 

sırasındaki farklılıklarla beraber tüm öğrenciler öğrenme hedeflerinin çoğuna 

ulaşmıştır. Bu durum, ortaokulun ilk yıllarında cebirsel düşünme uygulamaları için 

umut vericidir. Bu süreçteki öne çıkan farklılıklar, problem çeşidinin ve birim 

koordinasyon seviyesindeki farklılıkların dikkate alınması gerektiğini göstermiştir. 

Anahtar Kelimeler: Birim Koordinasyon, Cebirsel Düşünme, Fonksiyonel 

Düşünme
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CHAPTER 1  

1 INTRODUCTION  

The origins of algebra and algebraic thinking can be traced back to antiquity when 

people worked on word problems and presented solutions using verbal expressions 

including numbers and stories but not algebraic notations (Ponte & Guimaraes, 2014; 

Sfard, 1995). For example, the emergence of the function concept in antiquity is seen 

in the practices of counting, identifying the connections and relations between 

variables, determining a correspondence between a number of objects, and the notion 

of dependence between quantities in solving the problems of the social and physical 

world (Ponte, 1992). Algebra, as a “generalized computational process” has existed 

in different forms such as rhetorical (i.e., including all verbal expressions) and 

geometric (e.g., generating particular formulas and expressions through the areas of 

geometric shapes) until today’s symbolic and abstract form (Sfard, 1995, p.18). 

Therefore, as a system of thinking, a form of reasoning and proof, and a language of 

generalizations (Usiskin, 1988; Stephens et al., 2021), it has always existed in 

people’s lives for centuries in making decisions in various contexts and solving 

problems (Usiskin, 1995). 

Considering the implicit or explicit presence of algebra and algebraic thinking in 

people’s lives throughout history, algebra deserves great attention as a way of 

thinking, the language of relationships, the language for solving problems, and the 

language of generalizations (Stacey & MacGregor, 1997; Usiskin, 1995). The study 

of algebra provides students with the opportunity to develop their capacity for 

structured abstract thinking and materials for logical reasoning (Stacey & 

MacGregor, 1997). Therefore, in the early 1900s, the study of this subject was a 

significant component of the mathematics curriculum in secondary schools, with the 
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objective of equipping students with the requisite skills to pursue further studies in 

calculus at the university level (Ponte & Guimaraes, 2014). Subsequently, 

mathematics educators proposed that it should be integrated with other mathematics 

subjects, such as arithmetic and geometry, rather than being isolated in the 

curriculum. However, in the 1980s, there emerged a divergence of opinions 

regarding the teaching of algebra (Baker, 2013). The discussion was about the 

challenges students face in learning algebra, the practical applications of the subject, 

and whether it should be a compulsory course (Baker, 2013; Chazan, 1996; 

MacGregor, 2004).  

Students’ difficulties in learning algebra and performance in various algebraic tasks 

were reported in the studies of mathematics educators such as a lack of understanding 

of algebraic structures and a deficiency in conceptual knowledge of fundamental 

algebra concepts (e.g., Bush & Karp, 2013; Ersoy & Erbaş, 2005; Kaput & Blanton, 

2001; Kieran, 1992; Stacey & Macgregor, 1997). These difficulties highlighted its 

way of teaching and how it is presented in mathematics curricula (Chazan, 1996). 

The roots of difficulties were attributed to teaching of algebraic concepts without 

sufficient attention to conceptual understanding and to the superficial use of 

symbolic language without connections between the contexts rather than the nature 

of the subject (Carraher et al., 2008; Kaput, 2008; MacGregor, 2004; Sfard, 1995). 

The use of symbolic representations as rote learning without an understanding of the 

meanings inherent in the algebraic expressions can lead to an incomplete 

understanding of algebra and difficulties in advanced mathematics in subsequent 

years (Brizuela & Earnest, 2008; Carraher et al., 2008).  

Radford (2000) indicated that the historical development of algebra as a product of 

a community of practice can have some implications for teaching it to today's 

mathematics educators. Introducing the main concepts through contextual situations 

in a problem case, operating with these mathematical entities, and then abstracting 

them as mathematical objects would be more meaningful in the process of learning 

algebra (Sfard, 1995). For example, Sfard (1992) indicated that the ancient studies 

with function were implicit and relied only on operations and computations rather 
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than having an object characteristic. Throughout history, it has developed through 

many extensions such as having an analytic structure with algebraic expressions and 

graphic representations. In parallel, Sfard (1995) asserted that reification is an 

important process in constructing abstract mathematical concepts through algebraic 

processes, meaning “turning computational operations into permanent objects-like 

entities” (p. 16).  

In response to the aforementioned discussions about the superficial presentation of 

algebraic concepts and the difficulties of students in learning algebra, researchers 

adopted an early algebra perspective in teaching algebra (e.g., Blanton et al., 2019; 

Blanton, Brizuela, et al., 2015; Carraher et al., 2008). For example, Blanton et al. 

(2017) asserted that the reason younger students or adolescents do not have a robust 

understanding of the variable concept is not because of their “lack of ability” (p. 

199), rather because of the lack of opportunities given in the classroom to 

mathematize the variables in contextual problems. These opportunities can also 

allow what Sfard (1995) supported in abstracting mathematical concepts through 

appropriate and sufficient processes for reification. This approach in teaching 

algebra refers to an explicit and gradual presentation of main algebraic processes and 

concepts into the mathematics curriculum starting from the early elementary years 

(Blanton & Kaput, 2005; Carraher et al., 2008). Therefore, some common questions 

appeared in the literature such as whether there is a particular/appropriate time for 

learning algebra, and whether students should master arithmetic before learning 

algebra (Levin & Walkoe, 2022). These questions and interpretations about students’ 

difficulty in learning and doing algebra raise the issue of how algebra can be 

introduced in the early years of schools, which is elaborated briefly in the next 

section. 

1.1 Introducing Algebra in the Elementary Years  

There are several suggestions for teaching and learning algebra with more 

understanding, such as beginning in early years, interconnecting algebra with other 
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mathematics subjects, presenting various algebraic thinking forms, and considering 

the students’ current capacities and abilities (Kaput, 1999). Therefore, there is 

increasing attention on early algebra studies in which algebraic reasoning, and some 

practices are implemented in early elementary years to see how students at an early 

age can practice algebra and achieve those processes (e.g., Blanton et al., 2019; 

Blanton, Brizuela, et al., 2015; Carraher et al., 2008). For example, Blanton et al. 

(2011) emphasized significant concepts and constructs as five big ideas in early 

algebra teaching which are generalized arithmetic, variable understanding, 

understanding of equivalence, quantitative reasoning and functional thinking.  

The notion of “early algebra” appeared in many studies examining the teaching and 

learning of algebraic concepts such as generalization, functional thinking, and 

variable understanding in elementary years of schooling, even in kindergarten ages 

(e.g., Blanton & Kaput, 2005; Carraher et al., 2008). Researchers asserted that giving 

algebraic reasoning in early elementary years invests in the students’ sophisticated 

and conceptual understanding of further mathematics learning (e.g., Blanton & 

Kaput, 2005; Carraher et al., 2008; Kaput, 1999; Radford, 2014). For example, 

Carraher et al. (2008) described a learning process where some key mathematical 

processes are applied such as using indeterminate quantities in contextual problems, 

interpreting the data in function tables, creating conjectures, generalizing, and 

representing the relationships in different formats.  

Researchers observed that students in elementary years could identify problem 

quantities, generalize the relationships between variables, and represent these 

relationships using symbolic notations and equations (e.g., Blanton et al., 2019; 

Blanton, Stephens, et al., 2015; Brizuela et al., 2015; Carraher et al., 2006). For 

example, Brizuela et al. (2015) demonstrated that first graders could use algebraic 

notations to represent the relationships between covarying quantities by possessing 

different understandings of variables. They indicated that given opportunities 

through meaningful contexts and employing useful methods such as presenting the 

information in a function table and asking for generating a rule allowed students to 

recognize and work with indeterminate quantities, which is a key condition of 



 

 

5 

algebraic thinking (Radford, 2014). Similarly, Blanton, Stephens, et al. (2015) found 

that third graders who took a one-year early algebra intervention focusing on 

generalized arithmetic, variable understanding, understanding of equal signs, and 

functional thinking demonstrated an improvement in algebraic thinking. They started 

to think relationally about the equal sign, use variable notations to represent 

unknown quantities, and generalize functional relationships between covarying 

quantities. In addition, Blanton et al. (2019) found that students in a longitudinal 

intervention showed improvement in various algebraic practices, such as 

generalizing arithmetic properties with symbols and expressing functional thinking 

in various forms, from third to fifth grade. They also noted that students were better 

at using symbols to represent the arithmetic properties than at writing equations for 

functional relationships. This note on the difference in the students' performances in 

various algebraic tasks was later discussed by Zwanch (2022a) on the role of certain 

cognitive factors, which is also mentioned in the next heading.   

These findings of early algebra studies are very important in terms of dealing with 

students’ difficulties in learning algebra, improving their algebraic thinking, and 

observing the roots of important algebraic subjects of advanced mathematics in 

young students’ thinking processes. Despite the promising findings of early algebra 

studies, some researchers remarked on the constraints of young students’ mental 

operations with known and unknown quantities in their various mathematical 

performances such as multiplicative reasoning, generalization, and algebraic 

reasoning (e.g., Hackenberg, 2013; Olive & Caglayan, 2008). Investigating 

reasoning with quantities to understand algebraic thinking (e.g., Olive & Caglayan, 

2008; Smith & Thompson, 2008) puts further question marks in investigating young 

students’ practices of algebraic thinking and reasoning. For example, there appeared 

questions such as how the students’ understanding of quantities and their 

relationships affect their writing equations and generalizations of multiplicative 

relationships (e.g., Hackenberg & Lee, 2015; Olive & Caglayan, 2008; Steffe & 

Izsak, 2002). 
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1.2 Students’ Mental Structures about Quantities   

Analyzing the problems through the quantities and the relationships between the 

quantities refers to quantitative reasoning (Ellis, 2007; Thompson, 1990). Steffe and 

Izsak (2002) described algebraic reasoning through reasoning on unknown or known 

quantities. It involves the generalizations of the relationships between quantities 

(Blanton & Kaput, 2011). Therefore, researchers who take a quantitative reasoning 

perspective in investigating the teaching and learning algebra indicated that 

understanding quantities and relations between them is an essential factor for 

developing algebraic reasoning (e.g., Ellis, 2011; Fuji & Stephens, 2008; 

Hackenberg, 2013; Hackenberg et al., 2021; Olive & Caglayan, 2008; Smith & 

Thompson, 2008). For example, interpreting the relationships between quantities 

multiplicatively signifies the complexity of this reasoning process. This, in turn, 

allows students to recognize and generalize the multiplicative relationships in 

different forms such as verbal or symbolic (Hackenberg & Lee, 2015; Zwanch, 

2022a).  

Many researchers (e.g., Ellis, 2011; Stephens, Ellis, et al., 2017) pointed out that 

quantitative reasoning can be enhanced by providing problem situations dealing with 

various real-life quantities. However, it is remarked that real-life situations do not 

guarantee the students’ recognition and operation with quantities and meaningful 

generalizations by themselves; the students’ conceptions and the way of mental 

operations with quantities should be taken into account as well (Stephens, Ellis, et 

al., 2017). Therefore, students’ conceptions of numbers and how they operate with 

quantities by using their current mental structures, as units coordinating activity, 

gained importance in investigating students' various mathematics performances such 

as algebraic reasoning, multiplicative reasoning and fraction understanding (e.g., 

Hackenberg, 2013; Olive & Caglayan, 2008; Steffe, 1992).  

The quantitative complexity in students’ work with quantities is described through 

their construction and coordination of units (Ulrich, 2015). For example, calculating 

the number of muffins in several rows each involving the same number of muffins 



 

 

7 

requires students to iterate units (each muffin) and composite units (the number of 

muffins in each row) into another composite unit (the number of rows) (Hackenberg, 

2010). The level of units students assimilate determines their levels of units 

coordination (i.e., MC1, MC2, and MC3). For instance, assimilating one level of 

units refers to students’ calculating the total number of muffins through activity by 

taking one-level of units (one muffin) as given, such as counting by ones and 

signifying each count of a row of muffins. This is called stage 1 or the first 

multiplicative concept (MC1) in terms of the levels of units coordination 

(Hackenberg & Tillema, 2009; Hackenberg & Sevinc, 2024). Assimilating two-

levels of units refers to students’ recognition of this multiplying structure before 

activity (MC2). Therefore, they know that they need to find, for example, five (the 

number of rows) fours (the number of muffins in each row). When students 

assimilated three levels of units that means they can flexibly operate between the 

different units such as the number of rows, the number of muffins in each row and 

the total number of muffins as given structures it refers to the third multiplicative 

concept (MC3). Steffe (1992) indicated that analyzing multiplicative situations 

requires students to coordinate at least two composite units by distributing one 

composite unit over the other. 

By integrating the framework of students’ levels of units coordination and their 

performance in various algebraic tasks, researchers observed that students’ 

transformation and coordination of units is an influential factor in algebraic 

reasoning in terms of writing equations and using letters for unknown quantities and 

generalizations (e.g., Hackenberg, 2013; Hackenberg & Lee, 2015; Zwanch, 2022a, 

2022b). They suggest that students must possess a certain unit coordination level in 

order to generalize and represent the relationship between quantities using symbols. 

For example, researchers asserted that students who coordinate two-levels of units 

in activity would not perceive quantitative unknowns while the students at the upper 

levels (i.e., MC2 or MC3) can operate with quantitative unknowns such as 

partitioning and iterating (Hackenberg, 2013; Hackenberg et al., 2021). 
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Students at different levels of units coordination demonstrated qualitatively different 

ways of writing equations and generalizations of relationships between unknown 

quantities (Hackenberg & Lee, 2015; Zwanch, 2022a). For example, in a 

multiplicative relationship between two lengths, the longer one is five times the 

shorter one (𝑦 =  5𝑥), students’ assimilation of three-level of units helps them to 

analyze this situation in a more sophisticated way (Hackenberg & Lee, 2015). 

Representing this equation in symbols requires constructing the unknown y as a unit 

of five units of x as a three-level units structure. This, in turn, could allow students 

to generate other equations if they can reflect on this three-level of units structure. 

For example, taking y as a composite unit and constructing x by dividing y by the 

unit of fives (i.e., 𝑦/5 =  𝑥) represent students’ sophistication of units coordination 

by internalizing three-levels of units.  

Considering both promising findings of early algebra studies (e.g., Blanton et al., 

2019; Carraher et al., 2006) and remarkable notes about the interaction between units 

coordination and algebraic reasoning, I aimed to incorporate those findings and 

investigate this interaction in a different context. In general, this study aimed to 

investigate fifth-grade students’ progress in algebraic thinking with the potential 

interaction with their units coordination. The next section presents the purpose of the 

study in more detail.  

1.3 Purpose and Research Questions  

The point of departure in this study is the crucial role of algebra and algebraic 

thinking in mathematics and real life. It embedded many important thinking 

processes such as analytical thinking and structural thinking (Radford, 2014; Kieran, 

2022), and useful practices such as generalizations, justifications, and the use of a 

new language in expressing the generalities (Ellis, 2007; Kaput, 2008; Usiskin, 

1995). These are important components in solving problems, evaluating real-life 

situations and decision-making (Usiskin, 1995). In addition, notable findings from 

early algebra studies provided a new perspective, such as the gradual settling of 
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algebraic processes, which allows young students to orient themselves to key 

processes such as functional thinking, generalization, and symbolic notation 

(Blanton & Kaput, 2005; Carraher et al., 2008).  

Despite the promising findings of early algebra studies about improving young 

students’ algebraic thinking and reasoning, researchers focusing on quantitative 

reasoning perspective and studying units coordination raised new questions on the 

way to the goal of this study. They asserted that certain cognitive factors of students 

such as constructing and operating with units are influential in students’ algebraic 

thinking and reasoning (e.g., Hackenberg, 2013; Zwanch, 2022a). For example, 

Hackenberg (2013) indicated that students need to possess certain mental structures 

in terms of units coordination to achieve algebraic tasks such as writing equations. 

Accordingly, it may be difficult for elementary and early middle school students (i.e., 

fifth grade) to achieve algebraic reasoning, given the estimations and findings about 

students’ levels of units coordination (e.g., Acar & Sevinc, 2021; Clark & Kamii, 

1996; Kosko, 2019; Steffe, 2024). Researchers estimated that more than 20 percent 

of fifth graders could not demonstrate valid multiplicative thinking (Clark & Kamii, 

1996; Kosko, 2019) such as operating at the MC1 level or pre-multiplicative stage 

(Acar & Sevinç, 2021; Steffe, 2024). This could be a significant constraint for 

administering an early algebra learning approach to young students.  

Departing from this contradiction between early algebra studies and units 

coordination perspective, the goal of this study emerged. It was aimed to investigate 

students’ progress in algebraic thinking in interaction with their units coordination. 

To achieve this goal, there was a need to design a detailed learning process including 

the specified learning goals, related learning tasks, and conjectures about students' 

learning process, which refers to a Hypothetical Learning Trajectory (Simon, 1995). 

In this process, I aimed to study with fifth graders by hypothesizing that I would 

encounter students at different levels of multiplicative concepts, starting from MC1 

(Acar & Sevinç, 2021; Steffe, 2024). The fifth-grade level, as opposed to lower 

grades, can provide students who have attained at least an MC1 level, which 

represents the initial stage of multiplicative concepts in terms of units coordination. 
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At this stage, students can complete multiplicative tasks (e.g., Hackenberg, 2013; 

Hackenberg et al., 2021), which can be encountered in algebraic tasks. In addition, 

the fifth graders do not receive formal algebra, which could mitigate the adverse 

consequences of misaligned or erroneous preconceptions during the learning 

process.  

For generating the domain-specific perspective in the hypothetical learning 

trajectory (HLT) and designing the learning tasks, I aimed to follow the researchers 

in the early algebra studies (e.g., Blanton, 2008; Blanton & Kaput, 2008; Carraher et 

al., 2008). They supported allowing students to study in meaningful contexts, to think 

about the relationships between quantities, and to make generalizations for helping 

them understand the key ideas and to move smoothly with a new symbolic language 

to represent and express the relationships (e.g., Blanton, Stephens, et al., 2015; 

Carraher et al., 2008; Stephens, Fonger, et al., 2017). These generated the overall 

characteristics of the framework of the HLT.  

Conclusively, the main goal of this study was to investigate fifth-grade students’ 

progress in algebraic thinking in interaction with their units coordination levels. I 

aimed to observe this progress and interaction during a learning sequence specified 

after actualizing the HLT that targeted the students’ generalizations and symbolic 

representations of the relationships between unknown quantities or variables. 

Specifically, this study aimed to answer the following research questions:  

1. What is the initial state of fifth-grade students’ units coordination and 

algebraic thinking? 

2. How can the units coordination levels of fifth-grade students interact with 

their progress in algebraic thinking during a learning sequence that focuses 

on the generalization of the relationships between unknown quantities and 

between variables? 
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2.1.  How can the units coordination levels of fifth-grade students interact 

with their progress in algebraic thinking regarding the relationships 

between unknown quantities? 

2.2.  How can the units coordination levels of fifth-grade students interact 

with their progress in algebraic thinking regarding the functional 

relationships between variables? 

The process from the initial motivation of this study to the formulation of the 

research questions described until this part is presented in Figure 1.1. 

 

Figure 1.1 The overall process in formulation of the research questions 

1.4 The Significance of the Study  

There are many studies investigating the interaction between units coordination and 

performance on algebraic tasks in various aspects (e.g., Hackenberg, 2013; 

Hackenberg & Lee, 2015; Zwanch, 2022a, 2022b). This study differed from them in 

several aspects such as the characteristics of students, the design of the study, and 

the assessment procedure in terms of task characteristics. 
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First of all, this study involved fifth graders as participants whereas other studies had 

students at upper levels, ranging from 6th to 10th grade (e.g., Hackenberg et al., 2021; 

Hackenberg & Lee, 2015; Zwanch, 2022a, 2022b). Including younger students in the 

investigation of the interaction between algebraic thinking and units coordination 

was a challenge considering that a considerable amount of fifth graders may not be 

good at multiplicative thinking (Clark & Kamii, 1996; Kosko, 2019; Steffe, 2024) 

which is a significant element in both units coordination and algebraic reasoning 

tasks. However, the inclusion of students who had not yet demonstrated significant 

proficiency in these subjects was also intended. This was because I aimed to observe 

their progress in algebraic thinking through the HLT. This study also aimed to 

include MC1 students who were regarded as incapable of achieving some algebraic 

processes, such as perceiving quantitative unknowns (Hackenberg et al., 2021) and 

symbolic generalizations (Zwanch, 2022a). Given that other studies worked with 

students at upper levels of units coordination such as MC2 and MC3 (e.g., 

Hackenberg et al., 2017; Hackenberg et al., 2021), except Zwanch (2022a) who 

included MC1 students as well but at sixth and upper-grade levels, I conjectured that 

including MC1 students in this study would provide significant findings regarding 

how further these students could go in algebraic thinking. Conclusively, working 

with fifth graders and also MC1 students represents a departure from previous studies 

and offers a unique advantage in conducting this design study aligned with the goal 

of the study.  

Another distinguishing feature of this study is its methodology involving the 

conceptual framework, the design, and data collection. Firstly, this study aimed to 

examine students’ progress in algebraic thinking throughout the HLT by interpreting 

it with their uınits coordination levels. The main goal of the HLT was to develop 

students’ algebraic thinking in terms of generalizing the relationships between 

unknown quantities and generalizing functional relationships between variables. 

Therefore, this study mainly used a design-based approach to develop an HLT and 

adopted an early algebra perspective in teaching and designing the tasks. On the other 

hand, the majority of studies investigating students' diverse algebraic performances 
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in relation to their units coordination levels employed a clinical interview approach 

(e.g., Hackenberg, 2013; Hackenberg & Lee, 2015; Zwanch, 2022a). Some 

researchers who used a design experiment approach (e.g., Hackenberg et al., 2017; 

Hackenberg et al., 2021) mainly focused on the students’ fractional knowledge and 

expression of relationships between unknown lengths measured by different non-

standard units. Furthermore, the aforementioned studies presented problems 

including fractional units and coefficients (e.g., Hackenberg et al., 2017; Hackenberg 

& Lee, 2015; Olive & Cağlayan, 2008). In contrast, all problems in this study 

included whole number quantities by focusing on their algebraic reasoning involving 

functional thinking, analytical thinking, and generalization. 

To summarize, this study differs from other studies in terms of methodology, 

although there is some overlap in theoretical frameworks. Therefore, it gains 

importance through its design, contexts, and instructional tasks which are diverged 

from other studies by bringing together different algebraic reasoning processes such 

as the generalizing relationships between unknown quantities and generalizing 

functional relationships. In this way, the findings of this study would contribute to 

the existing body of knowledge on the teaching of algebra in the early middle school 

years and on the coordination of units to plan further instructions and mathematics 

curricula that integrate algebra more effectively in elementary or early middle school 

years. 

1.5 Definitions of Important Terms 

This section defined important terms that were used frequently throughout the 

dissertation text. The definitions or explanations of the terms were based on how I 

understood each concept grounded on the descriptions of various researchers or 

mathematics educators and the meaning I used throughout the text. Although there 

are many important mathematical concepts embedded in this study, that need to be 

clearly described, this section touches on only several of them that are important to 

understand the research objective from the outset. Other important concepts and 
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terms were explained in Chapter 2 based on the conceptual and theoretical 

perspectives. 

Algebraic thinking is one of the key concepts of this study. It refers to a thinking 

process involving working with indeterminate quantities in an analytic way which 

can be reflected in different ways such as verbal, symbols, or figures (Radford, 

2014). For example, considering that ‘changing the order of any two numbers does 

not change their sum’ refers to algebraic thinking by taking indeterminate quantities 

(i.e., any two numbers), operating with them as abstract objects, and deducing a 

property for the addition operation in a structured way. This verbal statement of 

thought can be denoted in symbols like 𝑎 +  𝑏 =  𝑏 +  𝑎.  

Algebraic reasoning is described as “an activity of generalizing mathematical ideas” 

(Blanton & Kaput, 2011, p. 6) and it involves the processes of generalization, 

symbolical representation of these generalizations, and operating in this system of 

symbols (Kaput, 2008). In early algebra literature, this term is used interchangeably 

with algebraic thinking (Kieran, 2011). However, Kieran (2011) defended the use of 

a broader term, algebraic thinking, against the risk of a narrow interpretation of 

algebraic reasoning from a classical mathematical reasoning perspective. Therefore, 

I use this term to refer to any generalization action in problem situations.  

Functional relationship refers to a covarying relationship between quantities in 

which the change in one quantity is expressed in terms of the change in the other 

quantity. For example, in a basic early algebra context, expressing the number of 

legs of dogs as ‘it increases by four when the number of dogs increases by one’ or 

‘it is four times the number of dogs’ refers to expressing a functional relationship. 

Moreover, this way of thinking including recognition of functional relationships 

refers to functional thinking (Confrey & Smith, 1994; Smith, 2008) which is one 

dimension of algebraic thinking (Kieran, 2022).   

Units coordination refers to the mental operations that construct the units in different 

levels and the relationships between units and coordinate them in different problem 

situations (Hackenberg & Sevinç, 2024; Steffe, 2001). Units coordination 
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demonstrates the “quantitative complexity” of constructing and coordinating units 

and composite units (Ulrich, 2015, p. 3). For example, the number five as a unit 

consisting of five iterable units of ones refers to constructing composite units and 

coordinating two-levels of units. This composite unit is abstracted from a counting 

activity and separated from a sequence. Therefore, two different sequences such as 

1-2-3-4-5 and 16-17-18-19-20 represent the same composite unit, five.  

A Hypothetical Learning Trajectory (HLT) refers to teachers’ or researchers’ 

prediction of a learning path in a particular context including the learning goals, 

hypothesis about the students’ learning and learning tasks (Simon, 1995). It is 

hypothetical because a teacher cannot know exactly what might happen during the 

learning process. He/she can only hypothesize what might happen based on his/her 

theoretical understanding, current knowledge of the students, findings from related 

literature, and previous experiences.  

Learning sequence refers to which path students got from one point to the current 

one in a designed process (Bakker, 2018). I used this terminology in several places 

in this study to indicate the process or steps the students take during and after the 

HLT is actualized. After implementing the learning tasks in the HLT, the outcome 

was an actual learning process rather than a hypothetical one. Therefore, I used the 

term learning sequence in some parts of the study to emphasize that it is an actual 

path anymore.  

Progress in algebraic thinking with interaction with units coordination refers to the 

development of students’ way of algebraic thinking, which is potentially influenced 

by their levels of units coordination. It concerns the interpretation of students’ 

development in algebraic thinking by relating the patterns in their progress to their 

units coordination.   
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CHAPTER 2  

2 LITERATURE REVIEW 

In this study, the purpose was to investigate the interaction between the students’ 

units coordination levels and their progress in algebraic thinking through a 

hypothetical learning trajectory that centered on different algebraic reasoning tasks 

including generalization, functional thinking, and symbolic representation. As the 

investigation of this study involves many mathematical concepts and processes, this 

chapter presents the theoretical and conceptual framework that guided our 

understanding and the investigation.  

Algebraic thinking and unit coordination are the two main concepts in this study. 

Within this framework, this chapter presents the nature of algebra and unit 

coordination in two different sections, respectively. Each section provides a detailed 

explanation of the relevant concept, accompanied by clear definitions and 

descriptions of the related terms. It also presents an overview of the related literature, 

which serves to demonstrate relevant findings and to guide this research in terms of 

methodology and interpretations of findings.  

2.1 The Nature of Algebraic Thinking 

The origins of algebra and algebraic thinking go back to ancient times when a 

minority of people gradually developed a symbolic system as a problem-solving 

strategy, which evolved into the use of symbols from verbally expressing the 

relationships in problems (Sfard, 1995). For example, in ancient times, the idea of 

function as a key concept in algebra appeared in verbal expressions of dependence 

without using symbols (Youschkevitch, 1976). By the end of the nineteenth century, 
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the number of texts on algebra increased (Katz, 1997). These texts involved various 

definitions of algebra priorly emphasizing equation solving, general procedure of 

operations, unknown and known quantities, and notations. As algebra developed 

throughout history as a branch of mathematics, and as the number of people working 

on it increased, it gained a multifaceted nature (Katz, 1997). 

Researchers interpret algebra as an important tool for various mathematical activities 

such as expressing generality and relationships, constructing equivalent expressions, 

and problem-solving (e.g., Stacey & MacGregor, 1997; MacGregor, 2004; Usiskin, 

1995). Most of these activities require certain ways of thinking and reasoning such 

as analytical thinking, abstraction, deduction, and structural thinking (Kieran, 1989; 

Radford, 2014; Usiskin, 1995). Based on various ways of thinking and reasoning that 

are embedded in algebra, the following paragraphs identify and clarify the 

dimensions and conditions of algebraic thinking and the key processes and aspects 

of algebraic reasoning.  

Researchers make a characterization of algebraic thinking to differentiate it from 

arithmetic thinking and to specify it in various mathematical processes (e.g., Kieran, 

1989; Radford, 2014). Radford (2014) characterizes algebraic thinking through its 

analytic nature in which the operations are made with indeterminate quantities as if 

they were known quantities and rules or formulas are deduced as a consequence of 

this thinking/operation process. Hence, Radford (2014) put forward three conditions 

to specify algebraic thinking: indeterminacy, denotation, and analyticity.  

The condition of indeterminacy refers to dealing with quantities that are not known 

and can take various numerical values (i.e., indeterminate) in a problem situation.  

These indeterminate quantities can be denoted in various ways such as symbols, 

natural language, and gestures, which refer to the denotation condition. Finally, the 

analyticity condition refers to the operations on these indeterminate quantities using 

a symbolic system. The condition of analyticity is important because it represents 

that algebraic thinking is an effective tool for deductive reasoning, which results in 

an identity or formula after operating with unknown quantities (MacGregor, 2004). 
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This deductive way of reasoning refers to establishing mathematical formulas or 

truths through the use of current mathematical rules and truths (Usiskin, 1995).   

Furthermore, Kieran (2022) indicated three main dimensions of algebraic thinking: 

analytic thinking, structural thinking, and functional thinking. Similar to Radford 

(2014), Kieran (2022) remarked that the analytic manner of algebraic thinking is 

essential to differentiate it from arithmetic thinking. This form of thinking is 

described as holding unknowns and operating with them like they were known 

quantities. This is exemplified through some practices such as equation solving, 

transformation of equalities, and generalization of arithmetic properties. Radford 

(2014) asserted that analyticity is the way of algebraic thinking in which the formulas 

are formed through analytical deduction rather than guessing or trying, hence it is 

why François Viète, the French mathematician in the sixteenth century, called 

algebra an analytic art.   

The dimension of structural thinking points out the ability to be aware of the relations 

and structures in mathematical notions and express and elaborate on these structures 

(Kieran, 2022). Structural thinking is considered an essential characterization of 

algebraic thinking by different researchers (e.g., Blanton & Kaput, 2005; Blanton, 

Stephens et al., 2015). It requires treating mathematical notions or expressions as 

abstract objects rather than operational processes (Sfard, 1991). For example, 

defining rational numbers as “pairs of integers (a member of a specially defined set 

of pairs)” rather than a result of “division of integers” represents a structural way of 

definition rather than an operational way (Sfard, 1991, p.5). Similarly, explaining the 

equality 12 + 15 =  15 + 12 by remarking that reversing the numbers does not 

change the addition (i.e., reflecting the commutative property) represents a kind of 

structural thinking (Blanton, Stephens, et al., 2015).  In an equation-solving task, 

considering the algebraic expression “𝑥 +  5” a mathematical object in an equation 

“3(𝑥 +  5)  =  36” (p. 56) reflects an awareness of the structure and allows the 

students to conduct more meaningful ways for solving the equation rather than 

applying the procedures learned by rote such as multiplying 3 with (𝑥 +  5) (p.56).   
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The last dimension of algebraic thinking is functional thinking (Kieran, 2022). 

Functional thinking can be explained through the concept of function and functional 

relationship. 

The idea of function first appeared in verbal expressions and definitions of 

dependence rather than in symbolic expressions in ancient times (Youschkevitch, 

1976). Different forms of functions existed in ancient times, such as "implying a 

correspondence between a set of given objects and a sequence of counting numbers," 

"four elementary arithmetical operations, which are functions of two variables," and 

"tables of reciprocals" (Ponte, 1992, p. 3). Freudenthal (1983) described the 

emergence of the function concept through the connections and relations between 

variables and the notion of dependence between the quantities in the social and 

physical world. Thereby, functions are described as a “world of relationships, world 

of processes and world of rules, patterns and laws” (Sierpinska, 1992, p.31).  

Functional thinking is the recognition of the relationships among covarying 

quantities and the representation of this functional relationship in various forms 

including words, graphs, and symbols (Smith, 2008). During a functional thinking 

practice, there are multiple steps to carry out such as identifying covarying quantities, 

recording the values of the quantities reciprocally (i.e., making a table), determining 

patterns in the record, and representing this functional relationship by coordinating 

the patterns. Therefore, functional thinking refers to the thinking processes in 

interpreting functional relationships between covarying quantities in mathematical 

problems or real-life situations.  

In defining a functional relationship, two common approaches are described as 

covariational and correspondence (Confrey & Smith, 1994). In the covariational 

approach, the functional relationship is defined through the rate of change by 

interpreting a corresponding increase in one variable with the increase/decrease in 

the other variable. In other words, a functional relationship is described by focusing 

on how each quantity varies from one step to the following (i.e., from x1 to x2 and 

from y1 to y2) and determining the functional relationship by coordinating this 
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transition. In a correspondence approach, the relation is defined between 

“corresponding pairs of variables” (Smith, 2008, p.147) such as “the number of eyes 

equals 2 times the number of people” (i.e., 𝑦 =  2𝑥). Hence, in the correspondence 

approach, an invented rule or formula determines the value of one quantity (e.g., y) 

with respect to the other quantity.  

In short, the practices of algebra incorporated important thinking processes. An 

important process starts with identifying and operating with indeterminate quantities. 

Additionally, there are abstracting the structures constructed through these 

operations and denoting or expressing the outcomes of the thinking process in 

various forms. In addition to characterizing algebraic thinking through its 

dimensions, understanding the nature of algebra requires describing the main aspects 

of algebraic reasoning processes. This is the topic of the next section. 

2.1.1 Algebraic reasoning  

Kaput (2008) remarked on the challenge of describing algebra because of its 

multifaceted nature evolved throughout history and different cultures. The 

integration of different activities of algebra such as the generalization of 

relationships and the use of indeterminate quantities provides a broader and general 

description of algebraic reasoning (e.g., Carraher & Schliemann, 2014; Kaput, 2008). 

In many research, algebraic reasoning is used interchangeably with algebraic 

thinking. However, Kieran (2011) remarked that algebraic reasoning does not 

involve as many thinking processes as algebraic thinking embodies.   

Kaput (2008) differentiates algebra and algebraic reasoning by describing algebra as 

a body of knowledge by its structure in cultural contexts while defining algebraic 

reasoning as a “human activity” (p. 9), depending on thought processes. Kaput’s 

(2008) description of algebraic reasoning includes two core aspects: one is 

“systematically symbolizing generalizations of regularities” and the other is 

“syntactically guided reasoning and actions on generalization expressed in 
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conventional symbol systems” (p.11). He also describes several content strands that 

include, to a considerable extent, these main practices in algebra such as generalized 

arithmetic incorporating the structures of operations and the relations with 

quantitative reasoning, functions with the relationships between covarying 

quantities, and modeling applications of mathematics (see Figure 2.1).  

Figure 2.1. Kaput’s (2008) framework describing algebraic reasoning (p.11)  

Kaput (2008) puts two notions, generalization and symbolic representation, at the 

center of defining algebraic reasoning. For example, through generalizations, the 

students can identify and represent the relationships between the numbers and 

operations such as the commutative property of addition (i.e., 𝑎 +  𝑏 =  𝑏 +  𝑎). 

This allows the students to see the mathematical structures and to make abstractions 

(Blanton et al., 2011; Dienes, 1963). Furthermore, the study of dependence between 

covarying quantities requires a generalization of the relationships and representing 

them in a symbolic system (Kaput, 2008). Similarly, the relations and structures 

recognized and generalized from different problem situations can be represented in 

this symbolic system through mathematical modeling languages, which is another 

aspect of algebraic reasoning.  

As seen, generalization is a central activity in algebra comprising generalized 

arithmetic, functional thinking, and modeling (e.g., Mason, 1996; Lee, 1996). 
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Therefore, the following section describes the meaning of generalization in both 

mathematics and algebra to complement the nature of algebra in the conceptual 

domain.  

2.1.2 Generalization 

Generalization is emphasized as a central component of mathematics (Mason, 1996) 

while it has a kind of scientific characteristic that is not specific to mathematics 

(Radford, 1996). Dienes (1963) defined generalization as a “class extension” (p. 120) 

where the class is formed by bringing similar events or elements through an 

abstraction process. The generalization process is summarized in a dual nature: 

seeing the general in particular cases and applying this to others and finding the 

general, that is not known, from particular cases (Krutetskii, 1976; Mason, 1996). 

Dumitrascu (2017) mentioned three inevitable mental processes in generalization 

performance: analysis, synthesis, and abstraction (as cited from Rubinshtein, 1994). 

In addition, two types of generalization are identified as empirical and theoretical 

generalization in terms of whether analysis and abstraction are used in the process. 

In empirical generalization, the main activity is to compare the cases according to 

their external similarities and differences, while in theoretical generalization the 

relations are internalized through analysis and abstraction (Davydov, 1990; Dörfler, 

1991). Thus, abstraction is an essential process in generalization. Radford (1996) 

points out that generalization has "a logical aspect" (p. 108) that depends on the 

problem solver's way of thinking about the relations and objects of the problem. 

Therefore, it needs "an additional (logical) element in the classroom" (p. 109): 

validity, in other words, justification. Therefore, the students’ justification of the 

generalizations such as generic formulas or general statements would provide 

evidence for the abstraction and analysis processes, which represent a theoretical 

generalization (Lannin, 2005; Radford, 1996) 

Radford (2010) put forward “a typology of forms of algebraic thinking” (p. 1) based 

on the students’ generalizations. In the first and basic form, factual algebraic 
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thinking, (although they are not hierarchical) the students perceive the regularities in 

the patterns partially such as focusing on the recursive relationship between figures. 

Hence, they may not practically reach the bigger items in the figural patterns. We 

can observe the students’ in-action-formulas through their gestures and verbal 

expressions implicitly such as finger movements and expressions like “every time 

there will be one more in the air” (p.5). The second form is contextual algebraic 

thinking in which the students can describe the generic formula verbally in a 

particular context. In this form, indeterminacy becomes explicit as different than 

factual algebraic thinking because the students form a general figure rather than 

focusing on specific cases. Lastly, standard algebraic thinking requires the generated 

formula to represent the students’ experiences with the relationship between 

quantities. Hence, the formula can be represented in both symbols and narrative 

statements. If the symbolic representations are formed through an analytic and 

deductive way rather than trial-error calculations it can be regarded as standard 

algebraic thinking. Therefore, Radford (2010) remarked that the formula or symbolic 

representations of generalizations do not guarantee the analytic way in students’ 

algebraic thinking.  

In conclusion, the nature of algebra includes many thinking and reasoning processes 

such as analysis, generalization, representation, and justification. Our conceptual 

understanding of algebra involves the dimensions of algebraic thinking such as 

analytical and structural thinking that Radford (2014) defined, and the key processes 

and aspects of algebraic reasoning described by Kaput (2008) such as generalization 

and symbolic representations.  Concerning this, we considered the main processes in 

developing the students’ algebraic reasoning would be the generalization of 

relationships or patterns and symbolic representations of these generalized 

relationships, which requires various algebraic thinking processes such as analytical 

thinking, structural thinking, and functional thinking. Figure 2.2 illustrates the 

conceptual understanding of algebra and the key processes in terms of thinking and 

reasoning surrounding this understanding in the current study. 
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Figure 2.2 The conceptual understanding of the nature of algebra 

Kaput (2008) needed to bring forward his description of algebra and algebraic 

reasoning to clarify the scope of early algebra which also means incorporating some 

mathematical processes that allow the students to be ready for advanced algebraic 

subjects (Carraher et al., 2008). In teaching and learning algebra, it is important to 

clarify important algebraic thinking and reasoning processes to determine the scope 

of school algebra. This would also be useful for designing the learning sequence to 

develop the students’ algebraic reasoning.   

2.1.3 Algebra in mathematics education  

At the beginning of the twentieth century, the teaching and learning of algebra as a 

subject, including first and second-degree equations, proportions, algebraic 

expressions, trigonometry, etc., gained importance in secondary schools (Ponte & 

Guimaraes, 2014). In general, the community perceived the study of algebra as a 

gateway to college because it was compulsory in high schools (Kaput, 1999; Ponte 

& Guimaraes, 2014). In the 1980s, the slogan “Algebra for All” appeared in the 
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United States, emphasizing that all students should learn algebra (Chazan, 1996). On 

the other hand, many mathematics educators and curriculum makers have started to 

discuss the difficulties the students have in learning algebra and the practical 

applications of the subject as the level of necessity (Baker, 2013; Chazan, 1996; 

MacGregor, 2004).  

Assessments of students’ algebra performances and their understanding of algebraic 

structures showed that they lack conceptual knowledge of fundamental algebra 

concepts (e.g., Bush & Karp, 2013; Ersoy & Erbaş, 2005; Kaput & Blanton, 2001; 

Kieran, 1992). Researchers asserted that for many years, superficial teaching of 

algebra without sense-making and without going beyond the limited symbolic 

manipulation causes students to have difficulty studying algebra in further years and 

have a failure in mathematics (e.g., Blanton et al., 2017; Carraher et al., 2008; Kaput, 

1999, 2008; MacGregor, 2004). 

Concerning the discussions about the difficulties students have in learning algebra, 

Chazan (1996) defended focusing on the teaching of algebra and its place in the 

curriculum rather than discussing the subject's difficulty in improving the students’ 

learning. Carraher and Schliemann (2007) asserted that many topics taught earlier 

are essential to prepare the grounds for later mathematics subjects. Presenting 

algebra like dropping out of the sky may make the students learning difficult because 

of a lack of connections and ground (Kieran, 1992). Hence, the notion of early 

algebra appeared as an essential body of research in algebra learning approaches.  

Carraher et al. (2008) warned that early algebra should not be understood only as 

algebra early. It does not mean presenting the symbolic language of algebra in the 

early years. Emphasizing and directly manipulating algebra's notation system in the 

earlier years may cause the students to have a superficial understanding of the subject 

matter (Usiskin, 1988). Early algebra is distinguished from algebra presented in high 

schools and colleges through its gradual settlement in elementary mathematics topics 

(Carraher et al., 2008). Hence, when searching today’s research about school algebra, 

many views emphasize the effective incorporation of algebra subject through the 
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algebraic reasoning dimension in school mathematics for students at early ages (e.g., 

Blanton et al., 2019; Blanton, Brizuela, et al., 2015; Carraher et al., 2008). 

Furthermore, Blanton et al. (2011) described five big ideas that summarize all 

fundamental concepts and processes in teaching and learning algebra from starting 

the elementary years: generalized arithmetic, understanding equal sign as 

representing the equivalence of two quantities, variable understanding, quantitative 

reasoning for generalizations, and functional thinking as a gateway to algebra.  

2.1.3.1 Generalized arithmetic  

Researchers (e.g., Carpenter et al., 2005; Carraher & Schliemann, 2007) defend that 

arithmetic and algebra should not stay as distinct domains in mathematics education. 

Some procedures and concepts in arithmetic can be implicitly or explicitly connected 

to algebraic ideas; hence, educators should bridge those ideas in teaching (Carraher 

& Schliemann, 2007). There is a common view about the inclusion of algebra in 

elementary mathematics through generalized arithmetic using relations among sets 

of numbers, symbols, and properties (Blanton et al., 2011; Carpenter et al., 2003; 

Carpenter et al., 2005; Carraher et al., 2006; Chimoni et al., 2018; Kieran, 1992; 

Knuth et al., 2008). 

Researchers identify generalized arithmetic as one of the representatives of algebraic 

thinking considering the idea of generalization from the relations and properties in 

arithmetic operations (Blanton & Kaput, 2005; Carpenter et al., 2005; Usiskin, 

1988). Carpenter et al. (2005) indicated that teaching arithmetic through the 

relationships between operations and quantities, instead of focusing on getting a 

solution from an operation, would be an effective way to improve students’ relational 

thinking and thus develop a foundation for algebra. For example, presenting addition 

and subtraction as inverse operations, and constructing and expressing the arithmetic 

properties (e.g., commutative property) through generalizations are regarded as key 

ideas for integrating algebraic reasoning in arithmetic (Blanton et al., 2011). 

Integration of arithmetic properties in algebraic reasoning activities develops 
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elementary students’ representations of generalizations of these relationships 

(Strachota et al., 2018).  

The emphasis on the generalization process between arithmetic and algebra also 

reflects Davydov's perspective (Schmittau, 2011), in which learning takes place from 

the abstract to the concrete: first, the general relationships are given; then 

concrete/arithmetic examples are solved (Davydov, 1990). In this approach, the 

students are taught to generalize relationships and operations, for example, through 

comparison activities (i.e., 𝐴 >  𝐵) and conjecturing about part-whole relationships 

by using algebraic symbols rather than discrete numbers (Sutherland, 2004). In such 

a study, it was seen that the children at the end of the third grade could solve problems 

about proportional reasoning and rate, time, and distance (Schmittau, 2011).  

2.1.3.2 Understanding of equal signs   

One of five big ideas emphasized by Blanton et al. (2011) is the understanding of 

equal signs that represent the equivalence of two quantities written in an equation. 

Using notations or demonstrating generalizations in different ways is a key aspect of 

algebra and algebraic reasoning (Kaput, 2008). The symbolic system in algebra 

enables students to interact within a mathematical system (Strachota et al., 2018). 

One of the important notations in this system is the equal sign. Researchers 

emphasized the importance of understanding equality and equal sign as a building 

block for algebra (e.g., Carpenter et al., 2005; Chimoni et al., 2018; Kieran, 1992; 

Knuth et al., 2008).  

An equal sign represents the sameness and a relationship of equivalence in 

mathematical expressions (Baroody & Ginsburg, 1983; Behr et al., 1980). However, 

the students can interpret the function and meaning of equal signs in different ways 

such as an operator symbol, sameness of two sides, “answer is coming” symbol, and 

equivalence (Behr et al., 1980; Baroody & Ginsburg, 1983; Knuth et al., 2006). 
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Therefore, researchers indicated two main understandings of equal sign which are 

relational and operational.  

Relational understanding refers to the accurate understanding of equal signs as a 

comparison symbol that includes sameness and equivalence meanings (Behr et al., 

1980; Baroody & Ginsburg, 1983; Matthews et al., 2012). It allows the students to 

understand the equivalent expressions in different forms relationally and accurately. 

For example, they can find some unfamiliar equations such as 3 =  3 and 3 +  4 =

 5 +  2 meaningful by focusing on the equivalence of both sides. On the other hand, 

operational understanding refers to interpreting an equal sign as an operator or “do 

something signal” (Behr et al., 1980, p.15). In this situation, unfamiliar or 

nonstandard forms of equations such as operations on the right side (e.g., 7 =  3 +

 4) and operations on both sides (e.g., 3 +  5 =  10 –  2) can not make sense for the 

students who have this understanding (Matthews et al., 2012).  

In addition to differentiating the students’ understanding of equal signs as relational 

and operational, researchers also specified some extra levels of understanding 

included in relational or operational levels of understanding (e.g., Matthews et al., 

2012; Rittle-Johnson et al., 2011). They generated a construct map expressing the 

understanding of equal signs into four levels: “Rigid Operational, Flexible 

Operational, Basic Relational, and Comparative Relational” (Matthews et al., 2012, 

p. 320). The indicators and explanations of each level of understanding are 

represented in Table 2.1. 

In this construct map, the highest level of understanding entails a sophisticated 

comparison and transformation between the sides of the equal sign such as a 

compensatory strategy and applying the same operation on both sides (Matthews et 

al., 2012). This way of reasoning represents the students’ recognition and 

interpretation of the relations between numbers and equivalent expressions. 
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Table 2.1 The Construct Map: The Levels of Understanding of the Equal Sign  

The Level of 

Understanding 

Descriptions – Perceptions of equation structures 

Rigid Operational Operations-equals-answer structure (𝑎 +  𝑏 =  𝑐) 

Operational definition of the equal sign 

Flexible Operational Non-standard equation structures (𝑐 =  𝑎 +  𝑏;  𝑎 =  𝑎) 

Operational definition of the equal sign  

Basic Relational Operations on both sides in equation structures  

(𝑎 +  𝑏 =  𝑐 +  𝑑) 

The relational definition of the equal sign makes sense 

Comparative 

Relational 

Equation solving involving a compensatory strategy (i.e., 

comparing both sides of the equation and applying 

transformations) 

e.g. 3 +  7 =  4 +  6 ; 4 is one more than 3; 6 is one less 

than 7 to maintain the equivalence.  

Construct a relational definition of equal sign  

Note: Matthews et al.’s (2012) construct map was summarized 

At the basic relational level, the operational view of the equal sign may reappear 

occasionally. However, the students could solve equations involving operations on 

both sides, as different than the operational views of the equal sign. Two levels of 

operational views of the equal sign (i.e., rigid and basic) differ from each other in 

terms of the kinds of equation structures that the students can solve and interpret. 

According to Matthews et al. (2012) standard forms of equation structures, the 

operations on the left side and the solution on the right side, are the only forms that 

the students at the rigid operational level of understanding can interpret and work 

accurately. On the other hand, the students at the basic relational level can understand 

the nonstandard (unfamiliar) equation structures such as operations on the right side 

(i.e., 𝑐 =  𝑎 +  𝑏) or equations without operation on either side (i.e., 𝑎 =  𝑎).  

Students in different grade levels can still show an operational understanding of the 

equal sign (Baroody & Ginsburg, 1983; Behr et al., 1980; Blanton et al., 2018; 

Carpenter et al., 2003; McNeil & Alibali, 2005; Rittle-Johnson & Alibali, 1999). 
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Fyfe et al. (2018) reported that this construct map applies to middle school students, 

and it provides a link between the students’ understanding of equivalence and their 

algebraic reasoning. The students who perceive the meaning of equal sign only as 

“the answer is coming” rather than “the equivalence of two sides” cannot perform 

well in equation solving (Alibali et al., 2007; Carpenter et al., 2003; Knuth et al., 

2006). Therefore, the relational understanding of the equal sign and the meaning of 

the equivalence of two quantities gains importance in developing the students’ 

algebraic reasoning and performance in algebraic tasks (Blanton et al., 2011).  

2.1.3.3 Understanding the multifaceted nature of variables  

Sfard (1995) indicated that French mathematician Viete’s description of algebra as 

“science of species” or “types of things” (p.24) may be a point of departure for the 

emergence of the variable concept. Furthermore, the concept of variable has existed 

implicitly in ancient mathematicians’ studies about the quantities although it is not 

named a “variable”. Ely and Adams (2012) indicated that two important motives are 

effective in the development of the variable concept: one is using letters standing for 

a range of indeterminate values in addition to determinate unknown values; the 

second is practicing covariational reasoning in which one quantity changes as 

dependent to another quantity.  

Alphanumeric symbols or notations are used for several purposes such as describing 

some laws by formulas, making generalizations, and substituting some solutions in 

mathematical problems (Schoenfeld & Arcavi, 1988). Usiskin (1988) focused on the 

meaning of the variable and its multifaceted nature to make sense of the symbols and 

letters used in algebraic equations and formulas. She interpreted different aspects of 

the variable concept concerning how it functions in various situations. For example, 

a variable can appear as an unknown in an equation or show a formula of area (e.g., 

𝐴 =  𝐿. 𝑊); it can represent an operational rule such as multiplicative identity (i.e., 

1 =  𝑛. (1/𝑛)) or manipulate an argument in a function. Hence, the letters used in 

all these situations are regarded as variables by Usiskin (1988). Therefore, the 
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variable concept has different images and meanings depending on where it is used 

(Schoenfeld & Arcavi, 1998; Usiskin, 1988).  

Schoenfeld and Arcavi (1988) indicated many meanings of the term variable in the 

literature showing the multiplicity in its meaning. For example, there appeared such 

meanings: a symbol as a placeholder, a changing quantity, and a letter representing 

an indeterminate value. Hence, they called the letters used for these purposes as 

variables. Ely and Adams (2012) differentiated the meanings by incorporating the 

other researchers’ definitions (e.g., Küchemann, 1978; Philipp, 1992; Sfard, 1995) 

into three ways: an unknown, variable, and placeholder. The word, unknown, is used 

for determinate quantities because it represents a specific number (or several 

numbers) in an equation. Therefore, a letter used as an unknown in an equation would 

be determined when the necessary information is available. Both variable and 

placeholder meanings refer to indeterminate quantities (Ely & Adams, 2012). The 

word, variable, means a varying quantity (Philipp, 1992). It refers to a set of values 

that a letter or variable would represent in a specific mathematical context (Ely & 

Adams, 2012). Therefore, a letter that is used as a variable is an indeterminate value 

and can represent any number among a set of values depending on what value other 

related indeterminate quantities represent. The function of a placeholder appears in 

the coefficients and parameters in the equations in which specific numbers will take 

the place of these letters according to the context. For example, in a linear function 

equation, 𝑦 =  𝑘𝑥, the letter k represents the parameter of the function and the slope 

of the line. For a given context, it will take a specific value, hence it is a placeholder 

(Ely & Adams, 2012).  

Although the concept of variable has multiple meanings, the research showed that 

the students may not possess all those uses (e.g., Alvarez et al., 2015; Küchemann, 

1981). Alvarez et al. (2015) observed that secondary school students in Spain and 

Mexico had difficulty in differentiating the multiple uses of variables, using them in 

problem situations, and interpreting their meanings. Similarly, MacGregor and 

Stacey (1997) found that middle school students interpreted algebraic letters in 

different ways such as unknowns, representing abbreviated words (i.e., h for height), 
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generalized numbers, and objects. Knuth et al. (2005) observed that most middle 

school students understand variables as “representing more than one value” (p. 274) 

while in lower grades there is a weak understanding of variables through some 

misinterpretations.  

Blanton et al. (2018) indicated that understanding the concept of variables is a crucial 

factor affecting the students’ representation of algebraic quantities in mathematical 

situations. Carraher and Schliemann (2007) pointed out that the unknowns in the 

missing value problems and equations should be interpreted as variables as early as 

elementary years so that the students can start to think about the concept of variables 

and variation as a significant concept within algebraic thinking. For example, 

Carraher et al. (2008) showed how third graders could start to use notations for 

variables in solving contextual problems from starting using pictures towards using 

symbols and letters together with operations when they discussed and imagined the 

problem situation in meaningful contexts. The researchers think that early possession 

of variable notation permits the students to grasp and represent easefully the 

relationships in problems (Blanton, Stephens, et al., 2015).  

2.1.3.4 Quantitative reasoning  

Quantitative reasoning starts with the recognition of the quantities in problem 

situations and quantifying them by giving numerical values to their qualities 

(Thompson, 1990). The examination of the relationship between quantities and 

operating with them using the relationships refers to quantitative reasoning. For 

example, comparing the lengths of two pencils, interpreting the additive relationships 

between the lengths of three ropes, or analysis of the multiplicative relationships 

between the lengths of two ropes are some examples of practices of quantitative 

reasoning (Blanton et al., 2011). Similarly, interpreting and generalizing the 

relationship between three quantities, times, speed, and distance, as ‘the amount of 

distance is the multiplication of time and speed’ corresponds to quantitative 

reasoning (Smith & Thompson, 2008). This provides the generality that is in 
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algebraic reasoning. Therefore, providing the practices of quantitative reasoning in 

elementary and middle school years would help develop algebraic reasoning as well.    

Understanding quantities and how they relate to each other provides significant 

grounds for developing algebraic reasoning (Blanton et al., 2011; Smith & 

Thompson, 2008). For example, Olive and Caglayan (2008) observed that eighth 

graders’ making sense of the units of quantities (e.g., the value of coins) in word 

problems enabled them to write accurate equations in problem-solving. Further, how 

students approach and interpret the quantities and the relationship between them 

determines the complexity of their algebraic reasoning (Confrey & Smith, 1994). 

Ellis (2011) observed that middle school students who had a robust understanding of 

the problem quantities and the relationships between them, such as the length, width, 

and area, demonstrated various forms of functional thinking such as covariation and 

correspondence. 

2.1.3.5 Functional thinking 

Algebra is a study of patterns and functions (Blanton et al., 2011; Kaput, 2008) and 

a language of generalization in which the patterns between mathematical ideas and 

objects are realized, described, and extended (Usiskin, 1995). The researchers think 

that early pattern activities are useful for the students to understand the relationship 

between quantities, make conjectures, and generalize relationships as algebraic 

reasoning practices (e.g., Moss & Beatty, 2006; Zazkis & Liljedahl, 2002). Pattern 

activities initially present a meaningful context that is appropriate for young students 

to proceed to the generalization and abstraction earlier (Blanton & Kaput, 2004; 

Moss & Beatty, 2006; Zazkis & Liljedahl, 2002).  

Growing pattern activities have the role of providing a path for a transition towards 

relational and functional thinking between independent and dependent variables 

(Blanton, Brizuela, et al., 2015). Studies showed that functional thinking besides 

growing patterns practices could be taught in the early elementary mathematics 

curriculums such as in the first and second grades (e.g., Blanton & Kaput, 2004; 
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Moss & McNab, 2011; Warren & Cooper, 2005) and even in kindergartens (e.g., 

Blanton & Kaput, 2004). Therefore, functional thinking, including “generalizing 

relationships between covarying quantities, expressing those relationships in words, 

symbols, tables, or graphs, and reasoning with these various representations to 

analyze function behavior”, is the fifth big idea identified by Blanton et al. (2011, 

p.13).  

In the early algebra studies, researchers examined the students’ ways of 

generalization of functional thinking (e.g., Blanton et al., 2011; Blanton, Brizuela, et 

al., 2015; Smith, 2008; Stephens, Fonger, et al., 2017). An identification of the 

relationship in the problem differs according to the students’ strategies and 

sophistication of the generalization. The basic strategies are generally followed by a 

recursive approach in which the students focus on a single variation and the 

difference between consecutive terms. Recursive thinking is observed in the early 

years of elementary school as a precursor to functional thinking (Blanton, Brizuela, 

et al., 2015). More advanced approaches appear as identified covariational 

relationships in which the students integrate both variables to construct a rule and 

express it explicitly with words or symbols. In the correspondence approach, 

students identify and express covariation using a generic rule. In functional thinking, 

the ultimate goal is to achieve covariation and correspondence thinking as the higher 

level of thinking processes (Blanton, Brizuela, et al., 2015). 

In short, researchers regard the integration of the function concept in early 

mathematics teaching such as in elementary and middle schools through functional 

thinking activities for developing algebraic thinking (e.g., Blanton, Brizuela, et al., 

2015; Usiskin, 1988). Because in this study, the participants are in the age range of 

10-11 (i.e., fifth grade) and the targeted tasks included the generalizations of 

functional relationships and representing them using symbols, the studies about early 

functional thinking practices and their frameworks about the modes of functional 

thinking and ways of generalizations will guide the conceptual understanding in this 

study. 
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2.1.4 Recent findings about the generalization of functional thinking  

In the context of early algebra, which I use for introducing algebraic processes before 

formal algebra instruction, proceeds from verbal to symbolic system and is regarded 

as a critical issue (Blanton & Kaput, 2011). As stated before, generalization, as a 

significant component of algebraic thinking, enables students to understand the 

relationships and to use symbolic notations to represent them even in elementary 

years (Blanton & Kaput, 2011). The transformations of students' mathematical 

expressions from understanding the meaning and relationships in contextual 

problems to representing and generalizing them in notations highlight the 

effectiveness of contextual situations involving patterns and functions (e.g., Blanton 

et al., 2019; Pang & Sunwoo, 2022; Stephens et al., 2021). Hence, researchers 

suggested representing functional thinking in elementary years through the problems 

in which the contextualized quantities change over time and while using graphs and 

tables (e.g., Kaput, 1999; Stephens et al., 2021).  

Functional thinking is regarded as a gateway to algebra because it involves handling 

many key algebraic concepts and processes such as “generalizing relationships 

between covarying quantities; representing and justifying these relationships in 

multiple ways using natural language, variable notation, tables, and graphs; and 

reasoning fluently with these generalized representations in order to understand and 

predict functional behavior” (Blanton, Brizuela, et. al, 2015, p.512). For example, 

Blanton and Kaput (2005) described a problem situation in which students practice 

algebraic reasoning in earlier grades through functional thinking: the handshake 

problem. As students try to understand the relationship between the number of 

people and the total number of handshakes, they can express the relationship in 

different ways, such as words, drawings, and symbols. While they are dealing with 

this problem, they can practice algebraic reasoning through generalizations, 

understanding, and representing the functional relationship between the number of 

people (independent variable) and the number of handshakes (dependent variable). 
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Researchers used the function context in their studies to examine the students’ ways 

of generalizations of functional relationships in different problems (e.g., Blanton, 

Brizuela, et al., 2015; Pinto & Canadas, 2021; Pittalis et al., 2020; Ramirez et al., 

2020), and report their progress in algebraic reasoning through the intervention 

focused on functional relationships (e.g.,  Ayala-Altamirano et al., 2022; Blanton, 

Brizuela, et al., 2015; Blanton et al., 2019). Early algebra interventions used the 

generalization of functional relationships through different contextual situations 

involving the relationship between the number of people and the number of ears and 

the relationship between the amount of money in the piggy bank and the time elapsed 

(e.g., Blanton, Brizuela, et al., 2015; Blanton et al., 2019; Stephens, Fonger, et al., 

2017).  

2.1.4.1 Students’ modes of functional thinking in early algebra  

Studies that aim to develop the students’ functional thinking in elementary grades 

demonstrated that students’ functional thinking practices ranged between multiple 

levels starting from recursive thinking towards sophisticated use of both 

covariational and correspondence thinking (e.g., Blanton, Brizuela, et al., 2015; 

Stephens, Fonger, et al., 2017). Although researchers reported common levels or 

strategies of functional thinking, different levels or categories of functional thinking 

also appeared in some of them that show the sophistication of students’ functional 

thinking.  

Blanton, Brizuela, et al. (2015) described the first graders’ functional thinking levels 

in an increasing sophistication from recursive to functional, with their particular sub-

levels. Students in early grades can identify a pattern by focusing on the change in 

only one column or row in a function table, that is a recursive approach (Blanton, 

Brizuela, et al. 2015; Blanton et al., 2011). The researchers identified the 

sophistication of the students’ thinking according to applied generality in the cases 

and accomplishment in the representation of the generality. For example, describing 

a functional relationship through specific cases is regarded as a functional-particular 
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level of thinking while conceptualizing the relationship from a group of cases and 

stating it without specifying the relationship between two different variables is 

regarded as primitive functional-general. As the students increase the generality by 

focusing on all values and expressing the relationship by integrating both variables, 

the levels in functional thinking become more sophisticated up to condensed 

functional-general.   

Similarly, Stephens, Fonger, et al. (2017) described the students’ (grades 3-5) 

functional thinking levels into three main headings apart from the lowest level “no 

evidence of functional thinking” (p. 153): variational thinking, covariational thinking 

and correspondence thinking. Within variational thinking, there are two different 

levels of recursive thinking according to whether they articulate the relationship on 

particular cases or express the general relationship on all values of one variable. 

When the students describe the covariational relationship by expressing coordinated 

variables (e.g., every time you add a desk, you add two people) they are regarded as 

covariational thinkers. On the other hand, inventing a function rule refers to 

correspondence thinking. However, there are five more sub-levels within 

correspondence thinking with respect to how general the students described the rule 

or how much they could integrate both variables in the formula. 

Pittalis et al. (2020) conducted interviews and specific measures with students 

(grades 3-5) to identify their functional thinking modes. They grouped the students’ 

thinking modes into three categories. In the first category, the students represented a 

recursive thinking mode in all the functional thinking tasks. Their performance 

corresponds to the factual algebraic thinkers defined by Radford (2010) where they 

had difficulty in finding the larger values in the pattern situation. In the second 

category, three modes of thinking were observed separately or in combination for 

some students. Some students used both the recursive thinking mode and found the 

larger values in the tasks by applying the function rule that they constructed 

contextually. The researcher observed emergent-covariational and correspondence 

modes of thinking in this category with “pre-symbolic contextual strategies” (p. 

658). Lastly, category 3 represented the students who could apply covariational and 
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correspondence modes of thinking flexibly by using symbolic representations and 

providing explanations of their solutions. Therefore, their performance corresponds 

to the standard algebraic thinkers defined by Radford (2010) which demonstrates 

generalized abstraction.  

Pinto and Canadas (2021) examined the third and fifth-grade students’ 

generalizations of functional thinking in different forms of contextual problems such 

as 𝑦 =  3𝑥, 𝑦 =  𝑥 +  5, and 𝑦 =  2𝑥 +  6. They found that only half of the third 

graders could generalize the functional relationships, verbally or using numerical 

representations (e.g., 20 +  2 =  22). In addition, they observed that only two third 

graders demonstrated a covariational approach in their verbal generalizations and the 

others used a correspondence approach while none of them could use a symbolic 

representation. On the other hand, most of the fifth graders could generalize the 

functional relationship in a correspondence approach in which they could verbally 

state the general rule for 𝑦 =  2𝑥 +  6 or use symbolic representation. For example, 

a student said: “Multiplying the number of white tiles by 2 and adding 6 gives you 

the result” (p. 128). 

In summary, in the elementary years, when students did not receive formal algebra 

instruction, they represented a range of modes of functional thinking through 

intervention or without intervention, as reported in the studies above. Researchers 

observed that students in these grade levels could use recursive, correspondence, and 

covariational approaches in functional thinking. The following section presents the 

findings about the progress of students in functional thinking in the studies including 

intervention. 

2.1.4.2 Students’ progress in generalizing functional thinking through 

interventions 

Blanton, Brizuela, et al. (2015) demonstrated how elementary school children can 

develop algebraic reasoning and functional thinking by working on covarying 
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quantities in contextual problems and generalizing and representing the relationships 

between variables with literal symbols, tables, and graphs. Multiple representations 

such as drawings, tables, charts and graphs, and age-appropriate tasks in rich 

contexts helped the students to make sense of the variables and functional 

relationships and to make generalizations as initial steps into the algebraic concepts 

(e.g., Blanton et al., 2019; Blanton, Stephens, et al., 2015; Carraher et al., 2008). 

In a longitudinal intervention program, the researchers (Blanton et al., 2019) 

implemented an instructional sequence for students from grades 3 to 5; that is, to 

foster algebraic thinking through generalizing, justifying, and reasoning with 

mathematical structures and functional relationships. Blanton et al. (2019) observed 

that at the end of each grade, the performance of students in the experimental group 

showed significant progress in algebraic reasoning compared to the control group, 

such as expressing the functional relationship in words, using notations (e.g., 𝑦 =

 2𝑥) and interpreting mathematical structures (e.g., 𝑎 +  𝑏 =  𝑐 and 𝑏 +  𝑎 =  𝑐). 

In addition, they reported that all of the students, both experimental and control 

groups, struggled to use notations in representing the functional relationships more 

than representing the arithmetic properties in symbols. Moreover, in the same 

intervention, Stephens, Fonger, et al. (2017) found that third-grade students who 

could not represent and generalize the relationships before the treatment started to 

reason sophistically about the relationships between quantities. They could identify 

and describe the functional relationships through correspondence and a covariational 

approach after 18 hours of treatment while they used a recursive-patterning approach 

at the beginning. 

Blanton, Stephens, et al. (2015) reported the progress of third graders in the 

experimental group during the one year of intervention in representing functional 

relationships. About one-fifth of the students in the experimental group expressed 

the functional relationships using the covariational strategy in words such as “each 

table you add adds two people” (p. 67) after the intervention. In addition, a small 

proportion of students (16%) could express the function rule using symbols while a 
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smaller proportion of students (8%) could express this rule in words such as “number 

of tables times two plus two equals number of people” (p. 67). In addition to 

observing a progression in students’ functional thinking as compared to the control 

group, a surprising finding was the students’ more flexible use of symbols instead of 

using their own words to express the function rule. Performing better in using 

notations in expressing the functional relationships after the intervention is also 

observed by other researchers for students in grades 4 (e.g., Blanton et al., 2019) and 

5 (e.g., Akın & Isler-Baykal, 2024; Blanton et al., 2019).  

In another small-scale teaching experiment, Pinto and Canadas (2021) examined the 

third and fifth-grade students’ generalizations of functional thinking in different 

forms of contextual problems such as 𝑦 =  3𝑥, 𝑦 =  𝑥 +  5, and 𝑦 =  2𝑥 +  6. 

They found that only half of the third graders could generalize the functional 

relationships verbally or they could use numerical representations for expressing the 

generalization (e.g., 20 +  2 =  22). Only two of the third graders demonstrated a 

covariational approach in their verbal generalizations and the others used a 

correspondence approach while none of them could use a symbolic representation. 

On the other hand, most of the fifth graders could generalize a functional relationship 

in a correspondence approach in which they could verbally state the general rule for 

𝑦 =  2𝑥 +  6 or use symbolic representation. For example, a student could say 

“multiplying the number of white tiles by 2 and adding 6 gives you the result” (p. 

128). This study highlights the potential difference in the progress in algebraic 

thinking between various grade levels of students.  

In another study (Ayala-Altamirano et al., 2022), researchers reported similar 

findings to Pinto and Canadas (2021) in terms of using symbolic notations in 

functional thinking. Ayala-Altamirano and her colleagues (2022) examined the 

fourth-grade students’ generalizations of functional relationships in a teaching 

experiment targeting the development of students’ algebraic thinking. They observed 

that a small proportion of students could generalize functional relationships using 

natural language after the intervention. However, students did not show an 
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improvement in using letters or notations to represent the generalizations or 

interpreting the questions. Researchers observed that students had the most difficulty 

in the questions including letters and they refused to use letters in generalizations.  

The above studies would be promising in terms of younger students' ability to 

generalize functional relationships and their progress through the advanced modes 

of functional thinking. However, researchers also reported some difficulties and 

differences that students showed in using letters and notations in generalizing 

functional relationships (e.g., Akın & Isler-Baykal, 2024; Ayala-Altamirano et al., 

2022; Pinto & Canadas, 2021). Therefore, the literature on teaching and learning 

early algebra needs further research and investigation to elaborate and expand our 

knowledge about students’ progress in algebraic thinking and their needs for this 

improvement in terms of the characteristics of students’ mental processes, the 

teaching sequence, and the tasks used in interventions.  

2.2 The Framework of Units Coordination 

Constructing and conceptualizing whole numbers starting from the counting 

activities is described through the process of constructing arithmetical units (Steffe, 

1992; von Glasersfeld, 1981). For example, to conceptualize the number five as a 

unit for use in different mathematical processes, children need to experience various 

sensory and mental actions. The ability to perceive numbers as arithmetical units 

depends upon reflective abstraction, a process whereby the mind can conceptualize 

the number without being constrained by the limits of sensory input and operate with 

it as a single entity through attentional processes (von Glasersfeld, 1981).  

Von Glasersfeld (1981) explained the unitizing operation whereby numbers are 

constructed as discrete entities through the binding or sequencing of disparate 

sensory elements. This bounding or sequencing process results in a meaningful and 

associative whole. In this process, distinguishing various items or grouping them 

may not rely only on their perceptual characteristics, it is rather a cognitive framing 

that constructs a cognitive entity or object. This outcome, the constructed individual 
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entity, refers to the term, unit, (Hackenberg & Sevinç, 2024; Ulrich, 2015), which 

will be further processed experientially and abstractly to construct new units and 

composite units (von Glasersfeld, 1981).  

In short, each number is framed as an arithmetic unit through the process of reflective 

abstraction in which the bounded conceptual structures are released from sensory-

motor experience (von Glasersfeld, 1981). For example, the number five can be 

perceived as a unit comprised of five equal units of ones through grouping or 

chunking without further need for sensory materials (e.g., fingers). Hence, this new 

unit can be used in counting by fives. By extension, von Glasersfeld (1981) indicated 

that each number is different from one another through their abstract characteristics.  

Researchers explained how students conceptualize numbers and operations in 

different contexts starting from the counting schemes (e.g., von Glasersfeld, 1981; 

Steffe, 2001). At first, it is expected that the students need sensory-motor materials 

to keep track of counting items in an experiential situation. After an experience with 

this activity, they can re-process the counting activity through figural materials (e.g., 

fingers) without a direct sensory operation with materials. They gradually construct 

the units in a more complex activity as detached from the figural characteristics. The 

goal of this process is to facilitate the assimilation of students’ complex activities 

and to facilitate their advancement to a higher level of proficiency and understanding 

in quantitative operations.  

In sum, the theorization of units coordination deals with the “quantitative 

complexity” (p.3) in children’s work with units and their construction of 

relationships between units (Ulrich, 2015). Accordingly, units coordination refers to 

the mental operations that describe people’s construction of units, and operations 

with various levels of units (Hackenberg & Sevinç, 2024; Steffe, 2001; Ulrich, 

2015). Therefore, units coordination is related to various mathematical situations 

such as developing the number sense, counting, operations with numbers, and 

multiplicative reasoning (Glasersfeld, 1981; Steffe, 1992; Ulrich, 2015, 2016a). The 

students’ construction of the number concept and their operations with quantities are 
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described in hierarchical levels or developmental stages considering their 

construction of and operations with units (Ulrich, 2015).  

Glasersfeld (1981) explained the students’ progression in units coordination through 

the types of units that they deal with during counting activities or arithmetic 

operations such as using figural materials (e.g., fingers), constructing arithmetic 

units, and using composite units respectively. He indicated that as long as a child 

needs sensory materials in counting, the number five, for example, does not refer to 

a number unit that is comprised of five units of one. This is characterized as the pre-

numerical stage. Reflective abstraction is required to construct a higher level of the 

conceptual structure of numbers and interiorization of counting occurs.  

To exemplify the units coordination ability in a problem situation, we can think about 

counting or calculating the number of muffins in rows such that there are four rows 

and each row involves six muffins (Hackenberg, 2010). Counting the number of 

muffins one by one in a figure or by drawings deals with coordinating one-levels of 

units in activity (see Figure 2.3a). On the other hand, in a more complex operation, 

coordinating two levels of units in activity through interiorized one-level of units can 

be reflected by the behavior of stopping after each six-count to represent one row. 

They could reach the result of 24 but they will need to carry out the same activity 

when the problem is again asked (see Figure 2.3b). Through the interiorization of 

two levels of units, that is following a higher level of units coordination, a student 

can reach the result of 24 without needing a figurative material and she/he is already 

aware of the insertion of each six muffins into the rows. For example, if she knows 

two sixes are 12, she could add two 12s and get 24 (Figure 2.3c). Lastly, the 

interiorization of three levels of units means being aware that 24 is four units of six 

and 24 units of ones. This is given to students without any activity and the students 

can flexibly transform the different levels of units such as adding other identical rows 

to the current ones as any number of units including six units of ones. 
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Figure 2.3 Students’ mental operations in different levels of units coordination 

Several frameworks explained the students’ construction of number sequences 

(Steffe, 2010) and multiplicative concepts (Hackenberg & Tillema, 2009) in terms 

of units coordination. Ulrich (2015, 2016a), on the other hand, preferred to call this 
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hierarchy by levels, differentiating the number of levels of units that students deal 

with when operating with numbers and problem situations. These frameworks will 

be explained in the following sections. 

2.2.1 The number sequences 

Based on the model of von Glasersfeld (1981) for unitizing and constructing 

numerical units, the students’ construction of different “numerical counting 

schemes” is characterized by the structure of number sequences (Steffe, 2010, p.27). 

A number sequence is explained as “a sequence of abstract unit items that contain 

records of counting acts” (Steffe, 2001, p. 267). Four distinct constructions of 

number sequences are the initial number sequence (INS), the tacitly nested number 

sequence (TNS), the explicitly nested number sequence (ENS), and the generalized 

number sequence (GNS).  

Students start to generate initial number sequences (INS) after constructing 

numerical composites which is “the sequence of abstract unit items” (Steffe, 1992, 

p. 266) by uttering a number word (von Glasersfeld, 1981). They operate with one 

level of units. A key indicator of this level is the ability to count on (Steffe, 1992, 

2024). Students with the INS need no further perceptual materials to count, like in 

the pre-numerical stage, but they need to use figurative materials like fingers to keep 

track of counting after starting a number. A number word is regenerated as a place 

in a sequence rather than a collection of ones that is another unit composed of ones. 

Therefore, INS students do not conceive of a number as nested in a bigger number 

(Wilkins et al., 2021). For example, INS students can count by threes from a number, 

say eight, like 9,10,11; 12,13,14; 15,16,17;…. but these threes are not distinct units, 

rather they are still counted units of ones in activity (Steffe, 1992). During counting 

by the numerical composites, they would mostly lose track of the number of trios. 

This process by which students construct arithmetical units refers to the operations 

with the first level of units in activity (Ulrich, 2015).  
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One of the constraints of the INS stage is that the students do not conceive of a 

number being embedded within a larger number (Wilkins et al., 2021). Therefore, 

students with INS need to count on the previous number in order to understand which 

number is bigger by focusing on which comes first. Another constraint of the INS is 

that it does not allow the students to conclude multiplicative tasks which include 

coordinating two units, such as the number of rows including a specific number of 

blocks (Steffe, 1992). Because the students had difficulty in differentiating the 

multiple units and keeping track of the counting through composite units, Steffe 

(1992) called this stage “pre-multiplicative” (p. 304).  

Constructing the TNS refers to “an enactive units-coordination” or “units 

coordination in activity” (Steffe, 2024, p. 33). Students with TNS can coordinate two 

number sequences and construct composite units in activity (Steffe, 1992). In other 

words, while the students can interiorize arithmetical units of ones by the INS, 

students with TNS can construct units bigger than one (Ulrich, 2015), which some 

researchers called stage 1 of units coordination (e.g., Hackenberg & Sevinc, 2024).  

Students with TNS use the result of a counting activity recursively in further counting 

operations (Steffe, 1992). For example, the students with TNS can calculate that 

there are four threes in 12 by counting by ones, and concurrently keeping track of 

how many times they counted by threes (Norton et al., 2015). Here, we can observe 

a double counting activity; one is counting by ones, and the other is counting the 

number of threes, which is an identifying indicator of TNS (Steffe, 1992). Students 

with TNS can conceive a number, say five, both five units of ones and a single unit 

comprising five individual units in activity (Ulrich, 2015). Hence, they can nest 

numbers in other numbers without needing any counting act such as seeing five as 

nested within seven (Wilkins et al., 2021).  

In the TNS stage, the students’ conception of composite units is tacit because they 

construct composite units in activity implicitly and there is no explicit reflection on 

composite units as ready structures (Ulrich, 2015; Zwanch & Wilkins, 2021). In 

addition, the composite units constructed during activities can decay after the activity 
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is ended. This also indicates that their multiplicative activity does not represent 

explicit multiplicative reasoning. Moreover, Ulrich and Wilkins (2017) 

differentiated the students who operate early in the TNS stage (eTNS) and the 

students who have advanced mental operations in the TNS stage (aTNS). The aTNS 

is a transition stage between the TNS and the ENS in which the students can reflect 

on composite units and can be “tacitly aware of embedded units.”  

Explicitly nested number sequence (ENS) refers to a two-level structure in which the 

students conceive numbers as collections of units of ones, construct and count with 

composite units (Norton et al., 2015; Ulrich, 2016a). Hackenberg and Sevinç (2024) 

called this level, stage 2 of units coordination. Students with ENS can compare two 

numbers by being aware that the smaller one is a subset of the bigger one and the 

difference between them is the amount of remainder, as another unit (Ulrich, 2016a). 

This demonstrates their explicit reflection on the additive relationship between 

numbers and the nestedness of number sequences. In a multiplicative situation, ENS 

students can develop an understanding of a composite unit, say 12, as consisting of 

four units of threes and also 12 units of ones that are identical and equivalent 

(Hackenberg & Sevinç, 2024). Because they intentionally construct and work with a 

composite unit of composite units (i.e., 12 is a composite unit of ones consisting of 

three composite units of fours), this reflects their coordination of three levels of units 

in activity as well.  

An important difference of the ENS from the lower levels of numerical reasoning is 

that students with ENS can disembed units from the composite units (Steffe & Olive, 

2010). Disembedding operation refers to envisioning a unit as pulled out of a 

composite unit (Steffe & Olive, 2010). For example, in finding how many fives there 

are in 45, “the ENS students can disembed a sequence of 5 from the sequence of 45, 

iterate it 8 more times to get a sequence of nine 5s and then re-embed their result into 

the original sequence of 45 to equate 45 singleton units with 9 composite units of 5”. 

(Ulrich, 2016a, p. 37).  In short, the assimilation of numbers as composite units and 

disembedding operations are key indicators of the ENS.  
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The students who constructed a GNS can reflect on a three-level structure through 

composite units in which they come up with a composite unit of 12 as constructed 

by iterating 4 times threes, which are other composite units formed by iterated ones 

(Hackenberg & Sevinç, 2024).  This is called stage 3 of units coordination. At this 

stage, composite units are now iterable (Ulrich, 2016a). While students with the ENS 

can iterate composite units in activity, this becomes assimilatory for the GNS 

students (Ulrich, 2016a). Students with the GNS can monitor the iterations of 

composite units as being assimilated in multiplicative comparison tasks. At this 

stage, the students exhibit more complex strategies in additive and multiplicative 

reasoning. For example, it is expected that a GNS student can make use of the 

commutative property by himself without a need to be taught.  

In short, the students’ construction of numbers as arithmetic units through reflective 

abstraction, their further construction of composite units, and operations with these 

units are described in terms of the levels of number sequences (von Glasersfled, 

1981; Steffe, 1992; 2024; Ulrich, 2015, 2016a). According to Steffe’s (2024) 

estimations, half of the students starting the first grade will construct INS or TNS 

and only one-tenth of the first graders will be able to construct the ENS. At the 

middle school level, he estimated that 40% of fifth graders will have constructed the 

ENS and only a quarter of fifth graders will have constructed assimilated three levels 

of units. He considered these estimates to be of significant value in evaluating the 

students’ mathematical activities within the curriculum. 

2.2.2 Students’ multiplicative concepts 

The students’ units coordination is also defined in the context of whole number 

multiplicative concepts (Hackenberg & Tillema, 2009). The level of multiplicative 

concepts that students interiorize through multiplying schemes describes their units 

coordination in the context of multiplicative relationships (Hackenberg, 2013). The 

students at the pre-multiplicative level cannot complete multiplicative tasks which 

include coordinating two units such as the number of rows including a specific 
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number of blocks in each row (Steffe, 1992; Ulrich, 2015). The students start to deal 

with multiplicative concepts when they construct composite units in activity (i.e., 

dealing with two levels of units) such as representing 12 as three fours (Steffe, 1992). 

This level of unit coordination refers to the first multiplicative concept (i.e., MC1) 

(Hackenberg & Tillema, 2009). 

The first multiplicative concept (i.e., MC1) refers to the level of TNS in the number 

sequences framework (Ulrich, 2015). Therefore, the students operating with the 

MC1 coordinate two levels of units in activity, like TNS students. For example, in 

computing the number of cakes in four rows, each containing six cakes, a student 

with MC1 can find that there are a total of 24 cakes by iterating the composite units, 

six cakes, four times into another composite unit, the number of rows (Hackenberg, 

2013). However, this operation and its result will not be maintained for another 

operation. The students have to enact the same process of units coordination in a new 

problem situation because the two-levels of units they constructed are not 

assimilated.  

The second multiplicative concept (MC2) refers to “the interiorization of two levels 

of units” (Hackenberg & Tillema, 2009, p.3). Therefore, it refers to the ENS in the 

number sequences framework (Ulrich, 2016a). One difference between MC2 and 

MC1 is the ability to use the result of a unit coordinating activity (e.g., dissembeding 

a part from a composite unit and using that part) in further operations (Hackenberg 

& Tillema, 2009). In addition, MC2 allows students to coordinate three levels of 

units in activity in which the students make a number, like 12, as a unit containing 

four units of three units of units of ones. On the other hand, they cannot use this 

structure in further operations as a ready material, rather this structure is curtailed in 

the further operations by staying as two levels of units structure at the end. 

Lastly, the third multiplicative concept (MC3) refers to “the interiorization of three 

levels of units (Hackenberg & Tillema, 2009, p. 4). Since the three levels of units are 

available before any multiplicative operation, the students with MC3 can coordinate 

more than three levels of units in activity (Ulrich, 2016a). This refers to the GNS in 
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the number sequences framework. For example, in a similar cake and rows problem, 

when five more rows are added, each containing six cakes, MC3 students could 

flexibly operate between the different levels of units such as the initial 4 rows of six 

cakes and the additional five rows of six cakes and the total 9 rows of six cakes, 

which are all available before activity (Hackenberg & Tillema, 2009).  

In this study, I employed the terminology of multiplicative concepts in explaining 

the students’ mental operations in terms of units coordination. Although these two 

frameworks (i.e., multiplicative concepts and number sequences) used different 

terminologies in defining the levels of units coordination, both have the same 

indicators and the levels of this framework correspond to the stages in the number 

sequences framework starting from the TNS (Ulrich, 2015, 2016a). Since the 

algebraic tasks in this study involved multiplicative relationships through recursive 

thinking, functional thinking, and quantitative reasoning, the terminology of whole 

number multiplicative concepts described by Hackenberg and Tillema (2009) would 

be more appropriate to describe the students’ units coordination. The indicators for 

each corresponding level of units coordination are represented in Table 2.2, which 

was adapted from Ulrich (2016a). The next section will present the findings of 

related literature in terms of the interaction between units coordination and algebraic 

thinking and reasoning. 

Table 2.2. The Indicators of Units Coordination Levels in Different Frameworks 

Number 

Sequences 
Multiplicative 

Concepts  
Operations 

None  None Construction of one level of units in activity.  

4 chairs + 3 chairs = 1, 2, 3, 4, 5, 6, 7 chairs 

INS None Reflecting on one level of units  

A number as a counting sequence is unitized.   

4 chairs + 3 chairs = 4 - 5, 6, 7 chairs  

TNS MC1 Construction of two levels of units (composite 

units) in activity. 
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Table 2.2 (Continued) 

TNS MC1 Additive comparison tasks (how much more) 

Coordination of two levels of units in activity 

Three times one unit of 4 = 4 + 4 + 4 = 12 (a 

composite unit of 12) 

4 is a composite unit containing 4 equal units of 

one in any sequence (1-4 or 16-20) 

ENS MC2 Reflecting on two levels of units  

Coordination of three levels of units in activity 

Disembedding operation  

Understanding of interchangeable identical units  

4 is four iterations of one  

Multiplicative reasoning 

GNS MC3 Reflecting on three levels of units 

Coordinating four or more levels of units  

Iterations of composite units  

Understanding of interchangeable identical 

composite units 

 

2.2.3 The literature on units coordination  

Researchers interpreted the students’ performances in various mathematical subjects 

such as multiplicative reasoning, fraction knowledge, and algebraic reasoning 

through their units coordination levels and current mental structures of operations 

and numbers (e.g., Hackenberg, 2013; Hackenberg et al., 2021; Olive & Caglayan, 

2008; Ulrich & Wilkins, 2017). They indicated that teaching mathematics should be 

enhanced regarding students’ multiplicative concepts and coordination of units in 

unknown and known quantities. For example, Ulrich and Wilkins (2017) pointed out 

that being able to think multiplicatively - a major objective during middle school 

years - is “an awareness of a multiplicative relationship between two quantities” (p. 

18) more than solving problems including multiplication. Therefore, the researchers 

claimed that unit coordination is a prerequisite and an associative factor for being 
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successful in various mathematical tasks including multiplicative relationships such 

as generalizing the multiplicative relationships between unknown quantities, solving 

equations, and operating with fractions (e.g., Hackenberg, 2013; Olive & Caglayan, 

2008; Wilkins et al., 2021; Zwanch, 2022a).  

In the algebraic reasoning context, understanding and operating with quantities and 

investigating the relationships between them takes great attention by the researchers 

taking a quantity-based approach in teaching algebra (e.g., Chazan, 2000; Fuji & 

Stephens, 2008; Olive & Caglayan, 2008). Algebraic reasoning is described through 

reasoning with unknown or known quantities (Steffe & Izsak, 2002), and how 

students approach and interpret the quantities and their relationship determines the 

complexity of their algebraic reasoning (Smith & Thompson, 2008). For example, 

Olive and Caglayan (2008) observed that students who comprehended the units of 

quantities (e.g., the value of coins) in word problems, subsequently were able to write 

precise equations to solve the problems. Similarly, recognizing the covarying 

quantities in the functional thinking practices in early algebra is linked to students’ 

understanding of problem quantities (Ellis, 2011).  

The main goal of this study is to investigate students’ progress in algebraic thinking 

with a potential interaction with their units coordination. Therefore, this section 

presents the related findings of the studies on this subject considering the link 

between students’ performance in various algebraic tasks and their mental operations 

in terms of units coordination. Algebraic thinking and reasoning involve many 

interrelated elements, including understanding variables, generalization, symbolic 

representation, and solving equations. Researchers have focused on different aspects 

of algebraic thinking and reasoning while examining the impact or relationship of 

students' unit coordination structures. Researchers asserted that students’ 

construction and coordination of units and their specific mental operations related to 

their number sequences (e.g., disembedding, iteration of composite units) can 

determine their performance in working with unknown quantities, writing equations 

and generalizations (e.g., Hackenberg & Lee, 2015; Olive & Çağlayan, 2008; 

Zwanch, 2022a). The following sections present these findings in more detail.  
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2.2.3.1 Students’ interpretation of quantitative unknowns    

An understanding of and ability to operate with variables or unknown quantities is a 

significant component of algebraic thinking and reasoning (Blanton et al., 2018; 

Kieran, 2022; Usiskin, 1988). Researchers reported that students’ understanding of 

unknown quantities and how they interpret their use in algebraic expressions was 

affected by their levels of units coordination (e.g., Hackenberg & Lee, 2016; 

Hackenberg et al., 2017; Hackenberg et al., 2021). They indicated that the use and 

interpretation of unknown quantities were different in the performances of MC3 and 

MC2 students.  

Hackenberg et al. (2021) implemented iterative design experiments on 13 MC2 and 

MC3 students (6-9 grades) to examine their understanding of unknowns by using 

problems including two unknowns with a known multiplicative relationship. They 

observed that MC3 students could construct a meaning of quantitative unknowns 

such as one unknown unit consisting of a certain number of smaller units. The MC3 

students revised their equations and interpretations during the discussions from 

representing the relationship between measurement units to representing the 

relationship between the values of the unknown heights or lengths. On the other 

hand, most of the MC2 students represented the relationships between measurement 

units (e.g., the number of straw or pen lengths) rather than between the values of 

unknown measurements (e.g., the height of a house which is measured by the length 

of a pen). In addition, Hackenberg et al. (2021) observed that MC2 students were 

inclined to use knowns instead of working with indeterminate quantities. They 

generated two separate two-levels of unit structures. The literal symbols represented 

the measurement units instead of quantitative unknowns which are measured by an 

indeterminate unit, each consisting of a smaller number of units. Some of the MC2 

students demonstrated a similar performance to what MC3 students did. 

Similarly, Hackenberg et al. (2017) observed that the MC2 students from seventh 

and eighth grades had difficulty in representing the multiplicative relationship 

between two unknowns in figures and equations. The researchers indicated that the 
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main reason for the MC2 students’ struggle was their need to simplify the involved 

unit coordination so that they could work with two levels of units as given because 

they cannot operate further with three levels of units. Hence, the MC2 students 

represented three common approaches to simplify the unit coordination such as 

thinking of the multiplicative relationship as approximate, giving numerical 

examples for the unknowns, and conceiving the multiplicative relationship during 

making drawings and through teacher prompts.  

Hackenberg and Lee (2016) found that the use of symbolic representations by the 

MC2 students was not algebraic while MC3 students algebraically use notation by 

writing equivalent forms of the same relationships. For example, MC2 students could 

use fraction multipliers to express the relationship “What is the three-fifths of a candy 

bar length represented by a?” by only writing “3/5𝑎”. However, MC3 students could 

use different forms of expressions through explanations and relating to other 

representations such as "3/5𝑎” and “𝑎/5 . 3”. In addition, in expressing the three-

fifths of the sum of three unknown quantities MC2 students could not write an 

appropriate algebraic expression (e.g., 3/5 𝑐 𝑏 𝑎) while some MC3 students could 

express it using different forms again such as “ (𝑎 +  𝑏 +  𝑐)  ×  3/5”  and 

"(3/5𝑎 +  3/5𝑏 +  3/5𝑐)” that the researchers attributed it to their distributive 

partitioning scheme. Therefore, they explained these findings as a relationship 

between the students' units coordination in terms of fractional knowledge and their 

algebraic reasoning.  

A similar finding was also presented by Hackenberg and Sevinç (2022) who 

investigated the relationship between MC3 students’ (7th and 8th graders) rational 

number knowledge and their reciprocal reasoning in writing equations using 

unknowns. They indicated that using unknowns in problems helped students’ 

reciprocal reasoning in writing equations and vice versa. The MC3 students who 

constructed iterative unit fraction schemes interpreted the unknowns in equations in 

a more sophisticated way by using reciprocal reasoning and fractional multipliers. 

Moreover, Hackenberg and Sevinç (2021) observed that an advanced MC2 student, 
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Milo, could show some evidence of reciprocal reasoning in some problems as well 

such as writing 𝑆 ×  3/7 =  𝐿 and 𝐿 ×  0.42 =  𝑆.  

In general, it is asserted that the students at the first stage in multiplicative concepts 

(MC1) would not perceive quantitative unknowns while the students at the upper 

levels (MC2 and MC3) can imagine the partitioning of quantitative unknowns with 

unknown units (Hackenberg, 2013; Hackenberg et al., 2021). In addition, using 

numerical examples for the unknowns is seen as a common approach in MC2 

students (e.g., Hackenberg & Lee, 2015; Hackenberg et al., 2017).  

2.2.3.2 Writing equations using symbols 

Another aspect of algebraic performance examined by the researchers in a 

relationship with units coordination is writing and solving equations in problems 

involving unknowns (Hackenberg, 2013; Hackenberg & Lee, 2015; Olive & 

Çağlayan, 2008). Researchers observed that students having different mental 

structures about the units and quantities demonstrated qualitatively different ways of 

writing equations (e.g., Hackenberg & Lee, 2015; Hackenberg & Sevinc, 2022). For 

example, Olive and Çağlayan (2008) asserted that constructing equations for solving 

word problems involving three different quantities with one unknown required the 

assimilation of three levels of units (MC3), which was accomplished by some of the 

eighth graders in their study. Additionally, they observed that some students who 

had assimilated two levels of units experienced difficulties in writing a complete 

equation representing the monetary values on each side consistently by using only 

one unknown. They indicated that the MC2 students’ lack of reflection on three 

levels of units prevents them from representing the relationship between three 

quantitative units (i.e., the number of coins, the monetary value obtained from each 

coin, and the total monetary value). The researchers suggested that “unit 

coordination and unit conservation are cognitive prerequisites for constructing an 

equation when reasoning quantitatively about a situation” (Olive & Çağlayan, 2008, 

p. 32). On the other hand, in a recent study, Zwanch (2022b) observed that MC2 
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students could generate a system of linear equations through the disembedding and 

assimilation of two levels of units. Additionally, she indicated that MC1 students 

could not represent these equations because of the lack of disembedding operation.  

Hackenberg and Lee (2015) observed differences in written equations of MC3 and 

MC2 students for the multiplicative relationships between unknowns. For example, 

MC3 students could write accurate equations in a quick time by using both whole 

number and fraction coefficients and could write the reverse forms of initial 

equations (i.e., 𝑥 =  (1/5)𝑦 for 𝑦 =  5𝑥). However, they remarked that most of the 

MC3 students were eighth and tenth graders who took a regular algebra course. On 

the other hand, MC2 students struggled to write equations representing the 

multiplicative relationships between unknowns. They needed more prompts from the 

teacher, and they could not write the equations by using reciprocal reasoning. 

Researchers also observed that MC2 students were inclined to give numerical 

examples to the unknowns. 

In another study, Hackenberg (2013) selected six MC1 students from seventh and 

eighth grades to examine the relationship between their algebraic reasoning, in terms 

of equation writing and generalization, and fractional knowledge, in terms of some 

mental operations such as splitting, partitioning, disembedding, and iterating. She 

found that the majority of MC1 students could not write an equation representing the 

multiplicative relationship between two unknowns such as one unknown length is 

given as five times the other unknown length (the Cord Problem represented in 

Chapter 3). Only two students could write the equation through the teacher's 

coaching and after making some errors. Hackenberg (2013) indicated that the lack 

of disembedding operation, which is quite necessary for algebraic reasoning, caused 

some constraints for the MC1 students in writing equations for the multiplicative 

relationship.  

Another example of the differing equation writing of students from different levels 

of units coordination is represented by Hackenberg and Sevinc (2022). They 

observed that all MC3 students demonstrated the ability to express the multiplicative 
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relationships between two unknowns in a flexible manner, using whole number 

multipliers and reverse equations such as “𝑆 ÷  7 ×  3 =  𝐿” and “𝐿 ÷  3 ×  7 =

 𝑆”. Moreover, they could also construct reciprocal reasoning by using fractional 

multipliers to express this relationship which is one unknown is three-seventh of 

another unknown thanks to the iterative fraction schemes. On the other hand, two 

MC3 students who could not construct iterative unit fraction schemes could only 

construct reversible and additive reasoning using whole number multipliers but not 

being able to relate it to the equations involving fraction multipliers. Therefore, the 

researchers indicated a connection between the students' units coordination in terms 

of fractional knowledge and their performance in writing algebraic expressions. 

2.2.3.3 Generalizations 

An important aspect of algebraic reasoning is generalization (Kaput, 2008) where 

the students recognize the relationships between quantities or variables and express 

these relationships in different ways. Similar to the writing equations, researchers 

also observed an impact of students’ units coordination levels on their generalization 

performances by analyzing their verbal and symbolic expressions representing the 

particular relationships or formulas (e.g., Hackenberg, 2013; Zwanch, 2022a).  

Hackenberg (2013) studied with MC1 students to examine the interaction between 

their levels of units coordination and their generalizations and generating rules. She 

observed the generalization activities of MC1 students in their work on finding the 

number of small squares on the border of a bigger square, which is called the Border 

Problem. The generated rules by the students demonstrated their algebraic reasoning. 

However, Hackenberg (2013) indicated that their generalizations were not very 

sophisticated by involving structural thinking. In addition, the students had difficulty 

verbalizing the generated rules. This is attributed to the absence of disembedding 

operations in MC1 students. On the other hand, their iteration operations helped them 

generate some methods for finding the number of small squares in terms of 

generalization.  
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In another study, Zwanch (2022a) examined middle school students’ generalization 

(grades 6 to 9) by relating it to the students’ stages of number sequences. She noted 

that all of the ENS (MC2) students could represent the generalization using symbols, 

whereas nearly half of the aTNS (advanced MC1) students were able to use symbolic 

representations for generalizations. She found that TNS students relied on recursive 

patterns in problems to find certain steps in the patterns and they could not generate 

a symbolic generalization. On the other hand, aTNS students’ performances showed 

differences according to the problem types. They could write symbolic 

representations for the generalization of pattern situations. In addition, she remarked 

that figural reasoning may be more accessible to aTNS students instead of numerical 

reasoning.  

Relying on recursive thinking in patterns to reach the bigger steps is explained by 

the TNS students’ construction of composite units in activity, and lack of reflection 

on composite units (Zwanch, 2022a). Hence, Zwanch (2022a) posited that this 

inadequacy leads the TNS students to fail to generalize relationships into patterns. 

Zwanch (2022) remarked that reflecting on composite units as a characteristic of 

aTNS and ENS students might allow the students to generalize the relationships 

verbally and symbolically. In addition, a lack of disembedding operation can create 

constraints in symbolic generalizations in pattern situations because the students 

cannot reflect on the relationships between unknowns, as also explained by 

Hackenberg (2013).  

2.3 Summary  

This section presented key terms and concepts about algebraic thinking and units 

coordination. In short, algebraic thinking involves many ways of thinking such as 

analytical, structural, and functional thinking (Radford, 2014; Kieran, 2022). The 

indicators of these ways of thinking can be seen in generalization activity which is a 

key practice of algebraic reasoning (Kaput, 2008). Symbolic expression of these 

generalizations is another part of algebraic reasoning. If these practices involve 
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certain patterns of thinking, such as being analytical, abstracting ideas and 

relationships, and structurally interpreting results, they may represent developed 

algebraic thinking (Kieran, 2022).  Writing a symbolic formula does not always 

demonstrate algebraic thinking (Radford, 2010). Sometimes students arrive at a 

formula by trial and error or by guessing, repeatedly changing some terms in the 

formula until they get the right result. Therefore, this is not "an analytical way of 

thinking about indeterminate quantities" which is "the main characteristic of 

algebraic thinking" (p.9). During a clinical interview or classroom experiments, 

students' algebraic thinking and reasoning can be assessed and improved through 

contextual tasks that require generalizations and interpretations of relationships 

between unknown quantities or variables, as seen in the aforementioned studies (e.g., 

Ayala-Altamirano & Molina, 2020; Blanton et al., 2019; Stephens, Fonger, et al., 

2017).  

Units coordination is expressed as mental operations involving certain structures that 

demonstrate how individuals identify and construct the units and the relationships 

between units. Individuals’ mental structures about units and composite units 

demonstrate the complexity of their work with mathematical quantities. Therefore, 

it is asserted that individuals’ units coordination is an influential factor in many 

mathematical performances (Hackenberg, 2013). For example, researchers observed 

that students with different levels of units coordination represent qualitatively 

different ways of writing symbolic mathematical expressions (e.g., Hackenberg & 

Lee, 2015). Moreover, students’ generalization in verbal or symbolic interacts with 

their units coordination (Zwanch, 2022a). Therefore, it may be a novel case in 

algebra studies to interpret students’ mental structures about units as an influential 

factor in developing algebraic thinking.  

As seen in the literature, there is a growing interest in design-based research, which 

is concerned with how important cognitive processes impact students’ algebraic 

thinking and reasoning during the learning process. Some researchers investigated 

the interaction between the students’ units coordination and their algebra 

performance through design experiments in terms of different contexts such as 
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students’ rational number knowledge and equation writing (e.g., Hackenberg et al., 

2017) and students’ rational number knowledge and their representations of 

quantitative unknowns (e.g., Hackenberg et al., 2021). This study differently 

presented an HLT that was designed in accordance with the findings of early algebra 

studies and involved conjectures and outcomes about the students’ learning 

processes with the aim of investigating the interaction between their units 

coordination and their progress in algebraic thinking.  
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CHAPTER 3  

3 METHODS 

The main goal of this study was to investigate the interaction between fifth-grade 

students’ progress in algebraic thinking and their units coordination levels. To 

accomplish this, the current study answered the following research questions: 

1. What is the initial state of fifth-grade students’ units coordination and 

algebraic thinking? 

2. How can the units coordination levels of fifth-grade students interact with 

their progress in algebraic thinking during a learning sequence that focuses 

on the generalization of the relationships between unknown quantities and 

between variables? 

2.1.  How can the units coordination levels of fifth-grade students interact 

with their progress in algebraic thinking regarding the relationships 

between unknown quantities? 

2.2.  How can the units coordination levels of fifth-grade students interact 

with their progress in algebraic thinking regarding the functional 

relationships between variables? 

Departing from the aim of the study, this chapter presents the methodology including 

the design of the study, participants, data collection, data analysis, and 

trustworthiness.  

3.1 Design of the Study 

The starting point of this study was the controversial findings of two different lines 

of research: one is units coordination and the other is early algebra. On the one hand, 
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researchers have asserted that algebraic reasoning, such as equation writing (e.g., 

Hackenberg, 2013, Zwanch, 2022b) and generalization (e.g., Zwanch, 2022a), 

necessitates specific mental operations that pertain to a specific level of unit 

coordination or the possession of some multiplicative concepts. On the other hand, 

researchers observed that even in the early elementary grades, when it is highly 

unlikely that students have developed the necessary multiplicative concepts (Clark 

& Kamii, 1996; Kosko, 2019), they could use algebraic notations and generalize the 

relationships between quantities through appropriate instructional designs (e.g., 

Blanton et al., 2019; Carraher et al., 2006). In this regard, the starting point of the 

study was to fill in some gaps and specify the points in explaining the interaction 

between students’ algebraic reasoning and units coordination. Bringing together 

research on early algebra and unit coordination could validate or improve current 

perspectives on algebraic reasoning and student learning by specifying the issues 

involved.  

In line with this, the study aimed to create a new perspective by filling in the empty 

parts of the claim such as: “A learning process including the aspects of […] would 

develop the students’ algebraic thinking when they have characteristics of […]” or 

“Students who have […] would progress in algebraic thinking when the learning 

activities start with/involve […]”. This required exploring the characteristics of a 

learning environment that supports the algebraic thinking of students who 

demonstrate distinct mental operations in terms of units coordination. Additionally, 

the study also aimed to provide a new perspective on the theory of the interaction 

between algebraic thinking and units coordination. To achieve the aims of the study, 

a theory-oriented, interventionist, and iterative approach was necessary, indicating 

design-based research (Cobb et al., 2003). Therefore, this was primarily a validation 

study, a form of design-based research, that aims to develop or validate theories 

through educational interventions based on certain principles (Plomp, 2013). 

Concerning this, the current study, adopting a design-based research approach, 

aimed to design intervention by employing the relevant theoretical frameworks and 

to provide new insights into these frameworks through the analysis of the 
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intervention. The following paragraphs describe the main principles of design-based 

research and the adaptation of the current study to this approach, highlighting the 

rationale for the actions taken.    

Developing theories by providing new perspectives is an important characteristic of 

design-based research (Cobb et al., 2003) which is one goal of this study. The second 

characteristic highlights its interventionist nature. Learning ecologies include many 

factors affecting the learning process such as mathematical tasks, student 

characteristics, and classroom discourse. This creates a complex “interacting 

system” (p. 9) and requires an engineering issue in a real context. This simultaneous 

interaction between developing a learning ecology and understanding the 

interrelationships between different factors through experimentation allows the 

researchers to understand and improve the characteristics of a new design.  

Since one of the goals of this study was to explore the characteristics of a learning 

process aimed at the development of algebraic thinking, this could be achieved by 

designing a hypothetical learning trajectory as an intervention plan. A hypothetical 

learning trajectory (HLT) refers to the teachers’ conjectures and expectations about 

a learning path and how the learning might proceed under certain circumstances and 

for certain goals (Simon, 1995). Mathematics educators base their instructional 

design decisions on prior conjectures before implementation, which is why it is 

called hypothetical. Simon (1995) stated three key components of HLTs: the 

learning goals, activities to be used in class, and the statements hypothetically 

talking about the learning process. Therefore, it was aimed to specify the learning 

goals for developing the students’ algebraic thinking, preparing mathematical tasks 

parallel to the learning goals, and writing hypotheses about the student learning 

process by being informed of their characteristics and the learning goals (Simon & 

Tzur, 2004).  

The development of an HLT and intervention is possible through the reflective and 

prospective nature of design-based research which is the third feature (Bakker, 2018; 

Cobb et al., 2003). During the prospective phase, mathematics educators formulate 
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conjectures about the learning process through thought experiments (Gravemeijer & 

Cobb, 2013). The ideas are presented as hypothetical cases to be designed and 

developed. Therefore, researchers must generate conjectures about the specific 

learning environment as informed by the respective theories (Plomp, 2013). In the 

reflective section, mathematics educators compare the conjectures with actual 

learning by experimenting with the developed product (Gravemeijer & Cobb, 2013). 

Invalidated conjectures are adjusted, or new ones are developed and tested again. 

Assessments of student learning inform all components of HLTs through an ongoing 

teacher decision-making process (Simon, 1995). These components also provide 

mathematics educators with information about the learning process through ongoing 

intervention and assessments. Therefore, interventions and designs are informed by 

and inform the respective theories (Plomp, 2013). This evolving cyclical process, 

which is another characteristic of design-based research continues to bring a 

developed and working product into practice (Cobb et al., 2003). This iterative nature 

allows mathematics educators to test and revise conjectures or generate new ones to 

test in the next cycle (Bakker, 2018).   

In addition to the main characteristics, in each cycle of design-based research, there 

are three main phases: preparation and design phase, conducting teaching 

experiments, and retrospective analysis (Bakker, 2018). All phases of this study were 

completed to explore the characteristics of an HLT that develops students' algebraic 

thinking. Therefore, the following sections explain the details of the methodology 

adopted in this study including the selection of participants, the characteristics of the 

context, the design process, the instruments used in data collection, and data analysis. 

3.2 Research Team, Participants, and the Context 

In this design-based research, the research team consisted of two main researchers 

and other mathematics educators who were occasionally consulted. The first 

researcher, who is also the author of this dissertation, has ten years of experience as 
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a mathematics teacher in a government school. The author’s role also included 

implementing the teaching experiments for students whom she had not previously 

taught. Therefore, she will be referred to interchangeably as a teacher and a teacher-

researcher throughout the text. The other member of the research team was an 

Associate Professor of Mathematics Education who specialized in units 

coordination. During the design process, the team consulted multiple times with 

other mathematics educators to ensure that the characteristics of the HLT were 

appropriate.   

The sampling process of the study involved several steps: the selection of the grade, 

the school, and the students, respectively. The selection of the grade level was 

purposeful and theory-driven, which addressed the research aim (Creswell, 2009). In 

line with the purpose of the study, to contribute to the literature on early algebra and 

better examine the progress of algebraic thinking along the learning trajectory, the 

research team has decided to work with fifth graders who were new to middle school 

and had not yet received formal algebra instruction according to the Turkish 

Mathematics Curriculum (MoNE, 2018). According to the Turkish Mathematics 

Curriculum (MoNE, 2018), fifth graders, who are in their first year of middle school 

in Turkiye’s education system. The strand of algebra is first introduced in sixth 

grade. According to the current mathematics curriculum, a student who has 

completed fourth grade is expected to know arithmetic operations (i.e., addition, 

subtraction, multiplication, and division), the meaning of equality, and how to 

present data in tables (MoNE, 2018). Considering the potential mathematical tasks 

to be included in the HLT, including contextual situations with functional 

relationships as presented in the literature for primary school students’ algebraic 

thinking and reasoning (e.g., Blanton et al., 2011; Blanton et al., 2019), the research 

team objected to work with the students who can think multiplicatively, understand 

a mathematical expression including equal sign, and read and construct a table. 

Another reason for choosing fifth-grade students, rather than those in lower grades, 

is to work with students who have achieved at least an MC1 level, which is the first 

stage of multiplicative concepts in terms of units coordination. MC1 level would 
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enable students to accomplish multiplicative tasks (e.g., Hackenberg, 2013; 

Hackenberg et al., 2021), which are commonly used in tasks including functional 

relationships, which were initially aimed to give place in the learning trajectory. In 

a research surveying unit coordination of middle school students in Turkiye (Acar & 

Sevinc, 2021), more than half of the fifth graders were found at the MC1 level. 

Furthermore, researchers estimated that half of the fifth graders started to reason 

multiplicatively reflecting their construction of composite units (e.g., Kosko, 2019; 

Steffe, 2024). In sum, the units coordination level was selected to attain these 

research goals based on the literature and theory by using a purposeful sampling 

strategy (Creswell, 2009).  

The school of the students was chosen through convenience sampling by considering 

the geographical accessibility, and the willingness of both the students and their 

parents to participate in the study (Miles et al., 2014). The researcher had an 

advantage in obtaining permission and reaching out to the school principal and 

parents since her workplace was the school in question. The school was a small 

middle school situated in a neighborhood with medium socio-economic status in 

İstanbul. It had one fifth-grade class consisting of 20 students.    

Lastly, the students’ selection among the fifth graders in this middle school was 

purposeful, considering various factors to obtain relevant data for research purposes 

(Creswell, 2009) such as their units coordination level, self-expression skills, and 

achievement levels. It was critical to have students who could easily share their 

thinking processes and provide significant data during interviews and teaching 

experiments as this study necessitates qualitative data collection and analysis. To 

obtain extensive data, it was also necessary to involve students who were not low in 

general academic skills, including reading comprehension, numeracy, and 

interpreting tables and figures. Following consultation with the fifth graders’ 

mathematics teachers, the researcher requested a selection of students who had 

achieved high or moderate scores on mathematics exams and the teacher’s evaluation 

in the classroom in terms of their self-expression skills. The mathematics teacher 

provided six students who scored between 60-100 on mathematics exams. 
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To investigate the fifth-grade students’ progress in algebraic reasoning based on their 

units coordination, the study primarily targeted students with varying levels of units 

coordination. Specifically, the research team aimed to implement teaching 

experiments by pairing the students who shared similar cognitive operations and 

generating two different groups demonstrating distinct units coordination levels. 

Therefore, the selection of students was based on their units coordination levels 

during data collection. Four students were selected and grouped into two based on 

their units coordination, as indicated by the initial data analysis in the Findings 

section. It is important to note that the interview for units coordination was used to 

decide on the students, but it primarily demonstrated the students' mental operations 

in interpreting the main data of this study. The findings section presents a detailed 

analysis of the students' unit coordination levels; still it is important here to pinpoint 

the units coordination of participating students to distinguish their similarities and 

differences.  

In conclusion, there were four fifth-grade students (two males and two females, 11-

year-olds) each two having a different level of units coordination (see Table 3.1). 

The names of the students were pseudonyms.  

Table 3.1 Study Participants 

 Roy Belle Sara  Luke 

Units Coordination Levels MC2 MC2 MC1 MC1 

General Academic 

Performance Score 
95.1 87.5 79.7 81.2 

Mathematics Score 97.8 95.6 67.9 73.4 

Gender Male Female Female Male 

 

3.3 Ethical Considerations  

Before the data collection process, the researcher provided the research ethics 

committee approval taken from the Middle East Technical University (see Appendix 
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A), received permission from the school principal and the İstanbul provincial 

directorate for national education (see Appendix B) to collect data from students in 

the school and to implement teaching experiments. Then, the parents and students 

received information about the study. I, as the researcher-teacher, informed them that 

the issue of confidentiality would be addressed in this study and that they would not 

be harmed during the study. The students voluntarily participated in the study and 

their parents provided signed permission forms before the research began (Appendix 

C).  

3.4 Design Process  

This study consisted of three phases following a design-based research approach. 

The first phase involved preparing the HLT, which included how conjectures and 

learning goals were generated, the influence of local instruction theories, the role of 

the research team, and the initial assessments of participants as another influential 

factor. The second phase explained how teaching experiments were conducted 

including the role of researchers, a description of learning ecology, and the elements 

of theoretical perspective in teaching and learning. Lastly, the last phase included 

how the retrospective analysis of teaching experiments was conducted. Therefore, in 

this section, these three phases and the HLT as the end product were described.  

3.4.1 Preliminary research phase: Before teaching experiments 

The initial phase of design-based research begins with a literature review that 

provides insight into the specific educational problem and potential solutions 

(Nieven & Folmer, 2013). This review also helps generate the initial design 

principles for enhancing the situation. In this phase, the characteristics of the design 

are established through an ongoing literature review, the analysis of context, and the 

adoption of a conceptual and theoretical framework (Plomp, 2013). These 

characteristics, which were derived from various literature sources, generate the 



 

 

71 

starting points of a design. The design is developed further through thought 

experiments on anticipated student performances and interactions (Gravemeijer, 

2004). In this process, researchers must consider several aspects to ensure an 

effective design and analysis process. These aspects include the cognitive 

characteristics of the design, the type of interaction between students and teachers, 

and the students’ access to the resources of the design (Collins et al., 2004). These 

considerations allow the researchers to develop a local instruction theory by 

expanding and adjusting current perspectives to the hypothetical learning process 

(Gravemeijer & Cobb, 2013). 

In this study, after specifying the research problem and determining the grade level 

of students, an extensive exploration of literature and theoretical perspectives 

continued. This review provided a significant perspective on learning algebraic 

thinking and reasoning before formal algebra instruction (e.g., Blanton et al., 2011; 

Blanton et al., 2019; Carraher et al., 2006), students’ mental operations in terms of 

units coordination (e.g., Hackenberg et al., 2021; Steffe, 1992) and theories for 

learning and teaching (Cobb et al., 1992; Simon, 1995; von Glasersfeld, 1995;). 

Domain-specific perspectives about teaching and learning algebra shaped the 

conjectures about what students can do and which algebraic tasks and processes can 

be effective in the development of students’ algebraic thinking. Additionally, the 

previous research about units coordination provided insight into the students’ mental 

operations and helped to generate new conjectures regarding the students’ 

multiplicative concepts and potential performances in multiplicative tasks. Lastly, 

general instructional and epistemological theories such as the Realistic Mathematics 

Education, and socio-constructivism approach helped to determine task 

characteristics, the teacher’s role, the type of questioning of the teacher during 

teaching experiments, and socio-mathematical norms. The following sections outline 

the principles and characteristics of the HLT design, including the theoretical and 

conceptual perspectives, characteristics of mathematical tasks, the teacher’s role, and 

socio-mathematical norms.  



 

 

72 

3.4.1.1 Theoretical perspectives on algebraic thinking in the HLT  

This section explains the interpretation of students’ development of algebraic 

thinking through domain-specific perspectives at the cognitive level, as a part of 

local instruction theory. In this way, the goals of the HLT are generated by starting 

with a general goal and then becoming more specific. The primary objective of the 

entire learning sequence is to develop students’ algebraic thinking. To achieve this, 

the first step was to examine how algebraic thinking is defined and approached in 

literature. We concentrated on the widely used descriptions of algebraic thinking 

(Kieran, 1989; Radford, 2014) and algebraic reasoning (Kaput, 1999, 2008) to 

identify the elements of learning tasks in the HLT. Descriptions of algebraic thinking 

and reasoning share common components and are similar in form. For example, 

Radford (2014) identified the dimensions of algebraic thinking as indeterminacy, 

denotation, and analyticity. Similarly, Kieran (2022) framed early algebraic thinking 

into three dimensions: analytical thinking, structural thinking, and functional 

thinking. Kieran (2022) describes analytical thinking as mental operations involving 

indeterminate quantities (indeterminacy) and denoting relationships in different 

ways (denotation), which aligns with Radford's (2014) dimensions.  

Furthermore, Kaput (2008) presented two core aspects of algebraic reasoning that 

should be incorporated in teaching algebra: “a) Algebra as systematically 

symbolizing generalizations of regularities and constraints b) Algebra as 

syntactically guided reasoning and actions on generalizations expressed in 

conventional symbol systems” (p. 11). He also indicated three strands embodying 

these core aspects: the study of structures in arithmetic and quantitative reasoning, 

the study of functions, and modeling applications. These forms also incorporate the 

dimensions of algebraic thinking that are specified by Kieran (2022) and Radford 

(2014) such as manipulation of formalism including denotation and analytical 

thinking, study of structures including structural thinking, and study of functions 

including functional thinking. Therefore, these components have become the study’s 
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starting point in terms of comprehension of the main variable of the design (see Table 

3.2).  

Table 3.2 Starting Point: The Components of Algebraic Thinking and Reasoning 

 Algebraic Reasoning Algebraic Thinking 

Thinking processes  Generalization of 

Regularities 

Analytical Thinking  

Functional thinking 

Structural Thinking  

Observable 

behavior  

Generalizations expressed 

verbally or by the 

conventional symbol system 

The denotation/expression of 

the operations with 

indeterminate quantities 

 

In this way, more specific learning goals emerged at the cognitive level through the 

interpretation of algebraic thinking and reasoning (see Table 3.3).   

Table 3.3 The Learning Goals in the HLT Presented in the Order of Generation 

Learning Goals Components 

1. Developing the students’ algebraic thinking   

2. Using indeterminate quantities in expressing the 

variables, relationships, and regularities 

Analytical Thinking  

3. Expressing the variables, relationships, and regularities 

using symbols  

Analytical Thinking 

Denotation 

Indeterminacy 

Generalization  

4. Expressing the variables, relationships, and regularities 

in different forms (e.g., writing multiple equations, 

constructing tables and drawings) 

Structural Thinking 

5. Identifying functional relationships  Functional Thinking 

Generalization 

6. Expressing functional relationships using symbols Functional Thinking 

Generalization 

Analytical Thinking 
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After generating the initial learning goals, I have decided to give place for 

mathematical activities including the aspects of generalization and symbolic 

manipulation of generalizations with the dimensions of algebraic thinking such as 

analytical, structural, and functional thinking. To determine the order of tasks and 

objectives for studying with students who have not received formal algebra 

instruction, I conducted a literature review on early algebra and its introduction in 

primary school years. 

As a starting point, Blanton et al. (2011) gave us a clear and robust perspective on 

teaching algebra through their objectives, sample mathematical tasks, and big ideas. 

They described five big ideas that summarize fundamental concepts and processes 

in early algebra teaching and learning which are commonly adopted in lots of 

research about algebraic reasoning: a) Arithmetic context for algebraic thinking, b) 

Equivalence of two quantities, c) Variable understanding, d) Quantitative reasoning 

for generalizations, and d) Functional thinking as a gateway to algebra. In addition 

to highlighting the structures and relationships in an arithmetic context, they 

remarked on some concepts that are important in algebra such as variables and 

equivalence. Hence, they start with the comparison of unknown quantities using 

variables and comparison symbols. They also highlighted the processes of 

quantitative reasoning (e.g., Ellis, 2011; Smith & Thompson, 2008), generalization 

(Kaput, 2008; Kieran, 2007; MacGregor, 2004), and functional thinking (Carraher 

et al., 2008) like many researchers did. Therefore, I have decided to start the lessons 

with comparisons of unknown quantities so that the students could have a chance to 

think over unknown quantities and use comparison symbols (i.e., <, >, =) with 

unknowns as a new thinking form and language. In this way, it was aimed to give 

place for the meanings of comparison symbols, the meaning of equivalence, and 

comparing different quantities as in the framework in Blanton et al. (2011). 

Furthermore, Carraher et al. (2008) emphasized a learning process critical for early 

algebra within a function context. In this learning, some key mathematical processes 

are applied such as using indeterminate quantities in contextual problems, 

interpreting the data in function tables, creating conjectures, making generalizations, 
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and representing the relationships with symbols. Functional thinking is regarded as 

a gateway to algebra because it involves handling many key algebraic concepts and 

processes such as “generalizing relationships between covarying quantities; 

representing and justifying these relationships in multiple ways using natural 

language, variable notation, tables, and graphs; and reasoning fluently with these 

generalized representations in order to understand and predict functional behavior” 

(Blanton, Brizuela et. al, 2015, p.512). Kaput (1999) remarked on the importance of 

functions in many ways of mathematical thinking through the ideas of causality, 

covariation, and rate of change as conceptual roots of algebraic reasoning. Hence, he 

suggests ways of representing functional thinking in elementary years through the 

problems in which the contextualized quantities change over time and uses graphs 

and tables (Kaput, 1999). Multiple representations such as drawings, tables, charts 

and graphs, and age-appropriate tasks in rich contexts can help the students to make 

sense of the variables and the functional relationships and to make generalizations 

as the initial steps into the algebraic concepts (Carraher et al., 2008; Blanton, 

Stephens, et al., 2015). From this point of view, functional thinking was prioritized 

with rich contextual problems in the HLT because it entails many key algebraic 

processes such as variable understanding, generalizing the relationship between 

quantities, and using multiple representations such as tables and equations to express 

the relationships.  

In conclusion, the design approach in this study followed Kaput's (2008) description 

of algebraic reasoning and Kieran's (2022) and Radford's (2014) formulation of 

algebraic thinking as the main theoretical framework (see Table 3.2). Thus, the 

design of the HLT focused on mathematical processes such as functional thinking 

and quantitative reasoning, as well as symbolic generalizations. In addition, the ideas 

for the algebra learning process supported by Carraher et al. (2008) such as using 

indeterminate quantities in contextual problems, interpreting the data in function 

tables, creating conjectures, making generalizations, and representing the 

relationships with symbols and five big ideas presented by Blanton et al. (2011) 

shaped the initial version of the HLT. In sum, the HLT was based on a framework 
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with four essential mathematical processes: quantitative reasoning, multiplicative 

reasoning, generalization and functional relationship, and three key objectives: use 

of variables, writing equations, and understanding functions as shown in Figure 3.1.  

Figure 3.1. The framework of the HLT 

3.4.1.2 Theoretical worldview about teaching and learning in the HLT  

In the design and ordering of the learning activities in the HLT, a multifaceted 

approach to teaching and learning mathematics was employed. The aim was to 

follow a comprehensive approach that draws on the strengths of different theories 

and perspectives. Therefore, the HLT integrated various worldviews in the 

development of mathematics education by selectively incorporating certain aspects 

of each perspective while dismissing others, as suggested by Simon (2009). With 

respect to this, we, as a research team, adopted principles from the Realistic 

Mathematics Education (RME) theory, incorporated the worldviews of researchers 

in the field of early algebra, and included the views of the emergent perspective of 

Cobb and Yackel (1996).  

The RME distinguishes between two types of mathematization: horizontal 

mathematization and vertical mathematization as crucial processes (van den Heuvel-

Panhuizen, 2000). Horizontal mathematization involves transforming concepts from 

their real-world representation into mathematical symbols, while vertical 

mathematization involves transforming concepts within the mathematical symbolic 

system. In the context of developing algebraic thinking, we aimed to incorporate 
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real-life representations of concepts, such as comparison situations and equivalence, 

and transform them into mathematical expressions. For instance, the objective was 

to have students mathematize the significant elements in contextual situations, such 

as variables and relationships, through a process of horizontal mathematization. This 

entailed identifying them in realistic situations and expressing the phenomena in 

mathematical ways. In the process of vertical mathematization, the objective was to 

have students work within mathematical expressions including verbal expressions of 

generalizations, the use of tables for functional relationships, and the use of 

alphanumeric symbols in equations.  

Initially, the learning activities in the HLT were informed by the reality principle of 

the RME. The reality principle involves incorporating real-life contexts into 

mathematical abstractions, allowing students to imagine problem situations (van den 

Heuvel-Panhuizen, 2000). This approach aims to make the problem situations more 

tangible for students. It is important to ensure that students can imagine the 

mathematical situation, as this makes it more realistic for them. Using rich contextual 

situations to develop understanding and make sense for children is also a suggestion 

of researchers in the field of early algebra (e.g., Blanton et al., 2011; Carraher et al., 

2008; Kaput, 1999).  

Another fundamental principle that has been incorporated into the design of the HLT 

is the level principle. This principle facilitates the transition from informal to more 

formal mathematical discourse (van den Heuvel-Panhuizen, 2000). This also 

corresponds to the abstraction process in the constructivist theory of mathematical 

knowledge (von Glasersfeld, 1996). At the informal level, students' learning can be 

supported by using models and objects and by allowing them to move between 

different models (van den Heuvel-Panhuizen, 2000). In the early parts of the HLT, 

the aim was to use figures from real-life contexts for comparisons of unknown 

quantities before representing the relationships and concepts more formally and 

abstractly. Additionally, the objective was to utilize tables of values for each 

variable, develop a verbal generalization for the relationship between variables, and 

then express this generalization through symbols. This approach would facilitate the 
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gradual increase in the level of formalization by providing multiple representations 

of generalizations, as suggested by Kaput (1991).  

The final principle embraced by the HLT was the intertwinement principle of the 

RME, which places a strong emphasis on the connection between the various content 

areas of mathematics (van den Heuvel-Panhuizen, 2000). This principle also 

corresponds to the nature of algebra and algebraic thinking. For example, 

understanding the relationship between operations and the properties of operations 

is an aspect of algebra through generalization and structural thinking (Carpenter et 

al., 2005; Usiskin, 1988). In this regard, the aim was to guide students to express the 

relationships using symbols in different ways so that they could use the relationships 

between operations and arithmetic properties. Therefore, the HLT included many 

aspects of mathematics through the nature of algebra such as the relationships 

between operations, patterns, and multiplicative reasoning.   

3.4.1.3 Hypothetical learning trajectory (HLT) 

Based on the theoretical views about teaching mathematics and algebra, we, as the 

research team, created an HLT including six episodes (see Appendix D). In light of 

the learning goals (see Table 3.3), we specified learning outcomes for each episode 

and adapted and designed instructional activities. Each episode included contextual 

tasks for student interpretation and progression. The tasks were adapted from various 

studies that investigated and described students’ early algebra instruction (e.g., 

Blanton, Brizuela, et al. 2015; Blanton et al., 2011; Carraher et al., 2006). The tasks, 

their descriptions, the mathematical ideas, and key cognitive operations are 

presented in the following paragraphs. 

Before introducing contextual situations involving functional relationships, the goal 

was for the student to gain experience in writing mathematical sentences in various 

contexts using variables and symbols. We thought that fifth graders may lack 

experience in writing mathematical sentences to represent relationships beyond 
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solving given arithmetic operations and missing value problems. Therefore, the first 

and second episodes aimed to support students in writing mathematical equations 

using variable notations for unknown quantities.  

Episode 1. Episode 1 started with the principle that algebraic thinking requires 

recognizing unknown quantities/variables, comparing them, and using symbols. The 

comparison tasks were regarded as important to reflect how many ways two 

quantities can relate to each other under the big idea, using quantitative reasoning to 

generalize relationships (Blanton et al., 2011). Therefore, in the first episode, the 

learning outcomes were to compare unknown quantities represented in figures and 

to express the comparison in different ways, such as using verbal expressions, 

hypothetical values, and symbols. 

For this aim, three tasks asked the students to interpret different ways of comparing 

two quantities and express the unknown quantities and the comparison of them using 

variable notation and symbols. The first two tasks in Episode 1 ask students to 

compare two unknown quantities, such as two pencils of different unknown lengths 

and two pencils of the same length. These activities were adapted from Blanton et 

al. (2011). In the third task, students continue to compare unknown quantities in 

different contexts, such as un/balanced scales, and jars of sugars (see Figure 3.2). By 

giving place for both equal and unequal situations it was also aimed to remark on the 

meaning of equal sign as a comparison symbol. 

 

Figure 3.2. Sample figures from the comparison activities in Episode 1 
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In all the activities, scaffolding questions were added assisting students to move to 

the next steps and to comprehend the main idea. For example, to help students 

understand the concept of variables and make generalizations, questions were added 

that asked them to estimate the lengths of pencils and record their guesses in a table. 

Furthermore, they were asked to use literal symbols to represent the lengths or 

weights of the objects in each activity to help them become more comfortable 

working with literal symbols. Table 3.4 represents the key components of Episode 1 

which is the first part of the HLT. 

Table 3.4 The Structure of Episode 1 in the HLT 

EPISODE 1: Comparison of unknown quantities using equality and inequality 

Learning Outcomes  

• Express the comparison of unknown quantities verbally (e.g., it is 

longer/heavier/older than the other) 

• Attain hypothetical values for unknown quantities by using tables. 

• Assing letters/symbols to represent an unknown quantity. 

• Use letters/symbols to represent the comparison between unknown quantities 

using equality and inequality. 

• Understand the relational meaning of the equal sign. 

Tasks and Their Structures  

Task 1: Expressing the multiplicative relationship between two unknowns by using 

symbolic expressions 

Task 2: Expressing the additive relationship between three unknowns by using 

symbolic expressions 

• Including contextual models and scenarios  

• Including a comparison of two or more unknown quantities 

• Allowing using tables of hypothetical values for the unknowns 

• Including quantitative reasoning through the comparison of different quantities 

• Generalizing from hypothetical values to symbols 

Conjectures  

a) MC1 and MC2 students would compare the unknown quantities and express 

them verbally at the beginning of tasks. 

b) MC1 and MC2 students would attain values for each unknown instead of using 

literal symbols 
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Table 3.4 (Continued) 

c) MC1 students would not understand how they represent the relationship using 

symbols. 

d) Roy or both MC2 students would use the assigned letters to represent the 

comparison with symbols towards the end of the episode.  

e) MC1 students would continue to assign values to unknown quantities instead 

of using symbols. 

f) MC1 and MC2 students would have difficulty in representing the comparison 

between three unknowns on un/balanced scales 

Instructional Moves Aligning with the Conjectures   

• Conjectures b – c – e  

-Assign multiple values for each unknown on a table and discuss the generalized 

comparison  

-Discuss the comparison symbols in expressing the numerical situations in 

mathematical language (e.g., =, <, >) 

-Direct the student to use letters for unknowns by saying “Let the length of yellow 

pencil ‘a’ and the length of orange pencil ‘b’.” 

• Conjecture f 

-Use a table to assign values to three unknowns on an un/balanced scale and discuss 

how to represent two unknown weights on one side in comparison to the other on the 

other side. 

 

Episode 2. Episode 2 involved the principle that algebraic reasoning involves 

recognizing the multiplicative and additive relationships between unknown 

quantities and representing them using symbols. The goal of the second episode was 

to support students in identifying the multiplicative and additive relationships 

between unknowns represented in models, representing the relationships by attaining 

numerical values and expressing the relationships using symbols such as equal signs 

and letters. In the previous episode, I conjectured that students would learn how to 

compare quantities and represent relationships using mathematical equations. In this 

lesson, they encounter multiple contexts that involve both multiplicative and additive 

relationships.  

To achieve the goals, two activities were designed that incorporate model 

representations, aligning with the reality principle of the RME. The first activity 



 

 

82 

involved a multiplicative relationship, while the second involved an additive 

relationship (see Figure 3.3). The second activity involving an additive relationship 

was adapted from Blanton et al. (2011, p. 44). It is introduced for developing 

students’ quantitative reasoning and generalization skills as one dimension of 

algebraic reasoning. Blanton, Brizuela, et al. (2015) indicated that the student can 

represent a function such as 𝑦 =  𝑚𝑥 easier as compared to a functional relationship 

such as 𝑦 =  𝑥 + 𝑏. Considering that students would express a multiplicative 

relationship such as 𝑦 =  4𝑥 easier than expressing a relationship such as 𝑦 =  𝑥 +

 𝑎, the activity involving a multiplicative relationship took first place in this Episode. 

Figure 3.3. The models for multiplicative and additive relationships  

Using variables by operating with them as mathematical objects and by representing 

functional relationships indicates a high level of understanding of variables (Blanton 

et al., 2017). Hence, this task serves for the students to develop a sophisticated 

understanding of variables which is an important step before using them in 

representing functional relationships. Carraher et al. (2006) indicated that “the 

children’s initial intuitions about order, change, and equality first arise in additive 

situations” (p. 94). Hence, before introducing functional relationships in multiple 

contexts, these two activities would develop an understanding of order, equality, and 

symbolic notations. Furthermore, the order of steps in each activity corresponds to 

the level principle of the RME through the use of models, from models to numerical 
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values and from numerical values to symbolic representations. Therefore, the aim 

was to highlight multiple ways of expression of a multiplicative and additive 

relationship in an increasing abstraction. Table 3.5 represents the key components of 

Episode 2 which is the second part of the HLT. 

Table 3.5 The Structure of Episode 2 

EPISODE 2: Comparison of unknown quantities with additive and multiplicative 

relationships using equality 

Learning Outcomes  

• Recognize multiplicative and additive relationships between unknown quantities 

through models. 

• Create different scenarios by attaining hypothetical values to unknown quantities 

having multiplicative or additive relationships by using tables.  

• Assing letters/symbols to represent an unknown quantity. 

• Express the multiplicative and additive relationship between unknown quantities 

verbally. 

• Express the multiplicative and additive relationship between unknown quantities 

using symbols. 

• Show the relational meaning of the equal sign. 

Tasks and Their Structures 

Task 1: Expressing the multiplicative relationship between two unknowns by using 

symbolic expressions. 

Task 2: Expressing the additive relationship between three unknowns by using 

symbolic expressions 

• Including contextual models and scenarios (Reality and level principle) 

• Including a comparison of two or more unknown quantities 

• Allowing using tables of hypothetical values for the unknowns  

• Including quantitative reasoning through the multiplicative and additive relationships 

(Intertwinement principle) 

• Generalizing from hypothetical values to symbols (Level principle) 

Conjectures  

a) MC1 and MC2 students would express the additive and multiplicative 

relationships verbally 
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Table 3.5 (Continued) 

b) MC1 students use the letters to represent the lengths, but they would not write 

the equations 

c) MC1 students would assign values for the length of ropes such as 1 and 4 or 2 

and 8. 

d) MC1 students would give numerical values to the unknowns and do 

operations, but they would not represent the additive and multiplicative 

relationship using symbolic expressions  

e) MC2 students would express the additive and multiplicative relationship 

verbally and symbolically by using letters, operations, and equality. 

f) MC2 students would write different algebraic expressions representing the 

same multiplicative relationship (e.g., 4 x a: it is the longest rope; 4 x r = 

longer rope; r + r + r + r = longer rope; 4 x r = s; s / 4 = r).   

Instructional Moves Aligning with the Conjectures   

• Conjectures a – b – c – d:  

-Ask them to use letters and describe the same thing by using symbols 

- Ask and discuss “Is there another way to represent the relationship (addition 

/division/ multiplication/subtraction)?” 

- Emphasize that we do not know the lengths. Ask and discuss the relationship between 

the assigned numbers. For example, ask: “Which operation can you do to find one?” 

• Conjecture e – f:  

-Ask and discuss “How differently can you demonstrate the same relationship?” 

 

Episodes 3-6. Since Episode 3, the design of the HLT followed the principle that 

developing algebraic thinking through the dimension of functional thinking requires 

recognizing the variables in contextual problems, the functional relationship between 

variables, and representing the relationship by using symbols. Regarding this, 

Episodes 3 and 4 aimed to develop students’ functional thinking through various 

contexts with functional relationships in the form of 𝑦 =  𝑎𝑥 while Episodes 5 and 

6 included functional relationships in the form of 𝑦 =  𝑎𝑥 +  𝑏. Throughout these 

episodes, students complete some tasks in each activity such as identifying problem 

variables, representing the possible scenarios in function tables, interpreting and 

generalizing the data in tables, and expressing the functional relationship between 

the variables.  
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Episode 3 involved two activities including contextual problems which were taken 

from Blanton et al. (2011) and Blanton, Brizuela, et al. (2015). The problems 

included simple and discrete variables. The first activity involved a functional 

relationship between two variables: one is the number of chairs, and the other is the 

number of legs (Blanton et al., 2011). To enrich the contextual situation and to 

strengthen the students’ understanding there were similar tasks in the following 

sections of the episode (see Figure 3.4). The students are asked to find similar 

relationships between the number of dogs and legs; the number of people and their 

ears; and the number of people and their noses (Blanton, Brizuela, et al. 2015). 

Figure 3.4. Sample Problems in Episode 3 

It was assumed that students could identify relationships in different ways through 

these tasks. One possibility is by observing a pattern in only one column of the 

function table through recursive thinking (Blanton, Brizuela, et al. 2015; Blanton et 

al., 2011). For instance, students may focus on the pattern in the column of the 

number of legs, noting that it increases by four. However, the learning trajectory 
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aims to develop functional thinking through covariational and correspondence 

approaches. It was assumed that this development would occur at the end of the 

episodes.  

Episode 4 continued the learning process from Episode 3 by providing additional 

contexts for the same form of the functional relationship (𝑦 =  𝑎𝑥). It began with 

the Saving Money Problem which prompts students to express the relationship 

between the number of weeks and the amount of money saved when saving the same 

amount each week. This problem is important as it includes different continuous 

variables such as time and amount of money. After solving the initial problem and 

representing the relationship, students were presented with additional situations in a 

table format, such as saving varying amounts of money each month. The second 

problem was the Pool Problem which introduced a different context involving the 

relationship between time and the amount of water in a pool. The steps for this 

problem were the same as the previous one, including identifying variables, 

constructing a table, and expressing the relationship verbally and symbolically. In 

the same context at the end of the activity, there was another situation with a new 

table of data, similar to the first activity. These generalization practices were 

important for developing their covariational and correspondence thinking as ways of 

functional thinking.   

In the final activity of Episode 4, students were required to determine the relationship 

between the number of tables and the number of people seated based on a given 

seating arrangement in The Birthday Party 1 Problem (Blanton, Brizuela, et al. 

2015). It was anticipated that students who have completed the previous tasks would 

be able to express the functional relationship and provide additional context. To 

enhance students' understanding, it may be helpful to generalize functional 

relationships across different contextual problems by presenting them sequentially 

and highlighting similarities (Blanton et al., 2011; Carraher et al., 2008). For 

example, one could construct a connection between saving money and filling the 

pool contexts through the independent and dependent variables and shared linearity 

concept. This approach can facilitate comprehension by drawing connections 



 

 

87 

between seemingly disparate contexts. These connections can assist students in 

transitioning from context-related situations to more general and formal ways of 

functional thinking while moving from informal to formal mathematics under the 

level principle in the RME (van den Heuvel-Panhuizen, 2000). Table 3.6 represents 

the key components of Episodes 3-4 which is the third part of the HLT. 

Table 3.6 The Structure of Episodes 3 and 4 in the HLT 

EPISODES 3-4: Representing functional relationships between variables in the form 

of 𝑦 =  𝑎𝑥  

Learning Outcomes  

• Identify the problem variables.  

• Construct a function table. 

• Identify and generalize the functional relationship in the table of data.  

• Understand and express the functional relationship between two variables through 

recursive, covariational, and correspondence approach 

• Represent the functional relationship using equation and variable notation. 

• Connection between multiple representations of functional relationship (verbal, 

table and symbolic) 

Tasks and Their Structures 

3-1) The Chair and Legs Problem: The relationship between the number of chairs 

and the number of legs (𝑦 =  4𝑥) 

3-2) The contexts like the first task: The number of dogs/people/ and the number of 

legs/ ears /noses (e.g., 𝑦 =  2𝑥 and 𝑦 =  𝑥) 

4-1) The Saving Money Problem: The relationship between time and the total 

amount of money ( 𝑦 =  5𝑥) 

4-2) The Pool Problem: The relationship between the amount of water in a pool and 

the elapsed time (𝑦 =  2𝑥)  

4-3) The Birthday Party 1 Problem: The relationship between the number of tables 

and the number of people who are seated (𝑦 = 2𝑥)  

• Including contextual problems (Reality principle) 

• Relationship between discrete quantities (Episode 3) 

• Relationship between continuous quantities (Episode 4) 

• Using function tables to represent the data before generalization (Level principle) 

Conjectures 

a) MC2 students would calculate any corresponding value in function tables. 
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Table 3.6 (Continued)  

b) MC1 students would not calculate the larger values in function tables because of 

recursive thinking. 

c) MC2 students would indicate the functional relationship verbally by using 

indeterminate quantities and write equations by using symbols. 

d) MC1 students would not indicate the functional relationship by using indeterminate 

quantities and letters.  

e) MC1 students would have difficulty understanding the problem about the 

relationship between the number of tables and the number of people seated around the 

tables 

Instructional Moves Aligning with the Conjectures   

• Conjecture a – c: 

-Ask them to use different strategies and explain the relationship by using different 

expressions and equations (Developing structural thinking)  

• Conjecture b – d: 

-Fill the table together on the board and ask about the relationship between two 

variables. Indicate the names of each variable in discussing each case. Let the 

students interpret the change in both variables simultaneously.  

• Conjecture e:  

-Ask them to draw models to represent each situation. Show one table, two tables, and 

three tables on the board respectively, and ask them to interpret the situation. 

 

In Episodes 5 and 6, the aim was to present functional relationships in the form of 

𝑦 =  𝑎𝑥 +  𝑏 through contextual problems. Episode 5 included two problems with 

similar contexts to the problems in the previous episode. The first problem of 

Episode 5 sought the relationship between the number of people and the number of 

tables, which was also the focus of the last activity in Episode 4 (The Birthday Party 

2 Problem). In this scenario, there is a constant number representing the number of 

individuals seated at the table ends. Likewise, in the second problem of Episode 5, 

the Bank Account Problem, the students must focus on saving money context as they 

did in the previous episode (see Figure 3.5). In this scenario, an initial sum of money 

is given, and it increases each month at a constant rate.  
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Figure 3.5. Sample problems from Episodes 5 and 6 

Episode 6 continues with three different problems for the same form of functional 

relationships, 𝑦 =  𝑎𝑥 +  𝑏. The first one, the People and Hats Problem, was about 

the relationship between a person’s height without a hat and with a hat with 20 cm 

height, which was taken from the study of Carraher et al. (2006) (see Figure 3.5). 

The second problem, Credit Card, in Episode 6 pertains to a credit card reward of a 

constant amount granted for any spending (𝑦 =  𝑥 –  20). It asked for the 

relationship between the initial amount of spending and the amount of debt. The 

relationships between the variables in the People and Hats and the Credit Card 

Problems are written in the form of 𝑦 =  𝑥 ±  𝑎, which differs from the previous 
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problems in Episode 5 in that it has a constant rate of change of one. The last problem 

in Episode 6 was the Sapling Problem, which involved a relationship between the 

height of a tree sapling and the elapsed time. The initial height of the sapling is 35 

cm, and it grows 2 cm each day (𝑦 =  35 +  2𝑥). This problem was incorporated 

into the lesson plan shortly after the completion of Episode 5, as the students had 

difficulty in determining the relationships between the variables in the problems of 

this form, including those with a coefficient that differs from one. The research 

members added the Sapling Problem into the plan to provide further practice with 

this specific functional relationship. The problems present novel contexts to allow 

students to practice what they have learned as well. Table 3.7 represents the key 

components of Episodes 5-6 which is the last part of the HLT. 

Table 3.7 The Structure of Episodes 5 and 6 in the HLT 

EPISODES 5-6: Representing functional relationships between variables in the form 

of 𝑦 =  𝑎𝑥 + 𝑏  

Learning Outcomes  

• Identify the variables and the constant term in the problem   

• Construct a function table. 

• Identify and generalize the functional relationship in the table of data.  

• Understand and express the functional relationship between two variables through 

recursive, covariational, and correspondence approach 

• Represent the functional relationship using equation and variable notation. 

• Connection between multiple representations of functional relationship (verbal, 

table and symbolic) 

Tasks and Their Structures 

5-1) The Birthday Party 2 Problem: The relationship between the number of tables 

and the number of people who are seated (𝑦 =  2𝑥 +  2) 

5-2) The Bank Account Problem: The relationship between time and the total 

amount of money saved in the account (𝑦 =  15𝑥 +  30 ) 

6-1) The People and Hats Problem: The relationship between a person’s height 

without a hat and with a hat ( 𝑦 =  𝑥 +  20 ) 

6-2) The Credit Card Problem: The relationship between the initial amount 

expenditure and total debt amount (𝑦 =  𝑥 –  20 ) 
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Table 3.7 (Continued)  

6-3) The Sapling Problem: The relationship between the elapsed time (days) and the 

height of the sapling. (𝑦 =  2𝑥 +  35) 

• Including contextual problems (Reality principle) 

• Relationship between discrete quantities (Episode 5) 

• Relationship between continuous quantities (Episodes 5-6) 

• Using function tables to represent the data before generalization (Level principle) 

Conjectures 

a) MC2 students would calculate any corresponding value in the function tables and 

indicate the functional relationship verbally by using indeterminate quantities  

b) MC1 students would not calculate the larger values in the function tables because 

of ignoring the constant value and they would not indicate the functional relationship 

by using indeterminate quantities and letters. 

c) MC1 and MC2 students would have difficulty in writing the equations representing 

the functional relationship such as ignoring the constant value  

d) MC1 students would have difficulty in writing the equations representing the 

functional relationship in the form of 𝑦 =  𝑥 ±  𝑎 which is different from the 

previous problems 

Instructional Moves Aligning with the Conjectures   

• Conjecture a   

-Ask them to explain the relationship by using different expressions and equations 

(Developing structural thinking)  

• Conjecture b 

- Fill in the table together on the board and ask the relationship between two 

variables. Let the students interpret the change in both variables simultaneously.  

• Conjecture c  

-Ask them to pay attention to how they fill in the table and what operation they did in 

calculating one variable by using the value of another variable. 

• Conjecture d 

-Discuss the meaning of problem variables, pay attention to the table of values, and 

highlight the covariation 

 

We believed that relating the contexts in the problems to the previous episode would 

help students connect the tasks they have worked on. However, it is assumed that the 

initial amount as a constant in the problem would create a perturbation which is an 

opportunity to expand their understanding (von Glasersfeld, 1993) while writing 
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equations. Therefore, the students were expected to identify the similarities and also 

differences between the contexts in both situations (i.e., 𝑦 =  𝑎𝑥 and 𝑦 =  𝑎𝑥 +  𝑏) 

so that they could construct an adapted knowledge of writing equations for functional 

relationships. All parts of the HLT are placed in Appendix D.  

3.4.2 Phase 2: Conducting teaching experiments 

During phase 2 of this design study, as a teacher-researcher, I conducted six teaching 

episodes to achieve all the learning outcomes that were specified in the previous 

phase. Each lesson followed the same learning sequence, including individual 

student work, sharing responses and ideas, discussing the responses, and using the 

same steps together with the teacher on the board. I adapted this sequence based on 

theoretical principles such as didactic constructivism (von Glasersfeld, 2001), the 

emergent perspective of Cobb and Yackel (1996), and the principles of the RME 

(van den Heuvel-Panhuizen, 2000).  

von Glasersfeld (2001) introduced several principles for teaching with radical 

constructivism, which he termed "didactic constructivism." In this perspective, the 

teachers are expected to facilitate students’ thinking and encourage them to verbalize 

their thinking. He recommends that teachers utilize "neutral questions" (p. 171) to 

guide students' thinking when necessary. Rather than emphasizing the attainment of 

a correct response, it is essential to foster an appreciation of the construction process. 

The HLT incorporated teacher-initiated questions and prompts to stimulate students’ 

thinking by considering potential student conceptions that can emerge during the 

learning process, as proposed by von Glasersfeld (2001).  

The RME approach emphasizes the activity principle, which posits that students 

learn best by doing and participating (van den Heuvel-Panhuizen, 2000). This 

approach makes students active participants in the learning process. Therefore, each 

contextual problem included small tasks to guide students toward the final step. The 

activities in each episode started with an individual work in which a student reads 
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the contextual problem and applies the procedures required in each step of the 

activity. For example, students begin by interpreting the problem variables. Then, 

they construct a table with possible values for each variable and identify the 

relationships as explained in the previous section. Finally, they describe the 

relationships using verbal and symbolic language. This time given to each student at 

the beginning provides opportunities for students to think about this “novel” way of 

mathematical situations and come up with their ideas for further discussion (von 

Glasersfeld, 2001).  

In conducting teaching experiments, I worked with two students instead of one in 

each episode to enrich the interaction process during learning. Cobb and Yackel 

(1996) put forward the emergent perspective that incorporates the interaction aspect 

in sociocultural theories and the psychological aspect in the constructivist approach 

to learning and the mathematical way of knowing. In this perspective, the 

microculture in the classroom, the roles of the teacher and students, and the way of 

developing mathematical knowledge as taken as shared gain importance at both 

societal and individual levels. In this regard, our initial goal was for the students to 

thoroughly think about each problem situation, construct their own responses, and 

share them in the class. In this process, they would come up with diverse outputs 

from different mental processes and possible misinterpretations (von Glasersfeld, 

2001). We aimed for the students to hear the responses of each other after they 

worked on the problem by themselves. Verbalization of their thinking processes and 

responses would let the students hear different responses and adapt their answers in 

this small social context (Cobb et al., 1993; von Glasersfeld, 2001).  

Although I objected to group students with similar mental operations in terms of 

units coordination, I expected and observed that they could have still diverse mental 

operations within the same problems. The similarities in their mental operations 

would allow them to understand each other more easily. Furthermore, the differences 

between the mental operations would provide productive and useful interaction 

between the students through different strategies and more sophisticated responses. 

For example, one would scaffold the other in case one of them had struggled with 
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the problem. In addition, one would learn a more sophisticated approach from her/his 

peer. 

While the students actively worked on each task, the role of the teacher was 

guidance, which is another principle of the RME (van den Heuvel-Panhuizen, 2000). 

Although the students worked on the problems individually in the beginning, when 

they needed help, the teacher intervened and helped them understand the point by 

using additional questions. For example, if a student does not understand a problem, 

the teacher can paraphrase or explain it. If a student cannot achieve a step of the 

problem, such as identifying the multiplicative relationship between quantities, the 

teacher asks small questions scaffolding the student for the further steps. Some 

examples of teacher prompts and scaffolding questions are represented in Table 3.8 

which were prepared in the design process of the HLT.  

Table 3.8 Teacher Prompting Questions and Scaffolding for Students 

Students’ possible performances  Teacher responses and prompts 

Episode 2: They may only give 

numerical values for the unknown 

quantities instead of symbolic 

representation.  

• Remember that we do not know the lengths. 

How do you attain the value of the length of the 

smaller and longer bar?  

• What kind of relationship is there between each 

hypothetical pair of values?  

• How to represent these varying values for each 

rope by using letters? 

Episode 2: They may write an 

equation: 4 x a: it is the longest rope 
• Is there another way to represent this 

relationship?  

Episode 3: They may not write the 

equation by using x and y for the 

relationship between the number of 

chairs and the number of legs 

• What do x and y represent?   

• How did you calculate the number of legs, I 

mean y? (while working on the table)  

• What did you do with the number of chairs, I 

mean x? (while working on the table).  

• Now you can use these letters instead of 

numbers. 
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In this context, the teacher's reactions play a crucial role when a student presents an 

incorrect equation or flawed reasoning. Prompting questions are essential to allow 

the student to reflect on their response (von Glasersfeld, 1996). My goal was to guide 

and support students in identifying their own mistakes and developing a new way of 

thinking with the teacher's guidance.  

To summarize, each episode focused on three central processes: the students’ 

individual work on tasks, verbalizing their reasoning and explaining responses, and 

reviewing the steps together on the board (see Table 3.9). This process constituted 

the classroom discourse, the role of the teacher and students in learning.  

Table 3.9 Overview of Processes in Activities in Each Episode 

Main Processes Intermediate Processes  Theoretical concepts 

Individual work on 

tasks 

Teacher guidance  Activity principle-RME 

Guidance principle-RME 

Verbalization of 

thinking 

Teacher guidance 

Peer interaction  

Comparing the responses  

Activity principle-RME 

Guidance principle-RME 

Interaction aspect -Emergent 

perspective 

Reviewing the 

responses and tasks  

Peer interaction  

Student adaptation 

Constructing new 

material 

Activity principle-RME 

Guidance principle-RME 

Interaction aspect -Emergent 

perspective 

3.4.3 Phase 3: Retrospective analysis  

In the course of a retrospective analysis, the data derived from each teaching episode, 

including students’ written work, verbal statements, and the results of in-class 

assessments, were analyzed by comparing the conjectures. The analysis of each 

teaching episode informed the subsequent teaching process by providing new 

conjectures or revising previous conjectures. Furthermore, the retrospective analysis 

conducted after each teaching episode permitted the revision of specific elements of 

the subsequent episode, which had been constructed before starting teaching 
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episodes. For example, Episode 6 involved two problems that included functional 

relationships between variables in the form of 𝑦 =  𝑎𝑥 +  𝑏. However, after 

conducting Episode 5 and analyzing the entire data, I put an additional problem that 

is similar to those in Episode 5 for further practice due to the students’ difficulties 

observed in those problems. 

3.5 Data Collection 

There were three phases in the data collection:  

1) Interviews before the teaching experiments assessing the students' units 

coordination, understanding of equal sign and variables, and algebraic thinking. 

2) Teaching experiments involving the students’ written works and end-of-lesson 

assessments 

3) Post-assessment interview after teaching experiments for evaluating the students’ 

overall achievement in algebraic thinking. 

All phases of data collection are represented in Figure 3.6 

 

Figure 3.6. Three phases of the data collection process  

Pre-assessment interviews were also used for documenting the prior knowledge level 

of the students which provides the means for developing the teaching (Cobb et al., 
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2003). The students’ units coordination in terms of multiplicative concepts was 

determined for two purposes. The first purpose was to select students for the study 

and to group them according to their levels, demonstrating similar mental operations. 

The second purpose was to examine the effect of their mental operations on their 

performance in algebraic thinking. Therefore, their units coordination levels were 

determined before starting teaching experiments.  

To design the HLTs and determine students’ needs and preparedness for the subject 

matter, I evaluated their understanding of the equal sign and variables before 

teaching experiments.  In this way, I aimed to make decisions on certain aspects of 

the HLTs which are related to using equal signs, variables, and alphanumeric 

symbols.  

The interviews (i.e., the first phase) started almost three months before the teaching 

experiments and were spread out over time. There were four interviews for each 

student in total. Each student was interviewed separately, and each session was video 

recorded which took between 15 to 30 minutes. The problems were taken and 

adapted from different studies about units coordination (e.g., Hackenberg & Lee, 

2015) and early algebra (e.g., Blanton, Brizuela et al., 2015), which are all explained 

in further sections.  

The first interview was to determine the students’ multiplicative concepts and select 

them to participate in the study. Each interview lasted between about 25 and 30 

minutes, and all four students’ units coordination interviews were completed in one 

month. Afterward, the Algebraic Thinking Interview was conducted with four 

students to determine their performance in determining their identification of the 

relationships between variables and between unknown quantities, generalization of 

the relationship, and representing the relationships using symbols.  Each interview 

lasted approximately 25 minutes and the interviews of all four students were 

completed within 10 days. The third interview was conducted to assess the students’ 

understanding of equal signs. Each interview lasted from 10 to 17 minutes. All four 

students’ equal sign understanding interviews were completed within a week. 
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Finally, the fourth interview was to assess the students’ variable understanding such 

as interpreting the literal symbols assigned to the problem quantities and identifying 

the indeterminate quantities in problems and operating with them. Each interview 

lasted from 10 to 19 minutes. All the variable understanding interviews were 

completed within one week.  

During the second phase of the data collection, the teaching experiments were 

conducted in six episodes for each group over three weeks. Each group of students 

attended two teaching episodes per week after school with each episode lasting 

between 60 and 75 minutes. Each teaching episode was videotaped. Additionally, 

each student demonstrated his/her work on activity sheets and end-of-lesson 

assessment papers. One of the MC1 students, Sara, could not attend the last episode 

due to some special circumstances.  

After completing the teaching experiments, I interviewed each student in the third 

phase of the data collection to evaluate their overall progress in algebraic thinking. I 

used the problems that I selected from the previous interviews. Each interview took 

around 25 minutes. One of the MC1 students, Sara, could not attend the general 

assessment as well. In the following sections, all constructs and how they were 

assessed are presented in detail.  

3.5.1 Units coordination assessment 

There were four problems in the first interview protocol that examined the students’ 

multiplicative concepts in terms of units coordination. Researchers (e.g., Hackenberg 

& Lee, 2015; Ulrich & Wilkins, 2017) used these problems to assess the students’ 

units coordination levels in previous studies. I have translated two problems (The 

Bar Problem and The Cupcake Problem) and adapted two problems (The Crate 

Problem and The Chairs-in-Rows Problem). I took an expert opinion in terms of 

comprehensibility.  
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The first two problems were adapted from the studies assessing the units 

coordination of middle and high school students (e.g., Hackenberg, 2013; 

Hackenberg & Lee, 2015) (see Table 3.10)  

Table 3.10 The Problems for Assessing the Units Coordination Levels of Students   

The Crate Problem: There are 6 chocolates in a package and 8 packages of chocolate 

in a box. A crate contains 5 boxes. How can you find how many chocolates are in a 

crate? Can you draw a picture to show how you find it? (Hackenberg & Lee, 2015) 

The Chairs-in-Rows Problem: There are 6 rows in a movie theater with 4 chairs in 

each row. 12 more chairs were brought to this hall. In the last case, how many rows can 

be made in total with 4 chairs in each row? In the last case, how many chairs are there 

in the hall? (Hackenberg & Lee, 2015) 

The Bar Problem: (Ulrich & Wilkins, 2017, p. 9) 

  

The Cupcake Problem: There are 3 rows of 6 cupcakes that are unboxed. If there are 

9 rows of cupcakes in all, how many cupcakes are hidden in the box? (Ulrich & 

Wilkins, 2017, p. 14) 
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The Crate Problem involves embedded four levels of units (chocolates, packages, 

boxes, and crates) which helps in distinguishing the students who coordinated three 

levels of units (at least MC2). Similarly, in The Chairs-in-Rows Problem, there are 

different levels of units that the students can perceive at the same time such as the 

number of rows and the number of seats, or they can operate with just one of them 

at a time (Ulrich, 2015). The kind of student operations demonstrates the quantitative 

complexity the student is dealing with during the problem.  

The other two problems were translated from the study of Ulrich and Wilkins (2017, 

p.9). The face validity of the translated problems was ensured through an expert 

opinion and piloting with a student. In the Bar Problem, there is a hierarchy of 

difficulty from the first (B1) to the last one (B5), and the researchers remarked that 

there was a significant association between the performance of each task and the 

stages of the units coordination (Ulrich & Wilkins, 2017). They found that the tasks 

helped distinguish the students at different levels of units coordination since they 

required operations such as constructing a composite unit in activity (B2), operating 

with assimilated composite units (B3 and B4), and constructing iterable units (B5). 

For example, the questions with unpartitioned bars (B3 and B5) were considered 

good at identifying students who assimilated with composite units (i.e., advanced 

MC1 and higher levels). 

The Cupcake Problem involves “a composite of composite units” (p. 15) which 

increases the difficulty of the task for students without assimilated composite units 

(i.e., hidden or shown cupcakes, total cupcakes, and rows of cupcakes). Therefore, 

this task was regarded as hardly accessible for the students at lower levels. The 

researchers observed various student solutions including distinguishing mental 

operations of units coordination such as operating with the composite units, 

disembedding composite units, and using figurative materials. 
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3.5.2 Algebraic thinking assessment 

In the interview assessing the student’s algebraic thinking, there were five problems 

adapted from different researchers (see Table 3.11).  

Table 3.11 The Problems Used to Assess Students’ Algebraic Thinking 

 

The Growing Caterpillar Problem: The following pictures show the change in 

body size of a caterpillar every day. Answer the questions accordingly. (An example 

question: Let T be the size of the caterpillar, and G the number of days passed. Can 

you write an equation that gives the length of the caterpillar?) (Blanton, 2008)  

 

The Bouncing Ball Problem: The table below represents a recording of how high a 

ball rises after each hit the ground and from what height the ball is dropped. Can you 

write an equation showing the relationship between the height at which the ball is 

dropped and the amount of rise after it bounces off the ground? (Lucariello et al., 

2014).   

 
The height the ball is left (y) 80 cm 100 cm 

The height after bouncing (x) 40 cm 50 cm 
 

 

The Penny Bank Problem:  Ali has 10 liras in his penny bank. Ali decides to save 

money by putting 3 liras in his penny bank every day. How many liras will Ali have 

in his penny bank after 8 days? How can you express the relationship between the 

number of days and the amount of money in the penny bank? 

The Caterpillar and Leaf Problem: Ali is keeping 2 caterpillars at home. Each day 

brings 6 leaves to feed these 2 caterpillars. If Ali had 12 caterpillars, how many 

leaves would he have to bring each day to feed these caterpillars? Can you write a 

mathematical expression showing the relationship between the number of caterpillars 

and the number of leaves that need to be fed? (Blanton, Stephens, et al., 2015)  

The Cord Problem: The charging cord of Sinan's phone is of some number of 

lengths. His charging cord is 5 times longer than Zeynep's charging cord. Could you 

draw a picture of this situation? Can you write an equation for this situation? 

(Hackenberg & Lee, 2015, p. 20) 
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The first two problems included pattern situations with a given tabular (The 

Bouncing Ball Problem) (Lucariello et al., 2014) or figural data (The Growing 

Caterpillar Problem) (Blanton, 2008). Hence, the aim was to assess how students 

identify the functional relationships between variables in the form of 𝑦 =  𝑎𝑥 and 

generalize and express them verbally or using symbols. 

The third problem, the Penny Bank, similarly addressed the generalization and 

representation of a functional relationship between variables, but in the form of 𝑦 =

 𝑎𝑥 +  𝑏. Roy could not see this problem in his pre-assessment because this problem 

was not included in the initial form of the interview. Roy was the first student to be 

interviewed and it was not possible to interview Roy again to ask about this problem 

before teaching episodes. 

The other two problems, The Caterpillar and Leaf Problem and The Cord Problem, 

put forward the quantitative reasoning aspect of algebra. The Caterpillar and Leaf 

Problem was adapted from Blanton, Stephens, et al. (2015) and included the 

multiplicative relationship between two known quantities and requires the students 

to generalize their solution by using indeterminate quantities as a dimension of 

algebraic thinking. Lastly, The Cord Problem was adapted from Hackenberg and Lee 

(2015). It assessed the students’ representation of the multiplicative relationship 

between two unknown quantities by using symbolic language which requires the 

standard level of algebraic thinking.  

3.5.3 Equal sign understanding assessment 

For assessing the students’ understanding of equal signs, a structured interview was 

constructed based on various sources about equal sign understanding (e.g., Behr et 

al., 1980; Fyfe et al., 2018; Hattikudur & Alibali, 2010; Matthews et al., 2012). The 

interview protocol involved five questions that were adapted from these studies. The 

questions involved describing comparison symbols, classifying symbols (e.g., 4, +, 

<, >, =), interpreting standard and non-standard forms of equations, and calculating 
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missing values in equations. The questions addressed the reported misinterpretations 

and conceptualization of the equal sign concept.  

The first two questions addressed the students’ relational definition and conceptual 

understanding of equal sign by asking for the definition of comparison symbols and 

classifying various symbols including comparison and operation symbols and 

numbers (Hattikudur & Alibali, 2010; Matthews et al., 2012). In the third question 

(see Table 3.12) various equation structures were presented in typical (operation-

answer structure) or atypical forms such as answer-operation and operation-

operation structures (Baroody & Ginsburg, 1983) for the students to indicate whether 

they make sense or not (Behr et al., 1980; Matthews et al., 2012).  

Table 3.12 Sample Problems in the Equal Sign Understanding Interview 

Question 3. Look at the math expressions below, which ones make sense and which 

don't? Why do they make sense? 

a) 7 = 7   

b) 7 = 2 + 5   

c) 8 - 6 = 5  

d) 5 + 3 = 5 – 3  

e) 23 + 34 = 57    

f) 47 + 52 = 48 + 51 

g) 2 + 7 = 9 – 2  

h) 4 + 6 + 3 = 10 + 3  

Question 5. What are the numbers that should be in the spaces below? How did 

you find them? 

• 9 + 4 + 3 = 9 + __  

• 3 + 5 + 7 = __ + 7  

• 5 + 3 = ___ + 4 

 

This assessed the students’ understanding level of the equal sign and the level of 

reasoning in evaluating the equivalence of both sides (Fyfe et al., 2018). In the fourth 

and fifth questions, the students calculated the missing values in different number 

sentences. The aim was to identify the students’ conceptions of equal signs, either 
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relational or operational, their use of sophisticated solution strategies, and any 

potential misuse of equal signs. Questions 3 and 5 were represented in Table 3.12 as 

sample problems from the Equal Sign Understanding Interview.  

3.5.4 Variable understanding assessment 

For assessing the students’ understanding of variables, a structured interview was 

constructed based on various sources about variable understanding (e.g., Ayala-

Altamirano & Molina, 2020; Blanton et al., 2017; Lucariello et al., 2014). There were 

five questions to assess how the students identified the problem variables, how they 

viewed letters in contextual problems, and whether they had certain 

misinterpretations of letters in mathematical situations.  

The first question asked about the meaning of the variable to identify if the students 

had heard it before and what they understood by the term. The second question was 

adapted from Blanton et al (2017) who studied the thinking of first-grade students 

about variables in a function context. This question and its sub-questions allow us to 

see whether the students mathematized the problem variables or how they 

mathematized variable quantities (Blanton et al., 2017). The use of letters in the 

question as prompts for the students (e.g., Let’s call the number of cats D, what can 

it be and how can we express the number of total ears?) could allow for analyzing 

the students’ interpretation of those letters assigned for the variable quantities 

whether they see as an object name, a constant value or indeterminate value (see 

Table 3.13). 

The third and fourth questions were similar to the second question by including new 

contextual problems such as selling bagels and a constantly growing sapling. The 

problems included both qualitative questions with given variables but not values for 

certain quantities in each case. The aim was to incorporate more variable quantities 

in different roles, such as an unknown value (e.g., the price of a bagel and the initial 

length of a sapling) and a varying quantity (the length of a sapling in any day and the 
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amount of money earned in a day) and observe how the students identify and 

interpret the variables in a mathematical problem situation. The third question (see 

Table 3.13) involved a functional relationship between two variables going through 

the origin (i.e., the number of bagels sold and earned money in a day: 𝑦 = 𝑎𝑥). 

Table 3.13 Sample Questions from Variable Understanding Interview  

The fourth problem involved another functional relationship between two variables 

going through the axis (i.e., the height of a sapling and the time passed after it is 

planted while it is growing the same amount each day: 𝑦 =  𝑎𝑥 + 𝑏). In this way, 

the students’ awareness of variables in distinct forms and contexts, and their 

interpretation of given letters to indeterminate quantities could be identified, which 

shows their level of understanding. Lastly, in the fifth question, an erroneous 

understanding of students was addressed by asking “What does L represent in the 

expression L + 4?”. It reveals whether the students recognize the letters as labels or 

objects instead of variables (Lucariello et al., 2014).  

 

Questions Purposes 

Q2. In a cat-only animal shelter, how many 

tails/ears/legs do 3/10/40 cats have? Why?  

a) If the number of cats in the shelter is unknown, how 

can we express the number of cats? Why?  

b) Let's call the number of cats in the shelter D. How 

many can D be? How many tails/ears/legs are there? 

Why?  

Identification of problem 

variables 

Mathematizing variable 

quantities 

Interpretation of letters 

assigned to the problem 

variables  

Q3. Ali decides to sell bagels every day on holiday. 

How can we calculate the money Ali will earn in one 

day? What do we need to know to make this 

calculation?   

a) What is the variable(s) in this question?  

b) If the number of bagels sold in a day is S and one 

bagel is 5 liras, how many liras does Ali earn in a day? 

c) If the number of bagels sold in a day is 50 and one 

bagel is T liras, how many liras does Ali earn in a day? 

Identification of problem 

variables 

Mathematizing variable 

quantities 

Interpretation of letters 

assigned to the problem 

variables 
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3.5.5 Overall post-assessment  

The students’ overall assessments after completing the teaching experiments were 

carried out through critical interviews including six questions. The problems 

included distinct aspects of algebraic thinking such as focusing on functional 

thinking, being about the relationship between two unknown quantities, and being 

about understanding equal signs. 

The first problem was The Caterpillar and Leaf Problem (Blanton, Stephens, et al., 

being2015) which was used in the Algebraic Thinking Interview before the teaching 

experiments (see Table 3.11). The aim was to observe the progress of the students in 

terms of analytical and structural thinking and symbolic representation of the 

relationship between two known quantities.  

The second problem was The Cord Problem (Hackenberg & Lee, 2015) which was 

another problem from the first interview before teaching experiments. In terms of 

symbolic representation, the students had performed insufficiently in this task. 

Therefore, the aim was to observe how the students showed progress in interpreting 

the same problem and representing the multiplicative relationship between two 

unknown quantities.  

Two problems (3rd and 4th) addressed functional thinking, each involving a different 

form of function. One was The Growing Caterpillar Problem (Blanton, 2008) which 

was also included in the Algebraic Thinking Interview before the teaching 

experiments (see Table 3.11). It involved figural data and addressed functional 

thinking in the form of 𝑦 =  𝑎𝑥. The fourth problem, the Penny Bank, (see Table 

3.11) addressed functional thinking in the form of 𝑦 =  𝑎𝑥 +  𝑏. The given context 

pertains to saving money, which is similar to the problems covered in Episodes 5 

and 6. The problem’s structure was similar to other functional thinking or pattern 

problems in an algebraic thinking context. It involved asking for the dependent 

variable when the independent variable has a larger value, using a function table, and 

representing the relationship between variables through symbols. 
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In the fifth question, there were two missing value operations. It aimed to assess 

whether certain students still struggled with the misinterpretation of the equal sign 

after the teaching experiments. This would indicate the effectiveness of the 

experiments in students’ understanding of equal signs, which is a crucial concept in 

algebraic reasoning.  

Finally, a question from the units coordination interview was used in the post-

assessment interview, specifically The Crate Problem (see Table 3.10). During the 

initial interview, the students performed poorly on this problem. The aim was to 

observe any changes in the students' units coordination throughout the process. The 

questions in the post-assessment interview are presented in Appendix E by including 

a student’s answers as sample data.  

3.6 Data Analysis  

There were two sources of data analysis in this research. The first source was the 

interviews conducted before and after the teaching experiments along with students’ 

written work. Through these interviews, the students’ algebraic thinking, units 

coordination levels, equal sign understanding, and variable understanding were 

evaluated. The second source of data analysis was teaching experiments including 

video records and written records of students’ work. Each teaching episode in these 

experiments allowed for the evaluation of students’ development of algebraic 

thinking through intervention. The following paragraphs describe the analysis of the 

interview records and teaching experiments, respectively.  

Each interview session and teaching episode was videotaped and transcribed. The 

video recordings and student worksheets were used as the 'raw material' for data 

analysis, which did not include any direct interference from the researcher (Miles & 

Huberman, 1994, p. 46). By using these raw materials, I generated additional written 

sources of data for the analysis such as transcriptions, reflective memos, and field 

notes during and after the interviews and teachings. Because these “partially 
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processed data” (p. 46) involved the researcher’s selective attention and 

interpretation, this was the early part of data analysis (Miles & Huberman, 1994). 

For example, during the observation and transcription process, I highlighted some 

sentences, made comments for further analysis, replayed the video, or reviewed the 

students' worksheets.  

After compiling all raw and processed data, the coding process began. The interviews 

were coded based on the corresponding variable. For example, the data coming from 

the unit coordination interviews were analyzed using the code sets generated from 

units coordination literature. The data from the interviews regarding algebraic 

thinking were coded based on the conception of algebraic thinking and reasoning 

described in Chapter 2. Finally, the teaching episodes were coded in terms of 

algebraic thinking. Although I observed the students’ development and performance 

in algebraic thinking during the teaching experiments, I also somewhat evaluated 

their operations in terms of units coordination because the interaction between two 

constructs was crucial. The related coding sets and framework are presented in the 

following headings.  

3.6.1 The students’ units coordination levels  

For coding the transcriptions of the units coordination interviews, I generated an 

initial set of codes that included specific mental operations, each of which referred 

to a specific level of multiplicative concept, based on the conceptual framework of 

units coordination (e.g., Hackenberg & Tillema, 2009; Steffe, 2002; Ulrich & 

Wilkins, 2017). Therefore, I used the mental operations of each level of 

multiplicative concepts identified by researchers in this literature as provisional 

codes, which means a starting list of codes generated from the literature before 

starting the coding process (Saldana, 2015). During the transcription and initial 

coding, some additional codes emerged as process codes by coding the students’ 

mental and physical actions such as “drawing to check the answer” and “adding and 

subtracting different levels of units” (Saldana, 2015). These codes were grouped into 
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categories according to which units coordination levels they primarily indicate. The 

main code list is presented in Table 3.14. 

Table 3.14 Codes for Units Coordination Levels 

Codes Categories 

 MC2 MC1 

Coordinating three levels of units in activity X  

Interiorization of two levels of units X  

Explicit reflection on the composite units X   

Operate with composite units X  

Disembedding  X  

Drawing to demonstrate after the teacher’s request* X X 

Equipartitioning X   

Drawing to check the answer * X  X 

Coordinating two levels of units in activity  X 

Need to draw in solving problems   X 

Decaying composite units constructed during activity   X 

Difficulty in keeping track of the multiple quantities   X 

Iterative counting to construct composite unit*  X 

Adding/Subtracting different levels of units *  X 

*The codes generated during the coding process 

 

Using the code list in Table 3.14, two researchers determined each student’s level of 

multiplicative concept separately regarding the frequency of codes belonging to a 

certain level and the pattern in the students’ mental operations. The researchers first 

analyzed each student’s mental operations separately. In addition, the performance 

on each task was evaluated by comparing and contrasting the students. For example, 

firstly, the interview with Roy was coded and analyzed in terms of his mental 

operations related to a certain level of units coordination. Then his performance on 

the first task in the interview was compared with the performance of other students 
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on the first task. This allowed for the analysis of each interview both across students 

and across tasks. 

To enhance the inter-coder reliability, two researchers cross-checked their 

evaluations at the beginning of the analysis. The reliability percent was calculated 

for one student’s results by using the reliability calculation mentioned in Miles and 

Huberman (1994). Therefore, the number of agreements was divided by the total 

number of decisions. The ratio was calculated as 75%. The decision from each coder 

is represented in Table 3.15. 

Table 3.15 The Decisions of the Coders for Roy to Calculate the Intercoder 

Agreement 

Tasks Coder 1 Coder 2 Final Decision 

Task 1 MC2 MC2 or Advanced MC1 Advanced MC1 

Task 2 MC2 MC2  MC2 

Task 3 MC2 Advanced MC1 MC2 

Task 4 MC2 MC2 MC2 

 

Due to the complexity of the mental operations and variations of those in different 

problems throughout the interview (Hackenberg & Sevinc, 2024), there were 

instances of inconsistencies in students’ performances and their level of 

multiplicative concepts. The researchers discussed these instances to differentiate the 

students within the same level of units coordination. For example, being slow or 

fluent in some operations, needing a check after finishing the problem, and making 

trial and error were some differentiating factors of the students within the same level 

of multiplicative concepts. This intra-level differentiation was observed in several 

studies such as a seventh grader, Milo, who performed as an advanced MC2 in 

working with fractional relationships between unknowns (Hackenberg & Sevinc, 

2022), and a sixth grader, Adam, who did advanced operations at the MC1 level 

(Ulrich, 2016b). Therefore, the researcher also reviewed those studies to compare 
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and contrast the intra-level differentiation, which served as triangulation by theory 

(Lincoln & Guba, 1985). 

3.6.2 The students’ algebraic thinking   

In teaching experiments and interviews, the students’ algebraic thinking was 

analyzed by focusing on algebraic thinking processes and descriptions of algebraic 

reasoning specified by key researchers in the field such as Kaput (2008), Radford 

(2010; 2014) and Blanton (2008). A big part of the study required the students to 

identify and generalize relationships between variables or unknowns, and to express 

relationships verbally and symbolically, which is based on Kaput’s (2008) 

description of algebraic reasoning. Therefore, the students’ performances in algebra 

problems were analyzed by focusing on several units of analysis. These were a) 

students’ identification of problem variables and relationships b) students’ 

generalization of relationships in problems and c) the structure in students’ 

expression of generalizations. 

In analyzing their generalizations and expressions of generalizations, the dimensions 

of algebraic thinking such as analytical thinking, functional thinking, and structural 

thinking (Kieran, 2022; Radford, 2014) were provisional codes (Saldana, 2015) as 

indicators of students’ algebraic thinking. However, these major codes included 

subcodes that were generated during the coding process. These subcodes described 

the students’ thinking processes which were used for indicators of major codes or 

demonstration of a certain thinking level in a particular major code. For example, 

using indeterminate quantities in expressing a problem situation, such as the number 

of chair legs equal to four times the number of chairs, was used as a subcode of 

analytical thinking which is a dimension of algebraic thinking (Radford, 2014). On 

the other hand, giving numerical values to the unknown quantities to represent the 

relationship was an indicator of a lack of analyticity. Furthermore, writing different 

forms of operations in representing a relationship between variables demonstrated 

structural thinking. In another example, recursive thinking in a pattern situation was 
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coded as a pre-level of functional thinking (Blanton et al., 2011). The identification 

of students’ way of functional thinking was based on the categorization of 

covariational thinking and correspondence thinking (Smith, 2008). The sample codes 

and examples from student responses are represented in Table 3.16.  

Table 3.16 Sample Codes in Analyzing Students’ Performances in Algebra 

Problems 

Provisional 

Code examples 

Subcode examples Examples from student 

responses 

Analytical 

Thinking 

a) Using indeterminate 

quantities 

b) Writing equations 

c) Expressing the problem 

variables 

d) Verbal generalization 

(a) (d) “The number of chair 

legs equal to four times the 

number of chairs” 

(a) (b) 𝑦 = 4𝑥 

Structural 

Thinking 

a) Symbolic representation 

b) Writing equations in different 

forms 

c) Reversing the equations  

(a) 𝑦 =  4𝑥 

(b) (c) 𝑦 ÷  4 =  𝑥 and 

 𝑦 =  4𝑥 

Functional 

Thinking 

a) Recursive thinking  

b) Covariational thinking 

c) Correspondence thinking  

d) Finding the bigger items in a 

pattern problem 

(a) It increases four by four 

(c)“If I multiply the number 

of months by five, I find the 

amount of money” 

 

After categorizing all the codes and patterns in students’ thinking, in terms of 

whether students construct in-action formulas to calculate a certain part of a problem 

(symbolic representation) and reach the bigger items in a pattern situation, students’ 

algebraic thinking was categorized according to algebraic thinking forms such as 

factual, contextual and standard algebraic thinkers (Radford, 2010). For example, the 

students who could represent the generalizations in symbols and equations by 

showing many indicators of analytical thinking were determined as standard 

algebraic thinkers. On the other hand, the students who could only express the 
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general relationship verbally, were determined as contextual algebraic thinkers. The 

students who were unable to reach any of these levels of generalization and who 

continued to engage in recursive thinking were identified as factual algebraic 

thinkers (see Table 3.17).  

Table 3.17 Categories and Sample Code Patterns in Students’ Algebraic Thinking 

Categories in students’ 

generalizations  

Generalization of relationships 

 

Factual Algebraic Thinking  Recursive thinking in pattern situations 

Contextual Algebraic Thinking 

 

Finding the bigger steps in a pattern situation  

Generalizing the relationship/rule between 

variables verbally 

Standard Algebraic Thinking Symbolic representation 

Explicitly using indeterminate quantities 

 

In short, students’ identification of the relationships and structures in problems was 

analyzed by focusing on how they think about and interpret the problem 

variables/quantities and their work on function tables. Students’ generalizations were 

analyzed by focusing on their verbal statements, calculation of a random value of a 

variable in a problem, and symbolic and functional thinking forms. Lastly, students’ 

symbolic representations were examined whether they were accurate equations and 

the explicit or implicit structures in written equations. All of these analyses revealed 

patterns and capacities in students’ algebraic thinking and reasoning (see Table 

3.18).  

In addition to analyzing the students’ thinking and reasoning in algebraic tasks, their 

progress was also analyzed in terms of the interaction with the teacher and peers in 

teaching episodes. Following the emergent perspective of social constructivism, in 

which the mathematical activities are seen as social events and the interactions and 

roles of individuals in this small social setting are important for knowledge 

development (Cobb & Yackel, 1996), I analyzed the students’ progression in 

teaching experiments considering the roles and support of the teacher and peers. For 
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example, the analysis distinguished between the performances of two students: one 

who completed a task with the support of only the task sequence and another who 

completed the same task with the support of the teacher's prompting questions or the 

work of a peer. Therefore, the analysis of students’ progression in algebraic thinking 

involved some aspects of teaching such as interaction, the use of additional 

questions, and the timing of teacher interference.  

Table 3.18 Analysis of Students’ Performance on Algebra Problems 

Focused 

Performances 

Categories of Analyses 

 

Substantial Weak 

Identification of 

relationships  

Using table of values  

Recursive thinking  

Using indeterminate quantities 

Finding several values/examples 

for a variable 

 

Giving numerical examples  

Erroneous identification 

Generalization 

 

Finding the bigger steps in a 

pattern situation 

Verbal statement 

Using indeterminate quantities 

Recursive / correspondence / 

covariational thinking  

No generalization 

Could not find the bigger 

steps in a pattern situation  

Expression of 

relationships 

Symbolic representation 

Different forms of equations 

Different models/symbols 

No symbolic representation 

Wrong equation/symbolic 

representation 

 

3.6.3 The students’ understanding of equal signs  

In the analysis of students’ understanding of equal signs, the aim was to determine 

whether they view equal signs as operators or signs indicating the equivalence of 

both sides, which is a relational view (Behr et al., 1980; Kieran, 1981). In the 
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operational view, the students interpret equal signs as “do something signals” (Behr 

et al., 1980, p.15), and the signal for a coming answer (Kieran, 1981) while in the 

relational view, they see equal signs as comparison symbols showing an equivalence 

(Behr et al., 1980).  

Matthews et al. (2012) described the students’ responses according to their 

understanding of equal signs. They distinguished the students’ understanding of 

equal signs into four categories: rigid operational, flexible operational, basic 

relational, and comparative relational. At the rigid operational level, the students 

accept the equations including the operations only on the left side while at the 

flexible operational level, atypical equation structures (i.e., 𝑎 =  𝑎 or 𝑎 =  𝑏 +  𝑐) 

can make sense for the students. At the basic relational level, operations on both 

sides can work for the students. At the comparative relational level, the students can 

apply compensation strategy in solving missing value problems in equations as a 

more sophisticated understanding of equivalence. In this study, I evaluated each 

student’s understanding of equal signs across the questions in his/her interview, and 

then his/her understanding was determined to be mainly operational or relational by 

focusing on the description and examples in the literature (e.g., Kieran, 1981; 

Matthews et al., 2012). Sample student answers and the corresponding codes are 

given in Table 3.19. 

Table 3.19 Sample Student Answers and the Corresponding Codes 

Example Student Answers  Corresponding Codes 

Grouping the comparison symbols 

together “<, >, =”  

Relational Understanding 

Grouping the equal sign with the 

operation symbols “+, - , =”  

Operational Understanding  

Writing 8 into the blank in the equation  

5 +  3 =  ___  +  4  

Operational Understanding  

Writing 4 into the blank in the equation  

5 +  3 =  ___  +  4 by using 

compensation strategy  

Relational Understanding  
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In the first two questions, the students' descriptions of comparison symbols (i.e., <, 

>, =) and their categorization with other symbols such as operation symbols and 

numbers provided codes indicating a relational or operational interpretation. For 

example, indicating that comparison symbols are used with operations or grouping 

an equal sign with operation symbols instead of comparison symbols were coded as 

operational understanding. On the other hand, grouping an equal sign with other 

comparison symbols was coded as relational understanding.  

In addition, students’ interpretations of various equation sentences were coded in 

terms of four levels of the framework in Matthews et al. (2012). For example, when 

an equation “7 =  2 +  5” was evaluated as not making sense or incorrect due to 

the order of the result and operation, it indicated a rigid operational level of 

understanding. If the students indicated that the equation, 7 =  7 makes sense the 

response was coded as the flexible operational level of understanding. The students 

who accepted the equations including operations on both sides (Items h and f in 

question 3, in Table 3.12) were regarded at least at a basic relational level of 

understanding. Lastly, interpreting some equations or finding missing values using a 

compensation strategy indicated the comparative relational level of understanding 

(Matthews et al., 2012).   

Questions 4 and 5 required the students to fill in the blanks in various equation 

sentences. The numbers the students wrote in the blanks were coded according to 

how they viewed equal signs. Their responses providing the equivalence of both 

sides demonstrated a relational view of equal signs. In addition, using a 

compensation strategy to find a missing value demonstrated a comparative relational 

level of understanding (Matthews et al., 2012).  

3.6.4 The students’ variable understanding 

Student answers in this interview were coded in terms of how the students 

mathematized the problem variables by specifying them in problem situations, how 

they used them in operations, and how they interpreted the letters assigned for the 
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variables. The use of letters assigned for certain variables in each problem as 

prompts, (e.g., Let’s call the number of cats D, what can it be and how can we express 

the number of total ears?) allowed for analyzing the students’ interpretation of those 

letters whether they see them as an object name, a constant value or indeterminate 

value.  

Firstly, the students’ identification of problem variables determined their 

understanding of variables in problem situations. For example, some students 

identified two variables in the sapling problem such as how much it grows each day 

and the number of days while some students identified only one variable: how much 

it grows each day. This represents some students are aware of the problem variables 

more than others which allows them to move on to mathematize the variables. In 

addition, it showed us those who could not recognize the problem variables need 

more support to improve their variable understanding in teaching episodes.  

Students’ interpretation of the letters assigned to the problem variables represented 

their understanding of the variables, whether they viewed them as objects, unknown 

or varying quantities. In this case, their variable understanding was analyzed 

according to the framework of Blanton et al (2017). They constructed a set of levels 

to identify the first graders’ variable understanding in the context of functional 

relationships (see Table 3.20).  

Table 3.20 The Levels of the Students Based on Their Variable Understanding 

Levels Explanation 

Level 1  Pre-variable and Pre-symbolic: The students do not conceive the 

mathematical quantities as variables and they cannot use any symbolic 

representation 

Level 2  Letters as labels or representing objects 

Level 3 Letters as representing variables with fixed, deterministic values 

Level 4 Letters as representing variables with fixed but arbitrarily chosen values 

Level 5 Letters as representing variables that are varying unknowns 

Level 6 Letters as representing variables as mathematical objects 
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There are several reasons for choosing this framework. First, it was shaped by a well-

defined learning trajectory based on functional relationships. Second, it embodied 

and connected to previous frameworks about variable understanding (e.g., 

Küchemann, 1981). Third, because the students in this study were fifth graders who 

were not familiar with the variable construct, this extended framework was 

appropriate because it addressed levels from very basic to sophisticated.   

For example, when students say that they are unable to calculate a particular variable 

by using letters in a problem situation, it showed that they understood letters as 

representing variables with fixed, deterministic values, Level 3 (Blanton et al., 2017). 

If they give numerical values to the letters assigned to the problem variables (e.g., If 

the height of a sapling that grows 2 cm every day is L) just before mathematizing the 

situation, it shows they see letters as representing variables with fixed but arbitrarily 

chosen values, Level 4 (Blanton et al., 2017). Lastly, a student who recognizes the 

problem variables as mathematical objects that s/he could operate on and create new 

expressions using these objects represents the highest level of variable 

understanding, Level 6.  

Finally, I analyzed the students' use of variables in mathematical operations, 

including how they performed operations with letters and quantities assigned to the 

problem variables. For example, their operations with letters such as S × T (i.e., S 

for the number of bagels and T for the price of one bagel) were coded as an 

understanding of letters representing variables as mathematical objects (i.e., Level 

6) (Blanton et al., 2017). On the other hand, the students who could not make 

operations with letters without giving numerical values were regarded at a lower 

level such as Level 4: representing variables with fixed but arbitrarily chosen values.  

3.7 Trustworthiness 

Design-based research follows the principles of qualitative research in terms of 

reliability and validity, which are key standards of research methodology (Bakker, 
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2018). Validity addresses the question of how accurately a method measures what it 

is intended to measure (Bakker, 2018; Lincoln & Guba, 1985). Internal validity is 

the degree to which the results of a study can be relied upon without bias, while 

external validity refers to the degree of generalizability of the results. On the other 

hand, reliability concerns how consistent the results would be in similar contexts and 

with similar participants.  

In qualitative studies, internal validity is substituted by the term credibility (Lincoln 

& Guba, 1985). For ensuring credibility (i.e., internal validity) some common 

methods are using adequate and high-quality data, doing member checks, and data 

triangulation (Bakker, 2018; Lincoln & Guba, 1985). To ensure credibility, we used 

these methods in different phases of the study.  

Firstly, the research members prepared the data collection tools, and teaching 

materials in line with the related literature and research. They were presented to 

different mathematics educators to ensure the construct validity. After four 

mathematics educators, including the teacher-researcher, agreed on conceptual 

understanding, consistency, and relevance to the purpose of the study, the data 

collection process began. We provided substantial data collection through 

observations of teaching episodes, video records of individual interviews and 

teaching sessions, written responses of the students, and reflective memos. This 

provides high-quality data by integrating multiple data sources and the credibility of 

the data analysis process. (Gravemeijer & Cobb, 2013). It allowed the teacher-

researcher to check multiple sources during the examination such as watching the 

videos again, reading the reflective memos, and checking the students’ written 

answers, as a kind of data triangulation (Lincoln & Guba, 1985). Furthermore, 

conducting end-of-lesson assessments after each teaching episode enhanced the 

credibility of the data as well (Nieveen & Folmer, 2013). In addition to using 

multiple sources of data, we used a multi-perspective approach in data analysis. For 

example, the research members conducted a joint examination of some of the 

transcribed data and the initial data analysis was shared with two mathematics 

educators. Moreover, the related literature provided information about the analysis 
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of certain student responses. These methods enhanced the credibility of this study 

through triangulation.  

In qualitative studies, external validity is replaced by the term transferability 

(Lincoln & Guba, 1985). In design research, it may be possible to transfer findings 

to other situations through analytical or theoretical generalization (Bakker, 2018). 

For this, a detailed explanation of the design in terms of “how, when, and why it 

works” in addition to “what works” is important to transfer the design to other 

situations in further steps (Cobb et al., 2003, p. 13). With respect to this, this study 

provides a detailed description of participants, and contexts to ensure transferability. 

Considering the students’ self-expression skills in the selection process was another 

factor for transferability to collect “thick descriptive data” (Guba, 1981, p. 86). 

For the reliability and objectivity issues which are other criteria for research quality, 

multiple steps were taken to ensure that the findings are independent from the 

researcher bias. For example, multiple researchers have seen and interpreted a part 

of the data. We also used transcriptions of the recordings and an initial coding list in 

the data analysis. This allowed us to compare our codes and argumentations (Bakker, 

2018). 
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CHAPTER 4  

4 FINDINGS 

This study aimed to investigate the interaction between fifth-grade students’ progress 

in algebraic thinking and their units coordination levels by developing an HLT 

targeting the development of students’ generalizations and symbolic representations 

of the relationships between unknown quantities or variables. This section presents 

the students’ mental operations in terms of units coordination assessed before the 

teaching experiments and their initial performance in algebraic thinking, their 

progress throughout the teaching episodes, and their final level in algebraic thinking, 

organized under the three main headings. The first heading outlines the students’ 

initial performances in pre-assessments involving units coordination, algebraic 

thinking, equal sign understanding, and variable understanding. The second heading, 

which is the main part of this section, presents the students’ progress in algebraic 

thinking throughout the teaching episodes from the first to the sixth. Finally, the third 

heading presents an overall progress of the students including an evaluation of the 

difference between pre and post-assessment performances.  

4.1 The Students’ Initial Performances Before Teaching Experiments  

This part first summarizes the students' mental operations according to the analyses 

of the Units Coordination Interview focusing on their multiplicative concepts. 

Second, it presents the students’ evaluations in terms of algebraic thinking involving 

the understanding of some key terms in algebra such as the equal sign, and variable 

understanding.  
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4.1.1 Students’ units coordinations in terms of multiplicative concepts 

The students were divided into two groups according to their level of multiplicative 

concepts. Two students, Roy and Belle, demonstrated mostly the indicators of the 

MC2 level, such as performing the disembedding operation, operating with 

composite units, and coordinating three levels of units in activity. The other two 

students, Sara and Luke mostly demonstrated indicators of the MC1 level, such as 

using drawings to solve the problems, reducing composite units they constructed 

during the activity, and coordinating two levels of units in activity. Table 4.1 

summarizes some indicators of multiplicative concepts that students demonstrated 

in different problems. 

Table 4.1 Students’ Mental Operations in terms of Units Coordination 

 MC2 MC1 

 Roy Belle Sara Luke 

Coordinating three-levels of units in activity 1,2,3,4 1,2,3,4   

Interiorization of two-levels of units 1,2,3,4 1,2,3,4   

Explicit reflection on the composite units 1,2,4 1,2,4   

Operate with composite units 2,3 2,3,4 3  

Disembedding  2,4 2,4  4 

Drawing to demonstrate after the teacher’s 

request 

1,2,4 4   

Equipartitioning 3 3   

Drawing to check the answer  1,4  4 

Coordinating two-levels of units in activity   1,2,4 2 

Need drawings to solve the problem   2 1,2 2 

Decaying composite units constructed during 

activity 

  2,4 2,4 

Difficulty in keeping track of the multiple 

quantities  

1 2 2,4 2,4 

Iterative counting to construct composite unit   2 2,3 

Adding/Subtracting different levels of units   2,4 2,4 

No answer    1, 3 

* 1: The Crate Problem; 2: The Chairs-in-Rows Problem; 3: The Bar Problem (including 5 

tasks); 4: The Cupcake Problem  
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Although each two students shared indicators of the same level, they also 

demonstrated some intra-level differences such as in fluency in multiplicative 

operations and in the frequency of using drawings. Therefore, the levels of units 

coordination were identified as advanced MC2 (Roy), regular MC2 (Belle), regular 

MC1 (Sara), and early MC1 (Luke), respectively, from the one demonstrating the 

most sophisticated units coordination to the one with the lowest level of units 

coordination. The students' mental operations for each multiplicative concept (i.e., 

MC1 and MC2) with examples are presented in the following headings separately. 

4.1.1.1 The MC2 students’ mental operations 

Roy and Belle demonstrated mostly the MC2 level indicators in their responses, with 

subtle differences when working on the problems in the Units Coordination 

Interview. For example, in the Cupcake Problem, they demonstrated similar 

performance by applying disembedding operation, assimilating two levels of units, 

and using composite units in further operations. First, they did the same calculations 

shown in Figure 4.1, and then Roy did the drawings when the teacher asked him to, 

and Belle, without the teacher's request, drew the hidden cupcakes in rows to further 

check her answer. 

 

Figure 4.1. Roy’s (left) and Belle’s (right) solutions in the Cupcake Problem 

They found the number of rows (second-level units) hidden in the box (i.e., 

disembedding the composite unit) and used this number to calculate the number of 

cupcakes (transition between units). 
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Another example that shows their common indicators and also the constraints in 

coordinating three levels of units is their performance in the Crate Problem:  

The Crate Problem: There are 6 chocolates in a package and 8 packages of 

chocolate in a box. A crate contains 5 boxes. How can you find how many 

chocolates are in a crate? Can you draw a picture to show how you find it? 

(Hackenberg & Lee, 2015).  

Both students reached the final correct answer, which requires coordinating three-

levels of units. They could coordinate three levels of units in activity and use two 

levels of units as given, which is an indicator of the MC2 level. However, both had 

difficulty initially in understanding the problem. For example, Belle needed to read 

the problem a few times, before saying: “I multiplied 6 and 8, and it is 48. Then I 

multiplied 48 and 5”. After she answered, she continued reading the problem and 

thinking over it. Through the teacher’s suggestion, she started to make drawings. In 

the drawing, she wrote 6 in each square, an indicator of the iteration of composite 

units in activity (see Figure 4.2). She said: “There are 40 packets and there are 6 in 

each so by multiplying 40 and 6, finding 240”.  

Figure 4.2. Belle’s solution in the Crate Problem 

Similarly, Roy immediately multiplied 8 and 5 just after he read the problem. Then 

he changed his strategy in his second attempt through the teacher’s prompts. In the 

first attempt, he could not figure out the problem and could not coordinate three 
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levels of units. In addition, he could not accurately state what 40 refers to. He 

indicated that there are 40 chocolates, instead of 40 packets of chocolates as follows: 

Roy: I multiply 8 and 5… one minute, (he is thinking and writing the 

multiplication). I multiply 8 and 5, it makes 40. Because there are 8 

chocolates in one box, in one crate there are 40. I mean there are 40 chocolates 

in each crate.  

Teacher: Has it finished? 

Roy: Yes teacher (He still seems to be thinking) 

After the initial drawings, the teacher asked him to read the problem again, 

which made him change his solution by multiplying 8 by 6 and then 48 by 5 

as follows: 

Teacher: Can you do drawings to demonstrate the situation? 

Roy: (He thought a little and drew) Now, there are 6 chocolates in a packet. 

It makes 48 chocolates in 8 packets. After that, 8 and … 5 are not multiplied 

teacher, we multiply 48 and 5, because there are 48 in one box (he is 

multiplying) 240 

Teacher: 240 what? 

Roy: Chocolates 

Finding the answer 240 and his way of working on the solution demonstrated his 

coordinating three-levels of units in activity rather than being assimilated three levels 

of units, which indicates that he is not operating at the MC3 level.  

An explicit difference between the mental operations of Roy and Belle emerged in 

the Chairs-in-Rows Problem:  

The Chairs-in-Rows Problem: There are 6 rows in a movie theater with 4 

chairs in each row. 12 more chairs were brought to this hall. In the last case, 

how many rows can be made in total with 4 chairs in each row? In the last 

case, how many chairs are there in the hall? (Hackenberg & Lee, 2015)  

Roy grasped the problem quickly and performed the operations by flexibly moving 

between the levels of units. He initially found the newly added number of rows by 

dividing 12 chairs (first level of units) into rows, each containing four chairs. Then 

he calculated the total number of rows by adding 3 new rows and 6 initial rows 

(operating with composite units). Lastly, he multiplied nine rows by four chairs (in 
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each row) to find the total number of chairs. In contrast, Belle initially needed 

drawings to solve the problem (see Figure 4.3). 

Figure 4.3. MC2 students’ solutions in the Chairs-in-Rows Problem 

Her drawings indicate that two levels of units are not given and are not explicit to 

her, which is an indicator of MC1. She made small errors and corrections in her 

drawings as follows: 

Belle: One minute…there is one more row… Because we were going to add 

three rows (she erased the last row). I have just realized it 

Teacher: How did you figure out that you need to add three rows quickly? 

Did you find it by drawings, or have you done mental calculations? 

Belle: Now, if there are 4 in each row, I found that we will put 3 rows in 12, 

so when we multiply 4 by 3, it becomes 12. (She did the multiplication that 

will answer 12 next to the drawing). 

Teacher: Okay, so you thought, what I multiply with 4 makes 12. 

Belle: Yes, by three. That's why we put 3 rows, 4 in each row as well makes 

12, that's it. Now here are 9 rows.    

As seen, after a while, she indicated that there would be 3 more rows with 12 chairs 

added. Then she counted the number of rows and wrote 36 chairs as the result. This 
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mental operation shows that she operated with composite units with the help of the 

drawings. 

In general, Roy’s and Belle’s performances, such as disembedding operations in the 

Cupcake Problem and coordinating three levels of units in activity in the Crate 

Problem put them at the MC2 level. Roy was fast and fluent in almost all problems, 

and Belle was slower in solving the problems and needed to make drawings to check 

the answer (e.g., Cupcake Problem) or do some parts of the operations (e.g., Chair-

in-Rows Problem). Her reliance on drawings and activity in some instances is similar 

to an MC2 student who was identified by the raters as at “the lower end of other 

Stage 2 students” because she had more cognitive demands and relied on figural 

materials in some tasks (Norton et al., 2015, p. 57). Therefore, Belle was identified 

as being at the lower end of Roy at the MC2 level, and Roy was an advanced MC2 

student who was in a different fluency in terms of mental operations with the 

different levels of units. 

4.1.1.2 MC1 students’ mental operations 

Sara and Luke demonstrated the MC1 level indicators such as coordinating two-

levels of units in activity (making drawings) and having difficulty keeping track of 

the constructed units (i.e., decaying composite units). They had similar difficulties 

and some differences in solving the problems.  

In the Chairs-in-Rows and the Cupcake Problems, the students reached the correct 

solution in similar ways through drawings and the teacher-researcher’s prompts. 

They also had similar challenges which are indicators of MC1. Both students made 

drawings to understand the problem or to correct the misunderstanding that appeared 

in their initial trials. They were confused about the units in their first attempts and 

were not able to follow the composite units they constructed in the activity.  

For instance, in the Chair-in-Rows Problem, Sara said: "There were 12 rows and 4 

chairs in each row," and she performed an addition of 12 and 4. Similarly, Luke did 
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multiplication by saying: "There are 4 chairs in each row and I added 12 more chairs, 

so it is 48... I multiplied 12 by 4". This indicated that they were unable to accurately 

follow the level of units. In the second trial, Luke found the number of rows added 

(i.e., 3 rows) by quickly calculating from the number of chairs added (i.e., 12 is made 

up of three fours). However, subsequently, he added the values of 3 (the number of 

rows added) and 24 (the original number of chairs) and found 27. This showed that 

the composite units (3 rows) he was constructing in activity were decaying in his 

further operation. However, he needed to recall or construct the composite unit (3 

rows) again to use it accurately in a new situation. This is a constraint that eTNS 

(early TNS or early MC1) students have as well (Ulrich & Wilkins, 2017).  

Their final solutions and drawings are represented in Figure 4.4. They added three 

new rows of four chairs which they get from newly added 12 chairs. Finally, they 

relied on calculating the number of chairs by focusing on one level of units (either 

by counting by four or adding 24 chairs and 12 chairs). These demonstrated a 

coordination of two levels of units in activity (MC1).  

Figure 4.4. Sara’s (left) and Luke’s (right) solutions in the Chairs-in-Rows Problem 

The differences between Luke and Sara’s performances appeared in the Crate and 

the Bar Problems as well. Neither MC1 student could find the total number of 

chocolates in the Crate Problem. About the difference between them, Sara found the 

answer 40 by counting fives 8 times, and she named 40 chocolates rather than 40 

packets of chocolates. On the other hand, Luke did not do any arithmetic operations 
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or drawing. Sara at least demonstrated her multiplicative reasoning, whereas Luke 

displayed a lack of comprehension of the problem and a desire to move on. 

In Bar Tasks 3 and 5, where the long bars were given unpartitioned (see Table 3.10), 

Sara incorrectly equipartitioned the long bar with respect to the given unit of the 

short bar, despite attempting to use her finger to ensure that each piece was equal. In 

contrast, Luke demonstrated the ability to perform equipartitioning correctly in Bar 

Task 3, where the length of the short bar is given, but not in Bar Task 5, where the 

length of the long bar is given (i.e., division is required). Additionally, in Bar Tasks 

4 and 5, where inverse multiplicative reasoning is required, Luke employed a trial-

and-error strategy by assigning random numbers for the length of the short bar. 

Conversely, Sara employed a division operation, taking into account the number of 

partitions involved in those tasks. In addition to these, Luke’s struggle to understand 

the problems and lack of confidence even with the correct answers he found made 

us consider him at the lower end of Sara within the MC1 level. 

4.1.2 Students’ algebraic thinking  

There were five problems in the Algebraic Thinking Interview before starting the 

teaching experiments (see Table 3.11). The Growing Caterpillar and the Bouncing 

Ball Problems were to examine the students’ identification of the functional 

relationships between variables, in the form of 𝑦 =  𝑎𝑥, where it was presented in 

figures or tables, and their generalization and expression of these relationships, either 

verbally or in symbols. There was another problem addressing a functional 

relationship in the form of 𝑦 =  𝑎𝑥 +  𝑏, the Penny Bank Problem. Only Belle, Sara, 

and Luke answered this problem because Roy could not see this problem in his pre-

assessment. Roy was the first student to be interviewed, and this problem was not 

included in the initial form of the interview. In addition, it was not possible to do a 

follow-up interview with Roy about this issue at that time. The other two problems, 

The Caterpillar and Leaf and the Cord Problems were to assess the students’ 
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generalization and representation of the multiplicative relationships between known 

or unknown quantities using symbols.  

Analysis of the students' responses in the Algebraic Thinking Interview revealed that 

MC2 students (Roy and Belle) demonstrated more advanced algebraic reasoning as 

compared to MC1 students (Sara and Luke). They also have a relational 

understanding of the equal sign, unlike MC1 students who demonstrated an 

operational view of the equal sign. Furthermore, students in the same group differed 

from each other in certain ways, as they did in units coordination. For example, Roy 

was more capable than Belle in terms of variable understanding and symbolic 

representation. A general overview of students’ starting location in algebraic 

thinking and reasoning, including equal sign understanding and variable 

understanding, is shown in Figure 4.5.  

Figure 4.5. The analysis of students’ initial performance in algebraic thinking  
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As summarized in Figure 4.5, only Roy achieved the use of symbolic representation, 

which is an indicator of standard algebraic thinking (Radford, 2014). However, he 

used symbolic expression only in problems including figural and tabular data as a 

pattern situation in a contextual situation (e.g., the Bouncing Ball and the Growing 

Caterpillar Problems). His verbal expression of the generalizations also included 

indeterminate quantities as an indicator of algebraic thinking as well. Similarly, Belle 

could generalize the relationships in pattern problems, but only verbally. She was 

unable to formulate the calculations by using indeterminate quantities in words or 

symbols in the Caterpillar and Leaf Problem, unlike Roy. Therefore, she 

demonstrated only contextual algebraic thinking in some instances where she could 

generalize the relationship between variables presented in a pattern situation.  

MC1 students predominantly used recursive thinking. Therefore, they had difficulty 

finding the larger values in a pattern situation. This shows their factual algebraic 

thinking where dominant recursive thinking limits the students’ generalizations. On 

the other hand, Sara showed some indicators of contextual algebraic thinking in 

certain instances, such as finding the larger steps in a pattern situation and using 

indeterminate quantities in her verbal expressions of the generalized relationship in 

the Bouncing Ball Problem. Therefore, she was explicitly a step ahead of Luke in 

terms of algebraic thinking and reasoning. The following two subsections explain 

the students’ performances by giving specific examples.  

4.1.2.1 The MC2 students’ algebraic thinking 

The analysis of the MC2 students’ understanding of equal signs revealed that both 

students exhibited a relational view of equal signs, interpreting them as comparison 

symbols rather than operational ones. For instance, in grouping different kinds of 

symbols, including numbers, operational signs, and comparison signs, both students 

grouped the equal sign with the other comparison symbols (i.e., < , >). Additionally, 

both students correctly answered all of the missing value operations in their papers. 

Figure 4.6 illustrates the distinct symbols that were grouped by the students, along 
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with a representative sample of the operations that they performed. The following 

paragraphs present the students’ performance in determining the relationships, 

expressing them verbally and symbolically, and overall understanding of variables.  

Figure 4.6. MC2 students’ understanding of equal signs 

The MC2 students could verbally express the functional relationship between 

variables in the problems involving figural (e.g., the Growing Caterpillar) and tabular 

data (e.g., the Bouncing Ball). For instance, in the Bouncing Ball Problem, which 

requires understanding and expressing the covariational relationship between two 

variables (i.e., the drop height is twice of bouncing height), Roy indicated the 

relationship as “One is two multiples of the other” and Belle similarly indicated that 

“One is half of the other” by relying on the data given in the table. Similarly, in the 

Growing Caterpillar Problem, which presented figurative data such as each day the 

caterpillar grows two more body parts, the MC2 students verbally generated a 

formula. Roy's understanding of the variables and his verbal expression of the rule 

were more explicit than Belle's by saying: “We will multiply the number of days 

with 2”. Belle did not use an explicit expression such as “The length of the caterpillar 

is 2 times the number of days elapsed” as follows:  

Belle: (She is drawing until the fifth step using circles) …if this pattern 

continues, it will again grow by two. On the fourth day it will be 8, on the 

fifth day it will be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, so it will be 10. 

Teacher: Okay, then how can we calculate the size of the caterpillar for any 

given day?  
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Belle: Multiplying by 2... So, if it gets longer by two every day, we can find 

it by multiplying it mathematically 

Roy explicitly used indeterminate quantities and used a correspondence approach in 

which one quantity is determined with respect to the other quantity (Confrey & 

Smith, 1994). Hence, his verbal generalization of the relationship was more 

sophisticated, compared to Belle. 

In the symbolic representations of the relationships, Roy wrote accurate equations 

in both problems. In addition, he wrote equations in two forms by using both 

multiplication and division as inverse forms (see Figure 4.7).  

Figure 4.7. Roy’s and Belle’s symbolic representations in the Growing Caterpillar 

Problem 

Roy’s symbolic representations in those problems demonstrated his structural way 

of thinking, indicating standard algebraic thinking (Radford, 2010). In contrast, 

Belle struggled to understand how to write a symbolic expression for the 

relationship between variables in both problems. For example, Belle wrote an 

incorrect equation in the Bouncing Ball Problem as 𝑥 =  𝑦 and she could not write 

an explicit equation in the Growing Caterpillar Problem (see Figure 4.7). 

Belle explained her symbolic expression for the relationship between the number of 

days (G) and the length of the caterpillar (T) as follows: 

Belle: We can use two G's. G means 1, it represents the day. T ... for example 

if this is 1 G, this is 2 on the second day. On the second day, the size of the 

caterpillar... We called T as 2. The second day... The first day was 2, the 

second day will be 4, so we can put 2 T's. This is the size of a 4 cm caterpillar. 
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Belle could not also write a symbolic equation in the Penny Bank Problem involving 

a functional relationship in the form of 𝑦 =  𝑎𝑥 +  𝑏 although she could formulate 

a rule for finding the amount of money saved for any given day elapsed. Although 

this problem was not included in Roy’s interview, he answered a similar problem in 

the Variable Understanding Interview which requires them to formulate a rule using 

letters for calculating the length of a sapling where the initial length is L cm and it 

grows 2 cm each day as follows: “If the height of a sapling that grows 2 cm every 

day is L at the time of planting, what will be its height in 10 days?”.   

In the Sapling Problem, Roy accurately used indeterminate quantities and formulated 

the rule to calculate the length of the tenth day: “I multiply 10 and 2 and add L”. 

However, Belle gave numerical values to L and she did not write accurate operations. 

As seen, Belle could not make sense of the fact that the letters were the symbols 

representing the varying numerical values. Her verbal expressions of the 

relationships in both problems and lacking an accurate symbolic representation 

showed her algebraic thinking at the contextual level (Radford, 2014). She was able 

to use the given data and take it to further steps through this generalization; however, 

she did not use indeterminate quantities to denote in an analytical way, which is one 

of the dimensions of algebraic thinking (Radford, 2014). 

In another context involving a multiplicative relationship between two known 

quantities and requiring a generalization of that relationship to different values (i.e., 

the Caterpillar and Leaf Problem), Roy and Belle demonstrated different 

performances in terms of algebraic thinking. Roy used indeterminate quantities in 

his verbal generalization, indicating analytical thinking. The following discussion 

demonstrated his formulation of the general rule in this context:  

Teacher: Ali is keeping 2 caterpillars at home. Each day brings 6 leaves to 

feed these 2 caterpillars. What if there were 24 caterpillars? 

Roy: 24 caterpillars (He thought for a few seconds) …I could divide 24 by 

two, then multiply by 5. It is 60.  

… 
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Teacher: If I asked for more caterpillars, what would you do to solve it in a 

more general way? For example, if there were A caterpillars, how would you 

find the number of leaves for A caterpillars?  Consider that A is any number. 

Could you find it when any number was given?  

Roy: Any number… (he waited a few seconds). I could do this. I divide A 

by 2 and multiply by 5 

As seen, he constructed a narrative formula by relying on the context, but he could 

not write the equation representing this formula. Therefore, he showed a transition 

between the levels, contextual and standard algebraic thinking due to his lack of 

symbolic representation. 

Belle solved the problem the same way Roy did. However, unlike Roy, she did not 

express the relationship in a structural way. Her reasoning was more arithmetical. 

Although she swiftly calculated the number of leaves for any given number of 

caterpillars, she could not express this by operating with indeterminate quantities. 

When the teacher asked her to assign the letter “a” to the number of caterpillars, she 

gave numerical values to a by saying: “Can it be 18, because you said it can be any 

number”. Her understanding of the variables as “fixed arbitrarily chosen numbers” 

(Blanton et al., 2017) prevented her from interpreting the general situation in this 

contextual problem.   

Lastly, in the Cord Problem, the students were required to represent a multiplicative 

relationship in the 1:5 ratio between two unknown lengths of cords. Therefore, it was 

expected that they would write an equation such as 𝑦 =  5𝑥. Both students had 

difficulty in writing equations. Roy only wrote the ratio of 1/5 by indicating that 1 

represents the length of one cord, and 5 represents the length of the longer cord 

without using symbols. He further gave numerical examples as convenient to this 

relationship such as 30 cm and 150 cm by indicating that this makes 1/5. Similarly, 

Belle gave a numerical value for the length of the shorter cord to find the length of 

the longer cord. Hence, she found a numerical value at the end as follows: 

Teacher: Yes, if it is a, what will be Sinan's?... (Belle waited for a while) We 

called its length a, since we don't know, let it represent a number, a can be 

any number. 
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Belle: For example, let a be 5. Well, Sinan's cord is 5 times more than 

Zeynep's cord, so we multiply five by five. It makes 25. 

This performance demonstrated her lack of understanding of variables too. This 

separates her from Roy’s way of thinking in which he could write a general ratio in 

this problem, and he indicated the computations in formulation verbally by using 

letters in the Caterpillar and Leaf Problem.   

In summary, in expressing the general rule, Roy could generalize the functional 

relationship between two variables (e.g., Bouncing Ball and the Growing Caterpillar) 

and between two known quantities in multiplicative problems (Caterpillar and Leaf 

Problem) while Belle expressed the relationships verbally in only between two 

variables and she did not generate the rule in other problems (e.g., the Caterpillar 

and Leaf and the Cord Problems). In the case of the representation of the 

generalizations through symbols, which is another aspect of algebraic thinking and 

reasoning, the difference between the students was more explicit. Roy’s symbolic 

representation was limited to the functional relationship between two variables in 

which multiple numerical examples are given. He had difficulty in making sense of 

the relationship between two unknown quantities. On the other hand, Belle could not 

represent the relationships using symbols accurately in any given task. Her reliance 

on numerical examples to express the generic rules showed her factual algebraic 

thinking. In addition, she did not show any indication of an analytical or structural 

way of thinking. Belle apparently struggled to make sense of the variables and 

unknown quantities because she generally tended to give numerical values for the 

letters assigned to the variables. 

Belle demonstrated an inability to interpret the letters as indeterminate quantities and 

varying unknowns by giving fixed values to the letters assigned to the variables. This 

showed that she had an understanding of “Letters representing variables with fixed 

but arbitrarily chosen values” (Blanton et al., 2017, p.194). In contrast, Roy’s 

operating with letters (i.e., indeterminate quantities) such as writing equations and 
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their inverse forms demonstrated his higher level of understanding in the function 

context which is “Letters representing variables as mathematical objects” (p. 196). 

4.1.2.2 The MC1 students’ algebraic thinking 

The analysis of MC1 students’ understanding of equal signs revealed that both 

students held an operational view of equal signs, interpreting an equal sign only as 

an operational symbol. The grouping of symbols activity demonstrated that both 

students grouped the equal sign with the operational symbols (i.e., + and –). In 

addition, Luke considered that the result of an operation should come just after the 

equal sign in every missing value operation in his paper. Sara also performed the 

same way in some of the operations (see Figure 4.8).  

Figure 4.8. The MC1 students’ understanding of equal sign  

The MC1 students relied more on recursive thinking about the relationship between 

two variables (e.g., the Growing Caterpillar Problem). In addition, Luke’s continual 

recursive thinking prevented him from generalizing the functional relationship given 

in the figures. In the problems involving tabular and figural data (e.g., the Bouncing 

Ball and the Growing Caterpillar Problems), they could express the relationship 

between two variables verbally by relying on the given data. For example, in the 

Bouncing Ball Problem, Sara said “It rises to half of the height from which it was 
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left” while Luke stated, “This (the height of the ball’s rise) is half of this (the initial 

height)” by using the data in a table. Similarly, in the Growing Caterpillar Problem, 

Sara stated how she formulated the general rule for finding a value for any given 

day: “I could calculate it by skip counting because it increases by two; when you ask 

me the thing of what day, I could continue to count.” Similarly, Luke expressed the 

relationships in an arithmetic way: “It (the length of the caterpillar) increases by 

two”. In this problem, their recursive thinking became apparent, which is a 

characteristic of a factual algebraic thinker (Radford, 2014).   

In generalizing the relationships between variables and formulating a rule using 

indeterminate quantities were not easy for the MC1 students, unlike the MC2 

students. Sara could later explain that she could shortly do multiplication when asked 

for the hundredth day in the Growing Caterpillar Problem. On the other hand, Luke’s 

recursive thinking did not allow him to find the length of the caterpillar on the 

hundredth day although he kept counting by two for a while. Since he could not 

pursue counting recursively until the hundredth day, he asserted to divide 100 by two 

and said, “50, this is the result, I guess.” A parallel performance comparison 

appeared in the Penny Bank Problem, which included a functional relationship in the 

form of 𝑦 =  𝑎𝑥 +  𝑏. Sara was able to determine the value of the saved money for 

any given day by formulating the rule, whereas Luke was unable to calculate the 

larger values because he relied solely on recursive operations, adding threes until he 

reached the requested value. Therefore, Luke stayed at the factual level regarding 

algebraic thinking while Sara demonstrated thinking at the contextual level.  

In writing symbolic representations, both students wrote inaccurate equations by 

using T for the length of the caterpillar and G for the number of days – Sara: “𝑇 +

 𝑇 =  𝐺”, Luke: “𝑇 =  𝐺”.  In the Bouncing Ball Problem, Sara wrote “𝑥 = 𝑦” 

whereas Luke did not even understand what writing an equation meant. Furthermore, 

neither student could represent the functional relationship between variables in 

symbols in the Penny Bank Problem (𝑦 =  𝑎𝑥 +  𝑏).  
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In the Caterpillar and Leaf Problem, both Sara and Luke had difficulty determining 

the relationship between known quantities (e.g., the number of leaves and the number 

of caterpillars) and finding the number of leaves for any given number of caterpillars. 

Hence, at this point, it was hard to expect them to express the situation algebraically. 

As conjectured, both MC1 students could not write the symbolic representation. 

Specifically, Sara could not figure out how to use the letter a that was assigned for 

the number of caterpillars: “I could say 36 for a”. The difficulty in keeping track of 

multiple quantities in multiplicative relationships can be explained by their level of 

unit coordination, MC1. That is, if they could keep track of the units while making 

operations, we would expect them to express the relationship at least verbally. 

Although Luke did correct operations at first, the lack of awareness about what he 

was doing while counting by twos (finding the number of groups of two caterpillars) 

might have held him from going further and generating a rule.  

Lastly, in the Cord Problem, neither student could write an equation representing the 

multiplicative relationship between two unknown quantities. When the teacher gave 

numerical values to the length of the shorter cord, Luke could accurately find the 

length of the longer cord. When the teacher named the length of the short cord by 

the letter a, he could not say 5𝑎 for the length of the longer cord, but he used another 

letter 𝑏 to represent the length of the longer cord. Similarly, Sara indicated that she 

could not write an equation by using s and z to represent the cord lengths: 

Teacher: Well, let’s consider Zeynep’s cord length as a, could we express 

the length of Sinan’s by using a?  

Sara: We cannot express it using a, it has to be another number, that is, a 

letter. Because this is shorter, and this is longer it is not equal. And each must 

have something else.  

Her response indicated that she perceived the act of writing a relationship between 

two unknowns using mathematical equations to be a fundamentally different process 

such as writing them as if they were equal.  

In summary, the MC1 students were inclined to recursive thinking in pattern 

situations. This created a constraint in some instances to formulate a general rule 
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expressing the relationship between two variables. In addition, they struggled to 

understand what the letters that were assigned for the variables meant in the 

problems. Therefore, they could not operate with indeterminate quantities. Sara 

(regular MC1) partially demonstrated the contextual level of algebraic thinking 

because she could express indeterminate quantities in her generalization in the 

Bouncing Ball Problem and she could calculate the larger steps in the Growing 

Caterpillar Problem. On the other hand, Luke (early MC1) may be a factual algebraic 

thinker because he had difficulty recognizing the multiplicative relationship between 

quantities and did not generalize the functional relationships. Furthermore, their 

interpretations of letters in these problems, and inability to write equations using 

indeterminate quantities demonstrated their lack of understanding of letters in terms 

of variables. Sara interpreted letters to be given an arbitrary numerical value or to be 

the name of an object in many of the problems. Similarly, Luke tried to give random 

numerical values to the letters assigned for the variable quantities in the Variable 

Understanding Interview. Therefore, both students’ views of letters were determined 

as “representing variables with fixed but arbitrarily chosen values” like Belle 

(Blanton et al., 2017).  

4.2 Students’ Progression Through Teaching Episodes 

This section presents the students’ progress in algebraic thinking throughout six 

teaching episodes. The analyses of the teaching episodes revealed findings into four 

main headings based on the objectives of the episodes. The first heading yielded 

from Episode 1 describes the students’ learning progression in terms of comparing 

unknown quantities by using symbols.  The second heading from Episode 2 outlines 

how the students represent the quantitative relationship, multiplicative or additive, 

between unknown quantities by writing equations. The third heading, comprising the 

objectives of Episodes 3 and 4, explains how the students identified and represented 

a functional relationship in the form of 𝑦 =  𝑎𝑥. Lastly, the fourth heading about the 

objectives of Episodes 5 and 6 describes how the students identified and represented 
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a functional relationship in the form of 𝑦 =  𝑎𝑥 +  𝑏. The findings for the teaching 

episodes are presented in the following sections in a structure that includes the 

intended processes of the teaching episodes, conjectures based on the literature, and 

outcomes of the teaching as briefly compared and contrasted with the literature and 

theory. This way of presentation will reveal testing of the conjectures specific to the 

teaching episode. The results also reveal revised conjectures for further 

implementation of the learning trajectory.  

The flowchart below presents a sample organization of each main heading in this 

section by using the example of the first heading, a comparison of unknown 

quantities in Episode 1(see Figure 4.9). All four headings will continue with the same 

structure.  

Figure 4.9 The flowchart of the presentation of findings for each heading 

4.2.1 Comparison of unknown quantities in Episode 1 

In the first part of the teaching experiment, the aim was to get students to encounter 

and compare unknown quantities and express them by using symbols. For this aim, 

Comparison of Unknown 
Quantities in Episode 1

Students’ performances 
in comparing unknown 
quantities in Episode 1

MC2 students’ 
performance in Episode 1 

MC1 students’ 
performance in Episode 1 

Students’ evaluations 
at the end of Episode 1
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in the first episode, the students worked on three tasks which asked them to compare 

unknown quantities that were represented in figures and express the comparison in 

different ways such as using verbal expressions, hypothetical values, and symbols.  

In the first task of Episode 1, they began by comparing two pencils of different and 

unknown lengths. In the second task, they compared the other two pencils that were 

the same length. As an example, the first task with several discussion questions is 

shown in Figure 4.10. 

 

Figure 4.10 The first task in Episode 1: Comparing unknown quantities 
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The intended processes in the first two tasks were to let the students attain 

hypothetical values for the unknowns on a table, formulate a general case by 

interpreting the data on the table, and represent this comparison by using assigned 

letters and symbols. It is important to note that the students can prefer to express the 

comparison in the shortest way such as “the yellow (pencil) is greater/longer than 

the orange (pencil)” or “they are equal/same”. In those situations, the teacher 

emphasized the word “length” and prompted them to use it. In addition, she asked 

for the units such as “In what unit can it be?” to draw students’ attention to the 

meaning of units and quantities instead of figural objects. In this way, they focused 

on the units of the quantities, started using comparison symbols (i.e., > , <) and 

continued with using equal signs in the second task.  

In the third task, the students worked on various comparison situations such as 

seesaw, and (un)balanced scales (see Figure 4.11).  

Figure 4.11 Sample questions in the third task of Episode 1 
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This task allowed them to practice the different contexts and situations in comparing 

quantities. In terms of the students’ representation of the comparison between 

unknown quantities by using symbols in inequality or equality expressions, the 

conjecture was that all the students might express the comparison verbally or use 

numerical examples of the unknowns. Researchers indicated that students from grade 

1 to grade 8 have some misinterpretations of the use of algebraic letters such as 

tending to give numerical values to the letters or interpret them as placeholders 

instead of interpreting them as generalized numbers (e.g., Ayala-Altamirano, 2022; 

Hackenberg & Lee, 2015; Küchemann, 1981; MacGregor & Stacey, 1997). 

Regarding the understanding of variables and unknown quantities, the teacher 

always asked what 𝑥/𝑎/𝑐 etc represents. She emphasized that the numbers they 

wrote on the tables were just their guesses. 

In addition, as the MC1 and MC2 students participated in this study, it was 

hypothesized that students would continue to rely on numerical examples or interpret 

the letters as placeholders during this episode (Hackenberg & Lee, 2015). However, 

Roy’s (advanced MC2) initial performance in the interviews assessing his algebraic 

thinking before the teaching experiments showed his use of letters in pattern 

situations to generalize the relationship as different than other students. Therefore, I 

expected to see some diversity in Roy’s performance in this episode. In addition, I 

wrote symbolic expressions in different forms to develop equal sign understanding 

and to develop algebraic thinking in expressions of arithmetic operations. Figure 

4.12 presents the task characteristics, intended processes, and certain conjectures. 
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Figure 4.12 Description of Episode 1: Comparison of unknown quantities 
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4.2.1.1 Students’ performances in comparing unknown quantities during 

Episode 1  

The students showed mostly inter-level differences in using symbolic language to 

represent the comparison of unknown quantities besides that all had similar 

difficulties and accomplishments. Firstly, all students were able to verbally express 

a comparative relationship between two unknown quantities which can be visually 

observed in a figure (see Table 4.2). For example, they indicated that one length is 

longer than the other or the lengths of the pencils are equal/same.  

Table 4.2 The Students’ Performances during Episode 1 

 MC2 MC1 

 Roy Belle Sara Luke 

Writing equation/inequality with more 

than two unknowns (using operations) 

2 3 3 3 

Writing equation/inequality with two 

unknowns (without operations) 

2 2 2 2 

Symmetric property in writing equation 2 3 3 3 

Assigning letters for unknowns in the 

last task 

3 1 3 3 

Relational understanding of equal sign 1 1 1 - 

Verbal expression of comparisons 1 1 1 1 

Filling the table with appropriate values 1 1 2 2 

Giving numerical values for unknowns  - - 1 1 

Writing equations by using object names 

or figures (Variables as objects) (e.g., 

yellow = green) 

- - 1 1 

1: Without prompting; 2: With probing questions, 3: With leading questions  

Note: The level of algebraic thinking increases with color darkness from the bottom to the top 

of the table 

Besides, all students demonstrated difficulty in similar situations such as using 

comparison symbols with letters assigned to the unknown quantities and using 

operation signs to represent the quantitative relationships (e.g., 𝑎 +  𝑏 =  𝑐) as 

conjectured. Secondly, the students showed both inter-level and intra-level 
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differences. MC2 students needed fewer prompts from the teacher as compared to 

MC1 students in general. Table 4.2 summarizes the findings about the students’ 

performances in using symbolic language in comparison of unknown quantities by 

demonstrating both inter-level and intra-level differences. In this table, their 

performances were labeled based on whether they were prompted or given leading 

questions before answering the questions. The following sections present a detailed 

description of the findings for each group of students. 

4.2.1.1.1 MC2 students’ performance during Episode 1  

MC2 students (Roy and Belle) demonstrated a higher capability to use 

letters/symbols representing unknown quantities through the end of the episode 

although they initially refrained from answering the questions. They were able to use 

the letters to represent unknown quantities in the last task of the episode (e.g., the 

number of candies in the jars, the age of people, and the weight of objects on a 

balance scale) on their first try without needing a prompt from the teacher. This is 

consistent with the conjectures for Roy (see Figure 4.12). However, Belle's progress 

was higher than previously conjectured (see Figure 4.12). She was close to Roy's 

performance.   

In a scale model with three unknown quantities, representing this relationship was 

challenging for the MC2 students because it required using an operation with 

unknowns. This difficulty was a hypothesized outcome, but the prediction about their 

performance had not been specifically defined beforehand. Although they identified 

indeterminate quantities and flexibly expressed them in the previous tasks, they 

could not consider making operations with them. This might be more demanding for 

them as it requires analytical thinking (Radford, 2014). With the teacher's help which 

she gave hypothetical values for each unknown quantity in a table on the board, they 

could use addition operations in their symbolic representation (i.e., 𝑡 +  𝑏 >  𝑔) by 

generalizing the table of data on the board. Thus, through the numerical examples, 

they made a transition from determinate quantities to indeterminate ones. Through 
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this task, they began to work on quantitative relationships in which an operation on 

two quantities determines the third (Thompson, 1990).  

The intra-level differences among MC2 students emerged in comfort with answering 

the questions and expressing the relationship between unknown quantities instead of 

achieving lesson goals. Belle generally hesitated to answer questions. Roy was faster 

and more flexible in generating different expressions. Hence, Belle learned what to 

do after the teacher’s prompts or Roy’s answers during the discussion of the tasks. 

Then she could successfully adopt the procedure in the next tasks by flexibly 

applying what she learned/saw in the previous tasks. Further, Roy wrote a complete 

verbal expression in each task, in addition to the symbolic expressions, that showed 

the comparative relationship between the unknown quantities. Roy was also the only 

student who used the units of quantities next to the values or letters in the questions 

such as cm or kg. Just as their intra-level difference in unit coordination appeared 

through Roy’s swiftness and Belle’s hesitations, this Episode revealed their 

differences in the same way.  

4.2.1.1.2 MC1 students’ performance during Episode 1  

The performance of the MC1 students (Sara and Luke) in Episode 1 highlighted 

several points. First, the MC1 students were inclined to give hypothetical values for 

the unknown quantities before expressing the relationship symbolically or verbally. 

Sara continued to write the comparative relationship by using symbols with 

hypothetical values (e.g., 25 >  10 or 5 =  5) even after the first two tasks were 

completed. This was the conjecture for all the students (see Figure 4.12) while the 

performance of the MC2 students in this episode was different. This demonstrates 

that the MC1 students were not ready to use indeterminate quantities as much as the 

MC2 students, which is an inevitable condition of algebraic thinking (Radford, 

2010).  
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Second, Luke (early MC1) used comparison symbols (i.e., >, < ) between the objects 

in figures or with the object names such as “yellow = green” instead of using 

assigned letters or values. This may demonstrate similarity to a variable 

understanding of assigned letters as labels or as representing objects instead of 

quantities, indicating a pre-variable understanding (Blanton et al., 2017). This was 

another conjecture that was actualized in this episode by only the MC1 students. 

Given that this performance continued in the third task, developing the variable 

understanding and letter use for unknowns may not be an easy process for the MC1 

students.  

Third, the MC1 students had difficulty in representing the quantitative relationship 

between three unknowns displayed on an unbalanced scale, like the MC2 students. 

Although they accurately interpreted this relationship, they could not use the 

operation signs with the letters assigned for the unknown weights. For instance, both 

MC1 students wrote “𝑡 𝑏 >  𝑔” rather than “𝑡 +  𝑏 >  𝑔” in this task (see Figure 

4.13).  

 

Figure 4.13. Luke’s symbolic representation in an item of Task 3 

Their representation demonstrates that they identified the relationship as combining 

both weights t and b is greater than the weight g. However, their inability to use an 

addition operation with indeterminate quantities demonstrated their lack of analytical 

thinking (Radford, 2010) and variable understanding (Ventura et al., 2021). These 

representations showed that the MC1 students made comparisons based on their 
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observations and by labeling the objects rather than the quantities. After a discussion 

on the board and drawing table and the teacher's questions, they used operation signs 

with indeterminate quantities. Further, in these tasks including more than two 

unknown quantities on the scale figures, Sara attempted to give values for each 

unknown quantity (i.e., the weights of balls). She indicated that she guessed the 

values. With the help of the teacher’s prompts and questions, both MC1 students 

assigned letters for the unknown quantities, and they also used symmetry property 

to express the equalities in different forms (i.e., 𝑎 =  𝑏 +  𝑐; 𝑏 +  𝑐 =  𝑎).  

There was not a clear distinction between the performances of the MC1 students in 

this episode. Their discussions complemented each other. For instance, one of them 

expressed her/his opinion then the other understood the point and developed it in 

further questions. Sara had a notable tendency to assign numerical values to 

unknown quantities compared to Luke. On the other hand, Luke stood out from Sara 

due to his ability to quickly apply what he learned during the episode. Although Luke 

initially struggled with using alphanumeric symbols in his representations, he 

quickly learned how to use them during classroom discussions and was able to put 

this knowledge into practice.  

4.2.1.2 Students’ evaluations at the end of Episode 1 

At the end of Episode 1, the students attended an end-of-lesson assessment 

evaluating their learning in the episode. Their understanding of equality and use of 

symbols for representing the comparison between unknowns were the focus of the 

assessment. The results of the final evaluation in Episode 1 showed that all the 

students learned to assign letters for unknown quantities and represent the 

relationships by using letters, operations, and comparison symbols.  

In terms of equality understanding, MC2 students maintained their relational 

understanding of the equal sign. One of the MC1 students, Sara, demonstrated a 

relational understanding of the equal sign too although she incorrectly answered a 
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similar question in the initial interview by focusing on the operational meaning of 

the equal sign. She seemed to have developed her understanding of equality by 

working on different equality and inequality situations during the episode. However, 

the other MC1 student, Luke, continued to have an operational view of the equal sign 

by writing an incorrect answer in a missing value equation (see Figure 4.14). 

 

Figure 4.14. Luke’s (early MC1) answer to question 1 in the quiz in Episode 1 

His answer showed that he had taken the operational meaning of the equal sign, 

thinking that the answer comes right after an equal sign rather than thinking of its 

relational meaning (Knuth et al., 2006). This might be an important constraint in 

thinking structurally to represent the relationships in equations, as a dimension of 

algebraic thinking. Because of this, the teacher-researcher has decided to add a small 

task in the second episode including virtual simulations of balanced scales to enhance 

the understanding of equal signs.  

In writing the symbolic representation for the relationship between quantities on the 

balance scale, the only difference between the two groups of students is that the MC2 

students wrote the equations in two forms by using the symmetric property while the 

MC1 students did not write different forms although they could do it during the 

episode (see Figure 4.15). 
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Figure 4.15. Written symbolic expressions by an MC2 and an MC1 student 

Overall, key findings from Episode 1 in terms of the students’ use of symbolic 

representations in comparing unknown quantities, and their understanding of equal 

signs are shown in Table 4.3.  

Table 4.3 Students’ Challenges and Progress during and at the end of Episode 1 

  MC2 MC1 

  Roy Belle Sara Luke 

 

 

Challenges 

Using comparison symbols 

with hypothetical values 

  D D 

Using comparison symbols 

with objects 

   D 

Operational view of equal 

sign 

  D D, A 

 

 

Progress- 

Advancement 

A relational view of equal 

sign 

D, A D, A A  

Representing comparisons 

symbolically 

D, A D, A A A 

Using operation signs with 

the letters 

A A A A 

Writing the equations in two 

forms 

A A   

*D: During the Episode *A: At the end of the Episode  
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4.2.2 Representing an additive and multiplicative relationship between 

unknown quantities during Episode 2  

The second step in the HLT was developing the students’ expression of additive or 

multiplicative relationships between unknown quantities. Therefore, the intended 

process in Episode 2 was quantitative reasoning where students analyze the problem 

situation and determine the quantitative relationships, generalization, and symbolic 

representation of quantitative relationships. For this aim, the students worked on two 

tasks: one included a multiplicative relationship between two unknowns, and the 

other included an additive relationship between three unknowns (see Figure 4.16).  

Figure 4.16 The tasks in Episode 2 
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First, the students worked on a task including a multiplicative relationship between 

two unknown lengths where one rope is four times the length of the other rope (see 

Figure 4.16). The second task involved an additive relationship between three 

unknown lengths where each one was represented by letters. Expressing the 

comparison of unknown quantities verbally (e.g., It is four times the other, it is one-

fourth the other, the sum of A and B makes C) indicates the students’ determination 

of quantitative relationships between two or more quantities as a pre-requisite step 

before constructing an algebraic equation.  

Based on the literature and the learning outcomes of Episode 1, it was assumed that 

the MC2 students would use symbols to represent the relationships between 

unknown quantities with the help of prompts in both tasks. Although Hackenberg 

and Lee (2015) noted that MC2 students tend to use numerical examples, we did not 

make the same inference for the MC2 students in this study based on their 

performance in the previous episode. On the other hand, we hypothesized that MC1 

students would require more guidance from the teacher to successfully transfer the 

relationship they have constructed arithmetically into an algebraic one using 

indeterminate quantities. We also conjectured that MC1 students would use 

numerical examples instead of letters as they are at a lower level than the MC2 

students (e.g., Hackenberg & Lee, 2015). In addition, we hypothesized that MC1 

students would perceive the multiplicative task as more challenging than the additive 

task since they were constructing their first multiplicative concept. The task 

descriptions, the intended processes, the conjectures, and instructional plans are 

shown in Figure 4.17.  

As conjectured, the teacher used more scaffolding questions in the multiplicative 

task. In particular, the MC1 students required more guidance from the teacher in 

understanding the multiplicative relationship between the unknown quantities. 

Therefore, the teacher used scaffolding questions to move them to a higher step in 

the task and she also used leading questions giving numerical examples when the 

prompts were not enough for their understanding. 
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Figure 4.17 Description of Episode 2
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For example, when MC1 students’ numerical examples were not congruent to the 

given multiplicative relationship, the teacher showed a pen to represent the longer 

rope and said to split it into 4 and put a small pen cap to represent the smaller length. 

She said, “This is 1 and this is four; this is 2 and this is 8; then if this is 3, what could 

this be?”. Therefore, the teacher employed these orientations when the students were 

stuck during the task.  

The teacher aimed to use tables to help students generalize based on different 

numerical values with a constant relationship. Even though the students used the 

correct symbolic representation on their first try (e.g., Task 2), the teachers still asked 

mediating questions, and used the table for generalization. Therefore, she used tables 

to help both their identification of the relationship and connect different 

representations for their further assistance.  

In developing the students’ algebraic thinking, the teacher asked them to use 

different representations of equations to express the same relationship. When they 

could not achieve this, she used leading questions. For example, in the multiplicative 

task, she asked about the length of the shorter rope after assigning a letter to the 

longer one and vice versa. In the additive task (i.e., 𝐴 +  𝐵 =  𝐶), she asked them 

to represent the lengths of B and A respectively aiming to use subtraction.  

4.2.2.1 The students’ performance during Episode 2  

The students’ performances on two tasks in this episode revealed distinct results 

because of the relationship involved in the problems as either an additive or a 

multiplicative one. Therefore, the observed differences between the students in terms 

of algebraic thinking are presented separately for each task. In perceiving the 

relationship between unknown quantities and representing them with symbols, all 

the students performed better in the second task, which covers an additive 

relationship, compared to the first task which involves a multiplicative one. They 

responded to the questions in representing the additive relationship mostly without 

needing prompts (see Table 4.4) 
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Table 4.4 The Students’ Performance during Episode 2 

  MC2 MC1 

  Roy Belle Sara Luke 
M
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Symbolic generalization 

(Standard algebraic thinking)  

1 2 3 2 

Reversing the equation 

(Structural thinking) 

1 - - - 

Verbal generalization 

(Contextual algebraic thinking) 
1 2 - - 

Identifying the relationship 

(Table) 

1 2 3 3 

Inclination to use numeric 

examples 

- - 1 - 

Inclination to additive thinking - 1 - 1 

A
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Symbolic generalization 

(Standard algebraic thinking) 

1 1 1 1 

Reversing the equation 

(Structural thinking) 

1 2 2 2 

Verbal generalization 

(Contextual algebraic thinking) 
1 1 1 1 

Identifying the relationship 

(Table) 

1 1 1 1 

1: Without prompting; 2: With probing questions, 3: With leading questions 

Note: The level of algebraic thinking increases with color darkness  

 

The struggle to recognize the multiplicative relationship was evident in a series of 

processes starting from filling in the table with the assigned values for each unknown 

quantity to representing it by using symbols. All the students but Roy tended to use 

comparison symbols such as greater than and less than in expressing the relationship 

with symbols in their first attempt as they did in the first episode. Their first answer 

to express the relationship between two lengths of ropes was an expression involving 

the comparison symbols or terms such as longer and shorter. In addition to this 
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commonality among the students, their performance in further sub-questions of the 

task such as filling the table and representing the relationship with symbols revealed 

differences in both inter-level and intra-level perspectives. 

In addition to the general summary of findings in Table 4.4, these differences are 

presented in further sections, starting with MC2 students, in detail. Finally, the 

students’ final evaluations in relation to the lesson objectives are presented. 

4.2.2.1.1 MC2 students’ performances during Episode 2  

MC2 students required prompts to identify the multiplicative relationship between 

two lengths of ropes. They filled a table with appropriate values to generalize the 

relationship to indeterminate quantities, which was a conjectured outcome for only 

the MC1 students. Roy's performance, aside from his initial attempt in the first task, 

was more in line with the lesson conjectures for the MC2 students compared to Belle. 

Belle demonstrated a deviation from what was expected of her before the 

experiment. 

In the given problem, the MC2 students initially expressed the relationship between 

the lengths of two ropes by stating that “The length of Zarife's rope is longer than 

the length of Ali's rope” and vice versa. However, when asked to fill the table 

according to the relationship in the problem, only Roy (advanced MC2) filled the 

table congruent to the multiplicative relationship with a ratio of 1: 4 between the 

quantities (see Figure 4.18, left). On the other hand, Belle (regular MC2) filled the 

table additively. In other words, she recorded her estimations for two quantities, such 

that the difference between them remains constant (see Figure 4.18, right). Belle 

stated that she gave such values by considering only one rope was longer than the 

other. After this, Roy explained his values by referring to the multiplicative 

relationship by saying: “I thought that the length of Ali’s rope should be one-fourth 

of Zarife’s rope.” The tables and their explanations demonstrated that, in their first 

attempt, Belle did not recognize the multiplicative relationship between the unknown 

quantities while Roy expressed it using a ratio. The values assigned for the unknowns 
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represented the difference in the mental operations of MC2 students. However, Belle 

could interpret the relationship correctly after hearing Roy’s explanation of his table 

and the teacher’s guiding questions. 

Figure 4.18. MC2 students’ tables in Task 1 including multiplicative relationship 

In representing the unknown quantities with symbols such as expressing one quantity 

in terms of the other by using the assigned letters, Roy successfully used the letters 

to represent the relationship in his first attempt (see Table 4.5). Belle could not write 

any symbolic expression initially. Although she understood that one unknown 

quantity should be multiplied by four and the other should be divided by four, she 

could not express it by using letters and operations. Hence, her verbal generalization 

of the multiplicative relationship did not advance to a symbolic level without the 

teacher’s guidance. After the discussion of the first question requiring a symbolic 

representation, Belle understood how to use letters and operations together to express 

the recognized relationship between unknown quantities in further questions. In the 

last question, she could use symbolic language accurately to represent the 

multiplicative relationship between unknowns. Her final performance in 

representing the multiplicative relationship was consistent with the conjectures 

before the lesson. The teacher’s guidance and discussion in the previous question 

helped her to achieve this as seen in Table 4.5. Compared to Belle, Roy used division 

to invert the equation he wrote using multiplication in the last question (e.g., 𝑚 =

 𝑘 ×  4 and 𝑚 ÷  4 =  𝑘). His equivalent expressions of the relationship clearly 

show his algebraic thinking through the structures and relationships embedded in his 

operations and operations with indeterminate quantities (Kieran, 2022; Radford, 

2014). 
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Table 4.5 MC2 Students’ Symbolic Expressions for Task 1 in Episode 2 

Questions  Roy’s written 

answers 

Belle’s written 

answers 

How can you represent the 

length of Ali’s rope? 

No answer No answer 

Let the length of Ali’s rope be a, 

how could you express the 

length of Zarife’s rope 

𝑎 ×  4 =  𝑏 → the 

length of Zarife’s 

rope 

No answer 

Let the length of Zarife’s rope b, 

how could you express the 

length of Ali’s rope 

𝑏 ÷  4 

 

𝑏 ÷  4 

4 ÷  𝑏 (deleted) 

 

Let the length of Zarife’s rope be 

m and the length of Ali’s rope be 

k, how can you express the 

relationship between m and k?  

𝑚 =  𝑘 ×  4 

𝑚 ÷  4 =  𝑘 

 

𝑘 <  𝑚 

𝑚 >  𝑘 

𝑘 + 𝑘 + 𝑘 + 𝑘 =  𝑚 

𝑚 =  𝑘 ×  4 

 

Belle represented the relationship by using two equivalent expressions too, but her 

equations included only multiplication or addition. This also showed her structural 

and analytical thinking like Roy. However, Roy’s expressions are more sophisticated 

in terms of algebraic thinking by reversing the multiplicative relationship. Belle’s 

equations represent her construction of the relationship between repeated addition 

and multiplication. In addition, she made a mistake in expressing the length of Ali’s 

rope in the third question by confusing the quantities (see Table 4.5), which indicates 

a problem in recognizing the indeterminate quantities in the problem and structural 

thinking. In short, the diversity in the amount of guidance they needed from the 

teacher and in their equations represented the difference in their progression of 

algebraic thinking, indicating an intra-level difference.   

In representing the additive relationship between three unknown lengths, the MC2 

students correctly wrote equations by using symbols before filling the table as 

conjectured. However, their expressions of the equations involved some differences. 

Roy wrote both 𝑎 +  𝑏 =  𝑐 and 𝑐 –  𝑏 =  𝑎 which are the inverse forms of the same 

relationship as he did in the previous task. Therefore, Roy showed a solid 

understanding of the relationship. Belle wrote two equations as well, but her 
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equations involved only the symmetric forms such as 𝐴 +  𝐵 =  𝐶 and 𝐶 =  𝐴 +

 𝐵. Although the teacher asked her whether she could provide another equation to 

show the same relationship, she was unable to do so. This highlights Roy’s 

sophisticated understanding of the relationships and operations with structures, as 

another evidence of intra-level difference.   

In representing the difference between the lengths of C and A or the lengths of C and 

B (see Figure 4.16), Roy easily wrote the equations: 𝐶 –  𝐴 =  𝐵 and 𝐶 –  𝐵 = 𝐴. 

However, Belle had difficulty understanding the question and she could not answer 

without the teacher’s help. After the teacher emphasized the term “difference” to 

assist her in remembering the subtraction operation, she could write an appropriate 

equation using symbols to show the difference between C and B.  

Overall, Belle needed more prompts from the teacher to understand and represent 

the relationships as compared to Roy. She could represent the multiplicative 

relationship by using letters and equality with the help of the teacher’s prompts and 

interpretations of Roy. On the other hand, Roy was quicker in understanding and 

expressing relationships. Additionally, his flexibility in writing equations in inverse 

forms displays him as a more analytical and structural thinker.  

4.2.2.1.2 MC1 students’ performance during Episode 2  

In comparison to the MC2 students, the MC1 students, Sara and Luke, needed more 

leading questions to understand the multiplicative relationship between the unknown 

quantities. They had considerable difficulty in identifying the multiplicative 

relationship. They underperformed in this task regarding the conjectures, indicating 

that they could have been able to verbally express the multiplicative relationship and 

assign appropriate numerical values to the unknown quantities. Therefore, the 

discussion and the teacher's guidance were quite intensive in this part for their 

identification of the multiplicative relationship.  

The MC1 students first indicated only the comparison between the long and short 

ropes by representing it through symbols such as 𝑎 <  𝑏 like the MC2 students’ 
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initial answers. In the next step, in their tables, they did not assign numerical values 

as congruent to the given multiplicative relationship, which indicates their lack of 

recognition of the multiplicative relationship (see Figure 4.19).  

Figure 4.19. MC1 students’ assigning of values to the lengths of ropes in Task 1 

As seen in Figure 4.19 Luke filled in the table in such a way that the difference 

between two quantities is constant, which is six. He explained this constant 

difference: “I thought there was a difference of 6 because there is a big difference 

between two lengths”. Luke here made an inappropriate additive comparison by 

guessing a difference between the lengths which is a less complex comparison in 

terms of units coordination compared to a multiplicative one (Ulrich, 2016b). On the 

other hand, Sara explained her values in the first row (i.e., 1 and 4) as follows: “The 

longer rope was divided by four”. However, the other values on her table did not 

correspond to the same relationship. Instead, they appeared to be random numbers 

chosen simply for being longer or shorter. Therefore, her interpretation of the 

comparison corresponds to neither an additive nor multiplicative one. 

The teacher helped MC1 students understand the multiplicative relationship between 

unknown quantities by showing them how to split the longer rope equally to generate 

the shorter rope, iterate the shorter rope to make the longer rope, and fill in a table 

with newly assigned numbers matching with the given multiplicative relationship 

(see Figure 4.20).  
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Figure 4.20. The teacher’s representation of Task 1 during the discussion  

After splitting the longer rope and assigning values to the shorter rope, the teacher 

asked: “What length could Zarife’s rope (the longer one) be if Ali’s rope were 4 cm 

long?” The students could not answer the question, so she modified it: “If the longer 

rope was 4 cm long, what could be the length of the shorter rope?” Luke’s answer 

was 1 cm, and Sara agreed because the teacher had provided the same values earlier. 

Then the discussion continued:   

Teacher: If the longer rope was 8 cm long, what could be the possible length 

of the shorter rope? 

Luke: Could it be 2 cm?  

Teacher: Why? 

Luke: I thought when we multiply 4 (the first given value to the longer rope) 

and 2 it becomes 8 so Ali’s rope can be 2 cm long.  

Teacher: You think, if this is doubled (she shows the column of Zarife’s rope 

length), the other should be doubled too? 

Luke: Yes 

Luke relied on the change in just one column (variable), showing basic recursive 

thinking. The teacher explained how the longer rope is divided into four equal parts, 

generating the shorter rope, and provided additional numeric examples by also 

requesting from the students. Luke began accurately determining values for the other 

variable multiplying by four, while Sara still concentrated on the change across the 

cells in a single column by thinking recursively for a little while longer. The teacher 

clarified the generation of the shorter rope from the longer one until Sara correctly 

listed the values in her table. Here, the teacher highlighted the relationship between 

two quantities that vary simultaneously, rather than focusing solely on the change in 

one variable. Filling the table with appropriate values did not help them much in 
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expressing the multiplicative relationship by using indeterminate quantities because 

they relied on recursive thinking instead of identifying the relationship between the 

columns. However, covariational reasoning, which is an approach to functional 

thinking, was partially constituted by the help of the teacher.  

After completing the table and discussing the relationship between two unknown 

quantities, the teacher attempted to ask questions by using indeterminate quantities 

such as: “What can we do to generate the length of Zarife’s rope by using Ali’s rope 

and what can we do to generate the length of Ali’s rope by using Zarife’s rope?”. 

Initially, both MC1 students stated “Three more are required to obtain the longer 

rope” instead of stating multiplication by four as follows:  

Luke: We add three times the length of it (shorter rope) to get the longer one. 

Sara: We add 30 cm more to obtain the longer rope if the shorter rope, lets 

say to be 10 cm.  

Their responses demonstrated a utilization of an additive comparison by focusing on 

the difference which is less demanding reasoning (Ulrich, 2016b). Researchers 

explained this constraint as resulting from a lack of splitting and disembedding 

operations which is a characteristic of MC1 students (Hackenberg, 2013; Steffe & 

Olive, 2010). Because they could not disembed the shorter bar from the longer one, 

they could not construct the multiplicative relationship between those unknown 

lengths. The teacher stressed the importance of starting from scratch, without 

assuming the presence of any rope in the beginning. After the discussion, Luke 

accurately explained how to perform operations using indeterminate quantities like: 

“We divide it by four” and “We multiply it by four”.   

In writing the symbolic representation of the multiplicative relationship, the MC1 

students generated different expressions from the beginning to the end in which the 

variables were slightly integrated into the questions. For example, Luke wrote a sum 

of four identical values, 𝑎 +  𝑎 +  𝑎 +  𝑎 =  𝑏 after the discussion of the 

multiplicative relationship while Sara could not even write it using addition. She only 

wrote operations with numerical values such as 4 –  3 =  1 on her first try. During 

the discussions, Sara first stated that 𝑏 =  𝑎 ×  3, demonstrating that she still 
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thought about adding over the first rope to make a longer rope which was their 

constraint at the beginning of the lesson. However, she later corrected herself by 

writing 𝑎 ×  4 to represent the length of the longer rope when the teacher asked 

additional questions (see Table 4.6). 

Table 4.6 MC1 Students' Symbolic Representations of Multiplicative Relationships 

Questions Sara’s written 

answers 

Luke’s written 

answers 

How can you represent the 

short length of Ali’s rope? 

A = 1 (deleted) 

5 <  10 

𝐴 <  𝑍 

𝑎 =  1𝑐𝑚 

Let the length of Ali’s rope a, 

how could you express the 

lengths of Zarife’s rope 

𝑎 ×  4 

 

𝑎 + 𝑎 + 𝑎 + 𝑎 

Let the length of Zarife’s 

rope b, how could you 

express the lengths of Ali’s 

rope 

𝑏 ÷  4 

𝑏 –  4 

𝑎 =  𝑏 –  𝑏 –  𝑏 –  𝑏 

𝑏 ÷  4 

𝑏 –  4 

Let the length of Zarife’s 

rope m and the length of 

Ali’s rope be k, how can you 

express the relationship 

between m and k?  

𝑘 <  𝑚 (deleted) 

𝑚 >  𝑘 (deleted) 

𝑘 =  𝑚 –  4 

𝑚 =  𝑘 ×  4 

𝑘 ×  3 =  𝑚 

𝑘 + 𝑘 + 𝑘 + 𝑘 =  𝑚 

 

Although the MC1 students recognize and represent the multiplicative relationship 

with the leading questions of the teacher, they occasionally wrote incorrect equations 

for the relationships as seen in Table 4.6. For example, Luke attempted to write the 

relationship in a new form by incorrectly reversing the equation as 𝑎 =

 𝑏 –  𝑏 –  𝑏 –  𝑏. This represents a lack of structural thinking in which he is not 

thoroughly aware of the relations between indeterminate quantities (Kieran, 2022). 

Because of this, he could not elaborate on the initial structure of representation. Both 

students also wrote 𝑏 –  4 and 𝑏 ÷  4 together to represent the same relationship as 

different forms. Like using repeated addition, they might have attempted to the 

repeated subtraction to indicate the same relationship in the reverse form. This way 

of thinking may demonstrate their undeveloped multiplicative structures. It was a 
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common point between the MC1 students that they could not write equivalent 

expressions to represent the multiplicative relationship. However, the MC2 students 

could accomplish this in their lessons. 

The MC1 students could represent the additive relationship between three unknown 

quantities by using symbols and equations in their first attempts without completing 

the table (see Figure 4.21).  

Figure 4.21. MC1 students’ representation of an additive relationship 

Therefore, they performed in the opposite direction to the assumptions. After they 

represented this relationship with symbols, they also filled in the table with values 

so that the sum of the values assigned for A and B was equal to the value assigned 

for C.  

The MC1 students had difficulty understanding the question: “How can you express 

the difference between the lengths of A and C?” Sara wrote the equation 𝑐 –  𝑏 =  𝑎 

while Luke wrote different expressions such as 𝐴 =  4; 𝐶 =  8; 𝐴 +  𝐴 =  𝐶 and 

𝐴 <  𝐶. The teacher showed how to write the opposite form of the same relationship 

to both students. In the next question about the difference between the lengths of B 

and C, Luke correctly wrote the equation 𝐶 –  𝐴 =  𝐵 using letters. However, Sara 

incorrectly wrote 𝐴 –  𝐶 =  𝐵 by confusing the lengths. The teacher intervened and 

helped her correct the equation.  

Overall, the MC1 students had notable difficulty in understanding the multiplicative 

relationship between two unknown quantities compared to an additive relationship. 

They tended to think additively in problem situations and this lack of operating with 

multiplicative situations made it difficult for them to work with indeterminate 
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quantities. Contrary to conjectures, the main trouble was about their understanding 

of the relationship within the problem situation instead of representing it using 

indeterminate quantities. The difference in their performance in additive and 

multiplicative tasks demonstrated that the main constraint in their algebraic 

performance resulted from the difficulty in identifying the relationships in the 

problem situations, not writing equations. Even so, writing equations demonstrated 

some other differences in their algebraic thinking as well. For example, the inability 

to reverse a multiplicative situation in an equation demonstrated their lack of 

structural thinking as a dimension of algebraic thinking (Kieran, 2022). The teacher 

needed to provide continuous support for them to accurately answer each question. 

Although they could reach the correct thinking in some instances, they mostly could 

not maintain this in further steps.  

4.2.2.2 Students’ evaluations at the end of Episode 2  

In the end-of-lesson assessment of Episode 2, the given task asked the students to 

represent the multiplicative relationship between two lengths of sticks. The sticks 

were represented as a union of equal parts so that the students could see the 

multiplicative relationships between them (see Figure 4.22).  

Figure 4.22. The questions of the post-assessment in Episode 2 
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Like previous tasks in the episode, the students had to complete a table with various 

values and use assigned letters for the lengths to write an equation. The students 

displayed varying levels of performance when filling out the table in the first 

question. Figure 4.23 represents two examples of them.  

Figure 4.23. Belle’s (left) and Sara’s (right) tables in the end-of-lesson assessment 

Specifically, Roy (advanced MC2), Belle (regular MC2), and Luke (early MC1) 

accurately recorded the numerical values in the table by taking into account the 

multiplicative relationship of 1/6. However, Luke left a cell empty in the table where 

he was asked to write the length of the yellow stick when the length of the green 

stick was 48. This required him to perform a division operation. In addition, Sara, 

another MC1 student, provided random estimates for the stick values in her table 

(see Figure 4.23), similar to what she did during the lesson. Sara’s values showed 

that she could not identify a multiplicative relationship between the lengths initially. 

On the other hand, two MC2 students and one MC1 student (Luke) could identify 

the multiplicative relationship accurately in filling the tables. 

In using the letters in the last two rows of the table, Belle was the only one who used 

the assigned letter to further operate on to express the other unknown. As seen in her 

table (see Figure 4.23), she wrote 𝑠 +  𝑠 +  𝑠 +  𝑠 +  𝑠 +  𝑠 to express the length 

of the green stick when the letter s represents the length of the yellow stick. On the 

other hand, the other students only used the letters s and y as seen in Sara’s table 

without representing the length of one stick by using the assigned letter for the length 
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of the other stick. Therefore, Belle expressed the relationship between two unknowns 

by using letters starting from this step. 

In writing equations to represent this multiplicative relationship, the more 

sophisticated responses came from the MC2 students. They wrote different accurate 

symbolic expressions to represent the multiplicative relationship between two 

unknown quantities. Both students could write various forms of equations such as 

inversing the equation. Belle also wrote the equation by using addition (see Table 

4.7). On the other hand, MC1 students performed differently. Sara’s expressions 

demonstrated that she could understand the multiplicative relationship accurately 

unlike her performance in completing the table. However, she was confused about 

the correct letters representing the length of different sticks in writing the equation 

in the last question (see Table 4.7).  

Table 4.7 The Students' Expressions of the Relationship in the End-of-Lesson 

Assessment  

Students Writing the relationship 

between the length of 

yellow and green sticks? 

(Question 1) 

Writing the relationship between a 

and b using equations? (Question 2) 

Roy 𝑠 ×  6 =  𝑦 

𝑦 ÷  6 =  𝑠 

𝑎 ×  6 =  𝑏 

𝑏 =  𝑎 ×  6 

𝑏 ÷  6 =  𝑎 

Belle  The length of the yellow bar 

is one-sixth of the length of 

the green bar. 

𝑎 +  𝑎 +  𝑎 +  𝑎 +  𝑎 +  𝑎 =  𝑏 

𝑎 ×  6 =  𝑏 

𝑏 ÷  6 =  𝑎 

Sara  Green = A 

Yellow = b 

𝐴 =  𝑏 ×  6 

𝑏 =  𝑎 ÷  6 

 

Luke  𝑦 ×  5 =  𝑠 

 

𝑎 ×  5 =  𝑏 

𝑏 ÷  5 =  𝑎 
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Luke wrote an equation involving an incorrect multiplicative relationship. He wrote 

the equation 𝑦 ÷  5 =  𝑠 rather than 𝑦 ÷  6 =  𝑠. He skipped counting the small 

road in interpreting the multiplicative relationship as he did during the episode. 

Those errors showed their trouble in keeping track of the following operations after 

they constructed each quantity or variable in problems (Ulrich, 2016b). 

Furthermore, MC1 students’ final performances demonstrated that Sara’s 

progression in algebraic thinking is more evident than Luke’s. Although both 

students attempted to the same mistake by confusing the ratio between the unknown 

quantities during the episode, Sara abandoned this in the final assessment by 

interpreting the multiplicative relationship accurately, disregarding the confusion 

with literal symbols. 

4.2.3 Representing functional relationships between variables in the form 

of 𝒚 =  𝒂𝒙 during Episodes 3 and 4  

In the third and fourth episodes, the aim was to introduce the tasks for developing 

the students’ functional thinking. These tasks involved identifying the variables in 

contextual problems, identifying the relationship between variables and representing 

the relationship using symbols. In these episodes, the problems included the 

functional relationship in the form of 𝑦 =  𝑎𝑥 where there is one independent 

variable, one dependent variable and a constant rate of change.  

In Episode 3, there were two main tasks including discrete variables such as the 

relationship between the number of legs and the number of chairs or the relationship 

between the number of ears and the number of people, which were introduced for 

generalizing the functional relationships in elementary years by Blanton et al. (2011). 

The first task and several questions related to it are presented in Figure 4.24. In 

Episode 4, the same form of functional relationship was introduced in different 

contexts such as the relationship between the number of months and the amount of 

saved money or the number of tables and the number of people seated around the 

tables. The main part of each problem is presented in Figure 4.25.  
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Figure 4.24 A sample task in Episode 3 

 

Figure 4.25 Main problems in Episode 4 
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The intended processes in these episodes were identifying problem variables, using 

function tables, identifying and generalizing the functional relationship in the table 

of data (covariational or correspondence thinking), and using equations and letters 

to represent the functional relationship (see Figure 4.26). Specifically, it is aimed to 

support the students’ recognition of the variables in contextual problems, 

understanding how two variables vary depending on each other, and representing 

this relationship between two variables using symbols. 

Based on the literature and the learning outcomes of Episodes 1 and 2, it was 

hypothesized that the MC2 students would identify the relationships between two 

variables after drawing the tables and would represent them using symbols and 

equations. Zwanch (2022a) observed that ENS students (MC2) could successfully 

and quickly use symbolic representations for generalizations in all tasks. In addition, 

Hackenberg and Lee (2015) found that some MC2 students could write equations 

using whole-number coefficients to represent the multiplicative relationship between 

two unknown quantities without inversing the equation. Based on the MC2 students’ 

written equations in Episode 2, including inverse forms (i.e., both multiplication and 

division), it was inferred that they would also inverse the equations in representing 

the functional relationships between variables.  

On the other hand, it was conjectured that the MC1 students’ tendency towards 

recursive thinking (Zwanch, 2022a) may be a constraint for them to identify and 

express the functional relationship indicating the covariation between two variables. 

Therefore, they would require additional scaffolding questions to develop functional 

thinking by interpreting the function tables and contextual situations. Hackenberg 

(2013) reported that MC1 students had difficulty in generalizations and writing 

equations representing the multiplicative relationship because of a lack of 

disembedding operation. She observed that only a few MC1 students were able to 

write equations with the interviewer's support. Hence, it was assumed that MC1 

students would require more teacher support in the lesson, including generating and 

interpreting tables together and connecting variable quantities on the tables. 

Furthermore, incorporating drawings to help in problem comprehension would assist 

students in visualizing the relationship and lower the task’s complexity. 
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Figure 4.26 Description of Episodes 3 and 4: Functional thinking (𝑦 =  𝑎𝑥) 
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During the actual learning process, the teacher guided the learning process based on 

conjectures and literature. In representing the functional relationship, the teacher 

paid more attention to the students’ forms of thinking (e.g., recursive and 

covariational) and their generalization processes. Therefore, filling the tables and 

interpreting the data within them had the most labor-intensive processes in each task. 

In the case of recursive thinking, she forced them to calculate the bigger steps in the 

table. In addition, she drew their attention to how the two variables covary by 

emphasizing the changes in both columns/rows simultaneously. For example, she 

indicated how one variable changes as the other variable increases by any amount.  

In using symbolic representations and writing equations, the teacher always referred 

to the process where the students calculated the corresponding values for each 

variable in tables when they had difficulty in writing equations. She also asked the 

students or demonstrated by herself the equivalent expressions such as 𝑑 =  3 ×  𝑐, 

3 ×  𝑐 =  𝑑, and 𝑑 =  𝑐 ×  3. In this way, she aimed to develop their understanding 

of equivalence and properties of operations by using algebraic reasoning. Moreover, 

she did not rush the students to use inverse forms of equations when she felt that they 

were not ready yet. In these situations, she also expected the students to learn from 

each other by listening to more developed thinking processes and operations. 

Students’ performance during Episodes 3 and 4  

Talking about the general findings, the students’ performances on two episodes 

revealed distinct patterns for each group of students (see Table 4.8). The MC2 

students demonstrated functional thinking by completing all steps of tasks 

successfully with no or few probing questions On the other hand, MC1 students had 

difficulty in completing each step of the tasks by needing probing or leading 

questions. In addition, they also relied on recursive (Sara and Luke) and additive 

thinking (Luke) as different than the MC2 students. In the following sections, MC2 

and MC1 students’ progression in generalizing and representing the functional 

relationship is presented respectively. 
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Table 4.8 The Students’ Performance in Episodes 3 And 4 (y = ax) 

 MC2 MC1 

 Roy Belle Sara Luke 

Symbolic representation of functional 

relationships 

1 1 2 2 

Reversing the equation 1 2 2 2 

Correspondence approach 1 1 2 2 

Covariational approach 1 - 3 3 

Verbal generalization 1 2 3 2 

Generalization after filling the table - 1 2 2 

Recursive thinking  - - 1 1 

Additive thinking  - - - 1 

1: Without prompting; 2: With probing questions, 3: With leading questions 

Note: The level of algebraic thinking increases with color darkness from the bottom to the top 

of the table. 

4.2.3.1.1 MC2 students’ performances during Episodes 3 and 4  

Roy started to express the functional relationship by using indeterminate quantities 

from the beginning of Episode 3. For example, in the Chairs and Legs Problem, he 

wrote: “The number of chairs × the chair leg = The total number of legs”. This 

expression displays his analytical thinking although he did not write the variables in 

an appropriate way such as the number of legs on a chair. From his equation 

including verbal statements of variables, it was clear that he formulated the 

functional relationship as follows: When multiplying the number of chairs by the 

number of legs on each chair, the total number of legs is obtained.  

Similarly, he could express the relationship verbally in a flexible way in further tasks 

by mostly using an operational formula. For example, in the Pool Problem (Episode 

4, Task 2), they were given another table of data in which they needed to identify the 

relationship between the elapsed time (in hours) and the total amount of water 

collected in a pool. After he filled in the table with appropriate values according to 
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the relationships between variables (see Figure 4.27) he explained what he 

recognized about the relationship between variables as follows: 

Roy: I divided 5 by 1; I divided 10 by 2 and it is 5; I divided 15 by 3, it is 5. 

I recognized it is always five. To find the total amount of water in the pool, 

the time should be multiplied by 5. (It is how he wrote in Figure 4.27).  

Figure 4.27. Roy’s operations in the Pool Problem  

His recognition of the functional relationship generally represented a correspondence 

approach in which his formula defined one variable in terms of the other variable 

(Smith, 2008) such as “if I multiply the number of hours by five, I find the amount 

of water”. Roy’s corresponding thinking in identifying the relationship between two 

variables allowed him to write the symbolic equations quickly before writing a verbal 

generalization during Episode 4. Further, he sometimes stated the relationship in the 

form of covariation such as “As the number of tables increases by one, the number 

of people increases by two” (the Birthday Party 1 Problem in Episode 4). Therefore, 

his algebraic performance regarding the generalization of the functional relationship 

was as conjectured before the teaching experiments.  

Unlike Roy, Belle had difficulty in expressing the relationship between two variables 

verbally or symbolically at the beginning of the tasks although she could identify the 

relationship by writing the appropriate values in function tables. She needed to fill 

the tables to understand the relationship between the variables in these Episodes. For 

example, in the Chairs and Legs Problem (Episode 3), she explained the rule of 
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filling the table by multiplying by four, indicating that she could mentally identify 

the relationship. It resembles how she checked her responses through drawings in 

the unit coordination tasks although she constructed the correct reasoning without 

relying on drawings as an MC2 student. In all cases, interactions with Belle revealed 

that she required supporting materials, such as drawings, numerical examples, and 

tables to confirm the relationships she had formulated in her mind. She asked more 

questions to the teacher such as “the number of legs mean for just one chair?”. After 

the teacher's discussion with her, she could express the relationships such as “the 

number of legs is always four times the number of chairs”, indicating a 

correspondence approach of functional relationship. She showed her algebraic 

thinking after reflecting upon the contextual situation and taking scaffolding from 

the teacher while Roy did not require extra work on the problem or probing questions 

to identify the relationship (see Table 4.8).  

MC2 students’ performance in using symbolic representations showed some 

differences from each other like in their identification of the relationship. After the 

first task in Episode 3, both students quickly began writing equations to represent the 

functional relationships. Although Roy used indeterminate quantities in the first task 

(the Chairs and Legs Problem) and filled the table correctly, he confused the names 

of variables in writing the equation. He considered that the number of legs means the 

number of legs on one chair, and he wrote: “c × d = the number of legs” (c: the 

number of chairs and d: the number of legs). He then changed his equation and wrote: 

“d ÷ c = the number of legs in the chair.” Considering his understanding of variable 

names, he accurately formulated the relationships in symbols. After a small 

perturbation in writing a symbolic representation, he reconstructed his understanding 

in the abstract level by relating different representations of the relationship (von 

Glasersfeld, 1995). In the following tasks, he wrote all the functional relationships 

in symbols and equations correctly by using assimilated structures he just reflected 

upon. Additionally, he wrote the inverse forms of the equations after the teacher 

asked him to write the relationship in a different way such as writing both 𝑎 ×  2 =

 𝑐 and 𝑐 ÷  2 =  𝑎 for the relationship between the number of ears and the number 

of people in the People and Ears Problem.  
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Belle spent more time understanding the problems and the relationships in each task. 

After discussing the problems, interpreting the table of values, and reflecting upon 

her rule in writing each value on the tables, she could more flexibly move to writing 

equations. Like in the previous episodes, she learned much from Roy’s responses 

and she flexibly applied what she learned in the following tasks. For example, when 

Roy expressed the relationship between the amount of water and the time in the Pool 

Problem, she could write an equation representing this relationship as ℎ ÷  𝑡 =  5. 

She could write the symbolic expressions and equations in all the tasks more easily 

than verbalizing the relationship. Her performance in Episode 4 demonstrated that 

she is very good at using symbolic language after she identified or verbalized the 

relationship between the variables. She learned to write the inverse forms of 

equations in Episode 3 after the teacher’s request and Roy’s responses. In Episode 

4, she wrote inverse forms of her equations before being prompted by the teacher.  

All those performances on tasks involving functional relationships demonstrated that 

Roy could transition to standard algebraic thinking (Radford, 2010) while Belle 

required assistance to reach that level from the contextual level. Additionally, Belle 

invested more time in comprehending the relationships and generating the formulas. 

This pattern is consistent between the two students since the beginning of Episode 1 

4.2.3.1.2 MC1 students’ performance during Episodes 3 and 4  

The MC1 students demonstrated a partial progression in algebraic thinking in terms 

of using function tables, generalizing the relationship, and using symbolic 

representation along Episodes 3 and 4. Their thinking was often supported by the 

teacher’s scaffolding and leading questions in most of the tasks so that they could 

move to the other steps of the tasks. Their performance on the first task in Episode 3 

(i.e., the Chairs and Legs Problem) was the least developed one compared to the 

other tasks in Episodes 3 and 4. Therefore, it is better to present their performance 

and constraints in this task first to display their progress along these two episodes.  
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In expressing the relationship between the variables in the Chairs and Legs Problem 

(Episode 3), the MC1 students encountered failures and some difficulties compared 

to the MC2 students as conjectured. Neither of them could identify the functional 

relationship even after filling a table together. Sara initially attempted to use 

comparison symbols such as 𝑎 >  𝑏. Luke misinterpreted the multiplicative 

relationship between two variables by considering the difference between them 

would be constant by saying: “If there is one chair it has four legs, if there are two 

chairs there are five legs. There is always a particular difference”. Focusing on an 

additive comparison is a less complex operation than a multiplicative comparison in 

terms of units coordination (Ulrich, 2015b). Therefore, Luke’s failure in 

interpretation of the relationship might have resulted from his operations at the MC1 

level which allows him to make an additive comparison but not for multiplicative 

one. 

Because they failed in the identification of the relationship, the teacher filled the 

table together with them by discussing the relationship between the variables. It 

helped Luke to calculate a bigger step in this pattern situation (e.g., the total number 

of legs of a hundred chairs). Luke could indicate the relationship by formulating the 

rule by saying: “We always multiply the number of chairs by four” and Sara listened 

to him. A remarkable characteristic of Sara in formulating the rule and generalizing 

the relationship was her reliance on recursive thinking. She expressed the 

relationship by saying “We find it by counting by fours” or “It increases four by 

four”. This is another indicator of their operations relying on additive thinking like 

Luke’s additive comparison. This signified their algebraic thinking at the factual 

level in their first attempt to identify a functional relationship which they could not 

make generalizations between covarying quantities (Radford, 2010). Hence, Sara 

needed further support from the teacher to understand the functional relationship 

through covarying quantities.  

Writing equations to represent this functional relationship was another struggle for 

the MC1 students. Although the teacher discussed the relationship by constructing a 

function table and they were able to identify the function rule as they found the other 
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steps of the table, Sara wrote 𝑐 =  𝑑 as an inappropriate equation to represent this 

relationship, using assigned letters for each variable. On the other hand, Luke wrote 

two equations, 𝑐 ×  𝑑 =  4 and 𝑐 ×  𝑑 =  12, by taking d as a constant value, 4, 

representing the number of legs in one chair and taking c as the number of chairs. 

Therefore, he got different values for the product of 𝑐 ×  𝑑. At this point, the teacher 

reminded them that they had multiplied the number of chairs by four to find the total 

number of legs previously in filling the table. She led them to think operationally 

with assigned letters for each variable by connecting their operations with new 

equations. After the first task in Episode 3, they flexibly applied what they learned 

beforehand and wrote correct equations in the other tasks which are very similar to 

the first task (see Figure 4.28).  

Figure 4.28. MC1 students' symbolic representations for the tasks in Episode 3  

The tasks in Episode 4 included different contextual situations and continuous 

variables such as the amount of time, the amount of money, and the amount of water 

in a pool. The students were required to fill the tables initially and then express the 
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relationship. Both MC1 students were able to fill the tables accurately and calculate 

the bigger steps by generating an arithmetic formula. Luke’s written expressions 

were explicating an arithmetic rule coming out from the function table while Sara 

started to indicate the change in each variable as related to each other as shown in 

Table 4.9. Luke’s written expression represents that he used indeterminate quantities 

(analytical thinking) and adapted functional thinking with a correspondence 

approach by coming up with a formula. On the other hand, Sara indicated a 

covariational approach in her written expression of the functional rule (see Table 4.9) 

and a correspondence approach in her verbal explanation.  

Table 4.9 MC1 Students’ Responses in the Pool Problem in Episode 4 

 Written Answers Explanations 

(How did you find it?) 

Sara “As the hour goes by one, the water in 

the pool increases by five tons” 

 

d: the elapsed time 

k: The amount of water in the pool 

“I always looked at the bottom 

(second row/variable of the 

table), but I also looked at the top 

to see if it was going the same 

way. 

I just multiplied it by five.” 

Luke  “If we multiply the time by five, we 

find the amount of water in the pool” 

 

b: the elapsed time 

g: The amount of water in the pool 

 

“I figured it out by looking at the 

top and bottom (the first 

row/variable and second row of 

the table).” 

Teacher: How did you get 15? 

“First, I went five by five and got 

15. Then I multiplied it to make 

sure it was right.” 

 

Considering that Sara focused on the recursive pattern in her first attempts in these 

episodes, her expression in this task can be an indicator of Sara’s progression in 

functional thinking by including both covariation and correspondence approaches.  

During Episode 4, MC1 students’ writing equations also demonstrated significant 

progress. After they identified the functional relationships, they wrote symbolic 
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representations more flexibly. Luke figured out the equations after he generalized 

the arithmetic rule operating between two variables. Sara similarly applied what she 

learned in the previous lessons and swiftly wrote equations according to what she 

did in filling the table of values. Moreover, Luke could inverse the equation that he 

wrote using multiplication after the first task in Episode 4. In further tasks, both 

students could write the inverse forms of the equations (e.g., 𝑏 ×  5 =  𝑔 and 𝑔 ÷

 5 =  𝑏) by including some errors (see Figure 4.29).  

Figure 4.29. Luke’s expressions in the Pool Problem in Episode 4 

For example, Luke wrote four equations, as shown in Figure 4.29, to represent the 

functional relationship between the time and the amount of water in the pool. 

Although three of the equations structurally represent the same relationship, one of 

them, 𝑏 =  5 ÷  𝑔, contains an error in terms of this specific relationship. This 

shows that Luke still needs support or intervention in writing equations because he 

may not be able to keep track of the relationship between variables, as in the 

coordination of composite units. 

The findings from Episodes 3 and 4 primarily demonstrate the students’ progress in 

functional thinking, as previously anticipated before the teaching experiments. As 

conjectured, they needed leading and scaffolding from the teacher more than the 

MC2 students. Due to their progress in algebraic thinking with the teacher's support, 

students may make mistakes, such as the one seen in Luke's equations in Figure 4.29 

at the end of Episode 4. This indicates a need for further reflection on operations and 
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outputs to facilitate the assimilation of generalizations and the creation of equations 

using appropriate variables. Furthermore, Sara demonstrated bigger progress in 

Episode 4 while she had fallen behind Luke in Episode 3 in terms of generalizations 

and expression of the relationships. Therefore, in Episode 4 the gap between Luke 

and Sara was almost closed with small differences in the way of functional thinking.  

4.2.3.2 Students’ evaluations at the end of Episodes 3 and 4 

In the final assessments of Episodes 3 and 4, both groups of students demonstrated 

that they achieved the general aims of the lessons such as filling the table according 

to the given relationship, making generalizations, and writing equations. However, 

several differences were observed between and within the groups such as writing 

inverse forms of equations and representing a variable symbolically in terms of the 

other variable.  

One difference between the students’ progress in algebraic thinking was their verbal 

expressions of generalized relationships. In the final assessment of Episode 4, only 

Luke expressed the relationship by writing the operational rule between the variables 

as a correspondence approach. In the problem, they were asked to write an equation 

to represent the relationship between the distance traveled by the cyclist and the time 

elapsed if she rides 4 km in 1 hour at a constant speed. Luke wrote: “If we multiply 

the time by four, we calculate the distance traveled”. Other students, Roy (advanced 

MC2), Belle (regular MC2), and Sara (regular MC1), wrote the relationship 

covariationally such as “For every hour that passes, the distance traveled increases 

by 4 km” (Roy). Here, expressing the relationship in a narrative form that differs 

from how the rule was generated to calculate the dependent variable in filling the 

table may demonstrate a more sophisticated understanding of the functional 

relationship. These students used different ways to express the same relationship, 

indicating the extension of connections.  

In addition, writing equations to represent the functional relationships demonstrated 

variations across groups. For example, in the final assessment of Episode 3, the 
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students were required to fill a function table according to a given relationship 

between the number of cows and the amount of food they consumed daily and write 

symbolic expressions for the variables and the relationship (see Figure 4.30).  

Figure 4.30. The problem in the end-of-lesson assessment of Episode 3 

In this problem, the MC2 students wrote different forms of equations such as 𝑑 ÷

 3 =  𝑐 and 𝑐 ×  3 =  𝑑 while the MC1 students only wrote the multiplication form. 

The MC1 students were able to write inverse forms of equations first in Episode 4 

while the MC2 students wrote the inverse forms starting from Episode 3. Moreover, 

in the same assessment paper, only Roy wrote 𝑎 ×  3 to express the amount of food 

given to the stock animals while the number of cows was represented by a. The other 

three students assigned a different letter to the dependent variable although they 

could write equations when two different letters were assigned to two variables. This 

demonstrated Roy’s structural thinking, like in writing the inverse forms of the 

equations.  

In the Cyclist Problem at the end of Episode 4, all students wrote equations in inverse 

forms, including multiplication and division. However, the use of division for this 

relationship differed between the MC2 and MC1 students. (see Table 4.10).  
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Table 4.10 Students’ Written Equations in the Final Assessment of Episode 4 

Roy Belle Sara Luke  

s: Time 

y: Distance 

traveled. 

𝑠 × 4 =  𝑦 

𝑦 ÷  𝑠 =  4 

a: Time 

b: Distance 

traveled. 

𝑎 ×  4 =  𝑏 

4 ×  𝑎 =  𝑏 

𝑏 =  4 ×  𝑎 

𝑏 =  𝑎 ×  4 

𝑏 ÷  4 =  𝑎 

𝑏 ÷  𝑎 =  4 

s: Time 

k: Distance 

traveled. 

𝑠 ×  4 =  𝑘 

𝑘 ÷  4 =  𝑠 

 

ç: Time 

k: Distance 

traveled. 

ç ×  4 =  𝑘 

𝑘 ÷  4 =  ç 

 

 

The MC2 students wrote an extra equation showing that dividing the distance 

traveled by the time was 4 (e.g., 𝑦 ÷  𝑠 =  4). On the other hand, the MC1 students 

wrote only the equation showing that dividing the distance traveled by 4 was the time 

elapsed (e.g., 𝑘 ÷  4 =  𝑠) by using division. The former equation demonstrates 

structural and covariational thinking more explicitly because it represents the 

covariation between variables through doing operations with variable quantities and 

finding the rate of change. In the latter, the students do an operation with only one 

variable quantity to find the other, which may be more visible when reading the table 

of values without using the structures in operations. Even so, the MC1 students 

demonstrated an improvement over previous episodes by writing equations in 

inverse forms. 

4.2.4 Representing functional relationships between variables in the form 

of y = ax + b in Episodes 5 and 6  

In the fifth and sixth episodes, the goal was to present various contextual problems 

involving functional relationships in the form of 𝑦 =  𝑎𝑥 +  𝑏. The tasks in these 

episodes required the students to identify the problem variables, construct a function 

table, identify and generalize the functional relationship in the table of data, and 
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express the functional relationship between two variables in different ways, like in 

Episodes 3 and 4. Differently, in this step of the HLT, the problems included, in 

addition to dependent and independent variables, a constant value that represents the 

initial value of the dependent variable.  

In Episode 5, there were two problems with the same contexts as the problems in the 

previous episode to ensure a gradual transition between the forms of functional 

relationships (see Figure 4.31).  

Figure 4.31. The main parts of the tasks in Episode 5  

Episode 5 began by revisiting the Birthday Party Problem, previously discussed in 

Episode 4. However, this time the seating arrangement was different, with two 

people sitting at the ends of tables. The students were required again to show the 

relationship between the number of people seated and the number of tables put end 

to end. The Bank Account Problem reappears, similar to the previous episode as 

well. However, this time, the problem involved an initial sum of money that increases 

at a constant rate each month. 
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In Episode 6, students continued to work with different contextual problems 

including functional relationships between variables in the form of 𝑦 =  𝑥 ±  𝑎 (see 

Figure 4.32).  

 Figure 4.32 The main tasks in Episode 6 

Additionally, this episode involved the Sapling Problem with a functional 

relationship in the form of 𝑦 =  𝑎𝑥 +  𝑏 due to the students’ difficulties with similar 
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problems in the previous episode. The first problem involved the relationship 

between a person’s height without a hat and with a hat with 20 cm height, which was 

taken from the study of Carraher et al. (2006). The second problem (the Credit Card) 

was about a credit card promotion of a constant amount given for any initial 

expenditure. Finally, the Sapling Problem, which was similar to the Bank Account 

Problem, involved a relationship between the height of a tree sapling, whose initial 

height is 35 cm, and which grows 2 cm each day, and the elapsed time. 

The intended processes in Episodes 5 and 6 were quite the same as those in Episodes 

3 and 4 (see Figure 4.33). Episodes 3 and 4 have successfully equipped MC2 students 

with the ability to identify relationships between two variables and accurately fill 

function tables. However, it was hypothesized that identifying the constant value in 

problems involving functional relationships in the form of 𝑦 =  𝑎𝑥 +  𝑏 may pose 

a challenge to students, after they have worked on the problem in the other form in 

previous episodes (𝑦 =  𝑎𝑥). To address this perturbation, probing questions such 

as “Can you check your formula for any given value in the table?” were ready to use 

in these episodes. On the other hand, it was conjectured that the MC1 students would 

not easily handle this situation. Hence, there were additional scaffolding questions 

to ask them which were about understanding the problem, filling the table and 

writing the equations. The teacher was also alerted to the MC1 students' inclination 

towards recursive thinking (Zwanch, 2022a) when identifying functional 

relationships.  

As conjectured, the teacher took a more active role during the episodes with the MC1 

students, guiding them to understand the problem and identify the relationships 

during the learning process. Her questions effectively challenged the erroneous 

reasoning and responses given by the MC1 students. She needed to make the students 

falsify their reasoning by recalling the variables, questioning, and checking the 

answers numerically. The teacher generally falsified the erroneous generalizations 

of the students in the first part of each task. She was more dominant in recognizing 

the relationship between variables because the students struggled to understand how 

to calculate the value of one variable for the larger value of another variable.  
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Figure 4.33 Description of Episodes 5 and 6: Functional thinking (𝑦 =  𝑎𝑥 +  𝑏) 
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Subsequently, the teacher summarized their answers and discussed them on the board 

without any interruption. On the contrary, she used fewer probing questions with 

MC2 students. She used generally small questions to trigger MC2 students to think 

about their erroneous answers. This approach helped them in a short amount of time. 

She emphasized what changes and what is constant in each question for both groups 

of students. The descriptions of tasks, intended processes, conjectures and 

instructional moves are summarized in Figure 4.33.   

4.2.4.1 Students’ Performance during Episodes 5 and 6  

The conjectures for Episodes 5 and 6 indicated that both groups of students would 

encounter difficulties in different parts of the problems that involve functional 

relationships in the form of 𝑦 =  𝑎𝑥 +  𝑏. This difficulty is due to the constant value 

which is additively involved in the relationship, and which the students are not 

familiar with. As conjectured, this novel situation in the contextual problems created 

constraints for the students in determining the functional relationship and filling the 

tables in some problems. This was evident in their erroneous values written in the 

tables or their overthinking to find the larger values for variables.  

In parallel to the conjectures for the MC2 students, they had difficulty in this type of 

functional relationship, but not in writing the equation, it starts with their 

identification of the relationship in the Bank Account Problem. In contrast to the 

conjectures, they had this difficulty only in the Bank Account Problem. They 

exhibited minor difficulties in the identification of the functional relationships 

between variables in the Bank Account Problem. Roy was usually faster than Belle 

at identifying relationships and writing equations, like in the previous episodes. He 

needed less help from the teacher and could correct his own mistakes. When they 

misunderstood the problem or could not determine the larger value in the function 

table, the teacher's prompts or the students’ own attempts swiftly resolved the issue. 

Roy represented the most sophisticated performance amongst all students also during 

Episodes 5 and 6 with almost no help from the teacher (see Table 4.11).  
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Table 4.11 The Students’ Performance in Representing Functional Relationships in 

Episodes 5 and 6  

 MC2 MC1 

 Roy Belle Sara Luke 

Symbolic representation of functional 

rel. 

1 1 3 3 

Reversing the equation 1 1 - 2 

Correspondence approach 1 1 3 3 

Covariational approach 1 - 3 3 

Verbal generalization 1 2 3 3 

Generalization after filling the table 1 1 3 3 

Recursive thinking  - - 1 1 

1: Without prompting; 2: With probing questions, 3: With leading questions 

Note: The level of algebraic thinking increases with color darkness from the bottom to the top 

of the table. 

The MC1 students struggled to determine the relationship between variables in both 

problems in Episode 5. They had major difficulties in the identification of the 

functional relationships between variables in the Bank Account Problem. Luke, who 

attended Episode 6 alone, had a similar difficulty only with the Sapling Problem in 

Episode 6, which is similar to the Bank Account Problem. In these problems, the 

teacher directed students in key steps, such as determining the relationships between 

two variables by generating a rule. Therefore, the teacher provided more than 

scaffolding and prompting in these instances. Furthermore, their reliance on 

recursive thinking continued in these episodes.  

4.2.4.1.1 MC2 students’ performance during Episodes 5 and 6  

Roy could identify the functional relationships between the variables in each 

problem by making generalizations to larger values for the independent variables. 

He needed to think a little more about the Birthday Party 2 and Bank Account 

Problems in Episode 5 while he quickly identified and expressed the relationships in 
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other problems. In the Birthday Party 2 Problem, he had difficulty understanding the 

table arrangement. He understood the relationship after creating visual 

representations of the table arrangement with the teacher's suggestion. In the Bank 

Account Problem, he calculated the consecutive cells by adding the rate of change 

each month, recursively. He recognized the initial amount of money by himself after 

thinking for a while and he could calculate each cell by formulating the rule. He 

explained his reasoning by saying “There is 30 liras in the beginning.” (see Table 

4.12) 

Table 4.12 MC2 Students’ Identification of Relationships in Episodes 5 And 6 

Problems Roy Belle 

The Birthday Party 

2 (Episode 5) 

𝑦 =  2𝑥 + 2  

After drawing visuals he 

formulated a rule 

“I multiplied 100 by 2 and 

then added 2 people. I also 

added 2 because 2 people 

were sitting at the ends.” 

After drawing visuals she 

formulated a rule 

“If we multiply the number 

of tables by 2 and add the 

people on the edge, I mean 2 

people, we get the total 

number of people sitting.” 

The Bank Account 

(Episode 5) 

𝑦 =  30 +  15𝑥 

“If we multiply the elapsed 

time by 15 and add 30, we 

can find the amount of 

money saved.”  

The teacher showed the 

calculations 

People and Hats 

(Episode 6) 

𝑦 =  𝑥 +  20 

“The customer's height 

increases by 20 cm when 

wearing the hat.” 

She wrote the symbolic 

representation before filling 

the table (𝑎 +  20 =  𝑏)  

Credit Card 

(Episode 6) 

𝑦 =  𝑥 –  20  

“Since the bank pays 20 liras, 

we subtract 20 liras. The 

higher the amount of 

spending, the higher the 

amount of debt.”  

“Total debt is 20 liras less 

than the initial expenditure” 

Sapling  

(Episode 6) 

𝑦 =  2𝑥 +  35 

“150 times 2 in parentheses 

and then plus 35.” 

“First I multiplied 150 by 2, I 

got 300, then I added it to 35, 

I got 335.” 

 

Roy was able to identify and express the functional relationships between the 

problem variables using a variety of verbal expressions and justifications. In the 
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Birthday Party 2 Problem, he explained why he added two after the multiplication 

by emphasizing the additional two people at the ends of the table arrangement. 

Similarly, in the Sapling Problem, he indicated the parentheses in his verbal 

expression, which shows the logic in his generalization and formulation of the rule 

using structures in the problems (see Table 4.12).  

Roy’s verbal expressions of the relationship were more varied than Belle’s. For 

example, he indicated a covariational relationship between the height of a customer 

and the height of a customer with a hat (Episode 6) as follows:  

Teacher: Did you always add 20? (Asking about the function table in the  

People and Hats Problem) 

Roy: yes teacher, there is a 20 cm difference between them.  

Teacher: How else can we say? What does it mean that there is a 20 

difference between them? 

Roy: So it's 20 cm more. 

Teacher: Which one? The height of the customer with the hat is 20 cm  

Belle: Big 

Teacher: … bigger than the height of the normal customer. It always adds 

20, so can we say that it is always 20 more. (Yes) What else can we say?  

Roy: Teacher, for example, as the height of the customer increases by one, 

the height of the customer with the hat also increases by one. 

As seen, Roy used various verbal expressions indicating the same relationships like 

writing equivalent expressions. His last expression represents his covariational 

thinking as well such as “as one increases by one, the other increases by one too.” 

His effort for generating multiple expressions was appreciated. 

Belle had considerable difficulty in identifying and generalizing the relationship in 

the Bank Account Problem. In the other problems, she could identify the 

relationships by herself without any help. As shown in Table 4.12, she could express 

the generalized relationships using narrated formulas (e.g., the Sapling Problem), 

write equations immediately (the People and Hats Problem), or provide the rationale 

behind her formulated rules (the Birthday Party 2 Problem).  
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Belle had a good start in Episode 5 with the Birthday Party 2 Problem. She 

immediately started drawing tables and could identify the relationship more quickly 

than Roy (see Figure 4.34).  

Figure 4.34. Belle’s drawings in the Birthday Party 2 Problem  

Drawings probably helped her to figure out the problem because she could fill the 

table with correct values on her first try, unlike the other three students. When the 

teacher asked her to explain how she recognized this relationship and found the 

number of people for a hundred tables, she indicated that drawings helped them 

figure out the relationship as follows: 

Belle: When the tables are brought end to end, 2 people sit at each table, but 

one person sits at each end. So if we multiply the number of tables by 2 and 

add the people on the edge, I mean 2 people, we get the total number of people 

sitting.  

She both used indeterminate quantities and explained the reasoning behind her 

calculations as the indicators of algebraic thinking (Kieran, 2004). Although the 

constant value in the functional relationship (i.e., 2 people on the edges) created some 

constraints, it was seen that drawing sample situations, such as 1, 2, and 3 tables, 

helped the students make generalizations. This shows that this problem was a good 

starter for this kind of relationship.  
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Like Roy, Belle encountered trouble with the Bank Account Problem in Episode 5. 

She calculated the smaller values by recursively adding the constant rate of change. 

However, she required assistance and discussion with the teacher to calculate the 

larger value in the function table. The teacher demonstrated all the operations for 

each column, and this discussion lasted almost ten minutes with minimal 

contribution from Belle. Consequently, this calculation was teacher-directed.  

In expressing the generalizations using equations, the MC2 students showed a higher 

level of performance than had been conjectured. After identifying the relationships 

by filling the function tables and expressing them verbally, they quickly transformed 

the formulations of the rules into equations using letters (see Table 4.13).  

Table 4.13 MC2 Students’ Written Symbolic Representations 

Problems Roy Belle 

The Birthday Party 2 

(Episode 5) 

𝑦 =  2𝑥 + 2  

(𝑚 ×  2)  +  2 =  𝑘 (𝑚 ×  2)  +  2 =  𝑘 

𝑘 =  (𝑚 ×  2)  +  2 

The Bank Account 

(Episode 5) 

𝑦 =  30 +  15𝑥 

(a × 15) + 30 = b 

b: the amount of money 

a: the number of months 

30 +  𝑏 ×  5 =  𝑎 

a: the amount of money 

b: the number of months 

People and Hats 

(Episode 6) 

𝑦 =  𝑥 +  20 

𝑏–  20 =  𝑎 

𝑏 –  𝑎 =  20 

𝑎 +  20 =  𝑏 ; 

20 +  𝑏 =  𝑎 

𝑏 =  𝑎 + 20; 

𝑏 =  20 +  𝑎 

𝑏–  20 =  𝑎; 

𝑎 =  𝑏 –  20 

Credit Card (Episode 

6) 

𝑦 =  𝑥 –  20  

𝑏 –  20 =  𝑐  

𝑐 +  20 =  𝑏 

𝑏 –  𝑐 =  20 

𝑎 –  20 =  𝑏;  

𝑏 +  20 =  𝑎 

20 +  𝑏 =  𝑎; 

 𝑎 =  20 +  𝑏 

𝑎 =  𝑏 +  20 

Sapling (Episode 6) 

𝑦 =  2𝑥 +  35 

(𝑑 ×  2)  +  35 =  𝑒 (𝑎 ×  2)  +  35 =  𝑏 
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The MC2 students could represent the symbolic representations in different forms 

by using inverse operations (e.g., addition and subtraction) or using commutative 

property (i.e., 𝑏 =  20 +  𝑎 and 𝑏 =  𝑎 +  20) or symmetry property of addition 

(i.e., 𝑏 =  20 +  𝑎 and 𝑎 +  20 =  𝑏). Writing equivalent expressions using the 

same relationships between variables demonstrated their algebraic thinking 

emphasizing their structural and analytical thinking. 

As seen in Table 4.13, both students used parentheses in the relationships including 

more than one operation. However, Belle did not use parentheses in the Bank 

Account Problem in which she had difficulty understanding the relationship. The 

parentheses can show a higher level of abstraction by objectifying each output of an 

operation. In the Birthday Party 2 Problem, Belle wrote the number of people sitting 

at the sides of the tables as the first expression (𝑚 ×  2) in parentheses (see Table 

4.13), showing that it is the first output that depends on the number of tables before 

adding two more people at the ends. This represents an invented relationship through 

structural thinking and objectification of each process of operations. This is also 

evident in Belle’s drawings in the identification of this relationship (see Figure 4.34). 

In her drawings to find the number of people for one hundred tables, she first showed 

her understanding of the formula on the drawings by writing “×100” near the table 

figures and representing “plus ones” at the ends, indicating multiplication of the 

number of tables by 100 and adding two people at the ends. This showed her 

generalization process and algebraic thinking. 

In addition to using parentheses, the MC2 students also showed their structural 

thinking as an important indicator of algebraic thinking by rewriting the equations in 

different forms such as reversing the operations or using the properties of operations. 

As seen in Table 4.13, Belle demonstrated a tendency in most of the problems by 

trying to write as many equations as possible. However, Roy’s equations 

demonstrated more sophistication in his thinking, particularly evident in the Credit 

Card and the People and Hats Problems. Belle wrote each equation by operating with 

an indeterminate and a determinate quantity on one side which shows the reasoning 
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“One variable is 20 less than the other and the other variable 20 more than the first 

one”. On the other hand, Roy also formulated an equation that included an operation 

with two indeterminate quantities on one side (i.e., 𝑏 –  𝑎 =  20), which represented 

that he considered the difference between two indeterminate quantities. He showed 

this transformation in both problems (see Table 4.13) while Belle did not consider 

this form, even though she wrote more equations. 

4.2.4.1.2 MC1 students’ performances in Episodes 5 and 6  

In this part, Sara (regular MC1) participated only in Episode 5. Therefore, Sara’s 

performance was analyzed through two tasks while Luke’s performance was 

analyzed through five tasks. The comparison of the progress of MC1 students could 

only be done through two tasks in Episode 5.  

As conjectured, both MC1 students had difficulty understanding the relationships in 

the problems in Episode 5. Therefore, the initial parts of each task in Episode 5 took 

more time, including writing the following corresponding values in a function table, 

finding a larger value in the function table, and formulating a rule for finding the 

value of the dependent variable that corresponds to any value of the independent 

variable. It was seen that they were still inclined to think recursively in interpreting 

the function tables. Hence, they needed to discuss with the teacher to calculate the 

number of people seated on one hundred tables (the Birthday Party 2 Problem) or to 

find the amount of money saved after 30 months (the Bank Account Problem).   

In the Birthday Party 2 Problem, the MC1 students could fill the table correctly on 

their second attempt until the value of five (for the number of tables), after the teacher 

explained the table arrangement (see Figure 4.35). They explained how they found 

the values on the table recursively, they indicated “it increases two by two”. 

Therefore, this thinking way created a constraint for finding the number of people 

for one hundred tables and formulating the rule, as factual algebraic thinkers have 

(Radford, 2010). 
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Figure 4.35. MC1 students’ function table in the Birthday Party 2 Problem  

Both students thought that the rule was multiplying by two. However, the teacher 

interfered to show that the rule did not work in the given situations as follows:   

Teacher: Think about the relationship between the number of tables and the 

people seated. What happens to the number of tables and what happens to the 

number of people? How we can find when it says one hundred tables?  

Sara: I multiplied by two and found like this…For what number of tables… 

(she thinks). As Luke said, the numbers go as 2-4-6-…ahh sorry, they go as 

4-6-8-10-12, it increases two by two. I multiplied 100 by two and it is 200.  

Teacher: You said, it is found when we multiply by 2. What do you think 

Luke? 

Luke: Teacher, I also did 200 at first. Then I thought it was wrong because 

at first, it increased by 4, then it increased by two by two.  

Teacher: That is, when there is zero tables, zero people... it does not start 

directly from 2 people. How else do we know that your first situation is 

wrong? Come and draw the table arrangement on the board.  

After they drew the table arrangement for several situations and the teacher explained 

the case through the drawings by relating it to the previous problem in Episode 4, 

Sara answered 202 by formulating the rule correctly. Luke also explained how she 

formulated the rule after her answer. However, in this process they drew the table 
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arrangement twice with the teacher and the teacher explained how the people sit 

around the tables in each situation to help them to understand the relationship. 

Similarly, in the Bank Account Problem, they filled the table by adding 15 and stated 

the relationship by thinking recursively in the same way:  

Luke: We add 15 as each month passes 

Sara: As the month passes, because the amount of money increases by 15 

liras, we find the relationship by adding 15 liras over 30 liras. 

Consequently, they formulated the rule incorrectly, as evidenced by the 

multiplication of 15 and 30 to determine the amount of money saved after 30 months. 

This approach ignored the constant value of money at the beginning. The students 

indicated that the amount of money could be found by multiplying by 15. Their focus 

was on the recursive increase in the amount of money, rather than on the role of the 

constant initial amount of 30 liras in generalizing the relationship. This showed their 

incorrect generalization of the relationship. In this section, the teacher stepped in and 

illustrated that their understanding was flawed by repeatedly adding 15 until the 30th 

month. The students initially presumed that they had made a calculation error (Sara) 

or had multiplied by an incorrect number (Luke). Eventually, the teacher 

demonstrated the operations in each column, emphasizing the initial amount of 

money as a constant. This indicates that they were unable to identify the functional 

relationship in the form of 𝑦 =  𝑎𝑥 +  𝑏 with any degree of support.  

In writing equations, Luke’s performance was better than Sara’s and better than his 

performance in identifying relationships. In the Birthday Party 1 Problem, he could 

easily write a symbolic expression for the relationship between the number of tables 

and the number of people without any correction or prompt from the teacher (i.e., 

𝑚 ×  2 +  2 =  𝑘). He also explained his expression: “I multiplied m and 2 and 

then added 2,” indicating his operations with indeterminate quantities. However, in 

the Bank Account problem, Luke’s first answer was 𝑎 ×  15 as he had generalized 

the relationship earlier in the problem, which is consistent with the conjectures. The 

teacher reminded him that when they multiplied the number of months by 15, the 
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output value was erroneous. He quickly corrected his expression by adding 30 at the 

end of the expression (i.e.,  𝑐 ×  15 +  30 =  𝑏) and said: “We multiply 30 and 15 

and then add 30 because in the beginning there is an amount of money of 30 liras.”  

On the other hand, Sara wrote several erroneous expressions before the teacher 

helped her to correct her expressions in both problems. For example, in the Birthday 

Party 1 Problem, she tried the expressions 𝑚 =  𝑘, 𝑚𝑘, 𝑚 = ×  2, 𝑚 = ×  2 =

 + 2 =  𝑘 (m: the number of tables and k: the number of people). Similarly, in the 

Bank Account Problem, she tried different expressions such as 𝑎 =  30 + 15, 𝑎 =

 30 + 15, 𝑎 ×  30 at the beginning. In each attempt, the teacher falsified her 

reasoning by giving an example from the function table, and then she could write the 

correct expression at the end. Her erroneous expressions demonstrated that she could 

not operate with indeterminate quantities when there was more than one operation 

between the problem quantities. 

Luke was the only MC1 student to attend Episode 6 and to continue with the 

remaining three problems. He demonstrated better performance in the People and 

Hats and the Credit Card Problems, which included only one operation in the 

function rule. In these problems, he was able to identify the relationship and express 

it verbally and symbolically, although he did encounter a few minor challenges, such 

as misunderstanding the problem (the Credit Card Problem), and writing an incorrect 

equation before filling the table (the People and Hats Problem). In these problems, 

the act of filling in the function table proved to be an effective method of rapidly 

identifying the relationships. For instance, in the Credit Card Problem, Luke was 

able to express the relationship as follows: "We find the total amount of debt if we 

subtract 20 from α," where α was assigned the value of the amount of expense. His 

verbal expression included a statement indicating an operation that he did while 

constructing a table of values. 

In the Sapling problem, Luke could not calculate the length of the sapling in the 150th 

day after it was planted, indicating that he could not generalize the relationship. 

Furthermore, he demonstrated some confusion regarding the quantities such as 
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multiplying 2 (the amount of the growth in cm each day) and 35 (the length of the 

sapling at the beginning) and adding 150 (the number of days passed) and 35. His 

answers given during the discussion on the calculation of sapling height on the 150th 

day after planting are listed as follows: 

1) “Can it be like multiplying 150 and 2? It is 300.” 

2) “What if we add 35 to the amount of elapsed days (150)? Then we add 2 

to 185, it is 187.”  

3) “I found the first three days by increasing two by two.” 

4) “What if we multiply 35 by the elapsed time and add 2?” 

5) “Is it okey to multiply 35 and 2?” 

6) “Could it be 160. I found until the 10th day by adding two. At last, I found 

55. 55 and 55 makes 110. It makes 165, one more 55 it has.”  

7) “(Instead of adding two recursively) I can multiply 150 and 35 or multiply 

35 and 2.” 

Because the problem included both an addition to the initial amount and calculating 

the amount of growth in any given day it required more than one operation to 

calculate the dependent variable. Hence, Luke had difficulty in keeping track of the 

multiple units such as the length at the beginning, the amount of growth in a day, and 

the amount of growth in given days and he could not go further.  

Luke could represent the functional relationships in the Birthday Party 2 and Credit 

Card Problems using equations, as he was able to identify the relationships. One 

noteworthy observation is that he had difficulty in writing the equation in the 

reversed form (i.e., 𝑔 =  𝑎 +  20 and 𝑔 –  20 =  𝑎). The teacher prompted him to 

engage in reversible thinking and asked him whether he could utilize subtraction in 

formulating the equation in the People and Hats Problem while he wrote symmetric 

forms of equations (i.e., 𝛼 +  20 =  𝑔 and 𝑔 =  𝛼 +  20). He incorrectly wrote 

20 –  𝑔 =  𝑎. Thereafter, the teacher let him try his new equation in the function 

table to check whether it worked or not and she provided numerical examples. After 

this, Luke realized his mistake and revised the equation correctly.  
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Conclusively, the MC1 students performed better in the previous episodes than 

Episodes 5 and 6, which included the functional relationships in the form of 𝑦 =

 𝑎𝑥 +  𝑏. Therefore, there was no notable progress in their algebraic thinking in 

these episodes. In this type of functional relationship (i.e., 𝑦 =  𝑎𝑥 +  𝑏), they 

demonstrated difficulty in identifying the relationship by integrating the initial value 

(constant value). They made many mistakes until they reached the correct 

expressions of the relationships with the teacher's help in most of the tasks. 

Especially in the Bank Account (𝑦 =  30 +  15𝑥) and the Sapling Problems (𝑦 =

 35 +  2𝑥), the teacher directed the MC1 students more than scaffoldings and 

prompts. The initial amount presented a challenge, as it required integrating different 

quantities into the problem such as the amount of growth in each day, and the number 

of days passed in the Sapling problem. Furthermore, their reliance on recursive 

thinking persisted in these episodes.  

4.2.4.2 Students’ evaluations at the end of Episodes 5 and 6 

At the end of Episode 5, the students worked on the Pool Problem that involved the 

functional relationship in the form of 𝑦 =  𝑎𝑥 +  𝑏 like the Bank Account and the 

Sapling Problems. At the end of Episode 6, they worked on the Bouncing Ball 2 

Problem that involved the functional relationship in the form of 𝑦 =  𝑥 ±  𝑏 like the 

People and Hats and the Credit Card Problems (see Figure 4.36). Both problems 

required the students to fill the given tables, generalize the relationship between 

variables, and write a symbolic representation in further steps of the problems. 
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Figure 4.36 The main parts of the post-assessment problems in Episodes 5 and 6 

In the end-of-lesson assessments of Episodes 5 and 6, the gap between the students’ 

performances in identifying and generalizing the functional relationships in the form 

of 𝑦 =  𝑎𝑥 +  𝑏 and writing equations was almost closed with several differences. 

The MC2 students could fill in the function tables accurately and find the larger value 

by making the correct operations, which shows their accurate generalizations in both 

assessments. In parallel, they could also represent functional relationships through 

symbolic expressions. They demonstrated quite the same performance in their 

assessments. One difference between them was their equations in the Pool Problem. 

Like in Episode 5, Roy used parentheses in writing the equation in the Pool Problem. 

In contrast, Belle did not use parentheses in her equation. (Figure 4.37). However, it 

does not demonstrate in general that Belle did not achieve this level of abstraction 

because she used parentheses in the Birthday Party 2 Problem in Episode 5 (i.e., 

(𝑚 ×  2)  +  2 =  𝑘). This may be because she did not focus on it or forgot it in the 

final assessment. In parallel, both students wrote all the equation forms for the 

additive relationship between two variables in the Bouncing Ball 2 Problem by 

inversing the initial equations. This also shows their abstraction and structural 

thinking.  
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Figure 4.37. MC2 students’ equations in the Pool Problem  

Another difference between the MC2 students was their verbal expressions of the 

relationship in the Bouncing Ball 2 Problem. Roy indicated the relationship as: “A 

difference of 20 exists between the height at which the ball was left from and the 

amount of rise of the ball after the hit on the ground” (𝑑 –  𝑐 =  20) while Belle 

indicated the relationship as: “The height at which the ball was dropped is 20 cm 

greater than the amount of rise of the ball after its hit on the ground.” (𝑎 =  𝑏 +

 20). In Roy’s expression, which indicates how he initially determined the 

relationship, there is a direct operation between two problem variables. In contrast, 

Belle initially determined how to find the value of one variable in terms of the other 

variable, including a direct operation between one variable and one known quantity. 

Considering this, Roy’s generalization encompasses analytical thinking to a greater 

extent than Belle’s, even though both students were able to correctly write all the 

forms of equations in the further step.  

Although the MC1 students had difficulty in understanding and generalizing the 

functional relationships in each task during the episodes, end-of-lesson assessments 

showed that they could generalize the functional relationship both operationally and 

symbolically. In the Pool Problem, both students could calculate the larger value in 

the function table, which indicates their generalization of a functional relationship in 

the form of 𝑦 =  𝑎𝑥 +  𝑏. However, Sara made some initial mistakes such as writing 
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erroneous values in the function table and confusing the operation in writing 

symbolic representation (see Figure 4.38). 

Figure 4.38. Sara’s answers in the Pool Problem 

Given that she was able to identify the larger value in the table, the initial erroneous 

values were regarded as computational errors. Furthermore, she was able to revise 

his symbolic expression after a small confusion. 

In Episode 6, Luke demonstrated success in tasks involving the functional 

relationship in the form of 𝑦 =  𝑥 ±  𝑎, as evidenced by his performance on the 

People and Hats and Credit Card Problems. The end-of-lesson assessment included 

a problem of a similar nature. Consequently, he successfully completed each step in 

the Bouncing Ball 2 Problem. He once again wrote the equations in the symmetric 

forms (i.e., 𝑏 –  20 =  𝑔 and 𝑔 =  𝑏 –  20). As he did in the previous tasks in the 

episode, he did not reverse the operation in the end-of-lesson assessment.  

In general, the nuances between the group of students’ performances in algebraic 

thinking (i.e., MC1 and MC2) appeared in their written expressions of the 

relationships and in the forms of the equations they wrote. While all students could 

verbalize the functional relationship, there were variations in the written expressions. 

For instance, Luke (early MC1) consistently employed a language that emphasized 

the operation he used to determine one variable in terms of the other such as “We 

find the amount of rise of the ball if we subtract 20 from the height the ball was 

dropped.” On the other hand, the expressions of Belle and Roy focused on the 
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explicit relationship between variables, as exemplified by Roy’s statement: “The 

height at which the ball was dropped is 20 cm greater than the amount of rise of the 

ball after its hit on the ground.” Their approach to verbal generalizations of the 

relationships represents a novel construction of the relationship expressed in a 

manner distinct from how they do calculations in the table.  In addition, the variation 

and comparison between the variables were more visible as compared to Luke’s. 

This was also evident in their symbolic representations. While the MC2 students 

could write the equations in the reverse form, the MC1 students were only able to 

write symmetric forms of equations, which does not require the construction of a 

new expression or the structure of the relationship.  

4.3 General Progress of Students in Algebraic Thinking 

This section presents the general progress of each student, interrelating it with their 

unit coordination levels and with their performances before the teaching episodes. 

As Sara was unable to attend the final episode and evaluation, her performance was 

evaluated based on her performances before the teaching experiments and the last 

episode she attended.  

In the post-assessment when the teaching episodes ended, students answered six 

questions. Four were from the Algebraic Thinking Interview: the Caterpillar and 

Leaf, the Growing Caterpillar, the Penny Bank, and the Cord problems. One question 

was from the Units Coordination Interview: the Crate problem. Lastly, the students 

also calculated two missing value operations to be assessed for the equal sign 

understanding and defined the concept of variable.  As distinct understandings and 

thinking processes were addressed by particular problems, this section presents the 

students’ final evaluations in different headings, including equal sign understanding, 

variable understanding, algebraic thinking, and units coordination.  
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4.3.1 Equal sign understanding 

Students' responses to the missing value operations in the final assessment showed 

that their understanding of the equal sign was the same as in the pre-assessment. Roy 

and Belle demonstrated again a relational understanding of the equal sign while Luke 

showed an operational understanding. Belle used a compensation strategy to find the 

missing value in one of the operations, as different than her response in the pre-

assessment. This confirms that she showed a more advanced understanding of equal 

signs. In contrast, Luke thought that the result of the operation should come just after 

the equal sign, ignoring the quantities on the right side (see Figure 4.39).  

Figure 4.39. Luke’s operational view of equal sign in the missing value operations 

His response showed that his operational view of the equal sign persisted even after 

they had been presented with a minor equality activity represented in balance scales 

through virtual manipulatives in Episode 2.  

Consequently, these six teaching episodes, which were designed to facilitate 

algebraic thinking rather than directly addressing the understanding of the equal sign, 

did not facilitate Luke’s understanding of equality and the equal sign in numerical 

operations.  

4.3.2 Variable understanding 

During the final assessment, the students were asked to define the concept of 

variable. Their definitions commonly involved the expression “continuously 

changing things” as seen in Table 4.14. 
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Table 4.14 Students’ Descriptions of Variables 

Roy Indeterminate, continuously changing. For example, it can be expressed in 

symbols. 

Belle Constantly changing things (Can you give an example?) For example, Ali 

puts 3 TL in his penny bank every day… they are variables, they change every 

day. (What changes every day?) He puts 3 liras in his penny bank every day. 

For example, on the first day, he puts 3 TL, on the second day 6 TL, on the 

third day 9 TL. They change in this way. The number of days also changes 

there.  

Luke Always taking different values. Constantly changing values. 

 

In the pre-assessment, they could not give accurate definitions because they had 

heard the variable concept for the first time. Their definitions in the post-assessment 

demonstrated that they emphasized the meaning of variables as constantly changing 

things, as in the problems involving functional relationships. In addition, Roy also 

indicated the indeterminacy in his definition. In this way, his understanding seemed 

more comprehensive than that of his peers.  

Other than answering this definition question, the students could identify the problem 

variables correctly in each problem while assigning the letters for the variables in the 

final assessment. In the pre-assessment results, they had missed some of them while 

indicating the problem variables, for example in the following problem.   

A tree sapling grows taller by a certain amount every day from the day it is 

planted. What do we need to know to calculate the height of a tree sapling on 

a given day? Can you indicate the problem variables? 

In response to this question, Roy identified “how much it grows each day” and “the 

number of days elapsed” as the things we need to know. Belle indicated that we need 

to know how much it grows each day and the first length of the sapling. On the other 

hand, Luke only identified “how much it grows each day” as the problem’s important 

element. Comparing their answers in the pre-assessment, they demonstrated 

achievement in interpreting the problem variables and understanding them in the 

function context. 
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Furthermore, all students could write the inverse form of the relationships in the Cord 

Problem in the post-assessment by operating with the letters assigned for the 

variables in different ways. This represents an understanding of variables as 

mathematical objects, referring to Level 6 according to Blanton et al. (2017). Roy 

demonstrated the same performance in the Growing Caterpillar problem in the pre-

assessment which was in a function context. Therefore, his progress may not be very 

significant compared to other students, Belle and Luke, who demonstrated an 

understanding of variables as quantities with fixed arbitrarily chosen values, which 

refers to Level 4 (Blanton et al., 2017) in the pre-assessment findings. Considering 

the evidence of operating with letters differently for the same relationship, they 

demonstrated the same level of understanding of variables in the post-assessment. 

However, Roy’s use of inverse operations in each problem may show his 

understanding as more advanced than others because he could flexibly think of them 

without prompting.  

4.3.3 Algebraic thinking  

In the final assessment, three problems addressed the students’ generalizations of 

functional relationships between variables and their symbolic representations (the 

Growing Caterpillar, the Caterpillar and Leaf, and the Penny Bank Problems). Each 

problem had special features that either helped students understand the problem or 

challenged them to complete the steps. In the Growing Caterpillar Problem, students 

saw figural data showing that the body length of a caterpillar increased by two parts 

each day. In the Caterpillar and Leaf problem, there were no figures or tables. The 

given information was that “two caterpillars eat 6 leaves.” Finding the amount for 

one caterpillar would help the students write an equation representing the 

relationship between the number of caterpillars and the number of leaves. Lastly, the 

Penny Bank Problem involved a saving money context where Ali puts each day three 

TL into his penny bank, with an initial amount of 10 TL. Therefore, students needed 
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to interpret the constant initial value in addition to the problem variables. The general 

performances of students in each problem are represented in Table 4.15. 

Table 4.15 Pre and Post-Assessment Comparisons in Functional Relationships 

Growing Caterpillar 

 Roy Belle Luke 

 Pre Post Pre Post Pre Post  

Inverse form of equation 1 1 0 0 0 1 

Symbolic representation 1 1 0 1 0 1 

Verbal generalization 1 1 1 1 1 1 

Finding a larger/any value  1 1* 1 1 0 1 

*Roy was confused at first then the teacher prompted her he said 202 

Caterpillar and Leaf 

 Roy Belle Luke 

 Pre Post Pre Post Pre Post  

Inverse form of equation 0 1 0 0 0 0 

Symbolic representation 0 1 0 1 0 1 

Verbal generalization 1 -  0 1 0 1 

Finding a larger/any value  1 1 1 1 0 1* 

*Luke's calculations were corrected through teacher prompts 

Penny Bank 

 Roy Belle Luke 

 Pre* Post Pre Post Pre Post  

Symbolic representation - 1 0 1 0 0 

Verbal generalization - 1 1 1 0 1 

Finding a larger/any value  - 1 1 1 0 0 

*This problem was not included in Roy’s pre-assessment.  

 

In determining a functional relationship and representing it through symbols, the 

MC2 students demonstrated the standard algebraic thinking level by generalizing the 

relationship and writing the function rule through an equation in all the problems. 

Roy wrote the inverse forms of all the equations that he could write in the form of 
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𝑦 =  𝑎𝑥, while Belle did not include the inverse forms of the equations in the 

problems including functional relationships. Considering the pre-assessment 

outcomes, Roy demonstrated progress in writing symbolic representations in the 

problems except the Growing Caterpillar Problem in which he had already written 

equations in the pre-assessment. On the other hand, Belle demonstrated a significant 

improvement by writing equations in any problem type, which she had been unable 

to do in the pre-assessment (see Table 4.15). 

As an MC1 student, Luke demonstrated a distinct performance in the post-

assessment, although he exhibited notable progress. The post-assessment 

performance indicated that he could generalize functional relationships and represent 

these relationships through equations in the form of 𝑦 =  𝑎𝑥, as different than the 

pre-assessment performance. However, in formulating the relationship, he 

sometimes exhibited confusion. For instance, in the Caterpillar and Leaf Problem, 

he initially determined that the number of leaves required to feed 12 caterpillars was 

72. Then the teacher helped him to correct his understanding, as follows:  

Luke: If we multiply the number of caterpillars by 6, we find how many 

leaves they eat.  

… 

Teacher: You mean, one caterpillar eats 6 leaves 

Luke: No, three leaves 

Teacher: You understood that one caterpillar eats three leaves, then you say 

12 caterpillars eat 12 times 6, 72 leaves. 

Luke: No, (he corrected his writings) 12 times three, 36 leaves.  

Teacher: You can change it in symbol form as well. 

As seen, the teacher's intervention was limited to a prompting question, which 

emphasized the units. This allowed Luke to resolve his confusion regarding units. 

After he could simplify the units by noting the number of leaves for a single 

caterpillar, the verbal generalization and symbolic representations were accurately 

conveyed as he correctly identified the variables and assigned the letters for each 

(see Figure 4.40). 



 

 

212 

Figure 4.40. Luke’s responses in the Caterpillar and Leaf Problem  

Students demonstrated progress in representing a multiplicative relationship between 

two unknown quantities in symbols (the Cord Problem). While none of them were 

able to write an equation representing the relationship between two cord lengths 

where one of them is five times the other in pre-assessment interviews, all of them 

(except Sara) could write correct equations (see Table 4.16).  

Table 4.16 Pre and Post-Assessment Comparisons in the Cord Problem  

Cord Problem 

 Roy Belle Luke 

 Pre Post Pre Post Pre Post  

The inverse form of the equation 0 1 0 1 0 1 

Symbolic representation 0 1 0 1 0 1 

Accurate drawing  1 1 0 0 0 0 

 

Furthermore, these students demonstrated their ability to write the inverse forms of 

equations by employing the division operation in the second one (see Figure 4.41).  
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Figure 4.41. Written equations in the Cord Problem 

Belle was able to write this inverse form without being asked to do so. Although 

Belle and Luke did not write the inverse forms of the equations in other problems, 

they showed their ability to think structurally in the context of similar relationships 

in this problem (i.e., 𝑦 =  𝑎𝑥 ). It was observed that the form of relationship, 𝑦 =

 𝑎𝑥, between either variables or unknown quantities, can be interpreted and 

represented by the students in company with structural thinking after the teaching 

episodes.  

As seen in general, notable differences between the MC2 and MC1 students appeared 

in the functional relationships in the form of 𝑦 =  𝑎𝑥 +  𝑏 that was  represented in 

the Penny Bank Problem. While Luke could not generalize and represent the 

functional relationship between the amount of money and the number of days 
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elapsed, both MC2 students could generalize the relationship by calculating the 

larger values and writing the equations representing this relationship. It is noteworthy 

that the MC2 students (Roy and Belle) employed parentheses to separate different 

quantities in the functional relationship. Both Roy and Belle wrote the multiplication 

of the number of days elapsed and three (the rate of change) in parentheses and, in 

this way, separated the constant value (the initial amount of money) from this 

multiplication such as (𝑥. 3)  +  10 =  𝑦. This indicates that they were aware of the 

meanings of different quantities, whether known or unknown, in the formulation. In 

addition, the quantity in the parentheses shows another constructed quantity with 

which they could perform further operations. This performance demonstrates a 

parallelism between their mental operations in terms of units coordination and 

writing equations. 

4.3.4 Units Coordination  

The post-assessment included two problems to assess the students’ units 

coordination as well, the Crate and Cord problems. The Cord Problem included the 

examination of both writing equations to represent the multiplicative relationship 

between two unknowns and representing the unknown quantities in figures as 

convenient to the multiplicative relationship.  

In the pre-assessment of units coordination, both MC2 students could find the correct 

answer of the Crate Problem by having some difficulty in keeping track of the 

quantities. In the final assessment, they could find the correct answer again. 

However, at this time, both students could accurately indicate each quantity and units 

more flexibly. Luke, as an MC1 student, could not find the correct answer in both 

assessments.  

In the Cord Problem, Roy could draw the figures of cords by considering the 

multiplicative relationship between each other. He began by drawing a longer cord 

length, then partitioned the line into five equal parts. This resulted in a remainder 
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part at the end of the longer line he previously drew, which he then erased. This 

process allowed him to construct a small unit for the length of the shorter cord. On 

the other hand, Belle and Luke did not draw the cords in a way that suited the given 

multiplicative relationship. They drew the cords in random lengths as one is a little 

bit longer than the other as they did in the pre-assessment. These findings indicate 

that there has been no observable improvement in their units coordination in this 

process. 
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CHAPTER 5  

5 DISCUSSION AND CONCLUSION 

The goal of this study was to investigate fifth-grade students’ progress in algebraic 

thinking with the potential and plausible interaction with their units coordination. To 

accomplish this goal, I designed an HLT, with the support of several mathematics 

educators, targeting the students’ generalizations and symbolic representations 

(Kaput, 2008). The HLT also targeted functional thinking that provides an abundant 

context for generalization (Blanton & Kaput, 2011). Hence, the HLT united the 

generalization, a core aspect of algebraic reasoning (Kaput, 2008), and functional 

thinking which is a dimension of algebraic thinking (Kieran, 2022) and a strand of 

algebraic reasoning (Kaput et al., 2008). The analysis of teaching episodes and the 

comparison of pre- and post-assessments of students in terms of their progress in 

algebraic thinking revealed findings worthy of further discussion from both algebraic 

thinking and units coordination perspectives in the context of mathematics 

education. 

In light of the findings, this chapter first discusses the main constraints the students 

encountered and the main differences between the students in their progress in 

algebraic thinking during the teaching episodes. It includes the students’ 

performances in generalizing and symbolizing the relationship between unknown 

quantities or between variables, key thinking processes supporting the students’ 

algebraic reasoning in different tasks, and instructional decisions that would 

influence further teaching processes. Then the conclusion section presents the overall 

argument about the findings and mentions the theoretical and practical implications, 

the limitations of the study, and the suggestions for further research.  
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5.1 The Discussion of the Progress of Students in Algebraic Thinking  

From the beginning of the teaching episodes, all students demonstrated a degree of 

progress in algebraic thinking and reasoning by taking distinct paths. In Episode 1, 

the students learned to compare unknown quantities through hypothetical values, use 

letters for unknown quantities, and use comparison symbols, including equal signs, 

to represent the relationship between unknown quantities. In Episode 2, they 

continued to write equations by using literal symbols they assigned to the unknowns. 

In addition, Episode 2 presented both additive and multiplicative relationships 

between unknown quantities. After getting used to working with letters, tables, and 

equations to represent the relationship between unknown quantities, since Episode 

3, they began to interpret the functional relationship between variables through 

contextual problems. They worked on many contextual problems involving either 

the 𝑦 =  𝑎𝑥 or 𝑦 =  𝑎𝑥 +  𝑏 forms of linear relationship. 

During the course of the teaching episodes, the MC2 and the MC1 students 

demonstrated varying levels of proficiency in algebraic thinking, as evidenced by 

their differing approaches to algebraic reasoning. Therefore, we observed both inter-

level and intra-level differences in addition to inter-level and intra-level 

commonalities in their performances. In the beginning, the students started with a 

notable disparity in their performance levels in specific processes, including 

functional thinking, working with indeterminate quantities (algebraic thinking), 

identifying functional relationships in the form of 𝑦 =  𝑎𝑥 +  𝑏, and the way of 

writing symbolic representations. However, the gap between MC2 students (i.e., an 

intra-level disparity) was almost eliminated by the end of the study (see Figure 5.1). 

Intra-level differences between MC2 students had projected into their swiftness and 

comfort with algebraic tasks, comparing unknowns, expressing them in different 

ways, and writing symbolic representations. On the other hand, the inter-level 

differences between MC2 and MC1 students maintained in specific areas such as 

generalizing the functional relationships in the form of 𝑦 =  𝑎𝑥 +  𝑏 and the way of 

writing equations. 
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Figure 5.1 Students’ progress from Episode 1 to Episode 6 
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Figure 5.1 demonstrates the path of progress of each student in different contexts 

such as the comparison of unknown quantities which includes representing additive 

and multiplicative relationships and generalizing functional relationships in different 

forms. The colored letters R, B, S, and L represent each student’s performance points 

in the episodes, and each episode was divided into two parts, representing the first 

half and the second half of the episodes. Therefore, the progress of each student from 

the first half to the second half in each episode can be observed through these colored 

letters in Figure 5.1. In addition, the vertical difference between the points in the 

same cell in Figure 5.1, shaded with different levels of darkness, represents the 

differences in the students’ performances. For example, a student who answered 

questions without help or with less need for teacher prompting and made fewer 

mistakes in reaching the correct answer had a higher position in the same cell than 

the other student who reached the same level of algebraic thinking. As shown in 

Figure 5.1, MC2 students demonstrated the indicators of algebraic thinking at times 

by writing equivalent expressions, taking fewer prompts, and using the indeterminate 

quantities more explicitly at the end of Episode 2, which is a shorter period. In 

addition, the MC1 students attended recursive thinking multiple times between 

Episodes 3 and 6 while the MC2 students started at least from the contextual level of 

algebraic thinking by formulating the function rule verbally or symbolically. The 

MC2 students demonstrated their structural thinking in these episodes more clearly 

by justifying their equations or reversing the equations. The progress points of 

students in Figure 5.1 demonstrated that MC2 students’ progress in algebraic 

thinking is more stable and faster across the contexts and different tasks while the 

MC1 students’ progress fluctuates between different contexts.   

In the progress of the students in representing the functional relationships, there is a 

fluctuating point in Episode 5 for each student. This demonstrated that the functional 

relationship in the form of 𝑦 =  𝑎𝑥 +  𝑏 (Episode 5) was a more challenging context 

for each student than the types 𝑦 =  𝑎𝑥 (Episodes 3 and 4) and 𝑦 =  𝑥 ±  𝑏 

(Episode 6). This was the context in Episode 5 where both MC1 students could not 

achieve the generalization by themselves. They again tried to find the values through 
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a recursive approach. The difficulty that the MC2 students had in Episode 5 did not 

last much. They could figure out the relationship with little prompts while the MC1 

students received more guidance from the teacher.  

The following sections explain how the students progressed during the study and in 

what aspects their progress demonstrated an interaction between their algebraic 

thinking and units coordination. Therefore, four main headings emerged, indicating 

specific patterns and landmarks that the students demonstrated as they progressed in 

their algebraic thinking. These headings are interpreting the indeterminate quantities, 

interpreting the multiplicative relationships between unknowns, functional thinking, 

and the way of writing equations. 

5.1.1 The differences in interpreting indeterminate quantities   

At the beginning of the study, during Episodes 1 and 2, the students were confronted 

for the first time with the challenge of interpreting the relationships between 

indeterminate quantities. During this process, the students exhibited distinct patterns 

of cognitive processes in interpreting indeterminate quantities and performing 

operations with them. Furthermore, the intra-level differences were more apparent 

during these episodes, particularly for the MC2 students, which declined towards the 

end of the study. On the other hand, the discrepancy between the MC2 and MC1 

students, in terms of inter-level differences, persisted to a greater extent in some 

aspects.  

From the beginning of the study, including the pre-assessment results, Roy 

(advanced MC2) showed the most promising performance. In Episode 1, he was the 

only student to think about writing the units for each quantity, whereas Belle (regular 

MC2) did not pay attention to this as the MC1 students did. For example, when 

comparing two pencils of unknown length, Roy asked whether he should write them 

in cm. This represents his recognition of a quantity by assigning an appropriate unit 

(Thompson, 1990). This could be related to his higher level of mental operations 

with units as we had observed in his Units Coordination Interview. Consideration of 
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the units of unknown lengths may be an indicator of emerging quantification, and 

awareness of the nature of the quantity, which are important processes for 

quantitative reasoning and units coordination (Olive & Çağlayan, 2008; Thompson, 

1990). 

Giving hypothetical values to unknowns was another distinguishing characteristic 

between students in terms of algebraic thinking and working with indeterminate 

quantities. A notable difference between the MC1 and MC2 students was the MC1 

students’ tendency to assign numerical values to unknown quantities to use with 

comparison symbols in Episode 1. This demonstrated that MC1 students were not 

ready to use indeterminate quantities as much as MC2 students in Episode 1, which 

is an inevitable condition of algebraic thinking (Radford, 2010). From the 

perspective of variable understanding (Blanton et al., 2017; Küchnemann, 1981), 

assigning numerical values to letters or unknowns is regarded as the lowest level in 

variable understanding. Furthermore, Hackenberg and Lee (2015) observed that 

relying on specific cases or numbers when representing a relationship was a behavior 

of MC2 students. However, in this study, only MC1 students used specific numbers 

to interpret the relationships between unknown quantities during the teaching 

episodes in the context of a comparison of unknown quantities and writing them in 

symbols. Although Belle (regular MC2) showed a tendency to assign numerical 

values to unknowns in the pre-assessment interviews, she did not do so during the 

teaching episodes. Therefore, it is possible that this is an impermanent tendency in 

MC2 students, as seen in Hackenberg and Lee's (2015) study, which could disappear 

with appropriate instructional decisions. 

A further significant challenge encountered by all students in Episode 1 was the 

performance of operations with unknowns. At this stage, the construction of tables 

of values and the interpretation of the relationships between numerical values 

resolved the situation. This way of thinking simplified the process by comparing or 

performing operations with given hypothetical numerical values rather than 

unknown quantities. This reduced the level of analyticity and algebraic thinking 

(Radford, 2010; Smith & Thompson, 2008). Smith and Thompson (2008) posited 
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that the comparison of numerical values or the identification of relationships between 

specific numbers could only provide additional information to the given generality, 

which includes a “little sense” (p.111) in terms of algebraic thinking. The 

recommended approach in algebra is to identify relationships between quantities 

where we do not know their “specific measure” (Smith & Thompson, 2008, p. 111). 

The refraining from assigning numerical values to indeterminate quantities and the 

practice of comparing unknown quantities by leaving them indeterminate offers an 

opportunity for the development of further symbolic representations (Carraher et al., 

2008). The interpretation of the multiple scenarios through the table of numerical 

values allowed the students to generalize what operations they needed to do with 

given hypothetical values to show the relationship or comparison between the 

unknowns. This provided an emergent understanding of variables and functions as 

well. 

5.1.2 The differences in interpreting the multiplicative and additive 

relationships between unknowns   

Students demonstrated a significant difficulty in representing the multiplicative 

relationship between two unknown quantities (i.e., 𝑚 =  4𝑘) more than the additive 

relationship between three unknowns (i.e., 𝐴 +  𝐵 =  𝐶). The challenge in 

representing the multiplicative relationship between two unknowns was evident in 

the processes of constructing a table of values not involving a ratio of 1: 4 and 

erroneous symbolic equations. During these processes, the intra-level differences 

were still apparent. There were notable student performances for discussing in terms 

of both algebraic thinking and units coordination. 

The students encountered representing a multiplicative relationship for the first time 

in Episode 2 where one of two equal-length ropes was divided into four equal parts 

and the relationship between the shorter and the longer ropes was investigated. In 

representing the multiplicative relationship in the tables of values, only Roy 

(advanced MC2) could construct a table in a manner consistent with the correct 
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multiplicative relationship, such that one length is one-fourth of the other length. 

Consistently, he could also write a correct equation in two forms (i.e., 𝑚 =  𝑘 ×  4; 

𝑚 ÷  4 =  𝑘). In their tabular representations, Belle (regular MC2) and Luke 

(regular MC1) wrote the hypothetical values for the lengths of each rope in such a 

way that the difference between the rope lengths is four, incorrectly indicating 

additive reasoning. Sara (MC1) assigned arbitrary hypothetical values to the lengths 

of the ropes to demonstrate that one was longer than the other. Her performance did 

not demonstrate the ability to perform either an additive or a multiplicative 

comparison. Giving numerical examples to unknowns is a common behavior among 

MC2 students in other studies (e.g., Hackenberg & Lee, 2015; Hackenberg et al., 

2017). Here, both MC2 (Belle) and MC1 students gave numerical values to 

unknowns at the beginning of Episode 2.  

Ulrich (2016a) remarked that multiplicative comparison would not be swift until the 

MC2 level and would not be assimilatory until the MC3 although it is attainable 

starting from the MC1 level. Roy’s quick interpretation of the relationship and his 

ability to inverse the relationships in writing equations seemed supported by the 

characteristics of his multiplicative concepts. Researchers observed that MC2 

students rarely wrote the inverse forms of the equations and could not use reciprocal 

reasoning (e.g., Hackenberg & Lee, 2015; Hackenberg & Sevinç, 2022) while MC3 

students could inverse the written equations representing the multiplicative 

relationships. Therefore, Roy, as an advanced MC2, demonstrated a higher 

performance than the students in the upper grades in the other studies (e.g., 

Hackenberg & Lee, 2015; Hackenberg & Sevinç, 2022). In addition, performing an 

additive comparison is a less complex operation than performing a multiplicative 

comparison in terms of units coordination (Ulrich, 2016a). Considering Belle’s 

slightly lower performance in the Units Coordination Interview compared to Roy, 

this performance in Episode 2 may also reflect the intra-level difference in their 

mental operations.  
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As one of the unknown quantities was constructed by equally partitioning the other 

unknown quantity in the problem, it required disembedding and splitting operations 

(Hackenberg, 2010; Steffe & Olive, 2010) to generate one unknown quantity by 

using the other. These operations allow the students to handle more complex tasks 

(Steffe & Olive, 2010). Roy’s identification of the multiplicative relationship might 

be evidence of his splitting operation which is related to multiplication, division, and 

ratio (Confrey & Smith, 1995). On the other hand, a reliance on additive thinking 

and focusing on a hypothetical difference between the unknowns, instead of a ratio 

between them, might represent Belle’s and Luke’s dominant operation of counting. 

Belle (regular MC2) could interpret the relationship correctly after hearing Roy’s 

(advanced MC2) explanation of his table and the teacher’s guiding questions. 

Nevertheless, her equations continue to demonstrate the disparity between her 

cognitive processes and those of Roy. She wrote an equation to represent the 

relationship both additively and multiplicatively (e.g., 𝑘 +  𝑘 +  𝑘 +  𝑘 =  𝑚 and 

𝑚 =  𝑘 ×  4). The equation involving addition may demonstrate how she gradually 

constructed the multiplicative relationship. On the other hand, Roy’s equations, the 

inverse form of the equation (i.e., using both multiplication and division), displayed 

his flexibility in identifying the multiplicative relationship between two unknowns. 

The MC1 students, Luke and Sara, faced significant challenges in maintaining their 

progress. The intra-level differences between MC1 students in interpreting 

multiplicative relationships were apparently more deterministic in this process. 

Despite the teacher's provision of prompts and guidance, the students continued to 

interpret the relationship in an additive manner, as evidenced by Luke's response: 

"We add three times the length of the shorter rope to get the longer one." Following 

the provision of robust guidance and directions, Luke (regular MC1) could write an 

accurate equation while Sara (early MC1) experienced difficulty in formulating the 

equation. On the other hand, in Episode 3, Luke continued to fill the table additively 

in the first task by interpreting the relationship between the number of chairs and the 

number of legs as follows: “If there is one chair it has four legs, if there are two 
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chairs there are five legs. There is always a particular difference.” He thought that 

one increase in the number of chairs corresponds to one increase in the number of 

legs. Conversely and interestingly, Sara was able to identify the correct 

multiplicative relationship between the variables since Episode 3.  

Zwanch and Wilkins (2021) observed that more than half of the sixth and seventh 

graders demonstrated MC1-level units coordination and additive reasoning rather 

than multiplicative reasoning. This indicates that a focus on the difference between 

two quantities is more common among middle school students as I observed in my 

students at the beginning of Episode 2. Ulrich (2016a) indicated that additive or 

multiplicative comparison tasks require the students to conceive the numbers, to be 

compared, as distinct quantities, namely composite units. This is initially possible at 

the TNS (i.e., MC1) and upper stages. Accordingly, the comparison tasks, which 

included both additive and multiplicative unknowns in the teaching episodes, were 

considered appropriate for the study participants, who had reached the lowest level 

of multiplicative concepts (i.e., MC1). In subsequent episodes, the students 

demonstrated notable advancement in their ability to identify and represent 

multiplicative relationships. This also demonstrated the efficacy of the teaching 

episodes. 

5.1.3 The differences in functional thinking  

Students in elementary grades can demonstrate recursive, covariational, or 

correspondence approaches in interpreting the functional relationships between 

covarying quantities (Blanton, Brizuela, et al., 2015; Blanton, Stephens, et al., 2015). 

In the recursive pattern approach, the students can identify the change/variation in 

only one quantity while in covariational thinking, they can describe the functional 

relationship between two covarying quantities verbally (e.g., each chair makes four 

more legs) (Blanton, Stephens, et al., 2017). In the correspondence approach, one 

quantity is determined with respect to the other quantity (Confrey & Smith, 1994) 

such as “multiplying the number of chairs by four gives the number of legs. 
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Recursive thinking in functional relationships is seen as an inevitable step before 

developing other functional thinking approaches, that is, covariation, and 

correspondence (Blanton, Brizuela, et al., 2015).  

Attending the recursive approach inhibits students from seeing the general in a 

problem or pattern situation (Orton & Orton, 1999; Zazkis & Liljedahl, 2002). MC1 

students, Sara and Luke, demonstrated a clear example of this process in different 

tasks such as in determining the multiplicative relationship between two unknowns 

(Episode 2) and in determining the functional relationships between variables 

(Episodes 3-6). Because they relied on recursive thinking in interpreting the table of 

values, they could not generalize the relationship between two unknown quantities 

or two variables, especially at the beginning of teaching episodes. Many researchers 

have observed the tendency of elementary and middle school students to engage in 

recursive thinking (e.g., Blanton, Brizuela, et al., 2015; Lannin, 2005; Orton & 

Orton, 1999; Zazkis & Liljedahl, 2002), as we also observed in the MC1 students in 

this study. This created a constraint for them to find a larger value of a dependent 

variable in the problems and generalize these relationships as conjectured. However, 

the teacher's guidance and prompts helped them determine the functional 

relationships between two variables in the form of y = ax in further problems towards 

the end of teaching episodes.  

A notable difference between MC2 and MC1 students during the teaching episodes 

was MC1 students’ reliance on recursive thinking. Similarly, Zwanch (2022a) 

observed MC1 students’ reliance on recursive thinking in generalization tasks. This 

may reflect the interaction between units coordination and algebraic thinking. 

Focusing on the difference in only one variable in a pattern situation demonstrates a 

lack of multiplicative thinking between two variables and a priority on recursive 

reasoning (Orton & Orton, 1999; Zazkis & Liljedahl, 2002). Although all the 

students in this study had difficulty in describing the relationship in tables and 

symbolic expressions in the first multiplicative task in the teaching episodes 

(Episode 2), the MC2 students began to think in a way of covariational or 

correspondence approach in the further tasks including a functional relationship. The 
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MC1 students continued recursive thinking and got additional support from the 

teacher. Consequently, the ability to maintain recursive thinking at the outset of each 

problem and to seek assistance from the teacher proved to be distinguishing factors 

in the performance of MC1 students as compared to that of MC2 students in this 

study. MC2 students were able to quickly adapt to the covariational and 

correspondence thinking in different problems.  

Relying on recursive thinking may demonstrate an inclination toward additive 

reasoning more than multiplicative one. This is emphasized as an inclination of 

students who are at a level lower than MC2 (Ulrich, 2016a; Zwanch & Wilkins, 

2021). However, MC1 students (Luke and Sara) could also find the larger values in 

pattern situations through teacher prompts and guidance. Especially, the contextual 

problems including functional relationships between variables provided them to 

formulate a general rule as a correspondence approach in and after Episode 3 where 

they worked on the problems. This shows a similarity with the findings of Pinto and 

Canadas (2021) who observed that most of the fifth graders demonstrated a 

correspondence approach in finding the generality in problems while only a few of 

them represented covariational thinking. They indicated that expressing the 

covariational relationship is a more sophisticated and less common way than the 

correspondence approach in which the fifth graders generalize the rule through the 

operations they did on the numerical examples.  

In short, the findings indicate that there is an interaction between units coordination 

and students’ interpretation of multiplicative relationships between unknowns or 

variables. This was evidenced by the MC1 students’ predominant use of recursive 

thinking in the majority of the problems, in comparison to the MC2 students. 

Moreover, the MC2 students demonstrated a capacity for functional thinking that 

allowed them to adapt to different situations and contexts. In contrast, the MC1 

students required more guidance from their teachers to adjust to novel situations and 

contexts, as the importance of teachers’ prompts is emphasized in these cases 

(Hackenberg & Sevinc, 2024). Nevertheless, the capacity of the MC1 students to 

generalize the multiplicative relationships between variables (𝑦 =  𝑎𝑥) towards the 
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end of the episodes and in the final evaluation demonstrated the success of the 

teaching episodes in developing algebraic thinking. The interaction of units 

coordination determined the path of learning of each student and created a disparity 

in their performances during the episodes. However, this gap in algebraic thinking 

narrowed towards the end of the study. 

5.1.4 The differences in writing equations  

The teaching episodes in this study revealed that the students’ level of units 

coordination determined how much guidance they needed from the teacher during 

the identification of the relationships between variables or unknown quantities rather 

than during the writing of symbolic representations. For example, the MC1 students 

exerted the majority of their effort in identifying the general rule in various problems. 

In contrast, the MC2 students could determine the relationship between variables 

more easily, with minimal prompting, or even without prompting. After determining 

a specific relationship, both groups of students could easily transform this narrative 

formula into an equation. For instance, in the fifth episode, Luke (early MC1) 

demonstrated an understanding of the general rule by finding a larger value in the 

Bank Account Problem through the teacher's prompting and the use of the table of 

values. Subsequently, he was able to rapidly construct the symbolic equation by 

assigning letters to the quantities involved in his operations in the table. Therefore, 

the writing equation process was faster and more flexible for both groups of students 

than generating the rule in words or arithmetic operations in the table.  

As mentioned above, when the students were unable to determine a larger value in a 

function table, indicating a lack of ability to generalize the relationship, they also 

demonstrated difficulty in writing an equation. Therefore, the MC1 students had 

more difficulty in writing equations than the MC2 students because they had more 

difficulty in determining the relationships between the problem variables. On the 

other hand, Zwanch (2022a) explained the interaction between students’ algebraic 

thinking and their units coordination (i.e., number sequences) through the ability to 
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write algebraic equations rather than the method that the students used in 

generalizations. She observed the diverse methods of generalization employed by 

students from different units coordination levels in response to a problem requiring 

the identification of the number of squares on the border of a large square. In other 

words, the method of generalization (i.e., how they find the number of squares 

around a larger square) did not differ by students’ level of units coordination. On the 

other hand, she observed a reduced ability to write symbolic representations as the 

students’ level of units coordination decreased. For example, none of the MC1 

students (TNS) and only a few of the advanced MC1 (aTNS) students could write a 

symbolic representation. This conflicting case between this study and Zwanch’s 

(2022a) study might be due to the different contexts addressed in the studies such as 

problem types and the grade level of students.  

In short, in this study, the students who had lower levels of mental operations with 

units and composite units, such as not being able to keep track of the newly 

constructed units and operate with them in further steps, similarly demonstrated 

limitations in understanding the problem quantities or variables in generalizing the 

relationship narratively or arithmetically. Eventually, this affected their performance 

primarily in the identification and generalization of relationships, before writing an 

equation representing these relationships. From the aforementioned points, it can be 

posited that the interaction between the students’ multiplicative concepts and their 

algebraic thinking may be limited to the process of identifying relationships between 

problem variables or quantities, rather than directly to their symbolic representation 

of the relationships.  

How the students write their equations may be further evidence to support the claims 

made in this study. For example, the contextual problems including the functional 

relationships in the form of 𝑦 =  𝑎𝑥 +  𝑏 were the most challenging ones for the 

students in the identification of the relationship between variables (e.g., the Birthday 

Party 2 Problem, the Bank Account Problem, and the Sapling Problem). This was 

evident in their overthinking in finding the larger values in function tables and the 

amount of guidance requested from the teacher. The MC2 students’ equations in 
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these problems included parentheses as different than the MC1 students (as seen Tin 

able 4.16). Using parenthesis may demonstrate newly constructed composite units in 

students’ formulations (Olive & Çağlayan, 2008) and the steps in students’ 

mmindswhile they are formulating a rule (Radford, 2010). This might also represent 

the students’ assimilation of each operation with problem quantities. For example, 

the MC2 students quantified the amount of money increased after “a” month (i.e., 

(𝑎 ×  15)  +  30 in the Bank Account Problem) or the number of people seated on 

the sides of “m” tables (i.e., (𝑚 ×  2)  +  2 in the Birthday Party 2 Problem) as 

newly constructed units. Olive and Çağlayan (2008) observed that some eighth 

graders could appropriately write equations to represent a word problem including 

multiple unknowns in which they used parenthesis and products to show a new 

“composed quantity” (p. 11), a monetary value, formed by the production of two 

different quantities such as the number of dimes and the value of one dime (e.g., 

0.1(𝑛 + 1)). This use of parenthesis seems to be similar to Roy's (advanced MC2) 

and Belle’s (regular MC2) way of writing equations in the problems including the 

form of 𝑦 =  𝑎𝑥 +  𝑏.  Hence this might represent the support of MC2 students’ 

construction and coordination of composite units in their structural and analytical 

thinking during the generalizations of the relationships.  

Using parentheses in their equations might be also the students’ justification which 

is a significant element in generalizations (e.g., Ellis, 2007; Lannin, 2005). Using 

parenthesis justifies how they constructed these relationships. For example, Belle’s 

drawings in the Birthday Party 2 Problem when formulating how many people are 

seated around any number of tables demonstrated within which steps she formulated 

the rule, (𝑚 ×  2)  +  2. Therefore, her using parenthesis in the symbolic expression 

might be an explanation for supporting her symbolic generalization and the order of 

her operations. Radford (2010) interprets the use of parentheses (or brackets) in 

equations as a reflection of the story of the students’ thinking during the generation 

of the formula by indicating:  
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“…the formula is not an abstract symbolic calculating artefact but rather a 

story that narrates, in a highly condensed manner, the students’ mathematical 

experience.” (p.10) 

Regarding this, the MC2 students’ mathematical experience with the function 

contexts involving multiple operations with variables seemed more sophisticated 

than the MC1 students. Their written formulas including parentheses supported this. 

Although this form of function rules (i.e., 𝑦 =  𝑎𝑥 +  𝑏) presented a challenge for 

all the students in this study in terms of generalizing relationships, the MC1 students 

had more difficulty by not being able to generalize these relationships by themselves. 

Therefore, this distinction between the MC1 and MC2 students might be related to 

their operations with units and quantities, as a mathematical experience during the 

generalization of the functional relationships and representing the generalizations 

through symbols. Therefore, this mathematical experience in generating a formula 

Radford’s (2010) may rely on students’ understanding of quantities and the 

relationships of quantities, which foster students’ understanding of functional 

relationships (Ellis, 2011).  

Given the above discussion, it is obvious that the way of writing a symbolic 

expression and providing some justification for the generalizations is very important 

besides just writing a symbolic representation. Researchers indicated that using 

algebraic notation by itself does not mean thinking algebraically, and also the 

absence of algebraic notation does not mean the lack of algebraic thinking (e.g., 

Radford, 2010; Zazkis & Liljedahl, 2002). Zazkis and Liljedahl (2002) observed that 

there is an inconsistency between the students’ verbal expression of generality and 

expressing it in symbolic notations. Forming an algebraic formula may be achieved 

by some other means rather than employing generality. For example, students can 

reach a formula through trial-and-error or repeated-guess while changing some of 

the terms in the formula until getting the correct result. However, this generation of 

a formula does not refer to “an analytical way of thinking about indeterminate 

quantities” which is “the chief characteristic of algebraic thinking” (Radford, 2010, 

p.9).  
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5.2 Conclusion  

The findings and the discussion of findings provided several insights about learning 

and teaching algebraic thinking. In different steps of this study, from pre-assessment 

to the last teaching episode, specific thinking patterns of students and some task 

characteristics, on the one hand, created constraints for going further in algebraic 

thinking, and on the other hand, supported the improvement of students’ algebraic 

thinking. Therefore, one of the concluding remarks is about the interaction between 

fifth-grade students’ progress in algebraic thinking and their units coordination levels 

(i.e., multiplicative concepts). The second conclusion pertains to the characteristics 

of the HLT and the actual learning process that facilitated the students’ algebraic 

thinking by highlighting their units coordination such as the types and sequence of 

learning tasks, the manner of teacher’s intervention and the interactions among 

students.  

The first conclusion was that there might be an indirect interaction between the 

students' units coordination levels and their progress in algebraic thinking regarding 

symbolic representations of the relationships. The most direct relationship was 

between the students’ levels of units coordination and their generalization of 

relationships where they found the larger values in a pattern situation or verbalized 

the general rule by using indeterminate quantities. As they could identify the problem 

quantities and operate with these quantities, where they construct new composite 

units in multiplicative situations, their generalizations of the relationships became 

more possible during teaching episodes. Otherwise, they needed the teacher’s 

prompting, additional visual representations, or more numerical examples. The need 

for these types of support was evident in numerous instances for the MC1 students 

and in the novel problem situations (e.g., The Bank Account Problem 2) for the MC2 

students. When the students could not recognize the problem quantities, or find the 

larger values in a pattern situation, they were not able to create a symbolic 

expression. Therefore, their units coordination was in an interaction more with their 

ability to generalize the relationships than with their ability to write a symbolic 
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representation in this learning process. As Radford (2010) asserted, an algebraic 

formula embedded a narrative story of generalizations, as a product of algebraic 

thinking. Therefore, only the generalizations that have a story in mind can be 

transformed into an algebraic formula.  

Zwanch (2022a) indicated an inconsistency between her observation of aTNS 

(advanced MC1) students’ performance in generalizations and the students’ 

performances in an early algebra intervention study conducted by Blanton et al. 

(2019). Zwanch (2022a) observed that aTNS students could achieve oral 

generalization while they did not demonstrate sufficient symbolic representations. 

On the other hand, Blanton et al. (2019) observed that both control and experimental 

group students were more successful in representing the functional relationship by 

using variable notation as compared to using a verbal description. This made them 

reconsider the question of whether the students are ready for variable/symbolic 

notations in primary years. This is assumed to be a consequence of instructional 

interventions, which are also considered to be an important factor that can affect 

students’ cognitive and algebraic performances (Blanton et al., 2019; Zwanch, 

2022a). The findings of the current study are more consistent with the findings of 

Blanton et al. (2019) in terms of the difficulty in students’ verbal generalizations. 

The majority of the effort of the students appeared in their generalization process 

rather than symbolic representations. This would again be explained by the influence 

of units coordination on generalizing the relationships in a narrative form rather than 

on the ability to write symbolic representations.  

Furthermore, the MC2 students demonstrated key dimensions of algebraic thinking 

in their different forms of written symbolic expressions (e.g., structural thinking) and 

in their verbal generalizations which explicitly included the indeterminate quantities 

and different forms of functional thinking. Therefore, their development in algebraic 

thinking was more salient through their performance in generalizations and symbolic 

representations than the MC1 students’ development. Therefore, another concluding 

remark for the interaction between the students’ progress in algebraic thinking and 



 

 

235 

their units coordination is structural thinking and the sophisticated expressions of the 

generalizations of the MC2 students.  

The second main conclusion is about the characteristics of the HLT that aimed to 

improve the students’ algebraic thinking. It was seen that the contextual problems 

providing a pattern situation helped the students’ understanding of problem variables 

and the relationships. As suggested by early algebra researchers (e.g., Blanton et al., 

2011; Blanton, Stephens, et al., 2015; Carraher et al., 2008), using contextual 

problems by incorporating different representations such as tables and visuals could 

provide an effective learning environment for algebraic reasoning. For example, the 

students in the current study, even in the pre-assessment interview, could identify the 

relationships when there is a table of values or figural patterns such as in the Growing 

Caterpillar problem. Therefore, a learning process starting with pattern situations and 

incorporating the different representations such as figures and tables appeared to be 

an effective aspect of the HLT for developing students’ algebraic thinking. 

Therefore, the problems involving multiplicative relationships between unknown 

quantities and disembedding operation, such as the first task in Episode 2, could be 

moved to further episodes after the problems involving functional relationships in 

the form of y =ax, given the difficulty the MC1 students had.  When the students 

with lower levels of unit coordination began the learning process with problems 

involving composite units and fewer operations, they could have the scaffolding they 

needed.  

Furthermore, the students’ interaction with the tasks, the teacher, and their peers 

enhanced their learning as remarked by other researchers (e.g., Cobb et al., 1993; 

Hackenberg & Sevinç, 2024; Steffe & Olive, 2010; von Glasersfeld, 2001). For 

example, the teacher’s request to invert the equations (i.e., 𝑦 =  4𝑥 and 𝑥 =  𝑦 ÷

 4) enhanced the students’ structural thinking, especially the MC2 students, and 

allowed them to focus on the relationships between variables. This concluded that 

when the students were able to create equations representing the specific 

relationships, asking them to think about the different forms of the same relationships 
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or to create equivalent expressions supported their analytical and structural thinking, 

which are the dimensions of algebraic thinking. This, in turn, contributed to the 

students’ algebraic reasoning in different problems and contexts. In addition, the 

interaction between the students facilitated their learning during the episodes. 

Verbalizing their thinking and sharing their answers to questions in words helped 

their peers to learn and adapt to a similar way of thinking in further tasks. 

Finally, we filled in the empty parts of the claim (i.e., parentheses) indicated on page 

64 to provide a new perspective. In summary, this study concluded that a learning 

process including [contextual problems starting with pattern situations, including 

different representations, teacher prompting, and student interaction] develops 

students’ algebraic thinking. When students [operate with the MC2], they can 

[flexibly develop their algebraic thinking in different contexts such as generalizing 

the multiplicative relationship between unknown quantities and representing 

functional relationships in the form of 𝑦 =  𝑎𝑥 +  𝑏]. Students who [operate with 

the MC1] would progress in algebraic thinking when the learning activities start with 

[pattern situations and include functional relationships in the form of 𝑦 =  𝑎𝑥 ].  

5.2.1 Implications  

The investigation in this study resulted in both theoretical and practical implications. 

The theoretical implication of this study provides a new perspective on the 

interaction between the units coordination and algebraic thinking. The practical 

implication of this study highlights new insights into the instructional decisions 

about teaching algebra.  

Regarding the first implication, this study offers a new way of looking at how units 

coordination and algebraic reasoning interact, as a theoretical implication. It showed 

that the fifth-grade students who demonstrated the MC1 and MC2 level of units 

coordination could progress in algebraic thinking to the end of writing equations 

representing the relationships between variables or between unknown quantities. 
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They could accomplish many tasks by experiencing significant processes in 

algebraic reasoning, such as identifying the problem variables, constructing tables of 

values, generalizing the relationships between variables, and writing symbolic 

expressions to represent these relationships. This could happen through some 

differences in their actual learning trajectories. The characteristics of students’ 

mental operations in terms of units coordination explained the way they generalized, 

the amount and the extent of the support they received from visual materials and 

teacher prompts, and the types of tasks they could complete in these processes. 

Furthermore, the analysis of students’ mental operations provided new insights into 

the view of the students’ categorization in terms of units coordination. Although the 

differences between fifth-grade students' mental operations were primarily based on 

their multiplicative concepts, MC1 and MC2, there were also notable intra-level 

differences between the students' mental operations within the same level (as seen in 

section 4.1.1). This difference was similarly observed in students’ performance in 

interpreting the relationships between variables or unknown quantities. In other 

words, the discrepancy between MC2 students’ mental operations observed in the 

pre-assessment interviews was also observed in their progress in algebraic thinking, 

especially in the first tasks of each teaching episode. Consequently, the unit 

coordination levels in terms of multiplicative concepts were not viewed as 

comprising a set of distinct and rigid categories. Rather, they are considered as levels 

(e.g., MC1, MC2, and MC3) within which different mental operations are still 

involved at each level, and these operations may be in continual flux for each student. 

Therefore, this within-level variation might have the potential to illustrate the 

nuances of algebraic thinking and reasoning. This illustrates how units coordination 

facilitates the processes and structures inherent to algebraic thinking.  

This analysis also revealed practical implications for mathematics educators in 

research and instruction incorporating units coordination and algebraic thinking. 

First, the substantial progress of the MC1 and MC2 students from the pre-assessment 

to post-assessment suggests that early algebra interventions based on functional 

thinking in the form of 𝑦 =  𝑎𝑥, which involves only one operation with problem 
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quantities, would be appropriate for incorporating the processes of algebraic 

reasoning. Zwanch (2022a) remarked on the inconsistent findings about advanced 

MC1 students’ (aTNS, the terminology in her research) generalizations in her study 

and elementary year students’ advancement in algebraic reasoning in the study of 

Blanton et al. (2019). She suggested more research on how specific instructions 

could affect the MC1 students’ performance on symbolic representations of 

generalizations to clarify this inconsistency. Considering this, the current study 

provides meaningful evidence and explanation by emphasizing that a learning 

process starting with pattern situations and incorporating different representations 

such as figures and tables would be a good start for developing the students' algebraic 

reasoning. Similarly, Kieran (2022) suggested implementing further research to 

investigate the inconsistencies between verbal and symbolic generalizations. The 

discussion of the patterns in students’ performance of generalizing the relationships 

and transforming this relationship into a symbolic expression in the current study 

provides a novel interpretation by incorporating the students’ abilities to operate with 

units.    

Furthermore, the findings of this study suggest that problems including patterns and 

supporting materials for understanding the problem such as function tables, and 

figures for growing patterns would allow students, even at the early levels of units 

coordination, to gradually integrate algebraic reasoning, make sense of variables 

with given data, and move to the use of symbolic representations, as observed in 

other early algebra studies (e.g., Blanton et al., 2019; Carraher et al., 2006). The use 

of supporting materials also highlights the importance of multiple representations in 

algebraic reasoning (Brizuela & Ernest, 2008). Making transitions between different 

representations (or notations) within a mathematical thinking system such as tables, 

verbal expressions, and symbolic notations allows students to create meaningful 

communication and construct relationships (Brenner et al., 1997; Brizuela & Ernest, 

2008; Kaput, 1991). 



 

 

239 

5.2.2 Limitations and recommendations for further research  

This study involved an implementation of the HLT through six teaching episodes 

over three weeks. The duration of each teaching episode ranged from 60 to 75 

minutes. Teaching episodes were carried out in two different groups with two 

students in each group. Students in each group had similar mental operations (e.g., 

advanced MC2 and regular MC2). In this way, there were two groups of students 

attending teaching episodes. Regarding this implementation of the data collection 

process, this study included some limitations and corresponding recommendations 

for future research.   

Although the main focus is to investigate the interaction between the students’ units 

coordination levels and their progress in algebraic thinking through the intervention 

of the HLT rather than investigate the intervention itself, the duration of teaching 

episodes can still be a limitation. Observing an improvement in students’ algebraic 

thinking and reasoning would be more trustworthy in a longer period of intervention. 

For example, practicing different contexts by using a greater number of problems 

and providing more extensive discussions for each learning goal would help students 

make more progress in algebraic thinking, especially for the MC1 students. MC1 

students could attend additional episodes to improve their generalization of 

functional relationships in the form of 𝑦 =  𝑎𝑥 +  𝑏 because they had difficulty in 

this context. In addition, it would extend the duration of the intervention. However, 

the time frame in this study for conducting the HLT corresponds to two weeks of 

mathematics lessons in a real classroom environment according to the Turkish 

mathematics curriculum. Therefore, a three-week-long intervention in the current 

HLT may be a logical and appropriate amount of time to spend in real practice. 

Nevertheless, implementing longer-term teaching experiments, evaluating their 

findings, and comparing them with the current ones may also be a suggestion for 

future research. 

The second limitation is the number of students who participated in this study. In 

order to conduct a more in-depth analysis and to better observe each student's thought 
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processes, it could be more appropriate to work with fewer students. On the other 

hand, being able to observe students with more diverse mental operations in terms 

of units coordination might provide more evidence about the interaction between 

units coordination and progress in algebraic thinking. In addition, observing the same 

situation in a classroom setting with more students and also from diverse 

backgrounds might be another suggestion for further studies. The current study 

involved a relatively homogeneous group. Therefore, providing a heterogeneous 

group involving students with different levels of units coordination such as MC1, 

MC2, and MC3 could provide substantial information about the interaction between 

units coordination and the development of algebraic thinking. All these conditions 

would ensure the practicality of the HLT and the findings. Implementing and testing 

the HLT with appropriate revisions, such as moving the multiplicative task in 

Episode 2 after the tasks involving functional relationships, in a real classroom 

setting could be the next step in this study.  

In addition to the previous recommendations for future research regarding the 

implementation of the HLT with different students, a final recommendation is related 

to the consideration of the intra-level differences between students at the same level 

of units coordination. At the beginning of the study, I didn’t consider the intra-level 

differences for selecting the students, and I did not conjecture that these intra-level 

differences could be effective in the progress of algebraic thinking.  However, the 

findings demonstrated that the intra-level differences could play a role in the 

development of students’ algebraic thinking. Therefore, new research should 

consider the within-level differences in multiplicative concepts to discuss the 

potential interaction between students’ units coordination and any addressed 

mathematical performance. In this way, future learning sequences could be 

developed by considering intra-level differences in students’ units coordination. 
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D. The HLT  

EPISODE 1: Comparison of unknown quantities using equality and inequality 

Learning Outcomes  

• Express the comparison of unknown quantities verbally (e.g., it is 

longer/heavier/older than the other) 

• Attain hypothetical values for unknown quantities by using tables. 

• Assing letters/symbols to represent an unknown quantity. 

• Use letters/symbols to represent the comparison between unknown quantities 

using equality and inequality. 

• Understand the relational meaning of the equal sign. 

Tasks and Their Structures  

Task 1: Expressing the multiplicative relationship between two unknowns by using 

symbolic expressions 

Task 2: Expressing the additive relationship between three unknowns by using 

symbolic expressions 

Conjectures  

a) MC1 and MC2 students would compare the unknown quantities and express them 

verbally at the beginning of tasks. 

b) MC1 and MC2 students would attain values for each unknown instead of using 

literal symbols 

c) MC1 students would not understand how they represent the relationship using 

symbols. 

d) Roy or both MC2 students would use the assigned letters to represent the 

comparison with symbols towards the end of the episode.  

e) MC1 students would continue to assign values to unknown quantities instead of 

using symbols. 

f) MC1 and MC2 students would have difficulty in representing the comparison 

between three unknowns on un/balanced scales 

Instructional Moves Aligning with the Conjectures   

• Conjectures b – c – e  

-Assign multiple values for each unknown on a table and discuss the generalized 

comparison  

-Discuss the comparison symbols in expressing the numerical situations in 

mathematical language (e.g., =, <, >) 
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The HLT Table (Continued) 

-Direct the student to use letters for unknowns by saying “let the length of yellow 

pencil ‘a’ and the length of orange pencil ‘b’.” 

• Conjecture f 

-Use a table to assign values to three unknowns on an un/balanced scale and discuss 

how to represent two unknown weights on one side in comparison to the other on the 

other side. 

EPISODE 2: Comparison of unknown quantities with additive and multiplicative 

relationships using equality 

Learning Outcomes  

• Recognize multiplicative and additive relationships between unknown quantities 

through models. 

• Create different scenarios by attaining hypothetical values to unknown quantities 

having multiplicative or additive relationships by using tables.  

• Assing letters/symbols to represent an unknown quantity. 

• Express the multiplicative and additive relationship between unknown quantities 

verbally. 

• Express the multiplicative and additive relationship between unknown quantities 

using symbols. 

• Show the relational meaning of the equal sign. 

Tasks and Their Structures 

Task 1: Expressing the multiplicative relationship between two unknowns by using 

symbolic expressions. 

Task 2: Expressing the additive relationship between three unknowns by using 

symbolic expressions 

• Including contextual models and scenarios (Reality and level principle) 

• Including a comparison of two or more unknown quantities 

• Allowing using tables of hypothetical values for the unknowns  

• Including quantitative reasoning through the multiplicative and additive relationships 

(Intertwinement principle) 

• Generalizing from hypothetical values to symbols (Level principle) 

Conjectures  

a) MC1 and MC2 students would express the additive and multiplicative 

relationships verbally 

b) MC1 students use the letters to represent the lengths, but they would not write the 

equations 

c) MC1 students would assign values for the length of ropes like 1 and 4 or 2 and 8. 
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The HLT Table (Continued)  

d) MC1 students would give numerical values to the unknowns and do operations, 

but they would not represent the additive and multiplicative relationship using 

symbolic expressions  

e) MC2 students would express the additive and multiplicative relationship verbally 

and symbolically by using letters, operations, and equality. 

f) MC2 students would write different algebraic expressions representing the same 

multiplicative relationship (e.g., 4 x a: it is the longest rope; 4 x r = longer rope; r + 

r + r + r = longer rope; 4 x r = s; s / 4 = r).   

Instructional Moves Aligning with the Conjectures   

• Conjectures a – b – c – d:  

-Ask them to use letters and describe the same thing by using symbols 

- Ask and discuss “Is there another way to represent the relationship (addition 

/division/ multiplication/subtraction)?” 

- Emphasize that we do not know the lengths. Ask and discuss the relationship between 

the assigned numbers. For example, ask: “Which operation can you do to find one?” 

• Conjecture e – f:  

-Ask and discuss “How differently can you demonstrate the same relationship?” 

EPISODES 3-4: Representing functional relationships between variables in the form 

of 𝑦 =  𝑎𝑥  

Learning Outcomes  

• Identify the problem variables.  

• Construct a function table. 

• Identify and generalize the functional relationship in the table of data.  

• Understand and express the functional relationship between two variables through 

recursive, covariational, and correspondence approach 

• Represent the functional relationship using equation and variable notation. 

• Connection between multiple representation of functional relationship (verbal, table 

and symbolic) 

Tasks and Their Structures 

3-1) The Chair and Legs Problem: The relationship between the number of chairs 

and the number of legs (𝑦 =  4𝑥) 

3-2) The contexts like the first task: The number of dogs / people/ and the number 

of legs/ ears /noses (e.g., 𝑦 =  2𝑥 and 𝑦 =  𝑥) 

4-1) The Saving Money Problem: The relationship between time and the total 

amount of money ( 𝑦 =  5𝑥) 
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4-2) The Pool Problem: The relationship between the amount of water in a pool and 

the elapsed time (𝑦 =  2𝑥)  

4-3) The Birthday Party 1 Problem: The relationship between the number of tables and 

the number of people who are seated (𝑦 = 2𝑥)  

• Including contextual problems (Reality principle) 

• Relationship between discrete quantities (Episode 3) 

• Relationship between continuous quantities (Episode 4) 

• Using function tables to represent the data before generalization (Level principle) 

Conjectures 

a) MC2 students would calculate any corresponding value in function tables. 

b) MC1 students would not calculate the larger values in function tables because of 

recursive thinking. 

c) MC2 students would indicate the functional relationship verbally by using 

indeterminate quantities and write equations by using symbols. 

d) MC1 students would not indicate the functional relationship by using indeterminate 

quantities and letters.  

e) MC1 students would have difficulty understanding the problem about the 

relationship between the number of tables and the number of people seated around 

the tables 

Instructional Moves Aligning with the Conjectures   

• Conjecture a – c: 

-Ask them to use different strategies and explain the relationship by using different 

expressions and equations (Developing structural thinking)  

• Conjecture b – d: 

-Fill the table together on the board and ask about the relationship between two 

variables. Indicate the names of each variable in discussing each case. Let the students 

interpret the change in both variables simultaneously.  

• Conjecture e:  

-Ask them to draw models to represent each situation. Show one table, two tables, and 

three tables on the board respectively, and ask them to interpret the situation. 

EPISODES 5-6: Representing functional relationships between variables in the 

form of 𝑦 =  𝑎𝑥 + 𝑏  

Learning Outcomes  

• Identify the variables and the constant term in the problem   

• Construct a function table. 
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• Identify and generalize the functional relationship in the table of data.  

• Understand and express the functional relationship between two variables through 

recursive, covariational, and correspondence approach 

• Represent the functional relationship using equation and variable notation. 

• Connection between multiple representation of functional relationship (verbal, table 

and symbolic) 

Tasks and Their Structures 

5-1) The Birthday Party 2 Problem: The relationship between the number of tables 

and the number of people who are seated (𝑦 =  2𝑥 +  2) 

5-2) The Bank Account Problem: The relationship between time and the total 

amount of money saved in the account (𝑦 =  15𝑥 +  30 ) 

6-1) The People and Hats Problem: The relationship between a person’s height 

without a hat and with a hat ( 𝑦 =  𝑥 +  20 ) 

6-2) The Credit Card Problem: The relationship between the initial amount 

expenditure and total debt amount (𝑦 =  𝑥 –  20 ) 

6-3) The Sapling Problem: The relationship between the elapsed time (days) and the 

height of the sapling. (𝑦 =  2𝑥 +  35) 

• Including contextual problems (Reality principle) 

• Relationship between discrete quantities (Episode 5) 

• Relationship between continuous quantities (Episode 5-6) 

• Using function tables to represent the data before generalization (Level 

principle) 

Conjectures 

a) MC2 students would calculate any corresponding value in the function tables and 

indicate the functional relationship verbally by using indeterminate quantities  

b) MC1 students would not calculate the larger values in the function tables because 

of ignoring the constant value and they would not indicate the functional relationship 

by using indeterminate quantities and letters. 

c) MC1 and MC2 students would have difficulty in writing the equations representing 

the functional relationship such as ignoring the constant value  

d) MC1 students would have difficulty in writing the equations representing the 

functional relationship in the form of 𝑦 =  𝑥 ±  𝑎 which is different than the 

previous problems 
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The HLT Table (Continued) 

Instructional Moves Aligning with the Conjectures   

• Conjectures a   

-Ask them to explain the relationship by using different expressions and equations 

(Developing structural thinking)  

• Conjectures b 

- Fill in the table together on the board and ask the relationship between two 

variables. Let the students interpret the change in both variables simultaneously.  

• Conjectures c  

-Ask them to pay attention to how they fill in the table and what operation they did in 

calculating one variable by using the value of another variable. 

• Conjectures d 

-Discuss the meaning of problem variables, pay attention to the table of values, and 

highlight the covariation 
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E. Post-Assessment Questions Including Sample Data of a Student 
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