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ABSTRACT

DEVELOPING ALGEBRAIC THINKING OF FIFTH GRADERS:
AN INTERACTION WITH UNITS COORDINATION

Acar, Fatma
Doctor of Philosophy, Mathematics Education in Mathematics and Science
Education
Supervisor : Assoc. Prof. Dr. Serife Seving

July 2024, 271 pages

This study examined how fifth-grade students’ progress in algebraic thinking
interacted with their levels of units coordination. Four students from two different
units coordination levels attended pre-assessment interviews, six teaching episodes,
and post-assessment interviews. The findings demonstrated some patterns in
students’ progressions depending on both inter- and intra-level differences in units
coordination. For example, the students with higher level of units coordination
learned to write symbolic representations with fewer prompts and more quickly, used
different forms of functional thinking interchangeably, and demonstrated structural
thinking explicitly. The students with lower levels of units coordination relied on
recursive thinking in every new context, and could not generalize the functional
relationships in the form of y = ax + b without help. However, all students achieved
most of the learning goals despite the differences in their learning path. This is
promising for introducing algebraic thinking practices in the early middle school
years. The prominent differences in their learning path showed the need to consider
the differences in the nature of problems and the level of units coordination.

Keywords: Algebraic Thinking, Units Coordination, Functional Thinking



0z

BESINCI SINIF OGRENCIiLERININ CEBIiRSEL DUSUNMELERININ
GELISTIRILMESI: BIRIM KOORDINASYON iLE iLISKiSi

Acar, Fatma
Doktora, Matematik Egitimi, Matematik ve Fen Bilimleri Egitimi
Tez Yoneticisi: Dog. Dr. Serife Seving

Temmuz 2024, 271 sayfa

Bu ¢aligma, besinci sinif 6grencilerinin cebirsel diisiinmedeki ilerlemelerinin birim
koordinasyon diizeyleri ile etkilesimini incelemistir. iki farkli birim koordinasyon
diizeyinden dort 6grenci 6n degerlendirme goriismelerine, alti tane 6gretim deneyine
ve son degerlendirme goriismelerine katilmistir. Bulgular, birim koordinasyonda
hem seviyeler arast hem de seviye i¢i farkliliklara bagli olarak O6grencilerin
ilerlemelerinde de farkliliklar oldugunu géstermistir. Ornegin, birim koordinasyon
diizeyi daha yiliksek olan Ogrenciler daha az yonergeyle ve daha hizli bicimde
sembolik ifadeler yazmayr 6grenmis, fonksiyonel diisiinmenin farkli bigimlerini
kullanmis ve yapisal diisiinme gostermistir. Birim koordinasyon diizeyi daha diisiik
olan diger 6grenciler ise yinelemeli diisgiinmeye egilim gostermis ve y = ax + b
seklindeki fonksiyonel iliskileri yardimsiz genelleyememislerdir. Ogrenme
sirasindaki farkliliklarla beraber tim oOgrenciler 6grenme hedeflerinin ¢oguna
ulagmustir. Bu durum, ortaokulun ilk yillarinda cebirsel diisiinme uygulamalari i¢in
umut vericidir. Bu siiregteki one ¢ikan farkliliklar, problem ¢esidinin ve birim

koordinasyon seviyesindeki farkliliklarin dikkate alinmasi gerektigini gostermistir.

Anahtar Kelimeler: Birim Koordinasyon, Cebirsel Diisiinme, Fonksiyonel

Diistinme
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CHAPTER 1

INTRODUCTION

The origins of algebra and algebraic thinking can be traced back to antiquity when
people worked on word problems and presented solutions using verbal expressions
including numbers and stories but not algebraic notations (Ponte & Guimaraes, 2014;
Sfard, 1995). For example, the emergence of the function concept in antiquity is seen
in the practices of counting, identifying the connections and relations between
variables, determining a correspondence between a number of objects, and the notion
of dependence between quantities in solving the problems of the social and physical
world (Ponte, 1992). Algebra, as a “generalized computational process” has existed
in different forms such as rhetorical (i.e., including all verbal expressions) and
geometric (e.g., generating particular formulas and expressions through the areas of
geometric shapes) until today’s symbolic and abstract form (Sfard, 1995, p.18).
Therefore, as a system of thinking, a form of reasoning and proof, and a language of
generalizations (Usiskin, 1988; Stephens et al., 2021), it has always existed in
people’s lives for centuries in making decisions in various contexts and solving
problems (Usiskin, 1995).

Considering the implicit or explicit presence of algebra and algebraic thinking in
people’s lives throughout history, algebra deserves great attention as a way of
thinking, the language of relationships, the language for solving problems, and the
language of generalizations (Stacey & MacGregor, 1997; Usiskin, 1995). The study
of algebra provides students with the opportunity to develop their capacity for
structured abstract thinking and materials for logical reasoning (Stacey &
MacGregor, 1997). Therefore, in the early 1900s, the study of this subject was a

significant component of the mathematics curriculum in secondary schools, with the



objective of equipping students with the requisite skills to pursue further studies in
calculus at the university level (Ponte & Guimaraes, 2014). Subsequently,
mathematics educators proposed that it should be integrated with other mathematics
subjects, such as arithmetic and geometry, rather than being isolated in the
curriculum. However, in the 1980s, there emerged a divergence of opinions
regarding the teaching of algebra (Baker, 2013). The discussion was about the
challenges students face in learning algebra, the practical applications of the subject,
and whether it should be a compulsory course (Baker, 2013; Chazan, 1996;
MacGregor, 2004).

Students’ difficulties in learning algebra and performance in various algebraic tasks
were reported in the studies of mathematics educators such as a lack of understanding
of algebraic structures and a deficiency in conceptual knowledge of fundamental
algebra concepts (e.g., Bush & Karp, 2013; Ersoy & Erbas, 2005; Kaput & Blanton,
2001; Kieran, 1992; Stacey & Macgregor, 1997). These difficulties highlighted its
way of teaching and how it is presented in mathematics curricula (Chazan, 1996).
The roots of difficulties were attributed to teaching of algebraic concepts without
sufficient attention to conceptual understanding and to the superficial use of
symbolic language without connections between the contexts rather than the nature
of the subject (Carraher et al., 2008; Kaput, 2008; MacGregor, 2004; Sfard, 1995).
The use of symbolic representations as rote learning without an understanding of the
meanings inherent in the algebraic expressions can lead to an incomplete
understanding of algebra and difficulties in advanced mathematics in subsequent
years (Brizuela & Earnest, 2008; Carraher et al., 2008).

Radford (2000) indicated that the historical development of algebra as a product of
a community of practice can have some implications for teaching it to today's
mathematics educators. Introducing the main concepts through contextual situations
in a problem case, operating with these mathematical entities, and then abstracting
them as mathematical objects would be more meaningful in the process of learning
algebra (Sfard, 1995). For example, Sfard (1992) indicated that the ancient studies

with function were implicit and relied only on operations and computations rather



than having an object characteristic. Throughout history, it has developed through
many extensions such as having an analytic structure with algebraic expressions and
graphic representations. In parallel, Sfard (1995) asserted that reification is an
important process in constructing abstract mathematical concepts through algebraic
processes, meaning “turning computational operations into permanent objects-like

entities” (p. 16).

In response to the aforementioned discussions about the superficial presentation of
algebraic concepts and the difficulties of students in learning algebra, researchers
adopted an early algebra perspective in teaching algebra (e.g., Blanton et al., 2019;
Blanton, Brizuela, et al., 2015; Carraher et al., 2008). For example, Blanton et al.
(2017) asserted that the reason younger students or adolescents do not have a robust
understanding of the variable concept is not because of their “lack of ability” (p.
199), rather because of the lack of opportunities given in the classroom to
mathematize the variables in contextual problems. These opportunities can also
allow what Sfard (1995) supported in abstracting mathematical concepts through
appropriate and sufficient processes for reification. This approach in teaching
algebra refers to an explicit and gradual presentation of main algebraic processes and
concepts into the mathematics curriculum starting from the early elementary years
(Blanton & Kaput, 2005; Carraher et al., 2008). Therefore, some common questions
appeared in the literature such as whether there is a particular/appropriate time for
learning algebra, and whether students should master arithmetic before learning
algebra (Levin & Walkoe, 2022). These questions and interpretations about students’
difficulty in learning and doing algebra raise the issue of how algebra can be
introduced in the early years of schools, which is elaborated briefly in the next

section.

11 Introducing Algebra in the Elementary Years

There are several suggestions for teaching and learning algebra with more

understanding, such as beginning in early years, interconnecting algebra with other



mathematics subjects, presenting various algebraic thinking forms, and considering
the students’ current capacities and abilities (Kaput, 1999). Therefore, there is
increasing attention on early algebra studies in which algebraic reasoning, and some
practices are implemented in early elementary years to see how students at an early
age can practice algebra and achieve those processes (e.g., Blanton et al., 2019;
Blanton, Brizuela, et al., 2015; Carraher et al., 2008). For example, Blanton et al.
(2011) emphasized significant concepts and constructs as five big ideas in early
algebra teaching which are generalized arithmetic, variable understanding,

understanding of equivalence, quantitative reasoning and functional thinking.

The notion of “early algebra” appeared in many studies examining the teaching and
learning of algebraic concepts such as generalization, functional thinking, and
variable understanding in elementary years of schooling, even in kindergarten ages
(e.g., Blanton & Kaput, 2005; Carraher et al., 2008). Researchers asserted that giving
algebraic reasoning in early elementary years invests in the students’ sophisticated
and conceptual understanding of further mathematics learning (e.g., Blanton &
Kaput, 2005; Carraher et al., 2008; Kaput, 1999; Radford, 2014). For example,
Carraher et al. (2008) described a learning process where some key mathematical
processes are applied such as using indeterminate quantities in contextual problems,
interpreting the data in function tables, creating conjectures, generalizing, and

representing the relationships in different formats.

Researchers observed that students in elementary years could identify problem
quantities, generalize the relationships between variables, and represent these
relationships using symbolic notations and equations (e.g., Blanton et al., 2019;
Blanton, Stephens, et al., 2015; Brizuela et al., 2015; Carraher et al., 2006). For
example, Brizuela et al. (2015) demonstrated that first graders could use algebraic
notations to represent the relationships between covarying quantities by possessing
different understandings of variables. They indicated that given opportunities
through meaningful contexts and employing useful methods such as presenting the
information in a function table and asking for generating a rule allowed students to

recognize and work with indeterminate quantities, which is a key condition of



algebraic thinking (Radford, 2014). Similarly, Blanton, Stephens, et al. (2015) found
that third graders who took a one-year early algebra intervention focusing on
generalized arithmetic, variable understanding, understanding of equal signs, and
functional thinking demonstrated an improvement in algebraic thinking. They started
to think relationally about the equal sign, use variable notations to represent
unknown quantities, and generalize functional relationships between covarying
quantities. In addition, Blanton et al. (2019) found that students in a longitudinal
intervention showed improvement in various algebraic practices, such as
generalizing arithmetic properties with symbols and expressing functional thinking
in various forms, from third to fifth grade. They also noted that students were better
at using symbols to represent the arithmetic properties than at writing equations for
functional relationships. This note on the difference in the students' performances in
various algebraic tasks was later discussed by Zwanch (2022a) on the role of certain

cognitive factors, which is also mentioned in the next heading.

These findings of early algebra studies are very important in terms of dealing with
students’ difficulties in learning algebra, improving their algebraic thinking, and
observing the roots of important algebraic subjects of advanced mathematics in
young students’ thinking processes. Despite the promising findings of early algebra
studies, some researchers remarked on the constraints of young students’ mental
operations with known and unknown quantities in their various mathematical
performances such as multiplicative reasoning, generalization, and algebraic
reasoning (e.g., Hackenberg, 2013; Olive & Caglayan, 2008). Investigating
reasoning with quantities to understand algebraic thinking (e.g., Olive & Caglayan,
2008; Smith & Thompson, 2008) puts further question marks in investigating young
students’ practices of algebraic thinking and reasoning. For example, there appeared
questions such as how the students’ understanding of quantities and their
relationships affect their writing equations and generalizations of multiplicative
relationships (e.g., Hackenberg & Lee, 2015; Olive & Caglayan, 2008; Steffe &
Izsak, 2002).



1.2 Students’ Mental Structures about Quantities

Analyzing the problems through the quantities and the relationships between the
quantities refers to quantitative reasoning (Ellis, 2007; Thompson, 1990). Steffe and
Izsak (2002) described algebraic reasoning through reasoning on unknown or known
quantities. It involves the generalizations of the relationships between quantities
(Blanton & Kaput, 2011). Therefore, researchers who take a quantitative reasoning
perspective in investigating the teaching and learning algebra indicated that
understanding quantities and relations between them is an essential factor for
developing algebraic reasoning (e.g., Ellis, 2011; Fuji & Stephens, 2008;
Hackenberg, 2013; Hackenberg et al., 2021; Olive & Caglayan, 2008; Smith &
Thompson, 2008). For example, interpreting the relationships between quantities
multiplicatively signifies the complexity of this reasoning process. This, in turn,
allows students to recognize and generalize the multiplicative relationships in
different forms such as verbal or symbolic (Hackenberg & Lee, 2015; Zwanch,
2022a).

Many researchers (e.g., Ellis, 2011; Stephens, Ellis, et al., 2017) pointed out that
quantitative reasoning can be enhanced by providing problem situations dealing with
various real-life quantities. However, it is remarked that real-life situations do not
guarantee the students’ recognition and operation with quantities and meaningful
generalizations by themselves; the students’ conceptions and the way of mental
operations with quantities should be taken into account as well (Stephens, Ellis, et
al., 2017). Therefore, students’ conceptions of numbers and how they operate with
quantities by using their current mental structures, as units coordinating activity,
gained importance in investigating students' various mathematics performances such
as algebraic reasoning, multiplicative reasoning and fraction understanding (e.g.,
Hackenberg, 2013; Olive & Caglayan, 2008; Steffe, 1992).

The quantitative complexity in students’ work with quantities is described through
their construction and coordination of units (Ulrich, 2015). For example, calculating

the number of muffins in several rows each involving the same number of muffins



requires students to iterate units (each muffin) and composite units (the number of
muffins in each row) into another composite unit (the number of rows) (Hackenberg,
2010). The level of units students assimilate determines their levels of units
coordination (i.e., MC1, MC2, and MC3). For instance, assimilating one level of
units refers to students’ calculating the total number of muffins through activity by
taking one-level of units (one muffin) as given, such as counting by ones and
signifying each count of a row of muffins. This is called stage 1 or the first
multiplicative concept (MC1) in terms of the levels of units coordination
(Hackenberg & Tillema, 2009; Hackenberg & Sevinc, 2024). Assimilating two-
levels of units refers to students’ recognition of this multiplying structure before
activity (MC2). Therefore, they know that they need to find, for example, five (the
number of rows) fours (the number of muffins in each row). When students
assimilated three levels of units that means they can flexibly operate between the
different units such as the number of rows, the number of muffins in each row and
the total number of muffins as given structures it refers to the third multiplicative
concept (MC3). Steffe (1992) indicated that analyzing multiplicative situations
requires students to coordinate at least two composite units by distributing one

composite unit over the other.

By integrating the framework of students’ levels of units coordination and their
performance in various algebraic tasks, researchers observed that students’
transformation and coordination of units is an influential factor in algebraic
reasoning in terms of writing equations and using letters for unknown quantities and
generalizations (e.g., Hackenberg, 2013; Hackenberg & Lee, 2015; Zwanch, 20223,
2022b). They suggest that students must possess a certain unit coordination level in
order to generalize and represent the relationship between quantities using symbols.
For example, researchers asserted that students who coordinate two-levels of units
in activity would not perceive quantitative unknowns while the students at the upper
levels (i.e., MC2 or MC3) can operate with quantitative unknowns such as

partitioning and iterating (Hackenberg, 2013; Hackenberg et al., 2021).



Students at different levels of units coordination demonstrated qualitatively different
ways of writing equations and generalizations of relationships between unknown
quantities (Hackenberg & Lee, 2015; Zwanch, 2022a). For example, in a
multiplicative relationship between two lengths, the longer one is five times the
shorter one (y = 5x), students’ assimilation of three-level of units helps them to
analyze this situation in a more sophisticated way (Hackenberg & Lee, 2015).
Representing this equation in symbols requires constructing the unknown y as a unit
of five units of x as a three-level units structure. This, in turn, could allow students
to generate other equations if they can reflect on this three-level of units structure.
For example, taking y as a composite unit and constructing x by dividing y by the
unit of fives (i.e., y/5 = x) represent students’ sophistication of units coordination

by internalizing three-levels of units.

Considering both promising findings of early algebra studies (e.g., Blanton et al.,
2019; Carraher et al., 2006) and remarkable notes about the interaction between units
coordination and algebraic reasoning, | aimed to incorporate those findings and
investigate this interaction in a different context. In general, this study aimed to
investigate fifth-grade students’ progress in algebraic thinking with the potential
interaction with their units coordination. The next section presents the purpose of the

study in more detail.

1.3 Purpose and Research Questions

The point of departure in this study is the crucial role of algebra and algebraic
thinking in mathematics and real life. It embedded many important thinking
processes such as analytical thinking and structural thinking (Radford, 2014; Kieran,
2022), and useful practices such as generalizations, justifications, and the use of a
new language in expressing the generalities (Ellis, 2007; Kaput, 2008; Usiskin,
1995). These are important components in solving problems, evaluating real-life
situations and decision-making (Usiskin, 1995). In addition, notable findings from

early algebra studies provided a new perspective, such as the gradual settling of



algebraic processes, which allows young students to orient themselves to key
processes such as functional thinking, generalization, and symbolic notation
(Blanton & Kaput, 2005; Carraher et al., 2008).

Despite the promising findings of early algebra studies about improving young
students’ algebraic thinking and reasoning, researchers focusing on quantitative
reasoning perspective and studying units coordination raised new questions on the
way to the goal of this study. They asserted that certain cognitive factors of students
such as constructing and operating with units are influential in students’ algebraic
thinking and reasoning (e.g., Hackenberg, 2013; Zwanch, 2022a). For example,
Hackenberg (2013) indicated that students need to possess certain mental structures
in terms of units coordination to achieve algebraic tasks such as writing equations.
Accordingly, it may be difficult for elementary and early middle school students (i.e.,
fifth grade) to achieve algebraic reasoning, given the estimations and findings about
students’ levels of units coordination (e.g., Acar & Sevinc, 2021; Clark & Kamii,
1996; Kosko, 2019; Steffe, 2024). Researchers estimated that more than 20 percent
of fifth graders could not demonstrate valid multiplicative thinking (Clark & Kamii,
1996; Kosko, 2019) such as operating at the MCL1 level or pre-multiplicative stage
(Acar & Seving, 2021; Steffe, 2024). This could be a significant constraint for
administering an early algebra learning approach to young students.

Departing from this contradiction between early algebra studies and units
coordination perspective, the goal of this study emerged. It was aimed to investigate
students’ progress in algebraic thinking in interaction with their units coordination.
To achieve this goal, there was a need to design a detailed learning process including
the specified learning goals, related learning tasks, and conjectures about students'
learning process, which refers to a Hypothetical Learning Trajectory (Simon, 1995).
In this process, | aimed to study with fifth graders by hypothesizing that | would
encounter students at different levels of multiplicative concepts, starting from MC1
(Acar & Seving, 2021; Steffe, 2024). The fifth-grade level, as opposed to lower
grades, can provide students who have attained at least an MCL1 level, which

represents the initial stage of multiplicative concepts in terms of units coordination.



At this stage, students can complete multiplicative tasks (e.g., Hackenberg, 2013;
Hackenberg et al., 2021), which can be encountered in algebraic tasks. In addition,
the fifth graders do not receive formal algebra, which could mitigate the adverse
consequences of misaligned or erroneous preconceptions during the learning

process.

For generating the domain-specific perspective in the hypothetical learning
trajectory (HLT) and designing the learning tasks, | aimed to follow the researchers
in the early algebra studies (e.g., Blanton, 2008; Blanton & Kaput, 2008; Carraher et
al., 2008). They supported allowing students to study in meaningful contexts, to think
about the relationships between quantities, and to make generalizations for helping
them understand the key ideas and to move smoothly with a new symbolic language
to represent and express the relationships (e.g., Blanton, Stephens, et al., 2015;
Carraher et al., 2008; Stephens, Fonger, et al., 2017). These generated the overall
characteristics of the framework of the HLT.

Conclusively, the main goal of this study was to investigate fifth-grade students’
progress in algebraic thinking in interaction with their units coordination levels. |
aimed to observe this progress and interaction during a learning sequence specified
after actualizing the HLT that targeted the students’ generalizations and symbolic
representations of the relationships between unknown quantities or variables.

Specifically, this study aimed to answer the following research questions:

1. What is the initial state of fifth-grade students’ units coordination and

algebraic thinking?

2. How can the units coordination levels of fifth-grade students interact with
their progress in algebraic thinking during a learning sequence that focuses
on the generalization of the relationships between unknown quantities and

between variables?
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2.1. How can the units coordination levels of fifth-grade students interact
with their progress in algebraic thinking regarding the relationships

between unknown quantities?

2.2. How can the units coordination levels of fifth-grade students interact
with their progress in algebraic thinking regarding the functional
relationships between variables?

The process from the initial motivation of this study to the formulation of the

research questions described until this part is presented in Figure 1.1.

Progress in

Units algebraic
Coordination thinking

in relation to
algebraic
reasoning

Algebra is Early algebra

important matters

Interaction of
units
coordination

Figure 1.1 The overall process in formulation of the research questions

1.4 The Significance of the Study

There are many studies investigating the interaction between units coordination and
performance on algebraic tasks in various aspects (e.g., Hackenberg, 2013;
Hackenberg & Lee, 2015; Zwanch, 2022a, 2022b). This study differed from them in
several aspects such as the characteristics of students, the design of the study, and
the assessment procedure in terms of task characteristics.
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First of all, this study involved fifth graders as participants whereas other studies had
students at upper levels, ranging from 6'" to 10" grade (e.g., Hackenberg et al., 2021;
Hackenberg & Lee, 2015; Zwanch, 2022a, 2022Db). Including younger students in the
investigation of the interaction between algebraic thinking and units coordination
was a challenge considering that a considerable amount of fifth graders may not be
good at multiplicative thinking (Clark & Kamii, 1996; Kosko, 2019; Steffe, 2024)
which is a significant element in both units coordination and algebraic reasoning
tasks. However, the inclusion of students who had not yet demonstrated significant
proficiency in these subjects was also intended. This was because | aimed to observe
their progress in algebraic thinking through the HLT. This study also aimed to
include MC1 students who were regarded as incapable of achieving some algebraic
processes, such as perceiving quantitative unknowns (Hackenberg et al., 2021) and
symbolic generalizations (Zwanch, 2022a). Given that other studies worked with
students at upper levels of units coordination such as MC2 and MC3 (e.g.,
Hackenberg et al., 2017; Hackenberg et al., 2021), except Zwanch (2022a) who
included MC1 students as well but at sixth and upper-grade levels, | conjectured that
including MC1 students in this study would provide significant findings regarding
how further these students could go in algebraic thinking. Conclusively, working
with fifth graders and also MC1 students represents a departure from previous studies
and offers a unique advantage in conducting this design study aligned with the goal

of the study.

Another distinguishing feature of this study is its methodology involving the
conceptual framework, the design, and data collection. Firstly, this study aimed to
examine students’ progress in algebraic thinking throughout the HLT by interpreting
it with their units coordination levels. The main goal of the HLT was to develop
students’ algebraic thinking in terms of generalizing the relationships between
unknown quantities and generalizing functional relationships between variables.
Therefore, this study mainly used a design-based approach to develop an HLT and
adopted an early algebra perspective in teaching and designing the tasks. On the other

hand, the majority of studies investigating students' diverse algebraic performances
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in relation to their units coordination levels employed a clinical interview approach
(e.g., Hackenberg, 2013; Hackenberg & Lee, 2015; Zwanch, 2022a). Some
researchers who used a design experiment approach (e.g., Hackenberg et al., 2017;
Hackenberg et al., 2021) mainly focused on the students’ fractional knowledge and
expression of relationships between unknown lengths measured by different non-
standard units. Furthermore, the aforementioned studies presented problems
including fractional units and coefficients (e.g., Hackenberg et al., 2017; Hackenberg
& Lee, 2015; Olive & Caglayan, 2008). In contrast, all problems in this study
included whole number quantities by focusing on their algebraic reasoning involving

functional thinking, analytical thinking, and generalization.

To summarize, this study differs from other studies in terms of methodology,
although there is some overlap in theoretical frameworks. Therefore, it gains
importance through its design, contexts, and instructional tasks which are diverged
from other studies by bringing together different algebraic reasoning processes such
as the generalizing relationships between unknown quantities and generalizing
functional relationships. In this way, the findings of this study would contribute to
the existing body of knowledge on the teaching of algebra in the early middle school
years and on the coordination of units to plan further instructions and mathematics
curricula that integrate algebra more effectively in elementary or early middle school

years.

1.5 Definitions of Important Terms

This section defined important terms that were used frequently throughout the
dissertation text. The definitions or explanations of the terms were based on how |
understood each concept grounded on the descriptions of various researchers or
mathematics educators and the meaning | used throughout the text. Although there
are many important mathematical concepts embedded in this study, that need to be
clearly described, this section touches on only several of them that are important to

understand the research objective from the outset. Other important concepts and
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terms were explained in Chapter 2 based on the conceptual and theoretical

perspectives.

Algebraic thinking is one of the key concepts of this study. It refers to a thinking
process involving working with indeterminate quantities in an analytic way which
can be reflected in different ways such as verbal, symbols, or figures (Radford,
2014). For example, considering that ‘changing the order of any two numbers does
not change their sum’ refers to algebraic thinking by taking indeterminate quantities
(i.e., any two numbers), operating with them as abstract objects, and deducing a
property for the addition operation in a structured way. This verbal statement of

thought can be denoted in symbols likea + b = b + a.

Algebraic reasoning is described as “an activity of generalizing mathematical ideas”
(Blanton & Kaput, 2011, p. 6) and it involves the processes of generalization,
symbolical representation of these generalizations, and operating in this system of
symbols (Kaput, 2008). In early algebra literature, this term is used interchangeably
with algebraic thinking (Kieran, 2011). However, Kieran (2011) defended the use of
a broader term, algebraic thinking, against the risk of a narrow interpretation of
algebraic reasoning from a classical mathematical reasoning perspective. Therefore,

| use this term to refer to any generalization action in problem situations.

Functional relationship refers to a covarying relationship between gquantities in
which the change in one quantity is expressed in terms of the change in the other
quantity. For example, in a basic early algebra context, expressing the number of
legs of dogs as ‘it increases by four when the number of dogs increases by one’ or
‘it is four times the number of dogs’ refers to expressing a functional relationship.
Moreover, this way of thinking including recognition of functional relationships
refers to functional thinking (Confrey & Smith, 1994; Smith, 2008) which is one
dimension of algebraic thinking (Kieran, 2022).

Units coordination refers to the mental operations that construct the units in different
levels and the relationships between units and coordinate them in different problem
situations (Hackenberg & Seving, 2024; Steffe, 2001). Units coordination
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demonstrates the “quantitative complexity” of constructing and coordinating units
and composite units (Ulrich, 2015, p. 3). For example, the number five as a unit
consisting of five iterable units of ones refers to constructing composite units and
coordinating two-levels of units. This composite unit is abstracted from a counting
activity and separated from a sequence. Therefore, two different sequences such as

1-2-3-4-5 and 16-17-18-19-20 represent the same composite unit, five.

A Hypothetical Learning Trajectory (HLT) refers to teachers’ or researchers’
prediction of a learning path in a particular context including the learning goals,
hypothesis about the students’ learning and learning tasks (Simon, 1995). It is
hypothetical because a teacher cannot know exactly what might happen during the
learning process. He/she can only hypothesize what might happen based on his/her
theoretical understanding, current knowledge of the students, findings from related

literature, and previous experiences.

Learning sequence refers to which path students got from one point to the current
one in a designed process (Bakker, 2018). | used this terminology in several places
in this study to indicate the process or steps the students take during and after the
HLT is actualized. After implementing the learning tasks in the HLT, the outcome
was an actual learning process rather than a hypothetical one. Therefore, | used the
term learning sequence in some parts of the study to emphasize that it is an actual

path anymore.

Progress in algebraic thinking with interaction with units coordination refers to the
development of students’ way of algebraic thinking, which is potentially influenced
by their levels of units coordination. It concerns the interpretation of students’
development in algebraic thinking by relating the patterns in their progress to their

units coordination.
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CHAPTER 2

LITERATURE REVIEW

In this study, the purpose was to investigate the interaction between the students’
units coordination levels and their progress in algebraic thinking through a
hypothetical learning trajectory that centered on different algebraic reasoning tasks
including generalization, functional thinking, and symbolic representation. As the
investigation of this study involves many mathematical concepts and processes, this
chapter presents the theoretical and conceptual framework that guided our

understanding and the investigation.

Algebraic thinking and unit coordination are the two main concepts in this study.
Within this framework, this chapter presents the nature of algebra and unit
coordination in two different sections, respectively. Each section provides a detailed
explanation of the relevant concept, accompanied by clear definitions and
descriptions of the related terms. It also presents an overview of the related literature,
which serves to demonstrate relevant findings and to guide this research in terms of

methodology and interpretations of findings.

2.1  The Nature of Algebraic Thinking

The origins of algebra and algebraic thinking go back to ancient times when a
minority of people gradually developed a symbolic system as a problem-solving
strategy, which evolved into the use of symbols from verbally expressing the
relationships in problems (Sfard, 1995). For example, in ancient times, the idea of
function as a key concept in algebra appeared in verbal expressions of dependence
without using symbols (Youschkevitch, 1976). By the end of the nineteenth century,
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the number of texts on algebra increased (Katz, 1997). These texts involved various
definitions of algebra priorly emphasizing equation solving, general procedure of
operations, unknown and known quantities, and notations. As algebra developed
throughout history as a branch of mathematics, and as the number of people working
on it increased, it gained a multifaceted nature (Katz, 1997).

Researchers interpret algebra as an important tool for various mathematical activities
such as expressing generality and relationships, constructing equivalent expressions,
and problem-solving (e.g., Stacey & MacGregor, 1997; MacGregor, 2004; Usiskin,
1995). Most of these activities require certain ways of thinking and reasoning such
as analytical thinking, abstraction, deduction, and structural thinking (Kieran, 1989;
Radford, 2014; Usiskin, 1995). Based on various ways of thinking and reasoning that
are embedded in algebra, the following paragraphs identify and clarify the
dimensions and conditions of algebraic thinking and the key processes and aspects

of algebraic reasoning.

Researchers make a characterization of algebraic thinking to differentiate it from
arithmetic thinking and to specify it in various mathematical processes (e.g., Kieran,
1989; Radford, 2014). Radford (2014) characterizes algebraic thinking through its
analytic nature in which the operations are made with indeterminate quantities as if
they were known quantities and rules or formulas are deduced as a consequence of
this thinking/operation process. Hence, Radford (2014) put forward three conditions

to specify algebraic thinking: indeterminacy, denotation, and analyticity.

The condition of indeterminacy refers to dealing with quantities that are not known
and can take various numerical values (i.e., indeterminate) in a problem situation.
These indeterminate quantities can be denoted in various ways such as symbols,
natural language, and gestures, which refer to the denotation condition. Finally, the
analyticity condition refers to the operations on these indeterminate quantities using
a symbolic system. The condition of analyticity is important because it represents
that algebraic thinking is an effective tool for deductive reasoning, which results in

an identity or formula after operating with unknown quantities (MacGregor, 2004).
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This deductive way of reasoning refers to establishing mathematical formulas or

truths through the use of current mathematical rules and truths (Usiskin, 1995).

Furthermore, Kieran (2022) indicated three main dimensions of algebraic thinking:
analytic thinking, structural thinking, and functional thinking. Similar to Radford
(2014), Kieran (2022) remarked that the analytic manner of algebraic thinking is
essential to differentiate it from arithmetic thinking. This form of thinking is
described as holding unknowns and operating with them like they were known
quantities. This is exemplified through some practices such as equation solving,
transformation of equalities, and generalization of arithmetic properties. Radford
(2014) asserted that analyticity is the way of algebraic thinking in which the formulas
are formed through analytical deduction rather than guessing or trying, hence it is
why Frangois Viéte, the French mathematician in the sixteenth century, called

algebra an analytic art.

The dimension of structural thinking points out the ability to be aware of the relations
and structures in mathematical notions and express and elaborate on these structures
(Kieran, 2022). Structural thinking is considered an essential characterization of
algebraic thinking by different researchers (e.g., Blanton & Kaput, 2005; Blanton,
Stephens et al., 2015). It requires treating mathematical notions or expressions as
abstract objects rather than operational processes (Sfard, 1991). For example,
defining rational numbers as “pairs of integers (a member of a specially defined set
of pairs)” rather than a result of “division of integers” represents a structural way of
definition rather than an operational way (Sfard, 1991, p.5). Similarly, explaining the
equality 12 + 15 = 15 + 12 by remarking that reversing the numbers does not
change the addition (i.e., reflecting the commutative property) represents a kind of
structural thinking (Blanton, Stephens, et al., 2015). In an equation-solving task,
considering the algebraic expression “x + 5” a mathematical object in an equation
“3(x + 5) = 36” (p. 56) reflects an awareness of the structure and allows the
students to conduct more meaningful ways for solving the equation rather than

applying the procedures learned by rote such as multiplying 3 with (x + 5) (p.56).
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The last dimension of algebraic thinking is functional thinking (Kieran, 2022).
Functional thinking can be explained through the concept of function and functional

relationship.

The idea of function first appeared in verbal expressions and definitions of
dependence rather than in symbolic expressions in ancient times (Youschkevitch,
1976). Different forms of functions existed in ancient times, such as "implying a
correspondence between a set of given objects and a sequence of counting numbers,"
"four elementary arithmetical operations, which are functions of two variables," and
"tables of reciprocals” (Ponte, 1992, p. 3). Freudenthal (1983) described the
emergence of the function concept through the connections and relations between
variables and the notion of dependence between the quantities in the social and
physical world. Thereby, functions are described as a “world of relationships, world

of processes and world of rules, patterns and laws” (Sierpinska, 1992, p.31).

Functional thinking is the recognition of the relationships among covarying
quantities and the representation of this functional relationship in various forms
including words, graphs, and symbols (Smith, 2008). During a functional thinking
practice, there are multiple steps to carry out such as identifying covarying quantities,
recording the values of the quantities reciprocally (i.e., making a table), determining
patterns in the record, and representing this functional relationship by coordinating
the patterns. Therefore, functional thinking refers to the thinking processes in
interpreting functional relationships between covarying quantities in mathematical

problems or real-life situations.

In defining a functional relationship, two common approaches are described as
covariational and correspondence (Confrey & Smith, 1994). In the covariational
approach, the functional relationship is defined through the rate of change by
interpreting a corresponding increase in one variable with the increase/decrease in
the other variable. In other words, a functional relationship is described by focusing
on how each quantity varies from one step to the following (i.e., from x; to x, and

from yi to y,) and determining the functional relationship by coordinating this
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transition. In a correspondence approach, the relation is defined between
“corresponding pairs of variables” (Smith, 2008, p.147) such as “the number of eyes
equals 2 times the number of people” (i.e., y = 2x). Hence, in the correspondence
approach, an invented rule or formula determines the value of one quantity (e.g., y)

with respect to the other quantity.

In short, the practices of algebra incorporated important thinking processes. An
important process starts with identifying and operating with indeterminate quantities.
Additionally, there are abstracting the structures constructed through these
operations and denoting or expressing the outcomes of the thinking process in
various forms. In addition to characterizing algebraic thinking through its
dimensions, understanding the nature of algebra requires describing the main aspects

of algebraic reasoning processes. This is the topic of the next section.

2.1.1 Algebraic reasoning

Kaput (2008) remarked on the challenge of describing algebra because of its
multifaceted nature evolved throughout history and different cultures. The
integration of different activities of algebra such as the generalization of
relationships and the use of indeterminate quantities provides a broader and general
description of algebraic reasoning (e.g., Carraher & Schliemann, 2014; Kaput, 2008).
In many research, algebraic reasoning is used interchangeably with algebraic
thinking. However, Kieran (2011) remarked that algebraic reasoning does not

involve as many thinking processes as algebraic thinking embodies.

Kaput (2008) differentiates algebra and algebraic reasoning by describing algebra as
a body of knowledge by its structure in cultural contexts while defining algebraic
reasoning as a “human activity” (p. 9), depending on thought processes. Kaput’s
(2008) description of algebraic reasoning includes two core aspects: one is
“systematically symbolizing generalizations of regularities” and the other is

“syntactically guided reasoning and actions on generalization expressed in

21



conventional symbol systems” (p.11). He also describes several content strands that
include, to a considerable extent, these main practices in algebra such as generalized
arithmetic incorporating the structures of operations and the relations with
quantitative reasoning, functions with the relationships between covarying
quantities, and modeling applications of mathematics (see Figure 2.1).

The Two Core Aspects

(A) Algebra as systematically symbolizing generalizations of regularities and
constraints.

(B) Algebra as syntactically guided reasoning and actions on generalizations
expressed in conventional symbol systems.

Core Aspects A & B Are Embodied in Three Strands

1. Algebra as the study of structures and systems astracted from computations
and relations, including those arising in arithmetic (algebra as generalized
arithmetic) and in quantitative reasoning,.

2. Algebra as the study of functions, relations, and joint variation.

3. Algebra as the application of a cluster of modeling languages both inside
and outside of mathematics.

Figure 2.1. Kaput’s (2008) framework describing algebraic reasoning (p.11)

Kaput (2008) puts two notions, generalization and symbolic representation, at the
center of defining algebraic reasoning. For example, through generalizations, the
students can identify and represent the relationships between the numbers and
operations such as the commutative property of addition (i.e., a + b = b + a).
This allows the students to see the mathematical structures and to make abstractions
(Blanton et al., 2011; Dienes, 1963). Furthermore, the study of dependence between
covarying quantities requires a generalization of the relationships and representing
them in a symbolic system (Kaput, 2008). Similarly, the relations and structures
recognized and generalized from different problem situations can be represented in
this symbolic system through mathematical modeling languages, which is another

aspect of algebraic reasoning.

As seen, generalization is a central activity in algebra comprising generalized
arithmetic, functional thinking, and modeling (e.g., Mason, 1996; Lee, 1996).
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Therefore, the following section describes the meaning of generalization in both
mathematics and algebra to complement the nature of algebra in the conceptual

domain.

2.1.2 Generalization

Generalization is emphasized as a central component of mathematics (Mason, 1996)
while it has a kind of scientific characteristic that is not specific to mathematics
(Radford, 1996). Dienes (1963) defined generalization as a “class extension” (p. 120)
where the class is formed by bringing similar events or elements through an
abstraction process. The generalization process is summarized in a dual nature:
seeing the general in particular cases and applying this to others and finding the

general, that is not known, from particular cases (Krutetskii, 1976; Mason, 1996).

Dumitrascu (2017) mentioned three inevitable mental processes in generalization
performance: analysis, synthesis, and abstraction (as cited from Rubinshtein, 1994).
In addition, two types of generalization are identified as empirical and theoretical
generalization in terms of whether analysis and abstraction are used in the process.
In empirical generalization, the main activity is to compare the cases according to
their external similarities and differences, while in theoretical generalization the
relations are internalized through analysis and abstraction (Davydov, 1990; Dérfler,
1991). Thus, abstraction is an essential process in generalization. Radford (1996)
points out that generalization has "a logical aspect” (p. 108) that depends on the
problem solver's way of thinking about the relations and objects of the problem.
Therefore, it needs "an additional (logical) element in the classroom™ (p. 109):
validity, in other words, justification. Therefore, the students’ justification of the
generalizations such as generic formulas or general statements would provide
evidence for the abstraction and analysis processes, which represent a theoretical
generalization (Lannin, 2005; Radford, 1996)

Radford (2010) put forward “a typology of forms of algebraic thinking” (p. 1) based

on the students’ generalizations. In the first and basic form, factual algebraic
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thinking, (although they are not hierarchical) the students perceive the regularities in
the patterns partially such as focusing on the recursive relationship between figures.
Hence, they may not practically reach the bigger items in the figural patterns. We
can observe the students’ in-action-formulas through their gestures and verbal
expressions implicitly such as finger movements and expressions like “every time
there will be one more in the air” (p.5). The second form is contextual algebraic
thinking in which the students can describe the generic formula verbally in a
particular context. In this form, indeterminacy becomes explicit as different than
factual algebraic thinking because the students form a general figure rather than
focusing on specific cases. Lastly, standard algebraic thinking requires the generated
formula to represent the students’ experiences with the relationship between
quantities. Hence, the formula can be represented in both symbols and narrative
statements. If the symbolic representations are formed through an analytic and
deductive way rather than trial-error calculations it can be regarded as standard
algebraic thinking. Therefore, Radford (2010) remarked that the formula or symbolic
representations of generalizations do not guarantee the analytic way in students’

algebraic thinking.

In conclusion, the nature of algebra includes many thinking and reasoning processes
such as analysis, generalization, representation, and justification. Our conceptual
understanding of algebra involves the dimensions of algebraic thinking such as
analytical and structural thinking that Radford (2014) defined, and the key processes
and aspects of algebraic reasoning described by Kaput (2008) such as generalization
and symbolic representations. Concerning this, we considered the main processes in
developing the students’ algebraic reasoning would be the generalization of
relationships or patterns and symbolic representations of these generalized
relationships, which requires various algebraic thinking processes such as analytical
thinking, structural thinking, and functional thinking. Figure 2.2 illustrates the
conceptual understanding of algebra and the key processes in terms of thinking and

reasoning surrounding this understanding in the current study.
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Figure 2.2 The conceptual understanding of the nature of algebra

Kaput (2008) needed to bring forward his description of algebra and algebraic
reasoning to clarify the scope of early algebra which also means incorporating some
mathematical processes that allow the students to be ready for advanced algebraic
subjects (Carraher et al., 2008). In teaching and learning algebra, it is important to
clarify important algebraic thinking and reasoning processes to determine the scope
of school algebra. This would also be useful for designing the learning sequence to

develop the students’ algebraic reasoning.

2.1.3 Algebra in mathematics education

At the beginning of the twentieth century, the teaching and learning of algebra as a
subject, including first and second-degree equations, proportions, algebraic
expressions, trigonometry, etc., gained importance in secondary schools (Ponte &
Guimaraes, 2014). In general, the community perceived the study of algebra as a
gateway to college because it was compulsory in high schools (Kaput, 1999; Ponte
& Guimaraes, 2014). In the 1980s, the slogan “Algebra for All” appeared in the
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United States, emphasizing that all students should learn algebra (Chazan, 1996). On
the other hand, many mathematics educators and curriculum makers have started to
discuss the difficulties the students have in learning algebra and the practical
applications of the subject as the level of necessity (Baker, 2013; Chazan, 1996;
MacGregor, 2004).

Assessments of students’ algebra performances and their understanding of algebraic
structures showed that they lack conceptual knowledge of fundamental algebra
concepts (e.g., Bush & Karp, 2013; Ersoy & Erbas, 2005; Kaput & Blanton, 2001;
Kieran, 1992). Researchers asserted that for many years, superficial teaching of
algebra without sense-making and without going beyond the limited symbolic
manipulation causes students to have difficulty studying algebra in further years and
have a failure in mathematics (e.g., Blanton et al., 2017; Carraher et al., 2008; Kaput,
1999, 2008; MacGregor, 2004).

Concerning the discussions about the difficulties students have in learning algebra,
Chazan (1996) defended focusing on the teaching of algebra and its place in the
curriculum rather than discussing the subject's difficulty in improving the students’
learning. Carraher and Schliemann (2007) asserted that many topics taught earlier
are essential to prepare the grounds for later mathematics subjects. Presenting
algebra like dropping out of the sky may make the students learning difficult because
of a lack of connections and ground (Kieran, 1992). Hence, the notion of early

algebra appeared as an essential body of research in algebra learning approaches.

Carraher et al. (2008) warned that early algebra should not be understood only as
algebra early. It does not mean presenting the symbolic language of algebra in the
early years. Emphasizing and directly manipulating algebra's notation system in the
earlier years may cause the students to have a superficial understanding of the subject
matter (Usiskin, 1988). Early algebra is distinguished from algebra presented in high
schools and colleges through its gradual settlement in elementary mathematics topics
(Carraher et al., 2008). Hence, when searching today’s research about school algebra,

many views emphasize the effective incorporation of algebra subject through the
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algebraic reasoning dimension in school mathematics for students at early ages (e.g.,
Blanton et al., 2019; Blanton, Brizuela, et al., 2015; Carraher et al., 2008).
Furthermore, Blanton et al. (2011) described five big ideas that summarize all
fundamental concepts and processes in teaching and learning algebra from starting
the elementary vyears: generalized arithmetic, understanding equal sign as
representing the equivalence of two quantities, variable understanding, quantitative

reasoning for generalizations, and functional thinking as a gateway to algebra.

2131 Generalized arithmetic

Researchers (e.g., Carpenter et al., 2005; Carraher & Schliemann, 2007) defend that
arithmetic and algebra should not stay as distinct domains in mathematics education.
Some procedures and concepts in arithmetic can be implicitly or explicitly connected
to algebraic ideas; hence, educators should bridge those ideas in teaching (Carraher
& Schliemann, 2007). There is a common view about the inclusion of algebra in
elementary mathematics through generalized arithmetic using relations among sets
of numbers, symbols, and properties (Blanton et al., 2011; Carpenter et al., 2003;
Carpenter et al., 2005; Carraher et al., 2006; Chimoni et al., 2018; Kieran, 1992;
Knuth et al., 2008).

Researchers identify generalized arithmetic as one of the representatives of algebraic
thinking considering the idea of generalization from the relations and properties in
arithmetic operations (Blanton & Kaput, 2005; Carpenter et al., 2005; Usiskin,
1988). Carpenter et al. (2005) indicated that teaching arithmetic through the
relationships between operations and quantities, instead of focusing on getting a
solution from an operation, would be an effective way to improve students’ relational
thinking and thus develop a foundation for algebra. For example, presenting addition
and subtraction as inverse operations, and constructing and expressing the arithmetic
properties (e.g., commutative property) through generalizations are regarded as key
ideas for integrating algebraic reasoning in arithmetic (Blanton et al., 2011).

Integration of arithmetic properties in algebraic reasoning activities develops
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elementary students’ representations of generalizations of these relationships
(Strachota et al., 2018).

The emphasis on the generalization process between arithmetic and algebra also
reflects Davydov's perspective (Schmittau, 2011), in which learning takes place from
the abstract to the concrete: first, the general relationships are given; then
concrete/arithmetic examples are solved (Davydov, 1990). In this approach, the
students are taught to generalize relationships and operations, for example, through
comparison activities (i.e., A > B) and conjecturing about part-whole relationships
by using algebraic symbols rather than discrete numbers (Sutherland, 2004). In such
a study, it was seen that the children at the end of the third grade could solve problems

about proportional reasoning and rate, time, and distance (Schmittau, 2011).

2.1.3.2  Understanding of equal signs

One of five big ideas emphasized by Blanton et al. (2011) is the understanding of
equal signs that represent the equivalence of two quantities written in an equation.
Using notations or demonstrating generalizations in different ways is a key aspect of
algebra and algebraic reasoning (Kaput, 2008). The symbolic system in algebra
enables students to interact within a mathematical system (Strachota et al., 2018).
One of the important notations in this system is the equal sign. Researchers
emphasized the importance of understanding equality and equal sign as a building
block for algebra (e.g., Carpenter et al., 2005; Chimoni et al., 2018; Kieran, 1992;
Knuth et al., 2008).

An equal sign represents the sameness and a relationship of equivalence in
mathematical expressions (Baroody & Ginsburg, 1983; Behr et al., 1980). However,
the students can interpret the function and meaning of equal signs in different ways
such as an operator symbol, sameness of two sides, “answer is coming” symbol, and
equivalence (Behr et al., 1980; Baroody & Ginsburg, 1983; Knuth et al., 2006).
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Therefore, researchers indicated two main understandings of equal sign which are

relational and operational.

Relational understanding refers to the accurate understanding of equal signs as a
comparison symbol that includes sameness and equivalence meanings (Behr et al.,
1980; Baroody & Ginsburg, 1983; Matthews et al., 2012). It allows the students to
understand the equivalent expressions in different forms relationally and accurately.
For example, they can find some unfamiliar equationssuchas3 = 3and3 + 4 =
5 + 2 meaningful by focusing on the equivalence of both sides. On the other hand,
operational understanding refers to interpreting an equal sign as an operator or “do
something signal” (Behr et al., 1980, p.15). In this situation, unfamiliar or
nonstandard forms of equations such as operations on the right side (e.g., 7 = 3 +
4) and operations on both sides (e.g., 3 + 5 = 10 - 2) can not make sense for the

students who have this understanding (Matthews et al., 2012).

In addition to differentiating the students’ understanding of equal signs as relational
and operational, researchers also specified some extra levels of understanding
included in relational or operational levels of understanding (e.g., Matthews et al.,
2012; Rittle-Johnson et al., 2011). They generated a construct map expressing the
understanding of equal signs into four levels: “Rigid Operational, Flexible
Operational, Basic Relational, and Comparative Relational” (Matthews et al., 2012,
p. 320). The indicators and explanations of each level of understanding are

represented in Table 2.1.

In this construct map, the highest level of understanding entails a sophisticated
comparison and transformation between the sides of the equal sign such as a
compensatory strategy and applying the same operation on both sides (Matthews et
al., 2012). This way of reasoning represents the students’ recognition and

interpretation of the relations between numbers and equivalent expressions.
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Table 2.1 The Construct Map: The Levels of Understanding of the Equal Sign

The Level of Descriptions — Perceptions of equation structures
Understanding

Rigid Operational Operations-equals-answer structure (a + b = ¢)
Operational definition of the equal sign

Flexible Operational Non-standard equation structures (c = a + b; a = a)

Operational definition of the equal sign

Basic Relational Operations on both sides in equation structures
(@a+b=c+4d
The relational definition of the equal sign makes sense

Comparative Equation solving involving a compensatory strategy (i.e.,
Relational comparing both sides of the equation and applying
transformations)

eg.3 + 7 = 4 + 6;4isonemore than 3; 6 is one less
than 7 to maintain the equivalence.

Construct a relational definition of equal sign

Note: Matthews et al.’s (2012) construct map was summarized

At the basic relational level, the operational view of the equal sign may reappear
occasionally. However, the students could solve equations involving operations on
both sides, as different than the operational views of the equal sign. Two levels of
operational views of the equal sign (i.e., rigid and basic) differ from each other in
terms of the kinds of equation structures that the students can solve and interpret.
According to Matthews et al. (2012) standard forms of equation structures, the
operations on the left side and the solution on the right side, are the only forms that
the students at the rigid operational level of understanding can interpret and work
accurately. On the other hand, the students at the basic relational level can understand
the nonstandard (unfamiliar) equation structures such as operations on the right side

(i.e., c = a + b) or equations without operation on either side (i.e., a = a).

Students in different grade levels can still show an operational understanding of the
equal sign (Baroody & Ginsburg, 1983; Behr et al., 1980; Blanton et al., 2018;
Carpenter et al., 2003; McNeil & Alibali, 2005; Rittle-Johnson & Alibali, 1999).
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Fyfe et al. (2018) reported that this construct map applies to middle school students,
and it provides a link between the students’ understanding of equivalence and their
algebraic reasoning. The students who perceive the meaning of equal sign only as
“the answer is coming” rather than “the equivalence of two sides” cannot perform
well in equation solving (Alibali et al., 2007; Carpenter et al., 2003; Knuth et al.,
2006). Therefore, the relational understanding of the equal sign and the meaning of
the equivalence of two quantities gains importance in developing the students’

algebraic reasoning and performance in algebraic tasks (Blanton et al., 2011).

2.1.3.3  Understanding the multifaceted nature of variables

Sfard (1995) indicated that French mathematician Viete’s description of algebra as
“science of species” or “types of things” (p.24) may be a point of departure for the
emergence of the variable concept. Furthermore, the concept of variable has existed
implicitly in ancient mathematicians’ studies about the quantities although it is not
named a “variable”. Ely and Adams (2012) indicated that two important motives are
effective in the development of the variable concept: one is using letters standing for
a range of indeterminate values in addition to determinate unknown values; the
second is practicing covariational reasoning in which one quantity changes as
dependent to another quantity.

Alphanumeric symbols or notations are used for several purposes such as describing
some laws by formulas, making generalizations, and substituting some solutions in
mathematical problems (Schoenfeld & Arcavi, 1988). Usiskin (1988) focused on the
meaning of the variable and its multifaceted nature to make sense of the symbols and
letters used in algebraic equations and formulas. She interpreted different aspects of
the variable concept concerning how it functions in various situations. For example,
a variable can appear as an unknown in an equation or show a formula of area (e.g.,
A = L.W); it can represent an operational rule such as multiplicative identity (i.e.,
1 = n.(1/n)) or manipulate an argument in a function. Hence, the letters used in

all these situations are regarded as variables by Usiskin (1988). Therefore, the
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variable concept has different images and meanings depending on where it is used
(Schoenfeld & Arcavi, 1998; Usiskin, 1988).

Schoenfeld and Arcavi (1988) indicated many meanings of the term variable in the
literature showing the multiplicity in its meaning. For example, there appeared such
meanings: a symbol as a placeholder, a changing quantity, and a letter representing
an indeterminate value. Hence, they called the letters used for these purposes as
variables. Ely and Adams (2012) differentiated the meanings by incorporating the
other researchers’ definitions (e.g., Kiichemann, 1978; Philipp, 1992; Sfard, 1995)
into three ways: an unknown, variable, and placeholder. The word, unknown, is used
for determinate quantities because it represents a specific number (or several
numbers) in an equation. Therefore, a letter used as an unknown in an equation would
be determined when the necessary information is available. Both variable and
placeholder meanings refer to indeterminate quantities (Ely & Adams, 2012). The
word, variable, means a varying quantity (Philipp, 1992). It refers to a set of values
that a letter or variable would represent in a specific mathematical context (Ely &
Adams, 2012). Therefore, a letter that is used as a variable is an indeterminate value
and can represent any humber among a set of values depending on what value other
related indeterminate quantities represent. The function of a placeholder appears in
the coefficients and parameters in the equations in which specific numbers will take
the place of these letters according to the context. For example, in a linear function
equation, y = kx, the letter k represents the parameter of the function and the slope
of the line. For a given context, it will take a specific value, hence it is a placeholder
(Ely & Adams, 2012).

Although the concept of variable has multiple meanings, the research showed that
the students may not possess all those uses (e.g., Alvarez et al., 2015; Kiichemann,
1981). Alvarez et al. (2015) observed that secondary school students in Spain and
Mexico had difficulty in differentiating the multiple uses of variables, using them in
problem situations, and interpreting their meanings. Similarly, MacGregor and
Stacey (1997) found that middle school students interpreted algebraic letters in

different ways such as unknowns, representing abbreviated words (i.e., h for height),
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generalized numbers, and objects. Knuth et al. (2005) observed that most middle
school students understand variables as “representing more than one value” (p. 274)
while in lower grades there is a weak understanding of variables through some

misinterpretations.

Blanton et al. (2018) indicated that understanding the concept of variables is a crucial
factor affecting the students’ representation of algebraic quantities in mathematical
situations. Carraher and Schliemann (2007) pointed out that the unknowns in the
missing value problems and equations should be interpreted as variables as early as
elementary years so that the students can start to think about the concept of variables
and variation as a significant concept within algebraic thinking. For example,
Carraher et al. (2008) showed how third graders could start to use notations for
variables in solving contextual problems from starting using pictures towards using
symbols and letters together with operations when they discussed and imagined the
problem situation in meaningful contexts. The researchers think that early possession
of variable notation permits the students to grasp and represent easefully the
relationships in problems (Blanton, Stephens, et al., 2015).

2.1.3.4  Quantitative reasoning

Quantitative reasoning starts with the recognition of the quantities in problem
situations and quantifying them by giving numerical values to their qualities
(Thompson, 1990). The examination of the relationship between quantities and
operating with them using the relationships refers to quantitative reasoning. For
example, comparing the lengths of two pencils, interpreting the additive relationships
between the lengths of three ropes, or analysis of the multiplicative relationships
between the lengths of two ropes are some examples of practices of quantitative
reasoning (Blanton et al., 2011). Similarly, interpreting and generalizing the
relationship between three quantities, times, speed, and distance, as ‘the amount of
distance is the multiplication of time and speed’ corresponds to quantitative

reasoning (Smith & Thompson, 2008). This provides the generality that is in
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algebraic reasoning. Therefore, providing the practices of quantitative reasoning in

elementary and middle school years would help develop algebraic reasoning as well.

Understanding quantities and how they relate to each other provides significant
grounds for developing algebraic reasoning (Blanton et al.,, 2011; Smith &
Thompson, 2008). For example, Olive and Caglayan (2008) observed that eighth
graders’ making sense of the units of quantities (e.g., the value of coins) in word
problems enabled them to write accurate equations in problem-solving. Further, how
students approach and interpret the quantities and the relationship between them
determines the complexity of their algebraic reasoning (Confrey & Smith, 1994).
Ellis (2011) observed that middle school students who had a robust understanding of
the problem quantities and the relationships between them, such as the length, width,
and area, demonstrated various forms of functional thinking such as covariation and

correspondence.

2.1.3.5  Functional thinking

Algebra is a study of patterns and functions (Blanton et al., 2011; Kaput, 2008) and
a language of generalization in which the patterns between mathematical ideas and
objects are realized, described, and extended (Usiskin, 1995). The researchers think
that early pattern activities are useful for the students to understand the relationship
between quantities, make conjectures, and generalize relationships as algebraic
reasoning practices (e.g., Moss & Beatty, 2006; Zazkis & Liljedahl, 2002). Pattern
activities initially present a meaningful context that is appropriate for young students
to proceed to the generalization and abstraction earlier (Blanton & Kaput, 2004;
Moss & Beatty, 2006; Zazkis & Liljedahl, 2002).

Growing pattern activities have the role of providing a path for a transition towards
relational and functional thinking between independent and dependent variables
(Blanton, Brizuela, et al., 2015). Studies showed that functional thinking besides
growing patterns practices could be taught in the early elementary mathematics

curriculums such as in the first and second grades (e.g., Blanton & Kaput, 2004;

34



Moss & McNab, 2011; Warren & Cooper, 2005) and even in kindergartens (e.g.,
Blanton & Kaput, 2004). Therefore, functional thinking, including “generalizing
relationships between covarying quantities, expressing those relationships in words,
symbols, tables, or graphs, and reasoning with these various representations to
analyze function behavior”, is the fifth big idea identified by Blanton et al. (2011,
p.13).

In the early algebra studies, researchers examined the students’ ways of
generalization of functional thinking (e.g., Blanton et al., 2011; Blanton, Brizuela, et
al., 2015; Smith, 2008; Stephens, Fonger, et al., 2017). An identification of the
relationship in the problem differs according to the students’ strategies and
sophistication of the generalization. The basic strategies are generally followed by a
recursive approach in which the students focus on a single variation and the
difference between consecutive terms. Recursive thinking is observed in the early
years of elementary school as a precursor to functional thinking (Blanton, Brizuela,
et al., 2015). More advanced approaches appear as identified covariational
relationships in which the students integrate both variables to construct a rule and
express it explicitly with words or symbols. In the correspondence approach,
students identify and express covariation using a generic rule. In functional thinking,
the ultimate goal is to achieve covariation and correspondence thinking as the higher

level of thinking processes (Blanton, Brizuela, et al., 2015).

In short, researchers regard the integration of the function concept in early
mathematics teaching such as in elementary and middle schools through functional
thinking activities for developing algebraic thinking (e.g., Blanton, Brizuela, et al.,
2015; Usiskin, 1988). Because in this study, the participants are in the age range of
10-11 (i.e., fifth grade) and the targeted tasks included the generalizations of
functional relationships and representing them using symbols, the studies about early
functional thinking practices and their frameworks about the modes of functional
thinking and ways of generalizations will guide the conceptual understanding in this

study.
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2.14 Recent findings about the generalization of functional thinking

In the context of early algebra, which I use for introducing algebraic processes before
formal algebra instruction, proceeds from verbal to symbolic system and is regarded
as a critical issue (Blanton & Kaput, 2011). As stated before, generalization, as a
significant component of algebraic thinking, enables students to understand the
relationships and to use symbolic notations to represent them even in elementary
years (Blanton & Kaput, 2011). The transformations of students' mathematical
expressions from understanding the meaning and relationships in contextual
problems to representing and generalizing them in notations highlight the
effectiveness of contextual situations involving patterns and functions (e.g., Blanton
et al., 2019; Pang & Sunwoo, 2022; Stephens et al., 2021). Hence, researchers
suggested representing functional thinking in elementary years through the problems
in which the contextualized quantities change over time and while using graphs and
tables (e.g., Kaput, 1999; Stephens et al., 2021).

Functional thinking is regarded as a gateway to algebra because it involves handling
many key algebraic concepts and processes such as “generalizing relationships
between covarying quantities; representing and justifying these relationships in
multiple ways using natural language, variable notation, tables, and graphs; and
reasoning fluently with these generalized representations in order to understand and
predict functional behavior” (Blanton, Brizuela, et. al, 2015, p.512). For example,
Blanton and Kaput (2005) described a problem situation in which students practice
algebraic reasoning in earlier grades through functional thinking: the handshake
problem. As students try to understand the relationship between the number of
people and the total number of handshakes, they can express the relationship in
different ways, such as words, drawings, and symbols. While they are dealing with
this problem, they can practice algebraic reasoning through generalizations,
understanding, and representing the functional relationship between the number of

people (independent variable) and the number of handshakes (dependent variable).
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Researchers used the function context in their studies to examine the students’ ways
of generalizations of functional relationships in different problems (e.g., Blanton,
Brizuela, et al., 2015; Pinto & Canadas, 2021; Pittalis et al., 2020; Ramirez et al.,
2020), and report their progress in algebraic reasoning through the intervention
focused on functional relationships (e.g., Ayala-Altamirano et al., 2022; Blanton,
Brizuela, et al., 2015; Blanton et al., 2019). Early algebra interventions used the
generalization of functional relationships through different contextual situations
involving the relationship between the number of people and the number of ears and
the relationship between the amount of money in the piggy bank and the time elapsed
(e.g., Blanton, Brizuela, et al., 2015; Blanton et al., 2019; Stephens, Fonger, et al.,
2017).

2.14.1  Students’ modes of functional thinking in early algebra

Studies that aim to develop the students’ functional thinking in elementary grades
demonstrated that students’ functional thinking practices ranged between multiple
levels starting from recursive thinking towards sophisticated use of both
covariational and correspondence thinking (e.g., Blanton, Brizuela, et al., 2015;
Stephens, Fonger, et al., 2017). Although researchers reported common levels or
strategies of functional thinking, different levels or categories of functional thinking
also appeared in some of them that show the sophistication of students’ functional

thinking.

Blanton, Brizuela, et al. (2015) described the first graders’ functional thinking levels
in an increasing sophistication from recursive to functional, with their particular sub-
levels. Students in early grades can identify a pattern by focusing on the change in
only one column or row in a function table, that is a recursive approach (Blanton,
Brizuela, et al. 2015; Blanton et al., 2011). The researchers identified the
sophistication of the students’ thinking according to applied generality in the cases
and accomplishment in the representation of the generality. For example, describing

a functional relationship through specific cases is regarded as a functional-particular
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level of thinking while conceptualizing the relationship from a group of cases and
stating it without specifying the relationship between two different variables is
regarded as primitive functional-general. As the students increase the generality by
focusing on all values and expressing the relationship by integrating both variables,
the levels in functional thinking become more sophisticated up to condensed

functional-general.

Similarly, Stephens, Fonger, et al. (2017) described the students’ (grades 3-5)
functional thinking levels into three main headings apart from the lowest level “no
evidence of functional thinking” (p. 153): variational thinking, covariational thinking
and correspondence thinking. Within variational thinking, there are two different
levels of recursive thinking according to whether they articulate the relationship on
particular cases or express the general relationship on all values of one variable.
When the students describe the covariational relationship by expressing coordinated
variables (e.g., every time you add a desk, you add two people) they are regarded as
covariational thinkers. On the other hand, inventing a function rule refers to
correspondence thinking. However, there are five more sub-levels within
correspondence thinking with respect to how general the students described the rule

or how much they could integrate both variables in the formula.

Pittalis et al. (2020) conducted interviews and specific measures with students
(grades 3-5) to identify their functional thinking modes. They grouped the students’
thinking modes into three categories. In the first category, the students represented a
recursive thinking mode in all the functional thinking tasks. Their performance
corresponds to the factual algebraic thinkers defined by Radford (2010) where they
had difficulty in finding the larger values in the pattern situation. In the second
category, three modes of thinking were observed separately or in combination for
some students. Some students used both the recursive thinking mode and found the
larger values in the tasks by applying the function rule that they constructed
contextually. The researcher observed emergent-covariational and correspondence
modes of thinking in this category with “pre-symbolic contextual strategies” (p.

658). Lastly, category 3 represented the students who could apply covariational and
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correspondence modes of thinking flexibly by using symbolic representations and
providing explanations of their solutions. Therefore, their performance corresponds
to the standard algebraic thinkers defined by Radford (2010) which demonstrates
generalized abstraction.

Pinto and Canadas (2021) examined the third and fifth-grade students’
generalizations of functional thinking in different forms of contextual problems such
asy = 3x,y = x + 5,andy = 2x + 6. They found that only half of the third
graders could generalize the functional relationships, verbally or using numerical
representations (e.g., 20 + 2 = 22). In addition, they observed that only two third
graders demonstrated a covariational approach in their verbal generalizations and the
others used a correspondence approach while none of them could use a symbolic
representation. On the other hand, most of the fifth graders could generalize the
functional relationship in a correspondence approach in which they could verbally
state the general rule for y = 2x + 6 or use symbolic representation. For example,
a student said: “Multiplying the number of white tiles by 2 and adding 6 gives you
the result” (p. 128).

In summary, in the elementary years, when students did not receive formal algebra
instruction, they represented a range of modes of functional thinking through
intervention or without intervention, as reported in the studies above. Researchers
observed that students in these grade levels could use recursive, correspondence, and
covariational approaches in functional thinking. The following section presents the
findings about the progress of students in functional thinking in the studies including

intervention.

2.14.2  Students’ progress in generalizing functional thinking through

interventions

Blanton, Brizuela, et al. (2015) demonstrated how elementary school children can

develop algebraic reasoning and functional thinking by working on covarying
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quantities in contextual problems and generalizing and representing the relationships
between variables with literal symbols, tables, and graphs. Multiple representations
such as drawings, tables, charts and graphs, and age-appropriate tasks in rich
contexts helped the students to make sense of the variables and functional
relationships and to make generalizations as initial steps into the algebraic concepts
(e.g., Blanton et al., 2019; Blanton, Stephens, et al., 2015; Carraher et al., 2008).

In a longitudinal intervention program, the researchers (Blanton et al., 2019)
implemented an instructional sequence for students from grades 3 to 5; that is, to
foster algebraic thinking through generalizing, justifying, and reasoning with
mathematical structures and functional relationships. Blanton et al. (2019) observed
that at the end of each grade, the performance of students in the experimental group
showed significant progress in algebraic reasoning compared to the control group,
such as expressing the functional relationship in words, using notations (e.g., y =
2x) and interpreting mathematical structures (e.g., a + b = candb + a = c).
In addition, they reported that all of the students, both experimental and control
groups, struggled to use notations in representing the functional relationships more
than representing the arithmetic properties in symbols. Moreover, in the same
intervention, Stephens, Fonger, et al. (2017) found that third-grade students who
could not represent and generalize the relationships before the treatment started to
reason sophistically about the relationships between quantities. They could identify
and describe the functional relationships through correspondence and a covariational
approach after 18 hours of treatment while they used a recursive-patterning approach
at the beginning.

Blanton, Stephens, et al. (2015) reported the progress of third graders in the
experimental group during the one year of intervention in representing functional
relationships. About one-fifth of the students in the experimental group expressed
the functional relationships using the covariational strategy in words such as “each
table you add adds two people” (p. 67) after the intervention. In addition, a small

proportion of students (16%) could express the function rule using symbols while a
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smaller proportion of students (8%) could express this rule in words such as “number
of tables times two plus two equals number of people” (p. 67). In addition to
observing a progression in students’ functional thinking as compared to the control
group, a surprising finding was the students’ more flexible use of symbols instead of
using their own words to express the function rule. Performing better in using
notations in expressing the functional relationships after the intervention is also
observed by other researchers for students in grades 4 (e.g., Blanton et al., 2019) and
5 (e.g., Akin & Isler-Baykal, 2024; Blanton et al., 2019).

In another small-scale teaching experiment, Pinto and Canadas (2021) examined the
third and fifth-grade students’ generalizations of functional thinking in different
forms of contextual problems such as y = 3x,y = x + 5,and y = 2x + 6.
They found that only half of the third graders could generalize the functional
relationships verbally or they could use numerical representations for expressing the
generalization (e.g., 20 + 2 = 22). Only two of the third graders demonstrated a
covariational approach in their verbal generalizations and the others used a
correspondence approach while none of them could use a symbolic representation.
On the other hand, most of the fifth graders could generalize a functional relationship
in a correspondence approach in which they could verbally state the general rule for
y = 2x + 6 or use symbolic representation. For example, a student could say
“multiplying the number of white tiles by 2 and adding 6 gives you the result” (p.
128). This study highlights the potential difference in the progress in algebraic

thinking between various grade levels of students.

In another study (Ayala-Altamirano et al., 2022), researchers reported similar
findings to Pinto and Canadas (2021) in terms of using symbolic notations in
functional thinking. Ayala-Altamirano and her colleagues (2022) examined the
fourth-grade students’ generalizations of functional relationships in a teaching
experiment targeting the development of students’ algebraic thinking. They observed
that a small proportion of students could generalize functional relationships using

natural language after the intervention. However, students did not show an
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improvement in using letters or notations to represent the generalizations or
interpreting the questions. Researchers observed that students had the most difficulty

in the questions including letters and they refused to use letters in generalizations.

The above studies would be promising in terms of younger students' ability to
generalize functional relationships and their progress through the advanced modes
of functional thinking. However, researchers also reported some difficulties and
differences that students showed in using letters and notations in generalizing
functional relationships (e.g., Akin & Isler-Baykal, 2024; Ayala-Altamirano et al.,
2022; Pinto & Canadas, 2021). Therefore, the literature on teaching and learning
early algebra needs further research and investigation to elaborate and expand our
knowledge about students’ progress in algebraic thinking and their needs for this
improvement in terms of the characteristics of students’ mental processes, the

teaching sequence, and the tasks used in interventions.

2.2 The Framework of Units Coordination

Constructing and conceptualizing whole numbers starting from the counting
activities is described through the process of constructing arithmetical units (Steffe,
1992; von Glasersfeld, 1981). For example, to conceptualize the number five as a
unit for use in different mathematical processes, children need to experience various
sensory and mental actions. The ability to perceive numbers as arithmetical units
depends upon reflective abstraction, a process whereby the mind can conceptualize
the number without being constrained by the limits of sensory input and operate with

it as a single entity through attentional processes (von Glasersfeld, 1981).

Von Glasersfeld (1981) explained the unitizing operation whereby numbers are
constructed as discrete entities through the binding or sequencing of disparate
sensory elements. This bounding or sequencing process results in a meaningful and
associative whole. In this process, distinguishing various items or grouping them
may not rely only on their perceptual characteristics, it is rather a cognitive framing

that constructs a cognitive entity or object. This outcome, the constructed individual
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entity, refers to the term, unit, (Hackenberg & Seving, 2024; Ulrich, 2015), which
will be further processed experientially and abstractly to construct new units and

composite units (von Glasersfeld, 1981).

In short, each number is framed as an arithmetic unit through the process of reflective
abstraction in which the bounded conceptual structures are released from sensory-
motor experience (von Glasersfeld, 1981). For example, the number five can be
perceived as a unit comprised of five equal units of ones through grouping or
chunking without further need for sensory materials (e.g., fingers). Hence, this new
unit can be used in counting by fives. By extension, von Glasersfeld (1981) indicated

that each number is different from one another through their abstract characteristics.

Researchers explained how students conceptualize numbers and operations in
different contexts starting from the counting schemes (e.g., von Glasersfeld, 1981;
Steffe, 2001). At first, it is expected that the students need sensory-motor materials
to keep track of counting items in an experiential situation. After an experience with
this activity, they can re-process the counting activity through figural materials (e.g.,
fingers) without a direct sensory operation with materials. They gradually construct
the units in a more complex activity as detached from the figural characteristics. The
goal of this process is to facilitate the assimilation of students’ complex activities
and to facilitate their advancement to a higher level of proficiency and understanding

in quantitative operations.

In sum, the theorization of units coordination deals with the ‘“quantitative
complexity” (p.3) in children’s work with units and their construction of
relationships between units (Ulrich, 2015). Accordingly, units coordination refers to
the mental operations that describe people’s construction of units, and operations
with various levels of units (Hackenberg & Seving, 2024; Steffe, 2001; Ulrich,
2015). Therefore, units coordination is related to various mathematical situations
such as developing the number sense, counting, operations with numbers, and
multiplicative reasoning (Glasersfeld, 1981; Steffe, 1992; Ulrich, 2015, 2016a). The

students’ construction of the number concept and their operations with quantities are
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described in hierarchical levels or developmental stages considering their

construction of and operations with units (Ulrich, 2015).

Glasersfeld (1981) explained the students’ progression in units coordination through
the types of units that they deal with during counting activities or arithmetic
operations such as using figural materials (e.g., fingers), constructing arithmetic
units, and using composite units respectively. He indicated that as long as a child
needs sensory materials in counting, the number five, for example, does not refer to
a number unit that is comprised of five units of one. This is characterized as the pre-
numerical stage. Reflective abstraction is required to construct a higher level of the

conceptual structure of numbers and interiorization of counting occurs.

To exemplify the units coordination ability in a problem situation, we can think about
counting or calculating the number of muffins in rows such that there are four rows
and each row involves six muffins (Hackenberg, 2010). Counting the number of
muffins one by one in a figure or by drawings deals with coordinating one-levels of
units in activity (see Figure 2.3a). On the other hand, in a more complex operation,
coordinating two levels of units in activity through interiorized one-level of units can
be reflected by the behavior of stopping after each six-count to represent one row.
They could reach the result of 24 but they will need to carry out the same activity
when the problem is again asked (see Figure 2.3b). Through the interiorization of
two levels of units, that is following a higher level of units coordination, a student
can reach the result of 24 without needing a figurative material and she/he is already
aware of the insertion of each six muffins into the rows. For example, if she knows
two sixes are 12, she could add two 12s and get 24 (Figure 2.3c). Lastly, the
interiorization of three levels of units means being aware that 24 is four units of six
and 24 units of ones. This is given to students without any activity and the students
can flexibly transform the different levels of units such as adding other identical rows

to the current ones as any number of units including six units of ones.
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Figure 2.3 Students’ mental operations in different levels of units coordination

Several frameworks explained the students’ construction of number sequences
(Steffe, 2010) and multiplicative concepts (Hackenberg & Tillema, 2009) in terms
of units coordination. Ulrich (2015, 2016a), on the other hand, preferred to call this
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hierarchy by levels, differentiating the number of levels of units that students deal
with when operating with numbers and problem situations. These frameworks will

be explained in the following sections.

2.2.1 The number sequences

Based on the model of von Glasersfeld (1981) for unitizing and constructing
numerical units, the students’ construction of different “numerical counting
schemes” is characterized by the structure of number sequences (Steffe, 2010, p.27).
A number sequence is explained as “a sequence of abstract unit items that contain
records of counting acts” (Steffe, 2001, p. 267). Four distinct constructions of
number sequences are the initial number sequence (INS), the tacitly nested number
sequence (TNS), the explicitly nested number sequence (ENS), and the generalized

number sequence (GNS).

Students start to generate initial number sequences (INS) after constructing
numerical composites which is “the sequence of abstract unit items” (Steffe, 1992,
p. 266) by uttering a number word (von Glasersfeld, 1981). They operate with one
level of units. A key indicator of this level is the ability to count on (Steffe, 1992,
2024). Students with the INS need no further perceptual materials to count, like in
the pre-numerical stage, but they need to use figurative materials like fingers to keep
track of counting after starting a number. A number word is regenerated as a place
in a sequence rather than a collection of ones that is another unit composed of ones.
Therefore, INS students do not conceive of a number as nested in a bigger number
(Wilkins et al., 2021). For example, INS students can count by threes from a number,
say eight, like 9,10,11; 12,13,14; 15,16,17;.... but these threes are not distinct units,
rather they are still counted units of ones in activity (Steffe, 1992). During counting
by the numerical composites, they would mostly lose track of the number of trios.
This process by which students construct arithmetical units refers to the operations
with the first level of units in activity (Ulrich, 2015).
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One of the constraints of the INS stage is that the students do not conceive of a
number being embedded within a larger number (Wilkins et al., 2021). Therefore,
students with INS need to count on the previous number in order to understand which
number is bigger by focusing on which comes first. Another constraint of the INS is
that it does not allow the students to conclude multiplicative tasks which include
coordinating two units, such as the number of rows including a specific number of
blocks (Steffe, 1992). Because the students had difficulty in differentiating the
multiple units and keeping track of the counting through composite units, Steffe

(1992) called this stage “pre-multiplicative” (p. 304).

Constructing the TNS refers to “an enactive units-coordination” or “units
coordination in activity” (Steffe, 2024, p. 33). Students with TNS can coordinate two
number sequences and construct composite units in activity (Steffe, 1992). In other
words, while the students can interiorize arithmetical units of ones by the INS,
students with TNS can construct units bigger than one (Ulrich, 2015), which some

researchers called stage 1 of units coordination (e.g., Hackenberg & Sevinc, 2024).

Students with TNS use the result of a counting activity recursively in further counting
operations (Steffe, 1992). For example, the students with TNS can calculate that
there are four threes in 12 by counting by ones, and concurrently keeping track of
how many times they counted by threes (Norton et al., 2015). Here, we can observe
a double counting activity; one is counting by ones, and the other is counting the
number of threes, which is an identifying indicator of TNS (Steffe, 1992). Students
with TNS can conceive a number, say five, both five units of ones and a single unit
comprising five individual units in activity (Ulrich, 2015). Hence, they can nest
numbers in other numbers without needing any counting act such as seeing five as
nested within seven (Wilkins et al., 2021).

In the TNS stage, the students’ conception of composite units is tacit because they
construct composite units in activity implicitly and there is no explicit reflection on
composite units as ready structures (Ulrich, 2015; Zwanch & Wilkins, 2021). In
addition, the composite units constructed during activities can decay after the activity
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is ended. This also indicates that their multiplicative activity does not represent
explicit multiplicative reasoning. Moreover, Ulrich and Wilkins (2017)
differentiated the students who operate early in the TNS stage (eTNS) and the
students who have advanced mental operations in the TNS stage (aTNS). The aTNS
IS a transition stage between the TNS and the ENS in which the students can reflect

on composite units and can be “tacitly aware of embedded units.”

Explicitly nested number sequence (ENS) refers to a two-level structure in which the
students conceive numbers as collections of units of ones, construct and count with
composite units (Norton et al., 2015; Ulrich, 2016a). Hackenberg and Seving (2024)
called this level, stage 2 of units coordination. Students with ENS can compare two
numbers by being aware that the smaller one is a subset of the bigger one and the
difference between them is the amount of remainder, as another unit (Ulrich, 2016a).
This demonstrates their explicit reflection on the additive relationship between
numbers and the nestedness of number sequences. In a multiplicative situation, ENS
students can develop an understanding of a composite unit, say 12, as consisting of
four units of threes and also 12 units of ones that are identical and equivalent
(Hackenberg & Seving, 2024). Because they intentionally construct and work with a
composite unit of composite units (i.e., 12 is a composite unit of ones consisting of
three composite units of fours), this reflects their coordination of three levels of units

in activity as well.

An important difference of the ENS from the lower levels of numerical reasoning is
that students with ENS can disembed units from the composite units (Steffe & Olive,
2010). Disembedding operation refers to envisioning a unit as pulled out of a
composite unit (Steffe & Olive, 2010). For example, in finding how many fives there
are in 45, “the ENS students can disembed a sequence of 5 from the sequence of 45,
iterate it 8 more times to get a sequence of nine 5s and then re-embed their result into
the original sequence of 45 to equate 45 singleton units with 9 composite units of 5.
(Ulrich, 20164, p. 37). In short, the assimilation of numbers as composite units and

disembedding operations are key indicators of the ENS.
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The students who constructed a GNS can reflect on a three-level structure through
composite units in which they come up with a composite unit of 12 as constructed
by iterating 4 times threes, which are other composite units formed by iterated ones
(Hackenberg & Seving, 2024). This is called stage 3 of units coordination. At this
stage, composite units are now iterable (Ulrich, 2016a). While students with the ENS
can iterate composite units in activity, this becomes assimilatory for the GNS
students (Ulrich, 2016a). Students with the GNS can monitor the iterations of
composite units as being assimilated in multiplicative comparison tasks. At this
stage, the students exhibit more complex strategies in additive and multiplicative
reasoning. For example, it is expected that a GNS student can make use of the

commutative property by himself without a need to be taught.

In short, the students’ construction of numbers as arithmetic units through reflective
abstraction, their further construction of composite units, and operations with these
units are described in terms of the levels of number sequences (von Glasersfled,
1981; Steffe, 1992; 2024; Ulrich, 2015, 2016a). According to Steffe’s (2024)
estimations, half of the students starting the first grade will construct INS or TNS
and only one-tenth of the first graders will be able to construct the ENS. At the
middle school level, he estimated that 40% of fifth graders will have constructed the
ENS and only a quarter of fifth graders will have constructed assimilated three levels
of units. He considered these estimates to be of significant value in evaluating the

students’ mathematical activities within the curriculum.

2.2.2 Students’ multiplicative concepts

The students’ units coordination is also defined in the context of whole number
multiplicative concepts (Hackenberg & Tillema, 2009). The level of multiplicative
concepts that students interiorize through multiplying schemes describes their units
coordination in the context of multiplicative relationships (Hackenberg, 2013). The
students at the pre-multiplicative level cannot complete multiplicative tasks which

include coordinating two units such as the number of rows including a specific
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number of blocks in each row (Steffe, 1992; Ulrich, 2015). The students start to deal
with multiplicative concepts when they construct composite units in activity (i.e.,
dealing with two levels of units) such as representing 12 as three fours (Steffe, 1992).
This level of unit coordination refers to the first multiplicative concept (i.e., MC1)
(Hackenberg & Tillema, 2009).

The first multiplicative concept (i.e., MC1) refers to the level of TNS in the number
sequences framework (Ulrich, 2015). Therefore, the students operating with the
MC1 coordinate two levels of units in activity, like TNS students. For example, in
computing the number of cakes in four rows, each containing six cakes, a student
with MC1 can find that there are a total of 24 cakes by iterating the composite units,
six cakes, four times into another composite unit, the number of rows (Hackenberg,
2013). However, this operation and its result will not be maintained for another
operation. The students have to enact the same process of units coordination in a new
problem situation because the two-levels of units they constructed are not

assimilated.

The second multiplicative concept (MC2) refers to “the interiorization of two levels
of units” (Hackenberg & Tillema, 2009, p.3). Therefore, it refers to the ENS in the
number sequences framework (Ulrich, 2016a). One difference between MC2 and
MC1 is the ability to use the result of a unit coordinating activity (e.g., dissembeding
a part from a composite unit and using that part) in further operations (Hackenberg
& Tillema, 2009). In addition, MC2 allows students to coordinate three levels of
units in activity in which the students make a number, like 12, as a unit containing
four units of three units of units of ones. On the other hand, they cannot use this
structure in further operations as a ready material, rather this structure is curtailed in

the further operations by staying as two levels of units structure at the end.

Lastly, the third multiplicative concept (MC3) refers to “the interiorization of three
levels of units (Hackenberg & Tillema, 2009, p. 4). Since the three levels of units are
available before any multiplicative operation, the students with MC3 can coordinate

more than three levels of units in activity (Ulrich, 2016a). This refers to the GNS in
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the number sequences framework. For example, in a similar cake and rows problem,
when five more rows are added, each containing six cakes, MC3 students could
flexibly operate between the different levels of units such as the initial 4 rows of six
cakes and the additional five rows of six cakes and the total 9 rows of six cakes,
which are all available before activity (Hackenberg & Tillema, 2009).

In this study, | employed the terminology of multiplicative concepts in explaining
the students’ mental operations in terms of units coordination. Although these two
frameworks (i.e., multiplicative concepts and number sequences) used different
terminologies in defining the levels of units coordination, both have the same
indicators and the levels of this framework correspond to the stages in the number
sequences framework starting from the TNS (Ulrich, 2015, 2016a). Since the
algebraic tasks in this study involved multiplicative relationships through recursive
thinking, functional thinking, and quantitative reasoning, the terminology of whole
number multiplicative concepts described by Hackenberg and Tillema (2009) would
be more appropriate to describe the students’ units coordination. The indicators for
each corresponding level of units coordination are represented in Table 2.2, which
was adapted from Ulrich (2016a). The next section will present the findings of
related literature in terms of the interaction between units coordination and algebraic

thinking and reasoning.

Table 2.2. The Indicators of Units Coordination Levels in Different Frameworks

Number Multiplicative  Operations
Sequences Concepts

None None Construction of one level of units in activity.

4 chairs + 3 chairs =1, 2, 3, 4, 5, 6, 7 chairs

INS None Reflecting on one level of units
A number as a counting sequence is unitized.

4 chairs + 3 chairs =4 - 5, 6, 7 chairs

TNS MCI1 Construction of two levels of units (composite
units) in activity.
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Table 2.2 (Continued)

TNS MCI1 Additive comparison tasks (how much more)
Coordination of two levels of units in activity

Three times one unit of 4 =4+4+4=12(a
composite unit of 12)

4 is a composite unit containing 4 equal units of
one in any sequence (1-4 or 16-20)

ENS MC2 Reflecting on two levels of units
Coordination of three levels of units in activity
Disembedding operation
Understanding of interchangeable identical units
4 is four iterations of one
Multiplicative reasoning

GNS MC3 Reflecting on three levels of units

Coordinating four or more levels of units
Iterations of composite units

Understanding of interchangeable identical
composite units

2.2.3 The literature on units coordination

Researchers interpreted the students’ performances in various mathematical subjects
such as multiplicative reasoning, fraction knowledge, and algebraic reasoning
through their units coordination levels and current mental structures of operations
and numbers (e.g., Hackenberg, 2013; Hackenberg et al., 2021; Olive & Caglayan,
2008; Ulrich & Wilkins, 2017). They indicated that teaching mathematics should be
enhanced regarding students’ multiplicative concepts and coordination of units in
unknown and known quantities. For example, Ulrich and Wilkins (2017) pointed out
that being able to think multiplicatively - a major objective during middle school
years - is “an awareness of a multiplicative relationship between two quantities” (p.
18) more than solving problems including multiplication. Therefore, the researchers

claimed that unit coordination is a prerequisite and an associative factor for being
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successful in various mathematical tasks including multiplicative relationships such
as generalizing the multiplicative relationships between unknown quantities, solving
equations, and operating with fractions (e.g., Hackenberg, 2013; Olive & Caglayan,
2008; Wilkins et al., 2021; Zwanch, 2022a).

In the algebraic reasoning context, understanding and operating with quantities and
investigating the relationships between them takes great attention by the researchers
taking a quantity-based approach in teaching algebra (e.g., Chazan, 2000; Fuji &
Stephens, 2008; Olive & Caglayan, 2008). Algebraic reasoning is described through
reasoning with unknown or known quantities (Steffe & lzsak, 2002), and how
students approach and interpret the quantities and their relationship determines the
complexity of their algebraic reasoning (Smith & Thompson, 2008). For example,
Olive and Caglayan (2008) observed that students who comprehended the units of
quantities (e.g., the value of coins) in word problems, subsequently were able to write
precise equations to solve the problems. Similarly, recognizing the covarying
quantities in the functional thinking practices in early algebra is linked to students’
understanding of problem quantities (Ellis, 2011).

The main goal of this study is to investigate students’ progress in algebraic thinking
with a potential interaction with their units coordination. Therefore, this section
presents the related findings of the studies on this subject considering the link
between students’ performance in various algebraic tasks and their mental operations
in terms of units coordination. Algebraic thinking and reasoning involve many
interrelated elements, including understanding variables, generalization, symbolic
representation, and solving equations. Researchers have focused on different aspects
of algebraic thinking and reasoning while examining the impact or relationship of
students' unit coordination structures. Researchers asserted that students’
construction and coordination of units and their specific mental operations related to
their number sequences (e.g., disembedding, iteration of composite units) can
determine their performance in working with unknown quantities, writing equations
and generalizations (e.g., Hackenberg & Lee, 2015; Olive & Caglayan, 2008;

Zwanch, 2022a). The following sections present these findings in more detail.
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2.2.3.1  Students’ interpretation of quantitative unknowns

An understanding of and ability to operate with variables or unknown quantities is a
significant component of algebraic thinking and reasoning (Blanton et al., 2018;
Kieran, 2022; Usiskin, 1988). Researchers reported that students’ understanding of
unknown quantities and how they interpret their use in algebraic expressions was
affected by their levels of units coordination (e.g., Hackenberg & Lee, 2016;
Hackenberg et al., 2017; Hackenberg et al., 2021). They indicated that the use and
interpretation of unknown quantities were different in the performances of MC3 and
MC2 students.

Hackenberg et al. (2021) implemented iterative design experiments on 13 MC2 and
MC3 students (6-9 grades) to examine their understanding of unknowns by using
problems including two unknowns with a known multiplicative relationship. They
observed that MC3 students could construct a meaning of quantitative unknowns
such as one unknown unit consisting of a certain number of smaller units. The MC3
students revised their equations and interpretations during the discussions from
representing the relationship between measurement units to representing the
relationship between the values of the unknown heights or lengths. On the other
hand, most of the MC2 students represented the relationships between measurement
units (e.g., the number of straw or pen lengths) rather than between the values of
unknown measurements (e.g., the height of a house which is measured by the length
of a pen). In addition, Hackenberg et al. (2021) observed that MC2 students were
inclined to use knowns instead of working with indeterminate quantities. They
generated two separate two-levels of unit structures. The literal symbols represented
the measurement units instead of quantitative unknowns which are measured by an
indeterminate unit, each consisting of a smaller number of units. Some of the MC2

students demonstrated a similar performance to what MC3 students did.

Similarly, Hackenberg et al. (2017) observed that the MC2 students from seventh
and eighth grades had difficulty in representing the multiplicative relationship

between two unknowns in figures and equations. The researchers indicated that the
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main reason for the MC2 students’ struggle was their need to simplify the involved
unit coordination so that they could work with two levels of units as given because
they cannot operate further with three levels of units. Hence, the MC2 students
represented three common approaches to simplify the unit coordination such as
thinking of the multiplicative relationship as approximate, giving numerical
examples for the unknowns, and conceiving the multiplicative relationship during

making drawings and through teacher prompts.

Hackenberg and Lee (2016) found that the use of symbolic representations by the
MC2 students was not algebraic while MC3 students algebraically use notation by
writing equivalent forms of the same relationships. For example, MC2 students could
use fraction multipliers to express the relationship “What is the three-fifths of a candy
bar length represented by a?” by only writing “3/5a”. However, MC3 students could
use different forms of expressions through explanations and relating to other
representations such as "3/5a” and “a/5.3”. In addition, in expressing the three-
fifths of the sum of three unknown quantities MC2 students could not write an
appropriate algebraic expression (e.g., 3/5 ¢ b a) while some MC3 students could
express it using different forms again such as “ (a + b + ¢) X 3/5” and
"(3/5a + 3/5b + 3/5c)” that the researchers attributed it to their distributive
partitioning scheme. Therefore, they explained these findings as a relationship
between the students' units coordination in terms of fractional knowledge and their

algebraic reasoning.

A similar finding was also presented by Hackenberg and Seving (2022) who
investigated the relationship between MC3 students’ (7" and 8" graders) rational
number knowledge and their reciprocal reasoning in writing equations using
unknowns. They indicated that using unknowns in problems helped students’
reciprocal reasoning in writing equations and vice versa. The MC3 students who
constructed iterative unit fraction schemes interpreted the unknowns in equations in
a more sophisticated way by using reciprocal reasoning and fractional multipliers.

Moreover, Hackenberg and Seving (2021) observed that an advanced MC2 student,

55



Milo, could show some evidence of reciprocal reasoning in some problems as well
such aswriting § x 3/7 = LandL X 042 = §.

In general, it is asserted that the students at the first stage in multiplicative concepts
(MC1) would not perceive quantitative unknowns while the students at the upper
levels (MC2 and MC3) can imagine the partitioning of quantitative unknowns with
unknown units (Hackenberg, 2013; Hackenberg et al., 2021). In addition, using
numerical examples for the unknowns is seen as a common approach in MC2
students (e.g., Hackenberg & Lee, 2015; Hackenberg et al., 2017).

2.2.3.2  Writing equations using symbols

Another aspect of algebraic performance examined by the researchers in a
relationship with units coordination is writing and solving equations in problems
involving unknowns (Hackenberg, 2013; Hackenberg & Lee, 2015; Olive &
Caglayan, 2008). Researchers observed that students having different mental
structures about the units and quantities demonstrated qualitatively different ways of
writing equations (e.g., Hackenberg & Lee, 2015; Hackenberg & Sevinc, 2022). For
example, Olive and Caglayan (2008) asserted that constructing equations for solving
word problems involving three different quantities with one unknown required the
assimilation of three levels of units (MC3), which was accomplished by some of the
eighth graders in their study. Additionally, they observed that some students who
had assimilated two levels of units experienced difficulties in writing a complete
equation representing the monetary values on each side consistently by using only
one unknown. They indicated that the MC2 students’ lack of reflection on three
levels of units prevents them from representing the relationship between three
quantitative units (i.e., the number of coins, the monetary value obtained from each
coin, and the total monetary value). The researchers suggested that “unit
coordination and unit conservation are cognitive prerequisites for constructing an
equation when reasoning quantitatively about a situation” (Olive & Caglayan, 2008,

p. 32). On the other hand, in a recent study, Zwanch (2022b) observed that MC2
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students could generate a system of linear equations through the disembedding and
assimilation of two levels of units. Additionally, she indicated that MC1 students

could not represent these equations because of the lack of disembedding operation.

Hackenberg and Lee (2015) observed differences in written equations of MC3 and
MC2 students for the multiplicative relationships between unknowns. For example,
MC3 students could write accurate equations in a quick time by using both whole
number and fraction coefficients and could write the reverse forms of initial
equations (i.e., x = (1/5)y fory = 5x). However, they remarked that most of the
MC3 students were eighth and tenth graders who took a regular algebra course. On
the other hand, MC2 students struggled to write equations representing the
multiplicative relationships between unknowns. They needed more prompts from the
teacher, and they could not write the equations by using reciprocal reasoning.
Researchers also observed that MC2 students were inclined to give numerical

examples to the unknowns.

In another study, Hackenberg (2013) selected six MCL1 students from seventh and
eighth grades to examine the relationship between their algebraic reasoning, in terms
of equation writing and generalization, and fractional knowledge, in terms of some
mental operations such as splitting, partitioning, disembedding, and iterating. She
found that the majority of MC1 students could not write an equation representing the
multiplicative relationship between two unknowns such as one unknown length is
given as five times the other unknown length (the Cord Problem represented in
Chapter 3). Only two students could write the equation through the teacher's
coaching and after making some errors. Hackenberg (2013) indicated that the lack
of disembedding operation, which is quite necessary for algebraic reasoning, caused
some constraints for the MC1 students in writing equations for the multiplicative

relationship.

Another example of the differing equation writing of students from different levels
of units coordination is represented by Hackenberg and Sevinc (2022). They

observed that all MC3 students demonstrated the ability to express the multiplicative
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relationships between two unknowns in a flexible manner, using whole number
multipliers and reverse equations such as “S = 7 X 3 = L”and“L +~ 3 X 7 =
S”. Moreover, they could also construct reciprocal reasoning by using fractional
multipliers to express this relationship which is one unknown is three-seventh of
another unknown thanks to the iterative fraction schemes. On the other hand, two
MC3 students who could not construct iterative unit fraction schemes could only
construct reversible and additive reasoning using whole number multipliers but not
being able to relate it to the equations involving fraction multipliers. Therefore, the
researchers indicated a connection between the students’ units coordination in terms

of fractional knowledge and their performance in writing algebraic expressions.

2.2.3.3 Generalizations

An important aspect of algebraic reasoning is generalization (Kaput, 2008) where
the students recognize the relationships between quantities or variables and express
these relationships in different ways. Similar to the writing equations, researchers
also observed an impact of students’ units coordination levels on their generalization
performances by analyzing their verbal and symbolic expressions representing the

particular relationships or formulas (e.g., Hackenberg, 2013; Zwanch, 2022a).

Hackenberg (2013) studied with MC1 students to examine the interaction between
their levels of units coordination and their generalizations and generating rules. She
observed the generalization activities of MC1 students in their work on finding the
number of small squares on the border of a bigger square, which is called the Border
Problem. The generated rules by the students demonstrated their algebraic reasoning.
However, Hackenberg (2013) indicated that their generalizations were not very
sophisticated by involving structural thinking. In addition, the students had difficulty
verbalizing the generated rules. This is attributed to the absence of disembedding
operations in MC1 students. On the other hand, their iteration operations helped them
generate some methods for finding the number of small squares in terms of

generalization.
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In another study, Zwanch (2022a) examined middle school students’ generalization
(grades 6 to 9) by relating it to the students’ stages of number sequences. She noted
that all of the ENS (MC2) students could represent the generalization using symbols,
whereas nearly half of the aTNS (advanced MC1) students were able to use symbolic
representations for generalizations. She found that TNS students relied on recursive
patterns in problems to find certain steps in the patterns and they could not generate
a symbolic generalization. On the other hand, aTNS students’ performances showed
differences according to the problem types. They could write symbolic
representations for the generalization of pattern situations. In addition, she remarked
that figural reasoning may be more accessible to aTNS students instead of numerical

reasoning.

Relying on recursive thinking in patterns to reach the bigger steps is explained by
the TNS students’ construction of composite units in activity, and lack of reflection
on composite units (Zwanch, 2022a). Hence, Zwanch (2022a) posited that this
inadequacy leads the TNS students to fail to generalize relationships into patterns.
Zwanch (2022) remarked that reflecting on composite units as a characteristic of
aTNS and ENS students might allow the students to generalize the relationships
verbally and symbolically. In addition, a lack of disembedding operation can create
constraints in symbolic generalizations in pattern situations because the students
cannot reflect on the relationships between unknowns, as also explained by
Hackenberg (2013).

2.3 Summary

This section presented key terms and concepts about algebraic thinking and units
coordination. In short, algebraic thinking involves many ways of thinking such as
analytical, structural, and functional thinking (Radford, 2014; Kieran, 2022). The
indicators of these ways of thinking can be seen in generalization activity which is a
key practice of algebraic reasoning (Kaput, 2008). Symbolic expression of these

generalizations is another part of algebraic reasoning. If these practices involve

59



certain patterns of thinking, such as being analytical, abstracting ideas and
relationships, and structurally interpreting results, they may represent developed
algebraic thinking (Kieran, 2022). Writing a symbolic formula does not always
demonstrate algebraic thinking (Radford, 2010). Sometimes students arrive at a
formula by trial and error or by guessing, repeatedly changing some terms in the
formula until they get the right result. Therefore, this is not "an analytical way of
thinking about indeterminate quantities” which is "the main characteristic of
algebraic thinking” (p.9). During a clinical interview or classroom experiments,
students' algebraic thinking and reasoning can be assessed and improved through
contextual tasks that require generalizations and interpretations of relationships
between unknown quantities or variables, as seen in the aforementioned studies (e.g.,
Ayala-Altamirano & Molina, 2020; Blanton et al., 2019; Stephens, Fonger, et al.,
2017).

Units coordination is expressed as mental operations involving certain structures that
demonstrate how individuals identify and construct the units and the relationships
between units. Individuals’ mental structures about units and composite units
demonstrate the complexity of their work with mathematical quantities. Therefore,
it is asserted that individuals’ units coordination is an influential factor in many
mathematical performances (Hackenberg, 2013). For example, researchers observed
that students with different levels of units coordination represent qualitatively
different ways of writing symbolic mathematical expressions (e.g., Hackenberg &
Lee, 2015). Moreover, students’ generalization in verbal or symbolic interacts with
their units coordination (Zwanch, 2022a). Therefore, it may be a novel case in
algebra studies to interpret students’ mental structures about units as an influential

factor in developing algebraic thinking.

As seen in the literature, there is a growing interest in design-based research, which
is concerned with how important cognitive processes impact students’ algebraic
thinking and reasoning during the learning process. Some researchers investigated
the interaction between the students’ units coordination and their algebra

performance through design experiments in terms of different contexts such as
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students’ rational number knowledge and equation writing (e.g., Hackenberg et al.,
2017) and students’ rational number knowledge and their representations of
quantitative unknowns (e.g., Hackenberg et al., 2021). This study differently
presented an HLT that was designed in accordance with the findings of early algebra
studies and involved conjectures and outcomes about the students’ learning
processes with the aim of investigating the interaction between their units

coordination and their progress in algebraic thinking.
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CHAPTER 3

METHODS

The main goal of this study was to investigate the interaction between fifth-grade
students’ progress in algebraic thinking and their units coordination levels. To

accomplish this, the current study answered the following research questions:

1. What is the initial state of fifth-grade students’ units coordination and

algebraic thinking?

2. How can the units coordination levels of fifth-grade students interact with
their progress in algebraic thinking during a learning sequence that focuses
on the generalization of the relationships between unknown quantities and

between variables?

2.1. How can the units coordination levels of fifth-grade students interact
with their progress in algebraic thinking regarding the relationships

between unknown quantities?

2.2. How can the units coordination levels of fifth-grade students interact
with their progress in algebraic thinking regarding the functional

relationships between variables?

Departing from the aim of the study, this chapter presents the methodology including
the design of the study, participants, data collection, data analysis, and

trustworthiness.

3.1  Design of the Study

The starting point of this study was the controversial findings of two different lines

of research: one is units coordination and the other is early algebra. On the one hand,

63



researchers have asserted that algebraic reasoning, such as equation writing (e.g.,
Hackenberg, 2013, Zwanch, 2022b) and generalization (e.g., Zwanch, 2022a),
necessitates specific mental operations that pertain to a specific level of unit
coordination or the possession of some multiplicative concepts. On the other hand,
researchers observed that even in the early elementary grades, when it is highly
unlikely that students have developed the necessary multiplicative concepts (Clark
& Kamii, 1996; Kosko, 2019), they could use algebraic notations and generalize the
relationships between quantities through appropriate instructional designs (e.g.,
Blanton et al., 2019; Carraher et al., 2006). In this regard, the starting point of the
study was to fill in some gaps and specify the points in explaining the interaction
between students’ algebraic reasoning and units coordination. Bringing together
research on early algebra and unit coordination could validate or improve current
perspectives on algebraic reasoning and student learning by specifying the issues

involved.

In line with this, the study aimed to create a new perspective by filling in the empty
parts of the claim such as: “A learning process including the aspects of [...] would
develop the students’ algebraic thinking when they have characteristics of [...]” or
“Students who have [...] would progress in algebraic thinking when the learning
activities start with/involve [...]”. This required exploring the characteristics of a
learning environment that supports the algebraic thinking of students who
demonstrate distinct mental operations in terms of units coordination. Additionally,
the study also aimed to provide a new perspective on the theory of the interaction
between algebraic thinking and units coordination. To achieve the aims of the study,
a theory-oriented, interventionist, and iterative approach was necessary, indicating
design-based research (Cobb et al., 2003). Therefore, this was primarily a validation
study, a form of design-based research, that aims to develop or validate theories
through educational interventions based on certain principles (Plomp, 2013).
Concerning this, the current study, adopting a design-based research approach,
aimed to design intervention by employing the relevant theoretical frameworks and

to provide new insights into these frameworks through the analysis of the
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intervention. The following paragraphs describe the main principles of design-based
research and the adaptation of the current study to this approach, highlighting the
rationale for the actions taken.

Developing theories by providing new perspectives is an important characteristic of
design-based research (Cobb et al., 2003) which is one goal of this study. The second
characteristic highlights its interventionist nature. Learning ecologies include many
factors affecting the learning process such as mathematical tasks, student
characteristics, and classroom discourse. This creates a complex “interacting
system” (p. 9) and requires an engineering issue in a real context. This simultaneous
interaction between developing a learning ecology and understanding the
interrelationships between different factors through experimentation allows the

researchers to understand and improve the characteristics of a new design.

Since one of the goals of this study was to explore the characteristics of a learning
process aimed at the development of algebraic thinking, this could be achieved by
designing a hypothetical learning trajectory as an intervention plan. A hypothetical
learning trajectory (HLT) refers to the teachers’ conjectures and expectations about
a learning path and how the learning might proceed under certain circumstances and
for certain goals (Simon, 1995). Mathematics educators base their instructional
design decisions on prior conjectures before implementation, which is why it is
called hypothetical. Simon (1995) stated three key components of HLTSs: the
learning goals, activities to be used in class, and the statements hypothetically
talking about the learning process. Therefore, it was aimed to specify the learning
goals for developing the students’ algebraic thinking, preparing mathematical tasks
parallel to the learning goals, and writing hypotheses about the student learning
process by being informed of their characteristics and the learning goals (Simon &
Tzur, 2004).

The development of an HLT and intervention is possible through the reflective and
prospective nature of design-based research which is the third feature (Bakker, 2018;

Cobb et al., 2003). During the prospective phase, mathematics educators formulate
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conjectures about the learning process through thought experiments (Gravemeijer &
Cobb, 2013). The ideas are presented as hypothetical cases to be designed and
developed. Therefore, researchers must generate conjectures about the specific
learning environment as informed by the respective theories (Plomp, 2013). In the
reflective section, mathematics educators compare the conjectures with actual
learning by experimenting with the developed product (Gravemeijer & Cobb, 2013).
Invalidated conjectures are adjusted, or new ones are developed and tested again.

Assessments of student learning inform all components of HLTs through an ongoing
teacher decision-making process (Simon, 1995). These components also provide
mathematics educators with information about the learning process through ongoing
intervention and assessments. Therefore, interventions and designs are informed by
and inform the respective theories (Plomp, 2013). This evolving cyclical process,
which is another characteristic of design-based research continues to bring a
developed and working product into practice (Cobb et al., 2003). This iterative nature
allows mathematics educators to test and revise conjectures or generate new ones to
test in the next cycle (Bakker, 2018).

In addition to the main characteristics, in each cycle of design-based research, there
are three main phases: preparation and design phase, conducting teaching
experiments, and retrospective analysis (Bakker, 2018). All phases of this study were
completed to explore the characteristics of an HLT that develops students' algebraic
thinking. Therefore, the following sections explain the details of the methodology
adopted in this study including the selection of participants, the characteristics of the

context, the design process, the instruments used in data collection, and data analysis.

3.2  Research Team, Participants, and the Context

In this design-based research, the research team consisted of two main researchers
and other mathematics educators who were occasionally consulted. The first

researcher, who is also the author of this dissertation, has ten years of experience as
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a mathematics teacher in a government school. The author’s role also included
implementing the teaching experiments for students whom she had not previously
taught. Therefore, she will be referred to interchangeably as a teacher and a teacher-
researcher throughout the text. The other member of the research team was an
Associate Professor of Mathematics Education who specialized in units
coordination. During the design process, the team consulted multiple times with
other mathematics educators to ensure that the characteristics of the HLT were

appropriate.

The sampling process of the study involved several steps: the selection of the grade,
the school, and the students, respectively. The selection of the grade level was
purposeful and theory-driven, which addressed the research aim (Creswell, 2009). In
line with the purpose of the study, to contribute to the literature on early algebra and
better examine the progress of algebraic thinking along the learning trajectory, the
research team has decided to work with fifth graders who were new to middle school
and had not yet received formal algebra instruction according to the Turkish
Mathematics Curriculum (MoNE, 2018). According to the Turkish Mathematics
Curriculum (MoNE, 2018), fifth graders, who are in their first year of middle school
in Turkiye’s education system. The strand of algebra is first introduced in sixth
grade. According to the current mathematics curriculum, a student who has
completed fourth grade is expected to know arithmetic operations (i.e., addition,
subtraction, multiplication, and division), the meaning of equality, and how to
present data in tables (MoNE, 2018). Considering the potential mathematical tasks
to be included in the HLT, including contextual situations with functional
relationships as presented in the literature for primary school students’ algebraic
thinking and reasoning (e.g., Blanton et al., 2011; Blanton et al., 2019), the research
team objected to work with the students who can think multiplicatively, understand
a mathematical expression including equal sign, and read and construct a table.

Another reason for choosing fifth-grade students, rather than those in lower grades,
is to work with students who have achieved at least an MCL1 level, which is the first

stage of multiplicative concepts in terms of units coordination. MC1 level would
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enable students to accomplish multiplicative tasks (e.g., Hackenberg, 2013;
Hackenberg et al., 2021), which are commonly used in tasks including functional
relationships, which were initially aimed to give place in the learning trajectory. In
a research surveying unit coordination of middle school students in Turkiye (Acar &
Sevinc, 2021), more than half of the fifth graders were found at the MC1 level.
Furthermore, researchers estimated that half of the fifth graders started to reason
multiplicatively reflecting their construction of composite units (e.g., Kosko, 2019;
Steffe, 2024). In sum, the units coordination level was selected to attain these
research goals based on the literature and theory by using a purposeful sampling
strategy (Creswell, 2009).

The school of the students was chosen through convenience sampling by considering
the geographical accessibility, and the willingness of both the students and their
parents to participate in the study (Miles et al., 2014). The researcher had an
advantage in obtaining permission and reaching out to the school principal and
parents since her workplace was the school in question. The school was a small
middle school situated in a neighborhood with medium socio-economic status in

Istanbul. It had one fifth-grade class consisting of 20 students.

Lastly, the students’ selection among the fifth graders in this middle school was
purposeful, considering various factors to obtain relevant data for research purposes
(Creswell, 2009) such as their units coordination level, self-expression skills, and
achievement levels. It was critical to have students who could easily share their
thinking processes and provide significant data during interviews and teaching
experiments as this study necessitates qualitative data collection and analysis. To
obtain extensive data, it was also necessary to involve students who were not low in
general academic skills, including reading comprehension, numeracy, and
interpreting tables and figures. Following consultation with the fifth graders’
mathematics teachers, the researcher requested a selection of students who had
achieved high or moderate scores on mathematics exams and the teacher’s evaluation
in the classroom in terms of their self-expression skills. The mathematics teacher

provided six students who scored between 60-100 on mathematics exams.
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To investigate the fifth-grade students’ progress in algebraic reasoning based on their
units coordination, the study primarily targeted students with varying levels of units
coordination. Specifically, the research team aimed to implement teaching
experiments by pairing the students who shared similar cognitive operations and
generating two different groups demonstrating distinct units coordination levels.
Therefore, the selection of students was based on their units coordination levels
during data collection. Four students were selected and grouped into two based on
their units coordination, as indicated by the initial data analysis in the Findings
section. It is important to note that the interview for units coordination was used to
decide on the students, but it primarily demonstrated the students' mental operations
in interpreting the main data of this study. The findings section presents a detailed
analysis of the students' unit coordination levels; still it is important here to pinpoint
the units coordination of participating students to distinguish their similarities and

differences.

In conclusion, there were four fifth-grade students (two males and two females, 11-
year-olds) each two having a different level of units coordination (see Table 3.1).

The names of the students were pseudonyms.

Table 3.1 Study Participants

Roy Belle Sara Luke
Units Coordination Levels MC2 MC2 MC1 MC1
S:r']lg:?r'] aAn‘éZdSeg'(‘)'r‘; 95.1 87.5 79.7 81.2
Mathematics Score 97.8 95.6 67.9 73.4
Gender Male Female Female Male

3.3 Ethical Considerations

Before the data collection process, the researcher provided the research ethics

committee approval taken from the Middle East Technical University (see Appendix
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A), received permission from the school principal and the Istanbul provincial
directorate for national education (see Appendix B) to collect data from students in
the school and to implement teaching experiments. Then, the parents and students
received information about the study. I, as the researcher-teacher, informed them that
the issue of confidentiality would be addressed in this study and that they would not
be harmed during the study. The students voluntarily participated in the study and
their parents provided signed permission forms before the research began (Appendix
C).

3.4  Design Process

This study consisted of three phases following a design-based research approach.
The first phase involved preparing the HLT, which included how conjectures and
learning goals were generated, the influence of local instruction theories, the role of
the research team, and the initial assessments of participants as another influential
factor. The second phase explained how teaching experiments were conducted
including the role of researchers, a description of learning ecology, and the elements
of theoretical perspective in teaching and learning. Lastly, the last phase included
how the retrospective analysis of teaching experiments was conducted. Therefore, in

this section, these three phases and the HLT as the end product were described.

34.1 Preliminary research phase: Before teaching experiments

The initial phase of design-based research begins with a literature review that
provides insight into the specific educational problem and potential solutions
(Nieven & Folmer, 2013). This review also helps generate the initial design
principles for enhancing the situation. In this phase, the characteristics of the design
are established through an ongoing literature review, the analysis of context, and the
adoption of a conceptual and theoretical framework (Plomp, 2013). These

characteristics, which were derived from various literature sources, generate the
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starting points of a design. The design is developed further through thought
experiments on anticipated student performances and interactions (Gravemeijer,
2004). In this process, researchers must consider several aspects to ensure an
effective design and analysis process. These aspects include the cognitive
characteristics of the design, the type of interaction between students and teachers,
and the students’ access to the resources of the design (Collins et al., 2004). These
considerations allow the researchers to develop a local instruction theory by
expanding and adjusting current perspectives to the hypothetical learning process
(Gravemeijer & Cobb, 2013).

In this study, after specifying the research problem and determining the grade level
of students, an extensive exploration of literature and theoretical perspectives
continued. This review provided a significant perspective on learning algebraic
thinking and reasoning before formal algebra instruction (e.g., Blanton et al., 2011;
Blanton et al., 2019; Carraher et al., 2006), students’ mental operations in terms of
units coordination (e.g., Hackenberg et al., 2021; Steffe, 1992) and theories for
learning and teaching (Cobb et al., 1992; Simon, 1995; von Glasersfeld, 1995;).
Domain-specific perspectives about teaching and learning algebra shaped the
conjectures about what students can do and which algebraic tasks and processes can
be effective in the development of students’ algebraic thinking. Additionally, the
previous research about units coordination provided insight into the students’ mental
operations and helped to generate new conjectures regarding the students’
multiplicative concepts and potential performances in multiplicative tasks. Lastly,
general instructional and epistemological theories such as the Realistic Mathematics
Education, and socio-constructivism approach helped to determine task
characteristics, the teacher’s role, the type of questioning of the teacher during
teaching experiments, and socio-mathematical norms. The following sections outline
the principles and characteristics of the HLT design, including the theoretical and
conceptual perspectives, characteristics of mathematical tasks, the teacher’s role, and

socio-mathematical norms.
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3.4.1.1  Theoretical perspectives on algebraic thinking in the HLT

This section explains the interpretation of students’ development of algebraic
thinking through domain-specific perspectives at the cognitive level, as a part of
local instruction theory. In this way, the goals of the HLT are generated by starting
with a general goal and then becoming more specific. The primary objective of the
entire learning sequence is to develop students’ algebraic thinking. To achieve this,
the first step was to examine how algebraic thinking is defined and approached in
literature. We concentrated on the widely used descriptions of algebraic thinking
(Kieran, 1989; Radford, 2014) and algebraic reasoning (Kaput, 1999, 2008) to
identify the elements of learning tasks in the HLT. Descriptions of algebraic thinking
and reasoning share common components and are similar in form. For example,
Radford (2014) identified the dimensions of algebraic thinking as indeterminacy,
denotation, and analyticity. Similarly, Kieran (2022) framed early algebraic thinking
into three dimensions: analytical thinking, structural thinking, and functional
thinking. Kieran (2022) describes analytical thinking as mental operations involving
indeterminate quantities (indeterminacy) and denoting relationships in different

ways (denotation), which aligns with Radford's (2014) dimensions.

Furthermore, Kaput (2008) presented two core aspects of algebraic reasoning that
should be incorporated in teaching algebra: “a) Algebra as systematically
symbolizing generalizations of regularities and constraints b) Algebra as
syntactically guided reasoning and actions on generalizations expressed in
conventional symbol systems” (p. 11). He also indicated three strands embodying
these core aspects: the study of structures in arithmetic and quantitative reasoning,
the study of functions, and modeling applications. These forms also incorporate the
dimensions of algebraic thinking that are specified by Kieran (2022) and Radford
(2014) such as manipulation of formalism including denotation and analytical
thinking, study of structures including structural thinking, and study of functions

including functional thinking. Therefore, these components have become the study’s
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starting point in terms of comprehension of the main variable of the design (see Table
3.2).

Table 3.2 Starting Point: The Components of Algebraic Thinking and Reasoning

Algebraic Reasoning Algebraic Thinking
Thinking processes  Generalization of Analytical Thinking
Regularities

Functional thinking

Structural Thinking

Observable Generalizations expressed The denotation/expression of
behavior verbally or by the the operations with
conventional symbol system indeterminate quantities

In this way, more specific learning goals emerged at the cognitive level through the

interpretation of algebraic thinking and reasoning (see Table 3.3).

Table 3.3 The Learning Goals in the HLT Presented in the Order of Generation

Learning Goals Components

Developing the students’ algebraic thinking

Using indeterminate quantities in expressing the Analytical Thinking
variables, relationships, and regularities

Expressing the variables, relationships, and regularities Analytical Thinking
using symbols .
Denotation
Indeterminacy

Generalization

Expressing the variables, relationships, and regularities
in different forms (e.g., writing multiple equations, Structural Thinking
constructing tables and drawings)

Identifying functional relationships Functional Thinking

Generalization

Expressing functional relationships using symbols Functional Thinking
Generalization

Analytical Thinking
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After generating the initial learning goals, | have decided to give place for
mathematical activities including the aspects of generalization and symbolic
manipulation of generalizations with the dimensions of algebraic thinking such as
analytical, structural, and functional thinking. To determine the order of tasks and
objectives for studying with students who have not received formal algebra
instruction, | conducted a literature review on early algebra and its introduction in

primary school years.

As a starting point, Blanton et al. (2011) gave us a clear and robust perspective on
teaching algebra through their objectives, sample mathematical tasks, and big ideas.
They described five big ideas that summarize fundamental concepts and processes
in early algebra teaching and learning which are commonly adopted in lots of
research about algebraic reasoning: a) Arithmetic context for algebraic thinking, b)
Equivalence of two quantities, ¢) Variable understanding, d) Quantitative reasoning
for generalizations, and d) Functional thinking as a gateway to algebra. In addition
to highlighting the structures and relationships in an arithmetic context, they
remarked on some concepts that are important in algebra such as variables and
equivalence. Hence, they start with the comparison of unknown quantities using
variables and comparison symbols. They also highlighted the processes of
quantitative reasoning (e.g., Ellis, 2011; Smith & Thompson, 2008), generalization
(Kaput, 2008; Kieran, 2007; MacGregor, 2004), and functional thinking (Carraher
et al., 2008) like many researchers did. Therefore, | have decided to start the lessons
with comparisons of unknown quantities so that the students could have a chance to
think over unknown quantities and use comparison symbols (i.e., <, >, =) with
unknowns as a new thinking form and language. In this way, it was aimed to give
place for the meanings of comparison symbols, the meaning of equivalence, and

comparing different quantities as in the framework in Blanton et al. (2011).

Furthermore, Carraher et al. (2008) emphasized a learning process critical for early
algebra within a function context. In this learning, some key mathematical processes
are applied such as using indeterminate quantities in contextual problems,

interpreting the data in function tables, creating conjectures, making generalizations,

74



and representing the relationships with symbols. Functional thinking is regarded as
a gateway to algebra because it involves handling many key algebraic concepts and
processes such as “generalizing relationships between covarying quantities;
representing and justifying these relationships in multiple ways using natural
language, variable notation, tables, and graphs; and reasoning fluently with these
generalized representations in order to understand and predict functional behavior”
(Blanton, Brizuela et. al, 2015, p.512). Kaput (1999) remarked on the importance of
functions in many ways of mathematical thinking through the ideas of causality,
covariation, and rate of change as conceptual roots of algebraic reasoning. Hence, he
suggests ways of representing functional thinking in elementary years through the
problems in which the contextualized quantities change over time and uses graphs
and tables (Kaput, 1999). Multiple representations such as drawings, tables, charts
and graphs, and age-appropriate tasks in rich contexts can help the students to make
sense of the variables and the functional relationships and to make generalizations
as the initial steps into the algebraic concepts (Carraher et al., 2008; Blanton,
Stephens, et al., 2015). From this point of view, functional thinking was prioritized
with rich contextual problems in the HLT because it entails many key algebraic
processes such as variable understanding, generalizing the relationship between
quantities, and using multiple representations such as tables and equations to express
the relationships.

In conclusion, the design approach in this study followed Kaput's (2008) description
of algebraic reasoning and Kieran's (2022) and Radford's (2014) formulation of
algebraic thinking as the main theoretical framework (see Table 3.2). Thus, the
design of the HLT focused on mathematical processes such as functional thinking
and quantitative reasoning, as well as symbolic generalizations. In addition, the ideas
for the algebra learning process supported by Carraher et al. (2008) such as using
indeterminate quantities in contextual problems, interpreting the data in function
tables, creating conjectures, making generalizations, and representing the
relationships with symbols and five big ideas presented by Blanton et al. (2011)
shaped the initial version of the HLT. In sum, the HLT was based on a framework
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with four essential mathematical processes: quantitative reasoning, multiplicative
reasoning, generalization and functional relationship, and three key objectives: use

of variables, writing equations, and understanding functions as shown in Figure 3.1.

Mathematical Processes or Components in | Intended Learner Outcomes

the HLT

e Quantitative Reasoning e Use of variables
e Multiplicative Reasoning e Writing equations
¢ Generalization ¢ Functional thinking

e Functional Relationships

Figure 3.1. The framework of the HLT

3.4.1.2  Theoretical worldview about teaching and learning in the HLT

In the design and ordering of the learning activities in the HLT, a multifaceted
approach to teaching and learning mathematics was employed. The aim was to
follow a comprehensive approach that draws on the strengths of different theories
and perspectives. Therefore, the HLT integrated various worldviews in the
development of mathematics education by selectively incorporating certain aspects
of each perspective while dismissing others, as suggested by Simon (2009). With
respect to this, we, as a research team, adopted principles from the Realistic
Mathematics Education (RME) theory, incorporated the worldviews of researchers
in the field of early algebra, and included the views of the emergent perspective of
Cobb and Yackel (1996).

The RME distinguishes between two types of mathematization: horizontal
mathematization and vertical mathematization as crucial processes (van den Heuvel-
Panhuizen, 2000). Horizontal mathematization involves transforming concepts from
their real-world representation into mathematical symbols, while vertical
mathematization involves transforming concepts within the mathematical symbolic

system. In the context of developing algebraic thinking, we aimed to incorporate
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real-life representations of concepts, such as comparison situations and equivalence,
and transform them into mathematical expressions. For instance, the objective was
to have students mathematize the significant elements in contextual situations, such
as variables and relationships, through a process of horizontal mathematization. This
entailed identifying them in realistic situations and expressing the phenomena in
mathematical ways. In the process of vertical mathematization, the objective was to
have students work within mathematical expressions including verbal expressions of
generalizations, the use of tables for functional relationships, and the use of

alphanumeric symbols in equations.

Initially, the learning activities in the HLT were informed by the reality principle of
the RME. The reality principle involves incorporating real-life contexts into
mathematical abstractions, allowing students to imagine problem situations (van den
Heuvel-Panhuizen, 2000). This approach aims to make the problem situations more
tangible for students. It is important to ensure that students can imagine the
mathematical situation, as this makes it more realistic for them. Using rich contextual
situations to develop understanding and make sense for children is also a suggestion
of researchers in the field of early algebra (e.g., Blanton et al., 2011; Carraher et al.,
2008; Kaput, 1999).

Another fundamental principle that has been incorporated into the design of the HLT
is the level principle. This principle facilitates the transition from informal to more
formal mathematical discourse (van den Heuvel-Panhuizen, 2000). This also
corresponds to the abstraction process in the constructivist theory of mathematical
knowledge (von Glasersfeld, 1996). At the informal level, students' learning can be
supported by using models and objects and by allowing them to move between
different models (van den Heuvel-Panhuizen, 2000). In the early parts of the HLT,
the aim was to use figures from real-life contexts for comparisons of unknown
quantities before representing the relationships and concepts more formally and
abstractly. Additionally, the objective was to utilize tables of values for each
variable, develop a verbal generalization for the relationship between variables, and
then express this generalization through symbols. This approach would facilitate the

77



gradual increase in the level of formalization by providing multiple representations

of generalizations, as suggested by Kaput (1991).

The final principle embraced by the HLT was the intertwinement principle of the
RME, which places a strong emphasis on the connection between the various content
areas of mathematics (van den Heuvel-Panhuizen, 2000). This principle also
corresponds to the nature of algebra and algebraic thinking. For example,
understanding the relationship between operations and the properties of operations
is an aspect of algebra through generalization and structural thinking (Carpenter et
al., 2005; Usiskin, 1988). In this regard, the aim was to guide students to express the
relationships using symbols in different ways so that they could use the relationships
between operations and arithmetic properties. Therefore, the HLT included many
aspects of mathematics through the nature of algebra such as the relationships

between operations, patterns, and multiplicative reasoning.

3.4.1.3  Hypothetical learning trajectory (HLT)

Based on the theoretical views about teaching mathematics and algebra, we, as the
research team, created an HLT including six episodes (see Appendix D). In light of
the learning goals (see Table 3.3), we specified learning outcomes for each episode
and adapted and designed instructional activities. Each episode included contextual
tasks for student interpretation and progression. The tasks were adapted from various
studies that investigated and described students’ early algebra instruction (e.g.,
Blanton, Brizuela, et al. 2015; Blanton et al., 2011; Carraher et al., 2006). The tasks,
their descriptions, the mathematical ideas, and key cognitive operations are
presented in the following paragraphs.

Before introducing contextual situations involving functional relationships, the goal
was for the student to gain experience in writing mathematical sentences in various
contexts using variables and symbols. We thought that fifth graders may lack

experience in writing mathematical sentences to represent relationships beyond
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solving given arithmetic operations and missing value problems. Therefore, the first
and second episodes aimed to support students in writing mathematical equations

using variable notations for unknown quantities.

Episode 1. Episode 1 started with the principle that algebraic thinking requires
recognizing unknown quantities/variables, comparing them, and using symbols. The
comparison tasks were regarded as important to reflect how many ways two
quantities can relate to each other under the big idea, using quantitative reasoning to
generalize relationships (Blanton et al., 2011). Therefore, in the first episode, the
learning outcomes were to compare unknown quantities represented in figures and
to express the comparison in different ways, such as using verbal expressions,

hypothetical values, and symbols.

For this aim, three tasks asked the students to interpret different ways of comparing
two quantities and express the unknown quantities and the comparison of them using
variable notation and symbols. The first two tasks in Episode 1 ask students to
compare two unknown quantities, such as two pencils of different unknown lengths
and two pencils of the same length. These activities were adapted from Blanton et
al. (2011). In the third task, students continue to compare unknown quantities in
different contexts, such as un/balanced scales, and jars of sugars (see Figure 3.2). By
giving place for both equal and unequal situations it was also aimed to remark on the

meaning of equal sign as a comparison symbol.

= R

Figure 3.2. Sample figures from the comparison activities in Episode 1
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In all the activities, scaffolding questions were added assisting students to move to
the next steps and to comprehend the main idea. For example, to help students
understand the concept of variables and make generalizations, questions were added
that asked them to estimate the lengths of pencils and record their guesses in a table.
Furthermore, they were asked to use literal symbols to represent the lengths or
weights of the objects in each activity to help them become more comfortable
working with literal symbols. Table 3.4 represents the key components of Episode 1
which is the first part of the HLT.

Table 3.4 The Structure of Episode 1 inthe HLT

EPISODE 1: Comparison of unknown quantities using equality and inequality

Learning Outcomes

e Express the comparison of unknown quantities verbally (e.g., it is
longer/heavier/older than the other)

e Attain hypothetical values for unknown quantities by using tables.
e Assing letters/symbols to represent an unknown quantity.

e Use letters/symbols to represent the comparison between unknown quantities
using equality and inequality.

e Understand the relational meaning of the equal sign.

Tasks and Their Structures

Task 1: Expressing the multiplicative relationship between two unknowns by using
symbolic expressions

Task 2: Expressing the additive relationship between three unknowns by using
symbolic expressions

¢ Including contextual models and scenarios

e Including a comparison of two or more unknown quantities

e Allowing using tables of hypothetical values for the unknowns

¢ Including quantitative reasoning through the comparison of different quantities

e Generalizing from hypothetical values to symbols

Conjectures

a) MCI1 and MC2 students would compare the unknown quantities and express
them verbally at the beginning of tasks.

b) MCI1 and MC2 students would attain values for each unknown instead of using
literal symbols
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Table 3.4 (Continued)

¢) MCI students would not understand how they represent the relationship using
symbols.

d) Roy or both MC2 students would use the assigned letters to represent the
comparison with symbols towards the end of the episode.

e) MCI students would continue to assign values to unknown quantities instead
of using symbols.

f) MCI1 and MC2 students would have difficulty in representing the comparison
between three unknowns on un/balanced scales

Instructional Moves Aligning with the Conjectures

e Conjecturesb—c—e

-Assign multiple values for each unknown on a table and discuss the generalized
comparison

-Discuss the comparison symbols in expressing the numerical situations in
mathematical language (e.g., =, <, >)

-Direct the student to use letters for unknowns by saying “Let the length of yellow
pencil ‘a’ and the length of orange pencil ‘b’.”

e Conjecture f

-Use a table to assign values to three unknowns on an un/balanced scale and discuss
how to represent two unknown weights on one side in comparison to the other on the
other side.

Episode 2. Episode 2 involved the principle that algebraic reasoning involves
recognizing the multiplicative and additive relationships between unknown
quantities and representing them using symbols. The goal of the second episode was
to support students in identifying the multiplicative and additive relationships
between unknowns represented in models, representing the relationships by attaining
numerical values and expressing the relationships using symbols such as equal signs
and letters. In the previous episode, | conjectured that students would learn how to
compare quantities and represent relationships using mathematical equations. In this
lesson, they encounter multiple contexts that involve both multiplicative and additive

relationships.

To achieve the goals, two activities were designed that incorporate model

representations, aligning with the reality principle of the RME. The first activity
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involved a multiplicative relationship, while the second involved an additive
relationship (see Figure 3.3). The second activity involving an additive relationship
was adapted from Blanton et al. (2011, p. 44). It is introduced for developing
students’ quantitative reasoning and generalization skills as one dimension of
algebraic reasoning. Blanton, Brizuela, et al. (2015) indicated that the student can
represent a function such as y = mx easier as compared to a functional relationship
such as y = x + b. Considering that students would express a multiplicative
relationship such as y = 4x easier than expressing a relationship suchasy = x +

a, the activity involving a multiplicative relationship took first place in this Episode.

Multiplicative and
{} additive relationship

between unknown

) ®  Zarife Clllantltles

A B Additive Relationship
between unknown

quantities

Figure 3.3. The models for multiplicative and additive relationships

Using variables by operating with them as mathematical objects and by representing
functional relationships indicates a high level of understanding of variables (Blanton
et al., 2017). Hence, this task serves for the students to develop a sophisticated
understanding of variables which is an important step before using them in
representing functional relationships. Carraher et al. (2006) indicated that “the
children’s initial intuitions about order, change, and equality first arise in additive
situations” (p. 94). Hence, before introducing functional relationships in multiple
contexts, these two activities would develop an understanding of order, equality, and
symbolic notations. Furthermore, the order of steps in each activity corresponds to

the level principle of the RME through the use of models, from models to numerical
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values and from numerical values to symbolic representations. Therefore, the aim
was to highlight multiple ways of expression of a multiplicative and additive
relationship in an increasing abstraction. Table 3.5 represents the key components of
Episode 2 which is the second part of the HLT.

Table 3.5 The Structure of Episode 2

EPISODE 2: Comparison of unknown quantities with additive and multiplicative
relationships using equality

Learning Outcomes

e Recognize multiplicative and additive relationships between unknown quantities
through models.

e  Create different scenarios by attaining hypothetical values to unknown quantities
having multiplicative or additive relationships by using tables.

e  Assing letters/symbols to represent an unknown guantity.

e  Express the multiplicative and additive relationship between unknown quantities
verbally.

e  Express the multiplicative and additive relationship between unknown quantities
using symbols.

e  Show the relational meaning of the equal sign.

Tasks and Their Structures

Task 1: Expressing the multiplicative relationship between two unknowns by using
symbolic expressions.

Task 2: Expressing the additive relationship between three unknowns by using
symbolic expressions

¢ Including contextual models and scenarios (Reality and level principle)

Including a comparison of two or more unknown quantities

Allowing using tables of hypothetical values for the unknowns

Including quantitative reasoning through the multiplicative and additive relationships
(Intertwinement principle)

Generalizing from hypothetical values to symbols (Level principle)

Conjectures

a) MC1 and MC2 students would express the additive and multiplicative
relationships verbally
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Table 3.5 (Continued)

b) MC1 students use the letters to represent the lengths, but they would not write
the equations

¢) MC1 students would assign values for the length of ropes such as 1 and 4 or 2
and 8.

d) MC1 students would give numerical values to the unknowns and do
operations, but they would not represent the additive and multiplicative
relationship using symbolic expressions

e) MC2 students would express the additive and multiplicative relationship
verbally and symbolically by using letters, operations, and equality.

f) MC2 students would write different algebraic expressions representing the
same multiplicative relationship (e.g., 4 X a: it is the longest rope; 4 x r =
longer rope; r+r +r+r=longerrope; 4 Xxr=s;s/4=r).

Instructional Moves Aligning with the Conjectures

e Conjecturesa—b-c-d:
-Ask them to use letters and describe the same thing by using symbols

- Ask and discuss “Is there another way to represent the relationship (addition
/division/ multiplication/subtraction)?”

- Emphasize that we do not know the lengths. Ask and discuss the relationship between
the assigned numbers. For example, ask: “Which operation can you do to find one?”

e Conjecturee —f:

-Ask and discuss “How differently can you demonstrate the same relationship?”

Episodes 3-6. Since Episode 3, the design of the HLT followed the principle that
developing algebraic thinking through the dimension of functional thinking requires
recognizing the variables in contextual problems, the functional relationship between
variables, and representing the relationship by using symbols. Regarding this,
Episodes 3 and 4 aimed to develop students’ functional thinking through various
contexts with functional relationships in the form of y = ax while Episodes 5 and
6 included functional relationships in the form of y = ax + b. Throughout these
episodes, students complete some tasks in each activity such as identifying problem
variables, representing the possible scenarios in function tables, interpreting and
generalizing the data in tables, and expressing the functional relationship between

the variables.
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Episode 3 involved two activities including contextual problems which were taken
from Blanton et al. (2011) and Blanton, Brizuela, et al. (2015). The problems
included simple and discrete variables. The first activity involved a functional
relationship between two variables: one is the number of chairs, and the other is the
number of legs (Blanton et al., 2011). To enrich the contextual situation and to
strengthen the students’ understanding there were similar tasks in the following
sections of the episode (see Figure 3.4). The students are asked to find similar
relationships between the number of dogs and legs; the number of people and their

ears; and the number of people and their noses (Blanton, Brizuela, et al. 2015).

The Chair and Legs Problem: Suppose that you have some chairs, and each
chair has four legs. How would you describe the relationship between the
number of chairs and the corresponding number of chair legs? (Blanton et al.,
2011, p.9).

¢ Dogs and Legs: How can you express the relationship between the number
of dogs and the total number of legs on the dogs? (Blanton, Brizuela, et
al. 2015)

e People and Ears: How can you express the relationship between the
number of people and the total number of ears on the people? (Blanton,
Brizuela, et al. 2015).

e People and Noses: How can you express the relationship between the
number of people and the total number of noses on the people? (Blanton,

Brizuela, et al. 2015).

Figure 3.4. Sample Problems in Episode 3

It was assumed that students could identify relationships in different ways through
these tasks. One possibility is by observing a pattern in only one column of the
function table through recursive thinking (Blanton, Brizuela, et al. 2015; Blanton et
al., 2011). For instance, students may focus on the pattern in the column of the
number of legs, noting that it increases by four. However, the learning trajectory
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aims to develop functional thinking through covariational and correspondence
approaches. It was assumed that this development would occur at the end of the

episodes.

Episode 4 continued the learning process from Episode 3 by providing additional
contexts for the same form of the functional relationship (y = ax). It began with
the Saving Money Problem which prompts students to express the relationship
between the number of weeks and the amount of money saved when saving the same
amount each week. This problem is important as it includes different continuous
variables such as time and amount of money. After solving the initial problem and
representing the relationship, students were presented with additional situations in a
table format, such as saving varying amounts of money each month. The second
problem was the Pool Problem which introduced a different context involving the
relationship between time and the amount of water in a pool. The steps for this
problem were the same as the previous one, including identifying variables,
constructing a table, and expressing the relationship verbally and symbolically. In
the same context at the end of the activity, there was another situation with a new
table of data, similar to the first activity. These generalization practices were
important for developing their covariational and correspondence thinking as ways of

functional thinking.

In the final activity of Episode 4, students were required to determine the relationship
between the number of tables and the number of people seated based on a given
seating arrangement in The Birthday Party 1 Problem (Blanton, Brizuela, et al.
2015). It was anticipated that students who have completed the previous tasks would
be able to express the functional relationship and provide additional context. To
enhance students' understanding, it may be helpful to generalize functional
relationships across different contextual problems by presenting them sequentially
and highlighting similarities (Blanton et al., 2011; Carraher et al., 2008). For
example, one could construct a connection between saving money and filling the
pool contexts through the independent and dependent variables and shared linearity

concept. This approach can facilitate comprehension by drawing connections
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between seemingly disparate contexts. These connections can assist students in
transitioning from context-related situations to more general and formal ways of
functional thinking while moving from informal to formal mathematics under the
level principle in the RME (van den Heuvel-Panhuizen, 2000). Table 3.6 represents
the key components of Episodes 3-4 which is the third part of the HLT.

Table 3.6 The Structure of Episodes 3 and 4 in the HLT

EPISODES 3-4: Representing functional relationships between variables in the form
ofy = ax

Learning Outcomes

o |dentify the problem variables.
¢ Construct a function table.
¢ |dentify and generalize the functional relationship in the table of data.

e Understand and express the functional relationship between two variables through
recursive, covariational, and correspondence approach

o Represent the functional relationship using equation and variable notation.

o Connection between multiple representations of functional relationship (verbal,
table and symbolic)

Tasks and Their Structures

3-1) The Chair and Legs Problem: The relationship between the number of chairs
and the number of legs (y = 4x)

3-2) The contexts like the first task: The number of dogs/people/ and the number of
legs/ ears /noses (e.g.,y = 2xandy = x)

4-1) The Saving Money Problem: The relationship between time and the total
amount of money (y = 5x)

4-2) The Pool Problem: The relationship between the amount of water in a pool and
the elapsed time (y = 2x)

4-3) The Birthday Party 1 Problem: The relationship between the number of tables
and the number of people who are seated (y = 2x)

¢ Including contextual problems (Reality principle)
¢ Relationship between discrete quantities (Episode 3)
¢ Relationship between continuous quantities (Episode 4)

o Using function tables to represent the data before generalization (Level principle)

Conjectures

a) MC2 students would calculate any corresponding value in function tables.
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Table 3.6 (Continued)

b) MC1 students would not calculate the larger values in function tables because of
recursive thinking.

¢) MC2 students would indicate the functional relationship verbally by using
indeterminate quantities and write equations by using symbols.

d) MC1 students would not indicate the functional relationship by using indeterminate
quantities and letters.

e) MC1 students would have difficulty understanding the problem about the
relationship between the number of tables and the number of people seated around the
tables

Instructional Moves Aligning with the Conjectures

e Conjecture a—c:

-Ask them to use different strategies and explain the relationship by using different
expressions and equations (Developing structural thinking)

e Conjecture b-d:

-Fill the table together on the board and ask about the relationship between two
variables. Indicate the names of each variable in discussing each case. Let the
students interpret the change in both variables simultaneously.

e Conjecture e:

-Ask them to draw models to represent each situation. Show one table, two tables, and
three tables on the board respectively, and ask them to interpret the situation.

In Episodes 5 and 6, the aim was to present functional relationships in the form of
y = ax + b through contextual problems. Episode 5 included two problems with
similar contexts to the problems in the previous episode. The first problem of
Episode 5 sought the relationship between the number of people and the number of
tables, which was also the focus of the last activity in Episode 4 (The Birthday Party
2 Problem). In this scenario, there is a constant number representing the number of
individuals seated at the table ends. Likewise, in the second problem of Episode 5,
the Bank Account Problem, the students must focus on saving money context as they
did in the previous episode (see Figure 3.5). In this scenario, an initial sum of money

is given, and it increases each month at a constant rate.
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The Bank Account Problem (Episode 5): Ali has 30 liras in his bank account.

Ali decides to deposit 15 liras into his account every month.

a) Fill in the table below according to the information above.

Elapsed Time (the number of | 1 2 3 4 5 30
months)

The amount of money saved
in the account (Liras)

b) Let's call the number of months (elapsed time) a. How would you express
the total amount of money saved in the account?

c) Can you write an equation that shows the relationship between the total
amount of money saved in the account and the elapsed time (number of

months)?

The People and Hats Problem (Episode 6): Think about a hat with a height of
20 cm. How would you describe the relationship between a person’s height

without a hat and with a hat? (Carraher et al., 2006)

Figure 3.5. Sample problems from Episodes 5 and 6

Episode 6 continues with three different problems for the same form of functional
relationships, y = ax + b. The first one, the People and Hats Problem, was about
the relationship between a person’s height without a hat and with a hat with 20 cm
height, which was taken from the study of Carraher et al. (2006) (see Figure 3.5).
The second problem, Credit Card, in Episode 6 pertains to a credit card reward of a
constant amount granted for any spending (y = x - 20). It asked for the
relationship between the initial amount of spending and the amount of debt. The
relationships between the variables in the People and Hats and the Credit Card

Problems are written in the form of y = x + a, which differs from the previous
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problems in Episode 5 in that it has a constant rate of change of one. The last problem
in Episode 6 was the Sapling Problem, which involved a relationship between the
height of a tree sapling and the elapsed time. The initial height of the sapling is 35
cm, and it grows 2 cm each day (y = 35 + 2x). This problem was incorporated
into the lesson plan shortly after the completion of Episode 5, as the students had
difficulty in determining the relationships between the variables in the problems of
this form, including those with a coefficient that differs from one. The research
members added the Sapling Problem into the plan to provide further practice with
this specific functional relationship. The problems present novel contexts to allow
students to practice what they have learned as well. Table 3.7 represents the key

components of Episodes 5-6 which is the last part of the HLT.

Table 3.7 The Structure of Episodes 5 and 6 in the HLT

EPISODES 5-6: Representing functional relationships between variables in the form
ofy = ax+b

Learning Outcomes

¢ Identify the variables and the constant term in the problem
e Construct a function table.
¢ Identify and generalize the functional relationship in the table of data.

o Understand and express the functional relationship between two variables through
recursive, covariational, and correspondence approach

¢ Represent the functional relationship using equation and variable notation.

o Connection between multiple representations of functional relationship (verbal,
table and symbolic)

Tasks and Their Structures

5-1) The Birthday Party 2 Problem: The relationship between the number of tables
and the number of people who are seated (y = 2x + 2)

5-2) The Bank Account Problem: The relationship between time and the total
amount of money saved in the account (y = 15x + 30)

6-1) The People and Hats Problem: The relationship between a person’s height
without a hatand withahat (y = x + 20)

6-2) The Credit Card Problem: The relationship between the initial amount
expenditure and total debt amount (y = x - 20)
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Table 3.7 (Continued)

6-3) The Sapling Problem: The relationship between the elapsed time (days) and the
height of the sapling. (y = 2x + 35)

¢ Including contextual problems (Reality principle)

Relationship between discrete quantities (Episode 5)

Relationship between continuous quantities (Episodes 5-6)

Using function tables to represent the data before generalization (Level principle)

Conjectures

a) MC2 students would calculate any corresponding value in the function tables and
indicate the functional relationship verbally by using indeterminate quantities

b) MC1 students would not calculate the larger values in the function tables because
of ignoring the constant value and they would not indicate the functional relationship
by using indeterminate quantities and letters.

¢) MC1 and MC2 students would have difficulty in writing the equations representing
the functional relationship such as ignoring the constant value

d) MC1 students would have difficulty in writing the equations representing the
functional relationship in the form of y = x + a which is different from the
previous problems

Instructional Moves Aligning with the Conjectures

e Conjecture a

-Ask them to explain the relationship by using different expressions and equations
(Developing structural thinking)

e Conjectureb

- Fill in the table together on the board and ask the relationship between two
variables. Let the students interpret the change in both variables simultaneously.

e Conjecturec

-Ask them to pay attention to how they fill in the table and what operation they did in
calculating one variable by using the value of another variable.

e Conjectured

-Discuss the meaning of problem variables, pay attention to the table of values, and
highlight the covariation

We believed that relating the contexts in the problems to the previous episode would
help students connect the tasks they have worked on. However, it is assumed that the
initial amount as a constant in the problem would create a perturbation which is an

opportunity to expand their understanding (von Glasersfeld, 1993) while writing
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equations. Therefore, the students were expected to identify the similarities and also
differences between the contexts in both situations (i.e.,y = axandy = ax + b)
so that they could construct an adapted knowledge of writing equations for functional

relationships. All parts of the HLT are placed in Appendix D.

3.4.2 Phase 2: Conducting teaching experiments

During phase 2 of this design study, as a teacher-researcher, | conducted six teaching
episodes to achieve all the learning outcomes that were specified in the previous
phase. Each lesson followed the same learning sequence, including individual
student work, sharing responses and ideas, discussing the responses, and using the
same steps together with the teacher on the board. | adapted this sequence based on
theoretical principles such as didactic constructivism (von Glasersfeld, 2001), the
emergent perspective of Cobb and Yackel (1996), and the principles of the RME
(van den Heuvel-Panhuizen, 2000).

von Glasersfeld (2001) introduced several principles for teaching with radical
constructivism, which he termed "didactic constructivism." In this perspective, the
teachers are expected to facilitate students’ thinking and encourage them to verbalize
their thinking. He recommends that teachers utilize "neutral questions” (p. 171) to
guide students' thinking when necessary. Rather than emphasizing the attainment of
a correct response, it is essential to foster an appreciation of the construction process.
The HLT incorporated teacher-initiated questions and prompts to stimulate students’
thinking by considering potential student conceptions that can emerge during the

learning process, as proposed by von Glasersfeld (2001).

The RME approach emphasizes the activity principle, which posits that students
learn best by doing and participating (van den Heuvel-Panhuizen, 2000). This
approach makes students active participants in the learning process. Therefore, each
contextual problem included small tasks to guide students toward the final step. The

activities in each episode started with an individual work in which a student reads
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the contextual problem and applies the procedures required in each step of the
activity. For example, students begin by interpreting the problem variables. Then,
they construct a table with possible values for each variable and identify the
relationships as explained in the previous section. Finally, they describe the
relationships using verbal and symbolic language. This time given to each student at
the beginning provides opportunities for students to think about this “novel” way of
mathematical situations and come up with their ideas for further discussion (von
Glasersfeld, 2001).

In conducting teaching experiments, | worked with two students instead of one in
each episode to enrich the interaction process during learning. Cobb and Yackel
(1996) put forward the emergent perspective that incorporates the interaction aspect
in sociocultural theories and the psychological aspect in the constructivist approach
to learning and the mathematical way of knowing. In this perspective, the
microculture in the classroom, the roles of the teacher and students, and the way of
developing mathematical knowledge as taken as shared gain importance at both
societal and individual levels. In this regard, our initial goal was for the students to
thoroughly think about each problem situation, construct their own responses, and
share them in the class. In this process, they would come up with diverse outputs
from different mental processes and possible misinterpretations (von Glasersfeld,
2001). We aimed for the students to hear the responses of each other after they
worked on the problem by themselves. Verbalization of their thinking processes and
responses would let the students hear different responses and adapt their answers in
this small social context (Cobb et al., 1993; von Glasersfeld, 2001).

Although | objected to group students with similar mental operations in terms of
units coordination, | expected and observed that they could have still diverse mental
operations within the same problems. The similarities in their mental operations
would allow them to understand each other more easily. Furthermore, the differences
between the mental operations would provide productive and useful interaction
between the students through different strategies and more sophisticated responses.
For example, one would scaffold the other in case one of them had struggled with
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the problem. In addition, one would learn a more sophisticated approach from her/his

peer.

While the students actively worked on each task, the role of the teacher was
guidance, which is another principle of the RME (van den Heuvel-Panhuizen, 2000).
Although the students worked on the problems individually in the beginning, when
they needed help, the teacher intervened and helped them understand the point by
using additional questions. For example, if a student does not understand a problem,
the teacher can paraphrase or explain it. If a student cannot achieve a step of the
problem, such as identifying the multiplicative relationship between quantities, the
teacher asks small questions scaffolding the student for the further steps. Some
examples of teacher prompts and scaffolding questions are represented in Table 3.8

which were prepared in the design process of the HLT.

Table 3.8 Teacher Prompting Questions and Scaffolding for Students

Students’ possible performances Teacher responses and prompts

Episode 2: They may only give Remember that we do not know the lengths.
numerical values for the unknown How do you attain the value of the length of the
quantities instead of symbolic smaller and longer bar?

representation. . . o
P What kind of relationship is there between each

hypothetical pair of values?

How to represent these varying values for each
rope by using letters?

Episode 2: They may write an Is there another way to represent this
equation: 4 x a: it is the longest rope  relationship?

Episode 3: They may not write the ~ What do x and y represent?
equation by using x and y for the
relationship between the number of
chairs and the number of legs

How did you calculate the number of legs, |
mean y? (while working on the table)

What did you do with the number of chairs, |
mean x? (while working on the table).

Now you can use these letters instead of
numbers.
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In this context, the teacher's reactions play a crucial role when a student presents an
incorrect equation or flawed reasoning. Prompting questions are essential to allow
the student to reflect on their response (von Glasersfeld, 1996). My goal was to guide
and support students in identifying their own mistakes and developing a new way of

thinking with the teacher's guidance.

To summarize, each episode focused on three central processes: the students’
individual work on tasks, verbalizing their reasoning and explaining responses, and
reviewing the steps together on the board (see Table 3.9). This process constituted

the classroom discourse, the role of the teacher and students in learning.

Table 3.9 Overview of Processes in Activities in Each Episode

Main Processes Intermediate Processes Theoretical concepts
Individual work on Teacher guidance Activity principle-RME
tasks Guidance principle-RME
Verbalization of Teacher guidance Activity principle-RME
thinking Guidance principle-RME

Peer interaction
Interaction aspect -Emergent

Comparing the responses perspective

Reviewing the Peer interaction Activity principle-RME

responses and tasks Student adaptation Guidance principle-RME

Interaction aspect -Emergent

Constructing new )
perspective

material

3.4.3 Phase 3: Retrospective analysis

In the course of a retrospective analysis, the data derived from each teaching episode,
including students’ written work, verbal statements, and the results of in-class
assessments, were analyzed by comparing the conjectures. The analysis of each
teaching episode informed the subsequent teaching process by providing new
conjectures or revising previous conjectures. Furthermore, the retrospective analysis
conducted after each teaching episode permitted the revision of specific elements of
the subsequent episode, which had been constructed before starting teaching
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episodes. For example, Episode 6 involved two problems that included functional
relationships between variables in the form of y = ax + b. However, after
conducting Episode 5 and analyzing the entire data, | put an additional problem that
is similar to those in Episode 5 for further practice due to the students’ difficulties

observed in those problems.

35 Data Collection

There were three phases in the data collection:

1) Interviews before the teaching experiments assessing the students' units
coordination, understanding of equal sign and variables, and algebraic thinking.

2) Teaching experiments involving the students’ written works and end-of-lesson
assessments

3) Post-assessment interview after teaching experiments for evaluating the students’

overall achievement in algebraic thinking.

All phases of data collection are represented in Figure 3.6

Phase 1: Interviews Phase 2: Teaching Experiments | Phase 3: Interviews
Assessing the pre-existing Implementing the HLT Assessing the overall
knowledge and skills progress of students

4AF
e Algebraic
Thinking

e Units Coordination e Algebraic Thinking

e Understanding of
Equal Sign

e Variable
Understanding

e Algebraic Thinking

Figure 3.6. Three phases of the data collection process

Pre-assessment interviews were also used for documenting the prior knowledge level

of the students which provides the means for developing the teaching (Cobb et al.,
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2003). The students’ units coordination in terms of multiplicative concepts was
determined for two purposes. The first purpose was to select students for the study
and to group them according to their levels, demonstrating similar mental operations.
The second purpose was to examine the effect of their mental operations on their
performance in algebraic thinking. Therefore, their units coordination levels were

determined before starting teaching experiments.

To design the HLTs and determine students’ needs and preparedness for the subject
matter, | evaluated their understanding of the equal sign and variables before
teaching experiments. In this way, | aimed to make decisions on certain aspects of
the HLTs which are related to using equal signs, variables, and alphanumeric
symbols.

The interviews (i.e., the first phase) started almost three months before the teaching
experiments and were spread out over time. There were four interviews for each
student in total. Each student was interviewed separately, and each session was video
recorded which took between 15 to 30 minutes. The problems were taken and
adapted from different studies about units coordination (e.g., Hackenberg & Lee,
2015) and early algebra (e.g., Blanton, Brizuela et al., 2015), which are all explained

in further sections.

The first interview was to determine the students’ multiplicative concepts and select
them to participate in the study. Each interview lasted between about 25 and 30
minutes, and all four students’ units coordination interviews were completed in one
month. Afterward, the Algebraic Thinking Interview was conducted with four
students to determine their performance in determining their identification of the
relationships between variables and between unknown quantities, generalization of
the relationship, and representing the relationships using symbols. Each interview
lasted approximately 25 minutes and the interviews of all four students were
completed within 10 days. The third interview was conducted to assess the students’
understanding of equal signs. Each interview lasted from 10 to 17 minutes. All four

students’ equal sign understanding interviews were completed within a week.
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Finally, the fourth interview was to assess the students’ variable understanding such
as interpreting the literal symbols assigned to the problem quantities and identifying
the indeterminate quantities in problems and operating with them. Each interview
lasted from 10 to 19 minutes. All the variable understanding interviews were

completed within one week.

During the second phase of the data collection, the teaching experiments were
conducted in six episodes for each group over three weeks. Each group of students
attended two teaching episodes per week after school with each episode lasting
between 60 and 75 minutes. Each teaching episode was videotaped. Additionally,
each student demonstrated his/her work on activity sheets and end-of-lesson
assessment papers. One of the MCL1 students, Sara, could not attend the last episode

due to some special circumstances.

After completing the teaching experiments, | interviewed each student in the third
phase of the data collection to evaluate their overall progress in algebraic thinking. |
used the problems that I selected from the previous interviews. Each interview took
around 25 minutes. One of the MC1 students, Sara, could not attend the general
assessment as well. In the following sections, all constructs and how they were

assessed are presented in detail.

351 Units coordination assessment

There were four problems in the first interview protocol that examined the students’
multiplicative concepts in terms of units coordination. Researchers (e.g., Hackenberg
& Lee, 2015; Ulrich & Wilkins, 2017) used these problems to assess the students’
units coordination levels in previous studies. | have translated two problems (The
Bar Problem and The Cupcake Problem) and adapted two problems (The Crate
Problem and The Chairs-in-Rows Problem). | took an expert opinion in terms of
comprehensibility.
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The first two problems were adapted from the studies assessing the units
coordination of middle and high school students (e.g., Hackenberg, 2013;
Hackenberg & Lee, 2015) (see Table 3.10)

Table 3.10 The Problems for Assessing the Units Coordination Levels of Students

The Crate Problem: There are 6 chocolates in a package and 8 packages of chocolate
in a box. A crate contains 5 boxes. How can you find how many chocolates are in a
crate? Can you draw a picture to show how you find it? (Hackenberg & Lee, 2015)

The Chairs-in-Rows Problem: There are 6 rows in a movie theater with 4 chairs in
each row. 12 more chairs were brought to this hall. In the last case, how many rows can
be made in total with 4 chairs in each row? In the last case, how many chairs are there
in the hall? (Hackenberg & Lee, 2015)

The Bar Problem: (Ulrich & Wilkins, 2017, p. 9)

B1. If the shorter rectangle is 3 units long, how many units long is the longer rectangle?

|:| =3
LI T [ [ ] —

B2. If the shorter rectangle is eight units long, how many units long is the longer rectangle?

] -3
LI T T 1] ] —

B3. If the shorter rectangle is 8 units long, how many units long is the longer rectangle?

]
B4. If the longer rectangle is 90 units long, how many units long is the shorter rectangle?
LT T T [ | =90

B35. If the longer rectangle is 42 units long, how many units long is the shorter rectangle?

|:| =

| | =42

The Cupcake Problem: There are 3 rows of 6 cupcakes that are unboxed. If there are
9 rows of cupcakes in all, how many cupcakes are hidden in the box? (Ulrich &
Wilkins, 2017, p. 14)
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The Crate Problem involves embedded four levels of units (chocolates, packages,
boxes, and crates) which helps in distinguishing the students who coordinated three
levels of units (at least MC2). Similarly, in The Chairs-in-Rows Problem, there are
different levels of units that the students can perceive at the same time such as the
number of rows and the number of seats, or they can operate with just one of them
at atime (Ulrich, 2015). The kind of student operations demonstrates the quantitative

complexity the student is dealing with during the problem.

The other two problems were translated from the study of Ulrich and Wilkins (2017,
p.9). The face validity of the translated problems was ensured through an expert
opinion and piloting with a student. In the Bar Problem, there is a hierarchy of
difficulty from the first (B1) to the last one (B5), and the researchers remarked that
there was a significant association between the performance of each task and the
stages of the units coordination (Ulrich & Wilkins, 2017). They found that the tasks
helped distinguish the students at different levels of units coordination since they
required operations such as constructing a composite unit in activity (B2), operating
with assimilated composite units (B3 and B4), and constructing iterable units (B5).
For example, the questions with unpartitioned bars (B3 and B5) were considered
good at identifying students who assimilated with composite units (i.e., advanced
MC1 and higher levels).

The Cupcake Problem involves “a composite of composite units” (p. 15) which
increases the difficulty of the task for students without assimilated composite units
(i.e., hidden or shown cupcakes, total cupcakes, and rows of cupcakes). Therefore,
this task was regarded as hardly accessible for the students at lower levels. The
researchers observed various student solutions including distinguishing mental
operations of units coordination such as operating with the composite units,
disembedding composite units, and using figurative materials.
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3.5.2 Algebraic thinking assessment

In the interview assessing the student’s algebraic thinking, there were five problems

adapted from different researchers (see Table 3.11).

Table 3.11 The Problems Used to Assess Students’ Algebraic Thinking

The Growing Caterpillar Problem: The following pictures show the change in
body size of a caterpillar every day. Answer the questions accordingly. (An example
question: Let T be the size of the caterpillar, and G the number of days passed. Can
you write an equation that gives the length of the caterpillar?) (Blanton, 2008)

1.gin 2.giin 3.gin

The Bouncing Ball Problem: The table below represents a recording of how high a
ball rises after each hit the ground and from what height the ball is dropped. Can you
write an equation showing the relationship between the height at which the ball is
dropped and the amount of rise after it bounces off the ground? (Lucariello et al.,
2014).

The height the ball is left (y) 80 cm 100 cm

The height after bouncing (x) 40 cm 50 cm

The Penny Bank Problem: Ali has 10 liras in his penny bank. Ali decides to save
money by putting 3 liras in his penny bank every day. How many liras will Ali have
in his penny bank after 8 days? How can you express the relationship between the
number of days and the amount of money in the penny bank?

The Caterpillar and Leaf Problem: Ali is keeping 2 caterpillars at home. Each day
brings 6 leaves to feed these 2 caterpillars. If Ali had 12 caterpillars, how many
leaves would he have to bring each day to feed these caterpillars? Can you write a
mathematical expression showing the relationship between the number of caterpillars
and the number of leaves that need to be fed? (Blanton, Stephens, et al., 2015)

The Cord Problem: The charging cord of Sinan's phone is of some number of
lengths. His charging cord is 5 times longer than Zeynep's charging cord. Could you
draw a picture of this situation? Can you write an equation for this situation?
(Hackenberg & Lee, 2015, p. 20)
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The first two problems included pattern situations with a given tabular (The
Bouncing Ball Problem) (Lucariello et al., 2014) or figural data (The Growing
Caterpillar Problem) (Blanton, 2008). Hence, the aim was to assess how students
identify the functional relationships between variables in the form of y = ax and

generalize and express them verbally or using symbols.

The third problem, the Penny Bank, similarly addressed the generalization and
representation of a functional relationship between variables, but in the form of y =
ax + b.Roy could not see this problem in his pre-assessment because this problem
was not included in the initial form of the interview. Roy was the first student to be
interviewed and it was not possible to interview Roy again to ask about this problem

before teaching episodes.

The other two problems, The Caterpillar and Leaf Problem and The Cord Problem,
put forward the quantitative reasoning aspect of algebra. The Caterpillar and Leaf
Problem was adapted from Blanton, Stephens, et al. (2015) and included the
multiplicative relationship between two known quantities and requires the students
to generalize their solution by using indeterminate quantities as a dimension of
algebraic thinking. Lastly, The Cord Problem was adapted from Hackenberg and Lee
(2015). It assessed the students’ representation of the multiplicative relationship
between two unknown quantities by using symbolic language which requires the

standard level of algebraic thinking.

3.5.3 Equal sign understanding assessment

For assessing the students’ understanding of equal signs, a structured interview was
constructed based on various sources about equal sign understanding (e.g., Behr et
al., 1980; Fyfe et al., 2018; Hattikudur & Alibali, 2010; Matthews et al., 2012). The
interview protocol involved five questions that were adapted from these studies. The
questions involved describing comparison symbols, classifying symbols (e.g., 4, +,

<, >, =), interpreting standard and non-standard forms of equations, and calculating
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missing values in equations. The questions addressed the reported misinterpretations

and conceptualization of the equal sign concept.

The first two questions addressed the students’ relational definition and conceptual
understanding of equal sign by asking for the definition of comparison symbols and
classifying various symbols including comparison and operation symbols and
numbers (Hattikudur & Alibali, 2010; Matthews et al., 2012). In the third question
(see Table 3.12) various equation structures were presented in typical (operation-
answer structure) or atypical forms such as answer-operation and operation-
operation structures (Baroody & Ginsburg, 1983) for the students to indicate whether
they make sense or not (Behr et al., 1980; Matthews et al., 2012).

Table 3.12 Sample Problems in the Equal Sign Understanding Interview

Question 3. Look at the math expressions below, which ones make sense and which
don't? Why do they make sense?

a) 7=7

by 7=2+5

c) 8-6=5

d 5+3=5-3

e) 23+34=57

f) 47+52=48+51
g) 2+7=9-2

h) 4+6+3=10+3

Question 5. What are the numbers that should be in the spaces below? How did
you find them?

e 9+4+3=9+
e 3+5+7=_ +7
e 5+3=_ +4

This assessed the students’ understanding level of the equal sign and the level of
reasoning in evaluating the equivalence of both sides (Fyfe et al., 2018). In the fourth
and fifth questions, the students calculated the missing values in different number

sentences. The aim was to identify the students’ conceptions of equal signs, either
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relational or operational, their use of sophisticated solution strategies, and any
potential misuse of equal signs. Questions 3 and 5 were represented in Table 3.12 as

sample problems from the Equal Sign Understanding Interview.

3.5.4 Variable understanding assessment

For assessing the students’ understanding of variables, a structured interview was
constructed based on various sources about variable understanding (e.g., Ayala-
Altamirano & Molina, 2020; Blanton et al., 2017; Lucariello et al., 2014). There were
five questions to assess how the students identified the problem variables, how they
viewed letters in contextual problems, and whether they had certain

misinterpretations of letters in mathematical situations.

The first question asked about the meaning of the variable to identify if the students
had heard it before and what they understood by the term. The second question was
adapted from Blanton et al (2017) who studied the thinking of first-grade students
about variables in a function context. This question and its sub-questions allow us to
see whether the students mathematized the problem variables or how they
mathematized variable quantities (Blanton et al., 2017). The use of letters in the
question as prompts for the students (e.g., Let’s call the number of cats D, what can
it be and how can we express the number of total ears?) could allow for analyzing
the students’ interpretation of those letters assigned for the variable quantities
whether they see as an object name, a constant value or indeterminate value (see
Table 3.13).

The third and fourth questions were similar to the second question by including new
contextual problems such as selling bagels and a constantly growing sapling. The
problems included both qualitative questions with given variables but not values for
certain quantities in each case. The aim was to incorporate more variable quantities
in different roles, such as an unknown value (e.g., the price of a bagel and the initial

length of a sapling) and a varying quantity (the length of a sapling in any day and the
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amount of money earned in a day) and observe how the students identify and
interpret the variables in a mathematical problem situation. The third question (see

Table 3.13) involved a functional relationship between two variables going through

the origin (i.e., the number of bagels sold and earned money in a day: y = ax).

Table 3.13 Sample Questions from Variable Understanding Interview

Questions

Purposes

Q2. In a cat-only animal shelter, how many
tails/ears/legs do 3/10/40 cats have? Why?

a) If the number of cats in the shelter is unknown, how
can we express the number of cats? Why?

b) Let's call the number of cats in the shelter D. How
many can D be? How many tails/ears/legs are there?
Why?

Identification of problem
variables

Mathematizing variable
guantities

Interpretation of letters
assigned to the problem
variables

Q3. Ali decides to sell bagels every day on holiday.

Identification of problem

How can we calculate the money Ali will earn in one variables
day? What do we need to know to make this

calculation? Mathematizing variable

guantities

g . . o _
a) What is the variable(s) in this question? Interpretation of letters

assigned to the problem
variables

b) If the number of bagels sold in a day is S and one
bagel is 5 liras, how many liras does Ali earn in a day?

c) If the number of bagels sold in a day is 50 and one
bagel is T liras, how many liras does Ali earn in a day?

The fourth problem involved another functional relationship between two variables
going through the axis (i.e., the height of a sapling and the time passed after it is
planted while it is growing the same amount each day: y = ax + b). In this way,
the students’ awareness of variables in distinct forms and contexts, and their
interpretation of given letters to indeterminate quantities could be identified, which
shows their level of understanding. Lastly, in the fifth question, an erroneous
understanding of students was addressed by asking “What does L represent in the
expression L + 47”. It reveals whether the students recognize the letters as labels or

objects instead of variables (Lucariello et al., 2014).
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3.55 Overall post-assessment

The students’ overall assessments after completing the teaching experiments were
carried out through critical interviews including six questions. The problems
included distinct aspects of algebraic thinking such as focusing on functional
thinking, being about the relationship between two unknown quantities, and being

about understanding equal signs.

The first problem was The Caterpillar and Leaf Problem (Blanton, Stephens, et al.,
being2015) which was used in the Algebraic Thinking Interview before the teaching
experiments (see Table 3.11). The aim was to observe the progress of the students in
terms of analytical and structural thinking and symbolic representation of the

relationship between two known quantities.

The second problem was The Cord Problem (Hackenberg & Lee, 2015) which was
another problem from the first interview before teaching experiments. In terms of
symbolic representation, the students had performed insufficiently in this task.
Therefore, the aim was to observe how the students showed progress in interpreting
the same problem and representing the multiplicative relationship between two

unknown quantities.

Two problems (3" and 4™) addressed functional thinking, each involving a different
form of function. One was The Growing Caterpillar Problem (Blanton, 2008) which
was also included in the Algebraic Thinking Interview before the teaching
experiments (see Table 3.11). It involved figural data and addressed functional
thinking in the form of y = ax. The fourth problem, the Penny Bank, (see Table
3.11) addressed functional thinking in the form of y = ax + b. The given context
pertains to saving money, which is similar to the problems covered in Episodes 5
and 6. The problem’s structure was similar to other functional thinking or pattern
problems in an algebraic thinking context. It involved asking for the dependent
variable when the independent variable has a larger value, using a function table, and

representing the relationship between variables through symbols.
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In the fifth question, there were two missing value operations. It aimed to assess
whether certain students still struggled with the misinterpretation of the equal sign
after the teaching experiments. This would indicate the effectiveness of the
experiments in students’ understanding of equal signs, which is a crucial concept in

algebraic reasoning.

Finally, a question from the units coordination interview was used in the post-
assessment interview, specifically The Crate Problem (see Table 3.10). During the
initial interview, the students performed poorly on this problem. The aim was to
observe any changes in the students' units coordination throughout the process. The
questions in the post-assessment interview are presented in Appendix E by including

a student’s answers as sample data.

3.6  Data Analysis

There were two sources of data analysis in this research. The first source was the
interviews conducted before and after the teaching experiments along with students’
written work. Through these interviews, the students’ algebraic thinking, units
coordination levels, equal sign understanding, and variable understanding were
evaluated. The second source of data analysis was teaching experiments including
video records and written records of students’ work. Each teaching episode in these
experiments allowed for the evaluation of students’ development of algebraic
thinking through intervention. The following paragraphs describe the analysis of the

interview records and teaching experiments, respectively.

Each interview session and teaching episode was videotaped and transcribed. The
video recordings and student worksheets were used as the ‘raw material' for data
analysis, which did not include any direct interference from the researcher (Miles &
Huberman, 1994, p. 46). By using these raw materials, | generated additional written
sources of data for the analysis such as transcriptions, reflective memos, and field

notes during and after the interviews and teachings. Because these “partially
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processed data” (p. 46) involved the researcher’s selective attention and
interpretation, this was the early part of data analysis (Miles & Huberman, 1994).
For example, during the observation and transcription process, | highlighted some
sentences, made comments for further analysis, replayed the video, or reviewed the

students’ worksheets.

After compiling all raw and processed data, the coding process began. The interviews
were coded based on the corresponding variable. For example, the data coming from
the unit coordination interviews were analyzed using the code sets generated from
units coordination literature. The data from the interviews regarding algebraic
thinking were coded based on the conception of algebraic thinking and reasoning
described in Chapter 2. Finally, the teaching episodes were coded in terms of
algebraic thinking. Although I observed the students’ development and performance
in algebraic thinking during the teaching experiments, | also somewhat evaluated
their operations in terms of units coordination because the interaction between two
constructs was crucial. The related coding sets and framework are presented in the

following headings.

3.6.1 The students’ units coordination levels

For coding the transcriptions of the units coordination interviews, | generated an
initial set of codes that included specific mental operations, each of which referred
to a specific level of multiplicative concept, based on the conceptual framework of
units coordination (e.g., Hackenberg & Tillema, 2009; Steffe, 2002; Ulrich &
Wilkins, 2017). Therefore, |1 used the mental operations of each level of
multiplicative concepts identified by researchers in this literature as provisional
codes, which means a starting list of codes generated from the literature before
starting the coding process (Saldana, 2015). During the transcription and initial
coding, some additional codes emerged as process codes by coding the students’
mental and physical actions such as “drawing to check the answer” and “adding and

subtracting different levels of units” (Saldana, 2015). These codes were grouped into

108



categories according to which units coordination levels they primarily indicate. The

main code list is presented in Table 3.14.

Table 3.14 Codes for Units Coordination Levels

Codes Categories
MC2 MC1

Coordinating three levels of units in activity

Interiorization of two levels of units

Explicit reflection on the composite units

Operate with composite units

Disembedding

Drawing to demonstrate after the teacher’s request™

Equipartitioning

X X| X| X| X| X| X| X

Drawing to check the answer *

Coordinating two levels of units in activity

Need to draw in solving problems

Decaying composite units constructed during activity

Difficulty in keeping track of the multiple quantities

Iterative counting to construct composite unit*

X| X| X| X| X| X| X

Adding/Subtracting different levels of units *

*The codes generated during the coding process

Using the code list in Table 3.14, two researchers determined each student’s level of
multiplicative concept separately regarding the frequency of codes belonging to a
certain level and the pattern in the students’ mental operations. The researchers first
analyzed each student’s mental operations separately. In addition, the performance
on each task was evaluated by comparing and contrasting the students. For example,
firstly, the interview with Roy was coded and analyzed in terms of his mental
operations related to a certain level of units coordination. Then his performance on
the first task in the interview was compared with the performance of other students
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on the first task. This allowed for the analysis of each interview both across students

and across tasks.

To enhance the inter-coder reliability, two researchers cross-checked their
evaluations at the beginning of the analysis. The reliability percent was calculated
for one student’s results by using the reliability calculation mentioned in Miles and
Huberman (1994). Therefore, the number of agreements was divided by the total
number of decisions. The ratio was calculated as 75%. The decision from each coder

is represented in Table 3.15.

Table 3.15 The Decisions of the Coders for Roy to Calculate the Intercoder

Agreement
Tasks Coder 1 Coder 2 Final Decision
Task 1 MC2 MC2 or Advanced MC1 Advanced MC1
Task 2 MC2 MC2 MC2
Task 3 MC2 Advanced MC1 MC2
Task 4 MC2 MC2 MC2

Due to the complexity of the mental operations and variations of those in different
problems throughout the interview (Hackenberg & Sevinc, 2024), there were
instances of inconsistencies in students’ performances and their level of
multiplicative concepts. The researchers discussed these instances to differentiate the
students within the same level of units coordination. For example, being slow or
fluent in some operations, needing a check after finishing the problem, and making
trial and error were some differentiating factors of the students within the same level
of multiplicative concepts. This intra-level differentiation was observed in several
studies such as a seventh grader, Milo, who performed as an advanced MC2 in
working with fractional relationships between unknowns (Hackenberg & Sevinc,
2022), and a sixth grader, Adam, who did advanced operations at the MCL1 level

(Ulrich, 2016b). Therefore, the researcher also reviewed those studies to compare
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and contrast the intra-level differentiation, which served as triangulation by theory
(Lincoln & Guba, 1985).

3.6.2 The students’ algebraic thinking

In teaching experiments and interviews, the students’ algebraic thinking was
analyzed by focusing on algebraic thinking processes and descriptions of algebraic
reasoning specified by key researchers in the field such as Kaput (2008), Radford
(2010; 2014) and Blanton (2008). A big part of the study required the students to
identify and generalize relationships between variables or unknowns, and to express
relationships verbally and symbolically, which is based on Kaput’s (2008)
description of algebraic reasoning. Therefore, the students’ performances in algebra
problems were analyzed by focusing on several units of analysis. These were a)
students’ identification of problem variables and relationships b) students’
generalization of relationships in problems and c¢) the structure in students’

expression of generalizations.

In analyzing their generalizations and expressions of generalizations, the dimensions
of algebraic thinking such as analytical thinking, functional thinking, and structural
thinking (Kieran, 2022; Radford, 2014) were provisional codes (Saldana, 2015) as
indicators of students’ algebraic thinking. However, these major codes included
subcodes that were generated during the coding process. These subcodes described
the students’ thinking processes which were used for indicators of major codes or
demonstration of a certain thinking level in a particular major code. For example,
using indeterminate quantities in expressing a problem situation, such as the number
of chair legs equal to four times the number of chairs, was used as a subcode of
analytical thinking which is a dimension of algebraic thinking (Radford, 2014). On
the other hand, giving numerical values to the unknown quantities to represent the
relationship was an indicator of a lack of analyticity. Furthermore, writing different
forms of operations in representing a relationship between variables demonstrated

structural thinking. In another example, recursive thinking in a pattern situation was
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coded as a pre-level of functional thinking (Blanton et al., 2011). The identification
of students’ way of functional thinking was based on the categorization of
covariational thinking and correspondence thinking (Smith, 2008). The sample codes

and examples from student responses are represented in Table 3.16.

Table 3.16 Sample Codes in Analyzing Students’ Performances in Algebra

Problems
Provisional Subcode examples Examples from student
Code examples responses
Analytical a) Using indeterminate (a) (d) “The number of chair
Thinking quantities legs equal to four times the
b) Writing equations numBERPt chairy
c) Expressing the problem (@) () y = 4x
variables
d) Verbal generalization
Structural a) Symbolic representation @y = 4x
Thinking b) Writing equations in different  (b) (c)y +~ 4 = x and
forms
y = 4x
¢) Reversing the equations
Functional a) Recursive thinking (@) It increases four by four
Thinking b) Covariational thinking (¢)“If I multiply the number

¢) Correspondence thinking of manths by f'Ve;,I find the
amount of money
d) Finding the bigger items in a

pattern problem

After categorizing all the codes and patterns in students’ thinking, in terms of
whether students construct in-action formulas to calculate a certain part of a problem
(symbolic representation) and reach the bigger items in a pattern situation, students’
algebraic thinking was categorized according to algebraic thinking forms such as
factual, contextual and standard algebraic thinkers (Radford, 2010). For example, the
students who could represent the generalizations in symbols and equations by
showing many indicators of analytical thinking were determined as standard

algebraic thinkers. On the other hand, the students who could only express the
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general relationship verbally, were determined as contextual algebraic thinkers. The
students who were unable to reach any of these levels of generalization and who
continued to engage in recursive thinking were identified as factual algebraic
thinkers (see Table 3.17).

Table 3.17 Categories and Sample Code Patterns in Students” Algebraic Thinking

Categories in students’ Generalization of relationships
generalizations

Factual Algebraic Thinking Recursive thinking in pattern situations

Contextual Algebraic Thinking Finding the bigger steps in a pattern situation

Generalizing the relationship/rule between
variables verbally

Standard Algebraic Thinking Symbolic representation
Explicitly using indeterminate quantities

In short, students’ identification of the relationships and structures in problems was
analyzed by focusing on how they think about and interpret the problem
variables/quantities and their work on function tables. Students’ generalizations were
analyzed by focusing on their verbal statements, calculation of a random value of a
variable in a problem, and symbolic and functional thinking forms. Lastly, students’
symbolic representations were examined whether they were accurate equations and
the explicit or implicit structures in written equations. All of these analyses revealed
patterns and capacities in students’ algebraic thinking and reasoning (see Table

3.18).

In addition to analyzing the students’ thinking and reasoning in algebraic tasks, their
progress was also analyzed in terms of the interaction with the teacher and peers in
teaching episodes. Following the emergent perspective of social constructivism, in
which the mathematical activities are seen as social events and the interactions and
roles of individuals in this small social setting are important for knowledge
development (Cobb & Yackel, 1996), I analyzed the students’ progression in
teaching experiments considering the roles and support of the teacher and peers. For
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example, the analysis distinguished between the performances of two students: one
who completed a task with the support of only the task sequence and another who
completed the same task with the support of the teacher's prompting questions or the
work of a peer. Therefore, the analysis of students’ progression in algebraic thinking
involved some aspects of teaching such as interaction, the use of additional

questions, and the timing of teacher interference.

Table 3.18 Analysis of Students’ Performance on Algebra Problems

Categories of Analyses

Focused
Performances
Substantial Weak
Identification of Using table of values Giving numerical examples
relationships Recursive thinking Erroneous identification

Using indeterminate quantities

Finding several values/examples
for a variable

Generalization Finding the bigger steps in a No generalization

pattern situation Could not find the bigger

Verbal statement steps in a pattern situation
Using indeterminate quantities

Recursive / correspondence /
covariational thinking

Expression of Symbolic representation No symbolic representation

relationships Different forms of equations Wrong equation/symbolic

Different models/symbols representation

3.6.3 The students’ understanding of equal signs

In the analysis of students’ understanding of equal signs, the aim was to determine
whether they view equal signs as operators or signs indicating the equivalence of
both sides, which is a relational view (Behr et al., 1980; Kieran, 1981). In the
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operational view, the students interpret equal signs as “do something signals” (Behr
et al., 1980, p.15), and the signal for a coming answer (Kieran, 1981) while in the
relational view, they see equal signs as comparison symbols showing an equivalence
(Behr et al., 1980).

Matthews et al. (2012) described the students’ responses according to their
understanding of equal signs. They distinguished the students’ understanding of
equal signs into four categories: rigid operational, flexible operational, basic
relational, and comparative relational. At the rigid operational level, the students
accept the equations including the operations only on the left side while at the
flexible operational level, atypical equation structures (i.e.,a = aora = b + ¢)
can make sense for the students. At the basic relational level, operations on both
sides can work for the students. At the comparative relational level, the students can
apply compensation strategy in solving missing value problems in equations as a
more sophisticated understanding of equivalence. In this study, | evaluated each
student’s understanding of equal signs across the questions in his/her interview, and
then his/her understanding was determined to be mainly operational or relational by
focusing on the description and examples in the literature (e.g., Kieran, 1981;
Matthews et al., 2012). Sample student answers and the corresponding codes are

given in Table 3.19.

Table 3.19 Sample Student Answers and the Corresponding Codes

Example Student Answers Corresponding Codes
Grouping the comparison symbols Relational Understanding
together “<, >, =7

Grouping the equal sign with the Operational Understanding
operation symbols “+, -, =

Writing 8 into the blank in the equation Operational Understanding
5+3=_+4

Writing 4 into the blank in the equation Relational Understanding
54+ 3 =__+4 4byusing

compensation strategy
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In the first two questions, the students' descriptions of comparison symbols (i.e., <,
>, =) and their categorization with other symbols such as operation symbols and
numbers provided codes indicating a relational or operational interpretation. For
example, indicating that comparison symbols are used with operations or grouping
an equal sign with operation symbols instead of comparison symbols were coded as
operational understanding. On the other hand, grouping an equal sign with other

comparison symbols was coded as relational understanding.

In addition, students’ interpretations of various equation sentences were coded in
terms of four levels of the framework in Matthews et al. (2012). For example, when
an equation “7 = 2 + 5” was evaluated as not making sense or incorrect due to
the order of the result and operation, it indicated a rigid operational level of
understanding. If the students indicated that the equation, 7 = 7 makes sense the
response was coded as the flexible operational level of understanding. The students
who accepted the equations including operations on both sides (Items h and f in
question 3, in Table 3.12) were regarded at least at a basic relational level of
understanding. Lastly, interpreting some equations or finding missing values using a
compensation strategy indicated the comparative relational level of understanding
(Matthews et al., 2012).

Questions 4 and 5 required the students to fill in the blanks in various equation
sentences. The numbers the students wrote in the blanks were coded according to
how they viewed equal signs. Their responses providing the equivalence of both
sides demonstrated a relational view of equal signs. In addition, using a
compensation strategy to find a missing value demonstrated a comparative relational

level of understanding (Matthews et al., 2012).

3.6.4 The students’ variable understanding

Student answers in this interview were coded in terms of how the students
mathematized the problem variables by specifying them in problem situations, how

they used them in operations, and how they interpreted the letters assigned for the
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variables. The use of letters assigned for certain variables in each problem as
prompts, (e.g., Let’s call the number of cats D, what can it be and how can we express
the number of total ears?) allowed for analyzing the students’ interpretation of those
letters whether they see them as an object name, a constant value or indeterminate

value.

Firstly, the students’ identification of problem variables determined their
understanding of variables in problem situations. For example, some students
identified two variables in the sapling problem such as how much it grows each day
and the number of days while some students identified only one variable: how much
it grows each day. This represents some students are aware of the problem variables
more than others which allows them to move on to mathematize the variables. In
addition, it showed us those who could not recognize the problem variables need

more support to improve their variable understanding in teaching episodes.

Students’ interpretation of the letters assigned to the problem variables represented
their understanding of the variables, whether they viewed them as objects, unknown
or varying quantities. In this case, their variable understanding was analyzed
according to the framework of Blanton et al (2017). They constructed a set of levels
to identify the first graders’ variable understanding in the context of functional

relationships (see Table 3.20).

Table 3.20 The Levels of the Students Based on Their Variable Understanding

Levels Explanation

Level 1  Pre-variable and Pre-symbolic: The students do not conceive the
mathematical quantities as variables and they cannot use any symbolic
representation

Level 2  Letters as labels or representing objects

Level 3  Letters as representing variables with fixed, deterministic values

Level 4  Letters as representing variables with fixed but arbitrarily chosen values

Level 5  Letters as representing variables that are varying unknowns

Level 6  Letters as representing variables as mathematical objects
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There are several reasons for choosing this framework. First, it was shaped by a well-
defined learning trajectory based on functional relationships. Second, it embodied
and connected to previous frameworks about variable understanding (e.g.,
Kiichemann, 1981). Third, because the students in this study were fifth graders who
were not familiar with the variable construct, this extended framework was

appropriate because it addressed levels from very basic to sophisticated.

For example, when students say that they are unable to calculate a particular variable
by using letters in a problem situation, it showed that they understood letters as
representing variables with fixed, deterministic values, Level 3 (Blanton et al., 2017).
If they give numerical values to the letters assigned to the problem variables (e.g., If
the height of a sapling that grows 2 cm every day is L) just before mathematizing the
situation, it shows they see letters as representing variables with fixed but arbitrarily
chosen values, Level 4 (Blanton et al., 2017). Lastly, a student who recognizes the
problem variables as mathematical objects that s/he could operate on and create new
expressions using these objects represents the highest level of variable

understanding, Level 6.

Finally, 1 analyzed the students’ use of variables in mathematical operations,
including how they performed operations with letters and quantities assigned to the
problem variables. For example, their operations with letters such as S x T (i.e., S
for the number of bagels and T for the price of one bagel) were coded as an
understanding of letters representing variables as mathematical objects (i.e., Level
6) (Blanton et al., 2017). On the other hand, the students who could not make
operations with letters without giving numerical values were regarded at a lower

level such as Level 4: representing variables with fixed but arbitrarily chosen values.

3.7 Trustworthiness

Design-based research follows the principles of qualitative research in terms of

reliability and validity, which are key standards of research methodology (Bakker,
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2018). Validity addresses the question of how accurately a method measures what it
is intended to measure (Bakker, 2018; Lincoln & Guba, 1985). Internal validity is
the degree to which the results of a study can be relied upon without bias, while
external validity refers to the degree of generalizability of the results. On the other
hand, reliability concerns how consistent the results would be in similar contexts and

with similar participants.

In qualitative studies, internal validity is substituted by the term credibility (Lincoln
& Guba, 1985). For ensuring credibility (i.e., internal validity) some common
methods are using adequate and high-quality data, doing member checks, and data
triangulation (Bakker, 2018; Lincoln & Guba, 1985). To ensure credibility, we used
these methods in different phases of the study.

Firstly, the research members prepared the data collection tools, and teaching
materials in line with the related literature and research. They were presented to
different mathematics educators to ensure the construct validity. After four
mathematics educators, including the teacher-researcher, agreed on conceptual
understanding, consistency, and relevance to the purpose of the study, the data
collection process began. We provided substantial data collection through
observations of teaching episodes, video records of individual interviews and
teaching sessions, written responses of the students, and reflective memos. This
provides high-quality data by integrating multiple data sources and the credibility of
the data analysis process. (Gravemeijer & Cobb, 2013). It allowed the teacher-
researcher to check multiple sources during the examination such as watching the
videos again, reading the reflective memos, and checking the students’ written
answers, as a kind of data triangulation (Lincoln & Guba, 1985). Furthermore,
conducting end-of-lesson assessments after each teaching episode enhanced the
credibility of the data as well (Nieveen & Folmer, 2013). In addition to using
multiple sources of data, we used a multi-perspective approach in data analysis. For
example, the research members conducted a joint examination of some of the
transcribed data and the initial data analysis was shared with two mathematics
educators. Moreover, the related literature provided information about the analysis
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of certain student responses. These methods enhanced the credibility of this study

through triangulation.

In qualitative studies, external validity is replaced by the term transferability
(Lincoln & Guba, 1985). In design research, it may be possible to transfer findings
to other situations through analytical or theoretical generalization (Bakker, 2018).
For this, a detailed explanation of the design in terms of “how, when, and why it
works” in addition to “what works” is important to transfer the design to other
situations in further steps (Cobb et al., 2003, p. 13). With respect to this, this study
provides a detailed description of participants, and contexts to ensure transferability.
Considering the students’ self-expression skills in the selection process was another

factor for transferability to collect “thick descriptive data” (Guba, 1981, p. 86).

For the reliability and objectivity issues which are other criteria for research quality,
multiple steps were taken to ensure that the findings are independent from the
researcher bias. For example, multiple researchers have seen and interpreted a part
of the data. We also used transcriptions of the recordings and an initial coding list in
the data analysis. This allowed us to compare our codes and argumentations (Bakker,
2018).
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CHAPTER 4

FINDINGS

This study aimed to investigate the interaction between fifth-grade students’ progress
in algebraic thinking and their units coordination levels by developing an HLT
targeting the development of students’ generalizations and symbolic representations
of the relationships between unknown quantities or variables. This section presents
the students’ mental operations in terms of units coordination assessed before the
teaching experiments and their initial performance in algebraic thinking, their
progress throughout the teaching episodes, and their final level in algebraic thinking,
organized under the three main headings. The first heading outlines the students’
initial performances in pre-assessments involving units coordination, algebraic
thinking, equal sign understanding, and variable understanding. The second heading,
which is the main part of this section, presents the students’ progress in algebraic
thinking throughout the teaching episodes from the first to the sixth. Finally, the third
heading presents an overall progress of the students including an evaluation of the

difference between pre and post-assessment performances.

4.1 The Students’ Initial Performances Before Teaching Experiments

This part first summarizes the students' mental operations according to the analyses
of the Units Coordination Interview focusing on their multiplicative concepts.
Second, it presents the students’ evaluations in terms of algebraic thinking involving
the understanding of some key terms in algebra such as the equal sign, and variable

understanding.
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41.1 Students’ units coordinations in terms of multiplicative concepts

The students were divided into two groups according to their level of multiplicative
concepts. Two students, Roy and Belle, demonstrated mostly the indicators of the
MC2 level, such as performing the disembedding operation, operating with
composite units, and coordinating three levels of units in activity. The other two
students, Sara and Luke mostly demonstrated indicators of the MC1 level, such as
using drawings to solve the problems, reducing composite units they constructed
during the activity, and coordinating two levels of units in activity. Table 4.1
summarizes some indicators of multiplicative concepts that students demonstrated

in different problems.

Table 4.1 Students’ Mental Operations in terms of Units Coordination

MC2 MC1

Roy Belle Sara Luke
Coordinating three-levels of units in activity 1,2,34 1,234
Interiorization of two-levels of units 1,234 1,234
Explicit reflection on the composite units 124 1,2,4
Operate with composite units 2,3 2,34 3
Disembedding 2,4 2,4 4
Drawing to demonstrate after the teacher’s 1,24 4
request
Equipartitioning 3 3
Drawing to check the answer 1,4 4
Coordinating two-levels of units in activity 1,24 2
Need drawings to solve the problem 2 1,2 2
Degaying composite units constructed during 2,4 2,4
activity
Difficulty in keeping track of the multiple 1 2 2,4 2,4
quantities
Iterative counting to construct composite unit 2 2,3
Adding/Subtracting different levels of units 2,4 2,4
No answer 1,3

* 1: The Crate Problem; 2: The Chairs-in-Rows Problem; 3: The Bar Problem (including 5
tasks); 4: The Cupcake Problem

122



Although each two students shared indicators of the same level, they also
demonstrated some intra-level differences such as in fluency in multiplicative
operations and in the frequency of using drawings. Therefore, the levels of units
coordination were identified as advanced MC2 (Roy), regular MC2 (Belle), regular
MC1 (Sara), and early MC1 (Luke), respectively, from the one demonstrating the
most sophisticated units coordination to the one with the lowest level of units
coordination. The students' mental operations for each multiplicative concept (i.e.,
MC1 and MC2) with examples are presented in the following headings separately.

4111 The MC2 students’ mental operations

Roy and Belle demonstrated mostly the MC2 level indicators in their responses, with
subtle differences when working on the problems in the Units Coordination
Interview. For example, in the Cupcake Problem, they demonstrated similar
performance by applying disembedding operation, assimilating two levels of units,
and using composite units in further operations. First, they did the same calculations
shown in Figure 4.1, and then Roy did the drawings when the teacher asked him to,
and Belle, without the teacher's request, drew the hidden cupcakes in rows to further

check her answer.

6 rows of cakes
9
-3
éu-34 8 svaleet

Lutunw, 7(; t Ade A tane

36 pieces inside the box

Figure 4.1. Roy’s (left) and Belle’s (right) solutions in the Cupcake Problem

They found the number of rows (second-level units) hidden in the box (i.e.,
disembedding the composite unit) and used this number to calculate the number of

cupcakes (transition between units).
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Another example that shows their common indicators and also the constraints in
coordinating three levels of units is their performance in the Crate Problem:
The Crate Problem: There are 6 chocolates in a package and 8 packages of
chocolate in a box. A crate contains 5 boxes. How can you find how many

chocolates are in a crate? Can you draw a picture to show how you find it?
(Hackenberg & Lee, 2015).

Both students reached the final correct answer, which requires coordinating three-
levels of units. They could coordinate three levels of units in activity and use two
levels of units as given, which is an indicator of the MC2 level. However, both had
difficulty initially in understanding the problem. For example, Belle needed to read
the problem a few times, before saying: “I multiplied 6 and 8, and it is 48. Then I
multiplied 48 and 5”. After she answered, she continued reading the problem and
thinking over it. Through the teacher’s suggestion, she started to make drawings. In
the drawing, she wrote 6 in each square, an indicator of the iteration of composite
units in activity (see Figure 4.2). She said: “There are 40 packets and there are 6 in

each so by multiplying 40 and 6, finding 240”.

/ /’- }"{ g/_’% 6/ }4
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Figure 4.2. Belle’s solution in the Crate Problem

Similarly, Roy immediately multiplied 8 and 5 just after he read the problem. Then
he changed his strategy in his second attempt through the teacher’s prompts. In the
first attempt, he could not figure out the problem and could not coordinate three
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levels of units. In addition, he could not accurately state what 40 refers to. He
indicated that there are 40 chocolates, instead of 40 packets of chocolates as follows:
Roy: I multiply 8 and 5... one minute, (he is thinking and writing the
multiplication). | multiply 8 and 5, it makes 40. Because there are 8

chocolates in one box, in one crate there are 40. | mean there are 40 chocolates
in each crate.

Teacher: Has it finished?
Roy: Yes teacher (He still seems to be thinking)

After the initial drawings, the teacher asked him to read the problem again,
which made him change his solution by multiplying 8 by 6 and then 48 by 5
as follows:

Teacher: Can you do drawings to demonstrate the situation?

Roy: (He thought a little and drew) Now, there are 6 chocolates in a packet.
It makes 48 chocolates in 8 packets. After that, 8 and ... 5 are not multiplied
teacher, we multiply 48 and 5, because there are 48 in one box (he is
multiplying) 240

Teacher: 240 what?

Roy: Chocolates
Finding the answer 240 and his way of working on the solution demonstrated his
coordinating three-levels of units in activity rather than being assimilated three levels

of units, which indicates that he is not operating at the MC3 level.

An explicit difference between the mental operations of Roy and Belle emerged in
the Chairs-in-Rows Problem:
The Chairs-in-Rows Problem: There are 6 rows in a movie theater with 4
chairs in each row. 12 more chairs were brought to this hall. In the last case,

how many rows can be made in total with 4 chairs in each row? In the last
case, how many chairs are there in the hall? (Hackenberg & Lee, 2015)

Roy grasped the problem quickly and performed the operations by flexibly moving
between the levels of units. He initially found the newly added number of rows by
dividing 12 chairs (first level of units) into rows, each containing four chairs. Then
he calculated the total number of rows by adding 3 new rows and 6 initial rows
(operating with composite units). Lastly, he multiplied nine rows by four chairs (in
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each row) to find the total number of chairs. In contrast, Belle initially needed

drawings to solve the problem (see Figure 4.3).

“9 rows”

A0 o 3 4= 3E “9 rows”
=0 5 T 3 \/l e e L i
Roy Belle

Figure 4.3. MC2 students’ solutions in the Chairs-in-Rows Problem

Her drawings indicate that two levels of units are not given and are not explicit to
her, which is an indicator of MC1. She made small errors and corrections in her
drawings as follows:
Belle: One minute...there is one more row... Because we were going to add
three rows (she erased the last row). I have just realized it

Teacher: How did you figure out that you need to add three rows quickly?
Did you find it by drawings, or have you done mental calculations?

Belle: Now, if there are 4 in each row, | found that we will put 3 rows in 12,
so when we multiply 4 by 3, it becomes 12. (She did the multiplication that
will answer 12 next to the drawing).

Teacher: Okay, so you thought, what | multiply with 4 makes 12.

Belle: Yes, by three. That's why we put 3 rows, 4 in each row as well makes
12, that's it. Now here are 9 rows.

As seen, after a while, she indicated that there would be 3 more rows with 12 chairs

added. Then she counted the number of rows and wrote 36 chairs as the result. This
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mental operation shows that she operated with composite units with the help of the

drawings.

In general, Roy’s and Belle’s performances, such as disembedding operations in the
Cupcake Problem and coordinating three levels of units in activity in the Crate
Problem put them at the MC2 level. Roy was fast and fluent in almost all problems,
and Belle was slower in solving the problems and needed to make drawings to check
the answer (e.g., Cupcake Problem) or do some parts of the operations (e.g., Chair-
in-Rows Problem). Her reliance on drawings and activity in some instances is similar
to an MC2 student who was identified by the raters as at “the lower end of other
Stage 2 students” because she had more cognitive demands and relied on figural
materials in some tasks (Norton et al., 2015, p. 57). Therefore, Belle was identified
as being at the lower end of Roy at the MC2 level, and Roy was an advanced MC2
student who was in a different fluency in terms of mental operations with the

different levels of units.

41.1.2 MC1 students’ mental operations

Sara and Luke demonstrated the MCL1 level indicators such as coordinating two-
levels of units in activity (making drawings) and having difficulty keeping track of
the constructed units (i.e., decaying composite units). They had similar difficulties
and some differences in solving the problems.

In the Chairs-in-Rows and the Cupcake Problems, the students reached the correct
solution in similar ways through drawings and the teacher-researcher’s prompts.
They also had similar challenges which are indicators of MC1. Both students made
drawings to understand the problem or to correct the misunderstanding that appeared
in their initial trials. They were confused about the units in their first attempts and

were not able to follow the composite units they constructed in the activity.

For instance, in the Chair-in-Rows Problem, Sara said: "There were 12 rows and 4

chairs in each row," and she performed an addition of 12 and 4. Similarly, Luke did
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multiplication by saying: "There are 4 chairs in each row and | added 12 more chairs,
so itis 48... I multiplied 12 by 4". This indicated that they were unable to accurately
follow the level of units. In the second trial, Luke found the number of rows added
(i.e., 3rows) by quickly calculating from the number of chairs added (i.e., 12 is made
up of three fours). However, subsequently, he added the values of 3 (the number of
rows added) and 24 (the original number of chairs) and found 27. This showed that
the composite units (3 rows) he was constructing in activity were decaying in his
further operation. However, he needed to recall or construct the composite unit (3
rows) again to use it accurately in a new situation. This is a constraint that eTNS
(early TNS or early MC1) students have as well (Ulrich & Wilkins, 2017).

Their final solutions and drawings are represented in Figure 4.4. They added three
new rows of four chairs which they get from newly added 12 chairs. Finally, they
relied on calculating the number of chairs by focusing on one level of units (either
by counting by four or adding 24 chairs and 12 chairs). These demonstrated a
coordination of two levels of units in activity (MC1).

£x 6= 24
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Figure 4.4. Sara’s (left) and Luke’s (right) solutions in the Chairs-in-Rows Problem

The differences between Luke and Sara’s performances appeared in the Crate and
the Bar Problems as well. Neither MC1 student could find the total number of
chocolates in the Crate Problem. About the difference between them, Sara found the
answer 40 by counting fives 8 times, and she named 40 chocolates rather than 40

packets of chocolates. On the other hand, Luke did not do any arithmetic operations
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or drawing. Sara at least demonstrated her multiplicative reasoning, whereas Luke

displayed a lack of comprehension of the problem and a desire to move on.

In Bar Tasks 3 and 5, where the long bars were given unpartitioned (see Table 3.10),
Sara incorrectly equipartitioned the long bar with respect to the given unit of the
short bar, despite attempting to use her finger to ensure that each piece was equal. In
contrast, Luke demonstrated the ability to perform equipartitioning correctly in Bar
Task 3, where the length of the short bar is given, but not in Bar Task 5, where the
length of the long bar is given (i.e., division is required). Additionally, in Bar Tasks
4 and 5, where inverse multiplicative reasoning is required, Luke employed a trial-
and-error strategy by assigning random numbers for the length of the short bar.
Conversely, Sara employed a division operation, taking into account the number of
partitions involved in those tasks. In addition to these, Luke’s struggle to understand
the problems and lack of confidence even with the correct answers he found made

us consider him at the lower end of Sara within the MC1 level.

4.1.2 Students’ algebraic thinking

There were five problems in the Algebraic Thinking Interview before starting the
teaching experiments (see Table 3.11). The Growing Caterpillar and the Bouncing
Ball Problems were to examine the students’ identification of the functional
relationships between variables, in the form of y = ax, where it was presented in
figures or tables, and their generalization and expression of these relationships, either
verbally or in symbols. There was another problem addressing a functional
relationship inthe formofy = ax + b, the Penny Bank Problem. Only Belle, Sara,
and Luke answered this problem because Roy could not see this problem in his pre-
assessment. Roy was the first student to be interviewed, and this problem was not
included in the initial form of the interview. In addition, it was not possible to do a
follow-up interview with Roy about this issue at that time. The other two problems,

The Caterpillar and Leaf and the Cord Problems were to assess the students’
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generalization and representation of the multiplicative relationships between known

or unknown quantities using symbols.

Analysis of the students' responses in the Algebraic Thinking Interview revealed that
MC2 students (Roy and Belle) demonstrated more advanced algebraic reasoning as
compared to MC1 students (Sara and Luke). They also have a relational
understanding of the equal sign, unlike MC1 students who demonstrated an
operational view of the equal sign. Furthermore, students in the same group differed
from each other in certain ways, as they did in units coordination. For example, Roy
was more capable than Belle in terms of variable understanding and symbolic
representation. A general overview of students’ starting location in algebraic
thinking and reasoning, including equal sign understanding and variable

understanding, is shown in Figure 4.5.

MC2 MCI1
Roy Belle Sara Luke
Equal Sign Relational Relational Operational Operational
Understanding Understanding Understanding Understanding Understanding
Variable “Letters as “Letters as “Letters as “Letters as
Understanding mathematical representing representing representing
objects™ * indeterminate indeterminate indeterminate
quantities with quantities with quantities with
fixed arbitrarily fixed arbitrarily fixed arbitrarily
chosen values.” * chosen values.” * chosen values.” *
Algebraic Verbal Verbal Recursive Recursive
Thinking generalization generalization thinking thinking
Symbolic Contextual Verbal Fafctu.a_l Algebraic
representation in  algebraic generalization in  thinking
patterns thinking patterns
Use of Factual algebraic
indeterminate thinking
quantities
Standard
algebraic
thinking in
patterns
*Blanton et al (2017)
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Figure 4.5. The analysis of students’ initial performance in algebraic thinking




As summarized in Figure 4.5, only Roy achieved the use of symbolic representation,
which is an indicator of standard algebraic thinking (Radford, 2014). However, he
used symbolic expression only in problems including figural and tabular data as a
pattern situation in a contextual situation (e.g., the Bouncing Ball and the Growing
Caterpillar Problems). His verbal expression of the generalizations also included
indeterminate quantities as an indicator of algebraic thinking as well. Similarly, Belle
could generalize the relationships in pattern problems, but only verbally. She was
unable to formulate the calculations by using indeterminate quantities in words or
symbols in the Caterpillar and Leaf Problem, unlike Roy. Therefore, she
demonstrated only contextual algebraic thinking in some instances where she could

generalize the relationship between variables presented in a pattern situation.

MC1 students predominantly used recursive thinking. Therefore, they had difficulty
finding the larger values in a pattern situation. This shows their factual algebraic
thinking where dominant recursive thinking limits the students’ generalizations. On
the other hand, Sara showed some indicators of contextual algebraic thinking in
certain instances, such as finding the larger steps in a pattern situation and using
indeterminate quantities in her verbal expressions of the generalized relationship in
the Bouncing Ball Problem. Therefore, she was explicitly a step ahead of Luke in
terms of algebraic thinking and reasoning. The following two subsections explain

the students’ performances by giving specific examples.

4121  The MC2 students’ algebraic thinking

The analysis of the MC2 students’ understanding of equal signs revealed that both
students exhibited a relational view of equal signs, interpreting them as comparison
symbols rather than operational ones. For instance, in grouping different kinds of
symbols, including numbers, operational signs, and comparison signs, both students
grouped the equal sign with the other comparison symbols (i.e., <, >). Additionally,
both students correctly answered all of the missing value operations in their papers.

Figure 4.6 illustrates the distinct symbols that were grouped by the students, along
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with a representative sample of the operations that they performed. The following
paragraphs present the students’ performance in determining the relationships,

expressing them verbally and symbolically, and overall understanding of variables.

@'Q@ e 3+45+7=3+7 e
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Figure 4.6. MC2 students’ understanding of equal signs

The MC2 students could verbally express the functional relationship between
variables in the problems involving figural (e.g., the Growing Caterpillar) and tabular
data (e.g., the Bouncing Ball). For instance, in the Bouncing Ball Problem, which
requires understanding and expressing the covariational relationship between two
variables (i.e., the drop height is twice of bouncing height), Roy indicated the
relationship as “One is two multiples of the other” and Belle similarly indicated that
“One is half of the other” by relying on the data given in the table. Similarly, in the
Growing Caterpillar Problem, which presented figurative data such as each day the
caterpillar grows two more body parts, the MC2 students verbally generated a
formula. Roy's understanding of the variables and his verbal expression of the rule
were more explicit than Belle's by saying: “We will multiply the number of days
with 2”. Belle did not use an explicit expression such as “The length of the caterpillar
is 2 times the number of days elapsed” as follows:

Belle: (She is drawing until the fifth step using circles) ...if this pattern

continues, it will again grow by two. On the fourth day it will be 8, on the
fifth day it will be 1, 2, 3,4, 5, 6, 7, 8, 9, 10, so it will be 10.

Teacher: Okay, then how can we calculate the size of the caterpillar for any
given day?
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Belle: Multiplying by 2... So, if it gets longer by two every day, we can find
it by multiplying it mathematically

Roy explicitly used indeterminate quantities and used a correspondence approach in
which one quantity is determined with respect to the other quantity (Confrey &
Smith, 1994). Hence, his verbal generalization of the relationship was more

sophisticated, compared to Belle.

In the symbolic representations of the relationships, Roy wrote accurate equations
in both problems. In addition, he wrote equations in two forms by using both

multiplication and division as inverse forms (see Figure 4.7).
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Figure 4.7. Roy’s and Belle’s symbolic representations in the Growing Caterpillar

Problem

Roy’s symbolic representations in those problems demonstrated his structural way
of thinking, indicating standard algebraic thinking (Radford, 2010). In contrast,
Belle struggled to understand how to write a symbolic expression for the
relationship between variables in both problems. For example, Belle wrote an
incorrect equation in the Bouncing Ball Problem as x = y and she could not write

an explicit equation in the Growing Caterpillar Problem (see Figure 4.7).

Belle explained her symbolic expression for the relationship between the number of
days (G) and the length of the caterpillar (T) as follows:
Belle: We can use two G's. G means 1, it represents the day. T ... for example
if this is 1 G, this is 2 on the second day. On the second day, the size of the

caterpillar... We called T as 2. The second day... The first day was 2, the
second day will be 4, so we can put 2 T's. This is the size of a 4 cm caterpillar.
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Belle could not also write a symbolic equation in the Penny Bank Problem involving
a functional relationship in the form of y = ax + b although she could formulate
a rule for finding the amount of money saved for any given day elapsed. Although
this problem was not included in Roy’s interview, he answered a similar problem in
the Variable Understanding Interview which requires them to formulate a rule using
letters for calculating the length of a sapling where the initial length is L cm and it
grows 2 cm each day as follows: “If the height of a sapling that grows 2 cm every

day is L at the time of planting, what will be its height in 10 days?”.

In the Sapling Problem, Roy accurately used indeterminate quantities and formulated
the rule to calculate the length of the tenth day: “I multiply 10 and 2 and add L”.
However, Belle gave numerical values to L and she did not write accurate operations.
As seen, Belle could not make sense of the fact that the letters were the symbols
representing the wvarying numerical values. Her verbal expressions of the
relationships in both problems and lacking an accurate symbolic representation
showed her algebraic thinking at the contextual level (Radford, 2014). She was able
to use the given data and take it to further steps through this generalization; however,
she did not use indeterminate quantities to denote in an analytical way, which is one
of the dimensions of algebraic thinking (Radford, 2014).

In another context involving a multiplicative relationship between two known
quantities and requiring a generalization of that relationship to different values (i.e.,
the Caterpillar and Leaf Problem), Roy and Belle demonstrated different
performances in terms of algebraic thinking. Roy used indeterminate quantities in
his verbal generalization, indicating analytical thinking. The following discussion
demonstrated his formulation of the general rule in this context:

Teacher: Ali is keeping 2 caterpillars at home. Each day brings 6 leaves to

feed these 2 caterpillars. What if there were 24 caterpillars?

Roy: 24 caterpillars (He thought for a few seconds) ...l could divide 24 by
two, then multiply by 5. It is 60.
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Teacher: If I asked for more caterpillars, what would you do to solve it in a
more general way? For example, if there were A caterpillars, how would you
find the number of leaves for A caterpillars? Consider that A is any number.
Could you find it when any number was given?

Roy: Any number... (he waited a few seconds). I could do this. I divide A
by 2 and multiply by 5

As seen, he constructed a narrative formula by relying on the context, but he could
not write the equation representing this formula. Therefore, he showed a transition
between the levels, contextual and standard algebraic thinking due to his lack of

symbolic representation.

Belle solved the problem the same way Roy did. However, unlike Roy, she did not
express the relationship in a structural way. Her reasoning was more arithmetical.
Although she swiftly calculated the number of leaves for any given number of
caterpillars, she could not express this by operating with indeterminate quantities.
When the teacher asked her to assign the letter “a ” to the number of caterpillars, she
gave numerical values to a by saying: “Can it be 18, because you said it can be any
number”. Her understanding of the variables as “fixed arbitrarily chosen numbers”
(Blanton et al., 2017) prevented her from interpreting the general situation in this

contextual problem.

Lastly, in the Cord Problem, the students were required to represent a multiplicative
relationship in the 1:5 ratio between two unknown lengths of cords. Therefore, it was
expected that they would write an equation such as y = 5x. Both students had
difficulty in writing equations. Roy only wrote the ratio of 1/5 by indicating that 1
represents the length of one cord, and 5 represents the length of the longer cord
without using symbols. He further gave numerical examples as convenient to this
relationship such as 30 cm and 150 cm by indicating that this makes 1/5. Similarly,
Belle gave a numerical value for the length of the shorter cord to find the length of
the longer cord. Hence, she found a numerical value at the end as follows:
Teacher: Yes, if it is a, what will be Sinan's?... (Belle waited for a while) We

called its length a, since we don't know, let it represent a number, a can be
any number.
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Belle: For example, let a be 5. Well, Sinan's cord is 5 times more than
Zeynep's cord, so we multiply five by five. It makes 25.

This performance demonstrated her lack of understanding of variables too. This
separates her from Roy’s way of thinking in which he could write a general ratio in
this problem, and he indicated the computations in formulation verbally by using
letters in the Caterpillar and Leaf Problem.

In summary, in expressing the general rule, Roy could generalize the functional
relationship between two variables (e.g., Bouncing Ball and the Growing Caterpillar)
and between two known quantities in multiplicative problems (Caterpillar and Leaf
Problem) while Belle expressed the relationships verbally in only between two
variables and she did not generate the rule in other problems (e.g., the Caterpillar
and Leaf and the Cord Problems). In the case of the representation of the
generalizations through symbols, which is another aspect of algebraic thinking and
reasoning, the difference between the students was more explicit. Roy’s symbolic
representation was limited to the functional relationship between two variables in
which multiple numerical examples are given. He had difficulty in making sense of
the relationship between two unknown quantities. On the other hand, Belle could not
represent the relationships using symbols accurately in any given task. Her reliance
on numerical examples to express the generic rules showed her factual algebraic
thinking. In addition, she did not show any indication of an analytical or structural
way of thinking. Belle apparently struggled to make sense of the variables and
unknown quantities because she generally tended to give numerical values for the

letters assigned to the variables.

Belle demonstrated an inability to interpret the letters as indeterminate quantities and
varying unknowns by giving fixed values to the letters assigned to the variables. This
showed that she had an understanding of “Letters representing variables with fixed
but arbitrarily chosen values” (Blanton et al., 2017, p.194). In contrast, Roy’s

operating with letters (i.e., indeterminate quantities) such as writing equations and
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their inverse forms demonstrated his higher level of understanding in the function

context which is “Letters representing variables as mathematical objects” (p. 196).

4122  The MCI1 students’ algebraic thinking

The analysis of MC1 students’ understanding of equal signs revealed that both
students held an operational view of equal signs, interpreting an equal sign only as
an operational symbol. The grouping of symbols activity demonstrated that both
students grouped the equal sign with the operational symbols (i.e., + and -). In
addition, Luke considered that the result of an operation should come just after the
equal sign in every missing value operation in his paper. Sara also performed the

same way in some of the operations (see Figure 4.8).

° 3+5+7=_;+7

—

aa o)
) "D I+L/-J® e 5+43=_" +4

—- Luke

N\
N
I

e 3+5+7=4+7

Z £ v /i oS < \ ° + - 7
AT G b -0 Sara

Figure 4.8. The MC1 students’ understanding of equal sign

The MC1 students relied more on recursive thinking about the relationship between
two variables (e.g., the Growing Caterpillar Problem). In addition, Luke’s continual
recursive thinking prevented him from generalizing the functional relationship given
in the figures. In the problems involving tabular and figural data (e.g., the Bouncing
Ball and the Growing Caterpillar Problems), they could express the relationship
between two variables verbally by relying on the given data. For example, in the

Bouncing Ball Problem, Sara said “It rises to half of the height from which it was
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left” while Luke stated, “This (the height of the ball’s rise) is half of this (the initial
height)” by using the data in a table. Similarly, in the Growing Caterpillar Problem,
Sara stated how she formulated the general rule for finding a value for any given
day: “I could calculate it by skip counting because it increases by two; when you ask
me the thing of what day, I could continue to count.” Similarly, Luke expressed the
relationships in an arithmetic way: “It (the length of the caterpillar) increases by

2

two”. In this problem, their recursive thinking became apparent, which is a

characteristic of a factual algebraic thinker (Radford, 2014).

In generalizing the relationships between variables and formulating a rule using
indeterminate quantities were not easy for the MC1 students, unlike the MC2
students. Sara could later explain that she could shortly do multiplication when asked
for the hundredth day in the Growing Caterpillar Problem. On the other hand, Luke’s
recursive thinking did not allow him to find the length of the caterpillar on the
hundredth day although he kept counting by two for a while. Since he could not
pursue counting recursively until the hundredth day, he asserted to divide 100 by two
and said, “50, this is the result, I guess.” A parallel performance comparison
appeared in the Penny Bank Problem, which included a functional relationship in the
formof y = ax + b. Sara was able to determine the value of the saved money for
any given day by formulating the rule, whereas Luke was unable to calculate the
larger values because he relied solely on recursive operations, adding threes until he
reached the requested value. Therefore, Luke stayed at the factual level regarding

algebraic thinking while Sara demonstrated thinking at the contextual level.

In writing symbolic representations, both students wrote inaccurate equations by
using T for the length of the caterpillar and G for the number of days — Sara: “T +
T = G”, Luke: “T = G”. In the Bouncing Ball Problem, Sara wrote “x = y”
whereas Luke did not even understand what writing an equation meant. Furthermore,
neither student could represent the functional relationship between variables in

symbols in the Penny Bank Problem (y = ax + b).
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In the Caterpillar and Leaf Problem, both Sara and Luke had difficulty determining
the relationship between known quantities (e.g., the number of leaves and the number
of caterpillars) and finding the number of leaves for any given number of caterpillars.
Hence, at this point, it was hard to expect them to express the situation algebraically.
As conjectured, both MC1 students could not write the symbolic representation.
Specifically, Sara could not figure out how to use the letter a that was assigned for
the number of caterpillars: “I could say 36 for a”. The difficulty in keeping track of
multiple quantities in multiplicative relationships can be explained by their level of
unit coordination, MC1. That is, if they could keep track of the units while making
operations, we would expect them to express the relationship at least verbally.
Although Luke did correct operations at first, the lack of awareness about what he
was doing while counting by twos (finding the number of groups of two caterpillars)

might have held him from going further and generating a rule.

Lastly, in the Cord Problem, neither student could write an equation representing the
multiplicative relationship between two unknown quantities. When the teacher gave
numerical values to the length of the shorter cord, Luke could accurately find the
length of the longer cord. When the teacher named the length of the short cord by
the letter a, he could not say 5a for the length of the longer cord, but he used another
letter b to represent the length of the longer cord. Similarly, Sara indicated that she
could not write an equation by using s and z to represent the cord lengths:

Teacher: Well, let’s consider Zeynep’s cord length as a, could we express

the length of Sinan’s by using a?

Sara: We cannot express it using a, it has to be another number, that is, a
letter. Because this is shorter, and this is longer it is not equal. And each must
have something else.

Her response indicated that she perceived the act of writing a relationship between
two unknowns using mathematical equations to be a fundamentally different process

such as writing them as if they were equal.

In summary, the MC1 students were inclined to recursive thinking in pattern

situations. This created a constraint in some instances to formulate a general rule
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expressing the relationship between two variables. In addition, they struggled to
understand what the letters that were assigned for the variables meant in the
problems. Therefore, they could not operate with indeterminate quantities. Sara
(regular MC1) partially demonstrated the contextual level of algebraic thinking
because she could express indeterminate quantities in her generalization in the
Bouncing Ball Problem and she could calculate the larger steps in the Growing
Caterpillar Problem. On the other hand, Luke (early MC1) may be a factual algebraic
thinker because he had difficulty recognizing the multiplicative relationship between
quantities and did not generalize the functional relationships. Furthermore, their
interpretations of letters in these problems, and inability to write equations using
indeterminate quantities demonstrated their lack of understanding of letters in terms
of variables. Sara interpreted letters to be given an arbitrary numerical value or to be
the name of an object in many of the problems. Similarly, Luke tried to give random
numerical values to the letters assigned for the variable quantities in the Variable
Understanding Interview. Therefore, both students’ views of letters were determined
as “representing variables with fixed but arbitrarily chosen values” like Belle

(Blanton et al., 2017).

4.2 Students’ Progression Through Teaching Episodes

This section presents the students’ progress in algebraic thinking throughout Six
teaching episodes. The analyses of the teaching episodes revealed findings into four
main headings based on the objectives of the episodes. The first heading yielded
from Episode 1 describes the students’ learning progression in terms of comparing
unknown quantities by using symbols. The second heading from Episode 2 outlines
how the students represent the quantitative relationship, multiplicative or additive,
between unknown quantities by writing equations. The third heading, comprising the
objectives of Episodes 3 and 4, explains how the students identified and represented
a functional relationship in the form of y = ax. Lastly, the fourth heading about the

objectives of Episodes 5 and 6 describes how the students identified and represented
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a functional relationship in the form of y = ax + b. The findings for the teaching
episodes are presented in the following sections in a structure that includes the
intended processes of the teaching episodes, conjectures based on the literature, and
outcomes of the teaching as briefly compared and contrasted with the literature and
theory. This way of presentation will reveal testing of the conjectures specific to the
teaching episode. The results also reveal revised conjectures for further

implementation of the learning trajectory.

The flowchart below presents a sample organization of each main heading in this
section by using the example of the first heading, a comparison of unknown
quantities in Episode 1(see Figure 4.9). All four headings will continue with the same

structure.

Comparison of Unknown
Quantities in Episode 1

Students’ performances Students’ evaluations

in comparing unknown at the end of Episode 1
quantities in Episode 1

MC2 students’
performance in Episode 1

MC1 students’
performance in Episode 1

Figure 4.9 The flowchart of the presentation of findings for each heading

4.2.1 Comparison of unknown quantities in Episode 1

In the first part of the teaching experiment, the aim was to get students to encounter
and compare unknown quantities and express them by using symbols. For this aim,
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in the first episode, the students worked on three tasks which asked them to compare
unknown quantities that were represented in figures and express the comparison in

different ways such as using verbal expressions, hypothetical values, and symbols.

In the first task of Episode 1, they began by comparing two pencils of different and
unknown lengths. In the second task, they compared the other two pencils that were
the same length. As an example, the first task with several discussion questions is

shown in Figure 4.10.

TASK 1-1. Zarife found that the lengths of the two pencils were not equal. In what

different ways can she describe the relationship between the lengths?

s

Scaffolding questions:

1. Guess the lengths of pencils? Are they the same length?

9

What else? Which values can we give for the lengths?

3. Canyou fill in the table with your estimations?

Length of the Orange Pencil Length of the Yellow Pencil
| e srvge o g

4. What is the unit of your values? (number, cm, kg...)

5. Compare your values in each situation. How can you represent this
comparison by using mathematical symbols/comparison symbols?

6. For example, let’s say the length of the longer pencil is @ cm and the shorter
one is b cm. a and b can take any value.

7. Now, can you represent the same relationship by using all these symbols?

How can you represent it in another way? (a<b; b>a).

Figure 4.10 The first task in Episode 1: Comparing unknown quantities
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The intended processes in the first two tasks were to let the students attain
hypothetical values for the unknowns on a table, formulate a general case by
interpreting the data on the table, and represent this comparison by using assigned
letters and symbols. It is important to note that the students can prefer to express the
comparison in the shortest way such as “the yellow (pencil) is greater/longer than
the orange (pencil)” or “they are equal/same”. In those situations, the teacher
emphasized the word “length” and prompted them to use it. In addition, she asked
for the units such as “In what unit can it be?” to draw students’ attention to the
meaning of units and quantities instead of figural objects. In this way, they focused
on the units of the quantities, started using comparison symbols (i.e., >, <) and

continued with using equal signs in the second task.

In the third task, the students worked on various comparison situations such as

seesaw, and (un)balanced scales (see Figure 4.11).

[TASK 3: Represent the relationship between the quantities in the pictures mathematically
using symbols.

a) The number of candies in the jars b) The ages of two persons

s | O

% 1
% E; :-1i Person 1 Person 2
o
PONRE |

Jar 1 Jar 2

¢) The weights of two balls (Blue f) Weights of different objects

ball and red ball)

hﬂ/\)

Figure 4.11 Sample questions in the third task of Episode 1
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This task allowed them to practice the different contexts and situations in comparing
quantities. In terms of the students’ representation of the comparison between
unknown quantities by using symbols in inequality or equality expressions, the
conjecture was that all the students might express the comparison verbally or use
numerical examples of the unknowns. Researchers indicated that students from grade
1 to grade 8 have some misinterpretations of the use of algebraic letters such as
tending to give numerical values to the letters or interpret them as placeholders
instead of interpreting them as generalized numbers (e.g., Ayala-Altamirano, 2022;
Hackenberg & Lee, 2015; Kiichemann, 1981; MacGregor & Stacey, 1997).
Regarding the understanding of variables and unknown quantities, the teacher
always asked what x/a/c etc represents. She emphasized that the numbers they

wrote on the tables were just their guesses.

In addition, as the MC1 and MC2 students participated in this study, it was
hypothesized that students would continue to rely on numerical examples or interpret
the letters as placeholders during this episode (Hackenberg & Lee, 2015). However,
Roy’s (advanced MC?2) initial performance in the interviews assessing his algebraic
thinking before the teaching experiments showed his use of letters in pattern
situations to generalize the relationship as different than other students. Therefore, |
expected to see some diversity in Roy’s performance in this episode. In addition, I
wrote symbolic expressions in different forms to develop equal sign understanding
and to develop algebraic thinking in expressions of arithmetic operations. Figure

4.12 presents the task characteristics, intended processes, and certain conjectures.
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4211 Students’ performances in comparing unknown quantities during

Episode 1

The students showed mostly inter-level differences in using symbolic language to
represent the comparison of unknown quantities besides that all had similar
difficulties and accomplishments. Firstly, all students were able to verbally express
a comparative relationship between two unknown quantities which can be visually
observed in a figure (see Table 4.2). For example, they indicated that one length is

longer than the other or the lengths of the pencils are equal/same.

Table 4.2 The Students’ Performances during Episode 1

MC2 MC1

Roy Belle Sara Luke
Writing equation/inequality with more 2 3 3 3
than two unknowns (using operations)
Writing equation/inequality with two 2 2 2 2
unknowns (without operations)
Symmetric property in writing equation 2 3 3 3
Assigning letters for unknowns in the 3 1 3 3
last task
Relational understanding of equal sign 1 1 1 -
Verbal expression of comparisons 1 1 1 1
Filling the table with appropriate values 1 1 2 2
Giving numerical values for unknowns - - 1 1
Writing equations by using object names - - 1 1

or figures (Variables as objects) (e.g.,
yellow = green)

1: Without prompting; 2: With probing questions, 3: With leading questions

Note: The level of algebraic thinking increases with color darkness from the bottom to the top
of the table

Besides, all students demonstrated difficulty in similar situations such as using
comparison symbols with letters assigned to the unknown quantities and using
operation signs to represent the quantitative relationships (e.g., a + b = ¢) as

conjectured. Secondly, the students showed both inter-level and intra-level
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differences. MC2 students needed fewer prompts from the teacher as compared to
MC1 students in general. Table 4.2 summarizes the findings about the students’
performances in using symbolic language in comparison of unknown quantities by
demonstrating both inter-level and intra-level differences. In this table, their
performances were labeled based on whether they were prompted or given leading
questions before answering the questions. The following sections present a detailed

description of the findings for each group of students.

4.2.1.1.1 MC2 students’ performance during Episode 1

MC2 students (Roy and Belle) demonstrated a higher capability to use
letters/symbols representing unknown quantities through the end of the episode
although they initially refrained from answering the questions. They were able to use
the letters to represent unknown quantities in the last task of the episode (e.g., the
number of candies in the jars, the age of people, and the weight of objects on a
balance scale) on their first try without needing a prompt from the teacher. This is
consistent with the conjectures for Roy (see Figure 4.12). However, Belle's progress
was higher than previously conjectured (see Figure 4.12). She was close to Roy's

performance.

In a scale model with three unknown quantities, representing this relationship was
challenging for the MC2 students because it required using an operation with
unknowns. This difficulty was a hypothesized outcome, but the prediction about their
performance had not been specifically defined beforehand. Although they identified
indeterminate quantities and flexibly expressed them in the previous tasks, they
could not consider making operations with them. This might be more demanding for
them as it requires analytical thinking (Radford, 2014). With the teacher's help which
she gave hypothetical values for each unknown quantity in a table on the board, they
could use addition operations in their symbolic representation (i.e.,t + b > g) by
generalizing the table of data on the board. Thus, through the numerical examples,

they made a transition from determinate quantities to indeterminate ones. Through
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this task, they began to work on quantitative relationships in which an operation on
two quantities determines the third (Thompson, 1990).

The intra-level differences among MC2 students emerged in comfort with answering
the questions and expressing the relationship between unknown quantities instead of
achieving lesson goals. Belle generally hesitated to answer questions. Roy was faster
and more flexible in generating different expressions. Hence, Belle learned what to
do after the teacher’s prompts or Roy’s answers during the discussion of the tasks.
Then she could successfully adopt the procedure in the next tasks by flexibly
applying what she learned/saw in the previous tasks. Further, Roy wrote a complete
verbal expression in each task, in addition to the symbolic expressions, that showed
the comparative relationship between the unknown quantities. Roy was also the only
student who used the units of quantities next to the values or letters in the questions
such as cm or kg. Just as their intra-level difference in unit coordination appeared
through Roy’s swiftness and Belle’s hesitations, this Episode revealed their

differences in the same way.

4.2.1.1.2 MCI1 students’ performance during Episode 1

The performance of the MC1 students (Sara and Luke) in Episode 1 highlighted
several points. First, the MC1 students were inclined to give hypothetical values for
the unknown quantities before expressing the relationship symbolically or verbally.
Sara continued to write the comparative relationship by using symbols with
hypothetical values (e.g., 25 > 10 or 5 = 5) even after the first two tasks were
completed. This was the conjecture for all the students (see Figure 4.12) while the
performance of the MC2 students in this episode was different. This demonstrates
that the MC1 students were not ready to use indeterminate quantities as much as the
MC2 students, which is an inevitable condition of algebraic thinking (Radford,
2010).
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Second, Luke (early MC1) used comparison symbols (i.e., >, <) between the objects
in figures or with the object names such as “yellow = green” instead of using
assigned letters or values. This may demonstrate similarity to a variable
understanding of assigned letters as labels or as representing objects instead of
quantities, indicating a pre-variable understanding (Blanton et al., 2017). This was
another conjecture that was actualized in this episode by only the MC1 students.
Given that this performance continued in the third task, developing the variable
understanding and letter use for unknowns may not be an easy process for the MC1

students.

Third, the MC1 students had difficulty in representing the quantitative relationship
between three unknowns displayed on an unbalanced scale, like the MC2 students.
Although they accurately interpreted this relationship, they could not use the
operation signs with the letters assigned for the unknown weights. For instance, both
MCI students wrote “t b > g ” rather than “t + b > g” in this task (see Figure
4.13).

B

el > 9

Figure 4.13. Luke’s symbolic representation in an item of Task 3

Their representation demonstrates that they identified the relationship as combining
both weights t and b is greater than the weight g. However, their inability to use an
addition operation with indeterminate quantities demonstrated their lack of analytical
thinking (Radford, 2010) and variable understanding (Ventura et al., 2021). These

representations showed that the MC1 students made comparisons based on their
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observations and by labeling the objects rather than the quantities. After a discussion
on the board and drawing table and the teacher's questions, they used operation signs
with indeterminate quantities. Further, in these tasks including more than two
unknown quantities on the scale figures, Sara attempted to give values for each
unknown quantity (i.e., the weights of balls). She indicated that she guessed the
values. With the help of the teacher’s prompts and questions, both MC1 students
assigned letters for the unknown quantities, and they also used symmetry property

to express the equalities in different forms (i.e.,a = b + ¢c; b + ¢ = a).

There was not a clear distinction between the performances of the MC1 students in
this episode. Their discussions complemented each other. For instance, one of them
expressed her/his opinion then the other understood the point and developed it in
further questions. Sara had a notable tendency to assign numerical values to
unknown quantities compared to Luke. On the other hand, Luke stood out from Sara
due to his ability to quickly apply what he learned during the episode. Although Luke
initially struggled with using alphanumeric symbols in his representations, he
quickly learned how to use them during classroom discussions and was able to put

this knowledge into practice.

42172 Students’ evaluations at the end of Episode 1

At the end of Episode 1, the students attended an end-of-lesson assessment
evaluating their learning in the episode. Their understanding of equality and use of
symbols for representing the comparison between unknowns were the focus of the
assessment. The results of the final evaluation in Episode 1 showed that all the
students learned to assign letters for unknown quantities and represent the

relationships by using letters, operations, and comparison symbols.

In terms of equality understanding, MC2 students maintained their relational
understanding of the equal sign. One of the MC1 students, Sara, demonstrated a

relational understanding of the equal sign too although she incorrectly answered a
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similar question in the initial interview by focusing on the operational meaning of
the equal sign. She seemed to have developed her understanding of equality by
working on different equality and inequality situations during the episode. However,
the other MC1 student, Luke, continued to have an operational view of the equal sign

by writing an incorrect answer in a missing value equation (see Figure 4.14).

® a+b

I

b+ o

* 3+4:i<+5

Figure 4.14. Luke’s (early MC1) answer to question 1 in the quiz in Episode 1

His answer showed that he had taken the operational meaning of the equal sign,
thinking that the answer comes right after an equal sign rather than thinking of its
relational meaning (Knuth et al., 2006). This might be an important constraint in
thinking structurally to represent the relationships in equations, as a dimension of
algebraic thinking. Because of this, the teacher-researcher has decided to add a small
task in the second episode including virtual simulations of balanced scales to enhance

the understanding of equal signs.

In writing the symbolic representation for the relationship between quantities on the
balance scale, the only difference between the two groups of students is that the MC2
students wrote the equations in two forms by using the symmetric property while the
MC1 students did not write different forms although they could do it during the
episode (see Figure 4.15).
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atb=b

TPk =" 3  Luke (MC1) bizosé Belle (MC2)

Figure 4.15. Written symbolic expressions by an MC2 and an MC1 student

Overall, key findings from Episode 1 in terms of the students’ use of symbolic
representations in comparing unknown quantities, and their understanding of equal

signs are shown in Table 4.3.

Table 4.3 Students’ Challenges and Progress during and at the end of Episode 1

MC2 MC1
Roy Belle Sara  Luke

Using comparison symbols D D
with hypothetical values

Using comparison symbols D

Challenges with objects

Operational view of equal D D, A
sign

A relational view of equal D, A D, A A

sign

Representing comparisons D, A D, A A A

Progress- symbolically

Advancement

Using operation signs with A A A A
the letters

Writing the equations in two A A
forms

*D: During the Episode *A: At the end of the Episode
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4.2.2 Representing an additive and multiplicative relationship between

unknown quantities during Episode 2

The second step in the HLT was developing the students’ expression of additive or
multiplicative relationships between unknown quantities. Therefore, the intended
process in Episode 2 was quantitative reasoning where students analyze the problem
situation and determine the quantitative relationships, generalization, and symbolic
representation of quantitative relationships. For this aim, the students worked on two
tasks: one included a multiplicative relationship between two unknowns, and the

other included an additive relationship between three unknowns (see Figure 4.16).

U

> ®  Zarife

- How can you describe the length of Ali's small piece of rope?

- Remember that Al and Zanfe had the same lengths of ropes. Can you describe the

relationship between the length of the smallest piece of Ali's rope and the length

of Zarfe’s rope?

There are three bars A, B and C that have different lenghts. How would you represent the
relationship between the lengths of A, B and C?

¢ Can you describe the relationship between the lengths of A, B and C by using
symbols and equation?

A B

Task 1

Task 2

Figure 4.16 The tasks in Episode 2
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First, the students worked on a task including a multiplicative relationship between
two unknown lengths where one rope is four times the length of the other rope (see
Figure 4.16). The second task involved an additive relationship between three
unknown lengths where each one was represented by letters. Expressing the
comparison of unknown quantities verbally (e.g., It is four times the other, it is one-
fourth the other, the sum of A and B makes C) indicates the students’ determination
of guantitative relationships between two or more quantities as a pre-requisite step

before constructing an algebraic equation.

Based on the literature and the learning outcomes of Episode 1, it was assumed that
the MC2 students would use symbols to represent the relationships between
unknown quantities with the help of prompts in both tasks. Although Hackenberg
and Lee (2015) noted that MC2 students tend to use numerical examples, we did not
make the same inference for the MC2 students in this study based on their
performance in the previous episode. On the other hand, we hypothesized that MC1
students would require more guidance from the teacher to successfully transfer the
relationship they have constructed arithmetically into an algebraic one using
indeterminate quantities. We also conjectured that MC1 students would use
numerical examples instead of letters as they are at a lower level than the MC2
students (e.g., Hackenberg & Lee, 2015). In addition, we hypothesized that MC1
students would perceive the multiplicative task as more challenging than the additive
task since they were constructing their first multiplicative concept. The task
descriptions, the intended processes, the conjectures, and instructional plans are

shown in Figure 4.17.

As conjectured, the teacher used more scaffolding questions in the multiplicative
task. In particular, the MC1 students required more guidance from the teacher in
understanding the multiplicative relationship between the unknown quantities.
Therefore, the teacher used scaffolding questions to move them to a higher step in
the task and she also used leading questions giving numerical examples when the

prompts were not enough for their understanding.
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Figure 4.17 Description of Episode 2
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For example, when MC1 students’ numerical examples were not congruent to the
given multiplicative relationship, the teacher showed a pen to represent the longer
rope and said to split it into 4 and put a small pen cap to represent the smaller length.
She said, “This is 1 and this is four; this is 2 and this is 8; then if this is 3, what could
this be?”. Therefore, the teacher employed these orientations when the students were

stuck during the task.

The teacher aimed to use tables to help students generalize based on different
numerical values with a constant relationship. Even though the students used the
correct symbolic representation on their first try (e.g., Task 2), the teachers still asked
mediating questions, and used the table for generalization. Therefore, she used tables
to help both their identification of the relationship and connect different
representations for their further assistance.

In developing the students’ algebraic thinking, the teacher asked them to use
different representations of equations to express the same relationship. When they
could not achieve this, she used leading questions. For example, in the multiplicative
task, she asked about the length of the shorter rope after assigning a letter to the
longer one and vice versa. In the additive task (i.e., A + B = (), she asked them

to represent the lengths of B and A respectively aiming to use subtraction.

4.2.2.1 The students’ performance during Episode 2

The students’ performances on two tasks in this episode revealed distinct results
because of the relationship involved in the problems as either an additive or a
multiplicative one. Therefore, the observed differences between the students in terms
of algebraic thinking are presented separately for each task. In perceiving the
relationship between unknown quantities and representing them with symbols, all
the students performed better in the second task, which covers an additive
relationship, compared to the first task which involves a multiplicative one. They
responded to the questions in representing the additive relationship mostly without

needing prompts (see Table 4.4)
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Table 4.4 The Students’ Performance during Episode 2

MC2 MC1
Roy Belle Sara Luke
Symbolic generalization 1 2 3 2
§ (Standard algebraic thinking)
S
8 Reversing the equation
o8 1 - - -
£ = (Structural thinking)
[
5 S Verbal generalization
© o o 2 - -
© g (Contextual algebraic thinking)
% é Identifying the relationship 1 2 3 3
85 (Table)
= Inclination to use numeric - - 1 -
g examples
Inclination to additive thinking - 1 - 1
Symbolic generalization 1 1 1 1

(Standard algebraic thinking)

Reversing the equation 1 5 2 9
(Structural thinking)

Verbal generalization
(Contextual algebraic thinking)

Additive relationship between
unknown quantities

Identifying the relationship
(Table)

1: Without prompting; 2: With probing questions, 3: With leading questions

Note: The level of algebraic thinking increases with color darkness

The struggle to recognize the multiplicative relationship was evident in a series of
processes starting from filling in the table with the assigned values for each unknown
quantity to representing it by using symbols. All the students but Roy tended to use
comparison symbols such as greater than and less than in expressing the relationship
with symbols in their first attempt as they did in the first episode. Their first answer
to express the relationship between two lengths of ropes was an expression involving

the comparison symbols or terms such as longer and shorter. In addition to this
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commonality among the students, their performance in further sub-questions of the
task such as filling the table and representing the relationship with symbols revealed

differences in both inter-level and intra-level perspectives.

In addition to the general summary of findings in Table 4.4, these differences are
presented in further sections, starting with MC2 students, in detail. Finally, the

students’ final evaluations in relation to the lesson objectives are presented.

4.2.2.1.1 MC2 students’ performances during Episode 2

MC2 students required prompts to identify the multiplicative relationship between
two lengths of ropes. They filled a table with appropriate values to generalize the
relationship to indeterminate quantities, which was a conjectured outcome for only
the MC1 students. Roy's performance, aside from his initial attempt in the first task,
was more in line with the lesson conjectures for the MC2 students compared to Belle.
Belle demonstrated a deviation from what was expected of her before the

experiment.

In the given problem, the MC2 students initially expressed the relationship between
the lengths of two ropes by stating that “The length of Zarife's rope is longer than
the length of Ali's rope” and vice versa. However, when asked to fill the table
according to the relationship in the problem, only Roy (advanced MC?2) filled the
table congruent to the multiplicative relationship with a ratio of 1: 4 between the
quantities (see Figure 4.18, left). On the other hand, Belle (regular MC2) filled the
table additively. In other words, she recorded her estimations for two quantities, such
that the difference between them remains constant (see Figure 4.18, right). Belle
stated that she gave such values by considering only one rope was longer than the
other. After this, Roy explained his values by referring to the multiplicative
relationship by saying: “I thought that the length of Ali’s rope should be one-fourth
of Zarife’s rope.” The tables and their explanations demonstrated that, in their first
attempt, Belle did not recognize the multiplicative relationship between the unknown

guantities while Roy expressed it using a ratio. The values assigned for the unknowns
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represented the difference in the mental operations of MC2 students. However, Belle
could interpret the relationship correctly after hearing Roy’s explanation of his table

and the teacher’s guiding questions.

Ali ve Zarife'nin en bagta esit uzunlukta ipi vards. $u anda Ali'nin elindeki kisa ip ve -
Zarife'nin elindeki uzun ip arasindaki iliskiyi nasil ifade edersiniz? (Ihtiyag duyarsaniz « | Ali’nin ipinin uzunlugu Zarife’nin ipinin uzunlugu
asagidaki tabloyu doldurabilirsiniz) ben 0cn

Ali*nin ipinin uzunlugu 7,lril‘e'%iﬂ ipinin uzunlugu | Lacife” ai ;["/ Laeaa 8ra
L emn wn Vs bem
9 em A2 «n y Al /'mf\ -[.m'»,x, 2¢m £
S em W em | g VAR -
9 9
Roy’s answer Belle’s answer

Figure 4.18. MC2 students’ tables in Task 1 including multiplicative relationship

In representing the unknown quantities with symbols such as expressing one quantity
in terms of the other by using the assigned letters, Roy successfully used the letters
to represent the relationship in his first attempt (see Table 4.5). Belle could not write
any symbolic expression initially. Although she understood that one unknown
quantity should be multiplied by four and the other should be divided by four, she
could not express it by using letters and operations. Hence, her verbal generalization
of the multiplicative relationship did not advance to a symbolic level without the
teacher’s guidance. After the discussion of the first question requiring a symbolic
representation, Belle understood how to use letters and operations together to express
the recognized relationship between unknown quantities in further questions. In the
last question, she could use symbolic language accurately to represent the
multiplicative relationship between unknowns. Her final performance in
representing the multiplicative relationship was consistent with the conjectures
before the lesson. The teacher’s guidance and discussion in the previous question
helped her to achieve this as seen in Table 4.5. Compared to Belle, Roy used division
to invert the equation he wrote using multiplication in the last question (e.g., m =
k x 4 and m + 4 = k). His equivalent expressions of the relationship clearly
show his algebraic thinking through the structures and relationships embedded in his
operations and operations with indeterminate quantities (Kieran, 2022; Radford,
2014).
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Table 4.5 MC2 Students’ Symbolic Expressions for Task 1 in Episode 2

Questions Roy’s written Belle’s written
answers answers

How can you represent the No answer No answer

length of Ali’s rope?

Let the length of Ali’sropebea, a X 4 = b >the No answer

how could you express the length of Zarife’s

length of Zarife’s rope rope

Let the length of Zarife’s rope b, b+ 4 b+ 4

how could you express the

length of Ali’s rope 4 + b (deleted)

Let the length of Zarife’s rope be m =k X 4 k<m
m and the length of Ali’s rope be

k, how can you express the m =+ 4= m > k
relationship between m and k? k+k+k+k =m
m =k X 4

Belle represented the relationship by using two equivalent expressions too, but her
equations included only multiplication or addition. This also showed her structural
and analytical thinking like Roy. However, Roy’s expressions are more sophisticated
in terms of algebraic thinking by reversing the multiplicative relationship. Belle’s
equations represent her construction of the relationship between repeated addition
and multiplication. In addition, she made a mistake in expressing the length of Ali’s
rope in the third question by confusing the quantities (see Table 4.5), which indicates
a problem in recognizing the indeterminate quantities in the problem and structural
thinking. In short, the diversity in the amount of guidance they needed from the
teacher and in their equations represented the difference in their progression of
algebraic thinking, indicating an intra-level difference.

In representing the additive relationship between three unknown lengths, the MC2
students correctly wrote equations by using symbols before filling the table as
conjectured. However, their expressions of the equations involved some differences.
Roy wrote botha + b = candc - b = a whichare the inverse forms of the same
relationship as he did in the previous task. Therefore, Roy showed a solid

understanding of the relationship. Belle wrote two equations as well, but her
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equations involved only the symmetric formssuchas A + B = Cand C = A +
B. Although the teacher asked her whether she could provide another equation to
show the same relationship, she was unable to do so. This highlights Roy’s
sophisticated understanding of the relationships and operations with structures, as

another evidence of intra-level difference.

In representing the difference between the lengths of C and A or the lengths of C and
B (see Figure 4.16), Roy easily wrote the equations: C- A = Band C- B = A.
However, Belle had difficulty understanding the question and she could not answer
without the teacher’s help. After the teacher emphasized the term “difference” to
assist her in remembering the subtraction operation, she could write an appropriate

equation using symbols to show the difference between C and B.

Overall, Belle needed more prompts from the teacher to understand and represent
the relationships as compared to Roy. She could represent the multiplicative
relationship by using letters and equality with the help of the teacher’s prompts and
interpretations of Roy. On the other hand, Roy was quicker in understanding and
expressing relationships. Additionally, his flexibility in writing equations in inverse

forms displays him as a more analytical and structural thinker.

4.2.2.1.2 MCI1 students’ performance during Episode 2

In comparison to the MC2 students, the MC1 students, Sara and Luke, needed more
leading questions to understand the multiplicative relationship between the unknown
quantities. They had considerable difficulty in identifying the multiplicative
relationship. They underperformed in this task regarding the conjectures, indicating
that they could have been able to verbally express the multiplicative relationship and
assign appropriate numerical values to the unknown quantities. Therefore, the
discussion and the teacher's guidance were quite intensive in this part for their

identification of the multiplicative relationship.

The MC1 students first indicated only the comparison between the long and short

ropes by representing it through symbols such as a < b like the MC2 students’
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initial answers. In the next step, in their tables, they did not assign numerical values
as congruent to the given multiplicative relationship, which indicates their lack of

recognition of the multiplicative relationship (see Figure 4.19).

Minin iph { v"f::w T [Ali’nin ipinin uzunlugu | Zarife'nin ipinin uzunluu |
f ."'f Ali’nin ipinin uzunlugu Zarife’nin ipinin Illllnll!gll__‘! /—l ]_‘C) ”
. ; 1 ! 2 )
7","{‘”>A1M}rv’d~ #_-QT’Af_M =5 "3'L"‘ oA C K )
Lol T el oaxh - .
Alge = A diyeli 5] oLk
Lilbeyede [ o 3
A<D bOA JL>+ & =2
2ol | fe Nt P {
Sara
Luke

Figure 4.19. MC1 students’ assigning of values to the lengths of ropes in Task 1

As seen in Figure 4.19 Luke filled in the table in such a way that the difference
between two quantities is constant, which is six. He explained this constant
difference: “I thought there was a difference of 6 because there is a big difference
between two lengths”. Luke here made an inappropriate additive comparison by
guessing a difference between the lengths which is a less complex comparison in
terms of units coordination compared to a multiplicative one (Ulrich, 2016b). On the
other hand, Sara explained her values in the first row (i.e., 1 and 4) as follows: “The
longer rope was divided by four”. However, the other values on her table did not
correspond to the same relationship. Instead, they appeared to be random numbers
chosen simply for being longer or shorter. Therefore, her interpretation of the

comparison corresponds to neither an additive nor multiplicative one.

The teacher helped MC1 students understand the multiplicative relationship between
unknown quantities by showing them how to split the longer rope equally to generate
the shorter rope, iterate the shorter rope to make the longer rope, and fill in a table
with newly assigned numbers matching with the given multiplicative relationship
(see Figure 4.20).
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Figure 4.20. The teacher’s representation of Task 1 during the discussion

After splitting the longer rope and assigning values to the shorter rope, the teacher
asked: “What length could Zarife’s rope (the longer one) be if Ali’s rope were 4 cm
long?” The students could not answer the question, so she modified it: “If the longer
rope was 4 cm long, what could be the length of the shorter rope?” Luke’s answer
was 1 cm, and Sara agreed because the teacher had provided the same values earlier.
Then the discussion continued:

Teacher: If the longer rope was 8 cm long, what could be the possible length

of the shorter rope?

Luke: Could it be 2 cm?

Teacher: Why?

Luke: I thought when we multiply 4 (the first given value to the longer rope)
and 2 it becomes 8 so Ali’s rope can be 2 cm long.

Teacher: You think, if this is doubled (she shows the column of Zarife’s rope
length), the other should be doubled too?

Luke: Yes
Luke relied on the change in just one column (variable), showing basic recursive
thinking. The teacher explained how the longer rope is divided into four equal parts,
generating the shorter rope, and provided additional numeric examples by also
requesting from the students. Luke began accurately determining values for the other
variable multiplying by four, while Sara still concentrated on the change across the
cells in a single column by thinking recursively for a little while longer. The teacher
clarified the generation of the shorter rope from the longer one until Sara correctly
listed the values in her table. Here, the teacher highlighted the relationship between
two quantities that vary simultaneously, rather than focusing solely on the change in

one variable. Filling the table with appropriate values did not help them much in
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expressing the multiplicative relationship by using indeterminate quantities because
they relied on recursive thinking instead of identifying the relationship between the
columns. However, covariational reasoning, which is an approach to functional

thinking, was partially constituted by the help of the teacher.

After completing the table and discussing the relationship between two unknown
quantities, the teacher attempted to ask questions by using indeterminate quantities
such as: “What can we do to generate the length of Zarife’s rope by using Ali’s rope
and what can we do to generate the length of Ali’s rope by using Zarife’s rope?”.
Initially, both MC1 students stated “Three more are required to obtain the longer

rope” instead of stating multiplication by four as follows:

Luke: We add three times the length of it (shorter rope) to get the longer one.

Sara: We add 30 cm more to obtain the longer rope if the shorter rope, lets
say to be 10 cm.

Their responses demonstrated a utilization of an additive comparison by focusing on
the difference which is less demanding reasoning (Ulrich, 2016b). Researchers
explained this constraint as resulting from a lack of splitting and disembedding
operations which is a characteristic of MC1 students (Hackenberg, 2013; Steffe &
Olive, 2010). Because they could not disembed the shorter bar from the longer one,
they could not construct the multiplicative relationship between those unknown
lengths. The teacher stressed the importance of starting from scratch, without
assuming the presence of any rope in the beginning. After the discussion, Luke
accurately explained how to perform operations using indeterminate quantities like:

“We divide it by four” and “We multiply it by four”.

In writing the symbolic representation of the multiplicative relationship, the MC1
students generated different expressions from the beginning to the end in which the
variables were slightly integrated into the questions. For example, Luke wrote a sum
of four identical values, a + a + a + a = b after the discussion of the
multiplicative relationship while Sara could not even write it using addition. She only
wrote operations with numerical values such as 4 - 3 = 1 on her first try. During

the discussions, Sara first stated that b = a X 3, demonstrating that she still
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thought about adding over the first rope to make a longer rope which was their
constraint at the beginning of the lesson. However, she later corrected herself by
writing a X 4 to represent the length of the longer rope when the teacher asked

additional questions (see Table 4.6).

Table 4.6 MC1 Students' Symbolic Representations of Multiplicative Relationships

Questions Sara’s written Luke’s written
answers answers

How can you represent the A =1 (deleted) a =1cm

. o
short length of Ali’s rope? 5 < 10

A< Z

Let the length of Ali’s rope a, a X 4 atat+a+ta
how could you express the
lengths of Zarife’s rope
Let the length of Zarife’s b+ 4 a=b-b-b-»b
rope b, how could you y .
express the lengths of Ali’s b b+ 4
rope b-4
Let the length of Zarife’s k < m (deleted) kx3=m
rope m aggdgle lengtigg m > k (deleted) k+k+k+k =m

Ali’s rope be k, how can you
express the relationship k=m-4

?
between m and Kk~ m==%k X 4

Although the MC1 students recognize and represent the multiplicative relationship
with the leading questions of the teacher, they occasionally wrote incorrect equations
for the relationships as seen in Table 4.6. For example, Luke attempted to write the
relationship in a new form by incorrectly reversing the equation as a =
b-b- b- b. This represents a lack of structural thinking in which he is not
thoroughly aware of the relations between indeterminate quantities (Kieran, 2022).
Because of this, he could not elaborate on the initial structure of representation. Both
students also wrote b - 4 and b + 4 together to represent the same relationship as
different forms. Like using repeated addition, they might have attempted to the
repeated subtraction to indicate the same relationship in the reverse form. This way

of thinking may demonstrate their undeveloped multiplicative structures. It was a
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common point between the MCL1 students that they could not write equivalent
expressions to represent the multiplicative relationship. However, the MC2 students

could accomplish this in their lessons.

The MC1 students could represent the additive relationship between three unknown
quantities by using symbols and equations in their first attempts without completing
the table (see Figure 4.21).

ath=C

COAXR B&i 4 &

\
&

Sara Luke

Figure 4.21. MC1 students’ representation of an additive relationship

Therefore, they performed in the opposite direction to the assumptions. After they
represented this relationship with symbols, they also filled in the table with values
so that the sum of the values assigned for A and B was equal to the value assigned
for C.

The MCI students had difficulty understanding the question: “How can you express
the difference between the lengths of A and C?” Sara wrote the equationc - b = a
while Luke wrote different expressions suchas A = 4;C = 8; A + A= C and
A < C.The teacher showed how to write the opposite form of the same relationship
to both students. In the next question about the difference between the lengths of B
and C, Luke correctly wrote the equation C - A = B using letters. However, Sara
incorrectly wrote A - C = B by confusing the lengths. The teacher intervened and

helped her correct the equation.

Overall, the MC1 students had notable difficulty in understanding the multiplicative
relationship between two unknown quantities compared to an additive relationship.
They tended to think additively in problem situations and this lack of operating with

multiplicative situations made it difficult for them to work with indeterminate
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quantities. Contrary to conjectures, the main trouble was about their understanding
of the relationship within the problem situation instead of representing it using
indeterminate quantities. The difference in their performance in additive and
multiplicative tasks demonstrated that the main constraint in their algebraic
performance resulted from the difficulty in identifying the relationships in the
problem situations, not writing equations. Even so, writing equations demonstrated
some other differences in their algebraic thinking as well. For example, the inability
to reverse a multiplicative situation in an equation demonstrated their lack of
structural thinking as a dimension of algebraic thinking (Kieran, 2022). The teacher
needed to provide continuous support for them to accurately answer each question.
Although they could reach the correct thinking in some instances, they mostly could

not maintain this in further steps.

4.2.2.2 Students’ evaluations at the end of Episode 2

In the end-of-lesson assessment of Episode 2, the given task asked the students to
represent the multiplicative relationship between two lengths of sticks. The sticks
were represented as a union of equal parts so that the students could see the

multiplicative relationships between them (see Figure 4.22).

| | | | | |
I

Question 1: Based on the relationship in the picture above, fill in the table.

Length of yellow Length of green bar
5

36

10

48

*What is the relationship between the length of the yellow bar and the lengths of the green
bar?

Figure 4.22. The questions of the post-assessment in Episode 2
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Like previous tasks in the episode, the students had to complete a table with various
values and use assigned letters for the lengths to write an equation. The students
displayed varying levels of performance when filling out the table in the first

question. Figure 4.23 represents two examples of them.

Sar ¢ubugun Yesil ¢qubugun Sari ¢gubugun Yesil gubugun
uzunlugu (cm) uzunlugu uzunlugu (¢cm) uzunlugu
5 30 5 20
“ 36 25 36
10 6o 10 60
S SH4S+S+S4crs S C
y. 6 y { y
Belle Sara

Figure 4.23. Belle’s (left) and Sara’s (right) tables in the end-of-lesson assessment

Specifically, Roy (advanced MC2), Belle (regular MC2), and Luke (early MC1)
accurately recorded the numerical values in the table by taking into account the
multiplicative relationship of 1/6. However, Luke left a cell empty in the table where
he was asked to write the length of the yellow stick when the length of the green
stick was 48. This required him to perform a division operation. In addition, Sara,
another MC1 student, provided random estimates for the stick values in her table
(see Figure 4.23), similar to what she did during the lesson. Sara’s values showed
that she could not identify a multiplicative relationship between the lengths initially.
On the other hand, two MC2 students and one MC1 student (Luke) could identify

the multiplicative relationship accurately in filling the tables.

In using the letters in the last two rows of the table, Belle was the only one who used
the assigned letter to further operate on to express the other unknown. As seen in her
table (see Figure 4.23), she wrote s + s + s + s + s + s to express the length
of the green stick when the letter s represents the length of the yellow stick. On the
other hand, the other students only used the letters s and y as seen in Sara’s table

without representing the length of one stick by using the assigned letter for the length
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of the other stick. Therefore, Belle expressed the relationship between two unknowns

by using letters starting from this step.

In writing equations to represent this multiplicative relationship, the more
sophisticated responses came from the MC2 students. They wrote different accurate
symbolic expressions to represent the multiplicative relationship between two
unknown quantities. Both students could write various forms of equations such as
inversing the equation. Belle also wrote the equation by using addition (see Table
4.7). On the other hand, MC1 students performed differently. Sara’s expressions
demonstrated that she could understand the multiplicative relationship accurately
unlike her performance in completing the table. However, she was confused about
the correct letters representing the length of different sticks in writing the equation

in the last question (see Table 4.7).

Table 4.7 The Students' Expressions of the Relationship in the End-of-Lesson

Assessment
Students  Writing the relationship Writing the relationship between a
between the length of and b using equations? (Question 2)
yellow and green sticks?
(Question 1)
Roy SX6 =y ax6=»
y+6=s b=ax6
b+6=a
Belle The length of the yellow bar a+a+a+a+a+a=0»>
is one-sixth of the length of a4 x6=b
the green bar.
b+6=a
Sara Green=A b=a-+6
Yellow=hb
A=DbX6©6
Luke yX5=s aXx5=b
b+5=a
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Luke wrote an equation involving an incorrect multiplicative relationship. He wrote
the equation y +~ 5 = s rather than y = 6 = s. He skipped counting the small
road in interpreting the multiplicative relationship as he did during the episode.
Those errors showed their trouble in keeping track of the following operations after

they constructed each quantity or variable in problems (Ulrich, 2016b).

Furthermore, MCI1 students’ final performances demonstrated that Sara’s
progression in algebraic thinking is more evident than Luke’s. Although both
students attempted to the same mistake by confusing the ratio between the unknown
quantities during the episode, Sara abandoned this in the final assessment by
interpreting the multiplicative relationship accurately, disregarding the confusion

with literal symbols.

4.2.3 Representing functional relationships between variables in the form

of y = ax during Episodes 3 and 4

In the third and fourth episodes, the aim was to introduce the tasks for developing
the students’ functional thinking. These tasks involved identifying the variables in
contextual problems, identifying the relationship between variables and representing
the relationship using symbols. In these episodes, the problems included the
functional relationship in the form of y = ax where there is one independent

variable, one dependent variable and a constant rate of change.

In Episode 3, there were two main tasks including discrete variables such as the
relationship between the number of legs and the number of chairs or the relationship
between the number of ears and the number of people, which were introduced for
generalizing the functional relationships in elementary years by Blanton et al. (2011).
The first task and several questions related to it are presented in Figure 4.24. In
Episode 4, the same form of functional relationship was introduced in different
contexts such as the relationship between the number of months and the amount of
saved money or the number of tables and the number of people seated around the

tables. The main part of each problem is presented in Figure 4.25.
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TASKI1 (Chair and legs): Suppose that you have some chairs, and each chair has
four legs. How would you describe the relationship between the number of chairs

and the corresponding number of chair legs?
Additional Questions:

. How many legs would there be if there were 1/2/3/5/100 chairs?
2. Can you fill in the table by considering the relationship between the number

of chairs and the corresponding number of chair legs?

Number of 1
chairs
Number of legs

b
Lad
E =9
Lh

100

3. Can you write a formula/rule representing this relationship?

Figure 4.24 A sample task in Episode 3

The Saving Money Problem: Suppose that you save 5 Lira each month. How
would you describe the relationship between the number of months and the
total amount of money you saved?

Can you interpret the new relationship between time (month) and the total
amount of money saved represented in the table below? Please fill in the blank
spaces in the table.

Time (month) 1 2 3 4 5 100
The amount of 12 24 36 48 84
money saved (TL)

The Pool Problem: 2 tons of water flows into an empty pool in 1 hour from a
tap that flows at a constant speed. How would you describe the relationship
between the amount of water in this pool and the elapsed time (hours)?

The Birthday Party 1 Problem: Suppose that at a birthday party, two people
can be seated at a square table. If the desks are joined end to end, no one sits on
the ends, one person can sit on each of two sides of a desk, how would you
describe the relationship between the number of tables and the total number of
people who have been seated?

Figure 4.25 Main problems in Episode 4
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The intended processes in these episodes were identifying problem variables, using
function tables, identifying and generalizing the functional relationship in the table
of data (covariational or correspondence thinking), and using equations and letters
to represent the functional relationship (see Figure 4.26). Specifically, it is aimed to
support the students’ recognition of the variables in contextual problems,
understanding how two variables vary depending on each other, and representing

this relationship between two variables using symbols.

Based on the literature and the learning outcomes of Episodes 1 and 2, it was
hypothesized that the MC2 students would identify the relationships between two
variables after drawing the tables and would represent them using symbols and
equations. Zwanch (2022a) observed that ENS students (MC2) could successfully
and quickly use symbolic representations for generalizations in all tasks. In addition,
Hackenberg and Lee (2015) found that some MC2 students could write equations
using whole-number coefficients to represent the multiplicative relationship between
two unknown quantities without inversing the equation. Based on the MC2 students’
written equations in Episode 2, including inverse forms (i.e., both multiplication and
division), it was inferred that they would also inverse the equations in representing

the functional relationships between variables.

On the other hand, it was conjectured that the MC1 students’ tendency towards
recursive thinking (Zwanch, 2022a) may be a constraint for them to identify and
express the functional relationship indicating the covariation between two variables.
Therefore, they would require additional scaffolding questions to develop functional
thinking by interpreting the function tables and contextual situations. Hackenberg
(2013) reported that MC1 students had difficulty in generalizations and writing
equations representing the multiplicative relationship because of a lack of
disembedding operation. She observed that only a few MC1 students were able to
write equations with the interviewer's support. Hence, it was assumed that MC1
students would require more teacher support in the lesson, including generating and
interpreting tables together and connecting variable quantities on the tables.
Furthermore, incorporating drawings to help in problem comprehension would assist

students in visualizing the relationship and lower the task’s complexity.
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Figure 4.26 Description of Episodes 3 and 4: Functional thinking (y = ax)



During the actual learning process, the teacher guided the learning process based on
conjectures and literature. In representing the functional relationship, the teacher
paid more attention to the students’ forms of thinking (e.g., recursive and
covariational) and their generalization processes. Therefore, filling the tables and
interpreting the data within them had the most labor-intensive processes in each task.
In the case of recursive thinking, she forced them to calculate the bigger steps in the
table. In addition, she drew their attention to how the two variables covary by
emphasizing the changes in both columns/rows simultaneously. For example, she

indicated how one variable changes as the other variable increases by any amount.

In using symbolic representations and writing equations, the teacher always referred
to the process where the students calculated the corresponding values for each
variable in tables when they had difficulty in writing equations. She also asked the
students or demonstrated by herself the equivalent expressions suchas d = 3 X c,
3 X c =d,andd = c¢ X 3.Inthisway, she aimed to develop their understanding
of equivalence and properties of operations by using algebraic reasoning. Moreover,
she did not rush the students to use inverse forms of equations when she felt that they
were not ready yet. In these situations, she also expected the students to learn from
each other by listening to more developed thinking processes and operations.

Students’ performance during Episodes 3 and 4

Talking about the general findings, the students’ performances on two episodes
revealed distinct patterns for each group of students (see Table 4.8). The MC2
students demonstrated functional thinking by completing all steps of tasks
successfully with no or few probing questions On the other hand, MC1 students had
difficulty in completing each step of the tasks by needing probing or leading
questions. In addition, they also relied on recursive (Sara and Luke) and additive
thinking (Luke) as different than the MC2 students. In the following sections, MC2
and MC1 students’ progression in generalizing and representing the functional

relationship is presented respectively.
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Table 4.8 The Students’ Performance in Episodes 3 And 4 (y = ax)

MC2 MC1
Roy Belle Sara Luke

Symbolic representation of functional 1 1 2 2
relationships

Reversing the equation 1 2 2 2
Correspondence approach 1 1 2 2
Covariational approach 1 - 3 3
Verbal generalization 1 2 3 2
Generalization after filling the table - 1 2 2
Recursive thinking - - 1 1
Additive thinking - - - 1

1: Without prompting; 2: With probing questions, 3: With leading questions

Note: The level of algebraic thinking increases with color darkness from the bottom to the top
of the table.

4.2.3.1.1 MC2 students’ performances during Episodes 3 and 4

Roy started to express the functional relationship by using indeterminate quantities
from the beginning of Episode 3. For example, in the Chairs and Legs Problem, he
wrote: “The number of chairs x the chair leg = The total number of legs”. This
expression displays his analytical thinking although he did not write the variables in
an appropriate way such as the number of legs on a chair. From his equation
including verbal statements of variables, it was clear that he formulated the
functional relationship as follows: When multiplying the number of chairs by the

number of legs on each chair, the total number of legs is obtained.

Similarly, he could express the relationship verbally in a flexible way in further tasks
by mostly using an operational formula. For example, in the Pool Problem (Episode
4, Task 2), they were given another table of data in which they needed to identify the
relationship between the elapsed time (in hours) and the total amount of water

collected in a pool. After he filled in the table with appropriate values according to
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the relationships between variables (see Figure 4.27) he explained what he

recognized about the relationship between variables as follows:

Roy: I divided 5 by 1; I divided 10 by 2 and it is 5; I divided 15 by 3, it is 5.
| recognized it is always five. To find the total amount of water in the pool,
the time should be multiplied by 5. (It is how he wrote in Figure 4.27).

514=5 r

=X S INx 3

Gegen zaman (saat) | 1 2 3 4 5 = [ 24 ‘i

Havuzdaki toplam | 5 10 15 20 N 75 \ |
su miktari (ton) |

Ty
HQM—QJ«-L HZIV()lc)OL: v 4] M\Ltqr\r\\ Lu{nw!lk Un qen 2gmar

I. € gQrP\l i

thr\ 6"(:'(%2 C— sSu r»r.]Lerl

2Laman

Figure 4.27. Roy’s operations in the Pool Problem

His recognition of the functional relationship generally represented a correspondence
approach in which his formula defined one variable in terms of the other variable
(Smith, 2008) such as “if I multiply the number of hours by five, I find the amount
of water”. Roy’s corresponding thinking in identifying the relationship between two
variables allowed him to write the symbolic equations quickly before writing a verbal
generalization during Episode 4. Further, he sometimes stated the relationship in the
form of covariation such as “As the number of tables increases by one, the number
of people increases by two” (the Birthday Party 1 Problem in Episode 4). Therefore,
his algebraic performance regarding the generalization of the functional relationship

was as conjectured before the teaching experiments.

Unlike Roy, Belle had difficulty in expressing the relationship between two variables
verbally or symbolically at the beginning of the tasks although she could identify the
relationship by writing the appropriate values in function tables. She needed to fill
the tables to understand the relationship between the variables in these Episodes. For
example, in the Chairs and Legs Problem (Episode 3), she explained the rule of
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filling the table by multiplying by four, indicating that she could mentally identify
the relationship. It resembles how she checked her responses through drawings in
the unit coordination tasks although she constructed the correct reasoning without
relying on drawings as an MC2 student. In all cases, interactions with Belle revealed
that she required supporting materials, such as drawings, numerical examples, and
tables to confirm the relationships she had formulated in her mind. She asked more
questions to the teacher such as “the number of legs mean for just one chair?”. After
the teacher's discussion with her, she could express the relationships such as “the
number of legs is always four times the number of chairs”, indicating a
correspondence approach of functional relationship. She showed her algebraic
thinking after reflecting upon the contextual situation and taking scaffolding from
the teacher while Roy did not require extra work on the problem or probing questions
to identify the relationship (see Table 4.8).

MC2 students’ performance in using symbolic representations showed some
differences from each other like in their identification of the relationship. After the
first task in Episode 3, both students quickly began writing equations to represent the
functional relationships. Although Roy used indeterminate quantities in the first task
(the Chairs and Legs Problem) and filled the table correctly, he confused the names
of variables in writing the equation. He considered that the number of legs means the
number of legs on one chair, and he wrote: “c x d = the number of legs” (c: the
number of chairs and d: the number of legs). He then changed his equation and wrote:
“d + ¢ = the number of legs in the chair.” Considering his understanding of variable
names, he accurately formulated the relationships in symbols. After a small
perturbation in writing a symbolic representation, he reconstructed his understanding
in the abstract level by relating different representations of the relationship (von
Glasersfeld, 1995). In the following tasks, he wrote all the functional relationships
in symbols and equations correctly by using assimilated structures he just reflected
upon. Additionally, he wrote the inverse forms of the equations after the teacher
asked him to write the relationship in a different way such as writing botha x 2 =
cand ¢ = 2 = a for the relationship between the number of ears and the number

of people in the People and Ears Problem.
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Belle spent more time understanding the problems and the relationships in each task.
After discussing the problems, interpreting the table of values, and reflecting upon
her rule in writing each value on the tables, she could more flexibly move to writing
equations. Like in the previous episodes, she learned much from Roy’s responses
and she flexibly applied what she learned in the following tasks. For example, when
Roy expressed the relationship between the amount of water and the time in the Pool
Problem, she could write an equation representing this relationshipas h =~ t = 5.
She could write the symbolic expressions and equations in all the tasks more easily
than verbalizing the relationship. Her performance in Episode 4 demonstrated that
she is very good at using symbolic language after she identified or verbalized the
relationship between the variables. She learned to write the inverse forms of
equations in Episode 3 after the teacher’s request and Roy’s responses. In Episode

4, she wrote inverse forms of her equations before being prompted by the teacher.

All those performances on tasks involving functional relationships demonstrated that
Roy could transition to standard algebraic thinking (Radford, 2010) while Belle
required assistance to reach that level from the contextual level. Additionally, Belle
invested more time in comprehending the relationships and generating the formulas.
This pattern is consistent between the two students since the beginning of Episode 1

4.2.3.1.2 MCI1 students’ performance during Episodes 3 and 4

The MCL1 students demonstrated a partial progression in algebraic thinking in terms
of using function tables, generalizing the relationship, and using symbolic
representation along Episodes 3 and 4. Their thinking was often supported by the
teacher’s scaffolding and leading questions in most of the tasks so that they could
move to the other steps of the tasks. Their performance on the first task in Episode 3
(i.e., the Chairs and Legs Problem) was the least developed one compared to the
other tasks in Episodes 3 and 4. Therefore, it is better to present their performance

and constraints in this task first to display their progress along these two episodes.
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In expressing the relationship between the variables in the Chairs and Legs Problem
(Episode 3), the MC1 students encountered failures and some difficulties compared
to the MC2 students as conjectured. Neither of them could identify the functional
relationship even after filling a table together. Sara initially attempted to use
comparison symbols such as a > b. Luke misinterpreted the multiplicative
relationship between two variables by considering the difference between them
would be constant by saying: “If there is one chair it has four legs, if there are two
chairs there are five legs. There is always a particular difference”. Focusing on an
additive comparison is a less complex operation than a multiplicative comparison in
terms of units coordination (Ulrich, 2015b). Therefore, Luke’s failure in
interpretation of the relationship might have resulted from his operations at the MC1
level which allows him to make an additive comparison but not for multiplicative

one.

Because they failed in the identification of the relationship, the teacher filled the
table together with them by discussing the relationship between the variables. It
helped Luke to calculate a bigger step in this pattern situation (e.g., the total number
of legs of a hundred chairs). Luke could indicate the relationship by formulating the
rule by saying: “We always multiply the number of chairs by four” and Sara listened
to him. A remarkable characteristic of Sara in formulating the rule and generalizing
the relationship was her reliance on recursive thinking. She expressed the
relationship by saying “We find it by counting by fours” or “It increases four by
four”. This is another indicator of their operations relying on additive thinking like
Luke’s additive comparison. This signified their algebraic thinking at the factual
level in their first attempt to identify a functional relationship which they could not
make generalizations between covarying quantities (Radford, 2010). Hence, Sara
needed further support from the teacher to understand the functional relationship

through covarying quantities.

Writing equations to represent this functional relationship was another struggle for
the MC1 students. Although the teacher discussed the relationship by constructing a

function table and they were able to identify the function rule as they found the other
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steps of the table, Sara wrote ¢ = d as an inappropriate equation to represent this
relationship, using assigned letters for each variable. On the other hand, Luke wrote
two equations, ¢ X d = 4and ¢ X d = 12, by taking d as a constant value, 4,
representing the number of legs in one chair and taking c as the number of chairs.
Therefore, he got different values for the product of ¢ X d. At this point, the teacher
reminded them that they had multiplied the number of chairs by four to find the total
number of legs previously in filling the table. She led them to think operationally
with assigned letters for each variable by connecting their operations with new
equations. After the first task in Episode 3, they flexibly applied what they learned
beforehand and wrote correct equations in the other tasks which are very similar to
the first task (see Figure 4.28).

Sara Luke
C =a Chairs and Legs C Xd < xd o 12
4=C
Dogs and kaf)“’l’ kopt kM0
_ : Legs ayak soy 182
d =5 9. M
c=4 \’("f‘_.’g :(15/[;‘; A N\: LXL‘
d = Aj(ZL Koy/:"
People and Ears
ndaki iligkiyi nasil ifade edersiniz? = =b
\rast skiyi nasil i krsiniz? | TR J.y""i— n- Lyl L“ $G :
6= bx 2 6 Lok Sopn dipeli kulak Seagisi=h
C bl & . '
4 ndby)
People and Noses gt : .
e g e e INOp Sa ‘DG
| p oo e | [ oy ity
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Figure 4.28. MC1 students' symbolic representations for the tasks in Episode 3

The tasks in Episode 4 included different contextual situations and continuous
variables such as the amount of time, the amount of money, and the amount of water

in a pool. The students were required to fill the tables initially and then express the
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relationship. Both MC1 students were able to fill the tables accurately and calculate
the bigger steps by generating an arithmetic formula. Luke’s written expressions
were explicating an arithmetic rule coming out from the function table while Sara
started to indicate the change in each variable as related to each other as shown in
Table 4.9. Luke’s written expression represents that he used indeterminate quantities
(analytical thinking) and adapted functional thinking with a correspondence
approach by coming up with a formula. On the other hand, Sara indicated a
covariational approach in her written expression of the functional rule (see Table 4.9)
and a correspondence approach in her verbal explanation.

Table 4.9 MC1 Students’ Responses in the Pool Problem in Episode 4

Written Answers Explanations

(How did you find it?)

Sara “As the hour goes by one, the waterin I always looked at the bottom
the pool increases by five tons” (second row/variable of the
table), but I also looked at the top
Reco | to see if it was going the same
le =5 = d way.
I just multiplied it by five.”
d: the elapsed time
k: The amount of water in the pool
Luke  “If we multiply the time by five, we “I figured it out by looking at the

find the amount of water in the pool”
L x5=9g 3+ 8z

g=8v b L=8 13

b: the elapsed time

g: The amount of water in the pool

top and bottom (the first
row/variable and second row of
the table).”

Teacher: How did you get 15?

“First, I went five by five and got
15. Then I multiplied it to make
sure it was right.”

Considering that Sara focused on the recursive pattern in her first attempts in these
episodes, her expression in this task can be an indicator of Sara’s progression in

functional thinking by including both covariation and correspondence approaches.

During Episode 4, MC1 students’ writing equations also demonstrated significant

progress. After they identified the functional relationships, they wrote symbolic
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representations more flexibly. Luke figured out the equations after he generalized
the arithmetic rule operating between two variables. Sara similarly applied what she
learned in the previous lessons and swiftly wrote equations according to what she
did in filling the table of values. Moreover, Luke could inverse the equation that he
wrote using multiplication after the first task in Episode 4. In further tasks, both
students could write the inverse forms of the equations (e.g., b X 5 = gand g +

5 = b) by including some errors (see Figure 4.29).
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Figure 4.29. Luke’s expressions in the Pool Problem in Episode 4

For example, Luke wrote four equations, as shown in Figure 4.29, to represent the
functional relationship between the time and the amount of water in the pool.
Although three of the equations structurally represent the same relationship, one of
them, b = 5 + g, contains an error in terms of this specific relationship. This
shows that Luke still needs support or intervention in writing equations because he
may not be able to keep track of the relationship between variables, as in the

coordination of composite units.

The findings from Episodes 3 and 4 primarily demonstrate the students’ progress in
functional thinking, as previously anticipated before the teaching experiments. As
conjectured, they needed leading and scaffolding from the teacher more than the
MC2 students. Due to their progress in algebraic thinking with the teacher's support,
students may make mistakes, such as the one seen in Luke's equations in Figure 4.29

at the end of Episode 4. This indicates a need for further reflection on operations and

182



outputs to facilitate the assimilation of generalizations and the creation of equations
using appropriate variables. Furthermore, Sara demonstrated bigger progress in
Episode 4 while she had fallen behind Luke in Episode 3 in terms of generalizations
and expression of the relationships. Therefore, in Episode 4 the gap between Luke
and Sara was almost closed with small differences in the way of functional thinking.

423.2 Students’ evaluations at the end of Episodes 3 and 4

In the final assessments of Episodes 3 and 4, both groups of students demonstrated
that they achieved the general aims of the lessons such as filling the table according
to the given relationship, making generalizations, and writing equations. However,
several differences were observed between and within the groups such as writing
inverse forms of equations and representing a variable symbolically in terms of the

other variable.

One difference between the students’ progress in algebraic thinking was their verbal
expressions of generalized relationships. In the final assessment of Episode 4, only
Luke expressed the relationship by writing the operational rule between the variables
as a correspondence approach. In the problem, they were asked to write an equation
to represent the relationship between the distance traveled by the cyclist and the time
elapsed if she rides 4 km in 1 hour at a constant speed. Luke wrote: “If we multiply
the time by four, we calculate the distance traveled”. Other students, Roy (advanced
MC2), Belle (regular MC2), and Sara (regular MC1), wrote the relationship
covariationally such as “For every hour that passes, the distance traveled increases
by 4 km” (Roy). Here, expressing the relationship in a narrative form that differs
from how the rule was generated to calculate the dependent variable in filling the
table may demonstrate a more sophisticated understanding of the functional
relationship. These students used different ways to express the same relationship,

indicating the extension of connections.

In addition, writing equations to represent the functional relationships demonstrated

variations across groups. For example, in the final assessment of Episode 3, the
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students were required to fill a function table according to a given relationship
between the number of cows and the amount of food they consumed daily and write

symbolic expressions for the variables and the relationship (see Figure 4.30).

Farm Problem: On a farm, each cow consumes 3 kg of food daily.

a) Can you fill the function table below?

The number of 1 2 7 a

COWS

The amount of 60 120 180

water

b) Assuming there are x cows on the farm, what is the total amount of water
they consume?

¢) Write an equation that represents the relationship between x and y, where y
is the daily amount of food consumed by all cows on the farm and x is the

number of cows.

Figure 4.30. The problem in the end-of-lesson assessment of Episode 3

In this problem, the MC2 students wrote different forms of equations such as d +
3 = candc x 3 = d whilethe MCL1 students only wrote the multiplication form.
The MC1 students were able to write inverse forms of equations first in Episode 4
while the MC2 students wrote the inverse forms starting from Episode 3. Moreover,
in the same assessment paper, only Roy wrote a X 3 to express the amount of food
given to the stock animals while the number of cows was represented by a. The other
three students assigned a different letter to the dependent variable although they
could write equations when two different letters were assigned to two variables. This
demonstrated Roy’s structural thinking, like in writing the inverse forms of the

equations.

In the Cyclist Problem at the end of Episode 4, all students wrote equations in inverse
forms, including multiplication and division. However, the use of division for this
relationship differed between the MC2 and MC1 students. (see Table 4.10).
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Table 4.10 Students” Written Equations in the Final Assessment of Episode 4

Roy Belle Sara Luke
s: Time a: Time s: Time ¢: Time
y: Distance b: Distance k: Distance k: Distance
traveled. traveled. traveled. traveled.
S X4 =y axXx4=» sx 4=k cxXx 4=k
y+5s =4 4 Xa=0»> k+4=s k+-4=c¢
b=4Xa
b=ax4
b+4=a
b~+a=

The MC2 students wrote an extra equation showing that dividing the distance
traveled by the time was 4 (e.g., y = s = 4). On the other hand, the MC1 students
wrote only the equation showing that dividing the distance traveled by 4 was the time
elapsed (e.g., k ~ 4 = s) by using division. The former equation demonstrates
structural and covariational thinking more explicitly because it represents the
covariation between variables through doing operations with variable quantities and
finding the rate of change. In the latter, the students do an operation with only one
variable quantity to find the other, which may be more visible when reading the table
of values without using the structures in operations. Even so, the MC1 students
demonstrated an improvement over previous episodes by writing equations in

inverse forms.

4.2.4 Representing functional relationships between variables in the form

of y =ax + b in Episodes 5 and 6

In the fifth and sixth episodes, the goal was to present various contextual problems
involving functional relationships in the form of y = ax + b. The tasks in these
episodes required the students to identify the problem variables, construct a function
table, identify and generalize the functional relationship in the table of data, and
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express the functional relationship between two variables in different ways, like in
Episodes 3 and 4. Differently, in this step of the HLT, the problems included, in
addition to dependent and independent variables, a constant value that represents the

initial value of the dependent variable.

In Episode 5, there were two problems with the same contexts as the problems in the
previous episode to ensure a gradual transition between the forms of functional

relationships (see Figure 4.31).

The Birthday Problem: At a birthday party, square tables were arranged end to
end to form a long row with only one person seated on each side. How can you
express the relationship between the number of tables and the total number of
people sitting at these tables? (After the tables are joined, one person sits at each
end.)

The Bank Account Problem: Ali has 30 liras in his bank account. Ali decides to
deposit 15 liras into his account every month.
a) Fill in the table below according to the information above.

Elapsed Time (the number of | 1 2 3 4 5 30
months)

The amount of money saved
in the account (Liras)

b) Let's call the number of months (elapsed time) a. How would you express
the total amount of money saved in the account?

c) Can you write an equation that shows the relationship between the total
amount of money saved in the account and the elapsed time (number of
months)?

Figure 4.31. The main parts of the tasks in Episode 5

Episode 5 began by revisiting the Birthday Party Problem, previously discussed in
Episode 4. However, this time the seating arrangement was different, with two
people sitting at the ends of tables. The students were required again to show the
relationship between the number of people seated and the number of tables put end
to end. The Bank Account Problem reappears, similar to the previous episode as
well. However, this time, the problem involved an initial sum of money that increases

at a constant rate each month.

186



In Episode 6, students continued to work with different contextual problems
including functional relationships between variables in the formof y = x + a (see

Figure 4.32).

The People and Hats Problem: Think about a hat with a height of 20 cm. How
would you describe the relationship between a person’s height without a hat and

with a hat? (Carraher et al., 2006)

Customer height (cm) 160 | 161 | 162 | 163 | 164 | 180

The customer's height

with a hat (cm)

The Credit Card Problem: Ali is getting a new credit card. In the bank's
promotion, the bank pays for the first purchase of 20 liras.

Fill in the table below according to the information above.

The initial amount 50 60 70 80 250 500

spent

Total debt amount

-Write an equation that shows the relationship between the initial expenditure

amount and the total debt amount.

The Sapling Problem: The height of a tree sapling grows 2 cm every day from
the day it is planted. Since the tree sapling was 35 cm when it was first planted,
draw a table expressing the relationship between the elapsed time (days) and the
height of the sapling.

-Express the relationship between the elapsed time (days) and the height of the

sapling.

Figure 4.32 The main tasks in Episode 6

Additionally, this episode involved the Sapling Problem with a functional

relationship in the formof y = ax + b due to the students’ difficulties with similar
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problems in the previous episode. The first problem involved the relationship
between a person’s height without a hat and with a hat with 20 cm height, which was
taken from the study of Carraher et al. (2006). The second problem (the Credit Card)
was about a credit card promotion of a constant amount given for any initial
expenditure. Finally, the Sapling Problem, which was similar to the Bank Account
Problem, involved a relationship between the height of a tree sapling, whose initial

height is 35 cm, and which grows 2 cm each day, and the elapsed time.

The intended processes in Episodes 5 and 6 were quite the same as those in Episodes
3and 4 (see Figure 4.33). Episodes 3 and 4 have successfully equipped MC2 students
with the ability to identify relationships between two variables and accurately fill
function tables. However, it was hypothesized that identifying the constant value in
problems involving functional relationships in the form of y = ax + b may pose
a challenge to students, after they have worked on the problem in the other form in
previous episodes (y = ax). To address this perturbation, probing questions such
as “Can you check your formula for any given value in the table?”” were ready to use
in these episodes. On the other hand, it was conjectured that the MC1 students would
not easily handle this situation. Hence, there were additional scaffolding questions
to ask them which were about understanding the problem, filling the table and
writing the equations. The teacher was also alerted to the MC1 students' inclination
towards recursive thinking (Zwanch, 2022a) when identifying functional

relationships.

As conjectured, the teacher took a more active role during the episodes with the MC1
students, guiding them to understand the problem and identify the relationships
during the learning process. Her questions effectively challenged the erroneous
reasoning and responses given by the MC1 students. She needed to make the students
falsify their reasoning by recalling the variables, questioning, and checking the
answers numerically. The teacher generally falsified the erroneous generalizations
of the students in the first part of each task. She was more dominant in recognizing
the relationship between variables because the students struggled to understand how
to calculate the value of one variable for the larger value of another variable.
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Subsequently, the teacher summarized their answers and discussed them on the board
without any interruption. On the contrary, she used fewer probing questions with
MC2 students. She used generally small questions to trigger MC2 students to think
about their erroneous answers. This approach helped them in a short amount of time.
She emphasized what changes and what is constant in each question for both groups
of students. The descriptions of tasks, intended processes, conjectures and

instructional moves are summarized in Figure 4.33.

4241 Students’ Performance during Episodes 5 and 6

The conjectures for Episodes 5 and 6 indicated that both groups of students would
encounter difficulties in different parts of the problems that involve functional
relationships in the formof y = ax + b. This difficulty is due to the constant value
which is additively involved in the relationship, and which the students are not
familiar with. As conjectured, this novel situation in the contextual problems created
constraints for the students in determining the functional relationship and filling the
tables in some problems. This was evident in their erroneous values written in the

tables or their overthinking to find the larger values for variables.

In parallel to the conjectures for the MC2 students, they had difficulty in this type of
functional relationship, but not in writing the equation, it starts with their
identification of the relationship in the Bank Account Problem. In contrast to the
conjectures, they had this difficulty only in the Bank Account Problem. They
exhibited minor difficulties in the identification of the functional relationships
between variables in the Bank Account Problem. Roy was usually faster than Belle
at identifying relationships and writing equations, like in the previous episodes. He
needed less help from the teacher and could correct his own mistakes. When they
misunderstood the problem or could not determine the larger value in the function
table, the teacher's prompts or the students’ own attempts swiftly resolved the issue.
Roy represented the most sophisticated performance amongst all students also during

Episodes 5 and 6 with almost no help from the teacher (see Table 4.11).
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Table 4.11 The Students’ Performance in Representing Functional Relationships in

Episodes 5 and 6

MC2 MC1
Roy Belle Sara Luke

Symbolic representation of functional 1 1 3 3
rel.

Reversing the equation 1 1 - 2
Correspondence approach 1 1 3 3
Covariational approach 1 - 3 3
Verbal generalization 1 2 3 3
Generalization after filling the table 1 1 3 3
Recursive thinking - - 1 1

1: Without prompting; 2: With probing questions, 3: With leading questions

Note: The level of algebraic thinking increases with color darkness from the bottom to the top
of the table.

The MCL1 students struggled to determine the relationship between variables in both
problems in Episode 5. They had major difficulties in the identification of the
functional relationships between variables in the Bank Account Problem. Luke, who
attended Episode 6 alone, had a similar difficulty only with the Sapling Problem in
Episode 6, which is similar to the Bank Account Problem. In these problems, the
teacher directed students in key steps, such as determining the relationships between
two variables by generating a rule. Therefore, the teacher provided more than
scaffolding and prompting in these instances. Furthermore, their reliance on

recursive thinking continued in these episodes.

4.2.4.1.1 MC?2 students’ performance during Episodes 5 and 6

Roy could identify the functional relationships between the variables in each
problem by making generalizations to larger values for the independent variables.
He needed to think a little more about the Birthday Party 2 and Bank Account
Problems in Episode 5 while he quickly identified and expressed the relationships in
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other problems. In the Birthday Party 2 Problem, he had difficulty understanding the

table arrangement. He understood the relationship after creating visual
representations of the table arrangement with the teacher's suggestion. In the Bank
Account Problem, he calculated the consecutive cells by adding the rate of change
each month, recursively. He recognized the initial amount of money by himself after
thinking for a while and he could calculate each cell by formulating the rule. He
explained his reasoning by saying “There is 30 liras in the beginning.” (see Table

4.12)

Table 4.12 MC2 Students’ Identification of Relationships in Episodes 5 And 6

Problems Roy Belle

The Birthday Party After drawing visuals he After drawing visuals she
2 (Episode 5) formulated a rule formulated a rule

y = 2x +2 “I multiplied 100 by 2 and “If we multiply the number

then added 2 people. | also
added 2 because 2 people
were sitting at the ends.”

of tables by 2 and add the
people on the edge, | mean 2
people, we get the total
number of people sitting.”

The Bank Account
(Episode 5)

y = 30 + 15x

“If we multiply the elapsed
time by 15 and add 30, we
can find the amount of
money saved.”

The teacher showed the
calculations

People and Hats

“The customer's height

She wrote the symbolic

(Episode 6) increases by 20 cm when representation before filling
y = x + 20 wearing the hat.” the table (a + 20 = b)
Credit Card “Since the bank pays 20 liras, ~ “Total debt is 20 liras less
(Episode 6) we subtract 20 liras. The than the initial expenditure”
— - 20 higher the amount of
Y spending, the higher the
amount of debt.”
Sapling “150 times 2 in parentheses “First [ multiplied 150 by 2, I
(Episode 6) and then plus 35.” got 300, then I added it to 35,
y = 2x + 35 I got 335.”

Roy was able to identify and express the functional relationships between the

problem variables using a variety of verbal expressions and justifications. In the
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Birthday Party 2 Problem, he explained why he added two after the multiplication
by emphasizing the additional two people at the ends of the table arrangement.
Similarly, in the Sapling Problem, he indicated the parentheses in his verbal
expression, which shows the logic in his generalization and formulation of the rule
using structures in the problems (see Table 4.12).

Roy’s verbal expressions of the relationship were more varied than Belle’s. For
example, he indicated a covariational relationship between the height of a customer
and the height of a customer with a hat (Episode 6) as follows:

Teacher: Did you always add 20? (Asking about the function table in the

People and Hats Problem)

Roy: yes teacher, there is a 20 cm difference between them.

Teacher: How else can we say? What does it mean that there is a 20
difference between them?

Roy: So it's 20 cm more.
Teacher: Which one? The height of the customer with the hat is 20 cm
Belle: Big

Teacher: ... bigger than the height of the normal customer. It always adds
20, so can we say that it is always 20 more. (Yes) What else can we say?

Roy: Teacher, for example, as the height of the customer increases by one,
the height of the customer with the hat also increases by one.

As seen, Roy used various verbal expressions indicating the same relationships like
writing equivalent expressions. His last expression represents his covariational
thinking as well such as “as one increases by one, the other increases by one to0o.”

His effort for generating multiple expressions was appreciated.

Belle had considerable difficulty in identifying and generalizing the relationship in
the Bank Account Problem. In the other problems, she could identify the
relationships by herself without any help. As shown in Table 4.12, she could express
the generalized relationships using narrated formulas (e.g., the Sapling Problem),
write equations immediately (the People and Hats Problem), or provide the rationale

behind her formulated rules (the Birthday Party 2 Problem).
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Belle had a good start in Episode 5 with the Birthday Party 2 Problem. She
immediately started drawing tables and could identify the relationship more quickly
than Roy (see Figure 4.34).
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Figure 4.34. Belle’s drawings in the Birthday Party 2 Problem

Drawings probably helped her to figure out the problem because she could fill the
table with correct values on her first try, unlike the other three students. When the
teacher asked her to explain how she recognized this relationship and found the
number of people for a hundred tables, she indicated that drawings helped them
figure out the relationship as follows:
Belle: When the tables are brought end to end, 2 people sit at each table, but
one person sits at each end. So if we multiply the number of tables by 2 and

add the people on the edge, | mean 2 people, we get the total number of people
sitting.

She both used indeterminate quantities and explained the reasoning behind her
calculations as the indicators of algebraic thinking (Kieran, 2004). Although the
constant value in the functional relationship (i.e., 2 people on the edges) created some
constraints, it was seen that drawing sample situations, such as 1, 2, and 3 tables,
helped the students make generalizations. This shows that this problem was a good

starter for this kind of relationship.
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Like Roy, Belle encountered trouble with the Bank Account Problem in Episode 5.
She calculated the smaller values by recursively adding the constant rate of change.
However, she required assistance and discussion with the teacher to calculate the
larger value in the function table. The teacher demonstrated all the operations for
each column, and this discussion lasted almost ten minutes with minimal

contribution from Belle. Consequently, this calculation was teacher-directed.

In expressing the generalizations using equations, the MC2 students showed a higher
level of performance than had been conjectured. After identifying the relationships
by filling the function tables and expressing them verbally, they quickly transformed

the formulations of the rules into equations using letters (see Table 4.13).

Table 4.13 MC2 Students’ Written Symbolic Representations

Problems Roy Belle
The Birthday Party 2 mx2)+2=k mx2)+2=k
(Episode 5) k= (mx2)+2
y = 2x +2
The Bank Account (ax15)+30=>b 30+ b x5=a
(Episode 5) b: the amount of money a: the amount of money
y =30+ 15x a: the number of months b: the number of months
People and Hats b-20 = a a+ 20 =b;
(Episode 6) b-a = 20 20+ b = a
y=x+20 b = a +20;
b =20+ a
b- 20 = gq;
a=>b-20
Credit Card (Episode b-20 =c¢ a- 20 = b;
6) c+20=0» b+ 20 =a
y =x-20 b-c =20 20+ b = a
a=20+5
a=>b+ 20
Sapling (Episode 6) (dx2)+35=c¢ (ax2)+35=5»
y = 2x + 35
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The MC2 students could represent the symbolic representations in different forms
by using inverse operations (e.g., addition and subtraction) or using commutative
property (i.e., b = 20 + aand b = a + 20) or symmetry property of addition
(ie., b = 20 + aand a + 20 = b). Writing equivalent expressions using the
same relationships between variables demonstrated their algebraic thinking

emphasizing their structural and analytical thinking.

As seen in Table 4.13, both students used parentheses in the relationships including
more than one operation. However, Belle did not use parentheses in the Bank
Account Problem in which she had difficulty understanding the relationship. The
parentheses can show a higher level of abstraction by objectifying each output of an
operation. In the Birthday Party 2 Problem, Belle wrote the number of people sitting
at the sides of the tables as the first expression (m x 2) in parentheses (see Table
4.13), showing that it is the first output that depends on the number of tables before
adding two more people at the ends. This represents an invented relationship through
structural thinking and objectification of each process of operations. This is also
evident in Belle’s drawings in the identification of this relationship (see Figure 4.34).
In her drawings to find the number of people for one hundred tables, she first showed
her understanding of the formula on the drawings by writing “x100” near the table
figures and representing “plus ones” at the ends, indicating multiplication of the
number of tables by 100 and adding two people at the ends. This showed her

generalization process and algebraic thinking.

In addition to using parentheses, the MC2 students also showed their structural
thinking as an important indicator of algebraic thinking by rewriting the equations in
different forms such as reversing the operations or using the properties of operations.
As seen in Table 4.13, Belle demonstrated a tendency in most of the problems by
trying to write as many equations as possible. However, Roy’s equations
demonstrated more sophistication in his thinking, particularly evident in the Credit
Card and the People and Hats Problems. Belle wrote each equation by operating with

an indeterminate and a determinate quantity on one side which shows the reasoning
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“One variable is 20 less than the other and the other variable 20 more than the first
one”. On the other hand, Roy also formulated an equation that included an operation
with two indeterminate quantities on one side (i.e., b - a = 20), which represented
that he considered the difference between two indeterminate quantities. He showed
this transformation in both problems (see Table 4.13) while Belle did not consider

this form, even though she wrote more equations.

4.2.4.1.2 MCI1 students’ performances in Episodes 5 and 6

In this part, Sara (regular MC1) participated only in Episode 5. Therefore, Sara’s
performance was analyzed through two tasks while Luke’s performance was
analyzed through five tasks. The comparison of the progress of MCL1 students could
only be done through two tasks in Episode 5.

As conjectured, both MC1 students had difficulty understanding the relationships in
the problems in Episode 5. Therefore, the initial parts of each task in Episode 5 took
more time, including writing the following corresponding values in a function table,
finding a larger value in the function table, and formulating a rule for finding the
value of the dependent variable that corresponds to any value of the independent
variable. It was seen that they were still inclined to think recursively in interpreting
the function tables. Hence, they needed to discuss with the teacher to calculate the
number of people seated on one hundred tables (the Birthday Party 2 Problem) or to

find the amount of money saved after 30 months (the Bank Account Problem).

In the Birthday Party 2 Problem, the MC1 students could fill the table correctly on
their second attempt until the value of five (for the number of tables), after the teacher
explained the table arrangement (see Figure 4.35). They explained how they found
the values on the table recursively, they indicated “it increases two by two”.
Therefore, this thinking way created a constraint for finding the number of people
for one hundred tables and formulating the rule, as factual algebraic thinkers have
(Radford, 2010).
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Figure 4.35. MC1 students’ function table in the Birthday Party 2 Problem

Both students thought that the rule was multiplying by two. However, the teacher
interfered to show that the rule did not work in the given situations as follows:
Teacher: Think about the relationship between the number of tables and the

people seated. What happens to the number of tables and what happens to the
number of people? How we can find when it says one hundred tables?

Sara: I multiplied by two and found like this...For what number of tables...
(she thinks). As Luke said, the numbers go as 2-4-6-...ahh sorry, they go as
4-6-8-10-12, it increases two by two. I multiplied 100 by two and it is 200.

Teacher: You said, it is found when we multiply by 2. What do you think
Luke?

Luke: Teacher, I also did 200 at first. Then I thought it was wrong because
at first, it increased by 4, then it increased by two by two.

Teacher: That is, when there is zero tables, zero people... it does not start
directly from 2 people. How else do we know that your first situation is
wrong? Come and draw the table arrangement on the board.

After they drew the table arrangement for several situations and the teacher explained
the case through the drawings by relating it to the previous problem in Episode 4,
Sara answered 202 by formulating the rule correctly. Luke also explained how she

formulated the rule after her answer. However, in this process they drew the table
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arrangement twice with the teacher and the teacher explained how the people sit

around the tables in each situation to help them to understand the relationship.

Similarly, in the Bank Account Problem, they filled the table by adding 15 and stated
the relationship by thinking recursively in the same way:

Luke: We add 15 as each month passes

Sara: As the month passes, because the amount of money increases by 15
liras, we find the relationship by adding 15 liras over 30 liras.

Consequently, they formulated the rule incorrectly, as evidenced by the
multiplication of 15 and 30 to determine the amount of money saved after 30 months.
This approach ignored the constant value of money at the beginning. The students
indicated that the amount of money could be found by multiplying by 15. Their focus
was on the recursive increase in the amount of money, rather than on the role of the
constant initial amount of 30 liras in generalizing the relationship. This showed their
incorrect generalization of the relationship. In this section, the teacher stepped in and
illustrated that their understanding was flawed by repeatedly adding 15 until the 30™
month. The students initially presumed that they had made a calculation error (Sara)
or had multiplied by an incorrect number (Luke). Eventually, the teacher
demonstrated the operations in each column, emphasizing the initial amount of
money as a constant. This indicates that they were unable to identify the functional

relationship in the form of y = ax + b with any degree of support.

In writing equations, Luke’s performance was better than Sara’s and better than his
performance in identifying relationships. In the Birthday Party 1 Problem, he could
easily write a symbolic expression for the relationship between the number of tables
and the number of people without any correction or prompt from the teacher (i.e.,
m X 2 + 2 = k). He also explained his expression: “I multiplied m and 2 and
then added 2,” indicating his operations with indeterminate quantities. However, in
the Bank Account problem, Luke’s first answer was a X 15 as he had generalized
the relationship earlier in the problem, which is consistent with the conjectures. The

teacher reminded him that when they multiplied the number of months by 15, the
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output value was erroneous. He quickly corrected his expression by adding 30 at the
end of the expression (i.e., ¢ X 15 4+ 30 = b) and said: “We multiply 30 and 15

and then add 30 because in the beginning there is an amount of money of 30 liras.”

On the other hand, Sara wrote several erroneous expressions before the teacher
helped her to correct her expressions in both problems. For example, in the Birthday
Party 1 Problem, she tried the expressions m = k, mk, m =X 2, m =X 2 =
+ 2 = k (m: the number of tables and k: the number of people). Similarly, in the
Bank Account Problem, she tried different expressions suchasa = 30 + 15,a =
30 + 15, a x 30 at the beginning. In each attempt, the teacher falsified her
reasoning by giving an example from the function table, and then she could write the
correct expression at the end. Her erroneous expressions demonstrated that she could
not operate with indeterminate quantities when there was more than one operation

between the problem quantities.

Luke was the only MC1 student to attend Episode 6 and to continue with the
remaining three problems. He demonstrated better performance in the People and
Hats and the Credit Card Problems, which included only one operation in the
function rule. In these problems, he was able to identify the relationship and express
it verbally and symbolically, although he did encounter a few minor challenges, such
as misunderstanding the problem (the Credit Card Problem), and writing an incorrect
equation before filling the table (the People and Hats Problem). In these problems,
the act of filling in the function table proved to be an effective method of rapidly
identifying the relationships. For instance, in the Credit Card Problem, Luke was
able to express the relationship as follows: "We find the total amount of debt if we
subtract 20 from a," where a was assigned the value of the amount of expense. His
verbal expression included a statement indicating an operation that he did while
constructing a table of values.

In the Sapling problem, Luke could not calculate the length of the sapling in the 150%"
day after it was planted, indicating that he could not generalize the relationship.

Furthermore, he demonstrated some confusion regarding the quantities such as
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multiplying 2 (the amount of the growth in cm each day) and 35 (the length of the
sapling at the beginning) and adding 150 (the number of days passed) and 35. His
answers given during the discussion on the calculation of sapling height on the 150"

day after planting are listed as follows:

1) “Can it be like multiplying 150 and 2? It is 300.”

2) “What if we add 35 to the amount of elapsed days (150)? Then we add 2
to 185, it is 187.”

3) “I found the first three days by increasing two by two.”
4) “What if we multiply 35 by the elapsed time and add 2?”
5) “Is it okey to multiply 35 and 2?”

6) “Could it be 160. | found until the 10th day by adding two. At last, | found
55. 55 and 55 makes 110. It makes 165, one more 55 it has.”

7) “(Instead of adding two recursively) I can multiply 150 and 35 or multiply
35and 2.”

Because the problem included both an addition to the initial amount and calculating
the amount of growth in any given day it required more than one operation to
calculate the dependent variable. Hence, Luke had difficulty in keeping track of the
multiple units such as the length at the beginning, the amount of growth in a day, and

the amount of growth in given days and he could not go further.

Luke could represent the functional relationships in the Birthday Party 2 and Credit
Card Problems using equations, as he was able to identify the relationships. One
noteworthy observation is that he had difficulty in writing the equation in the
reversed form (i.e., g = a + 20 and g - 20 = a). The teacher prompted him to
engage in reversible thinking and asked him whether he could utilize subtraction in
formulating the equation in the People and Hats Problem while he wrote symmetric
forms of equations (i.e., « + 20 = g and g = a + 20). He incorrectly wrote
20 - g = a. Thereafter, the teacher let him try his new equation in the function
table to check whether it worked or not and she provided numerical examples. After

this, Luke realized his mistake and revised the equation correctly.
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Conclusively, the MC1 students performed better in the previous episodes than
Episodes 5 and 6, which included the functional relationships in the form of y =
ax + b. Therefore, there was no notable progress in their algebraic thinking in
these episodes. In this type of functional relationship (i.e., y = ax + b), they
demonstrated difficulty in identifying the relationship by integrating the initial value
(constant value). They made many mistakes until they reached the correct
expressions of the relationships with the teacher's help in most of the tasks.
Especially in the Bank Account (y = 30 4+ 15x) and the Sapling Problems (y =
35 + 2x), the teacher directed the MCL1 students more than scaffoldings and
prompts. The initial amount presented a challenge, as it required integrating different
quantities into the problem such as the amount of growth in each day, and the number
of days passed in the Sapling problem. Furthermore, their reliance on recursive

thinking persisted in these episodes.

4.2.4.2 Students’ evaluations at the end of Episodes S and 6

At the end of Episode 5, the students worked on the Pool Problem that involved the
functional relationship in the form of y = ax + b like the Bank Account and the
Sapling Problems. At the end of Episode 6, they worked on the Bouncing Ball 2
Problem that involved the functional relationship in the formof y = x + b like the
People and Hats and the Credit Card Problems (see Figure 4.36). Both problems
required the students to fill the given tables, generalize the relationship between

variables, and write a symbolic representation in further steps of the problems.
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The Pool Problem (Episode 5): There are 5 tons of water in a swimming pool. A
faucet running at a constant speed adds 2 tons of water into the pool in | hour
Write an equation that shows the relationship between the amount of water in the

pool and the elapsed time (hours).

The Bouncing Ball 2 (Episode 6): Elif drops a ball from different heights and it
bounces on the ground. She prepared a table in which she recorded the height from

which the ball was dropped and how much the ball rose after the bounce.

The height the ball was 40 50 60 70 300
dropped (cm)

The rise after the bounce (cm) 20 30 40 50

Figure 4.36 The main parts of the post-assessment problems in Episodes 5 and 6

In the end-of-lesson assessments of Episodes 5 and 6, the gap between the students’
performances in identifying and generalizing the functional relationships in the form
of y = ax + b and writing equations was almost closed with several differences.
The MC2 students could fill in the function tables accurately and find the larger value
by making the correct operations, which shows their accurate generalizations in both
assessments. In parallel, they could also represent functional relationships through
symbolic expressions. They demonstrated quite the same performance in their
assessments. One difference between them was their equations in the Pool Problem.
Like in Episode 5, Roy used parentheses in writing the equation in the Pool Problem.
In contrast, Belle did not use parentheses in her equation. (Figure 4.37). However, it
does not demonstrate in general that Belle did not achieve this level of abstraction
because she used parentheses in the Birthday Party 2 Problem in Episode 5 (i.e.,
(m x 2) + 2 = k). This may be because she did not focus on it or forgot it in the
final assessment. In parallel, both students wrote all the equation forms for the
additive relationship between two variables in the Bouncing Ball 2 Problem by
inversing the initial equations. This also shows their abstraction and structural

thinking.
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Figure 4.37. MC2 students’ equations in the Pool Problem

Another difference between the MC2 students was their verbal expressions of the
relationship in the Bouncing Ball 2 Problem. Roy indicated the relationship as: “A
difference of 20 exists between the height at which the ball was left from and the
amount of rise of the ball after the hit on the ground” (d - ¢ = 20) while Belle
indicated the relationship as: “The height at which the ball was dropped is 20 cm
greater than the amount of rise of the ball after its hit on the ground.” (a = b +
20). In Roy’s expression, which indicates how he initially determined the
relationship, there is a direct operation between two problem variables. In contrast,
Belle initially determined how to find the value of one variable in terms of the other
variable, including a direct operation between one variable and one known quantity.
Considering this, Roy’s generalization encompasses analytical thinking to a greater
extent than Belle’s, even though both students were able to correctly write all the

forms of equations in the further step.

Although the MC1 students had difficulty in understanding and generalizing the
functional relationships in each task during the episodes, end-of-lesson assessments
showed that they could generalize the functional relationship both operationally and
symbolically. In the Pool Problem, both students could calculate the larger value in
the function table, which indicates their generalization of a functional relationship in

theformofy = ax + b.However, Sara made some initial mistakes such as writing
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erroneous values in the function table and confusing the operation in writing

symbolic representation (see Figure 4.38).
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Figure 4.38. Sara’s answers in the Pool Problem

edersiniz?

Given that she was able to identify the larger value in the table, the initial erroneous
values were regarded as computational errors. Furthermore, she was able to revise

his symbolic expression after a small confusion.

In Episode 6, Luke demonstrated success in tasks involving the functional
relationship in the form of y = x + a, as evidenced by his performance on the
People and Hats and Credit Card Problems. The end-of-lesson assessment included
a problem of a similar nature. Consequently, he successfully completed each step in
the Bouncing Ball 2 Problem. He once again wrote the equations in the symmetric
forms (i.e., b- 20 = g and g = b - 20). As he did in the previous tasks in the

episode, he did not reverse the operation in the end-of-lesson assessment.

In general, the nuances between the group of students’ performances in algebraic
thinking (i.e., MC1 and MC2) appeared in their written expressions of the
relationships and in the forms of the equations they wrote. While all students could
verbalize the functional relationship, there were variations in the written expressions.
For instance, Luke (early MC1) consistently employed a language that emphasized
the operation he used to determine one variable in terms of the other such as “We
find the amount of rise of the ball if we subtract 20 from the height the ball was

dropped.” On the other hand, the expressions of Belle and Roy focused on the
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explicit relationship between variables, as exemplified by Roy’s statement: “The
height at which the ball was dropped is 20 cm greater than the amount of rise of the
ball after its hit on the ground.” Their approach to verbal generalizations of the
relationships represents a novel construction of the relationship expressed in a
manner distinct from how they do calculations in the table. In addition, the variation
and comparison between the variables were more visible as compared to Luke’s.
This was also evident in their symbolic representations. While the MC2 students
could write the equations in the reverse form, the MC1 students were only able to
write symmetric forms of equations, which does not require the construction of a

new expression or the structure of the relationship.

4.3  General Progress of Students in Algebraic Thinking

This section presents the general progress of each student, interrelating it with their
unit coordination levels and with their performances before the teaching episodes.
As Sara was unable to attend the final episode and evaluation, her performance was
evaluated based on her performances before the teaching experiments and the last

episode she attended.

In the post-assessment when the teaching episodes ended, students answered six
questions. Four were from the Algebraic Thinking Interview: the Caterpillar and
Leaf, the Growing Caterpillar, the Penny Bank, and the Cord problems. One question
was from the Units Coordination Interview: the Crate problem. Lastly, the students
also calculated two missing value operations to be assessed for the equal sign
understanding and defined the concept of variable. As distinct understandings and
thinking processes were addressed by particular problems, this section presents the
students’ final evaluations in different headings, including equal sign understanding,

variable understanding, algebraic thinking, and units coordination.
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4.3.1 Equal sign understanding

Students' responses to the missing value operations in the final assessment showed
that their understanding of the equal sign was the same as in the pre-assessment. Roy
and Belle demonstrated again a relational understanding of the equal sign while Luke
showed an operational understanding. Belle used a compensation strategy to find the
missing value in one of the operations, as different than her response in the pre-
assessment. This confirms that she showed a more advanced understanding of equal
signs. In contrast, Luke thought that the result of the operation should come just after

the equal sign, ignoring the quantities on the right side (see Figure 4.39).

w g =l vy

@ a4l = 16 23

Figure 4.39. Luke’s operational view of equal sign in the missing value operations

His response showed that his operational view of the equal sign persisted even after
they had been presented with a minor equality activity represented in balance scales
through virtual manipulatives in Episode 2.

Consequently, these six teaching episodes, which were designed to facilitate
algebraic thinking rather than directly addressing the understanding of the equal sign,
did not facilitate Luke’s understanding of equality and the equal sign in numerical

operations.

4.3.2 Variable understanding

During the final assessment, the students were asked to define the concept of
variable. Their definitions commonly involved the expression “continuously

changing things” as seen in Table 4.14.
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Table 4.14 Students’ Descriptions of Variables

Roy Indeterminate, continuously changing. For example, it can be expressed in
symbols.

Belle  Constantly changing things (Can you give an example?) For example, Ali
puts 3 TL in his penny bank every day... they are variables, they change every
day. (What changes every day?) He puts 3 liras in his penny bank every day.
For example, on the first day, he puts 3 TL, on the second day 6 TL, on the
third day 9 TL. They change in this way. The number of days also changes
there.

Luke  Always taking different values. Constantly changing values.

In the pre-assessment, they could not give accurate definitions because they had
heard the variable concept for the first time. Their definitions in the post-assessment
demonstrated that they emphasized the meaning of variables as constantly changing
things, as in the problems involving functional relationships. In addition, Roy also
indicated the indeterminacy in his definition. In this way, his understanding seemed

more comprehensive than that of his peers.

Other than answering this definition question, the students could identify the problem
variables correctly in each problem while assigning the letters for the variables in the
final assessment. In the pre-assessment results, they had missed some of them while
indicating the problem variables, for example in the following problem.

A tree sapling grows taller by a certain amount every day from the day it is

planted. What do we need to know to calculate the height of a tree sapling on
a given day? Can you indicate the problem variables?

In response to this question, Roy identified “how much it grows each day” and “the
number of days elapsed” as the things we need to know. Belle indicated that we need
to know how much it grows each day and the first length of the sapling. On the other
hand, Luke only identified “how much it grows each day” as the problem’s important
element. Comparing their answers in the pre-assessment, they demonstrated
achievement in interpreting the problem variables and understanding them in the

function context.
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Furthermore, all students could write the inverse form of the relationships in the Cord
Problem in the post-assessment by operating with the letters assigned for the
variables in different ways. This represents an understanding of variables as
mathematical objects, referring to Level 6 according to Blanton et al. (2017). Roy
demonstrated the same performance in the Growing Caterpillar problem in the pre-
assessment which was in a function context. Therefore, his progress may not be very
significant compared to other students, Belle and Luke, who demonstrated an
understanding of variables as quantities with fixed arbitrarily chosen values, which
refers to Level 4 (Blanton et al., 2017) in the pre-assessment findings. Considering
the evidence of operating with letters differently for the same relationship, they
demonstrated the same level of understanding of variables in the post-assessment.
However, Roy’s use of inverse operations in each problem may show his
understanding as more advanced than others because he could flexibly think of them

without prompting.

4.3.3 Algebraic thinking

In the final assessment, three problems addressed the students’ generalizations of
functional relationships between variables and their symbolic representations (the
Growing Caterpillar, the Caterpillar and Leaf, and the Penny Bank Problems). Each
problem had special features that either helped students understand the problem or
challenged them to complete the steps. In the Growing Caterpillar Problem, students
saw figural data showing that the body length of a caterpillar increased by two parts
each day. In the Caterpillar and Leaf problem, there were no figures or tables. The
given information was that “two caterpillars eat 6 leaves.” Finding the amount for
one caterpillar would help the students write an equation representing the
relationship between the number of caterpillars and the number of leaves. Lastly, the
Penny Bank Problem involved a saving money context where Ali puts each day three

TL into his penny bank, with an initial amount of 10 TL. Therefore, students needed
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to interpret the constant initial value in addition to the problem variables. The general

performances of students in each problem are represented in Table 4.15.

Table 4.15 Pre and Post-Assessment Comparisons in Functional Relationships

Growing Caterpillar

Roy Belle Luke
Pre Post Pre Post Pre Post
Inverse form of equation 1 1 0 0 0 1
Symbolic representation 1 1 0 1 0 1
Verbal generalization 1 1 1 1 1 1
Finding a larger/any value 1 1* 1 1 0 1
*Roy was confused at first then the teacher prompted her he said 202
Caterpillar and Leaf
Roy Belle Luke
Pre Post Pre Post Pre Post
Inverse form of equation 0 1 0 0 0 0
Symbolic representation 0 1 0 1 0 1
Verbal generalization 1 - 0 1 0 1
Finding a larger/any value 1 1 1 1 0 1*
*Luke's calculations were corrected through teacher prompts
Penny Bank
Roy Belle Luke
Pre* Post Pre Post Pre Post
Symbolic representation - 1 0 1 0 0
Verbal generalization - 1 1 1 0 1
Finding a larger/any value - 1 1 1 0 0

*This problem was not included in Roy’s pre-assessment.

In determining a functional relationship and representing it through symbols, the
MC2 students demonstrated the standard algebraic thinking level by generalizing the
relationship and writing the function rule through an equation in all the problems.
Roy wrote the inverse forms of all the equations that he could write in the form of
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y = ax, while Belle did not include the inverse forms of the equations in the
problems including functional relationships. Considering the pre-assessment
outcomes, Roy demonstrated progress in writing symbolic representations in the
problems except the Growing Caterpillar Problem in which he had already written
equations in the pre-assessment. On the other hand, Belle demonstrated a significant
improvement by writing equations in any problem type, which she had been unable
to do in the pre-assessment (see Table 4.15).

As an MC1 student, Luke demonstrated a distinct performance in the post-
assessment, although he exhibited notable progress. The post-assessment
performance indicated that he could generalize functional relationships and represent
these relationships through equations in the form of y = ax, as different than the
pre-assessment performance. However, in formulating the relationship, he
sometimes exhibited confusion. For instance, in the Caterpillar and Leaf Problem,
he initially determined that the number of leaves required to feed 12 caterpillars was
72. Then the teacher helped him to correct his understanding, as follows:

Luke: If we multiply the number of caterpillars by 6, we find how many
leaves they eat.

Teacher: You mean, one caterpillar eats 6 leaves
Luke: No, three leaves

Teacher: You understood that one caterpillar eats three leaves, then you say
12 caterpillars eat 12 times 6, 72 leaves.

Luke: No, (he corrected his writings) 12 times three, 36 leaves.

Teacher: You can change it in symbol form as well.
As seen, the teacher's intervention was limited to a prompting question, which
emphasized the units. This allowed Luke to resolve his confusion regarding units.
After he could simplify the units by noting the number of leaves for a single
caterpillar, the verbal generalization and symbolic representations were accurately
conveyed as he correctly identified the variables and assigned the letters for each
(see Figure 4.40).
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Figure 4.40. Luke’s responses in the Caterpillar and Leaf Problem

Students demonstrated progress in representing a multiplicative relationship between
two unknown quantities in symbols (the Cord Problem). While none of them were
able to write an equation representing the relationship between two cord lengths
where one of them is five times the other in pre-assessment interviews, all of them

(except Sara) could write correct equations (see Table 4.16).

Table 4.16 Pre and Post-Assessment Comparisons in the Cord Problem

Cord Problem

Roy Belle Luke

Pre Post Pre Post Pre Post

The inverse form of the equation 0 1 0 1 0 1
Symbolic representation 0 1 0 1 0 1
Accurate drawing 1 1 0 0 0 0

Furthermore, these students demonstrated their ability to write the inverse forms of

equations by employing the division operation in the second one (see Figure 4.41).
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Figure 4.41. Written equations in the Cord Problem

Belle was able to write this inverse form without being asked to do so. Although
Belle and Luke did not write the inverse forms of the equations in other problems,
they showed their ability to think structurally in the context of similar relationships
in this problem (i.e., y = ax ). It was observed that the form of relationship, y =
ax, between either variables or unknown quantities, can be interpreted and
represented by the students in company with structural thinking after the teaching

episodes.

As seen in general, notable differences between the MC2 and MC1 students appeared
in the functional relationships in the form of y = ax + b that was represented in
the Penny Bank Problem. While Luke could not generalize and represent the

functional relationship between the amount of money and the number of days
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elapsed, both MC2 students could generalize the relationship by calculating the
larger values and writing the equations representing this relationship. It is noteworthy
that the MC2 students (Roy and Belle) employed parentheses to separate different
quantities in the functional relationship. Both Roy and Belle wrote the multiplication
of the number of days elapsed and three (the rate of change) in parentheses and, in
this way, separated the constant value (the initial amount of money) from this
multiplication such as (x.3) + 10 = y. This indicates that they were aware of the
meanings of different quantities, whether known or unknown, in the formulation. In
addition, the quantity in the parentheses shows another constructed quantity with
which they could perform further operations. This performance demonstrates a
parallelism between their mental operations in terms of units coordination and

writing equations.

434 Units Coordination

The post-assessment included two problems to assess the students’ units
coordination as well, the Crate and Cord problems. The Cord Problem included the
examination of both writing equations to represent the multiplicative relationship
between two unknowns and representing the unknown quantities in figures as

convenient to the multiplicative relationship.

In the pre-assessment of units coordination, both MC2 students could find the correct
answer of the Crate Problem by having some difficulty in keeping track of the
quantities. In the final assessment, they could find the correct answer again.
However, at this time, both students could accurately indicate each quantity and units
more flexibly. Luke, as an MC1 student, could not find the correct answer in both

assessments.

In the Cord Problem, Roy could draw the figures of cords by considering the
multiplicative relationship between each other. He began by drawing a longer cord

length, then partitioned the line into five equal parts. This resulted in a remainder
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part at the end of the longer line he previously drew, which he then erased. This
process allowed him to construct a small unit for the length of the shorter cord. On
the other hand, Belle and Luke did not draw the cords in a way that suited the given
multiplicative relationship. They drew the cords in random lengths as one is a little
bit longer than the other as they did in the pre-assessment. These findings indicate
that there has been no observable improvement in their units coordination in this

process.
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CHAPTER 5

DISCUSSION AND CONCLUSION

The goal of this study was to investigate fifth-grade students’ progress in algebraic
thinking with the potential and plausible interaction with their units coordination. To
accomplish this goal, | designed an HLT, with the support of several mathematics
educators, targeting the students’ generalizations and symbolic representations
(Kaput, 2008). The HLT also targeted functional thinking that provides an abundant
context for generalization (Blanton & Kaput, 2011). Hence, the HLT united the
generalization, a core aspect of algebraic reasoning (Kaput, 2008), and functional
thinking which is a dimension of algebraic thinking (Kieran, 2022) and a strand of
algebraic reasoning (Kaput et al., 2008). The analysis of teaching episodes and the
comparison of pre- and post-assessments of students in terms of their progress in
algebraic thinking revealed findings worthy of further discussion from both algebraic
thinking and units coordination perspectives in the context of mathematics

education.

In light of the findings, this chapter first discusses the main constraints the students
encountered and the main differences between the students in their progress in
algebraic thinking during the teaching episodes. It includes the students’
performances in generalizing and symbolizing the relationship between unknown
quantities or between variables, key thinking processes supporting the students’
algebraic reasoning in different tasks, and instructional decisions that would
influence further teaching processes. Then the conclusion section presents the overall
argument about the findings and mentions the theoretical and practical implications,
the limitations of the study, and the suggestions for further research.
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5.1  The Discussion of the Progress of Students in Algebraic Thinking

From the beginning of the teaching episodes, all students demonstrated a degree of
progress in algebraic thinking and reasoning by taking distinct paths. In Episode 1,
the students learned to compare unknown quantities through hypothetical values, use
letters for unknown quantities, and use comparison symbols, including equal signs,
to represent the relationship between unknown quantities. In Episode 2, they
continued to write equations by using literal symbols they assigned to the unknowns.
In addition, Episode 2 presented both additive and multiplicative relationships
between unknown quantities. After getting used to working with letters, tables, and
equations to represent the relationship between unknown quantities, since Episode
3, they began to interpret the functional relationship between variables through
contextual problems. They worked on many contextual problems involving either

they = axory = ax + b forms of linear relationship.

During the course of the teaching episodes, the MC2 and the MC1 students
demonstrated varying levels of proficiency in algebraic thinking, as evidenced by
their differing approaches to algebraic reasoning. Therefore, we observed both inter-
level and intra-level differences in addition to inter-level and intra-level
commonalities in their performances. In the beginning, the students started with a
notable disparity in their performance levels in specific processes, including
functional thinking, working with indeterminate quantities (algebraic thinking),
identifying functional relationships in the form of y = ax + b, and the way of
writing symbolic representations. However, the gap between MC2 students (i.e., an
intra-level disparity) was almost eliminated by the end of the study (see Figure 5.1).
Intra-level differences between MC2 students had projected into their swiftness and
comfort with algebraic tasks, comparing unknowns, expressing them in different
ways, and writing symbolic representations. On the other hand, the inter-level
differences between MC2 and MC1 students maintained in specific areas such as
generalizing the functional relationships in the formof y = ax + b and the way of

writing equations.
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Figure 5.1 Students’ progress from Episode 1 to Episode 6



Figure 5.1 demonstrates the path of progress of each student in different contexts
such as the comparison of unknown quantities which includes representing additive
and multiplicative relationships and generalizing functional relationships in different
forms. The colored letters R, B, S, and L represent each student’s performance points
in the episodes, and each episode was divided into two parts, representing the first
half and the second half of the episodes. Therefore, the progress of each student from
the first half to the second half in each episode can be observed through these colored
letters in Figure 5.1. In addition, the vertical difference between the points in the
same cell in Figure 5.1, shaded with different levels of darkness, represents the
differences in the students’ performances. For example, a student who answered
questions without help or with less need for teacher prompting and made fewer
mistakes in reaching the correct answer had a higher position in the same cell than
the other student who reached the same level of algebraic thinking. As shown in
Figure 5.1, MC2 students demonstrated the indicators of algebraic thinking at times
by writing equivalent expressions, taking fewer prompts, and using the indeterminate
quantities more explicitly at the end of Episode 2, which is a shorter period. In
addition, the MC1 students attended recursive thinking multiple times between
Episodes 3 and 6 while the MC2 students started at least from the contextual level of
algebraic thinking by formulating the function rule verbally or symbolically. The
MC2 students demonstrated their structural thinking in these episodes more clearly
by justifying their equations or reversing the equations. The progress points of
students in Figure 5.1 demonstrated that MC2 students’ progress in algebraic
thinking is more stable and faster across the contexts and different tasks while the

MCI1 students’ progress fluctuates between different contexts.

In the progress of the students in representing the functional relationships, there is a
fluctuating point in Episode 5 for each student. This demonstrated that the functional
relationship inthe formof y = ax + b (Episode 5) was a more challenging context
for each student than the types y = ax (Episodes 3 and 4) and y = x + b
(Episode 6). This was the context in Episode 5 where both MC1 students could not
achieve the generalization by themselves. They again tried to find the values through
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a recursive approach. The difficulty that the MC2 students had in Episode 5 did not
last much. They could figure out the relationship with little prompts while the MC1

students received more guidance from the teacher.

The following sections explain how the students progressed during the study and in
what aspects their progress demonstrated an interaction between their algebraic
thinking and units coordination. Therefore, four main headings emerged, indicating
specific patterns and landmarks that the students demonstrated as they progressed in
their algebraic thinking. These headings are interpreting the indeterminate quantities,
interpreting the multiplicative relationships between unknowns, functional thinking,

and the way of writing equations.

511 The differences in interpreting indeterminate quantities

At the beginning of the study, during Episodes 1 and 2, the students were confronted
for the first time with the challenge of interpreting the relationships between
indeterminate quantities. During this process, the students exhibited distinct patterns
of cognitive processes in interpreting indeterminate quantities and performing
operations with them. Furthermore, the intra-level differences were more apparent
during these episodes, particularly for the MC2 students, which declined towards the
end of the study. On the other hand, the discrepancy between the MC2 and MC1
students, in terms of inter-level differences, persisted to a greater extent in some

aspects.

From the beginning of the study, including the pre-assessment results, Roy
(advanced MC2) showed the most promising performance. In Episode 1, he was the
only student to think about writing the units for each quantity, whereas Belle (regular
MC2) did not pay attention to this as the MC1 students did. For example, when
comparing two pencils of unknown length, Roy asked whether he should write them
in cm. This represents his recognition of a quantity by assigning an appropriate unit
(Thompson, 1990). This could be related to his higher level of mental operations

with units as we had observed in his Units Coordination Interview. Consideration of
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the units of unknown lengths may be an indicator of emerging quantification, and
awareness of the nature of the quantity, which are important processes for
quantitative reasoning and units coordination (Olive & Caglayan, 2008; Thompson,
1990).

Giving hypothetical values to unknowns was another distinguishing characteristic
between students in terms of algebraic thinking and working with indeterminate
quantities. A notable difference between the MC1 and MC2 students was the MC1
students’ tendency to assign numerical values to unknown quantities to use with
comparison symbols in Episode 1. This demonstrated that MC1 students were not
ready to use indeterminate quantities as much as MC2 students in Episode 1, which
is an inevitable condition of algebraic thinking (Radford, 2010). From the
perspective of variable understanding (Blanton et al., 2017; Kiichnemann, 1981),
assigning numerical values to letters or unknowns is regarded as the lowest level in
variable understanding. Furthermore, Hackenberg and Lee (2015) observed that
relying on specific cases or numbers when representing a relationship was a behavior
of MC2 students. However, in this study, only MC1 students used specific numbers
to interpret the relationships between unknown quantities during the teaching
episodes in the context of a comparison of unknown quantities and writing them in
symbols. Although Belle (regular MC2) showed a tendency to assign numerical
values to unknowns in the pre-assessment interviews, she did not do so during the
teaching episodes. Therefore, it is possible that this is an impermanent tendency in
MC2 students, as seen in Hackenberg and Lee's (2015) study, which could disappear

with appropriate instructional decisions.

A further significant challenge encountered by all students in Episode 1 was the
performance of operations with unknowns. At this stage, the construction of tables
of values and the interpretation of the relationships between numerical values
resolved the situation. This way of thinking simplified the process by comparing or
performing operations with given hypothetical numerical values rather than
unknown quantities. This reduced the level of analyticity and algebraic thinking
(Radford, 2010; Smith & Thompson, 2008). Smith and Thompson (2008) posited
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that the comparison of numerical values or the identification of relationships between
specific numbers could only provide additional information to the given generality,
which includes a “little sense” (p.111) in terms of algebraic thinking. The
recommended approach in algebra is to identify relationships between quantities
where we do not know their “specific measure” (Smith & Thompson, 2008, p. 111).
The refraining from assigning numerical values to indeterminate quantities and the
practice of comparing unknown quantities by leaving them indeterminate offers an
opportunity for the development of further symbolic representations (Carraher et al.,
2008). The interpretation of the multiple scenarios through the table of numerical
values allowed the students to generalize what operations they needed to do with
given hypothetical values to show the relationship or comparison between the
unknowns. This provided an emergent understanding of variables and functions as

well.

5.1.2 The differences in interpreting the multiplicative and additive

relationships between unknowns

Students demonstrated a significant difficulty in representing the multiplicative
relationship between two unknown quantities (i.e., m = 4k) more than the additive
relationship between three unknowns (i.e., A + B = (). The challenge in
representing the multiplicative relationship between two unknowns was evident in
the processes of constructing a table of values not involving a ratio of 1: 4 and
erroneous symbolic equations. During these processes, the intra-level differences
were still apparent. There were notable student performances for discussing in terms

of both algebraic thinking and units coordination.

The students encountered representing a multiplicative relationship for the first time
in Episode 2 where one of two equal-length ropes was divided into four equal parts
and the relationship between the shorter and the longer ropes was investigated. In
representing the multiplicative relationship in the tables of values, only Roy

(advanced MC2) could construct a table in a manner consistent with the correct
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multiplicative relationship, such that one length is one-fourth of the other length.
Consistently, he could also write a correct equation in two forms (i.e., m = k X 4;
m + 4 = k). In their tabular representations, Belle (regular MC2) and Luke
(regular MC1) wrote the hypothetical values for the lengths of each rope in such a
way that the difference between the rope lengths is four, incorrectly indicating
additive reasoning. Sara (MC1) assigned arbitrary hypothetical values to the lengths
of the ropes to demonstrate that one was longer than the other. Her performance did
not demonstrate the ability to perform either an additive or a multiplicative
comparison. Giving numerical examples to unknowns is a common behavior among
MC2 students in other studies (e.g., Hackenberg & Lee, 2015; Hackenberg et al.,
2017). Here, both MC2 (Belle) and MC1 students gave numerical values to
unknowns at the beginning of Episode 2.

Ulrich (2016a) remarked that multiplicative comparison would not be swift until the
MC2 level and would not be assimilatory until the MC3 although it is attainable
starting from the MC1 level. Roy’s quick interpretation of the relationship and his
ability to inverse the relationships in writing equations seemed supported by the
characteristics of his multiplicative concepts. Researchers observed that MC2
students rarely wrote the inverse forms of the equations and could not use reciprocal
reasoning (e.g., Hackenberg & Lee, 2015; Hackenberg & Seving, 2022) while MC3
students could inverse the written equations representing the multiplicative
relationships. Therefore, Roy, as an advanced MC2, demonstrated a higher
performance than the students in the upper grades in the other studies (e.g.,
Hackenberg & Lee, 2015; Hackenberg & Seving, 2022). In addition, performing an
additive comparison is a less complex operation than performing a multiplicative
comparison in terms of units coordination (Ulrich, 2016a). Considering Belle’s
slightly lower performance in the Units Coordination Interview compared to Roy,
this performance in Episode 2 may also reflect the intra-level difference in their

mental operations.
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As one of the unknown quantities was constructed by equally partitioning the other
unknown quantity in the problem, it required disembedding and splitting operations
(Hackenberg, 2010; Steffe & Olive, 2010) to generate one unknown quantity by
using the other. These operations allow the students to handle more complex tasks
(Steffe & Olive, 2010). Roy’s identification of the multiplicative relationship might
be evidence of his splitting operation which is related to multiplication, division, and
ratio (Confrey & Smith, 1995). On the other hand, a reliance on additive thinking
and focusing on a hypothetical difference between the unknowns, instead of a ratio

between them, might represent Belle’s and Luke’s dominant operation of counting.

Belle (regular MC2) could interpret the relationship correctly after hearing Roy’s
(advanced MC2) explanation of his table and the teacher’s guiding questions.
Nevertheless, her equations continue to demonstrate the disparity between her
cognitive processes and those of Roy. She wrote an equation to represent the
relationship both additively and multiplicatively (e.g., k + k + k + k = m and
m = k X 4). The equation involving addition may demonstrate how she gradually
constructed the multiplicative relationship. On the other hand, Roy’s equations, the
inverse form of the equation (i.e., using both multiplication and division), displayed

his flexibility in identifying the multiplicative relationship between two unknowns.

The MCL1 students, Luke and Sara, faced significant challenges in maintaining their
progress. The intra-level differences between MC1 students in interpreting
multiplicative relationships were apparently more deterministic in this process.
Despite the teacher's provision of prompts and guidance, the students continued to
interpret the relationship in an additive manner, as evidenced by Luke's response:
"We add three times the length of the shorter rope to get the longer one." Following
the provision of robust guidance and directions, Luke (regular MC1) could write an
accurate equation while Sara (early MC1) experienced difficulty in formulating the
equation. On the other hand, in Episode 3, Luke continued to fill the table additively
in the first task by interpreting the relationship between the number of chairs and the

number of legs as follows: “If there is one chair it has four legs, if there are two
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chairs there are five legs. There is always a particular difference.” He thought that
one increase in the number of chairs corresponds to one increase in the number of
legs. Conversely and interestingly, Sara was able to identify the correct

multiplicative relationship between the variables since Episode 3.

Zwanch and Wilkins (2021) observed that more than half of the sixth and seventh
graders demonstrated MC1-level units coordination and additive reasoning rather
than multiplicative reasoning. This indicates that a focus on the difference between
two quantities is more common among middle school students as | observed in my
students at the beginning of Episode 2. Ulrich (2016a) indicated that additive or
multiplicative comparison tasks require the students to conceive the numbers, to be
compared, as distinct quantities, namely composite units. This is initially possible at
the TNS (i.e., MC1) and upper stages. Accordingly, the comparison tasks, which
included both additive and multiplicative unknowns in the teaching episodes, were
considered appropriate for the study participants, who had reached the lowest level
of multiplicative concepts (i.e., MC1). In subsequent episodes, the students
demonstrated notable advancement in their ability to identify and represent
multiplicative relationships. This also demonstrated the efficacy of the teaching

episodes.

5.13 The differences in functional thinking

Students in elementary grades can demonstrate recursive, covariational, or
correspondence approaches in interpreting the functional relationships between
covarying quantities (Blanton, Brizuela, et al., 2015; Blanton, Stephens, et al., 2015).
In the recursive pattern approach, the students can identify the change/variation in
only one quantity while in covariational thinking, they can describe the functional
relationship between two covarying quantities verbally (e.g., each chair makes four
more legs) (Blanton, Stephens, et al., 2017). In the correspondence approach, one
quantity is determined with respect to the other quantity (Confrey & Smith, 1994)

such as “multiplying the number of chairs by four gives the number of legs.
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Recursive thinking in functional relationships is seen as an inevitable step before
developing other functional thinking approaches, that is, covariation, and

correspondence (Blanton, Brizuela, et al., 2015).

Attending the recursive approach inhibits students from seeing the general in a
problem or pattern situation (Orton & Orton, 1999; Zazkis & Liljedahl, 2002). MC1
students, Sara and Luke, demonstrated a clear example of this process in different
tasks such as in determining the multiplicative relationship between two unknowns
(Episode 2) and in determining the functional relationships between variables
(Episodes 3-6). Because they relied on recursive thinking in interpreting the table of
values, they could not generalize the relationship between two unknown quantities
or two variables, especially at the beginning of teaching episodes. Many researchers
have observed the tendency of elementary and middle school students to engage in
recursive thinking (e.g., Blanton, Brizuela, et al., 2015; Lannin, 2005; Orton &
Orton, 1999; Zazkis & Liljedahl, 2002), as we also observed in the MC1 students in
this study. This created a constraint for them to find a larger value of a dependent
variable in the problems and generalize these relationships as conjectured. However,
the teacher's guidance and prompts helped them determine the functional
relationships between two variables in the form of y = ax in further problems towards

the end of teaching episodes.

A notable difference between MC2 and MC1 students during the teaching episodes
was MCI students’ reliance on recursive thinking. Similarly, Zwanch (2022a)
observed MC1 students’ reliance on recursive thinking in generalization tasks. This
may reflect the interaction between units coordination and algebraic thinking.
Focusing on the difference in only one variable in a pattern situation demonstrates a
lack of multiplicative thinking between two variables and a priority on recursive
reasoning (Orton & Orton, 1999; Zazkis & Liljedahl, 2002). Although all the
students in this study had difficulty in describing the relationship in tables and
symbolic expressions in the first multiplicative task in the teaching episodes
(Episode 2), the MC2 students began to think in a way of covariational or

correspondence approach in the further tasks including a functional relationship. The
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MC1 students continued recursive thinking and got additional support from the
teacher. Consequently, the ability to maintain recursive thinking at the outset of each
problem and to seek assistance from the teacher proved to be distinguishing factors
in the performance of MC1 students as compared to that of MC2 students in this
study. MC2 students were able to quickly adapt to the covariational and

correspondence thinking in different problems.

Relying on recursive thinking may demonstrate an inclination toward additive
reasoning more than multiplicative one. This is emphasized as an inclination of
students who are at a level lower than MC2 (Ulrich, 2016a; Zwanch & Wilkins,
2021). However, MC1 students (Luke and Sara) could also find the larger values in
pattern situations through teacher prompts and guidance. Especially, the contextual
problems including functional relationships between variables provided them to
formulate a general rule as a correspondence approach in and after Episode 3 where
they worked on the problems. This shows a similarity with the findings of Pinto and
Canadas (2021) who observed that most of the fifth graders demonstrated a
correspondence approach in finding the generality in problems while only a few of
them represented covariational thinking. They indicated that expressing the
covariational relationship is a more sophisticated and less common way than the
correspondence approach in which the fifth graders generalize the rule through the

operations they did on the numerical examples.

In short, the findings indicate that there is an interaction between units coordination
and students’ interpretation of multiplicative relationships between unknowns or
variables. This was evidenced by the MC1 students’ predominant use of recursive
thinking in the majority of the problems, in comparison to the MC2 students.
Moreover, the MC2 students demonstrated a capacity for functional thinking that
allowed them to adapt to different situations and contexts. In contrast, the MC1
students required more guidance from their teachers to adjust to novel situations and
contexts, as the importance of teachers’ prompts is emphasized in these cases
(Hackenberg & Sevinc, 2024). Nevertheless, the capacity of the MCL1 students to

generalize the multiplicative relationships between variables (y = ax) towards the
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end of the episodes and in the final evaluation demonstrated the success of the
teaching episodes in developing algebraic thinking. The interaction of units
coordination determined the path of learning of each student and created a disparity
in their performances during the episodes. However, this gap in algebraic thinking
narrowed towards the end of the study.

514 The differences in writing equations

The teaching episodes in this study revealed that the students’ level of units
coordination determined how much guidance they needed from the teacher during
the identification of the relationships between variables or unknown quantities rather
than during the writing of symbolic representations. For example, the MC1 students
exerted the majority of their effort in identifying the general rule in various problems.
In contrast, the MC2 students could determine the relationship between variables
more easily, with minimal prompting, or even without prompting. After determining
a specific relationship, both groups of students could easily transform this narrative
formula into an equation. For instance, in the fifth episode, Luke (early MC1)
demonstrated an understanding of the general rule by finding a larger value in the
Bank Account Problem through the teacher's prompting and the use of the table of
values. Subsequently, he was able to rapidly construct the symbolic equation by
assigning letters to the quantities involved in his operations in the table. Therefore,
the writing equation process was faster and more flexible for both groups of students

than generating the rule in words or arithmetic operations in the table.

As mentioned above, when the students were unable to determine a larger value in a
function table, indicating a lack of ability to generalize the relationship, they also
demonstrated difficulty in writing an equation. Therefore, the MC1 students had
more difficulty in writing equations than the MC2 students because they had more
difficulty in determining the relationships between the problem variables. On the
other hand, Zwanch (2022a) explained the interaction between students’ algebraic

thinking and their units coordination (i.e., number sequences) through the ability to
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write algebraic equations rather than the method that the students used in
generalizations. She observed the diverse methods of generalization employed by
students from different units coordination levels in response to a problem requiring
the identification of the number of squares on the border of a large square. In other
words, the method of generalization (i.e., how they find the number of squares
around a larger square) did not differ by students’ level of units coordination. On the
other hand, she observed a reduced ability to write symbolic representations as the
students’ level of units coordination decreased. For example, none of the MC1
students (TNS) and only a few of the advanced MC1 (aTNS) students could write a
symbolic representation. This conflicting case between this study and Zwanch’s
(2022a) study might be due to the different contexts addressed in the studies such as

problem types and the grade level of students.

In short, in this study, the students who had lower levels of mental operations with
units and composite units, such as not being able to keep track of the newly
constructed units and operate with them in further steps, similarly demonstrated
limitations in understanding the problem quantities or variables in generalizing the
relationship narratively or arithmetically. Eventually, this affected their performance
primarily in the identification and generalization of relationships, before writing an
equation representing these relationships. From the aforementioned points, it can be
posited that the interaction between the students’ multiplicative concepts and their
algebraic thinking may be limited to the process of identifying relationships between
problem variables or quantities, rather than directly to their symbolic representation

of the relationships.

How the students write their equations may be further evidence to support the claims
made in this study. For example, the contextual problems including the functional
relationships in the form of y = ax + b were the most challenging ones for the
students in the identification of the relationship between variables (e.g., the Birthday
Party 2 Problem, the Bank Account Problem, and the Sapling Problem). This was
evident in their overthinking in finding the larger values in function tables and the

amount of guidance requested from the teacher. The MC2 students’ equations in
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these problems included parentheses as different than the MC1 students (as seen Tin
able 4.16). Using parenthesis may demonstrate newly constructed composite units in
students’ formulations (Olive & Caglayan, 2008) and the steps in students’
mmindswhile they are formulating a rule (Radford, 2010). This might also represent
the students’ assimilation of each operation with problem quantities. For example,
the MC2 students quantified the amount of money increased after “a” month (i.e.,
(a x 15) + 30 in the Bank Account Problem) or the number of people seated on
the sides of “m” tables (i.e., (m x 2) + 2 in the Birthday Party 2 Problem) as
newly constructed units. Olive and Caglayan (2008) observed that some eighth
graders could appropriately write equations to represent a word problem including
multiple unknowns in which they used parenthesis and products to show a new
“composed quantity” (p. 11), a monetary value, formed by the production of two
different quantities such as the number of dimes and the value of one dime (e.g.,
0.1(n + 1)). This use of parenthesis seems to be similar to Roy's (advanced MC2)
and Belle’s (regular MC2) way of writing equations in the problems including the
form of y = ax + b. Hence this might represent the support of MC2 students’
construction and coordination of composite units in their structural and analytical

thinking during the generalizations of the relationships.

Using parentheses in their equations might be also the students’ justification which
is a significant element in generalizations (e.g., Ellis, 2007; Lannin, 2005). Using
parenthesis justifies how they constructed these relationships. For example, Belle’s
drawings in the Birthday Party 2 Problem when formulating how many people are
seated around any number of tables demonstrated within which steps she formulated
therule, (m x 2) + 2. Therefore, her using parenthesis in the symbolic expression
might be an explanation for supporting her symbolic generalization and the order of
her operations. Radford (2010) interprets the use of parentheses (or brackets) in
equations as a reflection of the story of the students’ thinking during the generation

of the formula by indicating:
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“...the formula is not an abstract symbolic calculating artefact but rather a
story that narrates, in a highly condensed manner, the students’ mathematical
experience.” (p.10)

Regarding this, the MC2 students’ mathematical experience with the function
contexts involving multiple operations with variables seemed more sophisticated
than the MC1 students. Their written formulas including parentheses supported this.
Although this form of function rules (i.e., y = ax + b) presented a challenge for
all the students in this study in terms of generalizing relationships, the MC1 students
had more difficulty by not being able to generalize these relationships by themselves.
Therefore, this distinction between the MC1 and MC2 students might be related to
their operations with units and quantities, as a mathematical experience during the
generalization of the functional relationships and representing the generalizations
through symbols. Therefore, this mathematical experience in generating a formula
Radford’s (2010) may rely on students’ understanding of quantities and the
relationships of quantities, which foster students’ understanding of functional
relationships (Ellis, 2011).

Given the above discussion, it is obvious that the way of writing a symbolic
expression and providing some justification for the generalizations is very important
besides just writing a symbolic representation. Researchers indicated that using
algebraic notation by itself does not mean thinking algebraically, and also the
absence of algebraic notation does not mean the lack of algebraic thinking (e.g.,
Radford, 2010; Zazkis & Liljedahl, 2002). Zazkis and Liljedahl (2002) observed that
there is an inconsistency between the students’ verbal expression of generality and
expressing it in symbolic notations. Forming an algebraic formula may be achieved
by some other means rather than employing generality. For example, students can
reach a formula through trial-and-error or repeated-guess while changing some of
the terms in the formula until getting the correct result. However, this generation of
a formula does not refer to “an analytical way of thinking about indeterminate

quantities” which is “the chief characteristic of algebraic thinking” (Radford, 2010,
p.9).
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5.2 Conclusion

The findings and the discussion of findings provided several insights about learning
and teaching algebraic thinking. In different steps of this study, from pre-assessment
to the last teaching episode, specific thinking patterns of students and some task
characteristics, on the one hand, created constraints for going further in algebraic
thinking, and on the other hand, supported the improvement of students’ algebraic
thinking. Therefore, one of the concluding remarks is about the interaction between
fifth-grade students’ progress in algebraic thinking and their units coordination levels
(i.e., multiplicative concepts). The second conclusion pertains to the characteristics
of the HLT and the actual learning process that facilitated the students’ algebraic
thinking by highlighting their units coordination such as the types and sequence of
learning tasks, the manner of teacher’s intervention and the interactions among

students.

The first conclusion was that there might be an indirect interaction between the
students' units coordination levels and their progress in algebraic thinking regarding
symbolic representations of the relationships. The most direct relationship was
between the students’ levels of units coordination and their generalization of
relationships where they found the larger values in a pattern situation or verbalized
the general rule by using indeterminate quantities. As they could identify the problem
quantities and operate with these quantities, where they construct new composite
units in multiplicative situations, their generalizations of the relationships became
more possible during teaching episodes. Otherwise, they needed the teacher’s
prompting, additional visual representations, or more numerical examples. The need
for these types of support was evident in numerous instances for the MC1 students
and in the novel problem situations (e.g., The Bank Account Problem 2) for the MC2
students. When the students could not recognize the problem quantities, or find the
larger values in a pattern situation, they were not able to create a symbolic
expression. Therefore, their units coordination was in an interaction more with their

ability to generalize the relationships than with their ability to write a symbolic
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representation in this learning process. As Radford (2010) asserted, an algebraic
formula embedded a narrative story of generalizations, as a product of algebraic
thinking. Therefore, only the generalizations that have a story in mind can be

transformed into an algebraic formula.

Zwanch (2022a) indicated an inconsistency between her observation of aTNS
(advanced MC1) students’ performance in generalizations and the students’
performances in an early algebra intervention study conducted by Blanton et al.
(2019). Zwanch (2022a) observed that aTNS students could achieve oral
generalization while they did not demonstrate sufficient symbolic representations.
On the other hand, Blanton et al. (2019) observed that both control and experimental
group students were more successful in representing the functional relationship by
using variable notation as compared to using a verbal description. This made them
reconsider the question of whether the students are ready for variable/symbolic
notations in primary years. This is assumed to be a consequence of instructional
interventions, which are also considered to be an important factor that can affect
students’ cognitive and algebraic performances (Blanton et al., 2019; Zwanch,
2022a). The findings of the current study are more consistent with the findings of
Blanton et al. (2019) in terms of the difficulty in students’ verbal generalizations.
The majority of the effort of the students appeared in their generalization process
rather than symbolic representations. This would again be explained by the influence
of units coordination on generalizing the relationships in a narrative form rather than

on the ability to write symbolic representations.

Furthermore, the MC2 students demonstrated key dimensions of algebraic thinking
in their different forms of written symbolic expressions (e.g., structural thinking) and
in their verbal generalizations which explicitly included the indeterminate quantities
and different forms of functional thinking. Therefore, their development in algebraic
thinking was more salient through their performance in generalizations and symbolic
representations than the MC1 students’ development. Therefore, another concluding

remark for the interaction between the students’ progress in algebraic thinking and
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their units coordination is structural thinking and the sophisticated expressions of the

generalizations of the MC2 students.

The second main conclusion is about the characteristics of the HLT that aimed to
improve the students’ algebraic thinking. It was seen that the contextual problems
providing a pattern situation helped the students’ understanding of problem variables
and the relationships. As suggested by early algebra researchers (e.g., Blanton et al.,
2011; Blanton, Stephens, et al., 2015; Carraher et al., 2008), using contextual
problems by incorporating different representations such as tables and visuals could
provide an effective learning environment for algebraic reasoning. For example, the
students in the current study, even in the pre-assessment interview, could identify the
relationships when there is a table of values or figural patterns such as in the Growing
Caterpillar problem. Therefore, a learning process starting with pattern situations and
incorporating the different representations such as figures and tables appeared to be
an effective aspect of the HLT for developing students’ algebraic thinking.
Therefore, the problems involving multiplicative relationships between unknown
quantities and disembedding operation, such as the first task in Episode 2, could be
moved to further episodes after the problems involving functional relationships in
the form of y =ax, given the difficulty the MC1 students had. When the students
with lower levels of unit coordination began the learning process with problems
involving composite units and fewer operations, they could have the scaffolding they
needed.

Furthermore, the students’ interaction with the tasks, the teacher, and their peers
enhanced their learning as remarked by other researchers (e.g., Cobb et al., 1993;
Hackenberg & Seving, 2024; Steffe & Olive, 2010; von Glasersfeld, 2001). For
example, the teacher’s request to invert the equations (i.e., y = 4xandx = y +
4) enhanced the students’ structural thinking, especially the MC2 students, and
allowed them to focus on the relationships between variables. This concluded that
when the students were able to create equations representing the specific

relationships, asking them to think about the different forms of the same relationships
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or to create equivalent expressions supported their analytical and structural thinking,
which are the dimensions of algebraic thinking. This, in turn, contributed to the
students’ algebraic reasoning in different problems and contexts. In addition, the
interaction between the students facilitated their learning during the episodes.
Verbalizing their thinking and sharing their answers to questions in words helped

their peers to learn and adapt to a similar way of thinking in further tasks.

Finally, we filled in the empty parts of the claim (i.e., parentheses) indicated on page
64 to provide a new perspective. In summary, this study concluded that a learning
process including [contextual problems starting with pattern situations, including
different representations, teacher prompting, and student interaction] develops
students’ algebraic thinking. When students [operate with the MC2], they can
[flexibly develop their algebraic thinking in different contexts such as generalizing
the multiplicative relationship between unknown quantities and representing
functional relationships in the form of y = ax + b]. Students who [operate with
the MC1] would progress in algebraic thinking when the learning activities start with

[pattern situations and include functional relationships in the form of y = ax ].

521 Implications

The investigation in this study resulted in both theoretical and practical implications.
The theoretical implication of this study provides a new perspective on the
interaction between the units coordination and algebraic thinking. The practical
implication of this study highlights new insights into the instructional decisions

about teaching algebra.

Regarding the first implication, this study offers a new way of looking at how units
coordination and algebraic reasoning interact, as a theoretical implication. It showed
that the fifth-grade students who demonstrated the MC1 and MC2 level of units
coordination could progress in algebraic thinking to the end of writing equations

representing the relationships between variables or between unknown quantities.
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They could accomplish many tasks by experiencing significant processes in
algebraic reasoning, such as identifying the problem variables, constructing tables of
values, generalizing the relationships between variables, and writing symbolic
expressions to represent these relationships. This could happen through some
differences in their actual learning trajectories. The characteristics of students’
mental operations in terms of units coordination explained the way they generalized,
the amount and the extent of the support they received from visual materials and

teacher prompts, and the types of tasks they could complete in these processes.

Furthermore, the analysis of students’ mental operations provided new insights into
the view of the students’ categorization in terms of units coordination. Although the
differences between fifth-grade students' mental operations were primarily based on
their multiplicative concepts, MC1 and MC2, there were also notable intra-level
differences between the students' mental operations within the same level (as seen in
section 4.1.1). This difference was similarly observed in students’ performance in
interpreting the relationships between variables or unknown quantities. In other
words, the discrepancy between MC2 students’ mental operations observed in the
pre-assessment interviews was also observed in their progress in algebraic thinking,
especially in the first tasks of each teaching episode. Consequently, the unit
coordination levels in terms of multiplicative concepts were not viewed as
comprising a set of distinct and rigid categories. Rather, they are considered as levels
(e.g., MC1, MC2, and MC3) within which different mental operations are still
involved at each level, and these operations may be in continual flux for each student.
Therefore, this within-level variation might have the potential to illustrate the
nuances of algebraic thinking and reasoning. This illustrates how units coordination
facilitates the processes and structures inherent to algebraic thinking.

This analysis also revealed practical implications for mathematics educators in
research and instruction incorporating units coordination and algebraic thinking.
First, the substantial progress of the MC1 and MC2 students from the pre-assessment
to post-assessment suggests that early algebra interventions based on functional

thinking in the form of y = ax, which involves only one operation with problem
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quantities, would be appropriate for incorporating the processes of algebraic
reasoning. Zwanch (2022a) remarked on the inconsistent findings about advanced
MCI students’ (aTNS, the terminology in her research) generalizations in her study
and elementary year students’ advancement in algebraic reasoning in the study of
Blanton et al. (2019). She suggested more research on how specific instructions
could affect the MC1 students’ performance on symbolic representations of
generalizations to clarify this inconsistency. Considering this, the current study
provides meaningful evidence and explanation by emphasizing that a learning
process starting with pattern situations and incorporating different representations
such as figures and tables would be a good start for developing the students’ algebraic
reasoning. Similarly, Kieran (2022) suggested implementing further research to
investigate the inconsistencies between verbal and symbolic generalizations. The
discussion of the patterns in students’ performance of generalizing the relationships
and transforming this relationship into a symbolic expression in the current study
provides a novel interpretation by incorporating the students’ abilities to operate with

units.

Furthermore, the findings of this study suggest that problems including patterns and
supporting materials for understanding the problem such as function tables, and
figures for growing patterns would allow students, even at the early levels of units
coordination, to gradually integrate algebraic reasoning, make sense of variables
with given data, and move to the use of symbolic representations, as observed in
other early algebra studies (e.g., Blanton et al., 2019; Carraher et al., 2006). The use
of supporting materials also highlights the importance of multiple representations in
algebraic reasoning (Brizuela & Ernest, 2008). Making transitions between different
representations (or notations) within a mathematical thinking system such as tables,
verbal expressions, and symbolic notations allows students to create meaningful
communication and construct relationships (Brenner et al., 1997; Brizuela & Ernest,
2008; Kaput, 1991).
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5.2.2 Limitations and recommendations for further research

This study involved an implementation of the HLT through six teaching episodes
over three weeks. The duration of each teaching episode ranged from 60 to 75
minutes. Teaching episodes were carried out in two different groups with two
students in each group. Students in each group had similar mental operations (e.g.,
advanced MC2 and regular MC2). In this way, there were two groups of students
attending teaching episodes. Regarding this implementation of the data collection
process, this study included some limitations and corresponding recommendations

for future research.

Although the main focus is to investigate the interaction between the students’ units
coordination levels and their progress in algebraic thinking through the intervention
of the HLT rather than investigate the intervention itself, the duration of teaching
episodes can still be a limitation. Observing an improvement in students’ algebraic
thinking and reasoning would be more trustworthy in a longer period of intervention.
For example, practicing different contexts by using a greater number of problems
and providing more extensive discussions for each learning goal would help students
make more progress in algebraic thinking, especially for the MC1 students. MC1
students could attend additional episodes to improve their generalization of
functional relationships in the form of y = ax + b because they had difficulty in
this context. In addition, it would extend the duration of the intervention. However,
the time frame in this study for conducting the HLT corresponds to two weeks of
mathematics lessons in a real classroom environment according to the Turkish
mathematics curriculum. Therefore, a three-week-long intervention in the current
HLT may be a logical and appropriate amount of time to spend in real practice.
Nevertheless, implementing longer-term teaching experiments, evaluating their
findings, and comparing them with the current ones may also be a suggestion for

future research.

The second limitation is the number of students who participated in this study. In
order to conduct a more in-depth analysis and to better observe each student's thought
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processes, it could be more appropriate to work with fewer students. On the other
hand, being able to observe students with more diverse mental operations in terms
of units coordination might provide more evidence about the interaction between
units coordination and progress in algebraic thinking. In addition, observing the same
situation in a classroom setting with more students and also from diverse
backgrounds might be another suggestion for further studies. The current study
involved a relatively homogeneous group. Therefore, providing a heterogeneous
group involving students with different levels of units coordination such as MC1,
MC2, and MC3 could provide substantial information about the interaction between
units coordination and the development of algebraic thinking. All these conditions
would ensure the practicality of the HLT and the findings. Implementing and testing
the HLT with appropriate revisions, such as moving the multiplicative task in
Episode 2 after the tasks involving functional relationships, in a real classroom

setting could be the next step in this study.

In addition to the previous recommendations for future research regarding the
implementation of the HLT with different students, a final recommendation is related
to the consideration of the intra-level differences between students at the same level
of units coordination. At the beginning of the study, | didn’t consider the intra-level
differences for selecting the students, and I did not conjecture that these intra-level
differences could be effective in the progress of algebraic thinking. However, the
findings demonstrated that the intra-level differences could play a role in the
development of students’ algebraic thinking. Therefore, new research should
consider the within-level differences in multiplicative concepts to discuss the
potential interaction between students’ units coordination and any addressed
mathematical performance. In this way, future learning sequences could be

developed by considering intra-level differences in students’ units coordination.
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katilmamama veya arastirmadan ayrilma durumunda &grencilerin akademik basanlan, okul ve
Ggretmenleriyle olan iliskileri etkilemeyecektir.

Calismada &grencilerden kimlik belirleyici hicbir bilgi istenmemektedir. Cevaplar
tamanuyla gizli tutulacak ve sadece arastirmacilar tarafindan degerlendirilecektir.

Uygulamalar, genel olarak kigisel rahatsizhk wverecek sorular ve durumlar
icermemektedir. Ancak, katlm sirasinda sorulardan ya da herhangi baska bir nedenden
gocugunuz kendisini rahatsiz hissederse cevaplama isini yarida birakip ¢ikmakta Szgiirdiir. Bu
durumda rahatsizhigin giderilmesi igin gereken yardim saglanacaktir. Cocugunuz calismaya
katildiktan sonra istedifi an vazgecebilir. Béyle bir durumda veri toplama aracim uygulayan
kisive, cahsmay tamamlamayacagin soylemesi yeterli olacaktir. Goriismelere katilmamak ya
da katildiktan sonra vazgecmek ¢ocugunuza highir sorumluluk getirmeyecektir.

Onay wvermeden once sormak istedifiniz herhangi bir konu wvarsa sormaktan
cekinmeyiniz. Calisma bittikten sonra bizlere telefon veya e-posta ile ulasarak soru sorabilir,
sonuglar hakkinda bilgi isteyebilirsiniz. Saygilanmzla,

Aragtirmaci : Fatma Acar

ﬂeﬂs.’ Buelundiginm simifi mgiisrarels GEPeRcist o
cirsrememseniininsnenssnenes s iR yitkarida agiklanen aragirmaya katlmasing izin veriyorun (Litfen

formu imzaladikian sonra gocugunuzla okula gen ginderinmz®).

imza: isim-Soyisim
Veli Adi-Soyadi :

Telefon Nurmarasi:

o /
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D. The HLT

EPISODE 1: Comparison of unknown quantities using equality and inequality

Learning Outcomes

e Express the comparison of unknown quantities verbally (e.g., it is
longer/heavier/older than the other)

e Attain hypothetical values for unknown quantities by using tables.
e Assing letters/symbols to represent an unknown quantity.

o Use letters/symbols to represent the comparison between unknown quantities
using equality and inequality.

e Understand the relational meaning of the equal sign.

Tasks and Their Structures

Task 1: Expressing the multiplicative relationship between two unknowns by using
symbolic expressions

Task 2: Expressing the additive relationship between three unknowns by using
symbolic expressions

Conjectures

a) MCI1 and MC2 students would compare the unknown quantities and express them
verbally at the beginning of tasks.

b) MCI1 and MC2 students would attain values for each unknown instead of using
literal symbols

c) MCI students would not understand how they represent the relationship using
symbols.

d) Roy or both MC2 students would use the assigned letters to represent the
comparison with symbols towards the end of the episode.

e) MCI students would continue to assign values to unknown quantities instead of
using symbols.

f) MCI1 and MC2 students would have difficulty in representing the comparison
between three unknowns on un/balanced scales

Instructional Moves Aligning with the Conjectures

e Conjecturesb—-c—e

-Assign multiple values for each unknown on a table and discuss the generalized
comparison

-Discuss the comparison symbols in expressing the numerical situations in
mathematical language (e.g., =, <, >)
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The HLT Table (Continued)

-Direct the student to use letters for unknowns by saying “let the length of yellow
pencil ‘a’ and the length of orange pencil ‘b°.”

e Conjecture f

-Use a table to assign values to three unknowns on an un/balanced scale and discuss
how to represent two unknown weights on one side in comparison to the other on the
other side.

EPISODE 2: Comparison of unknown quantities with additive and multiplicative
relationships using equality

Learning Outcomes

e  Recognize multiplicative and additive relationships between unknown quantities
through models.

o Create different scenarios by attaining hypothetical values to unknown quantities
having multiplicative or additive relationships by using tables.

e  Assing letters/symbols to represent an unknown quantity.

e  Express the multiplicative and additive relationship between unknown quantities
verbally.

e  Express the multiplicative and additive relationship between unknown quantities
using symbols.

e  Show the relational meaning of the equal sign.

Tasks and Their Structures

Task 1: Expressing the multiplicative relationship between two unknowns by using
symbolic expressions.

Task 2: Expressing the additive relationship between three unknowns by using
symbolic expressions

¢ Including contextual models and scenarios (Reality and level principle)

Including a comparison of two or more unknown quantities

Allowing using tables of hypothetical values for the unknowns

Including quantitative reasoning through the multiplicative and additive relationships
(Intertwinement principle)

Generalizing from hypothetical values to symbols (Level principle)

Conjectures

a) MC1 and MC2 students would express the additive and multiplicative
relationships verbally

b) MC1 students use the letters to represent the lengths, but they would not write the
equations

c) MC1 students would assign values for the length of ropes like 1 and 4 or 2 and 8.
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The HLT Table (Continued)

d) MC1 students would give numerical values to the unknowns and do operations,
but they would not represent the additive and multiplicative relationship using
symbolic expressions

e) MC2 students would express the additive and multiplicative relationship verbally
and symbolically by using letters, operations, and equality.

f) MC2 students would write different algebraic expressions representing the same
multiplicative relationship (e.g., 4 x a: it is the longest rope; 4 x r = longer rope; r +
r+r+r=longerrope;4xr=s;s/4=r).

Instructional Moves Aligning with the Conjectures

e Conjecturesa—b-c-d:
-Ask them to use letters and describe the same thing by using symbols

- Ask and discuss “Is there another way to represent the relationship (addition
/division/ multiplication/subtraction)?”

- Emphasize that we do not know the lengths. Ask and discuss the relationship between
the assigned numbers. For example, ask: “Which operation can you do to find one?”

e Conjecturee—f:

-Ask and discuss “How differently can you demonstrate the same relationship?”’

EPISODES 3-4: Representing functional relationships between variables in the form
ofy = ax

Learning Outcomes

¢ Identify the problem variables.
e Construct a function table.
¢ Identify and generalize the functional relationship in the table of data.

o Understand and express the functional relationship between two variables through
recursive, covariational, and correspondence approach

¢ Represent the functional relationship using equation and variable notation.

o Connection between multiple representation of functional relationship (verbal, table
and symbolic)

Tasks and Their Structures

3-1) The Chair and Legs Problem: The relationship between the number of chairs
and the number of legs (y = 4x)

3-2) The contexts like the first task: The number of dogs / people/ and the number
of legs/ ears /noses (e.g.,y = 2xandy = x)

4-1) The Saving Money Problem: The relationship between time and the total
amount of money (y = 5x)
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The HLT Table (Continued)

4-2) The Pool Problem: The relationship between the amount of water in a pool and
the elapsed time (y = 2x)

4-3) The Birthday Party 1 Problem: The relationship between the number of tables and
the number of people who are seated (y = 2x)

¢ Including contextual problems (Reality principle)
¢ Relationship between discrete quantities (Episode 3)
¢ Relationship between continuous quantities (Episode 4)

¢ Using function tables to represent the data before generalization (Level principle)

Conjectures

a) MC2 students would calculate any corresponding value in function tables.

b) MC1 students would not calculate the larger values in function tables because of
recursive thinking.

c) MC2 students would indicate the functional relationship verbally by using
indeterminate quantities and write equations by using symbols.

d) MC1 students would not indicate the functional relationship by using indeterminate
guantities and letters.

e) MC1 students would have difficulty understanding the problem about the
relationship between the number of tables and the number of people seated around
the tables

Instructional Moves Aligning with the Conjectures

e Conjecture a—c:

-Ask them to use different strategies and explain the relationship by using different
expressions and equations (Developing structural thinking)

e Conjecture b —d:

-Fill the table together on the board and ask about the relationship between two
variables. Indicate the names of each variable in discussing each case. Let the students
interpret the change in both variables simultaneously.

e Conjecture e:

-Ask them to draw models to represent each situation. Show one table, two tables, and
three tables on the board respectively, and ask them to interpret the situation.

EPISODES 5-6: Representing functional relationships between variables in the
formofy = ax+b

Learning Outcomes

¢ Identify the variables and the constant term in the problem

e Construct a function table.
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The HLT Table (Continued)

¢ Identify and generalize the functional relationship in the table of data.

¢ Understand and express the functional relationship between two variables through
recursive, covariational, and correspondence approach

o Represent the functional relationship using equation and variable notation.

¢ Connection between multiple representation of functional relationship (verbal, table
and symbolic)

Tasks and Their Structures

5-1) The Birthday Party 2 Problem: The relationship between the number of tables
and the number of people who are seated (y = 2x + 2)

5-2) The Bank Account Problem: The relationship between time and the total
amount of money saved in the account (y = 15x + 30)

6-1) The People and Hats Problem: The relationship between a person’s height
without a hat and withahat (y = x + 20)

6-2) The Credit Card Problem: The relationship between the initial amount
expenditure and total debt amount (y = x - 20)

6-3) The Sapling Problem: The relationship between the elapsed time (days) and the
height of the sapling. (y = 2x + 35)

¢ Including contextual problems (Reality principle)
¢ Relationship between discrete quantities (Episode 5)
¢ Relationship between continuous quantities (Episode 5-6)

e Using function tables to represent the data before generalization (Level
principle)

Conjectures

a) MC2 students would calculate any corresponding value in the function tables and
indicate the functional relationship verbally by using indeterminate quantities

b) MC1 students would not calculate the larger values in the function tables because
of ignoring the constant value and they would not indicate the functional relationship
by using indeterminate quantities and letters.

¢) MC1 and MC2 students would have difficulty in writing the equations representing
the functional relationship such as ignoring the constant value

d) MC1 students would have difficulty in writing the equations representing the
functional relationship in the form of y = x + a which is different than the
previous problems
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The HLT Table (Continued)

Instructional Moves Aligning with the Conjectures

o Conjectures a

-Ask them to explain the relationship by using different expressions and equations
(Developing structural thinking)

e Conjectures b

- Fill in the table together on the board and ask the relationship between two
variables. Let the students interpret the change in both variables simultaneously.

e Conjectures c

-Ask them to pay attention to how they fill in the table and what operation they did in
calculating one variable by using the value of another variable.

e Conjectures d

-Discuss the meaning of problem variables, pay attention to the table of values, and
highlight the covariation
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E. Post-Assessment Questions Including Sample Data of a Student

GENEL DEGERLENDIRME

1. Alievde 2 tirty] beslemektedir. Bu 2 tirtal
getirmektedir,

e

1n beslenmesi igin her giin 6 yaprak

b) Tirtil sayis1 ve beslenmesi gereken yaprak sayisi arasindaki iligkiyi nasil ifade edebilirsin?
Bu iligkiyi gésteren matematiksel ifadeler yazabilir misin?
Tirpit Sayistza
ax3

DIDDDD
a) Eger Ali’nin 12 tirtih olsayds, bu tirtillar: beslemek igin her giin kag yaprak getirmesi
gerekirdi?
L1y 2 X120 5 i
33, . :)/}/// /// / 3¢ h(,g’g;,; geliracs] 5-(,6/“,‘
3[ 0@ % S QJ'SI

2. Sinan’in telefonunun sarj kablosu belli bir uzunluktadir. Sinan’in sarj kablosu Zeynep’in
sarj kablosunun 5 kat1 uzunlugundadir.

a) Bu durumu gizerek gdsterebilir misin?
S
z

b) Bu durum igin bir esitlik yazabilir misin?
Sinan'in  Lablogwna: a
lejf\&‘r’n Icab(osmA:b be:Q

a/5:<b

¢) Bu durumu ifade eden bagka bir esitlik yazabilir misin?
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3. Asagidaki resimlerde bir tirtihin her aiin vilcut biytklglndeki degisim gorilmektedir.
Buna gére sorulan cevaplayiniz,

1.gln 2. giin 3.glin

a) Herhangi bir giin igin tirtilin boyunu nasil hesaplayabiliriz?
T ’4/'0,. boau7 +

Gewen 3‘75_—3 gXx2 2

b) 100. giin tirtilin boyu hesaplandiginda bagi harig kag parcas vardir?
100X2: 200

b) Tirtihin boyu ile boyunun 6lgiildiigii giin arasinda nasil bir iliski vardir? Esitlikle

gosterebilir misiniz?
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4. Ali’nin kumbarasinda 10 liras vardir. Ali her gtin kumbarasna 3 lira koyarak pars
biriktirmeye karar veriyor. Asagidaki sorulart bu bilgiye gore cevaplayiniz.
a) Ali’nin 8 giin sonra kumbarasinda kag lirasi olur? Nasil buldugunuzu gosteriniz.

8x3:2/, +lo,—3&

(9‘3)21 O30

b) Gegen giin sayisi ile kumbarada biriken para miktari arasindaki iligkiyi nasil ifade

edersiniz?
Gecon ginZ a

(axz)r1p.

¢) Gegen giin say1s1 ve kumbarada biriken para miktarini gosteren bir tablo gizer misiniz?

Giin Sayist ’ 2 3 & 10 X
?fffmpm 13 16 19 92 Lo (X.3)410

d) Giin sayisim x ile gosterdigimizde, kumbarada biriken paray1 nasil ifade edebiliriz? <

(X.3)+10

¢) Kumbarada biriken paray1 y ile, gegen giin sayisini X ile gosterdigimizde bu ikisi
arasindaki iligkiyi esitlik yazarak ifade edebilir misiniz?

(X )Hos= y
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S. Bir pakette 6 adet gikolata vardir. 8 paket gikolata ile bir kutu olugmaktadur. 5 kufu.ise Pir‘
koli yapmaktadir. Bir kolide kag tane gikolata oldugunu nastl bulursunuz? Nastl

bulacagimzi anlatan bir resim/model gizebilir misiniz?

 Coziimiliniizii kagit lizerinde gdsterip agiklar misimz?
[Coappol — bXe=uf br buns
X8
XG L€
e ?
200 6" éo/fJ(é? aféolafa( S ayls |

G halofn Seyist

{6 g\;’
¢ (9+4= l6+-2 , ~
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