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DGPSO: Diferansiyel Gelişimli Parçacık Sürü Optimizasyonu 

U-UOTPSO: Uygunluk-Uzaklık Oran Tabanlı Parçacık Sürü Optimizasyonu 

KHPSO: Kaotik Haritalı Parçacık Sürü Optimizasyonu 

ZDAA:  Zamanla Değişen Atalet Ağırlığı 

StZDAA-PSO: Stokastik Zamanla Değişen Atalet Ağırlıklı Parçacık Sürü Optimizasyonu 

KPSOA: Kaba Parçacık Sürü Optimizasyon Algoritması 

ÖÖTPSO: Öz Örgütlenmiş Tehlikelilikli Parçacık Sürü Optimizasyonu 

A-S:  Ata-Sonuç 

AS:  Alt Sınır 

ÜS:  Üst Sınır 

KKPSO: Kaba Kaotik Parçacık Sürü Optimizasyonu 

HD:  Harici Depo 

ÇAKKPSO: Çok Amaçlı Kaba Kaotik Parçacık Sürü Optimizasyonu 

A:  Anlaşılabilirlik 

TD:  Tahmini Doğruluk 

S:  Sınıf 
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Bu tezde kuş sürülerinin hareketlerinden esinlenerek geliştirilmiş optimizasyon yöntemi 
olan Parçacık Sürü Optimizasyonu (PSO) algoritmasına, performansının arttırılması amacıyla 
çeşitli eklentiler ve düzenlemeler yapılmıştır. Özellikle PSO’nun yerel optimum noktalara 
takılıp kalmasını engelleyerek global yakınsama hızını arttırmak amacıyla yumuşak hesaplama 
tekniklerinden biri sayılan kaos, PSO ile birleştirilmiş ve “kaotik haritalı PSO algoritmaları” adı 
altında on iki farklı PSO algoritması önerilmiştir. Önerilen bu algoritmaların literatürde iyi 
sonuç verdiği belirlenmiş diğer PSO algoritmalarıyla performans karşılaştırmaları yapılmıştır.  

Ayrıca sürekli karar değişkenlerinin de kullanılması gereken problemlerde ve aralıkların 
temsil olarak kullanılması gereken durumlarda PSO ile birlikte yumuşak hesaplama 
tekniklerinden sayılan kaba kümelerin alt dalı olan aralık cebrinin etkili olarak kullanılabileceği 
gösterilmiş, bununla ilgili PSO hesaplamaları açıklanmıştır. Bu amaçla “kaba PSO” algoritması 
önerilmiş ve bunun ilk uygulaması olarak özellikle veri madenciliğinde sürekli değerli verilerde 
kural keşfi için yeni ve etkili yöntem olarak kullanılabileceği gösterilmiştir. 

PSO, kaos ve kaba kümelerin üçünün birleşimiyle “kaba kaotik PSO algoritmaları” adı 
altında genel amaçlı PSO algoritmaları önerilmiş ve bunlar, etkin çözüm yöntemi bulunmayan 
sürekli değerli verilerde nicel birliktelik kurallarının otomatik keşfi alanında ilk kez uygulanmış 
ve etkili sonuçlar elde dilmiştir. 

PSO algoritmasının çok amaçlı optimizasyon problemleri için de çalışabilmesi için 
çeşitli düzenlemeler yapılmış ve ilk uygulaması yine veri madenciliğinin alt dalı olan 
sınıflandırma kurallarının madenciliğinde yapılmıştır ve istenen amaçlar doğrultusunda etkili 
sonuçlar elde edilmiştir. 

Son olarak, çok amaçlı PSO ile kaos ve kaba kümelerin birleşimiyle yeni PSO 
algoritmaları, “çok amaçlı kaba kaotik PSO algoritmaları”, önerilmiş ve bunlar da ilk olarak 
etkin çözümler bulmak amacıyla veri madenciliği alanında uygulanmıştır.  

 

Anahtar Kelimeler: Parçacık sürü optimizasyonu, kaotik haritalar, aralık cebri, çok amaçlı 
optimizasyon, nicel birliktelik kural madenciliği, sınıflandırma kural madenciliği. 
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 In this thesis, addition and modifications to particle swarm optimization (PSO) 

algorithm which is an optimization technique developed inspiring by movement of flock of 

birds have been performed. Especially, chaos which has been regarded as one of the soft 

computing techniques has been embedded to PSO in order to increase the convergence speed by 

escaping from the local optimum points; and twelve PSO algorithms with the name “chaos 

embedded PSO algorithms” have been proposed. Performance comparisons of these algorithms 

with the other PSO algorithms which have been reported to have good performance in the 

literature have been performed. 

 Furthermore, it has been shown that interval algebra which is a branch of rough set, 

regarded as one of the soft computing techniques, can be effectively used with PSO for 

problems in which continuous decision variables and intervals should be used as representation, 

and PSO computation related to this representation have been described. “Rough PSO” has been 

proposed for this purpose and has been shown to be effectively used in rule mining within 

continuous valued variables as a first application. 

 PSO, chaos, and rough set have been combined and general purposed PSO algorithms 

with the name “rough chaotic PSO algorithms” have been proposed. These algorithms have 

been firstly used in numeric association rules mining in which there is not an efficient and 

automatic technique. Promising results have been obtained. 

 Various modifications have been performed for the PSO to let it work for multi-

objective optimization problems and first application has been performed in classification rule 

mining task of data mining. Efficient results according to the objectives have been obtained. 

 Lastly, new PSO algorithms, “multi-objective rough chaotic PSO algorithms”, which 

include multi-objective PSO, chaos, and rough sets combination, have been proposed and have 

been applied in data mining in order to find efficient solutions. 

 

Keywords: Particle swarm optimization, chaotic maps, interval algebra, multi-objective 

optimization, numeric association rule mining, classification rule mining.  
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1. GĐRĐŞ 

 
 

Optimizasyon, bir problem için, verilen şartlar altında tüm çözümler arasından en iyi 

çözümü elde etme işidir. Optimizasyonun performansını etkileyen ve kontrolümüz altında 

değerleri olan değişkenlere karar değişkenleri denir. Karar değişkenlerinin amaç üzerindeki 

etkilerinin analitik olarak gösterilmesiyle amaç fonksiyonu oluşturulur. Çoğu durumda, karar 

değişkenlerinin sadece belirli değerleri kullanılmalıdır. Karar değişkenlerinin değerleri 

üzerindeki bu sınırlandırmalara sınırlayıcılar denir. O halde farklı bir ifadeyle optimizasyon, 

karar değişkenlerinin mümkün olan tüm kombinasyonları arasından verilen tüm sınırlayıcıları 

sağlayan ve amaç fonksiyonunu en iyi hale getiren (maksimizasyon ya da minimizasyon) 

kombinasyonun bulunması işidir.  

Bu amaçla literatürde birçok optimizasyon algoritması önerilmiştir. Optimizasyon 

probleminin kolayca çözülebilecek bir yapıya oturtulması için çoğu zaman problemin 

davranışlarıyla ilgili kurallar ve elemanları arasındaki bağlantılar için, ilgilenilen karar 

probleminin yapısına göre şekillenen matematiksel modeller kurulur [1]. 

Model; eğer karar değişkenleri üzerinde hiçbir sınırlama yoksa sınırlayıcısız, en azından 

bir sınırlama olması durumunda sınırlayıcılı olur. Gerçek hayatta genellikle sınırlayıcılı 

problemler karşımıza çıkar. Eğer problem tek bir dönem için çözülecekse statik model, birden 

fazla dönem göz önüne alınarak çözülecekse dinamik model kullanılır. Modelin algoritmada 

işletilmesi esnasında belirli, kesin parametre veya girdiler kullanılıyorsa model deterministik, 

olasılık özelliği varsa model stokastiktir. Eğer birden fazla amaç varsa, çok amaçlı problemler 

ortaya çıkar. Eğer tüm karar değişkenleri pozitif reel (gerçel) değerler alıyorsa sürekli 

optimizasyon problemi söz konusudur. Tüm karar değişkenlerinin tamsayı değerler alması 

gerekiyorsa kesikli optimizasyon problemi ortaya çıkar. Bazı karar değişkenlerinin reel, 

bazılarının tamsayı değer alması durumunda ise karışık kesikli optimizasyon problemi ile 

karşılaşılır. Eğer karar değişkenlerinin kombinasyonsal seçenekleri söz konusuysa 

kombinasyonsal optimizasyon problemleri ortaya çıkar [1]. Şekil 1.1’de bu model türleri 

grafiksel olarak görülmektedir. Burada yukarıdan aşağıya ve soldan sağa gidildikçe modelin 

kurulması ve işletilmesi zorlaşır. 
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 Şekil 1.1. Optimizasyon için matematiksel modeller 
 

Optimizasyon algoritmalarının çoğu, sistemin modeli ve amaç fonksiyonu için 

matematiksel modellere ihtiyaç duymaktadır. Karmaşık sistemler için matematiksel modelin 

kurulması çoğu zaman zordur. Model kurulsa bile, çözüm zamanı maliyeti çok yüksek 

olduğundan kullanılamamaktadır [2]. Klasik optimizasyon algoritmaları, büyük ölçekli 
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kombinasyonsal ve doğrusal olmayan problemlerde yetersizdir. Aynı durum, tamsayı ya da 

ayrık karar değişkenlerinin kullanıldığı çoğu doğrusal optimizasyon modelleri için de geçerlidir. 

Bu tür algoritmalar, verilen bir probleme bir çözüm algoritması uyarlamada etkin değildir. Bu 

da çoğu durumda, geçerliliğinin onaylanması zor olabilen bazı varsayımları gerektirir. 

Genellikle klasik algoritmaların doğal çözüm mekanizmalarından dolayı, ilgilenilen problem 

algoritmanın onu idare edeceği şekilde modellenir. Klasik optimizasyon algoritmalarının çözüm 

stratejisi genellikle amaç ve sınırlayıcıların tipine (doğrusal, doğrusal olmayan vb.) ve problemi 

modellemede kullanılan değişkenlerin tipine (tamsayı, reel) bağlıdır.  Bunların etkinliliği aynı 

zamanda problem modellemede çözüm uzayı (konveks, konveks olmayan vb.), karar değişken 

sayısı ve sınırlayıcı sayısına oldukça bağlıdır. Diğer önemli bir eksiklik ise farklı tipte karar 

değişkenleri, amaç ve sınırlayıcıların olması durumunda problem formülasyonlarına 

uygulanabilecek genel çözüm stratejileri sunmamalarıdır. Yani çoğu algoritma belirli tipteki 

amaç fonksiyonu ya da sınırlayıcıların olduğu modelleri çözmektedir. Ancak çoğu yönetim 

bilimi, bilgisayar, mühendislik gibi bir çok farklı alandaki optimizasyon problemleri eşzamanlı 

olarak formülasyonlarında farklı tipteki karar değişkenleri, amaç fonksiyonu ve sınırlayıcıları 

gerektirir. Bu yüzden klasik sezgisel ve genel amaçlı sezgisel optimizasyon algoritmaları 

önerilmiştir. Bunlar son yıllarda oldukça popüler yöntemler haline gelmiştir çünkü, bunların 

hesaplama gücü iyidir ve dönüşümleri kolaydır. Yani tek amaç fonksiyonlu bir problem için 

yazılmış bir sezgisel program, kolaylıkla çok amaçlı bir probleme ya da farklı bir probleme 

uyarlanabilmektedir.  

Genel amaçlı sezgisel yöntemler; biyolojik tabanlı, fizik tabanlı ve sosyal tabanlı olmak 

üzere üç farklı grupta değerlendirilmektedir [3]. Ayrıca bunların birleşimi olan melez yöntemler 

de vardır. Genetik algoritma (GA) [4–6], diferansiyel gelişim algoritması [7, 8], karınca koloni 

algoritmaları [9, 10], yapay sinir ağları [11], arı koloni algoritmaları [12] ve yapay bağışıklık 

sistemleri [13, 14] biyolojik tabanlı; ısıl işlem [15] ve elektromanyetizma algoritması [16] fizik 

tabanlı ve tabu arama [17] sosyal tabanlı algoritma ve modellerdir. Kültürel algoritma [18] da 

hem biyolojik hem de sosyal tabanlı algoritma olarak sınıflandırılabilir. Bu tezde üzerine 

çalışılan, optimizasyon ve veri madenciliğinde uygulamaları yapılan Parçacık Sürü 

Optimizasyonu (PSO) [19] da hem biyolojik hem de sosyal tabanlı algoritma sınıfına 

girmektedir.  

Algoritma tek bir çözümden başlayıp bunu operatörlerle ilerletiyorsa bunlara tek noktalı 

yöntemler denir ve tabu arama, ısıl işlem gibi bütün yerel arama tabanlı sezgisel algoritmalar bu 

gruba girer. Çok noktadan yani bir popülasyon üzerinden çözüme başlanıp bu farklı noktalarla 

optimizasyon yapılıyorsa bunlar çok noktalı ya da popülasyon tabanlı yöntemlerdir. Bunlara 
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GA, PSO, karınca koloni algoritmaları, arı koloni algoritmaları, yapay bağışıklık sistemleri ve 

elektromanyetizma algoritması örnek olarak verilebilir. 

Bazı sezgisel algoritmalar problemin gösterimini gerçekleştirirken amaç fonksiyonunu 

sabit tutar ve sabit amaç fonksiyonlu olarak adlandırılırlar. Bazıları da örneğin rehberli yerel 

arama algoritmasındaki gibi değiştirir ve değişen amaç fonksiyonlu olarak adlandırılırlar. 

Değiştirmekteki amaç yerel minimumdan kurtulmaktır. Bu mantık, yerel minimumdan kaçmak 

için bazen diğer sezgisel algoritmalara da uygulanabilmektedir. 

Çoğunlukla sezgisel yöntemler tek bir komşuluk yapısında çalışır ve tek komşuluk 

yapılı olarak sınıflandırılabilir. Bazıları da değişken komşuluk arama algoritmasında olduğu gibi 

arama işlemini sistematik bir şekilde değiştirerek birden fazla yerel arama yöntemiyle diğer 

çözüm alanlarına ulaşmaya çalışır ve değişken komşuluk yapılı şeklinde sınıflandırılabilir. 

PSO’nun iki versiyonu da bulunabilmektedir. 

Algoritmalar çalışırken daha önceki durumlar ya da en iyi durumlar hatırlanıyorsa 

hafızalı, hatırlanmıyorsa hafızasız şeklinde sınıflandırılabilir. Örneğin PSO ve tabu arama 

hafızalı, GA hafızasızdır. 

Tüm bu sınıflandırma türleri Şekil 1.2’de görülmektedir. Ancak yapılan bazı 

çalışmalarla bu sınıflandırma türlerine ait algoritmalara eklentiler ve modifikasyonlar 

yapılmakta ve bunlarla algoritma ilk önerildiği haliyle ait olduğu sınıftan başka sınıfa ait 

özellikleri de barındırabilmektedir. Bu gösterimde de, yukarıdan aşağıya ve soldan sağa 

gidildikçe modelin kurulması ve işletilmesi biraz daha zorlaşmaktadır. Ancak bu zorluk 

yukarıda bahsedilen matematiksel modellerdeki zorluklar kadar fazla değildir. Küçük 

modifikasyonlarla dönüşümler ayarlanabilmektedir. 

Bu bölümde çok noktalı, sosyal, fizik ve biyolojik tabanlı stokastik yöntemler biraz 

daha incelenecektir. 
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Sezgisel Yöntemler

MelezBiyoloji tabanlıSosyal tabanlıFizik tabanlı

Tek noktalı Çok noktalı

Sabit amaç
fonksiyonu

Değişken amaç
fonksiyonu

Tek komşuluk yapılı
Değişken komşuluk

yapılı

Hafızasız Hafızalı

 

Şekil 1.2. Sezgisel yöntemler  
 
1.1. Çok Noktalı (Popülasyon Tabanlı) Algoritmalar 

 
1.1.1. Evrimsel Hesaplama 

 
Evrimsel hesaplama Rechenberg’in Evrim Stratejileri (Evolutionsstrategie) adlı 

çalışmasında tanıtılmıştır [20]. Tasarımda ve uygulamada evrim kavramı bulunan hesaplama-

tabanlı problem çözme yöntemlerinin temel mantığını içerir. En çok kullanılan yöntemler 

 

• Genetik Algoritmalar 

• Evrimsel Algoritmalar 

• Evrimsel Programlama 
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• Evrim Stratejileri 

• Sınıflayıcı Sistemleri  

• Genetik Programlama 

 

olarak bilinir. Bunlar arasında en çok kullanılan ise GA adı verilen yöntemdir. GA’lar doğal 

seçim ilkelerine dayanan ve temelleri John Holland tarafından atılan arama ve optimizasyon 

yöntemleridir [4, 5]. GA’ların çözüm için ihtiyaç duyduğu şey, problemin karar değişkenlerini 

uygun bir yöntemle kodlamak ve olası çözümlerin problem için kalitesini ölçen bir uygunluk 

fonksiyonu oluşturmaktır. Algoritma, birey ya da kromozom adı verilen aday çözümlerle 

(popülasyon) başlar ve çeşitli genetik ya da farklı operatörlerle uygunluk fonksiyon değerine 

bağlı olarak daha iyi kalitede yeni popülasyonun oluşturulması adımlarıyla ilerler. Bu adımlar 

belli bir durdurma kriterine kadar devam eder. 

Evrimsel hesaplama yöntemleri arasındaki temel fark, bazen temsil ve ortaya çıkan 

çözüm olmakla birlikte çoğu zaman kullanılan operatörler ve bir sonraki popülasyonun seçim 

işleminden kaynaklanmaktadır. 

Yakın zamanda yeni popülasyonun oluşturulmasında olasılık dağılımları kullanılmış ve 

daha öz bir kodlamayla GA performansı arttırılmıştır. Bu alanda yapılan çalışmalar genel olarak 

dağılım tahmin algoritmaları olarak bilinir [21] ve en çok kullanılanlar ise özlü GA [22], 

popülasyon temelli artımsal öğrenme [23], tek değişkenli marjinal dağılım algoritması [24] ve 

çok değişkenli normal dağılım algoritmasıdır [25].   

Ayrıca, diferansiyel gelişim algoritması da özellikle sürekli değerli karar 

değişkenlerinin söz konusu olduğu problemlerde işleyiş olarak GA’ya benzer şekilde etkin 

olarak kullanılmaktadır [7]. Bazı yerel arama yöntemleriyle birleştirilmiş GA, melez GA ya da 

paralel GA olarak ta bilinen memetik algoritma [26] ve arama ya da optimizasyon esnasında 

problem bilgisinin birleştirilmesine izin veren kültürel algoritma [27] de evrimsel hesaplama 

alanındaki diğer algoritmalara örnek olarak verilebilir. 

 
1.1.2. Karınca Koloni Algoritmaları 

 
Sürü zekâsı alanının bir alt dalı olarak bilinen karınca koloni algoritması karınca 

kolonilerinin yiyecek toplamasını esas alan ve Dorigo tarafından önerilen bir algoritmadır [9]. 

Çeşitli versiyonları olan bu algoritmayı evrimsel hesaplama alanının bir alt dalı olarak görenler 

de vardır. Karıncalar koloniler halinde yiyecek toplarken en kısa yolu belirlerler ve bunu da 

geçmiş oldukları yollar üzerinde uçucu bir koku izi bırakarak hallederler. Karıncalar 

gidebileceği birden fazla yol olduğunda, iz miktarı fazla olan yolu daha çok tercih ederler. 
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Karınca koloni algoritmaları da gözlemlenen bu doğal süreçten esinlenerek geliştirilmiş 

popülasyon tabanlı algoritmalardır. 

 
1.1.3. Arı Koloni Algoritmaları 

 
Arı koloni algoritmaları arıların yiyecek bulma vb. davranışlarından esinlenerek 

geliştirilmiş sürü zekâsı alanının en yeni alt dallarındandır. Ancak bu alanda tam olarak çatı 

oturtulmuş değildir ve birçok farklı araştırmacı modelledikleri sisteme arı koloni algoritması ya 

da benzeri isimler vermiştir [28–42]. Yiyecek bulmada arıların yapmış olduğu dans etkileşimli 

bir davranıştır ve bu dansla yiyecek arayan başarılı arılar (öncü arılar) çiçek beneklerine olan 

yön ve uzaklık bilgilerini ve çiçek üzerindeki nektar miktarını kovandaki eşiyle paylaşır. Bu 

öncü arıların kolonideki diğer arıları farklı kaynak bulmak amacıyla verimli yerlere 

yerleştirmesi başarılı, etkileşimli bir mekanizmadır ve koloni hızlı bir şekilde tam olarak 

değişen nektar kaynaklarına göre kendini yerinde ve zamanında ayarlar. Bu algoritmalar da 

arıların koloni halindeki davranışlarından esinlenerek geliştirilmiştir. 

 
1.1.4. Yapay Bağışıklık Sistemleri 

 
Yapay bağışıklık sistemleri, teorik bağışıklık ve karmaşık problem alanlarına uygulanan 

gözlemlenmiş bağışık fonksiyonlar, ilkeler ve modellerden esinlenmiş hesapsal sistemlerdir 

[43]. Đki temel bileşen (kemik iliği ve timus) ve iki ayrı teori (klonal seçim ve bağışık ağ) 

bağışıklık sistemini modellemek için kullanılır. Kemik iliği modeli, hücrelerin ve moleküllerin 

repertuarını üretmede kullanılır. Timus modeli öz / öz olmayan ayrımı yapmaya yetenekli hücre 

ve moleküllerin repertuarını üretmede kullanılır. Klonal seçim prensibi, bağışıklık sisteminin bir 

antijenik uyarıma karşı bağışıklık cevabının temel özelliklerini tanımlamak amacıyla kullanılır. 

Daha çok optimizasyon amaçlı kullanılan teori budur ve klonal seçim algoritması adıyla bilinir 

[44]. Diferansiyel denklemler temelli sürekli ağ modelleri başarılı bir şekilde optimizasyon 

problemlerine de uygulanmıştır. Bunlar aynı zamanda fark denklemleri temelli ayrık ağ 

modellerine de ilham olmuştur [45]. 

 
1.1.5. Parçacık Sürü Optimizasyonu 

 
Parçacık Sürü Optimizasyonu (PSO) tekniği kuş ve balık sürülerinin hareketlerinden 

esinlenerek doğrusal olmayan nümerik problemlere optimal sonuçlar bulmak için ilk olarak 

1995–1996 yıllarında sosyolog-psikolog James Kennedy ve elektrik mühendisi Russel Eberhart 

tarafından ortaya atılmış popülasyon tabanlı stokastik bir optimizasyon yöntemidir [46]. PSO’da 

her bir kuş parçacık olarak, kuş topluluğu da sürü olarak temsil edilir. Bir parçacık, 
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koordinatlarını, hızını yani çözüm uzayındaki her boyutta ne kadar hızla ilerlediği bilgisini, 

şimdiye kadar elde ettiği en iyi uygunluk değerini ve bu değeri elde ettiği koordinatları hatırlar. 

Çözüm uzayındaki her boyuttaki hızının ve yönünün her seferinde nasıl değişeceğini, 

komşularının en iyi koordinatları ve kendi kişisel en iyi koordinatlarının birleşiminden elde 

eder. Bu konu ile ilgili çalışmalar, tez kapsamında detaylı olarak incelenmiş ve yeni önerilerde 

bulunulmuştur. 

 
1.1.6. Elektromanyetizma Algoritması 

 
Elektromanyetizma algoritması Birbil ve Fang tarafından doğrusal olmayan 

fonksiyonların sınırlayıcısız global optimizasyonu için elektromanyetizma teorisindeki itme-

çekme mekanizmasından esinlenerek geliştirilmiştir [16]. Her örneğin tüm şarjın amaç 

fonksiyon değerini kapsadığı şarjlı bir parçacık olarak uzaya serbest bırakıldığını varsayar. Şarj 

örnek popülasyon üzerinde noktanın itme ya da çekme büyüklüğünü belirler ve amaç fonksiyon 

değeri ne kadar büyükse çekim büyüklüğü de o ölçüde fazladır. Bu şarjlar hesaplandıktan sonra 

toplam kuvvetten bir yön belirlenir. Çekimler daha iyi alanlara doğru, itmeler ise ziyaret 

edilmeyen bölgelere doğru hareketi sağlar [47, 48]. Aslında bu algoritma PSO’ya 

benzemektedir. Temel fark arama uzayındaki hareketleri hesaplamadadır. PSO’daki gibi 

elektromanyetizma algoritmasında da her çözüm, her adımda yeni pozisyona doğru hareket 

eder. Fakat sadece komşularının en iyi koordinatları ve kendi kişisel en iyi koordinatlarının 

birleşiminden etkilenmez her çözüm popülasyondaki tüm diğer çözümlerden etkilenir [49]. 

 
1.2. Tezin Amaç ve Kapsamı 

 
Bu tezde özellikle çok noktalı, sosyal ve biyolojik tabanlı stokastik bir yöntem olan ve 

kuş ve balık sürülerinin hareketlerinden esinlenerek doğrusal olmayan nümerik problemlere 

optimum sonuçlar bulmak için önerilmiş yumuşak hesaplama tekniklerinden olan PSO 

algoritmasına eklentiler yapılıp performansının arttırılması amaçlanmıştır. Bu amaçla yine 

yumuşak hesaplama tekniklerinden biri sayılan kaos, PSO ile birleştirilmiş ve on iki farklı PSO 

algoritması önerilmiştir. Önerilen bu algoritmaların performansları literatürde iyi sonuç verdiği 

belirlenmiş diğer PSO algoritmalarıyla karşılaştırılmış ve bu yöntemlerle eşdeğer düzeyde ya da 

daha iyi olduğu gösterilmiştir.  

Ayrıca sürekli değerli problemlerde aralıkların temsil olarak kullanılması gereken 

durumlarda, PSO’ya yine yumuşak hesaplama tekniklerinden sayılan kaba kümelerin alt dalı 

olan aralık cebrinin kullanılabileceğinin gösterilmesi ve çok amaçlı optimizasyon problemleri 

için de çalışabilmesi için çeşitli düzenlemelerin yapılması amaçlanmıştır. Bir başka amaç da bu 
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yöntemleri ilk olarak veri madenciliği alanında kabul edilecek zaman dilimi içinde optimum 

çözümü bulunmayan problemlere uygulayarak etkili sonuçlar elde etmektir. 

Bu tezin kapsamı; 

 

• PSO’nun yerel optimum noktalara takılıp kalmasını engelleyerek global yakınsama 

hızını arttırmak için kaos tabanlı çeşitli yöntemler önermek, 

• Kalite testi fonksiyonlarında, önerilen bu yöntemleri kullanan PSO ve literatürde iyi 

sonuçlar verdiği belirtilmiş diğer PSO algoritmalarıyla çeşitli karşılaştırmalar yapmak, 

• Kaba kümelerin alt dalı olan aralık cebrinin PSO’da sürekli değerli problemlerde 

aralıkların temsil olarak kullanılması gereken durumlarda etkili olarak 

kullanılabileceğini göstermek ve bununla ilgili hesaplamaları göstermek (Kaba PSO), 

• Veri madenciliğinin yöntemlerinden olan birliktelik kural madenciliği ve sınıflandırma 

kural madenciliğinin tanımını ve kullanılan performans ölçütlerini vermek, 

• Önerilen kaba PSO algoritmasının gerçekten iyi sonuç verebileceği bir alana uygulamak 

ve özellikle sürekli değerli verilerde kural keşfi için etkili ve yeni bir yöntem sunmak, 

• PSO, kaos ve kaba kümelerin üçünün birleşimiyle etkili PSO algoritmalar önermek ve 

bunları, etkin çözüm yöntemi bulunmayan sürekli değerli verilerde nicel birliktelik 

kurallarının otomatik keşfi alanında uygulayıp sonuçları karşılaştırmak, 

• PSO’ya çok amaçlı optimizasyon problemleri için de çalışabilmesi için çeşitli 

düzenlemeler yapmak ve özellikle veri madenciliğinden sınıflandırma kural 

madenciliğini çok amaçlı bir optimizasyon problemi olarak karakterize edip önerilen bu 

PSO ile uygulamasını yapmak, 

• Çok amaçlı PSO ile kaos ve kaba kümelerin birleşimiyle yeni PSO algoritmaları, çok 

amaçlı kaba kaotik PSO algoritmaları, önermek ve bunu da yine etkin çözümler bulmak 

amacıyla veri madenciliği alanında uygulamak 

 

olacaktır. 

 
1.3. Tezin Organizasyonu 

 
Tez sekiz bölümden oluşmaktadır. Đkinci bölümde, PSO algoritması tanıtılmış ve basit 

olarak nasıl çalıştığı küçük örneklerle açıklanmıştır. Ayrıca performansının arttırılabilmesi için 

literatürde yapılan çalışmalar ilgili başlıklar halinde özetlenmiştir. 

Üçüncü bölümde, PSO’nun parametrelerinin belirlenmesi için rasgele tabanlı bir seçim 

söz konusu olduğunda farklı kaotik sistemler rasgele sayı dizilerinin yerine kullanılmış ve on iki 

farklı PSO önerilmiştir. Kullanılan kaotik haritalar tanıtılmış sonrasında da önerilen yöntemler 
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açıklanmıştır. Bu şekilde PSO’nun global yakınsama özelliğinin arttırılması ve lokal çözümde 

takılıp kalması önlenmeye çalışılmıştır. Daha sonra kalite testi fonksiyonları tanıtılarak önerilen 

yöntemlerin diğer PSO yöntemleriyle karşılaştırılması yapılmıştır. Son olarak da sonuçlara bağlı 

olarak analiz ve yorumlara yer verilmiştir. Bu bölümle ilgili aşağıdaki çalışmalar yayınlanmak 

üzere kabul edilmiştir [50, 51]: 

 

• “Chaos Embedded Particle Swarm Optimization Algorithms”, Chaos, Solitons & 

Fractals, Elsevier, http://dx.doi.org/10.1016/j.chaos.2007.09.063, (Kabul edildi). 

• “Kaotik Haritalı Parçacık Sürü Optimizasyon Algoritmaları”, 12. Elektrik Elektronik 

Bilgisayar Biyomedikal Mühendisliği Ulusal Kongresi, Eskişehir, 2007. 

 

Dördüncü bölümde, bazı sürekli karar değişkenleri içeren ve değişkenlerin aralıklarının 

kullanma zorunluluğu olduğu durum ve uygulamalarda alt ve üst sınırdan oluşan kaba değerlere 

bağlı olarak PSO’nun genişletilmesi sağlanmış ve eklentiler önerilmiştir. Aynı zamanda, bu 

şekilde kaba hesaplama alanına da ilave bir konu eklenmiştir. Ayrıca kabul edilecek zaman 

dilimi içinde optimum çözümü bulunmayan ve aslında bir arama ve optimizasyon problemi olan 

nicel nitelikler içeren veri tabanlarında veri madenciliği için yeni, etkili ve otomatik bir yöntem 

önerilmiştir ve bilgi kayıpları ve ön işlemelerden kaçınılarak bilgi keşfi yapılmıştır. Bu bölüm 

ile ilgili, özellikle diğer biyolojik tabanlı algoritmalar için kaba küme genişletilmesi ve nicel 

birliktelik kurallarının bir optimizasyon problemi olarak biyolojik tabanlı algoritmalarla 

modellenmesiyle ilgili aşağıdaki çalışmalar yayınlanmıştır [6, 8, 52, 53]: 

 

• “MODENAR: Multi-Objective Differential Evolution Algorithm for Mining Numeric 

Association Rules”, Applied Soft Computing, Elsevier. 

• “An Efficient Genetic Algorithm for Automated Mining of Both Positive and Negative 

Quantitative Association Rules”, Soft Computing, Springer Verlag, 10(3), 230-237, 

2006. 

• “Rough Immune Algorithm”, International Symposium on Innovations in Intelligent 

Systems and Applications (INISTA-2005), 75-78, Đstanbul, Turkey, Haziran, 2005. 

• “Rough Differential Evolution Algorithm”, Second International Conference on 

Electronics and Computer Engineering IKECCO 2005, Bishkek/KYRGYZSTAN, 

Nisan, 2005. 

 

Beşinci bölümde, dördüncü bölümde önerilen kaba PSO algoritması ile üçüncü 

bölümde önerilen kaotik haritalı PSO algoritmalarının birleşimi ile Kaba Kaotik PSO (KKPSO) 
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algoritmaları önerilmiştir. Kaba değerlerle temsil ve hesaplamaların yapılması zorunluluğu olan 

yerlerde kullanılan kaba PSO algoritmasına kaotik haritalar eklenmiş ve algoritmanın 

performansının arttırılması amaçlanmıştır. Böylece; kaba kümeler, kaos ve optimizasyonun 

birlikte kullanılabileceği genel amaçlı melez arama ve optimizasyon algoritmaları önerilmiştir. 

Bu amaçla KKPSO teorileri açıklanmış ve performansının testi için nicel birliktelik kural 

madenciliği alanında uygulamalar yapılmıştır. Bu bölümle ilgili çalışmalar aşağıda belirtilen 

isimde kitap bölümü olarak yayınlanmak üzere kabul edilmiştir [54]: 

 

• “Chaotic Rough Particle Swarm Optimization Algorithms”, Swarm Intelligence: : 

Focus on Ant and Particle Swarm Optimization (Editörler: Professor Felix T. S. 

Chan ve Professor Manoj Kumar Tiwari), ARS Publishing, 2007. 

 

Altıncı bölümde PSO’nun çok amaçlı optimizasyon problemlerinde kullanılabilmesi 

için farklı bir yöntem önerilmiş ve ilk olarak veri madenciliği uygulamaları yapılmıştır. 

Özellikle önerilen algoritmanın sınıflandırma kural madenciliği alanında etkili ve iyi 

performansa sahip olduğu görülmüştür. Bu bölümle ilgili, özellikle sınıflandırma kural 

madenciliğinin biyolojik tabanlı algoritmalarla modellenmesiyle ilgili ve PSO’nun tek amaçlı ve 

çok amaçlı sınıflandırma kural madenciliğinde kullanımı ile ilgili aşağıdaki çalışmalar 

yayınlanmıştır [10, 14, 55, 56]: 

 

• “Mining Fuzzy Classification Rules Using an Artificial Immune System with 

Boosting”, ADBIS 2005, Lecture Notes in Computer Science, Springer-Verlag, 3631, 

283 – 293, Eylül, 2005. 

• “FCACO: Fuzzy Classification Rules Mining Algorithm with Ant Colony 

Optimization”, ICNC 2005, Lecture Notes in Computer Science, Springer-Verlag, 3612, 

787 – 797, Ağustos, 2005. 

• “Modified Particle Swarm Optimization Based Multi-Objective Rule Mining”, INISTA 

2007, 195-199, Istanbul, Turkey, 2007. 

• “Sınıflandırma Kurallarının Parçacık Sürü Optimizasyon Algoritmasıyla Keşfi”, 62-66, 

ASYU-INISTA 2006, Istanbul, Haziran, 2006. 

 

Yedinci bölümde, üçüncü bölümde önerilen kaotik haritalı PSO algoritmaları, dördüncü 

bölümde önerilen kaba PSO algoritması ve altıncı bölümde önerilen çok amaçlı PSO 

birleştirilerek çok amaçlı kaba kaotik PSO algoritmaları önerilmiştir ve yine bir optimizasyon 
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problemi olarak algılanması gereken nicel değerler içeren veritabanlarında birliktelik kural keşfi 

alanında uygulamaları yapılıp performans karşılaştırmaları verilmiştir.  

Sekizinci bölümde ise tezde yapılan çalışmalar değerlendirilmiş ve gelecek çalışmalara 

ışık tutması için yeni öneriler sunulmuştur. 
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2. PARÇACIK SÜRÜ OPTĐMĐZASYONU 

 
 
2.1. Giriş 

 
Gerçek hayatta sosyal varlıklar problemlerin çözümünü, ortak hareket ederek daha kısa 

zamanda bulabilmektedir. Bazen tek başlarına hiçbir iş yapamayan varlıklar, toplu hareket 

ettiklerinde çok zekice davranışlar sergileyebilmektedir. Bir topluluğa ait bireyler, en iyi bireyin 

davranışından ya da diğer bireylerin davranışlarından ve kendi deneyimlerinden yararlanarak 

yorum yapmakta ve bu bilgileri ileride karşılaşacakları problemlerin çözümleri için bir araç 

olarak kullanmaktadırlar. Örneğin, bir canlı sürüsünü oluşturan bireylerden birisi bir tehlike 

sezdiğinde bu tehlikeye karşı tepki verir ve bu tepki sürü içinde ilerleyip tüm bireylerin 

tehlikeye karşı ortak bir davranış sergilemesini sağlar. Sosyal varlıkların bu tür davranışlarının 

sayısal ortamlardaki simülasyonlarıyla, bunların çeşitli problemlerin çözümünde kullanılabilir 

sezgiseller olduğu gösterilebilir. 

Çoğu mühendislik problemlerinin çözülmesinde sezgisel yöntemlerin kullanılması son 

yıllarda önemli bir oranda artmaktadır. Bunun nedenleri, eğim bilgisine gerek duyulmaması ve 

bu yüzden matematiksel modelin çıkarılamadığı ve eğim bilgisinin türetilemediği ya da 

türetilmesinin çok maliyetli olduğu problemlerde iyi sonuçlar alınabilmesi; hesaplama gücünün 

iyi olması; uygulamasının basit olması ve dönüştürülebilir yani bir problem için yazılmış bir 

sezgisel programın kolaylıkla başka problemlere uygulanabilir olmasıdır. 

PSO tekniği de popülasyon tabanlı sezgisel arama ve optimizasyon yöntemidir ve 

temelde işbirliğini esas alır. Bu yöntemde problem için aday çözümler parçacık olarak 

adlandırılır. Temel PSO’da bir parçacığın başlıca özellikleri şunlardır: pozisyon, hız (ya da daha 

açık olarak pozisyonu değiştirmek için ona uygulanan bir operatör), bilgiyi komşularla 

değiştirme kabiliyeti, bir önceki pozisyonu hatırlama kabiliyeti ve bir karar vermek için bilgiyi 

kullanma kabiliyeti [57]. 

Uyarlamalı Kültür Modeli parçacık sürülerinin temelini oluşturmaktadır. Bu teori 

kültürel uyarlamanın temelinde değerlendir, karşılaştır ve taklit et olarak üç ilkenin olduğunu 

belirtmektedir [57].  

Yaşayan organizmalar için en hazır davranışsal karakteristik belki de uyarıyı 

değerlendirme, yani pozitif ya da negatif, çekici ya da itici olarak değerlendirme eğilimidir. 

Öğrenme, değerlendirme olamadan gerçekleşemez. Değerlendirmenin kendisi, tek başına 

karşılaştırma kabiliyeti olmadan kullanışsız ve imkânsızdır. Uyarlamalı Kültür Modelindeki ve 

parçacık sürülerindeki bireyler, kendilerini komşularıyla karşılaştırır ve sadece kendilerinden 

daha üstün olan komşularını taklit eder. Taklit etme alıcının açısından deneyim paylaşmanın en 
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basit formudur, sadece gözlemi değil, amaç gerçekleştirme ve zamanlama yeterliliğini de içerir 

[57].  

PSO algoritmalarında bir parçacık, kendi deneyimini yani en iyi geçmiş pozisyonunu ve 

en başarılı komşusunun deneyimini hesaba katarak bir sonraki hareketinin yönüne karar verir.  

 
2.2. Parçacık Sürü Optimizasyonu 

 
Sezgisel yöntemlerden biri olan PSO tekniği ilk olarak kuş ve balık sürülerinin 

hareketlerinden esinlenerek doğrusal olmayan nümerik problemlere optimal sonuçlar bulmak 

için 1995–1996 yıllarında sosyolog-psikolog James Kennedy ve elektrik mühendisi Russel 

Eberhart tarafından ortaya atılmıştır. PSO popülasyon tabanlı stokastik bir optimizasyon 

yöntemi olup çok parametreli ve çok değişkenli optimizasyon problemlerine çözümler üretmek 

için kullanılmaktadır [19, 58, 59].  

Parçacık sürü kavramı basitleştirilmiş sosyal sistemin bir simülasyonu olarak ortaya 

çıkmıştır. Başlangıçtaki amaç, kuş ya da balık sürü koreografisinin grafiksel olarak 

simülasyonlarını yapmaktı. Ancak grafiksel simülasyondan sonra, parçacık sürü modelinin bir 

optimizasyon yöntemi olarak kullanılabileceği keşfedilmiştir. 

Kuş toplulukları gerçek yiyecek kaynağını bilmemelerine rağmen, yiyecek kaynağından 

ne kadar uzakta olduklarını öğrenmeye çalışırlar. Öğrenmek için izlenen yöntem yiyecek 

kaynağına en yakın olan kuşu izlemektir. PSO’da her bir kuş parçacık olarak, kuş topluluğu da 

sürü olarak temsil edilir. Parçacık hareket ettiğinde, kendi koordinatlarının uygunluk değeri yani 

yiyeceğe ne kadar uzaklıkta olduğu hesaplanır. Bir parçacık, koordinatlarını, hızını yani çözüm 

uzayındaki her boyutta ne kadar hızla ilerlediği bilgisini, şimdiye kadar elde ettiği en iyi 

uygunluk değerini ve bu değeri elde ettiği koordinatları hatırlamalıdır. Çözüm uzayında her 

boyuttaki hızının ve yönünün her seferinde nasıl değişeceği, komşularının en iyi koordinatları 

ve kendi kişisel en iyi koordinatlarının birleşiminden elde edilecektir. 

PSO’nun önemli özelliklerinden ikisi uygulama kolaylığı ve eğim bilgisine gerek 

duymamasıdır. GA kullanılarak çözülebilen çoğu problemi içeren farklı optimizasyon 

problemlerinin geniş bir kümesini çözmek için kullanılabilir. Buna, sinirsel ağ eğitimi [60] ve 

fonksiyon minimizasyonu gibi [61] problemler örnek olarak verilebilir. Ortalamada, GA ve 

PSO’nun aynı etkinliğe sahip olduğu (çözüm kalitesi) ancak PSO’nun hesapsal olarak daha 

etkili olduğu yani daha az fonksiyon değerlendirmesi kullandığı belirlenmiştir [62]. Ayrıca 

PSO’da belirlenmesi gereken parametre sayısı daha azdır ve uygulaması daha kolaydır. 

Çoğu popüler optimizasyon algoritması, eğim-tabanlı algoritmalar gibi deterministiktir. 

Evrimsel algoritma ailesine bağlı algoritmalara benzer olarak PSO, hata fonksiyonundan 

türetilen eğim bilgisine ihtiyaç duymayan stokastik bir algoritmadır. Bu özellik, PSO’ nun, eğim 
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bilgisinin elde edilemediği ya da elde edilmesinin hesapsal olarak çok maliyetli olduğu 

problemlerde kullanılmasını sağlar. 

 
2.2.1. PSO Algoritması 

 
PSO’nun temelinin sosyolojik esinlemeli olduğu söylenebilir. Çünkü algoritmanın 

orijinal fikri, kuşların sürü halinde toplanmasıyla ilişkilendirilmiş sosyolojik davranışlarına 

dayanır [58]. Kuş, balık ve hayvan sürülerinin bir “bilgi paylaşma”  yaklaşımı uygulayarak 

çevrelerine adapte olabilme, zengin yiyecek kaynağı bulabilme ve avcılardan kaçabilme 

yeteneklerinden esinlenmiştir. 

PSO, optimum ya da optimuma yakın çözüm bulmak için önce her biri aday çözümü 

sunan bireyler (parçacıklar) oluşturur. Bu bireylerin oluşturulması gelişigüzel, düzenli ya da her 

iki şekilde yapılabilir. Bireylerin bir araya gelmesinden çözüm için gerçekleştirilen 

popülasyonumuz (sürü) meydana gelir. Pratikte, 2 ve 100 arası boyuttaki çoğu gerçek 

problemler için 20 parçacıklı bir sürü oldukça iyi çalışmaktadır. Uyarlamalı sürü boyutu da 

kullanılabilir. PSO, bireyler arasındaki bilginin paylaşımını esas alır. Her bir parçacık kendi 

pozisyonunu sürüdeki en iyi pozisyona doğru ayarlarken, bir önceki tecrübesinden de yararlanır. 

s sürünün boyutu olsun. Her i parçacığı, birkaç karakteristiğe sahip bir nesne olarak temsil 

edilebilir. Bu karakteristikler aşağıdaki sembollere gösterilir: 

 

xi: Parçacığın mevcut pozisyonu; 

vi: Parçacığın mevcut hızı; 

yi: Parçacığın kişisel en iyi pozisyonu. 

 

i parçacığıyla ilişkilendirilmiş kişisel en iyi pozisyon, parçacığın ziyaret ettiği (bir 

önceki xi değeri) ve bu parçacık için en yüksek uygunluk değerini veren en iyi pozisyondur. Bir 

minimizasyon işi için daha düşük bir fonksiyon değeri sağlayan bir pozisyon daha yüksek 

uygunluğa sahip kabul edilir. f sembolü minimize edilen amaç fonksiyonunu göstermek üzere 

kişisel en iyi pozisyon için güncelleme denklemi t zaman aralığına bağlı olarak (2.1)’de 

gösterilmiştir. 

 

( ) ( )
( )

( )( ) ( )( )
( )( ) ( )( )tyftxf

tyftxf

tx

ty
ty

ii

ii

i

i

i <+

≥+





+
=+

1

1

,

,

1
1       (2.1) 

 

PSO’nun global ve lokal adlı iki versiyonu bulunmaktadır [63]. Đki algoritma arasındaki 

fark verilen bir parçacığın direkt olarak etkileşim içinde olduğu parçacıkların kümesine bağlıdır 
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ve ŷ sembolü, bu etkileşimi temsil için kullanılacaktır. Đki modelin detayları aşağıda tam olarak 

açıklanacaktır. Global modelde kullanılan ŷ ’nin tanımı Eşitlik (2.2)’de sunulmuştur. 

 

( ) ( ) ( ) ( ){ } ( )( ) ( )( ) ( )( ) ( )( ){ }tyftyftyftyftytytyty ss ...,,,minˆ|...,,,ˆ 1010 =∈   (2.2) 

 

Bu tanım, ŷ ’nin herhangi bir parçacık tarafından şimdiye kadar keşfedilen en iyi 

pozisyon olduğunu belirtir. Algoritma iki bağımsız gelişigüzel diziyi kullanır, r1 ~ U(0, 1) ve r2 

~ U(0, 1). Bu diziler (2.3)’te gösterildiği gibi algoritmanın stokastik doğasını etkilemek için 

kullanılır. Burada c1 ve c2 katsayıları öğrenme faktörleridir ve hızlanma katsayıları olarak da 

adlandırılır. Bu katsayılar, bir iterasyonda bir parçacığın alabileceği adımın maksimum 

boyutunu etkiler ve her parçacığı kişisel en iyi ve global en iyi pozisyonlarına doğru çeken, 

stokastik hızlanmayı ifade eder. Düşük değerlerin seçilmesi parçacıkların hedef bölgeye doğru 

çekilmeden önce, bu bölgeden uzak yerlerde dolaşmalarına imkân verir. Ancak hedefe ulaşma 

süresi uzayabilir. Diğer yandan, yüksek değerlerin seçilmesi, hedefe ulaşmayı hızlandırırken, 

beklenmedik hareketlerin oluşmasına ve hedef bölgeye ulaşılmamasına sebep olabilir. c1 ve 

c2’nin değerleri 0 < c1, c2 ≤  2 sabitleriyle sınırlanır. Ancak bilişsel katsayının olarak da 

isimlendirilen c1’in biraz daha büyük seçilmesi ve c1 + c2 = 4 durumunun sağlanması halinde 

daha iyi sonuçların alınabileceği gösterilmiştir. Hız güncelleme adımı her boyut j∈1…n için 

ayrı olarak belirlenir. vi,j, i. parçacıkla ilişkilendirilmiş hız vektörünün j. boyutunu gösterirse hız 

güncelleme denklemi (2.3) 

 

( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]txtytrctxtytrctvtv jijjjijijjiji ,,22,,,11,, ˆ1 −+−+=+    (2.3) 

 

olur. Buradan c1’in bu parçacığın kişisel en iyi pozisyonunun yönünde adım büyüklüğünü 

ayarladığı, c2’nin de global en iyi parçacığın yönünde maksimum adım büyüklüğünü ayarladığı 

açıktır. vi,j değeri, parçacığın arama uzayından ayrılma olasılığını azaltmak için [-vmaks, vmaks] 

değerine sıkıştırılmıştır. Eğer arama uzayı [-xmaks, xmaks] sınırları ile tanımlanmışsa, vmaks’ın 

değeri tipik olarak vmaks = k×xmaks değerine ayarlanır ve 0.1≤ k≤ 1.0 olur [64]. Ayrıca vmaks 

arama uzayı büyüklüğünün yarısına eşitlenebilir.  

Her parçacığın pozisyonu, bu parçacık için yeni hız vektörü kullanılarak 

 

( ) ( ) ( )11 ++=+ tvtxtx iii         (2.4) 

 

şeklinde güncellenir. 
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xi,n(t)∈ [ln, un] ve 1≤ n≤N olmak üzere ln ve un  n. boyut için alt ve üst sınırları 

göstermektedir. PSO algoritmasının çalışması esnasında, boyutlar için alt sınır ya da üst sınırın 

aşılması durumunda bir düzeltme işlemi uygulanması gerekmektedir. Bu işlem alt sınır ve üst 

sınır aşılması durumunda sırasıyla 

 

xi=xi+α × r× (un(xi)-ln(xi))         (2.5) 

xi=xi-α × r× (un(xi)-ln(xi))         (2.6) 

 

olarak gerçekleştirilebilir. Burada α ∈ [0, 1] aralığında kullanıcı tanımlı bir değerdir ve r ~ U(0, 

1) olarak seçilir. 

Global model daha hızlı bir yakınsama sunar, ancak sağlam olmayabilir. Bu model 

sürüdeki tüm parçacıklar karşısında global en iyi parçacık olarak adlandırılan sadece tek bir “en 

iyi çözüm”ü muhafaza eder. Bu parçacık, diğer tüm parçacıkları çeken bir çekici olarak hareket 

eder. Er geç tüm parçacıklar bu pozisyona doğru hareket edecektir ve eğer düzenli olarak 

güncellenmezse parçacık erken yakınsayabilir. ŷ ve vi için güncelleme denklemlerine 

bakıldığında ŷ  global en iyi pozisyondur ve global en iyi parçacık olarak bilinen parçacığa 

aittir. 

Lokal model çoklu çekicileri devam ettirerek erken yakınsamayı önlemeye çalışır. Her 

parçacık için daha sonra lokal (kişisel) en iyi parçacık, ŷ i’nin seçildiği parçacıkların alt kümesi 

tanımlanır. ŷ i sembolü lokal en iyi pozisyon ya da en iyi komşuluk olarak adlandırılır. l 

büyüklüğünde bir komşuluk için, parçacık indisinin s’de katlandığı varsayılırsa, lokal 

güncelleme denklemleri aşağıdaki gibi olur: 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }tytytytytytytyN liiiiililii +−+−+−−= ,,...,,,,...,, 1111     (2.7) 

 

( ) ( )( ) ( ){ } iiii NaaftyfNty ∈∀=+∈+ ,min1ˆ|1ˆ      (2.8) 

 

Bütünlük için tekrar hız güncelleme denklemini yazılırsa: 

 

( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]txtytrctxtytrctvtv jijjjijijjiji ,,22,,,11,, ˆ1 −+−+=+    (2.9) 

 

Ni’nin alt kümesi için seçilen parçacıkların arama uzayı domeninde birbirleriyle hiçbir 

ilişkisi yoktur, seçim sadece parçacığın indeks numarasına bağlıdır. Bu iki nedenden dolayı 

yapılmaktadır: herhangi bir kümeleme yapılmadığı için hesapsal olarak masraflı değildir ve 



 18

arama uzayında mevcut yerlerinden bağımsız olarak iyi çözümler hakkında bilginin tüm 

parçacıklara yayılmasını destekler. 

l = s durumunda global model lokal modelin özel bir durumudur. l = 1 ile yapılan 

deneyler lokal algoritmanın global versiyona göre daha yavaş yakınsadığını, fakat değersiz bir 

lokal minimuma takılma olasılığının daha az olduğunu göstermiştir.  

Global model daha hızlıdır, fakat bazı problemler için lokal optimuma takılabilir. 

Global model hızlı bir sonuç almak için, lokal model de aramayı inceleştirmek için 

kullanılabilir. 

Bir parçacığın (2.3) denklemindeki üç terime bağlı olarak ve (2.4) pozisyon güncelleme 

denklemine göre hareketi Şekil 2.1’de gösterilmiştir. 

 

ŷ

ŷ

 

 
Şekil 2.1. Parçacığın hareketi 
 

Algoritma, (2.3) ve (2.4)’te verilen güncelleme denklemlerinin tekrarlı tatbikinden 

oluşur. Şekil 2.2’de, PSO algoritmasının temel adımları görülmektedir. Đki if’li ifade (2.1) ve 

(2.2) tanımlarının sırayla tatbikinin eşdeğeridir. Algoritmanın ilk adımında ifade edilen 

başlatma, aşağıda verilen adımlardan oluşur: 

 

1. Her xi,j koordinatını tüm i∈1…s ve j∈1...n için [-xmaks, xmaks] aralığında düzenli rassal 

dağılımdan türetilmiş bir değere ata (Parçacıkların başlangıç pozisyonları arama uzayı 

boyunca dağıtılır). 
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2. Her vi,j’yi i∈1...s ve j∈1...n için [-vmaks, vmaks] aralığında düzenli rassal dağılımdan 

türetilmiş bir değere ata (Alternatif olarak parçacıkların hızları 0’a atanabilir çünkü 

başlangıç pozisyonları zaten gelişigüzel atanmıştır). 

3. yi = xi ∀ i∈1...s olarak ata (Alternatif olarak her parçacık için iki rassal vektör üretilebilir 

ve en uygun vektör yi’ye daha az uygun olanı da xi’ye atanabilir. Bu, ek fonksiyon 

değerlendirmesi gerektirir, bu yüzden genellikle ilk önce açıklanan daha basit yöntem 

kullanılır). 

 

xi,j ve vi,j’ye gelişigüzel başlangıç değerleri vererek sürüyü oluştur 

Do 

For i = 1 to Parçacık sayısı 

if f(xi) < f(yi) then yi = xi                      // lokal (kişisel) en iyiyi güncelle 

iŷ = min(xkomşular)                                  // global en iyiyi güncelle 

For j = 1 to Optimize edilen boyut sayısı 

[ ] [ ]
jijjjijijjiji

xyrcxyrcvv
,,22,,,11,,

ˆ −+−+=  // hız vektörünü güncelle 

xi,j = xi,j + vi,j                             // pozisyon vektörünü güncelle 

Next j 

Next i 

Until Sonlandırma kriteri 

 
Şekil 2.2. Orijinal PSO algoritmasının temel adımları [56] 
 

Şekil 2.2’de ifade edilen sonlandırma kriteri çözülen problem tipine bağlıdır. Genellikle, 

algoritma sabit sayıda fonksiyon değerlendirmesine (sabit iterasyon sayısına) kadar ya da 

belirlenen bir hata sınırına ulaşıncaya kadar çalıştırılır. Literatürde on üç çeşit sonlandırma 

kriteri aşağıda isimleri verilen altı sınıfta toplanabilir [65].  

 

1. Referans kriteri: Sürünün belirli bir yüzdesi bir optimuma yakınsamışsa sonlandırılır. 

2. Tükenme tabanlı kriter: Belirli nesil sayısı, amaç fonksiyon değerlendirme sayısı ya da 

merkezi işlem birimi zamanı sonlandırma için kriter sayılır. 

3. Đyileşme tabanlı kriter: Eğer küçük ilerlemeler elde ediliyorsa algoritma sonlandırılabilir. 

Bunun da farklı versiyonları vardır [65, 66]: 

a. En iyi amaç fonksiyon değeri, belli nesil sayısı boyunca belirli bir eşiğin 

altındaysa sonlandırılır. 
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b. Ortalama amaç fonksiyon, değeri belli nesil sayısı boyunca belirli bir eşiğin 

altındaysa sonlandırılır. 

c. Belirli bir nesil boyunca herhangi bir komşulukta bir ilerleme olmuyorsa 

sonlandırılır. 

4. Hareket tabanlı kriter: Bireylerin hareketine bağlı sonlandırma kriteridir ve iki versiyonu 

bulunmaktadır [65, 66]: 

a. Ortalama amaç fonksiyon değerine bağlı olarak (amaç uzayı) popülasyondaki 

hareket, belirli nesil sayısı için belirli bir eşiğin altındaysa sonlandırılır. 

b. Pozisyonlara bağlı olarak (parametre uzayı) popülasyondaki hareket, belirli 

nesil sayısı için belirli bir eşiğin altındaysa sonlandırılır. 

5. Dağılım tabanlı kriter: Bireyler birbirine çok yakınsa yakınsamaya ulaşılmıştır. Bu kriterin 

de, ilk üçü parametre uzayında sonuncusu da amaç uzayında uygulanan dört versiyonu 

bulunmaktadır [65, 66]: 

a. Her vektörden en iyi popülasyon vektörüne olan uzaklık, belirli bir eşiğin 

altındaysa sonlandırılır. 

b. Popülasyonun en iyilerinin belirli bir yüzdesinin en iyi popülasyon vektörüne 

olan uzaklığının, belirli bir eşiğin altında olup olmadığı test edilir. Bir önceki 

versiyon tüm popülasyon üyelerinin yakınsamasını bekler. Ancak optimum 

değer zaten bulunmuşsa fazladan hesapsal işlem yapılacaktır. Bu yöntem 

diğerine göre daha iyi olabilir [65, 66]. 

c. Vektörlerin standart sapması belirli bir eşiğin altındaysa sonlandırılır. 

d. En iyi ve en kötü amaç fonksiyon değeri arasındaki fark belirli bir eşiğin 

altındaysa sonlandırılır. 

6. Birleşik kriter: Bu kriter de iki şekilde uygulanabilir [65, 66]: 

a. Eğer belirli bir nesil boyunca ortalama iyileşme, belirli bir eşiğin altındaysa 

maksimum uzaklığın belirli eşiğin altında olup olmadığı test edilir. 

b. En iyi ve en kötü amaç fonksiyon değerleri arasındaki fark, belirli bir eşiğin 

altındaysa en iyi bireylerin belirli bir yüzdesinin en iyi çözüm olan maksimum 

uzaklığının belirli bir değerin altında olup olmadığı test edilir (en az belirli bir 

yüzdedeki bireyler uygun bölgede olmalıdır). 

 

Algoritmanın çalışması özet olarak şöyledir: Başlangıçta, uygunluğa bağlı olarak bir 

parçacık, parçacıkların bir komşuluğunda en iyi parçacık olarak tanımlanır. Sonra tüm 

parçacıklar bu parçacığın yönünde ve daha önce keşfettikleri kendi en iyi çözümlerinin yönünde 

hızlanır. Bazen parçacıklar mevcut en iyi parçacığın ötesinde arama uzayını araştırarak 
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hedeflerinin dışına çıkacaklardır. Diğer parçacıkların yönleri değiştirdiği ve yeni ‘en iyi’ 

parçacığın yönüne gittiği durumda, tüm parçacıkların yoldayken daha iyi parçacıkları keşfetme 

olanakları da vardır. Arama uzayında farklı yönlerden mevcut en iyi çözüme yaklaşması 

sayesinde, bu komşu çözümlerin bazı parçacıklar tarafından keşfedilme şansı yüksektir.  

PSO’nun temel adımlarını gösteren akış diyagramı Şekil 2.3’te, bu akış diyagramının 

genişletilmiş versiyonu ise Şekil 2.4’te görülmektedir. Burada, i parçacık indisini; j boyut 

indisini; boyut problem boyutunu; sürü boyutu ise parçacık sayısını temsil etmektedir. Sınır 

şartı uygula kısmında boyutta sınırlama aşıldığında, yani minimum ve maksimum değerler 

dışına çıkıldığında sınırlandırılan aralığa dönmek için gereken işlemler yapılır. 

 

 

 

Şekil 2.3. PSO’nun akış diyagramı 
 

Hız güncelleme denklemi (2.3)’teki ikinci terim, bilişle ilişkilendirilmiştir. Yani sadece 

parçacığın kendi deneyimlerini hesaba katar. Üçüncü terim ise parçacıklar arasındaki sosyal 

etkileşimi temsil eder. Özet olarak, PSO hız güncelleme terimi bir bilişsel ve bir sosyal terimden 

oluşur. Bazı problemlerde ilk sonuçlar sosyal bileşenin daha önemli olabileceğini gösteriyor 
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olsa da, bu iki terimin bağıl önemi hakkında fazla bilgi yoktur. Parçacıklar arasındaki sosyal 

etkileşim işbirliğinin bir göstergesidir.  

iŷ
iŷ

 

 

Şekil 2.4. PSO’nun genişletilmiş akış diyagramı 
 

 

 
2.2.1.1. Orijinal PSO Algoritmasında Bir Parçacığın Hareketinin Sayısal Örneği 

 
Sadece iki değişkenli basit bir problem ele alınırsa xi parçacığı iki reel sayıdan oluşan 

bir vektör olarak temsil edilir. Yani Xi = <xi1, xi2> olur. Parçacık komşuluk yapısının global 
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model şeklinde olduğu ve bu komşuluk yapısının algoritma çalışması boyunca sabit olduğu 

varsayılacaktır. Şekil 2.5’te, dört parçacıktan oluşan sürünün global komşuluk yapısı ve arama 

uzayında parçacıkların pozisyonları görülmektedir. Pozisyonlar için x ekseni birinci boyut (j=1), 

y ekseni de ikinci boyut (j=2) olarak seçilmiştir. 

ŷ

 

 

Şekil 2.5. Komşuluk yapısı ve arama uzayında parçacıkların t anında pozisyonları 
 

Sadece birinci parçacık (X1) göz önüne alınıp bir adım sonra nasıl hareket edeceğine 

bakılırsa parçacığın hızı (2.3) denklemine göre güncellenecek ve sonra (2.4) ile bir sonraki 

pozisyona gelecektir. c1 = c2 = 2 seçildiği varsayılırsa; 

 

j = 1 için v1,1(t) = 1; r1,1(t) = 0.4; r2,1(t) = 0.1 

j = 2 için v1,2(t) = 2; r1,2(t) = 0.25; r2,2(t) = 0.25 

 

j=1 boyutunda 

 

( ) [ ] [ ] 6.1141.02114.02111,1 =−××+−××+=+tv  

( ) 6.26.1111,1 =+=+tx  

 

j=2 boyutunda 

 

( ) [ ] [ ] 2.0341.023125.02212,1 =−××+−××+=+tv  

( ) 2.32.0312,1 =+=+tx  

 

olur. Böylece X1 parçacığı PSO güncelleme denklemlerinden sonra yeni (2.6, 3.2) pozisyonuna 

hareket edecektir. Bu durumda X1’in yeni pozisyonu Şekil 2.6’da gösterildiği gibi olur. Bazı 

boyutlarda sınır aşma problemi ile karşılaşılınca X1’in hızı için bazı sınırlamalar getirilebilir ve 
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boyut sınırlarında kalması sağlanabilir. Bu benzer güncelleme denklemleri, PSO’nun her 

iterasyonunda her parçacık için uygulanır. 

 

 

 
Şekil 2.6. t+1 anında X1 parçacığının pozisyonunun güncellenmesi 
 
2.2.1.2. PSO ve Evrimsel Hesaplama 

 
PSO’nun evrimsel hesaplama mantığına benzeyen bazı özellikleri vardır. Örneğin, PSO 

potansiyel çözümleri temsil eden bireylerin bir popülasyonunu devam ettirir ve bu da tüm 

evrimsel hesaplama mantığının ortak bir özelliğidir. Her iki yöntem de popülasyonu 

değerlendirmek için uygunluk değerlerine sahiptir. Her ikisi de popülasyonu güncellemeyi ve 

optimumu aramayı rastsal yöntemlerle yapar. Her iki sistem de başarıyı garanti etmez. 

Eğer kişisel en iyi pozisyonlar (yi) popülasyonun bir parçası olarak ele alınırsa, seçimin 

açık olarak zayıf bir formu oluşur. Bir ( λµ + ) evrim stratejileri algoritmasında çocuklar ataları 

ile yarışır ve eğer daha uygun iseler onların yerini alırlar. (2.1)’deki güncelleme denklemi bu 

mekanizmaya benzemektedir; buradaki fark her kişisel en iyi pozisyon (ata), mevcut pozisyon 

eski kişisel en iyi pozisyonundan daha uygun olursa, sadece kendi kişisel en iyi pozisyonu 

(çocuk)’nun yerini alabilir. Özetle, PSO’da seçimin zayıf bir şekli söz konusudur. 

Hız güncelleme denklemi, gerçek-değerli GA’lardaki aritmetik çaprazlamaya 

benzemektedir. Normalde, aritmetik çaprazlama, içerilen ataların lineer karışımı olan iki çocuk 

üretir. vi,j(t) terimi olmayan (2.3)’teki PSO hız güncelleme denklemi iki ata içeren ve tek bir 

çocuk üreten aritmetik çaprazlamanın bir formu olarak düşünülebilir. Alternatif olarak, vi,j(t) 

terimi olmayan hız güncelleme denklemi bir mutasyon operatörü olarak da düşünülebilir.  

vi,j(t) terimini modellemenin daha iyi bir yolu, her iterasyonu bir önceki popülasyonu 

yenisiyle değiştirme (ölüm ve doğum) olarak düşünmektense, bir adaptasyon süreci olarak 

düşünmektir. Bu şekilde xi değerleri değiştirilmez hız vektörleri vi kullanılarak adapte edilir. Bu, 

diğer evrimsel hesaplama algoritmaları ve PSO arasındaki farkı daha açık yapar. PSO pozisyon 
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ve hızla (pozisyondaki değişim) ilgili bilgiyi korur; tersine geleneksel evrimsel algoritmalar 

sadece pozisyonların izini saklar. 

Böylece PSO ve çoğu evrimsel hesaplama algoritmaları arasında bir örtüşme olduğu 

görülmektedir, fakat PSO mevcut haliyle diğer evrimsel hesaplama algoritmalarda mevcut 

olmayan bazı karakteristiklere sahiptir. Özellikle, PSO parçacıkların pozisyonlarını modellediği 

gibi hızlarını da modeller. PSO’da parçacıklar kendilerini dâhili hızla güncellerler ve algoritma 

için önemli olan hafızaya sahiptirler. GA’larla karşılaştırıldığında, PSO’daki bilgi paylaşım 

mekanizması oldukça farklıdır. GA’larda kromozomlar bilgiyi birbirleriyle paylaşır. Böylece 

tüm popülasyon bir optimum bölgeye doğru tek bir grup olarak hareket eder. PSO’da, sadece 

global en iyi (ya da kişisel en iyi) bilgiyi diğerlerine dağıtır. Bu tek yönlü bir bilgi paylaşım 

mekanizmasıdır. GA’larla karşılaştırıldığında tüm parçacıklar, çoğu durumlarda lokal 

versiyonda bile hızlıca en iyi çözüme doğru yakınsama eğilimindedir.  

GA’lara göre PSO’nun uygulaması daha basittir ve ayarlanması gereken daha az 

parametresi vardır. En iyi parametre kümesinin belirlenmesi hem zor hem de fazla zaman 

alabilmektedir. Ayrıca bir sonraki neslin belirlenmesi işleminde, GA’lar seçim stratejisinin 

belirlenmesi ve fazla hafıza gerektirirken, PSO pozisyon ve hız vektörlerini güncelleştirir ve 

strateji belirlemeye ihtiyaç duymaz. 

 
2.2.1.3. PSO’nun Denklem Köklerinin Bulunmasında Kullanılması 

 
PSO’nun adım adım çalışmasını görebilmek için basitçe bir denklemin köklerinin 

bulunması örnek olarak verilecektir. Bu tür problemler için PSO kullanılması çok zaman alır. 

Ancak PSO’nun adım adım çalışmasını görebilmek için bu basit örnek seçilmiştir. Denklemimiz 

f(x) = 3x-6 = 0, ve x∈[0, 10] aralığında olsun. Amacımız, bu aralıkta denklemimizin kökünü 

bulmak olsun. Parçacık sayımızın dört olduğunu varsayalım ve c1 = c2 = 1.3 için bu tek boyutlu 

problemde PSO’nun iki iterasyon boyunca nasıl hareket edeceğini görelim. Denklemdeki x 

değerleri doğrudan parçacıkların pozisyon değerleridir. Uygunluk değeri olarak Uygunluk(x) = 

63
1

−x
 seçilmiştir. 

Öncelikle hız ve pozisyon değerleri gelişigüzel üretilir. Pozisyon değeri için [0, 1] 

aralığında üretilen gelişigüzel sayı 10 ile çarpılsın ve hız için ise [0, 1] aralığında değerler 

üretilsin. Buna göre başlangıçtaki hız ve pozisyon değerleri, ilk kişisel en iyi değerler, mevcut 

uygunluk, kişisel en iyi uygunluk değerleri Tablo 2.1’de verilmiştir. 
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Tablo 2.1. Sürüdeki ilk parametrik değerler 
 

Parçacık hızı Parçacık pozisyonu Kişisel en iyi Mevcut uygunluk 
Kişisel en iyi 

uygunluk 

0.4692 2.8441 2.8441 0.3949 0.3949 

0.9883 0.6478 0.6478 0.2465 0.2465 

0.4235 5.8279 5.8279 0.0871 0.0871 

0.3340 5.1551 5.1551 0.1056 0.1056 

 

Burada dikkat edilirse global en iyi değer 0.3949 ve bunun da indeksi 1 olarak 

görülmektedir. Yani 2.8441 değerine sahip parçacık global en iyidir. Birinci iterasyon sonrası 

parçacıkların hız ve pozisyon güncellemeleri Tablo 2.2’de görülmektedir. 

 

Tablo 2.2. Birinci iterasyon sonrasında değerler 
 

Parçacık hızı Parçacık pozisyonu Kişisel en iyi Mevcut uygunluk 
Kişisel en iyi 

uygunluk 

0.4692 3.3133 2.8441 0.2538 0.3949 

4.2956 1.1170 1.1170 0.3775 0.3775 

-4.0705 6.2971 5.8279 0.0776 0.0871 

-1.3000 5.6243 5.1551 0.0920 0.1056 

 

Birinci iterasyon sonucu global en iyi değerin 0.3775 olduğu ve bunun indeksinin 2 

olduğu yani 1.1170 değerine sahip parçacığın global en iyi olduğu görülmektedir. Đkinci 

iterasyon sonucu güncellemelerle elde edilen yeni hız ve pozisyon değerleri ise Tablo 2.3’te 

verilmiştir. 

 

Tablo 2.3. Đkinci iterasyon sonrasında değerler 
 

Parçacık hızı Parçacık pozisyonu Kişisel en iyi Mevcut uygunluk 
Kişisel en iyi 

uygunluk 

-1.9525 1.3608 1.3608 0.5215 0.5215 

-0.9173 -0.8355 1.1170 0.1176 0.3775 

-5.9163 4.3446 4.3446 0.1422 0.1422 

-4.4260 3.6718 3.6718 0.1994 0.1994 

 

Burada global en iyinin 0.5215 olduğu görülmektedir. Bin iterasyon sonucu elde edilen 

sonuçlar ise Tablo 2.4’te verilmiştir.  
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Tablo 2.4. Bin iterasyon sonrasında değerler 
 

Parçacık hızı Parçacık pozisyonu Mevcut uygunluk 

1.0e+003 * -4.6795 2.0080 41.6667 

1.0e+003 * -4.6748 2.0020 166.6667 

1.0e+003 * -4.6812 2.0176 18.9394 

1.0e+003 * -4.6798 2.0077 43.2900 

 

Burada global en iyi 2.0020 değeridir. Denklemin gerçek kökü de 2.0’dır. 

 
2.2.2. PSO’ya Modifikasyonlar 

  
PSO’ya literatürde birçok ekleme, değişiklik ve geliştirmeler önerilmiştir. Önce 

PSO’nun ikili versiyonu anlatılacak ve daha sonra geliştirmeler verilecektir. 

 
2.2.2.1. Đkili PSO 

 
PSO’nun ikili versiyonu Kennedy ve Eberhart tarafından geliştirilmiştir [67]. Đkili kodlu 

GA ve PSO ile ilgili karşılaştırmalar yapabilmek için kullanışlı olduğu gibi, doğasında ikili olan 

problemleri temsil için de kullanışlıdır. Tipik bir uygulama, ağda iki düğüm arasında 1’in 

bağlantı durumunu, 0’ın ise bağlantının olmadığı durumu temsil ettiği sinirsel ağın 

bağlantılarını temsil etmek olabilir. Daha sonra ikili PSO ağ mimarisini geliştirmek için 

kullanılabilir. 

Đkili versiyon xi ve yi bileşen değerlerini {0, 1} kümesindeki elemanlardan alınacak 

şekilde kısıtlar. Ancak hızın, vi, değeri üzerinde herhangi bir kısıtlama yoktur. Hızı, pozisyonları 

güncellemek için kullanırken, hız değeri de [0, 1] aralığına sınırlandırılır ve olasılık olarak ele 

alınır. Bu, sigmoid fonksiyonu kullanılarak 

 

( )
( )x

x
−+

=
exp1

1
sig          (2.10) 

 

şeklinde yapılır. Đkili sürüde kullanılan hız terimi için güncelleme 

 

( ) ( ) ( ) ( )[ ] ( ) ( )[ ]txytrctxytrctvtv jijjjijijjiji ,,22,,,11,, ˆ1 −+−+=+      (2.11) 
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olur. Bu hız güncelleme denkleminin orijinal PSO’da kullanılandan farklı olmadığı 

görülmektedir. Genel pozisyon güncelleme denklemi yerine yeni bir olasılıksal güncelleme 

denklemi kullanılır, yani: 
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olur. Burada r3,j(t) ~ U(0, 1) düzenli olasılıksal bir değişkendir. Bu denkleme bakılırsa, xi,j’nin 

değerinin sig(vi,j) = 0 olduğunda 0 olarak kalacağı açıktır.  Bu durum vi,j yaklaşık olarak -10’dan 

küçük olduğu zaman ortaya çıkacaktır. Aynı şekilde, sigmoid fonksiyonu vi,j>10 olduğunda 

doyacaktır. Bunu önlemek için, vi,j’nin değerinin ± 4 sınırında tutulması önerilmiştir [68]. Bu, 

sig(4)≈  0.018 durum değiştirme olasılığı ile sonuçlanır. Đkili PSO’yu açıklayan orijinal makale 

vmaks için daha büyük eşik, ± 6, önermiştir ve bu da yaklaşık olarak 0.0025 olasılığı ile 

sonuçlanır [67]. 

Daha sonraki bir çalışma, ikili PSO’yu çok modlu test fonksiyonunda GA ile 

karşılaştırmak için kullanmıştır [69]. Özelikle problem boyutu arttığında çoğu test 

fonksiyonunda, ikili PSO’nun GA’lara göre daha hızlı çözüme ulaştığı [69]’da gösterilmiştir. 

Aynı vektörde hem ikili hem de sürekli değerleri kullanmak mümkündür. Bu versiyon 

melez sürü [68] olarak adlandırılmıştır. Aynı zamanda ikili-sürekli sürü olarak da 

kullanılmaktadır. Son zamanlardaki çalışmalar, PSO’nun basitçe ilgili nicelikleri gerekli 

olduğunda ayrıklaştırarak gelişigüzel ayrık temsilleri de içermesi için kabiliyetlerini 

genişletmiştir. 

 
2.2.2.2. Yakınsama Oranı Geliştirmeleri 

 
PSO’nun yakınsama oranını geliştirmek için literatürde birkaç yöntem önerilmiştir. Bu 

öneriler genellikle, algoritmanın yapısını değiştirmeksizin PSO güncelleme denklemlerinin 

değiştirilmesini içerirler. Bu, genellikle daha iyi bir lokal optimizasyon performansıyla bazen de 

çoklu lokal minimum içeren fonksiyonlarda performans düşüklüğüyle sonuçlanır. 

 
Atalet Ağırlığı 

 
Günümüzde en yaygın kullanılan geliştirme Shi ve Eberhart [70] tarafından önerilen 

atalet ağırlığıdır. Atalet ağırlığı, bir önceki zaman adımı boyunca hızla ilişkilendirilmiş bir 

ölçekleme faktörüdür. Yeni hız güncelleme denklemi 
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( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]txtytrctxtytrctwvtv jijjjijijjiji ,,22,,,11,, ˆ1 −+−+=+   (2.13) 

 

olur. Orijinal PSO hız güncelleme denklemi w = 1 seçilerek elde edilebilir. Shi ve Eberhart w 

değerinin [0, 1.4] aralığındaki etkilerini ve zamanla değişen değerlerini incelemiştir. Bunların 

sonuçları, w∈[0.8, 1.2] olarak seçmenin daha hızlı yakınsamayla sonuçlandığını ama daha 

büyük w değerlerinin (>1.2) daha fazla hata ile yakınsadığını göstermektedir. 

Şekil 2.7’de, bir parçacık için üç olası hareketin ağırlıklı kombinasyonu görülmektedir. 

Şekil 2.8 ise, sürüdeki parçacıkların hızlanmalarının iki boyutlu bir örneğidir. 

 

 

Şekil 2.7. Üç olası hareketin ağırlıklı kombinasyonu 
 

Üç sosyal / bilişsel katsayı sırayla parçacığın şu an kendisine, deneyimlerine ve 

komşularına ne kadar güvendiğini ölçer. Sosyal / bilişsel katsayılar her zaman adımında, verilen 

aralık içinde genellikle gelişigüzel seçilir. 

Atalet ağırlığı, bir önceki hızın ne kadarının bir sonraki zaman adımında tutulacağını 

yönetir. w’nin etkisi kısaca şu şekilde özetlenebilir. c1 = c2 = 0 olarak seçildiğinde ve başlangıç 

hız değerinin sıfır olmadığı varsayıldığında 1.0’dan büyük bir w değeri, parçacığın değişmeyip 

olduğu gibi kalacağı maksimum hıza, vmaks (ya da -vmaks), ivmelenmesine neden olacaktır. 

1.0’dan daha küçük w değeri parçacığın hızı sıfıra ulaşıncaya kadar yavaşlamasına neden 

olacaktır. c1, c2≠ 0 olduğunda algoritmanın davranışını tahmin etmek daha zor olur, ama Shi ve 

Eberhart’ın sonuçlarına bağlı olarak w değerlerinin 1.0’a yakın değerleri tercih edilir [70]. 

 

Parçacığın 
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Şekil 2.8. Parçacıkların hızlanmalarının iki boyutlu bir örneği 
 

vmaks ile atalet ağırlığı arasındaki etkileşimi incelemek için de deneyler yapılmıştır [71]. 

Bu deneyde çalışılan tek fonksiyon için, 0.8 değerindeki bir atalet ağırlığının vmaks = xmaks olduğu 

durumlarda bile iyi sonuçlar verdiği görülmüştür.  

Bundan başka, dört farklı amaç fonksiyonu kullanarak atalet ağırlığının 0.9’dan 0.4’e 

lineer olarak azaltan deneyler yapılmıştır ve değişim  

 

( ) ( )
221 w

maksiter

itermaksiter
www +
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×−=       (2.14) 

 

ile gösterilmiştir. Burada w1 ve w2 sırasıyla atalet ağırlığının başlangıç ve son değerleri; iter şu 

anki iterasyon sayısı ve maksiter de izin verilen maksimum iterasyon sayısıdır. 

Bu ayarlar, PSO’nun simülasyonun başlangıcında (atalet ağırlığı büyük olduğunda) 

geniş bir alanı araştırmasına ve sonra daha küçük bir atalet ağırlığıyla aramayı inceltmesine izin 

verir. Atalet ağırlığı ısıl işlemde [72] karşılaşılan sıcaklık parametresine benzetilebilir. Isıl işlem 

algoritması sistemin sıcaklığını kademeli olarak azaltmak için kullanılan sıcaklık programı adı 

verilen bir işleme sahiptir. Sıcaklık ne kadar fazla olursa, algoritmanın da mevcut lokal 

minimumun çekim alanının o kadar dışındaki bir bölgeyi tarama olasılığı yüksektir. Bu yüzden 

uyarlamalı bir atalet ağırlığı, ısıl işlem algoritmasındaki sıcaklık programına eşdeğer olarak 

görülebilir. 



 31

Kısaca, PSO’da atalet ağırlığı global ve lokal arama yeteneğini dengelemek için 

kullanılır. Büyük atalet ağırlığı global arama, küçük ağırlık ise lokal arama yapılmasını 

kolaylaştırır. Atalet ağırlığı, lokal ve global arama arasındaki dengeyi sağlar ve bunun 

sonucunda yeterli optimal sonuca daha az iterasyonla ulaşılır. Buradaki her parçacık, sürüdeki 

sadece en iyi parçacığın değil sürüdeki diğer tüm parçacıkların tecrübelerinden de yararlanmış 

olur. 

Zheng ve arkadaşları ise zamanla artan atalet ağırlığı kullanmış ve bazı durumlarda daha 

iyi sonuçlar alındığını belirtmişlerdir [73, 74]. Bunlar da Denklem (2.14)’ü kullanmışlardır 

sadece w1 ve w2’yi yer değiştirmişlerdir. 

Zangh ve arkadaşları ise atalet ağırlığını [0, 1] aralığında gelişigüzel üretilen sayılarla 

çarparak kullanmışlardır [75]. Lineer azaltmalı atalet ağırlığının ilk değerinin maksimum 

iterasyon sayısına bağlı olması ve bunun da deney yapılmadan kestirilememesi, ayrıca 

algoritmanın ilk safhalarında lokal arama kabiliyeti eksikliği ve son safhalarında da global 

arama kabiliyeti eksikliğinden dolayı böyle bir yöntem önermişlerdir. Bu durumda güncelleme 

denklemi 

 

( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]txtytrctxtytrctvrtv
jijjjijijjiüjji ,,22,,,11,0,

ˆ1 −+−+=+   (2.15) 

 

olur; burada r0,j ~ U(0,1)’dir. Yapılan deneylerde, lineer azaltmalı atalet ağırlığıyla performans 

karşılaştırması için sadece üç adet kalite test fonksiyonu kullanılmış ve ikisinde daha etkili 

sonuç alınırken diğerinde yakın sonuçlar alınmıştır. 

 
Bulanık Atalet Ağırlığı 

 
Shi ve Eberhart, atalet ağırlığını dinamik olarak adapte etmek için bir bulanık 

denetleyici önermiştir [76, 77]. Önerilen denetleyici giriş olarak mevcut atalet ağırlığını ve o 

ana kadar bulunan en iyi çözüme, f( ŷ ), tekabül eden fonksiyon değerini kullanır. Çoğu 

problem farklı ölçeklerde fonksiyon değerlerine sahip olduğundan f( ŷ ) değeri normalize 

edilmelidir. Denklem (2.16) fonksiyon değerlerini ölçeklemek için olası bir yöntemdir: 

 

( ) ( )
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ˆ
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fmaks ve fmin değerleri problem bağımlıdır ve önceden bilinmelidir, ya da bazı tahminlerin 

mümkün olması gerekir. 
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Shi ve Eberhart, giriş değerlerinin ait olabileceği üç bulanık kümeye (düşük, orta, 

yüksek) karşılık üç bulanık üyelik fonksiyonu kullanmayı seçmişlerdir. Bulanık denetleyicini 

çıkışı ise atalet ağırlığının değerinde önerilen değişimdir [77].  

Bulanık uyarlamalı atalet ağırlıklı PSO lineer azalan atalet ağırlığı kullanan PSO ile 

karşılaştırılmıştır. Sonuçlardan bulanık atalet ağırlıklı PSO’nun belli parametre ayarları için, test 

edilen bazı fonksiyonlarda daha iyi performans verdiği görülmüştür [76]. Aynı zamanda tek 

modlu fonksiyonlarda daha büyük performans elde edilmiştir. Bu durum şu şekilde 

açıklanmıştır: Tek modlu fonksiyonların lokal minimumu yoktur, bu yüzden atalet ağırlığı her 

iterasyonda belirlenebilir. Mantıksal olarak, algoritmanın çalışmasının başlangıcında büyük 

atalet ağırlığı PSO’nun minimizasyonun daha hızlı bulunduğu yaklaşık alana yerleşmesine izin 

verir. Bu alana ulaştıktan sonra atalet ağırlığı parçacığın hızını azaltmak için kademeli olarak 

azaltılmalıdır. Bu parçacıkların fonksiyonun yüzeyinde daha küçük özelliklere yerleşmesine izin 

verir.  Bu işlem zamanla atalet ağırlığı azaltılarak tahmin edilebilir, ancak bu mekanizma 

PSO’nun daha küçük atalet ağırlığın daha da kullanılması gereken alana yerleşip yerleşmediğini 

bilmez. Bazen PSO bu alana ulaşmak için çok zaman alır, bazen de onu çok hızlıca bulur. 

Uyarlamalı bulanık denetleyici hangi tip davranışın daha uygun olduğunu yaklaşık olarak 

tahmin edebilir. Bulanık denetleyicideki kurallar etkili olarak atalet ağırlığını, PSO minimuma 

ne kadar yakınsa yani  ( )yfnorm ˆ  sıfıra ne kadar yakınsa, o oranda azaltır. Ancak çoklu lokal 

minimuma sahip olan bir fonksiyonla ilgilenirken optimum atalet ağırlığını bulmak daha zordur.  

Uyarlamalı bulanık atalet ağırlık denetleyicisi atalet ağırlığını optimize etmek için umut 

verici bir yöntemdir ancak fmaks ve fmin’in bilinmesini gerektiren uygulama zorlukları genel 

biçimde kullanılmasını zorlaştırır.  

 
Sınırlama Faktörü 

 
Clerc tarafından yapılan bir çalışma sınırlama faktörünün yakınsamayı sağlamaya 

yardım edebileceğini göstermiştir [78]. Sınırlama faktörü modeli w, c1 ve c2 değerlerinin 

yakınsamayı sağlayacak şekilde seçilmesini açıklar. Bu değerleri doğru seçerek vi,j değerlerinin 

[-vmaks, vmaks] aralığında tutulması sağlanır. Sınırlandırma modelinin bir tanesine bağlı olarak 

değiştirilmiş hız güncelleme denklemi  

 

( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]( )txtytrctxtytrctvtv jijjjijijjiji ,,22,,,11,, ˆ1 −+−+=+ χ   (2.17) 

 

olur. Burada 
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ve ϕ  = c1 + c2, ϕ  > 4’tür. c1 = c2 = 2.05 olup toplanırsa ϕ  = c1+c2 = 4.1 ve χ = 0.7298 olur. 

(2.17) denklemi t kaldırılırsa 

 

( ) [ ] [ ]( )
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olur. 2.05×0.7298 = 1.4962 olduğundan bu (2.15)’te değiştirilmiş PSO hız güncelleme 

denkleminde c1 = c2 = 1.4962 ve w = 0.7298 kullanmayla eşdeğerdir. 

Eberhart ve Shi yaptıkları çalışmada sınırlama faktörü kullanarak (hızı belli değerlerde 

tutmadan) daha hızlı yakınsama oranı elde etmişlerdir. Ancak bazı test fonksiyonlarında, 

sınırlama faktörlü PSO izin verilen iterasyon sayısında belirlenen hata değerine ulaşmada 

başarısız kalmıştır. Eberhart ve Shi’ye göre problem parçacıkların arama uzayının istenen 

bölgesinden çok uzaklara ayrılmasıdır [79]. Bu etkiyi hafifletmek için vmaks parametresini xmaks 

değerine ayarlayarak sınırlama faktörünü sınırda tutmayı uygulamışlardır. Bu test için kullanılan 

hemen hemen tüm fonksiyonlarda algoritma, yakınsama oranı ve hata eşiğine ulaşma açısından 

artan bir performans göstermiştir. 

 
Seçim 

 
Angeline evrimsel hesaplama alanından seçim fikrini alan yeni bir PSO önermiştir [80]. 

Angeline mevcut PSO’nun kişisel en iyi pozisyon ilave popülasyon üyeleri olarak 

düşünüldüğünde seçimin zayıf, örtük şekline sahip olduğunu söylemiştir. Karşılaştırma için 

Angeline tarafından kullanılan global modelde bir parçacığın sadece kişisel en iyi ve global en 

iyi parçacığa ulaşımı vardır. Bu, popülasyonun yarısındaki üyelerle (mevcut pozisyonlar) diğer 

yarısı (kişisel en iyi pozisyonlar) arasında muhtemel etkileşimlerin büyük oranda sınırlandığı 

anlamına gelir. 

Evrimsel hesaplamadaki seçimin amacı genellikle arama uzayının yakın geçmişte umut 

verici sonuçlar veren özel bir bölgesine yönelmektir. Daha sonra bu bölge daha esaslı aranır. 

Angeline PSO’ya seçim eklemek için aşağıdaki yöntemi önermiştir: 

 

1. Sürüden bir parçacık al. Bu parçacığın uygunluğunu sürüdeki diğer k parçacıkla 

karşılaştır ve bu bireyi her seferinde karşılaştırıldığı parçacıktan daha iyi uygunluğa 

sahipse bir işaret vererek ödüllendir. Bu işlemi her parçacık için tekrar et. 
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2. Parçacıkları bir önceki adımda toplanan işaretlere göre sırala. 

3. Sürünün en üstteki yarısını seç ve bunların mevcut pozisyonlarını sürünün alt yarısının 

mevcut pozisyonlarına kopyala, kişisel en iyi değerlere bir işlem yapma. 

 

Bu işlem PSO hız güncelleme denklemi yürütülmeden önce yapılır. 

Angeline orijinal PSO ile (sınırlama faktörü ve atalet ağırlığı olmayan) seçimli PSO’yu 

karşılaştırmış ve değiştirilen PSO’nun tek modlu fonksiyonlarda ve Rastrigin fonksiyonunda 

orijinalinden önemli oranda daha iyi sonuçlar verdiğini görmüştür. Ancak Griewank 

fonksiyonunda performansı kötü çıkmıştır. Griewank fonksiyonunun birçok lokal minimumu 

vardır ve seçim mekanizması aslında lokal bir minimuma yakınsamayı desteklemiştir. Eğer bazı 

parçacıklar makul bir minimum keşfederse, sürünün diğer yarısı da aynı lokal minimumum 

alanına doğru hareket edebilir. Bu, algoritmanın arama uzayının büyük bölgelerini araştırma 

kabiliyetini etkiler ve böylece global minimumu bulmasını engeller.  

Seçim böylece PSO’nun lokal arama kabiliyetini arttırır, ancak eşzamanlı olarak global 

arama kabiliyetini engeller. 

 
Zamanla Değişen Hızlanma Katsayıları (ZDHK) 

 
Ratnaweera ve Halgamuge [81] bilişsel bileşen c1’i zamanla azaltan ve sosyal bileşen 

c2’yi zamanla arttıran bir zamanla değişen hızlanma katsayısılı PSO önermiştir. Başlangıçta 

büyük c1 değerleri ve küçük c2 değerleri ile parçacıkların kişisel en iyiye doğru hareketlerinden 

ziyade arama uzayı boyunca hareket etmeleri istenmiştir. Optimizasyonun ileriki kısımlarında 

küçük c1 değerleri ve büyük c2 değerleri ise parçacıkların global optimuma doğru 

yakınsamalarını sağlamaktadır. ZDHK denklemleri 
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şeklindedir. Burada c1i ve c2i, c1 ve c2 katsayılarının başlangıç değerleri; c1f ve c2f de son 

değerleridir. c1 ve c2’nin değerlerinin en iyi aralığını bulmak için çeşitli kontrol problemleri ile 

simülasyonlar yapılmıştır ve c1’in 2.5’ten 0.5’e ve c2’nin 0.5’ten 2.5’e değiştiği aralıkta en iyi 

sonucun alındığı belirlenmiştir. 

Başka bir çalışma da atalet ağırlığı ve hızlanma katsayılarını eş zamanlı uyarlayan ve 

[82]’de önerilen yöntemdir. Bu çalışma GLEnIyiPSO olarak adlandırılmıştır ve Denklem (2.21) 
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ve (2.22)’de gösterildiği gibi bu parametreleri parçacıkların global ve lokal en iyi 

pozisyonlarındaki terimlerini de içerecek şekilde günceller. Düzenlenen hız güncellemesi 

Denklem (2.23)’te gösterilmiştir. 
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( ) ( ) ( ) ( ) ( ) ( ) ( )( )txtgeniyitpeniyitrctvtwtv jiijijjiji ,,,11,, 21 −++=+    (2.23) 

 

Burada peniyit parçacığın lokal en iyi değeri; (peniyit)ortalama parçacıkların lokal en iyi 

değerlerinin ortalaması; ve geniyit de sürüdeki tüm lokal en iyi değer arasındaki en iyidir. 

 
Yetiştirme 

 
Angeline’nin çalışmasından sonra [80], LØvbjerg ve arkadaşları başka evrimsel 

hesaplama mekanizmalarını PSO algoritmasına uygulamışlardır [83]. GA tabiri olan üreme ve 

yeniden birleşmenin etkisini incelemeyi seçmişler ve yetiştirmeden bahsetmişlerdir.  

PSO’ya önerilen değişiklikler aşağıdaki gibi işler: 

 

1. Yeni parçacığın hız ve pozisyonunu (2.3) ve (2.4)’teki gibi hesapla. 

2. Her parçacığı Pb olasılığıyla (yetiştirme olasılığı) potansiyel ata olarak işaretle. 

3. Đşaretlenen parçacık havuzundan, iki aday seç ve denklem (2.24–2.27)’de 

detaylandırılan aritmetik çaprazlama operasyonu uygula ve orijinal atayla yer değişecek 

iki yeni çocuk oluştur. 

4. Her parçacığın kişisel en iyi pozisyonlarını mevcut pozisyonlarına ayarla, örneğin yi=xi. 

 

Ataların seçimi zayıf stokastik bir biçimde gerçekleşir, herhangi bir uygunluk-tabanlı 

seçim yapılmaz. Bu da çok sayıda lokal minimum içeren fonksiyonlarda uygunluk-tabanlı 

seçimle ilişkili potansiyel problemleri önler [83]. 

a ve b ata olarak seçilen iki parçacığın indisleri olsun. O zaman aritmetik çaprazlama şu 

şekilde işler: 

 

( ) ( ) ( ) ( )txrtxrtx baa 11 0.11 −+=+        (2.24) 
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( ) ( ) ( ) ( )txrtxrtx abb 11 0.11 −+=+        (2.25) 
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Burada r1 ~ U(0, 1). Đki pozisyonun aritmetik çaprazlanması ataların köşeleri 

oluşturduğu hiperküpte gelişigüzel iki yeni pozisyon üretir. Hız çaprazlaması sadece yönün 

etkilenmesini ve büyüklüğün etkilenmemesini sağlayacak şekilde iki atanın hızlarının toplam 

uzunluğunu normalize eder.  

LØvbjerg tarafından sunulan sonuçlar, yetiştirmenin tek modlu fonksiyonlarda 

yakınsama hızını azalttığını ve böylece orijinal PSO’ya göre daha az etkili bir lokal 

optimizasyon yaptığını göstermiştir. Çoklu lokal minimuma sahip fonksiyonlarda ise etkili 

olduğu görülmüştür. lokal modelle ilgili bir karşılaştırma sunulmamıştır. 

 
Yakınsama Garantili PSO (YGPSO) 

 
Eğer bir parçacığın yörüngesi yakınsarsa, parçacık kişisel en iyi pozisyonu ve global en 

iyi parçacığın pozisyonu arasındaki yoldan türetilen bir değere doğru hareket edecektir [84]. 

Güncelleme denklemi (2.1)’den dolayı, parçacığın kişisel en iyi pozisyonu kademeli olarak 

global en iyi pozisyona doğru hareket eder ve en sonunda global en iyi parçacığın pozisyonuna 

yakınsar. Bu noktada, algoritma çözümü iyileştiremez çünkü parçacık hareket etmeyi 

durduracaktır. Algoritmanın gerçekten f fonksiyonunun minimumunu keşfedip keşfetmediği 

belli değildir, hatta parçacığın yakınsadığı pozisyonun lokal bir minimum olduğunun bile 

garantisi yoktur [84].  

Atalet ağırlığı ve sınırlandırma faktörü içeren değişik PSO versiyonların hepsinin 

potansiyel bir tehlikesi vardır: eğer xi = yi = ŷ ise hız güncelleme denklemi sadece wvi,j(t) 

değerine bağlı olacaktır. Diğer bir deyişle, eğer bir parçacığın mevcut pozisyonu global en iyi 

pozisyon / parçacık ile çakışırsa parçacık, eğer önceki hızı ve w sıfır değilse, sadece bu 

noktadan uzaklaşacaktır. Eğer önceki hızları sıfıra çok yakınsa, o zaman da tüm parçacıklar bir 

kez global en iyi parçacığı yakaladıklarında hareket etmeyi durduracaklardır ve bu da 

algoritmayı erken yakınsamaya götürebilecektir. Aslında bu, algoritmanın lokal bir minimuma 
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dahi yakınsadığını garanti etmez, sadece tüm parçacıların sürü tarafından şimdiye kadar 

keşfedilen en iyi pozisyona yakınsadığını gösterir [84].  

Bunu önlemek için PSO’ya yeni bir terim eklenmiştir. τ  global en iyi parçacığın 

indeksi olursa yy ˆ=τ ’dır. Global en iyi parçacık için yeni bir hız güncelleme denklemi 

önerilmiştir ve bu denklemi kullanan PSO, Yakınsama Garantili PSO (YGPSO) olarak 

adlandırılmıştır [84]. 

 

( ) ( ) ( ) ( ) ( ) ( )( )trttwvtytxtv jjjjj ,2,,, 21ˆ1 −+++−=+ ρτττ     (2.28) 

 

ρ  bir ölçekleme faktörüdür. Sürüdeki diğer parçacıklar her zamanki hız güncelleme 

denklemini kullanmaya devam eder. Kısaca, ( )tx j,τ−  terimi parçacığın pozisyonunu jŷ  

pozisyonuna “yeniden yerleştirir”. Bu pozisyona, ( )twv j,τ  terimi ile temsil edilen mevcut 

arama yönünü temsil eden bir vektör eklenir. ( ) ( )( )trt j,221−ρ  terimi kenar uzunlukları 

( )tρ2 olan bir örnek uzaydan gelişigüzel bir örnek üretir [84].  

Global en iyi parçacık τ  için hız güncelleme denklemi ve yeni hız güncelleme 

denklemi birleştirilirse yeni pozisyon güncelleme denklemi 

 

( ) ( ) ( ) ( ) ( )( )trttwvtytx jjjj ,2,, 21ˆ1 −++=+ ρττ      (2.29) 

 

olur. ρ  teriminin eklenmesi PSO’nun global en iyi pozisyon ŷ  civarındaki bir alanda 

gelişigüzel bir arama yapmasına neden olur. Bu arama alanının çapı ρ  parametresiyle kontrol 

edilir. ( )yρ  her zaman adımından sonra 
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denklemi ile uyarlanır. Burada hatalarN  ve basarilarN  terimleri sırasıyla ardışık hata ve başarıların 

sayısını göstermektedir ve bir hata da ( )( ) ( )( )1ˆˆ −= tyftyf  olarak tanımlanır. Kabul edilebilir 

sonuçlar üretmek için ( ) 0.10 =ρ  varsayılan başlangıç değeri deneysel olarak bulunmuştur. sc = 
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15 ve fc  = 5 seçilmiştir. Ayrıca dinamik olarak seçilebileceği belirtilmiştir. (2.30) denkleminin 

iyi-tanımlı olmasını garantilemek için  

 

( ) ( ) ( ) 011 =+⇒>+ tNtNtN hatalarbasarilarbasarilar  

 

ve 

 

( ) ( ) ( ) 011 =+⇒>+ tNtNtN basarilarhatalarhatalar  

 

şeklinde ilave kurallar da uygulanmalıdır. Böylece, bir başarı durumunda hata sayacı sıfırlanır 

ve benzer şekilde başarı sayacı da bir hata oluştuğunda sıfırlanır [84]. 

 
2.2.2.3. Çeşitlilik Arttırma Geliştirmeleri 

 
Bu bölümde sunulan modifikasyonlar daha çok GA’larda uygulanan yöntem olan 

popülasyonda çözüm çeşitliliğini arttırma amaçlıdır. Bu geliştirmeler genellikle yakınsama 

hızını azaltır, ancak çoklu lokal minimumla karşılaşıldığında daha iyi sonuçlar üretir. 

 
Uzaysal Komşuluklar 

 
Orijinal lokal PSO sürüyü indeks numaralarına bağlı olarak komşuluklara böler, yani x1 

ve x2 uzaysal konumlarına bakılmayarak 1 çapında bir komşulukta komşu olarak göz önüne 

alınır. Parçacıkların uzaysal konumlarına bağlı farklı bir bölmeleme planı, Suganthan tarafından 

önerilmiştir [85].  

 

 

 

Şekil 2.9. Komşuluklar 
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Algoritmanın her iterasyonu boyunca, her parçacıktan sürüdeki diğer tüm parçacıklara 

olan uzaklıklar, iki parçacık arasındaki en büyük uzaklığı dmaks adlı bir değişken ile takip 

edilerek hesaplanır. Her parçacık için 
maksba

dxx − hesaplanır. Burada ba xx −  mevcut a 

parçacığı ile diğer b parçacığı arasındaki uzaklıktır. Bu oran, küçük orana tekabül eden komşu 

olan parçacıkları ya da büyük orana tekabül eden uzaktaki parçacıkları seçmede kullanılabilir. 

Suganthan seçim eşiğinin, küçük bir oranla başlayıp (örneğin bir lokal model) kademeli olarak 

artan şekilde iterasyon boyunca artması gerektiğini belirtmiştir. Oran 1’e yaklaştığında 

algoritma etkili olarak global modeli kullanacaktır. 

Suganthan frac adlı eşiği  
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şeklinde hesaplamayı önermiştir [85]. Burada k mevcut iterasyon sayısı ve maksiter de izin 

verilen maksimum iterasyon sayısıdır. Diğer parçacık b eğer 
maksba

dxx − > frac ise mevcut 

parçacığın komşuluğunda sayılır. i parçacığın komşuluğu  
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şeklinde tanımlanır [84, 85]. Lokal en iyi parçacık daha sonra (2.7) denklemi kullanılarak 

seçilebilir. Bu denklemden sonra (2.9) denklemi parçacığın hızını güncellemek için 

kullanılabilir. 

Suganthan aynı zamanda c1, c2 ve w’yi zamanla lineer olarak azaltmıştır, ancak sabit 

değerli c1 ve c2’nin daha iyi sonuçlar ürettiğini belirtmiştir. Aynı zamanda c1 = 2.5 ve c2 = 1.5 

durumlarının çoğu test fonksiyonları için daha iyi sonuçlar ürettiği görülmüştür. 

Değiştirilen komşuluk kuralı zamanla değişen w değeri ile birlikte global model ile 

karşılaştırıldığında tek modlu test fonksiyonları da dahil hemen hemen tüm test 

konfigürasyonlarında daha iyi sonuçlar vermiştir. Bu son özellik ilginçtir, çünkü global modelin 

tek modlu fonksiyonlarda lokal modelden daha iyi sonuçlar vermesi beklenir. Ancak global 

algoritma, sonuçları kesinlikle büyük miktarda etkileyecek zamanla değişen w’nin 

faydalarından yararlanamamaktadır [85].  

Yakınsama durumunda, herhangi bir sosyal komşuluğun aynı zamanda bir uzaysal 

komşuluk olacağı söylenebilir. Komşuluğun da sayısının belirlenmesi için sürü boyutundakine 

benzer olarak uyarlamalı modeller bulunmaktadır [84]. 
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Komşuluk Topolojileri 

 
Denklem (2.4) ve (2.7) boyunca elde edilen 1’e eşit bir l değerli lokal model bir halka 

topolojisini tanımlar. Her parçacık, tüm komşuluğunu indeks uzayında kendine en yakın iki 

komşu olarak kabul eder. Tüm parçacıklar bilgiyi dolaylı olarak paylaşır çünkü i + 1 parçacığı 

hem i’ nin hem i + 2’nin komşusudur, bunlar da i - 1 ve i + 3 komşularına sahiptir. i ve 2i 

parçacıkları arasında diğerine göre daha uzun yol aralarındaki bilgi değişimini yavaşlatır. Bu 

durum bunların arama uzayının farklı bölgelerini araştırmalarına ve hâlâ bilgi 

paylaşabilmelerine izin verir. 

Kennedy lokal PSO için bilgi akışının değişebileceği alternatif komşuluk topolojileri 

oluşturmuştur [86]. Kennedy tarafından test edilen ilk topoloji değişken sayıda gelişigüzel yer 

değiştirilmiş bağlantılı orijinal halka topolojisidir. Tüm parçacıkların tek bir merkeze bağlandığı 

ancak direkt olarak birbirlerine direkt olarak bağlanmadığı bir “tekerlek” topolojisi de 

düşünülmüştür. Şekil 2.10, bazı linkler gelişigüzel değiştirilmeden önce ve sonra bu iki 

topolojiyi göstermektedir. Düşünülen son iki topoloji de gelişigüzel bağlantılı topoloji ve yıldız 

topolojisidir. Yıldız topoloji tamamen bağlantılı bir sürüyü temsil ettiğinde aslında bir global 

modeldir. Kennedy fonksiyon çok sayıda lokal minimuma sahip olduğunda, yıldız topoloji gibi 

çok bağlantılı topolojilerin iyi optimum bulmada zorluk yaşayacağını sanmıştır [57]. Ayrıca 

Kennedy ve Medes tarafından parçacıkların dört komşu parçacıkla bir ızgara ağı (iki boyutlu 

kafes) ile bağlandığı ve Şekil 2.11’de gösterilen bir Von Neuman topoloji de önermiştir [86]. 

Ancak bu topoloji yakınsama hızını düşürmektedir çünkü bulunan en iyi parçacık sürüdeki tüm 

parçacıkları etkilemeden önce kendi pozisyon bilgisini birkaç komşuluk boyunca yaymalıdır. 

  

  (a) Halka topolojisi        (b) Gelişigüzel halka topolojisi 

  

     (c) Tekerlek topolojisi          (d) Gelişigüzel tekerlek topolojisi 
 

Şekil 2.10. Linkler gelişigüzel değiştirilmeden önce ve sonra iki olası komşuluk topolojisinin şekli 
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Şekil 2.11. Von Neuman topolojisi 
 

Kennedy tarafından sunulan deneysel sonuçlar, topolojinin algoritmanın performansını 

önemli derecede etkilediğini fakat optimum topolojinin özel probleme bağlı olduğunu 

göstermektedir [57, 86]. Örneğin, tekerlek topolojisi çok lokal optimumlu bir fonksiyona 

uygulandığında en iyi sonucu vermiştir. Kennedy bunun topoloji boyunca bilginin daha yavaş 

yayılmasından kaynaklanabileceğini ve böylece algoritmanın çoklu lokal minimum karşısında 

daha sağlam olacağını ispatsız olarak ifade etmiştir. Ancak tek modlu fonksiyonlarda, yıldız 

topoloji (global model), birbirine daha az bağlı topolojilere göre bilginin daha hızlı 

yayılmasından dolayı daha iyi sonuçlar vermiştir. 

Burada göz önünde bulundurulan tüm topolojiler parçacık indeksinde yapılır, arama 

uzayında yapılmaz. 

 
Sosyal Tespit 

 
Kennedy sosyal tespit olarak adlandırılan uzaysal komşuluk ve halka-topoloji 

yaklaşımlarının bir karışımı olan lokal PSO versiyonunu önermiştir [87]. Orijinal PSO’daki 

parçacıklar, kendileri tarafından keşfedilen önceki en iyi pozisyonlara (yi’ler) ya da sürüdeki 

diğer parçacıklara ( iŷ ’ler) çekilir. Đnsan sosyal etkileşim çalışmaları insanların gruptaki özel bir 

bireyin inançlarından çok bir grubun ortak inançlarını takip etmeye çalıştığını göstermektedir. 

Bu düşünce PSO’ya şu şekilde uygulanabilir: her parçacık arama uzayındaki bir kümenin bir 

üyesidir. Bu kümenin merkezi kümenin ortak inançlarına benzerdir. Parçacıklar da bireysel en 

iyiden ziyade bu kümelerin merkezine çekilebilir [84]. 



 42

PSO’yu bilişsel (parçacığın önceki kişisel en iyi pozisyonuyla ilgili olarak) ya da sosyal 

(komşulukta önceki en iyi pozisyona bağlı olarak) terimin ya da her ikisinin uygun küme 

merkeziyle yer değişeceği şekilde uyarlamak mümkündür. 

Bir k-means kümeleme algoritması kullanılarak, parçacıların kişisel en iyi değerlerinden 

birkaç küme Cl, l∈1..#küme oluşturulur. Küme sayısı, #küme, önceden seçilir. C*, tüm 

kümelerin setini göstersin. O zaman map(C*, i), l = map(C*, i) ⇒  yi∈Cl olan l değerini 

döndüren bir fonksiyondur. Bu fonksiyonla, i parçacığının ait olduğu kümeyi bulmak 

mümkündür.   

i parçacığını içeren küme için merkez 

 

( ) ( )iCla
C

iC
lCal

,map,
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       (2.33) 

 

şeklinde tanımlanır. lC , l kümesindeki elemanların sayısını göstermektedir. (2.7) denkleminde 

tanımlandığı gibi 1 çapındaki komşuluk kullanılarak, komşuluktan en iyi bir g parçacığı 

 

( ) ( ) iBBgig NyyfyfNy ∈∀≤∈ |  

 

şeklinde seçilir. g’yi içeren kümenin merkezi, denklem (2.33)’deki merkezin tanımı kullanılarak 

( )gC  olur. Bu tanımlarla, lokal güncelleme denkleminin üç yeni çeşidi  

 

( ) ( )[ ] [ ]jijijjijjjiji xyrcxiCrcwvtv ,,,22,,11,, ˆ1 −+−+=+     (2.34) 

 

( ) [ ] ( )[ ]jijjjijijjiji xgCrcxyrcwvtv ,,22,,,11,, 1 −+−+=+     (2.35) 

 

( ) ( )[ ] ( )[ ]jijjjijjjiji xgCrcxiCrcwvtv ,,22,,11,, 1 −+−+=+     (2.36) 

 

şeklinde tanımlanmıştır. 

Denklem (2.34)’te sunulan ilk versiyon; parçacık, kendi kişisel deneyimini kullanmak 

yerine, ait olduğu uzaysal kümenin ortak deneyimini kullanır şeklinde yorumlanabilir. 

Komşuluk etkisi orijinal lokal modeldeki gibi değişmeden kalır. 

Đkinci versiyon tersi bir yaklaşım kullanır: Denklem (2.35), komşuluk etkisinin şimdi 

komşulukta en başarılı parçacıkların ait olduğu kümenin merkezine dayandığını göstermektedir. 
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Komşuluk, hâlâ parçacığın indeksine göre tanımlanır, uzaysal ilişkiler içermez. Güncelleme 

denkleminin bilişsel bileşeni etkilenmemektedir. 

Son olarak, (2.36) biliş ve sosyal bileşenlerin her ikisini kişisel merkezlerle yer 

değiştirir. Parçacık o anki komşuluğundaki en başarılı parçacığın ait olduğu kümenin ve kendi 

kümesinin ortasına çekilir. 

Küme merkezlerinin bulunmasıyla ilgili hesaplamalar ihmal edilemeyecek derecede bir 

zaman almaktadır, bu yüzden sosyal tespit yaklaşımı orijinal lokal PSO’dan biraz daha yavaştır 

[84]. 

Kennedy, Denklem (2.34)’e bağlı olarak ilk versiyonun bazı problemlerde orijinal lokal 

modelden daha iyi sonuçlar üretebildiğini bildirmiştir. Algoritmaların belirli bir hata sınırına 

ulaşmalarının ne kadar sürdüğünü görmek için zamanlarının ölçüldüğü ikinci deneyler, tespit 

algoritmalarının genel olarak orijinal lokal modelden daha yavaş olduğunu göstermiştir. Her 

iterasyon boyunca kümelerin oluşturulmasıyla ilgili genel maliyet yeni algoritmaları oldukça 

yavaşlatmaktadır [84]. 

Denklem (2.35) ve (2.36)’ya bağlı diğer iki algoritma parçacığın uzak bir kümenin 

merkezine geçmeye çalışmaması gerektiğini göstererek, genel olarak daha kötü sonuçlar 

vermiştir.  

 
 
Alt Popülasyonlar 

 
Bir algoritma tarafından korunan çözüm çeşitliliğini arttırmak için alt popülasyonlar 

kullanma fikri daha önce GA’larda kullanılmıştır. Alt popülasyon oluşturmak için orijinal 

popülasyon daha küçük popülasyonlar ayrılır. Algoritma (örneğin GA) alt popülasyondaki 

elemanlara olağan biçimde uygulanır. Zaman zaman üyeler alt popülasyonlar arasında yer 

değiştirir, ya da alt popülasyonlar arasında bilgi paylaşımını kolaylaştırmak için bazı etkileşim 

planları kullanılır. Fikir, her popülasyonun arama uzayının çok uzak bölgelerindeki çözümlerin 

olası zararlı etkilerinden uzak olarak arama uzayının daha küçük bir bölgesini tamamen 

araştırmasına izin vermektir [84].  

LØvbjerg ve arkadaşları alt popülasyon fikrini PSO’ya uygulamıştır [83]. PSO’ya 

uyguladıkları daha önce açıklanan yetiştirme operatörü (bir aritmetik çaprazlama operatörü) alt 

popülasyonlar arası iletişimi etkilemek için de kullanılmıştır. Bunlar orijinal sürüyü her bloğun 

kendi global en iyi parçacığı koruduğu bloklara ayırırlar. Çaprazlama operatörü için ataları 

seçerken, atalardan birinin farklı bir alt popülasyondan seçilme olasılığı da vardır. Eğer bu 

olasılık oldukça küçük olursa, alt popülasyonlar kendi çözümlerini keşfetmek için zamana sahip 
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olacaktır ve sonra alt popülasyonlar arası yetiştirme yoluyla bu çözümü diğer alt 

popülasyonlarla paylaşabileceklerdir [84]. 

Asıl uygulamalarında yazarlar, alt popülasyonlar oluştururken parçacık sayısını 20’de 

sabit tutmayı seçmişlerdir ve böylece bir ikili alt popülasyon konfigürasyonu, her birinde 10 

parçacık olan iki sürüden oluşacaktır. [83]’de sunulan sonuçlar, alt popülasyon oluşturan bu 

yöntemin daha iyi bir performans sağlamadığını göstermiştir. Alt popülasyon sayısı arttıkça 

yakınsama hızı da yavaşlamıştır. 

Alt popülasyon tekniği PSO algoritmasına az fayda sağlıyormuş gibi görülmektedir. Alt 

popülasyonların oluşturulma şekli belki başarısızlığın sorumlusu olarak görülebilir, ancak fikir 

sağlamdır ve diğer evrimsel algoritmalara uygulandığında daha iyi çalışmaktadır [84]. 

 
Çoklu Başlatmalı PSO (ÇBPSO) 

 
Van den Bergh YGPSO’nun bir uzantısı olarak çoklu başlatmalı PSO (ÇBPSO) 

önermiştir [84]. ÇBPSO şu şekilde çalışmaktadır: 

 

1. Sürüdeki tüm parçacıkları gelişigüzel başlat. 

2. Lokal bir minimuma yakınsayıncaya kadar YGPSO’yu uygula. Bu lokal optimumun 

pozisyonunu kaydet. 

3. Birinci ve ikinci adımı sonlandırma kriteri sağlanıncaya kadar tekrarla. 

 

Van den Bergh YGPSO’nun yakınsayıp yakınsamadığını belirlemeye bağlı olarak farklı 

ÇBPSO’lar önermiştir. Güzel bir yaklaşım  
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şeklinde amaç fonksiyonunda değişim oranını ölçmektir. foran kullanıcı tanımlı bir eşikten 

küçükse bir sayaç arttırılır. Sayaç belirli bir değere yaklaştığında sürünün yakınsadığı varsayılır. 

Van den Bergh’e göre, ÇBPSO çoğu test durumlarında YGPSO’dan daha iyi bir performans 

vermiştir. Ancak amaç fonksiyonunda boyut sayısı arttıkça, ÇBPSO’nun performansı önemli 

derecede azalmaktadır [84]. 

 
 
 
 
 



 45

Mutasyon 

 
Higashi ve Iba PSO’yu Gauss mutasyonuyla kullanarak melez bir yöntem sunmuştur 

[88]. Benzer olarak Esquivel ve arkadaşları PSO’nun erken yakınsama problemini gidermek 

için düzenli olmayan mutasyon operatörü isimli güçlü çeşitlilik bakım mekanizmasıyla lokal ve 

global modelin melez halinden oluşan bir yöntem önermiştir [89]. Esquivel ve arkadaşlarına 

göre lokal PSO’nun melez yaklaşımı ve düzenli olmayan mutasyon operatörü yapılan tüm 

deneylerde PSO ve YGPSO’dan daha iyi performans sergilemiştir [84, 89]. 

 
Çekici ve Đtici PSO (ÇĐPSO) 

 
Çekici ve itici PSO (ÇĐPSO) değişimli olarak bir çeşitlilik ölçüsüne bağlı çekim ve itim 

şeklinde iki fazı takip eder. Çekim fazında ÇĐPSO PSO’yu hızlı bilgi akışına izin vermek için 

kullanır. Parçacıklar birbirini çeker ve böylece çeşitlilik azalır. Uygunluk ilerlemesinin 

%95’inin bu fazda olduğu bulunmuştur. Bu, çözümde ince ayarlamalar yapmada düşük 

çeşitliliğin önemini göstermektedir. Đtme fazında parçacıklar o ana kadar bulunan en iyi 

çözümden itilirler ve böylece çeşitlilik artar. Riget ve Vesterstrøm’ın yaptığı deneylere göre 

ÇĐPSO test edilen durumların çoğunda PSO ve GA’dan daha iyi sonuçlar vermiştir [90]. 

 
Dağıtan PSO (DPSO) 

 
Dağıtan PSO (DPSO) erken yakınsamayı önlemek amacıyla Xie ve arkadaşları 

tarafından PSO’ya gelişigüzel mutasyonlar eklemek için önerilmiştir [91]. DPSO hız ve 

pozisyon güncellemelerinden sonra parçacıklara gelişigüzellik eklenmesi yoluyla şu şekilde 

negatif entropi (termodinamik, dağınım) getirir: 

 

Eğer (r1(t)<cv) o zaman vi,j(t+1)=r2(t)Vmaks 

Eğer (r3(t)<cl) o zaman xi,j(t+1)=r4(t) 

 

r1(t) ~ U(0,1), r2(t) ~ U(0,1) ve r3(t) ~ U(0,1); cv ve cl (0,1) aralığından kaotik faktörler 

ve r4(t) ~ U(Smin, Smaks) ve Smin, Smaks arama uzayının alt ve üst sınırlarıdır. Kalite test 

problemlerine uygulandığında DPSO’nun PSO’dan daha performanslı olduğu gösterilmiştir 

[91]. 
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Diferansiyel Gelişimli PSO (DGPSO) 

 
Diferansiyel Gelişimli PSO (DGPSO) [92] mutasyon uygulamak için bir diferansiyel 

gelişim operatörü kullanır [93]. Bir 
..

y (t) noktası şu şekilde hesaplanır: 

Eğer (r1(t)<pc YA DA j=kd) O zaman  

 

( ) ( )
( )

2

)()()()( ,4,3,2,1
,

.. tytytyty
tyty

jjjj

jji

−+−
+=

∧
      (2.38) 

 

olur. r1(t) ~ U(0, 1) ve kd ~ U(1, Nd)’dir. y1(t), y2(t), y3(t) ve y4(t) kişisel en iyi pozisyonlar 

kümesinden gelişigüzel seçilirler. Sonra f(
..

y i(t))< f(yi(t)) ise yi(t)=
..

y i(t) olarak seçilir. xi(t) 

yerine yi(t)’yi mutasyona uğratmanın nedeni sürünün düzensizliğini önlemektir. 

DGPSO tek iterasyonlarda hız ve pozisyon için (2.13) ve (2.4) denklemini, çift 

iterasyonlarda da (2.38) denklemini kullanır. Zhang ve Xie’ye göre DGPSO kalite testi 

fonksiyonlarına uygulandığında genel olarak PSO, diferansiyel gelişim, GA, evrim stratejileri 

ve bulanık uyarlamalı PSO’dan daha iyi sonuçlar vermiştir [92, 94]. 

 
Yaşam Çevrimi Modeli 

 
Kendini uyarlayan PSO, GA ve tepe tırmanma algoritmalarının avantajlarını tek bir 

algoritmada birleştiren Yaşam Modeli isimli sezgisel bir arama yöntemi Krink ve Løvbjerg 

tarafından önerilmiştir [95]. Bu modelde potansiyel çözümleri temsil eden bireyler PSO 

parçacıkları olarak başlatılır, sonra çözüm için arama sırasında performanslarına göre GA 

bireylerine ya da tepe tırmanıcılara dönüşebilir. Sonra tekrar parçacığa dönüşürler. Bu işlem 

yakınsama sağlanıncaya kadar devam eder. Bu model PSO, GA ve tepe tırmanma yöntemleriyle 

karşılaştırılmış ve kalite testi fonksiyonlarında genel olarak iyi sonuçlar elde edilmiştir [95]. 

Ancak PSO beş test fonksiyonundan üçünde daha iyi ya da benzer sonuçlar üretmiştir.  

Diğer melez bir yöntem ise Veeramachaneni ve arkadaşları tarafından önerilmiştir ve bu 

yöntemde PSO ve GA birleştirilmiştir [96]. Önerilen bu iki melez yöntemler için yapılan deney 

sonuçlarından, orijinal PSO’nun bu karmaşık melez yöntemlerden daha iyi sonuç verdiği 

gözlenmiştir. 

 
Öz-örgütlenmiş Tehlikelilikli PSO (ÖÖTPSO) 

 
Erken yakınsama probleminin üstesinden gelmek amacıyla sürü çeşitliliğini arttırmak 

için Løvbjerg ve Krink, PSO’yu öz-örgütlenmiş tehlikelilikle genişletmiştir [97]. Parçacıkların 



 47

birbirine ne kadar yakın olduklarını gösteren tehlikelilik adlı bir ölçü parçacıkların yerini 

değiştirerek sürü çeşitliğini arttırmak amacıyla kullanılmıştır. Yüksek tehlikelilik ölçüsüne sahip 

parçacık tehlikeliliğini, kendisinin bir komşuluğunda, kullanıcı tarafından belirlenen CL 

sayısındaki parçacığın tehlikelilik ölçüsünü arttırarak yayar. Daha sonra CL değeriyle kendi 

tehlikeliliğini azaltır ve kendi yerini değiştirir. Đki tip yer değiştirme incelenmiştir. Birincisi 

parçacığı tekrar başlatırken, ikincisi parçacığı arama uzayında yüksek tehlikelilikle biraz daha 

öteye iter.  

Løvbjerg ve Krink’e göre uygulama fonksiyonlarında ilk yerleştirme planı iyi sonuçlar 

vermiştir. Öz-örgütlenmiş tehlikelilikli PSO, deneydeki dört durumdan sadece birinde PSO’dan 

daha iyi sonuçlar vermiştir. Ancak, bir parçacığın tehlikelilik değerinin onda birinin kendi atalet 

ağırlığına (w=2) eklenmesiyle bu yöntemin PSO’ya karşı önemli oranda başarı sağladığı 

belirtilmiştir [97]. 

 
Uygunluk-Uzaklık Oran Tabanlı PSO (U-UOTPSO) 

 
Perm ve arkadaşları hız güncelleme terimine, her parçacığın komşuluğunda daha iyi bir 

kişisel en iyi pozisyona sahip bir parçacığa doğru hareket etmesine izin verecek şekilde, yeni bir 

terim eklemiştir [98]. Bu şekilde algoritma Uygunluk-uzaklık oran tabanlı PSO (U-UOTPSO) 

olarak isimlendirilmiştir. Değiştirilen hız güncelleme denklemi  
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şeklindedir. Burada her ( )ty j,η  
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denklemi maksimize edilmek suretiyle seçilir. 

Veeramachaneni ve arkadaşlarına göre U-UOTPSO, erken yakınsama olasılığını 

düşürmekte ve böylece lokal bir çözüme takılıp kalmayı önlemektedir [96]. Ayrıca c1r1 = c2r2 =1 

ve c3r3 = 2 seçildiğinde ve test edilen kalite testi fonksiyonlarında U-UOTPSO, birçok PSO 

versiyonundan; çekici ve itici PSO, dağıtan PSO, öz-örgütlenmişi tehlikelilikli PSO ve çoklu 

başlatmalı PSO; daha iyi sonuçlar vermiştir. 

 
 
 



 48

2.2.2.4. Paralel PSO 

 
PSO algoritmasının paralel işlemlere uygun olduğu düşünülmüş ve [99]’da PSO’nun 

paralel versiyonları önerilmiştir. Burada önerilen yöntemler GA’nın paralelleştirilmiş 

modellerini örnek almıştır ve üç kategoriye ayrılmıştır. Global PSO, adalı PSO ve yayılmalı 

PSO. 

Global PSO’da, ana işlemci global en iyi değeri bulur, diğer işlemciler ise parçacıkların 

amaç fonksiyonlarını hesaplar ve hız vektörünü günceller. Bu modelde haberleşme ek yükü sürü 

büyüklüğü ile doğru orantılıdır. Bununla beraber en iyi değer tüm sürü üzerinden hesaplanır, 

böylece her bir işlemcide global bilgi mevcuttur [99].  

Adalı PSO yöntemi sürüyü alt sürülere böler. Her bir alt sürü kendi PSO algoritmasını 

çalıştırır. En iyi değeri bulma ve hız vektörünü güncelleme işlemi lokalde yapılır. Sürüyü belli 

bir iterasyon ilerlettikten sonra her sürünün en iyi sonucu komşu işlemcilere göç eder. Adalı 

PSO modelinde iki modül vardır. Birincisi komşu işlemcilerin birbirlerinden en iyi değerleri 

almaları ve göndermelerini sağlar, ikincisi ise her düğümde bulunan lokal optimuma göre hız 

vektörünü günceller. Đlk modül belli bir zaman aralığında ya da kesmelerle çalışacaktır [99].  

Yayılmalı PSO’da her bir parçacık ayrı bir yaşam alanı gibi düşünülüp tüm amaç 

fonksiyon bulma işlemleri lokalde yapılır. Yayılmalı PSO’da farklı olarak her iterasyonda 

işlemciler buldukları en iyi değerleri komşu işlemcilere gönderirler. Her işlemci komşudan 

gelen değerleri analiz eder ve bulunan en iyi değere göre hız vektörünü günceller. Bu model 

dağıtık öğrenmeyi kullanır çünkü her işlemci çözümü inceler ve bilgi değişim için komşularıyla 

işbirliği yapar. Bu modelin verimliliği halka topolojisinden tümü birbirine bağlı işlemci 

topolojisine kadar modelin bağlanırlığına bağlı olarak değişir [99]. 

Önerilen algoritmaların karmaşıklığı, ölçeklenebilirliği ve yayılmalı PSO’nun 

yakınsama özelliği incelenmiştir. Karmaşıklık analizi sonucu yayılmalı modelin her bir 

parçacığın farklı işlemciye yerleştirildiğinde ve her iterasyonda birbirleri ile 

haberleştirildiklerinde adalı modelin bir özel durumu olduğu görülmüştür. Ayrıca yayılmalı 

modelin global modele göre daha ölçeklenebilir olduğu, yani sürüdeki parçacık sayısı işlemci 

sayısından çok fazla olduğunda yayılmalı modelin hızlanmasının daha fazla olduğu 

görülmüştür. Yayılmalı modelin farklı topolojiler kullanılarak uygulaması gerçekleştirildiğinde 

ızgara, 2D-tor ve Hiperküp’te seri algoritmadan hızlı çalıştığı ancak halka topolojisine 

uygulandığında çok yavaş kaldığı belirlenmiştir. Sonuçta yayılmalı modelin hem ölçeklenebilir 

hem de sağlam bir model olduğu gösterilmiştir. 
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2.3. PSO Parametre Kontrolü 

 
PSO’nun problemler için uygulanmasında iki ana adım bulunmaktadır: Çözümün 

temsili ve uygunluk fonksiyonu. PSO’nun avantajlarından birisi PSO’nun parçacık olarak gerçel 

sayıları almasıdır. GA’lardaki gibi ikili kodlamaya dönüştürme ihtiyacı ya da özel genetik 

operatörler kullanma ihtiyacı yoktur.  

PSO’da ayarlanması gereken fazla parametre yoktur. Aşağıda parametre listesi ve tipik 

değerleri yer almaktadır. 

 

Parçacık sayısı: Tipik sınır 20-40’tır. Gerçekte çoğu problem için 10 parçacık iyi 

sonuçlar almaya oldukça yeterlidir. Bazı özel ve zor problemler için 100 ya da 200 parçacık da 

kullanılabilir. Alternatif olarak uyarlamalı parçacık sayısı da kullanılabilir. Çünkü verilen bir 

sürü boyutunun gerçekten diğerinden iyi olduğu kimse tarafından ispatlanmamıştır. Bu yüzden 

algoritmanın zaman zaman parçacık sayısını değiştirmesine izin verilmiştir. 

Mantık şudur: “En iyi parçacığın komşuluğunda yeterli gelişme olmuyorsa yeni bir 

parçacık üretilebilir” ya da “Yeterli gelişme oluyorsa en kötü parçacık ölebilir”. Yeterli gelişme 

de “komşulukta parçacıkların en az yarısı için gelişme” olarak tanımlanmıştır. 

 

Parçacıkların boyutu: Bu optimize edilecek probleme bağlıdır. 

 

Parçacıkların aralığı: Bu da optimize edilecek probleme bağlıdır. Parçacıkların farklı 

boyutu için farklı aralıklar belirlenebilir. 

 

Vmaks: Bu, bir parçacığın bir iterasyon boyunca alabileceği maksimum değişikliği yani 

hızı belirler. Genellikle parçacık aralığına göre belirlenir. Örneğin parçacık [-10, 10] aralığında 

ise parçacığın Vmaks = un(xi)-ln(xi) = 20 olarak belirlenebilir [100]. Ayrıca Vmaks için arama uzayı 

boyutunun yarısı da kullanılabilir [101]. 

 

Öğrenme faktörleri: c1 ve c2 genellikle 2 olarak alınır. Fakat genellikle [0, 4] 

aralığında değerler alır. Ayrıca bu katsayılar da uyarlamalı olarak her adımda düzenlenebilir. 

Mantık şudur. 

“Bir parçacık tüm komşularından ne kadar daha iyi ise o oranda kendi yoluna devam 

eder, ya da tam tersi.” ya da “Bir parçacığın en iyi komşusu kendisinden ne kadar iyiyse bu 

parçacık o oranda onun doğrultusunda gider, ya da tam tersi”. 
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Sonlandırma kriteri: Genelde PSO’nun çalıştıracağı maksimum iterasyon sayısı veya 

gerek duyulacak minimum hata sonlandırma kriteri olarak kullanılır. Bitim şartı optimize edilen 

probleme de bağlıdır. Literatürde kullanılabilecek tüm bitim şartları için [65] referansına 

başvurulabilir. 

 

Global versiyon - Lokal versiyon: Global versiyon daha hızlıdır fakat bazı problemler 

için lokal optimuma takılabilir. Lokal versiyon biraz daha yavaştır ancak lokal bir optimuma 

takılma olasılığı daha azdır. Global versiyon hızlı bir sonuç almak için ve lokal versiyon 

aramayı inceleştirmek için kullanılabilir. 

 

Atalet ağırlığı: Shi ve Eberhart tarafından önerilen bu terim için [70] referansına 

başvurulabilir. 

 
2.4. Sonuçlar 

 
Parçacık Sürü Optimizasyonu (PSO), biyolojik popülasyonlarda işbirlikçi davranış ve 

sürü halinde ilerleme fikrine bağlı olan ve diğerlerine oranla daha yeni bir sezgisel arama ve 

optimizasyon yöntemidir. Basit ve uygulaması çok kolay bir algoritmadır ve çok geniş bir 

uygulama alanı bulunmaktadır. Zor matematiksel problemlerini çok basit olarak çözebilen kısa 

cebirselsel adımlardan oluşur. Çalışma biçimi bakımından evrimsel hesaplama yöntemlerinden 

farklıdır. Zaman karşısında devam eden bireyler bir diğerinin problem uzayı aramasını etkiler. 

Bireysel deneyim ve sosyal öğrenmenin entegresi söz konusudur.  

GA’lar kullanılarak çözülebilen çoğu problemi içeren farklı optimizasyon 

problemlerinin geniş bir kümesini çözmek için kullanılabilir ve etkili sonuçlar alınabilir. 
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3. KAOTĐK HARĐTALI PARÇACIK SÜRÜ OPTĐMĐZASYON YÖNTEMLERĐ 

 
 
3.1. Giriş 

 
PSO’nun diğer evrimsel hesaplama temelli algoritma ve matematiksel temelli 

algoritmalara göre fazla hafıza gerektirmeyen, hesapsal olarak etkili ve uygulaması kolay 

optimizasyon yöntemi olduğu ve hızlı yakınsama özelliğinin olduğu ikinci bölümde belirtilmişti. 

PSO’nun arama başlangıcında global arama kabiliyetine sahip olması ve arama sonlarına doğru 

lokal arama kabiliyetine sahip olması istenmektedir. Bununla birlikte çok fazla lokal optimum 

noktası bulunan problemlerle çalışırken çalışma sonunda lokal optimum noktaları keşfetme 

olasılığı fazladır. Birçok araştırmacı ikinci bölümde de bahsedildiği gibi farklı ve değişik 

ayarlamalarla PSO’nun performansını arttırma yoluna gitmiştir. 

PSO’nun yakınsama özelliği, çalıştırma sırasında parametreleri için rasgele sayı dizisi 

kullanan stokastik doğasına oldukça bağlıdır. PSO algoritmasında özellikle, farklı rasgele sayı 

dizileri kullanıldığında elde edilen son sonuçlar birbirine çok yakın olabilir ancak eşit 

olmayabilir. Aynı optimum değerlere ulaşabilmek için farklı iterasyon sayılarına ihtiyaç 

duyulabilir. Fakat diğer evrimsel hesaplama temelli algoritmalarda da olduğu gibi, PSO 

algoritmalarının performansını arttırmayı garanti eden özel bir sayı üretecine bağlı analitik 

sonuçlar yoktur [102]. 

Son zamanlarda kaotik sayı dizileri rasgele sayı dizilerinin yerini almış ve bazen güzel 

sonuçlar vermiştir. Bunlara örnek olarak güvenli iletişim [103], doğal fenomen modelleme 

[104], doğrusal olmayan devreler [105], DNA hesaplama [106], imge işleme [107] verilebilir. 

Ayrıca evrimsel algoritmalarının performanslarını arttırmak için de kullanılmıştır [102]. Kaotik 

sayı dizilerinin kullanılması teorik olarak bunların tahmin edilemezliği, yayılmış spektrumlu 

karakteristiği ve ergodik özelliklerinden dolayı artmıştır. 

Tezin bu bölümünde PSO’nun parametrelerinin belirlenmesinde rasgele tabanlı bir 

seçim söz konusu olduğunda farklı kaotik sistemler rasgele sayı dizilerinin yerine kullanılmış ve 

on iki farklı PSO önerilmiştir. Bu şekilde PSO’nun global yakınsama özelliğinin arttırılması ve 

lokal çözümde takılıp kalması önlenmeye çalışılmıştır. Örneğin Trelea, çalışmasında atalet 

ağırlığı değerinin PSO’nun yakınsamasını etkileyen temel faktörlerin biri olduğunu belirtmiştir 

[108]. Ayrıca r1 and r2 değerleri de yakınsamayı etkileyen faktörlerdir. Ancak bu parametreler 

faz uzayında algoritmanın ergodik özelliğini garanti edemezler çünkü bunlar PSO’da rasgeledir. 

Aşağıdaki alt bölümlerde sırayla kaotik haritalı PSO yöntemleri için kullanılan kaotik 

haritalar tanıtılmış sonrasında da önerilen yöntemler açıklanmıştır. Daha sonra kalite testi 
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fonksiyonları tanıtılarak önerilen yöntemlerin diğer PSO yöntemleriyle karşılaştırılması 

yapılmıştır. Son olarak da sonuçlara göre analiz ve yorumlarla bölüm sonuçlandırılmıştır. 

 
3.2. Kaotik Haritalar 

 
Kompleks fenomenleri modellemede, örneklemede, sayısal analizde, karar vermede ve 

özellikle bu tez konusunu da içeren sezgisel optimizasyon yöntemlerinde uzun periyotlu rasgele 

sayı dizileri çok önemli bir yer tutmaktadır. Üretilen sayılar için fazla depolama alanı 

kullanılmamalı ve istenen bir doğruluğa ulaşmak için fazla zamana gereksinim duyulmamalıdır. 

Bu şekilde üretilen sayılar bir uygulama için yeterince “rasgele” olurken başka bir uygulama 

için yeterince rasgele olmayabilir. 

Kaos periyodik olmayan, yakınsamayan ve sınırlı olan, doğrusal olmayan dinamik 

sistemlerde bulunan deterministik, rasgele benzeri bir süreçtir. Ayrıca başlangıç şartları ve 

parametrelerine oldukça bağlıdır [109]. Kaosun doğası görünürde rasgele ve tahmin edilemezdir. 

Ayrıca kendi içerisinde bir düzene sahiptir. Hatta çoğu kez düzen içinde düzensizlik ya da 

düzensizlik içinde düzen olarak da tanımlanmaktadır. Matematiksel olarak, basit deterministik 

dinamik bir sistemin rasgeleliğidir ve kaotik sistem rasgelelik kaynağı olarak düşünülebilir. 

Kaotik bir harita ayrık zamanlı dinamik bir sistemdir ve kaotik durumda ilerleyen 

 

x f x x kk k k+ = < < =1 0 1 0 1 2( ), , , , ,  L       (3.1) 

 

genel denklemiyle temsil edilebilir. Kaotik sayı dizisi 

 

{ }x k
k
: , , ,= 0 1 2    L   

 

yayılmış spektrumlu rasgele sayı dizisi olarak kullanılabilir [102].  

Kaotik sayı dizilerinin üretilmelerinin ve depolanmalarının kolay ve hızlı olduğu 

ispatlanmıştır. Sadece birkaç fonksiyon (kaotik harita) ve birkaç parametre (başlangıç şartı) çok 

uzun diziler için bile yeterlidir. Ayrıca, çok fazla sayıda farklı sayı dizisi basitçe başlangıç şartı 

değiştirilerek çok kolay bir şekilde üretilebilir. Bu sayı dizilerinin bir özelliği de deterministik 

olmaları ve tekrar üretilebilmeleridir. 

Kaotik haritalı PSO’da ergodik, düzensiz ve stokastik özelliklerine sahip kaotik haritalar 

kullanılarak diğer PSO yöntemlerine oranla daha kolayca lokal çözümden kaçabilmeyi 

sağlamak amaçlanmıştır. Bu şekilde global yakınsamanın arttırılması hedeflenmiştir. Rasgele 

sayılar özel bir kaotik harita bir adım ilerletilerek üretilmektedir. Yani, PSO’da ilk iterasyondan 

itibaren rasgele sayı üretimine ihtiyaç duyulduğunda seçilen kaotik harita seçilen bir başlangıç 
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noktasından başlanarak birer adım ilerletilir. PSO parametreleri için kullanılacak kaotik sayı 

üreten haritalar aşağıda listelenmiştir. 

 
3.2.1. Lojistik Harita 

 
En basit ve en çok kullanılan haritalardan birisidir [110]. Bu kaotik davranış gösteren 

biyolojik popülasyonların doğrusal olmayan dinamiklerinde ortaya çıkmıştır. Lojistik harita 

Denklem (3.2)’de verilmiştir. 

 

Xn+1 = aXn(1 – Xn)         (3.2) 

 

Bu denklemde, n iterasyon sayısını göstermekte, Xn de n. kaotik sayıyı temsil etmektedir. 

Başlangıç X0∈ (0, 1) olduğunda Xn ∈ (0, 1) olduğu görülmektedir. Ayrıca X0∉{0.25, 0.5, 0.75}. 

Deneylerde a=4 seçilmiştir. 

 (a)      (b) 
 

Şekil 3.1. a) X0=0.31 başlangıç şartlı lojistik harita b) X0=0.3133 başlangıç şartlı lojistik harita 
 
3.2.2. Çadır Harita 

 
Çadır harita [111] lojistik haritaya benzemektedir. Bu da (0, 1) aralığında sayılar 

üretmektedir ve formülü Denklem (3.3)’te gösterilmiştir.  
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(a)      (b) 
 

Şekil 3.2. a) X0=0.27 başlangıç şartlı çadır harita b) X0=0.27114 başlangıç şartlı çadır harita 
 
3.2.3. Sinüzoidal Yineleyici 

 
Kullanılan üçüncü üreteç sinüzoidal yineleyici [111] olarak adlandırılmaktadır ve 

Denklem (3.4)’teki gibi temsil edilmektedir. 

 

)sin(2
1 nnn xaxX π=+          (3.4) 

 

a=2.3 ve X0=0.7 seçildiğinde denklem (3.5)’teki gibi basitleştirilebilir. 

 

)sin(1 nn xX π=+          (3.5) 

 

Bu harita da (0, 1) aralığında sayılar üretmektedir. 

 

(a)      (b) 
 

Şekil 3.3. a) X0=0.5637 başlangıç şartlı sinüzoidal yineleyici b) X0=0.5637112 başlangıç şartlı sinüzoidal 
yineleyici 
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3.2.4. Gauss Haritası 

 
Literatürde test amaçlı kullanılan Gauss haritası [111] Denklem (3.6)’daki gibi temsil 

edilmektedir. 
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 z , z’den küçük en büyük tamsayıyı temsil etmektedir. Bu harita da (0, 1) aralığında 

sayılar üretmektedir. 

 

(a)      (b) 
 

Şekil 3.4. a) X0=0.12 başlangıç şartlı Gauss harita b) X0=0.12345 başlangıç şartlı Gauss harita 
 
3.2.5. Çember Harita 

 
Çember harita [112] Denklem (3.8)’de gösterildiği şekilde temsil edilmektedir. 

 

( ) ( ) ( )1mod2sin2/1 nnn XabXX ππ−+=+       (3.8) 

 

a=0.5 ve b=0.2 seçildiğinde bu harita da (0, 1) aralığında sayılar üretmektedir. 
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(a)      (b) 
 

Şekil 3.5. a) X0=0.43 başlangıç şartlı çember harita b) X0=0.43111 başlangıç şartlı çember harita 
 
3.2.6. Arnold’ın Kedi Haritası 

 
Arnold’ın kedi haritası 1960’larda bir kedinin resmini kullanarak etkilerini inceleyen 

Vladimir Arnold’dan sonra ismini almıştır. Denklem (3.9, 3.10) haritanın formülünü 

göstermektedir: 

( )1mod1 nnn YXX +=+         (3.9) 

( )1mod21 nnn YXY +=+         (3.10) 

 

Xn ∈ (0, 1) ve Yn ∈ (0, 1) olduğu açıktır [113]. 

 

(a)      (b) 
 

Şekil 3.6. a) X0=0.89 ve Y0=0.25 başlangıç şartlı Arnold’ın kedi haritası b) X0=0.89111 ve Y0=0.25111 
başlangıç şartlı Arnold’ın kedi haritası 
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3.2.7. Sina Haritası 

 
Sina haritası [114]  

 

( ) ( )1mod2cos1 nYanYnXnX π++=+       (3.11) 

( )1mod21 nYnX
n

Y +=+         (3.12) 

 

denklemleriyle tanımlanır. a=1 seçildiğinde bu harita (0, 1) aralığında sayılar üretir. 

 

 

(a)      (b) 
 

Şekil 3.7. a) X0=0.29 ve Y0=0.97 başlangıç şartlı Sina haritası b) X0=0.29012 ve Y0=0.97012 başlangıç 
şartlı Sina haritası 
 
3.2.8. Zaslavskii Haritası 

 
Zaslavskii haritası [115] da ilginç bir dinamik sistemdir ve 

 

( ) )1mod(11 +++=+ naYvnXnX        (3.13) 

( ) nY
r

e
n

XnY
−

+=+ π2cos1         (3.14) 

 

şeklinde temsil edilmektedir. 

Yayılmış karakteristikli ve büyük Lyapunov üstelleri ile tahmin edilemezliği 

ispatlanmıştır. Bu harita v=400, r=3, a=12 için en büyük Lyapunov üstelli garip çekici özelliği 

gösterir. Bu durumda Yn+1∈[-1.0512, 1.0512]’dir. 
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(a)      (b) 
 

Şekil 3.8. a) X0=0.984, Y0=0.971 başlangıç şartlı Zaslavskii Haritası b) X0=0.985, Y0=0.9709 başlangıç 
şartlı Zaslavskii Haritası 
 
3.3. Kaotik Haritalı Parçacık Sürü Optimizasyon (KHPSO) Yöntemleri 

 
Yeni kaotik haritalı PSO yöntemleri basitçe aşağıda sınıflandırılmış ve açıklanmıştır. 

 

• KHPSO1: Başlangıç hız ve pozisyonların değerleri, sürü boyutuna ulaşılıncaya kadar 

seçilen kaotik haritanın yinelenmesiyle üretilir. 

 

• KHPSO2: Denklem (2.13)’ün c1 parametresi seçilen kaotik haritayla değiştirilir ve hız 

güncelleme denklemi 

 

( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]txtytrctxtytrKHtwvtv jijjjijijjiji ,,22,,,11,, ˆ1 −+−+=+   (3.15) 

 

şeklinde ifade edilir. Burada KH1 seçilen kaotik harita tabanlı bir fonksiyondur ve (0.5, 

2.5) arasında değer alacak şekilde ölçeklenmiştir. 

 

• KHPSO3: Denklem (2.13)’ün c2 parametresi seçilen kaotik haritayla değiştirilir ve hız 

güncelleme denklemi 

 

( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]txtytrKHtxtytrctwvtv jijjjijijjiji ,,22,,,11,, ˆ1 −+−+=+   (3.16) 

 

şeklinde ifade edilir. Burada KH2 seçilen kaotik harita tabanlı bir fonksiyondur ve (0.5, 

2.5) arasında değer alacak şekilde ölçeklenmiştir. 
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• KHPSO4: Denklem (2.13)’ün c1 ve c2 parametreleri seçilen kaotik haritayla değiştirilir 

ve hız güncelleme denklemi 

 

( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]txtytrKHtxtytrKHtwvtv jijjjijijjiji ,,22,,,11,, ˆ1 −+−+=+   (3.17) 

 

şeklinde ifade edilir. Burada KH1 ve KH2 seçilen kaotik harita tabanlı fonksiyonlardır ve 

(0.5, 2.5) arasında değer alacak şekilde ölçeklenmiştir. 

 

• KHPSO5: Denklem (2.13)’ün r1,j parametresi seçilen kaotik haritayla değiştirilir ve hız 

güncelleme denklemi 

 

( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]txtytrctxtytKHctwvtv jijjjijijjiji ,,22,,,11,, ˆ1 −+−+=+   (3.18) 

 

şeklinde ifade edilir. Burada KH1,j seçilen kaotik harita tabanlı bir fonksiyondur ve (0.0, 

1.0) arasında değerler alır. 

  

• KHPSO6: Denklem (2.13)’ün r2,j parametresi seçilen kaotik haritayla değiştirilir ve hız 

güncelleme denklemi 

 

( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]txtytKHctxtytrctwvtv jijjjijijjiji ,,22,,,11,, ˆ1 −+−+=+   (3.19) 

 

şeklinde ifade edilir. Burada KH2,j seçilen kaotik harita tabanlı bir fonksiyondur ve (0.0, 

1.0) arasında değerler alır. 

 

• KHPSO7: Denklem (2.13)’ün r1,j ve r2,j parametreleri seçilen kaotik haritayla 

değiştirilir ve hız güncelleme denklemi 

 

( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]txtytKHctxtytKHctwvtv jijjjijijjiji ,,22,,,11,, ˆ1 −+−+=+   (3.20) 

 

şeklinde ifade edilir. Burada KH1,j ve KH2,j seçilen kaotik harita tabanlı fonksiyonlardır 

ve (0.0, 1.0) arasında değerler alır. 

 

• KHPSO8: Denklem (2.13)’ün w, r1,j ve r2,j parametreleri seçilen kaotik haritayla 

değiştirilir ve hız güncelleme denklemi 
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( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]txtytKHctxtytKHctvKHtv jijjjijijjiji ,,32,,,21,1, ˆ1 −+−+=+   (3.21) 

 

şeklinde ifade edilir. Burada KH1, KH2, ve KH3 seçilen kaotik harita tabanlı 

fonksiyonlardır ve (0.0, 1.0) arasında değerler alır. 

 

• KHPSO9: Denklem (2.13)’ün w parametresi seçilen kaotik haritayla değiştirilir ve hız 

güncelleme denklemi 

 

( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]txtytrctxtytrctKHvtv jijjjijijjiji ,,22,,,11,, ˆ1 −+−+=+   (3.22) 

 

şeklinde ifade edilir. Burada KH seçilen kaotik harita tabanlı bir fonksiyondur ve (0.0, 

1.0) arasında değer alır. 

 

• KHPSO10: Denklem (2.13)’ün w ve c1 parametreleri seçilen kaotik haritayla değiştirilir 

ve hız güncelleme denklemi 

 

( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]txtytrctxtytrKHtvKHtv jijjjijijjiji ,,22,,,12,1, ˆ1 −+−+=+   (3.23) 

 

şeklinde ifade edilir. Burada KH1 ve KH2 seçilen kaotik harita tabanlı fonksiyonlardır. 

KH1 (0.0, 1.0) arasında değer alır ve KH2 (0.5, 2.5) arasında değer alacak şekilde 

ölçeklenmiştir. 

 

• KHPSO11: Denklem (2.13)’ün w ve c2 parametreleri seçilen kaotik haritayla değiştirilir 

ve hız güncelleme denklemi 

 

( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]txtytrKHtxtytrrtvKHtv jijjjijijjiji ,,22,,,12,1, ˆ1 −+−+=+   (3.24) 

 

şeklinde ifade edilir. Burada KH1 ve KH2 seçilen kaotik harita tabanlı fonksiyonlardır. 

KH1 (0.0, 1.0) arasında değer alır ve KH2 (0.5, 2.5) arasında değer alacak şekilde 

ölçeklenmiştir. 

 

• KHPSO12: Denklem (2.13)’ün w, c1 ve c2 parametreleri seçilen kaotik haritayla 

değiştirilir ve hız güncelleme denklemi 
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( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]txtytrKHtxtytrKHtvKHtv jijjjijijjiji ,,23,,,12,1, ˆ1 −+−+=+   (3.25) 

 

şeklinde ifade edilir. Burada KH1, KH2 ve KH3 seçilen kaotik harita tabanlı 

fonksiyonlardır. KH1 (0.0, 1.0) arasında değer alırken KH2 ve KH3 (0.5, 2.5) arasında 

değer alacak şekilde ölçeklenmiştir. 

 

Burada KHPSO1’ in diğer KHPSO yöntemleriyle birlikte kullanılabileceği açıkça 

görülebilmektedir. 

 
3.4. Kalite Testi Fonksiyonları 

 
Matematiksel fonksiyonlara bağlı iyi tanımlanmış kalite testi fonksiyonları, 

optimizasyon yöntemlerinin performanslarını ölçmek ve test etmek için kullanılabilir. Bu kalite 

testi fonksiyonlarının doğası, karmaşıklığı ve diğer özellikleri tanımlarından kolaylıkla elde 

edilebilmektedir. Çoğu kalite testi fonksiyonların zorluk dereceleri parametrelerinin 

değiştirilmesiyle ayarlanabilir. Literatürde bulunan kalite testi fonksiyonlarından biri tek- modlu 

(sadece tek bir optimuma sahip) ikisi de çok-modlu (birçok lokal optimuma ancak tek bir global 

optimuma sahip) olmak üzere üç tane önemli fonksiyon, önerilen yöntemlerin istenen sonucu 

verebilme yeteneklerini test etmek için seçilmiştir. Bu fonksiyonlar evrimsel hesaplama ve diğer 

algoritma araştırıcıları tarafından yaygın olarak kullanılmıştır. Çünkü bu fonksiyonların 

karmaşıklıklıları çoğu mühendislik problemiyle eşdeğerdir. Tablo 3.1’de deneylerde kullanılan 

kalite testi fonksiyonlarının temel özellikleri görülmektedir. Aşağıdaki alt bölümlerde, bu 

fonksiyonların karakteristikleri açıklanmıştır. 

 

Tablo 3.1. Kalite testi fonksiyonları özellikleri  
 

Fonksiyon 

numarası 
Fonksiyon adı  Alt sınır 

Üst 

sınır 
Optimum Şekil 

1 Griewangk -600 600 0 Çok-modlu 

2 Rastrigin -5.12 5.12 0 Çok-modlu 

3 Rosenbrock -2.048 2.048 0 Tek-modlu 
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3.4.1. Griewangk Fonksiyonu 

 
Birinci test fonksiyonu düzenli dağıtılmış birçok yaygın lokal minimuma sahiptir [116]. 

Bu fonksiyon sürekli, çok-modlu, ölçeklenebilir, konveks ve ikinci dereceden bir fonksiyondur 

ve  
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şeklinde ifade edilir. Sınırlar -600 ≤ x ≤ 600 olacak şekilde seçilmiştir. Global minimum noktası 

x* = (0, 0, …, 10) ve  f1(x*) = 0’dır. Şekil 3.9’da verilen sınırlarda fonksiyonun grafiği ve 

kontur eğrileri gösterilmiştir. Şekil 3.10’da ise fonksiyon, grafiği azaltılmış sınırlarlarla 

görülmektedir. Tanımındaki toplama terimi fonksiyona parabollük özelliği kazandırmaktadır. 

Bu fonksiyonda yerel minimum derecesi parabollük derecesinden daha üst seviyededir. Çarpım 

terimi baz alınarak arama uzayının boyutları artırılmakta ve yerel minimumların sayısı 

azaltılmaktadır.  Arama aralığı ne kadar fazlaysa fonksiyon daha yatık (yassı) halde 

görülmektedir. 

 

 

(a)        (b) 
 

Şekil 3.9. a) Griewangk fonksiyonu b) Kontur eğrileri 
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Şekil 3.10. Azaltılmış arama aralıklı Griewangk fonksiyonu 
 
3.4.2. Rastrigin Fonksiyonu 

 
Đkinci kalite testi fonksiyonu da geniş arama uzayı ve çok sayıda lokal optimum 

noktalardan dolayı oldukça zor bir problemdir. Fonksiyon oldukça çok-modludur ve doğrusal 

değildir [117]. Lokal minimumların yeri düzgün dağılmıştır. Fonksiyon 
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şeklinde tanımlanır. Sınırlar -5.12 ≤ x≤ 5.12 olacak şekilde seçilmiştir. Global minimum nokta 

x* = (0, 0, …, 0) ve f2(x*) = 0. Fonksiyonun grafiği ve kontur eğrileri Şekil 3.11’de 

görülmektedir. 

 

 

(a)        (b) 
 

Şekil 3.11. a) Rastrigin fonksiyonu b) Kontur eğrileri 
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3.4.3. Rosenbrock Fonksiyonu 

 
Üçüncü kalite testi fonksiyonu bazı değerleri arasında önemli etkileşimleri olan tek-

modlu bir fonksiyondur. Birçok dar tepecik içerdiğinden dolayı zor bir fonksiyon olarak 

düşünülmektedir. Tepe noktaları çok keskindir. Global minimum nokta uzun, dar, parabolik 

şekilli düz bir vadide yer almaktadır. Vadiyi bulmak kolay olabilir ancak global optimuma 

yakınsamak zordur. Algoritmalar bu problemde ilerlenebilecek iyi noktaları tayin 

edememektedir. Bu yüzden bu fonksiyon optimizasyon algoritmalarının performanslarını 

ölçmek için sürekli kullanılmıştır [118, 119]. Fonksiyon 
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şeklinde tanımlanır. Sınırlar -2.048 ≤ x ≤ 2.048 olacak şekilde seçilmiştir. Global minimumu 

f3(x*) = 0’dır ve x* = (1, 1, …, 1)’de yerleşmiştir. Đki boyut için grafiği ve kontur eğrileri Şekil 

12’de gösterilmiştir. 

 

 

(a)        (b) 
 

Şekil 3.12. a) Đki değişkenli Rosenbrock fonksiyonu b) Kontur eğrileri 
 
3.5. Deneysel Sonuçlar 

 
Tüm kalite testi fonksiyonları KHPSO yöntemleri ve literatürde iyi performans 

gösterdiği belirtilen diğer PSO yöntemleriyle çözülmüştür. Seçilen topoloji tüm parçacıkların 

diğerleriyle komşu olarak kabul edildiği global modeldir. Sürü boyutu tüm deneyler için 25 

olarak belirlenmiştir. Algoritmaların sonlandırılması için, maksimum iterasyon sayısına ulaşma 
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ve minimum hatayı yakalama şeklinde iki kriter seçilmiştir. Aşağıdaki alt bölümlerde sırasıyla 

test fonksiyonları için elde dilen sonuçlar ve yorumlar sunulmuştur. 

 
3.5.1. Griewangk Fonksiyonu için Sonuçlar 

 
Griewangk fonksiyonu için farklı kaotik haritalar kullanan KHPSO yöntemleri ve 

literatürde iyi sonuçlar verdiği belirtilmiş üç PSO yönteminin 50 simülasyonu boyunca elde 

edilen uygunluk değerinin beş istatistiksel analizi yapılmıştır ve aşağıdaki tablolarda sırayla 

verilmiştir. Đterasyon sayısı 2000 ve minimum hata 0.0001 seçilmiştir. Burada bPSO zamanla 

değişen atalet ağırlığı (ZDAA) [61] ve zamanla değişen hızlanma katsayılarını [81] içeren 

birleşimli PSO’yu temsil etmektedir. Zamanla değişen atalet ağırlığı için hızlandırma katsayıları 

literatürde de kullanılan c1 = c2 = 2.00 seçilmiştir. GLEnIyiPSO yöntemi de ikinci bölümde 

anlatıldığı gibi atalet ağırlığı ve hızlandırma katsayılarını, parçacıkların global ve lokal en iyi 

pozisyonlarındaki terimleri cinsinden içerir [82]. Vmax tüm PSO yöntemleri için 600 olarak 

belirlenmiştir. 

Tüm algoritmalar 50 kez çalıştırıp sonuçlar kaydedilmiştir. Adil bir değerlendirme için 

sürü tüm PSO’lar için global optimumu içermeyen sınırlar içerisinde başlatılmıştır. Kaydedilen 

sonuçlardan istatistiksel analizler gerçekleştirilmiş ve sırayla Tablo 3.2, Tablo 3.3 ve Tablo 

3.4’te sunulmuştur. Her yöntem için Ortalama (Ort), En Đyi (Min), En Kötü (Maks), Medyan 

(Med), Standart Sapma (SS) ve optimum değere yakınsamak için gereken ortalama iterasyon 

sayısı (Ort Đter) hesaplanmış ve sonuçlar karşılaştırılmıştır. 

 

Tablo 3.2. Griewangk fonksiyonu için PSO yöntemleri ile elde edilen sonuçlar 
 

F1 bPSO GLEnIyiPSO ZDAA-PSO 

Ort 0.034957333 0.014298924 0.012536245 

Maks 0.181849495 0.083306690 0.051600123 

Min 0.000100516 0.000074666 0.00008.8762 

Med 0.017935979 0.009857288 0.007412101 

SS 0.048103056 0.018505321 0.014532523 

Ort Đter 1395.89 934.82 1398.55 

 

Sonuçlardan w, r1,j ve r2,j’yi ayarlayan KHPSO7 ve KHPSO8’in diğer PSO 

yöntemlerine karşı üstünlüğü görülmektedir. Genel olarak bakıldığında da, yeni önerilen 

yöntemlerin sadece global optimum değeri üretmekle kalmayıp, daha hızlı bir yakınsama oranı 

verdiği görülmektedir. Önerilen yöntemlerdeki düşük standart sapma değeri de global optimum 

değeri elde etmede tutarlılık derecesini garantilemektedir. Diğer ilginç sonuç ise, iyi sonuçların 

kaotik sayı dizileri için Zaslavskii, Lojistik ve Çadır haritalar kullanıldığında elde edilmesidir. 
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Tablo 3.3. Griewangk fonksiyonu için ilk dört haritayı kullanan KHPSO yöntemleri ile elde edilen 
sonuçlar 
 

Lojistik Harita 

F1 KHPSO1 KHPSO2 KHPSO3 KHPSO4 KHPSO5 KHPSO6 KHPSO7 KHPSO8 KHPSO9 
KHPSO 

10 
KHPSO 

11 
KHPSO 

12 

Ort 0.0000961 0.0000792 0.0000862 0.0000972 0.0249573 0.0152989 0.0000981 0.0000831 0.0142989 0.0012639 0.0192392 0.0102889 

Maks 0.0001129 0.0001466 0.0001166 0.0001313 0.0818494 0.0933066 0.0001319 0.0000995 0.0833066 0.0893656 0.0863066 0.0793556 

Min 0.0000638 0.0000595 0.0000583 0.0000635 0.0001012 0.0000986 0.0000638 0.0000538 0.0000746 0.0001002 0.0000846 0.0000899 

Med 0.0000990 0.0000991 0.0000792 0.0000871 0.0195359 0.0118683 0.0000991 0.0000870 0.0098572 0.0158425 0.0011572 0.0158426 

SS 0.0000203 0.0000265 0.0000195 0.0000205 0.0471330 0.0215053 0.0000234 0.0000143 0.0185053 0.0159952 0.0195564 0.0157952 

Ort 
Đter 

781.12 986.18 799.68 902.47 1309.89 1103.85 693.54 521.16 921.0 1399.44 934.01 1329.87 

Çadır Harita 

F1 KHPSO1 KHPSO2 KHPSO3 KHPSO4 KHPSO5 KHPSO6 KHPSO7 KHPSO8 KHPSO9 
KHPSO 

10 
KHPSO 

11 
KHPSO 

12 

Ort 0.0001366 0.0000942 0.0001112 0.0000873 0.0145673 0.0096298 0.0002696 0.0000963 0.0042989 0.0012359 0.0142392 0.0142989 

Maks 0.0001829 0.0001653 0.0001964 0.0001293 0.0791844 0.0993064 0.0005319 0.0001587 0.0803560 0.0905969 0.0903066 0.0893453 

Min 0.0000332 0.0000335 0.0000693 0.0000666 0.0001000 0.0001008 0.0000293 0.0000538 0.0000114 0.0001002 0.0001006 0.0001009 

Med 0.0000860 0.0000881 0.0000771 0.0000921 0.0189535 0.0118685 0.0001391 0.0000893 0.0098575 0.0098245 0.0061572 0.0585846 

SS 0.0000253 0.0000366 0.0001095 0.0000355 0.0447133 0.0483205 0.0000294 0.0000263 0.0395055 0.0999785 0.0265564 0.0357652 

Ort 
Đter 

993.36 1050.44 1421.11 1125.12 1305.44 1336.11 798.06 598.46 1002.28 1209.98 1119.66 1032.22 

Sinüzoidal Yineleyici 

F1 KHPSO1 KHPSO2 KHPSO3 KHPSO4 KHPSO5 KHPSO6 KHPSO7 KHPSO8 KHPSO9 
KHPSO 

10 
KHPSO 

11 
KHPSO 

12 

Ort 0.0001168 0.0001112 0.0002162 0.0001035 0.0188673 0.0085298 0.0001696 0.0000923 0.0058989 0.0011235 0.0012391 0.0001213 

Maks 0.0002229 0.0001853 0.0004964 0.0003293 0.0791844 0.0883064 0.0004029 0.0001477 0.0806513 0.0863596 0.0063066 0.0001753 

Min 0.0000732 0.0000413 0.0000993 0.0000866 0.0001005 0.0001006 0.0000238 0.0000498 0.0000174 0.0001003 0.0000904 0.0000313 

Med 0.0000980 0.0000981 0.0002771 0.0000991 0.0183635 0.0118235 0.0001281 0.0000749 0.0072573 0.0058245 0.0091572 0.0000878 

SS 0.0000363 0.0000426 0.0002695 0.0000355 0.0314713 0.0283205 0.0000282 0.0000226 0.0199505 0.0339785 0.0765564 0.0000419 

Ort 
Đter 

1009.58 1101.41 1002.44 1101.12 1015.44 1205.11 802.36 591.33 1362.38 1010.98 993.13 1021.36 

Gauss Harita 

F1 KHPSO1 KHPSO2 KHPSO3 KHPSO4 KHPSO5 KHPSO6 KHPSO7 KHPSO8 KHPSO9 
KHPSO 

10 
KHPSO 

11 
KHPSO 

12 

Ort 0.0009235 0.0001012 0.0001962 0.0001115 0.0001112 0.0079826 0.0001301 0.0001123 0.0000942 0.0000814 0.0000961 0.0192495 

Maks 0.0005293 0.0002058 0.0004964 0.0004013 0.0001859 0.0990648 0.0004139 0.0001977 0.0001654 0.0001663 0.0001929 0.0791849 

Min 0.0000769 0.0000313 0.0000999 0.0000796 0.0000413 0.0001002 0.0000168 0.0000498 0.0000339 0.0000492 0.0000342 0.0001002 

Med 0.0009923 0.0000999 0.0002771 0.0000991 0.0000982 0.0082359 0.0001281 0.0000949 0.0000888 0.0000863 0.0000921 0.0193635 

SS 0.0001355 0.0000726 0.0002695 0.0000385 0.0000429 0.0296050 0.0000232 0.0000255 0.0000366 0.0000266 0.0000296 0.0481030 

Ort 
Đter 

1102.12 1001.47 1052.44 1221.21 1258.88 1205.06 962.36 639.92 1204.55 891.96 892.28 1209.91 
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Tablo 3.4. Griewangk fonksiyonu için 5., 6., 7. ve 8. haritayı kullanan KHPSO yöntemleri ile elde edilen 
sonuçlar  
 

Çember Harita 

F1 KHPSO1 KHPSO2 KHPSO3 KHPSO4 KHPSO5 KHPSO6 KHPSO7 KHPSO8 KHPSO9 
KHPSO 

10 
KHPSO 

11 
KHPSO 

12 

Ort 0.0001166 0.0001942 0.0019112 0.0000873 0.0149573 0.0142495 0.0002936 0.0001896 0.0010312 0.0012359 0.0215673 0.0406298 

Maks 0.0001925 0.0002653 0.0041969 0.0001293 0.0956849 0.0791849 0.0005319 0.0004373 0.0022158 0.0893596 0.0801844 0.0803064 

Min 0.0000838 0.0000435 0.0001003 0.0000666 0.0001005 0.0001012 0.0000293 0.0000338 0.0001003 0.0001002 0.0001000 0.0001008 

Med 0.0000990 0.0000981 0.0018773 0.0000921 0.0199359 0.0196835 0.0001391 0.0001281 0.0009999 0.0098245 0.0190035 0.0418685 

SS 0.0000153 0.0000466 0.0009095 0.0000355 0.0491630 0.0491030 0.0000294 0.0000312 0.0001026 0.0999785 0.0460633 0.0383205 

Ort 
Đter 

952.36 1034.49 1121.11 1125.12 1465.89 1129.91 1001.06 932.39 1201.47 1209.98 1112.44 1206.15 

Arnold'ın Kedi Haritası 

F1 KHPSO1 KHPSO2 KHPSO3 KHPSO4 KHPSO5 KHPSO6 KHPSO7 KHPSO8 KHPSO9 
KHPSO 

10 
KHPSO 

11 
KHPSO 

12 

Ort 0.0005613 0.0001124 0.0000832 0.0000972 0.0001122 0.0208825 0.0005696 0.0002962 0.0055989 0.0042358 0.0132395 0.0142984 

Maks 0.0008129 0.0001466 0.0001166 0.0001313 0.0001999 0.0800648 0.0009983 0.0004965 0.0913560 0.0888992 0.0803066 0.0803459 

Min 0.0000738 0.0000995 0.0000983 0.0000635 0.0000517 0.0001007 0.0000985 0.0000999 0.0000214 0.0001003 0.0001003 0.0001009 

Med 0.0006990 0.0000109 0.0000892 0.0000871 0.0000982 0.0381235 0.0005281 0.0002778 0.0063573 0.0063943 0.0591577 0.0585843 

SS 0.0000513 0.0000195 0.0000225 0.0000209 0.0000429 0.0296050 0.0001082 0.0006695 0.0239505 0.0899786 0.0865564 0.0627652 

Ort 
Đter 

962.90 986.18 1036.08 1483.18 1018.88 1409.63 869.66 1006.46 1008.88 1201.36 1087.66 1306.02 

Sina Haritası 

F1 KHPSO1 KHPSO2 KHPSO3 KHPSO4 KHPSO5 KHPSO6 KHPSO7 KHPSO8 KHPSO9 
KHPSO 

10 
KHPSO 

11 
KHPSO 

12 

Ort 0.0001696 0.0001543 0.0022112 0.0000873 0.0135957 0.0122988 0.0000892 0.0000826 0.0102989 0.0011139 0.0102395 0.0092889 

Maks 0.0002012 0.0002513 0.0055962 0.0001293 0.1956849 0.0803063 0.0001319 0.0000989 0.0803066 0.0808855 0.0625065 0.0793556 

Min 0.0001004 0.0000835 0.0001003 0.0000666 0.0000802 0.0000986 0.0000238 0.0000538 0.0000590 0.0001000 0.0000700 0.0000899 

Med 0.0000155 0.0001611 0.0019770 0.0000921 0.0999359 0.0116683 0.0000991 0.0000853 0.0108578 0.0103052 0.0095728 0.0158426 

SS 0.0000159 0.0001066 0.0009990 0.0000255 0.0493130 0.0205053 0.0000234 0.0000183 0.0185158 0.0150452 0.0102556 0.0157952 

Ort 
Đter 

1003.37 1021.49 12631.11 1105.12 1109.09 1013.68 689.29 7091.62 932.05 1120.39 941.01 1329.87 

Zaslavskii Haritası 

F1 KHPSO1 KHPSO2 KHPSO3 KHPSO4 KHPSO5 KHPSO6 KHPSO7 KHPSO8 KHPSO9 
KHPSO 

10 
KHPSO 

11 
KHPSO 

12 

Ort 0.0000961 0.0000884 0.0000826 0.0000972 0.0098673 0.0100983 0.0000892 0.0000881 0.0112985 0.0000817 0.0000991 0.0008982 

Maks 0.0001219 0.0001366 0.0001066 0.0001210 0.0291844 0.0803063 0.0001319 0.0000995 0.0833060 0.0001663 0.0001929 0.0893453 

Min 0.0000609 0.0000420 0.0000500 0.0000635 0.0001000 0.0000882 0.0000198 0.0000410 0.0000724 0.0000493 0.0000342 0.0000900 

Med 0.0000991 0.0000981 0.0000788 0.0000887 0.0103035 0.0106683 0.0000991 0.0000870 0.0098342 0.0000863 0.0000101 0.0585846 

SS 0.0000203 0.0000265 0.0000195 0.0000210 0.0314713 0.0019505 0.0000224 0.0000130 0.0174053 0.0000276 0.0000276 0.0356652 

Ort 
Đter 

789.33 979.10 729.61 913.44 1002.02 1117.06 687.08 589.59 906.09 897.37 899.27 1009.35 
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3.5.2. Rastrigin Fonksiyonu için Sonuçlar 

 
Algoritmaların stokastik özelliklerini görebilmek için her biri yüz kez çalıştırılmıştır. Bu 

deneyde maksimum iterasyon 5000 olarak belirlenmiş ve algoritmaların potansiyellerinin 

bulunması amaçlanmıştır. Denklem (3.29)’da tanımlanmış algoritma başarı oranı, farklı PSO 

yöntemlerinden elde edilen sonuçların karşılaştırılması amacıyla kullanılmıştır. 

 

seviyeQ

tum

basarili

NT

NT
S 100=          (3.29) 

 

Nbasarili izin verilen maksimum iterasyon sayısında Qseviye üzerinde sonuç bulan deneme 

sayısıdır. Ntüm tüm deneme sayısıdır. Qseviye, algoritma Qseviye toleransına yakınsadığında 

algoritmayı sonlandırma şartıdır ve 
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şeklinde tanımlanır. 

Tablo 3.5’te sınırlayıcısız temel algoritma (Temel-PSO), ZDAA-PSO [74] ve stokastik 

atalet ağırlıklı PSO (StZDAA-PSO) [75] algoritmalarından elde edilen sonuçlar görülmektedir. 

StZDAA-PSO için atalet ağırlığı değerler (0.5, 1) aralığındadır. Önerilen KHPSO 

yöntemlerinden elde edilen sonuçlar ise Tablo 3.6 ve Tablo 3.7’de gösterilmiştir. Bu zor 

problem için, KHPSO yöntemlerinin diğer PSO yöntemlerine göre biraz daha iyi sonuç verdiği 

görülmektedir. Kısmi kalitelerin (Qseviye) toplanmasıyla hesaplanmış farklı kalite seviyelerinde 

KHPSO yöntemlerinin toplam başarı oranı Tablo 3.8’de gösterilmiştir. KHPSO7, KHPSO8 ve 

KHPSO12 yöntemlerinin en iyi performansa sahip yöntemler olduğu görülmektedir. KHPSO7 

Zaslavskii haritasıyla kullanıldığında en iyi sonuç alınmıştır. 

 

Tablo 3.5. Rastrigin fonksiyonu için PSO algoritmalarının başarı oranları 

 

Qseviye Temel-PSO ZDAA-PSO StZDAA-PSO 

1 0 0 0 

10 0 1 2 
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Tablo 3.6. Rastrigin fonksiyonu için ilk dört haritayı kullanan KHPSO algoritmalarının başarı oranları  
 

Lojistik Harita 

Qseviye 
KHPSO

1 
KHPSO

2 
KHPSO

3 
KHPSO

4 
KHPSO

5 
KHPSO

6 
KHPSO

7 
KHPSO

8 
KHPSO

9 
KHPSO 

10 
KHPSO 

11 
KHPSO 

12 

1 1 1 1 0 1 1 1 1 2 1 1 2 

10 2 2 3 2 3 3 3 5 3 2 2 4 

Çadır Harita 

Qseviye 
KHPSO

1 
KHPSO

2 
KHPSO

3 
KHPSO

4 
KHPSO

5 
KHPSO

6 
KHPSO

7 
KHPSO

8 
KHPSO

9 
KHPSO 

10 
KHPSO 

11 
KHPSO 

12 

1 1 1 0 0 0 1 1 2 1 0 1 1 

10 1 2 2 2 2 2 3 3 1 2 2 2 

Sinüzoidal Yineleyici 

Qseviye 
KHPSO

1 
KHPSO

2 
KHPSO

3 
KHPSO

4 
KHPSO

5 
KHPSO

6 
KHPSO

7 
KHPSO

8 
KHPSO

9 
KHPSO 

10 
KHPSO 

11 
KHPSO 

12 

1 0 0 1 1 1 1 1 0 0 0 1 1 

10 1 2 2 2 2 2 4 3 2 1 1 2 

Gauss Haritası 

Qseviye 
KHPSO

1 
KHPSO

2 
KHPSO

3 
KHPSO

4 
KHPSO

5 
KHPSO

6 
KHPSO

7 
KHPSO

8 
KHPSO

9 
KHPSO 

10 
KHPSO 

11 
KHPSO 

12 

1 0 0 0 0 1 0 1 0 0 1 1 1 

10 1 1 1 1 1 1 2 2 1 1 1 2 

 

Tablo 3.7. Rastrigin fonksiyonu için 5., 6., 7. ve 8. haritayı kullanan KHPSO algoritmalarının başarı 
oranları  
 

Çember Harita 

Qseviye 
KHPSO

1 
KHPSO

2 
KHPSO

3 
KHPSO

4 
KHPSO

5 
KHPSO

6 
KHPSO

7 
KHPSO

8 
KHPSO

9 
KHPSO 

10 
KHPSO 

11 
KHPSO 

12 

1 1 1 0 0 0 1 1 1 1 0 0 1 

10 2 2 1 1 1 2 3 3 1 2 2 2 

Arnold'ın Kedi Haritası 

Qseviye 
KHPSO

1 
KHPSO

2 
KHPSO

3 
KHPSO

4 
KHPSO

5 
KHPSO

6 
KHPSO

7 
KHPSO

8 
KHPSO

9 
KHPSO 

10 
KHPSO 

11 
KHPSO 

12 

1 1 1 1 0 0 1 1 2 1 1 0 2 

10 2 2 2 2 1 2 3 3 2 3 2 3 

Sina Haritası 

Qseviye 
KHPSO

1 
KHPSO

2 
KHPSO

3 
KHPSO

4 
KHPSO

5 
KHPSO

6 
KHPSO

7 
KHPSO

8 
KHPSO

9 
KHPSO 

10 
KHPSO 

11 
KHPSO 

12 

1 0 1 1 0 1 1 0 1 0 0 0 2 

10 2 2 2 3 2 2 4 3 1 2 2 3 

Zaslavskii Haritası 

Qseviye 
KHPSO

1 
KHPSO

2 
KHPSO

3 
KHPSO

4 
KHPSO

5 
KHPSO

6 
KHPSO

7 
KHPSO

8 
KHPSO

9 
KHPSO 

10 
KHPSO 

11 
KHPSO 

12 

1 1 1 0 1 1 1 1 2 0 0 0 0 

10 2 3 2 3 2 4 5 4 2 2 2 3 
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Tablo 3.8. Rastrigin fonksiyonu için farklı kalite seviyelerinde KHPSO yöntemlerinin toplam başarı 
oranları  
 

Qseviye 
KHPSO

1 
KHPSO

2 
KHPSO

3 
KHPSO

4 
KHPSO

5 
KHPSO

6 
KHPSO

7 
KHPSO

8 
KHPSO

9 
KHPSO 

10 
KHPSO 

11 
KHPSO 

12 

1 5 6 4 2 5 7 7 9 5 3 4 10 

10 13 16 15 16 14 19 27 26 13 15 14 21 

 
3.5.3. Rosenbrock Fonksiyonu için Sonuçlar 

 
Tablo 3.9’da Rosenbrock fonksiyonu için sınırlayıcısız temel algoritma (Temel-PSO), 

ZDAA-PSO ve stokastik atalet ağırlıklı PSO (StZDAA-PSO) algoritmalarından elde edilen 

sonuçlar görülmektedir. KHPSO yöntemlerinden elde edilen sonuçlar ise Tablo 3.10, Tablo 3.11 

ve Tablo 3.12’de gösterilmiştir.  

 

Tablo 3.9. Rosenbrock fonksiyonu için PSO algoritmalarının başarı oranları 
 

Qseviye Temel-PSO ZDAA-PSO ZDAAStochastic-PSO 
1 0 0 0 
10 0 1 2 

 

Tablo 3.10. Rosenbrock fonksiyonu için ilk dört haritayı kullanan KHPSO algoritmalarının başarı 
oranları 
 

Lojistik Harita 

Qseviye 
KHPSO

1 
KHPSO

2 
KHPSO

3 
KHPSO

4 
KHPSO

5 
KHPSO

6 
KHPSO

7 
KHPSO

8 
KHPSO

9 
KHPSO 

10 
KHPSO 

11 
KHPSO 

12 

1 0 1 0 0 0 1 1 0 0 0 0 1 

10 1 1 2 2 2 3 4 3 1 2 2 2 

Çadır Harita 

Qseviye 
KHPSO

1 
KHPSO

2 
KHPSO

3 
KHPSO

4 
KHPSO

5 
KHPSO

6 
KHPSO

7 
KHPSO

8 
KHPSO

9 
KHPSO 

10 
KHPSO 

11 
KHPSO 

12 

1 0 1 1 0 0 1 1 1 0 0 1 1 

10 1 1 1 2 1 3 3 3 2 2 1 2 

Sinüzoidal Yineleyici 

Qseviye 
KHPSO

1 
KHPSO

2 
KHPSO

3 
KHPSO

4 
KHPSO

5 
KHPSO

6 
KHPSO

7 
KHPSO

8 
KHPSO

9 
KHPSO 

10 
KHPSO 

11 
KHPSO 

12 

1 0 0 1 0 0 1 1 1 0 0 0 1 

10 1 1 2 1 1 2 3 3 2 1 2 2 

Gauss Haritası 

Qseviye 
KHPSO

1 
KHPSO

2 
KHPSO

3 
KHPSO

4 
KHPSO

5 
KHPSO

6 
KHPSO

7 
KHPSO

8 
KHPSO

9 
KHPSO 

10 
KHPSO 

11 
KHPSO 

12 

1 0 0 1 0 1 1 1 0 0 0 1 1 

10 1 1 1 2 1 1 3 2 0 1 1 2 
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Bu fonksiyon sonuçlarından da KHPSO yöntemlerinin diğerlerine göre daha iyi sonuç 

verdiği görülmektedir. Zaslavskii haritası kullanan KHPSO7 yönteminin diğerleri arasında en 

iyi yöntem olduğu da sonuçlardan kolayca görülebilmektedir. Kaosun optimizasyon problemleri 

için bazı optimum noktaları arayan bazı yöntemler için aranan bir süreç olduğu anlaşılmaktadır. 

 

Tablo 3.11. Rosenbrock fonksiyonu için 5., 6., 7. ve 8. haritayı kullanan KHPSO algoritmalarının başarı 
oranları 
 

Çember Harita 

Qseviye 
KHPSO

1 
KHPSO

2 
KHPSO

3 
KHPSO

4 
KHPSO

5 
KHPSO

6 
KHPSO

7 
KHPSO

8 
KHPSO

9 
KHPSO 

10 
KHPSO 

11 
KHPSO 

12 

1 0 1 0 0 0 0 1 1 1 0 0 1 

10 0 1 1 1 2 1 3 4 1 1 0 2 

Arnold'ın Kedi Haritası 

Qseviye 
KHPSO

1 
KHPSO

2 
KHPSO

3 
KHPSO

4 
KHPSO

5 
KHPSO

6 
KHPSO

7 
KHPSO

8 
KHPSO

9 
KHPSO 

10 
KHPSO 

11 
KHPSO 

12 

1 0 0 0 0 0 1 2 1 0 0 0 1 

10 1 2 1 1 1 2 4 3 2 1 1 2 

Sina Haritası 

Qseviye 
KHPSO

1 
KHPSO

2 
KHPSO

3 
KHPSO

4 
KHPSO

5 
KHPSO

6 
KHPSO

7 
KHPSO

8 
KHPSO

9 
KHPSO 

10 
KHPSO 

11 
KHPSO 

12 

1 0 0 0 1 1 1 1 2 1 1 0 0 

10 1 1 2 2 1 1 3 2 2 2 1 2 

Zaslavskii Haritası 

Qseviye 
KHPSO

1 
KHPSO

2 
KHPSO

3 
KHPSO

4 
KHPSO

5 
KHPSO

6 
KHPSO

7 
KHPSO

8 
KHPSO

9 
KHPSO 

10 
KHPSO 

11 
KHPSO 

12 

1 1 0 0 0 1 1 2 3 1 1 1 2 

10 1 1 2 1 2 2 4 4 1 1 2 2 

 

Tablo 3.12. Rosenbrock fonksiyonu için farklı kalite seviyelerinde KHPSO yöntemlerinin toplam başarı 
oranları 
 

Qseviye 
KHPSO

1 
KHPSO

2 
KHPSO

3 
KHPSO

4 
KHPSO

5 
KHPSO

6 
KHPSO

7 
KHPSO

8 
KHPSO

9 
KHPSO 

10 
KHPSO 

11 
KHPSO 

12 

1 1 3 3 1 3 7 10 9 3 2 3 8 

10 7 9 12 12 11 15 27 24 11 11 10 16 

 
3.6. Sonuçlar 

 
Tezin bu bölümünde PSO’nun parametreleri ayarlamak için farklı kaotik haritalar 

kullanılmıştır. Bu işlem, klasik PSO’da rasgele sayıya her ihtiyaç duyulduğunda kaotik sayı 

üreteci kullanılarak yapılmıştır. On iki kaotik haritalı PSO yöntemi önerilmiştir ve kalite testi 

fonksiyonlarında sekiz kaotik harita analiz edilmiştir. PSO ve kompleks dinamik gibi farklı 

alanlarda gelişen sonuçların birleştirilmesi bazı optimizasyon problemlerinde kaliteyi 
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arttırabilmektedir ve kaos istenen bir süreç olabilmektedir. Ayrıca özellikle KHPSO7 ve 

KHPSO8 yöntemlerinin çözüm kalitesini arttırdığı, yani bazı durumlarda lokal çözümlerden 

kaçarak global arama kabiliyetini arttırdığı görülmüştür. Önerilen bu yöntemler henüz 

yenidirler. Bunların dağıtık ve paralel versiyonlarıyla optimize edilmiş parametreler kullanılarak 

ayrıntılı deneyler yapılabilir. 
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4. KABA PSO 

 
 
4.1. Giriş 

 
Farklı bilgi tipleri için uygun temsil bulma problemi yapay zekâ ve ilgili çalışma 

alanlarının süregelen bir konusudur. Bazı pratik durumlarda hesaplamalarda belirsizlik, hata ve 

değişkenlik içeren sistemleri tam olarak temsil ve modelleme için matematiksel ve hesapsal 

yöntemler ortaya konulmalıdır ve aralıkları değişken olarak kullanmak tercih edilebilir. 

Tolerans aralığı sağlamak ve değişkenlerin doğru değerlerini kaydedeme gibi durumlar 

değişkenlerin aralıklarının kullanma zorunluluğunu ortaya çıkarır [120]. Aralıklarla temsil 

parçalardan oluşmayan sayısal nitelikler için veri bütünlüğünü sağlar ve bilgi kaybı oluşmasını 

engeller. 

Tezin bu bölümünde de alt ve üst sınırdan oluşan kaba değerlere bağlı olarak PSO’nun 

genişletilmesi sağlanmış ve aralıkların birer karar değişkeni olarak kullanılması durumunda 

PSO’ya yapılacak eklentiler gösterilmiştir. Aynı zamanda, bu şekilde kaba hesaplama alanına da 

ilave bir konu eklenmiştir. Ayrıca seçilen uygulama alanı, nicel nitelikler içeren veri 

tabanlarında veri madenciliği, için de yeni, etkili ve otomatik bir yöntem önerilmiştir ve bilgi 

kayıpları ve ön işlemlerden kaçınılarak kural keşfi yapılmıştır. 

 
4.2. Kaba Parçacık Sürü Optimizasyon Algoritması (KPSOA) 

 
Lingras tarafından önerilen kaba örüntüler; günlük hava sıcaklığı, hisse bedeli aralığı, 

arıza sinyali, saatlik trafik hacmi ve günlük finansal göstergeler gibi değişkenler için 

değişkenler kümesi ya da aralığını etkili şekilde temsil edebilen bir kaba değer oluşturan bir alt 

ve bir üst sınıra dayanır [121]. Giriş-çıkışta ya da ara safhaların herhangi bir yerinde, aralıkta ya 

da daha genel olarak sınırlı ve küme üyelikli kesinsizlik ve belirsizliği kapsayan problemler, 

kaba örüntülerin kullanılmasıyla halledilebilir. Kaba küme teorisindeki gelişmeler, alt ve üst 

sınır genel fikrinin çok farklı tip uygulamalar için kullanışlı olabilecek geniş bir çatı 

sağlayabileceğini göstermiştir [120]. 

Nesneler, örnekler ya da kayıtlar sınırlı nitelikler kümesiyle tanımlanabilir. Bir nesnenin 

tanımı, n bir nesneyi tanımlayan nitelik sayısı olursa, n-boyutlu bir vektördür. Bir örüntü, sınıfa 

ait nesnelerin bazı niteliklerinin değerlerine bağlı nesnelerin bir sınıfıdır. 

x bir nesnenin tanımındaki bir nitelik, x  ve x  ise x ≤ x  olmak şartıyla x’in alt ve üst 

sınırları (son noktalar) olsun. Her nitelik değişkeninin kaba örüntü değeri Denklem (4.1)’de 

gösterildiği gibi alt ve üst sınırlardan oluşur. Bu, şematik olarak Şekil 4.1’de gösterilmiştir. Bu, 

reel sayı R kümesinin kapalı, öz ve sınırlı alt kümesidir. 
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( )xxx ,=           (4.1) 

 

x x

 

Şekil 4.1. Bir kaba değer 
 

0 ≤  x  ise kaba değer pozitif kaba değer olarak adlandırılır ve x > 0 yazılır. Tersine, 

eğer x ≤  0 ise kaba değer negatif kaba değer olarak adlandırılır ve x < 0 yazılır. Pozitif ya da 

negatif kaba değerler işaretli kaba değerlerdir. Eğer x  = 0 ya da x  = 0 ise kaba değer sıfır 

sınırlı kaba değer olarak adlandırılır. Sıfır sınırlı pozitif kaba değer sıfır-pozitif kaba değer ve 

benzer olarak sıfır sınırlı negatif kaba değer sıfır-negatif kaba değer olarak adlandırılır. Hem 

pozitif hem negatif değeri olan kaba değer sıfırı araya alan kaba değer olarak adlandırılır. Bu 

tanımlamalar Tablo 4.1’de özetlenmiştir. 

 

Tablo 4.1. Kaba değerler ile ilgili tanımlar 
 

Tanım Şart 
pozitif kaba değer (x>0) Ancak ve ancak x >0 

negatif kaba değer (x<0) Ancak ve ancak x <0 
sıfır-pozitif kaba değer (x≥ 0) Ancak ve ancak x =0 

sıfır-negatif kaba değer (x≤ 0) Ancak ve ancak x =0 
sıfırı araya alan kaba değer (x<>0) Ancak ve ancak x >0 ve x <0 

 

Bir kaba değer x’in orta noktası, yarıçapı ve genişliği aşağıdaki gibi tanımlanır. 

 

( ) ( ) 2/xxxorta +=          (4.2) 

 

yarıçap(x)= ( ) 2/xx −          (4.3) 

 

genişlik(x)= ( )xx − =2yarıçap(x)       (4.4) 
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x = (orta(x)-yarıçap(x), orta(x)+yarıçap(x)) olduğundan, kaba değerler son noktalar 

yerine orta noktalar ve çaplar cinsinden de temsil edilebilir. 

Kaba değerler bir hesaplamada sadece alt ve üst sınırların anlamlı olarak düşünüldüğü 

bir nitelik için değerler kümesini ya da bir aralığı temsil etmede kullanışlıdır. Hesapsal 

matematiğin çoğu alanında çok popüler olabilir. Örneğin kaba değerlerle hesaplama yaparak, 

bazı hatalarla,  bir fonksiyonu tek bir değerden ziyade bütün bir aralık üzerinde değerlendirmek 

mümkündür. Kaba değerlerle çalışma daima tam ya da fazla tahmin edilen sınırlar 

üreteceğinden bir fonksiyonda kritik bir değeri kaçıramaz. Bu yüzden, global maksimum ya da 

minimum bulmada ya da diğer optimizasyon problemlerinde kullanışlı olabilir. 

Aslında geleneksel bir örüntü alt ve üst sınırları değişkenin değerine eşit olan bir kaba 

değer olarak görülebilir [121, 122]. Kaba değerler üzerindeki bazı işlemler aşağıda 

gösterilmiştir: 

 

( ) ( ) ( )yxyxyyxxyx ++=+=+ ,,,                    (4.5) 

 

( ) ( )( ) ( )yxyxyyxxyx −−=−+=− ,,,       (4.6) 

 

( ) ( )( )yxyxyxyxyxyxyxyxyx ,,,max,,,,min=×       (4.7) 

 

∉







= 0,

1
,

11

xxx
( )xx,         (4.8) 

 

( )
( )

( ) ( )yy

yy

xx

yy

xx

y

x
,0,

1
,

1

,

,

,
∉











==        (4.9) 

 

( ) ( ) ( )
( )



<××

≥××
=×=×=×

0,

0,
,,

cifxcxc

cifxcxc
cxxxxcxc     (4.10) 

 

Aslında bu işlemler geleneksel aralık cebrinden alınmıştır [122].  

Toplama ve çarpma işlemlerinin cebirsel özellikleri Tablo 4.2’de açıklanmıştır. 
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Tablo 4.2. Cebirsel özellikler 
 

Cebirsel özellikler Tanım Şart 

x+y=y+x 
Yer değiştirme 

xy=yx 
- 

(x+y)+z=x+(y+z) 
Birleşme 

(xy)z=x(yz) 
- 

0+x=x  
Etkisiz eleman 

1.x=x 
- 

x(y+z)=xy+xz xx =  

x(y+z)=xy+xz y≥ 0 ve z≥ 0  

x(y+z)=xy+xz y≤ 0 ve z≤ 0  

x(y+z)=xy+xz x≥ 0, y =0 ve z =0  

x(y+z)=xy+xz x≤ 0, y =0 ve z =0  

x(y-z)=xy-xz y≥ 0 ve z≤ 0  

Dağılma 

x(y-z)=xy-xz y≤ 0 ve z≥ 0  

 

Bir r kaba parçacığı kaba parametre ri’nin bir katarıdır: 

 

( )nirr i ≤≤= 1|           (4.11) 

 

Bir kaba parametre ri, biri alt parametre ( ir ) olarak adlandırılan alt sınır için biri de üst 

parametre ( ir ) olarak adlandırılan üst sınır için kullanılan geleneksel parametre çiftidir. 

 

ir = ( )ii rr ,           (4.12) 

 

Şekil 4.2’de kaba parçacık örnekleri gösterilmiştir. 
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Şekil 4.2. Kaba parçacıklar 
 

Her kaba parametrenin değeri, değişken için aralıktır. Aralığın kullanılması, kaba 

parçacık tarafından temsil edilen bilginin kesin olmadığını gösterir. Ancak bazı uygulamalarda 

da, kesinsizlik söz konusu olmaz; direkt olarak bu tür temsilin kullanılması ihtiyacı doğabilir. 

Bazen kesinlik olarak adlandırılan bilgi ölçüsü uygunluk seviyesini değerlendirmede kullanışlı 

olabilir [121]. 

 

kesinlik (r)
( )∑

≤≤ 











 −
−=

ni imaks

ii

rSinir

rr

1

       (4.13) 

 

( )imaks rSinir  kaba parametre ri’nin değeri için izin verilen maksimum sınırı 

göstermektedir. 

PSO algoritmalarında kullanılan geleneksel parametre ve parçacıklar, Şekil 4.3’te 

gösterildiği gibi bunların kaba eşdeğerlerinin özel durumlarıdır. Geleneksel bir p parçacığı için 

kesinlik(p) maksimum değer olan sıfıra eşittir. 

 

 

 
Şekil 4.3. Geleneksel parçacıklar ve onların kaba eşdeğerleri 
 

Sınır kısıtlı problemlerde, hız ve pozisyon güncelleme denklemlerinden sonra karar 

değişkenlerinin değerlerinin izin verilen aralıkta kalması gerekmektedir. Bu teknik KPSOA için 

de genelleştirilebilir. Alt sınırın üst sınırdan küçük olması şartı zaten KPSOA’da sağlanmaktadır. 
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4.3. Nicel Birliktelik Kural Madenciliği ve Đlgili Çalışmalar  

 
Market verisi üzerinden çalışan birliktelik kural madenciliği algoritması ilk olarak 

[123]’te tanıtılmıştır. Bu algoritma ve bundan sonra önerilen çoğu algoritma birliktelik 

kurallarının keşfi için iki aşama takip etmişlerdir: birincisi yoğun nesne kümelerini bulmak, 

ikincisi de elde edilen yoğun nesne kümelerinden kuralları keşfetmek. Keşfedilen kurallar belirli 

destek ve güven değerlerine sahiptir. Bu şekilde ikili birliktelik kuralları anlamlı olmasına 

rağmen ilgilenilen veri nesneleri çoğu durumda kategorik ya da niceldir. Bu yüzden nicel 

birliktelik kural madenciliği algoritmaları önerilmiştir. Bir nicel birliktelik kuralında nitelikler 

ikili değerlerle sınırlandırılmamış, nicel (yaş, maaş, sıcaklık gibi) ve kategorik (cinsiyet, marka) 

değerleri de almıştır. Böylece nicel birliktelik kuralları ikili birliktelik kurallarından daha 

anlamlıdır [124]. 

Bir personel veritabanında nicel bir birliktelik kuralı şu şekildedir: 

 

“Yaş ∈[25, 36]∧ Cinsiyet=Erkek⇒Maaş∈[2000-2400]∧ Arabası_Var=Evet” 

(Güven = 4%, Destek = 80%). 

 

Bu nicel birliktelik kuralında “Yaş ∈ [25, 36] ∧ Cinsiyet=Erkek” kuralın ata kısmı 

“Maaş ∈ [2000-2400] ∧ Arabası_Var=Evet” ise sonuç kısmıdır. Bu kural “işçilerin %4’ü 

(destek) erkektir ve 25 ve 36 yaşları arasındadır ve 2000 ile 2400 TL arası maaş almaktadır ve 

arabaları vardır” ve “25 ve 36 yaşlarındaki erkeklerin %80’i (güven) 2000 ile 2400 TL arası 

maaş almaktadır ve arabaları vardır” demektedir. 

Nicel birliktelik kurallarının keşfi için üç temel yaklaşım bulunmaktadır ve bunlar Şekil 

4.4’te gösterilmiştir. 

 

 

 
Şekil 4.4. Nicel birliktelik kural madenciliği yaklaşımları 
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[125]’te nicel birliktelik kural madenciliği nitelik alanlarının küçük aralıklara bölünmesi 

ve birleştirilen aralıklar yeterli desteğe sahip oluncaya kadar bitişik aralıkların daha büyük 

aralıklar şeklinde birleştirilmesiyle yapılmıştır. Aslında, nicel problem ikili problem haline 

dönüştürülmüştür. Fakat bu teknikte, bir nitelik diğer nitelikler hesaba katılmadan 

ayrıklaştırılmış ve nitelik etkileşimleri göz ardı edilmiştir. 

Daha sonra farklı araştırmacılar kümeleme tekniklerini kullanmışlardır. Miller ve Yang 

[126] aralıkların anlamını arttıran uzaklık-tabanlı birliktelik kural madenciliği süreci 

önermişlerdir ve aralıkları belirlemek için de Birch kümelemeyi uygulamışlardır. Lent ve 

arkadaşları [127] nicel nitelikler için kümeleme amacıyla BitOp olarak adlandırılan geometrik 

tabanlı bir algoritma önermişlerdir. Bunlar anlamlı bölgeleri hesaplamak ve birliktelik 

kurallarının keşfini desteklemek için kümelemenin olası bir çözüm olduğunu göstermişlerdir. 

Vannucci ve Colla orijinal örnek dağılımını korumaya çalışan denetimsiz ayrıklaştırma için 

önerilen tekniklerin sınırlamalarını kaldırmak amacıyla bir sinirsel ağ, kendini organize eden 

harita, önermiştir [128]. Bu çalışmaların çoğu aykırı verilere hassas kalmakta ve verinin 

dağılımını yansıtmamaktadır. 

[129]’de nicel birliktelik kurallarının madenciliği için yine kümeleme kullanan bilgi-

teorili bir yaklaşım önerilmiştir. Nitelikler arasındaki bilgi verici ilişkileri gösteren bir çizge inşa 

edilmiştir. Sonra çizgede işe yaramayan nitelik kümelerini ve böylece bu nitelikler arasında 

birleştirilen aralıkları budamak için gruplar kullanılmıştır.  

Bazı araştırmacılar nicel veriyi bulanık kümelerle bölmüşler ve keşfedilen kuralları 

bulanık birliktelik kuralları olarak adlandırmışlardır [130]. Bu kurallar şu şekildedir: 

 

A=X ⇒  B=Y 

 

Burada A ve B niteliklerin alt kümesi olan nesne kümelerini içermektedir. X ve Y ise A 

ve B’de ilgili nitelik kümesiyle ilişkili bulanık kümeleri içermektedir.  

Ancak, tüm bu teknikler kullanıcıdan ön bilgi isterler. Nicel nitelikler için aralıkların 

seçilmesi güven ve destek değerlerine oldukça duyarlıdır [123]. Sınırlar ve bulanık üyelik 

kümelerinin şekilleri uzman kişiler tarafından belirlenmelidir ve böylece otomatik 

ayrıklaştırmanın gerekli olduğu durumlarda bu teknikler kullanılamaz. Nicel nitelikler için, 

hepsi bireysel olarak düşünüldüğünde, anlamlı bir ayrıklaştırma bulmak zordur. Böylece klasik 

iki adımlı yaklaşımlar nicel birliktelik kural madenciliği için artık uygun olmamaktadır. 

Aumann ve Lindell nicel bir değerin dağılımını birliktelik kurallarına dahil edilip 

edilmeme kriteri olarak kullanmıştır [131]. Bunlar birliktelik kurallarının ilginç davranışlar 
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sergileyen (kural atası) bir popülasyon alt kümesi (kural sonucu) olarak düşünüleceğini iddia 

etmişlerdir. Đki tip nicel kural araştırmışlardır: 

 

“kategorik⇒ nicel” kurallar  

 

ve 

 

“nicel⇒ nicel” kurallar 

 

Bu nicel birliktelik kural algoritmalarındaki genel kısıtlama kuralın atasında ya da 

sonucunda izin verilen değer sayısıdır. Ayrıca, hem ikili hem de nicel değerlerin kuralın ata ya 

da sonuç kısmında yer almasına izin verilmemektedir. Nicel niteliklerin ayrıklaştırılması 

kaçınılmaz biçimde bilgi kaybına neden olmaktadır. Ayrıklaştırma niteliğin orijinal dağılımını 

yansıtmamakta ve ayrıklaştırılmış aralıklar kuralları gizleyebilmektedir (aralık çok büyükse 

düşük kararlılıktaki kurallar kaçırılabilir; çok küçük olduğunda da kural keşfetmek için yeterli 

veri bulunmayabilir). Aralıklar semantik olarak anlamsız olabilir ve uzmanlara mantıklı 

gelmeyebilir. Ayrıca birkaç nicel değerin kümülatif etkisi kolaylıkla temsil edilemeyebilir. 

Bazı araştırmacılar da nicel değerler için nicel aralıklar bulmak amacıyla geometrik 

ortalamayı kullanmışlardır [132]. Ancak kuralın atası sadece tek bir kategorik değerle 

sınırlandırılmıştır. Keşfettikleri kurallar şu formdadır: 

 

“A∈[v1, v2] ⇒C”  

 

ya da bunun genişletilmiş formu 

 

“A∈[v1, v2] ∧ C1 ⇒C2” 

 

Burada A nicel nitelikler C, C1 ve C2 ikili ifadelerdir. 

Fukuda ve arkadaşları [133] ve Yoda ve arkadaşları [134] ata kısımda iki nicel değer ve 

sonuçta bir ikili nesne olacak şekilde farklı bir biçimi önermişlerdir. 

Tüm bu yaklaşımların temel problemi madencilik algoritmasından önce verinin 

hazırlanmasıdır. Kullanıcı tarafından ya da otomatik süreçle oluşturulan bu hazırlık birçok bilgi 

kaybını beraberinde getirir çünkü kurallar daha önce oluşturulan aralıklardan ayrılarak 

üretilecektir. Nicel veri için oluşturulan aralıklar keşfedilen kurallardan değerli bilgiyi 

kolaylıkla elde edebilmek amacıyla uzman kişiler için yeterince özlü ve anlamlı olmayabilir. 
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Ayrıca, bulanık küme yaklaşımı haricinde bu yaklaşımların bazı sakıncaları bulunmaktadır. Đlk 

problem insan algısına göre sezgisel olmayan aralıklar arasındaki keskin sınır tarafından ortaya 

çıkar. Algoritmalar aralıkların sınırlarına yakın olan elemanları ya ihmal eder ya da çok 

önemser. Ayrıca, ön bilgi olmadan aralık tekniği için üyelik derecesinin ayırt edilmesi kolay 

değildir. Benzeri şekilde, bulanık kümelerle bölmeleme de kolay değildir çünkü nicel nitelik 

değerleri için en uygun bulanık kümeye karar vermek zordur [135, 136]. Nicel niteliklerin 

karakteristikleri genel olarak bilinmez ve alan uzmanları tarafından en uygun bulanık kümelerin 

her zaman temin edilmesi gerçekçi değildir. Bu yüzden bazı araştırmacılar ayrı bir ön işlem 

olarak nicel nitelikler için bulanık kümeleri bulmada evrimsel algoritma kullanmışlardır [137]. 

Aslında nicel birliktelik kurallarının keşfi basit bir ayrıklaştırma işleminden daha ziyade 

zor bir optimizasyon problemidir. Bu yüzden bazı araştırmacılar bunu bir optimizasyon 

problemi olarak karakterize etmiş ve birliktelik kurallarını global optimizasyon algoritmalarıyla 

bulma yoluna gitmişlerdir. Sadece yoğun nesne kümelerini bulmak için evrimsel algoritma 

kullanma fikri [138]’de kullanılmıştır. Ancak kodlama değişken boyuttan dolayı genetik 

operatörler için fazla etkili değildir. Ayrıca, sadece destek optimize edilmiş ve yoğun nesne 

kümeleri üretilmiştir. [6]’da etkili ve düzenlenmiş bir evrimsel algoritma ile tüm kurallar tek 

çalıştırmada bulunmuştur. [8]’de ise çok amaçlı diferansiyel gelişim algoritması önerilmiştir. En 

son yeni çalışma ise genetik algoritma kullanan QuantMiner adlı algoritmadır [139]. Ancak bu 

çalışmada kullanıcı tarafından kuralın atasında ve sonucunda yer alacak niteliklerin belirlenmesi 

yani bir şablonun oluşturulması gerekmektedir ve yapılan iş bu şablon için en uygun aralıkların 

bulunmasıdır. Fakat hangi niteliğin kuralda yer alacağının ve yer alacaksa da nerede yer 

alacağının (ata ya da sonuç kısmı) belirlenmesi işi uzman ya da kullanıcıya bırakılamaz ve bu 

işleri veri madenciliği algoritmasının kendisinin yapması gerekir. Aksi takdirde ilgilenilen 

gerçek bir veri madenciliği problemi ve süreci olmaz. Bu çalışma sadece oluşturulan şablon için 

aralık belirleme işini yapmaktadır. Önceden belirlenen kural şablonları ile elde edilen kurallar 

ilgili veritabanında en iyi kurallar olmayabilir ve bu da en iyi kuralların keşfini engeller. 

QuantMiner sadece uygun aralık bulmaktadır. Yani, kullanışlı bile olamamasına rağmen 

kullanıcı ya da uzman bilgisi gerektirir. 

Birliktelik kurallarının keşfi için PSO kullanan herhangi bir çalışma yoktur. Tezin bu 

bölümünde, PSO nicel niteliklerin aralıkların optimizasyonunu ve kuralların keşfini eş zamanlı 

olarak ve herhangi bir ön işlem ve uzman bilgisi gerektirmeden otomatik yapacak şekilde 

tasarlanmıştır. Tasarlanan PSO, ayrıca her veritabanı için belirlenmesi güç olan minimum 

destek ve minimum güven değerlerine ihtiyaç duymadan veritabanından bağımsız bir yaklaşım 

sunar. Genelde kullanılanın aksine yüksek kaliteli birliktelik kurallarını yoğun nesne kümeleri 

üretmeden direkt olarak keşfeder. 
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4.4. Nicel Birliktelik Kural Keşfinde KPSOA 

 
4.4.1. Parçacık Temsili 

 
Arama boyunca üretilen ve düzenlenen parçacıklar kuralları temsil etmektedir. Her 

parçacık nesneleri ve aralıkları temsil eden karar değişkenlerinden oluşur. i. nesnenin i. karar 

değişkeninde kodlandığı pozisyonel bir kodlama kullanılmıştır. Her karar değişkeni de üç 

kısımdan oluşur. Karar değişkeninin birinci kısmı kuralın ata ya da sonuç kısmını (A-S) temsil 

eder ve sıfır ile bir arasında değerler alır. Eğer bu değer 0.00≤ A-Si≤ 0.33 ise bu nesne kuralın 

ata kısmında yer alacaktır. 0.33<A-Si≤ 0.66 ise nesne kuralın sonuç kısmında yer alacaktır ve 

eğer 0.66<A-Si≤ 1.00 ilgili nesne kuralda yer almayacaktır. 0.00 ve 0.33 arasında değer alan tüm 

karar değişkenleri kuralın ata kısmını, 0.33 ve 0.66 arasında değer alanlar ise kuralın sonuç 

kısmını oluşturacaktır. Đkinci kısım alt sınırı (AS) temsil ederken üçüncü kısım da üst sınırı (ÜS) 

temsil etmektedir. Bir parçacığın yapısı Şekil 4.5’te görülmektedir. Burada m, keşif yapılan 

verinin nitelik sayısıdır. 

 

Değişken1 Değişken2 ... Değişkenm 

A-S1 AS1 ÜS1 A-S2 AS2 ÜS2    A-Sm ASm ÜSm 
 

Şekil 4.5. Parçacık temsili 
 

Bu parçacık temsilinin uyarlamasında karar değişkeninin ikinci ve üçüncü kısmı tek bir 

değer olarak, yani kaba değer olarak, işlem görecektir. Đlk bakışta bu temsilin sadece nicel 

nitelikler içeren veri tabanları için kullanılabileceği görülmektedir. Ancak, bunu ayrık ya da 

nominal değerler için genişletmek çok kolay ve düz bir adımdır. Nicel nitelikler temsilin 

başında ayrık olanlar ise sonunda yer alırlar. Ayrık nitelikler için sadece A-Si ve Di kullanılır ve 

Di niteliğin değeridir. Yani, ayrık ya da nominal niteliklerin değerleri için ASi ve ÜSi yerine 

sadece Di kullanılır. 

 
4.4.2. Uygunluk Fonksiyonu 

 
Keşfedilen kurallar yüksek destek ve güven değerlerine sahip olmalıdır. Kurallar 

keşfedilirken eş zamanlı olarak ilgili niteliklerin aralıkları da keşfedilecek kuralı optimize 

edecek şekilde ayarlanmaktadır. Yani bu aralıkların belirlenmesi uygunluk fonksiyonunun bir 

parçası olarak ele alınmıştır. Seçilen uygunluk fonksiyonu (4.14)’te gösterilmiştir: 
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Uygunluk= 1α × kapsama(Ata+Sonuç)+ 2α ×
a)kapsama(At

)Sakapsama(At onuç+
- 3α × (NA-N(*))-

4α × Aralik-
5α × Đşaret          (4.14) 

 

Seçilen bu uygunluk fonksiyonu beş bölümden oluşmaktadır. Burada Ata ve Sonuç 

sırasıyla kuralın ata ve sonuç kısmını içeren ayrık nesne kümeleridir.  kapsama(Ata+Sonuç) Ata 

ve Sonucu içeren kayıtların veritabanındaki toplam kayıt sayısına oranıdır. Bu birinci kısım bir 

birliktelik kuralının istatistiksel anlamı olarak görülebilen destek değeri olarak düşünülebilir. 

Đkinci kısım da kuralın güven değerini temsil etmektedir. Üçüncü kısım parçacıktaki nitelik 

sayısını göstermektedir. Bu az sayıda nitelik barındıran kısa kuralların oluşmasına destek 

vermektedir. NA veritabanındaki nitelik sayısı N(*) da parçacığın ilk parçasında 0.66 ile 1.00 

arasında değer alan nitelik sayısıdır. Bu terimle veri madenciliğinde önemli olan okunabilirlik 

ve anlaşılabilirlik arttırılmaya çalışılmıştır. Uzun kurallar gereksiz ve önemsiz bilgi 

içerebilmekte ve bu da kuralın başarısını ve etkili şekilde işlenebilmesini engelleyebilmektedir. 

Ancak, son kullanıcıya daha kaliteli bilgi verebilmek için bazı veritabanlarında ve kullanıcı 

isteklerine ve gereksinimlerine göre bu terim uygunluk fonksiyonunun değerini arttırıcı şekilde 

de (işareti “+” yapılarak) kullanılabilir. Uygunluk fonksiyonundaki dördüncü kısım nesne 

kümesi ve kurala uyan aralıkların genliğini azaltmak için kullanılmaktadır. Bu şekilde aynı 

sayıda kaydı kapsayan ve aynı sayıda nitelik içeren bir iki kuraldan aralıkları küçük olan en iyi 

bilgiyi vermektedir ve bunun uygunluğu daha iyidir. Aralik (4.15)’te gösterildiği şekilde 

hesaplanır ve genm, Aralik’ın etkisini uygunluk fonksiyonunda dengelemek için her nitelik için 

kararlaştırılan genlik faktörüdür.  

 

m

mm

gen

ASÜS
Aralik

−
=          (4.15) 

 

Uygunluk fonksiyonundaki son bölüm KPSOA’nın sonraki aramalarda farklı kuralları 

keşfetmesi için düzenlenmiştir. KPSOA her çalıştırmada tek bir kural keşfetmektedir. Đşaret 

terimi de bir kaydın niteliğinin daha önce bir kural atası ya da sonucu tarafından kapsanıp 

kapsanmadığını göstermek için kullanılmaktadır.   

1α , 2α , 3α , 4α  ve 5α kullanıcı tanımlı parametrelerdir ve bu parametreler 

değiştirilerek uygunluk fonksiyonundaki kısımların etkileri değiştirilebilir. Uygunluk 

hesaplamasında Aralik kısmı nicel nitelikleri temsil eden parçacık kısımlarını ilgilendirmektedir.  
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4.4.3. Mutasyon 

 
KPSOA’da mutasyon da kullanılmıştır. Mutasyon bir parçacığın tek bir kaba karar 

değişkeninin pmut olasılığıyla değişime uğraması şeklinde gerçekleşir. Genetik algoritmada 

kullanılan dört çeşit mutasyon KPSOA’ya da uyarlanmıştır [138]. 

 

• Tüm aralığı sağa doğru kaydırma: Alt ve üst sınırlardaki değerler arttırılır. 

• Tüm aralığı sola doğru kaydırma: Alt ve üst sınırlardaki değerler azaltılır. 

• Aralık boyutunu arttırma: Alt sınır değeri azaltılırken üst sınır değeri arttırılır. 

• Aralık boyutunu azaltma: Alt sınır değeri arttırılırken üst sınır değeri azaltılır. 

 

Parçacık pozisyonları eğer mutasyona uğramış parçacıklar daha iyi uygunluğa sahip 

olurlarsa bu değerle güncellenir. 

 
4.4.4. Sınır Aralıklarının Arıtılması 

 
KPSOA çalışması sonunda keşfedilen kuralın nitelik sınırlarına bir iyileştirme işlemi 

uygulanır. Bu ilgili parçacıkta aralık boyutunun destek değeri orijinal destek değerinden küçük 

olana kadar aralığın azaltılması işlemini içerir. Bu şekilde daha kaliteli kuralların oluşması 

sağlanır. 

 
4.4.5. Parametre Kontrolü 

 
Deneylerde kullanılan parametre değerleri Tablo 4.3’te gösterilmiştir. Hız ve pozisyon 

için maksimum ve minimum değerler karar değişkenlerin değerlerine bağlıdır. 1α , 2α , 3α , 4α , 

ve 5α  sırasıyla 0.8, 0.8, 0.05, 0.1, ve 0.2 olarak seçilmiştir. 

 
Tablo 4.3. Kullanılan parametre değerleri 
 

Parametreler 
Sürü 
boyutu 

Đterasyon 
sayısı 

Mutasyon 
olasılığı 

Hızlanma 
katsayıları 

Atalet ağırlığı 

Değerler 25 1000 0.5 2 0.9’dan 0.4’e 
 
4.5. Deneysel Sonuçlar 

 
KPSOA ilk olarak dört nicel nitelik içeren 1000 kayıtlı sentetik bir veritabanında 

değerlendirilmiştir. Tüm alan değerleri [0, 100] aralığına ayarlanmıştır. Değerler Tablo 4.4’te 

gösterilen şekilde, önceden belirlenen kümelerde gruplanmış biçimde, düzenli olarak 

dağıtılmıştır. Bu dağılım tamamen gelişigüzeldir. Bazı aralıklar küçük bazıları ise büyük boyuta 
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sahiptir. Bu kümeler için destek ve güven değerleri sırasıyla %25 ve %100 olarak seçilmiştir. 

Bu kümeler dışındaki değerler bu kurallardan daha iyi kural oluşturmayacak şekilde 

dağıtılmıştır. Birliktelik kural madenciliğinde uygunluk fonksiyonu için uygun ağırlıklar 

belirlenerek bu kuralların keşfedilmesi istenmiştir. Amaç her ayarlanan bölgenin aralığını doğru 

olarak bulmaktır. KPSOA’nın her niteliğin nicel aralığı için en uygun değerlerle birliktelik 

kurallarını keşif yeteneği test edilmiştir.  

 
Tablo 4.4. Sentetik olarak oluşturulan kümeler 
 

Kümeler 

A1∈[1–10]∧A2 ∈[15–30] 

A1∈[15–45]∧A3 ∈[60–75] 

A2∈[65–90]∧A4∈[15–45] 

A3∈[80–100]∧A4∈[80–100] 

 
Tablo 4.5. KPSOA tarafından bulunan kurallar 
 

Kural Destek(%) Güven(%) Kayıtlar(%) 

A1∈[1-10]⇒A2 ∈[15-30] 25 100 

A1∈[15-45]⇒A3 ∈[60-75] 25 100 

A3∈[80-100]⇒A4∈[80-98] 25 100 

A2∈[65-89]⇒A4∈[15-43] 25 100 

A2 ∈[15-30]⇒A1∈[1-10] 25 100 

A3 ∈[60-75]⇒A1∈[15-45] 25 100 

A4∈[80-98]⇒A3∈[80-100] 25 100 

A4∈[15-45]⇒A2∈[65-89] 25 100 

100 

 

Tablo 4.5’te KPSOA tarafından bulunan kurallar gösterilmektedir. Tablodan görüldüğü 

gibi sentetik olarak oluşturulan kümelere göre keşfedilen kurallar, yüksek destek ve güven 

değerine sahiptir; ayrıca anlaşılabilirdir. KPSOA veritabanından bağımsızdır çünkü her 

veritabanı için belirlenmesi güç olan minimum destek ve güven değerlerine bağlı değildir. Eğer 

destek ve güven değerleri kullanılsaydı ve destek değeri %25’ten büyük seçilseydi bu 

veritabanındaki niteliklerin değerlerine göre hiçbir kural keşfedilemeyecekti. Ancak bu 

veritabanının bazı doğru ve anlaşılabilir kurallar içerdiği bilinmektedir. KPSOA minimum 

destek ve güven eşik değerlerini kullanmadan tüm bu kuralları otomatik olarak keşfetme 

yeteneğine sahiptir. Ayrıca kuralın ata ve sonuç kısmının önceden ayarlanmasıyla oluşturulmuş 

kural şablonunun belirlenmesine ihtiyaç duymaz. 
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Tablo 4.6. Farklı seviyelerdeki gürültü sonrası keşfedilen kurallar 

 
gürültü_seviyesi = 4% 

Keşfedilen kurallar Destek(%) Güven(%) Kayıtlar(%) 

A1∈[1-10]⇒A2 ∈[15-29] 24.2 100 

A1∈[15-45]⇒A3 ∈[60-73] 24.0 100 

A3∈[80-100]⇒A4∈[80-96] 23.6 96.7 

A2∈[65-90]⇒A4∈[15-46] 24.2 98.3 

A2 ∈[15-29]⇒A1∈[1-10] 24.1 100 

A3 ∈[60-73]⇒A1∈[15-45] 24.0 100 

A4∈[80-96]⇒A3∈[80-100] 23.7 96.6 

A4∈[15-46]⇒A2∈[65-89] 24.2 98.3 

95.3 

gürültü_seviyesi = 6% 

Keşfedilen kurallar Destek(%) Güven(%) Kayıtlar(%) 

A1∈[1-11]⇒A2 ∈[14-31] 23.3 98.9 

A1∈[15-45]⇒A3 ∈[56-73] 23.6 99.0 

A3∈[80-100]⇒A4∈[84-95] 23.3 94.5 

A2∈[65-89]⇒A4∈[14-49] 23.8 97.8 

A2 ∈[14-31]⇒A1∈[1-11] 23.3 98.9 

A3 ∈[56-73]⇒A1∈[15-45] 23.6 99.0 

A4∈[84-95]⇒A3∈[80-100] 23.3 94.5 

A4∈[14-49]⇒A2∈[65-89] 23.8 97.8 

93.1 

gürültü_seviyesi = 8% 

Keşfedilen kurallar Destek(%) Güven(%) Kayıtlar(%) 

A1∈[1-11]⇒A2 ∈[14-29] 22.4 97.6 

A1∈[15-45]⇒A3 ∈[62-76] 22.9 98.0 

A3∈[79-100]⇒A4∈[82-98] 22.6 93.3 

A2∈[65-90]⇒A4∈[15-48] 23.7 95.8 

A2 ∈[14-29]⇒A1∈[1-11] 22.4 97.4 

A3 ∈[62-76]⇒A1∈[15-45] 22.9 98.0 

A4∈[82-98]⇒A3∈[79-100] 22.8 93.4 

A4∈[15-48]⇒A2∈[65-90] 23.7 95.8 

91.9 
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Önerilen algoritmanın etkinliliği test etmek için KPSOA, gürültülü sentetik 

veritabanında da çalıştırılmıştır. Gürültü, kümenin ikinci nesnesinin aralığına ait olmayan 

değerler yerleştirmek suretiyle oluşturulmuştur. Bu yüzden, kayıtların belli bir yüzdesi ikinci 

nesnenin önceden belirlenen aralığında yer almaz. Örneğin, ilk küme için kayıtların belli bir 

yüzdesi, ikinci nesne A2 ∈ [15-30]’da bulunmaz, ancak [0-14] ya da [31-100] aralığında 

dağıtılmıştır.  

Algoritmanın, kuralların ata ya da sonuç kısmı için en uygun aralıkları bulup 

bulamayacağı test edilmiştir. Bu test üç seviyeli gürültü ile yerine getirilmiştir 

(gürültü_seviyesi’nin 4%, 6% ve 8% değerleri için). Deneysel sonuçlar Tablo 4.6’da 

gösterilmiştir. Bu tabloda, keşfedilen kurallar, destek ve güven değerleri ve toplam kayıtta 

keşfedilen kural tarafından kapsanan kayıt yüzdeleri verilmiştir. Aralıkların sınırlarının sentetik 

olarak üretilenlere hemen hemen uyduğu görülebilmektedir. Bu KPSOA’nın test edilen veri 

içinde belirli yüzdelerdeki gürültünün üstesinden geldiğini göstermektedir.  

Başka bir deneyde KPSOA’nın etkinliliğini diğer algoritmalarla karşılaştırmak amacıyla 

yapılmıştır. [140]’taki ikinci fonksiyon kullanılarak sentetik bir veritabanı oluşturulmuştur. 

Fonksiyon Şekil 4.6’da gösterilmiştir. Amaç her oluşturulan bölgenin aralığını en uygun şekilde 

bulmaktır. Yaş ve maaş niteliklerinin aldığı değerlere bağlı olarak her kayda bir grup atanmıştır. 

Şekil 4.7 sadece Grup A’ya ait 5000 kaydın yer aldığı fonksiyonun dağılımının grafiksel 

gösterimidir. 

 

Eğer ((yaş < 40)∧ (50K≤maaş≤ 100K))∨  

((40≤ yaş<60)∧ (75K≤maaş≤ 125K))∨  

((yaş≥ 60)∧ (25K≤maaş≤ 75K))⇒Grup A 

Değilse⇒Grup B  

 
Şekil 4.6. Deney için kullanılan fonksiyon 
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Şekil 4.7. Deney için kullanılan fonksiyonun grafiksel gösterimi 
 

Veritabanı, kayıtların alt ve üst sınırlar arasında düzgün dağıtılmasıyla oluşturulmuştur. 

maaş niteliği için sınır noktalar 20000’den 150000’e ve yaş niteliği için sınır noktalar 20’den 

80’e kadardır. Grup için üçüncü nitelik de eklenmiştir. Fonksiyona göre kayıtların  %37.9’u 

Grup A’ya aittir. Birliktelik kurallarında yaş ve maaş nitelikleri ata kısımda ve Grup niteliği de 

sonuç kısmında olacaktır. Bu yüzden parçacık temsili de bu duruma riayet edecektir. 

GA ve KPSOA haricindeki algoritmalar nicel niteliklerin aralıklarını oluşturmak için 

otomatik bir ayrıklaştırma süreci içermektedirler ve bu algoritmalar Weka programı ile 

çalıştırılmıştır. OneR [141] algoritmasında nicel nitelikleri ayrıklaştırmak için kullanılan sepet 

sayısı 6 olarak belirlenmiştir. PART [142] algoritması için budama amacıyla kullanılan güven 

faktörü 0.25 seçilmiş ve azaltılmış hata budaması için C4.5 budaması kullanılmıştır. Ridor [143] 

algoritmasında bir kuralda örneklerin toplam minimum ağırlığı 1 olarak belirlenmiş ve standart 

değerleriyle çalıştırılmıştır. KPSOA’nın yeni bir teknik olduğu ve GA’lar ile diğer yöntemlerin 

eski teknikler olduğu ve uzun süreden beri kullanıldığını unutmamak gerekmektedir. Kapsama 

ve NegatifNoktalar olarak adlandırılan iki kalite ölçüsü keşfedilen kurallar için karşılaştırma 

yapmak amacıyla kullanılmıştır. Bunlar, (4.16) ve (4.17) denklemleriyle tanımlanmıştır. 

 

TumPozitif

Pozitif

N

N
Kapsama =         (4.16) 
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TumNegatif

Negatif

N

N
talarNegatifNok =        (4.17) 

 

NTumPozitif tüm pozitif kayıtların (Grup A) sayısıdır. NPozitif algoritmalar tarafından 

keşfedilen kurallar tarafından kapsanan kayıtların sayısıdır. NTumNegatif negatif kayıtların (Grup B) 

sayısıdır ve NNegatif kural tarafından yanlışlıkla kapsanan negatif kayıt sayısıdır. Aslında 

Kapsama doğru kapsanan kayıtların oranıdır ve NegatifNoktalar da kuralların güvenilirliğini 

göstermektedir. 

Sonuçların adil karşılaştırılabilmesi için başlangıç sürü ve GA’lar için başlangıç 

popülasyonu farklı bir şekilde başlatılmıştır. Veritabanındaki aynı bir kayıt seçilmiş ve kural bu 

kayda bağlı olarak üretilmeye çalışılmıştır. Seçilen ai niteliğinin her vi değeri için alt limit vi-θ  

ve üst limit vi + θ  , vi’nin bir yüzdesi olarak belirlenmiş ve böylece başlangıç sürü ve 

popülasyonun en az bir kayıt içermesi sağlanmıştır.  

Algoritmalardan elde edilen sonuçlar Tablo 4.7’de görülmektedir. KPSOA Grup A için 

sadece üç kural keşfetmiştir. Ancak GA dışında diğer algoritmalar çok fazla kurala ihtiyaç 

duymuştur. Az sayıdaki kural son kullanıcıya anlaşılabilirlik ve okunabilirlik sunmaktadır ve 

çoğu durumda istenen bir özelliktir. Ayrıca KPSOA tarafından elde edilen Kapsama değerleri 

daha iyidir. Başka önemli bir nokta da diğer algoritmalar tarafından elde edilen büyük 

NegatifNoktalar değerleri daha az güveni gösterir ve bu da ayrıklaştırma işlemi için bu 

algoritmalar tarafından seçilen aralıklardandır. Bu algoritmalar uygun kesme noktaları 

belirleyememiştir ve bu da nicel birliktelik kuralların keşfindeki en önemli problemdir. Bu 

algoritmalar tarafından keşfedilen kurallar, anlaşılabilir değildir ve artık nitelik ve değerlere 

sahiptir. Örnek olarak Ridor tarafından keşfedilen bir kural aşağıdadır: 

 

“(yaş > 39.5) ∧  (maaş ≤  122707.776803) ∧  (maaş > 28267.898833) ∧  (yaş ≤  61.5) ∧  

(maaş > 74840.212238) ∧  (yaş ≤  59.5) ⇒  Grup = A”  (kapsanan kayıt=408) 

 

Burada, kuralın ata kısmında sadece iki nitelik bulunmasına yani çok az sayıda nitelikle 

uğraşılmasına rağmen, dikkat edilirse “(yaş <= 61.5)” ve “(yaş <= 59.5)” kuralın ata 

kısmındadır ve “(yaş <= 59.5)” atık niteliktir. Benzer şekilde “(maaş > 28267.898833)” ve 

“(maaş > 74840.212238)” kuralın ata kısmındadır ve burada da “(maaş > 28267.898833)” atık 

niteliktir. Bu şekilde kuralın anlaşılması ve işletilebilmesi zorlaşmaktadır. 

Yine PART tarafından keşfedilen bir kural aşağıdadır: 
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“(maaş > 24927.14358) ∧  (maaş > 49974.276261) ∧  (yaş ≤  60) ∧  (maaş ≤  100532.277915) 

∧  (yaş ≤  39) ∧  (maaş ≤  98002.227109)⇒  Grup = A” (kapsanan kayıt=609) 

 

Bu kuralda da dikkat edilirse “(maaş > 24927.14358)” ve “(maaş > 49974.276261)”; 

benzer şekilde “(maaş ≤  100532.277915)” ve “(maaş ≤  98002.227109)” aynı kuralın ata 

kısmında yer almakta ve bu basit ve kısa kural bile atık nitelik ve değerler içermektedir. 

OneR ise sadece maaş niteliğine göre kuralları üretebilmiştir. 

KPSOA ise, çok az ve artık nitelik ve değer içermeyecek şekilde veritabanında doğru ve 

anlaşılabilir kuralları bulabilmiştir. 

 

Tablo 4.7. Fonksiyon 2 için farklı algoritmalar tarafından elde edilen sonuçlar 
 

 OneR PART Ridor GA KPSOA 

Kural sayısı 59 3 5 3 3 

Kapsama 70.44 66.80 99.89 99.83 100 

NegatifNoktalar 18.03 20.20 0.003 0.001 0.00 

 

Algoritmaların etkinliliğini doğrulayan sezgisel bir ölçü kuralların aralıklarının sentetik 

olarak oluşturulanlarla karşılaştırılması ve böylece kuralların kalitelerinin belirlenmesidir. 

KPSOA tarafından keşfedilen kuralların ortalama destek ve güven değerleri 12.21 ve 100.00’dır 

Ortalama destek sayısı üç ile çarpılırsa (3 kural keşfedilmiştir) %37.9’a yakın değer elde 

edilmektedir ve bu da pratik olarak tüm kayıtların kapsandığı anlamına gelmektedir. Güven 

değeri de %100’dür çünkü bölgelerde diğer gruptan kayıt bulunmamaktadır.  

KPSOA, aynı zamanda 6 tane halka açık gerçek veritabanında da değerlendirilmiştir: 

Basketball, Bodyfat, Bolts, Pollution, Quake, ve Sleep. Bu veritabanları Bilkent Üniversitesi 

Fonksiyon Yaklaştırma Deposunda hazır bulunmaktadır [144]. KPSOA’nın bir karakteristiği de 

stokastikliğidir. Böylece algoritma farklı çalıştırılmalarda dalgalanmalara sahip olabilir. En iyi 

sonucun alınabilmesi için algoritma birkaç kez çalıştırılabilir. Algoritma on kez çalıştırılmış ve 

bu çalıştırmaların ortaklama değerleri sunulmuştur. 

Bir önceki deneyde de görüldüğü gibi diğer birliktelik kural keşfi yapan algoritmalarla 

KPSOA’yı karşılaştırmak zor ve adaletsiz olabilir. Çoğu madencilik algoritması niteliklerin 

aralıklarının belirlenmesini istemekte ve önişlem gerektirmektedir. Bu yüzden anlamlı olarak 

karşılaştırma, literatürde birliktelik kurallarının arama sırasında nicel nitelikleri ayrıklaştıran ve 

evrimsel hesaplama tabanlı iki algoritmayla yapılabilir.  

Tablo 4.8’de, KPSOA ve [6]’da sunulan algoritma tarafından bulunan yüksek kaliteli 

kural sayısı ve bu kuralların güven değerleri (standart sapmalarla birlikte) ile birlikte 
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veritabanındaki kayıt sayısı ve nicel nitelik sayısı görülmektedir. Deneysel sonuçlarda kural ve 

güven değerleri kullanılmıştır çünkü [6]’daki algoritma da yoğun nesne kümelerini bulmadan 

direkt olarak kuralları keşfetmektedir. Ayrıca o algoritma da evrimsel hesaplama tabanlı (bir 

GA) bir algoritmadır ve aralıkları ve kuralları eş zamanlı olarak bulur. [6]’daki algoritma için 

popülasyon sayısı 100 seçilmiş ve sadece pozitif birliktelik kurallarını keşfedecek şekilde 

uyarlanmıştır. Altı veritabanından dördünde, KPSOA fazla sayıda daha kaliteli kural bulmuştur 

ancak fark çok fazla değildir. Güven değerleri bakımından, bu algoritmayla rekabet edebilir 

görülmektedir.  

 

Tablo 4.8. [6]’da önerilen algoritmayla karşılaştırmalar 
 

Kural sayısı Güven(%) 
Veritabanı Kayıt sayısı Nitelik sayısı 

  [6]        KPSOA     [6]        KPSOA 

Basketball 96 5 33.8 34.2 60 m 1.2 60 m 2.8 

Bodyfat 252 18 44.2 46.4 59 m 3.8 61 m 1.8 

Bolts 40 8 39.0 36.4 65 m 1.9 64 m 2.0 

Pollution 60 16 41.2 44.6 68 m 4.8 66 m 4.7 

Quake 2178 4 43.8 46.4 62 m 5.1 63 m 2.8 

Sleep 62 8 32.8 37.6 64 m 2.3 64 m 2.8 

 

Tablo 4.9’da ise KPSOA, GAR [138] ve [6]’da önerilen algoritmalardan elde edilen 

sonuçlar karşılaştırılmaktadır. GAR algoritması sadece yoğun nesne kümelerini bulmak için bir 

evrimsel algoritma kullanmaktadır. Bu yüzden, kurallara bağlı değerler ile ilgili karşılaştırmalar 

yapılmamıştır. “Destek(%)” sütun değerleri ortalama desteği, “Boyut” sütun değerleri kuralda 

bulunan ortalama nitelik sayısını göstermektedir. “Genlik(%)” sütun değerleri ise kümeye bağlı 

aralıkların ortalama boyutunu göstermektedir. 

KPSOA altı veritabanından üçünde yüksek destek değerli kurallar (nesne kümelerine 

bağlı) bulmuştur ve fark yine fazla değildir. Tüm veritabanları için KPSOA tarafından elde 

edilen boyut değerleri GAR algoritmasının bulduklarından daha küçüktür ve altı veritabanından 

ikisinde [6]’da önerilen algoritmadan elde edilenden daha küçüktür. KPSOA tarafından elde 

edilen genlik değerleri GAR tarafından elde edilen değerlerden daha küçüktür ya da o değerlere 

eşittir. Altı veritabanından dördünde de [6]’da önerilen algoritmadan elde edilen genlik 

değerlerinden daha küçük değerlere sahiptir  
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Tablo 4.9. Destek, boyut ve genlik sonuçlarının karşılaştırılması 
 

Destek(%) Boyut Genlik(%) 
Veritabanı 

KPSOA GAR [6] KPSOA GAR [6] KPSOA GAR [6] 
Basketball 36.44 36.69 32.21 3.21 3.38 3.21 19 25 20 

Bodyfat 65.22 65.26 63.29 6.94 7.45 7.06 25 29 27 

Bolts 28.48 25.97 27.04 5.14 5.29 5.14 19 34 27 

Pollution 43.85 46.55 38.95 6.46 7.32 6.21 15 15 14 

Quake 38.74 38.65 36.96 2.22 2.33 2.10 17 25 19 

Sleep 36.52 35.91 37.25 4.19 4.21 4.19 5 5 4 

 

Gerçek verilerdeki son deneysel sonuçlar, Tablo 4.10’dadır ve burada da keşfedilen 

kurallar tarafından kapsanan kuralların yüzdesi verilmiştir. Bu sonuçlardan da KPSOA 

algoritmasının diğer evrimsel hesaplama tabanlı algoritmalarla rekabet edebileceği 

görülebilmektedir.  

 

Tablo 4.10. Keşfedilen kurallar tarafından kapsanan kayıtların yüzdesi 
 

Kayıtlar(%) 
Veritabanı 

KPSOA GAR [6] 

Basketball 100.00 100.00 100.00 

Bodyfat 86.11 86.00 84.12 

Bolts 79.80 77.50 77.5 

Pollution 95.02 95.00 95.0 

Quake 87.92 87.50 87.6 

Sleep 81.02 79.03 79.81 

 

Sonuç olarak KPSOA kuralları, aralıkları çok fazla seçmeden ve yüksek güven ve 

destek değerlerine sahip olacak şekilde keşfetmiştir. Ayrıca kurallardaki nitelik sayısı da azdır. 

Böylece veritabanlarında keşfedilen kurallar, doğru, okunabilir ve anlaşılabilirdir. 

 
4.6. Sonuçlar 

 
Tezin bu bölümünde kaba örüntü fikrine bağlı olarak kaba parçacık ve kaba karar 

değişkenleri kullanan KPSOA önerilmiştir. Yani aralıkların birer karar değişkeni olarak 

kullanılması durumunda PSO’ya yapılacak eklentiler açıklanmıştır. PSO algoritmalarında 

kullanılan geleneksel parçacık ve değerlerin bunların kaba eşdeğerlerinin özel bir durumu 

olduğu gösterilmiştir. 
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Aynı zamanda, bu şekilde kaba hesaplama alanına da ilave bir konu eklenmiştir. Ayrıca 

seçilen ilk uygulama alanı, nicel nitelikler içeren veri tabanlarında veri madenciliği, için de yeni, 

etkili ve otomatik bir yöntem önerilmiştir ve bilgi kayıpları ve ön işlemelerden kaçınılarak bilgi 

keşfi yapılmıştır.  

KPSOA pratik uygulamalar için kullanışlı genişletmeler sunmaktadır. Kaba küme teorili 

PSO algoritmaları ve bunun farklı arama ve optimizasyon problemlerinde daha ayrıntılı 

deneyleri ileriki çalışmalar olarak düşünülebilir. 
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5. KABA KAOTĐK PSO 

 
 
5.1. Giriş 

 
Tezin bu bölümünde ise, üçüncü bölümde önerilen kaotik haritalı PSO algoritmaları ile 

dördüncü bölümde önerilen kaba PSO algoritmasının birleşimi ile kaba kaotik PSO (KKPSO) 

algoritmaları önerilmiştir. Kaba değerlerle temsil ve hesaplamaların yapılması zorunluluğu olan 

yerlerde kullanılan kaba PSO algoritmasına, kaotik haritalar eklenmiş ve algoritmanın 

performansının arttırılması amaçlanmıştır. Böylece; kaba kümeler, kaos ve optimizasyonun 

birlikte kullanılabileceği genel amaçlı, melez arama ve optimizasyon algoritmaları önerilmiştir. 

Aynı zamanda kaba hesaplama alanına yeni bir çalışma konusu eklenmiştir. Bu amaçla, KKPSO 

teorileri açıklanmış ve performansının testi için nicel birliktelik kural madenciliği alanında 

uygulamalar yapılmıştır. Seçilen bu uygulama alanı için önerilen yöntemin çok uygun ve etkili 

olduğu gösterilmiştir. 

 
5.2. Kaba Kaotik PSO (KKPSO) 

 
Üçüncü bölümde, PSO’nun parametrelerinin belirlenmesinde rasgele tabanlı bir seçim 

söz konusu olduğunda farklı kaotik sistemler rasgele sayı dizilerinin yerine kullanılmış ve farklı 

kaotik haritalı PSO algoritmaları önerilmiştir. Aynı algoritmalar, kaba PSO için de kullanılmış 

ve kaba kümelerin aralık cebri konusu ile kaosun kaotik haritalar konusunun PSO’ya 

eklenmesiyle oluşturulan bu yeni algoritmalara kaba kaotik PSO (KKPSO) adı verilmiştir. 

 

Tablo 5.1. Kaotik haritalı PSO algoritmalarının kısa özeti 
 
Ad Etki Kaotik Haritanın Ölçekli Değerleri 

KPSO1 Başlangıç hız ve pozisyon Her karar değişkeninin alt ve üst sınırları 

KPSO2 c1 0.5 – 2.5 - - 

KPSO3 c2 0.5 – 2.5 - - 

KPSO4 c1 ve c2 0.5 – 2.5  0.5 – 2.5 - 

KPSO5 r1 0.0 – 1.0 - - 

KPSO6 r2 0.0 – 1.0 - - 

KPSO7 r1 ve r2 0.0 – 1.0  0.0 – 1.0 - 

KPSO8 w, r1 ve r2 0.0 – 1.0  0.0 – 1.0 0.0 – 1.0 

KPSO9 w 0.0 – 1.0 - - 

KPSO10 w ve c1 0.0 – 1.0  0.5 – 2.5 - 

KPSO11 w ve c2 0.0 – 1.0  0.5 – 2.5 - 

KPSO12 w, c1 ve c2 0.0 – 1.0 0.5 – 2.5 0.5 – 2.5 
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KHPSO algoritmalarının kısa bir özeti Tablo 5.1’de verilmiştir. Burada ilk sütun 

PSO’nun adını, ikinci sütun kaotik haritaların PSO’daki etkilediği parametreleri ve üç alt 

kısımdan oluşan üçüncü sütun ise bu parametrelerin seçilen kaotik haritanın ürettiği değerlerin 

ölçeklenmesiyle alacağı değerleri göstermektedir. Tablo, örnek olarak şu şekilde yorumlanabilir. 

KPSO3 sadece ikinci hızlanma katsayısını etkiler ve ilgili kaotik haritadan alınan değerler 0.5 

ile 2.5 arasında ölçeklenmiştir. Eğer kaba temsiller kullanılırsa bu isimlere, “Kaotik” kelimesini 

temsil eden birinci “K”’dan önce “Kaba”’yı temsil eden ikinci bir “K” eklenir. Yani KPSO1 

için kaba temsil kullanılırsa bu KKPSO1 olarak adlandırılır. 

 
5.3. KKPSO Algoritmalarının Veri Madenciliğinde Uygulamaları 

 
KKPSO algoritmaları, kategorik ya da nicel değerler içeren veritabanlarında birliktelik 

kurallarının keşfi için kullanılmıştır. Bunun için de dördüncü bölümde de uygulaması yapılan ve 

Agrawal ve arkadaşları tarafından kullanılan ikinci fonksiyon [135], test amaçlı kullanılmıştır. 

Bu veritabanındaki ilk uygulamada, 5000 adet veri oluşturulmuş ve bu verinin %37.9’unun A 

grubuna ait olması sağlanmıştır. Bu amaçla dördüncü bölümde açıklanan parçacık temsili, 

uygunluk fonksiyonu ve mutasyon çeşitleri kullanılmıştır. Algoritma parametre değerleri Tablo 

5.2’de verilmiştir. 

 

Tablo 5.2. Kullanılan parametre değerleri 
 

Parametreler Sürü boyutu Đterasyon sayısı Mutasyon olasılığı 

Değerler 20 1000 50% 

 

Yapılan deneyde, önerilen on iki KKPSO algoritmalarının nicel birliktelik kurallarının 

keşfinde performansları karşılaştırılmıştır. Algoritmaların etkinliliğini doğrulayan sezgisel bir 

ölçü, kuralların aralıklarının sentetik olarak oluşturulanlarla karşılaştırılması ve böylece 

kuralların kalitelerinin belirlenmesidir. KPSOA tarafından keşfedilen kuralların ortalama destek 

ve güven değerleri 12.21 ve 93.33’tür. Burada hızlandırma katsayıları için 2 değeri, atalet 

ağırlığı için ise 0.9–0.4 arası azalan değerler seçilmiştir. KKPSO1 algoritması için de aynı 

değerler kullanılmıştır. 

KKPSO algoritmaları tarafından elde edilen sonuçlar Tablo 5.3’te verilmiştir. Tüm 

algoritmalar üç kural keşfetmiştir ve bu kurallara ait ortalama destek ve güven değerleri 

sunulmuştur. Ortalama destek sayısı üç ile çarpıldığında Grup A’ya ait kayıtların oranı 

olan %37.9’a yakın değerler elde edilebilmektedir. Güven değerleri de %100’e yakındır. Bu da 

oluşturulan ilgili bölgelerde, diğer gruba ait kaydın olmadığını göstermektedir. KKPSO7, 



 96

KKPSO8 ve KKPSO12 algoritmaları Zaslavskii haritasıyla kullanıldığında iyi performans 

göstermiştir. KKPSO7 algoritmasının Zaslavskii haritasıyla kullanıldığında keşfettiği kurallar 

Tablo 5.4’tedir. 

 

Tablo 5.3. KKPSO algoritmaları tarafından elde edilen kuralların ortalama destek ve güven değerleri 
(Grup A=Toplam veri sayısının %37.9’u) 
 

Lojistik Harita 

 
KKPSO

1 

KKPSO

2 

KKPSO

3 

KKPSO

4 

KKPSO

5 

KKPSO

6 

KKPSO

7 

KKPSO

8 

KKPSO

9 

KKPSO 

10 

KKPSO 

11 

KKPSO 

12 

Destek 

(%) 
11.24 10.64 10.96 11.98 10.78 10.80 12.48 12.28 10.82 10.66 11.02 11.54 

Güven 

(%) 
98.14 98.12 97.01 97.64 97.42 97.96 99.01 98.98 98.42 98.24 98.56 99.08 

Sinüzoidal Yineleyici 

 
KKPSO

1 

KKPSO

2 

KKPSO

3 

KKPSO

4 

KKPSO

5 

KKPSO

6 

KKPSO

7 

KKPSO

8 

KKPSO

9 

KKPSO 

10 

KKPSO 

11 

KKPSO 

12 

Destek 

(%) 
11.20 11.24 10.86 11.62 10.86 10.96 12.38 12.28 10.58 10.90 11.06 11.24 

Güven 

(%) 
98.48 98.46 98.08 98.06 97.56 97.02 99.08 98.96 98.54 97.98 99.02 98.96 

Gauss Haritası 

 
KKPSO

1 

KKPSO

2 

KKPSO

3 

KKPSO

4 

KKPSO

5 

KKPSO

6 

KKPSO

7 

KKPSO

8 

KKPSO

9 

KKPSO 

10 

KKPSO 

11 

KKPSO 

12 

Destek 

(%) 
11.91 11.05 10.86 10.24 10.84 10.97 12.28 12.23 10.81 10.23 9.99 11.98 

Güven 

(%) 
97.22 97.62 98.68 98.16 98.26 97.64 99.04 99.06 98.48 97.86 97.56 98.62 

Zaslavskii Haritası 

 
KKPSO

1 

KKPSO

2 

KKPSO

3 

KKPSO

4 

KKPSO

5 

KKPSO

6 

KKPSO

7 

KKPSO

8 

KKPSO

9 

KKPSO 

10 

KKPSO 

11 

KKPSO 

12 

Destek 

(%) 
11.05 11.26 10.24 10.22 10.97 10.96 12.62 12.41 10.96 10.82 10.88 11.94 

Güven 

(%) 
97.56 97.55 97.22 98.08 98.48 98.69 99.65 99.12 98.62 98.86 97.16 98.84 

 

Tablo 5.4. Zaslavskii haritası kullanan KKPSO7 algoritması tarafından bulunan kurallar 
 

Kural Destek(%) Güven(%) 

Eğer yaş∈[20, 40]∧maaş∈[50136, 99869]⇒Grup A 12.63 98.94 

Eğer yaş ∈[41, 59]∧maaş∈[76779, 12469]⇒Grup A 12.62 100 

Eğer yaş ∈[61, 80]∧maaş∈[25440, 73998]⇒Grup A 12.61 100 

 

Đkinci uygulamada ise gruplar dengeli dağıtılmıştır. Yani A grubuna ait kayıt sayısı, 

toplam kayıt sayısının yarısı (2500) olarak belirlenmiştir. Böylece, keşfedilecek kuralların 

toplam destek değerinin %50’ye yakın olması beklenmektedir. KKPSO algoritmaları tarafından 

elde edilen sonuçlar Tablo 5.5’te verilmiştir. Tüm algoritmalar, her biri ata kısımda iki nitelik 
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içeren üç kural keşfetmiştir ve bu kurallara ait ortalama destek ve güven değerleri sunulmuştur. 

Ortalama destek sayısı üç ile çarpıldığında, Grup A’ya ait kayıtların oranı olan %50’ye yakın 

değerler elde edilebilmektedir. Güven değerleri de %100’e yakındır ve bu da oluşturulan ilgili 

bölgelerde diğer gruba ait kaydın olmadığını göstermektedir. Keşfedilen kuralın gücü sayılan 

güven değerlerinin yüksek olması, önerilen algoritmaların doğru ve tutarlı kural keşfettiklerini 

göstermektedir. Yine KKPSO7, KKPSO8 ve KKPSO12 algoritmalarının Zaslavskii haritasıyla 

kullanıldığında iyi performans gösterdiği tespit edilmiştir. KKPSO8 algoritmasının Zaslavskii 

haritasıyla kullanıldığında keşfettiği kurallar Tablo 5.6’dadır. Burada özellikle destek değerleri 

arasındaki küçük fark, aslında veritabanındaki kayıtların özelliklerine göre büyük önem arz 

edebilmektedir.  

Nicel niteliklere ait bölme noktalarının önerilen yöntemlerle doğru olarak bölündüğü, 

ayrıca fazla nitelik ya da fazla kuralın elde edilmediği, böylece güven ve destek değerleri 

yüksek, anlaşılabilir kuralların keşfedildiği görülmektedir.  

 

Tablo 5.5. KKPSO algoritmaları tarafından elde edilen kuralların ortalama destek ve güven değerleri 
(Grup A=Toplam veri sayısının %50’si) 
 

Lojistik Harita 

 
KKPSO

1 

KKPSO

2 

KKPSO

3 

KKPSO

4 

KKPSO

5 

KKPSO

6 

KKPSO

7 

KKPSO

8 

KKPSO

9 

KKPSO 

10 

KKPSO 

11 

KKPSO 

12 

Destek 

(%) 
13.86 13.94 13.96 13.98 13.92 13.98 13.90 14.96 14.88 14.86 14.24 14.62 

Güven 

(%) 
100 100 100 100 99.88 100 100 100 100 100 100 100 

Sinüzoidal Yineleyici 

 
KKPSO

1 

KKPSO

2 

KKPSO

3 

KKPSO

4 

KKPSO

5 

KKPSO

6 

KKPSO

7 

KKPSO

8 

KKPSO

9 

KKPSO 

10 

KKPSO 

11 

KKPSO 

12 

Destek 

(%) 
14.20 14.26 13.96 14.52 14.44 14.96 15.24 14.28 14.32 14.92 14.62 14.20 

Güven 

(%) 
100 100 100 98.98 100 100 100 100 100 100 100 100 

Gauss Haritası 

 
KKPSO

1 

KKPSO

2 

KKPSO

3 

KKPSO

4 

KKPSO

5 

KKPSO

6 

KKPSO

7 

KKPSO

8 

KKPSO

9 

KKPSO 

10 

KKPSO 

11 

KKPSO 

12 

Destek 

(%) 
14.68 15.58 14.80 14.64 14.44 14.91 14.62 15.28 14.54 14.54 13.84 15.68 

Güven 

(%) 
100 100 100 100 100 100 100 100 100 100 100 100 

Zaslavskii Haritası 

 
KKPSO

1 

KKPSO

2 

KKPSO

3 

KKPSO

4 

KKPSO

5 

KKPSO

6 

KKPSO

7 

KKPSO

8 

KKPSO

9 

KKPSO 

10 

KKPSO 

11 

KKPSO 

12 

Destek 

(%) 
15.26 15.36 15.62 15.48 15.88 15.28 15.94 16.06 15.66 15.80 15.36 15.88 

Güven 

(%) 
100 100 100 100 100 100 100 100 100 100 100 100 
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Tablo 5.6. Zaslavskii haritası kullanan KKPSO8 algoritması tarafından bulunan kurallar 
 

Kural Destek(%) Güven(%) 

Eğer yaş∈[20, 39]∧maaş∈[50120, 99902]⇒Grup A 16.12 100 

Eğer yaş ∈[40, 59]∧maaş∈[75972, 12488]⇒Grup A 15.98 100 

Eğer yaş ∈[61, 80]∧maaş∈[25094, 74908]⇒Grup A 16.08 100 

 
5.4. Sonuçlar 

 
Tezin bu bölümünde, kaba değerlerle temsil ve hesaplamaların yapılması zorunluluğu 

olan yerlerde kullanılan kaba PSO algoritmasına kaotik haritalar eklenmiş ve algoritmanın 

performansının arttırılması amaçlanmıştır. Bu amaçla uygulama alanı veri madenciliği seçilmiş 

ve nicel birliktelik kurallarının keşfinde bu önerilen algoritmaların performans karşılaştırılması 

yapılmıştır. Nicel birliktelik kurallarının keşfi ve nicel niteliklerin aralıklarının otomatik 

bölünmesi işini, eş zamanlı ve doğru olarak yapan algoritmalar literatürde pek fazla yoktur ve 

bu gibi durumlarda bu problemi bir optimizasyon problemi olarak ele alıp çözebilen yumuşak 

hesaplama tekniklerine ihtiyaç duyulabilmektedir. Tezin bu bölümünde de bu zor problem için 

farklı yumuşak hesaplama tekniklerinin birleşimiyle etkili sonuçlar verebilecek KKPSO 

algoritmaları tanıtılmış ve veri madenciliği uygulamaları yapılmıştır. 

Bu bölüm, üçüncü bölümde önerilen on iki farklı kaotik haritalı PSO’nun, aralığın karar 

değişkeni olarak kullanıldığı uygulama alanları için kaba değişkenin parçacık temsilinde ve 

hesaplamalarında kullanıldığı kaba PSO algoritmasıyla birleştirilmesinin bir sonucudur. 

Önerilen yöntemler çok farklı alanlarda uygulama alanı bulabilir ve etkili sonuçlar verebilir. 
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6. ÇOK AMAÇLI PARÇACIK SÜRÜ OPTĐMĐZASYONU 

 
 
6.1. Giriş 

 
Çoğu mühendislik problemleri ile ilgili gerçek uygulamada genellikle birden fazla 

amacın optimizasyonu ile ilgilenilir. Yani bir amaç fonksiyonu yerine k tane amaç 

fonksiyonunun maksimize ya da minimize edilmesi söz konusudur. Problemin optimum çözümü 

ya da çözümleri, tüm amaç fonksiyonlarını birlikte (simültane olarak) optimize eden çözümdür. 

Böyle bir çözüme ulaşmak çok zordur [145]. Çünkü tek bir amaca ilişkin olarak en iyi değeri 

veren bir çözüm, birden fazla amaç söz konusu olduğunda aynı sonucu vermeyebilir. Yani, 

genellikle göz önüne alınan amaçlar, diğer bir deyimle değerlendirme ölçütleri birbiri ile 

çelişkili ve negatif yönde etkileşimli olabilmektedir. Örneğin bir veri madenciliği süreci 

sonunda elde edilen kuralların yüksek doğruluğa ve güce sahip olması, ilginç, kolay okunabilir 

ve anlaşılabilir olması istenmektedir. Başka bir örnek ise alınmak istenen herhangi bir cihazın 

çok fonksiyonlu, kaliteli ve kolay kullanılabilir olması ve fiyatının düşük olması istenir. Kısaca, 

birden fazla amaç dikkate alındığında amaçlar arasında ödünleşimler söz konusu olabilmektedir. 

Çok amaçlı optimizasyon son birkaç yıldır önemli bir araştırma alanı haline gelmiştir 

[145]. Aslında sınıflandırma kural madenciliği de aynı birimle ölçülebilen ve çoğu zaman 

çelişen değişik amaçlarla çok amaçlı bir optimizasyon problemi olarak tasarlanabilir. 

Sınıflandırma kural madenciliği için çok amaçlı yaklaşım kullanan çok kısıtlı çalışma vardır 

[146–150]. 

Farklı veri madenciliği algoritmaları için çok amaçlı yaklaşım olarak en çok kullanılan 

üç yöntem; verilen bir formüle göre (ağırlıklı formül) tüm amaçları ağırlıklandırma, amaçlara 

bazı öncelik şemaları atama (sözlüksel) ve tek bir çözümden ziyade olası en iyi çözümler 

kümesini bulan Pareto baskınlık yaklaşımıdır. Literatürde PSO’yu çok amaçlı problemler için 

düzenlemeyi içeren yayınlar bulunmaktadır [151–153]. Aynı zamanda tek amaçlı PSO 

kullanarak sınıflandırma kural madenciliği yapan birkaç çalışma da vardır [154–156]. Fakat 

bunlar çok amaçlı özelliğe sahip değildir. Tezin bu bölümünde de PSO’nun çok amaçlı 

optimizasyon problemlerinde kullanılabilmesi için farklı bir yöntem önerilmiş ve ilk olarak veri 

madenciliği tekniklerinden sınıflandırma kural madenciliği alanında uygulamaları yapılmıştır. 

Doğru ve anlaşılabilir sınıflandırma kuralların, düzenlenen PSO ile keşfi amaçlanmıştır.  
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6.2. Çok Amaçlı Optimizasyon 

 
Çok amaçlı optimizasyon iki ya da daha fazla amaç fonksiyonunu eş zamanlı optimize 

etme işidir. Genellikle amaç fonksiyonları istenen bir sonucun farklı özelliklerini dikkate alır. 

Çoğu zaman bu amaçlar, tüm fonksiyonları eş zamanlı olarak optimize eden tek bir sonucun 

bulunmadığı bir çelişki içindedirler. Bunun yerine bir optimal çözümler kümesi söz konusu olur. 

Bu küme de Pareto optimallık kavramı kullanılarak tanımlanır ve çoğunlukla Pareto optimal 

küme olarak adlandırılır [157]. 

Bir çözüm vektörü x∈X, X arama kümesinde x’e baskın olan herhangi bir çözüm 

olmadığı zaman Pareto optimal olur. Baskın olma ise şu şekilde tanımlanır: 

Bir çözüm vektörü x aşağıdaki şartlar sağlandığında y’ye baskındır denir: 

 

• ∀ i∈{1, 2, ..., I} fi(x) ≥ fi(y) ve 

• ∃ i∈{1, 2, ..., I} fi(x) > fi(y). 

 

I amaç fonksiyon sayısıdır. Bu tanım şu anlama gelmektedir: x, her amaca dair y kadar 

iyiyse ve x’in y’den daha iyi olduğu konusunda en az bir amaç varsa y’ye baskındır denir. Bu 

şekilde Pareto optimal çözümler Pareto optimal kümeyi oluşturur [157]. Minimizasyonu istenen 

iki amaç fonksiyonlu bir problemin örnek bir Pareto optimal kümesi Şekil 6.1’de gösterilmiştir.  

Amaç 2

Amaç 1

Pareto Optimal Küme

 

Şekil 6.1. Pareto optimal küme 
 

Baskınlık ve Pareto optimallık, çok basit olarak Şekil 6.2’de tasvir edilmiştir. s1, s2 ve s3 

gibi üç tane çözümün ve maksimize edilecek iki amacın olduğunu varsayalım. s1 amaç 1 için en 
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yüksek değere sahip olduğundan herhangi bir çözüm tarafından baskın değildir. Benzer olarak 

s2 de amaç 2 için en yüksek değere sahip olduğundan hiçbir çözüm s2’ye baskın değildir. s3 

amaç 2 için yüksek değere sahip olduğundan, s1 tarafından baskın değildir, ancak iki amaç için 

de s2’den daha düşük değere sahip olduğundan s2 tarafından baskındır. Böylece s1 ve s2’ye 

baskın herhangi bir çözüm bulunmamakta, s3’e ise bir çözüm, s2, baskın olmaktadır. Bu yüzden 

baskın olmayan ya da Pareto optimal çözüm Pareto_Küme={s1, s2} şeklinde gösterilir. 

 

Şekil 6.2. Baskınlık ve Pareto optimallik kavramı 
 

Şekil 6.3 ise minimizasyon ya da maksimizasyona ilişkin optimizasyon 

konfigürasyonlarına bağlı iki amaçlı problemler için olası Pareto optimal kümeleri 

göstermektedir. Burada↑  maksimizasyonu, ↓ ise minimizasyonu temsil etmektedir. 

Çok amaçlı optimizasyonda amaç, farklı Pareto optimal çözüm kümelerini bulmaktır. 

Evrimsel çok amaçlı optimizasyonda, tek bir evrimsel algoritma çalışmasıyla çözümler kümesi 

bulunur. Uygulaması yapılan kural madenciliği alanında da, tüm amaçlar eş zamanlı 

düşünüldüğünde geniş anlamda herhangi bir kuralın diğerinden üstün olmadığı optimal, yüksek 

kaliteli sınıflandırma kurallarının PSO’nun tek çalıştırılmasında bulunması hedeflenmiştir. 
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Şekil 6.3. Đki amaçlı bir problem için örnek Pareto optimal kümeler 
 

 
6.3. Sınıflandırma Kural Madenciliği ve Đlgili Çalışmalar 

 
Sınıflandırma kurallarının madenciliği, en çok kullanılan ve insan düşünce yapısına en 

yatkın veri madenciliği tekniklerinden biridir. Bu teknik ile bir veri kümesinden kullanıcıların 

çok kolay anlayacağı kurallar çıkarılır. Bu teknikte veri için, nitelikler kullanılarak dağılıma 

göre bir model bulunur. Bulunan bu model, başarısı belirlenerek niteliğin gelecekteki ya da 

bilinmeyen değerini tahmin etmek için yani en doğru sınıfa atamak için kullanılır. Kısaca 

sınıflandırmada, yeni gelen her bir örnek, önceden sınıflandırılmış bir takım sınıflar üzerinde 

yapılan bir eğitim neticesinde ortaya çıkan bir modele göre daha önce belirlenmiş olan bir sınıfa 

atanmaktadır. Bu bağlamda kullanılan belki de en önemli değerlendirme kriterleri, tahmini 

doğruluk ve anlaşılabilirliktir. Tahmini doğruluk, genelleme olarak ta bilinir ve oluşturulan 

modelin daha önce görülmemiş örnekleri sınıflandırmada ne kadar performanslı olduğunun bir 

ölçüsüdür. Anlaşılabilirlik ise, oluşturulan modelin kullanıcılar tarafından anlaşılabilirliğini 

ölçer [56].  
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Sınıflandırma için çeşitli yöntemler ve algoritmalar bulunmaktadır. Karar ağaçları, 

sınıflandırma için güçlü bir modeldir. Bunlar, C4.5 [158] ve CART [159] gibi tekniklerle 

oluşturulur ve ‘böl-ve-yönet’ stratejisini uygular. Veri, ayrı alt kümelere ayrılır ve algoritma her 

kümeye tekrarlı olarak uygulanır. Karar ağaçlarının en önemli avantajı, türetilen bir model 

olarak karar verme işlemine açık bir şekilde hakim olmasıdır. Çok sayıda işlem yapmaya gerek 

duymadan sınıflandırma işlemini gerçekleştirebilir. Ancak bunlar, oluşturulmaları sırasında 

eğitim verisinde örneklerin saf alt kümelerini belirleme eğilimindedir. Bu da yanlış ya da 

tutarsız olan örneklere aşırı uymaya neden olabilir ve böylece son modelin genelleme gücünü 

azaltır. Bu problemin üstesinden gelmek için kural budama ve benzeri yardımcı yordamlar 

kullanılmaktadır. Ayrıca, karar ağaçları, tahmin için kullanıldığı durumlarda tahmin edilecek 

değişkenin sürekli değerler alması durumunda uygun sonuçlar üretememektedir. 

Karar listeleri de eğitim verisinden çıkarılan bilginin açık bir temsilini belirli şekilde 

göstermesiyle karar ağaçlarına benzer. Ancak bunlar ‘ayır-ve-yönet’ yaklaşımını kullanır ve bir 

kural, eğitim verisinin bir alt kümesini kapsamak için oluşturulur ve sonra daha fazla kural, 

kalan örnekleri tekrarlı olarak kapsamak için üretilir. Bu strateji, ilk olarak AQ ailesinde [160] 

uygulanmıştır ve daha sonra CN2 [161] gibi algoritmalara temel teşkil etmiştir. Algoritmanın 

sonunda sıralı EĞER-O ZAMAN kurallarının listesi elde edilir ve yeni bir örneğin 

sınıflandırılmasında sırayla uygulanır. Eğer listedeki ilk kural örneği kapsamıyorsa, o zaman bir 

sonraki denenir. Đkincisi de çalışmazsa, listedeki üçüncü kural denenir ve böylece devam eder. 

Bir örnek bir kural tarafından sınıflandırılırsa, daha fazla kural denenmez. Eğer kuralların 

hiçbiri örneği kapsamıyorsa, o zaman karar listesinin en altındaki varsayılan bir kural işletilir. 

Yani varsayılan kurala ulaşan tüm sınıflandırılmamış örnekler bu kuralın sınıf etiketiyle 

işaretlenir. 

Sıralı listelerin bir dezavantajı, bireysel kuralların kendilerinin anlaşılma bakımından 

zor olabilmesidir. Bir listedeki bir kural, önceki tüm kuralların bağlamında ele alınmalıdır. 

Karar ağaçları gibi, karar listeleri de gürültülü eğitim verisine aşırı uyma problemiyle karşı 

karşıyadır ve bu yüzden genellikle kural budama işlemi uygulanır. 

Evrimsel hesaplama, özellikle GA ve genetik programlama da etkili şekilde 

sınıflandırma kural madenciliğinde kullanılmıştır [162, 163]. Bu yaklaşımla arama uzayı 

üzerinde global bir arama yapılır ve kaba seçim algoritmalarına göre nitelik etkileşimiyle daha 

iyi baş edilebilir. Ayrıca açıklanabilir sonuçlar üretirler ve çok değişik tiplerdeki verileri işleme 

özelliğine sahiptir. Ancak, optimal sonucun üretildiğine dair bir garanti bulunmamaktadır ve 

bazen ağır işlem yükü gerektirebilir. Ayrıca, sürü zekâsı tekniklerinden karınca koloni 

optimizasyon algoritması temelli algoritmalar [164] ve yapay bağışıklık sistemlerinden klonal 

seçim algoritması da sınıflandırma kurallarının keşfi için kullanılmıştır [14]. Sürü zekâsı 
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konusunun yeni ve aktif araştırma konusu PSO algoritmasının sınıflandırma kural 

madenciliğinde kullanımı çok yenidir ve şu ana kadar sadece iki çalışma yapılmıştır. Yakın 

zamanda Sousa ve arkadaşları tarafından kullanılmıştır [165]. Aynı zamanlarda Liu ve 

arkadaşları tarafından da kullanılmıştır [166]. 

Sınıflandırmaya ayrıca örnek-tabanlı öğrenme, yapay sinir ağları, lojistik gerileme ve 

Bayesian ağları yaklaşımları da vardır. Bu metotların çoğunun temel dezavantajı, tahmini 

doğrulukları bazı durumlarda iyi olmasına rağmen, açıklayıcı güçlerinin eksikliğidir. 

Literatürdeki bu yöntemlere bazen bulanık mantık ta eklenerek bulanık kurallar üretilmiştir [10]. 

Kural budama gürültülü eğitim verisine aşırı uymadan kaçınmak için gerekli bir 

işlemdir. Karar listelerinde kural budama için iki temel strateji vardır. Birincisi komple bir kural 

kümesi oluşturulur ve sonra nitelikleri kurallardan elimine edilerek ya da bireysel kurallar 

silinerek kural kümesi basitleştirilir. Bu global olarak kural kümesinin önceden tanımlı bazı 

budama kriterlerine bağlı olarak optimize edilmesiyle yapılır. Đkinci strateji ise artımsal budama 

olarak adlandırılır. Çünkü her kural, algoritmayla oluşturulduktan hemen sonra basitleştirilir 

[56].  

Tezin bu bölümünde ise sınıflandırma kural madenciliği çok amaçlı bir optimizasyon 

problemi olarak ele alınmış ve doğru, anlaşılabilir kural listesi düzenlenen PSO algoritmasıyla 

elde edilmeye çalışılmıştır. Bu yöntemde, yoğun işlem gerektiren budama işlemine gerek 

duyulmamakta ve bu iş kural keşif aşamasında direkt halledilmektedir. Ayrıca bu yöntem ‘ayır-

ve-yönet’ stratejini kullanmaz. Onun yerine, veritabanını azaltmadan her seferinde her sınıf için 

Pareto tabanlı çok amaçlı optimizasyon fikrini uygular. Bu şekilde [165] ve [166]’da önerilen 

yöntemlerde ortaya çıkabilecek kurallar arasında beklenmedik etkileşimler ortadan kalkacaktır. 

Bu etkileşimler, bir örnek farklı sınıfların birkaç kuralı tarafından kapsandığı zaman ortaya 

çıkabilir.  

[165] ve [166]’da önerilen algoritmalarda parçalanma problemi ortaya çıkabilir [167]. 

Kapsama algoritmaları bir kural üretildiğinde tüm eğitim verisindeki kapsanan örnekleri çıkarır 

ve iterasyonlardan sonra eğitim örneklerinin sayısını azaltır ve lokal olarak önemli ancak global 

olarak önemsiz kuralların üretilmesine yol açar. Bu çalışmada önerilen yöntemle, bu global 

önemli kuralların aranması sağlanır.  

Şekil 6.4, bu tür kapsama algoritmalarında ortaya çıkabilecek olası bir parçalanma 

problemini göstermektedir. D eğitim verisinde önem sırasına göre listelenmiş P1, P2 ve P3 gibi 

üç kuralın olduğunu varsayalım. Ardışık kapsama algoritmaları önce P1’i keşfeder ve P1 

tarafından kapsanan pozitif örnekleri çıkarır. Bu taşınmadan dolayı kalan veride P2, P3’ten daha 

az önemli hale gelir ve arama P2 yerine P3’ü bulur. Đterasyonlardan sonra keşfedilen kurallar 

daha çok lokal olarak önemli olacaktır ve global olarak önemli olan kuralları kaybetme şansı 
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sürekli artacaktır. Bu çalışmada önerilen yöntemle parçalanma probleminin önüne geçilmiştir. 

Çünkü hiçbir eğitim verisi çıkarılmaz ve algoritma tüm eğitim verisine bağlı olarak çalışır. 

 

 

 

Şekil 6.4. Parçalanma problemi 
 

6.4. PSO Tabanlı Çok Amaçlı Kural Madenciliği için bir Model 

 
6.4.1. Parçacık Temsili 

 

Her parçacık bir kuralı temsil eder ve algoritma bitim şartı sağlandığında her sınıf için 

doğru ve anlaşılabilir kuralların kümesini oluşturur. Her parçacık, [0, 1] aralığında iki kısımdan 

oluşan reel değerli elemanların birleşimidir ve Şekil 6.5’te gösterilmiştir. m tane karar niteliği 

varsa her parça m elemandan oluşur. Böylece parçacık boyutu 2m olur. Bir parçacığa bağlı 

olarak bir kural oluşturmak için, parçacıkta kodlanmış veri iki kısımda orijinal bilgiye 

dönüştürülür. Eğer birinci (Nitelik-varlık kısmı-NV) kısımda i. elemanın değeri 0.5’ten büyükse 

o zaman i. nitelik kuralın ata kısmında yer alacak aksi durumda yer almayacaktır. Parçacıkta 

ikinci kısım Nitelik-değer (ND) kısmı olarak adlandırılır. ND kısmı nispeten komplekstir, çünkü 

farklı tipteki niteliklerin dikkate alınması gerekmektedir.  

Tamsayı tipi için dönüşüm Denklem (6.1)’ de verilmiştir [166]. 

 

Vorj[i]=tavan(vi× (Vimax-Vimin)+Vimin)            (6.1) 

 

Nominal tipteki nitelikler için ise dönüşüm Denklem (6.2)’deki gibidir [166]. 

 

Vorj[i]= DiziDegeri(tavan(vi) × DegerSayisii)      (6.2) 

 

Burada Vorj[i] i. nitelik için parçacıktan dönüştürülen değer, vi parçacıktaki i. değer 

anlamına gelmektedir. Denklem (6.1)’de i. niteliğin tipi tamsayı ya da reeldir ve Vimax i. niteliğin 

maksimum değerini Vimin de minimum değerini göstermektedir. Denklem (6.2)’de niteliğin tipi 
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nominaldir ve DiziDegeri i. niteliğin her farklı nominal değerini tutan dizidir ve DegerSayisii de 

i. niteliğin toplam değişik değer sayısıdır. tavan() bilinen tavan fonksiyonudur [166]. 

 

Eleman1 Eleman2 ... ... Elemanm 

NV1 ND1 NV2 ND2 ... ... NVm NDm 

 
Şekil 6.5. Parçacıktaki kural temsili 
 
6.4.2. Amaç Tasarımı 

 
Keşfedilen kuralların yüksek tahmini doğruluk ve anlaşılabilirliğe sahip olması 

gerekmektedir. Bu yüzden tahmini doğruluk ve anlaşılabilirlik ölçüleri tanımlanmalıdır. 

 

Tahmini Doğruluk = 
A

SA 2
1& −

       (6.3) 

 

SA&  kuralın hem ata (A) hem de sonuç (S) kısmını karşılayan kayıt sayısıdır. |A| ise 

sadece kuralın ata kısmındaki şartları sağlayan kayıtların sayısıdır.  

 

Anlaşılabilirlik=
kismi NV

5.0kismiNV
1

>
−        (6.4) 

 

Anlaşılabilirlik ölçüsünde kismi NV  parçacıkta kodlanan şartların (karar niteliği) 

sayısıdır ve benzer olarak 5.0kismiNV > da parçacığın NV kısmında 0.5’ten daha büyük 

değere sahip olan şartlarının sayısıdır. 

 
6.4.3. Çok Amaçlı Yaklaşım 

 
Kullanılan teknik [153]’te önerilen tekniğe dayanmaktadır. O ana kadar bulunan global 

en iyi parçacıkları depolamak için bir harici depo (HD) muhafaza edilir ve en başta sürüde tüm 

baskın olmayan parçacıklarla doldurulur. Daha iyi bir çözüm bulunur bulunmaz, HD bu 

çözümlerle güncellenir [153]. 

Bu yaklaşımda her parçacıktan iki parçacık türetilir. i. parçacık için, xi pozisyon ve vi de 

hız olmak üzere, çocuk1 ve çocuk2 şeklinde iki parçacık türetilir ve bunların pozisyon ve hızları 

şu şekilde gösterilir: 



 107 

 

xl=xr=xi 

vl=vr=vi 

 

Elde edilen Pareto optimal kümenin aralarını maksimize etmek için komşuluk ötesi 

arama gerçekleştirilir ve burada ilk çocuk parçacık, çocuk1, için bir global optimum seçilir. 

Komşuluk ötesi arama için HD’de p tane aday çözümün olduğunu varsayalım. Her 

çözüm için benzerlik ölçüsü (Ben) hesaplanır: 

 

( ) ( )[ ]∑
=

≤−=
n

i

jtit xfxfjiBen
1

),( ε        (6.5) 

 

Bir çözümün benzerlik değeri ne kadar fazlaysa bu çözümün komşuluğunda daha fazla 

aday çözüm yerleşmiş demektir. Bu yüzden, minimum benzerliğe sahip çözüm, çocuk1’in global 

optimumu olarak seçilecektir. 

Sonra çocuk1’in hız ve pozisyonu, PSO güncelleme denklemleriyle güncellenir. Eğer 

yeni çözüm xl’ uygunsa ve HD’deki herhangi bir çözüm tarafından baskın değilse, HD xl’ 

eklenmesiyle ve xl’ tarafından baskın bulunan çözümlerin çıkarılmasıyla güncellenir. 

Đkinci çocuk parçacık, çocuk2, için global optimum komşuluk arama stratejisi 

kullanılarak HD’den seçilir. Komşuluk arama stratejisi, HD’de çocuk2’ye en yakın çözüm 

çocuk2’nin global optimumu olarak seçilecektir fikrine dayanmaktadır. Bu strateji parçacıkların 

kendi komşuluklarında arama yapmalarını sağlar ve daha yüksek yakınsama hızı sunar [153]. 

çocuk2 için hız ve pozisyon güncellemeleri PSO güncelleme denklemleriyle yapıldıktan 

sonra yeni bir çözüm xr’ elde edilir. Sonra HD xr’ ile güncellenir. Çocuk parçacıklar uçmayı 

tamamladıklarında, i. parçacık ta güncellenmelidir. Eğer xl’ uygunsa, i. parçacık çocuk1 ile 

güncellenir. Aksi durumda çocuk2 ile güncellenir. Bu kısımdaki uygunluk ise, amaçların 

belirlenen ağırlıklarla çarpılıp toplanmasıyla elde edilen değerin büyüklüğüyle ölçülür. 

Son olarak i. parçacığın kişisel en iyi pozisyonu (pi) xi ve pi arasındaki Pareto baskınlık 

ilişkisi karşılaştırılarak güncellenir. pi xi’ye baskınsa, pi hala i. parçacığın kişisel en iyi 

pozisyonu olacaktır. Aksi durumda xi pi’nin yeni değeri olarak tanımlanacaktır. Biri birilerine 

baskın değillerse, amaçların belirlenen ağırlıklarla çarpılıp toplanmasıyla elde edilen değeri 

büyük olan pi’nin yeni değeri olacaktır.  
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6.4.4. Parametre Kontrolü 

 
Veritabanlarında sınıflandırma kuralları keşfetmek için tasarlanan çok amaçlı PSO’da 

parçacık sayısı 30 olarak belirlenmiştir. Sonlandırma kriteri ise 500 iterasyon olarak 

sabitlenmiştir. Atalet ağırlığı komşuluk ötesi arama stratejisi kullanıldığında 1.2’den 0.8’e 

azalan şekilde seçilmiştir. Komşuluk arama stratejisi kullanıldığında ise 0.9’dan 0.4’e doğru 

azalır. λ = 1; Vmin = Xmin = 0; Vmaks = Xmaks = 1. Hızlanma katsayıları da c1 = c2 = 2 olarak 

belirlenmiştir. Tahmini doğruluk için ağırlık 0.7, anlaşılabilirlik için ise 0.3 seçilmiştir. 

 
6.5. Deneysel Sonuçlar 

 
UCI makine öğrenmesi veritabanından “Monk1” ve “Mushroom” veritabanı ilk 

deneyler için kullanılmıştır [168]. Monk1 veritabanında 124 kayıt ve 7 nitelik bulunmaktadır. 

Sınıf niteliği “class”’tır ve “0” ya da “1” değerini alır. Mushroom veritabanında ise 8124 kayıt 

ve 23 nitelik bulunmaktadır. Bu veritabanında da sınıf niteliği “class”’tır ve “e” ya da “p” 

değerini alır [168].  

Elde edilen kural listesinin diğer algoritmalarla karşılaştırılması için her iki veritabanı 

iki kısma ayrılmıştır: Eğitim kümesi (kayıtların 2/3’si) ve test kümesi (kayıtların 1/3’i). Yani 

eğitim verileri üzerinden çalıştırılan algoritma test verileri üzerinden değerlendirilmiştir. Monk1 

için test verisi sayısı 18 tanesi birinci sınıfa (0), 25 tanesi de ikinci sınıfa (1) ait olmak üzere 

toplam 43’tür. Mushroom için ise test verisi sayısı 1410 tanesi birinci sınıfa (e), 1353 tanesi de 

ikinci sınıfa (p) ait olmak üzere toplam 2763’tür. Tüm veri üzerinden, önerilen algoritma ile 

elde edilen kural listesi Tablo 6.1’de verilmiştir. Bu tabloda tüm veri üzerinden; sınıflar (S), 

önerilen algoritma ile elde edilen kural listesi, kuralların tahmini doğrulukları (TD) ve 

anlaşılabilirlik değerleri (A) gösterilmiştir. Bu veritabanında karar listesi şeklinde kuralları 

üreten diğer algoritmaların elde ettiği sonuçlar, karşılaştırmalı olarak Tablo 6.2’de gösterilmiştir. 

Ridor [143] algoritmasında bir kuralda örneklerin toplam minimum ağırlığı 1 olarak belirlenmiş 

ve standart değerleriyle çalıştırılmıştır. PART [142] algoritması için budama amacıyla 

kullanılan güven faktörü 0.25 seçilmiş ve azaltılmış hata budaması için C4.5 budaması 

kullanılmıştır. OneR [141] algoritmasında nicel nitelikleri ayrıklaştırmak için kullanılan sepet 

sayısı 6 olarak belirlenmiştir. Prism algoritması da sadece nominal niteliklerle çalışır, budama 

yapmaz ve kayıp niteliklerle çalışamaz [169]. NNge algoritması ise iç içe geçmeyen 

genelleştirilmiş örnekleri kullanan en yakın komşu benzeri bir algoritmadır [170]. Bu algoritma 

için genelleştirme için deneme sayısı ve ortak bilgi için dizin sayısı 5 olarak belirlenmiştir. 
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Tablo 6.1. Monk1 veritabanından keşfedilen kurallar 
 

S Keşfedilen kural atası TD A 

0 Eğer (attribute#2 = 2) 0.98 0.83 

0 Eğer (attribute#5 = 2) 0.98 0.83 

0 Eğer (attribute#5 = 3) 0.98 0.83 

1 Eğer (attribute#5 = 1) 0.98 0.83 

 

Tablo 6.2. Monk1 veritabanından elde edilen sonuçların karşılaştırılması 
 

 
Çok Amaçlı 

PSO 
Ridor PART OneR Prism NNge 

Kural Sayısı 4 6 7 4 25 10 

Ortalama 

Anlaşılabilirlik 
0.830 0.583 0.738 0.830 0.500 0.00 

 

Bu tablodan, önerilen algoritmanın az sayıda ve anlaşılabilir kuralları keşfettiği 

görülmektedir. Fazla sayıda, anlaşılması zor ve uzun kuralları keşfetmemiştir. Sadece OneR 

algoritması hariç diğerlerinden daha iyi performans göstermiştir. NNge algoritması tüm 

nitelikleri içeren kurallar keşfetmiştir. Yani kuralların hepsinde altı nitelik yer almaktadır. 

Ayrıca bu algoritma nitelik değer çifti kısmında değer olarak tek değil birden fazla değer içeren 

bir küme bulundurduğundan anlaşılması ve işletilebilmesi güç kurallar keşfetmiştir. Keşfettiği 

bir kural şudur: 

 

“Eğer (attribute#1 ∈ {1,2,3}) ∧  (attribute#2 ∈  {2,3}) ∧  (attribute#3 ∈  {1,2}) ∧  

(attribute#4 ∈  {1,2,3}) ∧  (attribute#5 ∈  {1}) ∧  (attribute#6 ∈  {1,2}) ⇒  Sınıf = 1 

(Kapsanan kayıt = 22)” 

 

 Monk1 test verisi üzerinde kullanılan bu algoritmanın ve diğer algoritmaların elde ettiği 

sonuçlar, karşılaştırmalı olarak Tablo 6.3’te verilmiştir. Bu tabloda, algoritma isimleri ve hemen 

altında ilgili sınıf için doğru ya da yanlış sınıflandırılan kayıt sayıları verilmiştir. Bunlara göre 

toplam sayı ve yüzde oranları da bu değerlerin hemen altında verilmiştir. Örneğin, Ridor 

algoritması, 13’ü birinci sınıfa (0), 18’i de ikinci sınıfa (1) ait 31 tane doğru (toplam 

kayıtların %72.093’ü); 5’i birinci sınıfa, 7’si de ikinci sınıfa ait 12 tane yanlış (toplam 

kayıtların %27.907’si) sınıflandırma yapmıştır. Bu tablodan, kullanılan bu yeni algoritmanın, 

doğruluk açısından Ridor, OneR, Prism ve NNge algoritmalarına göre daha iyi PART 
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algoritması ile aynı derecede performans gösterdiği görülmektedir. Prism algoritması 4 kaydı 

sınıflandıramamıştır. 

 

Tablo 6.3. Monk1 test veritabanından elde edilen sonuçların karşılaştırılması 
 

Çok Amaçlı PSO Ridor PART OneR Prism NNge 

 

Doğru Yanlış Doğru Yanlış Doğru Yanlış Doğru Yanlış Doğru Yanlış Doğru Yanlış 

Sınıf = 

0 
16 2 13 5 16 2 18 0 14 0 13 5 

Sınıf = 

1 
23 2 18 7 23 2 15 10 14 11 23 2 

Toplam 39 4 31 12 39 4 33 10 28 11 36 7 

Yüzde 

(%) 
90.6977 9.3023 72.093 27.907 90.6977 9.3023 76.7442 23.2558 65.1163 25.5814 83.7209 16.2791 

 

Daha büyük veritabanı üzerinde, Mushroom, yapılan uygulamalardan elde edilen 

sonuçlar Tablo 6.4’tedir. Bu tabloda, tüm veri üzerinde, önerilen algoritma ile elde edilen kural 

listesi, kuralların tahmini doğrulukları ve anlaşılabilirlik değerleri görülmektedir. Bu 

veritabanında diğer algoritmaların elde ettiği sonuçlar karşılaştırmalı olarak Tablo 6.5’te 

gösterilmiştir. Bu tablodan, önerilen algoritmanın az sayıda ve anlaşılabilir kuralları keşfettiği 

görülmektedir. Fazla sayıda, anlaşılması zor ve uzun kural keşfetmemiştir. Virgülden üç rakam 

sonrasına yuvarlama yapılmıştır. Bu tablodan da, yine NNge algoritmasının anlaşılması ve 

işletilebilmesi güç olan kuralları keşfettiği görülmektedir. Keşfettiği bir kural aşağıdadır: 

 

“Eğer cap-shape ∈  {f,k,x} ∧  cap-surface ∈  {f,s,y} ∧  cap-color ∈  {b,e,g,n,p,w,y} ∧  

bruises? ∈  {f,t} ∧  odor ∈  {c,f,p,s,y} ∧  gill-attachment ∈  {f} ∧  gill-spacing ∈  {c,w} ∧  

gill-size ∈  {b,n} ∧  gill-color ∈  {b,g,h,k,n,p,u,w} ∧  stalk-shape ∈  {e,t} ∧  stalk-root ∈  

{b,e,?} ∧  stalk-surface-above-ring ∈  {f,k,s} ∧  stalk-surface-below-ring ∈  {f,k,s} ∧  stalk-

color-above-ring ∈  {b,n,p,w} ∧  stalk-color-below-ring ∈  {b,n,p,w} ∧  veil-type ∈  {p} ∧  

veil-color ∈  {w} ∧  ring-number ∈  {o} ∧  ring-type ∈  {e,l,p} ∧  spore-print-color ∈  

{h,k,n,w} ∧  population ∈  {s,v,y} ∧  habitat ∈  {d,g,l,p,u} ⇒  Sınıf = p (Kapsanan kayıt = 

3760)” 

 

Mushroom test verisi üzerinde kullanılan bu algoritmanın ve diğer algoritmaların elde 

ettiği sonuçlar, karşılaştırmalı olarak Tablo 6.6’da verilmiştir. Bu tablodan kullanılan bu yeni 

algoritmanın doğruluk ve anlaşılabilirlik açısından OneR algoritmasına göre daha iyi, diğerleri 

ile aynı derecede performans gösterdiği görülmektedir. Bu karşılaştırmada orijinal Prism 

algoritmasının sonuçları verilememiştir, çünkü bu algoritma kayıp veriler olduğu durumda 
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çalışamamaktadır (stalk-root niteliğinde 2480 değer kayıptır). Diğer algoritmalar kayıp değerler 

için analitik olmayan ortalama olarak tanımlanabilen mod değerini, yani en fazla tekrar eden 

değeri kullanır.  

 

Tablo 6.4. Mushroom veritabanından keşfedilen kurallar 
 

S Keşfedilen kural atası TD A 

p Eğer (odor = f) 100 0.95 

p Eğer (odor = c) 100 0.95 

p Eğer (odor = s) 100 0.95 

p Eğer (odor = y) 100 0.95 

p Eğer (gill-size = b) 100 0.95 

e Eğer (gill-size = b)∧ (ring-number = o) 100 0.91 

e Eğer (bruises? = f) 99 0.95 

 

Tablo 6.5. Mushroom veritabanından elde edilen sonuçların karşılaştırılması 
 

 
Çok Amaçlı 

PSO 
Ridor PART OneR NNge 

Kural Sayısı 7 11 12 9 7 

Ortalama 

Anlaşılabilirlik 
0.944 0.904 0.921 0.950 0.00 

 

Tablo 6.6. Mushroom test veritabanından elde edilen sonuçların karşılaştırılması 
 

Çok Amaçlı PSO RIDOR PART OneR NNge 
 

Doğru Yanlış Doğru Yanlış Doğru Yanlış Doğru Yanlış Doğru Yanlış 

Sınıf = e 1410 0 1410 0 1410 0 1410 0 1410 0 

Sınıf = p 1353 0 1353 0 1353 0 1315 38 1353 0 

Toplam 2763 0 2763 0 2763 0 2725 38 2763 0 

Yüzde (%) 100 0 100 0 100 0 98.6247 1.3753  100 0 

 

“Zoo” ve “Nursery” veritabanları ise önerilen çok amaçlı PSO algoritması, yakın 

zamanda sınıflandırma kurallarının madenciliği için çok amaçlı GA’yı kullanan çalışma ile 

[147] karşılaştırmak amacıyla seçilmiştir. Zoo veritabanı 101 kayıt ve 18 nitelik içermektedir. 

Bu veritabanında sınıf niteliği “type”’dır ve yedi farklı değer bulunmaktadır. Genelleme 
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yeteneği olmayan hayvan isimlerini içeren nitelik, önişlem olarak veritabanından çıkarılmıştır. 

Nursery veritabanı ise, 12960 kayıt ve 9 nitelikten oluşmaktadır. Bu veritabanında sınıf niteliği 

“recommendation”’dır ve beş farklı değeri vardır. Bunlar “Not_recom” (NC), “Recommend” 

(R), “Very_recom” (VR), “Priority” (P) ve “Spec_prior” (SP)’dir [168]. 

Önerilen bu yöntem ile elde edilen sonuçlar [147]’de GA tarafından elde edilen 

sonuçlarla karşılaştırılmıştır. [147]’de üç GA önerilmiştir ancak INPGA adlı en iyi sonucu veren 

algoritma, karşılaştırma için seçilmiştir. Her veritabanı eğitim kümesi (kayıtların 1/3’i) ve test 

kümesi (kayıtların 2/3’si) şeklinde iki kısma ayrılmıştır. Çok amaçlı PSO her sınıf için ayrı 

olarak çalıştırılmış ve bu değiştirilmemiş tahmin edilen sınıf için ilgili kural kümesi elde 

edilmiştir. 

Tablo 6.7 ve Tablo 6.8’de sırasıyla Zoo ve Nursery veritabanlarından PSO ile elde 

edilen sonuçlar görülmektedir. S “sınıfı”,  TD “tahmini doğruluğu” ve A “anlaşılabilirliği” 

göstermektedir. 

 

Tablo 6.7. Zoo veritabanından keşfedilen kurallar 
 
S Keşfedilen kural atası TD A 

1 Eğer (eggs = 0)∧ (venomous = 0)∧ (domestic = 0) 0.91 0.81 

1 Eğer (milk = 1) 0.90 0.94 

1 Eğer (hair = 1)∧ (eggs = 0)∧ (venomous = 0)∧ (domestic = 0) 0.95 0.75 

2 Eğer (feathers = 1)∧ (toothed = 0) 0.97 0.88 

2 
Eğer (hair = 0)∧ (feathers = 1)∧ (venomous = 0)∧ (legs = 

2)∧ (domestic = 0) 
1.00 0.69 

3 Eğer (eggs = 1)∧ (predator = 1)∧ (toothed = 1)∧ (catsize = 0) 0.99 0.75 

3 Eğer (eggs = 1)∧ (predator = 1)∧ (catsize = 0) 0.98 0.81 

4 Eğer (aquatic = 1)∧ (breathes = 0)∧ (tail = 1) 0.80 0.81 

5 Eğer (airborne = 0)∧ (aquatic = 1)∧ (toothed = 1)∧ (catsize = 0) 1.00 0.75 

6 Eğer (airborne = 1)∧ (fins = 0)∧ (tail = 0) 0.83 0.81 

7 Eğer (predator = 1)∧ (breathes = 0)∧  (domestic = 0) 0.87 0.81 

7 Eğer (predator = 1)∧ (breathes = 0)∧ (tail = 0)∧ (domestic = 0) 0.88 0.75 

 

Tablo 6.9’da yöntemlerin ortalama performansları görülmektedir. Bu tablodan, 

düzenlenen PSO’nun daha yeni bir teknik olmasına ve bu alanda ilk kez uygulanıyor olmasına 

rağmen kullanılan veritabanlarında veri madenciliğinin sınıflandırma kural madenciliği alanında 

iyi performansa sahip olduğu görülmektedir. 
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Tablo 6.8. Nursery veritabanından keşfedilen kurallar 
 

S Keşfedilen kural atası TD A 

NR 
Eğer (parents = pretentious)∧ (children = 3)∧ (housing 

=convenient)∧ (health = not_recom) 
0.76 0.50 

NR 
Eğer (parents = usual)∧ (form = foster)∧ (housing = 

less_conv)∧ (finance = inconv)∧ (health = not_recom) 
0.95 0.38 

R Eğer (has_nurs = proper)∧ (finance = convenient) 0.75 0.75 

R 
Eğer (has_nurs = proper)∧ (finance = convenient)∧ (health = 

recommended) 
0.81 0.63 

VR 
Eğer (housing = less_conv)∧ (finance = inconv)∧ (social = 

slightly_prob) 
0.88 0.63 

VR 
Eğer (housing = less_conv)∧ (finance = inconv)∧ (social = 

slightly_prob)∧ (health =  recommended) 
0.90 0.50 

P 
Eğer (parents = great_pret)∧ (social = slightly_prob)∧ (health = 

recommended) 
0.81 0.63 

SP Eğer (parents = usual)∧ (has_nurs = very_crit)∧ (form = more) 0.79 0.63 

 

Tablo 6.9. Ortalama performanslar  
 

Zoo Nursery               

         Veritabanı  

 

        

Yöntem 

TD A TD A 

PSO 0.92 0.80 0.83 0.58 

INPGA 0.91 0.84 0.77 0.63 

 

Her iki veritabanında, iki yöntem tarafından keşfedilen kuralların kalitesini 

değerlendirmek için 10 katlı çapraz geçerlilik işlemi çalıştırılmıştır. Tablo 6.10 ve Tablo 6.11’de 

sırasıyla Zoo ve Nursery veritabanlarında elde edilen sonuçlar verilmiştir. Tahmini doğruluğa 

bağlı olarak tüm sonuçlar bütün olarak dikkate alındığında, PSO’nun bir dereceye kadar 

INPGA’dan daha iyi bir performansa sahip olduğu görülmektedir.  
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Tablo 6.10. Zoo veritabanında tahmini doğruluk (%)  
 

Sınıf PSO INPGA 

1 100± 0.0 100± 0.0 

2 100± 0.0 100± 0.0 

3 95± 13.8 0.0± 0.0 

4 100± 0.0 100± 0.0 

5 100± 0.0 100± 0.0 

6 90± 10.0 90± 10 

7 83.9± 10.2 85.5± 0.0 

 

Tablo 6.11. Nursery veritabanında tahmini doğruluk (%) 
 

Sınıf PSO INPGA 

NR 41.8± 14.4 12.8± 9.8 

R 0.0± 0.0 0.0± 0.0 

VR 100± 0.0 100± 0.0 

P 0.0± 0.0 0.0± 0.0 

SP 100± 0.0 100± 0.0 

 
6.6. Sonuçlar 

 
Veri madenciliği süreci sonunda keşfedilen kuralların yüksek doğruluğa ve güce sahip 

olması, ilginç, kolay okunabilir ve anlaşılabilir olması istenmektedir. Yani, genellikle göz önüne 

alınan amaçlar, diğer bir deyimle değerlendirme ölçütleri birbiri ile çelişkili ve negatif yönde 

etkileşimli olabilmektedir. Literatürde de daha çok tek amaç, yani doğruluk göz önüne 

alınmakta ve bazen diğer amaçlar göz ardı edilebilmektedir. Farklı amaçların da ortaya çıkması 

durumunda, veri madenciliği aslında çok amaçlı bir optimizasyon problemi olarak karakterize 

edilebilir. Bu çalışmada da; basit ancak esnek, sağlam ve global aramada etkili olan, ayrıca kaba 

seçim algoritmalarına göre nitelik etkileşimleriyle iyi baş edebilen PSO algoritması çok amaçlı 

olarak tasarlanmış ve sınıflandırma kurallarının etkili keşfi yapılmıştır. Önerilen yöntem, 

üzerinde fazla bir optimizasyon yapılmadığı halde, tahmini doğrulukları yüksek, anlaşılabilir 

kurallar keşfetmiştir.  

Farklı amaçlar da, örneğin ilginçlik, düşünülüp fonksiyon halinde ifade edilerek amaç 

sayısı arttırılmış çalışmalar yapılabilir. Ayrıca Pareto kümedeki baskınlık kavramına bulanık 

mantık eklenerek, amaçların direkt değerleri yerine bulanıklaştırılmış amaç değerleri 
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kullanılarak bulanık Pareto kümeler kullanılabilir ve özellikle belirsizlik durumunda etkili 

sonuçlar alınabilir. Algoritmanın paralel ve dağıtık versiyonları, farklı amaçlar ve optimize 

edilebilecek parametreler kullanılarak daha ayrıntılı deneyler yapılabilir ve veri madenciliğinin 

birliktelik kural madenciliği, ardışık örüntü keşfi ve kümeleme kural madenciliği gibi 

alanlarında etkili şekilde kullanılabilir. 
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7. ÇOK AMAÇLI KABA KAOTĐK PARÇACIK SÜRÜ OPTĐMĐZASYONU 

 
 
7.1. Giriş 

 
Altıncı bölümde PSO’ya çok amaçlı problemleri çözebilmesi için çeşitli eklenti ve 

düzenlemeler yapılmıştı. Đlk uygulama alanı olarak da karar değişkenleri sürekli değer 

içermeyen veritabanlarında sınıflandırma kurallarının çok amaçlı madenciliği olarak seçilmişti. 

Tezin bu bölümünde ise, karar değişkenleri sürekli değerli olan problemler için PSO çok amaçlı 

olarak tasarlanmış ve ilk etkili uygulaması nicel birliktelik kurallarının keşfinde yapılmıştır. 

Seçilen uygulama alanı için, aralıkları da aynı anda dikkate alıp direkt kuralları otomatik olarak 

üreten etkili algoritma sayısı sadece iki tanedir [6, 8]. Problemi çok amaçlı bir optimizasyon 

problemi olarak ele alan ve çözüm sunan çalışma ise bulunmamaktadır. Nicel birliktelik 

kurallarının keşfi aslında zor bir problemdir ve kendi içerisinde birçok amacın optimize 

edilmesini içerir. Bu amaçlardan bazıları şöyle sıralanabilir: 

 

• Güven değerinin maksimizasyonu 

• Destek değerinin maksimizasyonu 

• Kuralın anlaşılabilir olmasının sağlanması 

• Kuralın yeterince ilginç olmasının sağlanması 

• Niteliklerin aralıklarının mümkün olacak şekilde minimizasyonu 

 

Dikkat edilirse, genellikle göz önüne alınan amaçlar, diğer bir deyimle değerlendirme 

ölçütleri birbiri ile çelişkili ve negatif yönde etkileşimlidir. Sonuçta elde edilecek kural listesidir 

ve bu kuralların oluşturulmasında Pareto baskınlık yaklaşımı kullanılmıştır. Bu yaklaşım içinde 

bir formüle göre (ağırlıklı formül) tüm amaçları ağırlıklandırma yaklaşımı da kullanılmıştır. 

Tezin bu bölümünde ayrıca üçüncü bölümde önerilen kaotik haritalı PSO, dördüncü bölümde 

önerilen kaba PSO ve altıncı bölümde önerilen çok amaçlı PSO birleştirilmiş ve çok amaçlı 

genel algoritmalar önerilmiştir. Önerilen algoritmalar Çok Amaçlı Kaba Kaotik PSO 

(ÇAKKPSO) algoritmaları olarak adlandırılmıştır. Bu algoritmaların, karar değişkenleri 

içerisinde sürekli değerleri de içeren problemler için etkili, çok amaçlı bir yöntem olarak 

kullanılması hedeflenmiştir. 
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7.2. Çok Amaçlı Kaba Kaotik PSO Algoritmaları  

 
Bu bölümde önerilen yöntemler tezin üçüncü bölümünde önerilen kaotik haritalı PSO, 

dördüncü bölümünde önerilen kaba PSO ve altıncı bölümünde önerilen çok amaçlı PSO’nun 

birleştirilmiş halidir ve sürekli karar değişkeni de içeren problemler için genel çok amaçlı 

optimizasyon problemi olarak etkili olarak kullanılabilir. Kaotik haritalı PSO algoritmaları 

PSO’nun parametrelerinin belirlenmesinde rasgele tabanlı bir seçim söz konusu olduğunda 

farklı kaotik sistemlerin kullanılmasını içermektedir ve bu amaçla on iki farklı PSO 

kullanılabilir. Kaba PSO alt ve üst sınırdan oluşan kaba değerlere bağlı olarak PSO’nun 

genişletilmesidir ve aralıkların birer karar değişkeni olarak kullanılması durumunda PSO’ya 

eklentileri içermektedir. Çok amaçlı PSO’da tek algoritmanın tek çalışmasında çözümler 

kümesinin üretilmesi ile uğraşılır. Uygulaması yapılan kural madenciliği alanında da, tüm 

amaçlar eş zamanlı düşünüldüğünde, geniş anlamda herhangi bir kuralın diğerinden üstün 

olmadığı en uygun yüksek kaliteli kuralların PSO’nun tek çalıştırılmasında bulunması 

hedeflenir.  

Uygulama olarak nicel birliktelik kurallarının çok amaçlı keşfi seçildiğinden parçacık 

temsili, dördüncü bölümde önerilen kaba PSO’nun uygulamasında kullanılan temsilin aynısıdır. 

Çok amaçlı yaklaşım da altıncı bölümde anlatıldığı şekildedir. Alt sınır ve üst sınır aşılması 

durumunda düzeltme işlemi uygulanır. Diğer eklenti ve farklılıklar aşağıdaki alt bölümlerde 

açıklanmıştır. 

 
7.2.1. Amaçlar 

 
Keşfedilen kurallar yüksek destek ve güven değerlerine sahip olmalıdır. Ancak bunlar 

aynı önem sahip değillerdir. Algoritmaların tüm nicel veritabanlarında çalışabilmesi için 

amaçlara farklı önem verilmesi için ağırlıklandırma yönteminin kullanılması gerekmektedir. Bu 

yüzden güven ağırlığının desteğin ağırlığından küçük seçilmesi mantıklıdır çünkü bazı gürültülü 

veritabanlarında kuralın ata ve sonuç kısmında desteği sadece 1 olan ve böylece güven 

değeri %100 olan kurallar keşfedilebilir. Bu durumda da bu kural diğerleri tarafından baskın 

olmayacaktır. Algoritmanın çalışacağı veritabanı ile ilgili önceden çok gürültülü olduğu bilgisi 

varsa, güven değeri çok küçük seçilebilir ya da amaçlardan çıkarılabilir. 

Başka bir amaç ise anlaşılabilirliktir. Bu amacın kullanılmasındaki gaye, veri 

madenciliğinde önemli olan okunabilirlik ve anlaşılabilirliğin arttırılmaya çalışılmasıdır. Uzun 

kurallar gereksiz ve önemsiz bilgi içerebilmekte ve bu da kuralın başarısını ve etkili şekilde 

işlenebilmesini engelleyebilmektedir. Anlaşılabilirlik kuralın hem atasında hem de sonuç 
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kısmındaki nitelik sayısına bağlı olarak ölçülmüştür. Bu amaçla, (7.1)’deki gibi formülize edilen 

Ghosh ve Nath’ın anlaşılabilirlik ifadesi kullanılmıştır [171]. 

 

Anlaşılabilirlik=
( )

( )SonuçAta

Sonuç

∪+

+

1log

1log
     (7.1) 

 

Burada Sonuç  ve SonuçAta∪  sırasıyla kuralın sonuç kısmında ve toplam kuralda 

bulunan nitelik sayısını göstermektedir.  

Kuralların keşfi sırasında amaçlanan, nesne kümesi ve kurala uyan aralıkların genliğini 

azaltmaktır. Bu şekilde aynı sayıda kaydı kapsayan ve aynı sayıda nitelik içeren bir iki kuraldan 

aralıkları küçük olan, en iyi bilgiyi vermektedir. Aralıkların genliği, denklem (7.2)’deki gibi 

hesaplanır. 

 

Aralıkların genliği = ∑
= −

−
×

m

i ii

ii
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üa

m 1 )min()max(

1
   (7.2) 

 

Burada, m nesne kümesindeki nesne sayısı, ai ve üi nesne kümesinde kodlanmış i 

niteliğiyle ilgili olarak alt ve üst sınırı göstermektedir. max(Ai) ve min(Ai),  i niteliğiyle ilgili 

olarak aralıkların izin verilen limitleridir. Bu amacın minimize edilmek istendiği 

unutulmamalıdır. 

Bu durumda; destek, güven ve anlaşılabilirlik maksimizasyon amaçları iken aralıkların 

genliği minimizasyon amacıdır. Anlaşılması açısından tüm amaçların maksimize edilmesi 

düşünülebilir ve bu minimizasyon amaçları 1’den çıkarılarak maksimizasyon amacı haline 

getirilebilir. Tüm amaçlar [0, 1] aralığındadır. Ancak burada dikkat edilmesi gereken bazı 

hususlar vardır. Özellikle anlaşılabilirlik ve aralıkların genliği amaçları, Pareto baskınlık 

tanımında düşük destek ve düşük güven değerlerine sahip olan kuralların keşfedilmesini olanak 

verebilir. Yani aralık amacı çok düşük olup güven ve destek değeri de çok düşük olan kuralların 

keşfedilmesi ya da sadece iki nitelikten oluşan (bir kuralda en az iki nitelik bulunmaktadır) 

ancak yine aynı şekilde güven ve destek değeri de çok düşük olan kuralların keşfedilmesi 

olasıdır. Bu durumu ortadan kaldırmak için anlaşılabilirlik ve aralıkların genliği amaçları, güven 

amacı ile birleştirilmiş ve toplu amaç olarak düşünülmüştür. Yani bu durumda amaçlar, destek 

ve bu anlaşılabilirlik, aralıkların genliği ve güven amaçlarını içeren toplu amaçtan oluşur. 

Kısaca dört amaç iki amaç haline getirilmiştir. Toplu amaç denklem (7.3)’te gösterildiği gibi 

formülize edilmektedir. 
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Toplu amaç = 0.8×Güven + 0.1×Anlaşılabilirlik – 0.1×Aralıkların genliği (7.3) 

 

Bu durumda istenen, Şekil 7.1’de gösterildiği gibi yüksek destek değerli ve yüksek 

toplu amaç değerli kuralların keşfidir. Amaçların değerlendirilmesinde virgülden iki rakam 

sonrası dikkate alınmamıştır, yuvarlama yapılmıştır. 

 

Şekil 7.1. Keşfedilecek kuralların özellikleri 
 
7.2.3. Filtreleme ve Sınır Aralıklarının Arıtılması Đşlemleri 

 
Başka çözümler tarafından baskın olmayan çözümler HD arttıkça, atık kural oluşması 

durumunu önlemek için, bu çözümlerin kapsadığı benzer kayıtların sayısı belli bir eşik değerden 

yüksek çıkması durumunda destek değeri küçük olan atılır. Bu eşik değeri, benzer kayıtların bir 

oranı olarak seçilebilir. Böylece amaç uzayında birbirine çok yakın noktaların elenerek 

birbirinden uzak olanların tutulması sağlanır.  

Önerilen algoritmanın çalışması sonunda keşfedilen kuralların nitelik sınırlarına bir 

iyileştirme işlemi uygulanır. Bu iyileştirme, ilgili parçacıkta aralık boyutunun destek değeri 

orijinal destek değerinden küçük olana kadar aralığın azaltılması işlemini içerir. Bu şekilde daha 

kaliteli kuralların oluşması sağlanır. 

 
7.2.4. Parametre Kontrolü 

 
Destek için ağırlık 0.7, toplu amaç için ise 0.3 seçilmiştir. Diğer parametreler Tablo 

7.1’de verilmiştir. Filtreleme için eşik değeri %80 seçilmiştir. 
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Tablo 7.1. Kullanılan parametre değerleri 
 

Parametreler 
Sürü 
boyutu 

Đterasyon 
sayısı 

Mutasyon 
olasılığı 

Hızlanma 
katsayıları 

Atalet ağırlığı 

Değerler 30 1000 0.5 2 

Komşuluk ötesi arama stratejisi 
kullanıldığında 1.2’den 0.8’e; 

komşuluk arama stratejisi 
kullanıldığında ise 0.9’dan 

0.4’e doğru azalır. 

 
7.3. Deneysel Sonuçlar 

 
ÇAKKPSO algoritmaları dört nicel nitelik içeren 1000 kayıtlı sentetik bir veritabanında 

değerlendirilmiştir. Tüm alan değerleri [0, 100] aralığına ayarlanmıştır. Değerler Tablo 7.2’de 

gösterilen şekilde önceden belirlenen kümelerde gruplanmış biçimde düzenli olarak dağıtılmıştır. 

Bu dağılım tamamen gelişigüzeldir. Bu kümeler için destek ve güven değerleri sırasıyla %25 

ve %100’tür. Bu kümeler dışındaki değerler bu kurallardan daha iyi kural oluşturmayacak 

şekilde dağıtılmıştır. Amaç, Pareto optimal kümeleri bulmaktır. ÇAKKPSO algoritmasının her 

niteliğin nicel aralığı için en uygun değerlerle birliktelik kurallarını keşif yeteneği test edilmiştir. 

KHPSO7 yani hız güncelleme denkleminde rasgele sayı dizileri (r1 ve r2) için kaotik harita 

kullanan algoritma ve en iyi sonucun alındığı Zaslavskii kaotik harita kullanılmıştır.  

 
Tablo 7.2. Sentetik olarak oluşturulan kümeler 
 

Kümeler 

A1∈[1–10]∧A2 ∈[15–30] 

A1∈[15–30]∧A3 ∈[60–70] 

A2∈[65–80]∧A4∈[15–25] 

A3∈[80–90]∧A4∈[80–95] 

 
 

Tablo 7.3’te Zaslavskii kaotik haritalı KHPSO7 kullanan ÇAKKPSO algoritması 

tarafından bulunan ve birbirine baskın olmayan kurallar görülmektedir. Tablodan görüldüğü 

gibi sentetik olarak oluşturulan kümelere göre keşfedilen kurallar, yüksek destek ve güven 

değerine sahiptir; ayrıca anlaşılabilirdir. ÇAKKPSO da veritabanından bağımsızdır, çünkü her 

veritabanı için belirlenmesi güç olan minimum destek ve güven değerlerine bağlı değildir. Eğer 

destek ve güven değerleri kullanılsaydı ve destek değeri %25’ten büyük seçilseydi, bu 

veritabanındaki niteliklerin değerlerine göre hiçbir kural keşfedilemeyecekti. Ancak bu 

veritabanının bazı doğru ve anlaşılabilir kurallar içerdiği bilinmektedir. ÇAKKPSO algoritması 

tek çalıştırmada, minimum destek ve güven eşik değerlerini kullanmadan, kuralları otomatik 
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olarak keşfetme yeteneğine sahiptir. Ayrıca kuralın ata ve sonuç kısmının önceden 

ayarlanmasıyla oluşturulmuş kural şablonunun belirlenmesine ihtiyaç duymaz. 

 
Tablo 7.3. ÇAKPSOA tarafından bulunan kurallar 
 

Kural Destek(%) Güven(%) Kayıtlar(%) 

A1∈[1–10]⇒A2 ∈[15–30] 25 100 

A1∈[15–30]⇒A3 ∈[60–70] 25 100 

A3∈[80–90]⇒A4∈[80–93] 25 100 

A2∈[65–79]⇒A4∈[15–25] 25 100 

A2 ∈[15–30]⇒A1∈[1–10] 25 100 

A3 ∈[60–70]⇒A1∈[15–30] 25 100 

A4∈[80–93]⇒A3∈[80–90] 25 100 

A4∈[15–25]⇒A2∈[65–79] 25 100 

100 

 

Etkinliliği test etmek için Zaslavskii kaotik haritalı ÇAKKPSO algoritması, gürültülü 

sentetik veritabanında da çalıştırılmıştır. Gürültü, kümenin ikinci nesnesinin aralığına ait 

olmayan değerler yerleştirmek suretiyle oluşturulmuştur. Bu yüzden, kayıtların belli bir yüzdesi 

ikinci nesnenin önceden belirlenen aralığında yer almaz. Örneğin, ilk küme için kayıtların belli 

bir yüzdesi, ikinci nesne A2 ∈ [15–30] aralığında değildir, [0–14] ya da [31–100] aralığında 

dağıtılmıştır.  

Algoritmanın, kuralların ata ya da sonuç kısmı için en uygun aralıkları bulup 

bulamayacağı test edilmiştir. Bu test üç seviyeli gürültü ile yerine getirilmiştir 

(gürültü_seviyesi’nin 4%, 6% ve 8% değerleri için). Deneysel sonuçlar Tablo 7.4’te 

gösterilmiştir. Bu tabloda, keşfedilen kurallar, destek ve güven değerleri ve toplam kayıtta 

keşfedilen kural tarafından kapsanan kayıt yüzdeleri verilmiştir. Aralıkların sınırlarının sentetik 

olarak üretilenlere hemen hemen uyduğu görülebilmektedir. Bu, ÇAKKPSO algoritmasının test 

edilen veri içinde belirli yüzdelerdeki gürültünün üstesinden geldiğini göstermektedir. Ancak 

burada keşfedilen kuralların sadece destek ve güven değerlerine bakıp Pareto baskınlık ilişkisi 

düşünülmemelidir. Destek ve toplu amaç, bu ilişkide düşünülmelidir. 

ÇAKKPSO algoritmaları aynı zamanda 6 halka açık gerçek veritabanında da 

değerlendirilmiştir: Basketball, Bodyfat, Bolts, Pollution, Quake, ve Sleep. Bu veritabanları 

Bilkent Üniversitesi Fonksiyon Yaklaştırma Deposunda bulunmaktadır [144]. KPSOA’nın bir 

karakteristiği de onun stokastik oluşudur. Böylece algoritma farklı çalıştırılmalarda 

dalgalanmalara sahip olabilir. En iyi sonucun alınabilmesi için algoritma birkaç kez 
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çalıştırılabilir. Algoritma on kez çalıştırılmış ve bu çalıştırmaların ortaklama değerleri 

sunulmuştur. 

 
Tablo 7.4. Farklı seviyelerdeki gürültü sonrası keşfedilen kurallar 

 
gürültü_seviyesi = 4% 

Keşfedilen kurallar Destek(%) Güven(%) Kayıtlar(%) 

A1∈[1–11]⇒A2 ∈[15–29] 23.9 98.8 

A1∈[15–30]⇒A3 ∈[60–69] 23.7 98.9 

A2∈[64–78]⇒A4∈[15–25] 23.7 98.9 

A2 ∈[15–29]⇒A1∈[1–11] 23.9 98.8 

A4∈[80–93]⇒A3∈[80–91] 23.7 98.9 

A4∈[14–23]⇒A2∈[64–79] 23.7 98.9 

95.4 

gürültü_seviyesi = 6% 

Keşfedilen kurallar Destek(%) Güven(%) Kayıtlar(%) 

A1∈[1–10]⇒A2 ∈[15–32] 23.0 97.1 

A1∈[15–30]⇒A3 ∈[58–69] 23.0 97.1 

A2∈[64–78]⇒A4∈[14–26] 22.9 97.5 

A2 ∈[14–29]⇒A1∈[1–12] 23.0 97.1 

A4∈[80–94]⇒A3∈[80–92] 22.9 97.5 

A4∈[14–23]⇒A2∈[62–79] 22.9 97.5 

93.1 

gürültü_seviyesi = 8% 

Keşfedilen kurallar Destek(%) Güven(%) Kayıtlar(%) 

A1∈[2–12]⇒A2 ∈[15–32] 22.5 95.4 

A1∈[15–30]⇒A3 ∈[58–70] 22.5 95.4 

A2∈[64–78]⇒A4∈[14–27] 22.4 95.9 

A2 ∈[13–29]⇒A1∈[1–12] 22.4 95.9 

A4∈[79–94]⇒A3∈[80–92] 22.5 95.4 

A4∈[14–24]⇒A2∈[62–79] 22.4 95.9 

91.8 

 

Dördüncü bölümde de açıklanan diğer birliktelik kural keşfi yapan algoritmalarla bu 

bölümde önerilen ÇAKKPSO algoritmalarını karşılaştırmak zor ve adaletsiz olabilir. Çoğu 

madencilik algoritması niteliklerin aralıklarının belirlenmesini istemekte ve önişlem 

gerektirmektedir. Bu yüzden anlamlı olarak karşılaştırma, literatürde birliktelik kurallarının 
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arama sırasında nicel nitelikleri ayrıklaştıran ve evrimsel hesaplama tabanlı iki algoritmayla 

yapılabilir.  

Tablo 7.5’te Zaslavskii kaotik haritalı KHPSO7 kullanan ÇAKKPSO algoritması ve 

[6]’da sunulan algoritma tarafından bulunan yüksek kaliteli kural sayısı ve bu kuralların güven 

değerleri (standart sapmalarla birlikte) ile birlikte veritabanındaki kayıt sayısı ve nicel nitelik 

sayısı görülmektedir. Deneysel sonuçlarda kural ve güven değerleri kullanılmıştır çünkü 

[6]’daki algoritma da yoğun nesne kümelerini bulmadan direkt olarak kuralları keşfetmektedir. 

Ayrıca o algoritma da evrimsel hesaplama tabanlı (bir GA) bir algoritmadır ve aralıkları ve 

kuralları eş zamanlı olarak bulur. [6]’daki algoritma için popülasyon sayısı 100 seçilmiş ve 

sadece pozitif birliktelik kurallarını keşfedecek şekilde uyarlanmıştır. Zaslavskii kaotik haritalı 

KHPSO7 kullanan ÇAKKPSO güven değerleri bakımından bazen daha kaliteli kural bulmakla 

birlikte genel olarak bu algoritmayla rekabet edebilir görülmektedir.  

 

Tablo 7.5. [6]’da önerilen algoritmayla karşılaştırmalar 
 

Kural sayısı Güven(%) 
Veritabanı Kayıt sayısı Nitelik sayısı 

   [6]       ÇAKKPSO [6]       ÇAKKPSO 

Basketball 96 5 33.8 15.0 60 m 1.2 60 m 2.4 

Bodyfat 252 18 44.2 14.9 59 m 3.8 61 m 1.4 

Bolts 40 8 39.0 14.9 65 m 1.9 63 m 2.2 

Pollution 60 16 41.2 14.5 68 m 4.8 67 m 4.5 

Quake 2178 4 43.8 15.0 62 m 5.1 63 m 2.8 

Sleep 62 8 32.8 14.5 64 m 2.3 64 m 2.7 

 

Tablo 7.6’da ise, Zaslavskii kaotik haritalı KHPSO7 kullanan ÇAKKPSO algoritması, 

GAR [138] ve [6]’da önerilen algoritmalardan elde edilen sonuçlar karşılaştırılmaktadır. GAR 

algoritması sadece yoğun nesne kümelerini bulmak için bir evrimsel algoritma kullanmaktadır. 

Bu yüzden, kurallara bağlı değerler ile ilgili karşılaştırmalar yapılmamıştır. “Destek(%)” sütun 

değerleri ortalama desteği, “Boyut” sütun değerleri kuralda bulunan ortalama nitelik sayısını 

göstermektedir. “Genlik(%)” sütun değerleri ise kümeye bağlı aralıkların ortalama boyutunu 

göstermektedir. 

Zaslavskii kaotik haritalı KHPSO7 kullanan ÇAKKPSO algoritması, altı veritabanından 

üçünde yüksek destek değerli kurallar (nesne kümelerine bağlı) bulmuştur ve fark yine fazla 

değildir. Tüm veritabanları için Zaslavskii kaotik haritalı KHPSO7 kullanan ÇAKKPSO 

algoritması tarafından elde edilen boyut değerleri GAR algoritmasının bulduklarından daha 

küçüktür ve altı veritabanından ikisinde [6]’da önerilen algoritmadan elde edilenden daha 



 124

küçüktür. Zaslavskii kaotik haritalı KHPSO7 kullanan ÇAKKPSO algoritması tarafından elde 

edilen genlik değerleri GAR tarafından elde edilen değerlerden daha küçüktür ya da o değerlere 

eşittir. Altı veritabanından dördünde de, [6]’da önerilen algoritmadan elde edilen genlik 

değerlerinden daha küçük değerlere sahiptir. 

 

Tablo 7.6. Destek, boyut ve genlik değerlerine göre sonuçların karşılaştırılması 
 

Destek(%) Boyut Genlik(%) 
Veritabanı 

ÇAKKPSO GAR [6] ÇAKKPSO GAR [6] ÇAKKPSO GAR [6] 

Basketball 36.40 36.69 32.21 3.21 3.38 3.21 19 25 20 

Bodyfat 65.24 65.26 63.29 6.94 7.45 7.06 25 29 27 

Bolts 28.39 25.97 27.04 5.14 5.29 5.14 19 34 27 

Pollution 43.90 46.55 38.95 6.46 7.32 6.21 15 15 14 

Quake 38.78 38.65 36.96 2.22 2.33 2.10 16 25 19 

Sleep 36.68 35.91 37.25 4.19 4.21 4.19 5 5 4 

 

Gerçek verilerdeki son deneysel sonuçlar, Tablo7.7’dedir ve burada da keşfedilen 

kurallar tarafından kapsanan kuralların yüzdesi verilmiştir. Bu sonuçlardan da Zaslavskii kaotik 

haritalı KHPSO7 kullanan ÇAKKPSO algoritmasının diğer evrimsel hesaplama tabanlı 

algoritmalarla rekabet edebileceği görülebilmektedir.  

 

Tablo 7.7. Keşfedilen kurallar tarafından kapsanan kayıtların yüzdesi 
 

Kayıtlar(%) 
Veritabanı 

KPSOA GAR [6] 

Basketball 100.00 100.00 100.00 

Bodyfat 86.10 86.00 84.12 

Bolts 79.78 77.50 77.5 

Pollution 95.04 95.00 95.0 

Quake 87.90 87.50 87.6 

Sleep 80.82 79.03 79.81 

 

Sonuç olarak Zaslavskii kaotik haritalı KHPSO7 kullanan ÇAKKPSO algoritması 

kuralları, aralıkları çok fazla seçmeden ve yüksek güven ve destek değerlerine sahip olacak 

şekilde keşfetmiştir. Ayrıca kurallardaki nitelik sayısı da azdır. Böylece veritabanlarında 

keşfedilen kurallar, doğru, okunabilir ve anlaşılabilirdir. Đstenen amaçlar doğrultusunda kuralları 

keşfettiği görülmüştür. Amaçlara ilginçlik vb. kriterler de eklenebilir ancak bu çalışmada 

amaçların dışında tutulmuştur. Bazen nesnel bazen de öznel ölçüler kullanan ilginçlik kriteri çok 

yüksek oranda kullanıcıya bağımlıdır. 
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7.4. Sonuçlar 

 
Tezin bu bölümünde kaos, kaba kümeler, çok amaçlı optimizasyon fikirleri PSO ile 

birleştirilmiş ve genel amaçlı “çok amaçlı kaba kaotik PSO” (ÇAKKPSO) algoritmaları 

önerilmiştir. Kaba örüntü fikrine bağlı olarak kaba parçacık ve kaba karar değişkenleri kullanan 

KPSOA, PSO’da parametrelerin belirlenmesinde rasgele sayıya her ihtiyaç duyulduğunda 

kaotik sayı üreteci kullanan KHPSO ve çok amaçlı PSO algoritmalarının birleştirilmesiyle etkili 

çözümler verebilecek bu algoritmanın ilk uygulaması da nicel birliktelik kurallarının keşfi 

alanında yapılmıştır.  

Nicel birliktelik kurallarının keşfi, çok amaçlı bir optimizasyon problemi olarak 

karakterize edilmiştir. Pareto tabanlı PSO ile, tek çalıştırmada nicel niteliklerin aralıklarının 

optimizasyonu ve doğru, güçlü ve anlaşılabilir kuralların keşfi eş zamanlı ve herhangi bir ön 

işlem ve uzman bilgisi gerektirmeden, bilgi kayıpları olmadan otomatik olarak yapılmıştır. 

Tasarlanan PSO, ayrıca her veritabanı için belirlenmesi güç olan minimum destek ve minimum 

güven değerlerine ihtiyaç duymadan, veritabanından bağımsız bir yaklaşım sunar. Genelde 

kullanılanın aksine yüksek kaliteli birliktelik kurallarını yoğun nesne kümeleri üretmeden direkt 

olarak keşfeder. 

Aynı zamanda, bu şekilde kaba hesaplama alanına da ilave bir konu eklenmiştir. 

Üçüncü bölümde ortaya çıkarılan kaosun optimizasyonda istenen bir süreç olabilmesi fikri bu 

bölümde kullanılmış ve en etkili kaotik haritalı PSO ve ilgili kaotik harita kullanılmış ve tatmin 

edici sonuçlar alınmıştır. ÇAKKPSO pratik uygulamalar için kullanışlı genişletmeler 

sunmaktadır. Farklı arama ve optimizasyon problemlerinde ve özellikle paralel ve dağıtık 

versiyonlarıyla daha ayrıntılı deneyler ileriki çalışmalar olarak düşünülebilir. 
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8. SONUÇLAR 

 
 

Bu tezde çok noktalı, sosyal ve biyolojik tabanlı stokastik bir yöntem olan ve kuş ve 

balık sürülerinin hareketlerinden esinlenerek doğrusal olmayan nümerik problemlere optimum 

sonuçlar bulmak için önerilmiş yumuşak hesaplama tekniklerinden Parçacık Sürü 

Optimizasyonu (PSO) algoritmasının performansının arttırılması amacıyla çeşitli eklenti ve 

düzenlemeler yapılmıştır. Özellikle yerel optimum noktalara takılıp kalmayı engelleyerek global 

yakınsama hızını arttırmak amaçlanmıştır. Bu amaçla, yine yumuşak hesaplama tekniklerinden 

biri sayılan kaos PSO ile birleştirilmiştir. PSO’nun parametrelerinin belirlenmesinde rasgele 

tabanlı bir seçim söz konusu olduğunda, örneğin başlangıç sürüsü, atalet ağırlığı, hızlanma 

katsayıları ve hız ve pozisyon güncelleme denklemlerindeki rassal sayılar, farklı kaotik 

sistemler rasgele sayı dizilerinin yerine kullanılmış ve on iki farklı PSO algoritması önerilmiştir. 

Önerilen bu algoritmalara kaotik haritalı PSO algoritmaları adı verilmiş ve bu algoritmalarda 

sekiz farklı kaotik haritanın etkisi incelenmiştir. Önerilen bu algoritmaların literatürde iyi sonuç 

verdiği belirlenmiş diğer PSO algoritmalarıyla performanslarının karşılaştırılması sonucu 

önerilen yöntemlerin çoğunun bu yöntemlerle eşdeğer düzeyde ya da daha iyi performansa sahip 

olduğu görülmüştür. PSO ve kompleks dinamik gibi farklı alanlarda gelişen sonuçların 

birleştirilmesinin bazı optimizasyon problemlerinde kaliteyi arttırabileceği ve kaosun istenen bir 

süreç olabileceği belirtilmiştir. 

Ayrıca aralıkların temsil olarak kullanılması gereken durumlarda PSO ile birlikte yine 

yumuşak hesaplama tekniklerinden sayılan kaba kümelerin alt dalı olan aralık cebrinin etkili 

olarak kullanılabileceği gösterilmiş, bununla ilgili PSO hesaplamaları açıklanmıştır. Bu amaçla 

alt ve üst sınırdan oluşan kaba değerlere bağlı olarak PSO’nun genişletilmesi sağlanmış ve bu 

temsil ve ilgili güncellemeleri içeren algoritma kaba PSO algoritması adıyla tanıtılmıştır. Kaba 

PSO algoritmasının özellikle veri madenciliğinde sürekli değerli verilerde kural keşfi için yeni, 

etkili ve otomatik yöntem olarak kullanılabileceği ilk uygulama olarak gösterilmiştir. Nicel 

birliktelik kurallarının keşfi ve nicel niteliklerin aralıklarının otomatik bölünmesi işini eş 

zamanlı ve doğru olarak yapan algoritmalar literatürde pek fazla yoktur ve bu amaçla bu 

problem bir kaba PSO tarafından çözülebilecek bir optimizasyon problemi olarak ele alınmış ve 

bilgi kayıpları ve ön işlemlerden kaçınılarak kural keşfi yapılmıştır. Veritabanlarında kaba PSO 

ile keşfedilen kuralların, doğru, okunabilir ve anlaşılabilir olduğu gösterilmiştir. Aynı zamanda 

kaba hesaplama alanına yeni bir çalışma konusu eklenmiştir. 

Kaba değerlerle temsil ve hesaplamaların yapılması zorunluluğu olan yerlerde 

kullanılan kaba PSO algoritmasına kaotik haritalar eklenmiş ve böylece PSO, kaos ve kaba 

kümelerin üçünün birleşimiyle performansı arttırmak amacıyla genel amaçlı kaba kaotik PSO 



 127 

algoritmaları önerilmiştir. Bu algoritmalar, etkin çözüm yöntemi bulunmayan sürekli değerli 

verilerde nicel birliktelik kurallarının otomatik keşfi alanında uygulanmış ve doğruluk, 

okunabilirlik ve anlaşılabilirlik açısından başarılı sonuçlar elde edilmiştir. Önerilen kaba kaotik 

PSO algoritması çok farklı alanlarda uygulama alanı bulabilir. 

PSO algoritmasının birden fazla amacın eşzamanlı optimizasyonunu söz konusu olduğu 

çok amaçlı optimizasyon problemleri için de çalışabilmesi için algoritmaya çeşitli düzenlemeler 

ve eklentiler yapılmıştır. Sınıflandırma kurallarının madenciliği problemi aynı birimle 

ölçülebilen ve çoğu zaman çelişen değişik amaçlarla çok amaçlı bir optimizasyon problemi 

olarak tasarlanmış ve önerilen çok amaçlı PSO algoritması ile belirlenen amaçlar doğrultusunda 

kuralların keşfi yapılmıştır. Algoritma ilk kez uygulandığı halde, yani üzerinde fazla bir 

optimizasyon yapılmadığı halde, tahmini doğrulukları yüksek, anlaşılabilir kurallar keşfetmiştir. 

Ayrıca çok amaçlı PSO ile kaos ve kaba kümelerin birleşimiyle yeni PSO algoritmaları, 

çok amaçlı kaba kaotik PSO algoritmaları, önerilmiş ve bunlar da yine etkin çözümler bulmak 

amacıyla veri madenciliği alanında uygulanmıştır. Literatürde nicel birliktelik kurallarının keşfi 

problemini çok amaçlı bir optimizasyon problemi olarak ele alan ve çözümler sunan herhangi 

bir çalışma bulunmamaktadır. Oysaki nicel birliktelik kurallarının keşfi zor bir problemdir ve 

kendi içerisinde birçok amacın eşzamanlı optimize edilmesini içerir. Bu amaçlardan tezde 

kullanılanlar şunlardır: 

 

• Güven değerinin maksimizasyonu 

• Destek değerinin maksimizasyonu 

• Kuralın anlaşılabilir olmasının sağlanması 

• Niteliklerin aralıklarının mümkün olacak şekilde minimizasyonu 

 

Dikkat edilirse, genellikle göz önüne alınan amaçlar, diğer bir deyimle değerlendirme 

ölçütleri birbiri ile çelişkili ve negatif yönde etkileşimlidir. Sonuçta elde edilecek kural listesidir 

ve bu kuralların oluşturulmasında Pareto baskınlık yaklaşımı kullanılmıştır. Bu yaklaşım içinde 

ağırlıklı formüle göre tüm amaçları ağırlıklandırma yaklaşımı da kullanılmıştır. Önerilen 

algoritmalarla kurallar; veritabanından bağımsız, yoğun nesne kümeleri üretilmeden ve aranan 

amaçlar doğrultusunda, başarılı şekilde keşfedilmiştir. 

 
8.1. Öneriler 

 
Bu tezde önerilen algoritmalar genel amaçlıdır ve veri madenciliğinin diğer alt 

dallarında ve özellikle kümeleme kurallarının madenciliği ve ardışık örüntü keşfinde 

kullanılabilir. Ayrıca diğer optimizasyon ve arama tabanlı mühendislik problemlerinde de 
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kolayca kullanılabilir. Önerilen bu yöntemler henüz yenidirler. Bunların dağıtık ve paralel 

versiyonlarıyla optimize edilmiş parametreler kullanılarak ayrıntılı deney ve uygulamalar 

yapılabilir. 

Ayrıca PSO algoritması belli iterasyon boyunca herhangi bir ilerleme ya da belli bir 

oranda iyileşme sağlayamadığı zaman, bu tıkanmanın olduğu noktada lokal arama olarak kaotik 

haritalar belli iterasyon boyunca devreye girebilir ve böylece algoritmanın lokal optimum 

noktalara takılıp kalması önlenebilir. Farklı yerel arama yöntemleriyle de birleştirilip 

performans karşılaştırmaları yapılabilir. Burada önerilen algoritma ve teknikler, farklı yapı ve 

türdeki PSO’larla birleştirilip performans testleri yapılabilir. 

Seçilen uygulama alanları, nicel birliktelik kurallarının ve sınıflandırma kurallarının 

madenciliği, için farklı yumuşak hesaplama yöntemleri kullanılıp performans karşılaştırmaları 

yapılabilir. Ayrıca bu tezde veri madenciliği için önerilen yöntemler, farklı evrimsel hesaplama 

alanındaki yöntemlere de uyarlanabilir. Çok amaçlı PSO’ da, farklı amaçlar, örneğin ilginçlik, 

düşünülüp fonksiyon halinde ifade edilerek amaç sayısı arttırılmış çalışmalar yapılabilir. Ayrıca 

Pareto kümedeki baskınlık kavramına bulanık mantık eklenerek, amaçların direkt değerleri 

yerine bulanıklaştırılmış amaç değerleri kullanılarak bulanık Pareto kümeler kullanılabilir ve 

özellikle belirsizlik durumunda iyi sonuçlar alınabilir.  
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ÖZGEÇMĐŞ 

 
 

05–11–1977 tarihinde Elazığ’da doğdu. 1996 yılında Elazığ Anadolu Lisesi’nden 

mezun oldu. 1997 yılında Fırat Üniversitesi Bilgisayar Mühendisliği bölümüne birinci olarak 

girdi ve bu bölümde lisans eğitimini 2001 yılında birincilikle bitirdi. Aynı yıl, aynı bölümün 

Kuramsal Temeller bilim dalında yüksek lisans eğitimine ve araştırma görevlisi olarak 

çalışmaya başladı.  2003 yılında bu bilim dalında yüksek lisans eğitimini tamamladı. Aynı yıl 

Elektrik-Elektronik Mühendisliği bölümünde doktora eğitimine başladı ve halen Fırat 

Üniversitesi Bilgisayar Mühendisliği bölümünde araştırma görevlisi olarak çalışmaktadır. Đlgi 

alanları veri madenciliği, optimizasyon ve yumuşak hesaplamadır. 
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