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ABSTRACT

In this thesis, we study online optimization problems that are related to navigation
and search on networks. In online problems information is revealed incrementally, and
decisions must be made before all information is available. We design and analyze
strategies for several online problems with applications in disaster response, search-
and-rescue, security, and defense. We prove worst-case competitive ratios to analyze
the performance of the proposed strategies. We first study the online k-Canadian
Traveler Problem (k-CTP) on O-D edge-disjoint graphs. An optimal randomized
strategy was given in the literature. We prove that the given strategy cannot be im-
plemented in some cases and modify it such that it is optimal and can be implemented
in all cases. We consider the online multi-agent k-CTP. We derive improved lower
bounds on the competitive ratio of deterministic strategies for the cases with limited
and complete communication. We introduce two deterministic strategies and show
that one of them is optimal in both cases with complete and limited communication
on O-D edge-disjoint graphs. We provide lower bounds on the competitive ratio of
randomized strategies for the cases without communication, with limited communica-
tion and with complete communication. We introduce a randomized online strategy
which is optimal for both cases with limited and complete communication on O-D
edge-disjoint graphs. We also consider the online Minimum Latency Problem with
edge uncertainty. We present an optimal deterministic strategy. Moreover, we present
a lower bound on the expected competitive ratio of randomized strategies. Finally,
we investigate the online Discrete Search Problem with traveling and search costs
on undirected graphs. We propose tight competitiveness lower bounds together with

optimal deterministic and randomized strategies.

v



OZETCE

Bu tezde, ag yapilari iistiinde navigasyon ve arama ile ilgili ¢esitli ¢evrimici eniy-
ileme problemleri iizerinde ¢alisilmigtir. Cevrimici problemlerde bilgiler adim adim
aciklanir ve tiim bilgiler mevcut olmadan once kararlar alinmalidir. Tez kapsaminda,
afete miidahale, arama kurtarma, giivenlik ve savunma alanlarinda uygulamalar: olan
birka¢ cevrimigi eniyileme problemi igin eniyi stratejiler tasarlanip bunlarin perfor-
manslar1 teorik olarak analiz edilmistir. Onerilen stratejilerin performanslarini analiz
etmek i¢in en ko6tii durumda, bilginin bagtan elde oldugu (gevrimdigi) durumdaki en
iyi coziime gore, rekabetci oranlar belirlenmistir. Ilk olarak, cevrimici k-Kanadali
Gezgin Problemi (k-KGP), ayritlar1 kesismeyen yollara sahip ¢izgeler {izerinde ince-
lenmigtir. Daha once literatiirde bu problem i¢gin bir eniyi rassal strateji verilmistir.
Bu ¢aligmada, bazi durumlarda bu stratejinin uygulanamaz oldugu gosterilerek, strateji
her durumda uygulanabilir ve eniyi olacak sekilde degistirilmistir. Daha sonra ¢evrimici
¢ok katilimcili k-KGP ele alinmigtir. Bu problemin sinirli ve sinirsiz iletisimin oldugu
iki durumuna bakilarak, literatiirde verilen, deterministik stratejilerin rekabet¢i oranina
alt smirt iyilestirilmigtir. Aymi iki durum, ayritlari kesismeyen yollara sahip cizgeler
iizerinde incelenerek, iki deterministik strateji geligtirilmistir. Bunlardan bir tanesinin
eniyi oldugu ispatlanmigtir.

Problemin iletigimin olmadigi, siirli ve sinirsiz iletigimin oldugu ti¢ durumuna
bakilarak, rassal stratejilerin rekabetci oranina alt sinirlar gelistirilmigtir. Ayrica
iletigimli durumlar icin rassal bir strateji gelistirilerek, bunun ayritlar1 kesismeyen
yollara sahip cizgeler iizerinde eniyi oldugu ispatlanmigtir. Ayrit belirsizligi olan
gevrimici Minimum Gecikme Problemi de ele alinan bir bagka problemdir. Bu prob-
lem ic¢in bir eniyi deterministik strateji geligtirilmistir. Ayrica, rassal stratejilerin

beklenen rekabetci oranina bir alt simir bulunmustur. Son olarak, ¢evrimici Ayrik



Arama Problemi, yonlendirilmemis ¢izgelerdeki seyahat ve arama maliyetleriyle ince-

lenmigtir. Eniyi deterministik ve rassal stratejiler bulunmustur.
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Chapter 1

INTRODUCTION

Conventionally, optimization techniques within the area of Operations Research
have mainly focused on deterministic planning for various problems. However, deter-
ministic planning may lead to poor solutions when actuality differs from expectation.
For example, deterministic routing plans may lead to infeasible solutions after a natu-
ral disaster due to unexpected failure of road network links. Furthermore, information
about real-world problems is rarely completely known a priori. For instance, travel
times associated with road network links are generally revealed over time in an online
manner without advance knowledge. Waiting for all necessary information is costly,
if not impossible, for many applications. Hence, for such problems, it is essential to

develop approaches that make decisions online, as information is revealed.

Online optimization is a field of optimization theory which finds place in Op-
erations Research, Computer Science and Economics. It deals with optimization
problems with incomplete information on their inputs. Problems in which incomplete
information is revealed online while a solution strategy is implemented are called

online problems. Solution strategies for online problems are called online strategies.

This thesis focuses on designing and analyzing online strategies for various online
optimization problems within the field of Network Optimization, namely the online
k-Canadian Traveler Problem, the online multi-agent k-Canadian Traveler Problem,
the online Minimum Latency Problem with edge uncertainty, and the online Discrete

Search Problem on undirected graphs.
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1.1 Online and offline strategies

A solution strategy to an online problem is called an online strategy. Online strategies
process their inputs piece-by-piece, without having the entire input available from
the beginning. Online strategies are divided into two categories as deterministic and
randomized. In a deterministic online strategy, actions of the decision maker do not
depend on probabilistic outcomes. That is, given a particular input, a deterministic
online strategy will always produce the same output. In a randomized strategy,
actions of the decision maker are taken according to some probability distribution in
the sense that given a particular input, a randomized online strategy may produce
different outputs.

The key concept in analyzing an online strategy is to compare a solution produced
by the online strategy with the best possible solution under complete information,
which is called the offline optimum solution. An offline strategy is to solve the same
problem as an online strategy, except that all information about the problem inputs
is revealed to an offline strategy from the beginning. An optimal offline strategy is
the optimal strategy in presence of complete input information which produces the

offline optimum solution.

1.2 Competitive analysis

The traditional approach for analyzing online strategies falls within the framework of
distributional (or average-case) complexity, whereby one hypothesizes a distribution
on input and studies the expected total cost. During the past decades the interest
in this subject has been renewed largely as a result of the approach of competitive
analysis, where the quality of an online strategy is measured by comparing its perfor-
mance to that of an optimal offline strategy. Hence, competitive analysis falls within
the framework of the worst-case complexity.

We note the reader that a more general study of online strategies is a much more

ambitious topic, and competitive analysis is only one aspect of decision making in
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the absence of complete input information. Any conceptual model has limitations
as well as benefits. The disadvantage of the traditional distributional complexity is
that the prior distribution is rarely known precisely and often the distributional as-
sumptions are unrealistically crude to allow for mathematical tractability. On the
other hand, competitive analysis has the disadvantage of being too pessimistic, as-
suming a malicious adversary that chooses the worst input by which to measure a
strategy’s performance. (This is the limitation in any worst-case analysis). We should
not expect competitive analysis to be uniformly worthwhile over all possible applica-
tion areas. However, it is becoming apparent that in some application areas such as
network routing it has practical relevance [21]. The focus of this thesis is on compet-
itive analysis of online strategies for various online optimization problems defined on

networks.

1.2.1 Notion of the competitive ratio for deterministic strategies

For minimization problems, a deterministic online strategy is called c-competitive
(¢ > 1), if ¢ is the smallest number such that for any instance of the problem, the
cost of the solution given by the deterministic online strategy is at most ¢ times the

cost of an optimal offline solution for the instance:
Costontine(I) < c(Costoffiine(I)), V instances I.

Equivalently, the competitive ratio equals to

¢ = sup L O8tontine(D)
1 Costoffiine(1)
A deterministic online strategy is said to be optimal if no other deterministic strategy
has a strictly smaller competitive ratio [21].

Similarly, for maximization problems, a deterministic online strategy is called c-
competitive (¢ < 1), if ¢ is the largest number such that for any instance of the

problem, the cost of the solution given by the deterministic online strategy is at least
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¢ times the cost of an optimal offline solution for the instance:
Costontine(l) > c(Costoffiine(1)), V instances I.

Equivalently, the competitive ratio is equal to

. COStonline([>
C = lnf —_—————
I COStoffline<])

A deterministic online strategy is said to be optimal if no other deterministic strategy

has a strictly larger competitive ratio.

1.2.2  Notion of the expected competitive ratio for randomized strategies

For minimization problems, a randomized online strategy is called c-competitive (¢ >
1), if ¢ is the smallest number such that for any instance of the problem, the expected
cost of the solution given by the randomized online strategy is at most ¢ times the

cost of an optimal offline solution for the instance:
E[Costpiine(I)] < c(Costoffine(I)), YV instances I.

Equivalently, the expected competitive ratio equals to

E[Costoniine(1)]
¢ = sup .
1 COStoffline(])

A randomized online strategy is said to be optimal if no other randomized strategy
has a strictly smaller expected competitive ratio.

Similarly, for maximization problems, a randomized online strategy is called c-
competitive (¢ < 1), if ¢ is the largest number such that for any instance of the
problem, the expected cost of the solution given by the randomized online strategy is

at least ¢ times the cost of an optimal offline solution for the instance:

E[Costoniine(I)] > c(Costoffine(I)), ¥ instances I.
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Equivalently, the expected competitive ratio is equal to

¢ —inf E[OOStonline(I)] .
I COStoffline(-Z)

A randomized online strategy is said to be optimal if no other randomized strategy

has a strictly larger competitive ratio.

1.3 Problem definitions

In this thesis we address four different online problems, as defined in the following.

1.3.1 Online k-Canadian Traveler Problem

The online Canadian Traveler Problem (CTP) is a navigation problem under incom-
plete information. A traveling agent receives an undirected graph G = (V, F) with a
given source node O and a destination node D, together with non-negative edge costs
as input. The agent is located at O initially. There are some blocked edges in the
graph, but these edges are not known to the agent. The agent discovers the status
of an edge when he reaches an end-node of the edge. The objective is to provide an
online strategy such that the agent finds a feasible path, i.e. one without blocked
edges from O to D with minimum total cost of the edges taken by the agent. When
an upper bound k (k > 1) on the number of blocked edges is given as input, the
problem is called the k-CTP.

1.8.2  Online multi-agent k-Canadian Traveler Problem

The multi-agent k-CTP is an online optimization problem that generalizes the k-CTP
by the existence of multiple agents. In the multi-agent k-CTP, there are L agents in
the graph who are initially located at O. The objective of the agents is to provide
an online strategy such that at least one of them finds a feasible path, from O to D
with minimum total cost of the edges taken by the agent that finds a feasible path

first. Two versions of the multi-agent k-CTP have been introduced in the literature,
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with complete and limited communication. When the communication is limited, some
agents can both send and receive information and some of the agents can only receive
information. The agents who are able to both send and receive information are called
RS-type agents and the agents who are only able to receive information are called
R-type agents. In presence of complete communication, all of the agents can send

and receive information, i.e. all of the agents are RS-type.

1.3.3  Online minimum latency problem with edge uncertainty

In the Minimum Latency Problem (MLP), an undirected simple connected graph
G = (V,E) is given to an agent, where V = {vg,v1,v9,...,0,} and vg € V is a
root node. Non-negative edge distances are also given. The agent should start from
vg and complete a tour visiting all the nodes. The latency of v; is denoted by I,
which represents the distance traveled before first visiting v;. Naturally, [y is zero.
The objective of the agent is to find a tour on G, starting from vy, that minimizes
Y (7). In the online Minimum Latency Problem with edge uncertainty (OMLP), k
edges of G are blocked, and the agent learns that an edge e € E is blocked, only if she
reaches at one of the end-nodes of e. It is assumed that the graph remains connected
if the blocked edges are removed from it. The objective of the problem is to provide

an online strategy such that the agent finds a feasible tour, i.e. one without blocked

edges, starting from vy which minimizes > 1(4).

1.8.4  Online discrete search problem with traveling and search costs on undirected

graphs

In the online Discrete Search Problem on undirected graphs (ODSP), an undirected
connected graph G = (V, E) is given, where V' = {vg, v1, s, ..., U, }, each node v; (i €
{1,2,...,n}) of the graph is associated with a given non-negative search cost s;. A
non-negative edge cost d. is also given for each edge e € F. A static hider is at one of
the nodes v;« (i* € {1,2,...,n}) which is not known to the searcher. The hider is not

found unless the searcher arrives at v;« and incurs the search cost of v;«. Starting from
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Vg, the searcher wants to devise an online strategy to locate the hider with minimum

total cost.

1.4 Literature review

In this section, we review related literature on the problems defined in the previous

section.

1.4.1  Online optimization and competitive analysis

Online strategies have been implicitly and explicitly studied in the context of schedul-
ing, optimization, data structures, and other computational topics. The roots of com-
petitive analysis can be found in classical combinatorial optimization theory and in
the analysis of data structures [21]. The first systematic study of online strategies is
presented by Sleator and Tarjan [55], who suggest comparing an online strategy with
an optimal offline strategy. This type of analysis was later called competitive analysis
in [36]. For more details and information on online optimization and competitive
analysis, see the survey paper of Albers [3] and the books of Borodin and El-Yaniv
[21], Fiat and Woeginger [29], and Komm [38].

1.4.2  Online k-Canadian Traveler Problem

The CTP is defined first in [48]. Papadimitriou and Yannakakis [48] proved that
devising an online strategy with a bounded competitive ratio is PSPACE-complete
for the CTP.

Bar-Noy and Schieber [14] considered several variations of the CTP. They intro-
duced the k-CTP, where an upper bound £ on the number of blocked edges is given as
input. They showed that for arbitrary k, the problem of designing an online strategy
that guarantees the minimum travel cost is PSPACE-complete. They also considered
the Recoverable k-CTP, in which each blocked edge is associated with a recovery cost

to re-open. They considered the worst-case criterion for the Recoverable k-CTP and
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provided a strategy with minimum worst-case cost under the assumption that the

recovery costs of the edges is less than or equal to their original costs.

Nikolova and Karger [46] studied a stochastic version of the CTP, where the edges
in the input graph have uncertain costs which are associated with known probability
distributions. The objective of the problem is to find an optimal policy that minimizes
total expected cost. They applied a mix of techniques from algorithm analysis and the
theory of Markov Decision Processes to provide efficient exact strategies for directed
acyclic graphs and undirected node-disjoint O-D paths. Fried et al. [31] showed that
the stochastic CTP is PSPACE-complete. They initially proved PSPACE-hardness
for the dependent version of the stochastic CTP, and extended their proof to the inde-
pendent case. They also examined the complexity of the more general remote-sensing
CTP, and showed that it is NP-hard even for disjoint-path graphs. Aksakalli et al. [2]
investigated the stochastic CTP. They introduced an optimal strategy for the prob-
lem based on a Markov decision process formulation, which is a new improvement
on AO* search that takes advantage of the special problem structure in CTP. Sahin
and Aksakalli [49] studied the stochastic CTP, where the agent is given prior block-
age probabilities associated with each edge, and the objective is to devise a strategy
that minimizes the expected traversal cost between two given nodes. They compared
penalty-based and rollout-based algorithmic frameworks via computational experi-
ments involving Delaunay and grid graphs using one specific penalty-based strategy
and four rollout-based strategies. Their results indicated that the penalty-based strat-
egy executes several orders of magnitude faster than rollout-based ones while also

providing better policies.

Westphal [64] considered the k-CTP from the competitive ratio perspective. By
analyzing an instance of graphs that consist of only node-disjoint O-D paths, he
showed the lower bounds of 2k + 1 and £+ 1 on the competitive ratio of deterministic
and randomized strategies, respectively. He also presented an optimal deterministic
strategy which is called the backtrack strategy and showed that its competitive ratio
matches the lower bound of 2k + 1. Xu et al. [66] also considered the k-CTP and
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presented two online strategies, the greedy and the comparison strategy and proved

21 1 and 2k + 1, respectively for these strategies.

the competitive ratios of

Su and Xu [58] studied online strategies for the recoverable k-CTP. They presented
the waiting strategy and the greedy strategy. They proved tight competitive ratios of
1+a and (1+ a*), respectively for the two strategies, where o denotes the maximum
ratio of recovery time to normal travel time among all edges in the graph. Su et al. [59]
presented an optimal online strategy, i.e. a comparison strategy for recoverable k-CTP
and proved its competitive ratio in special graph. Liao and Huang [42] considered a
generalization of the k-CTP, where each edge of the input graph is associated with
two different travel costs. They considered graphs with only node-disjoint O-D paths
to derive lower bounds on the competitive ratio of deterministic and randomized
strategies for this problem. They also proved that their proposed lower bound on the
competitive ratio of deterministic strategies is tight by introducing a deterministic
strategy whose competitive ratio meets their proposed lower bound.

Bender and Westphal [4] presented a randomized online strategy for the k-CTP
which meets the lower bound of k + 1 in special cases. This randomized strategy can
be regarded as the randomized version of the backtrack strategy. Demaine et al. [27]
suggested a randomized online strategy for the k-CTP which achieves the competitive

ratio of (1 + ‘/TQ)k; + 1 in pseudo-polynomial time.

Related problems to the CTP

There are some recent works on similar online problems in the literature. Liao and
Huang [41], investigated a variation of the Traveling Salesman Problem that involves
finding a shortest tour, under the same uncertainty as that of the CTP. They called
this online routing problem as Covering Canadian Traveler Problem (CCTP). They
studied the problem from the competitive analysis perspective and presented an effi-
cient touring strategy within an ov/k - competitive ratio, where the number of block-
ages is at most k. They also demonstrated the tightness of their competitive analysis.

Zhang et al. [71] considered the online Steiner Traveling Salesman Problem
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(sTSP), in which the traveler needs to visit multiple destination vertices. The objec-
tive of their problem is to find a minimum weight tour that traverses every destination
vertex at least once. As in the k-CTP, the traveler could encounter at most k blocked
edges. They provided a lower bound on the competitive ratio and presented an opti-
mal strategy for the problem. While the optimal strategy does not have polynomial
running time, they presented another online polynomial time near-optimal strategy
for the problem. Zhang et al. [72] formulated the sTSP with online advanced edge
blockages to address an application in package delivery, where the driver (salesman)
receives road blockage messages when he is at a certain distance to the respective
blocked edges. Such road blockages are referred to as advanced information. With
these online advanced road blockages, the driver wishes to deliver all the packages to
their respective customers and returns back to the service depot through a shortest
route. During the entire delivery process, there will be at most k road blockages, and
they are non-recoverable. Zhang et al. [72] proved lower bounds on the competitive
ratio of deterministic strategies for this problem. They present a polynomial time on-
line strategy with a competitive ratio very close to this lower bound. Similar results
for a variation, in which the driver does not need to return to the service depot, are

also provided.

Buttner and Krumke [24] studied the Canadian Tour Operator Problem (CTOP)
which is an online variant of Prize-collecting Traveling Salesman Problem with online
blocked edges related to graph exploration. The goal consists of minimizing the sum
of the travel costs and the refunds. They analyzed the problem on a simple (weighted)
path and prove tight bounds on the competitiveness of deterministic strategies. They
also considered the effect of resource augmentation, where the online strategy either
pays a discounted cost for traversing edges or for the penalties. Zhang and Xu [73]
proposed the online Covering Salesman Problem (CSP) in which the salesman will
encounter at most k blocked edges during the traversal. They suggested a lower bound
on the competitive ratio of deterministic strategies and introduced a deterministic

strategy which is near-optimal in a special case.
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1.4.8  Online multi-agent k-Canadian Traveler Problem

The k-CTP with multiple agents is first considered by Zhang et al. [74]. They
analyzed the problem in two scenarios, with complete and limited communication.
They proposed lower bounds of 2LkL—_11J +1 and 2[ %] + 1 on the competitive ratio of
the deterministic strategies for the cases with limited and complete communication,
respectively. Note that in the proposed lower bounds L denotes the total number of
agents and L; denotes the number of RS-type agents. They also proposed an optimal
deterministic strategy when there are two agents in the graph.

Xu and Zhang [67] focused on a real-time rescue routing problem from a source
node to an emergency spot in presence of online blocked edges. They analyzed the
problem with the objective to make all the rescuers arrive at the emergency spot
with minimum total cost. They studied the problem in two scenarios: (1) without
communication and (2) with complete communication. They investigated both of
the scenarios on the grid networks and general networks, respectively. They showed
that the consideration of both the grid network and the rescuers’ communication can
significantly improve the rescue efficiency. Bnaya et al. [20] considered a stochastic
version of the CTP, where some of the edges are blocked with a known probability.
They generalized CTP to a repeated task version where a number of agents need
to travel to the same goal, minimizing their combined expected travel cost. They

provided optimal strategies for the special case of disjoint path graphs.

1.4.4  Online minimum latency problem with edge uncertainty

The MLP is a well-studied problem in combinatorial optimization. This problem
is also known as the deliveryman problem [1] or the traveling repairman problem
[30]. The MLP is an NP-hard problem [50] and it is APX-hard, implying the non-
existence of a polynomial-time approximation scheme (PTAS) unless P=NP [54].
Several exact algorithms have been proposed for the MLP (see [44], [65], [45], [7] and
[6]). Approximation algorithms for the MLP have been extensively investigated (see

[19], [32], [9] and [25]), and the best approximation ratio achieved to date is 3.59
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which is presented in [25].

The OMLP has been recently studied in [70], where a lower bound of 2k + 1 on
the competitive ratio of deterministic strategies is provided. Two heuristic online
strategies are also suggested in [70] which are called the GoodTree Traversal strategy
and the Detour strategy. The GoodTreeTraversal strategy produces near optimal
solutions when the number of blockages is large enough. The Detour strategy has no

theoretical guarantee on its performance and runs in polynomial time.

Related problems to the OMLP

The MLP is closely related to the well-known Traveling Salesman Problem (TSP), of
which the input is the same but the objective is to minimize the total length of the tour
visiting all nodes. In the online traveling salesman problem requests for visits to cities
(points in a metric space) arrive online while the salesman is traveling. The salesman
moves at no more than unit speed and starts and ends his work at a designated origin.
The objective is to find a routing for the salesman which finishes as early as possible.
Ausiello et al. [13] studied the problem of efficiently serving a sequence of requests
presented in an online fashion located at points of a metric space. They considered
two versions of the problem. In the first one the server is not required to return
to the departure point after all presented requests have been served. In the second
one returning to the departure point is required. They provided competitiveness
lower bounds and efficient deterministic online strategies for these cases. Blom et al.
[18] considered the online TSP when restricted to the non-negative part of the real
line. They showed that a very natural strategy is %—competitive which matches their
suggested lower bound. The main contribution of their paper is the presentation of
a fair adversary, as an alternative to the omnipotent adversary used in competitive
analysis for online routing problems. They presented an efficient deterministic online
strategy against a fair adversary.

Ausiello et al. [12] investigated an online variant of the Quota TSP which is a

generalization of the TSP. In the Quota TSP, the objective is to reach a given quota
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of sales minimizing the amount of time. Ausiello et al. [12] addressed the online
version of the problem, where requests are given over time. They presented strategies
for various metric spaces, and analyze their performance in the usual framework
of competitive analysis. Auseillo et al. [10] considered two online versions of the
asymmetric traveling salesman problem with triangle inequality. For the homing
version, in which the salesman is required to return in the city where it started
from, they presented a tight lower bound on the competitive ratio of deterministic
strategies together with an optimal deterministic online strategy. For the nomadic
version, the online analogue of the shortest asymmetric Hamiltonian path problem,
they showed that the competitive ratio of any online strategy depends on the amount
of asymmetry of the space in which the salesman moves. Ausiello et al. [11] studied
the online version of the Prize-Collecting TSP, a generalization of the TSP, where each
city (node) has a given weight and penalty, and the goal is to collect a given quota of
the weights of the cities while minimizing the length of the tour plus the penalties of
the cities not in the tour. In the online version, cities are disclosed over time. They
derived a lower bound of 2 on the competitive ratio of deterministic strategies and

introduced a %—competitive deterministic online strategy.

Jaillet and Lu [33] analyzed the online TSP with service flexibility. They assumed
that there is a penalty for not serving a request. Requests for visit of points in
the metric space are revealed over time to a server, initially at a given origin, who
must decide in an online fashion which requests to serve to minimize the time to
serve all accepted requests plus the sum of the penalties associated with the rejected
requests. They investigated the problem on non-negative real line, real line, and
general metric space and proposed optimal deterministic online strategies for special
cases. Jaillet and Lu [34] considered online versions of the TSP on metric spaces for
which requests to visit points are not mandatory. Associated with each request is
a penalty (if rejected). Requests are revealed over time (at their release dates) to a
server who must decide which requests to accept and serve in order to minimize a

linear combination of the time to serve all accepted requests and the total penalties
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of all rejected requests. In the basic online version of the problem, a request can be
accepted any time after its release date. In the real-time online version, a request must
be accepted or rejected at the time of its release date. They also provided optimal
deterministic online strategies for both of the versions on general metric space. For
the real-time version, they also introduced an optimal deterministic online strategy
for the special case of non-negative real line.

Wen et al. [62] modelled the customers waiting psychology and service preparation
time into the online TSP with the objective to serve as many requests as possible. In
their paper, each request has a disclosure time before accepting service at its release
time, and a deadline, which is no bigger than its release time plus the travel time
from origin to its position. They presented lower bounds for the competitive ratios,
online strategies, and quantify the influence of advanced information on competitive
ratios. Wen et al. [63] analyzed a version of the online TSP with deadlines and service
flexibility, where the salesman can choose whether to serve or not when a new request
arrives. By rejecting the request or missing its deadline, penalties will be generated.
The goal is to minimize servers costs (travel makespan plus the penalties of missed
requests). They showed that no deterministic or randomized online strategies can

achieve constant competitive ratio for the problem on general metric space.

1.4.5 Online discrete search problem with traveling and search costs on undirected

graphs

Work on search theory began in the U.S. Navy’s Antisubmarine Warfare Operations
Research Group (WORG) in 1942 in response to the German submarine threat in the
Atlantic [57]. Bernard Koopman joined WORG in 1943 and was the first person to
provide the basic probabilistic foundation for search problems. Koopman [39] stud-
ied the optimal allocation of a fixed amount of search effort to detect a static hider.
He defined the elements of the basic problem of optimal search: a prior distribution
on hider location, a function relating search effort and detection probability, a con-

strained amount of search effort, and the optimization criterion of maximizing the
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probability of detection subject to a constraint on the amount of effort. This problem
is now called the Optimal Search Problem (OSP). Significant progress was made on
the OSP with a static hider between 1946 and 1965, which is summarized in [56].
An excellent review on the theoretical achievements on search theory related to both

versions with static and moving hider is presented in [57].

Search problems on graphs

Search problems on graphs were introduced by Rufus Isaacs in the final chapter of his
classic 1965 book, Differential Games [4]. An extensive amount of research has been
conducted on search problems in which a static hider selects a point on a given graph,
and a moving searcher targets to find her as quickly as possible by traversing the edges
of the graph. The searcher starts from a point of the graph which is either decided by
the searcher or fixed a priori. The literature on this type of search problems (those
defined on graphs) is divided into two main streams. The first stream assumes that
the hider is permitted to position herself at any point of the graph, and the searcher
locates the hider when he arrives at the point in which the hider is positioned, i.e.
the first stream corresponds to continuous search problems. For problems belonging
to the first stream, see [4], [8], [26] and [35].

The second stream assumes that the hider hides at a node of the graph and before
the hider can be found, the searcher conducts a search at the node in which the hider
is positioned, i.e. the second stream corresponds to discrete search problems. In this
case, operating a search at a node incurs a cost to the searcher, which can vary from
node to node. Hence, the searcher not only bears traveling costs but also search costs.
When the searcher reaches a node, he does not have to search it but can pass through
it and return at a later time to conduct a search, if he has not found the hider in
the meantime. There are two decision rules to tackle search problems of the second
stream in the literature: 1) Bayes, in which the searcher minimizes the expected cost
with respect to a prior distribution, and 2) minimaz, in which the problem is modeled

as a zero-sum game between the searcher and the hider. In the Bayes approach, the
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probability of overlooking the hider in case the searcher probes the same node in
which the hider is positioned is also taken into account.

Loessner and Wegener [43] studied a version of search problems of the second
stream where the starting node is decided by the searcher from Bayes perspective.
They obtained necessary and sufficient conditions for the existence of optimal strate-
gies. Wegener [61] analyzed the complexity of the same problem as the one considered
in [43] and proved that the problem is NP-hard. Kikuta [37] studied a version of the
search problems belonging to the second stream on finite cyclic graphs from the min-
imax point of view, where the starting node of the searcher is given. He modeled
the problem as a two-person zero-sum game and solved it for a special case. He also
proposed properties of optimal strategies for both the searcher and the hider. Baston
and Kikuta [15] investigated a version of search problems of the second stream from
the minimax perspective, where the starting node is decided by the searcher. They
modeled the problem as a two-person zero-sum game and provided an upper bound
for the value of the game. In addition, they proved a lower bound on the value of the
game when the edge costs are uniform. Baston and Kikuta [15] also provided results
on star and line graphs. In another article, Baston and Kikuta [16] analyzed a version
of search problems of the second stream from the minimax perspective on directed,
not necessarily strongly connected, graphs, where the starting node is decided by the
searcher. For more on search theory and related problems, the reader is referred to
[5], where zero-sum search games between the searcher and the hider under different

scenarios are considered.

1.5 Thesis contributions

Below we summarize our contributions chapter by chapter.

1.5.1  Chapter 2 (Online k-Canadian Traveler Problem)

In this chapter, we reconsider the randomized online strategy that is presented for

the k-CTP on graphs where all O-D paths are node-disjoint in [4]. This strategy can
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be regarded as the randomized version of the backtrack strategy according to Bender

and Westphal. Hence we call it the randomized backtrack strategy (RBS).

We show that a particular property regarding the costs of the O-D paths must
hold to implement the RBS. We formally specify this property. Next we show that
this property does not necessarily hold when the costs of the O-D paths in the input
graph are arbitrary and k£ > 2. That is we prove that the RBS is not applicable on
graphs that consist of only node-disjoint O-D paths, where the costs of the O-D paths
are arbitrary and £ > 2. Moreover, we modify the RBS and introduce an optimal
strategy which is applicable on graphs where all O-D paths are node-disjoint and the
costs of the O-D paths are arbitrary.

These results have been published in [53].

1.5.2  Chapter 3 (Online multi-agent k-Canadian Traveler Problem)
Analysis of deterministic online strategies

In the first section of Chapter 3, we study deterministic online strategies for the online
multi-agent k-CTP. We focus on the case where communication among the agents is
limited. We define three levels of agents’ intelligence. We introduce two simple
deterministic online strategies and use them when the agents benefit from higher levels
of intelligence. By this way, we provide updated lower bound on the competitive ratio
of deterministic online strategies for the case with limited communication on general
graphs. We also show that one of our strategies is optimal in both cases with complete
and limited communication in the special case of edge-disjoint graphs. Note that in
edge-disjoint graphs, there exists no path with common edges with any other path.
We need to mention that analyzing edge-disjoint graphs is a standard restriction in
the context of k-CTP and its variants. Finally, we argue that increasing the number
of R-type agents can improve the competitive ratio of deterministic strategies for
the online multi-agent k-CTP with limited communication. These results have been

published in [51].
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Analysis of randomized online strategies

In the second section of Chapter 3, we focus on randomized online strategies for the
multi-agent k-CTP. We analyze the problem in three cases: 1) without communi-
cation, 2) with limited communication and 3) with complete communication. We
derive lower bounds on the competitive ratio of the randomized strategies for all of
these cases. For the case without communication, we introduce a simple randomized
strategy and prove its competitive ratio on a special case. By this way, we prove that
increasing the number of agents can improve the competitive ratio of the randomized

strategies for the multi-agent k-CTP.

For the cases with limited and complete communication, we introduce an optimal
randomized strategy for both cases on O-D edge-disjoint graphs. Here we note that
most optimal strategies in the literature are confined to O-D edge-disjoint graphs.
Because our optimal strategy achieves a better expected competitive ratio in compar-
ison to the optimal deterministic strategy on O-D edge-disjoint graphs, we conclude
that randomization can improve the expected competitive performance of the online
strategies for the k-CTP in presence of multiple agents and communication. We also
prove that the competitive ratio of the optimal randomized strategy does not im-
prove on O-D edge disjoint graphs, when the case with complete communication is

compared to the case with limited communication.

These results have been published in [52].

Analysis of online strategies on graphs having common edges on the O-D

paths

In the third section of Chapter 3, we provide an improved lower bound on the com-
petitive ratio of deterministic strategies by analyzing graphs in which the O-D paths
have common edges. By this way we show that no deterministic strategy achieves the

lower bound of 2| £] + 1 given in [74].
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1.5.3  Chapter 4 (Online minimum latency problem with edge uncertainty)

A lower bound of 2k + 1 has been derived for the competitive ratio of deterministic
online strategies for OMLP in [70]. However, a deterministic online strategy which
meets the lower bound of 2k + 1 is not provided. In this chapter, we prove that the
lower bound of 2k + 1 is tight by introducing an optimal deterministic online strategy
whose competitive ratio matches the lower bound. Furthermore, we prove that no

randomized online strategy can achieve an expected competitive ratio better than

k + 1 for OMLP.

1.5.4  Chapter 5 (Online discrete search problem with traveling and search costs on

undirected graphs)

Several past studies have conducted competitive analysis on the variants of online
continuous search problems which are defined on graphs, see [8], [26] and [35]. How-
ever, to the best of our knowledge, online discrete search problems have not been
studied from the competitive analysis point of view. In this chapter, we investigate
an online discrete search problem which we call the ODSP from the competitive anal-
ysis perspective for the first time. The ODSP finds applications in diverse areas such
as security, defense, and search-and-rescue. We provide policies that are optimal with
respect to the worst-case scenarios for such applications. We derive a tight lower
bound on the competitive ratio of deterministic strategies and propose an optimal
deterministic strategy. We also provide a tight lower bound on the expected compet-
itive ratio of randomized strategies and prove its tightness by introducing an optimal
randomized strategy. In this way, we show that randomized strategies can achieve a
better competitive ratio in comparison to deterministic strategies for the ODSP in

the expected sense.
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1.6 Significance of the study

In this thesis, we investigate several online optimization problems in which some part
of input is incomplete and information is revealed incrementally while implementing a
solution strategy. In situations when complete information is not a priori available but
becomes gradually available while making decisions according to the actions taken,
online optimization approach addresses the underlying problems better, in comparison
to optimization approaches where complete input information is assumed. For these
problems, it is essential to develop strategies that make effective decisions online, as
information is revealed.

The objective of this thesis is to design and analyze online solution strategies for
a selection of online optimization problems within the field of Network Optimization.
We study four online optimization problems which are defined in the context of navi-
gation and search on networks; namely, the online k-Canadian Traveler Problem, the
online multi-agent k-Canadian Traveler Problem, the online Minimum Latency Prob-
lem with edge uncertainty, and the online Discrete Search Problem with traveling and
search costs on undirected graphs. These problems find applications in various areas
such as disaster response, search-and-rescue, security, and defense. In such application
areas, for instance, in a relief operation during disaster response (which can be re-
garded as an application of all of the aforementioned problems), the first responder(s)
would start the operation without waiting for complete information to save from time.
In such operations, having solution strategies with a good worst-case performance is
vital since human life is at stake. This necessity motivates us to investigate the afore-
mentioned problems from the competitive analysis perspective, which is a standard
worst-case measure in comparison to the offline optimum, over all possible instances
of the problem, to evaluate the performance of online solution strategies. We ob-
tain novel results including proven optimal policies and characterization of worst-case
scenarios. The policies guide the decision makers and the worst-case scenarios are
useful to identify how an adversary would behave so that necessary precautions can

be taken.
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ONLINE K-CANADIAN TRAVELER PROBLEM

2.1 Introduction

The online Canadian Traveler Problem (CTP) is a navigation problem under incom-
plete information. A traveling agent receives an undirected graph G = (V| F) with a
given source node O and a destination node D, together with non-negative edge costs
as input. The agent is located at O initially. There are some blocked edges in the
graph, but these edges are not known to the agent. The agent discovers the status
of an edge when he reaches an end-node of the edge. The objective is to provide an
online strategy such that the agent finds a feasible path, i.e. one without blocked
edges from O to D with minimum total cost of the edges taken by the agent. When
an upper bound k£ (k > 1) on the number of blocked edges is given as input, the
problem is called the k-CTP.

To evaluate the performance of online strategies, the notion of competitive ratio
has been introduced by Sleator and Tarjan [55] and adopted by many researchers. For
a deterministic strategy, the competitive ratio is the maximum ratio of the cost of the
online strategy to the cost of the offline strategy over all instances of the problem. For
a randomized strategy, the competitive ratio is the maximum ratio of the expected
cost of the online strategy to the cost of the offline strategy over all instances of the
problem. In the offline £-CTP, the blocked edges are removed from the graph. Hence,

it reduces to a shortest path problem.

2.1.1 Our Contributions

In this study we reconsider the randomized online strategy that is presented for the

kE-CTP on graphs where all O-D paths are node-disjoint in [4]. This strategy can be
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regarded as the randomized version of the backtrack strategy according to Bender

and Westphal. Hence we call it the randomized backtrack strategy, in short the RBS.

We show that a particular property regarding the costs of the O-D paths must
hold to implement the RBS. We formally specify this property. Next we show that
this property does not necessarily hold when the costs of the O-D paths in the input
graph are arbitrary and k£ > 2. That is we prove that the RBS is not applicable on
graphs that consist of only node-disjoint O-D paths, where the costs of the O-D paths
are arbitrary and £ > 2. Moreover, we modify the RBS and introduce an optimal
strategy which is applicable on graphs where all O-D paths are node-disjoint and the
costs of the O-D paths are arbitrary.

2.2 Preliminaries

We assume that the input graph G = (V, E) contains only node-disjoint O-D paths.
We denote the number of node-disjoint O-D paths in the graph by n. We denote the
cost of an O-D path P, (i = 1,2,...,n) by ¢;, where ¢; is the sum of the costs of the
edges on P;. We assume that the graph remains connected if all of the blocked edges

are removed from it. Note that n > 2, since k > 1. We define ¢t = min{k + 1,n}.

Before we explain our results, we need to explain the RBS. We first present the

following definition that is taken from [4].

Definition 2.2.1. The paths P, P, ..., P, with costs ¢; < ¢ < ... < ¢, have the

similar costs property if for all 1 = 1,2, ..., n it holds that

n

2
C; EZC]'.

Jj=1
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Suppose that the O-D paths Py, Ps, ..., P, with costs c¢1, ¢a, ..., ¢, satisfy the similar
costs property. In this case regarding the random selection of one O-D path among

P, P, ..., P,, the RBS constructs the probability distribution €, = (p1,pa, ..., pn) as



Chapter 2: Online k-Canadian Traveler Problem 23

follows [4]. ©, = A\*p’, where Q,, and p" are n-vectors, \* = Y1 | ﬁ € [0,1] and

- (2=n)ei+ D014 2¢
E n2c; ’

fori=1,...n.

Note that A* € [0,1] when the costs of the O-D paths P, ..., P, are arbitrary [4],
i.e. Py,..., P, should not necessarily satisfy the similar costs property to ensure that
A* € [0,1]. We also note that it is assumed that Py, P,..., P, fulfill the similar
costs property to ensure the non-negativity of py,...,p, [4]. That is, the RBS only
uses €2, when P;, P, ..., P, have the similar costs property, i.e. when pq, ps, ..., p, are
non-negative. Bender and Westphal [4] proved the following lemma regarding the

probability distribution €2,,.

Lemma 2.2.1. Suppose that the O-D paths Py, Ps, ..., P, with costs ¢; < ¢g < ... <
cn satisfy the similar costs property. In this case the probability distribution 2, =

(p1,D2, -, Pn), belongs to the polyhedron Q,, which is defined as

Qn={peR:2-n)pi+ »_ 20—7pj <1Vi=1,2..,nY pi=1}
j=lj#i i=1

Now we can describe the RBS.

2.2.1 Description of the RBS

Recall that ¢ = min{k + 1,n}. Note that ¢t > 2, since k > 1 and n > 2. The RBS
partitions the ¢ shortest O-D paths in the graph into classes of O-D paths as follows.
Initially an empty class is opened. The strategy sorts the t shortest O-D paths in the
graph in non-decreasing order of their costs. O-D paths are added to the open class
as long as possible such that the similar costs property holds. If adding an additional
O-D path violates the property, the currently open class is closed and a new class is
opened. Partitioning the O-D paths into classes continues until the ¢th shortest O-D

path in the graph is assigned to an open class. The classes are maximal with respect
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to the similar costs property, i.e. they cannot be extended without violating the
property. Moreover such a classification of the O-D paths always exists and it is unique
up to permutations of the O-D paths that have the same costs. For a graph that
contains only node-disjoint O-D paths, let Classy, Classs, ..., Class; be the unique
classification that is constructed as described above, i.e. Classy, Classs, ..., Classy,
are the constructed classes and L > 1. The classes are sorted in ascending order of
costs of their O-D paths, i.e. the costs of the O-D paths in Class; are less than the
costs of the O-D paths in the other classes. Let n; denote the number of O-D paths
in Class; for [ =1,..., L. Now we can explain the rest of the strategy.

The classes are processed in ascending order, i.e. Class; is processed first, as
follows. We call the class that is being processed by the agent the current class,
i.e. Classy is the current class at the beginning. Initially, the agent constructs the
probability distribution €2,,, = (p1, ..., pn, ) and takes the O-D path P* (P* € Class;),
according to it. We note that py,...,p,, are non-negative since the n; O-D paths in
Class, satisfy the similar costs property. If P* is not blocked, the agent arrives at
D and the RBS ends. Otherwise, the agent backtracks to O and removes P* from
Class;. However the O-D paths in Class; — {P*} do not necessarily obey the similar

costs property. Here we specify an implicit assumption that is used in the RBS.

Definition 2.2.2. Suppose that the ¢ shortest O-D paths in the graph are partitioned
into classes Classy, Class,, ..., Classy, by the RBS. let P!, PL, ..., Pf” be the O-D paths
in Class; for [ = 1,...,L. The O-D paths in Class; have the strong similar costs
property if and only if the O-D paths in any non-empty subset of {P{,Pj..., P!}

satisfy the similar costs property.

Assuming that the O-D paths in Class; fulfill the strong similar costs property,
the agent constructs the probability distribution Q,, 1 = (p1, ..., pn,—1) and takes an
O-D path P* among the remaining O-D paths in Class; according to Q,,_,. If P¥
is not blocked, the agent arrives at D and the strategy ends; otherwise, the agent
backtracks to O and removes P* from Class,. The procedure is repeated until the

agent arrives at D or all of the O-D paths in Class; are taken. In the latter case,
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the agent processes the next class, i.e. Classs. The same procedure is then repeated

until the agent arrives at D.

2.3 Consideration of the RBS on graphs having only node-disjoint O-D
paths

We consider the implementation of the RBS on graphs that contain n node-disjoint

O-D paths. We show that there are cases in which the RBS cannot be implemented.

Definition 2.3.1. We call the set of n (n > 4) O-D paths Py, Ps, ..., P, with costs
C1,C, ...y Cn, the adversary set of n O-D paths (A™); if ¢, ca, ..., ¢, satisfy the following

conditions. 1) ¢; = =1and 2) ¢; =2(i — 1) for 3 <i < n.

Theorem 2.3.1. When k > 3 in the k-CTP, the RBS cannot be implemented on

Ak+1

Proof. Consider A*¥*! that contains the O-D paths Py, Py, ..., Py, Pyy1 with costs 1,1, ..., 2(k—
1),2k for k > 3. Note that Pj, P,, ..., Pry1 have the similar costs property ac-
cording to Definitions 5.5.1 and 2.3.1. The RBS initially partitions the O-D paths
into a single class Classy, i.e. Class, contains Py, P, ..., P,.1. Note that only one
class is constructed since Py, Ps, ..., Pyyq fulfill the similar costs property. Then the
agent takes one of the O-D paths in Class; according to the probability distribution

—RK)C; ki_l . ZCj .
Qi1 = (P1, P25 -, Piy1), e pi = )\*((1 - (l;?lz)];clim2 =) fori=1,2,...,k+1. Note that

D1, P2, -, Pry1 are non-negative since Py, P, ..., P, satisfy the similar costs property.
Suppose that Py is chosen (this case happens with probability py). If Py is not blocked,
the agent arrives at D and the strategy ends; otherwise, the agent finds a blocked edge
and backtracks to O. Suppose that the latter case happens. At this stage of the strat-
egy the O-D path with cost 2(k — 1) is excluded from Class; and the other & O-D
paths remain in Class;. Let Pll, Pé, e P,;fl, P,; with costs cll, c;, o c}efl, c;g denote the
remaining O-D paths in Class;, i.e. ¢; =cy, =1, ¢, =2(i— 1) for 3<i <k —1 and
c;v — 2k. Observe that P, P,, ..., P,;_l, P,; do not fulfill the similar costs property by

Definition 5.5.1, i.e. c;g > %Zj’;l c;-. Here, the agent selects one of the k remaining
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O-D paths in Class; according to the probability distribution Qy = (py, py, .-, P1),

/ k ’
(2*k)ci+2j:1j¢i 2¢;
k2c,

k2

ie. p; =\ ) for i = 1,2,...,k. Now suppose P, is selected and the

corresponding probability is

(2= kK)o, + 3571 2 _ A*<(2 —k)2k+2+424+230702(5 — 1)

pk:)\*( k2C;€ ) = 2k3 )7

which is equal to

. (2—k)2k+23 57 2j

(2 — k)2k +2(k — 2)(k — 1)
( ok

)= X( = )

Note that A* € [0,1] according to [4]. It is straightforward to show that the right
hand side is decreasing in k, i.e. p;g is decreasing in k. Also observe that p}c is negative
when k£ = 3. Hence p; is negative for k > 3. This contradicts with the rationale of
the RBS, since the RBS assumes that p;, p,, ...,]o;C are non-negative. The theorem
follows. O

As an illustrative example for the proof of Theorem 2.3.1, let k = 3. Consider A*
that contains the O-D paths Py, Py, P53, Py with costs ¢; = 1,c0 = 1,¢c3 = 4,¢4 = 6, re-
spectively. Observe that P, P, P3, P, satisfy the similar costs property by Definition
5.5.1. The RBS initially partitions the O-D paths into a single class Class;. Then, the
agent takes one of the O-D paths in Class; according to the probability distribution
Q= (é—g, ;—g, 3%, ). Suppose that Pj3 is chosen (this happens with probability 3%) If
P; is not blocked the agent arrives at D and the strategy ends; otherwise, the agent
finds a blocked edge and backtracks to O. Suppose that the latter case happens. Pj is

excluded from Class; and Py, Py, Py remain in C'lass;. Observe that P, P, P, do not

fulfill the similar costs property by Definition 5.5.1, i.e. ¢4 =6 > %(cl +eoty) = 1—36.
The RBS fails to construct a probability distribution Q23 € (Y3 for the selection of one

O-D path among Py, P, P,.

Remark 2.3.1. We note that the implementation of the RBS will fail in any instance
of the input graph in which the O-D paths in at least one of the constructed classes
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do not have the strong similar costs property, based on the similar reason that is
discussed in the proof of Theorem 2.3.1. In other words, the adversary sets of O-D
paths do not cover all of the instances in which the implementation of the strategy

fails.

The RBS can be implemented in all of the instances of the input graph in which
the O-D paths in the constructed classes have the strong similar costs property. Below

we show that such instances exist in special cases.

Theorem 2.3.2. Suppose that Py, Ps, ..., P, with costs ¢ < ¢co < ... < ¢ are the t
shortest O-D paths in the input graph, where t = min{k + 1,n}. When ¢; < 2¢, the

RBS is implementable.

Proof. Let P = {Py, P,, ..., P} denote the set of ¢ shortest O-D paths in the input
graph. Observe that O-D paths in P satisfy the similar costs property by Definition
5.5.1, i.e. the RBS creates a single class. Let P = {P,, P,,..., P, } (with costs
¢, <. < C;Lp,) be an arbitrary and non-empty subset of P, where np/p is the number

of O-D paths in P’. We need to show that

n

l< 2 P /
C; E C;
=, . 77

p =1

<

for i =1,2,...,n,. Note that the costs of the O-D paths in P’ are at least ¢;. Hence
the right-hand side is at least 2¢;. Thus the O-D paths in the constructed class have
the strong similar costs property and the RBS can be implemented. The theorem

follows. O

Below, we also specify the cases in which the RBS is applicable when the costs of

the O-D paths in the input graph are arbitrary.

Theorem 2.3.3. The RBS is implementable and achieves the competitive ratio of at

most k + 1, when k < 2.

Proof. Note that when k = 1, there are at least two O-D paths in the graph since

we assume that the graph remains connected if the blocked edge is removed from it.
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The proof is shown for k£ = 1 in [4]. For kK = 2 and n = 2, the RBS achieves the
competitive ratio of two based on the same proof that is presented in [4], for k = 1.
(For t = 2, the RBS achieves the competitive ratio of two).

For k£ = 2 and n > 3, the RBS considers three shortest O-D paths in the input
graph, i.e. P, Py, P3 with costs ¢; < ¢y < ¢3. Two cases might happen when the RBS

is implemented.

e Two classes Class; and Classs are constructed, i.e. Class; = {P;, P,} and
Classy = {Ps3}. In this case the O-D paths in Class; (I € {1,2}) fulfill the
similar costs property according to the RBS. Moreover, any other non-empty
subset of Class; (I € {1,2}) contains at most one O-D path that satisfies the

similar costs property by Definition 5.5.1.

e Only Class; = {Py, P, P3} is constructed. In this case Pj, P, Py fulfill the
similar costs property according to the RBS. Moreover any other non-empty
subset of Class; contains at most two O-D paths that satisfy the similar costs

property by Definition 5.5.1.

Hence the O-D paths in the same class have the strong similar costs property, when

k =2 and n > 3. Thus the RBS meets the competitive ratio of k+1 when k < 2. [

For k > 3, the RBS fails to be implemented on A*"! (Definition 2.3.1) according
to Theorem 2.3.1 and fails in any instance of the input graph in which the O-D paths
in at least one of the constructed classes do not have the strong similar costs property

according to Remark 2.3.1.

2.4 Optimal randomized strategy on graphs having only node-disjoint
O-D paths

In this section we present a modification of the RBS which is implementable on graphs

where all O-D paths are node-disjoint. We call this strategy the modified randomized
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backtrack strategy, in short the M-RBS. Before we explain the M-RBS, we present the

following strategy.

2.4.1 A strategy for partitioning the O-D paths into classes

We present a strategy for dividing a set of O-D paths into classes such that the O-
D paths in the same class satisfy the similar costs property. We call this strategy
the partitioning strategy. The partitioning strategy decomposes the O-D paths into
classes by going through them in non-decreasing order of their costs. The O-D paths
are added to the currently open class as long as they obey the similar costs property.
The classes are maximal in the sense that they cannot be extended without violating
the similar costs property. We note that the partitioning strategy is used in both of
the RBS and the M-RBS.

The partitioning strategy:

e Initialization. Take a set of n O-D paths together with their costs as input.
Label the O-D paths from P; to P, such that ¢; < ¢y < ... <¢,. Let i and [ be

counter variables and set their initial values to one.

e Step 1. Create an empty class and call it Class;, then go to Step 2.

e Step 2. If P, fulfills the similar costs property with the O-D paths in Class;,
then add P; to Class, set i =1+ 1 and go to Step 3. Otherwise, close Class,
i.e. no more O-D paths are added to Class;. Set | =1+ 1 and go to Step 1.

e Step 3. If i > n, close Class; and then stop, i.e. the n O-D paths are decomposed

into L = [ new classes. Otherwise, go to Step 2.

Note that sorting the O-D paths with respect to their costs can be done in
O(nlogn). Also note that partitioning the sorted O-D paths into classes can be done
in O(n). Thus, the running time of the partitioning strategy is O(nlogn). Below,



30 Chapter 2: Online k-Canadian Traveler Problem

we describe how it is possible to apply the partitioning strategy to make the RBS

implementable on graphs where all O-D paths are node-disjoint.

2.4.2  Modification of the RBS

As described before, the RBS is not applicable when the remaining O-D paths in
the current class do not satisfy the similar costs property. To solve this problem, we
present a modification of the RBS which we call the M-RBS. In the M-RBS, when the
remaining O-D paths in the current class do not fulfill the similar costs property, the
M-RBS decomposes them into new classes by applying the partitioning strategy. Then
the M-RBS processes the class among the newly constructed classes that contains the
shortest O-D path in the graph. Note that in this case the M-RBS is implementable
since the partitioning strategy generates the classes such that the O-D paths in the

same class obey the similar costs property. Now we can formally describe the M-RBS.

Modified randomized backtrack strategy (M-RBS):

e Initialization. Take a graph G = (V,E) that contains n node-disjoint O-D
paths Py, P, ..., P, together with k£ as input. Let ¢y, co, ..., ¢, represent the costs

of P, P, ..., P,. Compute cy, ¢y, ...,c¢,. Define S as an empty set.

e Step 1. Partition the ¢ (t = min{k + 1,n}) shortest O-D paths into classes by
applying the partitioning strategy. Add the constructed classes to S and go to
Step 2.

e Step 2. Let L denote the number of classes in .S. Label the L classes in S from
1 to L arbitrarily, i.e. Class;,Classs,...,Classy. Let SP, (I =1,...,L) be the
cost of the shortest O-D path in Class;. Identify Class;- (I* € {1,2,...,L}) as
the current class such that SP» = min{SPF,} for [l = 1,2, ..., L. Then go to Step
3.

e Step 3. Let w denote the number of O-D paths in the current class (Class«).
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Take an O-D path P* among the w O-D paths in the current class according to
the probability distribution €2,,. If the agent has arrived at D, stop; otherwise,
backtrack to O and remove P* from the current class. If the current class is

empty, remove it from S and go to Step 2. Otherwise, go to Step 4.

e Step 4. If the remaining O-D paths in the current class satisfy the similar costs
property, go to Step 3. Otherwise, partition the remaining O-D paths in the
current class into new classes by applying the partitioning strategy. Add the
newly generated classes to S. Also remove the current class (Class;<) from S.

Then go to Step 2.

Since G contains only node-disjoint O-D paths, computing the costs of the O-D paths
can be done in O(|E|). Hence the running time of the initialization of the M-RBS
is O(|E]). Note that Step 1 is implemented only once and Step 4 is implemented
at most t < n times. Also recall that the running time of the partitioning strategy
for partitioning n O-D paths into the classes is O(nlogn). Thus the running times
of Steps 1 and 4 are at most O(nlogn) and O(n?*logn), respectively. Identifying the
current class in Step 2 can be done in O(t) (¢ < n) and Step 2 is implemented at most
t times. Therefore the running time of Step 2 is at most O(n?). Constructing the
probability distribution €2, (w < n) can be done in O(w) in Step 3 of the M-RBS.
Since Step 3 is implemented at most ¢ < n times, the running time of Step 3 is at
most O(n?). Here we note that n < |E|. Thus the running time of the M-RBS can
be bounded from above by O(|E|*log|E]).

Remark 2.4.1. Note that the classes that are constructed in Step 1 are exactly the
same as the classes constructed in the RBS. Also note that when the O-D paths in the
current class have the strong similar costs property and the M-RBS enters Step 4, the
remaining O-D paths in the current class always satisfy the similar costs property.
That is, the generated classes are removed from S only if they become empty, i.e.
the remaining O-D paths in them never decompose into new classes in Step 4. Thus

the constructed classes in Step 1 are processed in non-decreasing order of costs of
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their O-D paths, exactly the same way as they are processed in the RBS. Hence, we
conclude that the RBS and the M-RBS are equivalent when the O-D paths that are
added to the same class in Step 1 possess the strong similar costs property.

Below we prove that the M-RBS is optimal when the ¢ shortest O-D paths in the

graph satisfy the similar costs property.

Lemma 2.4.1. Suppose that the M-RBS is implemented on the input graph G, such
that the t (t = min{k + 1,n}) shortest O-D paths Py, Ps, ..., P, with costs ¢; < cg <
o Zocpin G fulfill the similar costs property and at least one of them s traversable.

In this case, the M-RBS achieves the competitive ratio of t < k + 1.

Proof. We present the proof by induction on ¢.

e Base Case. Note that ¢t > 2, since £k > 1 and n > 2. When ¢t = 2, the M-RBS
constructs a single class that contains two O-D paths. Thus the number of O-D
paths in the current class never exceeds two. Also note that any one or two
O-D paths with arbitrary cost(s) satisfy the similar costs property according
to Definition 5.5.1. Hence the O-D paths in the constructed class have the
strong similar costs property. Thus RBS and M-RBS are equivalent according
to Remark 2.4.1. Since the RBS is 2—competitive for ¢ = 2 according to the

proof of Theorem 2.3.3, the base case follows.

e Induction. Suppose that the claim is correct for x < ¢—1. Since the ¢ shortest
O-D paths satisfy the similar costs property, the M-RBS initially constructs a
single class that contains ¢ O-D paths. Then the agent takes one of the ¢ O-D
paths Py, Ps, ..., P, in the class with probability distribution €; = (p1, pa, ..., P¢)-
Let B and T denote the set of blocked O-D paths and the set of traversable
O-D paths in the class, respectively. Also let Py (i* € {1,2,...,t}) with cost ¢;-
denote the offline optimum and p;+ be the probability that P is taken. The

competitive ratio can be shown as

je 2¢; + C'1

' jEB
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If the taken O-D path is traversable, i.e. the taken path is P; (i € T), then
the agent arrives at D (the M-RBS stops) by incurring a cost of ¢;; otherwise,
it means that a path P; (j € B) is selected and the agent backtracks to O by
incurring a cost of 2¢;. Note that C*~! denotes the cost of the strategy from the
time that the agent arrives back to O until the end of the strategy in expression
above. If the selected path P; (j € B) is blocked the agent removes P; from the

class and backtracks to O, then two cases might happen.

— Case 1. The remaining O-D paths in the class fulfill the similar costs
property. In this case C*~! is at most (t—1)cs by the induction assumption
forx =t — 1.

— Case 2. The remaining O-D paths in the class do not fulfill the sim-
ilar costs property. In this case the remaining O-D paths in the class
are decomposed into new classes by applying the partitioning strategy.
Suppose that the classes Classy, Classs, ....,Classy are the constructed
classes that are sorted in non-decreasing order of the costs of their O-D
paths, i.e. the costs of the O-D paths in Class; are less than the costs
of the O-D paths in the other classes. Let n; (I =1,2,..., L) be the num-
ber of O-D paths in the [th class, i.e. Zle ng =t —1. Let ¢, denote
the cost of the wth (w = 1,2,...,n;) O-D path in the ith (I = 1,2,...,L)
class, if the O-D paths in Class; are sorted in non-decreasing order of
their costs. Now suppose that P (i = 1,2,...,t) is contained in some
class, i.e. Class;s (I* € {1,2,...,L}). The agent first takes all of the O-
D paths in the classes Classi, Classs, ...,Classg-—1) and incurs the costs
of 25;11 25 m ¢, This is because the agent always processes the class
that contains the shortest O-D path in the graph according to Step 2 of the
M-RBS. Then the agent processes Class;~. Here, we use an observation

which is also applied in [4].

Observation 4.1. Note that when the agent finds a blocked edge on an
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O-D path, he removes the O-D path from the current class. Hence, the
agent may find at most n;x —1 <t — 2 blocked edges on the O-D paths in
Class;+ since Py« € Class;-. Because the n;« O-D paths in Class;- obey the
similar costs property, finding P;« among the O-D paths in Cllass;» within
the competitive ratio of n;« is equivalent to the induction assumption for

T = Ny=*.

Hence C*~! can be written as

*—1 ny

ZQZC{U—{—TLZ* X Cir .

=1 w=1

Since the O-D paths in Class;- do not fulfill the similar costs property with
the O-D paths in Class; (I = 1,2, ...,1*—1), we have (n;— 1)} > 23"
for { =1,2,...,I* — 1 according to Definition 5.5.1. Also note that ¢!’ < ¢;-.

Hence we can bound C*~! from above by

*—1

Z(nl — 1) % ¢ + nye * G,

=1
which is equivalent to

1*

l*
—l* + 1+ an)ci* S (Z TLl)Ci* S (t — ].)C,L*
=1

=1

We just showed that C*! is at most (¢ — 1)c. Now we can present the rest of
our proof by replacing C*~! with (¢ — 1)¢;+ in the competitive ratio to bound it

from above by

L4t—1).

2
+i—1) <pw+ Z P

Cix

I

i€T Cir jEB j=1ljy#*

We need to show that the right hand side is at most ¢ for all instances, i.e.
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” %k

1" =1,2,...,t. This is equivalent to

t
C.
2 —1t)p; Zp, <
@—tpi+ Y 2P <1,
J=1j#i
for all ¢* = 1,2,...,t. Note that the agent selects the O-D paths based on
the probability distribution €; = (p1, pa, ..., pr) such that Q, € @Q; according to

Lemma 5.5.1. Hence the inequality above is valid and the lemma follows.
[

Next we apply Lemma 2.4.1 to prove the optimality of the M-RBS on graphs
where all O-D paths are node-disjoint.

Theorem 2.4.1. The competitive ratio of the M-RBS is at most k + 1 on graphs

where all O-D paths are node-disjoint.

Proof. Note that the M-RBS uses the partitioning strategy in Step 1 and decomposes
the t shortest O-D paths of the input graph into classes at the beginning. Suppose
that the classes Cllassy, Classs, ..., Classy, are constructed in Step 1, such that Class;
(I =1,2,..., L) contains n; O-D paths. Let ¢!, denote the cost of the wth O-D path in
Class; (I = 1,2,..., L) if the O-D paths in Class; are sorted in non-decreasing order
of their costs. Note that the n; O-D paths in Class; (I = 1,2, ..., L) obey the similar
costs property and Zle n; = t. Also suppose that the classes are sorted such that
cl <2 <. <ck Let P with cost ¢;- be the offline optimum.

The M-RBS processes the classes in ascending order of costs of their O-D paths,
i.e. Class; is processed first. Suppose that the offline optimum (P;+) belongs to some
class Class;« (I* € {1,2,..., L}). In this case the agent first takes the O-D paths in the
classes Classy, ..., Class;<—y and incurs the costs of Z;;l 25" ¢l,. This is because
the agent always processes the class that contains the shortest O-D path in the graph
according to Step 2 of the M-RBS. Then the agent processes Class;» and finds the

offline optimum by incurring a cost of at most n;+ % ¢;« according to Observation 4.1.
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Table 2.1: Summary of the results in Chapter 2

Problem Result Case Network Type Publication Status
k-CTP | Optimal strategy | Randomized | Node-disjoint O-D paths | Published in [53]

Hence the competitive ratio can be written as

*—1 ny

[
E 2 E Cp T Nyx ¥ Cje.
=1 =1

Similar to the proof of Lemma 2.4.1, 23" . ¢l < (n; — 1)¢+. The competitive ratio

w=1 "w

is bounded above by
(il

=1

which is equivalent to

* I*
(=" +1+ an)ci* < (Z ny)cie < tei.
=1 =1

The theorem follows since ¢t < k + 1 and the cost of the offline optimum is ¢;«. O]

2.5 Concluding remarks

We reconsidered the implementation of the RBS on graphs which contain n node-
disjoint O-D paths. We showed that to implement the strategy, a certain property
(strong similar costs property) regarding the costs of the O-D paths in the input graph
must hold. That is we proved that the RBS is not applicable in some cases when k& > 2.
We showed that the RBS is applicable when the cost of the (min{k+1,n})th shortest
O-D path is at most twice of the shortest path in the input graph. Furthermore we
modified the RBS to obtain an optimal strategy which is applicable on graphs having
only node-disjoint O-D paths.
Table 2.1 summarizes the results of Chapter 2.



Chapter 3

ONLINE MULTI-AGENT K-CANADIAN TRAVELER
PROBLEM

In this chapter, we investigate deterministic and randomized strategies for the
multi-agent k-CTP. In the first two sections of this chapter, we consider the problem
on O-D edge-disjoint graphs. In the third section, we analyze the problem on graphs

having common edges on the O-D paths.

3.1 Analysis of deterministic online strategies

3.1.1 Introduction

The online multi-agent O-D k-Canadian Traveler Problem is a navigation problem,
where traveling agents receive a graph with a given source node O and a destination
node D together with edge costs as input. Initially all of the agents are located at
O. At most k edges are blocked in the graph but these edges are not known to the
agents (travelers). An agent discovers the status of an edge when he/she reaches an
end node of the edge. The objective is to provide an online strategy such that at least
one of the agents finds a feasible path, i.e. one without blocked edges, from its initial
location O to the given destination D with minimum total cost of the edges taken by
the agent that finds a feasible path first. This is called the route of that agent. The
problem is an online optimization problem that generalizes the k-Canadian Traveler
Problem (k-CTP) by the existence of multiple agents. To measure the performance
of online strategies, competitive ratio has been introduced by Sleator and Tarjan [55].
The competitive ratio is the maximum ratio of the cost of the online strategy to the

cost of the offline strategy over all instances of the problem. In our problem, in the
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offline problem the blocked edges are removed from the graph. Hence, it reduces to a

shortest path problem.

Two versions of the online multi-agent k-CTP have been introduced in the lit-
erature, with complete and limited communication. Zhang et al. [74] studied the
problem in presence of two levels of communication. In their article, P; denotes the
problem where complete communication is available among the agents and P, is the
problem where limited communication is possible such that some of the agents can
only receive information. In their problem definition, RS-type agents can send and

receive information, while R-type agents can only receive information.

3.1.2 Our Contributions

We focus on the case where communication among the agents is limited. By specify-
ing the communication protocols among the agents, we define three levels of agents’
intelligence. We introduce two simple deterministic online strategies and use them
when the agents benefit from higher levels of intelligence. By this way, we provide
updated lower bounds on the competitive ratio of deterministic online strategies for
P,. We also show that one of our strategies is optimal in both cases with complete and
limited communication in the special case where the input graph has only O-D edge-
disjoint paths between the given O-D pair. Formally we define an O-D edge-disjoint
graph as an undirected graph G with a given source node O and a destination node
D, such that any two distinct O-D paths in G are edge-disjoint, that is, they do not
have a common edge. We need to mention that analyzing O-D edge-disjoint graphs
is a standard restriction in the context of k-CTP and its variants. Finally, contrary
to what is claimed in [74], we show that there are instances with O-D edge-disjoint
graphs in which the competitive ratio of deterministic strategies on P, improves by

increasing the number of R-type agents.
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3.1.8  The online multi-agent O-D k-CTP with limited communication

The online multi-agent O-D k-CTP with limited communication has been introduced
by Zhang et al. [74]. Limited communication means that some of the agents can both
send and receive information (RS-type), but the others can only receive information
(R-type). Suppose that there are L agents (L < k) and L; of them are RS-type and
the other L — L, agents are R-type. Zhang et al. [74] assume that the agents will
take the best decision applying the available information. This problem is defined as
Py(L, Ly) in [74].

Zhang et al. [74] argue that P,(L, L1) can be regarded as P; with L; agents with
complete communication and at most k£ — 1 blockages. Based on this argument, they
extend their obtained results for P; to P,. By converting P; to its equivalent problem
in P, they provide a lower bound on the competitive ratio of deterministic online
strategies for P, by analyzing O-D edge-disjoint graph. They also use this argument
to prove the competitive ratio of two common strategies, i.e. Retrace-Alternating
Strategy and Greedy Strategy for P, after proving their competitive ratios for P;.
Below, we present some of the main assumptions in [74]. Note that we apply these

assumptions to obtain our updated results.

(1) The number of blockages, k is larger than the number of the total agents,
L.

(2) All of the R-type agents are regarded as one traveler based on the fact that
they might re-take the infeasible paths which are already taken by other R-type

agents.

(3) All of the agents will take the best possible decision with their given infor-

mation.

Before introducing the new levels of agent’s intelligence, we need to formalize
some definitions on O-D edge-disjoint graphs. We say that the problem is at its

initial stage when all of the agents are located at O initially. When at least one of
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the agents reaches D, we say that the problem is at its final stage. The decision of
which O-D path to select whenever the agent is located at O is defined as the decision
of an agent. Note that since the graph is O-D edge-disjoint, the agents take their
decisions only when they are located at O. Let us assume that an agent walks back to
O when he/she discovers a blocked edge. This is called backtracking. A closed walk of
an agent starting at O and including exactly one backtracking or a walk of the agent
starting at O and ending at D without backtracking are defined as the travel of an
agent. We note that when the problem is at its final stage, a backtracking agent may
not reach O but this does not affect the objective function. The travel schedule of
an agent is defined as the set of the travels which the agent takes consecutively, from
the initial stage to the final stage of the problem. We can characterize the available
information to all of the agents as the topology of the input graph together with the
edge costs, both explored blockages and travel schedules of the RS-type agents. Now,

let us define the communication protocols between the agents.

Communication Protocol 1 (CP1). The RS-type agents can share the blockage
information, in the sense that while any of the RS-type agents explores a new
blockage, he/she will transmit the blockage information to the other RS-type
and R-type agents. Note that this protocol has been applied in [74].

Communication Protocol 2 (CP2). The RS-type agents can transmit their own
travel schedules to the R-type and RS-type agents. This protocol has been used
in [74] as well.

We also define a third communication protocol which is not used in [74], to obtain

our improved results.

Communication Protocol 3 (CP3). The RS-type agents can schedule for the
R-type agents and transmit the planned travel schedule of each R-type agent to
them. Having CP3 means that the RS-type agents can make decisions for the
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R-type agents. Note that this protocol is realistic because all of the agents know

the graph structure and real-time blockage information of the RS-type agents.

Although Zhang et al. [74] analyzed the strategies on O-D edge-disjoint graphs
to provide a lower bound to the problem, they ignored the advantages of determining
the travel schedules of each agent when the problem is at its initial stage. They
also missed the advantages of using CP3. To utilize the advantages of determining
the travel schedules at the initial stage of the problem and CP3, we formalize the

definition of agents’ intelligence by defining three levels of agents’ intelligence.

I. Intelligence Level 1 (IL1). When an agent with IL1 is located at O, he/she is
allowed to decide only his/her next travel. The RS-type agents are not allowed to
plan their complete travel schedules at the initial stage of the problem. Moreover,
having CP3 is not allowed at this level. We call such agents IL1 agents. Zhang
et al. [74] have considered P, with IL1 agents. For the rest of this section, we
call P, with IL1 agents Ps;.

II. Intelligence Level 2 (IL2). The agents with IL2 have all properties of the IL1
agents. In addition, they are allowed to determine their complete travel schedule
at the initial stage of the problem. However, the RS-type agents cannot utilize
CP3 at this level. We call such agents IL2 agents. For the rest of this section,
we call P, with IL2 agents Ps.

III. Intelligence Level 3 (IL3). The agents with IL3 have all properties of the 112
agents. In addition, they can utilize CP3. We call such agents IL3 agents. For
the rest of this section, we call P, with IL3 agents Ps3.

Note that all of the notations Py, Py and Pss refer to problem P,. We use them to
show that how the results on P, will change as we utilize the advantages of planning

at the initial stage and CP3.
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3.1.4  The online multi-agent O-D k-CTP with IL2 agents (Pa)

In this section, we study P on O-D edge-disjoint graphs to show that the previous
lower bound on P, should be updated if the agents benefit from IL2. Note that we
consider P,y to show that even if we apply the same assumptions as are given in [74],
the results on P, improves by utilizing IL2. To propose our results, we first define a

new online strategy.

Path Labeling Strategy (PLS)

Consider an undirected O-D edge-disjoint graph with total number of N different
paths (N > k) from O to D. The K shortest paths between two nodes in an O-D
edge-disjoint graph can be found in polynomial time in K by one of the known K-
shortest paths algorithms ([69], [28]). Note that in O-D edge-disjoint graphs K is at
most the number of edges. Here, we also note that k£ and K denote different numbers
and they are not necessarily related. Applying the K-shortest paths algorithm, RS-
type agents sort the paths in non-decreasing order, when the problem is at its initial
stage. Now, they communicate and the ith RS-type agent assigns (((Ly+1)*j)+1i)th
(j =0,1,2,...) shortest paths to his/her travel schedule. Hence the ((L; + 1) * j)th
(j =1,2,3,...) shortest paths remain unselected. If the length of n number of paths
is equal, RS-type agents select | Li(3-%5)] or [Li(3%)] + 1 of them with respect to
the number of paths which are already selected. Then, RS-type agents share their
travel schedules to the R-type agent. Since the R-type agent benefits from IL2, he/she
will take the shortest of the unselected paths. At each iteration, the agents will reach
the destination or will find a blocked edge and return to the origin node. Then, they

take the shortest unvisited path on their travel schedules.

Lemma 3.1.1. Py, (L, Ly), equals to Py with Ly + 1 agents with complete communi-
cation and at most k blockages in O-D edge-disjoint graphs.

Proof. We consider O-D edge-disjoint graphs in two cases.
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Case 1. There exists no RS-type agent in the problem. In this case, the R-type
agent will find a new blockage at each iteration or will reach the destination.
This implies that the problem equals to P, with one agent and at most k& block-

ages.

Case 2. There exists at least one RS-type agent. In this case, applying PLS, the
agents will find L; + 1 blockages at each iteration or at least one of them will
reach the destination. This implies that the problem equals to P, with L; + 1

agents with complete communication and at most k blockages.

]

Corollary 3.1.1. Considering levels 2 and 3 of agents’ intelligence, Py (L, Ly) does
not necessarily equal to P, with Ly agents with complete communication and at most

k — 1 blockages for all type of the graphs.

Proof. Since we proved in Lemma 3.1.1 that P, (L, L;) with IL2 agents equals to P
with L; + 1 agents with complete communication and at most k£ blockages on O-D

edge-disjoint graphs, the corollary follows. O]

Theorem 3.1.1. For Ps(L, L), there is no deterministic online strategy with com-

petitive ratio less than QLﬁJ +1.

Proof. As in [74], we replace the parameters of our converted problem in the lower
bound of problem Py, i.e. 2| %] + 1. Since the special graph which is analyzed in [74]
to provide the lower bound of the problem is an O-D edge-disjoint graph, the proof
follows. Note that since our lower bound on P is either strictly smaller than or equal
to the lower bound in [74], it is necessary to update the lower bound of the problem

when the agents benefit from the higher levels of intelligence, i.e. 1L2 and IL3. O

3.1.5  The online multi-agent O-D k-CTP with IL3 agents (Ps3)

In this section, we provide improved results on P, by analyzing it with IL3 agents on

O-D edge-disjoint graphs. We assume that there exists at least one RS-type agent
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in the graph. Since the agents benefit from the highest level of intelligence, we also
ignore the second assumption of Zhang et al. in this section. We apply the RS-type
agents ability to plan the travel schedules of the R-type agents (CP3) to utilize the
R-type agents in an efficient way. Note that having CP3 is a reasonable assumption
in most applications of the online multi-agent k-CTP. For example, in disaster relief
the R-type agents can receive their travel plans from the RS-type agents in order
to avoid retaking the selected paths by other agents. In the rest of this section, we

analyze P3 by applying a modification of PLS that we call the modified PLS.

Modified Path Labeling Strategy (modified PLS)

Consider an undirected O-D edge-disjoint graph with total number of N different
paths (N > k) from O to D. When the problem is at its initial stage the RS-type
agent applies the K-shortest paths algorithm and labels the paths in non-decreasing
order where path 1 is the shortest. If the length of some of the paths is equal, the
RS-type agent selects their order arbitrarily. Now, he/she assigns paths (L * j) 44
(j = 0,1,2,...) to the travel schedule of the ith agent. Then, he/she informs the
travel schedule of each agent to them. At each iteration of this strategy, the L agents
will take the shortest paths among the unvisited paths in their travel schedules. They
will reach the destination or will find a blocked edge and return to the origin node.
Then, they take the shortest unvisited path on their travel schedules. The cost of
each iteration includes the cost of sending the agents through the assigned path plus

the cost of returning to the origin node, if they face a blocked edge.

Lemma 3.1.2. Py (L, L1) equals to Py with L agents with complete communication

and at most k blockages in O-D edge-disjoint graphs.

Proof. We consider O-D edge-disjoint graphs where there exists at least one RS-type
agent in the graph. In this case, applying the modified PLS, the agents will find L
blockages at each iteration or at least one of them will reach the destination. This
implies that the problem equals to P, with L agents with complete communication

and at most k blockages.
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]

Theorem 3.1.2. For Pa3(L, Ly), there is no deterministic online strategy with com-

petitive ratio less than 2| % | + 1.

Proof. As in [74], we replace the parameters of our converted problem in the lower
bound of problem Py, i.e. 2| % | + 1. Since the special graph which is analyzed in [74]
to provide the lower bound of the problem is an O-D edge-disjoint graph, the proof
follows. Note that since our lower bound on P is either strictly smaller than or equal
to the lower bound in [74], it is necessary to update the lower bound of the problem

when the agents benefit from the highest level of intelligence, i.e. IL3. O]

3.1.6 Optimal results for P on O-D edge-disjoint graphs

Proposition 3.1.1. The competitive ratio of modified PLS in O-D edge-disjoint
graphs is (2| k/L|) + 1, for both of the problems P, and Pss.

Proof. Let Cp denote the cost of the shortest path after removing blocked edges.
Since the RS-type agent has ordered the paths in non-decreasing order of cost, the
cost of each iteration will be at most 2xCy. When an agent returns to the origin node,
he/she will take the minimum cost unvisited path on his/her travel schedule. It takes
at most | %] + 1 iterations to identify all of the blocked edges in the graph. Since the
agents have to come back to the origin node after visiting a blocked edge in at most
L%J of the iterations, the cost of identifying blocked edges and returning to the origin
node is at most 2| £ | *Cp. It will take a cost of C to find the remaining blockages and
reach the destination. Thus, the total cost of the strategy is at most (2|£] + 1) x Co.
Since the strategy does not use complete communication, the competitive ratio is also

valid for Pj. 0

The obtained competitive ratio of modified PLS in O-D edge-disjoint graphs is

optimal since it meets the lower bound offered in [74] for P;.

Corollary 3.1.2. Modified PLS is optimal for both problems P, and Pz in O-D
edge-disjoint graphs.
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Proof. There is no deterministic online strategy with competitive ratio less than
2|£] +1 for P, in O-D edge-disjoint graphs. Note that, the lower bound of P
is less than or equal to the lower bound of P;. Since we have introduced a strategy
for both P; and P»3 which meets the lower bound of P;, we conclude that the lower
bound of Ps3 is equal to the lower bound of P;. Hence, the strategy meets the lower

bounds of both P; and Pss. O

Corollary 3.1.3. Enabling all of the agents to communicate does not improve the

competitive ratio in O-D edge-disjoint graphs in problem Pss.

Proof. Since we have introduced a strategy (modified PLS) that does not need com-

plete communication which meets the lower bound of P;, the corollary follows. [

Corollary 3.1.4. There are instances with O-D edge-disjoint graphs in which the
competitive ratio of deterministic strategies on Po3 improves by increasing the number

of R-type agents.

3.1.7 Concluding remarks

We analyzed the online multi-agent O-D k-Canadian Traveler Problem. We provided
updated results including the lower bounds on the competitive ratio of deterministic
strategies of the problem for the case where the communication is limited. We argued
that it is vital to consider and utilize the higher levels of agents’ intelligence in online
problems by defining three levels of agents’ intelligence. We introduced an online
strategy in O-D edge-disjoint graphs which is optimal in both cases with complete
and limited communication when the travel schedules are shared at the initial stage
of the problem. We showed that enabling all of the agents to communicate does not
improve the competitive ratio in O-D edge-disjoint graphs. Furthermore, we showed
that there are instances with O-D edge-disjoint graphs in which the competitive ratio

of deterministic strategies on P, improves by increasing the number of R-type agents.
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3.2 Analysis of randomized online strategies

3.2.1 Introduction

We study the multi-agent k-Canadian Traveler Problem (k-CTP) to investigate the
competitive performance of the randomized online strategies under different levels of
communication between the traveling agents. The multi-agent k-CTP is a generaliza-
tion of the single-agent k-CTP, for which randomized strategies have been investigated
in the literature [64], [4]. The k-CTP originated from the Canadian Traveler Prob-
lem (CTP), which is an online navigation problem under incomplete information. In
CTP, a traveling agent receives a graph with a given source node O and a destination
node D, together with non-negative edge costs as input. The agent is located at O
initially. There are some blocked edges in the graph, but these edges are not known
to the agent. The agent discovers the status of an edge when he reaches an end-node
of the edge. The objective of the agent is to provide an online strategy such that the
agent finds a feasible path, i.e. one without blocked edges from O to D with minimum
total cost of the edges taken by the agent. When an upper bound k£ on the number
of blocked edges is given as input, the problem is called the k-CTP.

The multi-agent k-CTP is an online optimization problem that generalizes the k-CTP
by the existence of multiple agents. In the multi-agent k-CTP, there are L agents in
the graph who are initially located at O. The objective of the agents is to provide
an online strategy such that at least one of them finds a feasible path, from O to D
with minimum total cost of the edges taken by the agent that finds a feasible path
first. Two versions of the multi-agent k-CTP have been introduced in the literature,
with complete and limited communication [74]. When the communication is limited,
some agents can both send and receive information and some of the agents can only
receive information. The agents who are able to both send and receive information
are called RS-type agents and the agents who are only able to receive information are
called R-type agents. In presence of complete communication all of the agents can

send and receive information, i.e. all of the agents are RS-type.
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To evaluate the performance of online strategies, competitive ratio has been intro-
duced by Sleator and Tarjan [55]. For a deterministic strategy, the competitive ratio
is the maximum ratio of the cost of the online strategy to the cost of the offline strat-
egy over all instances of the problem. For a randomized strategy, the competitive
ratio is the maximum ratio of the expected cost of the online strategy to the cost
of the offline strategy over all instances of the problem. In the offline k-CTP, the
blocked edges are removed from the graph. Hence, it reduces to a cheapest (shortest)

path problem.

3.2.2  Our Contributions

So far, only deterministic strategies have been studied for the multi-agent k-CTP.
The competitiveness lower bounds have been provided for both of the cases with
limited and complete communication. An optimal deterministic strategy has been
introduced for both cases on O-D edge-disjoint graphs. However, the research on
randomized strategies on the k-CTP is restricted to the single-agent version of the
problem, where an optimal randomized strategy is introduced for only O-D edge-
disjoint graphs. Note that an O-D edge-disjoint graph is an undirected graph G with
a given source node O and a destination node D, such that any two distinct O-D paths
in G are edge-disjoint; that is, they do not have a common edge. Here we note that
the problem on O-D edge-disjoint graphs entails real-life applications. Because of the
overlap among different paths on a general network, it is difficult to design a good
strategy including multiple paths without overlaps for all the travelers [74]. However,
most urban city traffic networks are highly connected and there usually exist several
paths without overlap from O to D which are not much costlier than the cheapest
O-D path in the graph [74].

In this section, we focus on randomized strategies for the multi-agent k-CTP. We
analyze the problem in three cases: 1) without communication, 2) with limited com-
munication and 3) with complete communication. We derive lower bounds on the

competitive ratio of the randomized strategies for all of these cases. For the case
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without communication, we introduce a simple randomized strategy and prove its
competitive ratio on a special case. By this way, we prove that increasing the num-
ber of agents can improve the competitive ratio of the randomized strategies for the
multi-agent k-CTP.

For the cases with limited and complete communication, we introduce an optimal
randomized strategy for both cases on O-D edge-disjoint graphs. Here we note that
most optimal strategies in the literature are confined to O-D edge-disjoint graphs.
Because our optimal strategy achieves a better expected competitive ratio in compar-
ison to the optimal deterministic strategy on O-D edge-disjoint graphs, we conclude
that randomization can improve the expected competitive performance of the online
strategies for the k-CTP in presence of multiple agents and communication. We also
prove that the competitive ratio of the optimal randomized strategy does not improve
on O-D edge disjoint graphs, when the case with complete communication is com-

pared to the case with limited communication.

3.2.8 Preliminaries

As standard assumptions for the multi-agent k-CTP, we assume: 1) the graph remains
connected if any set of k edges are removed from the graph, and 2) the number of
agents L is less than or equal to the number of blocked edges k. Before we explain
our results, we need to present the property below that is defined by Bender and

Westphal [4] to design a randomized strategy for the k-CTP.

Definition 3.2.1. The paths Py, P, ..., P,1 with costs ¢; < ¢y < ... < ¢gyq have the

similar costs property if for all © = 1,2, ...,k + 1 it holds that

<.
Il
—

We also use the following two lemmas in our results which were proven in [4].
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Lemma 3.2.1. Suppose that the O-D paths Py, Ps, ..., Priq1 with costs ¢ < cg <
o < cpa1 Satisfy the similar costs property. In this case the probability distribution

Qus1 = Ap belongs to the polyhedron Q, where Quyy and p are (k + 1)-vectors,
)‘* = Zfill pl; € [07 1]7

c (L= ke + 35 20

= Vi=1,2,... k+1
p; (k+ 1)201' l +
and
k+1 s k+1
Qe={peR": (1-kpi+ > 22p;<1Vi=12,..,k+1,)> p =1}
C; -
=157 i=1

Lemma 3.2.2. Let P, and P, with costs ¢; < ¢y be the two cheapest paths in the
3
c%—i—c%

graph. The strategqy that chooses Py with probability and P, with probability

2

Cl - °na
a1 s 2-competitive.

3.2.4  Optimal randomized online strategy for the single-agent k-CTP

In this section we use Definition 5.5.1 and Lemma 5.5.1 to present a new randomized
strategy which is optimal when L is one. We call this strategy S;. Note that we
apply S later on to design our strategies for the multi-agent case in different levels

of communication.

A new optimal strategy for the single-agent case (S;)

e Initialization. Take an O-D edge-disjoint graph and k as input. Define S as the
selection list and let S = (), initially. Let 7 be a counter variable and set i = 0, at
the beginning. For any arbitrary set of n (n > 3) O-D paths, let the probability
distribution Q, = (p1,pe, ..., Pn) € Qn_1 be the probability distribution that is
defined in Lemma 5.5.1. For any arbitrary set of two O-D paths P, and P with

C2 C2
costs ¢ < ¢, let Qg = (522, 215) € Q1.

2, 2y 2.2
ety eites

e Step 1. Remove all of the O-D paths in S to make it empty. Add the O-D
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paths to S by going through them in non-decreasing order of their costs until
one of the following two conditions happen: 1) adding the O-D paths violates
the similar costs property, or 2) the number of O-D paths in S exceeds k+1—i.
Go to step 2.

e Step 2. Let ng denote the number of O-D paths in S. Take one of the O-D paths
in S according to the probability distribution €2,,,. If the agent has arrived at
D, stop. Otherwise, a new blockage is identified and the agent backtracks to O.
Remove the taken O-D path from the graph and set ¢ =i+ 1. Then, go to Step
1.

To prove the optimality of S7, we need to present the following three lemmas, where
we consider the O-D paths Py, Ps, ..., Pyyq with costs ¢; < ¢ < ... < ¢py1 and the

probability distribution Q1 = (p1,p2, ..., Prs1) € Qk (Lemma 5.5.1).
Lemma 3.2.3. It holds that pr1 < pr < ... < ps < p1.

Proof. We show that for any arbitrary v and w (v,w € {1,2,...,k + 1}) such that

v < W, Py > Pu- We have

_ )\*( )CU + Z;H—ll];év
(k+1)%c

and k+1
( )Cw + Z] 1];£w
(k+1)%

pw:)\

Note that eliminating A* from the definitions of p, and p,, has no effect on the com-
parison of their values since it is common in both p, and p,. Hence, to compare p,
and p,, we can consider the quantities

k41

Po= o2 T Tkt 02e

and k+1

Po = 12 T Tkt D2e
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Again we can eliminate from p, and p,, since it is common in both of them.

1—k
(k+1)2

Then, we can consider the quantities

k1
pu _ Zj:lj;év 2¢;
v (k+1)%¢
and k+1
p" _ Zj:lj;éw 2¢;

(k+1)%¢c, ’
to compare the values of p, and p,. Note that ¢, < ¢, thus the numerator of pv i

greater than or equal to the numerator of p, and the denominator of p, is smaller than

or equal to the denominator of p,. We get p. < p,, which implies that p, < p,. O

Lemma 3.2.4. Consider the vector Uy = (71, T, ..., Tk1) Such that m; = k%l for

i=1,2,....k+ 1. It holds that Zl 1 pici < ZfJ’ll TG

Proof. Note that Zk+1l p; = 1 since Q441 € Q) according to Lemma 5.5.1. Also note

that S M, = S L =1 = 1. We need to show that

f0o<m—p;foralli=1,2,..k+ 1 the lemma follows. Suppose that m; — p; < 0
fori=1,2,..,7(j<k+1)and 0 <m —p;fori=j+1,.. k k+ 1. In this case it
holds that

J E+1
Z(Wz‘ —pi)=— Z (mi — pi),
i=1 i=j+1

since S5 =S¥ p; = 0. Note that 37, (1 —ps)c; is not less than ¢; Y7 (1 —p;)
since we assumed m; —p; < 0 for ¢ = 1,2, ..., 7, and we have ¢; < ¢ < ... < ¢j. Also

note that S (m; — p;)e; is not less than ¢jq S

imj 41 — p;) since we assumed

1= ]—l—l(

0<m—pfori=j+1,..,kk+1, and we have cj;; < ¢jyo < ... < ¢pq1. Hence
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Zf +11( — pi)¢; can be bounded from below by

J k+1
;O = pi) + (D m—p).
i=1 i=j+1
Because S0_ (m; — pi) = — Zkfjlﬂ( — pi), we can re-write the expression above as
k+1
(ci1— i) Y (m—pi).
i=j+1

Note that thlﬂ( — p;) is positive since we assumed that 0 < m; — p; for i =

j+1,...,k,k+ 1. Also we have ¢; < ¢j;;. Thus we obtain

ket 1 ket
0 < (¢j+1—¢5) Z (m —pi) < Z(Wz — pi)ci.
i=j+1 i=1

[]

Lemma 3.2.5. Consider an arbitrary O-D path Pyio with cost cxiqy < Cpio Such

that Pk+2 does not fulfill the similar costs property with Py, Ps, ..., Peiq. It holds that
22 1 picq < 1

Ck+2 -
Proof. Since Py does not satisfy the similar costs property with the set of O-D paths
Py, Py, ..., Pyyq it follows from Definition 5.5.1 that

9 k+2
—_— ZC,‘ < Cl+2-
k+2 4=

We first multiply both sides by k£ + 2 and then eliminate 2¢; o from both sides to

obtain
92 Zk+1 ci Zk+1
k+1 k

< Cky2-

Note that the left-hand side is greater than or equal to 2 Zkfll pic; according to Lemma

5.5.2. Thus
k+1

2 Zpici < Ci+42
i=1
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and the lemma follows. O]

Now we can prove that S; is k + 1 competitive and optimal on arbitrary O-D

edge-disjoint graphs.
Theorem 3.2.1. The competitive ratio of Sy is k+ 1 on O-D edge-disjoint graphs.

Proof. Our proof is by induction.

e Base case. Suppose that P, and P, with costs ¢; < ¢ are the two cheapest
O-D paths in the graph. When k& = 1, the agent takes one of P, and P, with
probability distribution Q, = (T T) If the taken O-D path is blocked,
the agent backtracks to O and takes the cheapest O-D path in the graph to arrive

at D. Otherwise, the agent arrives at D. We need to show that S; achieves a

competitive ratio of two in this case. This is exactly what Lemma 3.2.2 states.

e Induction. Let P (i* € {1,2,...,k + 1} with cost ¢;« be the offline optimum.
At the first implementation of Step 1, the O-D paths are added to the selection
list in non-decreasing order of their costs until adding the O-D paths to the
selection list violates the similar costs property or the number of O-D paths
in the selection list exceeds k£ + 1. Let the O-D paths Py, P, ..., P, with costs
1, Ca, ..., ¢, be the O-D paths that are added to the selection list after the first
implementation of Step 1. Then the strategy enters Step 2. We present the rest

of our proof by considering two cases.

— Case 1. P; is not added to the selection list. In this case the agent takes
one of the O-D paths in the selection list according to the probability
distribution Q,, = (p1,pa,...,pn). Then he arrives at the end-node of a
blockage and backtracks to O. Hence, the expected cost of 2>"" | pic; is
incurred. Note that 2" pic; < 2>, %ci according to Lemma 5.5.2.
Let C*=1 denote the cost of S; from the time when he arrives back at O until
the end of the strategy. Note that C*~! is at most kc;» by the induction

assumption. Thus the expected cost of Sy is at most 2> | %ci + kci-.
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Since Pj+ is not in the selection list, it follows that P;« does not fulfill the
similar costs property with the set of O-D paths in the selection list and
¢, < ci+. Hence 22?:1 %ci < ¢4+ according to Lemma 3.2.5. Thus, the
expected cost of S is at most (k + 1)c. It follows that the competitive

ratio is at most k + 1 in this case.

— Case 2. P is added to the selection list. Let B and T denote the set of
blocked and traversable O-D paths in the selection list, respectively. In this
case the agent takes one of the O-D paths in the selection list according
to the probability distribution €, = (p1,pa, ..., pn). If the taken O-D path
belongs to B, he backtracks to O and discards the traversed O-D path
from the graph; otherwise, the agent proceeds with the chosen O-D path
to arrive at D, i.e. the strategy ends. Suppose that the taken O-D path
belongs to B and let C*~! denote the cost of S; from when the agent arrives
back at O until the end of the strategy in this case. The competitive ratio

can be written as

. . k—1
yoh vy Pt

ier jEB
Note that C*~! is at most kc;- by the induction assumption. Hence, the

competitive ratio is bounded from above by

k+1
DiC; 20]' QC]‘
(222 < D .
E q*+gzmg*+@_pz+‘g‘%%ﬁ+@.
€T jEB j=1j#*

We claim that the right-hand side is at most k41 for all ¢* = 1,2, ..., k+1,

ie. b
(1—k)pi + Z ) c; <1
J=15#i

foralli =1,2,...,k+1. Since the probability distribution Q41 = (p1, pa, ..., Pk+1)
belongs to the polyhedron (g, the claim follows by the definition of @), in
Lemma 5.5.1.
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The theorem follows. O]

3.2.5 Competitive analysis of the randomized online strategies on the multi-agent

k-C'TP without communication

In this section we analyze the randomized strategies on the multi-agent k-CTP in the
absence of communication. First, we derive a lower bound to this problem. Next, we
present a simple randomized strategy for when multiple agents are in the graph and
communication is not possible. We call this strategy S, and prove its competitive
ratio for a special case. By this way, we show that increasing the number of agents
can improve the competitive ratio of the randomized strategies on the multi-agent

k-CTP without communication.

The lower bound

Yao [68] showed that the expected cost of a randomized strategy on the worst-case
input is no better than a worst-case random probability distribution of the determin-
istic strategy which performs the best for that distribution. This principle is known
as Yao’s Principle and was applied to prove the lower bound of the problem in the
existence of only one agent in the graph in [64]. In this section, we use Yao’s Principle
to derive lower bounds for the multi-agent versions of the problem in different levels
of communication. Below we present a lower bound on the competitive ratio of the

randomized strategies for the multi-agent k-CTP without communication.

Theorem 3.2.2. There is no randomized strategqy with competitive ratio less than

k+1

>0 - (AU e -,

for the multi-agent k-CTP in absence of communication.

Proof. We consider the O-D edge-disjoint graph in Figure 3.1. Note that we assume

that e is sufficiently small such that we do not consider e values in our analysis.
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We select i € {1,2,...,k + 1} uniformly at random, block all edges (V}, D) with
j # 1 and let the edge (V;, D) remain traversable. Thus O — V; — D becomes the
only traversable O-D path whose cost is one, i.e. the cost of the offline optimum is
one. To complete the proof, we need to show that the expected cost of an arbitrary

deterministic strategy with respect to the distribution given on the inputs is not

greater than Zf;l(l - (kizij(;i)l))L)(k_,fiIQ))L(Qj — 1). We organize the rest of our

proof in two parts.

Vi
1 €
(0} 1 V2 € D
i €
1 Vs

Figure 3.1: A special graph

e The concept of iteration. Note that there is no communication between
agents. Hence the agents do not benefit from waiting at O in order to receive
blockage information. Moreover, each arbitrary agent only knows the O-D paths
that he has taken and has no information about the O-D paths that are taken
by the other agents. Note that all of the agents are initially at O. Thus we can
define the concept of iteration for an arbitrary deterministic strategy for the
multi-agent k-CTP in absence of communication on the special graph in Figure
3.1 as follows. At the beginning of each iteration, each arbitrary agent takes an
O-D path from the set of O-D paths that he has not taken before and proceeds
with it to arrive at D or an end-node of a blockage. Note that the taken O-D
paths in this case are not necessarily different. If one of the agents arrives at

D, then the strategy ends and the cost of the iteration equals to one. If all of
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the agents arrive at an end-node of a blockage, all of the agents retrace back
to O and the cost of the iteration equals to two. Also note that an arbitrary

deterministic strategy ends within k& + 1 iterations in this case.

e Computation of the competitive ratio. Note that the probability that O —
Vi; — D is chosen at iteration j* (j* = 1,2,...,k+1) in an arbitrary deterministic

strategy can be computed as

E-G =1 o koG-
(1_(l<:—|—1—(j*—1)))H(k+1—(j—1))’

which is equal to

k= (=2

k_(j*_l) )L)( — )L

E+1—(*—-1)

(1—(

for 7* =1,2,...,k + 1. Note that if O — V; — D is selected at the jth iteration,
the strategy ends with cost of 25 — 1. Hence the expected cost can be computed

as

> T e -,

This implies that the expected cost of an arbitrary deterministic strategy with respect

to the distribution given on the inputs, does not exceed Zf;l (1—(k_]:£j(;i)1) V) k_k(if) V(25—

1). Since the cost of offline optimum is one, the theorem follows from Yao’s Princi-

ple. [

Now we introduce our randomized strategy S, for the case without communication.

Randomized strategy for the multi-agent case without communication (S;)

Take an O-D edge-disjoint graph, L and k as input. Let each agent apply S; on the
input graph independently to the other agents.
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Below we prove an upper bound on the competitive ratio of Sy on arbitrary O-D

edge-disjoint graphs.
Lemma 3.2.6. S5 is at most k + 1 competitive on O-D edge-disjoint graphs.

Proof. Let P* be the offline optimum and ¢* be its cost. Note that the expected cost
of S5 corresponds to the expected cost of the minimum of L independent strategies
that their expected costs are at most (k + 1)c*. Hence the expected cost of Sy is at

most (k + 1)c* and the lemma follows. O

By proposing the following two lemmas, we investigate whether increasing the
number of agents can improve the competitive ratio of the randomized strategies for
the multi-agent k-CTP when there is no communication between agents. First, we

prove the competitive ratio of S5 on the special graph in Figure 3.1.

Lemma 3.2.7. S5 is Zf;l(l — (kiij(;i)n)L)(k_k(if))LQj — 1) competitive on the

special graph in Figure 3.1.

Proof. Note that the agents do not benefit from waiting at O to receive any blockage
information from the other agents, based on the same reason that is presented in the
proof of Theorem 3.2.2. Because of the symmetry in the special graph in Figure 3.1,
we can define the concept of iteration for Sy on this special graph as follows. At
the beginning of each iteration, each arbitrary agent takes an O-D path from the set
of O-D paths that he has not taken before uniformly at random. Then, the agent
proceeds with the taken O-D path to arrive at D or an end-node of a blockage. Note
that the taken O-D paths in this case are not necessarily different. If one of the agents
arrives at D, then the strategy ends and the cost of the iteration equals to one. If all
of the agents arrive at an end-node of a blockage, all of the agents retrace back to
O and the cost of the iteration equals to two. Also note that S, ends within k& + 1
iterations in this case. Similar to the proof of Theorem 3.2.2, we can compute the

probability that O — V; — D is taken at iteration j* as

k—0G"—1)
krl1-(—1)

k=" —2)
k+1

(1—( )E)( )"
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for 7* =1,2,....k + 1. Note that if O — V; — D is traversed at the jth iteration, the

strategy ends with cost of 25 — 1. Thus the expected cost can be computed as

k+1

>0 - (AT e -,

]

As a consequence, we prove that increasing the number of agents can improve
the competitive ratio of the randomized strategies, when there is no communication

between the agents.

Lemma 3.2.8. There are instances in which increasing the number of agents improves

the competitive ratio of the randomized strategies in absence of communication.

Proof. We just showed in Lemma 3.2.7 that the competitive ratio of S, on the special

graph in Figure 3.1 is

crR=3 -G LNt e -y

in absence of communication. If we show that C'R is decreasing in L, the lemma

follows. We set

k=G
= Gri=g-n
and .
g= (U2,

k+1
Note that a € (0,1) and 5 € (0, 1], thus a5 < 5. We define

CR =(1—a")p" =" — (ap)".

Note that C R’ is an item of C'R for a given j and if it is shown that CR’ is decreasing in
L, it follows that C'R is also decreasing in L. Hence if it is shown that CR’ is decreasing

in L, the lemma follows. When we assume that L is continuous and compute the first
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derivative of CR" with respect to L, we obtain that CR’ is decreasing in L for L > 1.
This is because the first derivative of CR" with respect to L is positive for L > 1.
This implies that CR’ is decreasing in L for integer values of L that are greater than

one. O

3.2.6  Competitive analysis of the randomized online strategies on the multi-agent

k-CTP with communication

In this section we analyze randomized strategies on the multi-agent k-CTP in presence
of limited and complete communication. For the case with limited communication,
we assume that L; (1 < L; < L) agents are RS-type and (L — L) agents are R-type.
We remind that the RS-type agents are able to both send and receive information
while the R-type agents can only receive information. To specify what information
can be transmitted between the agents, we assume that the agents benefit from intel-
ligence level 3 (IL3) defined in [51]. The RS-type agents with I3 have the following
attributes. 1) They can transmit their own travel plans to the other agents, i.e. they
can transmit the O-D paths that they plan to traverse to the other agents. 2) They
can plan for the R-type agents, i.e. they can determine for the R-type agents which
O-D paths to traverse. 3) They can share blockage information with the other agents
when they learn a new blockage. We note that the detailed description of IL3 can
be found in [51]. We suggest a lower bound for both of the cases with limited and
complete communication. We also present an optimal strategy for both cases on O-D

edge-disjoint graphs.

The lower bound

We again apply Yao’s Principle to derive our lower bound for the case with complete

communication.

Theorem 3.2.3. There is no randomized strategy with competitive ratio less than

Lk
%H(L%J)Q + %(2 |£] +1), for the multi-agent k-CTP in presence of complete

communication.
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Proof. Similar to the proof of Theorem 3.2.2, we consider the O-D edge-disjoint graph
in Figure 3.1. Note that we assume that € is sufficiently small such that we do not
consider € values in our analysis. We select ¢ € {1,2, ...,k + 1} uniformly at random,
block all edges (V;, D) with j # i and let the edge (V;, D) remain traversable. Thus
O — V; — D becomes the only traversable O-D path whose cost is one, i.e. the cost of
the offline optimum is one. To complete the proof, we need to show that the expected
cost of an arbitrary deterministic strategy with respect to the distribution given on
the inputs is not greater than 25 (| %])* + %(2{% + 1). We organize the rest

of our proof in two parts.

e The concept of iteration. Note that the agents benefit from complete com-
munication, i.e. all of the agents are RS-type. Also note that the graph in
Figure 3.1 is O-D edge-disjoint and there is no benefit for the agents to take
an O-D path which is already traversed. Thus in any deterministic strategy,
when an arbitrary O-D path P is taken by one of the agents the other agents
learn that P is taken and discard it from the graph. The agent who has taken
P will proceed with it to arrive at D or at an end-node of a blockage, in the
latter case he backtracks to O and discards P from the graph. In other words,
the agents do not benefit from waiting at O in order to receive any blockage
information and they immediately take a new O-D path when they retrace back
to O. Note that all of the L agents are initially at O. Thus we can define the
concept of iteration for an arbitrary deterministic strategy for the multi-agent
k-CTP in presence of complete communication on the special graph in Figure
3.1 as follows. At the beginning of each iteration, L agents at O take L different
O-D paths from the set of O-D paths that are not traversed. The iteration ends
either when at least one of the agents arrive at D or all of the agents retrace
back to O. The former case happens when the O-D path O —V; — D is selected
by one of L agents, in this case the cost of the iteration equals to one and the
strategy ends. The latter case occurs when all of the L O-D paths that are

taken by L agents are blocked. In this case the cost of the iteration equals to
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two. Also note that any deterministic strategy ends within at most [£] + 1

iterations.

e Computation of the competitive ratio. Note that the probability that the
O-D path O —V; — D is selected at iteration j* in an arbitrary deterministic
strategy can be computed as

1 (k—(j—1) 1\ (k—(*—1)L
ILS DO

e

for j* = 1,2, ..., L%j + 1. The value of the probability above is k+1 for j*

kH1-LIE] o j*=£] 4+ 1. If O — V; — D is selected

1,2, ..., L%J and equals to ———

at the jth iteration, the strategy ends with cost of 2 — 1. Hence the expected

cost of the strategy can be computed as

which equals to

L k., k+1-—LIE] &k
T el

We just showed that the expected cost of an arbitrary deterministic strategy with re-
spect to the distribution given on the inputs does not exceed 25 (| # k] )%—% 21%]+
1). Since the cost of the offline optimum is one, the theorem follows from Yao’s Prin-
ciple.

O

Corollary 3.2.1. There is no randomized online strategqy with competitive ratio less
than 5 (1%])* + k+1k+L1L J(2[ | + 1), for multi-agent k-CTP in presence of limited

communication.

Proof. Note that the agents have lower level of communication in comparison to the
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case with complete communication. Hence the competitive ratio can not be better

than the competitive ratio of the case with complete communication. [

The remark below shows that our proposed lower bound is bounded above by
%]+ 1.
Remark 3.2.1. Note that 0 < k+ 1 — LL%J < L and equals to L when k£ + 1 1is a
multiple of L. Thus the maximum value of the competitive ratio corresponds to the
case when k + 1 is a multiple of L. Note that in this case [£] +1 = 1. Hence
the competitive ratio can be bounded above by kL—i-l ZEIJH 2i—1= k%l 2::%11 2i—1,
which equals to k%l(%)Q =ML — | 5] 4+ 1. We just bounded the competitive ratio

from above by the consideration of the case that maximizes the competitive ratio.

Now we introduce our optimal randomized strategy in presence of both limited

and complete communication. We call our strategy Ss.

Optimal strategy for the cases with limited and complete communication (Ss)

Take an O-D edge-disjoint graph, L, L; and k as input. Select an arbitrary RS-type
agent A. Let A determine k + 1 cheapest O-D paths in the graph, i.e. Py, Ps, ..., Ppi1
with costs ¢; < ¢ < ... < ¢gy1. Then, A randomly classifies Py, P, ..., Pry1 into
k+1—L|%| groups which contain |£]+1 O-D paths and L — (k+1— L[ %) groups
which have |£] O-D paths such that: 1) P; (i € {1,2,...,k + 1}) is added to one of
the groups that have [£]| + 1 O-D paths with probability p; = %(L%J + 1),
and 2) P; (i € {1,2,...,k+1}) is added to one of the groups that have [ £| O-D paths

—(k+1-L| %
- (kz—ilLLLJ) | %], ie. p;+p; = 1. Note that L different groups

with probability ps = 13

are constructed. Next, A assigns exactly one agent to each group arbitrarily. In this
case the problem is decomposed into L different sub-problems with only one agent.

Apply S; on each sub-problem. If at least one of the agents has arrived at D, stop.

Note that S7 and S3 are equivalent when L is one. Below we prove the competitive

ratio of Sj3.
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(k+1—LL§J)(L

Theorem 3.2.4. The competitive ratio of S is at most T %J +1)2 +

(L—(er1-LLE)D) | &
k+1 L

)%, on O-D edge-disjoint graphs.

Proof. Let P (i* € {1,2,...,k + 1}) be the offline optimum and ¢* be its cost. S
partitions the O-D paths into k + 1 — L[ £| groups that have |£] +1 O-D paths and
L — (k+1— L|%]) groups which contain [¥] O-D paths. Also, exactly one agent is

assigned to each group and implements S; on that group. P;« belongs to one of the

(k+1-LI DL E]1+D)
k+1

groups that have L%J +1 O-D paths with probability and belongs to

—(k+1-LIF ) 7]
k+1

one of the groups which contain L%J O-D paths with probability (& . In
the former case, there are at most L%J blocked O-D paths in the group which contains
Py, hence S3 ends with an expected cost of at most (| %] + 1)¢* by Theorem 5.5.1.
In the latter case, there are at most L%J — 1 blocked O-D paths in the group that

contains P;-. Hence, S3 ends with an expected cost of at most (|%])c* by Theorem

5.5.1. Therefore, the expected cost of S3 is at most

(k+1-LIEN(EJ+D kK o, L=(G+1=LIFDE k.
L (L7 + e + o (L7De)
The theorem follows since the cost of the offline optimum is ¢*. [

k
Theorem 3.2.5. S3 meets the lower bound of #(L%JV + %(2%] +1) on the

competitive ratio of the randomized strategies for the multi-agent k-CTP in presence

of both limited and complete communication.

Proof. We need to show that the competitive ratio of S3 and the lower bound are
equal. Set v =k +1— L|£]. In this case the competitive ratio of S5 can be written

as
L—«
k+1

o) k s Lk, o k
k+1(LfJ+1) _k—HLZJ +k—+1(2LZJ+1)’

ko
LEJ +
and the lower bound can be written as

L k.,
k+ﬁZJ+

S

k+

Since the presence of only one RS-type agent suffices to implement S5, the theorem
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Table 3.1: Comparison between the competitive ratio of the optimal deterministic strategy and
the optimal randomized strategy on O-D edge-disjoint graphs in presence of limited and complete
communication

M-PLS S3
Case with limited communication |2[X]+1 | [£]+1
Case with complete communication | 2[ 2] +1 | [£]+1
follows for both cases of limited and complete communication. n

Lk
Remark 3.2.2. Note that t£5([F])* + %(2[% +1) < [£] + 1 according to
Remark 3.2.1. It follows that S5 is at most | £| + 1 competitive on O-D edge-disjoint

graphs in both cases with limited and complete communication.

Table 3.1 presents a comparison between the competitive ratio of our optimal
randomized strategy S3 and the optimal deterministic strategy (M-PLS) that is pre-
sented in [51] for O-D edge-disjoint graphs. As we can observe, S3 achieves a better
expected competitive performance (almost twice better) in both cases of limited and

complete communication in comparison to the M-PLS.

3.2.7 Concluding remarks

We studied randomized online strategies for the multi-agent k-CTP. We analyzed the
problem in three different cases: 1) without communication, 2) with limited com-
munication, and 3) with complete communication. We proved lower bounds on the
competitive ratio of the randomized online strategies for these cases. We introduced
an optimal randomized strategy for the cases with limited and complete communica-
tion on O-D edge-disjoint graphs which finds real-life applications. We showed that
our optimal randomized strategy Ss achieves a better expected competitive perfor-
mance in comparison to the optimal deterministic strategy (M-PLS) that is given in
the literature. We also showed that having complete communication does not im-
prove the competitive ratio of the optimal randomized strategy on O-D edge-disjoint

graphs in comparison to the case when communication is limited. Additionally, we
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showed that increasing the number of agents can improve the competitive ratio of the
randomized strategies when there is no communication between agents. We also note
that the problem of designing a randomized online strategy in the case without com-
munication that meets the lower bound of the problem on O-D edge-disjoint graphs

remains as an open research problem.

3.3 Analysis of online strategies on graphs having common edges on the

O-D paths

3.3.1 Introduction

In recent years, several studies have focused on designing and analyzing online strate-
gies for the multi-agent k-CTP in presence of complete communication (e.g. see [51]
and [74]). We remind that in the multi-agent k-CTP, k denotes the number of blocked
edges and L denotes the number of agents. A lower bound of 2 L%J +1 on the compet-
itive ratio of deterministic strategies has been derived in [74]. However, an optimal

deterministic strategy which meets the given lower bound is not provided.

3.3.2  Our contributions

In this section, we prove a lower bound on the competitive ratio of deterministic online
strategies for the multi-agent k-CTP with complete communication which is tighter
than the lower bound of ZL%J + 1 given in the literature. By this way, we show that
no deterministic strategy matches the lower bound of 2| £] + 1 on the competitive
ratio of deterministic strategies for the multi-agent k-CTP in presence of complete

communication.

3.3.8 The lower bound

A lower bound on the competitive ratio is usually derived by designing a set of specific
instances on which no online strategy can perform well compared to an optimal offline

strategy. For the multi-agent k-CTP with complete communication, the input graph
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instances that are considered for providing the current best lower bound (2|£] +
1) are such that the O-D paths do not contain common edges. However, common
edges on the O-D paths may cause the agents that are assigned to different O-D
paths to encounter the same blocked edge. We note that since all of the agents can
communicate with each other, the competitive performance of deterministic strategies
may reduce in cases in which the O-D paths on the input graph contain common edges
in comparison to the cases where the O-D paths on the input graph are edge-disjoint.
Based on this argument, we consider input graph instances where the O-D paths
have common edges in order to provide an improved lower bound on the competitive
ratio of deterministic strategies. We note that edge costs represent the edge traveling
times in the analysis provided in this section. First, we need to present the following

definition.

Definition 3.3.1. For an integer value of k, consider the graph topology that consists
of three connected parts (e.g., shown in Figure 3.2 for k& = 2). The graph consists
of (1) a left part which is a full binary tree of height k, where the root node of the
binary tree is the leftmost node (node O in Figure 3.2 for k = 2). (2) A right part
which is a full binary tree of height k£, where the root node of the binary tree is the
rightmost node (node D in Figure 3.2 for k = 2). (3) A bridge part that consists of
2% edges such that each one connects a leaf node of the left part to a leaf node of the
right part. We call the edges in the bridge part the bridge edges. For an integer value
of k, we call such a graph topology the adversary topology of order k.

Theorem 3.3.1. No deterministic online strategqy achieves a competitive ratio better

than 2% | + 1, where
A =maxp-cio1,,. cy{mar{—1, [logaL* |} + max{—1, [logo(L — L*)|} + 2}.

Proof. We assume that the input graph has the adversary topology of order k (Defi-
nition 3.3.1), where O is the root node of the left tree and D is the root node of the

right tree. We set the traveling time of the bridge edges equal to one and the traveling
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Figure 3.2: An adverse topology of order two

time of the other edges equal to zero. Figure 3.2 represents an adverse topology of
order two with specified values. We assume that the blocked edges are located at the
right tree. Note that all of the agents are at O at time zero. We organize the rest of

our proof in three parts.

e Representation of an arbitrary deterministic strategy ALGP”. Suppose
that an arbitrary deterministic strategy ALGP” ends in time interval [t*, t* + 1),
where t* is a non-negative integer number. Then, ALG® can be represented by
set of pairs {([¢,i+ 1), L;)} for i =0, 1,2, ..., t*, where [i,i+ 1) represents a time
interval and L; (L; € {0,1,2, ..., L}) denotes the number of agents which depart
from the left tree by taking a bridge edge in time interval [i,7 + 1). We need to

prove the following lemma which we apply in the rest of our proof.

Lemma 3.3.1. It holds that L;+ L1 < L (i =0,1,2,....t*) for ALGP applied

to an adversary topology of order k.

Proof. Note that L; agents that leave the left tree in time interval [i,i + 1)
(1 =0,1,2,...,t") arrive at the right tree in time interval [i + 1,7 + 2) since we
assumed that the blocked edges are at the right tree, i.e. none of the bridge
edges are blocked. Also note that L; agents that leave the left tree in time

interval [i,i+ 1) do not arrive back to the left tree in time interval [i 4+ 1,7 + 2)
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since traversing forward and traversing back a bridge edge takes at least two

units of time. Hence L;,; < L — L;. O

e Configuration of adversary blocked edges. Note that the left tree consists
of k + 1 levels, where the root node of the left tree has level one. Similarly, the
right tree consists of k£ + 1 levels, where the root node of the right tree has level
one. Also note that level j (5 € {1,2,...,k+1}) consists of 277! nodes. We label
the nodes arbitrarily such that Ufjft represents the wth (w =1,2,...,2771) node
of the jth level on the left tree, and v{j;’ht represents the wth (w=1,2,...,2971)

node of the jth level on the right tree. For ALG", we let 27,; denote the number
left

of agents that visit v,5" within time interval [/, + 1) for i = 0,1,2,...,¢*. For
ALGP, we assume that the online adversary blocks the edges according to the

following strategy which we call the blocking strategy.

Blocking Strategy:

— Initialization. Define ¢ and j as counter variables and set ¢ = 0 and j = 2

initially.
— Step 1. If there exists at least one node such that xfuj > 0, go to Step 2.
Otherwise, set © = ¢ + 1 and go to the beginning of Step 1.

— Step 2. Determine w* € {1,2,..., 27"} such that «},., = mazeq 2. 2-13{2h,; }-

Block the edge which emanates from vZf]}-lt and enters a node on the (j—1)th
level of the right tree, and set j = j + 1. If 7 > k, stop; otherwise, go to

Step 1.

e Deriving the lower bound. We need to prove the following lemma to derive

our lower bound.

Lemma 3.3.2. The agents can find at most A blocked edges within time interval

(2i,2i+2] fori=0,1,2, ..., ZL%J in ALG® applied to adversary topology of order
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k with specified edge traveling time values, where
A =maz o2,y {mazr{—1, [logL* |} + max{—1, |loga(L — L*)] } + 2}.

Proof. Consider the Ly; agents that leave the left tree in time interval [2i,2i+1)
fori =0,1,2,...,2 L%J in ALGP. These agents do not find a blocked edge before
and after time interval [2i + 1, 2i 4 2) since all of them should traverse a bridge
edge to arrive at the right tree and traversing a bridge edge takes at least one
unit of time. Suppose that the blocking strategy generated m < k blocked edges
before investigating ALGP in time interval [2i,2i + 1). We assume that the m
blocked edges are known to the Ls; agents. If Lo; = 0, the blocking strategy gen-
erates no blocked edge when time interval [2i,2i + 1) is investigated. If 2i = ¢*,
ALGP ends before time 2i + 2. Otherwise, the blocking strategy blocks an edge
emanating from the (m+u)th level of the right tree for u = 1,2, ..., [logaLo; | +1
such that all of the Ls; agents encounter a blocked edge on their assigned O-D
paths in ALGP (see Step 2 of the blocking strategy). Thus, the Lo; agents find
at most max{—1, |logaLs; | }+1 blocked edges within time interval [2i41, 2i+2)
fori =0,1,2,...,2| %] in ALGP. Similarly, the Ly;;; agents that leave the left
tree in time interval [2i41, 2i+2) find at most max{—1, [logaLa;+1]}+1 blocked
edges within time interval [2i +2,2i +3) in ALGP. To draw a smallest competi-
tive ratio, we assume that the Lo;.; agents encounter maxz{—1, [logaLo;i1]} +1
blocked edges at time 2¢ 4 2, i.e. the earliest possible time. Thus, the Lo; and
Lo;1 agents can find at most max{—1, [logaLs; |} + max{—1, |logaLai1]} + 2
within time interval (2i,2i + 2]. Note that Lo;yy < L — Lo; according to
Lemma 3.3.1. Therefore, the agents can find at most max{—1, [logaLs;]} +
maz{—1, [log2(L — L2;) |} + 2 blocked edges within time interval (2i,2i + 2].
Since max{—1, [logaLa;|} + max{—1, |logs(L — Lo;) |} + 2 is less than or equal
to A = maxpecoz,. ry{mar{—1, [logoL* |} + max{-1, [loga(L — L*)|} + 2}

fori=0,1,2,..., QL%J, the lemma follows.



72 Chapter 3: Online multi-agent k-Canadian Traveler Problem

]

It takes at least [%] time intervals with length two from time zero to find
the k£ blocked edges. It takes one unit of time to arrive at D when all of the
blocked edges are identified. Thus, no deterministic strategy end earlier than
time 2% | + 1. The theorem follows since it takes one unit of time from O to D

in the offline optimal strategy.

O

Corollary 3.3.1. The lower bound onL%J + 1 on the competitive ratio of determin-

istic strategies is not tight for the multi-agent k-C'TP with complete communication.

3.3.4  Concluding remarks

We proved an improved lower bound on the competitive ratio of deterministic online
strategies for the multi-agent k-CTP with complete communication. We designed
instances of an input graph in which the O-D paths have common edges. Our analysis
shows that the competitive ratio of deterministic strategies may reduce in the cases
where the O-D paths on the input graph contain common edges in comparison to the

cases in which the O-D paths on the input graph are edge-disjoint.

3.4 Summary of the results

Table 3.2 presents a summary of the results of Chapter 3.
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Table 3.2: Summary of the results in Chapter 3

Problem

Result

Case

Network Type

Publication Status

Multi-agent k-CTP without communication

Lower bound

Randomized

General networks

Published in [52

Multi-agent k-CTP with limited communication

Lower bound

Deterministic

General networks

Published in [51

Multi-agent k-CTP with limited communication

Optimal strategy

Deterministic

Node-disjoint O-D paths

Published in [51

Multi-agent k-CTP with limited communication

Lower bound

Randomized

General networks

Published in [52

Multi-agent k-CTP with limited communication

Optimal strategy

Randomized

Node-disjoint O-D paths

Published in [52

Multi-agent k-CTP with limited communication

Lower bound

Deterministic

General networks

Published in [51

Multi-agent k-CTP with complete communication

Optimal strategy

Deterministic

Node-disjoint O-D paths

Published in [51

Multi-agent k-CTP with complete communication

Lower bound

Randomized

General networks

Published in [52

Multi-agent k-CTP with complete communication

Optimal strategy

Randomized

Node-disjoint O-D paths

Published in [52

Multi-agent k-CTP with complete communication

Lower bound

Deterministic

General networks

In preparation




Chapter 4

ONLINE MINIMUM LATENCY PROBLEM WITH EDGE
UNCERTAINTY

4.1 Introduction

The minimum latency problem (MLP) is a well-studied problem in combinatorial
optimization. In the MLP, an undirected simple connected graph G = (V| FE) is
given to an agent, where V = {vg,v1,vs,...,v,} and vy € V is a root node. Non-
negative edge distances are also given. The agent should start from vy and complete
a tour visiting all the nodes. The latency of v; is denoted by [;, which represents
the distance traveled before first visiting v;. Naturally, [y is zero. The objective of
the agent is to find a tour on G, starting from vy, that minimizes > (). This
problem is also known as the deliveryman problem [1] or the traveling repairman
problem [30]. The MLP is an NP-hard problem [50] and it is APX-hard, implying
the non-existence of a polynomial-time approximation scheme (PTAS) unless P=NP
[54]. Several exact algorithms have been proposed for the MLP (see [44], [65], [45], [7]
and [6]). Approximation algorithms for the MLP have been extensively investigated
(see [19], [32], [9] and [25]), and the best approximation ratio achieved to date is 3.59

which is presented in [25].

We consider an online variant of the problem, in which k edges of G are blocked,
and the agent only learns that an edge e € FE is blocked, if she reaches at one of
the end-nodes of e. The graph remains connected if the blocked edges are removed
from it. The objective of the problem is to provide an online strategy such that
the agent finds a feasible tour, i.e. one without blocked edges, starting from vy which

minimizes Yy ., [(¢). This problem is called the online minimum latency problem with
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edge uncertainty (OMLP) and has been recently studied in [70].

Online strategies are divided into two categories as deterministic and randomized.
In a deterministic strategy, actions of the decision maker do not depend on proba-
bilistic outcomes, whereas in a randomized strategy the actions of the decision maker
are taken according to some probability distribution. To evaluate the performance of
online strategies, the notion of competitive ratio has been introduced by Sleator and
Tarjan [55] and adopted by many researchers afterwards. For a deterministic strategy,
ALGP | the competitive ratio is the maximum ratio of the cost of a feasible solution
found by ALGP to the cost of the offline optimum over all instances of the problem.
For a randomized strategy, ALGT, the expected competitive ratio is the maximum
ratio of the expected cost of a feasible solution found by ALG® to the cost of the
offline optimum over all instances of the problem. In the offine OMLP the blocked
edges are removed from the graph. Hence, solving the offline OMLP is equivalent to

solving an MLP.

4.1.1  Our contributions

A lower bound of 2k + 1 has been derived for the competitive ratio of deterministic
online strategies for OMLP in [70]. However, a deterministic online strategy which
meets the lower bound of 2k + 1 is not provided. In this section, we prove that the
lower bound of 2k + 1 is tight by introducing an optimal deterministic online strategy
whose competitive ratio matches the lower bound. Furthermore, we prove that no
randomized online strategy can achieve an expected competitive ratio better than

k + 1 for OMLP.

4.2 An optimal deterministic strategy

In this section we present an optimal deterministic online strategy for OMLP. Our
strategy is iterative and terminates in at most k + 1 iterations. At the beginning of
the gth (¢ € {1,2,...,k + 1}) iteration, the agent removes the found blocked edges

from the graph and calls an exact MLP to compute a tour 7}, which starts from vy and
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minimizes total latency of all the nodes. We note that several exact MLP formula-
tions are designed for complete graphs (see [7] and [6]). To apply these formulations,
G can be transformed to a complete graph, G = (V, E/), such that an edge e;; € E
corresponds to a shortest path between v; and v; on G, for 4,5 € {0,1,....,n}. For
any tour 7' on G, we can construct a corresponding tour 7 on G by replacing each
edge in T" with the corresponding shortest path on G. Wu et al. [65] discussed that
the sum of the latencies of the nodes on T is less than or equal to the sum of the
latencies of the nodes on T". Thus, an exact solution on G can be obtained. After T,
is constructed, the agent travels on 7; and either visits all of the nodes in V' or finds
a new blocked edge. In the former case, the iteration ends and the strategy stops. In
the latter case, the agent backtracks to vy and the iteration ends. Due to the nature

of our strategy, we call it the Backtrack strategy.

Backtrack Strategy

e Initialization. The agent takes the graph G = (V, E) as input. Let F' denote
the set of found blocked edges and set F' = (). Let ¢ be a counter variable which
represents the iteration number and set ¢ = 1. Let G, represent the graph at

the beginning of the gth iteration and set G; = G.

e Step 1. The agent applies an exact MLP formulation and obtains an optimal
tour 7, on G, which starts from vy and minimizes ). , df, where d} (i €
{1,2,...,n}) is the distance from vy to the first visit of v; on T,. Then, she starts
traversing 7},. If there is no blocked edge on 7}, the strategy ends. Otherwise, a
new blocked edge is found. In this case, the agent adds the found blocked edge
to F and backtracks to vg. Then, she sets ¢ =¢+1, G, = (V, E — F), and goes

to the beginning of Step 1.

Let k£ denote the number of blocked edges in GG. Below, we show that the backtrack

strategy matches the lower bound of 2k 4+ 1 given in [70].
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Theorem 4.2.1. The backtrack strategy achieves the competitive ratio of 2k + 1 for
the OMLP.

Proof. Let d* (¢* € {1,2,....k 4+ 1}) denote the distance between vy and v; in the
offline optimum tour, i.e. the total latency of the offline optimum is Y, df . Also
let £7 (g € {1,2,...,k 4+ 1}) denote the set of edges in G, at the beginning of the gth

iteration. Since E' D E? O ... D EY, we have

zn:d} < zn:df <. < zn:d;?*‘l < zn:dg*.
=1 =1 =1 =1

The rest of our proof is by induction on k.

e Base case. For k = 1, the strategy terminates in at most two iterations. If
the strategy ends in the first iteration, the competitive ratio would be one.
Otherwise, the agent finds a blocked edge on 77 and backtracks to vy. Suppose
that the agent has visited x number of nodes on T before facing a blocked edge.
Let X C V denote the set of visited nodes. Let A denote the distance on T}
that the agent has taken from vy to the end-node of the blocked edge. The total

latency of the strategy can be represented as

Zd1+2An—x Z dq

1€X ueV—-X
It is straightforward to show that
Y di+An—x) < Zdl < qu
1€X

It follows that

D di+2An—x) <20 _dl +A(n— 1)) <2Zd1 <2Zd‘1

ieX i€X

Note that >, o d? <37, d” . Hence the total latency of the strategy can
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be bounded from above by 337, d?. Since the total latency of the offline
optimum is y ", dg*, the base case follows.

Induction. We assume that our claim is valid for £k = ¢ — 1 and we prove its
correctness for k = ¢. If the strategy stops in the first iteration, the competi-
tive ratio would be one. Otherwise, the agent finds a blocked edge on 77 and
backtracks to vg. Suppose that the agent has visited z number of nodes on T}
before facing a blocked edge. Let X C V denote the set of visited nodes. Let A
denote the distance on 77 that the agent has taken from vy to the end-node of
the blocked edge. Similar to the case with k£ = 1, we represent the total latency
of the strategy at the end of the first iteration as

> di+2A(n—az)+C,

ieX
where C' denotes the total latency of the nodes in V' — X from the end of the
first iteration. Note that at the end of the first iteration the agent is at vy and
there are k — 1 blocked edges in the graph. Thus, C'is at most (2¢—1) 3.1, d¥
according to the induction assumption. Also note that Y,  d! +2A(n —z) <
25" d?". The theorem follows.

Note that the backtrack strategy does not run in polynomial time since it uses an
exact MLP strategy to compute T;, (¢ € {1,2, ..., k+1}) in Step 1. One can utilize a de-
terministic approximation strategy for MLP to compute T} in Step 1 of the backtrack
strategy to obtain a polynomial time deterministic strategy for OMLP. Let ALGP be

a deterministic strategy for OMLP in which the agent applies an a—approximation

strategy instead of an exact one in Step 1 of the backtrack strategy. Similar to the

proof of Theorem 4.2.1, one can verify that ALGE achieves the competitive ratio of

a(2k + 1) for OMLP. Note that best known « to date is 3.59 [25].
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4.3 A lower bound on the expected competitive ratio of randomized

strategies for OMLP

In this section we prove that no randomized online strategy can achieve an expected
competitive ratio better than k+ 1 for OMLP. We apply Yao’s Principle [68] to derive
our lower bound. Yao [68] showed that the expected cost of a randomized strategy
on the worst-case input is no better than that of a worst-case random probability
distribution of the deterministic strategy which performs the best for that distribution.
We refer the reader to [64] and [52] for applications of Yao’s Principle to the k-

Canadian Traveler’s Problem and its variants.

1 Vlk+1)+1 Vlk+1)x+1

V2 V(k+1)+2 V(ik+1)x+2
Vg Vk+1)(x+1)+1
Uk Vie+1)+k V(k+1)x+k
*—
Vk+1 V(k+1)+k+1 Vlk+1)(c+1)

Figure 4.1: The graph for deriving the lower bound of k£ + 1

Proposition 4.3.1. No randomized strategy achieves an expected competitive ratio

better than k + 1 for OMLP.

Proof. We consider the graph in Figure 4.1, where

V= {U07U(k+1)(x+1)+1} U {v(k+1)u+q|u =0,1,....,z,g=1,2, ...k + 1}
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and

E = {(v0,v¢); (V(k41)usq> V(k+1) (ut1)49)> Vkt1)a+q V1) @+1)+1) Hu = 0,1, 0 = 1,1 < g <k + 1},

Let the distance of the edges (vo,v,) be one for ¢ = 1,2, ..., k+1 and let the distances
of the other edges be €, where € is a positive number which approaches zero. That is,
we do not consider € values in our analysis. We choose r € {1,2, ...,k + 1} uniformly
at random. Let (vr,v(g11)4-) be traversable and block the edges (v, , v q)4y) for
q¢ €{{1,2,...,k+1}—={r}}. Alsolet V' = {V — {wg,v1,va, ..., 041} }.

In the offline optimum, the agent starts from vy and traverses the edge (v, v;)
to arrive at v,.. Then, she traverses all of the edges with distance € to visit the
z(k+1) + 1 number of nodes in V'. Thus, the latency of a node v; € V' is one in the
offline optimum, i.e. the total latency of the nodes in V' is #(k + 1) + 1. Since the
edges (v, V(1)) are blocked, the agent has to traverse the edge (vp,v,) to visit
v, for q¢ €{{1,2,...,k+1} —{r}}. Hence, the total latency of the nodes in V — V" is
Z];:ll 2q — 1 = (k + 1)2. Therefore, the expected total latency of the offline optimum
can be represented as z(k + 1) + 1+ (k + 1)%

We consider an arbitrary deterministic strategy, ALGP, applied to the graph in
Figure 4.1. In ALGP, the agent starts from vy and takes an edge (vo,v,) (¢ €
{1,2,...,k+1}). Then, two cases may happen. In the first case, the agent learns that
the edge (vq, U(kt1)1q) is traversable and takes it. Then, she traverses all of the edges
with distance € to visit the 2(k+1) +1 number of nodes in V. In the second case, she
learns that the edge (vg, V(k41)44) is blocked, backtracks to vy and tries a new edge.
It is straightforward to show that the agent visits v, after visiting ¢ — 1 nodes which
belong to {{v1, vy, ..., vk41} —{v, } } with probability ;=5 in ALG” for ¢ = 1,2, ..., k+1.
If the agent has visited ¢ — 1 nodes in {{vy, v, ..., vx41} — {v, } } before visiting v,, the
total latency of the nodes in V' can be represented as (2¢ —1)(2(k+1)+1). Note that
since the edges (v, Vg1 ., ) are blocked, the agent has to traverse the edge (vo,v,)
to visit v, for q¢ € {{1,2,...,k+1} — {r}}. Hence, the total latency of the nodes in
V—-V'is Zgi} 2¢ — 1= (k+1)% in ALGP. Therefore, the expected total latency of
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Table 4.1: Summary of the results in Chapter 4

Problem Result Case Network Type | Publication Status
OMLP | Optimal strategy | Deterministic | General networks In preparation
OMLP Lower bound Randomized | General networks In preparation

ALGP can be written as

k+1 k+1

(k41 + > (20 = etk + 1)+ ) = (k17 Ll > (20 1)

which is equal to (k+1)? + (z(k+ 1)+ 1)(k + 1). Since the expected total latency of
the offline optimum is x(k+1) +1+ (k+1)?, when x approaches +o0, the proposition
follows by Yao’s Principle.

4.4 Concluding remarks

We proved that our backtrack strategy is optimal for OMLP since it achieves the
competitive ratio of 2k 4+ 1. That is, we showed that the lower bound of 2k + 1 on
the competitive ratio of deterministic online strategies is tight for OMLP. We also
proved that no randomized online strategy can achieve an expected competitive ratio
better than k + 1 for OMLP. However, devising a randomized online strategy which
matches the expected competitive ratio of k+1 for OMLP remains as an open research
problem.

Table 4.1 presents a summary of the results of Chapter 4.



Chapter 5

ONLINE DISCRETE SEARCH PROBLEM WITH
TRAVELING AND SEARCH COST ON UNDIRECTED
GRAPHS

5.1 Introduction

Search theory is one of the oldest research areas within the field of Operations Re-
search. Nunn [47] stated that problems involving search arise in such diverse areas as
the military looking for enemy submarines, the coast guard searching for small boats
lost in a storm, prospectors surveying for mineral deposits, a crew searching missing
backpackers in the forest, law enforcement officers looking for lost weapons or escaped
criminals, a secretary looking for missing file, or an analyst scanning a computer print-
out for missing data. Locating a victim during search-and-rescue operations after a

disaster can be added to this list.

In problems involving search, there is a searcher who probes for a hider. The
hider can be static or moving depending on the context. The focus of our study is
on search problems with a static hider. For problems with a moving hider, see [22],
[23], and [60]. The static hider can be positioned in a discrete or continuous search
domain. We call the search problems with a discrete search domain discrete search
problems and the search problems with a continuous search domain continuous search
problems.

In search problems, the common unknown information to the searcher is the lo-
cation of the hider. The objective of the searcher is to provide a strategy which finds
the hider with minimum total cost. The searcher has to devise his strategy under

incomplete information. The approach usually taken for such problems is to consider
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some probabilistic model associated with uncertain information and act on this basis.
Our approach is to compare the performance of the strategy that operates under in-
complete information, i.e. the online strategy, with the performance of the strategy
that operates in presence of complete information, i.e. the offline strategy. This ap-
proach requires no probabilistic knowledge of the future and is therefore a worst-case
measure of performance. This type of analysis was first suggested in [55] and later
called competitive analysis in [36]. Online strategies are divided into two categories
as deterministic and randomized. In a deterministic strategy, actions of the decision
maker do not depend on probabilistic outcomes, whereas in a randomized strategy
the actions of the decision maker are taken according to some probability distribution
3.

There are two main motivations to analyze discrete search problems in terms of
competitive analysis. The first one is that in several real-world applications of these
problems; it is very difficult to obtain probabilistic knowledge about the location of
the hider. The second motivation is that in many real-world applications of discrete
search problems such as security and defense, for instance in a bomb exploration
operation, having a strategy with a good worst-case performance is vital since human

life is at stake.

5.1.1  Problem Definition

We study an online variant of discrete search problems as follows. Given an undirected
connected graph G = (V) E), where V' = {vg, v1, 09, ..., 0, }, node v; (i € {1,2,...,n})
of the graph is associated with a given non-negative search cost s;. A non-negative
edge cost d, is also given for each edge e € E. A static hider is at one of the nodes v;-
(i* € {1,2,...,n}) which is not known to the searcher. The hider is not found unless
the searcher arrives at v;+ and incurs the search cost of v;+. Starting from vy, the
searcher wants to devise an online strategy to locate the hider with minimum total
cost. We call this problem the online discrete search problem on undirected graphs

(ODSP). The ODSP has not been studied from the competitive analysis perspective
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in the literature. We note that the second stream of search problems on graphs are

the most related type of work in the literature to the ODSP.

To evaluate the performance of online strategies, the notion of competitive ratio
has been introduced by Sleator and Tarjan [55] and adopted by many researchers.
For a deterministic strategy, the competitive ratio is the maximum ratio of the cost of
the online strategy to the cost of the offline strategy over all instances of the problem.
For a randomized strategy, the expected competitive ratio is the maximum ratio of
the expected cost of the online strategy to the cost of the offline strategy over all
instances of the problem. In the offline version of the problem, the hideout node of
the hider (v;+) is known to the searcher. Hence, the cost of the offline optimum equals

the cost of the shortest (cheapest) path from vy to v plus the search cost of v;».

5.1.2 Our Contributions

Several past studies have conducted competitive analysis on the variants of online
continuous search problems which are defined on graphs, see [8], [26] and [35]. How-
ever, to the best of our knowledge, online discrete search problems have not been
studied from the competitive analysis point of view. In this section, we investigate an
online discrete search problem which we call the ODSP from the competitive analysis
perspective for the first time. The ODSP finds applications in diverse areas such as
security, defense, and search-and-rescue. We provide policies that are optimal with
respect to the worst-case scenarios for such applications. We derive a tight lower
bound on the competitive ratio of deterministic strategies and propose an optimal
deterministic strategy. We also provide a tight lower bound on the expected compet-
itive ratio of randomized strategies and prove its tightness by introducing an optimal
randomized strategy. In this way, we show that randomized strategies can achieve
a better competitive ratio in comparison to deterministic strategies for the ODSP
in the expected sense. We note that our proofs for randomized strategies are more

challenging.
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5.2 Tight lower bound on the competitive ratio of deterministic strate-

gies for the ODSP

To prove a lower bound LBP on the competitive ratio of deterministic strategies for
an arbitrary online problem, it suffices to prove that for an arbitrary deterministic
strategy, ALGP, there exists at least one instance of inputs I” such that ALGP
cannot achieve a competitive ratio better than LB” on I”. We remind the reader

that V' = {vg, vy, va, ..., v, } and we assume that the search domain is {vq, vy, ..., v, }.

Theorem 5.2.1. There is no deterministic strateqy with a competitive ratio less than

2n — 1 for the ODSP.

Proof. We consider an arbitrary deterministic strategy, ALGP for the ODSP, and
prove that there exists at least one instance of inputs, I”, such that the competitive
ratio of ALGP is not better than 2n — 1 on I”. We let the input graph G contain
n + 1 nodes vy, vy, s, ..., v, and have the star topology shown in Figure 5.1, where
v is the root (hub) node. Let vy be the starting node of the searcher. In G, vy is
connected to v; via an undirected edge with cost one for i = 1,2,...,n, i.e. there are
n edges in G. Let the search cost of v; be zero, for i € {1,2,...,n}. Note that ALGP
applied to G corresponds to a permutation which specifies in which order the n nodes
should be searched.

For ALGP, we let IP be the instance in which the node of the hider is the node
that is searched last. Therefore, the cost of ALGP is 2n — 1. Note that the cost of

the offline optimum is one. Thus, the competitive ratio of ALGP is 2n — 1.

5.3 An optimal deterministic strategy for the ODSP

In this section, we provide an optimal deterministic strategy for the ODSP. To provide

the rest of our results in this section, we need to present the following definition.
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V1

7]

Un

Figure 5.1: A star graph with n nodes

Definition 5.3.1. We define the operational cost of v; (v; € V') as the summation of
the cost of the cheapest path between vy and v; together with the search cost of v; for

1 =1,2,...,n. We denote the value of the operational cost of v; by ¢; fori =1,2,....n.

Now, we can present our optimal deterministic strategy which we call the back-

track strategy.

Backtrack Strategy:

e Initialization. Take G = (V| F), the starting node of the searcher vy, s; for
1 =1,2,...,n, together with d, for all e € F as input. Compute the operational
costs of the nodes in V' — {wg}. Re-label the nodes excluding vy from vy to
v, such that ¢; < ¢j for 1 < i < j < n, i.e. in non-decreasing order of their

operational costs. Define k as a counter variable and set its initial value to one.

e Step 1. Take the cheapest path from vy to v, and conduct a search at v;. If
the hider is found, stop. Otherwise, retrace back to vy by taking the cheapest
path from vy to vy, set k = k + 1 and go to the beginning of Step 1.

Theorem 5.3.1. The backtrack strategy achieves the optimal competitive ratio of
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2n — 1 for the ODSP.

Proof. Note that the backtrack strategy labels the starting node of the searcher by
vo and labels the other nodes by v; for ¢ = 1,2,...,n such that ¢; < ¢ < ... < ¢,
(e.g., shown in Figure 5.2 for an instance of the ODSP). Suppose that the hider is
positioned at v;« (1% € {1,2,...,n}). Hence the cost of the offline optimum is ¢;«. Note

that the competitive ratio of the backtrack strategy can be bounded from above by

i*—1

2c
k=1 %%k
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which is at most 2n — 1 when i* =nand ¢ = ¢ = ... = ¢,. O
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Figure 5.2: An instance of the ODSP

In the next section, we investigate whether randomized strategies can achieve a
better expected competitive ratio in comparison to the competitive ratio of the best

deterministic strategy (backtrack strategy) for the ODSP.

5.4 Tight lower bound on the expected competitive ratio of randomized

strategies for the ODSP

A lower bound on the competitive ratio is usually derived by providing a set of specific
instances on which no online strategy can perform well compared to an optimal offline

strategy. For deterministic strategies finding a suitable instance is comparatively easy
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[40]. For randomized strategies, however, it is usually very difficult to bound the
expected cost of an arbitrary randomized strategy on a specific instance from below
[40].

Yao’s Principle is a standard tool for providing lower bounds on the expected
competitive ratio of randomized strategies. Yao [68] showed that the expected cost of
a randomized strategy on the worst-case input is no better than that of a worst-case
random probability distribution of the deterministic strategy which performs the best
for that distribution. This principle was proven in [68] and presented to be applied for
driving the lower bounds on the expected competitive ratio of randomized strategies
for the online problems in [40]. Yao’s Principle allows us to trade randomization in an
online strategy for randomization in the input [40]. We apply Yao’s Principle [68] in
the next lemma in order to provide a tight lower bound on the expected competitive

ratio of randomized strategies for the ODSP.

Theorem 5.4.1. No randomized strateqy achieves an expected competitive ratio better

than n for the ODSP.

Proof. We consider the input graph G which is described in the proof of Theorem
5.2.1. We remind that G contains n + 1 nodes vy, v, v, ..., v, and have the star
topology, where vg is the root (hub) node. The node vy is the starting node of the
searcher and is connected to v; via an undirected edge with cost one for i =1,2,....n.
Also, the search cost of v; is zero for i € {1,2,....,n}. We choose i* € {1,2,...,n}
uniformly at random and assume that the hider is positioned at node v;«. Hence the
expected cost of the offline optimum is one. We consider an arbitrary deterministic
strategy ALGP for the ODSP applied to G, and organize the rest of the proof in two

parts.

¢ Definition of iterations of ALGP. Note that ALGP applied to G corresponds
to a permutation which specifies in which order the nodes of the graph, excluding
v, are being searched. Hence, we define the concept of iteration for ALGP

applied to GG as follows. At the beginning of each iteration, the searcher takes
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one of the edges in G to arrive at one of the nodes that is not yet searched
and conducts a search at that node. ALGP ends if the hider is found, i.e. the
cost of the iteration equals one and the iteration ends. Otherwise, the searcher
backtracks to vy and the iteration ends, i.e. the cost of the iteration equals two.

Also note that ALGP ends within n iterations.

e Computation of the expected competitive ratio of ALG”. Note that the
searcher probes v;« at iteration i (i € {1,2,...,n}) with probability % in ALGP,
since we selected i* according to the uniform probability distribution. If ALGP

ends at iteration 7, the searcher incurs total cost of 2i — 1. Thus, the expected

cost of ALGP is
1 n
SN2~ 1) =n.

We just showed that the expected cost of ALGP with respect to the uniform distri-
bution given on the input is n. It follows that no randomized strategy achieves an
expected competitive ratio less than n on G against its worst-case input, by Yao’s

Principle. [

5.5 An optimal randomized strategy for the ODSP

We need to present the following definition to describe our strategy. Note that Ben-
der and Westphal [17] defined the below property in a different structure for the
k-Canadian Traveler Problem. Below, we provide the definition in a generalized

structure.

Definition 5.5.1. The elements 61, 60,,...,0; which are associated with costs d; <

09 < ... < O; have the similar costs property if for all i = 1,2, ..., ¢, it holds that

2 t
@ggj;aj.

Hereafter, we say that the nodes vy, vs,...,v; with operational costs ¢y, co, ..., ¢
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satisfy the similar costs property if for all ¢ = 1,2,...;¢, it holds that ¢; < %2;21 c;
(Definition 5.5.1). We also use the following lemma to devise our optimal randomized
strategy. We note that this lemma is proven in [17] in a different context, namely
for the k-Canadian Traveler Problem. Below, we present the lemma in a generalized

structure.

Lemma 5.5.1. Suppose that the elements 01, 0,, ..., 0, which are associated with costs
01 < 6y < ... < 0 satisfy the similar costs property. Then the probability distribution

t 1 c

Q, = \*p belongs to the polyhedron Q;, where Qy and p' are t-vectors, \* = Y1 .

[0,1],

7
A

L (2=0)8+>F .25,
pi:< : ﬁ?g_lm L Vi=1,2,..,t

and

t it

;i .

Q={peR :2-tpi+ > 2p; <1 Vi = 1,2,..,t, Y pi=1}
j=lj#i " =1

Now, we can present our optimal randomized strategy which we call the random-

1zed backtrack strategy.

Randomized Backtrack Strategy:

e Initialization. Take an undirected graph G = (V| E), the starting node of
the searcher vy, s; for all v; for i = 1,2,...,n, together with d. for all e € E
as input. Define S as the selection list and let S = (), initially. Compute the
operational costs of the nodes in V' —{vg}. Re-label the nodes excluding vy from
v; to v, such that ¢; < ¢; for 1 <7 < j < n, ie. in non-decreasing order of
their operational costs. Define S" as the search list and set S° = {vy, vy, ..., vy }
initially. For any arbitrary set of ¢t nodes vy, vs,...,v; with operational costs
c1 < ¢ < ... < ¢ that satisfy the similar costs property, let the probability
distribution €, = (p1,pa,...,p:) € @Q; be the probability distribution that is
defined in Lemma 5.5.1.
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e Step 1. Remove the nodes from S to make it empty. Add the nodes from S’
to S by going through them in non-decreasing order of their operational costs

until adding the next node violates the similar costs property. Go to Step 2.

e Step 2. Let tg denote the number of nodes in S. Take one of the nodes in
S according to the probability distribution €2;.. If the hider is found, stop.
Otherwise, a new node is searched and the searcher backtracks to vg. Remove

the searched node from S’. Go to Step 1.

To prove that the randomized backtrack strategy is optimal, we utilize the fol-
lowing lemma regarding the elements 6y, 65, ...,0; (which are associated with costs
0 < 0y < ... < &) that fulfill the similar costs property and the probability distri-
bution Q; = (p1, pa,...,pr) € Q¢ (Lemma 5.5.1). We note that the following lemma is
proven in [52] in a different structure for the k-Canadian Traveler Problem. Below,

we state the lemma in a generalized structure.

Lemma 5.5.2. Consider the vector 11, = (m, o, ...,m) such that m; = % for i =

1,2,...,t. It holds that Z:leidi < 25:1 i 0;.

We apply the above lemma in the context of the ODSP to prove that the ran-
domized backtrack strategy meets the lower bound of n. That is, we consider the
nodes vy, vg, ..., v; which are associated with operational costs ¢, co, ..., ¢; instead of
the elements 64, 0, ..., §; which are associated with costs 01, ds, ..., ;. We remind that

n denotes the size of the search domain.

Theorem 5.5.1. The expected competitive ratio of the randomized backtrack strategy

is n for the ODSP.

Proof. Our proof is by induction on n.

e Base case. When n is one the searcher takes the cheapest path from vy to the
only node in the search domain with probability p; = 1, incurs the search cost

of the node, and finds the hider. Thus the cost of the randomized backtrack
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strategy and the cost of the offline optimum would be ¢;. Hence the competitive

ratio is one.

e Induction. Let vy, vy, ...,v, (n > 2) with operational costs ¢; < ¢y < ... < ¢,
be the nodes in the search domain. Also let v« (i* € {1,2,...,n}) be the node
in which the hider is positioned. Hence the cost of the offline optimum is ¢;«.
At the first implementation of Step 1, the nodes are added to the selection list
in non-decreasing order of their operational costs until adding the next node
to the selection list violates the similar costs property. Let vy, vs,...,v; with
operational costs ¢y, ¢, ...,c; be the nodes that are added to the selection list
after the first implementation of Step 1. Then the strategy enters Step 2. We

present the rest of our proof by considering two cases.

— Case 1. v;~ is added to the selection list. The searcher takes the
cheapest path from vy to vy (i € {1,2,...,¢}) according to the probability
distribution Q; = (p1, p2, ..., p¢). Then he arrives at vy and incurs its search
cost. If the hider is not found, he backtracks to vy and discards v, from
the search list, i.e. the searcher incurs a cost of at most 2c;. Otherwise,
the hider is found and the strategy ends. Suppose that the hider is not
found, and let C"~! denote the expected cost of the randomized backtrack
strategy from the end of the first iteration, i.e. when the searcher arrives
back at vy for the first time, until the end of the strategy. The expected

competitive ratio can be bounded from above by

n

t
2¢; + Cn1 2c; + C"1
D S

j=1j7i ! j=1j#i* !

Note that C"~! is at most (n — 1)¢;+ by the induction assumption (for

n =2, C' = ¢; = ¢+ according to the base case). Hence, the expected
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competitive ratio is bounded from above by

“ 2c;
Pir + Z pj(cij +n—1).
J=1j#0

We claim that the right-hand side is at most n for all ©* =1,2,....n, i.e.

2Cj§1
C

)

(2=n)p;i + Z Pj
J=1j#i
for all i = 1,2, ...,n. Since the probability distribution ,, = (p1, p2, ..., Pn)
belongs to the polyhedron @), the claim follows by the definition of @), in
Lemma 5.5.1.

Case 2. v;+ is not added to the selection list. In this case the searcher
takes the cheapest path from vy to v, (i € {1,2,...,t}) according to the
probability distribution Q; = (p1,p2,...,p:). Then he arrives at v, and
incurs its search cost. Note that the hider is not found at v, since v; is
not added to the selection list. Then, the searcher backtracks to vy and
discards vy from the search list, i.e. the searcher incurs a cost of at most
2¢c;. Hence, an expected cost of less than or equal to 2 22:1 p;ic; is incurred.
Note that 237/ pie; < 2500, ¢; according to Lemma 5.5.2 since the
nodes vy, vy, ..., v; satisfy the similar costs property by Definition 5.5.1.
Let C"! denote the expected cost of the randomized backtrack strategy
from the end of the first iteration, i.e. when the searcher arrives back at
vy for the first time, until the end of the strategy. Note that C"~! is at
most (n—1)¢; by the induction assumption. Thus the expected cost of the
to1

randomized backtrack strategy is at most 2(>;_; 1¢;)+(n—1)c;+. Since v

is not in the selection list, it follows that v;« does not fulfill the similar costs

. 2(3°E ) +2cx
property with vy, vs, ..., vy and ¢; < ¢;=. Thus, %

to Definition 5.5.1. We first multiply both sides by ¢+ 1 and then eliminate

< ¢4+ according

2¢;« from both sides to obtain 237, 1¢; < 2370 2A-¢; < ¢;+. Therefore,
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the expected cost of the randomized backtrack strategy is at most nc;«. It
follows that the expected competitive ratio is at most n since the cost of

the offline optimum is ¢;.

[]

Corollary 5.5.1. The randomized backtrack strategy achieves a better competitive
ratio than the optimal deterministic strategqy (backtrack strategy) in the expected sense

for the ODSP when n > 1.

Proof. Note that the optimal deterministic strategy achieves the competitive ratio of
2n—1 and the randomized backtrack strategy achieves the expected competitive ratio

of n. Since n < 2n — 1 for n > 1, the corollary follows. O]

5.6 Concluding remarks

We studied an online variant of discrete search problems with a static hider that we
call the ODSP from the competitive analysis point of view for the first time. In this
variant, search costs are given on the nodes in addition to travel costs on the edges.
The hider is positioned at a node of the input graph. We provided a tight lower
bound on the competitive ratio of deterministic strategies together with an optimal
deterministic strategy named the backtrack strategy. We also proved a tight lower
bound on the expected competitive ratio of randomized strategies and introduced an
optimal randomized strategy named the randomized backtrack strategy. We showed
that randomized strategies can achieve a better competitive ratio in comparison to
deterministic strategies in the expected sense. As a future research topic, one may
study a version of online discrete search problems in which the traveling costs are
negligible in comparison to the search costs.

Table 5.1 presents a summary of the results of Chapter 5.
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Table 5.1: Summary of the results in Chapter 5
Problem Result Case Network Type | Publication Status
ODSP | Tight lower bound | Deterministic | General networks Under review
ODSP Optimal strategy | Deterministic | General networks Under review
ODSP | Tight lower bound | Randomized | General networks Under review
ODSP Optimal strategy | Randomized | General networks Under review




Chapter 6

CONCLUSION AND FUTURE RESEARCH

In this chapter, we first summarize the thesis and then briefly discuss some open

problems and possible directions for future research.

6.1 Summary of the thesis

In Chapter 1, we provided an overview of online optimization and methods of an-
alyzing online strategies. We presented definitions of problems that are studied in
this thesis and stated the related literature. Finally, we summarized our results and
contributions.

In Chapter 2, we reconsidered the implementation of the RBS on graphs which
contain n node-disjoint O-D paths for the online k-Canadian Traveler Problem. We
showed that to implement the strategy, a certain property (strong similar costs prop-
erty) regarding the costs of the O-D paths in the input graph must hold. That is we
proved that the RBS is not applicable in some cases when k > 2. We showed that the
RBS is applicable when the cost of the (min{k+1,n})th shortest O-D path is at most
twice of the shortest path in the input graph. Furthermore, we modified the RBS to
obtain an optimal strategy which is applicable on graphs having only node-disjoint
O-D paths.

In the first section of Chapter 3, we analyzed the online multi-agent O-D k-
Canadian Traveler Problem. We provided updated results including the lower bounds
on the competitive ratio of deterministic strategies of the problem for the case where
the communication is limited. We argued that it is vital to consider and utilize
the higher levels of agents’ intelligence in online problems by defining three levels of

agents’ intelligence. We introduced an online strategy in O-D edge-disjoint graphs
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which is optimal in both cases with complete and limited communication when the
travel schedules are shared at the initial stage of the problem. We showed that en-
abling all of the agents to communicate does not improve the competitive ratio in
O-D edge-disjoint graphs. Furthermore, we showed that there are instances with O-D
edge-disjoint graphs in which the competitive ratio of deterministic strategies on P,

improves by increasing the number of R-type agents.

In the second section of Chapter 3, we studied randomized online strategies for the
multi-agent k-CTP. We analyzed the problem in three different cases: 1) without com-
munication, 2) with limited communication, and 3) with complete communication.
We proved lower bounds on the competitive ratio of the randomized online strategies
for these cases. We introduced an optimal randomized strategy for the cases with lim-
ited and complete communication on O-D edge-disjoint graphs which finds real-life
applications. We showed that our optimal randomized strategy S3 achieves a better
expected competitive performance in comparison to the optimal deterministic strat-
egy (M-PLS) that is given in the literature. We also showed that having complete
communication does not improve the competitive ratio of the optimal randomized
strategy on O-D edge-disjoint graphs in comparison to the case when communication
is limited. Additionally, we showed that increasing the number of agents can improve
the competitive ratio of the randomized strategies when there is no communication

between agents.

In the third section of Chapter 3, we derived an improved lower bound on the com-
petitive ratio of deterministic strategies for the multi-agent k-CTP by investigating

graphs in which the O-D paths contain common edges.

In Chapter 4, we proved that our backtrack strategy is optimal for the online
minimum latency problem with edge uncertainty (OMLP) since it achieves the com-
petitive ratio of 2k + 1. That is, we showed that the lower bound of 2k 4+ 1 on the
competitive ratio of deterministic online strategies is tight for the OMLP. We also
proved that no randomized online strategy can achieve an expected competitive ratio

better than k& + 1 for the OMLP.
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In Chapter 5, we investigated an online variant of discrete search problems with
a static hider that we call the ODSP from the competitive analysis point of view for
the first time. In this variant, search costs are given on the nodes in addition to travel
costs on the edges. The hider is positioned at a node of the input graph. We provided
a tight lower bound on the competitive ratio of deterministic strategies together with
an optimal deterministic strategy named the backtrack strategy. We also proved a
tight lower bound on the expected competitive ratio of randomized strategies and
introduced an optimal randomized strategy named the randomized backtrack strat-
egy. We showed that randomized strategies can achieve a better competitive ratio in

comparison to deterministic strategies in the expected sense.

6.2 Implications of the study

Our results including optimal policies and characterization of the worst-case scenarios
can be used in real-life applications in the areas of disaster response, search-and-
rescue, security, and defense. The policies specify precise actions for the decision
makers and the worst-case scenarios are useful to identify how an adversary would
behave to cause the most challenge so that knowing this, the decision makers can take

the necessary preventive actions under such a scenario.

We use intuitive heuristic ideas to derive our optimal deterministic strategies. Our
policies can be utilized in order to devise solution strategies for network optimization
problems with similar type of online uncertainty which are effective in the worst-
case. We also use a common framework to design our randomized strategies by
applying a specific probability distribution. Our framework can be helpful to obtain
efficient randomized strategies with respect to the worst-case for network optimization

problems having similar type of online uncertainty.

The limitation of our study is that our findings are based on worst-case analyses.
However, our results can be considered as a first step for future results including

policies which are effective on the average over a set of scenarios.
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6.3 Future research directions

The following are several directions in which the research in this thesis can be ex-

tended.

e We note that the problem of designing an optimal randomized online strategy

for the online k-CTP for the general case is an open research problem.

e We note that the problem of designing an optimal deterministic online strategy

for the multi-agent k-CTP is an open research problem.

e We note that the problem of designing a randomized online strategy in the case
without communication that meets the lower bound of the problem on O-D

edge-disjoint graphs for the multi-agent £-CTP is an open research problem.

e As a future research topic, one may study a version of online discrete search
problems in which the traveling costs are negligible in comparison to the search

costs.



1]

BIBLIOGRAPHY

Foto N. Afrati, Stavros S. Cosmadakis, Christos H. Papadimitriou, George Pa-
pageorgiou, and Nadia Papaconstantinou. The complexity of the traveling re-

pairman problem. RAIRO-Theoretical Informatics and Applications, 20:79-87,
1986.

Vural Aksakalli, O. Furkan Sahin, and Ibrahim Ari. An ao™ based exact algorithm
for the canadian traveler problem. Informs Journal on Computing, 28:96-111,

2016.

Susanne Albers. Online algorithms: A survey. Mathematical Programming, 97:3—

26, 2003.

Steve Alpern, Vic Baston, and Shmuel Gal. Searching symmetric networks with

utilitarian-postman paths. Networks, 53:392-402, 2009.

Steve Alpern and Shmuel Gal. The Theory of Search Games and Rendezvous.
International Series in Operations Research and Management Science, Boston,

2003.

F. Angel-Bello, Y. Cardona-Valdes, and A. Alvarez. Mixed integer formulations
for the multiple minimum latency problem. Operational Research, 17:1-30, 2017.

Francisco Angel-Bello, Ada Alvarez, and Irma Garcia. Two improved formu-
lations for the minimum latency problem. Applied Mathematical Modeling,

37:2257-2266, 2013.

Spyros Angelopoulos, Diogo Arsenio, and Christoph Durr. Infinite linear pro-
gramming and online searching with turn cost. Theoretical Computer Science,

670:11-22, 2017.



Chapter 6: Conclusion and Future Research 101

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Aaron Archer, Asaf Levin, and David P. Williamson. A faster, better approxima-
tion algorithm for the minimum latency problem. Siam J. Computing, 37:1472—
1498, 2008.

Giorgio Ausiello, Vincenzo Bonifacia, and Luigi Lauraa. The online asymmetric

traveling salesman problem. Journal of Discrete Algorithms, 6:290-298, 2008.

Giorgio Ausiello, Vincenzo Bonifacia, and Luigi Lauraa. The online prize-
collecting traveling salesman problem. Information Processing Letters, 107:199—

204, 2008.

Giorgio Ausiello, Marc Demange, Luigi Laura, and Vangelis Paschos. Algorithms
for the online quota traveling salesman problem. Information Processing Letters,

92:89-94, 2004.

Giorgio Ausiello, Esteban Feuerstein, S. Leonardi, L. Stougie, and Maurizio Ta-
lamo. Algorithms for the online traveling salesman. Algorithmica, 29:560-581,

2001.

Amotz Bar-Noy and Baruch Schieber. The canadian traveler problem. SODA 91
Proceedings of the second annual ACM-SIAM symposium on Discrete algorithms,
pages 261-270, 1991.

Vic Baston and Kensaku Kikuta. Search games on networks with travelling and
search costs and with arbitrary searcher starting points. Networks, 62:72-79,

2013.

Vic Baston and Kensaku Kikuta. Search games on a network with travelling and

search costs. International Journal of Game Theory, 44:347-365, 2014.

Marko Bender and Stephan Westphal. An optimal randomized online algorithm
for the k-canadian traveller problem on node-disjoint paths. Journal of Combi-

natorial Optimization, 30:87-96, 2015.



102

Chapter 6: Conclusion and Future Research

[18]

[19]

[20]

[21]

22]

[23]

[24]

[25]

Michiel Blom, Sven O. Krumke, Willem E. de Paepe, and Leen Stougie. The
online tsp against fair adversaries. Informs Journal on Computing, 13:137-149,

2001.

Avrim Blum, Prasad Chalasani, Don Coppersmith, Bill Pulleyblank, Prabhakar
Raghavan, and Madhu Sudan. The minimum latency problem. Proceedings of the

twenty-sixth annual ACM symposium on Theory of computing, pages 163-171,
1994.

Zahy Bnaya, Ariel Felner, Dror Fried, Olga Maksin, and Solomon Eyal Shimony.
Repeated-task canadian traveler problem. AAAI Publications, Fourth Annual
Symposium on Combinatorial Search, pages 24-30, 2011.

Allan Borodin and Yan El-Yaniv. Online computation and competitive analysis.

Cambridge University Press, Cambridge, 1998.

Scott Shorey Brown and Daniel H. Wagner. Necessary and sufficient conditions

for optimal search plans for moving targets. Mathematics of Operations Research,

4:431-440, 1979.

Scott Shorey Brown and Daniel H. Wagner. Optimal search for a moving target
in discrete time and space. Operations Research, 28:1275-1289, 1980.

Sabine Buttner and Sven O. Krumke. The canadian tour operator problem
on paths: tight bounds and resource augmentation. Journal of Combinatorial

Optimization, 32:842-854, 2016.

K. Chaudhuri, B. Godfrey, S. Rao, and K. Talwar. Paths, trees, and minimum
latency tours. Proceedings of 44th Annual IEEE Symposium on Foundations of
Computer Science, pages 36—45, 2003.

Erik D. Demaine, Sandor P. Fekete, and Shmuel Gal. Online searching with turn
cost. Theoretical Computer Science, 361:342—355, 2006.



Chapter 6: Conclusion and Future Research 103

[27] Erik D. Demaine, Yamming Huang, Chung-Shou Liao, and Kunihiko Sadakane.
Canadians should travel randomly. International Colloguium on Automata, Lan-

guages, and Programming, pages 380-391, 2014.

[28] David Eppstein. Finding the k shortest paths. Siam J. Computing, 28:652-673,
1998.

[29] Amos Fiat and J. Gerhard Woeginger. Online Algorithms: The State of the Art.
Springer, 1998.

[30] Matteo Fischetti, Gilbert Laporte, and Silvano Martello. The delivery man prob-
lem and cumulative matroids. Operations Research, 41:1055-1064, 1993.

[31] Dror Fried, Solomon Eyal Shimony, Amit Benbassat, and Cenny Wenner. Com-
plexity of canadian traveler problem variants. Theoretical Computer Science,

487:1-16, 2013.

[32] Michel Goemans and Jon Kleinberg. An improved approximation ratio for the

minimum latency problem. Mathematical Programming, 82:111-124, 1998.

[33] Patrick Jaillet and Xin Lu. Online traveling salesman problems with service

flexibility. Networks, 58:137-146, 2011.

[34] Patrick Jaillet and Xin Lu. Online traveling salesman problems with rejection

options. Networks, 64:84-95, 2014.

[35] Patrick Jaillet and Matthew Stafford. Online searching. Operations Research,
49:501-515, 2001.

[36] Anna R. Karlin, Mark S. Manasse, Larry Rudolph, and Daniel D. Sleator. Com-
petitive snoopy caching. Algorithmica, 3:79-119, 1988.

[37] Kensaku Kikuta. A search game on a cyclic graph. Nawval Research Logistics,
51:977-993, 2004.

[38] Dennis Komm. An Introduction to Online Computation. Springer, 2016.



104

Chapter 6: Conclusion and Future Research

[39]

[40]

[44]

[45]

[46]

O. Bernard. Koopman. Search and screening. OEG Repoert No. 56, 1946.

Sven O. Krumke. Online optimization: ~ Competitive analysis and
beyond,  2002. URL: https://pdfs.semanticscholar.org/583b/
4e88723d156931889¢c772c2dd98a71267c6d . pdf.

Chung-Shou Liao and Yamming Huang. The covering canadian traveler problem.

Theoretical Computer Science, 530:80-88, 2014.

Chung-Shou Liao and Yamming Huang. Generalized canadian traveller problems.

Journal of Combinatorial Optimization, 29:701-712, 2015.

Udo Loessner and Ingo Wegener. Discrete sequential search with positive switch

cost. Mathematics of Operations Research, 7:426-440, 1982.

Abilio Lucena. Timedependent traveling salesman problemthe deliveryman case.

Networks, 20:753-763, 1990.

Isabel Mendez-Diaz, Paula Zabala, and Abilio Lucena. A new formulation for the
traveling deliveryman problem. Discrete Applied Mathematics, 156:3223-3237,
2008.

Evdokia Nikolova and David Ron Karger. Route planning under uncertainty: The
canadian traveller problem. Proceedings of the Twenty-Third AAAI Conference
on Artificial Intelligence, 2008.

Laura H. Nunn. An introduction to the literature of search theory. Operations

Evaluation Group, Center for Naval Analyses, 305, 1981.

Christos Papadimitriou and Mihalis Yannakakis. Shortest paths without a map.
Theoretical Computer Science, 84:127-150, 1991.

O. Furkan Sahin and Vural Aksakalli. A comparison of penalty and rollout-based
algorithms for the canadian traveler problem. International Journal of Machine

Learning and Computing, 5:319-324, 2015.



Chapter 6: Conclusion and Future Research 105

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Sartaj Sahni and Teofilo Gonzales. P-complete problems and approximate solu-
tions. Proceedings of the IEEE conference record of symposium on switching and

automata theory, pages 28-32, 1974.

Davood Shiri and Sibel Salman. On the online multi-agent o-d k-canadian trav-

eler problem. Journal of Combinatorial Optimization, 34:453-461, 2017.

Davood Shiri and Sibel Salman. Competitive analysis of randomized online
strategies for the online k-canadian traveler problem. Journal of Combinato-

rial Optimization, 1:1-18, 2018. doi:10.1007/s1087.

Davood Shiri and Sibel Salman. On the randomized online strategies for the
k-canadian traveler problem. Journal of Combinatorial Optimization, 1:1-14,

2019. 10.1007/s10878-019-00378-1.

David Simchi-levi and Oded Berman. Minimizing the total flow time of n jobs

on a network. IEE Transactions, 23:236-244, 1991.

Daniel Sleator and Robert Tarjan. Amortized efficiency of list update and paging
rules. Communications of the ACM, 28:202-208, 1985.

Lawrence D. Stone. Theory of optimal search. Academic Press, Newyork, 1975.

Lawrence D. Stone. Or forum- what’s happened in search theory since the 1975

lanchester prize? Operations Research, 37:501-506, 1989.

Bing Su and Yinfeng Xu. Online recoverable canadian traveler problem. In: Pro-

ceedings of the international conference on management science and engineering,

pages 633-639, 2004.

Bing Su, Yinfeng Xu, Peng Xiao, and Lei Tian. A risk-reward competitive
analysis for the recoverable canadian traveller problem. In: Proceedings of the
second international conference on combinatorial optimization and applications,

pages 417-426, 2008.



106

Chapter 6: Conclusion and Future Research

[60]

[61]

[63]

[64]

[65]

[66]

[67]

[68]

Alan R. Washburn. Search for a moving target: The fab algorithm. Operations
Research, 31:739-751, 1983.

Ingo Wegener. Optimal search with positive switch cost is np-hard. Information

Processing Letters, 21:49-52, 1985.

Xingang Wen, Yinfeng Xu, and Huili Zhang. Online traveling salesman problem
with deadline and advanced information. Computers and Industrial Engineering,

63:1048-1053, 2012.

Xingang Wen, Yinfeng Xu, and Huili Zhang. Online traveling salesman problem
with deadlines and service flexibility. Journal of Combinatorial Optimization,

30:545-562, 2015.

Stephan Westphal. A note on the k-canadian traveler problem. Information

Processing Letters, 106:87-89, 2008.

Bang Ye Wu, Zheng-Nan Huang, and Fu-Jie Zhan. Exact algorithms for the
minimum latency problem. Information Processing letters, 92:303-309, 2004.

Yinfeng Xu, Maolin Hu, Bing Su, Binhai Zhu, and Zhijun Zhu. The canadian
traveler problem and its competitive analysis. Journal of Combinatorial Opti-

mization, 18:195-205, 2009.

Yinfeng Xu and Huili Zhang. How much the grid network and rescuers com-
munication can improve the rescue efficiency in worst-case analysis. Journal of

Combinatorial Optimization, 30:1062-1076, 2015.

Andrew C. Yao. Probabilistic computations: Towards a unified measure of com-
plexity. Proceedings of the 18th Annual IEEE Symposium on the Foundations of
Computer Science, pages 222227, 1977.

Jin Yen. Finding the k shortest loopless paths in a network. Management Science,

17:712-716, 1971.



Chapter 6: Conclusion and Future Research 107

[70]

[71]

[72]

73]

[74]

Huili Zhang, Weitian Tong, Guohui Lin, and Yinfeng Xu. Online minimum la-
tency problem with edge uncertainty. European Journal of Operational Research,

2018. DOI=10.1016/j.ejor.2018.08.017.

Huili Zhang, Weitian Tong, Yinfeng Xu, and Guohui Lin. The steiner traveling
salesman problem with online edge blockages. Furopean Journal of Operational

Research, 243:30-40, 2015.

Huili Zhang, Weitian Tong, Yinfeng Xu, and Guohui Lin. The steiner trav-
eling salesman problem with online advanced edge blockages. Computers and

Operations Research, 70:26-38, 2016.

Huili Zhang and Yinfeng Xu. Online covering salesman problem. Journal of

Combinatorial Optimization, 35:941-954, 2018.

Huili Zhang, Yinfeng Xu, and Lan Qin. The k-canadian travelers problem with

communication. Journal of Combinatorial Optimization, 26:251-265, 2013.



