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MATRIS DEPLASMAN Y(")NTEMiYLE_H;i BOYUTLU GI;Mi_ENiNE
CERCEVELERININ YAPISAL ANALIZINI YAPAN BiR BILGISAYAR
PROGRAMI HAZIRLANMASI

OZET

Bu calismada gemi enine gercgevelerinin yapisal analizini yapabilecek bir bilgisayar
programi gelistirilmesi amaglanmistir. Gemilerin 6n dizayninda yap1 hakkinda fazla
ayrint1 gerektirmeden ¢dziim yapabilen pratik analiz programlarina ihtiya¢ duyulur.
Gemi ¢ergeveleri degisken kesitli olabilmektedir. Bu ylizden programin degisken
kesitli ¢erceveleri de ¢dzebilmesi istenmistir. Kullaniminin kolay olmasi, gorsel
arayliziiniin olmasi, yazilan kodun sadeligini ve okunabilirligini arttirmak i¢in nesne
yonelimli programlama yaklasimlarini uygulamasi, gelisen teknolojiyle beraber artan
bilgisayar kapasitelerini yiiksek oranda ve verimli kullanabilmesi i¢in modern
uygulama programlama arayiizlerini kullanmasi hedeflenmistir.

Gemilerin 6n dizayninda karsilagilan c¢ergeve yapilarinin yapisal analizinde Matris
Deplasman Metodu en ¢ok kullanilan yontemlerden birisidir. Metot bir ¢esit sonlu
elemanlar metodudur. Direkt metotlar arasinda yer alir. Bazi sonlu elemanlar
yontemlerindeki gibi sekil fonksiyonlarina ihtiya¢ duymaz. Katilik matrisi direkt
olarak kiris teorisinden ¢ikartilir.

Matris deplasman metodu kiris elemaninin  biitiin  serbestlik  dereceleri
dogrultusundaki deplasmanlar sifir iken her bir serbestlik derecesi dogrultusunda
birim deplasman olusturacak kuvvetleri elde ederek katilik matrisi olusturur. Matris
olarak ifade edilmis eleman rijitlik iliskileri daha sonra kod numaralar1 yontemiyle
cerceve sistemini temsil eden tek miisterek matris haline getirilir. Aymi sekilde
elemanlara etkiyen kuvvetlerden de miisterek bir kuvvet vektorii elde edilir. Elde
edilen matris sistemi ¢oziilerek deplasman vektorii elde edilir. Daha sonra bu
deplasman vektoriiniin elemanlart yine kod numaralar1 yontemiyle elemanlara
aktarilir ve eleman kuvvet dengesi yazilarak elemanin katilik matrisi deplasman
vektoriiyle carpilip endirekt yiik vektoriiyle toplanir. Bunun sonucunda miisterek
eksenlerde ifade edilmis eleman yiik vektorii elde edilir. Elde edilen kuvvet vektori
transformasyon matrisiyle ¢arpilarak elemanin kendi eksenlerindeki kuvvet vektorii
bulunur. Bu kuvvet vektorii elemanin mesnet tepkilerini igerir. Bu vektor elde
edildikten sonra elemanin kesit tesir diyagramlar1 bulunabilir.

Bu calismada gelistirilmis olan program hedeflendigi gibi degisken kesitli enine
cergevelerinin ¢oziimiini yapabilmektedir. Degisken kesitli durumda iken elemanin
u¢ momentleri Ug Moment Yonteminin en genel haliyle bulunur. Program
kullanicidan eklenen kiris pargalarinin her birinin atalet ve kesit alan1 dagilimlarini
polinom seklinde ister. Kullanict kirislere yayili yiikleri ve tekil yiikleri arayiizden
ekler. Program yayili yliklerin de polinom seklinde ifade edilmesini bekler. Kullanici
istedigi ¢ergeveyi olusturduktan sonra ¢6ziim butonuna basar ve program sistemi
¢ozer. Cikt1 olarak egilme momenti dagilimi, kesme kuvveti dagilimi, eksenel kuvvet
dagilim1 ve gerilme dagilimi verir.
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Program nilimerik integral hesaplarinda Simpson Yontemini kullanir. Sabit kesitli
cergeve gibi basit durumlarda program, gelistirilen polinom simnifi sayesinde analitik
integraller alabilmekte ve niimerik ¢oziime gerek kalmadan hizli bir sekilde hesap
yapabilmektedir. Ayrica program, paralel programlama yontemlerini kullanarak ¢ok
cekirdekli bilgisayarlarda kisa siirede sonug tiretebilmektedir.

Bu calismada gelistirilen program analitik ¢6ziim ve muadili programlarla degisik
cercevelerde verdigi sonuglar bakimindan karsilastirilmis ve sonuglarin dogru oldugu
anlasilmistir. Sonug olarak hedeflenen program gelistirilmis ve gemi ¢ercevelerinde
kullanilabilecek pratik, kullanimi kolay ve kullamisli bir analiz programi elde
edilmistir.
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DEVELOPING A COMPUTER PROGRAM TO CONDUCT STRUCTURAL
ANALYSIS OF TWO DIMENSIONAL SHIP FRAMES USING MATRIX
DISPLACEMENT METHOD

SUMMARY

In this study, it is aimed to develop a computer program to analyze two dimensional
ship frames. Preliminary design of ships requires using practical structural analysis
programs that do not require detailed information about the structure. Since ship
frames can have varying inertia, like when brackets are involved, the program should
have the ability to solve ship frames with varying inertia. The program is desired to
have a well-designed graphical user interface to make it easy to use, to implement
object oriented programming paradigms to keep the code structured and readable, to
use a modern programming application interfaces to maximize the utilization of
computer resources in efficient way.

In preliminary design phase, it is easy to model the ship as frames when not much
detail about the structure of the ship is known. It also makes it easy to solve the
problem. In the past, conventional methods like Moment Distribution Method have
been used for analyzing ship frames. After computer technologies showed up,
scientists started to search for computer-automated methods for structural analysis.
Then, Matrix Displacement Method is developed. The method was a preface for
Finite Element Method and it is considered one of the direct methods of Finite
Element Method.

Matrix Displacement Method discretizes the system into smaller, idealized elements.
For each beam element, when all displacements are zero, the forces that are required
to create unit displacement for each degree of freedoms are obtained and stored into
a matrix, which is called the element stiffness matrix. For each beam element, the
forces that are acting on beams are stored in element indirect force vector and the
forces that are acting on nodes are stored in element direct force vector. All forces,
vectors and stiffness matrices are express in terms of global axes by using
transformation matrix. After that, by using Code Numbers Method, the element
stiffness matrices are combined in a global stiffness matrix. Likewise, the element
force vectors are also combined in global force vector. The global system is then
solved to find global displacement vector. After the global solution is done, the
displacement vector is imposed in element force equations. The parts of the
displacement vector in elements are multiplied by element stiffness matrices and the
results are summed with indirect force vector to get the final force vector. Again, by
using transformation matrix, the local force vectors are obtained. After the local
force vectors are known, bending moment distributions, shear force distributions,
axial force distributions and stress distributions can be found.

In case of varying inertia, stiffness matrices depend on the base stiffness coefficients,
which can be found by some integrations that are derived by Moment-Area Method.
The method that is used to find support reactions is also changed in case of varying
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inertia. Clapeyron’s Method of Three Moment is used in this case with its the most
general form to calculate support reactions when both sides of the beam are fixed end
supports.

There are many codes written in the past that implement Matrix Displacement
Method. Most of them are written in either Basic or Fortran. These programs
generally require a third-party software to analyze the results and draw the
distributions. These programs also need entering the data in specific format, which
can be hard for users.

The program that was developed in this study is able to solve many bending
problems, not just for ships. It also does not need any additional software to present
the analysis it made. It uses numerical calculation techniques such as Simpson
Method when it has to but it can also solve the problems analytically if the inertia
distributions of the beams are constant, which provides extra accuracy and gives the
ability to solve the problem with minimum time.

The program was written in C# language. C# is a strongly typed, object oriented and
multi-paradigm programming language that was developed by Microsoft in 2002. It
can be used in variety of applications and it is much easier to develop programs than
lower level languages. The program is based on Windows Presentation Foundation
(WPF) platform, which allows the developers to design user interfaces in Extensible
Application Programming Language (XAML). By using modern programming
language enables the program to use modern libraries and conduct parallel
computations when the user wants to.

The program consists of a drawing area and the buttons around it. The user, by
clicking the buttons, can add a beam; specify the inertia and the area distribution in
polynomials. Since it takes only distributions in polynomials, it can be used for every
frames independent of the cross-section shape. The program also accepts distributed
load in polynomial form. After the user created the desired frame, he clicks the solve
button and the solution initializes. First, for every beam in the frame, support
moments are calculated by implementing Three Moment Theorem. Then, the force
vector is created, the transformation matrix is formed based on the beam’s angle.
Base stiffness coefficients are calculated according to the area and the inertia
distributions. Then, the local stiffness matrix is created. These processes can be run
in parallel. After that, the global stiffness matrix and the global force vector are
created. By using a linear equation solver that implements Gauss Elimination
Method, the global displacement vector is created. Then, the displacement vector
elements sent as parameters in beams, which also start element solutions. The force
vectors and the local force vectors are then calculated. After the local force vectors
created, moment distributions are obtained based on the end moments in the vectors.
Moment distributions derivate analytically to obtain shear force vectors. By using the
local force vectors, axial force distributions are also calculated. If the user wanted to
perform a stress analysis, the program calculates stress distributions by using
moment distributions and inertia distributions. The graphics are then drawn. The
program uses Cardinal Spline library to draw the distributions. The program warns
the user if maximum allowable stress is exceeded in any beam. The program also
gives polynomial expression of moment distributions and shear distributions and
axial distributions. It also finds minimum and maximum values of the distributions.

As a result, a practical and easy to use computer program that conducts structural
analysis of two dimensional ship frames has been developed. The program meets the
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desired specifications explained at the beginning. In the end, different frames, both
with varying and constant inertia, have been analyzed using this program and other
programs that can calculate the given frame. The results based on end moments have
been compared. It is understood that the program gives the correct results.
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1. GIRIS

Gemilerin 6n dizayninda yapisal analizlerde kiris halinde modelleme siklikla yapilir.
On dizayn siirecinde heniiz elde yapiyla ilgili ayrmtili bir bilgi yok iken bu
modelleme kolaylik saglar. Ayrica kiris olarak modellendiginde problem kolaylasir.
Yap1 kirigler halinde modellendigi zaman g¢erceve sistemleri ortaya c¢ikar. Bu
hiperstatik sistemlerin el ile ¢oziimiine yonelik Cross Metodu gibi geleneksel ¢oziim
yontemleri bilgisayar teknolojisinin gelismesiyle 1950°li yillardan sonra yerini
nliimerik yontemlere birakmistir (Bayraktarkatal, 1995). Bu yontemlerden birisi
Matris Deplasman Y ontemidir. Matris Deplasman Y 6ntemi bir ¢esit Sonlu Elemanlar
uygulamasidir. Kiris elemanlariin sekil fonksiyonlari kullanmadan direkt olarak
sonlu elemanlar modellemesine izin verir. Bilgisayar programlamasina uygun bir

yontemdir.

Temelde yontem, kiris teorilerinden yararlanarak her serbestlik derecesi yoniinde
birim deplasmanlar olusturan kuvvetleri elde edip katilik matrisi adi altinda
toplamaya dayanir. Boylece elemanlar matrisler halinde ifade edilip miisterek matris
olusturulur ve matris bilgisayar tarafindan c¢oziilerek bilinmeyen deplasmanlar
bulunur (Tezcan, 1970). Yontemin matris tabanli olmasi bilgisayar programlamasina

oldukga elverisli kilar.

Bu calismanin temel amaci gemi enine c¢ergevelerinin ¢oziimiinii yapabilen bir
bilgisayar programi olusturmaktir. Ge¢miste Matris Deplasman Metodunu uygulayan
birgok bilgisayar programi yazilmistir. Bunlarin ¢ogu Basic ve Fortran dili
kullanilarak gelistirilen konsol programlaridir. Bu programlar girdileri belirli bir
formatta alirlar ve kullanimi kullanici agisindan kolay degildir. Burada ise modern
bir programlama dili kullanilarak gorsel grafik arayiizii olan, pratik ve kullanish bir
paket programi gelistirilmesi amag¢lanmistir. Gelistirilen programin ayn1 zamanda
modern uygulama gelistirme kiitiiphanelerini kullanmas1 ve giiniimiiz bilgisayar
teknolojisinden yararlanarak hizli ve verimli ¢oziim yapabilmesi hedeflenmistir.
Diger bir hedef ise nesne yonelimli programlama yaklasimlarinin kullanilmasidir.

Boylece diizenli ve disiplinli bir kod tabani olusturulup herkesin okuyabilecegi



sadelikte, bakimi kolay bir proje elde edilecektir. Ayrica programin bagka higbir

programa ihtiya¢c duymadan analiz yapabilmesi de amaglanmistir.

Calismanin ikincil amaci ise gelistirilmeye a¢ik modiler bir kod tabam
olusturmaktir. ileride, ¢dziim metodu 6rnegin uzay cerceveler icin ¢dziim yapacak
sekilde gelistirilmek istendiginde mevcut kod kiitiiphanesinden maksimum seviyede

yararlanilmas1 hedeflenmistir.

Literatiirde bu alanda ¢esitli calismalar yliriitiilmiistiir. Bunlardan bir tanesi Dog. Dr.
Ertekin Bayraktarkatal’in doktora tezi kapsaminda 1995 yilinda gelistirdigi, gemiyi
uzay cerceve olarak modelleyen Fortran programlaridir. 3 program gemi kirisleri
tizerindeki moment ve gerilme dagilimlarini elde eder. Sabit kesitli gemi kirisleri i¢in

¢Oziim yapmaktadir.

Bagka bir calisma ise Yrd. Do¢. Dr. Adnan Karaduman tarafindan yiiksek lisans tezi
kapsaminda 1993 yilinda gelistirilen Basic programlama dilinde yazilmis bir
bilgisayar programidir. 2 boyutlu enine g¢erceveleri ¢ozen bu program bazi braketli

durumlarda degisken kesit ¢6ziimii yapabilmektedir.

Diger bir ¢alisma ise Assoc. Prof. Dr. Luiz Fernando Martha tarafindan gelistirilen
Ftool adli 2 boyutlu c¢ergeve analiz programidir. Sabit kesitli gergeveler igin

gelistirilmistir. Programin ayrica ticari bir versiyonu da vardir.

Bir diger ¢alisma ise Gemi Insaat Miihendisi Omer Bitler tarafindan 2016 yilinda
gelistirilmis olan Mesnet adl1 2 boyutlu ¢er¢eve analiz programidir. Bu program 2
boyutlu gemi enine c¢ergevelerin yapisal analizini Cross Metodu kullanarak analiz

eder. Program degisken kesitli ¢cergeveleri de ¢ozebilmektedir.

Bu caligmanin ikinci boliimiinde ¢6ziim yontemi ayrintili olarak anlatilmigtir. Matris
Deplasman Metodu ve U¢ Moment Metodu agiklanmus, katilik matrisinin ve yiik
vektorlerinin elde edilmesi gosterilmistir. Miisterek sistemin olusturulmas: ve
¢Oziilmesi bir 6rnekle agiklanmistir. Degisken kesitli durumda hesaplanmasi gereken

temel rijitlik katsayilarinin denklemlerle elde edilmesi gosterilmistir.

Calismanin iiclincli boliimiinde gelistirilen programdan bahsedilmistir. Eklerde
verilen kod pargalarina atifta bulunarak programin ¢6ziimii nasil yapig1 anlatilmistir.

Programin ¢alismasi icin gereken sistem gereksinimleri agiklanmistir.



Dordiincii boliimde ise programin arayiizii tanitilmistir. Daha sonra programin
kullanilig1 anlatilmig, basit bir ¢er¢evenin programda olusturulmasi, ¢oziilmesi ve

sonuglarin elde edilmesi gosterilmistir.

Besinci boliimde sabit kirisli ve degisken kirisli ¢erceve ornekleri verilmis ve bu
programda ve baska programlarda cerceveler ¢oziilerek sonuglarin dogrulugu

karsilastirilmistir.

Altinc1 boliimde ise elde edilen sonucglar aciklanmis ve program hakkinda

Onerilerden, gelistirmelerden ve eksikliklerden bahsedilmistir.






2. MATRIS DEPLASMAN YONTEMIi

Matris Deplasman Yontemi ya da diger bir adiyla Direkt Deplasman Yontemi bir
yapisal analiz metodudur. Bilgisayar programlamasina oldukc¢a uygundur. Statikce
belirsiz karmagik kiris problemlerini ¢ozebilecek kabiliyete sahiptir. En ¢ok
kullanilan sonlu elemanlar uygulamalarindan biridir. Yapisal analizde tek boyutlu ve

iki boyutlu kiris sistemleri analizi i¢in en ideal sonlu elemanlar yontemidir.

Sonlu elemanlar yontemi birgok miihendislik alaninda kullanilabilen bir sayisal
¢oziim yontemidir. Yapisal analiz, 1s1 gegisi, sivi akisi elektromanyetizma basta
olmak tiizere bircok mihendislik alaninda wuygulanmaktadir. Miihendislik
hesaplarinda genelde olaymn fizigi kismi diferansiyel denklemler seklinde
matematiksel olarak ifade edilir. Genelde bu diferansiyel denklemlerin analitik
¢Oziimii zordur ve bazen imkansizdir. Ayrica hesap yapilacak elemanin seklinin
karmasik olmasi da hesab1 zorlastirir. Sonlu elemanlar yontemi, sayisal yontemleri
kullanarak bu ¢oziilmesi zor problemlere bir ¢oziim sunar. Sonlu elemanlar yontemi
temelde direkt metotlar, agirlikli artim metodu, varyasyonel metotlar ve enerji

metodu olarak ayrilabilir. Matris deplasman metodu direkt metotlar sinifina girer.

Direkt metotlarda diger sonlu elemanlar metotlarinda oldugu gibi yaklasik sekil
fonksiyonlart kullanilmaz. Bunun yerine problemin fizigi kullanilarak katilik
matrisleri elde edilir. Diger sonlu elemanlar yontemlerinde oldugu gibi problem
ayriklastirilarak idealize edilmis ve nodlarin birbirine baglanmasiyla olusan
elemanlar olarak modellenir. Daha sonra elemanlarin katilik 6zellikleri tek bir
matriste toplanir. Elde edilen misterek matris c¢oziilerek yapinin bilinmeyen

deplasmanlar1 ve kuvvetleri bulunur.

Metot, c¢er¢eve ve kafes sistemlerine wuygulanabilir. Yaklasik fonksiyonlar
kullanmadig1 igin sonug kiris teorisindeki sonugla ayni elde edilir. Diger sonlu

elemanlar yontemlerindeki gibi yakinsama analizine bu yontemde gerek yoktur.



2.1 Tarihge

Matris deplasman metoduna ilk olarak havacilik alaninda ihtiyag duyulmustur.
Akademisyenler karmasik ugak c¢erceve yapilarinin ¢oziimii igin bilgisayarla
otomatiklestirilebilecek bir yontem arayisi igine girmislerdir. O zamanlarda bu
kompleks yapilarin ¢6ziimii igin A¢1 Metodu ve Cross Metodu kullanilmaktaydi.
Gelisen bilgisayar teknolojisine uygun bir metot gelistrilmesi i¢in caligsmalara
baslanmustir. Sonlu elemanlar yontemi ilk olarak matris deplasman metodu ile ortaya

¢ikmis ve diger metotlar sonradan gelistirilerek bugiinkii halini almistir.

Sonlu elemanlar yonteminin teorisinin ilk izleri 1934’de bulunan matris deplasman

metodu (Direct Stiffness Method) ile gortilmiustiir (Felippa, 2017).

1940’larin  baglarinda bina, ucak ve wuzay yapilarinin gerilme analizlerinin
yapilabilmesi i¢in sistematik bir yontem arayisi ihtiyact dogmustur. Bu kapsamda A.
Hrennikoff (Hrennikoff, 1941) ve R. Courant (Courant, 1943) tarafindan yapilan
calismalarla yontemin temelleri atilmigtir. Bu iki akademisyen fakli yontemler
kullanmis olsalar da ¢6ziimiin ag yapilar1 (mesh) ile daha kiiciik ¢aligma alanlarina

ayriklastirma yoniinden yaptiklari ¢aligmalar aynidir (Crahmaliuc, 2018).

Sonlu elemanlar yontemi ilk olarak 1950 yilinda uzay miihendisliginde Boeing, Bell
Aerospace ve Rolls Royce firmalari tarafindan ilk olarak kullanilmistir. Yontemin
ana fikrini olusturan ilk makale 1956 yilinda Turner ve arkadaslari tarafindan
yayinlanmistir (Giiler & Sen, 2015). Turner matris deplasman metodunu genellestirip
gelistirmistir. Turner’n ¢alismalar1 Boing tarafindan desteklenmistir. Turner sonlu

elemanlar yonteminin nonlineer problemlere uygulanmasina 6ncii olmustur.

B. M. Irons izoparametrik modelleri gelistirmis, sekil fonksiyonlar1 ve yama testi
metotlarini icat etmistir. R. J. Melosh, Rayleigh-Ritz metodu ile varyasyonel olarak
katilik matrislerini sistematik olarak tiiretmistir. E. L. Wilson ilk agik kaynak sonlu

elemanlar metodu ¢6ziicii programi gelistirmistir (Felippa, 2017).

1959°da General Motors ve IBM otomobil dizayni i¢in sonlu elemanlar yontemiyle
kullanilmak {izere DAC-1 (Design Augmented by Computers) bilgisayar sistemini
gelistirmistir.

1965°te NASTRAN (NASA Structural Analysis) programi yapisal analiz ¢oziicli

olarak gelistirilmistir.



1970’de suan sonlu elemanlar i¢in en genel ve en yaygin kullanilan bilgisayar

programi Ansys gelistirilmigtir.

1973’de Gilbert Strang ve George Fix, sonlu elemanlarla ilgili ilk kitap olan “An
Analysis of the Finite Element Method” kitabini yayinlayarak yonteme matematiksel

olarak biiytik katki saglamistir (Crahmaliuc, 2018).

1977°de ilk profesyonel sonlu elemanlar p-versiyon kodu olan FIESTA Alberto

Peano tarafindan yazilmaya baglanmistir.

1982°de Barna Szabo ve Kent Myer tarafindan ucak ve uzay uygulamalari i¢in ilk

endiistriyel sonlu elemanlar p-versiyon yazilimi olan PROBE gelistirilmistir.
1987°de MECHANICA, RASNA sirketi tarafindan gelistirilmigtir.

2001°de P-versiyon sonlu elemanlar yontemi plastisite uygulamalari i¢in en verimli

yontem oldugu A. Duster tarafindan ispatlanmistir.

2006’da Amerikan Makine Miihendisleri Toplulugu tarafindan Hesaplamali Kati

Mekaniginde Dogrulama ve Onaylama kilavuzu yayinlanmistir.

2008’de NASA model ve simiilasyon gelistirilmesi igin standart yayinlamigtir
(Crahmaliuc, 2018).

2.2 Katihk Matrisi

Katilik en genel haliyle belirli bir dogrultuda birim deplasman elde edebilmek igin
belirli bir dogrultuda uygulanmasi gereken kuvvettir. Katilik matrisi [k] le gosterilir.
Matrisin herhangi bir elemani k;;, tasiyict elemanin bitiin serbestlik dereceleri
dogrultusundaki deplasmanlar sifir iken j yoOniinde birim bir deplasman

olusturabilmek i¢in i yoniinde uygulamasi gereken kuvvet anlamina gelir (Tezcan,

1970).

2.2.1 Eksenel yonde zorlanan Kiris elemani

(Sekil 2.1)’de gosterilen kiris elemanini ele alalim:

A E I
1 2

—b‘ -—>

Sekil 2.1 : Iki serbestlik dereceli kiris elemana.
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2.2.1.1 Rijitlik matrisinin elde edilmesi

Tastyici elemanin sadece 1 ve 2 yonlerinde serbestlik derecesi oldugunu varsayalim.
ky; katilik elemanini bulalim. Bu katilik elemaninin anlami 1 yoniinde birim

deplasman olusturmak i¢in 1 yonlinde wuygulanmasi gereken Kkuvvettir.

Mukavemetten;
o-Eo=— (2.1)
E= A—LL (2.2)
Denklem (2.2), denklem (2.1)’de yerine koyulursa;
P= % (2.3)

elde edilir. Tanim geregi AL birim deplasman oldugu i¢in denklem 2.3’te AL =1

yazilirsa;

(2.4)

olarak bulunur.

ki, katilik elemani 2 yoniinde birim deplasman olusturmak ig¢in 1 yOniinde
uygulanmas1 gereken kuvvettir. 1 yoniindeki uygulanan kuvvet 2 yoniinde ters yonde
etki eder. Dolayisiyla 2 yoniindeki deplasman olusturmak i¢in kq4’deki kuvvetin

tersinin uygulanmasi gerekmektedir.

k;, = _T (2.9)

k4 katilik eleman1 ayni1 mantikla bulunur.

k21 = —T (26)

k,, ise kq, ile ayn1 olacagi anlasilabilir.



Ky, =— (2.7)

Biitiin bu 4 durumunda elemana ayni anda etkidigi durumda 1 ve 2 yoOniindeki

kuvvetler asagidaki gibi bulunabilir:

Pl = k11d1 + k12d2

(2.8)
Pz = k21d1 + kzzdz

Bu denklem takimi matris notasyonuyla agagidaki gibi yazilabilir:

{H}{kn klz}{dl} 29)
PZ k21 k22 dZ
Bu denklem elemanin kuvvet denklemidir. Denklemin sol tarafindaki vektor yiik

vektorii, sag tarafindaki matris katilik matrisi, sag taraftaki vektor ise deplasman

vektortdiir (Tezcan, 1970). Denklem 2.9 agik olarak asagidaki gibi yazilabilir:

P| AE|1 -1]|d,
=— 2.10
{Pj L [_1 1 }{dj (210
2.2.2 Egilmeye zorlanan Kiris elemani

Serbestlik dereceleri (Sekil 2.2)’deki gibi tasiyict elemani ele alalim. Elemanin her
iki ucunda bir oteleme bir de donme olmak lizere toplamda 4 serbestlik derecesi

oldugunu varsayalim.

41 3

2 4

Sekil 2.2 : 4 serbestlik dereceli kiris eleman.

Pozitif serbestlik derecelerinin yoniiniin kiris teorisindeki yonlere uymadigina burada
dikkat edilmelidir. Kiris teorisindeki serbestlik dereceleri yonii (Sekil 2.3)’te

gosterilmistir.



N

4

L=

1 3

Sekil 2.3 : Kiris teorisindeki pozitif serbestlik dereceleri.

Katilik matrisini elde etmek i¢in (Sekil 2.4)’teki yol izlenebilir. Kirisin maruz
kalacagi en genel sekil degistirmeler sliperpozisyon kanunu kullanarak her serbestlik

derecesi yoniinde birim deplasman etkidigi durumlarin toplami1 olarak bulunabilir.

1 w 3
L - 3 e

f
I w !
Adim1l : Ankastrelik

reaksiyonlar

k,. & T +

ks,
d,=1 br [ B Adm 2:d,=1

—+ h 4
k12 k32
d,=1 br T
K a ~ L TTT—— )k“ Adim 3:d,=1
22

Tkm K.,
‘ ( 77777 - — = Sk Adim 5:d,=1
1

P Son durum
a

Sekil 2.4 : Diizlem egilmeye maruz kiris (Tezcan, 1970).
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2.2.2.1 Moment alan teoremi

Moment alan teoremi egilmeye maruz kalan kirislerdeki sehim ve donmenin
tiiretilmesi i¢in kullanilir. Mohr tarafindan gelistirilen teorem tekil yiiklerin
yiiklendigi durumlarda da ve atalet momentinin degisken oldugu durumlarda da
sehim ve donmenin elde edilmesine olanak veren bir metottur. Rijitlik matrisi

hesaplarinda moment alan yontemi sik¢a kullanilacaktir.

(Sekil 2.5)’te herhangi bir yayili yiike maruz kalan bir kiris verilmistir.

W(x)

A A

Sekil 2.5 : Herhangi bir yayili yiikle yiiklenmis egilmeye maruz kiris.

Bu yiikten dolay1 kirisin (Sekil 2.6)’daki gibi sehim yaptig1 varsayilsin.

Sekil 2.6 : Yayil yiik ile yiiklenen kirigin sehimi.

Kiris iizerinde A ve B olmak iizere iki nokta secilsin. Bu noktalardan ¢izilen elastik
egriye cizilen tegetler (Sekil 2.7)’deki gibi olur. Kirig tlizerindeki A ve B
noktalarindan ¢izilen tegetlerin egimleri sirasiyla 8, ve Og’dir. Kirislerin kesigim

agis1 ise 64 dir.

Sekil 2.7 : Kirigin lizerindeki iki noktadan ¢izilen tegetler.

11



(Sekil 2.8)’deki Elastik egri lizerinde r yarigaplt elastiklik merkezinden d6’lik bir
yay ele alalim. Bu yayin yatay uzunlugu dx olsun ve B noktasindan itibaren uzakligi

x olsun.

Sekil 2.8 : Kirisin elastik egrisinin iizerindeki d8’lik yay.

(Sekil 2.8)’den;

dx = rdf (2.11)
1
d9=;m: (2.12)

Ayrica kirigin egilmesinden;

=— (2.13)
2.12°de yerine konulursa;

M
- 2.14
do EIdx (2.14)

Her tarafin integrali alinirsa;
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93 XB
do =f —dx (2.15)

1
Oap = El (Alan) »p (2.16)

Bu, birinci moment alan teoremidir. Sozlii olarak ifade edilirse: Elastik egriye

tizerindeki herhangi iki noktadan ¢izilen tegetler arasindaki a¢1 degisimi o noktalar

......

Spiegel, 2009). (Sekil 2.9)’da bu durum detayli olarak gosterilmistir.

"y

Sekil 2.9 : Kiris iizerinde birinci moment alan teoremi gosterimi.
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A noktasindan cizilen tegetin B noktasina olan diisey uzunluguna sapma denir ve
tgsa ile gosterilir. dx uzunluklu yaydan B noktasindaki diisey sapma lizerine
aralarinda df agis1 olacak sekilde dogrular cizilirse, dogrularin tg,,’yi kestigi

mesafe dt olur. (Sekil 2.10)’da bu durum gosterilmistir.

a8

Sekil 2.10 : Kiris lizerinde ikinci moment alan teoremi gosterimi.

Sekilde de gorildiigii gibi;

dt = xdf (2.17)

d@ ifadesinin denklem 2.14’teki degeri yazilirsa;
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dt = x (g dx) (2.18)

Her tarafin integrali alinirsa;

B 1 XB
dt = —f xMdx (2.19)
fA ELJ,,

1
tB/A = E(Alan)ABfB (220)

Burada Xz A ve B noktalar1 arasindaki moment diyagraminin alan merkezinin B
noktasina uzakligidir. Bu, ikinci moment alan teoremidir. Yine sozlii olarak ifade

edilirse: Elastik egri tizerindeki herhangi iki A ve B noktalari i¢in, A’dan ¢izilen teget

bolimiiniin statik momentine esittir (Limbrunner & Spiegel, 2009).

2.2.2.2 Rijitlik matrisinin elde edilmesi

1 numarali serbestlik derecesi yoniinde birim deplasman uygulamak i¢in gereken

kuvvetler daha 6nce yapilan tanima gore (Sekil 2.11)’deki gibi olacaktir.

|(11 k

31

k

41

Sekil 2.11 : 1 numaral serbestlik derecesi yoniinde birim deplasman olusturmak i¢in
gerekli kuvvetler.

Burada gecen kuvvet tanimi genel kuvvettir. Yani hem egilme momenti hem de
kesme kuvveti genel kuvvet olarak sayilmaktadir. tana = a yaklasik esitligini

kullanarak (Sekil 2.11)’deki kiris (Sekil 2.12)’deki gibi olur:
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Sekil 2.12 : (Sekil 2.11)’deki kiriste tana = a olmasi hali.

Kuvvet esitligi kullanilarak;

Kiy +Kgy =0 (2.21)

Ky =—kKs, (2.22)

Bu asamada kiris teorisi isaret sisteminde ¢alisildig1 belirtilmelidir. Kirigin sag ucuna

gore moment alinirsa;
k,L—k,, —k,; =0 (2.23)

Elemanin bu yiikler altinda moment dagilimi bulunup birinci Moment-Alan teoremi

uygulandiginda durum (Sekil 2.13)’deki gibi olur.

b

Sekil 2.13 : 1 numarali serbestlik derecesi yoniinde birim deplasman uygulanan
kirise Moment-Alan teoreminin uygulanmasi.

Bilindigi iizere Moment-Alan teoremi kiristeki egilme momenti dagiliminin kirige

yiik olarak yiiklenmesi ile kiristeki donme ve sehimlerin bulunmasini igerir. Moment
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dagilimi kirise yiiklenmeden once El’ya boliiniir. Elde edilen yeni yiikleme tipinde

mesnet reaksiyon kuvvetleri o noktalardaki donmeye karsilik gelir.

Bu durumda ¢, kirisin sol ucundaki donme, ¢, Kirisin sag ucundaki donme
olacaktir. (Sekil 2.12)’de ¢, = —1/L oldugu goriilebilir. Burada eksi isareti
donmenin kirig teorisindeki déonme yoniine ters oldugu ig¢indir. ¢,’nin ankastre
mesnetten dolay1 sifir olacag: ilk olarak diisiiniilebilir. Ancak burada kirigin ekseni
degismistir. Dolayistyla hala bir donme vardir ve bu dénme yine (Sekil 2.12)’den
¢, = 1/L oldugu anlasilir. Dénme yonii kiris teorisindekiyle ayni oldugu icin ¢,

pozitiftir. Diisey kuvvetlerin esitligi yazilirsa;

ky L Ky L
vo 1Kl kal g 2.24
ATh T EH TR 2 (2:24)
11 kaLl kal (2.25)

Kay =Ky (2.26)

elde edilir. Kirisin sag u¢ noktasina gére moment alinarak ikinci Moment-Alan

Teoremi uygulanirsa;

Jal2 kLl g ean

Ll ka2l kyLL (2.28)
L El23 El23

_ 6El

21:k41—?

(2.29)

Denklem 2.29°daki bulunan katilik elemanlar1 denklem 2.23’te yerine konulursa;

6EI _6EI _,

TN

(2.30)
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_ 12E

kll - L3 (231)
Denklem 2.22°den yararlanarak;
12El
kl3 = - L3 (232)

2 numarali serbestlik derecesi yoniinde birim deplasman uygulamak i¢in gereken

kuvvetler daha once yapilan tanima gore (Sekil 2.14)’teki gibi olacaktir.

Sekil 2.14 : 2 numarali serbestlik derecesi yoniinde birim deplasman olusturmak i¢in
gerekli kuvvetler.

Yine kuvvet ve moment dengesinden;

k12 = _k32 (2.33)

kL —k,, —K,, =0 (2.34)

Tekrardan kirise (Sekil 2.15)’teki gibi Moment-Alan teoremi uygulansin.

Sekil 2.15 : 2 numarali serbestlik derecesi yoniinde birim deplasman uygulanan
kirise Moment-Alan teoreminin uygulanmasi.

Diisey kuvvetlerin esitliginden;
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o+p,+—==——-—=—=0 (2.35)

Burada sag ugta ankastre mesnet oldugu i¢in buradaki donme sifirdir. Yani ¢, =0
olur. Burada birim dénme oldugu i¢in ¢; = —1 radyandir. Kiris teorisindeki yoniin
tersi yonde donme oldugu igin negatiftir. Bu degerler denklem 2.35’te yerine konulur

ve denklem diizenlenirse;

2El
Koo =Ky = T (2.36)

Kirisin sol u¢ noktasina gére moment alinarak ikinci Moment-Alan teoremi

uygulanirsa;

i L2L K LL_ ean

Koo = 2K,y (2.38)

Denklem 2.38’deki iliski denklem 2.36’da yerine yazilirsa;

2El
2Ky, =Ky, = T (2.39)
2El
K,, =—— 2.40
0= (2.40)
4El
Ky, = L (2.41)

Bu degerler denklem 2.34’te yerine konulursa;

4ElI  2El
K L-——-"="=0 2.42
b= (242)
6El
k12:? (243)

Denklem 2.33’ten;
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(2.44)

Burada yapilan hesaplar 3 numarali ve 4 numarali serbestlik dereceleri icin de

yapilirsa agsagidaki sonuclar elde edilir:

12EI
Kig =— E (2.45)
6El
23 = 7 E (2-46)
12El
k33 =— (2.47)
L
6El
k34 =— 2 (2.48)
6El
kl4 = ? (249)
oa =20 (2.50)
6El
k34 =— 2 (2.51)
4E|
k44 = T (252)

Sonug olarak biitlin elde edilen degerler yerine konulursa katilik matrisi asagidaki

gibi olur:
- 12E1 6E1 12EI  6EI 7
L3 1z I3 12
6E1 4FE] 6E1 2E1
N A A
k=1 12g 6EI 12EI 6EI (2.53)
I [P
6EI 2EI 6EI  4EI
L ]2 L 12 L
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2.2.3 6 serbestlik dereceli cerceve elemani

Denklem 2.10’daki katilik matrisi 6x6 boyutunda olacak sekilde asagidaki gibi

genisletilebilir:

EA 0 0 EA 0 0
L L
0 0 0 0 0 0

_1 0 0 0 0 0 0

ki = EA . EA - (2.54)
L L

0 0 0 0 0 0
0 0 0 0 0 0

Ayni sekilde denklem 2.43’teki matris de 6x6 boyutunda olacak sekilde asagidaki

gibi genisletilebilir:
0 0 0 0 0 0
12EI 6EI 12E1  6EI
7 T ' T 7
6EI 4El . 6El  2EI
_ 1z L 2L
K 0 0 0 0 0 0 (2.55)
12EI 6EI 12EI 6EI
T ' B’ TE
6EI 2EI 6EI 4EI
0 — — 0 - —
L? L L? L

r EA 0 0 EA 0 0
L L
12EI 6EI 12EI 6EI
1z Y T Iz
6EI 4E] 0 6EI 2EI
_ = L Iz 1
k= EA . EA . . (2.56)
L L
12EI 6EI 12EI 6EI
T T [FT
6EI 2EI 0 6EI 4E]
L2 L L2 L

Bu matris, serbestlik dereceleri (Sekil 2.16)’da gosterilen 6 serbestlik dereceli kirigin
katilik matrisidir (Omurtag, 2010). Kirigsin hem yatay 6teleme, hem dikey Gteleme,

hem de donme serbestliklerine izin veren bu katilik matrisi diizlem cerceve
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elemanlariin en genel halidir. Bu ¢alismada kirisin bu 6 serbestlik dereceli hali

kullanilmistir.

A2 3
1I
>

3 5

Sekil 2.16 : 6 serbestlik dereceli kiris.

) 4
'

2.2.4 Degisken kesitli kiris durumu

Tastyict kirigin yiiksekligi ve genisligi degisken oldugu durumda ya da braketlerle
desteklendigi durumda katilik matrisi de degisir. Bu degisim temel rijitlik katsayilari
yardimiyla katilik matrisine yansitilir. Sabit Kkesitli durumda n; =1, m;; = 4,

m;; = 4 ve m;; = 2 olur (Karaduman, 1993).

Temelde n;;, m;;, m;; ve m;; olmak iizere 4 tane rijitlik katsayis vardir.

mi; TO: Kirisin i ucunu birim dondiirmek i¢in i ucuna uygulanmasi gereken

momenttir.

Elp. 1o . . . . e S
mjj = Kirisin j ucunu birim dondirmek i¢in j ucuna uygulanmasi gereken

momenttir.

m;; TO: Kirigin i ucunu birim dondirmek i¢in j ucuna uygulanmasi gereken

momenttir. Ayrica bunun tersi de dogrudur; m;; = m;; esitligi her zaman saglanr.

EA - g .
N TO: Alan degisken oldugu durumda elemana birim deplasman uygulaninca
eleman tizerinde olusan eksenel kuvvettir.

Burada I, kesitin minimum atalet momenti, A, kesitin kirisin minimum alani, L

kirisin uzunlugu, E kirisin elastisite modiiliidiir.

6 serbestlik dereceli kiriste d5 birim donme durumu i¢in moment alan yontemi atalet

momentinin degisken oldugu goz Oniine alinarak uygulanirsa yapilan tanimlara gore

ki =my % Ve kg3 = my; % olacaktir. (Sekil 2.17)’de bu uygulama gdsterilmistir.
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k53T
d,=1 yuklemesi

)

kas=m,El,/L k63=mijEID/L

moment diagrami

* mEL/L

Pl:mii&(L-x) 1
L L ElX)  moment alan yikleri

P=mEl, x 1

Rl

P(x)=P+P, _
LTI, ot
T X ) L‘X 3
A=-d3=_1 B=d6=0

Sekil 2.17 : d; = 1 ve degisken kesitli durum i¢in moment alan yonteminin
uygulanmasi (Karaduman, 1993).

k33 Ve ke3 degerlerinin bilinmesi i¢in m;; ve m;; bulunmasi gerekir. Fiktif sistemde

Mg = 0 esitligi yazilirsa;

El, (L —x)? Ely (!x(L —x)
—AL—my— | ——=-4a i— | =g 257
AL =M fo ElG) Xtz fo EIl(x) ¥ (257)
Fiktif sistemde M, = 0 esitligi yazilirsa;
Ely (tx(L —x) El, (1 «x?
BL—my— | ————dx — m;; — d 2.58
i 2 fo El(x) X~ M7z JO El(x) " (2.58)

de¢ =1 icin de moment alan teoremi benzer sekilde yazilarak m;; ifadesine ait

denklemler bulunabilir.
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I fL * I fL ! 4 I fL X 4 (2.59)
= —ax, = X, = X .
Y7 ), EI(x) 27 ), EI(x) 37 ), El(x)

Tanimlar1 yapilarak temel rijitlik katsayilar1 asagidaki gibi elde edilir (Karaduman,
1993):

LL L(I5L - 1)
T -1 T T L, -1
 L(=DL?* = 21LI5 — Iy)
(L —13)

m;

(2.60)

m;;

(Sekil 2.1)’deki eksenel yiiklii kiris i¢in d; = 1 oldugu durumda kiriste —nii%

eksenel kuvveti olusur (Karaduman, 1993). Bu durumda elemanin boyca uzuma

denklemi yazilirsa;

AL=d, —d, =—1= EA"fL ! (2.61)
L W 7/Ten) :
L/t 1\ "
DL Y 2.62
S, <fo A(x)) (262)

elde edilir.
Bu tanimlar yapildiktan sonra 6 serbestlik dereceli kiris i¢in rijitlik matrisi elemanlar

asagidaki gibi olacaktir (Karaduman, 1993):

_ niiEAO K — _k K _ (ml-i + m” + ZmU)EIO
=" k= Rk, 22 = I3 )

_ (ml-i + ml])EIO _ (m” + ml])EIO

ks = 12 vkas = —kaz  kae = 12 )
my;El m;;iEl, 263
33 = — k35 = —ka3, k3 = ”2 ) kas = ki1, ( )
L L
m;;El,
kss = ks, kse = kg, ke = % ’
ki = k13 = k15 = k16 =kyy = k34 = k45 = k46

=0

Ayrica simetriden dolay1 k;; = k;; dir.
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2.3 Yiik Vektorii
Katilik katsayilariyla deplasmanlar arasindaki iligki asagidaki gibi yazilir:

Py = ki1dq + kipdy + kq3d3 + kiady + kqsds + kigde + f1

Py = kyidy + kypdy + kyzds + koydy + kosds + kyede + fo

Py = k3 dy + kq3dy + k3zds + k3ady + k3sds + kagdg + f3 (264
Py = ky1dy + kapdy + kyzdz + kaady + kysds + kaeds + [y |

Ps = ksydy + kspdy + kszds + ksady + kssds + ksede + fs

Pg = kg1dy + kepdy + ke3ds + keads + kesds + keeds + fo
Denklem takim1 matris formunda yazilirsa:

) ki1 ka2 kiz kia o kis kie] (d) (1)

| k21 k22 k23 k24 k25 k26 d2 f2

} _ k31 k32 k33 k34 k35 k36 4 d3 S+ < f3 \ (265)
|

|
|

ya da,

fa

SRR

[Ke1 Koz Koz kes kes keel \dg/ \f6/

{P} = [kl{d} + {f} (2.66)

Burada {P} direkt yiik vektori, [k] katilik matrisi, {d} deformasyon vektorii ve {f}
endirekt yiik vektoriidiir.

Direkt yiik vektorii nodlara gelen yliklerden olusur. Endirekt yiik vektorii ise kiris
tizerindeki yiiklerin kirisin ucundaki nodlarda olusturdugu tepkilerden olusur. Katilik
katsayilar1 tanim geregi serbestlik dereceleri yoniindeki biitiin deplasmanlar sifir iken
olusturulur. Sistem endirekt yiik vektorii de bu durumda olusan yiiklerdir. Diger bir
deyisle endirekt yiikler kirisin her iki ucu ankastre mesnet iken bu mesnetlerde

olusan tepki kuvvetleri ve momentlerdir.

Bu calismada ele alinan problem kiriglerdeki atalet dagiliminin degisken olmasina da
izin verir. Atalet dagiliminin degisken olmasi kiristeki moment dagilimmna da etki

eder. Bu durumda hesap yontemi de degisir. Clapeyron’un U¢ Moment Y dntemi bu
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durumdaki mesnet tepkilerini hesaplayabilecek kapasitede bir metottur. Bu ¢alismada

bu yontem kullanilmaktadir.

2.3.1 U¢c moment metodu

Uc¢ Moment Metodu siirekli kirislerin mesnet momentlerini bulmak icin kullanilan
bir yontemdir. Benoit Paul Emile Clapeyron tarafindan 1857 yilinda gelistirilmistir.
Gelistirilmesine kiris egilmelerinin diferansiyel denklemi kullanilmistir (Gavin,
2009). Uc¢ Moment Metodu elastik ve analitik bir analiz metodudur. Birbirine baglh
herhangi iki kiris pargasi i¢in yazilabilir (Fertis, 1997). Ancak bir mesnede ikiden
fazla kirig baglandigi durumlarda bu metot kullanilamaz. Oldukga genis bir kullanim

alan1 vardir. Kiriglerin kendi i¢inde atalet momentlerinin degistigi durumlarda, her

tiirlii egilme yiiklenmesinde kullanilabilir.

Ug¢ Moment Metodu aslinda kendi basma siirekli kirisleri ¢dzebilen bir metottur. Bu
caligmada gelistirilen programda Matris Deplasman Metodunda tanim geregi her iki
ucun ankastre mesnet oldugu ve atalet momentinin degisken oldugu durumda mesnet

tepkilerini ve dolayisiyla endirekt yiik vektorlerini hesaplamak icin kullanilmistir.

(Sekil 2.18)’deki gibi bir siirekli kirigsin herhangi ti¢ mesnetli kismini ele alalim.

Ma

@ Mc
N _{_3 B N
"_'-..-___
L %, | -
X

1
2
A. B y

—

Sekil 2.18 : Siirekli bir kirigin {ic mesnetli kismi (Savci, 1988).

Bu pargalarinda u¢ momentler My, Mgz ve M, olsun. B mesnedindeki durumu

inceleyelim;

MB = 1\432 = M (267)

1

Pp, = — @5, (2.68)

Mohr teoremine gore;
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Iy

: Iy
i(x) = e (2.70)

Burada I, mesnedin herhangi bir noktasindaki sabit bir atalet momentidir. /(x) sol
taraftaki kirigin atalet momenti fonksiyonudur. I(x") sag taraftaki kirigin atalet

momenti fonksiyonudur. Mohr teoreminde;

1 l
Elypp = _Tf M (x)i(x)xdx (2.71)

0

Buradan;
1 (h _

Elypp, = L M(x)i(x)xdx (2.72)

0

1k
Elypp, = _E M(xDi(xD)x'dx’ (2.73)

0

Denklem 2.68’deki agilarin esitliginden asagidaki ifade yazilabilir (Savci, 1988);

1 rh 1 rk
T M (x)i(x)xdx + o M(ONi(x)x'dx' =0 (2.74)
1J0 2J0

Ayrica yine Mohr teoreminden;

M(x) = My (x) + M, + lf (My — M) (2.75)
M(x") = My(x") + M¢ + 7—1, (Mg — M) (2.76)

Burada M,(x) kirisin her iki ucunun serbest mesnet oldugu durumdaki moment
dagilimidir. Denklem 2.76 ve denklem 2.75, denklem 2.74’te yerine konulursa
asagidaki denklem elde edilir;
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Il Iy

l Mo(x)i(x)xdx+l M, (x)i(x)xdx

ll 0 ll 0
Il
t (Mg — Mp)i(x)x%dx
170
1 (b 1 (b
+— | My(xDi(xx'dx'+— | Mc(x)i(x)x'dx’'
lz 0 lz 0
1)
+ zZ (Mg — MC)i(x’)x’zdx’ =0
270

Denklem diizenlenirse;

1 (h 1 (h
M, [—f i(x)xdx — —Zf i(x)xzdxl
liJo I1Jo
1 [l 1 (b 5
+ Mg l—zf i(x)x%dx + —Zj- i(x")x' dx’l
15 J)o 13 Jo

1 [k 1 [k 4
+ M, l—f i(x)x'dx' — —f i(x)x' dx’]
l2Jo 0

2
lZ
ll 1 12

1
=—— | Myx)i(x)xdx —— | My(x")i(x")x'dx’'
L Jo l, Jo

Bu denklem Clapeyron’un Ug¢ Moment Denklemidir (Savei, 1988).

Kiriglerin atalet momentleri kendi i¢inde sabit oldugu durumda;

. . I . . I
()=t =2 i) =iy =2
MAilll + ZMB(illl + izlz) + Mcizlz = _%foll Mo(X)de -
1

6l—i2f012 My(x)x'dx'-

2

Ky =< [" My(x)xdx, Ko =~ [ My(x")x'dx’
a =5 ly Mo(xdx, Ke = J," Mo(x)x'dx

K, ve K. denklem 2.80°de yerine konulursa (Savci, 1988);
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Iy
MA_ll + ZMB(

z l)+MIOZ = oy oy
11 1 12 CIZZ_ IllA IZZC

I (2.82)

L L L L L L,
M, = + 2Mj (1 1) +M.2=-2K, -2k,
1 2

I I, L I
U¢ Moment Denkleminin bu hali en bilinen halidir (Savci, 1988). Pratikte ¢ok
kullanilan hali de budur. K, ve K, degerleri yilke gore degisir ve tablolardan

bulunabilir.

Bu calisma kapsaminda gelistirilen programda kiris i¢inde atalet momenti degisken

olarak ve pargali bir polinom halinde ifade edilebilmektedir. Kullanict [ (x)

fonksiyonunu kendisi girer. Bu yiizden Clapeyron’un metodundaki i(x) = — ()

ifadesi programda kullanilmamaktadir. Bunun yerine I(x) fonksiyonu kullanilir.
Programda kullanilan denklem 2.78’in farkli bir halidir ve denklem 2.83’te ifade

edilmistir.

", [I_ljllﬁ_l_ljllxzdx I fllxzdx Izjlzx’zdx’]
L, 107 2), T 2) 100 . 1)
o[ b

L), &) "E), 160

L (Y“My(x)xdx I, (22 My(x")x'dx’
L)y 100 L)y 1)

(2.83)

2.3.2 Ornek bir kiris i¢in yiik vektoriiniin bulunmas

(Sekil 2.19)’daki gibi yiiklii bir kirisi ele alalim.

e
//
q(x)=6x
’1 y y y 2
g L=10m é

Sekil 2.19 : iki ucu ankastre mesnetli kiris.
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Bu gibi problemler endirekt yiik vektdriiniin hesaplanmasinda ortaya ¢ikar. Biitlin
nodlardaki deplasmanlarin sifir oldugu durum o nodlarda ankastre mesnet olmasina
karsilik gelir. Ug¢ moment ydnteminde ankastre mesnet oldugu durumda (Sekil

2.20)’deki gibi sanal kirisler konularak hesap yapilir.

q(x)=6x
1 2
STTTT T Z 72 7,
Suees! * 1 d L= 1 Om L Ll Seseet
A DA B 2 B

Sekil 2.20 : Sanal kirislerin eklendigi kiris sistemi.

AA" kirisi ve BB' Kkirisleri sanal kiris oldugu i¢in kiris uzunluklari, ve atalet
momentleri 0 olacaktir. Ayrica A" ve B’ serbest mesnet olacagi igin buradaki

momentler de 0 olacaktir. AA'B kiris sistemi i¢in denklem 2.78 asagidaki gibi

sadelesir;
1 (b 1 (% 1,
M, l—zf x'zdx'l + Mpg [—f x'dx' ——Zf x' dx’]
15Jo L2 Jo 15Jo
1 A (2.84)
=—— | My(x")x'dx'
l, J,

Burada 6nemli bir nokta vardir. AA'B Kirisi i¢in Clapeyron’un denklemindeki x i¢in
koordinat sisteminin orijini A’ noktasidir ve +x yonii sag tarafa dogrudur. x’ i¢in ise
orijin B noktasidir ve +x' yonii sol tarafa dogrudur. Bu durumda M,(x') =
(10 — x")3 — 100(10 — x") olarak statik denklemlerinden kolayca bulunabilir. O
halde;

1 10 " , 1 10 , ) 1 10 2 ,
MA[I_OZfO x dxl+MBIEj; xdx—l—020 X dxl
1 10 (2.85)
=——1] ((10-x")3%—-100(10—x") )x'dx’
10 J,

ABB'’ kiris sistemi igin Clapeyron denklemi asagidaki gibi sadelesir;
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1 (b 1 (b 1 (b
M, —f xdx ——zf x?dx| + Mg —zf x%dx
l2 0 l2 0 lZ 0

1 (b
=—— | My(x)xdx
l, J,

(2.87)

Burada x i¢in koordinat sisteminin orijini A noktasidir ve +x yonii sag tarafa
dogrudur. x" i¢in ise orijin B’ noktasidir ve +x' yonii sol tarafa dogrudur. Bu

durumda M,(x) = x3 — 100x olarak bulunabilir.

1 (b 1 (b 1 [k
M, —f xdx——zf x%dx| + Mg —zf x%dx
2 Jo 13 Jo 15 Jo

1 (b
=——| My(x)xdx
I Jo

(2.88)

M, + 2My = 800 (2.89)

Denklem 2.86 ve denklem 2.87 ¢oziliirse My = 200 Nm ve Mg = 300 Nm bulunur.
Bulunan bu degerler iic moment denklemi isaret kabuliine goredir. Mukavemetten
mesnet tepkileri de hesaplandiginda kiristeki mesnet tepkileri (Sekil 2.21)’deki gibi

bulunur.

200 Nm 300 Nm

G )
Tgo N 210 NT

Sekil 2.21 : Kiristeki mesnet tepkileri.

Kiriste eksenel kuvvet yoktur. Endirekt yiik vektoriinlin ilk elemanit 1 numarali
serbestlik derecesi yoniindeki kuvvettir. 2. Elemani ise 2 numarali serbestlik derecesi
yoniindeki kuvvet ve diger elemanlar1 kendilerine karsilik gelen serbestlik derecesi
yoniindeki kuvvet ya da momenttir. Elemanin endirekt yiik vektorii denklem

2.90’daki gibi olur.
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0
90
f=4 %0 (2.90)
210
—-300

Vektoriin son elemaninin negatif olmasi kirigin sag ucundaki momentin yoniiniin
matris deplasman yontemindeki donme yoniin tersinde donme olmasindan dolayidir.
Kirigin nodlarina herhangi bir direkt kuvvet etkimedigi i¢in elemanin direkt yiik

vektoriniin biitiin elemanlan sifirdir.

2.4 Miisterek Sistem

Metotta eleman matrisleri ve yiik vektorleri tek bir miisterek denklem takiminda
toplanir. Eleman matrisleri 6zel bir yontemle birlestirilerek miisterek katilik matrisini
olusturulur. Elemanlarin direkt ve endirekt yiik vektorleri de yine 6zel bir yontemle
birlestirilerek miisterek yiik vektorii olusturulur. Olusan misterek matris sistemi
¢oziillerek u¢ deplasmanlari bulunur. Bulunan miisterek deplasmanlar tekrar
elemanlarn  matris denklemine entegre edilerek elemanlardaki bilinmeyen

deplasmanlar bulunmus olur.
2.4.1 Kiris eksenlerinin transformasyonu

(Sekil 2.22)’de bir p vektoriiniin XYZ ve xyz olmak tizere iki eksen takimlarinda iz

diisiimii gdsterilmistir.

l, = Cos a
my= Cos 3

ny= Cos v

X, % e, my,ny)

Sekil 2.22 : Bir noktada eksen transformasyonu (Karaduman, 1993).
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XYZ eksen takimindaki iz diisiimleri kullanilarak xyz eksen takimlarindaki iz

diisiimler bulunmaya calisilirsa;

Px = Pxlx + DyMy + Pz
Py = pxly + pymy + pzpny (2.91)
Pz = pxlz + pym, + pzpn,
yazilabilir. Yukaridaki denklemleri matris notasyonunda yazarsak;
Px) [lx mx nxf(Px
Py = ly my, n, Py (292)
l, m, n,|\Pz

[, m, n’lerden olusan bu matrise dogrultu kosiniisleri matrisi denir. [t] ile gosterilir.

{p}xyz = [tHD}xvz (2.93)

Denklem 2.93’e ortogonal transformasyon denklemi denir. Diizlem c¢ercevelerde x
ekseni ortak eksene paralel, y ekseni de ¢ubuk eksenine diktir. Bu durumda [t]

matrisi asagidaki gibi olur:

—sinf cosf O
0 0 1

cosf sinf O
[t] = [ ] (2.94)

Kirig elemaninin i ucunun koordinatlar1 (x;,y;) ve j ucunun koordinatlar1 (x;,y;)

olarak kabul edilirse:

L= Gy =)+ Oy~ )’ (295)
cos B = @ (2.96)
sinf = (%L;yl) (2.97)

Diizlem c¢ergevelerde 6 serbestlik derecesi oldugu i¢in bu matrisi 6x6 boyutuna

asagidaki gibi getirmek gerekir:
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_{le o
=[5l (2.98)

Bu durumda eleman bazindaki direkt, endirekt yiik vektorleri ve deplasman vektorii

asagidaki gibi global eksen takimindan eleman eksen takimina yazilabilir:

{p}xyz = [T]{p}XYZ (299)
{d}xyz = [T]{d}XYZ (2.100)
{r }xyz = [TI{f}xvz (2.101)

Transformasyon matrisinin [T]™! = [T]" o6zelligi kullanilip asagidaki gibi ters

transformasyon yapilabilir:

rlxvz = [T]T{p}xyz (2.102)
{d}XYZ = [T]T{d}xyz (2.103)
{f}XYZ = [T]T{f}xyz (2.104)

Katilik matrisinin miisterek eksene transformasyonu asagidaki gibi yapilir:

[k]xyz = [T]" [kl xy,[T] (2.105)

2.4.2 Miisterek sistemin elde edilmesi ve ¢oziimii

(Sekil 2.23)’teki enine ¢ergeve Ornegi ele alinsin. Cerceve ii¢ ayr1 kiristen

olusmaktadir ve tekil ve yayili yiiklerin etkisi altindadir.
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S| S|
Sekil 2.23 : ki boyutlu enine cerceve érnegi.

Oncelikle kirisler numaralandirilip sistemin serbestlik derecesi belirlenir. Sistem 6
serbestlik derecelidir. Serbestlik dereceleri (Sekil 2.24)’te gosterilmistir.

W(x)
2

3 2 6

1 3
0 IZ 0
0 0 X Y 0 0

Sekil 2.24 : iki boyutlu enine cercevenin serbestlik dereceleri.

Ankastre mesnetlerde her ii¢ serbestlik dereceleri yoniinde deplasmanlar sifir olacagi
icin serbestlik dereceleri yoktur. 6 tane serbestlik derecesi oldugundan dolay1 global
matris 6x6 boyutunda olacaktir. Bir sonraki adim g¢ergevedeki kirislerin (Sekil
2.25)’teki halinin direkt ve endirekt yiik vektorlerini bulmaktir.
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W(x)

AR R AR R

Sekil 2.25 : iki boyutlu enine cercevenin endirekt yiiklerinin bulunmasi.

Cerceve elemanlarinin miisterek eksenlerdeki serbestlik dereceleri (Sekil 2.26)’daki

2 5
! A4
3 2 6

gibi olacaktir.

N

5

A
¥
6

A W T
Je

|
X
| N
9%
“i?»“
| —

Sekil 2.26 : ki boyutlu enine cercevedeki elemanlari serbestlik dereceleri.

Sisteme direkt yiik etkimedigi i¢in tlim elemanlarin direkt yiik vektorleri sifir
olacaktir. U¢ Moment Yontemi kullanilarak endirekt yiik vektdrleri bulunabilir. 1
numarali eleman i¢in cosfS =0, sinff =1, 2 numarali eleman icin cosf =1,
sin f = 0 ve 3 numarali eleman i¢in cos f = 0, sin f = 1 olacaktir. Dolayisiyla her

lic eleman i¢in transformasyon matrisleri bellidir. Global eksen takimina gore
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{FYxvz = [T1"{f }xy, denklemi kullamlarak endirekt yiik vektorlerinin agagidaki gibi

elde edildigi varsayilsin:

(1) (1) (1)
fs 7 2
1 2 3
leyz = 9 21 [ fXZYZ =9 ;iz [ fXSYZ =9 ;33 ¢ (2.106)
4
fe g fe
\f) \fZ) \f3)

Global eksen takimina gore eleman katihk matrislerinin [k]yxyz = [T]" [kl .[T]
denklemiyle asagidaki gibi elde edildigi varsayilsin:

[kiy kiy kis kia kis kig]
kzr ki kaz ki kas ki
ki ki kis ki, k3s ki

R 2.107
xrz ki1 kiz ki3 ki4 kiS kiG ( )
ki, ki, kis ki, kis ki
kg1 kép kiz kis kés kel
(ki ki, kis kis Kkis ki)
k%l k%z k§3 k§4 k%S k§6
k%, k3, ks k3, kis ki (2.108)

kyyz =
XYZ 2 2 2 2 2 2
k4-1 k42 k4-3 k4-4 k4-5 k46
2 2 2 2 2 2
k51 k52 k53 k54- k55 k56
2 2 2 2 2 2
—k61 k62 k63 k64 k65 k66—

k3, k3, k35 ki, kis ki)
k3, k3, k3 k3, k3s k3
k3. k3, k3, k3, k3. K3
k3 — 31 32 33 34 35 36 2109
2 TNkE k3, ki ki ks ke (2.109)
k3, k3, ki ki, ki ki
k3, kd, ks ki, ki kil

(Sekil 2.25)’de kiris elemanlarinin global eksen takimina gore serbestlik dereceleri
verilmigtir. Her bir kiris ig¢in, serbestlik derecelerinin global serbestlik
derecelerindeki karsiligi tablo halinde yazilabilir. Cizelge 2.1’de bu tablo

gosterilmistir.
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Cizelge 2.1 : Diizlem ¢ergeve i¢in kod numaralari tablosu.

Eleman 1 2 3 4 5 6
Sistem 0 0 0 1 2 3
Eleman 1 2 3 4 5 6
Kirig No 2 _
Sistem 1 2 3 4 5 6
3 Eleman 1 2 3 4 5 6
Sistem 4 5 6 0 0 0

Bu yonteme kod numaralari yontemi denir. Global matris bu tabloya bakilarak
olusturulur. Elemanlarin serbestlik dereceleri indekslerinin global serbestlik
derecelerinde hangi indekslere karsilik geldigi bulunarak global katilik matrisinin
elemanlar1 doldurulur. Ornegin 1 numarali elemanin k3, elemani global matriste
k,,’e karsiik gelmektedir. kis eleman1 k;,’ye karsilik gelir. k1, ise kq3’e karsilik
gelir. 2 numarali elemanm k2, eleman: global matriste kq;’e, k%, eleman: global
matriste k,,’ye karsilik gelir. Bu mantik ile biitiin elemanlarin indisleri tarandiginda
global matris olusturulmus olur. Elemanlarin katilik matrisi elemanlart global
matriste ayn1 elemana karsilik geliyorsa katilik elemanlarinin toplami global matrisin

o eclemanini olusturur. Global matris sonug¢ olarak denklem 2.108’deki gibi elde

edilir.
[leis + ki kas + ki, ki +kis k%, ks kfs
k3o + k31 kss + k3, kset+kiz ki, k3s k36
k= ke + K31 kgs + k3, kég+kis k3, k3s ks (2.110)
k3 k31 ks ki +kZs ki, + ks ks + ki
k3 ki1 kis k3 + ki, ki +kis K3z + ki
kéy kéy kés kit kd, K3+ kds ks + kG

Kod numaralar1 yontemi ylik vektorlerine de uygulanir. Denklem 2.111°de yiik

vektorlerinin elemanlarinin global yilik vektoriinde hangi numaraya karsilik geldigi

gosterilmistir.

1 2 3

(fllw -0 (flzw -1 (flsw -0

le -0 fzz ) f23 >0

-0 ff1-3 fil-0

f;}yz=<ﬁ1>_)1, fyz=<ﬁ2>_)4, X3YZ:<f43>—>4 (2.111)

1| > 2 2| —>5 3| > 5

fs1 3 fs2 e 126

\fe/ \f¢ \f3)
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Kod numaralarindaki ayn1 mantik ile global endirekt yiik vektorii asagidaki gibi elde

edilir:
(fi + Y
fi +f7
s TS5
= ]7;2 +f;43 > (2.112)
fE+f
\fé + f&)
Denklem 2.3 tekrar yazilsin;
{P} = [kl{d} + {f} (2.113)
{f} vektorii kars1 tarafa atilirsa;
{P} = {f} = [k]{d} (2.114)

olur. Burada tek bilinmeyen {d} vektoriidiir. Sistem Cramer Kurali veya Gauss
Eliminasyon Yontemi gibi lineer denklem ¢6ziicii herhangi bir yontemle ¢oziilerek
bilinmeyen {d} vektorii bulunabilir. Sonugta denklem 2.115’teki gibi bir vektor elde

edilir. Vektoriin boyutu miisterek sistemin serbestlik derecesi sayisiyla ayn1 olacaktir.

-~

(2.115)

Bundan sonra elde edilen bu deplasmanlar eleman denklemlerinde kod numaralar
mantigryla yerine konularak elemanin serbestlik dereceleri yoniindeki u¢ kuvvetleri
bulunur.
0
(o)

(P bz = bz { gt + i) (2116)

)
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{P?}xyz = [kiyz] S d, >+ {fitvz) (2.117)

{P?}xyz = [k3yz] S d, e+ {fivz) (2.118)

Daha sonra elemanlarin bulunan bu misterek yiik vektorlerinden lokal yiik

vektorlerine gecilir.

{p 1}xyz = [T]{P 1}XYZ (2.119)
{p 2}xyz = [TI{P Z}XYZ (2.120)
{p 3}xyz = [T]{P 3}XYZ (2.121)

Bu asamada kiris hakkinda her sey bilinmektedir. Bu u¢ kuvvetler ve momentlerden

artik kesit tesir diyagramlar ve sehim egrileri ¢izilebilir, gerilme analizleri yapilabilir.
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3. PROGRAMIN GELISTiRILMESI

Bu boliimde bitirme ¢alismasinda gemi enine ¢ergevelerinin yapisal analizini icra

etmek iizere gelistirilen bilgisayar programindan bahsedilecektir.

3.1 Programn Altyapisi

Programda nesne yonelimli programlama disiplinleri yogun olarak kullanilmistir.
Nesne yonelimli programlama class denilen sinif yapilariyla programlamadir. Her
smif kendi icinde degiskenler ve fonksiyonlar barindirir. Simuflar belirli
parametrelerle ya da parametresiz olarak baslatilabilir. Erisim diizenleyici anahtar
kelimelerle sinif igindeki degiskenler ve fonksiyonlar disaridan erisime agilabilir ya
da kapatilabilir. Bir smif baska bir sinifi baz olarak alabilir. Biitiin bu nesne
yonelimli programlama paradigmalari program ne kadar fazla kod igerse de, ne kadar
karmagik olsa da bir diizen saglar ve sistematik bir yap1 olusturmaya olanak tanir.

Ayrica modiilerlige de oldukca katkida bulunur.

Program gelistirilirken C# programlama dili kullamilmistir. C#, 2000 yilinda
Microsoft tarafindan gelistirilmis nesne yonelimli, genel maksatli bir programlama
dilidir (C# Language Specification, 2006). C#, Microsoft Windows platformlarinda
.Net Framework uygulama gelistirme kiitiiphanesini kullanarak c¢alisir. C++ iizerine
insa edilmis dil Java’dan etkilenmistir. C#, yliksek seviyeli bir dildir. C ve C++ gibi
diisiik seviyeli dillerden farkli olarak hafiza yonetimlerini dil kendisi otomatik olarak
yapar. Dolayisiyla C++ ve C dibi makine koduna yakin programlama dillerine gore
¢cok daha hizli yazilim gelistirilmesine olanak tanir. Buna karsilik performansi bu

sayilan diisiik seviyeli dillerden daha diisiiktiir.

Uygulamada platform olarak WPF (Windows Presentation Foundation) platformu
kullanilmigtir. WPF, C# ile gorsel program yazmaya olanak taniyan bir platformdur.
Microsoft tarafindan 2008 yilinda kullanima sunulmustur. Eski nesil form
uygulamalarinin aksine WPF vektor tabanhidir ve yazilan program degisen ekran
boyutlarina ve yogunluklarina otomatik adapte olur. WPF ayrica programin gorsel

ara yiizinin XAML (Extensible Application Markup Language) ile gelistirilmesine
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izin verir. XAML, Microsoft tarafindan XML’den tiiretilmis ve programlarin ara yiiz
tasariminda kullanilan bir bi¢imlendirme dilidir. Programlarin gorsel olarak

tasariminda oldukca kolaylik saglar.

Program .Net Framework uygulama gelistirme kiitiiphanesini kullanmaktadir.
Programin ¢aligmasi i¢in .Net Framework kiitiiphanelerinin hedef bilgisayarda yiiklii
olmas1 gerekir. .Net Framework, programlarin kullandig1 fonksiyonlar1 barindiran bir
platformdur. .Net Framework desteklenmedigi i¢in bu program Windows XP’den
once cikmis Windows isletim sistemlerinde c¢alismaz. Ayrica program sadece

Windows isletim sistemlerinde ¢alismaktadir.

3.2 Programda Kullamlan Kiitiiphaneler

Bir 6nceki boliimde bahsedilen temel platformlardan bagka bu bilgisayar yazilimda
disaridan alinmig bazi kiitiiphane ve kod parcalar1 kullanilmistir. Bu bdéliimde
bunlardan bahsedilecektir. Programda kiris ve mesnetlerin olusturulup grafik
cizimlerinin yapildig1 grafik ¢izme elementi olan Canvas smifi kullanilmigtir. Bu
sinifa ek olarak yine bu sinifin iizerine insa edilmis ve yakinlastirma ve tasima gibi

islevleri icra eden bir gorsel sinif kullanilmistir (Davis, 2011).

Kiriglerin atalet momentleri, yayili yiikler gibi kiris 6zelliklerinin degisken olarak
tanimlanmasina imkan taniyan bir polinom sinifi kullanilmistir (Alikhani, 2010). Bu
smifin icine kirisler, mesnetler ve yiikler ile ilgili olan fonksiyonlar gelistirilip
eklenmistir. Yine bu polinom smnifin iizerine pargali fonksiyon polinomu sinifi
gelistirilmistir. Kirislerde kullanilan smmif da budur. EK A’da Poly smifi

gosterilmistir.

Yayili yiikleri ¢izmek, moment, kuvvet, gerilme ve atalet momenti dagilimlarinin
¢izildigi Cardinal Spline adinda bir egri sinifi kullanilmistir (Floris, 2009). Bu sinif
noktalar1 verilen egriyi gorsel olarak ¢izen ve Kiibik Hermit Spline’dan tiiretilmis bir

sekil smifidir.

3.3 Programin Akisi

Program ilk olarak gorsel ara yiiziin dilini ayarlayarak baslar. Eger kullanic1 bir dili
sectiyse o dildeki c¢evirmeleri yiikler. Eger kullanici hicbir dili 6zel olarak

secmediyse program isletim sisteminin diline gore dili ayarlar. Eger isletim
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sisteminin dili programin ¢eviri dilleri veri tabaninda mevcut degil ise program
Ingilizce dilinde agilir. Su an igin programda Ingilizce ve Tiirkge dilleri

desteklenmektedir.

Kullanici ¢izim ortamina kiris ve mesnet ekledik¢e program bu kiris ve mesnetlerin
birbirine baglantilarin1 yapar. Kullanict sistemi istedigi gibi olusturup ¢6ziim butonu
basinca programda bir pencere belirir ve ¢ozlim ilerleme ¢gubugu goriiniir. Programda
¢Ozliim asamasindaki islemler ana is parcacigindan (main thread) ayr1 bir is
parcaciginda gergeklesir. Boylece ¢6ziim esnasinda programin donmasi engellenmis
olur. Ayrica kullanict ayarlar meniisiinden ¢o6ziim sirasinda tek veya cok is
parcacigmin kullanilmasimi secebilir. Bu durumda program c¢alistig1 bilgisayarin
cekirdek sayis1 kadar is parcacigi liretecektir. Bu is parcaciklari ayni anda farklh
kirislerde islem yaparak tek is parcacigina gore daha hizli ¢6ziime ulasilacaktir. Bu

durum karmasik bir gemi enine ¢ercevesinde ¢oziim siiresini oldukea kisaltir.

Burada ¢oziim ii¢ baslik altinda anlatilacaktir. Coziim Oncesi islemler, ¢oziimdeki
islemler ve ¢6ziim sonrast iglemler. Bu siniflandirma, miisterek sistem matrisine gore
yapilmistir. miisterek sistemin ¢dziimiinden Onceki biitiin islemler ¢oziim Oncesi
islemler basligi altinda incelenecektir. Miisterek sistem ¢oziildiikten sonraki islemler

de ¢6ziim sonrasindaki islemler basligi altinda incelenecektir.

3.3.1 Coziim oncesi islemler

Coziim islemi basladiktan sonra ilk olarak her kiris i¢in Calculate fonksiyonu
calistirthir. Kiris smifi olan Beam EK B’de verilmistir. Kiristeki Calculate
fonksiyonunda ilk olarak findconcentratedsupportforces ve
finddistributedsupportforces fonksiyonlari c¢agirilir. Bu fonksiyonlar kirig

tizerindeki tekil ve yayili yiikler durumdaki kirigin mesnet tepkilerini bulur.

Daha sonra findconcentratedzeroforce ve finddistributedzeroforce
fonksiyonlar1 ¢agirilarak tekil ve yayili yiikler i¢in ayr1 olarak yine kirigin her iki
ucunun serbest mesnet oldugu durumda kesme kuvveti dagilimlarini bulunur. Tabii
bu kuvvet dagilimlar1 par¢ali polinom smifindan (EK A’daki PiecewisePoly smifi)
olusacaktir. Daha sonra bu dagilimlar siiper pozisyon ilkesiyle toplanarak Fy(x)
argal1 polinomu elde edilir. Bu polinom kirisin her iki ucunun serbest mesnet olmasi

halinde etkiyen yiikiin olusturdugu kesme kuvveti dagilimidir.
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Sonra findzeromoment fonksiyonu cagirilarak F,(x) polinomu integre edilip
My(x) bulunur. My(x), daha once Clapeyron yonteminde gecen serbest mesnetli

haldeki moment dagilimidir. Burada yapilan integrasyon analitiktir.

Sonrasinda canbesolvedanalytically fonksiyonu cagirilarak kesit tesir dagilimini
elde etmek igin analitik ¢dziimiin yapilip yapilamayacagi kontrol edilir. Analitik
¢Oziim yapilabilmesi i¢in kirisin atalet dagilimi par¢ali polinomu sabit olmali ve tek
bir polinom icermelidir. Boylece U¢ Moment Denkleminde paydadaki I(x)
fonksiyonu sabit olacak ve integral sadece M (x) polinomuna bagli olacaktir. Burada
gelistirilmis olan polinom sinifi bu polinomu analitik olarak integre edebilir. Eger
atalet fonksiyonu sabit degilse Simpson Yontemiyle integraller niimerik olarak

hesaplanir.

mdsupportcases fonksiyonu cagirilarak {ic moment denklemi ¢oziiliir. Niimerik
integraller Simpson Metodu ile alinir. Burada kullanilan Simpson sinifi EK A’daki
SimpsonsFirstintegrator adli siniftir. Kirisin ucundaki ankastrelik momentler bu

asamada elde edilmis olur.

Sonra findfixedendmomentclapeyron fonksiyonu c¢agirilarak denklem 2.75
kullanilip nihai moment dagilimi bulunur. Bu islemden sonra updateforces

fonksiyonu ¢agirilir ve nihai kesme kuvveti dagilimi elde edilir.

Bu asamadan sonra kirislerdeki hesaplar bitmis olur.
createbasestif fnescoef ficients cagirilarak katilik matrisini olusturmak igin
gereken temel rijitlik katsayilar1 hesaplanir. Eger atalet momenti dagilimi ve alan
dagilimi sabitse integralleri almaya gerek yoktur. Eger degilse yine Simpson Metodu

ile niimerik integraller alinir.

Daha sonra createstif fnessmatrix fonksiyonu ¢agirilip katilik matrisi hesaplanir.
Once kiris acis1 sifir iken, eleman eksenlerinde tanimli katilik matrisi elde edilir.
Sonrasinda transformasyon matrisiyle denklem 2.105’teki gibi carpilarak kirigin
nihai katilik matrisi elde edilir. Bu islemler yapilirken EK A’daki transpose ve

matrixmultiply fonksiyonlarindan yararlanilir.

Son olarak ise createforcevector fonksiyonu ¢agirilir. Burada direkt ve endirekt
kuvvet vektorleri elde edilip denklem 2.114’teki formu elde etmek icin birbirinden

¢ikarilip sistem ¢oziimiinde kullanilacak nihai kuvvet vektorii elde edilir.

44



Biitlin bu islemler sistemdeki biitiin kirigler i¢in yapildiktan sonra miisterek sistem

¢Oziimiine gegilir.

3.3.2 Coziimdeki islemler

Biitiin kirislerin i¢in bir onceki bolimdeki hesaplar yapildiktan sonra EK C’deki
MDSolver smifinin Calculate fonksiyonu cagirilir. Bu simif misterek sistemi

olusturmak, ¢6zmek ve kirislere gerekli deplasmanlart iletmekle gorevlidir.

Calculate fonksiyonu ilk olarak createdofpairs adli fonksiyonu ¢agirir. Oncelikle
EK C’deki DOF adli siniftan olusan bir liste olusturulur. Her bir DOF sinifi,
miisterek sistemindeki bir serbestlik derecesine karsilik gelir. Simifta serbestlik
derecesinin tipi ve o serbestlik derecesinin hangi kiriglerin serbestlik derecelerine

karsilik geldigi bilgileri tutulur.

Sonrasinda createglobalstif fnessmatrix fonksiyonu cagirilip daha once elde
edilen listeden yararlanilarak miisterek katilik matrisi olusturulur. Katilik matrisinin
boyutlar1 listenin uzunlugu kadardir. Listedeki serbestlik dereceleri taranarak her bir
serbestlik derecesine karsilik gelen kiriglerin ilgili katilik matrisi elemanlari toplanip

matris olusturulur.

Daha sonra createglobalforcevector fonksiyonu gagirilarak katilik matrisindeki
gibi serbestlik derecesi listesinden yararlanilarak miisterek kuvvet vektori

olusturulur.

Sonra solvethesystem fonnksiyonu c¢agirilarak miisterek matris  sistemi
LinearEquationSolver fonksiyonuyla sistem ¢oziliir ve misterek deplasmanlar
bulunur. LinearEquationSolver fonksiyonu Gauss Eliminasyon yontemiyle ¢oziim
yapar. Matris degerleri double veri yapistyla tutuldugu i¢in herhangi bir pivotlama
teknigi uygulamasina gerek gorilmemistir clinkii double veri yapisi kesme

hatalarina kars1 15 ile 17 basamak arasinda hassasiyet saglar (Microsoft, 2018).

Son olarak obtainbeamdisplacements fonksiyonu ¢agirilarak elde edilen miisterek
deplasman vektoriinden yine serbestlik derecesi listesindeki bilgiler kullanilarak
Kirislere gerekli olan deplasman elemanlart verilir. Bu islem kiris smifinin
UpdateDirectForceVector fonksiyonu kiris i¢in olusturulan eleman deplasman
vektorli parametresiyle ¢agirilarak yapilir. Bu fonksiyonda denklem 2.116°daki islem

yapilir. Kirisin eleman katilik matrisi, parametre olarak verilen deplasman vektoriiyle
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EK A’daki DotProduct fonksiyonu kullanilarak carpilir ve elde edilen sonug yine
EK A’daki AddVector fonksiyonu kullanilarak endirekt yiik vektoriiyle toplanir.

Sonug olarak kirisin nihai kuvvet vektorii ¢oziime gore giincellenmis olur.

3.3.3 Coziim sonrasi islemler

Kiriglerin yiik vektorleri giincellendikten sonra biitiin kirislerin PostProcessUpdate

fonksiyonu cagirilir.

Bu fonksiyon once obtainlocalforces fonksiyonunu g¢agirir. Burada fonksiyon
denklem 2.102’deki ifadeyi kullanarak giincellenmis, miisterek eksende ifade edilmis
eleman nihai yilik vektoriinii kirisin transformasyon matrisiyle carparak lokal

eksenlerdeki karsiligini bulur.

Daha sonra updatemoments fonksiyonu ¢agirilir. Lokal eksene gore hesaplanmis
olan bu yiik vektoriiniin 3. ve 6. Elemanlarini alir. Bu elemanlar sirasiyla kirisin sol
ve sag uglarindaki momentlere karsilik gelir. Sonra yine denklem 2.75°teki ifade

kullanilarak kirisin nihai moment dagilimi olusturulur.

Sonra updateforces fonksiyonu g¢agirilir. Elde edilen nihai moment dagiliminin

tiirevi alinarak kirisin kesme kuvveti dagilimi olusturulur.

Sonrasinda updateaxialforces fonksiyonu g¢agirilarak eksenel kuvvet dagilimi
lokal eksene gore hesaplanmis ylik vektoriiniin 1. ve 4. Eleman1 kullanilarak elde

edilir.

Son olarak eger kullanici gerilme analizi yapmak istediyse updatestresses

fonksiyonu c¢agirilarak denklem 3.1 kullanilarak gerilme dagilimi olusturulur.

~ M(x)y(x)

3.4 Sistem Gereksinimleri

Programin ¢aligmasi igin Onerilen sistem gereksinimleri asagidaki gibi siralanabilir;
e Windows XP veya daha sonrasinda ¢ikmis Windows isletim sistemleri
e .Net 4.5 Framework veya {izeri versiyonlar1

e Minimum 512 MB Ram
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e Minimum 256 MB DirectX 9 veya iizerini destekleyen Ekran karti
e Minimum 1 GHz islemci hizi

Bu gereksinimlerde ilk ikisi saglanmadik¢a programin ¢alismasi imkansizdir. Diger
gereksinimler programin verimli ve yeterince hizli bir sekilde c¢alismasi igin

gereklidir ve heniiz denenmemis olsa da bu verilen degerlerin altinda da ¢alisabilir.
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4. PROGRAMIN KULLANIMI

Bu tez kapsaminda gelistirilen program gorsel kullanici arayiiziine sahiptir. Proje adi

MesnetMD olan programin bu boliimde kullanicilar tarafindan nasil kullanilacagi

anlatilacaktir.

4.1 Programa Genel Olarak Bakis

Programin araytizii (Sekil 4.1)’deki gibidir. A¢ik mavi renkle goriilen bir ¢izim alani

vardir. Olusturulan kiris sistemi burada goriiliir. Yanlarda kiris, mesnet ve yiik

eklemek igin butonlar bulunmaktadir. Ustte ¢ziim butonu ve silme butonu, en iistte

de menii butonlar1 vardir. Sag tarafta eklenen kirig ve mesnetler hakkinda ayrintili

bilgi iceren bir aga¢ yapisi vardir. Asagida biitlin gorsel Ogeler ayrintili olarak

aciklanmustir.

130D | 5:.2,4[ S KR [N R N K
?'\4 14 c 16 17 18 19
-5
A -‘_-21.8 kNm 2kt
h<7 -17.4 kNm
-7.4 kNm
20 kNm
0 kigym
3.6 kNm
16.1 kNm
A1 23

Sekil 4.1 : Programin ekran goriintiisii.
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1)

2)

3)

4)

5)

6)

7)

8)

9

Programdaki ¢izim alanidir. Bu alana kirisler, mesnetler ve yiikler eklenir.

Kuvvet, moment, gerilme ve atalet momenti dagilimlari bu alanda gosterilir.

Eklenen kirisleri ve bu kirisler hakkindaki bilgileri gosteren aga¢ goriiniimi
(Tree View). Kirisin uzunlugu, iizerindeki tekil ve yayih yiikler, kirisin atalet
momenti, kirigin ilizerindeki yiikk, moment, kuvvet ve gerilme dagiliminin

bilgiler gosterilir. Kirisin her iki ucuna baglanan mesnetler gosterilir.

Eklenen mesnetlerin ve bu mesnetler hakkindaki bilgilerin gosterildigi agag
goriniimiidiir. Mesnede hangi kiriglerin hangi tarafinin baglandig1 burada

gosterilir.

Kiris ekleme butonudur. Bu butona basinca kiris ekleme penceresi ¢ikar.

Kullanic1 pencereden istedigi kirigin 6zelliklerini girerek ¢izim alanina ekler.

Ankastre mesnet ekleme butonudur. Kullanict kirisin sag veya sol ucunu

segerek bu butona basar. Segilen uca ankastre mesnet eklenmis olur.

Basit mesnet ekleme butonudur. Kullanici kirisin sag veya sol ucunu segerek

bu butona basar. Secilen uca basit mesnet eklenmis olur.

Kayic1 mesnet ekleme butonudur. Kullanic1 kirisin sag veya sol ucunu

secerek bu butona basar. Secilen uca kayici mesnet eklenmis olur.

Tekil yiik ekleme butonudur. Kullanic1 herhangi bir kirisi secerek bu butona
basar. Tekil ylik ekleme penceresi acilir. Bu pencereden tekil yiikiin yeri ve

siddeti girilerek kirise tekil yiik eklenir.

Yayil yiik ekleme butonudur. Kullanict herhangi bir kirisi segerek bu butona
basar. Yayili ylik penceresi acilir. Yayili yiik veya yliklerin fonksiyonu ve

etki aralig1 bu pencereden secilerek kirise yayil yiik eklenir.

10) Olgek ¢ubugudur. Kullanici bu gubugu asagi ya da yukari kaydirarak hizli bir

sekilde ¢izim alanini yakinlagtirip uzaklastirabilir.

11) Olgek kutucugudur. Kullanici ¢izim alaninin Slgegini buradan goriir ve

istedigi Olgedi girerek yakinlastirma veya uzaklastirma yapabilir.

12) Koordinat etiketidir. Orijine gore imlecin konumunu anlik olarak gdsterir.

13) Coziim butonudur. Kullanic1 tarafindan olusturulan diizlem ¢ergeve

sisteminin ¢Oziimiiniin baglatildigi butondur. Bu butona basilinca ¢6ziim
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penceresi acilir ve penceredeki ilerleme c¢ubugunda ¢Oziimiin ilerleme
durumu goriiliir. Cozlim bittiginde bu pencere kapanir ve elde edilen sonuglar

kullaniciya sunulur.
14) Atalet momenti dagilimlari grafigi gésterme/gizleme butonudur.
15) Kesit alan1 dagilimlar grafigi gosterme/gizleme butonudur.
16) Yayili yiik dagilimlar grafigi gosterme/gizleme butonudur.
17) Tekil yiik dagilimlar1 grafigi gésterme/gizleme butonudur.
18) Egilme moment dagilimlar1 grafigi gésterme/gizleme butonudur.
19) Kesme kuvveti dagilimlart grafigi gésterme/gizleme butonudur.
20) Eksenel kuvvet dagilimlari grafigi gosterme/gizleme butonudur.
21) Gerilme dagilimlar grafigi gésterme/gizleme butonudur.

22) Cergeve sistemi silme butonudur. Cizim alanindaki biitiin kiris ve mesnetleri

siler.
23) Mesaj kutusudur. Programin igleyisi hakkinda kullaniciyi bilgilendirir.

24) Dosya meniisiidiir. Kullanict olusturdugu kiris sistemini  bir dosyaya
kaydedebilecegi ya da daha once kaydedilmis bir kiris sistemini

yiikleyebilece§i mentileri icerir.

25) Ayarlar menisiidiir. Bu butona basinca ayarlar penceresi agilir. Kullanici
buradan programin dilini ve hesaplama yontemini segebilir. Programin dili
Ingilizce veya Tiirkge olabilir. Hesaplama ydntemi ¢ok islem pargacikli ya da
tek islem pargacikli olabilir. Cok islem pargacikli hesap yonteminde
bilgisayarin giiciine bagl olarak ayn1 anda birden fazla kirisin hesab1 yapilir.

Genelde tek is parcacikli hesaba gore daha kisa stirer.

26) Testler meniisiidiir. Hali hazirda program iginde tanimlanan c¢ergeve
sistemleri burada mevcuttur. Herhangi bir c¢erceve sistemi segildiginde
program o gergeve sistemini yiikler. Programda ¢6ziimiin dogrulugunun test

edilmesi amaciyla eklenmistir.

27) Hakkinda meniisiidiir. Programin gelistiricisi, danismani, programin lisansi

ile ilgili bilgilerin yer aldig1 pencereyi agar.
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4.2 Programda Bir Kirisin Eklenmesi

(Sekil 4.2)’deki resimde kiris ekleme penceresi gosterilmis ve numaralandirilmistir.

1)

2)

3)

4)

Y1 Kiris Ekle X

Kirig Uzunlugu: | 1 m@

Elastisite Modilg: | 200 GF'a@

Ag:| O | Derece @
| Gerilme Analizi Yap @
G} Sabit Atalet Momenti @
~ N _
G/ Dorusal Atalet Momenti @
@ Degisken Atalet Momenti @

Sekil 4.2 : Kiris ekleme penceresi.

Kullanic1 tarafindan kiris uzunlugunun girildigi yazi1 kutucugudur. Kirig
uzunlugu metre cinsinden girilmelidir. Eger gecersiz bir giris yapilirsa

kutucugun arka plan rengi kirmizi gegerli giris yapilirsa yesil olur.

Kullanicr tarafindan kirisin Elastisite modiiliiniin girildigi yazi kutucugudur.
Elastisite modiilii GPa cinsinden girilmelidir. Eger gegersiz bir giris yapilirsa

kutucugun arka plan rengi kirmizi gegerli giris yapilirsa yesil olur.

Kirigin agisimin girildigi yazi kutucugudur. Varsayilan degeri sifirdir. A¢i
degeri derece cinsinden girilmelidir. Eger gecersiz bir giris yapilirsa
kutucugun arka plan rengi kirmuzi gegerli giris yapilirsa yesil olur. Kiris
eklenirken bu a¢1 degerine gore dondiriiliir. A¢1 degeri ayni zamanda kiris

eklendikten sonra da dondiirme butonundan degistirilebilir.

Gerilme analizinin yapilip yapilmayacag: ile ilgili olan isaret kutucugudur.
Eger gerilme analizi yapilacaksa bu kutucuk isaretlenir. Isaretlendikten sonra
bu kutucugun altinda maksimum miisaade edilen gerilmenin MPa olarak
girilecegi bir kutucuk daha ¢ikar. Maksimum miisaade edilen gerilme degeri
varsaylilan olarak 150 MPa’dir ve kullanict bu degeri degistirebilir. (Sekil

4.3)’te gerilme analizi kutucugunun isaretlendigi durum gosterilmistir.

52



Y1 Kiris Ekle %
Kirig Uzunlugu: | 1 m
Elastisite Modild: | 200 | GPa

Agi:| O | Derece
Gerilme Analizi Yap

[zin verilen en yiksek gerilme 150 | MPa

(%) sabit Atalet Momenti
@ Darusal Atalet Momenti

@ Degisken Atalet Momenti

Sekil 4.3 : Gerilme analizi kutucugu isaretlendiginde ortaya ¢ikan miisaade edilen
gerilmenin girildigi kutucugun goriindiigii ekran gorlintiisii.

5) Kirise sabit atalet momentinin eklenmek istendigi zaman tiklanan agilir
kapanir alandir. Bu alana tiklandiginda (Sekil 4.4)’teki alan ve atalet momenti
giris alam acilacaktir. Atalet momentinin cm* cinsinden, alan ¢m? girilmesi
gerekmektedir. x; ve x, degerleri girilen alan ve atalet momenti degerinin
kiristeki baglangic ve bitig noktalaridir. Bu noktalar varsayilan deger olarak 0
ve kirig uzunlugu kadardir. Yani program girilecek alan ve atalet momentinin
kiris boyunca etkili oldugunu baslangigta kabul eder. Kullanic1 bu degerleri

degistirerek kirisin farkli bolgelerine farkli alan ve atalet momenti atayabilir.

Kirig Ekle

Kirig Uzunlugu: 1 m
Elastisite Modala: | 200 | GPa

Agi: 0 Derece

[[] Gerilme Analizi Yap

(w) Sabit Atalet Momenti

=1 cm”4

I, A

0 R
X, =0 m

- L =
= m

Ekle

@ Dodgrusal Atalet Momenti

@ Degisken Atalet Momenti

Sekil 4.4 : Sabit atalet momentinin girildigi alan1 gosteren kiris ekleme penceresi.

53



6) Kirise dogrusal degisen alan ve atalet momentinin eklenmek istendigi zaman
tiklanan agilir kapanir alandir. Dikdortgen kesitli bir kiriste yiiksekligin
degismedigi ancak genisligin dogrusal olarak arttig1 durum buna 6rnek olarak
gosterilebilir. Bu durumda atalet momenti kiris boyunca ya da kirigin bir
kisminda dogrusal olarak artacaktir. (Sekil 4.5)’te bu alan gosterilmistir. Bu
durumda sabit atalet momentinden farkli olarak bastaki ve sondaki atalet

momentinin yine cm* cinsinden alanm yine cm? girilmesi gerekecektir.

Kirig Uzunlugu: m

Elastisite Modild: 200 GPa
Agi: 0 Derece

[[] Gerilme Analizi Yap

(v) Sabit Atalet Momenti

@ Dogrusal Atalet Momenti

|1=1 cmhd
I2=1 cmhd
I, A
2rM2 - A
ly, A A= cmA2
I/;/L A= cmA?2
X X
1 2 x,=[0 m
X, =/ m

Ekle

@ Dedigken Atalet Momenti

Sekil 4.5 : Dogrusal degisen atalet momentinin girildigi alan1 gosteren kiris ekleme
penceresi.

7) Kirise degisken alanin ve atalet momentinin eklenmek istendigi zaman
tiklanan agilir kapanir alandir. (Sekil 4.6)’da bu alan gosterilmistir. Burada
alan ve atalet momenti olarak katsayilari reel say1 ve isleri pozitif reel say1
olan polinomlar girilmesi istenmektedir. Tabii bu polinomlarin kirisin fiziksel
olarak anlamsiz olmamasi i¢in hi¢bir noktasinda alanin ve atalet momentinin
sifira esit ya da sifirdan kiiciik olmamasi gerekir. Bu durum program
tarafindan kontrol edilir. Eger polinom herhangi bir noktada sifira esit ya da
sifirdan kiigiik ise kullanici uyarilir ve bu polinom alan ya da atalet momenti

fonksiyonu olarak kabul edilmez.
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Kirig Ekle

Kirig Uzunlugu: 1 m
Elastisite Modula: 200 GPa
Agie 0 Derece

[[] Gerilme Analizi Yap

(%) sabit Atalet Momenti

@ Dogrusal Atalet Momenti

@ Degisken Atalet Momenti

I(x)=1 cm™4
1(x), A(x)
Ax)= cmh2
DS 0 m
X %
DO 1 m
Ekle

Sekil 4.6 : Degisken atalet momentinin girildigi alan1 gdsteren kiris ekleme
penceresi.

8) Eklenen atalet momentlerinin gosteriligi alandir. Hangi atalet momentinin
hangi nokta araliklarinda atandig1 buradan goriilebilir. Alttaki bitir butonuna

basilinca kiris ekleme penceresi kapanir ve kiris ¢izim alanina eklenir. (Sekil

4.7)’de gosterilmistir.

Kirig Ekle
Kirig Uzunlugu: 4 m I{x) = 20x*4+5x+10
Elastisite Moduald: 200 GPa Alx) = 50x"2+5 E
Agi: 0 Derece O<=x<=2
Gerilme Analizi Yap I() = 50x"4-40x
Alx) = 250
(%) Sabit Atalet Momenti % =
2e=x<=4
@ Dagrusal Atalet Mamenti
@ Degigken Atalet Momenti Bitir ‘

Sekil 4.7 : 2 farkli atalet momenti ve alan atanmis kiris penceresi.

Kirise pargali fonksiyon halinde polinom olarak degisen, lineer olarak degisen ve
sabit atalet momentleri istenilen sayida eklenebilmektedir. Burada eklenen pargali
fonksiyonlarinin higbirinde x araliklari birbirinin i¢ine gegmemelidir. Program bu
durumu kontrol eder ve boyle bir atalet momentinin eklenmesini kabul etmez. Belli
bir aralikta sadece 1 tane atalet momenti tanimli olmas1 gerekmektedir. Ayrica bitir

tusuna basildiginda program atalet momenti tanimlanmamis herhangi bir x aralig
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olmadigini da kontrol eder ve bu duruma izin vermez. Ciinkii gercek bir kirisin her
noktasinda bir atalet momenti olmasi gerekir. 8 numarali maddede bahsedilen alanda
ayn1 zamanda eklenen atalet momentleri ¢ikarilabilir. Bunun i¢in (Sekil 4.7)’de
goriilen her atalet momentinin saginda eksi isaretli bir buton bulunmaktadir. Bu
butona basilarak ilgili atalet momenti ¢ikarilir. Yanlislikla eklenen atalet momentleri

boylece diizeltilebilir.

Eger kullanic1 gerilme analizi yapmak i¢in isaret kutucugunu isaretlemisse bu kiris
i¢in her noktada e ve d degerleri istenecektir. Burada d kirisin o noktadaki kesitinin
yiiksekligi ve e tarafsiz eksenin mesafesidir. Bu iki deger cm olarak istenmektedir.
Dolayistyla bu degerlerin girilecegi 6zel bir alan agilir. (Sekil 4.8)’de degisken atalet
momenti alaninda bu durum gosterilmistir. Atalet momenti polinom olarak degistigi
icin e ve d polinom olarak istenecektir. Bu degiskenler dogrusal atalet momentinde
de polinom olarak alinir. Sadece sabit atalet momentinde bu iki deger sabit olarak

istenir.

Kirig Ekle

Elastisite Moduild: 200 GPa

Agi: 0 Derece

Gerilme Analizi Yap

izin verilen en yiksek gerilme | 150 | MPa
(%) Sabit Atalet Momenti

@ Dogrusal Atalet Momenti

@ Degigken Atalet Momenti

I(x)="1 cm”4
10, Al Ax)=1 cmh2
X,=0 m
X, X, 1
X,= m

el_?g Id e(x)= cm
= dx)="0 cm

Ekle

Sekil 4.8 : Gerilme analizi yapilacagi durumdaki atalet momenti alani.

Gerilme analizi yapmak iizere tasarlanmis kiriste diger kirislerden farkli olarak
gerilme dagilimi grafigi eklenebilir ve kirisin kritik kesitinin olup olmadig kolayca

goriilebilir.

56



4.3 Programda Kirise Yiik Eklenmesi

(Sekil 4.9)’da yayil yiik ekleme penceresi gosterilmistir.

Y1 Vayih Yk Ekle *

@ Duzgdn Yayih Yk

q,="° kN/m
Yo 0
X, = m
_3
X, m
X, X;
Ekle

@ Dogrusal Yayih Yik

@ Degisken Yayl Yiik

Sekil 4.9 : Yayil yiik ekleme penceresi.

Kullanic1 diizgiin, dogrusal ve degisken yayili yiik olmak iizere 3 farkli yiik
ekleyebilir. Diizgiin yayili yiikte kullanici sabit yok olan g, degerini girmelidir. Bu
penceredeki tim yiikler kN/m cinsinden girilir. x; ve x, yayili yiikiin Kkirig
tizerindeki baslangi¢ ve bitis noktasidir. Ekle tusuna basilinca yayili yiikiin eklendigi

sag taraftaki alanda goriilecektir.

(Sekil 4.10)’da dogrusal yayili yiik ekleme alani1 gosterilmistir. Burada g, ve g,
yay1l1 yiikiin basindaki ve sonundaki degerlerdir.

Y1 Vayih Viik Ekle e
@ Dazgin Yayh Yok

@ Dogrusal Yayh Yk

q,=""  kN/m
q % 2 kN/m
w0
—[3
X3 X, 2T m
Ekle

@ Degigken Yayih Yk
Sekil 4.10 : Yayili yiik ekleme penceresinde dogrusal yayili yiik alanin goriiniisii.
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(Sekil 4.11)’de degisken yayili yiik ekleme alan1 gosterilmistir. Burada q(x) yayili
yiikiin polinomudur. Sag taraftaki alanda goriildiigii gibi kirise hem diizglin hem
dogrusal hem de degisken yayili yiik eklenmistir. Eklenen yayili yiiklerden herhangi
sag tarafindaki eksi butonun basilarak cikarilabilir. Béylece hatayla eklenen yayili

yiikiin ¢ikarilmasina imkan taninmais olur.

Iyl Yayih Yak Ekle x
@ Dizgdn Yayih Yk qfx) = 10
@ Dogrusal Yayih Yik 0<=x==1
@ Degdisken Yayih Yik glx) = 20x-10
q{x): Jxh2 kN}(m Teczxe=2
qx) X,= o m g = 30x"2 =
W]\' xg: m 2ezx==3
X4 X5
Ekle Bitir

Sekil 4.11 : Yayil yiik ekleme penceresinde degisken yayil yiik alanin goriiniisii.
4.4 Programda Ornek Bir Kiris Sistemi Olusturulmasi ve Coziilmesi

En kesitleri (Sekil 4.12)’deki gibi olan 3 kiris eklenerek ornek bir gemi cercevesi

olusturulacaktir.

8 cm

5cm 4 cm 5cm
Kirig 1 Kirig 2 Kiris 3
Sekil 4.12 : Eklenecek kirislerin kesitleri.

Oncelikle kiris butonuna basilir ve kiris penceresi otomatik olarak acilir. Kiris
uzunlugunu 3 metre ve a¢1 90 derece girilmistir. Bu durumda 3 metrelik dikey bir

kiris olusturulacaktir. Elastisite modiilii varsayillan deger yani 200 GPa olarak
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secilmistir. Gerilme analizi yapmak lizere tiklanmistir. (Sekil 4.12)’den anlasilacagi
gibi atalet momenti 416.667 cm* ve alan 50 cm? olacaktir. Ayrica tarafsiz eksen
mesafesi e = 5 cm ve kirigin yiiksekligi d = 10 cm olacaktir. Her 3 kirigin atalet
momenti kiris boyunca kendi iclerinde sabit olacaktir. Bu veriler girildikten sonra
atalet momenti eklenerek bitir tusuna basilir. Kiris eklenmis olacaktir. Kirigin

goriinimii (Sekil 4.13)’teki gibi olacaktir.

Sekil 4.13 : Kiris 1.

Kirisin iizerine tiklanarak secilir. (Sekil 4.14)’te secilmis kiris gosterilmistir.

o

o

Sekil 4.14 : Se¢ilmis olan kirisin goriiniisii.

Goriildiigii gibi secilen kirisin her iki ucunda yesil cemberler ortaya ¢ikar. Alttaki

cembere tiklanirsa (Sekil 4.15)’teki gibi gemberin rengi sar1 olur.
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Sekil 4.15 : Alt cemberi se¢ilmis kirisin goriiniisii.

Kirisin bu ucu segilmistir. Su durumda basit ve ankastre mesnet butonlar1 aktif olur.
Ankastre mesnet butonuna basinca bu se¢ilmis olan ¢emberin oldugu yere ankastre
mesnet eklenecektir. (Sekil 4.16)’daki ankastre mesnet eklenmis hali gosterilmistir.
Ankastre mesnet eklendiginde kiris tekrar secildiginde ankastre mesnet eklenen
tarafta cember goriilmeyecektir. Bunun nedeni ankastre mesnet eklenen tarafa bagka

bir mesnet ya da kiris eklenemeyecek olmasidir.

Sekil 4.16 : Ankastre mesnet eklenmis kirisin goriiniisii.

Kiris yeniden secilip diger ugtaki gember segilsin ve basit mesnet tusuna basilsin. Bu
durumda diger uca basit mesnet eklenmis olacaktir. (Sekil 4.17)’de kirisin yeni hali

gosterilmistir.
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Sekil 4.17 : Ankastre ve basit mesnet eklenmis kirisin goriiniisii.

Kiris yeniden seg¢ildiginde sadece basit mesnet tarafindaki ¢ember goriiniir olacaktir.
Bu ¢embere yeniden tiklanir ve kiris butonuna basilirsa ilk kiristeki gibi kiris ekleme
penceresi acilacaktir. Buraya ikinci kirisin 6zellikleri girilecektir. Uzunlugu 4 metre
olacaktir. (Sekil 4.12)’ten anlagilacag: gibi atalet momenti 170.667 cm* ve alanm
24 cm* olacaktir. Tarafs1z eksen mesafesi e = 4 cm ve kirisin yiiksekligi d = 8 cm
olacaktir. Bu kirisin a¢1 degeri 0 derece olarak birakilacaktir. Boylece bitir tusuna

basilinca yatay bir kiris eklenecektir. (Sekil 4.18)’deki kiris sistemi ortaya ¢ikacaktir.

i N

TR

Sekil 4.18 : Ikinci kirisin eklendikten sonra sistemin goriiniisii.

Ikinci kirigin diger ucuna basit mesnet daha 6nce anlatildig1 gibi eklenir. Daha sonra
yine bu ugtaki ¢cember secilerek kiris butonuna basilir ve {igiincli kiris i¢in kiris
ekleme penceresi goriiniir. Bu kirigin de uzunlugu 3 metre olaraktir. A¢isi -90 derece
girilir. Atalet momenti, tarafsiz eksen uzunlugu ve kirisin yiiksekligi ilk kirisin aynisi
olacaktir. Ugiincii kiris de eklendiginde alt ucuna ankastre mesnet eklenince (Sekil

4.19)’daki sistem ortaya ¢ikacaktir.
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Sekil 4.19 : Ugiincii kirisin eklendikten sonra sistemin goriiniisii.

Aslinda bu kiris sistemi basit bir gemi ¢ergevesidir. Geminin dip yapisinin ataleti cok

yiiksek oldugu i¢in postalarin dibe baglandigi yerler ¢ogunlukla ankastre kabul edilir.

Birinci kirisi se¢ip yayili yiik butonuna basilarak (Sekil 4.20)’de gosterilen yayili yiik

eklensin.

Iyl Vayil Yk Ekle
@ Dizgdn Yayh Yk

@ Dodgrusal Yayih Yik

gz
91

@ Degisken Yayh Yok

q,=* kN/m

q,=" kN/m

x,=|° m

X,= 2 m
Ekle

Sekil 4.20 : Birinci eklenecek olan yayili yiikiin goriiniisti.

Ugiincii kirise de aym1 yayil yiik eklensin. Bu yayili yiik draft1 2 metre olan geminin

bordasindaki hidrostatik basincin mukavemet modelidir. ikinci kirise de 10 kN/

m’lik kirs boyunca diizgiin yayili yiik eklensin. Bu giiverte yiikiinii temsil eder. Son
durumda sistem (Sekil 4.21)’deki gibi olacaktir.
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Sekil 4.21 : Yayili yiikleri eklenmis kiris sisteminin goriiniisii.

Biitiin kirisler ve yiikler eklendigine gore artik ¢oziime gegilebilir. Bunun icin
yapilmasi gereken tek sey sol iist taraftaki menii gubugundaki ¢6z tusuna basmaktir.

Tusa basildiginda (Sekil 4.22)’deki pencere agilacaktir.
Y Cross Cozicd — O >

Hesaplanyor Kirig 3

Sekil 4.22 : Kiris sistemi ¢oziiliirken agilan pencere.

Coziim islemi bittikten sonra pencere kapatilacak ve (Sekil 4.23)’teki moment

dagilimlar ortaya ¢ikacaktir.

Sekil 4.23 : Kiris sisteminin egilme moment dagilima.
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Yine yukaridaki menii gubugundan moment dagilimlar: gizlenip kuvvet dagilimlarini

gosterilirse (Sekil 4.24)’teki kuvvet dagilimi ortaya ¢ikacaktir.

Sekil 4.24 : Kiris sisteminin kesme kuvveti dagilimi.

Kuvvet dagilimi gizlenip gerilme dagilimi gosterildiginde (Sekil 4.25)’teki goriiniim
elde edilecektir. Kirig sisteminde miisaade edilen maksimum gerilme 150 MPa
olarak girilmistir. ikinci kiriste gerilme degerleri bu smir degeri astif1 icin bu asan
yerler kirmizi renkte gosterilmistir. Ayrica 150 MPa st grafik iizerinde

cizilmistir.

Sekil 4.25 : Kiris sisteminin gerilme dagilima.
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5. SAYISAL CALISMA

5.1 Degisken Kesitli Cerceve Ornegi

(Sekil 5.1)’de degisken kesitli bir cergeve goOsterilmistir. 1 ve 3 Kirislerinin
yiikseklikleri dogrusal olarak degismektedir. 2 kirisi ise uglarindan braketlenmis
olarak diigiiniilebilir. 2 numaral kiris 15 kN /m sabit yayili ylikiiyle yliklenmistir. 1
ve 3 numarali kirigler ise maksimum degeri 10 kN /m olan ve kiris sonunda sifira

giden dogrusal yayili yiikle yiiklenmistir.

15 kN/m
2
=k 3
—
10 kN/m 10 kN/m

Sekil 5.1 : Degisken kesitli enine cerceve.

(Sekil 5.2)’de kirislerin kesit yiikseklikleri gosterilmistir. Ayrica her bir kirisin

derinligi 30 cm’dir.

0,5m 2 0,5m
— L=5m A
‘ h=5 cm ‘
h=10 cm 1 h=10 cm
L=4m
|/I§ cm
h=10 cm 3
L=4m
h=5cm\l
h=10 cm

Sekil 5.2 : Degisken kesitli enine ¢erceve kirislerinin boyutlari.
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Oncelikle kiriglerin her iki ucu ankastre mesnet iken moment dagilimi U¢ Moment

Y ontemiyle bulunmalidir.

hy(x) = h3(x) =10 — 1.25x (5.1)

I,(x) = I;(x) = 2500 — 937.5x + 117.1875x% — 4.8828x3 (5.2)

10 — 10x, 0<x<0.5
hy,(x) = 5, 05<x<45 (5.3)
10x — 40, 45<x<5

I (x)

2500 — 7500x + 7500x% — 2500x3, 0 < x < 0.5
= 312.5, 0.5<x<45
—160000 + 120000x — 30000x2 + 2500x3, 45<x<5

(5.4)

5.1.1 Analitik ¢6ziim
(Sekil 5.3)’te 1 numaral kiris i¢in sanal kiris kabulii yapilmistir.

a(x)

Sekil 5.3 : Degisken kesitli enine ¢ergeve kirisi i¢in sanal kiris kabulii.

Bu sanal kiris kabulii yapilan kiris sisteminde denklem 2.82°deki Ug Moment
Denklemi her iki kiris parcacigi i¢in yazilip atalet dagilimi yerine konulursa

asagidaki sonuglar elde edilir.

M, = —10.875 kNm, My = —3.0368 kNm (5.5)

Ayni islemler 2 numarali kiris i¢in yapildiginda asagidaki sonuglar elde edilir.

M, = —34.7032 kNm, My = —34.7032 kNm (5.6)
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3 numarali kiriste bulunacak sonug¢lar 1 numarali kirisle ayni olacaktir. Burada
kullanilan isaret sistemi kirig teorisi isaret sistemidir. Mukavemet hesaplarindan

yararlanilarak kirislerin mesnet tepkileri (Sekil 5.4)’teki gibi olur.

34.703 KNm 34,703 kNm
— —-
O kN 2 0 kN
137.5 kN 37.5 k1
0 kN
0 kN
T <— —_—
10.875 kNm 10.875 kN 10.875 kN 10.875 kNm
1
7 1
3.037 kNm 15.293kN X/‘ >
U 15.293kN 3.037 kNm
< — %!/

Fou y
O kN

Sekil 5.4 : Degisken kesitli enine ¢ergeve kirislerinin mesnet tepkileri.

Sistemin serbestlik dereceleri (Sekil 5.5)’teki gibi olacaktir.

15 kN/m

i A A

V 3
3/%“ 2 J 4

s ™

N »

[

o

3
) i
X SINRS
10 kN/m 10 kN/m

Sekil 5.5 : Degisken kesitli enine ¢ergeve sisteminin serbestlik dereceleri.

Kiris 1 ve 3’iin ag1sal konumu miisterek eksen takimina gore 90°dir. Kiris 2’nin ise

acisal konumu 0°’dir. Béliim 1.2.4°teki degisken kesitli kirisler i¢in atalet ve alan
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fonksiyonlar1 konularak hesaplar yapilirsa temel rijitlik katsayilar1 agagidaki gibi elde

edilir.

= 1.0654

= 1.4428

mj; = 19.4515, mj; = 6.8642, mj; = 5.7265, nj; = 1.4428
mf; = 5.5441, m}; = 55441, m}; = 3.2584, n};
m}; = 19.4515, m}; = 6.8642, m}; = 5.7265, n;;

(5.7)

(5.8)

(5.9)5.7)

Biitiin  kirigler i¢in elastisite modiili 210 GPa alinmistir. Kiriglerin miisterek

eksenlere gore katilik matrisi asagidaki gibi elde edilecektir.

1.1362 0. 0. —1.1362
[ 0. 0.0039  0.001 0.
R 0. 0.001  0.0003 0.
XYz 7111362 0. 0. 1.1362
0. —0.0004 —0.001 0.

| 0. 0.0005 0.0009 0.
[06712 0. 0. —0.6712

0.0001  0.0002 0.

| 0.0002  0.0007 0.
“xvz = 06712 0. 0. 0.6712
l 0. —0.0001 —0.0002 0.

0. 0.0002  0.0004 0.
- 1.1362 0. 0. —1.1362

0. 0.0039  0.001 0.

K3 = 0. 0.001  0.0003 0.
X¥YZ 7 1_.1.1362 0. 0. 1.1362
0. —0.0004 —0.001 0.

0. 0.0005  0.0009 0.

Kiriglerin miisterek eksenlere gore endirekt yiik

edilecektir.

(—15292.8740

0
10875.0095 L
—4707.1260

0
—3036.8471

leYZ = 4
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0.

—0.0004

—0.001
0.
0.0004

—0.0005

0.
—0.0001
—0.0002

0.

0.0001
—0.0002

0.
—0.0004
—0.001
0.
0.0004
—0.0005

—0.0005

0.
0.0005
0.0009

0.

0.0011 J

0.

0.0004
0.
—0.0002
0.0007

0.
0.0005
0.0009

0.

—0.0005

0.0011 -

0.0002 ]I
I
I

(5.10)

(5.11)

(5.12)

vektorleri asagidaki gibi elde

(5.13)



0 3
37500

2 = 3470%2014 > (5.14)
37500

\—24703.2014/

(—15292.8740\
0

£3,, = { 108750095
Xz =1 —4707.1260

0
\ —3036.8471 /

g

(5.15)

Kod numaralar1 tablosu olusturulup, olusturulan tablo yardimiyla miisterek matris

asagidaki gibi elde edilir.

[ 06716 0. 0.0005 —0.6712 0. 0.
0. 1.1364  0.0002 0. —0.0001  0.0002
koo —| 0.0005 00002 0.0019 0. —0.0002 0.0004 (5.16)
XYZ = 1_.0.6712 0. 0. 0.6712 0. 0.0005 '
{ 0. —0.0001 —0.0002 0. 1.1364 -—onoozj
0. 0.0002  0.0004 0.0005 —0.0002 0.0019

Buradaki sonuglar virgiilden sonra 4 basamak olacak sekilde yuvarlatilarak

verilmigtir. Miisterek endirekt yiik vektorii asagidaki gibi olacaktir.

4707.1260
—37500

_ ) —31666.3543
fxvz = —4707.1260 (5.17)

k —37500
—31666.3543

Direkt yiik vektorii sifir oldugu igin endirekt yiikk vektorii denklem 2.112°deki gibi
karstya atilarak miisterek matris sistemi ¢oziillirse asagidaki deplasman vektorii elde

edilir.

12128.3275
—33005.4308 L

(
Do = J—22208359.4908
Xrz | —11964.6512

—33005.4119 J
—22208359.7442

(5.18)

Denklem 2.114’teki ifade kullanilarak kirislerin eleman kuvvet vektorleri elde edilir.
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(0 —3828.7704

i 0 L 37500.0107
0 —9977.5384
1 1 1 _
{P }XYZ - k XYZ D1 + {fXYZ} - _16171.2296 (5'19)
LDzJ l—375000107J
D, —28040.7139
(Dl\ 16171.2296
37500.0107
D 28040.7134
{PZ}XYZ = [kJZ(YZ] 3 + {fXYZ} 16171 2296 (5'20)
| l374999893
\ ’) 28040.6597
(0 ( 3828.7704
é 0 ¥ | 37499.9893 |
0 9977.5921 }
{P3}xvz = [kiyz] D, +{fivz} = { 16171.2296 (5.21)
lD5| { 37499.9893
D.) 28040.6597

Daha sonra miisterek eksene gore tanimlanmis kuvvet vektorleri transformasyon
matrisleriyle ¢arpilarak lokal kuvvet vektorleri elde edilir. Bu vektorler kirislerdeki

uc tepki kuvvetlerine karsilik gelir.

r 37500.0107
3828.7704

1 _ 1 _ ) —9977.5384
{P }hryz = [TI{P }xyz =1 _37500.0107 (5.22)
16171.2296
\—28040.7134/

~~

r 16171.2296
37500.0107
2 _ 2 _ ) 28040.7134
{P }xyz = [T{P*}xyz = 1 _16171.2296 (5.23)
37499.9893
\—-28040.6597/

~~

r 37499.9893

—3828.7704
3 _ 3 _ 9977.5921

{P°}xyz = [THP}xyz = 1 37499 9893 (5.24)

—-16171.2296

\ 28040.6597 /

~~
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(Sekil 5.6)’da kirislerin elde edilen u¢ tepki kuvvetleri gosterilmistir. Bu tepki

kuvvetleri bilindikten sonra kesit tesir diyagramlari c¢izilebilir, egilme momenti,

kesme kuvveti, eksenel kuvvet, sehim ve gerilme dagilimlar elde edilebilir.

28.040 kNm 28.040 kNm
> -«
16.171 kN 2 16.171 kN
37.5kN
375 kN 37.5kN .
Y
e
58.040 kNm16.171 kN —_
- m 16.171 kN 28.040 kNm
1 1
Z
9.978 kNm 3.829kN X 4
< 3.829kN 9.978 kNm
"/ —_— \ A
4 A
37.5kN 37.5 kN

Sekil 5.6 : Degisken kesitli enine ¢ergeve sisteminin kirislerinin ug tepki kuvvetleri.

5.1.2 Program ile ¢6ziim

Boliim 4’te anlatildigi gibi kirislerin 6rnek cergevedeki atalet ve alan degerleri

girildiginde programda g¢ergeve sistemi (Sekil 5.7)’deki gibi goriinecektir.

15 kN/m

15 kN/m

%

kN/m

=

—

Sekil 5.7 : Gelistirilen programda 6rnek ¢ergevenin goriiniisii.

Cercevenin atalet momenti dagilimi (Sekil 5.8)’deki gibi olacaktir.
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Sekil 5.8 : Gelistirilen programda 6rnek ¢ercevenin atalet dagilima.

Burada ¢izimin simetrik olmamasiin nedeni 3 numaral kirisin 1 ile ayn1 yonde
eklenmesidir. Bu durumda kirisin pozitif ylikleme yonii degisecektir. Nitekim (Sekil
5.6)’da yayili yikin u¢ degerinin 3 numarali kiriste —10 kN/m oldugu

goriilmektedir.

Kiris sistemi ¢ozlimii yapildiginda moment dagilimi (Sekil 5.9)’daki gibi olacaktir.

Sekil 5.9 : Gelistirilen programda 6rnek ¢ercevenin moment dagilimi grafigi.

Kesme kuvveti dagilim1 (Sekil 5.10)’daki gibi olacaktir.
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Sekil 5.10 : Gelistirilen programda 6rnek cergevenin kesme kuvveti grafigi.

Eksenel kuvvet dagilimi (Sekil 5.11)’deki gibi olacaktir.

Sekil 5.11 : Gelistirilen programda 6rnek ¢ergevenin eksenel kuvvet grafigi.
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Kiris sisteminin gerilme dagilimi (Sekil 5.12)’deki gibi olacaktir.

Sekil 5.12 : Gelistirilen programda 6rnek ¢ergevenin gerilme grafigi.

Burada miisaade edilen en yiiksek gerilme 150 MPa olarak kabul edilmis ve
program ona gore hesap yapmistir. Grafikteki kirmizi egriler o bolgede miisaade
edilen en yiiksek gerilmenin asildigin1 gostermektedir. Bu durumda her 3 kiriste de
miisaade edilen gerilme asilmistir ve giivenli degildir. Program bu durumda kiris
agacinda miisaade edilen gerilmenin asildigi kirisin yaninda (Sekil 5.13)’teki gibi

kirmizi bir iinlem isareti gosterecektir.

Sekil 5.13 : Miisaade edilen en yiiksek gerilmenin asildig1 kirislerdeki uyari isareti.
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Bu gelistirilen programdan baska Ftool adinda Brezilya’li bir ingaat miihendisi
tarafindan gelistirilen ve yine matris deplasman metoduyla hesap yapan bir ¢erceve
analiz programiyla 6rnek ¢ergeve ¢Oziilmiistiir.

Ftool yalnizca sabit kesitli kirisler i¢cin hesap yapmaktadir. Bu nedenle degisken
kesitler i¢in kiris pargalara boliinerek her kiris pargcacigina denk gelen ortalama atalet
momenti atanarak ¢6ziim yapilmistir. Bu kapsamda 1 ve 3 numaral kirigler 0,2 m
araliklara boliinmiistiir. 2 numaral kirisin ise degisken atalet momentli uglar1 0,1 m

araliklara boliinmiis, ortadaki sabit ataletli boliim tek bir parca olarak modellenmistir.

Egilme momenti dagilim1 (Sekil 5.14)’teki gibi elde edilmistir.

50
EART)

L0
L
g7 e 92 &
WOS0T 0601 g 5y o

P

=3

Sekil 5.14 : Ornek cergevenin Ftool adindaki programla ¢dziimiinden elde edilen
moment dagilimi.

Kesme kuvveti (Sekil 5.15)’teki gibi elde edilmistir.

5477 901011 512 1120137 14414915 415,
1734 49

T s ) i
TALBATT 00T 4 |
22 301314 51497 215 775 D v o 4

) i

L

s

Sekil 5.15 : Ornek cergevenin Ftool adindaki programla ¢dziimiinden elde edilen
kesme kuvveti dagilima.
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Kesme kuvveti (Sekil 5.16)’daki gibi elde edilmistir.

537 53TS

(537 537 530437 5

&3T 537

7537

837 537.537

3T 53

7537

537 .537.537 537 537
53753

537 537 53T S

537

7537 537
7537

537
37

537

83T 537 5
E3T

53T

-37 837.537

-7 537

Frerram

Sekil 5.16 : Ornek gergevenin Ftool adindaki programla ¢dziimiinden elde edilen
eksenel kuvvet dagilimi.

5.1.3 Sonuglarin karsilastirilmasi

Cerceve sisteminin diigiim noktalar1 (Sekil 5.17)’deki gibi numaralandirilmistir.

2 3
1 4
AR N TSN

Sekil 5.17 : Ornek ¢ergevenin diigiimlerinin numaralandirilmas.

Cizelge 5.1’de (Sekil 5.17)’de yapilan numaralandirmaya gore diiglimlerde elde

edilen momentler karsilagtirilmistir.

Cizelge 5.1 : Ornek gergevenin diigiim momentlerinin degisik ¢oziim ydntemleriyle

karsilastirilmasi.
Cozlim Yontemi Digim numaralari
1 2 3 4
MesnetMD 9.9775 28.0407 28.0407 9.9776
Ftool 10.0 28.0 28.0 10.0
Analitik 9.978 28.04 28.04 9.978
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Burada MesnetMD, bu tez ¢alismasi1 kapsaminda gelistirilen programin proje adidir.
Goriildiigii gibi programin ¢iktilart hem analitik ¢6ziim ile hem de Ftool programiyla

uyumludur.

5.2 Sabit Kesitli Gemi Enine Cerceve Ornegi

Ele alinacak ¢ergeve sistemi (Sekil 5.18)’de gosterilmistir. Biitiin kirislerin uzunlugu,
atalet momenti ve Kkirisleri etkiyen yiikler ve mesnetlerin isimleri sekilde
gosterilmigtir. Biitiin diiglimler basit mesnet olarak kabul edilmistir. Bu durumda
eksenel deplasmanlar olmayacagi igin gergeve Kkirislerinin alanlar1 6nemsizdir ve
hesaplarda birim alan kullanilmistir. Ornek ¢ergeve ara giiverteli bir gemi
cergevesidir. Dip yapisindaki merkez i¢ omurgadan dolayr bu nokta basit mesnet
olarak alinmistir. Gemi ¢ergevesinin bordalarina ve dibine etkiyen hidrostatik basing
yayili yiikler olarak temsil edilmistir.

10.00 kN/m

) VODDDDDDLLLULELLLLLLLLLLLLE LD DDLU LY
g > (G) Kiris 1, 16m, 3| ® A

/m

d

30.00 kN/m

VOVLLLLLCLLLLLL DDLU L LLLLL LD DDLU L L L L L]
7,® Kiris 3, 16m, 5 ¥l

!
5
7

X kN/m m
30.00 kN/m

0 kN/m

Ll

Kiris 7, 8m, 4l Kiris 4, 8m, 4l

110.00 kN/m
110.00 kN/m

€ Kiris 6, 8m, 2201 D iris 5, 8m, 201 (C)
N A A A A

110.00 kN/m 110,00 kN/m

Neg

N
N
N

Sekil 5.18 : Ara giiverteli gemi cergevesi.

Programda bu c¢erceve olusturulmustur. Cercevenin goriinlimii (Sekil 5.19)’da

gosterilmistir.
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Sekil 5.19 : Ara gliverteli gemi cergevesinin programdaki goriiniisii.

Programda olusturulan bu gemi enine ¢ercevesinin ¢oziimii yapilmis ve (Sekil

5.20)’deki moment dagilimi elde edilmistir.

Sekil 5.20 : Ara giiverteli gemi gergevesinin programdaki moment dagilimi.

Ayni gemi ¢ergevesi Ftool adli programda da ¢oziilmiis ve (Sekil 5.21)’deki moment

dagilimi elde edilmistir.
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2038
2038

160.3

Sekil 5.21 : Ara giiverteli gemi ¢ergevesinin Ftool adli programdaki moment
dagilima.

Yine ayn1 gemi gergevesi Mesnet adli programda ¢6ziilmiistiir. Mesnet, 2 boyutlu
gemi enine gergevelerini Cross Metodu ile ¢ozen analiz programidir (Birler, 2018).
Serbestlik dereceleri Matris Deplasman Metodu ile ayni oldugu durumda ayni sonug
vermesi beklenir. Mesnet, kullandigi metot geregi diigiimlerde sadece donme
serbestlik derecesi olmasina miisaade eder. Bu gemi enine cergevesinde biitiin
diigtimler basit mesnetlidir. Dolayisiyla diigiimlerde sadece donme serbestlik
derecesi vardir. Mesnet programindaki bu ¢ergeve icin elde edilen moment dagilimi

(Sekil 5.22)’deki gibi elde edilmistir.

Sekil 5.22 : Ara giiverteli gemi ¢gergevesinin Mesnet adl1 programdaki moment
dagilimi.
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Gortildigl gibi Mesnet programi arayiizii bu tez kapsaminda gelistirilen programa
¢ok benzemektedir. Bu calismada gelistirilen program yazarin daha 6nce lisans
bitirme tezi kapsaminda yaptig1 Mesnet adli analiz programi iizerine kurulmustur.

Arayiiz kodlar1 biiyiik oranda aynidir.

5.2.1 Sonuclarin karsilastirilmasi

Karsilagtirmada her kirisin diigimlere karsilik gelen momentleri baz alinmistir.
Cergeve 3 ayr1 program ile ¢Oziilmiistiir. Cizelge 5.2°de (Sekil 5.18)’de gdosterilen

diiglim noktalarinda olusan momentlerin karsilastirilmasi verilmistir.

Cizelge 5.2 : Ornek ¢ergevenin diigiim momentlerinin degisik ¢dziim ydntemleriyle

karsilagtirilmast.
Cozdm Dugimler
Programi
Al A2 B2 B3 B4 C4 c5
Mesnet 203,7811 203,7811 211,2261 612,378 401,1519 407,6151 407,6151
Ftool 203,8 203,8 211,2 612,4 401,2 407,6 407,6

MesnetMD 203,7811 203,7811  211,2261 612,378 401,1519 407,6151 407,6151

Cozdm Diglmler
Programi
D5 D6 E6 E7 F7 F3 F8
Mesnet 676,1924 676,1924  407,6151 407,6151 401,1519 612,378 211,2261
Ftool 676,2 676,2 407,6 407,6 401,2 612,4 211,2

MesnetMD 676,1924 676,1924  407,6151 407,6151 401,1519 612,378 211,2261

Goriildiigii gibi programin bu gergeve i¢in ¢iktilari hem Mesnet programiyla ile hem
de Ftool programiyla uyumludur. Burada Ftool, sonuglar1 virgiilden sonra 1 basamak

hassasiyetle vermektedir.
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6. SONUC VE ONERILER

Bu ¢aligmada gemi enine g¢ergevelerinin yapisal analizini Matris Deplasman Metodu
ile yapan bir bilgisayar programi gelistirilmesi amacglanmistir. Gelistirilen programin
gemi enine c¢er¢evelerinde sik karsilasilan, kesitin degisken olmasi durumlarinda dahi
cerceve ¢Oziimii yapabilmesi hedeflenmistir. Ayn1 zamanda gelistirilen programin
modern uygulama programlama arayiizlerini kullanmasi, gorsel arayiize sahip olmasi

ve kullaniminin kolay olmasi istenmistir.

Matris Deplasman Metodu degisken kesitli olarak ifade edilmis ve U¢ Moment
Yontemi yardimiyla degisken kesitli durumlarda yiik vektoriiniin hesaplanmasi
anlatilmistir. Calismadaki teori kullanilarak C# programlama diliyle kullanici
arayliziine sahip bir program gelistirilmistir. Programin ¢iktilar1 analitik ¢éziimle ve

diger muadil programlarla karsilastirilarak dogru ¢oziim yaptigi ispatlanmistir.

Sonugta gemilerin 6n dizayninda kullanilabilecek pratik ve kullanisli, Windows
isletim sistemlerinde calisabilen bir bilgisayar yazilimi ortaya ¢ikmistir. Program
gelistirilen matematik siniflar1 sayesinde miimkiin oldugunda analitik olarak hesap
yapabilmektedir. Bdylece sabit kesitli ¢ergeveleri ¢ok hizli bir sekilde
hesaplayabilmektedir. Program gerektiginde paralel hesaplama tekniklerini de
kullanarak gelisen bilgisayar teknolojilerini miimkiin oldugunca kullanmakta ve

¢ozlim stiresini minimum diizeye indirebilmektedir.

Program ayni1 zamanda nesne yonelimli programlama yaklasimlarin1 kullanmaktadir.
Boylece gelistirici disinda baska kisilerin programin kaynak kodlarmna baktiginda
kolayca anlayabilmesi saglanmaktadir.

Programin Matris Deplasman Metodu ¢oziimleriyle alakali baz1 kaynak kodlar1 bu
calismanin ek belgelerine konulmustur. ileride program belirli bir seviyede
gelistirildigi zaman kaynak kodlar1 agilacak ve diinyadaki uygulama gelistiricilerinin

programi anlamasina ve gelistirmesine olanak taninacaktir.

Programda matematiksel altyapisi hazir olmasina karsin araylizde ve programin

isleyisinde karsilasilan baz1  zorluklar nedeniyle baz1 o6zelllikler heniiz
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uygulanmamistir. Diiglimlere direkt yiik ekleme 6zelligi yine bu nedenlerden dolay1
heniliz uygulanmamistir. Tekil moment ekleme, mafsal gibi bagska mesnetlerin

eklenebilme 6zelligi de yine uygulanmamustir.

Ileride bu bahsedilen ozellikler kodlanarak programa kazandirilacaktir. Sehim
grafikleri ¢izebilme yetenegi yine programa eklenecektir. Optimizasyonlar yapilarak
¢cozlim stiresi kisaltilacak ve hafiza yoOnetimleri iyilestirilerek programin ram

kullanim1 azaltilacaktir.

Programa ileride titresim analizinin de eklenmesi planlanmaktadir. Bunlarin disinda
bu programdan elde edilen bilgiler ve gelistirilen kod kiitiiphanesi kullanilarak 3
boyutlu uzay cergeve sistemi ¢Oziimii yapabilen bilgisayar programi gelistirilmesi
hedeflenmektedir. Boylece gemi bir biitiin olarak wuzay c¢erceve olarak

modellenebilecek ve daha iyi yapisal analizlerin yapilabilmesine olarak taninacaktir.
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EK A: Programdaki Matematik Tabanli Kodlar

public class Poly

{
public Poly(string PolyExpression)
{
this. _Terms = new TermCollection();
this.ReadPolyExpression(PolyExpression);
}
public Poly(string PolyExpression, double startpoint, double endpoint)
{
this. _Terms = new TermCollection();
this.ReadPolyExpression(PolyExpression);
_startpoint = startpoint;
_endpoint = endpoint;
}
public double Calculate(double x)
{
double result = 0;
foreach (Term t in this.Terms)
{
result += t.Coefficient *System.Math.Pow(x, t.Power);
}
return result;
}
public static bool ValidateExpression(string Expression)
{
if (Expression.Length == 9)
return false;
Expression = Expression.Trim();
Expression = Expression.Replace(" ", "");
while (Expression.IndexOf("--") > -1 | Expression.IndexOf("++") >
-1 | Expression.IndexOf("~*") > -1 | Expression.IndexOf("xx") > -
1)
{
Expression = Expression.Replace("--", "-");
Expression = Expression.Replace("++", "+");
Expression = Expression.Replace("""", "~");
Expression = Expression.Replace("xx", "x");
}
string ValidChars = "+-x1234567890".E";
bool result = true;
foreach (char c in Expression)
if (ValidChars.IndexOf(c) == -1)
{
result = false;
}
}
return result;
}
private void handleterm(string term)
{

Term termitem;
if (term.Contains("E"))

{
var coeffs = term.Split('E");
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double ¢ = Convert.ToDouble(coeffs[0]);
if (coeffs[1].Contains("x""))
{
var epxs= coeffs[1].Split(new string[] { "x*" },
StringSplitOptions.None);
double pl = Convert.ToDouble(epxs[0]);
double p2 = Convert.ToDouble(epxs[1]);
termitem = new Term();
termitem.Coefficient = ¢ * System.Math.Pow(10, pl);
termitem.Power = p2;
Terms.Add(termitem);

else if(coeffs[1].Contains("x"))

{
var epxs = coeffs[1].Split(new
string[] { "x" }, StringSplitOptions.None);
double pl = Convert.ToDouble(epxs[0]);
termitem = new Term();
termitem.Coefficient = ¢ * System.Math.Pow(10, pl);
termitem.Power = 1;
Terms.Add(termitem);
}
else
{
double p = Convert.ToDouble(coeffs[1]);
var termItem = new Term();
termItem.Coefficient = ¢ * System.Math.Pow(10, p);
Terms.Add(termItem);
}
}
else
{
termitem = new Term(term);
Terms.Add(termitem);
}
}
public Poly Integrate()
{
var terms = new TermCollection();
foreach (Term t in this.Terms)
{
var pow = t.Power + 1;
var coeff = t.Coefficient / (t.Power + 1);
terms.Add(new Term(pow, coeff));
}
return new Poly(terms);
}

public double DefiniteIntegral(double start, double end)
{

double result

0;
Poly integral = Integrate();
result = integral.Calculate(end) - integral.Calculate(start);

return result;

}

public Poly Derivate()
{
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var terms = new TermCollection();
foreach (Term t in this.Terms)

{
var pow = t.Power - 1;
var coeff = t.Coefficient * t.Power;
terms.Add(new Term(pow, coeff));

}

return new Poly(terms);

}

public bool IsLinear()

{
if (Terms.Count > 2)

{
}

return false;

foreach (Term term in Terms)

{
if (System.Math.Abs(term.Power - 1.0) > 0.000001 &&
System.Math.Abs(term.Power) > ©0.000001)

return false;

}

return true;

}

public static Poly operator +(Poly pl, Poly p2)

{
if (pl.ToString() == "@")

{

return p2;

else if (p2.ToString() == "@")
{

}

return pl;

Poly result = new Poly(pl.ToString());

foreach (Term t in p2.Terms)
result.Terms.Add(t);

return result;

public class Term

{
public Term(double power,double coefficient)
{
this.Power = power;
this.Coefficient = coefficient;
¥
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public Term(string TermExpression)

{
if (TermExpression.Length > 0)
{
if (TermExpression.IndexOf("x"") > -1)
{
string CoefficientString = TermExpression.Substring(e,
TermExpression.IndexOf("x""));
int IndexofX = TermExpression.IndexOf("x"");
string PowerString = TermExpression.Substring(IndexofX +
2, (TermkExpression.Length -1) - (IndexofX + 1));
if (CoefficientString == "-")
this.Coefficient = -1;
else if (CoefficientString == "+" | CoefficientString ==
")
this.Coefficient = 1;
else
this.Coefficient = double.Parse(CoefficientString);
this.Power = double.Parse(PowerString);
else if (TermExpression.IndexOf("x") > -1)
{
this.Power = 1;
string CoefficientString = TermExpression.Substring(e,
TermExpression.IndexOf("x"));
if (CoefficientString == "-")
this.Coefficient = -1;
else if (CoefficientString == "+" | CoefficientString ==
)
this.Coefficient = 1;
else
this.Coefficient = double.Parse(CoefficientString);
}
else
{
this.Power = 0;
this.Coefficient = double.Parse(TermExpression);
}
}
else
{
this.Power = 0;
this.Coefficient = 0;
}
}

}

public class PiecewisePoly:CollectionBase

{
public PiecewisePoly(List<Poly> polylist)
¢ initialize(polylist);
}

private void initialize(List<Poly> polylist)
{
_sortlist = polylist;
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_sortlist.Sort((a, b) => a.StartPoint.CompareTo(b.StartPoint));

foreach (Poly poly in _sortlist)

{
List.Add(poly);
}
}
public void Add(Poly poly)
{
List.Add(poly);
Sort();
}
public PiecewisePoly Integrate()
{
var ppoly = new PiecewisePoly();
foreach (Poly poly in List)
{
var ply = poly.Integrate();
ply.StartPoint = poly.StartPoint;
ply.EndPoint = poly.EndPoint;
ppoly.Add(ply);
return ppoly;
}
public PiecewisePoly Derivate()
{
var ppoly = new PiecewisePoly();
foreach (Poly poly in List)
{
var ply = poly.Derivate();
ply.StartPoint = poly.StartPoint;
ply.EndPoint = poly.EndPoint;
ppoly.Add(ply);
}
return ppoly;
}

public double DefiniteIntegral(double start, double end)
{

double value = 0;
foreach (Poly poly in List)

{
if (poly.StartPoint >= start || poly.EndPoint <= end)

double left = 0;
double right = 0;
if (poly.StartPoint >= start)

left = poly.StartPoint;

}
else if (poly.StartPoint < start)
{
left = start;
}

if (poly.EndPoint <= end)
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right = poly.EndPoint;

}
else if (poly.EndPoint > end)
{
right = end;
}
if (left >= end)
{
break;
}
value += poly.DefiniteIntegral(left, right);
}
}
return value;
}
public double Calculate(double x)
{
double value = 0;
foreach (Poly poly in List)
{
if (x >= poly.StartPoint && x <= poly.EndPoint)
{
value = poly.Calculate(x);
return value;
}
}
return value;
}
public bool IsConstant()
{
if (List.Count == 1)
{
var poly = List[@] as Poly;
if (poly.IsConstant())
{
return true;
}
}
return false;
}

}

public static class Algebra
{

public static double[] LinearEquationSolver(double[,] coefficients,
double[] results)

{
if (coefficients.GetlLength(@) != coefficients.GetLength(1l) &&

coefficients.GetLength(®) != results.Length)
{

}

throw new ArgumentException("Different array sizes");

int count = coefficients.GetlLength(0);
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for (int i = 0; i < count - 1; i++)

{
for (int j =i + 1; j < count; j++)
{
double s = coefficients[j, i] / coefficients[i, i];
for (int k = i; k < count; k++)
{
coefficients[j, k] -= coefficients[i, k] * s;
}
results[j] -= results[i] * s;
}
}
for (int i = count - 1; i >= @; i--)
{
results[i] /= coefficients[i, i];
coefficients[i, i] /= coefficients[i, i];
for (int j =1 -1; j >=0; j--)
{
double s = coefficients[j, i] / coefficients[i, i];
coefficients[j, i] -= s;
results[j] -= results[i] * s;
}
}

return Enumerable.Range(®, count).Select(i => results[i] /
coefficients[i, i]).ToArray();

}

public static double[] DotProduct(double[,] m, double[] v)
{
if (m.GetLength(1) != v.GetLength(0))
{
throw new InvalidOperationException("This Matrix and this
vector can not be multiplied!");

}

new double[m.GetLength(0)];
0;

var result
double sum

for (int i = @; i < m.GetLength(@); i++)

{
sum = 9;
for (int j = ©; j < m.GetLength(1); j++)
{
sum += m[i, j] * v[j];
}
result[i] = sum;
}

return result;

}
public static double[] AddVectors(double[] v1, double[] v2)

{
if (vl.GetLength(@) != v2.GetLength(®@))

{
throw new InvalidOperationException("These two vectors can not
be added");

}
var result = new double[vl.GetLength(9)];
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for (int i = 0; i < vl.GetLength(@); i++)
{

}

result[i] = vi1[i] + v2[i];

return result;

}
public static double[,] MultiplyMatrix(double[,] ml, double[,] m2)

{

int rml = ml.GetLength(0);

int cml = ml.GetLength(1);

int rm2 = m2.GetLength(0);

int cm2 = m2.GetLength(1);

double temp = 0;

double[,] result = new double[rml, cm2];
if (cml != rm2)

{
throw new InvalidOperationException("This matrices can not be
multiplied!");
}

else

{
for (int i = @; i < rml; i++)
{
for (int j = 0; j < cm2; j++)
{
temp = O;
for (int k = @; k < cml; k++)
{

¥
result[i, j] = temp;

temp += mi[i, k] * m2[k, j];

}
}
return result;
}
}
public static double[,] Transpose(double[,] matrix)
{
matrix.GetLength(0);
matrix.GetLength(1);

int w
int h

double[,] result = new double[h, w];

for (int i = 0; i < w; i++)

{
for (int j = @; j < h; j++)
{

}

result[j, i] = matrix[i, j];

}

return result;

}

public class SimpsonsFirstIntegrator : SimpsonBase

{
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public SimpsonsFirstIntegrator(double deltax) :
base(Global.SimpsonIntegrationType.First, deltax)

public override void Calculate()

for (int i = @; i < datas.Count; i++)

{
}
{
{
if (i == 0)
{
_sum += datas[i];
}
else if (i == datas.Count - 1)
{
_sum += datas[i];
}
else if (i % 2 == 09)
{
_sum += 2 * datas[i];
else if (i % 2 == 1)
{
_sum += 4 * datas[i];
}
}
_result = _h / 3 * sum;
}
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EK B: Programdaki Mukavemet Elemanlar1 Kodlari

public class Beam : SomItem, ISomItem

{
public Beam(double length)
{
InitializeComponent(length);
}
public void AddInertia(PiecewisePoly inertiappoly)
{
_inertiappoly = inertiappoly;
_izero = _inertiappoly.PreciseMin;
_maxinertia = _inertiappoly.Max;
}
public void AddElasticity(double elasticitymodulus)
{
_elasticity = elasticitymodulus;
}
public void AddArea(PiecewisePoly areappoly)
{
_areappoly = areappoly;
_azero = _areappoly.PreciseMin;
_maxarea = _areappoly.Max;
}

/// <summary>
/// Adds the distributed load to beam with specified direction.
/// </summary>

/// <param name="loadppoly">The desired distributed 1load piecewise

polynomial.</param>

public void AddLoad(PiecewisePoly loadppoly)

{
_distributedloads = loadppoly;
_maxdistload = _distributedloads.Max;
_maxabsdistload = _distributedloads.MaxAbs;
}

/// <summary>
/// Adds the concentrated load to beam with specified direction.
/// </summary>

/// <param name="load">The desired list of concentrated load key value
pair.</param>

public void AddLoad(KeyValueCollection loadpairs)

{
_concentratedloads = loadpairs;
_maxconcload = _concentratedloads.YMax;
_maxabsconcload = _concentratedloads.YMaxAbs;
}

public void Calculate()
{
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}

//First, find reaction forces for concentrated loads
findconcentratedsupportforces();

//Then, find reaction forces for distributed loads
finddistributedsupportforces();

//Then, find shearForce distribution for concentrated loads in
zero case (when both side of the beam bound with free supports
findconcentratedzeroforce();

//Then, find shearForce distribution for distributed loads in zero
case
finddistributedzeroforce();

//Super position to find resultant zero shearForce distribution
_zeroforceppoly = _zeroforceconcpploy + _zeroforcedistppoly;

//Then, find zero memont distribution according to resultant zero
shearForce distribution
findzeromoment();

//Check if analytical solution is possible
canbesolvedanalytically();

//Then, find end moments for each beam based on cross support
cases (assumes supports connecting

//more than on beams as fixed support

mdsupportcases();

//Then, find fixed end moments according to calculated end moments
findfixedendmomentclapeyron();

//Unlike cross methos, we need to have fixedendforce before the
solution so that the shearForce vector can be calculated.
updateforces();

//Create base stiffness coefficients
createbasestiffnescoefficients();

//Create transformation matrix
createtransformationmatrix();

//Create element stiffness matrix
createstiffnessmatrix();

//Create element shear force vector
createforcevector();

private void findconcentratedsupportforces()

{

double resultantforce = 0;
double resultantforcedistance = ©;
double multiply = 0;

if (_concentratedloads?.Count > @)

{
//Moment from left support point

double leftmoment = 0;
foreach (KeyValuePair<double, double> force in
_concentratedloads)

{
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leftmoment += force.Key * force.Value;

}

_rightsupportforceconc = leftmoment / _length;

//Moment from right support point
double rightmoment = 0;
foreach (KeyValuePair<double, double> force in

_concentratedloads)
{
rightmoment += (_length - force.Key) * force.Value;
}
_leftsupportforceconc = rightmoment / _length;
}
else
{
_leftsupportforceconc = 0;
_rightsupportforceconc = 0;
}
}
private void finddistributedsupportforces()
{
double resultantforce = 0;
double resultantforcedistance = 9;
double multiply = 0;
if (_distributedloads?.Count > @)
{
var forcelist = new List<KeyValuePair<double, double>>();
foreach (Poly load in _distributedloads)
{
var forces = load.CalculateMagnitudeAndLocation();
forcelist.AddRange(forces);
}
//Moment from left support point
double leftmoment = 0;
foreach (var force in forcelist)
{
leftmoment += force.Key * force.Value;
}
_rightsupportforcedist = leftmoment / _length;
//Moment from right support point
double rightmoment = 0;
foreach (var force in forcelist)
{
rightmoment += (_length - force.Key) * force.Value;
}
_leftsupportforcedist = rightmoment / _length;
}
else
{
_leftsupportforcedist = 0;
_rightsupportforcedist = 0;
}
}

private void findconcentratedzeroforce()

{
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_zeroforceconcpploy = new PiecewisePoly();

if (_concentratedloads?.Count > 0)

{

double leftforce = _leftsupportforceconc;

if (_concentratedloads[@].Key > @)

{
var polyl = new Poly(leftforce.ToString());
polyl.StartPoint = 0;
polyl.EndPoint = _concentratedloads[@].Key;
_zeroforceconcpploy.Add(polyl);

}

for (int i = @; i < _concentratedloads.Count; i++)

{
leftforce = leftforce - _concentratedloads[i].Value;
var poly = new Poly(leftforce.ToString());
poly.StartPoint = _concentratedloads[i].Key;
if (1 + 1 < _concentratedloads.Count)
{

poly.EndPoint = _concentratedloads[i + 1].Key;
}
else
{
poly.EndPoint = _length;

}
_zeroforceconcppoly.Add(poly);

}

}

}
private void finddistributedzeroforce()
{
_zeroforcedistppoly = new PiecewisePoly();

if (_distributedloads?.Count > @)

if (_distributedloads[@].StartPoint != 0)

{
var ply = new Poly(_leftsupportforcedist.ToString());
ply.StartPoint = 0;
ply.EndPoint = _distributedloads[@].StartPoint;
_zeroforcedistppoly.Add(ply);

}

foreach (Poly load in _distributedloads)
{

var index = _distributedloads.IndexOf(load);

double weightsbefore = findforcebefore(index);

if (index > 0)

{ if (_distributedloads[index - 1].EndPoint !=
_distributedloads[index].StartPoint)

var ply = new Poly(weightsbefore.ToString());
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ply.StartPoint = _distributedloads[index -
1].EndPoint;

ply.EndPoint =
_distributedloads[index].StartPoint;
_zeroforcedistppoly.Add(ply);

}

var poly = new Poly();

var integration = load.Integrate();
var zerovalue =
load.Integrate().Calculate(load.StartPoint);

if (zerovalue != 0)
{
if (weightsbefore != 0)
{
poly = new Poly(weightsbefore.ToString()) -
integration + new Poly(zerovalue.ToString());
}
else
{
poly = -1 * integration + new
Poly(zerovalue.ToString());
}
}
else
{
if (weightsbefore != 0)
{
poly = new Poly(weightsbefore.ToString()) -
integration;
}
else
{
poly = -1 * integration;
}
}

poly.StartPoint = load.StartPoint;
poly.EndPoint = load.EndPoint;
_zeroforcedistppoly.Add(poly);

}
_zeroforcedistppoly.Sort();

if (_distributedloads.Last().EndPoint != _length)
{

var weights = findforcebefore(_distributedloads.Count);
var ply = new Poly(weights.ToString());

ply.StartPoint = _distributedloads.Last().EndPoint;
ply.EndPoint = _length;

_zeroforcedistppoly.Add(ply);

}

private void findzeromoment()

{

_zeromomentppoly = new PiecewisePoly();
foreach (Poly force in _zeroforceppoly)

{

var index = _zeroforceppoly.IndexOf(force);
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var poly = new Poly();

var integration = force.Integrate();

var momentsbefore = findmomentbefore(index);

var zerovalue = force.Integrate().Calculate(force.StartPoint);
var constant = momentsbefore - zerovalue;

if (constant != @)

{
poly = integration + new Poly(constant.ToString());
}
else
{
poly = integration;
}

poly.StartPoint = force.StartPoint;
poly.EndPoint = force.EndPoint;
_zeromomentppoly.Add(poly);
_zeromomentppoly.Sort();

}

private void canbesolvedanalytically()
{
//Check inertia ppoly has only one poly
if (_inertiappoly.Count > 1)
{
_analyticalsolution = false;
return;

}

//Check if inertia ppoly is constant or not dependant on x
if (_inertiappoly.Degree() > 9)
{

_analyticalsolution = false;

return;

}

//Check if zero moment ppoly has any term with non-integer power
if (_zeromomentppoly.Count > @)

foreach (Poly poly in _zeromomentppoly)

foreach (Term term in poly.Terms)

{
if (term.Power % 1 != @)

{
_analyticalsolution = false;
return;

}
}

_analyticalsolution = true;

}

private void mdsupportcases()
{
//In matrix displacement method, the force vector is calculated
when all of the displacement are zero (both side is fixed
support)

100



if (_zeromomentppoly.Count > 0)

{

double mal =
double ma2 =
double mbl =
double mb2 =
double rl1 = 09;
double r2 = 0;

e

. e

)

(OO RGN

)

IITTTIITTIT P77 007777770777 777777777777777777777777771177
///////7/1/////////Left Equation Solve//////////////////]////
LITTTTTIT 7177707777777 777777777777777777777777177177

var xsquare = new Poly("x"2");
xsquare.StartPoint = 0;
xsquare.EndPoint = _length;

var x = new Poly("x");
x.StartPoint = 0;
X.EndPoint = _length;

var xppoly = new PiecewisePoly();

xppoly.Add(x);

if (_analyticalsolution)

{
//When the inertia distribution is constant dont waste
time and cpu with simpson numerical integration, integrate
it analytically.
//Since izero equals inertia the expression can be
simplified
mal = _length / 3;
mbl = length / 2 - mal;
var moxp = _zeromomentppoly.Propagate(_length) * xppoly;
rl = -1 / _length * moxp.DefiniteIntegral(@®, _length);
ma2 = _length / 6;
mb2 = _length / 3;
var mox = _zeromomentppoly * xppoly;
r2 = -1 / _length * mox.DefiniteIntegral(®@, _length);

}

else

{

//When the inertia distribution is not constant, there is
no choice but to use numerical integration

//since the integration can not be solved analytically
using polynomials in this program.

var conjugateinertia = _inertiappoly.Conjugate(_length);
var simpsonl = new
SimpsonsFirstIntegrator(Config.SimpsonStep);

for (double i = @0; i <= _length; i =1 +
Config.SimpsonStep)
{

simpsonl.AddData(_izero /
conjugateinertia.Calculate(i) *
xsquare.Calculate(i));

}

simpsonl.Calculate();
mal = 1 / System.Math.Pow(_length, 2) * simpsonl.Result;

LITTTTT7TT 7717777777777 77777777777777717777777777177
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var simpson2 = new
SimpsonsFirstIntegrator(Config.SimpsonStep);

for (double i = @; i <= _length; i =i +
Config.SimpsonStep)
{

simpson2.AddData(_izero /
conjugateinertia.Calculate(i) * x.Calculate(i));

}

simpson2.Calculate();
var valuel = 1 / _length * simpson2.Result;
mbl = valuel - mal;

LIT71T770 7707770777777 7 7777777 7777777777777777771777177

var simpson3 = new
SimpsonsFirstIntegrator(Config.SimpsonStep);

var conjugatemoment = _zeromomentppoly.Conjugate(_length);

for (double i = @; i <= _length; i = i +
Config.SimpsonStep)
{

simpson3.AddData(conjugatemoment.Calculate(i) *
_izero / conjugateinertia.Calculate(i) *
x.Calculate(i));

}

simpson3.Calculate();

rl = -1 / length * simpson3.Result;

LIT7TTTTT0T 7077077777777 77777777777 77717777777777771177
////7///1////7/////Right Equation Solve/////////////////////]/

LIT7TTTTTTT 7177777777777 77777777777 777177777777717777

var simpson4 = new
SimpsonsFirstIntegrator(Config.SimpsonStep);

for (double i = @0; i <= _length; i =1 +
Config.SimpsonStep)
{
simpson4.AddData(_izero /
_inertiappoly.Calculate(i) * xsquare.Calculate(i));
}
simpson4.Calculate();
var value2 = 1 / System.Math.Pow(_length, 2) *
simpson4.Result;

var simpson5 = new
SimpsonsFirstIntegrator(Config.SimpsonStep);

for (double i = @; i <= _length; i =1 +
Config.SimpsonStep)
{

simpson5.AddData((_izero /
_inertiappoly.Calculate(i)) * xppoly.Calculate(i));

}

simpson5.Calculate();
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ma2 = 1 / _length * simpson5.Result - value2;

LIT71T770 7777770777777 77777777777777777777777777771177777

mb2 = value2;

LIT71T770 7777770777777 77777777777777777777717777771177777

}

}

else

{

var simpson6 = new
SimpsonsFirstIntegrator(Config.SimpsonStep);

for (double i = @; i <= _length; i =i +
Config.SimpsonStep)

{
simpson6.AddData(_zeromomentppoly.Calculate(i) *
(_izero / _inertiappoly.Calculate(i)) *
xppoly.Calculate(i));

}

simpson6.Calculate();
r2 = -1 / _length * simpson6.Result;

}
double[,] coefficients =
{
{ma1, mb1},
{ma2, mb2},
s
double[] results =
{
ri, r2
s

LIT1TTI00 7700777777777 77777777777777777777777771777177177

var moments =
MesnetMD.Classes.Math.Algebra.LinearEquationSolver(coefficient
s, results);

_ma = moments[0];
_mb = moments[1];
_ma = 0;
_mb = 0;

private void findfixedendmomentclapeyron()

{

var
var

if (
{

}

fore

{

polylist = new List<Poly>();

constant

(_mb - _ma) / _length;
System.Math.Abs(constant) < ©.00000001)

constant = 0.0;

ach (Poly moment in _zeromomentppoly)

var resultpoly = new Poly();
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}

resultpoly.StartPoint = moment.StartPoint;

resultpoly.EndPoint = moment.EndPoint;
var mapoly = new Poly(_ma.ToString(), moment.StartPoint,
moment.EndPoint);

var xpoly = new Poly("x", moment.StartPoint, moment.EndPoint);

if (!constant.Equals(0.0))

{
var cpoly = new Poly(constant.ToString(),
moment.StartPoint, moment.EndPoint);
resultpoly = moment + mapoly + xpoly * cpoly;
}
else
{
resultpoly = moment + mapoly;
}

resultpoly.StartPoint = moment.StartPoint;
resultpoly.EndPoint = moment.EndPoint;
polylist.Add(resultpoly);

_fixedendmomentppoly = new PiecewisePoly(polylist);

}

private void updateforces()

{

_fix

_max

edendforceppoly = _fixedendmomentppoly.Derivate();

force = _fixedendforceppoly.Max;

_maxabsforce = _fixedendforceppoly.MaxAbs;

_min

}

force = _fixedendforceppoly.Min;

private void createbasestiffnescoefficients()

{
if (
{

}

else

{

_inertiappoly.IsConstant())
_mii = 4;

_mjj =
_mij

n o
N B
e e

var x = new Poly("x");
var xsquare = new Poly("x"2");

var simpsonl = new
SimpsonsFirstIntegrator(Config.SimpsonStep);

for (double i = @; i <= _length; i = i + Config.SimpsonStep)
{
simpsonl.AddData(xsquare.Calculate(i) /
_inertiappoly.Calculate(i));
}
simpsonl.Calculate();
double il = simpsonl.Result;

var simpson2 = new
SimpsonsFirstIntegrator(Config.SimpsonStep);

for (double i = @; i <= _length; i = i + Config.SimpsonStep)
{
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simpson2.AddData(1 / _inertiappoly.Calculate(i));

}

simpson2.Calculate();
double i2 = simpson2.Result;

var simpson3 = new
SimpsonsFirstIntegrator(Config.SimpsonStep);

for (double i = @; i <= _length; 1 = i + Config.SimpsonStep)

{
simpson3.AddData(x.Calculate(i) /

_inertiappoly.Calculate(i));
}

simpson3.Calculate();
double i3 = simpson3.Result;

double det = -_izero / _length * (il * i2 -
System.Math.Pow(i3, 2));

_mii = -i1 / det;

_mjj = (-System.Math.Pow(_length, 2) * i2 + 2 * _length *

i3 - i1) / det;
_mij = -(_length * i3 - il) / det;

}

if (_areappoly.IsConstant())
_nii = 1;

}

else

{

var simpson4 = new
SimpsonsFirstIntegrator(Config.SimpsonStep);

for (double i = @; i <= _length; i = 1 + Config.SimpsonStep)

{
}

simpson4d.Calculate();
double i4 = simpson4.Result;
_nii = _length / (_azero * i4);

simpsond.AddData(l / _areappoly.Calculate(i));

}

private void createtransformationmatrix()

{

_transformationmatrix = new double[6,6];

_transformationmatrix[0, 0] Algebra.CosD(_angle);
_transformationmatrix[@, 1] = Algebra.SinD(_angle);
_transformationmatrix[@, 2] = 0;

_transformationmatrix[@, 3] = 0;

_transformationmatrix[@, 4] = 0;

_transformationmatrix[@, 5] = 0;

_transformationmatrix[1, @] = -Algebra.SinD(_angle);
_transformationmatrix[1, 1] = Algebra.CosD(_angle);
_transformationmatrix[1, 2] =
_transformationmatrix[1, 3] =
_transformationmatrix[1, 4] =
_transformationmatrix[1, 5] =
_transformationmatrix[2, O] =
_transformationmatrix[2, 1] =
_transformationmatrix[2, 2] =

)

)

)

e

e

I—‘®®“®®®®

e
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_transformationmatrix[2, 3] =
_transformationmatrix[2, 4] =
_transformationmatrix[2, 5] =
_transformationmatrix[3, 0] =
_transformationmatrix[3, 1] =
_transformationmatrix[3, 2] = 0;
_transformationmatrix[3, 3] = Algebra.CosD(_angle);
_transformationmatrix[3, 4] = Algebra.SinD(_angle);
_transformationmatrix[3, 5] = 0;
_transformationmatrix[4, @] = 0;
_transformationmatrix[4, 1] = 0;
_transformationmatrix[4, 2] = 0;
_transformationmatrix[4, 3] = -Algebra.SinD(_angle);
_transformationmatrix[4, 4] = Algebra.CosD(_angle);
_transformationmatrix[4, 5] =
_transformationmatrix[5, 0] =
_transformationmatrix[5, 1] =
_transformationmatrix[5, 2] =
_transformationmatrix[5, 3] =
_transformationmatrix[5, 4] =
_transformationmatrix[5, 5] =

e

. e

)

)

)

OCO0OO0OO0OO0®

)

)

. e

“e

e

HQOPOOO

“e

}

private void createstiffnessmatrix()
{

var E = _elasticity;
var I = _izero * System.Math.Pow(10, -8); //Conversion from cm”"4
to m™4

var A = _azero * System.Math.Pow(1@, -4); //Conversion from cm”2

to m”2

var L = _length;

var L2 = System.Math.Pow(_length, 2);

var L3 = System.Math.Pow(_length, 3);

var nii = _nii;
var mii = _mii;
var mjj = _mjj;
var mij = _mij;

_stiffnessmatrix = new double[6, 6];
_stiffnessmatrix[@, 0] = nii * E * A / L;
_stiffnessmatrix[0, 1] = 0;

_stiffnessmatrix[0, 2] = 0;

_stiffnessmatrix[@, 3] = -nii * E * A / L;
_stiffnessmatrix[0, 4] = 0;

_stiffnessmatrix[@, 5] = 0;

_stiffnessmatrix[1, 0] = 0;

_stiffnessmatrix[1, 1] = (mii + mjj + 2 * mij) * E * I / L3;
_stiffnessmatrix[1, 2] = (mii + mij) * E * I / L2;
_stiffnessmatrix[1, 3] = 0;

_stiffnessmatrix[1, 4] = -(mii + mjj + 2 * mij) * E * I / L3;
_stiffnessmatrix[1, 5] = (mjj + mij) * E * I / L2;
_stiffnessmatrix[2, 0] = 0;

_stiffnessmatrix[2, 1] = (mii + mij) * E * I / L2;
_stiffnessmatrix[2, 2] =mii * E * I / L;
_stiffnessmatrix[2, 3] = 0;

_stiffnessmatrix[2, 4] = -(mii + mij) * E * I / L2;
_stiffnessmatrix[2, 5] =mij * E * I / L;
_stiffnessmatrix[3, @] = -nii * E * A / L;
_stiffnessmatrix[3, 1] = 0;

_stiffnessmatrix[3, 2] = 0;

_stiffnessmatrix[3, 3] = nii * E * A / L;
_stiffnessmatrix[3, 4] = 0;
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_stiffnessmatrix[3, 5] = ©;

_stiffnessmatrix[4, 0] = 0;

_stiffnessmatrix[4, 1] = -(mii + mjj + 2 * mij) * E * I / L3;
_stiffnessmatrix[4, 2] = -(mii + mij) * E * I / L2;
_stiffnessmatrix[4, 3] = 0;

_stiffnessmatrix[4, 4] = (mii + mjj + 2 * mij) * E * I / L3;
_stiffnessmatrix[4, 5] = -(mjj + mij) * E * I / L2;
_stiffnessmatrix[5, 0] = 0;

_stiffnessmatrix[5, 1] = (mjj + mij) * E * I / L2;
_stiffnessmatrix[5, 2] =mij * E * I / L;
_stiffnessmatrix[5, 3] = 0;

_stiffnessmatrix[5, 4] = -(mjj + mij) * E * I / L2;
_stiffnessmatrix[5, 5] =mjj * E * I / L;

//kXYZ=T*T.kxyz.T => Matrix transformation

var T = _transformationmatrix;
var TT = Algebra.Transpose(T);

var ml = Algebra.MultiplyMatrix(TT, _stiffnessmatrix);
var m2 = Algebra.MultiplyMatrix(ml, T);
_stiffnessmatrix = m2;

}
private void createforcevector()
{

createindirectforcevector();

createdirectforcevector();

_forcevector = new double[6];

}
private void createindirectforcevector()
{

_idforcevector = new double[6];

//Converting kN to N by multiplying with 1000
_idforcevector[@] = -_fixedendforceppoly.Calculate(0) *
Math.Algebra.SinD(_angle) * 1000;

_idforcevector[1] = _fixedendforceppoly.Calculate(@) *
Math.Algebra.CosD(_angle) * 1000;

_idforcevector[2] = -_fixedendmomentppoly.Calculate(@) * 1000;
_idforcevector[3] = _fixedendforceppoly.Calculate(_length) *
Math.Algebra.SinD(_angle) * 1000;

_idforcevector[4] = -_fixedendforceppoly.Calculate(_length) *

Math.Algebra.CosD(_angle) * 1000;

_idforcevector[5] = _fixedendmomentppoly.Calculate(_length) *

1000;

}

}
public void PostProcessUpdate()
{

obtainlocalforces();

updatemoments();

updateforces();

updateaxialforces();

if (_stressanalysis)

{

updatestresses();
}
}
private void obtainlocalforces()
{
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_localforcevector = Algebra.DotProduct(_transformationmatrix,
_forcevector);

}
private void updatemoments()
{

double constant = 9;

if (_zeromomentppoly.Length > @)

{
var ma = -_localforcevector[2] / 1000;
var mb = _localforcevector[5] / 1000;
constant = (mb - ma) / _length;
var terms = new TermCollection();
if (constant != 0)
{
if (ma != @)
{
var terml = new Term(1l, constant);
var term2 = new Term(@, ma);
terms.Add(terml);
terms.Add(term2);
}
else
{
var terml = new Term(1l, constant);
terms.Add(terml);
}
}
else
{
if (ma != 0)
{
var term2 = new Term(@, ma);
terms.Add(term2);
}
else
{
//nothing to do
}
}
if (terms.Length > 0)
{
var mdpoly = new Poly(terms, ©, _length);
var polies = new List<Poly>();
polies.Add(mdpoly);
var mdpolies = new PiecewisePoly(polies);
_fixedendmomentppoly = _zeromomentppoly + mdpolies;
}
else
{
_fixedendmomentppoly = _zeromomentppoly;
}
}
else
{

//There is no load on this beam
var ma = -_localforcevector[2] / 1000;
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var mb = localforcevector[5] / 1000;

constant = (mb - ma) / _length;
var terms = new TermCollection();
if (constant != 0)

{
if (ma != 9)
{
var terml = new Term(1l, constant);
var term2 = new Term(@, ma);
terms.Add(terml);
terms.Add(term2);
}
else
{
var terml = new Term(1, constant);
terms.Add(terml);
}
}
else
{
if (ma != 9)
{
var term2 = new Term(@, ma);
terms.Add(term2);
}
}
if (terms.Length > 0)
{
var mdpoly = new Poly(terms, 0, _length);
var polies = new List<Poly>();
polies.Add(mdpoly);
var mdpolies = new PiecewisePoly(polies);
_fixedendmomentppoly = mdpolies;
}
else
{
var termzero = new Term(©, 0);
var termszero = new TermCollection();
termszero.Add(termzero);
var polyzero = new Poly(termszero);
var zeropolies = new List<Poly>();
zeropolies.Add(polyzero);
var zeroppoly = new PiecewisePoly(zeropolies);
_fixedendmomentppoly = zeroppoly;
}
}
_maxmoment = _fixedendmomentppoly.Max;
_maxabsmoment = _fixedendmomentppoly.MaxAbs;
_minmoment = _fixedendmomentppoly.Min;
}
private void updateforces()
{
_fixedendforceppoly = _fixedendmomentppoly.Derivate();
_maxforce = _fixedendforceppoly.Max;
_maxabsforce = _fixedendforceppoly.MaxAbs;
_minforce = _fixedendforceppoly.Min;
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}

private void updateaxialforces()
{
var terms = new TermCollection();
var ma = -_localforcevector[@] / 1000;
var mb = _localforcevector[3] / 1000;
double constant = (mb - ma) / _length;
if (System.Math.Abs(constant) > System.Math.Pow(1@, -8))
{
if (System.Math.Abs(ma) > System.Math.Pow(10, -8))
{
var terml = new Term(1l, constant);
var term2 = new Term(©, ma);
terms.Add(terml);
terms.Add(term2);
}

else

{
var terml = new Term(1l, constant);
terms.Add(terml);

}

else
{
if (System.Math.Abs(ma) > System.Math.Pow(10, -8))
{
var terml = new Term(©, ma);
terms.Add(terml);
}

else

{
var terml = new Term(0, 0);
terms.Add(terml);

}

var mdpoly = new Poly(terms, ©, _length);
_axialforceppoly = new PiecewisePoly(mdpoly);
_maxaxialforce = _axialforceppoly.Max;
_maxabsaxialforce = _axialforceppoly.MaxAbs;
_minaxialforce = _axialforceppoly.Min;

}

private void updatestresses()
{
double precision = 0.001;
_stress = new KeyValueCollection();
double stress = 0;
double y = 0;

double e = 0;
double d = 0;
for (int i = @; i < _length / precision; i++)
{
e = eppoly.Calculate(i * precision);

d = _dppoly.Calculate(i * precision);
if (e >d - e)
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y=d-e;
}
stress = System.Math.Pow(10, 3) *
_fixedendmomentppoly.Calculate(i * precision) * vy /
(_inertiappoly.Calculate(i * precision));
_stress.Add(i * precision, stress);

}
if (!_stress.ContainsKey(_length))
{
e = _eppoly.Calculate(_length);
d = _dppoly.Calculate(_length);
if (e > d - e)
{
y = 6;
}
else
{
y=d-e;
}

stress = System.Math.Pow(10, 3) *

_fixedendmomentppoly.Calculate(_length) * vy /

(_inertiappoly.Calculate(_length));
_stress.Add(_length, stress);

}
_maxstress = _stress.YMax;
_maxabsstress = _stress.YMaxAbs;

}

public void UpdateDirectForceVector(double[] diplacement)

{
var cross = Algebra.DotProduct(_stiffnessmatrix, diplacement);
var result = Algebra.AddVectors(cross, _idforcevector);
_forcevector = result;

}

public class SupportItem : SomItem
{
/// <summary>
/// Initializes a new instance of the <see cref="SupportItem"/> class.
/// All types of supports are derived from this class
/// </summary>
public SupportItem(Global.ObjectType type)
{
Type = type;
if (type != Global.ObjectType.FictionalSupport)

SupportId = supportcount++;
}

switch (type)
{
case Global.ObjectType.BasicSupport:
DOFCount = 1;
break;
case Global.ObjectType.SlidingSupport:
DOFCount = 2;
break;
case Global.ObjectType.FictionalSupport:
DOFCount = 3;
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break;

case Global.ObjectType.RightFixedSupport:
DOFCount = ©;
break;

case Global.ObjectType.LeftFixedSupport:
DOFCount = ©;
break;

}

DegreeOfFreedoms = new List<DOF>();

}

public class BasicSupport : SupportItem, ISomItem, ISupportItem,
IFreeSupportItem

{
public BasicSupport() : base(ObjectType.BasicSupport)

{
InitializeComponent();
Members = new List<Member>();
Name = "Basic Support " + Supportld;
var rdof = new DOF(Global.DOFType.Rotational);
DegreeOfFreedoms.Add(rdof);

public void AddBeam(Beam beam, Global.Direction direction)

if (!Members.Contains(member))

{

Members.Add(member) ;

if (Members.Count == 1)
{

switch (direction)
{
case Direction.Left:
Canvas.SetLeft(this, beam.LeftPoint.X - Width/2);
Canvas.SetTop(this, beam.LeftPoint.Y - Height);
beam.LeftSide = this;
//Add rotational dof member
var ldofmember = new DOFMember(beam,
DOFLocation.LeftRotational);
DegreeOfFreedoms[@].Members.Add(1ldofmember);
break;
case Direction.Right:
Canvas.SetLeft(this, beam.RightPoint.X - Width/2);
Canvas.SetTop(this, beam.RightPoint.Y - Height);
beam.RightSide = this;
var rdofmember = new DOFMember(beam,
DOFLocation.RightRotational);

DegreeOfFreedoms[@].Members.Add(rdofmember) ;
break;

}

else

{

switch (direction)

{

case Direction.Left:
beam.LeftSide = this;
beam.IsBound = true;
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//Add rotational dof member
var ldofmember = new DOFMember(beam,
DOFLocation.LeftRotational);
DegreeOfFreedoms[@].Members.Add(ldofmember);
break;
case Direction.Right:

beam.RightSide = this;

beam.IsBound = true;

var rdofmember = new DOFMember (beam,
DOFLocation.RightRotational);
DegreeOfFreedoms[@].Members.Add(rdofmember) ;

break;
}
}
}
}

}
public class SlidingSupport : SupportItem, ISomItem, ISupportItem,
IFreeSupportItem

{
public SlidingSupport() : base(ObjectType.SlidingSupport)
{
InitializeComponent();
Members = new List<Member>();
Name = "Sliding Support " + SupportId;
var hdof = new DOF(Global.DOFType.Horizontal);
var rdof = new DOF(Global.DOFType.Rotational);
DegreeOfFreedoms.Add(hdof);
DegreeOfFreedoms.Add(rdof);

public void AddBeam(Beam beam, Global.Direction direction)
{
var member = new Member(beam, direction);
if (!Members.Contains(member))

{

Members.Add(member) ;

if (Members.Count == 1)
{

switch (direction)

{

case Direction.Left:
Canvas.SetLeft(this, beam.LeftPoint.X - Width /
2);
Canvas.SetTop(this, beam.LeftPoint.Y - Height);
beam.LeftSide = this;
var lhdmember = new DOFMember(beam,
DOFLocation.LeftHorizontal);

DegreeOfFreedoms[@].Members.Add(1lhdmember);
var lrdmember = new DOFMember(beam,
DOFLocation.LeftRotational);
DegreeOfFreedoms[1].Members.Add(1lrdmember);
break;
case Direction.Right:

Canvas.SetLeft(this, beam.RightPoint.X - Width /
2);

Canvas.SetTop(this, beam.RightPoint.Y - Height);
beam.RightSide = this;
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var rhdmember = new DOFMember(beam,
DOFLocation.RightHorizontal);
DegreeOfFreedoms[@].Members.Add(rhdmember);
var rrdmember = new DOFMember(beam,
DOFLocation.RightRotational);
DegreeOfFreedoms[1].Members.Add(rrdmember);
break;

}

else
{
switch (direction)
{
case Direction.Left:
beam.LeftSide = this;
beam.IsBound = true;
var lhdmember = new DOFMember(beam,
DOFLocation.LeftHorizontal);
DegreeOfFreedoms[@].Members.Add(1lhdmember);
var lrdmember = new DOFMember(beam,
DOFLocation.LeftRotational);
DegreeOfFreedoms[1].Members.Add(1lrdmember);
break;
case Direction.Right:
beam.RightSide = this;
beam.IsBound = true;
var rhdmember = new DOFMember(beam,
DOFLocation.RightHorizontal);
DegreeOfFreedoms[0].Members.Add(rhdmember);
var rrdmember = new DOFMember(beam,
DOFLocation.RightRotational);
DegreeOfFreedoms[1].Members.Add(rrdmember);
break;

}

public class LeftFixedSupport : SupportItem, ISomItem, ISupportItem,
IFixedSupportItem

{
public LeftFixedSupport() : base(ObjectType.LeftFixedSupport)
{
InitializeComponent();
Name = "Left Fixed Support " + SupportId;
}
public void AddBeam(Beam beam)
{
Canvas.SetLeft(this, beam.LeftPoint.X - Width);
Canvas.SetTop(this, beam.LeftPoint.Y - Height/2);
Member = new Member(beam, Direction.Left);
beam.LeftSide = this;
}
}

public class RightFixedSupport : SupportItem, ISomItem, ISupportItem,
IFixedSupportItem

{
public RightFixedSupport() : base(ObjectType.RightFixedSupport)
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InitializeComponent();
Name = "Right Fixed Support " + SupportId;

}
public void AddBeam(Beam beam)
{
Canvas.SetLeft(this, beam.RightPoint.X);
Canvas.SetTop(this, beam.RightPoint.Y - Height/2);
Member = new Member(beam, Direction.Right);
beam.RightSide = this;
SetAngle(beam.Angle);
}
}
public class FictionalSupport : SupportItem
{
public FictionalSupport(): base(Global.ObjectType.FictionalSupport)
{
Members = new List<Member>();
FID = fcount++;
Name = "Fictional Support "+ FID;
var hdof = new DOF(Global.DOFType.Horizontal);
var vdof = new DOF(Global.DOFType.Vertical);
var rdof = new DOF(Global.DOFType.Rotational);
DegreeOfFreedoms.Add(hdof);
DegreeOfFreedoms.Add(vdof);
DegreeOfFreedoms.Add(rdof);
Global.AddObject(this);
}
public void AddBeam(Beam beam, Global.Direction direction)
{

var member = new Member(beam, direction);
if (!Members.Contains(member))
{
Members.Add(member) ;
switch (direction)
{
case Global.Direction.Left:
beam.LeftSide = this;
var lhdofmember = new DOFMember (beam,
Global.DOFLocation.LeftHorizontal);
DegreeOfFreedoms[@].Members.Add(1lhdofmember);
var lvdofmember = new DOFMember (beam,
Global.DOFLocation.LeftVertical);
DegreeOfFreedoms[1].Members.Add(lvdofmember);
var lrdofmember = new DOFMember (beam,
Global.DOFLocation.LeftRotational);
DegreeOfFreedoms[2].Members.Add(1lrdofmember);
break;

case Global.Direction.Right:

beam.RightSide = this;
var rhdofmember = new DOFMember (beam,
Global.DOFLocation.RightHorizontal);

DegreeOfFreedoms[@].Members.Add(rhdofmember);
var rvdofmember = new DOFMember (beam,
Global.DOFLocation.RightVertical);

DegreeOfFreedoms[1].Members.Add(rvdofmember);
var rrdofmember = new DOFMember (beam,
Global.DOFLocation.RightRotational);

DegreeOfFreedoms[2].Members.Add(rrdofmember);
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break;
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EK C: Matris Deplasman Metodu Global Sistemi Coziicii Kodlart

public static class MDSolver

{
public static void Calculate()

{
createdofpairs();
createglobalstiffnessmatrix();
createglobalforcevector();
solvethesystem();
obtainbeamdisplacements();

}

private static void createdofpairs()

{
GlobalDofs = new List<DOF>();
foreach (var pair in Global.Objects)

{
switch (pair.Value.Type)

{
case Global.ObjectType.BasicSupport:
var bs = pair.Value as BasicSupport;
var rbdof = bs.DegreeOfFreedoms[0];
GlobalDofs.Add(rbdof);
break;

case Global.ObjectType.SlidingSupport:
var ss = pair.Value as SlidingSupport;
var hsdof = ss.DegreeOfFreedoms[0];
GlobalDofs.Add(hsdof);
var rsdof = ss.DegreeOfFreedoms[1];
GlobalDofs.Add(rsdof);
break;

case Global.ObjectType.FictionalSupport:
var fs = pair.Value as FictionalSupport;
var hfdof = fs.DegreeOfFreedoms[0];
GlobalDofs.Add(hfdof);
var vbdof = fs.DegreeOfFreedoms[1];
GlobalDofs.Add(vbdof);
var rfdof = fs.DegreeOfFreedoms[2];
GlobalDofs.Add(rfdof);
break;

}

DofCount = GlobalDofs.Count;
}

private static void createglobalstiffnessmatrix()

{
GlobalStiffnessMatrix = new double[DofCount, DofCount];

for (int i = @; i < GlobalDofs.Count; i++)

{
for (int j = ©; j < GlobalDofs.Count; j++)

{

double value = 0;
foreach (var member in GlobalDofs[i].Members)

{

var beam = member.Beam;
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int index = getbeamindex(GlobalDofs[j].Members, beam);
if (index > -1)
{
int row = (int) member.Location;
int col = (int)
GlobalDofs[j].Members[index].Location;
value += beam.StiffnessMatrix[row, col];

}

}
GlobalStiffnessMatrix[i, j] = value;

}

private static void createglobalforcevector()
{
GlobalForceVector = new double[DofCount];
for (int i = @; i < GlobalDofs.Count; i++)
{
double value = 0;
foreach (var member in GlobalDofs[i].Members)
{
var beam = member.Beam;
var index = (int) member.Location;
value += beam.ForceVector[index];

}

GlobalForceVector[i] = value;

}

private static void solvethesystem()

{
GlobalDisplacementVector =
MesnetMD.Classes.Math.Algebra.lLinearEquationSolver(GlobalStiffnes
sMatrix, GlobalForceVector);

}

private static void obtainbeamdisplacements()
{
for (int j = @; j < Global.Objects.Count; j++)
{
switch (Global.Objects[j].Type)
{
case Global.ObjectType.Beam:
var displacement = new double[6];
var beam = Global.Objects[j] as Beam;
for (int i = @; i < GlobalDofs.Count; i++)

{
foreach (var member in GlobalDofs[i].Members)
{
if (Equals(beam, member.Beam))
{
int index = (int)member.Location;
displacement[index] =
GlobalDisplacementVector[i];
break;
}
}
}

beam.UpdateDirectForceVector(displacement);
break;
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}
}
}
public class DOF
{
public DOF(Global.DOFType type)
{
Type = type;
Members = new List<DOFMember>();
}
public Global.DOFType Type;
public List<DOFMember> Members;
}
public class DOFMember
{
public DOFMember(Beam beam, Global.DOFLocation location)
{
Beam = beam;
Location = location;
}
public Beam Beam;
public Global.DOFLocation Location;
}
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