

iv

GEBZE YÜKSEK TEKNOLOJİ ENSTİTÜSÜ
MÜHENDİSLİK VE FEN BİLİMLERİ ENSTİTÜSÜ

ALTI EKLEMLİ BİR ROBOTUN WINDOWS
İŞLETİM SİSTEMİ ALTINDA DENETİM

SİSTEMİ TASARIMI

Ufuk ÖZBAY
YÜKSEK LİSANS TEZİ

BİLGİSAYAR MÜHENDİSLİĞİ
ANABİLİM DALI

TEZ DANIŞMANI
Yrd. Doç. Dr. Erkan ZERGEROĞLU

GEBZE

2006

v

Ufuk ÖZBAY’ın tez çalışması, GYTE Mühendislik ve Fen Bilimleri

Enstitüsü Yönetim Kurulu2nun 20.07.2006 tarih ve 2006/26 sayılı kararıyla

oluşturulan jüri tarafından Bilgisayar Mühendisliği Anabilim Dalı’nda Yüksek

Lisans Tezi olarak kabul edilmiştir.

JÜRİ

ÜYE : Doç. Dr. Selim SİVRİOĞLU

ÜYE : Yrd. Doç. Dr. Erkan ZERGEROĞLU

(Tez Danışmanı)

ÜYE : Yrd. Doç. Dr. İlyas KANDEMİR

ONAY

 GYTE Mühendislik ve Fen Bilimleri Enstitüsü Yönetim Kurulu’nun

__/__/_____ tarih ve ____/__ sayılı kararı

vi

ÖZET

TEZ BAŞLIĞI: Altı Eklemli Bir Robotun Windows İşletim Sistemi Altında Denetim

Sistemi Tasarımı

YAZAR ADI: Ufuk ÖZBAY

Bu çalışmamızda Enstitümüz bünyesinde, robotik manipülatörler için açık

sistem ve kod standartlarına uyularak geliştirilmekte olan Matlab®/Simulink®

tabanlı gerçek zamanlı benzetim ve denetim sistemi tanıtılmaktadır. Sistemimiz

akademik araştırmalarda sıklıkla kullanılan 6 döner ekleme sahip Puma 560 robotları

üzerinde denenerek başarı ile uygulanmıştır.

vii

SUMMARY

THESIS TITLE: Design of a Control System for a 6 Link Manipulator Under

Windows Operating System

AUTHOR: Ufuk ÖZBAY

In this work, a Matlab®/Simulink® based real time simulation and control

environment, developed under open system protocols is presented. The performance

and the feasibility of the proposed system has been successfully tested on a

commonly used 6 link revolute robot the Puma 560 manipulator

viii

TEŞEKKÜR

GYTE’deki öğrenim hayatım boyunca tüm çalışmalarımda beni destekleyen,

tez çalışmamın başından sonuna kadar bana devamlı yol gösteren danışmanım Sayın

Yrd. Doç. Dr. Erkan ZERGEROĞLU’ na; çalışmalarım boyunca desteklerini benden

esirgemeyen sevgili çalışma arkadaşlarım Ümit Ali Tektaş ve Hüsnü Türker Şahin’e,

ve tabiî ki bugün burada olmamı sağlayan, hayatım boyunca desteklerini

esirgemeyen, sadece anne baba kardeş değil birer dost olan sevgili aileme; sonsuz

teşekkür ederim.

ix

İÇİNDEKİLER DİZİNİ

Sayfa

ÖZET iv

SUMMARY vii

TEŞEKKÜR viii

İÇİNDEKİLER DİZİNİ ix

SİMGELER VE KISALTMALAR DİZİNİ xi

ŞEKİLLER DİZİNİ xii

TABLOLAR DİZİNİ xiv

1 GİRİŞ 1

1.1 Giriş 1

1.2 Simulink Blok Diagramlarının Organizasyonu 2

2 ROBOT DENETLEYİCİSİNDE BULUNMASI GEREKLİ PARÇALAR 4

2.1 Başlangıç Kalibrasyon Kipi 4

2.2 Eklem Uzayında Denetleme Kipi 6

2.3 Kartezyen(İş) Uzayında Denetleme Kipi 9

2.4 Konum Öğreneme Kipi 14

2.5 Benzetim/Simülasyon Kipi 15

2.6 Diğer Özel Amaçlı Kipler 16

2.6.1 Çoklu Hareket Kipi 16

2.6.2 Yönetme Kolu ile Denetim Kipi 17

3 GELİŞTİRİLEN ROBOT KONTOL KÜTÜPHANESİ 18

3.1 Donanıma Ulaşma Blokları 18

3.2 Servo To Go Kütüphanesi (stglib) 19

3.2.1 Sayısal Giriş Çıkışlar (Digital Input, Digital Output) 19

3.2.2 Analog Giriş (Analog Input, Multi Channel Analog Input) 20

3.2.3 Analog Çıkış (Analog Output, Analog Output With Extra Control) 21

3.2.4 Encoder Girişleri (Encoder Input, Encoder Input With Read Option) 22

3.2.5 Encoder değerlerini ayarlamak (Set Encoder) 23

3.3 Genel Robot Kütüphanesi 23

3.3.1 İleri Kinematik (Forward Kinematic) 24

3.3.2 Jacobian Hesaplanması (Jakobyen n, Jakobyen 0) 24

3.3.3 XYZ2T, T2XYZ Blokları 25

x

3.3.4 RPY2T, T2RPY Blokları 25

3.3.5 Euler2T, T2Euler Blokları 26

3.4 Puma Robotu Özel Kütüphanesi 28

3.4.1 Puma Kipleri (Puma Modes) 28

3.4.2 Yazılan S-Fonksiyonu Blokları (S function) 29

3.4.3 Giriş Çıkış Blokları (I/O BLOCKS) 30

3.4.4 Sıklıkla Kullanılan Bloklar (USEFUL STUFF) 31

4 OLUŞTURULAN DEMO PROGRAMLAR 32

4.1 Öğrenme ve Eklem Uzayı Denetleme Demosu 32

4.2 Joystick Mode demosu 33

5 SONUÇLAR 35

Ek 1 Oluşturulan Robot Kontrol Kütüphanesinin Kurulumu 36

Ek 2 Servo to Go ISA Model II kartı 39

Ek 3 Tasarlana Geçiş Katının Şeması ve PCB Diyagramı 40

Ek 4 Puma 560 Robotunun Özellikleri 44

KAYNAKLAR 48

ÖZGEÇMİŞ 50

xi

SİMGELER VE KISALTMALAR DİZİNİ

RCCL Robot Control C Library

SRTK Simulink Robotic Toolkit

xii

ŞEKİLLER DİZİNİ

Şekil Sayfa

1.1 Simulink blok diagramı organizasyonu 3

2.1 Başlangıç Kalibrasyon Kipi 6

2.2 Kalibrasyon Kipi Bloğunun İç Yapısı 6

2.3 Robotun takip etmesini istediğimiz yörünge 8

2.4 Robot yörünge takip hatası. 8

2.5 Robot eklem motorlarına uygulanan tork 9

2.6 Kartezyen Denetim Kipi Modülü 1 11

2.7 Kartezyen Denetim Kipi Modülü 2 11

2.8 Kartezyen Uzayında hesaplanan Robot yörüngesi 12

2.9 Ters kinematik hsaplamalar sonucu bulunan robot eklem yörüngesi 12

2.10 Robotun yörünge takip hatası 13

2.11 Robotun eklem motorlarına uygulanan tork 13

2.5 Yer çekimi dengeleme ve Öğrenme Kipi 14

2.6 Benzetim/Simülasyon Kipi 16

2.14 Çoklu hareket kipi 17

3.1 Servo To Go Kütüphanesi 19

3.2 “Digital Input” bloğunun maskesi 20

3.3 “Analog Input” bloğunun maskesi 21

3.4 “Analog Output with Extra Control” bloğunun maskesi 22

3.5 “Encoder with Read Option” bloğunun maskesi 23

3.6 Genel Robot Kütüphanesi 24

3.7 Genel Puma Kütüphanesi 28

3.8 “Puma Modes” Bloğu 29

4.1 DemoLearnPos programının kullanım arayüzü (GUI) 32

xiii

4.2 DemoLearnPos programının Simulink Diyagramı 33

EK1.1 FILE/SET PATH seçilir 36

EK1.2 Add With Subfolders seçilir 37

EK1.3 toolbox/GYTEROBOTLIB seçilir 37

EK3.1 Geçiş Kartı şeması ADC katı 40

EK3.2 Geçiş Kartı şeması bağlantıları 1 41

EK3.3 Geçiş Kartı şeması bağlantıları 2 42

EK 3.4 Geçiş Kartı Baskı Devre Resmi 43

Ek 4.1 Puma560 robotunun resmi 44

xiv

 TABLOLAR DİZİNİ

Tablo Sayfa

Ek4.1 Puma Robotunun Genel Özellikleri 44

EK4.2 Dişli Oranları 46

Ek4.3 Puma 560 robotunun Denavit-Hartenberg Parameteleri 47

1

1 GİRİŞ

1.1 Giriş

Robotik araştırmalar, birçok farklı bilim dalının temel yöntemlerinden

yararlanılmasını gerektirir. Örneğin robot kontrolü üzerine çalışan araştırmacı,

sistemi denetlemek için öncelikle gerekli donanımı kurmalı, robotu kontrol edecek

denetleyici algoritmasını oluşturmak için, gerekli yazılımları hazırlamalı ve buna

uygun bir kullanıcı ara yüzü tasarlamalıdır. Bu işlemleri daha da zorlaştıran bir

etmen de; asıl olarak endüstri için tasarlanmış robot manipülatörlerinin çoğunlukla

kendi kontrol algoritmaları dışında çalışmamak üzere üretilmiş olmalarıdır. Bu tür

platformlarda var olan fonksiyonlar ile kullanılan donanım parçalarını birleştirmekte

kullanıcı etkinliği azdır. Dolayısı ile kullanıma sunulan robot denetleme ve

hareketlendirme programları üretici firmalar tarafından sağlanmışlar, özel

uygulamalar gerçekleştirmek için ise üretici firmalardan ek yazılım paketleri almak

veya geliştirmeyi üretici firmaya yaptırmak zarureti ortaya çıkmaktadır. Bahsi geçen

sorunu aşabilmek için birçok akademik kullanıcı yüksek seviyeli dillerden

yararlanarak kütüphaneler geliştirilmiştir. Bu tür yazılımların en başarılılarından biri,

Unix tabanlı iş makinelerinde çalışan RCCL[1] (Robot Control C Library) dir.

RCCL, robotik hesaplamalar için gerekli matris işlemlerini ve geometrik

hesaplamaları içeren C rutinleriyle birlikte birçok robot için ileri ve ters kinematik

çözümlerlerine içermektedir. RCCL in diğer bir özelliği de Unimation firması

tarafından Puma robotlari için hazırlanan orijinal VAL kontrolörünün[2] nasıl revize

edilerek araştırmacının kendi programını yükleyebileceği hususunda bilgiler

içermesidir[3]. Ancak RCCL sadece bir kaç platform üzerinde çalışabilir ve

kütüphane dosyasının boyutunun büyük ve karmaşık olması yeni uygulamaların

paralelinde değiştirilmesini zor kılmaktadır. RCCL’nin kod karmaşıklığını azaltmak

için bir kaç çalışma[4-5] yapılmış olmasına karşın bu çalışmalar da tasarlandıkları

platformlar dışına taşınamamışlardır.

Önceki yazılım araçlarından yeterince verim alamayan birçok araştırmacı

Matlab tabanlı robotik uygulamalar geliştirmişlerdir. [6]’da Pires Win32 işletim

sistemlerinde otomasyon ekipmanlarını ve bazı endüstriyel robotları kontrol etmek

için kullanılan MATROBCOM olarak adlandırılan Matlab tabanlı bir kütüphane

2

tanıtmıştır. Ne yazık ki, MATROBCOM işlemleri gerçek zamanlı olarak yerine

getirememektedir. [7]’de ise Matlab/Simulink ortamında geliştirilen SRTK

(Simulink Robotic Toolkit) platformunu tanıtmaktadırlar. Önceki sistemlere göre en

büyük farkı Gerçek Zamanlı Linux (RTLT)[8] ve Windows hedefleri (RTWT)[9] ile

uyumlu olması olan STRK, RT-Linux ve Windows–98 işletim sistemlerinde gerçek

zamanlı olarak çalıştırılabilinir. Ancak STRK tek bir bloktan oluşmasından dolayı

farklı uygulamalar için şekillendirilmesi, geliştiricilerinin açıklamalarının aksine

zorluklar içermektedir.

Bu çalışmamızda, Matlab/Simulink tabanlı yeni bir robot denetim ve kontrol

kütüphanesi geliştirdik. Geliştirdiğimiz kütüphane STRK’nın içerdiği tüm kontrol

kiplerini içermesinin yanında sadece Windows–98 için değil diğer bütün win32

işletim sisteminde de (Windows NT/2000/XP), RTWT üzerinden gerçek zamanlı

çalıştırılabilmektedir. Çalışmamızın uygulanabilirliğini gösterebilmek amacı ile bir

Puma560 robotunu açık sistem ve kod standartlarına uygun olarak orijinal

kontrolloründen ayrılarak modifiye edilmiş, modifikasyonlar sonunda genel amaçlı

bir giriş/çıkış kartı yardımı ile bilgisayara bağlanan robot denetleyicisinin bütün

işlemleri, hazırlanan kütüphaneler yardımı ile yapılabilmiştir.

1.2 Simulink Blok Diagramlarının Organizasyonu

Yazılan robot kontrol kütüphanesi robot kontrol kiplerini yerine getirebilmek

için çeşitli hesaplamaları ve robotun donanımına ulaşmamızı sağlayan çeşitli

simulink bloklarından oluşmuştur. Şekil 1.1’de örnek olarak sunulan blok

diyagram(Başlangıç Kalibrasyon Kipi) 3 ana kısımda incelenebilinir. Burada koyu

yeşil renkli bloklar direkt donamından okuma bloklarını göstermektedir. Temel

görevi robot donanımına ulaşarak encoder değerleri, potansiyometre değerleri gibi

verileri elde etmektir. Açık mavi renkli bloklar ise donanıma işleme bloklarıdırlar.

Bu bloklar ayrıntılı olarak bölüm 2’de anlatılınacaktır. Mor renkli bloklar çeşitli

robotik hesaplamaları yerine getirmektedir.

3

Şekil 1.1: Simulink blok diyagramı organizasyonu

Tezimizin geri kalanı şu biçimde özetlenebilir: Bölüm 2’de genel amaçlı bir robot

denetleyicisinde bulunması gereken kipler aktarılacak, Bölüm 3’de bu kiplerin

gerçekleştirilmesi için geliştirilen kütüphane tanıtılıcak, Bölüm 4’de geliştirilen

kütüphane vasıtası ile gerçekleştirilen demo programlar anlatılacaktır. Bölüm 5’de

oluşturulan çıktı ve sonuçlar irdelenip projemizin ileri safhalarında yapılması

planlananlar aktarılacaktır.

4

2 ROBOT DENETLEYİCİSİNDE BULUNMASI
GEREKLİ PARÇALAR

Genel bir robot denetleyicisi, çalıştırılmaya başladığı zamanda robot eklem

konumlarını bilebilmeli (Başlangıç Kalibrasyon Kipi), gerek eklem uzayında gerekse

iş uzayında verilen iki veya daha fazla nokta arasında yörünge sinyallerini üretip

yumuşak bir sekilde takip edebilmeli (Eklem ve İş Uzaylarında Denetleme Kipleri),

kullanıcısının hareket ettirmeyi planladığı noktaları robota öğretmesine olanak

sunabilmeli (Konum Öğretme Kipi) ve robota eklenebilecek aygıtlarla kolay entegre

edilebilmelidir. Bunların yanı sıra dışardan hazırlanıp robota takip ettirilmesi

planlanan yörüngelerin robotun hünerli iş sahası içerisinde kalıp kalmayacağının,

(verilen yörüngenin robotun takip etmesine uygun biçimde tasarlanıp

tasarlanamadığının) robot sistemine zarar vermeden, test edebilmeye olanak

verebilmesi (Benzetim/Simülasyon Kipi) özellikle akademik ortamlarda gerekli bir

özelliktir. Bu bölümün kalan kısımlarında bu kiplerin özelliklerin Puma tipi

robotlarda nasıl uygulanabileceği ve bu çalışmada hangi formlarda sunulduğundan

bahsedeceğiz.

2.1 Başlangıç Kalibrasyon Kipi

Denetim altında tutulmak istenen her sistemde olduğu gibi robot kontrol

sistemlerinde de başlama koşullarının (robot denetleyicisi aktif duruma geçtiğinde

eklem konumlarının) bilinmesi veya bir şekilde tespit edilmesi gerekir. Bu bilgi

özellikle kendi kol ağırlıklarını denetimsiz taşıyamayan robotlarda sonraki daha

karmaşık işlemlerin gerçekleştirilmesinde hataların yaşanmaması için son derece

önemlidir. Gerçekleştirilecek robotik görevler kalibrasyonun sonucunda elde edilen

encoder ayar bilgilerinin kesinliğine göre başarım gösterirler. Eğer kalibrasyon doğru

şekilde yapılmazsa diğer kiplerde kullanılan (ileri ve geri kinematik, vb.)

hesaplamalar yanlış sonuç verecek dolayısıyla robotun çalışmasında ciddi hatalara

yol açacaktır. Son yıllarda kullanılmaya başlanan robotlar pozisyon bilgilerini

tutabilen pozisyon ölçerler (encoderlar) kullanmaktadırlar. Ancak çalışmamızda

temel olarak kullandığımız Puma robotları, güç devrelerine verilen besleme sinyali

kesildiğinde pozisyon bilgisini saklayamayan encoderlar içermektedirler. Başlangıç

pozisyon bilgisini algılayabilmenin tek yolu her ekleme yerleştirilmiş olan

5

potansiyometrelerdir. Potansiyometre değerleri hassas ölçüm yapabilmek için uygun

değillerdir, bu yüzden sadece başlangıçta encoderlerin gerçek değerlerine

atanmasında kullanılmalı; daha sonra ise denetim için gerekli eklem pozisyonlarının

encoder sinyallerinden yararlanılarak bulunmaları gerekmektedir. Bu işlemi

yapabilmek için Unimation firmasının önerdiği ve RCCL’de de uygulanan bir

yöntem kullanılmıştır. Bu yöntemde potansiyometre değerleri ile encoder

değerlerinin birbirleri ile doğrusal bir ilişki içinde bulundukları farz edilir, robot

encoder değerleri tam olarak bilinen bir pozisyona getirilir. Birçok araştırmacı bu

pozisyonu robotun bütün eklemlerinin yerçekiminden etkilenmediği Hazır (Ready)

pozisyonu olarak seçmişlerdir. Özenle ve gerekirse hassas ölçeklendirme aletlerinin

yardımı ile bu pozisyona getirilen robotun potansiyometre değerleri okunarak kayıt

edilir. Sonra her eklem için robot bütün erişebildiği noktalara hareket ettirilerek

encoder iz (index pulse) noktalarında potansiyometre değerleri ile bunlara karşılık

gelen encoder değerleri not edilir. Bütün değerler okunduktan sonra iki değer

arasında doğrusal bir interpollasyon denklemi kurulup her eklem için bu değerler bir

konfigürasyon dosyasında saklanır. Robot denetleyicisi her açıldığında eklemler ilk

encoder iz noktasına kadar hareket ettirilerek bu noktadaki potansiyometre değerleri

ve interpollasyon denklemi parametrelerinden de faydalanılarak encoder gerçek

değerleri saptanır ve bu değerler encoder yazmaçlarına işlenirler. Bu yöntem

sayesinde Başlangıç Kalibrasyon Kipinin sonunda robot eklemlerinin pozisyonları

tam olarak tespit edilebilmektedir. Şekil 1 ile Şekil 2’de Başlangıç Kalibrasyon Kipi

için hazırlanan blok diyagramlar sunulmuştur. Şekil 1’de sunulan blok diyagramda

koyu yeşil renkli bloklar direkt donamından okuma, mor renkli bloklar hesaplama ve

açık mavi renkli bloklar ise donanıma işleme bloklarıdırlar. İşlemlerin yapıldığı mor

bloğun detaylı biçimi ise Şekil 2’de sunulmuştur.

6

Şekil 2.1: Başlangıç Kalibrasyon Kipi

 Şekil 2.2: Kalibration Mode Bloğu İç Yapısı

2.2 Eklem Uzayında Denetleme Kipi

Eklem Uzayı Denetleme Kipinin amacı robotu başlangıç pozisyonundan alıp

kullanıcının eklem parametreleri (açıları) ile belirlediği istenilen başka bir pozisyona

en az takip hatası ile yönlendirmektir. Bu amaç için öncelikle bu iki nokta arasında

yumuşak bir yörünge sinyali oluşturulması gerekir. Uygulamanın yumuşak (çokça

türevlenebilir) olabilmesi için yörünge oluşturucuda istenilen eklem profili

() İSd

İSS

qtttq

qq

++−Δ=

−=Δ
345 10156

(1)

denklemi kullanılarak oluşturulmaktadır. Denklem (1) de bulunan qS eklemlerin

ulaşması gereken eklem açılarını qİ eklemlerin başlangıç pozisyonlarını içeren

7

vektörleri ifade etmek için kullanılmış, t ise [0,1] aralığında normalize edilmiş

zaman sinyalini temsil etmektedir. Denklem (1)’den de anlaşılabileceği gibi seçilen

yörünge oluşturma fonksiyonu ikinci dereceden türevlenebilir olup robotun hem hız

hem de ivme profillerinin sürekli olmalarını garanti eder. Takip edilmesi istenilen

yörünge sinyali oluşturulduktan sonra denetim performansını belirleyen hata sinyali

qqe d −= (2)

biçiminde tanımlanıp, eklem yörüngelerinin en uygun şekilde takibi için PD+yer

çekimi formundaki denetleyici ile aşağıda verildiği şekilde tanımlanabilir

()qGe
dt
dkekq dpd +++=)(&&τ

.
 (3)

Denklem (3)’de verilen dq&& , (1) ile verilen yörünge sinyalinin ikinci türevini, kp,

kd pozitif kontrol kazançlarını, G(q) robotun yer çekim etkilerini içeren vektörü ve
τ eklemlere uygulanacak açısal güç vektörünü temsilen kullanılmışlardır.

Denklem (1) ile hesaplanan örnek bir yörünge Şekil 2.3 de verilmiş olup

robotun yörünge takip hatası da Şekil 2.4’de motorlara uygulanan tork ise şekil

2.5’de sunulmuştur.

8

Şekil 2.3: Robotun takip etmesini istediğimiz yörünge.

Şekil 2.4: Robotun yörünge takip hatası.

9

Şekil 2.5: Robotun eklem motorlarına uygulanan tork.

2.3 Kartezyen(İş) Uzayında Denetleme Kipi

Kartezyen Uzayında Denetim Kipi kullanıcıya robotun varacağı konumu, iş

uzayındaki robot-ucu koordinatları ile girilmesini sağlar. Böylece kullanıcı her

eksenin varış açılarını ayrı ayrı hesaplamak zorunda kalmadan direkt olarak üç

boyutlu uzayda robotun gitmesi gereken konumu verebilir. Genel robotik

yaklaşımında Kartezyen Uzayında Denetleme için 2 yöntem bulunmaktadır:

(i) pozisyon hesaplamalarının direkt iş uzayında yapılarak denetleyicinin iş uzayında

tasarımı ve eklemlere uygulanacak kuvvet vektörünün robot jakobyanı kullanılarak

bu denetleyici çıkışından hesaplanması; (ii) iş uzayında verilen pozisyonların ters

kinematik formülasyonu ile eklem uzayına transferinden sonra eklemlere

uygulanacak kuvvet vektörünün tasarımı. Çalışmamızda her iki yöntemde

birbirlerinden bağımsız olarak ve başarı ile uygulanmıştır.

10

Birinci yöntemin uygulamasında, hesaplama sadeliği ve kullanım kolaylığı göz

önüne alınarak manipülatörün oryantasyonu, yörünge boyunca denetleyici tarafından

belirlenerek kullanıcıdan sadece istenilen son konum bilgisi (pS) girilmesini istenir.

Denklem (1)’e benzer şekilde Kartezyen koordinatlarda bir pozisyon profili (pd) elde

edilir. Elde edilen yörünge ve robotun o anki yörünge sinyallerinden yararlanılarak,

istenilen yörüngeyi takip edebilmesi için robot ucuna uygulanması gereken kuvvetler

)()(xdxp e
dt
dKeKpf += (4)

şeklinde hesaplanır. Burada verilen Kp, Kd pozitif denetim katsayıları, ex

ppe dx −= (5)

biçiminde tanımlanan robot ucu takip hata sinyali ve aynı denklemde yer alan p ise

robotun ilk üç eklemi kullanılarak elde edilen uç pozisyon vektörüdür (Puma

robotlarında son üç eklem sadece robot ucu oryantasyonunu değiştirdiğinden robotun

ileri kinematik formülasyonu, sadece bu kipe özgü olarak sadece ilk üç eklem

kullanılarak hesaplanmıştır). Denklem (4) ile elde edilen eklem ucu güç vektöründen

yararlanılarak robotun eksenlerine uygulanacak tork

()qGfJ T +=τ (6)

formülasyonu ile hesaplanabilir. Denklem (6) da geçen J(q) robot Jakobyenini

belirtmek üzere kullanılmıştır.

İş uzayı denetim kipinde yer alan ikinci yöntemde kullanıcıdan robotun

gitmesini istediği kartezyen pozisyonla beraber robot ucunun verilen pozisyondaki

11

oryantasyonu 3-parametreli minimum anlatımı biçiminde istenir. Verilen son nokta

kullanılarak iş uzayında bir yörünge tayin edilir ve bu yörüngenin eklem uzayı

karşılığı robot hareket ederken (on line olarak) ters kinematik formülasyon

kullanılarak hesaplanır. Denetim denklem (3)’de tanımlanan kontroller kullanılarak

yapılır. Bu kipte karşılaşılabilecek en büyük sorun ters kinematik formülasyonunun

birden fazla çözüm üretmesidir (Puma tipi robotlar için her kartezyen konum başına

sekiz adet eklem uzayında karşılık bulunabilir). Bunun oluşturabileceği yan etkiyi

ortadan kaldırabilmek için kullanım algoritmamızda, her eklem için o eklemin bir

önceki açısal konumuna göre değişimi en küçük olanı alınmıştır. Şekil 2.6 ile Şekil

2.7’de Kartezyen Uzayında Denetleme Kipi için hazırlanan blok diyagramlar

sunulmuştur.

Şekil 2.6:Kartezyen Denetim Kipi Modu 1

Şekil 2.7:Kartezyen Denetim Kipi Modu 2

Kartezyen uzayında hesaplanan örnek bir yörünge Şekil 2.8’de verilmiş olup

şekil 2.9 da ters kinematik denklem yardımıyla hesaplanan eklem motorlarının

yörüngesi verilmiştir. Robotun yörünge takip hatası Şekil 2.10’da, motorlara

uygulanan tork ise şekil 2.11’de verilmiştir.

12

Şekil 2.8:Kartezyen Uzayında hesaplanan Robot yörüngesi

Şekil 2.9:Ters kinematik hesaplamalar sonucu bulunan robot eklem yörüngesi.

13

Şekil 2.10: Robotun yörünge takip hatası.

Şekil 2.11: Robotun eklem motorlarına uygulanan tork.

14

2.4 Konum Öğreneme Kipi

Tezimizin önceki bölümlerinde anlatılan kiplerin büyük bölümü, robotun

gitmesi planlanan konumun (eklem ya da kartezyen koordinatlarında) bir şekilde

robot denetleyiciye kullanıcı tarafından verilmesine ihtiyaç duymaktadır.

Belirlenmesi gereken hedef noktalar, özellikle ince iş yapması gereken robotlar için,

büyük bir hassasiyette saptanmalı ve ana iş başlamadan önce robotun belirlenen bu

noktalara istenilen hassasiyette gidebildiğinden emin olunmalıdır. Ancak kullanıcının

robotun her parametresini bilip iş alanını milimetrik olarak ölçeklendirmesi ve robot

kinematiğini kullanarak, hata yapmadan bu pozisyonları saptaması çok külfetli ve

matematiksel olarak ağır bir görevdir.

Uygulama sırasında bu matematiksel yaklaşım yerine kullanıcı robotu manüel

olarak hareket ettirir ve robotun ucunu iş alanında gelmesi gereken komuma getirip

gerekli oryantasyonda tutar. Bir başka kişi bu pozisyonu kaydeder. Yapılması

planlanan iş için gerekli noktaların hepsi kaydedildikten sonra, robot bu noktalar

arasında hareket ettirilir. Konum öğrenme kipi bu görevin rahat yapılabilmesi için

tasarlanmıştır. Bu kipte robotun denetleyicisine sadece robotun her eklemine etkiyen

yer çekimi kuvvetini dengeleyebilecek miktarda kuvvet uygulanmıştır. Böylece

robotun ucu manüel olarak rahatlıkla hareket ettirilebilir. Robotun bulunması

istenilen konum saptandıktan sonra robot konumunu koruyacak ve kullanıcı ikinci

bir kişiye ihtiyaç duymadan robotun bu konumunu kayıt edebilmektedir. Bu basit

ancak efektif çözümün blok diyagramı Şekil 2.12’de verilmiştir.

Şekil 2.12: Yer çekimi dengeleme ve Öğrenme Kipi

15

2.5 Benzetim/Simülasyon Kipi

Gerek robot için tasarlanmış hareketlerin gerçek sisteme verilmeden önce

görülüp uygun düzeltilmelerin yapılabilmesi, gerekse bir manipülatör düzeneği

olmadan da (yörünge tayini, ileri denetim problemleri de dâhil olmak üzere) robotik

problemler üzerinde çalışılabilmesi için benzetim kipi önemlidir. Endüstriyel

robotlarda bulunan benzetim kipleri ne yazık ki sadece yörünge takibi hususunda

kullanıcıya bilgi sunabilmekte, ancak sistemin dinamiğini içermedikleri için

tasarlanabilecek denetim davranışlarını göstermekte yetersiz kalmaktadırlar.

Çalışmamızda sunulan Benzetim/Simülasyon Kipi robot dinamiğini de entegre etmiş

ve denetim tasarımı ve uygulamaları amaçlı olarak da kullanılabilir durumdadır.

Kipte kullanılan Robot Dinamiği bloğumuz en basit biçimde

 () ()[]qqqCqGMq &&&& ,1 −−= − τ (7)

ile verilen denklemi gerçek zamanda çözmekte ve ard arda iki kez integral alarak

robotun o an için pozisyon, hız ve ivme vektörlerini hesaplamaktadır. Denklem

(7)’de belirtilen M(q), 6x6 matris fonksiyonları, sırası ile Puma robotunun

pozitif tanımlı, simetrik (dolayısı ile her zaman tersi alınabilir) atalet matrisi ile

centripedal ve coriolis etkilerini içerisinde barındıran matrisi anlatmak üzere

kullanılmışlardır. Aynı denklemde geçen τ eklemlere uygulanan güç

vektörünü, ise yer çekimi etkilerini içermektedirler. Verilen bu matrislerin

parametreleri [10]’dan direkt olarak alınarak koda entegre edilmişlerdir. Dinamik

hesabı sonunda elde edilen eklem pozisyon vektörü görsel öğelerden yararlanılarak

kullanım kolaylığı sunabilmek amacıyla VRML kodu kullanılarak hazırlanan 3-

Boyutlu Puma modeline verilerek, benzetim çalışırken kullanıcının robotun nasıl

hareket ettiğini sanal olarak görmesi sağlanmıştır. Şekil 2.13’de Benzetim Kipi blok

diyagramı ile 3 boyutlu robot hareketinin oluşumu gösterilmektedir.

()qqC &,

()qG

16

Şekil 2.13: Benzetim/Simülasyon Kipi

2.6 Diğer Özel Amaçlı Kipler

Giriş bölümünde bahsedildiği üzere bir robot denetleyicinin kullanıcıya

tanıması gereken bütün çalışma kipleri, yukarıda verilen modlardan ibarettir.

Bunların üzerine yeni kipler eklenmesi ve robota yeni sensorler (görsel geri besleme,

kuvvet/güç sensorleri gibi) ilave edilmesi ve bunların denetimi genellikle yüksek

maliyet gerektirdiğinden, kullanımı üretici firmanın inisiyatifine bırakılmıştır. Ayrıca

eklenen yeni birimlerle sadece yörünge tayinine eklemeler yapılabilmekte, yani

kinematik denetim olanağı sunulmaktadır. Kendi denetim algoritmalarını uygulamak

isteyen araştırmacılar için bu kabul edilemez bir durumdur.

Bu alt bölümümüzde oluşturduğumuz kütüphane yardımı ile genel robot

denetleyicilerin aksine yeni kipler ile sensor bağlantıları kolaylıkla oluşturulup

eklenebileceğini gösterebilmesi amacıyla basit bir kaç kip seçilerek uygulanmıştır.

Bu kipler aşağıda özetlenmektedir:

2.6.1 Çoklu Hareket Kipi

Kullanıcı, bazı durumlarda robotun öğretilen her pozisyona birebir gitmesini

istemeyebilir. “Al ve yerleştir” türü robot hareketleri buna bir örnektir. Bu tip

operasyonlarda kullanıcı robotun belirli bir cismi bir noktadan diğer noktaya

taşımasını, taşıma işlemi yaparken de robotun çevresine veya kendisine zarar

vermemesi için belirli ara noktalara yönelmesini bekler. Robotun seçilen ara

noktalara tam olarak uğraması işin yapılması için gerekli değildir. Bu kipte hem

17

eklem hem de kartezyen denetleme kiplerinden farklı olarak robot kullanıcının

seçtiği çoklu noktalardan sadece istenilen bir kaçına uğramakta diğer noktalara

belirlendiği kadar yaklaşıp bir sonraki noktaya yönelmektedir. Böylece robota

yumuşak bir yörünge kazandırılmış olmakta ve robot hareketi daha yumuşak (keskin

ve kesikli olmadan) olarak gözlenebilmektedir. Bu kipin uygulanması ile kullanıcının

istediğinde robot yörünge profilini istediği biçimde kolayca değiştirebileceği

kanıtlanmış olmaktadır. Şekil 2.14’de çoklu hareket kipinin uygulamalarından bir

tanesi (yörünge oluşturma türüne bağlı olarak birden fazla çoklu hareket kipi başarı

ile uygulanmıştır) gösterilmektedir.

Şekil 2.14:Çoklu hareket kipi

2.6.2 Yönetme Kolu ile Denetim Kipi

Bazı uygulamalarda robota hareket öğretmek için robot iş alanına erişim

mümkün olmayabilir. Böyle durumlarda robotun, PC ye direkt bağlanabilen basit bir

Yönetme Kolu (USB Joystick) ile uzaktan kumanda edilmesi kullanışlı olur

düşüncesi ile bu kip oluşturulmuştur. Bu kip kartezyen kontrol kipinin

farklılaştırılmış halidir Yönetme kolu yardımıyla robot ucunu hareket ettirmektir. Bu

kullanışlı kip hem robot kullanımını eğlenceli kılmakta, hem de geliştirdiğimiz robot

denetleyicisinin ucuz, kullanımı kolay kişisel bilgisayara takılabilen sade araçlarla

kullanımına uygunluğunu göstermektedir.

18

3 GELİŞTİRİLEN ROBOT KONTOL
KÜTÜPHANESİ

Yukarıda belirtilen kiplerin her birinin oluşturulmasında kullanılan bloklar

birer Simulink® kütüphanesi biçiminde tasarlanmış olup temel olarak 3 bölümde

sunulabilirler. Bunlar (i) Donamına ulaşma blokları, (ii) Genel robot algoritmaları

(kinematik, ters kinematik, yörünge tayin blokları gibi), (iii) Gerçek zamanlı

işlemlerde kullanılmak üzere Puma robotları için optimize edilmiş ve sadece Puma

560 robotlarına has bloklar. Oluşturulan kütüphanenin kurulumu EK 1’de

anlatılmıştır.

3.1 Donanıma Ulaşma Blokları

Puma robotları, orijinal durumlarında VAL denetleyicileri ile çalışırlar. Ancak

sunumumuzun çeşitli bölümlerinde söz ettiğimiz üzere, piyasada bulunan birçok

robot kontrolörleri gibi, VAL denetleyicilerinin kullanımında da robota sadece

dışardan yörünge verilebilir. Kendi tasarladığımız denetleyicileri kullanabilmek için

VAL denetleyicinin ana kısmı (mikro bilgisayar ve denetleyici kartları) sökülerek

bütün giriş-çıkış sinyalleri ayırt edildi. Bu işlem daha önce bir kaç robotik grubu

tarafından[3-4-5 ve 12] da yapılmış olmasına karşın, her robotta bir kaç değişiklik

içerebilmektedir. Sonuç olarak robotu bilgisayara bağlıyıp denetleyebilmek için 6

analog giriş (her linkte bulunan potansiyometre değerlerini okuyabilmek için), 6

analog çıkış (her bir ekleme hesaplanan güç değerlerini verebilmek için), 6 encoder-

iz okuyucu (eklem pozisyonlarını okuyabilmek için) ve 4 adet dijital giriş/çıkış’a

sahip bir giriş/çıkış kartı gerekmektedir. Çalışmalarımızda “Servo To Go”

firmasının[13] ISA Model II kartı kullan ılınmıştır. Bu kart için MATLAB/Simulink

ortamı için sürücü kütüphanesi oluşturulmuş (bakınız Şekil 3.1), kartın Puma

robotunun orijinal VAL kontrolörlünde bulunan motor sürücü devrelerine

erişebilmesi için de bir geçiş kartı tasarlanmıştır. Bu kart EK3’de verilmiştir.

19

Şekil 3.1: Servo To Go Kütüphanesi

3.2 Servo To Go Kütüphanesi (stglib)

3.2.1 Sayısal Giriş Çıkışlar (Digital Input, Digital Output)

“Digital Input” Sayısal bir sinyali okumak, “Digital Output” dışarıya sayısal

bir işaret vermek için kullanılır. Çalışmamızda eklem motorlarında güç olup

olmadığını okumak için “Digital Input”, motorlara ilk güçlerini vermek için de

“Digital Output” kullanılmıştır.

Şekil 3.2 “Digital Input” bloğunun maskesi gösterilmiştir.

Blok parametreleri:

“Digital Input” ve ”Digital Output” da bulunan parametrelerin tanımı:

Base Address: Bu servo to go kartının bilgisayarda bulundu adresidir

Digital Input(Output) Port: bu alana kullanılacak port girilir. Bit number

parametresi ile de kaçıncı çıkışın kullanılacağı belirlenir Servo to go kartının da

A,B,C ve de olmak üzere 4 tane 8 er bitlik sayısal çıkış ve giriş portu vardır

20

Access By bit: Bu onay kutusu yardımıyla kartın sayısal portlarına teker teker

ulaşmamız sağlanır.

Access Hardware: Bu onay kutusu ile program direkt olarak servo to go

donanımına ulaşır ve işlemlerini yerine getirir aksi taktirde donanıma ulaşmaz.

Sample Time: Örnekleme zamanını belirtir, bu alan yazılan simulink

programının örnekleme zamanı ile aynı olmalıdır.

Şekil 3.2: “Digital Input” bloğunun maskesi

3.2.2 Analog Giriş (Analog Input, Multi Channel Analog
Input)

Bir analog kaynağın değerini okumak için kullanılır. Biz çalışmamızda

puma560 robotunun her ekleminde bulunan potansiyometre değerlerini okumak için

kullandık. “Analog Input” aynı anda bir kanalın değerini okuyabilirken “Multi

Channel Anolog Input” birden fazla kanaldaki değeri okuyabilir.

Şekil 3.3 “Analog Input” bloğunun maskesi gösterilmiştir.

21

Şekil 3.3: “Analog Input” bloğunun maskesi

“Analog Input” ve ”Multi Channel Analog Input” bloklarında bulunan

parametrelerin tanımı:

Board Model: Servo to go kartının iki modeli vardır. Biz “MODEL II” kartını

kullandığımızdan buraya 2 değerini girdik.

Input Channel: = Kartın üzerinde kaçıncı analog girişi kullandığımızı belirler.

0 - 7 arası bir değer alır.

ADC Range: Servo to Card ±5v ve ±10v olucak şekilde ayarlanabilinir

3.2.3 Analog Çıkış (Analog Output, Analog Output With Extra
Control)

Bilgisayardan dışarıya ±10 volt arası bir değer vermek için kullanılır.

Çalışmamızda robot eklemlerinde bulunan DC motorları sürmek için kullanıldı.

“Analog Output” başlangıç ve bitiş değerini 0 olarak kabul eder “Analog Output With

22

Extra Control” farkı olarak analog çıkışların başlangıç ve bitiş değerleri parametre

olarak ayarlanmasına izin verir.

Şekil 3.4 “Analog Output with Extra Control” bloğunun maskesi gösterilmiştir.

Şekil 3.4: “Analog Output with Extra Control” bloğunun maskesi

3.2.4 Encoder Girişleri (Encoder Input, Encoder Input With
Read Option)

Bağlı olduğu motorun encoder değerlerini elde etmek için kullanılır. “Encoder

Input” bloğu ilk başlangıç anında Servo to Go kartında bulunan encoder yazmaçlarını

sıfırlar. “Encoder Input With Read Option” ile bu yazmaçların ilk değerlerinin

korunması sağlanabilinir.

Şekil 3.5 “Encoder with Read Option” bloğunun maskesi gösterilmiştir.

23

Şekil 3.5: “Encoder with Read Option” bloğunun maskesi

Encoder offset: Encoder’ın ilk değeri buraya girilebilinir. Eğer “Initialize

Encoder” onay kutusu seçili ise buraya girilen değer encoder’ın ilk değeri olarak

alınır.

3.2.5 Encoder değerlerini ayarlamak (Set Encoder)

Servo to Go kartında bulunan encoder yazmaçlarına ulaşmamızı ve istenilen

değerleri yazmamızı sağlar.

3.3 Genel Robot Kütüphanesi

Bu kütüphanede genel robotik hesaplamalarında kullanılabilecek homojen

transformasyon, döndürme ve ötelemelerle ilgili hesaplarla birlikte yine

genelleştirilmiş bir robot objesi (çalışmamızda [14] de kullanılan robot obje tipi

kullanılmıştır) için kullanılabilecek ileri kinematik, Jacobyan ve bazı dönüşüm

blokları yer almaktadır. [14]’den farklı olarak uygulamamız tamamen C-Mex S-

fonksiyonları kullanılarak yapılmıştır. Bu simulink ortamında gerçek zamanlı

24

çalışma yapabilmemizi sağlamaktadır. Şekil 3.6’da genel robot kütüphanesi

verilmiştir.

Şekil 3.6: Genel Robot Kütüphanesi

3.3.1 İleri Kinematik (Forward Kinematic)

Verilen manipülatör modeli için girilen eklem değişken değerleri için robot

uçunun konumunu ve yönelimini hesaplar. Eklem değişkenleri, eklemin döner olması

durumunda uzuvlar arasındaki açı, eklemin kayar olması durumunda uzuv uzanma

miktarıdır.

3.3.2 Jacobian Hesaplanması (Jakobyen n, Jakobyen 0)

“Jakobyen n” verilen manipülatör modelinin giriş olarak girilen eklem

değişkenleri değerleri için sonlandırıcı koordinat çerçevesinde “Jakobyen O” ise

temel koordinat çerçevesinde Jakobyeni hesaplar.

Jakobyen işlemi eklem uzayı ile koordinat uzayı arasında denklem 8’deki gibi

tanımlanan matematiksel bir ifadedir

25

 ()qqjX nn &&& = (8)

Jakobyen yardımı ile kartezyen koordinatlarda hesaplanan eklem ucu gücü

 () Fqj nn&=τ (9)

eklem güçlerine dönüştürülebilinir.

3.3.3 XYZ2T, T2XYZ Blokları

XYZ2T bloğu giriş olarak aldığı kartezyen koordinatları çıkış olarak homojen

dönüşüm matrisi biçiminde verir. T2XYZ bloğu ise homojen dönüşümden Kartezyen

koordinatlara geçer.

3.3.4 RPY2T, T2RPY Blokları

RPY2T bloğu roll / pitch / yaw açılarından homojen dönüşüm matrisine geçer.

Roll / Pitch / Yaw açıları sırasıyla z ekseni etrafında Ф açısı kadar, y ekseni etrafında

θ açısı kadar ve x ekseni etrafında Ψ açısı kadar dönmelere karşılık gelmektedir.

Burada dönme matrisi şu şekilde elde edilir

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
+−+
++−

=
ψθψθθ

ψθφψφψθφψφθφ
ψθφψφψθφψφθφ

ccscs
cssscssscccs

cscssssccscc
R

(10)

Çıkış da

26

441000
0
0
0

x

R

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

(11)

homojen matris formundadır.

T2RPY bloğu ise homojen dönüşümden roll/pitch/yaw açılarına geçer.

Homojen dönüşüm matrisi tekil ise

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

=

]2,2[
]1,3[tan

]1,1[
]1,3[tan

0

T
Tayaw

T
Tapitch

roll

(12)

tekil değilse

()
()

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
=

=
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

]2,1[*]2,2[*
]3,2[*]3,1[*tan

]1,2[*]1,1[*
]1,3[tan

1cos
sin

]1,1[
]1,2[tan

TspTcp
TcpTspayaw

TspTcp
Tapitch

rollcp
rollsp

T
Taroll

(13)

olarak hesaplanır. Burada T giriş matrisidir (homojen dönüşüm matrisi).

3.3.5 Euler2T, T2Euler Blokları

Euler2T, Euler açılarından homojen dönüşüme geçer. Euler açıları sırasıyla z

ekseni etrafında Ф açısı kadar, y ekseni etrafında θ açısı kadar, tekrar z ekseni

27

etrafında Ψ açısı kadar dönmelere karşılık gelmektedir. cos = c , sin = s olmak üzere

dönme matrisi şu şekilde elde edilir :

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
+−+
−−−

=

=
=

θψθψθ
θφψφψθφψφψθφ
θφψφψθφψφψθφ

csscs
ssccscsscccs
sccssccssccc

R

s
c

sin;
cos; (14)

Çıkış da

441000
0
0
0

x

R

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

(15)

homojen matris formundadır.

T2EULER bloğu ise homojen dönüşümden Euler açılarına

()
()

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−
+

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=

=
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

]2,2[*]2,1[*
]1,2[*]1,1[*tan

]3,3[
]3,2[*]3,1[*tan

tan
tan

]3,1[
]3,2[tan

TcpTsp
TcpTspa

T
TspTcpa

aCp
asp

T
Ta

ψ

θ

φ
φ

φ

(16)

formülü ile geçer.

28

3.4 Puma Robotu Özel Kütüphanesi

Her ne kadar genel robot kütüphanemizde DH (Denavit-Hartenberg)

parametreleri belirlenmiş her hangi bir robot için ileri kinematik, jakobyeni ve çeşitli

dönüşüm hesapları yapılabilse de gerçek zamanlı görevlerde, sistemimizin (Puma)

daha verimli çalışmasını sağlama amacıyla, ilgili kodları C programlama dili ile

yeniden hazırladık. Ortaya çıkan kütüphane hem gerçek zamanlı benzetim hem de

uygulamalarda robot üzerinde başarı ile denenmiştir. Şekil 3.7 Puma kütüphanemizin

ana hatlarını sunmaktadır.

Şekil 3.7:Genel Puma Kütüphanesi

3.4.1 Puma Kipleri (Puma Modes)

“Puma Modes” Bloğu Bölüm 2 de anlatılan kipleri içermektedir. Şekil 3.8’de

içyapısı gösterilmiştir.

29

Şekil 3.8: “Puma Modes” Bloğu

3.4.2 Yazılan S-Fonksiyonu Blokları (S function)

“S-function” bloğu puma robotunun kiplerinde kullanılan “C-Mex”

fonksiyonlarını içermektedir. Bu fonksiyonlar şu şekilde sıralanabilinir.

Encoder to Radian: Okunan encoder değerlerini radyana çeviririr.

Trajectory Generator: Robotun o an bulunduğu pozisyonla belirtilen pozisyon

arsında bir yörünge oluşturur.

Blender: Robotun bulunduğu pozisyonla kullanıcı tarafından verilen

pozisyonlar(en fazla 7 pozisyon) arasında bir yörünge oluşturur.

Forward Kinematic: Puma robotunun bulunduğu konumdaki ileri kinematik

denklemini hesaplar.

Jacobian Transpose: Puma robotunun bulunduğu noktada jacobianini bulur ve

sonucu hata sinyali ile çarparak (X-Xd) motorlara uygulanması gereken gücü

hesaplar.

30

Cartesian Trajectory Generator: Robotun bulunduğu kartezyen pozisyonla

gitmesinin istendiği kartezyen koordinatlar arasında bir yörünge belirler.

RPY Trajectory Generator: Robotun bulunduğu oryantasyon ile gitmesinin

istendiğimiz oryantasyon arasına bir yörünge belirler.

Safety: Robot ekleminin ulaşabileceği bölgenin dışına çıkmasını engeller.

Pd Control: Oran + türev şeklinde basit bir kontrolcüdür.

Gravity Load: Robotun bulunduğu konumda eklemlere uygulanan yer çekimi

kuvvetini hesaplar

Puma Dynamic: Manipülatöre uygulanacak tork, etki eden yer çekimi kuvveti

ve başlangıç konumundan robotun varacağı konumu hesaplar.

Inverse Kinematic: Robotun ters kinematiğini hesaplar. Bizim kullandığımız

Puma robotunda her kartezyen pozisyona karşılık eklem uzayında 6 ayrı pozisyon

bulunmaktadır. 6 olası sonuç içinden robotun o an için bulunduğu konuma en yakın

olanını hesaplar.

3.4.3 Giriş Çıkış Blokları (I/O BLOCKS)

Bu blok puma560 robotunun donanımına ulaşmamızı sağlayan fonksiyonları

içermektedir.

Read Joint Position: Robotun bulunduğu pozisyonu bulur çıkış olarak hem

encoder değerlerini hem de karşılık gelen radyan değerlerini verir.

Read Joint Position Sim Mode: “Read Joint Position” dan farklı olarak robot

donanımına ulaşmadan robotun dinamiğinden gelen pozisyonu çıkışa verebilmemizi

sağlamasıdır. Bu özellik simülasyon ortamında çalışmamızı sağlar.

Finangle: Robotun gitmesini istediğimiz pozisyonları girmemizi sağlar.

31

Blender Position: 7 pozisyona kadar robotun gitmesini istediğimiz noktaları

girmemizi sağlar.

Joint Torque: robotun motorlarına girilen torka karşılık gelen gücü

uygulamamızı sağlar. Motorlara uygulanması gereken güçten daha yüksek bir güç

uygulandığı takdirde benzetim durdurulur.

Set Encoder ve Encoder / Manual Set: Encoder değerlerine istenilen değeri

yazmamızı sağlarlar. Fakat Encoder set istenilen değerin yazılıp yazılmadığını içinde

kontrol eder ve istenilen değer yazılana kadar işlemi sürdürür.

Enable Arm Power: Eklem motorlarını aktif hale getirir

Diasable Arm Power: Eklem motorlarının gücünü geçer ve pasif hale getirir

3.4.4 Sıklıkla Kullanılan Bloklar (USEFUL STUFF)

Burada sıklıkla kullanılan bazı kullanışlı fonksiyonlar verilmektedir.

Encoder Reseting: Encoder değerlerine istenilen değeri yazmamızı sağlarlar.

İstenilen değer encoder yazıldıktan sonra “enc set done” çıkışı aktif (1) olur

Overfilter Unit: Giriş olarak verilen yörünge profilinin arka arkaya 2 defa

türevi alarak, hız ve ivme değerlerini elde eder.

Gravity Load: Robotun bulunduğu konumda eklemlere uygulanan yer çekimi

kuvvetini hesaplar.

Safety: Robot ekleminin ulaşabileceği bölgenin dışına çıkmasını engeller.

32

4 OLUŞTURULAN DEMO PROGRAMLAR

Bu bölümde çalışmamızın uygulanabilirliğini gösterebilmek amacıyla

hazırladığımız kütüphaneler yardımı ile oluşturulan 2 demo programı tanıtılınacaktır.

Bunlardan ilkinde kullanıcı öğrenme kipi yardımıyla robota varmasını istediği

pozisyonları öğretebilmekte, bu pozisyonları bilgisayarda saklayabilmekte ve daha

sonra robotun bu konumlara hareketini sağlayabilmektedir. İkinci demo ise robot

park pozisyonuna hareket ettikten sonra kullanıcının robot ucunu bir USB joystick

yardımıyla hareket ettirmesini sağlamaktadır.

4.1 Öğrenme ve Eklem Uzayı Denetleme Demosu

Demoyu çalıştırmak için MATLAB komut satırında (Command Window)

>>DemoLearnPos

Yazıp enter’a basın. Şekil 4.1’de görülen bu demo için oluşturulmuş grafik ara yüzü

ve şekil 4.2’de kullanılan simulink programı gösterilmektedir.

Şekil 4.1: DemoLearnPos programının GUI si

33

Simulink programında görüldüğü gibi daha önce anlatılan öğrenme kipi ve

eklem uzayı denetleme kipi bloklarından oluşmaktadır. Kullanımı kolaylaştırmak ve

amacıyla basit bir GUI ekranı tasarlanmıştır. Bu ekranda “calibration” tuşu motor

eklemlerine güç vermektedir. Ancak bundan sonra diğer düğmeler aktif hale

gelmektedir. “Learn Position” tuşuna her basılışta robot bulunduğu konumu

öğrenmekte daha sonra bu konumlar Save Position tuşu ile istenilen bir isimde kayıt

edilebilinmektedir. “Move position” tuşu yardımıyla da robot bu noktalar arasında

hareket ettirilebilinmektedir.

Şekil 4.2: DemoLearnPos programının Simulink Diyagramı

4.2 Joystick Mode demosu

Demoyu çalıştırmak için MATLAB command Window’da

>>DemoJoystick

Yazın ve entera basın.

34

Motor eklemlerine güç uygulanmasıyla robot park pozisyonuna yönelir. Park

pozisyonuna geldikten sonra kullanıcı USB joyistik yardımı ile robotun uçunu

hareket ettirebilir.

35

5 SONUÇLAR

Çalışmamızda açık sistem ve kod standartlarına uyularak robotik

manipülatörler için geliştirilmekte olan, Matlab®/Simulink® tabanlı gerçek zamanlı

benzetim ve denetim sistemi tanıtılmış ve Puma 560 robotu üzerinde başarı ile

uygulanmıştır. Simulink Kütüphaneleri biçiminde ağırlıklı olarak C–kodu

kullanılarak yazılan benzetim-denetim platformumuz, DH parametreleri tanımlanmış

her robot manipülatörünün benzetim ve Puma tipi robotların gerçek zamanlı

denetiminde kullanılabilir. Yapılan çalışmanın kodunun açık olması ve kullanımının

kolaylığı göz önüne alınarak, az sayılabilecek bir ek çalışma ile başka manipülatör

sistemlere de entegre edebilir ve PC ile bütünleştirilen arabirimleri robot sistemine

eklenebilir. Çalışmamız ilerli bölümlerinde, robot ucuna takılmış kuvvet/güç sensoru

ve çoklu kamera sistemi entegrasyonları yapılıp ileri kontrol algoritma uygulamaları

geliştirilecektir.

36

Ek 1 Oluşturulan Robot Kontrol Kütüphanesinin
Kurulumu

• Oluşturulmuş kütüphane fonksiyonları(GYTEROBOTLIB) Matlabın

kurulu olduğu ana dizini altındaki toolbox klasörünün altına kopyalanır.

• Matlab programında FILE/SET PATH seçilir

Şekil EK1.1: FILE/SET PATH seçilir

• Açılan Pencerede “Add With Subfolders…” komutu seçilir

37

Şekil EK1.2: Add With Subfolders seçilir

• Açılan pencereden MATLAB’ın kurulu olduğu ana klasörün alında

toolbox/GYTEROBOTLIB seçilir ve “Tamam” tıklanır.

Şekil EK1.3: toolbox/GYTEROBOTLIB seçilir

• Açık olan pencerede sırasıyla “Save” ve “Close” tuşlarına basılır.

• Gerçekleştirilecek programların ve var olan demoların gerçek

zamanlı olarak çalıştırılabilinmesi için “Real-Time Windows Target

38

Kernel” inde kurulması gerekmektedir. Bu konu hakkında detaylı

bilgi Matlabın yardımı dosyalarında “Content/Real-Time Window

Target/Installation and Configuration/Real-Time Windows Target

Kernel” başlığı altında bulunabilir.

• Ayrıca kurulacak bilgisayarda GYTELIB kütüphanesinin de kurulu

olması gerekmektedir.

39

Ek 2 Servo to Go ISA Model II kartı

IBM PC'lerin ISA portuna takılan özellikle servo motorların kontrolünde

kullanılan çok amaçlı bir giriş/çıkış kartıdır. Kartın fonksiyonları

• Encoder girişleri (8 tane)

Basit (single) ve farksal (differential) girişli olacak şekilde ayarlanabilir.

Girişler A,B ve I olmak üzere encoder sinyallerini kabul etmekte, ve 24 bit

sayıcı içermektedir.

• Analog çıkışlar (8 tane)

13 bit hassasiyetlidir. ±10v arası analog çıkış üretebilir

• Sayısal Giriş ve Çıkışlar(8x4 32 bit)

Ayrı ayrı giriş ve çıkış olarak tanımlanabilir ve opto-22 uyumludur.

• Analog giriş(8 tane)

13 bit hassasiyettedir. ±10v ve ±5v olarak ayarlanabilinir

• Internal timers

25 mikro saniye artımlarla 10 dakikaya kadar ayarlanabilinir

• Pil yedekleme girişi

Güç kesintilerine karsın encoder değerlerini saklamasını sağlar.

• Watchdog Timer

Ayrıntılı bilgi için referans [12] ye bakın.

40

Ek 3 Tasarlana Geçiş Katının Şeması ve PCB
Diyagramı

Şekil EK3.1 Geçiş Kartı şeması ADC katı

41

Şekil EK3.2 Geçiş Kartı şeması Konektör bağlantıları 1

42

Şekil EK3.3 Geçiş Kartı şeması Konektör bağlantıları 2

43

Şekil EK3.3 Geçiş Kartı Baskı Devre Resmi

44

Ek 4 Puma 560 Robotunun Özellikleri

Şekil Ek4.1 Puma560 robotunun resmi

Tablo Ek4.1 Puma Robotunun Genel Özellikleri

Genel

Eksen

Sürücü

Kontrol

Konum Kontrolü

Koordinatlar

Eklem Tipi

6

DC motor

Sayısal

Encoder

Kartezyen

Döner

45

Çalışma Alanı

Bilek ulaşabilirliği

1.Eklem sınırı

2.Eklem sınırı

3.Eklem sınırı

4.Eklem sınırı

5.Eklem sınırı

6.Eklem sınırı

.864mm(1. ve 5. eklem arasında)

320o

250o

270o

300o

200o

532o

Yük Kapasitesi

Yük kapasitesi

İzin verilen Bilek Yükü

4kg

2.5 kg eklem 5’den 127mm ve eklem
6’dan 37.6 mm uzakta

Performans Hassasiyet

Maksimum Hızı

±0.1mm

1.0 mm/s

Çevre

Çalışma ortamı sıcaklığı

Çalışma ortam nemi

Güç kaynağı

50-400

%50 400 %90 200

110V AC

Ağırlık Kol 63kg

46

Tablo EK4.2 Dişli Oranları

Eklem Dişli Oranı

G1

G2

G3

G4

G5

G6

G45

G46

G56

62.62

107.36

53.69

76.01

71.91

76.63

51 G−

61 G−
7213−

Eklem ve motor açıları arsındaki ilişki denklem EK4.1 de verilmiştir

mJ

G
G
G

G
GGG

GG
G
G

G

G

G

θθ

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

=

6
5

56

4

455646

54

45

4

3

2

1

000

01000

001000

000100

000010

000001

(EK4.1)

47

Tablo Ek4.3 Puma 560 robotunun Denavit-Hartenberg Parameteleri

Eklem α iA iD

1 -90 0 0

2 0 431.8 149.09

3 90 -20.32 0

4 -90 0 433.07

5 90 0 0

6 0 0 56.25

48

KAYNAKLAR

[1] J. Lloyd, M. Parker and R. McClain, “Extending the RCCL Programming

Environment to Multiple Robots and Processors”, Proc. IEEE Int. Conf. Robotics &

Automation (1988) s: 465 – 469.

[2] Unimation Inc., “500 Series Equipment and Programming Manual”,

Danbury, Connecticut, 1983.

[2] J. Lloyd, “Implementation of a Robot Control Development Environment”,

Masters Thesis, McGill University, Aralık 1985

[3] P. Corke, “The ARCL Kinematic Interface”. Technical report, CSIRO

Division of Manufacturing Technology, Mart 1990.

[4] N. Costescu, M. Loffler, E. Zergeroglu, and D. Dawson, “QRobot-A

Multitasking PC Based Robot Control System”, Microcomputer Applications Journal

Special Issue on Robotics, Vol 18 No. 1, ss: 13-22

[5] J. N. Pires, “Interfacing Industrial R&A Equipment Using MATLAB”,

IEEE Robotics and Automation Magazine, Vol.7, No. 3, s: 32-41, 2000.

[6] W. E. Dixon, D. Moses, I. D. Walker, and D. M. Dawson, “A Simulink-

Based Robotic Toolkit for Simulation and Control of the PUMA 560 Robot

Manipulator”, Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), Maui, HI, Kasım 2001, s:. 2202-2207

[7] Z. Yao, N. P. Costescu, S. P. Nagarkatti, and D. M. Dawson, “Real- Time

Linux Target: A MATLAB-Based Graphical Control Environment”, Proc. of the

IEEE Conference on Control Applications, Anchorage, ABD, Eylül 2000, s:173-178.

[8] The MathWorks, 3 Apple Hill Drive, Natick, MA, ABD 01760-2098,

http://www.mathworks.com.

49

[9] B. Armstrong, O. Khatib, and J. Burdick, “The explicit dynamic model and

inertial parameters of the Puma 560 arm,” in Proc. IEEE Int. Conf. Robotics and

Automation,vol. 1, (Washington, USA), s: 510–18, 1986

[10] A. Berkay, M. Seker and E. Zergeroglu, "First Steps Towards a

Windows-Based Control Design and Implementation Platform for Intelligent

Systems” The International Conference on Intelligent Knowledge Systems (IKS-

2004) Robotics and Automation conference under Automation/Real-time Control

topics, Mayıs 2004, Truva, Türkiye.

[11]Richard Voyles' PUMA type Manipulators Page

http://www.cs.cmu.edu/~deadslug/trc4um.pdf, Alınma tarihi: Mayıs 2006.

[12] Servo To Go, Inc., 8117 Groton Lane Indianapolis, IN 46260-2821, ABD.,

www.servotogo.com , Alınma Tarihi Mayıs 2006.

[13] P.I. Corke, “A Robotics Toolbox for MATLAB”, Robotics & Automation

Magazine, IEEE Volume 3, Issue 1, Mart 1996 s:24 -32.

50

ÖZGEÇMİŞ

1982 yılında Kocaeli İzmit’te doğdu ilk orta ve liseyi İzmit’te bitirdi. 2000

yılında Sakarya Üniversitesi Mühendislik Fakültesi Elektrik ve Elektronik Müh.

Bölümünü kazandı 2001 yılında Kocaeli Üniversitesi Elektronik ve Haberleşme

Müh. Bölümüne yatay geçiş yaptı. 2004 yılında mezun oldu ve aynı yıl Gebze

Yüksek Teknoloji Enstitüsünde Bilgisayar Bölümünde yüksek lisans öğrenimine

başladı. 2004 yılından bu yana Gebze Yüksek Teknoloji Enstitüsü Bilgisayar

Mühendisliği Bölümünde yüksek lisans çalışması yapmakta 2005 yılında Gebze

Yüksek Teknoloji Enstitüsünde Bilgisayar Bölümünde araştırma görevlisi olarak

çalışmaya başladı. Çalışma alanları: Nonlineer kontrol sistemleri; Gerçek zamanlı

işletim sistemleri ve bu sistemler üzerinde yazılım geliştirme; Endüstriyel sistemlerin

kontrolü ve performanslarının geliştirilmesidir.

