
A KNOWLEDGE BASED PRODUCT LINE FOR SEMANTIC MODELING OFWEB SERVICE FAMILIES
A THESIS SUBMITTED TOTHE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCESOFMIDDLE EAST TECHNICAL UNIVERSITY

BY
UMUT ORHAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTSFORTHE DEGREE OF MASTER OF SCIENCEINCOMPUTER ENGINEERING
JANUARY 2009



Approval of the thesis�A KNOWLEDGE BASED PRODUCT LINE FOR SEMANTICMODELING OF WEB SERVICE FAMILIES�submitted by Umut Orhan in partial full�llment of the requirements for the degreeof Master of Science in Computer Engineering, Middle East TechnicalUniversity by,Prof. Dr. Canan ÖzgenDean,Graduate School of Natural and Applied SciencesProf. Dr. Müslim Bozyi§itHead of Department,Computer Engineering
Assoc. Prof. Dr. Ali H. Do§ruSupervisor,Department of Computer Engineering, METU
Examining Committee Members:Assoc. Prof. Dr. Ferda Nur AlpaslanDepartment of Computer Engineering, METUAssoc. Prof. Dr. Ali H. Do§ruDepartment of Computer Engineering, METUAssoc. Prof. Dr. Nihan Kesim ÇiçekliDepartment of Computer Engineering, METUAsst. Prof. Dr. P�nar �enkulDepartment of Computer Engineering, METUY�ld�ray KabakSRDC Ltd. Date:



I hereby declare that all information in this document has been obtainedand presented in accordance with academic rules and ethical conduct. Ialso declare that, as required by these rules and conduct, I have fully citedand referenced all material and results that are not original to this work.Name, Last name : Umut OrhanSignature :

iii



ABSTRACT
A KNOWLEDGE BASED PRODUCT LINE FOR SEMANTIC MODELING OF WEBSERVICE FAMILIESOrhan, UmutM.S., Department of Computer EngineeringSupervisor: Assoc. Prof. Dr. Ali H. Do§ruJanuary 2009, 118 pagesSome mechanisms to enable an e�ective transition from domain models to web service de-scriptions are developed. The introduced domain modeling support provides veri�cationand correction on the customization part. An automated mapping mechanism from the do-main model to web service ontologies is also developed. The proposed approach is based onFeature-Oriented Domain Analysis (FODA), Semantic Web technologies and ebXML Busi-ness Process Speci�cation Schema (ebBP).Major contributions of this work are the conceptualizations of a feature model for webservices and a novel approach for knowledge-based elicitation of domain-speci�c outcomesin order to allow designing and deploying services better aligned with dynamically changingbusiness goals, stakeholders' concerns and end-users' viewpoints. The main idea behindenabling a knowledge-based approach is to pursue automation and intelligence on re�ectingbusiness requirements into service descriptions via model transformations and automatedreasoning. The proposed reference variability model encloses the domain-speci�c knowledgeand is formalized by using Web Ontology Language (OWL). Adding formal semantics tofeature models allows us to perform automated analysis over them such as the veri�cationof model customizations through exploiting rule-based automated reasoners.This research was motivated due to the needs for achieving productivity gains, maintain-ability and better alignment of business requirements with technical capabilities in engineer-iv



ing service-oriented applications and systems.Keywords: Feature-Oriented Domain Analysis, Service-Oriented Computing, Software Prod-uct Lines, Semantic Web, ebBP, OWL, OWL-S, SWRL, JESS

v



ÖZ
B�LG� TABANLI ANLAMSAL A� SERV�S A�LES� MODEL� ÜRET�M BANDIOrhan, UmutYüksek Lisans, Bilgisayar Mühendisli§i BölümüTez Yöneticisi: Doç. Dr. Ali H. Do§ruOcak 2009, 118 sayfaAlan modellerinden, a§ servis tan�mlar�na geçi³ sa§layan etkin mekanizmalar geli³tirilmi³tir.Tan�t�lan alan modelleme deste§inin özelle³tirme k�sm�nda, do§rulama ve düzeltme yetenek-leri bulunmaktad�r. Ayr�ca, alan modelinden a§ servis ontolojilerine e³leme sa§layan otomatik-le³tirilmi³ bir mekanizma geli³tirilmi³tir. Önerilen yakla³�m özellik yönelimli alan analizi(FODA), anlamsal a§ ve ebXML i³ süreç belirleme ³emas� (ebBP) teknolojilerini temel al-maktad�r.Bu çal�³ma ile ortaya konulan temel kazan�mlar; a§ servisleri için haz�rlanan bir özellikmodeli ile alana özgü ürünlerden bilgi temelli ç�kar�mlar yap�lmas�n� ve böylece dinamiki³ hede�erine, pay sahipleri ve son kullan�c� görü³lerine daha iyi uyum gösteren servis-lerin tasarlanmas� ve konu³land�r�lmas�n� sa§layan bir yöntemdir. Bilgi temelli yakla³�m�narkas�nda yatan temel dü³ünce model dönü³ümleri ve ç�kar�mlar yaparak i³ gereksinimlerininservis tan�mlamalar�na yans�t�lmas� i³lemine otomasyon kazand�rmakt�r. �leri sürülen refer-ans degi³kenlik modeli alana özgü bilgiyi içermekte olup a§ ontoloji dili (OWL) ile biçim-lendirilmi³tir. Özellik modellerine kazand�r�lan bu anlamsal yap�lar sayesinde model uyarla-malar�n�n do§rulanmas� gibi otomatikle³mi³ analizlerin kural tabanl� ç�kar�m motorlar� ilegerçekle³tirilmesi sa§lanm�³t�r.Bu ara³t�rma çal�³mas�n�n ç�k�³ noktalar�n� servis yönelimli uygulama ve sistemlerinmühendisli§inde ihtiyaç duyulan üretkenlik kazan�mlar� ve devaml�l�§�n sa§lanmas� ile i³vi



gereksinimleri ve teknik yeterlilikler aras�ndaki uyumun iyile³tirilmesi konular� olu³turmak-tad�r.Anahtar Kelimeler: Özellik Yönelimli Alan Analizi, Servis Yönelimli Hesaplama, Yaz�l�mÜretim Bandlar�, Anlamsal A§, ebBP, OWL, OWL-S, SWRL, JESS

vii



ACKNOWLEDGMENTS
First of all, I am honored to express my sincere gratitude and appreciation to Assoc. Prof.Dr. Ali H. Do§ru for his encouragement and support throughout this study.I would also like to convey thanks to jury members and Assoc. Prof. Dr. Halit O§uztüzünfor their valuable comments on this thesis.I would like to express my thanks to my friends Gökdeniz Karada§, Mehmet Olduz,Mustafa Yüksel and Özgür Gülderen for their help and support during my graduate study.I am deeply grateful to my family for their love and support. Without them, this workcould not have been completed.Finally, I am also grateful to my dear friend Simge Çetintoprak for her love, continuedmotivating support and cheerful presence.

viii



To my family...

ix



TABLE OF CONTENTS
ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ivÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viiiDEDICATON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ixTABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xLIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiiiLIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xivLIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviiCHAPTER1 INTRODUCTION 12 BACKGROUND ON ENABLING TECHNOLOGIES AND STANDARDS 62.1 Product Line Engineering and Software Product Lines . . . . . . . . . . . 62.1.1 Software Product Line Process . . . . . . . . . . . . . . . . . . . . . 92.1.2 Domain Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . 102.1.3 Application Engineering . . . . . . . . . . . . . . . . . . . . . . . . . 132.1.4 Software Factory Automation (SFA) . . . . . . . . . . . . . . . . . . 142.2 Service-Oriented Architecture (SOA) . . . . . . . . . . . . . . . . . . . . . 172.2.1 Web Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202.2.2 Service Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . 212.2.3 ebXML Business Process Speci�cation Schema . . . . . . . . . . . . 232.2.4 Semantic Interoperability . . . . . . . . . . . . . . . . . . . . . . . . 252.2.5 Historical Origins and Motivating Needs Behind SOA . . . . . . . . . 262.3 Semantic Web Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . 272.3.1 Resource Description Framework (RDF) . . . . . . . . . . . . . . . . 29x



2.3.2 Web Ontology Language (OWL) . . . . . . . . . . . . . . . . . . . . 312.3.3 Description Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332.3.4 Protégé Ontology Editor and Knowledge Acquisition System . . . . . 342.3.5 OWL-S: Semantic Markup for Web Services . . . . . . . . . . . . . . 352.3.6 Semantic Web Rule Language (SWRL) and JESS . . . . . . . . . . . 373 ENHANCING DOMAIN KNOWLEDGE BASE WITH BUSINESS PROCESSDEFINITIONS 403.1 Core Components of the ebXML Business Process Speci�cation Schema . 413.1.1 Business Collaborations and Choreography . . . . . . . . . . . . . . . 413.1.2 Business Transactions, Transaction Activities and Business Docu-ment Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433.1.3 Business Signals and Exceptions . . . . . . . . . . . . . . . . . . . . 463.2 The ebBP Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463.2.2 Overview of the ebBP Editor Components . . . . . . . . . . . . . . . 483.3 Mapping Business Collaborations to Web Service Process Models . . . . . 533.3.1 Motivation Behind the Transformation Method . . . . . . . . . . . . 533.3.2 ebBP to OWL-S Mapping . . . . . . . . . . . . . . . . . . . . . . . . 553.3.3 Limitations of the Transformation Method . . . . . . . . . . . . . . . 624 ADDING FORMAL SEMANTICS AND REASONING SUPPORT TO FEA-TURE MODELS 634.1 Feature Model Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644.2 Feature Model Editor and Reasoner . . . . . . . . . . . . . . . . . . . . . . 684.2.1 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694.2.2 User Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 704.2.3 Veri�cation and Correction . . . . . . . . . . . . . . . . . . . . . . . 754.2.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 785 EXPLOITING SEMANTICALLY ENRICHED FEATURE MODELS FOR SER-VICE ONTOLOGY DEVELOPMENT 795.1 A Variability Modeling Approach for Web Service Semantics . . . . . . . . 805.2 An Example Walkthrough with the GENoDL . . . . . . . . . . . . . . . . 846 RELATED WORK 87xi



7 CONCLUSION AND FUTURE WORK 897.1 Conducted Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 897.2 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 907.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92A FEATURE MODEL ONTOLOGY 100B SCHEMA DEFINITIONS OF THE CORE EBBP COMPONENTS 111

xii



LIST OF TABLES
TABLESTable 2.1 Comparison between software engineering and domain engineering. Adaptedfrom Czarnecki, "Generative Programming", 1998 [16] . . . . . . . . . . 11Table 2.2 Terminology of domain-speci�c kits . . . . . . . . . . . . . . . . . . . . . 16Table 3.1 Business Transaction to Simple Process . . . . . . . . . . . . . . . . . . 58Table 3.2 DocumentEnvelope to Input (or Output) . . . . . . . . . . . . . . . . . . 58Table 3.3 Business Transaction Activity to Atomic Process . . . . . . . . . . . . . 59Table 3.4 Complex Business Transaction Activity to Composite Process . . . . . . 60Table 3.5 Business Collaboration to Service . . . . . . . . . . . . . . . . . . . . . . 60Table 3.6 Choreography to Service Process Model . . . . . . . . . . . . . . . . . . 62Table 5.1 Features to OWL-S parameters . . . . . . . . . . . . . . . . . . . . . . . 83

xiii



LIST OF FIGURES
FIGURESFigure 1.1 Product line approach for semantic modeling of web service families . . 4Figure 2.1 Cost analysis of a software project with or without SPL approach . . . 8Figure 2.2 An overview of SPL's two-lifecycle process model. Adapted from vander Linden et al "Software Product Lines in Action: The Best IndustrialPractice in Product Line Engineering", 2007 [75] . . . . . . . . . . . . 9Figure 2.3 A common visual notation for some relationships among features . . . 12Figure 2.4 A sample and abbreviated feature diagram of the concept car . . . . . 13Figure 2.5 A sample application engineering process described by SEI . . . . . . . 14Figure 2.6 Overview of the software factory automation approach. Adapted fromAltintas, "Feature Based Software Asset Modeling with Domain Speci�cKits", 2007 [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Figure 2.7 SOA actors in action . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18Figure 2.8 Web services technology stack . . . . . . . . . . . . . . . . . . . . . . . 20Figure 2.9 Service development life-cycle hierarchy . . . . . . . . . . . . . . . . . . 22Figure 2.10 Representation of the "Drop Ship" multi-party collaboration with BPMNand the de�nition of a QueryResponse business transaction in ebBPformat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25Figure 2.11 An example RDF statements which means that John Doe is the creatorof the resource http://www.metu.edu.tr/ John. Property "creator"refers to Dublin Core De�nition Standard. RDF statement is given intwo di�erent representations; directed labeled graph and XML notation. 30Figure 2.12 A screenshot from the OWL Classes view of the Protégé Ontology Editor 35Figure 2.13 Upper ontology of services . . . . . . . . . . . . . . . . . . . . . . . . . 36xiv



Figure 3.1 A screenshot of the ebBP Editor . . . . . . . . . . . . . . . . . . . . . . 48Figure 3.2 XmlStylist - Main Screen . . . . . . . . . . . . . . . . . . . . . . . . . . 49Figure 3.3 XmlStylist - Select Root Dialog . . . . . . . . . . . . . . . . . . . . . . 50Figure 3.4 XmlStylist warns the domain expert about an invalid Business Collab-oration instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52Figure 3.5 Graphical Components of the ebBP Editor . . . . . . . . . . . . . . . . 53Figure 3.6 Bridging the gap between domain and application engineering in de-veloping service-oriented system . . . . . . . . . . . . . . . . . . . . . . 55Figure 3.7 Overview of the mapping speci�cation . . . . . . . . . . . . . . . . . . 56Figure 4.1 Classes and properties of the feature model ontology . . . . . . . . . . 65Figure 4.2 Classes of the feature model ontology with encapsulated SWRL ontology 67Figure 4.3 Class diagram of the GENoDL . . . . . . . . . . . . . . . . . . . . . . . 69Figure 4.4 A screenshot from the GENoDL . . . . . . . . . . . . . . . . . . . . . . 70Figure 4.5 Menu items of the GENoDL . . . . . . . . . . . . . . . . . . . . . . . . 71Figure 4.6 The toolbar of the Feature Model Editor . . . . . . . . . . . . . . . . . 71Figure 4.7 Inserting a new feature to the model . . . . . . . . . . . . . . . . . . . 72Figure 4.8 A feature can be edited or deleted by double clicking on it . . . . . . . 72Figure 4.9 Popup menu for editing properties of a feature . . . . . . . . . . . . . . 73Figure 4.10 Popup menu for editing feature types . . . . . . . . . . . . . . . . . . . 74Figure 4.11 Integrating knowledge base with reasoning engine through Protégé-SWRL adapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76Figure 4.12 An inferred correction for the inconsistent feature model . . . . . . . . 77Figure 4.13 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 78Figure 5.1 A reference variability model for semantic modeling of web service fam-ilies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83Figure 5.2 ebBP representation for BC-ID-DemandSurrenderOfDriverLicense . . 85Figure 5.3 Service variability model is customized service feature model with theinformation extracted from BC-ID-DemandSurrenderOfDriverLicense. . 86Figure 5.4 A part of the BC-ID-DemandSurrenderOfDriverLicense Service Ontol-ogy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86Figure B.1 Details of the Document Envelope structure . . . . . . . . . . . . . . . 111Figure B.2 ebBP de�nition for logical Business Documents . . . . . . . . . . . . . 112xv



Figure B.3 High level view of the Business Transaction . . . . . . . . . . . . . . . . 113Figure B.4 Graphical view of the schema of the Business Transaction Activity . . . 114Figure B.5 Schema de�nition of the Complex Business Transaction Activity . . . . 115Figure B.6 Model view of the Receipt Acknowledgement signal . . . . . . . . . . . 116Figure B.7 Schema of the exception elements found in ebBP documents . . . . . . 117Figure B.8 Schema de�nition of the Business Collaboration . . . . . . . . . . . . . 118

xvi



LIST OF ABBREVIATIONS
AML Asset Modeling LanguageAMM Asset Meta ModelBPEL Business Process Execution Lan-guageBPM Business Process ManagementBPMN Business Process Modeling Nota-tionCOM Component Object ModelCORBA Common Object Request Bro-ker ArchitectureDL Description LogicsDSA Domain-Speci�c ArtifactDSAT Domain-Speci�c Artifact TypeDSE Domain-Speci�c EngineDSK Domain-Speci�c KitDSL Domain-Speci�c LanguageDST Domain-Speci�c ToolsetebBP ebXML Business Process Speci�-cation SchemaebXML Electronic Business using XMLFODA Feature-Oriented Domain Analy-sisFOL First-Order LogicFPML Fundamental Business Process Mod-eling LanguageGSM Global System for Mobile Com-municationsGUI Graphical User Interface

HTML HyperText Markup LanguageHTTP Hyper Text Transfer ProtocolJESS The Rule Engine for the Java Plat-formOASIS Organization for the Advancementof Structured Information Stan-dardsOWL Web Ontology LanguagePLC Programmable Logic ControllerREST Representational State TransferPSTN Public Switched Telephone Net-workRDF Resource Description FrameworkRDFS Resource Description FrameworkSchemaSEI Software Engineering InstituteSFA Software Factory AutomationSOA Service-Oriented ArchitectureSOAP Simple Object Access ProtocolSPL Software Product LineUDDI Universal Description, Discoveryand IntegrationUML Uni�ed Modeling LanguageURI Uniform Resource Identi�erWSFL Web Service Flow LanguageW3C TheWorld Wide Web ConsortiumWS-CDL Web Services Choreography De-scription Languagexvii



WSDL Web Service De�nition LanguageXML The Extensible Markup LanguageXPath The XML Path LanguageXSD XML Schema De�nitionXSL The Extensible Stylesheet LanguageFamilyXSLT XSL Transformations

xviii



CHAPTER 1INTRODUCTION
In today's highly competitive and demanding digital world of business, organizations shouldbe more agile, self-sustainable and responsive to the changes in order to guarantee theirsurvival. They should be able to adapt to rapid changes and innovations while reducingintegration and interoperability costs. Unless organizations produce a decrease in time tomarket for new innovations with low development and maintenance costs, it would not bepossible for them to obtain a sustainable competitive edge in their business.Rapid adaptation to changing business parameters and technical innovation necessitateboosting software assets reuse and achieve productivity gains in system and service devel-opment. For example, contemporary challenges of telecom service providers can be listed asfollows [46];

• How to facilitate mass development of services with reduced costs
• How to simplify supply management and mass partnering
• How to ensure reuse of assets in the futureOn the other hand, today's service-oriented system realizations are often a direct re-sult of wrapping the underlying legacy business logic as web services. Developers usuallymake applications and services once provided at the local level available for further use bymeans of web services. This process leads web services to be developed from the ground upi.e. service descriptions and accompanying data models have been already developed in anapplication-speci�c manner before exposed as web services. In order to enable automatedservice discovery and invocation, web service descriptions are annotated with semantic con-structs and service process models built on top of the existing web service interfaces in orderto describe how software agents will interact with the services.1



As a matter of fact, this development process cannot fully exploit service-orientation interms of business agility because, web service interfaces were created without consideringthe corresponding business requirements or the way in which the services might be used.However, moving to a more dynamic and competitive business ecosystem requires thinkingand working in the opposite direction.Recently, Business Process Management (BPM) and Service-Oriented Computing (SOC)combination is being advocated as a possible solution for setting proper level of service ab-stractions and reaching the desired agility and responsiveness to changing business param-eters. In general, BPM provides the required metadata to be directly consumed by SOCmeanwhile SOC provides BPM with an agile IT framework where changes in business pa-rameters can be re�ected dynamically. In BPM-SOC convergence, services are identi�edand described in terms of business processes. Service-Oriented Modeling and Architecture(SOMA) [5] provides a possible process speci�cation for developing services from businessprocess models.Unfortunately, in order to enable the anticipated BPM-SOC convergence the knowledgeof the domain in which services will reside should be �rst transferred from domain expertsto developers. This necessitates common means for shared vocabulary and understanding ofthe business requirements which can ideally be achieved by using ontologies. Being a seman-tic model, a service ontology describes capabilities and requirements of a web service in anunambiguous and machine-interpretable form. Hence, it is important to provide developerswith a semantic model of a web service during implementation, because agreed meaning andintended use of terms can be less ambiguously realized through exploiting formal de�nitionsof concepts, entities, relationships and attributes. Moreover, during web service discovery,composition, mediation and monitoring, it is possible to employ automated reasoning meth-ods whenever service ontologies are enabled. Products can be more rapidly customized anddeployed by enabling the build-by-integration paradigm which encourage matching productcapabilities with existing services. Nevertheless, ontology creation is an error-prone andtime-consuming task [67] and requires extensive logic programming background or use ofdedicated tools which domain experts may not be familiar with.Accordingly, the motivating needs behind this work can be summarized as follows;
• Bridging the gap between business requirements and accompanying service models [58]and re�ecting changes in business parameters to service realizations more rapidly
• Localizing, representing and disseminating the domain knowledge in a common way2



that domain experts can share the knowledge with developers more easily
• Increasing the level of engineering in service-oriented computing by managing the dif-ferences and similarities across multiple service domains, fostering reuse and applyinggenerative methodsIn this respect, we exploit the concept of service ontology as a bridge between businessprocess models and service interface implementations. By localizing the domain knowledge interms of service ontologies, we provide the service developer with the necessary requirementsof the services to be developed. Moreover, we automate the service ontology creation tosome extent. With our automated approach, changes in the business parameters can bemore rapidly re�ected to service realizations. In addition, we enable the Feature-OrientedDomain Analysis (FODA) [44] to manage di�erences and similarities across multiple servicede�nitions. By this way, we produce not only a single service ontology but a set of relatedservice ontologies. It is desirable to generate the service ontologies automatically especiallywhen we consider the complex and time-consuming nature of the ontology creation tasks. Onthe other hand, a service ontology may enable automatic discovery, execution, compositionand interoperation of available services. Instead of developing each service from scratch,existing and semantically matching services can be discovered from service registries. Highlevel representation of our product line is shown in the left side of the Figure 1.1. We providethe domain experts with the necessary environment in order to de�ne business process modelsand feature models. These de�ned domain engineering outcomes are then mapped intocorresponding service de�nitions. Service interface development and dynamic discovery ofservices based on their resulting ontological classi�cations however, are not considered withinthe scope of this work.Major contributions of this research can be listed as follows;
• We enabled the ebBP Editor [64] tool which had been previously developed within thescope of a research project funded by the European Commission. The domain expertcan model business processes in Business Process Modeling Notation (BPMN) [11] andthe tool then exports these models to accompanying ebBP de�nitions.
• We developed an OWL [55] ontology to represent feature models. We also developeda set of SWRL [72] rules as axioms holding for relations among features. Using thisontology de�nition lead us to perform automated reasoning operations over the fea-ture models. The veri�cation and correction of the feature model customizations areperformed by enabling the JESS [39] which is a rule-based automated reasoner.3



Figure 1.1: Product line approach for semantic modeling of web service families
• For the model customization part, we de�ned a sample feature model for web services.The variability points of this feature model were acquired from the ebBP and OWL-Sspeci�cations as well as from the previous studies.
• We developed a feature model editor in order to facilitate visual development of featuremodels. The tool imports and exports feature models formally de�ned by our featuremodel ontology.
• We de�ned model transformation rules from ebBP instances and feature models toaccompanying service models. Generated service models are conceptualized as OWL-S[56] ontologies.Main idea of enabling a semantic-based approach is to pursue automation and intelligencevia reasoning on a domain-speci�c knowledge base about prede�ned concepts such as services.A service ontology is a conceptualization of the service speci�cations and is independent fromthe service interface implementation. A service based on ontology can be implemented bydi�erent service interfaces. Service ontology can be generated via service requirements auto-4



matically extracted from domain engineering outcomes such as feature models and businesswork�ows. Service requirements can be identi�ed in two broad categories; functional andnonfunctional requirements such as quality of service (QoS). Basically, functional require-ments identify what a system does and nonfunctional requirements describe how well thosefunctions are accomplished. Several sub-categories like integrity, dependability, performance,security and safety can be listed under QoS requirements.A standard business process speci�cation notation such as ebBP de�nes (intra or inter)organizational business scenarios through specifying roles, collaborations, transactions andactivities. These transactions are envisioned to be ful�lled by �ne-grained web services.However, ebBP does not mandate any implementation technology speci�cally. Thus, inorder to map ebBP constructs to service concepts we need further customizations beyondthe ebBP especially for non-functional requirements of web services. In our approach, weemploy feature modeling method to overcome these hindrances in a more business and end-user centric fashion. We provide a feature model for representing service concepts as features.Each feature is speci�ed by the domain expert and is automatically mapped to its machine-readable semantic de�nition. Feature modeling paves the way for systematic reusability inde�ning services. A family of services can be easily de�ned through customizing features ina service feature model.For automatic generation of a service ontology, the information related with the servicesuch as input, output, precondition and e�ect is extracted from the business process and non-functional speci�cations such as QoS are acquired from the accompanying feature model. Thecollected information is then compiled into a service ontology which is ready to be realizedas an implemented web service or be used when discovering existing services from a serviceregistry. The generated service ontology conforms to OWL-S notation. In the scope of thisresearch, veri�cation of customizations and other reasoning activities are conducted usingJESS rule engine and Protégé-OWL [60] is applied to build semantic web concepts.This thesis is organized as follows; Chapter 2 summarizes the background on the enablingtechnologies and standards. In Chapter 3, the building blocks of the ebBP, the ebBP editortool and the transformation rules from ebBP to OWL-S are given. We introduce our featuremodel ontology and feature model editor in Chapter 4. In Chapter 5, we combine feature-oriented domain analysis with our transformation method in order to generate families ofservice ontologies. In Chapter 6, the related work is presented on semantically enrichedfeature modeling and service ontology generation methods. Finally, Chapter 7 concludesthis thesis and presents the future work. 5



CHAPTER 2BACKGROUND ON ENABLINGTECHNOLOGIES AND STANDARDS
2.1 Product Line Engineering and Software Product LinesThe popularity of the research on the software reuse did not show any symptoms of decline inacademia and industry over years. Especially after the introduction of the Software ProductLine (SPL) paradigm, the software industry witnessed the evolution of ad-hoc reuse practicesinto a more systematic approach. Keeping in mind the business and quality goals, SPLextends the boundaries of software reuse and exploits a broad spectrum of reusable assetsspanning from program libraries and components to architecture blue-prints, test cases andeven services. The key objective of this paradigm is to industrialize software developmentsimilar to other industries such as automotive and aviation in order to produce a number ofrelative systems that ful�ll business requirements and end-user expectations in a prescribedway. The SPL paradigm promises to achieve productivity gains, reduce product developmentand maintenance costs, decrease time-to-market and increase product quality [13].Major interest area of product line engineering is developing not just only one product buta family of related products in a speci�c domain. Consider a car entertainment system whichis typically driven by the automobile vendors and the delivery company. Each client has itsown distinct requirements than another has. Being the system vendor, an organization shoulddeal with those variations and probably cannot a�ord to develop a unique system every timefrom scratch. Instead, the organization should reuse its previously implemented artifacts andexisting assets as much as it is possible. This apparent industrial need leverages an importantconcern at the hearth of software engineering; how to organize and manage the reuse insoftware development to reduce the development cost and time-to-market. Another example of6



product line engineering will be found in today's mobile phone business where in nearly everythree weeks a new type of phone is introduced as a result of the incremental developmentover the previous ones. This picture leads on the fact that if an organization have a softwareproduct line which helps it to come up with new releases or new combinations of features (forexample mobile phones with or without a digital camera) then the organization will increaseits productivity. Again, achieving higher levels of productivity is one of the main objectiveswhich product lines are often used for. In today's highly competitive and demanding digitalworld of business; organizations should be more agile, self-sustainable and responsive to thechanges in order to guarantee their survival. Unless organizations release their high qualityproducts quickly to market with low development and maintenance costs, it would not bepossible for them to obtain and maintain a competitive edge in their business.Main characteristics of product line engineering can be listed as follows;
• The primary reason behind using product lines is to make the product developmentactivities cheaper, faster and better aligned with business needs based on the customerportfolio.
• Product line engineering is a strategic choice for a long term view and requires upfrontinvestment and discipline.
• The scope of the domain should be well de�ned. It determines the what the productline is capable of producing, puts the focus on the business case and controls theinvestments on development.
• The domain should stay stable. If the domain is changing frequently then keep on trackwith those changes will be tedious and the upfront investment for domain engineeringwill not be enough or it will be wasted.
• Successful product line engineering needs organizational change, business process changeand technology change [75]. Only excellence in technical issues will not protect productline architectures from failure if they are not e�ectively adopted by the organization.
• Products derived as the result of the SPL process pertain to a market strategy andapplication domain, share a common architecture and built by reusable components.Basically, a software product line derives a reuse strategy that captures commonalitiesand manages variabilities among a set of products. Each product is targeted and customized7



in order to address the needs and expectations of a speci�c customer in the customer port-folio. Even though the required productivity gains for development and maintaining issuescan be achieved by the help of systematic reuse, establishing a precise and e�ective prod-uct line requires extra up-front investment for building reusable assets and organizationalchanges. A cost analysis of a software project with and without product line approach isplaced comparatively in [80] (Figure 2.1). According to this work, a product line is best tobe established when the domain can be supplied with at least three di�erent products.

Figure 2.1: Cost analysis of a software project with or without SPL approach
A good indicator whether a speci�c domain needs a product line lies on the softwaredevelopment practices applied on that domain. When people have already started to buildplatforms that consist of common and various generic artifacts to foster reuse and preparefor potential variations, there is a good sign that they are actually developing a productline. However, without product line engineering, a single platform development approachfor achieving high levels of software reuse addresses variability and customization issues ofreusable assets in an ad hoc fashion instead of a systematic way. An important percentage ofsoftware development activities will be focused on platform development rather than productdevelopment and hence, actual products will not be completed in a timely manner. On theother hand, software product line engineering provides the frame for developing the platformfor a speci�c domain. SPLE explicitly deals with variability concerns at all phases and bringsvariability management.

8



2.1.1 Software Product Line ProcessIn general, SPL practice is a two-life-cycle process that consists of domain and applicationengineering. An overview of this two-life-cycle process can be found at [75](Figure 2.2).The aim of domain engineering is to establish a mapping between problem space to solutionspace. It is responsible for constructing a domain model, establishing a reference architectureand implementation of reusable assets. Within the boundaries of the constructed domain

Figure 2.2: An overview of SPL's two-lifecycle process model. Adapted from van der Lin-den et al "Software Product Lines in Action: The Best Industrial Practice in Product LineEngineering", 2007 [75]
model, a reference architecture model is developed in order to realize features by mappingthem to reusable assets. Reference architecture model will support more than one referencearchitecture specifying di�erent connectors and interactions between architectural elements.A reusable asset is identi�ed by the projection of relevant feature(s) to reference architecture.Thus, the reference architecture is an essential part of a Software Product Line (SPL) andas an outcome of the domain engineering, it is expected to establish a shared base amonga range of products for reusing common software development assets, supporting variabilityand extension, and assembling both common and product-speci�c architectural componentsin an e�ective manner. The e�ectiveness of reference architecture is directly related with9



how well the architectural components and their interactions are captured, integrated andmanaged through the development life-cycle.Application engineering enables domain engineering outcomes and results in productsthat are ready to be delivered.2.1.2 Domain EngineeringIn the scope of the SPL context, domain engineering identi�es, models, constructs, catalogsand disseminates a set of software artifacts that can be applied to existing and future softwarein a particular application domain. The emphasis is on developing artifacts for reuse. Theaim of the domain engineering is to provide better means for delivering a family of productsin a shorter time and at lower cost by �rst capturing the domain knowledge in the formof reusable assets and then reusing these assets in order to form the product. Domainengineering involves three main subprocess;
• Domain Analysis: In domain analysis, commonalities among products are identi�edand the scope of the product line is set through specifying variability points for particu-lar products. The actors involved in domain analysis phase are stakeholders, end-users,domain experts and system analysts
• Domain Design: The reference architecture for the products in the domain is estab-lished in this phase.
• Domain Implementation: Development of reusable assets such as components, servicesand domain-speci�c languages takes place during domain implementation.A comparison between conventional software engineering and domain engineering based ontheir outcomes is given in [16](Table 2.1).Feature-Oriented Domain Analysis (FODA)Feature-oriented domain analysis is a well-known domain analysis method which was �rstintroduced by Kang et al in [44]. In FODA, variabilities and commonalities in the problemspace are represented in terms of features. A feature can be considered as a product capabilitythat is agreed by a consensus of stakeholders, end-users and engineers. One of the well-knowmethods for visualizing feature-oriented domain analysis is called feature modeling. A featuremodel is capable of representing all possible products in a product line. Typically, featuresare organized in a tree hierarchy in a feature model.10



Table 2.1: Comparison between software engineering and domain engineering. Adapted fromCzarnecki, "Generative Programming", 1998 [16]

Features are selected by considering the relationships among them in order to form aspeci�c product. A feature model helps the domain expert to come up with a correctcon�guration of features that will result in a workable and usable product. Actually, featuremodeling can be used in any level of the domain engineering; requirements engineering,designing the reference architecture or in the other levels close to programming.A feature model provides graphical tree-like representation of the hierarchical organiza-tion among features within a concept. The root of the tree is named as the concept node andthe others show di�erent features of this concept. A simple feature model is capable of de�n-ing mandatory, optional, alternative, excludes, requires and OR relations among features. Acommon notation for visualizing some di�erent feature relationships is given in Figure 2.3.De�nitions for the relationships are introduced as follows;
• Mandatory: The feature must be included into the con�guration of its parent conceptinstance.
• Optional: The feature may or may not be included into the con�guration of its parentconcept instance.
• Alternative: One instance from a set of features sharing a common parent concept canbe included into its parent's con�guration.
• OR: One or more features from a set of features can be included into the con�gurationof their shared parent concept instance.
• Requires: When a feature is included into a con�guration, it requires another feature11



to be included also.
• Excludes: When a feature is included into a con�guration, it necessitates anotherfeature to be excluded from the con�guration.

Figure 2.3: A common visual notation for some relationships among features
To make things more understandable, consider an example concept of car. Basically, ithas two basic features; engine and transmission. Since, it is not sensible to sell a car withoutan engine and a transmission, these features can be considered as mandatory features forevery member of the product line of the car concept. However, a car engine can work byconsuming diesel fuel or gasoline but not by consuming both of them as a mixture. This willlead us the subfeatures of the engine feature; diesel and gasoline engine. These subfeaturesare alternatives of each other. When building a car, engine feature has to be included andone of the engine types has to be speci�ed among its alternatives. Similarly, the transmissionfeature brings two alternative types namely manual and automatic transmission. However,when we consider the sunroof feature, we can conclude that it is not a mandatory butan optional feature that will be included whenever there is a special customer request. Asample feature diagram of the car concept representing the mentioned features is depictedin Figure 2.4.A feature model expresses and formally describes the con�guration options in a problemspace and the domain expert can form a speci�c product by con�guring available featuresin the model. With this respect, a feature model is only capable of representing a certainkind of variability namely con�guration or nonstructural variability. On the other hand,12



Figure 2.4: A sample and abbreviated feature diagram of the concept carthe domain expert cannot creatively construct a structured variability such as an arbitrarybusiness process. Instead of feature modeling, she can use domain speci�c languages likeactivity diagrams or business process languages.Whether representing a functional or a nonfunctional variability, a feature is abstractedin the same way in a feature model. Indeed, this distinction of variability is not apparent.When compared to other modeling approaches such as Uni�ed Modeling Language (UML),feature modeling has advantageous especially at the early domain analysis phases becauseof this non-tricky variability representation property.2.1.3 Application EngineeringApplication engineering results in delivered products built by enabling domain engineeringoutcomes. In this phase, the focus is on a single product built with reused artifacts. In appli-cation engineering, features from the feature model, corresponding reference architecture andthe reusable assets of the reference architecture are customized to form a particular prod-uct. Final products are generated by considering the design-with-reuse principle. Mainly,application engineering encompasses three process components;
• Requirements Analysis: A requirements model representing the needs of a speci�c cus-tomer is devised. The customer requirements are compared with the existing domainmodel and the matching features (requirements) are selected from the model. Newrequirements uncovered by the existing domain model are elicited and the core assetsmay be updated accordingly.
• Design Analysis: In this phase, reference architecture model is revised in order to13



identify and capture the changes propagated from the new requirements and productspeci�cations.
• Integration and Test: By using the reference architecture, identi�ed reusable assets areintegrated in order to produce the application code.An example application engineering process is provided by Software Engineering Institute(SEI) in [4](Figure 2.5).

Figure 2.5: A sample application engineering process described by SEI
2.1.4 Software Factory Automation (SFA)Software factory extends the concept of SPL by adapting, assembling and con�guring ex-tensible tools, models, frameworks and patterns using templates and schemas in order toautomate the development and maintenance of product families [29]. Software Factory Au-tomation was introduced by Altintas et al in [2, 3] to generalize the establishment of softwarefactories as the way manufacturing industry has been doing. In other words, SFA is an in-dustrialization model for establishing software product lines through constructing a domaindesign model based on Domain-Speci�c Kits (DSKs). Regarding the feature-oriented analy-sis of problem domain, SFA's design model encloses two major activities: �rst, building theproduct line reference architecture using DSK abstraction and then constructing a reusable14



asset model based also on DSKs. The end results of all of these activities are the referencearchitecture and asset model for the product line. Major constituents of the approach havebeen given in [2](Figure 2.6).

Figure 2.6: Overview of the software factory automation approach. Adapted from Altintas,"Feature Based Software Asset Modeling with Domain Speci�c Kits", 2007 [2]
In contrast to general-purpose programming languages such as C and Java, Domain-Speci�c Languages (DSL)s focus on accomplishing speci�c kinds of tasks de�ned in a certainproblem domain. DSLs allow developers to concentrate on the targeted problem domain'sparticular vocabulary, constraints, and concepts in higher levels of abstraction with special-ized constructs and syntactic sugar. The aim of incorporating domain speci�c abstractions isto improve systematic reuse of software assets which leads to enhanced software developmentproductivity, product quality and reduced per product development and maintenance costs.The concept of Domain Speci�c Kits was �rst introduced by Griss and Wentzel [30].DSKs as re�ned in [2, 3] are analogous to Programmable Logic Controllers (PLCs) utilizedin industrial factory automation. PCLs and DSKs are sharing a common vision whichis facilitating the production of domain speci�c artifacts in isolated units. SFA approachslightly modi�es the traditional DSK de�nition and adds the following attributes;
• Kits are not speci�c to a product family; they can be reused across di�erent productfamilies.

15



• Kits cannot contain architectures for family of products; instead they are combined toform reference architecture of a product family.
• Kits contain logical connection points that let them collaborate with other kits in achoreography model.
• Artifacts of the kits are composable, but the kits can make use of generative approachesinternally.The language-oriented development terminology used in SFA is depicted in Table 2.2.Table 2.2: Terminology of domain-speci�c kits

Reference Architecture Modeling in SFA correlates the architectural aspects and qualityattributes of the problem domain with actual components and connectors of the solutiondomain by utilizing the Symmetric Alignment method as described in [12]. The architecturalcomponents and connectors in the solution domain are identi�ed, and further abstracted bythis alignment. SFA proposes a six-step reference architecture modeling approach that startswith the identi�cation of quality requirements; architectural aspects and concern spaces ofproblem and solution domains followed by the symmetric alignment of both domains andends with the reference architecture model with DSK abstraction.The reference architecture completes the picture by providing a choreography model. Thedomain speci�c artifacts of separated concerns are composed through employed choreographymodel which is formed by a language and its engine. The envisioned choreography model ofSFA relies on service-oriented paradigm. It ensures context management, state coordination,reliable message exchange and exception handling.16



In order to enable knowledge-oriented software engineering, SFA employs an asset mod-eling method that aims to improve the commonality of features, and e�ectively manage thevariations of them by exploiting a meta-model. SFA asset modeling method separates assetconcerns by mapping features (DSATs) to DSAs, and later composes them using the SPLreference architecture. Hence, it generates more cohesive asset models to improve the assetreusability by reducing the interdependencies. In order to facilitate the modeling activities,SFA builds a modeling language (AML) to de�ne the reusable assets for product assembly.Conceptually, an asset is a composition of domain-speci�c artifacts speci�ed by usingdi�erent DSLs. AML based on the Asset Meta Model (AMM) compiles the asset de�nitionand speci�es variability points with collected artifacts and their choreography. The buildingblocks of AMM are DSATs, DSKs, context, constraints and dependencies among DSATs.Variability management in software assets is the key factor to achieve high levels ofsystematic reuse, especially when considering the product family-based approaches. SFAenables the asset reuse not only within a product family but also across product lines.When the required DSKs de�nition exists in AMM de�nitions, an asset can be reused acrossdi�erent product lines. In other words, such assets can be reused if dependent artifact typesare available.In general, SFA approach exploits the concepts and methods that are coined in the gen-erative software development paradigm. Generative software development promises auto-matic system generation from a speci�cation written in one or more DSLs through modelingand implementing product lines [17]. SFA enhances the generative software developmentparadigm by DSK abstraction and choreography. In SFA, asset models are speci�ed withDomain-Speci�c Artifact Types (DSATs) abstracted by DSKs. SFA approach encapsulatescorrelated artifacts and their interactions within more cohesive asset models and composesthem through a choreography engine.2.2 Service-Oriented Architecture (SOA)By de�nition, Service-Oriented Architecture is an architectural style which enables reusableand encapsulated software services accessible over a network or a service bus in a loosely cou-pled and highly interoperable manner. The main idea behind SOA is to provide an agile ITframework that organizations can easily map their continuously changing business processes,requirements, evolving business needs and existing assets to IT capabilities represented asservices. SOA promises to bring �exibility to IT assets, lower development cost by allow-17



ing high levels of software reuse and provide necessary business agility through compositionof services that are spanning multiple collaborative business partners in a standard-basedmanner [58].A SOA realization is usually comprised of three main parties as listed below. The basicinteractions between these parties are represented in [26] (see Figure 2.7):
• Provider (of services); basic service providers and aggregators
• Requester (of services); service aggregators and end users
• Broker (of services); middleware and registriesA service provider advertises its service through a service broker where service descriptionsare published. Service broker or registry can be considered analogously as yellow pages for�nding services and their providers. After publishing service description, it is ready to bediscovered by the service requester via querying the service registry. Using the discoveredservice description, requester can bind with the provider in order to consume the service.

Figure 2.7: SOA actors in action
A service in SOA can be de�ned through the following agreed aspects [66]:
• Services are de�ned by explicit, implementation-independent interfaces
• Services are loosely bound and invoked through communication protocols that stresslocation transparency and interoperability
• Services encapsulate reusable business functions

18



• Services can be integrated via service composition mechanisms to provide extendedcollaborations. Static or run-time integration of services can be possible by usingdi�erent service composition mechanisms.From software architecture and integration viewpoint, a service oriented architecture isa key mechanism to support software reuse. A service can be de�ned as a unit of work doneby a service provider to achieve desired end results for a service consumer [36]. Serviceshave important characteristics enforcing Object-Oriented (OO) design principles such asensuring separation of concerns and loose coupling. A service can be reachable throughubiquitous interfaces by all other participating software consumers. Only generic semanticsare encoded at the interfaces. The interfaces are universally available for all providers andconsumers by means of a service bus. Communication with a service is message-oriented andexchanged messages are delivered through the interfaces. Usually, messages are compiledaccording to an agreed schema and the message schema limits the vocabulary and structureof messages. This message-oriented communication via ubiquitous interfaces allows to changeand extend the current versions of services and also introduce new versions without breakingexisting services. As a consequence of the distributed nature of services, a SOA must havea mechanism that enables a consumer to discover a service provider, under the contextof a service sought by the consumer. A SOA approach delivers key architecture goals insupporting:
• Bene�ts of OO including component re-use
• Reduce dependencies between system components to achieve loose coupling
• Extensibility
• Services distribution
• Scalability and extensibilityIn order to get maximum bene�t from a SOA approach, these fundamental issues shouldbe addressed based on open standards:
• A common framework for service interactions based on open standards must occur atleast for proper;� Communication� Description 19



� Registration� Composition as Choreography and Orchestration
• An agreed set of vocabularies and interactions (common processes) for speci�c indus-tries or common functions must be adopted2.2.1 Web ServicesThe most common (but not only) form of services used extensively in SOA is Web Ser-vices, in which (1) service interfaces are described using Web Services Description Language(WSDL) [83], (2) payload is transmitted using Simple Object Access Protocol (SOAP) [71]over Hypertext Transfer Protocol (HTTP) [38], and optionally (3) Universal Description,Discovery and Integration (UDDI) [73] is used as the directory service. With these openstandards developed by collaboration of various contributors from academia and industry,it was made possible to establish heterogenous network and service infrastructures that adiverse array of proprietary enterprise solutions of di�erent vendors can communicate andcollaborate with each other in an interoperable manner like in today's GSM and PSTN in-frastructures. The main goal of such an interoperable service utility is to bring technologycloser to people and organizational needs by hiding technology complexity and revealingfunctionality on demand. A visualization of the layered and interrelated technologies in theweb service architecture is given in [81] (see Figure 2.8).

Figure 2.8: Web services technology stack20



WSDL is a well known and widely adapted XML format for web service descriptions.Mainly, it describes the properties of the interface of a web service. In WSDL, a web service isde�ned as a set of network endpoints operating on document-oriented or procedure-orientedmessages. WSDL separates the service meta de�nition from the concrete service realization.The abstract endpoints de�nitions allows �exibility in choosing the necessary bindings fornetwork protocol and message schemas. The common network protocol bindings for WSDLare HTTP with SOAP 1.1.As an XML based protocol, SOAP is targeted for information exchanges between agentsin distributed environments. It consists of three essential components: an envelope thatde�nes a framework for describing what is in a message and how to process it, a set ofencoding rules for expressing instances of application-de�ned datatypes, and a conventionfor representing remote procedure calls and responses [71]. Although SOAP makes uses ofvarious Internet application layer protocol as a transport protocol, it is used in combinationwith HTTP and HTTP Extension Framework in usual.UDDI protocol is an approved OASIS Standard for representing data and metadataabout web services on registries. As a key member of the web services stack, it de�nes how topublish, discover, retrieve and manage information about network-based software entities of aservice-oriented architecture through utilizing service registries. In general, a service registryis responsible for supporting the description and discovery of businesses, organizations, andother services providers, services made available to clients, and the technical interfaces whichmay be used to access those services.More recently, REST (Representational State Transfer) [27] web services have been be-coming popular. These kind of web services also meet the W3C de�nition, but instead ofenabling XML based standards such as SOAP and WSDL, they rely on pure HTTP methodsand constructs.2.2.2 Service CompositionOne of the promising bene�ts of service-oriented architecture (SOA) is to build complexcomposite applications or services by reusing other existing services according to a businessprocess de�nitions. Moreover, SOA allows organizations to achieve di�erent levels of collabo-ration among large numbers of services from heterogeneous environments without regardingto the details and di�erences of those environments. Service composition accomplishmentdepends heavily on the services having coarse-grained interfaces [35]. Coarse-grained servicesare intelligently structured to meet speci�c business needs and constructed from �ne-grained21



services which provide a small amount of business-process usefulness, such as basic dataaccess.The associations between service interface granularity, service compositions and businessprocess de�nitions are shown in Figure 2.9. Proper abstraction of service endpoint implemen-tations requires dealing with the di�erences in protocol, semantics, policy, availability, andshould consider security, management, quality, and governance issues to guarantee reliablecommunications.

Figure 2.9: Service development life-cycle hierarchy
Primary characteristics of SOA from the service granularity perspective can be listed asfollows [9]:
• SOA can o�er �ne-grained atomic services such as simple function calls as well ascoarse-grained business services which are used to divide larger applications into smallerdiscrete modules.
• Services in SOA have minimum amount of interdependencies.

22



• SOA exploits service granularity principles to provide e�ective composition, encapsu-lation and management of services.One approach for specifying the right level of service granularity is to start with accom-panying business processes and decompose them into increasingly smaller subprocesses untilreaching a set of atomic processes that cannot be divided into more smaller components.The resulting atomic processes then become candidate for being realized as services. Themore processes are decomposed in this way; the more commonalities are captured amongatomic processes. Hence the possibility to build more reusable services is also increased.A number of open standard notations for web service composition have followed theestablishment of common web service protocol stack and enhance it by addressing the processside of the service collaborations. According to their characteristics, service compositionscan be categorized in two broad domains namely;
• Orchestration coordinates the �ow of service interactions from the perspective of asingle authority domain. A number of standard languages addresses the web servicesorchestration speci�cation such as Business Process Execution Language (BPEL) [10].Most likely, the de�ned coordination in service orchestrations are limited to intra-organizational borders.
• Choreography can be considered as an orchestration of service orchestrations. Gen-erally, a choreography de�nes the sequence of the interactions, message �ows, rulesand conditions among multiple parties in coordination. The main di�erence from theorchestration is in choreography there are multiple authority domains and the de�nedcoordination is inter-organizational. Web Services Choreography Description Language(WS-CDL) [82] is one of the foremost open and standard choreography de�nition lan-guage for web services.2.2.3 ebXML Business Process Speci�cation SchemaBPM and SOA are two independent initiatives. BPM is mainly a management disciplineand strategy for business processes. A business process encapsulates business transactionsand business documents and sets the collaboration rules among business partners. Busi-ness processes can be represented in a machine-readable format. Nowadays, the BPM-SOAconvergence is proposed to organizations so as to facilitate a closer alignment between busi-ness processes and IT resources and reach the desired business agility and responsiveness tochanging business parameters in today's highly competitive digital world of business [43].23



ebXML Business Process Speci�cation Schema (ebBP) [22] provides means for de�ning e-Business collaborations between collaborating business partners through a standard technicalspeci�cation. ebBP is an initiative from OASIS [50] and it is based on XML [85]. Businesssystems of collaborating parties may be con�gured to execute the business transactionsde�ned in ebBP documents.Mainly, ebBP speci�es the choreography of Business Transactions taking place amongtwo or more collaborative business partners. The choreography de�nition and business trans-actions are compiled to form a Business Collaboration. The �ow of exchanged business doc-uments, signals and the decisions points are placed in business collaborations in a statefulmanner. Each business collaboration speci�es a set of roles collaborating through businesstransactions. Business transactions involves participation of two complementary abstractroles namely, Requesting Role and Responding Role. In order to specify the choreography ofbusiness activities, ebBP provides a number of states (Start, Completion) as well as a set ofgateways (Fork, Join, Decision).Business transactions in ebBP are atomic processes that cannot be further decomposedinto lower level business transactions as in business collaborations. Additionally, BusinessSignals which are used for ensuring the state alignment between collaborating parties canbe exchanged as a part of a business transaction.An example multi-party collaboration is represented with Business Process ModelingNotation (BPMN) [11] and also QueryResponse business transaction de�nition with just arequesting and response document �ow is provided in [22](see Figure 2.10).ebBP de�nitions are independent from the underlying platform, software or servicesand provide a level of abstraction in order to gain in �exibility to be used with di�erenttechnologies. ebBP refers to logical business document schemas and associates them throughexchanged messages in business transactions. In brief, such capabilities of the ebBP can bestated as in [49];
• Standard and extensible business transaction patterns
• Support for multiple role bindings
• Flexibility for complex transaction activities
• Support for use of web service, hybrid and ebXML assets
• Late binding capabilities such as for timing
• Semantic tailoring for business processes and business documents24



Figure 2.10: Representation of the "Drop Ship" multi-party collaboration with BPMN andthe de�nition of a QueryResponse business transaction in ebBP formatTheoratically, ebBP standard can be enabled for representing business processes in almostevery e-business domain with di�erent systems collaborating to achieve a desired businessgoal. An example in the eHealth domain [1] demonstrates collaboration pro�les amonghealthcare systems are expressed through ebBP language. Details of the ebBP speci�cationand how it is related with this thesis work is explained in Chapter 3.2.2.4 Semantic InteroperabilityAnother problem space which SOA is frequently being applied for is semantic and techni-cal interoperability in heterogeneous environments. However, in order to achieve this goal,organizations should adopt open industry standards in their messaging, metadata, imple-mentation and collaboration e�orts to build service-oriented systems. These standards arede�ned by non-pro�t international standardization organizations like WC3 [76] and OASISwith the help of industry contribution. Nevertheless, di�erent standards that have beende�ned by di�erent consortiums may address similar problems, as it can be seen clearly inElectronic Healthcare Records [24]. An organization feels free to adopt any standard amongits alternatives when building its proprietary system. Because of such variations, in order to25



develop portable, re-usable and interoperable services that are guaranteed to work togetherwith other proprietary services from a global perspective; we should not only conform tostandards but also provide mediation mechanisms between di�erent standards [74].2.2.5 Historical Origins and Motivating Needs Behind SOAIn the seventies, companies like SAP started to develop IT stu� which were the initial stepsin software engineering. Most of the developed software in those days were monolithic, batch-oriented applications for mainframes and terminals. In the eighties, PCs were introducedwith the capabilities of running o�ce applications such as spreadsheets and shrink wrapproducts and also terminal emulators used for getting access to legacy mainframes. In thenineties, mainframes and terminals still stood in the forefront of enterprise systems butspreadsheets, shrank wraps and other stand alone individual applications were enrichedwith graphical user interfaces (GUIs) used in an ad hoc fashion. At those times, Object-Orientation and client-server computing were materialized also in industrial practices to acertain extent.Day by day, Object-orientation was becoming more important as a means of integrateddevelopment suit for analyzing the business, design and also programming. Object-orientedapproach was promising attractive innovations like not only richer GUIs but also bettermodularity, maintainability and reusability of software entities. Although, enterprises at-tempted to get those advantages in their business, they encountered with severe challenges,especially when updating their mainframes on which had been invested previously. Newfeatures and extensions such as thin applications with GUIs could be implemented by usingnew technologies like C++ but the real business logic remained on the legacy mainframes.The main problem coming from the general IT perspective was that the Object-orientationcould not be exploited throughout the company because the mainframes, databases and otherlegacy applications were developed based on traditional approaches rather than the Object-orientation. Moreover, leaving the previous investments and requesting newly developedsystems with the same business logic would be expensive and cumbersome.In general, migrating legacy applications to more modern systems holds several promisesfor an enterprise from maintenance and sustaining viewpoints such as [65];
• The technology which was used for implementing the application maybe obsolete intime and the personnel who have hands-on practice on this technology maybe rareand their salaries maybe over valued in accordance with the simple demand and sup-26



ply principles. For example, in Y2K problem, updating and bug-�xing tasks for thelegacy enterprise applications were outsourced to India because of scarce and overval-ued resources of COBOL developers in western countries. COBOL, once a popularprogramming language for mainframes, was constantly becoming a legacy technologyand losing its ground to other languages such as C++ and Java until Y2K.
• Migrating legacy applications increases the application reach and removes risks asso-ciated with running potentially unsupported hardware and software in legacy systems.
• A successful modernization o�ers not only technological modernization but also busi-ness process reengineering. In this respect, organizations can have opportunities toincrease in e�ciency with their usual business processes.In the nineties, component-oriented distributed technologies were proposed to solve thelegacy system migration problem. They brought remote procedure calls and object requestbroker middlewares to open the business logic to more modern systems. However, as thedistributed computing gains more attention, the drawbacks of the distributed component-oriented systems such as CORBA [15] and COM [14] become more apparent in terms ofcomplexity, security, handling latency, partial failures and concurrency and the lack of sharedmemory access [77, 37]. As a consequence of the experiences gained from these challengesand drawbacks, the technical background was prepared for the SOA.With the emergence of the service-oriented architecture and web service technologies inthe new millennium, legacy migration strategies have been evolved into this new distributedarchitecture proposed to address message orientation, self-description, platform-neutrality,and network orientation [79]. Currently, various vendors are o�ering legacy migration strate-gies based on SOA [59, 53, 69] and apart from being just only a system integrator, in near fu-ture SOA is being expected to have a more comprehensive role as a new computing paradigm[58] for software development.2.3 Semantic Web TechnologiesSemantic Web [8] technologies aim to represent and exchange information on the web throughformal methods and de�nitions. Semantic web envisions a web of data where interoperabilityis realized between data sources and the web and the meaning of the data is given in away that software agents can understand and reason with it. In the core of the SemanticWeb there is the concept of ontology which is previously used in Arti�cial Intelligence and27



Database communities, in order to formally model a conceptualization and enable knowledgesharing between information resources [32]. The motivating needs behind the semanticweb initiatives are the di�culties to �nd, present, access, or maintain available electronicinformation on the web and to enable the software agents to provide intelligent access toheterogeneous and distributed information.The word ontology comes from the Greek language; ontos (being) and logos (word).Formally, ontology can be de�ned as [31];"An explicit formal speci�cation of a conceptualization."In practice, an ontology describes objects and concepts as classes. Typically, classes areformal and explicit description which are catalogued in a hierarchy. Class relationships arede�ned through class properties which describe intrinsic and extrinsic attributes of classes.For example, IS-A relation is extensively used for representing inheritance relations amongclasses thus for creating class hierarchies. A class property has two main concepts; Domainwhere classes which the property describes and Range where classes allowed to �ll in theproperty value. Instances are individual occurrences of classes which they are member of.The properties associated with the class are �lled in with instance values. Another interestingfeature of ontologies are axioms which are ontological assumptions that cannot be describedusing only properties and property values. Disjoint is an axiom that represents the situationfor two classes which has no instances in common. Consistency of an ontology according tode�ned axioms can be checked by using automated reasoners.Generally, semantic web ontologies like OWL are based on open world assumption. In aclosed world assumptions like Databases schemas, the information is assumed to be completeand a query engine will return a negative if it cannot �nd some data. However, a reasonercannot determine something does not hold unless it is explicitly stated in the ontology. Thereasoner does not make any assumption about the completeness of the given information.Ontologies are exploited in order to establish a common vocabulary and understandingabout any thing such as a concept or a domain. One of the most important bene�ts ofontological approaches for computer science is their supports for automated operations suchas querying and reasoning. Ontologies are capable of describing the semantics of the data ormeta-data in order to provide a uniform way to make di�erent parties to communicate witheach other. Both human and software agents can be use the domain knowledge describedwith an ontology.Ontologies are widely used in semantic web. A common application area of ontolo-28



gies is semantic annotations of web pages. World-Wide Web Consortium (W3C) is leadingthose initiatives on standard languages for ontology speci�cation. In this section, well knowdomain-speci�c languages, frameworks and tools for enabling semantic web applications andsemantic-based software development is presented as the building blocks of the semanticweb.2.3.1 Resource Description Framework (RDF)Resource Description Framework (RDF) [61] is a framework for describing and interchang-ing metadata. RDF is the �rst and the simplest of the semantic web languages. It enablesan XML based syntax and exploits URIs for resource identi�cation. RDF provides ma-chine processable semantics for metadata and associates them with resources on the web.This approach promises better precision in resource discovery than full text search and theinteroperability of metadata. RDF has following aspects;
• Resource : Anything that can be named via a URI can be described by RDF as aresource. A URI makes the associated resource unique and globally known.
• Property : A property is a predicate used for building RDF instances with associatedvalues such as aspects, characteristics, attributes or relations. A property is also aresource that has a name. The type of the an associated value (or an object) can be aliteral or another resource.
• Statement : A statement is a triple that consists of a Resource, a Property, and anassociated value.RDF statements or the relationships between resources, properties, and the objects canbe represented with directed labeled graphs. In this representation, resources and objectsare identi�ed as nodes, and properties are de�ned as edges. In Figure 2.11, an example RDFgraph is given with accompanying de�nition in XML-based syntax.RDF is in favor of using conventions that will facilitate modular interoperability amongseparate metadata element sets. The Dublin Core [21] is an example de�nition standardand convention for describing generalized web resources. It was named after the MetadataWorkshop in Dublin, Ohio in 1995. Following list is the partial tag element list for DublinCore initiative;
• Creator: Author of the content of the resource29



Figure 2.11: An example RDF statements which means that John Doe is the creator of theresource http://www.metu.edu.tr/ John. Property "creator" refers to Dublin Core De�nitionStandard. RDF statement is given in two di�erent representations; directed labeled graphand XML notation.
• Date: The resource creation date
• Title: The name of the resource
• Subject: The domain related with the resource
• Description: An account of the content
• Type: The genre of the content
• Language: The natural language of the resource contentRDF Schema (RDFS )[62] is a rule system for building RDF instances and brings exten-sions to Resource Description Framework. RDF Schema provides a higher level of abstractionthan RDF through its additional mechanisms to de�ne speci�c classes of resources, proper-ties, and the relationships between these properties and other resources. Moreover, RDFSprovides a semantic capabilities basis for more expressive languages such as Web OntologyLanguage (OWL). RDF Schema provides three ways to characterize a property;
• Domain: Associates a property with a class
• Range: Indicates the range of values for a property
• subPropertyOf: Specializes a property 30



2.3.2 Web Ontology Language (OWL)As a semantic web language, OWL [55] is used for de�ning terms and their relationshipsthrough its standard RDF/XML syntax. RDF Model and Syntax provides a recognizablemetadata and RDF Schemas brings mechanisms for de�ning shared vocabularies and meta-data interoperability. On the other hand, OWL is built on top of RDF, based on predecessorlanguages DAML+OIL [20] and extends RDF(S) semantically. All of the language constructsprovided by RDF and RDFS can be used when creating an OWL document. Moreover,OWL documents exploit rdfs:range, rdfs:domain, and rdfs:subPropertyOf elements. Sim-ilarly, classes are the basic building blocks of an OWL ontology. Every instance in theuniverse is a member of owl:Thing class. OWL supports six main of describing classes;
• Named Class is the simplest way of describing an OWL class.
• Intersection Class is a combination of two or more classes via the logical intersection(AND) operator. An intersection class is de�ned with the owl:intersectionOf property.
• Union Class is a combination of two or more classes via the logical union (OR) operator.Union class is de�ned with the owl:unionOf property.
• Complement Class is formed by negating another class. Complement class is de�nedwith the owl:complementOf property.
• Restrictions describe a class of individuals based on the type and possibly number ofrelationships that they participate in. Restrictions in OWL can be divided into threesubcategories;� Existential Restriction describes a class of individuals that have at least one kindof relationship along a speci�ed property to an individual that is a member of aspeci�ed class. Existential restriction can be read as "some values from" or "atleast one".� Universal Restriction describes the class, whose individuals point only to membersof the class speci�ed in the restriction for a given property. It symbolized themeaning of "all values from" or "only".� Cardinality Restriction is about the number of relationships that a class of indi-viduals participate in.� HasValue Restriction describes a class of individuals that participate in a certainrelationship with a speci�c individual.31



• Enumeration Class is formed by explicitly listing the individuals that are members ofthe enumeration class. An enumeration class is de�ned with the owl:oneOf property.There are three types of OWL languages namely OWL-Lite, OWL-DL and OWL-Full.They are categorized according to their expressiveness power. OWL-Full has no restrictionson how/where language constructs can be used, but in turn, the OWL-Full ontologies areundecidable i.e. it is unlikely that any reasoning software will be able to support completereasoning for every feature of OWL Full. OWL-DL corresponds to a description logic andhas certain restrictions on how/where language constructs can be used in order to guaranteedecidability. OWL-Lite is a subset of OWL-DL and is the simplest and easiest to implementof the three species.OWL classes permit much greater expressiveness than RDF Schema classes. The bene�tof OWL is that it facilitates a much greater degree of inferencing than RDF Schemas. Forontologies that fall into the scope of OWL-Lite and OWL-DL, a reasoner can be used toinfer information that is not explicitly represented in an ontology. Subsumption testing,equivalence testing, consistency checking and instantiation testing are some of the mainreasoning operations.There are two types of properties in OWL namely ObjectProperty and DatatypeProperty.Each type of properties has single or multiple speci�ed domains and ranges. An ObjectProp-erty relates one resource to another resource. A DatatypeProperty relates a resource to aliteral or to an XML Schema datatype. Properties can have di�erent characteristics such as;
• If a property P is functional then for all x, y, and z:

P (x, y) ∧ P (x, z) → y = z (2.1)
• If a property P1 is inverseOf P2 then for all x and y:

P1(x, y) ⇔ P2(y, x) (2.2)
• If a property P is inverse functional then for all x, y and z:

P (y, x) ∧ P (z, x) → y = z (2.3)
• If a property P is symmetric then for any x and y:

P (x, y) ⇔ P (y, x) (2.4)32



• If a property P is transitive then for any x, y, and z:
P (x, y) ∧ P (y, z) → P (x, z) (2.5)OWL provides additional axioms that can allow better reasoning capabilities on classesor properties. Some of the axioms de�ned by OWL are rdfs:subClassOf, owl:equivalentClass,rdfs:subPropertyOf, owl:equivalentProperty, owl:disjointWith, owl:sameAs, owl:di�erentFrom,owl:inverseOf, owl:transitiveProperty, owl:functionalProperty, owl:inverseFunctionalProperty.2.3.3 Description LogicsDescription Logics [6] is a family of logic based knowledge representation formalisms. Mostof the semantic web ontology languages such as OWL are based on the description logics.Description logics is the decidable part of the �rst-order logic (FOL) and enables proceduresfor key reasoning problems such as satis�ability and subsumption. It describes the knowl-edge domain based on concepts (classes), roles (properties, relationships) and individuals.Basically, concepts represent unary predicates having only one free variable. Roles are equiv-alent to statements with two free variables. Individuals represent constants. Operators inDL are limited in order to foster decidability and reduce complexity.DL brings the notion of knowledge base as a pair <T, A> where T refers to T-Box andA refers to A-Box. The T-box contains the terminological (or schema) axioms and A-Boxcontains assertional (or data) axioms. An example T-Box describing the concepts Person,Man andWoman with their structural relationships can be given in terms of FOL as follows;

Person v > (2.6)
Man v Person (2.7)

Woman v Person (2.8)
Woman u Man = ⊥ (2.9)Semantic of description logics are de�ned by interpretations. An interpretation or modelI is formed by a domain and an interpretation function. Domain is a set of the elementsand objects which are subject to description or reasoning about where the interpretationfunction gives meaning to the members of this domain.Well known reasoning problems that can be formed around a DL knowledge base KB =<T, A> will be as follows; 33



• Subsumption relation between two concepts w.r.t T
C v D ⇔ ∀I.CI ⊆ DI (2.10)

• Concept consistency w.r.t T
• Knowledge base consistency
• Instance checking; whether KB entails the individual a of the concept C

KB |= a : C (2.11)
• Satis�ability; concept C is satis�able i�

∃I.CI 6= ∅ (2.12)
• Equivalence of two concepts

C ≡ D ⇔ ∀I.CI = DI (2.13)
• Disjointness; two concepts C and D are disjoint i�

∀I.CI ∩ DI = ∅ (2.14)2.3.4 Protégé Ontology Editor and Knowledge Acquisition SystemProtégé [60] is a popular and comprehensive tool for creating and modifying knowledge bases.Through its graphical development environment, Protégé supports development of ontologiesand meta models and exports them to various languages such as XML schema, RDF(S) andOWL. Being a free and open source project, it allows extensions that can be implementedand plugged in the �exible environment. It is actively being developed and extended by acommunity of developers and academic, government and corporate users. Likely, Protégécan be enabled for any application areas where knowledge management and reprentation aremusts such as biomedicine, intelligence gathering and corporate modelling. A screenshot ofthe Protégé tool is given in Figure 2.12.In this thesis work, Protégé is exploited and reused as a third party component foraccessing and modifying OWL instances in a highly e�ective way. Protégé provides usersand developers with Protégé-OWL plugin which handles almost every possible actions overOWL documents. Moreover, Protégé supports Semantic Web Rule Language (SWRL) forOWL instances through its special plugins. Protégé is capable of converting and executingSWRL rules in the JESS rule engine.Details on how Protégé and its plugins are enabled in our work is given in Chapter 4.34



Figure 2.12: A screenshot from the OWL Classes view of the Protégé Ontology Editor2.3.5 OWL-S: Semantic Markup for Web ServicesIdeally, software agents should be able to automatically discover, invoke, compose, andmonitor web services. However, there is a need to make the service understandable andinterpretable by the software agents to achieve this goal. In this regard, OWL-S [56] isdesigned and developed to represent web services semantics and populate service descriptionand functionalities so that software agents can perform reasoning for automated servicediscovery, invocation, composition and interoperation. The current version of OWL-S isbuilt on the OWL.The overall structure of the OWL-S ontology is divided into three main parts in order toprovide a comprehensive model for advertising and discovering services; a detailed descriptionof a service's operation; and the details on how to interoperate with a service via messages.Upper ontology of services is visualized in Figure 2.13.Core components of the service ontology are explained as follows;
• Service Pro�le provides meta information about the service and its capabilities. Pro�lespeci�es the inputs and outputs of the service, pre-conditions for using the service ande�ects that service produce after its execution. Service pro�les are used to populateservice registries and automated service discovery and matching. They can also support35



Figure 2.13: Upper ontology of servicesnon-functional properties such as service name, text description, quality rating andservice category. An example service pro�le is given for a �ight reservation service.In this markup segment, service provider is annotated within the contactInformationtag. Type of the service is enclosed in serviceClassi�cation, product of the serviceis described by product and service classi�cation in business taxonomies is given inserviceCategory. Typical inputs, outputs, preconditions and e�ects of the service isgiven in hasInput, hasOutput, preconditions and e�ects respectively. This service pro�leexample is adapted from [57].<profile rdf:ID="BravoAir"><serviceName>BravoAir </serviceName><contactInformation rdf:resource="#BAco"/><serviceClassification rdf:resource="#Airline"/><product rdf:resource="#FlightReserv"/><serviceCategory rdf:resource="#NAICS_Airline"/><hasInput rdf:resource="#Dep_Airport"/><hasInput rdf:resource="#Arr_Airport"/><hasOutput rdf:resource="#Reservation"/><preconditions/><effects/></profile>
• Process Model is speci�cation of ways how and when a client may interact with aservice. A Process model can have one or more simple, atomic and composite processes.An atomic process is an interpretable description of a service that can be executed insingle step. A composite process maintains the state of the process. A compositeprocess may consist of sub composite or atomic processes. On the other hand, aSimple Process is an abstract de�nition which is non-invokeable and have no grounding.They can be considered as reusable process de�nitions that can be bound within anatomic process. Process model provides state alignment and data�ow of a compositeprocess through its control constructs; Sequence, Split, Split+Join, Choice, Any-Order,Condition, If-Then-Else, Iterate, Repeat-While and Repeat-Until. An excerpt from theatomic process of the online purchase operation is given as follows;36



<process:AtomicProcess rdf:ID="Purchase"><process:hasInput><process:Input rdf:ID="ObjectPurchased"/></process:hasInput><process:hasInput><process:Input rdf:ID="CreditCard"/></process:hasInput><process:hasOutput><process:Output rdf:ID="ConfirmationNumber"/></process:hasOutput>...
• Service Grounding speci�es how to access a service in an interoperable way. Detailson the access method such as communication protocols, schemas for exchanged mes-sages and port numbers used to contact the service are speci�ed in this part. Servicegrounding is built upon WSDL speci�cation.Details on the OWL-S ontology and how it is related to ebBP are explained in Chapter3.2.3.6 Semantic Web Rule Language (SWRL) and JESSSemantic Web Rule Language (SWRL)[72] is an initiative from W3C which is designed tobe the rule language of the Semantic Web. SWRL is based on the OWL DL and OWL Litelanguages along with the Unary/Binary Datalog sublanguage of the Rule Markup Language.SWRL supports Horn-like rules expressed in terms of OWL concepts (classes, propertiesand individuals) and stored as a part of ontology. SWRL is intended to reason about OWLindividuals. Moreover, SWRL rules can be used to infer new knowledge from an existingOWL knowledge base. SWRL speci�cation does not mandate or impose a particular reasonerto be used in performing reasoning with SWRL rules.SWRL is based on OWL's open world assumption and provides more expressivity thanOWL DL alone. However, inference with SWRL rules is not guaranteed to terminate as acost of the increased expressivity.A SWRL rule is a combination of a head and a body part. Each of these parts consistsof a conjunction of zero or more atoms. SWRL does not support more complex combinationof atoms at the moment. There are a number of possible forms for the atoms in SWRLrules. C(x), P(x, y), sameAs(x, y) and di�erentFrom(x, y) are de�ned as atom forms inSWRL speci�cation where C is an OWL description, P is an OWL property, and x, y are37



either variables, OWL individuals or OWL data values. In the SWRL documentation it isstated that OWL DL becomes undecidable when extended in this way as rules can be usedto simulate role value maps. SWRL also supports a range of built-in parameters in order toexpand its expressiveness. All of these built-in predicates start with the namespace quali�er"swrlb:".Consider an example SWRL rule which expresses a person with a female sibling. Itrequires capturing the concepts of "person", "female", "sibling" and "sister" in OWL. Intu-itively, the concept of person and female can be captured using an OWL class called Personwith a subclass Female; the sibling and sister relationships can be expressed using OWLproperties hasSibling and hasSister, which are attached to Person. The rule in SWRL wouldthen be:
Person(?x) ∧ hasSibling(?x, ?y) ∧ Female(?y) → hasSister(?x, ?y)Executing this rule would have the e�ect of setting the hasSister property to y in theindividual that satis�es the rule, named x.JESS [39], the rule engine for the Java platform, is a rule-based reasoning system for theJava platform which provides a rule language and a comprehensive Java based programmer'slibrary for the seamless integration of its rule engine with Java applications. The rulelanguage of the JESS can be considered as a dialect of the Lisp programming language.Moreover, JESS supports an XML-based rule language called JessML (JESS's XML rulelanguage).JESS is a well known and highly appreciated system which is well documented and is easyto use and con�gure. Although it is not free to common use, this rule system can be down-loaded for a 30-day evaluation period and is available free for academic use. The rule enginecan be embedded to any Java applications and provides a two-way runtime communicationbetween JESS rules and the application where it is embedded. JESS is capable of directlymanipulating Java object. Its rule processing facility is based on an enhanced version of theRete algorithm [28]. Protégé-SWRL chose JESS as the �rst integration candidate for thereasoning operations.Although a JESS rule is very similar to a conditional (if... then statement) which is acore part of any procedural language, it is not used in a procedural way. As it is stated inmanual of the JESS, this is because of the designed rule execution mechanism. Conditionalsare executed at a certain order and time, however JESS rules are executed whenever theirif parts (their left-hand-sides) are satis�ed. Therefore, a typical procedural program is more38



deterministic than the JESS rules in this respect.Mapping between OWL knowledge base with SWRL and JESS rules are possible and arealready demonstrated in [51, 45]. Before representing OWL individuals as JESS knowledge,OWL classes and their properties must be �rst transformed into JESS. For this purpose,JESS's template facility can be used to represent the OWL class hierarchy. Our exampleOWL knowledge can be modeled in JESS as follows;(deftemplate OWLThing (slot name))(deftemplate Person extends OWLThing)(deftemplate Woman extends Person)Consider that "Simge" is a member of the Woman class as well as "Umut" is of thePerson. Using the template de�nitions given above, these OWL individual can be assertedas a member of the class Woman and Person respectively;(assert (Woman (name Simge)))(assert (Person (name Umut)))OWL properties are directly modeled as JESS facts. We can assert such a fact if "Umut"has a sibling called "Simge";(assert (hasSibling Umut Simge))The representation of our SWRL rule, which is given above, in terms of JESS is as follows;(defrule exampleRule (Person (name ?x)) (Woman (name ?y))(hasSibling(?x ?y))=> (assert (hasSister(?x ?y))More detailed information on how to perform reasoning based on OWL, SWRL and JESScan be found in Chapter 4.

39



CHAPTER 3ENHANCING DOMAIN KNOWLEDGEBASE WITH BUSINESS PROCESSDEFINITIONS
Although feature modeling is a well known and easy to adopt method for representing com-monalities and variabilities among a set of end-user driven domain speci�cations, they arenot suitable for capturing interactions, message sequence and data �ows taking part in be-tween two or more systems, services, processes or objects. In order to model the processmodel semantics of a web service properly, it is necessary to enhance developed approacheswith additional domain engineering utilities.In this respect, ebXML Business Speci�cation Schema (ebBP) is exploited in capturingprocess de�nitions and business choreographies of web services from a high abstraction levelwhere contributions of domain experts such as business analysts and process managers canbe e�ectively incorporated in devising the domain model. An overview of the ebBP standardis given in Section 2.2.The main advantage of using ebBP is its powerful built-in mechanisms for separatingthe de�nition of the process model from its realization and making it independent fromits enablers namely business actors. This means that individual business systems, whichare following the sequence, can be de�ned in a domain of control where changes can takeplace internally without changing the actual process model. Hence, ebBP provides businesspartners with business process de�nitions to collaborate and achieve a given business goalin an interoperable way. Because of these important properties, ebBP standard is decidedto be our choice of formalism for business process modeling.Today, the key enabler of the ebBP is the web service technology which makes it possible40



to execute business collaborations de�ned in the speci�cation. One way to achieve suchexecutable business collaboration is through mapping business transaction activities to webservices. ebBP is capable of specifying process model parameters for con�guring serviceinterfaces to execute and monitor business collaborations. However, ebBP does not specifyhow to associate a de�ned service interface to its real world implementation. There areseveral alternative methods, technologies and standards considering the business serviceinterface implementation such as ebXML Message Service, Collaboration-Protocol Pro�leand Agreement etc.In this chapter, we �rst introduce the building blocks of the ebBP in detail and thenpresent the ebBP Editor, an open source initiative designed to help the domain expertsin creating domain speci�c ebBP instances in a user friendly way, and �nally explain thedevised method for transforming a given business process model to the corresponding servicemodel representation.3.1 Core Components of the ebXML Business Process Speci-�cation SchemaThe ebBP standard aims to specify the semantics as well as the structure of business collab-orations in a machine readable format. Basically, business collaborations are composed ofbusiness transaction choreographies which are ful�lled through message exchanges betweencollaborating business partners. Each business partner plays a prede�ned role in order toparticipate in the business collaboration. In each business transaction, there is at least onebusiness document �ow. Business signals may be enabled for informing the collaboratingparties about the current status of the business collaboration and business exceptions threwduring the execution of the business transactions.In the following subsections, the details of core components in the ebBP speci�cation aredescribed. The standard schema de�nitions of these core components are provided in theAppendix section.3.1.1 Business Collaborations and ChoreographyA business collaboration consists of business activities which execute business transactionsamong collaborating parties. Involved business partners play a prede�ned abstract role inthe scope of the business collaboration. Business transactions de�ne interactions betweenabstract partner roles based on transaction patterns. Abstract roles are bound to concrete41



business parties through business activities. Business activities can be categorized as follows;
• Business Transaction Activity: The activity of executing a single business transaction.
• Complex Business Transaction Activity: The activity of executing nested businesstransactions in series.
• Collaboration Activity: The activity of executing another business collaboration withinthe scope of the current business collaboration.In the ebBP technical speci�cation, business collaborations can be divided into two sub-categories namely Binary and Multiparty Business Collaborations according to the numberof involved business partner roles. A binary business collaboration requires exactly two ab-stract partner roles involved. On the contrary, a multiparty business collaboration involvesmore than two roles.The choreography placed in a business collaboration speci�es the ordering and transitionsbetween a set of enabled business transactions. The usage of choreography is analogous tothe activity diagram in UML context. The ebBP speci�cation supports the visualization ofthe choreography in BPMN standard but does not mandate to do so.Within the scope of the ebBP speci�cation, a choreography can be devised by using thefollowing constructs similar to the ones found in UML activity diagrams;
• Start, Success and Failure States: The initial state of a business collaboration is theStart state which links to a business transaction activity. The ebBP speci�es two com-pletion states for a business collaboration namely Success and Failure states. Com-pletion states give the possibility to de�ne whether a business collaboration has beenperformed as it was planned.
• Direct Transitions: Unless a business collaboration reaches one of its completion states,it is either in the state of performing a business activity or preparing to start a businessactivity. Once a business activity completes, the execution of the business collaborationnavigates to another business activity.
• Fork, Join and Decision Gateways for Transitions: There are two types of the Forkgateway namely XOR and OR Forks. In XOR, only one transition from one businessstate to another is allowed although initially all business state transitions are possible.Whenever, one of the transitions is activated then all other are deactivated. An ORFork may enable all transition paths in parallel and it does not specify the order42



in which condition expression on a transition coming from a Fork will be evaluated.On the other hand, a Decision Fork selects only one transition path at start. Thisproperty di�ers it from the XOR Fork. A Fork gateway may have TimeToPerformelement to specify the duration of the execution. At the end of the time interval givenin the TimeToPerform element, the state of the business collaboration is moved tothe corresponding Join. Join gateway has waitForAll attribute in order to indicatewhether all transitions coming into it must be executed for the collaboration or not.AND-Join and OR-Join can be created by setting the waitForAll attribute to true orfalse respectively.
• Guards on the Transitions: Transitions may have guards to gate the navigation fromone state to another. A guard stands for the status of an activity from which the transi-tion originates. Guards can be ProtocolSuccess, AnyProtocolFailure, RequestReceipt-Failure, RequestAcceptanceFailure, ResponseReceiptFailure, ResponseAcceptanceFail-ure, SignalTimeOut, ResponseTimeOut, Failure, BusinessSuccess, BusinessFailure andSuccess.
• Variables and Condition Expressions: Transitions can have a conditional expressionelement depending on variables. Variables which are named information elements arebound to concepts across business transactions.3.1.2 Business Transactions, Transaction Activities and Business Docu-ment FlowA business transaction is an atomic unit of work conducted between two collaborating par-ties playing opposite abstract roles. Abstract roles are generic and labeled as Requestingand Responding roles. In general, a business transaction is realized as a business document�ow between requesting and responding roles. Business transactions achieve and support en-forceable transaction semantics and state alignment between collaborating parties. Businesssignals can be enabled and used as a part of a message exchange in business transactions soas to ensure state alignment of the respective parties.A business transaction consists of a Requesting Business Activity, a Responding BusinessActivity, one or two business document �ow between them and several optional business sig-nals. The abstract partner roles which are Requesting and Responding roles perform request-ing business activity and responding business activity respectively. In business transactions,a requesting document �ow is mandatory and the responding document �ow is speci�ed43



whenever it is required.ebBP brings eight main business transaction patterns which determine the exchange ofbusiness documents and signals to achieve the necessary business transaction;
• Commercial Transaction: Represents formal obligation between parties.
• Noti�cation: Represents business noti�cations such as a failure or status order.
• RequestCon�rm: Used where a con�rmation about the status with respect to previousobligations or a responder's business rules is required by the requester.
• RequestResponse: Speci�cally used when the request for business information requiresa complex interdependent set of results.
• InformationDistribution: Used for informal information exchange between parties.
• QueryResponse: Used when the requester party want to query for an information thatthe responder has.
• DataExchange: Extensible pattern for partner-speci�c data exchange and businesstransaction patterns.
• Legacy Business Transaction: This pattern is not recommended for using in concretebusiness transactions and retained for conversion only with previous versions of theebBP speci�cations.The main responsibility of a business transaction activity is to perform a business trans-action within a collaboration. Business transaction can be associated to any number ofbusiness transaction activities which means that the same business transaction is subject tosame or di�erent business collaboration with di�erent business transaction activities.A business transactions is designed as a reusable protocol which can be referenced bybusiness collaborations through the use of business transaction activities. In business trans-action activities, speci�c and concrete roles of the business collaboration are bound to thegeneric partner roles in business transactions. An external role in a business collaborationis mapped to the role de�ned in the enclosed business transaction by using the �Performs�element found in the business transaction activity.Business transaction activities can be nested in a recursive manner by the �ComplexBusiness Transaction Activity� element de�ned in the ebBP speci�cation. Complex businesstransaction activities execute the transaction activities in series and express the situation44



occurs when a transaction activity can happen only after the request of the other transactionactivity has been entirely processed. In this type of transaction activity, the nested businessactivities have a �statusVisibility� element to specify which state of the associated transactionare visible by the parent complex transaction activity.Business transactions provide additional semantics that con�gure the particular perfor-mance of the referred business transaction. These semantics can be considered as the rulesand the con�guration parameters required for software components to realize the businesstransaction in a predictable and deterministic way. The following parameters are supportedto substantiate and enforce preconditions on the business transaction activity;
• Reliability is the ability to specify reliable document and signal delivery.
• Document Security refers to authorized, authenticated, con�dential and tamper de-tectable transactions.
• Non-repudiation speci�es the keeping of transaction artifacts to aid in legal enforce-ability.
• Authorization refers to authorization requirements for the parties performing roles.
• Predictability refers to clear roles, precise transaction scope, understood time bounds,unambiguous determination of completion and business information semantics.However, how these parameters are re�ected to the implementation is not speci�ed withinthe scope of the ebBP.The software counterpart of the business transaction are business service interfaces whichmanage the business transaction, monitor the timers and requirements of the business col-laboration, and enforce the semantics.A business document �ow is modeled indirectly as a �Document Envelope� associatedwith one requesting or responding business activity. A document envelope is sent by onerole and received by the other in a business transaction. There is always a single documentenvelope for a requesting activity and may be zero or more for a responding activity.Each document envelope encapsulates a business document with its attachments. Al-though a document envelope can refer to a logical business document, it de�nes neither thestructure of the document nor the underlying semantics.

45



3.1.3 Business Signals and ExceptionsBusiness signals can be exchanged during the execution of a business transaction in orderto inform the collaborating parties about the state alignment of the business collaborationexplicitly calculated at run time. Business signals are computed by the collaborating partiesand provide a mutual understanding of the business activity.There are two important business signals namely �Receipt Acknowledgement� and �Ac-ceptance Acknowledgement�. Business transaction pattern speci�es whether a �Receipt Ac-knowledgement� and/or and �Acceptance Acknowledgement� signal is required.
• Receipt Acknowledgment signals that a request or response message has been properlyreceived by the business service interface. This type of signal is necessary for reliablemessaging between collaborating parties.
• Acceptance Acknowledgement signals that the received request or response message issubject to business processing and that processing has been completed successfully bythe receiving party. This type of signal is used extensively for the successful synchro-nization of state between collaborating parties.Business signals are di�erent than the business messages. They have a �xed structurede�ned in the ebBP signal schema while the content of a business message can vary both atrun-time and over time, and is under control of an application or service.There are simply two causes of failures occurred during the execution of a businesstransactions; timeouts and exceptions. Since business transactions may be time-criticaloperations, they should have a distinct time boundary. The timeout parameters are normallyassociated with the response and each of acknowledgement business signals. After timeoutoccurs, the transaction must be set to null and void. On the other hand, the processing ofthe transaction cannot be completed successfully by the request in or responding role. Insuch cases, a series of protocol exceptions are used to indicate the failure.3.2 The ebBP Editor3.2.1 IntroductionThe ebBP Editor is an open source tool designed for domain experts helping them in creating,modifying and validating ebBP instances in a user friendly way. It is implemented as a partof the IST 027065 RIDE (A Roadmap for Interoperability of e-Health Systems in Support46



of COM 356 with Special Emphasis on Semantic Interoperability) project funded by theEuropean Commission [64]. The author of this dissertation work actively participated inimplementation of all components of the ebBP Editor, prepared a distribution release andpresented it to the OASIS ebXML Business Process Technical Committee. Minutes of thispresentation can be found in [23]. Within the scope of this thesis work, the editor tool isenabled for describing electronic business process de�nitions in a standard-based manner.These de�nitions are supposed to be exploited in the process of automatic service ontologygeneration.The ebBP Editor is composed of two main components; XmlStylist and Visual Compo-nent. XmlStylist is used for creating, editing and validating process speci�cations conformingto the XML schema de�nition of the ebBP. GUI of the XmlStylist displays process speci�ca-tions, business transactions, packages and the corresponding speci�cation document in a treestructure. Visual Component displays Business Collaborations within a process speci�ca-tion by enabling BPMN standard. Each Business Collaboration is represented in a di�erentsection graphically.The latest version of the ebBP Editor is available at the sourceforge.net portal. Thenecessary source codes and third party libraries are made accessible and downloadable bygeneral public licence. The software requires a Java Virtual Machine and Apache Ant buildtool in order to build and run the project. The editor tool has been tested and veri�ed withSun's JDK built 1.5.0_04 on Microsoft Windows XP platform.In order to start the ebBP Editor, the user should �rst compile the source codes withthe command �ant build� and then type the command �ant run� to the operating console.These commands are de�ned in the build.xml project �le which can be found at the projectfolder. The details of the build mechanism is given in the Apache Ant's web site.After starting the editor, user can create a new ebBP Process Speci�cation or openan existing one by clicking on the respective menu bar buttons of the GUI. Both of theseactions are done with the assistance of the XmlStylist. User can edit the details of a businessprocess through the visual features supported by the XmlStylist. After closing the popupwindow of the XmlStylist, the modi�ed business process de�nition is validated syntactically.User is informed whenever there is any problematic structure provided within the processde�nition. Validated process de�nitions are then visualized in the Visual Component of theebBP Editor according to the BPMN standard. For each business collaboration given in aprocess speci�cation, a tabbed pane is generated to visualize the business choreography i.e.display the interaction between the business activities and the business roles taking part in47



the collaboration. A screenshot of the ebBP editor is depicted in Figure 3.1.

Figure 3.1: A screenshot of the ebBP Editor
3.2.2 Overview of the ebBP Editor ComponentsXmlStylistXmlStylist component is designed for fast and easy editing of ebBP instances through theirtree-like representations. Basically, XmlStylist parses a speci�ed Xml schema de�nition andbuilds a user-editable form dynamically. The user can then �ll attributes and �elds of thisform in order to create an Xml instance which conforms to the speci�ed Xml schema. Useris provided with the cardinatility information of the attributes and elements. XmlStylistperforms a validation check before serializing the graphical form into its Xml representation.As it can be seen in Figure 3.2 the main window of the XmlStylist is divided into threesubwindows. In the top-left window, the given Xml schema is visualized as a tree object.Below of this window, the ebBP instance which is being edited is given as tree object similar48



to its schema representation. In the right of these two windows, the details of the selectedebBP element is visualized with its attributes and subelements.

Figure 3.2: XmlStylist - Main Screen
As it is mentioned before, XmlStylist parses a speci�ed Xml schema and provides theuser with user-editable visual forms which are created dynamically. The user can createinstances of the schema by �lling these visual forms. When the user loads an Xml schema,the XmlStylist informs him/her whether the schema contains one or more global elements.If the schema contains more than one global elements then the user should specify one ofthem to be the basis of the Xml instances which will be created in future. This is necessarybecause according to the Xml standard, one Xml document has to contain only one globalelement. The user can select the root element from the menu shown in Figure 3.3.In order to add a new element to the Xml instance, the user �rst selects the correspondingparent element from the Xml instance tree and then he/she selects the interested subelementfrom the schema tree. After selecting parent element from the instance tree, the schema treeis updated and all child elements of this parent element is listed to the user. The user then49



Figure 3.3: XmlStylist - Select Root Dialogspeci�es the subelement to be added from the schema tree. The necessary form for theselected subelement is dynamically generated at the right part of the XmlStylist. Editableattributes of this elements are visualized as blank text boxes within this form. After �llingthese text boxes according to their cardinality restrictions, user can add this element tothe Xml instance. The user-editable schema form is dynamically created according to thefollowing simple rules;
• Attributes of the selected element are represented with text boxes.
• Simple subelements of the selected element are shown as text �elds if they have amaximum cardinality of one or else they are represented with combo boxes.
• Complex subelements are represented with a link to their own user-editable forms.When the user clicks on this link, XmlStylist creates the necessary visual form andallows the user to specify this complex subelement.
• The required attributes and �elds are represented with additional visual properties inorder to inform the user. For example, an asterisk precedes the label of a required �eldand they are written in bold fonts. Moreover, a �eld can have a tooltip which givesadditional information about the properties of that �eld such as namespace, scope andcardinality.On the other hand, global elements can be freely added to a blank Xml instance withoutspecifying any parent-child relationship. 50



Whenever an element from the ebBP instance window is selected by the user, the schemawindow and the user-editable form is updated accordingly. The visual form is �lled with thevalues of the selected ebBP element and then the user can then edit these �elds or removethe element from the ebBP instance document.XmlStylist validates ebBP instances whether they conform to the ebBP standard by thehelp of its enhanced control mechanisms;
• Before adding a new element to the ebBP instance, parent-child relationship is checked.Based on the speci�ed Xml schema, XmlStylist does not allow misplaced elements inan Xml document.
• After each update of an Xml element, XmlSytlist validates whether the required �eldsof that element are ful�lled.
• Before serializing the tree representation of the ebBP instance into its Xml format, afull validation of the instance takes place.
• Whenever an erroneous document construct is �gured out by the validation process,the user is informed about this situation.A sample warning message produced after the validation process of an ebBP instance isshown in Figure 3.4.ebBP standard de�nition introduces a document construct called Package in order tofoster reusability among ebBP instances. Packages can be freely imported into a processspeci�cation or into another package. In XmlStylist package importing is supported also.Users can import packages through the Import Package menu item under the File menu.ebBP Visual ComponentebBP Visual Component provides graphical representation of business choreographies amongbusiness partners. In ebBP speci�cation, these choreographies are de�ned within the scopeof business collaborations. In this respect, ebBP Visual Component parses a given processspeci�cation and visualizes all business collaboration stored in it. Each business collabora-tion is displayed in a separate tab section of the graphical pane. ebBP Visual Componentexploits the BPMN standard for visualizing the business collaborations. This component isin coordination with the XmlStylist i.e. they work on the same process speci�cation.A new process speci�cation can be created or an existing one can be opened by the clickingon the �New� and �Open� menu items respectively. They are listed under the �File� menu. A51



Figure 3.4: XmlStylist warns the domain expert about an invalid Business Collaborationinstancenew business collaboration can be created by clicking on the �New Business Collaboration�icon on the ebBP Visual Component. Details of the newly created business collaborationcan be modi�ed through XmlStylist. Business collaborations can be deleted by clicking onthe �Remove Business Collaboration�icon placed next to the �New Business Collaboration�icon.Main visual constructs used in representing business collaborations are given in the graph-ical components window (see Figure 3.5). User can drag and drop these constructs on abusiness collaborations in order to add them to the de�nition by the help of the XmlStylist.When the user clicks on of the visual constructs given in the business collaborationrepresentation, the basic properties of the element are displayed in the bottom part of theebBP Visual Component. Users are allowed to edit those properties by the help of thissection in a more faster way.
52



Figure 3.5: Graphical Components of the ebBP Editor3.3 Mapping Business Collaborations to Web Service ProcessModelsCore components of the ebBP standard schema with the editor tool addressing the challengesfor creating and modifying ebBP instances have been introduced in the previous section. Inorder to enhance our generative method for service ontology creation with process modelsemantics of web services, we have enabled the business collaboration and transaction ofthe ebBP and devised conceptual mappings for automatically transforming these ebBP con-structs into OWL-S standard. The transformation method is implemented as a part of theopen source GENODL project which is introduced in Chapter 4.3.3.1 Motivation Behind the Transformation MethodThe ebBP brings the notion of business service interface (BSI) as a logical de�nition for acollaborating party's actions exposed as business service and supports its implementationthrough web services and other software technologies. A BSI is compromised of a set ofbusiness processes, business object states of a business process and the rules governing tran-sition between those states. In other words, BSI is the logical set of transactions required toachieve a common goal. The interface to the BSI is through business messages and signalslike in message-oriented web services. Moreover, BSI is capable of providing non-functional53



requirements such as quality of service and service con�guration parameters. In the contextof the ebBP, BSI is completely separated from implementation technology. Implementationchoices are not speci�ed and may include Java beans, web services etc. In brief, a BSIconsists of the following entities;
• A discrete set of business process states shared and aligned between collaboratingpartners.
• A discrete set of business transactions and transitions between business transactions.
• Business rules and requirements governing the states, transactions and transitions.Bearing in mind these properties, the ebBP provides domain experts with state-of-artmodeling capabilities for encoding necessary transactional semantics among the collaboratingsystems that are surely subject to web service technology stack. However, the ebBP does notmandate or specify any re�nement mechanisms for transforming the underlying semanticsof an ebBP document into a more convenient structure that any implementation technologysuch as web services can realize them easily. Hence, there is a gap exists between businessprocess modeling with ebBP and service-oriented development.What we have achieved in this work is to develop conceptual mapping schemes betweenthe generic ebBP instances and OWL-S ontologies. OWL-S is an emerging de-facto seman-tic web standard that supports automation of various web service related activities suchas service discovery, composition, execution and monitoring. OWL-S provides a standardlanguage for describing process models of atomic as well as composite web services. The roleof OWL-S in bridging the gap between domain and application engineering while developingservice-oriented systems is pictured in Figure 3.6.As an outcome of this mapping, previously de�ned business processes are re�ned andbrought one step closer to the realization phase automatically. Although it is importantto note that a process is not a program to be executed, the proposed transformation willlead to a further point in the way of end-user driven development for software engineering.Moreover, mapping ebBP de�nitions to OWL-S fosters service reuse. Once the OWL-Smodel of a business service interface is described then the service implementation may bediscovered from the existing assets instead of developing the service every time from scratch.

54



Figure 3.6: Bridging the gap between domain and application engineering in developingservice-oriented system3.3.2 ebBP to OWL-S MappingWe can easily understand that there is no obvious one-to-one mapping between individualterms in ebBP and OWL-S process models. Because ebBP and OWL-S represent processdecompositions from di�erent abstraction levels as it is described in the previous subsection.When we compare the two standards, we treat the whole ebBP process speci�cation as amodel that may be decomposed into the corresponding OWL-S process models with somedecomposition decisions depending on other parts of the model. A resulting service ontologycan be related to web service implementation in three ways;1. Provide requirements to the web service interface2. Constrain implementation of the web service interface3. Enable automatic discovery of semantically matching web services already implementedNevertheless, we put a basis for our mapping method through comparing common com-ponents sharing the similar semantics in both standards. Moreover, we adopt the ebBP'sbottom up design approach for describing business collaboration and propose our transfor-mation strategy inspired on this approach as follows;1. Transform Business Transactions2. Transform Business Document Flow for Business Transactions3. Transform Binary (Business) Collaboration re-using the mapped Business Transactions4. Transform the choreography for the Binary (Business) Collaborations55



5. Transform higher level Business Collaborations re-using the lower level Business Col-laborations translated previouslyA high overview of the mapping speci�cation is depicted in Figure 3.7. Firstly, we treatbusiness collaborations as web services that process at least one business activity. Sincebusiness transaction activities are atomic processes, we can associate them with the OWL-S's Atomic Process concept. Similarly, a Composite Process can be considered as equivalentto Complex Business Transaction Activity, Collaboration Activity or a business collaborationthat provides a choreography among two or more business activities. A Composite Process isbuilt by integrating at least two Atomic Processes in a choreography de�nition i.e. maintainsthe state information between process transitions. OWL-S provides de�nitions for reusingatomic processes like in the ebBP. OWL-S de�nes abstract atomic processes with its SimpleProcess element. A Simple Process can be realized in various Atomic Processes. Hence,Simple Processes serve the same purpose as the Business Transactions in the ebBP.

Figure 3.7: Overview of the mapping speci�cation
In the following subsections, the conceptual mappings from ebBP elements to their OWL-S counterparts are listed. Note that the transformation method is intended for the directcreation of service ontologies from the given business process model. It is a self-contained56



statement of core ebBP speci�cation elements and relationships required to be able to createOWL-S compliant service process models.Mapping Business Transactions and Business Document FlowA business transaction can be considered as an atomic unit of work in a trading agreementbetween two collaborating parties playing opposite abstract roles. It consists of one or twoprede�ned business document �ows. Business transactions are pure reusable componentsof the ebBP. They can be associated within any business collaboration through businessactivities that set the proper performers for their declared roles.Similar to business transaction, a simple processes is the abstract as well as the reusablepart of the OWL-S process model. In the transformation speci�cations, a declared rolefor the business transaction is mapped to either hasClient or performedBy element of thesimple process according to its initiating or responding position. A business transaction hasexactly one requesting document �ow while it may have a single responding document �ow.Business document �ows are represented as document envelopes. The mapping speci�cationfor the document envelope is described later in this subsection. One way of mapping businesstransactions to its OWL-S counterpart is shown in Table 3.1. The choreography of nestedBTAs in a ComplexBTA can be transformed into a Sequence of AtomicProcess in terms ofOWL-S. The general choreography mapping is given in the subsequent section.Request and response document �ows contain necessary business documents that pertainto the corresponding business transaction. In ebBP, a business document �ow is not mod-eled directly instead it is modeled indirectly through document envelope structure. Eachdocument envelope refers to a single business document and carries it over the document�ow. A document envelope belongs to exactly one document �ow.For conceptual mapping, document envelopes can be modeled by the instances of theInput and the Output class of the OWL-S ontology based on whether the document �ow isrequesting or responding. A document envelope is de�ned as a property value of a document�ow so as the Input/Output parameter of a message-oriented web service. As in the documentenvelope, Input/Output class refers to the structural speci�cation or the schema de�nitionof the business document. A possible mapping from document envelope to Input/Output isprovided in Table 3.2. A document envelope can optionally have one or more attachmentsrelated to the business document. Although, Input/Output class does not provide an implicitsupport for this kind of attachments, a conceptual mapping may be satis�ed by adding thenecessary semantics to the document schema explicitly.57



Table 3.1: Business Transaction to Simple ProcessebBP Term (BusinessTransaction) OWL-S Counterpart (SimpleProcess)/@name /@name/@nameID /@rdf:ID/RequestingRole /hasParticipant/RequestingRole /hasClient/RequestingRole/@nameID /hasClient/@rdf:ID/RespondingRole /hasParticipant/RespondingRole /performedBy/RespondingRole/@nameID /performedBy/@rdf:ID/RequestingBusinessActivity /hasInput/RequestingBusinessActivity/DocumentEnvelope /hasInput/Input/RespondingBusinessActivity /hasOutput/RespondingBusinessActivity/DocumentEnvelope /hasOutput/OutputTable 3.2: DocumentEnvelope to Input (or Output)ebBP Term (DocumentEnvelope) OWL-S Counterpart (Input/Output)RequestingB.A./DocumentEnvelope SimpleProcess/hasInput/InputRespondingB.A./DocumentEnvelop SimpleProcess/hasOutput/Output/@nameID /@rdf:IDBusinessDocument/Speci�cation/@location /parameterType/Attachments no direct mappingMapping Business ActivitiesA business activity in ebBP can be a business transaction activity, a complex businesstransaction activity or a collaboration activity. In order to give the essence of the overallconceptual mapping with principle notions, we address only the transformation requirementsfor the business transaction activity and complex business transaction activity in this study.In general, a business transaction activity is an execution of a business transaction be-tween speci�ed collaborating parties. Business transactions are responsible for integrat-ing business transactions to business collaborations. In the ebBP speci�cations, a businesstransaction refers to a business collaboration and sets the performers of the initiating andresponding roles of the transaction with suitable business partners.58



As it is stated before, business transaction activities can be associated with atomic pro-cesses in OWL-S. Atomic process corresponds to an action that a service can perform in asingle interaction. This interaction should be executed in a single step by receiving exactlyone message and sending zero or one response. Like business transaction activities, atomicprocesses can refer to simple abstract processes in a reusable manner. On the other hand,business activities is capable of de�ning business rules with the BeginsWhen, EndsWhen,PreCondition and PostCondition elements of the ebBP for annotation purposes. It is in-tended that the business service interface may use these elements at run-time whenever theirexpressions are coded in a machine-processable format. Atomic process's hasPreconditionand hasResult can be conceptually map to PreCondition and PostCondition respectively.Mapping speci�cations from business transaction activity to atomic process is given in Ta-ble 3.3. Table 3.3: Business Transaction Activity to Atomic ProcessebBP Term (BusinessTransactionActivity) OWL-S Counterpart (AtomicProcess)/@businessTransactionRef /realizes/@name /name/@nameID /@rdf:ID/Performs /hasParticipant/Performs/RequestingRole /hasClient/Performs/RespondingRole /performedBy/PreCondition /hasPrecondition/PostCondition /hasResult/TimeToPerform Handled in Choreography Mapping
A Complex Business Transaction Activity (ComplexBTA) allows for nested BTAs tohappen one-by-one. This concept is a pure sequencing concept and does not a�ect the atom-icity of the Business Transaction. When multiple activities are nested within ComplexBTA,these activities MUST be executed in series. The model supports for any number of nestinglevels. The counterpart of the ComplexBTA in OWL-S domain is CompositeProcess. Map-ping speci�cations from complex business transaction activity to composite process is givenin Table 3.4. 59



Table 3.4: Complex Business Transaction Activity to Composite ProcessebBP Term (ComplexBTA) OWL-S Counterpart (CompositeProcess)/@name /name/@nameID /@rdf:ID/Performs /hasParticipant/Performs/RequestingRole /hasClient/Performs/RespondingRole /performedBy/PreCondition /hasPrecondition/PostCondition /hasResult/TimeToPerform Handled in Choreography MappingSequence of BTAs Choreography Mapping for SequenceMapping Business CollaborationsIn this subsection, we show how a business collaboration de�nition can be transformed intothe OWL-S context. We �rst map common properties of the business collaboration elementto matching attributes of the service class in the OWL-S ontology. Then, we transform thebasic building blocks of the choreography described within business collaboration elementinto their counterparts in OWL-S enabled for constructing service process model.In OWL-S, Service Pro�le provides high-level description of a web service. It can storehuman-readable properties (service name, text description, contact information) as well asmachine-interpretable properties (inputs, outputs, preconditions and results). Basic proper-ties of a business collaboration such as name, nameID and Documentation can be mappedto suitable service pro�le attributes of OWL-S. A possible mapping from ebBP's businesscollaboration to service class of OWL-S is given in Table 3.5.Table 3.5: Business Collaboration to ServiceebBP Term (BusinessCollaboration) OWL-S Counterpart (Service)/@name /presents/Pro�le/serviceName/@nameID /presents/Pro�le/@rdf:ID/Documentation /presents/Pro�le/textDescription/Role/@nameID /describedBy/CompositeProcess/hasParticipantsChoreograpy Transformation Given in Table 3.660



According to the ebBP speci�cations, a choreography is an ordering of business activi-ties within a business collaboration in order to specify which business state is expected tofollow another state. Hence, a choreography de�nition removes any ambiguity in businessdocument exchange among collaborating parties. We know that common control structuresfor establishing the choreography are Start, Completion (Success, Failure), Transition, Fork(OR-Fork, XOR-Fork), Join and Decision. Each choreography begins with a Start elementand traverses a path through a graph until reaching a completion state. Start element hasonly one linking construct which is ToLink. By its toBusinessStateRef attribute, a ToLinkconstruct refers to the next state where the current state can transition to. Conversely, aFromLink refers to the state where it can be transitioned to the current state via its fromBusi-nessStateRef attribute. Start element de�nes a special state that can only be transitionedfrom while completion elements such as Success and Failure cannot point any further stateto transition. In general, linking constructs (FromLink and ToLink) should reference statesin business collaboration (Start, Success/Failure, Fork, Join and Decision).Basically, OWL-S's composite process consists of other atomic or composite processes.Control �ow of a composite process is speci�ed using control constructs which can be nestedto an arbitrary depth. Like business collaborations in the ebBP, composite processes canbe considered as state-oriented work�ows. In the transformation method, CompositePro-cess class is preferred for representing underlying semantics of business choreography withinbusiness collaboration. Main control construct of the whole choreography is the Sequenceelement. Linking constructs (FromLink and ToLink) are mapped according to their typeand the class of the state they refer. For example, FromLink is transformed into a Control-Construct that it can be further speci�ed as a Perform, Split, Split-Join or Choice based onthe type of the refered state; Business Transaction Activity, Fork, Join and Decision respec-tively. In ebBP, a choreography starts by linking to a business state so, we can associateStart with a Sequence instance whose list:rest element refers to the state that ToLink of theStart linking as well. Overall mapping from choreography construct of ebBP to their OWL-Scounterparts are given in Table 3.6. Transition, Fork, Join and Decision have at least oneFromLink and one ToLink but maximum occurrence of these linking constructs can varydepending on the choreography type. Fork and Decision include at least two ToLink on theother hand, Join have at least two FromLink.
61



Table 3.6: Choreography to Service Process ModelebBP Choreography OWL-S Counterpart (ControlConstruct)/FromLink /ControlConstructList/list:�rst/ControlConstruct/ToLink /ControlConstructList/list:rest/ControlConstructList/Start CompositeProcess/@composedOf/Sequence/Start/@nameID /Sequence/@rdf:ID/Transition/@nameID ControlConstruct/@rdf:ID/Fork/@nameID /Split/@rdf:ID/Join/@nameID /Split-Join/@rdf:ID/Decision/@nameID /Choice/@rdf:ID/B.T.A /C.C.L./list:�rst/Perform/AtomicProcess/Success No suitable match/Failure No suitable match3.3.3 Limitations of the Transformation MethodThe proposed transformation method has a number of drawbacks due to the limitations ofthe OWL-S speci�cations and the implementation of the mapping rules. Counterparts forsome ebBP features such as exception handling, business signals, conditional expressions,document attachments, non-functional and con�gurational parameters are not directly sup-ported by OWL-S. On the other hand, the implementation of the transformation methodshould cover the mappings of complex business transaction activities and collaboration ac-tivities. Those mapping rules are planned to be implemented as a future work. Moreover,the transformation method should be continuously updated according to newer version ofthe related standards.

62



CHAPTER 4ADDING FORMAL SEMANTICS ANDREASONING SUPPORT TO FEATUREMODELS
In order to utilize a product line approach which exploits feature-oriented domain analysis,there is a need for formal and machine-processable feature models. Feature models play akey role in the domain analysis process; they set the scope of the product line by captur-ing commonalities and variabilities among products, and provide a basis for future stepsin product line processes such as de�ning common architecture, creating reusable systemcomponents etc. Therefore, representation of the feature models in a machine-processableway is considered �rst.Moreover, it is necessary to verify a feature model before using it in further activities.After de�ning a formalism for feature models, it is possible to automate a veri�cation processthrough reasoners which can check inconsistencies among features as well as automaticallycorrecting them to a certain extent. On the other hand, automated analysis of the formalizedfeature models are not limited only with the veri�cation operation. There is a number ofreasoning problems that can be proposed along with verifying feature models such as checkingmodel satis�ability and dead feature detection.There is, however, no shared agreement on;

• how to represent and disseminate feature models in a standard way,
• how to analyze feature models automatically [7],
• how to localize features into reusable assets and tailor them for application engineeringusage. 63



This chapter presents the Semantic Web approach for modeling and verifying feature-oriented domain analysis. It is clear that there are several opportunities to be gained indeveloping a formalization of feature models to make them semantic aware. OWL is decidedto be used for feature model formalism because it is a well known standard in the area and issupported by various technologies, tools and development environments like Protege-OWL,SWRL and JESS. In this respect, we will exploit the OWL's richer semantic constructs aswell as its reasoning capabilities. OWL reasoning engines such as JESS can be deployed tocheck for inconsistencies within a feature model and correct them automatically.We �rst introduce the basics of our feature model ontology. We describe the featuremodel ontology by enabling OWL DL along with Semantic Web Rule Language (SWRL)for stating axioms. Then, we present our editor tool dedicated for creating, modifying andverifying the feature model ontology through its user friendly GUI. This editor tool has beencompletely developed within the scope of this academic study. The feature model editorexploits Protege-OWL API for handling ontology parsing tasks as well as the JESS ruleengine for making inferences over feature models based on the prede�ned axioms.4.1 Feature Model OntologyIn order to gain expressive power and enable automated operations over feature models, weexploit OWL ontology constructs. Firstly, we de�ne a Feature class having two object prop-erties, hasParentFeature and hasChildFeature respectively, which are transitive propertiesthat are inverse of each other. These properties are required to express IS-A relations instructured view or OR relations in common feature model understanding. The concept ofthe feature model can be considered as an ordinary feature which has no parent feature.In order to fully represent the mandatory and alternative relations, we derive two speci�cchild classes from the Feature class. Each class is a subclass of the owl:Thing class. Weassert that Alternative Feature and Mandatory Feature are mutually disjoint. Feature classencapsulates isSelected attribute which can be set to a boolean value indicating that whetherthe feature is enabled in a particular product. A mandatory feature must be selected ifits parent is already selected and only one feature among its alternatives can be selected.A feature's alternatives can be speci�ed by the transitive alternativeOf object property.Overview of the classes and their properties de�ned within the Feature Model Ontology isgiven in Figure 4.1. 64



Feature v > (4.1)
AlternativeFeature v Feature (4.2)
MandatoryFeature v Feature (4.3)

AlternativeFeature u MandatoryFeature = ⊥ (4.4)

Figure 4.1: Classes and properties of the feature model ontology
A number of axioms for checking the consistency of the feature model customizationsare formally de�ned within the scope of this work. In general, these axioms are exploitednot only for verifying the feature model but also correcting any inconsistency found. Theseaxioms are described as SWRL rules. SWRL plugin for Protege-OWL can translate theserules to JESS rule language in order to execute them in a JESS rule engine. Inconsistencieswithin a feature model can be automatically corrected after the reasoning has been performedand necessary inferences have been de�ned by the JESS engine. Protege-SWRL plugin isresponsible for modifying the OWL document according to the changes inferred by the JESS.De�ned axioms and their SWRL implementations are given below;

65



1. A feature cannot be selected unless its parent feature has been selected already. Forall x and y;
Feature(?x) ∧ isSelected(?x, false) ∧ hasChildFeature(?x, ?y)∧

isSelected(?y, true) → isSelected(?y, false)2. A mandatory feature must be selected whenever its parent feature has been selected.For all x and y;
Mandatory_Feature(?x) ∧ hasParentFeature(?x, ?y) ∧ isSelected(?y, true)∧

isSelected(?x, false) → isSelected(?x, true)3. Only one feature must be selected among its alternatives. For all x and y;
Alternative_Feature(?x) ∧ isSelected(?x, true) ∧ alternativeOf(?x, ?y)∧

isSelected(?y, true) → isSelected(?y, false)4. A feature is selected whenever the other feature which requires it has been selected.For all x and y;
Feature(?x) ∧ requires(?x, ?y) ∧ isSelected(?x, true) → isSelected(?y, true)5. A feature is deselected whenever the other feature which excludes it has been selected.For all x and y;
Feature(?x) ∧ excludes(?x, ?y) ∧ isSelected(?x, true) → isSelected(?y, false)SWRL rules are normally stored as OWL individuals which can refer to the resourceswithin the associated knowledge base. Class de�nitions of these OWL individuals are in-troduced in SWLR ontology. Main class of the SWRL ontology is the swrl:Imp which isused for de�ning a single SWRL rule. The swrl:Imp consists of two other classes namelyswrl:head and swrl:body. Each of these classes is an instance of the swrl:AtomList class wherea list of rule atoms are presented. A rule atom is represented via subclasses of the abstractswrl:Atom class. Another important SWRL ontology class is swrl:Variable that can be usedfor representing variables. Feature model ontology with encapsulated SWRL ontology isshown in Figure 4.2. 66



Figure 4.2: Classes of the feature model ontology with encapsulated SWRL ontologyPossible Reasoning Operations for the Automated Analysis of Feature ModelOntologyFeature Models are subject to automated analysis since it was reported in FODA but cur-rently, there is no common understanding for what kind of operations should be supportedor how they can be implemented. We have already identi�ed automated veri�cation and cor-rection operations and here, we list other important reasoning problems identi�ed previouslyin [7] as follows;
• Determining feature model satis�ability: Satis�ability problem is about �nding anysuitable instances that is not inconsistent with the given TBox. We can claim that afeature model is satis�able when there is at least one product which can be derivablefrom the given feature model. In general, a feature model without any cross-treeconstraints (requires, excludes) cannot be unsatis�able.
• Finding a particular product: A satis�able FM will constitute one or more products.With this operation, possible consistent products can be acquired from the FM byenabling customizations over features.
• Calculating the number of products: As the name implies, this operation returns thenumber of products that a FM can specify. This operation can exploit product �nding67



operation and can be used for deciding whether the FM is satis�able since the numberof products is greater than zero then we can conclude that the FM is satis�able.
• Dead features detection: A feature that should not be included in any product cus-tomization can be categorized as dead feature. The automated detection of such fea-tures is subject to the FM analyzes also.
• Variability Analysis: This operation gives the ratio between the number of productsof a feature model and the 2n where n is the number of the features except the rootconcept. A big ratio represents a �exible product line whereas a smaller one representsa more strict one.
• Commonality Analysis: This analysis applied to a feature of a feature model gives thepercentage of products where this particular feature is included.4.2 Feature Model Editor and ReasonerThe feature model editor and reasoner is realized through the scope of an ongoing opensource project called GENoDL (Automated Service Ontology Generator Tool based on De-scription Logics) (http://sourceforge.net/projects/genodl/). This initiative was started bythe author of this thesis work. With its user-friendly GUI, GENoDL aims to support a richuser experience and joy of use in order to ease the domain analysis and service ontology gen-eration tasks on behalf of the domain engineers. The tool takes feature ontology and businessprocesses as input and re�ne them in order to compile possible service ontologies. However,for this section we limit ourselves with feature ontology editing and reasoning capabilitiesimplemented as a part of the GENoDL tool. In the next chapter, GENoDL's automatedservice ontology generating feature is explained in details.GENoDL requires a Java Virtual Machine (Java 5 or 6), Apache Ant and Protégé 3.4Beta Build 506 installed before. In order to enable reasoning capabilities, JESS library mustbe downloaded and copied into the Protégé 3.4's OWL plugin directory. GENoDL's sourcecodes can be downloaded from its source control repository. After download, user should�rst change the "protege.dir" property found in the build.xml, the project con�guration �le,according to the Protégé's installation directory. The tool can be started from console by�rst typing the command "ant build" to build the source codes and then typing the "antrun" to execute the binary codes. 68



4.2.1 System DesignThe tool supporting our operations for feature model editing and automated analysis isconstructed over a Model-View-Controller (MVC) pattern. This architectural pattern allowsus to separate visualization, data modeling and data access concerns from each other. Thethird party components such as ontology parser and reasoning tool are integrated throughtheir speci�c APIs. The class diagram of the tool is given in Figure 4.3.

Figure 4.3: Class diagram of the GENoDL
The main class of the GENoDL is the SystemManager class. SystemManager is responsi-ble for initiations of OntologyManager and BusinessProcessManager objects. These managerclasses establish the control part of the MVC architecture. The design of each manager classconforms to Singleton design pattern where the instantiation of a class is limited to one ob-ject only. This pattern is useful in our case because we need exactly one dedicated managerobject to coordinate the following separate tasks across the whole systems; system initiation,ontology editing and reasoning, and information extraction from business process de�nitions.The model section of the architecture composed of two speci�c classes namely DataModeland VisualModel. Those two classes provide necessary access mechanisms to the resources69



planned to be used by other classes in the control or view section of the architecture.The graphical user interface of the GENoDL is produced by the VisualComponentFactoryclass. The graph editor for drawing feature model diagrams are mainly based on the exampleGraphEditor class provided by the JGraph software [40].4.2.2 User GuideThe main window of the GENoDL is composed of three subcomponents (see Figure 4.4). Atthe top of the window, a menu bar is located for handling common �le operations. Belowof the menu bar, the rest of the window is divided into two panel. In the left side, featuremodel editor and its toolbar is placed and in the right side the business process managerpart of the GENoDL can be found.

Figure 4.4: A screenshot from the GENoDL
Feature model editor of the GENoDL has drag and drop support for features and theirassociated relationship links. Moreover, visual components representing features are resiz-able.

70



New/Save/Load Feature ModelA new feature model ontology can be created by clicking on the "New" menu item whichis placed on the menu bar. By creating a new feature model ontology, the default featuremodel ontology without any feature instance is loaded to the system by the Protégé-OWL.A modi�ed feature model can be saved by clicking on the "Save" menu item of the menubar. As a result, the feature model is exported to its ontological representation as an OWLdocument. Saved feature models can be loaded to the editor through the "Load" menu item.A screenshot of GENoDL's menu bar is given in Figure 4.5.
Figure 4.5: Menu items of the GENoDL

Add/Delete/Change FeaturesThere are two possible ways to insert new features to a feature model. One method is byclicking on the "Insert" item on the feature model editor toolbar. A new feature is added tothe top-left corner of the feature model. The toolbar of the feature model editor is shown inFigure 4.6. The other way is using the popup window of the feature model editor displayed
Figure 4.6: The toolbar of the Feature Model Editor

after pressing the right button of the mouse over the feature model panel. From the displayedpopup window, user can select the "Insert" option. As a result, a new feature is createdat the position where the mouse is currently pointing. Inserted feature is named by the"Feature_n" convention where n is initially one and incremented by one after a new feature71



is added. Similar to adding new features, deleting existing ones can be done through the

Figure 4.7: Inserting a new feature to the model
popup window or the speci�c toolbar icon. Moreover, user can delete a feature by using theshortcut key; "Delete" on the keyboard. Before deleting, feature or a group of features mustbe selected from the graph editor.Properties of a feature can be changed through double clicking on it or pressing on theright mouse button over the feature and then selecting the "Edit" option from the popupwindow (see Figure 4.8). A new popup window follows the user's edit request. From this

Figure 4.8: A feature can be edited or deleted by double clicking on it72



new popup window, user can change the name of the feature as well as he/she can includethe feature to the feature model customization through checking the "Select" box. There is adisable part in the editing popup window which corresponds to links that specify relationshipsamong features. Popup menu for editing feature properties is depicted in Figure 4.9.

Figure 4.9: Popup menu for editing properties of a feature
Specify Feature TypesThe rational behind using a feature model editor is to organize features under a root conceptand to specify relationships and constraints among features in a graphical way. In thisrespect, we provide a simple method for specifying feature types. First of all, user decideson a parent and its corresponding child feature from the graph editor. Then, user points thecenter of the parent feature where the mouse pointer is changed its shape. At this moment,user can draw an arrow beginning from the parent feature to the child feature by holding theleft mouse button until pointing to the center of the child feature. By default, "Alternative"property is assigned to the child feature as a result of drawing a link between parent andchild features.In order to change this property or edit it, user right-clicks on the link and selects the"Edit" option from the popup window. There is neither a name nor selection property ofa link so, user can only change the link's type from this popup window. Please note that73



this section is disabled for editing features. User can change a relation or feature type toAlternative, Mandatory or Optional from this section. In order to create a group of featuresthat are alternative of each other, user expands the Alternative tree node and speci�es afeature to be alternative of the current feature. Alternative relation is a transitive propertyso, it is enough to do a single speci�cation in order to add the feature to an alternative groupor create a new group. Popup menu for editing feature types is given in Figure 4.10. If it

Figure 4.10: Popup menu for editing feature types
is not necessary to place relationships among features or user does not want to bother withdrawing links mistakenly when doing drag and drops then the feature type speci�cation canbe disable from the dedicated toolbar option. It can be enabled afterwards by a second clickon the same toolbar icon.Miscellaneous Editing OperationsOther actions that can be performed through the feature model editor's toolbar are listedas follows;

• Undo/Redo: User can undo changes that were executed so far and can redo a mod-i�cation after an undo.
• Cut/Copy/Paste Features: Like in any word processor, our feature model editorsupports essential editing actions on features.74



• Bring to Front/Send to Back: During feature model editing, two features may beplaced like one in front of the other. To prevent such blocking issues and provide amore coherent editing environment, users are provided with facilities to bring a selectedfeature to front or send it back.
• Zoom In/Out: User can change the scale of the graph by using the zoom in/outbuttons on the graph editor toolbar.
• Group/Ungroup: To group features provides important simplicities during featuremodel editing such as easier drag and drop and protection from changes done mistak-enly. A set of feature can be group after selecting them one by one or through drawinga selection box by mouse. User can ungroup those grouped features also.4.2.3 Veri�cation and CorrectionFeature model, generated as an outcome of domain analysis, is customized in applicationengineering phase and speci�cally aligned to form a single product. The customized featuremodel has no variability points but a de�nite set of selected features. In order to verifya customized feature model represented with OWL instances, we employ JESS rule engine.Once the relationships among the features are described and formalized as SWRL statements,the implemented tool converts these statements to JESS rules by the help of the Protégé-SWRL plugin. At this stage, JESS rule engine can verify the interested feature model bychecking each axiom among features described as rules. Whenever an axiom is not holdingfor a customization, the JESS engine can automatically infer the necessary corrections overthis customization. The veri�cation of a feature model can be invoked by clicking on the"Verify" button on the menu bar of the GENoDL.Protégé-SWRL plugin provides necessary Java API called "SWRL Factory" for manip-ulating SWRL rule instances in a OWL knowledge base. Moreover, SWRL Factory is re-sponsible for facilitating the mapping from OWL individuals representing the SWRL rules toassociated Java objects. Each class described in SWRL ontology has a counterpart in SWRLFactory. For example, SWRL Factory supports SWRLImp and SWRLAtomList Java classesthat can be used to mirror instances of the equivalent swrl:Imp and swrl:AtomList OWLclasses.Main concern domain of the SWRL rules is simply about the A-Box of the OWL knowl-edge base in terms of OWL classes and properties. Protégé-SWRL plugin has no reason-ing capability however, it supports API level integration with existing rule engines such75



as JESS. SWRL Factory provides integration functionality in its SWRLRuleEngineAdapterclass. Thus, users can con�gure and use a rule engine over this bridge synchronized with theSWRL rule base and OWL knowledge base. User can load SWRL rules and OWL ontologyknowledge base into the rule engine, execute these rules on the knowledge base and storeinferred results back into the knowledge base.In this work, we exploit the JESS environment which contains a rule base, a fact baseand an execution engine. The execution engine associates rules with facts in correspondingbases. Rules may assert new facts or execute Java functions. In order to enable the JESSrule engine, Protégé-SWRL plugin performs three main tasks;1. Represent OWL knowledge base as JESS facts2. Represent SWRL rules as JESS rules3. Invoke rule engine to perform these transformed rules and re�ect the results of theinference in the OWL knowledge baseThe necessary transformation methods from OWL and SWRL concepts to JESS con-structs and vice versa are given in [52]. Once the OWL and SWRL concepts are transformedto JESS context, the execution engine can perform reasoning. The overall view of the inte-gration between SWRL, Protégé-OWL and JESS rule engine is shown in Figure 4.11.

Figure 4.11: Integrating knowledge base with reasoning engine through Protégé-SWRLadapter
Within the scope of the OntologyManager class of the GENoDL, feature models can76



be veri�ed and corrected by using the Protégé-SWRL's SWRLRuleEngineBridge facility.We �rst initialize a new instance of it as a "SWRLJessBridge" and then the initializedSWRLRuleEngineBridge imports SWRL rules and OWL knowledge base from the featuremodel ontology. Implementation of the GENoDL and Protégé-SWRL integration is givenbelow.// Initialize a new bridge instanceSWRLRuleEngineBridge bridge = BridgeFactory.createBridge("SWRLJessBridge", featureModelOntology);// import SWRL rules and OWL knowledge basebridge.importSWRLRulesAndOWLKnowledge();// Infer axioms and individuals...bridge.run();// Get inferred axioms after reasoningSet<OWLAxiom> inferredAxioms = bridge.getInferredAxioms();If there are any inferred axioms received after reasoning operation, then GENoDL getsthe user's decision whether those changes will be applied automatically or executed oneby one according to the user's preference for each inferred fact. An screenshot from theGENoDL is given in Figure 4.12 representing a correction for an inconsistent feature modelin which a mandatory feature is not selected whereas its parent has been already selected. Ifthe user clicks on the "OK" button on the dialog window then the feature model is updatedand the child feature is selected automatically.

Figure 4.12: An inferred correction for the inconsistent feature model
77



4.2.4 Performance EvaluationFor the performance analysis, we �rst describe �ve feature models with 5, 9, 13, 17 and21 features respectively, and represent them as OWL ontologies. The �rst feature ontologyhas four variability point and variability points are increased by four for each subsequentfeature model. A variability point indicates an OR or Alternative relation between features.The experiment is conducted through the reasoning operation; verifying feature model. In acomputing environment of 1.8 GHz Intel(R) Pentium Core2 Duo(TM) with 1 GB RAM, thetime for performing this operation over sample inputs by JESS are comparatively depicted inFigure Figure 4.13. As it can be seen in the chart, the reasoning performance is closely relatedwith the number of features in the feature model. This is because of the Rete algorithm whichJESS implements. The complexity of the inference operation can be generalized as the orderof O(RF), where R is the number of axioms and F is the number of features on the workingmemory. The performance dramatically decreases as the number of features increases. Thedetailed analysis for Rete algorithm can be found at [39].

Figure 4.13: Performance Analysis
78



CHAPTER 5EXPLOITING SEMANTICALLYENRICHED FEATURE MODELS FORSERVICE ONTOLOGY DEVELOPMENT
Both SPL and SOC paradigms promise high levels of software reuse in order to reducetime-to-market and development/maintenance costs of software intensive systems. In spiteof sharing a common goal, they tackle with software reusability challenges from di�erentperspectives by genuine practices and concepts. The diversity in independent approachesfor making software reusable creates a wide range of opportunities for these paradigmsto evolve in supporting more dynamic, systematic and adaptable reuse strategies throughcomplementing and exploiting each others' existing methods and best practices.Instead of developing each product from scratch, a planned and controlled reuse in-frastructure which manages commonalities and di�erences among products is employed inproduct line engineering to develop resulting products in a more faster and cheaper way. Ingeneral, variability management enables systematic reuse of core assets including source code,requirements speci�cations, software architectures, design models, test cases and processes.Reusing core assets in a systematic way will lead large-productivity gains, short time-to-market, higher product quality, increased customer satisfaction, decreased development andmaintenance costs.Unlikely in SPL, current engineering approaches for developing services and service-oriented applications largely neglect managing commonalities and variabilities among servicede�nitions in su�cient details. In order to foster productivity gains and to cope with main-tainability problems and build future-proof service-oriented systems, SOC should employnecessary patterns, practices and concepts. 79



We believe that SPL's domain analysis methods have great potentials in employing vari-ability management during service design and development life-cycle. In this respect, weemploy our semantically enriched feature models in order to achieve productivity gains,extensibility, maintainability and applicability goals in semantic modeling of web servicefamilies in a systematic fashion. This chapter presents our variability modeling approachfor web service semantics along with a reference variability model and a case study given insubsequent sections.5.1 A Variability Modeling Approach for Web Service Seman-ticsSystematic reuse within the web service development context encloses customization of adomain model in order to produce a family of services with related functionality. In thecase of service semantics, this also includes production of service ontologies after re�ning thedomain outcomes. A need for such reusable and speci�able web services seems obvious. Forinstance, a web service middleware for the tourism industry [42] may represent and implementa number of travel services where the exposed functionalities can be parameterized throughdi�erent QoS requirements or mileage types.Another good example for service family approach can be found in telecommunicationservice providing business. Based on the network bandwith and other limitations, a low (orhigh) bandwidth voice codec can be preferred for the same Interactive-Voice-Response (IVR)service to transmit and receive voice data.The notion of systematic reuse in developing families of web service are largely examinedin Jiang et al's work [41]. The work proposes a categorization of possible variation pointsamong web services, and introduces a pattern-based approach for managing the variationpoints and specifying a web service framework. The variation points are de�ned on serviceendpoints, WSDL documents, and business logic.Similarly, we analyze and manage the variability in web service de�nitions from threebroad perspectives namely Service Grounding, Service Pro�le and Service Model which havebeen once introduced by the OWL-S service ontology. We adopt the Jiang et al's notion offamilies of web services and bring the feature-oriented domain analysis (FODA) to it insteadof the pattern-based variability management approach.In basic terms a variability model employs variation points, di�erent variation types andconstraints among variations in order to represent variabilities de�ned within a speci�ed con-80



cept. Di�erences are placed in a concept through variation points which can be satis�ed byvariants. In FODA, the types of variations are generally classi�ed to mandatory, alternativeand optional features. Moreover, there can be additional constraints such as requires andexcludes among features.Semantic modeling of web service families and fostering mass development of serviceontologies are based on identifying and managing the points of variability. In the followingsubsections we present three di�erent categories of variation in terms of OWL-S and giveexample variability points for each of them through enabling ebBP speci�cations and thepreviously identi�ed ones in [41].Variation in Service GroundingIn general, Service Grounding describes how to access to the service through concrete spec-i�cations such as binding protocol, address, message formats etc. When we consider abottom-up approach, service grounding can be generated from existing service interfaces,mostly from WSDL documents.The provided binding mechanism can vary for the same service conceptualization basedon the service invocation types. Main variability points of service grounding are identi�edin [68] as follows;
• Binding Protocol: A number of di�erent application layer and transport layer pro-tocols can be used for service interactions over a network such as SOAP/HTTP,SOAP/HTTPS, SOAP/JMS etc. These alternatives for the binding protocol selec-tion constitute a main variability point for Service Grounding.
• Binding Time: Participating business service interfaces to be invoked during a businessactivity can be selected either in design-time or run-time. SOA supports dynamicselection of services to make a composite process model adaptable to changes in theexecution environment.Variation in Service ModelService Model describes the semantics of how a service interacts with its clients, and thedata and control �ow of corresponding process speci�cation. OWL-S process models; Simple,Atomic and Composite are subclasses of the Service Model. The ways a client may interactwith a service through exchanging messages provides a basis for Service Model variability.81



• Message Exchange: During the execution of a service process model, business docu-ments can be exchanged through conforming two di�erent patterns namely synchronousand asynchronous. The main di�erence between these two patterns is their e�ects onthe initiator of the business transaction. In synchronous message exchange the re-quester party is blocked till it receives a response from the other party whereas inasynchronous pattern, the requester is not blocked.Variation in Service Pro�leService Pro�le describes the what is done by service and presents necessary information suchas service name, its text description and contact information. Service pro�les are generallyenabled in automated operations like dynamic service discovery. It can be considered as ayellow page entry of the service functionality. Information about inputs, outputs, precon-ditions and e�ects of the service are given the pro�le part. One important aspect of theservice pro�le is its service parameter option which give the characteristic features of theservice such as QoS and classi�cation of service functionality in taxonomies provided byservice registries. OWL-S's service pro�le can be directly mapped to UDDI registry datamodel [48].In order to produce the appropriate exceptions, the ebBP speci�cations mandate a busi-ness service interface to conform to the following service parameters during the executionof the corresponding business activity. Indeed, each of these parameters creates a source ofvariability in service pro�les;
• AuthorizationRequired: Exchanged business document must be signed by the senderand the receiving party must validate and approve the authorizer.
• NonRepudiationRequired: An exception should be raised whenever a business docu-ment has not properly delivered.
• NonRepudiationOfReceiptRequired: Both business partners agree to mutually verifyreceipt of a business document and that the receipt MUST be non-reputable. Non-repudiation of receipt provides the data for the following additional veri�cations; Au-thenticate and Content Integrity.Reference Variability ModelWe expose the previously identi�ed variability points to our semantically enriched featuremodel as shown in Figure 5.1. During the service ontology generation, the feature model's82



selected, or in other words customized, nodes are automatically transformed into accom-panying OWL-S construct which is in this case the serviceParameter element of OWL-SPro�le. OWL-S provides an unbounded list of service parameters that can contain any typeof information. Thus, serviceParameter construct is very suitable for representing featurecustomizations. A serviceParameter consists of two attributes serviceParameterName, thename of the actual parameter, which could be just a literal, or perhaps the URI of the processparameter, and sParameter which points to the value of the parameter within some OWLontology. A customized feature placed as a leaf node of the feature model can be mappedto a serviceParameter instance with the Condition type for the sParameter.

Figure 5.1: A reference variability model for semantic modeling of web service families
Moreover, new features can be included under the related variability category by thedomain experts in order to extent the scope of the default web service variability model.After a new feature is added to the model, it can be transformed into the service ontologyde�nition as it is explained for the default features. Variabilities captured within a featuremodel can be re�ected to a business collaboration's OWL-S counterpart which is Service.The generic mapping table from Service Grounding, Model and Pro�le features to OWL-SPro�le service parameter is given in Table 5.1.Table 5.1: Features to OWL-S parametersFeature OWL-S Counterpart (serviceParameter)Feature/@name Pro�le/serviceParameter/serviceParameterNameserviceParameter/sParameter/expr:Condition83



5.2 An Example Walkthrough with the GENoDLThe �rst step in generating web service ontologies is to provide our reasoning tool with anebBP instance as input. The tool then re�nes business process constructs such as Busi-nessCollaboration in order to compile them in possible service ontology representations. Tostart the transformation process, �rst a BusinessCollaboration is selected from the BusinessProcess Manager section of the user interface. The tool then loads the default service featuremodel to the feature model editor. If the domain expert has any extension or further cus-tomization requests, she can modify the feature model by inserting/deleting or (de)selectingfeatures through using the feature model editor bundled within our tool. Newly insertedfeatures should be associated with their formal and machine readable de�nitions. Aftermodi�cations, reasoner checks the resulting feature model's consistency and automaticallycorrects any invalid customization with domain expert's empowerment. Finally, the veri�edfeature model customization along with the selected business collaboration speci�cation istransformed into OWL-S notation according to the mappings given in Chapter 3.Consider an example ebBP instance from the Dutch Criminal Justice project called ePV[25]. In this business process, the business collaborations taking part in the the process ofdemanding the surrender of a driver license for drunk driving among police, prosecution,court and RDW (the organization responsible for maintaining the national driver licensedatabase) are modeled. After loading the ebBP instance into the GENoDL, the tool re�nesBusinessCollaboration instances which are candidates for being realized in a web service pro-tocol stack. From the list of ebBP elements, we select a BusinessCollaboration element calledBC-ID-DemandSurrenderOfDriverLicense. A part of this business collaboration instance isrepresented in Figure 5.2. The BC-ID-DemandSurrenderOfDriverLicense is responsible forthe control and data �ow of the performed business activities for demanding surrender'sdriver license. After specifying which business collaboration is subject to be transformedinto corresponding OWL-S representation, GENoDL loads the default service feature modelto the feature model editor as depicted in Figure 5.3. By modifying the feature model, theuser can customize and extend the feature model in order to meet the further needs thatebBP cannot fully consider such as low level service grounding issues which are speci�c toservice realizations. Each di�erent feature model customization results in di�erent serviceontology. Finally, GENoDL veri�es the feature model and compiles it in OWL-S notation byclicking on the last toolbar icon of the feature model editor. An excerpt from the resultingservice ontology for BC-ID-DemandSurrenderOfDriverLicense is given in Figure 5.4.84



Figure 5.2: ebBP representation for BC-ID-DemandSurrenderOfDriverLicenseIt can be easily understood that a family of related service ontologies can be quicklygenerated by applying the proposed generative method. For example, by selecting di�erentchildren of the BindingProtocol feature can result in various service conceptualizations thateach of their implementations will be subject to be used in a distinct application scenariospeci�cally.

85



Figure 5.3: Service variability model is customized service feature model with the informationextracted from BC-ID-DemandSurrenderOfDriverLicense.

Figure 5.4: A part of the BC-ID-DemandSurrenderOfDriverLicense Service Ontology86



CHAPTER 6RELATED WORK
Feature-Oriented Domain Analysis utilizes propositional logic for de�ning feature models.On the other hand, various extensions to feature modeling can bring feature models closer toontology formalism as in [19, 47]. Feature models can be represented in OWL DL ontologyand then an OWL reasoning engine such as RACER [34] can be used to perform automatedanalysis over the feature model as described in [78]. Veri�cation of feature models by usingsemantic web tools allows domain engineers to detect possible inconsistencies in featurecon�gurations more e�ciently than the traditional approaches. However, previous studiesdo not address the automated correction of inconsistent feature models. We enable thisoperation in our work as a contribution to the current state-of-art in automated featuremodel analysis.Although it is shown that feature models can be conceptualized by formal methods, howto enable a feature model in the reusable asset development process is still remaining asan open issue. Because the level of abstraction at which a feature can denote entities orconcepts will be ambiguous [18].Mapping business process speci�cation standards to accompanying OWL-S representa-tions has been studied before in several studies. In two of them [33, 70], FPML and BPELare transformed into OWL-S respectively. They provide a starting point for enriching thebusiness process semantics in the form of OWL-S ontology for �exible integration and au-tomation of work�ows. We extend the current state in transformation approaches withemploying variability management to be able to consider mass customization of a set ofrelated ontologies.An alternative method for automatic service ontology generation is given in [86]. Thework exploits the UML class and state-chart diagrams for formally extracting the domainknowledge of atomic services and service compositions. UML is widely adopted in software87



engineering as a standard for modeling, which most developers are familiar with. Oncenecessary information is extracted from UML diagrams, XSLT applications automaticallytransform the UML diagrams into OWL-S speci�cation according to prede�ned rules. Eventhough the functional requirements especially the process side of the analysis model areautomatically extracted and localized into OWL-S service process model, wider businessand architectural issues such as non-functional requirements are not considered within thescope of this work.There are a number of research studies [54, 63] for transforming business process speci-�cations to more lower abstraction levels such as web service choreography or orchestrationrepresentations. However, these studies do not cover the variability issues and neglect thereusability opportunities that may arise after enabling service ontologies.As it is understood from the previous research studies, the automated domain-speci�cknowledge analysis methods are still stands at an early stage. In this study, we separate theidenti�cation, speci�cation and realization concerns of a service-oriented system by means ofdomain engineering outcomes such as business processes for identi�cation, service ontologiesfor speci�cation and service implementations for realization. This separation of concerns,which well �ts in Service-Oriented Modeling and Architecture (SOMA) [5], allows us to au-tomate the mapping from identi�cation step to speci�cation step through utilizing semanticweb technologies and also it provides means for capturing commonalities and variabilities inservice models by exploiting feature models.

88



CHAPTER 7CONCLUSION AND FUTURE WORK
Conventional development methodologies such as object-oriented development and component-based development do not fully address key engineering challenges of today's service-orientedsystems such as setting the proper level of service interface granularity and facilitating massdeployment of services. In fact, service-oriented design and development requires an inter-disciplinary approach fusing concepts of business process management with traditional soft-ware development methods [58].In this respect, providing better means for the business process management (BPM) andservice-oriented computing (SOC) convergence is one of the major concerns that get a lotof attention in contemporary software engineering research. Despite their di�erences, whencombined together, they become synergetic through addressing the challenges of rapidlychanging business environments, reducing cost and increase e�ciency in implementing in-novations. SOC provides the necessary agility and loose coupling to IT infrastructures andBPM provides its business case where business processes, which are considered as reusableelements and are independent from implementation technology, are viewed as federation ofservices connected via standard protocols in a service-oriented architecture. While BPM-SOC convergence looks promising, how to map the process models to service de�nitions isstill an open issue.7.1 Conducted WorkIn order to address this challenge, we exploit software product line (SPL) approach wheredomain engineering outcomes are transformed into particular products in application engi-neering. In our case, domain engineering outcomes consist of business process models andfeature models whereas products in application engineering represent the resulting service89



ontologies. As the result of the introduced product line process, a set of web service on-tologies based on business process models and feature model customizations are produced.Promises of our SPL dialect of BPM-SOC convergence problem is given as follows;
• Knowledge-based elicitation and re�nement of domain engineering outcomes as serviceontologies allows designing and deploying services better aligned with business goals,stakeholder's concerns and end-user's viewpoints.
• Changes in the business parameters can be more rapidly re�ected to the service real-izations in the supervision of SPL
• Service-oriented systems can be more rapidly deployed by enabling build-by-integrationparadigm which encourages matching product capabilities to existing services by uti-lizing semantic web technologies.
• A set of related web services can be more rapidly developed by managing commonalitiesand variabilities among them.Within the scope of our product line, a transformation method for automatic generationof service ontologies is presented in order to formalize and ease the mapping among theconcepts derived by domain and application engineering. Business process models are con-sumed as the meta knowledge and the service ontologies are populated using transformationmethod over this knowledge base.7.2 Concluding RemarksThe mechanisms that were developed, were experimented through an example. This ex-ample included the mapping from an existing business process model, that represents thedomain-level knowledge. The outcome has been promising: in general it has been observedthat automated generation of web service ontologies is possible and usable. However, ourobservation also states that very high-abstraction level elements of the domain is not easyto map directly.7.3 Future WorkOur novel generative method for service ontology creation has not reached its maturity yet.Although the algorithm for mapping business transaction de�nitions to OWL-S service pro-cess models has been already implemented, it should be revised and extended in favor of90



generating more coarse-grained service ontologies including more detailed process models.Moreover, the generative method will be extended with the mapping rules of other ebBP con-cepts that have not been involved in the current implementation such as guards, exceptionsand signals.Our area of interest for this work is not limited with one semantic model of a singleweb service indeed, we focus on a family of services and their ontological representations.Therefore, we provide a variability management method for service ontologies based onfeature modeling. Commonalities and variabilities among semantic models are capturedwithin a reference variability model in order to foster mass development of ontologies byenabling reusable assets. The axioms are evaluated over the feature model and combinedwith the business process model inference data to enable easy and rapid development of afamily of formal service models. Current version of the feature model editor and featuremodel ontology does not support cardinality-based relations among features as proposed in[18]. This will be implemented as a possible improvement. Furthermore, an evaluation ofmemory allocated for varying input sizes will be performed in order to assess the feasibilityof the feature model veri�cation operation from a di�erent perspective.Although our product line approach for service ontology generation is based on two wellknown standards of their domains (ebBP and OWL-S), this dependence makes the approachtightly coupled with these schema de�nitions. A more generic approach which is independentfrom implementation technologies is considered as a future work. Finally, evaluation of thequality and domain coverage of the resulting service ontologies should be explicitly justi�edthrough anticipated metrics and methods, so that domain experts and developers can assessthem easily.

91



REFERENCES
[1] A. Dogac A, Y. Kabak, O. Gulderen, T. Namli, A. Okcan, O. Kilic, Y. Gurcan,U. Orhan, and G. Laleci. ebBP Pro�le for Integrating Healthcare Enterprise (IHE).Submitted to OASIS ebXML Business Process Technical Committee, 2006.[2] N. I. Altintas. Feature Based Software Asset Modeling with Domain Speci�c Kits. PhDthesis, Middle East Technical University, August 2007.[3] N. I. Altintas, S. Cetin, and A. H. Dogru. Industrializing Software Development: TheFactory Automation Way. Lecture Notes in Computer Science, 4473:54�68, 2007.[4] An Example Application Engineering Process. http://www.sei.cmu.edu/domain-engineering/appl_eng_example.html, last visited on October 2008.[5] A. Arsanjani. Service-oriented modeling and arhitecture. Technical report, IBM devel-operWorks, 2004.[6] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F.Patel-Schneider. The Description Logic Handbook: Theory, Implementation, and Ap-plications. Cambridge University Press, 2003.[7] David Benavides, Antonio Ruiz Cortés, Pablo Trinidad, and Sergio Segura. A surveyon the automated analyses of feature models. In JISBD, pages 367�376, 2006.[8] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scienti�c American,284:34�43, 2001.[9] Joseph Bih. Service oriented architecture: A new paradigm to implement dynamice-business solutions. ACM Ubiquity, 7(30), 2006.[10] Web Services Business Process Execution Language Version 2.0. http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpelv2.0OS.html, last visited on October 2008.92



[11] Business Process Modeling Notation (BPMN), Object Management Group/BusinessProcess Management Initiative. http://www.omg.org/docs/dtc/060201.pdf, last visitedon October 2008.[12] Semih Cetin, N. Ilker Altintas, and Cevat Sener. An architectural modeling approachwith symmetric alignment of multiple concern spaces. International Conference onSoftware Engineering Advances, 0:48, 2006.[13] Paul Clements and Linda Northrop. Software Product Lines: Practices and Patterns.Addision Wesley Professional, August 2001.[14] COM: Component Object Model Technologies, Microsoft/COM Initiative. http://-www.microsoft.com/com/default.mspx, last visited on October 2008.[15] Common Object Request Broker Architecture (CORBA), Object ManagementGroup/CORBA Initiative. http://www.omg.org/corba/, last visited on October 2008.[16] K. Czarnecki. Generative Programming: Principles and Techniques of Software En-gineering Based on Automated Con�guration and Fragment-Based Component Models.PhD thesis, Technical University of Ilmenau, October 1998.[17] K. Czarnecki. Overview of Generative Software Development. Lecture Notes in Com-puter Science, 3566:326�341, 2005.[18] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Staged con�guration throughspecialization and multi-level con�guration of feature models. In Software Process Im-provement and Practice, 2005.[19] Krzysztof Czarnecki, Chang Hwan Peter Kim, and Karl Trygve Kalleberg. Featuremodels are views on ontologies. In SPLC '06: Proceedings of the 10th International onSoftware Product Line Conference, pages 41�51, Washington, DC, USA, 2006. IEEEComputer Society.[20] DAML+OIL Web Ontology Language. http://www.w3.org/Submission/2001/12/, lastvisited on October 2008.[21] Dublin Core Metadata Initiative. http://www.dublincore.org/, last visited on October2008.[22] ebXML Business Process Speci�cation Schema. http://docs.oasis-open.org/ebxml-bp-/2.0.4/OS/, last visited on October 2008.93



[23] ebBP Teleconference 8 August 2006. http://www.oasisopen.org/committees-/download.php/19736/ebxmlbp-v2.0.3Minutes-update.txt, last visited on October 2008.[24] Marco Eichelberg, Thomas Aden, Jörg Riesmeier, Asuman Dogac, and Gokce B. Laleci.A survey and analysis of electronic healthcare record standards. ACM Comput. Surv.,37(4):277�315, 2005.[25] ePV Netherlands Criminal Justic ebBP Example. http://www.oasis-open.org-/committees/document.php?document_id=16436wg_abbrev=ebxml-bp, last visitedon October 2008.[26] K. Gottschalk et al. Web services architecture overview. Technical report, http://-www.ibm.com/developerworks/webservices/library/wovr/, September 2000.[27] Roy Fielding. Architectural Styles and the Design of Network-based Software Architec-tures. PhD thesis, University of California, Irvine, 2000.[28] Charles L. Forgy. Rete: A fast algorithm for the many pattern/many object patternmatch problem. Arti�cial Intelligence, 19:17�37, 1982.[29] J. Green�eld, K. Short, S. Cook, and S. Kent. Software Factories: Assembling Appli-cations with Patterns, Models, Frameworks, and Tools. Wiley, August 2004.[30] M. L. Griss and K. Wentzel. Hybrid domain speci�c kits for a �exible software factory.In Proceedings of the Ann. ACM Symp. Applied Computing, pages 47�52, 1994.[31] T. R. Gruber. A translation approach to portable ontology speci�cation. KnowledgeAcquisitons, 5:199�220, 1993.[32] T. R. Gruber. Toward Principles for the Design of Ontologies Used for KnowledgeSharing. International Journal of Human Computer Studies, 43:907�928, 1995.[33] Li Guo, Yun-Heh Chen-Burger, and Dave Roberston. Mapping a business process modelto a semantic web service model. In ICWS '04: Proceedings of the IEEE InternationalConference on Web Services, page 746, Washington, DC, USA, 2004. IEEE ComputerSociety.[34] Volker Haarslev and Ralf Muller. Racer: An owl reasoning agent for the semantic web. InIn Proc. of the International Workshop on Applications, Products and Services of Web-based Support Systems, in conjunction with 2003 IEEE/WIC International Conferenceon Web Intelligence, pages 91�95. Society Press, 2003.94



[35] J. Hanson. Coarse-grained interfaces enable service composition in soa. In JavaOne,August 2003.[36] Hao He. What is service-oriented architecture. Technical report, http://www.xml.com-/lpt/a/1292, September 2003.[37] Michi Henning. The rise and fall of corba. ACM Queue, 4(5), 2006.[38] Hypertext Transfer Protocol 1.1. http://www.w3.org/Protocols/rfc2616/rfc2616.html,last visited on October 2008.[39] JESS: the Rule Engine for the Java Platform. http://www.jessrules.com/, last visitedon October 2008.[40] Java Graph Visualization and Layout. http://www.jgraph.com/, last visited on October2008.[41] Juanjuan Jiang, Anna Ruokonen, and Tarja Systa. Pattern-based variability manage-ment in web service development. In ECOWS '05: Proceedings of the Third EuropeanConference on Web Services, page 83, Washington, DC, USA, 2005. IEEE ComputerSociety.[42] Y. Kabak, M. Olduz, G. B. Laleci, T. Namli T, V. Bicer, N. Radic, and A. Dogac. Asemantic web service based middleware for the tourism industry. In Book Chapter, toappear.[43] Faouzi Kamoun. A roadmap towards the convergence of business process managementand service oriented architecture. Ubiquity, 8(14):1�1, 2007.[44] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-orienteddomain analysis (foda) feasibility study. Technical report, Carnegie-Mellon UniversitySoftware Engineering Institute, November 1990.[45] M. Kuan. Using swrl and owl dl to develop an inference system for course scheduling.Master's thesis, Chung Yuan Christian University, Taiwan, 2004.[46] M. LeClerc. Service layer transition towards a service oriented architecture (soa) -expanding the value of operators' telecom assets. In EMEA Conference, 2005.[47] Soon-Bok Lee, Jin-Woo Kim, Chee-Yang Song, and Doo-Kwon Baik. An approach toanalyzing commonality and variability of features using ontology in a software product95



line engineering. In SERA '07: Proceedings of the 5th ACIS International Conferenceon Software Engineering Research, Management & Applications, pages 727�734, Wash-ington, DC, USA, 2007. IEEE Computer Society.[48] Jim Luo, Bruce Montrose, Anya Kim, Amitabh Khashnobish, and Myong Kang. Addingowl-s support to the existing uddi infrastructure. pages 153�162, 2006.[49] Dale Molberg and Monica J. Martin. The ebbp (ebxml business process speci�cationschema. Technical report, OASIS, April 2006.[50] Organization for the Advancement of Structured Information Standards (OASIS).http://www.oasisopen.org/home/index.php, last visited on October 2008.[51] Martin O�onnor, Holger Knublauch, Samson Tu, Benjamin Grosof, Mike Dean, WilliamGrosso, and Mark Musen. Combining swrl rules and owl ontologies with protégé owlplugin, jess, and racer. 7th International Protégé Conference, 2004.[52] Martin O'Connor, Holger Knublauch, Samson Tu, Benjamin Grosof, Mike Dean,William Grosso, and Mark Musen. Supporting rule system interoperability on thesemantic web with swrl. Fourth International Semantic Web Conference (ISWC-2005),2005.[53] Oracle. Oracle it modernization series: The types of modernization. Technical report,2006.[54] Chun Ouyang, M. Dumas, Ter, and W. M. P. van der Aalst. From bpmn process modelsto bpel web services. pages 285�292, 2006.[55] OWL Web Ontology Language Overview. http://www.w3.org/TR/owlfeatures/, lastvisited on October 2008.[56] Semantic Markup for Web Services . http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/, last visited on October 2008.[57] M. Paolucci, W. Goix, A. Andreetto, M. Luther, and M. Wagner. Representing Ser-vices for Mobile Computing using OWL and OWL-S. WWW Service Composition withSemantic Web Services (WSComp), 2005.[58] M. P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann, , and B. J. Kramer. Service-oriented computing research roadmap. Technical report, March 2006.96



[59] Artem Papkov. Develop a migration strategy from a legacy enterprise it infrastruc-ture to an soa-based enterprise architecture. Technical report, http://www.ibm.com-/developerworks/webservices/library/ws-migrate2soa/, April 2005.[60] Protégé Ontology Editor and Knowledge Acquisition System. http://-protege.stanford.edu/, last visited on October 2008.[61] Resource Description Framework (RDF) Model and Syntax Speci�cation. http://-www.w3.org/TR/1999/RECrdfsyntax19990222/, last visited on October 2008.[62] RDF Vocabulary Description Language 1.0: RDF Schema. http://www.w3.org/TR-/rdfschema/, last visited on October 2008.[63] Jan Recker and Jan Mendling. On the translation between bpmn and bpel: Conceptualmismatch between process modeling languages.[64] RIDE Deliverable 5.3.1 - Contribution to Standards: ebBP Editor v1.0.4User Manual. http://www.srdc.metu.edu.tr/webpage/publications/2007/ebBPEditor-UserManualv1.0.4.pdf, last visited on October 2008.[65] RIDE Deliverable 4.4.5 - Integrating the Legacy eHealth Applications of the MemberStates into the RIDE Technical Framework. http://www.srdc.metu.edu.tr/webpage-/projects/ride/deliverables% -/RIDE_D4.4.5_v1.1.doc, last visited on October 2008.[66] Rick Robinson. Understand enterprise service bus scenarios and solutions in service-oriented architecture. Technical report, https://www.ibm.com/developerworks/library-/ws-esbscen/, June 2004.[67] Marta Sabou, Chris Wroe, Carole Goble, and Gilad Mishne. Learning domain ontologiesfor web service descriptions: an experiment in bioinformatics. InWWW '05: Proceedingsof the 14th international conference on World Wide Web, pages 190�198, New York, NY,USA, 2005. ACM.[68] S. Segura, D. Benavides, A. Ruiz-Cortés, and P.Trinidad. A taxonomy of variability inweb service �ows. In Service Oriented Architectures and Product Lines (SOAPL - 07),Kyoto. Japan, September 2007.[69] SEI. Smart: The service-oriented migration and reuse technique. Technical ReportCMU/SEI-2005-TN-029, 2005. 97



[70] Jun Shen, Yun Yang, Chengang Wan, and Chuan Zhu. From bpel4ws to owl-s: Inte-grating e-business process descriptions. In SCC '05: Proceedings of the 2005 IEEE In-ternational Conference on Services Computing, pages 181�190, Washington, DC, USA,2005. IEEE Computer Society.[71] Simple Object Access Protocol (SOAP). http://www.w3.org/TR/soap/, last visited onOctober 2008.[72] Semantic Web Rule Language. http://www.w3.org/Submission/SWRL/, last visited onOctober 2008.[73] UDDI Version 3.0.2. http://uddi.org/pubs/uddi_v3.htm, last visited on October 2008.[74] Emanuele Della Valle, Dario Cerizza, Veli Bicer, Yildirak Kabak, Gokce Banu Laleci,and Holger Lausen. The need for semantic web service in the ehealth. W3C Workshopon Frameworks for Semantics in Web Services, 2005.[75] Frank J. van der Linden, Klaus Schmid, and Eelco Rommes. Software Product Lines inAction: The Best Industrial Practice in Product Line Engineering. Springer, 1 edition,July 2007.[76] The World Wide Web Consortium (W3C). http://www.w3.org/, last visited on October2008.[77] J. Waldo, G. Wyant, A. Wollrath, and S. Kendall. A note on distributed computing.Technical report, Sun Microsystems Laboratories, Mountain View, CA, USA, 1994.[78] Hai Wang, Yuan Fang Li, Jing Sun, Hongyu Zhang, and Je� Pan. A semantic webapproach to feature modeling and veri�cation. In In Workshop on Semantic Web EnabledSoftware Engineering (SWESE'05), 2005.[79] Web Services Architecture. http://www.w3.org/TR/wsarch/, last visited on October2008.[80] David M. Weiss and Chi Tau Robert Lai. Software Product-Line Engineering: A Family-Based Software Development Process. Addison-Wesley Professional, August 1999.[81] Web Services Architecture. www.w3.org/TR/wsarch, last visited on October 2008.[82] Web Services Choreography Description Language Version 1.0. http://www.w3.org-/TR/2004/WDwscdl10-20041217/, last visited on October 2008.98



[83] Web service description language (WSDL). http://www.w3.org/TR/wsdl/, last visitedon October 2008.[84] Web Service Modeling Ontology (WSMO). http://www.w3.org/Submission/WSMO/,last visited on October 2008.[85] The Extensible Markup Language (XML). http://www.w3.org/XML/, last visited onOctober 2008.[86] Jin Yang and In Chung. Automatic generation of service ontology from uml diagramsfor semantic web services. pages 523�529. 2006.

99



APPENDIX AFEATURE MODEL ONTOLOGY
<?xml version="1.0"?><rdf:RDFxmlns:temporal="http://swrl.stanford.edu/ontologies/built-ins/3.3/temporal.owl#"xmlns:swrla="http://swrl.stanford.edu/ontologies/3.3/swrla.owl#"xmlns:query="http://swrl.stanford.edu/ontologies/built-ins/3.3/query.owl#"xmlns:swrl="http://www.w3.org/2003/11/swrl#"xmlns:swrlx="http://swrl.stanford.edu/ontologies/built-ins/3.3/swrlx.owl#"xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"xmlns:owl="http://www.w3.org/2002/07/owl#"xmlns:p1="http://www.owl-ontologies.com/assert.owl#"xmlns="http://www.owl-ontologies.com/Ontology1209057357.owl#"xmlns:swrlm="http://swrl.stanford.edu/ontologies/built-ins/3.4/swrlm.owl#"xmlns:xsp="http://www.owl-ontologies.com/2005/08/07/xsp.owl#"xmlns:swrlb="http://www.w3.org/2003/11/swrlb#"xmlns:abox="http://swrl.stanford.edu/ontologies/built-ins/3.3/abox.owl#"xmlns:protege="http://protege.stanford.edu/plugins/owl/protege#"xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"xmlns:xsd="http://www.w3.org/2001/XMLSchema#"xmlns:sqwrl="http://sqwrl.stanford.edu/ontologies/built-ins/3.4/sqwrl.owl#"xmlns:tbox="http://swrl.stanford.edu/ontologies/built-ins/3.3/tbox.owl#"xml:base="http://www.owl-ontologies.com/Ontology1209057357.owl"><owl:Ontology rdf:about=""><owl:imports rdf:resource="http://sqwrl.stanford.edu/ontologies/built-ins/3.4/sqwrl.owl"/><owl:imports rdf:resource="http://swrl.stanford.edu/ontologies/built-ins/3.3/abox.owl"/><owl:imports rdf:resource="http://swrl.stanford.edu/ontologies/built-ins/3.3/swrlx.owl"/><owl:imports rdf:resource="http://swrl.stanford.edu/ontologies/built-ins/3.4/swrlm.owl"/><owl:imports rdf:resource="http://swrl.stanford.edu/ontologies/3.3/swrla.owl"/><owl:imports rdf:resource="http://www.w3.org/2003/11/swrlb"/><owl:imports rdf:resource="http://www.w3.org/2003/11/swrl"/><owl:imports rdf:resource="http://swrl.stanford.edu/ontologies/built-ins/3.3/temporal.owl"/><owl:imports rdf:resource="http://swrl.stanford.edu/ontologies/built-ins/3.3/tbox.owl"/><owl:imports rdf:resource="http://swrl.stanford.edu/ontologies/built-ins/3.3/query.owl"/></owl:Ontology><owl:Class rdf:ID="Feature"/><owl:Class rdf:ID="Alternative_Feature"> 100



<rdfs:subClassOf rdf:resource="#Feature"/><owl:disjointWith><owl:Class rdf:ID="Mandatory_Feature"/></owl:disjointWith></owl:Class><owl:Class rdf:about="#Mandatory_Feature"><owl:disjointWith rdf:resource="#Alternative_Feature"/><rdfs:subClassOf rdf:resource="#Feature"/></owl:Class><owl:ObjectProperty rdf:ID="requires"><rdfs:domain rdf:resource="#Feature"/><rdfs:range rdf:resource="#Feature"/></owl:ObjectProperty><owl:ObjectProperty rdf:ID="excludes"><rdfs:domain rdf:resource="#Feature"/><rdfs:range rdf:resource="#Feature"/></owl:ObjectProperty><owl:ObjectProperty rdf:ID="hasParentFeature"><rdfs:domain rdf:resource="#Feature"/><owl:inverseOf><owl:ObjectProperty rdf:ID="hasChildFeature"/></owl:inverseOf><rdfs:range rdf:resource="#Feature"/><rdf:type rdf:resource="http://www.w3.org/2002/07/owl#TransitiveProperty"/></owl:ObjectProperty><owl:ObjectProperty rdf:ID="alternativeOf"><rdf:type rdf:resource="http://www.w3.org/2002/07/owl#SymmetricProperty"/><rdf:type rdf:resource="http://www.w3.org/2002/07/owl#TransitiveProperty"/><rdfs:domain rdf:resource="#Alternative_Feature"/><rdfs:range rdf:resource="#Alternative_Feature"/><owl:inverseOf rdf:resource="#alternativeOf"/></owl:ObjectProperty><owl:ObjectProperty rdf:about="#hasChildFeature"><rdfs:domain rdf:resource="#Feature"/><owl:inverseOf rdf:resource="#hasParentFeature"/><rdfs:range rdf:resource="#Feature"/><rdf:type rdf:resource="http://www.w3.org/2002/07/owl#TransitiveProperty"/></owl:ObjectProperty><owl:ObjectProperty rdf:about="http://www.w3.org/2003/11/swrl#argument2"/><owl:DatatypeProperty rdf:ID="isSelected"><rdfs:domain rdf:resource="#Feature"/><rdf:type rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/><rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#boolean"/></owl:DatatypeProperty><owl:DatatypeProperty rdf:ID="name"><rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/><rdf:type rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/><rdfs:domain rdf:resource="#Feature"/> 101



</owl:DatatypeProperty><swrl:Imp rdf:ID="Requires"><swrl:body><swrl:AtomList><rdf:rest><swrl:AtomList><rdf:first><swrl:IndividualPropertyAtom><swrl:argument2><swrl:Variable rdf:ID="y"/></swrl:argument2><swrl:argument1><swrl:Variable rdf:ID="x"/></swrl:argument1><swrl:propertyPredicate rdf:resource="#requires"/></swrl:IndividualPropertyAtom></rdf:first><rdf:rest><swrl:AtomList><rdf:first><swrl:DatavaluedPropertyAtom><swrl:argument1 rdf:resource="#x"/><swrl:argument2 rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean">true</swrl:argument2><swrl:propertyPredicate rdf:resource="#isSelected"/></swrl:DatavaluedPropertyAtom></rdf:first><rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/></swrl:AtomList></rdf:rest></swrl:AtomList></rdf:rest><rdf:first><swrl:ClassAtom><swrl:classPredicate rdf:resource="#Feature"/><swrl:argument1 rdf:resource="#x"/></swrl:ClassAtom></rdf:first></swrl:AtomList></swrl:body><swrl:head><swrl:AtomList><rdf:first><swrl:DatavaluedPropertyAtom><swrl:argument1 rdf:resource="#y"/><swrl:argument2 rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean">true</swrl:argument2><swrl:propertyPredicate rdf:resource="#isSelected"/>102



</swrl:DatavaluedPropertyAtom></rdf:first><rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/></swrl:AtomList></swrl:head></swrl:Imp><swrl:Imp rdf:ID="General"><swrl:head><swrl:AtomList><rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/><rdf:first><swrl:DatavaluedPropertyAtom><swrl:propertyPredicate rdf:resource="#isSelected"/><swrl:argument2 rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean">false</swrl:argument2><swrl:argument1 rdf:resource="#y"/></swrl:DatavaluedPropertyAtom></rdf:first></swrl:AtomList></swrl:head><swrl:body><swrl:AtomList><rdf:first><swrl:ClassAtom><swrl:classPredicate rdf:resource="#Feature"/><swrl:argument1 rdf:resource="#x"/></swrl:ClassAtom></rdf:first><rdf:rest><swrl:AtomList><rdf:first><swrl:DatavaluedPropertyAtom><swrl:argument2 rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean">false</swrl:argument2><swrl:propertyPredicate rdf:resource="#isSelected"/><swrl:argument1 rdf:resource="#x"/></swrl:DatavaluedPropertyAtom></rdf:first><rdf:rest><swrl:AtomList><rdf:first><swrl:IndividualPropertyAtom><swrl:argument2 rdf:resource="#y"/><swrl:argument1 rdf:resource="#x"/><swrl:propertyPredicate rdf:resource="#hasChildFeature"/></swrl:IndividualPropertyAtom></rdf:first><rdf:rest> 103



<swrl:AtomList><rdf:first><swrl:DatavaluedPropertyAtom><swrl:propertyPredicate rdf:resource="#isSelected"/><swrl:argument2 rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean">true</swrl:argument2><swrl:argument1 rdf:resource="#y"/></swrl:DatavaluedPropertyAtom></rdf:first><rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/></swrl:AtomList></rdf:rest></swrl:AtomList></rdf:rest></swrl:AtomList></rdf:rest></swrl:AtomList></swrl:body></swrl:Imp><swrl:Imp rdf:ID="Mandatory"><swrl:head><swrl:AtomList><rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/><rdf:first><swrl:DatavaluedPropertyAtom><swrl:argument1 rdf:resource="#x"/><swrl:propertyPredicate rdf:resource="#isSelected"/><swrl:argument2 rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean">true</swrl:argument2></swrl:DatavaluedPropertyAtom></rdf:first></swrl:AtomList></swrl:head><swrl:body><swrl:AtomList><rdf:first><swrl:ClassAtom><swrl:classPredicate rdf:resource="#Mandatory_Feature"/><swrl:argument1 rdf:resource="#x"/></swrl:ClassAtom></rdf:first><rdf:rest><swrl:AtomList><rdf:rest><swrl:AtomList><rdf:first><swrl:DatavaluedPropertyAtom><swrl:argument2 rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"104



>true</swrl:argument2><swrl:propertyPredicate rdf:resource="#isSelected"/><swrl:argument1 rdf:resource="#y"/></swrl:DatavaluedPropertyAtom></rdf:first><rdf:rest><swrl:AtomList><rdf:first><swrl:DatavaluedPropertyAtom><swrl:argument1 rdf:resource="#x"/><swrl:argument2 rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean">false</swrl:argument2><swrl:propertyPredicate rdf:resource="#isSelected"/></swrl:DatavaluedPropertyAtom></rdf:first><rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/></swrl:AtomList></rdf:rest></swrl:AtomList></rdf:rest><rdf:first><swrl:IndividualPropertyAtom><swrl:propertyPredicate rdf:resource="#hasParentFeature"/><swrl:argument2 rdf:resource="#y"/><swrl:argument1 rdf:resource="#x"/></swrl:IndividualPropertyAtom></rdf:first></swrl:AtomList></rdf:rest></swrl:AtomList></swrl:body></swrl:Imp><swrl:Imp rdf:ID="Alternative_Parent"><swrl:head><swrl:AtomList><rdf:first><swrl:IndividualPropertyAtom><swrl:argument1><swrl:Variable rdf:ID="z"/></swrl:argument1><swrl:argument2 rdf:resource="#y"/><swrl:propertyPredicate rdf:resource="#hasParentFeature"/></swrl:IndividualPropertyAtom></rdf:first><rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/></swrl:AtomList></swrl:head><swrl:body> 105



<swrl:AtomList><rdf:rest><swrl:AtomList><rdf:rest><swrl:AtomList><rdf:rest><swrl:AtomList><rdf:rest><swrl:AtomList><rdf:first><swrl:DifferentIndividualsAtom><swrl:argument2 rdf:resource="#y"/><swrl:argument1><swrl:Variable rdf:ID="w"/></swrl:argument1></swrl:DifferentIndividualsAtom></rdf:first><rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/></swrl:AtomList></rdf:rest><rdf:first><swrl:IndividualPropertyAtom><swrl:propertyPredicate rdf:resource="#hasParentFeature"/><swrl:argument1 rdf:resource="#z"/><swrl:argument2 rdf:resource="#w"/></swrl:IndividualPropertyAtom></rdf:first></swrl:AtomList></rdf:rest><rdf:first><swrl:IndividualPropertyAtom><swrl:argument2 rdf:resource="#z"/><swrl:propertyPredicate rdf:resource="#alternativeOf"/><swrl:argument1 rdf:resource="#x"/></swrl:IndividualPropertyAtom></rdf:first></swrl:AtomList></rdf:rest><rdf:first><swrl:IndividualPropertyAtom><swrl:propertyPredicate rdf:resource="#hasParentFeature"/><swrl:argument2 rdf:resource="#y"/><swrl:argument1 rdf:resource="#x"/></swrl:IndividualPropertyAtom></rdf:first></swrl:AtomList></rdf:rest><rdf:first> 106



<swrl:ClassAtom><swrl:classPredicate rdf:resource="#Alternative_Feature"/><swrl:argument1 rdf:resource="#x"/></swrl:ClassAtom></rdf:first></swrl:AtomList></swrl:body></swrl:Imp><swrl:AtomList><rdf:first><swrl:ClassAtom><swrl:classPredicate rdf:resource="#Alternative_Feature"/><swrl:argument1 rdf:resource="#x"/></swrl:ClassAtom></rdf:first><rdf:rest><swrl:AtomList><rdf:first><swrl:IndividualPropertyAtom><swrl:argument2 rdf:resource="#y"/><swrl:argument1 rdf:resource="#x"/><swrl:propertyPredicate rdf:resource="#hasParentFeature"/></swrl:IndividualPropertyAtom></rdf:first><rdf:rest><swrl:AtomList><rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/><rdf:first><swrl:IndividualPropertyAtom><swrl:argument1 rdf:resource="#x"/><swrl:argument2 rdf:resource="#z"/><swrl:propertyPredicate rdf:resource="#alternativeOf"/></swrl:IndividualPropertyAtom></rdf:first></swrl:AtomList></rdf:rest></swrl:AtomList></rdf:rest></swrl:AtomList><swrl:Imp rdf:ID="Alternative"><swrl:head><swrl:AtomList><rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/><rdf:first><swrl:DatavaluedPropertyAtom><swrl:propertyPredicate rdf:resource="#isSelected"/><swrl:argument1 rdf:resource="#y"/><swrl:argument2 rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"107



>false</swrl:argument2></swrl:DatavaluedPropertyAtom></rdf:first></swrl:AtomList></swrl:head><swrl:body><swrl:AtomList><rdf:rest><swrl:AtomList><rdf:first><swrl:DatavaluedPropertyAtom><swrl:propertyPredicate rdf:resource="#isSelected"/><swrl:argument2 rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean">true</swrl:argument2><swrl:argument1 rdf:resource="#x"/></swrl:DatavaluedPropertyAtom></rdf:first><rdf:rest><swrl:AtomList><rdf:rest><swrl:AtomList><rdf:first><swrl:DatavaluedPropertyAtom><swrl:argument1 rdf:resource="#y"/><swrl:propertyPredicate rdf:resource="#isSelected"/><swrl:argument2 rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean">true</swrl:argument2></swrl:DatavaluedPropertyAtom></rdf:first><rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/></swrl:AtomList></rdf:rest><rdf:first><swrl:IndividualPropertyAtom><swrl:argument1 rdf:resource="#x"/><swrl:argument2 rdf:resource="#y"/><swrl:propertyPredicate rdf:resource="#alternativeOf"/></swrl:IndividualPropertyAtom></rdf:first></swrl:AtomList></rdf:rest></swrl:AtomList></rdf:rest><rdf:first><swrl:ClassAtom><swrl:classPredicate rdf:resource="#Alternative_Feature"/><swrl:argument1 rdf:resource="#x"/></swrl:ClassAtom> 108



</rdf:first></swrl:AtomList></swrl:body></swrl:Imp><swrl:Imp rdf:ID="Excludes"><swrl:head><swrl:AtomList><rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/><rdf:first><swrl:DatavaluedPropertyAtom><swrl:argument2 rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean">false</swrl:argument2><swrl:argument1 rdf:resource="#y"/><swrl:propertyPredicate rdf:resource="#isSelected"/></swrl:DatavaluedPropertyAtom></rdf:first></swrl:AtomList></swrl:head><swrl:body><swrl:AtomList><rdf:rest><swrl:AtomList><rdf:first><swrl:IndividualPropertyAtom><swrl:argument2 rdf:resource="#y"/><swrl:propertyPredicate rdf:resource="#excludes"/><swrl:argument1 rdf:resource="#x"/></swrl:IndividualPropertyAtom></rdf:first><rdf:rest><swrl:AtomList><rdf:first><swrl:DatavaluedPropertyAtom><swrl:propertyPredicate rdf:resource="#isSelected"/><swrl:argument2 rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean">true</swrl:argument2><swrl:argument1 rdf:resource="#x"/></swrl:DatavaluedPropertyAtom></rdf:first><rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/></swrl:AtomList></rdf:rest></swrl:AtomList></rdf:rest><rdf:first><swrl:ClassAtom><swrl:classPredicate rdf:resource="#Feature"/><swrl:argument1 rdf:resource="#x"/> 109



</swrl:ClassAtom></rdf:first></swrl:AtomList></swrl:body></swrl:Imp></rdf:RDF><!-- Created with Protege (with OWL Plugin 3.4, Build 506) http://protege.stanford.edu -->

110



APPENDIX BSCHEMA DEFINITIONS OF THE COREEBBP COMPONENTS
Details of the document envelope structure is placed in Figure B.1.

Figure B.1: Details of the Document Envelope structure

111



Business documents can be referenced through the dedicated ebBP structure given inFigure B.2.

Figure B.2: ebBP de�nition for logical Business Documents

112



As it is visible in Figure B.3, a business transaction consists of a Requesting BusinessActivity, a Responding Business Activity, one or two business document �ow between themand several optional business signals.

Figure B.3: High level view of the Business Transaction
113



Schema of the business transaction activity is given in Figure B.4.

Figure B.4: Graphical view of the schema of the Business Transaction Activity

114



The ebBP notation for the complex business transaction activities is given in Figure B.5.

Figure B.5: Schema de�nition of the Complex Business Transaction Activity

115



High level view of the Receipt Acknowledgement signal can be found in Figure B.6.

Figure B.6: Model view of the Receipt Acknowledgement signal

116



The de�ned schema for exceptions is shown in Figure B.7.

Figure B.7: Schema of the exception elements found in ebBP documents

117



Schema for business collaborations is given in Figure B.8.

Figure B.8: Schema de�nition of the Business Collaboration
118


