T.C.
FIRAT UNIVERSITESI
FEN BIiLIMLERI ENSTITUSU

KAOTIiK HARITALI PARCACIK SURU
OPTIMIZASYONU ALGORITMALARI GELISTIRME

Bilal ALATAS

Tez Y Oneticisi:
Prof. Dr. Erhan AKIN

DOKTORA TEZi
ELEKTRIK-ELEKTRONIK MUHENDISLiGi ANABILiM DALI

ELAZIG, 2007



T.C.
FIRAT UNIVERSITESI
FEN BILIMLERI ENSTITUSU

KAOTIK HARITALI PARCACIK SURU
OPTIMIZASYONU ALGORITMALARI GELISTIRME

Bilal ALATAS

DOKTORA TEZI

ELEKTRIK-ELEKTRONIK MUHENDISLIGI ANABILIM DALI

Bu tez, 26/ 10 / 2007 tarihinde asagida belirtilen jiiri tarafindan oybirligi /Qygekdusu ile basarih
/ basamstz olarak degerlendirilmistir.

Danisman: Prof Dr. Erhan AKIN

. . e \
Uye: Prof. Dr. Yakup DEMIR 21—)*'\“—4'—*'“‘
Uye: Prof. Dr. Z. Hakan AKPOLAT /(

Uye: Dog. Dr. Seref SAGIROGLU ~— =Fv =~
Uye: Yrd. Dog. Dr. Ali KARCI /W
Bu tezin kabulii, Fen Bilimleri Enstitiisii Yonetim Kurulu'nun ....... foreion e tarih ve

.................................. sayili karariyla onaylanmistir.



TESEKKUR

Bu ¢alismanin her asamasinda biiylik destegini gordiigiim doktora tez danismanim Prof.
Dr. Erhan AKIN’ a sonsuz tesekkiirlerimi sunarim.

Caligmalarim siiresince oOzellikle verdigi doktora bursuyla maddi destek saglayan
Tiirkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) Bilim Insanm1 Destekleme Daire
Baskanligina (BIDEB); verdigi doktora projesi destegiyle tezin hazirlanmasindaki maddi
katkilarindan dolay1 Firat Universitesi Bilimsel Arastirma Projeleri (FUBAP) birimine; evrimsel
hesaplama konusundaki yardimlarindan dolayr Yrd. Dog. Dr. Ali KARCI ya; ozellikle kaos
konusundaki fikirlerinden dolayr Yrd. Dog. Dr. A. Bedri OZER’ e ve beni her durumda

destekledigi icin esime ayrica tesekkiir ederim.



ICINDEKILER

TESEKKUR .....ooovuiiiiieieeieeeceeieee ettt ae st ae st a et sae st ss st s s s s s s snansas I
ICINDEKILER ........oouiiuiiieieeiccee ettt I
SEKILLER LISTESI.....ouiuiiiiiieiieeie ettt VI
TABLOLAR LISTEST ..ottt VI
SIMGELER LISTESI.....coutiiiiieiieeieiieiesiesiesie ittt siesiaes X
KISALTMALAR LISTEST .....ctvuiiiiiiieiiietiesieeieiieesiesiesise st X1
L0 72 ) TSRS X1
ABSTRACT ..ttt ettt ettt et et e st e s et e e st et e eaeeneeaseeneensesseeneeseentenseeneennas XV
1. GIRiS 1
1.1. Cok Noktali (Popiilasyon Tabanli) Algoritmalar.............c..cevevierienieiineeie e 5
1.1.1. Evrimsel HeSaplama ..........cccveiiiiiiiiiiiiiieiecicctecte ettt et ssveseveeve e va e 5
1.1.2. Karimca Koloni AIZOritmalar..........cccccverierieiieiiieiieieesieesieesieeeenesevesveeveesseessnesenas 6

1.1.3. Ar1 Koloni AIZOTItMAlar .......cccveevvieviieriieiieiiesreere e ereesteesteestneseressveesveesveesssessnesenas 7

1.1.4. Yapay Bagisiklik SiStemIEri .......ccccveviiiriierieiieeie ettt 7
1.1.5. Pargacik Strti OptimiZaSyOnU.........ccceereereerieesueenieesieesieeseeseeeseesseesseesseesseesssesssennns 7
1.1.6. Elektromanyetizma AlGOTIMAST .......ccereeieriiriinieniieienieritete ettt 8

1.2, Tezin AmMAag Ve KaAPSAMI ....ccuiiiiiiiieiieiieieeriee sttt ettt e eeenseeteesaeesaeesanesnseenns 8
1.3. TezZin OTZANIZASYONU .....eeteruieieriieiententteteeteetesteettetesteestenbesbeentesbeessestesstenaesbeeneenbesaeensenne 9

2. PARCACIK SURU OPTIMIiZASYONU 13
B T € 11 4 T TSSO UTURROPRRTRRRT 13
2.2. Pargacik SUrth OptimiZaASYOIU ......ceveruerieriirieeienieeitenie sttt eite et ete st eate st sae et sbeeeenees 14
2.2.1. PSO ALGOTTHMAST ...ttt sttt ettt sttt sttt st b e st e e s 15
2.2.1.1. Orijinal PSO Algoritmasinda Bir Parcacigin Hareketinin Sayisal Ornegi....... 22

2.2.1.2. PSO ve Evrimsel Hesaplama.............c.oooiiiiiiiiiiiiiiiiiiiieiece e 24

2.2.1.3. PSO’nun Denklem Koklerinin Bulunmasinda Kullanilmasi....................... 25

2.2.2. PSO’ya MOdifIKASYONIAT .......cccuiiieiiieiiirieieeieeriee e eve e seeesibesereseveesseesnes 27
2221 0K PSO. ..o 27

2.2.2.2. Yakinsama Orani Gelistirmeleri..............oooiiiii i, 28

Atalet AGITIIGL. ..ot 28

Bulanik Atalet AGITHGI. ....ovieit e 31

Sinirlama FaKtorii. .. .....oein i 32

NI o311 s P S 33

II



Zamanla Degisen Hizlanma Katsayilar1 (ZDHK-TVAC)............c.oooeiiiiin. 34

DS 5515101 T PO 35

Yakinsama Garantili PSO (YGPSO-GCPSO)......cccoiiiiiiiiiiiiiiiiiiiiiee 36

2.2.2.3. Cesitlilik Arttirma Gelistirmeleri..............oooviiiiiiiiiiiii e 38
Uzaysal KomsuluKIar. ... 38

Komguluk Topolojileri.......c.ovuiiuieiiii e 40

SOSYAL TOSPIL. .o ettt ettt et et e et et 41

Alt Popllasyonlar. ........oooeiiiitii i e 43

Coklu Baslatmali PSO (CBPSO-MPSO)........cooiviiiiiiiiiiicceieeeea 44

A L0 1o o U 45

Cekici ve Itici PSO (CIPSO-ARPSO).......ccouiiiiiiiiieiiee e 45

Dagitan PSO (DPSO)....uiiiii i 45

Diferansiyel Gelisimli PSO (DGPSO-DEPSO)........ccoiiiiiiiiiiiiiiiiiiie, 46

Yasam Cevrimi Modeli.........oooiiiiii i, 46
Oz-6rgiitlenmis Tehlikelilik (SOC PSO).......vvviiiiiiiiiiiiei e, 46
Uygunluk-Uzaklik Oran Tabanli PSO (U-UOTPSO-“FDR-PSO”)............... 47

2.2.2.4. Paralel PSO... .o, 48

2.3. PSO Parametre KOntrolii.........cccoeeieririiniiniiienieiieie sttt 49
2.4, SOMUGIAL ...oeiiiiiiiiie ettt e et e e e ta e e s beeetae e tbeeebseeeabeesasesesseeenseeennsens 50
3. KAOTIK HARITALI PARCACIK SURU OPTIMiZASYON YONTEMLERI............ 51
B0 GHIIS ettt ettt ettt et e et e et e e tbe e e be e e tbeeabee e abeeebeeetbeenbeeearaeenareaans 51
3.2, KaotiK HaTItalar......c..ooiiiiiiiiiiciii ettt et ettt e e sre e eaneeeaveeens 52
3.2.1. LOjistik HATTta ...ocueeiiiiiiiieieceieetee ettt s 53
3.2.2. Cadir HAIIEA ...vveiiiieeiie ettt ettt et et et e e b e e et e e areeearee e 53
3.2.3. SinliZoidal YINEIEYICT....eerueruirriiitirieiiniieierieetete sttt et 54
3.2.4. GaUSS HATTAST ...c..ienieiieeieie ettt sttt et sne e eees 55
3.2.5. CembEr HArTta........oooiuiiieieeeee ettt et e e e aae e e ens 55
3.2.6. Arnold’ i Kedi Haritast ........cooeeieieriiiieeeeee e 56
3.2.7. SiN@ HATTEAST...c.eieieieiieeeie ettt ettt ettt ettt nee b e eneeneeeneeneeeees 57
3.2.8. Zaslavskil HAaritast ........cccoeeuieiirieieee et 57
3.3. Kaotik Harital1 Pargacik Siirii Optimizasyon (KHPSO) Yontemleri........ccccveeveeeveennennn. 58
3.4. Kalite Testi FONKSIYONIATL......c.ccoiiiiiiieiiiiie ettt e st sene e eee 61
3.4.1. Griewangk FONKSIYONU.......c..cciveiieiiieiieeiieieeieeieeseesresresreesseeraesreesreesenessnessneenns 62
3.4.2. Rastrigin FONKSIYONU.........cccveviiiiiiiiiie ettt re e sreeseaeseve e e 63
3.4.3. Rosenbrock FONKSIYONU .......cccieriiiiiiiiiiiieieeieeee ettt 64

I



3.5. DeneySel SONUGIAT........cccuiiiieiiiiieiieree ettt st e re et e e ssaesteesraesnnesnneenne 64

3.5.1. Griewangk Fonksiyonu i¢in SONUGIATr..........c.cccverieriiriiniieieceeeeree e 65
3.5.2. Rastrigin Fonksiyonu i¢in SONUGIAT...........cccveriierieriiiieeieeeeieeeeee e 68
3.5.3. Rosenbrock Fonksiyonu igin SONUGIAT ..........cccvevvieriiriiniieiieicceeee e 70
360, SOMUGIAL ...t ettt et e e e ta e e e te e e ateesveeeesseesareeeseeesareaans 71
. KABA PSO 73
G 1. GHIIS reeetiee ettt ettt e e et e e te e e e tbeeeteeeetaeeeteeetaeeeabeeebeeeaabeeeatee e taeeeabeeereeearseeereeeareas 73
4.2. Kaba Pargacik Siirii Optimizasyon Algoritmasi (KPSOA).......ccccocvevviiiiiievieciecieceeen, 73
4.3. Nicel Birliktelik Kural Madenciligi ve 1lgili Calismalar .............ccococoevvvervieriieeenen. 78
4 4. Nicel Birliktelik Kural Kesfinde KPSOA ..........oooiiiiie e 82
4.4.1. Parcacik TeMSIIL ...cocveeieieeeiieceee ettt ettt e et e e e et e eenneas 82
4.4.2. Uygunluk FONKSIYONU .....ccveiiiiiiiiiiiiiieietectece ettt s 82
T B\, L1 ;1) 7o o USRS 84
4.4.4. Sinir Araliklarnin ATIEIMAST......cveiviiieieieee e 84
4.4.5. Parametre KONtrolil.........ccceeiiiiiiieieiieeece e 84
4.5. DEneYSEl SONUGIAT.......ccviiiiiiiieiiieiie ettt rre e e b e et e e steestaestaessbeesbeesbeesseessnenenas 84
4.6, SONUGLAT .....viiiiiieeiee ettt e et e e tae e et e e etaeeeabeeeateeesseeeabeeesseeanseeenseeennsens 92
. KABA KAOTIK PSO 94
5.1 GHIIS ettt ettt et ettt e ettt et e bt e e tb e e e te e e tbeeebee e abeeebaeeataeeanreeearaeenareaans 94
5.2. Kaba Kaotik PSO (KKPSO) ....ccveoiiiiieieiieeeiesiteteteetete sttt sttt ses e sseesessaesnensens 94
5.3. KKPSO Algoritmalarinin Veri Madenciliginde Uygulamalari..........c..coceveveencnennenenn 95
R 03 4 L1 o - USRS 98
. COK AMACLI PARCACIK SURU OPTIMIiZASYONU 99
TN B 51 TSP 99
6.2. Cok AMAglt OPtiMIZASYOI ....c..eruiiiiriieieniiniteieittete sttt ettt et st s 100
6.3. Siiflandirma Kural Madenciligi ve Ilgili Calismalar.................ococovverevevevererceeennnns 102
6.4. PSO Tabanli Cok Amacli Kural Madenciligi i¢in bir Model............c.cccceevveviveniennnenen. 105
6.4.1. Parcacik TemSIli .......coeeeviiiiii ettt e et eaee e 105
6.4.2. AMAC TaASATIMI....cciiiiiiiiiiiiee ettt e ettt e et e e ee b e e e e s taeeeesasaeeeesasreeeeansreeeas 106
6.4.3. Cok AMAaclt YaKIaSIm........ooouiiiiuiiieiiieiie ettt eaee s 106
6.4.4. Parametre KONtrolll.........cccoiiiuieiiiieieeeeeee e 108
6.5. DeneySel SONUGIAT........cccviiiiiiiieiie ettt steeseresebessbeesbeesseessnesenas 108
6.6, SONMUGIAL .....o.eviiiiiiieiee ettt et ea e e et e e et e e e aeeeeteeeeaneeeteeeeaneas 114

v



7. COK AMACLI KABA KAOTIK PARCACIK SURU OPTIMIZASYONU. ................ 116

8 € 55 1O OSSOSO 116
7.2. Cok Amacli Kaba Kaotik PSO (CAKKPSO) Algoritmalart.........cccccceeevveveenveeneenenennen. 117
T2 1 AMACIAT......viiiiiiiiiccee e ettt et e et e e eraeeeareeeas 117
7.2.2. Filtreleme ve Sinir Araliklarinin Aritilmast Islemleri ..........ocoovovevevevveeieeeeeee. 119
7.2.3. Parametre KONtrolll........coceviiiiiiiiiiieiciieeeeeeee e 119

7.3. Deneysel SONUGIAT..........coeiiiiierieeie ettt st b e s snaesnees 120
T} 113163 I TSRS 125
8. SONUCLAR.....cuiiuiennnensessissississsssssssssssssssssssssssssssssssssssssssssssssssostsssssssssssssssssossssssssssssssssss 126
8.1 ONEIILET. ... et 127
KAYNAKLAR 129
OZGECMIS 141



SEKILLER LISTESI

Sekil 1.1. Optimizasyon i¢in matematiksel modeller..............ocoveiiiiiiiiiiiiiiiiii e, 2
Sekil 1.2, Sezgisel YONTEMICT. . ...\ vttt ittt ittt ettt et ettt et e e e areeeanenas 5
Sekil 2.1. Pargaci@in hareKeti.........o.oiiiiii e 18
Sekil 2.2. Orijinal PSO algoritmasinin temel adimlart..................o.oooii, 19
Sekil 2.3. PSO’nun akis diyagrami..........o.eiuiiriiriitiitiiti et eeeeeieereae e ane e 21
Sekil 2.4. PSO’nun genisletilmis akis diyagrami............couivrivriiiiiriitiniiieiieiienrannannanns 22
Sekil 2.5. Komsuluk yapisi ve arama uzayinda pargaciklarin ¢ aninda pozisyonlari............... 23
Sekil 2.6. t+1 aninda X; pargaciginin pozisyonunun giincellenmesi...................o.oeeeveennne. 24
Sekil 2.7. Ug olast hareketin agirlikli kombinasyonu.................cc.oeeuieiuiiiieiiieieainaenn.n, 29
Sekil 2.8. Pargaciklarin hizlanmalarinin iki boyutlu bir 6rnegi..............c.cooevvviiiiniinnnn.. 30
Sekil 2.9, KomsuUIUKIar. ..o e 38
Sekil 2.10. Linkler gelisigiizel degistirilmeden once ve sonra iki olast komsuluk topolojisinin

1S | PSRN 40
Sekil 2.11. Von Neuman topOlojiSi........uuuenreneitineeteteeteae ettt e ee e 41

Sekil 3.1. a) X;=0.31 baslangi¢ sartli lojistik harita b) X;=0.3133 baslangi¢ sartl lojistik harita53
Sekil 3.2. a) X;=0.27 baslangi¢ sarth ¢adir harita b) X,;=0.27114 baslangi¢ sartl cadir harita...54
Sekil 3.3. a) X;=0.5637 baslangi¢ sarth siniizoidal yineleyici b) X,=0.5637112 baslangic sartl
I VZ0) s £ B G 11T () 4 1o T O 54
Sekil 3.4. a) X;=0.12 baslangi¢ sartli Gauss harita b) X,=0.12345 baslangi¢ sartli Gauss harita.55
Sekil 3.5. a) X;=0.43 baslangi¢ sartli gember harita b) X;=0.43111 baslangi¢ sartli gember

0T L 56
Sekil 3.6. X;=0.89 ve Y,=0.25 baslangi¢ sartli Arnold’in kedi haritasi b) X;=0.89111 ve
Y=0.25111 baslangi¢ sartli Arnold’in kedi haritast...............cooiviiiiiiiiiiiiiiieenns 56

Sekil 3.7. a) X;=0.29 ve Y;=0.97 baslangi¢ sarthi Sina haritas1 b) X;==0.29012 ve Y,=0.97012
baslangic sartllt Sina haritasi.........o.ooeiiriiiiit i e 57
Sekil 3.8. a) X;=0.984, Y;=0.971 baslangi¢ sartli Zaslavskii Haritas1 b) X,=0.985, ¥,=0.9709

baslangic sartli Zaslavskii Haritasi...........oo.iiuiiiiii e 58
Sekil 3.9. a) Griewangk fonksiyonu b) Kontur egrileri..............coooviiiiiiiiiiiiii .. 62
Sekil 3.10. Azaltilmis arama aralikli Griewangk fonksiyonu................coooiiii 63
Sekil 3.11. a) Rastrigin fonksiyonu b) Kontur egrileri.............ccocoiiiiiiiiiiiiiiiiiiininn.. 63
Sekil 3.12. a) ki degiskenli Rosenbrock fonksiyonu b) Kontur egrileri............................. 64
Sekil 4.1, Bir kaba deger. .......ouieii e 74
Sekil 4.2. Kaba parcaciklar. ..........oouiiiiii e 77

VI



Sekil 4.3.
Sekil 4.4.
Sekil 4.5.
Sekil 4.6.
Sekil 4.7.
Sekil 6.1.
Sekil 6.2.
Sekil 6.3.
Sekil 6.4.
Sekil 6.5.
Sekil 7.1.

Geleneksel parcaciklar ve onlarin kaba esdegerleri...............c.oovviiiiiiiiinnnnnn. 77

Nicel birliktelik kural madenciligi yaklagimlari...................coo 78
Parcacik temSili. ... ..ot s 82
Deney i¢in kullanilan fonKsiyon............cooeviiiiiiiiiiii e 87
Deney i¢in kullanilan fonksiyonun grafiksel gosterimi................c.oooiiiiinni 88
Pareto optimal KUme. ..........ouiiiiiii 100
Baskinlik ve Pareto optimallik kavrami.................coo 101
Iki amagli bir problem igin 6rnek Pareto optimal kiimeler.............................. 102
Parcalanma problemi...........o.ovuiiriiiiii i e 105
Parcaciktaki kural temsili...........coooiiiiii i, 106
Kesfedilecek kurallarin 6zelliKIeri.........oovviiiiiiiiii i, 119

VII



TABLOLAR LISTESI

Tablo 2.1. Stirlideki ilk degerler..........ooviiiii e 26
Tablo 2.2. Birinci iterasyon sonrasinda degerler............oovvviiiiiii i, 26
Tablo 2.3. Ikinci iterasyon sonrasinda deSerler.................oeeuuiiineeiieiiieeiieeieeieeean 26
Tablo 2.4. Bin iterasyon sonrasinda degerler...........oouvvuiiriiiiiie e, 27
Tablo 3.1. Kalite testi fonksiyonlart 6zellikleri.............coooiiiiiiiiiiii e, 61
Tablo 3.2. Griewangk fonksiyonu i¢in PSO yontemleri ile elde edilen sonuglar.................. 65

Tablo 3.3. Griewangk fonksiyonu i¢in ilk dort haritay1 kullanan KHPSO yontemleri ile elde
edilen SONMUGIAL. ... .o 66
Tablo 3.4. Griewangk fonksiyonu i¢in 5, 6, 7 ve 8. haritay1 kullanan KHPSO yo6ntemleri ile elde
edilen SONMUGIAL. ... i 67
Tablo 3.5. Rastrigin fonksiyonu i¢in PSO algoritmalarinin basari oranlari......................... 68
Tablo 3.6. Rastrigin fonksiyonu i¢in ilk dort haritay1 kullanan KHPSO algoritmalarinin basari
0] 21 1121 o DO PP 69
Tablo 3.7. Rastrigin fonksiyonu i¢in 5., 6., 7. ve 8. haritay1 kullanan KHPSO algoritmalarinin
o e 111 -1 OSSP 69
Tablo 3.8. Rastrigin fonksiyonu i¢in farkli kalite seviyelerinde KHPSO yontemlerinin toplam
L oF2 TS T 21 11 3 70
Tablo 3.9. Rosenbrock fonksiyonu i¢in PSO algoritmalarinin basari oranlart...................... 70
Tablo 3.10. Rosenbrock fonksiyonu i¢in ilk dort haritayr kullanan KHPSO algoritmalarmin
LT ESF o T 21 11 3 70
Tablo 3.11. Rosenbrock fonksiyonu i¢in 5., 6., 7. ve 8. haritay1 kullanan KHPSO
algoritmalarinin bagart Oranlari..............oooiiiii i 71

Tablo 3.12. Rosenbrock fonksiyonu igin farkli kalite seviyelerinde KHPSO ydntemlerinin

17070 Va0l o TR T B 0 2 1 1 o DO 71
Tablo 4.1. Kaba degerler ile ilgili tanimlar..............cooiiiiiiiiiiiiiii e 74
Tablo 4.2. Cebirsel OzelliKIeT. ... .. ..o e 76
Tablo 4.3. Kullanilan parametre degerleri........o.oouiviiiiiiiiiniiii i aaeaas 84
Tablo 4.4. Sentetik olarak olusturulan kilmeler....................ooiiiiiiiii i, 85
Tablo 4.5. KPSOA tarafindan bulunan kurallar.....................o 85
Tablo 4.6. Farkli seviyelerdeki giiriiltii sonrasi kesfedilen kurallar.................................. 86
Tablo 4.7. Fonksiyon 2 i¢in farkli algoritmalar tarafindan elde edilen sonuglar................... 90
Tablo 4.8. [6]’da Onerilen algoritmayla karsilastirmalar..................cooviiiiiii i, 91
Tablo 4.9. Destek, boyut ve genlik sonuglarinin karsilagtirilmast.....................co 92

VIII



Tablo 4.10. Kesfedilen kurallar tarafindan kapsanan kayitlarin ylizdesi............................ 92
Tablo 5.1. Kaotik haritali PSO algoritmalarinin kisa 6zeti...............c.oooiiiiiiiiiiiiin 94
Tablo 5.2. Kullanilan parametre degerleri...........o.viiiiiiiiiiii i 95
Tablo 5.3. KKPSO algoritmalar tarafindan elde edilen kurallarin ortalama destek ve giiven
degerleri (Grup A=Toplam veri say1sinin %37.97U)........ooeiiiiiiiii i 96
Tablo 5.4. Zaslavskii haritas1 kullanan KKPSO7 algoritmas1 tarafindan bulunan kurallar....... 96

Tablo 5.5. KKPSO algoritmalar tarafindan elde edilen kurallarin ortalama destek ve giiven

degerleri (Grup A=Toplam veri Say1SInin %507 S1).....viurintititit ittt ae e 97
Tablo 5.6. Zaslavskii haritasi kullanan KKPSO8 algoritmasi tarafindan bulunan kurallar....... 98
Tablo 6.1. Monk]1 veritabanindan kesfedilen kurallar...........................cin, 109
Tablo 6.2. Monk]1 veritabanindan elde edilen sonuclarin karsilastirilmasi........................ 109
Tablo 6.3. Monkl test veritabanindan elde edilen sonuglarin karsilastirilmasi................... 110
Tablo 6.4. Mushroom veritabanindan kesfedilen kurallar........................ocooiiin. . 111
Tablo 6.5. Mushroom veritabanindan elde edilen sonuglarin karsilastirilmasi.................... 111
Tablo 6.6. Mushroom test veritabanindan elde edilen sonuglarin karsilastirilmasi............... 111
Tablo 6.7. Zoo veritabanindan kesfedilen kurallar..................cooooiiii i, 112
Tablo 6.8. Nursery veritabanindan kesfedilen kurallar....................c.oooiin 113
Tablo 6.9. Ortalama performanslar...............ooviiiiiiii i 113
Tablo 6.10. Zoo veritabaninda tahmini dogruluk (%0).........coooviiiiiiii 114
Tablo 6.11. Nursery veritabaninda tahmini dogruluk (%)...........coooviiiiiiiiiiiiiiiiin 114
Tablo 7.1. Kullanilan parametre degerleri.........ooovuieiuiiiiiiiiii i, 120
Tablo 7.2. Sentetik olarak olusturulan kiimeler..................coooiiiiiiiiii i, 120
Tablo 7.3. CAKKPSOA tarafindan bulunan kurallar.....................oooiiiiiiii e, 121
Tablo 7.4. Farkli seviyelerdeki giiriiltii sonras1 kesfedilen kurallar.......................oo 122
Tablo 7.5. [6]’da Onerilen algoritmayla karsilastirmalar...................oooiiiiiiinn.. 123
Tablo 7.6. Destek, boyut ve genlik sonuglarinin karsilagtirilmasi ...............c..ooeeiivinnin, 124
Tablo 7.7. Kesfedilen kurallar tarafindan kapsanan kayitlarin ylizdesi............................ 124

IX



iter:
maksiter:
T:

p:

dmaks:

cri

Cif

Coj:

Cof

peniyiy:

(Pen ly i t)ortalama:

geniyi,:
N, hatalar+
N basarilar-
X,
Qseviye:
]vtiim :

N basarili-

I

SIMGELER LiSTESI

Pargacigin mevcut pozisyonu
Pargacigin mevcut hiz

Pargacigin kisisel en iyi pozisyonu
Optimize edilen amag fonksiyonu

Pargacigin direkt olarak etkilesim iginde oldugu pargaciklarin kiimesi

Komsuluk biiytikligii

Kisisel en iyiye dogru hizlanma katsayis1
Global en iyiye dogru hizlanma katsayist
Boyut

n. boyut i¢in alt sinir

n. boyut igin iist sinir

Atalet agirhig

Iterasyon

Izin verilen maksimum iterasyon sayisi
Global en iyi pargacigin indeksi
Olgekleme faktorii

Iki parcacik arasindaki en biiyiik uzaklik

Kisisel en iyiye dogru hizlanma katsayisinin baslangi¢ degeri
Kisisel en iyiye dogru hizlanma katsayisinin son degeri
Global en iyiye dogru hizlanma katsayisinin baglangi¢ degeri
Global en iyiye dogru hizlanma katsayisinin son degeri
Parcacigin lokal en iyi degeri

Parcaciklarin lokal en iyi degerlerinin ortalamasi

Siirtideki tiim lokal en iyi degerin en iyisi

Ardigik hata sayist

Ardigik basari sayisi

n. kaotik say1

Algoritmayi belli toleransa yakinsadiginda sonlandirma sarti
Tiim deneme sayisi

Maksimum iterasyon sayisinda Q... Uizerinde sonug bulan deneme

say1s1

x’in alt sinir1



X: x’1n ust sinirt

T Kaba parametre

Sinir,, (ri ): Kaba parametre r;’nin degeri i¢in izin verilen maksimum sinir
Ntumpoziif: Pozitif kayitlarin sayisi

Npoziif: Kesfedilen kurallar tarafindan kapsanan kayitlarin sayisi

N tumNegaiif: Negatif kayitlarin sayisi

Nyegaif: Kural tarafindan yanliglikla kapsanan negatif kayit sayisi

I Amag fonksiyon sayisi

T Maksimizasyon

d: Minimizasyon

Ort: Ortalama

Min: En iyi

Maks: En koti

Med: Medyan

SS: Standart sapma

Ort Iter: Optimum degere yakinsamak i¢in gereken ortalama iterasyon sayisi

XI



PSO:

GA:
ZDHK:
YGPSO:
CBPSO:
CIPSO:
DPSO:
DGPSO:
U-UOTPSO:
KHPSO:
ZDAA:
StZDAA-PSO:
KPSOA:
OOTPSO:
A-S:

AS:

US:
KKPSO:
HD:
CAKKPSO:
A:

TD:

S:

KISALTMALAR LISTESI

Parcacik Siirii Optimizasyonu

Genetik Algoritma

Zamanla Degisen Hizlanma Katsayilar

Yakinsama Garantili Pargacik Siirii Optimizasyonu

Coklu Baslatmali Pargacik Siirii Optimizasyonu

Cekici ve Itici Parcacik Siirii Optimizasyonu

Dagitan Parcacik Siiri Optimizasyonu

Diferansiyel Gelisimli Parcacik Siirii Optimizasyonu
Uygunluk-Uzaklik Oran Tabanli Pargacik Siirii Optimizasyonu
Kaotik Haritali Pargacik Siirii Optimizasyonu

Zamanla Degisen Atalet Agirlig

Stokastik Zamanla Degisen Atalet Agirlikli Pargacik Siirii Optimizasyonu
Kaba Parcacik Siirii Optimizasyon Algoritmasi

Oz Orgiitlenmis Tehlikelilikli Pargacik Siirii Optimizasyonu
Ata-Sonug

Alt Sinir

Ust Sinir

Kaba Kaotik Parcacik Siirli Optimizasyonu

Harici Depo

Cok Amach Kaba Kaotik Parcacik Siirii Optimizasyonu
Anlasilabilirlik

Tahmini Dogruluk

Smif

XII



OZET

Doktora Tezi

KAOTIK HARITALI PARCACIK SURU OPTIMIZASYONU ALGORITMALARI
GELISTIRME

Bilal ALATAS

Firat Universitesi
Fen Bilimleri Enstitiisii
Elektrik Elektronik Miihendisligi
2007, Sayfa: 140

Bu tezde kus siiriilerinin hareketlerinden esinlenerek gelistirilmis optimizasyon yontemi
olan Pargacik Siirii Optimizasyonu (PSO) algoritmasina, performansinin arttirilmasi amaciyla
cesitli eklentiler ve diizenlemeler yapilmistir. Ozellikle PSO’nun yerel optimum noktalara
takilip kalmasini engelleyerek global yakinsama hizini arttirmak amaciyla yumusak hesaplama
tekniklerinden biri sayilan kaos, PSO ile birlestirilmis ve “kaotik haritali PSO algoritmalar1” ad1
altinda on iki farkli PSO algoritmasi &nerilmistir. Onerilen bu algoritmalarin literatiirde iyi
sonug verdigi belirlenmis diger PSO algoritmalariyla performans karsilagtirmalar1 yapilmistir.

Ayrica siirekli karar degiskenlerinin de kullanilmas1 gereken problemlerde ve araliklarin
temsil olarak kullanilmas1 gereken durumlarda PSO ile birlikte yumusak hesaplama
tekniklerinden sayilan kaba kiimelerin alt dali olan aralik cebrinin etkili olarak kullanilabilecegi
gosterilmis, bununla ilgili PSO hesaplamalar1 agiklanmistir. Bu amagla “kaba PSO” algoritmasi
Onerilmis ve bunun ilk uygulamas1 olarak 6zellikle veri madenciliginde siirekli degerli verilerde
kural kesfi i¢in yeni ve etkili yontem olarak kullanilabilecegi gosterilmistir.

PSO, kaos ve kaba kiimelerin ii¢iiniin birlesimiyle “kaba kaotik PSO algoritmalar1” adi
altinda genel amacli PSO algoritmalar1 6nerilmis ve bunlar, etkin ¢6ziim yontemi bulunmayan
stirekli degerli verilerde nicel birliktelik kurallarinin otomatik kesfi alaninda ilk kez uygulanmis
ve etkili sonuglar elde dilmistir.

PSO algoritmasinin ¢ok amagli optimizasyon problemleri i¢in de calisabilmesi i¢in
cesitli diizenlemeler yapilmis ve ilk uygulamasi yine veri madenciliginin alt dali olan
siniflandirma kurallarinin madenciliginde yapilmistir ve istenen amaglar dogrultusunda etkili
sonuglar elde edilmistir.

Son olarak, ¢ok amachh PSO ile kaos ve kaba kiimelerin birlesimiyle yeni PSO
algoritmalari, “cok amagli kaba kaotik PSO algoritmalar1”, énerilmis ve bunlar da ilk olarak
etkin ¢oziimler bulmak amactyla veri madenciligi alaninda uygulanmstir.

Anahtar Kelimeler: Parcacik siirii optimizasyonu, kaotik haritalar, aralik cebri, ¢ok amach
optimizasyon, nicel birliktelik kural madenciligi, siniflandirma kural madenciligi.
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OPTIMIZATION ALGORITHMS
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In this thesis, addition and modifications to particle swarm optimization (PSO)
algorithm which is an optimization technique developed inspiring by movement of flock of
birds have been performed. Especially, chaos which has been regarded as one of the soft
computing techniques has been embedded to PSO in order to increase the convergence speed by
escaping from the local optimum points; and twelve PSO algorithms with the name “chaos
embedded PSO algorithms” have been proposed. Performance comparisons of these algorithms
with the other PSO algorithms which have been reported to have good performance in the
literature have been performed.

Furthermore, it has been shown that interval algebra which is a branch of rough set,
regarded as one of the soft computing techniques, can be effectively used with PSO for
problems in which continuous decision variables and intervals should be used as representation,
and PSO computation related to this representation have been described. “Rough PSO” has been
proposed for this purpose and has been shown to be effectively used in rule mining within
continuous valued variables as a first application.

PSO, chaos, and rough set have been combined and general purposed PSO algorithms
with the name “rough chaotic PSO algorithms” have been proposed. These algorithms have
been firstly used in numeric association rules mining in which there is not an efficient and
automatic technique. Promising results have been obtained.

Various modifications have been performed for the PSO to let it work for multi-
objective optimization problems and first application has been performed in classification rule
mining task of data mining. Efficient results according to the objectives have been obtained.

Lastly, new PSO algorithms, “multi-objective rough chaotic PSO algorithms”, which
include multi-objective PSO, chaos, and rough sets combination, have been proposed and have
been applied in data mining in order to find efficient solutions.

Keywords: Particle swarm optimization, chaotic maps, interval algebra, multi-objective
optimization, numeric association rule mining, classification rule mining.
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1. GIRIS

Optimizasyon, bir problem igin, verilen sartlar altinda tiim ¢6ziimler arasindan en iyi
¢Oziimii elde etme isidir. Optimizasyonun performansim etkileyen ve kontroliimiiz altinda
degerleri olan degiskenlere karar degiskenleri denir. Karar degiskenlerinin ama¢ tizerindeki
etkilerinin analitik olarak gosterilmesiyle amag¢ fonksiyonu olusturulur. Cogu durumda, karar
degiskenlerinin sadece belirli degerleri kullanilmalidir. Karar degiskenlerinin degerleri
izerindeki bu simirlandirmalara sinirlayicilar denir. O halde farkli bir ifadeyle optimizasyon,
karar degiskenlerinin miimkiin olan tiim kombinasyonlar arasindan verilen tiim simirlayicilart
saglayan ve amac fonksiyonunu en iyi hale getiren (maksimizasyon ya da minimizasyon)
kombinasyonun bulunmas isidir.

Bu amagla literatiirde birgok optimizasyon algoritmasi Onerilmistir. Optimizasyon
probleminin kolayca ¢oziilebilecek bir yapiya oturtulmasi i¢in c¢ofgu zaman problemin
davraniglartyla ilgili kurallar ve elemanlar1 arasindaki baglantilar icin, ilgilenilen karar
probleminin yapisina gore sekillenen matematiksel modeller kurulur [1].

Model; eger karar degiskenleri lizerinde hi¢bir sinirlama yoksa sinirlayicisiz, en azindan
bir sinirlama olmasi durumunda simirlayicili olur. Gergek hayatta genellikle smirlayicili
problemler karsimiza ¢ikar. Eger problem tek bir donem igin ¢oziilecekse statik model, birden
fazla donem g6z Oniine alinarak ¢oziilecekse dinamik model kullanilir. Modelin algoritmada
isletilmesi esnasinda belirli, kesin parametre veya girdiler kullaniliyorsa model deterministik,
olasilik 6zelligi varsa model stokastiktir. Eger birden fazla amag varsa, ¢ok amagli problemler
ortaya cikar. Eger tiim karar degiskenleri pozitif reel (gercel) degerler aliyorsa siirekli
optimizasyon problemi s6z konusudur. Tim karar degiskenlerinin tamsayi degerler almasi
gerekiyorsa kesikli optimizasyon problemi ortaya c¢ikar. Bazi karar degiskenlerinin reel,
bazilarinin tamsay1 deger almasi durumunda ise karigik kesikli optimizasyon problemi ile
karsilasilir. Eger karar degiskenlerinin kombinasyonsal secenekleri s6z konusuysa
kombinasyonsal optimizasyon problemleri ortaya cikar [1]. Sekil 1.1’de bu model tiirleri
grafiksel olarak goriilmektedir. Burada yukaridan asagiya ve soldan saga gidildik¢e modelin

kurulmasi ve isletilmesi zorlasir.



Matematiksel Model
Nj N2
Sinirlayicisiz Simirlayicih
N J
N2
N 2
Statik Dinamik
N J
N2
N 2
Deterministik Stokastik
N J
N2
N 2
Tek amach Cok amach
N ¥
N2
N 2
Kesikli karar Stirckli karar
degiskeni degiskeni
N2 N2 N2 N2
Tamsayili Kombinasyonsal Dogrusal Dogrusal olmayan

Sekil 1.1. Optimizasyon i¢in matematiksel modeller

Optimizasyon algoritmalarinin ¢ogu, sistemin modeli ve amag¢ fonksiyonu igin
matematiksel modellere ihtiyag duymaktadir. Karmasik sistemler i¢in matematiksel modelin
kurulmasi ¢ogu zaman zordur. Model kurulsa bile, ¢6ziim zamani maliyeti ¢ok yiiksek

oldugundan kullanilamamaktadir [2]. Klasik optimizasyon algoritmalari, biiyiik Olcekli



kombinasyonsal ve dogrusal olmayan problemlerde yetersizdir. Aym1 durum, tamsay1 ya da
ayrik karar degiskenlerinin kullanildig1 cogu dogrusal optimizasyon modelleri i¢in de gecerlidir.
Bu tiir algoritmalar, verilen bir probleme bir ¢dziim algoritmas1 uyarlamada etkin degildir. Bu
da c¢ogu durumda, gecerliliginin onaylanmasi zor olabilen bazi1 varsayimlar1 gerektirir.
Genellikle klasik algoritmalarin dogal ¢6ziim mekanizmalarindan dolayi, ilgilenilen problem
algoritmanin onu idare edecegi sekilde modellenir. Klasik optimizasyon algoritmalarinin ¢6ziim
stratejisi genellikle amag ve sinirlayicilarin tipine (dogrusal, dogrusal olmayan vb.) ve problemi
modellemede kullanilan degiskenlerin tipine (tamsayi, reel) baglidir. Bunlarin etkinliligi ayn1
zamanda problem modellemede ¢6ziim uzayr (konveks, konveks olmayan vb.), karar degisken
sayist ve sinirlayici sayisina oldukga baglidir. Diger énemli bir eksiklik ise farkli tipte karar
degiskenleri, ama¢ ve simirlayicilarin olmasi durumunda problem formiilasyonlarina
uygulanabilecek genel ¢6ziim stratejileri sunmamalaridir. Yani ¢cogu algoritma belirli tipteki
amag¢ fonksiyonu ya da sinirlayicilarin oldugu modelleri ¢6zmektedir. Ancak ¢ogu yonetim
bilimi, bilgisayar, mithendislik gibi bir ¢ok farkli alandaki optimizasyon problemleri eszamanli
olarak formiilasyonlarinda farkli tipteki karar degiskenleri, amag¢ fonksiyonu ve simirlayicilart
gerektirir. Bu yiizden klasik sezgisel ve genel amacgl sezgisel optimizasyon algoritmalari
Onerilmistir. Bunlar son yillarda oldukg¢a popiiler yontemler haline gelmistir ¢linkii, bunlarin
hesaplama giicii iyidir ve doniisiimleri kolaydir. Yani tek amag¢ fonksiyonlu bir problem i¢in
yazilmis bir sezgisel program, kolaylikla ¢cok amagli bir probleme ya da farkli bir probleme
uyarlanabilmektedir.

Genel amach sezgisel yontemler; biyolojik tabanli, fizik tabanli ve sosyal tabanli olmak
iizere Ui¢ farkli grupta degerlendirilmektedir [3]. Ayrica bunlarin birlesimi olan melez yontemler
de vardir. Genetik algoritma (GA) [4-6], diferansiyel gelisim algoritmasi [7, 8], karinca koloni
algoritmalar [9, 10], yapay sinir aglar1 [11], ar1 koloni algoritmalar [12] ve yapay bagisiklik
sistemleri [13, 14] biyolojik tabanli; 1s1l islem [15] ve elektromanyetizma algoritmasi [16] fizik
tabanli ve tabu arama [17] sosyal tabanli algoritma ve modellerdir. Kiiltiirel algoritma [18] da
hem biyolojik hem de sosyal tabanli algoritma olarak siniflandirilabilir. Bu tezde iizerine
calisilan, optimizasyon ve veri madenciliginde uygulamalar1 yapilan Pargacik Siirii
Optimizasyonu (PSO) [19] da hem biyolojik hem de sosyal tabanli algoritma sinifina
girmektedir.

Algoritma tek bir ¢dziimden baglayip bunu operatorlerle ilerletiyorsa bunlara tek noktali
yontemler denir ve tabu arama, 1s1l iglem gibi biitiin yerel arama tabanli sezgisel algoritmalar bu
gruba girer. Cok noktadan yani bir popiilasyon iizerinden ¢6ziime baslanip bu farkli noktalarla

optimizasyon yapiliyorsa bunlar ¢ok noktali ya da popiilasyon tabanli yontemlerdir. Bunlara



GA, PSO, karinca koloni algoritmalari, ar1 koloni algoritmalari, yapay bagisiklik sistemleri ve
elektromanyetizma algoritmasi 6rnek olarak verilebilir.

Baz1 sezgisel algoritmalar problemin gosterimini gerceklestirirken amag¢ fonksiyonunu
sabit tutar ve sabit amag¢ fonksiyonlu olarak adlandirilirlar. Bazilar1 da 6rnegin rehberli yerel
arama algoritmasindaki gibi degistirir ve degisen amac fonksiyonlu olarak adlandirilirlar.
Degistirmekteki amag yerel minimumdan kurtulmaktir. Bu mantik, yerel minimumdan kagmak
icin bazen diger sezgisel algoritmalara da uygulanabilmektedir.

Cogunlukla sezgisel yontemler tek bir komsuluk yapisinda galisir ve tek komsuluk
yapili olarak siniflandirilabilir. Bazilar1 da degisken komsuluk arama algoritmasinda oldugu gibi
arama islemini sistematik bir sekilde degistirerek birden fazla yerel arama yontemiyle diger
¢Oziim alanlarina ulagmaya calisir ve degisken komsuluk yapili seklinde siniflandirilabilir.
PSO’nun iki versiyonu da bulunabilmektedir.

Algoritmalar calisirken daha 6nceki durumlar ya da en iyi durumlar hatirlaniyorsa
hafizali, hatirlanmiyorsa hafizasiz seklinde smiflandirilabilir. Ornegin PSO ve tabu arama
hafizali, GA hafizasizdir.

Tim bu smiflandirma tirleri Sekil 1.2°de goriilmektedir. Ancak yapilan baz
calismalarla bu smiflandirma tiirlerine ait algoritmalara eklentiler ve modifikasyonlar
yapilmakta ve bunlarla algoritma ilk Onerildigi haliyle ait oldugu smmiftan baska simifa ait
ozellikleri de barindirabilmektedir. Bu gosterimde de, yukaridan asagiya ve soldan saga
gidildikge modelin kurulmasi ve isletilmesi biraz daha zorlagsmaktadir. Ancak bu zorluk
yukarida bahsedilen matematiksel modellerdeki zorluklar kadar fazla degildir. Kiigiik
modifikasyonlarla doniisiimler ayarlanabilmektedir.

Bu boliimde c¢ok noktali, sosyal, fizik ve biyolojik tabanli stokastik yontemler biraz

daha incelenecektir.



Sezgisel Yontemler
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Sekil 1.2. Sezgisel yontemler

1.1. Cok Noktal (Popiilasyon Tabanl) Algoritmalar
1.1.1. Evrimsel Hesaplama

Evrimsel hesaplama Rechenberg’in Evrim Stratejileri (Evolutionsstrategie) adli
calismasinda tanitilmistir [20]. Tasarimda ve uygulamada evrim kavrami bulunan hesaplama-

tabanli problem ¢6zme yontemlerinin temel mantigini igerir. En ¢ok kullanilan yontemler

o Genetik Algoritmalar
o  Evrimsel Algoritmalar

o Evrimsel Programlama



o Evrim Stratejileri
o Smiflayici Sistemleri

o Genetik Programlama

olarak bilinir. Bunlar arasinda en ¢ok kullanilan ise GA ad1 verilen yontemdir. GA’lar dogal
secim ilkelerine dayanan ve temelleri John Holland tarafindan atilan arama ve optimizasyon
yontemleridir [4, 5]. GA’larin ¢6ziim icin ihtiya¢ duydugu sey, problemin karar degiskenlerini
uygun bir yontemle kodlamak ve olasi ¢éziimlerin problem igin kalitesini dlgen bir uygunluk
fonksiyonu olusturmaktir. Algoritma, birey ya da kromozom adi verilen aday c¢oziimlerle
(popiilasyon) baslar ve cesitli genetik ya da farkli operatorlerle uygunluk fonksiyon degerine
bagl olarak daha iyi kalitede yeni popiilasyonun olusturulmasi adimlariyla ilerler. Bu adimlar
belli bir durdurma kriterine kadar devam eder.

Evrimsel hesaplama yontemleri arasindaki temel fark, bazen temsil ve ortaya g¢ikan
¢Ozliim olmakla birlikte ¢ogu zaman kullanilan operatdrler ve bir sonraki popiilasyonun se¢im
isleminden kaynaklanmaktadir.

Yakin zamanda yeni popiilasyonun olusturulmasinda olasilik dagilimlar: kullanilmig ve
daha 6z bir kodlamayla GA performansi arttirilmigtir. Bu alanda yapilan ¢aligmalar genel olarak
dagilim tahmin algoritmalar1 olarak bilinir [21] ve en ¢ok kullanilanlar ise o6zli GA [22],
popiilasyon temelli artimsal 6grenme [23], tek degiskenli marjinal dagilim algoritmasi [24] ve
cok degiskenli normal dagilim algoritmasidir [25].

Ayrica, diferansiyel gelisim algoritmast da oOzellikle siirekli degerli karar
degiskenlerinin s6z konusu oldugu problemlerde isleyis olarak GA’ya benzer sekilde etkin
olarak kullanilmaktadir [7]. Baz1 yerel arama yontemleriyle birlestirilmis GA, melez GA ya da
paralel GA olarak ta bilinen memetik algoritma [26] ve arama ya da optimizasyon esnasinda
problem bilgisinin birlestirilmesine izin veren kiiltiirel algoritma [27] de evrimsel hesaplama

alanindaki diger algoritmalara drnek olarak verilebilir.

1.1.2. Karinca Koloni Algoritmalari

Siirli zekast alanmin bir alt dali olarak bilinen karmca koloni algoritmasi karinca
kolonilerinin yiyecek toplamasini esas alan ve Dorigo tarafindan 6nerilen bir algoritmadir [9].
Cesitli versiyonlar1 olan bu algoritmay1 evrimsel hesaplama alaninin bir alt dali olarak gérenler
de vardir. Karincalar koloniler halinde yiyecek toplarken en kisa yolu belirlerler ve bunu da
geemis olduklar1 yollar iizerinde ucgucu bir koku izi birakarak hallederler. Karincalar

gidebilecegi birden fazla yol oldugunda, iz miktar1 fazla olan yolu daha ¢ok tercih ederler.



Karinca koloni algoritmalar1 da gozlemlenen bu dogal siirecten esinlenerek gelistirilmis

popiilasyon tabanl algoritmalardir.
1.1.3. Ar1 Koloni Algoritmalari

Art koloni algoritmalar1 arilarin yiyecek bulma vb. davranislarindan esinlenerek
gelistirilmis siirii zekas1 alaninin en yeni alt dallarindandir. Ancak bu alanda tam olarak gati
oturtulmus degildir ve bir¢ok farkli arastirmacit modelledikleri sisteme ar1 koloni algoritmasi ya
da benzeri isimler vermistir [28—42]. Yiyecek bulmada arilarin yapmis oldugu dans etkilesimli
bir davranistir ve bu dansla yiyecek arayan basarili arilar (6ncii arilar) ¢igek beneklerine olan
yon ve uzaklik bilgilerini ve ¢igek lizerindeki nektar miktarini kovandaki esiyle paylasir. Bu
oncli arlarm kolonideki diger arilarn farkli kaynak bulmak amaciyla verimli yerlere
yerlestirmesi basarili, etkilesimli bir mekanizmadir ve koloni hizli bir sekilde tam olarak
degisen nektar kaynaklarma gore kendini yerinde ve zamaninda ayarlar. Bu algoritmalar da

arilarin koloni halindeki davraniglarindan esinlenerek gelistirilmistir.
1.1.4. Yapay Bagisiklik Sistemleri

Yapay bagisiklik sistemleri, teorik bagisiklik ve karmasik problem alanlarina uygulanan
gozlemlenmis bagisik fonksiyonlar, ilkeler ve modellerden esinlenmis hesapsal sistemlerdir
[43]. iki temel bilesen (kemik iligi ve timus) ve iki ayri teori (klonal segim ve bagisik ag)
bagisiklik sistemini modellemek i¢in kullanilir. Kemik iligi modeli, hiicrelerin ve molekiillerin
repertuarini tiretmede kullanilir. Timus modeli 6z / 6z olmayan ayrimi yapmaya yetenekli hiicre
ve molekiillerin repertuarini iiretmede kullanilir. Klonal se¢im prensibi, bagisiklik sisteminin bir
antijenik uyarima kars1 bagisiklik cevabinin temel 6zelliklerini tanimlamak amaciyla kullanilir.
Daha ¢ok optimizasyon amach kullanilan teori budur ve klonal se¢im algoritmasi adiyla bilinir
[44]. Diferansiyel denklemler temelli siirekli ag modelleri basarili bir sekilde optimizasyon
problemlerine de uygulanmistir. Bunlar aym1 zamanda fark denklemleri temelli ayrik ag

modellerine de ilham olmustur [45].
1.1.5. Parcacik Siirii Optimizasyonu

Parcacik Siirii Optimizasyonu (PSO) teknigi kus ve balik siiriilerinin hareketlerinden
esinlenerek dogrusal olmayan niimerik problemlere optimal sonuglar bulmak igin ilk olarak
1995-1996 yillarinda sosyolog-psikolog James Kennedy ve elektrik miithendisi Russel Eberhart
tarafindan ortaya atilmis popiilasyon tabanl stokastik bir optimizasyon yontemidir [46]. PSO’da
her bir kus parcacik olarak, kus toplulugu da siirii olarak temsil edilir. Bir pargacik,



koordinatlarini, hizim1 yani ¢6ziim uzayindaki her boyutta ne kadar hizla ilerledigi bilgisini,
simdiye kadar elde ettigi en iyi uygunluk degerini ve bu degeri elde ettigi koordinatlar hatirlar.
Coziim uzaymdaki her boyuttaki hizinin ve yoOniliniin her seferinde nasil degisecegini,
komsularinin en iyi koordinatlar1 ve kendi kisisel en iyi koordinatlarinin birlesiminden elde
eder. Bu konu ile ilgili ¢aligmalar, tez kapsaminda detayli olarak incelenmis ve yeni Onerilerde

bulunulmustur.
1.1.6. Elektromanyetizma Algoritmasi

Elektromanyetizma algoritmas1 Birbil ve Fang tarafindan dogrusal olmayan
fonksiyonlarin sinirlayicisiz global optimizasyonu igin elektromanyetizma teorisindeki itme-
cekme mekanizmasindan esinlenerek gelistirilmistir [16]. Her Ornegin tiim sarjin amag
fonksiyon degerini kapsadig1 sarjli bir parcacik olarak uzaya serbest birakildigini varsayar. Sarj
ornek popiilasyon iizerinde noktanin itme ya da ¢ekme biiylikliigiinii belirler ve amag fonksiyon
degeri ne kadar biiyiikse ¢ekim biiyiikliigli de o ol¢iide fazladir. Bu sarjlar hesaplandiktan sonra
toplam kuvvetten bir yon belirlenir. Cekimler daha iyi alanlara dogru, itmeler ise ziyaret
edilmeyen bolgelere dogru hareketi saglar [47, 48]. Aslinda bu algoritma PSO’ya
benzemektedir. Temel fark arama uzayindaki hareketleri hesaplamadadir. PSO’daki gibi
elektromanyetizma algoritmasinda da her ¢ézliim, her adimda yeni pozisyona dogru hareket
eder. Fakat sadece komsularinin en iyi koordinatlar1 ve kendi kisisel en iyi koordinatlarinin

birlesiminden etkilenmez her ¢6ziim popiilasyondaki tiim diger ¢oziimlerden etkilenir [49].
1.2. Tezin Ama¢ ve Kapsam

Bu tezde 6zellikle ¢ok noktali, sosyal ve biyolojik tabanli stokastik bir yontem olan ve
kus ve balik siiriilerinin hareketlerinden esinlenerek dogrusal olmayan niimerik problemlere
optimum sonuglar bulmak i¢in Onerilmis yumusak hesaplama tekniklerinden olan PSO
algoritmasina eklentiler yapilip performansinin arttirilmasi amaglanmistir. Bu amagla yine
yumusak hesaplama tekniklerinden biri sayilan kaos, PSO ile birlestirilmis ve on iki farkli PSO
algoritmasi dnerilmistir. Onerilen bu algoritmalarn performanslar literatiirde iyi sonug verdigi
belirlenmis diger PSO algoritmalariyla karsilastiriimis ve bu yontemlerle esdeger diizeyde ya da
daha iyi oldugu gosterilmistir.

Ayrica siirekli degerli problemlerde araliklarin temsil olarak kullanilmasi gereken
durumlarda, PSO’ya yine yumusak hesaplama tekniklerinden sayilan kaba kiimelerin alt dali
olan aralik cebrinin kullanilabileceginin gosterilmesi ve ¢ok amagli optimizasyon problemleri

i¢in de caligabilmesi igin gesitli diizenlemelerin yapilmasi amaglanmistir. Bir bagka amag da bu



yontemleri ilk olarak veri madenciligi alaninda kabul edilecek zaman dilimi i¢inde optimum
¢Ozlimii bulunmayan problemlere uygulayarak etkili sonuclar elde etmektir.

Bu tezin kapsami;

e PSO’nun yerel optimum noktalara takilip kalmasimi engelleyerek global yakinsama
hizin1 arttirmak igin kaos tabanli gesitli yontemler 6nermek,

o Kalite testi fonksiyonlarinda, 6nerilen bu yontemleri kullanan PSO ve literatiirde iyi
sonuclar verdigi belirtilmis diger PSO algoritmalariyla cesitli karsilagtirmalar yapmak,

e Kaba kiimelerin alt dali olan aralik cebrinin PSO’da siirekli degerli problemlerde
araliklarm  temsil olarak  kullanilmast  gereken durumlarda etkili olarak
kullanilabilecegini géstermek ve bununla ilgili hesaplamalar1 géstermek (Kaba PSO),

e Veri madenciliginin yontemlerinden olan birliktelik kural madenciligi ve siniflandirma
kural madenciliginin tanimini ve kullanilan performans &lgiitlerini vermek,

e  Onerilen kaba PSO algoritmasmin gergekten iyi sonug verebilecegi bir alana uygulamak
ve ozellikle siirekli degerli verilerde kural kesfi i¢in etkili ve yeni bir yontem sunmak,

e PSO, kaos ve kaba kiimelerin {igiinlin birlesimiyle etkili PSO algoritmalar 6nermek ve
bunlari, etkin ¢dziim yontemi bulunmayan siirekli degerli verilerde nicel birliktelik
kurallariin otomatik kesfi alaninda uygulayip sonuglari karsilagtirmak,

e PSO’ya ¢ok amagli optimizasyon problemleri i¢in de c¢alisabilmesi igin gesitli
diizenlemeler yapmak ve Ozellikle veri madenciliginden siniflandirma kural
madenciligini ¢ok amagli bir optimizasyon problemi olarak karakterize edip 6nerilen bu
PSO ile uygulamasini yapmak,

e (Cok amagh PSO ile kaos ve kaba kiimelerin birlesimiyle yeni PSO algoritmalari, ¢ok
amagli kaba kaotik PSO algoritmalari, 6nermek ve bunu da yine etkin ¢éziimler bulmak

amaciyla veri madenciligi alaninda uygulamak

olacaktir.
1.3. Tezin Organizasyonu

Tez sekiz boliimden olusmaktadir. ikinci boliimde, PSO algoritmasi tamtilmis ve basit
olarak nasil ¢alistig1 kiiclik 6rneklerle agiklanmistir. Ayrica performansinin arttirilabilmesi igin
literatiirde yapilan galigmalar ilgili bagliklar halinde 6zetlenmistir.

Ucgiincii boliimde, PSO nun parametrelerinin belirlenmesi icin rasgele tabanl bir se¢im
$0z konusu oldugunda farkl kaotik sistemler rasgele say1 dizilerinin yerine kullanilmig ve on iki

farklt PSO onerilmistir. Kullanilan kaotik haritalar tanitilmig sonrasinda da onerilen yontemler



aciklanmistir. Bu sekilde PSO’nun global yakinsama 6zelliginin arttirilmasi ve lokal ¢dziimde
takilip kalmas1 dnlenmeye calisilmistir. Daha sonra kalite testi fonksiyonlar1 tanitilarak 6nerilen
yontemlerin diger PSO yontemleriyle karsilastirilmasi yapilmistir. Son olarak da sonuglara baglh
olarak analiz ve yorumlara yer verilmistir. Bu boliimle ilgili asagidaki ¢aligsmalar yayinlanmak

iizere kabul edilmistir [50, 51]:

o “Chaos Embedded Particle Swarm Optimization Algorithms”, Chaos, Solitons &
Fractals, Elsevier, http://dx.doi.org/10.1016/j.chaos.2007.09.063, (Kabul edildi).

o “Kaotik Haritali Pargacik Siirii Optimizasyon Algoritmalar1”, 12. Elektrik Elektronik
Bilgisayar Biyomedikal Miihendisligi Ulusal Kongresi, Eskisehir, 2007.

Dordiincii boliimde, bazi siirekli karar degiskenleri igeren ve degiskenlerin araliklarinin
kullanma zorunlulugu oldugu durum ve uygulamalarda alt ve {ist sinirdan olusan kaba degerlere
bagli olarak PSO’nun genisletilmesi saglanmis ve eklentiler dnerilmistir. Ayn1 zamanda, bu
sekilde kaba hesaplama alanina da ilave bir konu eklenmistir. Ayrica kabul edilecek zaman
dilimi i¢inde optimum ¢6ziimii bulunmayan ve aslinda bir arama ve optimizasyon problemi olan
nicel nitelikler igeren veri tabanlarinda veri madenciligi i¢in yeni, etkili ve otomatik bir yontem
Onerilmistir ve bilgi kayiplar1 ve 6n islemelerden kaginilarak bilgi kesfi yapilmistir. Bu boliim
ile ilgili, 6zellikle diger biyolojik tabanli algoritmalar i¢in kaba kiime genisletilmesi ve nicel
birliktelik kurallarinin bir optimizasyon problemi olarak biyolojik tabanli algoritmalarla

modellenmesiyle ilgili asagidaki ¢aligmalar yaymlanmistir [6, 8, 52, 53]:

o« “MODENAR: Multi-Objective Differential Evolution Algorithm for Mining Numeric
Association Rules”, Applied Soft Computing, Elsevier.

o “An Efficient Genetic Algorithm for Automated Mining of Both Positive and Negative
Quantitative Association Rules”, Soft Computing, Springer Verlag, 10(3), 230-237,
2006.

o “Rough Immune Algorithm”, International Symposium on Innovations in Intelligent
Systems and Applications (INISTA-2005), 75-78, Istanbul, Turkey, Haziran, 2005.

o “Rough Differential Evolution Algorithm”, Second International Conference on
Electronics and Computer Engineering IKECCO 2005, Bishkek/KYRGYZSTAN,
Nisan, 2005.

Besinci boliimde, dordiincii boliimde onerilen kaba PSO algoritmasi ile tglincii

boliimde 6nerilen kaotik haritali PSO algoritmalarinin birlesimi ile Kaba Kaotik PSO (KKPSO)
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algoritmalar onerilmistir. Kaba degerlerle temsil ve hesaplamalarin yapilmasi zorunlulugu olan
yerlerde kullanilan kaba PSO algoritmasina kaotik haritalar eklenmis ve algoritmanin
performansinin arttirilmas1 amaglanmistir. Boylece; kaba kiimeler, kaos ve optimizasyonun
birlikte kullanilabilecegi genel amagli melez arama ve optimizasyon algoritmalar1 Onerilmistir.
Bu amagla KKPSO teorileri agiklanmis ve performansinin testi i¢in nicel birliktelik kural
madenciligi alaninda uygulamalar yapilmistir. Bu boliimle ilgili ¢alismalar asagida belirtilen

isimde kitap boliimii olarak yayinlanmak iizere kabul edilmistir [54]:

e “Chaotic Rough Particle Swarm Optimization Algorithms”, Swarm Intelligence: :
Focus on Ant and Particle Swarm Optimization (Editorler: Professor Felix T. S.

Chan ve Professor Manoj Kumar Tiwari), ARS Publishing, 2007.

Altimcer bolimde PSO’nun ¢ok amacgli optimizasyon problemlerinde kullanilabilmesi
icin farkli bir yontem Onerilmis ve ilk olarak veri madenciligi uygulamalar1 yapilmistir.
Ozellikle onerilen algoritmanin siniflandirma kural madenciligi alaninda etkili ve iyi
performansa sahip oldugu goriilmiistiir. Bu bdliimle ilgili, 6zellikle siniflandirma kural
madenciliginin biyolojik tabanl algoritmalarla modellenmesiyle ilgili ve PSO’nun tek amagl ve
¢ok amaglt smiflandirma kural madenciliginde kullanimi ile ilgili asagidaki calismalar

yayimlanmistir [10, 14, 55, 56]:

o “Mining Fuzzy Classification Rules Using an Artificial Immune System with
Boosting”, ADBIS 2005, Lecture Notes in Computer Science, Springer-Verlag, 3631,
283 — 293, Eyliil, 2005.

o« “FCACO: Fuzzy Classification Rules Mining Algorithm with Ant Colony
Optimization”, ICNC 2005, Lecture Notes in Computer Science, Springer-Verlag, 3612,
787 — 797, Agustos, 2005.

o “Modified Particle Swarm Optimization Based Multi-Objective Rule Mining”, INISTA
2007, 195-199, Istanbul, Turkey, 2007.

o “Simiflandirma Kurallarmin Pargacik Siirii Optimizasyon Algoritmasiyla Kesfi”, 62-66,

ASYU-INISTA 2006, Istanbul, Haziran, 2006.
Yedinci boliimde, ii¢lincii boliimde 6nerilen kaotik haritali PSO algoritmalari, dérdiincii

bolimde oOnerilen kaba PSO algoritmasi ve altinct bolimde Onerilen ¢ok amaglhi PSO

birlestirilerek ¢ok amacl kaba kaotik PSO algoritmalar1 6nerilmistir ve yine bir optimizasyon
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problemi olarak algilanmasi gereken nicel degerler iceren veritabanlarinda birliktelik kural kesfi
alaninda uygulamalar1 yapilip performans karsilastirmalar1 verilmistir.
Sekizinci boliimde ise tezde yapilan ¢aligsmalar degerlendirilmis ve gelecek caligmalara

151k tutmasi i¢in yeni Oneriler sunulmustur.
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2. PARCACIK SURU OPTIiMIZASYONU

2.1. Giris

Gergek hayatta sosyal varliklar problemlerin ¢ozlimiinii, ortak hareket ederek daha kisa
zamanda bulabilmektedir. Bazen tek baslarma hicbir is yapamayan varliklar, toplu hareket
ettiklerinde ¢ok zekice davranislar sergileyebilmektedir. Bir topluluga ait bireyler, en iyi bireyin
davranisindan ya da diger bireylerin davraniglarindan ve kendi deneyimlerinden yararlanarak
yorum yapmakta ve bu bilgileri ileride karsilasacaklar1 problemlerin ¢dziimleri i¢in bir arag
olarak kullanmaktadirlar. Ornegin, bir canli siiriisiinii olusturan bireylerden birisi bir tehlike
sezdiginde bu tehlikeye karsi tepki verir ve bu tepki siirii iginde ilerleyip tiim bireylerin
tehlikeye kars1 ortak bir davranis sergilemesini saglar. Sosyal varliklarin bu tiir davraniglarinin
sayisal ortamlardaki simiilasyonlariyla, bunlarin gesitli problemlerin ¢6ziimiinde kullanilabilir
sezgiseller oldugu gosterilebilir.

Cogu miihendislik problemlerinin ¢éziilmesinde sezgisel yontemlerin kullanilmasi son
yillarda 6nemli bir oranda artmaktadir. Bunun nedenleri, egim bilgisine gerek duyulmamasi ve
bu ylizden matematiksel modelin ¢ikarilamadigr ve egim bilgisinin tiiretilemedigi ya da
tiiretilmesinin ¢ok maliyetli oldugu problemlerde iyi sonuclar alinabilmesi; hesaplama giiciiniin
iyl olmasi; uygulamasinin basit olmasi ve doniistiiriilebilir yani bir problem i¢in yazilmig bir
sezgisel programin kolaylikla bagka problemlere uygulanabilir olmasidir.

PSO teknigi de popiilasyon tabanli sezgisel arama ve optimizasyon yontemidir ve
temelde isbirligini esas alir. Bu yontemde problem i¢in aday cozlimler parcacik olarak
adlandirilir. Temel PSO’da bir pargacigin baslica 6zellikleri sunlardir: pozisyon, hiz (ya da daha
acik olarak pozisyonu degistirmek icin ona uygulanan bir operatdr), bilgiyi komsularla
degistirme kabiliyeti, bir 6nceki pozisyonu hatirlama kabiliyeti ve bir karar vermek i¢in bilgiyi
kullanma kabiliyeti [57].

Uyarlamali Kiiltiir Modeli pargacik siiriilerinin temelini olusturmaktadir. Bu teori
kiiltiirel uyarlamanin temelinde degerlendir, karsilastir ve taklit et olarak ii¢ ilkenin oldugunu
belirtmektedir [57].

Yasayan organizmalar i¢in en hazir davranigsal karakteristik belki de uyariy1
degerlendirme, yani pozitif ya da negatif, ¢ekici ya da itici olarak degerlendirme egilimidir.
Ogrenme, degerlendirme olamadan gerceklesemez. Degerlendirmenin kendisi, tek basina
karsilastirma kabiliyeti olmadan kullanissiz ve imkansizdir. Uyarlamali Kiiltiir Modelindeki ve
pargacik siriilerindeki bireyler, kendilerini komsulariyla karsilastirir ve sadece kendilerinden

daha iistiin olan komsularini taklit eder. Taklit etme alicinin agisindan deneyim paylasmanin en
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basit formudur, sadece gézlemi degil, amag gerceklestirme ve zamanlama yeterliligini de igerir
[57].
PSO algoritmalarinda bir pargacik, kendi deneyimini yani en iyi ge¢mis pozisyonunu ve

en basarili komsusunun deneyimini hesaba katarak bir sonraki hareketinin yoniine karar verir.
2.2. Parcacik Siirii Optimizasyonu

Sezgisel yontemlerden biri olan PSO teknigi ilk olarak kus ve balik siiriilerinin
hareketlerinden esinlenerek dogrusal olmayan niimerik problemlere optimal sonuglar bulmak
icin 1995-1996 yillarinda sosyolog-psikolog James Kennedy ve elektrik miihendisi Russel
Eberhart tarafindan ortaya atilmistir. PSO popiilasyon tabanli stokastik bir optimizasyon
yontemi olup ¢ok parametreli ve ¢ok degiskenli optimizasyon problemlerine ¢oziimler iiretmek
icin kullanilmaktadir [19, 58, 59].

Parcacik siirii kavramm basitlestirilmis sosyal sistemin bir simiilasyonu olarak ortaya
cikmistir. Baslangigtaki amag, kus ya da balik siirii koreografisinin grafiksel olarak
simiilasyonlarin1 yapmakti. Ancak grafiksel simiilasyondan sonra, parcacik siirli modelinin bir
optimizasyon yontemi olarak kullanilabilecegi kesfedilmistir.

Kus topluluklar gercek yiyecek kaynagimi bilmemelerine ragmen, yiyecek kaynagindan
ne kadar uzakta olduklarmi 6grenmeye calisirlar. Ogrenmek icin izlenen yontem yiyecek
kaynagina en yakin olan kusu izlemektir. PSO’da her bir kus parcacik olarak, kus toplulugu da
stirli olarak temsil edilir. Par¢acik hareket ettiginde, kendi koordinatlarinin uygunluk degeri yani
yiyecege ne kadar uzaklikta oldugu hesaplanir. Bir parcacik, koordinatlarini, hizin1 yani ¢6ziim
uzayindaki her boyutta ne kadar hizla ilerledigi bilgisini, simdiye kadar elde ettigi en iyi
uygunluk degerini ve bu degeri elde ettigi koordinatlar1 hatirlamalidir. C6ziim uzayinda her
boyuttaki hizinin ve yoniiniin her seferinde nasil degisecegi, komsularinin en iyi koordinatlar
ve kendi kigisel en iyi koordinatlarinin birlesiminden elde edilecektir.

PSO’nun 6nemli ozelliklerinden ikisi uygulama kolaylifi ve egim bilgisine gerek
duymamasidir. GA kullanilarak ¢oziilebilen ¢ogu problemi iceren farkli optimizasyon
problemlerinin genis bir kiimesini ¢6zmek icin kullanilabilir. Buna, sinirsel ag egitimi [60] ve
fonksiyon minimizasyonu gibi [61] problemler 6rnek olarak verilebilir. Ortalamada, GA ve
PSO’nun aym etkinlige sahip oldugu (¢6ziim kalitesi) ancak PSO’nun hesapsal olarak daha
etkili oldugu yani daha az fonksiyon degerlendirmesi kullandig1 belirlenmistir [62]. Ayrica
PSO’da belirlenmesi gereken parametre sayis1 daha azdir ve uygulamasi daha kolaydir.

Cogu popiiler optimizasyon algoritmasi, egim-tabanli algoritmalar gibi deterministiktir.
Evrimsel algoritma ailesine bagli algoritmalara benzer olarak PSO, hata fonksiyonundan

tiiretilen egim bilgisine ihtiyag duymayan stokastik bir algoritmadir. Bu 6zellik, PSO’ nun, egim
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bilgisinin elde edilemedigi ya da elde edilmesinin hesapsal olarak ¢ok maliyetli oldugu

problemlerde kullanilmasini saglar.
2.2.1. PSO Algoritmasi

PSO’nun temelinin sosyolojik esinlemeli oldugu sdylenebilir. Ciinkii algoritmanin
orijinal fikri, kuslarin siirii halinde toplanmasiyla iliskilendirilmis sosyolojik davranislarina
dayanir [58]. Kus, balik ve hayvan siiriilerinin bir “bilgi paylasma” yaklasimi uygulayarak
cevrelerine adapte olabilme, zengin yiyecek kaynagi bulabilme ve avcilardan kagabilme
yeteneklerinden esinlenmistir.

PSO, optimum ya da optimuma yakin ¢6ziim bulmak i¢in dnce her biri aday ¢6ziimil
sunan bireyler (parcaciklar) olusturur. Bu bireylerin olusturulmasi gelisigiizel, diizenli ya da her
iki sekilde yapilabilir. Bireylerin bir araya gelmesinden ¢o6ziim icin gergeklestirilen
popiilasyonumuz (siirli) meydana gelir. Pratikte, 2 ve 100 aras1 boyuttaki cogu gercek
problemler i¢in 20 pargacikli bir siirii oldukga iyi ¢aligmaktadir. Uyarlamali siirii boyutu da
kullanilabilir. PSO, bireyler arasindaki bilginin paylasimini esas alir. Her bir parcacik kendi
pozisyonunu siirlideki en iyi pozisyona dogru ayarlarken, bir 6nceki tecriibesinden de yararlanir.
s slirliniin boyutu olsun. Her i pargacigi, birkac karakteristige sahip bir nesne olarak temsil

edilebilir. Bu karakteristikler asagidaki sembollere gosterilir:

x;: Pargacigin mevcut pozisyonu;
v;: Par¢acigin mevcut hizi;

y;: Pargacigin kisisel en iyi pozisyonu.

i pargacigryla iliskilendirilmis kisisel en iyi pozisyon, pargacigin ziyaret ettigi (bir
onceki x; degeri) ve bu pargacik i¢in en yiksek uygunluk degerini veren en iyi pozisyondur. Bir
minimizasyon isi i¢in daha diisiik bir fonksiyon degeri saglayan bir pozisyon daha yiiksek
uygunluga sahip kabul edilir. f sembolii minimize edilen ama¢ fonksiyonunu gostermek iizere
kisisel en iyi pozisyon igin giincelleme denklemi ¢ zaman aralifina bagl olarak (2.1)’de

gosterilmistir.

2.1)

PSO’nun global ve lokal adli iki versiyonu bulunmaktadir [63]. iki algoritma arasindaki

fark verilen bir parcacigin direkt olarak etkilesim i¢inde oldugu pargaciklarin kiimesine baglidir
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ve ¥ sembolii, bu etkilesimi temsil igin kullanilacaktir. iki modelin detaylar1 asagida tam olarak

agiklanacaktir. Global modelde kullanilan  *nin tanimi Esitlik (2.2)’de sunulmustur.

30)€ o) 7)o, @1 (3(0) = min {7 (v () S (0 () S (0, )} (22)

Bu tanim,  ’nin herhangi bir pargacik tarafindan simdiye kadar kesfedilen en iyi
pozisyon oldugunu belirtir. Algoritma iki bagimsiz gelisigiizel diziyi kullanir, », ~ U(0, 1) ve 7,
~ U(0, 1). Bu diziler (2.3)’te gosterildigi gibi algoritmanin stokastik dogasmi etkilemek igin
kullanilir. Burada ¢; ve ¢, katsayilar1 6grenme faktorleridir ve hizlanma katsayilar: olarak da
adlandirilir. Bu katsayilar, bir iterasyonda bir parcacigin alabilecegi adimimn maksimum
boyutunu etkiler ve her parcacigr kisisel en iyi ve global en iyi pozisyonlarina dogru g¢eken,
stokastik hizlanmayi ifade eder. Diisiik degerlerin se¢ilmesi pargaciklarin hedef bélgeye dogru
¢ekilmeden once, bu bélgeden uzak yerlerde dolasmalarima imkan verir. Ancak hedefe ulagsma
stiresi uzayabilir. Diger yandan, yiiksek degerlerin secilmesi, hedefe ulasmay1 hizlandirirken,
beklenmedik hareketlerin olusmasina ve hedef bolgeye ulasilmamasina sebep olabilir. ¢; ve
cy’nin degerleri 0 < ¢;, ¢; < 2 sabitleriyle smirlanir. Ancak biligsel katsaymnin olarak da
isimlendirilen ¢;’in biraz daha biiyiik secilmesi ve ¢; + ¢; = 4 durumunun saglanmasi halinde
daha iyi sonuglarin almabilecegi gosterilmistir. Hiz giincelleme adimi her boyut je 1...n i¢in
ayr1 olarak belirlenir. v;;, i. par¢acikla iliskilendirilmis hiz vektoriiniin j. boyutunu gosterirse hiz

giincelleme denklemi (2.3)
)=, 0, O (0, ) s, 013, 0) -, 0) o

olur. Buradan c¢,’in bu pargacigin kisisel en iyi pozisyonunun yoniinde adim biiyiikligiinii
ayarladig1, ¢,’nin de global en iyi pargacigin yoniinde maksimum adim biiyiikliigiinii ayarladigi
aciktir. v;; degeri, par¢acigin arama uzayimdan ayrilma olasiligim azaltmak i¢in [-Viaks, Vinaks)
degerine sikistirllmigtir. Eger arama uzayt [-X,us, Xmaks] Sinirlar ile tanimlanmissa, v, 1n
degeri tipik olarak v, = kXX,us degerine ayarlanir ve 0.1<k<1.0 olur [64]. Ayrica Vs
arama uzay1 biiyiikliigliniin yarisina esitlenebilir.

Her pargacigin pozisyonu, bu pargacik i¢in yeni hiz vektorii kullanilarak
x,(e+1)=x,(0)+v,(e+1) (24)

seklinde giincellenir.
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Xi (e[l u,] ve 1<n<N olmak iizere /, ve u, n. boyut i¢in alt ve {ist sinirlari
gostermektedir. PSO algoritmasinin ¢aligmasi esnasinda, boyutlar i¢in alt sinir ya da {ist sinirin
agilmas1 durumunda bir diizeltme islemi uygulanmasi gerekmektedir. Bu islem alt sinir ve iist

sinir agilmast durumunda sirastyla

x=xit a0 XX (u,(x;)-1,(x;)) (2.5)
X=X~ XTX (un(xi)'ln(xi)) (26)

olarak gerceklestirilebilir. Burada & [0, 1] araliginda kullanic1 tanimli bir degerdir ve » ~ U(0,
1) olarak segilir.

Global model daha hizli bir yakinsama sunar, ancak saglam olmayabilir. Bu model
stirtideki tlim pargaciklar karsisinda global en iyi par¢acik olarak adlandirilan sadece tek bir “en
iyi ¢6ziim”li muhafaza eder. Bu pargacik, diger tiim pargaciklari ¢geken bir ¢ekici olarak hareket
eder. Er ge¢ tiim parcaciklar bu pozisyona dogru hareket edecektir ve eger diizenli olarak
giincellenmezse pargacik erken yakinsayabilir. ¥ ve v; i¢in giincelleme denklemlerine
bakildiginda y global en iyi pozisyondur ve global en iyi par¢acik olarak bilinen pargaciga
aittir.

Lokal model ¢oklu ¢ekicileri devam ettirerek erken yakinsamayi onlemeye calisir. Her
pargacik i¢in daha sonra lokal (kisisel) en iyi parcacik, ¥ {ninse¢ildigi par¢aciklarin alt kiimesi
tamimlanir. 3 ; sembolil lokal en iyi pozisyon ya da en iyi komsuluk olarak adlandirilir. /

biiyiikliiglinde bir komsuluk i¢in, pargacik indisinin s’de katlandig1 varsayilirsa, lokal

giincelleme denklemleri asagidaki gibi olur:

S L () S (W U () B W (Y O (AN () RN ) 2.7)

P.(t+1)eN, | f(3,(¢+1)=min{f(a)}, VaeN, (2.8)
Biitiinliik igin tekrar hiz giincelleme denklemini yazilirsa:

v (t+1)=v, () +cen Oy, (©)-x O]+ e, (O, () x, (¢)] (2.9)

Nnin alt kiimesi igin segilen pargaciklarin arama uzayi domeninde birbirleriyle higbir
iligkisi yoktur, se¢cim sadece pargacigin indeks numarasina baglidir. Bu iki nedenden dolay1

yapilmaktadir: herhangi bir kiimeleme yapilmadigi i¢in hesapsal olarak masrafli degildir ve
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arama uzaymda mevcut yerlerinden bagimsiz olarak iyi ¢oziimler hakkinda bilginin tiim
parcaciklara yayilmasini destekler.

[ = s durumunda global model lokal modelin 6zel bir durumudur. / = 1 ile yapilan
deneyler lokal algoritmanin global versiyona gore daha yavas yakinsadigini, fakat degersiz bir
lokal minimuma takilma olasiliginin daha az oldugunu gostermistir.

Global model daha hizlidir, fakat bazi problemler i¢in lokal optimuma takilabilir.
Global model hizli bir sonu¢ almak igin, lokal model de aramayi incelestirmek igin
kullanilabilir.

Bir pargacigin (2.3) denklemindeki ii¢ terime bagli olarak ve (2.4) pozisyon giincelleme

denklemine gore hareketi Sekil 2.1°de gosterilmistir.

Vi(t) C]I‘I(yi(t)-xi(t))

Sekil 2.1. Pargacigin hareketi

Algoritma, (2.3) ve (2.4)’te verilen giincelleme denklemlerinin tekrarli tatbikinden
olusur. Sekil 2.2’de, PSO algoritmasinin temel adimlar1 goriilmektedir. 1ki if’li ifade (2.1) ve
(2.2) tanimlarinin sirayla tatbikinin esdegeridir. Algoritmanin ilk adiminda ifade edilen

baslatma, asagida verilen adimlardan olusur:
1. Her x;; koordinatin1 tim i€ l...s ve j€l..n i¢in [-Xpuko Xmaks] araliginda diizenli rassal

dagilimdan tiiretilmis bir degere ata (Parcaciklarin baslangi¢c pozisyonlari arama uzayi

boyunca dagitilir).
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Her v;;’yi iel..s ve jel..n i¢in [-Vyaus, Vmas) aralifinda diizenli rassal dagilimdan
tiiretilmis bir degere ata (Alternatif olarak parcaciklarin hizlari 0’a atanabilir ¢iinki
baslangi¢ pozisyonlar1 zaten gelisigilizel atanmustir).

y; =x; Viel..s olarak ata (Alternatif olarak her parcacik igin iki rassal vektor iiretilebilir
ve en uygun vektdr y,’ye daha az uygun olam1 da x;’ye atanabilir. Bu, ek fonksiyon
degerlendirmesi gerektirir, bu yiizden genellikle ilk once agiklanan daha basit yontem

kullanilir).

x;j ve v;;’ye gelisiglizel baslangi¢ degerleri vererek siiriiyii olustur

Do

For i =1 to Parcacik sayisi
if fix;) <Ay, then y; = x; // lokal (kisisel) en iyiyi giincelle
¥, = min(Xeomgutar) // global en iyiyi giincelle

For j =1 to Optimize edilen boyut sayis1

v,, =v,. +on lv.. - x _|+cr |7, - x, |/ hzvektdriinii giincelle
Xij = Xij + vij // pozisyon vektoriinii giincelle
Next j
Next i

Until Sonlandirma kriteri

Sekil 2.2. Orijinal PSO algoritmasinin temel adimlari [56]

Sekil 2.2°de ifade edilen sonlandirma kriteri ¢dziilen problem tipine baglidir. Genellikle,

algoritma sabit sayida fonksiyon degerlendirmesine (sabit iterasyon sayisina) kadar ya da

belirlenen bir hata sinirina ulasincaya kadar calistirilir. Literatiirde on ii¢ ¢esit sonlandirma

kriteri agsagida isimleri verilen alt1 sinifta toplanabilir [65].

Referans kriteri: Siirliniin belirli bir yiizdesi bir optimuma yakinsamigsa sonlandirilir.
Tiikenme tabanlh kriter: Belirli nesil sayisi, amag¢ fonksiyon degerlendirme sayis1 ya da
merkezi islem birimi zamani sonlandirma i¢in kriter sayulir.
fyilesme tabanh kriter: Eger kiiciik ilerlemeler elde ediliyorsa algoritma sonlandirilabilir.
Bunun da farkli versiyonlari vardir [65, 66]:

a. En iyi amag fonksiyon degeri, belli nesil sayist boyunca belirli bir esigin

altindaysa sonlandirilir.
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b. Ortalama ama¢ fonksiyon, degeri belli nesil sayis1 boyunca belirli bir esigin
altindaysa sonlandirilir.

c. Belirli bir nesil boyunca herhangi bir komsulukta bir ilerleme olmuyorsa
sonlandirilir.

4. Hareket tabanh kriter: Bireylerin hareketine bagli sonlandirma kriteridir ve iki versiyonu
bulunmaktadir [65, 66]:

a. Ortalama amag fonksiyon degerine bagli olarak (amag¢ uzay1) popiilasyondaki
hareket, belirli nesil sayis1 i¢in belirli bir esigin altindaysa sonlandirilir.

b. Pozisyonlara bagli olarak (parametre uzayi) popiilasyondaki hareket, belirli
nesil sayist i¢in belirli bir esigin altindaysa sonlandirilir.

5. Dagihim tabanh Kriter: Bireyler birbirine ¢cok yakinsa yakinsamaya ulagilmigtir. Bu kriterin
de, ilk Ui¢li parametre uzaymnda sonuncusu da amag¢ uzaymda uygulanan dort versiyonu
bulunmaktadir [65, 66]:

a. Her vektorden en iyi popiilasyon vektoriine olan uzaklik, belirli bir esigin
altindaysa sonlandirilir.

b. Popiilasyonun en iyilerinin belirli bir yiizdesinin en iyi popiilasyon vektoriine
olan uzakliginin, belirli bir esigin altinda olup olmadig test edilir. Bir dnceki
versiyon tiim popiilasyon iiyelerinin yakinsamasim bekler. Ancak optimum
deger zaten bulunmusgsa fazladan hesapsal islem yapilacaktir. Bu yontem
digerine gore daha iyi olabilir [65, 66].

Vektorlerin standart sapmasi belirli bir esigin altindaysa sonlandirilir.

d. En iyi ve en kotli ama¢ fonksiyon degeri arasindaki fark belirli bir esigin
altindaysa sonlandirilir.

6. Birlesik kriter: Bu kriter de iki sekilde uygulanabilir [65, 66]:

a. Eger belirli bir nesil boyunca ortalama iyilesme, belirli bir esigin altindaysa
maksimum uzakligin belirli esigin altinda olup olmadigi test edilir.

b. En iyi ve en koétii amag fonksiyon degerleri arasindaki fark, belirli bir esigin
altindaysa en iyi bireylerin belirli bir yiizdesinin en iyi ¢6ziim olan maksimum
uzakligiin belirli bir degerin altinda olup olmadig: test edilir (en az belirli bir

yiizdedeki bireyler uygun bolgede olmalidir).

Algoritmanin ¢aligmasi 6zet olarak soyledir: Baslangigta, uygunluga bagli olarak bir
parcacik, parcaciklarin bir komsulugunda en iyi parcacik olarak tanimlanir. Sonra tiim
parcaciklar bu pargacigin yoniinde ve daha dnce kesfettikleri kendi en iyi ¢oziimlerinin yoniinde

hizlanir. Bazen pargaciklar mevcut en iyi parcacigin Otesinde arama uzayini arastirarak
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hedeflerinin disina ¢ikacaklardir. Diger pargaciklarin yonleri degistirdigi ve yeni ‘en iyi’
parcacigin yoniine gittigi durumda, tiim pargaciklarin yoldayken daha iyi parcaciklar1 kesfetme
olanaklar1 da vardir. Arama uzaymda farkli yonlerden mevcut en iyi ¢0ziime yaklagmasi
sayesinde, bu komsu ¢oziimlerin baz1 pargaciklar tarafindan kesfedilme sans1 yiiksektir.
PSO’nun temel adimlarimi gosteren akis diyagrami Sekil 2.3°te, bu akis diyagraminin
genisletilmis versiyonu ise Sekil 2.4’te goriilmektedir. Burada, i parcacik indisini; j boyut
indisini; boyut problem boyutunu; sirii boyutu ise pargacik sayisini temsil etmektedir. Sinr
sartt uygula kisminda boyutta sinirlama asildiginda, yani minimum ve maksimum degerler

disina ¢ikildiginda sinirlandirilan araliga donmek igin gereken islemler yapilir.

Suriy i gelisigiizel
pozisyon ve
hizlarla baslat

?

Tim pargaciklarin
uygunlugunu
hesapla Bir
sonraki

l surii

nesli
Her pargacigin
lokal en iyi ve

global en iyi
porisyonunu ara

l

Her pargacik i¢in
hiz1 giincelle

l

Her pargacik i¢in
pozisyonu
giincelle ve iligtir

Evet Hayir

Dur

Sekil 2.3. PSO’nun akis diyagrami

Hiz giincelleme denklemi (2.3)’teki ikinci terim, bilisle iliskilendirilmistir. Yani sadece
pargacigin kendi deneyimlerini hesaba katar. Ugiincii terim ise pargaciklar arasindaki sosyal
etkilesimi temsil eder. Ozet olarak, PSO hiz giincelleme terimi bir bilissel ve bir sosyal terimden

olusur. Bazi problemlerde ilk sonuglar sosyal bilesenin daha 6nemli olabilecegini gosteriyor
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olsa da, bu iki terimin bagil 6nemi hakkinda fazla bilgi yoktur. Parcaciklar arasindaki sosyal

etkilesim igbirliginin bir gostergesidir.

v, vex,, leri
selisiglizel
olugtur

N3

i=1+1

i=1

Evet
S, o,

Hayir

v, vex, leri
guneelle ve
sinir sartint

uygula

Sonlandirma
kriteri

Sekil 2.4. PSO’nun genisletilmis akis diyagrami

2.2.1.1. Orijinal PSO Algoritmasinda Bir Par¢acigin Hareketinin Sayisal Ornegi

Sadece iki degiskenli basit bir problem ele alinirsa x; par¢acigi iki reel sayidan olusan

bir vektor olarak temsil edilir. Yani X; = <x;;, x;> olur. Pargacik komsuluk yapisinin global
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model seklinde oldugu ve bu komsuluk yapisinin algoritma calismast boyunca sabit oldugu
varsayilacaktir. Sekil 2.5’te, dort pargaciktan olusan siirliniin global komsuluk yapisi ve arama
uzayinda parcaciklarin pozisyonlan goriilmektedir. Pozisyonlar i¢in x ekseni birinci boyut (j=1),
v ekseni de ikinci boyut (j=2) olarak se¢ilmistir.

=2
N

b [ & @
v 3 @ Global en iyi

GAQ |

Kisisel en iyi ) .
1 2 4 5 J

Sekil 2.5. Komsuluk yapisi ve arama uzayinda pargaciklarin # aninda pozisyonlari

Sadece birinci pargacik (X;) gz Oniine almip bir adim sonra nasil hareket edecegine
bakilirsa pargacigin hiz1 (2.3) denklemine gore giincellenecek ve sonra (2.4) ile bir sonraki

pozisyona gelecektir. ¢; = ¢, = 2 segildigi varsayilirsa;

j =1 1(}111 V/’/(t) = 1, r,),(t) = 04, I"g)/(f) =0.1
j =2 1(}111 V/’g(t) = 2, r],g(t) = 025, I’g,g(t) =0.25

j=1 boyutunda

v (t+1)=1+2x04x[1-1]+2x0.1x[4-1]=1.6

x,(t+1)=1+1.6=26

j=2 boyutunda

v, (t+1)=2+2x025x[1-3]+2x0.1x[4-3]=0.2

x,(t+1)=3+02=32

olur. Boylece X; pargacigi PSO giincelleme denklemlerinden sonra yeni (2.6, 3.2) pozisyonuna
hareket edecektir. Bu durumda X;’in yeni pozisyonu Sekil 2.6’da gosterildigi gibi olur. Bazi

boyutlarda siir agsma problemi ile karsilagilinca X;’in hizi i¢in bazi sinirlamalar getirilebilir ve
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boyut simirlarinda kalmasi1 saglanabilir. Bu benzer giincelleme denklemleri, PSO’nun her

iterasyonunda her pargacik i¢in uygulanir.

)

> =1

Sekil 2.6. ++1 aninda X, parcaciginin pozisyonunun giincellenmesi

2.2.1.2. PSO ve Evrimsel Hesaplama

PSO’nun evrimsel hesaplama mantigina benzeyen bazi dzellikleri vardir. Ornegin, PSO
potansiyel ¢oziimleri temsil eden bireylerin bir popiilasyonunu devam ettirir ve bu da tim
evrimsel hesaplama mantiginin ortak bir o6zelligidir. Her iki yontem de popiilasyonu
degerlendirmek i¢in uygunluk degerlerine sahiptir. Her ikisi de popiilasyonu giincellemeyi ve
optimumu aramay1 rastsal yontemlerle yapar. Her iki sistem de basariy1 garanti etmez.

Eger kisisel en iyi pozisyonlar (y;) popiilasyonun bir pargasi olarak ele alinirsa, se¢imin

acik olarak zayif bir formu olusur. Bir ( # + A4 ) evrim stratejileri algoritmasinda ¢ocuklar atalart

ile yarisir ve eger daha uygun iseler onlarin yerini alirlar. (2.1)’deki giincelleme denklemi bu
mekanizmaya benzemektedir; buradaki fark her kisisel en iyi pozisyon (ata), mevcut pozisyon
eski kigisel en iyi pozisyonundan daha uygun olursa, sadece kendi kisisel en iyi pozisyonu
(cocuk)’nun yerini alabilir. Ozetle, PSO’da se¢imin zayif bir sekli s6z konusudur.

Hiz giincelleme denklemi, gergek-degerli GA’lardaki aritmetik caprazlamaya
benzemektedir. Normalde, aritmetik ¢aprazlama, igerilen atalarin lineer karisimi olan iki ¢ocuk
tiretir. v;;(z) terimi olmayan (2.3)’teki PSO hiz giincelleme denklemi iki ata i¢eren ve tek bir
cocuk tireten aritmetik ¢aprazlamanin bir formu olarak diisiiniilebilir. Alternatif olarak, v;;(?)
terimi olmayan hiz giincelleme denklemi bir mutasyon operatdrii olarak da diisiiniilebilir.

v;;(t) terimini modellemenin daha iyi bir yolu, her iterasyonu bir 6nceki popiilasyonu
yenisiyle degistirme (6lim ve dogum) olarak diisiinmektense, bir adaptasyon siireci olarak
diisiinmektir. Bu sekilde x; degerleri degistirilmez hiz vektorleri v; kullanilarak adapte edilir. Bu,

diger evrimsel hesaplama algoritmalar1 ve PSO arasindaki farki daha agik yapar. PSO pozisyon
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ve hizla (pozisyondaki degisim) ilgili bilgiyi korur; tersine geleneksel evrimsel algoritmalar
sadece pozisyonlarin izini saklar.

Boylece PSO ve cogu evrimsel hesaplama algoritmalar1 arasinda bir Ortiisme oldugu
goriilmektedir, fakat PSO mevcut haliyle diger evrimsel hesaplama algoritmalarda mevcut
olmayan bazi karakteristiklere sahiptir. Ozellikle, PSO pargaciklarin pozisyonlarint modelledigi
gibi hizlarin1 da modeller. PSO’da parcaciklar kendilerini dahili hizla giincellerler ve algoritma
icin dnemli olan hafizaya sahiptirler. GA’larla karsilastirildiginda, PSO’daki bilgi paylasim
mekanizmasi oldukca farklhidir. GA’larda kromozomlar bilgiyi birbirleriyle paylasir. Boylece
tiim popiilasyon bir optimum boélgeye dogru tek bir grup olarak hareket eder. PSO’da, sadece
global en iyi (ya da kisisel en iyi) bilgiyi digerlerine dagitir. Bu tek yonlii bir bilgi paylasim
mekanizmasidir. GA’larla karsilastirildiginda tiim pargaciklar, c¢ogu durumlarda lokal
versiyonda bile hizlica en iyi ¢6ziime dogru yakinsama egilimindedir.

GA’lara gore PSO’nun uygulamasi daha basittir ve ayarlanmasi gereken daha az
parametresi vardir. En iyi parametre kiimesinin belirlenmesi hem zor hem de fazla zaman
alabilmektedir. Ayrica bir sonraki neslin belirlenmesi isleminde, GA’lar secim stratejisinin
belirlenmesi ve fazla hafiza gerektirirken, PSO pozisyon ve hiz vektdrlerini giincellestirir ve

strateji belirlemeye ihtiya¢ duymaz.
2.2.1.3. PSO’nun Denklem Koéklerinin Bulunmasinda Kullanilmasi

PSO’nun adim adim c¢alismasini gorebilmek i¢in basitge bir denklemin koklerinin
bulunmasi 6rnek olarak verilecektir. Bu tiir problemler i¢in PSO kullanilmasi ¢ok zaman alir.
Ancak PSO’nun adim adim ¢aligmasini gérebilmek i¢in bu basit 6rnek se¢ilmistir. Denklemimiz
f(x) = 3x-6 = 0, ve x€[0, 10] aralifinda olsun. Amacimiz, bu aralikta denklemimizin kokiinii
bulmak olsun. Pargacik sayimizin dort oldugunu varsayalim ve ¢; = ¢, = 1.3 i¢in bu tek boyutlu
problemde PSO’nun iki iterasyon boyunca nasil hareket edecegini gorelim. Denklemdeki x

degerleri dogrudan parcaciklarin pozisyon degerleridir. Uygunluk degeri olarak Uygunluk(x) =

%)x— 6| sec¢ilmigtir.

Oncelikle hiz ve pozisyon degerleri gelisigiizel iiretilir. Pozisyon degeri icin [0, 1]
araliginda tiretilen gelisiglizel say1 10 ile carpilsin ve hiz igin ise [0, 1] aralifinda degerler
iiretilsin. Buna gore baslangigtaki hiz ve pozisyon degerleri, ilk kisisel en iyi degerler, mevcut

uygunluk, kisisel en iyi uygunluk degerleri Tablo 2.1°de verilmistir.
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Tablo 2.1. Siirideki ilk parametrik degerler

Kisisel en iyi
Pargacik hizi Pargacik pozisyonu | Kisisel eniyi | Mevcut uygunluk

uygunluk
0.4692 2.8441 2.8441 0.3949 0.3949
0.9883 0.6478 0.6478 0.2465 0.2465
0.4235 5.8279 5.8279 0.0871 0.0871
0.3340 5.1551 5.1551 0.1056 0.1056

Burada dikkat edilirse global en iyi deger 0.3949 ve bunun da indeksi 1 olarak
goriilmektedir. Yani 2.8441 degerine sahip pargacik global en iyidir. Birinci iterasyon sonrasi

parcaciklarin hiz ve pozisyon giincellemeleri Tablo 2.2’de goriilmektedir.

Tablo 2.2. Birinci iterasyon sonrasinda degerler

) o o Kisisel en iyi
Pargacik hizi | Parcacik pozisyonu | Kisisel eniyi | Mevcut uygunluk
uygunluk
0.4692 3.3133 2.8441 0.2538 0.3949
4.2956 1.1170 1.1170 0.3775 0.3775
-4.0705 6.2971 5.8279 0.0776 0.0871
-1.3000 5.6243 5.1551 0.0920 0.1056

Birinci iterasyon sonucu global en iyi degerin 0.3775 oldugu ve bunun indeksinin 2
oldugu yani 1.1170 degerine sahip par¢acifin global en iyi oldugu goriilmektedir. ikinci
iterasyon sonucu giincellemelerle elde edilen yeni hiz ve pozisyon degerleri ise Tablo 2.3’te

verilmistir.

Tablo 2.3. ikinci iterasyon sonrasinda degerler

Kisisel en iyi
Parcacik hizi | Pargacik pozisyonu | Kisisel eniyi | Mevcut uygunluk

uygunluk
-1.9525 1.3608 1.3608 0.5215 0.5215
-0.9173 -0.8355 1.1170 0.1176 0.3775
-5.9163 4.3446 4.3446 0.1422 0.1422
-4.4260 3.6718 3.6718 0.1994 0.1994

Burada global en iyinin 0.5215 oldugu goriilmektedir. Bin iterasyon sonucu elde edilen

sonuglar ise Tablo 2.4’te verilmistir.
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Tablo 2.4. Bin iterasyon sonrasinda degerler

Pargacik hizi Pargacik pozisyonu Mevcut uygunluk
1.0e+003 * -4.6795 2.0080 41.6667
1.0e+003 * -4.6748 2.0020 166.6667
1.0e+003 * -4.6812 2.0176 18.9394
1.0e+003 * -4.6798 2.0077 43.2900

Burada global en iyi 2.0020 degeridir. Denklemin ger¢ek kokii de 2.0°dur.
2.2.2. PSO’ya Modifikasyonlar

PSO’ya literatiirde birgok ekleme, degisiklik ve gelistirmeler oOnerilmistir. Once

PSO’nun ikili versiyonu anlatilacak ve daha sonra gelistirmeler verilecektir.
2.2.2.1. ikili PSO

PSO’nun ikili versiyonu Kennedy ve Eberhart tarafindan gelistirilmistir [67]. Ikili kodlu
GA ve PSO ile ilgili karsilastirmalar yapabilmek i¢in kullanigh oldugu gibi, dogasinda ikili olan
problemleri temsil i¢in de kullanighdir. Tipik bir uygulama, agda iki diigiim arasinda 1’in
baglantt durumunu, 0’in ise baglantinin olmadigi durumu temsil ettigi sinirsel agin
baglantilarin1 temsil etmek olabilir. Daha sonra ikili PSO ag mimarisini gelistirmek igin
kullanilabilir.

Ikili versiyon x; ve y; bilesen degerlerini {0, 1} kiimesindeki elemanlardan alinacak
sekilde kisitlar. Ancak hizin, v;, degeri iizerinde herhangi bir kisitlama yoktur. Hizi, pozisyonlar
giincellemek i¢in kullanirken, hiz degeri de [0, 1] aralifina sinirlandirilir ve olasilik olarak ele

almir. Bu, sigmoid fonksiyonu kullanilarak

. 1
siglx )= ——— 2.10
g( ) 1+ exp(— x) (210)
seklinde yapilir. ikili siiriide kullanilan hiz terimi icin giincelleme
Vi,j(t+1): vi,j(t)+clrl,j(t)|_yi,j _xi,j(t)J+62r2,j(t)I_j}j _xi,j(t)J (2.11)
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olur. Bu hiz giincelleme denkleminin orijinal PSO’da kullanilandan farkli olmadigi
goriilmektedir. Genel pozisyon giincelleme denklemi yerine yeni bir olasiliksal gilincelleme

denklemi kullanilir, yani:

(2.12)

S —

x (t+1)= {0 if 1)z S%g("i,,‘(f +1))

" 1 if ry (t)< 51g(vi,j (t+1)
olur. Burada r;,(t) ~ U(0, 1) diizenli olasiliksal bir degiskendir. Bu denkleme bakilirsa, x;; nin
degerinin sig(v;;) = 0 oldugunda 0 olarak kalacag: agiktir. Bu durum v;; yaklasik olarak -10’dan
kii¢iik oldugu zaman ortaya ¢ikacaktir. Ay sekilde, sigmoid fonksiyonu v;>10 oldugunda
doyacaktir. Bunu 6nlemek igin, v;;’nin degerinin *4 simirinda tutulmasi onerilmistir [68]. Bu,
sig(4)~ 0.018 durum degistirme olasihig ile sonuglanir. Ikili PSO’yu agiklayan orijinal makale
Vaaks 1¢in daha bilylk esik, * 6, Onermistir ve bu da yaklasik olarak 0.0025 olasilig ile
sonuglanir [67].

Daha sonraki bir g¢aligma, ikili PSO’yu ¢ok modlu test fonksiyonunda GA ile
karsilastirmak icin kullanmustir  [69]. Ozelikle problem boyutu arttiginda cofu test
fonksiyonunda, ikili PSO’nun GA’lara gore daha hizli ¢6ziime ulastig1 [69] da gosterilmigtir.

Ayni vektdrde hem ikili hem de siirekli degerleri kullanmak miimkiindiir. Bu versiyon
melez sirii [68] olarak adlandirilmuistir. Aymi zamanda ikili-siirekli siirii olarak da
kullanilmaktadir. Son zamanlardaki calismalar, PSO’nun basit¢e ilgili nicelikleri gerekli
oldugunda ayriklastirarak gelisiglizel ayrik temsilleri de igermesi ig¢in Kkabiliyetlerini

genisletmistir.
2.2.2.2. Yakinsama Oram Gelistirmeleri

PSO’nun yakinsama oranini gelistirmek i¢in literatiirde birkag yontem onerilmistir. Bu
Oneriler genellikle, algoritmanin yapisim1 degistirmeksizin PSO giincelleme denklemlerinin
degistirilmesini igerirler. Bu, genellikle daha iyi bir lokal optimizasyon performansiyla bazen de

¢oklu lokal minimum igeren fonksiyonlarda performans diisiikliigiiyle sonuglanir.
Atalet Agirhg:

Giliniimiizde en yaygin kullanilan gelistirme Shi ve Eberhart [70] tarafindan Onerilen
atalet agirligidir. Atalet agirligi, bir onceki zaman adimi boyunca hizla iliskilendirilmis bir

Olcekleme faktoriidiir. Yeni hiz glincelleme denklemi
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Vij (t +1): in,j(t)+clr1,j(t)lyi,j (t)_xi,j(t)J+c2r2,j (t)b;, (t)_xi,j(t)J (2.13)

olur. Orijinal PSO hiz giincelleme denklemi w = 1 secilerek elde edilebilir. Shi ve Eberhart w
degerinin [0, 1.4] araligindaki etkilerini ve zamanla degisen degerlerini incelemistir. Bunlarin
sonuglari, we[0.8, 1.2] olarak se¢gmenin daha hizli yakinsamayla sonug¢landigini ama daha
bliyiik w degerlerinin (>1.2) daha fazla hata ile yakinsadigin1 géstermektedir.

Sekil 2.7°de, bir pargacik i¢in {i¢ olas1 hareketin agirliklt kombinasyonu goriilmektedir.

Sekil 2.8 ise, siirlideki pargaciklarin hizlanmalarinin iki boyutlu bir 6rnegidir.

l.okal I'n Parcacigin en 1y1
L dyi performansi

lobal [in y Komsularinin en iyi

i performanst

Sekil 2.7. Ug olas1 hareketin agirlikli kombinasyonu

Ug sosyal / bilissel katsay1 sirayla parcacigin su an kendisine, deneyimlerine ve
komsularina ne kadar giivendigini 6lger. Sosyal / biligsel katsayilar her zaman adiminda, verilen
aralik i¢inde genellikle gelisigiizel segilir.

Atalet agirligi, bir 6nceki hizin ne kadarimin bir sonraki zaman adiminda tutulacagim
yonetir. w’nin etkisi kisaca su sekilde 6zetlenebilir. ¢; = ¢, = 0 olarak secildiginde ve baglangi¢
hiz degerinin sifir olmadigi varsayildiginda 1.0’dan biiyiik bir w degeri, parcacigin degismeyip
oldugu gibi kalacagi maksimum hiza, v, (ya da -v,u), ivmelenmesine neden olacaktir.
1.0’dan daha kiiciik w degeri parcacigin hizi sifira ulagincaya kadar yavaglamasina neden
olacaktir. ¢;, c;# 0 oldugunda algoritmanin davranmisini tahmin etmek daha zor olur, ama Shi ve

Eberhart’in sonuclarina bagl olarak w degerlerinin 1.0’a yakin degerleri tercih edilir [70].
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Orjinal 1hz
Kisisel En lyiyce
Dogru thz.
Global En Iviye
Dogru 1hz

Bileske Hiz

Global en iyi

Kisisel en iyi \O
| ./
Kisisel en iyi%k 2 :

Sekil 2.8. Parcaciklarin hizlanmalarinin iki boyutlu bir 6rnegi

Viaks 1l€ atalet agirligl arasindaki etkilesimi incelemek igin de deneyler yapilmistir [71].
Bu deneyde ¢alisilan tek fonksiyon i¢in, 0.8 degerindeki bir atalet agirliginin v, = Xpats 0ldugu
durumlarda bile iyi sonuglar verdigi goriilmiistiir.

Bundan bagka, dort farkli amag fonksiyonu kullanarak atalet agirligimin 0.9’dan 0.4°¢

lineer olarak azaltan deneyler yapilmistir ve degisim

w=(w, —w, ) (maksiter — iter)
— M T

+w 2.14
maksiter : ( )

ile gosterilmistir. Burada w, ve w, sirasiyla atalet agirliginin baslangi¢ ve son degerleri; ifer su
anki iterasyon sayis1 ve maksiter de izin verilen maksimum iterasyon sayisidir.

Bu ayarlar, PSO’nun simiilasyonun baslangicinda (atalet agirlig1 biiylik oldugunda)
genis bir alan1 arastirmasina ve sonra daha kiiciik bir atalet agirligiyla aramay1 inceltmesine izin
verir. Atalet agirligi 1s1l igslemde [72] karsilasilan sicaklik parametresine benzetilebilir. Isil islem
algoritmasi sistemin sicakligin1 kademeli olarak azaltmak icin kullanilan sicaklik programi adi
verilen bir isleme sahiptir. Sicaklik ne kadar fazla olursa, algoritmanin da mevcut lokal
minimumun ¢ekim alaninin o kadar disindaki bir bolgeyi tarama olasiligr yiiksektir. Bu yiizden
uyarlamali bir atalet agirligi, 1s1l islem algoritmasindaki sicaklik programina esdeger olarak

goriilebilir.
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Kisaca, PSO’da atalet agirligi global ve lokal arama yetenegini dengelemek icin
kullanilir. Biiylik atalet agirligt global arama, kiicliik agirlik ise lokal arama yapilmasini
kolaylastinir. Atalet agirligi, lokal ve global arama arasindaki dengeyi saglar ve bunun
sonucunda yeterli optimal sonuca daha az iterasyonla ulasilir. Buradaki her parcacik, siiriideki
sadece en iyi pargacigin degil siiriideki diger tiim pargaciklarin tecriibelerinden de yararlanmig
olur.

Zheng ve arkadaslar1 ise zamanla artan atalet agirlig1 kullanmis ve bazi durumlarda daha
iyl sonuglar alindiginm1 belirtmislerdir [73, 74]. Bunlar da Denklem (2.14)’1 kullanmiglardir
sadece wy ve w,’yi yer degistirmislerdir.

Zangh ve arkadaslar ise atalet agirligini [0, 1] araliginda gelisigiizel liretilen sayilarla
carparak kullanmuglardir [75]. Lineer azaltmali atalet agirligimin ilk degerinin maksimum
iterasyon sayisma bagli olmast ve bunun da deney yapilmadan kestirilememesi, ayrica
algoritmanin ilk sathalarinda lokal arama kabiliyeti eksikligi ve son sathalarinda da global
arama kabiliyeti eksikliginden dolay1 bdyle bir yontem onermislerdir. Bu durumda giincelleme

denklemi
vi,j (t + 1) = roqjvi,j (t) + clrl,j (t)l_yi,j (t) - xi,j (t)J+ 02}/2,‘1' (f)[j/] (t) - xi,j (t)J (2-15)

olur; burada r,; ~ U(0,1)’dir. Yapilan deneylerde, lineer azaltmali atalet agirligiyla performans
karsilastirmasi i¢in sadece ii¢ adet kalite test fonksiyonu kullanilmis ve ikisinde daha etkili

sonu¢ alinirken digerinde yakin sonuglar alinmistir.
Bulanik Atalet Agirhgi

Shi ve Eberhart, atalet agirligim1 dinamik olarak adapte etmek igin bir bulanik
denetleyici dnermistir [76, 77]. Onerilen denetleyici giris olarak mevcut atalet agirhgmi ve o

ana kadar bulunan en iyi ¢oziime, f( ), tekabiil eden fonksiyon degerini kullanir. Cogu
problem farkli dlgeklerde fonksiyon degerlerine sahip oldugundan f( ) degeri normalize

edilmelidir. Denklem (2.16) fonksiyon degerlerini dl¢eklemek icin olasi bir yontemdir:

From (P) = ];iy)%j{: (2.16)

Jfnaks V€ frnin degerleri problem bagimlidir ve 6nceden bilinmelidir, ya da bazi tahminlerin

miimkiin olmas1 gerekir.
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Shi ve Eberhart, giris degerlerinin ait olabilecegi {i¢ bulanik kiimeye (diisiik, orta,
yiiksek) karsilik {i¢ bulanik iiyelik fonksiyonu kullanmay1 se¢mislerdir. Bulanik denetleyicini
cikisi ise atalet agirhiginin degerinde 6nerilen degisimdir [77].

Bulanik uyarlamali atalet agirlikli PSO lineer azalan atalet agirligi kullanan PSO ile
karsilastirilmistir. Sonuglardan bulanik atalet agirlikli PSO’nun belli parametre ayarlari igin, test
edilen bazi fonksiyonlarda daha iyi performans verdigi gortilmiistiir [76]. Aym1 zamanda tek
modlu fonksiyonlarda daha biliyilk performans elde edilmistir. Bu durum su sekilde
acgiklanmustir: Tek modlu fonksiyonlarin lokal minimumu yoktur, bu yiizden atalet agirligi her
iterasyonda belirlenebilir. Mantiksal olarak, algoritmanin g¢alismasmin baslangicinda biiylik
atalet agirligit PSO’nun minimizasyonun daha hizli bulundugu yaklasik alana yerlesmesine izin
verir. Bu alana ulagtiktan sonra atalet agirligi parcacigin hizin1 azaltmak i¢in kademeli olarak
azaltilmalidir. Bu pargaciklarin fonksiyonun yiizeyinde daha kii¢iik 6zelliklere yerlesmesine izin
verir. Bu islem zamanla atalet agirligi azaltilarak tahmin edilebilir, ancak bu mekanizma
PSO’nun daha kiiciik atalet agirligin daha da kullanilmasi gereken alana yerlesip yerlesmedigini
bilmez. Bazen PSO bu alana ulagsmak i¢in ¢ok zaman alir, bazen de onu ¢ok hizlica bulur.
Uyarlamali bulanik denetleyici hangi tip davranisin daha uygun oldugunu yaklasik olarak
tahmin edebilir. Bulanik denetleyicideki kurallar etkili olarak atalet agirligini, PSO minimuma
ne kadar yakinsa yani f, ()7) sifira ne kadar yakinsa, o oranda azaltir. Ancak ¢oklu lokal
minimuma sahip olan bir fonksiyonla ilgilenirken optimum atalet agirligin1 bulmak daha zordur.

Uyarlamali bulanik atalet agirlik denetleyicisi atalet agirligini optimize etmek i¢in umut
verici bir yontemdir ancak f,.s Ve fni in bilinmesini gerektiren uygulama zorluklari genel

bi¢gimde kullanilmasini zorlastirir.
Simirlama Faktorii

Clerc tarafindan yapilan bir ¢alisma smmirlama faktorinin yakinsamayi saglamaya
yardim edebilecegini gostermistir [78]. Smnirlama faktori modeli w, ¢; ve ¢, degerlerinin
yakinsamay1 saglayacak sekilde secilmesini agiklar. Bu degerleri dogru segerek v;; degerlerinin
[-Vinaks> Vimars] araliginda tutulmasi saglanir. Sinirlandirma modelinin bir tanesine bagli olarak

degistirilmis hiz giincelleme denklemi
vV (l +1)= )((vi,j (£)+ an, (t)lyi,j (l) —X; (t)J+ ey (t)[f/j (t) —-X,; (t)J) (2.17)

olur. Burada
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I:
‘2—(0—\/€02—4(/’

(2.18)

ve @ =c;+ ¢y @ > 4tir. ¢; = c; = 2.05 olup toplanirsa @ = ¢, +c, = 4.1 ve y = 0.7298 olur.
(2.17) denklemi ¢ kaldirilirsa

v, (t+1)=0.7298(v, , +2.05n, |y, —x,, |+2.05, |7, - x,, )

olur. 2.05x0.7298 = 1.4962 oldugundan bu (2.15)’te degistirilmis PSO hiz giincelleme
denkleminde c; = ¢; = 1.4962 ve w = 0.7298 kullanmayla esdegerdir.

Eberhart ve Shi yaptiklari ¢alismada sinirlama faktorii kullanarak (hizi belli degerlerde
tutmadan) daha hizli yakinsama orani elde etmislerdir. Ancak bazi test fonksiyonlarinda,
smnirlama faktorlii PSO izin verilen iterasyon sayisinda belirlenen hata degerine ulagmada
basarisiz kalmigtir. Eberhart ve Shi’ye gore problem pargaciklarin arama uzaymin istenen
bolgesinden ¢ok uzaklara ayrilmasidir [79]. Bu etkiyi hafifletmek igin v, parametresini x,,,q
degerine ayarlayarak sinirlama faktoriinii sinirda tutmay1 uygulamiglardir. Bu test i¢in kullanilan
hemen hemen tiim fonksiyonlarda algoritma, yakinsama orani ve hata esigine ulasma agisindan

artan bir performans gostermistir.
Secim

Angeline evrimsel hesaplama alanindan se¢im fikrini alan yeni bir PSO 6nermistir [80].
Angeline mevcut PSO’nun kisisel en iyi pozisyon ilave popiilasyon {iyeleri olarak
disiiniildiigiinde se¢imin zayif, ortiik sekline sahip oldugunu sdylemistir. Karsilastirma igin
Angeline tarafindan kullanilan global modelde bir parcacigin sadece kisisel en iyi ve global en
iyl pargaciga ulagimi vardir. Bu, popiilasyonun yarisindaki iiyelerle (mevcut pozisyonlar) diger
yarist (kisisel en iyi pozisyonlar) arasinda muhtemel etkilesimlerin biiylik oranda sinirlandig:
anlamina gelir.

Evrimsel hesaplamadaki se¢imin amaci genellikle arama uzayinin yakin gegmiste umut
verici sonuglar veren 6zel bir bolgesine yonelmektir. Daha sonra bu bdlge daha esasli aranir.

Angeline PSO’ya se¢im eklemek i¢in asagidaki yontemi onermistir:
1. Siiriiden bir pargacik al. Bu pargacigin uygunlugunu siirideki diger k£ parcacikla

karsilastir ve bu bireyi her seferinde karsilastirildigi parcaciktan daha iyi uygunluga

sahipse bir isaret vererek ddiillendir. Bu islemi her pargacik igin tekrar et.
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2. Parcaciklar bir 6nceki adimda toplanan igaretlere gore sirala.
3. Siiriiniin en Ustteki yarisim1 se¢ ve bunlarin mevcut pozisyonlarimi siiriiniin alt yarisinin

mevcut pozisyonlarina kopyala, kisisel en iyi degerlere bir islem yapma.

Bu islem PSO hiz giincelleme denklemi yiiriitiilmeden 6nce yapilir.

Angeline orijinal PSO ile (stmirlama faktorii ve atalet agirligi olmayan) se¢imli PSO’yu
karsilastirmis ve degistirilen PSO’nun tek modlu fonksiyonlarda ve Rastrigin fonksiyonunda
orijinalinden 6nemli oranda daha iyi sonuglar verdigini gormiistiir. Ancak Griewank
fonksiyonunda performansi kotii ¢ikmistir. Griewank fonksiyonunun bir¢ok lokal minimumu
vardir ve se¢im mekanizmasi aslinda lokal bir minimuma yakinsamayi desteklemistir. Eger bazi
parcaciklar makul bir minimum kesfederse, siiriiniin diger yarist da ayni lokal minimumum
alanina dogru hareket edebilir. Bu, algoritmanin arama uzayinin biiyiik bolgelerini arastirma
kabiliyetini etkiler ve bdylece global minimumu bulmasini engeller.

Secim boylece PSO’nun lokal arama kabiliyetini arttirir, ancak eszamanli olarak global

arama kabiliyetini engeller.

Zamanla Degisen Hizlanma Katsayilar1 (ZDHK)

Ratnaweera ve Halgamuge [81] biligsel bilesen ¢,;’i zamanla azaltan ve sosyal bilesen
¢,’yi zamanla arttiran bir zamanla degisen hizlanma katsayisili PSO oOnermistir. Baslangigta
biiyiik ¢; degerleri ve kiiciik ¢, degerleri ile pargaciklarin kisisel en iyiye dogru hareketlerinden
ziyade arama uzay1 boyunca hareket etmeleri istenmistir. Optimizasyonun ileriki kisimlarinda
kiigiik ¢; degerleri ve biiyik ¢, degerleri ise parcaciklarin global optimuma dogru

yakinsamalarini saglamaktadir. ZDHK denklemleri

maksiter — iter
c, =\c, —¢, X +c (2.19)
: ( 1 l‘f) ( maksiter j Y
maksiter — iter
c, = (CZi —Cy )x [ - j +c,, (2.20)
maksiter

seklindedir. Burada c;; ve ¢y, ¢; ve ¢, katsayilarinin baslangi¢ degerleri; ¢, ve ¢y de son
degerleridir. ¢; ve ¢;’nin degerlerinin en iyi araligini bulmak i¢in ¢esitli kontrol problemleri ile
simiilasyonlar yapilmistir ve ¢,’in 2.5’ten 0.5’e ve ¢,’nin 0.5’ten 2.5’e degistigi aralikta en iyi
sonucun alindig1 belirlenmistir.

Baska bir ¢alisma da atalet agirligl ve hizlanma katsayilarin1 es zamanl uyarlayan ve

[82]°de Onerilen yontemdir. Bu ¢alisma GLEnlyiPSO olarak adlandirilmistir ve Denklem (2.21)
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ve (2.22)’de gosterildigi gibi bu parametreleri parcaciklarin global ve lokal en iyi
pozisyonlarindaki terimlerini de igerecek sekilde giinceller. Diizenlenen hiz giincellemesi

Denklem (2.23)’te gosterilmistir.

W(t){]_]_(gL'yitJ (2.21)

penlylt )ortalama

clt)= [1 + MJ (2.22)
peniyi,
Vi (t+1)= w(t)vl.’j (t)+ an, (t)(peniyii,j (¢)+ geniyi,(t)- 2x, (t)) (2.23)

Burada peniyi, parcacigin lokal en iyi degeri; (penivi;)omaama parcaciklarin lokal en iyi

degerlerinin ortalamasi; ve geniyi, de siiriideki tiim lokal en 1yi deger arasindaki en iyidir.
Yetistirme

Angeline’nin c¢alismasindan sonra [80], LOvbjerg ve arkadaslari bagka evrimsel
hesaplama mekanizmalarim1 PSO algoritmasina uygulamislardir [83]. GA tabiri olan iireme ve
yeniden birlesmenin etkisini incelemeyi se¢misler ve yetistirmeden bahsetmislerdir.

PSQ’ya onerilen degisiklikler asagidaki gibi isler:

1. Yeni pargacigi hiz ve pozisyonunu (2.3) ve (2.4)’teki gibi hesapla.

2. Her pargacig1 P, olasiligiyla (yetistirme olasilig1) potansiyel ata olarak isaretle.

3. lIsaretlenen parcacik havuzundan, iki aday se¢ ve denklem (2.24-2.27)’de
detaylandirilan aritmetik ¢aprazlama operasyonu uygula ve orijinal atayla yer degisecek
iki yeni ¢ocuk olustur.

4. Her parcacigin kisisel en iyi pozisyonlarii mevcut pozisyonlarina ayarla, drnegin y=x;.

Atalarin secimi zayif stokastik bir bigimde gerceklesir, herhangi bir uygunluk-tabanl
secim yapilmaz. Bu da ¢ok sayida lokal minimum igeren fonksiyonlarda uygunluk-tabanlt
secimle iligkili potansiyel problemleri 6nler [83].

a ve b ata olarak secilen iki parcacigin indisleri olsun. O zaman aritmetik ¢aprazlama su

sekilde igler:

X, (t+1): nXx, (t)+(l.0—rl)xh (t) (2.24)
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x,(t+1)=rx, () +(1.0-7r)x,(2) (2.25)

% (t)+v (t)
v (t+1)=—¢ b v (¢ (2.26)
v, (z‘)+ v, (tm m
% (t)+ vb(t)
l)=—"<—"% 2.27
Vb(“‘ ) va(z‘)+vb(t]|”vb(t)” ( )
Burada r, ~ U(0, 1). 1ki pozisyonun aritmetik gaprazlanmasi atalarin koseleri

olusturdugu hiperkiipte gelisigiizel iki yeni pozisyon iretir. Hiz ¢aprazlamasi sadece yoniin
etkilenmesini ve biiyiikliiglin etkilenmemesini saglayacak sekilde iki atanin hizlariin toplam
uzunlugunu normalize eder.

L@vbjerg tarafindan sunulan sonuclar, yetistirmenin tek modlu fonksiyonlarda
yakinsama hizim1 azalttigini ve bdylece orijinal PSO’ya goére daha az etkili bir lokal
optimizasyon yaptigint gostermistir. Coklu lokal minimuma sahip fonksiyonlarda ise etkili

oldugu gorilmiistiir. lokal modelle ilgili bir karsilagtirma sunulmamugtir.
Yakinsama Garantili PSO (YGPSO)

Eger bir par¢acigin yoriingesi yakinsarsa, pargacik kisisel en iyi pozisyonu ve global en
iyl par¢aci@in pozisyonu arasindaki yoldan tiiretilen bir degere dogru hareket edecektir [84].
Giincelleme denklemi (2.1)’den dolayi, parcacigin kisisel en iyi pozisyonu kademeli olarak
global en iyi pozisyona dogru hareket eder ve en sonunda global en iyi pargacigin pozisyonuna
yakinsar. Bu noktada, algoritma ¢Oziimii iyilestiremez ¢iinkii parcacik hareket etmeyi
durduracaktir. Algoritmanin gergekten f fonksiyonunun minimumunu kesfedip kesfetmedigi
belli degildir, hatta pargacigin yakinsadigi pozisyonun lokal bir minimum oldugunun bile
garantisi yoktur [84].

Atalet agirligt ve sinirlandirma faktorii igeren degisik PSO versiyonlarin hepsinin

potansiyel bir tehlikesi vardir: eger x; = y; = JVise hiz giincelleme denklemi sadece wv;(7)

degerine bagh olacaktir. Diger bir deyisle, eger bir parcacigin mevcut pozisyonu global en iyi
pozisyon / parcacik ile cakisirsa pargacik, eger onceki hizi ve w sifir degilse, sadece bu
noktadan uzaklasacaktir. Eger onceki hizlar sifira ¢gok yakinsa, o zaman da tiim pargaciklar bir
kez global en iyi parcacigi yakaladiklarinda hareket etmeyi durduracaklardir ve bu da

algoritmay1 erken yakinsamaya gotiirebilecektir. Aslinda bu, algoritmanin lokal bir minimuma
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dahi yakinsadigim1 garanti etmez, sadece tiim parcacilarin siirii tarafindan simdiye kadar
kesfedilen en iyi pozisyona yakinsadigini1 gosterir [84].
Bunu 6nlemek i¢in PSO’ya yeni bir terim eklenmistir. 7 global en iyi pargacigin

indeksi olursa y, =y ’dir. Global en iyi pargacik i¢in yeni bir hiz giincelleme denklemi

Onerilmistir ve bu denklemi kullanan PSO, Yakinsama Garantili PSO (YGPSO) olarak
adlandirilmigtir [84].

v, (t+1)==x, ,(0)+ )+ wv_ () + ple)1-2r,,(2)) (2.28)

p bir olgekleme faktoridiir. Siiriideki diger parcaciklar her zamanki hiz giincelleme

denklemini kullanmaya devam eder. Kisaca, —x, (t) terimi pargacigin pozisyonunu ¥ ;
pozisyonuna “yeniden yerlestirir”. Bu pozisyona, wv, j(t) terimi ile temsil edilen mevcut
arama yoniinii temsil eden bir vektdr eklenir. p(t)(1—2r2) ; (t)) terimi kenar uzunluklar

2 p(l) olan bir 6rnek uzaydan gelisigiizel bir 6rnek tiretir [84].

Global en iyi pargacik 7 i¢in hiz giincelleme denklemi ve yeni hiz giincelleme

denklemi birlestirilirse yeni pozisyon giincelleme denklemi
x (t+1)=5,(0)+wv,(0)+ pleN1-2r,, (1)) (2.29)

olur. p teriminin eklenmesi PSO’nun global en iyi pozisyon J civarindaki bir alanda

geligigilizel bir arama yapmasina neden olur. Bu arama alaninin ¢ap1 p parametresiyle kontrol

edilir. p( y) her zaman adimindan sonra

2p(t) cger Nbasarilar > Sc

ple+1)=105p() eger Ny > 1, (2.30)
p(t)  degilse

ve N

basarilar

denklemi ile uyarlanir. Burada N terimleri sirastyla ardigik hata ve basarilarin

hatalar

sayisim gostermektedir ve bir hata da f ( j/(t )) =f ( j/(t - 1)) olarak tanimlanir. Kabul edilebilir

sonuglar tiretmek i¢in p(O) = 1.0 varsayilan baslangi¢ degeri deneysel olarak bulunmustur. s, =
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15 ve f. =5 secilmistir. Ayrica dinamik olarak segilebilecegi belirtilmistir. (2.30) denkleminin

iyi-tanimli olmasini garantilemek i¢in

N,

basarilar

(t + 1) > Nbasarilar (t) - Nhatalar (t + 1) = 0
ve

Nhatalar (t + 1) > Nhatalar (t) = Nbasarilar (t + 1) = O

seklinde ilave kurallar da uygulanmalidir. Boylece, bir basar1 durumunda hata sayaci sifirlanir

ve benzer sekilde basari sayaci da bir hata olustugunda sifirlanir [84].
2.2.2.3. Cesitlilik Arttirma Gelistirmeleri

Bu bolimde sunulan modifikasyonlar daha ¢ok GA’larda uygulanan ydntem olan
popiilasyonda ¢oziim ¢esitliligini arttirma amacghidir. Bu gelistirmeler genellikle yakinsama

hizin1 azaltir, ancak ¢oklu lokal minimumla karsilagildiginda daha iyi sonuglar iiretir.
Uzaysal Komsuluklar

Orijinal lokal PSO siiriiyii indeks numaralarina bagl olarak komsuluklara bdler, yani x;
ve x; uzaysal konumlarina bakilmayarak 1 ¢apinda bir komsulukta komsu olarak géz oniine
almir. Parcaciklarin uzaysal konumlarina bagli farkli bir bélmeleme plani, Suganthan tarafindan

Onerilmistir [85].

Uzaysal

Sekil 2.9. Komsuluklar
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Algoritmanin her iterasyonu boyunca, her parcaciktan siiriideki diger tiim parcaciklara

olan uzakliklar, iki parcacik arasindaki en biiyiikk uzakligi d,.s adli bir degisken ile takip

edilerek hesaplanir. Her parcacik i¢in ||xa - X, ||/d hesaplanir. Burada

maks

X, —xb” meveut a

parcacigi ile diger b pargacig1 arasindaki uzakliktir. Bu oran, kiigiik orana tekabiil eden komsu
olan parcaciklari ya da biiylik orana tekabiil eden uzaktaki pargaciklari se¢mede kullanilabilir.
Suganthan se¢im esiginin, kiiclik bir oranla baslayip (6rnegin bir lokal model) kademeli olarak
artan sekilde iterasyon boyunca artmasi gerektigini belirtmistir. Oran 1’e yaklagtiginda
algoritma etkili olarak global modeli kullanacaktir.

Suganthan frac adli esigi

frac = 3x k + 0.6 x maksiter 2.31)

maksiter

seklinde hesaplamay1 Onermistir [85]. Burada & mevcut iterasyon sayisi ve maksiter de izin

verilen maksimum iterasyon sayisidir. Diger parcacik b eger ||xa —xb” / d . > frac ise mevcut

maks

pargacigin komsulugunda sayilir. i pargacigin komsulugu

N, :{y1}|”)21;x'"<ﬁfac, lel..s (2.32)

maks
seklinde tanimlanir [84, 85]. Lokal en iyi parcacik daha sonra (2.7) denklemi kullanilarak
secilebilir. Bu denklemden sonra (2.9) denklemi parcacigin hizin1 giincellemek igin
kullanilabilir.

Suganthan ayni zamanda c;, ¢; ve w’yi zamanla lineer olarak azaltmistir, ancak sabit
degerli ¢; ve c¢,’nin daha iyi sonuglar {irettigini belirtmistir. Ayn1 zamanda ¢; = 2.5 ve ¢, = 1.5
durumlarinin ¢ogu test fonksiyonlar1 i¢in daha iyi sonuglar tirettigi goriilmiistiir.

Degistirilen komsuluk kurali zamanla degisen w degeri ile birlikte global model ile
karsilagtirildiginda tek modlu test fonksiyonlart da dahil hemen hemen tiim test
konfigiirasyonlarinda daha iyi sonuglar vermistir. Bu son 6zellik ilgingtir, ¢linkli global modelin
tek modlu fonksiyonlarda /okal modelden daha iyi sonuglar vermesi beklenir. Ancak global
algoritma, sonuglart kesinlikle biiyiik miktarda etkileyecek zamanla degisen w’nin
faydalarindan yararlanamamaktadir [85].

Yakinsama durumunda, herhangi bir sosyal komsulugun ayni zamanda bir uzaysal
komsuluk olacagi soylenebilir. Komsulugun da sayisinin belirlenmesi igin siirli boyutundakine

benzer olarak uyarlamali modeller bulunmaktadir [84].
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Komsuluk Topolojileri

Denklem (2.4) ve (2.7) boyunca elde edilen 1’e esit bir / degerli lokal model bir halka
topolojisini tanimlar. Her parcacik, tim komsulugunu indeks uzayinda kendine en yakin iki
komsu olarak kabul eder. Tiim parcaciklar bilgiyi dolayli olarak paylasir ¢iinkii i + 1 pargacigi
hem i’ nin hem i + 2’nin komsusudur, bunlar da i - 1 ve i + 3 komsularina sahiptir. i ve 2i
parcaciklar1 arasinda digerine gore daha uzun yol aralarindaki bilgi degisimini yavaglatir. Bu
durum bunlarin  arama wuzaymin farkli boélgelerini arastirmalarina  ve hald bilgi
paylasabilmelerine izin verir.

Kennedy lokal PSO igin bilgi akisinin degisebilecegi alternatif komsuluk topolojileri
olusturmustur [86]. Kennedy tarafindan test edilen ilk topoloji degisken sayida gelisigiizel yer
degistirilmis baglantili orijinal halka topolojisidir. Tiim parcaciklarin tek bir merkeze baglandigi
ancak direkt olarak birbirlerine direkt olarak baglanmadigi bir “tekerlek” topolojisi de
diistiniilmiistiir. Sekil 2.10, bazi linkler gelisigiizel degistirilmeden 6nce ve sonra bu iki
topolojiyi gostermektedir. Diisiiniilen son iki topoloji de gelisigiizel baglantili topoloji ve yildiz
topolojisidir. Yildiz topoloji tamamen baglantili bir siiriiyli temsil ettiginde aslinda bir global
modeldir. Kennedy fonksiyon ¢ok sayida lokal minimuma sahip oldugunda, y1ldiz topoloji gibi
cok baglantili topolojilerin iyi optimum bulmada zorluk yasayacagini sanmistir [57]. Ayrica
Kennedy ve Medes tarafindan parcaciklarin dort komsu pargacikla bir 1zgara ag1 (iki boyutlu
kafes) ile baglandig1 ve Sekil 2.11°de gosterilen bir Von Neuman topoloji de dnermistir [86].
Ancak bu topoloji yakinsama hizini diisiirmektedir ¢iinkii bulunan en iyi parcacik siiriideki tim

pargaciklar etkilemeden dnce kendi pozisyon bilgisini birka¢ komsuluk boyunca yaymalidir.

(a) Halka topolojisi (b) Gelisigiizel halka topolojisi

(c) Tekerlek topolojisi (d) Gelisigiizel tekerlek topolojisi

Sekil 2.10. Linkler gelisigiizel degistirilmeden dnce ve sonra iki olast komguluk topolojisinin sekli
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Sekil 2.11. Von Neuman topolojisi

Kennedy tarafindan sunulan deneysel sonuglar, topolojinin algoritmanin performansint
onemli derecede etkiledigini fakat optimum topolojinin 6zel probleme bagli oldugunu
gostermektedir [57, 86]. Ornegin, tekerlek topolojisi ¢cok lokal optimumlu bir fonksiyona
uygulandiginda en iyi sonucu vermistir. Kennedy bunun topoloji boyunca bilginin daha yavas
yayllmasindan kaynaklanabilecegini ve bdylece algoritmanin ¢oklu lokal minimum karsisinda
daha saglam olacagim ispatsiz olarak ifade etmistir. Ancak tek modlu fonksiyonlarda, yildiz
topoloji (global model), birbirine daha az bagli topolojilere gore bilginin daha hizlhi
yayilmasindan dolay1 daha iyi sonuglar vermistir.

Burada gbz Oniinde bulundurulan tiim topolojiler parcacik indeksinde yapilir, arama

uzayinda yapilmaz.
Sosyal Tespit

Kennedy sosyal tespit olarak adlandirilan uzaysal komsuluk ve halka-topoloji
yaklasimlarinin bir karisimi olan /okal PSO versiyonunu onermistir [87]. Orijinal PSO’daki
parcaciklar, kendileri tarafindan kesfedilen onceki en iyi pozisyonlara (y;’ler) ya da siiriideki
diger parcaciklara ( 3, ’ler) gekilir. Insan sosyal etkilesim galismalari insanlarin gruptaki 6zel bir
bireyin inang¢larindan ¢ok bir grubun ortak inanglarini takip etmeye ¢alistigini gostermektedir.
Bu diistince PSO’ya su sekilde uygulanabilir: her par¢acik arama uzaymdaki bir kiimenin bir
iiyesidir. Bu kiimenin merkezi kiimenin ortak inanglarina benzerdir. Parcaciklar da bireysel en

iyiden ziyade bu kiimelerin merkezine ¢ekilebilir [84].
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PSO’yu bilissel (parcacigin onceki kisisel en iyi pozisyonuyla ilgili olarak) ya da sosyal
(komgulukta onceki en iyi pozisyona bagli olarak) terimin ya da her ikisinin uygun kiime
merkeziyle yer degisecegi sekilde uyarlamak miimkiindiir.

Bir k-means kiimeleme algoritmas1 kullanilarak, parcacilarin kisisel en iyi degerlerinden
birkag kiime C), [€1..#kiime olusturulur. Kiime sayisi, #kiime, Onceden secilir. C', tim
kiimelerin setini gdstersin. O zaman map(C’, i), [ = map(C’, /) = y;€C; olan / degerini
dondiiren bir fonksiyondur. Bu fonksiyonla, i parcaciginin ait oldugu kiimeyi bulmak
miimkiindiir.

i parcacigini i¢eren kiime i¢cin merkez

()= Cl Sa, 1=map(C".i) (233)

aeC,

seklinde tanimlanir. |C 1| , | kiimesindeki elemanlarin sayisin1 gostermektedir. (2.7) denkleminde

tanmimlandig1 gibi 1 ¢apindaki komsuluk kullanilarak, komsuluktan en iyi bir g pargacig
ygENi|f(yg)Sf(yB) Vyy €N,

seklinde secilir. g’yi iceren kiimenin merkezi, denklem (2.33)’deki merkezin tanimi kullanilarak

C (g) olur. Bu tanimlarla, /okal giincelleme denkleminin ii¢ yeni ¢esidi

vV (t + 1) =Wy, +n; [5(1')] - X, ]+ eyl [f/i,j - x,.,j] (2.34)
Vi (t + 1) =wy,, +arn; [y,.)j —X,;; ]+ Coly [5(g)j — xl.jj] (2.35)
Vi (t + 1) =wy,, +arn; [5(1)J - X, ]+ oy [G(g)j — xi’j] (2.36)

seklinde tanimlanmustir.

Denklem (2.34)’te sunulan ilk versiyon; parcacik, kendi kisisel deneyimini kullanmak
yerine, ait oldugu uzaysal kiimenin ortak deneyimini kullanir seklinde yorumlanabilir.
Komsuluk etkisi orijinal Jokal/ modeldeki gibi degismeden kalir.

Ikinci versiyon tersi bir yaklasim kullanir: Denklem (2.35), komsuluk etkisinin simdi

komsulukta en basarili pargaciklarin ait oldugu kiimenin merkezine dayandigini géstermektedir.
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Komguluk, héld parcacigin indeksine gore tamimlanir, uzaysal iligkiler igermez. Giincelleme
denkleminin biligsel bileseni etkilenmemektedir.

Son olarak, (2.36) bilis ve sosyal bilesenlerin her ikisini kisisel merkezlerle yer
degistirir. Parcacik o anki komsulugundaki en basarili pargacigin ait oldugu kiimenin ve kendi
kiimesinin ortasina g¢ekilir.

Kiime merkezlerinin bulunmasiyla ilgili hesaplamalar ihmal edilemeyecek derecede bir
zaman almaktadir, bu ylizden sosyal tespit yaklasimi orijinal /okal/ PSO’dan biraz daha yavastir
[84].

Kennedy, Denklem (2.34)’e bagl olarak ilk versiyonun bazi problemlerde orijinal /oka!/
modelden daha iyi sonuglar iiretebildigini bildirmistir. Algoritmalarin belirli bir hata sinira
ulagmalarinin ne kadar siirdiiglinii gérmek i¢in zamanlarimin 6l¢iildiigii ikinci deneyler, tespit
algoritmalarimin genel olarak orijinal lokal modelden daha yavas oldugunu gdstermistir. Her
iterasyon boyunca kiimelerin olusturulmasiyla ilgili genel maliyet yeni algoritmalar1 oldukca
yavaglatmaktadir [84].

Denklem (2.35) ve (2.36)’ya bagh diger iki algoritma parcacigin uzak bir kiimenin
merkezine gegmeye c¢alismamasi gerektigini gostererek, genel olarak daha kétii sonuglar

vermistir.

Alt Popiilasyonlar

Bir algoritma tarafindan korunan ¢dziim c¢esitliligini arttirmak i¢in alt popiilasyonlar
kullanma fikri daha 6nce GA’larda kullanmlmustir. Alt popiilasyon olusturmak igin orijinal
popiilasyon daha kiigiikk popiilasyonlar ayrilir. Algoritma (6rnegin GA) alt popiilasyondaki
elemanlara olagan bi¢cimde uygulanir. Zaman zaman iyeler alt popiilasyonlar arasinda yer
degistirir, ya da alt popiilasyonlar arasinda bilgi paylasimini kolaylagtirmak icin bazi etkilesim
planlar1 kullanilir. Fikir, her popiilasyonun arama uzaymin ¢ok uzak bolgelerindeki ¢dziimlerin
olast zararli etkilerinden uzak olarak arama uzaymin daha kiigiik bir bolgesini tamamen
arastirmasina izin vermektir [84].

LOvbjerg ve arkadaslari alt popiilasyon fikrini PSO’ya uygulamistir [83]. PSO’ya
uyguladiklart daha 6nce agiklanan yetistirme operatorii (bir aritmetik ¢aprazlama operatorii) alt
popiilasyonlar arasi iletigimi etkilemek i¢in de kullanilmigtir. Bunlar orijinal siiriiyli her blogun
kendi global en iyi pargacigi korudugu bloklara ayirirlar. Caprazlama operatorii igin atalart
secerken, atalardan birinin farkli bir alt popiilasyondan segilme olasiligi da vardir. Eger bu

olasilik oldukea kiigiik olursa, alt popiilasyonlar kendi ¢6ziimlerini kesfetmek i¢in zamana sahip
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olacaktir ve sonra alt popiilasyonlar arasi yetistirme yoluyla bu ¢ozimii diger alt
popiilasyonlarla paylagabileceklerdir [84].

Asil uygulamalarinda yazarlar, alt popiilasyonlar olustururken parcacik sayisini 20’de
sabit tutmay1 se¢mislerdir ve bdylece bir ikili alt popiilasyon konfigiirasyonu, her birinde 10
parcacik olan iki siiriiden olusacaktir. [83]’de sunulan sonuglar, alt popiilasyon olusturan bu
yontemin daha iyi bir performans saglamadigimi gostermistir. Alt popiilasyon sayisi arttikca
yakinsama hizi da yavaglamigtir.

Alt popiilasyon teknigi PSO algoritmasina az fayda sagliyormus gibi goriilmektedir. Alt
popiilasyonlarin olusturulma sekli belki basarisizligin sorumlusu olarak goriilebilir, ancak fikir

saglamdir ve diger evrimsel algoritmalara uygulandiginda daha iyi calismaktadir [84].
Coklu Baglatmah PSO (CBPSO)

Van den Bergh YGPSO’nun bir uzantisi olarak ¢oklu baslatmali PSO (CBPSO)
onermistir [84]. CBPSO su sekilde ¢aligsmaktadir:

1. Siirtideki tiim parcaciklan gelisigiizel baslat.
2. Lokal bir minimuma yakinsayincaya kadar YGPSO’yu uygula. Bu lokal optimumun
pozisyonunu kaydet.

3. Birinci ve ikinci adimi sonlandirma kriteri saglanincaya kadar tekrarla.

Van den Bergh YGPSO’nun yakinsayip yakinsamadigini belirlemeye bagli olarak farkli
CBPSO’lar 6nermistir. Glizel bir yaklasim

L f(;(t)}f[;( —l)j .

seklinde amag¢ fonksiyonunda degisim oranini 6lgmektir. f,,,, kullanici tanimli bir esikten
kiiclikse bir sayag arttirilir. Sayag belirli bir degere yaklastiginda siirliniin yakinsadig: varsayilir.
Van den Bergh’e gore, CBPSO c¢ogu test durumlarinda YGPSO’dan daha iyi bir performans
vermistir. Ancak amag fonksiyonunda boyut sayis1 arttik¢a, CBPSO’nun performansi énemli

derecede azalmaktadir [84].
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Mutasyon

Higashi ve Iba PSO’yu Gauss mutasyonuyla kullanarak melez bir yontem sunmustur
[88]. Benzer olarak Esquivel ve arkadaslar1 PSO’nun erken yakinsama problemini gidermek
i¢in diizenli olmayan mutasyon operatdrii isimli gli¢lii ¢esitlilik bakim mekanizmasiyla lokal ve
global modelin melez halinden olusan bir yontem Onermistir [89]. Esquivel ve arkadaslarina
gore lokal PSO’nun melez yaklasimi ve diizenli olmayan mutasyon operatdrii yapilan tiim

deneylerde PSO ve YGPSO’dan daha iyi performans sergilemistir [84, 89].
Cekici ve Itici PSO (CIPSO)

Cekici ve itici PSO (CIPSO) degisimli olarak bir gesitlilik dlgiisiine bagh ¢ekim ve itim
seklinde iki faz1 takip eder. Cekim fazinda CIPSO PSO’yu hizli bilgi akisina izin vermek igin
kullanir. Parcaciklar birbirini ¢eker ve bdylece ¢esitlilik azalir. Uygunluk ilerlemesinin
%95’inin bu fazda oldugu bulunmustur. Bu, ¢o6ziimde ince ayarlamalar yapmada diigiik
cesitliligin dnemini gostermektedir. itme fazinda parcaciklar o ana kadar bulunan en iyi
coziimden fitilirler ve bdylece cesitlilik artar. Riget ve Vesterstrom’in yaptigi deneylere gore

CIPSO test edilen durumlarin cogunda PSO ve GA’dan daha iyi sonuglar vermistir [90].
Dagitan PSO (DPSO)

Dagitan PSO (DPSO) erken yakinsamayi Onlemek amaciyla Xie ve arkadaglari
tarafindan PSO’ya gelisigiizel mutasyonlar eklemek icin Onerilmistir [91]. DPSO hiz ve
pozisyon giincellemelerinden sonra parcaciklara gelisigiizellik eklenmesi yoluyla su sekilde

negatif entropi (termodinamik, daginim) getirir:

Eger (7/(1)<c,) o zaman v, (t+1)=r)V uaxs

Eger (73(f)<c;) o zaman x; (t+1)=r(?)

ri(f) ~ U(0,1), ry(t) ~ U(0,1) ve r;(t) ~ U(0,1); ¢, ve ¢; (0,1) araligindan kaotik faktorler
ve rdt) ~ U(Suins Smaks) V€ Swmins Smaks arama uzaymin alt ve {iist sinirlaridir. Kalite test
problemlerine uygulandiginda DPSO’nun PSO’dan daha performanshi oldugu gosterilmistir
[91].
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Diferansiyel Gelisimli PSO (DGPSO)

Diferansiyel Gelisimli PSO (DGPSO) [92] mutasyon uygulamak icin bir diferansiyel

gelisim operatorii kullanir [93]. Bir y (t) noktast su sekilde hesaplanir:
Eger (r,(6)<p. YA DA j=k;) O zaman

=50+ 1 0= 22, O+ 33,0~ 4, 0) 23%)

2

olur. r;(f) ~ U(0, 1) ve ks ~ U1, Ny)dir. yi(£), y2(f), y3(f) ve y4(f) kisisel en iyi pozisyonlar

kiimesinden gelisigiizel segilirler. Sonra f( y (#)< f(y(¢)) ise y{(t)=y {¢) olarak segilir. x(7)
yerine y{#)’yl mutasyona ugratmanin nedeni siiriiniin diizensizligini 6nlemektir.

DGPSO tek iterasyonlarda hiz ve pozisyon igin (2.13) ve (2.4) denklemini, g¢ift
iterasyonlarda da (2.38) denklemini kullanir. Zhang ve Xie’ye gore DGPSO kalite testi
fonksiyonlarina uygulandiginda genel olarak PSO, diferansiyel gelisim, GA, evrim stratejileri

ve bulanik uyarlamali PSO’dan daha iyi sonuglar vermistir [92, 94].
Yasam Cevrimi Modeli

Kendini uyarlayan PSO, GA ve tepe tirmanma algoritmalarinin avantajlarim tek bir
algoritmada birlestiren Yasam Modeli isimli sezgisel bir arama ydntemi Krink ve Levbjerg
tarafindan Onerilmistir [95]. Bu modelde potansiyel c¢oziimleri temsil eden bireyler PSO
parcaciklar1 olarak baglatilir, sonra ¢oziim i¢in arama sirasinda performanslarina gére GA
bireylerine ya da tepe tirmanicilara doniisebilir. Sonra tekrar pargaciga donisiirler. Bu islem
yakinsama saglanincaya kadar devam eder. Bu model PSO, GA ve tepe tirmanma yontemleriyle
karsilastirilmis ve kalite testi fonksiyonlarinda genel olarak iyi sonuglar elde edilmistir [95].
Ancak PSO bes test fonksiyonundan {i¢iinde daha iyi ya da benzer sonuglar iiretmistir.

Diger melez bir yontem ise Veeramachaneni ve arkadaglar tarafindan onerilmistir ve bu
yontemde PSO ve GA birlestirilmistir [96]. Onerilen bu iki melez ydntemler igin yapilan deney
sonuglarindan, orijinal PSO’nun bu karmasik melez yontemlerden daha iyi sonug¢ verdigi

gbzlenmistir.
Oz-6rgiitlenmis Tehlikelilikli PSO (OOTPSO)

Erken yakinsama probleminin iistesinden gelmek amaciyla siirii ¢esitliligini arttirmak

icin Lavbjerg ve Krink, PSO’yu 6z-Orgiitlenmis tehlikelilikle genisletmistir [97]. Pargaciklarin
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birbirine ne kadar yakin olduklarimi gosteren tehlikelilik adli bir Ol¢ii parcaciklarin yerini
degistirerek siirii ¢esitligini arttirmak amaciyla kullanilmistir. Yiiksek tehlikelilik 6l¢iisiine sahip
parcacik tehlikeliligini, kendisinin bir komsulugunda, kullanici tarafindan belirlenen CL
sayisindaki parcacigin tehlikelilik Olciisiinii arttirarak yayar. Daha sonra CL degeriyle kendi
tehlikeliligini azaltir ve kendi yerini degistirir. Iki tip yer degistirme incelenmistir. Birincisi
parcacig1 tekrar baslatirken, ikincisi pargacigi arama uzayinda yliksek tehlikelilikle biraz daha
Oteye iter.

Levbjerg ve Krink’e gore uygulama fonksiyonlarinda ilk yerlestirme plani iyi sonuglar
vermistir. Oz-6rgiitlenmis tehlikelilikli PSO, deneydeki dért durumdan sadece birinde PSO’dan
daha iyi sonuglar vermistir. Ancak, bir parcacigin tehlikelilik degerinin onda birinin kendi atalet
agirhigina (w=2) eklenmesiyle bu yontemin PSO’ya karsi 6nemli oranda basar1 sagladigi

belirtilmistir [97].
Uygunluk-Uzakhik Oran Tabanh PSO (U-UOTPSO)

Perm ve arkadaglan hiz giincelleme terimine, her par¢acigin komsulugunda daha iyi bir
kisisel en iyi pozisyona sahip bir par¢aciga dogru hareket etmesine izin verecek sekilde, yeni bir
terim eklemistir [98]. Bu sekilde algoritma Uygunluk-uzaklik oran tabanli PSO (U-UOTPSO)

olarak isimlendirilmistir. Degistirilen hiz giincelleme denklemi
Vi (t+1)= wy; (t)+ i, (t)lyi,j (’)_ X; (’)J+ Caly (t)|_Aj (t)_ X; i (t)JJf C313 (t)ly,],j (t)_ X; (t)J (2.39)

seklindedir. Burada her y, ,(¢)

/(1) -1y, ()

2.40
7, O 1T, 0] 249

denklemi maksimize edilmek suretiyle segilir.

Veeramachaneni ve arkadaglarina gore U-UOTPSO, erken yakinsama olasiligin
diisiirmekte ve boylece lokal bir ¢oziime takilip kalmay1 6nlemektedir [96]. Ayrica c;r;= cor;=1
ve ¢33 = 2 secildiginde ve test edilen kalite testi fonksiyonlarinda U-UOTPSO, bir¢ok PSO
versiyonundan; ¢ekici ve itici PSO, dagitan PSO, 6z-6rgiitlenmisi tehlikelilikli PSO ve ¢oklu

baslatmali PSO; daha iyi sonuglar vermistir.
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2.2.2.4. Paralel PSO

PSO algoritmasinin paralel islemlere uygun oldugu diisiiniilmiis ve [99]’da PSO’nun
paralel versiyonlar1 Onerilmistir. Burada oOnerilen yontemler GA’nin paralellestirilmis
modellerini 6rnek almistir ve ii¢ kategoriye ayrilmigtir. Global PSO, adali PSO ve yayilmali
PSO.

Global PSO’da, ana islemci global en iyi degeri bulur, diger islemciler ise parcaciklarin
amag fonksiyonlarmi hesaplar ve hiz vektoriinii giinceller. Bu modelde haberlesme ek yiikii siirii
biiyiikliigl ile dogru orantilidir. Bununla beraber en iyi deger tiim siirli iizerinden hesaplanir,
boylece her bir islemcide global bilgi mevcuttur [99].

Adali PSO yontemi siiriiyll alt siiriilere boler. Her bir alt siirii kendi PSO algoritmasini
calistirir. En iyi degeri bulma ve hiz vektoriinii glincelleme islemi lokalde yapilir. Siiriiyl belli
bir iterasyon ilerlettikten sonra her siiriiniin en iyi sonucu komsu islemcilere go¢ eder. Adali
PSO modelinde iki modiil vardir. Birincisi komsu islemcilerin birbirlerinden en iyi degerleri
almalart ve gondermelerini saglar, ikincisi ise her diiglimde bulunan lokal optimuma gore hiz
vektoriinii giinceller. Ik modiil belli bir zaman araliginda ya da kesmelerle ¢alisacaktir [99].

Yayilmalit PSO’da her bir parcacik ayr1 bir yasam alani gibi diisiiniiliip tiim amag
fonksiyon bulma islemleri lokalde yapilir. Yayilmali PSO’da farkli olarak her iterasyonda
islemciler bulduklar1 en iyi degerleri komsu islemcilere gonderirler. Her islemci komsudan
gelen degerleri analiz eder ve bulunan en iyi degere gore hiz vektoriinii giinceller. Bu model
dagitik 6grenmeyi kullanir ¢iinkii her islemci ¢6ziimii inceler ve bilgi degisim i¢in komsulariyla
isbirligi yapar. Bu modelin verimliligi halka topolojisinden tiimii birbirine bagli islemci
topolojisine kadar modelin baglanirligina bagl olarak degisir [99].

Onerilen algoritmalarin  karmagikligi, 6lgeklenebilirligi ve yayilmali PSO’nun
yakinsama 0Ozelligi incelenmistir. Karmasiklik analizi sonucu yayilmali modelin her bir
parcacigin  farkli islemciye yerlestirildiginde ve her iterasyonda birbirleri ile
haberlestirildiklerinde adali modelin bir 6zel durumu oldugu goriilmiigtiir. Ayrica yayilmali
modelin global modele gore daha 6lgeklenebilir oldugu, yani siiriideki pargacik sayisi islemci
sayisindan ¢ok fazla oldugunda yayilmali modelin hizlanmasinin daha fazla oldugu
goriilmiigtiir. Yayilmali modelin farkli topolojiler kullanilarak uygulamasi gerceklestirildiginde
1zgara, 2D-tor ve Hiperkiip’te seri algoritmadan hizli calistigt ancak halka topolojisine
uygulandiginda ¢ok yavas kaldigi belirlenmistir. Sonugta yayilmali modelin hem 6l¢eklenebilir

hem de saglam bir model oldugu gosterilmistir.
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2.3. PSO Parametre Kontrolii

PSO’nun problemler i¢in uygulanmasinda iki ana adim bulunmaktadir: Co6ziimiin
temsili ve uygunluk fonksiyonu. PSO’nun avantajlarindan birisi PSO’nun parg¢acik olarak gercel
sayilar1 almasidir. GA’lardaki gibi ikili kodlamaya doniistiirme ihtiyaci ya da 6zel genetik
operatorler kullanma ihtiyac1 yoktur.

PSO’da ayarlanmasi gereken fazla parametre yoktur. Asagida parametre listesi ve tipik

degerleri yer almaktadir.

Parcacik sayisi: Tipik sinir 20-40’tir. Gergekte cogu problem igin 10 parcacik iyi
sonuglar almaya oldukga yeterlidir. Baz1 6zel ve zor problemler i¢in 100 ya da 200 pargacik da
kullanilabilir. Alternatif olarak uyarlamali parcacik sayis1 da kullanilabilir. Cilinkii verilen bir
stirll boyutunun gergekten digerinden iyi oldugu kimse tarafindan ispatlanmamistir. Bu yilizden
algoritmanin zaman zaman pargacik sayisini degistirmesine izin verilmistir.

Mantik sudur: “En iyi parcacigin komsulugunda yeterli gelisme olmuyorsa yeni bir
parcacik tiretilebilir” ya da “Yeterli gelisme oluyorsa en kotii parcacik lebilir”. Yeterli gelisme

de “komsulukta pargaciklarin en az yarisi igin gelisme™ olarak tanimlanmustir.

Parcaciklarin boyutu: Bu optimize edilecek probleme baglidir.

Parcaciklarin araligi: Bu da optimize edilecek probleme baglidir. Parcaciklarin farkl

boyutu i¢in farkli araliklar belirlenebilir.

Vinakst Bu, bir parcacigin bir iterasyon boyunca alabilecegi maksimum degisikligi yani
hiz1 belirler. Genellikle pargacik araligina gore belirlenir. Ornegin pargacik [-10, 10] araliginda
ise parcacigm V. = u,(x;)-1,(x;) = 20 olarak belirlenebilir [100]. Ayrica V. i¢in arama uzay1

boyutunun yarisi da kullanilabilir [101].

Ogrenme faktorleri: ¢, ve ¢, genellikle 2 olarak almir. Fakat genellikle [0, 4]
araliginda degerler alir. Ayrica bu katsayilar da uyarlamali olarak her adimda diizenlenebilir.
Mantik sudur.

“Bir pargacik tiim komsularindan ne kadar daha iyi ise o oranda kendi yoluna devam
eder, ya da tam tersi.” ya da “Bir pargacigin en iyi komsusu kendisinden ne kadar iyiyse bu

pargacik o oranda onun dogrultusunda gider, ya da tam tersi”.
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Sonlandirma kriteri: Genelde PSO’nun ¢alistiracagi maksimum iterasyon sayisi veya
gerek duyulacak minimum hata sonlandirma kriteri olarak kullanilir. Bitim sart1 optimize edilen
probleme de baghdir. Literatiirde kullanilabilecek tiim bitim sartlar1 i¢in [65] referansina

basvurulabilir.

Global versiyon - Lokal versiyon: Global versiyon daha hizlidir fakat bazi problemler
icin lokal optimuma takilabilir. Lokal versiyon biraz daha yavastir ancak lokal bir optimuma
takilma olasilig1 daha azdir. Global versiyon hizli bir sonu¢ almak icin ve lokal versiyon

aramay1 incelestirmek i¢in kullanilabilir.

Atalet agirhgi: Shi ve Eberhart tarafindan Onerilen bu terim icin [70] referansina

bagvurulabilir.

2.4. Sonuglar

Pargacik Siirii Optimizasyonu (PSO), biyolojik popiilasyonlarda isbirlik¢i davranig ve
stirli halinde ilerleme fikrine bagli olan ve digerlerine oranla daha yeni bir sezgisel arama ve
optimizasyon yontemidir. Basit ve uygulamasi ¢ok kolay bir algoritmadir ve ¢ok genis bir
uygulama alan1 bulunmaktadir. Zor matematiksel problemlerini ¢ok basit olarak ¢ozebilen kisa
cebirselsel adimlardan olusur. Caligsma bi¢imi bakimindan evrimsel hesaplama yontemlerinden
farklidir. Zaman karsisinda devam eden bireyler bir digerinin problem uzay1 aramasini etkiler.
Bireysel deneyim ve sosyal 6grenmenin entegresi s6z konusudur.

GA’lar kullanilarak ¢oziilebilen c¢ogu problemi iceren farkli optimizasyon

problemlerinin genig bir kiimesini ¢6zmek i¢in kullanilabilir ve etkili sonuglar alinabilir.
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3. KAOTIK HARITALI PARCACIK SURU OPTIiMiZASYON YONTEMLERI

3.1. Giris

PSO’nun diger evrimsel hesaplama temelli algoritma ve matematiksel temelli
algoritmalara gore fazla hafiza gerektirmeyen, hesapsal olarak etkili ve uygulamasi kolay
optimizasyon yontemi oldugu ve hizli yakinsama 6zelliginin oldugu ikinci boliimde belirtilmisti.
PSO’nun arama baglangicinda global arama kabiliyetine sahip olmasi ve arama sonlarina dogru
lokal arama kabiliyetine sahip olmasi istenmektedir. Bununla birlikte ¢ok fazla lokal optimum
noktast bulunan problemlerle calisirken ¢alisma sonunda lokal optimum noktalar1 kesfetme
olasilig1 fazladir. Bir¢ok aragtirmaci ikinci boliimde de bahsedildigi gibi farkli ve degisik
ayarlamalarla PSO’nun performansini arttirma yoluna gitmistir.

PSO’nun yakinsama &zelligi, calistirma sirasinda parametreleri igin rasgele say1 dizisi
kullanan stokastik dogasina olduk¢a baglidir. PSO algoritmasinda &6zellikle, farkli rasgele say1
dizileri kullanildiginda elde edilen son sonuglar birbirine ¢ok yakin olabilir ancak esit
olmayabilir. Aynm1 optimum degerlere ulasabilmek igin farkli iterasyon sayilarina ihtiyag
duyulabilir. Fakat diger evrimsel hesaplama temelli algoritmalarda da oldugu gibi, PSO
algoritmalarinin performansini arttirmay1 garanti eden Ozel bir say1 liretecine bagl analitik
sonuglar yoktur [102].

Son zamanlarda kaotik say1 dizileri rasgele say1 dizilerinin yerini almis ve bazen giizel
sonuclar vermistir. Bunlara 6rnek olarak giivenli iletisim [103], dogal fenomen modelleme
[104], dogrusal olmayan devreler [105], DNA hesaplama [106], imge isleme [107] verilebilir.
Ayrica evrimsel algoritmalarinin performanslarini arttirmak i¢in de kullanilmistir [102]. Kaotik
say1 dizilerinin kullanilmasi teorik olarak bunlarin tahmin edilemezligi, yayilmis spektrumlu
karakteristigi ve ergodik 6zelliklerinden dolay1 artmistir.

Tezin bu boliimiinde PSO’nun parametrelerinin belirlenmesinde rasgele tabanli bir
secim s6z konusu oldugunda farkli kaotik sistemler rasgele say1 dizilerinin yerine kullanilmis ve
on iki farkli PSO o6nerilmistir. Bu sekilde PSO’nun global yakinsama 6zelliginin arttirilmasi ve
lokal ¢oziimde takilip kalmasi 6nlenmeye ¢alisilmistir. Ornegin Trelea, calismasinda atalet
agirligi degerinin PSO’nun yakinsamasini etkileyen temel faktorlerin biri oldugunu belirtmistir
[108]. Ayrica r; and r, degerleri de yakinsamayi etkileyen faktorlerdir. Ancak bu parametreler
faz uzayinda algoritmanin ergodik 6zelligini garanti edemezler ¢iinkii bunlar PSO’da rasgeledir.

Asagidaki alt boliimlerde sirayla kaotik haritali PSO yontemleri igin kullanilan kaotik

haritalar tanitilmig sonrasinda da Onerilen yontemler agiklanmigtir. Daha sonra kalite testi
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fonksiyonlar1 tamitilarak Onerilen yontemlerin diger PSO yontemleriyle karsilastirilmasi

yapilmistir. Son olarak da sonuglara gore analiz ve yorumlarla boliim sonuglandirilmistir.
3.2. Kaotik Haritalar

Kompleks fenomenleri modellemede, 6rneklemede, sayisal analizde, karar vermede ve
ozellikle bu tez konusunu da iceren sezgisel optimizasyon ydntemlerinde uzun periyotlu rasgele
say1 dizileri ¢ok &nemli bir yer tutmaktadir. Uretilen sayilar igin fazla depolama alami
kullanilmamali ve istenen bir dogruluga ulasmak i¢in fazla zamana gereksinim duyulmamalidir.
Bu sekilde iiretilen sayilar bir uygulama igin yeterince “rasgele” olurken bagka bir uygulama
igin yeterince rasgele olmayabilir.

Kaos periyodik olmayan, yakinsamayan ve sinirli olan, dogrusal olmayan dinamik
sistemlerde bulunan deterministik, rasgele benzeri bir siiregtir. Ayrica baglangi¢ sartlar1 ve
parametrelerine oldukga baglidir [109]. Kaosun dogas1 goriiniirde rasgele ve tahmin edilemezdir.
Ayrica kendi igerisinde bir diizene sahiptir. Hatta ¢cogu kez diizen i¢inde diizensizlik ya da
diizensizlik i¢inde diizen olarak da tanimlanmaktadir. Matematiksel olarak, basit deterministik
dinamik bir sistemin rasgeleligidir ve kaotik sistem rasgelelik kaynagi olarak diisiiniilebilir.

Kaotik bir harita ayrik zamanli dinamik bir sistemdir ve kaotik durumda ilerleyen
X, =f(x,), 0<x, <1, £=0,1, 2,-- (3.1
genel denklemiyle temsil edilebilir. Kaotik say1 dizisi
{x,: k=0, 1,2, |

yayilmig spektrumlu rasgele say1 dizisi olarak kullanilabilir [102].

Kaotik say1 dizilerinin iiretilmelerinin ve depolanmalarinin kolay ve hizli oldugu
ispatlanmistir. Sadece birka¢ fonksiyon (kaotik harita) ve birkag parametre (baslangi¢ sarti) gok
uzun diziler i¢in bile yeterlidir. Ayrica, ¢ok fazla sayida farkli say1 dizisi basitce baslangig sarti
degistirilerek cok kolay bir sekilde tiretilebilir. Bu say1 dizilerinin bir 6zelligi de deterministik
olmalar1 ve tekrar {iretilebilmeleridir.

Kaotik haritali PSO’da ergodik, diizensiz ve stokastik dzelliklerine sahip kaotik haritalar
kullanilarak diger PSO yontemlerine oranla daha kolayca lokal ¢oziimden kagabilmeyi
saglamak amac¢lanmistir. Bu sekilde global yakinsamanin arttirilmasi hedeflenmistir. Rasgele
sayilar 6zel bir kaotik harita bir adim ilerletilerek iiretilmektedir. Yani, PSO’da ilk iterasyondan

itibaren rasgele sayi iiretimine ihtiya¢ duyuldugunda secilen kaotik harita secilen bir baslangi¢
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noktasindan baglanarak birer adim ilerletilir. PSO parametreleri i¢in kullanmilacak kaotik say1

iireten haritalar agsagida listelenmistir.

3.2.1. Lojistik Harita

En basit ve en ¢ok kullanilan haritalardan birisidir [110]. Bu kaotik davranig gésteren
biyolojik popiilasyonlarin dogrusal olmayan dinamiklerinde ortaya ¢ikmustir. Lojistik harita

Denklem (3.2)’de verilmistir.

X0 = aX,(1-X,) (3.2)

Bu denklemde, n iterasyon sayisini gostermekte, X, de n. kaotik sayiy1 temsil etmektedir.

Baslangi¢ Xye (0, 1) oldugunda X, (0, 1) oldugu goriilmektedir. Ayrica Xpe {0.25, 0.5, 0.75}.

Deneylerde a=4 secilmistir.

t

Sekil 3.1. a) X;=0.31 baslangig¢ sartli lojistik harita b) X;=0.3133 baslangi¢ sartli lojistik harita

0
o E

3.2.2. Cadir Harita

Cadir harita [111] lojistik haritaya benzemektedir. Bu da (0, 1) araliginda sayilar

iiretmektedir ve formiilii Denklem (3.3)’te gosterilmistir.

X,/07 X, <07
ntl = (33)

103X,(1-X,) ,degilse
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(a) (b)

Sekil 3.2. a) X;=0.27 baglangi¢ sartli ¢adir harita b) X;=0.27114 baslangi¢ sartli ¢adir harita

3.2.3. Siniizoidal Yineleyici

Kullanilan tgilincii {irete¢ siniizoidal yineleyici [111] olarak adlandirilmaktadir ve

Denklem (3.4)’teki gibi temsil edilmektedir.

X4 = ax2sin(zx, ) (3.4)
a=2.3 ve Xy=0.7 secildiginde denklem (3.5)’teki gibi basitlestirilebilir.

X1 =sin(,) (3.5)

Bu harita da (0, 1) araliginda sayilar tiretmektedir.

llllllllllllllllll

(a) (b)

Sekil 3.3. a) X;=0.5637 baglangi¢ sartl siniizoidal yineleyici b) X,=0.5637112 baslangi¢ sartli sintizoidal
yineleyici
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3.2.4. Gauss Haritasi

Literatiirde test amagli kullanilan Gauss haritas1 [111] Denklem (3.6)’daki gibi temsil

edilmektedir.
Yo 0 , X, =0
70 x, mod(l) |, X, € (0,1) (3.6)
1/X mod(l)—L— L
n - X, X, 3.7

\_ZJ, z’den kiigiik en biiylik tamsay1y1 temsil etmektedir. Bu harita da (0, 1) araliginda

sayilar Uretmektedir.

L h L | ‘ ,
BN e i) B o

(a) (b)

Sekil 3.4. a) X,=0.12 baslangi¢ sartli Gauss harita b) X;=0.12345 baslangi¢ sartli Gauss harita

3.2.5. Cember Harita

Cember harita [112] Denklem (3.8)’de gosterildigi sekilde temsil edilmektedir.
Xpi1 = X, +b—(a/27)sin(22X ,, )mod(1) (3.8)

a=0.5 ve b=0.2 secildiginde bu harita da (0, 1) araliginda sayilar tiretmektedir.
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(@) (b)

Sekil 3.5. a) X(,=0.43 baslangi¢ sarth ¢ember harita b) X,=0.43111 baslangi¢ sartl gember harita

3.2.6. Arnold’in Kedi Haritas1

Arnold’in kedi haritas1 1960°larda bir kedinin resmini kullanarak etkilerini inceleyen

Vladimir Arnold’dan sonra ismini almistir. Denklem (3.9, 3.10) haritanin formiiliinii

gostermektedir:
X 41 =X, +Y, mod(1) (3.9)
Yye1 = X, +2Y, mod(1) (3.10)

X, (0, 1) ve Y, (0, 1) oldugu aciktir [113].
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Sekil 3.6. a) X;=0.89 ve Y,=0.25 baslangi¢ sartli Arnold’in kedi haritast b) X(,=0.89111 ve ¥,=0.25111
baslangi¢ sartli Arnold’in kedi haritasi
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3.2.7. Sina Haritas1

Sina haritasi [114]

X=Xy +Y, +a COS(ZﬁYn )mod(l) (3.11)
Y . = X, +2¥, mod(1) (3.12)

denklemleriyle tanimlanir. a=1 se¢ildiginde bu harita (0, 1) araliginda sayilar tiretir.
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Sekil 3.7. a) X;=0.29 ve Y;=0.97 baslangi¢ sartli Sina haritas1 b) X;=0.29012 ve Y;=0.97012 baslangic
sartl Sina haritasi

3.2.8. Zaslavskii Haritasi

Zaslavskii haritasi [115] da ilging bir dinamik sistemdir ve

X, 1= (X +v+ aYn+1)mod(l) (3.13)

-r
Y. = COS(ZiZXn)+ e Y, (3.14)

seklinde temsil edilmektedir.

Yayilmig karakteristikli ve biiyilkk Lyapunov istelleri ile tahmin edilemezligi

ispatlanmistir. Bu harita v=400, r=3, a=12 ig¢in en biiyiik Lyapunov {stelli garip ¢ekici 6zelligi

gosterir. Bu durumda Y., €[-1.0512, 1.0512] dir.
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Sekil 3.8. a) X,=0.984, Y,=0.971 baslangi¢ sarthh Zaslavskii Haritas1 b) X,=0.985, Y,=0.9709 baslangi¢
sartll Zaslavskii Haritasi

3.3. Kaotik Haritali Parc¢acik Siirii Optimizasyon (KHPSO) Yontemleri

Yeni kaotik haritali PSO yontemleri basitce asagida siniflandirilmis ve agiklanmustir.

o KHPSOL1: Baslangi¢ hiz ve pozisyonlarin degerleri, siirii boyutuna ulagilincaya kadar

secilen kaotik haritanin yinelenmesiyle iiretilir.

« KHPSO2: Denklem (2.13)’lin ¢, parametresi secilen kaotik haritayla degistirilir ve hiz

giincelleme denklemi
Vi) (t + 1) - inﬂf(t)Jr KH\n ; (t)[yi,j (t)_ Xij (t)J+ Coh (I)[JAG (I)_ xi,j(t)J (3.15)

seklinde ifade edilir. Burada KH, secilen kaotik harita tabanl bir fonksiyondur ve (0.5,
2.5) arasinda deger alacak sekilde 6lgeklenmistir.

« KHPSO03: Denklem (2.13)’iin ¢, parametresi sec¢ilen kaotik haritayla degistirilir ve hiz

giincelleme denklemi
v (t+D)=wv, () +cn, Oy, () -x, O]+ K, ()5, () - x,,(¢)) (3.16)

seklinde ifade edilir. Burada KH, segilen kaotik harita tabanli bir fonksiyondur ve (0.5,

2.5) arasinda deger alacak sekilde 6lgeklenmistir.
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KHPSO4: Denklem (2.13)’iin ¢, ve ¢, parametreleri secilen kaotik haritayla degistirilir

ve hiz gilincelleme denklemi
Vi (t + 1) = wv[’j(t) + Klel,j(t)[y,.,j (t)— X (t)J+ KHzrz,/.(t)b";j (t) =X, (Z)J (3.17)

seklinde ifade edilir. Burada KH,| ve KH, se¢ilen kaotik harita tabanli fonksiyonlardir ve
(0.5, 2.5) arasinda deger alacak sekilde 6lgeklenmistir.

KHPSOS: Denklem (2.13)’lin r,; parametresi secilen kaotik haritayla degistirilir ve hiz

giincelleme denklemi
& (t+1)= W 1)+ aKH, (t)lyi’f (1)~ Xij (I)J+ Gl (t)|),>j (r)- Xij (t)J (3.18)

seklinde ifade edilir. Burada KH, ; secilen kaotik harita tabanli bir fonksiyondur ve (0.0,

1.0) arasinda degerler alir.

KHPSO6: Denklem (2.13)’iin r,; parametresi segilen kaotik haritayla degistirilir ve hiz

giincelleme denklemi
v (e +1)=wv () + e (O, (0)-x, O]+ &.KH, (0], (0)-x, ()] (3.19)

seklinde ifade edilir. Burada KH,; secilen kaotik harita tabanl bir fonksiyondur ve (0.0,

1.0) arasinda degerler alir.

KHPSO7: Denklem (2.13)’iin r,; ve r,; parametreleri segilen kaotik haritayla

degistirilir ve hiz giincelleme denklemi
v (t+1)= wy, (t) +¢,KH, | (t)l_yi’j (t) -X,; (t)J+ c,KH, (t)l_j// (t) -X,; (t)J (3.20)

seklinde ifade edilir. Burada KH,; ve KH,; secilen kaotik harita tabanli fonksiyonlardir

ve (0.0, 1.0) arasinda degerler alir.

KHPSO8: Denklem (2.13)’in w, ry; ve r,; parametreleri secilen kaotik haritayla

degistirilir ve hiz giincelleme denklemi
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v, ((+1)=KHv,, (e)+ o KH, (t)ly,-‘j (e)- X (t)J+ c,KH (t)lﬁj (£)-x,, (t)J (3.21)

seklinde ifade edilir. Burada KH,, KH,, ve KH; sccilen kaotik harita tabanl

fonksiyonlardir ve (0.0, 1.0) arasinda degerler alir.

KHPSQ9: Denklem (2.13)’lin w parametresi secilen kaotik haritayla degistirilir ve hiz

giincelleme denklemi
e (t+1)= Kitv,, 1)+ i (t)lylli (1)- Xij (t)J"‘ Gl (t)lj’; (e)- Xij (t)J (3.22)

seklinde ifade edilir. Burada KH secilen kaotik harita tabanl bir fonksiyondur ve (0.0,

1.0) arasinda deger alir.

KHPSO10: Denklem (2.13)’iin w ve ¢, parametreleri segilen kaotik haritayla degistirilir

ve hiz glincelleme denklemi

vi,j (t + 1) = KHlvi,j (t)+ KHzrl,j (t)l_yi,j (t)_ xi,j (t)J"’ Czrz,j (t)l_j// (t)_ xi,j (t)J (3'23)
seklinde ifade edilir. Burada KH, ve KH, segilen kaotik harita tabanli fonksiyonlardir.
KH; (0.0, 1.0) arasinda deger alir ve KH, (0.5, 2.5) arasinda deger alacak sekilde

6lceklenmistir.

KHPSO11: Denklem (2.13)’iin w ve ¢, parametreleri segilen kaotik haritayla degistirilir

ve hiz gilincelleme denklemi

Vi, (t + 1) = KHlvw. (t)+ nh; (t)l_yl.,/. (t)— X ; (t)J+ KHzrz’j (t)l_)?j (t)— X (I)J (3.24)
seklinde ifade edilir. Burada KH; ve KH, segilen kaotik harita tabanli fonksiyonlardir.
KH; (0.0, 1.0) arasinda deger alir ve KH, (0.5, 2.5) arasinda deger alacak sekilde

Olceklenmistir.

KHPSO12: Denklem (2.13)’iin w, ¢; ve c, parametreleri segilen kaotik haritayla

degistirilir ve hiz giincelleme denklemi
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vi,j(t+1):KHlvi,j([)+KH2rl,j([)lyi,j(z)_xi,j(t)J+KH3r2,j(t)|j>j(z)_xi,j(Z)J (3.25)

seklinde ifade edilir. Burada KH;, KH, ve KH; secilen kaotik harita tabanli
fonksiyonlardir. KH; (0.0, 1.0) arasinda deger alirken KH, ve KH; (0.5, 2.5) arasinda

deger alacak sekilde 6l¢eklenmistir.

Burada KHPSO1’ in diger KHPSO yontemleriyle birlikte kullanilabilecegi acikca

goriilebilmektedir.
3.4. Kalite Testi Fonksiyonlar

Matematiksel fonksiyonlara bagli iyi tamimlanmis kalite testi fonksiyonlari,
optimizasyon yontemlerinin performanslarini 6lgmek ve test etmek i¢in kullanilabilir. Bu kalite
testi fonksiyonlarmin dogasi, karmasikligi ve diger 6zellikleri tanimlarindan kolaylikla elde
edilebilmektedir. Cogu kalite testi fonksiyonlarin zorluk dereceleri parametrelerinin
degistirilmesiyle ayarlanabilir. Literatiirde bulunan kalite testi fonksiyonlarindan biri tek- modlu
(sadece tek bir optimuma sahip) ikisi de cok-modlu (bir¢ok lokal optimuma ancak tek bir global
optimuma sahip) olmak iizere ii¢ tane dnemli fonksiyon, onerilen yontemlerin istenen sonucu
verebilme yeteneklerini test etmek i¢in secilmistir. Bu fonksiyonlar evrimsel hesaplama ve diger
algoritma arastiricilart tarafindan yaygin olarak kullanilmistir. Ciinkii bu fonksiyonlarin
karmasikliklilart ¢ogu miihendislik problemiyle esdegerdir. Tablo 3.1°de deneylerde kullanilan
kalite testi fonksiyonlarinin temel oOzellikleri goriilmektedir. Asagidaki alt bolimlerde, bu

fonksiyonlarin karakteristikleri agiklanmuistir.

Tablo 3.1. Kalite testi fonksiyonlar1 6zellikleri

Fonksiyon Ust
Fonksiyon adt Alt stnir Optimum Sekil
numarasi sinir
1 Griewangk -600 600 0 Cok-modlu
2 Rastrigin -5.12 5.12 0 Cok-modlu
3 Rosenbrock -2.048 2.048 0 Tek-modlu
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3.4.1. Griewangk Fonksiyonu

Birinci test fonksiyonu diizenli dagitilmis bir¢cok yaygin lokal minimuma sahiptir [116].
Bu fonksiyon siirekli, ¢ok-modlu, 6lgeklenebilir, konveks ve ikinci dereceden bir fonksiyondur

Ve

30 xl? 30 X,
J?()C):E1 2000 -iI;IICOS 7 +1 (3.26)

seklinde ifade edilir. Sinirlar -600 <x <600 olacak sekilde se¢ilmistir. Global minimum noktasi
x* =(0, 0, ..., 10) ve fi(x*) = 0’dir. Sekil 3.9°da verilen sinirlarda fonksiyonun grafigi ve
kontur egrileri gosterilmistir. Sekil 3.10°da ise fonksiyon, grafigi azaltilmis sinirlarlarla
goriilmektedir. Tanimindaki toplama terimi fonksiyona parabollitk 6zelligi kazandirmaktadir.
Bu fonksiyonda yerel minimum derecesi parabolliik derecesinden daha iist seviyededir. Carpim
terimi baz alinarak arama uzayinin boyutlar1 artirllmakta ve yerel minimumlarin sayist
azaltilmaktadir. Arama aralii ne kadar fazlaysa fonksiyon daha yatik (yassi) halde

goriilmektedir.
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Sekil 3.9. a) Griewangk fonksiyonu b) Kontur egrileri
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Griewangk

Sekil 3.10. Azaltilmis arama aralikli Griewangk fonksiyonu

3.4.2. Rastrigin Fonksiyonu

Ikinci kalite testi fonksiyonu da genis arama uzay1r ve ¢ok sayida lokal optimum
noktalardan dolay1 oldukg¢a zor bir problemdir. Fonksiyon oldukc¢a ¢ok-modludur ve dogrusal

degildir [117]. Lokal minimumlarin yeri diizgiin dagilmistir. Fonksiyon
0,

fo(x)=10x30+ > (x; —10-cos(2mx;)) (3.27)
i=1

seklinde tanimlanir. Smirlar -5.12 <x<5.12 olacak sekilde secilmistir. Global minimum nokta

x* = (0, 0, ..., 0) ve fo(x*) = 0. Fonksiyonun grafigi ve kontur egrileri Sekil 3.11’de
goriilmektedir.
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Sekil 3.11. a) Rastrigin fonksiyonu b) Kontur egrileri
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3.4.3. Rosenbrock Fonksiyonu

Ucgiincii kalite testi fonksiyonu bazi degerleri arasinda dnemli etkilesimleri olan tek-
modlu bir fonksiyondur. Birgok dar tepecik igerdiginden dolayr zor bir fonksiyon olarak
diistiniilmektedir. Tepe noktalar1 ¢ok keskindir. Global minimum nokta uzun, dar, parabolik
sekilli diiz bir vadide yer almaktadir. Vadiyi bulmak kolay olabilir ancak global optimuma
yakinsamak zordur. Algoritmalar bu problemde ilerlenebilecek 1iyi noktalar1 tayin
edememektedir. Bu yiizden bu fonksiyon optimizasyon algoritmalarinin performanslarin

Olemek i¢in siirekli kullanilmigtir [118, 119]. Fonksiyon
30

L) =100, = x7)* +(1-x,)° (3.28)
i=l

seklinde tanimlanir. Sinirlar -2.048 <x <2.048 olacak sekilde secilmistir. Global minimumu
fy(x*) = 0°dir ve x* = (1, 1, ..., 1)’de yerlesmistir. Iki boyut icin grafigi ve kontur egrileri Sekil

12°de gosterilmistir.

Rosenbrock Rosenbrock

(a) (b)
Sekil 3.12. a) Iki degiskenli Rosenbrock fonksiyonu b) Kontur egrileri
3.5. Deneysel Sonuclar
Tim kalite testi fonksiyonlar1 KHPSO yontemleri ve literatiirde iyi performans
gosterdigi belirtilen diger PSO yontemleriyle ¢oziilmiistiir. Segilen topoloji tiim pargaciklarin

digerleriyle komsu olarak kabul edildigi global modeldir. Siirii boyutu tiim deneyler igin 25

olarak belirlenmistir. Algoritmalarin sonlandirilmasi i¢in, maksimum iterasyon sayisina ulagsma
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ve minimum hatay1 yakalama seklinde iki kriter secilmistir. Asagidaki alt boliimlerde sirastyla

test fonksiyonlart i¢in elde dilen sonuglar ve yorumlar sunulmustur.
3.5.1. Griewangk Fonksiyonu i¢in Sonuclar

Griewangk fonksiyonu igin farkli kaotik haritalar kullanan KHPSO yontemleri ve
literatiirde iyi sonuglar verdigi belirtilmis tic PSO yonteminin 50 simiilasyonu boyunca elde
edilen uygunluk degerinin bes istatistiksel analizi yapilmistir ve asagidaki tablolarda sirayla
verilmistir. iterasyon sayis1 2000 ve minimum hata 0.0001 segilmistir. Burada hPSO zamanla
degisen atalet agirhg (ZDAA) [61] ve zamanla degisen hizlanma katsayilarini [81] iceren
birlesimli PSO’yu temsil etmektedir. Zamanla degisen atalet agirlig1 i¢in hizlandirma katsayilar
literatlirde de kullanilan ¢; = ¢, = 2.00 seg¢ilmistir. GLEnlyiPSO yontemi de ikinci boliimde
anlatildig1 gibi atalet agirlign ve hizlandirma katsayilarini, pargaciklarin global ve lokal en iyi
pozisyonlarindaki terimleri cinsinden igerir [82]. V. tim PSO yoOntemleri i¢in 600 olarak
belirlenmistir.

Tiim algoritmalar 50 kez calistirip sonuclar kaydedilmistir. Adil bir degerlendirme igin
stirii tiim PSO’lar i¢in global optimumu i¢cermeyen sinirlar igerisinde baslatilmistir. Kaydedilen
sonuclardan istatistiksel analizler gergeklestirilmis ve sirayla Tablo 3.2, Tablo 3.3 ve Tablo
3.4’te sunulmustur. Her ydntem i¢in Ortalama (Ort), En Iyi (Min), En Kétii (Maks), Medyan
(Med), Standart Sapma (SS) ve optimum degere yakinsamak igin gereken ortalama iterasyon

sayis1 (Ort iter) hesaplanmis ve sonuglar karsilastirilmustir.

Tablo 3.2. Griewangk fonksiyonu i¢in PSO yontemleri ile elde edilen sonuglar

F1 bPSO GLEnlyiPSO ZDAA-PSO
Ort 0.034957333 0.014298924 0.012536245
Maks 0.181849495 0.083306690 0.051600123
Min 0.000100516 0.000074666 0.00008.8762
Med 0.017935979 0.009857288 0.007412101
SS 0.048103056 0.018505321 0.014532523
Ort iter 1395.89 934.82 1398.55

Sonuglardan w, r; ve r;’yi ayarlayan KHPSO7 ve KHPSO8’in diger PSO
yontemlerine kars1 istlinligii gortilmektedir. Genel olarak bakildiginda da, yeni oOnerilen
yontemlerin sadece global optimum degeri liretmekle kalmayip, daha hizli bir yakinsama orani
verdigi goriilmektedir. Onerilen ydntemlerdeki diisiik standart sapma degeri de global optimum
degeri elde etmede tutarlilik derecesini garantilemektedir. Diger ilging sonug ise, iyi sonuglarin

kaotik say1 dizileri i¢in Zaslavskii, Lojistik ve Cadir haritalar kullanildiginda elde edilmesidir.
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Tablo 3.3. Griewangk fonksiyonu igin ilk dort haritayr kullanan KHPSO yontemleri ile elde edilen
sonuglar

Lojistik Harita
FI KHPSOI | KHPSO2 | KHPSO3 | KHPSO4 | KHPSOS | KHPSO6 | KHPSO7 | KHPSOS | KHPSO9 Kipso KipsO Kipso
ort 0.0000961 | 0.0000792 | 0.0000862 | 0.0000972 | 00249573 | 0.0152989 | 0.0000981 | 0.0000831 | 0.0142980 | 0.0012639 | 0.0192392 | 0.0102889
Maks | 00001129 | 0.0001466 | 0.0001166 | 0.0001313 | 00818494 | 0.0933066 | 0.0001319 | 00000995 | 0.0833066 | 0.0893656 | 0.0863066 | 0.0793556
Min 0.0000638 | 0.0000595 | 0.0000s83 | 0.0000635 | 0.0001012 | 0.0000986 | 0.0000638 | 0.0000538 | 0.0000746 | 0.0001002 | 0.0000846 | 0.0000899
Med 0.0000990 | 0.0000991 | 0.0000792 | 0.0000871 | 00195359 | 0.0118683 | 0.0000991 | 0.0000870 | 0.0098572 | 0.0158425 | 0.0011572 | 0.0158426
ss 0.0000203 | 0.0000265 | 0.0000195 | 0.0000205 | 00471330 | 00215053 | 0.0000234 | 0.0000143 | 0.0185053 | 0.0159952 | 0.0195564 | 00157952
ot 78112 986.18 799.68 902.47 1309.89 1103.85 693.54 52116 9210 1399.44 934.01 1329.87
Cadir Harita
FI KHPSOl | KHPSO2 | KHPSO3 | KHPSO4 | KHPSOS | KHPSO6 | KHPSO7 | KHPSO8 | KHPSO9 Kipso Kipso Kibso
ort 00001366 | 0.0000942 | 00001112 | 00000873 | 00145673 | 0.0096298 | 0.0002696 | 0.0000963 | 0.0042989 | 0.0012359 | 0.0142392 | 0.0142989
Maks | 0.0001829 | 0.0001655 | 0.0001964 | 0.0001293 | 00791844 | 0.0993064 | 0.0005319 | 0.0001587 | 0.0803560 | 0.0905969 | 0.0903066 | 0.0893453
Min 0.0000332 | 0.0000335 | 0.0000693 | 0.0000666 | 0.0001000 | 0.0001008 | 0.0000293 | 0.0000538 | 0.0000114 | 0.0001002 | 0.0001006 | 0.0001009
Med 0.0000860 | 0.0000881 | 0.0000771 | 0.0000921 | 00189535 | 0.0118685 | 0.0001391 | 0.0000893 | 0.0098575 | 0.0098245 | 0.0061572 | 0.0585846
ss 0.0000253 | 0.0000366 | 0.0001095 | 0.0000355 | 00447133 | 00483205 | 0.0000294 | 0.0000263 | 0.0395055 | 0.0999785 | 0.0265564 | 00357652
ort 993.36 1050.44 142111 1125.12 1305.44 1336.11 798.06 598.46 1002.28 1200.98 1119.66 1032.22
Siniizoidal Yineleyici
FI KHPSOl | KHPSO2 | KHPSO3 | KHPSO4 | KHPSOS | KHPSO6 | KHPSO7 | KHPSO8 | KHPSO9 Kiso KHPSO Kibso
ort 00001168 | 0.0001112 | 00002162 | 0.0001035 | 00188675 | 0.0085298 | 0.0001696 | 0.0000923 | 0.0058989 | 0.0011235 | 0.0012391 | 0.0001213
Maks | 00002229 | 0.0001853 | 0.0004964 | 0.0003203 | 00791844 | 0.0883064 | 0.0004029 | 0.0001477 | 0.0806513 | 0.0863596 | 0.0063066 | 0.0001753
Min 0.0000732 | 0.0000413 | 0.0000993 | 0.0000866 | 0.0001005 | 0.0001006 | 0.0000238 | 0.0000498 | 0.0000174 | 0.0001003 | 0.0000904 | 0.0000313
Med 0.0000980 | 0.0000981 | 0.0002771 | 0.0000991 | 00183635 | 00118235 | 0.0001281 | 0.0000749 | 0.0072573 | 0.0058245 | 0.0091572 | 0.0000878
ss 0.0000363 | 0.0000426 | 0.0002695 | 0.0000355 | 00314713 | 00283205 | 0.0000282 | 0.0000226 | 0.0199505 | 0.0339785 | 0.0765564 | 0.0000419
ont 1009.58 110141 1002.44 10112 1015.44 1205.11 80236 59133 1362.38 1010.98 993.13 1021.36
Gauss Harita
FI KHPSOl | KHPSO2 | KHPSO3 | KHPSO4 | KHPSOS | KHPSO6 | KHPSO7 | KHPSO8 | KHPSO9 Kieso Kipso Kibso
ort 0.0009235 | 0.0001012 | 0.0001962 | 0.0001115 | 00001112 | 00079826 | 0.0001301 | 0.0001125 | 0.0000042 | 0.0000814 | 0.0000961 | 0.0192495
Maks | 0.0005293 | 0.0002058 | 0.0004964 | 0.0004013 | 0.0001859 | 0.0990648 | 0.0004139 | 00001977 | 0.0001654 | 0.0001663 | 0.0001929 | 0.0791849
Min 0.0000769 | 0.0000313 | 0.0000999 | 0.0000796 | 0.0000413 | 0.0001002 | 0.0000168 | 0.0000498 | 0.0000339 | 0.0000492 | 0.0000342 | 0.0001002
Med 0.0009923 | 0.0000999 | 0.0002771 | 0.0000991 | 00000982 | 0.0082359 | 0.0001281 | 0.0000949 | 0.0000888 | 0.0000863 | 0.0000921 | 00193635
ss 0.0001355 | 0.0000726 | 0.0002695 | 0.0000385 | 00000420 | 0.0296050 | 0.0000232 | 0.0000255 | 0.0000366 | 0.0000266 | 0.0000296 | 0.0481030
ont 1102.12 1001.47 1052.44 122121 1258.88 1205.06 962.36 639.92 1204.55 891.96 892.28 120991
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Tablo 3.4. Griewangk fonksiyonu i¢in 5., 6., 7. ve 8. haritay1 kullanan KHPSO yodntemleri ile elde edilen
sonuglar

Cember Harita

Fl KHPSOI | KHPSO2 | KHPSO3 | KHPSO4 | KHPSOS | KHPSO6 | KHPSO7 | Kmpsos | Kupsog | KHPSO KIpSO Kipso
ort 00001166 | 0.0001942 | 00019112 | 0.0000873 | 00149573 | 00142495 | 0.0002936 | 0.0001896 | 0.0010312 | 0.0012359 | 0.0215673 | 0.0406298
Maks | 0.0001925 | 00002653 | 00041969 | 0.0001293 | 0.0956849 | 0.0791849 | 0.0005319 | 0.0004373 | 0.0022158 | 00893596 | 0.0801844 | 0.0803064
Min 0.0000838 | 0.0000435 | 0.0001003 | 0.0000666 | 0.0001005 | 0.0001012 | 0.0000293 | 0.0000338 | 0.0001003 | 0.0001002 | 0.0001000 | 0.0001008
Med 00000990 | 0.0000981 | 0.0018773 | 0.0000921 | 00199359 | 0.0196835 | 0.0001391 | 0.0001281 | 0.0009999 | 0.0098245 | 0.0190035 | 0.0418685
ss 00000153 | 0.0000466 | 0.0009095 | 0.0000355 | 0.0491630 | 0.0491030 | 0.0000294 | 0.0000312 | 0.0001026 | 0.0999785 | 0.0460633 | 0.0383205
ot 952.36 1034.49 12111 1125.12 1465.89 1129.91 1001.06 932.39 1201.47 1209.98 111244 1206.15

Arnold'i Kedi Haritas

FI KHPSO!I | KHPSO2 | KHPSO3 | KHPSO4 | KHPSOS | KHPSOS | KHPSO7 | Kmpsos | kmpsop | KHPSO Kipso Kipso
ort 00005613 | 0.0001124 | 0.0000832 | 00000972 | 00001122 | 0.0208825 | 0.0005696 | 0.0002962 | 0.0055989 | 0.0042358 | 0.0132395 | 0.0142984
Maks | 0.0008129 | 00001466 | 0.0001166 | 0.0001313 | 0.0001999 | 0.0800648 | 0.0009983 | 0.0004965 | 0.0913560 | 0.0888992 | 0.0803066 | 0.0803459
Min 00000738 | 0.0000995 | 0.0000983 | 0.0000635 | 0.0000517 | 0.0001007 | 0.0000985 | 0.0000999 | 0.0000214 | 0.0001003 | 0.0001003 | 0.0001009
Med 00006990 | 0.0000109 | 0.0000892 | 0.0000871 | 0.0000982 | 0.0381235 | 0.0005281 | 0.0002778 | 0.0063573 | 0.0063943 | 0.0591577 | 0.0585843
ss 00000513 | 0.0000195 | 0.0000225 | 0.0000209 | 0.0000429 | 00296050 | 0.0001082 | 0.0006695 | 0.0239505 | 0.0899786 | 0.0865564 | 0.0627652
ort 962.90 986.18 1036.08 1483.18 1018.88 1409.63 869.66 1006.46 1008.88 1201.36 1087.66 1306.02

Sina Haritasi

FI KHPSOI | KHPSO2 | KHPSO3 | KHPSO4 | KHPSOS | KHPSO6 | KHPSO7 | Kmpsos | Kupsog | KHFSO KHPSO KHPSO
ort 00001696 | 0.0001543 | 00022112 | 0.0000873 | 0.0135957 | 00122988 | 0.0000892 | 0.0000826 | 0.0102989 | 0.0011139 | 0.0102395 | 0.0092889
Maks | 00002012 | 00002513 | 00055962 | 0.0001293 | 0.1956849 | 0.0803063 | 0.0001319 | 0.0000989 | 0.0803066 | 0.0808855 | 0.0625065 | 0.0793556
Min 00001004 | 0.0000835 | 0.0001003 | 0.0000666 | 0.0000802 | 0.0000986 | 0.0000238 | 0.0000538 | 0.0000590 | 0.0001000 | 0.0000700 | 0.0000899
Med 0.0000155 | 0.0001611 | 0.0019770 | 0.0000921 | 00999359 | 0.0116683 | 0.0000991 | 0.0000853 | 0.0108578 | 0.0103052 | 0.0095728 | 0.0158426
ss 00000159 | 0.0001066 | 0.000990 | 0.0000255 | 0.0493130 | 00205053 | 0.0000234 | 0.0000183 | 0.0185158 | 0.0150452 | 0.0102556 | 0.0157952
ot 1003.37 1021.49 2631 | 110512 1109.09 1013.68 689.29 7091.62 932.05 1120.39 941.01 1329.87

Zaslavskii Haritasi

FI KHPSOI | KHPSO2 | KHPSO3 | KHPSO4 | KHPSOS | KHPSOs | KuPso7 | Kmpsog | kupsop | KIPSO Kibso Kipso
ort 00000961 | 0.0000884 | 0.0000826 | 0.0000972 | 0.0098673 | 0.0100983 | 0.0000892 | 0.0000881 | 0.0112985 | 0.0000817 | 0.0000991 | 0.0008982
Maks | 00001219 | 00001366 | 0.0001066 | 0.0001210 | 0.0291844 | 0.0803063 | 0.0001319 | 0.000095 | 0.0833060 | 0.0001663 | 0.0001929 | 0.0893453
Min 00000609 | 0.0000420 | 0.0000500 | 0.0000635 | 0.0001000 | 0.0000882 | 0.0000198 | 0.0000410 | 0.0000724 | 0.0000493 | 0.0000342 | 0.0000900
Med 00000991 | 0.0000981 | 0.0000788 | 0.0000887 | 0.0103035 | 0.0106683 | 0.0000991 | 0.0000870 | 0.0098342 | 0.0000863 | 0.0000101 | 0.0585846
ss 00000203 | 0.0000265 | 0.0000195 | 0.0000210 | 00314713 | 0.0019505 | 0.0000224 | 0.0000130 | 0.0174055 | 0.0000276 | 0.0000276 | 0.0356652
ont 78933 979.10 729.61 913.44 1002.02 1117.06 687.08 589.59 906.09 897.37 899.27 1009.35
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3.5.2. Rastrigin Fonksiyonu icin Sonuclar

Algoritmalarin stokastik 6zelliklerini gérebilmek i¢in her biri yiiz kez ¢alistirilmistir. Bu
deneyde maksimum iterasyon 5000 olarak belirlenmis ve algoritmalarin potansiyellerinin
bulunmasi amag¢lanmistir. Denklem (3.29)’da tanimlanmis algoritma basari orani, farkli PSO

yontemlerinden elde edilen sonuglarin karsilastirilmasi amaciyla kullanilmistir.

NT, .
basarili (3 29)

Osevive

S =100

tum

Niasarii 1zin verilen maksimum iterasyon sayisinda Q... Uizerinde sonug bulan deneme
sayisidir. N, tim deneme sayisidir. QOseive, algoritma Qg toleransina yakinsadiginda

algoritmay1 sonlandirma sartidir ve

7Gx (0)- 1 (6] < 0. (3.30)

seklinde tanimlanir.

Tablo 3.5’te sinirlayicisiz temel algoritma (Temel-PSO), ZDAA-PSO [74] ve stokastik
atalet agirlikli PSO (StZDAA-PSO) [75] algoritmalarindan elde edilen sonuglar goriilmektedir.
StZDAA-PSO icin atalet agirhg degerler (0.5, 1) araligindadir. Onerilen KHPSO
yontemlerinden elde edilen sonuglar ise Tablo 3.6 ve Tablo 3.7°de gosterilmistir. Bu zor
problem i¢in, KHPSO yontemlerinin diger PSO yontemlerine gore biraz daha iyi sonug verdigi
gorilmektedir. Kismi kalitelerin (Qyeviye) toplanmastyla hesaplanmus farkli kalite seviyelerinde
KHPSO yontemlerinin toplam basar1 oran1 Tablo 3.8’de gosterilmistir. KHPSO7, KHPSOS ve
KHPSO12 yontemlerinin en iyi performansa sahip yontemler oldugu goriilmektedir. KHPSO7

Zaslavskii haritasiyla kullanildiginda en iyi sonug alinmistir.

Tablo 3.5. Rastrigin fonksiyonu i¢in PSO algoritmalarinin basar: oranlart

Qseviye Temel-PSO ZDAA-PSO StZDAA-PSO
1 0 0 0
10 0 1 2
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Tablo 3.6. Rastrigin fonksiyonu i¢in ilk dort haritay1 kullanan KHPSO algoritmalarinin basari oranlari

Lojistik Harita

KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO
Qseviyc 1 2 3 4 5 6 7 8 9 10 11 12

1 1 1 1 0 1 1 1 1 2 1 1 2

10 2 2 3 2 3 3 3 5 3 2 2 4

Cadir Harita

Q . KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO
seviye

1 2 3 4 5 6 7 8 9 10 11 12
1 1 1 0 0 0 1 1 2 1 0 1 1
10 1 2 2 2 2 2 3 3 1 2 2 2

Siniizoidal Yineleyici

Q ) KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO
seviye

1 2 3 4 5 6 7 8 9 10 11 12
1 0 0 1 1 1 1 1 0 0 0 1 1
10 1 2 2 2 2 2 4 3 2 1 1 2

Gauss Haritasi

Q . KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO
seviye

1 2 3 4 5 6 7 8 9 10 11 12
1 0 0 0 0 1 0 1 0 0 1 1 1
10 1 1 1 1 1 1 2 2 1 1 1 2

Tablo 3.7. Rastrigin fonksiyonu i¢in 5., 6., 7. ve 8. haritay1 kullanan KHPSO algoritmalarinin basari
oranlar1

Cember Harita

Q ) KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO
seviye

1 2 3 4 5 6 7 8 9 10 11 12
1 1 1 0 0 0 1 1 1 1 0 0 1
10 2 2 1 1 1 2 3 3 1 2 2 2

Arnold"in Kedi Haritas1

Q . KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO
seviye

1 2 3 4 5 6 7 8 9 10 11 12
1 1 1 1 0 0 1 1 2 1 1 0 2
10 2 2 2 2 1 2 3 3 2 3 2 3

Sina Haritasi

Q . KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO
seviye

1 2 3 4 5 6 7 8 9 10 1 12
1 0 1 1 0 1 1 0 1 0 0 0 2
10 2 2 2 3 2 2 4 3 1 2 2 3

Zaslavskii Haritas

Q . KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO
seviye

1 2 3 4 5 6 7 8 9 10 11 12
1 1 1 0 1 1 1 1 2 0 0 0 0
10 2 3 2 3 2 4 5 4 2 2 2 3
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Tablo 3.8. Rastrigin fonksiyonu igin

farkli kalite seviyelerinde KHPSO yontemlerinin toplam basar1

oranlar1
) KHPSO | KHPSO | KHPSO | KHPSO | KHPSO | KHPSO | KHPSO | KHPSO | KHPSO | KHPSO | KHPSO | KHPSO
Qseviye 1 2 3 4 5 6 7 8 9 10 11 12
1 5 6 4 2 5 7 7 9 5 3 4 10
10 13 16 15 16 14 19 27 26 13 15 14 21

3.5.3. Rosenbrock Fonksiyonu icin Sonuclar

Tablo 3.9°da Rosenbrock fonksiyonu i¢in sinirlayicisiz temel algoritma (Temel-PSO),

ZDAA-PSO ve stokastik atalet agirlikli PSO (StZDAA-PSO) algoritmalarindan elde edilen

sonuglar goriilmektedir. KHPSO yontemlerinden elde edilen sonuglar ise Tablo 3.10, Tablo 3.11

ve Tablo 3.12°de gosterilmistir.

Tablo 3.9. Rosenbrock fonksiyonu i¢in PSO algoritmalarinin basar oranlar1

Qseviye Temel-PSO ZDAA-PSO ZDAAStochastic-PSO
1 0 0 0
10 0 1 2

Tablo 3.10. Rosenbrock fonksiyonu i¢in ilk dort haritayr kullanan KHPSO algoritmalarinin basari

oranlari

Lojistik Harita

KHPSO | KHPSO KHPSO | KHPSO KHPSO | KHPSO KHPSO | KHPSO KHPSO KHPSO | KHPSO KHPSO
Qseviye 1 2 3 4 5 6 7 8 9 10 11 12
1 0 1 0 0 0 1 1 0 0 0 0 1
10 1 1 2 2 2 3 4 3 1 2 2 2
Cadir Harita
KHPSO | KHPSO | KHPSO | KHPSO | KHPSO | KHPSO | KHPSO | KHPSO | KHPSO | KHPSO | KHPSO | KHPSO
Qscviyc 1 2 3 4 5 6 7 8 9 10 11 12
1 0 1 1 0 0 1 1 1 0 0 1 1
10 1 1 1 2 1 3 3 3 2 2 1 2
Siniizoidal Yineleyici
KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO | KHPSO KHPSO
Qseviye 1 2 3 4 5 6 7 8 9 10 11 12
1 0 0 1 0 0 1 1 1 0 0 0 1
10 1 1 2 1 1 2 3 3 2 1 2 2
Gauss Haritasi
KHPSO | KHPSO | KHPSO | KHPSO | KHPSO | KHPSO | KHPSO | KHPSO | KHPSO | KHPSO | KHPSO | KHPSO
Qscviyc 1 2 3 4 5 6 7 8 9 10 11 12
1 0 0 1 0 1 1 1 0 0 0 1 1
10 1 1 1 2 1 1 3 2 0 1 1 2
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Bu fonksiyon sonuglarindan da KHPSO yontemlerinin digerlerine gore daha iyi sonug
verdigi goriilmektedir. Zaslavskii haritast kullanan KHPSO7 ydnteminin digerleri arasinda en
iyi yontem oldugu da sonuglardan kolayca goriilebilmektedir. Kaosun optimizasyon problemleri

icin bazi optimum noktalar1 arayan bazi yontemler i¢in aranan bir siire¢ oldugu anlasilmaktadir.

Tablo 3.11. Rosenbrock fonksiyonu i¢in 5., 6., 7. ve 8. haritay1 kullanan KHPSO algoritmalarinin basari
oranlar1

Cember Harita

Q . KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO
seviye

1 2 3 4 5 6 7 8 9 10 11 12
1 0 1 0 0 0 0 1 1 1 0 0 1
10 0 1 1 1 2 1 3 4 1 1 0 2

Arnold'in Kedi Haritas

Q . KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO
seviye

1 2 3 4 5 6 7 8 9 10 11 12
1 0 0 0 0 0 1 2 1 0 0 0 1
10 1 2 1 1 1 2 4 3 2 1 1 2

Sina Haritasi

Q . KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO
seviye

1 2 3 4 5 6 7 8 9 10 11 12
1 0 0 0 1 1 1 1 2 1 1 0 0
10 1 1 2 2 1 1 3 2 2 2 1 2

Zaslavskii Haritas:

Q . KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO
seviye

1 2 3 4 5 6 7 8 9 10 11 12
1 1 0 0 0 1 1 2 3 1 1 1 2
10 1 1 2 1 2 2 4 4 1 1 2 2

Tablo 3.12. Rosenbrock fonksiyonu i¢in farkli kalite seviyelerinde KHPSO ydntemlerinin toplam basar1
oranlar1

Q . KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO KHPSO
seviye

1 2 3 4 5 6 7 8 9 10 11 12
1 1 3 3 1 3 7 10 9 3 2 3 8
10 7 9 12 12 11 15 27 24 11 11 10 16

3.6. Sonuclar

Tezin bu boéliimiinde PSO’nun parametreleri ayarlamak ic¢in farkli kaotik haritalar
kullanilmigtir. Bu islem, klasik PSO’da rasgele sayiya her ihtiyag duyuldugunda kaotik say1
iireteci kullanilarak yapilmigtir. On iki kaotik haritali PSO yontemi Onerilmistir ve kalite testi
fonksiyonlarinda sekiz kaotik harita analiz edilmistir. PSO ve kompleks dinamik gibi farkli

alanlarda gelisen sonuglarin Dbirlestirilmesi bazi optimizasyon problemlerinde kaliteyi
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arttirabilmektedir ve kaos istenen bir siire¢ olabilmektedir. Ayrica 6zellikle KHPSO7 ve
KHPSO8 yontemlerinin ¢oziim kalitesini arttirdigi, yani bazi durumlarda lokal ¢dziimlerden
kagarak global arama kabiliyetini arttirdign goriilmiistiir. Onerilen bu yontemler heniiz
yenidirler. Bunlarin dagitik ve paralel versiyonlariyla optimize edilmis parametreler kullanilarak

ayrintili deneyler yapilabilir.
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4. KABA PSO

4.1. Giris

Farkl1 bilgi tipleri i¢cin uygun temsil bulma problemi yapay zekd ve ilgili ¢alisma
alanlarinin siiregelen bir konusudur. Bazi pratik durumlarda hesaplamalarda belirsizlik, hata ve
degiskenlik iceren sistemleri tam olarak temsil ve modelleme i¢cin matematiksel ve hesapsal
yontemler ortaya konulmalidir ve araliklari degisken olarak kullanmak tercih edilebilir.
Tolerans araligi saglamak ve degiskenlerin dogru degerlerini kaydedeme gibi durumlar
degiskenlerin araliklarinin kullanma zorunlulugunu ortaya g¢ikarir [120]. Araliklarla temsil
parcalardan olusmayan sayisal nitelikler igin veri biitiinliigiinii saglar ve bilgi kayb1 olugmasini
engeller.

Tezin bu boliimiinde de alt ve iist sinirdan olusan kaba degerlere bagli olarak PSO’nun
genisletilmesi saglanmis ve araliklarin birer karar degiskeni olarak kullanilmasi durumunda
PSO’ya yapilacak eklentiler gosterilmistir. Ayni1 zamanda, bu sekilde kaba hesaplama alanina da
ilave bir konu eklenmistir. Ayrica segilen uygulama alani, nicel nitelikler igeren veri
tabanlarinda veri madenciligi, i¢in de yeni, etkili ve otomatik bir yontem Onerilmistir ve bilgi

kayiplar1 ve 6n islemlerden kaginilarak kural kesfi yapilmistir.
4.2. Kaba Parcacik Siirii Optimizasyon Algoritmasi (KPSOA)

Lingras tarafindan onerilen kaba Oriintiiler; giinliik hava sicakligi, hisse bedeli araligi,
ariza sinyali, saatlik trafik hacmi ve giinliik finansal gostergeler gibi degiskenler i¢in
degiskenler kiimesi ya da araligini etkili sekilde temsil edebilen bir kaba deger olusturan bir alt
ve bir iist sinira dayanir [121]. Giris-¢ikista ya da ara sathalarin herhangi bir yerinde, aralikta ya
da daha genel olarak sinirli ve kiime {iyelikli kesinsizlik ve belirsizligi kapsayan problemler,
kaba oriintiilerin kullanilmasiyla halledilebilir. Kaba kiime teorisindeki gelismeler, alt ve {ist
sinir genel fikrinin ¢ok farkli tip uygulamalar icin kullamsh olabilecek genis bir ¢ati
saglayabilecegini gostermistir [120].

Nesneler, ornekler ya da kayitlar sinirli nitelikler kiimesiyle tanimlanabilir. Bir nesnenin
tanimi, 7 bir nesneyi tanimlayan nitelik sayis1 olursa, n-boyutlu bir vektdrdiir. Bir driintii, sinifa

ait nesnelerin bazi niteliklerinin degerlerine bagl nesnelerin bir sinifidir.

x bir nesnenin tanimindaki bir nitelik, x ve x ise x < x olmak sartiyla x’in alt ve {ist

sinirlart (son noktalar) olsun. Her nitelik degiskeninin kaba oOriintii degeri Denklem (4.1)’de
gosterildigi gibi alt ve st sinirlardan olusur. Bu, sematik olarak Sekil 4.1°de gosterilmistir. Bu,

reel say1 R kiimesinin kapali, 6z ve sinirhi alt kiimesidir.
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4.1)

=

Sekil 4.1. Bir kaba deger

=1

0 < x ise kaba deger porzitif kaba deger olarak adlandirilir ve x > 0 yazilir. Tersine,

eger X < 0 ise kaba deger negatif kaba deger olarak adlandirilir ve x < 0 yazilir. Pozitif ya da
negatif kaba degerler isaretli kaba degerlerdir. Eger x = 0 ya da x = 0 ise kaba deger sifir

stirl kaba deger olarak adlandirilir. Sifir sinirh pozitif kaba deger sifir-pozitif kaba deger ve
benzer olarak sifir sinirli negatif kaba deger sifir-negatif kaba deger olarak adlandirilir. Hem

pozitif hem negatif degeri olan kaba deger sifirt araya alan kaba deger olarak adlandirilir. Bu

tanimlamalar Tablo 4.1°de 6zetlenmistir.

Tablo 4.1. Kaba degerler ile ilgili tanimlar

Tanim

Sart

porzitif kaba deger (x>0)

Ancak ve ancak x >0

negatif kaba deger (x<0)

Ancak ve ancak x <0

sifir-pozitif kaba deger (x = 0)

Ancak ve ancak x=0

sifir-negatif kaba deger (x <0)

Ancak ve ancak x =0

sifirt araya alan kaba deger (x<>0)

Ancak ve ancak x >0 ve x <0

Bir kaba deger x’in orta noktasi, yaricapt ve genisligi asagidaki gibi tanimlanir.

orta(x) = ()? + 5)/2

yarigap(x)= ()_c — 1)/ 2

genislik(x)= ()_c - 1) =2yarigap(x)

(4.2)

(4.3)

4.4)
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x = (orta(x)-yarigap(x), orta(x)+yarigap(x)) oldugundan, kaba degerler son noktalar
yerine orta noktalar ve ¢aplar cinsinden de temsil edilebilir.

Kaba degerler bir hesaplamada sadece alt ve {ist simirlarin anlamli olarak disiiniildiigi
bir nitelik i¢in degerler kiimesini ya da bir araligi temsil etmede kullamighdir. Hesapsal
matematigin ¢ogu alaninda ¢ok popiiler olabilir. Ornegin kaba degerlerle hesaplama yaparak,
bazi hatalarla, bir fonksiyonu tek bir degerden ziyade biitiin bir aralik tizerinde degerlendirmek
miimkiindiir. Kaba degerlerle calisma daima tam ya da fazla tahmin edilen sinirlar
iireteceginden bir fonksiyonda kritik bir degeri kagiramaz. Bu yiizden, global maksimum ya da
minimum bulmada ya da diger optimizasyon problemlerinde kullanigh olabilir.

Aslinda geleneksel bir oriintii alt ve {ist sinirlar1 degiskenin degerine esit olan bir kaba

deger olarak goriilebilir [121, 122]. Kaba degerler iizerindeki bazi islemler asagida

gosterilmistir:

x+y:()_c,)_c)+ (X’;):(I"'X’;"';) 4.5)
x=y=(ex)e (0r))=le-rx-y) (4.6)
XXy = (min(;_c Vs )_c;/,)_c s )_c;/), max()_c Y, )_c;/, X Z,;c;/)) 4.7)

12%3 0 (x.x) (48)

XWX (E’;) 0 5

cam ) (4'9)
vy

S e

Aslinda bu islemler geleneksel aralik cebrinden alinmistir [122].

Toplama ve carpma iglemlerinin cebirsel 6zellikleri Tablo 4.2°de agiklanmustir.
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Tablo 4.2. Cebirsel 6zellikler

Cebirsel ozellikler Tanim Sart
xXty=yt+x
Yer degistirme -
Xy=yx
() 2= (12)
Birlesme -
(xy)z=x(yz)
O0+x=x
Etkisiz eleman -
l.x=x
x(tz)=xy+xz X = x
x(y+z)=xytxz y20vez=20
x(y+z)=xytxz y<0vez<0
Dagilma x(y+z)=xytxz x20, y=0ve z=0
x(z) =z x<0, y=0ve z=0
x(y-z)=xy-xz y20vez<0
x(y-z)=xy-xz y<0vez=0

Bir  kaba parcacigi kaba parametre r;’nin bir kataridir:

r=(r|1<i<n)

Bir kaba parametre 7;, biri alt parametre (7, ) olarak adlandirilan alt sinir i¢in biri de {ist

parametre (Z) olarak adlandirilan iist sinir i¢in kullanilan geleneksel parametre ¢iftidir.

ri:(ri’ri)

(4.12)

Sekil 4.2°de kaba pargacik 6rnekleri gosterilmistir.
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25 30 18 24 36 42 55 59 17 27 44 51

33 39 15 35 44 59 27 37 19 24 39 44

Sekil 4.2. Kaba pargaciklar

Her kaba parametrenin degeri, degisken i¢in araliktir. Araligin kullanilmasi, kaba
parcacik tarafindan temsil edilen bilginin kesin olmadigimi gosterir. Ancak bazi uygulamalarda
da, kesinsizlik s6z konusu olmaz; direkt olarak bu tiir temsilin kullanilmasi ihtiyac1 dogabilir.
Bazen kesinlik olarak adlandirilan bilgi 6l¢iisii uygunluk seviyesini degerlendirmede kullanish

olabilir [121].

- o 4.13
esinlik (r) ];7 Sinirmaks(ri) -

Sinir,, ;. (7”1) kaba parametre r/’nin degeri i¢in izin verilen maksimum simnir

gostermektedir.
PSO algoritmalarinda kullanilan gelenceksel parametre ve pargaciklar, Sekil 4.3’te
gosterildigi gibi bunlarin kaba esdegerlerinin 6zel durumlaridir. Geleneksel bir p pargacigi icin

kesinlik(p) maksimum deger olan sifira esittir.

30 18 20 36

30 30 18 18 20 20 36 36

Sekil 4.3. Geleneksel pargaciklar ve onlarin kaba esdegerleri

Siir kisith problemlerde, hiz ve pozisyon giincelleme denklemlerinden sonra karar
degiskenlerinin degerlerinin izin verilen aralikta kalmas1 gerekmektedir. Bu teknik KPSOA igin

de genellestirilebilir. Alt sinirin {ist sinirdan kii¢iik olmasi sarti zaten KPSOA’da saglanmaktadir.
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4.3. Nicel Birliktelik Kural Madenciligi ve Ilgili Calismalar

Market verisi iizerinden c¢alisan birliktelik kural madenciligi algoritmasi ilk olarak
[123]’te tanmitilmuigtir. Bu algoritma ve bundan sonra Onerilen ¢ogu algoritma birliktelik
kurallarinin kesfi i¢in iki asama takip etmislerdir: birincisi yogun nesne kiimelerini bulmak,
ikincisi de elde edilen yogun nesne kiimelerinden kurallar kesfetmek. Kesfedilen kurallar belirli
destek ve giliven degerlerine sahiptir. Bu sekilde ikili birliktelik kurallar1 anlamli olmasina
ragmen ilgilenilen veri nesneleri ¢ogu durumda kategorik ya da niceldir. Bu yilizden nicel
birliktelik kural madenciligi algoritmalar1 dnerilmistir. Bir nicel birliktelik kuralinda nitelikler
ikili degerlerle sinirlandirilmamus, nicel (yas, maas, sicaklik gibi) ve kategorik (cinsiyet, marka)
degerleri de almistir. Boylece nicel birliktelik kurallar1 ikili birliktelik kurallarindan daha
anlamlidir [124].

Bir personel veritabaninda nicel bir birliktelik kurali su sekildedir:

“Yas €[25, 36] A Cinsiyet=Erkek = Maag € [2000-2400] A Arabasi_Var=Evet”
(Gliven = 4%, Destek = 80%).

Bu nicel birliktelik kuralinda “Yas € [25, 36] A Cinsiyet=Erkek” kuralin ata kismi
“Maas € [2000-2400] A Arabasi_Var=Evet” ise sonu¢ kismudir. Bu kural “iscilerin %4’
(destek) erkektir ve 25 ve 36 yaslar1 arasindadir ve 2000 ile 2400 TL aras1 maas almaktadir ve
arabalar1 vardir” ve “25 ve 36 yaslarindaki erkeklerin %80’i (gliven) 2000 ile 2400 TL arast
maas almaktadir ve arabalar1 vardir” demektedir.

Nicel birliktelik kurallarinin kesfi i¢in ti¢ temel yaklagim bulunmaktadir ve bunlar Sekil

4.4°te gosterilmistir.

Nicel Birliktelik
Kural Madenciligi
Yaklagimlart
Ayriklagtirma Dagilim Optimizasyon
Optimize . .
Bolmeleme Kiimel Bulanik Edilmis Genetik Dlgsrlamsnyel
ve Birlestirme meleme Kiimeler Birliktelik Algoritmalar elsim
Algoritmast
Kurallari

Sekil 4.4. Nicel birliktelik kural madenciligi yaklagimlari
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[125]’te nicel birliktelik kural madenciligi nitelik alanlarinin kiigiik araliklara boliinmesi
ve birlestirilen araliklar yeterli destege sahip oluncaya kadar bitisik araliklarin daha biiyiik
araliklar seklinde birlestirilmesiyle yapilmistir. Aslinda, nicel problem ikili problem haline
donistiirilmistir. Fakat bu teknikte, bir nitelik diger nitelikler hesaba katilmadan
ayriklastirilmis ve nitelik etkilesimleri goz ard1 edilmistir.

Daha sonra farkli aragtirmacilar kiimeleme tekniklerini kullanmiglardir. Miller ve Yang
[126] araliklarin anlammi arttiran uzaklik-tabanli birliktelik kural madenciligi siireci
onermislerdir ve araliklart belirlemek icin de Birch kiimelemeyi uygulamiglardir. Lent ve
arkadaglar1 [127] nicel nitelikler i¢in kiimeleme amaciyla BitOp olarak adlandirilan geometrik
tabanli bir algoritma Onermislerdir. Bunlar anlamli bdlgeleri hesaplamak ve birliktelik
kurallarinin kesfini desteklemek icin kiimelemenin olasi bir ¢6ziim oldugunu gostermislerdir.
Vannucci ve Colla orijinal 6érnek dagilimini korumaya c¢alisan denetimsiz ayriklastirma igin
onerilen tekniklerin sinirlamalarin1 kaldirmak amaciyla bir sinirsel ag, kendini organize eden
harita, onermistir [128]. Bu c¢alismalarin ¢ogu aykir1 verilere hassas kalmakta ve verinin
dagilimini yansitmamaktadir.

[129]°de nicel birliktelik kurallariin madenciligi i¢in yine kiimeleme kullanan bilgi-
teorili bir yaklagim onerilmistir. Nitelikler arasindaki bilgi verici iliskileri gdsteren bir ¢izge insa
edilmistir. Sonra ¢izgede ise yaramayan nitelik kiimelerini ve bdylece bu nitelikler arasinda
birlestirilen araliklari budamak i¢in gruplar kullanilmstir.

Bazi aragtirmacilar nicel veriyi bulanik kiimelerle bolmiisler ve kesfedilen kurallar

bulanmik birliktelik kurallar: olarak adlandirmislardir [130]. Bu kurallar su sekildedir:

A=X = B=Y

Burada A4 ve B niteliklerin alt kiimesi olan nesne kiimelerini igermektedir. X ve Y ise 4
ve B’de ilgili nitelik kiimesiyle iliskili bulanik kiimeleri icermektedir.

Ancak, tiim bu teknikler kullanicidan 6n bilgi isterler. Nicel nitelikler i¢in araliklarin
secilmesi gliven ve destek degerlerine olduk¢a duyarhidir [123]. Simirlar ve bulanik tyelik
kiimelerinin sekilleri uzman kisiler tarafindan belirlenmelidir ve bodylece otomatik
ayriklastirmanin gerekli oldugu durumlarda bu teknikler kullanilamaz. Nicel nitelikler igin,
hepsi bireysel olarak diisiiniildiigiinde, anlaml1 bir ayriklastirma bulmak zordur. Boylece klasik
iki adimli yaklagimlar nicel birliktelik kural madenciligi i¢in artik uygun olmamaktadir.

Aumann ve Lindell nicel bir degerin dagilimmi birliktelik kurallarina dahil edilip

edilmeme kriteri olarak kullanmustir [131]. Bunlar birliktelik kurallarinin ilging davraniglar
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sergileyen (kural atasi) bir popiilasyon alt kiimesi (kural sonucu) olarak diisiiniilecegini iddia

etmislerdir. Iki tip nicel kural arastirnuslardr:

“kategorik = nicel” kurallar

Ve

“nicel = nicel” kurallar

Bu nicel birliktelik kural algoritmalarindaki genel kisitlama kuralin atasinda ya da
sonucunda izin verilen deger sayisidir. Ayrica, hem ikili hem de nicel degerlerin kuralin ata ya
da sonu¢ kisminda yer almasima izin verilmemektedir. Nicel niteliklerin ayriklastiriimasi
kaginilmaz bi¢imde bilgi kaybina neden olmaktadir. Ayriklagtirma niteligin orijinal dagilimin
yansitmamakta ve ayriklastirilmis araliklar kurallar1 gizleyebilmektedir (aralik ¢ok biiyiikse
diisiik kararliliktaki kurallar kagirilabilir; ¢ok kiigiik oldugunda da kural kesfetmek icin yeterli
veri bulunmayabilir). Araliklar semantik olarak anlamsiz olabilir ve uzmanlara mantikli
gelmeyebilir. Ayrica birkag nicel degerin kiimiilatif etkisi kolaylikla temsil edilemeyebilir.

Bazi arastirmacilar da nicel degerler i¢in nicel araliklar bulmak amaciyla geometrik
ortalamayr kullanmiglardir [132]. Ancak kuralin atasi sadece tek bir kategorik degerle

sinirlandirtlmigtir. Kesfettikleri kurallar su formdadir:

“Ae [V], Vz] =

ya da bunun genisletilmis formu

Aevi,n] AC =G

Burada A nicel nitelikler C, C; ve C, ikili ifadelerdir.

Fukuda ve arkadaslar1 [133] ve Yoda ve arkadaslari1 [134] ata kisimda iki nicel deger ve
sonugta bir ikili nesne olacak sekilde farkli bir bigimi 6nermislerdir.

Tiim bu yaklagimlarin temel problemi madencilik algoritmasindan Once verinin
hazirlanmasidir. Kullanici tarafindan ya da otomatik siiregle olusturulan bu hazirlik bir¢ok bilgi
kaybin1 beraberinde getirir ¢iinkii kurallar daha 6nce olusturulan araliklardan ayrilarak
iiretilecektir. Nicel veri icin olusturulan araliklar kesfedilen kurallardan degerli bilgiyi

kolaylikla elde edebilmek amaciyla uzman kisiler igin yeterince 6zlii ve anlamli olmayabilir.
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Ayrica, bulanik kiime yaklagimi haricinde bu yaklasimlarin bazi sakincalar1 bulunmaktadir. 11k
problem insan algisina gore sezgisel olmayan araliklar arasindaki keskin simir tarafindan ortaya
cikar. Algoritmalar araliklarin sinirlarina yakin olan elemanlar1 ya ihmal eder ya da ¢ok
Oonemser. Ayrica, O6n bilgi olmadan aralik teknigi i¢in iiyelik derecesinin ayirt edilmesi kolay
degildir. Benzeri sekilde, bulanik kiimelerle bolmeleme de kolay degildir ¢iinkii nicel nitelik
degerleri i¢in en uygun bulanik kiimeye karar vermek zordur [135, 136]. Nicel niteliklerin
karakteristikleri genel olarak bilinmez ve alan uzmanlari tarafindan en uygun bulanik kiimelerin
her zaman temin edilmesi gercekei degildir. Bu yiizden bazi arastirmacilar ayri bir 6n islem
olarak nicel nitelikler igin bulanik kiimeleri bulmada evrimsel algoritma kullanmislardir [137].

Aslinda nicel birliktelik kurallarinin kesfi basit bir ayriklastirma isleminden daha ziyade
zor bir optimizasyon problemidir. Bu ylizden bazi arastirmacilar bunu bir optimizasyon
problemi olarak karakterize etmis ve birliktelik kurallarin1 global optimizasyon algoritmalariyla
bulma yoluna gitmislerdir. Sadece yogun nesne kiimelerini bulmak i¢in evrimsel algoritma
kullanma fikri [138]’de kullanilmistir. Ancak kodlama degisken boyuttan dolay1 genetik
operatdrler i¢in fazla etkili degildir. Ayrica, sadece destek optimize edilmis ve yogun nesne
kiimeleri iiretilmistir. [6]’da etkili ve diizenlenmis bir evrimsel algoritma ile tiim kurallar tek
calistirmada bulunmustur. [8]’de ise cok amagli diferansiyel gelisim algoritmasi onerilmistir. En
son yeni ¢alisma ise genetik algoritma kullanan QuantMiner adli algoritmadir [139]. Ancak bu
calismada kullanici tarafindan kuralin atasinda ve sonucunda yer alacak niteliklerin belirlenmesi
yani bir sablonun olusturulmasi gerekmektedir ve yapilan is bu sablon i¢in en uygun araliklarin
bulunmasidir. Fakat hangi niteligin kuralda yer alacagmmin ve yer alacaksa da nerede yer
alacaginin (ata ya da sonug kismi) belirlenmesi isi uzman ya da kullanictya birakilamaz ve bu
isleri veri madenciligi algoritmasimin kendisinin yapmasi gerekir. Aksi takdirde ilgilenilen
gercek bir veri madenciligi problemi ve siireci olmaz. Bu ¢alisma sadece olusturulan sablon igin
aralik belirleme igini yapmaktadir. Onceden belirlenen kural sablonlari ile elde edilen kurallar
ilgili veritabaninda en iyi kurallar olmayabilir ve bu da en iyi kurallarin kesfini engeller.
QuantMiner sadece uygun aralik bulmaktadir. Yani, kullanish bile olamamasina ragmen
kullanict ya da uzman bilgisi gerektirir.

Birliktelik kurallarinin kesfi i¢cin PSO kullanan herhangi bir ¢alisma yoktur. Tezin bu
boliimiinde, PSO nicel niteliklerin araliklarin optimizasyonunu ve kurallarin kesfini es zamanli
olarak ve herhangi bir 6n islem ve uzman bilgisi gerektirmeden otomatik yapacak sekilde
tasarlanmigtir. Tasarlanan PSO, ayrica her veritabani igin belirlenmesi gii¢ olan minimum
destek ve minimum giiven degerlerine ihtiyag duymadan veritabanindan bagimsiz bir yaklagim
sunar. Genelde kullanilanin aksine yiiksek kaliteli birliktelik kurallarin1 yogun nesne kiimeleri

iiretmeden direkt olarak kesfeder.
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4.4. Nicel Birliktelik Kural Kesfinde KPSOA
4.4.1. Parcacik Temsili

Arama boyunca {lretilen ve diizenlenen pargaciklar kurallar1 temsil etmektedir. Her
parcacik nesneleri ve araliklar1 temsil eden karar degiskenlerinden olusur. i. nesnenin i. karar
degiskeninde kodlandig1 pozisyonel bir kodlama kullamilmistir. Her karar degiskeni de ii¢
kisimdan olusur. Karar degiskeninin birinci kism1 kuralin ata ya da sonug kismini (A-S) temsil
eder ve sifir ile bir arasinda degerler alir. Eger bu deger 0.00< 4-S;<0.33 ise bu nesne kuralin
ata kisminda yer alacaktir. 0.33<4-5,<0.66 ise nesne kuralin sonu¢ kisminda yer alacaktir ve
eger 0.66<4-S;< 1.00 ilgili nesne kuralda yer almayacaktir. 0.00 ve 0.33 arasinda deger alan tiim
karar degiskenleri kuralin ata kismini, 0.33 ve 0.66 arasinda deger alanlar ise kuralin sonug
kismini olusturacaktir. Ikinci kisim alt sinir1 (AS) temsil ederken iigiincii kisim da iist sinir1 (US)
temsil etmektedir. Bir parcacigin yapisi Sekil 4.5’te goriilmektedir. Burada m, kesif yapilan

verinin nitelik sayisidir.

Degisken; Degisken; Degisken,,
A4-S; |48, [0S, |4-S,]4S, |US, | | |4-S.]4S,. |Us.,

Sekil 4.5. Pargacik temsili

Bu pargacik temsilinin uyarlamasinda karar degiskeninin ikinci ve ti¢lincii kismi tek bir
deger olarak, yani kaba deger olarak, islem gorecektir. Ilk bakista bu temsilin sadece nicel
nitelikler iceren veri tabanlar igin kullanilabilecegi goriilmektedir. Ancak, bunu ayrik ya da
nominal degerler i¢in genisletmek c¢ok kolay ve diiz bir adimdir. Nicel nitelikler temsilin
basinda ayrik olanlar ise sonunda yer alirlar. Ayrik nitelikler i¢in sadece 4-S; ve D; kullanilir ve
D; niteligin degeridir. Yani, ayrik ya da nominal niteliklerin degerleri igin AS; ve US; yerine

sadece D; kullanilir.
4.4.2. Uygunluk Fonksiyonu

Kesfedilen kurallar yiiksek destek ve giliven degerlerine sahip olmalidir. Kurallar
kesfedilirken es zamanli olarak ilgili niteliklerin araliklar1 da kesfedilecek kurali optimize
edecek sekilde ayarlanmaktadir. Yani bu araliklarin belirlenmesi uygunluk fonksiyonunun bir

parcasi olarak ele alinmistir. Secilen uygunluk fonksiyonu (4.14)’te gosterilmistir:
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kapsama(Ata + Sonug )

Uygunluk= o, x kapsama(Ata+Sonug)+ a, x - a3 x (NA-N(*))-

kapsama(Ata)
ay x Aralik- o, x Isaret (4.14)

Secgilen bu uygunluk fonksiyonu bes boliimden olusmaktadir. Burada Ata ve Sonug
sirastyla kuralm ata ve sonug kismini igeren ayrik nesne kiimeleridir. kapsama(Ata+Sonug) Ata
ve Sonucu igeren kayitlarin veritabanindaki toplam kayit sayisina oranidir. Bu birinci kisim bir
birliktelik kuralinin istatistiksel anlami olarak goriilebilen destek degeri olarak diisiiniilebilir.
Ikinci kistm da kuralin giiven degerini temsil etmektedir. Ugiincii kistm pargaciktaki nitelik
sayisin1 gostermektedir. Bu az sayida nitelik barmndiran kisa kurallarin olugsmasina destek
vermektedir. NA veritabanindaki nitelik sayist N(*) da pargacign ilk parcasinda 0.66 ile 1.00
arasinda deger alan nitelik sayisidir. Bu terimle veri madenciliginde 6nemli olan okunabilirlik
ve anlagilabilirlik arttirilmaya g¢alisilmistir. Uzun kurallar gereksiz ve Onemsiz bilgi
icerebilmekte ve bu da kuralin basarisini ve etkili sekilde islenebilmesini engelleyebilmektedir.
Ancak, son kullaniciya daha kaliteli bilgi verebilmek ic¢in bazi veritabanlarinda ve kullanici
isteklerine ve gereksinimlerine gére bu terim uygunluk fonksiyonunun degerini arttirict sekilde
de (isareti “+” yapilarak) kullanilabilir. Uygunluk fonksiyonundaki dordiincii kisim nesne
kiimesi ve kurala uyan araliklarin genligini azaltmak i¢in kullanilmaktadir. Bu sekilde ayni
sayida kaydi kapsayan ve ayni sayida nitelik igeren bir iki kuraldan araliklar kiigiik olan en iyi
bilgiyi vermektedir ve bunun uygunlugu daha iyidir. Aralik (4.15)te gosterildigi sekilde
hesaplanir ve gen,,, Aralik’in etkisini uygunluk fonksiyonunda dengelemek icin her nitelik igin

kararlagtirilan genlik faktoriidiir.

US, — A4S,

gen

Aralik = (4.15)

m

Uygunluk fonksiyonundaki son boliim KPSOA’nin sonraki aramalarda farkli kurallart
kesfetmesi icin diizenlenmistir. KPSOA her ¢alistirmada tek bir kural kesfetmektedir. Isaret
terimi de bir kaydin niteliginin daha 6nce bir kural atasi ya da sonucu tarafindan kapsanip
kapsanmadigini gostermek icin kullanilmaktadir.

a , a,, a;, a, ve as kullanict tanimli parametrelerdir ve bu parametreler
degistirilerek uygunluk fonksiyonundaki kisimlarin etkileri degistirilebilir. Uygunluk

hesaplamasinda Aralik kismi nicel nitelikleri temsil eden pargacik kisimlarini ilgilendirmektedir.
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4.4.3. Mutasyon

KPSOA’da mutasyon da kullanilmistir. Mutasyon bir parcacigin tek bir kaba karar
degiskeninin p,,, olasilifiyla degisime ugramas: seklinde gerceklesir. Genetik algoritmada

kullanilan dort ¢esit mutasyon KPSOA’ya da uyarlanmistir [138].

o Tiim arahgi saga dogru kaydirma: Alt ve iist sinirlardaki degerler arttirilir.
o Tiim arah@ sola dogru kaydirma: Alt ve st simirlardaki degerler azaltilir.
o Aralik boyutunu arttirma: Alt sinir degeri azaltilirken {ist sinir degeri arttirilir.

o Aralik boyutunu azaltma: Alt sinir degeri arttirilirken iist sinir degeri azaltilir.

Parcacik pozisyonlari eger mutasyona ugramis parcaciklar daha iyi uygunluga sahip

olurlarsa bu degerle giincellenir.

4.4.4. Simir Araliklarimin Aritilmasi

KPSOA c¢alismas1 sonunda kesfedilen kuralin nitelik siirlarina bir iyilestirme islemi
uygulanir. Bu ilgili pargacikta aralik boyutunun destek degeri orijinal destek degerinden kii¢iik
olana kadar araligin azaltilmasi islemini igerir. Bu sekilde daha kaliteli kurallarin olugmasi

saglanir.

4.4.5. Parametre Kontrolii

Deneylerde kullanilan parametre degerleri Tablo 4.3’te gosterilmistir. Hiz ve pozisyon

icin maksimum ve minimum degerler karar degiskenlerin degerlerine baghdir. ¢, «,, a5, a,,

ve as sirasiyla 0.8, 0.8, 0.05, 0.1, ve 0.2 olarak secilmistir.

Tablo 4.3. Kullanilan parametre degerleri

Parametreler Siirii Iterasyon Mutasyf)n Hizlanma Atalet agirhin
boyutu sayisl olasihigi katsayilar
Degerler 25 1000 0.5 2 0.9°dan 0.4’
4.5. Deneysel Sonuclar

KPSOA ilk olarak dort nicel nitelik iceren 1000 kayitli sentetik bir veritabaninda
degerlendirilmigtir. Tiim alan degerleri [0, 100] araliina ayarlanmistir. Degerler Tablo 4.4’te
gosterilen sekilde, Onceden belirlenen kiimelerde gruplanmis bi¢imde, diizenli olarak

dagitilmistir. Bu dagilim tamamen gelisigiizeldir. Bazi1 araliklar kii¢iik bazilar ise bilylik boyuta
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sahiptir. Bu kiimeler i¢in destek ve giiven degerleri sirasiyla %25 ve %100 olarak secilmistir.
Bu kiimeler disindaki degerler bu kurallardan daha iyi kural olusturmayacak sekilde
dagitilmistir. Birliktelik kural madenciliginde uygunluk fonksiyonu igin uygun agirliklar
belirlenerek bu kurallarin kesfedilmesi istenmistir. Amag her ayarlanan bolgenin araligini dogru
olarak bulmaktir. KPSOA’nin her niteligin nicel araligl i¢in en uygun degerlerle birliktelik
kurallarimi kesif yetenegi test edilmistir.

Tablo 4.4. Sentetik olarak olusturulan kiimeler

Kiimeler
A e[1-10]A A, €]15-30]
A e[15-45]1A A; €[60-75]
A,€[65-90] A Ay [15-45]
A;€[80-100] A Ay [80-100]

Tablo 4.5. KPSOA tarafindan bulunan kurallar

Kural Destek(%) Giiven(%) Kayitlar(%)
A e[1-10]= A, €[15-30] 25 100
A€ [15-45]= A; €[60-75] 25 100
A;€[80-100]= A, € [80-98] 25 100
A,e[65-89]= A, [15-43] 25 100
A, €[15-30]= A, €[1-10] 25 100 109
A; €[60-75]= A, €[15-45] 25 100
A, €[80-98] = A; € [80-100] 25 100
Ase[15-45]= A, €[65-89] 25 100

Tablo 4.5’te KPSOA tarafindan bulunan kurallar gésterilmektedir. Tablodan goriildiigii
gibi sentetik olarak olusturulan kiimelere gore kesfedilen kurallar, yiiksek destek ve giiven
degerine sahiptir; ayrica anlagilabilirdir. KPSOA veritabanindan bagimsizdir ¢linkii her
veritabani i¢in belirlenmesi gii¢c olan minimum destek ve giiven degerlerine bagh degildir. Eger
destek ve giiven degerleri kullanilsaydi ve destek degeri %25°ten biiylik secilseydi bu
veritabanindaki niteliklerin degerlerine gore hicbir kural kesfedilemeyecekti. Ancak bu
veritabaninin bazi dogru ve anlasilabilir kurallar igerdigi bilinmektedir. KPSOA minimum
destek ve giliven esik degerlerini kullanmadan tiim bu kurallar1 otomatik olarak kesfetme
yetenegine sahiptir. Ayrica kuralin ata ve sonu¢ kisminin 6nceden ayarlanmasiyla olusturulmusg

kural sablonunun belirlenmesine ihtiya¢ duymaz.
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Tablo 4.6. Farkli seviyelerdeki giiriiltii sonras1 kesfedilen kurallar

giiriiltii_seviyesi = 4%

Kesfedilen kurallar Destek(%) Giiven(%) Kayitlar(%)
A e[1-10]= A, €[15-29] 24.2 100
A e [15-45]= A; €[60-73] 24.0 100
A;€[80-100] = A, €[80-96] 23.6 96.7
A,€[65-90] = A, [15-46] 242 98.3
A, €[15-29]= A, €[1-10] 24.1 100 73
A; €[60-73]= A, €[15-45] 24.0 100
A4€[80-96] = A;€[80-100] 23.7 96.6
A, e[15-46] = A, € [65-89] 24.2 98.3
giiriiltii_seviyesi = 6%
Kesfedilen kurallar Destek(%) Giiven(%) Kayitlar(%)
A e[l-11]= A, €[14-31] 233 98.9
A €[15-45]1= A5 €[56-73] 23.6 99.0
A;€[80-100] = A, €[84-95] 23.3 94.5
A,e€[65-89] = Ay [14-49] 23.8 97.8 93.1
A; €[14-31]1=> A e[1-11] 23.3 98.9
A; €[56-73]= A, €[15-45] 23.6 99.0
A,€[84-95]= A;€[80-100] 233 94.5
A4e[14-49]1= A, €[65-89] 23.8 97.8
giiriiltii_seviyesi = 8%
Kesfedilen kurallar Destek(%) Giiven(%) Kayitlar(%)
Ae[l-111=> A, €[14-29] 22.4 97.6
A€ [15-45]1= A; €[62-76] 22.9 98.0
A;€[79-100] = A, €[82-98] 22.6 933
A,€[65-90] = Ay [15-48] 23.7 95.8 919
A, €[14-29]1=> A, €[1-11] 22.4 97.4
Aj; €[62-76]= A, €[15-45] 22.9 98.0
A,€[82-98] = A;€[79-100] 22.8 934
A,e[15-48]= A, €[65-90] 23.7 95.8
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Onerilen algoritmanin etkinliligi test etmek igin KPSOA, giiriiltiilii sentetik
veritabaninda da c¢alistinlmistir. Giiriiltii, kiimenin ikinci nesnesinin araligma ait olmayan
degerler yerlestirmek suretiyle olusturulmustur. Bu yiizden, kayitlarin belli bir yiizdesi ikinci
nesnenin nceden belirlenen araliginda yer almaz. Ornegin, ilk kiime igin kayitlarin belli bir
yiizdesi, ikinci nesne A, € [15-30]’da bulunmaz, ancak [0-14] ya da [31-100] araliginda
dagitilmstir.

Algoritmanin, kurallarmm ata ya da sonu¢ kismu ig¢in en uygun araliklar1 bulup
bulamayacagir test edilmistir. Bu test Ui¢ seviyeli giriltii ile yerine getirilmistir
(gtiriiltii_seviyesi’nin 4%, 6% ve 8% degerleri igin). Deneysel sonuglar Tablo 4.6’da
gosterilmistir. Bu tabloda, kesfedilen kurallar, destek ve giliven degerleri ve toplam kayitta
kesfedilen kural tarafindan kapsanan kayit yiizdeleri verilmistir. Araliklarin sinirlarimin sentetik
olarak iiretilenlere hemen hemen uydugu goriilebilmektedir. Bu KPSOA’nin test edilen veri
i¢inde belirli yiizdelerdeki giiriiltiiniin iistesinden geldigini gostermektedir.

Bagka bir deneyde KPSOA’nin etkinliligini diger algoritmalarla kargilagtirmak amacryla
yapilmigtir. [140]’taki ikinci fonksiyon kullanilarak sentetik bir veritabani olusturulmustur.
Fonksiyon Sekil 4.6’da gdsterilmistir. Amag her olusturulan bdlgenin araligini en uygun sekilde
bulmaktir. Yas ve maas niteliklerinin aldig1 degerlere bagli olarak her kayda bir grup atanmistir.
Sekil 4.7 sadece Grup A’ya ait 5000 kaydin yer aldigi fonksiyonun dagiliminin grafiksel

gosterimidir.

Eger ((vas < 40) A (50K < maas < 100K)) v
((40<yas<60) A (75K < maas < 125K)) v
((as = 60) A (25K < maas < 75K)) = Grup 4
Degilse= Grup B

Sekil 4.6. Deney i¢in kullanilan fonksiyon
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Sekil 4.7. Deney i¢in kullanilan fonksiyonun grafiksel gosterimi

Veritabani, kayitlarin alt ve iist sinirlar arasinda diizgiin dagitilmasiyla olusturulmustur.
maayg niteligi i¢cin sinir noktalar 20000°den 150000°e ve yas niteligi i¢in siur noktalar 20°den
80’e kadardir. Grup i¢in tg¢lincii nitelik de eklenmistir. Fonksiyona gore kayitlarin %37.9’u
Grup A’ya aittir. Birliktelik kurallarinda yas ve maas nitelikleri ata kisimda ve Grup niteligi de
sonu¢ kisminda olacaktir. Bu yiizden pargacik temsili de bu duruma riayet edecektir.

GA ve KPSOA haricindeki algoritmalar nicel niteliklerin araliklarini olusturmak igin
otomatik bir ayriklagtirma siireci icermektedirler ve bu algoritmalar Weka programi ile
calistirilmigtir. OneR [141] algoritmasinda nicel nitelikleri ayriklastirmak icin kullanilan sepet
sayis1 6 olarak belirlenmistir. PART [142] algoritmasi i¢in budama amaciyla kullanilan giiven
faktorii 0.25 secilmis ve azaltilmig hata budamasi i¢in C4.5 budamasi kullanilmistir. Ridor [143]
algoritmasinda bir kuralda 6rneklerin toplam minimum agirligi 1 olarak belirlenmis ve standart
degerleriyle calistirlmigtir. KPSOA’nin yeni bir teknik oldugu ve GA’lar ile diger yontemlerin
eski teknikler oldugu ve uzun siireden beri kullanildigini unutmamak gerekmektedir. Kapsama
ve NegatifNoktalar olarak adlandirilan iki kalite 6l¢iisii kesfedilen kurallar icin karsilagtirma

yapmak amactyla kullanilmistir. Bunlar, (4.16) ve (4.17) denklemleriyle tanimlanmustir.

N, .
Kapsama = —>21 (4.16)

TumPorzitif
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N
NegatifNoktalar = —__ (4.17)

TumNegatif

Nrumpozisy tim pozitif kayitlarin (Grup A) sayisidir. Np,.;r algoritmalar tarafindan
kesfedilen kurallar tarafindan kapsanan kayitlarin sayisidir. Nzynegair negatif kayitlarin (Grup B)
sayisidir ve Ny kural tarafindan yanlislikla kapsanan negatif kayit sayisidir. Aslinda
Kapsama dogru kapsanan kayitlarin oranmidir ve NegatifNoktalar da kurallarin giivenilirligini
gostermektedir.

Sonuglarin adil karsilastirilabilmesi i¢in baslangi¢ siirii ve GA’lar i¢in baslangic
popiilasyonu farkli bir sekilde baslatilmistir. Veritabanindaki ayni bir kayit se¢ilmis ve kural bu
kayda bagli olarak tiretilmeye ¢alisilmistir. Segilen a;niteliginin her v;degeri igin alt limit v,- &
ve Ust limit v; + 6 , v/ nin bir yiizdesi olarak belirlenmis ve bdylece baslangig siirii ve
popiilasyonun en az bir kayit igermesi saglanmustir.

Algoritmalardan elde edilen sonuglar Tablo 4.7’ de goriilmektedir. KPSOA Grup A igin
sadece ii¢ kural kesfetmistir. Ancak GA disinda diger algoritmalar ¢ok fazla kurala ihtiyag
duymustur. Az sayidaki kural son kullaniciya anlagilabilirlik ve okunabilirlik sunmaktadir ve
¢ogu durumda istenen bir 6zelliktir. Ayrica KPSOA tarafindan elde edilen Kapsama degerleri
daha iyidir. Bagka Onemli bir nokta da diger algoritmalar tarafindan elde edilen biiyiik
NegatifNoktalar degerleri daha az giiveni gosterir ve bu da ayriklastirma iglemi i¢in bu
algoritmalar tarafindan secilen araliklardandir. Bu algoritmalar uygun kesme noktalari
belirleyememistir ve bu da nicel birliktelik kurallarin kesfindeki en 6nemli problemdir. Bu
algoritmalar tarafindan kesfedilen kurallar, anlasilabilir degildir ve artik nitelik ve degerlere

sahiptir. Ornek olarak Ridor tarafindan kesfedilen bir kural asagidadir:

“vas > 39.5) A (maas < 122707.776803) A (maas > 28267.898833) A (vas < 61.5) A
(maas > 74840.212238) A (yas < 59.5) = Grup = A” (kapsanan kayi1t=408)

Burada, kuralin ata kisminda sadece iki nitelik bulunmasina yani ¢ok az sayida nitelikle
ugrasilmasma ragmen, dikkat edilirse “(yas <= 61.5)” ve “(yag <= 59.5)” kuralin ata
kismindadir ve “(yas <= 59.5)” atik niteliktir. Benzer sekilde “(maas > 28267.898833)” ve
“(maas > 74840.212238)” kuralin ata kismindadir ve burada da “(maas > 28267.898833)” atik
niteliktir. Bu sekilde kuralin anlagilmasi ve isletilebilmesi zorlagmaktadir.

Yine PART tarafindan kesfedilen bir kural asagidadir:
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“(maas > 24927.14358) A (maas > 49974.276261) A (vas < 60) A (maas < 100532.277915)
A (yas £ 39) A (maag < 98002.227109)= Grup = A” (kapsanan kayit=609)

Bu kuralda da dikkat edilirse “(maas > 24927.14358)” ve “(maas > 49974.276261)”;
benzer sekilde “(maas < 100532.277915)” ve “(maas < 98002.227109)” aymi kuralin ata
kisminda yer almakta ve bu basit ve kisa kural bile atik nitelik ve degerler icermektedir.

OneR ise sadece maas niteligine gore kurallar iiretebilmistir.

KPSOA ise, ¢cok az ve artik nitelik ve deger icermeyecek sekilde veritabaninda dogru ve

anlasilabilir kurallar1 bulabilmistir.

Tablo 4.7. Fonksiyon 2 igin farkli algoritmalar tarafindan elde edilen sonuglar

OneR | PART | Ridor | GA KPSOA
Kural sayis1 59 3 5 3 3
Kapsama 70.44 | 66.80 | 99.89 |99.83 | 100
NegatifNoktalar 18.03 | 20.20 | 0.003 | 0.001 | 0.00

Algoritmalarin etkinliligini dogrulayan sezgisel bir 6l¢ii kurallarin araliklarinin sentetik
olarak olusturulanlarla karsilastirilmasi ve bdylece kurallarin kalitelerinin belirlenmesidir.
KPSOA tarafindan kesfedilen kurallarin ortalama destek ve gliven degerleri 12.21 ve 100.00°dir
Ortalama destek sayisi ii¢ ile ¢arpilirsa (3 kural kesfedilmistir) %37.9’a yakin deger elde
edilmektedir ve bu da pratik olarak tiim kayitlarin kapsandigi anlamina gelmektedir. Giiven
degeri de %100°diir ¢iinkii bolgelerde diger gruptan kayit bulunmamaktadir.

KPSOA, ayni zamanda 6 tane halka agik gercek veritabaninda da degerlendirilmistir:
Basketball, Bodyfat, Bolts, Pollution, Quake, ve Sleep. Bu veritabanlar1 Bilkent Universitesi
Fonksiyon Yaklastirma Deposunda hazir bulunmaktadir [144]. KPSOA’ nin bir karakteristigi de
stokastikligidir. Boylece algoritma farkli caligtirilmalarda dalgalanmalara sahip olabilir. En iyi
sonucun almabilmesi igin algoritma birkag¢ kez ¢alistirilabilir. Algoritma on kez ¢aligtirilmis ve
bu calistirmalarin ortaklama degerleri sunulmustur.

Bir 6nceki deneyde de goriildiigii gibi diger birliktelik kural kesfi yapan algoritmalarla
KPSOA’y1 karsilastirmak zor ve adaletsiz olabilir. Cogu madencilik algoritmasi niteliklerin
araliklarinin belirlenmesini istemekte ve Oniglem gerektirmektedir. Bu yiizden anlamli olarak
karsilastirma, literatiirde birliktelik kurallarinin arama sirasinda nicel nitelikleri ayriklagtiran ve
evrimsel hesaplama tabanli iki algoritmayla yapilabilir.

Tablo 4.8’de, KPSOA ve [6]’da sunulan algoritma tarafindan bulunan yiiksek kaliteli

kural sayisi ve bu kurallarin giiven degerleri (standart sapmalarla birlikte) ile birlikte
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veritabanindaki kayit sayis1 ve nicel nitelik sayis1 goriilmektedir. Deneysel sonuglarda kural ve
giiven degerleri kullanilmistir ¢ilinkii [6]’daki algoritma da yogun nesne kiimelerini bulmadan
direkt olarak kurallan kesfetmektedir. Ayrica o algoritma da evrimsel hesaplama tabanli (bir
GA) bir algoritmadir ve araliklar1 ve kurallar1 es zamanl olarak bulur. [6]’daki algoritma igin
popiilasyon sayist 100 se¢ilmis ve sadece pozitif birliktelik kurallarmi kesfedecek sekilde
uyarlanmistir. Alt1 veritabanindan doérdiinde, KPSOA fazla sayida daha kaliteli kural bulmustur
ancak fark cok fazla degildir. Giiven degerleri bakimindan, bu algoritmayla rekabet edebilir

goriilmektedir.

Tablo 4.8. [6]’da Onerilen algoritmayla karsilastirmalar

Veritabanm1 | Kayit sayis1 | Nitelik sayisi Kural sayist Grliven(®%)
[6] KPSOA [6] KPSOA
Basketball 96 5 33.8 342 60712 60%2.8
Bodyfat 252 18 442 46.4 5938 | 61%1.8
Bolts 40 8 39.0 36.4 65719 64%2.0
Pollution 60 16 41.2 44.6 6874.8| 6674.7
Quake 2178 4 43.8 46.4 62+5.1| 63%2.8
Sleep 62 8 32.8 37.6 64+23| 64728

Tablo 4.9°da ise KPSOA, GAR [138] ve [6]’da Onerilen algoritmalardan elde edilen
sonuglar karsilastirilmaktadir. GAR algoritmasi sadece yogun nesne kiimelerini bulmak igin bir
evrimsel algoritma kullanmaktadir. Bu yiizden, kurallara bagl degerler ile ilgili karsilastirmalar
yapilmamustir. “Destek(%)” siitun degerleri ortalama destegi, “Boyut” siitun degerleri kuralda
bulunan ortalama nitelik sayisin1 gdstermektedir. “Genlik(%)” siitun degerleri ise kiimeye bagli
araliklarin ortalama boyutunu géstermektedir.

KPSOA alt1 veritabanindan iiclinde yiiksek destek degerli kurallar (nesne kiimelerine
bagli) bulmustur ve fark yine fazla degildir. Tiim veritabanlari i¢in KPSOA tarafindan elde
edilen boyut degerleri GAR algoritmasinin bulduklarindan daha kiigiiktiir ve alt1 veritabanindan
ikisinde [6]’da Onerilen algoritmadan elde edilenden daha kiigiiktiir. KPSOA tarafindan elde
edilen genlik degerleri GAR tarafindan elde edilen degerlerden daha kiigiiktiir ya da o degerlere
esittir. Altt veritabanindan dordiinde de [6]’da Onerilen algoritmadan elde edilen genlik

degerlerinden daha kiiciik degerlere sahiptir
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Tablo 4.9. Destek, boyut ve genlik sonuglarinin karsilagtirilmasi

Veritabam Destek(%) Boyut Genlik(%)
KPSOA | GAR [6] KPSOA | GAR [6] KPSOA | GAR [6]
Basketball 36.44 36.69 | 32.21 3.21 3.38 3.21 19 25 20
Bodyfat 65.22 65.26 | 63.29 6.94 7.45 7.06 25 29 27
Bolts 28.48 2597 | 27.04 5.14 5.29 5.14 19 34 27
Pollution 43.85 46.55 | 38.95 6.46 7.32 6.21 15 15 14
Quake 38.74 38.65 | 36.96 2.22 2.33 2.10 17 25 19
Sleep 36.52 3591 | 37.25 4.19 4.21 4.19 5 5 4

Gergek verilerdeki son deneysel sonuclar, Tablo 4.10’dadir ve burada da kesfedilen
kurallar tarafindan kapsanan kurallarin yilizdesi verilmistir. Bu sonuglardan da KPSOA
algoritmasinin  diger evrimsel hesaplama tabanli algoritmalarla rekabet edebilecegi

goriilebilmektedir.

Tablo 4.10. Kesfedilen kurallar tarafindan kapsanan kayitlarin yiizdesi

Veritabani Kayitlar(%)
KPSOA GAR [6]
Basketball 100.00 100.00 100.00
Bodyfat 86.11 86.00 84.12
Bolts 79.80 77.50 77.5
Pollution 95.02 95.00 95.0
Quake 87.92 87.50 87.6
Sleep 81.02 79.03 79.81

Sonug olarak KPSOA kurallar1, araliklart ¢ok fazla segmeden ve yiiksek giiven ve
destek degerlerine sahip olacak sekilde kesfetmistir. Ayrica kurallardaki nitelik sayisi da azdir.

Boylece veritabanlarinda kesfedilen kurallar, dogru, okunabilir ve anlagilabilirdir.
4.6. Sonuclar

Tezin bu boliimiinde kaba oriintii fikrine bagli olarak kaba parcacik ve kaba karar
degiskenleri kullanan KPSOA oOnerilmigtir. Yani araliklarin birer karar degiskeni olarak
kullanilmasi1 durumunda PSO’ya yapilacak eklentiler agiklanmistir. PSO algoritmalarinda
kullanilan geleneksel parcacik ve degerlerin bunlarin kaba esdegerlerinin 6zel bir durumu

oldugu gosterilmistir.
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Ayni1 zamanda, bu sekilde kaba hesaplama alanina da ilave bir konu eklenmistir. Ayrica
secilen ilk uygulama alani, nicel nitelikler iceren veri tabanlarinda veri madenciligi, i¢in de yeni,
etkili ve otomatik bir yontem Onerilmistir ve bilgi kayiplart ve 6n islemelerden kaginilarak bilgi
kesfi yapilmistir.

KPSOA pratik uygulamalar i¢in kullanisl genisletmeler sunmaktadir. Kaba kiime teorili
PSO algoritmalar1 ve bunun farkli arama ve optimizasyon problemlerinde daha ayrintili

deneyleri ileriki caligmalar olarak diisiiniilebilir.
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5. KABA KAOTIK PSO

5.1. Giris

Tezin bu boliimiinde ise, iiglincli boliimde onerilen kaotik haritali PSO algoritmalari ile
dordiincii boliimde Onerilen kaba PSO algoritmasinin birlesimi ile kaba kaotik PSO (KKPSO)
algoritmalar onerilmistir. Kaba degerlerle temsil ve hesaplamalarin yapilmasi zorunlulugu olan
yerlerde kullanilan kaba PSO algoritmasina, kaotik haritalar eklenmis ve algoritmanin
performansinin arttirilmasi amaglanmigtir. Boylece; kaba kiimeler, kaos ve optimizasyonun
birlikte kullanilabilecegi genel amacli, melez arama ve optimizasyon algoritmalart Gnerilmistir.
Ayni zamanda kaba hesaplama alanina yeni bir ¢alisma konusu eklenmistir. Bu amagla, KKPSO
teorileri agiklanmig ve performansinin testi i¢in nicel birliktelik kural madenciligi alaninda
uygulamalar yapilmistir. Se¢ilen bu uygulama alani i¢in 6nerilen yontemin ¢ok uygun ve etkili

oldugu gosterilmistir.
5.2. Kaba Kaotik PSO (KKPSO)

Ugiincii boliimde, PSO’nun parametrelerinin belirlenmesinde rasgele tabanl bir segim
s0z konusu oldugunda farkli kaotik sistemler rasgele say1 dizilerinin yerine kullanilmis ve farkli
kaotik haritali PSO algoritmalar1 6nerilmistir. Ayn1 algoritmalar, kaba PSO i¢in de kullanilmis
ve kaba kiimelerin aralik cebri konusu ile kaosun kaotik haritalar konusunun PSO’ya

eklenmesiyle olusturulan bu yeni algoritmalara kaba kaotik PSO (KKPSO) ad1 verilmistir.

Tablo 5.1. Kaotik haritali PSO algoritmalarinin kisa 6zeti

Ad Etki Kaotik Haritanin Olcekli Degerleri
KPSO1 Baglangi¢ hiz ve pozisyon Her karar degiskeninin alt ve iist sinirlari
KPSO2 c 0.5-25 - -
KPSO3 c 05-25 - -
KPSO4 c|ve e 05-25 05-2.5 -
KPSO5 r 0.0-1.0 - -
KPSO6 /) 0.0-1.0 - -
KPSO7 river, 0.0-1.0 00-1.0 -
KPSOS8 W, F| Ve 1 0.0-1.0 0.0-1.0 0.0-1.0
KPSO9 w 0.0-1.0 - -
KPSO10 w Ve ¢; 0.0-1.0 0.5-25 -
KPSO11 w Ve ¢ 0.0-1.0 0.5-25 -
KPSO12 w, ¢ Ve ¢; 0.0-1.0 0.5-25 0.5-25
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KHPSO algoritmalarinin kisa bir 6zeti Tablo 5.1°de verilmistir. Burada ilk siitun
PSO’nun adini, ikinci siitun kaotik haritalarin PSO’daki etkiledigi parametreleri ve ii¢ alt
kisimdan olugan {igiincii siitun ise bu parametrelerin secilen kaotik haritanin {irettigi degerlerin
Olceklenmesiyle alacag degerleri gostermektedir. Tablo, 6rnek olarak su sekilde yorumlanabilir.
KPSO3 sadece ikinci hizlanma katsayisini etkiler ve ilgili kaotik haritadan alinan degerler 0.5
ile 2.5 arasinda 6lgeklenmistir. Eger kaba temsiller kullanilirsa bu isimlere, “Kaotik” kelimesini
temsil eden birinci “K”’dan 6nce “Kaba’y1 temsil eden ikinci bir “K” eklenir. Yani KPSOI1

icin kaba temsil kullanilirsa bu KKPSO1 olarak adlandirilir.

5.3. KKPSO Algoritmalarimin Veri Madenciliginde Uygulamalar:

KKPSO algoritmalari, kategorik ya da nicel degerler iceren veritabanlarinda birliktelik
kurallarinin kesfi i¢in kullanilmigtir. Bunun i¢in de dordiincii boliimde de uygulamasi yapilan ve
Agrawal ve arkadaglari tarafindan kullanilan ikinci fonksiyon [135], test amaglh kullanilmistir.
Bu veritabanindaki ilk uygulamada, 5000 adet veri olusturulmus ve bu verinin %37.9’unun 4
grubuna ait olmasi saglanmistir. Bu amagla dordiincii boliimde agiklanan parcacik temsili,
uygunluk fonksiyonu ve mutasyon ¢esitleri kullanilmistir. Algoritma parametre degerleri Tablo

5.2’de verilmistir.

Tablo 5.2. Kullanilan parametre degerleri

Parametreler | Siirii boyutu | Iterasyon sayisi Mutasyon olasiligi

Degerler 20 1000 50%

Yapilan deneyde, onerilen on iki KKPSO algoritmalarinin nicel birliktelik kurallarinin
kesfinde performanslart karsilagtirilmistir. Algoritmalarin etkinliligini dogrulayan sezgisel bir
Olcii, kurallarin araliklarinin sentetik olarak olusturulanlarla karsilagtirilmast ve bdylece
kurallarin kalitelerinin belirlenmesidir. KPSOA tarafindan kesfedilen kurallarin ortalama destek
ve giiven degerleri 12.21 ve 93.33’tiir. Burada hizlandirma katsayilari i¢in 2 degeri, atalet
agirlig icin ise 0.9-0.4 arasi azalan degerler se¢ilmistir. KKPSOI1 algoritmasi ig¢in de ayni
degerler kullanilmustir.

KKPSO algoritmalar1 tarafindan elde edilen sonuglar Tablo 5.3’te verilmistir. Tiim
algoritmalar Ui¢ kural kesfetmistir ve bu kurallara ait ortalama destek ve giiven degerleri
sunulmustur. Ortalama destek sayis1 ii¢ ile carpildiginda Grup A’ya ait kayitlarin oram
olan %37.9’a yakin degerler elde edilebilmektedir. Giiven degerleri de %100’e yakindir. Bu da
olusturulan ilgili bolgelerde, diger gruba ait kaydin olmadigini gostermektedir. KKPSO7,
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KKPSO8 ve KKPSO12 algoritmalar1 Zaslavskii haritasiyla kullamldiginda iyi performans
gostermistir. KKPSO7 algoritmasinin Zaslavskii haritasiyla kullamldiginda kesfettigi kurallar
Tablo 5.4 tedir.

Tablo 5.3. KKPSO algoritmalar1 tarafindan elde edilen kurallarin ortalama destek ve giiven degerleri
(Grup A=Toplam veri sayisinin %37.9’u)

Lojistik Harita
KKPSO KKPSO KKPSO KKPSO KKPSO KKPSO KKPSO KKPSO KKPSO KKPSO KKPSO KKPSO
1 2 3 4 5 6 7 8 9 10 11 12
Destek
%) 11.24 10.64 10.96 11.98 10.78 10.80 12.48 12.28 10.82 10.66 11.02 11.54
Giiven
%) 98.14 98.12 97.01 97.64 97.42 97.96 99.01 98.98 98.42 98.24 98.56 99.08
o
Siniizoidal Yineleyici
KKPSO KKPSO KKPSO KKPSO KKPSO KKPSO KKPSO KKPSO KKPSO KKPSO KKPSO KKPSO
1 2 3 4 5 6 7 8 9 10 11 12
Destek
%) 11.20 11.24 10.86 11.62 10.86 10.96 12.38 12.28 10.58 10.90 11.06 11.24
()
Giiven
%) 98.48 98.46 98.08 98.06 97.56 97.02 99.08 98.96 98.54 97.98 99.02 98.96
o
Gauss Haritas1
KKPSO KKPSO KKPSO KKPSO KKPSO KKPSO KKPSO KKPSO KKPSO KKPSO KKPSO KKPSO
1 2 3 4 5 6 7 8 9 10 11 12
Destek
%) 11.91 11.05 10.86 10.24 10.84 10.97 12.28 12.23 10.81 10.23 9.99 11.98
()
Giiven
% 97.22 97.62 98.68 98.16 98.26 97.64 99.04 99.06 98.48 97.86 97.56 98.62
o
Zaslavskii Haritas:
KKPSO KKPSO KKPSO KKPSO KKPSO KKPSO KKPSO KKPSO KKPSO KKPSO KKPSO KKPSO
1 2 3 4 5 6 7 8 9 10 11 12
Destek
%) 11.05 11.26 10.24 10.22 10.97 10.96 12.62 12.41 10.96 10.82 10.88 11.94
()
Giiven
% 97.56 97.55 97.22 98.08 98.48 98.69 99.65 99.12 98.62 98.86 97.16 98.84
o

Tablo 5.4. Zaslavskii haritasi kullanan KKPSO7 algoritmasi tarafindan bulunan kurallar

Kural Destek(%) | Giiven(%)
Eger yas € [20, 40] A maas € [50136, 99869] = Grup 4 12.63 98.94
Eger yas €[41, 59] A maas €[76779, 12469] = Grup 4 12.62 100
Eger yas €[61, 80] A maas € [25440, 73998] = Grup A 12.61 100

Ikinci uygulamada ise gruplar dengeli dagitilmistir. Yani 4 grubuna ait kayit sayisi,
toplam kayit sayisinin yarist (2500) olarak belirlenmistir. Bdylece, kesfedilecek kurallarin
toplam destek degerinin %50’ye yakin olmas1 beklenmektedir. KKPSO algoritmalar tarafindan

elde edilen sonuglar Tablo 5.5’te verilmistir. Tiim algoritmalar, her biri ata kisimda iki nitelik
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iceren ii¢ kural kesfetmistir ve bu kurallara ait ortalama destek ve giiven degerleri sunulmustur.
Ortalama destek sayisi ¢ ile carpildiginda, Grup A’ya ait kayitlarin oram olan %50’ye yakin
degerler elde edilebilmektedir. Giiven degerleri de %100’e yakindir ve bu da olusturulan ilgili
bolgelerde diger gruba ait kaydin olmadigini gostermektedir. Kesfedilen kuralin giicii sayilan
giiven degerlerinin yiiksek olmasi, 6nerilen algoritmalarin dogru ve tutarl kural kesfettiklerini
gostermektedir. Yine KKPSO7, KKPSO8 ve KKPSO12 algoritmalarinin Zaslavskii haritasiyla
kullanildiginda iyi performans gosterdigi tespit edilmistir. KKPSOS8 algoritmasinin Zaslavskii
haritasiyla kullanildiginda kesfettigi kurallar Tablo 5.6’dadir. Burada 6zellikle destek degerleri
arasindaki kiigiik fark, aslinda veritabanindaki kayitlarin 6zelliklerine gore biiylik 6nem arz
edebilmektedir.

Nicel niteliklere ait bolme noktalarinin onerilen yontemlerle dogru olarak bolindiigi,
ayrica fazla nitelik ya da fazla kuralin elde edilmedigi, bdylece giiven ve destek degerleri

yiiksek, anlagilabilir kurallarin kesfedildigi goriillmektedir.

Tablo 5.5. KKPSO algoritmalar1 tarafindan elde edilen kurallarin ortalama destek ve giiven degerleri
(Grup A=Toplam veri sayisinin %50’si)

Lojistik Harita
KKPSO KKPSO KKPSO KKPSO KKPSO KKPSO KKPSO KKPSO KKPSO KKPSO KKPSO KKPSO
1 2 3 4 5 6 7 8 9 10 11 12
Destek
%) 13.86 13.94 13.96 13.98 13.92 13.98 13.90 14.96 14.88 14.86 14.24 14.62
o
Giiven
%) 100 100 100 100 99.88 100 100 100 100 100 100 100
()
Siniizoidal Yineleyici
KKPSO KKPSO KKPSO KKPSO KKPSO KKPSO KKPSO KKPSO KKPSO KKPSO KKPSO KKPSO
1 2 3 4 5 6 7 8 9 10 11 12
Destek
% 14.20 14.26 13.96 14.52 14.44 14.96 15.24 14.28 14.32 14.92 14.62 14.20
o
Giiven
%) 100 100 100 98.98 100 100 100 100 100 100 100 100
()
Gauss Haritasi
KKPSO KKPSO KKPSO KKPSO KKPSO KKPSO KKPSO KKPSO KKPSO KKPSO KKPSO KKPSO
1 2 3 4 5 6 7 8 9 10 11 12
Destek
% 14.68 15.58 14.80 14.64 14.44 14.91 14.62 15.28 14.54 14.54 13.84 15.68
o
Giiven
%) 100 100 100 100 100 100 100 100 100 100 100 100
()
Zaslavskii Haritas1
KKPSO KKPSO KKPSO KKPSO KKPSO KKPSO KKPSO KKPSO KKPSO KKPSO KKPSO KKPSO
1 2 3 4 5 6 7 8 9 10 11 12
Destek
% 15.26 15.36 15.62 15.48 15.88 15.28 15.94 16.06 15.66 15.80 15.36 15.88
o
Giiven
%) 100 100 100 100 100 100 100 100 100 100 100 100
()
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Tablo 5.6. Zaslavskii haritas1 kullanan KKPSOS algoritmasi tarafindan bulunan kurallar

Kural Destek(%) | Giiven(%)
Eger yas € [20, 39] A maas € [50120, 99902] = Grup 4 16.12 100
Eger yas €[40, 59] A maas € [75972, 12488] = Grup 4 15.98 100
Eger yas €[61, 80] A maas € [25094, 74908] = Grup 4 16.08 100

5.4. Sonuglar

Tezin bu béliimiinde, kaba degerlerle temsil ve hesaplamalarin yapilmasi zorunlulugu
olan yerlerde kullanilan kaba PSO algoritmasina kaotik haritalar eklenmis ve algoritmanin
performansinin arttirilmasi amaglanmistir. Bu amagla uygulama alani veri madenciligi se¢ilmis
ve nicel birliktelik kurallarinin kesfinde bu 6nerilen algoritmalarin performans karsilagtiriimasi
yapilmigtir. Nicel birliktelik kurallarinin kesfi ve nicel niteliklerin araliklarinin otomatik
boliinmesi isini, es zamanli ve dogru olarak yapan algoritmalar literatiirde pek fazla yoktur ve
bu gibi durumlarda bu problemi bir optimizasyon problemi olarak ele alip ¢dzebilen yumusak
hesaplama tekniklerine ihtiya¢ duyulabilmektedir. Tezin bu boliimiinde de bu zor problem igin
farkli yumugak hesaplama tekniklerinin birlesimiyle etkili sonuclar verebilecek KKPSO
algoritmalar tanitilmis ve veri madenciligi uygulamalar1 yapilmistir.

Bu béliim, {iglincii boliimde 6nerilen on iki farkli kaotik haritali PSO’nun, araligin karar
degiskeni olarak kullanildigi uygulama alanlar i¢in kaba degiskenin parcacik temsilinde ve
hesaplamalarinda kullanildigi kaba PSO algoritmasiyla birlestirilmesinin bir sonucudur.

Onerilen ydntemler ¢ok farkli alanlarda uygulama alani bulabilir ve etkili sonuglar verebilir.
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6. COK AMACLI PARCACIK SURU OPTIMIiZASYONU

6.1. Giris

Cogu miihendislik problemleri ile ilgili ger¢cek uygulamada genellikle birden fazla
amacin optimizasyonu ile ilgilenilir. Yani bir amag¢ fonksiyonu yerine % tane amag
fonksiyonunun maksimize ya da minimize edilmesi s6z konusudur. Problemin optimum ¢6ziimii
ya da ¢ozlimleri, tim amag fonksiyonlarin birlikte (simiiltane olarak) optimize eden ¢oziimdiir.
Boyle bir ¢oziime ulasmak ¢ok zordur [145]. Ciinkii tek bir amaca iliskin olarak en iyi degeri
veren bir ¢ozlim, birden fazla ama¢ s6z konusu oldugunda ayni sonucu vermeyebilir. Yani,
genellikle g6z Oniine alinan amaglar, diger bir deyimle degerlendirme Olgiitleri birbiri ile
celiskili ve negatif yonde etkilesimli olabilmektedir. Ornegin bir veri madenciligi siireci
sonunda elde edilen kurallarin yiiksek dogruluga ve giice sahip olmasi, ilging, kolay okunabilir
ve anlagilabilir olmasi istenmektedir. Bagka bir 6rnek ise alinmak istenen herhangi bir cihazin
cok fonksiyonlu, kaliteli ve kolay kullanilabilir olmasi ve fiyatinin diisiik olmasi istenir. Kisaca,
birden fazla amag dikkate alindiginda amaglar arasinda ddiinlesimler s6z konusu olabilmektedir.

Cok amacl optimizasyon son birka¢ yildir dnemli bir arastirma alami haline gelmistir
[145]. Aslinda simiflandirma kural madenciligi de aynmi birimle Olgiilebilen ve ¢ogu zaman
celisen degisik amaclarla ¢ok amagli bir optimizasyon problemi olarak tasarlanabilir.
Simiflandirma kural madenciligi i¢in ¢ok amagh yaklasim kullanan ¢ok kisitli ¢alisma vardir
[146-150].

Farkli veri madenciligi algoritmalar i¢in ¢ok amagli yaklagim olarak en ¢ok kullanilan
iic yontem; verilen bir formiile gore (agirlikli formiil) tiim amagclar1 agirliklandirma, amaglara
bazi Oncelik semalar1 atama (sozliiksel) ve tek bir ¢éziimden ziyade olast en iyi ¢oziimler
kiimesini bulan Pareto baskinlik yaklagimidir. Literatiirde PSO’yu ¢ok amacli problemler i¢in
diizenlemeyi igeren yayinlar bulunmaktadir [151-153]. Aymi zamanda tek amagli PSO
kullanarak smiflandirma kural madenciligi yapan birka¢ calisma da vardir [154—156]. Fakat
bunlar ¢ok amagli 6zellige sahip degildir. Tezin bu bdliimiinde de PSO’nun ¢ok amagh
optimizasyon problemlerinde kullanilabilmesi i¢in farkli bir yontem onerilmis ve ilk olarak veri
madenciligi tekniklerinden siniflandirma kural madenciligi alaninda uygulamalar1 yapilmistir.

Dogru ve anlasilabilir siniflandirma kurallarin, diizenlenen PSO ile kesfi amaglanmustir.
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6.2. Cok Amach Optimizasyon

Cok amagli optimizasyon iki ya da daha fazla ama¢ fonksiyonunu es zamanli optimize
etme igidir. Genellikle amag fonksiyonlari istenen bir sonucun farkli 6zelliklerini dikkate alir.
Cogu zaman bu amaglar, tiim fonksiyonlar1 es zamanli olarak optimize eden tek bir sonucun
bulunmadig bir ¢eligki i¢indedirler. Bunun yerine bir optimal ¢6ziimler kiimesi s6z konusu olur.
Bu kiime de Pareto optimallik kavrami kullanilarak tanimlanir ve ¢ogunlukla Pareto optimal
kiime olarak adlandirilir [157].

Bir ¢éziim vektorii x € X, X arama kiimesinde x’e baskin olan herhangi bir ¢éziim
olmadig1 zaman Pareto optimal olur. Baskin olma ise su sekilde tanimlanir:

Bir ¢ozlim vektorii x asagidaki sartlar saglandiginda y’ye baskindir denir:

o Vie{l,2,..,1I}fi(x) 2f(y) ve
o die{l,2,..,1} fi(x)>fi(y).

I amag fonksiyon sayisidir. Bu tanim su anlama gelmektedir: x, her amaca dair y kadar
iylyse ve x’in y’den daha iyi oldugu konusunda en az bir amag varsa y’ye baskindir denir. Bu
sekilde Pareto optimal ¢coziimler Pareto optimal kiimeyi olusturur [157]. Minimizasyonu istenen

iki amag fonksiyonlu bir problemin 6rnek bir Pareto optimal kiimesi Sekil 6.1’de gdsterilmistir.

Amag 1

A

Pareto Optimal Kiime

Amag 2

Sekil 6.1. Pareto optimal kiime

Baskinlik ve Pareto optimallik, ¢ok basit olarak Sekil 6.2°de tasvir edilmistir. s;, s, ve 53

gibi ii¢ tane ¢oziimiin ve maksimize edilecek iki amacin oldugunu varsayalim. s; amag 1 i¢in en
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yiiksek degere sahip oldugundan herhangi bir ¢6ziim tarafindan baskin degildir. Benzer olarak
s, de amag 2 i¢in en yliksek degere sahip oldugundan hicbir ¢6ziim s,’ye baskin degildir. s;
amag 2 icin yiiksek degere sahip oldugundan, s, tarafindan baskin degildir, ancak iki amag i¢in
de s,’den daha diisiik degere sahip oldugundan s, tarafindan baskindir. Boylece s; ve s,’ye
baskin herhangi bir ¢6ziim bulunmamakta, s;’e ise bir ¢oziim, s,, baskin olmaktadir. Bu yiizden

baskin olmayan ya da Pareto optimal ¢6ziim Parefo_Kiime={s;, s,} seklinde gosterilir.

Amag 1

A

2
N

w

Amag 2

Sekil 6.2. Baskinlik ve Pareto optimallik kavrami

Sekil 6.3 ise minimizasyon ya da maksimizasyona iligkin optimizasyon
konfigiirasyonlarina bagli iki amacgli problemler icin olasi Pareto optimal kiimeleri
gostermektedir. Burada T maksimizasyonu, ise minimizasyonu temsil etmektedir.

Cok amagcl optimizasyonda amag, farkli Pareto optimal ¢éziim kiimelerini bulmaktir.
Evrimsel ¢ok amagli optimizasyonda, tek bir evrimsel algoritma galismasiyla ¢oziimler kiimesi
bulunur. Uygulamasi yapilan kural madenciligi alaninda da, tiim amagclar es zamanl
diistiniildiigiinde genis anlamda herhangi bir kuralin digerinden iistiin olmadig1 optimal, yiiksek

kaliteli siniflandirma kurallarinin PSO’nun tek ¢aligtirilmasinda bulunmasi hedeflenmistir.
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Amag l# Amag l‘

A

o o
| o o

Amag 2‘ Amag Zf

Amag lﬁ Amag lf

A

. .
Ll Ll

Amag 2‘ Amag 2$

Sekil 6.3. iki amacli bir problem icin 6rnek Pareto optimal kiimeler

6.3. Simiflandirma Kural Madenciligi ve flgili Cahsmalar

Smiflandirma kurallarinin madenciligi, en ¢ok kullanilan ve insan diisiince yapisina en
yatkin veri madenciligi tekniklerinden biridir. Bu teknik ile bir veri kiimesinden kullanicilarin
¢ok kolay anlayacagi kurallar ¢ikarilir. Bu teknikte veri i¢in, nitelikler kullanilarak dagilima
gore bir model bulunur. Bulunan bu model, basarisi belirlenerek niteligin gelecekteki ya da
bilinmeyen degerini tahmin etmek icin yani en dogru sinifa atamak i¢in kullanilir. Kisaca
siniflandirmada, yeni gelen her bir 6rnek, onceden simiflandirilmis bir takim siniflar iizerinde
yapilan bir egitim neticesinde ortaya ¢ikan bir modele gore daha 6nce belirlenmis olan bir sinifa
atanmaktadir. Bu baglamda kullanilan belki de en 6nemli degerlendirme kriterleri, tahmini
dogruluk ve anlasilabilirliktir. Tahmini dogruluk, genelleme olarak ta bilinir ve olusturulan
modelin daha 6nce goriilmemis ornekleri siniflandirmada ne kadar performanslt oldugunun bir
Olciisiidiir. Anlasilabilirlik ise, olusturulan modelin kullanicilar tarafindan anlasilabilirligini

Olger [56].
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Smiflandirma igin ¢esitli yontemler ve algoritmalar bulunmaktadir. Karar agaglari,
siniflandirma igin giiclii bir modeldir. Bunlar, C4.5 [158] ve CART [159] gibi tekniklerle
olusturulur ve ‘bdl-ve-yonet’ stratejisini uygular. Veri, ayr alt kiimelere ayrilir ve algoritma her
kiimeye tekrarli olarak uygulanir. Karar agaclarimin en 6nemli avantaji, tiiretilen bir model
olarak karar verme islemine agik bir sekilde hakim olmasidir. Cok sayida islem yapmaya gerek
duymadan siiflandirma islemini gergeklestirebilir. Ancak bunlar, olusturulmalari sirasinda
egitim verisinde Orneklerin saf alt kiimelerini belirleme egilimindedir. Bu da yanlis ya da
tutarsiz olan drneklere asirt uymaya neden olabilir ve boylece son modelin genelleme giiciinii
azaltir. Bu problemin iistesinden gelmek igin kural budama ve benzeri yardimci yordamlar
kullanilmaktadir. Ayrica, karar agaglari, tahmin igin kullanildigi durumlarda tahmin edilecek
degiskenin siirekli degerler almas1 durumunda uygun sonuglar tiretememektedir.

Karar listeleri de egitim verisinden ¢ikarilan bilginin agik bir temsilini belirli sekilde
gostermesiyle karar agacglarina benzer. Ancak bunlar ‘ayir-ve-yonet’ yaklagimini kullanir ve bir
kural, egitim verisinin bir alt kiimesini kapsamak i¢in olusturulur ve sonra daha fazla kural,
kalan ornekleri tekrarli olarak kapsamak igin iiretilir. Bu strateji, ilk olarak AQ ailesinde [160]
uygulanmistir ve daha sonra CN2 [161] gibi algoritmalara temel teskil etmistir. Algoritmanin
sonunda sirali EGER-O ZAMAN kurallarmin listesi elde edilir ve yeni bir 6rnegin
simiflandirilmasinda sirayla uygulanir. Eger listedeki ilk kural 6rmegi kapsamiyorsa, o zaman bir
sonraki denenir. Ikincisi de calismazsa, listedeki iiciincii kural denenir ve bdylece devam eder.
Bir 6rnek bir kural tarafindan simiflandirilirsa, daha fazla kural denenmez. Eger kurallarin
hicbiri 6rnegi kapsamiyorsa, o zaman karar listesinin en altindaki varsayilan bir kural isletilir.
Yani varsayillan kurala ulasan tiim siniflandirilmamis ornekler bu kuralin simf etiketiyle
isaretlenir.

Siral1 listelerin bir dezavantaji, bireysel kurallarin kendilerinin anlagilma bakimindan
zor olabilmesidir. Bir listedeki bir kural, 6nceki tiim kurallarin baglaminda ele alinmalidir.
Karar agaglar1 gibi, karar listeleri de giiriiltiilii egitim verisine asir1 uyma problemiyle karsi
karsiyadir ve bu ylizden genellikle kural budama islemi uygulanir.

Evrimsel hesaplama, ozellikle GA ve genetik programlama da etkili sekilde
siniflandirma kural madenciliginde kullanilmigtir [162, 163]. Bu yaklagimla arama uzay1
izerinde global bir arama yapilir ve kaba se¢im algoritmalarina goére nitelik etkilesimiyle daha
iyi bag edilebilir. Ayrica agiklanabilir sonuglar tiretirler ve ¢ok degisik tiplerdeki verileri isleme
ozelligine sahiptir. Ancak, optimal sonucun {iretildigine dair bir garanti bulunmamaktadir ve
bazen agir islem yiikii gerektirebilir. Ayrica, siiri zekasi tekniklerinden karinca koloni
optimizasyon algoritmasi temelli algoritmalar [164] ve yapay bagisiklik sistemlerinden klonal

secim algoritmas1 da siniflandirma kurallarinin kesfi icin kullanmilmistir [14]. Siirii zekasi
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konusunun yeni ve aktif arastirma konusu PSO algoritmasinin siniflandirma kural
madenciliginde kullanimi ¢ok yenidir ve su ana kadar sadece iki galigma yapilmistir. Yakin
zamanda Sousa ve arkadaglar tarafindan kullanilmistir [165]. Ayni zamanlarda Liu ve
arkadaslari tarafindan da kullanilmistir [166].

Siniflandirmaya ayrica ornek-tabanli 6grenme, yapay sinir aglari, lojistik gerileme ve
Bayesian aglar1 yaklagimlar1 da vardir. Bu metotlarin ¢ogunun temel dezavantaji, tahmini
dogruluklar1 bazi durumlarda iyi olmasina ragmen, agiklayici giiclerinin eksikligidir.
Literatiirdeki bu yontemlere bazen bulanik mantik ta eklenerek bulanik kurallar tiretilmistir [ 10].

Kural budama giiriiltilii egitim verisine asirt uymadan kaginmak ic¢in gerekli bir
islemdir. Karar listelerinde kural budama i¢in iki temel strateji vardir. Birincisi komple bir kural
kiimesi olusturulur ve sonra nitelikleri kurallardan elimine edilerek ya da bireysel kurallar
silinerek kural kiimesi basitlestirilir. Bu global olarak kural kiimesinin 6nceden tanimli bazi
budama kriterlerine bagli olarak optimize edilmesiyle yapilir. Ikinci strateji ise artimsal budama
olarak adlandirilir. Ciinkii her kural, algoritmayla olusturulduktan hemen sonra basitlestirilir
[56].

Tezin bu boliimiinde ise siniflandirma kural madenciligi ¢ok amagli bir optimizasyon
problemi olarak ele alinmig ve dogru, anlasilabilir kural listesi diizenlenen PSO algoritmasiyla
elde edilmeye calisilmistir. Bu yontemde, yogun islem gerektiren budama islemine gerek
duyulmamakta ve bu is kural kesif asamasinda direkt halledilmektedir. Ayrica bu yontem ‘ayir-
ve-yonet’ stratejini kullanmaz. Onun yerine, veritabanini azaltmadan her seferinde her simif i¢in
Pareto tabanli ¢ok amagli optimizasyon fikrini uygular. Bu sekilde [165] ve [166]’da 6nerilen
yontemlerde ortaya cikabilecek kurallar arasinda beklenmedik etkilesimler ortadan kalkacaktir.
Bu etkilesimler, bir 6rek farkli siniflarin birka¢ kurali tarafindan kapsandigi zaman ortaya
¢ikabilir.

[165] ve [166]’da Onerilen algoritmalarda parcalanma problemi ortaya cikabilir [167].
Kapsama algoritmalari bir kural tretildiginde tiim egitim verisindeki kapsanan 6rnekleri ¢ikarir
ve iterasyonlardan sonra egitim drneklerinin sayisini azaltir ve lokal olarak 6nemli ancak global
olarak onemsiz kurallarin iretilmesine yol acar. Bu ¢alismada Onerilen yontemle, bu global
onemli kurallarin aranmasi saglanir.

Sekil 6.4, bu tiir kapsama algoritmalarinda ortaya gikabilecek olasi bir pargalanma
problemini gdostermektedir. D egitim verisinde 6nem sirasina gore listelenmis P;, P, ve P; gibi
¢ kuralin oldugunu varsayalim. Ardisik kapsama algoritmalari dnce P;’i kesfeder ve P,
tarafindan kapsanan pozitif 6rnekleri ¢ikarir. Bu tasinmadan dolay1 kalan veride P», P;’ten daha
az 6nemli hale gelir ve arama P, yerine P;’ii bulur. iterasyonlardan sonra kesfedilen kurallar

daha cok lokal olarak 6nemli olacaktir ve global olarak 6nemli olan kurallar1 kaybetme sansi
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stirekli artacaktir. Bu ¢alismada onerilen yontemle pargcalanma probleminin Oniine gegilmistir.

Ciinkii hicbir egitim verisi ¢ikarilmaz ve algoritma tiim egitim verisine bagli olarak calisir.

D

Sekil 6.4. Pargalanma problemi
6.4. PSO Tabanh Cok Amach Kural Madenciligi icin bir Model

6.4.1. Parcacik Temsili

Her parcacik bir kurali temsil eder ve algoritma bitim sart1 saglandiginda her sinif i¢in
dogru ve anlagilabilir kurallarin kiimesini olusturur. Her pargacik, [0, 1] araliginda iki kisimdan
olusan reel degerli elemanlarin birlesimidir ve Sekil 6.5’te gosterilmistir. m tane karar niteligi
varsa her parga m elemandan olusur. Béylece pargacik boyutu 2m olur. Bir parcaciga bagl
olarak bir kural olusturmak igin, parcacikta kodlanmis veri iki kisimda orijinal bilgiye
doniistiriiliir. Eger birinci (Nitelik-varlik kismi-NV) kisimda i. elemanin degeri 0.5’ten biiylikse
o zaman i. nitelik kuralin ata kisminda yer alacak aksi durumda yer almayacaktir. Pargacikta
ikinci kisim Nitelik-deger (VD) kismi olarak adlandirilir. ND kismi nispeten komplekstir, ¢iinkii
farkli tipteki niteliklerin dikkate alinmasi gerekmektedir.

Tamsay1 tipi i¢in doniisiim Denklem (6.1)’ de verilmistir [166].

Vorj [i]:tavan(vi X ( Vimax' Vimin)+ Vimin) (6 1)

Nominal tipteki nitelikler i¢in ise doniisiim Denklem (6.2)’deki gibidir [166].

Voilil= DiziDeger(tavan(v;) x DegerSayisi;) (6.2)

Burada V[i] i. nitelik i¢in pargaciktan doniistiiriilen deger, v; pargaciktaki i. deger

anlamina gelmektedir. Denklem (6.1)’de i. niteligin tipi tamsay1 ya da reeldir ve Vi, i. niteligin

maksimum degerini V,;,, de minimum degerini gostermektedir. Denklem (6.2)’de niteligin tipi
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nominaldir ve DiziDeger; i. niteligin her farkli nominal degerini tutan dizidir ve DegerSayisi; de

i. niteligin toplam degisik deger sayisidir. favan() bilinen tavan fonksiyonudur [166].

Eleman; Eleman, Eleman,,

NV, | ND; | NV, | ND; | ... | ... | NV, | ND,

Sekil 6.5. Parcgaciktaki kural temsili

6.4.2. Ama¢ Tasarim

Kesfedilen kurallarin yiiksek tahmini dogruluk ve anlagilabilirlige sahip olmasi

gerekmektedir. Bu yiizden tahmini dogruluk ve anlagilabilirlik 6lgiileri tanimlanmalidir.

|A&S|—% .

Tahmini Dogruluk = ————=
4

|A &S | kuralin hem ata (A) hem de sonug (S) kismini karsilayan kayit sayisidir. |4] ise

sadece kuralin ata kismindaki sartlar1 saglayan kayitlarin sayisidir.

INVkismi > 0.5]

Anlasilabilirlik=1 —
INV kismi |

(6.4)

Anlagilabilirlik 6lgiisiinde |NV kismi| parcacikta kodlanan sartlarin (karar niteligi)

sayisidir ve benzer olarak |NVkismi > O.5| da parcacigin NV kisminda 0.5’ten daha biiyiik

degere sahip olan sartlarinin sayisidir.
6.4.3. Cok Amach Yaklasim

Kullanilan teknik [153]’te Onerilen teknige dayanmaktadir. O ana kadar bulunan global
en iyi parcaciklar: depolamak igin bir harici depo (HD) muhafaza edilir ve en basta siiriide tiim
baskin olmayan parcaciklarla doldurulur. Daha iyi bir ¢6ziim bulunur bulunmaz, HD bu
coziimlerle giincellenir [153].

Bu yaklagimda her pargaciktan iki pargacik tiiretilir. i. pargacik i¢in, x; pozisyon ve v; de
hiz olmak iizere, cocuk; ve ¢ocuk, seklinde iki parcacik tiiretilir ve bunlarin pozisyon ve hizlar

su sekilde gosterilir:
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X/=X,=X;

Vi=V,=Y;

Elde edilen Pareto optimal kiimenin aralarini maksimize etmek igin komsuluk oOtesi
arama gerceklestirilir ve burada ilk ¢cocuk parcacik, ¢cocuk;, igin bir global optimum segilir.
Komsuluk 6tesi arama i¢in HD’de p tane aday ¢Oziimiin oldugunu varsayalim. Her

¢6ziim i¢in benzerlik 6l¢iisii (Ben) hesaplanir:
Ben(i,j):Zﬂft(xi)—ft(xj}Sg] (6.5)
i=l

Bir ¢6ziimiin benzerlik degeri ne kadar fazlaysa bu ¢oziimiin komsulugunda daha fazla
aday ¢6ziim yerlesmis demektir. Bu yiizden, minimum benzerlige sahip ¢6ziim, ¢cocuk;’in global
optimumu olarak secilecektir.

Sonra ¢ocuk;’in iz ve pozisyonu, PSO giincelleme denklemleriyle giincellenir. Eger
yeni ¢0ziim x;” uygunsa ve HD’deki herhangi bir ¢6ziim tarafindan baskin degilse, HD x;’
eklenmesiyle ve x;’ tarafindan baskin bulunan ¢6ziimlerin ¢ikarilmasiyla giincellenir.

Ikinci ¢ocuk pargacik, ¢ocuk,, igin global optimum komsuluk arama stratejisi
kullanilarak HD’den secilir. Komsuluk arama stratejisi, HD’de ¢ocuk,’ye en yakin ¢6ziim
¢ocuk;’nin global optimumu olarak segilecektir fikrine dayanmaktadir. Bu strateji parcaciklarin
kendi komsuluklarinda arama yapmalarini saglar ve daha yiiksek yakinsama hizi sunar [153].

¢ocuk; i¢in hiz ve pozisyon giincellemeleri PSO giincelleme denklemleriyle yapildiktan
sonra yeni bir ¢oziim x,” elde edilir. Sonra HD x,” ile giincellenir. Cocuk parcaciklar ugmay1
tamamladiklarinda, i. parcacik ta giincellenmelidir. Eger x, uygunsa, i. par¢acik cocuk; ile
giincellenir. Aksi durumda c¢ocuk; ile giincellenir. Bu kisimdaki uygunluk ise, amaglarin
belirlenen agirliklarla carpilip toplanmasiyla elde edilen degerin biiyiikliigiiyle dl¢iiliir.

Son olarak i. pargacigin kisisel en iyi pozisyonu (p;) x; ve p; arasindaki Pareto baskinlik
iligkisi karsilastirllarak giincellenir. p; x;’ye baskinsa, p; hala i. pargacigin kisisel en iyi
pozisyonu olacaktir. Aksi durumda x; p;’nin yeni degeri olarak tanimlanacaktir. Biri birilerine
baskin degillerse, amaglarin belirlenen agirliklarla carpilip toplanmasiyla elde edilen degeri

biiyiik olan p;’nin yeni degeri olacaktir.
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6.4.4. Parametre Kontrolii

Veritabanlarinda siniflandirma kurallar1 kesfetmek icin tasarlanan ¢ok amac¢li PSO’da
parcacik sayist 30 olarak belirlenmistir. Sonlandirma kriteri ise 500 iterasyon olarak
sabitlenmistir. Atalet agirligit komsuluk Otesi arama stratejisi kullanildiginda 1.2°den 0.8’e
azalan sekilde secilmistir. Komsuluk arama stratejisi kullanildiginda ise 0.9’dan 0.4’e dogru
azalirt. A = 15 Viyin = Xoin = 05 Viaks = Xwars = 1. Hizlanma katsayilart da ¢, = ¢, = 2 olarak

belirlenmistir. Tahmini dogruluk igin agirlik 0.7, anlasilabilirlik igin ise 0.3 segilmistir.

6.5. Deneysel Sonuclar

UCI makine Ogrenmesi veritabanindan “Monkl” ve “Mushroom” veritabani ilk
deneyler i¢in kullanilmistir [168]. Monk1 veritabaninda 124 kayit ve 7 nitelik bulunmaktadir.

299

Sinf niteligi “class”’tir ve “0” ya da “1” degerini alir. Mushroom veritabaninda ise 8124 kayit

299 [TP% 2]

ve 23 nitelik bulunmaktadir. Bu veritabaninda da smif niteligi “class”’tir ve “e” ya da “p”
degerini alir [168].

Elde edilen kural listesinin diger algoritmalarla karsilagtirilmasi igin her iki veritabani
iki kisma ayrilmistir: Egitim kiimesi (kayitlarin 2/3’si) ve test kiimesi (kayitlarin 1/3’i). Yani
egitim verileri lizerinden g¢alistirilan algoritma test verileri lizerinden degerlendirilmistir. Monk1
icin test verisi sayisi 18 tanesi birinci sinifa (0), 25 tanesi de ikinci sinifa (1) ait olmak iizere
toplam 43’tiir. Mushroom i¢in ise test verisi sayis1 1410 tanesi birinci sinifa (e), 1353 tanesi de
ikinci smifa (p) ait olmak tizere toplam 2763’tiir. Tiim veri iizerinden, Onerilen algoritma ile
elde edilen kural listesi Tablo 6.1°de verilmistir. Bu tabloda tiim veri {izerinden; simiflar (S),
Onerilen algoritma ile elde edilen kural listesi, kurallarin tahmini dogruluklar1 (TD) ve
anlasilabilirlik degerleri (A) gosterilmistir. Bu veritabaninda karar listesi seklinde kurallar
iireten diger algoritmalarin elde ettigi sonuclar, karsilastirmali olarak Tablo 6.2°de gosterilmistir.
Ridor [143] algoritmasinda bir kuralda 6rneklerin toplam minimum agirligi 1 olarak belirlenmis
ve standart degerleriyle c¢aligtirilmigtir. PART [142] algoritmast i¢in budama amaciyla
kullanilan giiven faktorii 0.25 segilmis ve azaltilmig hata budamasi i¢in C4.5 budamasi
kullanilmigtir. OneR [141] algoritmasinda nicel nitelikleri ayriklastirmak igin kullanilan sepet
sayist 6 olarak belirlenmistir. Prism algoritmasi da sadece nominal niteliklerle ¢aligir, budama
yapmaz ve kayip niteliklerle calisamaz [169]. NNge algoritmasi ise i¢ ige gegmeyen
genellestirilmis ornekleri kullanan en yakin komsu benzeri bir algoritmadir [170]. Bu algoritma

i¢in genellestirme i¢in deneme sayisi ve ortak bilgi i¢in dizin sayisi 5 olarak belirlenmistir.
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Tablo 6.1. Monk1 veritabanindan kesfedilen kurallar

S Kesfedilen kural atasi TD A

0 |Eger (attribute#2 = 2) 0.98 0.83
0 |Eger (attribute#5 = 2) 0.98 0.83
0 |Eger (attribute#5 = 3) 0.98 0.83
1 | Eger (attribute#5 = 1) 0.98 0.83

Tablo 6.2. Monk]1 veritabanindan elde edilen sonuglarin kargilagtirilmasi

Cok Amach
Ridor PART OneR Prism NNge
PSO
Kural Sayis1 4 6 7 4 25 10
Ortalama
0.830 0.583 0.738 0.830 0.500 0.00
Anlagilabilirlik

Bu tablodan, oOnerilen algoritmanin az sayida ve anlagilabilir kurallar1 kesfettigi
goriilmektedir. Fazla sayida, anlasilmasi zor ve uzun kurallar kesfetmemistir. Sadece OneR
algoritmasi1 hari¢ digerlerinden daha iyi performans gostermistir. NNge algoritmasi tiim
nitelikleri igeren kurallar kesfetmistir. Yani kurallarin hepsinde alti nitelik yer almaktadir.
Ayrica bu algoritma nitelik deger ¢ifti kisminda deger olarak tek degil birden fazla deger i¢eren
bir kiime bulundurdugundan anlagilmasi ve isletilebilmesi gii¢ kurallar kesfetmistir. Kesfettigi

bir kural sudur:

“Eger (attribute#l € {1,2,3}) A (attribute#2 € {2,3}) A (attribute#3 € {1,2}) A
(attribute#4 € {1,2,3}) A (attribute#5 € {1}) A (attribute#6 € {1,2}) = Smif = 1
(Kapsanan kayit = 22)”

Monkl test verisi izerinde kullanilan bu algoritmanin ve diger algoritmalarin elde ettigi
sonugclar, kargilagtirmali olarak Tablo 6.3’te verilmistir. Bu tabloda, algoritma isimleri ve hemen
altinda ilgili siif i¢in dogru ya da yanlis siniflandirilan kayit sayilar1 verilmistir. Bunlara goére
toplam say1 ve yiizde oranlari da bu degerlerin hemen altinda verilmistir. Ornegin, Ridor
algoritmasi, 13’ birinci simifa (0), 18’i de ikinci smifa (1) ait 31 tane dogru (toplam
kayitlarin %72.093°1); 5’1 birinci sinifa, 7’si de ikinci smifa ait 12 tane yanlis (toplam
kayitlarin %27.907’si) siniflandirma yapmustir. Bu tablodan, kullanilan bu yeni algoritmanin,
dogruluk acisindan Ridor, OneR, Prism ve NNge algoritmalarina goére daha iyi PART
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algoritmasi ile ayn1 derecede performans gosterdigi goriilmektedir. Prism algoritmasi 4 kaydi

siniflandiramamustir.

Tablo 6.3. Monkl test veritabanindan elde edilen sonuglarin kargilagtirilmasi

Cok Amagh PSO Ridor PART OneR Prism NNge
Dogru Yanlis Dogru | Yanls Dogru Yanlis Dogru Yanlis Dogru Yanlis Dogru Yanlis
Smif =
0 16 2 13 5 16 2 18 0 14 0 13 5
Siif =
23 2 18 7 23 2 15 10 14 11 23 2
1
Toplam 39 4 31 12 39 4 33 10 28 11 36 7
Yiizde
%) 90.6977 | 9.3023 | 72.093 | 27.907 | 90.6977 | 9.3023 | 76.7442 | 23.2558 | 65.1163 | 25.5814 | 83.7209 | 16.2791
o

Daha biiylik veritabani iizerinde, Mushroom, yapilan uygulamalardan elde edilen
sonuglar Tablo 6.4’tedir. Bu tabloda, tiim veri {izerinde, Onerilen algoritma ile elde edilen kural
listesi, kurallarin tahmini dogruluklar1 ve anlagilabilirlik degerleri goriilmektedir. Bu
veritabaninda diger algoritmalarin elde ettigi sonuglar karsilagtirmali olarak Tablo 6.5°te
gosterilmistir. Bu tablodan, Onerilen algoritmanin az sayida ve anlasilabilir kurallar1 kesfettigi
goriilmektedir. Fazla sayida, anlagilmasi zor ve uzun kural kesfetmemistir. Virgiilden ii¢ rakam
sonrasina yuvarlama yapilmistir. Bu tablodan da, yine NNge algoritmasinin anlagilmasi ve

igletilebilmesi gii¢ olan kurallar1 kesfettigi goriilmektedir. Kesfettigi bir kural asagidadir:

“Eger cap-shape € {fk,x} A cap-surface € {f;s,y} A cap-color € {b,e,gnp,w,y} A
bruises? € {fit} A odor € {c,fp,;s,y} A gill-attachment € {f} A gill-spacing € {c,w} A
gill-size € {b,n} A gill-color € {b,ghkn,p,uw} A stalk-shape € {e,it} A stalk-root €
{b,e,?} A stalk-surface-above-ring € {fk,s} A stalk-surface-below-ring € {fk,s} A stalk-
color-above-ring € {b,n,p,w} A stalk-color-below-ring € {b,n,p,w} A veil-type € {p} A
veil-color € {w} A ring-number € {0} A ring-type € {elp} A spore-print-color €
{h,k,n,w} A population € {s,v,y} A habitat € {d,gl,p,u} = Smif = p (Kapsanan kayit =
3760)”

Mushroom test verisi lizerinde kullanilan bu algoritmanin ve diger algoritmalarin elde
ettigi sonuclar, karsilastirmali olarak Tablo 6.6’da verilmistir. Bu tablodan kullanilan bu yeni
algoritmanin dogruluk ve anlagilabilirlik agisindan OneR algoritmasina gore daha iyi, digerleri
ile ayn1 derecede performans gosterdigi goriilmektedir. Bu karsilagtirmada orijinal Prism

algoritmasinin sonuglar1 verilememistir, ¢linkii bu algoritma kayip veriler oldugu durumda
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calisamamaktadir (stalk-root niteliginde 2480 deger kayiptir). Diger algoritmalar kayip degerler

icin analitik olmayan ortalama olarak tanmimlanabilen mod degerini, yani en fazla tekrar eden

degeri kullanir.

Tablo 6.4. Mushroom veritabanindan kesfedilen kurallar

S Kesfedilen kural atasi TD A
p | Eger (odor =f) 100 0.95
p | Eger (odor =c) 100 0.95
p | Eger (odor =s) 100 0.95
p | Eger (odor=Yy) 100 0.95
P | Eger (gill-size =b) 100 0.95
e |Eger (gill-size = b) A (ring-number = 0) 100 0.91
e |Eger (bruises? = f) 99 0.95
Tablo 6.5. Mushroom veritabanindan elde edilen sonuglarin karsilastiriimast
Cok Amach
PSO Ridor PART OneR NNge
Kural Sayis1 7 11 12 9 7
Ortalama
Anlastlabilirlik 0.944 0.904 0.921 0.950 0.00
Tablo 6.6. Mushroom test veritabanindan elde edilen sonuglarin karsilastirilmasi
Cok Amagh PSO RIDOR PART OneR NNge
Dogru | Yanls | Dogru | Yanls | Dogru | Yanhs | Dogru | Yanhs Dogru | Yanls
Smif=e 1410 0 1410 0 1410 0 1410 0 1410 0
Simif=p 1353 0 1353 0 1353 0 1315 38 1353 0
Toplam 2763 0 2763 0 2763 0 2725 38 2763 0
Yiizde (%) 100 0 100 0 100 0 98.6247 | 1.3753 100 0

“Z00” ve “Nursery” veritabanlart ise Onerilen ¢ok amacgli PSO algoritmasi, yakin

zamanda siniflandirma kurallarinin madenciligi i¢in ¢ok amagli GA’y1 kullanan ¢aligma ile

[147] karsilastirmak amaciyla segilmistir. Zoo veritabani 101 kayit ve 18 nitelik igermektedir.

Bu veritabaninda smif niteligi “type’”’dir ve yedi farkli deger bulunmaktadir. Genelleme
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yetenegi olmayan hayvan isimlerini i¢eren nitelik, 6nigslem olarak veritabanindan ¢ikarilmistir.
Nursery veritabani ise, 12960 kayit ve 9 nitelikten olugmaktadir. Bu veritabaninda sinif niteligi
“recommendation”’dir ve bes farkli degeri vardir. Bunlar “Not recom” (NC), “Recommend”
(R), “Very recom” (VR), “Priority” (P) ve “Spec_prior” (SP)’dir [168].

Onerilen bu yontem ile elde edilen sonuglar [147]’de GA tarafindan elde edilen
sonugclarla karsilagtirilmistir. [147]’de iic GA Onerilmistir ancak INPGA adli en iyi sonucu veren
algoritma, karsilagtirma i¢in secilmistir. Her veritabani egitim kiimesi (kayitlari 1/3’1) ve test
kiimesi (kayitlarin 2/3’si) seklinde iki kisma ayrilmistir. Cok amacgli PSO her sinif igin ayri
olarak caligtirllmis ve bu degistirilmemis tahmin edilen sinif igin ilgili kural kiimesi elde
edilmistir.

Tablo 6.7 ve Tablo 6.8’de sirasiyla Zoo ve Nursery veritabanlarindan PSO ile elde
edilen sonuglar goriilmektedir. S “simifi”, TD “tahmini dogrulugu” ve A “anlagilabilirligi”

gostermektedir.

Tablo 6.7. Zoo veritabanindan kesfedilen kurallar

S Kesfedilen kural atasi TD A

1 | Eger (eggs = 0) A (venomous = 0) A (domestic = 0) 0.91 0.81
1 |Eger (milk=1) 0.90 0.94
1 |Eger (hair = 1) A (eggs = 0) A (venomous = 0) A (domestic = 0) 0.95 0.75
2 | Eger (feathers = 1) A (toothed = 0) 0.97 0.88
5 Eger (hair = 0) A (feathers = 1) A (venomous = 0) A (legs = 100 0.60

2) A (domestic = 0)

3 | Eger (eggs = 1) A (predator = 1) A (toothed = 1) A (catsize = 0) 0.99 0.75
3 | Eger (eggs = 1) A (predator = 1) A (catsize = 0) 0.98 0.81
4 | Eger (aquatic = 1) A (breathes = 0) A (tail = 1) 0.80 0.81
5 | Eger (airborne = 0) A (aquatic = 1) A (toothed = 1) A (catsize = 0) 1.00 0.75
6 | Eger (airborne = 1) A (fins = 0) A (tail = 0) 0.83 0.81
7 | Eger (predator = 1) A (breathes = 0) A (domestic = 0) 0.87 0.81
7 | Eger (predator = 1) A (breathes = 0) A (tail = 0) A (domestic = 0) 0.88 0.75

Tablo 6.9’da yontemlerin ortalama performanslari goriilmektedir. Bu tablodan,
diizenlenen PSO’nun daha yeni bir teknik olmasina ve bu alanda ilk kez uygulaniyor olmasina
ragmen kullanilan veritabanlarinda veri madenciliginin siniflandirma kural madenciligi alaninda

iyi performansa sahip oldugu goriilmektedir.
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Tablo 6.8. Nursery veritabanindan kesfedilen kurallar

S Kesfedilen kural atasi TD A
Eger (parents = pretentious) A (children = 3) A (housin
NR ger (p P I I s 0.76 0.50
=convenient) A (health = not_recom)
Eger (parents = usual) A (form = foster) A (housing =
NR ger (p I I s 0.95 0.38
less_conv) A (finance = inconv) A (health = not _recom)
R [Eger (has_nurs = proper) A (finance = convenient) 0.75 0.75
Eger (has nurs = proper) A (finance = convenient) A (health =
R ger (has_ propen) A( I 0.81 0.63
recommended)
Eger (housing = less_conv) A (finance = inconv) A (social =
VR g ( s N I I 0.88 0.63
slightly prob)
Eger (housing = less_conv) A (finance = inconv) A (social =
VR g ( £ - I N 0.90 0.50
slightly prob) A (health = recommended)
Eger (parents = great_pret) A (social = slightly prob) A (health =
P ger (p great_pret) A ghtly_prob) A ( 081 0.63
recommended)
SP | Eger (parents = usual) A (has_nurs = very_crit) A (form = more) 0.79 0.63
Tablo 6.9. Ortalama performanslar
Z00 Nursery
Veritabani
TD A TD A
Yontem
PSO 0.92 0.80 0.83 0.58
INPGA 0.91 0.84 0.77 0.63

Her iki veritabaninda, iki yoOntem tarafindan kesfedilen kurallarin kalitesini

degerlendirmek icin 10 katli ¢apraz gecerlilik islemi ¢alistirilmigtir. Tablo 6.10 ve Tablo 6.11°de

sirastyla Zoo ve Nursery veritabanlarinda elde edilen sonuglar verilmistir. Tahmini dogruluga

bagli olarak tiim sonuglar biitiin olarak dikkate alindiginda, PSO’nun bir dereceye kadar

INPGA’dan daha iyi bir performansa sahip oldugu goriillmektedir.
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Tablo 6.10. Zoo veritabaninda tahmini dogruluk (%)

Simif PSO INPGA
1 100£0.0 100£0.0
2 100£0.0 100£0.0
3 95+ 13.8 0.0+ 0.0
4 100£ 0.0 100£ 0.0
5 100£ 0.0 100£ 0.0
6 90+ 10.0 90+ 10
7 83.9+10.2 85.510.0

Tablo 6.11. Nursery veritabaninda tahmini dogruluk (%)

Simif PSO INPGA

NR 41.8+14.4 12.8+£9.8
R 0.0+ 0.0 0.0+ 0.0

VR 100+ 0.0 100+ 0.0
P 0.0+ 0.0 0.0+ 0.0
SP 100+ 0.0 100£ 0.0

6.6. Sonuclar

Veri madenciligi siireci sonunda kesfedilen kurallarin yiiksek dogruluga ve giice sahip
olmasi, ilging, kolay okunabilir ve anlagilabilir olmasi istenmektedir. Yani, genellikle géz 6niine
alman amaglar, diger bir deyimle degerlendirme olgiitleri birbiri ile g¢eligkili ve negatif yonde
etkilesimli olabilmektedir. Literatiirde de daha ¢ok tek amag, yani dogruluk g6z Oniine
alimmakta ve bazen diger amaglar g6z ardi edilebilmektedir. Farkli amaglarin da ortaya ¢ikmasi
durumunda, veri madenciligi aslinda ¢ok amacl bir optimizasyon problemi olarak karakterize
edilebilir. Bu calismada da; basit ancak esnek, saglam ve global aramada etkili olan, ayrica kaba
secim algoritmalarma gore nitelik etkilesimleriyle iyi bas edebilen PSO algoritmas1 ¢ok amacgl
olarak tasarlanmis ve smiflandirma kurallarmin etkili kesfi yapilmugtir. Onerilen y&ntem,
iizerinde fazla bir optimizasyon yapilmadigi halde, tahmini dogruluklan yiiksek, anlagilabilir
kurallar kesfetmistir.

Farkli amaglar da, 6rnegin ilginglik, diisliniiliip fonksiyon halinde ifade edilerek amag
sayist arttirilmis calismalar yapilabilir. Ayrica Pareto kiimedeki baskinlik kavramina bulanik

mantik eklenerek, amaglarin direkt degerleri yerine bulaniklastirilmis amag¢ degerleri
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kullanilarak bulanik Pareto kiimeler kullanilabilir ve o6zellikle belirsizlik durumunda etkili
sonuglar alinabilir. Algoritmanin paralel ve dagitik versiyonlari, farkli amaglar ve optimize
edilebilecek parametreler kullanilarak daha ayrintili deneyler yapilabilir ve veri madenciliginin
birliktelik kural madenciligi, ardigik Oriintii kesfi ve kiimeleme kural madenciligi gibi

alanlarinda etkili sekilde kullanilabilir.
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7. COK AMACLI KABA KAOTIiK PARCACIK SURU OPTIMiZASYONU

7.1. Giris

Altinct bolimde PSO’ya ¢ok amacglh problemleri ¢ozebilmesi igin c¢esitli eklenti ve
diizenlemeler yapilmisti. Ilk uygulama alani olarak da karar degiskenleri siirekli deger
icermeyen veritabanlarinda siniflandirma kurallarinin ¢ok amagli madenciligi olarak se¢ilmisti.
Tezin bu boliimiinde ise, karar degiskenleri siirekli degerli olan problemler i¢in PSO ¢ok amagli
olarak tasarlanmis ve ilk etkili uygulamasi nicel birliktelik kurallarinin kesfinde yapilmistir.
Secilen uygulama alani igin, araliklar1 da ayni1 anda dikkate alip direkt kurallar1 otomatik olarak
ireten etkili algoritma sayisi sadece iki tanedir [6, 8]. Problemi ¢ok amagli bir optimizasyon
problemi olarak ele alan ve ¢0ziim sunan g¢aligma ise bulunmamaktadir. Nicel birliktelik
kurallarinin kesfi aslinda zor bir problemdir ve kendi igerisinde bir¢ok amacin optimize

edilmesini i¢erir. Bu amaglardan bazilari sdyle siralanabilir:

e Giiven degerinin maksimizasyonu

e Destek degerinin maksimizasyonu

e Kuralin anlasilabilir olmasinin saglanmasi

e Kuralin yeterince ilging olmasinin saglanmasi

e Niteliklerin araliklarinin miimkiin olacak sekilde minimizasyonu

Dikkat edilirse, genellikle goz Oniine alinan amaglar, diger bir deyimle degerlendirme
Olciitleri birbiri ile geligkili ve negatif yonde etkilesimlidir. Sonugta elde edilecek kural listesidir
ve bu kurallarin olusturulmasinda Pareto baskinlik yaklasimi kullanilmigtir. Bu yaklagim i¢inde
bir formiile gore (agirlikli formiil) tiim amaglart agirliklandirma yaklagimi da kullanilmistir.
Tezin bu boliimiinde ayrica iigiincii boliimde 6nerilen kaotik haritali PSO, dordiincii boliimde
oOnerilen kaba PSO ve altinci bolimde 6nerilen ¢ok amagli PSO birlestirilmis ve ¢ok amagl
genel algoritmalar Onerilmistir. Onerilen algoritmalar Cok Amagli Kaba Kaotik PSO
(CAKKPSO) algoritmalar1 olarak adlandirilmigtir. Bu algoritmalarin, karar degiskenleri
icerisinde siirekli degerleri de iceren problemler i¢in etkili, cok amagli bir yontem olarak

kullanilmas1 hedeflenmistir.
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7.2. Cok Amach Kaba Kaotik PSO Algoritmalari

Bu béliimde 6nerilen yontemler tezin iiglincii boliimiinde Onerilen kaotik haritali PSO,
dordiincii boliimiinde Onerilen kaba PSO ve altinct boliimiinde 6nerilen ¢ok amagli PSO’nun
birlestirilmis halidir ve strekli karar degiskeni de igeren problemler i¢in genel ¢ok amagh
optimizasyon problemi olarak etkili olarak kullamilabilir. Kaotik haritali PSO algoritmalar
PSO’nun parametrelerinin belirlenmesinde rasgele tabanli bir se¢cim séz konusu oldugunda
farklt kaotik sistemlerin kullanilmasimi icermektedir ve bu amacgla on iki farkli PSO
kullanilabilir. Kaba PSO alt ve iist smirdan olusan kaba degerlere bagl olarak PSO’nun
genisletilmesidir ve araliklarin birer karar degiskeni olarak kullanilmasi durumunda PSO’ya
eklentileri igermektedir. Cok amagli PSO’da tek algoritmanin tek calismasinda g¢oziimler
kiimesinin {retilmesi ile ugrasilir. Uygulamasi yapilan kural madenciligi alaninda da, tiim
amaclar es zamanli disiiniildiiglinde, genis anlamda herhangi bir kuralin digerinden distiin
olmadigit en uygun yiiksek kaliteli kurallarin PSO’nun tek calistirlmasinda bulunmasi
hedeflenir.

Uygulama olarak nicel birliktelik kurallarinin ¢ok amagh kesfi se¢ildiginden pargacik
temsili, dordiincii béliimde 6nerilen kaba PSO’nun uygulamasinda kullanilan temsilin aynisidir.
Cok amagli yaklasim da altinci boliimde anlatildigi sekildedir. Alt sinir ve iist sinir asilmast
durumunda diizeltme islemi uygulanir. Diger eklenti ve farkliliklar asagidaki alt boliimlerde

aciklanmugtir.

7.2.1. Amaclar

Kesfedilen kurallar yiiksek destek ve giiven degerlerine sahip olmalidir. Ancak bunlar
ayni Onem sahip degillerdir. Algoritmalarin tiim nicel veritabanlarinda calisabilmesi icin
amaglara farkli 6nem verilmesi i¢in agirliklandirma yonteminin kullanilmasi gerekmektedir. Bu
yiizden giiven agirliginin destegin agirhigindan kiiciik se¢ilmesi mantiklidir ¢iinkii bazi giiriiltiilii
veritabanlarinda kuralin ata ve sonu¢ kisminda destegi sadece 1 olan ve bdylece giiven
degeri %100 olan kurallar kesfedilebilir. Bu durumda da bu kural digerleri tarafindan baskin
olmayacaktir. Algoritmanin ¢alisacagi veritabani ile ilgili dnceden ¢ok giiriiltiilii oldugu bilgisi
varsa, giiven degeri ¢ok kiigiik segilebilir ya da amaclardan ¢ikarilabilir.

Baska bir amag ise anlasilabilirliktir. Bu amacin kullanilmasindaki gaye, veri
madenciliginde 6nemli olan okunabilirlik ve anlagilabilirligin arttirilmaya ¢alisiimasidir. Uzun
kurallar gereksiz ve 6nemsiz bilgi i¢erebilmekte ve bu da kuralin basarisini ve etkili sekilde

islenebilmesini engelleyebilmektedir. Anlagilabilirlik kuralin hem atasinda hem de sonug
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kismindaki nitelik sayisina bagli olarak ol¢lilmiistiir. Bu amagla, (7.1)’deki gibi formiilize edilen

Ghosh ve Nath’in anlasilabilirlik ifadesi kullanilmigtir [171].

log(l + |S0nu¢|)

Anlasilabilirlik=
log(l + |Ata U Sonu§|)

(7.1)

Burada |Sonug:| ve |Ata U Sonug‘| sirastyla kuralin sonu¢ kisminda ve toplam kuralda

bulunan nitelik sayisin1 gostermektedir.

Kurallarin kesfi sirasinda amaglanan, nesne kiimesi ve kurala uyan araliklarin genligini
azaltmaktir. Bu sekilde ayni sayida kaydi kapsayan ve ayni sayida nitelik igeren bir iki kuraldan
araliklar1 kiigiik olan, en iyi bilgiyi vermektedir. Araliklarin genligi, denklem (7.2)’deki gibi

hesaplanir.

1 & a. —1.
2 ey 7.2
m ; max(4;) —min(4,) 7.2

Araliklarin genligi =

Burada, m nesne kiimesindeki nesne sayisi, @; ve i; nesne kiimesinde kodlanmis i
niteligiyle ilgili olarak alt ve iist sinir1 gostermektedir. max(4;) ve min(4;), i niteligiyle ilgili
olarak araliklarin izin verilen limitleridir. Bu amacin minimize edilmek istendigi
unutulmamalidir.

Bu durumda; destek, giiven ve anlagilabilirlik maksimizasyon amaglar1 iken araliklarin
genligi minimizasyon amacidir. Anlagilmasi agisindan tiim amaglarin maksimize edilmesi
diisiiniilebilir ve bu minimizasyon amaglari 1’den ¢ikarilarak maksimizasyon amaci haline
getirilebilir. Tim amaglar [0, 1] araligindadir. Ancak burada dikkat edilmesi gereken bazi
hususlar vardir. Ozellikle anlasilabilirlik ve araliklarin genlii amaglari, Pareto baskinlik
taniminda diisiik destek ve diisiik gliven degerlerine sahip olan kurallarin kesfedilmesini olanak
verebilir. Yani aralik amaci ¢ok diisiik olup giiven ve destek degeri de ¢ok diisiik olan kurallarin
kesfedilmesi ya da sadece iki nitelikten olusan (bir kuralda en az iki nitelik bulunmaktadir)
ancak yine ayni sekilde giiven ve destek degeri de ¢ok diisiikk olan kurallarin kesfedilmesi
olasidir. Bu durumu ortadan kaldirmak i¢in anlagilabilirlik ve araliklarin genligi amaglari, gliven
amaci ile birlestirilmis ve toplu amag olarak diisliniilmiistiir. Yani bu durumda amaglar, destek
ve bu anlagilabilirlik, araliklarin genligi ve giiven amaglarni igeren toplu amagtan olusur.
Kisaca dort amag iki amag haline getirilmistir. Toplu ama¢ denklem (7.3)’te gdsterildigi gibi

formiilize edilmektedir.
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Toplu amag = 0.8 x Giiven + 0.1 x Anlasulabilirlik — 0.1 X Araliklarin genligi (7.3)

Bu durumda istenen, Sekil 7.1°de gosterildigi gibi yliksek destek degerli ve yiiksek
toplu amag¢ degerli kurallarin kesfidir. Amagclarin degerlendirilmesinde virgiilden iki rakam

sonras1 dikkate alinmamistir, yuvarlama yapilmigtir.

Destek f

A

Toplu f
Amag

Sekil 7.1. Kesfedilecek kurallarin 6zellikleri

7.2.3. Filtreleme ve Simr Arahklarimin Aritilmasi islemleri

Baska c¢oziimler tarafindan baskin olmayan ¢oziimler HD arttik¢a, atik kural olusmasi
durumunu 6nlemek i¢in, bu ¢dziimlerin kapsadig1 benzer kayitlarin sayis1 belli bir esik degerden
yiiksek ¢ikmasi durumunda destek degeri kiiciik olan atilir. Bu esik degeri, benzer kayitlarin bir
orani olarak segilebilir. Bdylece ama¢ uzayinda birbirine ¢ok yakin noktalarin elenerek
birbirinden uzak olanlarin tutulmasi saglanir.

Onerilen algoritmanin ¢alismasi sonunda kesfedilen kurallarin nitelik smirlarma bir
iyilestirme islemi uygulanir. Bu iyilestirme, ilgili parcacikta aralik boyutunun destek degeri
orijinal destek degerinden kiiciik olana kadar araligin azaltilmasi igslemini igerir. Bu sekilde daha

kaliteli kurallarin olugsmasi saglanir.
7.2.4. Parametre Kontrolii

Destek igin agirlik 0.7, toplu amag igin ise 0.3 secilmistir. Diger parametreler Tablo

7.1°de verilmistir. Filtreleme icin esik degeri %80 secilmistir.
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Tablo 7.1. Kullanilan parametre degerleri

Siirii Iterasyon Mutasyon Hizlanma

Parametreler boyutu sayisl olasilig1 katsayilari

Atalet agirhg

Komsuluk 6tesi arama stratejisi
kullanildiginda 1.2’den 0.8’e;
Degerler 30 1000 0.5 2 komsuluk arama stratejisi
kullanildiginda ise 0.9°dan
0.4’e dogru azalir.

7.3. Deneysel Sonuclar

CAKKPSO algoritmalar1 dort nicel nitelik igeren 1000 kayitli sentetik bir veritabaninda
degerlendirilmistir. Tiim alan degerleri [0, 100] araligina ayarlanmistir. Degerler Tablo 7.2°de
gosterilen sekilde 6nceden belirlenen kiimelerde gruplanmis bigimde diizenli olarak dagitilmustir.
Bu dagilim tamamen gelisigiizeldir. Bu kiimeler i¢in destek ve giiven degerleri sirasiyla %25
ve %100’tiir. Bu kiimeler disindaki degerler bu kurallardan daha iyi kural olusturmayacak
sekilde dagitilmistir. Amag, Pareto optimal kiimeleri bulmaktir. CAKKPSO algoritmasinin her
niteligin nicel araligi i¢in en uygun degerlerle birliktelik kurallarini kesif yetenegi test edilmistir.
KHPSO7 yani hiz giincelleme denkleminde rasgele say:1 dizileri (, ve r;) i¢in kaotik harita

kullanan algoritma ve en iyi sonucun alindig1 Zaslavskii kaotik harita kullanilmistir.

Tablo 7.2. Sentetik olarak olusturulan kiimeler

Kiimeler
A e[1-10]A A, €]15-30]
A, e[15-30] A A; €[60-70]
A, [65-80]1A Aye[15-25]
A;e[80-90] A Aye[80-95]

Tablo 7.3’te Zaslavskii kaotik haritali KHPSO7 kullanan CAKKPSO algoritmasi
tarafindan bulunan ve birbirine baskin olmayan kurallar goriilmektedir. Tablodan gorildigii
gibi sentetik olarak olusturulan kiimelere gore kesfedilen kurallar, yiiksek destek ve giiven
degerine sahiptir; ayrica anlagilabilirdir. CAKKPSO da veritabanindan bagimsizdir, ¢iinkii her
veritabani i¢in belirlenmesi gii¢ olan minimum destek ve gliven degerlerine bagli degildir. Eger
destek ve giliven degerleri kullanilsaydr ve destek degeri %25°ten biiyiik secilseydi, bu
veritabanindaki niteliklerin degerlerine gore hicbir kural kesfedilemeyecekti. Ancak bu
veritabaninin bazi dogru ve anlasilabilir kurallar icerdigi bilinmektedir. CAKKPSO algoritmasi

tek calistirmada, minimum destek ve giiven esik degerlerini kullanmadan, kurallar1 otomatik
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olarak kesfetme yetenegine sahiptir. Ayrica kuralin ata ve sonu¢ kisminin Onceden

ayarlanmasiyla olusturulmus kural sablonunun belirlenmesine ihtiya¢ duymaz.

Tablo 7.3. CAKPSOA tarafindan bulunan kurallar

Kural Destek(%) Giiven(%) Kayitlar(%)
A e[1-10]= A, €[15-30] 25 100
A €[15-30]= A; €[60-70] 25 100
A;€[80-90]= A, €[80-93] 25 100
A, e [65-79]= A, [15-25] 25 100 100
A, €[15-30]= A, €[1-10] 25 100
A; €[60-70]= A, €[15-30] 25 100
A,€[80-93]= A;€[80-90] 25 100
A e[15-25]1= A, €[65-79] 25 100

Etkinliligi test etmek icin Zaslavskii kaotik haritali CAKKPSO algoritmasi, giiriiltiilii
sentetik veritabaninda da calistirilmistir. Giiriiltli, kiimenin ikinci nesnesinin araligina ait
olmayan degerler yerlestirmek suretiyle olusturulmustur. Bu yiizden, kayitlarin belli bir ylizdesi
ikinci nesnenin &nceden belirlenen araliginda yer almaz. Ornegin, ilk kiime icin kayitlarin belli
bir yiizdesi, ikinci nesne A, €[15-30] araliginda degildir, [0—14] ya da [31-100] araliginda
dagitilmistir.

Algoritmanin, kurallarin ata ya da sonu¢ kismi igin en uygun araliklar1 bulup
bulamayacagir test edilmistir. Bu test ¢ seviyeli giriltii ile yerine getirilmistir
(giiriiltii_seviyesi’'nin 4%, 6% ve 8% degerleri icin). Deneysel sonuglar Tablo 7.4’te
gosterilmistir. Bu tabloda, kesfedilen kurallar, destek ve giiven degerleri ve toplam kayitta
kesfedilen kural tarafindan kapsanan kayit yiizdeleri verilmistir. Araliklarin sinirlariin sentetik
olarak tiretilenlere hemen hemen uydugu goriilebilmektedir. Bu, CAKKPSO algoritmasinin test
edilen veri icinde belirli yiizdelerdeki giiriiltiiniin {istesinden geldigini gostermektedir. Ancak
burada kesfedilen kurallarin sadece destek ve giiven degerlerine bakip Pareto baskinlik iliskisi
diisiiniilmemelidir. Destek ve toplu amag, bu iliskide diisiiniilmelidir.

CAKKPSO algoritmalar1 aym1 zamanda 6 halka agik gercek veritabaninda da
degerlendirilmistir: Basketball, Bodyfat, Bolts, Pollution, Quake, ve Sleep. Bu veritabanlari
Bilkent Universitesi Fonksiyon Yaklastirma Deposunda bulunmaktadir [144]. KPSOA’nin bir
karakteristigi de onun stokastik olusudur. Boylece algoritma farkli c¢alistirilmalarda

dalgalanmalara sahip olabilir. En iyi sonucun alabilmesi igin algoritma birkag kez
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calistirtlabilir. Algoritma on kez c¢alistinnlmis ve bu calistirmalarin ortaklama degerleri

sunulmustur.

Tablo 7.4. Farkli seviyelerdeki giiriiltii sonras1 kesfedilen kurallar

giiriiltii_seviyesi = 4%

Kesfedilen kurallar Destek(%) Giiven(%) Kayitlar(%)
Ae[l-11]1= A, €[15-29] 23.9 98.8
A €[15-30]= A; €[60-69] 23.7 98.9
A,e[64-78]= Ay [15-25] 23.7 98.9 95.4
A, €[15-29]= A e [1-11] 239 98.8
A4e[80-93]= A;€[80-91] 23.7 98.9
A,€[14-23]1= A, €[64-79] 23.7 98.9

giiriiltii_seviyesi = 6%

Kesfedilen kurallar Destek(%) Giiven(%) Kayitlar(%)
A e[1-10]= A, €[15-32] 23.0 97.1
A €[15-30]= A; €[58-69] 23.0 97.1
A e [64-78]= A €[14-26] 229 97.5 931
A, €[14-29]= A e [1-12] 23.0 97.1
A,€[80-94]= A;€[80-92] 229 97.5
A,€[14-23]1= A, €[62-79] 22.9 97.5

giiriiltii_seviyesi = 8%

Kesfedilen kurallar Destek(%) Giiven(%) Kayitlar(%)
A e[2-12]= A, €[15-32] 22.5 95.4
A €[15-30]= A; €[58-70] 225 95.4
A, e [64-78]= Ay [14-27] 224 95.9 018
A, €[13-29]=> A, €[1-12] 224 95.9
A4e[79-94]= A;€[80-92] 22.5 95.4
Ase[14-24]= A, €[62-79] 224 95.9

Dordiincii boliimde de agiklanan diger birliktelik kural kesfi yapan algoritmalarla bu
boliimde onerilen CAKKPSO algoritmalarini karsilagtirmak zor ve adaletsiz olabilir. Cogu
madencilik algoritmasi niteliklerin  araliklarinin  belirlenmesini  istemekte ve Onislem

gerektirmektedir. Bu yilizden anlamli olarak kargilagtirma, literatiirde birliktelik kurallarinin
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arama sirasinda nicel nitelikleri ayriklastiran ve evrimsel hesaplama tabanl iki algoritmayla
yapilabilir.

Tablo 7.5’te Zaslavskii kaotik haritali KHPSO7 kullanan CAKKPSO algoritmast ve
[6]’da sunulan algoritma tarafindan bulunan yiiksek kaliteli kural sayis1 ve bu kurallarin giiven
degerleri (standart sapmalarla birlikte) ile birlikte veritabanindaki kayit sayisit ve nicel nitelik
sayist goriilmektedir. Deneysel sonuglarda kural ve giiven degerleri kullanilmistir ¢linkii
[6]’daki algoritma da yogun nesne kiimelerini bulmadan direkt olarak kurallar1 kesfetmektedir.
Ayrica o algoritma da evrimsel hesaplama tabanli (bir GA) bir algoritmadir ve araliklar1 ve
kurallar1 es zamanli olarak bulur. [6]’daki algoritma igin popiilasyon sayist 100 seg¢ilmis ve
sadece pozitif birliktelik kurallarin1 kesfedecek sekilde uyarlanmistir. Zaslavskii kaotik haritall
KHPSO7 kullanan CAKKPSO giiven degerleri bakimindan bazen daha kaliteli kural bulmakla

birlikte genel olarak bu algoritmayla rekabet edebilir goriilmektedir.

Tablo 7.5. [6] da Onerilen algoritmayla karsilastirmalar

Veritaban1 | Kayit sayis1 | Nitelik sayisi Kural saysst Gitven(%)
[6] CAKKPSO | [6] CAKKPSO
Basketball 96 5 33.8 15.0 60712 | 60%24
Bodyfat 252 18 442 14.9 59738 | 61714
Bolts 40 8 39.0 14.9 65¥1.9 | 63522
Pollution 60 16 41.2 14.5 68+4.8 | 67%4.5
Quake 2178 4 43.8 15.0 62¥5.1 | 63%2.8
Sleep 62 8 32.8 14.5 6423 | 64327

Tablo 7.6’da ise, Zaslavskii kaotik haritali KHPSO7 kullanan CAKKPSO algoritmasi,
GAR [138] ve [6]’da Onerilen algoritmalardan elde edilen sonuglar karsilagtirilmaktadir. GAR
algoritmasi sadece yogun nesne kiimelerini bulmak i¢in bir evrimsel algoritma kullanmaktadir.
Bu yiizden, kurallara bagli degerler ile ilgili karsilastirmalar yapilmamistir. “Destek(%)” siitun
degerleri ortalama destegi, “Boyut” siitun degerleri kuralda bulunan ortalama nitelik sayisint
gostermektedir. “Genlik(%)” siitun degerleri ise kiimeye bagli araliklarin ortalama boyutunu
gostermektedir.

Zaslavskii kaotik haritali KHPSO7 kullanan CAKKPSO algoritmasi, alt1 veritabanindan
iiclinde yliksek destek degerli kurallar (nesne kiimelerine bagli) bulmustur ve fark yine fazla
degildir. Tim veritabanlar1 i¢in Zaslavskii kaotik haritali KHPSO7 kullanan CAKKPSO
algoritmasi tarafindan elde edilen boyut degerleri GAR algoritmasinin bulduklarindan daha

kiigiiktiir ve alti veritabanindan ikisinde [6]’da Onerilen algoritmadan elde edilenden daha

123



kiiciiktiir. Zaslavskii kaotik haritali KHPSO7 kullanan CAKKPSO algoritmasi tarafindan elde
edilen genlik degerleri GAR tarafindan elde edilen degerlerden daha kiigiiktiir ya da o degerlere
esittir. Alt1 veritabanindan dordiinde de, [6]’da Onerilen algoritmadan elde edilen genlik

degerlerinden daha kiiciik degerlere sahiptir.

Tablo 7.6. Destek, boyut ve genlik degerlerine gore sonuglarin karsilastiriimasi

Veritabam Destek(%) Boyut Genlik(%)
CAKKPSO GAR [6] CAKKPSO GAR [6] CAKKPSO GAR 16]
Basketball 36.40 36.69 | 32.21 3.21 3.38 3.21 19 25 20
Bodyfat 65.24 65.26 | 63.29 6.94 7.45 7.06 25 29 27
Bolts 28.39 2597 | 27.04 5.14 5.29 5.14 19 34 27
Pollution 43.90 46.55 | 38.95 6.46 7.32 6.21 15 15 14
Quake 38.78 38.65 | 36.96 2.22 2.33 2.10 16 25 19
Sleep 36.68 3591 | 37.25 4.19 4.21 4.19 5 5 4

Gergek verilerdeki son deneysel sonuglar, Tablo7.7’dedir ve burada da kesfedilen
kurallar tarafindan kapsanan kurallarin yiizdesi verilmistir. Bu sonug¢lardan da Zaslavskii kaotik
haritali KHPSO7 kullanan CAKKPSO algoritmasinin diger evrimsel hesaplama tabanli

algoritmalarla rekabet edebilecegi goriilebilmektedir.

Tablo 7.7. Kesfedilen kurallar tarafindan kapsanan kayitlarin yiizdesi

Veritabani Kayitlar(%)
KPSOA GAR [6]
Basketball 100.00 100.00 100.00
Bodyfat 86.10 86.00 84.12
Bolts 79.78 77.50 77.5
Pollution 95.04 95.00 95.0
Quake 87.90 87.50 87.6
Sleep 80.82 79.03 79.81

Sonug olarak Zaslavskii kaotik haritali KHPSO7 kullanan CAKKPSO algoritmasi
kurallari, araliklar1 ¢ok fazla segmeden ve yiiksek giiven ve destek degerlerine sahip olacak
sekilde kesfetmistir. Ayrica kurallardaki nitelik sayisi da azdir. BoOylece veritabanlarinda
kesfedilen kurallar, dogru, okunabilir ve anlasilabilirdir. istenen amaglar dogrultusunda kurallar
kesfettigi goriilmiistiir. Amaglara ilginglik vb. kriterler de eklenebilir ancak bu c¢aligmada
amaglarim disinda tutulmustur. Bazen nesnel bazen de 6znel 6lgiiler kullanan ilginglik kriteri ¢ok

yiiksek oranda kullaniciya bagimlidir.
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7.4. Sonuclar

Tezin bu boliimiinde kaos, kaba kiimeler, ¢ok amacli optimizasyon fikirleri PSO ile
birlestirilmis ve genel amagli “cok amagli kaba kaotik PSO” (CAKKPSO) algoritmalar
Onerilmigstir. Kaba oriintii fikrine bagl olarak kaba pargacik ve kaba karar degiskenleri kullanan
KPSOA, PSO’da parametrelerin belirlenmesinde rasgele sayiya her ihtiyag duyuldugunda
kaotik say1 iireteci kullanan KHPSO ve ¢ok amagli PSO algoritmalarinin birlestirilmesiyle etkili
coziimler verebilecek bu algoritmanin ilk uygulamasi da nicel birliktelik kurallarinin kesfi
alaninda yapilmstir.

Nicel birliktelik kurallarmin kesfi, ¢ok amagli bir optimizasyon problemi olarak
karakterize edilmistir. Pareto tabanli PSO ile, tek calistirmada nicel niteliklerin araliklarinin
optimizasyonu ve dogru, gii¢lii ve anlasilabilir kurallarin kesfi es zamanli ve herhangi bir 6n
islem ve uzman bilgisi gerektirmeden, bilgi kayiplar1 olmadan otomatik olarak yapilmistir.
Tasarlanan PSO, ayrica her veritabani i¢in belirlenmesi giic olan minimum destek ve minimum
giiven degerlerine ihtiya¢ duymadan, veritabanindan bagimsiz bir yaklasim sunar. Genelde
kullanilanin aksine yiiksek kaliteli birliktelik kurallarin1 yogun nesne kiimeleri tiretmeden direkt
olarak kesfeder.

Ayn1 zamanda, bu sekilde kaba hesaplama alanina da ilave bir konu eklenmistir.
Ugiincii boliimde ortaya ¢ikarilan kaosun optimizasyonda istenen bir siire¢ olabilmesi fikri bu
boliimde kullanilmis ve en etkili kaotik haritali PSO ve ilgili kaotik harita kullanilmis ve tatmin
edici sonuglar alinmustir. CAKKPSO pratik uygulamalar i¢in kullanisli genisletmeler
sunmaktadir. Farkli arama ve optimizasyon problemlerinde ve &zellikle paralel ve dagitik

versiyonlariyla daha ayrintili deneyler ileriki ¢alismalar olarak diisiiniilebilir.
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8. SONUCLAR

Bu tezde ¢ok noktali, sosyal ve biyolojik tabanli stokastik bir yontem olan ve kus ve
balik siiriilerinin hareketlerinden esinlenerek dogrusal olmayan niimerik problemlere optimum
sonuglar bulmak igin Onerilmis yumusak hesaplama tekniklerinden Pargacik Siirii
Optimizasyonu (PSO) algoritmasinin performansmin arttirilmasi amaciyla c¢esitli eklenti ve
diizenlemeler yapilmustir. Ozellikle yerel optimum noktalara takilip kalmay1 engelleyerek global
yakinsama hizimi arttirmak amaglanmistir. Bu amagla, yine yumusak hesaplama tekniklerinden
biri sayilan kaos PSO ile birlestirilmistir. PSO’nun parametrelerinin belirlenmesinde rasgele
tabanli bir se¢cim s6z konusu oldugunda, 6rnegin baslangic siiriisii, atalet agirligi, hizlanma
katsayilar1 ve hiz ve pozisyon giincelleme denklemlerindeki rassal sayilar, farkli kaotik
sistemler rasgele say1 dizilerinin yerine kullanilmis ve on iki farkli PSO algoritmas1 6nerilmistir.
Onerilen bu algoritmalara kaotik haritali PSO algoritmalar1 ad1 verilmis ve bu algoritmalarda
sekiz farkli kaotik haritanin etkisi incelenmistir. Onerilen bu algoritmalarin literatiirde iyi sonug
verdigi belirlenmis diger PSO algoritmalariyla performanslarimin karsilastirilmasi sonucu
Onerilen yontemlerin cogunun bu yontemlerle esdeger diizeyde ya da daha iyi performansa sahip
oldugu goriilmiistiir. PSO ve kompleks dinamik gibi farkli alanlarda gelisen sonuglarin
birlestirilmesinin bazi optimizasyon problemlerinde kaliteyi arttirabilecegi ve kaosun istenen bir
stirec olabilecegi belirtilmistir.

Ayrica araliklarin temsil olarak kullanilmasi gereken durumlarda PSO ile birlikte yine
yumusak hesaplama tekniklerinden sayilan kaba kiimelerin alt dali olan aralik cebrinin etkili
olarak kullanilabilecegi gosterilmis, bununla ilgili PSO hesaplamalari agiklanmistir. Bu amagla
alt ve lst siirdan olusan kaba degerlere bagli olarak PSO’nun genisletilmesi saglanmis ve bu
temsil ve ilgili glincellemeleri igeren algoritma kaba PSO algoritmasi adiyla tanitilmistir. Kaba
PSO algoritmasinin 6zellikle veri madenciliginde siirekli degerli verilerde kural kesfi i¢in yeni,
etkili ve otomatik yontem olarak kullanilabilecegi ilk uygulama olarak gosterilmistir. Nicel
birliktelik kurallarinin kesfi ve nicel niteliklerin araliklarmin otomatik boliinmesi isini es
zamanli ve dogru olarak yapan algoritmalar literatirde pek fazla yoktur ve bu amagla bu
problem bir kaba PSO tarafindan ¢oziilebilecek bir optimizasyon problemi olarak ele alinmis ve
bilgi kayiplar1 ve 6n islemlerden kaginilarak kural kesfi yapilmistir. Veritabanlarinda kaba PSO
ile kesfedilen kurallarin, dogru, okunabilir ve anlagilabilir oldugu gdsterilmistir. Ayn1 zamanda
kaba hesaplama alanina yeni bir ¢alisma konusu eklenmistir.

Kaba degerlerle temsil ve hesaplamalarin yapilmasi zorunlulugu olan yerlerde
kullanilan kaba PSO algoritmasina kaotik haritalar eklenmis ve boylece PSO, kaos ve kaba

kiimelerin {i¢iiniin birlesimiyle performansi arttirmak amaciyla genel amaclh kaba kaotik PSO
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algoritmalar1 Onerilmistir. Bu algoritmalar, etkin ¢6ziim yontemi bulunmayan siirekli degerli
verilerde nicel birliktelik kurallarmmin otomatik kesfi alaninda uygulanmis ve dogruluk,
okunabilirlik ve anlasilabilirlik acisindan basarili sonuglar elde edilmistir. Onerilen kaba kaotik
PSO algoritmasi ¢ok farkli alanlarda uygulama alani bulabilir.

PSO algoritmasinin birden fazla amacin eszamanl optimizasyonunu s6z konusu oldugu
cok amagli optimizasyon problemleri i¢in de ¢alisabilmesi i¢in algoritmaya ¢esitli diizenlemeler
ve eklentiler yapilmustir. Siiflandirma kurallarinin  madenciligi problemi ayni birimle
Olciilebilen ve ¢ogu zaman gelisen degisik amaclarla ¢ok amagli bir optimizasyon problemi
olarak tasarlanmig ve 6nerilen ¢ok amacgli PSO algoritmasi ile belirlenen amaclar dogrultusunda
kurallarin kesfi yapilmistir. Algoritma ilk kez uygulandigi halde, yani iizerinde fazla bir
optimizasyon yapilmadigi halde, tahmini dogruluklar yiiksek, anlagilabilir kurallar kesfetmistir.

Ayrica ¢ok amacli PSO ile kaos ve kaba kiimelerin birlesimiyle yeni PSO algoritmalari,
¢ok amacli kaba kaotik PSO algoritmalari, 6nerilmis ve bunlar da yine etkin ¢6ziimler bulmak
amaciyla veri madenciligi alaninda uygulanmustir. Literatiirde nicel birliktelik kurallarinin kesfi
problemini ¢ok amagli bir optimizasyon problemi olarak ele alan ve ¢éziimler sunan herhangi
bir ¢aligma bulunmamaktadir. Oysaki nicel birliktelik kurallarinin kesfi zor bir problemdir ve
kendi igerisinde birgok amacin eszamanli optimize edilmesini icerir. Bu amaglardan tezde

kullanilanlar sunlardir:

e Giiven degerinin maksimizasyonu
e Destek degerinin maksimizasyonu
e Kuralin anlagilabilir olmasinin saglanmasi

e Niteliklerin araliklarinin miimkiin olacak sekilde minimizasyonu

Dikkat edilirse, genellikle goz Oniine alinan amaglar, diger bir deyimle degerlendirme
Olciitleri birbiri ile geligkili ve negatif yonde etkilesimlidir. Sonugta elde edilecek kural listesidir
ve bu kurallarin olusturulmasinda Pareto baskinlik yaklasimi kullanilmigtir. Bu yaklagim i¢inde
agirhkli formiile gore tiim amaglar1 agirliklandirma yaklasimi da kullanilmistir. Onerilen
algoritmalarla kurallar; veritabanindan bagimsiz, yogun nesne kiimeleri {iretilmeden ve aranan

amaglar dogrultusunda, basarili sekilde kesfedilmistir.
8.1. Oneriler

Bu tezde oOnerilen algoritmalar genel amaclidir ve veri madenciliginin diger alt
dallarinda ve Ozellikle kiimeleme kurallarinin madenciligi ve ardisik Oriintii kesfinde

kullanilabilir. Ayrica diger optimizasyon ve arama tabanli miihendislik problemlerinde de
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kolayca kullanilabilir. Onerilen bu yéntemler heniiz yenidirler. Bunlarin dagitik ve paralel
versiyonlariyla optimize edilmis parametreler kullanilarak ayrmtili deney ve uygulamalar
yapilabilir.

Ayrica PSO algoritmasi belli iterasyon boyunca herhangi bir ilerleme ya da belli bir
oranda iyilesme saglayamadigi zaman, bu tikanmanin oldugu noktada lokal arama olarak kaotik
haritalar belli iterasyon boyunca devreye girebilir ve bodylece algoritmanin lokal optimum
noktalara takilip kalmasi Onlenebilir. Farkli yerel arama yoOntemleriyle de birlestirilip
performans karsilastirmalar1 yapilabilir. Burada onerilen algoritma ve teknikler, farkli yapi ve
tiirdeki PSO’larla birlestirilip performans testleri yapilabilir.

Secilen uygulama alanlari, nicel birliktelik kurallarinin ve siniflandirma kurallarinin
madenciligi, i¢in farkli yumusak hesaplama yontemleri kullanilip performans karsilastirmalart
yapilabilir. Ayrica bu tezde veri madenciligi igin Onerilen yontemler, farkli evrimsel hesaplama
alanindaki yontemlere de uyarlanabilir. Cok amagli PSO’ da, farkli amaglar, 6rnegin ilginglik,
disiiniiliip fonksiyon halinde ifade edilerek amag sayisi arttirilmis ¢aligsmalar yapilabilir. Ayrica
Pareto kiimedeki baskinlik kavramina bulanik mantik eklenerek, amaglarin direkt degerleri
yerine bulaniklagtirilmis amag¢ degerleri kullanilarak bulanik Pareto kiimeler kullanilabilir ve

ozellikle belirsizlik durumunda iyi sonuglar alinabilir.
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