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NORMAL KUVVET TASIYAN BIR, iKi VE UC BOYUTLU CUBUK
SISTEMLERIN CUBUK BOYUNA UZAMA ELASTIK EGRIiSi VE
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OZET

Yapi1 insa teknolojisinin gelisimine ve kullanim gereksinimlerine bagli olarak biiyiik
acikliga sahip yapilar giinimiizde yayginlasmaktadir. Bu tip sistemlerde statik agidan
giivenli bir tasarimin yaninda, mimari projeye de uygunluk 6nemli bir parametredir.
Buna bagl olarak statik projelendirmeyi yapan miihendis biiyiik acikliklart minimum
sayida kolon ile tasarlamak zorunda kalmaktadir. Bu sebeple genis agiklikli yapilarda
kolonlar1 birbirine baglayan ve plak yiiklerini ana tasiyicilara aktaran kiris
elemanlarinda minimum egilme momenti olugmasi beklenmektedir. Boyle bir tasarimda
ise kiris olarak projelendirilen elemanda salt basing veya ¢ekme gerilmesi olugmasi
gereklidir. Bu gereklilik betonarme Ongerme sistemlerle karsilanabildigi gibi celik
sistemlerle de karsilanabilmektedir. Boylece sadece ekseni yoniinde kuvvet tasiyan
sistemlerin matematiksel modeli, analizi ve davranis1 dnem arz etmektedir. Literatiirde
bu tip elemanlar bir, iki ve {i¢ boyutta ¢ubuk sistemler olarak gruplandirilmaktadir.
Calisgmamiz kapsaminda boyuna uzama elastik egrisi diferansiyel denklemi ve
Mathematica programi yardimiyla ¢ubuk sistemlerin analizi igin bir bilgisayar programi
gelistirilmistir. Bu programda cubuk sistemlerdeki i¢ kuvvet ve deformasyonlari elde
etmek i¢in kullanilacak denklemler, matris formundan farkli olarak analitik olarak elde
edilmistir. Bu yaklasimla kafes ¢ubuk sistemlerin analizi gergeklestirilebilmektedir.

Ayrica sicaklik degisimi gibi farkli durumlarin ¢éziime yansitilmas: miimkiindiir.

Anahtar Kelimeler: Cubuk sistemler, matematiksel modelleme, elastik egrisi

diferansiyel denklemi, sayisal ¢oziimleme
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SOLUTION OF THE ONE, TWO AND THREE DIMENSIONSIONAL BAR
SYSTEMS THAT CARRIES AXIAL FORCES WITH THE HELP OF THE
LONGITUDINAL ELONGATION ELASTIC CURVE AND COMPUTER
PROGRAMMING

Yener FiLizZ

Erciyes University, Graduate School of Natural and Applied Sciences
PhD Thesis, January 2019
Supervisor: Prof. Dr. Cengiz Duran ATIS

ABSTRACT

Structures with large spans have started to be common depending on the development
and usage requirements of the Building Construction technology in our time. In
addition to a statically safe design in such systems, conformity to the architectural
project is an important parameter, too. Consequently, the engineer who makes the static
project planning has to design large spans with a minimum number of columns. For this
reason, it is expected that a minimum bending moment will occur in the beam elements
that connect the columns in wide span structures and transfer the slab loads to the main
structural members. In such a design, only pressure or tensile stress is required in the
element projected as a beam.This requirement can be met by reinforced concrete
prestressing systems as well as by steel systems.Thus, the mathematical model, analysis
and behavior of the systems carrying the force in the direction of only their axis are
important.In the literature, such elements are grouped into bar systems in one, two and
three dimensions.Within the scope of our study, a computer program has been
developed for the analysis of bar systems with the help of longitudinal elongation elastic
curve differential equation and Mathematica program. In this program, the equations to
be used to obtain internal forces and deformations in bar systems are obtained
analytically, unlike matrix form. With this approach, the analysis of 3D truss systems
can be performed. It is also possible to reflect different situations such as temperature

changes to the solution.

Key Words: Bar Systems, Mathematical Modeling, Elastic curve differential equation,

Numerical analysis
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GIRIS

Bir yap1 sisteminin analizinde dogru sistem modelinin olusturulmasi en Onemli
asamadir. Literatiirde yapisal bir elemanin modellenmesinde farkli tip yaklasimlar

bulunmaktadir. Bunlar;

» Sonlu Elemanlara Dayali Modeller
> Fiber Modeller

» Mekanik (Yay Tanimli) Modeller
> Matematiksel Modeller

dir. Bu yaklagimlardan matematiksel modellerde amag, sistemin yiikler altindaki
karmagik davranisinin belirli sadelestirmelerle tanimlanmasini kapsamaktadir. Genel
olarak matematiksel modellemeler diferansiyel elemana ait malzeme &zelliklerinin ve
sistemin genel Ozelliklerinin belirlenmesi, yiiklerin ve sinir sartlanin tanimlanmasi
asamalarini igermektedir [1]. Yapi sistemlerinin yiikler altindaki davraniginin bilgisayar
ortaminda analizinde karmasik modellerde ortaya ¢ikabilmektedir. Bu durum analizin
hata oranini ve analiz siiresini artirmakla birlikte yakinsamayan sonuglarinda ortaya
cikmasina neden olabilmektedir. Bu sebeple modellerin ilave denklemler ve bazi
kabuller ile sadelestirilmesi gerekli olabilmektedir. Bununla birlikte hata oran1 en diisiik
modele  ulasabilmek icin  matematiksel = modeller igerisindeki  denklem
formulasyonlarmin detaylandirilmast  6nemlidir. Ayrica modellenecek olan yap1
sisteminin malzeme, geometri ve sinir sartlarinin dogru bilinmesi ideal matematiksel
modelin kurulmasinda 6nemlidir. Clinkii yap1 sistemlerini olusturan elemanlar yiikler
altinda farkli davranislar sergileyebilmektedir. Bu anlamda yap1 sistemlerini olusturan
elemanlar genel olarak diisey ve yatay elemanlar olarak ayrilmaktadir. Diisey
elemanlarda davranisa eksenel kuvvet hakimken yatay elemanlarda egilme etkisi 6n
plana ¢ikmaktadir. Ayrica bu yapisal elemanlarin davranis ve modelleme agilarindan

onemli olan, elastik egrileri de farklilik gdsterecektir. Ornegin basit egilmede egilme



momenti ¢ubuk boyunca degismediginden egrilik sabit kalacak ve ¢ubuk ekseni bir
daire yaymna doniisecektir. Kesmeli egilmede ise egrilik basit egilmeden farkli olarak
degisecektir. Dolayisiyla elemanlar iizerinde etkisi olan kesit tesirlerinin de davranis
modelleri iizerinde 6nemli etkisi vardir [2]. Yapi sistemlerinin bilgisayar ortaminda
modellenmesinde yapisal elemanlar plak ve c¢ubuk olarak iki farkli tiirde
olusturulabilmektedir. Bir boyutu diger iki boyutu yaninda goreceli olarak kii¢iik kalan
yap1 elemanlar1 plak eleman olarak isimlendirilmektedir. Plak eleman olarak sadece

dosemeler degil perdelerde bu modelleme yaklasimi ile tanimlanabilmektedir.

Diisey ve Yatay Plak Elemanlar [3]

Plak elemanlar diizlem geometriye sahiptir. Egrisel geometriye sahip olan plak
elemanlara kabuk ismi verilmektedir. Bu elemanlar da egrisel geometriye sahip

yapilarda kullanilir.

Kabuk Sistem [4]

Diger yandan, bir boyutu diger iki boyutunun yaninda ¢ok biiyilik olan elemanlar ¢ubuk
eleman olarak tanimlanmaktadir. Cubuk elemanlarda kendi i¢cinde dogrusal eksenli

cubuklar (cubugun kesitlerinin agirlik merkezini birlestiren eksen) ve egri eksenli
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cubuklar olmak tizere iki genel sinifa ayrilmaktadir. Dogru eksenli ¢ubuklar, kolon ve
kiris olarak ya da her ikisinin birlesimi olabilen yar1 kolon-yar1 kiris ¢ubuk olarak

davranig gosterebilmektedir.

/ 1
A i -=

Dogru Eksenli Cubuklar [5]

Egri eksenli gubuklar ise hem mimari perspektif agisindan hem de yiikleri sadece basing
yoluyla iletmek amaciyla kemer tipisistemlerde kullanilabilmektedir. Cubuk

elemanlarin birlikte kullanilmalar1 ile ¢ergeve sistemler olusmaktadir.

Egri Eksenli Cubuk [6]

Bu eleman tipleri yiikler altinda farkli davranislar sergilediginden modelleme
asamasinda  farkli  diferansiyel = denklem  takimlarina  bagli  analizleri

gergeklestirilmektedir. Giiniimiiz paket programlar1 kullaniciya kolaylik saglayan ara
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yiizleri sayesinde bu elemanlarin bilgisayar ortaminda hizli tanimlanmasin
saglamaktadir. Ancak bu tip sistemlerin yapisal analizlerine yeni algoritmalarla farkl
yaklasimlar kazandirabilmek icin Oncelikle eleman davramisinin anlagilabilmesi

Onemlidir.

Bir yapisal analizde tasiyicilik acisindan emniyetli ¢6ziim kagmilmazdir. Ancak
giiniimiizde ekonomiklik parametresi de son derece 6nem kazanmistir. Ornegin
icerisinde hareket kolayligi saglamasi nedeniyle minimum sayida kolon bulunduran
endiistriyel amagli biiyiik agiklikli sistemler yapilmaktadir. Genis agiklikli kopriiler ve
kapali hacimler insa edilmektedir. Yine benzer sekilde alis veris merkezlerinde hem
estetik hem de rahatlik saglamak amaciyla ferah mekanlara ihtiyag duyulmaktadir.
Biiylik aciklikli tasiyict sistemlerin betonarme olarak imal edilmesi halinde kesit
tesirlerine bagli olarak ¢ok biiyiik Kesitler ortaya ¢ikmaktadir. Standart yapilarda ise bu
durum yap1 maliyetinin asir1 artmasina sebep olabilmektedir. Biiyiik agiklikli sistemler
celik tasiyict sistemlerle de imal edilebilmektedir. Ancak iilkemizde isgilik ve inga
teknolojisine bagli olarak celik yapilar genellikle tek katli endiistri yapilar1 veya ¢ok
katli teknolojik binalar seklinde uygulanmaktadir [7]. Biiyiik aciklikli sistemlerin

ingasinda kullanilan baska bir sistem ise katlanmis plakli ve kabuk sistemlerdir.

Katlanmis Plakli Sistem [4]

Bu tip sistemlerin kullanilmasinin genel amaci, hareketli ve hareketsiz yiiklerin
elemanlarin diizlemi i¢inde yayilmasini saglayarak, elemani salt gekmeye veya basinca
calistirip, elemanlarin diizlemlerine dik olarak etkimeye calisan kuvvetleri en az
seviyeye cekerek olusacak egilme momentlerini minimum seviyeye ¢ekmektir. Biiyiik
acikliklarin gecilmesinde en ekonomik sistemler, ¢ubuk elemanlardan olusan sistemler
olarak karsimiza ¢ikmaktadir. Cubuk eksenine dik yonde gelen yiikler egilme
momentleri ortaya ¢ikmaktadir. Egilme momentinin mertebesi her ne kadar yiikiin

kendisi ile dogru orantili olsa da, ¢ubuk uglari arasinda bulunan mesafenin agikligin



karesi ile de dogru orantilidir. Agiklik biiyiidiik¢e egilme momentleri de asir1 derecede
bliylimekte dolayisi ile tasarimda ¢ubuk kesiti bliylimektedir. Betonarme sistemlerde
bunu 6nlemek ve betonun basinca karsi olan yiiksek dayanimini faydali hale getirmek
amactyla, ¢ubuk kesitlerine ¢ekme bolgesine konulacak donati ¢eligine onceden
ongermeli (6ngerme) ya da sonradan oOngermeli (ardgerme) sistemler ile ¢ekme
gerilmesi yiiklenir. Cubuk egilmeye karsi yik tasimakla birlikte iizerinde ¢ekme
gerilmeleri olugsmaz. Dolayisiyla ¢ubugun tasima giiciine erisilmemis olur. Cubugun
tasima gliciine erismek i¢in daha fazla yiikk yiiklenmesi gerekir ki, ¢ubugun tasima
kapasitesin artmis oldugu anlasilir. Ongerme teknigi ile cubuk tasima giiciinii ¢ubuk
boyutlarini1 biiyiitmeden dolayisiyla 6li yiikleri artirmadan Ongerme uygulamasi ile
artirmak miimkiin olmaktadir. Ongerme sisteminin birgok alanda uygulandig

bilinmektedir [8].

Yiklenmemis ikl i
liklenmig

NORMAL

Yiklenmemis Yiiklenmig

ONGERILMELL

Ongermeli ve normal kirisin prensip olarak karsilastirilmasi [9]

Yapi sisteminin agirliklarini artirmadan genis agikliklart gegmenin yollarindan bir digeri
ise, cubuklardan olusturulacak bir sistemi egilme momentlerini sifira yaklastiracak
sekilde tasarlayarak, cubuklar sadece ¢cekme veya basinca galigtirmaktir. Bu ise yap1
sistemini, ¢elik cubuklardan olusan tasiyici kafes sistem tasarlamak ile miimkiin
olmaktadir. Cubuklar ile kafes sistem tasarlanirken, c¢ubuklarin eksenine yer
degistirecek sekilde eksene dik ylikleme, yani ¢gubuklarda egilmeye sebep olacak sekilde

yiikkleme yapilmaz. Modellerde diigiim noktalar1 bir mafsal gibi davranacak sekilde



tasarlanarak, hesaplarda mafsal olarak kabul edilirler. Sistem {izerine yiiklenecek ytikler
diigim noktalarina yiiklenerek, ¢ubuklara tasitilmasi saglanmir [10, 11,12, 13].
Dolayisiyla biiylik aciklikli sistemlerin betonarme ve c¢elik cubuk elemanlar ile
gecilmesinde normal kuvvet tasiyan eleman davranisi ve teorisi dnemli olmaktadir.
Yapisal analizlerde farkli tiirde ve sadece normal kuvvet tasiyan ¢ubuklar ile sistemler
olusturulmakta ve ortaya c¢ikan problemlerin ¢6ziimii ve kuvvet dagilimlarinin tespiti

yapilmaktadir. Literatiirde bu sistemler;
» Bir boyutta sadece eksenel normal kuvvete maruz ¢ubuk sistemler
> Iki boyutta sadece eksenel normal kuvvete maruz ¢ubuk sistemler
> Ug boyutta sadece eksenel normal kuvvete maruz ¢ubuk sistemler
olarak isimlendirilmektedir.

Bir boyutlu c¢ubuk sistemler, bir boyutta yani tek eksenden olusmaktadir. Bu tiir
sistemler tek cubuktan baslamak {izere bir¢ok cubuktan olusabilmektedir. Sistemi
olusturan cubuklarin malzeme ve geometrik Ozellikleri de farkli olabilmektedir.
Cubuklar bir birine paralel veya seri sekilde baglanabilirler [14]. iki boyutta sadece
eksenel normal kuvvete maruz ve eksenel normal yiik tagiyan sistemler diizlemsel kafes
sistem olarak bilinmektedir. Diizlemsel kafes sistemlerin sadece normal kuvvet tasiyan
cubuk elemanlar tarafindan olusturulmaktadir. Cubuklar uygun sekilde diigiim
noktalarinda birlestirirler. Cubuk elemanlar narin oldugu i¢in yiikler cubuk govdelerine
uygulanmay1p, dogrudan diiglim noktalarma aktarilirlar. Diiglim noktalarina uygulanan
yiikler ¢ubuklara eksenel yiik olarak denge ve uygunluk kosullarinca dagitilirlar [15].
Ug boyutta sadece eksenel normal kuvvete maruz ve eksenel normal yiik tastyan
sistemlerin ise ti¢ boyutlu kafes sistem veya uzay kafes sistemleri olarak bilinmektedir.
Diizlemsel kafes sistemlerinde oldugu gibi, iic boyutlu veya uzay kafes sistemleri de
sadece normal kuvvet tasiyan ¢cubuk elemanlar tarafindan olusturulmaktadir. Burada da
cubuklar uygun sekilde diigim noktalarinda birlestirirler. Yine cubuk elemanlar narin
oldugu i¢in yiikler ¢ubuk gdvdelerine uygulanmayip, dogrudan diiglim noktalarina
aktarilirlar. Diigiim noktalarina uygulanan yiikler ¢ubuklara eksenel yilik olarak denge
ve uygunluk kosullarinca dagitilirlar. Bu durumda ortaya c¢ikan kafes sistem iig¢

boyutludur [15, 16]. Bu sistemler igerisindeki elemanlarda sadece basing ve ¢ekme



gerilmelerinin olugmasi beklenmektedir. Bu tip sistemlerin analizinde farkli yaklasimlar
kullanilmaktadir. Bu yaklasimlardan en c¢ok bilinen yontemler ise diigiim noktasi
dengesi yontemi ve Ritter kesim metodudur [10, 11, 12, 13]. Bu iki metotta ¢ubuk
kuvvetleri dogrudan bulundugu i¢in kuvvet metodu olarak ta bilinirler. Bunlara ilave
olarak sonlu eleman yontemleri de kullanilarak ¢ubuk sisteme ait rijitlik matrisleri tespit
edilerek, diigiim noktalarinin yer degistirmeleri bulunur. Yer degistirmelere baglh
olarak, daha sonra cubuk kuvvetlerinin hesab1 yapilir. Bu yoOntemde ise yer
degistirmeler bulundugundan, yer degistirme yontemi yada deplasman yontemi adi

verilmektedir.

Bu tez calismasi kapsaminda sadece normal kuvvet tasiyan ¢ubuk ve cubuklardan
olusan sistemlerin analizinde yeni bir modelleme yaklagimi ortaya konulmustur. Bu
yaklagimda deplasman yontemi esas alarak denge denklemleri rijitlik matrisleri
vasitasiyla degil, dogrudan analitik olarak elde edilmektedir. Boyuna uzama elastik
egrisi denklemi diferansiyel olarak ¢Oziimiinii alan bu yaklasim sayesinde ¢ubuk
sistemlerin analizi daha hizli gergeklestirilebilecektir. Ayrica hata riski yliksek olan
biiylik problemler sayisal olarak c¢oziilebilecektir. Mathematica programinda yazilan
algoritmalar ile olusturulan bu yaklasim giincel paket programlara adapte
edilebilecektir. Kullaniciya tiim parametrelere hakim olma serbestisi taniyan bu
yaklasimla sicaklik degisimi gibi farkli durumlarin ¢6ziime yansitilmas: daha kolay
mimkiin olabilecektir. Ayrica c¢alisma kapsaminda sayisal olarak ¢oziimil
gergeklestirilen modellerin sonlu elemanlar yardimi ile de ¢oziimii saglanmistir. Analiz
sonuglart karsilastirilarak buna iligkin bulgular belirlenmistir. Tez calismas1 kapsaminda
olusturulan elastik egiri denklemlerinin diferansiyel ¢oziimiinii esas alan bu yaklasim
sadece ¢ubuk sistemlerin degil farkli tip yapisal elemanlarinda bu yaklagimla ¢oziimiine
151k tutacaktir. Calismamizda yapisal analizlerin daha hizli ve minimum hata oranina
bagli gerceklestirilebilmesi hedeflenmistir. Ayrica analizlerde tasarimciya model
detaylarma miidahale edebilme imkami saglanmaktadir. Bu algoritmalar yardimiyla
cubuk sistemlerin analizine Ozellesmis yeni paket programlar gelistirilebilecektir.

Mevcut programlar bu yaklasimin avantajlarina bagli olarak giincellenebilecektir.



1. BOLUM

GENEL BILGILER VE LITERATUR CALISMASI

1.1. Normal Gerilme

Kesiti sabit bir ¢ubuk g6z Oniine alinarak, cubuk kesitlerinin agirlik merkezini
birlestiren ve ¢ubuk ekseni adi verilen noktalar kiimesi yoniinde, ¢ubuga iki ucundan
kuvvet uygulandiginda, uygulanan dis kuvvetler gubuk iginde i¢ zorlanmalarin
olusmasina neden olmaktadir (Sekil 1.1.) [17, 18]. Olusan i¢ kuvvetlerin bileskesi ¢ubuk
ekseni boyunca olup, bileske kuvveti olusturur, bu bileske kuvvet ise Newton un yasasi
geregi dis kuvvete esittir. Bileske kuvveti veya dis kuvveti olusturan, kesit igine
dagilmis, yonii ¢ubuk ekseni yoniinde olan i¢ kuvvete ise normal gerilme denmektedir.
Olusan i¢ kuvvetler ve gubuk boyunca kesit tizerine dagilmis gerilmeler, ¢ubuk lizerinde

alinacak her hangi bir kesit lizerinde gosterilebilir (Sekil 1.2.).

Al

n(z)

Al

Sekil 1.1. ki ucundan ¢cekme kuvveti uygulanmis bir cubuk
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FFe—|—-———— [N Ne—f|——— ——|— F,
- —
- —
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Sekil 1.2. Tki ucundan ¢ekme kuvveti uygulanmis bir gubuk ve A-A kesitinden ayrilmis



Tiim kesite etkiyen gerilmelerin toplaminin, i¢ kuvvete esit olmasi1 dengenin saglanmasi
icin gereklidir. Kesitteki gerilmelerin toplami1 kesit alani tizerindeki gerilmenin integrali
anlamina gelmektedir. Kesit {izerinde kii¢iik bir dA alan1 alinip, gerilme ile carpilirsa
diferansiyel dN kuvveti elde edilerek, asagidaki sekilde ifade edilmektedir (Denklem
1.1).

dN = ¢ dA (1.1)

Kiigiik dN ifadesinin integrali kesit alan1 A iizerinde alinirsa, agagidaki Denklem 1.2.°de

verilen ifade elde edilir.
fA dN=fA o dA (1.2)

Denklem 1.2.°nin anlami ise tim dNlerin toplami, N i¢ kuvveti olmaktadir. Boylece

Denklem 1.3 ‘de verilen normal kuvvet ifadesi ortaya ¢ikmaktadir.
N={ , 0dA (1.3)

Yukaridaki ifade de (Denklem 1.3.), gerilmenin kesit icerisinde diizgiin dagildig1 kabul
edilirse [17], gerilme sabit olur ve Denklem 1.4.’de oldugu gibi integral disina asagidaki
sekilde tasinabilir.

N=o[, dA (1.4)

Bir alan lizerinde bulunan kiiciik diferansiyel alanlarin toplaminin yine, iizerinde
integral alinan alan1 verecegi asikardir. Boylece i¢ normal kuvvetin (N) ifadesi gerilme

ve kesit alani cinsinden Denklem 1.5.”de verildigi gibi elde edilmis olur.
N=Ao (1.5)

Bu ifadeden de, gerilme ifadesi Denklem 1.6.’da sunulan kesit alan1 ve normal kuvvet

cinsinden elde edilir.

o=t (1.6)
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Sekil 1.3. Degisken kesitli ¢ubuk, iki ucundan ¢ekme kuvveti uygulanmis

A

— N(z)

L
N A A PR A P A

ol(z)
|%|
Al

Sekil 1.4. Degisken kesitli gubugun A-A kesiti i¢ kuvvet ve gerilmesi

Cubuk kesitinin degisken olmasi halinde ise (Sekil 1.3-1.4.); gerilme degeri asagidaki
gibi ifade edilmektedir (Denklem 1.7.).

N(z)
A(z)

o(z) =

1.7

Bu durumda ¢ubuk kesiti A(z)’nin degisimini “z”’ye bagli bir fonksiyondur. Bununla

birlikte cubuk i¢ kuvveti N(z) degerininde “z’ye baghi bir fonksiyon olacag:
goriilmektedir [18].

Cubuga etkiyen dis kuvvet, cubugu uzatmaya calistirtyorsa, buna ¢ekme yoniinde
normal kuvvet, olugturdugu gerilmeye ise cekme gerilmesi denmektedir. Aksine ¢ubugu
kisaltmaya calistirtyorsa, buna basing yoniinde normal kuvvet, olusturdugu gerilmeye

ise basing gerilmesi denilmektedir.
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n(z) b

Sekil 1.5. Iki ucundan c¢ekme kuvveti uygulanmis cubuk ve
tizerinde alinan egik kesit (a-a)

n(z) AN
Fle—|— >, —> N
Al ANS,

Sekil 1.6. Egik kesitin ayrik hali ve olusan i¢ kuvvet (N) ve gerilme vektorii (t)

Cubuk tizerinde, Sekil 1.5 ve Sekil 1.6.’de oldugu gibi, egik bir kesit alinarak egik kesit
tizerinde olusacak gerilmeler incelebilir. Yukaridaki Sekil 1.5-1.6 incelendiginde, egik
kesite ait alanin A’ oldugu, dik kesite ait alanin A oldugu, dik kesit ve egik kesit
arasinda kalan aginin (¢) oldugu gortliir. t ise gerilme vektorii olup, degeri asagidaki

Denklem 1.8.”de verildigi gibi yazilabilir [19];
t=2 (1.8)

Egik kesit alan1 A’ ile dik kesite ait A alani arasinda Denklem 1.9.’da verilen bir iligki

vardir.
A= Cos(p) A (1.9

Egik kesit alan1 A" nin, dik kesit alanina bagli olarak degeri Denklem 1.9.’dan gekilirse,

Denklem 1.10.’da verilen egik alan elde edilmektedir.

, A
~ Cos(e)

(1.10)

Egik kesit alaninin degeri, gerilme vektoriinde (Denklem 1.8.) yerine konuldugunda, t
gerilme vektoriinin  degeri asagida Denklem 1.11.°de sunuldugu sekilde elde
edilmektedir.



12

N N
= Toosie) = Cos(@) (1.11)

Elde edilen t gerilme vektorii, egik kesite dik degildir. Dolayisiyla t vektoriiniin egik
kesite dik ve paralel olan bilesenleri bulunabilir. Bu bilesenler ise egik kesite normal ve
teget olan bilesenler olarak bilinirler (Sekil 1.7). Normal bilesene normal gerilme, teget
olan bilegsene ise kayma gerilmesi adi verilir. Egik kesite normal olan gerilme
bileseninin degeri ve teget olan gerilme bileseninin degeri asagidaki gibi ifade edilebilir
(Denklem 1.12. ve 1.13.).

Sekil 1.7. Egik kesitte olusan t gerilme vektoriiniin bilesenlerine ayrilmasi[19]
o= Cosz((p)% (1.12)

T = —=Sin(¢) Cos(p) % (1.13)

1.2. Sekil Degistirme

Iki ucuna ¢ekme kuvveti Uygulanan bir ¢ubuk gdz Oniine alindiginda, cubuga normal
kuvvet uygulandiginda herhangi bir “z” noktasinda olan 1 kesiti (kuvvet uygulandiktan
sonra) yer degistirerek 1° kesitine doniislir. Cubuk iizerinde kesitinl yerinden; 1’yerine
kadar olan hareketi arasinda kalan kisma uzama denilmektedir. Uzama degeri ise u(z)

ile gosterilmektedir (Sekil 1.8).
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u) |

Sekil 1.8. Uglarinda ¢ekmeye zorlanan bir gubuk ve Kesitlerin
yiikleme sonucu yer degistirmesi

Benzer sekilde, z+Az noktasinda bulunan 2 kesiti de normal kuvvetin zorlamasiyla 2’
kesitine doniislir. Bu durumda da 2 kesiti ve 2’ kesiti arasinda kalan uzunluk ise u(z+Az)
miktarina esittir. “z” noktasinda bulunan “1” kesiti ile “z+Az” noktasinda bulunan “2”
kesitlerine ait yer degistirme (uzama) miktarlarinin arasindaki fark ise u(z+Az) degeri
ile u(z) degerinin farkina esit olarak elde edilebilir. Cubuk iizerinde bulunan her bir
kesite ait yer degistirme degerlerinin bilindigi varsayimiyla, elde edilen degerlerin iki
boyutlu diizlemde grafigi cizildiginde (Sekil 1.9.); asagidaki gibi bir fonksiyon ortaya
cikmaktadir. Tlaveten daha 6nce elde edilen u(z) ve u(z+Az) degerleri de Sekil 1.9 ‘da

tizerinde gosterilmistir.

u(z+Az) - u(z)

u(z+hAz)

Sekil 1.9. Kesitlere ait noktalar (z ve z+Az kesitleri) ve onlara ait boyuna uzama grafigi
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Uzama fonksiyonu “u” ‘nun “1” ve “2” kesitleri(z ve z+dz noktalarindaki kesitler)
arasindaki degisimi, Denklem 1.14 ve Denklem 1.15.’de sunuldugu gibi elde edilebilir.

u(z) = 1RO (1.14)

LimAz - 0; u(z) == (1.15)

Iki kesitin yer degisimleri arasindaki farkin Az iizerinde dagitilmasi, birim boyun
uzamasi anlamina gelmektedir. Birim boyun uzamasi ise € ile gosterilmektedir. Bu
durumda; “u”’nun tiirevi olan u’ degeri birim uzama olan €’a esit olur. Boylece;
Denklem 1.16.” da verilen birim uzama ifadesi elde edilir.

_ du

e="" (1.16)

Burada €;, u” degerine esit olup, boyuna uzama “u” fonksiyonunun z’ye gore tiirevi
oldugu anlasilmaktadir. Yani, boyuna uzama fonksiyonu “u” nun herhangi bir z
noktasindaki tiirevi o noktadaki birim uzama degerine esittir. Buna kinematik baginti

adida verilmektedir [20, 21, 22, 23, 24, 25].
1.3. Gerilme Sekil Degistirme Iliskisi

Gerilme yukarida anlatildigi iizere, bir yapmin kesitine dolayisiyla malzemesinin
lizerine uygulanan basing ve ¢ekmenin bir Olgiisiidiir ve statik denge kurallariyla elde
edilmektedir. Sekil degistirmeler ise bir cisimdeki uzama ve kisalmalarin Slglisii ve
biiytikligii olup, kinematik biiyiikliik olarak anilmaktadir [18]. 1605-1703 yillarinda
yasayan Robert Hooke’un [26] gbzlemlerine gore bir cisimdeki deformasyonlar onun
lizerine uygulanan kuvvet veya ylikler ile dogru orantilidir. Dolayisi ile gerilme ve sekil
degistirme biiyiikliikleri bir biri ile baglantilidir. Bu baginti ise gerilme sekil degistirme
iliskisi olarak bilinir [18, 27, 28].

Bu iligkinin tespiti i¢in yapilan deneysel ¢alismalar ise basing ya da ¢ekme deneyidir.
Geleneksel olarak, siinek malzemeler iizerinde c¢cekme deneyi, gevrek malzemeler
tizerinde ise basing deneyi yontemi ile gerilme ve sekil degistirme iliskisi tespit edilir.
Insaat miihendisligi alaninda ¢ok kullanilan malzemeler olan celik ve betonun da

gerilme ve sekil degistirme iliskisi laboratuarlarda yiiriitiilen deneyler ile bulunur. Celik
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malzeme lizerinde ¢gekme deneyi, beton malzeme {izerinde ise basing deneyi yiiriitiilerek
gerilme sekil degistirme iligkisi tespit edilir. Asagida, ¢elik ve beton malzemeler i¢in

elde edilen tipik gerilme ve sekil degistirme iliskilerine ait grafikler verilmektedir (Sekil

1.10 ve 1.11.).

>
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Sekil 1.10. Tipik yumusak celik i¢in gerilme sekil degistirme egrisi

A Gerilme

fCl.-l ...................

0.7 feu

0.3 feu|ooe.

0 o Elastik bélge

o Agrega-gcimento hamurunda gatlaklarinilerlemesi

o Gimento hamurunda ¢atlaklarnolugumu ve llerlemesi
-

Sekil Degistirme

Sekil 1.11. Tipik bir beton icin gerilme sekil degistirme egrisi
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Yukarida, Sekil 1.10 ve 1.11 ile verilen gerilme sekil degistirme egrileri incelendiginde,
malzemelerin belirli bir gerilmeye kadar orantili bir sekilde uzadigi, daha sonra ise
gerilmedeki kiiciik degisimler sonucunda sekil degistirmelerin daha fazla oldugu
goriilmektedir. Aradaki artis orani ise dogrusal olmayip egrisel olmaktadir. Gerilme ve
sekil degistirmenin dogrusal orantili oldugu boélgeye elastik bolge denilmektedir.
Gerilme ve sekil degistirmenin dogru orantili oldugu bolgede cismin, Hooke [26] cismi
oldugu kabul edilerek, aradaki iliskinin ise asagidaki gibi oldugu varsayilir (Denklem
1.17 ve 1.18.).

o=Ee (1.17)

- (1.18)

4
E
Diger yandan cisimler iizerinde olusan boy degisimi ve sekil degistirmeler sadece cisim
tizerine etkiyen yiik ve kuvvetler tarafindan olusturulmazlar. Sicaklik degisimleri de boy
degisimi ve sekil degistirmelere sebep olurlar. Ortaya ¢ikan sekil degistirme sicaklik
degisimiyle dogru orantilidir. Cismin tim biinyesinde sicaklik degisimi diizgiin

oldugunda, birim uzamanin ifadesi Denklem 1.19.’da oldugu gibi verilmektedir.
& = a AT (1.19)

Burada birim uzama, sicaklik nedeniyle olusan sekil degistirmesi, AT, Sicaklik
degisimi, o ise bu iki biiyiikliigii birbirine baglayan malzemeye ait olan bir katsay1 olup,

sicaklik genlesme katsayisi olarak bilinmektedir [22, 29, 30].

Boylece, cisim {izerinde olusan toplam sekil degistirme hem sicaklik hem de

gerilmelerden dolay1 Denklem 1.20’deki hale gelir.
£ = % + a AT (1.20)

1.4. Basing veya Cekme Kuvvetine Maruz Cubuk Eleman
Eksenel normal kuvvete maruz bir ¢ubuktaki gerilmeyi ve birim uzamay1 hesaplamak
i¢in birbiriyle iligkili ti¢ farkli denklem tiirii kullanilir. Bunlar denge durumu, kinematik

iliski ve Hooke kanunu denklemleridir.

€ =du/dz (1.21)
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Kinematik durumun Denklem 1.21.’le ifade edildigi bilinmektedir (Omurtag, 2007).
Ayrica, Hooke kanunundan gerilme sekil degistirme arasindaki iliskinin Denklem
1.22.’de verildigi goriilmektedir [21], gerilmenin ifadesi ise Denklem 1.23.’le tarif
edilmektedir [20, 30].

€= (1.22)

°

E
N

o=% (1.23)

Burada N kesite etkiyen normal kuvvet ve A ise kesit alan1 olup, E ise malzeme sabiti

elastisite modiiliinii géstermektedir.

Probleme bagli olarak, denge durumu tiim cubuk i¢in, ¢ubugun bir kismi i¢in veya
cubugun kiiciik bir elemani i¢in yazilarak formiile edilebilir. Bu amagla, uglarindan F1
ve F2 kuvvetlerine maruz ve ayrica ¢ubuk boyunca yayili degisken cizgisel yikii
(n=n(z)) bulunan bir ¢ubuk g6z Oniine alinmaktadir (Sekil 1.12.). Sekilden de
anlasilacag lizere, cubuk ekseni boyunca kesit alan1 ve yayil yiik degiskendir. Yiiklerin
dengede oldugu kabul edilmektedir. Asagida sekilde (Sekil 1.12.a ve 1.12.b) goriildigi

gibi, cubuktan “dz”” boyunda sonsuz kii¢iik bir eleman ¢ikartip, géz oniine alalim.

— F, N« | — |—N+dN
n(z).dz

z z+dz

IZ Idzl\ -
L
a

Sekil 1.12. F; ve F, kuvveti ve n(z) yayili yiikkiine maruz ¢ubuk ve sonsuz kiiglik
elamanin serbest cisim diyagrami

Sonsuz kiiciik elemanin serbest cisim diyagraminda eleman uglarinda N ve N+dN

normal kuvvetleri bulunmaktadir. Sonsuz kii¢lik eleman i¢indeki boyuna yayili yiikten
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dolay1 olusan normal kuvvet n(z).dz ile gosterilmistir (sonsuz kii¢liik elemanin boyu
limitte sifira gonderilirken, ¢izgisel yiikiin degerinin dz boyunca sabit oldugu kabul
edilebilir). Cubuk ekseni yoniindeki kuvvetlerin dengesi asagidaki Denklem 1.24.’teki
sekilde yazilir [18].

N +dN +n(z).dz—N =0 (1.24)
Denklem 1.24’den sadelesme sonucunda Denklem 1.25 ifadesi elde edilir.
dN +n(z).dz=0 (1.25)

Denklem 1.25’ten de Denklem 1.26 ‘nin elde edilmesi mumkiindiir.
dN
 tn@) =0 (1.26)

Ayrica birim uzama ifadesinde (Denklem 1.22. de), gerilme degeri (Denklem 1.23.)
yerine konursa, birim uzama ifadesi normal kuvvet ve eksenel rijitlik cinsinden

Denklem 1.27.’de verildigi sekilde bulunur.

ge=L1 (1.27)

EA

Birim uzamanin Hooke kanunundan elde edilen (Denklem 1.27. deki) degeri, kinematik

denkleminde (Denklem 1.21.’de) yerine konulursa, asagida sunulan Denklem 1.28 elde

edilir.
u_ XN (1.28)
dz EA

Denklem 1.28’den normal kuvvet ifadesi “N” asagidaki sekilde ¢ekilerek, Denklem
1.29 elde edilmis olur.

N=EAZ (1.29)

Elde edilen normal kuvvet ifadesi (Denklem 1.29) denge durumundan elde edilen

ifadede (Denklem 1.26 da) yerine konulursa, Denklem 1.30 ile verilen sonuca ulagilir.

da(Ea 2
TZ + TI.(Z) =0 (130)
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Denklem 1.30 ifadesi daha sade bi¢gimde yazilarak, Denklem 1.31 elde edilir.
(EAu") = —n(2) (1.31)

Denklem 1.31’de elde edilen ifade ile boyuna sekil degistirme fonksiyonunu idare eden
diferansiyel denklem [18] elde edilmis olur. Bu denkleme “boyuna uzama elastik

egrisi” adi1 da verilmektedir.

Bu denklem kullanilarak, ¢ekme veya basinca maruz hem izostatik hem de hiperstatik
cubuk problemleri g6z Oniline alinabilir. Boyuna sekil degistirmeyi idare eden
diferansiyel denklem ifadesi iki kez integral alinarak geriye dogru c¢oziiliir, olusacak
integral sabitleri ise ¢ubuk sinir kosullar1 géz oniine alinarak bulunur ve boyuna sekil
degistirme ifadesinde yerine konularak boyuna sekil degistirmenin fonksiyonu elde
edilir. Boyuna sekil degistirmenin ¢ubuk ekseni “z” ye gore tiirevi alinarak, EA ile
carpilmasi ile ¢cubuk ekseni boyunca normal kuvvet degisimi de elde edilir (Denklem
1.29). Burada kesit alan1 ve ¢ubuk i¢inde yayili olan ¢izgisel yiik “n(z)”in, ¢ubuk ekseni
“z” ye bagl fonksiyon veya sabit olabilir. ifadeler degisken olduklari varsayimiyla

cikartilmigtir.

Cubuk ug sinir kosullar1 gesitli durumlarda olabilir [17, 18]. iki ucun tutulu olmasi
halinde boyuna uzama egrisinin baslangictaki (z=0) degeri ve ¢ubugun sonundaki (z=L)
degerleri sifir olacaktir, yani (u(0)=0 ve u(L)=0)’dir. Cubuk baslangi¢ ucu tutulu diger
ug serbest ise; U(0)=0, u’(L)=No/EA olacaktir. Cubuk baslangi¢ noktas1 serbest diger ug
tutulu ise w’(0)=No/EA ve u(L)=0 olacaktir. Ny degeri sabit veya sifirdir, ¢gubugun
serbest ucundaki eksenel yondeki tekil kuvvete tekabiil eder. Cubugun uclar1 eksenel
yonde deplasman yapiyor ve deplasmanlar bilinmiyorsa, bunlara bilinmeyen degisken
isimleri verilerek, ¢ubugun baslangi¢ ve sonundaki deplasmanlar sinir kosullar1 olarak
alinir. Ornegin, gubugun baslangicindaki ve sonundaki deplasmanlar bilinmiyorsa,
bunlara ui ve uj degisken isimleri verilerek bilinmeyen sinir kosullari olarak alinsin. Bu
durumda u(0)=ui ve u(L)=uj olarak alinir. Bu siir kosullarina bagl olarak integral
sabitleri elde edilerek, cubuga ait boyuna uzama egrisi elde edilir. Cubuk i¢ normal
kuvvet degisimi de boyuna uzama egrisi U(z)’ye bagli oldugundan kolayca elde
edilerek, ¢ubuk uclarindaki normal kuvvetlerin degerleri de elde edilebilir. Ancak,
cubuk uclarinda bulunacak olan normal kuvvet degerleri, cubuk ucunda bilinmeyen

olarak alinan “ui” ve “uj” deplasmanlarina bagl olmaktadir.
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Bu tez calismasinin amaci yukarida ¢ikartilan eksenel uzamayi idare eden diferansiyel
denklem kullanilarak bir, iki ve ii¢ boyutlu c¢ubuk sistemlerden olusan mekanik

problemlerini bilgisayar yardimiyla ¢cozmektir.

Calismanin birinci amaci, olayr idare eden diferansiyel denklemden hareketle bir
boyutlu ¢ubuk veya yaylarda olusan bir boyutlu problemleri ¢6zmek igin Mathematica
[31], ortaminda bir bilgisayar programi gelistirmektir. Bu program farkli malzeme ve
geometrik Ozelliklere de sahip olabilen ¢ubuklardan olusan bir boyutlu problemlerin
icinde olusacak i¢ kuvvetleri ve i¢ kuvvet dagilimlarin1 ve gerilmeleri de hesaplamak
amaciyla gelistirilmektir. Cubuk sistemini idare eden denklemler matris formunda

olmay1p, analitik olarak elde edilmektedir.

Calismanin ikinci amaci, yine ¢ubuk i¢in olayr idare eden diferansiyel denklemden
hareketle, sadece eksenel normal kuvvet tasiyan cubuklardan olusturulan iki boyutlu
diizlemsel kafes sistem problemlerini ¢ozmek i¢cin Mathematica ortaminda bir diger
bilgisayar programi gelistirmektir. Bu program vasitasiyla farkli malzeme ve geometrik
Ozelliklere de sahip olabilen ¢ubuklardan olusan diizlemsel kafes sistemi olusturan
cubuklara ait i¢c kuvvetleri ve i¢ kuvvet dagilimlarini ve dolayisiyla gerilmeleri
hesaplamak hedeflenmektedir. Kafes sistemi idare eden denklemler matris formunda

olmayip, analitik olarak elde edilmektedir.

Calismanin {iglincii amaci ise, yine ¢ubuk i¢in olay1 idare eden diferansiyel denklemden
hareketle, sadece eksenel normal kuvvet tasiyan ¢ubuklardan olusturulan ii¢ boyutlu
veya uzay kafes sistem problemlerini ¢6zmek igin Mathematica ortaminda ti¢lincii
bilgisayar programi gelistirmektir. Bu program yardimiyla da farkli malzeme ve
geometrik 6zelliklere de sahip olabilen ¢ubuklardan olusan uzay kafes sistemi olusturan
cubuklara ait i¢ kuvvetleri ve i¢ kuvvet dagilimlarim1 ve dolayisiyla gerilmeleri
hesaplamak amaclanmaktadir. Kafes sistemi idare eden denklemler matris formunda

olmayip, analitik olarak elde edilmektedir.

Calismanin ilave diger amaclar1 ise asagida verilmektedir. Bunlar yukarida verilen her
bir durum i¢in ayr1 ayr1 gegerlidir. Sicaklik degisimleri karsisinda olusacak i¢ kuvvetler
g0z Oniine alinmaktadir. Yukarida verilen sistemlerde elastik mesnetlenme durumu s6z

konusu olacagindan, elastik mesnet halleri de programlamada g6z 6niine alinmaktadir.
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Yukarida bahsedilen programlar vasitasiyla, kiigiik problemler hem analitik olarak, hem
de sembolik olarak elde edilebilmektedir. Biiyiik problemler ise sayisal olarak
cOziilmektedir. Bir boyutlu sistemlerde ¢ubuk i¢ kuvvetlerinin dagilim grafikleri elde
edilmektedir. iki ve ii¢ boyutlu ¢ubuk sistem verileri sayisal olarak verildiginde, cubuk
sistemin  deformasyonlu ve deformasyonsuz hallerinin  grafikleri de elde
edilebilmektedir.



2. BOLUM

YONTEM VE MATERYAL

2.1. Yontem Bilgisayar Programlama ve Teknigi
2.1.1. Kodlama Teknigi

Kodlama teknigi yontemi ile ¢ubuk elemanlardan olusan sistemlerin bilgisayar modeli
tanimlanmaktadir. Bu tanimlamadan yola ¢ikarak programa veriler islenerek cubuk
sistemlerin ¢oziimii i¢in gerekli denklemler kurulur. Denklemlerin ¢oziimii ile de
cubuklarda olusan i¢ kuvvetler hesaplanir [32]. Bu boliimde, bu teknik ile nasil kodlama
yapilacagi ve verilere kodlama ile nasil ulasilacagi anlatilmaktadir. Asagida eleman ve

diigiimlerin kodlanmasi ile ilgili bilgiler verilmistir.
2.1.2. Elemana Ait Veriler

Her elemanin kendine ait bir numarasi olursa, bu numara onun ismi yerine gecer ve
numara yardimiyla elemana ait olan biitiin bilgilere erisim saglanabilir. Elemana ait
geometrik Ozellikler kesit alani, kesit atalet momenti ve uzunlugudur. Elemana ait
malzeme Ozellikleri ise elastisite modiilii, sicaklik genlesme katsayis1 ve emniyet
gerilmesi vs’dir. Ayrica elemana etkiyen yiiklerde bulunabilmektedir; bunlar eleman
eksenine dik ve paralel olan diizgiin veya degisken yayili yiikler olup, sicaklik
degisimleri de elemana etkiyen 1sisal yiiklerdir. Bunlarda eleman kesiti boyunca diizgiin
sicaklik degisimi ya da kesitin i¢cinde dogrusal degisen sicaklik degisimi olabilmektedir.
Her tiirlii yiikler ve ozellikler sadece eleman numarasi ile erisilecek sekilde birer dizide
saklanabilirler. Her bir dizi ise eleman 6zelligini veya yiikiinli ¢agristiracak sekilde
uygun bir isim ile adlandirilabilir. Cubuk elemanlarin iki ucu bulunmaktadir. Bu uglar
bulunduklar sistem i¢inde birer diigiime baglidir. Cubuk bu iki u¢ arasinda sistemin

diger elemanlari ile baglantili oldugundan, ¢ubugun bagl oldugu iki diigiimiin numarast
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da birer dizi i¢inde saklanabilir. Eleman numarasi ile baglantili olarak saklanan bu iki

veri daha sonra ¢ubuk ve bulundugu sistem ile baglantisin1 saglayacak verilerdir.

Tablo 2.1.’de, bir gubuk elemana ait bazi veriler ve bilgiler sunulmustur. Tablo 2.1’den
goriilecegi lizere, herhangi bir eleman numarasi ile o elemana ait bilgilere erisimin

312
|

kolayca miimkiin oldugu goriilebilir. Eleman numaras1 vasitasiyla; cubugun ve “J”
ucunun diigiim numaralarna erisilir. ilaveten, kesit alani, elastisite modiilii, eksene
paralel yiik bilgisi, sicaklik genlesme katsayis1 ve sicaklik degisim bilgisine ulagmak
miimkiindiir. Elemanla ilgili verilere ulasmak i¢in sadece eleman numarasinin bilinmesi

yeterlidir. Erisilen bilgiler uygun sekilde islenebilir [33].

Tablo 2.1. Cubuk elemana ait gubuk numarasi ile erisilebilecek bazi bilgi ve veriler

Eleman “j” “”  Alan Elastik Eksene Paralel o At
No ucu ucu Modiilii Yayih Yiik
nz
1 It J1 ai Ex nz; o Aty
2 I2 J2 az =) nz; o At,
3 i3 j3 ds Es nzs o3 Ats
m Im Jm am Em NZm Olm At

2.1.3. Diigiime Ait Veriler

Cubuklar ile cerceve sistemler olustururken, c¢ubuklar belirli yerlerde birlesmek
durumunda olurlar. Bu birlesim noktalar1 diigiim noktalar1 olarak adlandirilir. Diigiim
noktalar1 olusturulan tiim ¢ubuk sisteminin bir pargasi oldugundan, diigiimlerde bulunan
bliyiikliikler sistemin global koordinatlarinda tanimlanir. Diigiimlerde bulunan
biiyiikliikler ise; diigim koordinatlari, diigim serbestlikleri veya deplasmanlar,
diigiimlere etkiyen tekil dis kuvvetler, diigiimlerde bulunan rijit veya elastik mesnetler,
mesnet oturmalar1 veya yer degistirmeler seklinde siralanabilir. Diiglimlere ait bu
bliyiikliikler diiglim numaras1 ile baglantili olarak birer dizi i¢inde saklanabilirler.
Biyiikliiklerin i¢cinde saklanacagi diziye uygun sekilde biiylikliigiin kendini
cagristiracak isimler verilebilir. Tablo 2.2.’de diigiimlere ait baz1 veriler sunulmaktadir.
Tablo 2.2.’den goériilecegi tizere, diiglim numarasi ile herhangi bir diigiime ait verilere
erismek mimkiindiir. Diiglim numaras1 ile digimiin “X” ye *“y” koordinatlarina

erisilebilir. Ilaveten, diigiimde bulunan x ve y yoniinde olusabilecek deplasmanlarin
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isimlerine (dx ve dy silitunundan) erisilebilir. Diiglimde olabilecek tekil kuvvet
degerlerine Fx ve Fy siitunu gibi atanacak bir diziden ulagilabilir. Ayn1 sekilde diiglimde
yer degistirme veya mesnet ¢cokmesi varsa, 0X Ve dy siitunu gibi atanacak bir diziden
ulagilabilir. Diiglimle ilgili verilere ulasmak i¢in sadece diiglim numarasinin bilinmesi

yeterlidir. Erisilen bilgiler uygun sekilde islenebilir.

Tablo 2.2. Diigiime ait olup, diigiim numarasi ile erisilebilecek bazi bilgi ve veriler

Diigiim No X Y dx dy Fx Fy OX oy
1 X1 Y1 dxy dy: Fx1 Fy1 OX1 dy1
2 X2 Y2 dx, dy, Fx, Fy, OXz )
3 X3 Y3 dxs dys FX3 Fys OX3 Q%
n Xn Yn dxn dyn FXn Fyn OXn OYn

2.2. Bir Cubuk Elemam I¢in Boyuna Uzama Diferansiyel Denkleminin Yazilmasi

Daha once bir ¢ubuk icin boyuna uzama egrisi ile ilgili diferansiyel denklem elde

edilmistir. Denklem yeniden asagida (Denklem 2.1.) da verilmektedir.
(EAu)' = —n(2) (2.1)

Denklem incelendiginde ¢ubuga ait elastisite modiilii ve alanin denklemde kullanildig1
goriilmektedir. Ayrica, ¢ubuk eksenine paralel yayili yiikiin degeri de kullanilmaktadir.
Bu degerler ¢cubuk numarasina bagl olarak ilgili diziden erisilerek alinir ve denklemde
yerine konulabilir. Boylece; cubuk eleman numarasinin “m” oldugu varsayimiyla, idare
eden ifade Denklem 2.2. deki hali alir. Asagidaki “m” indisi biitiin biiyiikliklerin “m”
numarali elemana ait oldugunu gostermektedir. Asagidaki islemler, denklemde
kullanilan parametrelerin ¢gubuk ekseni “z” ye bagli fonksiyonlar oldugu yani degisken
oldugu kabuliiyle yapilmaktadir. Parametrelerden bazilar1 sabit olabilir, 6yle durumda

islemler daha da kolaylasacaktir.

(EmAmum ')’ = —npn(2) (2.2)

Cubuk boyuna uzamasini idare eden ve Denklem 2.2.’de verilen diferansiyel denklemi

¢ozmek i¢in geriye dogru “z” ye gore bir kez integral alinsin. Boylece asagida verilen
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Denklem 2.3 elde edilir.

[(EmAmuny)'dz = [ —n,,(z) dz (2.3)
Denklem 2.3, integral sonucunda Denklem 2.4.’de verilen ifadeye doniistir.
EpAmum = [ —n,(2)dz + c1 (2.4)

Elde edilen bu ifade de (Denklem 2.4), her iki tarafi elastisite modiilii ve alanin ¢arpimi

ile boliinsiin; buradan Denklem 2.5 elde edilir.

r ([ —np(z)dz+c1)
 EmAnm

Upy (2.5)

Denklem 2.5.’de verilen ifade, bir kez daha geriye dogru “z” ye gore integrali alinarak,

asagidaki ifade (Denklem 2.6.) sembolik olarak elde edilir;

[y dz=[Y ‘”’ggi””) dz (2.6)

Sembolik olarak elde edilen Denklem 2.6 ifadesinin, integralinin alinmasi sonucu
Denklem 2.7 elde edilir.

- da
Uy, = [Ymm@dzten g, 4 o @7)
EmAm
Sonug olarak Denklem 2.7.’de elde edilen uy, degeri; ¢gubuga ait boyuna uzama elastik
egrisidir. Integral i¢inde bulunan c; ve ¢, biiyiikliikleri ise integral sabitleridir. Integral
sabitlerinin bulunmasi igin sinir kosullarinin kullanilmasi gerektigi bilinmektedir [34,

35].

Bir cubugun sinirlar1 ve ona ait kosullar ise asagidaki gibidir. Cubugun baslangicindaki

u¢ “I” baslangig¢ sinirini1 (z=0 daki yerini); sonundaki u¢ “j” ucu bitis sinirin1 (z=Ly, deki
yerini) temsil eder. Cubuk eksenini “z” temsil etmektedir. Cubugun baslangici ve bitisi
arasindaki mesafe ¢ubuk boyuna tekabiil eder ve (Ln) hesaplanmasi gerekir. Cubuk

boyu asagidaki sekilde hesap edilebilir.
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2.2.1. Cubuk Boyunun Hesaplanmasi

Cubuk boyunun hesaplanmasi i¢in ¢ubuk uglarmin koordinatlarinin bilinmesi gerekir.
Cubugun numarasi bilindiginden “i” ucunun ve “j” ucunun degerleri elemana ait
bilgilerden alinabilir. Eleman numarasi “m” olarak varsayilmis idi, Tablo 2.1.’deki “m”
numarali satirdan o elemana ait uglarin bilgisi “i,” ve “jn” olarak tespit edilir. Bunlar
cubuk uclarinin degisken ismidir ve degiskenin degerini tasirlar. Degerleri ise sayisal

birer degerdir. Bu degerler esasen birer diiglim noktasini gostermektedir. “in” ve “jm”

diigiim noktalarmin koordinatlari ilgili diziden alinabilir (Tablo 2.2). Boylece gubugu

2 b

tarif eden diiglim noktalarinin koordinat degerleri “Xim” ve “Yim” ile “Xjm” ve “Yjm”
degerleri tespit edilmis olur. iki nokta arasindaki en kisa mesafeyi veren formiil
yardimiyla ¢ubuk boyu hesaplanir [36]. Buna ilaveten gubuk ekseni ile “x” ekseni
cakismiyorsa; ¢ubugun bir egimi var demektir. Cubuk ile “x” ekseni arasinda bulunan
ac1 veya ona ait siniis ve kosiniis degerleri de ¢ubuk u¢ koordinatlar1 vasitasiyla bulunur

(Sekil 2.1.).

e

P AT

(Yim=Yiem)

z=0 (Xjm-Xim)

Sekil 2.1. Cubuk ug diigiim noktalarina ait koordinatlar ve gubuk boyu uzunlugu iliskisi
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Cubuk boyunun ifadesi Denklem 2.8.’de verilmektedir [36];

Ly = \/(xjm - xim)z + (ij - yim)z (2.8)

Cubuk ekseni “z” ile sistem ekseni olan “x” ekseni ¢akismadiginda arada olusan “5”
acisinin siniis ve kosiniis [36] degerleri asagida verilmektedir (Denklem 2.9 ve Denklem
2.10).

Sin(9) = 2> (2.9)
Cos(f) = L= (2.10)

Elde edilen ¢ubuk boyu sinir sartlari esnasinda yerel eksen “z” i¢in kullanilmaktadir.
2.2.2. Cubuk Sinir Sartlarinin Elde Edilmesi

Daha onceki kisimda ¢ubuk sinir sart1 olarak serbest u¢ ve serbest ucta bulunan tekil
kuvvetten bahsedilmisti. Burada cubuk simir sartlari, ¢ubuklarin bagli bulundugu
diigiimlerin deplasmanlar1 siir sartt olarak alinmaktadir. Bu smir sartlart da
bilinmediginden, bunlarin degisken isimleri deplasman olarak kabul edilmektedir.
Dolayzsi ile elde edilen boyuna uzama elastik egrisi sistem koordinatlarinda bilinmeyen
olarak alinan diigim deplasmanlari cinsinden yazilmis olacaktir. Ancak, sistem
koordinatlarinda tarif edilmis olan ¢gubuk ucunda bulunan diigiim deplasmanlarinin sinir
sarti olarak kullanilabilmesi icin; cubuk yerel koordinatlarinda ifade edilmeleri

gerekmektedir. Bu ise asagidaki sekilde yapilmaktadir (Sekil 2.2).
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Sekil 2.2. Yerel ve global koordinatlarda ¢ubuk diigiim noktalarina ait deplasmanlar

Sekil 2.2.de cubuk u¢ deplasmanlar1 hem yerel hemde global koordinat takiminda
gosterilmistir. Bu iki takimda ayr1 ayr1 gosterilen deplasmanlar arasinda ise bir iligki
bulunmaktadir. Global koordinat takiminda gosterilen u¢ deplasmanlarinin yerel
koordinat takiminda bulunan g¢ubuk ekseni ilizerindeki bilesenlerinin toplami, yerel

koordinat takiminda ve ¢ubuk ekseni yoniinde olan “u;” ve “u;” deplasmanlarina esittir.

Bu deplasmanlarin hesabi asagida Denklem 2.11 ve Denklem 2.12.’de agik bir sekilde

sunulmustur.
Uim = Cos(0)dx, + Sin(0)dyim (2.11)

13 2

Cubuk u¢ deplasmalar yerel koordinatlarinda ifade edildikten sonra, elde edilen “u;” ve
“u;” deplasmanlari sinir kosulu olarak kullanilabilir. Sinir kosullari olarak “u;” ve “u;”
deplasmanlar1; daha once belirtildigi gibi ¢ubuk baslangicinda ve bitimindeki ¢ubuk
ekseni yoniindeki yer degistirmeler olmaktadir. Daha 6nce integral sabitleri ile birlikte
tespit edilen ¢gubuk boyuna elastik egrisinin, baslangictaki degeri ( z=0 daki deger1), “u;”
deplasmanina esit olmaktadir. Ayni sekilde ¢ubuk boyuna elastik egrisinin ¢ubuk
bitimindeki degeri (yani z=Ly, deki degeri), “u;” deplasmanina esit olacaktir. Bu durum

asagida Denklem 2.13 ve Denklem 2. 14.’de ifade edilmistir.
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(J —nm(z)dz+cy) _

{f ™ Ldz + Cz}z:O =y (2.13)
(J —nm(z)dz+cy) _

e e Cz}mm =Y (2.14)

(T4}

Yukarida verilen denklemlerde “ui” ve “uj” yerine Denklem 2.11 ve Denklem 2.12.°de
verilen esdegerleri kullanilmaktadir. Denklem 2.13 ve Denklem 2.14 ile “c;” ve “cy”
integral sabitlerine bagli, iki adet denklem elde edilmektedir. Elde edilen son iki
denklem “c1” ve “cy” i¢in kendi aralarinda ¢oziilerek, integral sabitleri bulunur. 1ntegral
sabitleri ¢oziildiikten sonra, Denklem 2.7 ile tanimlanmis olan “un,” ¢ubuk boyuna
elastik egrisi global koordinatlarda bilinmeyen olarak aliman c¢ubuk u¢ diigim
noktalarinda bulunan deplasmanlar cinsinden yazilmis olur, ilaveten denklem cubuk
malzeme Ozelligi ile geometrik Ozelliklerine de bagli olarak yazilmis olur. Cubugun
boyuna uzama elastik egrisi tespit edilmis olur. Egriden hareketle, cubuk uclarinda
bulunan ¢ubuk u¢ normal kuvvetleri yerel koordinatlarda elde edilebilmektedir. Daha
once cubuk uc¢ normal kuvvetleri ile ¢ubuk boyuna uzama elastik egrisi arasinda
bulunan iligki tespit edilmistir. Normal kuvvet fonksiyonu, boyuna uzama elastik
egrisinin “z” ye gore tlirevinin ¢ubuk elastisite modiilii ve c¢ubuk kesit alani ile
carpimina esit olarak ifade edilmistir. Iliski tekrar asagida verilmektedir (Denklem

2.15).
N=EAZ (2.15)
dz

Integral sabitleri yerine konulduktan sonra elde edilen “un” ¢ubuk boyuna uzama elastik
egrisinin “z” ye gore tiirevi alinip; elastik modiil ve kesit alan1 ile carpilir. Cubuk i¢
normal kuvveti degisiminin fonksiyonu elde edilmis olur; normal kuvvetin fonksiyonu
da; uzama fonksiyonun da oldugu gibi; global koordinatlarda ki ¢ubugun bagli oldugu
diigiim deplasmanlarina, ¢ubuk malzeme ve geometrik 6zelliklerinde baghidir. Asagida
sembolik olarak, cubuk i¢ kuvvet degisiminin kapali ifadesi verilmektedir (Denklem
2.16).

N = E,, A, 2&m) (2.16)

m 4z
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Yukarida elde edilen i¢ normal kuvvet degisim kullanilarak, cubuk u¢ normal kuvvetleri
elde edilebilmektedir. Cubuk uglarindaki ¢ubuk ug¢ normal kuvvetlerinin kapali ifadesi
asagida Denklem 2.17 ve Denklem 2.18.’de verilmektedir. Cubuk normal ug kuvvetleri

(1344

de “1” ucu i¢in “nim” ve “j” ucu i¢in ise “njm” olarak isimlendirilmektedir.

d(um)
Ny, = {N =E A, %}2_0 (2.17)
d(um)

Elde edilen ¢ubuk ug¢ kuvvetlerin asagidaki verilen sekilde (Sekil 2.3.) yerel ve global
koordinatlarda gosterilmektedir. Yerel ve global koordinatlarda ¢ubuk u¢ kuvvetlerinin

bir biri ile iliskisi yada doniisiimii asagida Denklem 2.19-2.22.’de verilmektedir.

Sekil 2.3. Yerel ve global koordinatlarda ¢ubuk diiglim noktalarina ait normal kuvvetler

fxim = COS(@)nim (2.19)
fyim = Sin(@)n;y, (2.20)
frjm = Cos(@)ny, (2.21)

fyjm = Sin(0)njm, (2.22)
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Cubuklardan olusan bir ¢ubuk sistemde bulunan, biitiin ¢ubuklar i¢in yukarida belirtilen
islemlerin sirayla ve oOzellikle bilgisayar ile yapilmasi mimkiindiir. Cubuklara ait
boyuna uzama egrileri, i¢ normal kuvvet fonksiyonlar1 yerel koordinatlarda, gubuklarin
bagli olduklar1 diigimlerin deplasmanlari, cubuklarin malzeme ve geometrik
Ozelliklerine bagli olarak elde edilmistir. Bunlar uygun birer dizide saklanabilirler.
Cubuk u¢ normal kuvvetleri ise hem yerel hem de global koordinat takiminda
cubuklarin bagli olduklar1 diigiimlerin deplasmanlari, cubuklarin malzeme ve geometrik
Ozelliklerine bagl elde edilmistir. Diigiim deplasmalarinin bilinmesi halinde ¢ubuk

boyuna uzama egrisi, i¢ normal kuvvet degisimi ve u¢ kuvvetleri hesaplanmis olacaktir.

Diigiim deplasmanlarinin hesabinda ise global eksenlere doniistiiriilmiis olan, ve diigiim
deplasmanlart ile ¢ubuk malzeme ve geometrik ozelliklerine bagli olarak elde edilen,

cubuk u¢ kuvvetlerinden faydalanilacaktir.
2.2.3. Tiim Sistemi Birbirine Baglayan Denge Denklemlerinin Olusturulmasi

Bu kisimda tiim sistemi birbirine baglayan denge denklemlerinin nasil olusturulacagi
ifade edilmektedir. Cubuklardan olusan tiim sistem dengede oldugundan, sistemin her
bir pargasinin ayri ayri dengede olmasi gerekmektedir. Yukarida her bir cubuk eleman
icin c¢ubuk u¢ kuvvetlerinin hesab1 global koordinatlarda bulunan diigim
deplasmanlarina bagli olarak ifade edilmis, ayrica ¢ubuk yerel koordinat takiminda

hesaplanan u¢ kuvvetlerinin global koordinat takiminda nasil hesaplandig: verilmistir.

Daha oOnce belirtildigi iizere sistemi olusturan c¢ubuklar diiglim noktalarinda
birlesmektedirler. Diiglim noktalar1 da sistemin bir parcasi oldugundan, dengede olmasi
gerekmektedir. Tim sistemi birbirine baglayan denklemlerde diigiim noktalarinin
dengesinden elde edilmektedir. Sadece normal kuvvet tasiyan elemanlardan olusan
cubuk sisteminin baglanti noktalarmin mafsalli oldugu daha 6nce belirtilmistir. Bu
nedenle diigiimlerde moment olmayacagindan, her bir diigiim i¢in diiglimde bulunan
kuvvetlerin dengesini yazmak gerekmektedir. Kuvvetlerin dengesi globalkoordinat
takiminda yazilacagindan diiglimde bulunan kuvvetlerin global koordinat takimi olan X
ve Y yonlerindeki bilesenleri i¢in ayr1 ayr1 iki adet denklem yazilmasi anlamina

gelmektedir.
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Denge denklemi yazilan diigiimiinde iki adet deplasman bileseni bulunmaktadir.
Denklemler bu deplasman bilesenleri i¢in ayr1 ayr1 yazilmaktadir. Boylece diiglimlerde
bulunan toplam deplasman sayisi1 kadar denklem elde edilebilmektedir. Bu denklemler
de diigim deplasmanlari cinsinden yazilmis olmaktadir. Elde edilen lineer denklem
takimi diigiim deplasmanlar i¢in ¢oziilebilir. Coziim sonucunda global koordinatlarda
tanimlanan diigiim deplasmanlar1 bulunmus olmaktadir. Diiglimlerde bulunan
deplasmanlarin numarasi yazilan denklemin deplasman yoniinii isaret etmektedir.
Asagida Sekil 2.4.’de genel bir diigiim noktasi tasarlanmis olup, bu diigiim i¢in iki adet
denge denkleminin nasil yazilacagi ve denklemin numarasmin ne olacagi

aciklamaktadir.

i-j ()
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Sekil 2.4. Genel bir diiglim noktasi, baglanan ¢ubuk ug¢ kuvvetleri ve tekil dis kuvvetler

Sekil 2.4.’den anlasilacag ilizere diigiime ii¢ adet ¢ubuk eleman baglidir. Cubuklari

[13%4]

ucundan “” ucuna

(13821

isimleri sirastyla “a”, “b” ve “c” olarak se¢ilmistir. Tiim ¢ubuklar “i
dogru yonlenmistir. Cubuk u¢ kuvvetleri bulunduklar1 uglarda bulunan diigiim
deplasmanlarina bagli olarak elde edilmis olup, denge denklemleri de kapali formda
verilmektedir. Sol tarafta cubuk u¢ kuvvetleri yerel cubuk koordinatlarinda verilmekte
olup, sag tarafta ise global takimdaki degerleri yerel ¢ubuk ekseninin global eksenle

yaptig1 agiya bagl olarak verilmektedir.

Diigiim dengesi ise global takimda yazilmaktadir. Denge denklemlerinin yazilmasi
esnasinda gerekli isaret diizeltmesi yapilmaktadir. Sekil 2.4.’te goriilen, Qq ve Py dis

tekil kuvvetleri, fxj, ve fyja sirastyla “a” gubugunun global koordinat takimindaki “j”
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ucunun kuvvetlerini, fx;, ve fyi, sirastyla “b” gubugunun global koordinat takimindaki

[13%2] [IP%2)

i” ucuna ait kuvvetleri, fxj. ve fyjc ise sirasiyla “c” gubugunun global koordinat

[13%2]
1

takimindaki ucuna ait kuvvetleri gostermektedir. [laveten,8,, 0, ve 6. acilari da

strastyla s6z konusu elemanlarin yerel ¢ubuk eksenlerinin global “X” ekseni arasindaki

[P 4)

actyr gostermektedir. Benzer sekilde; dxj,, dXip, dXjc deplasmanlari sirasiyla, “a

[13%2] [13%4]

elemaninin “J” ucundaki ve global “X” yoniindeki, “b” elemaninin “i” ucundaki ve
global “X” yoniindeki, “c” elemaninin “i” ucundaki ve global “X” yoniindeki
deplasman1 ve deplasman numarasini temsil etmektedir. Deplasman degerleri ve

numaralart esittir. Numaralarin elde edilisleri farkli elemanlardandir.

Sekil 2.4.’den, global “X” ve “Y” yoniinde yazilacak denge denklemleri asagida
Denklem 2.23 ve Denklem 2.24.’de verilmektedir.

denklem(dx;, = dxy = dxic) = Qq + fXjq + fXip + fXic =0 (2.23)

denklem(dy;, = dyyp, = dyic) = Py + [Yja + fYip + [Vie = 0 (2.24)

Denklem 2.23 ve 2.24.’den goriilecegi iizere, denge denklemi bir toplamdan ibarettir.
Toplami elde etmek igin tiim elemanlarin u¢ kuvvetlerini ayn1 anda bulmaya gerek
yoktur. Her elemandan gelecek katki elemanin sirasi geldiginde hesaplanip, ilgili
denkleme (¢ubugun ucunda bulunan deplasman numarasi ile ilgili) kiimiilatif olarak {ist
iiste eklenebilir. Tiim ¢ubuk elemanlarin taranmasi bittiginde denklemlerin tamami da
kurulmus olur. Burada tekil dis kuvvetlerin denklemlere, g¢ubuk elemanlarin
taranmasindan once ya da tarama islemi bittikten sonra eklenmesi gerekmektedir.
Bunun nedeni ise tekil dis kuvvetlerin lokasyonu ¢ubuk numaralarina degil, dogrudan
diigim deplasmanlarina ve dolayisiyla diigiim numaralarina bagli olmasindandir.
Diigiim dengesinden elde edilen ve sayisi deplasman sayisina esit olup, bilinmeyen
deplasmanlara bagli olan lineer denklem takimi ¢6ziildiigiinde, daha once belirtildigi

gibi diigim deplasmanlar1 bulunmus olur.

Bulunan diigiim deplasmanlari, daha 6nce bu biiyiikliiklere bagli olarak elde edilen
cubuk boyuna uzama elastik egrisi, cubuk i¢ normal kuvvet dagilimi ve ¢ubuk ug
kuvvetlerinde yerine konulmak suretiyle; bu biiyiikliiklerde elde edilmis olur. Bulunan
biiyiikliikler vasitasiyla cubuk i¢ normal kuvvet dagilimi diyagramlari ¢izilebilmektedir.

Ayrica, cubuklardan olusan sistemin deformasyonsuz ve deformasyonlu hallerinin
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cizimi elde edilebilmektedir. Yukarida sunulan bilgiler 1s18inda bilgisayar programi
yapilarak normal kuvvete calisan c¢ubuk sistemlerin ¢oziimii ileriki kisimlarda

verilmektedir.
2.3. Bilgisayar Programlanmas i¢cin izlenecek Yol Haritas
2.3.1. Cubuk ve Diigiim Verilerinin Bilgisayara Tanitilmasi

Cubuklardan olusan sistemin verilerinin hem elemanlar hem de digiimler igin ayr1 ayri
tanimlanarak bilgisayara girilmesi gerekmektedir. Asagida buna ait yol haritasi

verilmektedir. Bu kisim verilerin bilgisayara girilmesi ile ilgilidir.

1-Cubuk eleman numaralarinin ve sayisinin tespiti yapilir.

2-Digiim numaralariin ve sayisinin tespiti yapilir.

[13%5] [13%2]

3-Cubuk elemanlarin tarifi, ¢ubuklarin “i” ve “j” uclarinin bagli oldugu diigim
numaralarmin iki siitunlu ve eleman sayisi adedince satirlt bir matriste tanimlanarak

depolanmasi yapilir.

4-Cubuk elemanlara ait kesit alanlarinin eleman sayisinca boyutu olan bir dizide

tanimlanarak depolanmasi yapilir.

5-Cubuk elemanlara ait elastisite modiillerinin eleman sayisinca boyutu olan bir dizide

tanimlanarak depolanmas: yapilir.

6-Cubuk elemanlara ait eksene paralel yayili normal kuvvetlerin sabit ya da “z” ye bagh
degisken olarak eleman sayisinca boyutu olan bir dizide tanimlanarak depolanmasi

yapilarak yayil yiik yok ise degerinin sifir olarak tanimlanmasi gerekir.

7-Cubuk elemanlara ait sicaklik genlesme katsayilarinin eleman sayisinca boyutu olan

bir dizide tanimlanarak depolanmasi yapilir.

8-Cubuk elemanlara ait diizgiin sicaklik degisimlerinin eleman sayisinca boyutu olan bir

dizide tanimlanarak depolanmas1 yapilir.

€C,,

9-Diigiimlere ait koordinatlarin “x” ve “y” degerlerinin iki siitunlu ve diigiim adedi

sayisinca satirt olan bir matriste tanimlanarak depolanmasi yapilir.

10-Diiglimlere ait serbestlik durumunun (sinir kosullarinin) tanimlanmasi i¢in diiglimiin

yer degistirme yapip, yapmadiginin tespiti “dx” ve “dy” lere tekabiil etmektedir. Burada
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veriler iki siitunlu ve diiglim sayisi adedince satirt bulunan bir matriste
tanimlanmaktadir. Diiglimler “x” yoniinde serbest¢e deplasman yapabilir ise o diiglime
ait “dx” wverisi “0” olarak tanimlanmaktadir. Diigiimler “y” yoniinde serbestce
deplasman yapabilir ise o diiglime ait “dy” verisi “0” olarak tanimlanmaktadir. Diigiim
herhangi bir yonde deplasman yapamiyor ise o yondeki deplasman verisi, “1” olarak
tanimlanmaktadir. Bilgisayar programi icrasi sirasinda “0” ve “1” wverilerinden
faydalanarak deplasmanlara birden baslayarak sirayla diigiim deplasmanlarini birer

artarak numaralayacaktir. Diigiimlere deplasman numarast verme 1isi bilgisayar

tarafindan yapilarak hatalart minimum seviyede tutmaktadir.

11-Diglimlere ait tekil kuvvetlerin degerlerinin “Fx” ve “Fy” degerlerinin iki siitunlu ve
diiglim adedi sayisinca satir1 olan bir matriste tanimlanarak depolanmasi yapilarak, tekil

kuvvet yoksa degeri sifir olarak tanimlanmalidir.

12-Diigiimlere ait mesnet yer degistirmeleri degerlerinin “6x” ve “dy” degerlerinin iKi
siitunlu ve diigim adedi sayisinca satirt olan bir matriste tanimlanarak depolanmasi
yapilarak, mesnet yer degistirmesi ya da c¢Okmesi yoksa degerleri sifir olarak

tanimlanmalidir.

Yukaridaki veri girisi yol haritas1 iki boyutlu kafes ¢ubuk sistem i¢in agiklanmistir. Bir
boyutlu sistemler i¢in koordinat depolanmasi i¢in bir siitunlu matris yeterli olmaktadir.
Uc boyutlu sistemler icin ise koordinat depolanmasi {i¢ siitunlu matriste
tanimlanmaktadir. Bir boyutlu sistemler i¢in diiglimlerin serbestliginin tanimlanmasi
i¢in bir siitunlu matris yeterli olmaktadir. U¢ boyutlu sistemler icin ise diigiimlerin
serbestliginin tanimlanmasi igin ii¢ slitunlu matris gerekmektedir. Bir boyutlu sistemler
icin diigiimlerde bulunan dis tekil kuvvetlerin tanimlanmasi i¢in bir stitunlu matris
yeterli olmaktadir. Ug boyutlu sistemler icin ise diigiimlerde bulunan dis tekil
kuvvetlerin tanimlanmasi igin ii¢ slitunlu matris gerekmektedir. Bir boyutlu sistemler
i¢in diigimlerde bulunan mesnet ¢okmesi tanimlanmasi igin bir siitunlu matris yeterli
olmaktadir. Ug boyutlu sistemler icin ise mesnet ¢cdkmesi tanimlanmas: igin i¢ siitunlu
matris gerekmektedir. Sicaklik degisimi hesaba katilmayacak ise sicaklikla ilgili

biiyiikliiklerin sifir olarak tanimlanmasi gerekir.

Bundan sonra bilgisayar yardimiyla denklemlerin olusturulmasi, ¢oziimii, sunumu ve

grafik ¢izimi gelmektedir.
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2.3.2. Bilgisayar Yardimyla Verilerin Islenmesi

Bu kisimda ¢ubuk sistemi olusturan, ¢ubuklar ve diigiim noktalar1 i¢in gerekli verilerin
uygun isimlendirilmis dizi ve matrisler i¢inde depolanarak girildigi varsayimiyla
bilgisayarin nasil programlanacagi ve verilerin nasil islenecegi aciklanmaktadir. Cubuk

eleman sayis1 ve diiglim sayis1 bilinmektedir.

Ik olarak toplam deplasman sayisin1 bulmak ve diigiim noktalarindaki deplasmanlari
numaralandirmak i¢in, diigiim sayis1 adedince bir dongii i¢inde diigiim serbestliklerini
iceren dizi yada matrisin degerleri tek tek kontrol edilir. Toplam deplasman sayis1 i¢in
bir degisken belirlenir ve baglangic degeri sifir alinir. Diigiim noktast serbestlikleri
dongii icinde kontrol edilirken “sifir”” degerine rastlandiginda ilgili degiskenin degeri bir
artirthir, ve bu deger sifir degerinin goriildiigii yere o diigiimiin ilgili yoniindeki
deplasmaninin numarasi olarak atanir. Serbestlik degerlerini tasiyan dizi yada matris
dongli sonunda deplasman numaralarini tasir. Digiim noktasinin ilgili yOniindeki
serbestlik “1” ile tanimlanmissa, o yonde deplasman olmadigi ve tutulu oldugu
anlasildigindan o yondeki deplasman numarast icin sifir degeri verilerek, hem onun
mesnet oldugu ve degerinin de sifir oldugu anlasilir. Bu durumda deplasmanlari

numaralayan degiskenin degeri de artirllmadan dongti devam eder.

Ikinci olarak tiim elemanlar igin bir dongii kurularak, cubuklara ait boyuna uzama
egrisinin hesab1 i¢in hazirlik yapilir. Boyuna uzama egrisinin hesabi igin, ¢ubuk
eksenine paralel yayili yilik, cubuk elastisite modiilii, ¢ubuk kesit alani, sicaklik

31 31
1

genlesme katsayisi, sicaklik degisimi, ¢ubugun bagli oldugu ve “9” uclarinin

73t 31
1

degerleri tespit edilerek lokal degiskenlere aktarilir. Ayrica, “1” ve “4” ug¢lar1 yardimiyla

ilgili diiglimlerin “x” ve “y” koordinatlari, diigiim deplasmanlarinin degerleri, diiglimde
bulunan tekil yiik degerleri ve diiglimde bulunacak elastik mesnetlerin yay katsayilar1 ve
diigiimde bulunabilecek mesnet ¢cokmeleri degerleri ilgili dizi ve matrislerden alinarak

lokal degiskenlere aktarilir.

Cubuk boyu daha once formiile edildigi ¢ubuk u¢ noktalarinin koordinatlar1 vasitasiyla
hesaplanir. Cubugun lokal ekseni ile sistemin global ekseni olanx” ekseni arasindaki
aciin siniis ve kosiniis degerleri de benzer sekilde hesaplanir. Global koordinatlarda
taniml1 bulunan ¢ubuk u¢ deplasmanlari, elde edilen trigonometrik degerler yardimiyla

cubuk yerel koordinatlarina doniistiiriilerek cubuk ucundaki “uim” ve “ujm” yerel
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yerdegistirmeler hesaplanir. Bu degerler c¢ubuk i¢in yerel siir kosullarini
olusturmaktadir. Cubuk yayili yiikii ve malzeme oOzellikleri ile birlikte ¢ubuk boy
degisimini idare eden diferansiyel denklem olusturulup, iki kez integral alinarak integral
sabitleriyle birlikte bulunur. Cubuk boyuna uzama fonksiyonun ¢ubuk “I” ucundaki
degeri “uim” degerine, ¢ubuk “j” ucundaki degerinde “ujm” degerine esitlenerek integral
sabitlerini tespit edecek denklemler yazilmis olur. Elde edilen denklemler integral
sabitleri i¢in ¢Oziiliir, elde edilen integral sabitleri cubuk boyuna uzama egrisinde yerine
konularak, egrinin ifadesi c¢ubugun ucunda bulunan global takimdaki diigliim
deplasmanlari cinsinden yazilmis olur. Yine bu egri vasitasiyla, ¢ubuk i¢ normal kuvvet
dagiliminin fonksiyonu bulunur, ¢iinkii bu iki fonksiyon arasinda bir iliski mevcuttur ve

[13%5]

daha 6nce tanimlanmistir. Cubuk i¢ normal kuvvet dagiliminin degeri cubuk “i” ucu ve
“” ucu icin hesaplanarak ilgili elemanin yerel koordinatlardaki normal u¢ kuvvetleri
hesaplanir. Cubuk i¢in tespit edilen trigonometrik degerler vasitasiyla yerel
koordinatlarda bulunan ug¢ kuvvetleri global takimdaki bilesenlerine ayrilarak, ¢ubuk
uclarinda bulunan ilgili diiglimlerin deplasmanlar1 yoniinde elde edilecek denge
denklemlerine gonderilecek katkilar olarak hesap edilmis olur. Ilgili diigiim ve
deplasmani yoniinde tanimlanis olan dizi i¢ine birikmis toplam olarak atanir. Bir
elemandan global diigiim denklemlerine gonderilmesi gereken tiim katkilar gonderilir.
Ayrica, istege bagl olarak programin ileriki asamalarinda kullanilmak iizere, ¢ubuk
uzunluklari, cubuk boyuna uzama egrileri, cubuk i¢ normal kuvvet dagilimlari, cubuk
uc kuvvetleri, ¢ubuga ait trigonometrik biiyiikliikkler birer dizi veya matriste
saklanabilirler. Ham halleriyle biitiin biiytikliikler diigiim noktasinda bulunan diigiim
deplasmanlarina, g¢ubuk malzeme oOzellikleri, c¢ubuk yiikleri ve trigonometrik
biiyiikliiklerine baglidir. Cubuk deplasmanlart hari¢ diger biiyiikliikler bilinmektedir.
Bir eleman i¢in yapilmasi gereken islemler tamamlandiktan sonra; diger elemana
gecilebilir. Cubuk elemanlarin tamami tarandiginda, diiglim deplasmanlar1 yoniinde
yazilarak elde edilen denklemler ortaya cikar. Denklemler diigiim deplasmanlarina
baghidir. Son olarak denklemlerin iizerine diiglimlerde bulunan tekil kuvvetler diigiim
deplasmanlar1 numaras: vasitayla ilave edilirler. Elde edilen son denklemlerin sifira
esitlenecegi daha once belirtilmistir. Son olarak elde edilen denklemler diiglim noktasi
deplasmanlarin1 bilinmeyen olarak alinip, ¢oziildiiklerinde diigiim deplasmanlar1 global
takimda bulunmus olur. Diiglim deplasmanlar1 daha dnce ham halde kendilerine bagh

olan diger biiyiikliikklerde; 6rnegin ¢ubuk boyuna uzama egrisi, gubuk normal kuvvet
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fonksiyonu veya ¢ubuk ug kuvvetlerinde yerine konuldugunda, o biiyiikliikler de hesap
edilmis olur. Boylece ¢cubuklardan olusan sitemin ¢oziimii ve kuvvet dagilimi bulunmus

olur. Bunlarin degerleri uygun sekilde sunulabilir ve grafikleri elde edilebilir.

Yukarida agiklanan bilgiler genel olarak verilmistir. Ag¢iklamalar bir boyutlu normal
kuvvet tastyan problemlerin ¢oziimii i¢in hazirlanan program igin gecerli olmakla
birlikte, iki ve {i¢ boyutlu sadece normal kuvvet tasiyan ¢ubuk kafes sistemleri ve uzay
kafes sistemleri iginde gegerlidir. Yukaridaki agiklamalarin 15181 altinda asagida bir
boyutlu, iki boyutlu ve ii¢ boyutlu sadece normal kuvvet tasiyan c¢ubuk sistem
problemlerinin ¢éziimii i¢in gelistirilen programlar sunulmaktadir. Bu programlar,
grafik kismi haric olmak {izere, asamalar halinde degiskenleri ile birlikte
aciklanmaktadir. Takiben de programlarla literatiirden alinan ¢esitli problemler

¢Oziilerek sunulmaktadir.



3. BOLUM

PROGRAM KODLAMA VE BULGULAR

3.1. Bir Boyutlu Sistemler I¢in Gelistirilen Program Aciklamasi ve Ornek
Uygulamalar

3.1.1. Bilgisayar Programi 1D ve Aciklamasi

Bir boyutlu normal kuvvet tagiyan ¢ubuk sistemlerin ¢oziimii i¢in hazirlanan program
asagida sunulmakta ve acgiklanmaktadir. Bu program gelistirilirken asagidaki degisken
isimleri se¢ilmistir. Eleman sayisinin gostermek tlizere “nel”, diigiim sayisin1 gostermek
tizere “nod” degiskeni segilmistir. Sirasiyla koordinat takimi, diigiim serbestlikleri,
diigiim tekil kuvvetleri, mesnet ¢cokmeleri ise “xc”, “retstraints”, “jload”, “SupportDisp”
degisken isimleri se¢ilmis olup, degiskenler diigiim sayisinca elemani olan dizilerdir.
Koordinat olarak sadece bir boyut oldugundan “xc” dizisinde depolanmaktadir. Cubuk
boyuna yayili yiik degerleri i¢in “nqz”, elastik modiilii i¢cin “EMod”, kesit alani
icin”area”, sicaklik genlesme katsayisi i¢in “TEC”, sicaklik degisimi i¢in “DeltaT”
isimleri secilmis olup, degiskenler ¢ubuk sayisinca elemani olan birer dizidir. Cubuk

elemanlarin “1” ve “}” uglarmin diigiim numarasin1 depolamak tizere “defl)” isimli iki

siitunlu ve ¢ubuk sayisinca elemani olan bir matris secilmistir.

Asagida gerekli verilerin tanimlandig1 varsayilarak, program parca parca sunulmakta

olup, her par¢adan sonra programin aciklamasi verilmektedir.
3.1.1.1. Program Parcasi 1:

dispN = 0;
Do[lf[restraints[[i]] == 0, dispN = dispN + 1; restraints[[i]] = dispN;,restraints[[i]]
=0], {i, 1, nod}];
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Print["Total displacement=", dispN];

Print["Displacement number or boundary conditions=", MatrixForm[restraints]];

Burada deplasman numaralar1 dispNnumaratorii ile isimlendirilmis olup, her serbestlik
icin birer artarak deplasmanlar1 numaralandirmaktadir. Diigiim sayis1 kadar bir dongii
kurularak serbestlikler taranmakta serbest diigiimlere deplasman numarasi verilmekte,
tutulu olanlara ise daha once belirtildigi lizere “0” degeri atanmaktadir. “dispN”

degiskeninin son degeri ise toplam deplasman degerine esit olmaktadir.
3.1.1.2. Program Parcasi 2:

SysEq = Table[O0, {i, 1, dispN}];
Do[ If[restraints[[i]] > 0, SysEq[[restraints[[i]]]] = -jload[[i]]]. {i, 1, nod}];
Print["Beginning of SysEq=", MatrixForm[SysEq]];

Bu program pargasinda, toplam deplasman sayist belirlendiginden, elde edilecek
denklemleri depolamak {izere deplasman sayisi1 adedince elemani olan “SysEq” isimli
sistem denklemlerini ¢agristiran bir dizi “Table” komutuyla tanimlanmaktadir. Daha
sonra diigiim sayist adedince dongii kurularak serbestliklerin oldugu yere tekabiil eden
tekil kuvvetler sistem denklemine eklenmektedir. Denklemlerin baglangic degerleri

ekranda goriintiilenmektedir.
3.1.1.3. Program Parcasi 3:

u[0] =0;

lengthEl = Table[O, {i, 1, nel}];
EEndForl = Table[O, {i, 1, nel}];
EEndForJ = Table[O, {i, 1, nel}];
uCurve = Table|0, {i, 1, nel}];
NforceF = Table[O, {i, 1, nel}];

Uciincii program parcasinda ileride hesaplanacak bazi degerlerin saklanmasi igin
baslangic degerleri sifir olan degiskenler “Table” komutuyla tanimlanmaktadir.

Sirasiyla hesaplandiktan sonra, ¢ubuk boylar1 i¢in “lengthEl”, “1” ucundaki ve

ucundaki yerel koordinatlarda u¢ normal kuvvetleri i¢in “EEndForl”, ve “EEndFor]”
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dagilimi fonksiyonu i¢in “NforceF” degisken isimleri uygun goriilerek secilmistir.
Bahsi gegen degiskenlerin tamami birer dizi olup elaman sayilar1 ise ¢ubuk elemani
sayisina esittir. Ileri kisimlarda kendilerine ait degerler hesaplandik¢a daha sonra
kaybolmamalar1 igin degiskenlerin ig¢inde depolanacaktir. ilaveten, sifir deplasman
numarasinin karsilik geldigi deplasmanin degerinin de sifir oldugu, Program Pargasi

3’1in ilk satirinda tanimlidir.
3.1.1.4. Program Parcasi 4:

Asagidaki program parcasinda her bir eleman icin hesap yapilacagindan ¢ubuk elemani
sayisinca bir dongli kuruldu. Dongii sirast geldikge her bir eleman igin gerekli islemler
yapilmaktadir. Bu islemler program satirlar1 yaninda veya altinda (* agiklama yazis1 *)
seklinde aciklanmaktadir. Program islemlerin basladigin1 ve hangi elemanin islemde
oldugunu sirayla ekrana yazmaktadir. Daha sonra ¢ubuga ait “i” ve “j”” ucunun degerleri
“deflJ)” isimli eleman tarifi dizinden alinarak lokal degiskenlere aktarilmaktadir. Lokal
degiskenle yardimiyla da ¢ubuk ucuna ait koordinatlar elde edilip, lokal degiskenlere
aktarilmakta olup, ardindan ¢ubuk uzunlugu hesaplanmaktadir. Daha sonra ¢ubuga ait
elastisite modiilii, kesit alani, sicaklik genlesme katsayisi, yayil yiik, sicaklik degisimi
degerleri cubuk numarast ile baglantili oldugundan ilgili diziden alinip, lokal
degiskenlere aktarilmaktadir. Cubuk u¢ diiglimiine bagli olarak ¢ubuk ucunda bulunan
deplasmanlarin numaras1 belirlenmekte ve “codei” ve “codej” yerel degiskenlerine
aktarilmaktadir. Bu degerler kullanilarak sinir sartlar1 belirlenmektedir. Sinir sart1 olarak
varsa mesnet ¢cokmesi atanmakta yok ise deplasmanlarin degiskenleri bilinmeyen
deplasmanlarin ismi olarak atanmaktadir. Daha sonra iki kez integral islemi ile “u0”
olarak segcilen degiskeni lizerinde integral sonucu integral sabitleriyle hesaplanmaktadir.

s
1

Burada integral islemi i¢in “Integrate” komutu kullanilmaktadir. Hemen ardindan

[I3%2]

ucundaki sinir sart1 ve “J” ucundaki sinir sartt uygulanmaktadir, “z” nin sifir olmasi

31
1
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ucu i¢in; ¢ubuk uzunluguna esit olmasi ise “j” ucu i¢in smir kosulunu uygulamaktadir.
Sinir kosullarinin ¢éziimii “Solve” komutuyla yapilmakta olup, ¢6ziim sonucunda
integral sabitleri elde edilmektedir. integral sabitleri boyuna uzama elastik egrisini
temsil eden “u0” degiskeninde yerine konularak, boyuna uzama elastik egrisi elde edilir.
Ham halde diigiim deplasmanlarina baglhidir. Pesinden, cubuk boyuna elastik egrisine ve
sicaklik degisimine bagli olan normal kuvvet fonksiyonu hesap edilip, Nforce yerel

degiskenine aktarilmaktadir. Fonksiyonun sinirlardaki yani uclardaki degerleri
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hesaplanarak “ni” ve “nj” lokal degiskenlerinde tutulmaktadir. Elde edilen bu degerler
daha sonra kullanilabilmeleri i¢in sirasiyla, “NforceF”, “EEndForl”, “EEndForJ”isimli
dizilere eleman numarasi ile baglantili olarak depolanmaktadir. Ayrica benzer sekilde,
cubuk boyu “length” degeri ve elastik egri fonksiyonu “u0” da sirasiyla “lengthEl” ve
“uCurve” isimli degiskenlere eleman numarasiyla baglantili olarak depolanmaktadir.
Buraya kadar bir ¢ok islem yapilmis oldu ve bir ¢ok hesap sonucu elde edilen veriler

depolandi.

Elde edilen verilerden elemandan diigim dengesine katki yapacak degerlerin
deplasmanlarin gosterdigi yonde denge denklemlerine katkilar yapilmasi gerekmektedir.
Elemanlardan denge denklemlerine katki yapilmasi icin diigim deplasmanlarinin

[13%2] [13%2]
1

numarasini tastyan sirasiyla ucu ve “9” ucundaki deplasmani temsil eden codei ve

[13%3]
1

codej degiskenlerinden faydalanilir. “codei” degiskeni ucundaki deplasmani ve

€699 o [13%2]

ayrica “codei” numarali denklemi gostermektedir, sonundaki “i” ise “i” ucuna ait olan

€C:99

“ni” u¢ kuvvetinin ilgili denkleme ilave edilecegini gdsterir. Benzer agiklama “j” ucu ve
“codej” degiskeni ve “nj” u¢ kuvveti icinde gecerlidir. “codei” veya ‘“codej”
degiskenlerinden sifir olanin denklemlere katkis1 yok demektir. “If” komutu yardimiyla
bu durum ayarlanmaktadir. Eleman sayisinca dongii tamamlandiginda diigiim dengeleri
vasitastyla denge denklemleri yazilmis olur. Asagidaki program parcast agiklanan

islemleri icra etmektedir.

Print["Calculations are in proggress"],;(* Ekrana islemlerin yapildigini yazmaktadir. *)

Do/[Print[nn, " th element in progress”]; (* Islenen eleman belirtilmektedir.* )

I = deflJ[[nn, 1]];

j = deflJ[[nn, 2]]; (*Cubugun “i” wucu ve ‘j” wucu diigiim numaralar
belirlenmektedir.*)

xi = xc[[i]];xj = xc[[j]]; ; (* Cubuk ucuna ait koordinatlar belirlenmektedir.*)
length = Xj - xi; (* Cubuk uzunlugu belirlenmektedir.*)

EM = EMod[[nn]];; (* Cubuk elastisite modiilii belirlenmektedir.*)

alfaT = TEC[[nn]];; (* Cubuk sicaklik genlesme katsayisi belirlenmektedir.*)

A = areaf[nn]]; ; (* Cubuga ait malzeme ozellikleri ve kesit alani belirlenmektedir.*)
dTn = DeltaTn[[nn]]; (*Cubuktaki sicaklik degigim belirlenmektedir.)

nz = nqz[[nn]]; (*Cubuk boyunca yayili yiik degeri belirlenmektedir.)

TR}

codei = vrestraints[[i]]; (* Cubuk “i” wucu diigiim deplasman numarasi
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belirlenmektedir.*)

codej = vrestraints[[j]]; (* Cubuk *5” wucu diigiim deplasman numarasi
belirlenmektedir.*)

If[SupportDisp[[i]] != 0, ui = SupportDisp[[i]], ui = u[codei]];

If[SupportDisp[[j]] != 0, uj = SupportDisp[[jl], uj = u[codej]];

(*Ustteki iki satirda mesnet yer degistirme degerlerine, simr sarti baslangic degeri
atanmaktadir. ™)

u0 = Integrate[(Integrate[-nz, z] + c1)/(EM*A), z] + c2;

bi=u0/.z->0; bj =u0 /. z->length; (* simir kosullar: olusturuldu *)

sol = Solve[{bi == ui, bj == uj}, {c1, c2}]; (* integral sabitleri elde edildi *)

u0 = u0 /. sol[[1]]; (* boyuna uzama egrisi diigiim deplasmanlarina bagli hesaplandi
*)

Nforce = EM*A (D[uO0, z] - alfaT*dTn); (* i¢ normal kuvvet fonksiyonu hesaplandi *)

ni =-Nforce /. z -> 0; (* ¢ubuk “i” ucu i¢in normal kuvvet degeri hesaplandi *)

nj = Nforce /. z ->length; (* ¢qubuk *j ” ucu i¢in normal kuvvet degeri hesaplandi *)
EEndForl[[nn]] = ni; (* qubuk “i” ucu i¢in bulunan normal kuvvet degeri depolandi *)
EEndForJ[[nn]] = nj; (* ¢qubuk “j” ucu i¢in bulunan normal kuvvet degeri depolandi *)
uCurve[[nn]] = u0; (* cubuk boyuna uzama egrisi depolandi *)

lengthEI[[nn]] = length, (* ¢ubuk uzunlugu depoland: *)

NforceF[[nn]] = Nforce; (* ¢cubuk normal kuvvet fonksiyonu depolandi *)

If[codei>0, SysEq[[codei]] = SysEq[[codei]] + ni];

If[codej>0, SysEq[[codej]] = SysEq[[codej]] + nj];, {nn, 1, nel}]

3.1.1.5. Program Parcasi 5:

Bu program pagasinda elde edilen denge denklemleri ekranda sunulmaktadir. Ekranda
diiglimlerde bulunan deplasmanlara bagli olarak denklemler analitik olarak goriilecektir.
Ardindan, diigiim deplasmanlarinin bilinmeyen olarak isimleri “unk” isimli bir diziye
“Table” komutu ve deplasman sayist kullanilarak aktarilmaktadir. “Solve” komutu
kullanilarak elde edilen “SysEq” degiskeninde bulunan denge denklemleri bilinmeyen
diigim deplasmanlar1 “unk” i¢in ¢oziilmektedir. Coziilen degerler c¢ikartilarak,
bilinmeyen deplasmanlarin igine aktarilmakta ve bilinmeyen deplasmanlar bilinen
olmaktadir. Bunlarda otomatik olarak program hafizasinda bulunan diger biiyiikliiklerde

yerine konulmaktadir.
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Print[MatrixForm[SysEq], " = 0"];(* Denge denklemleri ekrana verilmektedir. *)

unk = Table[u[i], {i, 1, dispN}],(* Bilinmeyenlerin isimleri bir diziye aktarilmaktadir.
*)

Print["unk=", unk];(* Bilinmeyenlerin dizisi ekrana verilmektedir. *)

Isol = Flatten[ Solve[SysEq == 0, unk]]; (*Denklemler deplasmanlar icin
¢oziilmektedir.*)

Print["last sol for u displacement =", Isol]; (* Céziim sonucu ekrana verilmektedir. *)
Dofuli] = Isol[[i, 2]], {i, 1, dispN}];(* Coziim sonucu ekrana verilmektedir. *)
Print["Elasti cLongitudina Icurves are =", MatrixForm[uCurve]];

Print["End forces for Endl are =", MatrixForm[EEndForl]];

Print["End forces for EndJ are =", MatrixForm[EEndForJ]];

Print["Element force function are =", MatrixForm[NforceF]];

Print[" Calculations are completed "];

Print["Graphs are in progress "];

Yukarida yanina agiklama yazilmamis satirlarda yapilan islemler sunlardir. Cubuk
elastik egrisi hesaplanir ve bilinen olarak ekrana yazilir. Benzer sekilde “i” ve “§”
uclarina ait u¢ kuvvetleri ile gubuk i¢ normal kuvvet degisiminin fonksiyonu ekranda
goriiliir. Hesaplarin tamamlandig1 bundan sonra da grafiklerin ¢izilecegi yazisi ekranda
belirir. Grafik kisimlar1 ¢aligmanin ana temasini icermediginden sadece program olarak

eklerde sunulacak olup, a¢iklanmasi verilmeyecektir.

Yukarida verilen program pargalar1 uygun bir sekilde Mathematica ortamina aktarilarak,
¢oziilecek sistemin ¢oziimii elde edilir. Eklerde verilen grafik kismini igeren program
kullanildig1 takdirde, ilgilenilen sistemin kuvvet dagilimi, ¢ubuk ug¢ kuvvetleri ile
beraber cizilmekte olup, ilaveten sistemin deformasyonsuz ve deformasyonlu hali
mesnetleriyle beraber cizilerek ekranda sunulmaktadir. Bir boyutlu problemlerde ¢cubuk
yerel ekseni ve global eksen ac1 yapmadan ¢akismaktadir dolayisiyla herhangi bir eksen
doniisiimii olmadigindan trigonometrik doniisiimlere ihtiya¢ duyulmamaktadir, yerel

eksen ile global eksen arasinda 6teleme farki olmaktadir.



45

3.1.2. Bir Boyutlu Normal Kuvvet Tasiyan Sistem Ornekleri
3.1.2.1. Uygulama 1:

Iki ucundan basit mesnetlenmis ve ¢ubuk boyunca ilk mesnedinden 1/3 metre uzakta,
yatay 1 tonluk tekil kuvvet uygulanmistir. Toplam ¢ubuk uzunlugu 1 metre olup,
sistemin mesnetli ve yiik yliklenmis sekli asagida Sekil 3.1.’de verilmektedir. Cubukta
sicaklik degisimi ve yatay yayili yiik olmayip, elastisite modiilii 21000000 t/m? ve kesit
alan1 0.001 m’dir.

| 13m 2/3m |

Sekil 3.1. iki ucundan mesnetli, ara noktasindan yatay tekil yiiklii ¢ubuk sistem

Yukarida verilen ¢ubuk sistemin ¢6ziimii igin veri dosyasi hazirlamak gerekmektedir.
Cubugun yiik yliklenen noktadan 6nce ve sonra olmak {izere iki elemandan olustugu
goriilmektedir. Mesnet noktalartyla birlikte toplam ii¢ diiglim noktast bulunmaktadir.
Diigiim noktalar1 ve ¢ubuk elemanlari numaralandirilmistir. Yukarida verilen gubuk
sistemin ¢oziimil i¢in hazirlanan veri dosyasi asagida sunulmustur. Cubuk eleman sayisi
ve digliim sayis1 atanmistir. Diiglim koordinatlar1 dizisi hazirlanmistir, “xc” dizisinde
tanimlanmistir. Diiglim serbestlikleri “1” ve “3” numarali diigiimler tutulu olup, “2”
numarali diiglim serbest olarak “restraint” dizisinde tanimhidir. Diigiim tekil kuvvetleri
mesnetlerde olmayip, sadece “2” numarali diigiimde bir tonluk tekil yiik bulunmaktadir,
“jload” dizisinde tanimlidir. Yatay yayili yiik degerleri olmayip, “nqz” dizisinde sifir
olarak tanimlidir. Cubuk elastisite modiilleri ve kesit alanlar1 “EMod” ve “area”
dizilerinde tanimlanmistir. Sicaklik yiiklemesi ve mesnet ¢cokmeleri olmadigindan ilgili
dizilerin igine sifir degerleri atanmistir. “DeltaTn”, “TEC”, ve “SupportDisp” dizilerinin

73T
1

degerleri tamamen sifirdir. Eleman tarifleri ucundan “j” ucuna dogru tanimlanmis
olup, birinci eleman i¢in “1,2” ve ikinci eleman igin “2,3” olarak “defl)” iki boyutlu
dizisinde tanimlanmistir. Veri dosyasi asagida yanlarinda agiklama satirlariyla beraber

verilmektedir.



Veri dosyasi 1:

Clear[Evaluate[Context[] <> "*"]];

<< "C:\Users\CDA\\Desktop\\Yener-Prog\\1DModul\\1DModul.txt"
nel = 2; (*cubuk sayisi™®)

nod = 3; (*diigiim saysi*)

xc = {0, 1/3, 1}; (*diigiim koordinatlari*)

restraints = {1, 0, 1}, (*diigiim serbestlikleri*)

jload = {0, 1, 0}, (*diigiim noktasi tekil yiikleri*)

ngz = {0, 0}; (*¢ubuk yatay yayili yiikii*)

EMod = {21000000, 21000000}, (*¢ubuk elastisite modiilleri*)
area = {0.001, 0.001}; (*¢ubuk kesit alanlart™)

DeltaTn = {0, 0}, (*cubuk sicaklik degisimleri®)

TEC = {0, 0}, (*cubuk sicaklik genlesme katsayilari®)
SupportDisp = {0, 0, 0}; (*mesnet yer degistirmeleri*)

defl] = {{1, 2}, {2, 3}}; (*cubuk eleman tarifleri*)

OneD; (*analiz programimin icrasi*)

Veri dosyasinin basinda tiim degiskenlerin temizlenmesini yapan bir
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terim

bulunmaktadir. Pesinden analizi yapacak olan Mathematica ortaminda kodlanmis ve

“IDModul.txt” isimli dosyaya kaydedilmis olan program, ilgili klasérden Mathematica

ortamina yliklenmektedir. Verilerin girisi ve tanitimlarin yapilmasindan sonra, analiz

programi modiilii olan OneD icra edilmektedir. “OneD” modiilii icra edildikten sonra

asagidaki sonuglar ekrana diigmiistiir. Tablo 3.1.”de gerekli bilgiler 6zetlenmistir.

Tablo 3.1. Ornek 1 de verilen sistemin ¢dziimii sonucu elde edilen 6zet bilgiler

Biiyiikliik ad: Degeri
Iki nolu diigiimiin deplasmani 0.000010582 m
Birinci ¢ubugun elastik egrisi 0.000031746 z
Ikinci gubugun elastik egrisi 0.000010582 - 0.000015873 z
Birinci ¢ubuk normal kuvveti 0.666 ton

Ikinci gubuk normal kuvveti 0.333 ton




47

Ayrica, ¢oziim sonucu elde edilen ¢ubuk boyuna uzama degisim grafigi (Sekil 3.2.),
normal kuvvet degisim grafigi (Sekil 3.3.), deformasyonlu ve deformasyonsuz sistemin

karsilastirilmasi (Sekil 3.4.) sunulmaktadir.

Sekil 3.2. Sistemde her bir noktaya ait boy uzama miktar1 grafigi

0.666667
0.666667

€ €2

0333333

\

Sekil 3.3. Sistemde her bir noktaya ait normal kuvvet degeri grafigi

Sekil 3.4. Deformasyonlu ve deformasyonsuz sistemlerin karsilastirilmasi

Sekil 3.2.’den goriilecegi tlizere “2” diiglimiiniin deplasman degeri “ul” kadar yani
0.000010582 m olmaktadir. Sekil 3.3.’de ise birinci ¢ubuk kuvvetinin 0.666 ton, ikinci
cubukta ise 0.333 ton oldugu goriiliir. Sekil 3.4.’de ise “2” numarali serbest olan
diigim, tekil yiikiin ¢ekip onu siiriikklemesi sonucu ileriye dogru gitmektedir. Birinci
cubuk uzamakta, ikinci cubuk kisalmakta; fakat tim cubukta boy degisimi
olmamaktadir. Ayni, problem mekanik kurallarinca el ile ¢6ziildiigiinde de bire bir ayn1

sonuclar elde edilmektedir.
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3.1.2.2. Uygulama 2:

Yukarida verilen aymi sistem, fakat burada yilik olarak sadece “1” numarali ¢ubukta 2
t/m’lik pozitif yonde yatay yayili ylik bulunmaktadir. Cubuk sistem asagida Sekil

3.5.’de sunulmaktadir.

Sekil 3.5. Ornek 1 ile ayni sistem, birinci cubukta diizgiin yatay yayili yiik mevcut

Bu problem i¢in ayni veri dosyasi degisime ugratilarak verilmektedir. Diigiim tekil yiikii
olmadigr i¢in”’jload” dizisinin tim elemanlar1 sifir olacaktir. Yatay yayili yiik olarak
sadece “1” numarali ¢ubuk i¢in 2 t/m degeri géz Oniline alinmaktadir. Diger veriler

yukaridakiler ile aynidir. Asagida ikinci 6rnek i¢in veri dosyast verilmektedir.

Veri dosyasi 2:

Clear[Evaluate[Context[] <> "*"]];

<< "C:\Users\CDA\\Desktop\\Yener-Prog\\1DModul\\1DModul.txt"
nel = 2; (*cubuk sayisi1*)

nod = 3; (*diigiim says1®)

xc = {0, 1/3, 1}; (*diigiim koordinatlari®)

restraints = {1, 0, 1}; (*diigiim serbestlikleri*)

jload = {0, 0, 0}; (*diigiim noktasi tekil yiikleri*)

ngz = {2, 0}; (*¢ubuk yatay yayili yiikii*)

EMod = {21000000, 21000000}, (*¢ubuk elastisite modiilleri*)
area = {0.001, 0.001}; (*¢ubuk kesit alanlart™)

DeltaTn = {0, 0}, (*cubuk sicaklik degisimleri*)

TEC = {0, 0}, (*cubuk sicaklik genlesme katsayilari™)
SupportDisp = {0, 0, 0}; (*mesnet yer degistirmeleri*)

defl] = {{1, 2}, {2, 3}}; (*¢ubuk eleman tarifleri®)

OneD; (*analiz programnin icrasi™)



49

Verilerin girisi ve tanitimlarin yapilmasindan sonra, analiz programi modiilii olan OneD
icra edilmektedir. “OneD” modiilii icra edildikten sonra asagidaki sonuclar ekrana

diismiistiir. Asagida Tablo 3.2.’de gerekli bilgiler 6zetlenmistir.

Tablo 3.2. Ornek 2 de verilen sistemin ¢dziimii sonucu elde edilen dzet bilgiler

Biiyiikliik ad: Degeri
Iki nolu diigiimiin deplasmani 3.52734x10™°m
Birinci gubugun elastik egrisi 0.000047619 (0.555556 z-z%)
ikinci gubugun elastik egrisi 3.52734x10°-5.29101x10° z
Birinci ¢ubuk normal kuvveti dogrusal “1” ucunda; 0.55555 ton
degismektedir “” ucunda; -0.11111 ton
Ikinci cubuk normal kuvveti sabittir -0.11111 ton

Ayrica, ¢6ziim sonucu elde edilen gubuk boyuna uzama degisim grafigi (Sekil 3.6.),
normal kuvvet degisim grafigi (Sekil 3.7.), deformasyonlu ve deformasyonsuz sistemin

karsilastirilmasi (Sekil 3.8.) sunulmaktadir.

!\
; ! Uo
/74:;7 . ! & /7457

Sekil 3.6. Ornek 2 sisteminde her bir noktaya ait boy uzama miktar1 grafigi

0.555556

0.111118

11111
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Sekil 3.7. Ornek 2 sistemde her bir noktaya ait normal kuvvet degeri grafigi
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Sekil 3.8. Ornek 2 sisteminde her bir noktaya ait normal kuvvet degeri grafigi

Sekil 3.6.’dan da goriilecegi tlizere “2” diiglimiinlin deplasman degeri “ul” kadar yani
3.52734x10° m olmaktadir. Sekil 3.7.’de ise birinci ¢ubuk kuvvetinin ¢ubuk boyunca
dogrusal degisken oldugu; “i” ucunda 0.5555 ton degerini, “j” ucunda ise -0.1111 ton
degerini aldig1 goriiliir. Ikinci cubukta ise normal kuvvet sabit olup, -0.1111 ton
olmaktadir. Birinci gubugun biiyiik bir kism1 ¢ekmeye calismakta, kiigiik bir kismi ise
basin¢ kuvvetine maruz olmaktadir. Ikinci ¢ubuk ise tamamen basing zorlamasi altinda
kalmaktadir. Sekil 3.8.’de ise “2” numarali serbest olan diiglim, birinci ¢ubukta bulunan
yatay yayil yiikiin itmesi sonucu ileriye dogru gitmektedir. Birinci ¢ubuk uzamakta,

ikinci ¢ubuk kisalmakta; fakat tiim ¢ubukta boy degisimi olmamaktadir. Ayni, problem

mekanik kurallarinca el ile ¢oziildiigiinde de bire bir ayn1 sonuglar elde edilmektedir.
3.1.2.3. Uygulama 3:

Yukarida verilen ayni sistem, fakat burada yiik olarak sadece “2” numarali gubukta -20
derecelik sicaklik degisimi bulunmaktadir. Sicaklik genlesme katsayis1 0.000012/C°

olarak verilmektedir.

Bu problem i¢in ayn1 veri dosyasi degisime ugratilarak verilmektedir. Diigtim tekil ytikii
olmadig1 i¢in “jload” dizisinin tiim elemanlar: sifir olacaktir. Yatay yayili yiik degerleri
de sifir olmaktadir. Sicaklik genlesme katsayilar1 iki eleman i¢inde esit olarak, “TEC”
dizisi i¢inde tanimlanmaktadir. Diger veriler yukaridakiler ile aynidir. Sicaklik degisim
degeri sadece ‘“2” numarali ¢ubukta oldugundan, “DeltaTn” dizisinde; “1” numarali
eleman igin sifir, “2” numarali eleman igin -20 degeri tanimlanmaktadir. Ugiincii 6rnek

icin veri dosyast asagida verilmektedir.
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Veri dosyasi 3:

Clear[Evaluate[Context[] <> "*"]];

<< "C:\Users\CDA\\Desktop\\Yener-Prog\\1DModul\\1DModul.txt"
nel = 2; (*cubuk sayisi™®)

nod = 3; (*diigiim saysi*)

xc = {0, 1/3, 1}; (*diigiim koordinatlari*)

restraints = {1, 0, 1}; (*diigiim serbestlikleri*)

jload = {0, 0, 0}, (*diigiim noktas1 tekil yiikleri*)

ngz = {0, 0}; (*¢ubuk yatay yayili yiikii*)

EMod = {21000000, 21000000}, (*¢ubuk elastisite modiilleri*)

area = {0.001, 0.001}; (*¢ubuk kesit alanlart™)

DeltaTn ={0, -20}; (*¢ubuk sicaklik degigimleri™®)

TEC = {0.000012, 0.000012}, (*¢ubuk sicaklik genlesme katsayilari®)
SupportDisp = {0, 0, 0}; (*mesnet yer degistirmeleri*)

defl] = {{1, 2}, {2, 3}}; (*cubuk eleman tarifleri*)

OneD; (*analiz programimin icrasi*)

Verilerin girisi ve tanitimlarin yapilmasindan sonra, analiz programi modiilii olan OneD
icra edilmektedir. “OneD” modiilii icra edildikten sonra asagidaki sonuglar ekrana

diismiistiir. Asagida Tablo 3.3’de gerekli bilgiler 6zetlenmistir.

Tablo 3.3. Ornek 3 de verilen sistemin ¢dziimii sonucu elde edilen 6zet bilgiler

Biiyiikliik adi Degeri
Iki nolu diigiimiin deplasmani 0.00053333 m
Birinci gubugun elastik egrisi 0.00016 z
Ikinci gubugun elastik egrisi 0.00053333 -0.00008 z
Birinci ¢ubuk normal kuvveti sabit 3.36 ton
Ikinci gubuk normal kuvveti sabittir 3.36 ton

Ayrica, ¢6ziim sonucu elde edilen ¢ubuk boyuna uzama degisim grafigi (Sekil 3.9.),
normal kuvvet degisim grafigi (Sekil 3.10.) ve deformasyonlu ve deformasyonsuz

sistemin karsilagtirilmasi (Sekil 3.11.) sunulmaktadir.
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Sekil 3.9. Ornek 3 sisteminde her bir noktaya ait boy uzama miktar1 grafigi

3.36
3.36
3.36
3.36

e €2

Sekil 3.10. Ornek 3 sistemde her bir noktaya ait normal kuvvet degeri grafigi

;“; er * [ ;5

Sekil 3.11. Ornek 3 sisteminde her bir noktaya ait normal kuvvet degeri grafigi

Sekil 3.9.’dan goriilecegi lizere “2” digiimiiniin deplasman degeri “ul” kadar yani
0.00053333 m olmaktadir. Sekil 3.10.’da ise birinci ¢ubuk kuvvetinin ¢ubuk boyunca
sabit oldugu ve 3.36 ton degerini aldig1 goriiliir. Ikinci gubukta ise normal kuvvet yine
sabit olup, degeri 3.36 ton olmaktadir. Birinci ¢ubuk ¢ekmeye calismakta, olup ikinci
cubukta ¢cekmeye caligmaktadir. Sekil 3.11°de ise “2” numarali serbest olan diigiim,
ikinci ¢ubugun negatif sicaklik degisimi sonrasi kisalmasiyla ikinci ¢ubuga dogru
cekildigi anlagilmaktadir. Bu nedenle iki ¢ubukta da karsilikli ¢ekme kuvvetleri
olugmaktadir. Birinci ¢gubuk uzamakta, ikinci ¢ubuk kisalmakta; fakat tiim ¢ubukta boy
degisimi olmamaktadir. Ayni, problem mekanik kurallarinca el ile ¢6ziildiiglinde de bire

bir ayn1 sonuglar elde edilmektedir.
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3.1.2.4. Uygulama 4:

Dordiincii 6rnek olarak, literatiirden alinan bir problem sunulmaktadir [22]. Cubuk
sistem asagida Sekil 3.12.’de verilmistir. Rijit bir mesnede bagli olan silindirik Al
cubugunun kesiti, A2 kismina gectiginde degismektedir. A1 ¢ubugu kesit degistirdigi
noktada, yaka denilen A3 isimli silindirik bir boru parg¢asindan ge¢ip A2 kesitine
dontismektedir. A1 kisminin A2 ye gectigi noktada A3 yakasina oturmaktadir. A3
yakasida rijit dairesel kenar mesnede rahatca oturmaktadir. Yakanin ne kadar kisaldigi
ve Al-A2 bilesik cubugunun boyunun ne kadar uzadiginin hesaplanmasi istenmektedir.

Malzeme ¢elik olup, elastisite modiilii 200 GPa’dur.

Rijit Mesnet

At = 960 mm?

250 mm

300 mm?

225 mm

A2

= =
g &

—

40 kKN

Sekil 3.12. Uygulama 4 literatiirden alinan ¢ubuk sistem problemi [22]

Yukarida tanimlanan problemi ¢6zmek amaciyla, asagidaki veri dosyasi hazirlanmistir.
Burada A; ¢ubugunun {ist mesnede baglandigi noktanin diigiim numarast “1” olarak
verilmistir. Aj, Az ve Az cubuklarinin birlesim noktasina “2” diigiim numarasi
verilmistir. Az yakasi ile mesnetlendigi dairesel noktalar kiimesi “3” diiglim numarasi
ile adlandirilmis olup, tekil kuvvetin uygulandigr A, cubugunun alt ucu “4” diiglim
numarasi ile belirlenmistir. “X” ekseni olarak diisey eksen alinmis olup, baslangi¢
noktasit Aj; cubugunun iist ucu alinmistir. Aj, Ay ve Az ¢ubuklart da isimleri ile uyumlu
olmasi amaciyla, sirastyla “17, “2”, “3” degerleriyle numaralandirilmistir. Buna gore
asagidaki veri dosyasi ortaya ¢ikmistir. Sistemde 3 ¢ubuk eleman ve 4 diiglim noktasi
bulunmaktadir. Cubuk boyunca yayili yiik, sicaklik verisi ve mesnet ¢okmesi yoktur,

dolayistyla bu veriler sifir olarak girilmektedir. Mesnetler “1” ve “3” numarali
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diigiimlerde oldugundan, serbestlikleri “restraint” dizisinde “1” olarak tanimlanmaistir.
Diger iki diigiim serbest oldugundan ilgili degerler “0” olarak atanmustir. Tekil kuvvet
“4” nolu diigiimde bulundugundan, “jload” dizisinin sadece ddrdiincii elemanina tekil
kuvvet degeri girilmis, digerleri sifir olarak atanmistir. Elastisite modiilleri {i¢ eleman
icinde 200 GPa olarak girilmis olup, kesit alanlar1 sirastyla 960, 300 ve 480 mm? olarak
atanmistir. Cubuk eleman tarifleri ise Al ¢ubugu, iist ucu ve alt ucunun bagli oldugu “1-
2 diiglim numaralar ile tanimlanmistir. A1 in devami olan A2 ¢ubugu da kendi iist ve
alt ucunun baglandig “2-4 diigtimleri ile tamimlanmistir. A3 ¢ubugu da benzer sekilde
kendi iist ve alt ucunun bagli oldugu “2-3” diiglim numaralari ile tanimlanmistir. Cubuk
sistemin bilgisayar programi i¢cin modeli elde edilmis olup, asagidaki veri dosyasi

olusmustur.

Veri dosyasi 4:

Clear[Evaluate[Context[] <> "*"]];
<< "C:\Users\CDA\\Desktop\\Yener-Prog\\1DModul\\1DModul.txt"
nel = 3;

nod = 4;

xc = {0, 250, 375, 475};

restraints = {1, 0, 1, 0};

jload = {0, 0, 0, 40};

ngz = {0, 0, 0};

EMod = {200, 200, 200};

area = {960, 300, 480};

DeltaTn = {0, 0, 0};

TEC ={0, 0, O};

SupportDisp = {0, 0, 0, 0};

defld = {{1, 2}, {2, 4}, {2, 3}};
OneD;

Verilerin girisi ve tanitimlarin yapilmasindan sonra, analiz programi modiilii olan OneD
icra edilmektedir. “OneD” modiili icra edildikten sonra asagidaki sonuglar ekrana

diismiistiir. Asagida Tablo 3.4.’de gerekli bilgiler 6zetlenmistir.
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Ayrica, ¢oziim sonucu elde edilen gubuk boyuna uzama degisim grafigi (Sekil 3.13.),
normal kuvvet degisim grafigi (Sekil 3.14.) ve deformasyonlu ve deformasyonsuz

sistemin karsilastirilmasi (Sekil 3.15.) sunulmaktadir.

Tablo 3.4. Uygulama 4 “de verilen sistemin ¢6ziimii sonucu elde edilen 6zet bilgiler

Biiyiikliik ad: Degeri
Iki nolu diigiimiin deplasmani 5/192 = 0.02604166 mm
Dort nolu diigiimiin deplasmani 169/960 = 0.17604166 mm
Birinci gubugun elastik egrisi z
9600
Ikinci gubugun elastik egrisi 5 N z
192 1500
Ucgiincii gubugun elastik egrisi 5 z
192 4800
Birinci ¢ubuk normal kuvveti sabit 20 kN
Ikinci cubuk normal kuvveti sabittir 40 kN
Uciincii gubuk normal kuvveti sabittir -20 kN

Al « @ s Al @

Sekil 3.13. Uygulama 4 sisteminde her bir noktaya ait boy uzama miktari grafigi

40
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Sekil 3.14. Uygulama 4 sistemde her bir noktaya ait normal kuvvet degeri grafigi
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Sekil 3.15. Uygulama 4 sisteminde her bir noktaya ait normal kuvvet degeri grafigi

Sekil 3.13. ve Tablo 3.4.’den goriilecegi lizere “2” ve “4” numarali serbest diigtimlerin
deplasman degeri “ul” ve “u2” sirasiyla 0.026 ve 0.176 mm olmustur. Elde edilen
degerler kaynakta verilen degerler ile birebir aynidir. Sekil 3.14.’de ise A1 gubugunun
normal kuvvet degeri ¢ubuk boyunca sabit olup, 20 kN olarak hesaplanmistir. A2
c¢ubugunun normal kuvvet degeri beklendigi gibi 40 kN olup, ¢ubuk boyunca sabittir.
A3 ¢ubugunun normal kuvvet degeri -20 kN olarak elde edilmistir. A1 ve A2 ¢ubuklari
cekme, A3 cubugu ise basinca maruz kalmaktadir. Deformasyonsuz ve deformasyonlu
sistemin karsilastirildigi Sekil 3.15.’de ise “2” ve “4” nolu serbest hareket edebilen
diigiimlerin ¢ubuk u¢ kuvveti yoniinde saga dogru (problemin verildigi ilk sekildeki

resme gore ise asag1 yonde) yer degistirdigi goriilmektedir.
3.1.2.5. Uygulama 5:

Besinci 6rnek olarak, yine literatiirden alinan bir problem sunulmaktadir [22]. Cubuk
sistem asagida Sekil 3.16.’da verilmistir. Burada {i¢ metalden olusan bir ¢ubuk sistemi
verilmektedir. Celik g¢ekirdekten olusan silindirik bir gubuk, bronz ve bakir tiipler ile
sartlmistir. Celik, bronz ve bakir kismin ¢aplart sirasiyla; 30, 45 ve 60 mm olarak
verilmektedir. Celik, bronz ve bakirin elastisite modiilleri de sirasiyla 210, 100, 120
GPa olarak verilmektedir. Uglii metalden olusan ¢ubuk sistemi bir ucundan rijit bir
zemine mesnetlenen ¢ubuk, serbest ucundan rijit bir ug basligi ile degeri 40 kN olan
tekil bir kuvvet ile baskilanmaktadir. Uygulanan yiik nedeniyle ¢elik, bronz ve bakirda

olusan normal gerilmelerin hesab1 istenmektedir.
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Sekil 3.16. Uygulama 5 literatiirden alinan ¢ubuk sistemproblemi [22]

Yukarida verilen besinci ornek i¢in veri dosyast hazirlanmistir. Veri dosyast i¢in gerekli
aciklama asagida verilmektedir. Ug farkli metal birbirine paralel ¢ubuk sistemi
olusturulmustur. Cubuklarin alt ucuna “1” diigiim numaras1 verilmis olup, iist ucuna “2”
diigim numaras1 verilmistir. U¢ cubukta aynm1 diigiim noktalar1 ile “1-2” tarif
edilmektedir. Alt ug tutulu iist ug ise serbest olarak “restraint” dizisinde tanimlanmistir.
Celik cekirdek olan eleman “1” ile, bronz gomlek eleman “2” ile, ve bakir gémlek
eleman ise “3” ile numaralandirilmistir. Toplam eleman sayis1 “3” ve diigiim sayisi ise
“2” olmustur. Ilgili elemanlarin elastisite modiilleri “EMod” dizisinde sirayla
tanimlanmistir. Kesit alanlar1 da “area” dizisi i¢inde uygun sekilde hesaplanmaktadir.
Cubuk boyunca yatay yayili yiikk ve sicaklik degisimi yiiklemesi olmadigindan ilgili
biiyiikliikler sifir olarak tanimlanmistir. Mesnet yer degistirme yiiklemesi olmadigindan
ilgili biiytikliik sifir olarak atanmistir. Diiglim tekil ytikii olarak “jload” dizinin “2 inci”
elemanina “2” nolu diigiimii temsilen -40 kN’luk yiik basin¢ oldugu i¢in negatif olarak

tanimlanmistir. Literatiirde ¢ubuk boylari; hesabi etkilemedigi verilmemis olmakla
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birlikte, bu calismada “1” olarak alinmistir. Gerilmelerin hesab1 istendiginden,
programin hesapladigr normal kuvvet degerleri veri dosyasinin en sonunda ¢ubuk
alanlarina boéllinerek; gerilme degerleri hesaplanmistir. Asagida veri dosyasi

goriilmektedir.

Veri dosyasi 5:

Clear[Evaluate[Context[] <> "*"]];

<< "C:\Users\CDA\\Desktop\\Yener-Prog\\1DModul\\1DModul.txt"
nel = 3;

nod = 2;

xc = {0, 1};

restraints = {1, 0};

jload = {0, -40};

ngz = {0, 0, 0};

EMod = {210, 100, 120};

area = {Pi*30"2/4., Pi*(45"2 - 30"2)/4., Pi*(60"2 - 45"2)/4.};
DeltaTn = {0, 0, 0};

TEC ={0, 0, 0};

SupportDisp = {0, 0};

defld = {{1, 2}, {1, 2}, {1, 2}};

OneD;

Do[Print["Sigma(", i, ")=", 1000 N[EEndForJ[[i]]/area[[i]]]1];, {i, 1, nel}];

Verilerin girisi ve tanitimlarin yapilmasindan sonra, analiz programi modiilii olan OneD
icra edilmektedir. “OneD” modiilii icra edildikten sonra asagidaki sonuclar ekrana

diigmiistiir. Tablo 3.5.”de gerekli bilgiler 6zetlenmistir.

Tablo 3.5. Uygulama 5’ de verilen sistemin ¢6ziimii sonucu elde edilen 6zet bilgiler

Eleman-Biiyiikliik adi Normal kuvvet Gerilme
Celik cubuk -15.4128kN -21.8047 MPa
Bronz ¢ubuk -9.17431kN -10.3832 MPa

Bakir cubuk -15.4128KkN -12.4598Mpa
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Tablo 3.5.°den goriilecegi iizere, gelik, bronz ve bakir iizerinde tekil yiikten dolayi
sirastyla 21.8, 10.38 ve 12.46 MPa basing gerilmeleri olusmaktadir. Elde edilen bu
degerler problemin alindig1 kaynakla uyumludur. Bu problemin c¢aligmada gelistirilen
program ile ¢0ziilmesi, programin farkli malzemelerden olusan ve paralel olarak
birlestirilmis ¢ubuk sistemlerinide c¢ozecek sekilde c¢ok yonlii ve genel olarak

kodlandiginin gdstergesi olmaktadir.

3.1.2.6. Uygulama 6:

Altinct 6rnek olarak, literatiirden alinan [37], rijit mesnetten sarkitilmis kesik koni.
Kesik koninin kisa ve uzun caplarmin degeri sembolik olarak sirasiyla “2a” ve “2b”
olarak verilmekte olup, elastisite modiilii “E”, uzunlugu “L”, yogunlugu “y” olarak
verilmektedir. Kesik koninin serbest ucunun kendi agirligi altinda ne kadar uzama
yapacagl belirlenmek istemektedir. Bu oOrnekte ¢ubuk kesit alan1 degisken olup
yaricapin karesiyle yani parabolik olarak degismektedir. Ayn1 zamanda ¢ubuk boyuna
yayili yilik olarak etki eden 6z agirhigi da kesitten kesite degismektedir. Asagida kesik

koninin Sekil 3.17.’de gerekli bilgileri verilmektedir.

Rijit Mesnet

2b

Sekil 3.17. Kendi agirligr altinda kesik koni problemi [37]



60

Yukarida verilen altinci 6rnek i¢in veri dosyasi hazirlanmigtir. Veri dosyasi icin gerekli
aciklama asagida verilmektedir. Kesik koni bir parcadan olusmaktadir. Ust ucu rijit alt
ucu serbesttir. Cubuk ekseni baslangici alt uca konulmustur. Bu nedenle alt uca “1”
diigiim numarast, iist uca “2” diiglim numarasi verilmistir. Tek ¢gubuk oldugundan alttan
iiste dogru tanimlanmis olup, tarifi “1-2” olarak ilgili diziye atanmistir. Digim
koordinatlar1 i¢in “1 inci” diigiim i¢in “0” olmakta ve “2 inci” diigiim i¢in sembolik
olarak “L” olmaktadir. Program sembolik islem yetenegine sahip oldugundan degerler
sembolik olarak da atanabilmektedir. Yarigap1 degisimi bulunarak, kesit alan1 yarigapa
bagli bulunarak, ilgili dizide tanimlanmistir. Agirlik degisimi de kesit alani ve
yogunlugun c¢arpimi olarak ¢ubuk eksenine paralel yayili yiik olarak tanimlanmuistir.
Elastisite modiilii sembolik olarak “E” girilmistir. Sicaklik degisimi, tekil yiik ve mesnet
yer degistirmesi olmadigindan ilgili dizilere sifir atanmistir. Veri dosyasi asagida

sunulmaktadir.

Veri dosyasi 6:

Clear[Evaluate[Context[] <> "*"]];
<< "C:\Users\CDA\\Desktop\\Yener-Prog\\1DModul\\1DModul.txt"
nel =1,

nod = 2;

xc ={0, L};

restraints = {0, 1};

jload = {0, 0};

r=a+(z/L)(b-a)

ngz = {g*Pi r"2};

EMod ={E};

area = {Pi r'\2};

DeltaTn = {0};

TEC ={0};

SupportDisp = {0, 0};

defld = {{1, 2}};

OneD;
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Verilerin girisi ve tanitimlarin yapilmasindan sonra, analiz programi modiilii olan OneD
icra edilmektedir. “OneD” modiilii icra edildikten sonra asagidaki sonuclar ekrana
diismiistiir. Tablo 3.6.’da gerekli bilgiler 6zetlenmistir. Tablo 3.6.’dan goriilecegi tizere
serbest u¢ normal kuvvet degeri sifirdir ve agik¢a goriilmektedir. Mesnetteki degeri ise
tiim kesik koninin agirligina esit olmustur. Serbest uctaki boy uzamasi elde edilmistir,
literatiirde [37] de ayn1 sonug elde edilmistir. Gelistirilen program ile hem kesit alani
hem de yayili yiikii degisken problemler ¢oziilebilmektedir. Ilaveten islemler
istendiginde sembolik veri ile de yapilabilmektedir. Benzer problem bagka bir

literatiirde de bulunmaktadir [29].

Tablo 3.6. Uygulama 6 da verilen sistemin ¢6ziimii sonucu elde edilen 6zet bilgiler

Biiyiikliik ad: Degeri
2
Boy uzamasi (2a+b)yL
272 2 6Ok 2 2
L—2)(2a°L*+ bz (L b (L* + 2Lz —
Boyuna elastik egri y(L —2)(2a’l” +b°z (L +z) +ab (L” + 2Lz — z7))
6 bE(a (L —z) + bz)
— 2,2 2 2 2
N fonksiyonu _ymz(ab(3L —22)z + bgsz +a?(3L% — 3 Lz + 2?))
Serbest uctaki N 0
; 1
Mesnet reaksiyonu _§(az +ab + b¥)yLw

3.1.2.7. Uygulama 7:

Yedinci 6rnek olarak yine literatiirden [22] alinan bir 6rnek sunulmustur. Bu problem
ilging ornek olusturmasi agisindan onemlidir. Asagida Sekil 3.18.’de verilen 6rnek
ongerilmeli betonarme problemidir. Celik ongerme basliklar1 ile ¢ekilen Ongerme
donatist 6200 kgf’lik kuvvet ile ¢ekilerek tutulmus ve beton kalib1 i¢cinde yer almistir.
Daha sonra, ¢elik kalip i¢inde ¢ekili iken, iizerine beton doldurularak, priz almasi ve 28
giin sonuna kadar dayanim kazanmasi i¢in beklenmistir. Beton dayanimini kazandiktan
sonra, c¢elik bagliklar serbest birakilarak beton iginde c¢ekili bulunan celigin beton
lizerine basing gerilmesi olusmasi saglanmistir. Celige ait elastisite modiilii ile beton
elastisite modiilii oran1 12/1 olup, ¢elik alani ile beton alani arasindaki oran ise 1/50
oldugu bilinmektedir. Ongerme ¢eligi serbest birakildiginda ¢elik ve beton iizerinde

olusacak gerilme degerlerinin belirlenmesi istenmektedir.
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Beton
— I —

Sekil 3.18. Ongermeli betonarme gubuk

Problemin gelistirilen program ile ¢dziilebilmesi i¢in bir benzetme gelistirilmistir.
Uzayan c¢eligin uzadigi kadar kisalmasi igin gerekli sicaklik degisimi, celigin 1sil
genlesme katsayis1 “1” alinarak hesap edilmistir. Bu hesap asagidaki ifade (Denklem

3.1) yardimyla yiritilmistir. Oranlar ise dogrudan malzeme degerleri olarak

alinmustir.
N.L

AL === a.At.L, (3.1)
EcAc

Uzunluklar elimine olmaktadir. Malzeme degerleri olarak oranlar yerine konuldugunda.

Denklem 3.1., Denklem 3.2. halini almaktadir.

_ 6200

At = 51.6666 °C (3.2)

Boylece problem 1s1l genlesme problemi gibi ¢oziilebilir. Kirisin boyutu sonuglardan
elimine oldugundan, hesaplarda bilgisayarin kullanmast i¢in “1” metre olarak
girilmektedir. Cubugun bir ucu tutulu diger ucu serbest olarak birakilmistir. Sol ucu “1”
diiglim numarasi, diger ucu ise ‘“2” ile numaralandirilmistir. Bir numarali diigiimiin
koordinat1 “0” olarak, “2” numaral1 diigiimiin koordinati cubuk boyunu sembolik olarak
“1” degeri girilmistir. Beton elaman “1” numarasi ile ¢elik eleman ise “2” numarasi ile
kodlanmustir. Ikisinin tanimi ise “1-2” olarak verilmistir. Tekil yiik, yayili yiik, ve
mesnet hareketleri olmadigindan sifir olarak girilmis olup, beton genlesme katsayisi
“0”, celik genlesme katsayist “1” olarak girilmistir. Benzer sekilde beton sicaklik
degisimi sifir olup, ¢elikte sicaklik degisimi Denklem 3.2.’de elde edilen, 51.666 °C

degeri girilmistir. Problem i¢in hazirlanan veri dosyasi asagida sunulmaktadir.



Veri dosyasi1 7:

Clear[Evaluate[Context[]<>"*"]];
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<<"C:\\Users\\CDA\\Desktop\\Yener-Prog\\1DModul\\1DModul.txt"

(*eksenel ongerme problemi sicaklik degisimi analojisi ile ¢oziilmektedir®)

nel=2;

nod=2;

xc = {0,1};
restraints= {1,0};
jload ={0,0};

ngz= {0,0};
EMod={1,12};
area={50,1};
DeltaTn={0,-6200/12};
TEC={0,1};
SupportDisp={0,0};
deflJ={{1,2}, {1,2}};
OneD;

Do[Print["Sigma(",i,")=",N[EEndForJ[[i]]/area[[i]]1]/10];.{i,1,nel}];

Yukarida verilen dosyanin icrasindan sonra ve arkasindan gelen, analiz programi

modili olan OneD

icra edilmektedir.

modili icra edildikten sonra

bilgisayardan elde edilen gerilme degerleri asagida Tablo 3.7.’de sunulmustur.

Tablo 3.7. Ongerme sonucu beton ve celikte olusan gerilmeler

Eleman Gerilme degeri
Celik 500 MPa (¢cekme)
Beton 10 MPa (basing)

Elde edilen degerlerin literatiirde verilen degerlerle ayni olmasi, ngerme problemlerini

cozerken uzama miktarlarinin 1s1l genlesme katsayr ve sicaklik degisimi ile

iligkilendirerek, ¢c6zmenin miimkiin oldugu anlasilmistir.
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3.1.2.8. Uygulama 8:

Ornek yedide verilen problem, mesnet yer degistirmesi esdegeri kullanilarak tekrar
coziilmektedir. Burada verilerin tamami aynidir, sadece sicaklik yiiklemesi
yapilmayacak olup, sicaklik yiiklemesi sifir olmaktadir. Yiikkleme, mesnet yer degisim
seklide yapilmaktadir. Bu mesnet degisiminin olusmasi ise dngermenin c¢eligi geriye
cekmesine  baglandigindan, c¢eligin  baglandigi  mesnede yer  degistirme
tanimlanmaktadir. Bu nedenle beton ve ¢elik elemanin sabit olarak baglandigr mesnet
noktalar1 koordinatlar1 ayni olmakla beraber farkli diigiim olarak tanimlanmaktadir.
Boylece ilave bir diiglim daha olusarak toplam diiglim sayis1 “3” olmaktadir. Beton ve
olmaktadir. Beton elaman “1” numarali eleman olarak “1 den 3e” ile tarif edilirken,
celik eleman “2” numarali eleman olarak “2 den 3 €” tanimlanmaktadur. Ilk iki diigiimiin
koordinat1 ayn1 olmakta, ii¢iincii diigiimiin koordinat1 ise gubuk boyu olmaktadr. 1k iki
diigiim sabit tutulmakta iiclincii diigiim ise serbest birakilmaktadir. Celigin bulundugu
mesnet ise on germeyi temsilen geriye dogru ¢ekme olusturmasi maksadiyla, geriye
dogru yer degistirmeye maruz birakilmistir. Yer degistirme miktar1 da ¢elige uygulanan
kuvvet ve malzeme &zellikleri ile hesaplanmistir ( Denklem 3.1. kullanilarak, AL olarak
hesaplanmistir). Celikteki ilk uzama ¢ok kiiciik oldugundan ihmal edilerek geometrik

uzunluklara dahil edilmemistir. Asagida hazirlanan yeni veri dosyast sunulmaktadir.
Veri dosyas: 8:

Clear[Evaluate[Context[] <> "*"]];
<< "C:\\Users\\CDA\\Desktop\\Yener-Prog\\1DModul\\1DModul.txt"

(*eksenel 6ngerme problemi mesnet yer degistirmesi analojisi ile ¢oziilmektedir®)

nel = 2;

nod = 3;

xc =A0, 0, 1};
restraints = {1, 1, 0};
jload = {0, 0, 0};

ngz = {0, 0};

EMod = {1, 12};

area = {50, 1};
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DeltaTn = {0, 0};

TEC ={0, 1};

SupportDisp = {0, -6200/12, 0};

defld = {{1, 3}, {2, 3}};

OneD;

Do[Print["Sigma(", i, ")=", N[EEndForJ[[i]]/area[[i]]]/10];, {i, 1, nel}];

Yukarida verilen dosyanin icrasindan sonra ve arkasindan gelen, analiz programi
modiilii olan OneD icra edilmektedir. “OneD” modilii icra edildikten sonra
bilgisayardan elde edilen gerilme degerleri daha once yedinci 6rnekte bulunan ve
literatiirle esit bulunmustur. Ongerme problemlerini ¢dzerken yedinci drnekte oldugu
gibi uzama miktarlarinin 1s1l genlesme katsay1 ve sicaklik degisimi ile iliskilendirerek,

ya da mesnet yer degistirmesi analojisi ile ¢ozmenin miimkiin oldugu anlasiimistir.
3.1.2.9. Dairesel Cubukta Olusan Burulma Problemi

Bir boyutlu normal kuvvet igeren problemleri ¢6zmek i¢in gelistirilen program, ¢ubukta
burulmayi idare eden diferansiyel denklemin normal kuvvet i¢in olan denkleme benzer
olmasindan dolay1, burulmaya maruz ¢ubuk sistemler i¢inde gegerlidir. Burada eksenel
donmesine tekabiil etmektedir. Tekil yatay kuvvet, tekil burulma momentine karsilik
olup, yayili normal kuvvette, yayili burulma momentinin esdegeridir. Mesnet yer
degistirmesi ise eksenel mesnet donmesinin benzeridir. Bu nedenle bir adet literatiirden

alinan dairesel ¢ubukta burulma problemi ¢6ziilerek sunulmustur.
3.1.2.9.1. Uygulama 9:

Asagida dairesel kesite sahip (Sekil 3.19.) 550 mm net agiklikli ¢elik ¢ekirdek, ¢elik bir
boru gomlek i¢ine arada bosluk olacak sekilde yerlestirilmistir. Celik gomlek ve gelik
cekirdek alt ucundan rijit bir mesnede iist ucundan ise rijit u¢ baslhigina baglanmistir.
Ust ucundan 400 kN.mm burulma momentine maruz kalan sistemin iist basliginmn
donme ac¢isinin hesaplanmasi istenmektedir. Ayrica, celik c¢ekirdek ve celik gomlekte

olusacak en biiyiik kayma gerilmelerinin bulunmasi istenmektedir. Kayma modiilii 80

000 MPa’dir [22].
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Sekil 3.19. Dairesel kesite sahip ¢elik gomlek ve silindirik ¢elik ¢ekirdek [22]

Problemin ¢6ziimii i¢in veri dosyasi olusturulmustur. Sistemin alt ve iist ucu “1” ve “2”
diiglim numaralar1 ile numaralandirilis olup eksen takimi alt uca oturtulmustur. Cubuk
eleman numaralart celik c¢ekirdek ve gomlek igin sirasiyla “1” ve “2” olarak
tanimlanmistir. Cubuklara ait polar atalet momentleri hesaplanarak, “area” dizisinde
tanimlanmistir. Tekil moment tekil yiik gibi verilmistir. Yayili yiik, mesnet yer
degistirmesi ve sicaklik ile ilgili yliklemeler sifir olarak tanimlanmistir. Cubuk alt ucu
tutulu ve 1iist ucu serbest olarak girilmistir. Asagida hazirlanan veri dosyasi

sunulmaktadir.

Veri dosyas1 9:

Clear[Evaluate[Context[] <> "*"]];
<< "C:\Users\CDA\\Desktop\\Yener-Prog\\1DModul\\1DModul.txt"

(*burulma problemi eksenel normal kuvvet gibi ¢oziilebilmektedir*)
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nel = 2;
nod = 2;
xc = {0, 550};

restraints = {1, 0};

jload = {0, 400};

ngz = {0, 0};

EMod = {80000, 80000};
Ibar = (Pi /2.) (25/2)"4;

Itube = (Pi/2.) ((37.5/2)"4 - (30/2)"4);
area = {lbar, Itube};

DeltaTn = {0, 0};

TEC ={0, 0};

SupportDisp = {0, 0};

defld = {{1, 2}, {1, 2}};
OneD;
(25/2)EEndForJ[[1]]/Ibar
(37.5/2) EEndForJ[[2]]/Itube

Yukarida verilen veri dosyast Mathematica ortaminda icra edildiginde, bulunmasi
istenen donme agis1 ve gerilmeler, Tablo 3.8.de 6zetlenmistir. Burulma momenti
sonucu rijit basligin donme agis1 1.030° olmustur. Dénme agis1 ve en biiyiik gerilmekler

literatiirde verilen degerlere esit olarak bulunmustur.

Tablo 3.8. Burulma sonucu olusan en biiyiik kayma gerilmeleri

Eleman En biiyiik kayma gerilmesi degeri
Celik ¢ekirdek 32.68 MPa
Celik boru gomlek 49.03 MPa

3.1.2.9.2. Uygulama 10:

Bir boyutlu hal i¢in 6rnek olarak literatiirde bulunan [18], burulma ile ilgili problem ele
alinmistir. Uzunlugu 5L olan silindirik bir safta serbest ucundan, MO burulma momenti

uygulanmaktadir. Diger ucu donmeye karsi tutuludur. Cubugun Sekil 3.20.’de verildigi
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gibi, serbest u¢ kisminda L kadarlik bir bolgede ¢api ro olup, mesnet bolgedesinde yine
L kadarlik bir kisminda cap1 2rp dir. Bu iki bolge arasinda kalan kisimda ise ¢ap
dogrusal olarak degismektedir. Degisimin fonksiyonu orta bolgede kalan ¢ubuk icin
yerel koordinatlarda verilmektedir. Kayma modiilii ise G olarak verilmektedir.
Uygulanan burulma momenti nedeniyle serbest ucun ne kadar doneceginin hesabi

istenmektedir.

-
! 7 T
M —— 1o 201 (2) = —3L0 + 10 210
4
'
| L | 3L | L |

Sekil 3.20. Literatiirden alinan degisken kesitli cubuk

Problemin ¢6ziimii igin veri dosyast hazirlanmistir. Global koordinat takimi serbest uca
oturtularak koordinat degerleri tespit edilmigtir. Serbest uca “1” numarasi verilmek
siiretiyle mesnete kadar numara verilmis olup, mesnet diigiim numarasi “4” olmustur.
Benzer sekilde serbest uca yakin bolge “1” ile ¢ubuk numaras: verilmis, orta bolgeye
“2” numarast verilmis ve son olarak son bélgeye “3” cubuk numarasi verilmistir.
Cubuklarin tanimlar1 buna gore yapilarak, “defl)” dizisi tespit edilmistir. Serbest uca My
momenti uygulanmis olup, mesnet donmesi ve sicaklik bilgileri sifir tanimlanmistir.
Mesnedin bulundugu ucun disinda kalan diigimler serbesttir. Yayili burulma momenti
cubuklarin hepsi icin sifir olarak tanimlanmistir. Elastisite modiilii yerine G degeri
girilmig, alan degerleri yerine polar atalet momentinin degerleri hesaplanarak
tanimlanmistir. Kesit degisen bolgede polar atalet momenti mukavemet ve matematik

kurallarina gore tanimlanmistir. Asagida veri dosyast sunulmaktadir.

Veri Dosyasi 10:

Clear[Evaluate[Context[] <> "*"]];
<< "C:\\Users\\CDA\\Desktop\\Yener-Prog\\1DModul\\1DModul.txt"
(*burulma problemi *)

nel = 3;
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nod = 4,

xc={0,L,4L,5L};
restraints = {0, 0, 0, 1};

jload = {M0, 0, 0, 0};

ngz ={0, 0, 0};

EMod = {G, G, G};

area = {(Pi /2) (r0/2)4, (Pi/2) ((z rO/(3/L) + r0)/2)"4, (Pi /2) (2 r0/2)"4};
DeltaTn = {0, 0, 0, 0};

TEC ={0,0,0, 0};
SupportDisp = {0, 0, 0, 0};
defld = {{1, 2}, {2, 3}, {3, 4}};
OneD;

Hazirlanan veri dosyasi daha onceki problemlerde anlatildigi sekilde icra edildiginde
serbest uctaki donme agis1 deplasman olarak hesaplanmis olur. Calismada bulunan
donme agis1, kaynakta verilen donme agisinin aynisi olarak bulunmus olup, asagida

Denklem 3.3.’de sunulmaktadir.

62 ML
~ Gnr

(3.3)

Calismada gelistirilen bir boyutlu normal kuvvet tasiyan ¢ubuk sistemlerin ¢ozlimiinde
kullanilan programin, benzer sekilde bir boyutlu burulma problemlerini de ¢6zebildigi
son iki ornek ile gosterilmistir. Normal kuvvet halinde oldugu gibi sadece sabit kesit
hali i¢in degil, degisken kesit hali i¢inde program burulma problemlerinde

kullanilabilmektedir.
3.1.2.10. Uygulama 11.

Bu ornekte Felippa (2016) den alinan problem ¢oziilmiistiir [38]. Problem siirekli bir
cubuktan olugsmaktadir, ¢ubuk baslangi¢ ve bitisinde sabit mesnetli olup, orta kisminda
cubugu ikiye ayiran kayici mesnet bulunmaktadir. Cubuk iki parcadan olugsmakta,
baslangi¢c mesnet diiglimii “1”, kayic1t mesnet diiglimii “2” ve bitis mesnet diiglimii “3”
ile numaralandirilmistir. Toplam diigiim sayist “3” olup, cubuk sayist “2” dir. Iki

cubugunda kesit alan1 “12”, elastisite modiilii “1000” olarak verilmis olup, sicaklik
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genlesme katsayilart da ayn1 ve 0.0005/°C°dir. Birinci ve ikinci gubugun boyu, “4 * ve
“6 ” dir. Birinci ¢ubukta 25 °C derece sicaklik artisi, ikinci ¢ubukta ise 10 C derece
sicaklik diislisii mevcuttur. Kayict mesnette gubuk ekseni dogrultusunda “90” degerinde
tekil kuvvet bulunmaktadir. Cubuk ekseni boyunca yayili yik yoktur. Mesnet
yerdegistirmesi bulunmamaktadir. Tarif edilen ¢ubuk sistem Sekil 3.21.°de

numaralandirilma ile birlikte sunulmaktadir.

P2

Sekil 3.21. Sicaklik degisimi ve tekil kuvvete maruz ¢ubuk sistem [38]

Daha 6nce anlatilan kurallara goére, yukarida verilen sistemin ¢ézliimii i¢in veri dosyasi

hazirlanmis ve asagida verilmistir.

Veri Dosyas1 11:

Clear[Evaluate[Context[] <> "*"]];
<< "C:\\Users\\CDA\\Desktop\\Yener-Prog\\1DModul\\1DModul.txt"

(*ifemcolorado¥®)

nel = 2;
nod = 3;
xc = {0, 4, 10};

restraints = {1, 0, 1};
jload = {0, 90, 0};

ngz = {0, 0};

EMod = {1000, 1000};
area = {12, 12};
DeltaTn = {25, -10};
TEC ={0.0005, 0.0005};
SupportDisp = {0, 0, 0};
defld = {{1, 2}, {2, 3}};
OneD;

NforceF/area
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Yukarida olusturulan veri dosyasi icra edildiginde asagidaki sonuglar elde edilmektedir.
Sekil 3.22.°de boyuna uzama dagilimi, Sekil 3.23.°de normal kuvvet dagilimi
verilmektedir. Sekil 3.24.’de ise ¢ubuk sistemin deformasyonsuz ve deformasyonlu hali
verilmektedir. Sekil 3.22.’den goriilecegi iizere, birinci ¢ubugun sonunda boy degisimi
en fazla olmaktadir (u;=0.06). Birinci ¢ubukta olusan ¢ekme normal kuvveti “307,
ikinci ¢ubukta olusan basing normal kuvvet, “60” olmakta, iki cubugun birlestigi yerde
tekil kuvvet kadar sigramaktadir (Sekil 3.23). Gerilmelerde sirasiyla “2.5” ve “-5”
degerlerini almaktadir. Cubuk sistemin “2” numarali diiglimii duruma uygun olarak, “3”
numarali diiglime yaklasmistir. Buradan da birinci ¢ubugun uzadigr ikinci ¢ubugun
kisaldig1 anlasilmaktadir. Sonuglar alinan kaynakla uyum ic¢indedir. Bu problemde iki
farkli sicaklik degisimi ve tekil kuvvet birlikte ¢oziilmistiir. Ayr1 ayr1 ¢oziliip,

siiperpozisyon kurali uygulandiginda da ayn1 sonuglar elde edilmektedir.

l\
d Uo
/ ;& e E & / 3

Sekil 3.22. Cubuk sistemin boyuna uzama dagilimi

30.
30.

€1 €2

60.
60

Sekil 3.23. Cubuk sistemin normal kuvvet dagilimi

iy | 2

Sekil 3.24. Cubuk sistemin deformasyonsuz ve deformasyonlu hali
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3.2. iki Boyutlu Sistemler icin Gelistirilen Program Aciklamasi ve Ornek

Uygulamalar
3.2.1. Bilgisayar Programi 2D ve Ac¢iklamasi

Iki boyutlu normal kuvvet tastyan cubuk sistemlerin ¢dziimii i¢in hazirlanan program
asagida sunulmakta ve aciklanmaktadir. Bu program gelistirilirken asagidaki degisken
isimleri se¢ilmistir. Eleman sayisinin gostermek iizere “nel”, diiglim sayisini1 géstermek
tizere “nod” degiskeni secilmistir. Koordinat takimi, diigim serbestlikleri, diigiim tekil

%9 ¢¢

kuvvetleri, mesnet ¢cokmeleri ve elastik mesnet igin sirasiyla “xy”,

99 GGy

retstraints”, “jload”,
“SupportDisp”, “ElasticSupport” degisken isimleri secilmis olup, degiskenler diigiim
sayisinca satir1 ve iki siitiinii olan matrislerdir. Cubuk elastisite modiilii i¢in “EMod”,
kesit alan1 igin”area”, sicaklik genlesme katsayisi icin “TEC”, sicaklik degisimi i¢in
“DeltaT” isimleri se¢ilmis olup, degiskenler cubuk sayisinca elemani olan birer dizidir.
Cubuk elemanlarin “i” ve “J” uglarmin diiglim numarasin1 depolamak iizere “defl]”
isimli iki siitunlu ve ¢ubuk sayisinca satir elemani olan bir matris se¢ilmistir. Asagida
gerekli verilerin tamimlandig1 varsayilarak, program parca parca sunulmakta olup, her

par¢adan sonra programin agiklamasi verilmektedir.
3.2.1.1. Program Parcasi 1:

dispN = 0;

Do[ If[restraints[[i, j]] == 0,

dispN = dispN + 1; restraints[[i, j]] = dispN;,restraints[[i, j]] = 0], {i, 1, nod}, {j, 1,
2};

Print["total displacement=", dispN];

Print["displacement number coding for each joint=", Matrix Form[restraints]];

Burada deplasman numaralar1 dispN numaratdrii ile isimlendirilmis olup, her serbestlik
i¢in birer artarak deplasmanlari numaralandirmaktadir. Diigiim sayis1 kadar bir dongii
kurularak serbestlikler, serbestliklerin tanimlandig: “restraints” matrisinin her iki siitunu
icin taranmakta, serbest olan diiglime ait siitundaki tanim kismina deplasman numarasi
verilmekte, tutulu olanlara ise daha once belirtildigi iizere “0” degeri atanmaktadir.
“dispN” degiskeninin son degeri ise toplam deplasman degerine esit olmaktadir. Bu
program parcasinin sonunda toplam deplasman sayist ve deplasman numaralarini

saklayan matrisin degerleri goriintiilenmektedir.
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3.2.1.2.Program Parcasi 2:

d[0] =0;

NForce = Table[O, {i, 1, nel}];
SysEq = Table[O, {i, 1, dispN}];
Lengt = Table[O, {i, 1, nel}];

Bu program parcasinda, toplam deplasman sayis1 belirlendiginden, elde edilecek
denklemleri depolamak iizere deplasman sayis1 adedince elemani olan “SysEq” isimli
sistem denklemlerini ¢agristiran bir dizi “Table” komutuyla tanimlanmaktadir. Ayrica,
her ¢cubuk boyunun ve ¢ubuk kuvvetinin hesaplandiktan sonra saklanmasi i¢in sirastyla
“Lengt” ve “Nforce” isimli diziler “Table” komutuyla tanimlanmistir. Bu dizilerin

eleman sayis1 ¢cubuk sayis1 adedincedir.

3.2.1.3. Program Parcasi 3:

Do[

codeix = restraints[[i, 1]];

codeiy = restraints[[i, 2]1;

If[codeix> 0, SysEq[[codeix]] = jload[[i, 1]] - d[codeix]*ElasticSupport[[i, 1]1];

If[codeiy> 0, SysEq[[codeiy]] = jload[[i, 2]] - d[codeiy]*ElasticSupport[[i, 2]1];
, {i, 1, nod}];

Ucgiincii program pargasinda, daha dnce tanimlanan “SysEq”, sistem denklemlerinin
depolandig1 dizinin baslangic degerleri tespit edilmektedir. Burada “restraints™ dizisi
icinde saklanan deplasman numaralarindan faydalanilmaktadir. Diiglimlere ait
deplasmanlarin tespiti i¢in diiglim sayisinca bir dongii kurulmustur. Deplasman
numarasi her diiglime ait “restraint” iki stitunlu dizisinden alinmaktadir. Birinci siitun
“x” ekseni yoniindeki, ikinci siitun “y” ekseni yoniindeki deplasmani temsil etmektedir.
“x” yonilindeki” deplasman sifirdan farkli ise o yonde deplasman oldugu agiktir,
numarasinin degeri ise “codeix” degiskenine ilgili matristen aktarimistir. “y”
yoniindeki” deplasman sifirdan farkli ise o yonde deplasman oldugu agiktir,
numarasinin degeri ise “codeiy” degiskenine ilgili matristen aktarilmistir. “codeix” ve

“codeily” degiskenlerinin deplasman numarasi degeri elde edilmesi planlanan sistem

denkleminin numarasimni da olusturmaktadir. Sistem denkleminin baslangici ise dis
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yiikklemelerden olugmaktadir. Bunlardan biri dis tekil kuvvet digeri ise mesnet
¢Okmesidir. Mesnet ¢okmesi halinde tekil diigiim yiikii sifirdir, benzer sekilde tekil yiik
olmas1 halinde diigiim mesnet degildir, yani mesnet ¢cokmesi yoktur ve temsilen degeri
de sifirdir. Tekil yiik olmasi halinde ve “x” yoniinde deplasman olmasi halinde, o
diigimiin tekil kuvvetinin denklem sistemine baslangic degeri olarak eklenmesi
gerekmektedir, bu durumda denklem sisteminin numarasi daha once belirtildigi gibi
“codeix” degiskeninde bulunmaktadir. Tekil yiik olmasi halinde ve “y” yoniinde
deplasman olmasi halinde, o diigiimiin tekil kuvvetinin denklem sistemine baslangic
degeri olarak eklenmesi gerekmektedir. Bu durumda denklem sisteminin numarasi daha
once belirtildigi gibi “codeiy” degiskeninde bulunmaktadir. Bu bilgiler 1s18inda tekil
kuvvetlerin sistem denklemine eklenmesi isi iiglincii program parcasinin i¢cinde bulunan
iki adet “If” komutuyla icra edilmektedir. Ayn1 “If” komutlar1 benzer bilgiler 15181inda
elastik mesnet degerleri ilgili deplasman ile mesnede ait elastik mesnet yay katsayisiyla
carparak i¢ kuvvete doniistirmekte ve elde edilen kuvveti sistem denklemlerinin
baslangicina eklemektedir. Burada eklenme yerine c¢ikarilmaktadir, ¢linkii bulunan
kuvvet yay ucundadir ve diigiime negatif olarak yansimaktadir. Bu nedenle
cikartlmistir. Boylece mesnet ¢cokmelerinin olusturacagi kuvvet sisteme etkiletilmis
olmaktadir. Islemler tiim serbestlikler, diger bir deyisle tiim deplasmanlar igin
yapildiginda sistem denklemlerini olusturan “SysEq” dizisinin baglangi¢ degerleri tespit
edilmis olur. Sonra i¢ kuvvetlerin etkilerinin de toplama dahil edilmesi isi diger

dordiincii program parcasi i¢cinde gerceklesmektedir. Denklemlerin baslangic degerleri

istenirse ekranda goriintiilenebilir.
3.2.1.4. Program Parcasi 4:

Bu program pargasinda her bir ¢ubuk icin islem yapildigindan islemlerin tamami ¢ubuk
sayisi kadar islem yapan bir dongii i¢ine konulmustur. Cubuk numaralarini1 temsil eden
dongii degiskeni ise “nn” olarak secilmistir. Her bir cubuga ait, elastisite modiilii, kesit

({342} (13421

alani, sicaklik genlesme katsayisi, sicaklik degisimi degeri, “i” ve “” ucunun bagh

(13421 [13%2] 2

oldugu diiglim numaralari, “i” ve “j” ucunun koordinatlari; sirasiyla “EM”, “csa”,
“alfaT”, “dTn”, “i1”, 37, “x1”, “y1”, “xj”, “yj)” isimli yerel degiskenlere ilgili dizi ve
matrislerden alinarak, atanmaktadir. Bu yazim tarzi programin anlasiimasin
kolaylagtirmaktadir. Cubuga ait veriler yerel degiskenlere aktarildiktan sonra, ¢ubuk

uzunlugu ve global eksenlerle yaptigi acilarin kosiniis dogrultmanlarinin degerlerini



75

7311 3L
1

hesaplamak tizere; “i” ve “j” ucunun koordinatlari kullanilarak, ve 57 digim
noktalar1 arasinda bir yer vektorii yazilmaktadir [36]. Olusan vektoriin normu ¢ubuk
uzunlugunu vermektedir. Vektoriin normu ile normalize edilmis bilesenleri kosiniis
dogrultmanlarimi  verdiginden asagidaki  satirlarda, kosinlis  dogrultmanlar
hesaplanmaktadir. Cubugun “x” ekseni ile yaptigi ag¢inin kosiniis degeri “csx” yerel
degiskenine; “y” ekseni ile yaptig1 acinin kosiniis degeri “csy” yerel degiskenine

aktarilmaktadir.

[13%2] e, "

Cubugun “i” ucunun bagh oldugu diigiimiin deplasman numaralar1 “x” yonii i¢in

(Y]

“codeix” yerel degiskenine aktarilmakta olup, “y” yonii i¢in “codeiy” yerel degiskenine

€699

aktarilmaktadir. Benzer sekilde, cubugun “5” ucunun bagli oldugu diigiimiin deplasman
numaralar1 “x” yonii i¢in “codejx” yerel degiskenine aktarilmakta olup, “y” yonii i¢in
“codejy” yerel degiskenine aktarilmaktadir. Bu yerel degiskenler ¢ubugun bagli oldugu
uclarinda bulunan global bilinmeyen deplasmanlarin numaralarin1 géstermekte olup, o
yonde yazilan sisteme ait denge denkleminin numarasini da isaret etmektedir. Cubugun
ucunda bulundugu bilinen global bilinmeyen deplasmanlar; c¢ubuk kosiniis
dogrultmanlar vasitasiyla cubuk yerel koordinatlarina doniistiiriilmektedir. Cubuk yerel
koordinatlarina doniistiiriilen global deplasmanlar “u” ve “u;” yerel degiskenleri
tizerinde saklanmaktadir. Ayn1 satirlarda, varsa global mesnet ¢okmeleri degerleri de
cubuk yerel koordinat takimina ayni degiskenler lizerine aktarilmaktadir. Mesnet
cokmesi olan diiglimlerde bilinmeyen deplasman olmadigindan isin igine
girmemektedir. Diiglimde bilinmeyen deplasman oldugunda ise diiglim mesnet
olmaktan ¢iktig1 icin mesnet ¢okmesi durumu ortadan kalkmaktadir. Cubuk ucunda
mesnet ¢okmesi degeri ya da bilinmeyen deplasmanlar yerel koordinatlarda

bulunduklar1 i¢in, daha sonraki asamada c¢ubuk boyuna uzamasini idare eden

diferansiyel denklemin ¢6ziimii sirasinda sinir kosullar1 olarak istthdam edilmektedir.

Kafes sistem ¢oziimiinde genellikle kesit degisimi olmadigindan ve cubuk eksenine
paralel i¢ normal yayili yiik ihmal edildiginden, ¢ubuk boyuna uzamasini idare eden
diferansiyel denklem; boyuna uzama egrisinin fonksiyonunun ikinci tiirevinin sifir
olmasina doniisiir. Bu durumda iki kez geri integral alindiginda uzama egrisinin
fonksiyonu dogrusal bir hal alarak iki sabitli bir dogru denklemine esit olur. Sabitler,
sinir kosullarindan elde edilerek boyuna uzama egrisinin fonksiyonunda yerine konulur;

boylece boyuna uzama egrisinin denklemi bulunmus olur. Cubuk normal kuvvet
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degisimi boyuna uzama egrisine bagli oldugundan, eksenel rijitlik ve boyuna uzama

egrisinin tiirevi ile ¢arpilarak bulunur.

Normal kuvvet ifadesinin c¢ubuk uglarindaki degerleri de cubuk simirlar1 yerine
konularak bulunmaktadir, “n;”, “n;”. Programda elde edilen gubuk “n;” ve “n;” yerel
cubuk u¢ kuvvetleri kosiniis dogrultmalar1 yardimiyla global koordinat takimina

dontistiiriilerek; ¢ubuk ucunda bulunan ug¢ kuvvetlerinin global takimdaki bilesenleri

(1344 (1343
1

bulunmus olur. Bu bilesenler “i” ucunda “fx;, fy;” olup, “j” ucunda ise “fx; ve fy;” dir.

Bu bilesenler sistem denklemine aktarilacak bilesenler olup, katki yapilacak denklemin

31
1

numarasi ise bulunduklar1 diigiimiin deplasman yoniidiir. Bu yonler ise diigimiinde

(Y3

x” yonil i¢in “codeix” degiskeninde sakli olup, “codeix” numarali sistem denklemine
(134

“fX;” bileseninin eklenmesini gerektirir; “y” yonii i¢in “codeiy” degiskeninde sakli olup,

“codeily” numarali sistem denklemine “fy;” bileseninin eklenmesini gerektirir.

(Y3

Benzer sekilde “j” diigiimiinde “x” yonii i¢in “codejx” degiskeninde sakli olup,
“codejx” numarali sistem denklemine “fX;” bileseninin eklenmesini gerektirir; “y” yonii
icin “codejy” degiskeninde sakli olup, “codejy” numarali sistem denklemine “fy;”
bileseninin eklenmesini gerektirir. Bu islemler program tarafindan asagida dort adet “If”
komutu ile ilgili satirda yapilmaktadir. Bu islemler tiim g¢ubuklar i¢in yapildiginda
sistem i¢in gerekli olan denklemler elde edilmis olur. Program parcasi en sonunda elde

edilen denklemleri “Expand” komutuyla genisleterek sadelestirmektedir.

Do[

Print["Element number [", nn, "] is in progress;"]; (*Islem sirasi gelen cubuk

numarast*)

(*Cubuga ait bilgilerin yerel degiskenlere aktariimasi™*)
EM = EMod[[nn]];

csa = area[[nn]];

alfaT = TEC[[nn]];

dTn = DeltaTn[[nn]];

i = deflJ[[nn, 1]];

jj = deflJ[[nn, 2]];
xi = xy[[ii, 111; yi = xy[[ii, 2]1;

xj = xy[0j, 111; yi = xy[0i, 211;



77

(*kosiniis dogrulmanlarinin hesabi™)
vektor = {xj - xi, yj - yi};
Lengt[[nn]] = length = Norm[vektor];
csx = Normalize[vektor][[1]1];
csy = Normalize[vektor][[2]];
(*Cubuk uglarinda bulunan global deplasmanlarin tespiti™®)
codeix = restraints[[ii, 1]];
codeiy = restraints[[ii, 2]];
codejx = restraints[[jj, 1]1;
codejy = restraints[[jj, 2]1;
(*Cubuk uglarinda bulunan global deplasmanlarin yerel koordinatlara déniisiimii™*)
ui = d[codeix]*csx + d[codeiy]*csy + SupportDisp[[ii, 1]]*csx + SupportDisp[[ii,
2]]*csy;
uj = d[codejx]*csx + d[codejy]*csy + SupportDisp[[jj, 1]]*csx + SupportDisp[[jj,
2]]*csy;
(*Boyuna uzamayt idare eden diferansiyel denklemin integral ile ¢oziimii*)
uu=clz+c2;
(*Swmir kosullarinin tespiti ve integral sabitlerinin ¢oziimii*)
bl=uu/.z->0;
b2 = uu /. z ->length;
sol = Flatten[Solve[{b1 == ui, b2 == uj}, {c1, c2}]];
(*Integral sabitlerinin boyuna uzama fonksiyonunda yerine konulmasi*)
uu =uu /. sol;
(*Normal kuvvet fonksiyonunun tespiti ve ¢cubuk ugundaki degerlerin hesabi*)
NF = EM*csa (D[uu, z] - alfaT*dTn);
ni=NF/z->0;
nj = NF /. z ->length;
(*Cubuk ug¢ kuvvetinin saklanmasi ve global koordinat takimina déniisiimii™*)

NForce[[nn]] = nj;

fxi = -ni*csx;
fyi = -ni*csy;
fXj = nj*csx;

fyj = nj*csy;
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(*Global koordinatlara doniisen ¢ubuk u¢ kuvvetlerinin denge denklemlerine aktarimi™)
If[codeix> 0, SysEq[[codeix]] = SysEq[[codeix]] - fxi];
If[codeiy> 0, SysEq[[codeiy]] = SysEq[[codeiy]] - fyi];
If[codejx> 0, SysEq[[codejx]] = SysEq[[codejx]] - fxj];
If[codejy> 0, SysEq[[codejy]] = SysEq[[codejy]] - fyj];
, {nn, 1, nel}];
(*Denge denklemlerinin bilinmeyenlere bagii olarak toplu gésterimi*)

SysEq = Expand[SysEq];

3.2.1.5. Program Parcasi 5:

Print["syseq=", MatrixForm[SysEq], "=0"];
unk = Table[d[i], {i, 1, dispN}];

sol = Flatten[Solve[SysEq == 0, unk]];
Print["solution=", MatrixForm[sol]];
Dol[d[i] = sol[[i, 2]1];, {i, 1, dispN}];
Print[MatrixForm[NForce]];

Bu program pacasinda elde edilen denge denklemleri ekranda sunulmaktadir. Ekranda
diiglimlerde bulunan deplasmanlara bagli olarak denklemler analitik olarak goriilecektir.
Ardindan, diigiim deplasmanlarinin bilinmeyen olarak isimleri “unk” isimli bir diziye
“Table” komutu ve deplasman sayist kullanilarak aktarilmaktadir. “Solve” komutu
kullanilarak, elde edilen “SysEq” degiskeninde bulunan denge denklemleri bilinmeyen
diigim deplasmanlar1 “unk” i¢in c¢oziilmektedir. Coziilen degerler ¢ikartilarak,
bilinmeyen deplasmanlarin igine aktarilmakta ve bilinmeyen deplasmanlar bilinen
olmaktadir. Bunlarda otomatik olarak program hafizasinda bulunan diger biiyiikliiklerde
yerine konulmaktadir. Program pargasinin son satirinda ise gubuk kuvvetleri sirasiyla alt

alta yazilmaktadir.
3.2.2. iki Boyutlu Normal Kuvvet Tasiyan Kafes Sistem Ornekleri
3.2.2.1. Uygulama 1:

Ik 6rnek olarak basit iki elemanl literatiirden alinan [19] bir kafes sistem ele

alinmaktadir. Kafes sistem asagida Sekil 3.25.’de sunulmustur. Geometrik ve malzeme
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ile ilgili bilgiler ilgili sekilde bulunmaktadir. Tekil kuvvetin uygulandig: “3” numarali

diiglimiin yatay ve diisey deplasman bilesenlerinin bulunmasi istenmektedir.

B
: |

P

L.Tan(30)

@

Sekil 3.25. Basit kafes sistem[19]

Bu kafes sistem bilgisayar programina tanitilirken, global eksen takimi “1” nolu
diigiime oturtulmustur. Buna gore diger diiglimlerin koordinatlar1 tespit edilmistir.
Eleman numara ve ug baglantilar1 sekilde goriildiigii gibi alinmistir. Sicaklik degisimi,
mesnet ¢okmesi ve elastik mesnet olmadigindan, ilgili degiskenler sifir alinmistir.
Kuvvetin uygulandigi diiglim serbest digerleri is tutuludur. Kuvvetin uygulandigi “3”
numarali diigiimde “x” yoniindeki kuvvet bileseni sifir olup, “y” yoniindeki kuvvet
bileseni “-P” dir. Degerler “jload” matrisi i¢inde ilgili diiglimiin satirina girilmistir.
Cubuk elemanlar1 alan ve elastisite modiilii degerleri degisken olarak “A” ve “E”

girilmistir. Tekil kuvvette aynm1 sekilde “P” olarak girilmistir. Hazirlanan veri dosyasi

asagida sunulmustur.

Veri dosyasi 1:

Clear[Evaluate[Context[] <> "*"]]

nod = 3;

nel = 2;

defld = {{1, 3}, {2, 3}};
area = {A, A};

EMod = {E, E};

TEC = {0, 0};

DeltaTn = {0, 0};
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xy = {{0, 0}, {0, L Tan[30 Degree]}, {L, 0}};
restraints = {{1, 1}, {1, 1}, {0, 0}};

jload = {{0, 0}, {0, 0}, {0, -P}};
SupportDisp = {{0, 0}, {0, 0}, {0, 0}};
ElasticSupport = {{0, 0}, {0, 0}, {0, 0}};
TwoD;

Yukarida verilen veri dosyasi icra edildiginde, iki boyutlu program tarafindan veriler
islenmekte ve sonu¢ almmaktadir. Istenen deplasman degerleri Tablo 3.9.°da

sunulmustur. Sonuglar problemin alindig1 kaynakla birebir ayn1 bulunmustur.

Tablo 3.9. Kafes sistemin yiiklii ucunda deplasman bilesenleri

Diigiim No “x” yonii deplasman degeri “y” yonii deplasman degeri
3 V3P (9 + 8V3)P
AE 3AE

Yukaridaki problem i¢in elastsite modiilii, kesit alani, cubuk boyu ve tekil kuvvet degeri

sabit “1” verilerek deformasyonsuz ve deformasyonlu sistem ¢izilmistir (Sekil 3.26).

Sekil 3.26. Birinci 6rnek i¢in segilen sistemin deformasyonsuz ve deformasyonlu hali
3.2.2.2. Uygulama 2:

Ikinci 6rnek olarak yine basit iki elemanl literatiirdenalinan [19] bir kafes sistem ele

alinmaktadir. Kafes sistem asagida Sekil 3.27.’de sunulmustur. Geometrik ve malzeme
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ile ilgili bilgiler sekilde mevcuttur. Tekil kuvvetin uygulandigt “3” numarali diigiimiin

yatay ve diisey deplasman bilesenlerinin bulunmasi istenmektedir.

>

6"

Sekil 3.27. iki elemanl: basit kafes sistem

Bu kafes sistem bilgisayar programina tanitilirken, global eksen takimi “1” nolu
diigime oturtulmustur. Buna gore diger diigiimlerin koordinatlar1 tespit edilmistir.
Eleman numara ve u¢ baglantilar1 sekilde goriildiigii gibi alinmistir. Sicaklik degisimi,
mesnet ¢okmesi ve elastik mesnet olmadigindan, ilgili degiskenler sifir alinmustir.
Kuvvetin uygulandigi diigiim serbest digerleri ise tutuludur. Kuvvetin uygulandigi “3”
numarali diiglimde “x” yoniindeki kuvvet bileseni sifir olup, “y” yoniindeki kuvvet
bileseni “-P” dir. Degerler “jload” matrisi i¢inde ilgili diiglimiin satirina girilmistir.
Cubuk elemanlar1 alan ve elastisite modiili degerleri degisken olarak “A” ve “E”

girilmistir. Tekil kuvvette ayn1 sekilde “P” olarak girilmistir. Hazirlanan veri dosyasi

asagida sunulmustur.
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Veri Dosyasi 2:

Clear[Evaluate[Context[] <> "*"]]

nod = 3;

nel = 2;

defld = {{1, 3}, {2, 3}};
area = {A, A};

EMod = {E, E};

TEC = {0, 0};

DeltaTn = {0, 0};

xy = {{0, 0}, {0, L}, {Sqrt[3] L/4., L/4}};
restraints = {{1, 1}, {1, 1}, {0, 0}};
jload = {{0, 0}, {0, 0}, {0, -P}};
SupportDisp = {{0, 0}, {0, 0}, {0, 0}};
ElasticSupport = {{0, 0}, {0, 0}, {0, 0}};
TwoD;

Yukarida verilen veri dosyasi icra edildiginde, iki boyutlu program tarafindan veriler
islenmekte ve sonug¢ alinmaktadir. Istenen deplasman degerleri Tablo 3.10.’da

sunulmustur. Sonuglar problemin alindig1 kaynakla birebir ayn1 bulunmustur.

Tablo 3.10. Ornek 2 de verilen kafes sistemin yiiklii ucunda deplasman bilesenleri

Diigiim No “x” yonii deplasman degeri “y” yonii deplasman degeri
3 PL (3 —+/3) _PL(9+V3)
8 AE 8V3AE

Yukaridaki problem igin elastisite modiilii, kesit alani, gubuk boyu ve tekil kuvvet
degeri sabit “1” verilerek deformasyonsuz ve deformasyonlu sistem ¢izilmistir (Sekil
3.28.). Sekil 3.28.’de c¢ubuklar iizerinde g¢ubuk kuvveti degerleri sayisal olarak

yazilmistir.
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3.2.2.3. Uygulama 3:

Ucgiincii 6rnek olarak “Derrick Tip” olarak adlandirilan kafes sistem ele alinmaktadir
[33]. Sistemin goriintisii asagida Sekil 3.29.’de verilmektedir. Sistem izostatik
oldugundan ¢oziimde malzeme ozellikleri ve eksenel rijitlik rol oynamayacagindan,
program i¢in herhangi sabit degerler alinabilir. Sicaklik ve mesnet ¢cokmeleri olusmadigi
ve elastik mesnet bulunmadigindan ilgili degiskenler sifir olarak alinmaktadir. Sistem
diigiimleri numaralandirildigindan, “5” diigiim noktast bulunmakta olup, toplam *“7”
adet ¢ubuktan teskil edilmistir. Bir ve iki numarali diiglimlerinde sirastyla, sabit ve “x”
yoniinde kayict mevcuttur. Global koordinat takimi “1”” numaral diigiime oturtulmustur.
Diigiim ¢ubuk numaralari ile ilgili bilgiler asagida Tablo 3.11.’de sunulmaktadir. Diisey
tekil yiik “5” numarali diigiime uygulanmais olup, degeri 10 ton dur. Sistemde, ana kisim
kenar1 10 m olan karedir. Yikiin uygulandigi “5” numarali diigiimiin ile “1” numarali

diigiimden diisey ve yatay uzaklig1 25 metredir.

N
AA

Sekil 3.29. Derrick tip kafes sistem [33]
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Tablo 3.11. Derrick tip kafes i¢in ¢ubuk elemanlarin tarifleri ve normal kuvvetler

Cubuk No “i” ucu “j” ucu Normal Kuvvet (ton)

1 1 2 0

2 1 3 25

3 2 3 0

4 2 4 -35

5 3 4 -35

6 3 5 43.0116

7 4 5 -49.4975

Yukarida verilen Derrick tip kafes i¢in veri dosyasi hazirlanmis olup, asagida

sunulmaktadir.

Veri Dosyasi 3:

Clear[Evaluate[Context[] <> "*"]]

<< "C:\Users\CDA\\Desktop\\Yener-Prog\\2DModul\\Modul2D.txt"
nod = 5;

nel =7,

(*cubuk bilgileri*)

defld ={{1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 4}, {3, 5}, {4, 5}};
area={1,1,1,1,1,1,1};

EMod={1,1,1,1,1,1, 1};

TEC={0,0,0,0,0,0,0};

DeltaTn ={0, 0, 0, 0, 0, 0, 0};

(*diigiim bilgileri®)

xy = {{0., 0.}, {10., 0.}, {0., 10.}, {10., 10.}, {35., 35}};
restraints = {{1, 1}, {0, 1}, {0, 0}, {0, 0}, {0, 0}};

jload = {{0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, -10}};
SupportDisp = {{0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}};
ElasticSupport = {{0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}};

(* buradan itibaren program 2D*)

TwoD

GrTwoD
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Yukarida verilen veri dosyasi icra edildiginde, iki boyutlu program tarafindan veriler
islenmekte ve sonu¢ alinmaktadir. Bilgilerin hafizaya alinmasindan sonra “TwoD”
isimli analiz modiilii icra edilip, ¢6ziim yapilmaktadir. Pesinden “GrTwoD” isimli
grafik modiilii icra edilip, sistemin deformasyonsuz ve deformasyonlu hali
cizilmektedir. Programin icrasi sonucu elde edilen ¢ubuk kuvvetleri ve sistemin grafigi
elde edilmis, olup asagida (Sekil 3.30.) da sunulmustur. Sistem izostatik oldugundan, el

ile ¢6zlim yapilarak, programdan elde edilen degerlerin dogrulugu teyit edilmistir.

43.0116

Sekil 3.30. Derrick tip kafes sistemin ¢gubuk kuvvetleri ve deformasyonlu hali [33]
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3.2.2.4. Uygulama 4:

Dordiincii 6rnek olarak Girgin vd. (2011) den alinan bir kafes sistem ele alinmustir [40].
Ele almman kafes sistem “8” diigiim ve “13” gubuktan olugmaktadir, goériiniisii ve
yiikklemesi Sekil 3.31.’da verilmektedir. Bir sabit bir de “x” yoniinde kayici mesnedi
bulunmaktadir. Sistem yine izostatik olup, malzeme ve kesit 6zelliklerinden bagimsiz
coOziilebilir. Program dosyasi hazirlamak amaciyla, global koordinat takimi sabit
mesnede oturtulmustur. “3-6” numarali diigiimlerin yiiksekligi 16m dir. “7” ve “8”
numarali diigiimlerin yiiksekligi ise 13 m ve 8m dir. Mesnetleri birbirine baglayan
¢ubugun boyu 8m olup, yukarida bulunan ii¢ yatay cubugun boyu 6m dir. Verilen
bilgiler diigiim koordinatlarini olusturmak icin yeterlidir. Mesnet ¢cokmesi ve sicaklik
bilgileri sifir alinmaktadir. Diisey 120 kN’luk tekil yiik “6” numarali diiglime
uygulanmistir. Sisteme ait veri dosyasi hazirlanarak asagida sunulmaktadir. Cubuk

numaralar1 ve baglandig diigiimler agagida Tablo 3.12.’de sunulmaktadir.

\\*/

A b

Sekil 3.31. On ii¢ elemanli kafes 6rnegi [41]
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Tablo 3.12. Girgin vd. (2011) den alinan kafes sistem ¢ubuk tarifi ve normal kuvvetler

[40]

Cubuk numarasi “i” ucu “j” ucu Normal Kuvvet (kN)
1 1 2 -135.00
2 2 3 -210.00
3 1 3 301.87
4 3 4 180.00
5 4 5 240.00
6 5 6 240.00
7 7 6 -268.33
8 5 7 0.00
9 4 7 -67.08
10 8 7 -234.31
11 4 8 30.00
12 2 8 -225.00
13 3 8 -75.00

Yukarida sunulan kafes problemi icin veri dosyasi hazirlanarak asagida sunulmustur.

Veri dosyasi 4:

Clear[Evaluate[Context[] <> "*"]]

<< "C:\Users\\CDA\\Desktop\\Yener-Prog\\2DModul\\Modul2D.txt"
nod = 8;

nel = 13;

(*eleman bilgileri*)

defld = {{1, 2}, {2, 3}, {1, 3}, {3, 4}, {4, 5}, {5, 6}, {7, 6}, {5, 7}, {4, 7}, {8, 7}, {4, 8},
{2, 8}, {3 8}};

area={1,1,1,1,1,1,1,1,1,1,1,1, 1};
EMod={1,1,1,1,1,1,1,1,1,1,1,1,1};
TEC={0,0,0,0,0,0,0,0,0,0,0,0, 0};
DeltaTn={0,0,0,0,0,0,0,0,0,0,0,0, 0};

(*diigiim bilgileri®)



89

xy ={{0.,0.},{8.,0.},{8., 16.}, {14., 16.}, {20., 16.}, {26., 16.}, {20., 13.}, {14., 8.}};
restraints = {{1, 1}, {0, 1}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}};

jload = {{0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, -120}, {0, 0}, {0, 0}};

SupportDisp = {{0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}};
ElasticSupport = {{0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}};

(* buradan itibaren program 2D*)

TwoD

GrTwoD

Veri dosyasi bilgisayar programi yardimiyla islendiginde, ¢ubuk kuvvetleri ve sistemin
deformasyonlu grafigi elde edilir (Sekil 3.32.). Elde edilen degerler kaynakta sunulan
degerlerle bire bir aynidir.

Sekil 3.32. Girgin vd. (2011) den alinan kafes sistem ve deformasyonlu hali [40]

3.2.2.5. Uygulama 5:

Simdiye kadar ele aliman Ornekler izostatik orneklerdir. Besinci ornek olarak yine

literatiirden alinan fakat statikce belirsiz ve diigiimlerden birine yay baglanmis
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(hiperstatik) bir kafes kiris ele alinmaktadir. Kafes sistem Logan (2007)’den alinmistir
[39]. Iki cubuktan olusan sistem asagida Sekil 3.33° de numaralandirilma ile
verilmektedir. Iki c¢ubuk arasmndaki ac1 45 derecedir. Kisa cubuk “1” ile
numaralandirtlmis olup, boyu “5” metredir. Uzun g¢ubuk “2” ile numaralandirilmis olup,
boyu “10” metredir. Cubuk alanlar1 ve elastisite modiilleri esit olup, sirastyla 0.0005 m2
ve 210 GPa’dir. iki cubugun birlesim noktasinda diisey dogrultuda “25 kN”’luk tekil
kuvvet mevcuttur. Ayni yonde sistem yay katsayisit “2000 kN/m” olan elastik mesnet
(vay) ile desteklenmistir. Sicaklik degisimi ve mesnet ¢Okmesi yliklemesi yoktur.
Cubuklarda olusan ¢ubuk kuvvetleri ve gerilmeler ile “1” numarali diiglimde olusan

deplasman bilesenlerinin hesabi istenmektedir. Cubuk numaralandirilma yonleri sekilde

AN

mevcuttur.

S5m

2000 kKN/m

45°

Sy
=]

25kN

Sekil 3.33.Elastik mesnetli basit kafes sistem [39]

Verilen sistemin ¢oziimii i¢in veri dosyasi hazirlanmistir. Daha once anlatilan kurallara
uygun olarak hazirlanan dosya asagida sunulmaktadir. Global eksen “3” numarali
diigiime oturtulmus olup, buna gore diigiim koordinatlar1 belirlenmistir. Mesnetler “2”
ve “3” numarali diigiimdedir. Elastik mesnet “1” numarali diigiimde ve “y” yoniinde
elastik olup, diger yonde serbesttir. Bununla birlikte “1” numarali diiglim tamamen
serbest tanitilmakta ve elastik mesnet yay katsayisi ise “ElastikSupport” matrisinde

tanitilmaktadir. Veri dosyas1 asagida sunulmaktadir.
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Veri Dosyasi 5:

Clear[Evaluate[Context[] <> "*"]]

<< "C:\Users\CDA\\Desktop\\Yener-Prog\\2DModul\\Modul2D.txt"
nod = 3;

nel = 2;

(*eleman bilgileri eleman tarifleri, alanlar, elastik modulleri, sicaklik genlesme
katsayilari, sicaklik degigimleri*)

defld = {{3, 1}, {2, 1}};

area = {0.0005, 0.0005};

EMod = {210000000000, 210000000000};
TEC={0,0,0,0,0,0,0,0,0,0,0,0, 0};
DeltaTn={0,0,0,0,0,0,0,0,0,0,0,0, 0};

(*diigiim bilgileri koordinatlari, serbestlikleri, diigiim yiikleri, mesnet ¢6kmeleri, elastik
mesnetlenmeler*)

xy = {{10, 0}, {10 - 5*Cos[45 Degree], 5*Cos[45 Degree]}, {0., 0.}};
restraints = {{0, 0}, {1, 1}, {1, 1}};

jload = {{0, -25000}, {0, 0}, {0, 0}};

SupportDisp = {{0, 0}, {0, 0}, {0, 0}};

ElasticSupport = {{0, 2000000}, {0, 0}, {0, 0}};

(* buradan itibaren program 2D%*)

TwoD

GrTwoD

NForce/area

Yukarida verilen dosya hazirlanirken, birimlerin birbiri ile uyumlu olmasi
gerektiginden, kuvvetler “Newton” cinsinden, uzunluklar “m” cinsinden yazilmistir.
Veri dosyasi icra edildiginde asagidaki sonuglar elde edilmistir. “1” numaral diigiim
deplasman bilesenleri Tablo 3.13’de mevcuttur. Ayn1 tabloda elastik mesnet desteginin
olmamasi hali, yani yay katsayisinin “0” olmasi haline ait deplasmanlar kiyaslanmak
i¢in verilmektedir. Cubuk kuvvetleri ve gerilmeler Tablo 3.14.’da sunulmaktadir, benzer
sekilde elastik mesnet olmamast halinde gerilme ve kuvvetlerin farki da

kiyaslanmaktadir.
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Tablo 3.13. Elastik mesnet bulunan diigiimde deplasman bilesenleri

Diigiim no dx dy
“1” elastik mesnet var -0.00172414 -0.00344828
“1” elastik mesnet yok -0.00238095 -0.0047619
Rolatif fark %27.586 %27.586

Tablo 3.14. Cubuk kuvvetleri (N) ve gerilmeler (MPa) (elastik mesnetli ve mesnetsiz)

Ny N> (1 ()
Elastik mesnet var 25602.1 -18103.4 51.2043 -36.2069
Elastik mesnet yok 35355.3 -25000. 70.7107 -50
Rolatif fark %27.586 %27.586 %27.586 %27.586

Tablo 3.13. ve Tablo 3.14.’da verilen ve elastik mesnetli sonuglar kaynakta verilen
degerler ile ayni bulunmustur. Buna ilaveten elastik mesnetsiz hal ile karsilastirilinca
deplasman, kuvvet ve gerilmeler artmistir. Elastik mesnet konuldugu durumdaki
biiyiikliiklerde mesnetsiz duruma gore ciddi azalmalar olmaktadir. Bu deger ise elastik
mesnedin yay katsayisina baglidir. Elastik mesnet katsayisi ¢ok artirilirsa ¢ubuk
kuvvetleri sifira gitmekte, diisey tekil kuvvet elastik mesnet tarafindan tasinmaktadir.

Bu durum beklenen bir durumdur.
3.2.2.6. Uygulama 6:

Altinct 6rnekte de hiperstatik bir kafes sistem literatiirden alinmistir [42]. Kafes
sistemin goriiniisii Sekil 3.34.’da diigiim numaralar ile birlikte verilmektedir. Cubuk
eleman tarifleri hazirlanan veri dosyasi i¢inde mevcut oldugundan burada tekrar
verilmemistir. Alt ve istte bulunan c¢ubuklarin boyu esit olup, 24 feet’dir. Kafes
yiiksekligi ise 32 feet olup, tim ¢ubuklarda elastisite modiilii 30000000 Ib/in®dir.
Cubuk kesit alanlar1 alt ve tistteki gubuklar i¢in 24, diisey cubuklar i¢in 32 ve son olarak
diyagonal cubuklar i¢in 40 in®dir. Sicaklik genlesme katsayisi tiim c¢ubuklar igin
0.0000065 1/°F’dir. Sadece iist cubuklarda sicaklik degisimi mevcut olup, sicaklik artist
50 °F’dir. Sicaklik degisimine maruz kalan elemanlardan dolayi, tiim sistem ¢ubuk
kuvvetlerinin bulunmas istenmektedir. Bir numarali diigiime global koordinat sistemi
oturtularak diger diiglimlerin koordinatlar tespit edilerek, veri dosyast olusturulmustur.
Kafesin mesnetlenmesi “1” numarali diigiimde basit olarak, “9” numarali dii§iimde ise
“x” ekseni yoniinde kayici, “y” ekseni yoniinde tutulu olarak yapilmistir. Diger
diigiimler iki yonde de serbesttir. Diigiimlerde tekil kuvvet yoktur, elastik mesnet

uygulanmamuistir, diiglim yer degistirmesi sifirdir.



AN 3 5 7 AN

Sekil 3.34. Hiperstatik kafes sistem [42]

Daha 6nce anlatilan kurallara uygun olarak hazirlanan dosya asagida sunulmaktadir.

Veri Dosyasi 6:

Clear[Evaluate[Context[] <> "*"]]

<< "C:\Users\CDA\\Desktop\\Yener-Prog\\2DModul\\Modul2D.txt"
nel = 14; nod = §;

xy = {{0, 0}, {24, 32}, {24, 0}, {48, 32}, {48, 0}, {72, 32}, {72, 0}, {96, 0}}*12;
SupportDisp = Table[{0, 0}, {i, 1, nod}];

ElasticSupport = Table[{0, 0}, {i, 1, nod}];

restraints = {{1, 1}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 1}}
jload = Table[{0, 0}, {i, 1, nod}];

defld = {{1, 3}, {3, 5}, {5, 7}, {7, 8}, {1, 2}, {8, 2}, {5, 2},

{5, 4}, {5, 6}, {4, 7}, {7, 6}, {8, 6}, {2, 4}, {4, 6}};

area = {24, 24, 24, 24, 40, 32, 40, 32, 40, 40, 32, 40, 24, 24};

EMod = Table[30000000, {i, 1, nel}];
DeltaTn={0,0,0,0,0,0,0,0,0,0,0,0, 50, 50};

TEC = Table[0.0000065, {i, 1, nel}];

TwoD

GrTwoD
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Yukarida verilen dosya hazirlanirken, birimlerin birbiri ile uyumlu olmasi

gerektiginden, kuvvetler “libre” cinsinden, uzunluklar “inch” cinsinden yazilmistir. Veri

dosyast icra edildiginde asagidaki ¢ubuk kuvvetleri elde edilmistir. Elde edile ¢ubuk

kuvvetleri Tablo 3.15.’de Hsieh’in (1970) ve Larsa 4D (2016) programinin sonuglari ile

karsilastirilmistir. Calisma sonucunda elde degerler her iki literatiir ile uyum igindedir.
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Sadece, Hsieh (1970)’in sonuglarindan ¢ok az farkli ¢ikmistir, bunun sebebi ise Hsieh
(1970)’in sonuglarin1 yuvarlatarak sunmasi oldugu diisiiniilmektedir. Kafes sistemin
deformasyonlu ve deformasyonsuz hali ¢ubuk kuwvvetleri ile birlikte Sekil 3.35.’da
sunulmaktadir [42, 43].

Sekil 3.35. Hsieh (1970)’den alinan o6rnegin deformasyonlu ve deformasyonsuz hali
[42]

Sekil 3.35. incelendiginde sonuglarin beklendigi yonde oldugu goriiliir. Ustteki iki

cubuk 1s1 nedeniyle genlesince sistemde yukari dogru deplasman yapilmis olur. Cift

capraz ¢ubuk bulunan kisim hiperstatik kisim oldugundan, ¢ubuklar serbest¢e hareket

etmis olup, lizerlerinde kuvvet olugmustur.

Tablo 3.15. Kafes sistem ¢ubuk kuvvetlerinin karsilastirilmasi

Cubuk no 2D Hsieh (1970) Larsa 4D (2016)
1 0 0 0
2 0 0 0
3 -21060 -21100 -21060
4 0 0 0
5 0 0 0
6 0 0 0
7 0 0 0
8 -28080 -28100 -28080
9 35100. 35100. 35100.
10 35100. 35100. 35100.
11 -28080 -28100 -28080
12 0 0 0
13 0 0 0
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3.2.2.7. Uygulama 7:

Uygulama 7 ye ait kafes sistemin goriiniisii diiglim numaralari ile birlikte, Sekil 3.36’da
verilmistir. Cubuk ile ilgili geometrik bilgiler sekilde bulunmaktadir. Tiim ¢ubuklarda
elastisite modiilii 300000001b/in”*dir. Cubuklarin tamami ayni1 malzemeden imal edilmis
olup, sicaklik genlesme katsayis1 0.0000065 1/°F’dir. Cubuk kesit alanlar1 sabit olup, 2

in?dir. Kafes sistemin tamaminda 70 °F’lik sicaklik artist mevcuttur [44].

Sicaklik degisiminden dolayi, “5” numarali diiglimiin diisey deplasman bileseninin
bulunmasi istenmektedir. Kafes sistem “1” ve “9” numarali diiglimlerinde sabit
mesnetlenmis, diger diiglimler ise serbesttir. Mesnet ¢okmesi ve elastik mesnet hali
bulunmamakla birlikte, diigiimlerde tekil kuvvet yiiklenmemistir. Global eksenler “1”
numarali diigiime oturtularak diger diiglimlerin koordinatlar1 buna gore belirlenmistir.

Kafes sistem icin veri dosyasi hazirlanarak, ¢ubuk tarifleri sekil ilizerinde ve dosyada

verilmigtir.
10 ft 10 ft 10 ft
4 5 6 8
7 60° 30° ° 500
10
9 12
5 6
) 0 7 14
60
2 3
3 13 60°
g A
30 b

Sekil 3.36. Timoshenko ve Young (1965), sayfa 266’dan alinan kafes sistem [44]

Daha 6nce anlatilan kurallara uygun olarak hazirlanan dosya asagida sunulmaktadir.
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Veri Dosyas1 7:

Clear[Evaluate[Context[] <> "*"]]

<< "C:\Users\CDA\\Desktop\\Yener-Prog\\2DModul\\Modul2D.txt"
nel = 14;

nod = 9;

xy = {{0, 0},

{0, 10. Cos[30 Degree]},

{5, 10. Cos[30 Degree]},

{0, 2*10. Cos[30 Degree]},

{10, 2*10. Cos[30 Degree]},

{20, 2*10. Cos[30 Degree]},

{20, 2*10. Cos[30 Degree] - 5/Cos[30 Degree]},

{30, 2*10. Cos[30 Degree]},

{30, 2*10. Cos[30 Degree] - 10/Cos[30 Degree]}}*12;

ElasticSupport = Table[{0, 0}, {i, 1, nod}]

SupportDisp = {{0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}};
restraints = {{1, 1}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {1, 1}};
jload = {{0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, G}, {0, O}};
defld = {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 4}, {3, 5}, {4, 5},

{56}, {5, 7}, {7, 6}, {6, 8}, {7, 8}, {7, 9}, {9, 8}};

area = Table[2, {i, 1, nel}];

EMod = Table[30000000, {i, 1, nel}];

DeltaTn = Table[70, {i, 1, nel}];

TEC = Table[0.0000065, {i, 1, nel}];

TwoD

GrTwoD

Yukarida verilen dosya hazirlanirken, birimlerin birbiri ile uyumlu olmasi
gerektiginden, kuvvetler “libre” cinsinden, uzunluklar “inch” cinsinden yazilmistir. Veri
dosyasi icra edildiginde ¢ubuk kuvvetlerinin tamami sifir bulunmustur. “5” numaral
diiglimiin diisey deplasmani yukar1 dogru “0.157617inch” olarak bulunmustur.
Kaynakta bu degeri yuvarlatarak “0.158 inch” olarak vermistir. Sonu¢ tamamen ayni

denilebilir. Cubuk kuvvetlerinin tamaminin sifir olmasi durumuna gelince, goz Oniine
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alinan kafes sistem incelendiginde 14 ¢ubuk ve 4 mesnet reaksiyonu bilinmemekte,
toplam 18 bilinmeyen bulunmaktadir. Diigiim sayisi ise 9 olup, diigiim sayisinin iki kat1

kadar denklem yazilabilmektedir.

Toplam denklem sayis1 18 olup, bilinmeyenlere esittir. Dolayist ile géz oniine alinan
sistem izostatik olup, sadece denge denklemleri ile ¢oziildiigiinden, sicaklik degisimleri
ve mesnet ¢okmeleri sistem iizerinde herhangi bir kuvvet olusmasina sebep olamazlar,
sadece sistemin deformasyona ugramasina sebep olurlar [19, 30, 45]. Kafes sistemin

deformasyonlu ve deformasyonsuz hali Sekil 3.37.’de sunulmaktadir.

Sekil 3.37. Timoshenko ve Young(1965)’den sicaklik degisiminden sonraki hali [44]

3.2.2.8. Uygulama 8:

Yedinci Ornekte verilen sistemin farkli bir ylikleme durumu igin tekrar ¢oziilmesi
istenmektedir. Burada, tiim ¢ubuklarda 40 °F’lik sicaklik diismesi mevcuttur. Kafesin
iist kisminda bulunan “4, 5, 6 ve 8” numarali diiglimlerinde diisey yonde 10000 librelik
tekil yiik uygulanmaktadir. Ayni zamanda, “9”” numarali mesnet olan tutulu diigiimiinde
yer degistirme yani mesnet ¢okmesi bulunmaktadir. Mesnet ¢okmesi olan “9” numarali
diigiimde yatay pozitif yonde 0.01 ft olmak iizere, diisey yonde asagi dogru 0.01 ft

mesnet hareketi olusmustur.
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Sicaklik degisimi, mesnet ¢okmesi ve tekil kuvvetlerin ayn1 anda uygulanmasi sonucu,
“5” numarali diigliimde diisey deplasman bileseninin degerinin hesaplanmasi
istenmektedir. Sistem tamamen ayni oldugundan, daha Once hazirlanan veri dosyasi
degistirilerek yeni yliklemeye uygun hale getirilmistir. Hazirlanan veri dosyasi asagida

mevcuttur.

Veri Dosyas 8:
Clear[Evaluate[Context[] <> "*"]]
<< "C:\Users\CDA\\Desktop\\Yener-Prog\\2DModul\\Modul2D.txt"
nel =14; nod = 9;
xy = {{0, 0},
{0, 10. Cos[30 Degree]},
{5, 10. Cos[30 Degree]},
{0, 2*10. Cos[30 Degree]},
{10, 2*10. Cos[30 Degree]},
{20, 2*10. Cos[30 Degree]},
{20, 2*10. Cos[30 Degree] - 5/Cos[30 Degree]},
{30, 2*10. Cos[30 Degree]},
{30, 2*10. Cos[30 Degree] - 10/Cos[30 Degree]}}*12;
ElasticSupport = Table[{0, 0}, {i, 1, nod}]
SupportDisp = {{0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0.01, -
0.01}}*12;
restraints = {{1, 1}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {1, 1}};
P=10000;
jload ={{0, 0}, {0, 0}, {0, 0}, {0, -P}, {0,-P}, {0, -P}, {0, 0}, {0, -P}, {0, O}};
defld = {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 4}, {3, 5}, {4, 5},
{5, 6} {5, 7} {7, 6}, {6, 8}, {7, 8}, {7, 9}, {9, 8}};
area = Table[2, {i, 1, nel}];
EMod = Table[30000000, {i, 1, nel}];
DeltaTn = Table[-40, {i, 1, nel}];
TEC = Table[0.0000065, {i, 1, nel}];
TwoD
GrTwoD
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Yukarida verilen dosya hazirlanirken, birimlerin birbiri ile uyumlu olmasi
gerektiginden, kuvvetler “libre” cinsinden, uzunluklar “inch” cinsinden yazilmistir. Bu
nedenle koordinat ve mesnet ¢okmesi degerleri 12 ile ¢arpilmustir, “foot” olarak verilen
degerler, 12 ile carpilinca inch degerine doniismektedir. Veri dosyasi icra edildiginde,
“5” numarali diiglimiin diisey deplasmani asagi dogru “0.222802 inch” olarak
bulunmustur. Kaynakta bu degeri yuvarlatarak “0.223 inch” olarak vermistir. Sonug
tamamen ayni denilebilir. Sistemde tekil yiikler tarafindan c¢ubuk kuvvetleri
olusturulmaktadir. Sistemin deformasyonlu hali ve ¢ubuk kuvvetleri asagida Sekil 3.38
da sunulmaktadir. Cubuklarin ortasinda bulunan oklar ¢ubuk tarif yoniinii “i ve j” ucu
yonlenmesini gostermektedir. Sekil 3.38.°de “4, 5, 6 ve 8 numarali diigiimlerde
bulunan tekil kuvvetlerde goriilmektedir. Ayrica, “9” numarali ¢dkme yapan mesnetin

yer degismis hali de sekilde gortilmektedir.

8660.25 - 8660.25

€0

- 10000.

-_-_______.8.____-_-_;

10000.

Sekil 3.38 Timoshenko ve Young (1965),kafes sistem ii¢ yiikleme sonucu [44]
3.2.2.9. Uygulama 9:

Son 6rnek olarak literatiirde [46] Kesit alan1 optimizasyonu yapilan bir kontrol 6rnegi
alinmigtir. Ornegin geometrik bilgileri, diigiim ve eleman numaralari, yiik degerleri,
mesnetlenme durumu Sekil 3.39°da sunulmaktadir. Cubuklar ayn1 malzemeden yapilmis

olup, kesit alanlarinin optimum degeri sistemin 6lii agirligin1 minimize edecek sekilde
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istenmektedir. Kullanilan malzeme elastisite modiilii 10000000 psi, yogunluk ise 0.1
Ib/in® olarak verilmistir. Kesit alanlarmin optimizasyonu istenmektedir. Emniyet
gerilmesi ise 25000 psi’dir. Yatay ve diisey cubuk uzunluklar1 360 inch’dir. Selikde
goriilen “2” ve “4” diiglimlerinde diisey kuvvetlerin degeri 100000 1b’dir.

3 1

p p

Sekil 3.39. Auer (2005) ten alinan kafes optimizasyon problemi [46]

Problemi ¢6zmek iizere, dncelikle veri dosyasi hazirlanmistir. Veri dosyasinda diigiim
sayisi, cubuk sayisi, diiglim koordinat, serbestlik ve tekil kuvvetleri tanimlanmistir.
Sekil 3.39” daki gibi ¢ubuk elemanlar tanimlanmig olup, elastisite modiilii degerleri
girilmigtir. Diiglimlerde yer degistirme ve elastik mesnetlenme yoktur. Sicaklik degisimi
de bulunmamaktadir. Bu nedenle degerleri sifir tutulmustur. Kesit alanlar1 ise hepsi
sifirdan farkli herhangi degerler girilmistir. Ornegin birinci gubuk alan1 “1”, ikinci “2”
ve sonuncu “10” in? olarak girilmistir. Daha once anlatilan kurallara uygun olarak
hazirlanan dosya asagida sunulmaktadir. Optimizasyon i¢in icra dilecek programda

kiiciik degisiklikler yapilarak ¢6ziim yapilmistir.

Veri Dosyas1 9:

Clear[Evaluate[Context[] <> "*"]]
<< "C:\\Users\\CDA\\Desktop\\Yener-Prog\\2DModul\\Modul2D.txt"
nel = 10;
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nod = 6;

xy = {{720, 360},{720, 0},{360, 360},{360, 0},{0, 360},{0, 0}}*1.;
ElasticSupport = Table[{0, 0}, {i, 1, nod}];

SupportDisp = {{0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}};
restraints = {{0, 0}, {0, 0}, {0, 0}, {0, 0}, {1, 1}, {1, 1}};

P =100000;

jload = {{0, 0}, {0, -P}, {0, 0}, {0, -P}, {0, 0}, {0, 0}};

defld = {{5, 3}, {3, 1}, {6, 4}, {4, 2}, {3, 4}, {1, 2}, {4, 5}, {6, 3}, {3, 2}, {4, 1}};
EMod = Table[10000000, {i, 1, nel}];

area = Table[i, {i, 1, nel}];

DeltaTn = Table[O, {i, 1, nel}];

TEC = Table[0, {i, 1, nel}];

Yukarida verilen dosyay1 icra eden”Modul2.txt” dosyasinda optimizasyon i¢in kiiciik
bir degislik yapilarak, mevcut alan verileri ile cubuk kuvvetleri elde edilmistir. Elde
edilen kuvvetler emniyet gerilmelerine boliinerek, yeni emniyetli ¢ubuk alanlari
bulunmustur. En kii¢lik kesit alani ise minimum 0.1 in® ile sinirlandirilmistir. Yeni
bulunan alanlar ile mevcut alanlarin arasindaki rolatif fark yani hata belirli bir hata
yiizdesi i¢in karsilastirilmistir. Rolatif farkin, hatanin belli bir degerin iizerinde kalmasi
halinde, yeni hesap edilen alanlar mevcut alan olarak kabul edilip, yeni alanlarla
problem tekrar ¢oziilmiistiir. Tekrar ¢oziim islemi 20°nin {izerinde tekrarlaninca, cubuk

alan degerleri olmas1 gereken minimum duruma gelmistir.

Asagida Tablo 3.16 ve 3.17° de elde edilen optimum kesit alanlar1 ve gubuklarda olusan
gerilmeler karsilagtirillmistir. Karsilastirma sonucunda bu c¢alismada elde edilen
sonuglar, Auer (2005)’in ¢alismasina ¢ok yakin bulunmus olup, bu ¢alismanin sonuglari
Auer (2005)’in sonuglarindan daha iyidir. Cilinkii sistem kiitlesi daha diisiiktiir. Bu
calisma ile Romero (2004)’tin ¢alismasi hemen hemen aymidir [47]. Karsilastirma
sonucunda bu ¢alismada kullanilan iteratif yonteminde uygun sonug¢ verdigi kanaatine

varilmis olup, elde edilen sonucun tam sonug oldugu séylenebilir.



Tablo 3.16. Ornek 9 icin elde edilen cubuk alanlari (in®)ve karsilastiriimasi
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Cubuk no Bu ¢alisma Auer (2005) Romero (2004)
1 7.93787 7.9324 7.9378
2 0.1 0.1 0.1
3 8.06213 8.0678 8.0625
4 3.93787 3.9329 3.9378
5 0.1 0.1 0.1
6 0.1 0.1 0.1
7 5.74472 5.7527 5.7447
8 5.56899 5.5611 5.5689
9 5.56899 5.5611 5.5689
10 0.1 0.1164 0.1
Toplam kiitle (Ib)  1593.18090911 1593.42 1594.179622

Tablo 3.17. Ornek 9 i¢in cubuklarda olusan gerilmeler (psi)

Cubuk no Bu ¢alisma Auer (2005) Romero (2004)
1 25000. 24999.6 25000.2
2 15533. 16932.7 15533.4
3 -25000. -24999.7 -25000.1
4 -25000. -25000 -25000.4
5 -5.50116*10"-7 -0.5 -0.6
6 15533. 16932.7 15533.4
7 25000. 24999.7 25000.1
8 -25000. -25000 -25000.4
9 25000. -25000 -25000.4

10 -21967. -20567.5 -21967.5
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3.3. U¢ Boyutlu Hal i¢in Gelistirilen Program Aciklamasi ve Ornek Uygulamalar
3.3.1. Bilgisayar Programi 3D ve Aciklamasi

Ug boyutlu normal kuvvet tasiyan ¢ubuk sistemlerin ¢dziimii icin hazirlanan program
asagida sunulmakta ve aciklanmaktadir. Bu program gelistirilirken agagidaki degisken
isimleri se¢ilmistir. Eleman sayisinin gostermek iizere “nel”, diigiim sayisin1 géstermek
lizere “nod” degiskeni secilmistir. Sirasiyla koordinat takimi, diigiim serbestlikleri,
digiim tekil kuvvetleri, mesnet cokmeleri, elastik mesnet ise “xyz”, “retstraints”,
“jload”, “SupportDisp”, “ElasticSupport” degisken isimleri secilmis olup, degiskenler
diigiim sayisinca satir1 ve ii¢ siitiinii olan matrislerdir. Cubuk elastik modiili i¢in
“EMod”, kesit alani icin”area”, sicaklik genlesme katsayisi i¢in “TEC”, sicaklik
degisimi i¢in “DeltaT” isimleri secilmis olup, degiskenler ¢ubuk sayisinca elemani olan
birer dizidir. Cubuk elemanlarin “i” ve “4” uclarinin diigiim numarasini depolamak

tizere “defl)” isimli iki siitunlu ve cubuk sayisinca satir elemani olan bir matris

secilmistir.

Asagida gerekli verilerin tanimlandigi varsayilarak, “3D” program parga parca

sunulmakta olup, her par¢adan sonra programin aciklamasi verilmektedir.
3.3.1.1. Program Parcasi 1:

dispN = 0;

Do[ If[restraints[[i, j]] == 0,

dispN = dispN + 1; restraints[[i, j]] = dispN;,restraints[[i, j]] = 0], {i, 1, nod}, {j, 1,
33

Print["total displacement=", dispN];

Print["displacement number coding for each joint=", MatrixForm[restraints]];

Burada deplasman numaralar1 dispN numaratdrii ile isimlendirilmis olup, her serbestlik
icin birer artarak deplasmanlari numaralandirmaktadir. Diigiim sayist kadar bir dongii
kurularak serbestlikler, serbestliklerin tanimlandig1 “restraints” matrisinin her ii¢ siitunu
icin taranmakta, serbest olan diiglime ait slitundaki tanim kismina deplasman numarasi
verilmekte, tutulu olanlara ise daha Once belirtildigi lizere “0” degeri atanmaktadir.

“dispN” degiskeninin son degeri ise toplam deplasman degerine esit olmaktadir. Bu
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program parcasinin sonunda toplam deplasman sayisi ve deplasman numaralarini

saklayan matrisin degerleri goriintiilenmektedir.

3.3.1.2. Program Parcasi 2:

d[o] =0;

NForce = Table[O0, {i, 1, nel}];
SysEq = Table[O, {i, 1, dispN}];
Lengt = Table[O, {i, 1, nel}];

Bu program pargasinda, toplam deplasman sayisi belirlendiginden, elde edilecek
denklemleri depolamak iizere deplasman sayisi adedince elemani olan “SysEq” isimli
sistem denklemlerini ¢agristiran bir dizi “Table” komutuyla tanimlanmaktadir. Ayrica,
her ¢ubuk boyunun ve ¢ubuk kuvvetinin hesaplandiktan sonra saklanmasi igin sirasiyla
“Lengt” ve “Nforce” isimli diziler “Table” komutuyla tanimlanmistir. Bu dizilerin

eleman sayisi cubuk sayist adedincedir.

3.3.1.3. Program Parcasi 3:

Do[

codeix = restraints[[i, 1]];

codeiy = restraints[[i, 2]];

codeiz = restraints|[[i, 3]];

If[codeix> 0, SysEq[[codeix]] = jload[[i, 1]] - d[codeix]*ElasticSupport[[i, 1]11];
If[codeiy> 0, SysEq[[codeiy]] = jload[[i, 2]] - d[codeiy]*ElasticSupport[[i, 2]1];
If[codeiy> 0, SysEq[[codeiz]] = jload[[i, 3]] - d[codeiz]*ElasticSupport[[i, 3]]1];

, {i, 1, nod}];

Uciincii program parcasinda, daha &nce tanimlanan “SysEq”, sistem denklemlerinin
depolandig1 dizinin baslangi¢c degerleri tespit edilmektedir. Burada “restraints” dizisi
icinde saklanan deplasman numaralarindan faydalanilmaktadir. Diiglimlere ait
deplasmanlarin tespiti i¢in diigiim sayisinca bir dongii kurulmustur. Deplasman

numarast her diiglime ait “restraint” {i¢ siitunlu dizisinden alinmaktadir.
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Birinci siitun “x” ekseni yoOniindeki, ikinci siitun “y” ekseni yoniindeki, ii¢lincii siitun
“z” yoniindeki deplasmani temsil etmektedir. “x” yonilindeki” deplasman sifirdan farkl
ise o yonde deplasman oldugu aciktir, numarasinin degeri ise “codeix” degiskenine
ilgili matristen aktarilmistir. “y” yoniindeki” deplasman sifirdan farkli ise o yonde
deplasman oldugu agiktir, numarasinin degeri ise “codeiy” degiskenine ilgili matristen
aktarilmistir. “z” yoniindeki” deplasman sifirdan farkli ise o yonde deplasman oldugu
aciktir, numarasinin degeri ise “codeiz” degiskenine ilgili matristen aktarilmistir.
“codeix” ve “codeiy” ve “codeiz” degiskenlerinin deplasman numaras1 degeri elde

edilmesi planlanan sistem denkleminin numarasini da olusturmaktadir.

Sistem denkleminin baglangici ise dis yliklemelerden olusmaktadir. Bunlardan biri dig
tekil kuvvet digeri ise mesnet ¢okmesidir. Mesnet ¢okmesi halinde tekil diigiim yiikii
stfirdir, benzer sekilde tekil yiikk olmasi halinde diigiim mesnet degildir, yani mesnet

€C,,

¢okmesi yoktur ve temsilen degeri de sifirdir. Diigiimde “x” yoniinde tekil ylik olmasi
halinde ve “x” yoniinde deplasman olmas1 halinde, o diigiimiin “x” yoniindeki tekil
kuvvetinin denklem sistemine baslangic degeri olarak eklenmesi gerekmektedir, bu
durumda denklem sisteminin numarasi daha 6nce belirtildigi gibi “codeix” degiskeninde
bulunmaktadir ve tekil kuvvetin degeri de “jload” matrisinin ilgili diigim numarali

e 9

satirinin “1” siitununda bulunmaktadir. Diiglimde “y” yoniinde tekil yiik olmas1 halinde
ve “y” yoniinde deplasman olmasi halinde, o diiglimiin “y” yoniindeki tekil kuvvetinin
denklem sistemine baslangi¢ degeri olarak eklenmesi gerekmektedir, bu durumda
denklem sisteminin numarast daha Once belirtildigi gibi “codeiy” degiskeninde
bulunmaktadir ve tekil kuvvetin degeri de “jload” matrisinin ilgili diiiim numarali

(Y1)

satiriin “2” siitununda bulunmaktadir. Diiglimde “z” yoniinde tekil yiik olmasi halinde
ve “z” yoniinde deplasman olmasi halinde, o diiglimiin “z” yoniindeki tekil kuvvetinin
denklem sistemine baslangic degeri olarak eklenmesi gerekmektedir, bu durumda
denklem sisteminin numarasi daha once belirtildigi gibi “codeiz” degiskeninde
bulunmaktadir ve tekil kuvvetin degeri de “jload” matrisinin ilgili diiglim numaral

satirinin “3” stiitununda bulunmaktadir.

Bu bilgiler 1s181nda tekil kuvvetlerin sistem denklemine eklenmesi isi {i¢lincii program
parcasinin i¢cinde bulunan {i¢ adet “If” komutuyla icra edilmektedir. Ayn1 “If” komutlar1
benzer bilgiler 15181nda elastik mesnet degerlerini ilgili deplasman ile mesnede ait

elastik mesnet yay katsayisiyla ¢arparak i¢c kuvvete doniistirmekte ve elde edilen
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kuvveti sistem denklemlerinin baslangicina eklemektedir. Burada eklenme yerine
cikarilmaktadir, ¢iinkii bulunan kuvvet yay ucundadir ve diiglime negatif olarak
yansimaktadir. Bu nedenle ¢ikarilmistir. Boylece mesnet ¢okmelerinin olusturacagi
kuvvet sisteme etkiletilmis olmaktadir. islemler tiim serbestlikler, diger bir deyisle tiim
deplasmanlar i¢in yapildiginda sistem denklemlerini olusturan “SysEq” dizisinin
baslangi¢ degerleri tespit edilmis olur. Sonra i¢ kuvvetlerin etkilerinin de toplama dahil
edilmesi isi diger dordiincii program parcasi i¢inde gergeklesmektedir. Denklemlerin

baslangi¢ degerleri istenirse ekranda goriintiilenebilir.

3.3.1.4. Program Parcasi 4:

Bu program parcgasinda her bir ¢ubuk icin islem yapildigindan islemlerin tamami ¢ubuk
sayis1 kadar islem yapan bir dongii icine konulmustur. Cubuk numaralarin1 temsil eden

dongii degiskeni ise “nn” olarak secilmistir. Her bir gubuga ait, elastisite modiilii, kesit

(Y3544 [13%2]

alani, sicaklik genlesme katsayisi, sicaklik degisimi degeri, “i” ve “j” ucunun bagh

[13%5] (1343 2

oldugu diiglim numaralari, “i” ve “j” ucunun koordinatlari; sirasiyla “EM”, “csa”,

399 GC_ 199 66,399 G, 199 e 399 6C 199

“alfaT”, “dTn”, “i1”, 957, “x1”, “y1”, “z1”, “xj”, “yj”, “zj)” isimli yerel degiskenlere ilgili
dizi ve matrislerden alinarak, atanmaktadir. Bu yazim tarzi programin anlasilmasini
kolaylastirmaktadir. Cubuga ait veriler yerel degiskenlere aktarildiktan sonra, ¢ubuk

uzunlugu ve global eksenlerle yaptigi acilarin kosiniis dogrultmanlarinin degerlerini

(13521 [13%4]

(Sezginman ve Abaci, 1985) hesaplamak iizere; “i” ve “j” ucunun koordinatlari

3T 3L
1

kullanilarak, “1” ve “j” diiglim noktalar1 arasinda bir yer vektorii yazilmaktadir. Olusan

vektoriin normu ¢ubuk uzunlugunu vermektedir. Vektoriin normu ile normalize edilmis
bilesenleri kosinlis dogrultmanlarmi verdiginden asagidaki satirlarda, kosiniis

dogrultmanlar1 hesaplanmaktadir. Cubugun “x” ekseni ile yaptig1 aginin kosiniis degeri

e 9

“csx” yerel degiskenine; “y” ekseni ile yapti§i aginin kosinlis degeri “csy” yerel

(Y]

degiskenine; “z” ekseni ile yaptig1 acinin kosiniis degeri “csz” yerel degiskenine

aktarilmaktadir.

[13%2] e,

Cubugun “i” ucunun bagh oldugu diigliimiin deplasman numaralar1 “x” yonii i¢in

(13

“codeix” yerel degiskenine aktarilmakta ve “y” yonii icin “codeiy” yerel degiskenine

aktarilmakta olup, “z” yonii i¢in “codeiz” yerel degiskenine aktarilmaktadir. Benzer

e,

sekilde, cubugun “j” ucunun bagl oldugu diiglimiin deplasman numaralar1 “x” yonii

e .9

icin “codejx” yerel degiskenine aktarilmakta ve “y” yoni icin “codejy” yerel
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[3=4)

degiskenine aktarilmakta olup, “z” yonli i¢in “codejz” yerel degiskenine
aktarilmaktadir. Bu yerel degiskenler ¢ubugun bagli oldugu uglarinda bulunan global
bilinmeyen deplasmanlarin numaralarin1 gostermekte olup, o yonde yazilan sisteme ait
denge denkleminin numarasini da isaret etmektedir. Cubugun ucunda bulundugu bilinen
global bilinmeyen deplasmanlar; ¢ubuk kosiniis dogrultmanlar1 vasitasiyla ¢ubuk yerel
koordinatlarina doéniistiiriilmektedir. Cubuk yerel koordinatlarina doniistiiriillen global
deplasmanlar “ui” ve “uj” yerel degiskenleri iizerinde saklanmaktadir. Ayn1 satirlarda,
varsa global mesnet cokmeleri degerleri de ¢ubuk yerel koordinat takimina ayni
degiskenler {iizerine aktarilmaktadir. Mesnet ¢dokmesi olan diiglimlerde bilinmeyen
deplasman olmadigindan isin igine girmemektedir. Diigimde bilinmeyen deplasman
oldugunda ise diigiim mesnet olmaktan ¢iktig1 icin mesnet ¢okmesi durumu ortadan
kalkmaktadir. Cubuk ucunda mesnet ¢okmesi degeri yada bilinmeyen deplasmanlar
yerel koordinatlarda bulunduklari i¢in, daha sonraki agsamada ¢ubuk boyuna uzamasini

idare eden diferansiyel denklemin ¢ozliimii sirasinda smir kosullart olarak istihdam

edilmektedir.

Kafes sistem ¢oziimiinde genellikle kesit degisimi olmadigindan ve c¢ubuk eksenine
paralel i¢c normal yayili yiik ihmal edildiginden, ¢ubuk boyuna uzamasini idare eden
diferansiyel denklem; boyuna uzama egrisinin fonksiyonunun ikinci tiirevinin sifir
olmasina doniisiir. Bu durumda iki kez geri integral alindiginda uzama egrisinin
fonksiyonu dogrusal bir hal alarak iki sabitli bir dogru denklemine esit olur. Sabitler,
siir kosullarindan elde edilerek boyuna uzama egrisinin fonksiyonunda yerine konulur;
boylece boyuna uzama egrisinin denklemi bulunmus olur. Cubuk normal kuvvet
degisimi boyuna uzama egrisine bagli oldugundan, eksenel rijitlik ve boyuna uzama
egrisinin tiirevi ile carpilarak bulunur. Normal kuvvet ifadesinin ¢ubuk uclarindaki
degerleri de gubuk sinirlar1 yerine konularak bulunmaktadir, “ni”, “nj”. Programda elde
edilen gubuk “ni” ve “nj” yerel ¢ubuk u¢ kuvvetleri kosiniis dogrultmalari yardimiyla
global koordinat takimimna doniistiiriilerek; cubuk ucunda bulunan ug¢ kuvvetlerinin

[13%2]
1

global takimdaki bilesenleri bulunmus olur. Bu bilesenler ucunda “fxi, fyi,ve fzi”

(13421

olup, “5” ucunda ise “fxj, fyj ve fz;” dir. Bu bilesenler sistem denklemine aktarilacak
bilesenler olup, katki yapilacak denklemin numarasi ise bulunduklari diiglimiin

[13%2]
1

deplasman yoniidiir. Bu yonler ise “i” diiglimiinde “x” yonii i¢in “codeix” degiskeninde

saklt olup, “codeix” numarali sistem denklemine “fxi” bileseninin eklenmesini
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L9

gerektirir; “y” yoni i¢in “codeiy” degiskeninde sakli olup, “codeiy” numarali sistem
denklemine “fyi” bileseninin eklenmesini gerektirir; “z” yonii i¢in ‘“codeiz”
degiskeninde sakli olup, “codeiz” numarali sistem denklemine “fzi” bileseninin
eklenmesini gerektirir.

[13%2] (1))

Benzer sekilde “j” diigiimiinde “x” yonii i¢in “codejx” degiskeninde sakli olup,
“codejx” numarali sistem denklemine “fxj” bileseninin eklenmesini gerektirir; “y” yonii
icin “codejy” degiskeninde sakli olup, “codejy” numarali sistem denklemine “fyj”
bileseninin eklenmesini gerektirir; “z” yoni i¢in “codejz” degiskeninde sakli olup,
“codejz” numarali sistem denklemine “fzj” bileseninin eklenmesini gerektirir. Bu
islemler program tarafindan asagida alti adet “If” komutu ile ilgili satirlarda
yapilmaktadir. Bu islemler tiim g¢ubuklar icin yapildiginda sistem i¢in gerekli olan
denklemler elde edilmis olur. Program parcasi en sonunda elde edilen denklemleri

“Simplify” komutuyla sadelestirmektedir.

Do[

Print["Element number [, nn, "] is in progress;"];
EM = EMod[[nn]];

csa = area[[nn]];

alfaT = TEC[[nn]];

dTn = DeltaTn[[nn]];

i = deflJ[[nn, 1]];

jj = deflJ[[nn, 2]];

xi = xyz[[ii, 111; yi = xyz[[ii, 211; zi = xyz[[ii, 3]1;
xj = xyz[[j, 1115 vi = xyz[lij, 211; zj = xyz[[ij, 311
vector = {x] - xi, yj - yi, zj - zi};

length[[nn]] = lengthL = Norm[vector];

csx = Normalize[vector][[1]];

csy = Normalize[vector][[2]];

csz = Normalize[vector][[3]];

codeix = restraints[[ii, 1]];

codeiy = restraints[[ii, 2]];

codeiz = restraints[[ii, 3]];
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codejx = restraints[[jj, 1]1;
codejy = restraints[[jj, 211;
codejz = restraints[[jj, 3]];
ui = d[codeix]*csx + d[codeiy]*csy + d[codeiz]*csz +
SupportDisp[[ii, 1]]*csx + SupportDisp[[ii, 2]]*csy + SupportDisp[[ii, 3]]*csz;
uj = d[codejx]*csx + d[codejy]*csy + d[codejz]*csz +
SupportDisp[[jj, 1]11*csx + SupportDisp[[jj, 2]]*csy + SupportDisp[[jj, 3]]*csz;
uu=clz+cz;
bl=uu/.z->0;
b2 =uu /. z ->lengthL;
sol = Flatten[Solve[{b1l == ui, b2 == uj}, {c1, c2}]];
uu =uu /. sol;
NF = EM*csa (D[uu, z] - alfaT*dTn);
ni=NF/.z->0;
nj = NF /. z ->lengthL;
NForce[[nn]] = nj;
fxi = -ni*csx;
fyi = -ni*csy;
fzi = -ni*csz;
fXj = nj*csx;
fyj = nj*csy;
fzj = nj*csz;
If[codeix> 0, SysEq[[codeix]] = SysEq[[codeix]] - fxi];
If[codeiy> 0, SysEq[[codeiy]] = SysEq[[codeiy]] - fyi];
If[codeiz> 0, SysEq[[codeiz]] = SysEq[[codeiz]] - fzi];
If[codejx> 0, SysEq[[codejx]] = SysEq[[codejx]] - fx]];
If[codejy> 0, SysEq[[codejy]] = SysEq[[codejy]] - fyil;
If[codejz> 0, SysEq[[codejz]] = SysEq[[codejz]] - fzj];
, {nn, 1, nel}];
SysEq = Simplify[SysEq];
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3.3.1.5. Program Parcasi 5:

Print["syseq=", MatrixForm[SysEq], "=0"];
unk = Table[d[i], {i, 1, dispN}];

sol = Flatten[Solve[SysEq == 0, unk]];
Print["solution=", MatrixForm[sol]];
Dol[d[i] = sol[[i, 2]];, {i, 1, dispN}];
Print[MatrixForm[NForce]];

Bu program pagasinda elde edilen denge denklemleri ekranda sunulmaktadir. Ekranda
diigiimlerde bulunan deplasmanlara bagl olarak denklemler analitik olarak goriilecektir.
Ardindan, diiglim deplasmanlarinin bilinmeyen olarak isimleri “unk” isimli bir diziye
“Table” komutu ve deplasman sayist kullanilarak aktariimaktadir. “Solve” komutu
kullanilarak, elde edilen “SysEq” degiskeninde bulunan denge denklemleri bilinmeyen
diigiim deplasmanlar1 “unk” i¢in c¢oziilmektedir. Coziilen degerler ¢ikartilarak,
bilinmeyen deplasmanlarin icine aktarilmakta ve bilinmeyen deplasmanlar bilinen
olmaktadir. Bunlarda otomatik olarak program hafizasinda bulunan diger biiyiikliiklerde
yerine konulmaktadir. Program pargasinin son satirinda ise gubuk kuvvetleri sirasiyla alt

alta yazilmaktadir.

3.3.2. U¢ Boyutlu Normal Kuvvet Tastyan Kafes Sistem Ornekleri
3.3.2.1. Uygulama 1:

Uc boyutlu kafes sistem igin ilk &rnek olarak kiiciik bir sistem Logan (2007) dan
almmistir [39]. Asagida kafes sistem Sekil 3.40.’daglobal koordinatlarda sunulmaktadir.
Sekil 3.40.” da diiglimlere ait numaralar ve uygulanan kuvvet bulunmaktadir.
Diigiimlere ait koordinatlar “1, 2, 3 ve ” numarali diigiim i¢in sirasiyla (72, 0, 0), (O, 36,
0), (0, 36, 72), (0, 0, -48) olarak verilmektedir. Mesnet olarak “2, 3, 4” numarali

diiglimler sabit mesnet olarak tanimlanmakta, “1” numarali diigiim ise sadece “y

yoniinde tutulu, diger yonlerde serbesttir.

Tekil kuvvet ise sadece “1” numarali digiimde “z” yoniinde asagi dogru 1000 Ib olarak
belirtilmistir. Birinci, ikinci ve iiglincli gubuk sirasiyla “1-2”, “1-3” ve “1-4” digiim

numarali uglar arasinda tanimlanmaktadir. Cubuk alanlar1 sirasiyla “1, 2, 3” numaral
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cubuklar i¢in 0,302, 0.729, 0.187 “inch®’ dir. Tiim cucuklar icin elastisite modiilii

1.2x10° dur. Cubuklarda olusacak kuvvet ve gerilmelerin hesabi istenmektedir.

X

10 -
F

0

Sekil 3.40. Logan (2007) dan alinan dort diigiim {i¢ gubuklu kafes sistem [39]

Ornek problem i¢in yukarida verilen bilgilere dayanarak bir veri dosyasi olusturulup,
asagida sunulmaktadir.

Veri Dosyas 1:

Clear[Evaluate[Context[] <> "*"]]

<< "C:\\Users\\CDA\\Desktop\\Yener-Prog\\3DModul\\Modul3D.txt"
nod = 4;

nel = 3;
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xyz = {{72, 0, 0},{0, 36, 0},{0, 36, 72},{0, 0, -48}};
jload ={{0, 0, -1000},{0, 0, 0},{0, 0, 0},{0, 0, 0}};
restraints ={{0, 1, 0},{1, 1, 1}{1, 1, 1} {1, 1, 1}};
defld ={{1, 2}.{1, 3}.{1, 4}};

area = {0.302, 0.729, 0.187};

EMod = Table[1.2*1076, {i, 1, nel}];

TEC = Table[O, {i, 1, nel}];

DeltaTn = Table[O, {i, 1, nel}];

ElasticSupport = Table[O0, {i, 1, nod}, {j, 1, 3}];
SupportDisp = Table[O0, {i, 1, nod}, {j, 1, 3}];
ThreeD

NForce/area

Veri dosyasinda, ¢cubuk sayist ve diigiim sayis1 “nel” ve “nod” degiskenlerine atanmis
olup, diigiim koordinatlari, serbestlikler, diiglim tekil kuvvetler, “xyz”, “restraints” ve
“jload” matrislerine atanmistir. Cubuk tanimlari, alanlar, elastisite modiilleri ise “deflJ”,
“area”, “EMod” matris ve dizilerine atanmistir. Sicaklik yliklemesi olmadigindan ilgili
biiyiikliikler “Table” komutuyla sifir olarak tanimlanmistir. Elastik mesnet ve mesnet
cokmesi bulunmadigindan yine ilgili biiylikliikler “Table” komutuyla sifir olarak
tanimlanmustir. Ug boyutlu analiz modiilii icra edilerek sonugclar elde edilmis olup, elde
edilen ¢ubuk kuvvetleri gubuk alanlarina béliinerek gerilmeler bulunmustur. Elde edilen
bliytikliikler Tablo 3.18° de sunulmaktadir. “y” yoniinden deplasman tutulu oldugu i¢in
“1” numaral diigiimde “x” ve “z” yoniinde deplasman olusmus olup, degerleri Tablo

3.19.’da sunulmustur. Tablolarda sunulan degerler kaynakta verilen sonuglarla tamamen

uyum i¢indedir.

Tablo 3.18. Ornek 1 igin elde edilen gubuk kuvvetleri ve gerilmeler

Cubuk No. Normal Kuvvet (Ib) Normal Gerilme (psi)
1 -286.35 -948.20
2 1053.67 1445.36

3 -536.42 -2868.54




113

Tablo 3.19. Ornek 1 icin elde edilen “1” numarali diigiim deplasmanlar

Diigiim No. Deplasman (inch)
1 -0.0711144
2 -0.2662390

3.3.2.2. Uygulama 2:

Ikinci 6rnek olarak Farajzadeh (2012) nin ¢alismasindan alinmis olup, 6 diigiimlii ve 12
elemanli ti¢ boyutlu kafes sistemdir [48]. Tiim ¢ubuklar i¢in alanlar esit olup, 0.003 m?
dir. Ayn1 sekilde elastisite modiiliide 2x10° kN/m? dir. Sicaklik degisimi sifir olup,
elastik mesnet ve mesnet ¢okmesi yoktur, bu nedenle hazirlanacak dosyada ilgili

degerler sifir olmaktadir.

Kafes sistemin sekli diiglim numaralar ile birlikte asagida Sekil 3.41.’da sunulmustur.
Cubuk digim numaralari, diiglim koordinatlar1 (m), diigim serbestlikleri ve diigiim

yiikleri (kN) Tablo 3.20. ve Tablo 3.21.’de verilmektedir.

Sekil 3.41 Farajzadeh (2012) nin ¢aligmasindan alinan 12 ¢ubuklu 6 diigiimlii kafes [48]
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Literatlirden alinan problemin ¢ubuk kuvvetlerin bulunmasi istenmektedir. C6ziim i¢in
veri dosyasi hazirlanarak asagida sunulmustur. Veri dosyasinda ¢ubuk sayisi, diigiim
sayis1, digiimle ilgili koordinatlar, serbestlikler, tekil diigim yiikleri ile ¢ubuklarla ilgili
cubuk tarifleri, alan ve elastik modiiller birinci Ornekte belirtildigi gibi ilgili
degiskenlere aktarilmistir. Sicaklik ile ilgili bilgiler, elastik mesnet hali ve mesnet
¢Okmesi olmadigindan sifir olarak ilgili degiskenlere aktarilmistir. Veri dosyasi asagida

sunulmustur.

Tablo 3.20. Cubuk ug¢ baglant1 diiglimleri, alan ve elastisite modiilleri

Cubuk No “i” ucu “j” ucu Alan (m°) EM (kN/m?)
1 1 2 0.003 2x10°
2 1 3 0.003 2x10°
3 2 3 0.003 2x10°
4 1 4 0.003 2x10°
5 1 5 0.003 2x10°
6 2 5 0.003 2x10°
7 2 6 0.003 2x10°
8 3 6 0.003 2x10°
9 3 4 0.003 2x10°
10 5 6 0.003 2x10°
11 4 6 0.003 2x10°
12 4 5 0.003 2x10°

Tablo 3.21. Kafes sitem diigiim koordinat, serbestlik ve tekil yiikleri

Diigiim Koordinatlar (m) Serbestlikler Diigiim Yiikleri
No (kN)

“x” “y” “z” “x” “y” “z” “x” “y” “z”

1 0 0 0 1 1 1 0 0 0

2 0 2 0 1 0 1 0 0 0

3 0 1 2 1 1 1 0 0 0
4 3 0 0 0 0 0 0 0 -45
5 3 2 0 0 0 0 0 0 -30

6 3 1 2 0 0 0 0 0 0
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Veri dosyasi 2:

Clear[Evaluate[Context[] <> "*"]]

<< "C:\Users\CDA\\Desktop\\Yener-Prog\\3DModul\\Modul3D.txt"
nod = 6;nel = 12;

xyz = {{0, 0, 0},{0, 2, 0},{0, 1, 2},{3, 0, 0},{3, 2, 0},{3, 1, 2}};

jload ={{0, 0, 0},{0, 0, 0},{0, 0, 0},{0, 0, -45},{0, 0, -30},{0, 0, 0}};
restraints ={{1, 1, 1},{1, 0, 1}{1, 1, 1},{0, O, 0},{0, 0, 0},{0, O, 0}};
defld = {{1, 2},{1, 3}.{2, 3}.{1, 4}, {1, 5},{2, 5}, {2, 6}, {3, 6}, {3, 4}, {5, 6}, {4, 6}, {4,
5ih

area = Table[0.003, {i, 1, nel}];

EMod = Table[2*10"8, {i, 1, nel}];

TEC = Table[O, {i, 1, nel}];

DeltaTn = Table[O, {i, 1, nel}];

ElasticSupport = Table[O0, {i, 1, nod}, {j, 1, 3}];

SupportDisp = Table[O, {i, 1, nod}, {j, 1, 3}];

ThreeD

Yukarida verilen dosyast uygun ortamda icra edildiginde ¢ubuk kuvvetleri, diigiim
deplasmanlar1 ve sistem denklemleri hesaplanmaktadir. Burada sadece diiglim
deplasmanlar1 Tablo 3.22.’de, cubuk kuvvetleri Tablo 3.23.’de sunulmustur. Elde edilen

degerler kaynakta verilen degerler ile tamamen aynidir.

Tablo 3.22. Rolatif diigiim deplasmanlari (m)

Diigiim no dx dy dz
1 0 0 0
2 0 0.0000424129 0
3 0 0 0
4 -0.00033750 0.000305851 -0.00164136
5 -0.00005625 0.000230851 -0.00103783
6 0.00022500 -0.000474939 -0.00125097
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Tablo 3.23. Cubuk kuvvetleri

Cubuk no Normal Kuvvet (KN)
1 12.72
2 0.00
3 5.09
4 -67.5
5 13.52
6 -11.25
7 -56.12
8 45.00
9 84.18

10 33.54
11 0.00
12 -22.5

3.3.2.3. Uygulama 3:

Uciincii 6rnek olarak, Farajzadeh (2012) nin ¢alismasindan 18 ¢ubuklu 8 diigiimlii kafes
ornegi alimmistir [48]. Kafes sisteme Sekil 3.42.’de sunulmakta olup, diigiimleri
numaralandirilmigtir. Biitlin ¢ubuklarin kesit alan1 ve elastisite modiilii esit olup,
sirastyla 0.002 m? ve 2x10°kN/m? dir. Cubuklarin numaralandirilma islemleri, cubuk
diiglimleri tarifinde veri dosyasinin i¢inde mevcuttur. Diigiim koordinatlar1 veri dosyasi
icinde verildiginden tekrar tablo olarak diizenlenmemistir. Alt dort kdsesinde bulunan
ve “1, 2, 5, 6” ile numaralandirilan diigiimlerinde ii¢ eksende basit mesnetlendirilmistir.
Uygulanan diigtim tekil ytikleri “z” yoniinde asag1 dogru olup, “7” ve “8” diiglimlerinde
degerleri de sirasiyla 35 KN ve 45 kN’dur. Mesnet diigimlerinin diginda kalan diigtimler

tic eksende de serbest birakilmistir. Hazirlanan veri dosyasi asagida sunulmaktadir.
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L 5
4

Sekil 3.42. Farajzadeh (2012) nin galismasindan alinan 18 ¢ubuklu 8 diigiimlii kafes
[48]

Veri Dosyasi 3;

Clear[Evaluate[Context[] <> "*"]]
<< "C:\Users\\CDA\\Desktop\\Yener-Prog\\3DModul\\Modul3D.txt"
nod = 8;
nel = 18;
Xyz =
{{0, 0, 0},{0, 4, 0},{4, 0, 0},{4, 4, 0},{8, 0, 0},{8, 4, 0},{2, 2, 3.5},{6, 2, 3.5}};
jload = {{0, 0, 0},{0, 0, 0},{0, 0, 0},{0, 0, 0},{0, 0, 0},{0, 0, 0},{0, O, -45},{0, 0, -35}};
restraints ={{1, 1, 1},{4, 1, 1},{0, 0, 0},{0, 0, 0}{1, 1, 1} {1, 1, 1},{0, O, 0},{0, O, 0}};
defld ={{1, 2}.{2, 4}{3, 4} {1, 3}.{1, 4},{4, 6},{5, 6}.{3, 5},{4, 5},
{1, 7342, 73.{3, 7}.{4, 7}.{3, 8}.{4, 8}.{6, 8}.{5, 8}.{7, 8}};
area = Table[0.002, {i, 1, nel}];
EMod = Table[2*10"8, {i, 1, nel}];



TEC = Table[O, {i, 1, nel}];
DeltaTn = Table[O, {i, 1, nel}];
ElasticSupport = Table[O0, {i, 1, nod}, {j, 1, 3}];

SupportDisp = Table[O0, {i, 1, nod}, {j, 1, 3}];

ThreeD
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Yukarida verilen veri dosyasit uygun ortamda icra edildiginde, veriler islenmekte ve

cubuk kuvvetleri hesaplanmaktadir. Elde edilen diigiim deplasmanlart ve cubuk

kuvvetleri asagida Tablo 3.24. ve Tablo 3.25.de sunulmaktadir. Tablolarda sunulan

degerler 6rnegin alindig1 kaynakla tamamen uyum i¢indedir.

Tablo 3.24. Rolatif diigiim deplasmanlari (m)

Diigiim no dx dy dz
1 0 0 0
2 0 0 0
3 0.00000706 0 -0.000502551
4 0.00000533 0 -0.000502551
5 0 0 0
6 0 0 0
7 0.000117386 -0.0000004333 -0.000462263
8 -0.000111186 -0.0000004333 -0.000412227

Tablo 3.25. Cubuk kuvvetleri

Cubuk no  Normal Kuvvet (kN) Cubuk no Normal Kuvvet (kN)
1 0 10 -27.3385
2 0.533333 11 -27.3043
3 0 12 -1.59002
4 0.706677 13 -1.62426
5 0.266667 14 1.59002
6 -0.533333 15 1.62426
7 0 16 -24.1243
8 -0.706677 17 -24.0900
9 -0.266667 18 -22.8571
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3.3.2.4. Uygulama 4:

Dordiincti 6rnek olarak, Farajzadeh (2012) nin galismasindan 25 ¢ubuklu 10 diigiimlii
kafes ornegi alinmistir. Kafes sistem Sekil 3.43.°de diiglim numaralar1 ve uygulanan
tekil yiiklerle birlikte sunulmaktadir [48]. Cubuklarin kesit alan1 gubuklarin tamami igin
0.0025 m? alinmis olup, ayni sekilde elastisite modiilleride 2x108kN’dur. Sistemin en
altinda bulunan ve “7, 8, 9, 10” sayilar1 ile numarandirilan diigiimler {i¢ yonde de basit
olarak mesnetlendirilmistir. Tekil kuvvetler ise “1” numarali diigiimde “z” yoniinde
diisey olarak 60 kN, “2” numarali diigiimde “y” yoniinde pozitif yonde 75 kN ile
yiiklenmistir. Mesnet diginda kalan diigiimler mafsal olarak tasarlanmis ve her {i¢ yonde

serbest birakilmistir. Diiglim koordinatlar1 hazirlanan veri doyasi i¢inde sunuldugundan

tablo olarak diizenlenmemistir. Veri dosyas1 asagida sunulmaktadir.
Veri Dosyasi 4:

Clear[Evaluate[Context[] <> "*"]]

<< "C:\Users\\CDA\Desktop\\Yener-Prog\\3DModul\\Modul3D.txt"

nod = 10;

nel = 25;

xyz = {{1.5, 2.5, 5}, {3.5, 2.5, 5}, {3.5, 1.5, 2.5}, {1.5, 1.5, 2.5} {1.5, 3.5, 2.5},
{35, 3.5, 2.5}, {5, 0, 0}, {0, 0, 0}, {0, 5, 0}, {5, 5, 0}};

jload = {{0, 0, -60}, {0, 75, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0},

{0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, O, 0}};

restraints = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0},

{0,0,0},{1,1,1},{1,1,1}, {1, 1,1}, {1, 1, 1}};

defld ={{1, 2}, {1, 5}, {1, 4}, {1, 3}, {1, 6}, {2, 5}, {2, 4}, {2, 6}, {2, 3}, {4, 5},

{5, 6}, {3, 6} {3, 4}, {5, 8}, {4, 8}, {3, 8}, {4, 7}, {6, 7}, {3, 7}, {5, 9},

{6, 9}, {4, 9}, {5, 10}, {6, 10}, {3, 10}};

area = Table[0.0025, {i, 1, nel}];

EMod = Table[2*10"8, {i, 1, nel}];

TEC = Table[O, {i, 1, nel}];

DeltaTn = Table[O, {i, 1, nel}];
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ElasticSupport = Table[O0, {i, 1, nod}, {j, 1, 3}];
SupportDisp = Table[O, {i, 1, nod}, {j, 1, 3}];
ThreeD

Sekil 3.43. Farajzadeh (2012) nin ¢alismasindan alinan 25 ¢ubuklu 10 digimli kafes
[48]

Yukarida verilen veri dosyast uygun ortamda icra edildiginde, veriler islenmekte ve

cubuk kuvvetleri hesaplanmaktadir. Elde edilen diigiim deplasmanlar1 ve cubuk

kuvvetleri asagida Tablo 3.26. ve Tablo 3.27.’de sunulmaktadir. Tablolarda sunulan

degerler 6rnegin alindig1 kaynakla tamamen uyum igindedir.
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Tablo 3.26. Rolatif diigiim deplasmanlari (m)

Diigiim no dx dy dz
1 (-0.000362652 0.000637831 -0.000359737
2 -0.000334382 0.0019673 0.0000317329
3 0.000178055 0.0000817108 0.000384351
4 0.00019841 0.000118159 -0.000010546
5 -0.000154678 0.000138682 -0.000381099
6 -0.000127015 0.0000840978 -0.000375119
7 0 0 0
8 0 0 0
9 0 0 0
10 0 0 0

Tablo 3.27. Cubuk kuvvetleri

Cubuk no Normal Kuvvet (kN) Cubuk no Normal Kuvvet (KN)
1 7.06769 14 -16.8524
2 -30.741 15 20.8599
3 -24.3658 16 41.1237
4 -9.89715 17 -13.0978
5 -1.95573 18 -10.914
6 -51.3753 19 37.9703
7 39.5224 20 -64.7808
8 -59.7291 21 -36.3493
9 69.2443 22 -3.42906
10 5.13092 23 -14.9253
11 6.9158 24 -40.6242
12 0.596746 25 9.82671
13 -5.08876

3.3.2.5. Uygulama 5:

Besinci ornek olarak, Farajzadeh (2012) nin ¢alismasindan 30 ¢ubuklu 12 diigiimlii
kafes ornegi alinmistir. Kafes sistem Sekil 3.44.’de diigiim numaralar1 ve uygulanan
tekil yiiklerle birlikte sunulmaktadir. Cubuklarin kesit alani, ¢ubuklarin tamami igin

0.002 m? alinmis olup, ayn1 sekilde elastisite modiilleride 2x10°kN/m?® dir [48].

Kafes sistemin “1, 2, 3, 4,11” sayilar1 ile numarandirilan diigiimler iic yonde de basit

olarak mesnetlendirilmistir. Tekil kuvvet ise “10” numarali diigiimde *“y” yoniinde
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negatif yonde olarak 40 kN, “12” numarali diigimde “z” yoniinde negatif yonde 60 kN
ile yiikklenmistir. Mesnet disinda kalan diigiimler mafsal olarak tasarlanmis ve her ii¢
yonde serbest birakilmistir. Diigiim koordinatlar1 hazirlanan veri dosyasi i¢inde

sunuldugundan tablo olarak diizenlenmemistir. Veri dosyasi asagida sunulmaktadir.

Sekil 3.44. Farajzadeh (2012)’nin ¢alismasindan alinan 30 ¢ubuklu 12 digiimlii kafes
[48]

Veri Dosyasi 5:

Clear[Evaluate[Context[] <> "*"]]

<< "C:\\Users\CDA\Desktop\\Yener-Prog\3DModul\\Modul3D.txt"
nod = 12;

nel = 30;

xyz = {{0, 0,3}, {0,3,3}, {0,3,0} {000} {303} {333}
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{3,3,0}, {3,0,0}, {6,0,3}, {6,3,3} {6,3 0}, {6,0,60}};
jload ={{0, 0, 0}{0, 0, 0}, 0, 0, 0}, 0, 0, 0}, {0, 0, 0}, {0, 0, 0},
{0, 0, 0},{0, 0, 0}, {0, 0, 0}, {0, -40, 0}, {0, 0, 0}.,{0, 0, -60}};
restraints ={{1, 1, 1}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}, {0, 0, 0}, {0, 0, 0},
{0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {1, 1, 1}, {0, O, 0}};
defld = {{1, 4}, {1, 2}, {2, 3}, {3, 4}, {3, 7}, {3, 6}, {2, 6}, {1, 6}, {1, 5}, {1, 8},
{4, 8}, {3, 8}, {5, 8}, {5, 6}, {6, 7}, {6, 8}, {7, 8}, {8, 12}, {8, 11} {8, 9},
{5, 9},{6, 9}, {6, 11}, {6, 10}, {7, 11}, {9, 12}, {10, 12}, {11, 12}, {10, 11}, {9, 10}};
area = Table[0.002, {i, 1, nel}];
EMod = Table[2*10"8, {i, 1, nel}];
TEC = Table[0, {i, 1, nel}];
DeltaTn = Table[0, {i, 1, nel}];
ElasticSupport = Table[0, {i, 1, nod}, {j, 1, 3}];
SupportDisp = Table[0, {i, 1, nod}, {j, 1, 3}];
ThreeD

Yukarida verilen veri dosyasi uygun ortamda icra edildiginde, veriler islenmekte ve
cubuk kuvvetleri hesaplanmaktadir. Elde edilen diigiim deplasmanlart ve cubuk
kuvvetleri asagida Tablo 3.28. ve Tablo 3.29.’da sunulmaktadir. Tablolarda sunulan

degerler 6rnegin alindig1 kaynakla tamamen uyum icindedir.

Tablo 3.28. Rolatif diigiim deplasmanlari (m)

Diigiim no dx dy dz
1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 0.0000281789 -0.0014744700 -0.0015255300
6 0.0004281210 -0.0014744700 -0.0000127673
7 0 0.0000127673 -0.0000127673
8 -0.0004505580 0.0000127673 -0.0015255300
9 0.0000563577 -0.0028670400 -0.0031329600
10 0.0004281210 -0.0032279500 -0.0000609106
11 0 0 0

=
N

-0.0004505580

0.0000609106

-0.0035220500
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Tablo 3.29. Cubuk kuvvetleri

Cubuk no Normal Kuvvet (kN) Cubuk no Normal Kuvvet (kN)
1 0 16 1.70231
2 0 17 0
3 0 18 0
4 0 19 29.1861
5 0 20 -73.3674
6 27.6903 21 3.75718
7 57.0829 22 68.0539
8 -69.7563 23 -29.3926
9 3.75718 24 0
10 71.6651 25 0.

11 -60.0744 26 51.8786
12 -30.8884 27 11.4854
13 0 28 -8.12141
14 0 29 -8.12141
15 0 30 -48.1214

3.3.2.6. Uygulama 6

Altinct drnek olarak Farajzadeh (2012) nin ¢alismasindan 39 ¢ubuklu 16 diigiimlii kafes
ornegi alinmistir. Kafes sistem Sekil 3.45.’de diigiim numaralar1 ve uygulanan tekil
yiiklerle birlikte sunulmaktadir [48]. Cubuklarin kesit alani, ¢ubuklarin tamami igin
0.0015 m? alinmus olup, aymi sekilde elastisite modiilleride 2x10® kN/m*dir. Kafes
sistemin “13, 14, 15, 16” sayilar1 ile numarandirilan diigiimleri {i¢ yonde de basit olarak
mesnetlendirilmistir. Tekil kuvvetler ise “1” numaral1 diigiimde “x” yoniinde 10 kN, “2”
numarali diiglimde “z” yoniinde negatif yonde 25 kN, “3” numarali diigiimde “y”
yoniinde 40 kN ile yiiklenmistir. Mesnet disinda kalan diiglimler mafsal olarak
tasarlanmis ve her ili¢ yonde serbest birakilmistir. Diigiim koordinatlar1 hazirlanan veri

dosyasi i¢inde sunuldugundan tablo olarak diizenlenmemistir. Veri dosyasi asagida

sunulmaktadir.



Sekil 3.45. Farajzadeh (2012) nin ¢alismasindan alinan 39 ¢ubuklu 16 diigiimli kafes
[48]
Veri Dosyasi 6:

Clear[Evaluate[Context[] <> "*"]]

<< "C:\Users\CDA\\Desktop\\Yener-Prog\\3DModul\\Modul3D.txt"
nod = 16;

nel = 39;

xyz = {{0, 0, 12}, {0, 4, 12}, {4, 4, 12}, {4, 0, 12}, {0, O, 8}, {0, 4, 8}, {4, 4, 8}, {4, 0, 8},
{0, 0, 4},{0, 4, 4},{4, 4, 4},{4, 0, 4}, {0, O, 0}, {0, 4, 0}, {4, 4, 0},{4, 0, O}};

jload ={{10, 0, 0}, {0, 0, -25},{0, 40, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0},

{0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, O, 0}};

restraints = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, O,
0},

125
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{0, 0, 0},{0,0,0},{0,0,0},{0,0,0}, {2,1,1}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}};
defld = {{1, 2}, {2, 3}, {3, 4}, {1, 4}, {1, 3}, {1, 6}, {2, 7}, {4, 5}, {3, 8}, {1, 5},
{2, 6}, {3, 7}, {4, 8}, {5, 6}, {6, 7}, {7, 8}, {5, 8}, {5, 7}, {5, 10}, {6, 11},
{7, 12}, {8, 9}, {5, 9}, {6, 10}, {7, 11}, {8, 12}, {9, 10}, {10, 11}, {11, 12} {9, 12},
{9, 11}, {9, 14}, {10, 15}, {11, 16}, {12, 13}, {9, 13}, {10, 14}, {11, 15},{12, 16}};
area = Table[0.0015, {i, 1, nel}];
EMod = Table[2*10"8, {i, 1, nel}];
TEC = Table[O, {i, 1, nel}];
DeltaTn = Table[O, {i, 1, nel}];
ElasticSupport = Table[O0, {i, 1, nod}, {j, 1, 3}];
SupportDisp = Table[O, {i, 1, nod}, {j, 1, 3}];
ThreeD

Yukarida verilen veri dosyasi uygun ortamda icra edildiginde, veriler islenmekte ve
cubuk kuvvetleri hesaplanmaktadir. Elde edilen diigiim deplasmanlart ve cubuk
kuvvetleri agsagida Tablo 3.30. ve Tablo 3.31.’de sunulmaktadir. Tablolarda sunulan

degerler 6rnegin alindig kaynakla tamamen uyum i¢indedir.

Tablo 3.30. Rolatif diigiim deplasmanlari (m)

Diigiim no dx dy dz

1 0.00355298 0.00574146 0.00111499
2 -0.00141711 0.00574146 -0.00171499
3 -0.00148828 0.010984 -0.00248501
4 0.00334848 0.010984 0.0000850094
5 0.00181124 0.00304351 0.00104382
6 -0.00143067 0.00311468 -0.00131049
7 -0.00152366 0.00644014 -0.00202285
8 0.00158491 0.00690231 0.000289514
9 0.000559124 0.00090185 0.00067515

10 -0.000968517 0.000994845 -0.000741816

11 -0.00104867 0.00247331 -0.00119152

12 0.00034564 0.00291365 0.000258184

13 0 0 0

14 0 0 0

15 0 0 0

16 0 0 0
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Tablo 3.31. Cubuk kuvvetleri

Cubuk no Normal Kuvvet (kN) Cubuk no Normal Kuvvet (kN)
1 0 21 46.7049
2 -5.33781 22 24.0058
3 0 23 27.6503
4 -15.3378 24 -42.6503
5 7.54881 25 -62.3497
6 -7.54881 26 2.34973
7 7.54881 27 6.97464
8 21.6909 28 -6.0113
9 49.0197 29 -33.0254
10 5.33781 30 -16.0113
11 -30.3378 31 -1.36237
12 -34.6622 32 -8.50126
13 -15.3378 33 8.50126
14 5.33781 34 48.0673
15 -6.97464 35 22.6434
16 -34.6622 36 50.6362
17 -16.9746 37 -55.6362
18 2.31482 38 -89.3638
19 -9.86363 39 19.3638
20 9.86363

3.3.2.7. Uygulama 7:

Yedinci 6rnek olarak Farajzadeh (2012) nin ¢alismasindan 96 ¢ubuklu 32 digimlii
kafes 6rnegi alimmistir. Kafes sistem Sekil 3.46.’da diigiim numaralar1 ve uygulanan
tekil yiiklerle birlikte sunulmaktadir. Cubuklarin kesit alani, ¢ubuklarin tamami i¢in
0.002 m? alinmus olup, aym sekilde elastisite modiilleride 2x10° kN/m? dir. Kafes
sistemin “1, 4, 17, 20” sayilart ile numarandirilan diigiimleri ti¢ yonde de basit olarak
mesnetlendirilmistir. Tekil kuvvetler ise “8” numarali diigiimde “x” yoniinde 35 kN,
“16” numarali diiglimde “x” yoniinde 40 kN, “21” numarali diigiimde “z” yoniinde

negatif yonde 35 kN, “28” numarali diigiimde “z” yoniinde negatif yonde 50 kN ile
yiiklenmisgtir [48].

Mesnet disinda kalan diigiimler mafsal olarak tasarlanmis ve her {i¢ yonde serbest
birakilmigtir. Diigiim koordinatlar1 hazirlanan veri dosyasi i¢inde sunuldugundan tablo

olarak diizenlenmemistir. Veri dosyasi asagida sunulmaktadir.
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Sekil 3.46. Farajzadeh (2012)’nin ¢alismasindan alinan 96 ¢ubuklu 32 diigiimlii kafes
[48]

Veri Dosyas1 7:

Clear[Evaluate[Context[] <> "*"]]

<< "C:\Users\CDAWDesktop\\Y ener-Prog\3DModul\Modul3D. txt"

nod = 32;

nel = 96;

xyz ={{0, 0, 0}, {3, 0, 0}, {6, 0, 0}, {9, 0, 0}, {0, 3, 0}, {3, 3, 0}, {6, 3, 0}, {9, 3, 0},
{0, 6, 0}, {3, 6, 03, {6, 6, 0}, {9, 6, 0}, {0, 9, 0}, {3, 9, 0}, {6, 9, 0}, {9, 9, 0},

{0, 12, 0}, {3, 12, 0}, {6, 12, 0}, {9, 12, 0}, {1.5, 1.5, 3}, {4.5, 1.5, 3},

{7.5,15,3}{L5, 45,3}, {45,45,3}, {7.5,45,3}, {15,75,3},
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{45,75,3}{7.5,75, 3}, {15,105, 3}, {45,105, 3}, {7.5, 10.5, 3}};

jload = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, O, 0}, {35, 0,
0},

{0, 0, 0}, {0, 0, 03}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {40, 0, 0},
{0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, -35},{0, 0, 0}, {0, 0, 0}, {0, 0, 0},
{0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, -50},{0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0} };
restraints = {{1, 1, 1}, {0, 0, 0}, {0, 0, 0}, {1, 1, 1}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, O,
0},

{0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0},
{1, 1, 1}, {0, 0, 0}, {0, 0, 0}, {1, 1, 1}, {0, 0, 03}, {0, 0, 0}, {0, 0, 0},{0, 0, 0},
{0, 0, 0}, {0, 0, 0%}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0} };
defld = {{1, 2}, {2, 6}, {5, 6}, {1, 5}, {1, 21}, {2, 21}, {6, 21}, {5, 21},

{6, 10}, {9, 10}.{5, 9}, {5, 24}, {6, 24}, {10, 24}, {9, 24}, {10, 14},

{13, 14} {9, 13}, {9, 27}, {13, 27}, {14, 27}, {10, 27}, {14, 18}, {17, 18},

{13, 17}, {13, 30}, {14, 30}, {18, 30}, {17, 30}, {2, 3}, {3, 7}, {6, 7},

{2, 22}, {3, 22}, {7, 22}, {6, 22}, {7, 11}, {10, 11}, {6, 25}, {7, 25},

{11, 25}, {10, 25}, {11, 15}, {14, 15}, {10, 28}, {11, 28}, {15, 28}, {14, 28},
{15, 19}, {18, 19}, {14, 31}, {15, 31}, {19, 31}, {18, 31}, {3, 4}, {4, 8},

{7, 8}, {3, 23}, {4, 23}, {8, 23}, {7, 23}, {8, 12}, {11, 12}, {7, 26},

{8, 26}, {12, 26}, {11, 26}, {12, 16}, {15, 16}, {11, 29}, {12, 29}, {16, 29},
{15, 29}, {16, 20}, {19, 20}, {15, 32}, {16, 32}, {20, 32}, {19, 32}, {21, 22},
{24, 25}, {27, 28}, {30, 31}, {21, 24}, {24, 27}, {27, 30}, {22, 25}, {25, 28},
{28, 31}, {22, 23}, {25, 26}, {28, 29}, {31, 32}, {23, 26}, {26, 29}, {29, 32} };
area = Table[0.002, {i, 1, nel}];

EMod = Table[2*10"8, {i, 1, nel}];

TEC = Table[0, {i, 1, nel}];

DeltaTn = Table[0, {i, 1, nel}];

ElasticSupport = Table[0, {i, 1, nod}, {j, 1, 3}];

SupportDisp = Table[0, {i, 1, nod}, {j, 1, 3}];

ThreeD
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Yukarida verilen veri dosyast uygun ortamda icra edildiginde, veriler islenmekte ve
cubuk kuvvetleri hesaplanmaktadir. Elde edilen diiglim deplasmanlari ve c¢ubuk
kuvvetleri asagida Tablo 3.32. ve Tablo 3.33.’de sunulmaktadir. Tablolarda sunulan

degerler 6rnegin alindig1 kaynakla tamamen uyum igindedir.

Tablo 3.32. Rolatif diiglim deplasmanlari (m)

Diigiim no dx dy dz

1 0 0 0

2 0.00016496 -0.0000058138 -0.000669505

3 0.000180408 -0.0000137148 -0.000281531

4 0 0 0

5 0.00147637 0.0000122176 -0.00167606

6 0.00147637 -0.0000058138 -0.000996862

7 0.00160374 -0.0000137148 -0.000305443
8 0.00186624 -0.0000233667 0.000748146

9 0.00156004 0.000033646 -0.00184938
10 0.00156004 0.0000436846 -0.00118964
11 0.00163202 -6.83407*10"-6 -0.000398237
12 0.00163202 -4.5108*10"-6 0.000539577
13 0.00140255 0.0000417727 -0.00147433
14 0.00140255 0.000152077 -0.000963766
15 0.00160878 0.0000556728 -0.000371367
16 0.00190878 0.0000209389 0.000728973
17 0 0 0

18 0.000138984 0.000152077 -0.000461945
19 0.000165647 0.0000556728 -0.000256213
20 0 0 0
21 0.000545936 0.000443441 -0.000978315
22 0.000423144 0.000108712 -0.000581188
23 0.000358307 -0.000100958 0.0000329523
24 0.000814392 0.000161925 -0.00143685
25 0.000791879 0.0000623683 -0.000754512
26 0.000756251 -0.0000121613 0.000109981
27 0.000853973 -0.000142482 -0.00138384
28 0.000817376 -0.0000225682 -0.000959121
29 0.000764393 0.000030307 0.0000762418
30 0.000551122 -0.0003978 -0.000737163
31 0.000458025 -0.000102556 -0.000542434
32 0.000380223 0.0000984261 0.0000111715
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Tablo 3.33. Cubuk kuvvetleri

Cubuk N.Kuvvet Cubuk N. Kuvvet Cubuk N. Kuvvet

no (kN) no (kN) no (kN)
1 21.9947 33 24.4152 65 -6.89494
2 0 34 -31.9832 66 1.07676
3 0 35 22.5191 67 6.48871
4 1.62902 36 -14.9511 68 3.39329
5 -42.9891 37 0.917426 69 40.

6 -24.4152 38 9.59728 70 5.26552
7 23.0341 39 -5.84902 71 -1.07676
8 1.50411 40 -0.45309 72 -7.57523
9 6.59978 41 2.595 73 3.38647
10 0 42 3.70711 74 -2.79185
11 2.85712 43 8.33424 75 -22.0863
12 -1.50411 44 27.4973 76 -18.699
13 -2.23402 45 -15.4613 77 7.57523
14 5.91029 46 -14.3492 78 -20.2803
15 -2.17216 47 -13.5938 79 31.4041
16 14.4524 48 -17.8329 80 -16.3723
17 0 49 0 81 -3.00166
18 1.08356 50 3.55503 82 -4.87969
19 2.17216 51 -15.8443 83 -12.413
20 -8.14854 52 28.9064 84 -37.5354
21 0.132446 53 -31.4041 85 -40.5876
22 5.84393 54 18.342 86 -34.0425
23 0 55 -24.0544 87 -6.17922
24 18.5312 56 -3.11557 88 -11.3249
25 -5.56969 57 35 89 -10.6651
26 8.14854 58 31.9832 90 -8.64488
27 33.5448 59 -17.4827 91 -4.75053
28 -18.342 60 6.89494 92 -7.06432
29 -23.3513 61 -21.3954 93 -10.3736
30 2.05974 62 2.51413 94 11.8396
31 0 63 0 95 5.66244
32 16.9832 64 -0.670523 96 9.08255

3.3.2.8. Uygulama 8:

Sekizinci ve son ornek olarak Jalilive Hosseinzadeh (2015) nin calismasindan 120
cubuklu ve 49 digiimli kafes kubbe 6rnegi alinmistir [49]. Kubbe kafes sistem Sekil

3.47.°de diigliim numaralarinin belirgin sekilde goriildiigii, kafesin X-Y diizlemindeki
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hali verilmistir. X-Z diizlemindeki ise Sekil 3.48’de verilmektedir. Sekil 3.47°de ilave
olarak elemanlarin numarasi da verilmektedir. Bir numarali diiglim kubbenin tepesi
olup, global koordinat takiminin x-y baslangici buradadir. Bu diigiimiin yiiksekligi ise
275.59 in¢’tir. Numaras1 2-13 arast diiglimlerin yiiksekligi ayni olup, 196.85 ing dir.
Benzer tarzda 14 diigiimiinden 37 diigiimiine kadar olan digiimlerin yiiksekligi ise
118.11 in¢ dir. 38-49 aras1 diigiimlerin yiiksekligi ise sifirdir. Her diigiime ait
yiikseklikler ve diger koordinatlar veri dosyasi i¢inde verildiginden burada tek tek

verilmeyecektir.

Kubbe sekilden de goriilecegi tizere simetriktir. Cubuklarin elastisite modiilii 30450 ksi
olarak verilmis olup, malzeme akma dayanimi gerilmesi degeri (Fy) ise 58 ksidir.
Kubbeye sadece diisey yiik uygulanmis olup, bir numarali diigiimiinde -13.49 Kips
diisey yiik mevcuttur. Iki numarali diigiimden on ii¢ numarali diigiime kadar -6.744
kips, on dort numarali diiglimden otuz yedi numarali diigiime kadar ise -2.248 Kips
diisey yiik yiiklenmistir. Kubbe kafes sistem otuz sekiz numarali diigiimden kirkdokuz
numarali diigiime kadar sabit olarak mesnetlenmis olup, diger diigiimleri ii¢ eksende de
serbest birakilmigtir. Ornegin alindig1 kaynakta kubbe kafesin kesit alanlarinin optimum

degerinin bulunmasi istenmektedir.

Optimum degerlerin hesabinin ise asagida verilen kritelere gore yapilmasi
gerekmektedir. Cekme ¢ubuklarinda emniyet gerilmesi degeri olarak akma dayaniminin
yizde atmis1 alinmaktadir. Basing c¢ubuklarinda ise emniyet gerilmesi degerinin
cubugun elastik burkulma veya plastik burkulmaya maruz kalip, kalmadigina gore
hesaplanarak belirlenmektedir. Cubugu elastik ya da plastik burkulmadan hangisine
maruz oldugu ise belirli bir sinir narinlik degerine goére belirlenmektedir. Amerikan
celik yap1 enstitiisine gore [50, 51] elastik-plastik narinlik sinir degeri C. ile

isimlendirilerek degeri asagida (Denklem 3.4’ de) verilmistir.

2Pi2%E
C. = / F‘y (3.4)

Cubuk narinlik degeri ise ¢cubuk kesit yarigap1 ve boyu arasindaki oran Denklem 3.5°de

(lambda) olarak tarif edilmekle birlikte, Amerikan ¢elik yap1 enstitiisiine gore [50, 51]
cubuk kesit alanin1 ve yarigap arasindaki iligski ise boru kesitler i¢in Denklem 3.6’da

tarafindan verilmektedir.
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_ _Cubuk Boyu
lambda Kesit Yaricapi (35)
r = 0.4993 A%6777 (3.6)

Basing ¢ubuklar1 i¢in emniyet gerilmesi degeri daha dnce bahsedildigi tizere, ¢ubuk
narinligi (lambda) ve elastik plastik narinlik sinirina goére belirlenmektedir. Cubuk

narinligi siir deger (C;) den kiigiikse emniyet gerilmesi i¢in Denklem 3.7 kullanilir.

Aksi durumda Denklem 3.8 kullanilir. Minimum ¢ubuk kesit alan1 ise 0.775 ing¢? den

kiigiik olmayacaktir.

(1_lambda2)

s, = 2t 3.7)
1 (5 . 3lambda lambda3> :
3' 8Cc 8 C3
12 Pi’E
Sy = —— 3.8
2 23 lambda? (3.8)

Yukarida verilen bilgiler 15181 altinda, problemi ¢6zmek icin veri dosyasi
olusturulmustur. Veri dosyasinda sicaklik ve mesnet ¢okmesi yliklemeleri olmadigindan
ilgili degerler sifir girilmistir. Sadece diisey ylik yiiklemesi yapilmistir. Malzeme ile
ilgili bilgiler ilgili matrislere aktarilmistir. Diigiim sayis1 ve elaman sayisi atandiktan
sonra, diigiim serbestlikleri ve koordinatlar1 tanimlanmistir. Cubuk eleman tarifleri ve

malzemeleri ile 6zellikler tanimlanmustir.

Kesit alan1 optimizasyonu yapilmak istendiginden kesit alan1 baslangi¢c degeri olarak
tiim g¢ubuklarda 0.775 ing2 atanmistir. Statik ¢Oziimler i¢in hazirlanan veri dosyasina
ilave olarak dosya sonunda iterasyon yapacak sekilde ilaveler yapilarak kesit

optimizasyonu yapilmistir.
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[G[]

Sekil 3.47. Kubbe kafesin X-Y diizlemindeki goriiniisii ve numaralandirmalar

A
I
1
|

275.59 in
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625.59 in >l

AA
Y

Sekil 3.48. Kubbe kafesin X-Z diizlemindeki goriiniisii ve geometrik veriler [49]
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Veri Dosyasi 8:

<< "C:\\Users\\CDA\W\Desktop\\Yener-Prog\\3DModul\\Modul3Dopt.txt"

nod = 49;nel = 120;

xyz = {{0, 0, 275.59},{273.26, 0, 196.85},{236.65, 136.63, 196.85},

{136.63, 236.65, 196.85},{0, 273.26, 196.85},{-136.63, 236.65, 196.85},

{-236.65, 136.63, 196.85},{-273.26, 0, 196.85},{-236.65, -136.63, 196.85},
{-136.63, -236.65, 196.85},{0, -273.26, 196.85},{136.63, -236.65, 196.85},

{236.65, -136.63, 196.85},

{492.12, 0, 118.11},{475.35, 127.37, 118.11},{426.188, 246.06, 118.11},

{347.981, 347.981, 118.11},{246.06, 426.188, 118.11},{127.37, 475.351, 118.11},
{0,492.12, 118.11},{-127.37, 475.351, 118.11},{-246.06, 426.188, 118.11},
{-347.981, 347.981, 118.11},{-426.188, 246.06, 118.11},{-475.35, 127.37, 118.11},
{-492.12, 0, 118.11},{-475.351, -127.37, 118.11},{-426.188, -246.06, 118.11},
{-347.981, -347.981, 118.11},{-246.06, -426.188, 118.11},

{-127.37, -475.351, 118.11} {0, -492.12, 118.11},{127.37, -475.351, 118.11},
{246.06, -426.188, 118.11},{347.981, -347.981, 118.11},{426.188, -246.06, 118.11},
{475.35, -127.37, 118.11},

{625.59, 0, 0},{541.777, 312.795, 0},{312.795, 541.777, 0},{0, 625.59, 0},
{-312.795, 541.777, 0} {-541.777, 312.795, 0},{-625.59, 0, 0} {-541.777, -312.795, 0},
{-312.795, -541.777, 0},{0, -625.59, 0}{312.795, -541.777, 0},{541.777, -312.795,
0}};

jload = Table[0, {j, 1, nod}, {i, 1, 3}];

restraints = Table[O, {j, 1, nod}, {i, 1, 3}];

definition = Table[O, {j, 1, nel}, {i, 1, 2}];

area = Table[0.775, {i, 1, nel}];

Dol[restraints[[i, 1]] = 1; restraints[[i, 2]] = 1; restraints|[[i, 3]] = 1;, {i, 38, 49}];
jload[[1, 3]] =-13.490;

Dol[jload([[i, 3]] = -6.744;, {i, 2, 13}];

Doljload|[i, 3]] = -2.248;, {i, 14, 37}];
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defld = { {1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6}, {1, 7}, {1, 8}, {1, 9}, {1, 10}, {1, 11},
{1, 12}, {1, 13}.{2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 7}, {7, 8}, {8, 9}, {9, 10}, {10, 11}

{11, 12}, {12, 13}, {13, 2},

{2, 14}, {2, 15}, {3, 15}, {3, 16}, {3, 17}, {4, 17}, {4, 18}, {4, 19}, {5, 19}, {5, 20},
{5, 21}, {6, 21}, {6, 22}, {6, 23}, {7, 23}, {7, 24}, {7, 25}, {8, 25}, {8, 26}, {8, 27},

{9, 27},

{9, 28}, {9, 29}, {10, 29}, {10, 30}, {10, 31}, {11, 31}, {11, 32}, {11, 33}, {12, 33},

{12, 34},
{12, 35}, {13, 35}, {13, 36}, {13, 37}, {2, 37},

{14, 15}, {15, 16}, {16, 17}, {17, 18}, {18, 19}, {19, 20}, {20, 21}, {21,

23},

{23, 24}, {24, 25}, {25, 26}, {26, 27}, {27, 28}, {28, 29}, {29, 30}, {30

32},
{32, 33}, {33, 34}, {34, 35}, {35, 36}, {36, 37}, {37, 14},

{14, 38}, {15, 38}, {15, 39}, {16, 39}, {17, 39}, {17, 40}, {18, 40}, {19

41%,

{20, 41}, {21, 41}, {21, 42}, {22, 42}, {23, 42}, {23, 43}, {24, 43}, {25

a4},

{26, 44}, {27, 44}, {27, 45}, {28, 45}, {29, 45}, {29, 46}, {30, 46}, {31,

47},

{32, 47}, {33, 47}, {33, 48}, {34, 48}, {35, 48}, {35, 49}, {36, 49}, {37,

38}};

Fy=58.;

EM=30450.;

EMod = Table[EM, {i, 1, nel}];

Sigma=TEC = Table|[0, {i, 1, nel}];

DeltaTn = Table[0, {i, 1, nel}];

ElasticSupport = Table[0, {i, 1, nod}, {j, 1, 3}];

SupportDisp = Table[0, {i, 1, nod}, {j, 1, 3}];

Do[ ThreeD;,areal = area;cc = Sqrt[2*Pi*Pi*EM/Fy];sigma = NForce/area;

22}, {22,

31}, {31,

40}, {19,

43}, {25,

46}, {31,

49%, {37,
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Do[If[NForce[[iger]] >= 0, area[[iger]] = NForce[[iger]]/(0.6Fy),

(ri =0.4993 *area[[iger]]"0.6777; lambdai = length[[iger]]/ri;
s1 = ((1 - lambdai~2/2/cc”2)* Fy)/(5/3 + 3 lambdai/8/cc - lambdai”*3/8/cc"3);
s2 = (12 Pi Pi EM/23/lambdai”2);

If[lambdai< cc, area[[iger]] = (Abs[NForce[[iger]]])/s1;];

If[lambdai>= cc, area[[iger]] = (Abs[NForce[[iger]]1/s2);] )I;

If[area[[iger]] < 0.775, area[[iger]] = 0.775];

, {iger, 1, nel}];

area = (area + areal)/2.;, {j1,1,23}];

Print["toplam w=", Total[areal*length]*0.288];

Print[MatrixForm[areal]];

Yukarida verilen veri dosyas1 uygun sekilde icra edildiginde minimum sistem agirligi ve
kesit alanlar1 bulunmaktadir. ThreeD modiilii sadece normal gerilmeleri dongi
icerisinde tekraren hesapliyacak sekilde modifiye edilmistir. Burada optimizasyon
algoritmasi veri dosyasinin son kisimlarindadir. Kullanilan algoritma iteratif bir
algoritmadir. Baslangigta kesit alanlar1 minimum segilerek ilk analiz yapilmaktadir. ilk
analiz sonucu elde edilen ¢gubuk normal kuvvetlerinden hareketle ve basin¢ veya ¢ekme
olmalart durumuna gore karsilastirilacak emniyet gerilmeleri, narinlikler ve elastik —
plastik burkulma halleri de gozetilerek, belirlenmektedir. Cubuklarda olusan gerilmeler
emniyet gerilmelerinden biiylikse, kesit alanlar1 daha Once belirlenen emniyet
gerilmelerinden faydalanilarak hesaplanmaktadir. Hesaplanan yeni alanlar ve
baslangigta girilen alanlar ile toplanip, ikiye boliinerek analizde tekrar kullanilacak yeni
cubuk alanlar1 bulunmaktadir. Boylece analiz 23 kez tekrar edilmektedir. Sonucta ise

optimum agirlik ve kesit alanlar1 belirlenmektedir.

Yukarida verilen kafes sistem Jalili ve Hosseinzadeh (2015) den once diger
aragtirmacilar tarafindan [52, 53] partical swarm optimizasyonu (PSO) ile ¢oziilerek
optimum kesit alanlar1 verilmistir. Jalili ve Hosseinzadeh (2015) ise kiiltiirel algoritma
(CA) ile ¢coziime ulagmiglardir. Kisit olarak sadece gerilme degerleri g6z dniine alinarak
optimize edilen sonuglar asagida Tablo 6.34’da sunulmaktadir. Bu ¢alismadan elde
edilen optimum agirhik ve kesit alanlari da Tablo 6.34’de diger arastirmacilarin
sonuclar ile karsilastirilmaktadir. Diger arastirmacilar kafes sistemde bulunan benzer

cubuklar gruplandirarak ¢oziime ulasmislardir.
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Bu calismada ise 120 ¢ubugun alani da degisken olarak alinmis ve ¢dziime bdylece
gidilmistir. Tablo 3.34’den goriilecedi lizere farkli arastirmacilarin farkli yaklasimlarina
gore cesitli sonucglar bulunmaktadir. Bu ¢alismadan elde edilen sonug¢ digerleri ile
karsilastirildiginda, calismada elde edilen sonuglarin digerlerinen ¢ok iyi sonu¢ verdigi
goriilmektedir. Digerlerinin optimizasyon yaklasimi esasen karmasik bir yapiya sahip
olmakla birlikte analiz sayis1 da oldukca fazladir, bu calismada Onerilen yaklasim
oldukca kolay anlasilabilir ve daha hizli ve daha 1yi bir sonu¢ vermistir. Yap1 toplam
agirlig olarak karsilastirildiginda bu ¢alisma sonucu bulunan deger digerlerinden %10
mertebesinde daha hafif olmustur.

Tablo 3.34.Kubbe kafes sistemin optimum kesit alanlarmin diger ¢alismalarla
karsilastirilmasi

Kaveh ve Kaveh ve

Talatahari Khayatazad Jal_|l| ve Bu
Hosseinzadeh
(2009) (2013) RO (2015) CA Cahsma
PSO PSOPC
1 3.147 3.235 3.128 3.123 2.468
2 6.376 3.37 3.357 3.354 3.332
3 5.957 4.116 4.114 4.112 3.402
4 4.806 2.784 2.783 2.782 2.546
5 0.775 0.777 0.775 0.775 0.775
6 13.798 3.343 3.302 3.301 2.433
7 2.452 2.454 2.453 2.446 2.357
W (Ib) 32432.9 19618.7 19476.2 19454.5 17143.2
Analiz
N/A 125000 19950 4270 23

Sayisi
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4. BOLUM

TARTISMA-SONUC VE ONERILER

4.1. Sonug ve Oneriler
4.1.1. Sonuclar

Bu tez calismasinda sadece normal kuvvete ¢alisan ¢ubuklarin i¢ kuvvetlerini elastik
egri yaklasimiyla ¢6zmek amaciyla formiilasyon yapilmistir. Normal kuvvete calisan
cubugun boyuna uzama elastik egrisi ile i¢ kuvvetler arasindaki iliskinin diferansiyel
denklemi elde edilmistir. [laveten, boyuna uzama elastik egrisi ile u¢ deplasmanlar1 sinir
sartlar1 arasindaki iliskide tespit edilmistir. Kodlama yontemi teknigi kullanilarak,
normal kuvvete calisan ¢ubuk sistemlerin diiglim deplasmanlarint ve i¢ kuvvetlerini
tespit etmek flizere cubuk sisteme ait u¢ noktalarindaki denge denklemleri elde
edilmistir. Elde edile denklemlerin ¢oziimii ile digiim noktalarinda bulunan
deplasmanlar bulunup, i¢ kuvvetlerin hesabinda kullamlmstir. U¢ ayr1 durum olan bir
boyutlu cubuk sistemler, iki boyutlu diizlemsel kafes ¢ubuk sistemler ve ii¢ boyutlu
uzay kafes sistemleri i¢in ayr1 ayri {i¢ farkli bilgisayar programi gelistirilmistir. Calisma
sonucunda gelistirilen programlar tekil ve boyuna diizglin yayili yiikleri yam sira;
sicaklik degisimi, elastik mesnet durumu ve mesnet ¢dkmelerini de gbz Oniine
alabilmektedir. Her bir durum igin gelistirilen programlar yardimiyla kaynaklar da
bulunan cubuk sistem oOrnekleri ¢oziilerek karsilagtirilmistir. Calismada elde edilen

sonuclar ile kaynaklarda verilen sonuglarin birebir uyum i¢inde oldugu goriilmiistiir.

Bir boyutlu durum igin gelistirilen program ile boyuna uzama egrisinin diferansiyel
denklemi ile burulmaya maruz cubuklarin diferansiyel denklemi benzestirilerek,
burulma problemlerinin de ¢06ziildiigli goriilmiistiir. Ayrica ayni program ile On
gerilmeli betonarme probleminin ¢oziimiiniin de benzestirme yoluyla coziilebildigi

anlasilmistir. Ongerilme problemi, iki ayri benzestirme yoluyla c¢oziilebilmistir,
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birincisinde diiglim noktasina verilen deplasman benzestirmesi diger ise sicaklik farki

nedeniyle olusacak deplasman benzestirmesidir.

Iki boyutlu durum igin gelistirilen program yardimiyla da kaynaklardan alinan iki
boyutlu diizlemsel kafes 6rneklerinin ¢oziimleri elde edilmis olup, sonuglarin literatiirde
verilen ¢dziimlerle uyum icinde oldugu goriilmiistiir. 1ki boyutlu kafes sistemlerin
¢Ozlimiiniin yan1 sira, kafes sistemlerde kesit boyutlarinin optimizasyonu igin iteratif bir
yontem onerilmistir. Onerilen ydéntemle elde edilen optimum ¢ubuk kesitlerinin literatiir

sonuglartyla uyumlu oldugu goriilmiistiir.

flaveten, ii¢ boyutlu durum igin gelistirilen program yardimiyla da literatiirden alinan iic
boyutlu kafes 6rneklerinin ¢oziimleri elde edilmis olup, sonuglarin literatiirde verilen
¢dziimlerle uyum icinde oldugu gériilmiistiir. U¢ boyutlu kafes sistemlerin ¢dziimiiniin
yani sira, kafes sistemlerde kesit boyutlarinin optimizasyonu igin iteratif bir yontem
onerilmistir. Onerilen yontemle elde edilen optimum cubuk kesitlerinin literatiir
sonuglariyla uyumlu oldugu goriilmekle birlikte, Onerilen iteratif yontemle bulunan
optimum ¢ubuk kesitlerinin literatiirde verilen degerlerden daha az oldugu, dolayisiyla

da daha ekonomik ¢6ziimiin elde edildigi goriilmiistir.
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EKLER
EK 1

OneD := Module[{dummy},
(*From this part below, the calculation is going to take place*)
dispN = 0;
Print["boundary condition in the beginning for each joint=",
MatrixForm[restraints]];
Do[lf[restraints[[i]] == 0, dispN = dispN + 1;
restraints[[i]] = dispN;, restraints[[i]] = 0], {i, 1, nod}];
Print["total displacement=", dispN];
Print["displacement number for each joint (boundary condition \

ofter coding)=", MatrixForm|[restraints]];

SysEq = Table[0, {i, 1, dispN}];
Do[ If[restraints[[i]] > 0,

SysEq[[restraints[[i]]]] = -jload[[i]]], {i, 1, nod}];
Print["Beginning of SysEqg=", MatrixForm[SysEq]];

u[0] =0;

lengthEl = Table[O, {i, 1, nel}];
EEndForl = Table[0, {i, 1, nel}];
EEndForJ = Table[O, {i, 1, nel}];

uCurve = Table[0, {i, 1, nel}];
NforceF = Table[O0, {i, 1, nel}];
TATEY] — Calculations are in proggress \

Do[
i = deflJ[[nn, 1]]; j = deflJ[[nn, 2]];
Print[nn, " th element in progress, and, its definion is from ",

L"to" jl;
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xi = xc[[i]]; xj = xc[[j]];
length = Xj - xi;

EM = EMod[[nn]];

nz = ngz[[nn]];

A = area[[nn]];

alfaT = TEC[[nn]];

dTn = DeltaTn[[nn]];

codei = restraints[[i]];
codej = restraints[[j]];
If[SupportDispl[[i]] '= 0, ui = SupportDisp|[[i]], ui = u[codei]];
If[SupportDispl[[j]] = 0, uj = SupportDisp[[j]], uj = u[codej]];
Print["displacements at i and j end of the current element are ",

ui, "and ", uj, " nz=", nz];

ul = (Integrate[-nz, z] + c1)/(EM*A);

u0 = Integrate[ul, z] + c2;

bi=u0/. z->0; Print["bi=", bi];

bj = u0 /. z -> length; Print["bj=", bj];

sol = Solve[{bi == ui, bj == uj}, {c1, c2}]; Print[sol];
u0 =u0 /. sol[[1]];

Print["For element number ", nn, " longitudinal curve u0 =", u0];

Nforce = EM*A (D[u0, z] - alfaT*dTn);

ni = -Nforce /. z -> 0;

nj = Nforce /. z -> length;

Print["Normal forcesatend ", i," ;and atend ", j,

" in terms of end displacement for element number ™, nn,

"are", ni,"and ", nj];

EEndForl[[nn]] = ni;
EEndForJ[[nn]] = nj;
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uCurve[[nn]] = u0;

lengthEI[[nn]] = length;

NforceF[[nn]] = Nforce;

If[codei > 0, SysEq[[codei]] = SysEq[[codei]] + ni];
If[codej > 0, SysEq[[codej]] = SysEq[[codej]] + nj];

Print[
-------- e
,{nn, 1, nel}]
Print[MatrixForm[SysEq], " = 0"];
Print["\
----------------------------------------------- T
unk = Table[u[i], {i, 1, dispN}]; Print["unk=", unk];
Print["\
----------------------------------------------- T
Isol = Flatten[Solve[SysEq == 0, unk]];
Print["lastsol for u displacement =", Isol];
Print["\
----------------------------------------------- “T;
Do[u[i] = Isol[[i, 2]], {i, 1, dispN}];
Print["\
----------------------------------------------- “T;
Print["Elastic Longitudinal curves are =", MatrixForm[uCurve]];
Print["\
----------------------------------------------- “T;

Print["end forces for Endl are =", MatrixForm[EEndForl]];
Print["end forces for EndJ are =", MatrixForm[EEndForJ]];
Print[" \




maxu = Max[{Abs[Isol[[All, 2]]], Lv}];
maxing = Max[{lengthEl, Lv}];
maxN = Max[{Abs[EEndForl], Lv}];
ud = Table[0, {i, 1, nod}];
Do[lf[restraints[[i]] > O, ud[[i]] = u[restraints[[i]]],
ud[[i]] = 0], {i, 1, nod}];
rateU = maxIng/maxu/5;
rateN = maxing/maxN/2.5;
xcd = xc + ud*rateU;
puntoO = 10;
puntol = 14;
Do[maxnqz =
Max[{Lv, Abs[ngz[[ii]] /. z -> 0],
Abs[ngz[[ii]] /. z -> lengthEI[[ii]]]}];, {ii, 1, nel}];
Ratengz = maxIng/maxnqz/2.5;

pltdgmO = Table[Graphics[] 0, {i, 1, nod}];
pltdgm1 = Table[Graphics[] O, {i, 1, nod}];
pltdgm2 = Table[Graphics[] O, {i, 1, nod}];

pltmsnt = pltmsntd = Table[Graphics[], {i, 1, nod}];
plttyuk = Table[Graphics[], {i, 1, nod}];

plttyukVal = Table[Graphics[], {i, 1, nod}];
(*joints are numbered in graph*)

GrSt = maxIng/50;
SabitM[x _,
y_ 1| :={Line[{{x - 2 *GrSt, y - 3.5* GrSt}, {Xx, y}, {x + 2*GrSt,
y - 3.5*GrSt}, {x - 2* GrSt, y - 3.5* GrSt}}],
Table[Line[{{x + (Hsh - 1)*GrSt, y - 4.5*GrSt}, {x + Hsh*GrSt,
y - 3.5*GrSt}}, {Hsh, -3, 3}],
Line[{{x - 3*GrSt, y - 3.5*GrSt}, {x + 3*GrSt, y - 3.5*GrSt}}]};

148



149

KayiciM[x_,
y ] :={Line[{{x - 2 * GrSt, y - 3.5*GrSt}, {X,
vy} {x +2*GrSt, y - 3.5*GrSt}, {x - 2*GrSt,
y - 3.5*GrSt}},
Table[Circle[{x + Hsh* GrSt, y - 4*GrSt}, .5*GrSt], {Hsh, -1,
1}], Line[{{x - 3*GrSt, y - 4.5*GrSt}, {x + 3*GrSt,
y - 4.5*GrSt}}};
mxload = Max[{Abs[jload], Lv}];
RateLoad = maxing/mxload/5;

Do|
nxx = xc[[iin]]; nyy = -maxIng/50;
pltdgmO[[iin]] =
ListPlot[{{nxx + 1.5 GrSt, 2 nyy}}, PlotRange -> All,
Axes -> False, PlotMarkers -> {iin, 8},
PlotStyle -> {Thick, Blue}];

pltdgm1[[iin]] =

ListPlot[{{nxx, 0}}, PlotRange -> All, Axes -> False,
PlotMarkers -> {\[FilledSmallCircle], 10},
PlotStyle -> {Thin, Black}];

pltdgm2[[iin]] =

ListPlot[{{nxx + 1.5 GrSt, 2 nyy}}, PlotRange -> All,
Axes -> False, PlotMarkers -> {\[EmptyCircle], 16},
PlotStyle -> {Thin, Black}];

(*tekil yuk cizimi*)
If[(restraints[[iin]] > 0 && jload[[iin]] !=0),
plttyukVal[[iin]] =
ListPlot[{{nxx - 1.5 nyy, -2 nyy}}, PlotRange -> All,
Axes -> False, PlotMarkers -> {Subscript[P, iin], puntol},
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PlotStyle -> {Thin, Black}];

plttyuk[[iin]] =
Graphics[{Arrowheads[Medium],
Arrow[{{nxx, 0}, {nxx + jload[[iin]]*RateLoad, 0}}1}11;

(*mesnet ayarlama*)

If[restraints[[iin]] == 0,

pltmsnt[[iin]] = Graphics[SabitM[nxx, 0]]];

(* x ekseni boyunca kayici*)

(*deformasyon sonrasi kayict mesnet yerleri*)
nxx = xcd[[iin]]; nyy = -1;

If[restraints[[iin]] == 0,

pltmsntd[[iin]] = Graphics[SabitM[nxx, nyy]]];

(* x ekseni boyunca kayici*)

, {iin, 1, nod}];

grafEl = grafEld = Table[Graphics[], {i, 1, nel}];
grafLC = Table[Graphics[], {i, 1, nel}];

grafNf = Table[Graphics[], {i, 1, nel}];

grafnqz = Table[Graphics[], {i, 1, nel}];

plt3 = Table[Graphics[], {i, 1, nel}];

pltucNi = Table[Graphics[], {i, 1, nel}];
pltucNvali = Table[Graphics[], {i, 1, nel}];
pltucNvalj = Table[Graphics[], {i, 1, nel}];
pltucNj = Table[Graphics[], {i, 1, nel}];

pltucngzi = Table[Graphics[], {i, 1, nel}];
pltucngzvali = Table[Graphics[], {i, 1, nel}];
pltucngzvalj = Table[Graphics[], {i, 1, nel}];
pltucngzj = Table[Graphics[], {i, 1, nel}];
graphLCvali = Table[Graphics[], {i, 1, nel}];



graphLCvalj = Table[Graphics[], {i, 1, nel}];

graphLCuci = Table[Graphics[], {i, 1, nel}];

graphLCucj = Table[Graphics[], {i, 1, nel}];

Do[

i = deflJ[[nn, 1]];

jj = deflJ[[nn, 2]];

xcii = xc[[ii]];

ycii = ycjj = 0;

xcjj = xc[[ill;

Ing = xcjj - xcii;

(*graph of u function®*)

ff = uCurve[[nn]];

XX =2Z;

yy = rateU*ff;

grafLC[[nn]] =

ParametricPlot[{xx + xcii, yy}, {z, O, Ing}, PlotRange -> All,
PlotStyle -> {Black}, Axes -> False];

(*at the end of element drawing graph value at i for uCurve*)

xxil = xcii;

yyil =0;

XXi2 = xcii + xx /. z ->0;

yyi2 =yyil+yy/.z->0;

graphLCuci[[nn]] =
ListLinePlot[{{xxi1, yyil}, {xxi2, yyi2}}, PlotRange -> All,
Axes -> False, PlotStyle -> {Black}];
If[yyi2 1= 0,
graphLCvali[[nn]] =
ListPlot[{{xxil + 2 (-xxil + xxi2)/4 + maxIng/20,
yyil + 2 (-yyil + yyi2)/4}},
PlotRange -> All, Axes -> False,
PlotMarkers -> {Rotate[
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Subscript[U, restraints[[deflJ[[nn, 1]]]]], O Degree],
punto0}, PlotStyle -> Black];

I

(*drawing graph value at j for uCurve*)

If[nn == nel,

XXil = Xcjj;

yyil=0;

(xxi2 = xcii + xx /. z -> Ing;

yyi2 =yyil +yy /. z -> Ing;

graphLCucj[[nn]] =
ListLinePlot[{{xxi1, yyil}, {xxi2, yyi2}}, PlotRange -> All,
Axes -> False, PlotStyle -> {Black}];
If[yyi2 =0,
graphLCvalj[[nn]] =
ListPlot[{{xxil + 2 (-xxil + xxi2)/4 + maxIng/20,
yyil + 2 (-yyil + yyi2)/4}},
PlotRange -> All, Axes -> False,
PlotMarkers -> {Rotate[
Subscript[U, restraints[[deflJ[[nn, 2]]]]], O Degree],
puntoQ}, PlotStyle -> Black];

1)

(*graph of element*)

ikoor = { xc{[ii]], 0}; jkoor = {xc[[jjll, 0}: nyy = -1;
grafEl[[nn]] =

GraphPlot[{ii -> jj},

VertexCoordinateRules -> {ii -> ikoor, jj -> jkoor},

VertexLabeling -> False];
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ikoor = { xcd[[ii]], nyy}; jkoor = {xcd[[jj]], nyy};
grafEld[[nn]] =

GraphPlot[{ii -> jj},

VertexCoordinateRules -> {ii -> ikoor, jj -> jkoor},

VertexLabeling -> True];

(*el number in gaph*)
nxx = (Xcii + xcjj)/2;

nyy = -maxIng/20;

pit3[[nn]] =
ListPlot[{{nxX, nyy}}, PlotRange -> All, Axes -> False,
PlotMarkers -> {Subscript[e, nn], puntol},

PlotStyle -> {Thin, Black}];

(*graph of normal force function*)

ff = NforceF[[nn]];

XX =2Z;

yy = rateN*ff;

grafNf[[nn]] =

ParametricPlot[{xx + xcii, yy}, {z, 0, Ing}, PlotRange -> All,
PlotStyle -> {Black}, Axes -> False];

(*at the end of element drawing graph value at i for normal force*)

XXil = Xcii;

yyil =0;

XXi2 = xcii + xx /. z ->0;

yyi2=yyil +yy/l.z->0;
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pltucNi[[nn]] =
ListLinePlot[{{xxil, yyil}, {xxi2, yyi2}}, PlotRange -> All,
Axes -> False, PlotStyle -> {Black}];
If[EEndForl[[nn]] !=0,
pltucNvali[[nn]] =
ListPlot[{{xxil + 2 (-xxil + xxi2)/4 + maxIng/20,
yyil + 2 (-yyil + yyi2)/4}}, PlotRange -> All,
Axes -> False,
PlotMarkers -> {Rotate[-EEndForI[[nn]], 90 Degree], punto0},
PlotStyle -> Black];
I;
(*drawing at j end*)
xxil = xcjj;

yyil =0;

XXi2 = xcii + xx /. z -> Ing;
yyi2 = yyil +yy /. z ->Ing;
pltucNj[[nn]] =
ListLinePlot[{{xxi1, yyil}, {xxi2, yyi2}}, PlotRange -> All,
Axes -> False, PlotStyle -> {Black}];
If[EEndForl[[nn]] !=0,
pltucNvalj[[nn]] =
ListPlot[{{xxil + 2 (-xxil + xxi2)/4 - maxIng/20,
yyil + 2 (-yyil + yyi2)/4}}, PlotRange -> All,
Axes -> False,
PlotMarkers -> {Rotate[EEndForJ[[nn]], 90 Degree], punto0},
PlotStyle -> Black];

I;

(*graph of nqz*)

ff = ngz[[nn]];
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XX =2Z;

yy = Ratenqz*ff;

grafngz[[nn]] =

ParametricPlot[{xx + xcii, yy}, {z, O, Ing}, PlotRange -> All,
PlotStyle -> {Black}, Axes -> False];

(*at the end of element drawing graph value at i for nqz*)

xxil = xcii;

yyil =0;

XXi2 = Xcii + xx /. z ->0;
yyi2 =yyil+yy/.z->0;
ngz0 = ngz[[nn]] /. z -> O;
pltucngzi[[nn]] =
ListLinePlot[{{xxil, yyil}, {xxi2, yyi2}}, PlotRange -> All,
Axes -> False, PlotStyle -> {Black}];
If[ngz0 =0,
pltucngzvali[[nn]] =
ListPlot[{{xxil + 2 (-xxil + xxi2)/4 + maxIng/20,
yyil + 2 (-yyil + yyi2)/4}},
PlotRange -> All, Axes -> False,
PlotMarkers -> {Rotate[ngqz0, 90 Degree], punto0},
PlotStyle -> Black];
I;
(*drawing at j end*)
xxil = xcjj;

yyil =0;

XXi2 = xcii + xx /. z -> Ing;

yyi2 =yyil +yy /. z ->Ing;

ngzL = nqgz[[nn]] /. z -> Ing;

pltucngzj[[nn]] =

ListLinePlot[{{xxi1, yyil}, {xxi2, yyi2}}, PlotRange -> All,
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Axes -> False, PlotStyle -> {Black}];
If[ngzL =0,
pltucngzvalj[[nn]] =
ListPlot[{{xxil + 2 (-xxil + xxi2)/4 - maxIng/20,
yyil + 2 (-yyil + yyi2)/4}},
PlotRange -> All, Axes -> False,
PlotMarkers -> {Rotate[ngzL, 90 Degree], punto0},
PlotStyle -> Black];

I

,{nn, 1, nel}];

Print["Geometry and support conditions of system with its loads."];

size = 900;
Print[Show[grafEl, plt3, pltdgmO, pltdgm1, pltdgm2, pltmsnt,
plttyuk, plttyukVal, grafngz, pltucngzi, pltucngzj,
pltucngzvali, pltucngzvalj,
Axes -> {False, False}, AspectRatio -> Automatic,
ImageSize -> size]];
Print["Graphical presentation of Longitudinal curve of system."];
Print[Show[grafEl, grafLC, plt3, pltmsnt, pltdgmO, pltdgm1,
pltdgm2, graphLCuci, graphLCucj, graphLCvali, graphLCvalj,
Axes -> {False, False}, AspectRatio -> Automatic,
ImageSize -> size]];
Print["Graphical presentation of normal force distribution of \
system."]
Print[
Show [grafEl, grafNf, plt3, pltucNi, pltucNj, pltucNvali,
pltucNvalj, pltmsnt,
Axes -> {False, False}, AspectRatio -> Automatic,
ImageSize -> size]];

Print["Upper is the system before deformation, Lower is the system \
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after deformation."]
Print[
Show [grafEl, grafEld, pltmsnt, pltmsntd, plt3, pltdgmO, pltdgm1,
pltdgm2, ImageSize -> size]];
l;
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EK 2.

TwoD := Module[{dummy},
(* buradan itibaren program 2D%*)
dispN = 0;
Print[MatrixForm[xy]];
Print["definition of element=", MatrixForm[definition]];
Print["boundary condition in the beginning for each joint=",
MatrixForm[restraints]];
Print["Elastic Support for each joint=",

MatrixForm[ElasticSupport]];

(*dugum elastik mesnete oturuyorsa,
mesnetin elastik davrandigl yon i¢in yay katsayisi
verilir ve diigiim serbest birakilir eger serbest degilse program \
onu serbest birakir, asagidaki do loop bu isi yapmaktadir *)
Do[
If[(restraints[[i, j]] == 1 && ElasticSupport [[i, j]] '= 0),
restraints|[i, j]] = 0;
I == 1,

Print[i,
" nolu diigiim x yoniinde elastik mesnete oturdugu i¢in diigiim \

tutulu girilmis, tutulu diigiim x yoniinde serbest birakildi."],

Print[i,
" nolu diigiim y yoniinde elastik mesnete oturdugu igin diigiim \

tutulu girilmis, tutulu diigiim y yoniinde serbest birakildi."]]], {i, 1,

nod}, {j, 1, 2}];

(*dugumde mesnet ¢okmesi varsa,

o diigiim mesnet ¢okmesi yoniinde tutulu olmalidir asagidaki do loop \
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bu isi yapmaktadir*)

Dol
If[(restraints[[i, j]] == 0 && SupportDisp [[i, j]] != 0),
restraints[[i, j]] = 1;
|f[l =1,

Print[i,
" nolu diigiimde x yoniinde mesnet ¢okmesi var, kendi serbest \

birakilmis; halbuki tutulu olmasi gerekir, diigiim x yoniinde tutuldu."],

Print[i,

" nolu diigiimde y yoniinde mesnet ¢okmesi var, kendi serbest \
birakilmis; halbuki tutulu olmasi gerekir, diigiim y yoniinde \
tutuldu."111, {i, 1, nod}, {j, 1, 2}];

Dol Iffrestraints|[[i, j]] == 0, dispN = dispN + 1,
restraints|[[i, j]] = dispN;, restraints[[i, j]] = 0], {i, 1,
nod}, {j, 1, 2}];
Print["total displacement=", dispN];
Print["displacement number for each joint (boundary condition \
ofter coding)=", MatrixForm|[restraints]];

d[0] =0;

NForce = Table[0, {i, 1, nel}];
SysEq = Table[0, {i, 1, dispN}];
Lengt = Table[O0, {i, 1, nel}];

Do[
(*dugumde mesnet ¢okmesi varsa,

o diiglim mesnet ¢cokmesi yoniinde tutulu olmalidir*)

codeix = restraints[[i, 1]];
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codeiy = restraints[[i, 2]];

If[codeix > 0,

SysEq[[codeix]] =

jload[[i, 1]] - d[codeix]*ElasticSupport([[i, 1]]];
If[codeiy > 0,

SysEq[[codeiy]] =

jload[[i, 2]] - d[codeiy]*ElasticSupport[[i, 2]]];

, {1, 1, nod}];

Dol

Print["Element number [, nn, "] is in progress;"];
EM = EMod[[nn]];

csa = area[[nn]];

alfaT = TEC[[nn]];

dTn = DeltaTn[[nn]];

ii = deflJ[[nn, 1]];

jj = deflJ[[nn, 2]];

xi = xy[[ii, 111; yi = xy([[ii, 2]];

xj = xy[[j, 111; vi = xyllij, 211;
vektor = {xj - xi, yj - yi};

Lengt[[nn]] = length = Norm[vektor];
(*Print[length];*)

csx = Normalize[vektor][[1]];
csy = Normalize[vektor][[2]];

(*Print[" csx csy=",csx," ",csy];*)

codeix = restraints[[ii, 1]];

codeiy = restraints|[[ii, 2]];

codejx = restraints[[jj, 1]];
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codejy = restraints[[jj, 2]];

ui = d[codeix]*csx + d[codeiy]*csy + SupportDisp|[[ii, 1]]*csx +
SupportDisp[[ii, 2]]*csy;

uj = d[codejx]*csx + d[codejy]*csy + SupportDisp[[jj, 1]]*csx +
SupportDisp[[jj, 2]]*csy;

uu=clz+cz

bl=uu/.z->0;

b2 =uu/. z -> length;

sol = Flatten[Solve[{b1 == ui, b2 == uj}, {c1, c2}]];

uu=uu/. sol;

NF = csa*EM*DJ[uu, z];
NF = EM*csa (D[uu, z] - alfaT*dTn);

ni=NF/.z->0;

nj = NF /. z -> length;

NForce[[nn]] = nj;

fXi = -ni*csx;

fyi = -ni*csy;

fXj = nj*csx;

fyj = nj*csy;

If[codeix > 0, SysEq[[codeix]] = SysEq[[codeix]] - xi];
If[codeiy > 0, SysEq[[codeiy]] = SysEq[[codeiy]] - fyi];
If[codejx > 0, SysEq[[codejx]] = SysEq[[codejx]] - fX|];
If[codejy > 0, SysEq[[codejy]] = SysEq[[codejy]] - fyil;
,{nn, 1, nel}];
SysEq = Expand[SysEq];

Print["syseq=", MatrixForm[SysEq], "=0"];
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unk = Table[d[i], {i, 1, dispN}];

sol = Flatten[Solve[SysEq == 0, unk]];
Print["solution=", MatrixForm[sol]];
mxdisp = Max[Abs[sol[[All, 2]111;
Do[d[i] = sol[[i, 2]11;, {i, 1, dispN}];
Print[MatrixForm[NForce]];

I

(*graph modul*)

GrTwoD := Module[{dummy},
mxIng = Max[Lengt];

RateDisp = mxIng/mxdisp/10;
disp2D = SupportDisp;
Dol

codeix = restraints[[ii, 1]];

codeiy = restraints[[ii, 2]];

If[codeix > 0, disp2D[[ii, 1]] = d[codeix]];
If[codeiy > 0, disp2DI[ii, 2]] = d[codeiy]];

, {1, 1, nod}];
Print[MatrixForm[disp2D]];
xyd = xy + RateDisp*disp2D;
Print[MatrixForm[xy]];
Print[MatrixForm[xyd]];

(* deformayonlu ve deformasyonsuz hal grafigi*)
grfk = grfkd = grBarForce = Table[Graphics[], {nn, 1, nel}];

Do[
i = deflJ[[nn, 1]];
jj = deflJ[[nn, 2]];
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xi = xy[[ii, 1]]; yi = xy[[ii, 2]J;
xj = xy[li, 111; yi = xy[0i. 211;

ikoor = { xi, yi};

jkoor = {xj, yj};

dnac = 0;

grfk[[nn]] =

GraphPlot[{ii -> jj},

VertexCoordinateRules -> {ii -> ikoor, jj -> jkoor},
VertexLabeling -> True, DirectedEdges -> {True},
EdgeLabeling -> True];

ikoor = { xyd[[ii, 1]1, xyd([[ii, 211};
Jkoor = { xyd[[ij, 111, xyd[[ij, 2113};

grfkd[[nn]] =
GraphPlot[{ii -> jj},
VertexCoordinateRules -> {ii -> ikoor, jj -> jkoor},
PlotStyle -> Dashed];
grBarForce[[nn]] =
ListPlot[{{(xi + xj)/2, (yi + yj)/2}}, PlotRange -> All,
Axes -> False, PlotMarkers -> {Rotate[NForce[[nn]], dnac], 10},
PlotStyle -> Red];
,{nn, 1, nel}];

(* yuklerin yeri ve cizimi*)

mxload = Max[Abs[jload[[All, AlI]]];
RatelLoad = mxIng/mxload/10;

grload = Table[Graphics[], {i, 1, nod}, {j, 1, 2}];
Fsize = Small;

Do[

If[(restraints[[i, 1]] > 0 && jload[[i, 1]] != 0),



grload[[i, 1]] =
Graphics[{Arrowheads[Fsize],
Arrow[{{xy[[i, 1],
xy[li, 2113, {xy(li, 11] + jload[[i, 1]]*RateLoad,
xyIli, 211333
Print["nod i=", i, " xi", xy[[i, 1]], " yi=", xy[[i, 1]], " xj=",
xy[[i, 1]] + jload][[i, 1]]*RateLoad, " yj=", xy[[i, 2]]1];
l;

If[(restraints[[i, 2]] > 0 && jload[[i, 2]] = 0),

grload([i, 2]] =
Graphics[{Arrowheads[Fsize],
Arrow[{{xy[[i, 111, xy[[i, 2]1}, {xyI[i, 1]1,
xy[[i, 2]] + jload[[i, 2]]*RateLoad}}]};
I;
, {1, 1, nod}];

(*mesnet tipi*)
GrSt = mxIng/50;
SabitM[x_,
y_]:={Line[{{x - 2 *GrSt, y - 3.5* GrSt}, {X, y}, {x + 2*GrSt,
y - 3.5*GrSt}, {x - 2* GrSt, y - 3.5* GrSt}}],
Table[Line[{{x + (Hsh - 1)*GrSt, y - 4.5*GrSt}, {x + Hsh*GrSt,
y - 3.5*GrSt}}, {Hsh, -3, 3}],

Line[{{x - 3*GrSt, y - 3.5*GrSt}, {x + 3*GrSt, y - 3.5*GrSt}}};

KayiciM[x_,
y ] :={Line[{{x - 2 * GrSt, y - 3.5*GrSt}, {x,
vy} {x+2*GrSt, y - 3.5*GrSt}, {x - 2*GrSt,
y - 3.5*GrSt}}],
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Table[Circle[{x + Hsh* GrSt, y - 4*GrSt}, .5*GrSt], {Hsh, -1,
1}], Line[{{x - 3*GrSt, y - 4.5*GrSt}, {x + 3*GrSt,
y - 4.5*GrSt}}};

KayiciMr[x_,
y ] :={Line[{{y - 3.5*GrSt, x - 2 * GrSt}, {y,
x}, {y - 3.5*GrSt, x + 2 * GrSt}, {y - 3.5*GrSt,
X - 2*GrSt}},
Table[Circle[{y - 4*GrSt, x + Hsh* GrSt}, .5*GrSt], {Hsh, -1,
1}], Line[{{y - 4.5*GrSt, x - 3*GrSt}, {y - 4.5*GrSt,
X + 3*GrSt}}H};

(* mesnetlerin ayarlanmasi*)
grmsnt = Table[Graphics[], {i, 1, nod}];

Dol

xi = xy[[i, 11; yi = xy[[i, 2]I;

(*sabit mesnet*)

If[(restraints[[i, 1]] == 0 && restraints[[i, 2]] == 0),
grmsnt[[i]] = Graphics[SabitM[xi, yi]]];

(* x ekseni boyunca kayici*)

If[(restraints[[i, 1]] > 0 && restraints[[i, 2]] == 0),
grmsnt[[i]] = Graphics[KayiciM[xi, yi]]];

(* y ekseni boyunca kayici*)

If[(restraints[[i, 1]] == 0 && restraints[[i, 2]] > 1),

grmsnt[[i]] = {grmsnt[[i]], Graphics[KayiciMr[yi, xi]]};

, {i, 1, nod}];

(* mesnet cokmesi varsa mesnetlerin ayarlanmasi*)

grmsntd = Table[Graphics[], {i, 1, nod}];
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Dol

xi = xyd[[i, 1]]; yi = xyd[[i, 2]];

(*sabit mesnet*)

If[(restraints[[i, 1]] == 0 && restraints[[i, 2]] == 0),
grmsntd[[i]] = Graphics[SabitM[xi, yi]]];

(* x ekseni boyunca kayici*)

If[(restraints[[i, 1]] > 0 && restraints[[i, 2]] == 0),
grmsntd[[i]] = Graphics[KayiciM[xi, yi]]];

(* y ekseni boyunca kayici*)

If[(restraints[[i, 1]] == 0 && restraints[[i, 2]] > 1),

grmsntd[[i]] = {grmsnt[[i]], Graphics[KayiciMr|yi, xi]]};

, {i, 1, nod}];
Print[Show[grfk, grload, grmsnt, Axes -> False, ImageSize -> 1000]];

Print[Show[grfk, grfkd, grload, grmsnt, grmsntd, grBarForce,
Axes -> False, ImageSize -> 1000]];];
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EKS.

ThreeD := Module[{dummy},
dispN = 0;
(*Print[MatrixForm[xyz]];
Print["definition of element=",MatrixForm[deflJ]];
Print["boundary condition in the beginning for each joint=",
MatrixForm[restraints]];*)

(*dugum elastik mesnete oturuyorsa,
mesnetin elastik davrandigl yon i¢in yay katsayisi
verilir ve diiglim serbest birakilir eger serbest degilse program \
onu serbest birakir, asagidaki do loop bu isi yapmaktadir *)
Dol
If[(restraints[[i, j]] == 1 && ElasticSupport [[i, j]] != 0),
restraints|[[i, j]] = 0;
Ifj == 1,
Print[i,
"nolu diiglim x yoniinde elastik mesnete oturdugu igin diigiim \
tutulu girilmis, tutulu diigiim x yoniinde serbest birakildi."]];
Iffj =2,
Print[i,
" nolu diigiim y yoniinde elastik mesnete oturdugu i¢in diigiim \
tutulu girilmis, tutulu diigiim y yoniinde serbest birakildi."]];
If[j ==3,
Print[i,
" nolu diigiim z yoniinde elastik mesnete oturdugu i¢in diigiim \

tutulu girilmis, tutulu diigiim z yoniinde serbest birakildi."]];

1, {i, 1, nod}, {j, 1, 3}];

(*dugumde mesnet ¢okmesi varsa,
0 diiglim mesnet ¢okmesi yoniinde tutulu olmalidir asagidaki do loop \

bu isi yapmaktadir*)



Dol
If[(restraints[[i, j]] == 0 && SupportDisp [[i, j]] '= 0),
restraints[i, j]] = 1;
If[j ==1,
Print][i,
" nolu diigiimde x yoniinde mesnet ¢okmesi var, kendi serbest \
birakilmis; halbuki tutulu olmasi gerekir, diigiim x yoniinde \

tutuldu."];

Iffj == 2,
Print[i,
" nolu diigiimde y yoniinde mesnet ¢okmesi var, kendi serbest \
birakilmis; halbuki tutulu olmasi gerekir, diiglim y yoniinde tutuldu."]];
Iffj ==3,
Print][i,
" nolu diigiimde z yoniinde mesnet ¢okmesi var, kendi serbest \

birakilmis; halbuki tutulu olmasi gerekir, diiglim z yoniinde tutuldu."]];

I, {i. 1, nod}, {j, 1, 23];

Dol

If[restraints][i, j]] == 0, dispN = dispN + 1;
restraints[[i, j]] = dispN;, restraints|[i, j]] = 0], {i, 1,

nod}, {j, 1, 3}1;
Print["total displacement=", dispN];
(*Print[

"displacement number for each joint (boundary condition ofter \
coding)=",MatrixForm|[restraints]];*)

d[0] = 0;
NForce = Table[0, {i, 1, nel}];
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SysEq = Table[0, {i, 1, dispN}];
length = Table[0, {i, 1, nel}];
Dol

codeix = restraints[[i, 1]];
codeiy = restraints[[i, 2]];

codeiz = restraints|[[i, 3]];

If[codeix > 0,

SysEq[[codeix]] =

jload[[i, 1]] - d[codeix]*ElasticSupport[[i, 1]]];
If[codeiy > 0,

SysEq[[codeiy]] =

jload[[i, 2]] - d[codeiy]*ElasticSupport[[i, 2]]];
If[codeiz > 0,

SysEq[[codeiz]] =

jload[[i, 3]] - d[codeiz]*ElasticSupport[[i, 3]]];

, {i, 1, nod}];

Do[
Print["Element number [", nn, "] is in progress;"];
EM = EMod[[nn]];
csa = area[[nn]];
alfaT = TEC[[nn]];
dTn = DeltaTn[[nn]];

i = deflJ[[nn, 1]];

jj = deflJ[[nn, 2]];

xi = xyz[[ii, 1]1; yi = xyz[[ii, 2]]; zi = xyz[[ii, 3]];
xj = xyz[[ij, 11I; yi = xyz[Lij, 21I; zj = xyz[[ij, 31I;
vector = {xj - xi, yj - yi, zj - zi};

length[[nn]] = lengthL = Norm[vector];



csx = Normalize[vector][[1]];
csy = Normalize[vector][[2]];

csz = Normalize[vector][[3]];

codeix = restraints[[ii, 1]];
codeiy = restraints[[ii, 2]];
codeiz = restraints|[[ii, 3]];
codejx = restraints[[jj, 1]];
codejy = restraints[[jj, 2]];
codejz = restraints[[jj, 3]];

ui = d[codeix]*csx + d[codeiy]*csy + d[codeiz]*csz +
SupportDisp[[ii, 1]]*csx + SupportDisp([[ii, 2]]*csy +
SupportDisp[[ii, 3]]*csz;

uj = d[codejx]*csx + d[codejy]*csy + d[codejz]*csz +
SupportDisp[[jj, 1]]*csx + SupportDisp[[jj, 2]]*csy +
SupportDisp[[jj, 3]]*csz;

uu=clz+c2;

bl=uu/.z->0;

b2 =uu/. z -> lengthL;

sol = Flatten[Solve[{bl == ui, b2 == uj}, {c1, c2}]];

uu=uu/. sol;

NF = csa*EM*D[uu, z];
NF = EM*csa (D[uu, z] - alfaT*dTn);

ni=NF/ z->0;
nj=NF/. z -> lengthL;
NForce[[nn]] = nj;

170



fXi = -ni*csx;
fyi = -ni*csy;
fzi = -ni*csz;
Xj = nj*csx;
fyj = nj*csy;

fzj = nj*csz;

If[codeix > 0, SysEq[[codeix]] = SysEq[[codeix]] - fxi];
If[codeiy > 0, SysEq[[codeiy]] = SysEq[[codeiy]] - fyi];
If[codeiz > 0, SysEq[[codeiz]] = SysEq[[codeiz]] - fzi];
If[codejx > 0, SysEq[[codejx]] = SysEq[[codejx]] - fXj];
If[codejy > 0, SysEq[[codejy]] = SysEq[[codejy]] - fyj];
If[codejz > 0, SysEq[[codejz]] = SysEq[[codejz]] - fzj];

,{nn, 1, nel}];
SyskEq = Simplify[SysEq];

Print["syseq=", MatrixForm[SysEq], "=0"];

unk = Table[d[i], {i, 1, dispN}];

sol = Flatten[Solve[SysEq == 0, unk]];
Print["solution=", MatrixForm[sol]];
mxdisp = Max[Abs[sol[[All, 2]1]1;
Do[d[i] = sol[[i, 2]];, {i, 1, dispN}];
Print[MatrixForm[NForce]];

mxIng = Max[length];

RateDisp = mxIng/mxdisp/4;
disp3D = Table[O, {i, 1, nod}, {j, 1, 3}];
Do[

codeix = restraints[[ii, 1]];

codeiy = restraints[[ii, 2]];

codeiz = restraints[[ii, 3]];
If[codeix > 0, disp3D[[ii, 1]] = d[codeix]];
If[codeiy > 0, disp3D[[ii, 2]] = d[codeiy]];

171



If[codeiz > 0, disp3D[[ii, 3]] = d[codeiz]];

, {ii, 1, nod}];
Print["diigiim koordinatlarina uyumlu deplasmanlar=",
MatrixForm[disp3D]];
xyzd = xyz + RateDisp*disp3D;
(*Print[MatrixForm[xyz]];
Print[MatrixForm[xyzd]];*)

grfk = grfkd = Table[0, {nn, 1, nel}];

Dol
i = deflJ[[nn, 1]];
jj = deflJ[[nn, 2]];

ikoor = { xyz[[ii, 1]], xyz[[ii, 2]], xyz[[ii, 3]1};
Jkoor = {xyz[[jj, 111, xyz[[jj, 211, xyz[Lj, 311};

grik[[nn]] =

GraphPlot3D[{ii -> jj},

VertexCoordinateRules -> {ii -> ikoor, jj -> jkoor},
VertexLabeling -> True,

EdgeRenderingFunction -> (Cylinder[#1, mxIng/150] &),
VertexRenderingFunction -> (Sphere[#1, mxIng/150] &)];

grfk[[nn]] =
GraphPlot3D[{ii -> jj},
VertexCoordinateRules -> {ii -> ikoor, jj -> jkoor},
VertexLabeling -> True, PlotStyle -> Dashed];
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grfk[[nn]] =

GraphPlot3D[{ii -> jj},

VertexCoordinateRules -> {ii -> ikoor, jj -> jkoor},
VertexLabeling -> True, PlotStyle -> Thick];

ikoor = { xyzd[[ii, 1]], xyzd[[ii, 2]], xyzd[[ii, 3]]};
jkoor = { xyzd[[ij, 111, xyzd[[ij, 211, xyzd[[ij, 311};

grfkd[[nn]] =
GraphPlot3D[{ii -> jj},
VertexCoordinateRules -> {ii -> ikoor, jj -> jkoor},
VertexLabeling -> True,
EdgeRenderingFunction -> (Cylinder[#1, mxIng/150] &),
VertexRenderingFunction -> (Sphere[#1, mxIng/75] &)];

,{nn, 1, nel}];

grfksmsnt = Table[Graphics3D, {i, 1, nod}];

Do[
ikoor = { xyz[[ii, 1]], xyz[[ii, 2]], xyz[[ii, 3]1]};

grfksmsnt[[ii]] = Graphics3D[{Red, Sphere[{ikoor}, mxIng/100]}] ;

If[(restraints[[ii, 1]] == 0 \[Or] restraints[[ii, 2]] == 0 \[Or]
restraints[[ii, 3]] == 0),
(grfksmsnt[[ii]] =
Graphics3D[{Blue, Sphere[{ikoor}, mxIng/40]}]) 1;
, {ii, 1, nod}];

(* diigiim teki yuklerinin yeri ve cizimi*)
mxload = Max[Abs[jload[[All, Al]]]];
RateLoad = mxIng/mxload/6;
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grload = Table[Graphics3D[], {i, 1, nod}, {j, 1, 3}];
(*Fsize=0.01,

tuber=0.005;%*)

Print["fsize=", Fsize, " tuber=", tuber, " rate load=", RateLoad,
" mxIng=", mxIng];

Dol

ikoor = { xyz[[ii, 1]], xyz[[ii, 2]], xyz[[ii, 3]1};
If[(restraints[[ii, 1]] > 0 && jload[[ii, 1]] !'=0),

jkoor = { xyz[[ii, 1]] + jload[[ii, 1]]*RateLoad, xyz[[ii, 2]],
xyz[[ii, 3]1};

grload[[ii, 1]] =
Graphics3D[{Red, Arrowheads[Fsize],
Arrow[Tube[{ikoor, jkoor}, tuber]]};
I;

If[(restraints[[ii, 2]] > 0 && jload[[ii, 2]] !'=0),

jkoor = { xyz[[ii, 11, xyz[[ii, 2]] + jload[[ii, 2]]*RateLoad,
xyz[[ii, 3]]};

grload([ii, 2]] =

Graphics3D[{Red, Arrowheads[Fsize],
Arrow[Tube[{ikoor, jkoor}, tuber]]};

I;

If[(restraints[[ii, 3]] > 0 && jload[[ii, 3]] '= 0),

jkoor = { xyz[[ii, 1]], xyz[[ii, 2]],
xyz[[ii, 3]] + jload[[ii, 3]]*RateLoad};



175

grload[[ii, 3]] =
Graphics3D[{Red, Arrowheads[Fsize],
Arrow[Tube[{ikoor, jkoor}, tuber]]}];

I

, {ii, 1, nod}];

Print[Show[grload, grfk, grfksmsnt, Axes -> True,

AxesLabel -> {x, y, z}, ImageSize -> 500, AspectRatio -> asp]];
Print[Show[grfkd, grfk, grfksmsnt, Axes -> True,

AxesLabel -> {x, y, z}, ImageSize -> 500,

AspectRatio -> Automatic]];

I
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