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ÖZET 

Yapı inşa teknolojisinin gelişimine ve kullanım gereksinimlerine bağlı olarak büyük 

açıklığa sahip yapılar günümüzde yaygınlaşmaktadır. Bu tip sistemlerde statik açıdan 

güvenli bir tasarımın yanında, mimari projeye de uygunluk önemli bir parametredir. 

Buna bağlı olarak statik projelendirmeyi yapan mühendis büyük açıklıkları minimum 

sayıda kolon ile tasarlamak zorunda kalmaktadır. Bu sebeple geniş açıklıklı yapılarda 

kolonları birbirine bağlayan ve plak yüklerini ana taşıyıcılara aktaran kiriş 

elemanlarında minimum eğilme momenti oluşması beklenmektedir. Böyle bir tasarımda 

ise kiriş olarak projelendirilen elemanda salt basınç veya çekme gerilmesi oluşması 

gereklidir. Bu gereklilik betonarme öngerme sistemlerle karşılanabildiği gibi çelik 

sistemlerle de karşılanabilmektedir. Böylece sadece ekseni yönünde kuvvet taşıyan 

sistemlerin matematiksel modeli, analizi ve davranışı önem arz etmektedir. Literatürde 

bu tip elemanlar bir, iki ve üç boyutta çubuk sistemler olarak gruplandırılmaktadır. 

Çalışmamız kapsamında boyuna uzama elastik eğrisi diferansiyel denklemi ve 

Mathematica programı yardımıyla çubuk sistemlerin analizi için bir bilgisayar programı 

geliştirilmiştir. Bu programda çubuk sistemlerdeki iç kuvvet ve deformasyonları elde 

etmek için kullanılacak denklemler, matris formundan farklı olarak analitik olarak elde 

edilmiştir. Bu yaklaşımla kafes çubuk sistemlerin analizi gerçekleştirilebilmektedir. 

Ayrıca sıcaklık değişimi gibi farklı durumların çözüme yansıtılması mümkündür. 

Anahtar Kelimeler: Çubuk sistemler, matematiksel modelleme, elastik eğrisi 

diferansiyel denklemi, sayısal çözümleme 
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ABSTRACT 

Structures with large spans have started to be common depending on the development 

and usage requirements of the Building Construction technology in our time.  In 

addition to a statically safe design in such systems, conformity to the architectural 

project is an important parameter, too. Consequently, the engineer who makes the static 

project planning has to design large spans with a minimum number of columns. For this 

reason, it is expected that a minimum bending moment will occur in the beam elements 

that connect the columns in wide span structures and transfer the slab loads to the main 

structural members. In such a design, only pressure or tensile stress is required in the 

element projected as a beam.This requirement can be met by reinforced concrete 

prestressing systems as well as by steel systems.Thus, the mathematical model, analysis 

and behavior of the systems carrying the force in the direction of only their axis are 

important.In the literature, such elements are grouped into bar systems in one, two and 

three dimensions.Within the scope of our study, a computer program has been 

developed for the analysis of bar systems with the help of longitudinal elongation elastic 

curve differential equation and Mathematica program. In this program, the equations to 

be used to obtain internal forces and deformations in bar systems are obtained 

analytically, unlike matrix form. With this approach, the analysis of 3D truss systems 

can be performed. It is also possible to reflect different situations such as temperature 

changes to the solution. 

Key Words: Bar Systems, Mathematical Modeling, Elastic curve differential equation, 

Numerical analysis 
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GİRİŞ 

Bir yapı sisteminin analizinde doğru sistem modelinin oluşturulması en önemli 

aşamadır. Literatürde yapısal bir elemanın modellenmesinde farklı tip yaklaşımlar 

bulunmaktadır. Bunlar; 

 Sonlu Elemanlara Dayalı Modeller 

 Fiber Modeller 

 Mekanik (Yay Tanımlı) Modeller 

 Matematiksel Modeller 

dir. Bu yaklaşımlardan matematiksel modellerde amaç, sistemin yükler altındaki 

karmaşık davranışının belirli sadeleştirmelerle tanımlanmasını kapsamaktadır.  Genel 

olarak matematiksel modellemeler diferansiyel elemana ait malzeme özelliklerinin ve 

sistemin genel özelliklerinin belirlenmesi, yüklerin ve sınır şartlanın tanımlanması 

aşamalarını içermektedir [1]. Yapı sistemlerinin yükler altındaki davranışının bilgisayar 

ortamında analizinde karmaşık modellerde ortaya çıkabilmektedir. Bu durum analizin 

hata oranını ve analiz süresini artırmakla birlikte yakınsamayan sonuçlarında ortaya 

çıkmasına neden olabilmektedir. Bu sebeple modellerin ilave denklemler ve bazı 

kabuller ile sadeleştirilmesi gerekli olabilmektedir. Bununla birlikte hata oranı en düşük 

modele ulaşabilmek için matematiksel modeller içerisindeki denklem 

formulasyonlarının detaylandırılması önemlidir. Ayrıca modellenecek olan yapı 

sisteminin malzeme, geometri ve sınır şartlarının doğru bilinmesi ideal matematiksel 

modelin kurulmasında önemlidir. Çünkü yapı sistemlerini oluşturan elemanlar yükler 

altında farklı davranışlar sergileyebilmektedir. Bu anlamda yapı sistemlerini oluşturan 

elemanlar genel olarak düşey ve yatay elemanlar olarak ayrılmaktadır. Düşey 

elemanlarda davranışa eksenel kuvvet hakimken yatay elemanlarda eğilme etkisi ön 

plana çıkmaktadır. Ayrıca bu yapısal elemanların davranış ve modelleme açılarından 

önemli olan, elastik eğrileri de farklılık gösterecektir. Örneğin basit eğilmede eğilme 
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momenti çubuk boyunca değişmediğinden eğrilik sabit kalacak ve çubuk ekseni bir 

daire yayına dönüşecektir. Kesmeli eğilmede ise eğrilik basit eğilmeden farklı olarak 

değişecektir. Dolayısıyla elemanlar üzerinde etkisi olan kesit tesirlerinin de davranış 

modelleri üzerinde önemli etkisi vardır [2]. Yapı sistemlerinin bilgisayar ortamında 

modellenmesinde yapısal elemanlar plak ve çubuk olarak iki farklı türde 

oluşturulabilmektedir. Bir boyutu diğer iki boyutu yanında göreceli olarak küçük kalan 

yapı elemanları plak eleman olarak isimlendirilmektedir. Plak eleman olarak sadece 

döşemeler değil perdelerde bu modelleme yaklaşımı ile tanımlanabilmektedir. 

 

Düşey ve Yatay Plak Elemanlar [3] 

Plak elemanlar düzlem geometriye sahiptir. Eğrisel geometriye sahip olan plak 

elemanlara kabuk ismi verilmektedir. Bu elemanlar da eğrisel geometriye sahip 

yapılarda kullanılır. 

 

Kabuk Sistem [4] 

Diğer yandan, bir boyutu diğer iki boyutunun yanında çok büyük olan elemanlar çubuk 

eleman olarak tanımlanmaktadır. Çubuk elemanlarda kendi içinde doğrusal eksenli 

çubuklar (çubuğun kesitlerinin ağırlık merkezini birleştiren eksen) ve eğri eksenli 

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjC8o_LlbXeAhXFC-wKHXFOD3QQjRx6BAgBEAU&url=https://www.yapikatalogu.com/yapi-oncesi-isler/kopru-ve-tunel-kaliplari/tamer-kalip-ve-iskele-sistemleri-tunel-kalip-sistemi_969&psig=AOvVaw2t-QPrxP64mmPtOwfGhob2&ust=1541229508575957
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çubuklar olmak üzere iki genel sınıfa ayrılmaktadır.  Doğru eksenli çubuklar, kolon ve 

kiriş olarak ya da her ikisinin birleşimi olabilen yarı kolon-yarı kiriş çubuk olarak 

davranış gösterebilmektedir. 

 

Doğru Eksenli Çubuklar [5] 

Eğri eksenli çubuklar ise hem mimari perspektif açısından hem de yükleri sadece basınç 

yoluyla iletmek amacıyla kemer tipisistemlerde kullanılabilmektedir. Çubuk 

elemanların birlikte kullanılmaları ile çerçeve sistemler oluşmaktadır. 

 

Eğri Eksenli Çubuk [6] 

Bu eleman tipleri yükler altında farklı davranışlar sergilediğinden modelleme 

aşamasında farklı diferansiyel denklem takımlarına bağlı analizleri 

gerçekleştirilmektedir. Günümüz paket programları kullanıcıya kolaylık sağlayan ara 

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwi3_-qzmbXeAhVB2aQKHRQJCMIQjRx6BAgBEAU&url=http://www.zetacelik.com/celik-konstruksiyon/&psig=AOvVaw1PdiUdZTLCXIxPzC9wu2TA&ust=1541230509667977
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjhzu7xmbXeAhXKDewKHQBFBSAQjRx6BAgBEAU&url=http://www.cizginsaat.com.tr/celik-yapilar.html&psig=AOvVaw1PdiUdZTLCXIxPzC9wu2TA&ust=1541230509667977
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yüzleri sayesinde bu elemanların bilgisayar ortamında hızlı tanımlanmasını 

sağlamaktadır. Ancak bu tip sistemlerin yapısal analizlerine yeni algoritmalarla farklı 

yaklaşımlar kazandırabilmek için öncelikle eleman davranışının anlaşılabilmesi 

önemlidir. 

Bir yapısal analizde taşıyıcılık açısından emniyetli çözüm kaçınılmazdır. Ancak 

günümüzde ekonomiklik parametresi de son derece önem kazanmıştır. Örneğin 

içerisinde hareket kolaylığı sağlaması nedeniyle minimum sayıda kolon bulunduran 

endüstriyel amaçlı büyük açıklıklı sistemler yapılmaktadır. Geniş açıklıklı köprüler ve 

kapalı hacimler inşa edilmektedir. Yine benzer şekilde alış veriş merkezlerinde hem 

estetik hem de rahatlık sağlamak amacıyla ferah mekânlara ihtiyaç duyulmaktadır. 

Büyük açıklıklı taşıyıcı sistemlerin betonarme olarak imal edilmesi halinde kesit 

tesirlerine bağlı olarak çok büyük kesitler ortaya çıkmaktadır. Standart yapılarda ise bu 

durum yapı maliyetinin aşırı artmasına sebep olabilmektedir. Büyük açıklıklı sistemler 

çelik taşıyıcı sistemlerle de imal edilebilmektedir. Ancak ülkemizde işçilik ve inşa 

teknolojisine bağlı olarak çelik yapılar genellikle tek katlı endüstri yapıları veya çok 

katlı teknolojik binalar şeklinde uygulanmaktadır [7]. Büyük açıklıklı sistemlerin 

inşasında kullanılan başka bir sistem ise katlanmış plaklı ve kabuk sistemlerdir. 

 

Katlanmış Plaklı Sistem [4] 

Bu tip sistemlerin kullanılmasının genel amacı, hareketli ve hareketsiz yüklerin 

elemanların düzlemi içinde yayılmasını sağlayarak, elemanı salt çekmeye veya basınca 

çalıştırıp, elemanların düzlemlerine dik olarak etkimeye çalışan kuvvetleri en az 

seviyeye çekerek oluşacak eğilme momentlerini minimum seviyeye çekmektir. Büyük 

açıklıkların geçilmesinde en ekonomik sistemler, çubuk elemanlardan oluşan sistemler 

olarak karşımıza çıkmaktadır. Çubuk eksenine dik yönde gelen yükler eğilme 

momentleri ortaya çıkmaktadır. Eğilme momentinin mertebesi her ne kadar yükün 

kendisi ile doğru orantılı olsa da, çubuk uçları arasında bulunan mesafenin açıklığın 
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karesi ile de doğru orantılıdır. Açıklık büyüdükçe eğilme momentleri de aşırı derecede 

büyümekte dolayısı ile tasarımda çubuk kesiti büyümektedir. Betonarme sistemlerde 

bunu önlemek ve betonun basınca karşı olan yüksek dayanımını faydalı hale getirmek 

amacıyla, çubuk kesitlerine çekme bölgesine konulacak donatı çeliğine önceden 

öngermeli (öngerme) ya da sonradan öngermeli (ardgerme) sistemler ile çekme 

gerilmesi yüklenir. Çubuk eğilmeye karşı yük taşımakla birlikte üzerinde çekme 

gerilmeleri oluşmaz. Dolayısıyla çubuğun taşıma gücüne erişilmemiş olur. Çubuğun 

taşıma gücüne erişmek için daha fazla yük yüklenmesi gerekir ki, çubuğun taşıma 

kapasitesin artmış olduğu anlaşılır. Öngerme tekniği ile çubuk taşıma gücünü çubuk 

boyutlarını büyütmeden dolayısıyla ölü yükleri artırmadan öngerme uygulaması ile 

artırmak mümkün olmaktadır. Öngerme sisteminin birçok alanda uygulandığı 

bilinmektedir [8].  

 

Öngermeli ve normal kirişin prensip olarak karşılaştırılması [9] 

Yapı sisteminin ağırlıklarını artırmadan geniş açıklıkları geçmenin yollarından bir diğeri 

ise, çubuklardan oluşturulacak bir sistemi eğilme momentlerini sıfıra yaklaştıracak 

şekilde tasarlayarak, çubukları sadece çekme veya basınca çalıştırmaktır. Bu ise yapı 

sistemini, çelik çubuklardan oluşan taşıyıcı kafes sistem tasarlamak ile mümkün 

olmaktadır. Çubuklar ile kafes sistem tasarlanırken, çubukların eksenine yer 

değiştirecek şekilde eksene dik yükleme, yani çubuklarda eğilmeye sebep olacak şekilde 

yükleme yapılmaz. Modellerde düğüm noktaları bir mafsal gibi davranacak şekilde 
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tasarlanarak, hesaplarda mafsal olarak kabul edilirler. Sistem üzerine yüklenecek yükler 

düğüm noktalarına yüklenerek, çubuklara taşıtılması sağlanır [10, 11,12, 13]. 

Dolayısıyla büyük açıklıklı sistemlerin betonarme ve çelik çubuk elemanlar ile 

geçilmesinde normal kuvvet taşıyan eleman davranışı ve teorisi önemli olmaktadır. 

Yapısal analizlerde farklı türde ve sadece normal kuvvet taşıyan çubuklar ile sistemler 

oluşturulmakta ve ortaya çıkan problemlerin çözümü ve kuvvet dağılımlarının tespiti 

yapılmaktadır. Literatürde bu sistemler;  

 Bir boyutta sadece eksenel normal kuvvete maruz çubuk sistemler 

 İki boyutta sadece eksenel normal kuvvete maruz çubuk sistemler  

 Üç boyutta sadece eksenel normal kuvvete maruz çubuk sistemler 

olarak isimlendirilmektedir. 

Bir boyutlu çubuk sistemler, bir boyutta yani tek eksenden oluşmaktadır. Bu tür 

sistemler tek çubuktan başlamak üzere birçok çubuktan oluşabilmektedir. Sistemi 

oluşturan çubukların malzeme ve geometrik özellikleri de farklı olabilmektedir. 

Çubuklar bir birine paralel veya seri şekilde bağlanabilirler [14]. İki boyutta sadece 

eksenel normal kuvvete maruz ve eksenel normal yük taşıyan sistemler düzlemsel kafes 

sistem olarak bilinmektedir. Düzlemsel kafes sistemlerin sadece normal kuvvet taşıyan 

çubuk elemanlar tarafından oluşturulmaktadır. Çubuklar uygun şekilde düğüm 

noktalarında birleştirirler. Çubuk elemanlar narin olduğu için yükler çubuk gövdelerine 

uygulanmayıp, doğrudan düğüm noktalarına aktarılırlar. Düğüm noktalarına uygulanan 

yükler çubuklara eksenel yük olarak denge ve uygunluk koşullarınca dağıtılırlar [15]. 

Üç boyutta sadece eksenel normal kuvvete maruz ve eksenel normal yük taşıyan 

sistemlerin ise üç boyutlu kafes sistem veya uzay kafes sistemleri olarak bilinmektedir. 

Düzlemsel kafes sistemlerinde olduğu gibi, üç boyutlu veya uzay kafes sistemleri de 

sadece normal kuvvet taşıyan çubuk elemanlar tarafından oluşturulmaktadır. Burada da 

çubuklar uygun şekilde düğüm noktalarında birleştirirler. Yine çubuk elemanlar narin 

olduğu için yükler çubuk gövdelerine uygulanmayıp, doğrudan düğüm noktalarına 

aktarılırlar. Düğüm noktalarına uygulanan yükler çubuklara eksenel yük olarak denge 

ve uygunluk koşullarınca dağıtılırlar. Bu durumda ortaya çıkan kafes sistem üç 

boyutludur [15, 16]. Bu sistemler içerisindeki elemanlarda sadece basınç ve çekme 
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gerilmelerinin oluşması beklenmektedir. Bu tip sistemlerin analizinde farklı yaklaşımlar 

kullanılmaktadır. Bu yaklaşımlardan en çok bilinen yöntemler ise düğüm noktası 

dengesi yöntemi ve Ritter kesim metodudur [10, 11, 12, 13]. Bu iki metotta çubuk 

kuvvetleri doğrudan bulunduğu için kuvvet metodu olarak ta bilinirler. Bunlara ilave 

olarak sonlu eleman yöntemleri de kullanılarak çubuk sisteme ait rijitlik matrisleri tespit 

edilerek, düğüm noktalarının yer değiştirmeleri bulunur. Yer değiştirmelere bağlı 

olarak, daha sonra çubuk kuvvetlerinin hesabı yapılır. Bu yöntemde ise yer 

değiştirmeler bulunduğundan, yer değiştirme yöntemi yada deplasman yöntemi adı 

verilmektedir.  

Bu tez çalışması kapsamında sadece normal kuvvet taşıyan çubuk ve çubuklardan 

oluşan sistemlerin analizinde yeni bir modelleme yaklaşımı ortaya konulmuştur. Bu 

yaklaşımda deplasman yöntemi esas alarak denge denklemleri rijitlik matrisleri 

vasıtasıyla değil, doğrudan analitik olarak elde edilmektedir. Boyuna uzama elastik 

eğrisi denklemi diferansiyel olarak çözümünü alan bu yaklaşım sayesinde çubuk 

sistemlerin analizi daha hızlı gerçekleştirilebilecektir. Ayrıca hata riski yüksek olan 

büyük problemler sayısal olarak çözülebilecektir. Mathematica programında yazılan 

algoritmalar ile oluşturulan bu yaklaşım güncel paket programlara adapte 

edilebilecektir. Kullanıcıya tüm parametrelere hakim olma serbestisi tanıyan bu 

yaklaşımla sıcaklık değişimi gibi farklı durumların çözüme yansıtılması daha kolay 

mümkün olabilecektir. Ayrıca çalışma kapsamında sayısal olarak çözümü 

gerçekleştirilen modellerin sonlu elemanlar yardımı ile de çözümü sağlanmıştır. Analiz 

sonuçları karşılaştırılarak buna ilişkin bulgular belirlenmiştir. Tez çalışması kapsamında 

oluşturulan elastik eğiri denklemlerinin diferansiyel çözümünü esas alan bu yaklaşım 

sadece çubuk sistemlerin değil farklı tip yapısal elemanlarında bu yaklaşımla çözümüne 

ışık tutacaktır. Çalışmamızda yapısal analizlerin daha hızlı ve minimum hata oranına 

bağlı gerçekleştirilebilmesi hedeflenmiştir. Ayrıca analizlerde tasarımcıya model 

detaylarına müdahale edebilme imkânı sağlanmaktadır. Bu algoritmalar yardımıyla 

çubuk sistemlerin analizine özelleşmiş yeni paket programlar geliştirilebilecektir. 

Mevcut programlar bu yaklaşımın avantajlarına bağlı olarak güncellenebilecektir.
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1. BÖLÜM 

GENEL BİLGİLER VE LİTERATÜR ÇALIŞMASI 

1.1. Normal Gerilme 

Kesiti sabit bir çubuk göz önüne alınarak, çubuk kesitlerinin ağırlık merkezini 

birleştiren ve çubuk ekseni adı verilen noktalar kümesi yönünde, çubuğa iki ucundan 

kuvvet uygulandığında,  uygulanan dış kuvvetler çubuk içinde iç zorlanmaların 

oluşmasına neden olmaktadır (Şekil 1.1.) [17, 18]. Oluşan iç kuvvetlerin bileşkesi çubuk 

ekseni boyunca olup, bileşke kuvveti oluşturur, bu bileşke kuvvet ise Newton’un yasası 

gereği dış kuvvete eşittir. Bileşke kuvveti veya dış kuvveti oluşturan, kesit içine 

dağılmış, yönü çubuk ekseni yönünde olan iç kuvvete ise normal gerilme denmektedir. 

Oluşan iç kuvvetler ve çubuk boyunca kesit üzerine dağılmış gerilmeler, çubuk üzerinde 

alınacak her hangi bir kesit üzerinde gösterilebilir (Şekil 1.2.). 

 

Şekil 1.1. İki ucundan çekme kuvveti uygulanmış bir çubuk 

 

 

Şekil 1.2. İki ucundan çekme kuvveti uygulanmış bir çubuk ve A-A kesitinden ayrılmış 
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Tüm kesite etkiyen gerilmelerin toplamının, iç kuvvete eşit olması dengenin sağlanması 

için gereklidir. Kesitteki gerilmelerin toplamı kesit alanı üzerindeki gerilmenin integrali 

anlamına gelmektedir. Kesit üzerinde küçük bir dA alanı alınıp, gerilme ile çarpılırsa 

diferansiyel dN kuvveti elde edilerek, aşağıdaki şekilde ifade edilmektedir (Denklem 

1.1.). 

                                                               (1.1) 

Küçük dN ifadesinin integrali kesit alanı A üzerinde alınırsa, aşağıdaki Denklem 1.2.’de 

verilen ifade elde edilir. 

∫    
 

∫     
 

                                             (1.2) 

Denklem 1.2.’nin anlamı ise tüm dNlerin toplamı, N iç kuvveti olmaktadır. Böylece 

Denklem 1.3 ‘de verilen normal kuvvet ifadesi ortaya çıkmaktadır. 

  ∫     
 

                                                         (1.3) 

Yukarıdaki ifade de (Denklem 1.3.), gerilmenin kesit içerisinde düzgün dağıldığı kabul 

edilirse [17], gerilme sabit olur ve Denklem 1.4.’de olduğu gibi integral dışına aşağıdaki 

şekilde taşınabilir. 

   ∫    
 

                                                         (1.4) 

Bir alan üzerinde bulunan küçük diferansiyel alanların toplamının yine, üzerinde 

integral alınan alanı vereceği aşikârdır. Böylece iç normal kuvvetin (N) ifadesi gerilme 

ve kesit alanı cinsinden Denklem 1.5.’de verildiği gibi elde edilmiş olur. 

                                                              (1.5) 

Bu ifadeden de, gerilme ifadesi Denklem 1.6.’da sunulan kesit alanı ve normal kuvvet 

cinsinden elde edilir. 

  
 

 
                                                                     (1.6) 
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Şekil 1.3. Değişken kesitli çubuk, iki ucundan çekme kuvveti uygulanmış 

 

 

Şekil 1.4. Değişken kesitli çubuğun A-A kesiti iç kuvvet ve gerilmesi 

 

Çubuk kesitinin değişken olması halinde ise (Şekil 1.3-1.4.); gerilme değeri aşağıdaki 

gibi ifade edilmektedir (Denklem 1.7.). 

 ( )  
 ( )

 ( )
                                                                    (1.7) 

Bu durumda çubuk kesiti A(z)’nin değişimini “z”’ye bağlı bir fonksiyondur. Bununla 

birlikte çubuk iç kuvveti N(z) değerininde “z”ye bağlı bir fonksiyon olacağı 

görülmektedir [18].  

Çubuğa etkiyen dış kuvvet, çubuğu uzatmaya çalıştırıyorsa, buna çekme yönünde 

normal kuvvet, oluşturduğu gerilmeye ise çekme gerilmesi denmektedir. Aksine çubuğu 

kısaltmaya çalıştırıyorsa, buna basınç yönünde normal kuvvet, oluşturduğu gerilmeye 

ise basınç gerilmesi denilmektedir. 
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Şekil 1.5.  İki ucundan çekme kuvveti uygulanmış çubuk ve 

üzerinde alınan eğik kesit (a-a) 

 

 

Şekil 1.6. Eğik kesitin ayrık hali ve oluşan iç kuvvet (N) ve gerilme vektörü (t) 

Çubuk üzerinde, Şekil 1.5 ve Şekil 1.6.’de olduğu gibi, eğik bir kesit alınarak eğik kesit 

üzerinde oluşacak gerilmeler incelebilir. Yukarıdaki Şekil 1.5-1.6 incelendiğinde, eğik 

kesite ait alanın    olduğu, dik kesite ait alanın A olduğu, dik kesit ve eğik kesit 

arasında kalan açının ( ) olduğu görülür. t ise gerilme vektörü olup, değeri aşağıdaki 

Denklem 1.8.’de verildiği gibi yazılabilir [19];  

  
 

  
                                                                     (1.8) 

Eğik kesit alanı     ile dik kesite ait A alanı arasında Denklem 1.9.’da verilen bir ilişki 

vardır. 

     ( )                                                         (1.9) 

Eğik kesit alanı     nın, dik kesit alanına bağlı olarak değeri Denklem 1.9.’dan çekilirse, 

Denklem 1.10.’da verilen eğik alan elde edilmektedir. 

   
 

   ( )
              (1.10) 

Eğik kesit alanının değeri, gerilme vektöründe (Denklem 1.8.) yerine konulduğunda, t 

gerilme vektörünün değeri aşağıda Denklem 1.11.’de sunulduğu şekilde elde 

edilmektedir. 
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     ( )
    ( )

 

 
                                          (1.11) 

Elde edilen t gerilme vektörü, eğik kesite dik değildir. Dolayısıyla t vektörünün eğik 

kesite dik ve paralel olan bileşenleri bulunabilir. Bu bileşenler ise eğik kesite normal ve 

teğet olan bileşenler olarak bilinirler (Şekil 1.7). Normal bileşene normal gerilme, teğet 

olan bileşene ise kayma gerilmesi adı verilir. Eğik kesite normal olan gerilme 

bileşeninin değeri ve teğet olan gerilme bileşeninin değeri aşağıdaki gibi ifade edilebilir 

(Denklem 1.12. ve 1.13.). 

 

Şekil 1.7. Eğik kesitte oluşan t gerilme vektörünün bileşenlerine ayrılması[19] 

      ( )
 

 
                                               (1.12) 

      ( )    ( )   
 

 
                                              (1.13) 

1.2. Şekil Değiştirme 

İki ucuna çekme kuvveti uygulanan bir çubuk göz önüne alındığında, çubuğa normal 

kuvvet uygulandığında herhangi bir “z” noktasında olan 1 kesiti (kuvvet uygulandıktan 

sonra) yer değiştirerek 1’ kesitine dönüşür. Çubuk üzerinde kesitin1 yerinden; 1’yerine 

kadar olan hareketi arasında kalan kısma uzama denilmektedir. Uzama değeri ise u(z) 

ile gösterilmektedir (Şekil 1.8). 
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Şekil 1.8.  Uçlarında çekmeye zorlanan bir çubuk ve kesitlerin 

yükleme sonucu yer değiştirmesi 

 

Benzer şekilde, z+∆z noktasında bulunan 2 kesiti de normal kuvvetin zorlamasıyla 2’ 

kesitine dönüşür. Bu durumda da 2 kesiti ve 2’ kesiti arasında kalan uzunluk ise u(z+∆z) 

miktarına eşittir. “z” noktasında bulunan “1” kesiti ile “z+∆z” noktasında bulunan “2” 

kesitlerine ait yer değiştirme (uzama) miktarlarının arasındaki fark ise u(z+∆z) değeri 

ile u(z) değerinin farkına eşit olarak elde edilebilir. Çubuk üzerinde bulunan her bir 

kesite ait yer değiştirme değerlerinin bilindiği varsayımıyla, elde edilen değerlerin iki 

boyutlu düzlemde grafiği çizildiğinde (Şekil 1.9.); aşağıdaki gibi bir fonksiyon ortaya 

çıkmaktadır. İlaveten daha önce elde edilen u(z) ve u(z+∆z) değerleri de Şekil 1.9 ‘da 

üzerinde gösterilmiştir. 

 

Şekil 1.9. Kesitlere ait noktalar (z ve z+z kesitleri) ve onlara ait boyuna uzama grafiği 
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Uzama fonksiyonu “u” ‘nun “1” ve “2” kesitleri(z ve z+dz noktalarındaki kesitler) 

arasındaki değişimi, Denklem 1.14 ve Denklem 1.15.’de sunulduğu gibi elde edilebilir. 

 ( )  
 (    )  ( )

  
                                                      (1.14) 

              ( )  
  

  
                                             (1.15) 

İki kesitin yer değişimleri arasındaki farkın ∆z üzerinde dağıtılması, birim boyun 

uzaması anlamına gelmektedir. Birim boyun uzaması ise  ile gösterilmektedir. Bu 

durumda; “u”’nun türevi olan u’ değeri birim uzama olan ’a eşit olur. Böylece; 

Denklem 1.16.’ da verilen birim uzama ifadesi elde edilir. 

  
  

  
                                                             (1.16) 

Burada Ɛz, u’ değerine eşit olup, boyuna uzama “u” fonksiyonunun z’ye göre türevi 

olduğu anlaşılmaktadır. Yani, boyuna uzama fonksiyonu “u” nun herhangi bir z 

noktasındaki türevi o noktadaki birim uzama değerine eşittir. Buna kinematik bağıntı 

adıda verilmektedir [20, 21, 22, 23, 24, 25]. 

1.3. Gerilme Şekil Değiştirme İlişkisi 

Gerilme yukarıda anlatıldığı üzere, bir yapının kesitine dolayısıyla malzemesinin 

üzerine uygulanan basınç ve çekmenin bir ölçüsüdür ve statik denge kurallarıyla elde 

edilmektedir. Şekil değiştirmeler ise bir cisimdeki uzama ve kısalmaların ölçüsü ve 

büyüklüğü olup, kinematik büyüklük olarak anılmaktadır [18]. 1605-1703 yıllarında 

yaşayan Robert Hooke’un [26] gözlemlerine göre bir cisimdeki deformasyonlar onun 

üzerine uygulanan kuvvet veya yükler ile doğru orantılıdır. Dolayısı ile gerilme ve şekil 

değiştirme büyüklükleri bir biri ile bağlantılıdır. Bu bağıntı ise gerilme şekil değiştirme 

ilişkisi olarak bilinir [18, 27, 28]. 

Bu ilişkinin tespiti için yapılan deneysel çalışmalar ise basınç ya da çekme deneyidir. 

Geleneksel olarak, sünek malzemeler üzerinde çekme deneyi, gevrek malzemeler 

üzerinde ise basınç deneyi yöntemi ile gerilme ve şekil değiştirme ilişkisi tespit edilir. 

İnşaat mühendisliği alanında çok kullanılan malzemeler olan çelik ve betonun da 

gerilme ve şekil değiştirme ilişkisi laboratuarlarda yürütülen deneyler ile bulunur. Çelik 
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malzeme üzerinde çekme deneyi, beton malzeme üzerinde ise basınç deneyi yürütülerek 

gerilme şekil değiştirme ilişkisi tespit edilir. Aşağıda, çelik ve beton malzemeler için 

elde edilen tipik gerilme ve şekil değiştirme ilişkilerine ait grafikler verilmektedir (Şekil 

1.10 ve 1.11.). 

 

Şekil 1.10. Tipik yumuşak çelik için gerilme şekil değiştirme eğrisi 

 

 

Şekil 1.11. Tipik bir beton için gerilme şekil değiştirme eğrisi 
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Yukarıda, Şekil 1.10 ve 1.11 ile verilen gerilme şekil değiştirme eğrileri incelendiğinde, 

malzemelerin belirli bir gerilmeye kadar orantılı bir şekilde uzadığı, daha sonra ise 

gerilmedeki küçük değişimler sonucunda şekil değiştirmelerin daha fazla olduğu 

görülmektedir. Aradaki artış oranı ise doğrusal olmayıp eğrisel olmaktadır. Gerilme ve 

şekil değiştirmenin doğrusal orantılı olduğu bölgeye elastik bölge denilmektedir. 

Gerilme ve şekil değiştirmenin doğru orantılı olduğu bölgede cismin, Hooke [26] cismi 

olduğu kabul edilerek, aradaki ilişkinin ise aşağıdaki gibi olduğu varsayılır (Denklem 

1.17 ve 1.18.). 

                                                                 (1.17) 

  
 

 
                                                             (1.18) 

Diğer yandan cisimler üzerinde oluşan boy değişimi ve şekil değiştirmeler sadece cisim 

üzerine etkiyen yük ve kuvvetler tarafından oluşturulmazlar. Sıcaklık değişimleri de boy 

değişimi ve şekil değiştirmelere sebep olurlar. Ortaya çıkan şekil değiştirme sıcaklık 

değişimiyle doğru orantılıdır. Cismin tüm bünyesinde sıcaklık değişimi düzgün 

olduğunda, birim uzamanın ifadesi Denklem 1.19.’da olduğu gibi verilmektedir. 

                                                                   (1.19) 

Burada birim uzama, sıcaklık nedeniyle oluşan şekil değiştirmesi, T, Sıcaklık 

değişimi,  ise bu iki büyüklüğü birbirine bağlayan malzemeye ait olan bir katsayı olup, 

sıcaklık genleşme katsayısı olarak bilinmektedir [22, 29, 30].  

Böylece, cisim üzerinde oluşan toplam şekil değiştirme hem sıcaklık hem de 

gerilmelerden dolayı Denklem 1.20’deki hale gelir. 

  
 

 
                                                                 (1.20) 

1.4. Basınç veya Çekme Kuvvetine Maruz Çubuk Eleman 

Eksenel normal kuvvete maruz bir çubuktaki gerilmeyi ve birim uzamayı hesaplamak 

için birbiriyle ilişkili üç farklı denklem türü kullanılır. Bunlar denge durumu, kinematik 

ilişki ve Hooke kanunu denklemleridir. 

          (1.21) 
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Kinematik durumun Denklem 1.21.’le ifade edildiği bilinmektedir (Omurtag, 2007). 

Ayrıca, Hooke kanunundan gerilme şekil değiştirme arasındaki ilişkinin Denklem 

1.22.’de verildiği görülmektedir [21], gerilmenin ifadesi ise Denklem 1.23.’le tarif 

edilmektedir [20, 30].  

  
 

 
                                                             (1.22) 

  
 

 
                                                             (1.23) 

Burada N kesite etkiyen normal kuvvet ve A ise kesit alanı olup, E ise malzeme sabiti 

elastisite modülünü göstermektedir. 

Probleme bağlı olarak, denge durumu tüm çubuk için, çubuğun bir kısmı için veya 

çubuğun küçük bir elemanı için yazılarak formüle edilebilir. Bu amaçla, uçlarından F1 

ve F2 kuvvetlerine maruz ve ayrıca çubuk boyunca yayılı değişken çizgisel yükü 

(n=n(z)) bulunan bir çubuk göz önüne alınmaktadır (Şekil 1.12.). Şekilden de 

anlaşılacağı üzere, çubuk ekseni boyunca kesit alanı ve yayılı yük değişkendir. Yüklerin 

dengede olduğu kabul edilmektedir. Aşağıda şekilde (Şekil 1.12.a ve 1.12.b) görüldüğü 

gibi, çubuktan “dz” boyunda sonsuz küçük bir eleman çıkartıp, göz önüne alalım. 

 

Şekil 1.12. F1 ve F2 kuvveti ve n(z) yayılı yüküne maruz çubuk ve sonsuz küçük 

elamanın serbest cisim diyagramı 

 

Sonsuz küçük elemanın serbest cisim diyagramında eleman uçlarında N ve N+dN 

normal kuvvetleri bulunmaktadır. Sonsuz küçük eleman içindeki boyuna yayılı yükten 
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dolayı oluşan normal kuvvet n(z).dz ile gösterilmiştir (sonsuz küçük elemanın boyu 

limitte sıfıra gönderilirken, çizgisel yükün değerinin dz boyunca sabit olduğu kabul 

edilebilir). Çubuk ekseni yönündeki kuvvetlerin dengesi aşağıdaki Denklem 1.24.’teki 

şekilde yazılır [18]. 

      ( )                                                  (1.24) 

Denklem 1.24’den sadeleşme sonucunda Denklem 1.25 ifadesi elde edilir. 

    ( )                                                               (1.25) 

Denklem 1.25’ten de Denklem 1.26 ‘nın elde edilmesi mümkündür. 

  

  
  ( )                                                                    (1.26) 

Ayrıca birim uzama ifadesinde (Denklem 1.22. de), gerilme değeri (Denklem 1.23.) 

yerine konursa, birim uzama ifadesi normal kuvvet ve eksenel rijitlik cinsinden 

Denklem 1.27.’de verildiği şekilde bulunur. 

  
 

  
                                                                   (1.27) 

Birim uzamanın Hooke kanunundan elde edilen (Denklem 1.27. deki) değeri, kinematik 

denkleminde (Denklem 1.21.’de) yerine konulursa, aşağıda sunulan Denklem 1.28 elde 

edilir. 

  

  
 

 

  
                  (1.28) 

Denklem 1.28’den normal kuvvet ifadesi “N” aşağıdaki şekilde çekilerek, Denklem 

1.29 elde edilmiş olur. 

     
  

  
                                                                   (1.29) 

Elde edilen normal kuvvet ifadesi (Denklem 1.29) denge durumundan elde edilen 

ifadede (Denklem 1.26 da) yerine konulursa, Denklem 1.30 ile verilen sonuca ulaşılır. 

 (     
  

  
 )

  
  ( )                                                                (1.30) 
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Denklem 1.30 ifadesi daha sade biçimde yazılarak, Denklem 1.31 elde edilir. 

(     )    (z)                                                                  (1.31) 

Denklem 1.31’de elde edilen ifade ile boyuna şekil değiştirme fonksiyonunu idare eden 

diferansiyel denklem [18] elde edilmiş olur. Bu denkleme “boyuna uzama elastik 

eğrisi” adı da verilmektedir. 

Bu denklem kullanılarak, çekme veya basınca maruz hem izostatik hem de hiperstatik 

çubuk problemleri göz önüne alınabilir. Boyuna şekil değiştirmeyi idare eden 

diferansiyel denklem ifadesi iki kez integral alınarak geriye doğru çözülür, oluşacak 

integral sabitleri ise çubuk sınır koşulları göz önüne alınarak bulunur ve boyuna şekil 

değiştirme ifadesinde yerine konularak boyuna şekil değiştirmenin fonksiyonu elde 

edilir. Boyuna şekil değiştirmenin çubuk ekseni “z” ye göre türevi alınarak, EA ile 

çarpılması ile çubuk ekseni boyunca normal kuvvet değişimi de elde edilir (Denklem 

1.29). Burada kesit alanı ve çubuk içinde yayılı olan çizgisel yük “n(z)”in, çubuk ekseni 

“z” ye bağlı fonksiyon veya sabit olabilir. İfadeler değişken oldukları varsayımıyla 

çıkartılmıştır. 

Çubuk uç sınır koşulları çeşitli durumlarda olabilir [17, 18]. İki ucun tutulu olması 

halinde boyuna uzama eğrisinin başlangıçtaki (z=0) değeri ve çubuğun sonundaki (z=L) 

değerleri sıfır olacaktır, yani (u(0)=0 ve u(L)=0)’dır. Çubuk başlangıç ucu tutulu diğer 

uç serbest ise; u(0)=0, u’(L)=N0/EA olacaktır. Çubuk başlangıç noktası serbest diğer uç 

tutulu ise u’(0)=N0/EA ve u(L)=0 olacaktır. N0 değeri sabit veya sıfırdır, çubuğun 

serbest ucundaki eksenel yöndeki tekil kuvvete tekabül eder. Çubuğun uçları eksenel 

yönde deplasman yapıyor ve deplasmanlar bilinmiyorsa, bunlara bilinmeyen değişken 

isimleri verilerek, çubuğun başlangıç ve sonundaki deplasmanlar sınır koşulları olarak 

alınır. Örneğin, çubuğun başlangıcındaki ve sonundaki deplasmanlar bilinmiyorsa, 

bunlara ui ve uj değişken isimleri verilerek bilinmeyen sınır koşulları olarak alınsın. Bu 

durumda u(0)=ui ve u(L)=uj olarak alınır. Bu sınır koşullarına bağlı olarak integral 

sabitleri elde edilerek, çubuğa ait boyuna uzama eğrisi elde edilir. Çubuk iç normal 

kuvvet değişimi de boyuna uzama eğrisi u(z)’ye bağlı olduğundan kolayca elde 

edilerek, çubuk uçlarındaki normal kuvvetlerin değerleri de elde edilebilir. Ancak, 

çubuk uçlarında bulunacak olan normal kuvvet değerleri, çubuk ucunda bilinmeyen 

olarak alınan “ui” ve “uj” deplasmanlarına bağlı olmaktadır. 
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Bu tez çalışmasının amacı yukarıda çıkartılan eksenel uzamayı idare eden diferansiyel 

denklem kullanılarak bir, iki ve üç boyutlu çubuk sistemlerden oluşan mekanik 

problemlerini bilgisayar yardımıyla çözmektir. 

Çalışmanın birinci amacı, olayı idare eden diferansiyel denklemden hareketle bir 

boyutlu çubuk veya yaylarda oluşan bir boyutlu problemleri çözmek için Mathematica 

[31], ortamında bir bilgisayar programı geliştirmektir. Bu program farklı malzeme ve 

geometrik özelliklere de sahip olabilen çubuklardan oluşan bir boyutlu problemlerin 

içinde oluşacak iç kuvvetleri ve iç kuvvet dağılımlarını ve gerilmeleri de hesaplamak 

amacıyla geliştirilmektir. Çubuk sistemini idare eden denklemler matris formunda 

olmayıp, analitik olarak elde edilmektedir. 

Çalışmanın ikinci amacı, yine çubuk için olayı idare eden diferansiyel denklemden 

hareketle, sadece eksenel normal kuvvet taşıyan çubuklardan oluşturulan iki boyutlu 

düzlemsel kafes sistem problemlerini çözmek için Mathematica ortamında bir diğer 

bilgisayar programı geliştirmektir. Bu program vasıtasıyla farklı malzeme ve geometrik 

özelliklere de sahip olabilen çubuklardan oluşan düzlemsel kafes sistemi oluşturan 

çubuklara ait iç kuvvetleri ve iç kuvvet dağılımlarını ve dolayısıyla gerilmeleri 

hesaplamak hedeflenmektedir. Kafes sistemi idare eden denklemler matris formunda 

olmayıp, analitik olarak elde edilmektedir. 

Çalışmanın üçüncü amacı ise, yine çubuk için olayı idare eden diferansiyel denklemden 

hareketle, sadece eksenel normal kuvvet taşıyan çubuklardan oluşturulan üç boyutlu 

veya uzay kafes sistem problemlerini çözmek için Mathematica ortamında üçüncü 

bilgisayar programı geliştirmektir. Bu program yardımıyla da farklı malzeme ve 

geometrik özelliklere de sahip olabilen çubuklardan oluşan uzay kafes sistemi oluşturan 

çubuklara ait iç kuvvetleri ve iç kuvvet dağılımlarını ve dolayısıyla gerilmeleri 

hesaplamak amaçlanmaktadır. Kafes sistemi idare eden denklemler matris formunda 

olmayıp, analitik olarak elde edilmektedir. 

Çalışmanın ilave diğer amaçları ise aşağıda verilmektedir. Bunlar yukarıda verilen her 

bir durum için ayrı ayrı geçerlidir. Sıcaklık değişimleri karşısında oluşacak iç kuvvetler 

göz önüne alınmaktadır. Yukarıda verilen sistemlerde elastik mesnetlenme durumu söz 

konusu olacağından, elastik mesnet halleri de programlamada göz önüne alınmaktadır. 
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Yukarıda bahsedilen programlar vasıtasıyla, küçük problemler hem analitik olarak, hem 

de sembolik olarak elde edilebilmektedir. Büyük problemler ise sayısal olarak 

çözülmektedir. Bir boyutlu sistemlerde çubuk iç kuvvetlerinin dağılım grafikleri elde 

edilmektedir. İki ve üç boyutlu çubuk sistem verileri sayısal olarak verildiğinde, çubuk 

sistemin deformasyonlu ve deformasyonsuz hallerinin grafikleri de elde 

edilebilmektedir. 
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2.  BÖLÜM 

YÖNTEM VE MATERYAL 

2.1. Yöntem Bilgisayar Programlama ve Tekniği 

2.1.1. Kodlama Tekniği 

Kodlama tekniği yöntemi ile çubuk elemanlardan oluşan sistemlerin bilgisayar modeli 

tanımlanmaktadır. Bu tanımlamadan yola çıkarak programa veriler işlenerek çubuk 

sistemlerin çözümü için gerekli denklemler kurulur. Denklemlerin çözümü ile de 

çubuklarda oluşan iç kuvvetler hesaplanır [32]. Bu bölümde, bu teknik ile nasıl kodlama 

yapılacağı ve verilere kodlama ile nasıl ulaşılacağı anlatılmaktadır. Aşağıda eleman ve 

düğümlerin kodlanması ile ilgili bilgiler verilmiştir. 

2.1.2. Elemana Ait Veriler 

Her elemanın kendine ait bir numarası olursa, bu numara onun ismi yerine geçer ve 

numara yardımıyla elemana ait olan bütün bilgilere erişim sağlanabilir. Elemana ait 

geometrik özellikler kesit alanı, kesit atalet momenti ve uzunluğudur. Elemana ait 

malzeme özellikleri ise elastisite modülü, sıcaklık genleşme katsayısı ve emniyet 

gerilmesi vs’dir. Ayrıca elemana etkiyen yüklerde bulunabilmektedir; bunlar eleman 

eksenine dik ve paralel olan düzgün veya değişken yayılı yükler olup, sıcaklık 

değişimleri de elemana etkiyen ısısal yüklerdir. Bunlarda eleman kesiti boyunca düzgün 

sıcaklık değişimi ya da kesitin içinde doğrusal değişen sıcaklık değişimi olabilmektedir. 

Her türlü yükler ve özellikler sadece eleman numarası ile erişilecek şekilde birer dizide 

saklanabilirler. Her bir dizi ise eleman özelliğini veya yükünü çağrıştıracak şekilde 

uygun bir isim ile adlandırılabilir. Çubuk elemanların iki ucu bulunmaktadır. Bu uçlar 

bulundukları sistem içinde birer düğüme bağlıdır. Çubuk bu iki uç arasında sistemin 

diğer elemanları ile bağlantılı olduğundan, çubuğun bağlı olduğu iki düğümün numarası 
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da birer dizi içinde saklanabilir. Eleman numarası ile bağlantılı olarak saklanan bu iki 

veri daha sonra çubuk ve bulunduğu sistem ile bağlantısını sağlayacak verilerdir.  

Tablo 2.1.’de, bir çubuk elemana ait bazı veriler ve bilgiler sunulmuştur. Tablo 2.1’den 

görüleceği üzere, herhangi bir eleman numarası ile o elemana ait bilgilere erişimin 

kolayca mümkün olduğu görülebilir. Eleman numarası vasıtasıyla; çubuğun “i” ve “j” 

ucunun düğüm numaralarına erişilir. İlaveten, kesit alanı, elastisite modülü, eksene 

paralel yük bilgisi, sıcaklık genleşme katsayısı ve sıcaklık değişim bilgisine ulaşmak 

mümkündür. Elemanla ilgili verilere ulaşmak için sadece eleman numarasının bilinmesi 

yeterlidir. Erişilen bilgiler uygun şekilde işlenebilir [33].  

Tablo 2.1. Çubuk elemana ait çubuk numarası ile erişilebilecek bazı bilgi ve veriler 

Eleman 

No 

“i” 

ucu 

“j” 

ucu 

Alan Elastik 

Modülü 

Eksene Paralel 

Yayılı Yük 

nz 

 t 

1 i1 j1 a1 E1 nz1 1 t1 

2 i2 j2 a2 E2 nz2  t2 

3 i3 j3 a3 E3 nz3 3 t3 

m im jm am Em nzm m tm 

 

2.1.3. Düğüme Ait Veriler 

Çubuklar ile çerçeve sistemler oluştururken, çubuklar belirli yerlerde birleşmek 

durumunda olurlar. Bu birleşim noktaları düğüm noktaları olarak adlandırılır. Düğüm 

noktaları oluşturulan tüm çubuk sisteminin bir parçası olduğundan, düğümlerde bulunan 

büyüklükler sistemin global koordinatlarında tanımlanır. Düğümlerde bulunan 

büyüklükler ise; düğüm koordinatları, düğüm serbestlikleri veya deplasmanlar, 

düğümlere etkiyen tekil dış kuvvetler, düğümlerde bulunan rijit veya elastik mesnetler, 

mesnet oturmaları veya yer değiştirmeler şeklinde sıralanabilir. Düğümlere ait bu 

büyüklükler düğüm numarası ile bağlantılı olarak birer dizi içinde saklanabilirler. 

Büyüklüklerin içinde saklanacağı diziye uygun şekilde büyüklüğün kendini 

çağrıştıracak isimler verilebilir. Tablo 2.2.’de düğümlere ait bazı veriler sunulmaktadır. 

Tablo 2.2.’den görüleceği üzere, düğüm numarası ile herhangi bir düğüme ait verilere 

erişmek mümkündür. Düğüm numarası ile düğümün “x” ye “y” koordinatlarına 

erişilebilir. İlaveten, düğümde bulunan x ve y yönünde oluşabilecek deplasmanların 
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isimlerine (dx ve dy sütunundan) erişilebilir. Düğümde olabilecek tekil kuvvet 

değerlerine Fx ve Fy sütunu gibi atanacak bir diziden ulaşılabilir. Aynı şekilde düğümde 

yer değiştirme veya mesnet çökmesi varsa, δx ve δy sütunu gibi atanacak bir diziden 

ulaşılabilir. Düğümle ilgili verilere ulaşmak için sadece düğüm numarasının bilinmesi 

yeterlidir. Erişilen bilgiler uygun şekilde işlenebilir. 

Tablo 2.2. Düğüme ait olup, düğüm numarası ile erişilebilecek bazı bilgi ve veriler 

Düğüm No X Y dx dy Fx Fy δx δy 

1 x1 y1 dx1 dy1 Fx1 Fy1 δx1 δy1 

2 x2 y2 dx2 dy2 Fx2 Fy2 δx2 δy2 

3 x3 y3 dx3 dy3 Fx3 Fy3 δx3 δy3 

n xn yn dxn dyn Fxn Fyn δxn δyn 

 

2.2. Bir Çubuk Elemanı İçin Boyuna Uzama Diferansiyel Denkleminin Yazılması 

Daha önce bir çubuk için boyuna uzama eğrisi ile ilgili diferansiyel denklem elde 

edilmiştir. Denklem yeniden aşağıda (Denklem 2.1.) da verilmektedir. 

 (    )    (z)                                                               (2.1) 

Denklem incelendiğinde çubuğa ait elastisite modülü ve alanın denklemde kullanıldığı 

görülmektedir. Ayrıca, çubuk eksenine paralel yayılı yükün değeri de kullanılmaktadır. 

Bu değerler çubuk numarasına bağlı olarak ilgili diziden erişilerek alınır ve denklemde 

yerine konulabilir. Böylece; çubuk eleman numarasının “m” olduğu varsayımıyla, idare 

eden ifade Denklem 2.2. deki hali alır. Aşağıdaki “m” indisi bütün büyüklüklerin “m” 

numaralı elemana ait olduğunu göstermektedir. Aşağıdaki işlemler, denklemde 

kullanılan parametrelerin çubuk ekseni “z” ye bağlı fonksiyonlar olduğu yani değişken 

olduğu kabulüyle yapılmaktadır. Parametrelerden bazıları sabit olabilir, öyle durumda 

işlemler daha da kolaylaşacaktır. 

 (      
 )     (z)                                                             (2.2) 

Çubuk boyuna uzamasını idare eden ve Denklem 2.2.’de verilen diferansiyel denklemi 

çözmek için geriye doğru “z” ye göre bir kez integral alınsın. Böylece aşağıda verilen 
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Denklem 2.3 elde edilir. 

∫(      
 )    ∫   ( )                                               (2.3) 

Denklem 2.3, integral sonucunda Denklem 2.4.’de verilen ifadeye dönüşür. 

      
  ∫   ( )                                                    (2.4) 

Elde edilen bu ifade de (Denklem 2.4), her iki tarafı elastisite modülü ve alanın çarpımı 

ile bölünsün; buradan Denklem 2.5 elde edilir. 

            
  

(∫   ( )     )

    
                                                    (2.5) 

Denklem 2.5.’de verilen ifade, bir kez daha geriye doğru “z” ye göre integrali alınarak, 

aşağıdaki ifade (Denklem 2.6.) sembolik olarak elde edilir; 

∫  
    ∫

(∫   ( )     )

    
                                                (2.6) 

Sembolik olarak elde edilen Denklem 2.6 ifadesinin, integralinin alınması sonucu 

Denklem 2.7 elde edilir. 

   ∫
(∫   ( )     )

    
                                                   (2.7) 

Sonuç olarak Denklem 2.7.’de elde edilen um değeri; çubuğa ait boyuna uzama elastik 

eğrisidir. İntegral içinde bulunan c1 ve c2 büyüklükleri ise integral sabitleridir. İntegral 

sabitlerinin bulunması için sınır koşullarının kullanılması gerektiği bilinmektedir [34, 

35]. 

Bir çubuğun sınırları ve ona ait koşullar ise aşağıdaki gibidir. Çubuğun başlangıcındaki 

uç “i” başlangıç sınırını (z=0 daki yerini); sonundaki uç “j” ucu bitiş sınırını (z=Lm deki 

yerini) temsil eder. Çubuk eksenini “z” temsil etmektedir. Çubuğun başlangıcı ve bitişi 

arasındaki mesafe çubuk boyuna tekabül eder ve (Lm) hesaplanması gerekir. Çubuk 

boyu aşağıdaki şekilde hesap edilebilir. 
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2.2.1. Çubuk Boyunun Hesaplanması 

Çubuk boyunun hesaplanması için çubuk uçlarının koordinatlarının bilinmesi gerekir. 

Çubuğun numarası bilindiğinden “i” ucunun ve “j” ucunun değerleri elemana ait 

bilgilerden alınabilir. Eleman numarası “m” olarak varsayılmış idi, Tablo 2.1.’deki “m” 

numaralı satırdan o elemana ait uçların bilgisi “im” ve “jm” olarak tespit edilir. Bunlar 

çubuk uçlarının değişken ismidir ve değişkenin değerini taşırlar. Değerleri ise sayısal 

birer değerdir. Bu değerler esasen birer düğüm noktasını göstermektedir. “im” ve “jm” 

düğüm noktalarının koordinatları ilgili diziden alınabilir (Tablo 2.2). Böylece çubuğu 

tarif eden düğüm noktalarının koordinat değerleri “xim” ve “yim” ile “xjm” ve “yjm” 

değerleri tespit edilmiş olur. İki nokta arasındaki en kısa mesafeyi veren formül 

yardımıyla çubuk boyu hesaplanır [36]. Buna ilaveten çubuk ekseni ile “x” ekseni 

çakışmıyorsa; çubuğun bir eğimi var demektir. Çubuk ile “x” ekseni arasında bulunan 

açı veya ona ait sinüs ve kosinüs değerleri de çubuk uç koordinatları vasıtasıyla bulunur 

(Şekil 2.1.). 

 

Şekil 2.1. Çubuk uç düğüm noktalarına ait koordinatlar ve çubuk boyu uzunluğu ilişkisi 
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Çubuk boyunun ifadesi Denklem 2.8.’de verilmektedir [36]; 

   √(       )
 
 (       )                                           (2.8) 

Çubuk ekseni “z” ile sistem ekseni olan “x” ekseni çakışmadığında arada oluşan “δ” 

açısının sinüs ve kosinüs [36] değerleri aşağıda verilmektedir (Denklem 2.9 ve Denklem 

2.10). 

   ( )  
       

  
                                                 (2.9) 

   ( )  
       

  
                                                  (2.10) 

Elde edilen çubuk boyu sınır şartları esnasında yerel eksen “z” için kullanılmaktadır. 

2.2.2. Çubuk Sınır Şartlarının Elde Edilmesi 

Daha önceki kısımda çubuk sınır şartı olarak serbest uç ve serbest uçta bulunan tekil 

kuvvetten bahsedilmişti. Burada çubuk sınır şartları, çubukların bağlı bulunduğu 

düğümlerin deplasmanları sınır şartı olarak alınmaktadır. Bu sınır şartları da 

bilinmediğinden, bunların değişken isimleri deplasman olarak kabul edilmektedir. 

Dolayısı ile elde edilen boyuna uzama elastik eğrisi sistem koordinatlarında bilinmeyen 

olarak alınan düğüm deplasmanları cinsinden yazılmış olacaktır. Ancak, sistem 

koordinatlarında tarif edilmiş olan çubuk ucunda bulunan düğüm deplasmanlarının sınır 

şartı olarak kullanılabilmesi için; çubuk yerel koordinatlarında ifade edilmeleri 

gerekmektedir. Bu ise aşağıdaki şekilde yapılmaktadır (Şekil 2.2). 
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Şekil 2.2. Yerel ve global koordinatlarda çubuk düğüm noktalarına ait deplasmanlar 

 

Şekil 2.2.’de çubuk uç deplasmanları hem yerel hemde global koordinat takımında 

gösterilmiştir. Bu iki takımda ayrı ayrı gösterilen deplasmanlar arasında ise bir ilişki 

bulunmaktadır. Global koordinat takımında gösterilen uç deplasmanlarının yerel 

koordinat takımında bulunan çubuk ekseni üzerindeki bileşenlerinin toplamı, yerel 

koordinat takımında ve çubuk ekseni yönünde olan “ui” ve “uj” deplasmanlarına eşittir. 

Bu deplasmanların hesabı aşağıda Denklem 2.11 ve Denklem 2.12.’de açık bir şekilde 

sunulmuştur. 

       ( )        ( )                                               (2.11) 

       ( )        ( )                                              (2.12) 

Çubuk uç deplasmaları yerel koordinatlarında ifade edildikten sonra, elde edilen “ui” ve 

“uj” deplasmanları sınır koşulu olarak kullanılabilir. Sınır koşulları olarak “ui” ve “uj” 

deplasmanları; daha önce belirtildiği gibi çubuk başlangıcında ve bitimindeki çubuk 

ekseni yönündeki yer değiştirmeler olmaktadır. Daha önce integral sabitleri ile birlikte 

tespit edilen çubuk boyuna elastik eğrisinin, başlangıçtaki değeri ( z=0 daki değeri), “ui” 

deplasmanına eşit olmaktadır. Aynı şekilde çubuk boyuna elastik eğrisinin çubuk 

bitimindeki değeri (yani z=Lm deki değeri), “uj” deplasmanına eşit olacaktır. Bu durum 

aşağıda Denklem 2.13 ve Denklem 2. 14.’de ifade edilmiştir. 



29 

 

{∫
(∫   ( )     )

    
     }

   
                                       (2.13) 

{∫
(∫   ( )     )

    
     }

    

                                     (2.14) 

Yukarıda verilen denklemlerde “ui” ve “uj” yerine Denklem 2.11 ve Denklem 2.12.’de 

verilen eşdeğerleri kullanılmaktadır. Denklem 2.13 ve Denklem 2.14 ile “c1” ve “c2” 

integral sabitlerine bağlı, iki adet denklem elde edilmektedir. Elde edilen son iki 

denklem “c1” ve “c2” için kendi aralarında çözülerek, integral sabitleri bulunur. İntegral 

sabitleri çözüldükten sonra, Denklem 2.7 ile tanımlanmış olan “um” çubuk boyuna 

elastik eğrisi global koordinatlarda bilinmeyen olarak alınan çubuk uç düğüm 

noktalarında bulunan deplasmanlar cinsinden yazılmış olur, ilaveten denklem çubuk 

malzeme özelliği ile geometrik özelliklerine de bağlı olarak yazılmış olur. Çubuğun 

boyuna uzama elastik eğrisi tespit edilmiş olur. Eğriden hareketle, çubuk uçlarında 

bulunan çubuk uç normal kuvvetleri yerel koordinatlarda elde edilebilmektedir. Daha 

önce çubuk uç normal kuvvetleri ile çubuk boyuna uzama elastik eğrisi arasında 

bulunan ilişki tespit edilmiştir. Normal kuvvet fonksiyonu, boyuna uzama elastik 

eğrisinin “z” ye göre türevinin çubuk elastisite modülü ve çubuk kesit alanı ile 

çarpımına eşit olarak ifade edilmiştir. İlişki tekrar aşağıda verilmektedir (Denklem 

2.15).  

    
  

  
                                                                      (2.15) 

İntegral sabitleri yerine konulduktan sonra elde edilen “um” çubuk boyuna uzama elastik 

eğrisinin “z” ye göre türevi alınıp; elastik modül ve kesit alanı ile çarpılır. Çubuk iç 

normal kuvveti değişiminin fonksiyonu elde edilmiş olur; normal kuvvetin fonksiyonu 

da; uzama fonksiyonun da olduğu gibi; global koordinatlarda ki çubuğun bağlı olduğu 

düğüm deplasmanlarına, çubuk malzeme ve geometrik özelliklerinde bağlıdır. Aşağıda 

sembolik olarak, çubuk iç kuvvet değişiminin kapalı ifadesi verilmektedir (Denklem 

2.16). 

      
 (  )

  
                                                             (2.16) 

 



30 

 

Yukarıda elde edilen iç normal kuvvet değişim kullanılarak, çubuk uç normal kuvvetleri 

elde edilebilmektedir. Çubuk uçlarındaki çubuk uç normal kuvvetlerinin kapalı ifadesi 

aşağıda Denklem 2.17 ve Denklem 2.18.’de verilmektedir. Çubuk normal uç kuvvetleri 

de “i” ucu için “nim” ve “j” ucu için ise “njm” olarak isimlendirilmektedir. 

    {      
 (  )

  
}
   

                                           (2.17) 

    {      
 (  )

  
}
    

                                         (2.18) 

Elde edilen çubuk uç kuvvetlerin aşağıdaki verilen şekilde (Şekil 2.3.) yerel ve global 

koordinatlarda gösterilmektedir. Yerel ve global koordinatlarda çubuk uç kuvvetlerinin 

bir biri ile ilişkisi yada dönüşümü aşağıda Denklem 2.19-2.22.’de verilmektedir. 

 

Şekil 2.3. Yerel ve global koordinatlarda çubuk düğüm noktalarına ait normal kuvvetler 

 

        ( )                                                     (2.19) 

        ( )                                                     (2.20) 

        ( )                                                     (2.21) 

        ( )                                                     (2.22) 
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Çubuklardan oluşan bir çubuk sistemde bulunan, bütün çubuklar için yukarıda belirtilen 

işlemlerin sırayla ve özellikle bilgisayar ile yapılması mümkündür. Çubuklara ait 

boyuna uzama eğrileri, iç normal kuvvet fonksiyonları yerel koordinatlarda, çubukların 

bağlı oldukları düğümlerin deplasmanları, çubukların malzeme ve geometrik 

özelliklerine bağlı olarak elde edilmiştir. Bunlar uygun birer dizide saklanabilirler. 

Çubuk uç normal kuvvetleri ise hem yerel hem de global koordinat takımında 

çubukların bağlı oldukları düğümlerin deplasmanları, çubukların malzeme ve geometrik 

özelliklerine bağlı elde edilmiştir. Düğüm deplasmalarının bilinmesi halinde çubuk 

boyuna uzama eğrisi, iç normal kuvvet değişimi ve uç kuvvetleri hesaplanmış olacaktır. 

Düğüm deplasmanlarının hesabında ise global eksenlere dönüştürülmüş olan, ve düğüm 

deplasmanları ile çubuk malzeme ve geometrik özelliklerine bağlı olarak elde edilen, 

çubuk uç kuvvetlerinden faydalanılacaktır. 

2.2.3. Tüm Sistemi Birbirine Bağlayan Denge Denklemlerinin Oluşturulması 

Bu kısımda tüm sistemi birbirine bağlayan denge denklemlerinin nasıl oluşturulacağı 

ifade edilmektedir. Çubuklardan oluşan tüm sistem dengede olduğundan, sistemin her 

bir parçasının ayrı ayrı dengede olması gerekmektedir. Yukarıda her bir çubuk eleman 

için çubuk uç kuvvetlerinin hesabı global koordinatlarda bulunan düğüm 

deplasmanlarına bağlı olarak ifade edilmiş, ayrıca çubuk yerel koordinat takımında 

hesaplanan uç kuvvetlerinin global koordinat takımında nasıl hesaplandığı verilmiştir. 

Daha önce belirtildiği üzere sistemi oluşturan çubuklar düğüm noktalarında 

birleşmektedirler. Düğüm noktaları da sistemin bir parçası olduğundan, dengede olması 

gerekmektedir. Tüm sistemi birbirine bağlayan denklemlerde düğüm noktalarının 

dengesinden elde edilmektedir. Sadece normal kuvvet taşıyan elemanlardan oluşan 

çubuk sisteminin bağlantı noktalarının mafsallı olduğu daha önce belirtilmiştir. Bu 

nedenle düğümlerde moment olmayacağından, her bir düğüm için düğümde bulunan 

kuvvetlerin dengesini yazmak gerekmektedir. Kuvvetlerin dengesi globalkoordinat 

takımında yazılacağından düğümde bulunan kuvvetlerin global koordinat takımı olan X 

ve Y yönlerindeki bileşenleri için ayrı ayrı iki adet denklem yazılması anlamına 

gelmektedir.  
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Denge denklemi yazılan düğümünde iki adet deplasman bileşeni bulunmaktadır. 

Denklemler bu deplasman bileşenleri için ayrı ayrı yazılmaktadır. Böylece düğümlerde 

bulunan toplam deplasman sayısı kadar denklem elde edilebilmektedir. Bu denklemler 

de düğüm deplasmanları cinsinden yazılmış olmaktadır. Elde edilen lineer denklem 

takımı düğüm deplasmanları için çözülebilir. Çözüm sonucunda global koordinatlarda 

tanımlanan düğüm deplasmanları bulunmuş olmaktadır. Düğümlerde bulunan 

deplasmanların numarası yazılan denklemin deplasman yönünü işaret etmektedir. 

Aşağıda Şekil 2.4.’de genel bir düğüm noktası tasarlanmış olup, bu düğüm için iki adet 

denge denkleminin nasıl yazılacağı ve denklemin numarasının ne olacağı 

açıklamaktadır. 

 

Şekil 2.4. Genel bir düğüm noktası, bağlanan çubuk uç kuvvetleri ve tekil dış kuvvetler 

 

Şekil 2.4.’den anlaşılacağı üzere düğüme üç adet çubuk eleman bağlıdır. Çubukları 

isimleri sırasıyla “a”, “b” ve “c” olarak seçilmiştir. Tüm çubuklar “i” ucundan “j” ucuna 

doğru yönlenmiştir. Çubuk uç kuvvetleri bulundukları uçlarda bulunan düğüm 

deplasmanlarına bağlı olarak elde edilmiş olup, denge denklemleri de kapalı formda 

verilmektedir. Sol tarafta çubuk uç kuvvetleri yerel çubuk koordinatlarında verilmekte 

olup, sağ tarafta ise global takımdaki değerleri yerel çubuk ekseninin global eksenle 

yaptığı açıya bağlı olarak verilmektedir.  

Düğüm dengesi ise global takımda yazılmaktadır. Denge denklemlerinin yazılması 

esnasında gerekli işaret düzeltmesi yapılmaktadır. Şekil 2.4.’te görülen, Qd ve Pd dış 

tekil kuvvetleri, fxja ve fyja sırasıyla “a” çubuğunun global koordinat takımındaki “j” 
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ucunun kuvvetlerini, fxib ve fyib sırasıyla “b” çubuğunun global koordinat takımındaki 

“i” ucuna ait kuvvetleri, fxic ve fyic ise sırasıyla “c” çubuğunun global koordinat 

takımındaki “i” ucuna ait kuvvetleri göstermektedir. İlaveten,θa, θb ve θc açıları da 

sırasıyla söz konusu elemanların yerel çubuk eksenlerinin global “X” ekseni arasındaki 

açıyı göstermektedir. Benzer şekilde; dxja, dxib, dxic deplasmanları sırasıyla, “a” 

elemanının “j” ucundaki ve global “X” yönündeki, “b” elemanının “i” ucundaki ve 

global “X” yönündeki, “c” elemanının “i” ucundaki ve global “X” yönündeki 

deplasmanı ve deplasman numarasını temsil etmektedir. Deplasman değerleri ve 

numaraları eşittir. Numaraların elde edilişleri farklı elemanlardandır. 

Şekil 2.4.’den, global “X” ve “Y” yönünde yazılacak denge denklemleri aşağıda 

Denklem 2.23 ve Denklem 2.24.’de verilmektedir. 

        (              )                                     (2.23) 

         (              )                         (2.24) 

Denklem 2.23 ve 2.24.’den görüleceği üzere, denge denklemi bir toplamdan ibarettir. 

Toplamı elde etmek için tüm elemanların uç kuvvetlerini aynı anda bulmaya gerek 

yoktur. Her elemandan gelecek katkı elemanın sırası geldiğinde hesaplanıp, ilgili 

denkleme (çubuğun ucunda bulunan deplasman numarası ile ilgili) kümülatif olarak üst 

üste eklenebilir. Tüm çubuk elemanların taranması bittiğinde denklemlerin tamamı da 

kurulmuş olur. Burada tekil dış kuvvetlerin denklemlere, çubuk elemanların 

taranmasından önce ya da tarama işlemi bittikten sonra eklenmesi gerekmektedir. 

Bunun nedeni ise tekil dış kuvvetlerin lokasyonu çubuk numaralarına değil, doğrudan 

düğüm deplasmanlarına ve dolayısıyla düğüm numaralarına bağlı olmasındandır. 

Düğüm dengesinden elde edilen ve sayısı deplasman sayısına eşit olup, bilinmeyen 

deplasmanlara bağlı olan lineer denklem takımı çözüldüğünde, daha önce belirtildiği 

gibi düğüm deplasmanları bulunmuş olur. 

Bulunan düğüm deplasmanları, daha önce bu büyüklüklere bağlı olarak elde edilen 

çubuk boyuna uzama elastik eğrisi, çubuk iç normal kuvvet dağılımı ve çubuk uç 

kuvvetlerinde yerine konulmak suretiyle; bu büyüklüklerde elde edilmiş olur. Bulunan 

büyüklükler vasıtasıyla çubuk iç normal kuvvet dağılımı diyagramları çizilebilmektedir. 

Ayrıca, çubuklardan oluşan sistemin deformasyonsuz ve deformasyonlu hallerinin 
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çizimi elde edilebilmektedir. Yukarıda sunulan bilgiler ışığında bilgisayar programı 

yapılarak normal kuvvete çalışan çubuk sistemlerin çözümü ileriki kısımlarda 

verilmektedir. 

2.3. Bilgisayar Programlanması İçin İzlenecek Yol Haritası 

2.3.1. Çubuk ve Düğüm Verilerinin Bilgisayara Tanıtılması 

Çubuklardan oluşan sistemin verilerinin hem elemanlar hem de düğümler için ayrı ayrı 

tanımlanarak bilgisayara girilmesi gerekmektedir. Aşağıda buna ait yol haritası 

verilmektedir. Bu kısım verilerin bilgisayara girilmesi ile ilgilidir. 

1-Çubuk eleman numaralarının ve sayısının tespiti yapılır. 

2-Düğüm numaralarının ve sayısının tespiti yapılır. 

3-Çubuk elemanların tarifi, çubukların “i” ve “j” uçlarının bağlı olduğu düğüm 

numaralarının iki sütunlu ve eleman sayısı adedince satırlı bir matriste tanımlanarak 

depolanması yapılır. 

4-Çubuk elemanlara ait kesit alanlarının eleman sayısınca boyutu olan bir dizide 

tanımlanarak depolanması yapılır. 

5-Çubuk elemanlara ait elastisite modüllerinin eleman sayısınca boyutu olan bir dizide 

tanımlanarak depolanması yapılır. 

6-Çubuk elemanlara ait eksene paralel yayılı normal kuvvetlerin sabit ya da “z” ye bağlı 

değişken olarak eleman sayısınca boyutu olan bir dizide tanımlanarak depolanması 

yapılarak yayılı yük yok ise değerinin sıfır olarak tanımlanması gerekir. 

7-Çubuk elemanlara ait sıcaklık genleşme katsayılarının eleman sayısınca boyutu olan 

bir dizide tanımlanarak depolanması yapılır. 

8-Çubuk elemanlara ait düzgün sıcaklık değişimlerinin eleman sayısınca boyutu olan bir 

dizide tanımlanarak depolanması yapılır. 

9-Düğümlere ait koordinatların “x” ve “y” değerlerinin iki sütunlu ve düğüm adedi 

sayısınca satırı olan bir matriste tanımlanarak depolanması yapılır. 

10-Düğümlere ait serbestlik durumunun (sınır koşullarının) tanımlanması için düğümün 

yer değiştirme yapıp, yapmadığının tespiti “dx” ve “dy” lere tekabül etmektedir. Burada 
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veriler iki sütunlu ve düğüm sayısı adedince satırı bulunan bir matriste 

tanımlanmaktadır. Düğümler “x” yönünde serbestçe deplasman yapabilir ise o düğüme 

ait “dx” verisi “0” olarak tanımlanmaktadır. Düğümler “y” yönünde serbestçe 

deplasman yapabilir ise o düğüme ait “dy” verisi “0” olarak tanımlanmaktadır. Düğüm 

herhangi bir yönde deplasman yapamıyor ise o yöndeki deplasman verisi, “1” olarak 

tanımlanmaktadır. Bilgisayar programı icrası sırasında “0” ve “1” verilerinden 

faydalanarak deplasmanlara birden başlayarak sırayla düğüm deplasmanlarını birer 

artarak numaralayacaktır. Düğümlere deplasman numarası verme işi bilgisayar 

tarafından yapılarak hataları minimum seviyede tutmaktadır. 

11-Düğümlere ait tekil kuvvetlerin değerlerinin “Fx” ve “Fy” değerlerinin iki sütunlu ve 

düğüm adedi sayısınca satırı olan bir matriste tanımlanarak depolanması yapılarak, tekil 

kuvvet yoksa değeri sıfır olarak tanımlanmalıdır. 

12-Düğümlere ait mesnet yer değiştirmeleri değerlerinin “δx” ve “δy” değerlerinin iki 

sütunlu ve düğüm adedi sayısınca satırı olan bir matriste tanımlanarak depolanması 

yapılarak, mesnet yer değiştirmesi ya da çökmesi yoksa değerleri sıfır olarak 

tanımlanmalıdır. 

Yukarıdaki veri girişi yol haritası iki boyutlu kafes çubuk sistem için açıklanmıştır. Bir 

boyutlu sistemler için koordinat depolanması için bir sütunlu matris yeterli olmaktadır. 

Üç boyutlu sistemler için ise koordinat depolanması üç sütunlu matriste 

tanımlanmaktadır. Bir boyutlu sistemler için düğümlerin serbestliğinin tanımlanması 

için bir sütunlu matris yeterli olmaktadır. Üç boyutlu sistemler için ise düğümlerin 

serbestliğinin tanımlanması için üç sütunlu matris gerekmektedir. Bir boyutlu sistemler 

için düğümlerde bulunan dış tekil kuvvetlerin tanımlanması için bir sütunlu matris 

yeterli olmaktadır. Üç boyutlu sistemler için ise düğümlerde bulunan dış tekil 

kuvvetlerin tanımlanması için üç sütunlu matris gerekmektedir. Bir boyutlu sistemler 

için düğümlerde bulunan mesnet çökmesi tanımlanması için bir sütunlu matris yeterli 

olmaktadır. Üç boyutlu sistemler için ise mesnet çökmesi tanımlanması için üç sütunlu 

matris gerekmektedir. Sıcaklık değişimi hesaba katılmayacak ise sıcaklıkla ilgili 

büyüklüklerin sıfır olarak tanımlanması gerekir. 

Bundan sonra bilgisayar yardımıyla denklemlerin oluşturulması, çözümü, sunumu ve 

grafik çizimi gelmektedir. 
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2.3.2. Bilgisayar Yardımıyla Verilerin İşlenmesi 

Bu kısımda çubuk sistemi oluşturan, çubuklar ve düğüm noktaları için gerekli verilerin 

uygun isimlendirilmiş dizi ve matrisler içinde depolanarak girildiği varsayımıyla 

bilgisayarın nasıl programlanacağı ve verilerin nasıl işleneceği açıklanmaktadır. Çubuk 

eleman sayısı ve düğüm sayısı bilinmektedir. 

İlk olarak toplam deplasman sayısını bulmak ve düğüm noktalarındaki deplasmanları 

numaralandırmak için, düğüm sayısı adedince bir döngü içinde düğüm serbestliklerini 

içeren dizi yada matrisin değerleri tek tek kontrol edilir. Toplam deplasman sayısı için 

bir değişken belirlenir ve başlangıç değeri sıfır alınır. Düğüm noktası serbestlikleri 

döngü içinde kontrol edilirken “sıfır” değerine rastlandığında ilgili değişkenin değeri bir 

artırılır, ve bu değer sıfır değerinin görüldüğü yere o düğümün ilgili yönündeki 

deplasmanının numarası olarak atanır. Serbestlik değerlerini taşıyan dizi yada matris 

döngü sonunda deplasman numaralarını taşır. Düğüm noktasının ilgili yönündeki 

serbestlik “1” ile tanımlanmışsa, o yönde deplasman olmadığı ve tutulu olduğu 

anlaşıldığından o yöndeki deplasman numarası için sıfır değeri verilerek, hem onun 

mesnet olduğu ve değerinin de sıfır olduğu anlaşılır. Bu durumda deplasmanları 

numaralayan değişkenin değeri de artırılmadan döngü devam eder. 

İkinci olarak tüm elemanlar için bir döngü kurularak, çubuklara ait boyuna uzama 

eğrisinin hesabı için hazırlık yapılır. Boyuna uzama eğrisinin hesabı için, çubuk 

eksenine paralel yayılı yük, çubuk elastisite modülü, çubuk kesit alanı, sıcaklık 

genleşme katsayısı, sıcaklık değişimi, çubuğun bağlı olduğu “i” ve “j” uçlarının 

değerleri tespit edilerek lokal değişkenlere aktarılır. Ayrıca, “i” ve “j” uçları yardımıyla 

ilgili düğümlerin “x” ve “y” koordinatları, düğüm deplasmanlarının değerleri, düğümde 

bulunan tekil yük değerleri ve düğümde bulunacak elastik mesnetlerin yay katsayıları ve 

düğümde bulunabilecek mesnet çökmeleri değerleri ilgili dizi ve matrislerden alınarak 

lokal değişkenlere aktarılır. 

Çubuk boyu daha önce formüle edildiği çubuk uç noktalarının koordinatları vasıtasıyla 

hesaplanır. Çubuğun lokal ekseni ile sistemin global ekseni olan”x” ekseni arasındaki 

açının sinüs ve kosinüs değerleri de benzer şekilde hesaplanır. Global koordinatlarda 

tanımlı bulunan çubuk uç deplasmanları, elde edilen trigonometrik değerler yardımıyla 

çubuk yerel koordinatlarına dönüştürülerek çubuk ucundaki “uim” ve “ujm” yerel 
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yerdeğiştirmeler hesaplanır. Bu değerler çubuk için yerel sınır koşullarını 

oluşturmaktadır. Çubuk yayılı yükü ve malzeme özellikleri ile birlikte çubuk boy 

değişimini idare eden diferansiyel denklem oluşturulup, iki kez integral alınarak integral 

sabitleriyle birlikte bulunur. Çubuk boyuna uzama fonksiyonun çubuk “i” ucundaki 

değeri “uim” değerine, çubuk “j” ucundaki değerinde “ujm” değerine eşitlenerek integral 

sabitlerini tespit edecek denklemler yazılmış olur. Elde edilen denklemler integral 

sabitleri için çözülür, elde edilen integral sabitleri çubuk boyuna uzama eğrisinde yerine 

konularak, eğrinin ifadesi çubuğun ucunda bulunan global takımdaki düğüm 

deplasmanları cinsinden yazılmış olur. Yine bu eğri vasıtasıyla, çubuk iç normal kuvvet 

dağılımının fonksiyonu bulunur, çünkü bu iki fonksiyon arasında bir ilişki mevcuttur ve 

daha önce tanımlanmıştır. Çubuk iç normal kuvvet dağılımının değeri çubuk “i” ucu ve 

“j” ucu için hesaplanarak ilgili elemanın yerel koordinatlardaki normal uç kuvvetleri 

hesaplanır. Çubuk için tespit edilen trigonometrik değerler vasıtasıyla yerel 

koordinatlarda bulunan uç kuvvetleri global takımdaki bileşenlerine ayrılarak, çubuk 

uçlarında bulunan ilgili düğümlerin deplasmanları yönünde elde edilecek denge 

denklemlerine gönderilecek katkılar olarak hesap edilmiş olur. İlgili düğüm ve 

deplasmanı yönünde tanımlanış olan dizi içine birikmiş toplam olarak atanır. Bir 

elemandan global düğüm denklemlerine gönderilmesi gereken tüm katkılar gönderilir. 

Ayrıca, isteğe bağlı olarak programın ileriki aşamalarında kullanılmak üzere, çubuk 

uzunlukları, çubuk boyuna uzama eğrileri, çubuk iç normal kuvvet dağılımları, çubuk 

uç kuvvetleri, çubuğa ait trigonometrik büyüklükler birer dizi veya matriste 

saklanabilirler. Ham halleriyle bütün büyüklükler düğüm noktasında bulunan düğüm 

deplasmanlarına, çubuk malzeme özellikleri, çubuk yükleri ve trigonometrik 

büyüklüklerine bağlıdır. Çubuk deplasmanları hariç diğer büyüklükler bilinmektedir. 

Bir eleman için yapılması gereken işlemler tamamlandıktan sonra; diğer elemana 

geçilebilir. Çubuk elemanların tamamı tarandığında, düğüm deplasmanları yönünde 

yazılarak elde edilen denklemler ortaya çıkar. Denklemler düğüm deplasmanlarına 

bağlıdır. Son olarak denklemlerin üzerine düğümlerde bulunan tekil kuvvetler düğüm 

deplasmanları numarası vasıtayla ilave edilirler. Elde edilen son denklemlerin sıfıra 

eşitleneceği daha önce belirtilmiştir. Son olarak elde edilen denklemler düğüm noktası 

deplasmanlarını bilinmeyen olarak alınıp, çözüldüklerinde düğüm deplasmanları global 

takımda bulunmuş olur. Düğüm deplasmanları daha önce ham halde kendilerine bağlı 

olan diğer büyüklüklerde; örneğin çubuk boyuna uzama eğrisi, çubuk normal kuvvet 
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fonksiyonu veya çubuk uç kuvvetlerinde yerine konulduğunda, o büyüklükler de hesap 

edilmiş olur. Böylece çubuklardan oluşan sitemin çözümü ve kuvvet dağılımı bulunmuş 

olur. Bunların değerleri uygun şekilde sunulabilir ve grafikleri elde edilebilir. 

Yukarıda açıklanan bilgiler genel olarak verilmiştir. Açıklamalar bir boyutlu normal 

kuvvet taşıyan problemlerin çözümü için hazırlanan program için geçerli olmakla 

birlikte, iki ve üç boyutlu sadece normal kuvvet taşıyan çubuk kafes sistemleri ve uzay 

kafes sistemleri içinde geçerlidir. Yukarıdaki açıklamaların ışığı altında aşağıda bir 

boyutlu, iki boyutlu ve üç boyutlu sadece normal kuvvet taşıyan çubuk sistem 

problemlerinin çözümü için geliştirilen programlar sunulmaktadır. Bu programlar, 

grafik kısmı hariç olmak üzere, aşamalar halinde değişkenleri ile birlikte 

açıklanmaktadır. Takiben de programlarla literatürden alınan çeşitli problemler 

çözülerek sunulmaktadır. 
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3.  BÖLÜM 

PROGRAM KODLAMA VE BULGULAR 

3.1. Bir Boyutlu Sistemler İçin Geliştirilen Program Açıklaması ve Örnek 

Uygulamalar 

3.1.1. Bilgisayar Programı 1D ve Açıklaması 

Bir boyutlu normal kuvvet taşıyan çubuk sistemlerin çözümü için hazırlanan program 

aşağıda sunulmakta ve açıklanmaktadır. Bu program geliştirilirken aşağıdaki değişken 

isimleri seçilmiştir. Eleman sayısının göstermek üzere “nel”, düğüm sayısını göstermek 

üzere “nod” değişkeni seçilmiştir. Sırasıyla koordinat takımı, düğüm serbestlikleri, 

düğüm tekil kuvvetleri, mesnet çökmeleri ise “xc”, “retstraints”, “jload”, “SupportDisp” 

değişken isimleri seçilmiş olup, değişkenler düğüm sayısınca elemanı olan dizilerdir. 

Koordinat olarak sadece bir boyut olduğundan “xc” dizisinde depolanmaktadır. Çubuk 

boyuna yayılı yük değerleri için “nqz”, elastik modülü için “EMod”, kesit alanı 

için”area”, sıcaklık genleşme katsayısı için “TEC”, sıcaklık değişimi için “DeltaT” 

isimleri seçilmiş olup, değişkenler çubuk sayısınca elemanı olan birer dizidir. Çubuk 

elemanların “i” ve “j” uçlarının düğüm numarasını depolamak üzere “defIJ” isimli iki 

sütunlu ve çubuk sayısınca elemanı olan bir matris seçilmiştir. 

Aşağıda gerekli verilerin tanımlandığı varsayılarak, program parça parça sunulmakta 

olup, her parçadan sonra programın açıklaması verilmektedir. 

3.1.1.1. Program Parçası 1: 

dispN = 0; 

Do[If[restraints[[i]] == 0, dispN = dispN + 1; restraints[[i]] = dispN;,restraints[[i]] 

= 0], {i, 1, nod}]; 

 



40 

 

Print["Total displacement=", dispN];  

Print["Displacement number or boundary conditions=", MatrixForm[restraints]]; 

 

Burada deplasman numaraları dispNnumaratörü ile isimlendirilmiş olup, her serbestlik 

için birer artarak deplasmanları numaralandırmaktadır. Düğüm sayısı kadar bir döngü 

kurularak serbestlikler taranmakta serbest düğümlere deplasman numarası verilmekte, 

tutulu olanlara ise daha önce belirtildiği üzere “0” değeri atanmaktadır. “dispN” 

değişkeninin son değeri ise toplam deplasman değerine eşit olmaktadır. 

3.1.1.2. Program Parçası 2: 

SysEq = Table[0, {i, 1, dispN}]; 

Do[ If[restraints[[i]] > 0, SysEq[[restraints[[i]]]] = -jload[[i]]], {i, 1, nod}]; 

Print["Beginning of SysEq=", MatrixForm[SysEq]]; 

 

Bu program parçasında, toplam deplasman sayısı belirlendiğinden, elde edilecek 

denklemleri depolamak üzere deplasman sayısı adedince elemanı olan “SysEq” isimli 

sistem denklemlerini çağrıştıran bir dizi “Table” komutuyla tanımlanmaktadır. Daha 

sonra düğüm sayısı adedince döngü kurularak serbestliklerin olduğu yere tekabül eden 

tekil kuvvetler sistem denklemine eklenmektedir. Denklemlerin başlangıç değerleri 

ekranda görüntülenmektedir. 

3.1.1.3. Program Parçası 3: 

u[0] = 0; 

lengthEl = Table[0, {i, 1, nel}]; 

EEndForI = Table[0, {i, 1, nel}]; 

EEndForJ = Table[0, {i, 1, nel}]; 

uCurve = Table[0, {i, 1, nel}]; 

NforceF = Table[0, {i, 1, nel}]; 

Üçüncü program parçasında ileride hesaplanacak bazı değerlerin saklanması için 

başlangıç değerleri sıfır olan değişkenler “Table” komutuyla tanımlanmaktadır. 

Sırasıyla hesaplandıktan sonra, çubuk boyları için “lengthEl”, “i” ucundaki ve “j” 

ucundaki yerel koordinatlarda uç normal kuvvetleri için “EEndForI”, ve “EEndForJ” 

değişkenleri, çubuk boyunan uzama elastik eğrisi için “uCurve”, çubuk normal kuvvet 
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dağılımı fonksiyonu için “NforceF” değişken isimleri uygun görülerek seçilmiştir. 

Bahsi geçen değişkenlerin tamamı birer dizi olup elaman sayıları ise çubuk elemanı 

sayısına eşittir. İleri kısımlarda kendilerine ait değerler hesaplandıkça daha sonra 

kaybolmamaları için değişkenlerin içinde depolanacaktır. İlaveten, sıfır deplasman 

numarasının karşılık geldiği deplasmanın değerinin de sıfır olduğu, Program Parçası 

3’ün ilk satırında tanımlıdır. 

3.1.1.4. Program Parçası 4: 

Aşağıdaki program parçasında her bir eleman için hesap yapılacağından çubuk elemanı 

sayısınca bir döngü kuruldu. Döngü sırası geldikçe her bir eleman için gerekli işlemler 

yapılmaktadır. Bu işlemler program satırları yanında veya altında (* açıklama yazısı *) 

şeklinde açıklanmaktadır. Program işlemlerin başladığını ve hangi elemanın işlemde 

olduğunu sırayla ekrana yazmaktadır. Daha sonra çubuğa ait “i” ve “j” ucunun değerleri 

“defIJ” isimli eleman tarifi dizinden alınarak lokal değişkenlere aktarılmaktadır. Lokal 

değişkenle yardımıyla da çubuk ucuna ait koordinatlar elde edilip, lokal değişkenlere 

aktarılmakta olup, ardından çubuk uzunluğu hesaplanmaktadır. Daha sonra çubuğa ait 

elastisite modülü, kesit alanı, sıcaklık genleşme katsayısı, yayılı yük, sıcaklık değişimi 

değerleri çubuk numarası ile bağlantılı olduğundan ilgili diziden alınıp, lokal 

değişkenlere aktarılmaktadır. Çubuk uç düğümüne bağlı olarak çubuk ucunda bulunan 

deplasmanların numarası belirlenmekte ve “codei” ve “codej” yerel değişkenlerine 

aktarılmaktadır. Bu değerler kullanılarak sınır şartları belirlenmektedir. Sınır şartı olarak 

varsa mesnet çökmesi atanmakta yok ise deplasmanların değişkenleri bilinmeyen 

deplasmanların ismi olarak atanmaktadır. Daha sonra iki kez integral işlemi ile “u0” 

olarak seçilen değişkeni üzerinde integral sonucu integral sabitleriyle hesaplanmaktadır. 

Burada integral işlemi için “Integrate” komutu kullanılmaktadır. Hemen ardından “i” 

ucundaki sınır şartı ve “j” ucundaki sınır şartı uygulanmaktadır, “z” nin sıfır olması “i” 

ucu için; çubuk uzunluğuna eşit olması ise “j” ucu için sınır koşulunu uygulamaktadır. 

Sınır koşullarının çözümü “Solve” komutuyla yapılmakta olup, çözüm sonucunda 

integral sabitleri elde edilmektedir. İntegral sabitleri boyuna uzama elastik eğrisini 

temsil eden “u0” değişkeninde yerine konularak, boyuna uzama elastik eğrisi elde edilir. 

Ham halde düğüm deplasmanlarına bağlıdır. Peşinden, çubuk boyuna elastik eğrisine ve 

sıcaklık değişimine bağlı olan normal kuvvet fonksiyonu hesap edilip, Nforce yerel 

değişkenine aktarılmaktadır. Fonksiyonun sınırlardaki yani uçlardaki değerleri 



42 

 

hesaplanarak “ni” ve “nj” lokal değişkenlerinde tutulmaktadır. Elde edilen bu değerler 

daha sonra kullanılabilmeleri için sırasıyla, “NforceF”, “EEndForI”, “EEndForJ”isimli 

dizilere eleman numarası ile bağlantılı olarak depolanmaktadır. Ayrıca benzer şekilde, 

çubuk boyu “length” değeri ve elastik eğri fonksiyonu “u0” da sırasıyla “lengthEl” ve 

“uCurve” isimli değişkenlere eleman numarasıyla bağlantılı olarak depolanmaktadır. 

Buraya kadar bir çok işlem yapılmış oldu ve bir çok hesap sonucu elde edilen veriler 

depolandı. 

Elde edilen verilerden elemandan düğüm dengesine katkı yapacak değerlerin 

deplasmanların gösterdiği yönde denge denklemlerine katkılar yapılması gerekmektedir. 

Elemanlardan denge denklemlerine katkı yapılması için düğüm deplasmanlarının 

numarasını taşıyan sırasıyla “i” ucu ve “j” ucundaki deplasmanı temsil eden codei ve 

codej değişkenlerinden faydalanılır. “codei” değişkeni “i” ucundaki deplasmanı ve 

ayrıca “codei” numaralı denklemi göstermektedir, sonundaki “i” ise “i” ucuna ait olan 

“ni” uç kuvvetinin ilgili denkleme ilave edileceğini gösterir. Benzer açıklama “j” ucu ve 

“codej” değişkeni ve “nj” uç kuvveti içinde geçerlidir. “codei” veya “codej” 

değişkenlerinden sıfır olanın denklemlere katkısı yok demektir. “If” komutu yardımıyla 

bu durum ayarlanmaktadır. Eleman sayısınca döngü tamamlandığında düğüm dengeleri 

vasıtasıyla denge denklemleri yazılmış olur. Aşağıdaki program parçası açıklanan 

işlemleri icra etmektedir. 

Print["Calculations are in proggress"];(* Ekrana işlemlerin yapıldığını yazmaktadır. *) 

Do[Print[nn, " th element in progress”]; (* İşlenen eleman belirtilmektedir.* ) 

i = defIJ[[nn, 1]]; 

j = defIJ[[nn, 2]]; (*Çubuğun “i” ucu ve “j” ucu düğüm numaraları 

belirlenmektedir.*)  

xi = xc[[i]];xj = xc[[j]]; ; (* Çubuk ucuna ait koordinatlar belirlenmektedir.*) 

length = xj - xi;(* Çubuk uzunluğu belirlenmektedir.*) 

EM = EMod[[nn]];; (* Çubuk elastisite modülü belirlenmektedir.*) 

alfaT = TEC[[nn]];; (* Çubuk sıcaklık genleşme katsayısı belirlenmektedir.*) 

A = area[[nn]]; ; (* Çubuğa ait malzeme özellikleri ve kesit alanı belirlenmektedir.*) 

dTn = DeltaTn[[nn]]; (*Çubuktaki sıcaklık değişim belirlenmektedir.) 

nz = nqz[[nn]]; (*Çubuk boyunca yayılı yük değeri belirlenmektedir.) 

codei = restraints[[i]]; (* Çubuk “i” ucu düğüm deplasman numarası 
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belirlenmektedir.*) 

codej = restraints[[j]]; (* Çubuk “j” ucu düğüm deplasman numarası 

belirlenmektedir.*) 

If[SupportDisp[[i]] != 0, ui = SupportDisp[[i]], ui = u[codei]]; 

If[SupportDisp[[j]] != 0, uj = SupportDisp[[j]], uj = u[codej]]; 

(*Üstteki iki satırda mesnet yer değiştirme değerlerine, sınır şartı başlangıç değeri 

atanmaktadır.*) 

u0 = Integrate[(Integrate[-nz, z] + c1)/(EM*A), z] + c2; 

bi = u0 /. z -> 0; bj = u0 /. z ->length; (* sınır koşulları oluşturuldu *) 

sol = Solve[{bi == ui, bj == uj}, {c1, c2}]; (* integral sabitleri elde edildi *) 

u0 = u0 /. sol[[1]]; (* boyuna uzama eğrisi düğüm deplasmanlarına bağlı hesaplandı 

*) 

Nforce = EM*A (D[u0, z] - alfaT*dTn); (* iç normal kuvvet fonksiyonu hesaplandı *) 

ni = -Nforce /. z -> 0; (* çubuk “i” ucu için normal kuvvet değeri hesaplandı *) 

nj = Nforce /. z ->length; (* çubuk “j ” ucu için normal kuvvet değeri hesaplandı *) 

EEndForI[[nn]] = ni; (* çubuk “i” ucu için bulunan normal kuvvet değeri depolandı *) 

EEndForJ[[nn]] = nj; (* çubuk “j” ucu için bulunan normal kuvvet değeri depolandı *) 

uCurve[[nn]] = u0; (* çubuk boyuna uzama eğrisi depolandı *) 

lengthEl[[nn]] = length; (* çubuk uzunluğu depolandı *) 

NforceF[[nn]] = Nforce; (* çubuk normal kuvvet fonksiyonu depolandı *) 

If[codei>0 , SysEq[[codei]] = SysEq[[codei]] + ni]; 

If[codej>0 , SysEq[[codej]] = SysEq[[codej]] + nj];, {nn, 1, nel}] 

3.1.1.5. Program Parçası 5: 

Bu program paçasında elde edilen denge denklemleri ekranda sunulmaktadır. Ekranda 

düğümlerde bulunan deplasmanlara bağlı olarak denklemler analitik olarak görülecektir. 

Ardından, düğüm deplasmanlarının bilinmeyen olarak isimleri “unk” isimli bir diziye 

“Table” komutu ve deplasman sayısı kullanılarak aktarılmaktadır. “Solve” komutu 

kullanılarak elde edilen “SysEq” değişkeninde bulunan denge denklemleri bilinmeyen 

düğüm deplasmanları “unk” için çözülmektedir. Çözülen değerler çıkartılarak, 

bilinmeyen deplasmanların içine aktarılmakta ve bilinmeyen deplasmanlar bilinen 

olmaktadır. Bunlarda otomatik olarak program hafızasında bulunan diğer büyüklüklerde 

yerine konulmaktadır.  
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Print[MatrixForm[SysEq], " = 0"];(* Denge denklemleri ekrana verilmektedir. *) 

unk = Table[u[i], {i, 1, dispN}];(* Bilinmeyenlerin isimleri bir diziye aktarılmaktadır. 

*) 

Print["unk=", unk];(* Bilinmeyenlerin dizisi ekrana verilmektedir. *) 

lsol = Flatten[ Solve[SysEq == 0, unk]]; (*Denklemler deplasmanlar için 

çözülmektedir.*) 

Print["last sol for u displacement =", lsol]; (* Çözüm sonucu ekrana verilmektedir. *) 

Do[u[i] = lsol[[i, 2]], {i, 1, dispN}];(* Çözüm sonucu ekrana verilmektedir. *) 

Print["Elasti cLongitudina lcurves are =", MatrixForm[uCurve]]; 

Print["End forces for EndI are =", MatrixForm[EEndForI]]; 

Print["End forces for EndJ are =", MatrixForm[EEndForJ]]; 

Print["Element force function are =", MatrixForm[NforceF]]; 

Print[" Calculations are completed "]; 

Print["Graphs are in progress "]; 

 

Yukarıda yanına açıklama yazılmamış satırlarda yapılan işlemler şunlardır. Çubuk 

elastik eğrisi hesaplanır ve bilinen olarak ekrana yazılır. Benzer şekilde “i” ve “j” 

uçlarına ait uç kuvvetleri ile çubuk iç normal kuvvet değişiminin fonksiyonu ekranda 

görülür. Hesapların tamamlandığı bundan sonra da grafiklerin çizileceği yazısı ekranda 

belirir. Grafik kısımları çalışmanın ana temasını içermediğinden sadece program olarak 

eklerde sunulacak olup, açıklanması verilmeyecektir. 

Yukarıda verilen program parçaları uygun bir şekilde Mathematica ortamına aktarılarak, 

çözülecek sistemin çözümü elde edilir. Eklerde verilen grafik kısmını içeren program 

kullanıldığı takdirde, ilgilenilen sistemin kuvvet dağılımı, çubuk uç kuvvetleri ile 

beraber çizilmekte olup, ilaveten sistemin deformasyonsuz ve deformasyonlu hali 

mesnetleriyle beraber çizilerek ekranda sunulmaktadır. Bir boyutlu problemlerde çubuk 

yerel ekseni ve global eksen açı yapmadan çakışmaktadır dolayısıyla herhangi bir eksen 

dönüşümü olmadığından trigonometrik dönüşümlere ihtiyaç duyulmamaktadır, yerel 

eksen ile global eksen arasında öteleme farkı olmaktadır. 

 

 



45 

 

3.1.2. Bir Boyutlu Normal Kuvvet Taşıyan Sistem Örnekleri 

3.1.2.1. Uygulama 1: 

İki ucundan basit mesnetlenmiş ve çubuk boyunca ilk mesnedinden 1/3 metre uzakta, 

yatay 1 tonluk tekil kuvvet uygulanmıştır. Toplam çubuk uzunluğu 1 metre olup, 

sistemin mesnetli ve yük yüklenmiş şekli aşağıda Şekil 3.1.’de verilmektedir. Çubukta 

sıcaklık değişimi ve yatay yayılı yük olmayıp, elastisite modülü 21000000 t/m
2
 ve kesit 

alanı 0.001 m
2
dir. 

 

Şekil 3.1. İki ucundan mesnetli, ara noktasından yatay tekil yüklü çubuk sistem 

 

Yukarıda verilen çubuk sistemin çözümü için veri dosyası hazırlamak gerekmektedir. 

Çubuğun yük yüklenen noktadan önce ve sonra olmak üzere iki elemandan oluştuğu 

görülmektedir. Mesnet noktalarıyla birlikte toplam üç düğüm noktası bulunmaktadır. 

Düğüm noktaları ve çubuk elemanları numaralandırılmıştır. Yukarıda verilen çubuk 

sistemin çözümü için hazırlanan veri dosyası aşağıda sunulmuştur. Çubuk eleman sayısı 

ve düğüm sayısı atanmıştır. Düğüm koordinatları dizisi hazırlanmıştır, “xc” dizisinde 

tanımlanmıştır. Düğüm serbestlikleri “1” ve “3” numaralı düğümler tutulu olup, “2” 

numaralı düğüm serbest olarak “restraint” dizisinde tanımlıdır. Düğüm tekil kuvvetleri 

mesnetlerde olmayıp, sadece “2” numaralı düğümde bir tonluk tekil yük bulunmaktadır, 

“jload” dizisinde tanımlıdır. Yatay yayılı yük değerleri olmayıp, “nqz” dizisinde sıfır 

olarak tanımlıdır. Çubuk elastisite modülleri ve kesit alanları “EMod” ve “area” 

dizilerinde tanımlanmıştır. Sıcaklık yüklemesi ve mesnet çökmeleri olmadığından ilgili 

dizilerin içine sıfır değerleri atanmıştır. “DeltaTn”, “TEC”, ve “SupportDisp” dizilerinin 

değerleri tamamen sıfırdır. Eleman tarifleri “i” ucundan “j” ucuna doğru tanımlanmış 

olup, birinci eleman için “1,2” ve ikinci eleman için “2,3” olarak “defIJ” iki boyutlu 

dizisinde tanımlanmıştır. Veri dosyası aşağıda yanlarında açıklama satırlarıyla beraber 

verilmektedir. 



46 

 

Veri dosyası 1: 

 

Clear[Evaluate[Context[] <> "*"]]; 

<< "C:\\Users\\CDA\\Desktop\\Yener-Prog\\1DModul\\1DModul.txt" 

nel = 2; (*çubuk sayısı*) 

nod = 3; (*düğüm saysı*) 

xc = {0, 1/3, 1}; (*düğüm koordinatları*) 

restraints = {1, 0, 1}; (*düğüm serbestlikleri*) 

jload = {0, 1, 0}; (*düğüm noktası tekil yükleri*) 

nqz = {0, 0}; (*çubuk yatay yayılı yükü*) 

EMod = {21000000, 21000000}; (*çubuk elastisite modülleri*) 

area = {0.001, 0.001}; (*çubuk kesit alanları*) 

DeltaTn = {0, 0}; (*çubuk sıcaklık değişimleri*) 

TEC = {0, 0};(*çubuk sıcaklık genleşme katsayıları*) 

SupportDisp = {0, 0, 0}; (*mesnet yer değiştirmeleri*) 

defIJ = {{1, 2}, {2, 3}}; (*çubuk eleman tarifleri*) 

OneD; (*analiz programının icrası*) 

 

Veri dosyasının başında tüm değişkenlerin temizlenmesini yapan bir terim 

bulunmaktadır. Peşinden analizi yapacak olan Mathematica ortamında kodlanmış ve 

“1DModul.txt” isimli dosyaya kaydedilmiş olan program, ilgili klasörden Mathematica 

ortamına yüklenmektedir. Verilerin girişi ve tanıtımların yapılmasından sonra, analiz 

programı modülü olan OneD icra edilmektedir. “OneD” modülü icra edildikten sonra 

aşağıdaki sonuçlar ekrana düşmüştür. Tablo 3.1.’de gerekli bilgiler özetlenmiştir. 

 

Tablo 3.1. Örnek 1 de verilen sistemin çözümü sonucu elde edilen özet bilgiler 

 

Büyüklük adı Değeri 

İki nolu düğümün deplasmanı 0.000010582 m 

Birinci çubuğun elastik eğrisi 0.000031746 z 

İkinci çubuğun elastik eğrisi 0.000010582 - 0.000015873 z 

Birinci çubuk normal kuvveti 0.666 ton 

İkinci çubuk normal kuvveti 0.333 ton 
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Ayrıca, çözüm sonucu elde edilen çubuk boyuna uzama değişim grafiği (Şekil 3.2.), 

normal kuvvet değişim grafiği (Şekil 3.3.), deformasyonlu ve deformasyonsuz sistemin 

karşılaştırılması (Şekil 3.4.) sunulmaktadır. 

 

Şekil 3.2. Sistemde her bir noktaya ait boy uzama miktarı grafiği 

 

Şekil 3.3. Sistemde her bir noktaya ait normal kuvvet değeri grafiği 

 

Şekil 3.4. Deformasyonlu ve deformasyonsuz sistemlerin karşılaştırılması 

Şekil 3.2.’den görüleceği üzere “2” düğümünün deplasman değeri “u1” kadar yani 

0.000010582 m olmaktadır. Şekil 3.3.’de ise birinci çubuk kuvvetinin 0.666 ton, ikinci 

çubukta ise 0.333 ton olduğu görülür. Şekil 3.4.’de ise “2” numaralı serbest olan 

düğüm, tekil yükün çekip onu sürüklemesi sonucu ileriye doğru gitmektedir. Birinci 

çubuk uzamakta, ikinci çubuk kısalmakta; fakat tüm çubukta boy değişimi 

olmamaktadır. Aynı, problem mekanik kurallarınca el ile çözüldüğünde de bire bir aynı 

sonuçlar elde edilmektedir. 
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3.1.2.2. Uygulama 2: 

Yukarıda verilen aynı sistem, fakat burada yük olarak sadece “1” numaralı çubukta 2 

t/m’lik pozitif yönde yatay yayılı yük bulunmaktadır. Çubuk sistem aşağıda Şekil 

3.5.’de sunulmaktadır. 

 

 
 

Şekil 3.5. Örnek 1 ile aynı sistem, birinci çubukta düzgün yatay yayılı yük mevcut 

 

Bu problem için aynı veri dosyası değişime uğratılarak verilmektedir. Düğüm tekil yükü 

olmadığı için”jload” dizisinin tüm elemanları sıfır olacaktır. Yatay yayılı yük olarak 

sadece “1” numaralı çubuk için 2 t/m değeri göz önüne alınmaktadır. Diğer veriler 

yukarıdakiler ile aynıdır. Aşağıda ikinci örnek için veri dosyası verilmektedir. 

 

Veri dosyası 2: 

 

Clear[Evaluate[Context[] <> "*"]]; 

<< "C:\\Users\\CDA\\Desktop\\Yener-Prog\\1DModul\\1DModul.txt" 

nel = 2; (*çubuk sayısı*) 

nod = 3; (*düğüm saysı*) 

xc = {0, 1/3, 1}; (*düğüm koordinatları*) 

restraints = {1, 0, 1}; (*düğüm serbestlikleri*) 

jload = {0, 0, 0}; (*düğüm noktası tekil yükleri*) 

nqz = {2, 0}; (*çubuk yatay yayılı yükü*) 

EMod = {21000000, 21000000}; (*çubuk elastisite modülleri*) 

area = {0.001, 0.001}; (*çubuk kesit alanları*) 

DeltaTn = {0, 0}; (*çubuk sıcaklık değişimleri*) 

TEC = {0, 0};(*çubuk sıcaklık genleşme katsayıları*) 

SupportDisp = {0, 0, 0}; (*mesnet yer değiştirmeleri*) 

defIJ = {{1, 2}, {2, 3}}; (*çubuk eleman tarifleri*) 

OneD; (*analiz programının icrası*) 
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Verilerin girişi ve tanıtımların yapılmasından sonra, analiz programı modülü olan OneD 

icra edilmektedir. “OneD” modülü icra edildikten sonra aşağıdaki sonuçlar ekrana 

düşmüştür. Aşağıda Tablo 3.2.’de gerekli bilgiler özetlenmiştir. 

Tablo 3.2. Örnek 2 de verilen sistemin çözümü sonucu elde edilen özet bilgiler 

 

Büyüklük adı Değeri 

İki nolu düğümün deplasmanı 3.52734x10
-6

m 

Birinci çubuğun elastik eğrisi 0.000047619 (0.555556 z-z
2
) 

İkinci çubuğun elastik eğrisi 3.52734x10
-6

-5.29101x10
-6

 z 

Birinci çubuk normal kuvveti doğrusal 

değişmektedir 

 “i” ucunda;  0.55555 ton 

  “j” ucunda;  -0.11111 ton  

İkinci çubuk normal kuvveti sabittir -0.11111 ton 

 

Ayrıca, çözüm sonucu elde edilen çubuk boyuna uzama değişim grafiği (Şekil 3.6.), 

normal kuvvet değişim grafiği (Şekil 3.7.), deformasyonlu ve deformasyonsuz sistemin 

karşılaştırılması (Şekil 3.8.) sunulmaktadır. 

 

Şekil 3.6. Örnek 2 sisteminde her bir noktaya ait boy uzama miktarı grafiği 
 

 

Şekil 3.7. Örnek 2 sistemde her bir noktaya ait normal kuvvet değeri grafiği 
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Şekil 3.8. Örnek 2 sisteminde her bir noktaya ait normal kuvvet değeri grafiği 

 

Şekil 3.6.’dan da görüleceği üzere “2” düğümünün deplasman değeri “u1” kadar yani 

3.52734x10
-6 

m olmaktadır. Şekil 3.7.’de ise birinci çubuk kuvvetinin çubuk boyunca 

doğrusal değişken olduğu; “i” ucunda 0.5555 ton değerini, “j” ucunda ise -0.1111 ton 

değerini aldığı görülür. İkinci çubukta ise normal kuvvet sabit olup, -0.1111 ton 

olmaktadır. Birinci çubuğun büyük bir kısmı çekmeye çalışmakta, küçük bir kısmı ise 

basınç kuvvetine maruz olmaktadır. İkinci çubuk ise tamamen basınç zorlaması altında 

kalmaktadır. Şekil 3.8.’de ise “2” numaralı serbest olan düğüm, birinci çubukta bulunan 

yatay yayılı yükün itmesi sonucu ileriye doğru gitmektedir. Birinci çubuk uzamakta, 

ikinci çubuk kısalmakta; fakat tüm çubukta boy değişimi olmamaktadır. Aynı, problem 

mekanik kurallarınca el ile çözüldüğünde de bire bir aynı sonuçlar elde edilmektedir. 

3.1.2.3. Uygulama 3: 

Yukarıda verilen aynı sistem, fakat burada yük olarak sadece “2” numaralı çubukta -20 

derecelik sıcaklık değişimi bulunmaktadır. Sıcaklık genleşme katsayısı 0.000012/C
o
 

olarak verilmektedir. 

Bu problem için aynı veri dosyası değişime uğratılarak verilmektedir. Düğüm tekil yükü 

olmadığı için ”jload” dizisinin tüm elemanları sıfır olacaktır. Yatay yayılı yük değerleri 

de sıfır olmaktadır. Sıcaklık genleşme katsayıları iki eleman içinde eşit olarak, “TEC” 

dizisi içinde tanımlanmaktadır. Diğer veriler yukarıdakiler ile aynıdır. Sıcaklık değişim 

değeri sadece “2” numaralı çubukta olduğundan, “DeltaTn” dizisinde; “1” numaralı 

eleman için sıfır, “2” numaralı eleman için -20 değeri tanımlanmaktadır. Üçüncü örnek 

için veri dosyası aşağıda verilmektedir. 
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Veri dosyası 3: 

 

Clear[Evaluate[Context[] <> "*"]]; 

<< "C:\\Users\\CDA\\Desktop\\Yener-Prog\\1DModul\\1DModul.txt" 

nel = 2; (*çubuk sayısı*) 

nod = 3; (*düğüm saysı*) 

xc = {0, 1/3, 1}; (*düğüm koordinatları*) 

restraints = {1, 0, 1}; (*düğüm serbestlikleri*) 

jload = {0, 0, 0}; (*düğüm noktası tekil yükleri*) 

nqz = {0, 0}; (*çubuk yatay yayılı yükü*) 

EMod = {21000000, 21000000}; (*çubuk elastisite modülleri*) 

area = {0.001, 0.001}; (*çubuk kesit alanları*) 

DeltaTn = {0, -20}; (*çubuk sıcaklık değişimleri*) 

TEC = {0.000012, 0.000012};(*çubuk sıcaklık genleşme katsayıları*) 

SupportDisp = {0, 0, 0}; (*mesnet yer değiştirmeleri*) 

defIJ = {{1, 2}, {2, 3}}; (*çubuk eleman tarifleri*) 

OneD; (*analiz programının icrası*) 

 

Verilerin girişi ve tanıtımların yapılmasından sonra, analiz programı modülü olan OneD 

icra edilmektedir. “OneD” modülü icra edildikten sonra aşağıdaki sonuçlar ekrana 

düşmüştür. Aşağıda Tablo 3.3’de gerekli bilgiler özetlenmiştir. 

Tablo 3.3. Örnek 3 de verilen sistemin çözümü sonucu elde edilen özet bilgiler 

Büyüklük adı Değeri 

İki nolu düğümün deplasmanı 0.00053333 m 

Birinci çubuğun elastik eğrisi 0.00016 z 

İkinci çubuğun elastik eğrisi 0.00053333 -0.00008 z 

Birinci çubuk normal kuvveti sabit 3.36 ton 

İkinci çubuk normal kuvveti sabittir 3.36 ton 

 

Ayrıca, çözüm sonucu elde edilen çubuk boyuna uzama değişim grafiği (Şekil 3.9.), 

normal kuvvet değişim grafiği (Şekil 3.10.) ve deformasyonlu ve deformasyonsuz 

sistemin karşılaştırılması (Şekil 3.11.) sunulmaktadır. 
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Şekil 3.9. Örnek 3 sisteminde her bir noktaya ait boy uzama miktarı grafiği 

 

Şekil 3.10. Örnek 3 sistemde her bir noktaya ait normal kuvvet değeri grafiği 

 

Şekil 3.11. Örnek 3 sisteminde her bir noktaya ait normal kuvvet değeri grafiği 

 

Şekil 3.9.’dan görüleceği üzere “2” düğümünün deplasman değeri “u1” kadar yani 

0.00053333 m olmaktadır. Şekil 3.10.’da ise birinci çubuk kuvvetinin çubuk boyunca 

sabit olduğu ve 3.36 ton değerini aldığı görülür. İkinci çubukta ise normal kuvvet yine 

sabit olup, değeri 3.36 ton olmaktadır. Birinci çubuk çekmeye çalışmakta, olup ikinci 

çubukta çekmeye çalışmaktadır. Şekil 3.11’de ise “2” numaralı serbest olan düğüm, 

ikinci çubuğun negatif sıcaklık değişimi sonrası kısalmasıyla ikinci çubuğa doğru 

çekildiği anlaşılmaktadır. Bu nedenle iki çubukta da karşılıklı çekme kuvvetleri 

oluşmaktadır. Birinci çubuk uzamakta, ikinci çubuk kısalmakta; fakat tüm çubukta boy 

değişimi olmamaktadır. Aynı, problem mekanik kurallarınca el ile çözüldüğünde de bire 

bir aynı sonuçlar elde edilmektedir. 
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3.1.2.4. Uygulama 4: 

Dördüncü örnek olarak, literatürden alınan bir problem sunulmaktadır [22]. Çubuk 

sistem aşağıda Şekil 3.12.’de verilmiştir. Rijit bir mesnede bağlı olan silindirik A1 

çubuğunun kesiti, A2 kısmına geçtiğinde değişmektedir. A1 çubuğu kesit değiştirdiği 

noktada, yaka denilen A3 isimli silindirik bir boru parçasından geçip A2 kesitine 

dönüşmektedir. A1 kısmının A2 ye geçtiği noktada A3 yakasına oturmaktadır. A3 

yakasıda rijit dairesel kenar mesnede rahatça oturmaktadır. Yakanın ne kadar kısaldığı 

ve A1-A2 bileşik çubuğunun boyunun ne kadar uzadığının hesaplanması istenmektedir. 

Malzeme çelik olup, elastisite modülü 200 GPa’dır. 

 

Şekil 3.12. Uygulama 4 literatürden alınan çubuk sistem problemi [22] 

 

Yukarıda tanımlanan problemi çözmek amacıyla, aşağıdaki veri dosyası hazırlanmıştır. 

Burada A1 çubuğunun üst mesnede bağlandığı noktanın düğüm numarası “1” olarak 

verilmiştir. A1, A2 ve A3 çubuklarının birleşim noktasına “2” düğüm numarası 

verilmiştir. A3 yakası ile mesnetlendiği dairesel noktalar kümesi “3” düğüm numarası 

ile adlandırılmış olup, tekil kuvvetin uygulandığı A2 çubuğunun alt ucu “4” düğüm 

numarası ile belirlenmiştir. “X” ekseni olarak düşey eksen alınmış olup, başlangıç 

noktası A1 çubuğunun üst ucu alınmıştır. A1, A2 ve A3 çubukları da isimleri ile uyumlu 

olması amacıyla, sırasıyla “1”, “2”, “3” değerleriyle numaralandırılmıştır. Buna göre 

aşağıdaki veri dosyası ortaya çıkmıştır. Sistemde 3 çubuk eleman ve 4 düğüm noktası 

bulunmaktadır. Çubuk boyunca yayılı yük, sıcaklık verisi ve mesnet çökmesi yoktur, 

dolayısıyla bu veriler sıfır olarak girilmektedir. Mesnetler “1” ve “3” numaralı 



54 

 

düğümlerde olduğundan, serbestlikleri “restraint” dizisinde “1” olarak tanımlanmıştır. 

Diğer iki düğüm serbest olduğundan ilgili değerler “0” olarak atanmıştır. Tekil kuvvet 

“4” nolu düğümde bulunduğundan, “jload” dizisinin sadece dördüncü elemanına tekil 

kuvvet değeri girilmiş, diğerleri sıfır olarak atanmıştır. Elastisite modülleri üç eleman 

içinde 200 GPa olarak girilmiş olup, kesit alanları sırasıyla 960, 300 ve 480 mm
2
 olarak 

atanmıştır. Çubuk eleman tarifleri ise A1 çubuğu, üst ucu ve alt ucunun bağlı olduğu “1-

2” düğüm numaraları ile tanımlanmıştır. A1 in devamı olan A2 çubuğu da kendi üst ve 

alt ucunun bağlandığı “2-4” düğümleri ile tanımlanmıştır. A3 çubuğu da benzer şekilde 

kendi üst ve alt ucunun bağlı olduğu “2-3” düğüm numaraları ile tanımlanmıştır. Çubuk 

sistemin bilgisayar programı için modeli elde edilmiş olup, aşağıdaki veri dosyası 

oluşmuştur. 

 

Veri dosyası 4: 

 

Clear[Evaluate[Context[] <> "*"]]; 

<< "C:\\Users\\CDA\\Desktop\\Yener-Prog\\1DModul\\1DModul.txt" 

nel = 3; 

nod = 4; 

xc = {0, 250, 375, 475};   

restraints = {1, 0, 1, 0}; 

jload = {0, 0, 0, 40}; 

nqz =  {0, 0, 0}; 

EMod = {200, 200, 200}; 

area = {960, 300, 480}; 

DeltaTn = {0, 0, 0}; 

TEC = {0, 0, 0}; 

SupportDisp = {0, 0, 0, 0}; 

defIJ = {{1, 2}, {2, 4}, {2, 3}}; 

OneD; 

 

Verilerin girişi ve tanıtımların yapılmasından sonra, analiz programı modülü olan OneD 

icra edilmektedir.  “OneD” modülü icra edildikten sonra aşağıdaki sonuçlar ekrana 

düşmüştür. Aşağıda Tablo 3.4.’de gerekli bilgiler özetlenmiştir. 
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Ayrıca, çözüm sonucu elde edilen çubuk boyuna uzama değişim grafiği (Şekil 3.13.), 

normal kuvvet değişim grafiği (Şekil 3.14.) ve deformasyonlu ve deformasyonsuz 

sistemin karşılaştırılması (Şekil 3.15.) sunulmaktadır. 
 

Tablo 3.4. Uygulama 4 ‘de verilen sistemin çözümü sonucu elde edilen özet bilgiler 

Büyüklük adı Değeri 

İki nolu düğümün deplasmanı 5/192 = 0.02604166 mm 

Dört nolu düğümün deplasmanı 169/960 = 0.17604166 mm 

Birinci çubuğun elastik eğrisi  

    
 

İkinci çubuğun elastik eğrisi  

   
 

 

    
 

Üçüncü çubuğun elastik eğrisi  

   
 

 

    
 

Birinci çubuk normal kuvveti sabit 20 kN 

İkinci çubuk normal kuvveti sabittir 40 kN 

Üçüncü çubuk normal kuvveti sabittir -20 kN 

 

 

Şekil 3.13. Uygulama 4 sisteminde her bir noktaya ait boy uzama miktarı grafiği 

 

 

Şekil 3.14. Uygulama 4 sistemde her bir noktaya ait normal kuvvet değeri grafiği 
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Şekil 3.15. Uygulama 4 sisteminde her bir noktaya ait normal kuvvet değeri grafiği 

Şekil 3.13. ve Tablo 3.4.’den görüleceği üzere “2” ve “4” numaralı serbest düğümlerin 

deplasman değeri “u1” ve “u2” sırasıyla 0.026 ve 0.176 mm olmuştur. Elde edilen 

değerler kaynakta verilen değerler ile birebir aynıdır. Şekil 3.14.’de ise A1 çubuğunun 

normal kuvvet değeri çubuk boyunca sabit olup, 20 kN olarak hesaplanmıştır. A2 

çubuğunun normal kuvvet değeri beklendiği gibi 40 kN olup, çubuk boyunca sabittir. 

A3 çubuğunun normal kuvvet değeri -20 kN olarak elde edilmiştir. A1 ve A2 çubukları 

çekme, A3 çubuğu ise basınca maruz kalmaktadır. Deformasyonsuz ve deformasyonlu 

sistemin karşılaştırıldığı Şekil 3.15.’de ise “2” ve “4” nolu serbest hareket edebilen 

düğümlerin çubuk uç kuvveti yönünde sağa doğru (problemin verildiği ilk şekildeki 

resme göre ise aşağı yönde) yer değiştirdiği görülmektedir. 

3.1.2.5. Uygulama 5: 

Beşinci örnek olarak, yine literatürden alınan bir problem sunulmaktadır [22]. Çubuk 

sistem aşağıda Şekil 3.16.’da verilmiştir. Burada üç metalden oluşan bir çubuk sistemi 

verilmektedir. Çelik çekirdekten oluşan silindirik bir çubuk, bronz ve bakır tüpler ile 

sarılmıştır. Çelik, bronz ve bakır kısmın çapları sırasıyla; 30, 45 ve 60 mm olarak 

verilmektedir. Çelik, bronz ve bakırın elastisite modülleri de sırasıyla 210, 100, 120 

GPa olarak verilmektedir. Üçlü metalden oluşan çubuk sistemi bir ucundan rijit bir 

zemine mesnetlenen çubuk, serbest ucundan rijit bir uç başlığı ile değeri 40 kN olan 

tekil bir kuvvet ile baskılanmaktadır. Uygulanan yük nedeniyle çelik, bronz ve bakırda 

oluşan normal gerilmelerin hesabı istenmektedir. 
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Şekil 3.16. Uygulama 5 literatürden alınan çubuk sistemproblemi [22] 

 

Yukarıda verilen beşinci örnek için veri dosyası hazırlanmıştır. Veri dosyası için gerekli 

açıklama aşağıda verilmektedir. Üç farklı metal birbirine paralel çubuk sistemi 

oluşturulmuştur. Çubukların alt ucuna “1” düğüm numarası verilmiş olup, üst ucuna “2” 

düğüm numarası verilmiştir. Üç çubukta aynı düğüm noktaları ile “1-2” tarif 

edilmektedir. Alt uç tutulu üst uç ise serbest olarak “restraint” dizisinde tanımlanmıştır. 

Çelik çekirdek olan eleman “1” ile, bronz gömlek eleman “2” ile, ve bakır gömlek 

eleman ise “3” ile numaralandırılmıştır. Toplam eleman sayısı “3” ve düğüm sayısı ise 

“2” olmuştur. İlgili elemanların elastisite modülleri “EMod” dizisinde sırayla 

tanımlanmıştır. Kesit alanları da “area” dizisi içinde uygun şekilde hesaplanmaktadır. 

Çubuk boyunca yatay yayılı yük ve sıcaklık değişimi yüklemesi olmadığından ilgili 

büyüklükler sıfır olarak tanımlanmıştır. Mesnet yer değiştirme yüklemesi olmadığından 

ilgili büyüklük sıfır olarak atanmıştır. Düğüm tekil yükü olarak “jload” dizinin “2 inci” 

elemanına “2” nolu düğümü temsilen -40 kN’luk yük basınç olduğu için negatif olarak 

tanımlanmıştır. Literatürde çubuk boyları; hesabı etkilemediği verilmemiş olmakla 
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birlikte, bu çalışmada “1” olarak alınmıştır. Gerilmelerin hesabı istendiğinden, 

programın hesapladığı normal kuvvet değerleri veri dosyasının en sonunda çubuk 

alanlarına bölünerek; gerilme değerleri hesaplanmıştır. Aşağıda veri dosyası 

görülmektedir. 

 

Veri dosyası 5: 

 

Clear[Evaluate[Context[] <> "*"]]; 

<< "C:\\Users\\CDA\\Desktop\\Yener-Prog\\1DModul\\1DModul.txt" 

nel = 3; 

nod = 2; 

xc = {0, 1};  

restraints = {1, 0}; 

jload = {0, -40}; 

nqz =  {0, 0, 0}; 

EMod = {210, 100, 120}; 

area = {Pi*30^2/4., Pi*(45^2 - 30^2)/4., Pi*(60^2 - 45^2)/4.}; 

DeltaTn = {0, 0, 0}; 

TEC = {0, 0, 0}; 

SupportDisp = {0, 0}; 

defIJ = {{1, 2}, {1, 2}, {1, 2}}; 

OneD; 

Do[Print["Sigma(", i, ")=", 1000 N[EEndForJ[[i]]/area[[i]]]];, {i, 1, nel}]; 

 

Verilerin girişi ve tanıtımların yapılmasından sonra, analiz programı modülü olan OneD 

icra edilmektedir. “OneD” modülü icra edildikten sonra aşağıdaki sonuçlar ekrana 

düşmüştür. Tablo 3.5.’de gerekli bilgiler özetlenmiştir. 
 

Tablo 3.5. Uygulama 5’ de verilen sistemin çözümü sonucu elde edilen özet bilgiler 

Eleman-Büyüklük adı Normal kuvvet Gerilme 

Çelik çubuk -15.4128kN -21.8047 MPa 

Bronz çubuk -9.17431kN -10.3832 MPa 

Bakır çubuk -15.4128kN -12.4598Mpa 
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Tablo 3.5.’den görüleceği üzere, çelik, bronz ve bakır üzerinde tekil yükten dolayı 

sırasıyla 21.8, 10.38 ve 12.46 MPa basınç gerilmeleri oluşmaktadır. Elde edilen bu 

değerler problemin alındığı kaynakla uyumludur. Bu problemin çalışmada geliştirilen 

program ile çözülmesi, programın farklı malzemelerden oluşan ve paralel olarak 

birleştirilmiş çubuk sistemlerinide çözecek şekilde çok yönlü ve genel olarak 

kodlandığının göstergesi olmaktadır. 

3.1.2.6. Uygulama 6: 

Altıncı örnek olarak, literatürden alınan [37], rijit mesnetten sarkıtılmış kesik koni. 

Kesik koninin kısa ve uzun çaplarının değeri sembolik olarak sırasıyla “2a” ve “2b” 

olarak verilmekte olup, elastisite modülü “E”, uzunluğu “L”, yoğunluğu “γ” olarak 

verilmektedir. Kesik koninin serbest ucunun kendi ağırlığı altında ne kadar uzama 

yapacağı belirlenmek istemektedir. Bu örnekte çubuk kesit alanı değişken olup 

yarıçapın karesiyle yani parabolik olarak değişmektedir. Aynı zamanda çubuk boyuna 

yayılı yük olarak etki eden öz ağırlığı da kesitten kesite değişmektedir. Aşağıda kesik 

koninin Şekil 3.17.’de gerekli bilgileri verilmektedir. 

 

 

Şekil 3.17. Kendi ağırlığı altında kesik koni problemi [37] 
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Yukarıda verilen altıncı örnek için veri dosyası hazırlanmıştır. Veri dosyası için gerekli 

açıklama aşağıda verilmektedir. Kesik koni bir parçadan oluşmaktadır. Üst ucu rijit alt 

ucu serbesttir. Çubuk ekseni başlangıcı alt uca konulmuştur. Bu nedenle alt uca “1” 

düğüm numarası, üst uca “2” düğüm numarası verilmiştir. Tek çubuk olduğundan alttan 

üste doğru tanımlanmış olup, tarifi “1-2” olarak ilgili diziye atanmıştır. Düğüm 

koordinatları için “1 inci” düğüm için “0” olmakta ve “2 inci” düğüm için sembolik 

olarak “L” olmaktadır. Program sembolik işlem yeteneğine sahip olduğundan değerler 

sembolik olarak da atanabilmektedir. Yarıçapı değişimi bulunarak, kesit alanı yarıçapa 

bağlı bulunarak, ilgili dizide tanımlanmıştır. Ağırlık değişimi de kesit alanı ve 

yoğunluğun çarpımı olarak çubuk eksenine paralel yayılı yük olarak tanımlanmıştır. 

Elastisite modülü sembolik olarak “E” girilmiştir. Sıcaklık değişimi, tekil yük ve mesnet 

yer değiştirmesi olmadığından ilgili dizilere sıfır atanmıştır. Veri dosyası aşağıda 

sunulmaktadır. 

 

Veri dosyası 6: 

 

Clear[Evaluate[Context[] <> "*"]]; 

<< "C:\\Users\\CDA\\Desktop\\Yener-Prog\\1DModul\\1DModul.txt" 

nel = 1; 

nod = 2; 

xc = {0, L};   

restraints = {0, 1}; 

jload = {0, 0}; 

r = a + (z/L) (b - a) 

nqz =  {g*Pi r^2}; 

EMod = {E}; 

area = {Pi r^2}; 

DeltaTn = {0}; 

TEC = {0}; 

SupportDisp = {0, 0}; 

defIJ = {{1, 2}}; 

OneD; 
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Verilerin girişi ve tanıtımların yapılmasından sonra, analiz programı modülü olan OneD 

icra edilmektedir. “OneD” modülü icra edildikten sonra aşağıdaki sonuçlar ekrana 

düşmüştür. Tablo 3.6.’da gerekli bilgiler özetlenmiştir. Tablo 3.6.’dan görüleceği üzere 

serbest uç normal kuvvet değeri sıfırdır ve açıkça görülmektedir. Mesnetteki değeri ise 

tüm kesik koninin ağırlığına eşit olmuştur. Serbest uçtaki boy uzaması elde edilmiştir, 

literatürde [37] de aynı sonuç elde edilmiştir. Geliştirilen program ile hem kesit alanı 

hem de yayılı yükü değişken problemler çözülebilmektedir. İlaveten işlemler 

istendiğinde sembolik veri ile de yapılabilmektedir. Benzer problem başka bir 

literatürde de bulunmaktadır [29].  

Tablo 3.6. Uygulama 6 da verilen sistemin çözümü sonucu elde edilen özet bilgiler 

Büyüklük adı Değeri 

Boy uzaması 
(     )   

    
 

Boyuna elastik eğri 
 (   )(           (   )     (         ))

    (  (   )    )
 

N fonksiyonu  
   (  (       )         (           ))

    
 

Serbest uçtaki N 0 

Mesnet reaksiyonu  
 

 
(        )    

 

3.1.2.7. Uygulama 7: 

Yedinci örnek olarak yine literatürden [22] alınan bir örnek sunulmuştur. Bu problem 

ilginç örnek oluşturması açısından önemlidir. Aşağıda Şekil 3.18.’de verilen örnek 

öngerilmeli betonarme problemidir. Çelik öngerme başlıkları ile çekilen öngerme 

donatısı 6200 kgf’lik kuvvet ile çekilerek tutulmuş ve beton kalıbı içinde yer almıştır. 

Daha sonra, çelik kalıp içinde çekili iken, üzerine beton doldurularak, priz alması ve 28 

gün sonuna kadar dayanım kazanması için beklenmiştir. Beton dayanımını kazandıktan 

sonra, çelik başlıklar serbest bırakılarak beton içinde çekili bulunan çeliğin beton 

üzerine basınç gerilmesi oluşması sağlanmıştır. Çeliğe ait elastisite modülü ile beton 

elastisite modülü oranı 12/1 olup, çelik alanı ile beton alanı arasındaki oran ise 1/50 

olduğu bilinmektedir. Öngerme çeliği serbest bırakıldığında çelik ve beton üzerinde 

oluşacak gerilme değerlerinin belirlenmesi istenmektedir. 
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Şekil 3.18. Öngermeli betonarme çubuk 
 

Problemin geliştirilen program ile çözülebilmesi için bir benzetme geliştirilmiştir. 

Uzayan çeliğin uzadığı kadar kısalması için gerekli sıcaklık değişimi, çeliğin ısıl 

genleşme katsayısı “1” alınarak hesap edilmiştir. Bu hesap aşağıdaki ifade (Denklem 

3.1) yardımıyla yürütülmüştür. Oranlar ise doğrudan malzeme değerleri olarak 

alınmıştır. 

   
    

    
                                                                   (3.1) 

Uzunluklar elimine olmaktadır. Malzeme değerleri olarak oranlar yerine konulduğunda. 

Denklem 3.1., Denklem 3.2. halini almaktadır. 

   
     

  
                                                                   (3.2) 

Böylece problem ısıl genleşme problemi gibi çözülebilir. Kirişin boyutu sonuçlardan 

elimine olduğundan, hesaplarda bilgisayarın kullanması için “1” metre olarak 

girilmektedir. Çubuğun bir ucu tutulu diğer ucu serbest olarak bırakılmıştır. Sol ucu “1” 

düğüm numarası, diğer ucu ise “2” ile numaralandırılmıştır. Bir numaralı düğümün 

koordinatı “0” olarak, “2” numaralı düğümün koordinatı çubuk boyunu sembolik olarak 

“1” değeri girilmiştir. Beton elaman “1” numarası ile çelik eleman ise “2” numarası ile 

kodlanmıştır. İkisinin tanımı ise “1-2” olarak verilmiştir. Tekil yük, yayılı yük, ve 

mesnet hareketleri olmadığından sıfır olarak girilmiş olup, beton genleşme katsayısı 

“0”, çelik genleşme katsayısı “1” olarak girilmiştir. Benzer şekilde beton sıcaklık 

değişimi sıfır olup, çelikte sıcaklık değişimi Denklem 3.2.’de elde edilen, 51.666 
0
C 

değeri girilmiştir. Problem için hazırlanan veri dosyası aşağıda sunulmaktadır. 
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Veri dosyası 7: 

 

Clear[Evaluate[Context[]<>"*"]]; 

<<"C:\\Users\\CDA\\Desktop\\Yener-Prog\\1DModul\\1DModul.txt" 

(*eksenel öngerme problemi sıcaklık değişimi analojisi ile çözülmektedir*) 

nel=2; 

nod=2; 

xc = {0,1}; 

restraints= {1,0}; 

jload ={0,0}; 

nqz=  {0,0}; 

EMod={1,12}; 

area={50,1}; 

DeltaTn={0,-6200/12}; 

TEC={0,1}; 

SupportDisp={0,0}; 

defIJ={{1,2}, {1,2}}; 

OneD; 

Do[Print["Sigma(",i,")=",N[EEndForJ[[i]]/area[[i]]]/10];,{i,1,nel}]; 

 

Yukarıda verilen dosyanın icrasından sonra ve arkasından gelen, analiz programı 

modülü olan OneD icra edilmektedir. “OneD” modülü icra edildikten sonra 

bilgisayardan elde edilen gerilme değerleri aşağıda Tablo 3.7.’de sunulmuştur. 

Tablo 3.7. Öngerme sonucu beton ve çelikte oluşan gerilmeler 

Eleman Gerilme değeri 

Çelik 500 MPa (çekme) 

Beton 10 MPa (basınç) 

 

Elde edilen değerlerin literatürde verilen değerlerle aynı olması, öngerme problemlerini 

çözerken uzama miktarlarının ısıl genleşme katsayı ve sıcaklık değişimi ile 

ilişkilendirerek, çözmenin mümkün olduğu anlaşılmıştır. 
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3.1.2.8. Uygulama 8: 

Örnek yedide verilen problem, mesnet yer değiştirmesi eşdeğeri kullanılarak tekrar 

çözülmektedir. Burada verilerin tamamı aynıdır, sadece sıcaklık yüklemesi 

yapılmayacak olup, sıcaklık yüklemesi sıfır olmaktadır. Yükleme, mesnet yer değişim 

şeklide yapılmaktadır. Bu mesnet değişiminin oluşması ise öngermenin çeliği geriye 

çekmesine bağlandığından, çeliğin bağlandığı mesnede yer değiştirme 

tanımlanmaktadır. Bu nedenle beton ve çelik elemanın sabit olarak bağlandığı mesnet 

noktaları koordinatları aynı olmakla beraber farklı düğüm olarak tanımlanmaktadır. 

Böylece ilave bir düğüm daha oluşarak toplam düğüm sayısı “3” olmaktadır. Beton ve 

çeliğin ilk düğümleri sırasıyla “1” ve “2” olmakta, ikinci düğüm ise ikisi içinde “3” 

olmaktadır. Beton elaman “1” numaralı eleman olarak “1 den 3e” ile tarif edilirken, 

çelik eleman “2” numaralı eleman olarak “2 den 3 e” tanımlanmaktadır. İlk iki düğümün 

koordinatı aynı olmakta, üçüncü düğümün koordinatı ise çubuk boyu olmaktadır. İlk iki 

düğüm sabit tutulmakta üçüncü düğüm ise serbest bırakılmaktadır. Çeliğin bulunduğu 

mesnet ise ön germeyi temsilen geriye doğru çekme oluşturması maksadıyla, geriye 

doğru yer değiştirmeye maruz bırakılmıştır. Yer değiştirme miktarı da çeliğe uygulanan 

kuvvet ve malzeme özellikleri ile hesaplanmıştır ( Denklem 3.1. kullanılarak, ΔL olarak 

hesaplanmıştır). Çelikteki ilk uzama çok küçük olduğundan ihmal edilerek geometrik 

uzunluklara dâhil edilmemiştir. Aşağıda hazırlanan yeni veri dosyası sunulmaktadır. 

 

Veri dosyası 8: 

 

Clear[Evaluate[Context[] <> "*"]]; 

<< "C:\\Users\\CDA\\Desktop\\Yener-Prog\\1DModul\\1DModul.txt" 

(*eksenel öngerme problemi mesnet yer değiştirmesi analojisi ile çözülmektedir*) 

nel = 2; 

nod = 3; 

xc = {0, 0, 1};  

restraints = {1, 1, 0}; 

jload = {0, 0, 0}; 

nqz =  {0, 0}; 

EMod = {1, 12}; 

area = {50, 1}; 
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DeltaTn = {0, 0}; 

TEC = {0, 1}; 

SupportDisp = {0, -6200/12, 0}; 

defIJ = {{1, 3}, {2, 3}}; 

OneD; 

Do[Print["Sigma(", i, ")=", N[EEndForJ[[i]]/area[[i]]]/10];, {i, 1, nel}]; 

 

Yukarıda verilen dosyanın icrasından sonra ve arkasından gelen, analiz programı 

modülü olan OneD icra edilmektedir. “OneD” modülü icra edildikten sonra 

bilgisayardan elde edilen gerilme değerleri daha önce yedinci örnekte bulunan ve 

literatürle eşit bulunmuştur. Öngerme problemlerini çözerken yedinci örnekte olduğu 

gibi uzama miktarlarının ısıl genleşme katsayı ve sıcaklık değişimi ile ilişkilendirerek, 

ya da mesnet yer değiştirmesi analojisi ile çözmenin mümkün olduğu anlaşılmıştır. 

3.1.2.9. Dairesel Çubukta Oluşan Burulma Problemi 

Bir boyutlu normal kuvvet içeren problemleri çözmek için geliştirilen program, çubukta 

burulmayı idare eden diferansiyel denklemin normal kuvvet için olan denkleme benzer 

olmasından dolayı, burulmaya maruz çubuk sistemler içinde geçerlidir. Burada eksenel 

rijitlik; burulma rijitliğine karşılık gelmektedir. Serbestlik ise uzama yerine açı 

dönmesine tekabül etmektedir. Tekil yatay kuvvet, tekil burulma momentine karşılık 

olup, yayılı normal kuvvette, yayılı burulma momentinin eşdeğeridir. Mesnet yer 

değiştirmesi ise eksenel mesnet dönmesinin benzeridir. Bu nedenle bir adet literatürden 

alınan dairesel çubukta burulma problemi çözülerek sunulmuştur. 

3.1.2.9.1. Uygulama 9: 

Aşağıda dairesel kesite sahip (Şekil 3.19.) 550 mm net açıklıklı çelik çekirdek, çelik bir 

boru gömlek içine arada boşluk olacak şekilde yerleştirilmiştir. Çelik gömlek ve çelik 

çekirdek alt ucundan rijit bir mesnede üst ucundan ise rijit uç başlığına bağlanmıştır. 

Üst ucundan 400 kN.mm burulma momentine maruz kalan sistemin üst başlığının 

dönme açısının hesaplanması istenmektedir. Ayrıca, çelik çekirdek ve çelik gömlekte 

oluşacak en büyük kayma gerilmelerinin bulunması istenmektedir. Kayma modülü 80 

000 MPa’dır [22]. 
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Şekil 3.19. Dairesel kesite sahip çelik gömlek ve silindirik çelik çekirdek [22] 

 

Problemin çözümü için veri dosyası oluşturulmuştur. Sistemin alt ve üst ucu “1” ve “2” 

düğüm numaraları ile numaralandırılış olup eksen takımı alt uca oturtulmuştur. Çubuk 

eleman numaraları çelik çekirdek ve gömlek için sırasıyla “1” ve “2” olarak 

tanımlanmıştır. Çubuklara ait polar atalet momentleri hesaplanarak, “area” dizisinde 

tanımlanmıştır. Tekil moment tekil yük gibi verilmiştir. Yayılı yük, mesnet yer 

değiştirmesi ve sıcaklık ile ilgili yüklemeler sıfır olarak tanımlanmıştır. Çubuk alt ucu 

tutulu ve üst ucu serbest olarak girilmiştir. Aşağıda hazırlanan veri dosyası 

sunulmaktadır. 

 

Veri dosyası 9: 

 

Clear[Evaluate[Context[] <> "*"]]; 

<< "C:\\Users\\CDA\\Desktop\\Yener-Prog\\1DModul\\1DModul.txt" 

(*burulma problemi eksenel normal kuvvet gibi çözülebilmektedir*) 
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nel = 2; 

nod = 2; 

xc = {0, 550};   

restraints = {1, 0}; 

jload = {0, 400}; 

nqz = {0, 0}; 

EMod = {80000, 80000}; 

Ibar = (Pi /2.) (25/2)^4; 

Itube = (Pi/2.) ((37.5/2)^4 - (30/2)^4); 

area = {Ibar, Itube}; 

DeltaTn = {0, 0}; 

TEC = {0, 0}; 

SupportDisp = {0, 0}; 

defIJ = {{1, 2}, {1, 2}}; 

OneD; 

(25/2)EEndForJ[[1]]/Ibar 

(37.5/2) EEndForJ[[2]]/Itube 

 

Yukarıda verilen veri dosyası Mathematica ortamında icra edildiğinde, bulunması 

istenen dönme açısı ve gerilmeler, Tablo 3.8.’de özetlenmiştir. Burulma momenti 

sonucu rijit başlığın dönme açısı 1.030
0
 olmuştur. Dönme açısı ve en büyük gerilmekler 

literatürde verilen değerlere eşit olarak bulunmuştur. 

Tablo 3.8. Burulma sonucu oluşan en büyük kayma gerilmeleri 

Eleman En büyük kayma gerilmesi değeri 

Çelik çekirdek 32.68 MPa 

Çelik boru gömlek 49.03 MPa 

 

3.1.2.9.2. Uygulama 10: 

Bir boyutlu hal için örnek olarak literatürde bulunan [18], burulma ile ilgili problem ele 

alınmıştır. Uzunluğu 5L olan silindirik bir şafta serbest ucundan, M0 burulma momenti 

uygulanmaktadır. Diğer ucu dönmeye karşı tutuludur. Çubuğun Şekil 3.20.’de verildiği 
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gibi, serbest uç kısmında L kadarlık bir bölgede çapı r0 olup, mesnet bölgedesinde yine 

L kadarlık bir kısmında çapı 2r0 dır. Bu iki bölge arasında kalan kısımda ise çap 

doğrusal olarak değişmektedir. Değişimin fonksiyonu orta bölgede kalan çubuk için 

yerel koordinatlarda verilmektedir. Kayma modülü ise G olarak verilmektedir. 

Uygulanan burulma momenti nedeniyle serbest ucun ne kadar döneceğinin hesabı 

istenmektedir. 

 

 

Şekil 3.20. Literatürden alınan değişken kesitli çubuk 

 

Problemin çözümü için veri dosyası hazırlanmıştır. Global koordinat takımı serbest uca 

oturtularak koordinat değerleri tespit edilmiştir. Serbest uca “1” numarası verilmek 

süretiyle mesnete kadar numara verilmiş olup, mesnet düğüm numarası “4” olmuştur. 

Benzer şekilde serbest uca yakın bölge “1” ile çubuk numarası verilmiş, orta bölgeye 

“2” numarası verilmiş ve son olarak son bölgeye “3” çubuk numarası verilmiştir. 

Çubukların tanımları buna göre yapılarak, “defIJ” dizisi tespit edilmiştir. Serbest uca M0 

momenti uygulanmış olup, mesnet dönmesi ve sıcaklık bilgileri sıfır tanımlanmıştır. 

Mesnedin bulunduğu ucun dışında kalan düğümler serbesttir. Yayılı burulma momenti 

çubukların hepsi için sıfır olarak tanımlanmıştır. Elastisite modülü yerine G değeri 

girilmiş, alan değerleri yerine polar atalet momentinin değerleri hesaplanarak 

tanımlanmıştır. Kesit değişen bölgede polar atalet momenti mukavemet ve matematik 

kurallarına göre tanımlanmıştır. Aşağıda veri dosyası sunulmaktadır. 

 

Veri Dosyası 10: 

 

Clear[Evaluate[Context[] <> "*"]]; 

<< "C:\\Users\\CDA\\Desktop\\Yener-Prog\\1DModul\\1DModul.txt" 

(*burulma problemi *) 

nel = 3; 
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nod = 4; 

xc = {0, L, 4 L, 5 L};   

restraints = {0, 0, 0, 1}; 

jload = {M0, 0, 0, 0}; 

nqz = {0, 0, 0}; 

EMod = {G, G, G}; 

area = {(Pi /2) (r0/2)^4, (Pi/2) ((z r0/(3/L) + r0)/2)^4, (Pi /2) (2 r0/2)^4}; 

DeltaTn = {0, 0, 0, 0}; 

TEC = {0, 0, 0, 0}; 

SupportDisp = {0, 0, 0, 0}; 

defIJ = {{1, 2}, {2, 3}, {3, 4}}; 

OneD; 

 

Hazırlanan veri dosyası daha önceki problemlerde anlatıldığı şekilde icra edildiğinde 

serbest uçtaki dönme açısı deplasman olarak hesaplanmış olur. Çalışmada bulunan 

dönme açısı, kaynakta verilen dönme açısının aynısı olarak bulunmuş olup, aşağıda 

Denklem 3.3.’de sunulmaktadır. 

  
      

    
                                                                 (3.3) 

Çalışmada geliştirilen bir boyutlu normal kuvvet taşıyan çubuk sistemlerin çözümünde 

kullanılan programın, benzer şekilde bir boyutlu burulma problemlerini de çözebildiği 

son iki örnek ile gösterilmiştir. Normal kuvvet halinde olduğu gibi sadece sabit kesit 

hali için değil, değişken kesit hali içinde program burulma problemlerinde 

kullanılabilmektedir. 

3.1.2.10. Uygulama 11. 

Bu örnekte Felippa (2016) den alınan problem çözülmüştür [38].  Problem sürekli bir 

çubuktan oluşmaktadır, çubuk başlangıç ve bitişinde sabit mesnetli olup, orta kısmında 

çubuğu ikiye ayıran kayıcı mesnet bulunmaktadır. Çubuk iki parçadan oluşmakta, 

başlangıç mesnet düğümü “1”, kayıcı mesnet düğümü “2” ve bitiş mesnet düğümü “3” 

ile numaralandırılmıştır. Toplam düğüm sayısı “3” olup, çubuk sayısı “2” dir. İki 

çubuğunda kesit alanı “12”, elastisite modülü “1000” olarak verilmiş olup, sıcaklık 
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genleşme katsayıları da aynı ve 0.0005/
o
C’dir. Birinci ve ikinci çubuğun boyu, “4 ” ve 

“6 ” dır. Birinci çubukta 25 
o
C derece sıcaklık artışı, ikinci çubukta ise 10 C derece 

sıcaklık düşüşü mevcuttur. Kayıcı mesnette çubuk ekseni doğrultusunda “90” değerinde 

tekil kuvvet bulunmaktadır. Çubuk ekseni boyunca yayılı yük yoktur. Mesnet 

yerdeğiştirmesi bulunmamaktadır. Tarif edilen çubuk sistem Şekil 3.21.’de 

numaralandırılma ile birlikte sunulmaktadır. 

 

Şekil 3.21. Sıcaklık değişimi ve tekil kuvvete maruz çubuk sistem [38] 

 

Daha önce anlatılan kurallara göre, yukarıda verilen sistemin çözümü için veri dosyası 

hazırlanmış ve aşağıda verilmiştir. 

 

Veri Dosyası 11: 

 

Clear[Evaluate[Context[] <> "*"]]; 

<< "C:\\Users\\CDA\\Desktop\\Yener-Prog\\1DModul\\1DModul.txt" 

(*ifemcolorado*) 

nel = 2; 

nod = 3; 

xc = {0, 4, 10}; 

restraints = {1, 0, 1}; 

jload = {0, 90, 0}; 

nqz = {0, 0}; 

EMod = {1000, 1000}; 

area = {12, 12}; 

DeltaTn = {25, -10}; 

TEC = {0.0005, 0.0005}; 

SupportDisp = {0, 0, 0}; 

defIJ = {{1, 2}, {2, 3}}; 

OneD; 

NforceF/area 

 

e1e1 e2e2
11 22 33

P2P2
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Yukarıda oluşturulan veri dosyası icra edildiğinde aşağıdaki sonuçlar elde edilmektedir. 

Şekil 3.22.’de boyuna uzama dağılımı, Şekil 3.23.’de normal kuvvet dağılımı 

verilmektedir. Şekil 3.24.’de ise çubuk sistemin deformasyonsuz ve deformasyonlu hali 

verilmektedir. Şekil 3.22.’den görüleceği üzere, birinci çubuğun sonunda boy değişimi 

en fazla olmaktadır (u1=0.06). Birinci çubukta oluşan çekme normal kuvveti “30”, 

ikinci çubukta oluşan basınç normal kuvvet, “60” olmakta, iki çubuğun birleştiği yerde 

tekil kuvvet kadar sıçramaktadır (Şekil 3.23). Gerilmelerde sırasıyla “2.5” ve “-5” 

değerlerini almaktadır. Çubuk sistemin “2” numaralı düğümü duruma uygun olarak, “3” 

numaralı düğüme yaklaşmıştır. Buradan da birinci çubuğun uzadığı ikinci çubuğun 

kısaldığı anlaşılmaktadır. Sonuçlar alınan kaynakla uyum içindedir. Bu problemde iki 

farklı sıcaklık değişimi ve tekil kuvvet birlikte çözülmüştür. Ayrı ayrı çözülüp, 

süperpozisyon kuralı uygulandığında da aynı sonuçlar elde edilmektedir. 

 

 

Şekil 3.22. Çubuk sistemin boyuna uzama dağılımı 

 

 

Şekil 3.23. Çubuk sistemin normal kuvvet dağılımı 

 

 

Şekil 3.24. Çubuk sistemin deformasyonsuz ve deformasyonlu hali 
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3.2.  İki Boyutlu Sistemler İçin Geliştirilen Program Açıklaması ve Örnek 

Uygulamalar 

3.2.1.  Bilgisayar Programı 2D ve Açıklaması 

İki boyutlu normal kuvvet taşıyan çubuk sistemlerin çözümü için hazırlanan program 

aşağıda sunulmakta ve açıklanmaktadır. Bu program geliştirilirken aşağıdaki değişken 

isimleri seçilmiştir. Eleman sayısının göstermek üzere “nel”, düğüm sayısını göstermek 

üzere “nod” değişkeni seçilmiştir. Koordinat takımı, düğüm serbestlikleri, düğüm tekil 

kuvvetleri, mesnet çökmeleri ve elastik mesnet için sırasıyla “xy”, “retstraints”, “jload”, 

“SupportDisp”, “ElasticSupport” değişken isimleri seçilmiş olup, değişkenler düğüm 

sayısınca satırı ve iki sütünü olan matrislerdir. Çubuk elastisite modülü için “EMod”, 

kesit alanı için”area”, sıcaklık genleşme katsayısı için “TEC”, sıcaklık değişimi için 

“DeltaT” isimleri seçilmiş olup, değişkenler çubuk sayısınca elemanı olan birer dizidir. 

Çubuk elemanların “i” ve “j” uçlarının düğüm numarasını depolamak üzere “defIJ” 

isimli iki sütunlu ve çubuk sayısınca satır elemanı olan bir matris seçilmiştir. Aşağıda 

gerekli verilerin tanımlandığı varsayılarak, program parça parça sunulmakta olup, her 

parçadan sonra programın açıklaması verilmektedir. 

3.2.1.1. Program Parçası 1: 

dispN = 0; 

Do[ If[restraints[[i, j]] == 0, 

dispN = dispN + 1; restraints[[i, j]] = dispN;,restraints[[i, j]] = 0], {i, 1, nod}, {j, 1, 

2}]; 

Print["total displacement=", dispN]; 

Print["displacement number coding for each joint=", Matrix Form[restraints]]; 

 

Burada deplasman numaraları dispN numaratörü ile isimlendirilmiş olup, her serbestlik 

için birer artarak deplasmanları numaralandırmaktadır. Düğüm sayısı kadar bir döngü 

kurularak serbestlikler, serbestliklerin tanımlandığı “restraints” matrisinin her iki sütunu 

için taranmakta, serbest olan düğüme ait sütundaki tanım kısmına deplasman numarası 

verilmekte, tutulu olanlara ise daha önce belirtildiği üzere “0” değeri atanmaktadır. 

“dispN” değişkeninin son değeri ise toplam deplasman değerine eşit olmaktadır. Bu 

program parçasının sonunda toplam deplasman sayısı ve deplasman numaralarını 

saklayan matrisin değerleri görüntülenmektedir. 
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3.2.1.2.Program Parçası 2: 

d[0] = 0; 

NForce = Table[0, {i, 1, nel}]; 

SysEq = Table[0, {i, 1, dispN}]; 

Lengt = Table[0, {i, 1, nel}]; 

 

Bu program parçasında, toplam deplasman sayısı belirlendiğinden, elde edilecek 

denklemleri depolamak üzere deplasman sayısı adedince elemanı olan “SysEq” isimli 

sistem denklemlerini çağrıştıran bir dizi “Table” komutuyla tanımlanmaktadır. Ayrıca, 

her çubuk boyunun ve çubuk kuvvetinin hesaplandıktan sonra saklanması için sırasıyla 

“Lengt” ve “Nforce” isimli diziler “Table” komutuyla tanımlanmıştır. Bu dizilerin 

eleman sayısı çubuk sayısı adedincedir. 

3.2.1.3. Program Parçası 3: 

Do[ 

codeix = restraints[[i, 1]]; 

codeiy = restraints[[i, 2]]; 

If[codeix> 0, SysEq[[codeix]] = jload[[i, 1]] - d[codeix]*ElasticSupport[[i, 1]]]; 

If[codeiy> 0, SysEq[[codeiy]] = jload[[i, 2]] - d[codeiy]*ElasticSupport[[i, 2]]]; 

  , {i, 1, nod}]; 

 

Üçüncü program parçasında, daha önce tanımlanan “SysEq”, sistem denklemlerinin 

depolandığı dizinin başlangıç değerleri tespit edilmektedir. Burada “restraints” dizisi 

içinde saklanan deplasman numaralarından faydalanılmaktadır. Düğümlere ait 

deplasmanların tespiti için düğüm sayısınca bir döngü kurulmuştur. Deplasman 

numarası her düğüme ait “restraint” iki sütunlu dizisinden alınmaktadır. Birinci sütun 

“x” ekseni yönündeki, ikinci sütun “y” ekseni yönündeki deplasmanı temsil etmektedir. 

“x” yönündeki” deplasman sıfırdan farklı ise o yönde deplasman olduğu açıktır, 

numarasının değeri ise “codeix” değişkenine ilgili matristen aktarılmıştır. “y” 

yönündeki” deplasman sıfırdan farklı ise o yönde deplasman olduğu açıktır, 

numarasının değeri ise “codeiy” değişkenine ilgili matristen aktarılmıştır. “codeix” ve 

“codeiy” değişkenlerinin deplasman numarası değeri elde edilmesi planlanan sistem 

denkleminin numarasını da oluşturmaktadır. Sistem denkleminin başlangıcı ise dış 
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yüklemelerden oluşmaktadır. Bunlardan biri dış tekil kuvvet diğeri ise mesnet 

çökmesidir. Mesnet çökmesi halinde tekil düğüm yükü sıfırdır, benzer şekilde tekil yük 

olması halinde düğüm mesnet değildir, yani mesnet çökmesi yoktur ve temsilen değeri 

de sıfırdır. Tekil yük olması halinde ve “x” yönünde deplasman olması halinde, o 

düğümün tekil kuvvetinin denklem sistemine başlangıç değeri olarak eklenmesi 

gerekmektedir, bu durumda denklem sisteminin numarası daha önce belirtildiği gibi 

“codeix” değişkeninde bulunmaktadır. Tekil yük olması halinde ve “y” yönünde 

deplasman olması halinde, o düğümün tekil kuvvetinin denklem sistemine başlangıç 

değeri olarak eklenmesi gerekmektedir. Bu durumda denklem sisteminin numarası daha 

önce belirtildiği gibi “codeiy” değişkeninde bulunmaktadır. Bu bilgiler ışığında tekil 

kuvvetlerin sistem denklemine eklenmesi işi üçüncü program parçasının içinde bulunan 

iki adet “If” komutuyla icra edilmektedir. Aynı “If” komutları benzer bilgiler ışığında 

elastik mesnet değerleri ilgili deplasman ile mesnede ait elastik mesnet yay katsayısıyla 

çarparak iç kuvvete dönüştürmekte ve elde edilen kuvveti sistem denklemlerinin 

başlangıcına eklemektedir. Burada eklenme yerine çıkarılmaktadır, çünkü bulunan 

kuvvet yay ucundadır ve düğüme negatif olarak yansımaktadır. Bu nedenle 

çıkarılmıştır. Böylece mesnet çökmelerinin oluşturacağı kuvvet sisteme etkiletilmiş 

olmaktadır. İşlemler tüm serbestlikler, diğer bir deyişle tüm deplasmanlar için 

yapıldığında sistem denklemlerini oluşturan “SysEq” dizisinin başlangıç değerleri tespit 

edilmiş olur. Sonra iç kuvvetlerin etkilerinin de toplama dahil edilmesi işi diğer 

dördüncü program parçası içinde gerçekleşmektedir. Denklemlerin başlangıç değerleri 

istenirse ekranda görüntülenebilir. 

3.2.1.4. Program Parçası 4: 

Bu program parçasında her bir çubuk için işlem yapıldığından işlemlerin tamamı çubuk 

sayısı kadar işlem yapan bir döngü içine konulmuştur. Çubuk numaralarını temsil eden 

döngü değişkeni ise “nn” olarak seçilmiştir. Her bir çubuğa ait, elastisite modülü, kesit 

alanı, sıcaklık genleşme katsayısı, sıcaklık değişimi değeri, “i” ve “j” ucunun bağlı 

olduğu düğüm numaraları, “i” ve “j” ucunun koordinatları; sırasıyla “EM”, “csa”, 

“alfaT”, “dTn”, “ii”, “jj”, “xi”, “yi”, “xj”, “yj” isimli yerel değişkenlere ilgili dizi ve 

matrislerden alınarak, atanmaktadır. Bu yazım tarzı programın anlaşılmasını 

kolaylaştırmaktadır. Çubuğa ait veriler yerel değişkenlere aktarıldıktan sonra, çubuk 

uzunluğu ve global eksenlerle yaptığı açıların kosinüs doğrultmanlarının değerlerini 
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hesaplamak üzere; “i” ve “j” ucunun koordinatları kullanılarak, “i” ve “j” düğüm 

noktaları arasında bir yer vektörü yazılmaktadır [36]. Oluşan vektörün normu çubuk 

uzunluğunu vermektedir. Vektörün normu ile normalize edilmiş bileşenleri kosinüs 

doğrultmanlarını verdiğinden aşağıdaki satırlarda, kosinüs doğrultmanları 

hesaplanmaktadır. Çubuğun “x” ekseni ile yaptığı açının kosinüs değeri “csx” yerel 

değişkenine; “y” ekseni ile yaptığı açının kosinüs değeri “csy” yerel değişkenine 

aktarılmaktadır. 

Çubuğun “i” ucunun bağlı olduğu düğümün deplasman numaraları “x” yönü için 

“codeix” yerel değişkenine aktarılmakta olup, “y” yönü için “codeiy” yerel değişkenine 

aktarılmaktadır. Benzer şekilde, çubuğun “j” ucunun bağlı olduğu düğümün deplasman 

numaraları “x” yönü için “codejx” yerel değişkenine aktarılmakta olup, “y” yönü için 

“codejy” yerel değişkenine aktarılmaktadır. Bu yerel değişkenler çubuğun bağlı olduğu 

uçlarında bulunan global bilinmeyen deplasmanların numaralarını göstermekte olup, o 

yönde yazılan sisteme ait denge denkleminin numarasını da işaret etmektedir. Çubuğun 

ucunda bulunduğu bilinen global bilinmeyen deplasmanlar; çubuk kosinüs 

doğrultmanları vasıtasıyla çubuk yerel koordinatlarına dönüştürülmektedir. Çubuk yerel 

koordinatlarına dönüştürülen global deplasmanlar “ui” ve “uj” yerel değişkenleri 

üzerinde saklanmaktadır. Aynı satırlarda, varsa global mesnet çökmeleri değerleri de 

çubuk yerel koordinat takımına aynı değişkenler üzerine aktarılmaktadır. Mesnet 

çökmesi olan düğümlerde bilinmeyen deplasman olmadığından işin içine 

girmemektedir. Düğümde bilinmeyen deplasman olduğunda ise düğüm mesnet 

olmaktan çıktığı için mesnet çökmesi durumu ortadan kalkmaktadır. Çubuk ucunda 

mesnet çökmesi değeri ya da bilinmeyen deplasmanlar yerel koordinatlarda 

bulundukları için, daha sonraki aşamada çubuk boyuna uzamasını idare eden 

diferansiyel denklemin çözümü sırasında sınır koşulları olarak istihdam edilmektedir. 

Kafes sistem çözümünde genellikle kesit değişimi olmadığından ve çubuk eksenine 

paralel iç normal yayılı yük ihmal edildiğinden, çubuk boyuna uzamasını idare eden 

diferansiyel denklem; boyuna uzama eğrisinin fonksiyonunun ikinci türevinin sıfır 

olmasına dönüşür. Bu durumda iki kez geri integral alındığında uzama eğrisinin 

fonksiyonu doğrusal bir hal alarak iki sabitli bir doğru denklemine eşit olur. Sabitler, 

sınır koşullarından elde edilerek boyuna uzama eğrisinin fonksiyonunda yerine konulur; 

böylece boyuna uzama eğrisinin denklemi bulunmuş olur. Çubuk normal kuvvet 
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değişimi boyuna uzama eğrisine bağlı olduğundan, eksenel rijitlik ve boyuna uzama 

eğrisinin türevi ile çarpılarak bulunur.  

Normal kuvvet ifadesinin çubuk uçlarındaki değerleri de çubuk sınırları yerine 

konularak bulunmaktadır, “ni”, “nj”. Programda elde edilen çubuk “ni” ve “nj” yerel 

çubuk uç kuvvetleri kosinüs doğrultmaları yardımıyla global koordinat takımına 

dönüştürülerek; çubuk ucunda bulunan uç kuvvetlerinin global takımdaki bileşenleri 

bulunmuş olur. Bu bileşenler “i” ucunda “fxi, fyi” olup, “j” ucunda ise “fxj ve fyj” dir. 

Bu bileşenler sistem denklemine aktarılacak bileşenler olup, katkı yapılacak denklemin 

numarası ise bulundukları düğümün deplasman yönüdür. Bu yönler ise “i” düğümünde 

“x” yönü için “codeix” değişkeninde saklı olup, “codeix” numaralı sistem denklemine 

“fxi” bileşeninin eklenmesini gerektirir; “y” yönü için “codeiy” değişkeninde saklı olup, 

“codeiy” numaralı sistem denklemine “fyi” bileşeninin eklenmesini gerektirir.  

Benzer şekilde “j” düğümünde “x” yönü için “codejx” değişkeninde saklı olup, 

“codejx” numaralı sistem denklemine “fxj” bileşeninin eklenmesini gerektirir; “y” yönü 

için “codejy” değişkeninde saklı olup, “codejy” numaralı sistem denklemine “fyj” 

bileşeninin eklenmesini gerektirir. Bu işlemler program tarafından aşağıda dört adet “If” 

komutu ile ilgili satırda yapılmaktadır. Bu işlemler tüm çubuklar için yapıldığında 

sistem için gerekli olan denklemler elde edilmiş olur. Program parçası en sonunda elde 

edilen denklemleri “Expand” komutuyla genişleterek sadeleştirmektedir. 

Do[ 

Print["Element number  [", nn, "] is in progress;"]; (*İşlem sırası gelen çubuk 

numarası*) 

(*Çubuğa ait bilgilerin yerel değişkenlere aktarılması*) 

  EM = EMod[[nn]]; 

csa = area[[nn]]; 

alfaT = TEC[[nn]]; 

dTn = DeltaTn[[nn]]; 

ii = defIJ[[nn, 1]]; 

jj = defIJ[[nn, 2]]; 

  xi = xy[[ii, 1]]; yi = xy[[ii, 2]]; 

xj = xy[[jj, 1]]; yj = xy[[jj, 2]];  
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(*kosinüs doğrulmanlarının hesabı*) 

vektor = {xj - xi, yj - yi}; 

Lengt[[nn]] = length = Norm[vektor]; 

csx = Normalize[vektor][[1]]; 

csy = Normalize[vektor][[2]]; 

(*Çubuk uçlarında bulunan global deplasmanların tespiti*) 

codeix = restraints[[ii, 1]]; 

codeiy = restraints[[ii, 2]]; 

codejx = restraints[[jj, 1]]; 

codejy = restraints[[jj, 2]]; 

(*Çubuk uçlarında bulunan global deplasmanların yerel koordinatlara dönüşümü*) 

ui = d[codeix]*csx + d[codeiy]*csy + SupportDisp[[ii, 1]]*csx + SupportDisp[[ii, 

2]]*csy; 

uj = d[codejx]*csx + d[codejy]*csy + SupportDisp[[jj, 1]]*csx + SupportDisp[[jj, 

2]]*csy; 

(*Boyuna uzamayı idare eden diferansiyel denklemin integral ile çözümü*) 

uu = c1 z + c2; 

(*Sınır koşullarının tespiti ve integral sabitlerinin çözümü*) 

  b1 = uu /. z -> 0; 

  b2 = uu /. z ->length; 

sol = Flatten[Solve[{b1 == ui, b2 == uj}, {c1, c2}]]; 

(*İntegral sabitlerinin boyuna uzama fonksiyonunda yerine konulması*) 

uu = uu /. sol; 

(*Normal kuvvet fonksiyonunun tespiti ve çubuk uçundaki değerlerin hesabı*) 

  NF = EM*csa (D[uu, z] - alfaT*dTn); 

ni = NF /. z -> 0; 

nj = NF /. z ->length; 

(*Çubuk uç kuvvetinin saklanması ve global koordinat takımına dönüşümü*) 

NForce[[nn]] = nj; 

fxi = -ni*csx; 

fyi = -ni*csy; 

fxj = nj*csx; 

fyj = nj*csy; 
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(*Global koordinatlara dönüşen çubuk uç kuvvetlerinin denge denklemlerine aktarımı*) 

If[codeix> 0, SysEq[[codeix]] = SysEq[[codeix]] - fxi]; 

If[codeiy> 0, SysEq[[codeiy]] = SysEq[[codeiy]] - fyi]; 

If[codejx> 0, SysEq[[codejx]] = SysEq[[codejx]] - fxj]; 

If[codejy> 0, SysEq[[codejy]] = SysEq[[codejy]] - fyj]; 

  , {nn, 1, nel}]; 

(*Denge denklemlerinin bilinmeyenlere bağlı olarak toplu gösterimi*) 

SysEq = Expand[SysEq]; 

3.2.1.5. Program Parçası 5: 

Print["syseq=", MatrixForm[SysEq], "=0"]; 

unk = Table[d[i], {i, 1, dispN}]; 

sol = Flatten[Solve[SysEq == 0, unk]];  

Print["solution=", MatrixForm[sol]]; 

Do[d[i] = sol[[i, 2]];, {i, 1, dispN}]; 

Print[MatrixForm[NForce]]; 

 

Bu program paçasında elde edilen denge denklemleri ekranda sunulmaktadır. Ekranda 

düğümlerde bulunan deplasmanlara bağlı olarak denklemler analitik olarak görülecektir. 

Ardından, düğüm deplasmanlarının bilinmeyen olarak isimleri “unk” isimli bir diziye 

“Table” komutu ve deplasman sayısı kullanılarak aktarılmaktadır. “Solve” komutu 

kullanılarak, elde edilen “SysEq” değişkeninde bulunan denge denklemleri bilinmeyen 

düğüm deplasmanları “unk” için çözülmektedir. Çözülen değerler çıkartılarak, 

bilinmeyen deplasmanların içine aktarılmakta ve bilinmeyen deplasmanlar bilinen 

olmaktadır. Bunlarda otomatik olarak program hafızasında bulunan diğer büyüklüklerde 

yerine konulmaktadır. Program parçasının son satırında ise çubuk kuvvetleri sırasıyla alt 

alta yazılmaktadır. 

3.2.2. İki Boyutlu Normal Kuvvet Taşıyan Kafes Sistem Örnekleri 

3.2.2.1. Uygulama 1: 

İlk örnek olarak basit iki elemanlı literatürden alınan [19] bir kafes sistem ele 

alınmaktadır. Kafes sistem aşağıda Şekil 3.25.’de sunulmuştur. Geometrik ve malzeme 
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ile ilgili bilgiler ilgili şekilde bulunmaktadır. Tekil kuvvetin uygulandığı “3” numaralı 

düğümün yatay ve düşey deplasman bileşenlerinin bulunması istenmektedir. 

 

 

Şekil 3.25. Basit kafes sistem[19] 

 

Bu kafes sistem bilgisayar programına tanıtılırken, global eksen takımı “1” nolu 

düğüme oturtulmuştur. Buna göre diğer düğümlerin koordinatları tespit edilmiştir. 

Eleman numara ve uç bağlantıları şekilde görüldüğü gibi alınmıştır. Sıcaklık değişimi, 

mesnet çökmesi ve elastik mesnet olmadığından, ilgili değişkenler sıfır alınmıştır. 

Kuvvetin uygulandığı düğüm serbest diğerleri is tutuludur. Kuvvetin uygulandığı “3” 

numaralı düğümde “x” yönündeki kuvvet bileşeni sıfır olup, “y” yönündeki kuvvet 

bileşeni “-P” dir. Değerler “jload” matrisi içinde ilgili düğümün satırına girilmiştir. 

Çubuk elemanları alan ve elastisite modülü değerleri değişken olarak “A” ve “E” 

girilmiştir. Tekil kuvvette aynı şekilde “P” olarak girilmiştir. Hazırlanan veri dosyası 

aşağıda sunulmuştur. 

 

Veri dosyası 1: 

 

Clear[Evaluate[Context[] <> "*"]] 

nod = 3; 

nel = 2; 

defIJ = {{1, 3}, {2, 3}}; 

area = {A, A}; 

EMod = {E, E}; 

TEC = {0, 0}; 

DeltaTn = {0, 0}; 
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xy = {{0, 0}, {0, L Tan[30 Degree]}, {L, 0}}; 

restraints = {{1, 1}, {1, 1}, {0, 0}}; 

jload = {{0, 0}, {0, 0}, {0, -P}}; 

SupportDisp = {{0, 0}, {0, 0}, {0, 0}}; 

ElasticSupport = {{0, 0}, {0, 0}, {0, 0}}; 

TwoD; 

 

Yukarıda verilen veri dosyası icra edildiğinde, iki boyutlu program tarafından veriler 

işlenmekte ve sonuç alınmaktadır. İstenen deplasman değerleri Tablo 3.9.’da 

sunulmuştur. Sonuçlar problemin alındığı kaynakla birebir aynı bulunmuştur. 

Tablo 3.9. Kafes sistemin yüklü ucunda deplasman bileşenleri 

Düğüm No “x” yönü deplasman değeri “y” yönü deplasman değeri 

3  
√  

  
  

(   √ ) 

   
 

 

Yukarıdaki problem için elastsite modülü, kesit alanı, çubuk boyu ve tekil kuvvet değeri 

sabit “1” verilerek deformasyonsuz ve deformasyonlu sistem çizilmiştir (Şekil 3.26). 

 

 

 

Şekil 3.26. Birinci örnek için seçilen sistemin deformasyonsuz ve deformasyonlu hali 

3.2.2.2. Uygulama 2: 

İkinci örnek olarak yine basit iki elemanlı literatürdenalınan [19] bir kafes sistem ele 

alınmaktadır. Kafes sistem aşağıda Şekil 3.27.’de sunulmuştur. Geometrik ve malzeme 
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ile ilgili bilgiler şekilde mevcuttur. Tekil kuvvetin uygulandığı “3” numaralı düğümün 

yatay ve düşey deplasman bileşenlerinin bulunması istenmektedir. 

 

 

Şekil 3.27. İki elemanlı basit kafes sistem 

 

Bu kafes sistem bilgisayar programına tanıtılırken, global eksen takımı “1” nolu 

düğüme oturtulmuştur. Buna göre diğer düğümlerin koordinatları tespit edilmiştir. 

Eleman numara ve uç bağlantıları şekilde görüldüğü gibi alınmıştır. Sıcaklık değişimi, 

mesnet çökmesi ve elastik mesnet olmadığından, ilgili değişkenler sıfır alınmıştır. 

Kuvvetin uygulandığı düğüm serbest diğerleri ise tutuludur. Kuvvetin uygulandığı “3” 

numaralı düğümde “x” yönündeki kuvvet bileşeni sıfır olup, “y” yönündeki kuvvet 

bileşeni “-P” dir. Değerler “jload” matrisi içinde ilgili düğümün satırına girilmiştir. 

Çubuk elemanları alan ve elastisite modülü değerleri değişken olarak “A” ve “E” 

girilmiştir. Tekil kuvvette aynı şekilde “P” olarak girilmiştir. Hazırlanan veri dosyası 

aşağıda sunulmuştur. 
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Veri Dosyası 2: 

 

Clear[Evaluate[Context[] <> "*"]] 

nod = 3; 

nel = 2; 

defIJ = {{1, 3}, {2, 3}}; 

area = {A, A}; 

EMod = {E, E}; 

TEC = {0, 0}; 

DeltaTn = {0, 0}; 

xy = {{0, 0}, {0, L}, {Sqrt[3] L/4., L/4}}; 

restraints = {{1, 1}, {1, 1}, {0, 0}}; 

jload = {{0, 0}, {0, 0}, {0, -P}}; 

SupportDisp = {{0, 0}, {0, 0}, {0, 0}}; 

ElasticSupport = {{0, 0}, {0, 0}, {0, 0}}; 

TwoD; 

 

Yukarıda verilen veri dosyası icra edildiğinde, iki boyutlu program tarafından veriler 

işlenmekte ve sonuç alınmaktadır. İstenen deplasman değerleri Tablo 3.10.’da 

sunulmuştur. Sonuçlar problemin alındığı kaynakla birebir aynı bulunmuştur. 

Tablo 3.10. Örnek 2 de verilen kafes sistemin yüklü ucunda deplasman bileşenleri 

Düğüm No “x” yönü deplasman değeri “y” yönü deplasman değeri 

3 
   (  √ )

    
  

   (  √ )

 √   
 

 

Yukarıdaki problem için elastisite modülü, kesit alanı, çubuk boyu ve tekil kuvvet 

değeri sabit “1” verilerek deformasyonsuz ve deformasyonlu sistem çizilmiştir (Şekil 

3.28.). Şekil 3.28.’de çubuklar üzerinde çubuk kuvveti değerleri sayısal olarak 

yazılmıştır. 
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Şekil 3.28. İkinci örnek için seçilen sistemin deformasyonsuz ve deformasyonlu hali 
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3.2.2.3. Uygulama 3: 

Üçüncü örnek olarak “Derrick Tip” olarak adlandırılan kafes sistem ele alınmaktadır 

[33]. Sistemin görünüşü aşağıda Şekil 3.29.’de verilmektedir. Sistem izostatik 

olduğundan çözümde malzeme özellikleri ve eksenel rijitlik rol oynamayacağından, 

program için herhangi sabit değerler alınabilir. Sıcaklık ve mesnet çökmeleri oluşmadığı 

ve elastik mesnet bulunmadığından ilgili değişkenler sıfır olarak alınmaktadır. Sistem 

düğümleri numaralandırıldığından, “5” düğüm noktası bulunmakta olup, toplam “7” 

adet çubuktan teşkil edilmiştir. Bir ve iki numaralı düğümlerinde sırasıyla, sabit ve “x” 

yönünde kayıcı mevcuttur. Global koordinat takımı “1” numaralı düğüme oturtulmuştur. 

Düğüm çubuk numaraları ile ilgili bilgiler aşağıda Tablo 3.11.’de sunulmaktadır. Düşey 

tekil yük “5” numaralı düğüme uygulanmış olup, değeri 10 ton dur. Sistemde, ana kısım 

kenarı 10 m olan karedir. Yükün uygulandığı “5” numaralı düğümün ile “1” numaralı 

düğümden düşey ve yatay uzaklığı 25 metredir. 

 

Şekil 3.29. Derrick tip kafes sistem [33] 

 

1 21

3

2

3

2

43 43

5

4

5
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Tablo 3.11. Derrick tip kafes için çubuk elemanların tarifleri ve normal kuvvetler 

Çubuk No “i” ucu “j” ucu Normal Kuvvet (ton) 

1 1 2 0 

2 1 3 25 

3 2 3 0 

4 2 4 -35 

5 3 4 -35 

6 3 5 43.0116 

7 4 5 -49.4975 

 

Yukarıda verilen Derrick tip kafes için veri dosyası hazırlanmış olup, aşağıda 

sunulmaktadır. 

 

Veri Dosyası 3: 

 

Clear[Evaluate[Context[] <> "*"]] 

<< "C:\\Users\\CDA\\Desktop\\Yener-Prog\\2DModul\\Modul2D.txt" 

nod = 5; 

nel = 7; 

(*çubuk bilgileri*) 

defIJ = {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 4}, {3, 5}, {4, 5}}; 

area = {1, 1, 1, 1, 1, 1, 1}; 

EMod = {1, 1, 1, 1, 1, 1, 1}; 

TEC = {0, 0, 0, 0, 0, 0, 0}; 

DeltaTn = {0, 0, 0, 0, 0, 0, 0}; 

(*düğüm bilgileri*) 

xy = {{0., 0.}, {10., 0.}, {0., 10.}, {10., 10.}, {35., 35}}; 

restraints = {{1, 1}, {0, 1}, {0, 0}, {0, 0}, {0, 0}}; 

jload = {{0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, -10}}; 

SupportDisp = {{0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}}; 

ElasticSupport = {{0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}}; 

(* buradan itibaren program 2D*) 

TwoD 

GrTwoD 
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Yukarıda verilen veri dosyası icra edildiğinde, iki boyutlu program tarafından veriler 

işlenmekte ve sonuç alınmaktadır. Bilgilerin hafızaya alınmasından sonra “TwoD” 

isimli analiz modülü icra edilip, çözüm yapılmaktadır. Peşinden “GrTwoD” isimli 

grafik modülü icra edilip, sistemin deformasyonsuz ve deformasyonlu hali 

çizilmektedir. Programın icrası sonucu elde edilen çubuk kuvvetleri ve sistemin grafiği 

elde edilmiş, olup aşağıda (Şekil 3.30.) da sunulmuştur. Sistem izostatik olduğundan, el 

ile çözüm yapılarak, programdan elde edilen değerlerin doğruluğu teyit edilmiştir. 

 

 

 

Şekil 3.30. Derrick tip kafes sistemin çubuk kuvvetleri ve deformasyonlu hali [33] 
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3.2.2.4. Uygulama 4: 

Dördüncü örnek olarak Girgin vd.  (2011) den alınan bir kafes sistem ele alınmıştır [40]. 

Ele alınan kafes sistem “8” düğüm ve “13” çubuktan oluşmaktadır, görünüşü ve 

yüklemesi Şekil 3.31.’da verilmektedir. Bir sabit bir de “x” yönünde kayıcı mesnedi 

bulunmaktadır. Sistem yine izostatik olup, malzeme ve kesit özelliklerinden bağımsız 

çözülebilir. Program dosyası hazırlamak amacıyla, global koordinat takımı sabit 

mesnede oturtulmuştur. “3-6” numaralı düğümlerin yüksekliği 16m dir. “7” ve “8” 

numaralı düğümlerin yüksekliği ise 13 m ve 8m dir. Mesnetleri birbirine bağlayan 

çubuğun boyu 8m olup, yukarıda bulunan üç yatay çubuğun boyu 6m dir. Verilen 

bilgiler düğüm koordinatlarını oluşturmak için yeterlidir. Mesnet çökmesi ve sıcaklık 

bilgileri sıfır alınmaktadır. Düşey 120 kN’luk tekil yük “6” numaralı düğüme 

uygulanmıştır. Sisteme ait veri dosyası hazırlanarak aşağıda sunulmaktadır. Çubuk 

numaraları ve bağlandığı düğümler aşağıda Tablo 3.12.’de sunulmaktadır. 

 

 

Şekil 3.31. On üç elemanlı kafes örneği [41] 
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Tablo 3.12.  Girgin vd. (2011) den alınan kafes sistem çubuk tarifi ve normal kuvvetler 

[40] 

 

Çubuk numarası “i” ucu “j” ucu Normal Kuvvet (kN) 

1 1 2 -135.00 

2 2 3 -210.00 

3 1 3 301.87 

4 3 4 180.00 

5 4 5 240.00 

6 5 6 240.00 

7 7 6 -268.33 

8 5 7 0.00 

9 4 7 -67.08 

10 8 7 -234.31 

11 4 8 30.00 

12 2 8 -225.00 

13 3 8 -75.00 

 

Yukarıda sunulan kafes problemi için veri dosyası hazırlanarak aşağıda sunulmuştur. 

 

Veri dosyası 4: 

 

Clear[Evaluate[Context[] <> "*"]] 

<< "C:\\Users\\CDA\\Desktop\\Yener-Prog\\2DModul\\Modul2D.txt" 

nod = 8; 

nel = 13; 

(*eleman bilgileri*) 

defIJ = {{1, 2}, {2, 3}, {1, 3}, {3, 4}, {4, 5}, {5, 6}, {7, 6}, {5, 7}, {4, 7}, {8, 7}, {4, 8}, 

{2, 8}, {3, 8}}; 

area = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; 

EMod = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; 

TEC = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; 

DeltaTn = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; 

(*düğüm bilgileri*) 
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xy = {{0., 0.}, {8., 0.}, {8., 16.}, {14., 16.}, {20., 16.}, {26., 16.}, {20., 13.}, {14., 8.}}; 

restraints = {{1, 1}, {0, 1}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}}; 

jload = {{0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, -120}, {0, 0}, {0, 0}}; 

SupportDisp = {{0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}}; 

ElasticSupport = {{0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}}; 

(* buradan itibaren program 2D*) 

TwoD 

GrTwoD 

 

Veri dosyası bilgisayar programı yardımıyla işlendiğinde, çubuk kuvvetleri ve sistemin 

deformasyonlu grafiği elde edilir (Şekil 3.32.). Elde edilen değerler kaynakta sunulan 

değerlerle bire bir aynıdır. 

 

 

Şekil 3.32. Girgin vd. (2011) den alınan kafes sistem ve deformasyonlu hali [40] 

 

3.2.2.5. Uygulama 5: 

Şimdiye kadar ele alınan örnekler izostatik örneklerdir. Beşinci örnek olarak yine 

literatürden alınan fakat statikçe belirsiz ve düğümlerden birine yay bağlanmış 
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(hiperstatik) bir kafes kiriş ele alınmaktadır. Kafes sistem Logan (2007)’den alınmıştır 

[39]. İki çubuktan oluşan sistem aşağıda Şekil 3.33’ de numaralandırılma ile 

verilmektedir. İki çubuk arasındaki açı 45 derecedir. Kısa çubuk “1” ile 

numaralandırılmış olup, boyu “5” metredir. Uzun çubuk “2” ile numaralandırılmış olup, 

boyu “10” metredir. Çubuk alanları ve elastisite modülleri eşit olup, sırasıyla 0.0005 m2 

ve 210 GPa’dır. İki çubuğun birleşim noktasında düşey doğrultuda “25 kN”’luk tekil 

kuvvet mevcuttur. Aynı yönde sistem yay katsayısı “2000 kN/m” olan elastik mesnet 

(yay) ile desteklenmiştir. Sıcaklık değişimi ve mesnet çökmesi yüklemesi yoktur. 

Çubuklarda oluşan çubuk kuvvetleri ve gerilmeler ile “1” numaralı düğümde oluşan 

deplasman bileşenlerinin hesabı istenmektedir. Çubuk numaralandırılma yönleri şekilde 

mevcuttur. 

 

Şekil 3.33.Elastik mesnetli basit kafes sistem [39] 

Verilen sistemin çözümü için veri dosyası hazırlanmıştır. Daha önce anlatılan kurallara 

uygun olarak hazırlanan dosya aşağıda sunulmaktadır. Global eksen “3” numaralı 

düğüme oturtulmuş olup, buna göre düğüm koordinatları belirlenmiştir. Mesnetler “2” 

ve “3” numaralı düğümdedir. Elastik mesnet “1” numaralı düğümde ve “y” yönünde 

elastik olup, diğer yönde serbesttir. Bununla birlikte “1” numaralı düğüm tamamen 

serbest tanıtılmakta ve elastik mesnet yay katsayısı ise “ElastikSupport” matrisinde 

tanıtılmaktadır. Veri dosyası aşağıda sunulmaktadır. 
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Veri Dosyası 5: 

 

Clear[Evaluate[Context[] <> "*"]] 

<< "C:\\Users\\CDA\\Desktop\\Yener-Prog\\2DModul\\Modul2D.txt" 

nod = 3; 

nel = 2; 

(*eleman bilgileri eleman tarifleri, alanları, elastik modulleri, sıcaklık genleşme 

katsayılari, sıcaklık değişimleri*) 

defIJ = {{3, 1}, {2, 1}}; 

area = {0.0005, 0.0005}; 

EMod = {210000000000, 210000000000}; 

TEC = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; 

DeltaTn = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; 

(*düğüm bilgileri koordinatları, serbestlikleri, düğüm yükleri, mesnet çökmeleri, elastik 

mesnetlenmeler*) 

xy = {{10, 0}, {10 - 5*Cos[45 Degree], 5*Cos[45 Degree]}, {0., 0.}}; 

restraints = {{0, 0}, {1, 1}, {1, 1}}; 

jload = {{0, -25000}, {0, 0}, {0, 0}}; 

SupportDisp = {{0, 0}, {0, 0}, {0, 0}}; 

ElasticSupport = {{0, 2000000}, {0, 0}, {0, 0}}; 

(* buradan itibaren program 2D*) 

TwoD 

GrTwoD 

NForce/area 

 

Yukarıda verilen dosya hazırlanırken, birimlerin birbiri ile uyumlu olması 

gerektiğinden, kuvvetler “Newton” cinsinden, uzunluklar “m” cinsinden yazılmıştır. 

Veri dosyası icra edildiğinde aşağıdaki sonuçlar elde edilmiştir. “1” numaralı düğüm 

deplasman bileşenleri Tablo 3.13’de mevcuttur. Aynı tabloda elastik mesnet desteğinin 

olmaması hali, yani yay katsayısının “0” olması haline ait deplasmanlar kıyaslanmak 

için verilmektedir. Çubuk kuvvetleri ve gerilmeler Tablo 3.14.’da sunulmaktadır, benzer 

şekilde elastik mesnet olmaması halinde gerilme ve kuvvetlerin farkı da 

kıyaslanmaktadır. 
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Tablo 3.13. Elastik mesnet bulunan düğümde deplasman bileşenleri 

Düğüm no dx dy 

“1” elastik mesnet var -0.00172414 -0.00344828 

“1” elastik mesnet yok -0.00238095 -0.0047619 

Rölatif fark %27.586 %27.586 
 

Tablo 3.14. Çubuk kuvvetleri (N) ve gerilmeler (MPa) (elastik mesnetli ve mesnetsiz) 

 N1 N2 σ1 σ2 

Elastik mesnet var 25602.1 -18103.4 51.2043 -36.2069 

Elastik mesnet yok 35355.3 -25000. 70.7107 -50 

Rölatif fark %27.586 %27.586 %27.586 %27.586 
 

Tablo 3.13. ve Tablo 3.14.’da verilen ve elastik mesnetli sonuçlar kaynakta verilen 

değerler ile aynı bulunmuştur. Buna ilaveten elastik mesnetsiz hal ile karşılaştırılınca 

deplasman, kuvvet ve gerilmeler artmıştır. Elastik mesnet konulduğu durumdaki 

büyüklüklerde mesnetsiz duruma göre ciddi azalmalar olmaktadır. Bu değer ise elastik 

mesnedin yay katsayısına bağlıdır. Elastik mesnet katsayısı çok artırılırsa çubuk 

kuvvetleri sıfıra gitmekte, düşey tekil kuvvet elastik mesnet tarafından taşınmaktadır. 

Bu durum beklenen bir durumdur. 

3.2.2.6. Uygulama 6: 

Altıncı örnekte de hiperstatik bir kafes sistem literatürden alınmıştır [42]. Kafes 

sistemin görünüşü Şekil 3.34.’da düğüm numaraları ile birlikte verilmektedir. Çubuk 

eleman tarifleri hazırlanan veri dosyası içinde mevcut olduğundan burada tekrar 

verilmemiştir. Alt ve üstte bulunan çubukların boyu eşit olup, 24 feet’dir. Kafes 

yüksekliği ise 32 feet olup, tüm çubuklarda elastisite modülü 30000000 lb/in
2
’dir. 

Çubuk kesit alanları alt ve üstteki çubuklar için 24, düşey çubuklar için 32 ve son olarak 

diyagonal çubuklar için 40 in
2
’dir. Sıcaklık genleşme katsayısı tüm çubuklar için 

0.0000065 1/
o
F’dır. Sadece üst çubuklarda sıcaklık değişimi mevcut olup, sıcaklık artışı 

50 
o
F’dır. Sıcaklık değişimine maruz kalan elemanlardan dolayı, tüm sistem çubuk 

kuvvetlerinin bulunması istenmektedir. Bir numaralı düğüme global koordinat sistemi 

oturtularak diğer düğümlerin koordinatları tespit edilerek, veri dosyası oluşturulmuştur. 

Kafesin mesnetlenmesi “1” numaralı düğümde basit olarak, “9” numaralı düğümde ise 

“x” ekseni yönünde kayıcı, “y” ekseni yönünde tutulu olarak yapılmıştır. Diğer 

düğümler iki yönde de serbesttir. Düğümlerde tekil kuvvet yoktur, elastik mesnet 

uygulanmamıştır, düğüm yer değiştirmesi sıfırdır. 
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Şekil 3.34. Hiperstatik kafes sistem [42] 

 

Daha önce anlatılan kurallara uygun olarak hazırlanan dosya aşağıda sunulmaktadır.  

 

Veri Dosyası 6: 

Clear[Evaluate[Context[] <> "*"]] 

<< "C:\\Users\\CDA\\Desktop\\Yener-Prog\\2DModul\\Modul2D.txt" 

nel = 14; nod = 8; 

xy = {{0, 0}, {24, 32}, {24, 0}, {48, 32}, {48, 0}, {72, 32}, {72, 0}, {96, 0}}*12; 

SupportDisp = Table[{0, 0}, {i, 1, nod}]; 

ElasticSupport = Table[{0, 0}, {i, 1, nod}]; 

restraints = {{1, 1}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0,  0}, {0, 1}} 

jload = Table[{0, 0}, {i, 1, nod}]; 

defIJ = {{1, 3}, {3, 5}, {5, 7}, {7, 8}, {1, 2}, {3, 2}, {5, 2}, 

 {5, 4}, {5, 6}, {4, 7}, {7, 6}, {8, 6}, {2, 4}, {4, 6}}; 

area = {24, 24, 24, 24, 40, 32, 40, 32, 40, 40, 32, 40, 24, 24}; 

EMod = Table[30000000, {i, 1, nel}]; 

DeltaTn = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 50, 50}; 

TEC = Table[0.0000065, {i, 1, nel}]; 

TwoD 

GrTwoD 

Yukarıda verilen dosya hazırlanırken, birimlerin birbiri ile uyumlu olması 

gerektiğinden, kuvvetler “libre” cinsinden, uzunluklar “inch” cinsinden yazılmıştır. Veri 

dosyası icra edildiğinde aşağıdaki çubuk kuvvetleri elde edilmiştir. Elde edile çubuk 

kuvvetleri Tablo 3.15.’de Hsieh’in (1970) ve Larsa 4D (2016) programının sonuçları ile 

karşılaştırılmıştır. Çalışma sonucunda elde değerler her iki literatür ile uyum içindedir. 
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Sadece, Hsieh (1970)’in sonuçlarından çok az farklı çıkmıştır, bunun sebebi ise Hsieh 

(1970)’in sonuçlarını yuvarlatarak sunması olduğu düşünülmektedir. Kafes sistemin 

deformasyonlu ve deformasyonsuz hali çubuk kuvvetleri ile birlikte Şekil 3.35.’da 

sunulmaktadır [42, 43]. 

 

Şekil 3.35. Hsieh (1970)’den alınan örneğin deformasyonlu ve deformasyonsuz hali 

[42] 

 

Şekil 3.35. incelendiğinde sonuçların beklendiği yönde olduğu görülür. Üstteki iki 

çubuk ısı nedeniyle genleşince sistemde yukarı doğru deplasman yapılmış olur. Çift 

çapraz çubuk bulunan kısım hiperstatik kısım olduğundan, çubuklar serbestçe hareket 

etmiş olup, üzerlerinde kuvvet oluşmuştur. 

Tablo 3.15. Kafes sistem çubuk kuvvetlerinin karşılaştırılması 

Çubuk no 2D Hsieh (1970) Larsa 4D (2016) 

1 0 0 0 

2 0 0 0 

3 -21060 -21100 -21060 

4 0 0 0 

5 0 0 0 

6 0 0 0 

7 0 0 0 

8 -28080. -28100 -28080. 

9 35100. 35100. 35100. 

10 35100. 35100. 35100. 

11 -28080. -28100. -28080. 

12 0 0 0 

13 0 0 0 

14 -21060. -21100. -21060. 
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3.2.2.7. Uygulama 7: 

Uygulama 7 ye ait kafes sistemin görünüşü düğüm numaraları ile birlikte, Şekil 3.36’da 

verilmiştir. Çubuk ile ilgili geometrik bilgiler şekilde bulunmaktadır. Tüm çubuklarda 

elastisite modülü 30000000lb/in
2
’dir. Çubukların tamamı aynı malzemeden imal edilmiş 

olup, sıcaklık genleşme katsayısı 0.0000065 1/
o
F’dir. Çubuk kesit alanları sabit olup, 2 

in
2
’dir. Kafes sistemin tamamında 70 

o
F’lık sıcaklık artışı mevcuttur [44]. 

Sıcaklık değişiminden dolayı, “5” numaralı düğümün düşey deplasman bileşeninin 

bulunması istenmektedir. Kafes sistem “1” ve “9” numaralı düğümlerinde sabit 

mesnetlenmiş, diğer düğümler ise serbesttir. Mesnet çökmesi ve elastik mesnet hali 

bulunmamakla birlikte, düğümlerde tekil kuvvet yüklenmemiştir. Global eksenler “1” 

numaralı düğüme oturtularak diğer düğümlerin koordinatları buna göre belirlenmiştir. 

Kafes sistem için veri dosyası hazırlanarak, çubuk tarifleri şekil üzerinde ve dosyada 

verilmiştir. 

 

Şekil 3.36. Timoshenko ve Young (1965), sayfa 266’dan alınan kafes sistem [44] 

 

Daha önce anlatılan kurallara uygun olarak hazırlanan dosya aşağıda sunulmaktadır.  
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Veri Dosyası 7: 

 

Clear[Evaluate[Context[] <> "*"]] 

<< "C:\\Users\\CDA\\Desktop\\Yener-Prog\\2DModul\\Modul2D.txt" 

nel = 14;  

nod = 9; 

xy = {{0, 0}, 

{0, 10. Cos[30 Degree]}, 

{5, 10. Cos[30 Degree]}, 

{0, 2*10. Cos[30 Degree]}, 

{10, 2*10. Cos[30 Degree]}, 

{20, 2*10. Cos[30 Degree]}, 

{20, 2*10. Cos[30 Degree] - 5/Cos[30 Degree]}, 

{30, 2*10. Cos[30 Degree]}, 

{30, 2*10. Cos[30 Degree] - 10/Cos[30 Degree]}}*12; 

ElasticSupport = Table[{0, 0}, {i, 1, nod}] 

SupportDisp = {{0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}}; 

restraints = {{1, 1}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {1, 1}}; 

jload = {{0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}}; 

defIJ = {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 4}, {3, 5}, {4, 5}, 

 {5, 6}, {5, 7}, {7, 6}, {6, 8}, {7, 8}, {7, 9}, {9, 8}}; 

area = Table[2, {i, 1, nel}]; 

EMod = Table[30000000, {i, 1, nel}]; 

DeltaTn = Table[70, {i, 1, nel}]; 

TEC = Table[0.0000065, {i, 1, nel}]; 

TwoD 

GrTwoD 
 

Yukarıda verilen dosya hazırlanırken, birimlerin birbiri ile uyumlu olması 

gerektiğinden, kuvvetler “libre” cinsinden, uzunluklar “inch” cinsinden yazılmıştır. Veri 

dosyası icra edildiğinde çubuk kuvvetlerinin tamamı sıfır bulunmuştur. “5” numaralı 

düğümün düşey deplasmanı yukarı doğru “0.157617inch” olarak bulunmuştur. 

Kaynakta bu değeri yuvarlatarak “0.158 inch” olarak vermiştir. Sonuç tamamen aynı 

denilebilir. Çubuk kuvvetlerinin tamamının sıfır olması durumuna gelince, göz önüne 
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alınan kafes sistem incelendiğinde 14 çubuk ve 4 mesnet reaksiyonu bilinmemekte, 

toplam 18 bilinmeyen bulunmaktadır. Düğüm sayısı ise 9 olup, düğüm sayısının iki katı 

kadar denklem yazılabilmektedir.  

Toplam denklem sayısı 18 olup, bilinmeyenlere eşittir. Dolayısı ile göz önüne alınan 

sistem izostatik olup, sadece denge denklemleri ile çözüldüğünden, sıcaklık değişimleri 

ve mesnet çökmeleri sistem üzerinde herhangi bir kuvvet oluşmasına sebep olamazlar, 

sadece sistemin deformasyona uğramasına sebep olurlar [19, 30, 45]. Kafes sistemin 

deformasyonlu ve deformasyonsuz hali Şekil 3.37.’de sunulmaktadır. 

 

Şekil 3.37. Timoshenko ve Young(1965)’den sıcaklık değişiminden sonraki hali [44] 
 

3.2.2.8. Uygulama 8: 

Yedinci örnekte verilen sistemin farklı bir yükleme durumu için tekrar çözülmesi 

istenmektedir. Burada, tüm çubuklarda 40 
o
F’lık sıcaklık düşmesi mevcuttur. Kafesin 

üst kısmında bulunan “4, 5, 6 ve 8” numaralı düğümlerinde düşey yönde 10000 librelik 

tekil yük uygulanmaktadır. Aynı zamanda, “9” numaralı mesnet olan tutulu düğümünde 

yer değiştirme yani mesnet çökmesi bulunmaktadır. Mesnet çökmesi olan “9” numaralı 

düğümde yatay pozitif yönde 0.01 ft olmak üzere, düşey yönde aşağı doğru 0.01 ft 

mesnet hareketi oluşmuştur.  
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Sıcaklık değişimi, mesnet çökmesi ve tekil kuvvetlerin aynı anda uygulanması sonucu, 

“5” numaralı düğümde düşey deplasman bileşeninin değerinin hesaplanması 

istenmektedir. Sistem tamamen aynı olduğundan, daha önce hazırlanan veri dosyası 

değiştirilerek yeni yüklemeye uygun hale getirilmiştir. Hazırlanan veri dosyası aşağıda 

mevcuttur. 

 

Veri Dosyası 8: 

Clear[Evaluate[Context[] <> "*"]] 

<< "C:\\Users\\CDA\\Desktop\\Yener-Prog\\2DModul\\Modul2D.txt" 

nel = 14; nod = 9; 

xy = {{0, 0}, 

   {0, 10. Cos[30 Degree]}, 

   {5, 10. Cos[30 Degree]}, 

   {0, 2*10. Cos[30 Degree]}, 

   {10, 2*10. Cos[30 Degree]}, 

   {20, 2*10. Cos[30 Degree]}, 

   {20, 2*10. Cos[30 Degree] - 5/Cos[30 Degree]}, 

   {30, 2*10. Cos[30 Degree]}, 

   {30, 2*10. Cos[30 Degree] - 10/Cos[30 Degree]}}*12; 

ElasticSupport = Table[{0, 0}, {i, 1, nod}] 

SupportDisp = {{0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0.01, -

0.01}}*12; 

restraints = {{1, 1}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {1, 1}}; 

P=10000; 

jload ={{0, 0}, {0, 0}, {0, 0}, {0, -P}, {0,-P}, {0, -P}, {0, 0}, {0, -P}, {0, 0}}; 

defIJ = {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 4}, {3, 5}, {4, 5}, 

 {5, 6}, {5, 7}, {7, 6}, {6, 8}, {7, 8}, {7, 9}, {9, 8}}; 

area = Table[2, {i, 1, nel}]; 

EMod = Table[30000000, {i, 1, nel}]; 

DeltaTn = Table[-40, {i, 1, nel}]; 

TEC = Table[0.0000065, {i, 1, nel}]; 

TwoD 

GrTwoD 
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Yukarıda verilen dosya hazırlanırken, birimlerin birbiri ile uyumlu olması 

gerektiğinden, kuvvetler “libre” cinsinden, uzunluklar “inch” cinsinden yazılmıştır. Bu 

nedenle koordinat ve mesnet çökmesi değerleri 12 ile çarpılmıştır, “foot” olarak verilen 

değerler, 12 ile çarpılınca inch değerine dönüşmektedir. Veri dosyası icra edildiğinde, 

“5” numaralı düğümün düşey deplasmanı aşağı doğru “0.222802 inch” olarak 

bulunmuştur. Kaynakta bu değeri yuvarlatarak “0.223 inch” olarak vermiştir. Sonuç 

tamamen aynı denilebilir. Sistemde tekil yükler tarafından çubuk kuvvetleri 

oluşturulmaktadır. Sistemin deformasyonlu hali ve çubuk kuvvetleri aşağıda Şekil 3.38 

da sunulmaktadır. Çubukların ortasında bulunan oklar çubuk tarif yönünü “i ve j” ucu 

yönlenmesini göstermektedir. Şekil 3.38.’de “4, 5, 6 ve 8” numaralı düğümlerde 

bulunan tekil kuvvetlerde görülmektedir. Ayrıca, “9” numaralı çökme yapan mesnetin 

yer değişmiş hali de şekilde görülmektedir. 

 

Şekil 3.38 Timoshenko ve Young (1965),kafes sistem üç yükleme sonucu [44] 

3.2.2.9. Uygulama 9: 

Son örnek olarak literatürde [46] kesit alanı optimizasyonu yapılan bir kontrol örneği 

alınmıştır. Örneğin geometrik bilgileri, düğüm ve eleman numaraları, yük değerleri, 

mesnetlenme durumu Şekil 3.39‘da sunulmaktadır. Çubuklar aynı malzemeden yapılmış 

olup, kesit alanlarının optimum değeri sistemin ölü ağırlığını minimize edecek şekilde 
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istenmektedir. Kullanılan malzeme elastisite modülü 10000000 psi, yoğunluk ise 0.1 

lb/in
3
 olarak verilmiştir. Kesit alanlarının optimizasyonu istenmektedir. Emniyet 

gerilmesi ise 25000 psi’dir. Yatay ve düşey çubuk uzunlukları 360 inch’dir. Şelikde 

görülen “2” ve “4” düğümlerinde düşey kuvvetlerin değeri 100000 lb’dir. 

 

Şekil 3.39. Auer (2005) ten alınan kafes optimizasyon problemi [46] 

 

Problemi çözmek üzere, öncelikle veri dosyası hazırlanmıştır. Veri dosyasında düğüm 

sayısı, çubuk sayısı, düğüm koordinat, serbestlik ve tekil kuvvetleri tanımlanmıştır. 

Şekil 3.39’ daki gibi çubuk elemanlar tanımlanmış olup, elastisite modülü değerleri 

girilmiştir. Düğümlerde yer değiştirme ve elastik mesnetlenme yoktur. Sıcaklık değişimi 

de bulunmamaktadır. Bu nedenle değerleri sıfır tutulmuştur. Kesit alanları ise hepsi 

sıfırdan farklı herhangi değerler girilmiştir. Örneğin birinci çubuk alanı “1”, ikinci “2” 

ve sonuncu “10” in
2
 olarak girilmiştir. Daha önce anlatılan kurallara uygun olarak 

hazırlanan dosya aşağıda sunulmaktadır. Optimizasyon için icra dilecek programda 

küçük değişiklikler yapılarak çözüm yapılmıştır. 

 

Veri Dosyası 9: 

 

Clear[Evaluate[Context[] <> "*"]] 

<< "C:\\Users\\CDA\\Desktop\\Yener-Prog\\2DModul\\Modul2D.txt" 

nel = 10;  
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nod = 6; 

xy = {{720, 360},{720, 0},{360, 360},{360, 0},{0, 360},{0, 0}}*1.; 

ElasticSupport = Table[{0, 0}, {i, 1, nod}]; 

SupportDisp = {{0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}}; 

restraints = {{0, 0}, {0, 0}, {0, 0}, {0, 0}, {1, 1}, {1, 1}}; 

P = 100000; 

jload = {{0, 0}, {0, -P}, {0, 0}, {0, -P}, {0, 0}, {0, 0}}; 

defIJ = {{5, 3}, {3, 1}, {6, 4}, {4, 2}, {3, 4}, {1, 2}, {4, 5}, {6, 3}, {3, 2}, {4, 1}}; 

EMod = Table[10000000, {i, 1, nel}]; 

area = Table[i, {i, 1, nel}]; 

DeltaTn = Table[0, {i, 1, nel}]; 

TEC = Table[0, {i, 1, nel}]; 
 

Yukarıda verilen dosyayı icra eden”Modul2.txt” dosyasında optimizasyon için küçük 

bir değişlik yapılarak, mevcut alan verileri ile çubuk kuvvetleri elde edilmiştir. Elde 

edilen kuvvetler emniyet gerilmelerine bölünerek, yeni emniyetli çubuk alanları 

bulunmuştur. En küçük kesit alanı ise minimum 0.1 in
2
 ile sınırlandırılmıştır. Yeni 

bulunan alanlar ile mevcut alanların arasındaki rölatif fark yani hata belirli bir hata 

yüzdesi için karşılaştırılmıştır. Rölatif farkın, hatanın belli bir değerin üzerinde kalması 

halinde, yeni hesap edilen alanlar mevcut alan olarak kabul edilip, yeni alanlarla 

problem tekrar çözülmüştür. Tekrar çözüm işlemi 20’nin üzerinde tekrarlanınca, çubuk 

alan değerleri olması gereken minimum duruma gelmiştir. 

Aşağıda Tablo 3.16 ve 3.17’ de elde edilen optimum kesit alanları ve çubuklarda oluşan 

gerilmeler karşılaştırılmıştır. Karşılaştırma sonucunda bu çalışmada elde edilen 

sonuçlar, Auer (2005)’in çalışmasına çok yakın bulunmuş olup, bu çalışmanın sonuçları 

Auer (2005)’in sonuçlarından daha iyidir. Çünkü sistem kütlesi daha düşüktür. Bu 

çalışma ile Romero (2004)’ün çalışması hemen hemen aynıdır [47]. Karşılaştırma 

sonucunda bu çalışmada kullanılan iteratif yönteminde uygun sonuç verdiği kanaatine 

varılmış olup, elde edilen sonucun tam sonuç olduğu söylenebilir. 
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Tablo 3.16. Örnek 9 için elde edilen çubuk alanları (in
2
)ve karşılaştırılması 

Çubuk no Bu çalışma Auer (2005) Romero (2004) 

1 7.93787 7.9324 7.9378 

2 0.1 0.1 0.1 

3 8.06213 8.0678 8.0625 

4 3.93787 3.9329 3.9378 

5 0.1 0.1 0.1 

6 0.1 0.1 0.1 

7 5.74472 5.7527 5.7447 

8 5.56899 5.5611 5.5689 

9 5.56899 5.5611 5.5689 

10 0.1 0.1164 0.1 

Toplam kütle (lb) 1593.18090911 1593.42 1594.179622 

 

Tablo 3.17. Örnek 9 için çubuklarda oluşan gerilmeler (psi) 

Çubuk no Bu çalışma Auer (2005) Romero (2004) 

1 25000. 24999.6 25000.2 

2 15533. 16932.7 15533.4 

3 -25000. -24999.7 -25000.1 

4 -25000. -25000 -25000.4 

5 -5.50116*10^-7 -0.5 -0.6 

6 15533. 16932.7 15533.4 

7 25000. 24999.7 25000.1 

8 -25000. -25000 -25000.4 

9 25000. -25000 -25000.4 

10 -21967. -20567.5 -21967.5 
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3.3. Üç Boyutlu Hal İçin Geliştirilen Program Açıklaması ve Örnek Uygulamalar 

3.3.1.  Bilgisayar Programı 3D ve Açıklaması 

Üç boyutlu normal kuvvet taşıyan çubuk sistemlerin çözümü için hazırlanan program 

aşağıda sunulmakta ve açıklanmaktadır. Bu program geliştirilirken aşağıdaki değişken 

isimleri seçilmiştir. Eleman sayısının göstermek üzere “nel”, düğüm sayısını göstermek 

üzere “nod” değişkeni seçilmiştir. Sırasıyla koordinat takımı, düğüm serbestlikleri, 

düğüm tekil kuvvetleri, mesnet çökmeleri, elastik mesnet ise “xyz”, “retstraints”, 

“jload”, “SupportDisp”, “ElasticSupport” değişken isimleri seçilmiş olup, değişkenler 

düğüm sayısınca satırı ve üç sütünü olan matrislerdir. Çubuk elastik modülü için 

“EMod”, kesit alanı için”area”, sıcaklık genleşme katsayısı için “TEC”, sıcaklık 

değişimi için “DeltaT” isimleri seçilmiş olup, değişkenler çubuk sayısınca elemanı olan 

birer dizidir. Çubuk elemanların “i” ve “j” uçlarının düğüm numarasını depolamak 

üzere “defIJ” isimli iki sütunlu ve çubuk sayısınca satır elemanı olan bir matris 

seçilmiştir. 

Aşağıda gerekli verilerin tanımlandığı varsayılarak, “3D” program parça parça 

sunulmakta olup, her parçadan sonra programın açıklaması verilmektedir. 

3.3.1.1. Program Parçası 1: 

dispN = 0; 

Do[ If[restraints[[i, j]] == 0, 

dispN = dispN + 1; restraints[[i, j]] = dispN;,restraints[[i, j]] = 0], {i, 1, nod}, {j, 1, 

3}]; 

Print["total displacement=", dispN]; 

Print["displacement number coding for each joint=", MatrixForm[restraints]]; 

 

Burada deplasman numaraları dispN numaratörü ile isimlendirilmiş olup, her serbestlik 

için birer artarak deplasmanları numaralandırmaktadır. Düğüm sayısı kadar bir döngü 

kurularak serbestlikler, serbestliklerin tanımlandığı “restraints” matrisinin her üç sütunu 

için taranmakta, serbest olan düğüme ait sütundaki tanım kısmına deplasman numarası 

verilmekte, tutulu olanlara ise daha önce belirtildiği üzere “0” değeri atanmaktadır. 

“dispN” değişkeninin son değeri ise toplam deplasman değerine eşit olmaktadır. Bu 
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program parçasının sonunda toplam deplasman sayısı ve deplasman numaralarını 

saklayan matrisin değerleri görüntülenmektedir. 

3.3.1.2. Program Parçası 2: 

d[0] = 0; 

NForce = Table[0, {i, 1, nel}]; 

SysEq = Table[0, {i, 1, dispN}]; 

Lengt = Table[0, {i, 1, nel}]; 

 

Bu program parçasında, toplam deplasman sayısı belirlendiğinden, elde edilecek 

denklemleri depolamak üzere deplasman sayısı adedince elemanı olan “SysEq” isimli 

sistem denklemlerini çağrıştıran bir dizi “Table” komutuyla tanımlanmaktadır. Ayrıca, 

her çubuk boyunun ve çubuk kuvvetinin hesaplandıktan sonra saklanması için sırasıyla 

“Lengt” ve “Nforce” isimli diziler “Table” komutuyla tanımlanmıştır. Bu dizilerin 

eleman sayısı çubuk sayısı adedincedir. 

3.3.1.3. Program Parçası 3: 

Do[ 

codeix = restraints[[i, 1]]; 

codeiy = restraints[[i, 2]]; 

codeiz = restraints[[i, 3]]; 

If[codeix> 0, SysEq[[codeix]] = jload[[i, 1]] - d[codeix]*ElasticSupport[[i, 1]]]; 

If[codeiy> 0, SysEq[[codeiy]] = jload[[i, 2]] - d[codeiy]*ElasticSupport[[i, 2]]]; 

If[codeiy> 0, SysEq[[codeiz]] = jload[[i, 3]] - d[codeiz]*ElasticSupport[[i, 3]]]; 

  , {i, 1, nod}]; 

 

Üçüncü program parçasında, daha önce tanımlanan “SysEq”, sistem denklemlerinin 

depolandığı dizinin başlangıç değerleri tespit edilmektedir. Burada “restraints” dizisi 

içinde saklanan deplasman numaralarından faydalanılmaktadır. Düğümlere ait 

deplasmanların tespiti için düğüm sayısınca bir döngü kurulmuştur. Deplasman 

numarası her düğüme ait “restraint” üç sütunlu dizisinden alınmaktadır.  
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Birinci sütun “x” ekseni yönündeki, ikinci sütun “y” ekseni yönündeki, üçüncü sütun 

“z” yönündeki deplasmanı temsil etmektedir. “x” yönündeki” deplasman sıfırdan farklı 

ise o yönde deplasman olduğu açıktır, numarasının değeri ise “codeix” değişkenine 

ilgili matristen aktarılmıştır. “y” yönündeki” deplasman sıfırdan farklı ise o yönde 

deplasman olduğu açıktır, numarasının değeri ise “codeiy” değişkenine ilgili matristen 

aktarılmıştır. “z” yönündeki” deplasman sıfırdan farklı ise o yönde deplasman olduğu 

açıktır, numarasının değeri ise “codeiz” değişkenine ilgili matristen aktarılmıştır. 

“codeix” ve “codeiy” ve “codeiz” değişkenlerinin deplasman numarası değeri elde 

edilmesi planlanan sistem denkleminin numarasını da oluşturmaktadır. 

 

Sistem denkleminin başlangıcı ise dış yüklemelerden oluşmaktadır. Bunlardan biri dış 

tekil kuvvet diğeri ise mesnet çökmesidir. Mesnet çökmesi halinde tekil düğüm yükü 

sıfırdır, benzer şekilde tekil yük olması halinde düğüm mesnet değildir, yani mesnet 

çökmesi yoktur ve temsilen değeri de sıfırdır. Düğümde “x” yönünde tekil yük olması 

halinde ve “x” yönünde deplasman olması halinde, o düğümün “x” yönündeki tekil 

kuvvetinin denklem sistemine başlangıç değeri olarak eklenmesi gerekmektedir, bu 

durumda denklem sisteminin numarası daha önce belirtildiği gibi “codeix” değişkeninde 

bulunmaktadır ve tekil kuvvetin değeri de “jload” matrisinin ilgili düğüm numaralı 

satırının “1” sütununda bulunmaktadır. Düğümde “y” yönünde tekil yük olması halinde 

ve “y” yönünde deplasman olması halinde, o düğümün “y” yönündeki tekil kuvvetinin 

denklem sistemine başlangıç değeri olarak eklenmesi gerekmektedir, bu durumda 

denklem sisteminin numarası daha önce belirtildiği gibi “codeiy” değişkeninde 

bulunmaktadır ve tekil kuvvetin değeri de “jload” matrisinin ilgili düğüm numaralı 

satırının “2” sütununda bulunmaktadır. Düğümde “z” yönünde tekil yük olması halinde 

ve “z” yönünde deplasman olması halinde, o düğümün “z” yönündeki tekil kuvvetinin 

denklem sistemine başlangıç değeri olarak eklenmesi gerekmektedir, bu durumda 

denklem sisteminin numarası daha önce belirtildiği gibi “codeiz” değişkeninde 

bulunmaktadır ve tekil kuvvetin değeri de “jload” matrisinin ilgili düğüm numaralı 

satırının “3” sütununda bulunmaktadır. 

 

Bu bilgiler ışığında tekil kuvvetlerin sistem denklemine eklenmesi işi üçüncü program 

parçasının içinde bulunan üç adet “If” komutuyla icra edilmektedir. Aynı “If” komutları 

benzer bilgiler ışığında elastik mesnet değerlerini ilgili deplasman ile mesnede ait 

elastik mesnet yay katsayısıyla çarparak iç kuvvete dönüştürmekte ve elde edilen 



106 

 

kuvveti sistem denklemlerinin başlangıcına eklemektedir. Burada eklenme yerine 

çıkarılmaktadır, çünkü bulunan kuvvet yay ucundadır ve düğüme negatif olarak 

yansımaktadır. Bu nedenle çıkarılmıştır. Böylece mesnet çökmelerinin oluşturacağı 

kuvvet sisteme etkiletilmiş olmaktadır. İşlemler tüm serbestlikler, diğer bir deyişle tüm 

deplasmanlar için yapıldığında sistem denklemlerini oluşturan “SysEq” dizisinin 

başlangıç değerleri tespit edilmiş olur. Sonra iç kuvvetlerin etkilerinin de toplama dahil 

edilmesi işi diğer dördüncü program parçası içinde gerçekleşmektedir. Denklemlerin 

başlangıç değerleri istenirse ekranda görüntülenebilir. 

3.3.1.4. Program Parçası 4: 

Bu program parçasında her bir çubuk için işlem yapıldığından işlemlerin tamamı çubuk 

sayısı kadar işlem yapan bir döngü içine konulmuştur. Çubuk numaralarını temsil eden 

döngü değişkeni ise “nn” olarak seçilmiştir. Her bir çubuğa ait, elastisite modülü, kesit 

alanı, sıcaklık genleşme katsayısı, sıcaklık değişimi değeri, “i” ve “j” ucunun bağlı 

olduğu düğüm numaraları, “i” ve “j” ucunun koordinatları; sırasıyla “EM”, “csa”, 

“alfaT”, “dTn”, “ii”, “jj”, “xi”, “yi”, “zi”, “xj”, “yj”, “zj” isimli yerel değişkenlere ilgili 

dizi ve matrislerden alınarak, atanmaktadır. Bu yazım tarzı programın anlaşılmasını 

kolaylaştırmaktadır. Çubuğa ait veriler yerel değişkenlere aktarıldıktan sonra, çubuk 

uzunluğu ve global eksenlerle yaptığı açıların kosinüs doğrultmanlarının değerlerini 

(Sezginman ve Abacı, 1985) hesaplamak üzere; “i” ve “j” ucunun koordinatları 

kullanılarak, “i” ve “j” düğüm noktaları arasında bir yer vektörü yazılmaktadır. Oluşan 

vektörün normu çubuk uzunluğunu vermektedir. Vektörün normu ile normalize edilmiş 

bileşenleri kosinüs doğrultmanlarını verdiğinden aşağıdaki satırlarda, kosinüs 

doğrultmanları hesaplanmaktadır. Çubuğun “x” ekseni ile yaptığı açının kosinüs değeri 

“csx” yerel değişkenine; “y” ekseni ile yaptığı açının kosinüs değeri “csy” yerel 

değişkenine; “z” ekseni ile yaptığı açının kosinüs değeri “csz” yerel değişkenine 

aktarılmaktadır. 

 

Çubuğun “i” ucunun bağlı olduğu düğümün deplasman numaraları “x” yönü için 

“codeix” yerel değişkenine aktarılmakta ve “y” yönü için “codeiy” yerel değişkenine 

aktarılmakta olup, “z” yönü için “codeiz” yerel değişkenine aktarılmaktadır. Benzer 

şekilde, çubuğun “j” ucunun bağlı olduğu düğümün deplasman numaraları “x” yönü 

için “codejx” yerel değişkenine aktarılmakta ve “y” yönü için “codejy” yerel 
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değişkenine aktarılmakta olup, “z” yönü için “codejz” yerel değişkenine 

aktarılmaktadır. Bu yerel değişkenler çubuğun bağlı olduğu uçlarında bulunan global 

bilinmeyen deplasmanların numaralarını göstermekte olup, o yönde yazılan sisteme ait 

denge denkleminin numarasını da işaret etmektedir. Çubuğun ucunda bulunduğu bilinen 

global bilinmeyen deplasmanlar; çubuk kosinüs doğrultmanları vasıtasıyla çubuk yerel 

koordinatlarına dönüştürülmektedir. Çubuk yerel koordinatlarına dönüştürülen global 

deplasmanlar “ui” ve “uj” yerel değişkenleri üzerinde saklanmaktadır. Aynı satırlarda, 

varsa global mesnet çökmeleri değerleri de çubuk yerel koordinat takımına aynı 

değişkenler üzerine aktarılmaktadır. Mesnet çökmesi olan düğümlerde bilinmeyen 

deplasman olmadığından işin içine girmemektedir. Düğümde bilinmeyen deplasman 

olduğunda ise düğüm mesnet olmaktan çıktığı için mesnet çökmesi durumu ortadan 

kalkmaktadır. Çubuk ucunda mesnet çökmesi değeri yada bilinmeyen deplasmanlar 

yerel koordinatlarda bulundukları için, daha sonraki aşamada çubuk boyuna uzamasını 

idare eden diferansiyel denklemin çözümü sırasında sınır koşulları olarak istihdam 

edilmektedir. 

 

Kafes sistem çözümünde genellikle kesit değişimi olmadığından ve çubuk eksenine 

paralel iç normal yayılı yük ihmal edildiğinden, çubuk boyuna uzamasını idare eden 

diferansiyel denklem; boyuna uzama eğrisinin fonksiyonunun ikinci türevinin sıfır 

olmasına dönüşür. Bu durumda iki kez geri integral alındığında uzama eğrisinin 

fonksiyonu doğrusal bir hal alarak iki sabitli bir doğru denklemine eşit olur. Sabitler, 

sınır koşullarından elde edilerek boyuna uzama eğrisinin fonksiyonunda yerine konulur; 

böylece boyuna uzama eğrisinin denklemi bulunmuş olur. Çubuk normal kuvvet 

değişimi boyuna uzama eğrisine bağlı olduğundan, eksenel rijitlik ve boyuna uzama 

eğrisinin türevi ile çarpılarak bulunur. Normal kuvvet ifadesinin çubuk uçlarındaki 

değerleri de çubuk sınırları yerine konularak bulunmaktadır, “ni”, “nj”. Programda elde 

edilen çubuk “ni” ve “nj” yerel çubuk uç kuvvetleri kosinüs doğrultmaları yardımıyla 

global koordinat takımına dönüştürülerek; çubuk ucunda bulunan uç kuvvetlerinin 

global takımdaki bileşenleri bulunmuş olur. Bu bileşenler “i” ucunda “fxi, fyi,ve fzi” 

olup, “j” ucunda ise “fxj, fyj ve fzj” dir. Bu bileşenler sistem denklemine aktarılacak 

bileşenler olup, katkı yapılacak denklemin numarası ise bulundukları düğümün 

deplasman yönüdür. Bu yönler ise “i” düğümünde “x” yönü için “codeix” değişkeninde 

saklı olup, “codeix” numaralı sistem denklemine “fxi” bileşeninin eklenmesini 
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gerektirir; “y” yönü için “codeiy” değişkeninde saklı olup, “codeiy” numaralı sistem 

denklemine “fyi” bileşeninin eklenmesini gerektirir; “z” yönü için “codeiz” 

değişkeninde saklı olup, “codeiz” numaralı sistem denklemine “fzi” bileşeninin 

eklenmesini gerektirir. 

 

Benzer şekilde “j” düğümünde “x” yönü için “codejx” değişkeninde saklı olup, 

“codejx” numaralı sistem denklemine “fxj” bileşeninin eklenmesini gerektirir; “y” yönü 

için “codejy” değişkeninde saklı olup, “codejy” numaralı sistem denklemine “fyj” 

bileşeninin eklenmesini gerektirir; “z” yönü için “codejz” değişkeninde saklı olup, 

“codejz” numaralı sistem denklemine “fzj” bileşeninin eklenmesini gerektirir. Bu 

işlemler program tarafından aşağıda altı adet “If” komutu ile ilgili satırlarda 

yapılmaktadır. Bu işlemler tüm çubuklar için yapıldığında sistem için gerekli olan 

denklemler elde edilmiş olur. Program parçası en sonunda elde edilen denklemleri 

“Simplify” komutuyla sadeleştirmektedir. 

 

Do[ 

Print["Element number  [", nn, "] is in progress;"]; 

 EM = EMod[[nn]]; 

csa = area[[nn]]; 

alfaT = TEC[[nn]]; 

dTn = DeltaTn[[nn]]; 

ii = defIJ[[nn, 1]]; 

jj = defIJ[[nn, 2]]; 

xi = xyz[[ii, 1]]; yi = xyz[[ii, 2]]; zi = xyz[[ii, 3]]; 

xj = xyz[[jj, 1]]; yj = xyz[[jj, 2]]; zj = xyz[[jj, 3]]; 

vector = {xj - xi, yj - yi, zj - zi}; 

length[[nn]] = lengthL = Norm[vector]; 

csx = Normalize[vector][[1]];  

csy = Normalize[vector][[2]]; 

csz = Normalize[vector][[3]]; 

codeix = restraints[[ii, 1]]; 

codeiy = restraints[[ii, 2]]; 

codeiz = restraints[[ii, 3]]; 
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codejx = restraints[[jj, 1]]; 

codejy = restraints[[jj, 2]]; 

codejz = restraints[[jj, 3]]; 

ui = d[codeix]*csx + d[codeiy]*csy + d[codeiz]*csz + 

SupportDisp[[ii, 1]]*csx + SupportDisp[[ii, 2]]*csy +  SupportDisp[[ii, 3]]*csz; 

uj = d[codejx]*csx + d[codejy]*csy + d[codejz]*csz +  

SupportDisp[[jj, 1]]*csx + SupportDisp[[jj, 2]]*csy + SupportDisp[[jj, 3]]*csz; 

uu = c1 z + c2; 

 b1 = uu /. z -> 0; 

 b2 = uu /. z ->lengthL; 

sol = Flatten[Solve[{b1 == ui, b2 == uj}, {c1, c2}]]; 

uu = uu /. sol; 

  NF = EM*csa (D[uu, z] - alfaT*dTn); 

ni = NF /. z -> 0; 

nj = NF /. z ->lengthL; 

NForce[[nn]] = nj; 

fxi = -ni*csx; 

fyi = -ni*csy; 

fzi = -ni*csz; 

fxj = nj*csx; 

fyj = nj*csy; 

fzj = nj*csz; 

If[codeix> 0, SysEq[[codeix]] = SysEq[[codeix]] - fxi]; 

If[codeiy> 0, SysEq[[codeiy]] = SysEq[[codeiy]] - fyi]; 

If[codeiz> 0, SysEq[[codeiz]] = SysEq[[codeiz]] - fzi]; 

If[codejx> 0, SysEq[[codejx]] = SysEq[[codejx]] - fxj]; 

If[codejy> 0, SysEq[[codejy]] = SysEq[[codejy]] - fyj]; 

If[codejz> 0, SysEq[[codejz]] = SysEq[[codejz]] - fzj]; 

  , {nn, 1, nel}]; 

SysEq = Simplify[SysEq]; 
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3.3.1.5. Program Parçası 5: 

Print["syseq=", MatrixForm[SysEq], "=0"]; 

unk = Table[d[i], {i, 1, dispN}]; 

sol = Flatten[Solve[SysEq == 0, unk]];  

Print["solution=", MatrixForm[sol]]; 

Do[d[i] = sol[[i, 2]];, {i, 1, dispN}]; 

Print[MatrixForm[NForce]]; 

 

Bu program paçasında elde edilen denge denklemleri ekranda sunulmaktadır. Ekranda 

düğümlerde bulunan deplasmanlara bağlı olarak denklemler analitik olarak görülecektir. 

Ardından, düğüm deplasmanlarının bilinmeyen olarak isimleri “unk” isimli bir diziye 

“Table” komutu ve deplasman sayısı kullanılarak aktarılmaktadır. “Solve” komutu 

kullanılarak, elde edilen “SysEq” değişkeninde bulunan denge denklemleri bilinmeyen 

düğüm deplasmanları “unk” için çözülmektedir. Çözülen değerler çıkartılarak, 

bilinmeyen deplasmanların içine aktarılmakta ve bilinmeyen deplasmanlar bilinen 

olmaktadır. Bunlarda otomatik olarak program hafızasında bulunan diğer büyüklüklerde 

yerine konulmaktadır. Program parçasının son satırında ise çubuk kuvvetleri sırasıyla alt 

alta yazılmaktadır. 

3.3.2. Üç Boyutlu Normal Kuvvet Taşıyan Kafes Sistem Örnekleri 

3.3.2.1. Uygulama 1: 

Üç boyutlu kafes sistem için ilk örnek olarak küçük bir sistem Logan (2007) dan 

alınmıştır [39]. Aşağıda kafes sistem Şekil 3.40.’daglobal koordinatlarda sunulmaktadır. 

Şekil 3.40.’ da düğümlere ait numaralar ve uygulanan kuvvet bulunmaktadır. 

Düğümlere ait koordinatlar “1, 2, 3 ve ” numaralı düğüm için sırasıyla (72, 0, 0), (0, 36, 

0), (0, 36, 72), (0, 0, -48) olarak verilmektedir. Mesnet olarak “2, 3, 4” numaralı 

düğümler sabit mesnet olarak tanımlanmakta, “1” numaralı düğüm ise sadece “y” 

yönünde tutulu, diğer yönlerde serbesttir.  

Tekil kuvvet ise sadece “1” numaralı düğümde “z” yönünde aşağı doğru 1000 lb olarak 

belirtilmiştir. Birinci, ikinci ve üçüncü çubuk sırasıyla “1-2”, “1-3” ve “1-4” düğüm 

numaralı uçlar arasında tanımlanmaktadır. Çubuk alanları sırasıyla “1, 2, 3” numaralı 
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çubuklar için 0,302, 0.729, 0.187 “inch
2
” dir. Tüm çucuklar için elastisite modülü 

1.2x10
6 

dır. Çubuklarda oluşacak kuvvet ve gerilmelerin hesabı istenmektedir. 

 

Şekil 3.40. Logan (2007) dan alınan dört düğüm üç çubuklu kafes sistem [39] 

 

Örnek problem için yukarıda verilen bilgilere dayanarak bir veri dosyası oluşturulup, 

aşağıda sunulmaktadır. 

Veri Dosyası 1: 

 

Clear[Evaluate[Context[] <> "*"]] 

<< "C:\\Users\\CDA\\Desktop\\Yener-Prog\\3DModul\\Modul3D.txt" 

nod = 4; 

nel = 3; 
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xyz = {{72, 0, 0},{0, 36, 0},{0, 36, 72},{0, 0, -48}}; 

jload ={{0, 0, -1000},{0, 0, 0},{0, 0, 0},{0, 0, 0}}; 

restraints ={{0, 1, 0},{1, 1, 1},{1, 1, 1},{1, 1, 1}}; 

defIJ ={{1, 2},{1, 3},{1, 4}}; 

area = {0.302, 0.729, 0.187}; 

EMod = Table[1.2*10^6, {i, 1, nel}]; 

TEC = Table[0, {i, 1, nel}]; 

DeltaTn = Table[0, {i, 1, nel}]; 

ElasticSupport = Table[0, {i, 1, nod}, {j, 1, 3}]; 

SupportDisp = Table[0, {i, 1, nod}, {j, 1, 3}]; 

ThreeD 

NForce/area 

 

Veri dosyasında, çubuk sayısı ve düğüm sayısı “nel” ve “nod” değişkenlerine atanmış 

olup, düğüm koordinatları, serbestlikler, düğüm tekil kuvvetler, “xyz”, “restraints” ve 

“jload” matrislerine atanmıştır. Çubuk tanımları, alanlar, elastisite modülleri ise “defIJ”, 

“area”, “EMod” matris ve dizilerine atanmıştır. Sıcaklık yüklemesi olmadığından ilgili 

büyüklükler “Table” komutuyla sıfır olarak tanımlanmıştır. Elastik mesnet ve mesnet 

çökmesi bulunmadığından yine ilgili büyüklükler “Table” komutuyla sıfır olarak 

tanımlanmıştır. Üç boyutlu analiz modülü icra edilerek sonuçlar elde edilmiş olup, elde 

edilen çubuk kuvvetleri çubuk alanlarına bölünerek gerilmeler bulunmuştur. Elde edilen 

büyüklükler Tablo 3.18’ de sunulmaktadır. “y” yönünden deplasman tutulu olduğu için 

“1” numaralı düğümde “x” ve “z” yönünde deplasman oluşmuş olup, değerleri Tablo 

3.19.’da sunulmuştur. Tablolarda sunulan değerler kaynakta verilen sonuçlarla tamamen 

uyum içindedir. 

Tablo 3.18. Örnek 1 için elde edilen çubuk kuvvetleri ve gerilmeler 

Çubuk No. Normal Kuvvet (lb) Normal Gerilme (psi) 

1 -286.35 -948.20 

2 1053.67 1445.36 

3 -536.42 -2868.54 
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Tablo 3.19. Örnek 1 için elde edilen “1” numaralı düğüm deplasmanları 

Düğüm No. Deplasman (inch) 

1 -0.0711144 

2 -0.2662390 
 

3.3.2.2. Uygulama 2: 

İkinci örnek olarak Farajzadeh (2012) nin çalışmasından alınmış olup, 6 düğümlü ve 12 

elemanlı üç boyutlu kafes sistemdir [48]. Tüm çubuklar için alanlar eşit olup, 0.003 m
2 

dir. Aynı şekilde elastisite modülüde 2x10
8 

kN/m
2 

dir. Sıcaklık değişimi sıfır olup, 

elastik mesnet ve mesnet çökmesi yoktur, bu nedenle hazırlanacak dosyada ilgili 

değerler sıfır olmaktadır.  

Kafes sistemin şekli düğüm numaraları ile birlikte aşağıda Şekil 3.41.’da sunulmuştur. 

Çubuk düğüm numaraları, düğüm koordinatları (m), düğüm serbestlikleri ve düğüm 

yükleri (kN) Tablo 3.20. ve Tablo 3.21.’de verilmektedir. 

 

Şekil 3.41 Farajzadeh (2012) nin çalışmasından alınan 12 çubuklu 6 düğümlü kafes [48] 
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Literatürden alınan problemin çubuk kuvvetlerin bulunması istenmektedir. Çözüm için 

veri dosyası hazırlanarak aşağıda sunulmuştur. Veri dosyasında çubuk sayısı, düğüm 

sayısı, düğümle ilgili koordinatlar, serbestlikler, tekil düğüm yükleri ile çubuklarla ilgili 

çubuk tarifleri, alan ve elastik modüller birinci örnekte belirtildiği gibi ilgili 

değişkenlere aktarılmıştır. Sıcaklık ile ilgili bilgiler, elastik mesnet hali ve mesnet 

çökmesi olmadığından sıfır olarak ilgili değişkenlere aktarılmıştır. Veri dosyası aşağıda 

sunulmuştur. 

Tablo 3.20. Çubuk uç bağlantı düğümleri, alan ve elastisite modülleri 

Çubuk No “i” ucu “j” ucu Alan (m
2
) EM (kN/m

2
) 

1 1 2 0.003 2x10
8
 

2 1 3 0.003 2x10
8
 

3 2 3 0.003 2x10
8
 

4 1 4 0.003 2x10
8
 

5 1 5 0.003 2x10
8
 

6 2 5 0.003 2x10
8
 

7 2 6 0.003 2x10
8
 

8 3 6 0.003 2x10
8
 

9 3 4 0.003 2x10
8
 

10 5 6 0.003 2x10
8
 

11 4 6 0.003 2x10
8
 

12 4 5 0.003 2x10
8
 

 

Tablo 3.21. Kafes sitem düğüm koordinat, serbestlik ve tekil yükleri 

Düğüm 

No 

Koordinatlar (m) Serbestlikler Düğüm Yükleri 

(kN) 

“x” “y” “z” “x” “y” “z” “x” “y” “z” 

1 0 0 0 1 1 1 0 0 0 

2 0 2 0 1 0 1 0 0 0 

3 0 1 2 1 1 1 0 0 0 

4 3 0 0 0 0 0 0 0 -45 

5 3 2 0 0 0 0 0 0 -30 

6 3 1 2 0 0 0 0 0 0 
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Veri dosyası 2: 

 

Clear[Evaluate[Context[] <> "*"]] 

<< "C:\\Users\\CDA\\Desktop\\Yener-Prog\\3DModul\\Modul3D.txt" 

nod = 6;nel = 12; 

xyz = {{0, 0, 0},{0, 2, 0},{0, 1, 2},{3, 0, 0},{3, 2, 0},{3, 1, 2}}; 

jload ={{0, 0, 0},{0, 0, 0},{0, 0, 0},{0, 0, -45},{0, 0, -30},{0, 0, 0}}; 

restraints ={{1, 1, 1},{1, 0, 1},{1, 1, 1},{0, 0, 0},{0, 0, 0},{0, 0, 0}}; 

defIJ = {{1, 2},{1, 3},{2, 3},{1, 4}, {1, 5},{2, 5}, {2, 6}, {3, 6}, {3, 4}, {5, 6}, {4, 6}, {4, 

5}}; 

area = Table[0.003, {i, 1, nel}]; 

EMod = Table[2*10^8, {i, 1, nel}]; 

TEC = Table[0, {i, 1, nel}]; 

DeltaTn = Table[0, {i, 1, nel}]; 

ElasticSupport = Table[0, {i, 1, nod}, {j, 1, 3}]; 

SupportDisp = Table[0, {i, 1, nod}, {j, 1, 3}]; 

ThreeD 

 

Yukarıda verilen dosyası uygun ortamda icra edildiğinde çubuk kuvvetleri, düğüm 

deplasmanları ve sistem denklemleri hesaplanmaktadır. Burada sadece düğüm 

deplasmanları Tablo 3.22.’de, çubuk kuvvetleri Tablo 3.23.’de sunulmuştur. Elde edilen 

değerler kaynakta verilen değerler ile tamamen aynıdır. 

Tablo 3.22. Rölatif düğüm deplasmanları (m) 

Düğüm no dx dy dz 

1 0 0 0 

2 0 0.0000424129 0 

3 0 0 0 

4 -0.00033750 0.000305851 -0.00164136 

5 -0.00005625 0.000230851 -0.00103783 

6 0.00022500 -0.000474939 -0.00125097 
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Tablo 3.23. Çubuk kuvvetleri 

Çubuk no Normal Kuvvet (kN) 

1 12.72 

2 0.00 

3 5.09 

4 -67.5 

5 13.52 

6 -11.25 

7 -56.12 

8 45.00 

9 84.18 

10 33.54 

11 0.00 

12 -22.5 

 

3.3.2.3. Uygulama 3: 

Üçüncü örnek olarak, Farajzadeh (2012) nin çalışmasından 18 çubuklu 8 düğümlü kafes 

örneği alınmıştır [48]. Kafes sisteme Şekil 3.42.’de sunulmakta olup, düğümleri 

numaralandırılmıştır. Bütün çubukların kesit alanı ve elastisite modülü eşit olup, 

sırasıyla 0.002 m
2
 ve 2x10

8
kN/m

2
 dir. Çubukların numaralandırılma işlemleri, çubuk 

düğümleri tarifinde veri dosyasının içinde mevcuttur. Düğüm koordinatları veri dosyası 

içinde verildiğinden tekrar tablo olarak düzenlenmemiştir. Alt dört köşesinde bulunan 

ve “1, 2, 5, 6” ile numaralandırılan düğümlerinde üç eksende basit mesnetlendirilmiştir. 

Uygulanan düğüm tekil yükleri “z” yönünde aşağı doğru olup, “7” ve “8” düğümlerinde 

değerleri de sırasıyla 35 kN ve 45 kN’dur. Mesnet düğümlerinin dışında kalan düğümler 

üç eksende de serbest bırakılmıştır. Hazırlanan veri dosyası aşağıda sunulmaktadır. 
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Şekil 3.42. Farajzadeh (2012) nin çalışmasından alınan 18 çubuklu 8 düğümlü kafes 

[48] 

 

Veri Dosyası 3; 

 

Clear[Evaluate[Context[] <> "*"]] 

<< "C:\\Users\\CDA\\Desktop\\Yener-Prog\\3DModul\\Modul3D.txt" 

nod = 8; 

nel = 18; 

xyz = 

  {{0, 0, 0},{0, 4, 0},{4, 0, 0},{4, 4, 0},{8, 0, 0},{8, 4, 0},{2, 2, 3.5},{6, 2, 3.5}}; 

jload = {{0, 0, 0},{0, 0, 0},{0, 0, 0},{0, 0, 0},{0, 0, 0},{0, 0, 0},{0, 0, -45},{0, 0, -35}}; 

restraints ={{1, 1, 1},{1, 1, 1},{0, 0, 0},{0, 0, 0},{1, 1, 1},{1, 1, 1},{0, 0, 0},{0, 0, 0}}; 

defIJ ={{1, 2},{2, 4},{3, 4},{1, 3},{1, 4},{4, 6},{5, 6},{3, 5},{4, 5}, 

{1, 7},{2, 7},{3, 7},{4, 7},{3, 8},{4, 8},{6, 8},{5, 8},{7, 8}}; 

area = Table[0.002, {i, 1, nel}]; 

EMod = Table[2*10^8, {i, 1, nel}]; 
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TEC = Table[0, {i, 1, nel}]; 

DeltaTn = Table[0, {i, 1, nel}]; 

ElasticSupport = Table[0, {i, 1, nod}, {j, 1, 3}]; 

SupportDisp = Table[0, {i, 1, nod}, {j, 1, 3}]; 

ThreeD 

 

Yukarıda verilen veri dosyası uygun ortamda icra edildiğinde, veriler işlenmekte ve 

çubuk kuvvetleri hesaplanmaktadır. Elde edilen düğüm deplasmanları ve çubuk 

kuvvetleri aşağıda Tablo 3.24. ve Tablo 3.25.’de sunulmaktadır. Tablolarda sunulan 

değerler örneğin alındığı kaynakla tamamen uyum içindedir. 

Tablo 3.24. Rölatif düğüm deplasmanları (m) 

Düğüm no dx dy dz 

1 0 0 0 

2 0 0 0 

3 0.00000706 0 -0.000502551 

4 0.00000533 0 -0.000502551 

5 0 0 0 

6 0 0 0 

7 0.000117386 -0.0000004333 -0.000462263 

8 -0.000111186 -0.0000004333 -0.000412227 

 

Tablo 3.25. Çubuk kuvvetleri 

Çubuk no Normal Kuvvet (kN) Çubuk no Normal Kuvvet (kN) 

1 0 10 -27.3385 

2 0.533333 11 -27.3043 

3 0 12 -1.59002 

4 0.706677 13 -1.62426 

5 0.266667 14 1.59002 

6 -0.533333 15 1.62426 

7 0 16 -24.1243 

8 -0.706677 17 -24.0900 

9 -0.266667 18 -22.8571 
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3.3.2.4. Uygulama 4: 

Dördüncü örnek olarak, Farajzadeh (2012) nin çalışmasından 25 çubuklu 10 düğümlü 

kafes örneği alınmıştır. Kafes sistem Şekil 3.43.’de düğüm numaraları ve uygulanan 

tekil yüklerle birlikte sunulmaktadır [48]. Çubukların kesit alanı çubukların tamamı için 

0.0025 m
2
 alınmış olup, aynı şekilde elastisite modülleride 2x10

8
kN’dur. Sistemin en 

altında bulunan ve “7, 8, 9, 10” sayıları ile numarandırılan düğümler üç yönde de basit 

olarak mesnetlendirilmiştir. Tekil kuvvetler ise “1” numaralı düğümde “z” yönünde 

düşey olarak 60 kN, “2” numaralı düğümde “y” yönünde pozitif yönde 75 kN ile 

yüklenmiştir. Mesnet dışında kalan düğümler mafsal olarak tasarlanmış ve her üç yönde 

serbest bırakılmıştır. Düğüm koordinatları hazırlanan veri doyası içinde sunulduğundan 

tablo olarak düzenlenmemiştir. Veri dosyası aşağıda sunulmaktadır. 

 

Veri Dosyası 4: 

 

Clear[Evaluate[Context[] <> "*"]] 

<< "C:\\Users\\CDA\\Desktop\\Yener-Prog\\3DModul\\Modul3D.txt" 

nod = 10; 

nel = 25; 

xyz =  {{1.5, 2.5, 5}, {3.5, 2.5, 5}, {3.5, 1.5, 2.5}, {1.5, 1.5, 2.5},{1.5, 3.5, 2.5}, 

   {3.5, 3.5, 2.5}, {5, 0, 0}, {0, 0, 0}, {0, 5, 0}, {5, 5, 0}}; 

jload = {{0, 0, -60}, {0, 75, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, 

 {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}}; 

restraints =  {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, 

 {0, 0, 0}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}}; 

defIJ ={{1, 2}, {1, 5}, {1, 4}, {1, 3}, {1, 6}, {2, 5}, {2, 4}, {2, 6}, {2, 3}, {4, 5}, 

 {5, 6}, {3, 6}, {3, 4}, {5, 8}, {4, 8}, {3, 8}, {4, 7}, {6, 7}, {3, 7}, {5, 9}, 

{6, 9}, {4, 9}, {5, 10}, {6, 10}, {3, 10}}; 

area = Table[0.0025, {i, 1, nel}]; 

EMod = Table[2*10^8, {i, 1, nel}]; 

TEC = Table[0, {i, 1, nel}]; 

DeltaTn = Table[0, {i, 1, nel}]; 
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ElasticSupport = Table[0, {i, 1, nod}, {j, 1, 3}]; 

SupportDisp = Table[0, {i, 1, nod}, {j, 1, 3}]; 

ThreeD 

 

 

Şekil 3.43. Farajzadeh (2012) nin çalışmasından alınan 25 çubuklu 10 düğümlü kafes 

[48] 

 

Yukarıda verilen veri dosyası uygun ortamda icra edildiğinde, veriler işlenmekte ve 

çubuk kuvvetleri hesaplanmaktadır. Elde edilen düğüm deplasmanları ve çubuk 

kuvvetleri aşağıda Tablo 3.26. ve Tablo 3.27.’de sunulmaktadır. Tablolarda sunulan 

değerler örneğin alındığı kaynakla tamamen uyum içindedir. 
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Tablo 3.26. Rölatif düğüm deplasmanları (m) 

Düğüm no dx dy dz 

1 (-0.000362652 0.000637831 -0.000359737 

2 -0.000334382 0.0019673 0.0000317329 

3 0.000178055 0.0000817108 0.000384351 

4 0.00019841 0.000118159 -0.000010546 

5 -0.000154678 0.000138682 -0.000381099 

6 -0.000127015 0.0000840978 -0.000375119 

7 0 0 0 

8 0 0 0 

9 0 0 0 

10 0 0 0 

Tablo 3.27. Çubuk kuvvetleri 

 

Çubuk no Normal Kuvvet (kN) Çubuk no Normal Kuvvet (kN) 

1 7.06769 14 -16.8524 

2 -30.741 15 20.8599 

3 -24.3658 16 41.1237 

4 -9.89715 17 -13.0978 

5 -1.95573 18 -10.914 

6 -51.3753 19 37.9703 

7 39.5224 20 -64.7808 

8 -59.7291 21 -36.3493 

9 69.2443 22 -3.42906 

10 5.13092 23 -14.9253 

11 6.9158 24 -40.6242 

12 0.596746 25 9.82671 

13 -5.08876   

 

3.3.2.5. Uygulama 5: 

Beşinci örnek olarak, Farajzadeh (2012) nin çalışmasından 30 çubuklu 12 düğümlü 

kafes örneği alınmıştır. Kafes sistem Şekil 3.44.’de düğüm numaraları ve uygulanan 

tekil yüklerle birlikte sunulmaktadır. Çubukların kesit alanı, çubukların tamamı için 

0.002 m
2
 alınmış olup, aynı şekilde elastisite modülleride 2x10

8
kN/m

2
’dir [48]. 

Kafes sistemin “1, 2, 3, 4,11” sayıları ile numarandırılan düğümler üç yönde de basit 

olarak mesnetlendirilmiştir.  Tekil kuvvet ise “10” numaralı düğümde “y” yönünde 
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negatif yönde olarak 40 kN, “12” numaralı düğümde “z” yönünde negatif yönde 60 kN 

ile yüklenmiştir. Mesnet dışında kalan düğümler mafsal olarak tasarlanmış ve her üç 

yönde serbest bırakılmıştır. Düğüm koordinatları hazırlanan veri dosyası içinde 

sunulduğundan tablo olarak düzenlenmemiştir. Veri dosyası aşağıda sunulmaktadır. 

 

Şekil 3.44.  Farajzadeh (2012)’nin çalışmasından alınan 30 çubuklu 12 düğümlü kafes 

[48] 

 

Veri Dosyası 5: 

 

Clear[Evaluate[Context[] <> "*"]] 

<< "C:\\Users\\CDA\\Desktop\\Yener-Prog\\3DModul\\Modul3D.txt" 

nod = 12; 

nel = 30; 

xyz =  {{0, 0, 3},   {0, 3, 3},   {0, 3, 0},   {0, 0, 0},   {3, 0, 3},   {3, 3, 3}, 
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  {3, 3, 0},   {3, 0, 0},   {6, 0, 3},   {6, 3, 3},   {6, 3, 0},   {6, 0, 0}}; 

jload ={{0, 0, 0},{0, 0, 0}, 0, 0, 0}, 0, 0, 0}, {0, 0, 0}, {0, 0, 0}, 

 {0, 0, 0},{0, 0, 0}, {0, 0, 0}, {0, -40, 0}, {0, 0, 0},{0, 0, -60}}; 

restraints ={{1, 1, 1}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}, {0, 0, 0}, {0, 0, 0}, 

   {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {1, 1, 1}, {0, 0, 0}}; 

defIJ =  {{1, 4}, {1, 2}, {2, 3}, {3, 4}, {3, 7}, {3, 6}, {2, 6}, {1, 6}, {1, 5}, {1, 8}, 

 {4, 8}, {3, 8}, {5, 8}, {5, 6}, {6, 7}, {6, 8}, {7, 8}, {8, 12}, {8, 11},{8, 9},  

 {5, 9},{6, 9}, {6, 11}, {6, 10}, {7, 11}, {9, 12}, {10, 12}, {11, 12}, {10, 11}, {9, 10}}; 

area = Table[0.002, {i, 1, nel}]; 

EMod = Table[2*10^8, {i, 1, nel}]; 

TEC = Table[0, {i, 1, nel}]; 

DeltaTn = Table[0, {i, 1, nel}]; 

ElasticSupport = Table[0, {i, 1, nod}, {j, 1, 3}]; 

SupportDisp = Table[0, {i, 1, nod}, {j, 1, 3}]; 

ThreeD 

 

Yukarıda verilen veri dosyası uygun ortamda icra edildiğinde, veriler işlenmekte ve 

çubuk kuvvetleri hesaplanmaktadır. Elde edilen düğüm deplasmanları ve çubuk 

kuvvetleri aşağıda Tablo 3.28. ve Tablo 3.29.’da sunulmaktadır. Tablolarda sunulan 

değerler örneğin alındığı kaynakla tamamen uyum içindedir. 

Tablo 3.28. Rölatif düğüm deplasmanları (m) 

Düğüm no dx dy dz 

1 0 0 0 

2 0 0 0 

3 0 0 0 

4 0 0 0 

5 0.0000281789 -0.0014744700 -0.0015255300 

6 0.0004281210 -0.0014744700 -0.0000127673 

7 0 0.0000127673 -0.0000127673 

8 -0.0004505580 0.0000127673 -0.0015255300 

9 0.0000563577 -0.0028670400 -0.0031329600 

10 0.0004281210 -0.0032279500 -0.0000609106 

11 0 0 0 

12 -0.0004505580 0.0000609106 -0.0035220500 
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Tablo 3.29. Çubuk kuvvetleri 

Çubuk no Normal Kuvvet (kN) Çubuk no Normal Kuvvet (kN) 

1 0 16 1.70231 

2 0 17 0 

3 0 18 0 

4 0 19 29.1861 

5 0 20 -73.3674 

6 27.6903 21 3.75718 

7 57.0829 22 68.0539 

8 -69.7563 23 -29.3926 

9 3.75718 24 0 

10 71.6651 25 0. 

11 -60.0744 26 51.8786 

12 -30.8884 27 11.4854 

13 0 28 -8.12141 

14 0 29 -8.12141 

15 0 30 -48.1214 

 

3.3.2.6. Uygulama 6 

Altıncı örnek olarak Farajzadeh (2012) nin çalışmasından 39 çubuklu 16 düğümlü kafes 

örneği alınmıştır. Kafes sistem Şekil 3.45.’de düğüm numaraları ve uygulanan tekil 

yüklerle birlikte sunulmaktadır [48]. Çubukların kesit alanı, çubukların tamamı için 

0.0015 m
2
 alınmış olup, aynı şekilde elastisite modülleride 2x10

8 
kN/m

2
’dir. Kafes 

sistemin “13, 14, 15, 16” sayıları ile numarandırılan düğümleri üç yönde de basit olarak 

mesnetlendirilmiştir. Tekil kuvvetler ise “1” numaralı düğümde “x” yönünde 10 kN, “2” 

numaralı düğümde “z” yönünde negatif yönde 25 kN, “3” numaralı düğümde “y” 

yönünde 40 kN ile yüklenmiştir. Mesnet dışında kalan düğümler mafsal olarak 

tasarlanmış ve her üç yönde serbest bırakılmıştır. Düğüm koordinatları hazırlanan veri 

dosyası içinde sunulduğundan tablo olarak düzenlenmemiştir. Veri dosyası aşağıda 

sunulmaktadır. 
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Şekil 3.45.  Farajzadeh (2012) nin çalışmasından alınan 39 çubuklu 16 düğümlü kafes 

[48] 

 

Veri Dosyası 6: 

 

Clear[Evaluate[Context[] <> "*"]] 

<< "C:\\Users\\CDA\\Desktop\\Yener-Prog\\3DModul\\Modul3D.txt" 

nod = 16; 

nel = 39; 

xyz =  {{0, 0, 12}, {0, 4, 12}, {4, 4, 12}, {4, 0, 12}, {0, 0, 8}, {0, 4, 8}, {4, 4, 8}, {4, 0, 8}, 

   {0, 0, 4}, {0, 4, 4},{4, 4, 4},{4, 0, 4}, {0, 0, 0}, {0, 4, 0}, {4, 4, 0},{4, 0, 0}}; 

jload ={{10, 0, 0}, {0, 0, -25},{0, 40, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, 

{0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}}; 

restraints =  {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 

0}, 



126 

 

   {0, 0, 0},{0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}}; 

defIJ =  {{1, 2}, {2, 3}, {3, 4}, {1, 4}, {1, 3}, {1, 6}, {2, 7}, {4, 5}, {3, 8}, {1, 5}, 

  {2, 6}, {3, 7}, {4, 8}, {5, 6}, {6, 7}, {7, 8}, {5, 8}, {5, 7}, {5, 10}, {6, 11}, 

 {7, 12}, {8, 9}, {5, 9}, {6, 10}, {7, 11}, {8, 12}, {9, 10}, {10, 11}, {11, 12},{9, 12}, 

{9, 11}, {9, 14}, {10, 15}, {11, 16}, {12, 13}, {9, 13}, {10, 14}, {11, 15},{12, 16}}; 

area = Table[0.0015, {i, 1, nel}]; 

EMod = Table[2*10^8, {i, 1, nel}]; 

TEC = Table[0, {i, 1, nel}]; 

DeltaTn = Table[0, {i, 1, nel}]; 

ElasticSupport = Table[0, {i, 1, nod}, {j, 1, 3}]; 

SupportDisp = Table[0, {i, 1, nod}, {j, 1, 3}]; 

ThreeD 
 

Yukarıda verilen veri dosyası uygun ortamda icra edildiğinde, veriler işlenmekte ve 

çubuk kuvvetleri hesaplanmaktadır. Elde edilen düğüm deplasmanları ve çubuk 

kuvvetleri aşağıda Tablo 3.30. ve Tablo 3.31.’de sunulmaktadır. Tablolarda sunulan 

değerler örneğin alındığı kaynakla tamamen uyum içindedir. 

Tablo 3.30. Rölatif düğüm deplasmanları (m) 

Düğüm no dx dy dz 

1 0.00355298 0.00574146 0.00111499 

2 -0.00141711 0.00574146 -0.00171499 

3 -0.00148828 0.010984 -0.00248501 

4 0.00334848 0.010984 0.0000850094 

5 0.00181124 0.00304351 0.00104382 

6 -0.00143067 0.00311468 -0.00131049 

7 -0.00152366 0.00644014 -0.00202285 

8 0.00158491 0.00690231 0.000289514 

9 0.000559124 0.00090185 0.00067515 

10 -0.000968517 0.000994845 -0.000741816 

11 -0.00104867 0.00247331 -0.00119152 

12 0.00034564 0.00291365 0.000258184 

13 0 0 0 

14 0 0 0 

15 0 0 0 

16 0 0 0 
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Tablo 3.31. Çubuk kuvvetleri 

Çubuk no Normal Kuvvet (kN) Çubuk no Normal Kuvvet (kN) 

1 0 21 46.7049 

2 -5.33781 22 24.0058 

3 0 23 27.6503 

4 -15.3378 24 -42.6503 

5 7.54881 25 -62.3497 

6 -7.54881 26 2.34973 

7 7.54881 27 6.97464 

8 21.6909 28 -6.0113 

9 49.0197 29 -33.0254 

10 5.33781 30 -16.0113 

11 -30.3378 31 -1.36237 

12 -34.6622 32 -8.50126 

13 -15.3378 33 8.50126 

14 5.33781 34 48.0673 

15 -6.97464 35 22.6434 

16 -34.6622 36 50.6362 

17 -16.9746 37 -55.6362 

18 2.31482 38 -89.3638 

19 -9.86363 39 19.3638 

20 9.86363   
 

3.3.2.7. Uygulama 7: 

Yedinci örnek olarak Farajzadeh (2012) nin çalışmasından 96 çubuklu 32 düğümlü 

kafes örneği alınmıştır. Kafes sistem Şekil 3.46.’da düğüm numaraları ve uygulanan 

tekil yüklerle birlikte sunulmaktadır. Çubukların kesit alanı, çubukların tamamı için 

0.002 m
2
 alınmış olup, aynı şekilde elastisite modülleride 2x10

8 
kN/m

2
 dir. Kafes 

sistemin “1, 4, 17, 20” sayıları ile numarandırılan düğümleri üç yönde de basit olarak 

mesnetlendirilmiştir. Tekil kuvvetler ise “8” numaralı düğümde “x” yönünde 35 kN, 

“16” numaralı düğümde “x” yönünde 40 kN, “21” numaralı düğümde “z” yönünde 

negatif yönde 35 kN, “28” numaralı düğümde “z” yönünde negatif yönde 50 kN ile 

yüklenmiştir [48]. 

 

Mesnet dışında kalan düğümler mafsal olarak tasarlanmış ve her üç yönde serbest 

bırakılmıştır. Düğüm koordinatları hazırlanan veri dosyası içinde sunulduğundan tablo 

olarak düzenlenmemiştir. Veri dosyası aşağıda sunulmaktadır. 
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Şekil 3.46. Farajzadeh (2012)’nin çalışmasından alınan 96 çubuklu 32 düğümlü kafes 

[48] 

 

Veri Dosyası 7: 

 

Clear[Evaluate[Context[] <> "*"]] 

<< "C:\\Users\\CDA\\Desktop\\Yener-Prog\\3DModul\\Modul3D.txt" 

nod = 32; 

nel = 96; 

xyz = {{0, 0, 0}, {3, 0, 0}, {6, 0, 0}, {9, 0, 0}, {0, 3, 0}, {3, 3, 0}, {6, 3, 0}, {9, 3, 0}, 

           {0, 6, 0}, {3, 6, 0}, {6, 6, 0}, {9, 6, 0}, {0, 9, 0}, {3, 9, 0}, {6, 9, 0}, {9, 9, 0}, 

 {0, 12, 0}, {3, 12, 0}, {6, 12, 0}, {9, 12, 0}, {1.5, 1.5, 3}, {4.5, 1.5, 3}, 

 {7.5, 1.5, 3},{1.5, 4.5, 3}, {4.5, 4.5, 3}, {7.5, 4.5, 3}, {1.5, 7.5, 3}, 
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{4.5, 7.5, 3},{7.5, 7.5, 3}, {1.5, 10.5, 3}, {4.5, 10.5, 3}, {7.5, 10.5, 3}}; 

jload = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {35, 0, 

0}, 

{0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {40, 0, 0}, 

{0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, -35},{0, 0, 0}, {0, 0, 0}, {0, 0, 0}, 

{0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, -50},{0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}}; 

restraints = {{1, 1, 1}, {0, 0, 0}, {0, 0, 0}, {1, 1, 1}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 

0}, 

{0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, 

{1, 1, 1}, {0, 0, 0}, {0, 0, 0}, {1, 1, 1}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0},{0, 0, 0}, 

{0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}}; 

defIJ = {{1, 2}, {2, 6}, {5, 6}, {1, 5}, {1, 21}, {2, 21}, {6, 21}, {5, 21}, 

{6, 10}, {9, 10},{5, 9}, {5, 24}, {6, 24}, {10, 24}, {9, 24}, {10, 14}, 

{13, 14},{9, 13}, {9, 27}, {13, 27}, {14, 27}, {10, 27}, {14, 18}, {17, 18}, 

{13, 17}, {13, 30}, {14, 30}, {18, 30}, {17, 30}, {2, 3}, {3, 7}, {6, 7}, 

{2, 22}, {3, 22}, {7, 22}, {6, 22}, {7, 11}, {10, 11}, {6, 25}, {7, 25}, 

{11, 25}, {10, 25}, {11, 15}, {14, 15}, {10, 28}, {11, 28}, {15, 28}, {14, 28}, 

{15, 19}, {18, 19}, {14, 31}, {15, 31}, {19, 31}, {18, 31}, {3, 4}, {4, 8}, 

{7, 8}, {3, 23}, {4, 23}, {8, 23}, {7, 23}, {8, 12}, {11, 12}, {7, 26}, 

{8, 26}, {12, 26}, {11, 26}, {12, 16}, {15, 16}, {11, 29}, {12, 29}, {16, 29}, 

{15, 29}, {16, 20}, {19, 20}, {15, 32}, {16, 32}, {20, 32}, {19, 32}, {21, 22}, 

{24, 25}, {27, 28}, {30, 31}, {21, 24}, {24, 27}, {27, 30}, {22, 25}, {25, 28}, 

{28, 31}, {22, 23}, {25, 26}, {28, 29}, {31, 32}, {23, 26}, {26, 29}, {29, 32}}; 

area = Table[0.002, {i, 1, nel}]; 

EMod = Table[2*10^8, {i, 1, nel}]; 

TEC = Table[0, {i, 1, nel}]; 

DeltaTn = Table[0, {i, 1, nel}]; 

ElasticSupport = Table[0, {i, 1, nod}, {j, 1, 3}]; 

SupportDisp = Table[0, {i, 1, nod}, {j, 1, 3}]; 

ThreeD 
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Yukarıda verilen veri dosyası uygun ortamda icra edildiğinde, veriler işlenmekte ve 

çubuk kuvvetleri hesaplanmaktadır. Elde edilen düğüm deplasmanları ve çubuk 

kuvvetleri aşağıda Tablo 3.32. ve Tablo 3.33.’de sunulmaktadır. Tablolarda sunulan 

değerler örneğin alındığı kaynakla tamamen uyum içindedir. 

Tablo 3.32. Rölatif düğüm deplasmanları (m) 

Düğüm no dx dy dz 

1 0 0 0 

2 0.00016496 -0.0000058138 -0.000669505 

3 0.000180408 -0.0000137148 -0.000281531 

4 0 0 0 

5 0.00147637 0.0000122176 -0.00167606 

6 0.00147637 -0.0000058138 -0.000996862 

7 0.00160374 -0.0000137148 -0.000305443 

8 0.00186624 -0.0000233667 0.000748146 

9 0.00156004 0.000033646 -0.00184938 

10 0.00156004 0.0000436846 -0.00118964 

11 0.00163202 -6.83407*10^-6 -0.000398237 

12 0.00163202 -4.5108*10^-6 0.000539577 

13 0.00140255 0.0000417727 -0.00147433 

14 0.00140255 0.000152077 -0.000963766 

15 0.00160878 0.0000556728 -0.000371367 

16 0.00190878 0.0000209389 0.000728973 

17 0 0 0 

18 0.000138984 0.000152077 -0.000461945 

19 0.000165647 0.0000556728 -0.000256213 

20 0 0 0 

21 0.000545936 0.000443441 -0.000978315 

22 0.000423144 0.000108712 -0.000581188 

23 0.000358307 -0.000100958 0.0000329523 

24 0.000814392 0.000161925 -0.00143685 

25 0.000791879 0.0000623683 -0.000754512 

26 0.000756251 -0.0000121613 0.000109981 

27 0.000853973 -0.000142482 -0.00138384 

28 0.000817376 -0.0000225682 -0.000959121 

29 0.000764393 0.000030307 0.0000762418 

30 0.000551122 -0.0003978 -0.000737163 

31 0.000458025 -0.000102556 -0.000542434 

32 0.000380223 0.0000984261 0.0000111715 
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Tablo 3.33. Çubuk kuvvetleri 

 

Çubuk 

no 

N.Kuvvet 

 (kN) 

Çubuk 

no 

N. Kuvvet 

(kN) 

Çubuk 

no 

N. Kuvvet 

(kN) 

1 21.9947 33 24.4152 65 -6.89494 

2 0 34 -31.9832 66 1.07676 

3 0 35 22.5191 67 6.48871 

4 1.62902 36 -14.9511 68 3.39329 

5 -42.9891 37 0.917426 69 40. 

6 -24.4152 38 9.59728 70 5.26552 

7 23.0341 39 -5.84902 71 -1.07676 

8 1.50411 40 -0.45309 72 -7.57523 

9 6.59978 41 2.595 73 3.38647 

10 0 42 3.70711 74 -2.79185 

11 2.85712 43 8.33424 75 -22.0863 

12 -1.50411 44 27.4973 76 -18.699 

13 -2.23402 45 -15.4613 77 7.57523 

14 5.91029 46 -14.3492 78 -20.2803 

15 -2.17216 47 -13.5938 79 31.4041 

16 14.4524 48 -17.8329 80 -16.3723 

17 0 49 0 81 -3.00166 

18 1.08356 50 3.55503 82 -4.87969 

19 2.17216 51 -15.8443 83 -12.413 

20 -8.14854 52 28.9064 84 -37.5354 

21 0.132446 53 -31.4041 85 -40.5876 

22 5.84393 54 18.342 86 -34.0425 

23 0 55 -24.0544 87 -6.17922 

24 18.5312 56 -3.11557 88 -11.3249 

25 -5.56969 57 35 89 -10.6651 

26 8.14854 58 31.9832 90 -8.64488 

27 33.5448 59 -17.4827 91 -4.75053 

28 -18.342 60 6.89494 92 -7.06432 

29 -23.3513 61 -21.3954 93 -10.3736 

30 2.05974 62 2.51413 94 11.8396 

31 0 63 0 95 5.66244 

32 16.9832 64 -0.670523 96 9.08255 
 

3.3.2.8. Uygulama 8: 

Sekizinci ve son örnek olarak Jalilive Hosseinzadeh (2015) nin çalışmasından 120 

çubuklu ve 49 düğümlü kafes kubbe örneği alınmıştır [49]. Kubbe kafes sistem Şekil 

3.47.’de düğüm numaralarının belirgin şekilde görüldüğü, kafesin X-Y düzlemindeki 
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hali verilmiştir. X-Z düzlemindeki ise Şekil 3.48’de verilmektedir. Şekil 3.47’de ilave 

olarak elemanların numarası da verilmektedir. Bir numaralı düğüm kubbenin tepesi 

olup, global koordinat takımının x-y başlangıcı buradadır. Bu düğümün yüksekliği ise 

275.59 inç’tir. Numarası 2-13 arası düğümlerin yüksekliği aynı olup, 196.85 inç dir. 

Benzer tarzda 14 düğümünden 37 düğümüne kadar olan düğümlerin yüksekliği ise 

118.11 inç dir. 38-49 arası düğümlerin yüksekliği ise sıfırdır. Her düğüme ait 

yükseklikler ve diğer koordinatlar veri dosyası içinde verildiğinden burada tek tek 

verilmeyecektir.  

Kubbe şekilden de görüleceği üzere simetriktir. Çubukların elastisite modülü 30450 ksi 

olarak verilmiş olup, malzeme akma dayanımı gerilmesi değeri (Fy) ise 58 ksidir. 

Kubbeye sadece düşey yük uygulanmış olup, bir numaralı düğümünde -13.49 kips 

düşey yük mevcuttur. İki numaralı düğümden on üç numaralı düğüme kadar -6.744 

kips, on dört numaralı düğümden otuz yedi numaralı düğüme kadar ise -2.248 kips 

düşey yük yüklenmiştir. Kubbe kafes sistem otuz sekiz numaralı düğümden kırkdokuz 

numaralı düğüme kadar sabit olarak mesnetlenmiş olup, diğer düğümleri üç eksende de 

serbest bırakılmıştır. Örneğin alındığı kaynakta kubbe kafesin kesit alanlarının optimum 

değerinin bulunması istenmektedir. 

Optimum değerlerin hesabının ise aşağıda verilen kritelere göre yapılması 

gerekmektedir. Çekme çubuklarında emniyet gerilmesi değeri olarak akma dayanımının 

yüzde atmışı alınmaktadır. Basınç çubuklarında ise emniyet gerilmesi değerinin 

çubuğun elastik burkulma veya plastik burkulmaya maruz kalıp, kalmadığına göre 

hesaplanarak belirlenmektedir. Çubuğu elastik ya da plastik burkulmadan hangisine 

maruz olduğu ise belirli bir sınır narinlik değerine göre belirlenmektedir. Amerikan 

çelik yapı enstitüsüne göre [50, 51] elastik-plastik narinlik sınır değeri Cc ile 

isimlendirilerek değeri aşağıda (Denklem 3.4’ de) verilmiştir. 

   √
     

  
      (3.4) 

Çubuk narinlik değeri ise çubuk kesit yarıçapı ve boyu arasındaki oran Denklem 3.5’de 

(lambda) olarak tarif edilmekle birlikte, Amerikan çelik yapı enstitüsüne göre [50, 51] 

çubuk kesit alanını ve yarıçap arasındaki ilişki ise boru kesitler için Denklem 3.6’da 

tarafından verilmektedir. 
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lambda=
          

              
                                                 (3.5)

  

                                                                  (3.6) 

Basınç çubukları için emniyet gerilmesi değeri daha önce bahsedildiği üzere, çubuk 

narinliği (lambda) ve elastik plastik narinlik sınırına göre belirlenmektedir. Çubuk 

narinliği sınır değer (Cc) den küçükse emniyet gerilmesi için Denklem 3.7 kullanılır.  

Aksi durumda Denklem 3.8 kullanılır. Minimum çubuk kesit alanı ise 0.775 inç
2
 den 

küçük olmayacaktır. 

   
(  

       

    
 )  

(
 

 
 

       

    
 

       

    
 )

                                         (3.7) 

   
       

          
                                            (3.8) 

Yukarıda verilen bilgiler ışığı altında, problemi çözmek için veri dosyası 

oluşturulmuştur. Veri dosyasında sıcaklık ve mesnet çökmesi yüklemeleri olmadığından 

ilgili değerler sıfır girilmiştir. Sadece düşey yük yüklemesi yapılmıştır. Malzeme ile 

ilgili bilgiler ilgili matrislere aktarılmıştır. Düğüm sayısı ve elaman sayısı atandıktan 

sonra, düğüm serbestlikleri ve koordinatları tanımlanmıştır. Çubuk eleman tarifleri ve 

malzemeleri ile özellikler tanımlanmıştır.  

Kesit alanı optimizasyonu yapılmak istendiğinden kesit alanı başlangıç değeri olarak 

tüm çubuklarda 0.775 inç
2
 atanmıştır. Statik çözümler için hazırlanan veri dosyasına 

ilave olarak dosya sonunda iterasyon yapacak şekilde ilaveler yapılarak kesit 

optimizasyonu yapılmıştır. 
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Şekil 3.47.  Kubbe kafesin X-Y düzlemindeki görünüşü ve numaralandırmalar 

 

 

Şekil 3.48.  Kubbe kafesin X-Z düzlemindeki görünüşü ve geometrik veriler [49] 
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Veri Dosyası 8: 

 

<< "C:\\Users\\CDA\\Desktop\\Yener-Prog\\3DModul\\Modul3Dopt.txt" 

nod = 49;nel = 120; 

xyz = {{0, 0, 275.59},{273.26, 0, 196.85},{236.65, 136.63, 196.85}, 

{136.63, 236.65, 196.85},{0, 273.26, 196.85},{-136.63, 236.65, 196.85}, 

{-236.65, 136.63, 196.85},{-273.26, 0, 196.85},{-236.65, -136.63, 196.85}, 

{-136.63, -236.65, 196.85},{0, -273.26, 196.85},{136.63, -236.65, 196.85}, 

{236.65, -136.63, 196.85}, 

{492.12, 0, 118.11},{475.35, 127.37, 118.11},{426.188, 246.06, 118.11}, 

{347.981, 347.981, 118.11},{246.06, 426.188, 118.11},{127.37, 475.351, 118.11}, 

{0, 492.12, 118.11},{-127.37, 475.351, 118.11},{-246.06, 426.188, 118.11}, 

{-347.981, 347.981, 118.11},{-426.188, 246.06, 118.11},{-475.35, 127.37, 118.11}, 

{-492.12, 0, 118.11},{-475.351, -127.37, 118.11},{-426.188, -246.06, 118.11}, 

{-347.981, -347.981, 118.11},{-246.06, -426.188, 118.11}, 

{-127.37, -475.351, 118.11},{0, -492.12, 118.11},{127.37, -475.351, 118.11}, 

{246.06, -426.188, 118.11},{347.981, -347.981, 118.11},{426.188, -246.06, 118.11}, 

{475.35, -127.37, 118.11}, 

{625.59, 0, 0},{541.777, 312.795, 0},{312.795, 541.777, 0},{0, 625.59, 0}, 

{-312.795, 541.777, 0},{-541.777, 312.795, 0},{-625.59, 0, 0},{-541.777, -312.795, 0}, 

{-312.795, -541.777, 0},{0, -625.59, 0},{312.795, -541.777, 0},{541.777, -312.795, 

0}}; 

jload = Table[0, {j, 1, nod}, {i, 1, 3}]; 

restraints = Table[0, {j, 1, nod}, {i, 1, 3}]; 

definition = Table[0, {j, 1, nel}, {i, 1, 2}]; 

area = Table[0.775, {i, 1, nel}]; 

Do[restraints[[i, 1]] = 1; restraints[[i, 2]] = 1; restraints[[i, 3]] = 1;, {i, 38, 49}]; 

jload[[1, 3]] = -13.490; 

Do[jload[[i, 3]] = -6.744;, {i, 2, 13}]; 

Do[jload[[i, 3]] = -2.248;, {i, 14, 37}]; 
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defIJ = { {1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6}, {1, 7}, {1, 8}, {1, 9}, {1, 10}, {1, 11}, 

 {1, 12}, {1, 13},{2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 7}, {7, 8}, {8, 9}, {9, 10}, {10, 11}, 

 {11, 12}, {12, 13}, {13, 2}, 

 {2, 14}, {2, 15}, {3, 15}, {3, 16}, {3, 17}, {4, 17}, {4, 18}, {4, 19}, {5, 19}, {5, 20}, 

 {5, 21}, {6, 21}, {6, 22}, {6, 23}, {7, 23}, {7, 24}, {7, 25}, {8, 25}, {8, 26}, {8, 27}, 

{9, 27}, 

 {9, 28}, {9, 29}, {10, 29}, {10, 30}, {10, 31}, {11, 31}, {11, 32}, {11, 33}, {12, 33}, 

{12, 34}, 

 {12, 35}, {13, 35}, {13, 36}, {13, 37}, {2, 37}, 

 {14, 15}, {15, 16}, {16, 17}, {17, 18}, {18, 19}, {19, 20}, {20, 21}, {21, 22}, {22, 

23}, 

 {23, 24}, {24, 25}, {25, 26}, {26, 27}, {27, 28}, {28, 29}, {29, 30}, {30, 31}, {31, 

32}, 

 {32, 33}, {33, 34}, {34, 35}, {35, 36}, {36, 37}, {37, 14}, 

 {14, 38}, {15, 38}, {15, 39}, {16, 39}, {17, 39}, {17, 40}, {18, 40}, {19, 40}, {19, 

41}, 

 {20, 41}, {21, 41}, {21, 42}, {22, 42}, {23, 42}, {23, 43}, {24, 43}, {25, 43}, {25, 

44}, 

 {26, 44}, {27, 44}, {27, 45}, {28, 45}, {29, 45}, {29, 46}, {30, 46}, {31, 46}, {31, 

47}, 

 {32, 47}, {33, 47}, {33, 48}, {34, 48}, {35, 48}, {35, 49}, {36, 49}, {37, 49}, {37, 

38}}; 

Fy=58.; 

EM=30450.; 

EMod = Table[EM, {i, 1, nel}]; 

Sigma=TEC = Table[0, {i, 1, nel}]; 

DeltaTn = Table[0, {i, 1, nel}]; 

ElasticSupport = Table[0, {i, 1, nod}, {j, 1, 3}]; 

SupportDisp = Table[0, {i, 1, nod}, {j, 1, 3}]; 

Do[ ThreeD;,area1 = area;cc = Sqrt[2*Pi*Pi*EM/Fy];sigma = NForce/area; 
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Do[If[NForce[[iger]] >= 0, area[[iger]] = NForce[[iger]]/(0.6Fy), 

 ( ri = 0.4993 *area[[iger]]^0.6777; lambdai = length[[iger]]/ri; 

         s1 = ((1 - lambdai^2/2/cc^2)* Fy)/(5/3 + 3 lambdai/8/cc - lambdai^3/8/cc^3); 

         s2 = (12 Pi Pi EM/23/lambdai^2); 

If[lambdai< cc, area[[iger]] = (Abs[NForce[[iger]]])/s1;]; 

If[lambdai>= cc, area[[iger]] = (Abs[NForce[[iger]]]/s2);] ;)]; 

If[area[[iger]] < 0.775, area[[iger]] = 0.775]; 

 , {iger, 1, nel}]; 

area = (area + area1)/2.;, {j1,1,23}]; 

Print["toplam w=", Total[area1*length]*0.288]; 

Print[MatrixForm[area1]]; 

 

Yukarıda verilen veri dosyası uygun şekilde icra edildiğinde minimum sistem ağırlığı ve 

kesit alanları bulunmaktadır. ThreeD modülü sadece normal gerilmeleri döngü 

içerisinde tekraren hesaplıyacak şekilde modifiye edilmiştir. Burada optimizasyon 

algoritması veri dosyasının son kısımlarındadır. Kullanılan algoritma iteratif bir 

algoritmadır. Başlangıçta kesit alanları minimum seçilerek ilk analiz yapılmaktadır. İlk 

analiz sonucu elde edilen çubuk normal kuvvetlerinden hareketle ve basınç veya çekme 

olmaları durumuna göre karşılaştırılacak emniyet gerilmeleri, narinlikler ve elastik – 

plastik burkulma halleri de gözetilerek, belirlenmektedir. Çubuklarda oluşan gerilmeler 

emniyet gerilmelerinden büyükse, kesit alanları daha önce belirlenen emniyet 

gerilmelerinden faydalanılarak hesaplanmaktadır. Hesaplanan yeni alanlar ve 

başlangıçta girilen alanlar ile toplanıp, ikiye bölünerek analizde tekrar kullanılacak yeni 

çubuk alanları bulunmaktadır. Böylece analiz 23 kez tekrar edilmektedir. Sonuçta ise 

optimum ağırlık ve kesit alanları belirlenmektedir.  

 

Yukarıda verilen kafes sistem Jalili ve Hosseinzadeh (2015) den önce diğer 

araştırmacılar tarafından [52, 53] partical swarm optimizasyonu (PSO) ile çözülerek 

optimum kesit alanları verilmiştir. Jalili ve Hosseinzadeh (2015) ise kültürel algoritma 

(CA) ile çözüme ulaşmışlardır. Kısıt olarak sadece gerilme değerleri göz önüne alınarak 

optimize edilen sonuçlar aşağıda Tablo 6.34’da sunulmaktadır. Bu çalışmadan elde 

edilen optimum ağırlık ve kesit alanları da Tablo 6.34’de diğer araştırmacıların 

sonuçları ile karşılaştırılmaktadır. Diğer araştırmacılar kafes sistemde bulunan benzer 

çubukları gruplandırarak çözüme ulaşmışlardır. 
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Bu çalışmada ise 120 çubuğun alanı da değişken olarak alınmış ve çözüme böylece 

gidilmiştir. Tablo 3.34’den görüleceği üzere farklı araştırmacıların farklı yaklaşımlarına 

göre çeşitli sonuçlar bulunmaktadır. Bu çalışmadan elde edilen sonuç diğerleri ile 

karşılaştırıldığında, çalışmada elde edilen sonuçların diğerlerinen çok iyi sonuç verdiği 

görülmektedir. Diğerlerinin optimizasyon yaklaşımı esasen karmaşık bir yapıya sahip 

olmakla birlikte analiz sayısı da oldukça fazladır, bu çalışmada önerilen yaklaşım 

oldukça kolay anlaşılabilir ve daha hızlı ve daha iyi bir sonuç vermiştir. Yapı toplam 

ağırlığı olarak karşılaştırıldığında bu çalışma sonucu bulunan değer diğerlerinden %10 

mertebesinde daha hafif olmuştur. 

Tablo 3.34. Kubbe kafes sistemin optimum kesit alanlarının diğer çalışmalarla 

karşılaştırılması 

 

 

Kaveh ve 

Talatahari 

(2009) 

PSO 

Kaveh ve 

Khayatazad 

(2013) 

PSOPC 

 

 

RO 

Jalili ve 

Hosseinzadeh 

(2015) CA 

Bu 

Çalışma 

1 3.147 3.235 3.128 3.123 2.468 

2 6.376 3.37 3.357 3.354 3.332 

3 5.957 4.116 4.114 4.112 3.402 

4 4.806 2.784 2.783 2.782 2.546 

5 0.775 0.777 0.775 0.775 0.775 

6 13.798 3.343 3.302 3.301 2.433 

7 2.452 2.454 2.453 2.446 2.357 

W (lb) 32432.9 19618.7 19476.2 19454.5 17143.2 

Analiz 

Sayısı 
N/A 125000 19950 4270 23 
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4.  BÖLÜM 

TARTIŞMA-SONUÇ VE ÖNERİLER 

4.1. Sonuç ve Öneriler 

4.1.1. Sonuçlar 

Bu tez çalışmasında sadece normal kuvvete çalışan çubukların iç kuvvetlerini elastik 

eğri yaklaşımıyla çözmek amacıyla formülasyon yapılmıştır. Normal kuvvete çalışan 

çubuğun boyuna uzama elastik eğrisi ile iç kuvvetler arasındaki ilişkinin diferansiyel 

denklemi elde edilmiştir. İlaveten, boyuna uzama elastik eğrisi ile uç deplasmanları sınır 

şartları arasındaki ilişkide tespit edilmiştir. Kodlama yöntemi tekniği kullanılarak, 

normal kuvvete çalışan çubuk sistemlerin düğüm deplasmanlarını ve iç kuvvetlerini 

tespit etmek üzere çubuk sisteme ait uç noktalarındaki denge denklemleri elde 

edilmiştir. Elde edile denklemlerin çözümü ile düğüm noktalarında bulunan 

deplasmanlar bulunup, iç kuvvetlerin hesabında kullanılmıştır. Üç ayrı durum olan bir 

boyutlu çubuk sistemler, iki boyutlu düzlemsel kafes çubuk sistemler ve üç boyutlu 

uzay kafes sistemleri için ayrı ayrı üç farklı bilgisayar programı geliştirilmiştir. Çalışma 

sonucunda geliştirilen programlar tekil ve boyuna düzgün yayılı yükleri yanı sıra; 

sıcaklık değişimi, elastik mesnet durumu ve mesnet çökmelerini de göz önüne 

alabilmektedir. Her bir durum için geliştirilen programlar yardımıyla kaynaklar da 

bulunan çubuk sistem örnekleri çözülerek karşılaştırılmıştır. Çalışmada elde edilen 

sonuçlar ile kaynaklarda verilen sonuçların birebir uyum içinde olduğu görülmüştür. 

Bir boyutlu durum için geliştirilen program ile boyuna uzama eğrisinin diferansiyel 

denklemi ile burulmaya maruz çubukların diferansiyel denklemi benzeştirilerek, 

burulma problemlerinin de çözüldüğü görülmüştür. Ayrıca aynı program ile ön 

gerilmeli betonarme probleminin çözümünün de benzeştirme yoluyla çözülebildiği 

anlaşılmıştır. Öngerilme problemi, iki ayrı benzeştirme yoluyla çözülebilmiştir, 
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birincisinde düğüm noktasına verilen deplasman benzeştirmesi diğer ise sıcaklık farkı 

nedeniyle oluşacak deplasman benzeştirmesidir. 

İki boyutlu durum için geliştirilen program yardımıyla da kaynaklardan alınan iki 

boyutlu düzlemsel kafes örneklerinin çözümleri elde edilmiş olup, sonuçların literatürde 

verilen çözümlerle uyum içinde olduğu görülmüştür. İki boyutlu kafes sistemlerin 

çözümünün yanı sıra, kafes sistemlerde kesit boyutlarının optimizasyonu için iteratif bir 

yöntem önerilmiştir. Önerilen yöntemle elde edilen optimum çubuk kesitlerinin literatür 

sonuçlarıyla uyumlu olduğu görülmüştür. 

İlaveten, üç boyutlu durum için geliştirilen program yardımıyla da literatürden alınan üç 

boyutlu kafes örneklerinin çözümleri elde edilmiş olup, sonuçların literatürde verilen 

çözümlerle uyum içinde olduğu görülmüştür. Üç boyutlu kafes sistemlerin çözümünün 

yanı sıra, kafes sistemlerde kesit boyutlarının optimizasyonu için iteratif bir yöntem 

önerilmiştir. Önerilen yöntemle elde edilen optimum çubuk kesitlerinin literatür 

sonuçlarıyla uyumlu olduğu görülmekle birlikte, önerilen iteratif yöntemle bulunan 

optimum çubuk kesitlerinin literatürde verilen değerlerden daha az olduğu, dolayısıyla 

da daha ekonomik çözümün elde edildiği görülmüştür. 
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EKLER 

EK 1. 

 

OneD := Module[{dummy}, 

   (*From this part below, the calculation is going to take place*) 

   dispN = 0; 

   Print["boundary condition in the beginning for each joint=",  

    MatrixForm[restraints]]; 

   Do[If[restraints[[i]] == 0, dispN = dispN + 1;  

     restraints[[i]] = dispN;, restraints[[i]] = 0], {i, 1, nod}]; 

   Print["total displacement=", dispN];  

   Print["displacement number for each joint (boundary condition \ 

ofter coding)=", MatrixForm[restraints]]; 

    

   SysEq = Table[0, {i, 1, dispN}]; 

   Do[ If[restraints[[i]] > 0,  

     SysEq[[restraints[[i]]]] = -jload[[i]]], {i, 1, nod}]; 

   Print["Beginning of SysEq=", MatrixForm[SysEq]]; 

    

   u[0] = 0; 

   lengthEl = Table[0, {i, 1, nel}]; 

   EEndForI = Table[0, {i, 1, nel}]; 

   EEndForJ = Table[0, {i, 1, nel}]; 

    

   uCurve = Table[0, {i, 1, nel}]; 

   NforceF = Table[0, {i, 1, nel}]; 

   Print[" ------------- Calculations are in proggress \ 

-------------------"]; 

   Do[ 

     i = defIJ[[nn, 1]]; j = defIJ[[nn, 2]];  

     Print[nn, " th element in progress, and, its definion is from ",  

      i, " to ", j]; 
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     xi = xc[[i]]; xj = xc[[j]];  

     length = xj - xi; 

     EM = EMod[[nn]]; 

     nz = nqz[[nn]]; 

     A = area[[nn]]; 

     alfaT = TEC[[nn]]; 

     dTn = DeltaTn[[nn]]; 

      

     codei = restraints[[i]]; 

     codej = restraints[[j]]; 

     If[SupportDisp[[i]] != 0, ui = SupportDisp[[i]], ui = u[codei]]; 

     If[SupportDisp[[j]] != 0, uj = SupportDisp[[j]], uj = u[codej]]; 

     Print["displacements at i and j end of the current element are ", 

       ui, " and ", uj, " nz=", nz]; 

      

     u1 = (Integrate[-nz, z] + c1)/(EM*A); 

     u0 = Integrate[u1, z] + c2; 

     bi = u0 /. z -> 0; Print["bi=", bi]; 

     bj = u0 /. z -> length; Print["bj=", bj]; 

     sol = Solve[{bi == ui, bj == uj}, {c1, c2}]; Print[sol]; 

     u0 = u0 /. sol[[1]];  

     Print["For element number ", nn, " longitudinal curve u0 =", u0]; 

      

     Nforce = EM*A (D[u0, z] - alfaT*dTn); 

      

     ni = -Nforce /. z -> 0; 

     nj = Nforce /. z -> length; 

     Print["Normal forces at end ", i, "  ; and at end ", j,  

      " in terms of end displacement for element number ", nn,  

      " are ", ni, " and ", nj]; 

      

     EEndForI[[nn]] = ni; 

     EEndForJ[[nn]] = nj; 
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     uCurve[[nn]] = u0; 

     lengthEl[[nn]] = length; 

     NforceF[[nn]] = Nforce; 

     If[codei > 0 , SysEq[[codei]] = SysEq[[codei]] + ni]; 

     If[codej > 0 , SysEq[[codej]] = SysEq[[codej]] + nj]; 

     Print[ 

      " ------------------------------------------------------------"]; 

     , {nn, 1, nel}] 

     

    Print[MatrixForm[SysEq], " = 0"]; 

   Print[" \ 

------------------------------------------------------------"]; 

   unk = Table[u[i], {i, 1, dispN}]; Print["unk=", unk]; 

   Print[" \ 

------------------------------------------------------------"]; 

   lsol = Flatten[Solve[SysEq == 0, unk]];  

   Print["lastsol for u displacement =", lsol]; 

   Print[" \ 

------------------------------------------------------------"]; 

   Do[u[i] = lsol[[i, 2]], {i, 1, dispN}]; 

   Print[" \ 

------------------------------------------------------------"]; 

   Print["Elastic Longitudinal curves are =", MatrixForm[uCurve]]; 

   Print[" \ 

------------------------------------------------------------"]; 

   Print["end forces for EndI are =", MatrixForm[EEndForI]]; 

   Print["end forces for EndJ are =", MatrixForm[EEndForJ]]; 

   Print[" \ 

------------------------------------------------------------"]; 

   Print["element force function are =", MatrixForm[NforceF]]; 

    

   Print[" ------------- Calculations are completed \ 

-------------------"]; 
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   Print[" ------------- Graphs are in progress -------------------"]; 

   Lv = 10^-15; 

   maxu = Max[{Abs[lsol[[All, 2]]], Lv}]; 

   maxlng = Max[{lengthEl, Lv}]; 

   maxN = Max[{Abs[EEndForI], Lv}]; 

   ud = Table[0, {i, 1, nod}]; 

   Do[If[restraints[[i]] > 0, ud[[i]] = u[restraints[[i]]],  

     ud[[i]] = 0], {i, 1, nod}]; 

   rateU = maxlng/maxu/5; 

   rateN = maxlng/maxN/2.5; 

   xcd = xc + ud*rateU; 

   punto0 = 10; 

   punto1 = 14; 

   Do[maxnqz =  

      Max[{Lv, Abs[nqz[[ii]] /. z -> 0],  

        Abs[nqz[[ii]] /. z -> lengthEl[[ii]]]}];, {ii, 1, nel}]; 

   Ratenqz = maxlng/maxnqz/2.5; 

    

   pltdgm0 = Table[Graphics[] 0, {i, 1, nod}]; 

   pltdgm1 = Table[Graphics[] 0, {i, 1, nod}]; 

   pltdgm2 = Table[Graphics[] 0, {i, 1, nod}]; 

   pltmsnt = pltmsntd = Table[Graphics[], {i, 1, nod}]; 

   plttyuk = Table[Graphics[], {i, 1, nod}]; 

   plttyukVal = Table[Graphics[], {i, 1, nod}]; 

   (*joints are numbered in graph*) 

    

   GrSt = maxlng/50; 

   SabitM[x_,  

     y_] := {Line[{{x - 2 *GrSt, y - 3.5* GrSt}, {x, y}, {x + 2*GrSt,  

        y - 3.5*GrSt}, {x - 2* GrSt, y - 3.5* GrSt}}],  

     Table[Line[{{x + (Hsh - 1)*GrSt, y - 4.5*GrSt}, {x + Hsh*GrSt,  

         y - 3.5*GrSt}}], {Hsh, -3, 3}],  

     Line[{{x - 3*GrSt, y - 3.5*GrSt}, {x + 3*GrSt, y - 3.5*GrSt}}]}; 
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   KayiciM[x_,  

     y_]  := {Line[{{x - 2 * GrSt, y - 3.5*GrSt}, {x,  

        y}, {x + 2 * GrSt, y - 3.5*GrSt}, {x - 2*GrSt,  

        y - 3.5*GrSt}}],  

     Table[Circle[{x + Hsh* GrSt, y - 4*GrSt}, .5*GrSt], {Hsh, -1,  

       1}], Line[{{x - 3*GrSt, y - 4.5*GrSt}, {x + 3*GrSt,  

        y - 4.5*GrSt}}]}; 

   mxload = Max[{Abs[jload], Lv}]; 

   RateLoad = maxlng/mxload/5; 

    

    Do[ 

          nxx = xc[[iin]]; nyy = -maxlng/50;      

         pltdgm0[[iin]] =  

     ListPlot[{{nxx + 1.5 GrSt, 2 nyy}}, PlotRange -> All,  

      Axes -> False, PlotMarkers -> {iin, 8},  

      PlotStyle -> {Thick, Blue}]; 

           

    pltdgm1[[iin]] =  

     ListPlot[{{nxx, 0}}, PlotRange -> All, Axes -> False,  

      PlotMarkers -> {\[FilledSmallCircle], 10},  

      PlotStyle -> {Thin, Black}]; 

           

    pltdgm2[[iin]] =  

     ListPlot[{{nxx + 1.5 GrSt, 2 nyy}}, PlotRange -> All,  

      Axes -> False, PlotMarkers -> {\[EmptyCircle], 16},  

      PlotStyle -> {Thin, Black}]; 

     

       (*tekil yuk cizimi*) 

    If[(restraints[[iin]] > 0 && jload[[iin]] != 0),       

     plttyukVal[[iin]] =  

      ListPlot[{{nxx - 1.5 nyy, -2 nyy}}, PlotRange -> All,  

       Axes -> False, PlotMarkers -> {Subscript[P, iin], punto1},  
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       PlotStyle -> {Thin, Black}]; 

                    

     plttyuk[[iin]] =  

      Graphics[{Arrowheads[Medium],  

        Arrow[{{nxx, 0}, {nxx + jload[[iin]]*RateLoad, 0}}]}]]; 

     

    (*mesnet ayarlama*) 

    If[restraints[[iin]] == 0,  

     pltmsnt[[iin]] = Graphics[SabitM[nxx, 0]]]; 

    (* x ekseni boyunca kayici*) 

    (*deformasyon sonrası kayıcı mesnet yerleri*) 

    nxx = xcd[[iin]]; nyy = -1; 

    If[restraints[[iin]] == 0,  

     pltmsntd[[iin]] = Graphics[SabitM[nxx, nyy]]]; 

    (* x ekseni boyunca kayici*) 

     

    , {iin, 1, nod}]; 

    

   grafEl = grafEld = Table[Graphics[], {i, 1, nel}]; 

   grafLC = Table[Graphics[], {i, 1, nel}]; 

   grafNf = Table[Graphics[], {i, 1, nel}]; 

   grafnqz = Table[Graphics[], {i, 1, nel}]; 

   plt3 = Table[Graphics[], {i, 1, nel}]; 

   pltucNi = Table[Graphics[], {i, 1, nel}]; 

   pltucNvali = Table[Graphics[], {i, 1, nel}]; 

   pltucNvalj = Table[Graphics[], {i, 1, nel}]; 

   pltucNj = Table[Graphics[], {i, 1, nel}]; 

    

   pltucnqzi = Table[Graphics[], {i, 1, nel}]; 

   pltucnqzvali = Table[Graphics[], {i, 1, nel}]; 

   pltucnqzvalj = Table[Graphics[], {i, 1, nel}]; 

   pltucnqzj = Table[Graphics[], {i, 1, nel}]; 

   graphLCvali = Table[Graphics[], {i, 1, nel}]; 
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   graphLCvalj = Table[Graphics[], {i, 1, nel}]; 

   graphLCuci = Table[Graphics[], {i, 1, nel}]; 

   graphLCucj = Table[Graphics[], {i, 1, nel}]; 

   Do[ 

    ii = defIJ[[nn, 1]];  

    jj = defIJ[[nn, 2]];  

    xcii = xc[[ii]]; 

    ycii = ycjj = 0; 

    xcjj = xc[[jj]]; 

    lng = xcjj - xcii; 

    (*graph of u function*) 

    ff = uCurve[[nn]]; 

    xx = z ; 

    yy = rateU*ff; 

    grafLC[[nn]] =  

     ParametricPlot[{xx + xcii, yy}, {z, 0, lng}, PlotRange -> All,  

      PlotStyle -> {Black}, Axes -> False]; 

    (*at the end of element drawing graph value at i for uCurve*) 

    xxi1 = xcii; 

    yyi1 = 0; 

     

    xxi2 = xcii + xx /. z -> 0; 

    yyi2 = yyi1 + yy /. z -> 0; 

     

    graphLCuci[[nn]] =  

     ListLinePlot[{{xxi1, yyi1}, {xxi2, yyi2}}, PlotRange -> All,  

      Axes -> False, PlotStyle -> {Black}]; 

    If[yyi2 != 0, 

     graphLCvali[[nn]] =  

       ListPlot[{{xxi1 + 2 (-xxi1 + xxi2)/4 + maxlng/20,  

          yyi1 + 2 (-yyi1 + yyi2)/4}}, 

        PlotRange -> All, Axes -> False,  

        PlotMarkers -> {Rotate[ 
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           Subscript[U, restraints[[defIJ[[nn, 1]]]]], 0 Degree],  

          punto0}, PlotStyle -> Black]; 

          ]; 

     

    (*drawing graph value at j for uCurve*) 

     

    If[nn == nel, 

     xxi1 = xcjj; 

     yyi1 = 0; 

     (xxi2 = xcii + xx /. z -> lng; 

       yyi2 = yyi1 + yy /. z -> lng; 

       

      graphLCucj[[nn]] =  

       ListLinePlot[{{xxi1, yyi1}, {xxi2, yyi2}}, PlotRange -> All,  

        Axes -> False, PlotStyle -> {Black}]; 

      If[yyi2 != 0, 

       graphLCvalj[[nn]] =  

         ListPlot[{{xxi1 + 2 (-xxi1 + xxi2)/4 + maxlng/20,  

            yyi1 + 2 (-yyi1 + yyi2)/4}}, 

          PlotRange -> All, Axes -> False,  

          PlotMarkers -> {Rotate[ 

             Subscript[U, restraints[[defIJ[[nn, 2]]]]], 0 Degree],  

            punto0}, PlotStyle -> Black]; 

            ];) 

     ]; 

     

    (*graph of element*) 

     

     ikoor = { xc[[ii]], 0};  jkoor = {xc[[jj]], 0}; nyy = -1; 

     grafEl[[nn]] =  

     GraphPlot[{ii -> jj},  

      VertexCoordinateRules -> {ii -> ikoor, jj -> jkoor},  

      VertexLabeling -> False]; 
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     ikoor = { xcd[[ii]], nyy};  jkoor = {xcd[[jj]], nyy}; 

    grafEld[[nn]] =  

     GraphPlot[{ii -> jj},  

      VertexCoordinateRules -> {ii -> ikoor, jj -> jkoor},  

      VertexLabeling -> True]; 

     

    (*el number in gaph*) 

    nxx = (xcii + xcjj)/2;  

      nyy = -maxlng/20; 

     

       plt3[[nn]] =  

     ListPlot[{{nxx, nyy}}, PlotRange -> All, Axes -> False,  

      PlotMarkers -> {Subscript[e, nn], punto1},  

      PlotStyle -> {Thin, Black}]; 

      

     

    (*graph of normal force function*) 

     

    ff = NforceF[[nn]]; 

     

    xx = z ; 

    yy = rateN*ff; 

    grafNf[[nn]] =  

     ParametricPlot[{xx + xcii, yy}, {z, 0, lng}, PlotRange -> All,  

      PlotStyle -> {Black}, Axes -> False]; 

    (*at the end of element drawing graph value at i for normal force*) 

 

     

    xxi1 = xcii; 

    yyi1 = 0; 

     

    xxi2 = xcii + xx /. z -> 0; 

    yyi2 = yyi1 + yy /. z -> 0; 
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    pltucNi[[nn]] =  

     ListLinePlot[{{xxi1, yyi1}, {xxi2, yyi2}}, PlotRange -> All,  

      Axes -> False, PlotStyle -> {Black}]; 

    If[EEndForI[[nn]] != 0, 

     pltucNvali[[nn]] =  

       ListPlot[{{xxi1 + 2 (-xxi1 + xxi2)/4 + maxlng/20,  

          yyi1 + 2 (-yyi1 + yyi2)/4}}, PlotRange -> All,  

        Axes -> False,  

        PlotMarkers -> {Rotate[-EEndForI[[nn]], 90 Degree], punto0},  

        PlotStyle -> Black]; 

          ]; 

    (*drawing at j end*) 

    xxi1 = xcjj; 

    yyi1 = 0; 

     

    xxi2 = xcii + xx /. z -> lng; 

    yyi2 = yyi1 + yy /. z -> lng; 

    pltucNj[[nn]] =  

     ListLinePlot[{{xxi1, yyi1}, {xxi2, yyi2}}, PlotRange -> All,  

      Axes -> False, PlotStyle -> {Black}]; 

    If[EEndForI[[nn]] != 0, 

     pltucNvalj[[nn]] =  

       ListPlot[{{xxi1 + 2 (-xxi1 + xxi2)/4 - maxlng/20,  

          yyi1 + 2 (-yyi1 + yyi2)/4}}, PlotRange -> All,  

        Axes -> False,  

        PlotMarkers -> {Rotate[EEndForJ[[nn]], 90 Degree], punto0},  

        PlotStyle -> Black]; 

         ]; 

     

    (*graph of nqz*) 

     

    ff = nqz[[nn]]; 
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    xx = z ; 

    yy = Ratenqz*ff; 

    grafnqz[[nn]] =  

     ParametricPlot[{xx + xcii, yy}, {z, 0, lng}, PlotRange -> All,  

      PlotStyle -> {Black}, Axes -> False]; 

    (*at the end of element drawing graph value at i for nqz*) 

     

    xxi1 = xcii; 

    yyi1 = 0; 

     

    xxi2 = xcii + xx /. z -> 0; 

    yyi2 = yyi1 + yy /. z -> 0; 

    nqz0 = nqz[[nn]] /. z -> 0; 

    pltucnqzi[[nn]] =  

     ListLinePlot[{{xxi1, yyi1}, {xxi2, yyi2}}, PlotRange -> All,  

      Axes -> False, PlotStyle -> {Black}]; 

    If[nqz0 != 0, 

     pltucnqzvali[[nn]] =  

       ListPlot[{{xxi1 + 2 (-xxi1 + xxi2)/4 + maxlng/20,  

          yyi1 + 2 (-yyi1 + yyi2)/4}}, 

        PlotRange -> All, Axes -> False,  

        PlotMarkers -> {Rotate[nqz0, 90 Degree], punto0},  

        PlotStyle -> Black]; 

     ]; 

    (*drawing at j end*) 

    xxi1 = xcjj; 

    yyi1 = 0; 

     

    xxi2 = xcii + xx /. z -> lng; 

    yyi2 = yyi1 + yy /. z -> lng; 

    nqzL = nqz[[nn]] /. z -> lng; 

    pltucnqzj[[nn]] =  

     ListLinePlot[{{xxi1, yyi1}, {xxi2, yyi2}}, PlotRange -> All,  
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      Axes -> False, PlotStyle -> {Black}]; 

    If[nqzL != 0, 

     pltucnqzvalj[[nn]] =  

       ListPlot[{{xxi1 + 2 (-xxi1 + xxi2)/4 - maxlng/20,  

          yyi1 + 2 (-yyi1 + yyi2)/4}}, 

        PlotRange -> All, Axes -> False,  

        PlotMarkers -> {Rotate[nqzL, 90 Degree], punto0},  

        PlotStyle -> Black]; 

       ]; 

     

    , {nn, 1, nel}]; 

    

   Print["Geometry and support conditions of system with its loads."]; 

    

   size = 900; 

   Print[Show[grafEl, plt3, pltdgm0, pltdgm1, pltdgm2, pltmsnt,  

     plttyuk, plttyukVal, grafnqz, pltucnqzi, pltucnqzj, 

                         pltucnqzvali, pltucnqzvalj,  

     Axes -> {False, False}, AspectRatio -> Automatic,  

     ImageSize -> size]]; 

   Print["Graphical presentation of Longitudinal curve of system."]; 

   Print[Show[grafEl, grafLC, plt3, pltmsnt, pltdgm0, pltdgm1,  

     pltdgm2, graphLCuci, graphLCucj, graphLCvali, graphLCvalj,  

     Axes -> {False, False}, AspectRatio -> Automatic,  

     ImageSize -> size]]; 

   Print["Graphical presentation of normal force distribution of \ 

system."] 

    Print[ 

     Show[grafEl, grafNf, plt3, pltucNi, pltucNj, pltucNvali,  

      pltucNvalj, pltmsnt, 

               Axes -> {False, False}, AspectRatio -> Automatic,  

      ImageSize -> size]]; 

   Print["Upper is the system before deformation, Lower is the system \ 
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after deformation."] 

    Print[ 

     Show[grafEl, grafEld, pltmsnt, pltmsntd, plt3, pltdgm0, pltdgm1,  

      pltdgm2, ImageSize -> size]]; 

   ]; 
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EK 2. 

 

TwoD := Module[{dummy}, 

   (* buradan itibaren program 2D*) 

   dispN = 0; 

   Print[MatrixForm[xy]]; 

   Print["definition of element=", MatrixForm[definition]]; 

   Print["boundary condition in the beginning for each joint=",  

    MatrixForm[restraints]]; 

   Print["Elastic Support for each joint=",  

    MatrixForm[ElasticSupport]]; 

    

   (*dugum elastik mesnete oturuyorsa,  

   mesnetin elastik davrandığı yön için yay katsayısı 

    verilir ve düğüm serbest bırakılır eger serbest değilse program \ 

onu serbest bırakır, asagıdaki do loop bu isi yapmaktadır *) 

   Do[ 

        If[(restraints[[i, j]] == 1 && ElasticSupport [[i, j]] != 0),  

     restraints[[i, j]] = 0; 

            If[j == 1, 

                 

      Print[i,  

       " nolu düğüm x yönünde elastik mesnete oturduğu için düğüm \ 

tutulu girilmiş, tutulu düğüm x yönünde serbest bırakıldı."], 

            

      

      Print[i,  

       " nolu dügüm y yönünde elastik mesnete oturduğu için düğüm \ 

tutulu girilmiş, tutulu düğüm y yönünde serbest bırakıldı."]]], {i, 1, 

      nod}, {j, 1, 2}]; 

    

   (*dugumde mesnet çökmesi varsa,  

   o düğüm mesnet çökmesi yönünde tutulu olmalıdır asagıdaki do loop \ 
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bu isi yapmaktadır*) 

    

   Do[ 

        If[(restraints[[i, j]] == 0 && SupportDisp [[i, j]] != 0),  

     restraints[[i, j]] = 1; 

            If[j == 1, 

                 

      Print[i,  

       " nolu düğümde x yönünde mesnet çökmesi var, kendi serbest \ 

bırakılmıs; halbuki tutulu olması gerekir, düğüm x yönünde tutuldu."], 

                 

      Print[i,  

       " nolu düğümde y yönünde mesnet çökmesi var, kendi serbest \ 

bırakılmıs; halbuki tutulu olması gerekir, düğüm y yönünde \ 

tutuldu."]]], {i, 1, nod}, {j, 1, 2}]; 

    

    

   Do[ If[restraints[[i, j]] == 0, dispN = dispN + 1;  

     restraints[[i, j]] = dispN;, restraints[[i, j]] = 0], {i, 1,  

     nod}, {j, 1, 2}]; 

   Print["total displacement=", dispN];  

   Print["displacement number for each joint (boundary condition \ 

ofter coding)=", MatrixForm[restraints]]; 

    

   d[0] = 0; 

   NForce = Table[0, {i, 1, nel}]; 

   SysEq = Table[0, {i, 1, dispN}]; 

   Lengt = Table[0, {i, 1, nel}]; 

    

   Do[ 

    (*dugumde mesnet çökmesi varsa,  

    o düğüm mesnet çökmesi yönünde tutulu olmalıdır*) 

    codeix = restraints[[i, 1]]; 
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    codeiy = restraints[[i, 2]]; 

     

    If[codeix > 0,  

     SysEq[[codeix]] =  

      jload[[i, 1]] - d[codeix]*ElasticSupport[[i, 1]]]; 

    If[codeiy > 0,  

     SysEq[[codeiy]] =  

      jload[[i, 2]] - d[codeiy]*ElasticSupport[[i, 2]]]; 

     

    , {i, 1, nod}]; 

    

   Do[ 

    Print["Element number  [", nn, "] is in progress;"]; 

    EM = EMod[[nn]]; 

    csa = area[[nn]]; 

    alfaT = TEC[[nn]]; 

    dTn = DeltaTn[[nn]]; 

    ii = defIJ[[nn, 1]]; 

    jj = defIJ[[nn, 2]]; 

    xi = xy[[ii, 1]]; yi = xy[[ii, 2]]; 

    xj = xy[[jj, 1]]; yj = xy[[jj, 2]];  

    vektor = {xj - xi, yj - yi}; 

    Lengt[[nn]] = length = Norm[vektor]; 

    (*Print[length];*) 

     

    csx = Normalize[vektor][[1]]; 

    csy = Normalize[vektor][[2]]; 

    (*Print[" csx csy=",csx," ",csy];*) 

     

    codeix = restraints[[ii, 1]]; 

    codeiy = restraints[[ii, 2]]; 

     

    codejx = restraints[[jj, 1]]; 
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    codejy = restraints[[jj, 2]]; 

     

    ui = d[codeix]*csx + d[codeiy]*csy + SupportDisp[[ii, 1]]*csx +  

      SupportDisp[[ii, 2]]*csy; 

    uj = d[codejx]*csx + d[codejy]*csy + SupportDisp[[jj, 1]]*csx +  

      SupportDisp[[jj, 2]]*csy; 

     

    uu = c1 z + c2; 

    b1 = uu /. z -> 0; 

    b2 = uu /. z -> length; 

    sol = Flatten[Solve[{b1 == ui, b2 == uj}, {c1, c2}]]; 

     

    uu = uu /. sol; 

     

    NF = csa*EM*D[uu, z]; 

    NF = EM*csa (D[uu, z] - alfaT*dTn); 

     

    ni = NF /. z -> 0; 

    nj = NF /. z -> length; 

    NForce[[nn]] = nj; 

    fxi = -ni*csx; 

    fyi = -ni*csy; 

    fxj = nj*csx; 

    fyj = nj*csy; 

    If[codeix > 0, SysEq[[codeix]] = SysEq[[codeix]] - fxi]; 

    If[codeiy > 0, SysEq[[codeiy]] = SysEq[[codeiy]] - fyi]; 

    If[codejx > 0, SysEq[[codejx]] = SysEq[[codejx]] - fxj]; 

    If[codejy > 0, SysEq[[codejy]] = SysEq[[codejy]] - fyj]; 

    , {nn, 1, nel}]; 

   SysEq = Expand[SysEq]; 

    

   Print["syseq=", MatrixForm[SysEq], "=0"]; 
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   unk = Table[d[i], {i, 1, dispN}]; 

   sol = Flatten[Solve[SysEq == 0, unk]];  

   Print["solution=", MatrixForm[sol]]; 

   mxdisp = Max[Abs[sol[[All, 2]]]]; 

   Do[d[i] = sol[[i, 2]];, {i, 1, dispN}]; 

   Print[MatrixForm[NForce]]; 

    

   ]; 

(*graph modul*) 

GrTwoD := Module[{dummy}, 

   mxlng = Max[Lengt]; 

    

   RateDisp = mxlng/mxdisp/10; 

   disp2D = SupportDisp; 

   Do[ 

       codeix = restraints[[ii, 1]]; 

       codeiy = restraints[[ii, 2]]; 

         

    If[codeix > 0, disp2D[[ii, 1]] = d[codeix]]; 

    If[codeiy > 0, disp2D[[ii, 2]] = d[codeiy]]; 

     

    , {ii, 1, nod}]; 

   Print[MatrixForm[disp2D]]; 

   xyd = xy + RateDisp*disp2D; 

   Print[MatrixForm[xy]]; 

   Print[MatrixForm[xyd]]; 

    

      (* deformayonlu ve deformasyonsuz hal grafigi*) 

   grfk = grfkd = grBarForce = Table[Graphics[], {nn, 1, nel}]; 

    

   Do[  

    ii = defIJ[[nn, 1]]; 

    jj = defIJ[[nn, 2]]; 
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    xi = xy[[ii, 1]]; yi = xy[[ii, 2]]; 

    xj = xy[[jj, 1]]; yj = xy[[jj, 2]];  

     

     ikoor = { xi, yi}; 

      jkoor = {xj, yj}; 

    dnac = 0; 

     grfk[[nn]] =  

     GraphPlot[{ii -> jj},  

      VertexCoordinateRules -> {ii -> ikoor, jj -> jkoor},  

      VertexLabeling -> True, DirectedEdges -> {True},  

      EdgeLabeling -> True]; 

     

          ikoor = { xyd[[ii, 1]], xyd[[ii, 2]]}; 

          jkoor = { xyd[[jj, 1]], xyd[[jj, 2]]}; 

     

         grfkd[[nn]] =  

     GraphPlot[{ii -> jj},  

      VertexCoordinateRules -> {ii -> ikoor, jj -> jkoor},  

      PlotStyle -> Dashed]; 

    grBarForce[[nn]] =  

     ListPlot[{{(xi + xj)/2, (yi + yj)/2}}, PlotRange -> All,  

      Axes -> False, PlotMarkers -> {Rotate[NForce[[nn]], dnac], 10},  

      PlotStyle -> Red]; 

        , {nn, 1, nel}]; 

    

   (* yuklerin yeri ve cizimi*) 

   mxload = Max[Abs[jload[[All, All]]]]; 

   RateLoad = mxlng/mxload/10; 

   grload = Table[Graphics[], {i, 1, nod}, {j, 1, 2}]; 

   Fsize = Small; 

   Do[ 

     

    If[(restraints[[i, 1]] > 0 && jload[[i, 1]] != 0), 
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     grload[[i, 1]] =  

      Graphics[{Arrowheads[Fsize],  

        Arrow[{{xy[[i, 1]],  

           xy[[i, 2]]}, {xy[[i, 1]] + jload[[i, 1]]*RateLoad,  

           xy[[i, 2]]}}]}]; 

     Print["nod i=", i, " xi", xy[[i, 1]], " yi=", xy[[i, 1]], " xj=", 

       xy[[i, 1]] + jload[[i, 1]]*RateLoad, " yj=", xy[[i, 2]]]; 

     ]; 

     

    If[(restraints[[i, 2]] > 0 && jload[[i, 2]] != 0), 

           

     grload[[i, 2]] =  

       Graphics[{Arrowheads[Fsize],  

         Arrow[{{xy[[i, 1]], xy[[i, 2]]}, {xy[[i, 1]],  

            xy[[i, 2]] + jload[[i, 2]]*RateLoad}}]}]; 

     ]; 

    , {i, 1, nod}]; 

    

    

   (*mesnet tipi*) 

   GrSt = mxlng/50; 

   SabitM[x_,  

     y_] := {Line[{{x - 2 *GrSt, y - 3.5* GrSt}, {x, y}, {x + 2*GrSt,  

        y - 3.5*GrSt}, {x - 2* GrSt, y - 3.5* GrSt}}],  

     Table[Line[{{x + (Hsh - 1)*GrSt, y - 4.5*GrSt}, {x + Hsh*GrSt,  

         y - 3.5*GrSt}}], {Hsh, -3, 3}],  

     Line[{{x - 3*GrSt, y - 3.5*GrSt}, {x + 3*GrSt, y - 3.5*GrSt}}]}; 

    

   KayiciM[x_,  

     y_]  := {Line[{{x - 2 * GrSt, y - 3.5*GrSt}, {x,  

        y}, {x + 2 * GrSt, y - 3.5*GrSt}, {x - 2*GrSt,  

        y - 3.5*GrSt}}],  
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     Table[Circle[{x + Hsh* GrSt, y - 4*GrSt}, .5*GrSt], {Hsh, -1,  

       1}], Line[{{x - 3*GrSt, y - 4.5*GrSt}, {x + 3*GrSt,  

        y - 4.5*GrSt}}]}; 

    

   KayiciMr[x_,  

     y_]  := {Line[{{y - 3.5*GrSt, x - 2 * GrSt}, {y,  

        x}, {y - 3.5*GrSt, x + 2 * GrSt}, {y - 3.5*GrSt,  

        x - 2*GrSt}}],  

     Table[Circle[{y - 4*GrSt, x + Hsh* GrSt}, .5*GrSt], {Hsh, -1,  

       1}], Line[{{y - 4.5*GrSt, x - 3*GrSt}, {y - 4.5*GrSt,  

        x + 3*GrSt}}]}; 

    

   (* mesnetlerin ayarlanmasi*) 

   grmsnt = Table[Graphics[], {i, 1, nod}]; 

    

   Do[ 

    xi = xy[[i, 1]]; yi = xy[[i, 2]]; 

    (*sabit mesnet*) 

    If[(restraints[[i, 1]] == 0 && restraints[[i, 2]] == 0), 

          grmsnt[[i]] = Graphics[SabitM[xi, yi]]]; 

    (* x ekseni boyunca kayici*) 

    If[(restraints[[i, 1]] > 0 && restraints[[i, 2]] == 0), 

          grmsnt[[i]] = Graphics[KayiciM[xi, yi]]]; 

    (* y ekseni boyunca kayici*) 

    If[(restraints[[i, 1]] == 0 && restraints[[i, 2]] > 1), 

     grmsnt[[i]] = {grmsnt[[i]], Graphics[KayiciMr[yi, xi]]}; 

          

      ]; 

     

    , {i, 1, nod}]; 

    

   (* mesnet cokmesi varsa mesnetlerin ayarlanmasi*) 

   grmsntd = Table[Graphics[], {i, 1, nod}]; 
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   Do[ 

    xi = xyd[[i, 1]]; yi = xyd[[i, 2]]; 

    (*sabit mesnet*) 

    If[(restraints[[i, 1]] == 0 && restraints[[i, 2]] == 0), 

          grmsntd[[i]] = Graphics[SabitM[xi, yi]]]; 

    (* x ekseni boyunca kayici*) 

    If[(restraints[[i, 1]] > 0 && restraints[[i, 2]] == 0), 

          grmsntd[[i]] = Graphics[KayiciM[xi, yi]]]; 

    (* y ekseni boyunca kayici*) 

    If[(restraints[[i, 1]] == 0 && restraints[[i, 2]] > 1), 

     grmsntd[[i]] = {grmsnt[[i]], Graphics[KayiciMr[yi, xi]]}; 

           

      ]; 

     

    , {i, 1, nod}]; 

   Print[Show[grfk, grload, grmsnt, Axes -> False, ImageSize -> 1000]]; 

   Print[Show[grfk, grfkd, grload, grmsnt, grmsntd, grBarForce,  

     Axes -> False, ImageSize -> 1000]];]; 
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EK 3. 

 

ThreeD := Module[{dummy}, 

   dispN = 0; 

   (*Print[MatrixForm[xyz]]; 

   Print["definition of element=",MatrixForm[defIJ]]; 

   Print["boundary condition in the beginning for each joint=", 

   MatrixForm[restraints]];*) 

    

   (*dugum elastik mesnete oturuyorsa,  

   mesnetin elastik davrandığı yön için yay katsayısı 

    verilir ve düğüm serbest bırakılır eger serbest değilse program \ 

onu serbest bırakır, asagıdaki do loop bu isi yapmaktadır *) 

   Do[ 

         If[(restraints[[i, j]] == 1 && ElasticSupport [[i, j]] != 0), 

      restraints[[i, j]] = 0; 

       If[j == 1,  

      Print[i,  

       "nolu düğüm x yönünde elastik mesnete oturduğu için düğüm \ 

tutulu girilmiş, tutulu düğüm x yönünde serbest bırakıldı."]]; 

       If[j == 2,  

      Print[i,  

       " nolu dügüm y yönünde elastik mesnete oturduğu için düğüm \ 

tutulu girilmiş, tutulu düğüm y yönünde serbest bırakıldı."]]; 

       If[j == 3,  

      Print[i,  

       " nolu dügüm z yönünde elastik mesnete oturduğu için düğüm \ 

tutulu girilmiş, tutulu düğüm z yönünde serbest bırakıldı."]]; 

         ], {i, 1, nod}, {j, 1, 3}]; 

    

   (*dugumde mesnet çökmesi varsa,  

   o düğüm mesnet çökmesi yönünde tutulu olmalıdır asagıdaki do loop \ 

bu isi yapmaktadır*) 
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   Do[ 

        If[(restraints[[i, j]] == 0 && SupportDisp [[i, j]] != 0),  

      restraints[[i, j]] = 1; 

         If[j == 1,  

       Print[i,  

        " nolu düğümde x yönünde mesnet çökmesi var, kendi serbest \ 

bırakılmıs; halbuki tutulu olması gerekir, düğüm x yönünde \ 

tutuldu."]];  

                           

       If[j == 2,  

        Print[i,  

         " nolu düğümde y yönünde mesnet çökmesi var, kendi serbest \ 

bırakılmıs; halbuki tutulu olması gerekir, düğüm y yönünde tutuldu."]]; 

         If[j == 3,  

       Print[i,  

        " nolu düğümde z yönünde mesnet çökmesi var, kendi serbest \ 

bırakılmıs; halbuki tutulu olması gerekir, düğüm z yönünde tutuldu."]]; 

               ];, {i, 1, nod}, {j, 1, 2}]; 

    

       

   Do[ 

     

        If[restraints[[i, j]] == 0, dispN = dispN + 1;  

     restraints[[i, j]] = dispN;, restraints[[i, j]] = 0], {i, 1,  

     nod}, {j, 1, 3}]; 

   Print["total displacement=", dispN];  

   (*Print[ 

   "displacement number for each joint (boundary condition ofter \ 

coding)=",MatrixForm[restraints]];*) 

    

   d[0] = 0; 

   NForce = Table[0, {i, 1, nel}]; 
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   SysEq = Table[0, {i, 1, dispN}]; 

   length = Table[0, {i, 1, nel}]; 

   Do[ 

     

    codeix = restraints[[i, 1]]; 

    codeiy = restraints[[i, 2]]; 

    codeiz = restraints[[i, 3]]; 

     

    If[codeix > 0,  

     SysEq[[codeix]] =  

      jload[[i, 1]] - d[codeix]*ElasticSupport[[i, 1]]]; 

    If[codeiy > 0,  

     SysEq[[codeiy]] =  

      jload[[i, 2]] - d[codeiy]*ElasticSupport[[i, 2]]]; 

    If[codeiz > 0,  

     SysEq[[codeiz]] =  

      jload[[i, 3]] - d[codeiz]*ElasticSupport[[i, 3]]]; 

     

    , {i, 1, nod}]; 

    

   Do[ 

    Print["Element number  [", nn, "] is in progress;"]; 

     EM = EMod[[nn]]; 

              csa = area[[nn]]; 

              alfaT = TEC[[nn]]; 

              dTn = DeltaTn[[nn]]; 

     

    ii = defIJ[[nn, 1]]; 

    jj = defIJ[[nn, 2]]; 

    xi = xyz[[ii, 1]]; yi = xyz[[ii, 2]]; zi = xyz[[ii, 3]]; 

    xj = xyz[[jj, 1]]; yj = xyz[[jj, 2]]; zj = xyz[[jj, 3]]; 

    vector = {xj - xi, yj - yi, zj - zi}; 

    length[[nn]] = lengthL = Norm[vector]; 
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    csx = Normalize[vector][[1]];  

    csy = Normalize[vector][[2]]; 

    csz = Normalize[vector][[3]]; 

     

    codeix = restraints[[ii, 1]]; 

    codeiy = restraints[[ii, 2]]; 

    codeiz = restraints[[ii, 3]]; 

    codejx = restraints[[jj, 1]]; 

    codejy = restraints[[jj, 2]]; 

    codejz = restraints[[jj, 3]]; 

     

     

    ui = d[codeix]*csx + d[codeiy]*csy + d[codeiz]*csz +  

      SupportDisp[[ii, 1]]*csx + SupportDisp[[ii, 2]]*csy +  

      SupportDisp[[ii, 3]]*csz; 

    uj = d[codejx]*csx + d[codejy]*csy + d[codejz]*csz +  

      SupportDisp[[jj, 1]]*csx + SupportDisp[[jj, 2]]*csy +  

      SupportDisp[[jj, 3]]*csz; 

     

    uu = c1 z + c2; 

    b1 = uu /. z -> 0; 

    b2 = uu /. z -> lengthL; 

    sol = Flatten[Solve[{b1 == ui, b2 == uj}, {c1, c2}]]; 

     

    uu = uu /. sol; 

     

    NF = csa*EM*D[uu, z]; 

    NF = EM*csa (D[uu, z] - alfaT*dTn); 

     

    ni = NF /. z -> 0; 

    nj = NF /. z -> lengthL; 

    NForce[[nn]] = nj; 
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    fxi = -ni*csx; 

    fyi = -ni*csy; 

    fzi = -ni*csz; 

    fxj = nj*csx; 

    fyj = nj*csy; 

    fzj = nj*csz; 

    If[codeix > 0, SysEq[[codeix]] = SysEq[[codeix]] - fxi]; 

    If[codeiy > 0, SysEq[[codeiy]] = SysEq[[codeiy]] - fyi]; 

    If[codeiz > 0, SysEq[[codeiz]] = SysEq[[codeiz]] - fzi]; 

    If[codejx > 0, SysEq[[codejx]] = SysEq[[codejx]] - fxj]; 

    If[codejy > 0, SysEq[[codejy]] = SysEq[[codejy]] - fyj]; 

    If[codejz > 0, SysEq[[codejz]] = SysEq[[codejz]] - fzj]; 

    , {nn, 1, nel}]; 

   SysEq = Simplify[SysEq]; 

    

   Print["syseq=", MatrixForm[SysEq], "=0"]; 

    

   unk = Table[d[i], {i, 1, dispN}]; 

   sol = Flatten[Solve[SysEq == 0, unk]];  

   Print["solution=", MatrixForm[sol]]; 

   mxdisp = Max[Abs[sol[[All, 2]]]]; 

   Do[d[i] = sol[[i, 2]];, {i, 1, dispN}]; 

   Print[MatrixForm[NForce]]; 

   mxlng = Max[length]; 

    

   RateDisp = mxlng/mxdisp/4; 

   disp3D = Table[0, {i, 1, nod}, {j, 1, 3}]; 

   Do[ 

       codeix = restraints[[ii, 1]]; 

       codeiy = restraints[[ii, 2]]; 

        codeiz = restraints[[ii, 3]]; 

    If[codeix > 0, disp3D[[ii, 1]] = d[codeix]]; 

    If[codeiy > 0, disp3D[[ii, 2]] = d[codeiy]]; 
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    If[codeiz > 0, disp3D[[ii, 3]] = d[codeiz]]; 

    , {ii, 1, nod}]; 

   Print["düğüm koordinatlarına uyumlu deplasmanlar=",  

    MatrixForm[disp3D]]; 

   xyzd = xyz + RateDisp*disp3D; 

   (*Print[MatrixForm[xyz]]; 

   Print[MatrixForm[xyzd]];*) 

    

    

    

   grfk = grfkd = Table[0, {nn, 1, nel}]; 

    

   Do[  

    ii = defIJ[[nn, 1]]; 

    jj = defIJ[[nn, 2]]; 

       

          ikoor = { xyz[[ii, 1]], xyz[[ii, 2]], xyz[[ii, 3]]}; 

          jkoor = {xyz[[jj, 1]], xyz[[jj, 2]], xyz[[jj, 3]]}; 

     

           

    grfk[[nn]] =  

     GraphPlot3D[{ii -> jj},  

      VertexCoordinateRules -> {ii -> ikoor, jj -> jkoor},  

      VertexLabeling -> True,  

      EdgeRenderingFunction -> (Cylinder[#1, mxlng/150] &),  

      VertexRenderingFunction -> (Sphere[#1, mxlng/150] &)]; 

     

         grfk[[nn]] =  

     GraphPlot3D[{ii -> jj},  

      VertexCoordinateRules -> {ii -> ikoor, jj -> jkoor},  

      VertexLabeling -> True, PlotStyle -> Dashed]; 
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     grfk[[nn]] =  

     GraphPlot3D[{ii -> jj},  

      VertexCoordinateRules -> {ii -> ikoor, jj -> jkoor},  

      VertexLabeling -> True, PlotStyle -> Thick]; 

     

          ikoor = { xyzd[[ii, 1]], xyzd[[ii, 2]], xyzd[[ii, 3]]}; 

          jkoor = { xyzd[[jj, 1]], xyzd[[jj, 2]], xyzd[[jj, 3]]}; 

     

         grfkd[[nn]] =  

     GraphPlot3D[{ii -> jj},  

      VertexCoordinateRules -> {ii -> ikoor, jj -> jkoor},  

      VertexLabeling -> True,  

      EdgeRenderingFunction -> (Cylinder[#1, mxlng/150] &),  

      VertexRenderingFunction -> (Sphere[#1, mxlng/75] &)]; 

     

        , {nn, 1, nel}]; 

    

    

   grfksmsnt = Table[Graphics3D, {i, 1, nod}]; 

    

    Do[    

    ikoor = { xyz[[ii, 1]], xyz[[ii, 2]], xyz[[ii, 3]]}; 

    grfksmsnt[[ii]] = Graphics3D[{Red, Sphere[{ikoor}, mxlng/100]}] ; 

    If[(restraints[[ii, 1]] == 0 \[Or] restraints[[ii, 2]] == 0 \[Or]  

       restraints[[ii, 3]] == 0), 

         (grfksmsnt[[ii]] =  

       Graphics3D[{Blue, Sphere[{ikoor}, mxlng/40]}])  ]; 

    , {ii, 1, nod}]; 

    

    

   (* düğüm teki yuklerinin yeri ve cizimi*) 

   mxload = Max[Abs[jload[[All, All]]]]; 

   RateLoad = mxlng/mxload/6; 
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   grload = Table[Graphics3D[], {i, 1, nod}, {j, 1, 3}]; 

   (*Fsize=0.01; 

   tuber=0.005;*) 

   Print["fsize=", Fsize, " tuber=", tuber, " rate load=", RateLoad,  

    " mxlng=", mxlng]; 

   Do[ 

     

    ikoor = { xyz[[ii, 1]], xyz[[ii, 2]], xyz[[ii, 3]]}; 

    If[(restraints[[ii, 1]] > 0 && jload[[ii, 1]] != 0), 

           

     jkoor = { xyz[[ii, 1]] + jload[[ii, 1]]*RateLoad, xyz[[ii, 2]],  

       xyz[[ii, 3]]}; 

           

     grload[[ii, 1]] =  

      Graphics3D[{Red, Arrowheads[Fsize],  

        Arrow[Tube[{ikoor, jkoor}, tuber]]}]; 

          ]; 

        

    If[(restraints[[ii, 2]] > 0 && jload[[ii, 2]] != 0), 

             

     jkoor = { xyz[[ii, 1]], xyz[[ii, 2]] + jload[[ii, 2]]*RateLoad,  

       xyz[[ii, 3]]}; 

             

     grload[[ii, 2]] =  

      Graphics3D[{Red, Arrowheads[Fsize],  

        Arrow[Tube[{ikoor, jkoor}, tuber]]}]; 

     ]; 

     

    If[(restraints[[ii, 3]] > 0 && jload[[ii, 3]] != 0), 

             

     jkoor = { xyz[[ii, 1]], xyz[[ii, 2]],  

       xyz[[ii, 3]] + jload[[ii, 3]]*RateLoad}; 
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     grload[[ii, 3]] =  

      Graphics3D[{Red, Arrowheads[Fsize],  

        Arrow[Tube[{ikoor, jkoor}, tuber]]}]; 

     ]; 

     

    , {ii, 1, nod}]; 

    

   Print[Show[grload, grfk, grfksmsnt, Axes -> True,  

     AxesLabel -> {x, y, z}, ImageSize -> 500, AspectRatio -> asp]]; 

   Print[Show[grfkd, grfk, grfksmsnt, Axes -> True,  

     AxesLabel -> {x, y, z}, ImageSize -> 500,  

     AspectRatio -> Automatic]]; 

   ]; 
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