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Bilişim Enstitüsü Anabilim Dalı

Bilgisayar Bilimleri Programı
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AN INNOVATIVE AND ACCURATE DEEP LEARNING BASED HER2
SCORING METHOD HER2-UNET

SUMMARY

Breast cancer is the second most common form of cancer among women in the US
that leads to death. The uncontrollable growth of cells in the breast tissue causes
breast cancer. Identification of biomarkers in tissues carry significant biological
information. Evaluating the expression level in some biomarkers play an essential
role in cancer diagnosis. Digital pathology proposes an appreciable way to prevail
the non-objectivity by analysing the biological images. Immunohistochemistry (IHC)
analysis is a method for demonstrating the presence and location of proteins in tissue
sections which introduce new demands on the reproducibility, accuracy, and specificity
of the extracted information. The automated analysis in Whole Slide Image (WSI)
has recently achieved considerable attention because of the accessibility of digital
slide scanners and the increasing importance of tissue-based biomarkers of stratified
medicine. Several biomarkers have been identified for breast cancer. Normally, Human
Epidermal Growth Factor Receptor 2 (HER2) proteins are responsible for division
and growth of healthy breast cells. HER2 status is currently assessed using IHC as
well as In Situ Hybridization (ISH) in equivocal cases. Manual HER2 evaluation of
IHC stained microscopic images involves error-prone, tedious, inter-observer variable,
and time-consuming routine lab work due to diverse staining, overlapped regions, and
non-homogeneous remarkable large slides. To address these issues, digital pathology
offers reproducible, automatic, and objective analysis and interpretation of WSI.
Since HER2 is associated with tumors of an epithelial region and most of the breast
tumors originate in epithelial tissue, it is crucial to develop an approach to segment
different tissue structures. The proposed technique has comprised of three steps. In
the first step, a superpixel based Support Vector Machine (SVM) feature learning
classifier is proposed to classify epithelial and stromal regions from WSI. In the
second stage, on epithelial regions, a Convolutional Neural Network (CNN) based
segmentation method is applied to segment membrane regions. Finally, divided tiles
are merged and the overall score of each slide is evaluated. Experimental results
for 50 slides are presented and compared with state-of-the-art handcraft and deep
learning approaches. The experiments demonstrate that the proposed method achieved
promising performance on IHC stained data. Our automated algorithm was shown
to outperform other approaches in terms of superpixel based classifying of epithelial
regions and segmentation of membrane staining using CNN.
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HER2 TÜMÖR HÜCRELERİNİN SEGMENTASYON İÇİN
DERİN ÖĞRENME TABANLI YENİ BİR YAKLAŞIM

ÖZET

Günümüzde, meme kanseri, yaygınlaşan bir hastalık olarak incelenip, bilimsel çalış
malara sıklıkla konu olmaktadır. Meme dokularında, mutasyona uğramış HER2
tümörlü hücreler, hücre çeperinde bulunan HER2 proteininin artışıyla tespit edilmek-
tedir. Protein artışının görünür kılınıp patologlar tarafından değerlendirilebilmesi için,
FISH (Fluorescent in Situ Hybridization) ve İmmuno Histo Kimya (İHK) tabanlı
olmak üzere iki farklı boyama tekniği kullanılmaktadır. Bu tekniklerden, zaman ve
maliyet açısından daha uygun olan ve ASCO / CAP 2013 önerilerine göre dört dereceli
bir skor ölçeği içeren İHK yaklaşımı, meme kanseri tedavi sürecinin belirlenmesinde
sıklıkla kullanılmaktadır.

Aşırı ekspresyonun analizi İHK’sal olarak yapılmaktadır. İHK 3+ olarak değer-
lendirilen hastalarda, aşırı ekspresyonu vardır şeklinde bildirilir ve bu hastalara istisnai
durumlar haricinde Herceptin tedavisi uygulanır. Bu tedavinin uygulanabilmesi için
hastanın İHK’sal skoru 3+ ya da 2+ olmalıdır. Diğer skorlar (1+ ve 0) negatif olarak
değerlendirilir ve hastanın HER2 ekspresyonu normaldir şeklinde değerlendirilir. 3+
hastalarda Herceptin kullanılanbilir ancak, 2+ hastalar için kuşkulu yaklaşım sergilenir
ve İHK’sal teste ek olarak, FISH tekniği ile yeni bir analiz yapılarak, kuşkulu skor
desteklenir ya da negatif olarak değerlendirilir.
Çevresel membran hücre boyamasının tamamlanmamış olduğu durumlarda ve
boyama zayıf (soluk) olduğu durumlarda, tümör hücrelerinin %10’un üzerinde
olduğu saptanırsa, İHK 2+ olarak değerlendirilir. İHK 2+ değerlendirmeye alınan
bir diğer durum ise, çevresel membran boyanmasının yoğun ve tamamlanmış
olduğu ancak, tümör hücrelerinin %10’un altında yoğunluk gösterdiği durumdur.
Eğer çevresel membran boyanması tamamlanmamış veya boyamanın az çok fark
edilebilir nitelikte olduğu tümör hücrelerinin yoğunluğu %10’un üzerinde ise İHK
1+ olarak değerlendirilir. Çevresel membran boyanmasının tamamlanmamış olduğu
ya da boyanmanın olmadıgı ve tümör hücrelerinin yoğunluğunun %10’un altında
olduğu durumlarda ise, İHK 0 olarak de¨gerlendirilir. İHK 1+ ve İHK 0 sonuçları
negatif, İHK2+ kuşkulu ve İHK 3+ pozitif olarak sınıflandırılır . Önerdigimiz yöntem
ile İHK’sal olarak HER2 analizini otomatik gerçekleştirecek ve İHK’sal skorunu
bildirecek bir çalışma anlatılmaktadır.

İHK ile boyanmış mikroskopik görüntülerin manuel HER2 değerlendirmesi boyanma
çeşitliliği, üst üste binmiş bölgeler ve homojen olmayan çok büyük slaytın
görülebilmesi sebebiyle hata yapmaya açık, zahmetli, gözlemciler arası değişken ve
zaman alıcı rutin laboratuvar işleri işerir. Bu sorunları gidermek için dijital patoloji,
tüm slayt görüntüsünün analiz edilmesinde ve yorumlanmasında, tekrarlanabilir,
otomatik ve objektif bir değerlendirme sunar. HER2 epitel doku tümörleri ile
ilişkili olduğundan ve meme tümörlerinin çoğu epitel dokudan kaynaklandığından,
farklı doku yapılarını ayırmak için bir yaklaşım geliştirmek çok önemlidir. Bu tez
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çalışmasında, meme kanseri görüntülerinde HER2’nin İHK skorunu otomatik olarak
değerlerlendirme yapmak için bilgisayar destekli tüm slayt bazlı derin öğrenme
metodunu tanıttık. Histopatoloji görüntülerinin yorumlanmasındaki subjektiflik ve
patologlar arası uyuşmazlıklar nedeniyle, üzerinde anlaşılmış ve yinelenebilen
methodların belirlenmesi gerekmektedir. HER2 değerlendirmesindeki bir önceki
methodun aksine, bu araştırmada tüm slayt görüntülerinde, hücre zarının derin
öğrenme temelli segmentasyonu kullanılarak HER2’nin sınıflandırılması gerçekleştir-
ilir. Analiz sonuçları ağin membrane hücre boyanması ve sitoplazmik veya hatalı
boyanma arasındaki farkı ayırt etmeyi başardığını gösterir. Test veri seti eğitim için
kullanılmadığından, dikkate değer yüksek doğruluk, modelin hücre zarlarını doğru
şekilde bölümlere ayırmayı iyi bir şekilde öğrendiğini gösterir. Patch’ler temel alarak
slaytları skorlayan ve sınıflandıran diğer derin öğrenme metodlarına karşın, tüm slayt
görüntülerini patologlar tarafından kabul edilen değerlendirme kılavuzlarını dikkate
alarak değerlendirdik. Önerilen teknik üç adımdan oluşmuştur.

Birinci aşama olarak, bütün slayt görüntüleri üzerindeki epitel ve stroma bölgelerini
sınıflandırabilmek için süperpiksel tabanlı öznitelik öğrenme sınıflandırıcısı olan
Destek Vektör Makinası (SVM) kullanılmıştır. Bu tezin ilk bölümünde, epitel ve
epitel olmayan (stroma) bölgelerini sınıflandırılmasında geleneksel makine öğrenmesi
algoritması geliştirilmiştir. Sınıflandırmanın söz konusu olduvu problemin çözümüne
yönelik algoritmalarda, SVM sıkça kullanılan bir makine öğrenmesi tekniğidir. Bütün
slayt görüntülerindeki bölgelerin, ikili örüntü (LBP) ve renk histogramı gibi bazı doku
ve renk öznitelikleri ekstrakt edilerek Destek Vektör Makinasına verilir. İlk olarak,
görüntü analizinde temel ön işlem protokollerinin başında gelen normalizasyon işlemi
uygulanır. Normalizasyon işleminin uygulanmasındaki amaç, kullanılacak olan her
öznitelik türü arasındaki aralık farklılıklarının yarattığı yanlılıkları (bias) ortadan
kaldırmaktır. Görüntü elde edilirken kullanılan farklı tarayıcılar ve farklı boyama
tekniklerinden kaynaklanan problemlerin önüne geçebilmek için piksel yoğunluğu
dağılımlarını standartlaştıran normalizasyon tekniği uygulanması gerekmektedir.

Normalizasyon tekniği uygularken kullanılan histogram dağılım değerini, belirlemiş
olduğumuz spesifik bir referans görüntünün (Diaminobenzidin uygulaması ) mavi
ve kahverengi kanallarının histogram değerlerine bakarak elde ettik. Denetlenen
sınıflandırıcıda, büyük slayt görüntülerindeki ilgili alanların (ROI’lerin) belirlenip,
özelliklerine göre sınıflandırılıp etiketlendirilebilmesi için el yapıcı öznitelikler
kullanılmıştır.

Bu aşamadan sonraki işlemler, büyük slayt görüntülerindeki tüm pikseller yerine,
artık belirlenmiş süperpiksellere uygulanmıştır. Anlamlı ve benzer bölgelerin
kümeselleştirildiği (gereksiz kısımların arıtıldığı) süperpikseller üzerinden öznitelik
çıkarmak performansı arttırmakla kalmamış, sonraki sınıflandırma aşaması için
değişken sayısını azaltmıştır. SVM, sınıflandırıcısını oluşturmak için gereken
etiketlenmiş ve anote edilmiş veriler, konusunda uzman patalog tarafından temin
edilmesi gerekmektedir. Patalog bu anotasyon işlemini gerçekleştirirken, İmmünohis-
tokimyasal (İHK) bütün slayt görüntülerindeki karmaşıklığın önüne geçebilmesi için
etiketleme işlemini küçük, detaylı ve tanımlayıcı epitel ve stroma bölgeleri üzerinde
yapması gerekmektedir.

İkinci aşamada, epitel bölgeler üzerinde, Konvolüsyenel Sinir Ağları (KSA) tabanlı
segmentasyon yöntemi membranöz bölgeleri bölütlemek için kullanılmıştır. KSA
genellikle sınıflandırma işlerinde kullanılır, fakat UNet mimarisi karmaşık yapıları
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sınıflandırmak ve bölümlere ayırmak için insan görsel algılama sistemi tarafından
tanınabilir yerelleştirilmiş öznitelikler ekstrakt eder. Bu öznitelikler, UNet’in her
piksele etiket atamayı mümkün kılan alt örnekleme özelliği kullanılarak sağlanır.
Biyomedikal uygulamalarda, karmaşıklık ve yüksek veri toplama maliyeti gibi
sebeplerden dolayı, dijital analiz ortamda insan gözüne yakın seviyede sonuçlar
elde edilmeye çalışılırken problemler yaşanmaktadır. Makine öğrenmesi metotlarıyla,
çok az sayıda eğitim örneği ile iyi sonuçlar elde edilerek bu zorlukların üstesinden
gelinebilir.

Anote edilmiş eğitim görüntülerini eğitebilmek için Keras kütüphanesini kullandık.
UNet mimarisi çok az sayıda eğitim görüntüsünde çalışabilir hăle gelebilmek için
değiştirilen ve genişletilen her evrişimin geçerli bölümünü kullanır. Mevcut ağı
desteklemek ve başarılı bir sonuç almak için, pooling öperatörü yöntemi yerine
üstörnekleme yöntemi kullandı. Üstörnekleme yöntemi her bir girdinin çözünürlüğünü
arttırmış oldu. Daha yerel ve kusursuz sonuç elde edebilmek için yüksek çözünürlüklü
öznitelikler ekstrakt edildi. UNet mimarisi her bir kıvrımın sadece geçerli parçasını
kullanır. Tüm parça bölütleme haritasının piksellerini barındıran girdi resminde
mevcuttur. UNet aşağı örnekleme (solda) ve üst örnekleme olarak bilinen geniş bir
patika yolundan oluşur. İki adet 3 × 3 konvolüsyon devamlı olacak şekilde ve her
birinin ardından Rectified Linear Unit (ReLU) uygulanılacak şekilde kullanıldı. Ayrıca
mimari, 2 birim kaydırmalı ve 2 × 2 maksimum pooling operatörü içermektedir. Her
alt örnekleme adımında, kanallardaki öznitelik sayısıiki katına çıkar. Bunun sonucu
olarak, her geniş haritadaki özellik haritasının bir örneklemesi 2 × 2’lik üst evriçim
içermektedir. İstenilen sayıda sınıfı bulabilmek için 1 × 1’lik tabakanın her 64
bileşen özniteliği vektörünü son tabakada işlemesi gerekmektedir. Mimari toplamda
23 konvolüsyenel tabakaya sahiptir. Sonuç olarak, bölünmüş fayanslar birleştirilir ve
her slaytın toplam puanı değerlendirilir. 50 slayt için elde edilen sonuçlar, el yapımı
öznitelikler ve derin öğrenme öğretileriyle karşılaştırılır. Her bir fayansın ayrı olarak
işlenmesinden sonra, tüm fayans sonuçları birliştirilip, genel bir skor elde edilir.

Bölme işlemi esnasında, bazı hücre çekirdekleri kusurlu olan ve normal
olan hücre çekirdeği diye ayıklanır. Bu ayıklanma sürecinde bazı zorluklarla
karşılaşılmıştır. Hücre çekirdekleri iki fayans bölgesinin arasında kaldığında
problemlem oluşabilmektedir. Olabilecek bir yanlışlıktan kaçınmak için, küçük
fayans bölgeleri köşe tarafları gözetilerek ekstrakt edilmiştir. Yataysal birleştirilme
yapılırken, sağdaki görüntüyü içeren fayans bölgesinin sol kısmının diğer fayansa
yakın olan parçasıile, soldaki görüntüyü içeren fayans bölgesinin sağ kısmının sağdaki
fayansa yakın olan bölgesi kombine edilmiştir. Buna benzer olarak, dikey birleştirme
aşamasında da, üst görüntüyü içeren fayans bölgesinin alt kısmı ile, alt görüntüyü
içeren fayans görüntüsünün üst kısmı birleştirilmiştir.

Elde edilen deneyler, boyalı veriler içeren İHK görüntüleri üzerinde, önerilen
algoritmamızın ümit verici performans elde ettiğini göstermektedir. Geliştirmiş
olduğumuz yazılımımızın, diğer literatürde bulunan epitel bölgelerideki süperpiksel
bazlı sınıflandırma yöntemlerini içeren ve KSA kullanılarak yapılmış membranöz
hücre boyamaların bölütlenmesinde kullanılmış diğer algoritmaları içeren yaklaşım-
lardan daha iyi performans gösterdiği gözlemlenmiştir.
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1. INTRODUCTION

Cancer has been a major health problem worldwide, for a long time, and yet the

incidence of this group of related diseases is increasing. There were an estimated

3.9 million new cases of cancer and 1.9 million deaths from cancer in Europe in

2018. The most common cancer sites were cancers of the female breast, followed

by colorectal, lung and prostate cancer [1]. Breast cancer is the most prevalent form

of cancers among women. Currently, based on American cancer society (ASCO),

there is a 1 in 8 American women would develop breast cancer in their life. Due

to the extensive research, new treatment methods and drugs have been developed,

and diverse molecular mechanisms affecting the onset and development of breast

cancer have been discovered in the past decades. Several prognostic and predictive

markers have been established. The most important and widely researched molecular

factors is Human epidermal growth factor receptor 2 (HER2), estrogen receptor

HER2 could play an important role in the development of breast cancer. HER2

proteins are responsible for how cells grow and divide. Therefore, HER2 therapy in

combination with chemotherapy or/and endocrine therapy could be the most efficient

treatment. Furthermore, in breast cancer treatment, trastuzumab and lapatinib therapies

are implied to be effective in HER2 amplified cases. The traditional system of

HER2 breast cancer assessment deficits from accuracy on detection of correct patients

overexpressing HER2.

1.1 Purpose Of Thesis

The prevalence of HER2 overexpression is associated with invasive breast cancer in

about 20 percent of breast cancers. Admittedly, precise and fast HER2 assessment

is crucial to consider the appropriate action for patients. The HER2 biomarker is

over-expressed, amplified, or both, in 15%-20% of high-grade invasive breast cancers

and has been associated with fast tumor growth, increased risk of recurrence after

surgery, and poor response to shortened survival [2]. Quantitative image analysis

1



Figure 1.1 : Sample breast tissue images with (a) Score 0/1+, (b) Score 2,and (c)
Score 3.

of digitalized slides decreases human error, increases the accuracy of diagnosis,

reduces the workload of pathologists, and standardizes scoring systems. In HER2

assessment of IHC slides, to address ambiguities and subjectivities of manual scoring,

computer-aided solutions are provided to simplify the overall progress. With the advent

of image analysis in digital pathology, a huge interest has focused on digital slide

scanners to process and evaluate typical pathology lab workload in a digital, fast,

2



Table 1.1 : Evaluation criteria for HER2 (ERBB2) protein expression by IHC assay
of the invasive component of a breast cancer specimen.

Specimen Staining Pattern Score Classification

Incomplete membrane staining that is faint or
barely perceptible and within ≤ 10% 0 Negative

of the invasive tumor cells or no staining observed

Incomplete membrane staining that is faint/barely
perceptible in ≥10% of tumor cells 1+ Negative

Weak to moderate complete membrane staining
observed in ≥10% of tumor cells 2+ Equivocal

Circumferential membrane staining that is
complete, intense and in ≥10% of tumor cells 3+ Positive

accurate, and efficient way. According to ASCO/CAP guideline [3] shown in Table

1.1, in IHC slides if more than 10% of the whole tissue comprises strong tumor cells

the case displays 3+ which is accepted as positive and are allowed for therapies. If the

ratio for moderate tumor cells is more than 10% the case is considered as equivocal 2+

and reflexed to ISH test to assess HER2 status. In no staining or weak conditions,

the case is HER2 negative. Some tissue samples have been shown in the Figure

1.1. Recently, machine learning methods have considerably enhanced the ability

of computers to automatically diagnose various components in biomedical images.

Investigating and processing microscopic images is an extremely tedious and time

consuming procedure. Computer based machine learning tools assists pathologists to

work on stained tissues to segment, recognize, classify, recognize, and reveal important

information about the samples. In HER2 membrane scoring, it is important to count

the number of closed and open membranes that are in epithelial area. In this thesis, we

combined both local color histogram and LBP features together to build an automatic

classification solution to reduce inter-observer variability and increase the accuracy

of the procedure. The main reason to do this is to remove tiles that contain white

pixels and reduce the computational complexity. In a normal slide about 30 percent

of tiles with pixel size 512×512 are redundant and empty. Hence we can increase

the speed of the deep learning task by skipping aside redundant tissue blocks. In

the patients with breast cancer, HER2 state is critical as the variations would specify
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the type of therapies. IHC is a special staining method to discover HER2 protein

in the cancer cells that works based on detecting particular antigens in tissues. The

IHC stained slides are comprised of brown channel (diaminobenzidine DAB signal)

and counterstain blue-violet channel (hematoxylin signal). This color based reaction

produces different structures like nucleus, membrane or cytoplasm. In IHC HER2,

the membrane and nuclei detection methodologies are performed on the brown and

blue channels, respectively. Therefore, extracting ROI depends on color information

of the superpixels. We use local color histogram and distribution of superpixels in

clustered uniform patterns. The color bin of each histogram is computed based on

areas containing pixels in superpixels. The LBP algorithm is a robust and powerful

descriptor that thresholds the neighboring pixels based on a center pixel. Here, we

would consider each superpixel separately and evaluate the histogram of each pixel.

This uniform LBP achieves rotation invariant descriptor of the pattern. The histogram

of the pixels inside a superpixel is concatenated and for each superpixel a unique

feature and label is assigned.

1.2 Literature Review

The recent studies report a wide range of automated methods for HER2 scoring

algorithms. The ImmunoMembrane application [4] is an open source software for

digital image analysis of HER2 IHC. ImmunoMembrane analysis the completeness

and intensity of the cell membrane staining reaction, based on the IHC interpretation

criteria of the ASCO/CAP guidelines [5] [6].

IHC analysis is a method for demonstrating the presence and location of proteins in

tissue sections which is placing new demands on the reproducibility, accuracy, and

specificity of the extracted information [7]. The automated analysis in Whole Slide

Image (WSI) has recently achieved considerable attention because of the accessibility

of digital slide scanners and the increasing importance of tissue-based biomarkers

of stratified medicine [8]. Fernandez et al. [9] proposed a method to deal with the

color variation and distortion problem by describing a density tool that has been

implemented to measure the positive IHC stain areas in WSI. Among pixel-based

clustering methods, Simple Linear Iterative Clustering (SLIC) [10] is studied in

histopathological segmentation tasks. SLIC is a clustering method that agglomerates
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similar and nearby pixels and is accepted as a superior method in terms of accuracy and

efficiency. Jiří Borovec [11] employed SLIC as a preliminary step in histopathological

images to increase the efficiency of Graph-cut method. In [12], epithelium and stroma

regions in histopathological images is segmented using a hierarchal fuzzy c-means

method. Babak et al. [13], detected regions of interest in whole slide images using

a multi-scale superpixel classification approach that classifies at different scales based

on the acquired details of the region of interest (ROI). Authors in [14] also used texture

features to classify malignant and benign breast histopathology images. Most of the

developed approaches are related to automate classifying of Hematoxylin and Eosin

(H&E) tissue images [15]. In automated HER2 assessment from IHC slides, several

classical and handcrafted approaches are presented [16] [17] [18] . Most of these

methods are about threshold based approaches as in [19] by using an optimal threshold

value the percentage of the stained area and the score is evaluated. In a work by

Morteza et al [20], a WSI based classifier using robust local binary pattern LBP and

characteristic features is provided. The extracted characteristic is scored through a

naive rule-based classifier. The rotation invariant LBP are used to classify selected

ROI. A membrane connectivity based algorithm that automatically specifies the HER2

status in preselected sections of the tissues is presented in [21]. The method segments

brown pixels and each slide is scored using the skeletonized connected membrane.

In [22], basolateral membranous activity and neoplastic cell count are evaluated using

segmentation and thresholding methods and the results of the computer-aided analysis

are compared with manual evaluation. In another study [23], manual outlined ROIs

are transformed into HIS color space and various features are extracted to train a super

vector machine classifier. In the test step, the classified image was classified through a

voting system.

In IHC membrane staining, one of a most challenging issue is the reconstruction

of the membranes that are not revealed. A method based on nuclear membranes

and approximating cellular membranes to automatically detect bounding membrane

of each cell is available in [24]. In Immunumembrane, a set of thresholding,

morphology, segmentation, and a point-based membrane evaluation is presented.

Recently, state-of-the-art approaches like deep learning have intensely attracted the

attention of researchers. Due to rapid growth in large medical datasets, new interesting

machine learning challenges rises which are supposed to give promising results under
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uncertain conditions.

During the recent few years, deep learning has gained a central position toward the

automation of our daily life and delivered considerable improvements as compared to

classical machine learning algorithms. Based on their improvement in performance,

most researchers believe that within next 15 years, deep learning based applications

will take over human and most of the daily activities with be performed by autonomous

machines. However, penetration of deep learning in healthcare especially in medical

image analysis is quite slow compared to the other real world problems.

Deep learning is a computational model that resembled from human cognition system

that can be used efficiently in different applications [25]. In practice, an artificial neural

network that has more than one hidden layer could be considered as a deep learning

architecture. Currently, medical imaging and digital pathology community is showing

increasing interest in deep learning as demonstrated by various studies.

CNNs that are one form of deep learning, have been well suited to medical

data and have been incorporated successfully in different segmentation [10, 26–28],

classification [27, 29–31], and detection [29, 32, 33] tasks.

Among deep learning models, CNN is the most commonly studied method in medical

image understanding tasks. One of the implementations of CNN in HER2 assessment

was presented in [34], where detected cells from IHC stained tissues are classified after

some morphological operations.

The proposed method was based on whole slide cell classification using CNN and the

results were considerably better than classical machine classification methods. In [35],

128×128 blocks of four labels at a low resolution are considered as training data. For

each slide, the ratio of blocks with each label to total blocks is considered to determine

the HER2 score for a WSI.

The proposed methods in deep learning for HER2 assessment are all about cell [34] or

tile based classification [36] . The best of knowledge, for HER2 scoring, none work

has been done based on segmentation of cell membranes. Ideally, deeper architectures

in CNN represent better results. In [36], long short term memory (LSTM) architecture

is proposed to detect cell membrane and nucleus in small patches. However, in HER2

assessment usually WSI is considered to evaluate the overall result.
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1.3 Hypothesis

In this thesis, we propose a novel architecture for HER2 assessment of IHC biomarker.

Our architecture exploits a simple linear iterative clustering (SLIC) clustering, SVM

classifier, and CNN segmentation. We would investigate different variables which

take into account segmentation of epithelial area as well as classifying WSI as

positive, equivocal, or negative. The main goal of this study is (1) to segment

and classify epithelium areas from stromal parts of slides correctly and (2) to apply

a precise membrane segmentation using a convolutional auto-encoder that unlike

sliding-window convolutional networks, relies on a strong data augmentation that

efficiently trains with very few annotated samples and leads precise segmentation.
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2. METHODS AND DATA

In Figure 2.1 the overview of the proposed methodology is shown. The

proposed method for HER2 scoring consists of preprocessing procedures, patch-based

preprocessing, feature detection, and techniques to score the WSI.

2.1 Proposed Method

One of the important steps in automatically analyzing the WSI in immunohistochemi-

cal images is discriminating between epithelial and stromal tissues. In the first part of

this thesis, the traditional machine learning algorithm is developed for classifying the

epithelial and non-epithelial areas. The SVM classification is a widely algorithms in

classifying techniques. It is applied by employing some texture and color features such

as LBP and color histogram. An illustration of tissue segmentation part is presented

in Figure 2.2. In addition to the reasons mentioned above, considering other factors

Figure 2.1 : The diagram of the applied method to segment cell membrane in HER2
stained IHC specimen which is the combination of deep learning and
traditional machine learning algorithms. First, superpixel breaks the
image to manageable parts. Hand crafted features are extracted to

classify each superpixel to epithelial or stromal. Deep learning part in is
an end-to-end method that takes images as input and learns a U-net

model to produce segmentation result. The WSI merged from all tiles is
obtained to get overall score of the specimen.
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of the efficiency beside consistent magnification level could also substantiate. To

delineate, CNN based solution reaches to higher accuracy compared to traditional

image processing methods. To be impartial, working with various datasets would result

in a rich trained model which would segment membranes at various zoom level and

size.

2.1.1 Normalization

Normalization is an essential preprocessing step in image analysis. Normalization

is applied in order to eliminate biases created by the range differences between

each feature type. As the image acquisition is performed by different scanners with

different staining, normalization should apply in order to standardized the range of

pixel intensity. We have used histogram of one specific image in three channels of

diaminobenzidine (DAB) staining. We normalize the images based on the histogram

of the blue and brown channels of that specific reference image.

2.1.2 Tissue segmentation

Regions of cancer are typically obtained from the epithelium parts so separating

epithelium and stroma leads to better statics through analysis. The supervised classifier

uses handcrafted features to determine and specify regions of interest for each WSI.

In [37] they have presented a machine learning based approach for detecting metastatic

tissue regions that accomplishes in blockwise detection of breast cancer metastases

from lymph node tissue sections. It was applied for hemotexolyin and eosin WSIs.

They have divided each image to the small blocks and they have used Random forest

method for classifying the blocks into metastases from lymph nodes. In our proposed

method the entire processes such as feature extraction, and training and predicting are

applied in the superpixels instead of working on all pixels. Extracting features from

superpixels on meaningful and similar regions not only to increase the performance

but also decreased the number of variables for the subsequent classification step.

2.1.2.1 Superpixel

Simple Linear Iterative Clustering (SLIC) [10] is a clustering method that clusters

pixels according to their color and distance space to create similar areas named as

superpixels. Rich quality segmentation, consistent size, and low computational cost
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are the most prominent advantages in comparing of other feature extraction methods.

This approach performs based on 5-dimensional feature space defined by [labxy] space

in which l, a, b are the values of CIELAB color space and x, y stand for coordination

of the point. This method is a special form of k-means clustering adapted to local

uniform group of pixels without redundant distance calculations. We have used SLIC

for generating superpixels due to its strong performance and better adherence to the

boundaries. And also using superpixel map is computationally efficient as it reduces

the complexity of examining thousands of pixels to only a few hundred superpixels.

It is also perceptually meaningful because each superpixel has uniformity. Also, each

superpixel considers as a uniform unit, especially in their color and texture.

2.1.2.2 Manual sampling or using previous models

Training superpixels were selected by a pathologist as normal and tumor tissues. These

negative and positive samples were given as a training dataset to the classification

model. Sufficient amount of samples should be selected from different kinds of regions

for each category in order to train a robust model. Consequently, the trained models

can be used for other samples without the repeat of manual sampling.

2.1.2.3 Feature extraction

Each image has a special texture and color features. Texture and color are considered

as the main features of any image. The texture of each tissue was further described

using local binary patterns (LBP) and Gray level co-occurrence matrix (GLCM). In

addition to the texture features, mean color and color histogram features are extracted

from each image by considering each channel in RGB and HSV color spaces.

2.1.2.4 Classifier

To assess the performance of epithelial and stromal area classification using the local

color histogram and LBP superpixel-level features a support vector machine (SVM)

classifier is applied to predict the label of superpixels. For implementing SVM,

LIBSVM library is required. In order to apply SVM on the superpixels, a ground truth

needed and this ground truth obtained by the pathologists that manually sampled each

superpixel to stromal and tumoral (foreground and background). To build the SVM

classifier, labeled training data provided by an expert is desired. Due to the complexity
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Figure 2.2 : Example of tissue segmentation by SVM classifier on the selected area.
(A) Image generated by SLIC algorithm. (B) Labelling superpixels as

tumor and normal tissues. (C) Result of the SVM classification.

of the whole IHC image, a pathologist should label small and descriptive epithelial

and stromal patterns to segment the whole slide. This process is performed once as we

would use this trained model for further samples.

2.1.3 Tile extraction

Loading excessively large images into the memory is one of the fundamental

challenges in the digital pathology. For instance, a typical image can have 200000

× 100000 pixels. An obvious approach of manipulating the WSI is dividing the

image into smaller tiles. The method should apply in the region of interest (ROI)

that reaches from the tissue segmentation. Since the ROIs have an extremely high

(a) (b) (C)

Figure 2.3 : (a) A sample of WSI. (b) Result of tissue segmentation which is
extracted as a mask. (c) Extract tiles into the none overlapping 512×512

images.

resolution, loading such images are extremely difficult for an application. To overcome
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the memory usage problem in WSI, the best solution is to keep the images as small as

possible and process images in parallel. None overlapping tiles has been extracted as

512 × 512 images in 0.23 µ / pixels (25× magnification) to be examined separately.

Images from different microscopes with diverse formats have various zoom levels so

working on µ / pixels gives us reliable and constant proximity to slides. In general,

each slide is divided into about 7k tiles as shown in Figure 2.3.

2.1.4 UNet model

UNet uses the valid part of each convolution which modify and extend for working

on very few training images. Upsampling have used instead of pooling operator to

supplement a usual and successive contracting network. Using Upsampling cause to

increase the resolution of the input in each layer. High resolution features are extracted

and combined to localize more precise output. UNet only uses the valid part of each

convolution. The full context is available in the input image which contains the pixels

of the segmentation map.

UNet consists of contarcting path which is downsampling (left) and an expansive path

which is known as upsampling. contracting side works like usual architecture of a

convolutional network. Continual application of two 3×3 convolutions is utilized and

each of them followed by Rectified Linear Unit (ReLU). It is also has a 2×2 max

pooling operation with stride 2. The number of feature channels is doubled in each

downsampling step. Consequently, an upsampling of the feature map in each expansive

map contain 2×2 up-convolution. At final layer a 1×1 layer is required to map each 64

component feature vector to find the desirable number of classes. The network has 23

convolutional layers entirely. CNNs are typically used for classification tasks, however

the UNet architecture extracts localized features recognizable by human visual system

to classify and segment complex structures. This is provided by the downsampling

feature of the UNet that makes it possible to assign a label to each pixel. Furthermore,

the success of convolutional networks are usually dependent on the size of training

dataset. In biomedical applications, due to complexity and high cost of data collection,

machine learning methods would work elegantly with very few training samples.

In UNet by acquiring upsampling layers instead of pooling layers the resolution of

the input image is increased which enables the successive convolution layer to learn
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more accurate result. In this type of network architecture, low-level feature maps are

combined with higher-level ones to precisely locate. We considered training images

with corresponding annotations to train our network with implementation of Keras.

To use GPU memory efficiently, we favor large input tiles over a large batch size

and discard white empty tiles eliminated from classification part. The segmentation

problem for HER2 is assigning one and zero pixels to each pixel in each tile. The

network architecture is illustrated in Figure 2.4. It is consisted of two encoding (left)

and decoding (right) sides. The encoding path is comprised of repeated convolutions,

followed by rectified linear unit ReLU and max pooling layers. In right side after

upsampling features maps, a cropped feature map from encoding part is concatenated

which is followed by convolution and ReLU layers. Finally, a convolution layer with

1×1 size is used to map 64 component feature map to the number of output class.

2.1.5 Merging tiles

After processing in each tile separately, all tile’s result should be merged to get the total

result. During the dividing step, some of the cells have been divided into the defective

cells. To avoid this fallacy, the small tiles (127×127 ) are extracted by considering edge

parts of each tile. During a horizontal merge, the left-most part of the right image is

combined with the right-most part of the left image. Similarly, during a vertical merge,

the bottom-most part of the top image is combined with the top-most part of the bottom

image. Extracted parts are wide enough to encompass the largest possible cell size so

that no cell will be cut in half. The algorithm is run in this newly created region, but

only the particles (complete cells and negative nucleus) that intersect with the center

line are considered for calculations and overlays. The center line in the combined

image corresponds to the merging edges of the original tiles. While processing each

tile, particles that are found to intersect the edges are excluded from the calculations,

thus making sure that no particle will be considered twice. Each will be considered

only once, either in the original tiles or in one of the generated merging tiles. Figure 2.5

shows the merging results that consider the edge parts of right and bottom tiles.
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Figure 2.5 : Each tile considers its right and below edge tiles. (A) The original
image. (B) Result after applying Tissue segmentation. (C) Applying

merging method by considering neiboring tiles. (D) Four tiles are shown
demonstrating the connectivity of the complete and incomplete

membrane staining in the edge parts of each tile.

2.1.6 Dataset

The dataset consists of 100 WSIs of breast tumor patients which are gathered from

ACIBADEM hospital and Warwick competition. The dataset from ACIBADEM

hospital was acquired using a 3DHISTECH scanner while dataset from the University

of Warwick was scanned using a Hamamatsu NanoZoomer C9600. Out of 52 slides

from 100 WSIs were from Warwick dataset and were stained using HER2 antibody.

The other 48 were data acquired from ACIBADEM Hospital. The size of the slides

were about 150000×100000 pixels. The size of each tile was 512 × 512 which was

automatically given to UNet architecture to get output results. The overall result

was evaluated after merging tiles with corresponding neighbors (Upper, left, right,

bottom, and corner if available) [38]. For membrane in edge parts, a similar approach

is employed. This process is important as the membrane in the edge part would be

counted as open membrane and the overall results would be wrong.

2.1.7 Implementation details

The process of training and testing of CNN is implemented on the GPU because its

time efficiency is more than CPU. The graphic card is NVIDIA Geforce GTX 1028 and

2GB memory. I have used Tensorflow is used as a framework which is open-source in

python. In addition, Virapath viewer from Virasoft Company is used.
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3. EXPERIMENTS AND EVALUATION

The dataset and ground truth presented by Acibadem hospital are utilized for the

training of the model. However, the performance of the proposed method is evaluated

on two different datasets. The University of Warwick provided a dataset with FISH

and HER2 IHC scores. For testing, the proposed method is applied in the Warwick

dataset. The result of the proposed method and the provided results from Warwick

dataset are compared in Table 3.1. The result from the proposed method matches with

values from FISH in 2+ cases, in all of the 3 equivocal cases. In these 3 conflicting

cases, pathologists diagnosed equivocal case where they were scored as positive by

automated image analysis solution. Correct analysis of 2+ cases are the common

challenging difficulty in HER2 IHC test and the assuring results show the efficacy

of the methodology. The HER2 status determined by the combination of machine

learning method and by pathologists confirmed the accuracy of the automated image

analysis solution. There are some kinds of literature in CNN which score patches

individually based on their staining intensity. In the proposed method, the algorithm

learns membrane intensity as a feature to discriminate between diverse tumor cells.

The high affinity between the results of automated scoring using CNN and manual

scores by pathologies represents the feasibility and reliability of the HER2 scoring

approaches.

In Figure 3.4, detected cell membrane and corresponding ground truth of some sample

tiles from Acıbadem dataset are illustrated. Here column (a) represents the original

images from different slides with various scores. Column (b) illustrates the ground

truth cell membranes acquired by pathologies and confirmed with conventional image

processing methods. In column (c) the uncompleted cell membrane is dissolved

using morphology pruning operations. In column (d) detected cell membrane by the

proposed method is shown in Figure 3.1. The performance of the method is obtained

by statistical evaluation method. Dice coefficient result for 1000 tiles with 512×512

pixels among pathologists and the proposed method is 0.98 with a standard deviation
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Figure 3.1 : Result images with different image characteristics from the test dataset .
All images show that the membrane borders of each cell is enclosing a

specific nuclei.

of 0.06 that shows a vigorous segmentation. The Dice coefficient values range between

0 (not overlapped) and 1 (perfect overlapped).

Table 3.1 : Confusion matrix compares the results of the deep learning based
classification method with provided scores from Warwick dataset.

Actual
0/1+ 2+ 3+

Predicted 0/1+ 23 3 0
2+ 0 10 3
3+ 0 1 12

In segmentation tasks, true positive, false positive, false negative, and true negative

are represented as the intersection between segmentation and ground truth, segmented

parts not covering the ground truth, missed parts of the ground truth, and parts of

the image beyond the union segmentation plus ground truth, respectively. To achieve

higher accuracies and lower training losses we analyzed various CNN architectures

were analyzed. Different combinations of kernel sizes and convolutional layers are
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Figure 3.2 : Accuracy and learning curves for training and validation steps.

tested. For the experiments, three models were considered. In the first model,

convolutional layers are used with filter sizes 3×3 and 3×3. In the second model,

convolutional layers with 3×3 and 5×5 sizes are employed. In the third model, the

convolutional kernels of size 5×5 are followed by 3×3. As shown in Table 3.3, an

architecture with higher convolutional kernel size followed by smaller kernel size leads

to better results presumably because of the importance of a larger neighborhood in

pathological images.

The value of the loss function and accuracy on the training and validation sets of the

proposed model has shown in the Figure 3.2. Because of data augmentation, the test

accuracy is similar to the training accuracy which means that the model is generalized

well and it is not overfitted. The appropriate learning rate increases the accuracy curve

of training is a sustained way.

Only after 20 epochs in the training process, the model has been generated. This

architecture enables the employment of CNN models with higher accuracy for scoring

of IHC stained images to evaluate HER2 score. From the values of the false positive

rate which wrongly indicates the membrane overlapping area and true positive rate

where the model precisely predicts the membranes, the ROC curve of this model can

be calculated and the proposed model provides a high area under the curve (AUC)

value (88%) Figure 3.3. In order to score HER2 IHC slides, we have to consider WSI

and evaluate about 3000 tiles in a short time. The computation time of an average

WSI is less than 500 seconds. Table 3.2 shows the dice coefficient performance of the

proposed architecture for different training and validation splits. The same test images

from our dataset were used for all evaluations.
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Figure 3.3 : The ROC curve shows that the proposed method can differentiate cell
membranes with high sensitivity.

Table 3.2 : Comparison of results from various combination of training and testing
dataset.

Training Test Train Validation Validation
images(%) images(%) loss accuracy loss

75 25 0.0355 0.9700 0.0821
50 50 0.0657 0.9687 0.0950
25 75 0.4885 0.8798 0.4979

Furthermore, the results of the other models are shown in Table 3.3 which show the

higher accuracy and lower loss of the proposed method. To have a better view of the

results of the model, in Figure 2.5 the predicted cell membranes are overlaid on the

original images. Here, alleged cell membranes are in red color. Some samples of the

ground truth , the pruning of the incomplete cells and the result of the proposed method

is presented in Figure 3.4.

Table 3.3 : Comparison of results from various models.

models Test Train Train Validation
images (%) accuracy loss Validation

Vesselnet 0.8908 1.7403 0.8669 2.1226
U-net 0.9851 0.0355 0.9700 0.0821

SegNet 0.8428 0.1583 0.8327 0.2076
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4. CONCLUSIONS AND RECOMMENDATIONS

4.1 Discussion

In this thesis, we introduced a computer-aided whole slide based deep learning

method to automatically evaluate the IHC score of HER2 in breast cancer images.

Because of the subjectivity of interpreting histopathology images and interobserver

disagreement between pathologists, reliable methods replicable of manual annotation

is necessary. In contrast to previous methods in HER2 assessment, in this research

classification of HER2 IHC using deep learning-based segmentation of cell membrane

in WSIs is evaluated. The analysis of results in Figure 6 indicates that the network

succeeds to distinguish between membranes and cytoplasmic or wrong staining.

As test dataset is not used for the training, the noticeable high accuracy indicates

that the model has learned well to segment cell membranes correctly. Despite

other deep learning-based methods that score and classify slides based on the

patches, we assessed the WSIs considering the guideline that is accepted by the

pathologists. From another perspective, cell membrane segmentation outperforms

patch-based classification in explicitly considering membrane staining intensity by

providing ground truth cell membranes of each image. This helps to increase the

performance of the model by learning precise features related to cell membranes.

The proposed methodology, which implements superpixel-based tissue classification

and deep learning-based cell membrane segmentation addresses automatic HER2

assessment tasks. The high agreement between automatic assessment and the manual

scoring approves the generality and acceptedly of the training data. However, the

greatest discordant in our evaluation was due to various staining criteria of different

laboratories. This discrepancy was the main reason of misclassifying 2+ cases as 3+ or

1+. The increment of training data from various laboratories, as well as histopathology

stain-color normalization are two important steps that could easily integrate to the

existing segmentation workflow to overcome these problems. Severe overlapping of
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cytoplasmic staining with cell membrane gives rise to poor segmentation which causes

errors in a way that some membrane staining connecting two cell are ignored. This

could result in a state that inside a closed membrane more than a nucleus or no nucleus

is recognized. This difficulty would directly affect the overall score in some cases, and

we overcame this by simply considering these cases that doesn’t have a distinct nuclei

as artifacts.

4.2 Conclusion

An automatic end-to-end machine learning based framework for IHC HER2

assessment is presented in this thesis. The proposed model considers three main

properties: (1) the input WSI is classified into two stromal and epithelial areas using

superpixel based classification; (2) the model should be trained using patches extracted

from the epithelial part, enabling the segmentation model to extract cell membrane

staining pattern; (3) the scoring part of the architecture would merge the results

from the tiles and transfer staining intensities and completeness to results accepted

by pathologists. The HER2 scores of the model have a high correlation with the scores

provided by experienced pathologists from two different and independent datasets.

The generality of this methodology could be considered on other diverse membrane

segmentation
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