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ABSTRACT

In this thesis, we study online optimization problems that are related to navigation

and search on networks. In online problems information is revealed incrementally, and

decisions must be made before all information is available. We design and analyze

strategies for several online problems with applications in disaster response, search-

and-rescue, security, and defense. We prove worst-case competitive ratios to analyze

the performance of the proposed strategies. We first study the online k-Canadian

Traveler Problem (k-CTP) on O-D edge-disjoint graphs. An optimal randomized

strategy was given in the literature. We prove that the given strategy cannot be im-

plemented in some cases and modify it such that it is optimal and can be implemented

in all cases. We consider the online multi-agent k-CTP. We derive improved lower

bounds on the competitive ratio of deterministic strategies for the cases with limited

and complete communication. We introduce two deterministic strategies and show

that one of them is optimal in both cases with complete and limited communication

on O-D edge-disjoint graphs. We provide lower bounds on the competitive ratio of

randomized strategies for the cases without communication, with limited communica-

tion and with complete communication. We introduce a randomized online strategy

which is optimal for both cases with limited and complete communication on O-D

edge-disjoint graphs. We also consider the online Minimum Latency Problem with

edge uncertainty. We present an optimal deterministic strategy. Moreover, we present

a lower bound on the expected competitive ratio of randomized strategies. Finally,

we investigate the online Discrete Search Problem with traveling and search costs

on undirected graphs. We propose tight competitiveness lower bounds together with

optimal deterministic and randomized strategies.
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ÖZETÇE

Bu tezde, ağ yapıları üstünde navigasyon ve arama ile ilgili çeşitli çevrimiçi eniy-

ileme problemleri üzerinde çalışılmıştır. Çevrimiçi problemlerde bilgiler adım adım

açıklanır ve tüm bilgiler mevcut olmadan önce kararlar alınmalıdır. Tez kapsamında,

afete müdahale, arama kurtarma, güvenlik ve savunma alanlarında uygulamaları olan

birkaç çevrimiçi eniyileme problemi için eniyi stratejiler tasarlanıp bunların perfor-

mansları teorik olarak analiz edilmiştir. Önerilen stratejilerin performanslarını analiz

etmek için en kötü durumda, bilginin baştan elde olduğu (çevrimdışı) durumdaki en

iyi çözüme göre, rekabetçi oranlar belirlenmiştir. İlk olarak, çevrimiçi k-Kanadalı

Gezgin Problemi (k-KGP), ayrıtları kesişmeyen yollara sahip çizgeler üzerinde ince-

lenmiştir. Daha önce literatürde bu problem için bir eniyi rassal strateji verilmiştir.

Bu çalışmada, bazı durumlarda bu stratejinin uygulanamaz olduğu gösterilerek, strateji

her durumda uygulanabilir ve eniyi olacak şekilde değiştirilmiştir. Daha sonra çevrimiçi

çok katılımcılı k-KGP ele alınmıştır. Bu problemin sınırlı ve sınırsız iletişimin olduğu

iki durumuna bakılarak, literatürde verilen, deterministik stratejilerin rekabetçi oranına

alt sınırı iyileştirilmiştir. Aynı iki durum, ayrıtları kesişmeyen yollara sahip çizgeler

üzerinde incelenerek, iki deterministik strateji geliştirilmiştir. Bunlardan bir tanesinin

eniyi olduğu ispatlanmıştır.

Problemin iletişimin olmadığı, sınırlı ve sınırsız iletişimin olduğu üç durumuna

bakılarak, rassal stratejilerin rekabetçi oranına alt sınırlar geliştirilmiştir. Ayrıca

iletişimli durumlar için rassal bir strateji geliştirilerek, bunun ayrıtları kesişmeyen

yollara sahip çizgeler üzerinde eniyi olduğu ispatlanmıştır. Ayrıt belirsizliği olan

çevrimiçi Minimum Gecikme Problemi de ele alınan bir başka problemdir. Bu prob-

lem için bir eniyi deterministik strateji geliştirilmiştir. Ayrıca, rassal stratejilerin

beklenen rekabetçi oranına bir alt sınır bulunmuştur. Son olarak, çevrimiçi Ayrık

v



Arama Problemi, yönlendirilmemiş çizgelerdeki seyahat ve arama maliyetleriyle ince-

lenmiştir. Eniyi deterministik ve rassal stratejiler bulunmuştur.
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Chapter 1

INTRODUCTION

Conventionally, optimization techniques within the area of Operations Research

have mainly focused on deterministic planning for various problems. However, deter-

ministic planning may lead to poor solutions when actuality differs from expectation.

For example, deterministic routing plans may lead to infeasible solutions after a natu-

ral disaster due to unexpected failure of road network links. Furthermore, information

about real-world problems is rarely completely known a priori. For instance, travel

times associated with road network links are generally revealed over time in an online

manner without advance knowledge. Waiting for all necessary information is costly,

if not impossible, for many applications. Hence, for such problems, it is essential to

develop approaches that make decisions online, as information is revealed.

Online optimization is a field of optimization theory which finds place in Op-

erations Research, Computer Science and Economics. It deals with optimization

problems with incomplete information on their inputs. Problems in which incomplete

information is revealed online while a solution strategy is implemented are called

online problems. Solution strategies for online problems are called online strategies.

This thesis focuses on designing and analyzing online strategies for various online

optimization problems within the field of Network Optimization, namely the online

k-Canadian Traveler Problem, the online multi-agent k-Canadian Traveler Problem,

the online Minimum Latency Problem with edge uncertainty, and the online Discrete

Search Problem on undirected graphs.
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1.1 Online and offline strategies

A solution strategy to an online problem is called an online strategy. Online strategies

process their inputs piece-by-piece, without having the entire input available from

the beginning. Online strategies are divided into two categories as deterministic and

randomized. In a deterministic online strategy, actions of the decision maker do not

depend on probabilistic outcomes. That is, given a particular input, a deterministic

online strategy will always produce the same output. In a randomized strategy,

actions of the decision maker are taken according to some probability distribution in

the sense that given a particular input, a randomized online strategy may produce

different outputs.

The key concept in analyzing an online strategy is to compare a solution produced

by the online strategy with the best possible solution under complete information,

which is called the offline optimum solution. An offline strategy is to solve the same

problem as an online strategy, except that all information about the problem inputs

is revealed to an offline strategy from the beginning. An optimal offline strategy is

the optimal strategy in presence of complete input information which produces the

offline optimum solution.

1.2 Competitive analysis

The traditional approach for analyzing online strategies falls within the framework of

distributional (or average-case) complexity, whereby one hypothesizes a distribution

on input and studies the expected total cost. During the past decades the interest

in this subject has been renewed largely as a result of the approach of competitive

analysis, where the quality of an online strategy is measured by comparing its perfor-

mance to that of an optimal offline strategy. Hence, competitive analysis falls within

the framework of the worst-case complexity.

We note the reader that a more general study of online strategies is a much more

ambitious topic, and competitive analysis is only one aspect of decision making in
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the absence of complete input information. Any conceptual model has limitations

as well as benefits. The disadvantage of the traditional distributional complexity is

that the prior distribution is rarely known precisely and often the distributional as-

sumptions are unrealistically crude to allow for mathematical tractability. On the

other hand, competitive analysis has the disadvantage of being too pessimistic, as-

suming a malicious adversary that chooses the worst input by which to measure a

strategy’s performance. (This is the limitation in any worst-case analysis). We should

not expect competitive analysis to be uniformly worthwhile over all possible applica-

tion areas. However, it is becoming apparent that in some application areas such as

network routing it has practical relevance [21]. The focus of this thesis is on compet-

itive analysis of online strategies for various online optimization problems defined on

networks.

1.2.1 Notion of the competitive ratio for deterministic strategies

For minimization problems, a deterministic online strategy is called c-competitive

(c ≥ 1), if c is the smallest number such that for any instance of the problem, the

cost of the solution given by the deterministic online strategy is at most c times the

cost of an optimal offline solution for the instance:

Costonline(I) ≤ c(Costoffline(I)), ∀ instances I.

Equivalently, the competitive ratio equals to

c = sup
I

Costonline(I)

Costoffline(I)
.

A deterministic online strategy is said to be optimal if no other deterministic strategy

has a strictly smaller competitive ratio [21].

Similarly, for maximization problems, a deterministic online strategy is called c-

competitive (c ≤ 1), if c is the largest number such that for any instance of the

problem, the cost of the solution given by the deterministic online strategy is at least
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c times the cost of an optimal offline solution for the instance:

Costonline(I) ≥ c(Costoffline(I)), ∀ instances I.

Equivalently, the competitive ratio is equal to

c = inf
I

Costonline(I)

Costoffline(I)
.

A deterministic online strategy is said to be optimal if no other deterministic strategy

has a strictly larger competitive ratio.

1.2.2 Notion of the expected competitive ratio for randomized strategies

For minimization problems, a randomized online strategy is called c-competitive (c ≥

1), if c is the smallest number such that for any instance of the problem, the expected

cost of the solution given by the randomized online strategy is at most c times the

cost of an optimal offline solution for the instance:

E[Costonline(I)] ≤ c(Costoffline(I)), ∀ instances I.

Equivalently, the expected competitive ratio equals to

c = sup
I

E[Costonline(I)]

Costoffline(I)
.

A randomized online strategy is said to be optimal if no other randomized strategy

has a strictly smaller expected competitive ratio.

Similarly, for maximization problems, a randomized online strategy is called c-

competitive (c ≤ 1), if c is the largest number such that for any instance of the

problem, the expected cost of the solution given by the randomized online strategy is

at least c times the cost of an optimal offline solution for the instance:

E[Costonline(I)] ≥ c(Costoffline(I)), ∀ instances I.
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Equivalently, the expected competitive ratio is equal to

c = inf
I

E[Costonline(I)]

Costoffline(I)
.

A randomized online strategy is said to be optimal if no other randomized strategy

has a strictly larger competitive ratio.

1.3 Problem definitions

In this thesis we address four different online problems, as defined in the following.

1.3.1 Online k-Canadian Traveler Problem

The online Canadian Traveler Problem (CTP) is a navigation problem under incom-

plete information. A traveling agent receives an undirected graph G = (V,E) with a

given source node O and a destination node D, together with non-negative edge costs

as input. The agent is located at O initially. There are some blocked edges in the

graph, but these edges are not known to the agent. The agent discovers the status

of an edge when he reaches an end-node of the edge. The objective is to provide an

online strategy such that the agent finds a feasible path, i.e. one without blocked

edges from O to D with minimum total cost of the edges taken by the agent. When

an upper bound k (k ≥ 1) on the number of blocked edges is given as input, the

problem is called the k-CTP.

1.3.2 Online multi-agent k-Canadian Traveler Problem

The multi-agent k-CTP is an online optimization problem that generalizes the k-CTP

by the existence of multiple agents. In the multi-agent k-CTP, there are L agents in

the graph who are initially located at O. The objective of the agents is to provide

an online strategy such that at least one of them finds a feasible path, from O to D

with minimum total cost of the edges taken by the agent that finds a feasible path

first. Two versions of the multi-agent k-CTP have been introduced in the literature,
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with complete and limited communication. When the communication is limited, some

agents can both send and receive information and some of the agents can only receive

information. The agents who are able to both send and receive information are called

RS-type agents and the agents who are only able to receive information are called

R-type agents. In presence of complete communication, all of the agents can send

and receive information, i.e. all of the agents are RS-type.

1.3.3 Online minimum latency problem with edge uncertainty

In the Minimum Latency Problem (MLP), an undirected simple connected graph

G = (V,E) is given to an agent, where V = {v0, v1, v2, ..., vn} and v0 ∈ V is a

root node. Non-negative edge distances are also given. The agent should start from

v0 and complete a tour visiting all the nodes. The latency of vi is denoted by li,

which represents the distance traveled before first visiting vi. Naturally, l0 is zero.

The objective of the agent is to find a tour on G, starting from v0, that minimizes∑n
i=1 l(i). In the online Minimum Latency Problem with edge uncertainty (OMLP), k

edges of G are blocked, and the agent learns that an edge e ∈ E is blocked, only if she

reaches at one of the end-nodes of e. It is assumed that the graph remains connected

if the blocked edges are removed from it. The objective of the problem is to provide

an online strategy such that the agent finds a feasible tour, i.e. one without blocked

edges, starting from v0 which minimizes
∑n

i=1 l(i).

1.3.4 Online discrete search problem with traveling and search costs on undirected

graphs

In the online Discrete Search Problem on undirected graphs (ODSP), an undirected

connected graph G = (V,E) is given, where V = {v0, v1, v2, ..., vn}, each node vi (i ∈

{1, 2, ..., n}) of the graph is associated with a given non-negative search cost si. A

non-negative edge cost de is also given for each edge e ∈ E. A static hider is at one of

the nodes vi∗ (i∗ ∈ {1, 2, ..., n}) which is not known to the searcher. The hider is not

found unless the searcher arrives at vi∗ and incurs the search cost of vi∗ . Starting from
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v0, the searcher wants to devise an online strategy to locate the hider with minimum

total cost.

1.4 Literature review

In this section, we review related literature on the problems defined in the previous

section.

1.4.1 Online optimization and competitive analysis

Online strategies have been implicitly and explicitly studied in the context of schedul-

ing, optimization, data structures, and other computational topics. The roots of com-

petitive analysis can be found in classical combinatorial optimization theory and in

the analysis of data structures [21]. The first systematic study of online strategies is

presented by Sleator and Tarjan [55], who suggest comparing an online strategy with

an optimal offline strategy. This type of analysis was later called competitive analysis

in [36]. For more details and information on online optimization and competitive

analysis, see the survey paper of Albers [3] and the books of Borodin and El-Yaniv

[21], Fiat and Woeginger [29], and Komm [38].

1.4.2 Online k-Canadian Traveler Problem

The CTP is defined first in [48]. Papadimitriou and Yannakakis [48] proved that

devising an online strategy with a bounded competitive ratio is PSPACE-complete

for the CTP.

Bar-Noy and Schieber [14] considered several variations of the CTP. They intro-

duced the k-CTP, where an upper bound k on the number of blocked edges is given as

input. They showed that for arbitrary k, the problem of designing an online strategy

that guarantees the minimum travel cost is PSPACE-complete. They also considered

the Recoverable k-CTP, in which each blocked edge is associated with a recovery cost

to re-open. They considered the worst-case criterion for the Recoverable k-CTP and
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provided a strategy with minimum worst-case cost under the assumption that the

recovery costs of the edges is less than or equal to their original costs.

Nikolova and Karger [46] studied a stochastic version of the CTP, where the edges

in the input graph have uncertain costs which are associated with known probability

distributions. The objective of the problem is to find an optimal policy that minimizes

total expected cost. They applied a mix of techniques from algorithm analysis and the

theory of Markov Decision Processes to provide efficient exact strategies for directed

acyclic graphs and undirected node-disjoint O-D paths. Fried et al. [31] showed that

the stochastic CTP is PSPACE-complete. They initially proved PSPACE-hardness

for the dependent version of the stochastic CTP, and extended their proof to the inde-

pendent case. They also examined the complexity of the more general remote-sensing

CTP, and showed that it is NP-hard even for disjoint-path graphs. Aksakalli et al. [2]

investigated the stochastic CTP. They introduced an optimal strategy for the prob-

lem based on a Markov decision process formulation, which is a new improvement

on AO* search that takes advantage of the special problem structure in CTP. Sahin

and Aksakalli [49] studied the stochastic CTP, where the agent is given prior block-

age probabilities associated with each edge, and the objective is to devise a strategy

that minimizes the expected traversal cost between two given nodes. They compared

penalty-based and rollout-based algorithmic frameworks via computational experi-

ments involving Delaunay and grid graphs using one specific penalty-based strategy

and four rollout-based strategies. Their results indicated that the penalty-based strat-

egy executes several orders of magnitude faster than rollout-based ones while also

providing better policies.

Westphal [64] considered the k-CTP from the competitive ratio perspective. By

analyzing an instance of graphs that consist of only node-disjoint O-D paths, he

showed the lower bounds of 2k+ 1 and k+ 1 on the competitive ratio of deterministic

and randomized strategies, respectively. He also presented an optimal deterministic

strategy which is called the backtrack strategy and showed that its competitive ratio

matches the lower bound of 2k + 1. Xu et al. [66] also considered the k-CTP and
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presented two online strategies, the greedy and the comparison strategy and proved

the competitive ratios of 2k+1 − 1 and 2k + 1, respectively for these strategies.

Su and Xu [58] studied online strategies for the recoverable k-CTP. They presented

the waiting strategy and the greedy strategy. They proved tight competitive ratios of

1 +α and (1 +αk), respectively for the two strategies, where α denotes the maximum

ratio of recovery time to normal travel time among all edges in the graph. Su et al. [59]

presented an optimal online strategy, i.e. a comparison strategy for recoverable k-CTP

and proved its competitive ratio in special graph. Liao and Huang [42] considered a

generalization of the k-CTP, where each edge of the input graph is associated with

two different travel costs. They considered graphs with only node-disjoint O-D paths

to derive lower bounds on the competitive ratio of deterministic and randomized

strategies for this problem. They also proved that their proposed lower bound on the

competitive ratio of deterministic strategies is tight by introducing a deterministic

strategy whose competitive ratio meets their proposed lower bound.

Bender and Westphal [4] presented a randomized online strategy for the k-CTP

which meets the lower bound of k+ 1 in special cases. This randomized strategy can

be regarded as the randomized version of the backtrack strategy. Demaine et al. [27]

suggested a randomized online strategy for the k-CTP which achieves the competitive

ratio of (1 +
√
2
2

)k + 1 in pseudo-polynomial time.

Related problems to the CTP

There are some recent works on similar online problems in the literature. Liao and

Huang [41], investigated a variation of the Traveling Salesman Problem that involves

finding a shortest tour, under the same uncertainty as that of the CTP. They called

this online routing problem as Covering Canadian Traveler Problem (CCTP). They

studied the problem from the competitive analysis perspective and presented an effi-

cient touring strategy within an o
√
k - competitive ratio, where the number of block-

ages is at most k. They also demonstrated the tightness of their competitive analysis.

Zhang et al. [71] considered the online Steiner Traveling Salesman Problem
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(sTSP), in which the traveler needs to visit multiple destination vertices. The objec-

tive of their problem is to find a minimum weight tour that traverses every destination

vertex at least once. As in the k-CTP, the traveler could encounter at most k blocked

edges. They provided a lower bound on the competitive ratio and presented an opti-

mal strategy for the problem. While the optimal strategy does not have polynomial

running time, they presented another online polynomial time near-optimal strategy

for the problem. Zhang et al. [72] formulated the sTSP with online advanced edge

blockages to address an application in package delivery, where the driver (salesman)

receives road blockage messages when he is at a certain distance to the respective

blocked edges. Such road blockages are referred to as advanced information. With

these online advanced road blockages, the driver wishes to deliver all the packages to

their respective customers and returns back to the service depot through a shortest

route. During the entire delivery process, there will be at most k road blockages, and

they are non-recoverable. Zhang et al. [72] proved lower bounds on the competitive

ratio of deterministic strategies for this problem. They present a polynomial time on-

line strategy with a competitive ratio very close to this lower bound. Similar results

for a variation, in which the driver does not need to return to the service depot, are

also provided.

Buttner and Krumke [24] studied the Canadian Tour Operator Problem (CTOP)

which is an online variant of Prize-collecting Traveling Salesman Problem with online

blocked edges related to graph exploration. The goal consists of minimizing the sum

of the travel costs and the refunds. They analyzed the problem on a simple (weighted)

path and prove tight bounds on the competitiveness of deterministic strategies. They

also considered the effect of resource augmentation, where the online strategy either

pays a discounted cost for traversing edges or for the penalties. Zhang and Xu [73]

proposed the online Covering Salesman Problem (CSP) in which the salesman will

encounter at most k blocked edges during the traversal. They suggested a lower bound

on the competitive ratio of deterministic strategies and introduced a deterministic

strategy which is near-optimal in a special case.
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1.4.3 Online multi-agent k-Canadian Traveler Problem

The k-CTP with multiple agents is first considered by Zhang et al. [74]. They

analyzed the problem in two scenarios, with complete and limited communication.

They proposed lower bounds of 2bk−1
L1
c+ 1 and 2b k

L
c+ 1 on the competitive ratio of

the deterministic strategies for the cases with limited and complete communication,

respectively. Note that in the proposed lower bounds L denotes the total number of

agents and L1 denotes the number of RS-type agents. They also proposed an optimal

deterministic strategy when there are two agents in the graph.

Xu and Zhang [67] focused on a real-time rescue routing problem from a source

node to an emergency spot in presence of online blocked edges. They analyzed the

problem with the objective to make all the rescuers arrive at the emergency spot

with minimum total cost. They studied the problem in two scenarios: (1) without

communication and (2) with complete communication. They investigated both of

the scenarios on the grid networks and general networks, respectively. They showed

that the consideration of both the grid network and the rescuers’ communication can

significantly improve the rescue efficiency. Bnaya et al. [20] considered a stochastic

version of the CTP, where some of the edges are blocked with a known probability.

They generalized CTP to a repeated task version where a number of agents need

to travel to the same goal, minimizing their combined expected travel cost. They

provided optimal strategies for the special case of disjoint path graphs.

1.4.4 Online minimum latency problem with edge uncertainty

The MLP is a well-studied problem in combinatorial optimization. This problem

is also known as the deliveryman problem [1] or the traveling repairman problem

[30]. The MLP is an NP-hard problem [50] and it is APX-hard, implying the non-

existence of a polynomial-time approximation scheme (PTAS) unless P=NP [54].

Several exact algorithms have been proposed for the MLP (see [44], [65], [45], [7] and

[6]). Approximation algorithms for the MLP have been extensively investigated (see

[19], [32], [9] and [25]), and the best approximation ratio achieved to date is 3.59
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which is presented in [25].

The OMLP has been recently studied in [70], where a lower bound of 2k + 1 on

the competitive ratio of deterministic strategies is provided. Two heuristic online

strategies are also suggested in [70] which are called the GoodTreeTraversal strategy

and the Detour strategy. The GoodTreeTraversal strategy produces near optimal

solutions when the number of blockages is large enough. The Detour strategy has no

theoretical guarantee on its performance and runs in polynomial time.

Related problems to the OMLP

The MLP is closely related to the well-known Traveling Salesman Problem (TSP), of

which the input is the same but the objective is to minimize the total length of the tour

visiting all nodes. In the online traveling salesman problem requests for visits to cities

(points in a metric space) arrive online while the salesman is traveling. The salesman

moves at no more than unit speed and starts and ends his work at a designated origin.

The objective is to find a routing for the salesman which finishes as early as possible.

Ausiello et al. [13] studied the problem of efficiently serving a sequence of requests

presented in an online fashion located at points of a metric space. They considered

two versions of the problem. In the first one the server is not required to return

to the departure point after all presented requests have been served. In the second

one returning to the departure point is required. They provided competitiveness

lower bounds and efficient deterministic online strategies for these cases. Blom et al.

[18] considered the online TSP when restricted to the non-negative part of the real

line. They showed that a very natural strategy is 3
2
-competitive which matches their

suggested lower bound. The main contribution of their paper is the presentation of

a fair adversary, as an alternative to the omnipotent adversary used in competitive

analysis for online routing problems. They presented an efficient deterministic online

strategy against a fair adversary.

Ausiello et al. [12] investigated an online variant of the Quota TSP which is a

generalization of the TSP. In the Quota TSP, the objective is to reach a given quota
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of sales minimizing the amount of time. Ausiello et al. [12] addressed the online

version of the problem, where requests are given over time. They presented strategies

for various metric spaces, and analyze their performance in the usual framework

of competitive analysis. Auseillo et al. [10] considered two online versions of the

asymmetric traveling salesman problem with triangle inequality. For the homing

version, in which the salesman is required to return in the city where it started

from, they presented a tight lower bound on the competitive ratio of deterministic

strategies together with an optimal deterministic online strategy. For the nomadic

version, the online analogue of the shortest asymmetric Hamiltonian path problem,

they showed that the competitive ratio of any online strategy depends on the amount

of asymmetry of the space in which the salesman moves. Ausiello et al. [11] studied

the online version of the Prize-Collecting TSP, a generalization of the TSP, where each

city (node) has a given weight and penalty, and the goal is to collect a given quota of

the weights of the cities while minimizing the length of the tour plus the penalties of

the cities not in the tour. In the online version, cities are disclosed over time. They

derived a lower bound of 2 on the competitive ratio of deterministic strategies and

introduced a 7
3
-competitive deterministic online strategy.

Jaillet and Lu [33] analyzed the online TSP with service flexibility. They assumed

that there is a penalty for not serving a request. Requests for visit of points in

the metric space are revealed over time to a server, initially at a given origin, who

must decide in an online fashion which requests to serve to minimize the time to

serve all accepted requests plus the sum of the penalties associated with the rejected

requests. They investigated the problem on non-negative real line, real line, and

general metric space and proposed optimal deterministic online strategies for special

cases. Jaillet and Lu [34] considered online versions of the TSP on metric spaces for

which requests to visit points are not mandatory. Associated with each request is

a penalty (if rejected). Requests are revealed over time (at their release dates) to a

server who must decide which requests to accept and serve in order to minimize a

linear combination of the time to serve all accepted requests and the total penalties
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of all rejected requests. In the basic online version of the problem, a request can be

accepted any time after its release date. In the real-time online version, a request must

be accepted or rejected at the time of its release date. They also provided optimal

deterministic online strategies for both of the versions on general metric space. For

the real-time version, they also introduced an optimal deterministic online strategy

for the special case of non-negative real line.

Wen et al. [62] modelled the customers waiting psychology and service preparation

time into the online TSP with the objective to serve as many requests as possible. In

their paper, each request has a disclosure time before accepting service at its release

time, and a deadline, which is no bigger than its release time plus the travel time

from origin to its position. They presented lower bounds for the competitive ratios,

online strategies, and quantify the influence of advanced information on competitive

ratios. Wen et al. [63] analyzed a version of the online TSP with deadlines and service

flexibility, where the salesman can choose whether to serve or not when a new request

arrives. By rejecting the request or missing its deadline, penalties will be generated.

The goal is to minimize servers costs (travel makespan plus the penalties of missed

requests). They showed that no deterministic or randomized online strategies can

achieve constant competitive ratio for the problem on general metric space.

1.4.5 Online discrete search problem with traveling and search costs on undirected

graphs

Work on search theory began in the U.S. Navy’s Antisubmarine Warfare Operations

Research Group (WORG) in 1942 in response to the German submarine threat in the

Atlantic [57]. Bernard Koopman joined WORG in 1943 and was the first person to

provide the basic probabilistic foundation for search problems. Koopman [39] stud-

ied the optimal allocation of a fixed amount of search effort to detect a static hider.

He defined the elements of the basic problem of optimal search: a prior distribution

on hider location, a function relating search effort and detection probability, a con-

strained amount of search effort, and the optimization criterion of maximizing the
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probability of detection subject to a constraint on the amount of effort. This problem

is now called the Optimal Search Problem (OSP). Significant progress was made on

the OSP with a static hider between 1946 and 1965, which is summarized in [56].

An excellent review on the theoretical achievements on search theory related to both

versions with static and moving hider is presented in [57].

Search problems on graphs

Search problems on graphs were introduced by Rufus Isaacs in the final chapter of his

classic 1965 book, Differential Games [4]. An extensive amount of research has been

conducted on search problems in which a static hider selects a point on a given graph,

and a moving searcher targets to find her as quickly as possible by traversing the edges

of the graph. The searcher starts from a point of the graph which is either decided by

the searcher or fixed a priori. The literature on this type of search problems (those

defined on graphs) is divided into two main streams. The first stream assumes that

the hider is permitted to position herself at any point of the graph, and the searcher

locates the hider when he arrives at the point in which the hider is positioned, i.e.

the first stream corresponds to continuous search problems. For problems belonging

to the first stream, see [4], [8], [26] and [35].

The second stream assumes that the hider hides at a node of the graph and before

the hider can be found, the searcher conducts a search at the node in which the hider

is positioned, i.e. the second stream corresponds to discrete search problems. In this

case, operating a search at a node incurs a cost to the searcher, which can vary from

node to node. Hence, the searcher not only bears traveling costs but also search costs.

When the searcher reaches a node, he does not have to search it but can pass through

it and return at a later time to conduct a search, if he has not found the hider in

the meantime. There are two decision rules to tackle search problems of the second

stream in the literature: 1) Bayes, in which the searcher minimizes the expected cost

with respect to a prior distribution, and 2) minimax, in which the problem is modeled

as a zero-sum game between the searcher and the hider. In the Bayes approach, the
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probability of overlooking the hider in case the searcher probes the same node in

which the hider is positioned is also taken into account.

Loessner and Wegener [43] studied a version of search problems of the second

stream where the starting node is decided by the searcher from Bayes perspective.

They obtained necessary and sufficient conditions for the existence of optimal strate-

gies. Wegener [61] analyzed the complexity of the same problem as the one considered

in [43] and proved that the problem is NP-hard. Kikuta [37] studied a version of the

search problems belonging to the second stream on finite cyclic graphs from the min-

imax point of view, where the starting node of the searcher is given. He modeled

the problem as a two-person zero-sum game and solved it for a special case. He also

proposed properties of optimal strategies for both the searcher and the hider. Baston

and Kikuta [15] investigated a version of search problems of the second stream from

the minimax perspective, where the starting node is decided by the searcher. They

modeled the problem as a two-person zero-sum game and provided an upper bound

for the value of the game. In addition, they proved a lower bound on the value of the

game when the edge costs are uniform. Baston and Kikuta [15] also provided results

on star and line graphs. In another article, Baston and Kikuta [16] analyzed a version

of search problems of the second stream from the minimax perspective on directed,

not necessarily strongly connected, graphs, where the starting node is decided by the

searcher. For more on search theory and related problems, the reader is referred to

[5], where zero-sum search games between the searcher and the hider under different

scenarios are considered.

1.5 Thesis contributions

Below we summarize our contributions chapter by chapter.

1.5.1 Chapter 2 (Online k-Canadian Traveler Problem)

In this chapter, we reconsider the randomized online strategy that is presented for

the k-CTP on graphs where all O-D paths are node-disjoint in [4]. This strategy can
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be regarded as the randomized version of the backtrack strategy according to Bender

and Westphal. Hence we call it the randomized backtrack strategy (RBS).

We show that a particular property regarding the costs of the O-D paths must

hold to implement the RBS. We formally specify this property. Next we show that

this property does not necessarily hold when the costs of the O-D paths in the input

graph are arbitrary and k > 2. That is we prove that the RBS is not applicable on

graphs that consist of only node-disjoint O-D paths, where the costs of the O-D paths

are arbitrary and k > 2. Moreover, we modify the RBS and introduce an optimal

strategy which is applicable on graphs where all O-D paths are node-disjoint and the

costs of the O-D paths are arbitrary.

These results have been published in [53].

1.5.2 Chapter 3 (Online multi-agent k-Canadian Traveler Problem)

Analysis of deterministic online strategies

In the first section of Chapter 3, we study deterministic online strategies for the online

multi-agent k-CTP. We focus on the case where communication among the agents is

limited. We define three levels of agents’ intelligence. We introduce two simple

deterministic online strategies and use them when the agents benefit from higher levels

of intelligence. By this way, we provide updated lower bound on the competitive ratio

of deterministic online strategies for the case with limited communication on general

graphs. We also show that one of our strategies is optimal in both cases with complete

and limited communication in the special case of edge-disjoint graphs. Note that in

edge-disjoint graphs, there exists no path with common edges with any other path.

We need to mention that analyzing edge-disjoint graphs is a standard restriction in

the context of k-CTP and its variants. Finally, we argue that increasing the number

of R-type agents can improve the competitive ratio of deterministic strategies for

the online multi-agent k-CTP with limited communication. These results have been

published in [51].
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Analysis of randomized online strategies

In the second section of Chapter 3, we focus on randomized online strategies for the

multi-agent k-CTP. We analyze the problem in three cases: 1) without communi-

cation, 2) with limited communication and 3) with complete communication. We

derive lower bounds on the competitive ratio of the randomized strategies for all of

these cases. For the case without communication, we introduce a simple randomized

strategy and prove its competitive ratio on a special case. By this way, we prove that

increasing the number of agents can improve the competitive ratio of the randomized

strategies for the multi-agent k-CTP.

For the cases with limited and complete communication, we introduce an optimal

randomized strategy for both cases on O-D edge-disjoint graphs. Here we note that

most optimal strategies in the literature are confined to O-D edge-disjoint graphs.

Because our optimal strategy achieves a better expected competitive ratio in compar-

ison to the optimal deterministic strategy on O-D edge-disjoint graphs, we conclude

that randomization can improve the expected competitive performance of the online

strategies for the k-CTP in presence of multiple agents and communication. We also

prove that the competitive ratio of the optimal randomized strategy does not im-

prove on O-D edge disjoint graphs, when the case with complete communication is

compared to the case with limited communication.

These results have been published in [52].

Analysis of online strategies on graphs having common edges on the O-D

paths

In the third section of Chapter 3, we provide an improved lower bound on the com-

petitive ratio of deterministic strategies by analyzing graphs in which the O-D paths

have common edges. By this way we show that no deterministic strategy achieves the

lower bound of 2b k
L
c+ 1 given in [74].
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1.5.3 Chapter 4 (Online minimum latency problem with edge uncertainty)

A lower bound of 2k + 1 has been derived for the competitive ratio of deterministic

online strategies for OMLP in [70]. However, a deterministic online strategy which

meets the lower bound of 2k + 1 is not provided. In this chapter, we prove that the

lower bound of 2k+ 1 is tight by introducing an optimal deterministic online strategy

whose competitive ratio matches the lower bound. Furthermore, we prove that no

randomized online strategy can achieve an expected competitive ratio better than

k + 1 for OMLP.

1.5.4 Chapter 5 (Online discrete search problem with traveling and search costs on

undirected graphs)

Several past studies have conducted competitive analysis on the variants of online

continuous search problems which are defined on graphs, see [8], [26] and [35]. How-

ever, to the best of our knowledge, online discrete search problems have not been

studied from the competitive analysis point of view. In this chapter, we investigate

an online discrete search problem which we call the ODSP from the competitive anal-

ysis perspective for the first time. The ODSP finds applications in diverse areas such

as security, defense, and search-and-rescue. We provide policies that are optimal with

respect to the worst-case scenarios for such applications. We derive a tight lower

bound on the competitive ratio of deterministic strategies and propose an optimal

deterministic strategy. We also provide a tight lower bound on the expected compet-

itive ratio of randomized strategies and prove its tightness by introducing an optimal

randomized strategy. In this way, we show that randomized strategies can achieve a

better competitive ratio in comparison to deterministic strategies for the ODSP in

the expected sense.
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1.6 Significance of the study

In this thesis, we investigate several online optimization problems in which some part

of input is incomplete and information is revealed incrementally while implementing a

solution strategy. In situations when complete information is not a priori available but

becomes gradually available while making decisions according to the actions taken,

online optimization approach addresses the underlying problems better, in comparison

to optimization approaches where complete input information is assumed. For these

problems, it is essential to develop strategies that make effective decisions online, as

information is revealed.

The objective of this thesis is to design and analyze online solution strategies for

a selection of online optimization problems within the field of Network Optimization.

We study four online optimization problems which are defined in the context of navi-

gation and search on networks; namely, the online k-Canadian Traveler Problem, the

online multi-agent k-Canadian Traveler Problem, the online Minimum Latency Prob-

lem with edge uncertainty, and the online Discrete Search Problem with traveling and

search costs on undirected graphs. These problems find applications in various areas

such as disaster response, search-and-rescue, security, and defense. In such application

areas, for instance, in a relief operation during disaster response (which can be re-

garded as an application of all of the aforementioned problems), the first responder(s)

would start the operation without waiting for complete information to save from time.

In such operations, having solution strategies with a good worst-case performance is

vital since human life is at stake. This necessity motivates us to investigate the afore-

mentioned problems from the competitive analysis perspective, which is a standard

worst-case measure in comparison to the offline optimum, over all possible instances

of the problem, to evaluate the performance of online solution strategies. We ob-

tain novel results including proven optimal policies and characterization of worst-case

scenarios. The policies guide the decision makers and the worst-case scenarios are

useful to identify how an adversary would behave so that necessary precautions can

be taken.
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ONLINE K-CANADIAN TRAVELER PROBLEM

2.1 Introduction

The online Canadian Traveler Problem (CTP) is a navigation problem under incom-

plete information. A traveling agent receives an undirected graph G = (V,E) with a

given source node O and a destination node D, together with non-negative edge costs

as input. The agent is located at O initially. There are some blocked edges in the

graph, but these edges are not known to the agent. The agent discovers the status

of an edge when he reaches an end-node of the edge. The objective is to provide an

online strategy such that the agent finds a feasible path, i.e. one without blocked

edges from O to D with minimum total cost of the edges taken by the agent. When

an upper bound k (k ≥ 1) on the number of blocked edges is given as input, the

problem is called the k-CTP.

To evaluate the performance of online strategies, the notion of competitive ratio

has been introduced by Sleator and Tarjan [55] and adopted by many researchers. For

a deterministic strategy, the competitive ratio is the maximum ratio of the cost of the

online strategy to the cost of the offline strategy over all instances of the problem. For

a randomized strategy, the competitive ratio is the maximum ratio of the expected

cost of the online strategy to the cost of the offline strategy over all instances of the

problem. In the offline k-CTP, the blocked edges are removed from the graph. Hence,

it reduces to a shortest path problem.

2.1.1 Our Contributions

In this study we reconsider the randomized online strategy that is presented for the

k-CTP on graphs where all O-D paths are node-disjoint in [4]. This strategy can be
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regarded as the randomized version of the backtrack strategy according to Bender

and Westphal. Hence we call it the randomized backtrack strategy, in short the RBS.

We show that a particular property regarding the costs of the O-D paths must

hold to implement the RBS. We formally specify this property. Next we show that

this property does not necessarily hold when the costs of the O-D paths in the input

graph are arbitrary and k > 2. That is we prove that the RBS is not applicable on

graphs that consist of only node-disjoint O-D paths, where the costs of the O-D paths

are arbitrary and k > 2. Moreover, we modify the RBS and introduce an optimal

strategy which is applicable on graphs where all O-D paths are node-disjoint and the

costs of the O-D paths are arbitrary.

2.2 Preliminaries

We assume that the input graph G = (V,E) contains only node-disjoint O-D paths.

We denote the number of node-disjoint O-D paths in the graph by n. We denote the

cost of an O-D path Pi (i = 1, 2, ..., n) by ci, where ci is the sum of the costs of the

edges on Pi. We assume that the graph remains connected if all of the blocked edges

are removed from it. Note that n ≥ 2, since k ≥ 1. We define t = min{k + 1, n}.

Before we explain our results, we need to explain the RBS. We first present the

following definition that is taken from [4].

Definition 2.2.1. The paths P1, P2, ..., Pn with costs c1 ≤ c2 ≤ ... ≤ cn have the

similar costs property if for all i = 1, 2, ..., n it holds that

ci ≤
2

n

n∑
j=1

cj.

Suppose that the O-D paths P1, P2, ..., Pn with costs c1, c2, ..., cn satisfy the similar

costs property. In this case regarding the random selection of one O-D path among

P1, P2, ..., Pn, the RBS constructs the probability distribution Ωn = (p1, p2, ..., pn) as
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follows [4]. Ωn = λ∗p
′
, where Ωn and p

′
are n-vectors, λ∗ =

∑n
i=1

1

p
′
i

∈ [0, 1] and

p
′

i =
(2− n)ci +

∑n
j=1j 6=i 2cj

n2ci
,

for i = 1, ..., n.

Note that λ∗ ∈ [0, 1] when the costs of the O-D paths P1, ..., Pn are arbitrary [4],

i.e. P1, ..., Pn should not necessarily satisfy the similar costs property to ensure that

λ∗ ∈ [0, 1]. We also note that it is assumed that P1, P2, ..., Pn fulfill the similar

costs property to ensure the non-negativity of p1, ..., pn [4]. That is, the RBS only

uses Ωn when P1, P2, ..., Pn have the similar costs property, i.e. when p1, p2, ..., pn are

non-negative. Bender and Westphal [4] proved the following lemma regarding the

probability distribution Ωn.

Lemma 2.2.1. Suppose that the O-D paths P1, P2, ..., Pn with costs c1 ≤ c2 ≤ ... ≤

cn satisfy the similar costs property. In this case the probability distribution Ωn =

(p1, p2, ..., pn), belongs to the polyhedron Qn which is defined as

Qn = {p ∈ Rn
+ : (2− n)pi +

n∑
j=1j 6=i

2
cj
ci
pj ≤ 1 ∀i = 1, 2, ..., n,

n∑
i=1

pi = 1}.

Now we can describe the RBS.

2.2.1 Description of the RBS

Recall that t = min{k + 1, n}. Note that t ≥ 2, since k ≥ 1 and n ≥ 2. The RBS

partitions the t shortest O-D paths in the graph into classes of O-D paths as follows.

Initially an empty class is opened. The strategy sorts the t shortest O-D paths in the

graph in non-decreasing order of their costs. O-D paths are added to the open class

as long as possible such that the similar costs property holds. If adding an additional

O-D path violates the property, the currently open class is closed and a new class is

opened. Partitioning the O-D paths into classes continues until the tth shortest O-D

path in the graph is assigned to an open class. The classes are maximal with respect
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to the similar costs property, i.e. they cannot be extended without violating the

property. Moreover such a classification of the O-D paths always exists and it is unique

up to permutations of the O-D paths that have the same costs. For a graph that

contains only node-disjoint O-D paths, let Class1, Class2, ..., ClassL be the unique

classification that is constructed as described above, i.e. Class1, Class2, ..., ClassL

are the constructed classes and L ≥ 1. The classes are sorted in ascending order of

costs of their O-D paths, i.e. the costs of the O-D paths in Class1 are less than the

costs of the O-D paths in the other classes. Let nl denote the number of O-D paths

in Classl for l = 1, ..., L. Now we can explain the rest of the strategy.

The classes are processed in ascending order, i.e. Class1 is processed first, as

follows. We call the class that is being processed by the agent the current class,

i.e. Class1 is the current class at the beginning. Initially, the agent constructs the

probability distribution Ωn1 = (p1, ..., pn1) and takes the O-D path P ∗ (P ∗ ∈ Class1),

according to it. We note that p1, ..., pn1 are non-negative since the n1 O-D paths in

Class1 satisfy the similar costs property. If P ∗ is not blocked, the agent arrives at

D and the RBS ends. Otherwise, the agent backtracks to O and removes P ∗ from

Class1. However the O-D paths in Class1−{P ∗} do not necessarily obey the similar

costs property. Here we specify an implicit assumption that is used in the RBS.

Definition 2.2.2. Suppose that the t shortest O-D paths in the graph are partitioned

into classes Class1, Class2, ..., ClassL by the RBS. let P l
1, P

l
2, ..., P

l
nl

be the O-D paths

in Classl for l = 1, ..., L. The O-D paths in Classl have the strong similar costs

property if and only if the O-D paths in any non-empty subset of {P l
1, P

l
2..., P

l
nl
}

satisfy the similar costs property.

Assuming that the O-D paths in Class1 fulfill the strong similar costs property,

the agent constructs the probability distribution Ωn1−1 = (p1, ..., pn1−1) and takes an

O-D path P ∗
′

among the remaining O-D paths in Class1 according to Ωn1−1. If P ∗
′

is not blocked, the agent arrives at D and the strategy ends; otherwise, the agent

backtracks to O and removes P ∗
′

from Class1. The procedure is repeated until the

agent arrives at D or all of the O-D paths in Class1 are taken. In the latter case,
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the agent processes the next class, i.e. Class2. The same procedure is then repeated

until the agent arrives at D.

2.3 Consideration of the RBS on graphs having only node-disjoint O-D

paths

We consider the implementation of the RBS on graphs that contain n node-disjoint

O-D paths. We show that there are cases in which the RBS cannot be implemented.

Definition 2.3.1. We call the set of n (n ≥ 4) O-D paths P1, P2, ..., Pn with costs

c1, c2, ..., cn, the adversary set of n O-D paths (An); if c1, c2, ..., cn satisfy the following

conditions. 1) c1 = c2 = 1 and 2) ci = 2(i− 1) for 3 ≤ i ≤ n.

Theorem 2.3.1. When k ≥ 3 in the k-CTP, the RBS cannot be implemented on

Ak+1.

Proof. ConsiderAk+1 that contains the O-D paths P1, P2, ..., Pk, Pk+1 with costs 1, 1, ..., 2(k−

1), 2k for k ≥ 3. Note that P1, P2, ..., Pk+1 have the similar costs property ac-

cording to Definitions 5.5.1 and 2.3.1. The RBS initially partitions the O-D paths

into a single class Class1, i.e. Class1 contains P1, P2, ..., Pk+1. Note that only one

class is constructed since P1, P2, ..., Pk+1 fulfill the similar costs property. Then the

agent takes one of the O-D paths in Class1 according to the probability distribution

Ωk+1 = (p1, p2, ..., pk+1), i.e. pi = λ∗(
(1−k)ci+

∑k+1
j=1j 6=i 2cj

(k+1)2ci
) for i = 1, 2, ..., k+1. Note that

p1, p2, ..., pk+1 are non-negative since P1, P2, ..., Pk+1 satisfy the similar costs property.

Suppose that Pk is chosen (this case happens with probability pk). If Pk is not blocked,

the agent arrives at D and the strategy ends; otherwise, the agent finds a blocked edge

and backtracks to O. Suppose that the latter case happens. At this stage of the strat-

egy the O-D path with cost 2(k − 1) is excluded from Class1 and the other k O-D

paths remain in Class1. Let P
′
1, P

′
2, ..., P

′

k−1, P
′

k with costs c
′
1, c

′
2, ..., c

′

k−1, c
′

k denote the

remaining O-D paths in Class1, i.e. c
′
1 = c

′
2 = 1, c

′
i = 2(i− 1) for 3 ≤ i ≤ k − 1 and

c
′

k = 2k. Observe that P
′
1, P

′
2, ..., P

′

k−1, P
′

k do not fulfill the similar costs property by

Definition 5.5.1, i.e. c
′

k >
2
k

∑k
j=1 c

′
j. Here, the agent selects one of the k remaining
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O-D paths in Class1 according to the probability distribution Ωk = (p
′
1, p

′
2, ..., p

′

k),

i.e. p
′
i = λ∗(

(2−k)c′i+
∑k

j=1j 6=i 2c
′
j

k2c
′
i

) for i = 1, 2, ..., k. Now suppose P
′

k is selected and the

corresponding probability is

p
′

k = λ∗(
(2− k)c

′

k +
∑k−1

j=1 2c
′
j

k2c
′
k

) = λ∗(
(2− k)2k + 2 + 2 + 2

∑k−1
j=3 2(j − 1)

2k3
),

which is equal to

λ∗(
(2− k)2k + 2

∑k−2
j=1 2j

2k3
) = λ∗(

(2− k)2k + 2(k − 2)(k − 1)

2k3
).

Note that λ∗ ∈ [0, 1] according to [4]. It is straightforward to show that the right

hand side is decreasing in k, i.e. p
′

k is decreasing in k. Also observe that p
′

k is negative

when k = 3. Hence p
′
3 is negative for k ≥ 3. This contradicts with the rationale of

the RBS, since the RBS assumes that p
′
1, p

′
2, ..., p

′

k are non-negative. The theorem

follows.

As an illustrative example for the proof of Theorem 2.3.1, let k = 3. Consider A4

that contains the O-D paths P1, P2, P3, P4 with costs c1 = 1, c2 = 1, c3 = 4, c4 = 6, re-

spectively. Observe that P1, P2, P3, P4 satisfy the similar costs property by Definition

5.5.1. The RBS initially partitions the O-D paths into a single class Class1. Then, the

agent takes one of the O-D paths in Class1 according to the probability distribution

Ω4 = (15
32
, 15
32
, 2
32
, 0). Suppose that P3 is chosen (this happens with probability 2

32
). If

P3 is not blocked the agent arrives at D and the strategy ends; otherwise, the agent

finds a blocked edge and backtracks to O. Suppose that the latter case happens. P3 is

excluded from Class1 and P1, P2, P4 remain in Class1. Observe that P1, P2, P4 do not

fulfill the similar costs property by Definition 5.5.1, i.e. c4 = 6 > 2
3
(c1 + c2 + c4) = 16

3
.

The RBS fails to construct a probability distribution Ω3 ∈ Q3 for the selection of one

O-D path among P1, P2, P4.

Remark 2.3.1. We note that the implementation of the RBS will fail in any instance

of the input graph in which the O-D paths in at least one of the constructed classes
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do not have the strong similar costs property, based on the similar reason that is

discussed in the proof of Theorem 2.3.1. In other words, the adversary sets of O-D

paths do not cover all of the instances in which the implementation of the strategy

fails.

The RBS can be implemented in all of the instances of the input graph in which

the O-D paths in the constructed classes have the strong similar costs property. Below

we show that such instances exist in special cases.

Theorem 2.3.2. Suppose that P1, P2, ..., Pt with costs c1 ≤ c2 ≤ ... ≤ ct are the t

shortest O-D paths in the input graph, where t = min{k + 1, n}. When ct ≤ 2c1, the

RBS is implementable.

Proof. Let P = {P1, P2, ..., Pt} denote the set of t shortest O-D paths in the input

graph. Observe that O-D paths in P satisfy the similar costs property by Definition

5.5.1, i.e. the RBS creates a single class. Let P
′

= {P ′1, P
′
2, ..., P

′
n
p
′ } (with costs

c
′
1 ≤ ... ≤ c

′
n
p
′ ) be an arbitrary and non-empty subset of P , where np′ is the number

of O-D paths in P
′
. We need to show that

c
′

i ≤
2

np′

n
p
′∑

j=1

c
′

j,

for i = 1, 2, ..., np′ . Note that the costs of the O-D paths in P
′

are at least c1. Hence

the right-hand side is at least 2c1. Thus the O-D paths in the constructed class have

the strong similar costs property and the RBS can be implemented. The theorem

follows.

Below, we also specify the cases in which the RBS is applicable when the costs of

the O-D paths in the input graph are arbitrary.

Theorem 2.3.3. The RBS is implementable and achieves the competitive ratio of at

most k + 1, when k ≤ 2.

Proof. Note that when k = 1, there are at least two O-D paths in the graph since

we assume that the graph remains connected if the blocked edge is removed from it.
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The proof is shown for k = 1 in [4]. For k = 2 and n = 2, the RBS achieves the

competitive ratio of two based on the same proof that is presented in [4], for k = 1.

(For t = 2, the RBS achieves the competitive ratio of two).

For k = 2 and n ≥ 3, the RBS considers three shortest O-D paths in the input

graph, i.e. P1, P2, P3 with costs c1 ≤ c2 ≤ c3. Two cases might happen when the RBS

is implemented.

• Two classes Class1 and Class2 are constructed, i.e. Class1 = {P1, P2} and

Class2 = {P3}. In this case the O-D paths in Classl (l ∈ {1, 2}) fulfill the

similar costs property according to the RBS. Moreover, any other non-empty

subset of Classl (l ∈ {1, 2}) contains at most one O-D path that satisfies the

similar costs property by Definition 5.5.1.

• Only Class1 = {P1, P2, P3} is constructed. In this case P1, P2, P3 fulfill the

similar costs property according to the RBS. Moreover any other non-empty

subset of Class1 contains at most two O-D paths that satisfy the similar costs

property by Definition 5.5.1.

Hence the O-D paths in the same class have the strong similar costs property, when

k = 2 and n ≥ 3. Thus the RBS meets the competitive ratio of k+ 1 when k ≤ 2.

For k ≥ 3, the RBS fails to be implemented on Ak+1 (Definition 2.3.1) according

to Theorem 2.3.1 and fails in any instance of the input graph in which the O-D paths

in at least one of the constructed classes do not have the strong similar costs property

according to Remark 2.3.1.

2.4 Optimal randomized strategy on graphs having only node-disjoint

O-D paths

In this section we present a modification of the RBS which is implementable on graphs

where all O-D paths are node-disjoint. We call this strategy the modified randomized
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backtrack strategy, in short the M-RBS. Before we explain the M-RBS, we present the

following strategy.

2.4.1 A strategy for partitioning the O-D paths into classes

We present a strategy for dividing a set of O-D paths into classes such that the O-

D paths in the same class satisfy the similar costs property. We call this strategy

the partitioning strategy. The partitioning strategy decomposes the O-D paths into

classes by going through them in non-decreasing order of their costs. The O-D paths

are added to the currently open class as long as they obey the similar costs property.

The classes are maximal in the sense that they cannot be extended without violating

the similar costs property. We note that the partitioning strategy is used in both of

the RBS and the M-RBS.

The partitioning strategy:

• Initialization. Take a set of n O-D paths together with their costs as input.

Label the O-D paths from P1 to Pn such that c1 ≤ c2 ≤ ... ≤ cn. Let i and l be

counter variables and set their initial values to one.

• Step 1. Create an empty class and call it Classl, then go to Step 2.

• Step 2. If Pi fulfills the similar costs property with the O-D paths in Classl,

then add Pi to Classl, set i = i+ 1 and go to Step 3. Otherwise, close Classl,

i.e. no more O-D paths are added to Classl. Set l = l + 1 and go to Step 1.

• Step 3. If i > n, close Classl and then stop, i.e. the nO-D paths are decomposed

into L = l new classes. Otherwise, go to Step 2.

Note that sorting the O-D paths with respect to their costs can be done in

O(nlogn). Also note that partitioning the sorted O-D paths into classes can be done

in O(n). Thus, the running time of the partitioning strategy is O(nlogn). Below,



30 Chapter 2: Online k-Canadian Traveler Problem

we describe how it is possible to apply the partitioning strategy to make the RBS

implementable on graphs where all O-D paths are node-disjoint.

2.4.2 Modification of the RBS

As described before, the RBS is not applicable when the remaining O-D paths in

the current class do not satisfy the similar costs property. To solve this problem, we

present a modification of the RBS which we call the M-RBS. In the M-RBS, when the

remaining O-D paths in the current class do not fulfill the similar costs property, the

M-RBS decomposes them into new classes by applying the partitioning strategy. Then

the M-RBS processes the class among the newly constructed classes that contains the

shortest O-D path in the graph. Note that in this case the M-RBS is implementable

since the partitioning strategy generates the classes such that the O-D paths in the

same class obey the similar costs property. Now we can formally describe the M-RBS.

Modified randomized backtrack strategy (M-RBS):

• Initialization. Take a graph G = (V,E) that contains n node-disjoint O-D

paths P1, P2, ..., Pn together with k as input. Let c1, c2, ..., cn represent the costs

of P1, P2, ..., Pn. Compute c1, c2, ..., cn. Define S as an empty set.

• Step 1. Partition the t (t = min{k + 1, n}) shortest O-D paths into classes by

applying the partitioning strategy. Add the constructed classes to S and go to

Step 2.

• Step 2. Let L denote the number of classes in S. Label the L classes in S from

1 to L arbitrarily, i.e. Class1, Class2, ..., ClassL. Let SPl (l = 1, ..., L) be the

cost of the shortest O-D path in Classl. Identify Classl∗ (l∗ ∈ {1, 2, ..., L}) as

the current class such that SPl∗ = min{SPl} for l = 1, 2, ..., L. Then go to Step

3.

• Step 3. Let w denote the number of O-D paths in the current class (Classl∗).
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Take an O-D path P ∗ among the w O-D paths in the current class according to

the probability distribution Ωw. If the agent has arrived at D, stop; otherwise,

backtrack to O and remove P ∗ from the current class. If the current class is

empty, remove it from S and go to Step 2. Otherwise, go to Step 4.

• Step 4. If the remaining O-D paths in the current class satisfy the similar costs

property, go to Step 3. Otherwise, partition the remaining O-D paths in the

current class into new classes by applying the partitioning strategy. Add the

newly generated classes to S. Also remove the current class (Classl∗) from S.

Then go to Step 2.

Since G contains only node-disjoint O-D paths, computing the costs of the O-D paths

can be done in O(|E|). Hence the running time of the initialization of the M-RBS

is O(|E|). Note that Step 1 is implemented only once and Step 4 is implemented

at most t ≤ n times. Also recall that the running time of the partitioning strategy

for partitioning n O-D paths into the classes is O(nlogn). Thus the running times

of Steps 1 and 4 are at most O(nlogn) and O(n2logn), respectively. Identifying the

current class in Step 2 can be done in O(t) (t < n) and Step 2 is implemented at most

t times. Therefore the running time of Step 2 is at most O(n2). Constructing the

probability distribution Ωw (w ≤ n) can be done in O(w) in Step 3 of the M-RBS.

Since Step 3 is implemented at most t ≤ n times, the running time of Step 3 is at

most O(n2). Here we note that n ≤ |E|. Thus the running time of the M-RBS can

be bounded from above by O(|E|2log|E|).

Remark 2.4.1. Note that the classes that are constructed in Step 1 are exactly the

same as the classes constructed in the RBS. Also note that when the O-D paths in the

current class have the strong similar costs property and the M-RBS enters Step 4, the

remaining O-D paths in the current class always satisfy the similar costs property.

That is, the generated classes are removed from S only if they become empty, i.e.

the remaining O-D paths in them never decompose into new classes in Step 4. Thus

the constructed classes in Step 1 are processed in non-decreasing order of costs of
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their O-D paths, exactly the same way as they are processed in the RBS. Hence, we

conclude that the RBS and the M-RBS are equivalent when the O-D paths that are

added to the same class in Step 1 possess the strong similar costs property.

Below we prove that the M-RBS is optimal when the t shortest O-D paths in the

graph satisfy the similar costs property.

Lemma 2.4.1. Suppose that the M-RBS is implemented on the input graph G, such

that the t (t = min{k + 1, n}) shortest O-D paths P1, P2, ..., Pt with costs c1 ≤ c2 ≤

... ≤ ct in G fulfill the similar costs property and at least one of them is traversable.

In this case, the M-RBS achieves the competitive ratio of t ≤ k + 1.

Proof. We present the proof by induction on t.

• Base Case. Note that t ≥ 2, since k ≥ 1 and n ≥ 2. When t = 2, the M-RBS

constructs a single class that contains two O-D paths. Thus the number of O-D

paths in the current class never exceeds two. Also note that any one or two

O-D paths with arbitrary cost(s) satisfy the similar costs property according

to Definition 5.5.1. Hence the O-D paths in the constructed class have the

strong similar costs property. Thus RBS and M-RBS are equivalent according

to Remark 2.4.1. Since the RBS is 2−competitive for t = 2 according to the

proof of Theorem 2.3.3, the base case follows.

• Induction. Suppose that the claim is correct for x ≤ t−1. Since the t shortest

O-D paths satisfy the similar costs property, the M-RBS initially constructs a

single class that contains t O-D paths. Then the agent takes one of the t O-D

paths P1, P2, ..., Pt in the class with probability distribution Ωt = (p1, p2, ..., pt).

Let B and T denote the set of blocked O-D paths and the set of traversable

O-D paths in the class, respectively. Also let Pi∗ (i∗ ∈ {1, 2, ..., t}) with cost ci∗

denote the offline optimum and pi∗ be the probability that Pi∗ is taken. The

competitive ratio can be shown as

∑
i∈T

pici
ci∗

+
∑
j∈B

pj
2cj + Ct−1

ci∗
.
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If the taken O-D path is traversable, i.e. the taken path is Pi (i ∈ T ), then

the agent arrives at D (the M-RBS stops) by incurring a cost of ci; otherwise,

it means that a path Pj (j ∈ B) is selected and the agent backtracks to O by

incurring a cost of 2cj. Note that Ct−1 denotes the cost of the strategy from the

time that the agent arrives back to O until the end of the strategy in expression

above. If the selected path Pj (j ∈ B) is blocked the agent removes Pj from the

class and backtracks to O, then two cases might happen.

– Case 1. The remaining O-D paths in the class fulfill the similar costs

property. In this case Ct−1 is at most (t−1)ci∗ by the induction assumption

for x = t− 1.

– Case 2. The remaining O-D paths in the class do not fulfill the sim-

ilar costs property. In this case the remaining O-D paths in the class

are decomposed into new classes by applying the partitioning strategy.

Suppose that the classes Class1, Class2, ...., ClassL are the constructed

classes that are sorted in non-decreasing order of the costs of their O-D

paths, i.e. the costs of the O-D paths in Class1 are less than the costs

of the O-D paths in the other classes. Let nl (l = 1, 2, ..., L) be the num-

ber of O-D paths in the lth class, i.e.
∑L

l=1 nl = t − 1. Let clw denote

the cost of the wth (w = 1, 2, ..., nl) O-D path in the lth (l = 1, 2, ..., L)

class, if the O-D paths in Classl are sorted in non-decreasing order of

their costs. Now suppose that Pi∗ (i = 1, 2, ..., t) is contained in some

class, i.e. Classl∗ (l∗ ∈ {1, 2, ..., L}). The agent first takes all of the O-

D paths in the classes Class1, Class2, ..., Class(l∗−1) and incurs the costs

of
∑l∗−1

l=1 2
∑nl

w=1 c
l
w. This is because the agent always processes the class

that contains the shortest O-D path in the graph according to Step 2 of the

M-RBS. Then the agent processes Classl∗ . Here, we use an observation

which is also applied in [4].

Observation 4.1. Note that when the agent finds a blocked edge on an



34 Chapter 2: Online k-Canadian Traveler Problem

O-D path, he removes the O-D path from the current class. Hence, the

agent may find at most nl∗ − 1 ≤ t− 2 blocked edges on the O-D paths in

Classl∗ since Pi∗ ∈ Classl∗ . Because the nl∗ O-D paths in Classl∗ obey the

similar costs property, finding Pi∗ among the O-D paths in Classl∗ within

the competitive ratio of nl∗ is equivalent to the induction assumption for

x = nl∗ .

Hence Ct−1 can be written as

l∗−1∑
l=1

2

nl∑
w=1

clw + nl∗ ∗ ci∗ .

Since the O-D paths in Classl∗ do not fulfill the similar costs property with

the O-D paths in Classl (l = 1, 2, ..., l∗−1), we have (nl−1)cl
∗
1 > 2

∑nl

w=1 c
l
w

for l = 1, 2, ..., l∗−1 according to Definition 5.5.1. Also note that cl
∗
1 ≤ ci∗ .

Hence we can bound Ct−1 from above by

l∗−1∑
l=1

(nl − 1) ∗ ci∗ + nl∗ ∗ ci∗ ,

which is equivalent to

(−l∗ + 1 +
l∗∑
l=1

nl)ci∗ ≤ (
l∗∑
l=1

nl)ci∗ ≤ (t− 1)ci∗ .

We just showed that Ct−1 is at most (t− 1)ci∗ . Now we can present the rest of

our proof by replacing Ct−1 with (t− 1)ci∗ in the competitive ratio to bound it

from above by

∑
i∈T

pici
ci∗

+
∑
j∈B

pj(
2cj
ci∗

+ t− 1) ≤ pi∗ +
t∑

j=1j 6=i∗
pj(

2cj
ci∗

+ t− 1).

We need to show that the right hand side is at most t for all instances, i.e.



Chapter 2: Online k-Canadian Traveler Problem 35

i∗ = 1, 2, ..., t. This is equivalent to

(2− t)pi +
t∑

j=1j 6=i

2
cj
ci
pj ≤ 1,

for all i∗ = 1, 2, ..., t. Note that the agent selects the O-D paths based on

the probability distribution Ωt = (p1, p2, ..., pt) such that Ωt ∈ Qt according to

Lemma 5.5.1. Hence the inequality above is valid and the lemma follows.

Next we apply Lemma 2.4.1 to prove the optimality of the M-RBS on graphs

where all O-D paths are node-disjoint.

Theorem 2.4.1. The competitive ratio of the M-RBS is at most k + 1 on graphs

where all O-D paths are node-disjoint.

Proof. Note that the M-RBS uses the partitioning strategy in Step 1 and decomposes

the t shortest O-D paths of the input graph into classes at the beginning. Suppose

that the classes Class1, Class2, ..., ClassL are constructed in Step 1, such that Classl

(l = 1, 2, ..., L) contains nl O-D paths. Let clw denote the cost of the wth O-D path in

Classl (l = 1, 2, ..., L) if the O-D paths in Classl are sorted in non-decreasing order

of their costs. Note that the nl O-D paths in Classl (l = 1, 2, ..., L) obey the similar

costs property and
∑L

l=1 nl = t. Also suppose that the classes are sorted such that

c11 ≤ c21 ≤ ... ≤ cL1 . Let Pi∗ with cost ci∗ be the offline optimum.

The M-RBS processes the classes in ascending order of costs of their O-D paths,

i.e. Class1 is processed first. Suppose that the offline optimum (Pi∗) belongs to some

class Classl∗ (l∗ ∈ {1, 2, ..., L}). In this case the agent first takes the O-D paths in the

classes Class1, ..., Classl∗−1 and incurs the costs of
∑l∗−1

l=1 2
∑nl

w=1 c
l
w. This is because

the agent always processes the class that contains the shortest O-D path in the graph

according to Step 2 of the M-RBS. Then the agent processes Classl∗ and finds the

offline optimum by incurring a cost of at most nl∗ ∗ ci∗ according to Observation 4.1.
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Table 2.1: Summary of the results in Chapter 2

Problem Result Case Network Type Publication Status
k-CTP Optimal strategy Randomized Node-disjoint O-D paths Published in [53]

Hence the competitive ratio can be written as

l∗−1∑
l=1

2

nl∑
w=1

clw + nl∗ ∗ ci∗ .

Similar to the proof of Lemma 2.4.1, 2
∑nl

w=1 c
l
w ≤ (nl − 1)ci∗ . The competitive ratio

is bounded above by
l∗−1∑
l=1

(nl − 1) ∗ ci∗ + nl∗ ∗ ci∗ ,

which is equivalent to

(−l∗ + 1 +
l∗∑
l=1

nl)ci∗ ≤ (
l∗∑
l=1

nl)ci∗ ≤ tci∗ .

The theorem follows since t ≤ k + 1 and the cost of the offline optimum is ci∗ .

2.5 Concluding remarks

We reconsidered the implementation of the RBS on graphs which contain n node-

disjoint O-D paths. We showed that to implement the strategy, a certain property

(strong similar costs property) regarding the costs of the O-D paths in the input graph

must hold. That is we proved that the RBS is not applicable in some cases when k > 2.

We showed that the RBS is applicable when the cost of the (min{k+1, n})th shortest

O-D path is at most twice of the shortest path in the input graph. Furthermore we

modified the RBS to obtain an optimal strategy which is applicable on graphs having

only node-disjoint O-D paths.

Table 2.1 summarizes the results of Chapter 2.



Chapter 3

ONLINE MULTI-AGENT K-CANADIAN TRAVELER

PROBLEM

In this chapter, we investigate deterministic and randomized strategies for the

multi-agent k-CTP. In the first two sections of this chapter, we consider the problem

on O-D edge-disjoint graphs. In the third section, we analyze the problem on graphs

having common edges on the O-D paths.

3.1 Analysis of deterministic online strategies

3.1.1 Introduction

The online multi-agent O-D k-Canadian Traveler Problem is a navigation problem,

where traveling agents receive a graph with a given source node O and a destination

node D together with edge costs as input. Initially all of the agents are located at

O. At most k edges are blocked in the graph but these edges are not known to the

agents (travelers). An agent discovers the status of an edge when he/she reaches an

end node of the edge. The objective is to provide an online strategy such that at least

one of the agents finds a feasible path, i.e. one without blocked edges, from its initial

location O to the given destination D with minimum total cost of the edges taken by

the agent that finds a feasible path first. This is called the route of that agent. The

problem is an online optimization problem that generalizes the k-Canadian Traveler

Problem (k-CTP) by the existence of multiple agents. To measure the performance

of online strategies, competitive ratio has been introduced by Sleator and Tarjan [55].

The competitive ratio is the maximum ratio of the cost of the online strategy to the

cost of the offline strategy over all instances of the problem. In our problem, in the
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offline problem the blocked edges are removed from the graph. Hence, it reduces to a

shortest path problem.

Two versions of the online multi-agent k-CTP have been introduced in the lit-

erature, with complete and limited communication. Zhang et al. [74] studied the

problem in presence of two levels of communication. In their article, P1 denotes the

problem where complete communication is available among the agents and P2 is the

problem where limited communication is possible such that some of the agents can

only receive information. In their problem definition, RS-type agents can send and

receive information, while R-type agents can only receive information.

3.1.2 Our Contributions

We focus on the case where communication among the agents is limited. By specify-

ing the communication protocols among the agents, we define three levels of agents’

intelligence. We introduce two simple deterministic online strategies and use them

when the agents benefit from higher levels of intelligence. By this way, we provide

updated lower bounds on the competitive ratio of deterministic online strategies for

P2. We also show that one of our strategies is optimal in both cases with complete and

limited communication in the special case where the input graph has only O-D edge-

disjoint paths between the given O-D pair. Formally we define an O-D edge-disjoint

graph as an undirected graph G with a given source node O and a destination node

D, such that any two distinct O-D paths in G are edge-disjoint, that is, they do not

have a common edge. We need to mention that analyzing O-D edge-disjoint graphs

is a standard restriction in the context of k-CTP and its variants. Finally, contrary

to what is claimed in [74], we show that there are instances with O-D edge-disjoint

graphs in which the competitive ratio of deterministic strategies on P2 improves by

increasing the number of R-type agents.
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3.1.3 The online multi-agent O-D k-CTP with limited communication

The online multi-agent O-D k-CTP with limited communication has been introduced

by Zhang et al. [74]. Limited communication means that some of the agents can both

send and receive information (RS-type), but the others can only receive information

(R-type). Suppose that there are L agents (L < k) and L1 of them are RS-type and

the other L − L1 agents are R-type. Zhang et al. [74] assume that the agents will

take the best decision applying the available information. This problem is defined as

P2(L,L1) in [74].

Zhang et al. [74] argue that P2(L,L1) can be regarded as P1 with L1 agents with

complete communication and at most k− 1 blockages. Based on this argument, they

extend their obtained results for P1 to P2. By converting P2 to its equivalent problem

in P1, they provide a lower bound on the competitive ratio of deterministic online

strategies for P2 by analyzing O-D edge-disjoint graph. They also use this argument

to prove the competitive ratio of two common strategies, i.e. Retrace-Alternating

Strategy and Greedy Strategy for P2 after proving their competitive ratios for P1.

Below, we present some of the main assumptions in [74]. Note that we apply these

assumptions to obtain our updated results.

(1) The number of blockages, k is larger than the number of the total agents,

L.

(2) All of the R-type agents are regarded as one traveler based on the fact that

they might re-take the infeasible paths which are already taken by other R-type

agents.

(3) All of the agents will take the best possible decision with their given infor-

mation.

Before introducing the new levels of agent’s intelligence, we need to formalize

some definitions on O-D edge-disjoint graphs. We say that the problem is at its

initial stage when all of the agents are located at O initially. When at least one of
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the agents reaches D, we say that the problem is at its final stage. The decision of

which O-D path to select whenever the agent is located at O is defined as the decision

of an agent. Note that since the graph is O-D edge-disjoint, the agents take their

decisions only when they are located at O. Let us assume that an agent walks back to

O when he/she discovers a blocked edge. This is called backtracking. A closed walk of

an agent starting at O and including exactly one backtracking or a walk of the agent

starting at O and ending at D without backtracking are defined as the travel of an

agent. We note that when the problem is at its final stage, a backtracking agent may

not reach O but this does not affect the objective function. The travel schedule of

an agent is defined as the set of the travels which the agent takes consecutively, from

the initial stage to the final stage of the problem. We can characterize the available

information to all of the agents as the topology of the input graph together with the

edge costs, both explored blockages and travel schedules of the RS-type agents. Now,

let us define the communication protocols between the agents.

Communication Protocol 1 (CP1). The RS-type agents can share the blockage

information, in the sense that while any of the RS-type agents explores a new

blockage, he/she will transmit the blockage information to the other RS-type

and R-type agents. Note that this protocol has been applied in [74].

Communication Protocol 2 (CP2). The RS-type agents can transmit their own

travel schedules to the R-type and RS-type agents. This protocol has been used

in [74] as well.

We also define a third communication protocol which is not used in [74], to obtain

our improved results.

Communication Protocol 3 (CP3). The RS-type agents can schedule for the

R-type agents and transmit the planned travel schedule of each R-type agent to

them. Having CP3 means that the RS-type agents can make decisions for the



Chapter 3: Online multi-agent k-Canadian Traveler Problem 41

R-type agents. Note that this protocol is realistic because all of the agents know

the graph structure and real-time blockage information of the RS-type agents.

Although Zhang et al. [74] analyzed the strategies on O-D edge-disjoint graphs

to provide a lower bound to the problem, they ignored the advantages of determining

the travel schedules of each agent when the problem is at its initial stage. They

also missed the advantages of using CP3. To utilize the advantages of determining

the travel schedules at the initial stage of the problem and CP3, we formalize the

definition of agents’ intelligence by defining three levels of agents’ intelligence.

I. Intelligence Level 1 (IL1). When an agent with IL1 is located at O, he/she is

allowed to decide only his/her next travel. The RS-type agents are not allowed to

plan their complete travel schedules at the initial stage of the problem. Moreover,

having CP3 is not allowed at this level. We call such agents IL1 agents. Zhang

et al. [74] have considered P2 with IL1 agents. For the rest of this section, we

call P2 with IL1 agents P21.

II. Intelligence Level 2 (IL2). The agents with IL2 have all properties of the IL1

agents. In addition, they are allowed to determine their complete travel schedule

at the initial stage of the problem. However, the RS-type agents cannot utilize

CP3 at this level. We call such agents IL2 agents. For the rest of this section,

we call P2 with IL2 agents P22.

III. Intelligence Level 3 (IL3). The agents with IL3 have all properties of the IL2

agents. In addition, they can utilize CP3. We call such agents IL3 agents. For

the rest of this section, we call P2 with IL3 agents P23.

Note that all of the notations P21, P22 and P23 refer to problem P2. We use them to

show that how the results on P2 will change as we utilize the advantages of planning

at the initial stage and CP3.
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3.1.4 The online multi-agent O-D k-CTP with IL2 agents (P22)

In this section, we study P22 on O-D edge-disjoint graphs to show that the previous

lower bound on P2 should be updated if the agents benefit from IL2. Note that we

consider P22 to show that even if we apply the same assumptions as are given in [74],

the results on P2 improves by utilizing IL2. To propose our results, we first define a

new online strategy.

Path Labeling Strategy (PLS)

Consider an undirected O-D edge-disjoint graph with total number of N different

paths (N > k) from O to D. The K shortest paths between two nodes in an O-D

edge-disjoint graph can be found in polynomial time in K by one of the known K-

shortest paths algorithms ([69], [28]). Note that in O-D edge-disjoint graphs K is at

most the number of edges. Here, we also note that k and K denote different numbers

and they are not necessarily related. Applying the K-shortest paths algorithm, RS-

type agents sort the paths in non-decreasing order, when the problem is at its initial

stage. Now, they communicate and the ith RS-type agent assigns (((L1 +1)∗j)+ i)th

(j = 0, 1, 2, . . .) shortest paths to his/her travel schedule. Hence the ((L1 + 1) ∗ j)th

(j = 1, 2, 3, . . .) shortest paths remain unselected. If the length of n number of paths

is equal, RS-type agents select bL1(
n

L1+1
)c or bL1(

n
L1+1

)c+ 1 of them with respect to

the number of paths which are already selected. Then, RS-type agents share their

travel schedules to the R-type agent. Since the R-type agent benefits from IL2, he/she

will take the shortest of the unselected paths. At each iteration, the agents will reach

the destination or will find a blocked edge and return to the origin node. Then, they

take the shortest unvisited path on their travel schedules.

Lemma 3.1.1. P22 (L,L1), equals to P1 with L1 + 1 agents with complete communi-

cation and at most k blockages in O-D edge-disjoint graphs.

Proof. We consider O-D edge-disjoint graphs in two cases.
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Case 1. There exists no RS-type agent in the problem. In this case, the R-type

agent will find a new blockage at each iteration or will reach the destination.

This implies that the problem equals to P1 with one agent and at most k block-

ages.

Case 2. There exists at least one RS-type agent. In this case, applying PLS, the

agents will find L1 + 1 blockages at each iteration or at least one of them will

reach the destination. This implies that the problem equals to P1 with L1 + 1

agents with complete communication and at most k blockages.

Corollary 3.1.1. Considering levels 2 and 3 of agents’ intelligence, P2 (L,L1) does

not necessarily equal to P1 with L1 agents with complete communication and at most

k − 1 blockages for all type of the graphs.

Proof. Since we proved in Lemma 3.1.1 that P2 (L,L1) with IL2 agents equals to P1

with L1 + 1 agents with complete communication and at most k blockages on O-D

edge-disjoint graphs, the corollary follows.

Theorem 3.1.1. For P22(L,L1), there is no deterministic online strategy with com-

petitive ratio less than 2b k
L1+1
c+ 1.

Proof. As in [74], we replace the parameters of our converted problem in the lower

bound of problem P1, i.e. 2b k
L
c+ 1. Since the special graph which is analyzed in [74]

to provide the lower bound of the problem is an O-D edge-disjoint graph, the proof

follows. Note that since our lower bound on P2 is either strictly smaller than or equal

to the lower bound in [74], it is necessary to update the lower bound of the problem

when the agents benefit from the higher levels of intelligence, i.e. IL2 and IL3.

3.1.5 The online multi-agent O-D k-CTP with IL3 agents (P23)

In this section, we provide improved results on P2 by analyzing it with IL3 agents on

O-D edge-disjoint graphs. We assume that there exists at least one RS-type agent
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in the graph. Since the agents benefit from the highest level of intelligence, we also

ignore the second assumption of Zhang et al. in this section. We apply the RS-type

agents ability to plan the travel schedules of the R-type agents (CP3) to utilize the

R-type agents in an efficient way. Note that having CP3 is a reasonable assumption

in most applications of the online multi-agent k-CTP. For example, in disaster relief

the R-type agents can receive their travel plans from the RS-type agents in order

to avoid retaking the selected paths by other agents. In the rest of this section, we

analyze P23 by applying a modification of PLS that we call the modified PLS.

Modified Path Labeling Strategy (modified PLS)

Consider an undirected O-D edge-disjoint graph with total number of N different

paths (N > k) from O to D. When the problem is at its initial stage the RS-type

agent applies the K-shortest paths algorithm and labels the paths in non-decreasing

order where path 1 is the shortest. If the length of some of the paths is equal, the

RS-type agent selects their order arbitrarily. Now, he/she assigns paths (L ∗ j) + i

(j = 0, 1, 2, . . .) to the travel schedule of the ith agent. Then, he/she informs the

travel schedule of each agent to them. At each iteration of this strategy, the L agents

will take the shortest paths among the unvisited paths in their travel schedules. They

will reach the destination or will find a blocked edge and return to the origin node.

Then, they take the shortest unvisited path on their travel schedules. The cost of

each iteration includes the cost of sending the agents through the assigned path plus

the cost of returning to the origin node, if they face a blocked edge.

Lemma 3.1.2. P23 (L,L1) equals to P1 with L agents with complete communication

and at most k blockages in O-D edge-disjoint graphs.

Proof. We consider O-D edge-disjoint graphs where there exists at least one RS-type

agent in the graph. In this case, applying the modified PLS, the agents will find L

blockages at each iteration or at least one of them will reach the destination. This

implies that the problem equals to P1 with L agents with complete communication

and at most k blockages.
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Theorem 3.1.2. For P23(L,L1), there is no deterministic online strategy with com-

petitive ratio less than 2b k
L
c+ 1.

Proof. As in [74], we replace the parameters of our converted problem in the lower

bound of problem P1, i.e. 2b k
L
c+ 1. Since the special graph which is analyzed in [74]

to provide the lower bound of the problem is an O-D edge-disjoint graph, the proof

follows. Note that since our lower bound on P2 is either strictly smaller than or equal

to the lower bound in [74], it is necessary to update the lower bound of the problem

when the agents benefit from the highest level of intelligence, i.e. IL3.

3.1.6 Optimal results for P23 on O-D edge-disjoint graphs

Proposition 3.1.1. The competitive ratio of modified PLS in O-D edge-disjoint

graphs is (2bk/Lc) + 1, for both of the problems P1 and P23.

Proof. Let CO denote the cost of the shortest path after removing blocked edges.

Since the RS-type agent has ordered the paths in non-decreasing order of cost, the

cost of each iteration will be at most 2∗CO. When an agent returns to the origin node,

he/she will take the minimum cost unvisited path on his/her travel schedule. It takes

at most b k
L
c+ 1 iterations to identify all of the blocked edges in the graph. Since the

agents have to come back to the origin node after visiting a blocked edge in at most

b k
L
c of the iterations, the cost of identifying blocked edges and returning to the origin

node is at most 2b k
L
c∗CO. It will take a cost of CO to find the remaining blockages and

reach the destination. Thus, the total cost of the strategy is at most (2b k
L
c+ 1) ∗CO.

Since the strategy does not use complete communication, the competitive ratio is also

valid for P1.

The obtained competitive ratio of modified PLS in O-D edge-disjoint graphs is

optimal since it meets the lower bound offered in [74] for P1.

Corollary 3.1.2. Modified PLS is optimal for both problems P1 and P23 in O-D

edge-disjoint graphs.
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Proof. There is no deterministic online strategy with competitive ratio less than

2b k
L
c + 1 for P1 in O-D edge-disjoint graphs. Note that, the lower bound of P23

is less than or equal to the lower bound of P1. Since we have introduced a strategy

for both P1 and P23 which meets the lower bound of P1, we conclude that the lower

bound of P23 is equal to the lower bound of P1. Hence, the strategy meets the lower

bounds of both P1 and P23.

Corollary 3.1.3. Enabling all of the agents to communicate does not improve the

competitive ratio in O-D edge-disjoint graphs in problem P23.

Proof. Since we have introduced a strategy (modified PLS) that does not need com-

plete communication which meets the lower bound of P1, the corollary follows.

Corollary 3.1.4. There are instances with O-D edge-disjoint graphs in which the

competitive ratio of deterministic strategies on P23 improves by increasing the number

of R-type agents.

3.1.7 Concluding remarks

We analyzed the online multi-agent O-D k-Canadian Traveler Problem. We provided

updated results including the lower bounds on the competitive ratio of deterministic

strategies of the problem for the case where the communication is limited. We argued

that it is vital to consider and utilize the higher levels of agents’ intelligence in online

problems by defining three levels of agents’ intelligence. We introduced an online

strategy in O-D edge-disjoint graphs which is optimal in both cases with complete

and limited communication when the travel schedules are shared at the initial stage

of the problem. We showed that enabling all of the agents to communicate does not

improve the competitive ratio in O-D edge-disjoint graphs. Furthermore, we showed

that there are instances with O-D edge-disjoint graphs in which the competitive ratio

of deterministic strategies on P2 improves by increasing the number of R-type agents.
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3.2 Analysis of randomized online strategies

3.2.1 Introduction

We study the multi-agent k-Canadian Traveler Problem (k-CTP) to investigate the

competitive performance of the randomized online strategies under different levels of

communication between the traveling agents. The multi-agent k-CTP is a generaliza-

tion of the single-agent k-CTP, for which randomized strategies have been investigated

in the literature [64], [4]. The k-CTP originated from the Canadian Traveler Prob-

lem (CTP), which is an online navigation problem under incomplete information. In

CTP, a traveling agent receives a graph with a given source node O and a destination

node D, together with non-negative edge costs as input. The agent is located at O

initially. There are some blocked edges in the graph, but these edges are not known

to the agent. The agent discovers the status of an edge when he reaches an end-node

of the edge. The objective of the agent is to provide an online strategy such that the

agent finds a feasible path, i.e. one without blocked edges from O to D with minimum

total cost of the edges taken by the agent. When an upper bound k on the number

of blocked edges is given as input, the problem is called the k-CTP.

The multi-agent k-CTP is an online optimization problem that generalizes the k-CTP

by the existence of multiple agents. In the multi-agent k-CTP, there are L agents in

the graph who are initially located at O. The objective of the agents is to provide

an online strategy such that at least one of them finds a feasible path, from O to D

with minimum total cost of the edges taken by the agent that finds a feasible path

first. Two versions of the multi-agent k-CTP have been introduced in the literature,

with complete and limited communication [74]. When the communication is limited,

some agents can both send and receive information and some of the agents can only

receive information. The agents who are able to both send and receive information

are called RS-type agents and the agents who are only able to receive information are

called R-type agents. In presence of complete communication all of the agents can

send and receive information, i.e. all of the agents are RS-type.
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To evaluate the performance of online strategies, competitive ratio has been intro-

duced by Sleator and Tarjan [55]. For a deterministic strategy, the competitive ratio

is the maximum ratio of the cost of the online strategy to the cost of the offline strat-

egy over all instances of the problem. For a randomized strategy, the competitive

ratio is the maximum ratio of the expected cost of the online strategy to the cost

of the offline strategy over all instances of the problem. In the offline k-CTP, the

blocked edges are removed from the graph. Hence, it reduces to a cheapest (shortest)

path problem.

3.2.2 Our Contributions

So far, only deterministic strategies have been studied for the multi-agent k-CTP.

The competitiveness lower bounds have been provided for both of the cases with

limited and complete communication. An optimal deterministic strategy has been

introduced for both cases on O-D edge-disjoint graphs. However, the research on

randomized strategies on the k-CTP is restricted to the single-agent version of the

problem, where an optimal randomized strategy is introduced for only O-D edge-

disjoint graphs. Note that an O-D edge-disjoint graph is an undirected graph G with

a given source node O and a destination node D, such that any two distinct O-D paths

in G are edge-disjoint; that is, they do not have a common edge. Here we note that

the problem on O-D edge-disjoint graphs entails real-life applications. Because of the

overlap among different paths on a general network, it is difficult to design a good

strategy including multiple paths without overlaps for all the travelers [74]. However,

most urban city traffic networks are highly connected and there usually exist several

paths without overlap from O to D which are not much costlier than the cheapest

O-D path in the graph [74].

In this section, we focus on randomized strategies for the multi-agent k-CTP. We

analyze the problem in three cases: 1) without communication, 2) with limited com-

munication and 3) with complete communication. We derive lower bounds on the

competitive ratio of the randomized strategies for all of these cases. For the case
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without communication, we introduce a simple randomized strategy and prove its

competitive ratio on a special case. By this way, we prove that increasing the num-

ber of agents can improve the competitive ratio of the randomized strategies for the

multi-agent k-CTP.

For the cases with limited and complete communication, we introduce an optimal

randomized strategy for both cases on O-D edge-disjoint graphs. Here we note that

most optimal strategies in the literature are confined to O-D edge-disjoint graphs.

Because our optimal strategy achieves a better expected competitive ratio in compar-

ison to the optimal deterministic strategy on O-D edge-disjoint graphs, we conclude

that randomization can improve the expected competitive performance of the online

strategies for the k-CTP in presence of multiple agents and communication. We also

prove that the competitive ratio of the optimal randomized strategy does not improve

on O-D edge disjoint graphs, when the case with complete communication is com-

pared to the case with limited communication.

3.2.3 Preliminaries

As standard assumptions for the multi-agent k-CTP, we assume: 1) the graph remains

connected if any set of k edges are removed from the graph, and 2) the number of

agents L is less than or equal to the number of blocked edges k. Before we explain

our results, we need to present the property below that is defined by Bender and

Westphal [4] to design a randomized strategy for the k-CTP.

Definition 3.2.1. The paths P1, P2, ..., Pk+1 with costs c1 ≤ c2 ≤ ... ≤ ck+1 have the

similar costs property if for all i = 1, 2, ..., k + 1 it holds that

ci ≤
2

k + 1

k+1∑
j=1

cj.

We also use the following two lemmas in our results which were proven in [4].
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Lemma 3.2.1. Suppose that the O-D paths P1, P2, ..., Pk+1 with costs c1 ≤ c2 ≤

... ≤ ck+1 satisfy the similar costs property. In this case the probability distribution

Ωk+1 = λ∗p
′

belongs to the polyhedron Qk, where Ωk+1 and p
′

are (k + 1)-vectors,

λ∗ =
∑k+1

i=1
1

p
′
i

∈ [0, 1],

p
′

i =
(1− k)ci +

∑k+1
j=1j 6=i 2cj

(k + 1)2ci
∀i = 1, 2, ..., k + 1

and

Qk = {p ∈ Rk+1
+ : (1− k)pi +

k+1∑
j=1j 6=i

2
cj
ci
pj ≤ 1 ∀i = 1, 2, ..., k + 1,

k+1∑
i=1

pi = 1}.

Lemma 3.2.2. Let P1 and P2 with costs c1 ≤ c2 be the two cheapest paths in the

graph. The strategy that chooses P1 with probability
c22

c21+c
2
2

and P1 with probability

c21
c21+c

2
2

is 2-competitive.

3.2.4 Optimal randomized online strategy for the single-agent k-CTP

In this section we use Definition 5.5.1 and Lemma 5.5.1 to present a new randomized

strategy which is optimal when L is one. We call this strategy S1. Note that we

apply S1 later on to design our strategies for the multi-agent case in different levels

of communication.

A new optimal strategy for the single-agent case (S1)

• Initialization. Take an O-D edge-disjoint graph and k as input. Define S as the

selection list and let S = ∅, initially. Let i be a counter variable and set i = 0, at

the beginning. For any arbitrary set of n (n ≥ 3) O-D paths, let the probability

distribution Ωn = (p1, p2, ..., pn) ∈ Qn−1 be the probability distribution that is

defined in Lemma 5.5.1. For any arbitrary set of two O-D paths P1 and P2 with

costs c1 ≤ c2, let Ω2 = (
c22

c21+c
2
2
,

c21
c21+c

2
2
) ∈ Q1.

• Step 1. Remove all of the O-D paths in S to make it empty. Add the O-D
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paths to S by going through them in non-decreasing order of their costs until

one of the following two conditions happen: 1) adding the O-D paths violates

the similar costs property, or 2) the number of O-D paths in S exceeds k+1− i.

Go to step 2.

• Step 2. Let nS denote the number of O-D paths in S. Take one of the O-D paths

in S according to the probability distribution ΩnS
. If the agent has arrived at

D, stop. Otherwise, a new blockage is identified and the agent backtracks to O.

Remove the taken O-D path from the graph and set i = i+ 1. Then, go to Step

1.

To prove the optimality of S1, we need to present the following three lemmas, where

we consider the O-D paths P1, P2, ..., Pk+1 with costs c1 ≤ c2 ≤ ... ≤ ck+1 and the

probability distribution Ωk+1 = (p1, p2, ..., pk+1) ∈ Qk (Lemma 5.5.1).

Lemma 3.2.3. It holds that pk+1 ≤ pk ≤ ... ≤ p2 ≤ p1.

Proof. We show that for any arbitrary v and w (v, w ∈ {1, 2, ..., k + 1}) such that

v < w, pv ≥ pw. We have

pv = λ∗
(1− k)cv +

∑k+1
j=1j 6=v 2cj

(k + 1)2cv

and

pw = λ∗
(1− k)cw +

∑k+1
j=1j 6=w 2cj

(k + 1)2cw
.

Note that eliminating λ∗ from the definitions of pv and pw has no effect on the com-

parison of their values since it is common in both pv and pw. Hence, to compare pv

and pw we can consider the quantities

p
′

v =
1− k

(k + 1)2
+

∑k+1
j=1j 6=v 2cj

(k + 1)2cv

and

p
′

w =
1− k

(k + 1)2
+

∑k+1
j=1j 6=w 2cj

(k + 1)2cw
.
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Again we can eliminate 1−k
(k+1)2

from p
′
v and p

′
w since it is common in both of them.

Then, we can consider the quantities

p
′′

v =

∑k+1
j=1j 6=v 2cj

(k + 1)2cv

and

p
′′

w =

∑k+1
j=1j 6=w 2cj

(k + 1)2cw
,

to compare the values of pv and pw. Note that cv ≤ cw, thus the numerator of p
′′
v is

greater than or equal to the numerator of p
′′
w and the denominator of p

′′
v is smaller than

or equal to the denominator of p
′′
w. We get p

′′
w ≤ p

′′
v , which implies that pw ≤ pv.

Lemma 3.2.4. Consider the vector Πk+1 = (π1, π2, ..., πk+1) such that πi = 1
k+1

for

i = 1, 2, ..., k + 1. It holds that
∑k+1

i=1 pici ≤
∑k+1

i=1 πici.

Proof. Note that
∑k+1

i=1 pi = 1 since Ωk+1 ∈ Qk according to Lemma 5.5.1. Also note

that
∑k+1

i=1 πi =
∑k+1

i=1
1

k+1
= 1. We need to show that

0 ≤
k+1∑
i=1

(πi − pi)ci.

If 0 ≤ πi − pi for all i = 1, 2, ..., k + 1 the lemma follows. Suppose that πi − pi ≤ 0

for i = 1, 2, ..., j (j < k + 1) and 0 ≤ πi − pi for i = j + 1, ..., k, k + 1. In this case it

holds that
j∑
i=1

(πi − pi) = −
k+1∑
i=j+1

(πi − pi),

since
∑k+1

i=1 πi−
∑k+1

i=1 pi = 0. Note that
∑j

i=1(πi−pi)ci is not less than cj
∑j

i=1(πi−pi)

since we assumed πi − pi ≤ 0 for i = 1, 2, ..., j, and we have c1 ≤ c2 ≤ ... ≤ cj. Also

note that
∑k+1

i=j+1(πi − pi)ci is not less than cj+1

∑k+1
i=j+1(πi − pi) since we assumed

0 ≤ πi − pi for i = j + 1, ..., k, k + 1, and we have cj+1 ≤ cj+2 ≤ ... ≤ ck+1. Hence
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∑k+1
i=1 (πi − pi)ci can be bounded from below by

cj(

j∑
i=1

πi − pi) + cj+1(
k+1∑
i=j+1

πi − pi).

Because
∑j

i=1(πi − pi) = −
∑k+1

i=j+1(πi − pi), we can re-write the expression above as

(cj+1 − cj)
k+1∑
i=j+1

(πi − pi).

Note that
∑k+1

i=j+1(πi − pi) is positive since we assumed that 0 ≤ πi − pi for i =

j + 1, ..., k, k + 1. Also we have cj ≤ cj+1. Thus we obtain

0 ≤ (cj+1 − cj)
k+1∑
i=j+1

(πi − pi) ≤
k+1∑
i=1

(πi − pi)ci.

Lemma 3.2.5. Consider an arbitrary O-D path Pk+2 with cost ck+1 < ck+2 such

that Pk+2 does not fulfill the similar costs property with P1, P2, ..., Pk+1. It holds that

2
∑k+1

i=1 pici
ck+2

≤ 1.

Proof. Since Pk+2 does not satisfy the similar costs property with the set of O-D paths

P1, P2, ..., Pk+1 it follows from Definition 5.5.1 that

2

k + 2

k+2∑
i=1

ci < ck+2.

We first multiply both sides by k + 2 and then eliminate 2ck+2 from both sides to

obtain
2
∑k+1

i=1 ci
k + 1

<
2
∑k+1

i=1 ci
k

< ck+2.

Note that the left-hand side is greater than or equal to 2
∑k+1

i=1 pici according to Lemma

5.5.2. Thus

2
k+1∑
i=1

pici < ck+2
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and the lemma follows.

Now we can prove that S1 is k + 1 competitive and optimal on arbitrary O-D

edge-disjoint graphs.

Theorem 3.2.1. The competitive ratio of S1 is k + 1 on O-D edge-disjoint graphs.

Proof. Our proof is by induction.

• Base case. Suppose that P1 and P2 with costs c1 ≤ c2 are the two cheapest

O-D paths in the graph. When k = 1, the agent takes one of P1 and P2 with

probability distribution Ω2 = (
c22

c21+c
2
2
,

c21
c21+c

2
2
). If the taken O-D path is blocked,

the agent backtracks to O and takes the cheapest O-D path in the graph to arrive

at D. Otherwise, the agent arrives at D. We need to show that S1 achieves a

competitive ratio of two in this case. This is exactly what Lemma 3.2.2 states.

• Induction. Let Pi∗ (i∗ ∈ {1, 2, ..., k + 1} with cost ci∗ be the offline optimum.

At the first implementation of Step 1, the O-D paths are added to the selection

list in non-decreasing order of their costs until adding the O-D paths to the

selection list violates the similar costs property or the number of O-D paths

in the selection list exceeds k + 1. Let the O-D paths P1, P2, ..., Pn with costs

c1, c2, ..., cn be the O-D paths that are added to the selection list after the first

implementation of Step 1. Then the strategy enters Step 2. We present the rest

of our proof by considering two cases.

– Case 1. Pi∗ is not added to the selection list. In this case the agent takes

one of the O-D paths in the selection list according to the probability

distribution Ωn = (p1, p2, ..., pn). Then he arrives at the end-node of a

blockage and backtracks to O. Hence, the expected cost of 2
∑n

i=1 pici is

incurred. Note that 2
∑n

i=1 pici ≤ 2
∑n

i=1
1
n
ci according to Lemma 5.5.2.

Let Ck−1 denote the cost of S1 from the time when he arrives back at O until

the end of the strategy. Note that Ck−1 is at most kci∗ by the induction

assumption. Thus the expected cost of S1 is at most 2
∑n

i=1
1
n
ci + kci∗ .
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Since Pi∗ is not in the selection list, it follows that Pi∗ does not fulfill the

similar costs property with the set of O-D paths in the selection list and

cn < ci∗ . Hence 2
∑n

i=1
1
n
ci < ci∗ according to Lemma 3.2.5. Thus, the

expected cost of S1 is at most (k + 1)ci∗ . It follows that the competitive

ratio is at most k + 1 in this case.

– Case 2. Pi∗ is added to the selection list. Let B and T denote the set of

blocked and traversable O-D paths in the selection list, respectively. In this

case the agent takes one of the O-D paths in the selection list according

to the probability distribution Ωn = (p1, p2, ..., pn). If the taken O-D path

belongs to B, he backtracks to O and discards the traversed O-D path

from the graph; otherwise, the agent proceeds with the chosen O-D path

to arrive at D, i.e. the strategy ends. Suppose that the taken O-D path

belongs to B and let Ck−1 denote the cost of S1 from when the agent arrives

back at O until the end of the strategy in this case. The competitive ratio

can be written as ∑
i∈T

pici
ci∗

+
∑
j∈B

pj
2cj + Ck−1

ci∗
.

Note that Ck−1 is at most kci∗ by the induction assumption. Hence, the

competitive ratio is bounded from above by

∑
i∈T

pici
ci∗

+
∑
j∈B

pj(
2cj
ci∗

+ k) ≤ pi∗ +
k+1∑

j=1j 6=i∗
pj(

2cj
ci∗

+ k).

We claim that the right-hand side is at most k+1 for all i∗ = 1, 2, ..., k+1,

i.e.

(1− k)pi +
k+1∑

j=1j 6=i

pj
2cj
ci
≤ 1

for all i = 1, 2, ..., k+1. Since the probability distribution Ωk+1 = (p1, p2, ..., pk+1)

belongs to the polyhedron Qk, the claim follows by the definition of Qk in

Lemma 5.5.1.



56 Chapter 3: Online multi-agent k-Canadian Traveler Problem

The theorem follows.

3.2.5 Competitive analysis of the randomized online strategies on the multi-agent

k-CTP without communication

In this section we analyze the randomized strategies on the multi-agent k-CTP in the

absence of communication. First, we derive a lower bound to this problem. Next, we

present a simple randomized strategy for when multiple agents are in the graph and

communication is not possible. We call this strategy S2 and prove its competitive

ratio for a special case. By this way, we show that increasing the number of agents

can improve the competitive ratio of the randomized strategies on the multi-agent

k-CTP without communication.

The lower bound

Yao [68] showed that the expected cost of a randomized strategy on the worst-case

input is no better than a worst-case random probability distribution of the determin-

istic strategy which performs the best for that distribution. This principle is known

as Yao’s Principle and was applied to prove the lower bound of the problem in the

existence of only one agent in the graph in [64]. In this section, we use Yao’s Principle

to derive lower bounds for the multi-agent versions of the problem in different levels

of communication. Below we present a lower bound on the competitive ratio of the

randomized strategies for the multi-agent k-CTP without communication.

Theorem 3.2.2. There is no randomized strategy with competitive ratio less than

k+1∑
j=1

(1− (
k − (j − 1)

k + 1− (j − 1)
)L)(

k − (j − 2)

k + 1
)L(2j − 1),

for the multi-agent k-CTP in absence of communication.

Proof. We consider the O-D edge-disjoint graph in Figure 3.1. Note that we assume

that ε is sufficiently small such that we do not consider ε values in our analysis.
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We select i ∈ {1, 2, ..., k + 1} uniformly at random, block all edges (Vj, D) with

j 6= i and let the edge (Vi, D) remain traversable. Thus O − Vi − D becomes the

only traversable O-D path whose cost is one, i.e. the cost of the offline optimum is

one. To complete the proof, we need to show that the expected cost of an arbitrary

deterministic strategy with respect to the distribution given on the inputs is not

greater than
∑k+1

j=1(1 − ( k−(j−1)
k+1−(j−1))

L)(k−(j−2)
k+1

)L(2j − 1). We organize the rest of our

proof in two parts.

Figure 3.1: A special graph

• The concept of iteration. Note that there is no communication between

agents. Hence the agents do not benefit from waiting at O in order to receive

blockage information. Moreover, each arbitrary agent only knows the O-D paths

that he has taken and has no information about the O-D paths that are taken

by the other agents. Note that all of the agents are initially at O. Thus we can

define the concept of iteration for an arbitrary deterministic strategy for the

multi-agent k-CTP in absence of communication on the special graph in Figure

3.1 as follows. At the beginning of each iteration, each arbitrary agent takes an

O-D path from the set of O-D paths that he has not taken before and proceeds

with it to arrive at D or an end-node of a blockage. Note that the taken O-D

paths in this case are not necessarily different. If one of the agents arrives at

D, then the strategy ends and the cost of the iteration equals to one. If all of
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the agents arrive at an end-node of a blockage, all of the agents retrace back

to O and the cost of the iteration equals to two. Also note that an arbitrary

deterministic strategy ends within k + 1 iterations in this case.

• Computation of the competitive ratio. Note that the probability that O−

Vi−D is chosen at iteration j∗ (j∗ = 1, 2, ..., k+1) in an arbitrary deterministic

strategy can be computed as

(1− (
k − (j∗ − 1)

k + 1− (j∗ − 1)
)L)

j∗−1∏
j=1

(
k − (j − 1)

k + 1− (j − 1)
)L,

which is equal to

(1− (
k − (j∗ − 1)

k + 1− (j∗ − 1)
)L)(

k − (j∗ − 2)

k + 1
)L

for j∗ = 1, 2, ..., k + 1. Note that if O − Vi −D is selected at the jth iteration,

the strategy ends with cost of 2j−1. Hence the expected cost can be computed

as
k+1∑
j=1

(1− (
k − (j − 1)

k + 1− (j − 1)
)L)(

k − (j − 2)

k + 1
)L(2j − 1).

This implies that the expected cost of an arbitrary deterministic strategy with respect

to the distribution given on the inputs, does not exceed
∑k+1

j=1(1−( k−(j−1)
k+1−(j−1))

L)(k−(j−2)
k+1

)L(2j−

1). Since the cost of offline optimum is one, the theorem follows from Yao’s Princi-

ple.

Now we introduce our randomized strategy S2 for the case without communication.

Randomized strategy for the multi-agent case without communication (S2)

Take an O-D edge-disjoint graph, L and k as input. Let each agent apply S1 on the

input graph independently to the other agents.
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Below we prove an upper bound on the competitive ratio of S2 on arbitrary O-D

edge-disjoint graphs.

Lemma 3.2.6. S2 is at most k + 1 competitive on O-D edge-disjoint graphs.

Proof. Let P ∗ be the offline optimum and c∗ be its cost. Note that the expected cost

of S2 corresponds to the expected cost of the minimum of L independent strategies

that their expected costs are at most (k + 1)c∗. Hence the expected cost of S2 is at

most (k + 1)c∗ and the lemma follows.

By proposing the following two lemmas, we investigate whether increasing the

number of agents can improve the competitive ratio of the randomized strategies for

the multi-agent k-CTP when there is no communication between agents. First, we

prove the competitive ratio of S2 on the special graph in Figure 3.1.

Lemma 3.2.7. S2 is
∑k+1

j=1(1 − ( k−(j−1)
k+1−(j−1))

L)(k−(j−2)
k+1

)L(2j − 1) competitive on the

special graph in Figure 3.1.

Proof. Note that the agents do not benefit from waiting at O to receive any blockage

information from the other agents, based on the same reason that is presented in the

proof of Theorem 3.2.2. Because of the symmetry in the special graph in Figure 3.1,

we can define the concept of iteration for S2 on this special graph as follows. At

the beginning of each iteration, each arbitrary agent takes an O-D path from the set

of O-D paths that he has not taken before uniformly at random. Then, the agent

proceeds with the taken O-D path to arrive at D or an end-node of a blockage. Note

that the taken O-D paths in this case are not necessarily different. If one of the agents

arrives at D, then the strategy ends and the cost of the iteration equals to one. If all

of the agents arrive at an end-node of a blockage, all of the agents retrace back to

O and the cost of the iteration equals to two. Also note that S2 ends within k + 1

iterations in this case. Similar to the proof of Theorem 3.2.2, we can compute the

probability that O − Vi −D is taken at iteration j∗ as

(1− (
k − (j∗ − 1)

k + 1− (j∗ − 1)
)L)(

k − (j∗ − 2)

k + 1
)L
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for j∗ = 1, 2, ..., k + 1. Note that if O − Vi −D is traversed at the jth iteration, the

strategy ends with cost of 2j − 1. Thus the expected cost can be computed as

k+1∑
j=1

(1− (
k − (j − 1)

k + 1− (j − 1)
)L)(

k − (j − 2)

k + 1
)L(2j − 1).

As a consequence, we prove that increasing the number of agents can improve

the competitive ratio of the randomized strategies, when there is no communication

between the agents.

Lemma 3.2.8. There are instances in which increasing the number of agents improves

the competitive ratio of the randomized strategies in absence of communication.

Proof. We just showed in Lemma 3.2.7 that the competitive ratio of S2 on the special

graph in Figure 3.1 is

CR =
k+1∑
j=1

(1− (
k − (j − 1)

k + 1− (j − 1)
)L)(

k − (j − 2)

k + 1
)L(2j − 1)

in absence of communication. If we show that CR is decreasing in L, the lemma

follows. We set

α = (
k − (j − 1)

k + 1− (j − 1)
)

and

β = (
k − (j − 2)

k + 1
).

Note that α ∈ (0, 1) and β ∈ (0, 1], thus αβ < β. We define

CR
′
= (1− αL)βL = βL − (αβ)L.

Note that CR
′
is an item of CR for a given j and if it is shown that CR

′
is decreasing in

L, it follows that CR is also decreasing in L. Hence if it is shown that CR
′
is decreasing

in L, the lemma follows. When we assume that L is continuous and compute the first
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derivative of CR
′

with respect to L, we obtain that CR
′

is decreasing in L for L > 1.

This is because the first derivative of CR
′

with respect to L is positive for L > 1.

This implies that CR
′

is decreasing in L for integer values of L that are greater than

one.

3.2.6 Competitive analysis of the randomized online strategies on the multi-agent

k-CTP with communication

In this section we analyze randomized strategies on the multi-agent k-CTP in presence

of limited and complete communication. For the case with limited communication,

we assume that L1 (1 ≤ L1 < L) agents are RS-type and (L−L1) agents are R-type.

We remind that the RS-type agents are able to both send and receive information

while the R-type agents can only receive information. To specify what information

can be transmitted between the agents, we assume that the agents benefit from intel-

ligence level 3 (IL3) defined in [51]. The RS-type agents with IL3 have the following

attributes. 1) They can transmit their own travel plans to the other agents, i.e. they

can transmit the O-D paths that they plan to traverse to the other agents. 2) They

can plan for the R-type agents, i.e. they can determine for the R-type agents which

O-D paths to traverse. 3) They can share blockage information with the other agents

when they learn a new blockage. We note that the detailed description of IL3 can

be found in [51]. We suggest a lower bound for both of the cases with limited and

complete communication. We also present an optimal strategy for both cases on O-D

edge-disjoint graphs.

The lower bound

We again apply Yao’s Principle to derive our lower bound for the case with complete

communication.

Theorem 3.2.3. There is no randomized strategy with competitive ratio less than

L
k+1

(b k
L
c)2 +

k+1−Lb k
L
c

k+1
(2b k

L
c + 1), for the multi-agent k-CTP in presence of complete

communication.
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Proof. Similar to the proof of Theorem 3.2.2, we consider the O-D edge-disjoint graph

in Figure 3.1. Note that we assume that ε is sufficiently small such that we do not

consider ε values in our analysis. We select i ∈ {1, 2, ..., k + 1} uniformly at random,

block all edges (Vj, D) with j 6= i and let the edge (Vi, D) remain traversable. Thus

O− Vi−D becomes the only traversable O-D path whose cost is one, i.e. the cost of

the offline optimum is one. To complete the proof, we need to show that the expected

cost of an arbitrary deterministic strategy with respect to the distribution given on

the inputs is not greater than L
k+1

(b k
L
c)2 +

k+1−Lb k
L
c

k+1
(2b k

L
c+ 1). We organize the rest

of our proof in two parts.

• The concept of iteration. Note that the agents benefit from complete com-

munication, i.e. all of the agents are RS-type. Also note that the graph in

Figure 3.1 is O-D edge-disjoint and there is no benefit for the agents to take

an O-D path which is already traversed. Thus in any deterministic strategy,

when an arbitrary O-D path P is taken by one of the agents the other agents

learn that P is taken and discard it from the graph. The agent who has taken

P will proceed with it to arrive at D or at an end-node of a blockage, in the

latter case he backtracks to O and discards P from the graph. In other words,

the agents do not benefit from waiting at O in order to receive any blockage

information and they immediately take a new O-D path when they retrace back

to O. Note that all of the L agents are initially at O. Thus we can define the

concept of iteration for an arbitrary deterministic strategy for the multi-agent

k-CTP in presence of complete communication on the special graph in Figure

3.1 as follows. At the beginning of each iteration, L agents at O take L different

O-D paths from the set of O-D paths that are not traversed. The iteration ends

either when at least one of the agents arrive at D or all of the agents retrace

back to O. The former case happens when the O-D path O− Vi−D is selected

by one of L agents, in this case the cost of the iteration equals to one and the

strategy ends. The latter case occurs when all of the L O-D paths that are

taken by L agents are blocked. In this case the cost of the iteration equals to
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two. Also note that any deterministic strategy ends within at most b k
L
c + 1

iterations.

• Computation of the competitive ratio. Note that the probability that the

O-D path O − Vi − D is selected at iteration j∗ in an arbitrary deterministic

strategy can be computed as

(
∏j∗−1

j=1

(
k−(j−1)L

L

)
)
(
1
1

)(
k−(j∗−1)L

L−1

)∏j∗

j=1

(
k+1−(j−1)L

L

)
for j∗ = 1, 2, ..., b k

L
c + 1. The value of the probability above is L

k+1
for j∗ =

1, 2, ..., b k
L
c and equals to

k+1−Lb k
L
c

k+1
for j∗ = b k

L
c + 1. If O − Vi −D is selected

at the jth iteration, the strategy ends with cost of 2j − 1. Hence the expected

cost of the strategy can be computed as

L

k + 1

b k
L
c∑

j=1

2j − 1 +
k + 1− Lb k

L
c

k + 1
(2b k

L
c+ 1),

which equals to

L

k + 1
(b k
L
c)2 +

k + 1− Lb k
L
c

k + 1
(2b k

L
c+ 1).

We just showed that the expected cost of an arbitrary deterministic strategy with re-

spect to the distribution given on the inputs does not exceed L
k+1

(b k
L
c)2+k+1−Lb k

L
c

k+1
(2b k

L
c+

1). Since the cost of the offline optimum is one, the theorem follows from Yao’s Prin-

ciple.

Corollary 3.2.1. There is no randomized online strategy with competitive ratio less

than L
k+1

(b k
L
c)2 +

k+1−Lb k
L
c

k+1
(2b k

L
c + 1), for multi-agent k-CTP in presence of limited

communication.

Proof. Note that the agents have lower level of communication in comparison to the
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case with complete communication. Hence the competitive ratio can not be better

than the competitive ratio of the case with complete communication.

The remark below shows that our proposed lower bound is bounded above by

b k
L
c+ 1.

Remark 3.2.1. Note that 0 ≤ k + 1 − Lb k
L
c ≤ L and equals to L when k + 1 is a

multiple of L. Thus the maximum value of the competitive ratio corresponds to the

case when k + 1 is a multiple of L. Note that in this case b k
L
c + 1 = k+1

L
. Hence

the competitive ratio can be bounded above by L
k+1

∑b k
L
c+1

i=1 2i− 1 = L
k+1

∑ k+1
L
i=1 2i− 1,

which equals to L
k+1

(k+1
L

)2 = k+1
L

= b k
L
c + 1. We just bounded the competitive ratio

from above by the consideration of the case that maximizes the competitive ratio.

Now we introduce our optimal randomized strategy in presence of both limited

and complete communication. We call our strategy S3.

Optimal strategy for the cases with limited and complete communication (S3)

Take an O-D edge-disjoint graph, L, L1 and k as input. Select an arbitrary RS-type

agent A. Let A determine k+ 1 cheapest O-D paths in the graph, i.e. P1, P2, ..., Pk+1

with costs c1 ≤ c2 ≤ ... ≤ ck+1. Then, A randomly classifies P1, P2, ..., Pk+1 into

k+ 1−Lb k
L
c groups which contain b k

L
c+ 1 O-D paths and L− (k+ 1−Lb k

L
c) groups

which have b k
L
c O-D paths such that: 1) Pi (i ∈ {1, 2, ..., k + 1}) is added to one of

the groups that have b k
L
c + 1 O-D paths with probability p1 =

k+1−Lb k
L
c

k+1
(b k
L
c + 1),

and 2) Pi (i ∈ {1, 2, ..., k+ 1}) is added to one of the groups that have b k
L
c O-D paths

with probability p2 =
L−(k+1−Lb k

L
c)

k+1
b k
L
c, i.e. p1 + p2 = 1. Note that L different groups

are constructed. Next, A assigns exactly one agent to each group arbitrarily. In this

case the problem is decomposed into L different sub-problems with only one agent.

Apply S1 on each sub-problem. If at least one of the agents has arrived at D, stop.

Note that S1 and S3 are equivalent when L is one. Below we prove the competitive

ratio of S3.



Chapter 3: Online multi-agent k-Canadian Traveler Problem 65

Theorem 3.2.4. The competitive ratio of S3 is at most
(k+1−Lb k

L
c)

k+1
(b k
L
c + 1)2 +

(L−(k+1−Lb k
L
c))

k+1
(b k
L
c)2, on O-D edge-disjoint graphs.

Proof. Let Pi∗ (i∗ ∈ {1, 2, ..., k + 1}) be the offline optimum and c∗ be its cost. S3

partitions the O-D paths into k+ 1−Lb k
L
c groups that have b k

L
c+ 1 O-D paths and

L− (k + 1− Lb k
L
c) groups which contain b k

L
c O-D paths. Also, exactly one agent is

assigned to each group and implements S1 on that group. Pi∗ belongs to one of the

groups that have b k
L
c+1 O-D paths with probability

(k+1−Lb k
L
c)(b k

L
c+1)

k+1
and belongs to

one of the groups which contain b k
L
c O-D paths with probability

(L−(k+1−Lb k
L
c))b k

L
c

k+1
. In

the former case, there are at most b k
L
c blocked O-D paths in the group which contains

Pi∗ , hence S3 ends with an expected cost of at most (b k
L
c + 1)c∗ by Theorem 5.5.1.

In the latter case, there are at most b k
L
c − 1 blocked O-D paths in the group that

contains Pi∗ . Hence, S3 ends with an expected cost of at most (b k
L
c)c∗ by Theorem

5.5.1. Therefore, the expected cost of S3 is at most

(k + 1− Lb k
L
c)(b k

L
c+ 1)

k + 1
((b k

L
c+ 1)c∗) +

(L− (k + 1− Lb k
L
c))b k

L
c

k + 1
((b k

L
c)c∗).

The theorem follows since the cost of the offline optimum is c∗.

Theorem 3.2.5. S3 meets the lower bound of L
k+1

(b k
L
c)2 +

k+1−Lb k
L
c

k+1
(2b k

L
c+ 1) on the

competitive ratio of the randomized strategies for the multi-agent k-CTP in presence

of both limited and complete communication.

Proof. We need to show that the competitive ratio of S3 and the lower bound are

equal. Set α = k + 1− Lb k
L
c. In this case the competitive ratio of S3 can be written

as
L− α
k + 1

b k
L
c2 +

α

k + 1
(b k
L
c+ 1)2 =

L

k + 1
b k
L
c2 +

α

k + 1
(2b k

L
c+ 1),

and the lower bound can be written as

L

k + 1
b k
L
c2 +

α

k + 1
(2b k

L
c+ 1).

Since the presence of only one RS-type agent suffices to implement S3, the theorem
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Table 3.1: Comparison between the competitive ratio of the optimal deterministic strategy and
the optimal randomized strategy on O-D edge-disjoint graphs in presence of limited and complete
communication

M-PLS S3

Case with limited communication 2b k
L
c+ 1 b k

L
c+ 1

Case with complete communication 2b k
L
c+ 1 b k

L
c+ 1

follows for both cases of limited and complete communication.

Remark 3.2.2. Note that L
k+1

(b k
L
c)2 +

k+1−Lb k
L
c

k+1
(2b k

L
c + 1) ≤ b k

L
c + 1 according to

Remark 3.2.1. It follows that S3 is at most b k
L
c+ 1 competitive on O-D edge-disjoint

graphs in both cases with limited and complete communication.

Table 3.1 presents a comparison between the competitive ratio of our optimal

randomized strategy S3 and the optimal deterministic strategy (M-PLS) that is pre-

sented in [51] for O-D edge-disjoint graphs. As we can observe, S3 achieves a better

expected competitive performance (almost twice better) in both cases of limited and

complete communication in comparison to the M-PLS.

3.2.7 Concluding remarks

We studied randomized online strategies for the multi-agent k-CTP. We analyzed the

problem in three different cases: 1) without communication, 2) with limited com-

munication, and 3) with complete communication. We proved lower bounds on the

competitive ratio of the randomized online strategies for these cases. We introduced

an optimal randomized strategy for the cases with limited and complete communica-

tion on O-D edge-disjoint graphs which finds real-life applications. We showed that

our optimal randomized strategy S3 achieves a better expected competitive perfor-

mance in comparison to the optimal deterministic strategy (M-PLS) that is given in

the literature. We also showed that having complete communication does not im-

prove the competitive ratio of the optimal randomized strategy on O-D edge-disjoint

graphs in comparison to the case when communication is limited. Additionally, we
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showed that increasing the number of agents can improve the competitive ratio of the

randomized strategies when there is no communication between agents. We also note

that the problem of designing a randomized online strategy in the case without com-

munication that meets the lower bound of the problem on O-D edge-disjoint graphs

remains as an open research problem.

3.3 Analysis of online strategies on graphs having common edges on the

O-D paths

3.3.1 Introduction

In recent years, several studies have focused on designing and analyzing online strate-

gies for the multi-agent k-CTP in presence of complete communication (e.g. see [51]

and [74]). We remind that in the multi-agent k-CTP, k denotes the number of blocked

edges and L denotes the number of agents. A lower bound of 2b k
L
c+1 on the compet-

itive ratio of deterministic strategies has been derived in [74]. However, an optimal

deterministic strategy which meets the given lower bound is not provided.

3.3.2 Our contributions

In this section, we prove a lower bound on the competitive ratio of deterministic online

strategies for the multi-agent k-CTP with complete communication which is tighter

than the lower bound of 2b k
L
c+ 1 given in the literature. By this way, we show that

no deterministic strategy matches the lower bound of 2b k
L
c + 1 on the competitive

ratio of deterministic strategies for the multi-agent k-CTP in presence of complete

communication.

3.3.3 The lower bound

A lower bound on the competitive ratio is usually derived by designing a set of specific

instances on which no online strategy can perform well compared to an optimal offline

strategy. For the multi-agent k-CTP with complete communication, the input graph
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instances that are considered for providing the current best lower bound (2b k
L
c +

1) are such that the O-D paths do not contain common edges. However, common

edges on the O-D paths may cause the agents that are assigned to different O-D

paths to encounter the same blocked edge. We note that since all of the agents can

communicate with each other, the competitive performance of deterministic strategies

may reduce in cases in which the O-D paths on the input graph contain common edges

in comparison to the cases where the O-D paths on the input graph are edge-disjoint.

Based on this argument, we consider input graph instances where the O-D paths

have common edges in order to provide an improved lower bound on the competitive

ratio of deterministic strategies. We note that edge costs represent the edge traveling

times in the analysis provided in this section. First, we need to present the following

definition.

Definition 3.3.1. For an integer value of k, consider the graph topology that consists

of three connected parts (e.g., shown in Figure 3.2 for k = 2). The graph consists

of (1) a left part which is a full binary tree of height k, where the root node of the

binary tree is the leftmost node (node O in Figure 3.2 for k = 2). (2) A right part

which is a full binary tree of height k, where the root node of the binary tree is the

rightmost node (node D in Figure 3.2 for k = 2). (3) A bridge part that consists of

2k edges such that each one connects a leaf node of the left part to a leaf node of the

right part. We call the edges in the bridge part the bridge edges. For an integer value

of k, we call such a graph topology the adversary topology of order k.

Theorem 3.3.1. No deterministic online strategy achieves a competitive ratio better

than 2b k
λ
c+ 1, where

λ = maxL∗∈{0,1,2,...,L}{max{−1, blog2L∗c}+max{−1, blog2(L− L∗)c}+ 2}.

Proof. We assume that the input graph has the adversary topology of order k (Defi-

nition 3.3.1), where O is the root node of the left tree and D is the root node of the

right tree. We set the traveling time of the bridge edges equal to one and the traveling
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Figure 3.2: An adverse topology of order two

time of the other edges equal to zero. Figure 3.2 represents an adverse topology of

order two with specified values. We assume that the blocked edges are located at the

right tree. Note that all of the agents are at O at time zero. We organize the rest of

our proof in three parts.

• Representation of an arbitrary deterministic strategy ALGD. Suppose

that an arbitrary deterministic strategy ALGD ends in time interval [t∗, t∗+ 1),

where t∗ is a non-negative integer number. Then, ALGD can be represented by

set of pairs {([i, i+ 1), Li)} for i = 0, 1, 2, ..., t∗, where [i, i+ 1) represents a time

interval and Li (Li ∈ {0, 1, 2, ..., L}) denotes the number of agents which depart

from the left tree by taking a bridge edge in time interval [i, i+ 1). We need to

prove the following lemma which we apply in the rest of our proof.

Lemma 3.3.1. It holds that Li +Li+1 ≤ L (i = 0, 1, 2, ..., t∗) for ALGD applied

to an adversary topology of order k.

Proof. Note that Li agents that leave the left tree in time interval [i, i + 1)

(i = 0, 1, 2, ..., t∗) arrive at the right tree in time interval [i + 1, i + 2) since we

assumed that the blocked edges are at the right tree, i.e. none of the bridge

edges are blocked. Also note that Li agents that leave the left tree in time

interval [i, i+ 1) do not arrive back to the left tree in time interval [i+ 1, i+ 2)
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since traversing forward and traversing back a bridge edge takes at least two

units of time. Hence Li+1 ≤ L− Li.

• Configuration of adversary blocked edges. Note that the left tree consists

of k + 1 levels, where the root node of the left tree has level one. Similarly, the

right tree consists of k+ 1 levels, where the root node of the right tree has level

one. Also note that level j (j ∈ {1, 2, ..., k+1}) consists of 2j−1 nodes. We label

the nodes arbitrarily such that vleftwj represents the wth (w = 1, 2, ..., 2j−1) node

of the jth level on the left tree, and vrightwj represents the wth (w = 1, 2, ..., 2j−1)

node of the jth level on the right tree. For ALGD, we let xiwj denote the number

of agents that visit vleftwj within time interval [i, i + 1) for i = 0, 1, 2, ..., t∗. For

ALGD, we assume that the online adversary blocks the edges according to the

following strategy which we call the blocking strategy.

Blocking Strategy:

– Initialization. Define i and j as counter variables and set i = 0 and j = 2

initially.

– Step 1. If there exists at least one node such that xiwj > 0 , go to Step 2.

Otherwise, set i = i+ 1 and go to the beginning of Step 1.

– Step 2. Determine w∗ ∈ {1, 2, ..., 2j−1} such that xiw∗j = maxw∈{1,2,...,2j−1}{xiwj}.

Block the edge which emanates from vrightw∗j and enters a node on the (j−1)th

level of the right tree, and set j = j + 1. If j > k, stop; otherwise, go to

Step 1.

• Deriving the lower bound. We need to prove the following lemma to derive

our lower bound.

Lemma 3.3.2. The agents can find at most λ blocked edges within time interval

(2i, 2i+2] for i = 0, 1, 2, ..., 2b t∗
2
c in ALGD applied to adversary topology of order
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k with specified edge traveling time values, where

λ = maxL∗∈{0,1,2,...,L}{max{−1, blog2L∗c}+max{−1, blog2(L− L∗)c}+ 2}.

Proof. Consider the L2i agents that leave the left tree in time interval [2i, 2i+1)

for i = 0, 1, 2, ..., 2b t∗
2
c in ALGD. These agents do not find a blocked edge before

and after time interval [2i+ 1, 2i+ 2) since all of them should traverse a bridge

edge to arrive at the right tree and traversing a bridge edge takes at least one

unit of time. Suppose that the blocking strategy generated m < k blocked edges

before investigating ALGD in time interval [2i, 2i + 1). We assume that the m

blocked edges are known to the L2i agents. If L2i = 0, the blocking strategy gen-

erates no blocked edge when time interval [2i, 2i+ 1) is investigated. If 2i = t∗,

ALGD ends before time 2i+ 2. Otherwise, the blocking strategy blocks an edge

emanating from the (m+u)th level of the right tree for u = 1, 2, ..., blog2L2ic+1

such that all of the L2i agents encounter a blocked edge on their assigned O-D

paths in ALGD (see Step 2 of the blocking strategy). Thus, the L2i agents find

at most max{−1, blog2L2ic}+1 blocked edges within time interval [2i+1, 2i+2)

for i = 0, 1, 2, ..., 2b t∗
2
c in ALGD. Similarly, the L2i+1 agents that leave the left

tree in time interval [2i+1, 2i+2) find at most max{−1, blog2L2i+1c}+1 blocked

edges within time interval [2i+2, 2i+3) in ALGD. To draw a smallest competi-

tive ratio, we assume that the L2i+1 agents encounter max{−1, blog2L2i+1c}+ 1

blocked edges at time 2i + 2, i.e. the earliest possible time. Thus, the L2i and

L2i+1 agents can find at most max{−1, blog2L2ic} + max{−1, blog2L2i+1c} + 2

within time interval (2i, 2i + 2]. Note that L2i+1 ≤ L − L2i according to

Lemma 3.3.1. Therefore, the agents can find at most max{−1, blog2L2ic} +

max{−1, blog2(L− L2i)c} + 2 blocked edges within time interval (2i, 2i + 2].

Since max{−1, blog2L2ic}+max{−1, blog2(L− L2i)c}+ 2 is less than or equal

to λ = maxL∗∈{0,1,2,...,L}{max{−1, blog2L∗c} + max{−1, blog2(L− L∗)c} + 2}

for i = 0, 1, 2, ..., 2b t∗
2
c, the lemma follows.
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It takes at least b k
λ
c time intervals with length two from time zero to find

the k blocked edges. It takes one unit of time to arrive at D when all of the

blocked edges are identified. Thus, no deterministic strategy end earlier than

time 2b k
λ
c+ 1. The theorem follows since it takes one unit of time from O to D

in the offline optimal strategy.

Corollary 3.3.1. The lower bound of 2b k
L
c+ 1 on the competitive ratio of determin-

istic strategies is not tight for the multi-agent k-CTP with complete communication.

3.3.4 Concluding remarks

We proved an improved lower bound on the competitive ratio of deterministic online

strategies for the multi-agent k-CTP with complete communication. We designed

instances of an input graph in which the O-D paths have common edges. Our analysis

shows that the competitive ratio of deterministic strategies may reduce in the cases

where the O-D paths on the input graph contain common edges in comparison to the

cases in which the O-D paths on the input graph are edge-disjoint.

3.4 Summary of the results

Table 3.2 presents a summary of the results of Chapter 3.
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Table 3.2: Summary of the results in Chapter 3

Problem Result Case Network Type Publication Status
Multi-agent k-CTP without communication Lower bound Randomized General networks Published in [52]

Multi-agent k-CTP with limited communication Lower bound Deterministic General networks Published in [51]
Multi-agent k-CTP with limited communication Optimal strategy Deterministic Node-disjoint O-D paths Published in [51]
Multi-agent k-CTP with limited communication Lower bound Randomized General networks Published in [52]
Multi-agent k-CTP with limited communication Optimal strategy Randomized Node-disjoint O-D paths Published in [52]
Multi-agent k-CTP with limited communication Lower bound Deterministic General networks Published in [51]

Multi-agent k-CTP with complete communication Optimal strategy Deterministic Node-disjoint O-D paths Published in [51]
Multi-agent k-CTP with complete communication Lower bound Randomized General networks Published in [52]
Multi-agent k-CTP with complete communication Optimal strategy Randomized Node-disjoint O-D paths Published in [52]
Multi-agent k-CTP with complete communication Lower bound Deterministic General networks In preparation



Chapter 4

ONLINE MINIMUM LATENCY PROBLEM WITH EDGE

UNCERTAINTY

4.1 Introduction

The minimum latency problem (MLP) is a well-studied problem in combinatorial

optimization. In the MLP, an undirected simple connected graph G = (V,E) is

given to an agent, where V = {v0, v1, v2, ..., vn} and v0 ∈ V is a root node. Non-

negative edge distances are also given. The agent should start from v0 and complete

a tour visiting all the nodes. The latency of vi is denoted by li, which represents

the distance traveled before first visiting vi. Naturally, l0 is zero. The objective of

the agent is to find a tour on G, starting from v0, that minimizes
∑n

i=1 l(i). This

problem is also known as the deliveryman problem [1] or the traveling repairman

problem [30]. The MLP is an NP-hard problem [50] and it is APX-hard, implying

the non-existence of a polynomial-time approximation scheme (PTAS) unless P=NP

[54]. Several exact algorithms have been proposed for the MLP (see [44], [65], [45], [7]

and [6]). Approximation algorithms for the MLP have been extensively investigated

(see [19], [32], [9] and [25]), and the best approximation ratio achieved to date is 3.59

which is presented in [25].

We consider an online variant of the problem, in which k edges of G are blocked,

and the agent only learns that an edge e ∈ E is blocked, if she reaches at one of

the end-nodes of e. The graph remains connected if the blocked edges are removed

from it. The objective of the problem is to provide an online strategy such that

the agent finds a feasible tour, i.e. one without blocked edges, starting from v0 which

minimizes
∑n

i=1 l(i). This problem is called the online minimum latency problem with
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edge uncertainty (OMLP) and has been recently studied in [70].

Online strategies are divided into two categories as deterministic and randomized.

In a deterministic strategy, actions of the decision maker do not depend on proba-

bilistic outcomes, whereas in a randomized strategy the actions of the decision maker

are taken according to some probability distribution. To evaluate the performance of

online strategies, the notion of competitive ratio has been introduced by Sleator and

Tarjan [55] and adopted by many researchers afterwards. For a deterministic strategy,

ALGD, the competitive ratio is the maximum ratio of the cost of a feasible solution

found by ALGD to the cost of the offline optimum over all instances of the problem.

For a randomized strategy, ALGR, the expected competitive ratio is the maximum

ratio of the expected cost of a feasible solution found by ALGR to the cost of the

offline optimum over all instances of the problem. In the offline OMLP the blocked

edges are removed from the graph. Hence, solving the offline OMLP is equivalent to

solving an MLP.

4.1.1 Our contributions

A lower bound of 2k + 1 has been derived for the competitive ratio of deterministic

online strategies for OMLP in [70]. However, a deterministic online strategy which

meets the lower bound of 2k + 1 is not provided. In this section, we prove that the

lower bound of 2k+ 1 is tight by introducing an optimal deterministic online strategy

whose competitive ratio matches the lower bound. Furthermore, we prove that no

randomized online strategy can achieve an expected competitive ratio better than

k + 1 for OMLP.

4.2 An optimal deterministic strategy

In this section we present an optimal deterministic online strategy for OMLP. Our

strategy is iterative and terminates in at most k + 1 iterations. At the beginning of

the qth (q ∈ {1, 2, ..., k + 1}) iteration, the agent removes the found blocked edges

from the graph and calls an exact MLP to compute a tour Tq which starts from v0 and
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minimizes total latency of all the nodes. We note that several exact MLP formula-

tions are designed for complete graphs (see [7] and [6]). To apply these formulations,

G can be transformed to a complete graph, G
′

= (V,E
′
), such that an edge eij ∈ E

′

corresponds to a shortest path between vi and vj on G, for i, j ∈ {0, 1, ...., n}. For

any tour T
′

on G
′
, we can construct a corresponding tour T on G by replacing each

edge in T
′

with the corresponding shortest path on G. Wu et al. [65] discussed that

the sum of the latencies of the nodes on T is less than or equal to the sum of the

latencies of the nodes on T
′
. Thus, an exact solution on G can be obtained. After Tq

is constructed, the agent travels on Tq and either visits all of the nodes in V or finds

a new blocked edge. In the former case, the iteration ends and the strategy stops. In

the latter case, the agent backtracks to v0 and the iteration ends. Due to the nature

of our strategy, we call it the Backtrack strategy.

Backtrack Strategy

• Initialization. The agent takes the graph G = (V,E) as input. Let F denote

the set of found blocked edges and set F = ∅. Let q be a counter variable which

represents the iteration number and set q = 1. Let Gq represent the graph at

the beginning of the qth iteration and set G1 = G.

• Step 1. The agent applies an exact MLP formulation and obtains an optimal

tour Tq on Gq which starts from v0 and minimizes
∑n

i=1 d
q
i , where dqi (i ∈

{1, 2, ..., n}) is the distance from v0 to the first visit of vi on Tq. Then, she starts

traversing Tq. If there is no blocked edge on Tq, the strategy ends. Otherwise, a

new blocked edge is found. In this case, the agent adds the found blocked edge

to F and backtracks to v0. Then, she sets q = q+ 1, Gq = (V,E−F ), and goes

to the beginning of Step 1.

Let k denote the number of blocked edges in G. Below, we show that the backtrack

strategy matches the lower bound of 2k + 1 given in [70].
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Theorem 4.2.1. The backtrack strategy achieves the competitive ratio of 2k + 1 for

the OMLP.

Proof. Let dq
∗

i (q∗ ∈ {1, 2, ..., k + 1}) denote the distance between v0 and vi in the

offline optimum tour, i.e. the total latency of the offline optimum is
∑n

i=1 d
q∗

i . Also

let Eq (q ∈ {1, 2, ..., k + 1}) denote the set of edges in Gq at the beginning of the qth

iteration. Since E1 ⊃ E2 ⊃ ... ⊃ Eq∗ , we have

n∑
i=1

d1i ≤
n∑
i=1

d2i ≤ ... ≤
n∑
i=1

dq
∗−1
i ≤

n∑
i=1

dq
∗

i .

The rest of our proof is by induction on k.

• Base case. For k = 1, the strategy terminates in at most two iterations. If

the strategy ends in the first iteration, the competitive ratio would be one.

Otherwise, the agent finds a blocked edge on T1 and backtracks to v0. Suppose

that the agent has visited x number of nodes on T1 before facing a blocked edge.

Let X ⊂ V denote the set of visited nodes. Let ∆ denote the distance on T1

that the agent has taken from v0 to the end-node of the blocked edge. The total

latency of the strategy can be represented as

∑
i∈X

d1i + 2∆(n− x) +
∑

u∈V−X

dq
∗

u .

It is straightforward to show that

∑
i∈X

d1i + ∆(n− x) ≤
n∑
i=1

d1i ≤
n∑
i=1

dq
∗

i .

It follows that

∑
i∈X

d1i + 2∆(n− x) ≤ 2(
∑
i∈X

d1i + ∆(n− x)) ≤ 2(
n∑
i=1

d1i ) ≤ 2(
n∑
i=1

dq
∗

i ).

Note that
∑

u∈V−X d
q∗
u ≤

∑n
i=1 d

q∗

i . Hence the total latency of the strategy can
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be bounded from above by 3
∑n

i=1 d
q∗

i . Since the total latency of the offline

optimum is
∑n

i=1 d
q∗

i , the base case follows.

• Induction. We assume that our claim is valid for k = q − 1 and we prove its

correctness for k = q. If the strategy stops in the first iteration, the competi-

tive ratio would be one. Otherwise, the agent finds a blocked edge on T1 and

backtracks to v0. Suppose that the agent has visited x number of nodes on T1

before facing a blocked edge. Let X ⊂ V denote the set of visited nodes. Let ∆

denote the distance on T1 that the agent has taken from v0 to the end-node of

the blocked edge. Similar to the case with k = 1, we represent the total latency

of the strategy at the end of the first iteration as

∑
i∈X

d1i + 2∆(n− x) + C,

where C denotes the total latency of the nodes in V − X from the end of the

first iteration. Note that at the end of the first iteration the agent is at v0 and

there are k−1 blocked edges in the graph. Thus, C is at most (2q−1)
∑n

i=1 d
q∗

i

according to the induction assumption. Also note that
∑

i∈X d
1
i + 2∆(n− x) ≤

2
∑n

i=1 d
q∗

i . The theorem follows.

Note that the backtrack strategy does not run in polynomial time since it uses an

exact MLP strategy to compute Tq (q ∈ {1, 2, ..., k+1}) in Step 1. One can utilize a de-

terministic approximation strategy for MLP to compute Tq in Step 1 of the backtrack

strategy to obtain a polynomial time deterministic strategy for OMLP. Let ALGD
α be

a deterministic strategy for OMLP in which the agent applies an α−approximation

strategy instead of an exact one in Step 1 of the backtrack strategy. Similar to the

proof of Theorem 4.2.1, one can verify that ALGD
α achieves the competitive ratio of

α(2k + 1) for OMLP. Note that best known α to date is 3.59 [25].
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4.3 A lower bound on the expected competitive ratio of randomized

strategies for OMLP

In this section we prove that no randomized online strategy can achieve an expected

competitive ratio better than k+1 for OMLP. We apply Yao’s Principle [68] to derive

our lower bound. Yao [68] showed that the expected cost of a randomized strategy

on the worst-case input is no better than that of a worst-case random probability

distribution of the deterministic strategy which performs the best for that distribution.

We refer the reader to [64] and [52] for applications of Yao’s Principle to the k-

Canadian Traveler’s Problem and its variants.

Figure 4.1: The graph for deriving the lower bound of k + 1

Proposition 4.3.1. No randomized strategy achieves an expected competitive ratio

better than k + 1 for OMLP.

Proof. We consider the graph in Figure 4.1, where

V = {v0, v(k+1)(x+1)+1} ∪ {v(k+1)u+q|u = 0, 1, ..., x, q = 1, 2, ..., k + 1}
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and

E = {(v0, vq), (v(k+1)u+q, v(k+1)(u+1)+q), (v(k+1)x+q, v(k+1)(x+1)+1)}|u = 0, 1, ..., x− 1, 1 ≤ q ≤ k + 1}.

Let the distance of the edges (v0, vq) be one for q = 1, 2, ..., k+ 1 and let the distances

of the other edges be ε, where ε is a positive number which approaches zero. That is,

we do not consider ε values in our analysis. We choose r ∈ {1, 2, ..., k + 1} uniformly

at random. Let (vr, v(k+1)+r) be traversable and block the edges (vq′ , v(k+1)+q′ ) for

q
′ ∈ {{1, 2, ..., k + 1} − {r}}. Also let V

′
= {V − {v0, v1, v2, ..., vk+1}}.

In the offline optimum, the agent starts from v0 and traverses the edge (v0, vr)

to arrive at vr. Then, she traverses all of the edges with distance ε to visit the

x(k+ 1) + 1 number of nodes in V
′
. Thus, the latency of a node vi ∈ V

′
is one in the

offline optimum, i.e. the total latency of the nodes in V
′

is x(k + 1) + 1. Since the

edges (vq′ , v(k+1)+q′ ) are blocked, the agent has to traverse the edge (v0, vq′ ) to visit

vq′ for q
′ ∈ {{1, 2, ..., k+ 1}−{r}}. Hence, the total latency of the nodes in V −V ′ is∑k+1

q=1 2q − 1 = (k + 1)2. Therefore, the expected total latency of the offline optimum

can be represented as x(k + 1) + 1 + (k + 1)2.

We consider an arbitrary deterministic strategy, ALGD, applied to the graph in

Figure 4.1. In ALGD, the agent starts from v0 and takes an edge (v0, vq) (q ∈

{1, 2, ..., k+ 1}). Then, two cases may happen. In the first case, the agent learns that

the edge (vq, v(k+1)+q) is traversable and takes it. Then, she traverses all of the edges

with distance ε to visit the x(k+1)+1 number of nodes in V
′
. In the second case, she

learns that the edge (vq, v(k+1)+q) is blocked, backtracks to v0 and tries a new edge.

It is straightforward to show that the agent visits vr after visiting q − 1 nodes which

belong to {{v1, v2, ..., vk+1}−{vr}} with probability 1
k+1

in ALGD for q = 1, 2, ..., k+1.

If the agent has visited q− 1 nodes in {{v1, v2, ..., vk+1}−{vr}} before visiting vr, the

total latency of the nodes in V
′
can be represented as (2q−1)(x(k+1)+1). Note that

since the edges (vq′ , v(k+1)+q′ ) are blocked, the agent has to traverse the edge (v0, vq′ )

to visit vq′ for q
′ ∈ {{1, 2, ..., k + 1} − {r}}. Hence, the total latency of the nodes in

V − V ′ is
∑k+1

q=1 2q − 1 = (k + 1)2 in ALGD. Therefore, the expected total latency of
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Table 4.1: Summary of the results in Chapter 4

Problem Result Case Network Type Publication Status
OMLP Optimal strategy Deterministic General networks In preparation
OMLP Lower bound Randomized General networks In preparation

ALGD can be written as

(k + 1)2 +
1

k + 1

k+1∑
q=1

(2q − 1)(x(k + 1) + 1) = (k + 1)2 +
x(k + 1) + 1

k + 1

k+1∑
q=1

(2q − 1),

which is equal to (k+ 1)2 + (x(k+ 1) + 1)(k+ 1). Since the expected total latency of

the offline optimum is x(k+1)+1+(k+1)2, when x approaches +∞, the proposition

follows by Yao’s Principle.

4.4 Concluding remarks

We proved that our backtrack strategy is optimal for OMLP since it achieves the

competitive ratio of 2k + 1. That is, we showed that the lower bound of 2k + 1 on

the competitive ratio of deterministic online strategies is tight for OMLP. We also

proved that no randomized online strategy can achieve an expected competitive ratio

better than k + 1 for OMLP. However, devising a randomized online strategy which

matches the expected competitive ratio of k+1 for OMLP remains as an open research

problem.

Table 4.1 presents a summary of the results of Chapter 4.



Chapter 5

ONLINE DISCRETE SEARCH PROBLEM WITH

TRAVELING AND SEARCH COST ON UNDIRECTED

GRAPHS

5.1 Introduction

Search theory is one of the oldest research areas within the field of Operations Re-

search. Nunn [47] stated that problems involving search arise in such diverse areas as

the military looking for enemy submarines, the coast guard searching for small boats

lost in a storm, prospectors surveying for mineral deposits, a crew searching missing

backpackers in the forest, law enforcement officers looking for lost weapons or escaped

criminals, a secretary looking for missing file, or an analyst scanning a computer print-

out for missing data. Locating a victim during search-and-rescue operations after a

disaster can be added to this list.

In problems involving search, there is a searcher who probes for a hider. The

hider can be static or moving depending on the context. The focus of our study is

on search problems with a static hider. For problems with a moving hider, see [22],

[23], and [60]. The static hider can be positioned in a discrete or continuous search

domain. We call the search problems with a discrete search domain discrete search

problems and the search problems with a continuous search domain continuous search

problems.

In search problems, the common unknown information to the searcher is the lo-

cation of the hider. The objective of the searcher is to provide a strategy which finds

the hider with minimum total cost. The searcher has to devise his strategy under

incomplete information. The approach usually taken for such problems is to consider
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some probabilistic model associated with uncertain information and act on this basis.

Our approach is to compare the performance of the strategy that operates under in-

complete information, i.e. the online strategy, with the performance of the strategy

that operates in presence of complete information, i.e. the offline strategy. This ap-

proach requires no probabilistic knowledge of the future and is therefore a worst-case

measure of performance. This type of analysis was first suggested in [55] and later

called competitive analysis in [36]. Online strategies are divided into two categories

as deterministic and randomized. In a deterministic strategy, actions of the decision

maker do not depend on probabilistic outcomes, whereas in a randomized strategy

the actions of the decision maker are taken according to some probability distribution

[3].

There are two main motivations to analyze discrete search problems in terms of

competitive analysis. The first one is that in several real-world applications of these

problems, it is very difficult to obtain probabilistic knowledge about the location of

the hider. The second motivation is that in many real-world applications of discrete

search problems such as security and defense, for instance in a bomb exploration

operation, having a strategy with a good worst-case performance is vital since human

life is at stake.

5.1.1 Problem Definition

We study an online variant of discrete search problems as follows. Given an undirected

connected graph G = (V,E), where V = {v0, v1, v2, ..., vn}, node vi (i ∈ {1, 2, ..., n})

of the graph is associated with a given non-negative search cost si. A non-negative

edge cost de is also given for each edge e ∈ E. A static hider is at one of the nodes vi∗

(i∗ ∈ {1, 2, ..., n}) which is not known to the searcher. The hider is not found unless

the searcher arrives at vi∗ and incurs the search cost of vi∗ . Starting from v0, the

searcher wants to devise an online strategy to locate the hider with minimum total

cost. We call this problem the online discrete search problem on undirected graphs

(ODSP). The ODSP has not been studied from the competitive analysis perspective
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in the literature. We note that the second stream of search problems on graphs are

the most related type of work in the literature to the ODSP.

To evaluate the performance of online strategies, the notion of competitive ratio

has been introduced by Sleator and Tarjan [55] and adopted by many researchers.

For a deterministic strategy, the competitive ratio is the maximum ratio of the cost of

the online strategy to the cost of the offline strategy over all instances of the problem.

For a randomized strategy, the expected competitive ratio is the maximum ratio of

the expected cost of the online strategy to the cost of the offline strategy over all

instances of the problem. In the offline version of the problem, the hideout node of

the hider (vi∗) is known to the searcher. Hence, the cost of the offline optimum equals

the cost of the shortest (cheapest) path from v0 to vi∗ plus the search cost of vi∗ .

5.1.2 Our Contributions

Several past studies have conducted competitive analysis on the variants of online

continuous search problems which are defined on graphs, see [8], [26] and [35]. How-

ever, to the best of our knowledge, online discrete search problems have not been

studied from the competitive analysis point of view. In this section, we investigate an

online discrete search problem which we call the ODSP from the competitive analysis

perspective for the first time. The ODSP finds applications in diverse areas such as

security, defense, and search-and-rescue. We provide policies that are optimal with

respect to the worst-case scenarios for such applications. We derive a tight lower

bound on the competitive ratio of deterministic strategies and propose an optimal

deterministic strategy. We also provide a tight lower bound on the expected compet-

itive ratio of randomized strategies and prove its tightness by introducing an optimal

randomized strategy. In this way, we show that randomized strategies can achieve

a better competitive ratio in comparison to deterministic strategies for the ODSP

in the expected sense. We note that our proofs for randomized strategies are more

challenging.
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5.2 Tight lower bound on the competitive ratio of deterministic strate-

gies for the ODSP

To prove a lower bound LBD on the competitive ratio of deterministic strategies for

an arbitrary online problem, it suffices to prove that for an arbitrary deterministic

strategy, ALGD, there exists at least one instance of inputs ID such that ALGD

cannot achieve a competitive ratio better than LBD on ID. We remind the reader

that V = {v0, v1, v2, ..., vn} and we assume that the search domain is {v1, v2, ..., vn}.

Theorem 5.2.1. There is no deterministic strategy with a competitive ratio less than

2n− 1 for the ODSP.

Proof. We consider an arbitrary deterministic strategy, ALGD for the ODSP, and

prove that there exists at least one instance of inputs, ID, such that the competitive

ratio of ALGD is not better than 2n − 1 on ID. We let the input graph G contain

n + 1 nodes v0, v1, v2, ..., vn and have the star topology shown in Figure 5.1, where

v0 is the root (hub) node. Let v0 be the starting node of the searcher. In G, v0 is

connected to vi via an undirected edge with cost one for i = 1, 2, ..., n, i.e. there are

n edges in G. Let the search cost of vi be zero, for i ∈ {1, 2, ..., n}. Note that ALGD

applied to G corresponds to a permutation which specifies in which order the n nodes

should be searched.

For ALGD, we let ID be the instance in which the node of the hider is the node

that is searched last. Therefore, the cost of ALGD is 2n − 1. Note that the cost of

the offline optimum is one. Thus, the competitive ratio of ALGD is 2n− 1.

5.3 An optimal deterministic strategy for the ODSP

In this section, we provide an optimal deterministic strategy for the ODSP. To provide

the rest of our results in this section, we need to present the following definition.
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Figure 5.1: A star graph with n nodes

Definition 5.3.1. We define the operational cost of vi (vi ∈ V ) as the summation of

the cost of the cheapest path between v0 and vi together with the search cost of vi for

i = 1, 2, ..., n. We denote the value of the operational cost of vi by ci for i = 1, 2, ..., n.

Now, we can present our optimal deterministic strategy which we call the back-

track strategy.

Backtrack Strategy:

• Initialization. Take G = (V,E), the starting node of the searcher v0, si for

i = 1, 2, ..., n, together with de for all e ∈ E as input. Compute the operational

costs of the nodes in V − {v0}. Re-label the nodes excluding v0 from v1 to

vn such that ci ≤ cj for 1 ≤ i < j ≤ n, i.e. in non-decreasing order of their

operational costs. Define k as a counter variable and set its initial value to one.

• Step 1. Take the cheapest path from v0 to vk and conduct a search at vk. If

the hider is found, stop. Otherwise, retrace back to v0 by taking the cheapest

path from vk to v0, set k = k + 1 and go to the beginning of Step 1.

Theorem 5.3.1. The backtrack strategy achieves the optimal competitive ratio of
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2n− 1 for the ODSP.

Proof. Note that the backtrack strategy labels the starting node of the searcher by

v0 and labels the other nodes by vi for i = 1, 2, ..., n such that c1 ≤ c2 ≤ ... ≤ cn

(e.g., shown in Figure 5.2 for an instance of the ODSP). Suppose that the hider is

positioned at vi∗ (i∗ ∈ {1, 2, ..., n}). Hence the cost of the offline optimum is ci∗ . Note

that the competitive ratio of the backtrack strategy can be bounded from above by

∑i∗−1
k=1 2ck
ci∗

+ 1,

which is at most 2n− 1 when i∗ = n and c1 = c2 = ... = cn.

Figure 5.2: An instance of the ODSP

In the next section, we investigate whether randomized strategies can achieve a

better expected competitive ratio in comparison to the competitive ratio of the best

deterministic strategy (backtrack strategy) for the ODSP.

5.4 Tight lower bound on the expected competitive ratio of randomized

strategies for the ODSP

A lower bound on the competitive ratio is usually derived by providing a set of specific

instances on which no online strategy can perform well compared to an optimal offline

strategy. For deterministic strategies finding a suitable instance is comparatively easy
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[40]. For randomized strategies, however, it is usually very difficult to bound the

expected cost of an arbitrary randomized strategy on a specific instance from below

[40].

Yao’s Principle is a standard tool for providing lower bounds on the expected

competitive ratio of randomized strategies. Yao [68] showed that the expected cost of

a randomized strategy on the worst-case input is no better than that of a worst-case

random probability distribution of the deterministic strategy which performs the best

for that distribution. This principle was proven in [68] and presented to be applied for

driving the lower bounds on the expected competitive ratio of randomized strategies

for the online problems in [40]. Yao’s Principle allows us to trade randomization in an

online strategy for randomization in the input [40]. We apply Yao’s Principle [68] in

the next lemma in order to provide a tight lower bound on the expected competitive

ratio of randomized strategies for the ODSP.

Theorem 5.4.1. No randomized strategy achieves an expected competitive ratio better

than n for the ODSP.

Proof. We consider the input graph G which is described in the proof of Theorem

5.2.1. We remind that G contains n + 1 nodes v0, v1, v2, ..., vn and have the star

topology, where v0 is the root (hub) node. The node v0 is the starting node of the

searcher and is connected to vi via an undirected edge with cost one for i = 1, 2, ..., n.

Also, the search cost of vi is zero for i ∈ {1, 2, ..., n}. We choose i∗ ∈ {1, 2, ..., n}

uniformly at random and assume that the hider is positioned at node vi∗ . Hence the

expected cost of the offline optimum is one. We consider an arbitrary deterministic

strategy ALGD for the ODSP applied to G, and organize the rest of the proof in two

parts.

• Definition of iterations of ALGD. Note that ALGD applied to G corresponds

to a permutation which specifies in which order the nodes of the graph, excluding

v0, are being searched. Hence, we define the concept of iteration for ALGD

applied to G as follows. At the beginning of each iteration, the searcher takes
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one of the edges in G to arrive at one of the nodes that is not yet searched

and conducts a search at that node. ALGD ends if the hider is found, i.e. the

cost of the iteration equals one and the iteration ends. Otherwise, the searcher

backtracks to v0 and the iteration ends, i.e. the cost of the iteration equals two.

Also note that ALGD ends within n iterations.

• Computation of the expected competitive ratio of ALGD. Note that the

searcher probes vi∗ at iteration i (i ∈ {1, 2, ..., n}) with probability 1
n

in ALGD,

since we selected i∗ according to the uniform probability distribution. If ALGD

ends at iteration i, the searcher incurs total cost of 2i− 1. Thus, the expected

cost of ALGD is
1

n

n∑
i=1

(2i− 1) = n.

We just showed that the expected cost of ALGD with respect to the uniform distri-

bution given on the input is n. It follows that no randomized strategy achieves an

expected competitive ratio less than n on G against its worst-case input, by Yao’s

Principle.

5.5 An optimal randomized strategy for the ODSP

We need to present the following definition to describe our strategy. Note that Ben-

der and Westphal [17] defined the below property in a different structure for the

k-Canadian Traveler Problem. Below, we provide the definition in a generalized

structure.

Definition 5.5.1. The elements θ1, θ2, ..., θt which are associated with costs δ1 ≤

δ2 ≤ ... ≤ δt have the similar costs property if for all i = 1, 2, ..., t, it holds that

δi ≤
2

t

t∑
j=1

δj.

Hereafter, we say that the nodes v1, v2, ..., vt with operational costs c1, c2, ..., ct
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satisfy the similar costs property if for all i = 1, 2, ..., t, it holds that ci ≤ 2
t

∑t
j=1 cj

(Definition 5.5.1). We also use the following lemma to devise our optimal randomized

strategy. We note that this lemma is proven in [17] in a different context, namely

for the k-Canadian Traveler Problem. Below, we present the lemma in a generalized

structure.

Lemma 5.5.1. Suppose that the elements θ1, θ2, ..., θt which are associated with costs

δ1 ≤ δ2 ≤ ... ≤ δt satisfy the similar costs property. Then the probability distribution

Ωt = λ∗p
′

belongs to the polyhedron Qt, where Ωt and p
′

are t-vectors, λ∗ =
∑t

i=1
1

p
′
i

∈

[0, 1],

p
′

i =
(2− t)δi +

∑t
j=1j 6=i 2δj

t2δi
∀i = 1, 2, ..., t

and

Qt = {p ∈ Rt
+ : (2− t)pi +

t∑
j=1j 6=i

2
δj
δi
pj ≤ 1 ∀i = 1, 2, ..., t,

t∑
i=1

pi = 1}.

Now, we can present our optimal randomized strategy which we call the random-

ized backtrack strategy.

Randomized Backtrack Strategy:

• Initialization. Take an undirected graph G = (V,E), the starting node of

the searcher v0, si for all vi for i = 1, 2, ..., n, together with de for all e ∈ E

as input. Define S as the selection list and let S = ∅, initially. Compute the

operational costs of the nodes in V −{v0}. Re-label the nodes excluding v0 from

v1 to vn such that ci ≤ cj for 1 ≤ i < j ≤ n, i.e. in non-decreasing order of

their operational costs. Define S
′

as the search list and set S
′

= {v1, v2, ..., vn}

initially. For any arbitrary set of t nodes v1, v2, ..., vt with operational costs

c1 ≤ c2 ≤ ... ≤ ct that satisfy the similar costs property, let the probability

distribution Ωt = (p1, p2, ..., pt) ∈ Qt be the probability distribution that is

defined in Lemma 5.5.1.
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• Step 1. Remove the nodes from S to make it empty. Add the nodes from S
′

to S by going through them in non-decreasing order of their operational costs

until adding the next node violates the similar costs property. Go to Step 2.

• Step 2. Let tS denote the number of nodes in S. Take one of the nodes in

S according to the probability distribution ΩtS . If the hider is found, stop.

Otherwise, a new node is searched and the searcher backtracks to v0. Remove

the searched node from S
′
. Go to Step 1.

To prove that the randomized backtrack strategy is optimal, we utilize the fol-

lowing lemma regarding the elements θ1, θ2, ..., θt (which are associated with costs

δ1 ≤ δ2 ≤ ... ≤ δt) that fulfill the similar costs property and the probability distri-

bution Ωt = (p1, p2, ..., pt) ∈ Qt (Lemma 5.5.1). We note that the following lemma is

proven in [52] in a different structure for the k-Canadian Traveler Problem. Below,

we state the lemma in a generalized structure.

Lemma 5.5.2. Consider the vector Πt = (π1, π2, ..., πt) such that πi = 1
t

for i =

1, 2, ..., t. It holds that
∑t

i=1 piδi ≤
∑t

i=1 πiδi.

We apply the above lemma in the context of the ODSP to prove that the ran-

domized backtrack strategy meets the lower bound of n. That is, we consider the

nodes v1, v2, ..., vt which are associated with operational costs c1, c2, ..., ct instead of

the elements θ1, θ2, ..., θt which are associated with costs δ1, δ2, ..., δt. We remind that

n denotes the size of the search domain.

Theorem 5.5.1. The expected competitive ratio of the randomized backtrack strategy

is n for the ODSP.

Proof. Our proof is by induction on n.

• Base case. When n is one the searcher takes the cheapest path from v0 to the

only node in the search domain with probability p1 = 1, incurs the search cost

of the node, and finds the hider. Thus the cost of the randomized backtrack
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strategy and the cost of the offline optimum would be c1. Hence the competitive

ratio is one.

• Induction. Let v1, v2, ..., vn (n ≥ 2) with operational costs c1 ≤ c2 ≤ ... ≤ cn

be the nodes in the search domain. Also let vi∗ (i∗ ∈ {1, 2, ..., n}) be the node

in which the hider is positioned. Hence the cost of the offline optimum is ci∗ .

At the first implementation of Step 1, the nodes are added to the selection list

in non-decreasing order of their operational costs until adding the next node

to the selection list violates the similar costs property. Let v1, v2, ..., vt with

operational costs c1, c2, ..., ct be the nodes that are added to the selection list

after the first implementation of Step 1. Then the strategy enters Step 2. We

present the rest of our proof by considering two cases.

– Case 1. vi∗ is added to the selection list. The searcher takes the

cheapest path from v0 to vi′ (i
′ ∈ {1, 2, ..., t}) according to the probability

distribution Ωt = (p1, p2, ..., pt). Then he arrives at vi′ and incurs its search

cost. If the hider is not found, he backtracks to v0 and discards vi′ from

the search list, i.e. the searcher incurs a cost of at most 2ci′ . Otherwise,

the hider is found and the strategy ends. Suppose that the hider is not

found, and let Cn−1 denote the expected cost of the randomized backtrack

strategy from the end of the first iteration, i.e. when the searcher arrives

back at v0 for the first time, until the end of the strategy. The expected

competitive ratio can be bounded from above by

pi∗ +
t∑

j=1j 6=i∗
pj

2cj + Cn−1

ci∗
≤ pi∗ +

n∑
j=1j 6=i∗

pj
2cj + Cn−1

ci∗
.

Note that Cn−1 is at most (n − 1)ci∗ by the induction assumption (for

n = 2, C1 = c1 = ci∗ according to the base case). Hence, the expected
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competitive ratio is bounded from above by

pi∗ +
n∑

j=1j 6=i∗
pj(

2cj
ci∗

+ n− 1).

We claim that the right-hand side is at most n for all i∗ = 1, 2, ..., n, i.e.

(2− n)pi +
n∑

j=1j 6=i

pj
2cj
ci
≤ 1

for all i = 1, 2, ..., n. Since the probability distribution Ωn = (p1, p2, ..., pn)

belongs to the polyhedron Qn, the claim follows by the definition of Qn in

Lemma 5.5.1.

– Case 2. vi∗ is not added to the selection list. In this case the searcher

takes the cheapest path from v0 to vi′ (i
′ ∈ {1, 2, ..., t}) according to the

probability distribution Ωt = (p1, p2, ..., pt). Then he arrives at vi′ and

incurs its search cost. Note that the hider is not found at vi′ since vi∗ is

not added to the selection list. Then, the searcher backtracks to v0 and

discards vi′ from the search list, i.e. the searcher incurs a cost of at most

2ci′ . Hence, an expected cost of less than or equal to 2
∑t

i=1 pici is incurred.

Note that 2
∑t

i=1 pici ≤ 2
∑t

i=1
1
t
ci according to Lemma 5.5.2 since the

nodes v1, v2, ..., vt satisfy the similar costs property by Definition 5.5.1.

Let Cn−1 denote the expected cost of the randomized backtrack strategy

from the end of the first iteration, i.e. when the searcher arrives back at

v0 for the first time, until the end of the strategy. Note that Cn−1 is at

most (n−1)ci∗ by the induction assumption. Thus the expected cost of the

randomized backtrack strategy is at most 2(
∑t

i=1
1
t
ci)+(n−1)ci∗ . Since vi∗

is not in the selection list, it follows that vi∗ does not fulfill the similar costs

property with v1, v2, ..., vt and ct < ci∗ . Thus,
2(
∑t

i=1 ci)+2ci∗

t+1
< ci∗ according

to Definition 5.5.1. We first multiply both sides by t+1 and then eliminate

2ci∗ from both sides to obtain 2
∑t

i=1
1
t
ci < 2

∑t
i=1

1
t−1ci < ci∗ . Therefore,
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the expected cost of the randomized backtrack strategy is at most nci∗ . It

follows that the expected competitive ratio is at most n since the cost of

the offline optimum is ci∗ .

Corollary 5.5.1. The randomized backtrack strategy achieves a better competitive

ratio than the optimal deterministic strategy (backtrack strategy) in the expected sense

for the ODSP when n > 1.

Proof. Note that the optimal deterministic strategy achieves the competitive ratio of

2n−1 and the randomized backtrack strategy achieves the expected competitive ratio

of n. Since n < 2n− 1 for n > 1, the corollary follows.

5.6 Concluding remarks

We studied an online variant of discrete search problems with a static hider that we

call the ODSP from the competitive analysis point of view for the first time. In this

variant, search costs are given on the nodes in addition to travel costs on the edges.

The hider is positioned at a node of the input graph. We provided a tight lower

bound on the competitive ratio of deterministic strategies together with an optimal

deterministic strategy named the backtrack strategy. We also proved a tight lower

bound on the expected competitive ratio of randomized strategies and introduced an

optimal randomized strategy named the randomized backtrack strategy. We showed

that randomized strategies can achieve a better competitive ratio in comparison to

deterministic strategies in the expected sense. As a future research topic, one may

study a version of online discrete search problems in which the traveling costs are

negligible in comparison to the search costs.

Table 5.1 presents a summary of the results of Chapter 5.
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Table 5.1: Summary of the results in Chapter 5

Problem Result Case Network Type Publication Status
ODSP Tight lower bound Deterministic General networks Under review
ODSP Optimal strategy Deterministic General networks Under review
ODSP Tight lower bound Randomized General networks Under review
ODSP Optimal strategy Randomized General networks Under review



Chapter 6

CONCLUSION AND FUTURE RESEARCH

In this chapter, we first summarize the thesis and then briefly discuss some open

problems and possible directions for future research.

6.1 Summary of the thesis

In Chapter 1, we provided an overview of online optimization and methods of an-

alyzing online strategies. We presented definitions of problems that are studied in

this thesis and stated the related literature. Finally, we summarized our results and

contributions.

In Chapter 2, we reconsidered the implementation of the RBS on graphs which

contain n node-disjoint O-D paths for the online k-Canadian Traveler Problem. We

showed that to implement the strategy, a certain property (strong similar costs prop-

erty) regarding the costs of the O-D paths in the input graph must hold. That is we

proved that the RBS is not applicable in some cases when k > 2. We showed that the

RBS is applicable when the cost of the (min{k+1, n})th shortest O-D path is at most

twice of the shortest path in the input graph. Furthermore, we modified the RBS to

obtain an optimal strategy which is applicable on graphs having only node-disjoint

O-D paths.

In the first section of Chapter 3, we analyzed the online multi-agent O-D k-

Canadian Traveler Problem. We provided updated results including the lower bounds

on the competitive ratio of deterministic strategies of the problem for the case where

the communication is limited. We argued that it is vital to consider and utilize

the higher levels of agents’ intelligence in online problems by defining three levels of

agents’ intelligence. We introduced an online strategy in O-D edge-disjoint graphs
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which is optimal in both cases with complete and limited communication when the

travel schedules are shared at the initial stage of the problem. We showed that en-

abling all of the agents to communicate does not improve the competitive ratio in

O-D edge-disjoint graphs. Furthermore, we showed that there are instances with O-D

edge-disjoint graphs in which the competitive ratio of deterministic strategies on P2

improves by increasing the number of R-type agents.

In the second section of Chapter 3, we studied randomized online strategies for the

multi-agent k-CTP. We analyzed the problem in three different cases: 1) without com-

munication, 2) with limited communication, and 3) with complete communication.

We proved lower bounds on the competitive ratio of the randomized online strategies

for these cases. We introduced an optimal randomized strategy for the cases with lim-

ited and complete communication on O-D edge-disjoint graphs which finds real-life

applications. We showed that our optimal randomized strategy S3 achieves a better

expected competitive performance in comparison to the optimal deterministic strat-

egy (M-PLS) that is given in the literature. We also showed that having complete

communication does not improve the competitive ratio of the optimal randomized

strategy on O-D edge-disjoint graphs in comparison to the case when communication

is limited. Additionally, we showed that increasing the number of agents can improve

the competitive ratio of the randomized strategies when there is no communication

between agents.

In the third section of Chapter 3, we derived an improved lower bound on the com-

petitive ratio of deterministic strategies for the multi-agent k-CTP by investigating

graphs in which the O-D paths contain common edges.

In Chapter 4, we proved that our backtrack strategy is optimal for the online

minimum latency problem with edge uncertainty (OMLP) since it achieves the com-

petitive ratio of 2k + 1. That is, we showed that the lower bound of 2k + 1 on the

competitive ratio of deterministic online strategies is tight for the OMLP. We also

proved that no randomized online strategy can achieve an expected competitive ratio

better than k + 1 for the OMLP.
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In Chapter 5, we investigated an online variant of discrete search problems with

a static hider that we call the ODSP from the competitive analysis point of view for

the first time. In this variant, search costs are given on the nodes in addition to travel

costs on the edges. The hider is positioned at a node of the input graph. We provided

a tight lower bound on the competitive ratio of deterministic strategies together with

an optimal deterministic strategy named the backtrack strategy. We also proved a

tight lower bound on the expected competitive ratio of randomized strategies and

introduced an optimal randomized strategy named the randomized backtrack strat-

egy. We showed that randomized strategies can achieve a better competitive ratio in

comparison to deterministic strategies in the expected sense.

6.2 Implications of the study

Our results including optimal policies and characterization of the worst-case scenarios

can be used in real-life applications in the areas of disaster response, search-and-

rescue, security, and defense. The policies specify precise actions for the decision

makers and the worst-case scenarios are useful to identify how an adversary would

behave to cause the most challenge so that knowing this, the decision makers can take

the necessary preventive actions under such a scenario.

We use intuitive heuristic ideas to derive our optimal deterministic strategies. Our

policies can be utilized in order to devise solution strategies for network optimization

problems with similar type of online uncertainty which are effective in the worst-

case. We also use a common framework to design our randomized strategies by

applying a specific probability distribution. Our framework can be helpful to obtain

efficient randomized strategies with respect to the worst-case for network optimization

problems having similar type of online uncertainty.

The limitation of our study is that our findings are based on worst-case analyses.

However, our results can be considered as a first step for future results including

policies which are effective on the average over a set of scenarios.
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6.3 Future research directions

The following are several directions in which the research in this thesis can be ex-

tended.

• We note that the problem of designing an optimal randomized online strategy

for the online k-CTP for the general case is an open research problem.

• We note that the problem of designing an optimal deterministic online strategy

for the multi-agent k-CTP is an open research problem.

• We note that the problem of designing a randomized online strategy in the case

without communication that meets the lower bound of the problem on O-D

edge-disjoint graphs for the multi-agent k-CTP is an open research problem.

• As a future research topic, one may study a version of online discrete search

problems in which the traveling costs are negligible in comparison to the search

costs.
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