A KNOWLEDGE BASED PRODUCT LINE FOR SEMANTIC MODELING OF
WEB SERVICE FAMILIES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

UMUT ORHAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
COMPUTER ENGINEERING

JANUARY 2009

Approval of the thesis

“A KNOWLEDGE BASED PRODUCT LINE FOR SEMANTIC
MODELING OF WEB SERVICE FAMILIES”

submitted by Umut Orhan in partial fullfillment of the requirements for the degree
of Master of Science in Computer Engineering, Middle East Technical
University by,

Prof. Dr. Canan Ozgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Miislim Bozyigit
Head of Department, Computer Engineering

Assoc. Prof. Dr. Ali H. Dogru
Supervisor, Department of Computer Engineering, METU

Examining Committee Members:

Assoc. Prof. Dr. Ferda Nur Alpaslan
Department of Computer Engineering, METU

Assoc. Prof. Dr. Ali H. Dogru
Department of Computer Engineering, METU

Assoc. Prof. Dr. Nihan Kesim Cicekli
Department of Computer Engineering, METU

Asst. Prof. Dr. Pinar Senkul
Department of Computer Engineering, METU

Yildiray Kabak
SRDC Ltd.

Date:

I hereby declare that all information in this document has been obtained
and presented in accordance with academic rules and ethical conduct. 1
also declare that, as required by these rules and conduct, I have fully cited

and referenced all material and results that are not original to this work.

Name, Last name : Umut Orhan

Signature

iii

ABSTRACT

A KNOWLEDGE BASED PRODUCT LINE FOR SEMANTIC MODELING OF WEB
SERVICE FAMILIES

Orhan, Umut
M.S., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Ali H. Dogru

January 2009, 118 pages

Some mechanisms to enable an effective transition from domain models to web service de-
scriptions are developed. The introduced domain modeling support provides verification
and correction on the customization part. An automated mapping mechanism from the do-
main model to web service ontologies is also developed. The proposed approach is based on
Feature-Oriented Domain Analysis (FODA), Semantic Web technologies and ebXML Busi-
ness Process Specification Schema (ebBP).

Major contributions of this work are the conceptualizations of a feature model for web
services and a novel approach for knowledge-based elicitation of domain-specific outcomes
in order to allow designing and deploying services better aligned with dynamically changing
business goals, stakeholders’ concerns and end-users’ viewpoints. The main idea behind
enabling a knowledge-based approach is to pursue automation and intelligence on reflecting
business requirements into service descriptions via model transformations and automated
reasoning. The proposed reference variability model encloses the domain-specific knowledge
and is formalized by using Web Ontology Language (OWL). Adding formal semantics to
feature models allows us to perform automated analysis over them such as the verification
of model customizations through exploiting rule-based automated reasoners.

This research was motivated due to the needs for achieving productivity gains, maintain-

ability and better alignment of business requirements with technical capabilities in engineer-

v

ing service-oriented applications and systems.

Keywords: Feature-Oriented Domain Analysis, Service-Oriented Computing, Software Prod-

uct Lines, Semantic Web, ebBP, OWL, OWL-S, SWRL, JESS

OZ

BILGI TABANLI ANLAMSAL AG SERVIS AILESI MODELI URETIM BANDI

Orhan, Umut
Yiiksek Lisans, Bilgisayar Miihendisligi Boliimii
Tez Yoneticisi: Do¢. Dr. Ali H. Dogru

Ocak 2009, 118 sayfa

Alan modellerinden, ag servis tamimlarina gecis saglayan etkin mekanizmalar geligtirilmigtir.
Tanitilan alan modelleme desteginin 6zellegtirme kisminda, dogrulama ve diizeltme yetenek-
leri bulunmaktadir. Ayrica, alan modelinden ag servis ontolojilerine egleme saglayan otomatik-
lestirilmis bir mekanizma gelistirilmistir. Onerilen yaklagim o6zellik yonelimli alan analizi
(FODA), anlamsal ag ve ebXML ig siire¢ belirleme semasi (ebBP) teknolojilerini temel al-
maktadir.

Bu caligma ile ortaya konulan temel kazammlar; ag servisleri i¢in hazirlanan bir 6zellik
modeli ile alana 0zgii iiriinlerden bilgi temelli gikarimlar yapilmasini ve bdylece dinamik
is hedeflerine, pay sahipleri ve son kullanici goriiglerine daha iyi uyum gosteren servis-
lerin tasarlanmasi ve konuglandirilmasimi saglayan bir yontemdir. Bilgi temelli yaklagimin
arkasinda yatan temel diisiince model doniigiimleri ve ¢ikarimlar yaparak ig gereksinimlerinin
servis tanimlamalarina yansitilmas: islemine otomasyon kazandirmaktir. Ileri siiriilen refer-
ans degiskenlik modeli alana 6zgii bilgiyi icermekte olup ag ontoloji dili (OWL) ile bigim-
lendirilmistir. Ozellik modellerine kazandirilan bu anlamsal yapilar sayesinde model uyarla-
malarinin dogrulanmas: gibi otomatiklegmis analizlerin kural tabanli ¢ikarim motorlar: ile
gerceklegtirilmesi saglanmigtir.

Bu aragtirma caligmasimin cikig noktalarimi servis yonelimli uygulama ve sistemlerin

miihendisliginde ihtiya¢ duyulan iiretkenlik kazanimlari ve devamliligin saglanmas: ile ig

vi

gereksinimleri ve teknik yeterlilikler arasindaki uyumun iyilestirilmesi konular: olusturmak-

tadir.

Anahtar Kelimeler: Ozellik Yonelimli Alan Analizi, Servis Yonelimli Hesaplama, Yazilim

Uretim Bandlar1, Anlamsal Ag, ebBP, OWL, OWL-S, SWRL, JESS

vii

ACKNOWLEDGMENTS

First of all, I am honored to express my sincere gratitude and appreciation to Assoc. Prof.
Dr. Ali H. Dogru for his encouragement and support throughout this study.

I would also like to convey thanks to jury members and Assoc. Prof. Dr. Halit Oguztiiziin
for their valuable comments on this thesis.

I would like to express my thanks to my friends Gokdeniz Karadag, Mehmet Oldugz,
Mustafa Yiiksel and Ozgiir Giilderen for their help and support during my graduate study.

I am deeply grateful to my family for their love and support. Without them, this work
could not have been completed.

Finally, I am also grateful to my dear friend Simge Cetintoprak for her love, continued

motivating support and cheerful presence.

viii

To my family...

X

TABLE OF CONTENTS

ABSTRACT e iv

OZ . o vi

ACKNOWLEDGMENTS e viii

DEDICATON o ix

TABLE OF CONTENTS e X

LIST OF TABLES e s xiii

LIST OF FIGURES e xiv

LIST OF ABBREVIATIONS e e xvii
CHAPTER

1 INTRODUCTION 1

2 BACKGROUND ON ENABLING TECHNOLOGIES AND STANDARDS 6

2.1 Product Line Engineering and Software Product Lines 6

2.1.1 Software Product Line Process 9

2.1.2 Domain Engineering oo 0oL 10

2.1.3 Application Engineering oL 13

2.1.4 Software Factory Automation (SFA) 14

2.2 Service-Oriented Architecture (SOA) 17

221 Web Services 20

2.2.2 Service Composition o o 21

2.2.3 ebXML Business Process Specification Schema 23

2.2.4 Semantic Interoperability 25

2.2.5 Historical Origins and Motivating Needs Behind SOA 26

2.3 Semantic Web Technologies 27

2.3.1 Resource Description Framework (RDF) 29

2.3.2 Web Ontology Language (OWL) 31

2.3.3 Description Logics oo oo 33
2.3.4 Protégé Ontology Editor and Knowledge Acquisition System 34
2.3.5 OWL-S: Semantic Markup for Web Services 35
2.3.6 Semantic Web Rule Language (SWRL) and JESS 37

3 ENHANCING DOMAIN KNOWLEDGE BASE WITH BUSINESS PROCESS
DEFINITIONS 40
3.1 Core Components of the ebXML Business Process Specification Schema . 41
3.1.1 Business Collaborations and Choreography 41

3.1.2 Business Transactions, Transaction Activities and Business Docu-

ment Flow 43

3.1.3 Business Signals and Exceptions L., 46
3.2 TheebBP Editor 46
3.2.1 Imtroduction 46
3.2.2 Overview of the ebBP Editor Components 48
3.3 Mapping Business Collaborations to Web Service Process Models 93
3.3.1 Motivation Behind the Transformation Method 93
3.3.2 ebBP to OWL-S Mapping 55
3.3.3 Limitations of the Transformation Method 62

4 ADDING FORMAL SEMANTICS AND REASONING SUPPORT TO FEA-

TURE MODELS 63
4.1 Feature Model Ontology 64
4.2 Feature Model Editor and Reasoner 68

4.2.1 System Design 69
422 User Guide 70
4.2.3 Verification and Correction L. 75
4.2.4 Performance Evaluation 78

5 EXPLOITING SEMANTICALLY ENRICHED FEATURE MODELS FOR SER-

VICE ONTOLOGY DEVELOPMENT 79
5.1 A Variability Modeling Approach for Web Service Semantics 80
5.2 An Example Walkthrough with the GENoDL 84

6 RELATED WORK 87

x1

7 CONCLUSION AND FUTURE WORK
7.1 Conducted Work
7.2 Concluding Remarks L
7.3 Future Work
REFERENCES

A FEATURE MODEL ONTOLOGY

B SCHEMA DEFINITIONS OF THE CORE EBBP COMPONENTS

xil

89
89
90
90
92

100

111

TABLES

Table 2.1

Table 2.2

Table 3.1
Table 3.2
Table 3.3
Table 3.4
Table 3.5
Table 3.6

Table 5.1

LIST OF TABLES

Comparison between software engineering and domain engineering. Adapted

from Czarnecki, "Generative Programming”, 1998 [16] 11
Terminology of domain-specific kits 16
Business Transaction to Simple Process 58
DocumentEnvelope to Input (or Output) 58
Business Transaction Activity to Atomic Process 59
Complex Business Transaction Activity to Composite Process 60
Business Collaboration to Service 60
Choreography to Service Process Model 62
Features to OWL-S parameters 83

xiii

LIST OF FIGURES

FIGURES
Figure 1.1 Product line approach for semantic modeling of web service families . . 4
Figure 2.1 Cost analysis of a software project with or without SPL approach . .. 8

Figure 2.2 An overview of SPL’s two-lifecycle process model. Adapted from van

der Linden et al "Software Product Lines in Action: The Best Industrial

Practice in Product Line Engineering”, 2007 [75] 9
Figure 2.3 A common visual notation for some relationships among features . . . 12
Figure 2.4 A sample and abbreviated feature diagram of the concept car 13
Figure 2.5 A sample application engineering process described by SEI 14

Figure 2.6 Overview of the software factory automation approach. Adapted from

Altintas, "Feature Based Software Asset Modeling with Domain Specific

Kits", 2007 2] . . .« o o 15
Figure 2.7 SOA actorsin action, 18
Figure 2.8 Web services technology stack 20
Figure 2.9 Service development life-cycle hierarchy 22

Figure 2.10 Representation of the "Drop Ship" multi-party collaboration with BPMN

and the definition of a QueryResponse business transaction in ebBP

Figure 2.11 An example RDF statements which means that John Doe is the creator
of the resource http://www.metu.edu.tr/ John. Property "creator"
refers to Dublin Core Definition Standard. RDF statement is given in
two different representations; directed labeled graph and XML notation. 30
Figure 2.12 A screenshot from the OWL Classes view of the Protégé Ontology Editor 35

Figure 2.13 Upper ontology of services 36

Xiv

Figure 3.1 A screenshot of the ebBP Editor 48
Figure 3.2 XmlStylist - Main Screen 49
Figure 3.3 XmlStylist - Select Root Dialog 50
Figure 3.4 XmlStylist warns the domain expert about an invalid Business Collab-
oration instance oL L 52
Figure 3.5 Graphical Components of the ebBP Editor 93
Figure 3.6 Bridging the gap between domain and application engineering in de-
veloping service-oriented systemo 95
Figure 3.7 Overview of the mapping specification o6
Figure 4.1 Classes and properties of the feature model ontology 65
Figure 4.2 Classes of the feature model ontology with encapsulated SWRL ontology 67
Figure 4.3 Class diagram of the GENoDL 69
Figure 4.4 A screenshot from the GENoDL 70
Figure 4.5 Menu items of the GENoDL 71
Figure 4.6 The toolbar of the Feature Model Editor 71
Figure 4.7 Inserting a new feature to the model 72
Figure 4.8 A feature can be edited or deleted by double clicking onit 72
Figure 4.9 Popup menu for editing properties of a feature 73
Figure 4.10 Popup menu for editing feature types 74

Figure 4.11 Integrating knowledge base with reasoning engine through Protégé-

SWRL adapter 76
Figure 4.12 An inferred correction for the inconsistent feature model 7
Figure 4.13 Performance Analysis 78
Figure 5.1 A reference variability model for semantic modeling of web service fam-

ilies . . . 83
Figure 5.2 ebBP representation for BC-ID-DemandSurrenderOfDriverLicense . . 85
Figure 5.3 Service variability model is customized service feature model with the

information extracted from BC-ID-DemandSurrenderOfDriverLicense. . 86
Figure 5.4 A part of the BC-ID-DemandSurrenderOfDriverLicense Service Ontol-

OZY '« o e e e 86
Figure B.1 Details of the Document Envelope structure 111
Figure B.2 ebBP definition for logical Business Documents 112

XV

Figure B.3 High level view of the Business Transaction 113

Figure B.4 Graphical view of the schema of the Business Transaction Activity . . . 114
Figure B.5 Schema definition of the Complex Business Transaction Activity 115
Figure B.6 Model view of the Receipt Acknowledgement signal 116
Figure B.7 Schema of the exception elements found in ebBP documents 117
Figure B.8 Schema definition of the Business Collaboration 118

xXvi

LIST OF ABBREVIATIONS

AML Asset Modeling Language
AMM Asset Meta Model

BPEL Business Process Execution Lan-
guage

BPM Business Process Management

BPMN Business Process Modeling Nota-
tion

CcCOM Component Object Model

CORBA Common Object Request Bro-
ker Architecture

DL Description Logics

DSA Domain-Specific Artifact
DSAT Domain-Specific Artifact Type
DSE Domain-Specific Engine

DSK Domain-Specific Kit

DSL Domain-Specific Language
DST Domain-Specific Toolset

ebBP ebXML Business Process Specifi-
cation Schema

ebXML Electronic Business using XML

FODA Feature-Oriented Domain Analy-
sis

FOL First-Order Logic

FPML Fundamental Business Process Mod-
eling Language

GSM Global System for Mobile Com-

munications

GUI Graphical User Interface

xvil

HTML
HTTP
JESS

OASIS

OWL
PLC
REST
PSTN

RDF
RDFS

SEI
SFA
SOA
SOAP
SPL
UDDI

UML
URI
WSFL
W3C

HyperText Markup Language
Hyper Text Transfer Protocol

The Rule Engine for the Java Plat-
form

Organization for the Advancement
of Structured Information Stan-
dards

Web Ontology Language
Programmable Logic Controller

Representational State Transfer

Public Switched Telephone Net-
work

Resource Description Framework

Resource Description Framework
Schema

Software Engineering Institute
Software Factory Automation
Service-Oriented Architecture
Simple Object Access Protocol
Software Product Line

Universal Description, Discovery
and Integration

Unified Modeling Language
Uniform Resource Identifier
Web Service Flow Language
The World Wide Web Consortium

WS-CDL Web Services Choreography De-

scription Language

WSDL Web Service Definition Language
XML The Extensible Markup Language
XPath The XML Path Language

XSD XML Schema Definition

XSL The Extensible Stylesheet Language
Family

XSLT XSL Transformations

XViil

CHAPTER 1

INTRODUCTION

In today’s highly competitive and demanding digital world of business, organizations should
be more agile, self-sustainable and responsive to the changes in order to guarantee their
survival. They should be able to adapt to rapid changes and innovations while reducing
integration and interoperability costs. Unless organizations produce a decrease in time to
market for new innovations with low development and maintenance costs, it would not be
possible for them to obtain a sustainable competitive edge in their business.

Rapid adaptation to changing business parameters and technical innovation necessitate
boosting software assets reuse and achieve productivity gains in system and service devel-
opment. For example, contemporary challenges of telecom service providers can be listed as

follows [46];
e How to facilitate mass development of services with reduced costs
e How to simplify supply management and mass partnering
e How to ensure reuse of assets in the future

On the other hand, today’s service-oriented system realizations are often a direct re-
sult of wrapping the underlying legacy business logic as web services. Developers usually
make applications and services once provided at the local level available for further use by
means of web services. This process leads web services to be developed from the ground up
i.e. service descriptions and accompanying data models have been already developed in an
application-specific manner before exposed as web services. In order to enable automated
service discovery and invocation, web service descriptions are annotated with semantic con-
structs and service process models built on top of the existing web service interfaces in order

to describe how software agents will interact with the services.

As a matter of fact, this development process cannot fully exploit service-orientation in
terms of business agility because, web service interfaces were created without considering
the corresponding business requirements or the way in which the services might be used.
However, moving to a more dynamic and competitive business ecosystem requires thinking
and working in the opposite direction.

Recently, Business Process Management (BPM) and Service-Oriented Computing (SOC)
combination is being advocated as a possible solution for setting proper level of service ab-
stractions and reaching the desired agility and responsiveness to changing business param-
eters. In general, BPM provides the required metadata to be directly consumed by SOC
meanwhile SOC provides BPM with an agile IT framework where changes in business pa-
rameters can be reflected dynamically. In BPM-SOC convergence, services are identified
and described in terms of business processes. Service-Oriented Modeling and Architecture
(SOMA) [5] provides a possible process specification for developing services from business
process models.

Unfortunately, in order to enable the anticipated BPM-SOC convergence the knowledge
of the domain in which services will reside should be first transferred from domain experts
to developers. This necessitates common means for shared vocabulary and understanding of
the business requirements which can ideally be achieved by using ontologies. Being a seman-
tic model, a service ontology describes capabilities and requirements of a web service in an
unambiguous and machine-interpretable form. Hence, it is important to provide developers
with a semantic model of a web service during implementation, because agreed meaning and
intended use of terms can be less ambiguously realized through exploiting formal definitions
of concepts, entities, relationships and attributes. Moreover, during web service discovery,
composition, mediation and monitoring, it is possible to employ automated reasoning meth-
ods whenever service ontologies are enabled. Products can be more rapidly customized and
deployed by enabling the build-by-integration paradigm which encourage matching product
capabilities with existing services. Nevertheless, ontology creation is an error-prone and
time-consuming task [67| and requires extensive logic programming background or use of
dedicated tools which domain experts may not be familiar with.

Accordingly, the motivating needs behind this work can be summarized as follows;

e Bridging the gap between business requirements and accompanying service models [58]

and reflecting changes in business parameters to service realizations more rapidly

e Localizing, representing and disseminating the domain knowledge in a common way

that domain experts can share the knowledge with developers more easily

e Increasing the level of engineering in service-oriented computing by managing the dif-
ferences and similarities across multiple service domains, fostering reuse and applying

generative methods

In this respect, we exploit the concept of service ontology as a bridge between business
process models and service interface implementations. By localizing the domain knowledge in
terms of service ontologies, we provide the service developer with the necessary requirements
of the services to be developed. Moreover, we automate the service ontology creation to
some extent. With our automated approach, changes in the business parameters can be
more rapidly reflected to service realizations. In addition, we enable the Feature-Oriented
Domain Analysis (FODA) [44] to manage differences and similarities across multiple service
definitions. By this way, we produce not only a single service ontology but a set of related
service ontologies. It is desirable to generate the service ontologies automatically especially
when we consider the complex and time-consuming nature of the ontology creation tasks. On
the other hand, a service ontology may enable automatic discovery, execution, composition
and interoperation of available services. Instead of developing each service from scratch,
existing and semantically matching services can be discovered from service registries. High
level representation of our product line is shown in the left side of the Figure 1.1. We provide
the domain experts with the necessary environment in order to define business process models
and feature models. These defined domain engineering outcomes are then mapped into
corresponding service definitions. Service interface development and dynamic discovery of
services based on their resulting ontological classifications however, are not considered within
the scope of this work.

Major contributions of this research can be listed as follows;

e We enabled the ebBP Editor [64] tool which had been previously developed within the
scope of a research project funded by the European Commission. The domain expert
can model business processes in Business Process Modeling Notation (BPMN) [11] and

the tool then exports these models to accompanying ebBP definitions.

e We developed an OWL [55] ontology to represent feature models. We also developed
a set of SWRL [72] rules as axioms holding for relations among features. Using this
ontology definition lead us to perform automated reasoning operations over the fea-
ture models. The verification and correction of the feature model customizations are

performed by enabling the JESS [39] which is a rule-based automated reasoner.

——Product Line for Service Ontologies ~, —Service Development———,

~Domain Knowledge——.

®
/ Requirement
Domain Expert

Analysis System

-
Business Process
Models

Expert
W v, Model
Transformation
f o8 A ;
Variability A
Model ”

]D%ign .
O’Z:h Model Customization

A
/ / l \\ Publisthiswver@
Ontology Ontology Ontology Ontology Ontology

W B pa o = Register/
Annotate

Pﬁ@

-
.
A

Al
.

I
Il
I
I

Service Registry

Figure 1.1: Product line approach for semantic modeling of web service families

e For the model customization part, we defined a sample feature model for web services.
The variability points of this feature model were acquired from the ebBP and OWL-S

specifications as well as from the previous studies.

e We developed a feature model editor in order to facilitate visual development of feature
models. The tool imports and exports feature models formally defined by our feature

model ontology.

e We defined model transformation rules from ebBP instances and feature models to
accompanying service models. Generated service models are conceptualized as OWL-S

[56] ontologies.

Main idea of enabling a semantic-based approach is to pursue automation and intelligence
via reasoning on a domain-specific knowledge base about predefined concepts such as services.
A service ontology is a conceptualization of the service specifications and is independent from
the service interface implementation. A service based on ontology can be implemented by

different service interfaces. Service ontology can be generated via service requirements auto-

matically extracted from domain engineering outcomes such as feature models and business
workflows. Service requirements can be identified in two broad categories; functional and
nonfunctional requirements such as quality of service (QoS). Basically, functional require-
ments identify what a system does and nonfunctional requirements describe how well those
functions are accomplished. Several sub-categories like integrity, dependability, performance,
security and safety can be listed under QoS requirements.

A standard business process specification notation such as ebBP defines (intra or inter)
organizational business scenarios through specifying roles, collaborations, transactions and
activities. These transactions are envisioned to be fulfilled by fine-grained web services.
However, ebBP does not mandate any implementation technology specifically. Thus, in
order to map ebBP constructs to service concepts we need further customizations beyond
the ebBP especially for non-functional requirements of web services. In our approach, we
employ feature modeling method to overcome these hindrances in a more business and end-
user centric fashion. We provide a feature model for representing service concepts as features.
Each feature is specified by the domain expert and is automatically mapped to its machine-
readable semantic definition. Feature modeling paves the way for systematic reusability in
defining services. A family of services can be easily defined through customizing features in
a service feature model.

For automatic generation of a service ontology, the information related with the service
such as input, output, precondition and effect is extracted from the business process and non-
functional specifications such as QoS are acquired from the accompanying feature model. The
collected information is then compiled into a service ontology which is ready to be realized
as an implemented web service or be used when discovering existing services from a service
registry. The generated service ontology conforms to OWL-S notation. In the scope of this
research, verification of customizations and other reasoning activities are conducted using
JESS rule engine and Protégé-OWL [60] is applied to build semantic web concepts.

This thesis is organized as follows; Chapter 2 summarizes the background on the enabling
technologies and standards. In Chapter 3, the building blocks of the ebBP, the ebBP editor
tool and the transformation rules from ebBP to OWL-S are given. We introduce our feature
model ontology and feature model editor in Chapter 4. In Chapter 5, we combine feature-
oriented domain analysis with our transformation method in order to generate families of
service ontologies. In Chapter 6, the related work is presented on semantically enriched
feature modeling and service ontology generation methods. Finally, Chapter 7 concludes

this thesis and presents the future work.

CHAPTER 2

BACKGROUND ON ENABLING
TECHNOLOGIES AND STANDARDS

2.1 Product Line Engineering and Software Product Lines

The popularity of the research on the software reuse did not show any symptoms of decline in
academia and industry over years. Especially after the introduction of the Software Product
Line (SPL) paradigm, the software industry witnessed the evolution of ad-hoc reuse practices
into a more systematic approach. Keeping in mind the business and quality goals, SPL
extends the boundaries of software reuse and exploits a broad spectrum of reusable assets
spanning from program libraries and components to architecture blue-prints, test cases and
even services. The key objective of this paradigm is to industrialize software development
similar to other industries such as automotive and aviation in order to produce a number of
relative systems that fulfill business requirements and end-user expectations in a prescribed
way. The SPL paradigm promises to achieve productivity gains, reduce product development
and maintenance costs, decrease time-to-market and increase product quality [13].

Major interest area of product line engineering is developing not just only one product but
a family of related products in a specific domain. Consider a car entertainment system which
is typically driven by the automobile vendors and the delivery company. Each client has its
own distinct requirements than another has. Being the system vendor, an organization should
deal with those variations and probably cannot afford to develop a unique system every time
from scratch. Instead, the organization should reuse its previously implemented artifacts and
existing assets as much as it is possible. This apparent industrial need leverages an important
concern at the hearth of software engineering; how to organize and manage the reuse in

software development to reduce the development cost and time-to-market. Another example of

product line engineering will be found in today’s mobile phone business where in nearly every
three weeks a new type of phone is introduced as a result of the incremental development
over the previous ones. This picture leads on the fact that if an organization have a software
product line which helps it to come up with new releases or new combinations of features (for
example mobile phones with or without a digital camera) then the organization will increase
its productivity. Again, achieving higher levels of productivity is one of the main objectives
which product lines are often used for. In today’s highly competitive and demanding digital
world of business; organizations should be more agile, self-sustainable and responsive to the
changes in order to guarantee their survival. Unless organizations release their high quality
products quickly to market with low development and maintenance costs, it would not be
possible for them to obtain and maintain a competitive edge in their business.

Main characteristics of product line engineering can be listed as follows;

e The primary reason behind using product lines is to make the product development
activities cheaper, faster and better aligned with business needs based on the customer

portfolio.

e Product line engineering is a strategic choice for a long term view and requires upfront

investment and discipline.

e The scope of the domain should be well defined. It determines the what the product
line is capable of producing, puts the focus on the business case and controls the

investments on development.

e The domain should stay stable. If the domain is changing frequently then keep on track
with those changes will be tedious and the upfront investment for domain engineering

will not be enough or it will be wasted.

e Successful product line engineering needs organizational change, business process change
and technology change [75]. Only excellence in technical issues will not protect product

line architectures from failure if they are not effectively adopted by the organization.

e Products derived as the result of the SPL process pertain to a market strategy and

application domain, share a common architecture and built by reusable components.

Basically, a software product line derives a reuse strategy that captures commonalities

and manages variabilities among a set of products. Each product is targeted and customized

in order to address the needs and expectations of a specific customer in the customer port-
folio. Even though the required productivity gains for development and maintaining issues
can be achieved by the help of systematic reuse, establishing a precise and effective prod-
uct line requires extra up-front investment for building reusable assets and organizational
changes. A cost analysis of a software project with and without product line approach is
placed comparatively in [80] (Figure 2.1). According to this work, a product line is best to

be established when the domain can be supplied with at least three different products.

Total Cost
Without Product
Line

@ l . — —Cost of Product

(2] A Line

S — - p
#1 #2 #3 #4 #5
Project

Figure 2.1: Cost analysis of a software project with or without SPL approach

A good indicator whether a specific domain needs a product line lies on the software
development practices applied on that domain. When people have already started to build
platforms that consist of common and various generic artifacts to foster reuse and prepare
for potential variations, there is a good sign that they are actually developing a product
line. However, without product line engineering, a single platform development approach
for achieving high levels of software reuse addresses variability and customization issues of
reusable assets in an ad hoc fashion instead of a systematic way. An important percentage of
software development activities will be focused on platform development rather than product
development and hence, actual products will not be completed in a timely manner. On the
other hand, software product line engineering provides the frame for developing the platform
for a specific domain. SPLE explicitly deals with variability concerns at all phases and brings

variability management.

2.1.1 Software Product Line Process

In general, SPL practice is a two-life-cycle process that consists of domain and application
engineering. An overview of this two-life-cycle process can be found at [75|(Figure 2.2).
The aim of domain engineering is to establish a mapping between problem space to solution
space. It is responsible for constructing a domain model, establishing a reference architecture

and implementation of reusable assets. Within the boundaries of the constructed domain

Product |

Management] i
formait; Domain F Domain]‘ Domain i

Reaquirements : A 3
Enginesring ‘ Design Realisation Testing

3 8 4 3

System-Family Artefacts

Domain Engineering

« Requirements : : 2
Engineering Design Realisation Testing

8 3 4§ 3

T\F AV 4 v
Application }‘ Application Application }‘ Application

Figure 2.2: An overview of SPL’s two-lifecycle process model. Adapted from van der Lin-
den et al "Software Product Lines in Action: The Best Industrial Practice in Product Line

Engineering”, 2007 [75]

model, a reference architecture model is developed in order to realize features by mapping
them to reusable assets. Reference architecture model will support more than one reference
architecture specifying different connectors and interactions between architectural elements.
A reusable asset is identified by the projection of relevant feature(s) to reference architecture.
Thus, the reference architecture is an essential part of a Software Product Line (SPL) and
as an outcome of the domain engineering, it is expected to establish a shared base among
a range of products for reusing common software development assets, supporting variability
and extension, and assembling both common and product-specific architectural components

in an effective manner. The effectiveness of reference architecture is directly related with

how well the architectural components and their interactions are captured, integrated and
managed through the development life-cycle.
Application engineering enables domain engineering outcomes and results in products

that are ready to be delivered.

2.1.2 Domain Engineering

In the scope of the SPL context, domain engineering identifies, models, constructs, catalogs
and disseminates a set of software artifacts that can be applied to existing and future software
in a particular application domain. The emphasis is on developing artifacts for reuse. The
aim of the domain engineering is to provide better means for delivering a family of products
in a shorter time and at lower cost by first capturing the domain knowledge in the form
of reusable assets and then reusing these assets in order to form the product. Domain

engineering involves three main subprocess;

e Domain Analysis: In domain analysis, commonalities among products are identified
and the scope of the product line is set through specifying variability points for particu-
lar products. The actors involved in domain analysis phase are stakeholders, end-users,

domain experts and system analysts

e Domain Design: The reference architecture for the products in the domain is estab-

lished in this phase.

e Domain Implementation: Development of reusable assets such as components, services

and domain-specific languages takes place during domain implementation.

A comparison between conventional software engineering and domain engineering based on

their outcomes is given in [16|(Table 2.1).

Feature-Oriented Domain Analysis (FODA)

Feature-oriented domain analysis is a well-known domain analysis method which was first
introduced by Kang et al in [44]. In FODA, variabilities and commonalities in the problem
space are represented in terms of features. A feature can be considered as a product capability
that is agreed by a consensus of stakeholders, end-users and engineers. One of the well-know
methods for visualizing feature-oriented domain analysis is called feature modeling. A feature
model is capable of representing all possible products in a product line. Typically, features

are organized in a tree hierarchy in a feature model.

10

Table 2.1: Comparison between software engineering and domain engineering. Adapted from

Czarnecki, "Generative Programming”, 1998 [16]

Software Engineering Domain Engineering

Reguirements Analysis Domain Analysis

» Reqguirements for one » Reusable requirements fora

system class of systems

Svstem Design Domain Design

» Design for one system » Reusable design for a class of
systems

Svstem Implementarion Domain Implementation

> Implemented system » Reusable components,
imfrastructures, and production
process

Features are selected by considering the relationships among them in order to form a
specific product. A feature model helps the domain expert to come up with a correct
configuration of features that will result in a workable and usable product. Actually, feature
modeling can be used in any level of the domain engineering; requirements engineering,
designing the reference architecture or in the other levels close to programming.

A feature model provides graphical tree-like representation of the hierarchical organiza-
tion among features within a concept. The root of the tree is named as the concept node and
the others show different features of this concept. A simple feature model is capable of defin-
ing mandatory, optional, alternative, excludes, requires and OR relations among features. A
common notation for visualizing some different feature relationships is given in Figure 2.3.

Definitions for the relationships are introduced as follows;

Mandatory: The feature must be included into the configuration of its parent concept

mstance.

e Optional: The feature may or may not be included into the configuration of its parent

concept instance.

o Alternative: One instance from a set of features sharing a common parent concept can

be included into its parent’s configuration.

e OR: One or more features from a set of features can be included into the configuration

of their shared parent concept instance.

o Requires: When a feature is included into a configuration, it requires another feature

11

to be included also.

o Frcludes: When a feature is included into a configuration, it necessitates another

feature to be excluded from the configuration.

Relation Notation

Mandatory E
Optional E
Alternative %
s e

Figure 2.3: A common visual notation for some relationships among features

To make things more understandable, consider an example concept of car. Basically, it
has two basic features; engine and transmission. Since, it is not sensible to sell a car without
an engine and a transmission, these features can be considered as mandatory features for
every member of the product line of the car concept. However, a car engine can work by
consuming diesel fuel or gasoline but not by consuming both of them as a mixture. This will
lead us the subfeatures of the engine feature; diesel and gasoline engine. These subfeatures
are alternatives of each other. When building a car, engine feature has to be included and
one of the engine types has to be specified among its alternatives. Similarly, the transmission
feature brings two alternative types namely manual and automatic transmission. However,
when we consider the sunroof feature, we can conclude that it is not a mandatory but
an optional feature that will be included whenever there is a special customer request. A
sample feature diagram of the car concept representing the mentioned features is depicted
in Figure 2.4.

A feature model expresses and formally describes the configuration options in a problem
space and the domain expert can form a specific product by configuring available features
in the model. With this respect, a feature model is only capable of representing a certain

kind of variability namely configuration or nonstructural variability. On the other hand,

12

‘ TRANSMISSION | | SUNROOF |

LEGEND

ENGINE

>

Allemalive
Faature

O
Optional
Foature

Mandatory
Faature

‘ DIESEL ‘ ‘ GASOLINE ‘ ‘ AUTOMATIC ‘ | MANUAL |

Allemative
Faalure

Figure 2.4: A sample and abbreviated feature diagram of the concept car

the domain expert cannot creatively construct a structured variability such as an arbitrary
business process. Instead of feature modeling, she can use domain specific languages like
activity diagrams or business process languages.

Whether representing a functional or a nonfunctional variability, a feature is abstracted
in the same way in a feature model. Indeed, this distinction of variability is not apparent.
When compared to other modeling approaches such as Unified Modeling Language (UML),
feature modeling has advantageous especially at the early domain analysis phases because

of this non-tricky variability representation property.

2.1.3 Application Engineering

Application engineering results in delivered products built by enabling domain engineering
outcomes. In this phase, the focus is on a single product built with reused artifacts. In appli-
cation engineering, features from the feature model, corresponding reference architecture and
the reusable assets of the reference architecture are customized to form a particular prod-
uct. Final products are generated by considering the design-with-reuse principle. Mainly,

application engineering encompasses three process components;

o Requirements Analysis: A requirements model representing the needs of a specific cus-
tomer is devised. The customer requirements are compared with the existing domain
model and the matching features (requirements) are selected from the model. New
requirements uncovered by the existing domain model are elicited and the core assets

may be updated accordingly.

e Design Analysis: In this phase, reference architecture model is revised in order to

13

identify and capture the changes propagated from the new requirements and product

specifications.

e Integration and Test: By using the reference architecture, identified reusable assets are

integrated in order to produce the application code.

An example application engineering process is provided by Software Engineering Institute

(SEI) in [4](Figure 2.5).

Domain Model Design Model Component Application
Library Generator
= Information Model = Design Guidelines

= Faature Modal = Design Specifications
= Functional Model » Generic Design)
S

Component
Customer New Reguirements| Custom Specifications ‘_:”5_“’" Software
. - Design - | Development P
Needs Requirements Application
Analysis

= es1gn Analysis L ntegration es

> D Anal - Int tion & Test
Features List Product

Configuration

Process Backtracking

Figure 2.5: A sample application engineering process described by SEI

2.1.4 Software Factory Automation (SFA)

Software factory extends the concept of SPL by adapting, assembling and configuring ex-
tensible tools, models, frameworks and patterns using templates and schemas in order to
automate the development and maintenance of product families [29]. Software Factory Au-
tomation was introduced by Altintas et al in |2, 3] to generalize the establishment of software
factories as the way manufacturing industry has been doing. In other words, SFA is an in-
dustrialization model for establishing software product lines through constructing a domain
design model based on Domain-Specific Kits (DSKs). Regarding the feature-oriented analy-
sis of problem domain, SFA’s design model encloses two major activities: first, building the

product line reference architecture using DSK abstraction and then constructing a reusable

14

asset model based also on DSKs. The end results of all of these activities are the reference
architecture and asset model for the product line. Major constituents of the approach have

been given in [2|(Figure 2.6).

Software Factory Automation

SPL Reference Architecture

=l = e
DSk DSK DSK. Fam!ly

Eﬁ! Development Environment (DSTs) Model

o I Quaity

Asset Model

Figure 2.6: Overview of the software factory automation approach. Adapted from Altintas,

"Feature Based Software Asset Modeling with Domain Specific Kits", 2007 |2]

In contrast to general-purpose programming languages such as C and Java, Domain-
Specific Languages (DSL)s focus on accomplishing specific kinds of tasks defined in a certain
problem domain. DSLs allow developers to concentrate on the targeted problem domain’s
particular vocabulary, constraints, and concepts in higher levels of abstraction with special-
ized constructs and syntactic sugar. The aim of incorporating domain specific abstractions is
to improve systematic reuse of software assets which leads to enhanced software development
productivity, product quality and reduced per product development and maintenance costs.

The concept of Domain Specific Kits was first introduced by Griss and Wentzel [30].
DSKs as refined in |2, 3| are analogous to Programmable Logic Controllers (PLCs) utilized
in industrial factory automation. PCLs and DSKs are sharing a common vision which
is facilitating the production of domain specific artifacts in isolated units. SFA approach

slightly modifies the traditional DSK definition and adds the following attributes;

e Kits are not specific to a product family; they can be reused across different product

families.

15

e Kits cannot contain architectures for family of products; instead they are combined to

form reference architecture of a product family.

e Kits contain logical connection points that let them collaborate with other kits in a

choreography model.

o Artifacts of the kits are composable, but the kits can make use of generative approaches

internally.

The language-oriented development terminology used in SFA is depicted in Table 2.2.

Table 2.2: Terminology of domain-specific kits

Domain Specific A langnage dedicated to a particular
Language (DSL) domain or problem with appropriate
built-in abstractions and notations
Domain Specific An engine particularly designed and
Engine (DSE) tailored to execute a specific DSL
Domain Specific An environment to design, develop,
Toolset (DST) and manage software artifacts of a
specific DSL
Domain Specific Kit | A composite of a Domain Specific
(DSK) Engine (DSE) and a Toolset (DST)
Domain Specific An artifact that is expressed,
Anrtifact (DSA) developed, and executed by a DSL,
DST, DSE, respectively
Domain Specific A DSA type that a certain DSK can
Artifact Type express, cxecute and facilitate the
(DSAT) development

Reference Architecture Modeling in SFA correlates the architectural aspects and quality
attributes of the problem domain with actual components and connectors of the solution
domain by utilizing the Symmetric Alignment method as described in [12]|. The architectural
components and connectors in the solution domain are identified, and further abstracted by
this alignment. SFA proposes a six-step reference architecture modeling approach that starts
with the identification of quality requirements; architectural aspects and concern spaces of
problem and solution domains followed by the symmetric alignment of both domains and
ends with the reference architecture model with DSK abstraction.

The reference architecture completes the picture by providing a choreography model. The
domain specific artifacts of separated concerns are composed through employed choreography
model which is formed by a language and its engine. The envisioned choreography model of
SFA relies on service-oriented paradigm. It ensures context management, state coordination,

reliable message exchange and exception handling.

16

In order to enable knowledge-oriented software engineering, SFA employs an asset mod-
eling method that aims to improve the commonality of features, and effectively manage the
variations of them by exploiting a meta-model. SFA asset modeling method separates asset
concerns by mapping features (DSATS) to DSAs, and later composes them using the SPL
reference architecture. Hence, it generates more cohesive asset models to improve the asset
reusability by reducing the interdependencies. In order to facilitate the modeling activities,
SFA builds a modeling language (AML) to define the reusable assets for product assembly.

Conceptually, an asset is a composition of domain-specific artifacts specified by using
different DSLs. AML based on the Asset Meta Model (AMM) compiles the asset definition
and specifies variability points with collected artifacts and their choreography. The building
blocks of AMM are DSATs, DSKs, context, constraints and dependencies among DSATSs.

Variability management in software assets is the key factor to achieve high levels of
systematic reuse, especially when considering the product family-based approaches. SFA
enables the asset reuse not only within a product family but also across product lines.
When the required DSKs definition exists in AMM definitions, an asset can be reused across
different product lines. In other words, such assets can be reused if dependent artifact types
are available.

In general, SFA approach exploits the concepts and methods that are coined in the gen-
erative software development paradigm. Generative software development promises auto-
matic system generation from a specification written in one or more DSLs through modeling
and implementing product lines [17]. SFA enhances the generative software development
paradigm by DSK abstraction and choreography. In SFA, asset models are specified with
Domain-Specific Artifact Types (DSATS) abstracted by DSKs. SFA approach encapsulates
correlated artifacts and their interactions within more cohesive asset models and composes

them through a choreography engine.

2.2 Service-Oriented Architecture (SOA)

By definition, Service-Oriented Architecture is an architectural style which enables reusable
and encapsulated software services accessible over a network or a service bus in a loosely cou-
pled and highly interoperable manner. The main idea behind SOA is to provide an agile I'T
framework that organizations can easily map their continuously changing business processes,
requirements, evolving business needs and existing assets to I'T capabilities represented as

services. SOA promises to bring flexibility to IT assets, lower development cost by allow-

17

ing high levels of software reuse and provide necessary business agility through composition
of services that are spanning multiple collaborative business partners in a standard-based
manner [58].

A SOA realization is usually comprised of three main parties as listed below. The basic

interactions between these parties are represented in [26] (see Figure 2.7):
e Provider (of services); basic service providers and aggregators
e Requester (of services); service aggregators and end users
e Broker (of services); middleware and registries

A service provider advertises its service through a service broker where service descriptions
are published. Service broker or registry can be considered analogously as yellow pages for
finding services and their providers. After publishing service description, it is ready to be
discovered by the service requester via querying the service registry. Using the discovered

service description, requester can bind with the provider in order to consume the service.

Service
Provider
3 ®
= Z
9 °
Q.
Service FIN Service
Broker Requester

Figure 2.7: SOA actors in action

A service in SOA can be defined through the following agreed aspects [66]:
e Services are defined by explicit, implementation-independent interfaces

e Services are loosely bound and invoked through communication protocols that stress

location transparency and interoperability

e Services encapsulate reusable business functions

18

e Services can be integrated via service composition mechanisms to provide extended
collaborations. Static or run-time integration of services can be possible by using

different service composition mechanisms.

From software architecture and integration viewpoint, a service oriented architecture is
a key mechanism to support software reuse. A service can be defined as a unit of work done
by a service provider to achieve desired end results for a service consumer [36]. Services
have important characteristics enforcing Object-Oriented (OO) design principles such as
ensuring separation of concerns and loose coupling. A service can be reachable through
ubiquitous interfaces by all other participating software consumers. Only generic semantics
are encoded at the interfaces. The interfaces are universally available for all providers and
consumers by means of a service bus. Communication with a service is message-oriented and
exchanged messages are delivered through the interfaces. Usually, messages are compiled
according to an agreed schema and the message schema limits the vocabulary and structure
of messages. This message-oriented communication via ubiquitous interfaces allows to change
and extend the current versions of services and also introduce new versions without breaking
existing services. As a consequence of the distributed nature of services, a SOA must have
a mechanism that enables a consumer to discover a service provider, under the context
of a service sought by the consumer. A SOA approach delivers key architecture goals in

supporting:

e Benefits of OO including component re-use

Reduce dependencies between system components to achieve loose coupling

Extensibility

Services distribution

Scalability and extensibility

In order to get maximum benefit from a SOA approach, these fundamental issues should

be addressed based on open standards:

e A common framework for service interactions based on open standards must occur at

least for proper;

— Communication

— Description

19

— Registration

— Composition as Choreography and Orchestration

e An agreed set of vocabularies and interactions (common processes) for specific indus-

tries or common functions must be adopted

2.2.1 Web Services

The most common (but not only) form of services used extensively in SOA is Web Ser-
vices, in which (1) service interfaces are described using Web Services Description Language
(WSDL) [83], (2) payload is transmitted using Simple Object Access Protocol (SOAP) [71]
over Hypertext Transfer Protocol (HTTP) [38], and optionally (3) Universal Description,
Discovery and Integration (UDDI) [73] is used as the directory service. With these open
standards developed by collaboration of various contributors from academia and industry,
it was made possible to establish heterogenous network and service infrastructures that a
diverse array of proprietary enterprise solutions of different vendors can communicate and
collaborate with each other in an interoperable manner like in today’s GSM and PSTN in-
frastructures. The main goal of such an interoperable service utility is to bring technology
closer to people and organizational needs by hiding technology complexity and revealing
functionality on demand. A visualization of the layered and interrelated technologies in the

web service architecture is given in [81] (see Figure 2.8).

Semantic
RDF, OWL, OWL-S

Process
WS-BPEL, WS-CDL M
S A
E Description N
c WSDL A
U G
R E
| Message M
T SOAP E
Y N
T

Communication
HTTP, SMTP, FTP, JMS...

Figure 2.8: Web services technology stack

20

WSDL is a well known and widely adapted XML format for web service descriptions.
Mainly, it describes the properties of the interface of a web service. In WSDL, a web service is
defined as a set of network endpoints operating on document-oriented or procedure-oriented
messages. WSDL separates the service meta definition from the concrete service realization.
The abstract endpoints definitions allows flexibility in choosing the necessary bindings for
network protocol and message schemas. The common network protocol bindings for WSDL
are HTTP with SOAP 1.1.

As an XML based protocol, SOAP is targeted for information exchanges between agents
in distributed environments. It consists of three essential components: an envelope that
defines a framework for describing what is in a message and how to process it, a set of
encoding rules for expressing instances of application-defined datatypes, and a convention
for representing remote procedure calls and responses [71]. Although SOAP makes uses of
various Internet application layer protocol as a transport protocol, it is used in combination
with HT'TP and HTTP Extension Framework in usual.

UDDI protocol is an approved OASIS Standard for representing data and metadata
about web services on registries. As a key member of the web services stack, it defines how to
publish, discover, retrieve and manage information about network-based software entities of a
service-oriented architecture through utilizing service registries. In general, a service registry
is responsible for supporting the description and discovery of businesses, organizations, and
other services providers, services made available to clients, and the technical interfaces which
may be used to access those services.

More recently, REST (Representational State Transfer) [27] web services have been be-
coming popular. These kind of web services also meet the W3C definition, but instead of
enabling XML based standards such as SOAP and WSDL, they rely on pure HT'TP methods

and constructs.

2.2.2 Service Composition

One of the promising benefits of service-oriented architecture (SOA) is to build complex
composite applications or services by reusing other existing services according to a business
process definitions. Moreover, SOA allows organizations to achieve different levels of collabo-
ration among large numbers of services from heterogeneous environments without regarding
to the details and differences of those environments. Service composition accomplishment
depends heavily on the services having coarse-grained interfaces [35]. Coarse-grained services

are intelligently structured to meet specific business needs and constructed from fine-grained

21

services which provide a small amount of business-process usefulness, such as basic data
access.

The associations between service interface granularity, service compositions and business
process definitions are shown in Figure 2.9. Proper abstraction of service endpoint implemen-
tations requires dealing with the differences in protocol, semantics, policy, availability, and
should consider security, management, quality, and governance issues to guarantee reliable

communications.

Domain Specific

'y
Business (Service) E Q}:
Bomain ﬁ% Domain
Experts

X d

Business Processes

Coarse-Grained

Services @
- - \\H’-

Fine-Grained System

Services 5 o Experts

Existing Computing
Assets

C@pqn

77

\j

Application Specific

Figure 2.9: Service development life-cycle hierarchy

Primary characteristics of SOA from the service granularity perspective can be listed as

follows [9]:

e SOA can offer fine-grained atomic services such as simple function calls as well as
coarse-grained business services which are used to divide larger applications into smaller

discrete modules.

e Services in SOA have minimum amount of interdependencies.

e SOA exploits service granularity principles to provide effective composition, encapsu-

lation and management of services.

One approach for specifying the right level of service granularity is to start with accom-
panying business processes and decompose them into increasingly smaller subprocesses until
reaching a set of atomic processes that cannot be divided into more smaller components.
The resulting atomic processes then become candidate for being realized as services. The
more processes are decomposed in this way; the more commonalities are captured among
atomic processes. Hence the possibility to build more reusable services is also increased.

A number of open standard notations for web service composition have followed the
establishment of common web service protocol stack and enhance it by addressing the process
side of the service collaborations. According to their characteristics, service compositions

can be categorized in two broad domains namely;

e Orchestration coordinates the flow of service interactions from the perspective of a
single authority domain. A number of standard languages addresses the web services
orchestration specification such as Business Process Execution Language (BPEL) [10].
Most likely, the defined coordination in service orchestrations are limited to intra-

organizational borders.

e Choreography can be considered as an orchestration of service orchestrations. Gen-
erally, a choreography defines the sequence of the interactions, message flows, rules
and conditions among multiple parties in coordination. The main difference from the
orchestration is in choreography there are multiple authority domains and the defined
coordination is inter-organizational. Web Services Choreography Description Language
(WS-CDL) [82] is one of the foremost open and standard choreography definition lan-

guage for web services.

2.2.3 ebXML Business Process Specification Schema

BPM and SOA are two independent initiatives. BPM is mainly a management discipline
and strategy for business processes. A business process encapsulates business transactions
and business documents and sets the collaboration rules among business partners. Busi-
ness processes can be represented in a machine-readable format. Nowadays, the BPM-SOA
convergence is proposed to organizations so as to facilitate a closer alignment between busi-
ness processes and I'T resources and reach the desired business agility and responsiveness to

changing business parameters in today’s highly competitive digital world of business [43].

23

ebXML Business Process Specification Schema (ebBP) [22] provides means for defining e-
Business collaborations between collaborating business partners through a standard technical
specification. ebBP is an initiative from OASIS [50] and it is based on XML [85|. Business
systems of collaborating parties may be configured to execute the business transactions
defined in ebBP documents.

Mainly, ebBP specifies the choreography of Business Transactions taking place among
two or more collaborative business partners. The choreography definition and business trans-
actions are compiled to form a Business Collaboration. The flow of exchanged business doc-
uments, signals and the decisions points are placed in business collaborations in a stateful
manner. Each business collaboration specifies a set of roles collaborating through business
transactions. Business transactions involves participation of two complementary abstract
roles namely, Requesting Role and Responding Role. In order to specify the choreography of
business activities, ebBP provides a number of states (Start, Completion) as well as a set of
gateways (Fork, Join, Decision).

Business transactions in ebBP are atomic processes that cannot be further decomposed
into lower level business transactions as in business collaborations. Additionally, Business
Signals which are used for ensuring the state alignment between collaborating parties can
be exchanged as a part of a business transaction.

An example multi-party collaboration is represented with Business Process Modeling
Notation (BPMN) [11] and also QueryResponse business transaction definition with just a
requesting and response document flow is provided in [22](see Figure 2.10).

ebBP definitions are independent from the underlying platform, software or services
and provide a level of abstraction in order to gain in flexibility to be used with different
technologies. ebBP refers to logical business document schemas and associates them through
exchanged messages in business transactions. In brief, such capabilities of the ebBP can be

stated as in [49];

e Standard and extensible business transaction patterns

Support for multiple role bindings

Flexibility for complex transaction activities

Support for use of web service, hybrid and ebXML assets

Late binding capabilities such as for timing

Semantic tailoring for business processes and business documents

24

{4—— .. -2
<QueryResponse name="Catalog Request” nameID="ID186"
-1 Pool isGuaranteedDeliveryRequired="false">
<RequestingRole name="CRinitiator™
nameID="CRinitiator1"/>
<RespondingRole name="CRresponder™
nameID="CRresponder1"/>
<RequestingBusinessactivity name="requestCatalog”
nameID=""1D181"">
{DocumentEnvelope name="Catalog Request"
nameID="1D182"
businessDocumentRef=""1D1080"/>
Pool </RequestingBusinessactivity>
B e e s e] <RespondingBusinessActivity name="sendCatalog”
nameID=""1D183"">
{DocumentEnvelope name="Catalog Response"
Fool nameID="1D164"
isPositiveResponse="true"
businessDocumentRef="1Ds1061"/>

Poal

lajeiay

18O

</RespondingBusinessActivity>
</QueryResponse’>
{t—— .. -

sopuan diysdaosg

Aoy 1paig

=S

Figure 2.10: Representation of the "Drop Ship" multi-party collaboration with BPMN and

the definition of a QueryResponse business transaction in ebBP format

Theoratically, ebBP standard can be enabled for representing business processes in almost
every e-business domain with different systems collaborating to achieve a desired business
goal. An example in the eHealth domain [1] demonstrates collaboration profiles among
healthcare systems are expressed through ebBP language. Details of the ebBP specification

and how it is related with this thesis work is explained in Chapter 3.

2.2.4 Semantic Interoperability

Another problem space which SOA is frequently being applied for is semantic and techni-
cal interoperability in heterogeneous environments. However, in order to achieve this goal,
organizations should adopt open industry standards in their messaging, metadata, imple-
mentation and collaboration efforts to build service-oriented systems. These standards are
defined by non-profit international standardization organizations like WC3 [76] and OASIS
with the help of industry contribution. Nevertheless, different standards that have been
defined by different consortiums may address similar problems, as it can be seen clearly in
Electronic Healthcare Records [24]. An organization feels free to adopt any standard among

its alternatives when building its proprietary system. Because of such variations, in order to

25

develop portable, re-usable and interoperable services that are guaranteed to work together
with other proprietary services from a global perspective; we should not only conform to

standards but also provide mediation mechanisms between different standards |[74].

2.2.5 Historical Origins and Motivating Needs Behind SOA

In the seventies, companies like SAP started to develop IT stuff which were the initial steps
in software engineering. Most of the developed software in those days were monolithic, batch-
oriented applications for mainframes and terminals. In the eighties, PCs were introduced
with the capabilities of running office applications such as spreadsheets and shrink wrap
products and also terminal emulators used for getting access to legacy mainframes. In the
nineties, mainframes and terminals still stood in the forefront of enterprise systems but
spreadsheets, shrank wraps and other stand alone individual applications were enriched
with graphical user interfaces (GUISs) used in an ad hoc fashion. At those times, Object-
Orientation and client-server computing were materialized also in industrial practices to a
certain extent.

Day by day, Object-orientation was becoming more important as a means of integrated
development suit for analyzing the business, design and also programming. Object-oriented
approach was promising attractive innovations like not only richer GUIs but also better
modularity, maintainability and reusability of software entities. Although, enterprises at-
tempted to get those advantages in their business, they encountered with severe challenges,
especially when updating their mainframes on which had been invested previously. New
features and extensions such as thin applications with GUIs could be implemented by using
new technologies like C++ but the real business logic remained on the legacy mainframes.
The main problem coming from the general I'T perspective was that the Object-orientation
could not be exploited throughout the company because the mainframes, databases and other
legacy applications were developed based on traditional approaches rather than the Object-
orientation. Moreover, leaving the previous investments and requesting newly developed
systems with the same business logic would be expensive and cumbersome.

In general, migrating legacy applications to more modern systems holds several promises

for an enterprise from maintenance and sustaining viewpoints such as [65];

e The technology which was used for implementing the application maybe obsolete in
time and the personnel who have hands-on practice on this technology maybe rare

and their salaries maybe over valued in accordance with the simple demand and sup-

26

ply principles. For example, in Y2K problem, updating and bug-fixing tasks for the
legacy enterprise applications were outsourced to India because of scarce and overval-
ued resources of COBOL developers in western countries. COBOL, once a popular
programming language for mainframes, was constantly becoming a legacy technology

and losing its ground to other languages such as C+-+ and Java until Y2K.

e Migrating legacy applications increases the application reach and removes risks asso-

ciated with running potentially unsupported hardware and software in legacy systems.

e A successful modernization offers not only technological modernization but also busi-
ness process reengineering. In this respect, organizations can have opportunities to

increase in efficiency with their usual business processes.

In the nineties, component-oriented distributed technologies were proposed to solve the
legacy system migration problem. They brought remote procedure calls and object request
broker middlewares to open the business logic to more modern systems. However, as the
distributed computing gains more attention, the drawbacks of the distributed component-
oriented systems such as CORBA [15] and COM [14] become more apparent in terms of
complexity, security, handling latency, partial failures and concurrency and the lack of shared
memory access [77, 37]. As a consequence of the experiences gained from these challenges
and drawbacks, the technical background was prepared for the SOA.

With the emergence of the service-oriented architecture and web service technologies in
the new millennium, legacy migration strategies have been evolved into this new distributed
architecture proposed to address message orientation, self-description, platform-neutrality,
and network orientation [79]. Currently, various vendors are offering legacy migration strate-
gies based on SOA [59, 53, 69] and apart from being just only a system integrator, in near fu-
ture SOA is being expected to have a more comprehensive role as a new computing paradigm

[58] for software development.

2.3 Semantic Web Technologies

Semantic Web [8] technologies aim to represent and exchange information on the web through
formal methods and definitions. Semantic web envisions a web of data where interoperability
is realized between data sources and the web and the meaning of the data is given in a
way that software agents can understand and reason with it. In the core of the Semantic

Web there is the concept of ontology which is previously used in Artificial Intelligence and

27

Database communities, in order to formally model a conceptualization and enable knowledge
sharing between information resources [32]. The motivating needs behind the semantic
web initiatives are the difficulties to find, present, access, or maintain available electronic
information on the web and to enable the software agents to provide intelligent access to
heterogeneous and distributed information.

The word ontology comes from the Greek language; ontos (being) and logos (word).

Formally, ontology can be defined as [31];
"An explicit formal specification of a conceptualization.”

In practice, an ontology describes objects and concepts as classes. Typically, classes are
formal and explicit description which are catalogued in a hierarchy. Class relationships are
defined through class properties which describe intrinsic and extrinsic attributes of classes.
For example, IS-A relation is extensively used for representing inheritance relations among
classes thus for creating class hierarchies. A class property has two main concepts; Domain
where classes which the property describes and Range where classes allowed to fill in the
property value. Instances are individual occurrences of classes which they are member of.
The properties associated with the class are filled in with instance values. Another interesting
feature of ontologies are axioms which are ontological assumptions that cannot be described
using only properties and property values. Disjoint is an axiom that represents the situation
for two classes which has no instances in common. Consistency of an ontology according to
defined axioms can be checked by using automated reasoners.

Generally, semantic web ontologies like OWL are based on open world assumption. In a
closed world assumptions like Databases schemas, the information is assumed to be complete
and a query engine will return a negative if it cannot find some data. However, a reasoner
cannot determine something does not hold unless it is explicitly stated in the ontology. The
reasoner does not make any assumption about the completeness of the given information.

Ontologies are exploited in order to establish a common vocabulary and understanding
about any thing such as a concept or a domain. One of the most important benefits of
ontological approaches for computer science is their supports for automated operations such
as querying and reasoning. Ontologies are capable of describing the semantics of the data or
meta-data in order to provide a uniform way to make different parties to communicate with
each other. Both human and software agents can be use the domain knowledge described
with an ontology.

Ontologies are widely used in semantic web. A common application area of ontolo-

28

gies is semantic annotations of web pages. World-Wide Web Consortium (W3C) is leading
those initiatives on standard languages for ontology specification. In this section, well know
domain-specific languages, frameworks and tools for enabling semantic web applications and
semantic-based software development is presented as the building blocks of the semantic

web.

2.3.1 Resource Description Framework (RDF)

Resource Description Framework (RDF) [61] is a framework for describing and interchang-
ing metadata. RDF is the first and the simplest of the semantic web languages. It enables
an XML based syntax and exploits URIs for resource identification. RDF provides ma-
chine processable semantics for metadata and associates them with resources on the web.
This approach promises better precision in resource discovery than full text search and the

interoperability of metadata. RDF has following aspects;

e Resource : Anything that can be named via a URI can be described by RDF as a

resource. A URI makes the associated resource unique and globally known.

e Property : A property is a predicate used for building RDF instances with associated
values such as aspects, characteristics, attributes or relations. A property is also a
resource that has a name. The type of the an associated value (or an object) can be a

literal or another resource.

e Statement : A statement is a triple that consists of a Resource, a Property, and an

associated value.

RDF statements or the relationships between resources, properties, and the objects can
be represented with directed labeled graphs. In this representation, resources and objects
are identified as nodes, and properties are defined as edges. In Figure 2.11, an example RDF
graph is given with accompanying definition in XML-based syntax.

RDF is in favor of using conventions that will facilitate modular interoperability among
separate metadata element sets. The Dublin Core [21] is an example definition standard
and convention for describing generalized web resources. It was named after the Metadata
Workshop in Dublin, Ohio in 1995. Following list is the partial tag element list for Dublin

Core initiative;

e Creator: Author of the content of the resource

29

Resource Property Property value
(subject) (predicate) . (object)

: creator
http://www.metu.edu.tr~John > (hep://purl.org/dc/elements/1.1/creator) (.5 ohn Doe”

<rdf:RDF xmlns:rdf="http://www.w3c.org/1999/02/22-rdf-syntax-ns#’
xmins.de="http://purl.org/dc/elements/1.1">
<rdf:Description about="http://www.metu.edu.tr/~John">
<dc:creator> John Doe </dc:creator>
</rdf:RDF>

Figure 2.11: An example RDF statements which means that John Doe is the creator of the
resource http://www.metu.edu.tr/ John. Property "creator" refers to Dublin Core Definition
Standard. RDF statement is given in two different representations; directed labeled graph

and XML notation.

Date: The resource creation date

Title: The name of the resource

Subject: The domain related with the resource

Description: An account of the content

Type: The genre of the content

Language: The natural language of the resource content

RDF Schema (RDFS)[62] is a rule system for building RDF instances and brings exten-
sions to Resource Description Framework. RDF Schema provides a higher level of abstraction
than RDF through its additional mechanisms to define specific classes of resources, proper-
ties, and the relationships between these properties and other resources. Moreover, RDFS
provides a semantic capabilities basis for more expressive languages such as Web Ontology

Language (OWL). RDF Schema provides three ways to characterize a property;

e Domain: Associates a property with a class
e Range: Indicates the range of values for a property

e subPropertyOf: Specializes a property

30

2.3.2 Web Ontology Language (OWL)

As a semantic web language, OWL [55] is used for defining terms and their relationships
through its standard RDF /XML syntax. RDF Model and Syntax provides a recognizable
metadata and RDF Schemas brings mechanisms for defining shared vocabularies and meta-
data interoperability. On the other hand, OWL is built on top of RDF, based on predecessor
languages DAML+OIL [20] and extends RDF(S) semantically. All of the language constructs
provided by RDF and RDFS can be used when creating an OWL document. Moreover,
OWL documents exploit rdfs:range, rdfs:domain, and rdfs:subPropertyOf elements. Sim-
ilarly, classes are the basic building blocks of an OWL ontology. Every instance in the

universe is a member of owl:Thing class. OWL supports six main of describing classes;
e Named Class is the simplest way of describing an OWL class.

e Intersection Class is a combination of two or more classes via the logical intersection

(AND) operator. An intersection class is defined with the owl:intersectionOf property.

e Union Class is a combination of two or more classes via the logical union (OR) operator.

Union class is defined with the owl:unionOf property.

o Complement Class is formed by negating another class. Complement class is defined

with the owl:complementOf property.

e Restrictions describe a class of individuals based on the type and possibly number of
relationships that they participate in. Restrictions in OWL can be divided into three

subcategories;

— FExistential Restriction describes a class of individuals that have at least one kind
of relationship along a specified property to an individual that is a member of a
specified class. Existential restriction can be read as "some values from" or "at

least one".

— Unaversal Restriction describes the class, whose individuals point only to members
of the class specified in the restriction for a given property. It symbolized the

meaning of "all values from" or "only".

— Cardinality Restriction is about the number of relationships that a class of indi-

viduals participate in.

— HasValue Restriction describes a class of individuals that participate in a certain

relationship with a specific individual.

31

o Enumeration Class is formed by explicitly listing the individuals that are members of

the enumeration class. An enumeration class is defined with the owl:oneOf property.

There are three types of OWL languages namely OWL-Lite, OWL-DL and OWL-Full.
They are categorized according to their expressiveness power. OWL-Full has no restrictions
on how/where language constructs can be used, but in turn, the OWL-Full ontologies are
undecidable i.e. it is unlikely that any reasoning software will be able to support complete
reasoning for every feature of OWL Full. OWL-DL corresponds to a description logic and
has certain restrictions on how/where language constructs can be used in order to guarantee
decidability. OWL-Lite is a subset of OWL-DL and is the simplest and easiest to implement
of the three species.

OWL classes permit much greater expressiveness than RDF Schema classes. The benefit
of OWL is that it facilitates a much greater degree of inferencing than RDF Schemas. For
ontologies that fall into the scope of OWL-Lite and OWL-DL, a reasoner can be used to
infer information that is not explicitly represented in an ontology. Subsumption testing,
equivalence testing, consistency checking and instantiation testing are some of the main
reasoning operations.

There are two types of properties in OWL namely ObjectProperty and DatatypeProperty.
Each type of properties has single or multiple specified domains and ranges. An ObjectProp-
erty relates one resource to another resource. A DatatypeProperty relates a resource to a

literal or to an XML Schema datatype. Properties can have different characteristics such as;

e If a property P is functional then for all x, y, and z:

P(x,y) NP(z,2) my==z (2.1)

e If a property P1 is inverseOf P2 then for all x and y:

Pl(z,y) < P2(y,x) (2.2)

e If a property P is inverse functional then for all x, y and z:

P(y,z) NP(z,x) »y==2 (2.3)

e If a property P is symmetric then for any x and y:

P(z,y) < Py, z) (2.4)

32

e If a property P is transitive then for any x, y, and z:

P(z,y) AN P(y,z) — P(x,z2) (2.5)

OWL provides additional axioms that can allow better reasoning capabilities on classes
or properties. Some of the axioms defined by OWL are rdfs:subClassOf, owl:equivalentClass,
rdfs:subProperty Of, owl:equivalentProperty, owl:disjoint With, owl:sameAs, owl:differentFrom,

owl:inverseOf, owl:transitive Property, owl:functional Property, owl:inverse Functional Property.

2.3.3 Description Logics

Description Logics [6] is a family of logic based knowledge representation formalisms. Most
of the semantic web ontology languages such as OWL are based on the description logics.
Description logics is the decidable part of the first-order logic (FOL) and enables procedures
for key reasoning problems such as satisfiability and subsumption. It describes the knowl-
edge domain based on concepts (classes), roles (properties, relationships) and individuals.
Basically, concepts represent unary predicates having only one free variable. Roles are equiv-
alent to statements with two free variables. Individuals represent constants. Operators in
DL are limited in order to foster decidability and reduce complexity.

DL brings the notion of knowledge base as a pair <7, A> where T refers to T-Box and
A refers to A-Box. The T-box contains the terminological (or schema) axioms and A-Box
contains assertional (or data) axioms. An example T-Box describing the concepts Person,

Man and Woman with their structural relationships can be given in terms of FOL as follows;

Person T T

ro
=)

Man C Person

o
BN |

ro
)

Woman C Person

o~ o~ o~ o~
—_— ~— ~—

Woman™ Man = L

ro
©

Semantic of description logics are defined by interpretations. An interpretation or model
I is formed by a domain and an interpretation function. Domain is a set of the elements
and objects which are subject to description or reasoning about where the interpretation
function gives meaning to the members of this domain.

Well known reasoning problems that can be formed around a DL knowledge base KB =

<T, A> will be as follows;

33

e Subsumption relation between two concepts w.r.t T

CcCDeviccD! (2.10)

e Concept consistency w.r.t T

e Knowledge base consistency

e Instance checking; whether KB entails the individual a of the concept C
KBEa:C (2.11)

e Satisfiability; concept C is satisfiable iff

I.CT #£0 (2.12)

e Equivalence of two concepts

C=DsVvic =D! (2.13)

e Disjointness; two concepts C and D are disjoint iff

vi.clnDl = (2.14)

2.3.4 Protégé Ontology Editor and Knowledge Acquisition System

Protégé [60] is a popular and comprehensive tool for creating and modifying knowledge bases.
Through its graphical development environment, Protégé supports development of ontologies
and meta models and exports them to various languages such as XML schema, RDF(S) and
OWL. Being a free and open source project, it allows extensions that can be implemented
and plugged in the flexible environment. It is actively being developed and extended by a
community of developers and academic, government and corporate users. Likely, Protégé
can be enabled for any application areas where knowledge management and reprentation are
musts such as biomedicine, intelligence gathering and corporate modelling. A screenshot of
the Protégeé tool is given in Figure 2.12.

In this thesis work, Protégé is exploited and reused as a third party component for
accessing and modifying OWL instances in a highly effective way. Protégé provides users
and developers with Protégé-OWL plugin which handles almost every possible actions over
OWL documents. Moreover, Protégé supports Semantic Web Rule Language (SWRL) for
OWL instances through its special plugins. Protégé is capable of converting and executing
SWRL rules in the JESS rule engine.

Details on how Protégé and its plugins are enabled in our work is given in Chapter 4.

34

defzult_feature_nntabgy_vll Protégé 3.4 beta (filer\D:\EclipseWorkspace \GENoDL \resources\r featur _Iﬂlﬂ
File Edit Project OWL Reasoning ©Code Tools Code Window Help

NoH “B6 me ¢ BEE 45

[@ Metadata(Oniology1 209057357 @) | © OWLClasses | BB Properties | 4 Incividuals |

For Project: @ default_festure_ontology_v12 For Class: |t M ovd-ontologies comiOntalogy] 209057 357 avldalernstive_Fe| | Inferrad Wisw
Eoei -
Asserted Hierarchy w tg{}? e lj Eﬁ t.l-‘ @ [H]
ol Thing Property | “alue
¥) Festure 0 rdfscomment

Q Alternative_Feature
Q‘ Mandstory _Feature
> swrla:Ertity
> tempoaral Entity

¢ ee

ﬁ Feature

-

4 | R | | Dl

I:B B O3 % J-; \:’ oy = =3 (®) Logic iew () Properties View

Figure 2.12: A screenshot from the OWL Classes view of the Protégé Ontology Editor

2.3.5 OWL-S: Semantic Markup for Web Services

Ideally, software agents should be able to automatically discover, invoke, compose, and
monitor web services. However, there is a need to make the service understandable and
interpretable by the software agents to achieve this goal. In this regard, OWL-S [56] is
designed and developed to represent web services semantics and populate service description
and functionalities so that software agents can perform reasoning for automated service
discovery, invocation, composition and interoperation. The current version of OWL-S is
built on the OWL.

The overall structure of the OWL-S ontology is divided into three main parts in order to
provide a comprehensive model for advertising and discovering services; a detailed description
of a service’s operation; and the details on how to interoperate with a service via messages.
Upper ontology of services is visualized in Figure 2.13.

Core components of the service ontology are explained as follows;

e Service Profile provides meta information about the service and its capabilities. Profile
specifies the inputs and outputs of the service, pre-conditions for using the service and
effects that service produce after its execution. Service profiles are used to populate
service registries and automated service discovery and matching. They can also support

35

ServiceProfile
rF 3

presents: What it
does

Service
Supports: describedBy:How it
works

How to access it

[ServiceGrounding] ServiceModel

Figure 2.13: Upper ontology of services

non-functional properties such as service name, text description, quality rating and
service category. An example service profile is given for a flight reservation service.
In this markup segment, service provider is annotated within the contactInformation
tag. Type of the service is enclosed in serviceClassification, product of the service
is described by product and service classification in business taxonomies is given in
serviceCategory. Typical inputs, outputs, preconditions and effects of the service is
given in hasInput, hasOutput, preconditions and effects respectively. This service profile
example is adapted from [57].

<profile rdf:ID="BravoAir">
<serviceName>BravoAir </serviceName>
<contactInformation rdf:resource="#BAco"/>
<serviceClassification rdf:resource="#Airline"/>
<product rdf:resource="#FlightReserv"/>
<serviceCategory rdf:resource="#NAICS_Airline"/>
<hasInput rdf:resource="#Dep_Airport"/>
<hasInput rdf:resource="#Arr_Airport"/>
<hasOutput rdf:resource="#Reservation"/>
<preconditions/>
<effects/>

</profile>

e Process Model is specification of ways how and when a client may interact with a
service. A Process model can have one or more simple, atomic and composite processes.
An atomic process is an interpretable description of a service that can be executed in
single step. A composite process maintains the state of the process. A composite
process may consist of sub composite or atomic processes. On the other hand, a
Simple Process is an abstract definition which is non-invokeable and have no grounding.
They can be considered as reusable process definitions that can be bound within an
atomic process. Process model provides state alignment and dataflow of a composite
process through its control constructs; Sequence, Split, Split+Join, Choice, Any-Order,
Condition, If-Then-Else, Iterate, Repeat-While and Repeat-Until. An excerpt from the
atomic process of the online purchase operation is given as follows;

36

<process:AtomicProcess rdf:ID="Purchase">

<process:hasInput>

<process:Input rdf:ID="ObjectPurchased"/>
</process:hasInput>
<process:hasInput>

<process:Input rdf:ID="CreditCard"/>
</process:hasInput>
<process:hasOutput>

<process:0Output rdf:ID="ConfirmationNumber"/>

</process:hasOutput>

o Service Grounding specifies how to access a service in an interoperable way. Details
on the access method such as communication protocols, schemas for exchanged mes-
sages and port numbers used to contact the service are specified in this part. Service

grounding is built upon WSDL specification.

Details on the OWL-S ontology and how it is related to ebBP are explained in Chapter

2.3.6 Semantic Web Rule Language (SWRL) and JESS

Semantic Web Rule Language (SWRL)[72] is an initiative from W3C which is designed to
be the rule language of the Semantic Web. SWRL is based on the OWL DL and OWL Lite
languages along with the Unary/Binary Datalog sublanguage of the Rule Markup Language.
SWRL supports Horn-like rules expressed in terms of OWL concepts (classes, properties
and individuals) and stored as a part of ontology. SWRL is intended to reason about OWL
individuals. Moreover, SWRL rules can be used to infer new knowledge from an existing
OWL knowledge base. SWRL specification does not mandate or impose a particular reasoner
to be used in performing reasoning with SWRL rules.

SWRL is based on OWL’s open world assumption and provides more expressivity than
OWL DL alone. However, inference with SWRL rules is not guaranteed to terminate as a
cost of the increased expressivity.

A SWRL rule is a combination of a head and a body part. Each of these parts consists
of a conjunction of zero or more atoms. SWRL does not support more complex combination
of atoms at the moment. There are a number of possible forms for the atoms in SWRL
rules. C(x), P(x, y), sameAs(x, y) and differentFrom(x, y) are defined as atom forms in

SWRL specification where C is an OWL description, P is an OWL property, and x, y are

37

either variables, OWL individuals or OWL data values. In the SWRL documentation it is
stated that OWL DL becomes undecidable when extended in this way as rules can be used
to simulate role value maps. SWRL also supports a range of built-in parameters in order to
expand its expressiveness. All of these built-in predicates start with the namespace qualifier
"swrlb:".

Consider an example SWRL rule which expresses a person with a female sibling. It
requires capturing the concepts of "person", "female", "sibling" and "sister" in OWL. Intu-
itively, the concept of person and female can be captured using an OWL class called Person
with a subclass Female; the sibling and sister relationships can be expressed using OWL
properties hasSibling and hasSister, which are attached to Person. The rule in SWRL would
then be:

Person(?x) A hasSibling(?z,7y) A Female(?y) — hasSister(?z, 7y)

Executing this rule would have the effect of setting the hasSister property to y in the
individual that satisfies the rule, named z.

JESS [39], the rule engine for the Java platform, is a rule-based reasoning system for the
Java platform which provides a rule language and a comprehensive Java based programmer’s
library for the seamless integration of its rule engine with Java applications. The rule
language of the JESS can be considered as a dialect of the Lisp programming language.
Moreover, JESS supports an XML-based rule language called JessML (JESS’s XML rule
language).

JESS is a well known and highly appreciated system which is well documented and is easy
to use and configure. Although it is not free to common use, this rule system can be down-
loaded for a 30-day evaluation period and is available free for academic use. The rule engine
can be embedded to any Java applications and provides a two-way runtime communication
between JESS rules and the application where it is embedded. JESS is capable of directly
manipulating Java object. Its rule processing facility is based on an enhanced version of the
Rete algorithm [28]. Protégé-SWRL chose JESS as the first integration candidate for the
reasoning operations.

Although a JESS rule is very similar to a conditional (if... then statement) which is a
core part of any procedural language, it is not used in a procedural way. As it is stated in
manual of the JESS, this is because of the designed rule execution mechanism. Conditionals
are executed at a certain order and time, however JESS rules are executed whenever their

if parts (their left-hand-sides) are satisfied. Therefore, a typical procedural program is more

38

deterministic than the JESS rules in this respect.

Mapping between OWL knowledge base with SWRL and JESS rules are possible and are
already demonstrated in [51, 45]. Before representing OWL individuals as JESS knowledge,
OWL classes and their properties must be first transformed into JESS. For this purpose,
JESS’s template facility can be used to represent the OWL class hierarchy. Our example
OWL knowledge can be modeled in JESS as follows;

(deftemplate OWLThing (slot name))
(deftemplate Person extends OWLThing)

(deftemplate Woman extends Person)

Consider that "Simge" is a member of the Woman class as well as "Umut" is of the
Person. Using the template definitions given above, these OWL individual can be asserted

as a member of the class Woman and Person respectively;

(assert (Woman (name Simge)))

(assert (Person (name Umut)))

OWL properties are directly modeled as JESS facts. We can assert such a fact if "Umut"

has a sibling called "Simge";
(assert (hasSibling Umut Simge))
The representation of our SWRL rule, which is given above, in terms of JESS is as follows;

(defrule exampleRule (Person (name 7x)) (Woman (name 7y))
(hasSibling(?x ?y))

=> (assert (hasSister(?7x 7y))

More detailed information on how to perform reasoning based on OWL, SWRL and JESS

can be found in Chapter 4.

39

CHAPTER 3

ENHANCING DOMAIN KNOWLEDGE
BASE WITH BUSINESS PROCESS
DEFINITIONS

Although feature modeling is a well known and easy to adopt method for representing com-
monalities and variabilities among a set of end-user driven domain specifications, they are
not suitable for capturing interactions, message sequence and data flows taking part in be-
tween two or more systems, services, processes or objects. In order to model the process
model semantics of a web service properly, it is necessary to enhance developed approaches
with additional domain engineering utilities.

In this respect, ebXML Business Specification Schema (ebBP) is exploited in capturing
process definitions and business choreographies of web services from a high abstraction level
where contributions of domain experts such as business analysts and process managers can
be effectively incorporated in devising the domain model. An overview of the ebBP standard
is given in Section 2.2.

The main advantage of using ebBP is its powerful built-in mechanisms for separating
the definition of the process model from its realization and making it independent from
its enablers namely business actors. This means that individual business systems, which
are following the sequence, can be defined in a domain of control where changes can take
place internally without changing the actual process model. Hence, ebBP provides business
partners with business process definitions to collaborate and achieve a given business goal
in an interoperable way. Because of these important properties, ebBP standard is decided
to be our choice of formalism for business process modeling.

Today, the key enabler of the ebBP is the web service technology which makes it possible

40

to execute business collaborations defined in the specification. One way to achieve such
executable business collaboration is through mapping business transaction activities to web
services. ebBP is capable of specifying process model parameters for configuring service
interfaces to execute and monitor business collaborations. However, ebBP does not specify
how to associate a defined service interface to its real world implementation. There are
several alternative methods, technologies and standards considering the business service
interface implementation such as ebXML Message Service, Collaboration-Protocol Profile
and Agreement etc.

In this chapter, we first introduce the building blocks of the ebBP in detail and then
present the ebBP Editor, an open source initiative designed to help the domain experts
in creating domain specific ebBP instances in a user friendly way, and finally explain the
devised method for transforming a given business process model to the corresponding service

model representation.

3.1 Core Components of the ebXML Business Process Speci-

fication Schema

The ebBP standard aims to specify the semantics as well as the structure of business collab-
orations in a machine readable format. Basically, business collaborations are composed of
business transaction choreographies which are fulfilled through message exchanges between
collaborating business partners. Fach business partner plays a predefined role in order to
participate in the business collaboration. In each business transaction, there is at least one
business document flow. Business signals may be enabled for informing the collaborating
parties about the current status of the business collaboration and business exceptions threw
during the execution of the business transactions.

In the following subsections, the details of core components in the ebBP specification are
described. The standard schema definitions of these core components are provided in the

Appendix section.

3.1.1 Business Collaborations and Choreography

A business collaboration consists of business activities which execute business transactions
among collaborating parties. Involved business partners play a predefined abstract role in
the scope of the business collaboration. Business transactions define interactions between

abstract partner roles based on transaction patterns. Abstract roles are bound to concrete

41

business parties through business activities. Business activities can be categorized as follows;
e Business Transaction Activity: The activity of executing a single business transaction.

o Compler Business Transaction Activity: The activity of executing nested business

transactions in series.

o Collaboration Activity: The activity of executing another business collaboration within

the scope of the current business collaboration.

In the ebBP technical specification, business collaborations can be divided into two sub-
categories namely Binary and Multiparty Business Collaborations according to the number
of involved business partner roles. A binary business collaboration requires exactly two ab-
stract partner roles involved. On the contrary, a multiparty business collaboration involves
more than two roles.

The choreography placed in a business collaboration specifies the ordering and transitions
between a set of enabled business transactions. The usage of choreography is analogous to
the activity diagram in UML context. The ebBP specification supports the visualization of
the choreography in BPMN standard but does not mandate to do so.

Within the scope of the ebBP specification, a choreography can be devised by using the

following constructs similar to the ones found in UML activity diagrams;

o Start, Success and Failure States: The initial state of a business collaboration is the
Start state which links to a business transaction activity. The ebBP specifies two com-
pletion states for a business collaboration namely Success and Failure states. Com-
pletion states give the possibility to define whether a business collaboration has been

performed as it was planned.

e Direct Transitions: Unless a business collaboration reaches one of its completion states,
it is either in the state of performing a business activity or preparing to start a business
activity. Once a business activity completes, the execution of the business collaboration

navigates to another business activity.

e Fork, Join and Decision Gateways for Transitions: There are two types of the Fork
gateway namely XOR and OR Forks. In XOR, only one transition from one business
state to another is allowed although initially all business state transitions are possible.
Whenever, one of the transitions is activated then all other are deactivated. An OR

Fork may enable all transition paths in parallel and it does not specify the order

42

in which condition expression on a transition coming from a Fork will be evaluated.
On the other hand, a Decision Fork selects only one transition path at start. This
property differs it from the XOR Fork. A Fork gateway may have TimeToPerform
element to specify the duration of the execution. At the end of the time interval given
in the TimeToPerform element, the state of the business collaboration is moved to
the corresponding Join. Join gateway has waitForAll attribute in order to indicate
whether all transitions coming into it must be executed for the collaboration or not.
AND-Join and OR-Join can be created by setting the waitForAll attribute to true or

false respectively.

e Guards on the Transitions: Transitions may have guards to gate the navigation from
one state to another. A guard stands for the status of an activity from which the transi-
tion originates. Guards can be ProtocolSuccess, AnyProtocolFailure, RequestReceipt-
Failure, Request AcceptanceFailure, ResponseReceiptFailure, ResponseAcceptanceFail-
ure, Signal TimeOut, ResponseTimeOut, Failure, BusinessSuccess, BusinessFailure and

Success.

o Variables and Condition Expressions: Transitions can have a conditional expression
element depending on variables. Variables which are named information elements are

bound to concepts across business transactions.

3.1.2 Business Transactions, Transaction Activities and Business Docu-

ment Flow

A business transaction is an atomic unit of work conducted between two collaborating par-
ties playing opposite abstract roles. Abstract roles are generic and labeled as Requesting
and Responding roles. In general, a business transaction is realized as a business document
flow between requesting and responding roles. Business transactions achieve and support en-
forceable transaction semantics and state alignment between collaborating parties. Business
signals can be enabled and used as a part of a message exchange in business transactions so
as to ensure state alignment of the respective parties.

A business transaction consists of a Requesting Business Activity, a Responding Business
Activity, one or two business document flow between them and several optional business sig-
nals. The abstract partner roles which are Requesting and Responding roles perform request-
ing business activity and responding business activity respectively. In business transactions,

a requesting document flow is mandatory and the responding document flow is specified

43

whenever it is required.
ebBP brings eight main business transaction patterns which determine the exchange of

business documents and signals to achieve the necessary business transaction;
o Commercial Transaction: Represents formal obligation between parties.
e Notification: Represents business notifications such as a failure or status order.

o RequestConfirm: Used where a confirmation about the status with respect to previous

obligations or a responder’s business rules is required by the requester.

o RequestResponse: Specifically used when the request for business information requires

a complex interdependent set of results.
o InformationDistribution: Used for informal information exchange between parties.

o QueryResponse: Used when the requester party want to query for an information that

the responder has.

e DataFExchange: Extensible pattern for partner-specific data exchange and business

transaction patterns.

o Legacy Business Transaction: This pattern is not recommended for using in concrete
business transactions and retained for conversion only with previous versions of the

ebBP specifications.

The main responsibility of a business transaction activity is to perform a business trans-
action within a collaboration. Business transaction can be associated to any number of
business transaction activities which means that the same business transaction is subject to
same or different business collaboration with different business transaction activities.

A business transactions is designed as a reusable protocol which can be referenced by
business collaborations through the use of business transaction activities. In business trans-
action activities, specific and concrete roles of the business collaboration are bound to the
generic partner roles in business transactions. An external role in a business collaboration
is mapped to the role defined in the enclosed business transaction by using the “Performs”
element found in the business transaction activity.

Business transaction activities can be nested in a recursive manner by the “Complex
Business Transaction Activity” element defined in the ebBP specification. Complex business

transaction activities execute the transaction activities in series and express the situation

44

occurs when a transaction activity can happen only after the request of the other transaction
activity has been entirely processed. In this type of transaction activity, the nested business
activities have a “statusVisibility” element to specify which state of the associated transaction
are visible by the parent complex transaction activity.

Business transactions provide additional semantics that configure the particular perfor-
mance of the referred business transaction. These semantics can be considered as the rules
and the configuration parameters required for software components to realize the business
transaction in a predictable and deterministic way. The following parameters are supported

to substantiate and enforce preconditions on the business transaction activity;
o Reliability is the ability to specify reliable document and signal delivery.

e Document Security refers to authorized, authenticated, confidential and tamper de-

tectable transactions.

e Non-repudiation specifies the keeping of transaction artifacts to aid in legal enforce-

ability.
o Authorization refers to authorization requirements for the parties performing roles.

o Predictability refers to clear roles, precise transaction scope, understood time bounds,

unambiguous determination of completion and business information semantics.

However, how these parameters are reflected to the implementation is not specified within
the scope of the ebBP.

The software counterpart of the business transaction are business service interfaces which
manage the business transaction, monitor the timers and requirements of the business col-
laboration, and enforce the semantics.

A business document flow is modeled indirectly as a “Document Envelope” associated
with one requesting or responding business activity. A document envelope is sent by one
role and received by the other in a business transaction. There is always a single document
envelope for a requesting activity and may be zero or more for a responding activity.

Each document envelope encapsulates a business document with its attachments. Al-
though a document envelope can refer to a logical business document, it defines neither the

structure of the document nor the underlying semantics.

45

3.1.3 Business Signals and Exceptions

Business signals can be exchanged during the execution of a business transaction in order
to inform the collaborating parties about the state alignment of the business collaboration
explicitly calculated at run time. Business signals are computed by the collaborating parties
and provide a mutual understanding of the business activity.

There are two important business signals namely “Receipt Acknowledgement” and “Ac-
ceptance Acknowledgement”. Business transaction pattern specifies whether a “Receipt Ac-

knowledgement” and/or and “Acceptance Acknowledgement” signal is required.

e Receipt Acknowledgment signals that a request or response message has been properly
received by the business service interface. This type of signal is necessary for reliable

messaging between collaborating parties.

o Acceptance Acknowledgement signals that the received request or response message is
subject to business processing and that processing has been completed successfully by
the receiving party. This type of signal is used extensively for the successful synchro-

nization of state between collaborating parties.

Business signals are different than the business messages. They have a fixed structure
defined in the ebBP signal schema while the content of a business message can vary both at
run-time and over time, and is under control of an application or service.

There are simply two causes of failures occurred during the execution of a business
transactions; timeouts and exceptions. Since business transactions may be time-critical
operations, they should have a distinct time boundary. The timeout parameters are normally
associated with the response and each of acknowledgement business signals. After timeout
occurs, the transaction must be set to null and void. On the other hand, the processing of
the transaction cannot be completed successfully by the request in or responding role. In

such cases, a series of protocol exceptions are used to indicate the failure.

3.2 The ebBP Editor

3.2.1 Introduction

The ebBP Editor is an open source tool designed for domain experts helping them in creating,
modifying and validating ebBP instances in a user friendly way. It is implemented as a part

of the IST 027065 RIDE (A Roadmap for Interoperability of e-Health Systems in Support

46

of COM 356 with Special Emphasis on Semantic Interoperability) project funded by the
European Commission [64]. The author of this dissertation work actively participated in
implementation of all components of the ebBP Editor, prepared a distribution release and
presented it to the OASIS ebXML Business Process Technical Committee. Minutes of this
presentation can be found in [23]. Within the scope of this thesis work, the editor tool is
enabled for describing electronic business process definitions in a standard-based manner.
These definitions are supposed to be exploited in the process of automatic service ontology
generation.

The ebBP Editor is composed of two main components; XmlStylist and Visual Compo-
nent. XmlStylist is used for creating, editing and validating process specifications conforming
to the XML schema definition of the ebBP. GUI of the XmlStylist displays process specifica-
tions, business transactions, packages and the corresponding specification document in a tree
structure. Visual Component displays Business Collaborations within a process specifica-
tion by enabling BPMN standard. Each Business Collaboration is represented in a different
section graphically.

The latest version of the ebBP Editor is available at the sourceforge.net portal. The
necessary source codes and third party libraries are made accessible and downloadable by
general public licence. The software requires a Java Virtual Machine and Apache Ant build
tool in order to build and run the project. The editor tool has been tested and verified with
Sun’s JDK built 1.5.0 04 on Microsoft Windows XP platform.

In order to start the ebBP Editor, the user should first compile the source codes with
the command “ant build” and then type the command “ant run” to the operating console.
These commands are defined in the build.xml project file which can be found at the project
folder. The details of the build mechanism is given in the Apache Ant’s web site.

After starting the editor, user can create a new ebBP Process Specification or open
an existing one by clicking on the respective menu bar buttons of the GUIL. Both of these
actions are done with the assistance of the XmlStylist. User can edit the details of a business
process through the visual features supported by the XmlStylist. After closing the popup
window of the XmlStylist, the modified business process definition is validated syntactically.
User is informed whenever there is any problematic structure provided within the process
definition. Validated process definitions are then visualized in the Visual Component of the
ebBP Editor according to the BPMN standard. For each business collaboration given in a
process specification, a tabbed pane is generated to visualize the business choreography i.e.

display the interaction between the business activities and the business roles taking part in

47

the collaboration. A screenshot of the ebBP editor is depicted in Figure 3.1.

£ ebBP Editor —l&| x|
File Edt Wiew Creats Graph Help
£ ebBP Yisual Component s al Co x|
O| = ZDUml%lUU vl
. Role
BusinessCallaboration-10 | =
% BusinessTransactionActivity
7 CollsborationActivity
- B complexBusinessTransactionactivity
K OSuccess
oFai\ure
K
P Fark
K
\'n"’ Join
. ? Derision
-
rolerole? g
X
T &
=l File:conffebbp, owl#Business TransactionPattern
o g file:confebbp.owl#QueryResponse
file:confebbp.owl# CommercialTransaction
-4 file:conf/ebbp.owl#RequestResponse
E g file:confebbp.owl#Motification
file:confebbp.owl# InformationDistribution
i -4 file:confebbp.owl#DataExchange
-4 fileiconf /ebbp.owl#RequestConfirm
Properties: Role
Property Walue
e role
namelD rolel Create Transaction
Spedalize

Figure 3.1: A screenshot of the ebBP Editor

3.2.2 Overview of the ebBP Editor Components
XmlStylist

XmlStylist component is designed for fast and easy editing of ebBP instances through their
tree-like representations. Basically, XmlStylist parses a specified Xml schema definition and
builds a user-editable form dynamically. The user can then fill attributes and fields of this
form in order to create an Xml instance which conforms to the specified Xml schema. User
is provided with the cardinatility information of the attributes and elements. XmlStylist
performs a validation check before serializing the graphical form into its Xml representation.

As it can be seen in Figure 3.2 the main window of the XmlStylist is divided into three
subwindows. In the top-left window, the given Xml schema is visualized as a tree object.

Below of this window, the ebBP instance which is being edited is given as tree object similar

48

to its schema representation. In the right of these two windows, the details of the selected

ebBP element is visualized with its attributes and subelements.

I® Xmi Stylist - ProcessSpecification - _;Iglﬂ
File Edit View Tools Help
s Element only content New Branch | ;]
ebbp-2.0.3.xsd = Global scope
B tian Package: Complex type
e Element only content Mew Branch |
-7 AttributeSubstitution Global scops
- ExternalRoles BusinessDocument: Complex bype
- Signal Element only content New Branch |
- Variable lobisiistips
[#-F1 Package BusinessTransactionHead: Complex type
E..r—--. BusinessDocument Element only content Mew Branch |
F-7 Business Transactionk Fhbbatcns
- BinaryCollaboration BinaryCollaboration: Complex bype
- MultiPartyCallabaratic— Element only content New Branch |
[BusinessCollabar atior Glabal scops
=T L e MultiPartyCollaboration: Complex type
—I-—I Element only content Mew Branch |
1| [% Glabal scope
BusinessCollaboration: Complex bype
ebrnlbp-2.0.4-Example-os-P2 e
= P i— Element only content New Branch |
= cation Global scope
D.ocumentatlon: The | CperationMapping: Complex type
1 Signal Element onby content Mew Branch |
7 BusinessDocurnent Global scope
[#-f~1 Package :
______ M instanceversion: Y11 specficationtersian: IZ.D
J name; PIPFCTNatifyC Inskanceyersion: |\n'11.DD
namelD: idProcesssp
specificationversion: *name: |PIP?C?N0tiF\,-'OFSemiconductorTestData
Llf iy st anet *namelD: IidProcessSpeciFication??208824
wrilns: http:fidocs. oz
wrilns:bpl: htkp: [fiane Fyuid: lurn:rosettanet:speciFication:interchange:PIP?C?:me:bpss:\-’l1_DD
wrnins:bpz; http: ffdo
ol] wemins i heep: i Edit Remave Clear Form e
L4l » -

Figure 3.2: XmlStylist - Main Screen

As it is mentioned before, XmlStylist parses a specified Xml schema and provides the
user with user-editable visual forms which are created dynamically. The user can create
instances of the schema by filling these visual forms. When the user loads an Xml schema,
the XmlStylist informs him/her whether the schema contains one or more global elements.
If the schema contains more than one global elements then the user should specify one of
them to be the basis of the Xml instances which will be created in future. This is necessary
because according to the Xml standard, one Xml document has to contain only one global
element. The user can select the root element from the menu shown in Figure 3.3.

In order to add a new element to the Xml instance, the user first selects the corresponding
parent element from the Xml instance tree and then he/she selects the interested subelement
from the schema tree. After selecting parent element from the instance tree, the schema tree

is updated and all child elements of this parent element is listed to the user. The user then

49

x

Specify the roak element

= Variable -
= ConditionExpression

= ProcessSpecification

= Decision

= Collabaor akionAckiviey

[CommercialTransaction

[~ FromLink.

[ComplexBusinessTransackionActivity
[~ Attachment

= Signal

[~ BusinessDacument vl

(04 I Cancel |

Figure 3.3: XmlStylist - Select Root Dialog

specifies the subelement to be added from the schema tree. The necessary form for the
selected subelement is dynamically generated at the right part of the XmlStylist. Editable
attributes of this elements are visualized as blank text boxes within this form. After filling
these text boxes according to their cardinality restrictions, user can add this element to
the Xml instance. The user-editable schema form is dynamically created according to the

following simple rules;
e Attributes of the selected element are represented with text boxes.

e Simple subelements of the selected element are shown as text fields if they have a

maximum cardinality of one or else they are represented with combo boxes.

e Complex subelements are represented with a link to their own user-editable forms.
When the user clicks on this link, XmlStylist creates the necessary visual form and

allows the user to specify this complex subelement.

e The required attributes and fields are represented with additional visual properties in
order to inform the user. For example, an asterisk precedes the label of a required field
and they are written in bold fonts. Moreover, a field can have a tooltip which gives
additional information about the properties of that field such as namespace, scope and

cardinality.

On the other hand, global elements can be freely added to a blank Xml instance without

specifying any parent-child relationship.

50

Whenever an element from the ebBP instance window is selected by the user, the schema
window and the user-editable form is updated accordingly. The visual form is filled with the
values of the selected ebBP element and then the user can then edit these fields or remove
the element from the ebBP instance document.

XmlStylist validates ebBP instances whether they conform to the ebBP standard by the

help of its enhanced control mechanisms;

e Before adding a new element to the ebBP instance, parent-child relationship is checked.
Based on the specified Xml schema, XmlStylist does not allow misplaced elements in

an Xml document.

o After each update of an Xml element, XmlSytlist validates whether the required fields
of that element are fulfilled.

e Before serializing the tree representation of the ebBP instance into its Xml format, a

full validation of the instance takes place.

e Whenever an erroneous document construct is figured out by the validation process,

the user is informed about this situation.

A sample warning message produced after the validation process of an ebBP instance is
shown in Figure 3.4.

ebBP standard definition introduces a document construct called Package in order to
foster reusability among ebBP instances. Packages can be freely imported into a process
specification or into another package. In XmlStylist package importing is supported also.

Users can import packages through the Import Package menu item under the File menu.

ebBP Visual Component

ebBP Visual Component provides graphical representation of business choreographies among
business partners. In ebBP specification, these choreographies are defined within the scope
of business collaborations. In this respect, ebBP Visual Component parses a given process
specification and visualizes all business collaboration stored in it. Each business collabora-
tion is displayed in a separate tab section of the graphical pane. ebBP Visual Component
exploits the BPMN standard for visualizing the business collaborations. This component is
in coordination with the XmlStylist i.e. they work on the same process specification.

A new process specification can be created or an existing one can be opened by the clicking

on the “New” and “Open” menu items respectively. They are listed under the “File” menu. A

o1

il
File Edit wiew Create Graph Help
£ ebBP ¥isual Component - x|
o Stylist - ProcessSpecification = X
0 % | zoomfemron [+ LS L __ L i =1ofx]
= Fle Edit View Tools Help
Rotify OF Semiconductor Test ——
— |l i =
ProcessSpecification —
ebbp-2.0,3.x5d- 1 =]
Ficatio Documentation: Complex byps
Ll Simple coritent New Branch
o Documentation Global scope N
E\tttr\butf:L:bst\tutmn AttributeSubstitution: Complex type
. X EHIARDE Element only content Iew Branch
Signal Global scope
:an::\e ExternalRoles: Complex type
i arode Element only content
BusinessDocument Global scope
BusinessTransactionHead Sanell ol tne
[i i anal:
_E_ln:a.r_yc.ul\a_b?nlatmn“ Element only content New Branch
x
[b
- @ Tnvvalid xml file:
b= oundyCrTe 8 cyc-complex-type,2.4:bi The content of element 'BusinessCollaboration' is not complete, ©ne of YRols, TimeToPerform} is expected,
x|
[
{77 BusinessCollaboration BusinessDocument: Complex type nPattern
. BusinessCallaboration Element only content Tew Branch e
BusinessCollaboration Global scope nsaction
rj name: defaultPs BusinessTransactionHead: Complex type nse
K J namelD; defaultn Elernent only content New Branch
uuid: defaulkULIDaza Global seope tibution
o j *mins: http://docs. oasis-open. orgfebxmibp/ebbp-2.0 BinaryCollaboration: Complex type
Element only content Tew Branch
Global scope:
MulbiPartyCollabaration: Complex type
Elerent only content Tew Branch
Properties: Global scope
BusinessCollaboration: Complex kype
Elerent only content Tew Branch | LI
CrEEE Trar T
Specialize

Figure 3.4: XmlStylist warns the domain expert about an invalid Business Collaboration

instance

new business collaboration can be created by clicking on the “New Business Collaboration”
icon on the ebBP Visual Component. Details of the newly created business collaboration
can be modified through XmlStylist. Business collaborations can be deleted by clicking on
the “Remove Business Collaboration”icon placed next to the “New Business Collaboration”
icon.

Main visual constructs used in representing business collaborations are given in the graph-
ical components window (see Figure 3.5). User can drag and drop these constructs on a
business collaborations in order to add them to the definition by the help of the XmlStylist.

When the user clicks on of the visual constructs given in the business collaboration
representation, the basic properties of the element are displayed in the bottom part of the
ebBP Visual Component. Users are allowed to edit those properties by the help of this

section in a more faster way.

52

£ yijsual Components x|

. o Rale

@ BusinessTransactionActivity

7 Collahorationactivity

@ ComplexBusiness TransactionActivity

9 SLcCess

€ Falure
gR_. Fork

W g

» Decision

Figure 3.5: Graphical Components of the ebBP Editor

3.3 Mapping Business Collaborations to Web Service Process

Models

Core components of the ebBP standard schema with the editor tool addressing the challenges
for creating and modifying ebBP instances have been introduced in the previous section. In
order to enhance our generative method for service ontology creation with process model
semantics of web services, we have enabled the business collaboration and transaction of
the ebBP and devised conceptual mappings for automatically transforming these ebBP con-
structs into OWL-S standard. The transformation method is implemented as a part of the

open source GENODL project which is introduced in Chapter 4.

3.3.1 Motivation Behind the Transformation Method

The ebBP brings the notion of business service interface (BSI) as a logical definition for a
collaborating party’s actions exposed as business service and supports its implementation
through web services and other software technologies. A BSI is compromised of a set of
business processes, business object states of a business process and the rules governing tran-
sition between those states. In other words, BSI is the logical set of transactions required to
achieve a common goal. The interface to the BSI is through business messages and signals

like in message-oriented web services. Moreover, BSI is capable of providing non-functional

93

requirements such as quality of service and service configuration parameters. In the context
of the ebBP, BSI is completely separated from implementation technology. Implementation
choices are not specified and may include Java beans, web services etc. In brief, a BSI

consists of the following entities;

e A discrete set of business process states shared and aligned between collaborating

partners.
o A discrete set of business transactions and transitions between business transactions.

e Business rules and requirements governing the states, transactions and transitions.

Bearing in mind these properties, the ebBP provides domain experts with state-of-art
modeling capabilities for encoding necessary transactional semantics among the collaborating
systems that are surely subject to web service technology stack. However, the ebBP does not
mandate or specify any refinement mechanisms for transforming the underlying semantics
of an ebBP document into a more convenient structure that any implementation technology
such as web services can realize them easily. Hence, there is a gap exists between business
process modeling with ebBP and service-oriented development.

What we have achieved in this work is to develop conceptual mapping schemes between
the generic ebBP instances and OWL-S ontologies. OWL-S is an emerging de-facto seman-
tic web standard that supports automation of various web service related activities such
as service discovery, composition, execution and monitoring. OWL-S provides a standard
language for describing process models of atomic as well as composite web services. The role
of OWL-S in bridging the gap between domain and application engineering while developing
service-oriented systems is pictured in Figure 3.6.

As an outcome of this mapping, previously defined business processes are refined and
brought one step closer to the realization phase automatically. Although it is important
to note that a process is not a program to be executed, the proposed transformation will
lead to a further point in the way of end-user driven development for software engineering.
Moreover, mapping ebBP definitions to OWL-S fosters service reuse. Once the OWL-S
model of a business service interface is described then the service implementation may be

discovered from the existing assets instead of developing the service every time from scratch.

54

Application
Engineering

Domain
Engineering

ebBP /owL.s \ WsbDL

* business process | 4 ¢onice

stru ctur_e and | semantics
semantics \

* syntax for web
service interface
implementations

™,

\\
~

Abstract < » Concrete

Figure 3.6: Bridging the gap between domain and application engineering in developing

service-oriented system

3.3.2 ebBP to OWL-S Mapping

We can easily understand that there is no obvious one-to-one mapping between individual
terms in ebBP and OWL-S process models. Because ebBP and OWL-S represent process
decompositions from different abstraction levels as it is described in the previous subsection.
When we compare the two standards, we treat the whole ebBP process specification as a
model that may be decomposed into the corresponding OWL-S process models with some
decomposition decisions depending on other parts of the model. A resulting service ontology

can be related to web service implementation in three ways;
1. Provide requirements to the web service interface
2. Constrain implementation of the web service interface
3. Enable automatic discovery of semantically matching web services already implemented

Nevertheless, we put a basis for our mapping method through comparing common com-
ponents sharing the similar semantics in both standards. Moreover, we adopt the ebBP’s
bottom up design approach for describing business collaboration and propose our transfor-

mation strategy inspired on this approach as follows;
1. Transform Business Transactions
2. Transform Business Document Flow for Business Transactions
3. Transform Binary (Business) Collaboration re-using the mapped Business Transactions

4. Transform the choreography for the Binary (Business) Collaborations

95

5. Transform higher level Business Collaborations re-using the lower level Business Col-

laborations translated previously

A high overview of the mapping specification is depicted in Figure 3.7. Firstly, we treat
business collaborations as web services that process at least one business activity. Since
business transaction activities are atomic processes, we can associate them with the OWL-
S’s Atomic Process concept. Similarly, a Composite Process can be considered as equivalent
to Complex Business Transaction Activity, Collaboration Activity or a business collaboration
that provides a choreography among two or more business activities. A Composite Process is
built by integrating at least two Atomic Processes in a choreography definition i.e. maintains
the state information between process transitions. OWL-S provides definitions for reusing
atomic processes like in the ebBP. OWL-S defines abstract atomic processes with its Simple
Process element. A Simple Process can be realized in various Atomic Processes. Hence,

Simple Processes serve the same purpose as the Business Transactions in the ebBP.

Business Collaboration ‘::> Service Process Model

Choreograph;\

.| Composite Process

/-' Atomic Process

> Simple
Process

Y

Business _
Transactions B

Figure 3.7: Overview of the mapping specification

In the following subsections, the conceptual mappings from ebBP elements to their OWL-
S counterparts are listed. Note that the transformation method is intended for the direct

creation of service ontologies from the given business process model. It is a self-contained

o6

statement of core ebBP specification elements and relationships required to be able to create

OWL-S compliant service process models.

Mapping Business Transactions and Business Document Flow

A business transaction can be considered as an atomic unit of work in a trading agreement
between two collaborating parties playing opposite abstract roles. It consists of one or two
predefined business document flows. Business transactions are pure reusable components
of the ebBP. They can be associated within any business collaboration through business
activities that set the proper performers for their declared roles.

Similar to business transaction, a simple processes is the abstract as well as the reusable
part of the OWL-S process model. In the transformation specifications, a declared role
for the business transaction is mapped to either hasClient or performedBy element of the
simple process according to its initiating or responding position. A business transaction has
exactly one requesting document flow while it may have a single responding document flow.
Business document flows are represented as document envelopes. The mapping specification
for the document envelope is described later in this subsection. One way of mapping business
transactions to its OWL-S counterpart is shown in Table 3.1. The choreography of nested
BTAs in a ComplexBTA can be transformed into a Sequence of AtomicProcess in terms of
OWL-S. The general choreography mapping is given in the subsequent section.

Request and response document flows contain necessary business documents that pertain
to the corresponding business transaction. In ebBP, a business document flow is not mod-
eled directly instead it is modeled indirectly through document envelope structure. Each
document envelope refers to a single business document and carries it over the document
flow. A document envelope belongs to exactly one document flow.

For conceptual mapping, document envelopes can be modeled by the instances of the
Input and the Output class of the OWL-S ontology based on whether the document flow is
requesting or responding. A document envelope is defined as a property value of a document
flow so as the Input / Output parameter of a message-oriented web service. Asin the document
envelope, Input/Output class refers to the structural specification or the schema definition
of the business document. A possible mapping from document envelope to Input/Qutput is
provided in Table 3.2. A document envelope can optionally have one or more attachments
related to the business document. Although, Input/Output class does not provide an implicit
support for this kind of attachments, a conceptual mapping may be satisfied by adding the

necessary semantics to the document schema explicitly.

o7

Table 3.1: Business Transaction to Simple Process

ebBP Term (BusinessTransaction) OWL-S Counterpart (SimpleProcess)
/@name /@name
/@namelD /@rdf:ID
/RequestingRole /hasParticipant
/RequestingRole /hasClient
/RequestingRole/@namelD /hasClient /@rdf:ID
/RespondingRole /hasParticipant
/RespondingRole /performedBy
/RespondingRole/@namelD /performedBy /@Qrdf:ID
/RequestingBusinessActivity /hasInput
/RequestingBusinessActivity /DocumentEnvelope /hasInput/Input
/RespondingBusinessActivity /hasOutput
/RespondingBusinessActivity /DocumentEnvelope /hasOutput/Output

Table 3.2: DocumentEnvelope to Input (or Output)

ebBP Term (DocumentEnvelope) OWL-S Counterpart (Input/Output)
RequestingB.A./DocumentEnvelope SimpleProcess/hasInput/Input
RespondingB.A./DocumentEnvelop SimpleProcess/hasOutput/Output
/@namelD /@rdf:ID
BusinessDocument /Specification /@location /parameterType
/Attachments no direct mapping

Mapping Business Activities

A business activity in ebBP can be a business transaction activity, a complex business
transaction activity or a collaboration activity. In order to give the essence of the overall
conceptual mapping with principle notions, we address only the transformation requirements
for the business transaction activity and complex business transaction activity in this study.
In general, a business transaction activity is an execution of a business transaction be-
tween specified collaborating parties. Business transactions are responsible for integrat-
ing business transactions to business collaborations. In the ebBP specifications, a business
transaction refers to a business collaboration and sets the performers of the initiating and

responding roles of the transaction with suitable business partners.

o8

As it is stated before, business transaction activities can be associated with atomic pro-
cesses in OWL-S. Atomic process corresponds to an action that a service can perform in a
single interaction. This interaction should be executed in a single step by receiving exactly
one message and sending zero or one response. Like business transaction activities, atomic
processes can refer to simple abstract processes in a reusable manner. On the other hand,
business activities is capable of defining business rules with the BeginsWhen, EndsWhen,
PreCondition and PostCondition elements of the ebBP for annotation purposes. It is in-
tended that the business service interface may use these elements at run-time whenever their
expressions are coded in a machine-processable format. Atomic process’s hasPrecondition
and hasResult can be conceptually map to PreCondition and PostCondition respectively.

Mapping specifications from business transaction activity to atomic process is given in Ta-

ble 3.3.

Table 3.3: Business Transaction Activity to Atomic Process

ebBP Term (BusinessTransactionActivity) OWL-S Counterpart (AtomicProcess)

/@businessTransactionRef /realizes
/@name /name
/@namelD /@rdf:ID
/Performs /hasParticipant
/Performs/RequestingRole /hasClient
/Performs/RespondingRole /performedBy
/PreCondition /hasPrecondition
/PostCondition /hasResult
/TimeToPerform Handled in Choreography Mapping

A Complex Business Transaction Activity (ComplexBTA) allows for nested BTAs to
happen one-by-one. This concept is a pure sequencing concept and does not affect the atom-
icity of the Business Transaction. When multiple activities are nested within ComplexBTA,
these activities MUST be executed in series. The model supports for any number of nesting
levels. The counterpart of the ComplexBTA in OWL-S domain is CompositeProcess. Map-

ping specifications from complex business transaction activity to composite process is given

in Table 3.4.

99

Table 3.4: Complex Business Transaction Activity to Composite Process

ebBP Term (ComplexBTA) OWL-S Counterpart (CompositeProcess)

/@name /name
/@namelD /@rdf:ID
/Performs /hasParticipant
/Performs/RequestingRole /hasClient
/Performs/RespondingRole /performedBy
/PreCondition /hasPrecondition
/PostCondition /hasResult
/TimeToPerform Handled in Choreography Mapping
Sequence of BTAs Choreography Mapping for Sequence

Mapping Business Collaborations

In this subsection, we show how a business collaboration definition can be transformed into

the OWL-S context. We first map common properties of the business collaboration element

to matching attributes of the service class in the OWL-S ontology. Then, we transform the

basic building blocks of the choreography described within business collaboration element

into their counterparts in OWL-S enabled for constructing service process model.

In OWL-S, Service Profile provides high-level description of a web service. It can store

human-readable properties (service name, text description, contact information) as well as
machine-interpretable properties (inputs, outputs, preconditions and results). Basic proper-
ties of a business collaboration such as name, namelID and Documentation can be mapped
to suitable service profile attributes of OWL-S. A possible mapping from ebBP’s business

collaboration to service class of OWL-S is given in Table 3.5.

Table 3.5: Business Collaboration to Service

ebBP Term (BusinessCollaboration) OWL-S Counterpart (Service)
/@name /presents/Profile/serviceName
/@namelD /presents/Profile/Qrdf:ID
/Documentation /presents/Profile/textDescription
/Role/@namelD /describedBy/CompositeProcess/hasParticipants
Choreograpy Transformation Given in Table 3.6

60

According to the ebBP specifications, a choreography is an ordering of business activi-
ties within a business collaboration in order to specify which business state is expected to
follow another state. Hence, a choreography definition removes any ambiguity in business
document exchange among collaborating parties. We know that common control structures
for establishing the choreography are Start, Completion (Success, Failure), Transition, Fork
(OR-Fork, XOR-Fork), Join and Decision. Each choreography begins with a Start element
and traverses a path through a graph until reaching a completion state. Start element has
only one linking construct which is ToLink. By its toBusinessStateRef attribute, a ToLink
construct refers to the next state where the current state can transition to. Conversely, a
FromLink refers to the state where it can be transitioned to the current state via its fromBusi-
nessStateRef attribute. Start element defines a special state that can only be transitioned
from while completion elements such as Success and Fuilure cannot point any further state
to transition. In general, linking constructs (FromLink and ToLink) should reference states
in business collaboration (Start, Success/Failure, Fork, Join and Decision).

Basically, OWL-S’s composite process consists of other atomic or composite processes.
Control flow of a composite process is specified using control constructs which can be nested
to an arbitrary depth. Like business collaborations in the ebBP, composite processes can
be considered as state-oriented workflows. In the transformation method, CompositePro-
cess class is preferred for representing underlying semantics of business choreography within
business collaboration. Main control construct of the whole choreography is the Sequence
element. Linking constructs (FromLink and ToLink) are mapped according to their type
and the class of the state they refer. For example, FromLink is transformed into a Control-
Construct that it can be further specified as a Perform, Split, Split-Join or Choice based on
the type of the refered state; Business Transaction Activity, Fork, Join and Decision respec-
tively. In ebBP, a choreography starts by linking to a business state so, we can associate
Start with a Sequence instance whose list:rest element refers to the state that ToLink of the
Start linking as well. Overall mapping from choreography construct of ebBP to their OWL-S
counterparts are given in Table 3.6. Transition, Fork, Join and Decision have at least one
FromLink and one ToLink but maximum occurrence of these linking constructs can vary
depending on the choreography type. Fork and Decision include at least two ToLink on the

other hand, Join have at least two FromLink.

61

Table 3.6: Choreography to Service Process Model

ebBP Choreography OWL-S Counterpart (ControlConstruct)
/FromLink /ControlConstructList/list:first /ControlConstruct
/ToLink /ControlConstructList/list:rest /ControlConstructList
/Start CompositeProcess/QcomposedOf /Sequence
/Start/@namelD /Sequence/@rdf:1ID
/Transition/@nameID ControlConstruct /@rdf:ID
/Fork /@namelD /Split/@rdf:ID
/Join/@namelD /Split-Join/@Qrdf:ID
/Decision/@namelD /Choice/@rdf:ID
/B.T.A /C.C.L./list:first /Perform /AtomicProcess
/Success No suitable match
/Failure No suitable match

3.3.3 Limitations of the Transformation Method

The proposed transformation method has a number of drawbacks due to the limitations of
the OWL-S specifications and the implementation of the mapping rules. Counterparts for
some ebBP features such as exception handling, business signals, conditional expressions,
document attachments, non-functional and configurational parameters are not directly sup-
ported by OWL-S. On the other hand, the implementation of the transformation method
should cover the mappings of complex business transaction activities and collaboration ac-
tivities. Those mapping rules are planned to be implemented as a future work. Moreover,
the transformation method should be continuously updated according to newer version of

the related standards.

62

CHAPTER 4

ADDING FORMAL SEMANTICS AND
REASONING SUPPORT TO FEATURE
MODELS

In order to utilize a product line approach which exploits feature-oriented domain analysis,
there is a need for formal and machine-processable feature models. Feature models play a
key role in the domain analysis process; they set the scope of the product line by captur-
ing commonalities and variabilities among products, and provide a basis for future steps
in product line processes such as defining common architecture, creating reusable system
components etc. Therefore, representation of the feature models in a machine-processable
way is considered first.

Moreover, it is necessary to verify a feature model before using it in further activities.
After defining a formalism for feature models, it is possible to automate a verification process
through reasoners which can check inconsistencies among features as well as automatically
correcting them to a certain extent. On the other hand, automated analysis of the formalized
feature models are not limited only with the verification operation. There is a number of
reasoning problems that can be proposed along with verifying feature models such as checking
model satisfiability and dead feature detection.

There is, however, no shared agreement on;
e how to represent and disseminate feature models in a standard way,
e how to analyze feature models automatically |7],

e how to localize features into reusable assets and tailor them for application engineering

usage.

63

This chapter presents the Semantic Web approach for modeling and verifying feature-
oriented domain analysis. It is clear that there are several opportunities to be gained in
developing a formalization of feature models to make them semantic aware. OWL is decided
to be used for feature model formalism because it is a well known standard in the area and is
supported by various technologies, tools and development environments like Protege-OWL,
SWRL and JESS. In this respect, we will exploit the OWL’s richer semantic constructs as
well as its reasoning capabilities. OWL reasoning engines such as JESS can be deployed to
check for inconsistencies within a feature model and correct them automatically.

We first introduce the basics of our feature model ontology. We describe the feature
model ontology by enabling OWL DL along with Semantic Web Rule Language (SWRL)
for stating axioms. Then, we present our editor tool dedicated for creating, modifying and
verifying the feature model ontology through its user friendly GUI. This editor tool has been
completely developed within the scope of this academic study. The feature model editor
exploits Protege-OWL API for handling ontology parsing tasks as well as the JESS rule

engine for making inferences over feature models based on the predefined axioms.

4.1 Feature Model Ontology

In order to gain expressive power and enable automated operations over feature models, we
exploit OWL ontology constructs. Firstly, we define a Feature class having two object prop-
erties, hasParentFeature and hasChildFeature respectively, which are transitive properties
that are inverse of each other. These properties are required to express IS-A relations in
structured view or OR relations in common feature model understanding. The concept of
the feature model can be considered as an ordinary feature which has no parent feature.

In order to fully represent the mandatory and alternative relations, we derive two specific
child classes from the Feature class. Each class is a subclass of the owl:Thing class. We
assert that Alternative Feature and Mandatory Feature are mutually disjoint. Feature class
encapsulates isSelected attribute which can be set to a boolean value indicating that whether
the feature is enabled in a particular product. A mandatory feature must be selected if
its parent is already selected and only one feature among its alternatives can be selected.
A feature’s alternatives can be specified by the transitive alternativeOf object property.
Overview of the classes and their properties defined within the Feature Model Ontology is

given in Figure 4.1.

64

Feature °T T (4.1)

AlternativeFeature C Feature (4.2)
MandatoryFeature C Feature (4.3)
AlternativeFeature N MandatoryFeature = L (4.4)

hasParentFeature/ > \hasChildFeature

\./sSelected
N
fiaine] xsd:boolean /

{

xsd:string

Alternative
Feature

Mandatory
Feature

OWL:Thing

S Subclass Property
—— Object Property

== s Datatype Property

Figure 4.1: Classes and properties of the feature model ontology

A number of axioms for checking the consistency of the feature model customizations
are formally defined within the scope of this work. In general, these axioms are exploited
not only for verifying the feature model but also correcting any inconsistency found. These
axioms are described as SWRL rules. SWRL plugin for Protege-OWL can translate these
rules to JESS rule language in order to execute them in a JESS rule engine. Inconsistencies
within a feature model can be automatically corrected after the reasoning has been performed
and necessary inferences have been defined by the JESS engine. Protege-SWRL plugin is
responsible for modifying the OWL document according to the changes inferred by the JESS.

Defined axioms and their SWRL implementations are given below;

65

. A feature cannot be selected unless its parent feature has been selected already. For

all x and y;

Feature(?z) AisSelected(?x, false) A hasChildFeature(?x, 7y)A

isSelected(?y, true) — isSelected(?y, false)

. A mandatory feature must be selected whenever its parent feature has been selected.

For all x and y;

Mandatory _Feature(?z) A hasParentFeature(?z,?7y) A isSelected(?y, true)A

isSelected(?x, false) — isSelected(?x, true)

. Only one feature must be selected among its alternatives. For all x and y;

Alternative_Feature(?x) A isSelected(?x, true) N alternativeO f(?x, Ty)A

isSelected(?y, true) — isSelected(?y, false)

. A feature is selected whenever the other feature which requires it has been selected.

For all x and y;

Feature(?z) A requires(?x, 7y) A isSelected(?x, true) — isSelected(?y, true)

. A feature is deselected whenever the other feature which excludes it has been selected.

For all x and y;

Feature(?z) A excludes(?x, 7y) AisSelected(?x, true) — isSelected(?y, false)

SWRL rules are normally stored as OWL individuals which can refer to the resources

within the associated knowledge base. Class definitions of these OWL individuals are in-

troduced in SWLR ontology. Main class of the SWRL ontology is the swrl:Imp which is

used for defining a single SWRL rule. The swri:Imp consists of two other classes namely

swrl:head and swrl:body. Fach of these classes is an instance of the swri:AtomList class where

a list of rule atoms are presented. A rule atom is represented via subclasses of the abstract

swrl:Atom class. Another important SWRL ontology class is swrl: Variable that can be used

for representing variables. Feature model ontology with encapsulated SWRL ontology is

shown in Figure 4.2.

66

.'_: sl Atom .'!
Fi I'-sn\.lrI:EluiItin ']
) e i

'_'\swrl:lmp |
,// = — "_.-I'u'landatory_Feature']

= e
'___‘_Feature _L:'._‘f__

L~ T _I.T.A.ltefl'l ative_Featu rei_]

[--temporaI:Propusitiun !

i _Fternporal:Granularity.:_'-

= .

R ~—

\ \-\ ""'\-—..____ — e
N (| rdf:List B

. =
No% N —————
AN { milMariable |
\ N
\\ [_tempolal:VaIidTimE}

Gy | e s
e

o —
i swrla:RuleGroup

Figure 4.2: Classes of the feature model ontology with encapsulated SWRL ontology

Possible Reasoning Operations for the Automated Analysis of Feature Model
Ontology

Feature Models are subject to automated analysis since it was reported in FODA but cur-
rently, there is no common understanding for what kind of operations should be supported
or how they can be implemented. We have already identified automated verification and cor-
rection operations and here, we list other important reasoning problems identified previously

in [7] as follows;

o Determining feature model satisfiability: Satisfiability problem is about finding any
suitable instances that is not inconsistent with the given TBox. We can claim that a
feature model is satisfiable when there is at least one product which can be derivable
from the given feature model. In general, a feature model without any cross-tree

constraints (requires, excludes) cannot be unsatisfiable.

e Finding a particular product: A satisfiable FM will constitute one or more products.
With this operation, possible consistent products can be acquired from the FM by

enabling customizations over features.

o Calculating the number of products: As the name implies, this operation returns the

number of products that a FM can specify. This operation can exploit product finding

67

operation and can be used for deciding whether the FM is satisfiable since the number

of products is greater than zero then we can conclude that the FM is satisfiable.

e Dead features detection: A feature that should not be included in any product cus-
tomization can be categorized as dead feature. The automated detection of such fea-

tures is subject to the FM analyzes also.

o Variability Analysis: This operation gives the ratio between the number of products
of a feature model and the 2" where n is the number of the features except the root
concept. A big ratio represents a flexible product line whereas a smaller one represents

a more strict one.

o Commonality Analysis: This analysis applied to a feature of a feature model gives the

percentage of products where this particular feature is included.

4.2 Feature Model Editor and Reasoner

The feature model editor and reasoner is realized through the scope of an ongoing open
source project called GENoDL (Automated Service Ontology Generator Tool based on De-
scription Logics) (http://sourceforge.net/projects/genodl/). This initiative was started by
the author of this thesis work. With its user-friendly GUI, GENoDL aims to support a rich
user experience and joy of use in order to ease the domain analysis and service ontology gen-
eration tasks on behalf of the domain engineers. The tool takes feature ontology and business
processes as input and refine them in order to compile possible service ontologies. However,
for this section we limit ourselves with feature ontology editing and reasoning capabilities
implemented as a part of the GENoDL tool. In the next chapter, GENoDL’s automated
service ontology generating feature is explained in details.

GENoDL requires a Java Virtual Machine (Java 5 or 6), Apache Ant and Protégé 3.4
Beta Build 506 installed before. In order to enable reasoning capabilities, JESS library must
be downloaded and copied into the Protégé 3.4’s OWL plugin directory. GENoDL’s source
codes can be downloaded from its source control repository. After download, user should
first change the "protege.dir" property found in the build.xml, the project configuration file,
according to the Protégé’s installation directory. The tool can be started from console by
first typing the command "ant build" to build the source codes and then typing the "ant

run" to execute the binary codes.

68

4.2.1 System Design

The tool supporting our operations for feature model editing and automated analysis is
constructed over a Model-View-Controller (MVC) pattern. This architectural pattern allows
us to separate visualization, data modeling and data access concerns from each other. The
third party components such as ontology parser and reasoning tool are integrated through

their specific APIs. The class diagram of the tool is given in Figure 4.3.

visualModel VisualModelFactory

PE <}___ ReasonerGUIFactory

—

SystemManager GraphEditor

ontologyManager]
-instance
+Instance: ontologyManager

v“"‘

BusinessProcesslManager

OntologyFactory|

Ontolog ReasonerAdapter

+CreateOntology ()

7

OWLFactory

_______ = OWLOntolog

DataModel

Figure 4.3: Class diagram of the GENoDL

The main class of the GENoDL is the SystemManager class. SystemManager is responsi-
ble for initiations of OntologyManager and BusinessProcessManager objects. These manager
classes establish the control part of the MVC architecture. The design of each manager class
conforms to Singleton design pattern where the instantiation of a class is limited to one ob-
ject only. This pattern is useful in our case because we need exactly one dedicated manager
object to coordinate the following separate tasks across the whole systems; system initiation,
ontology editing and reasoning, and information extraction from business process definitions.

The model section of the architecture composed of two specific classes namely DataModel

and VisualModel. Those two classes provide necessary access mechanisms to the resources

69

planned to be used by other classes in the control or view section of the architecture.
The graphical user interface of the GENoDL is produced by the VisualComponentFactory
class. The graph editor for drawing feature model diagrams are mainly based on the example

GraphEditor class provided by the JGraph software [40].

4.2.2 User Guide

The main window of the GENoDL is composed of three subcomponents (see Figure 4.4). At
the top of the window, a menu bar is located for handling common file operations. Below
of the menu bar, the rest of the window is divided into two panel. In the left side, feature
model editor and its toolbar is placed and in the right side the business process manager

part of the GENoDL can be found.

Menu Bar

[T R

¢~ e BEXW Wm ARS Filfik BUSINESS PROCESS

No Loaded Business Process

/ &bBP URI | i
(-

1
Feature Femniis P ==
Moldel Business Process
Editor Manager

Figure 4.4: A screenshot from the GENoDL

Feature model editor of the GENoDL has drag and drop support for features and their
associated relationship links. Moreover, visual components representing features are resiz-

able.

70

New /Save/Load Feature Model

A new feature model ontology can be created by clicking on the "New" menu item which
is placed on the menu bar. By creating a new feature model ontology, the default feature
model ontology without any feature instance is loaded to the system by the Protégé-OWL.

A modified feature model can be saved by clicking on the "Save" menu item of the menu
bar. As a result, the feature model is exported to its ontological representation as an OWL
document. Saved feature models can be loaded to the editor through the "Load" menu item.

A screenshot of GENoDL’s menu bar is given in Figure 4.5.

B @ ™ \ \
New Open Save Delete Verify

Figure 4.5: Menu items of the GENoDL

Add/Delete/Change Features

There are two possible ways to insert new features to a feature model. One method is by
clicking on the "Insert" item on the feature model editor toolbar. A new feature is added to
the top-left corner of the feature model. The toolbar of the feature model editor is shown in

Figure 4.6. The other way is using the popup window of the feature model editor displayed

Enable/Disable
Linking Redo Paste Delete Back In Group

= 2@ he XT B RA&K N

Insert Undo Copy Cut Front Normal QOut Ungroup

Figure 4.6: The toolbar of the Feature Model Editor

after pressing the right button of the mouse over the feature model panel. From the displayed
popup window, user can select the "Insert" option. As a result, a new feature is created
at the position where the mouse is currently pointing. Inserted feature is named by the

"Feature n'" convention where n is initially one and incremented by one after a new feature

71

is added. Similar to adding new features, deleting existing ones can be done through the

.....

€= De bhE XE mu & 8§

l%- Inzert

Figure 4.7: Inserting a new feature to the model

popup window or the specific toolbar icon. Moreover, user can delete a feature by using the
shortcut key; "Delete" on the keyboard. Before deleting, feature or a group of features must
be selected from the graph editor.

Properties of a feature can be changed through double clicking on it or pressing on the
right mouse button over the feature and then selecting the "Edit" option from the popup

window (see Figure 4.8). A new popup window follows the user’s edit request. From this

PN R

= &2 ¢e b e AT Th AKJ

P

e
1
4 Feature 0 IJ

'*"'J"Q Edit

Remaove
Insert

Figure 4.8: A feature can be edited or deleted by double clicking on it

72

new popup window, user can change the name of the feature as well as he/she can include
the feature to the feature model customization through checking the "Select" box. There is a
disable part in the editing popup window which corresponds to links that specify relationships

among features. Popup menu for editing feature properties is depicted in Figure 4.9.

.....

. 3] select

=

ook)L cancel)

Figure 4.9: Popup menu for editing properties of a feature

Specify Feature Types

The rational behind using a feature model editor is to organize features under a root concept
and to specify relationships and constraints among features in a graphical way. In this
respect, we provide a simple method for specifying feature types. First of all, user decides
on a parent and its corresponding child feature from the graph editor. Then, user points the
center of the parent feature where the mouse pointer is changed its shape. At this moment,
user can draw an arrow beginning from the parent feature to the child feature by holding the
left mouse button until pointing to the center of the child feature. By default, "Alternative"
property is assigned to the child feature as a result of drawing a link between parent and
child features.

In order to change this property or edit it, user right-clicks on the link and selects the
"Edit" option from the popup window. There is neither a name nor selection property of

a link so, user can only change the link’s type from this popup window. Please note that

73

this section is disabled for editing features. User can change a relation or feature type to
Alternative, Mandatory or Optional from this section. In order to create a group of features
that are alternative of each other, user expands the Alternative tree node and specifies a
feature to be alternative of the current feature. Alternative relation is a transitive property
S0, it is enough to do a single specification in order to add the feature to an alternative group

or create a new group. Popup menu for editing feature types is given in Figure 4.10. If it

.....

= 2 e b T Bh A& S

[Featwen | X

% Relation
| Alternative

|

| Optianal

L ok)L cancel)

Figure 4.10: Popup menu for editing feature types

is not necessary to place relationships among features or user does not want to bother with
drawing links mistakenly when doing drag and drops then the feature type specification can
be disable from the dedicated toolbar option. It can be enabled afterwards by a second click

on the same toolbar icon.

Miscellaneous Editing Operations

Other actions that can be performed through the feature model editor’s toolbar are listed

as follows;

e Undo/Redo: User can undo changes that were executed so far and can redo a mod-

ification after an undo.

e Cut/Copy/Paste Features: Like in any word processor, our feature model editor

supports essential editing actions on features.

74

e Bring to Front/Send to Back: During feature model editing, two features may be
placed like one in front of the other. To prevent such blocking issues and provide a
more coherent editing environment, users are provided with facilities to bring a selected

feature to front or send it back.

e Zoom In/Out: User can change the scale of the graph by using the zoom in/out

buttons on the graph editor toolbar.

e Group/Ungroup: To group features provides important simplicities during feature
model editing such as easier drag and drop and protection from changes done mistak-
enly. A set of feature can be group after selecting them one by one or through drawing

a selection box by mouse. User can ungroup those grouped features also.

4.2.3 Verification and Correction

Feature model, generated as an outcome of domain analysis, is customized in application
engineering phase and specifically aligned to form a single product. The customized feature
model has no variability points but a definite set of selected features. In order to verify
a customized feature model represented with OWL instances, we employ JESS rule engine.
Once the relationships among the features are described and formalized as SWRL statements,
the implemented tool converts these statements to JESS rules by the help of the Protégeé-
SWRL plugin. At this stage, JESS rule engine can verify the interested feature model by
checking each axiom among features described as rules. Whenever an axiom is not holding
for a customization, the JESS engine can automatically infer the necessary corrections over
this customization. The verification of a feature model can be invoked by clicking on the
"Verify" button on the menu bar of the GENoDL.

Protégé-SWRL plugin provides necessary Java API called "SWRL Factory" for manip-
ulating SWRL rule instances in a OWL knowledge base. Moreover, SWRL Factory is re-
sponsible for facilitating the mapping from OWL individuals representing the SWRL rules to
associated Java objects. Each class described in SWRL ontology has a counterpart in SWRL
Factory. For example, SWRL Factory supports SWRLImp and SWRLAtomList Java classes
that can be used to mirror instances of the equivalent swrl:Imp and swrl:AtomList OWL
classes.

Main concern domain of the SWRL rules is simply about the A-Box of the OWL knowl-
edge base in terms of OWL classes and properties. Protégé-SWRL plugin has no reason-

ing capability however, it supports API level integration with existing rule engines such

75

as JESS. SWRL Factory provides integration functionality in its SWRLRuleEngineAdapter
class. Thus, users can configure and use a rule engine over this bridge synchronized with the
SWRL rule base and OWL knowledge base. User can load SWRL rules and OWL ontology
knowledge base into the rule engine, execute these rules on the knowledge base and store
inferred results back into the knowledge base.

In this work, we exploit the JESS environment which contains a rule base, a fact base
and an execution engine. The execution engine associates rules with facts in corresponding
bases. Rules may assert new facts or execute Java functions. In order to enable the JESS

rule engine, Protégé-SWRL plugin performs three main tasks;
1. Represent OWL knowledge base as JESS facts
2. Represent SWRL rules as JESS rules

3. Invoke rule engine to perform these transformed rules and reflect the results of the

inference in the OWL knowledge base

The necessary transformation methods from OWL and SWRL concepts to JESS con-
structs and vice versa are given in [52]. Once the OWL and SWRL concepts are transformed
to JESS context, the execution engine can perform reasoning. The overall view of the inte-

gration between SWRL, Protégé-OWL and JESS rule engine is shown in Figure 4.11.

—
f-PrOtegC
QQ
£
o
Protégé-OWL h
Knowledge 3
Protége-SWRL o
Plugin Data 4
Knowledge Base (SWRL - Rule = — —0> U
(OWL + SWRL Rules) Engine Bridge)
S
-

Figure 4.11: Integrating knowledge base with reasoning engine through Protégé-SWRL

adapter

Within the scope of the OntologyManager class of the GENoDL, feature models can

76

be verified and corrected by using the Protégé-SWRL’s SWRLRuleEngineBridge facility.
We first initialize a new instance of it as a "SWRLJessBridge" and then the initialized
SWRLRuleEngineBridge imports SWRL rules and OWL knowledge base from the feature
model ontology. Implementation of the GENoDL and Protégé-SWRL integration is given

below.

// Initialize a new bridge instance

SWRLRuleEngineBridge bridge = BridgeFactory.createBridge("SWRLJessBridge", featureModelOntology);
// import SWRL rules and OWL knowledge base

bridge.importSWRLRulesAndOWLKnowledge () ;

// Infer axioms and individuals...

bridge.run();

// Get inferred axioms after reasoning

Set<0WLAxiom> inferredAxioms = bridge.getInferredAxioms();

If there are any inferred axioms received after reasoning operation, then GENoDL gets
the user’s decision whether those changes will be applied automatically or executed one
by one according to the user’s preference for each inferred fact. An screenshot from the
GENoDL is given in Figure 4.12 representing a correction for an inconsistent feature model
in which a mandatory feature is not selected whereas its parent has been already selected. If
the user clicks on the "OK" button on the dialog window then the feature model is updated

and the child feature is selected automatically.

.....

= 2¢ he XMW ®hR AR Nk

Parent

Apply Inferred Change? x|
Child
isSelected(Child, true)

Yes Ma

Figure 4.12: An inferred correction for the inconsistent feature model

7

4.2.4 Performance Evaluation

For the performance analysis, we first describe five feature models with 5, 9, 13, 17 and
21 features respectively, and represent them as OWL ontologies. The first feature ontology
has four variability point and variability points are increased by four for each subsequent
feature model. A variability point indicates an OR or Alternative relation between features.
The experiment is conducted through the reasoning operation; verifying feature model. In a
computing environment of 1.8 GHz Intel(R) Pentium Core2 Duo(TM) with 1 GB RAM, the
time for performing this operation over sample inputs by JESS are comparatively depicted in
Figure Figure 4.13. As it can be seen in the chart, the reasoning performance is closely related
with the number of features in the feature model. This is because of the Rete algorithm which
JESS implements. The complexity of the inference operation can be generalized as the order
of O(RF), where R is the number of axioms and F is the number of features on the working
memory. The performance dramatically decreases as the number of features increases. The

detailed analysis for Rete algorithm can be found at [39].

Automated Feature Model Verification

BOOD

B000

S000

4000 [uess]

A380

3000

2000 2135
1759

Time in Milliseconds

1280
1000

o s @ 13 17 21 a5 29

Features

Figure 4.13: Performance Analysis

78

CHAPTER 5

EXPLOITING SEMANTICALLY
ENRICHED FEATURE MODELS FOR
SERVICE ONTOLOGY DEVELOPMENT

Both SPL and SOC paradigms promise high levels of software reuse in order to reduce
time-to-market and development/maintenance costs of software intensive systems. In spite
of sharing a common goal, they tackle with software reusability challenges from different
perspectives by genuine practices and concepts. The diversity in independent approaches
for making software reusable creates a wide range of opportunities for these paradigms
to evolve in supporting more dynamic, systematic and adaptable reuse strategies through
complementing and exploiting each others’ existing methods and best practices.

Instead of developing each product from scratch, a planned and controlled reuse in-
frastructure which manages commonalities and differences among products is employed in
product line engineering to develop resulting products in a more faster and cheaper way. In
general, variability management enables systematic reuse of core assets including source code,
requirements specifications, software architectures, design models, test cases and processes.
Reusing core assets in a systematic way will lead large-productivity gains, short time-to-
market, higher product quality, increased customer satisfaction, decreased development and
maintenance costs.

Unlikely in SPL, current engineering approaches for developing services and service-
oriented applications largely neglect managing commonalities and variabilities among service
definitions in sufficient details. In order to foster productivity gains and to cope with main-
tainability problems and build future-proof service-oriented systems, SOC should employ

necessary patterns, practices and concepts.

79

We believe that SPL’s domain analysis methods have great potentials in employing vari-
ability management during service design and development life-cycle. In this respect, we
employ our semantically enriched feature models in order to achieve productivity gains,
extensibility, maintainability and applicability goals in semantic modeling of web service
families in a systematic fashion. This chapter presents our variability modeling approach
for web service semantics along with a reference variability model and a case study given in

subsequent sections.

5.1 A Variability Modeling Approach for Web Service Seman-
tics

Systematic reuse within the web service development context encloses customization of a
domain model in order to produce a family of services with related functionality. In the
case of service semantics, this also includes production of service ontologies after refining the
domain outcomes. A need for such reusable and specifiable web services seems obvious. For
instance, a web service middleware for the tourism industry [42] may represent and implement
a number of travel services where the exposed functionalities can be parameterized through
different QoS requirements or mileage types.

Another good example for service family approach can be found in telecommunication
service providing business. Based on the network bandwith and other limitations, a low (or
high) bandwidth voice codec can be preferred for the same Interactive-Voice-Response (IVR)
service to transmit and receive voice data.

The notion of systematic reuse in developing families of web service are largely examined
in Jiang et al’s work [41]. The work proposes a categorization of possible variation points
among web services, and introduces a pattern-based approach for managing the variation
points and specifying a web service framework. The variation points are defined on service
endpoints, WSDL documents, and business logic.

Similarly, we analyze and manage the variability in web service definitions from three
broad perspectives namely Service Grounding, Service Profile and Service Model which have
been once introduced by the OWL-S service ontology. We adopt the Jiang et al’s notion of
families of web services and bring the feature-oriented domain analysis (FODA) to it instead
of the pattern-based variability management approach.

In basic terms a variability model employs variation points, different variation types and

constraints among variations in order to represent variabilities defined within a specified con-

80

cept. Differences are placed in a concept through variation points which can be satisfied by
variants. In FODA, the types of variations are generally classified to mandatory, alternative
and optional features. Moreover, there can be additional constraints such as requires and
excludes among features.

Semantic modeling of web service families and fostering mass development of service
ontologies are based on identifying and managing the points of variability. In the following
subsections we present three different categories of variation in terms of OWL-S and give
example variability points for each of them through enabling ebBP specifications and the

previously identified ones in [41].

Variation in Service Grounding

In general, Service Grounding describes how to access to the service through concrete spec-
ifications such as binding protocol, address, message formats etc. When we consider a
bottom-up approach, service grounding can be generated from existing service interfaces,
mostly from WSDL documents.

The provided binding mechanism can vary for the same service conceptualization based
on the service invocation types. Main variability points of service grounding are identified

in [68] as follows;

e Binding Protocol: A number of different application layer and transport layer pro-
tocols can be used for service interactions over a network such as SOAP/HTTP,
SOAP/HTTPS, SOAP/JMS etc. These alternatives for the binding protocol selec-

tion constitute a main variability point for Service Grounding.

e Binding Time: Participating business service interfaces to be invoked during a business
activity can be selected either in design-time or run-time. SOA supports dynamic
selection of services to make a composite process model adaptable to changes in the

execution environment.

Variation in Service Model

Service Model describes the semantics of how a service interacts with its clients, and the
data and control flow of corresponding process specification. OWL-S process models; Simple,
Atomic and Composite are subclasses of the Service Model. The ways a client may interact

with a service through exchanging messages provides a basis for Service Model variability.

81

o Message Exchange: During the execution of a service process model, business docu-
ments can be exchanged through conforming two different patterns namely synchronous
and asynchronous. The main difference between these two patterns is their effects on
the initiator of the business transaction. In synchronous message exchange the re-
quester party is blocked till it receives a response from the other party whereas in

asynchronous pattern, the requester is not blocked.

Variation in Service Profile

Service Profile describes the what is done by service and presents necessary information such
as service name, its text description and contact information. Service profiles are generally
enabled in automated operations like dynamic service discovery. It can be considered as a
yellow page entry of the service functionality. Information about inputs, outputs, precon-
ditions and effects of the service are given the profile part. One important aspect of the
service profile is its service parameter option which give the characteristic features of the
service such as QoS and classification of service functionality in taxonomies provided by
service registries. OWL-S’s service profile can be directly mapped to UDDI registry data
model [48].

In order to produce the appropriate exceptions, the ebBP specifications mandate a busi-
ness service interface to conform to the following service parameters during the execution
of the corresponding business activity. Indeed, each of these parameters creates a source of

variability in service profiles;

o AuthorizationRequired: Exchanged business document must be signed by the sender

and the receiving party must validate and approve the authorizer.

e NonRepudiationRequired: An exception should be raised whenever a business docu-

ment has not properly delivered.

o NonRepudiationOfReceipt Required: Both business partners agree to mutually verify
receipt of a business document and that the receipt MUST be non-reputable. Non-
repudiation of receipt provides the data for the following additional verifications; Au-

thenticate and Content Integrity.

Reference Variability Model

We expose the previously identified variability points to our semantically enriched feature

model as shown in Figure 5.1. During the service ontology generation, the feature model’s

82

selected, or in other words customized, nodes are automatically transformed into accom-
panying OWL-S construct which is in this case the serviceParameter element of OWL-S
Profile. OWL-S provides an unbounded list of service parameters that can contain any type
of information. Thus, serviceParameter construct is very suitable for representing feature
customizations. A serviceParameter consists of two attributes serviceParameterName, the
name of the actual parameter, which could be just a literal, or perhaps the URI of the process
parameter, and sParameter which points to the value of the parameter within some OWL
ontology. A customized feature placed as a leaf node of the feature model can be mapped

to a serviceParameter instance with the Condition type for the sParameter.

Service

Grounding|

[MonRepudiationOReceiptRequired]

{1l
AuthorizationReguired

(2
Message Exchange

Binding Protocol Binding Time

!
MonRepudiationRequired

[goarHTTRS] [EosPims] [SoaRHTTR | |Synchrn0us | Asyehranous |

Figure 5.1: A reference variability model for semantic modeling of web service families

Moreover, new features can be included under the related variability category by the
domain experts in order to extent the scope of the default web service variability model.
After a new feature is added to the model, it can be transformed into the service ontology
definition as it is explained for the default features. Variabilities captured within a feature
model can be reflected to a business collaboration’s OWL-S counterpart which is Serwvice.
The generic mapping table from Service Grounding, Model and Profile features to OWL-S

Profile service parameter is given in Table 5.1.

Table 5.1: Features to OWL-S parameters

Feature OWL-S Counterpart (serviceParameter)

Feature/@name Profile/serviceParameter /serviceParameterName

serviceParameter /sParameter/expr:Condition

83

5.2 An Example Walkthrough with the GENoDL

The first step in generating web service ontologies is to provide our reasoning tool with an
ebBP instance as input. The tool then refines business process constructs such as Busi-
nessCollaboration in order to compile them in possible service ontology representations. To
start the transformation process, first a BusinessCollaboration is selected from the Business
Process Manager section of the user interface. The tool then loads the default service feature
model to the feature model editor. If the domain expert has any extension or further cus-
tomization requests, she can modify the feature model by inserting/deleting or (de)selecting
features through using the feature model editor bundled within our tool. Newly inserted
features should be associated with their formal and machine readable definitions. After
modifications, reasoner checks the resulting feature model’s consistency and automatically
corrects any invalid customization with domain expert’s empowerment. Finally, the verified
feature model customization along with the selected business collaboration specification is
transformed into OWL-S notation according to the mappings given in Chapter 3.

Consider an example ebBP instance from the Dutch Criminal Justice project called ePV
[25]. In this business process, the business collaborations taking part in the the process of
demanding the surrender of a driver license for drunk driving among police, prosecution,
court and RDW (the organization responsible for maintaining the national driver license
database) are modeled. After loading the ebBP instance into the GENoDL, the tool refines
BusinessCollaboration instances which are candidates for being realized in a web service pro-
tocol stack. From the list of ebBP elements, we select a BusinessCollaboration element called
BC-ID-DemandSurrenderOfDriverLicense. A part of this business collaboration instance is
represented in Figure 5.2. The BC-ID-DemandSurrenderOfDriverLicense is responsible for
the control and data flow of the performed business activities for demanding surrender’s
driver license. After specifying which business collaboration is subject to be transformed
into corresponding OWL-S representation, GENoDL loads the default service feature model
to the feature model editor as depicted in Figure 5.3. By modifying the feature model, the
user can customize and extend the feature model in order to meet the further needs that
ebBP cannot fully consider such as low level service grounding issues which are specific to
service realizations. Each different feature model customization results in different service
ontology. Finally, GENoDL verifies the feature model and compiles it in OWL-S notation by
clicking on the last toolbar icon of the feature model editor. An excerpt from the resulting

service ontology for BC-ID-DemandSurrenderOfDriverLicense is given in Figure 5.4.

84

<1-- Demand surrender of driver license —-3

<BusinessCollaboration name="Demand surrender of driver license” nameID=""BC-ID-DemandSurrender0fDriverLicense™>
<Role name="Police” nameID="IR-ID-Police™s>

"Prosecution” mameID="IR-ID-Prosecution™/>

"Court” namell IR-1D-Court"/>

"RDY"* mameID=""IR-ID-RDW"/>

<TimeToPerform/>

<Start nameID="1D-IR-Start™>
£ToLink teBusinessStateRef="ID-IR-ReportDemandSurrender0fDriverLicense™ s>
f3tart>

<BusinessTransactionActivity name="ReportDemandSurrender0fDriverLicense™ nameID="ID-IR-ReportDemandSurrender0fbriverLic
businessTransactionRef="ID-BT-ReportDemandSurrender0fDriverLicense” hasLegalIntent="true">
<TimeToPerform/>
<Performs currentRoleRef="IR-I1D-Police" performsRoleRef="ReportDemandSurrender0fDriverLicenselnitiator"/>
<Performs currentRoleRef="IR-ID-Prosecution” performsReleRef="ReportDenandSurrender0fDriverLicenseResponder™/>
</BusinessTransactionActivity>

<Transition>
<FronLink fromBusinessStateRef="ID-IR-ReportDenandSurrender0fDriverLicense" />
<ToLink teBusinessStateRef="ID-IR-OfficialReportDemandSurrender0fDriverLicense™ s>
</Transition>

{GomplexBusinessTransactionfictivity nameID="ID-IR-0fficialReportDemandSurrender0fDriverLicense™
businessTransactionRef="ID-BT-0fficialReportDenandSurrender0fDriverLicense” name="0fficial Report Demand surren
hasLegalIntent="true">
<TimeToPerform/>
<Performs currentRoleRef="IR-ID-Police" performsRoleRef="0fficialReportDemandSurrender0fDriverLicenselInitiator”
<Performs currentRoleRef="IR-I1D-Prosecution” performsRoleRef="0fficialReportDemandSurrender0fDriverLicenseRespo

<BusinessTransactionActivity nameID="1D-IR-ReportRevocateReturn” businessTransactionRef="ID-BT-ReportRevocateRe
name="ReportRevocateReturn” haslLegallntent="true” >
{TimeToPerform/>
{Performs currentRoleRef="IR-1D-Prosecution" performsRoleRef="ReportRevocateReturnInitiator"/>
<{Performs currentRoleRef="IR-1D-RDV¥" performsRoleRef="ReportRevocateReturnResponder'/>

</BusinessTransactionActivity>»

<StatusVisibility nameID="IR-ID-SU1" name="SU"/>

<{/ComplexBusinessTransactionActivity>

Figure 5.2: ebBP representation for BC-ID-DemandSurrenderOfDriverLicense

It can be easily understood that a family of related service ontologies can be quickly
generated by applying the proposed generative method. For example, by selecting different
children of the BindingProtocol feature can result in various service conceptualizations that
each of their implementations will be subject to be used in a distinct application scenario

specifically.

85

b=l
€% 2 ¢ BB XW nw QAR Pk BUSINESS PROCESS

B4 Business Collabarations
| BC-ToplevelModel
| BC-ID-PreCommunication

| BC-ID-DemandSurrenderOmriverLicense

NonRepudiationOfReceintRequired

[Binding Protae)

SOAPIHTTPS

ol
ManRepudiationRequired) [SOAPLIMS]

ebBP URI [examplesiehibpie py-Example-uzxmi
k] L = 10| —
LiGraph (v5.10.1.5) [sar100Mn @

Figure 5.3: Service variability model is customized service feature model with the information

extracted from BC-ID-DemandSurrenderOfDriverLicense.

<Service rdf:ID=""Service_1">
<describedBy rdf:resource="#ConpositeProcess_3"/>
<presents rdf:resource="#BC-ID-DemandSurrender0fDriverLicense” />
</Service>
{p1:Profile rdf:ID="BC-ID-DemandSurrender0fDriverLicense">
<p1:serviceName rdf:datatype="&xsd;string”
>Demand surrender of driver license</p1:serviceMame>
<pi1:serviceParameter rdf:resource="#ServiceParameter_27"/>
<p1:serviceParameter rdf:resource="#ServiceParameter_2"/>
<pi:serviceParameter rdf:resource="#ServiceParameter_4"/>
<presentedBy rdf:resource="HService_1"/>
</p1:Profile>
<pi1:ServiceParameter rdf:ID="ServiceParameter_2"7>
<pi:serviceParameterName rdf:datatype="&xsd;string">Synchronous<{/p1:serviceParameter
<pi1:sParameter rdf:resource="#Condition_3"/>
</pi1:ServiceParameter>
<{j.B8:CompositeProcess rdf:ID="CompositeProcess_3">
<j.@:hasParticipant rdf:resource="#IR-ID-RDU"/>
<j.0@:hasParticipant rdf:resource="#IR-ID-Court”s>
<j.B8:hasParticipant rdf:resource="#IR-ID-Police"/>
<j.B8:hasParticipant rdf:resource="#IR-ID-Prosecution"/>
<j.0:composed0f rdf:resource="#ID-IR-Start”/>
<describes rdf:resource="#Service 1"/>
</j.8:CompositeProcess>
<j.B8:Sequence rdf:ID="ID-IR-Start">
<j.8:components rdf:resource="#ControlConstructList_9"/>
</j.B:Sequence>
<j.@:atomicProcess rdf:ID="1D-IR-ReportDemandSurrender0fDriverLicense’>
<j.8:name rdf:datatype="8xsd;string"
>ReportDemandSurrender0fDriverLicense</j.0:name’
<j.B:hasParticipant rdf:resource="#ReportDenandSurrender0fDriverLicenseResponder"/>
<j.@:hasParticipant rdf:resource="#ReportDenandSurrender0fDriverLicenseInitiator/>
<j.B8:hasClient rdf:resource="#IR-ID-Police"/>
<j.8:performedBy rdf:resource="#IR-ID-Prosecution"/>
<j.0:realizes rdf:resource="#ID-BT-ReportDemandSurrender0fDriverLicense™ s>
</j.B:AtomicProcess>

Figure 5.4: A part of the BC-ID-DemandSurrenderOfDriverLicense Service Ontology

86

CHAPTER 6

RELATED WORK

Feature-Oriented Domain Analysis utilizes propositional logic for defining feature models.
On the other hand, various extensions to feature modeling can bring feature models closer to
ontology formalism as in [19, 47]. Feature models can be represented in OWL DL ontology
and then an OWL reasoning engine such as RACER [34]| can be used to perform automated
analysis over the feature model as described in [78]. Verification of feature models by using
semantic web tools allows domain engineers to detect possible inconsistencies in feature
configurations more efficiently than the traditional approaches. However, previous studies
do not address the automated correction of inconsistent feature models. We enable this
operation in our work as a contribution to the current state-of-art in automated feature
model analysis.

Although it is shown that feature models can be conceptualized by formal methods, how
to enable a feature model in the reusable asset development process is still remaining as
an open issue. Because the level of abstraction at which a feature can denote entities or
concepts will be ambiguous [18].

Mapping business process specification standards to accompanying OWL-S representa-
tions has been studied before in several studies. In two of them [33, 70|, FPML and BPEL
are transformed into OWL-S respectively. They provide a starting point for enriching the
business process semantics in the form of OWL-S ontology for flexible integration and au-
tomation of workflows. We extend the current state in transformation approaches with
employing variability management to be able to consider mass customization of a set of
related ontologies.

An alternative method for automatic service ontology generation is given in [86]. The
work exploits the UML class and state-chart diagrams for formally extracting the domain

knowledge of atomic services and service compositions. UML is widely adopted in software

87

engineering as a standard for modeling, which most developers are familiar with. Once
necessary information is extracted from UML diagrams, XSLT applications automatically
transform the UML diagrams into OWL-S specification according to predefined rules. Even
though the functional requirements especially the process side of the analysis model are
automatically extracted and localized into OWL-S service process model, wider business
and architectural issues such as non-functional requirements are not considered within the
scope of this work.

There are a number of research studies [54, 63] for transforming business process speci-
fications to more lower abstraction levels such as web service choreography or orchestration
representations. However, these studies do not cover the variability issues and neglect the
reusability opportunities that may arise after enabling service ontologies.

As it is understood from the previous research studies, the automated domain-specific
knowledge analysis methods are still stands at an early stage. In this study, we separate the
identification, specification and realization concerns of a service-oriented system by means of
domain engineering outcomes such as business processes for identification, service ontologies
for specification and service implementations for realization. This separation of concerns,
which well fits in Service-Oriented Modeling and Architecture (SOMA) [5], allows us to au-
tomate the mapping from identification step to specification step through utilizing semantic
web technologies and also it provides means for capturing commonalities and variabilities in

service models by exploiting feature models.

88

CHAPTER 7

CONCLUSION AND FUTURE WORK

Conventional development methodologies such as object-oriented development and component-
based development do not fully address key engineering challenges of today’s service-oriented
systems such as setting the proper level of service interface granularity and facilitating mass
deployment of services. In fact, service-oriented design and development requires an inter-
disciplinary approach fusing concepts of business process management with traditional soft-
ware development methods [58].

In this respect, providing better means for the business process management (BPM) and
service-oriented computing (SOC) convergence is one of the major concerns that get a lot
of attention in contemporary software engineering research. Despite their differences, when
combined together, they become synergetic through addressing the challenges of rapidly
changing business environments, reducing cost and increase efficiency in implementing in-
novations. SOC provides the necessary agility and loose coupling to I'T infrastructures and
BPM provides its business case where business processes, which are considered as reusable
elements and are independent from implementation technology, are viewed as federation of
services connected via standard protocols in a service-oriented architecture. While BPM-
SOC convergence looks promising, how to map the process models to service definitions is

still an open issue.

7.1 Conducted Work

In order to address this challenge, we exploit software product line (SPL) approach where
domain engineering outcomes are transformed into particular products in application engi-
neering. In our case, domain engineering outcomes consist of business process models and

feature models whereas products in application engineering represent the resulting service

89

ontologies. As the result of the introduced product line process, a set of web service on-
tologies based on business process models and feature model customizations are produced.

Promises of our SPL dialect of BPM-SOC convergence problem is given as follows;

e Knowledge-based elicitation and refinement of domain engineering outcomes as service
ontologies allows designing and deploying services better aligned with business goals,

stakeholder’s concerns and end-user’s viewpoints.

e Changes in the business parameters can be more rapidly reflected to the service real-

izations in the supervision of SPL

e Service-oriented systems can be more rapidly deployed by enabling build-by-integration
paradigm which encourages matching product capabilities to existing services by uti-

lizing semantic web technologies.

o A set of related web services can be more rapidly developed by managing commonalities

and variabilities among them.

Within the scope of our product line, a transformation method for automatic generation
of service ontologies is presented in order to formalize and ease the mapping among the
concepts derived by domain and application engineering. Business process models are con-
sumed as the meta knowledge and the service ontologies are populated using transformation

method over this knowledge base.

7.2 Concluding Remarks

The mechanisms that were developed, were experimented through an example. This ex-
ample included the mapping from an existing business process model, that represents the
domain-level knowledge. The outcome has been promising: in general it has been observed
that automated generation of web service ontologies is possible and usable. However, our
observation also states that very high-abstraction level elements of the domain is not easy

to map directly.

7.3 Future Work

Our novel generative method for service ontology creation has not reached its maturity yet.
Although the algorithm for mapping business transaction definitions to OWL-S service pro-

cess models has been already implemented, it should be revised and extended in favor of

90

generating more coarse-grained service ontologies including more detailed process models.
Moreover, the generative method will be extended with the mapping rules of other ebBP con-
cepts that have not been involved in the current implementation such as guards, exceptions
and signals.

Our area of interest for this work is not limited with one semantic model of a single
web service indeed, we focus on a family of services and their ontological representations.
Therefore, we provide a variability management method for service ontologies based on
feature modeling. Commonalities and variabilities among semantic models are captured
within a reference variability model in order to foster mass development of ontologies by
enabling reusable assets. The axioms are evaluated over the feature model and combined
with the business process model inference data to enable easy and rapid development of a
family of formal service models. Current version of the feature model editor and feature
model ontology does not support cardinality-based relations among features as proposed in
[18]. This will be implemented as a possible improvement. Furthermore, an evaluation of
memory allocated for varying input sizes will be performed in order to assess the feasibility
of the feature model verification operation from a different perspective.

Although our product line approach for service ontology generation is based on two well
known standards of their domains (ebBP and OWL-S), this dependence makes the approach
tightly coupled with these schema definitions. A more generic approach which is independent
from implementation technologies is considered as a future work. Finally, evaluation of the
quality and domain coverage of the resulting service ontologies should be explicitly justified
through anticipated metrics and methods, so that domain experts and developers can assess

them easily.

91

[1]

2]

1]

19]

[10]

REFERENCES

A. Dogac A, Y. Kabak, O. Gulderen, T. Namli, A. Okcan, O. Kilic, Y. Gurcan,
U. Orhan, and G. Laleci. ebBP Profile for Integrating Healthcare Enterprise (IHE).
Submitted to OASIS ebXML Business Process Technical Committee, 2006.

N. I. Altintas. Feature Based Software Asset Modeling with Domain Specific Kits. PhD
thesis, Middle East Technical University, August 2007.

N. I. Altintas, S. Cetin, and A. H. Dogru. Industrializing Software Development: The
Factory Automation Way. Lecture Notes in Computer Science, 4473:54-68, 2007.

An Example Application Engineering Process. http://www.sei.cmu.edu/domain-

engineering/appl eng example.html, last visited on October 2008.

A. Arsanjani. Service-oriented modeling and arhitecture. Technical report, IBM devel-

oper Works, 2004.

Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F.
Patel-Schneider. The Description Logic Handbook: Theory, Implementation, and Ap-
plications. Cambridge University Press, 2003.

David Benavides, Antonio Ruiz Cortés, Pablo Trinidad, and Sergio Segura. A survey
on the automated analyses of feature models. In JISBD, pages 367-376, 2006.

T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American,
284:34-43, 2001.

Joseph Bih. Service oriented architecture: A new paradigm to implement dynamic

e-business solutions. ACM Ubiquity, 7(30), 2006.

Web Services Business Process Execution Language Version 2.0. http://docs.oasis-

open.org/wsbpel/2.0/0S/wsbpelv2.00S.html, last visited on October 2008.

92

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Business Process Modeling Notation (BPMN), Object Management Group/Business
Process Management Initiative. http://www.omg.org/docs/dtc/060201.pdf, last visited
on October 2008.

Semih Cetin, N. Ilker Altintas, and Cevat Sener. An architectural modeling approach
with symmetric alignment of multiple concern spaces. International Conference on

Software Engineering Advances, 0:48, 2006.

Paul Clements and Linda Northrop. Software Product Lines: Practices and Patterns.

Addision Wesley Professional, August 2001.

COM: Component Object Model Technologies, Microsoft/COM Initiative. http://-

www.microsoft.com/com/default.mspx, last visited on October 2008.

Common Object Request Broker Architecture (CORBA), Object Management
Group/CORBA Initiative. http://www.omg.org/corba/, last visited on October 2008.

K. Czarnecki. Generative Programming: Principles and Techniques of Software En-
gineering Based on Automated Configuration and Fragment-Based Component Models.

PhD thesis, Technical University of Ilmenau, October 1998.

K. Czarnecki. Overview of Generative Software Development. Lecture Notes in Com-

puter Science, 3566:326-341, 2005.

Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Staged configuration through
specialization and multi-level configuration of feature models. In Software Process Im-

provement and Practice, 2005.

Krzysztof Czarnecki, Chang Hwan Peter Kim, and Karl Trygve Kalleberg. Feature
models are views on ontologies. In SPLC ’06: Proceedings of the 10th International on
Software Product Line Conference, pages 41-51, Washington, DC, USA, 2006. IEEE

Computer Society.

DAML+OIL Web Ontology Language. http://www.w3.org/Submission/2001/12/, last
visited on October 2008.

Dublin Core Metadata Initiative. http://www.dublincore.org/, last visited on October
2008.

ebXML Business Process Specification Schema. http://docs.oasis-open.org/ebxml-bp-
/2.0.4/08S/, last visited on October 2008.

93

[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

ebBP Teleconference 8 August 2006. http://www.oasisopen.org/committees-
/download.php /19736 /ebxmlbp-v2.0.3Minutes-update.txt, last visited on October 2008.

Marco Eichelberg, Thomas Aden, Jérg Riesmeier, Asuman Dogac, and Gokce B. Laleci.
A survey and analysis of electronic healthcare record standards. ACM Comput. Surv.,

37(4):277-315, 2005.

ePV Netherlands Criminal Justic ebBP Example. http://www.oasis-open.org-
/committees/document.php?document id=16436wg_abbrev—=ebxml-bp, last visited
on October 2008.

K. Gottschalk et al. Web services architecture overview. Technical report, http://-

www.ibm.com /developerworks/webservices/library /wovr/, September 2000.

Roy Fielding. Architectural Styles and the Design of Network-based Software Architec-

tures. PhD thesis, University of California, Irvine, 2000.

Charles L. Forgy. Rete: A fast algorithm for the many pattern/many object pattern
match problem. Artificial Intelligence, 19:17-37, 1982.

J. Greenfield, K. Short, S. Cook, and S. Kent. Software Factories: Assembling Appli-
cations with Patterns, Models, Frameworks, and Tools. Wiley, August 2004.

M. L. Griss and K. Wentzel. Hybrid domain specific kits for a flexible software factory.
In Proceedings of the Ann. ACM Symp. Applied Computing, pages 47-52, 1994.

T. R. Gruber. A translation approach to portable ontology specification. Knowledge
Acquisitons, 5:199-220, 1993.

T. R. Gruber. Toward Principles for the Design of Ontologies Used for Knowledge
Sharing. International Journal of Human Computer Studies, 43:907-928, 1995.

Li Guo, Yun-Heh Chen-Burger, and Dave Roberston. Mapping a business process model
to a semantic web service model. In ICWS ’04: Proceedings of the IEEE International
Conference on Web Services, page 746, Washington, DC, USA, 2004. IEEE Computer

Society.

Volker Haarslev and Ralf Muller. Racer: An owl reasoning agent for the semantic web. In
In Proc. of the International Workshop on Applications, Products and Services of Web-
based Support Systems, in conjunction with 2003 IEEE/WIC' International Conference
on Web Intelligence, pages 91-95. Society Press, 2003.

94

[33]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

J. Hanson. Coarse-grained interfaces enable service composition in soa. In JavaOne,

August 2003.

Hao He. What is service-oriented architecture. Technical report, http://www.xml.com-

/Ipt/a/1292, September 2003.
Michi Henning. The rise and fall of corba. ACM Queue, 4(5), 2006.

Hypertext Transfer Protocol 1.1. http://www.w3.org/Protocols/rfc2616 /rfc2616.html,
last visited on October 2008.

JESS: the Rule Engine for the Java Platform. http://www.jessrules.com/, last visited
on October 2008.

Java Graph Visualization and Layout. http://www.jgraph.com/, last visited on October
2008.

Juanjuan Jiang, Anna Ruokonen, and Tarja Systa. Pattern-based variability manage-
ment in web service development. In ECOWS ’05: Proceedings of the Third European
Conference on Web Services, page 83, Washington, DC, USA, 2005. IEEE Computer

Society.

Y. Kabak, M. Olduz, G. B. Laleci, T. Namli T, V. Bicer, N. Radic, and A. Dogac. A
semantic web service based middleware for the tourism industry. In Book Chapter, to

appear.

Faouzi Kamoun. A roadmap towards the convergence of business process management

and service oriented architecture. Ubiquity, 8(14):1-1, 2007.

K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-oriented
domain analysis (foda) feasibility study. Technical report, Carnegie-Mellon University

Software Engineering Institute, November 1990.

M. Kuan. Using swrl and owl dl to develop an inference system for course scheduling.

Master’s thesis, Chung Yuan Christian University, Taiwan, 2004.

M. LeClerc. Service layer transition towards a service oriented architecture (soa) -

expanding the value of operators’ telecom assets. In EMFEA Conference, 2005.

Soon-Bok Lee, Jin-Woo Kim, Chee-Yang Song, and Doo-Kwon Baik. An approach to

analyzing commonality and variability of features using ontology in a software product

95

48]

[49]

[50]

[51]

[52]

[53]

[54]

[53]

[56]

[57]

[58]

line engineering. In SERA ’07: Proceedings of the 5th ACIS International Conference
on Software Engineering Research, Management € Applications, pages 727-734, Wash-
ington, DC, USA, 2007. IEEE Computer Society.

Jim Luo, Bruce Montrose, Anya Kim, Amitabh Khashnobish, and Myong Kang. Adding

owl-s support to the existing uddi infrastructure. pages 153-162, 2006.

Dale Molberg and Monica J. Martin. The ebbp (ebxml business process specification
schema. Technical report, OASIS, April 2006.

Organization for the Advancement of Structured Information Standards (OASIS).
http://www.oasisopen.org/home/index.php, last visited on October 2008.

Martin OConnor, Holger Knublauch, Samson Tu, Benjamin Grosof, Mike Dean, William
Grosso, and Mark Musen. Combining swrl rules and owl ontologies with protégé owl

plugin, jess, and racer. 7th International Protégé Conference, 2004.

Martin O’Connor, Holger Knublauch, Samson Tu, Benjamin Grosof, Mike Dean,
William Grosso, and Mark Musen. Supporting rule system interoperability on the
semantic web with swrl. Fourth International Semantic Web Conference (ISWC-2005),
2005.

Oracle. Oracle it modernization series: The types of modernization. Technical report,

2006.

Chun Ouyang, M. Dumas, Ter, and W. M. P. van der Aalst. From bpmn process models
to bpel web services. pages 285292, 2006.

OWL Web Ontology Language Overview. http://www.w3.org/TR/owlfeatures/, last
visited on October 2008.

Semantic Markup for Web Services . http://www.w3.org/Submission/2004/SUBM-
OWL-S-20041122/, last visited on October 2008.

M. Paolucci, W. Goix, A. Andreetto, M. Luther, and M. Wagner. Representing Ser-
vices for Mobile Computing using OWL and OWL-S. WWW Service Composition with
Semantic Web Services (WSComp), 2005.

M. P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann, , and B. J. Kramer. Service-

oriented computing research roadmap. Technical report, March 2006.

96

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

Artem Papkov. Develop a migration strategy from a legacy enterprise it infrastruc-
ture to an soa-based enterprise architecture. Technical report, http://www.ibm.com-

/developerworks/webservices/library /ws-migrate2soa/, April 2005.

Protégé Ontology Editor and Knowledge Acquisition System. http://-
protege.stanford.edu/, last visited on October 2008.

Resource Description Framework (RDF) Model and Syntax Specification. http://-
www.w3.org/TR/1999/RECrdfsyntax19990222/, last visited on October 2008.

RDF Vocabulary Description Language 1.0: RDF Schema. http://www.w3.org/TR-
/rdfschema/, last visited on October 2008.

Jan Recker and Jan Mendling. On the translation between bpmn and bpel: Conceptual

mismatch between process modeling languages.

RIDE Deliverable 5.3.1 - Contribution to Standards: ebBP Editor v1.0.4
User Manual. http://www.srdc.metu.edu.tr/webpage/publications/2007/ebBPEditor-
UserManualv1.0.4.pdf, last visited on October 2008.

RIDE Deliverable 4.4.5 - Integrating the Legacy eHealth Applications of the Member
States into the RIDE Technical Framework. http://www.srdc.metu.edu.tr/webpage-
/projects/ride/deliverables% -/RIDE_D4.4.5 vl.1.doc, last visited on October 2008.

Rick Robinson. Understand enterprise service bus scenarios and solutions in service-
oriented architecture. Technical report, https://www.ibm.com/developerworks/library-

/ws-esbscen/, June 2004.

Marta Sabou, Chris Wroe, Carole Goble, and Gilad Mishne. Learning domain ontologies
for web service descriptions: an experiment in bioinformatics. In WWW ’05: Proceedings
of the 14th international conference on World Wide Web, pages 190-198, New York, NY,
USA, 2005. ACM.

S. Segura, D. Benavides, A. Ruiz-Cortés, and P.Trinidad. A taxonomy of variability in
web service flows. In Service Oriented Architectures and Product Lines (SOAPL - 07),

Kyoto. Japan, September 2007.

SEI. Smart: The service-oriented migration and reuse technique. Technical Report

CMU/SEI-2005-TN-029, 2005.

97

[70]

[71]

[72]

73]

[74]

73]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

Jun Shen, Yun Yang, Chengang Wan, and Chuan Zhu. From bpeldws to owl-s: Inte-
grating e-business process descriptions. In SCC ’05: Proceedings of the 2005 IEEE In-
ternational Conference on Services Computing, pages 181-190, Washington, DC, USA,
2005. IEEE Computer Society.

Simple Object Access Protocol (SOAP). http://www.w3.org/TR/soap/, last visited on
October 2008.

Semantic Web Rule Language. http://www.w3.org/Submission/SWRL/, last visited on
October 2008.

UDDI Version 3.0.2. http://uddi.org/pubs/uddi_v3.htm, last visited on October 2008.

Emanuele Della Valle, Dario Cerizza, Veli Bicer, Yildirak Kabak, Gokce Banu Laleci,
and Holger Lausen. The need for semantic web service in the ehealth. W3C Workshop

on Frameworks for Semantics in Web Services, 2005.

Frank J. van der Linden, Klaus Schmid, and Eelco Rommes. Software Product Lines in
Action: The Best Industrial Practice in Product Line Engineering. Springer, 1 edition,

July 2007.

The World Wide Web Consortium (W3C). http://www.w3.org/, last visited on October
2008.

J. Waldo, G. Wyant, A. Wollrath, and S. Kendall. A note on distributed computing.
Technical report, Sun Microsystems Laboratories, Mountain View, CA, USA, 1994.

Hai Wang, Yuan Fang Li, Jing Sun, Hongyu Zhang, and Jeff Pan. A semantic web
approach to feature modeling and verification. In In Workshop on Semantic Web Enabled

Software Engineering (SWESE’05), 2005.

Web Services Architecture. http://www.w3.org/TR/wsarch/, last visited on October
2008.

David M. Weiss and Chi Tau Robert Lai. Software Product-Line Engineering: A Family-
Based Software Development Process. Addison-Wesley Professional, August 1999.

Web Services Architecture. www.w3.org/TR/wsarch, last visited on October 2008.

Web Services Choreography Description Language Version 1.0. http://www.w3.org-
/TR/2004/WDwscdl10-20041217/, last visited on October 2008.

98

[83] Web service description language (WSDL). http://www.w3.org/TR/wsdl/, last visited
on October 2008.

[84] Web Service Modeling Ontology (WSMO). http://www.w3.org/Submission/ WSMO/,
last visited on October 2008.

[85] The Extensible Markup Language (XML). http://www.w3.org/XML/, last visited on
October 2008.

[86] Jin Yang and In Chung. Automatic generation of service ontology from uml diagrams

for semantic web services. pages 523-529. 2006.

99

APPENDIX A

FEATURE MODEL ONTOLOGY

<?xml version="1.0"7>
<rdf :RDF

xmlns:temporal="http://swrl.stanford.edu/ontologies/built-ins/3.3/temporal.owl#"
xmlns:swrla="http://swrl.stanford.edu/ontologies/3.3/swrla.owl#"
xmlns:query="http://swrl.stanford.edu/ontologies/built-ins/3.3/query.owl#"
xmlns:swrl="http://wuw.w3.org/2003/11/swrl#"
xmlns:swrlx="http://swrl.stanford.edu/ontologies/built-ins/3.3/swrlx.owl#"
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.0org/2002/07/owl#"
xmlns:pl="http://wuw.owl-ontologies.com/assert.owl#"
xmlns="http://www.owl-ontologies.com/Ontology1209057357.owl#"
xmlns:swrlm="http://swrl.stanford.edu/ontologies/built-ins/3.4/swrlm.owl#"
xmlns:xsp="http://www.owl-ontologies.com/2005/08/07/xsp.owl#"
xmlns:swrlb="http://www.w3.0rg/2003/11/swrlb#"
xmlns:abox="http://swrl.stanford.edu/ontologies/built-ins/3.3/abox.owl#"
xmlns:protege="http://protege.stanford.edu/plugins/owl/protege#"
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:xsd="http://www.w3.0org/2001/XMLSchema#"
xmlns:sqwrl="http://squrl.stanford.edu/ontologies/built-ins/3.4/squrl.owl#"
xmlns:tbox="http://swrl.stanford.edu/ontologies/built-ins/3.3/tbox.owl#"

xml:base="http://www.owl-ontologies.com/Ontology1209057357.owl">

<owl:Ontology rdf:about="">
<owl:imports rdf:resource="http://squrl.stanford.edu/ontologies/built-ins/3.4/sqwrl.owl"/>
<owl:imports rdf:resource="http://swrl.stanford.edu/ontologies/built-ins/3.3/abox.owl"/>
<owl:imports rdf:resource="http://swrl.stanford.edu/ontologies/built-ins/3.3/swrlx.owl"/>
<owl:imports rdf:resource="http://swrl.stanford.edu/ontologies/built-ins/3.4/swrlm.owl"/>
<owl:imports rdf:resource="http://swrl.stanford.edu/ontologies/3.3/swrla.owl"/>
<owl:imports rdf:resource="http://www.w3.org/2003/11/swrlb"/>
<owl:imports rdf:resource="http://www.w3.org/2003/11/swrl"/>
<owl:imports rdf:resource="http://swrl.stanford.edu/ontologies/built-ins/3.3/temporal.owl"/>
<owl:imports rdf:resource="http://swrl.stanford.edu/ontologies/built-ins/3.3/tbox.owl"/>
<owl:imports rdf:resource="http://swrl.stanford.edu/ontologies/built-ins/3.3/query.owl"/>

</owl:0Ontology>

<owl:Class rdf:ID="Feature"/>

<owl:Class rdf:ID="Alternative_Feature">

100

<rdfs:subClass0f rdf:resource="#Feature"/>
<owl:disjointWith>
<owl:Class rdf:ID="Mandatory_Feature"/>
</owl:disjointWith>
</owl:Class>
<owl:Class rdf:about="#Mandatory_Feature">
<owl:disjointWith rdf:resource="#Alternative_Feature"/>
<rdfs:subClass0f rdf:resource="#Feature"/>
</owl:Class>
<owl:0ObjectProperty rdf:ID="requires">
<rdfs:domain rdf:resource="#Feature"/>
<rdfs:range rdf:resource="#Feature"/>
</owl:0bjectProperty>
<owl:0ObjectProperty rdf:ID="excludes">
<rdfs:domain rdf:resource="#Feature"/>
<rdfs:range rdf:resource="#Feature"/>
</owl:0bjectProperty>
<owl:0ObjectProperty rdf:ID="hasParentFeature">
<rdfs:domain rdf:resource="#Feature"/>
<owl:inverse0f>
<owl:ObjectProperty rdf:ID="hasChildFeature"/>
</owl:inverse0f>
<rdfs:range rdf:resource="#Feature"/>
<rdf:type rdf:resource="http://www.w3.0rg/2002/07/owl#TransitiveProperty"/>
</owl:0ObjectProperty>
<owl:0ObjectProperty rdf:ID="alternative0f">
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#SymmetricProperty"/>
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#TransitiveProperty"/>
<rdfs:domain rdf:resource="#Alternative_Feature"/>
<rdfs:range rdf:resource="#Alternative_Feature"/>
<owl:inverseOf rdf:resource="#alternativeOf"/>
</owl:0ObjectProperty>
<owl:0ObjectProperty rdf:about="#hasChildFeature">
<rdfs:domain rdf:resource="#Feature"/>
<owl:inverseOf rdf:resource="#hasParentFeature"/>
<rdfs:range rdf:resource="#Feature"/>
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#TransitiveProperty"/>
</owl:0ObjectProperty>
<owl:0ObjectProperty rdf:about="http://www.w3.0rg/2003/11/swrl#argument2"/>
<owl:DatatypeProperty rdf:ID="isSelected">
<rdfs:domain rdf:resource="#Feature"/>
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#boolean"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="name">
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/>

<rdfs:domain rdf:resource="#Feature"/>

101

</owl:DatatypeProperty>
<swrl:Imp rdf:ID="Requires">
<swrl:body>
<swrl:AtomList>
<rdf:rest>
<swrl:AtomList>
<rdf:first>
<swrl:IndividualPropertyAtom>
<swrl:argument2>
<swrl:Variable rdf:ID="y"/>
</swrl:argument2>
<swrl:argumenti1>
<swrl:Variable rdf:ID="x"/>
</swrl:argument1>
<swrl:propertyPredicate rdf:resource="#requires"/>
</swrl:IndividualPropertyAtom>
</rdf:first>
<rdf:rest>
<swrl:AtomList>
<rdf:first>
<swrl:DatavaluedPropertyAtom>
<swrl:argumentl rdf:resource="#x"/>
<swrl:argument2 rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"
>true</swrl:argument2>
<swrl:propertyPredicate rdf:resource="#isSelected"/>
</swrl:DatavaluedPropertyAtom>
</rdf:first>
<rdf:rest rdf:resource="http://www.w3.0org/1999/02/22-rdf-syntax-ns#nil"/>
</swrl:AtomList>
</rdf:rest>
</swrl:AtomList>
</rdf:rest>
<rdf:first>
<swrl:ClassAtom>
<swrl:classPredicate rdf:resource="#Feature"/>
<swrl:argumentl rdf:resource="#x"/>
</swrl:ClassAtom>
</rdf:first>
</swrl:AtomList>
</swrl:body>
<swrl:head>
<swrl:AtomList>
<rdf:first>
<swrl:DatavaluedPropertyAtom>
<swrl:argumentl rdf:resource="#y"/>
<swrl:argument2 rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"
>true</swrl:argument2>

<swrl:propertyPredicate rdf:resource="#isSelected"/>

102

</swrl:DatavaluedPropertyAtom>
</rdf:first>
<rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/>
</swrl:AtomList>
</swrl:head>
</swrl:Imp>
<swrl:Imp rdf:ID="General">
<swrl:head>
<swrl:AtomList>
<rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/>
<rdf:first>
<swrl:DatavaluedPropertyAtom>
<swrl:propertyPredicate rdf:resource="#isSelected"/>
<swrl:argument2 rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"
>false</swrl:argument2>
<swrl:argumentl rdf:resource="#y"/>
</swrl:DatavaluedPropertyAtom>
</rdf:first>
</swrl:AtomList>
</swrl:head>
<swrl:body>
<swrl:AtomList>
<rdf:first>
<swrl:ClassAtom>
<swrl:classPredicate rdf:resource="#Feature"/>
<swrl:argumentl rdf:resource="#x"/>
</swrl:ClassAtom>
</rdf:first>
<rdf:rest>
<swrl:AtomList>
<rdf:first>
<swrl:DatavaluedPropertyAtom>
<swrl:argument2 rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"
>false</swrl:argument2>
<swrl:propertyPredicate rdf:resource="#isSelected"/>
<swrl:argumentl rdf:resource="#x"/>
</swrl:DatavaluedPropertyAtom>
</rdf:first>
<rdf:rest>
<swrl:AtomList>
<rdf:first>
<swrl:IndividualPropertyAtom>
<swrl:argument2 rdf:resource="#y"/>
<swrl:argumentl rdf:resource="#x"/>
<swrl:propertyPredicate rdf:resource="#hasChildFeature"/>
</swrl:IndividualPropertyAtom>
</rdf:first>

<rdf:rest>

103

<swrl:AtomList>
<rdf:first>
<swrl:DatavaluedPropertyAtom>
<swrl:propertyPredicate rdf:resource="#isSelected"/>
<swrl:argument2 rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"
>true</swrl:argument2>
<swrl:argumentl rdf:resource="#y"/>
</swrl:DatavaluedPropertyAtom>
</rdf:first>
<rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/>
</swrl:AtomList>
</rdf :rest>
</swrl:AtomList>
</rdf:rest>
</swrl:AtomList>
</rdf:rest>
</swrl:AtomList>
</swrl:body>
</swrl:Imp>
<swrl:Imp rdf:ID="Mandatory">
<swrl:head>
<swrl:AtomList>
<rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/>
<rdf:first>
<swrl:DatavaluedPropertyAtom>
<swrl:argumentl rdf:resource="#x"/>
<swrl:propertyPredicate rdf:resource="#isSelected"/>
<swrl:argument2 rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"
>true</swrl:argument2>
</swrl:DatavaluedPropertyAtom>
</rdf:first>
</swrl:AtomList>
</swrl:head>
<swrl:body>
<swrl:AtomList>
<rdf:first>
<swrl:ClassAtom>
<swrl:classPredicate rdf:resource="#Mandatory_Feature"/>
<swrl:argumentl rdf:resource="#x"/>
</swrl:ClassAtom>
</rdf:first>
<rdf:rest>
<swrl:AtomList>
<rdf:rest>
<swrl:AtomList>
<rdf:first>
<swrl:DatavaluedPropertyAtom>

<swrl:argument2 rdf:datatype="http://www.w3.o0rg/2001/XMLSchema#boolean"

104

>true</swrl:argument2>
<swrl:propertyPredicate rdf:resource="#isSelected"/>
<swrl:argumentl rdf:resource="#y"/>
</swrl:DatavaluedPropertyAtom>
</rdf:first>
<rdf:rest>
<swrl:AtomList>
<rdf:first>
<swrl:DatavaluedPropertyAtom>
<swrl:argumentl rdf:resource="#x"/>
<swrl:argument2 rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"
>false</swrl:argument2>
<swrl:propertyPredicate rdf:resource="#isSelected"/>
</swurl:DatavaluedPropertyAtom>
</rdf:first>
<rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/>
</swrl:AtomList>
</rdf :rest>
</swrl:AtomList>
</rdf:rest>
<rdf:first>
<swrl:IndividualPropertyAtom>
<swrl:propertyPredicate rdf:resource="#hasParentFeature"/>
<swrl:argument2 rdf:resource="#y"/>
<swrl:argumentl rdf:resource="#x"/>
</swrl:IndividualPropertyAtom>
</rdf:first>
</swrl:AtomList>
</rdf:rest>
</swrl:AtomList>
</swrl:body>
</swrl:Imp>
<swrl:Imp rdf:ID="Alternative_Parent">
<swrl:head>
<swrl:AtomList>
<rdf:first>
<swrl:IndividualPropertyAtom>
<swrl:argumentl>
<swrl:Variable rdf:ID="z"/>
</swrl:argumentl>
<swrl:argument2 rdf:resource="#y"/>
<swrl:propertyPredicate rdf:resource="#hasParentFeature"/>
</swrl:IndividualPropertyAtom>
</rdf:first>
<rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/>
</swrl:AtomList>
</swrl:head>

<swrl:body>

105

<swrl:AtomList>
<rdf:rest>
<swrl:AtomList>
<rdf:rest>
<swrl:AtomList>
<rdf:rest>
<swrl:AtomList>
<rdf:rest>
<swrl:AtomList>
<rdf:first>
<swrl:DifferentIndividualsAtom>
<swrl:argument2 rdf:resource="#y"/>
<swrl:argumentl>
<swrl:Variable rdf:ID="w"/>
</swrl:argumentl>
</swrl:DifferentIndividualsAtom>
</rdf:first>
<rdf:rest rdf:resource="http://wuw.w3.0org/1999/02/22-rdf-syntax-ns#nil"/>
</swrl:AtomList>
</rdf:rest>
<rdf:first>
<swrl:IndividualPropertyAtom>
<swrl:propertyPredicate rdf:resource="#hasParentFeature"/>
<swrl:argumentl rdf:resource="#z"/>
<swrl:argument2 rdf:resource="#uw"/>
</swrl:IndividualPropertyAtom>
</rdf:first>
</swrl:AtomList>
</rdf:rest>
<rdf:first>
<swrl:IndividualPropertyAtom>
<swrl:argument2 rdf:resource="#z"/>
<swrl:propertyPredicate rdf:resource="#alternative0Of"/>
<swrl:argumentl rdf:resource="#x"/>
</swrl:IndividualPropertyAtom>
</rdf:first>
</swrl:AtomList>
</rdf:rest>
<rdf:first>
<swrl:IndividualPropertyAtom>
<swrl:propertyPredicate rdf:resource="#hasParentFeature"/>
<swrl:argument2 rdf:resource="#y"/>
<swrl:argumentl rdf:resource="#x"/>
</swrl:IndividualPropertyAtom>
</rdf:first>
</swrl:AtomList>
</rdf:rest>

<rdf:first>

106

<swrl:ClassAtom>
<swrl:classPredicate rdf:resource="#Alternative_Feature"/>
<swrl:argumentl rdf:resource="#x"/>
</swrl:ClassAtom>
</rdf:first>
</swrl:AtomList>
</swrl:body>
</swrl:Imp>
<swrl:AtomList>
<rdf:first>
<swrl:ClassAtom>
<swrl:classPredicate rdf:resource="#Alternative_Feature"/>
<swrl:argumentl rdf:resource="#x"/>
</swrl:ClassAtom>
</rdf:first>
<rdf:rest>
<swrl:AtomList>
<rdf:first>
<swrl:IndividualPropertyAtom>
<swrl:argument2 rdf:resource="#y"/>
<swrl:argumentl rdf:resource="#x"/>
<swrl:propertyPredicate rdf:resource="#hasParentFeature"/>
</swrl:IndividualPropertyAtom>
</rdf:first>
<rdf:rest>
<swrl:AtomList>
<rdf:rest rdf:resource="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#nil"/>
<rdf:first>
<swrl:IndividualPropertyAtom>
<swrl:argumentl rdf:resource="#x"/>
<swrl:argument2 rdf:resource="#z"/>
<swrl:propertyPredicate rdf:resource="#alternativeOf"/>
</swrl:IndividualPropertyAtom>
</rdf:first>
</swrl:AtomList>
</rdf:rest>
</swrl:AtomList>
</rdf:rest>
</swrl:AtomList>
<swrl:Imp rdf:ID="Alternative">
<swrl:head>
<swrl:AtomList>
<rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/>
<rdf:first>
<swrl:DatavaluedPropertyAtom>
<swrl:propertyPredicate rdf:resource="#isSelected"/>
<swrl:argumentl rdf:resource="#y"/>

<swrl:argument2 rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"

107

>false</swrl:argument2>
</swrl:DatavaluedPropertyAtom>
</rdf:first>
</swrl:AtomList>
</swrl:head>
<swrl:body>
<swrl:AtomList>
<rdf:rest>
<swrl:AtomList>
<rdf:first>
<swrl:DatavaluedPropertyAtom>
<swrl:propertyPredicate rdf:resource="#isSelected"/>
<swrl:argument2 rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"
>true</swrl:argument2>
<swrl:argumentl rdf:resource="#x"/>
</swrl:DatavaluedPropertyAtom>
</rdf:first>
<rdf:rest>
<swrl:AtomList>
<rdf:rest>
<swrl:AtomList>
<rdf:first>
<swrl:DatavaluedPropertyAtom>
<swrl:argumentl rdf:resource="#y"/>
<swrl:propertyPredicate rdf:resource="#isSelected"/>
<swrl:argument2 rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"
>true</swrl:argument2>
</swrl:DatavaluedPropertyAtom>
</rdf:first>
<rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/>
</swrl:AtomList>
</rdf:rest>
<rdf:first>
<swrl:IndividualPropertyAtom>
<swrl:argumentl rdf:resource="#x"/>
<swrl:argument2 rdf:resource="#y"/>
<swrl:propertyPredicate rdf:resource="#alternativeOf"/>
</swrl:IndividualPropertyAtom>
</rdf:first>
</swrl:AtomList>
</rdf:rest>
</swrl:AtomList>
</rdf:rest>
<rdf:first>
<swrl:ClassAtom>
<swrl:classPredicate rdf:resource="#Alternative_Feature"/>
<swrl:argumentl rdf:resource="#x"/>

</swrl:ClassAtom>

108

</rdf:first>
</swrl:AtomList>
</swrl:body>
</swrl:Imp>
<swrl:Imp rdf:ID="Excludes">
<swrl:head>
<swrl:AtomList>
<rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/>
<rdf:first>
<swrl:DatavaluedPropertyAtom>
<swrl:argument2 rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"
>false</swrl:argument2>
<swrl:argumentl rdf:resource="#y"/>
<swrl:propertyPredicate rdf:resource="#isSelected"/>
</swrl:DatavaluedPropertyAtom>
</rdf:first>
</swrl:AtomList>
</swrl:head>
<swrl:body>
<swrl:AtomList>
<rdf:rest>
<swrl:AtomList>
<rdf:first>
<swrl:IndividualPropertyAtom>
<swrl:argument2 rdf:resource="#y"/>
<swrl:propertyPredicate rdf:resource="#excludes"/>
<swrl:argumentl rdf:resource="#x"/>
</swrl:IndividualPropertyAtom>
</rdf:first>
<rdf:rest>
<swrl:AtomList>
<rdf:first>
<swrl:DatavaluedPropertyAtom>
<swrl:propertyPredicate rdf:resource="#isSelected"/>
<swrl:argument2 rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"
>true</swrl:argument2>
<swrl:argumentl rdf:resource="#x"/>
</swrl:DatavaluedPropertyAtom>
</rdf:first>
<rdf:rest rdf:resource="http://wuw.w3.org/1999/02/22-rdf-syntax-ns#nil"/>
</swrl:AtomList>
</rdf:rest>
</swrl:AtomList>
</rdf:rest>
<rdf:first>
<swrl:ClassAtom>
<swrl:classPredicate rdf:resource="#Feature"/>

<swrl:argumentl rdf:resource="#x"/>

109

</swrl:ClassAtom>
</rdf:first>
</swrl:AtomList>
</swrl:body>
</swrl:Imp>

</rdf:RDF>

<!-- Created with Protege (with OWL Plugin 3.4, Build 506)

110

http://protege.stanford.edu -->

APPENDIX B

SCHEMA DEFINITIONS OF THE CORE
EBBP COMPONENTS

Details of the document envelope structure is placed in Figure B.1.

DiacumnentEnvelopeType
DocumentEnvelope
http:/idacs.0asis-open.aorgfebeml-bp/febbp-2.0

IDREF |
@ businessDocumentRef ;

boolzan
@ isPositiveResponse

isAuthenticated

— isConfidential

— @ isTamperDetectable ;

— E@ NOT(http://docs.oasis-open.org,/ebxml-bp/ebbp-2.0)

\-_| —— DacumentationType

Documentation
http:/idacs.oasis-open.org/ebiml-bp/ebbp-2.0

0..co

Attachment
http:l/dacs.oasis-open.org/ebeml-bp/ebbp-2.0

H

0.co

Figure B.1: Details of the Document Envelope structure

111

Business documents can be referenced through the dedicated ebBP structure given in

Figure B.2.

BusinessDocumentType string
BusinessDocument @ name
http:/fdocs.0asis-open.orgfebzml-bp/ebbp-2.0

o}
@ namelD :

DocumentationType
Documentation
http:l/dacs.oasis-open.org/ebeml-bp/ebbp-2.0

0.co

ConditionExpression
http:/idacs.oasis-open.org/ebiml-bp/ebbp-2.0

]

0..co

Specification
http:l/dacs.oasis-open.org/ebeml-bp/ebbp-2.0

H

1,00

Figure B.2: ebBP definition for logical Business Documents

112

As it is visible in Figure B.3, a business transaction consists of a Requesting Business
Activity, a Responding Business Activity, one or two business document flow between them

and several optional business signals.

BusinessTransactionT ype
BusinessTransaction
hutpifidacs. oasis-apen.org/ebumbp/ebbp-2.0

anyURT |
@ pattern
boolean |

@ isGuaranteedDeliveryRequired |

— §@ NOT(htip://docs.casis-open.org/ebxmi-bp/ebbp-2.0)

(o)) Do Tee

Documentation
htp:/fdocs.0asis-open orglabumi-bplebbp-2.0

0.1

RoleType
RequestingRole
hezpi/fdocs.aasis-open orglebimi-bpjebbp-2.0

1 @ namelD

{ B@ NOT(http://docs.oasis-open.org/elxml-bp/ebbp-2.0) |

DocumentationType

Documentation
febaml-bp/ebby

0.1
RolaType
RespondingRole
hetp:ffdocs.assis.opan orgjebirlbpjebbp-2.0
‘(=== RequestingBusinessActivity baslean
hepifldocs.assiscpen crajebaml-bpfebb-2.0 isAuthorizationRequired
boalean

eChedkRequired

boolean |
isNonRepudiationRequired

Boolean
isNonRepudiationReceiptR equired

timeToAcknowledgeReceipt |

duration
i@ timeToAcknowledgeAcceptance

e
retryCount

e
i @ name

DocurnentationType
Documentation
hitpiijdocs.oasis-apen.erglabiml-bp/ebbp-2.0

0.0

DocumentEnvalopeType
DocumentEnvelope
hutpifjdocs.osis-opan.orgebiml-bp/ebbp-2.0

ReceiptAdknowlzdgement Type

ReceiptAcknowledgement
hutpifjdocs.oasis-open.orglebiml-bp/ebbp-2.0

ReceiptAcknowledgementExceptionType
ReceiptAcknowledgementException

hutpiijdocs.oasis-apen.orglebiml-bp/ebbp-2.0

AcceptanceAcknawledgement Type
AcceptanceAcknowledgement
hitpsfidocs o3sis-open orgfebxmk-bp ebbp-2.0

0.1

AcceptanceAcknowledgementExceptionT ype
AcceptanceAcknowledgementException

hutpsfjdocs.osis-opan.orgebimlbp/ebbp-2.0

0.1

Figure B.3: High level view of the Business Transaction

113

Schema of the business transaction activity is given in Figure B.4.

BusinessTransactionActivity IDREF
hitp:/idocs.oasis-open.orgfebeml-bp/ebbp-2.0 @ businessTransactionRef

boalean §

@ hasLegallntent

boolean §

— E@ NOT(http://docs.oasis-open.org,/ebxml-bp/ebbp-2.0)

] W T Documnentation T ype

—— Documentation
http:/idocs .oasis-open.org/ebiml-bplebbp-2.0

0,.co

TimeToPerform
http:/idacs .oasis-open.org/ebiml-bpjabbp-2.0

Parforms
http:/idacs .oasis-open.org/ebiml-bpjabbp-2.0

2,.00

ConditionExpressionT ypa
— BeginsWhen
httpi/idacs 0asis-open.org/ebrml-bpjebbp-2.0

0.0

ConditionExpressionTypa
— PreCondition
http:/idacs .oasis-open.org/ebeml-bplebbp-2.0

[N =]

ConditionExpressionT ype
— PostCondition
http:/idacs .oasis-open.org/ebiml-bpjabbp-2.0

0,.co

ConditionExpressionT ypa
*—! EndsWhen
httpi/idacs 0asis-open.org/ebrml-bpjebbp-2.0

0.0

Figure B.4: Graphical view of the schema of the Business Transaction Activity

114

The ebBP notation for the complex business transaction activities is given in Figure B.5.

ComplexBusinessTransactionActivity

o IDREF |
http:/fdacs.oasis-open.argfebsml-bpfebbp-2.0

i @ businessTransactionRef |

aolean
hasLegalIntent

boalean
@ isConcurrent

namelD

— E@ NOT(http://docs.oasis-open.org/ebxml-bp/ebbp-2.0)

@ E——@ Eh DocumentationType

— Documentation
http:ifdocs .oasis-open.orgjebxml-bp/ebbp-2.0

0,00

TimeToPerform

http:j/dacs .oasis-open.orgjebxml-bpfebbp-2.0

Performs
http:fidacs .0asis-open.arg/ebsml-bp/ebbp-2.0

-]

ConditianExprassianTypa
—— BeginsWhen
hittp:ifdacs oasis-open.orgebaml-bp/ebbp-2.0

0,00

ConditionExpressionTypa
— PreCondition
http:fidacs .0asis-open.arg/ebsml-bp/ebbp-2.0

0,00

ConditionExprassianTypa
— PostCondition
http:j/dacs .oasis-open.orgjebxml-bpfebbp-2.0

0,00

ConditionExpressionTypa
*~— EndsWhen
http:fidacs .0asis-open.arg/ebsml-bp/ebbp-2.0

0.0

ComplexBusinessTransactionActivity

http:/idacs.0asis-open.arg/ebsml-bp/ebbp-2.0 =

StatusVisibility

[+
http://dacs.oasis-open.org/ebxml-bp/ebbp-2.0 =

BusinessTransactionActivity
http:/idacs.0asis-open.arg/ebsml-bp/ebbp-2.0

StatusVisibility

http:/idacs.0asis-open.arg/ebsml-bp/ebbp-2.0 &

Figure B.5: Schema definition of the Complex Business Transaction Activity

115

High level view of the Receipt Acknowledgement signal can be found in Figure B.6.

ReceiptAcknowledgement EI—'_@ E——@ E- non-empty-string

http:/fdocs oasis-open arglebaml-bp/ebbp-signals-2.0 — OriginalMessageldentifier
http:/idocs.0asis-open.argfebiml-bp/ebbp-signals-2.0

non-empty-string
— OriginalDocumentIdentifier
http:iidacs.0asis-open.orgfebiml-bp/ebbp-signals-2.0

0.1

dateTime
— OriginalMessageDateTime
http:/idocs.oasis-apan.orgfebiml-bpjebbp-signals-2.0

dateTime
— ThisMessageDateTime
http:/idacs . oasis-open.orgfebeml-bp/ebbp-signals-2.0

PartyInfoType
— FromPartyInfo
http:iidacs.0asis-open.orgfebiml-bp/ebbp-signals-2.0

0.1

PartyInfoType
— ToPartyInfo
http:/idacs.0asis-open.orgfebiml-bp/ebbp-signals-2.0

0.1

RaoleType
1 FromRole
http:/idocs.0asis-open.orgfebrml-bp/jebbp-signals-2.0

0.1

RoleType
I ToRole
http:/idocs.0asis-open.argfebiml-bp/ebbp-signals-2.0

0.1

ProcessSpacificationInfoType
— ProcessSpecificationInfo
http:iidacs.0asis-open.orgfebiml-bp/ebbp-signals-2.0

0.1

non-empty-string
— CollaborationIdentifier
http:/idocs.oasis-apan.orgfebiml-bpjebbp-signals-2.0

0.1

non-empty-string
*-— BusinessActivityIdentifier
http:/idacs . oasis-open.orgfebeml-bp/ebbp-signals-2.0

0.1

] naaa MNonRepudiationInformation

http:iidacs.0asis-open.orgfebiml-bp/ebbp-signals-2.0

0.1

SignatureType
Signature
hittp:l w3 .0rg/2000/0% xmidsig#

0.1

Figure B.6: Model view of the Receipt Acknowledgement signal

116

The defined schema for exceptions is shown in Figure

Exception
heepic

—@\}

B.7.

non-empty-string
OriginalMessageIdentil
http /i s by

nan-empry-string

non-empty-string
CollaborationIdentifier

OriginalDocumentIdentifier
hetpe/ic § bp febbp-signals-2.0
0.1
dateTime
OriginalMessageDateTime
hetps/idocs oasis- armlbplsbbp-signals-2.0
dateTime
ThisMessageDateTime
hetps/ic § el bpfebbp-signals-2.0
FromPartylnfo
etp/id y .
0.1
PartyInfoType
ToPartylnfo
hetp:/idocs oasis. rerlbpebbp-signsls-2.0
0.1
RaleType
FromRole
utpsfic el bpfebbp-signals-2.0
0.1
ToRole
hetp/id armlbplsbbp-signals-2.0
0.1
PracessSpechcationInfaType
ProcessSpecificationInfo
hetps/ic y bpfebbp-signsls-2.0
0.1

hetp/id armlbplsbbp-signals-2.0
0.1
nan-empty-string
BusinessActivityIdentifier
hetpsfic i} xembbpfebbp-signals-2.0
0.1
ExceptionType ReceiptException
[——— Fbp/abbp-signals-2.0 tto ot masie, I bplebbpsignas 20
AcceptanceException
hetps/idocs oasi- aml-bplsbbp-signals-2.0
GeneralException
hetps/ic } I-bpfebbp-signals-2.0
nan-empty-string
Reason
f— armlbplsbbp-signals-2.0

\—{ §< > NOT(http://docs.oasis-open.org/ehxmi-bp/ ebbp-signals-2.0) |

ExceptionMessage
hetps/idocs ossis- b

0..

Figure B.7: Schema of the exception elements found in ebBP documents

117

BusinessCallaborationT ype string
BusinessCollaboration @ name
e e i a2t :

i)
namelD
anyURT

@ pattern |

=]

Schema for business collaborations is given in Figure B.8.

isInnerCollaboration

- 8@ NOT(http://docs.oasis-open.org/ebsxmi-bp/ebbp-2.0)

e

Figure B.8: Schema definition

DecumentationT ype
Documentation
hitp:/decs.aasis-apen.orgfebimi-bp/ebbp-2.0

0.0

RoleType
Rale
hitps/idocs oasis-apen.arg/ebuml-bp/ebbp-2.0

StartType
Start
hutps/idacs.oasis-apen.org/ebimi-bp/ebbp-2.0

ConditionExpressionT ype
BeginsWhen
hutp:/idacs.oasis-apan.org/ebimi-bp/ebbp-2.0

0.0

CondtionExpressianT ype

PreCondition
hitps/idacs.aasis-open.org/ebiml-bp/ebbp-2.0

0.0

ConditionExpressionT ype
PostCondition
hutp:/idacs.oasis-apan.org/ebimi-bp/ebbp-2.0

0..00

‘ConditionExpressionT ype
EndsWhen
hitps/idacs.oasis-open.org/ebiml-bp/ebbp-2.0

0.0

BusinessTransactionAcl

CollaborationActivity Type
CollaborationActivity
hetp:/idacs.0asis-open arglebiml-bp/ebbp-2.0

0.1

ComplexBusinessTransactionActivity
http:/idocs.oasis-open arg/ebml-bp/ebbp-2.0

0.1

ComplationType
Success
hitpa/idacs.oasis-open arg/ebsm-bo/ebbp-2.0

CompletionType
Failure
hutp:/idacs oasis-open arglebimb-bp/ebbp-2.0
0.1

TransitionType
Transition
hitpa/idocs.oasis-open arglebsm-bp/ebbp-2.0

0.1

ForkType
Fork
hetps/jdocs 0asis-open.orgfabuml-bp/abbp-2.0

JoinType
Join

hitpa/idocs.oasis-open arglebsm-bp/ebbp-2.0

DecisionType
Decision
hetps/jdocs 0asis-open.orgfabuml-bp/abbp-2.0

0.1

of the Business Collaboration

118

