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MATRİS DEPLASMAN YÖNTEMİYLE İKİ BOYUTLU GEMİ ENİNE 

ÇERÇEVELERİNİN YAPISAL ANALİZİNİ YAPAN BİR BİLGİSAYAR 

PROGRAMI HAZIRLANMASI 

ÖZET 

Bu çalışmada gemi enine çerçevelerinin yapısal analizini yapabilecek bir bilgisayar 

programı geliştirilmesi amaçlanmıştır. Gemilerin ön dizaynında yapı hakkında fazla 

ayrıntı gerektirmeden çözüm yapabilen pratik analiz programlarına ihtiyaç duyulur. 

Gemi çerçeveleri değişken kesitli olabilmektedir. Bu yüzden programın değişken 

kesitli çerçeveleri de çözebilmesi istenmiştir. Kullanımının kolay olması, görsel 

arayüzünün olması, yazılan kodun sadeliğini ve okunabilirliğini arttırmak için nesne 

yönelimli programlama yaklaşımlarını uygulaması, gelişen teknolojiyle beraber artan 

bilgisayar kapasitelerini yüksek oranda ve verimli kullanabilmesi için modern 

uygulama programlama arayüzlerini kullanması hedeflenmiştir. 

Gemilerin ön dizaynında karşılaşılan çerçeve yapılarının yapısal analizinde Matris 

Deplasman Metodu en çok kullanılan yöntemlerden birisidir. Metot bir çeşit sonlu 

elemanlar metodudur. Direkt metotlar arasında yer alır. Bazı sonlu elemanlar 

yöntemlerindeki gibi şekil fonksiyonlarına ihtiyaç duymaz. Katılık matrisi direkt 

olarak kiriş teorisinden çıkartılır. 

Matris deplasman metodu kiriş elemanının bütün serbestlik dereceleri 

doğrultusundaki deplasmanlar sıfır iken her bir serbestlik derecesi doğrultusunda 

birim deplasman oluşturacak kuvvetleri elde ederek katılık matrisi oluşturur. Matris 

olarak ifade edilmiş eleman rijitlik ilişkileri daha sonra kod numaraları yöntemiyle 

çerçeve sistemini temsil eden tek müşterek matris haline getirilir. Aynı şekilde 

elemanlara etkiyen kuvvetlerden de müşterek bir kuvvet vektörü elde edilir. Elde 

edilen matris sistemi çözülerek deplasman vektörü elde edilir. Daha sonra bu 

deplasman vektörünün elemanları yine kod numaraları yöntemiyle elemanlara 

aktarılır ve eleman kuvvet dengesi yazılarak elemanın katılık matrisi deplasman 

vektörüyle çarpılıp endirekt yük vektörüyle toplanır. Bunun sonucunda müşterek 

eksenlerde ifade edilmiş eleman yük vektörü elde edilir. Elde edilen kuvvet vektörü 

transformasyon matrisiyle çarpılarak elemanın kendi eksenlerindeki kuvvet vektörü 

bulunur. Bu kuvvet vektörü elemanın mesnet tepkilerini içerir. Bu vektör elde 

edildikten sonra elemanın kesit tesir diyagramları bulunabilir. 

Bu çalışmada geliştirilmiş olan program hedeflendiği gibi değişken kesitli enine 

çerçevelerinin çözümünü yapabilmektedir. Değişken kesitli durumda iken elemanın 

uç momentleri Üç Moment Yönteminin en genel haliyle bulunur. Program 

kullanıcıdan eklenen kiriş parçalarının her birinin atalet ve kesit alanı dağılımlarını 

polinom şeklinde ister. Kullanıcı kirişlere yayılı yükleri ve tekil yükleri arayüzden 

ekler. Program yayılı yüklerin de polinom şeklinde ifade edilmesini bekler. Kullanıcı 

istediği çerçeveyi oluşturduktan sonra çözüm butonuna basar ve program sistemi 

çözer. Çıktı olarak eğilme momenti dağılımı, kesme kuvveti dağılımı, eksenel kuvvet 

dağılımı ve gerilme dağılımı verir.  



xx 

Program nümerik integral hesaplarında Simpson Yöntemini kullanır. Sabit kesitli 

çerçeve gibi basit durumlarda program, geliştirilen polinom sınıfı sayesinde analitik 

integraller alabilmekte ve nümerik çözüme gerek kalmadan hızlı bir şekilde hesap 

yapabilmektedir. Ayrıca program, paralel programlama yöntemlerini kullanarak çok 

çekirdekli bilgisayarlarda kısa sürede sonuç üretebilmektedir. 

Bu çalışmada geliştirilen program analitik çözüm ve muadili programlarla değişik 

çerçevelerde verdiği sonuçlar bakımından karşılaştırılmış ve sonuçların doğru olduğu 

anlaşılmıştır. Sonuç olarak hedeflenen program geliştirilmiş ve gemi çerçevelerinde 

kullanılabilecek pratik, kullanımı kolay ve kullanışlı bir analiz programı elde 

edilmiştir.  
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DEVELOPING A COMPUTER PROGRAM TO CONDUCT STRUCTURAL 

ANALYSIS OF TWO DIMENSIONAL SHIP FRAMES USING MATRIX 

DISPLACEMENT METHOD  

SUMMARY 

In this study, it is aimed to develop a computer program to analyze two dimensional 

ship frames. Preliminary design of ships requires using practical structural analysis 

programs that do not require detailed information about the structure. Since ship 

frames can have varying inertia, like when brackets are involved, the program should 

have the ability to solve ship frames with varying inertia. The program is desired to 

have a well-designed graphical user interface to make it easy to use, to implement 

object oriented programming paradigms to keep the code structured and readable, to 

use a modern programming application interfaces to maximize the utilization of 

computer resources in efficient way. 

In preliminary design phase, it is easy to model the ship as frames when not much 

detail about the structure of the ship is known. It also makes it easy to solve the 

problem. In the past, conventional methods like Moment Distribution Method have 

been used for analyzing ship frames. After computer technologies showed up, 

scientists started to search for computer-automated methods for structural analysis. 

Then, Matrix Displacement Method is developed. The method was a preface for 

Finite Element Method and it is considered one of the direct methods of Finite 

Element Method.  

Matrix Displacement Method discretizes the system into smaller, idealized elements. 

For each beam element, when all displacements are zero, the forces that are required 

to create unit displacement for each degree of freedoms are obtained and stored into 

a matrix, which is called the element stiffness matrix. For each beam element, the 

forces that are acting on beams are stored in element indirect force vector and the 

forces that are acting on nodes are stored in element direct force vector. All forces, 

vectors and stiffness matrices are express in terms of global axes by using 

transformation matrix. After that, by using Code Numbers Method, the element 

stiffness matrices are combined in a global stiffness matrix. Likewise, the element 

force vectors are also combined in global force vector. The global system is then 

solved to find global displacement vector. After the global solution is done, the 

displacement vector is imposed in element force equations. The parts of the 

displacement vector in elements are multiplied by element stiffness matrices and the 

results are summed with indirect force vector to get the final force vector. Again, by 

using transformation matrix, the local force vectors are obtained. After the local 

force vectors are known, bending moment distributions, shear force distributions, 

axial force distributions and stress distributions can be found. 

In case of varying inertia, stiffness matrices depend on the base stiffness coefficients, 

which can be found by some integrations that are derived by Moment-Area Method. 

The method that is used to find support reactions is also changed in case of varying 
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inertia. Clapeyron’s Method of Three Moment is used in this case with its the most 

general form to calculate support reactions when both sides of the beam are fixed end 

supports. 

There are many codes written in the past that implement Matrix Displacement 

Method. Most of them are written in either Basic or Fortran. These programs 

generally require a third-party software to analyze the results and draw the 

distributions. These programs also need entering the data in specific format, which 

can be hard for users. 

The program that was developed in this study is able to solve many bending 

problems, not just for ships. It also does not need any additional software to present 

the analysis it made. It uses numerical calculation techniques such as Simpson 

Method when it has to but it can also solve the problems analytically if the inertia 

distributions of the beams are constant, which provides extra accuracy and gives the 

ability to solve the problem with minimum time. 

The program was written in C# language. C# is a strongly typed, object oriented and 

multi-paradigm programming language that was developed by Microsoft in 2002. It 

can be used in variety of applications and it is much easier to develop programs than 

lower level languages. The program is based on Windows Presentation Foundation 

(WPF) platform, which allows the developers to design user interfaces in Extensible 

Application Programming Language (XAML). By using modern programming 

language enables the program to use modern libraries and conduct parallel 

computations when the user wants to. 

The program consists of a drawing area and the buttons around it. The user, by 

clicking the buttons, can add a beam; specify the inertia and the area distribution in 

polynomials. Since it takes only distributions in polynomials, it can be used for every 

frames independent of the cross-section shape. The program also accepts distributed 

load in polynomial form. After the user created the desired frame, he clicks the solve 

button and the solution initializes. First, for every beam in the frame, support 

moments are calculated by implementing Three Moment Theorem. Then, the force 

vector is created, the transformation matrix is formed based on the beam’s angle. 

Base stiffness coefficients are calculated according to the area and the inertia 

distributions. Then, the local stiffness matrix is created. These processes can be run 

in parallel. After that, the global stiffness matrix and the global force vector are 

created. By using a linear equation solver that implements Gauss Elimination 

Method, the global displacement vector is created. Then, the displacement vector 

elements sent as parameters in beams, which also start element solutions. The force 

vectors and the local force vectors are then calculated. After the local force vectors 

created, moment distributions are obtained based on the end moments in the vectors. 

Moment distributions derivate analytically to obtain shear force vectors. By using the 

local force vectors, axial force distributions are also calculated. If the user wanted to 

perform a stress analysis, the program calculates stress distributions by using 

moment distributions and inertia distributions. The graphics are then drawn. The 

program uses Cardinal Spline library to draw the distributions. The program warns 

the user if maximum allowable stress is exceeded in any beam. The program also 

gives polynomial expression of moment distributions and shear distributions and 

axial distributions. It also finds minimum and maximum values of the distributions. 

As a result, a practical and easy to use computer program that conducts structural 

analysis of two dimensional ship frames has been developed. The program meets the 
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desired specifications explained at the beginning. In the end, different frames, both 

with varying and constant inertia, have been analyzed using this program and other 

programs that can calculate the given frame. The results based on end moments have 

been compared. It is understood that the program gives the correct results. 
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1.  GİRİŞ 

Gemilerin ön dizaynında yapısal analizlerde kiriş halinde modelleme sıklıkla yapılır. 

Ön dizayn sürecinde henüz elde yapıyla ilgili ayrıntılı bir bilgi yok iken bu 

modelleme kolaylık sağlar. Ayrıca kiriş olarak modellendiğinde problem kolaylaşır.  

Yapı kirişler halinde modellendiği zaman çerçeve sistemleri ortaya çıkar. Bu 

hiperstatik sistemlerin el ile çözümüne yönelik Cross Metodu gibi geleneksel çözüm 

yöntemleri bilgisayar teknolojisinin gelişmesiyle 1950’li yıllardan sonra yerini 

nümerik yöntemlere bırakmıştır (Bayraktarkatal, 1995). Bu yöntemlerden birisi 

Matris Deplasman Yöntemidir. Matris Deplasman Yöntemi bir çeşit Sonlu Elemanlar 

uygulamasıdır. Kiriş elemanlarının şekil fonksiyonları kullanmadan direkt olarak 

sonlu elemanlar modellemesine izin verir. Bilgisayar programlamasına uygun bir 

yöntemdir. 

Temelde yöntem, kiriş teorilerinden yararlanarak her serbestlik derecesi yönünde 

birim deplasmanlar oluşturan kuvvetleri elde edip katılık matrisi adı altında 

toplamaya dayanır. Böylece elemanlar matrisler halinde ifade edilip müşterek matris 

oluşturulur ve matris bilgisayar tarafından çözülerek bilinmeyen deplasmanlar 

bulunur (Tezcan, 1970). Yöntemin matris tabanlı olması bilgisayar programlamasına 

oldukça elverişli kılar. 

Bu çalışmanın temel amacı gemi enine çerçevelerinin çözümünü yapabilen bir 

bilgisayar programı oluşturmaktır. Geçmişte Matris Deplasman Metodunu uygulayan 

birçok bilgisayar programı yazılmıştır. Bunların çoğu Basic ve Fortran dili 

kullanılarak geliştirilen konsol programlarıdır. Bu programlar girdileri belirli bir 

formatta alırlar ve kullanımı kullanıcı açısından kolay değildir. Burada ise modern 

bir programlama dili kullanılarak görsel grafik arayüzü olan,  pratik ve kullanışlı bir 

paket programı geliştirilmesi amaçlanmıştır. Geliştirilen programın aynı zamanda 

modern uygulama geliştirme kütüphanelerini kullanması ve günümüz bilgisayar 

teknolojisinden yararlanarak hızlı ve verimli çözüm yapabilmesi hedeflenmiştir. 

Diğer bir hedef ise nesne yönelimli programlama yaklaşımlarının kullanılmasıdır. 

Böylece düzenli ve disiplinli bir kod tabanı oluşturulup herkesin okuyabileceği 



2 

sadelikte, bakımı kolay bir proje elde edilecektir. Ayrıca programın başka hiçbir 

programa ihtiyaç duymadan analiz yapabilmesi de amaçlanmıştır. 

Çalışmanın ikincil amacı ise geliştirilmeye açık modüler bir kod tabanı 

oluşturmaktır. İleride, çözüm metodu örneğin uzay çerçeveler için çözüm yapacak 

şekilde geliştirilmek istendiğinde mevcut kod kütüphanesinden maksimum seviyede 

yararlanılması hedeflenmiştir. 

Literatürde bu alanda çeşitli çalışmalar yürütülmüştür. Bunlardan bir tanesi Doç. Dr. 

Ertekin Bayraktarkatal’ın doktora tezi kapsamında 1995 yılında geliştirdiği, gemiyi 

uzay çerçeve olarak modelleyen Fortran programlarıdır. 3 program gemi kirişleri 

üzerindeki moment ve gerilme dağılımlarını elde eder. Sabit kesitli gemi kirişleri için 

çözüm yapmaktadır. 

Başka bir çalışma ise Yrd. Doç. Dr. Adnan Karaduman tarafından yüksek lisans tezi 

kapsamında 1993 yılında geliştirilen Basic programlama dilinde yazılmış bir 

bilgisayar programıdır. 2 boyutlu enine çerçeveleri çözen bu program bazı braketli 

durumlarda değişken kesit çözümü yapabilmektedir. 

Diğer bir çalışma ise Assoc. Prof. Dr. Luiz Fernando Martha tarafından geliştirilen 

Ftool adlı 2 boyutlu çerçeve analiz programıdır. Sabit kesitli çerçeveler için 

geliştirilmiştir. Programın ayrıca ticari bir versiyonu da vardır. 

Bir diğer çalışma ise Gemi İnşaat Mühendisi Ömer Birler tarafından 2016 yılında 

geliştirilmiş olan Mesnet adlı 2 boyutlu çerçeve analiz programıdır. Bu program 2 

boyutlu gemi enine çerçevelerin yapısal analizini Cross Metodu kullanarak analiz 

eder. Program değişken kesitli çerçeveleri de çözebilmektedir. 

Bu çalışmanın ikinci bölümünde çözüm yöntemi ayrıntılı olarak anlatılmıştır. Matris 

Deplasman Metodu ve Üç Moment Metodu açıklanmış, katılık matrisinin ve yük 

vektörlerinin elde edilmesi gösterilmiştir. Müşterek sistemin oluşturulması ve 

çözülmesi bir örnekle açıklanmıştır. Değişken kesitli durumda hesaplanması gereken 

temel rijitlik katsayılarının denklemlerle elde edilmesi gösterilmiştir. 

Çalışmanın üçüncü bölümünde geliştirilen programdan bahsedilmiştir. Eklerde 

verilen kod parçalarına atıfta bulunarak programın çözümü nasıl yapığı anlatılmıştır. 

Programın çalışması için gereken sistem gereksinimleri açıklanmıştır. 
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Dördüncü bölümde ise programın arayüzü tanıtılmıştır. Daha sonra programın 

kullanılışı anlatılmış, basit bir çerçevenin programda oluşturulması, çözülmesi ve 

sonuçların elde edilmesi gösterilmiştir. 

Beşinci bölümde sabit kirişli ve değişken kirişli çerçeve örnekleri verilmiş ve bu 

programda ve başka programlarda çerçeveler çözülerek sonuçların doğruluğu 

karşılaştırılmıştır. 

Altıncı bölümde ise elde edilen sonuçlar açıklanmış ve program hakkında 

önerilerden, geliştirmelerden ve eksikliklerden bahsedilmiştir. 
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2.  MATRİS DEPLASMAN YÖNTEMİ  

Matris Deplasman Yöntemi ya da diğer bir adıyla Direkt Deplasman Yöntemi bir 

yapısal analiz metodudur. Bilgisayar programlamasına oldukça uygundur. Statikçe 

belirsiz karmaşık kiriş problemlerini çözebilecek kabiliyete sahiptir.  En çok 

kullanılan sonlu elemanlar uygulamalarından biridir. Yapısal analizde tek boyutlu ve 

iki boyutlu kiriş sistemleri analizi için en ideal sonlu elemanlar yöntemidir.  

Sonlu elemanlar yöntemi birçok mühendislik alanında kullanılabilen bir sayısal 

çözüm yöntemidir. Yapısal analiz, ısı geçişi, sıvı akışı elektromanyetizma başta 

olmak üzere birçok mühendislik alanında uygulanmaktadır. Mühendislik 

hesaplarında genelde olayın fiziği kısmi diferansiyel denklemler şeklinde 

matematiksel olarak ifade edilir. Genelde bu diferansiyel denklemlerin analitik 

çözümü zordur ve bazen imkânsızdır. Ayrıca hesap yapılacak elemanın şeklinin 

karmaşık olması da hesabı zorlaştırır. Sonlu elemanlar yöntemi, sayısal yöntemleri 

kullanarak bu çözülmesi zor problemlere bir çözüm sunar. Sonlu elemanlar yöntemi 

temelde direkt metotlar, ağırlıklı artım metodu, varyasyonel metotlar ve enerji 

metodu olarak ayrılabilir. Matris deplasman metodu direkt metotlar sınıfına girer.  

Direkt metotlarda diğer sonlu elemanlar metotlarında olduğu gibi yaklaşık şekil 

fonksiyonları kullanılmaz. Bunun yerine problemin fiziği kullanılarak katılık 

matrisleri elde edilir. Diğer sonlu elemanlar yöntemlerinde olduğu gibi problem 

ayrıklaştırılarak idealize edilmiş ve nodların birbirine bağlanmasıyla oluşan 

elemanlar olarak modellenir. Daha sonra elemanların katılık özellikleri tek bir 

matriste toplanır. Elde edilen müşterek matris çözülerek yapının bilinmeyen 

deplasmanları ve kuvvetleri bulunur. 

Metot, çerçeve ve kafes sistemlerine uygulanabilir. Yaklaşık fonksiyonlar 

kullanmadığı için sonuç kiriş teorisindeki sonuçla aynı elde edilir. Diğer sonlu 

elemanlar yöntemlerindeki gibi yakınsama analizine bu yöntemde gerek yoktur. 
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2.1 Tarihçe 

Matris deplasman metoduna ilk olarak havacılık alanında ihtiyaç duyulmuştur. 

Akademisyenler karmaşık uçak çerçeve yapılarının çözümü için bilgisayarla 

otomatikleştirilebilecek bir yöntem arayışı içine girmişlerdir. O zamanlarda bu 

kompleks yapıların çözümü için Açı Metodu ve Cross Metodu kullanılmaktaydı. 

Gelişen bilgisayar teknolojisine uygun bir metot geliştrilmesi için çalışmalara 

başlanmıştır. Sonlu elemanlar yöntemi ilk olarak matris deplasman metodu ile ortaya 

çıkmış ve diğer metotlar sonradan geliştirilerek bugünkü halini almıştır. 

Sonlu elemanlar yönteminin teorisinin ilk izleri 1934’de bulunan matris deplasman 

metodu (Direct Stiffness Method) ile görülmüştür (Felippa, 2017). 

1940’ların başlarında bina, uçak ve uzay yapılarının gerilme analizlerinin 

yapılabilmesi için sistematik bir yöntem arayışı ihtiyacı doğmuştur. Bu kapsamda A. 

Hrennikoff (Hrennikoff, 1941) ve R. Courant (Courant, 1943) tarafından yapılan 

çalışmalarla yöntemin temelleri atılmıştır. Bu iki akademisyen faklı yöntemler 

kullanmış olsalar da çözümün ağ yapıları (mesh)  ile daha küçük çalışma alanlarına 

ayrıklaştırma yönünden yaptıkları çalışmalar aynıdır (Crahmaliuc, 2018).  

Sonlu elemanlar yöntemi ilk olarak 1950 yılında uzay mühendisliğinde Boeing, Bell 

Aerospace ve Rolls Royce firmaları tarafından ilk olarak kullanılmıştır. Yöntemin 

ana fikrini oluşturan ilk makale 1956 yılında Turner ve arkadaşları tarafından 

yayınlanmıştır (Güler & Şen, 2015). Turner matris deplasman metodunu genelleştirip 

geliştirmiştir. Turner’ın çalışmaları Boing tarafından desteklenmiştir. Turner sonlu 

elemanlar yönteminin nonlineer problemlere uygulanmasına öncü olmuştur. 

B. M. Irons izoparametrik modelleri geliştirmiş, şekil fonksiyonları ve yama testi 

metotlarını icat etmiştir. R. J. Melosh, Rayleigh-Ritz metodu ile varyasyonel olarak 

katılık matrislerini sistematik olarak türetmiştir. E. L. Wilson ilk açık kaynak sonlu 

elemanlar metodu çözücü programı geliştirmiştir (Felippa, 2017). 

1959’da General Motors ve IBM otomobil dizaynı için sonlu elemanlar yöntemiyle 

kullanılmak üzere DAC-1 (Design Augmented by Computers) bilgisayar sistemini 

geliştirmiştir.  

1965’te NASTRAN (NASA Structural Analysis) programı yapısal analiz çözücü 

olarak geliştirilmiştir. 
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1970’de şuan sonlu elemanlar için en genel ve en yaygın kullanılan bilgisayar 

programı Ansys geliştirilmiştir. 

1973’de  Gilbert Strang ve George Fix, sonlu elemanlarla ilgili ilk kitap olan “An 

Analysis of the Finite Element Method” kitabını yayınlayarak yönteme matematiksel 

olarak büyük katkı sağlamıştır (Crahmaliuc, 2018). 

1977’de ilk profesyonel sonlu elemanlar p-versiyon kodu olan FIESTA Alberto 

Peano tarafından yazılmaya başlanmıştır. 

1982’de Barna Szabo ve Kent Myer tarafından uçak ve uzay uygulamaları için ilk 

endüstriyel sonlu elemanlar p-versiyon yazılımı olan PROBE geliştirilmiştir. 

1987’de MECHANICA, RASNA şirketi tarafından geliştirilmiştir. 

2001’de P-versiyon sonlu elemanlar yöntemi plastisite uygulamaları için en verimli 

yöntem olduğu A. Duster tarafından ispatlanmıştır. 

2006’da Amerikan Makine Mühendisleri Topluluğu tarafından Hesaplamalı Katı 

Mekaniğinde Doğrulama ve Onaylama kılavuzu yayınlanmıştır. 

2008’de NASA model ve simülasyon geliştirilmesi için standart yayınlamıştır 

(Crahmaliuc, 2018). 

2.2 Katılık Matrisi 

Katılık en genel haliyle belirli bir doğrultuda birim deplasman elde edebilmek için 

belirli bir doğrultuda uygulanması gereken kuvvettir. Katılık matrisi [𝑘] le gösterilir. 

Matrisin herhangi bir elemanı 𝑘𝑖𝑗, taşıyıcı elemanın bütün serbestlik dereceleri 

doğrultusundaki deplasmanlar sıfır iken 𝑗 yönünde birim bir deplasman 

oluşturabilmek için 𝑖 yönünde uygulaması gereken kuvvet anlamına gelir (Tezcan, 

1970).  

2.2.1 Eksenel yönde zorlanan kiriş elemanı 

(Şekil 2.1)’de gösterilen kiriş elemanını ele alalım: 

 

Şekil 2.1 :  İki serbestlik dereceli kiriş elemanı. 
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2.2.1.1 Rijitlik matrisinin elde edilmesi 

Taşıyıcı elemanın sadece 1 ve 2 yönlerinde serbestlik derecesi olduğunu varsayalım. 

𝑘11 katılık elemanını bulalım. Bu katılık elemanının anlamı 1 yönünde birim 

deplasman oluşturmak için 1 yönünde uygulanması gereken kuvvettir. 

Mukavemetten; 

A

P
E    (2.1) 

L

L
  (2.2) 

Denklem (2.2), denklem (2.1)’de yerine koyulursa; 

L

LEA
P


  (2.3) 

elde edilir. Tanım gereği ∆𝐿 birim deplasman olduğu için denklem 2.3’te ∆𝐿 = 1 

yazılırsa; 

L

EA
k 11  (2.4) 

olarak bulunur. 

𝑘12 katılık elemanı 2 yönünde birim deplasman oluşturmak için 1 yönünde 

uygulanması gereken kuvvettir. 1 yönündeki uygulanan kuvvet 2 yönünde ters yönde 

etki eder. Dolayısıyla 2 yönündeki deplasman oluşturmak için 𝑘11’deki kuvvetin 

tersinin uygulanması gerekmektedir. 

L

EA
k 12  (2.5) 

𝑘21 katılık elemanı aynı mantıkla bulunur. 

L

EA
k 21  (2.6) 

𝑘22 ise 𝑘11 ile aynı olacağı anlaşılabilir. 
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L

EA
k 22  (2.7) 

Bütün bu 4 durumunda elemana aynı anda etkidiği durumda 1 ve 2 yönündeki 

kuvvetler aşağıdaki gibi bulunabilir: 

2221212

2121111

dkdkP

dkdkP




 (2.8) 

Bu denklem takımı matris notasyonuyla aşağıdaki gibi yazılabilir: 



























2

1

22

12

21

11

2

1

d

d

k

k

k

k

P

P
 (2.9) 

Bu denklem elemanın kuvvet denklemidir. Denklemin sol tarafındaki vektör yük 

vektörü, sağ tarafındaki matris katılık matrisi, sağ taraftaki vektör ise deplasman 

vektörüdür (Tezcan, 1970). Denklem 2.9 açık olarak aşağıdaki gibi yazılabilir: 
















 












2

1

2

1

1

1

1

1

d

d

L

AE

P

P
 (2.10) 

2.2.2 Eğilmeye zorlanan kiriş elemanı 

Serbestlik dereceleri (Şekil 2.2)’deki gibi taşıyıcı elemanı ele alalım. Elemanın her 

iki ucunda bir öteleme bir de dönme olmak üzere toplamda 4 serbestlik derecesi 

olduğunu varsayalım. 

 

Şekil 2.2 : 4 serbestlik dereceli kiriş elemanı. 

Pozitif serbestlik derecelerinin yönünün kiriş teorisindeki yönlere uymadığına burada 

dikkat edilmelidir. Kiriş teorisindeki serbestlik dereceleri yönü (Şekil 2.3)’te 

gösterilmiştir. 
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Şekil 2.3 : Kiriş teorisindeki pozitif serbestlik dereceleri. 

Katılık matrisini elde etmek için (Şekil 2.4)’teki yol izlenebilir. Kirişin maruz 

kalacağı en genel şekil değiştirmeler süperpozisyon kanunu kullanarak her serbestlik 

derecesi yönünde birim deplasman etkidiği durumların toplamı olarak bulunabilir. 

 

Şekil 2.4 : Düzlem eğilmeye maruz kiriş (Tezcan, 1970). 
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2.2.2.1 Moment alan teoremi 

Moment alan teoremi eğilmeye maruz kalan kirişlerdeki sehim ve dönmenin 

türetilmesi için kullanılır. Mohr tarafından geliştirilen teorem tekil yüklerin 

yüklendiği durumlarda da ve atalet momentinin değişken olduğu durumlarda da 

sehim ve dönmenin elde edilmesine olanak veren bir metottur. Rijitlik matrisi 

hesaplarında moment alan yöntemi sıkça kullanılacaktır. 

(Şekil 2.5)’te herhangi bir yayılı yüke maruz kalan bir kiriş verilmiştir. 

 

Şekil 2.5 : Herhangi bir yayılı yükle yüklenmiş eğilmeye maruz kiriş. 

Bu yükten dolayı kirişin (Şekil 2.6)’daki gibi sehim yaptığı varsayılsın. 

 

Şekil 2.6 : Yayılı yük ile yüklenen kirişin sehimi. 

Kiriş üzerinde 𝐴 ve 𝐵 olmak üzere iki nokta seçilsin. Bu noktalardan çizilen elastik 

eğriye çizilen teğetler (Şekil 2.7)’deki gibi olur. Kiriş üzerindeki  𝐴 ve 𝐵 

noktalarından çizilen teğetlerin eğimleri sırasıyla 𝜃𝐴 ve 𝜃𝐵’dir. Kirişlerin kesişim 

açısı ise 𝜃𝐴𝐵’dir. 

 

Şekil 2.7 : Kirişin üzerindeki iki noktadan çizilen teğetler. 
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(Şekil 2.8)’deki Elastik eğri üzerinde 𝑟 yarıçaplı elastiklik merkezinden 𝑑𝜃’lık bir 

yay ele alalım. Bu yayın yatay uzunluğu 𝑑𝑥 olsun ve 𝐵 noktasından itibaren uzaklığı 

𝑥 olsun. 

 

Şekil 2.8 : Kirişin elastik eğrisinin üzerindeki 𝑑𝜃’lık yay. 

(Şekil 2.8)’den; 

𝑑𝑥 = 𝑟𝑑𝜃 (2.11) 

𝑑𝜃 =
1

𝑟
𝑑𝑥 (2.12) 

Ayrıca kirişin eğilmesinden; 

1

𝑟
=
𝑀

𝐸𝐼
 (2.13) 

Kirişin eğilme rijitliği 𝐸𝐼’nın sabit olduğunu varsayarak denklem 2.13, denklem 

2.12’de yerine konulursa; 

𝑑𝜃 =
𝑀

𝐸𝐼
𝑑𝑥 (2.14) 

Her tarafın integrali alınırsa; 
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∫ 𝑑𝜃
𝜃𝐵

𝜃𝐴

= ∫
𝑀

𝐸𝐼
𝑑𝑥

𝑥𝐵

𝑥𝐴

 (2.15) 

𝜃𝐴𝐵 =
1

𝐸𝐼
(𝐴𝑙𝑎𝑛)𝐴𝐵 (2.16) 

Bu, birinci moment alan teoremidir. Sözlü olarak ifade edilirse: Elastik eğriye 

üzerindeki herhangi iki noktadan çizilen teğetler arasındaki açı değişimi o noktalar 

arasındaki moment alanının eğilme rijitliğine bölümüne eşittir (Limbrunner & 

Spiegel, 2009). (Şekil 2.9)’da bu durum detaylı olarak gösterilmiştir. 

 

Şekil 2.9 : Kiriş üzerinde birinci moment alan teoremi gösterimi. 
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𝐴 noktasından çizilen teğetin 𝐵 noktasına olan düşey uzunluğuna sapma denir ve 

𝑡𝐵/𝐴 ile gösterilir. 𝑑𝑥 uzunluklu yaydan 𝐵 noktasındaki düşey sapma üzerine 

aralarında 𝑑𝜃 açısı olacak şekilde doğrular çizilirse, doğruların 𝑡𝐵/𝐴’yi kestiği 

mesafe 𝑑𝑡 olur. (Şekil 2.10)’da bu durum gösterilmiştir. 

 

Şekil 2.10 : Kiriş üzerinde ikinci moment alan teoremi gösterimi. 

Şekilde de görüldüğü gibi; 

𝑑𝑡 = 𝑥𝑑𝜃 (2.17) 

𝑑𝜃 ifadesinin denklem 2.14’teki değeri yazılırsa; 
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𝑑𝑡 = 𝑥 (
𝑀

𝐸𝐼
𝑑𝑥) (2.18) 

Her tarafın integrali alınırsa; 

∫ 𝑑𝑡
𝐵

𝐴

=
1

𝐸𝐼
∫ 𝑥𝑀𝑑𝑥
𝑥𝐵

𝑥𝐴

 (2.19) 

𝑡𝐵/𝐴 =
1

𝐸𝐼
(𝐴𝑙𝑎𝑛)𝐴𝐵𝑥̅𝐵 (2.20) 

Burada 𝑥̅𝐵 𝐴 ve 𝐵 noktaları arasındaki moment diyagramının alan merkezinin 𝐵 

noktasına uzaklığıdır. Bu, ikinci moment alan teoremidir. Yine sözlü olarak ifade 

edilirse: Elastik eğri üzerindeki herhangi iki 𝐴 ve 𝐵 noktaları için, 𝐴’dan çizilen teğet 

doğrusunun 𝐵 noktasına olan dik uzaklığı, moment alanının eğilme rijitliğine 

bölümünün statik momentine eşittir (Limbrunner & Spiegel, 2009). 

2.2.2.2 Rijitlik matrisinin elde edilmesi 

1 numaralı serbestlik derecesi yönünde birim deplasman uygulamak için gereken 

kuvvetler daha önce yapılan tanıma göre (Şekil 2.11)’deki gibi olacaktır. 

 

Şekil 2.11 : 1 numaralı serbestlik derecesi yönünde birim deplasman oluşturmak için 

gerekli kuvvetler. 

Burada geçen kuvvet tanımı genel kuvvettir. Yani hem eğilme momenti hem de 

kesme kuvveti genel kuvvet olarak sayılmaktadır. 𝑡𝑎𝑛𝛼 ≅ 𝛼 yaklaşık eşitliğini 

kullanarak (Şekil 2.11)’deki kiriş (Şekil 2.12)’deki gibi olur: 
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Şekil 2.12 : (Şekil 2.11)’deki kirişte 𝑡𝑎𝑛𝛼 ≅ 𝛼 olması hali. 

Kuvvet eşitliği kullanılarak; 

03111  kk  (2.21) 

3111 kk   (2.22) 

Bu aşamada kiriş teorisi işaret sisteminde çalışıldığı belirtilmelidir. Kirişin sağ ucuna 

göre moment alınırsa; 

0412111  kkLk  (2.23) 

Elemanın bu yükler altında moment dağılımı bulunup birinci Moment-Alan teoremi 

uygulandığında durum (Şekil 2.13)’deki gibi olur. 

 

Şekil 2.13 : 1 numaralı serbestlik derecesi yönünde birim deplasman uygulanan 

kirişe Moment-Alan teoreminin uygulanması. 

Bilindiği üzere Moment-Alan teoremi kirişteki eğilme momenti dağılımının kirişe 

yük olarak yüklenmesi ile kirişteki dönme ve sehimlerin bulunmasını içerir. Moment 
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dağılımı kirişe yüklenmeden önce 𝐸𝐼’ya bölünür. Elde edilen yeni yükleme tipinde 

mesnet reaksiyon kuvvetleri o noktalardaki dönmeye karşılık gelir. 

Bu durumda 𝜑1 kirişin sol ucundaki dönme, 𝜑2 kirişin sağ ucundaki dönme 

olacaktır. (Şekil 2.12)’de 𝜑1 ≅ −1/𝐿 olduğu görülebilir. Burada eksi işareti 

dönmenin kiriş teorisindeki dönme yönüne ters olduğu içindir. 𝜑2’nin ankastre 

mesnetten dolayı sıfır olacağı ilk olarak düşünülebilir. Ancak burada kirişin ekseni 

değişmiştir. Dolayısıyla hala bir dönme vardır ve bu dönme yine (Şekil 2.12)’den 

 𝜑2 = 1/𝐿 olduğu anlaşılır. Dönme yönü kiriş teorisindekiyle aynı olduğu için 𝜑2 

pozitiftir. Düşey kuvvetlerin eşitliği yazılırsa; 

0
22

4121
21 

L

EI

kL

EI

k
  (2.24) 

0
22

11 4121 
L

EI

kL

EI

k

LL
 (2.25) 

4121 kk   (2.26) 

elde edilir. Kirişin sağ uç noktasına göre moment alınarak ikinci Moment-Alan 

Teoremi uygulanırsa; 

0
323

2

2

4121
1 

LL

EI

kLL

EI

k
L  (2.27) 

Denklem 2.26, denklem 2.27’de yerine yazılırsa; 

0
323

2

2

1 2121 
LL

EI

kLL

EI

k
L

L
 (2.28) 

24121

6

L

EI
kk   (2.29) 

Denklem 2.29’daki bulunan katılık elemanları denklem 2.23’te yerine konulursa; 

0
66

2211 
L

EI

L

EI
Lk  (2.30) 
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311

12

L

EI
k   (2.31) 

Denklem 2.22’den yararlanarak; 

313

12

L

EI
k   (2.32) 

2 numaralı serbestlik derecesi yönünde birim deplasman uygulamak için gereken 

kuvvetler daha önce yapılan tanıma göre (Şekil 2.14)’teki gibi olacaktır. 

 

Şekil 2.14 : 2 numaralı serbestlik derecesi yönünde birim deplasman oluşturmak için 

gerekli kuvvetler. 

Yine kuvvet ve moment dengesinden; 

3212 kk   (2.33) 

0422212  kkLk  (2.34) 

Tekrardan kirişe (Şekil 2.15)’teki gibi Moment-Alan teoremi uygulansın.  

 

Şekil 2.15 : 2 numaralı serbestlik derecesi yönünde birim deplasman uygulanan 

kirişe Moment-Alan teoreminin uygulanması. 

Düşey kuvvetlerin eşitliğinden; 
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0
22

4222
21 

L

EI

kL

EI

k
  (2.35) 

Burada sağ uçta ankastre mesnet olduğu için buradaki dönme sıfırdır. Yani 𝜑2 = 0 

olur. Burada birim dönme olduğu için 𝜑1 = −1 radyandır. Kiriş teorisindeki yönün 

tersi yönde dönme olduğu için negatiftir. Bu değerler denklem 2.35’te yerine konulur 

ve denklem düzenlenirse; 

L

EI
kk

2
4222   (2.36) 

Kirişin sol uç noktasına göre moment alınarak ikinci Moment-Alan teoremi 

uygulanırsa; 

0
323

2

2

2242 
LL

EI

kLL

EI

k
 (2.37) 

4222 2kk   (2.38) 

Denklem 2.38’deki ilişki denklem 2.36’da yerine yazılırsa; 

L

EI
kk

2
2 4242   (2.39) 

L

EI
k

2
42   (2.40) 

L

EI
k

4
22   (2.41) 

Bu değerler denklem 2.34’te yerine konulursa; 

0
24

12 
L

EI

L

EI
Lk  (2.42) 

212

6

L

EI
k   (2.43) 

Denklem 2.33’ten; 
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232

6

L

EI
k   (2.44) 

Burada yapılan hesaplar 3 numaralı ve 4 numaralı serbestlik dereceleri için de 

yapılırsa aşağıdaki sonuçlar elde edilir: 

313

12

L

EI
k   (2.45) 

223

6

L

EI
k   (2.46) 

333

12

L

EI
k   (2.47) 

234

6

L

EI
k   (2.48) 

214

6

L

EI
k   (2.49) 

L

EI
k

2
24   (2.50) 

234

6

L

EI
k   (2.51) 

L

EI
k

4
44   (2.52) 

Sonuç olarak bütün elde edilen değerler yerine konulursa katılık matrisi aşağıdaki 

gibi olur: 

𝑘 =

[
 
 
 
 
 
 
 
12𝐸𝐼

𝐿3
6𝐸𝐼

𝐿2
−
12𝐸𝐼

𝐿3
6𝐸𝐼

𝐿2

6𝐸𝐼

𝐿2
4𝐸𝐼

𝐿
−
6𝐸𝐼

𝐿2
2𝐸𝐼

𝐿

−
12𝐸𝐼

𝐿3
−
6𝐸𝐼

𝐿2
12𝐸𝐼

𝐿3
−
6𝐸𝐼

𝐿2

6𝐸𝐼

𝐿2
2𝐸𝐼

𝐿
−
6𝐸𝐼

𝐿2
4𝐸𝐼

𝐿 ]
 
 
 
 
 
 
 

 (2.53) 
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2.2.3 6 serbestlik dereceli çerçeve elemanı 

Denklem 2.10’daki katılık matrisi 6𝑥6 boyutunda olacak şekilde aşağıdaki gibi 

genişletilebilir: 

𝑘1 =

[
 
 
 
 
 
 
 
𝐸𝐴

𝐿
0 0 −

𝐸𝐴

𝐿
0 0

0 0 0 0 0 0
0 0 0 0 0 0

−
𝐸𝐴

𝐿
0 0

𝐸𝐴

𝐿
0 0

0 0 0 0 0 0
0 0 0 0 0 0]

 
 
 
 
 
 
 

 (2.54) 

Aynı şekilde denklem 2.43’teki matris de 6𝑥6 boyutunda olacak şekilde aşağıdaki 

gibi genişletilebilir: 

𝑘2 =

[
 
 
 
 
 
 
 
 
 
0 0 0 0 0 0

0
12EI

𝐿3
6EI

𝐿2
0 −

12EI

𝐿3
6EI

𝐿2

0
6EI

𝐿2
4EI

𝐿
0 −

6EI

𝐿2
2EI

𝐿
0 0 0 0 0 0

0 −
12EI

𝐿3
−
6EI

𝐿2
0

12EI

𝐿3
−
6EI

𝐿2

0
6EI

𝐿2
2EI

𝐿
0 −

6EI

𝐿2
4EI

𝐿 ]
 
 
 
 
 
 
 
 
 

 (2.55) 

Bu iki katılık matrisi toplanırsa aşağıdaki matris elde edilir: 

𝑘 =

[
 
 
 
 
 
 
 
 
 
 
 
 
𝐸𝐴

𝐿
0 0 −

𝐸𝐴

𝐿
0 0

0
12EI

𝐿3
6EI

𝐿2
0 −

12EI

𝐿3
6EI

𝐿2

0
6EI

𝐿2
4EI

𝐿
0 −

6EI

𝐿2
2EI

𝐿

−
𝐸𝐴

𝐿
0 0

𝐸𝐴

𝐿
0 0

0 −
12EI

𝐿3
−
6EI

𝐿2
0

12EI

𝐿3
−
6EI

𝐿2

0
6EI

𝐿2
2EI

𝐿
0 −

6EI

𝐿2
4EI

𝐿 ]
 
 
 
 
 
 
 
 
 
 
 
 

 (2.56) 

Bu matris, serbestlik dereceleri (Şekil 2.16)’da gösterilen 6 serbestlik dereceli kirişin 

katılık matrisidir (Omurtag, 2010). Kirişin hem yatay öteleme, hem dikey öteleme, 

hem de dönme serbestliklerine izin veren bu katılık matrisi düzlem çerçeve 
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elemanlarının en genel halidir. Bu çalışmada kirişin bu 6 serbestlik dereceli hali 

kullanılmıştır.  

 

Şekil 2.16 : 6 serbestlik dereceli kiriş. 

2.2.4 Değişken kesitli kiriş durumu 

Taşıyıcı kirişin yüksekliği ve genişliği değişken olduğu durumda ya da braketlerle 

desteklendiği durumda katılık matrisi de değişir. Bu değişim temel rijitlik katsayıları 

yardımıyla katılık matrisine yansıtılır. Sabit kesitli durumda 𝑛𝑖𝑖 = 1, 𝑚𝑖𝑖 = 4, 

𝑚𝑗𝑗 = 4 ve 𝑚𝑖𝑗 = 2 olur (Karaduman, 1993). 

Temelde 𝑛𝑖𝑖, 𝑚𝑖𝑖, 𝑚𝑗𝑗 ve 𝑚𝑖𝑗 olmak üzere 4 tane rijitlik katsayısı vardır. 

𝑚𝑖𝑖
𝐸𝐼0

𝐿
: Kirişin 𝑖 ucunu birim döndürmek için 𝑖 ucuna uygulanması gereken 

momenttir. 

𝑚𝑗𝑗
𝐸𝐼0

𝐿
: Kirişin 𝑗 ucunu birim döndürmek için 𝑗 ucuna uygulanması gereken 

momenttir. 

𝑚𝑖𝑗
𝐸𝐼0

𝐿
: Kirişin 𝑖 ucunu birim döndürmek için 𝑗 ucuna uygulanması gereken 

momenttir. Ayrıca bunun tersi de doğrudur; 𝑚𝑖𝑗 = 𝑚𝑖𝑗 eşitliği her zaman sağlanır. 

𝑛𝑖𝑖
𝐸𝐴0

𝐿
: Alan değişken olduğu durumda elemana birim deplasman uygulanınca 

eleman üzerinde oluşan eksenel kuvvettir. 

Burada 𝐼0 kesitin minimum atalet momenti, 𝐴0 kesitin kirişin minimum alanı, 𝐿 

kirişin uzunluğu, 𝐸 kirişin elastisite modülüdür. 

6 serbestlik dereceli kirişte 𝑑3 birim dönme durumu için moment alan yöntemi atalet 

momentinin değişken olduğu göz önüne alınarak uygulanırsa yapılan tanımlara göre 

𝑘33 = 𝑚𝑖𝑖
𝐸𝐼0

𝐿
 ve 𝑘63 = 𝑚𝑖𝑗

𝐸𝐼0

𝐿
 olacaktır. (Şekil 2.17)’de bu uygulama gösterilmiştir.  
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Şekil 2.17 :  𝑑3 = 1 ve değişken kesitli durum için moment alan yönteminin 

uygulanması (Karaduman, 1993). 

𝑘33 ve 𝑘63 değerlerinin bilinmesi için 𝑚𝑖𝑖 ve 𝑚𝑖𝑗 bulunması gerekir. Fiktif sistemde 

𝑀𝐵 = 0 eşitliği yazılırsa; 

−𝐴𝐿 −𝑚𝑖𝑖

𝐸𝐼0
𝐿2
∫

(𝐿 − 𝑥)2

𝐸𝐼(𝑥)
𝑑𝑥

𝐿

0

+𝑚𝑖𝑗

𝐸𝐼0
𝐿2
∫

𝑥(𝐿 − 𝑥)

𝐸𝐼(𝑥)
𝑑𝑥

𝐿

0

 (2.57) 

Fiktif sistemde 𝑀𝐴 = 0 eşitliği yazılırsa; 

𝐵𝐿 −𝑚𝑖𝑖

𝐸𝐼0
𝐿2
∫

𝑥(𝐿 − 𝑥)

𝐸𝐼(𝑥)
𝑑𝑥

𝐿

0

−𝑚𝑖𝑗

𝐸𝐼0
𝐿2
∫

𝑥2

𝐸𝐼(𝑥)
𝑑𝑥

𝐿

0

 (2.58) 

𝑑6 = 1 için de moment alan teoremi benzer şekilde yazılarak 𝑚𝑗𝑗 ifadesine ait 

denklemler bulunabilir. 
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𝐼1 = ∫
𝑥2

𝐸𝐼(𝑥)
𝑑𝑥

𝐿

0

, 𝐼2 = ∫
1

𝐸𝐼(𝑥)
𝑑𝑥

𝐿

0

, 𝐼3 = ∫
𝑥

𝐸𝐼(𝑥)
𝑑𝑥

𝐿

0

 (2.59) 

Tanımları yapılarak temel rijitlik katsayıları aşağıdaki gibi elde edilir (Karaduman, 

1993): 

𝑚𝑖𝑖 =
𝐼1𝐿

𝐼0(𝐼1𝐼2 − 𝐼3
2)
 , 𝑚𝑖𝑗 =

𝐿(𝐼3𝐿 − 𝐼1)

𝐼0(𝐼1𝐼2 − 𝐼3
2)
 ,

𝑚𝑗𝑗 =
𝐿(−𝐼2𝐿

2 − 21𝐿𝐼3 − 𝐼3)

𝐼0(𝐼1𝐼2 − 𝐼3
2)

 

(2.60) 

(Şekil 2.1)’deki eksenel yüklü kiriş için 𝑑1 = 1 olduğu durumda kirişte −𝑛𝑖𝑖
𝐸𝐴0

𝐿
 

eksenel kuvveti oluşur (Karaduman, 1993). Bu durumda elemanın boyca uzuma 

denklemi yazılırsa; 

∆𝐿 = 𝑑2 − 𝑑1 = −1 = −𝑛𝑖𝑖
𝐸𝐴0
𝐿
∫

1

𝐸𝐴(𝑥)

𝐿

0

 (2.61) 

𝑛𝑖𝑖 =
𝐿

𝐴0
(∫

1

𝐴(𝑥)

𝐿

0

)

−1

 (2.62) 

elde edilir. 

Bu tanımlar yapıldıktan sonra 6 serbestlik dereceli kiriş için rijitlik matrisi elemanları 

aşağıdaki gibi olacaktır (Karaduman, 1993): 

𝑘11 =
𝑛𝑖𝑖𝐸𝐴0
𝐿

, 𝑘14 = −𝑘11 , 𝑘22 =
(𝑚𝑖𝑖 +𝑚𝑗𝑗 + 2𝑚𝑖𝑗)𝐸𝐼0

𝐿3
 , 

𝑘23 =
(𝑚𝑖𝑖 +𝑚𝑖𝑗)𝐸𝐼0

𝐿2
 , 𝑘25 = −𝑘22 , 𝑘26 =

(𝑚𝑗𝑗 +𝑚𝑖𝑗)𝐸𝐼0

𝐿2
 , 

𝑘33 =
𝑚𝑖𝑖𝐸𝐼0
𝐿

 , 𝑘35 = −𝑘23 , 𝑘36 =
𝑚𝑗𝑗𝐸𝐼0

𝐿2
 , 𝑘44 = 𝑘11 ,

𝑘55 = 𝑘22 , 𝑘56 = 𝑘26 , 𝑘66 =
𝑚𝑗𝑗𝐸𝐼0

𝐿
 ,

𝑘12 = 𝑘13 = 𝑘15 = 𝑘16 = 𝑘24 = 𝑘34 = 𝑘45 = 𝑘46

= 0 

(2.63) 

Ayrıca simetriden dolayı 𝑘𝑖𝑗 = 𝑘𝑖𝑗’dir. 
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2.3 Yük Vektörü 

Katılık katsayılarıyla deplasmanlar arasındaki ilişki aşağıdaki gibi yazılır: 

𝑃1 = 𝑘11𝑑1 + 𝑘12𝑑2 + 𝑘13𝑑3 + 𝑘14𝑑4 + 𝑘15𝑑5 + 𝑘16𝑑6 + 𝑓1 

𝑃2 = 𝑘21𝑑1 + 𝑘22𝑑2 + 𝑘23𝑑3 + 𝑘24𝑑4 + 𝑘25𝑑5 + 𝑘26𝑑6 + 𝑓2 

𝑃3 = 𝑘31𝑑1 + 𝑘13𝑑2 + 𝑘33𝑑3 + 𝑘34𝑑4 + 𝑘35𝑑5 + 𝑘36𝑑6 + 𝑓3 

𝑃4 = 𝑘41𝑑1 + 𝑘42𝑑2 + 𝑘43𝑑3 + 𝑘44𝑑4 + 𝑘45𝑑5 + 𝑘46𝑑6 + 𝑓4 

𝑃5 = 𝑘51𝑑1 + 𝑘52𝑑2 + 𝑘53𝑑3 + 𝑘54𝑑4 + 𝑘55𝑑5 + 𝑘56𝑑6 + 𝑓5 

𝑃6 = 𝑘61𝑑1 + 𝑘62𝑑2 + 𝑘63𝑑3 + 𝑘64𝑑4 + 𝑘65𝑑5 + 𝑘66𝑑6 + 𝑓6 

(2.64) 

Denklem takımı matris formunda yazılırsa: 

{
 
 

 
 
𝑃1
𝑃2
𝑃3
𝑃4
𝑃5
𝑃6}
 
 

 
 

=

[
 
 
 
 
 
𝑘11 𝑘12 𝑘13
𝑘21 𝑘22 𝑘23
𝑘31 𝑘32 𝑘33

𝑘14 𝑘15 𝑘16
𝑘24 𝑘25 𝑘26
𝑘34 𝑘35 𝑘36

𝑘41 𝑘42 𝑘43
𝑘51 𝑘52 𝑘53
𝑘61 𝑘62 𝑘63

𝑘44 𝑘45 𝑘46
𝑘54 𝑘55 𝑘56
𝑘64 𝑘65 𝑘66]

 
 
 
 
 

{
 
 

 
 
𝑑1
𝑑2
𝑑3
𝑑4
𝑑5
𝑑6}
 
 

 
 

+

{
 
 

 
 
𝑓1
𝑓2
𝑓3
𝑓4
𝑓5
𝑓6}
 
 

 
 

 (2.65) 

ya da, 

{𝑃} = [𝑘]{𝑑} + {𝑓} (2.66) 

Burada {𝑃} direkt yük vektörü, [𝑘] katılık matrisi, {𝑑} deformasyon vektörü ve {𝑓} 

endirekt yük vektörüdür. 

Direkt yük vektörü nodlara gelen yüklerden oluşur. Endirekt yük vektörü ise kiriş 

üzerindeki yüklerin kirişin ucundaki nodlarda oluşturduğu tepkilerden oluşur. Katılık 

katsayıları tanım gereği serbestlik dereceleri yönündeki bütün deplasmanlar sıfır iken 

oluşturulur. Sistem endirekt yük vektörü de bu durumda oluşan yüklerdir. Diğer bir 

deyişle endirekt yükler kirişin her iki ucu ankastre mesnet iken bu mesnetlerde 

oluşan tepki kuvvetleri ve momentlerdir. 

Bu çalışmada ele alınan problem kirişlerdeki atalet dağılımının değişken olmasına da 

izin verir. Atalet dağılımının değişken olması kirişteki moment dağılımına da etki 

eder. Bu durumda hesap yöntemi de değişir. Clapeyron’un Üç Moment Yöntemi bu 
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durumdaki mesnet tepkilerini hesaplayabilecek kapasitede bir metottur. Bu çalışmada 

bu yöntem kullanılmaktadır. 

2.3.1  Üç moment metodu 

Üç Moment Metodu sürekli kirişlerin mesnet momentlerini bulmak için kullanılan 

bir yöntemdir. Benoît Paul Émile Clapeyron tarafından 1857 yılında geliştirilmiştir. 

Geliştirilmesine kiriş eğilmelerinin diferansiyel denklemi kullanılmıştır (Gavin, 

2009).  Üç Moment Metodu elastik ve analitik bir analiz metodudur. Birbirine bağlı 

herhangi iki kiriş parçası için yazılabilir (Fertis, 1997). Ancak bir mesnede ikiden 

fazla kiriş bağlandığı durumlarda bu metot kullanılamaz. Oldukça geniş bir kullanım 

alanı vardır. Kirişlerin kendi içinde atalet momentlerinin değiştiği durumlarda, her 

türlü eğilme yüklenmesinde kullanılabilir. 

Üç Moment Metodu aslında kendi başına sürekli kirişleri çözebilen bir metottur. Bu 

çalışmada geliştirilen programda Matris Deplasman Metodunda tanım gereği her iki 

ucun ankastre mesnet olduğu ve atalet momentinin değişken olduğu durumda mesnet 

tepkilerini ve dolayısıyla endirekt yük vektörlerini hesaplamak için kullanılmıştır.  

(Şekil 2.18)’deki gibi bir sürekli kirişin herhangi üç mesnetli kısmını ele alalım. 

 

Şekil 2.18 : Sürekli bir kirişin üç mesnetli kısmı (Savcı, 1988). 

Bu parçalarında uç momentler 𝑀𝐴, 𝑀𝐵 ve 𝑀𝐶 olsun. B mesnedindeki durumu 

inceleyelim; 

𝑀𝐵1 = 𝑀𝐵2 = 𝑀 (2.67) 

𝜑𝐵1 = −𝜑𝐵2 (2.68) 

Mohr teoremine göre; 
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𝑖(𝑥) =
𝐼0
𝐼(𝑥)

 (2.69) 

𝑖(𝑥′) =
𝐼0
𝐼(𝑥′)

 (2.70) 

Burada 𝐼0 mesnedin herhangi bir noktasındaki sabit bir atalet momentidir. 𝐼(𝑥) sol 

taraftaki kirişin atalet momenti fonksiyonudur. 𝐼(𝑥′) sağ taraftaki kirişin atalet 

momenti fonksiyonudur. Mohr teoreminde; 

𝐸𝐼0𝜑𝐵 = −
1

𝑙
∫ 𝑀(𝑥)𝑖(𝑥)𝑥𝑑𝑥
𝑙

0

 (2.71) 

Buradan; 

𝐸𝐼0𝜑𝐵1 = −
1

𝑙1
∫ 𝑀(𝑥)𝑖(𝑥)𝑥𝑑𝑥
𝑙1

0

 (2.72) 

𝐸𝐼0𝜑𝐵2 = −
1

𝑙2
∫ 𝑀(𝑥′)𝑖(𝑥′)𝑥′𝑑𝑥′
𝑙2

0

 (2.73) 

Denklem 2.68’deki açıların eşitliğinden aşağıdaki ifade yazılabilir (Savcı, 1988); 

1

𝑙1
∫ 𝑀(𝑥)𝑖(𝑥)𝑥𝑑𝑥
𝑙1

0

+
1

𝑙2
∫ 𝑀(𝑥′)𝑖(𝑥′)𝑥′𝑑𝑥′
𝑙2

0

= 0 (2.74) 

Ayrıca yine Mohr teoreminden; 

𝑀(𝑥) = 𝑀0(𝑥) + 𝑀𝐴 +
𝑥

𝑙1
(𝑀𝐵 −𝑀𝐴) (2.75) 

𝑀(𝑥′) = 𝑀0(𝑥′) + 𝑀𝐶 +
𝑥′

𝑙1
(𝑀𝐵 −𝑀𝐶) (2.76) 

Burada 𝑀0(𝑥) kirişin her iki ucunun serbest mesnet olduğu durumdaki moment 

dağılımıdır. Denklem 2.76 ve denklem 2.75, denklem 2.74’te yerine konulursa 

aşağıdaki denklem elde edilir; 
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1

𝑙1
∫ 𝑀0(𝑥)𝑖(𝑥)𝑥𝑑𝑥
𝑙1

0

+
1

𝑙1
∫ 𝑀𝐴(𝑥)𝑖(𝑥)𝑥𝑑𝑥
𝑙1

0

+
1

𝑙1
2∫ (𝑀𝐵 −𝑀𝐴)𝑖(𝑥)𝑥

2𝑑𝑥
𝑙1

0

+
1

𝑙2
∫ 𝑀0(𝑥′)𝑖(𝑥′)𝑥′𝑑𝑥′
𝑙2

0

+
1

𝑙2
∫ 𝑀𝐶(𝑥′)𝑖(𝑥′)𝑥′𝑑𝑥′
𝑙2

0

+
1

𝑙2
2∫ (𝑀𝐵 −𝑀𝐶)𝑖(𝑥

′)𝑥′
2
𝑑𝑥′

𝑙2

0

= 0 

(2.77) 

Denklem düzenlenirse; 

𝑀𝐴 [
1

𝑙1
∫ 𝑖(𝑥)𝑥𝑑𝑥 −

1

𝑙1
2∫ 𝑖(𝑥)𝑥2𝑑𝑥

𝑙1

0

𝑙1

0

]

+ 𝑀𝐵 [
1

𝑙1
2∫ 𝑖(𝑥)𝑥2𝑑𝑥

𝑙1

0

+
1

𝑙2
2∫ 𝑖(𝑥′)𝑥′

2
𝑑𝑥′

𝑙2

0

]

+ 𝑀𝐶 [
1

𝑙2
∫ 𝑖(𝑥′)𝑥′𝑑𝑥′
𝑙2

0

−
1

𝑙2
2∫ 𝑖(𝑥′)𝑥′

2
𝑑𝑥′

𝑙2

0

]

= −
1

𝑙1
∫ 𝑀0(𝑥)𝑖(𝑥)𝑥𝑑𝑥
𝑙1

0

−
1

𝑙2
∫ 𝑀0(𝑥′)𝑖(𝑥′)𝑥′𝑑𝑥′
𝑙2

0

 

(2.78) 

Bu denklem Clapeyron’un Üç Moment Denklemidir (Savcı, 1988). 

Kirişlerin atalet momentleri kendi içinde sabit olduğu durumda; 

𝑖(𝑥) = 𝑖1 =
𝐼0

𝐼1
,  𝑖(𝑥′) = 𝑖2 =

𝐼0

𝐼2
 (2.79) 

𝑀𝐴𝑖1𝑙1 + 2𝑀𝐵(𝑖1𝑙1 + 𝑖2𝑙2) + 𝑀𝐶𝑖2𝑙2 = −
6𝑖1

𝑙1
∫ 𝑀0(𝑥)𝑥𝑑𝑥
𝑙1

0
−

6𝑖2

𝑙2
∫ 𝑀0(𝑥′)𝑥

′𝑑𝑥′
𝑙2

0
- 

(2.80) 

𝐾𝐴 =
6

𝑙1
2 ∫ 𝑀0(𝑥)𝑥𝑑𝑥

𝑙1

0
,  𝐾𝐶 =

6

𝑙2
2 ∫ 𝑀0(𝑥′)𝑥′𝑑𝑥′

𝑙2

0
 (2.81) 

𝐾𝐴 ve 𝐾𝐶 denklem 2.80’de yerine konulursa (Savcı, 1988); 
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𝑀𝐴𝑖1𝑙1 + 2𝑀𝐵(𝑖1𝑙1 + 𝑖2𝑙2) + 𝑀𝐶𝑖2𝑙2 = −𝑖1𝑙1𝐾𝐴 − 𝑖2𝑙2𝐾𝐶 

𝑀𝐴
𝐼0
𝐼1
𝑙1 + 2𝑀𝐵 (

𝐼0
𝐼1
𝑙1 +

𝐼0
𝐼2
𝑙2) + 𝑀𝐶

𝐼0
𝐼2
𝑙2 = −

𝐼0
𝐼1
𝑙1𝐾𝐴 −

𝐼0
𝐼2
𝑙2𝐾𝐶 

𝑀𝐴
𝑙1
𝐼1
+ 2𝑀𝐵 (

𝑙1
𝐼1
+
𝑙2
𝐼2
) + 𝑀𝐶

𝑙2
𝐼2
= −

𝑙1
𝐼1
𝐾𝐴 −

𝑙2
𝐼2
𝐾𝐶 

(2.82) 

Üç Moment Denkleminin bu hali en bilinen halidir (Savcı, 1988). Pratikte çok 

kullanılan hali de budur. 𝐾𝐴 ve 𝐾𝐶 değerleri yüke göre değişir ve tablolardan 

bulunabilir. 

Bu çalışma kapsamında geliştirilen programda kiriş içinde atalet momenti değişken 

olarak ve parçalı bir polinom halinde ifade edilebilmektedir. Kullanıcı 𝐼(𝑥) 

fonksiyonunu kendisi girer. Bu yüzden Clapeyron’un metodundaki 𝑖(𝑥) =
𝐼0

𝐼(𝑥)
  

ifadesi programda kullanılmamaktadır. Bunun yerine 𝐼(𝑥) fonksiyonu kullanılır. 

Programda kullanılan denklem 2.78’in farklı bir halidir ve denklem 2.83’te ifade 

edilmiştir.  

𝑀𝐴 [
𝐼1
𝑙1
∫

𝑑𝑥

𝐼(𝑥)

𝑙1

0

−
𝐼1

𝑙1
2∫

𝑥2𝑑𝑥

𝐼(𝑥)

𝑙1

0

] + 𝑀𝐵 [
𝐼1

𝑙1
2∫

𝑥2𝑑𝑥

𝐼(𝑥)

𝑙1

0

+
𝐼2

𝑙2
2∫

𝑥′2𝑑𝑥′

𝐼(𝑥′)

𝑙2

0

]

+ 𝑀𝐶 [
𝐼2
𝑙2
∫

𝑥′𝑑𝑥′

𝐼(𝑥′)

𝑖2

0

−
𝐼2

𝑙2
2∫

𝑥′
2
𝑑𝑥′

𝐼(𝑥′)

𝑙2

0

]

= −
𝐼1
𝑙1
∫

𝑀0(𝑥)𝑥𝑑𝑥

𝐼(𝑥)

𝑙1

0

−
𝐼2
𝑙2
∫

𝑀0(𝑥
′)𝑥′𝑑𝑥′

𝐼(𝑥′)

𝑙2

0

 

(2.83) 

2.3.2 Örnek bir kiriş için yük vektörünün bulunması 

(Şekil 2.19)’daki gibi yüklü bir kirişi ele alalım. 

 

Şekil 2.19 : İki ucu ankastre mesnetli kiriş. 
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Bu gibi problemler endirekt yük vektörünün hesaplanmasında ortaya çıkar. Bütün 

nodlardaki deplasmanların sıfır olduğu durum o nodlarda ankastre mesnet olmasına 

karşılık gelir. Üç moment yönteminde ankastre mesnet olduğu durumda (Şekil 

2.20)’deki gibi sanal kirişler konularak hesap yapılır. 

 

Şekil 2.20 : Sanal kirişlerin eklendiği kiriş sistemi. 

𝐴𝐴′ kirişi ve 𝐵𝐵′ kirişleri sanal kiriş olduğu için kiriş uzunlukları, ve atalet 

momentleri 0 olacaktır. Ayrıca 𝐴′ ve 𝐵′ serbest mesnet olacağı için buradaki 

momentler de 0 olacaktır. 𝐴𝐴′𝐵 kiriş sistemi için denklem 2.78 aşağıdaki gibi 

sadeleşir; 

𝑀𝐴 [
1

𝑙2
2∫ 𝑥′2𝑑𝑥′

𝑙2

0

] + 𝑀𝐵 [
1

𝑙2
∫ 𝑥′𝑑𝑥′
𝑖2

0

−
1

𝑙2
2∫ 𝑥′

2
𝑑𝑥′

𝑙2

0

]

= −
1

𝑙2
∫ 𝑀0(𝑥

′)𝑥′𝑑𝑥′
𝑙2

0

 

(2.84) 

Burada önemli bir nokta vardır. 𝐴𝐴′𝐵 kirişi için Clapeyron’un denklemindeki 𝑥 için 

koordinat sisteminin orijini  𝐴′ noktasıdır ve +𝑥 yönü sağ tarafa doğrudur. 𝑥′ için ise 

orijin 𝐵 noktasıdır ve +𝑥′ yönü sol tarafa doğrudur. Bu durumda 𝑀0(𝑥
′) =

(10 − 𝑥′)3 − 100(10 − 𝑥′) olarak statik denklemlerinden kolayca bulunabilir. O 

halde; 

𝑀𝐴 [
1

102
∫ 𝑥′2𝑑𝑥′
10

0

] + 𝑀𝐵 [
1

10
∫ 𝑥′𝑑𝑥′
10

0

−
1

102
∫ 𝑥′

2
𝑑𝑥′

10

0

]

= −
1

10
∫ ((10 − 𝑥′)3 − 100(10 − 𝑥′) )𝑥′𝑑𝑥′
10

0

 

(2.85) 

2𝑀𝐴 +𝑀𝐵 = 700 (2.86) 

𝐴𝐵𝐵′ kiriş sistemi için Clapeyron denklemi aşağıdaki gibi sadeleşir; 
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𝑀𝐴 [
1

𝑙2
∫ 𝑥𝑑𝑥
𝑙2

0

−
1

𝑙2
2∫ 𝑥2𝑑𝑥

𝑙2

0

] + 𝑀𝐵 [
1

𝑙2
2∫ 𝑥2𝑑𝑥

𝑙2

0

]

= −
1

𝑙2
∫ 𝑀0(𝑥)𝑥𝑑𝑥
𝑙2

0

 

(2.87) 

Burada 𝑥 için koordinat sisteminin orijini 𝐴 noktasıdır ve +𝑥 yönü sağ tarafa 

doğrudur. 𝑥′ için ise orijin 𝐵′ noktasıdır ve +𝑥′ yönü sol tarafa doğrudur. Bu 

durumda 𝑀0(𝑥) = 𝑥
3 − 100𝑥 olarak bulunabilir. 

𝑀𝐴 [
1

𝑙2
∫ 𝑥𝑑𝑥
𝑙2

0

−
1

𝑙2
2∫ 𝑥2𝑑𝑥

𝑙2

0

] + 𝑀𝐵 [
1

𝑙2
2∫ 𝑥2𝑑𝑥

𝑙2

0

]

= −
1

𝑙2
∫ 𝑀0(𝑥)𝑥𝑑𝑥
𝑙2

0

 

(2.88) 

𝑀𝐴 + 2𝑀𝐵 = 800 (2.89) 

Denklem 2.86 ve denklem 2.87 çözülürse 𝑀𝐴 = 200 𝑁𝑚 ve 𝑀𝐵 = 300 𝑁𝑚 bulunur. 

Bulunan bu değerler üç moment denklemi işaret kabulüne göredir. Mukavemetten 

mesnet tepkileri de hesaplandığında kirişteki mesnet tepkileri (Şekil 2.21)’deki gibi 

bulunur. 

 

Şekil 2.21 : Kirişteki mesnet tepkileri. 

Kirişte eksenel kuvvet yoktur. Endirekt yük vektörünün ilk elemanı 1 numaralı 

serbestlik derecesi yönündeki kuvvettir. 2. Elemanı ise 2 numaralı serbestlik derecesi 

yönündeki kuvvet ve diğer elemanları kendilerine karşılık gelen serbestlik derecesi 

yönündeki kuvvet ya da momenttir. Elemanın endirekt yük vektörü denklem 

2.90’daki gibi olur. 
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𝑓 =

{
 
 

 
 

0
90
200
0
210
−300}

 
 

 
 

 (2.90) 

Vektörün son elemanının negatif olması kirişin sağ ucundaki momentin yönünün 

matris deplasman yöntemindeki dönme yönün tersinde dönme olmasından dolayıdır. 

Kirişin nodlarına herhangi bir direkt kuvvet etkimediği için elemanın direkt yük 

vektörünün bütün elemanları sıfırdır. 

2.4 Müşterek Sistem 

Metotta eleman matrisleri ve yük vektörleri tek bir müşterek denklem takımında 

toplanır. Eleman matrisleri özel bir yöntemle birleştirilerek müşterek katılık matrisini 

oluşturulur. Elemanların direkt ve endirekt yük vektörleri de yine özel bir yöntemle 

birleştirilerek müşterek yük vektörü oluşturulur. Oluşan müşterek matris sistemi 

çözülerek uç deplasmanları bulunur. Bulunan müşterek deplasmanlar tekrar 

elemanların matris denklemine entegre edilerek elemanlardaki bilinmeyen 

deplasmanlar bulunmuş olur. 

2.4.1 Kiriş eksenlerinin transformasyonu 

(Şekil 2.22)’de bir p vektörünün XYZ ve xyz olmak üzere iki eksen takımlarında iz 

düşümü gösterilmiştir. 

 

Şekil 2.22 : Bir noktada eksen transformasyonu (Karaduman, 1993). 
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𝑋𝑌𝑍 eksen takımındaki iz düşümleri kullanılarak 𝑥𝑦𝑧 eksen takımlarındaki iz 

düşümler bulunmaya çalışılırsa; 

𝑝𝑥 = 𝑝𝑋𝑙𝑥 + 𝑝𝑌𝑚𝑥 + 𝑝𝑍𝑝𝑛𝑥 

𝑝𝑦 = 𝑝𝑋𝑙𝑦 + 𝑝𝑌𝑚𝑦 + 𝑝𝑍𝑝𝑛𝑦 

𝑝𝑧 = 𝑝𝑋𝑙𝑧 + 𝑝𝑌𝑚𝑧 + 𝑝𝑍𝑝𝑛𝑧 

(2.91) 

yazılabilir. Yukarıdaki denklemleri matris notasyonunda yazarsak; 

{

𝑝𝑥
𝑝𝑦
𝑝𝑧
} = [

𝑙𝑥 𝑚𝑥 𝑛𝑥
𝑙𝑦 𝑚𝑦 𝑛𝑦
𝑙𝑧 𝑚𝑧 𝑛𝑧

] {

𝑝𝑋
𝑝𝑌
𝑝𝑍
} (2.92) 

𝑙, 𝑚, 𝑛’lerden oluşan bu matrise doğrultu kosinüsleri matrisi denir. [𝑡] ile gösterilir. 

{𝑝}𝑥𝑦𝑧 = [𝑡]{𝑝}𝑋𝑌𝑍 (2.93) 

Denklem 2.93’e ortogonal transformasyon denklemi denir. Düzlem çerçevelerde 𝑥 

ekseni ortak eksene paralel, 𝑦 ekseni de çubuk eksenine diktir. Bu durumda [𝑡] 

matrisi aşağıdaki gibi olur: 

[𝑡] = [
cos 𝛽 sin 𝛽 0
− sin 𝛽 cos𝛽 0
0 0 1

] (2.94) 

Kiriş elemanının 𝑖 ucunun koordinatları (𝑥𝑖 , 𝑦𝑖) ve 𝑗 ucunun koordinatları (𝑥𝑗 , 𝑦𝑗) 

olarak kabul edilirse: 

𝐿 = √(𝑥𝑗 − 𝑥𝑖)
2
+ (𝑦𝑗 − 𝑦𝑖)

2
 (2.95) 

cos 𝛽 =
(𝑥𝑗 − 𝑥𝑖)

𝐿
 (2.96) 

sin 𝛽 =
(𝑦𝑗 − 𝑦𝑖)

𝐿
 (2.97) 

Düzlem çerçevelerde 6 serbestlik derecesi olduğu için bu matrisi 6𝑥6 boyutuna 

aşağıdaki gibi getirmek gerekir: 
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[𝑇] = [
[𝑡] 0

0 [𝑡]
]
6𝑥6

 (2.98) 

Bu durumda eleman bazındaki direkt, endirekt yük vektörleri ve deplasman vektörü 

aşağıdaki gibi global eksen takımından eleman eksen takımına yazılabilir: 

{𝑝}𝑥𝑦𝑧 = [𝑇]{𝑝}𝑋𝑌𝑍 (2.99) 

{𝑑}𝑥𝑦𝑧 = [𝑇]{𝑑}𝑋𝑌𝑍 (2.100) 

{𝑓}𝑥𝑦𝑧 = [𝑇]{𝑓}𝑋𝑌𝑍 (2.101) 

Transformasyon matrisinin [𝑇]−1 = [𝑇]𝑇 özelliği kullanılıp aşağıdaki gibi ters 

transformasyon yapılabilir: 

{𝑝}𝑋𝑌𝑍 = [𝑇]
𝑇{𝑝}𝑥𝑦𝑧 (2.102) 

{𝑑}𝑋𝑌𝑍 = [𝑇]
𝑇{𝑑}𝑥𝑦𝑧 (2.103) 

{𝑓}𝑋𝑌𝑍 = [𝑇]
𝑇{𝑓}𝑥𝑦𝑧 (2.104) 

Katılık matrisinin müşterek eksene transformasyonu aşağıdaki gibi yapılır: 

[𝑘]𝑋𝑌𝑍 = [𝑇]
𝑇[𝑘]𝑥𝑦𝑧[𝑇] (2.105) 

2.4.2 Müşterek sistemin elde edilmesi ve çözümü 

(Şekil 2.23)’teki enine çerçeve örneği ele alınsın. Çerçeve üç ayrı kirişten 

oluşmaktadır ve tekil ve yayılı yüklerin etkisi altındadır. 
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Şekil 2.23 : İki boyutlu enine çerçeve örneği. 

Öncelikle kirişler numaralandırılıp sistemin serbestlik derecesi belirlenir. Sistem 6 

serbestlik derecelidir. Serbestlik dereceleri (Şekil 2.24)’te gösterilmiştir. 

 

Şekil 2.24 : İki boyutlu enine çerçevenin serbestlik dereceleri. 

Ankastre mesnetlerde her üç serbestlik dereceleri yönünde deplasmanlar sıfır olacağı 

için serbestlik dereceleri yoktur. 6 tane serbestlik derecesi olduğundan dolayı  global 

matris 6𝑥6 boyutunda olacaktır. Bir sonraki adım çerçevedeki kirişlerin (Şekil 

2.25)’teki halinin direkt ve endirekt yük vektörlerini bulmaktır. 
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Şekil 2.25 : İki boyutlu enine çerçevenin endirekt yüklerinin bulunması. 

Çerçeve elemanlarının müşterek eksenlerdeki serbestlik dereceleri (Şekil 2.26)’daki 

gibi olacaktır. 

 

Şekil 2.26 : İki boyutlu enine çerçevedeki elemanların serbestlik dereceleri. 

Sisteme direkt yük etkimediği için tüm elemanların direkt yük vektörleri sıfır 

olacaktır. Üç Moment Yöntemi kullanılarak endirekt yük vektörleri bulunabilir. 1 

numaralı eleman için cos 𝛽 = 0, sin 𝛽 = 1, 2 numaralı eleman için cos 𝛽 = 1, 

sin 𝛽 = 0 ve 3 numaralı eleman için cos 𝛽 = 0, sin 𝛽 = 1 olacaktır. Dolayısıyla her 

üç eleman için transformasyon matrisleri bellidir. Global eksen takımına göre 
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{𝑓}𝑋𝑌𝑍 = [𝑇]
𝑇{𝑓}𝑥𝑦𝑧 denklemi kullanılarak endirekt yük vektörlerinin aşağıdaki gibi 

elde edildiği varsayılsın: 

𝑓𝑋𝑌𝑍
1 =

{
  
 

  
 
𝑓1
1

𝑓2
1

𝑓3
1

𝑓4
1

𝑓5
1

𝑓6
1}
  
 

  
 

 , 𝑓𝑋𝑌𝑍
2 =

{
  
 

  
 
𝑓1
2

𝑓2
2

𝑓3
2

𝑓4
2

𝑓5
2

𝑓6
2}
  
 

  
 

 , 𝑓𝑋𝑌𝑍
3 =

{
  
 

  
 
𝑓1
3

𝑓2
3

𝑓3
3

𝑓4
3

𝑓5
3

𝑓6
3}
  
 

  
 

 (2.106) 

Global eksen takımına göre eleman katılık matrislerinin [𝑘]𝑋𝑌𝑍 = [𝑇]𝑇[𝑘]𝑥𝑦𝑧[𝑇] 

denklemiyle aşağıdaki gibi elde edildiği varsayılsın: 

𝑘1𝑋𝑌𝑍 =

[
 
 
 
 
 
 
𝑘11
1 𝑘12

1 𝑘13
1

𝑘21
1 𝑘22

1 𝑘23
1

𝑘31
1 𝑘32

1 𝑘33
1

𝑘14
1 𝑘15

1 𝑘16
1

𝑘24
1 𝑘25

1 𝑘26
1

𝑘34
1 𝑘35

1 𝑘36
1

𝑘41
1 𝑘42

1 𝑘43
1

𝑘51
1 𝑘52

1 𝑘53
1

𝑘61
1 𝑘62

1 𝑘63
1

𝑘44
1 𝑘45

1 𝑘46
1

𝑘54
1 𝑘55

1 𝑘56
1

𝑘64
1 𝑘65

1 𝑘66
1 ]
 
 
 
 
 
 

 (2.107) 

𝑘2𝑋𝑌𝑍 =

[
 
 
 
 
 
 
𝑘11
2 𝑘12

2 𝑘13
2

𝑘21
2 𝑘22

2 𝑘23
2

𝑘31
2 𝑘32

1 𝑘33
2

𝑘14
2 𝑘15

2 𝑘16
2

𝑘24
2 𝑘25

2 𝑘26
2

𝑘34
2 𝑘35

2 𝑘36
2

𝑘41
2 𝑘42

2 𝑘43
2

𝑘51
2 𝑘52

2 𝑘53
2

𝑘61
2 𝑘62

2 𝑘63
2

𝑘44
2 𝑘45

2 𝑘46
2

𝑘54
2 𝑘55

2 𝑘56
2

𝑘64
2 𝑘65

2 𝑘66
2 ]
 
 
 
 
 
 

 (2.108) 

𝑘3𝑋𝑌𝑍 =

[
 
 
 
 
 
 
𝑘11
3 𝑘12

3 𝑘13
3

𝑘21
3 𝑘22

3 𝑘23
3

𝑘31
3 𝑘32

3 𝑘33
3

𝑘14
3 𝑘15

3 𝑘16
3

𝑘24
3 𝑘25

3 𝑘26
3

𝑘34
3 𝑘35

3 𝑘36
3

𝑘41
3 𝑘42

3 𝑘43
3

𝑘51
3 𝑘52

3 𝑘53
3

𝑘61
3 𝑘62

3 𝑘63
3

𝑘44
3 𝑘45

3 𝑘46
3

𝑘54
3 𝑘55

3 𝑘56
3

𝑘64
3 𝑘65

3 𝑘66
3 ]
 
 
 
 
 
 

 (2.109) 

(Şekil 2.25)’de kiriş elemanlarının global eksen takımına göre serbestlik dereceleri 

verilmiştir. Her bir kiriş için, serbestlik derecelerinin global serbestlik 

derecelerindeki karşılığı tablo halinde yazılabilir. Çizelge 2.1’de bu tablo 

gösterilmiştir. 
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Çizelge 2.1 : Düzlem çerçeve için kod numaraları tablosu. 

Bu yönteme kod numaraları yöntemi denir. Global matris bu tabloya bakılarak 

oluşturulur. Elemanların serbestlik dereceleri indekslerinin global serbestlik 

derecelerinde hangi indekslere karşılık geldiği bulunarak global katılık matrisinin 

elemanları doldurulur. Örneğin 1 numaralı elemanın  𝑘44
1  elemanı global matriste 

𝑘11’e karşılık gelmektedir. 𝑘45
1  elemanı 𝑘12’ye karşılık gelir. 𝑘46

1  ise 𝑘13’e karşılık 

gelir. 2 numaralı elemanın 𝑘11
2  elemanı global matriste 𝑘11’e, 𝑘12

2  elemanı global 

matriste 𝑘12’ye karşılık gelir. Bu mantık ile bütün elemanların indisleri tarandığında 

global matris oluşturulmuş olur. Elemanların katılık matrisi elemanları global 

matriste aynı elemana karşılık geliyorsa katılık elemanlarının toplamı global matrisin 

o elemanını oluşturur. Global matris sonuç olarak denklem 2.108’deki gibi elde 

edilir.  

𝑘 =

[
 
 
 
 
 
 
𝑘44
1 + 𝑘11

2 𝑘45
1 + 𝑘12

2 𝑘46
1 + 𝑘13

2 𝑘14
2 𝑘15

2 𝑘16
2

𝑘54
1 + 𝑘21

2 𝑘55
1 + 𝑘22

2 𝑘56
1 + 𝑘23

2 𝑘24
2 𝑘25

2 𝑘26
2

𝑘64
1 + 𝑘31

2 𝑘65
1 + 𝑘32

2 𝑘66
1 + 𝑘33

2 𝑘34
2 𝑘35

2 𝑘36
2

𝑘41
2 𝑘41

2 𝑘43
2 𝑘11

3 + 𝑘44
2 𝑘12

3 + 𝑘45
2 𝑘13

3 + 𝑘46
2

𝑘51
2 𝑘51

2 𝑘53
2 𝑘21

3 + 𝑘54
2 𝑘22

3 + 𝑘55
2 𝑘23

3 + 𝑘56
2

𝑘61
2 𝑘61

2 𝑘63
2 𝑘31

3 + 𝑘64
2 𝑘32

3 + 𝑘65
2 𝑘33

3 + 𝑘66
2 ]
 
 
 
 
 
 

 (2.110) 

Kod numaraları yöntemi yük vektörlerine de uygulanır. Denklem 2.111’de yük 

vektörlerinin elemanlarının global yük vektöründe hangi numaraya karşılık geldiği 

gösterilmiştir. 

𝑓𝑋𝑌𝑍
1 =

{
  
 

  
 
𝑓1
1

𝑓2
1

𝑓3
1

𝑓4
1

𝑓5
1

𝑓6
1}
  
 

  
 → 0
→ 0
→ 0
→ 1
→ 2
→ 3

 , 𝑓𝑋𝑌𝑍
2 =

{
  
 

  
 
𝑓1
2

𝑓2
2

𝑓3
2

𝑓4
2

𝑓5
2

𝑓6
2}
  
 

  
 → 1
→ 2
→ 3
→ 4
→ 5
→ 6

 , 𝑓𝑋𝑌𝑍
3 =

{
  
 

  
 
𝑓1
3

𝑓2
3

𝑓3
3

𝑓4
3

𝑓5
3

𝑓6
3}
  
 

  
 → 0
→ 0
→ 0
→ 4
→ 5
→ 6

 (2.111) 

Kiriş No 

1 
Eleman 1 2 3 4 5 6 

Sistem 0 0 0 1 2 3 

2 
Eleman 1 2 3 4 5 6 

Sistem 1 2 3 4 5 6 

3 
Eleman 1 2 3 4 5 6 

Sistem 4 5 6 0 0 0 
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Kod numaralarındaki aynı mantık ile global endirekt yük vektörü aşağıdaki gibi elde 

edilir: 

𝑓 =

{
  
 

  
 
𝑓1
1 + 𝑓1

2

𝑓2
1 + 𝑓2

2

𝑓3
1 + 𝑓3

2

𝑓4
2 + 𝑓4

3

𝑓5
2 + 𝑓5

3

𝑓6
2 + 𝑓6

3}
  
 

  
 

 (2.112) 

Denklem 2.3 tekrar yazılsın; 

{𝑃} = [𝑘]{𝑑} + {𝑓} (2.113) 

{𝑓} vektörü karşı tarafa atılırsa; 

{𝑃} − {𝑓} = [𝑘]{𝑑} (2.114) 

olur. Burada tek bilinmeyen {𝑑} vektörüdür. Sistem Cramer Kuralı veya Gauss 

Eliminasyon Yöntemi gibi lineer denklem çözücü herhangi bir yöntemle çözülerek 

bilinmeyen {𝑑} vektörü bulunabilir. Sonuçta denklem 2.115’teki gibi bir vektör elde 

edilir. Vektörün boyutu müşterek sistemin serbestlik derecesi sayısıyla aynı olacaktır. 

𝑑 =

{
 
 

 
 
𝑑1
𝑑2
𝑑3
𝑑4
𝑑5
𝑑6}
 
 

 
 

 (2.115) 

Bundan sonra elde edilen bu deplasmanlar eleman denklemlerinde kod numaraları 

mantığıyla yerine konularak elemanın serbestlik dereceleri yönündeki uç kuvvetleri 

bulunur. 

{𝑃1}𝑋𝑌𝑍 = [𝑘𝑋𝑌𝑍
1 ]

{
 
 

 
 
0
0
0
𝑑1
𝑑2
𝑑3}
 
 

 
 

+ {𝑓𝑋𝑌𝑍
1 } (2.116) 
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{𝑃2}𝑋𝑌𝑍 = [𝑘𝑋𝑌𝑍
2 ]

{
 
 

 
 
𝑑1
𝑑2
𝑑3
𝑑4
𝑑5
𝑑6}
 
 

 
 

+ {𝑓𝑋𝑌𝑍
2 } (2.117) 

{𝑃3}𝑋𝑌𝑍 = [𝑘𝑋𝑌𝑍
3 ]

{
 
 

 
 
0
0
0
𝑑4
𝑑5
𝑑6}
 
 

 
 

+ {𝑓𝑋𝑌𝑍
3 } (2.118) 

Daha sonra elemanların bulunan bu müşterek yük vektörlerinden lokal yük 

vektörlerine geçilir. 

{𝑃1}𝑥𝑦𝑧 = [𝑇]{𝑃
1}𝑋𝑌𝑍 (2.119) 

{𝑃2}𝑥𝑦𝑧 = [𝑇]{𝑃
2}𝑋𝑌𝑍 (2.120) 

{𝑃3}𝑥𝑦𝑧 = [𝑇]{𝑃
3}𝑋𝑌𝑍 (2.121) 

Bu aşamada kiriş hakkında her şey bilinmektedir. Bu uç kuvvetler ve momentlerden 

artık kesit tesir diyagramlar ve sehim eğrileri çizilebilir, gerilme analizleri yapılabilir. 
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3.  PROGRAMIN GELİŞTİRİLMESİ 

Bu bölümde bitirme çalışmasında gemi enine çerçevelerinin yapısal analizini icra 

etmek üzere geliştirilen bilgisayar programından bahsedilecektir.  

3.1 Programın Altyapısı 

Programda nesne yönelimli programlama disiplinleri yoğun olarak kullanılmıştır. 

Nesne yönelimli programlama class denilen sınıf yapılarıyla programlamadır. Her 

sınıf kendi içinde değişkenler ve fonksiyonlar barındırır. Sınıflar belirli 

parametrelerle ya da parametresiz olarak başlatılabilir. Erişim düzenleyici anahtar 

kelimelerle sınıf içindeki değişkenler ve fonksiyonlar dışarıdan erişime açılabilir ya 

da kapatılabilir. Bir sınıf başka bir sınıfı baz olarak alabilir. Bütün bu nesne 

yönelimli programlama paradigmaları program ne kadar fazla kod içerse de, ne kadar 

karmaşık olsa da bir düzen sağlar ve sistematik bir yapı oluşturmaya olanak tanır. 

Ayrıca modülerliğe de oldukça katkıda bulunur. 

Program geliştirilirken C# programlama dili kullanılmıştır. C#, 2000 yılında 

Microsoft tarafından geliştirilmiş nesne yönelimli, genel maksatlı bir programlama 

dilidir (C# Language Specification, 2006). C#, Microsoft Windows platformlarında 

.Net Framework uygulama geliştirme kütüphanesini kullanarak çalışır. C++ üzerine 

inşa edilmiş dil Java’dan etkilenmiştir. C#, yüksek seviyeli bir dildir. C ve C++ gibi 

düşük seviyeli dillerden farklı olarak hafıza yönetimlerini dil kendisi otomatik olarak 

yapar. Dolayısıyla C++ ve C dibi makine koduna yakın programlama dillerine göre 

çok daha hızlı yazılım geliştirilmesine olanak tanır. Buna karşılık performansı bu 

sayılan düşük seviyeli dillerden daha düşüktür. 

Uygulamada platform olarak WPF (Windows Presentation Foundation) platformu 

kullanılmıştır. WPF, C# ile görsel program yazmaya olanak tanıyan bir platformdur. 

Microsoft tarafından 2008 yılında kullanıma sunulmuştur. Eski nesil form 

uygulamalarının aksine WPF vektör tabanlıdır ve yazılan program değişen ekran 

boyutlarına ve yoğunluklarına otomatik adapte olur. WPF ayrıca programın görsel 

ara yüzünün XAML (Extensible Application Markup Language) ile geliştirilmesine 
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izin verir. XAML, Microsoft tarafından XML’den türetilmiş ve programların ara yüz 

tasarımında kullanılan bir biçimlendirme dilidir. Programların görsel olarak 

tasarımında oldukça kolaylık sağlar. 

Program .Net Framework uygulama geliştirme kütüphanesini kullanmaktadır. 

Programın çalışması için .Net Framework kütüphanelerinin hedef bilgisayarda yüklü 

olması gerekir. .Net Framework, programların kullandığı fonksiyonları barındıran bir 

platformdur. .Net Framework desteklenmediği için bu program Windows XP’den 

önce çıkmış Windows işletim sistemlerinde çalışmaz. Ayrıca program sadece 

Windows işletim sistemlerinde çalışmaktadır. 

3.2 Programda Kullanılan Kütüphaneler 

Bir önceki bölümde bahsedilen temel platformlardan başka bu bilgisayar yazılımda 

dışarıdan alınmış bazı kütüphane ve kod parçaları kullanılmıştır. Bu bölümde 

bunlardan bahsedilecektir. Programda kiriş ve mesnetlerin oluşturulup grafik 

çizimlerinin yapıldığı grafik çizme elementi olan Canvas sınıfı kullanılmıştır. Bu 

sınıfa ek olarak yine bu sınıfın üzerine inşa edilmiş ve yakınlaştırma ve taşıma gibi 

işlevleri icra eden bir görsel sınıf kullanılmıştır (Davis, 2011). 

Kirişlerin atalet momentleri, yayılı yükler gibi kiriş özelliklerinin değişken olarak 

tanımlanmasına imkan tanıyan bir polinom sınıfı kullanılmıştır (Alikhani, 2010). Bu 

sınıfın içine kirişler, mesnetler ve yükler ile ilgili olan fonksiyonlar geliştirilip 

eklenmiştir. Yine bu polinom sınıfın üzerine parçalı fonksiyon polinomu sınıfı 

geliştirilmiştir. Kirişlerde kullanılan sınıf da budur. EK A’da 𝑃𝑜𝑙𝑦 sınıfı 

gösterilmiştir. 

Yayılı yükleri çizmek, moment, kuvvet, gerilme ve atalet momenti dağılımlarının 

çizildiği Cardinal Spline adında bir eğri sınıfı kullanılmıştır (Floris, 2009). Bu sınıf 

noktaları verilen eğriyi görsel olarak çizen ve Kübik Hermit Spline’dan türetilmiş bir 

şekil sınıfıdır. 

3.3 Programın Akışı 

Program ilk olarak görsel ara yüzün dilini ayarlayarak başlar. Eğer kullanıcı bir dili 

seçtiyse o dildeki çevirmeleri yükler. Eğer kullanıcı hiçbir dili özel olarak 

seçmediyse program işletim sisteminin diline göre dili ayarlar. Eğer işletim 
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sisteminin dili programın çeviri dilleri veri tabanında mevcut değil ise program 

İngilizce dilinde açılır. Şu an için programda İngilizce ve Türkçe dilleri 

desteklenmektedir. 

Kullanıcı çizim ortamına kiriş ve mesnet ekledikçe program bu kiriş ve mesnetlerin 

birbirine bağlantılarını yapar. Kullanıcı sistemi istediği gibi oluşturup çözüm butonu 

basınca programda bir pencere belirir ve çözüm ilerleme çubuğu görünür. Programda 

çözüm aşamasındaki işlemler ana iş parçacığından (main thread) ayrı bir iş 

parçacığında gerçekleşir. Böylece çözüm esnasında programın donması engellenmiş 

olur. Ayrıca kullanıcı ayarlar menüsünden çözüm sırasında tek veya çok iş 

parçacığının kullanılmasını seçebilir. Bu durumda program çalıştığı bilgisayarın 

çekirdek sayısı kadar iş parçacığı üretecektir. Bu iş parçacıkları aynı anda farklı 

kirişlerde işlem yaparak tek iş parçacığına göre daha hızlı çözüme ulaşılacaktır. Bu 

durum karmaşık bir gemi enine çerçevesinde çözüm süresini oldukça kısaltır. 

Burada çözüm üç başlık altında anlatılacaktır. Çözüm öncesi işlemler, çözümdeki 

işlemler ve çözüm sonrası işlemler. Bu sınıflandırma, müşterek sistem matrisine göre 

yapılmıştır. müşterek sistemin çözümünden önceki bütün işlemler çözüm öncesi 

işlemler başlığı altında incelenecektir. Müşterek sistem çözüldükten sonraki işlemler 

de çözüm sonrasındaki işlemler başlığı altında incelenecektir. 

3.3.1 Çözüm öncesi işlemler 

Çözüm işlemi başladıktan sonra ilk olarak her kiriş için 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 fonksiyonu 

çalıştırılır. Kiriş sınıfı olan 𝐵𝑒𝑎𝑚 EK B’de verilmiştir. Kirişteki 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒  

fonksiyonunda ilk olarak 𝑓𝑖𝑛𝑑𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑒𝑑𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑓𝑜𝑟𝑐𝑒𝑠 ve 

𝑓𝑖𝑛𝑑𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑓𝑜𝑟𝑐𝑒𝑠 fonksiyonları çağırılır. Bu fonksiyonlar kiriş 

üzerindeki tekil ve yayılı yükler durumdaki kirişin mesnet tepkilerini bulur.  

Daha sonra 𝑓𝑖𝑛𝑑𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑒𝑑𝑧𝑒𝑟𝑜𝑓𝑜𝑟𝑐𝑒 ve 𝑓𝑖𝑛𝑑𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑𝑧𝑒𝑟𝑜𝑓𝑜𝑟𝑐𝑒 

fonksiyonları çağırılarak tekil ve yayılı yükler için ayrı olarak yine kirişin her iki 

ucunun serbest mesnet olduğu durumda kesme kuvveti dağılımlarını bulunur. Tabii 

bu kuvvet dağılımları parçalı polinom sınıfından (EK A’daki 𝑃𝑖𝑒𝑐𝑒𝑤𝑖𝑠𝑒𝑃𝑜𝑙𝑦 sınıfı) 

oluşacaktır. Daha sonra bu dağılımlar süper pozisyon ilkesiyle toplanarak 𝐹0(𝑥) 

arçalı polinomu elde edilir. Bu polinom kirişin her iki ucunun serbest mesnet olması 

halinde etkiyen yükün oluşturduğu kesme kuvveti dağılımıdır. 
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Sonra 𝑓𝑖𝑛𝑑𝑧𝑒𝑟𝑜𝑚𝑜𝑚𝑒𝑛𝑡 fonksiyonu çağırılarak 𝐹0(𝑥) polinomu integre edilip 

𝑀0(𝑥) bulunur. 𝑀0(𝑥), daha önce Clapeyron yönteminde geçen serbest mesnetli  

haldeki moment dağılımıdır. Burada yapılan integrasyon analitiktir.  

Sonrasında 𝑐𝑎𝑛𝑏𝑒𝑠𝑜𝑙𝑣𝑒𝑑𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙𝑙𝑦 fonksiyonu çağırılarak kesit tesir dağılımını 

elde etmek için analitik çözümün yapılıp yapılamayacağı kontrol edilir. Analitik 

çözüm yapılabilmesi için kirişin atalet dağılımı parçalı polinomu sabit olmalı ve tek 

bir polinom içermelidir. Böylece Üç Moment Denkleminde paydadaki 𝐼(𝑥) 

fonksiyonu sabit olacak ve integral sadece 𝑀(𝑥) polinomuna bağlı olacaktır. Burada 

geliştirilmiş olan polinom sınıfı bu polinomu analitik olarak integre edebilir. Eğer 

atalet fonksiyonu sabit değilse Simpson Yöntemiyle integraller nümerik olarak 

hesaplanır. 

𝑚𝑑𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑐𝑎𝑠𝑒𝑠 fonksiyonu çağırılarak üç moment denklemi çözülür. Nümerik 

integraller Simpson Metodu ile alınır. Burada kullanılan Simpson sınıfı EK A’daki 

𝑆𝑖𝑚𝑝𝑠𝑜𝑛𝑠𝐹𝑖𝑟𝑠𝑡𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑜𝑟 adlı sınıftır. Kirişin ucundaki ankastrelik momentler bu 

aşamada elde edilmiş olur.  

Sonra 𝑓𝑖𝑛𝑑𝑓𝑖𝑥𝑒𝑑𝑒𝑛𝑑𝑚𝑜𝑚𝑒𝑛𝑡𝑐𝑙𝑎𝑝𝑒𝑦𝑟𝑜𝑛 fonksiyonu çağırılarak denklem 2.75 

kullanılıp nihai moment dağılımı bulunur. Bu işlemden sonra 𝑢𝑝𝑑𝑎𝑡𝑒𝑓𝑜𝑟𝑐𝑒𝑠 

fonksiyonu çağırılır ve nihai kesme kuvveti dağılımı elde edilir. 

Bu aşamadan sonra kirişlerdeki hesaplar bitmiş olur. 

𝑐𝑟𝑒𝑎𝑡𝑒𝑏𝑎𝑠𝑒𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 çağırılarak katılık matrisini oluşturmak için 

gereken temel rijitlik katsayıları hesaplanır. Eğer atalet momenti dağılımı ve alan 

dağılımı sabitse integralleri almaya gerek yoktur. Eğer değilse yine Simpson Metodu 

ile nümerik integraller alınır.  

Daha sonra 𝑐𝑟𝑒𝑎𝑡𝑒𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠𝑚𝑎𝑡𝑟𝑖𝑥 fonksiyonu çağırılıp katılık matrisi hesaplanır. 

Önce kiriş açısı sıfır iken, eleman eksenlerinde tanımlı katılık matrisi elde edilir. 

Sonrasında transformasyon matrisiyle denklem 2.105’teki gibi çarpılarak kirişin 

nihai katılık matrisi elde edilir. Bu işlemler yapılırken EK A’daki 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒 ve 

𝑚𝑎𝑡𝑟𝑖𝑥𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦 fonksiyonlarından yararlanılır.  

Son olarak ise 𝑐𝑟𝑒𝑎𝑡𝑒𝑓𝑜𝑟𝑐𝑒𝑣𝑒𝑐𝑡𝑜𝑟 fonksiyonu çağırılır. Burada direkt ve endirekt 

kuvvet vektörleri elde edilip denklem 2.114’teki formu elde etmek için birbirinden 

çıkarılıp sistem çözümünde kullanılacak nihai kuvvet vektörü elde edilir.  
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Bütün bu işlemler sistemdeki bütün kirişler için yapıldıktan sonra müşterek sistem 

çözümüne geçilir. 

3.3.2 Çözümdeki işlemler 

Bütün kirişlerin için bir önceki bölümdeki hesaplar yapıldıktan sonra EK C’deki 

𝑀𝐷𝑆𝑜𝑙𝑣𝑒𝑟 sınıfının 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 fonksiyonu çağırılır. Bu sınıf müşterek sistemi 

oluşturmak, çözmek ve kirişlere gerekli deplasmanları iletmekle görevlidir. 

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 fonksiyonu ilk olarak 𝑐𝑟𝑒𝑎𝑡𝑒𝑑𝑜𝑓𝑝𝑎𝑖𝑟𝑠 adlı fonksiyonu çağırır. Öncelikle 

EK C’deki 𝐷𝑂𝐹 adlı sınıftan oluşan bir liste oluşturulur. Her bir 𝐷𝑂𝐹 sınıfı, 

müşterek sistemindeki bir serbestlik derecesine karşılık gelir. Sınıfta serbestlik 

derecesinin tipi ve o serbestlik derecesinin hangi kirişlerin serbestlik derecelerine 

karşılık geldiği bilgileri tutulur. 

Sonrasında 𝑐𝑟𝑒𝑎𝑡𝑒𝑔𝑙𝑜𝑏𝑎𝑙𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠𝑚𝑎𝑡𝑟𝑖𝑥 fonksiyonu çağırılıp daha önce elde 

edilen listeden yararlanılarak müşterek katılık matrisi oluşturulur. Katılık matrisinin 

boyutları listenin uzunluğu kadardır. Listedeki serbestlik dereceleri taranarak her bir 

serbestlik derecesine karşılık gelen kirişlerin ilgili katılık matrisi elemanları toplanıp 

matris oluşturulur. 

Daha sonra 𝑐𝑟𝑒𝑎𝑡𝑒𝑔𝑙𝑜𝑏𝑎𝑙𝑓𝑜𝑟𝑐𝑒𝑣𝑒𝑐𝑡𝑜𝑟 fonksiyonu çağırılarak katılık matrisindeki 

gibi serbestlik derecesi listesinden yararlanılarak müşterek kuvvet vektörü 

oluşturulur. 

Sonra 𝑠𝑜𝑙𝑣𝑒𝑡ℎ𝑒𝑠𝑦𝑠𝑡𝑒𝑚 fonnksiyonu çağırılarak müşterek matris sistemi 

𝐿𝑖𝑛𝑒𝑎𝑟𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑆𝑜𝑙𝑣𝑒𝑟 fonksiyonuyla sistem çözülür ve müşterek deplasmanlar 

bulunur. 𝐿𝑖𝑛𝑒𝑎𝑟𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑆𝑜𝑙𝑣𝑒𝑟 fonksiyonu Gauss Eliminasyon yöntemiyle çözüm 

yapar. Matris değerleri 𝑑𝑜𝑢𝑏𝑙𝑒 veri yapısıyla tutulduğu için herhangi bir pivotlama 

tekniği uygulamasına gerek görülmemiştir çünkü 𝑑𝑜𝑢𝑏𝑙𝑒 veri yapısı kesme 

hatalarına karşı 15 ile 17 basamak arasında hassasiyet sağlar (Microsoft, 2018). 

Son olarak 𝑜𝑏𝑡𝑎𝑖𝑛𝑏𝑒𝑎𝑚𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑠 fonksiyonu çağırılarak elde edilen müşterek 

deplasman vektöründen yine serbestlik derecesi listesindeki bilgiler kullanılarak 

kirişlere gerekli olan deplasman elemanları verilir. Bu işlem kiriş sınıfının 

𝑈𝑝𝑑𝑎𝑡𝑒𝐷𝑖𝑟𝑒𝑐𝑡𝐹𝑜𝑟𝑐𝑒𝑉𝑒𝑐𝑡𝑜𝑟 fonksiyonu kiriş için oluşturulan eleman deplasman 

vektörü parametresiyle çağırılarak yapılır. Bu fonksiyonda denklem 2.116’daki işlem 

yapılır. Kirişin eleman katılık matrisi, parametre olarak verilen deplasman vektörüyle 
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EK A’daki 𝐷𝑜𝑡𝑃𝑟𝑜𝑑𝑢𝑐𝑡 fonksiyonu kullanılarak çarpılır ve elde edilen sonuç yine 

EK A’daki 𝐴𝑑𝑑𝑉𝑒𝑐𝑡𝑜𝑟 fonksiyonu kullanılarak endirekt yük vektörüyle toplanır. 

Sonuç olarak kirişin nihai kuvvet vektörü çözüme göre güncellenmiş olur. 

3.3.3 Çözüm sonrası işlemler 

Kirişlerin yük vektörleri güncellendikten sonra bütün kirişlerin 𝑃𝑜𝑠𝑡𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑈𝑝𝑑𝑎𝑡𝑒 

fonksiyonu çağırılır.  

Bu fonksiyon önce 𝑜𝑏𝑡𝑎𝑖𝑛𝑙𝑜𝑐𝑎𝑙𝑓𝑜𝑟𝑐𝑒𝑠 fonksiyonunu çağırır. Burada fonksiyon 

denklem 2.102’deki ifadeyi kullanarak güncellenmiş, müşterek eksende ifade edilmiş 

eleman nihai yük vektörünü kirişin transformasyon matrisiyle çarparak lokal 

eksenlerdeki karşılığını bulur. 

Daha sonra 𝑢𝑝𝑑𝑎𝑡𝑒𝑚𝑜𝑚𝑒𝑛𝑡𝑠 fonksiyonu çağırılır. Lokal eksene göre hesaplanmış 

olan bu yük vektörünün 3. ve 6. Elemanlarını alır. Bu elemanlar sırasıyla kirişin sol 

ve sağ uçlarındaki momentlere karşılık gelir. Sonra yine denklem 2.75’teki ifade 

kullanılarak kirişin nihai moment dağılımı oluşturulur. 

Sonra 𝑢𝑝𝑑𝑎𝑡𝑒𝑓𝑜𝑟𝑐𝑒𝑠 fonksiyonu çağırılır. Elde edilen nihai moment dağılımının 

türevi alınarak kirişin kesme kuvveti dağılımı oluşturulur. 

Sonrasında 𝑢𝑝𝑑𝑎𝑡𝑒𝑎𝑥𝑖𝑎𝑙𝑓𝑜𝑟𝑐𝑒𝑠 fonksiyonu çağırılarak eksenel kuvvet dağılımı 

lokal eksene göre hesaplanmış yük vektörünün 1. ve 4. Elemanı kullanılarak elde 

edilir. 

Son olarak eğer kullanıcı gerilme analizi yapmak istediyse 𝑢𝑝𝑑𝑎𝑡𝑒𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑠 

fonksiyonu çağırılarak denklem 3.1 kullanılarak gerilme dağılımı oluşturulur. 

𝜎(𝑥) =
𝑀(𝑥)𝑦(𝑥)

𝐼(𝑥)
 (3.1) 

3.4 Sistem Gereksinimleri 

Programın çalışması için önerilen sistem gereksinimleri aşağıdaki gibi sıralanabilir; 

 Windows XP veya daha sonrasında çıkmış Windows işletim sistemleri 

 .Net 4.5 Framework veya üzeri versiyonları 

 Minimum 512 MB Ram 
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 Minimum 256 MB DirectX 9 veya üzerini destekleyen Ekran kartı 

 Minimum 1 GHz işlemci hızı 

Bu gereksinimlerde ilk ikisi sağlanmadıkça programın çalışması imkânsızdır. Diğer 

gereksinimler programın verimli ve yeterince hızlı bir şekilde çalışması için 

gereklidir ve henüz denenmemiş olsa da bu verilen değerlerin altında da çalışabilir. 
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4.  PROGRAMIN KULLANIMI 

Bu tez kapsamında geliştirilen program görsel kullanıcı arayüzüne sahiptir. Proje adı 

MesnetMD olan programın bu bölümde kullanıcılar tarafından nasıl kullanılacağı 

anlatılacaktır. 

4.1 Programa Genel Olarak Bakış 

Programın arayüzü (Şekil 4.1)’deki gibidir. Açık mavi renkle görülen bir çizim alanı 

vardır. Oluşturulan kiriş sistemi burada görülür. Yanlarda kiriş, mesnet ve yük 

eklemek için butonlar bulunmaktadır. Üstte çözüm butonu ve silme butonu, en üstte 

de menü butonları vardır. Sağ tarafta eklenen kiriş ve mesnetler hakkında ayrıntılı 

bilgi içeren bir ağaç yapısı vardır. Aşağıda bütün görsel öğeler ayrıntılı olarak 

açıklanmıştır. 

 

Şekil 4.1 : Programın ekran görüntüsü. 
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1) Programdaki çizim alanıdır. Bu alana kirişler, mesnetler ve yükler eklenir. 

Kuvvet, moment, gerilme ve atalet momenti dağılımları bu alanda gösterilir. 

2) Eklenen kirişleri ve bu kirişler hakkındaki bilgileri gösteren ağaç görünümü 

(Tree View). Kirişin uzunluğu, üzerindeki tekil ve yayılı yükler, kirişin atalet 

momenti, kirişin üzerindeki yük, moment, kuvvet ve gerilme dağılımının 

bilgiler gösterilir. Kirişin her iki ucuna bağlanan mesnetler gösterilir. 

3) Eklenen mesnetlerin ve bu mesnetler hakkındaki bilgilerin gösterildiği ağaç 

görünümüdür. Mesnede hangi kirişlerin hangi tarafının bağlandığı burada 

gösterilir. 

4) Kiriş ekleme butonudur. Bu butona basınca kiriş ekleme penceresi çıkar. 

Kullanıcı pencereden istediği kirişin özelliklerini girerek çizim alanına ekler. 

5) Ankastre mesnet ekleme butonudur. Kullanıcı kirişin sağ veya sol ucunu 

seçerek bu butona basar. Seçilen uca ankastre mesnet eklenmiş olur. 

6) Basit mesnet ekleme butonudur. Kullanıcı kirişin sağ veya sol ucunu seçerek 

bu butona basar. Seçilen uca basit mesnet eklenmiş olur. 

7) Kayıcı mesnet ekleme butonudur. Kullanıcı kirişin sağ veya sol ucunu 

seçerek bu butona basar. Seçilen uca kayıcı mesnet eklenmiş olur. 

8) Tekil yük ekleme butonudur. Kullanıcı herhangi bir kirişi seçerek bu butona 

basar. Tekil yük ekleme penceresi açılır. Bu pencereden tekil yükün yeri ve 

şiddeti girilerek kirişe tekil yük eklenir. 

9) Yayılı yük ekleme butonudur. Kullanıcı herhangi bir kirişi seçerek bu butona 

basar. Yayılı yük penceresi açılır. Yayılı yük veya yüklerin fonksiyonu ve 

etki aralığı bu pencereden seçilerek kirişe yayılı yük eklenir. 

10) Ölçek çubuğudur. Kullanıcı bu çubuğu aşağı ya da yukarı kaydırarak hızlı bir 

şekilde çizim alanını yakınlaştırıp uzaklaştırabilir. 

11) Ölçek kutucuğudur. Kullanıcı çizim alanının ölçeğini buradan görür ve 

istediği ölçeği girerek yakınlaştırma veya uzaklaştırma yapabilir. 

12) Koordinat etiketidir. Orijine göre imlecin konumunu anlık olarak gösterir. 

13) Çözüm butonudur. Kullanıcı tarafından oluşturulan düzlem çerçeve 

sisteminin çözümünün başlatıldığı butondur. Bu butona basılınca çözüm 
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penceresi açılır ve penceredeki ilerleme çubuğunda çözümün ilerleme 

durumu görülür. Çözüm bittiğinde bu pencere kapanır ve elde edilen sonuçlar 

kullanıcıya sunulur. 

14) Atalet momenti dağılımları grafiği gösterme/gizleme butonudur. 

15) Kesit alanı dağılımları grafiği gösterme/gizleme butonudur. 

16) Yayılı yük dağılımları grafiği gösterme/gizleme butonudur. 

17) Tekil yük dağılımları grafiği gösterme/gizleme butonudur. 

18) Eğilme moment dağılımları grafiği gösterme/gizleme butonudur. 

19) Kesme kuvveti dağılımları grafiği gösterme/gizleme butonudur. 

20) Eksenel kuvvet dağılımları grafiği gösterme/gizleme butonudur. 

21) Gerilme dağılımları grafiği gösterme/gizleme butonudur. 

22) Çerçeve sistemi silme butonudur. Çizim alanındaki bütün kiriş ve mesnetleri 

siler. 

23) Mesaj kutusudur. Programın işleyişi hakkında kullanıcıyı bilgilendirir. 

24) Dosya menüsüdür. Kullanıcı oluşturduğu kiriş sistemini bir dosyaya 

kaydedebileceği ya da daha önce kaydedilmiş bir kiriş sistemini 

yükleyebileceği menüleri içerir. 

25) Ayarlar menüsüdür. Bu butona basınca ayarlar penceresi açılır. Kullanıcı 

buradan programın dilini ve hesaplama yöntemini seçebilir. Programın dili 

İngilizce veya Türkçe olabilir. Hesaplama yöntemi çok işlem parçacıklı ya da 

tek işlem parçacıklı olabilir. Çok işlem parçacıklı hesap yönteminde 

bilgisayarın gücüne bağlı olarak aynı anda birden fazla kirişin hesabı yapılır. 

Genelde tek iş parçacıklı hesaba göre daha kısa sürer. 

26) Testler menüsüdür. Hali hazırda program içinde tanımlanan çerçeve 

sistemleri burada mevcuttur. Herhangi bir çerçeve sistemi seçildiğinde 

program o çerçeve sistemini yükler. Programda çözümün doğruluğunun test 

edilmesi amacıyla eklenmiştir. 

27) Hakkında menüsüdür. Programın geliştiricisi, danışmanı, programın lisansı 

ile ilgili bilgilerin yer aldığı pencereyi açar. 
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4.2 Programda Bir Kirişin Eklenmesi 

(Şekil 4.2)’deki resimde kiriş ekleme penceresi gösterilmiş ve numaralandırılmıştır. 

 

Şekil 4.2 : Kiriş ekleme penceresi. 

1) Kullanıcı tarafından kiriş uzunluğunun girildiği yazı kutucuğudur. Kiriş 

uzunluğu metre cinsinden girilmelidir. Eğer geçersiz bir giriş yapılırsa 

kutucuğun arka plan rengi kırmızı geçerli giriş yapılırsa yeşil olur. 

2) Kullanıcı tarafından kirişin Elastisite modülünün girildiği yazı kutucuğudur. 

Elastisite modülü GPa cinsinden girilmelidir.  Eğer geçersiz bir giriş yapılırsa 

kutucuğun arka plan rengi kırmızı geçerli giriş yapılırsa yeşil olur. 

3) Kirişin açısının girildiği yazı kutucuğudur. Varsayılan değeri sıfırdır. Açı 

değeri derece cinsinden girilmelidir. Eğer geçersiz bir giriş yapılırsa 

kutucuğun arka plan rengi kırmızı geçerli giriş yapılırsa yeşil olur. Kiriş 

eklenirken bu açı değerine göre döndürülür. Açı değeri aynı zamanda kiriş 

eklendikten sonra da döndürme butonundan değiştirilebilir. 

4) Gerilme analizinin yapılıp yapılmayacağı ile ilgili olan işaret kutucuğudur. 

Eğer gerilme analizi yapılacaksa bu kutucuk işaretlenir. İşaretlendikten sonra 

bu kutucuğun altında maksimum müsaade edilen gerilmenin MPa olarak 

girileceği bir kutucuk daha çıkar. Maksimum müsaade edilen gerilme değeri 

varsayılan olarak 150 MPa’dır ve kullanıcı bu değeri değiştirebilir. (Şekil 

4.3)’te gerilme analizi kutucuğunun işaretlendiği durum gösterilmiştir. 
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Şekil 4.3 : Gerilme analizi kutucuğu işaretlendiğinde ortaya çıkan müsaade edilen 

gerilmenin girildiği kutucuğun göründüğü ekran görüntüsü. 

5) Kirişe sabit atalet momentinin eklenmek istendiği zaman tıklanan açılır 

kapanır alandır. Bu alana tıklandığında (Şekil 4.4)’teki alan ve atalet momenti 

giriş alanı açılacaktır. Atalet momentinin 𝑐𝑚4 cinsinden, alan 𝑐𝑚2 girilmesi 

gerekmektedir. 𝑥1 ve 𝑥2 değerleri girilen alan ve atalet momenti değerinin 

kirişteki başlangıç ve bitiş noktalarıdır. Bu noktalar varsayılan değer olarak 0 

ve kiriş uzunluğu kadardır. Yani program girilecek alan ve atalet momentinin 

kiriş boyunca etkili olduğunu başlangıçta kabul eder. Kullanıcı bu değerleri 

değiştirerek kirişin farklı bölgelerine farklı alan ve atalet momenti atayabilir. 

 

Şekil 4.4 : Sabit atalet momentinin girildiği alanı gösteren kiriş ekleme penceresi. 
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6) Kirişe doğrusal değişen alan ve atalet momentinin eklenmek istendiği zaman 

tıklanan açılır kapanır alandır. Dikdörtgen kesitli bir kirişte yüksekliğin 

değişmediği ancak genişliğin doğrusal olarak arttığı durum buna örnek olarak 

gösterilebilir. Bu durumda atalet momenti kiriş boyunca ya da kirişin bir 

kısmında doğrusal olarak artacaktır. (Şekil 4.5)’te bu alan gösterilmiştir. Bu 

durumda sabit atalet momentinden farklı olarak baştaki ve sondaki atalet 

momentinin yine 𝑐𝑚4 cinsinden alanın yine 𝑐𝑚2 girilmesi gerekecektir. 

 

Şekil 4.5 : Doğrusal değişen atalet momentinin girildiği alanı gösteren kiriş ekleme 

penceresi. 

7) Kirişe değişken alanın ve atalet momentinin eklenmek istendiği zaman 

tıklanan açılır kapanır alandır. (Şekil 4.6)’da bu alan gösterilmiştir. Burada 

alan ve atalet momenti olarak katsayıları reel sayı ve üsleri pozitif reel sayı 

olan polinomlar girilmesi istenmektedir. Tabii bu polinomların kirişin fiziksel 

olarak anlamsız olmaması için hiçbir noktasında alanın ve atalet momentinin 

sıfıra eşit ya da sıfırdan küçük olmaması gerekir. Bu durum program 

tarafından kontrol edilir. Eğer polinom herhangi bir noktada sıfıra eşit ya da 

sıfırdan küçük ise kullanıcı uyarılır ve bu polinom alan ya da atalet momenti 

fonksiyonu olarak kabul edilmez. 
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Şekil 4.6 : Değişken atalet momentinin girildiği alanı gösteren kiriş ekleme 

penceresi. 

8) Eklenen atalet momentlerinin gösteriliği alandır. Hangi atalet momentinin 

hangi nokta aralıklarında atandığı buradan görülebilir. Alttaki bitir butonuna 

basılınca kiriş ekleme penceresi kapanır ve kiriş çizim alanına eklenir. (Şekil 

4.7)’de gösterilmiştir. 

 

Şekil 4.7 : 2 farklı atalet momenti ve alan atanmış kiriş penceresi. 

Kirişe parçalı fonksiyon halinde polinom olarak değişen, lineer olarak değişen ve 

sabit atalet momentleri istenilen sayıda eklenebilmektedir. Burada eklenen parçalı 

fonksiyonlarının hiçbirinde 𝑥 aralıkları birbirinin içine geçmemelidir. Program bu 

durumu kontrol eder ve böyle bir atalet momentinin eklenmesini kabul etmez. Belli 

bir aralıkta sadece 1 tane atalet momenti tanımlı olması gerekmektedir. Ayrıca bitir 

tuşuna basıldığında program atalet momenti tanımlanmamış herhangi bir 𝑥 aralığı 



56 

olmadığını da kontrol eder ve bu duruma izin vermez. Çünkü gerçek bir kirişin her 

noktasında bir atalet momenti olması gerekir. 8 numaralı maddede bahsedilen alanda 

aynı zamanda eklenen atalet momentleri çıkarılabilir. Bunun için (Şekil 4.7)’de 

görülen her atalet momentinin sağında eksi işaretli bir buton bulunmaktadır. Bu 

butona basılarak ilgili atalet momenti çıkarılır. Yanlışlıkla eklenen atalet momentleri 

böylece düzeltilebilir. 

Eğer kullanıcı gerilme analizi yapmak için işaret kutucuğunu işaretlemişse bu kiriş 

için her noktada 𝑒 ve 𝑑 değerleri istenecektir. Burada 𝑑 kirişin o noktadaki kesitinin 

yüksekliği ve 𝑒 tarafsız eksenin mesafesidir. Bu iki değer 𝑐𝑚 olarak istenmektedir. 

Dolayısıyla bu değerlerin girileceği özel bir alan açılır. (Şekil 4.8)’de değişken atalet 

momenti alanında bu durum gösterilmiştir. Atalet momenti polinom olarak değiştiği 

için 𝑒 ve 𝑑 polinom olarak istenecektir. Bu değişkenler doğrusal atalet momentinde 

de polinom olarak alınır. Sadece sabit atalet momentinde bu iki değer sabit olarak 

istenir. 

 

Şekil 4.8 : Gerilme analizi yapılacağı durumdaki atalet momenti alanı. 

Gerilme analizi yapmak üzere tasarlanmış kirişte diğer kirişlerden farklı olarak 

gerilme dağılımı grafiği eklenebilir ve kirişin kritik kesitinin olup olmadığı kolayca 

görülebilir. 
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4.3 Programda Kirişe Yük Eklenmesi 

(Şekil 4.9)’da yayılı yük ekleme penceresi gösterilmiştir. 

 

Şekil 4.9 : Yayılı yük ekleme penceresi. 

Kullanıcı düzgün, doğrusal ve değişken yayılı yük olmak üzere 3 farklı yük 

ekleyebilir. Düzgün yayılı yükte kullanıcı sabit yok olan 𝑞0 değerini girmelidir. Bu 

penceredeki tüm yükler 𝑘𝑁/𝑚 cinsinden girilir. 𝑥1 ve 𝑥2 yayılı yükün kiriş 

üzerindeki başlangıç ve bitiş noktasıdır. Ekle tuşuna basılınca yayılı yükün eklendiği 

sağ taraftaki alanda görülecektir. 

(Şekil 4.10)’da doğrusal yayılı yük ekleme alanı gösterilmiştir. Burada 𝑞1 ve 𝑞2 

yayılı yükün başındaki ve sonundaki değerlerdir. 

 

Şekil 4.10 : Yayılı yük ekleme penceresinde doğrusal yayılı yük alanın görünüşü. 
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(Şekil 4.11)’de değişken yayılı yük ekleme alanı gösterilmiştir. Burada q(x) yayılı 

yükün polinomudur. Sağ taraftaki alanda görüldüğü gibi kirişe hem düzgün hem 

doğrusal hem de değişken yayılı yük eklenmiştir. Eklenen yayılı yüklerden herhangi 

sağ tarafındaki eksi butonun basılarak çıkarılabilir. Böylece hatayla eklenen yayılı 

yükün çıkarılmasına imkan tanınmış olur. 

 

Şekil 4.11 : Yayılı yük ekleme penceresinde değişken yayılı yük alanın görünüşü. 

4.4 Programda Örnek Bir Kiriş Sistemi Oluşturulması ve Çözülmesi 

En kesitleri (Şekil 4.12)’deki gibi olan 3 kiriş eklenerek örnek bir gemi çerçevesi 

oluşturulacaktır.   

 

Şekil 4.12 : Eklenecek kirişlerin kesitleri. 

Öncelikle kiriş butonuna basılır ve kiriş penceresi otomatik olarak açılır. Kiriş 

uzunluğunu 3 metre ve açı 90 derece girilmiştir. Bu durumda 3 metrelik dikey bir 

kiriş oluşturulacaktır. Elastisite modülü varsayılan değer yani 200 GPa olarak 
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seçilmiştir. Gerilme analizi yapmak üzere tıklanmıştır. (Şekil 4.12)’den anlaşılacağı 

gibi atalet momenti 416.667 𝑐𝑚4 ve alan 50 𝑐𝑚2 olacaktır. Ayrıca tarafsız eksen 

mesafesi 𝑒 = 5 𝑐𝑚 ve kirişin yüksekliği 𝑑 = 10 𝑐𝑚 olacaktır. Her 3 kirişin atalet 

momenti kiriş boyunca kendi içlerinde sabit olacaktır. Bu veriler girildikten sonra 

atalet momenti eklenerek bitir tuşuna basılır. Kiriş eklenmiş olacaktır. Kirişin 

görünümü (Şekil 4.13)’teki gibi olacaktır. 

 

Şekil 4.13 : Kiriş 1. 

Kirişin üzerine tıklanarak seçilir. (Şekil 4.14)’te seçilmiş kiriş gösterilmiştir. 

 

Şekil 4.14 : Seçilmiş olan kirişin görünüşü. 

Görüldüğü gibi seçilen kirişin her iki ucunda yeşil çemberler ortaya çıkar. Alttaki 

çembere tıklanırsa (Şekil 4.15)’teki gibi çemberin rengi sarı olur. 
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Şekil 4.15 : Alt çemberi seçilmiş kirişin görünüşü. 

Kirişin bu ucu seçilmiştir. Şu durumda basit ve ankastre mesnet butonları aktif olur. 

Ankastre mesnet butonuna basınca bu seçilmiş olan çemberin olduğu yere ankastre 

mesnet eklenecektir. (Şekil 4.16)’daki ankastre mesnet eklenmiş hali gösterilmiştir. 

Ankastre mesnet eklendiğinde kiriş tekrar seçildiğinde ankastre mesnet eklenen 

tarafta çember görülmeyecektir. Bunun nedeni ankastre mesnet eklenen tarafa başka 

bir mesnet ya da kiriş eklenemeyecek olmasıdır. 

 

Şekil 4.16 : Ankastre mesnet eklenmiş kirişin görünüşü. 

Kiriş yeniden seçilip diğer uçtaki çember seçilsin ve basit mesnet tuşuna basılsın. Bu 

durumda diğer uca basit mesnet eklenmiş olacaktır. (Şekil 4.17)’de kirişin yeni hali 

gösterilmiştir. 
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Şekil 4.17 : Ankastre ve basit mesnet eklenmiş kirişin görünüşü. 

Kiriş yeniden seçildiğinde sadece basit mesnet tarafındaki çember görünür olacaktır. 

Bu çembere yeniden tıklanır ve kiriş butonuna basılırsa ilk kirişteki gibi kiriş ekleme 

penceresi açılacaktır. Buraya ikinci kirişin özellikleri girilecektir. Uzunluğu 4 metre 

olacaktır. (Şekil 4.12)’ten anlaşılacağı gibi atalet momenti 170.667 𝑐𝑚4 ve alanı 

24 𝑐𝑚4 olacaktır. Tarafsız eksen mesafesi 𝑒 = 4 𝑐𝑚 ve kirişin yüksekliği 𝑑 = 8 𝑐𝑚 

olacaktır. Bu kirişin açı değeri 0 derece olarak bırakılacaktır. Böylece bitir tuşuna 

basılınca yatay bir kiriş eklenecektir. (Şekil 4.18)’deki kiriş sistemi ortaya çıkacaktır. 

 

Şekil 4.18 : İkinci kirişin eklendikten sonra sistemin görünüşü. 

İkinci kirişin diğer ucuna basit mesnet daha önce anlatıldığı gibi eklenir. Daha sonra 

yine bu uçtaki çember seçilerek kiriş butonuna basılır ve üçüncü kiriş için kiriş 

ekleme penceresi görünür. Bu kirişin de uzunluğu 3 metre olaraktır. Açısı -90 derece 

girilir. Atalet momenti, tarafsız eksen uzunluğu ve kirişin yüksekliği ilk kirişin aynısı 

olacaktır. Üçüncü kiriş de eklendiğinde alt ucuna ankastre mesnet eklenince (Şekil 

4.19)’daki sistem ortaya çıkacaktır. 
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Şekil 4.19 : Üçüncü kirişin eklendikten sonra sistemin görünüşü. 

Aslında bu kiriş sistemi basit bir gemi çerçevesidir. Geminin dip yapısının ataleti çok 

yüksek olduğu için postaların dibe bağlandığı yerler çoğunlukla ankastre kabul edilir. 

Birinci kirişi seçip yayılı yük butonuna basılarak (Şekil 4.20)’de gösterilen yayılı yük 

eklensin. 

 

Şekil 4.20 : Birinci eklenecek olan yayılı yükün görünüşü. 

Üçüncü kirişe de aynı yayılı yük eklensin. Bu yayılı yük draftı 2 metre olan geminin 

bordasındaki hidrostatik basıncın mukavemet modelidir. İkinci kirişe de 10 𝑘𝑁/

𝑚’lik kirş boyunca düzgün yayılı yük eklensin. Bu güverte yükünü temsil eder. Son 

durumda sistem (Şekil 4.21)’deki gibi olacaktır. 
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Şekil 4.21 : Yayılı yükleri eklenmiş kiriş sisteminin görünüşü. 

Bütün kirişler ve yükler eklendiğine göre artık çözüme geçilebilir. Bunun için 

yapılması gereken tek şey sol üst taraftaki menü çubuğundaki çöz tuşuna basmaktır. 

Tuşa basıldığında (Şekil 4.22)’deki pencere açılacaktır. 

 

Şekil 4.22 : Kiriş sistemi çözülürken açılan pencere. 

Çözüm işlemi bittikten sonra pencere kapatılacak ve (Şekil 4.23)’teki moment 

dağılımları ortaya çıkacaktır. 

 

Şekil 4.23 : Kiriş sisteminin eğilme moment dağılımı. 
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Yine yukarıdaki menü çubuğundan moment dağılımları gizlenip kuvvet dağılımlarını 

gösterilirse (Şekil 4.24)’teki kuvvet dağılımı ortaya çıkacaktır. 

 

Şekil 4.24 : Kiriş sisteminin kesme kuvveti dağılımı. 

Kuvvet dağılımı gizlenip gerilme dağılımı gösterildiğinde (Şekil 4.25)’teki görünüm 

elde edilecektir. Kiriş sisteminde müsaade edilen maksimum gerilme 150 𝑀𝑃𝑎 

olarak girilmiştir. İkinci kirişte gerilme değerleri bu sınır değeri aştığı için bu aşan 

yerler kırmızı renkte gösterilmiştir. Ayrıca 150 𝑀𝑃𝑎 sınırı grafik üzerinde 

çizilmiştir. 

 

Şekil 4.25 : Kiriş sisteminin gerilme dağılımı.
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5.  SAYISAL ÇALIŞMA 

5.1 Değişken Kesitli Çerçeve Örneği 

(Şekil 5.1)’de değişken kesitli bir çerçeve gösterilmiştir. 1 ve 3 kirişlerinin 

yükseklikleri doğrusal olarak değişmektedir. 2 kirişi ise uçlarından braketlenmiş 

olarak düşünülebilir. 2 numaralı kiriş 15 𝑘𝑁/𝑚 sabit yayılı yüküyle yüklenmiştir. 1 

ve 3 numaralı kirişler ise maksimum değeri 10 𝑘𝑁/𝑚 olan ve kiriş sonunda sıfıra 

giden doğrusal yayılı yükle yüklenmiştir. 

 

Şekil 5.1 : Değişken kesitli enine çerçeve. 

(Şekil 5.2)’de kirişlerin kesit yükseklikleri gösterilmiştir. Ayrıca her bir kirişin 

derinliği 30 𝑐𝑚’dir. 

 

Şekil 5.2 : Değişken kesitli enine çerçeve kirişlerinin boyutları. 
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Öncelikle kirişlerin her iki ucu ankastre mesnet iken moment dağılımı Üç Moment 

Yöntemiyle bulunmalıdır. 

ℎ1(𝑥) = ℎ3(𝑥) = 10 − 1.25𝑥 (5.1) 

𝐼1(𝑥) = 𝐼3(𝑥) = 2500 − 937.5𝑥 + 117.1875𝑥
2 − 4.8828𝑥3 (5.2) 

ℎ2(𝑥) = {
10 − 10𝑥, 0 ≤ 𝑥 ≤ 0.5

5, 0.5 ≤ 𝑥 ≤ 4.5
10𝑥 − 40, 4.5 ≤ 𝑥 ≤ 5

 (5.3) 

𝐼2(𝑥)

= {
2500 − 7500𝑥 + 7500𝑥2 − 2500𝑥3,   0 ≤ 𝑥 ≤ 0.5

312.5, 0.5 ≤ 𝑥 ≤ 4.5

−160000 + 120000𝑥 − 30000𝑥2 + 2500𝑥3, 4.5 ≤ 𝑥 ≤ 5

 
(5.4) 

5.1.1 Analitik çözüm 

(Şekil 5.3)’te 1 numaralı kiriş için sanal kiriş kabulü yapılmıştır. 

 

Şekil 5.3 : Değişken kesitli enine çerçeve kirişi için sanal kiriş kabulü. 

Bu sanal kiriş kabulü yapılan kiriş sisteminde denklem 2.82’deki Üç Moment 

Denklemi her iki kiriş parçacığı için yazılıp atalet dağılımı yerine konulursa 

aşağıdaki sonuçlar elde edilir. 

𝑀𝐴 = −10.875 𝑘𝑁𝑚,    𝑀𝐵 = −3.0368 𝑘𝑁𝑚 (5.5) 

Aynı işlemler 2 numaralı kiriş için yapıldığında aşağıdaki sonuçlar elde edilir. 

𝑀𝐴 = −34.7032 𝑘𝑁𝑚,    𝑀𝐵 = −34.7032 𝑘𝑁𝑚 (5.6) 
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3 numaralı kirişte bulunacak sonuçlar 1 numaralı kirişle aynı olacaktır. Burada 

kullanılan işaret sistemi kiriş teorisi işaret sistemidir. Mukavemet hesaplarından 

yararlanılarak kirişlerin mesnet tepkileri (Şekil 5.4)’teki gibi olur. 

 

Şekil 5.4 : Değişken kesitli enine çerçeve kirişlerinin mesnet tepkileri. 

Sistemin serbestlik dereceleri (Şekil 5.5)’teki gibi olacaktır. 

 

Şekil 5.5 : Değişken kesitli enine çerçeve sisteminin serbestlik dereceleri. 

Kiriş 1 ve 3’ün açısal konumu müşterek eksen takımına göre 90°’dir. Kiriş 2’nin ise 

açısal konumu 0°’dir. Bölüm 1.2.4’teki değişken kesitli kirişler için atalet ve alan 
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fonksiyonları konularak hesaplar yapılırsa temel rijitlik katsayıları aşağıdaki gibi elde 

edilir. 

𝑚𝑖𝑖
1 = 19.4515,    𝑚𝑗𝑗

1 = 6.8642,   𝑚𝑖𝑗
1 = 5.7265,  𝑛𝑖𝑖

1 = 1.4428 (5.7) 

𝑚𝑖𝑖
2 = 5.5441,    𝑚𝑗𝑗

2 = 5.5441,   𝑚𝑖𝑗
1 = 3.2584,  𝑛𝑖𝑖

1 = 1.0654 (5.8) 

𝑚𝑖𝑖
3 = 19.4515,    𝑚𝑗𝑗

3 = 6.8642,   𝑚𝑖𝑗
3 = 5.7265,  𝑛𝑖𝑖

3 = 1.4428 (5.7) 

 

(5.9) 

Bütün kirişler için elastisite modülü 210 𝐺𝑃𝑎 alınmıştır. Kirişlerin müşterek 

eksenlere göre katılık matrisi aşağıdaki gibi elde edilecektir. 

𝑘1𝑋𝑌𝑍 =

[
 
 
 
 
 
1.1362 0. 0. −1.1362 0. 0.
0. 0.0039 0.001 0. −0.0004 0.0005
0. 0.001 0.0003 0. −0.001 0.0009

−1.1362 0. 0. 1.1362 0. 0.
0. −0.0004 −0.001 0. 0.0004 −0.0005
0. 0.0005 0.0009 0. −0.0005 0.0011 ]

 
 
 
 
 

 (5.10) 

𝑘2𝑋𝑌𝑍 =

[
 
 
 
 
 
0.6712 0. 0. −0.6712 0. 0.
0. 0.0001 0.0002 0. −0.0001 0.0002
0. 0.0002 0.0007 0. −0.0002 0.0004

−0.6712 0. 0. 0.6712 0. 0.
0. −0.0001 −0.0002 0. 0.0001 −0.0002
0. 0.0002 0.0004 0. −0.0002 0.0007 ]

 
 
 
 
 

 

 

(5.11) 

𝑘3𝑋𝑌𝑍 =

[
 
 
 
 
 
1.1362 0. 0. −1.1362 0. 0.

0. 0.0039 0.001 0. −0.0004 0.0005

0. 0.001 0.0003 0. −0.001 0.0009

−1.1362 0. 0. 1.1362 0. 0.

0. −0.0004 −0.001 0. 0.0004 −0.0005

0. 0.0005 0.0009 0. −0.0005 0.0011 ]
 
 
 
 
 

 (5.12) 

Kirişlerin müşterek eksenlere göre endirekt yük vektörleri aşağıdaki gibi elde 

edilecektir. 

𝑓𝑋𝑌𝑍
1 =

{
 
 

 
 
−15292.8740

0
10875.0095
−4707.1260

0
−3036.8471 }

 
 

 
 

 (5.13) 
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𝑓𝑋𝑌𝑍
2 =

{
 
 

 
 

0
37500

34703.2014
0

37500
−24703.2014}

 
 

 
 

 (5.14) 

𝑓𝑋𝑌𝑍
3 =

{
 
 

 
 
−15292.8740

0
10875.0095
−4707.1260

0
−3036.8471 }

 
 

 
 

 (5.15) 

Kod numaraları tablosu oluşturulup, oluşturulan tablo yardımıyla müşterek matris 

aşağıdaki gibi elde edilir. 

𝑘𝑋𝑌𝑍 =

[
 
 
 
 
 
0.6716 0. 0.0005 −0.6712 0. 0.
0. 1.1364 0.0002 0. −0.0001 0.0002

0.0005 0.0002 0.0019 0. −0.0002 0.0004
−0.6712 0. 0. 0.6712 0. 0.0005

0. −0.0001 −0.0002 0. 1.1364 −0.0002
0. 0.0002 0.0004 0.0005 −0.0002 0.0019 ]

 
 
 
 
 

 (5.16) 

Buradaki sonuçlar virgülden sonra 4 basamak olacak şekilde yuvarlatılarak 

verilmiştir. Müşterek endirekt yük vektörü aşağıdaki gibi olacaktır. 

𝑓𝑋𝑌𝑍 =

{
 
 

 
 
4707.1260
−37500

−31666.3543
−4707.1260
−37500

−31666.3543}
 
 

 
 

 (5.17) 

Direkt yük vektörü sıfır olduğu için endirekt yük vektörü denklem 2.112’deki gibi 

karşıya atılarak müşterek matris sistemi çözülürse aşağıdaki deplasman vektörü elde 

edilir. 

𝐷𝑋𝑌𝑍 =

{
 
 

 
 

12128.3275
−33005.4308

−22208359.4908
−11964.6512
−33005.4119

−22208359.7442}
 
 

 
 

 (5.18) 

Denklem 2.114’teki ifade kullanılarak kirişlerin eleman kuvvet vektörleri elde edilir. 
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{𝑃1}𝑋𝑌𝑍 = 𝑘1𝑋𝑌𝑍

{
 
 

 
 
0
0
0
𝐷1
𝐷2
𝐷3}
 
 

 
 

+ {𝑓𝑋𝑌𝑍
1 } =

{
 
 

 
 
−3828.7704
37500.0107
−9977.5384
−16171.2296
−37500.0107
−28040.7139}

 
 

 
 

 (5.19) 

{𝑃2}𝑋𝑌𝑍 = [𝑘𝑋𝑌𝑍
2 ]

{
 
 

 
 
𝐷1
𝐷2
𝐷3
𝐷4
𝐷5
𝐷6}
 
 

 
 

+ {𝑓𝑋𝑌𝑍
2 } =

{
 
 

 
 
16171.2296
37500.0107
28040.7134
−16171.2296
37499.9893
−28040.6597}

 
 

 
 

 (5.20) 

{𝑃3}𝑋𝑌𝑍 = [𝑘𝑋𝑌𝑍
3 ]

{
 
 

 
 
0
0
0
𝐷4
𝐷5
𝐷6}
 
 

 
 

+ {𝑓𝑋𝑌𝑍
3 } =

{
 
 

 
 
3828.7704
37499.9893
9977.5921
16171.2296
−37499.9893
28040.6597 }

 
 

 
 

 (5.21) 

Daha sonra müşterek eksene göre tanımlanmış kuvvet vektörleri transformasyon 

matrisleriyle çarpılarak lokal kuvvet vektörleri elde edilir. Bu vektörler kirişlerdeki 

uç tepki kuvvetlerine karşılık gelir. 

{𝑃1}𝑥𝑦𝑧 = [𝑇]{𝑃
1}𝑋𝑌𝑍 =

{
 
 

 
 
37500.0107
3828.7704
−9977.5384
−37500.0107
16171.2296
−28040.7134}

 
 

 
 

 (5.22) 

{𝑃2}𝑥𝑦𝑧 = [𝑇]{𝑃
2}𝑋𝑌𝑍 =

{
 
 

 
 
16171.2296
37500.0107
28040.7134
−16171.2296
37499.9893
−28040.6597}

 
 

 
 

 (5.23) 

{𝑃3}𝑥𝑦𝑧 = [𝑇]{𝑃
3}𝑋𝑌𝑍 =

{
 
 

 
 
37499.9893
−3828.7704
9977.5921
−37499.9893
−16171.2296
28040.6597 }

 
 

 
 

 (5.24) 
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(Şekil 5.6)’da kirişlerin elde edilen uç tepki kuvvetleri gösterilmiştir. Bu tepki 

kuvvetleri bilindikten sonra kesit tesir diyagramları çizilebilir, eğilme momenti, 

kesme kuvveti, eksenel kuvvet, sehim ve gerilme dağılımları elde edilebilir. 

 

Şekil 5.6 : Değişken kesitli enine çerçeve sisteminin kirişlerinin uç tepki kuvvetleri. 

5.1.2 Program ile çözüm 

Bölüm 4’te anlatıldığı gibi kirişlerin örnek çerçevedeki atalet ve alan değerleri 

girildiğinde programda çerçeve sistemi (Şekil 5.7)’deki gibi görünecektir. 

 

Şekil 5.7 : Geliştirilen programda örnek çerçevenin görünüşü. 

Çerçevenin atalet momenti dağılımı (Şekil 5.8)’deki gibi olacaktır. 
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Şekil 5.8 : Geliştirilen programda örnek çerçevenin atalet dağılımı. 

Burada çizimin simetrik olmamasının nedeni 3 numaralı kirişin 1 ile aynı yönde 

eklenmesidir. Bu durumda kirişin pozitif yükleme yönü değişecektir. Nitekim (Şekil 

5.6)’da yayılı yükün uç değerinin 3 numaralı kirişte −10 𝑘𝑁/𝑚 olduğu 

görülmektedir. 

Kiriş sistemi çözümü yapıldığında moment dağılımı (Şekil 5.9)’daki gibi olacaktır. 

 

Şekil 5.9 : Geliştirilen programda örnek çerçevenin moment dağılımı grafiği. 

Kesme kuvveti dağılımı (Şekil 5.10)’daki gibi olacaktır. 
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Şekil 5.10 : Geliştirilen programda örnek çerçevenin kesme kuvveti grafiği. 

Eksenel kuvvet dağılımı (Şekil 5.11)’deki gibi olacaktır. 

 

Şekil 5.11 : Geliştirilen programda örnek çerçevenin eksenel kuvvet grafiği. 
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Kiriş sisteminin gerilme dağılımı (Şekil 5.12)’deki gibi olacaktır. 

 

Şekil 5.12 : Geliştirilen programda örnek çerçevenin gerilme grafiği. 

Burada müsaade edilen en yüksek gerilme 150 𝑀𝑃𝑎 olarak kabul edilmiş ve 

program ona göre hesap yapmıştır. Grafikteki kırmızı eğriler o bölgede müsaade 

edilen en yüksek gerilmenin aşıldığını göstermektedir. Bu durumda her 3 kirişte de 

müsaade edilen gerilme aşılmıştır ve güvenli değildir. Program bu durumda kiriş 

ağacında müsaade edilen gerilmenin aşıldığı kirişin yanında (Şekil 5.13)’teki gibi 

kırmızı bir ünlem işareti gösterecektir. 

 

Şekil 5.13 : Müsaade edilen en yüksek gerilmenin aşıldığı kirişlerdeki uyarı işareti. 
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Bu geliştirilen programdan başka Ftool adında Brezilya’lı bir inşaat mühendisi 

tarafından geliştirilen ve yine matris deplasman metoduyla hesap yapan bir çerçeve 

analiz programıyla örnek çerçeve çözülmüştür.  

Ftool yalnızca sabit kesitli kirişler için hesap yapmaktadır. Bu nedenle değişken 

kesitler için kiriş parçalara bölünerek her kiriş parçacığına denk gelen ortalama atalet 

momenti atanarak çözüm yapılmıştır. Bu kapsamda 1 ve 3 numaralı kirişler 0,2 𝑚 

aralıklara bölünmüştür. 2 numaralı kirişin ise değişken atalet momentli uçları 0,1 𝑚 

aralıklara bölünmüş, ortadaki sabit ataletli bölüm tek bir parça olarak modellenmiştir. 

Eğilme momenti dağılımı (Şekil 5.14)’teki gibi elde edilmiştir. 

 

Şekil 5.14 : Örnek çerçevenin Ftool adındaki programla çözümünden elde edilen 

moment dağılımı. 

Kesme kuvveti (Şekil 5.15)’teki gibi elde edilmiştir. 

 

Şekil 5.15 : Örnek çerçevenin Ftool adındaki programla çözümünden elde edilen 

kesme kuvveti dağılımı. 
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Kesme kuvveti (Şekil 5.16)’daki gibi elde edilmiştir. 

 

Şekil 5.16 : Örnek çerçevenin Ftool adındaki programla çözümünden elde edilen 

eksenel kuvvet dağılımı. 

5.1.3 Sonuçların karşılaştırılması 

Çerçeve sisteminin düğüm noktaları (Şekil 5.17)’deki gibi numaralandırılmıştır. 

 

Şekil 5.17 : Örnek çerçevenin düğümlerinin numaralandırılması. 

Çizelge 5.1’de (Şekil 5.17)’de yapılan numaralandırmaya göre düğümlerde elde 

edilen momentler karşılaştırılmıştır. 

Çizelge 5.1 : Örnek çerçevenin düğüm momentlerinin değişik çözüm yöntemleriyle 

karşılaştırılması. 

Çözüm Yöntemi Düğüm numaraları 

 
1 2 3 4 

MesnetMD 9.9775 28.0407 28.0407 9.9776 

Ftool 10.0 28.0 28.0 10.0 

Analitik 9.978 28.04 28.04 9.978 
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Burada MesnetMD, bu tez çalışması kapsamında geliştirilen programın proje adıdır. 

Görüldüğü gibi programın çıktıları hem analitik çözüm ile hem de Ftool programıyla 

uyumludur. 

5.2 Sabit Kesitli Gemi Enine Çerçeve Örneği 

Ele alınacak çerçeve sistemi (Şekil 5.18)’de gösterilmiştir. Bütün kirişlerin uzunluğu, 

atalet momenti ve kirişleri etkiyen yükler ve mesnetlerin isimleri şekilde 

gösterilmiştir. Bütün düğümler basit mesnet olarak kabul edilmiştir. Bu durumda 

eksenel deplasmanlar olmayacağı için çerçeve kirişlerinin alanları önemsizdir ve 

hesaplarda birim alan kullanılmıştır. Örnek çerçeve ara güverteli bir gemi 

çerçevesidir. Dip yapısındaki merkez iç omurgadan dolayı bu nokta basit mesnet 

olarak alınmıştır. Gemi çerçevesinin bordalarına ve dibine etkiyen hidrostatik basınç 

yayılı yükler olarak temsil edilmiştir. 

 

Şekil 5.18 : Ara güverteli gemi çerçevesi. 

Programda bu çerçeve oluşturulmuştur. Çerçevenin görünümü (Şekil 5.19)’da 

gösterilmiştir. 
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Şekil 5.19 : Ara güverteli gemi çerçevesinin programdaki görünüşü. 

Programda oluşturulan bu gemi enine çerçevesinin çözümü yapılmış ve  (Şekil 

5.20)’deki moment dağılımı elde edilmiştir. 

 

Şekil 5.20 : Ara güverteli gemi çerçevesinin programdaki moment dağılımı. 

Aynı gemi çerçevesi Ftool adlı programda da çözülmüş ve (Şekil 5.21)’deki moment 

dağılımı elde edilmiştir. 
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Şekil 5.21 : Ara güverteli gemi çerçevesinin Ftool adlı programdaki moment 

dağılımı. 

Yine aynı gemi çerçevesi Mesnet adlı programda çözülmüştür. Mesnet, 2 boyutlu 

gemi enine çerçevelerini Cross Metodu ile çözen analiz programıdır (Birler, 2018). 

Serbestlik dereceleri Matris Deplasman Metodu ile aynı olduğu durumda aynı sonuç 

vermesi beklenir. Mesnet, kullandığı metot gereği düğümlerde sadece dönme 

serbestlik derecesi olmasına müsaade eder. Bu gemi enine çerçevesinde bütün 

düğümler basit mesnetlidir. Dolayısıyla düğümlerde sadece dönme serbestlik 

derecesi vardır. Mesnet programındaki bu çerçeve için elde edilen moment dağılımı 

(Şekil 5.22)’deki gibi elde edilmiştir. 

 

Şekil 5.22 : Ara güverteli gemi çerçevesinin Mesnet adlı programdaki moment 

dağılımı. 
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Görüldüğü gibi Mesnet programı arayüzü bu tez kapsamında geliştirilen programa 

çok benzemektedir. Bu çalışmada geliştirilen program yazarın daha önce lisans 

bitirme tezi kapsamında yaptığı Mesnet adlı analiz programı üzerine kurulmuştur. 

Arayüz kodları büyük oranda aynıdır. 

5.2.1 Sonuçların karşılaştırılması 

Karşılaştırmada her kirişin düğümlere karşılık gelen momentleri baz alınmıştır. 

Çerçeve 3 ayrı program ile çözülmüştür. Çizelge 5.2’de (Şekil 5.18)’de gösterilen 

düğüm noktalarında oluşan  momentlerin karşılaştırılması verilmiştir. 

Çizelge 5.2 : Örnek çerçevenin düğüm momentlerinin değişik çözüm yöntemleriyle 

karşılaştırılması. 

Çözüm 
Programı 

Düğümler 

 
A1 A2 B2 B3 B4 C4 C5 

Mesnet 203,7811 203,7811 211,2261 612,378 401,1519 407,6151 407,6151 
Ftool 203,8 203,8 211,2 612,4 401,2 407,6 407,6 

MesnetMD 203,7811 203,7811 211,2261 612,378 401,1519 407,6151 407,6151 

 
              

Çözüm 
Programı 

Düğümler 

 
D5 D6 E6 E7 F7 F3 F8 

Mesnet 676,1924 676,1924 407,6151 407,6151 401,1519 612,378 211,2261 
Ftool 676,2 676,2 407,6 407,6 401,2 612,4 211,2 

MesnetMD 676,1924 676,1924 407,6151 407,6151 401,1519 612,378 211,2261 

Görüldüğü gibi programın bu çerçeve için çıktıları hem Mesnet programıyla ile hem 

de Ftool programıyla uyumludur. Burada Ftool, sonuçları virgülden sonra 1 basamak 

hassasiyetle vermektedir. 
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6.  SONUÇ VE ÖNERİLER 

Bu çalışmada gemi enine çerçevelerinin yapısal analizini Matris Deplasman Metodu 

ile yapan bir bilgisayar programı geliştirilmesi amaçlanmıştır. Geliştirilen programın 

gemi enine çerçevelerinde sık karşılaşılan, kesitin değişken olması durumlarında dahi 

çerçeve çözümü yapabilmesi hedeflenmiştir. Aynı zamanda geliştirilen programın 

modern uygulama programlama arayüzlerini kullanması, görsel arayüze sahip olması 

ve kullanımının kolay olması istenmiştir.  

Matris Deplasman Metodu değişken kesitli olarak ifade edilmiş ve Üç Moment 

Yöntemi yardımıyla değişken kesitli durumlarda yük vektörünün hesaplanması 

anlatılmıştır. Çalışmadaki teori kullanılarak C# programlama diliyle kullanıcı 

arayüzüne sahip bir program geliştirilmiştir. Programın çıktıları analitik çözümle ve 

diğer muadil programlarla karşılaştırılarak doğru çözüm yaptığı ispatlanmıştır. 

Sonuçta gemilerin ön dizaynında kullanılabilecek pratik ve kullanışlı, Windows 

işletim sistemlerinde çalışabilen bir bilgisayar yazılımı ortaya çıkmıştır. Program 

geliştirilen matematik sınıfları sayesinde mümkün olduğunda analitik olarak hesap 

yapabilmektedir. Böylece sabit kesitli çerçeveleri çok hızlı bir şekilde 

hesaplayabilmektedir. Program gerektiğinde paralel hesaplama tekniklerini de 

kullanarak gelişen bilgisayar teknolojilerini mümkün olduğunca kullanmakta ve 

çözüm süresini minimum düzeye indirebilmektedir.  

Program aynı zamanda nesne yönelimli programlama yaklaşımlarını kullanmaktadır. 

Böylece geliştirici dışında başka kişilerin programın kaynak kodlarına baktığında 

kolayca anlayabilmesi sağlanmaktadır. 

Programın Matris Deplasman Metodu çözümleriyle alakalı bazı kaynak kodları bu 

çalışmanın ek belgelerine konulmuştur. İleride program belirli bir seviyede 

geliştirildiği zaman kaynak kodları açılacak ve dünyadaki uygulama geliştiricilerinin 

programı anlamasına ve geliştirmesine olanak tanınacaktır. 

Programda matematiksel altyapısı hazır olmasına karşın arayüzde ve programın 

işleyişinde karşılaşılan bazı zorluklar nedeniyle bazı özelllikler henüz 
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uygulanmamıştır. Düğümlere direkt yük ekleme özelliği yine bu nedenlerden dolayı 

henüz uygulanmamıştır. Tekil moment ekleme, mafsal gibi başka mesnetlerin 

eklenebilme özelliği de yine uygulanmamıştır. 

İleride bu bahsedilen özellikler kodlanarak programa kazandırılacaktır. Sehim 

grafikleri çizebilme yeteneği yine programa eklenecektir. Optimizasyonlar yapılarak 

çözüm süresi kısaltılacak ve hafıza yönetimleri iyileştirilerek programın ram 

kullanımı azaltılacaktır. 

Programa ileride titreşim analizinin de eklenmesi planlanmaktadır. Bunların dışında 

bu programdan elde edilen bilgiler ve geliştirilen kod kütüphanesi kullanılarak 3 

boyutlu uzay çerçeve sistemi çözümü yapabilen bilgisayar programı geliştirilmesi 

hedeflenmektedir. Böylece gemi bir bütün olarak uzay çerçeve olarak 

modellenebilecek ve daha iyi yapısal analizlerin yapılabilmesine olarak tanınacaktır. 
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EK C: Matris Deplasman Metodu Global Sistemi Çözücü Kodları. 
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EK A: Programdaki Matematik Tabanlı Kodlar 

public class Poly 

{ 

        public Poly(string PolyExpression) 
        { 
            this._Terms = new TermCollection(); 
            this.ReadPolyExpression(PolyExpression); 
        } 
        public Poly(string PolyExpression, double startpoint, double endpoint) 
        { 
            this._Terms = new TermCollection(); 
            this.ReadPolyExpression(PolyExpression); 
            _startpoint = startpoint; 
            _endpoint = endpoint; 

        } 

        public double Calculate(double x) 
        { 
            double result = 0; 
            foreach (Term t in this.Terms) 
            { 
                result += t.Coefficient *System.Math.Pow(x, t.Power); 
            } 
            return result; 

        } 

 public static bool ValidateExpression(string Expression) 
        { 
            if (Expression.Length == 0) 
                return false; 
 
            Expression = Expression.Trim(); 
            Expression = Expression.Replace(" ", ""); 

while (Expression.IndexOf("--") > -1 | Expression.IndexOf("++") >                            
-1 | Expression.IndexOf("^^") > -1 | Expression.IndexOf("xx") > -
1) 

            { 
                Expression = Expression.Replace("--", "-"); 
                Expression = Expression.Replace("++", "+"); 
                Expression = Expression.Replace("^^", "^"); 
                Expression = Expression.Replace("xx", "x"); 
            } 
            string ValidChars = "+-x1234567890^.E"; 
            bool result = true; 
            foreach (char c in Expression) 
            { 
                if (ValidChars.IndexOf(c) == -1) 
                { 
                    result = false; 
                }  
            } 
            return result; 

        } 

 private void handleterm(string term) 
        { 
            Term termitem; 
            if (term.Contains("E")) 
            { 
                var coeffs = term.Split('E'); 



87 

                double c = Convert.ToDouble(coeffs[0]); 
                if (coeffs[1].Contains("x^")) 
                { 

var epxs= coeffs[1].Split(new string[] { "x^" }, 
StringSplitOptions.None); 

                    double p1 = Convert.ToDouble(epxs[0]); 
                    double p2 = Convert.ToDouble(epxs[1]); 
                    termitem = new Term(); 
                    termitem.Coefficient = c * System.Math.Pow(10, p1); 
                    termitem.Power = p2; 
                    Terms.Add(termitem); 
                } 
                else if(coeffs[1].Contains("x")) 
                { 

                    var epxs = coeffs[1].Split(new 
string[] { "x" }, StringSplitOptions.None); 

                    double p1 = Convert.ToDouble(epxs[0]); 
                    termitem = new Term(); 
                    termitem.Coefficient = c * System.Math.Pow(10, p1); 
                    termitem.Power = 1; 
                    Terms.Add(termitem); 
                } 
                else 
                { 
                    double p = Convert.ToDouble(coeffs[1]); 
                    var termItem = new Term(); 
                    termItem.Coefficient = c * System.Math.Pow(10, p); 
                    Terms.Add(termItem); 
                }                 
            } 
            else 
            { 
                termitem = new Term(term); 
                Terms.Add(termitem); 
            } 

        } 

 public Poly Integrate() 
        { 
            var terms = new TermCollection(); 
            foreach (Term t in this.Terms) 
            { 
                var pow = t.Power + 1; 
                var coeff = t.Coefficient / (t.Power + 1); 
                terms.Add(new Term(pow, coeff)); 
            } 
            return new Poly(terms); 

        } 

 public double DefiniteIntegral(double start, double end) 
        { 
            double result = 0; 
 
            Poly integral = Integrate(); 
 
            result = integral.Calculate(end) - integral.Calculate(start); 
 
            return result; 

        } 

 public Poly Derivate() 
        { 
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            var terms = new TermCollection(); 
            foreach (Term t in this.Terms) 
            { 
                var pow = t.Power - 1; 
                var coeff = t.Coefficient * t.Power; 
                terms.Add(new Term(pow, coeff)); 
            } 
 
            return new Poly(terms); 

        } 

} 

public bool IsLinear() 
{ 
    if (Terms.Count > 2) 
    { 
        return false; 
    } 
 
    foreach (Term term in Terms) 
    { 

   if (System.Math.Abs(term.Power - 1.0) > 0.000001 && 
System.Math.Abs(term.Power) > 0.000001) 

        { 
            return false; 
        } 
    } 
 
    return true; 

} 

public static Poly operator +(Poly p1, Poly p2) 
{ 
    if (p1.ToString() == "0") 
    { 
        return p2; 
    } 
    else if (p2.ToString() == "0") 
    { 
        return p1; 
    } 
 
    Poly result = new Poly(p1.ToString()); 
    foreach (Term t in p2.Terms) 
        result.Terms.Add(t); 
    return result; 

} 

... 

} 

 

public class Term 

{ 

 public Term(double power,double coefficient) 
        { 
            this.Power = power; 
            this.Coefficient = coefficient; 

        } 
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 public Term(string TermExpression) 
        { 
            if (TermExpression.Length > 0) 
            { 
                if (TermExpression.IndexOf("x^") > -1) 
                { 

string CoefficientString = TermExpression.Substring(0, 
TermExpression.IndexOf("x^")); 

                    int IndexofX = TermExpression.IndexOf("x^"); 
string PowerString = TermExpression.Substring(IndexofX + 
2, (TermExpression.Length -1) - (IndexofX + 1)); 

                    if (CoefficientString == "-") 
                        this.Coefficient = -1; 

else if (CoefficientString == "+" | CoefficientString ==    
"") 

                        this.Coefficient = 1; 
                    else 
                        this.Coefficient = double.Parse(CoefficientString); 
                     
                    this.Power = double.Parse(PowerString); 
                } 
                else if (TermExpression.IndexOf("x") > -1) 
                { 
                    this.Power = 1; 

string CoefficientString = TermExpression.Substring(0, 
TermExpression.IndexOf("x")); 

                    if (CoefficientString == "-") 
                        this.Coefficient = -1; 

else if (CoefficientString == "+" | CoefficientString == 
"") 

                        this.Coefficient = 1; 
                    else 
                        this.Coefficient = double.Parse(CoefficientString); 
                } 
                else 
                { 
                    this.Power = 0; 
                    this.Coefficient = double.Parse(TermExpression); 
                } 
            } 
            else 
            { 
                this.Power = 0; 
                this.Coefficient = 0; 
            } 

        } 

... 

} 

public class PiecewisePoly:CollectionBase 

{ 

public PiecewisePoly(List<Poly> polylist) 
        { 
            initialize(polylist);            

        } 

 private void initialize(List<Poly> polylist) 
        { 
            _sortlist = polylist; 



90 

            _sortlist.Sort((a, b) => a.StartPoint.CompareTo(b.StartPoint)); 
 
            foreach (Poly poly in _sortlist) 
            { 
                List.Add(poly); 
            } 

        } 

 public void Add(Poly poly) 
        { 
            List.Add(poly); 
            Sort(); 

        } 

 public PiecewisePoly Integrate() 
        { 
            var ppoly = new PiecewisePoly(); 
            foreach (Poly poly in List) 
            { 
                var ply = poly.Integrate(); 
                ply.StartPoint = poly.StartPoint; 
                ply.EndPoint = poly.EndPoint; 
                ppoly.Add(ply); 
            } 
            return ppoly; 

        } 

 public PiecewisePoly Derivate() 
        { 
            var ppoly = new PiecewisePoly(); 
            foreach (Poly poly in List) 
            { 
                var ply = poly.Derivate(); 
                ply.StartPoint = poly.StartPoint; 
                ply.EndPoint = poly.EndPoint; 
                ppoly.Add(ply); 
            } 
            return ppoly; 

        } 

 public double DefiniteIntegral(double start, double end) 
        { 
            double value = 0; 
            foreach (Poly poly in List) 
            { 
                if (poly.StartPoint >= start || poly.EndPoint <= end) 
                { 
                    double left = 0; 
                    double right = 0; 
                    if (poly.StartPoint >= start) 
                    { 
                        left = poly.StartPoint; 
                    } 
                    else if (poly.StartPoint < start) 
                    { 
                        left = start; 
                    } 
 
                    if (poly.EndPoint <= end) 
                    { 
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                        right = poly.EndPoint; 
                    } 
                    else if (poly.EndPoint > end) 
                    { 
                        right = end; 
                    } 
 
                    if (left >= end) 
                    { 
                        break; 
                    } 
                    value += poly.DefiniteIntegral(left, right); 
                } 
            } 
 
            return value; 

        } 

 public double Calculate(double x) 
        { 
            double value = 0; 
            foreach (Poly poly in List) 
            { 
                if (x >= poly.StartPoint && x <= poly.EndPoint) 
                { 
                    value = poly.Calculate(x); 
                    return value; 
                } 
            } 
            return value; 

        } 

 public bool IsConstant() 
        { 
            if (List.Count == 1) 
            { 
                var poly = List[0] as Poly; 
                if (poly.IsConstant()) 
                { 
                    return true; 
                } 
            } 
            return false; 

        } 

} 

public static class Algebra 

    { 

public static double[] LinearEquationSolver(double[,] coefficients, 
double[] results) 

        { 
if (coefficients.GetLength(0) != coefficients.GetLength(1) && 
coefficients.GetLength(0) != results.Length) 

            { 
                throw new ArgumentException("Different array sizes"); 
            } 
 
            int count = coefficients.GetLength(0); 
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            for (int i = 0; i < count - 1; i++) 
            { 
                for (int j = i + 1; j < count; j++) 
                { 
                    double s = coefficients[j, i] / coefficients[i, i]; 
                    for (int k = i; k < count; k++) 
                    { 
                        coefficients[j, k] -= coefficients[i, k] * s; 
                    } 
                    results[j] -= results[i] * s; 
                } 
            } 
 
            for (int i = count - 1; i >= 0; i--) 
            { 
                results[i] /= coefficients[i, i]; 
                coefficients[i, i] /= coefficients[i, i]; 
                for (int j = i - 1; j >= 0; j--) 
                { 
                    double s = coefficients[j, i] / coefficients[i, i]; 
                    coefficients[j, i] -= s; 
                    results[j] -= results[i] * s; 
                } 
            } 
 

return Enumerable.Range(0, count).Select(i => results[i] / 
coefficients[i, i]).ToArray(); 

        } 

 public static double[] DotProduct(double[,] m, double[] v) 
        { 
            if (m.GetLength(1) != v.GetLength(0)) 
            { 

   throw new InvalidOperationException("This Matrix and this 
vector can not be multiplied!"); 

            } 
 
            var result = new double[m.GetLength(0)]; 
            double sum = 0; 
 
           for (int i = 0; i < m.GetLength(0); i++) 
            { 
                sum = 0; 
                for (int j = 0; j < m.GetLength(1); j++) 
                { 
                    sum += m[i, j] * v[j]; 
                } 
 
                result[i] = sum; 
            } 
 
            return result; 
        } 

public static double[] AddVectors(double[] v1, double[] v2) 
        { 
            if (v1.GetLength(0) != v2.GetLength(0)) 
            { 

   throw new InvalidOperationException("These two vectors can not 
be added"); 

            } 
            var result = new double[v1.GetLength(0)]; 
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            for (int i = 0; i < v1.GetLength(0); i++) 
            { 
                result[i] = v1[i] + v2[i]; 
            } 
 
            return result; 
        } 
 public static double[,] MultiplyMatrix(double[,] m1, double[,] m2) 
        { 
            int rm1 = m1.GetLength(0); 
            int cm1 = m1.GetLength(1); 
            int rm2 = m2.GetLength(0); 
            int cm2 = m2.GetLength(1); 
            double temp = 0; 
            double[,] result = new double[rm1, cm2]; 
            if (cm1 != rm2) 
            { 

    throw new InvalidOperationException("This matrices can not be 
multiplied!"); 

            } 
            else 
            { 
                for (int i = 0; i < rm1; i++) 
                { 
                    for (int j = 0; j < cm2; j++) 
                    { 
                        temp = 0; 
                        for (int k = 0; k < cm1; k++) 
                        { 
                            temp += m1[i, k] * m2[k, j]; 
                        } 
                        result[i, j] = temp; 
                    } 
                } 
                return result; 
            } 
        } 

public static double[,] Transpose(double[,] matrix) 
        { 
            int w = matrix.GetLength(0); 
            int h = matrix.GetLength(1); 
 
            double[,] result = new double[h, w]; 
 
            for (int i = 0; i < w; i++) 
            { 
                for (int j = 0; j < h; j++) 
                { 
                    result[j, i] = matrix[i, j]; 
                } 
            } 
 
            return result; 

        } 

... 

} 

public class SimpsonsFirstIntegrator : SimpsonBase 
    { 
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 public SimpsonsFirstIntegrator(double deltax) : 
base(Global.SimpsonIntegrationType.First, deltax) 

        { 
        } 
 
        public override void Calculate() 
        { 
            for (int i = 0; i < datas.Count; i++) 
            { 
                if (i == 0) 
                { 
                    _sum += datas[i]; 
                } 
                else if (i == datas.Count - 1) 
                { 
                    _sum += datas[i]; 
                } 
                else if (i % 2 == 0) 
                { 
                    _sum += 2 * datas[i]; 
                } 
                else if (i % 2 == 1) 
                { 
                    _sum += 4 * datas[i]; 
                } 
            } 
            _result = _h / 3 * _sum; 
        }  

...    

   } 
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EK B: Programdaki Mukavemet Elemanları Kodları 

public class Beam : SomItem, ISomItem 

{ 

public Beam(double length) 

        { 
            InitializeComponent(length); 

        } 

public void AddInertia(PiecewisePoly inertiappoly) 
        { 
            _inertiappoly = inertiappoly; 
            _izero = _inertiappoly.PreciseMin; 
            _maxinertia = _inertiappoly.Max; 

        } 

public void AddElasticity(double elasticitymodulus) 
        { 
            _elasticity = elasticitymodulus; 

        } 

public void AddArea(PiecewisePoly areappoly) 
        { 
            _areappoly = areappoly; 
            _azero = _areappoly.PreciseMin; 
            _maxarea = _areappoly.Max; 

        } 

/// <summary> 
       /// Adds the distributed load to beam with specified direction. 
       /// </summary> 

/// <param name="loadppoly">The desired distributed load piecewise 

polynomial.</param> 

public void AddLoad(PiecewisePoly loadppoly) 
        { 
            _distributedloads = loadppoly; 
            _maxdistload = _distributedloads.Max; 
            _maxabsdistload = _distributedloads.MaxAbs; 

        } 

 /// <summary> 
        /// Adds the concentrated load to beam with specified direction. 
        /// </summary> 

 /// <param name="load">The desired list of concentrated load key value 
pair.</param> 

        public void AddLoad(KeyValueCollection loadpairs) 
        { 
            _concentratedloads = loadpairs; 
            _maxconcload = _concentratedloads.YMax; 
            _maxabsconcload = _concentratedloads.YMaxAbs; 

        } 

public void Calculate() 
        { 
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            //First, find reaction forces for concentrated loads 
            findconcentratedsupportforces(); 
 
            //Then, find reaction forces for distributed loads 
            finddistributedsupportforces(); 
 

//Then, find shearForce distribution for concentrated loads in 
zero case (when both side of the beam bound with free supports 

            findconcentratedzeroforce(); 
 

//Then, find shearForce distribution for distributed loads in zero 
case 

            finddistributedzeroforce(); 
 
            //Super position to find resultant zero shearForce distribution 
            _zeroforceppoly = _zeroforceconcpploy + _zeroforcedistppoly; 
 

//Then, find zero memont distribution according to resultant zero 
shearForce distribution 

            findzeromoment(); 
 
            //Check if analytical solution is possible 
            canbesolvedanalytically(); 
 

//Then, find end moments for each beam based on cross support 
cases (assumes supports connecting  

            //more than on beams as fixed support 
            mdsupportcases(); 
 
            //Then, find fixed end moments according to calculated end moments 
            findfixedendmomentclapeyron(); 
 

//Unlike cross methos, we need to have fixedendforce before the 
solution so that the shearForce vector can be calculated. 

            updateforces(); 
 
            //Create base stiffness coefficients 
            createbasestiffnescoefficients(); 
 
            //Create transformation matrix 
            createtransformationmatrix(); 
 
            //Create element stiffness matrix 
            createstiffnessmatrix(); 
 
            //Create element shear force vector 
            createforcevector(); 

        } 

 private void findconcentratedsupportforces() 
        { 
            double resultantforce = 0; 
            double resultantforcedistance = 0; 
            double multiply = 0; 
 
            if (_concentratedloads?.Count > 0) 
            { 
                //Moment from left support point 
                double leftmoment = 0; 

  foreach (KeyValuePair<double, double> force in 
_concentratedloads) 

                { 
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                    leftmoment += force.Key * force.Value; 
                } 
                _rightsupportforceconc = leftmoment / _length; 
 
                //Moment from right support point 
                double rightmoment = 0; 

 foreach (KeyValuePair<double, double> force in         
_concentratedloads) 

                { 
                    rightmoment += (_length - force.Key) * force.Value; 
                } 
                _leftsupportforceconc = rightmoment / _length; 
            } 
            else 
            { 
                _leftsupportforceconc = 0; 
                _rightsupportforceconc = 0; 
            } 

        } 

 private void finddistributedsupportforces() 
        { 
            double resultantforce = 0; 
            double resultantforcedistance = 0; 
            double multiply = 0; 
 
            if (_distributedloads?.Count > 0) 
            { 
                var forcelist = new List<KeyValuePair<double, double>>(); 
 
                foreach (Poly load in _distributedloads) 
                { 
                    var forces = load.CalculateMagnitudeAndLocation(); 
                    forcelist.AddRange(forces); 
                } 
 
                //Moment from left support point 
                double leftmoment = 0; 
                foreach (var force in forcelist) 
                { 
                    leftmoment += force.Key * force.Value; 
                } 
                _rightsupportforcedist = leftmoment / _length; 
 
                //Moment from right support point 
                double rightmoment = 0; 
                foreach (var force in forcelist) 
                { 
                    rightmoment += (_length - force.Key) * force.Value; 
                } 
                _leftsupportforcedist = rightmoment / _length; 
            } 
            else 
            { 
                _leftsupportforcedist = 0; 
                _rightsupportforcedist = 0; 
            } 

        } 

 private void findconcentratedzeroforce() 
        { 
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            _zeroforceconcpploy = new PiecewisePoly(); 
 
            if (_concentratedloads?.Count > 0) 
            { 
                double leftforce = _leftsupportforceconc; 
 
                if (_concentratedloads[0].Key > 0) 
                { 
                    var poly1 = new Poly(leftforce.ToString()); 
                    poly1.StartPoint = 0; 
                    poly1.EndPoint = _concentratedloads[0].Key; 
                    _zeroforceconcpploy.Add(poly1); 
                } 
 
                for (int i = 0; i < _concentratedloads.Count; i++) 
                { 
                    leftforce = leftforce - _concentratedloads[i].Value; 
 
                    var poly = new Poly(leftforce.ToString()); 
 
                    poly.StartPoint = _concentratedloads[i].Key; 
                    if (i + 1 < _concentratedloads.Count) 
                    { 
                        poly.EndPoint = _concentratedloads[i + 1].Key; 
                    } 
                    else 
                    { 
                        poly.EndPoint = _length; 
                    } 
 
                    _zeroforceconcppoly.Add(poly); 
                } 
            } 

        } 

 private void finddistributedzeroforce() 
        { 
            _zeroforcedistppoly = new PiecewisePoly(); 
 
            if (_distributedloads?.Count > 0) 
            { 
                if (_distributedloads[0].StartPoint != 0) 
                { 
                    var ply = new Poly(_leftsupportforcedist.ToString()); 
                    ply.StartPoint = 0; 
                    ply.EndPoint = _distributedloads[0].StartPoint; 
                    _zeroforcedistppoly.Add(ply); 
                } 
 
                foreach (Poly load in _distributedloads) 
                { 
                    var index = _distributedloads.IndexOf(load); 
 
                    double weightsbefore = findforcebefore(index); 
 
                    if (index > 0) 
                    { 

if (_distributedloads[index - 1].EndPoint != 
_distributedloads[index].StartPoint) 

                        { 
                            var ply = new Poly(weightsbefore.ToString()); 
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 ply.StartPoint = _distributedloads[index - 
1].EndPoint; 
ply.EndPoint = 

_distributedloads[index].StartPoint; 
                            _zeroforcedistppoly.Add(ply); 
                        } 
                    } 
 
                    var poly = new Poly(); 
 
                    var integration = load.Integrate(); 

var zerovalue = 
load.Integrate().Calculate(load.StartPoint); 

                    if (zerovalue != 0) 
                    { 
                        if (weightsbefore != 0) 
                        { 

poly = new Poly(weightsbefore.ToString()) - 
integration + new Poly(zerovalue.ToString()); 

                        } 
                        else 
                        { 

poly = -1 * integration + new 
Poly(zerovalue.ToString()); 

                        } 
                    } 
                    else 
                    { 
                        if (weightsbefore != 0) 
                        { 

poly = new Poly(weightsbefore.ToString()) - 
integration; 

                        } 
                        else 
                        { 
                            poly = -1 * integration; 
                        } 
                    } 
                    poly.StartPoint = load.StartPoint; 
                    poly.EndPoint = load.EndPoint; 
                    _zeroforcedistppoly.Add(poly); 
                } 
                _zeroforcedistppoly.Sort(); 
 
                if (_distributedloads.Last().EndPoint != _length) 
                { 
                    var weights = findforcebefore(_distributedloads.Count); 
                    var ply = new Poly(weights.ToString()); 
                    ply.StartPoint = _distributedloads.Last().EndPoint; 
                    ply.EndPoint = _length; 
                    _zeroforcedistppoly.Add(ply); 
                } 
            } 

        } 

 private void findzeromoment() 
        { 
            _zeromomentppoly = new PiecewisePoly(); 
 
            foreach (Poly force in _zeroforceppoly) 
            { 
                var index = _zeroforceppoly.IndexOf(force); 
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                var poly = new Poly(); 
                var integration = force.Integrate(); 
                var momentsbefore = findmomentbefore(index); 
                var zerovalue = force.Integrate().Calculate(force.StartPoint); 
                var constant = momentsbefore - zerovalue; 
 
                if (constant != 0) 
                { 
                    poly = integration + new Poly(constant.ToString()); 
                } 
                else 
                { 
                    poly = integration; 
                } 
 
                poly.StartPoint = force.StartPoint; 
                poly.EndPoint = force.EndPoint; 
                _zeromomentppoly.Add(poly); 
                _zeromomentppoly.Sort(); 
            } 

        } 

 private void canbesolvedanalytically() 
        { 
            //Check inertia ppoly has only one poly 
            if (_inertiappoly.Count > 1) 
            { 
                _analyticalsolution = false; 
                return; 
            } 
 
            //Check if inertia ppoly is constant or not dependant on x 
            if (_inertiappoly.Degree() > 0) 
            { 
                _analyticalsolution = false; 
                return; 
            } 
 
            //Check if zero moment ppoly has any term with non-integer power 
            if (_zeromomentppoly.Count > 0) 
            { 
                foreach (Poly poly in _zeromomentppoly) 
                { 
                    foreach (Term term in poly.Terms) 
                    { 
                        if (term.Power % 1 != 0) 
                        { 
                            _analyticalsolution = false; 
                            return; 
                        } 
                    } 
                } 
            } 
            _analyticalsolution = true; 

        } 

 private void mdsupportcases() 
        { 

//In matrix displacement method, the force vector is calculated 
when all of the displacement are zero (both side is fixed 
support) 
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            if (_zeromomentppoly.Count > 0) 
            { 
                double ma1 = 0; 
                double ma2 = 0; 
                double mb1 = 0; 
                double mb2 = 0; 
                double r1 = 0; 
                double r2 = 0; 
 
                /////////////////////////////////////////////////////////// 
                /////////////////Left Equation Solve/////////////////////// 
                ////////////////////////////////////////////////////////// 
 
                var xsquare = new Poly("x^2"); 
                xsquare.StartPoint = 0; 
                xsquare.EndPoint = _length; 
 
                var x = new Poly("x"); 
                x.StartPoint = 0; 
                x.EndPoint = _length; 
 
                var xppoly = new PiecewisePoly(); 
                xppoly.Add(x); 
 
                if (_analyticalsolution) 
                { 

//When the inertia distribution is constant dont waste 
time and cpu with simpson numerical integration, integrate 
it analytically. 
//Since izero equals inertia the expression can be 
simplified 

                    ma1 = _length / 3; 
                    mb1 = _length / 2 - ma1; 
                    var moxp = _zeromomentppoly.Propagate(_length) * xppoly; 
                    r1 = -1 / _length * moxp.DefiniteIntegral(0, _length); 
                    ma2 = _length / 6; 
                    mb2 = _length / 3; 
                    var mox = _zeromomentppoly * xppoly; 
                    r2 = -1 / _length * mox.DefiniteIntegral(0, _length); 
                } 
                else 
                { 

//When the inertia distribution is not constant, there is 
no choice but to use numerical integration  
//since the integration can not be solved analytically 
using polynomials in this program. 

                    var conjugateinertia = _inertiappoly.Conjugate(_length); 
var simpson1 = new 
SimpsonsFirstIntegrator(Config.SimpsonStep); 

 
for (double i = 0; i <= _length; i = i + 
Config.SimpsonStep) 

                    { 
simpson1.AddData(_izero / 
conjugateinertia.Calculate(i) * 
xsquare.Calculate(i)); 

                    } 
 
                    simpson1.Calculate(); 
                    ma1 = 1 / System.Math.Pow(_length, 2) * simpson1.Result; 
 
                    //////////////////////////////////////////////////////////             
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var simpson2 = new 
SimpsonsFirstIntegrator(Config.SimpsonStep); 

 
for (double i = 0; i <= _length; i = i + 
Config.SimpsonStep) 

                    { 
simpson2.AddData(_izero / 
conjugateinertia.Calculate(i) * x.Calculate(i)); 

                    } 
 
                    simpson2.Calculate(); 
 
                    var value1 = 1 / _length * simpson2.Result; 
 
                    mb1 = value1 - ma1; 
                    
/////////////////////////////////////////////////////////// 
 

var simpson3 = new 
SimpsonsFirstIntegrator(Config.SimpsonStep); 

 
                    var conjugatemoment = _zeromomentppoly.Conjugate(_length); 
 

for (double i = 0; i <= _length; i = i + 
Config.SimpsonStep) 

                    { 
                        
simpson3.AddData(conjugatemoment.Calculate(i) * 
_izero / conjugateinertia.Calculate(i) * 

                           x.Calculate(i)); 
                    } 
                    simpson3.Calculate(); 
                    r1 = -1 / _length * simpson3.Result; 
                    
//////////////////////////////////////////////////////////// 
/////////////////Right Equation Solve/////////////////////// 
                    
//////////////////////////////////////////////////////////// 
 

var simpson4 = new 
SimpsonsFirstIntegrator(Config.SimpsonStep); 

 
for (double i = 0; i <= _length; i = i + 
Config.SimpsonStep) 

                    { 
simpson4.AddData(_izero / 
_inertiappoly.Calculate(i) * xsquare.Calculate(i)); 

                    } 
                    simpson4.Calculate(); 

var value2 = 1 / System.Math.Pow(_length, 2) * 
simpson4.Result; 

 
var simpson5 = new 
SimpsonsFirstIntegrator(Config.SimpsonStep); 

 
for (double i = 0; i <= _length; i = i + 
Config.SimpsonStep) 

                    { 
simpson5.AddData((_izero / 
_inertiappoly.Calculate(i)) * xppoly.Calculate(i)); 

                    } 
                    simpson5.Calculate(); 
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                    ma2 = 1 / _length * simpson5.Result - value2; 
                    
/////////////////////////////////////////////////////////// 
                    mb2 = value2; 
/////////////////////////////////////////////////////////// 
 

var simpson6 = new 
SimpsonsFirstIntegrator(Config.SimpsonStep); 

 
for (double i = 0; i <= _length; i = i + 
Config.SimpsonStep) 

                    { 
                        
simpson6.AddData(_zeromomentppoly.Calculate(i) * 
(_izero / _inertiappoly.Calculate(i)) * 

                           xppoly.Calculate(i)); 
                    } 
 
                    simpson6.Calculate(); 
                    r2 = -1 / _length * simpson6.Result; 
                } 
 
                double[,] coefficients = 
                { 
                    {ma1, mb1}, 
                    {ma2, mb2}, 
                }; 
 
                double[] results = 
                { 
                    r1, r2 
                }; 
 
                ////////////////////////////////////////////////////////// 
 

var moments = 
MesnetMD.Classes.Math.Algebra.LinearEquationSolver(coefficient
s, results); 

                _ma = moments[0]; 
                _mb = moments[1]; 
            } 
            else 
            { 
                _ma = 0; 
                _mb = 0; 
            }   
       

} 
 private void findfixedendmomentclapeyron() 
        { 
            var polylist = new List<Poly>(); 
 
            var constant = (_mb - _ma) / _length; 
 
            if (System.Math.Abs(constant) < 0.00000001) 
            { 
                constant = 0.0; 
            } 
 
            foreach (Poly moment in _zeromomentppoly) 
            { 
                var resultpoly = new Poly(); 
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                resultpoly.StartPoint = moment.StartPoint; 
                resultpoly.EndPoint = moment.EndPoint; 

var mapoly = new Poly(_ma.ToString(), moment.StartPoint, 
moment.EndPoint); 

                var xpoly = new Poly("x", moment.StartPoint, moment.EndPoint); 
 
                if (!constant.Equals(0.0)) 
                { 

var cpoly = new Poly(constant.ToString(), 
moment.StartPoint, moment.EndPoint); 

                    resultpoly = moment + mapoly + xpoly * cpoly; 
                } 
                else 
                { 
                    resultpoly = moment + mapoly; 
                } 
                resultpoly.StartPoint = moment.StartPoint; 
                resultpoly.EndPoint = moment.EndPoint; 
                polylist.Add(resultpoly); 
            } 
            _fixedendmomentppoly = new PiecewisePoly(polylist); 

} 
 

 private void updateforces() 
        { 
            _fixedendforceppoly = _fixedendmomentppoly.Derivate(); 
 
            _maxforce = _fixedendforceppoly.Max; 
 
            _maxabsforce = _fixedendforceppoly.MaxAbs; 
 
            _minforce = _fixedendforceppoly.Min; 

  } 
 

 private void createbasestiffnescoefficients() 
        { 
            if (_inertiappoly.IsConstant()) 
            { 
                _mii = 4; 
                _mjj = 4; 
                _mij = 2; 
            } 
            else 
            { 
                var x = new Poly("x"); 
                var xsquare = new Poly("x^2"); 
 

var simpson1 = new 
SimpsonsFirstIntegrator(Config.SimpsonStep); 

 
                for (double i = 0; i <= _length; i = i + Config.SimpsonStep) 
                { 

simpson1.AddData(xsquare.Calculate(i) / 
_inertiappoly.Calculate(i)); 

                } 
                simpson1.Calculate(); 
                double i1 = simpson1.Result; 
 

var simpson2 = new 
SimpsonsFirstIntegrator(Config.SimpsonStep); 

                for (double i = 0; i <= _length; i = i + Config.SimpsonStep) 
                { 
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                    simpson2.AddData(1 / _inertiappoly.Calculate(i)); 
                } 
                simpson2.Calculate(); 
                double i2 = simpson2.Result; 
 

var simpson3 = new 
SimpsonsFirstIntegrator(Config.SimpsonStep); 

 
                for (double i = 0; i <= _length; i = i + Config.SimpsonStep) 
                { 

simpson3.AddData(x.Calculate(i) / 
_inertiappoly.Calculate(i)); 

                } 
                simpson3.Calculate(); 
                double i3 = simpson3.Result; 
 

double det = -_izero / _length * (i1 * i2 - 
System.Math.Pow(i3, 2)); 

 
                _mii = -i1 / det; 

_mjj = (-System.Math.Pow(_length, 2) * i2 + 2 * _length * 
i3 - i1) / det; 

                _mij = -(_length * i3 - i1) / det; 
            } 
            if (_areappoly.IsConstant()) 
            { 
                _nii = 1; 
            } 
            else 
            { 

   var simpson4 = new 
SimpsonsFirstIntegrator(Config.SimpsonStep); 

 
                for (double i = 0; i <= _length; i = i + Config.SimpsonStep) 
                { 
                    simpson4.AddData(1 / _areappoly.Calculate(i)); 
                } 
                simpson4.Calculate(); 
                double i4 = simpson4.Result; 
                _nii = _length / (_azero * i4); 
            } 
        } 
 
  private void createtransformationmatrix() 
        { 
            _transformationmatrix = new double[6,6]; 
 
            _transformationmatrix[0, 0] = Algebra.CosD(_angle); 
            _transformationmatrix[0, 1] = Algebra.SinD(_angle); 
            _transformationmatrix[0, 2] = 0; 
            _transformationmatrix[0, 3] = 0; 
            _transformationmatrix[0, 4] = 0; 
            _transformationmatrix[0, 5] = 0; 
            _transformationmatrix[1, 0] = -Algebra.SinD(_angle); 
            _transformationmatrix[1, 1] = Algebra.CosD(_angle); 
            _transformationmatrix[1, 2] = 0; 
            _transformationmatrix[1, 3] = 0; 
            _transformationmatrix[1, 4] = 0; 
            _transformationmatrix[1, 5] = 0; 
            _transformationmatrix[2, 0] = 0; 
            _transformationmatrix[2, 1] = 0; 
            _transformationmatrix[2, 2] = 1; 
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            _transformationmatrix[2, 3] = 0; 
            _transformationmatrix[2, 4] = 0; 
            _transformationmatrix[2, 5] = 0; 
            _transformationmatrix[3, 0] = 0; 
            _transformationmatrix[3, 1] = 0; 
            _transformationmatrix[3, 2] = 0; 
            _transformationmatrix[3, 3] = Algebra.CosD(_angle); 
            _transformationmatrix[3, 4] = Algebra.SinD(_angle); 
            _transformationmatrix[3, 5] = 0; 
            _transformationmatrix[4, 0] = 0; 
            _transformationmatrix[4, 1] = 0; 
            _transformationmatrix[4, 2] = 0; 
            _transformationmatrix[4, 3] = -Algebra.SinD(_angle); 
            _transformationmatrix[4, 4] = Algebra.CosD(_angle); 
            _transformationmatrix[4, 5] = 0; 
            _transformationmatrix[5, 0] = 0; 
            _transformationmatrix[5, 1] = 0; 
            _transformationmatrix[5, 2] = 0; 
            _transformationmatrix[5, 3] = 0; 
            _transformationmatrix[5, 4] = 0; 
            _transformationmatrix[5, 5] = 1; 
        } 
 
 private void createstiffnessmatrix() 
        { 
            var E = _elasticity; 

var I = _izero * System.Math.Pow(10, -8); //Conversion from cm^4 
to m^4 

var A = _azero * System.Math.Pow(10, -4); //Conversion from cm^2 
to m^2 

            var L = _length; 
            var L2 = System.Math.Pow(_length, 2); 
            var L3 = System.Math.Pow(_length, 3); 
            var nii = _nii; 
            var mii = _mii; 
            var mjj = _mjj; 
            var mij = _mij; 
 
            _stiffnessmatrix = new double[6, 6]; 
            _stiffnessmatrix[0, 0] = nii * E * A / L; 
            _stiffnessmatrix[0, 1] = 0; 
            _stiffnessmatrix[0, 2] = 0; 
            _stiffnessmatrix[0, 3] = -nii * E * A / L; 
            _stiffnessmatrix[0, 4] = 0; 
            _stiffnessmatrix[0, 5] = 0; 
            _stiffnessmatrix[1, 0] = 0; 
            _stiffnessmatrix[1, 1] = (mii + mjj + 2 * mij) * E * I / L3; 
            _stiffnessmatrix[1, 2] = (mii + mij) * E * I / L2; 
            _stiffnessmatrix[1, 3] = 0; 
            _stiffnessmatrix[1, 4] = -(mii + mjj + 2 * mij) * E * I / L3; 
            _stiffnessmatrix[1, 5] = (mjj + mij) * E * I / L2; 
            _stiffnessmatrix[2, 0] = 0; 
            _stiffnessmatrix[2, 1] = (mii + mij) * E * I / L2; 
            _stiffnessmatrix[2, 2] = mii * E * I / L; 
            _stiffnessmatrix[2, 3] = 0; 
            _stiffnessmatrix[2, 4] = -(mii + mij) * E * I / L2; 
            _stiffnessmatrix[2, 5] = mij * E * I / L; 
            _stiffnessmatrix[3, 0] = -nii * E * A / L; 
            _stiffnessmatrix[3, 1] = 0; 
            _stiffnessmatrix[3, 2] = 0; 
            _stiffnessmatrix[3, 3] = nii * E * A / L; 
            _stiffnessmatrix[3, 4] = 0; 
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            _stiffnessmatrix[3, 5] = 0; 
            _stiffnessmatrix[4, 0] = 0; 
            _stiffnessmatrix[4, 1] = -(mii + mjj + 2 * mij) * E * I / L3; 
            _stiffnessmatrix[4, 2] = -(mii + mij) * E * I / L2; 
            _stiffnessmatrix[4, 3] = 0; 
            _stiffnessmatrix[4, 4] = (mii + mjj + 2 * mij) * E * I / L3; 
            _stiffnessmatrix[4, 5] = -(mjj + mij) * E * I / L2; 
            _stiffnessmatrix[5, 0] = 0; 
            _stiffnessmatrix[5, 1] = (mjj + mij) * E * I / L2; 
            _stiffnessmatrix[5, 2] = mij * E * I / L; 
            _stiffnessmatrix[5, 3] = 0; 
            _stiffnessmatrix[5, 4] = -(mjj + mij) * E * I / L2; 
            _stiffnessmatrix[5, 5] = mjj * E * I / L; 
 
            //kXYZ=T^T.kxyz.T => Matrix transformation 
 
            var T = _transformationmatrix; 
            var TT = Algebra.Transpose(T); 
 
            var m1 = Algebra.MultiplyMatrix(TT, _stiffnessmatrix); 
            var m2 = Algebra.MultiplyMatrix(m1, T); 
            _stiffnessmatrix = m2; 
        } 
 
 private void createforcevector() 
        { 
            createindirectforcevector(); 
            createdirectforcevector(); 
            _forcevector = new double[6]; 
        } 
 
 private void createindirectforcevector() 
        { 
            _idforcevector = new double[6]; 
            //Converting kN to N by multiplying with 1000 

_idforcevector[0] = -_fixedendforceppoly.Calculate(0) * 
Math.Algebra.SinD(_angle) * 1000; 
_idforcevector[1] = _fixedendforceppoly.Calculate(0) * 
Math.Algebra.CosD(_angle) * 1000; 

            _idforcevector[2] = -_fixedendmomentppoly.Calculate(0) * 1000; 
_idforcevector[3] = _fixedendforceppoly.Calculate(_length) * 
Math.Algebra.SinD(_angle) * 1000; 

_idforcevector[4] = -_fixedendforceppoly.Calculate(_length) * 
Math.Algebra.CosD(_angle) * 1000; 
_idforcevector[5] = _fixedendmomentppoly.Calculate(_length) * 
1000;         

            } 
        } 
 
 public void PostProcessUpdate() 
        { 
            obtainlocalforces(); 
            updatemoments(); 
            updateforces(); 
            updateaxialforces(); 
            if (_stressanalysis) 
            { 
                updatestresses(); 
            } 
        } 
 private void obtainlocalforces() 
        { 
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_localforcevector = Algebra.DotProduct(_transformationmatrix, 
_forcevector); 

        } 
 
 private void updatemoments() 
        { 
            double constant = 0; 
 
            if (_zeromomentppoly.Length > 0) 
            {                 
                var ma = -_localforcevector[2] / 1000; 
 
                var mb = _localforcevector[5] / 1000; 
 
                constant = (mb - ma) / _length; 
                var terms = new TermCollection(); 
                if (constant != 0) 
                { 
                    if (ma != 0) 
                    { 
                        var term1 = new Term(1, constant); 
                        var term2 = new Term(0, ma); 
                        terms.Add(term1); 
                        terms.Add(term2); 
                    } 
                    else 
                    { 
                        var term1 = new Term(1, constant); 
                        terms.Add(term1); 
                    } 
                } 
                else 
                { 
                    if (ma != 0) 
                    { 
                        var term2 = new Term(0, ma); 
                        terms.Add(term2); 
                    } 
                    else 
                    { 
                        //nothing to do 
                    } 
                } 
 
                if (terms.Length > 0) 
                { 
                    var mdpoly = new Poly(terms, 0, _length); 
                    var polies = new List<Poly>(); 
                    polies.Add(mdpoly); 
                    var mdpolies = new PiecewisePoly(polies); 
 
                    _fixedendmomentppoly = _zeromomentppoly + mdpolies; 
                } 
                else 
                { 
                    _fixedendmomentppoly = _zeromomentppoly; 
                } 
            } 
            else 
            { 
                //There is no load on this beam 
                var ma = -_localforcevector[2] / 1000; 
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                var mb = _localforcevector[5] / 1000; 
 
                constant = (mb - ma) / _length; 
                var terms = new TermCollection(); 
                if (constant != 0) 
                { 
                    if (ma != 0) 
                    { 
                        var term1 = new Term(1, constant); 
                        var term2 = new Term(0, ma); 
                        terms.Add(term1); 
                        terms.Add(term2); 
                    } 
                    else 
                    { 
                        var term1 = new Term(1, constant); 
                        terms.Add(term1); 
                    } 
                } 
                else 
                { 
                    if (ma != 0) 
                    { 
                        var term2 = new Term(0, ma); 
                        terms.Add(term2); 
                    } 
                } 
 
                if (terms.Length > 0) 
                { 
                    var mdpoly = new Poly(terms, 0, _length); 
                    var polies = new List<Poly>(); 
                    polies.Add(mdpoly); 
                    var mdpolies = new PiecewisePoly(polies); 
 
                    _fixedendmomentppoly = mdpolies; 
                } 
                else 
                { 
                    var termzero = new Term(0, 0); 
                    var termszero = new TermCollection(); 
                    termszero.Add(termzero); 
                    var polyzero = new Poly(termszero); 
                    var zeropolies = new List<Poly>(); 
                    zeropolies.Add(polyzero); 
                    var zeroppoly = new PiecewisePoly(zeropolies); 
                    _fixedendmomentppoly = zeroppoly; 
                } 
            } 
 
 
            _maxmoment = _fixedendmomentppoly.Max; 
            _maxabsmoment = _fixedendmomentppoly.MaxAbs; 
            _minmoment = _fixedendmomentppoly.Min; 
        } 
 
 private void updateforces() 
        { 
            _fixedendforceppoly = _fixedendmomentppoly.Derivate(); 
            _maxforce = _fixedendforceppoly.Max; 
            _maxabsforce = _fixedendforceppoly.MaxAbs; 
            _minforce = _fixedendforceppoly.Min; 
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        } 
 
 private void updateaxialforces() 
        { 
            var terms = new TermCollection(); 
            var ma = -_localforcevector[0] / 1000; 
            var mb = _localforcevector[3] / 1000; 
            double constant = (mb - ma) / _length; 
            if (System.Math.Abs(constant) > System.Math.Pow(10, -8)) 
            { 
                if (System.Math.Abs(ma) > System.Math.Pow(10, -8)) 
                { 
                    var term1 = new Term(1, constant); 
                    var term2 = new Term(0, ma); 
                    terms.Add(term1); 
                    terms.Add(term2); 
                } 
                else 
                { 
                    var term1 = new Term(1, constant); 
                    terms.Add(term1); 
                } 
            } 
            else 
            { 
                if (System.Math.Abs(ma) > System.Math.Pow(10, -8)) 
                { 
                    var term1 = new Term(0, ma); 
                    terms.Add(term1); 
                } 
                else 
                { 
                    var term1 = new Term(0, 0); 
                    terms.Add(term1); 
                } 
            } 
 
            var mdpoly = new Poly(terms, 0, _length); 
            _axialforceppoly = new PiecewisePoly(mdpoly); 
            _maxaxialforce = _axialforceppoly.Max; 
            _maxabsaxialforce = _axialforceppoly.MaxAbs; 
            _minaxialforce = _axialforceppoly.Min; 
        } 
 
 private void updatestresses() 
        { 
            double precision = 0.001; 
            _stress = new KeyValueCollection(); 
            double stress = 0; 
            double y = 0; 
            double e = 0; 
            double d = 0; 
            for (int i = 0; i < _length / precision; i++) 
            { 
                e = _eppoly.Calculate(i * precision); 
                d = _dppoly.Calculate(i * precision); 
                if (e > d - e) 
                { 
                    y = e; 
                } 
                else 
                { 
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                    y = d - e; 
                } 

stress = System.Math.Pow(10, 3) * 
_fixedendmomentppoly.Calculate(i * precision) * y / 
(_inertiappoly.Calculate(i * precision)); 

                _stress.Add(i * precision, stress); 
            } 
 
            if (!_stress.ContainsKey(_length)) 
            { 
                e = _eppoly.Calculate(_length); 
                d = _dppoly.Calculate(_length); 
                if (e > d - e) 
                { 
                    y = e; 
                } 
                else 
                { 
                    y = d - e; 
                } 

stress = System.Math.Pow(10, 3) * 
_fixedendmomentppoly.Calculate(_length) * y / 
(_inertiappoly.Calculate(_length)); 

                _stress.Add(_length, stress); 
            } 
            _maxstress = _stress.YMax; 
            _maxabsstress = _stress.YMaxAbs; 
        } 
 
 public void UpdateDirectForceVector(double[] diplacement) 
        { 
            var cross = Algebra.DotProduct(_stiffnessmatrix, diplacement); 
            var result = Algebra.AddVectors(cross, _idforcevector); 
            _forcevector = result; 
        } 
 ... 
} 
 
public class SupportItem : SomItem 
    { 
        /// <summary> 
        /// Initializes a new instance of the <see cref="SupportItem"/> class. 
        /// All types of supports are derived from this class 
        /// </summary> 
        public SupportItem(Global.ObjectType type) 
        { 
            Type = type; 
            if (type != Global.ObjectType.FictionalSupport) 
            { 
                SupportId = supportcount++; 
            } 
 
            switch (type) 
            { 
                case Global.ObjectType.BasicSupport: 
                    DOFCount = 1; 
                    break; 
                case Global.ObjectType.SlidingSupport: 
                    DOFCount = 2; 
                    break; 
                case Global.ObjectType.FictionalSupport: 
                    DOFCount = 3; 
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                    break; 
                case Global.ObjectType.RightFixedSupport: 
                    DOFCount = 0; 
                    break; 
                case Global.ObjectType.LeftFixedSupport: 
                    DOFCount = 0; 
                    break; 
            } 
 
            DegreeOfFreedoms = new List<DOF>(); 
        } 
 ... 
    } 
 
public class BasicSupport : SupportItem, ISomItem, ISupportItem, 
IFreeSupportItem 
    { 
        public BasicSupport() : base(ObjectType.BasicSupport) 
        { 
            InitializeComponent(); 
            Members = new List<Member>(); 
            Name = "Basic Support " + SupportId; 
            var rdof = new DOF(Global.DOFType.Rotational); 
            DegreeOfFreedoms.Add(rdof); 
        } 
 public void AddBeam(Beam beam, Global.Direction direction) 
       { 
 if (!Members.Contains(member)) 
            { 
                Members.Add(member); 
 
                if (Members.Count == 1) 
                { 
                    switch (direction) 
                    { 
                        case Direction.Left: 
                            Canvas.SetLeft(this, beam.LeftPoint.X - Width/2); 
                            Canvas.SetTop(this, beam.LeftPoint.Y - Height); 
                            beam.LeftSide = this; 
                            //Add rotational dof member 

var ldofmember = new DOFMember(beam, 
DOFLocation.LeftRotational); 

                            DegreeOfFreedoms[0].Members.Add(ldofmember); 
                            break; 
                        case Direction.Right: 
                            Canvas.SetLeft(this, beam.RightPoint.X - Width/2); 
                            Canvas.SetTop(this, beam.RightPoint.Y - Height); 
                            beam.RightSide = this; 

var rdofmember = new DOFMember(beam, 
DOFLocation.RightRotational); 

 
                            DegreeOfFreedoms[0].Members.Add(rdofmember); 
                            break; 
                    } 
                } 
                else 
                { 
                    switch (direction) 
                    { 
                        case Direction.Left: 
                            beam.LeftSide = this; 
                            beam.IsBound = true; 
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                            //Add rotational dof member 
var ldofmember = new DOFMember(beam, 
DOFLocation.LeftRotational); 

                            DegreeOfFreedoms[0].Members.Add(ldofmember); 
                            break; 
                        case Direction.Right: 
                            beam.RightSide = this; 
                            beam.IsBound = true; 

 var rdofmember = new DOFMember(beam,  
DOFLocation.RightRotational); 

                            DegreeOfFreedoms[0].Members.Add(rdofmember); 
                            break; 
                    } 
                } 
            } 

} 
... 

} 
 
public class SlidingSupport : SupportItem, ISomItem, ISupportItem, 
IFreeSupportItem 
    { 
 public SlidingSupport() : base(ObjectType.SlidingSupport) 
        { 
            InitializeComponent(); 
            Members = new List<Member>(); 
            Name = "Sliding Support " + SupportId; 
            var hdof = new DOF(Global.DOFType.Horizontal); 
            var rdof = new DOF(Global.DOFType.Rotational); 
            DegreeOfFreedoms.Add(hdof); 
            DegreeOfFreedoms.Add(rdof); 
        } 
 public void AddBeam(Beam beam, Global.Direction direction) 
        { 
            var member = new Member(beam, direction); 
            if (!Members.Contains(member)) 
            { 
                Members.Add(member); 
 
                if (Members.Count == 1) 
                { 
                    switch (direction) 
                    { 
                        case Direction.Left: 

Canvas.SetLeft(this, beam.LeftPoint.X - Width / 
2); 

                            Canvas.SetTop(this, beam.LeftPoint.Y - Height); 
                            beam.LeftSide = this; 

 var lhdmember = new DOFMember(beam, 
DOFLocation.LeftHorizontal); 

 
                            DegreeOfFreedoms[0].Members.Add(lhdmember); 

var lrdmember = new DOFMember(beam, 
DOFLocation.LeftRotational); 

                            DegreeOfFreedoms[1].Members.Add(lrdmember); 
                            break; 
                        case Direction.Right: 

 Canvas.SetLeft(this, beam.RightPoint.X - Width / 
2); 

                            Canvas.SetTop(this, beam.RightPoint.Y - Height); 
                            beam.RightSide = this; 
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 var rhdmember = new DOFMember(beam, 
DOFLocation.RightHorizontal); 

                            DegreeOfFreedoms[0].Members.Add(rhdmember); 
 var rrdmember = new DOFMember(beam, 
DOFLocation.RightRotational); 

                            DegreeOfFreedoms[1].Members.Add(rrdmember); 
                            break; 
                    } 
                } 
                else 
                { 
                    switch (direction) 
                    { 
                        case Direction.Left: 
                            beam.LeftSide = this; 
                            beam.IsBound = true; 

 var lhdmember = new DOFMember(beam, 
DOFLocation.LeftHorizontal); 

                            DegreeOfFreedoms[0].Members.Add(lhdmember); 
 var lrdmember = new DOFMember(beam, 
DOFLocation.LeftRotational); 

                            DegreeOfFreedoms[1].Members.Add(lrdmember); 
                            break; 
                        case Direction.Right: 
                            beam.RightSide = this; 
                            beam.IsBound = true; 

 var rhdmember = new DOFMember(beam, 
DOFLocation.RightHorizontal); 

                            DegreeOfFreedoms[0].Members.Add(rhdmember); 
 var rrdmember = new DOFMember(beam, 
DOFLocation.RightRotational); 

                            DegreeOfFreedoms[1].Members.Add(rrdmember); 
                            break; 
                    } 
                } 
            } 
        } 
 ... 
} 
 
public class LeftFixedSupport : SupportItem, ISomItem, ISupportItem, 
IFixedSupportItem 
{ 
 public LeftFixedSupport() : base(ObjectType.LeftFixedSupport) 
        { 
            InitializeComponent(); 
            Name = "Left Fixed Support " + SupportId; 
        } 
 public void AddBeam(Beam beam) 
        { 
            Canvas.SetLeft(this, beam.LeftPoint.X - Width); 
            Canvas.SetTop(this, beam.LeftPoint.Y - Height/2); 
            Member = new Member(beam, Direction.Left); 
            beam.LeftSide = this; 
        } 
 ... 
} 
 
public class RightFixedSupport : SupportItem, ISomItem, ISupportItem, 
IFixedSupportItem 
{ 
 public RightFixedSupport() : base(ObjectType.RightFixedSupport) 
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        { 
            InitializeComponent(); 
            Name = "Right Fixed Support " + SupportId; 
        } 
 public void AddBeam(Beam beam) 
        { 
            Canvas.SetLeft(this, beam.RightPoint.X); 
            Canvas.SetTop(this, beam.RightPoint.Y - Height/2); 
            Member = new Member(beam, Direction.Right); 
            beam.RightSide = this; 
            SetAngle(beam.Angle); 
        } 
 ... 
} 
 
public class FictionalSupport : SupportItem 
{ 
 public FictionalSupport(): base(Global.ObjectType.FictionalSupport) 
        { 
            Members = new List<Member>(); 
            FID = fcount++; 
            Name = "Fictional Support "+ FID; 
            var hdof = new DOF(Global.DOFType.Horizontal); 
            var vdof = new DOF(Global.DOFType.Vertical); 
            var rdof = new DOF(Global.DOFType.Rotational); 
            DegreeOfFreedoms.Add(hdof); 
            DegreeOfFreedoms.Add(vdof); 
            DegreeOfFreedoms.Add(rdof); 
            Global.AddObject(this); 
        } 
 public void AddBeam(Beam beam, Global.Direction direction) 
        { 
            var member = new Member(beam, direction); 
            if (!Members.Contains(member)) 
            { 
                Members.Add(member); 
                switch (direction) 
                { 
                    case Global.Direction.Left: 
                        beam.LeftSide = this; 

var lhdofmember = new DOFMember(beam, 
Global.DOFLocation.LeftHorizontal); 

                        DegreeOfFreedoms[0].Members.Add(lhdofmember); 
var lvdofmember = new DOFMember(beam, 
Global.DOFLocation.LeftVertical); 

                        DegreeOfFreedoms[1].Members.Add(lvdofmember); 
var lrdofmember = new DOFMember(beam, 
Global.DOFLocation.LeftRotational); 

                        DegreeOfFreedoms[2].Members.Add(lrdofmember); 
                        break; 
 
                    case Global.Direction.Right: 
                        beam.RightSide = this; 

var rhdofmember = new DOFMember(beam, 
Global.DOFLocation.RightHorizontal); 

                        DegreeOfFreedoms[0].Members.Add(rhdofmember); 
var rvdofmember = new DOFMember(beam, 
Global.DOFLocation.RightVertical); 

                        DegreeOfFreedoms[1].Members.Add(rvdofmember); 
var rrdofmember = new DOFMember(beam, 
Global.DOFLocation.RightRotational); 

                        DegreeOfFreedoms[2].Members.Add(rrdofmember); 
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                        break; 
                } 
            } 
        } 
 ... 
} 
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EK C: Matris Deplasman Metodu Global Sistemi Çözücü Kodları 

 
public static class MDSolver 
    { 
        public static void Calculate() 
        { 
            createdofpairs(); 
            createglobalstiffnessmatrix(); 
            createglobalforcevector(); 
            solvethesystem(); 
            obtainbeamdisplacements(); 
        } 
 
        private static void createdofpairs() 
        { 
            GlobalDofs = new List<DOF>(); 
            foreach (var pair in Global.Objects) 
            { 
                switch (pair.Value.Type) 
                { 
                    case Global.ObjectType.BasicSupport: 
                        var bs = pair.Value as BasicSupport; 
                        var rbdof = bs.DegreeOfFreedoms[0]; 
                        GlobalDofs.Add(rbdof); 
                        break; 
 
                    case Global.ObjectType.SlidingSupport: 
                        var ss = pair.Value as SlidingSupport; 
                        var hsdof = ss.DegreeOfFreedoms[0]; 
                        GlobalDofs.Add(hsdof); 
                        var rsdof = ss.DegreeOfFreedoms[1]; 
                        GlobalDofs.Add(rsdof); 
                        break; 
 
                    case Global.ObjectType.FictionalSupport: 
                        var fs = pair.Value as FictionalSupport; 
                        var hfdof = fs.DegreeOfFreedoms[0]; 
                        GlobalDofs.Add(hfdof); 
                        var vbdof = fs.DegreeOfFreedoms[1]; 
                        GlobalDofs.Add(vbdof); 
                        var rfdof = fs.DegreeOfFreedoms[2]; 
                        GlobalDofs.Add(rfdof); 
                        break; 
                } 
            } 
 
            DofCount = GlobalDofs.Count;                    
        } 
 
        private static void createglobalstiffnessmatrix() 
        { 
            GlobalStiffnessMatrix = new double[DofCount, DofCount]; 
 
            for (int i = 0; i < GlobalDofs.Count; i++) 
            { 
                for (int j = 0; j < GlobalDofs.Count; j++) 
                { 
                    double value = 0; 
                    foreach (var member in GlobalDofs[i].Members) 
                    { 
                        var beam = member.Beam; 
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                        int index = getbeamindex(GlobalDofs[j].Members, beam); 
                        if (index > -1) 
                        { 
                            int row = (int) member.Location; 

 int col = (int)  
GlobalDofs[j].Members[index].Location; 

                            value += beam.StiffnessMatrix[row, col]; 
                        } 
                    } 
                    GlobalStiffnessMatrix[i, j] = value; 
                } 
            } 
        } 
 
        private static void createglobalforcevector() 
        { 
            GlobalForceVector = new double[DofCount]; 
            for (int i = 0; i < GlobalDofs.Count; i++) 
            { 
                double value = 0; 
                foreach (var member in GlobalDofs[i].Members) 
                { 
                    var beam = member.Beam; 
                    var index = (int) member.Location; 
                    value += beam.ForceVector[index]; 
                } 
                GlobalForceVector[i] = value; 
            }          
        } 
 
        private static void solvethesystem() 
        { 

GlobalDisplacementVector = 
MesnetMD.Classes.Math.Algebra.LinearEquationSolver(GlobalStiffnes
sMatrix, GlobalForceVector); 

        } 
 
        private static void obtainbeamdisplacements() 
        { 
            for (int j = 0; j < Global.Objects.Count; j++) 
            { 
                switch (Global.Objects[j].Type) 
                { 
                    case Global.ObjectType.Beam: 
                        var displacement = new double[6]; 
                        var beam = Global.Objects[j] as Beam; 
                        for (int i = 0; i < GlobalDofs.Count; i++) 
                        { 
                            foreach (var member in GlobalDofs[i].Members) 
                            { 
                                if (Equals(beam, member.Beam)) 
                                { 
                                    int index = (int)member.Location; 

displacement[index] = 
GlobalDisplacementVector[i]; 

                                    break;                                    
                                } 
                            } 
                        } 
 
                        beam.UpdateDirectForceVector(displacement); 
                        break; 
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                } 
            }  
        } 
 ... 
   } 

 
public class DOF 
    {         
        public DOF(Global.DOFType type) 
        { 
            Type = type; 
            Members = new List<DOFMember>(); 
        } 
        public Global.DOFType Type; 
        public List<DOFMember> Members; 
    } 
 
    public class DOFMember 
    { 
        public DOFMember(Beam beam, Global.DOFLocation location) 
        { 
            Beam = beam; 
            Location = location; 
        } 
        public Beam Beam; 
        public Global.DOFLocation Location; 
    } 
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